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Preface

Physical kinetics is the final section of the course of theoretical physics
in its standard presentation. It stays at the boundary between gen-
eral theories and their applications (solid state theory, theory of gases,
plasma, and so on), because the treatment of kinetic phenomena always
depends on specific structural features of materials. On the other hand,
the physical kinetics as a part of the quantum theory of macroscopic
systems is far from being complete. A number of its fundamental is-
sues, such as the problem of irreversibility and mechanisms of chaotic
responses, are now attracting considerable attention. Other important
sections, for example, kinetic phenomena in disordered and/or strongly
non-equilibrium systems and, in particular, phase transitions in these
systems, are currently under investigation. The quantum theory of mea-
surements and quantum information processing actively developing in
the last decade are based on the quantum kinetic theory.

Because a deductive theoretical exposition of the subject is not con-
venient, the authors restrict themselves to a lecture-style presentation.
Now the physical kinetics seems to be at the stage of development when,
according to Newton, studying examples is more instructive than learn-
ing rules. In view of these circumstances, the methods of the kinetic
theory are presented here not in a general form but as applications for
description of specific systems and treatment of particular kinetic phe-
nomena.

The quantum features of kinetic phenomena can arise for several rea-
sons. One naturally meets them in strongly correlated systems, when it
is impossible to introduce weakly interacting quasiparticles (for exam-
ple, in a non-ideal plasma), or in more complicated conditions, such as
in the vicinity of the phase transitions. Next, owing to complexity of
the systems like superconductors, ferromagnets, and so on, the manifes-
tations of kinetic phenomena change qualitatively. The theoretical con-
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vi QUANTUM KINETIC THEORY

sideration of these cases can be found in the literature. Another reason
for studying quantum features of transport and optical phenomena has
emerged in the past decades, in connection with extensive investigation
of kinetic phenomena under strong external fields and in nanostructures.
The quantum features of these phenomena follow from non-classical dy-
namics of quasiparticles, and these are the cases the present monograph
takes care of, apart from consideration of standard problems of quan-
tum transport theory. Owing to intensive development of the physics of
nanostructures and wide application of strong external (both stationary
and time-dependent) fields for studying various properties of solids, the
theoretical methods presented herein are of current importance for anal-
ysis and interpretation of the experimental results of modern solid state
physics.

This monograph is addressed to several categories of readers. First,
it will be useful for graduate students studying theory. Second, the top-
ics we cover should be interesting for postgraduate students of various
specializations. Third, the researchers who want to understand the back-
ground of modern theoretical issues in more detail can find a number
of useful results here. The phenomena we consider involve kinetics of
electron, phonon, and photon systems in solids. The dynamical prop-
erties and interactions of electrons, phonons, and photons are briefly
described in Chapter 1. Further, in Chapters 2−8, we present main the-
oretical methods: linear response theory, various kinetic equations for
the quasiparticles under consideration, and diagram technique. The pre-
sentation of the key approaches is always accompanied by solutions of
concrete problems, to illustrate applications of the theory. The remain-
ing chapters are devoted to various manifestations of quantum transport
in solids. The choice of particular topics (their list can be found in the
Contents) is determined by their scientific importance and methodolog-
ical value. The 268 supplementary problems presented at the end of the
chapters are chosen to help the reader to study the material of the mono-
graph. Focusing our attention on the methodical aspects and discussing
a great diversity of kinetic phenomena in line with the guiding principle
“a method is more important than a result,” we had to minimize both
detailed discussion of physical mechanisms of the phenomena considered
and comparison of theoretical results to experimental data.

It should be emphasized that the kinetic properties are the impor-
tant source of information about the structure of materials, and many
peculiarities of the kinetic phenomena are used for device applications.
These applied aspects of physical kinetics are not covered in detail either.
However, the methods presented in this monograph provide the theoret-
ical background both for analysis of experimental results and for device
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simulation. In the recent years, these theoretical methods were applied
for the above-mentioned purposes so extensively that any comprehensive
review of the literature seems to be impossible in this book. For this
reason, we list below only a limited number of relevant monographs and
reviews.

Fedir T. Vasko
Oleg E. Raichev
Kiev, December 2004
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Chapter 1

ELEMENTS OF QUANTUM DYNAMICS

The dynamical equations for quantum systems, the Schroedinger equation for
pure states and the density-matrix equation for mixed states, form the theoretical
background for description of transport phenomena in systems with different kinds
of elementary excitations (quasiparticles). Both single-particle formulation of these
equations and many-particle formalism, which is required for the cases of interacting
quasiparticles, are presented below. This chapter is not a systematic introduction to
quantum theory. It contains only the description of some basic equations and defini-
tions (probability of transitions, second quantization, and so on). The properties of
concrete quasiparticles (electrons, phonons, and photons in different materials) and
their interaction are also discussed in order to use the corresponding results in the
next chapters.

1. Dynamical Equations
Let us start our consideration of the quantum dynamics with the sim-

plest case of a single particle propagating along the x direction. The evo-
lution of such a particle is described by the time-dependent Schroedinger
equation:

i�
∂Ψ(δ)

xt

∂t
= ĤΨ(δ)

xt , Ψ(δ)
xt=t0

= Ψ(δ)
x , (1)

where the initial state at t = t0 is determined by the wave function
Ψ(δ)

x , which depends on the set of quantum numbers δ. The Hamiltonian
Ĥ can depend on time. A simple example of quantum evolution is a
particle moving in a one-dimensional potential. The Hamiltonian Ĥx for
such a case is obtained from the classical expression for the energy after
replacing the momentum by the operator proportional to the Planck

1



2 QUANTUM KINETIC THEORY

constant �:

Ĥx =
p̂2

2m
+ U(x) , p̂ = −i�

∂

∂x
, (2)

where m is the mass of the particle. The character of the dynamics
depends essentially on the potential energy U(x). We mention, for ex-
ample, formation of confined states in a potential well or tunneling pen-
etration of the particle through a potential barrier. Different observable
values (such as coordinate, velocity, and energy) of the system are de-
termined by the quantum-mechanical average

Q
(δ)

t =
∫

dxΨ(δ)
xt

∗
Q̂Ψ(δ)

xt , (3)

where the operator Q̂ corresponds to the classical expression for the
observable value. Note that Q

(δ)

t is expressed through a quadratic form
of the Ψ-functions. Since Q

(δ)

t is real, any operator Q̂ must be Hermitian.
In particular, Ĥ = Ĥ+, because the Hamiltonian corresponds to the
energy of the system.

The operator nature of the characteristics of quantum systems makes
it possible to rewrite Eqs. (1) and (3) in the integral representation. We
introduce a kernel

H(x, x1) =
[

p̂2
1

2m
δ(x − x1)

]
+ U(x1)δ(x − x1) (4)

containing Dirac’s δ-function, and transform the Schroedinger equation
(1) to the following integral form:

i�
∂Ψ(δ)

xt

∂t
=
∫

dx1H(x, x1)Ψ
(δ)
x1t, Ψ(δ)

xt=t0
= Ψ(δ)

x . (5)

The kernel for the observable value, Q(x, x1) = [Q̂1δ(x − x1)], is in-
troduced in the same way (here Q̂1 acts on the coordinate x1 of the
δ-function), and we obtain

Q
(δ)

t =
∫

dx

∫
dx1Ψ

(δ)
xt

∗
Q(x, x1)Ψ

(δ)
x1t. (6)

In these formulations, the state with quantum numbers δ is described by
the wave function Ψ(δ)

xt and by the operators of physical values appearing
in Eqs. (1) and (3), or by the x-dependent kernels in Eqs. (5) and (6).
Such a description is called the coordinate (or x-) representation.

In many cases, the description of quantum dynamics can be simplified
by using the Fourier-transformed wave function introduced according to
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the relations

Ψ(δ)
pt =

∫
dxe−(i/�)pxΨ(δ)

xt , Ψ(δ)
xt =

1
L

∑
p

e(i/�)pxΨ(δ)
pt . (7)

In order to avoid the ambiguities due to δ-functions, the motion of the
particle is considered here for an interval of length L, with the use of
appropriate boundary conditions. In the limit L → ∞, the momentum
p in Eq. (7) is a quasi-discrete variable with values (2π�n/L), where
n is an integer. The substitution p → (2π�n/L) does not depend on
the type of the boundary conditions used (hard-wall, periodic, etc.),
provided that n is a large number. A Fourier transformation of Eq. (1)
with the Hamiltonian (2) leads to the Schroedinger equation

i�
∂Ψ(δ)

pt

∂t
=
∑
p1

H(p, p1)Ψ
(δ)
p1t, (8)

H(p, p1) ≡ 1
L

∫
dxe−(i/�)pxĤxe(i/�)p1x,

which is similar to Eq. (5). The kernel H(p, p′) depends on a pair of
momenta. The initial condition to Eq. (8) is determined by the Fourier
transformation of Ψ(δ)

x . In the above example of the particle in a one-
dimensional potential, the Hamiltonian kernel is transformed to

H(p, p1) =
p2

2m
δp,p1 + U(p, p1), (9)

where δp,p1 is the Kronecker symbol (below we use two equivalent no-
tations δa,b and δab for such symbols). The kinetic energy acquires its
classical form, while the action of the potential is described by the kernel
U(p, p1). The expression for an observable through Ψ(δ)

pt is written as

Q
(δ)

t =
1
L2

∑
p1p2

Ψ(δ)
p1t

∗
Q(p1, p2)Ψ

(δ)
p2t, (10)

where the kernel Q(p1, p2) can be written in terms of Q̂ in a similar way
as the Hamiltonian kernel in Eq. (8). The structure of Eqs. (8) and (10)
is analogous to that of Eqs. (5) and (6). This description is called the
momentum (or p-) representation of the problem under consideration.

Obviously, the nature of quantum dynamics does not depend on the
representation used. For this reason, it is convenient to consider the
wave function as a projection of the ket-vector |δ, t〉, which describes the
state defined by the quantum numbers δ, onto the bra-vector, 〈k|, which
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determines the representation:

Ψ(δ)
kt = 〈k|δ, t〉 k ↔ x, p, . . . . (11)

It should be noted that the above-introduced bra- and ket-vectors are not
usual functions. They are Hermitian conjugate elements of the Hilbert
space satisfying the relations of orthogonality, normalization, and com-
pleteness:

〈k| = |k〉+, 〈k|k′〉 = δk,k′ ,
∑

k

|k〉〈k| = 1̂, (12)

where 1̂ is the unit operator. Using these notations, one may formulate
any dynamical problem in the operator form.

The Schroedinger equation for the state δ in this representation takes
the following form:

i�
∂ |δ, t〉

∂t
= Ĥ |δ, t〉 , |δ, t = t0〉 = |δ〉 , (13)

with the initial condition determined by the ket-vector |δ〉. A similar
equation for the Hermitian conjugate vector 〈δ, t| contains −〈δ, t|Ĥ on
the right-hand side. Using Eq. (11) and rewriting the kernel Q(k1, k2)
as 〈k1|Q̂|k2〉, we define the observable Q

(δ)

t as follows:

Q
(δ)

t =
∑
k1k2

〈δ, t|k1〉〈k1|Q̂|k2〉〈k2|δ, t〉 = 〈δ, t|Q̂|δ, t〉, (14)

so that the classical observable is expressed through the diagonal matrix
element. As a result, the dynamics of the system with a fixed initial state
|δ, t = 0〉 (such a system is said to be in the pure state) is described by
Eqs. (13) and (14).

Transforming the double sum in Eq. (14) as
∑

k1k2
〈k1|Q̂|k2〉〈k2|δ, t〉

×〈δ, t|k1〉, it is convenient to separate the operator |δ, t〉〈δ, t| there. This
operator,

η̂(δ)
t ≡ |δ, t〉〈δ, t|, (15)

known as the density matrix or as the statistical operator, describes
the quantum dynamics of the system. The quantity 〈k2|δ, t〉〈δ, t|k1〉 =
〈k2|η̂(δ)

t |k1〉 is also called the density matrix in the |k〉-representation.
One may consider, for example, x- or p-representation, or a representa-
tion based upon discrete quantum numbers (problem 1.1). The descrip-
tion of the quantum dynamics based on the density matrix formalism is
convenient for the cases when the initial state |δ, t = t0〉 of the quantum
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system is not defined (for example, because of the quantum-mechanical
uncertainty).

Let us give a more general definition of the density matrix. Consider
an ensemble of identical systems, which are distributed over the states δ
with probabilities Pδ at the initial moment of time t = t0 (such a system
is called the mixed state, or the mixture of states). We introduce the
observable quantity Qt according to

Qt =
∑

δ

PδQ
(δ)

t . (16)

The probability for realization of δ-states is normalized as
∑

δ Pδ = 1.
Since the operator Q̂ does not depend on the initial conditions, the
density matrix for the mixed state is introduced as

η̂t ≡
∑

δ

Pδ |δ, t〉〈δ, t|, (17)

and the observable (16) is obtained from Eqs. (14) and (16) in the form

Qt =
∑

k

〈k|Q̂η̂t|k〉 ≡ Sp(Q̂η̂t). (18)

Here and below Sp(Â) (or, equivalently, SpÂ), where Â is an arbitrary
operator, denotes the sum of the diagonal matrix elements of this oper-
ator and is called the trace of the operator.

The equation of evolution for the density matrices (15) and (17) de-
scribing dynamics of pure and mixed states, respectively, is obtained
in the following way. Let us take a derivative of the density matrix
over time and use Eq. (13) together with the corresponding Hermitian
conjugate equation. As a result,

i�
∂

∂t
|δ, t〉〈δ, t| = Ĥ|δ, t〉〈δ, t| − |δ, t〉〈δ, t|Ĥ. (19)

Now, let us multiply this equation by Pδ and calculate the sums over δ
of both its sides. Since Ĥ does not depend on δ, we obtain, according
to Eq. (17), the operator equation

i�
∂η̂t

∂t
= [Ĥ, η̂t] (20)

describing the evolution of the quantum system. The right-hand side of
Eq. (20) is written using the commutator defined as [Â, B̂] = ÂB̂ − B̂Â,
where Â and B̂ are arbitrary operators. The initial condition for Eq.
(20) in the case of a pure state may be expressed as η̂t=t0 = |δ〉〈δ|, while
for a mixed state one needs additional physical restrictions removing the
uncertainty of the initial state.
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2. S-Operator and Probability of Transitions
The evolution of the system with time-dependent Hamiltonian Ĥt is

described by the Schroedinger equation (1.13). The ket-vectors |δt〉 ≡
|δ, t〉 at the instants t and t′ are connected through the evolution operator
Ŝ (also known as S-operator or scattering matrix):

|δt〉 = Ŝ(t, t′)|δt′〉. (1)

Equation (1.13) leads to the operator equation for Ŝ(t, t′), with the initial
condition at t = t′:

i�
∂

∂t
Ŝ(t, t′) = ĤtŜ(t, t′), Ŝ(t, t′)t=t′ = 1. (2)

For the case of a time-independent Hamiltonian, Ĥt = Ĥ, this equation
is solved as

Ŝ(t, t′) = exp
[
− i

�
Ĥ(t − t′)

]
≡ Ŝ(t − t′), (3)

and the temporal evolution is determined only by the difference t − t′.
If the initial value of the ket-vector, |δ, t = 0〉 = |δ〉, belongs to one
of the vectors determined by the eigenstate problem Ĥ|δ〉 = εδ |δ〉, the
evolution is harmonic:

|δt〉 = exp
(

− i

�
εδt

)
|δ〉. (4)

In the case of a mixed initial state, the evolution is described by a sum
of oscillating factors with different energies εδ .

In the general case of the time-dependent Hamiltonian, it is convenient
to transform Eq. (2) to the integral form:

Ŝ(t, t′) = 1 − i

�

∫ t

t′
dτĤτ Ŝ(τ, t′). (5)

The solution of this equation is obtained by iterations and is written as

Ŝ(t, t′) = 1 +
∞∑

n=1

(
− i

�

)n ∫ t

t′
dt1 . . .

∫ tn−2

t′
dtn−1

∫ tn−1

t′
dtn

×Ĥt1 . . . Ĥtn−1Ĥtn . (6)

Introducing the operator of chronological ordering, T̂ , we rewrite Eq.
(6) as follows (problem 1.2):

Ŝ(t, t′) = 1+
∞∑

n=1

(−i/�)n

n!

∫ t

t′
dt1 . . .

∫ t

t′
dtn−1

∫ t

t′
dtnT̂

{
Ĥt1Ĥt2 . . . Ĥtn

}
,
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T̂
{

ĤtĤt′
}

=
{

ĤtĤt′ , t > t′

Ĥt′Ĥt, t < t′
. (7)

One can write Ŝ(t, t′) of Eqs. (6) and (7) as a chronologically ordered
exponential operator

Ŝ(t, t′) = T̂
{

exp
[
− i

�

∫ t

t′
dτĤτ

]}
. (8)

This expression, together with Eq. (2), leads to the following properties
of the evolution operator:

Ŝ(t, t′) = Ŝ+(t′, t), Ŝ+(t, t′)Ŝ(t, t′) = 1, Ŝ(t, t1)Ŝ(t1, t′) = Ŝ(t, t′), (9)

which can be checked by calculating the time derivatives (problem 1.3).
Below we consider a system with time-independent Hamiltonian Ĥ

in the presence of a weak harmonic perturbation. In other words, we
discuss the evolution of the system with the Hamiltonian

Ĥ + (v̂ωe−iωt + H.c.) ≡ Ĥ + V̂t, (10)

where the operator v̂ω is small. The letters H.c. in Eq. (10) indicate
the Hermitian conjugate contribution to the perturbation. A solution of
this problem not only describes a response of the system to the harmonic
perturbation, but also allows one to consider a modification of stationary
states under the time-independent perturbation v̂ω + v̂+

ω , where ω = 0.
It is convenient to use the interaction representation by introducing a
new ket-vector |δt) according to |δt〉 = Ŝ(t)|δt), where Ŝ(t) is the S-
operator (introduced by Eq. (3)) for the Hamiltonian Ĥ. Substituting
|δt〉 = Ŝ(t)|δt) into Eq. (1.13), we multiply the latter by Ŝ+(t) from the
left and obtain the following Schroedinger equation in the interaction
representation:

i�
∂|δt)
∂t

= Ŝ+(t)V̂tŜ(t)|δt), |δ, t = 0) = |i〉. (11)

To solve Eq. (11) with the accuracy of the first order in the perturbation
V̂t, we substitute the unperturbed ket-vector |i〉 to the right-hand side
of this equation. Since we assume that the unperturbed system is in the
initial state i, we have

|it) � |i〉 +
1
i�

∫ t

0
dt′V̂ (t′)|i〉, V̂ (t) = Ŝ+(t)V̂tŜ(t). (12)

The probability of finding the system at the instant t in the state f
(described by the ket-vector Ŝ(t)|f〉 of zero-order approximation), calcu-
lated with the accuracy of the second order in the perturbation, is equal
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to |〈f |Ŝ+(t)|it〉|2 = |〈f |it)|2. The probability of transition between the
states i and f is defined as a time derivative of this quantity:

Wif =
d|〈f |it)|2

dt
. (13)

We note that both |i〉 and |f〉 are the solutions of the eigenstate problem
Ĥ|i〉 = εi|i〉. An explicit expression for Wif is determined after a simple
integration over time:

Wif =
1
�2

d

dt

∣∣∣∣∣vfi
ei(ωfi−ω)t − 1
i(ωfi − ω)

+ v∗
if

ei(ωfi+ω)t − 1
i(ωfi + ω)

∣∣∣∣∣
2

, (14)

where ωfi = (εf −εi)/� is the frequency of transitions between the states
i and f of the unperturbed system and vfi = 〈f |v̂ω |i〉. The probability
of transitions has resonant behavior: at t → ∞ it is not equal to zero
only when ω coincides with one of the transition frequencies. We note
that, on the small-time scale, a non-zero probability exists also for non-
resonant conditions, owing to the energy-time uncertainty. In the case
of time-independent perturbations (ω = 0), the energy of the system is
conserved, and the transitions occur between the degenerate states only.

Let us consider first the asymptotic behavior of Wif at large times un-
der a time-independent perturbation V̂ ≡ 2v̂ (note that v̂ is Hermitian).
For this case, taking into account |vif |2 = |vfi|2, we obtain

Wif =
4|vif |2

�2
d

dt

2 − 2 cos ωfit

ω2
f i

=
8|vif |2

�2
d

dt

[
2 sin2(ωfit/2)

ω2
f it

t

]
. (15)

If ωfit � 1, the function 2 sin2(ωfit/2)/ω2
f it goes to πδ(ωfi); see Fig.

1.1 and problem 1.4, where different presentations of Dirac’s δ-function
are discussed. As a result, the probability of transition becomes

Wif =
2π

�
|〈f |V̂ |i〉|2δ(εf − εi). (16)

This important result is known as Fermi’s golden rule. We stress again
that the energy of the system is conserved, and only the states with
εf = εi contribute into the probability (16) under a time-independent
perturbation.

The probability of resonant transitions in the case of time-dependent
perturbations is calculated in a similar way. If ωfi 	= 0, only the terms
containing ωfi −ω in the factor | . . . |2 of Eq. (14) are important at large
t, and one obtains

Wif (ω) =
2π

�
|〈f |v̂ω |i〉|2δ(εf − εi − �ω). (17)
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Figure 1.1. Function F (ω) = sin2(ωt)/πω2t for t =3, 10, and 30 (dotted, dashed,
and solid curves, respectively).

The energy conservation law

εf = εi + �ω (18)

is fulfilled for interlevel transitions excited by a harmonic perturbation
with the energy of quantum �ω.

Equations (16) and (17) can be derived in an alternative way, under
the assumption that the perturbation V̂t is adiabatically turned on at
t = −∞. The first-order solution of the time-dependent Schroedinger
equation (1.13) with the Hamiltonian Ĥ + V̂t and boundary condition
|δ, t = −∞〉 = |i〉 is written as

|it〉 � |i〉 +
1
i�

∫ t

−∞
dt′eλt′Ŝ(t, t′)V̂t′Ŝ

+(t, t′)|i〉 , (19)

where λ → +0 describes the adiabatic turning-on. Consider, for exam-
ple, a time-independent perturbation V̂ . The integral in Eq. (19) is
easily calculated by substituting τ = t′ − t. Since Ŝ(t, t′) = Ŝ(−τ), we
obtain

〈f |it〉 = eλt 〈f |V̂ |i〉
εi − εf + i�λ

. (20)

The transition probability d|〈f |it〉|2/dt is reduced to Eq. (16) according
to the first expression for the δ-function in problem 1.4. The case of
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time-dependent perturbation is considered in a similar way, leading to
Eq. (17).

The probabilities of transitions, derived above in a pure quantum-
mechanical approach, are the important characteristics determining ki-
netic properties of different systems. Indeed, let us introduce the oc-
cupation number njt for the state j, i.e., the average number of the
particles in the state j at the instant t, according to (see Eq. (1.17))

njt = 〈j|η̂t|j〉 =
∑

δ

Pδ |〈j|δt〉|2. (21)

One may expect that, under proper conditions (in the subsequent chap-
ters this question will be considered in detail), the temporal evolution
of the occupation numbers is determined by the balance equation

∂njt

∂t
=
∑
j′

Wjj′
(
nj′t − njt

)
, (22)

where Wjj′ is given by Eq. (16) for the case of time-independent per-
turbations and Wjj′ = Wjj′(ω) + Wjj′(−ω), see Eq. (17), for time-
dependent harmonic perturbations. The first and second terms on the
right-hand side of Eq. (22) describe incoming (arrival) and outgoing (de-
parture) contributions to the balance of occupation, respectively. We
note that the arrival rate from the state j′ to the state j is equal to
Wjj′nj′t, while the departure rate from the state j to all other states is
equal to njt

∑
j′ Wjj′ . The balance equation (22) conserves the number

of the particles and, for the case of time-independent perturbations, the
energy of the system. In order to describe the temporal evolution of the
other characteristics of the system (those which are sensitive to phase
correlation), one has to consider quantum kinetic equations for η̂t; see
the next chapters.

In the case of harmonic perturbations, one may express the power
absorbed by the system through the transition probability (17). The
absorbed power Uω is defined as the energy of the quantum, �ω, multi-
plied by the difference between the rate of transition from the state j to
the state j′ (which corresponds to absorption of the quantum) and the
rate of emission of the quantum associated with the transitions from j′
to j:

Uω = �ω
∑
jj′

[
Wjj′(ω)nj(1 − nj′) − Wj′j(−ω)nj′(1 − nj)

]
= �ω

∑
jj′

Wjj′(ω)(nj − nj′). (23)
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On the other hand, the absorbed power Uω for the system excited by an
electric field Et is determined by the electrodynamical expression It · Et,
where It is the electric current density induced by the field and the line
over the expression denotes the averaging over the period 2π/ω. Within
the accuracy of E2

t , which corresponds to the perturbation theory ap-
plied above, one may consider It in the framework of the linear-response
approximation and describe Uω through the frequency-dependent con-
ductivity of the system; see Chapter 3.

3. Photons in Medium
We begin our consideration of the quantum dynamics of concrete phys-

ical systems with the case of electromagnetic field in the spatially inho-
mogeneous medium described by the dielectric permittivity tensor ε̂r.
Starting from an expression for the energy of the electromagnetic field
in the absence of free electric charges, we derive the Hamiltonian of the
field and, after a quantization procedure, describe the field as a set of
oscillators corresponding to elementary quasiparticles known as photons.
The photons are an example of bosons, the particles with a symmetric
wave function corresponding to the Bose-Einstein statistics.

The energy of the field is determined by the expression

Ef =
1
8π

∫
(V )

dr(Ert · ε̂rErt + H2
rt)

=
1
8π

∫
(V )

dr
{

1
c2

∂Art

∂t
· ε̂r

∂Art

∂t
+ ([∇ × Art])2

}
, (1)

where the integrals are taken over the normalization volume V . In Eq.
(1) we assume a local relation between the electrostatic induction and
the field: ε̂rErt. On the other hand, the magnetic induction is equal to
Hrt because the kinetic phenomena are considered in this book for non-
magnetic materials only. The electric and magnetic field strengths, Ert
and Hrt, which satisfy the Maxwell equations in medium, are expressed
only through the vector potential Art, since we have chosen the Coulomb
gauge ∇ · ε̂rArt = 0 leading to zero scalar potential in the absence of
free charges.

It is convenient to represent the electromagnetic field described by the
vector potential Art as

Art =
∑

ν

[qν(t)Aν
r + q∗

ν(t)A
ν∗
r ], (2)
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where the modes Aν
r with frequencies ων are determined by the wave

equation following from the Maxwell equations:

[∇ × [∇ × Aν
r ]] −

(ων

c

)2
ε̂rAν

r = 0. (3)

The modes satisfy the orthogonality and normalization conditions ac-
cording to

∫
(V )

drAν∗
r · ε̂rAν ′

r = 2πc2δνν ′ . The coefficients qν(t) in the
expression (2) can be considered as the generalized coordinates of ν-th
mode. They satisfy the oscillator equation

d2qν(t)
dt2

+ ω2
νqν(t) = 0 (4)

corresponding to the harmonic oscillations with eigenfrequencies ων . In
the presence of external sources described by the electric current density
Irt, one must add the term −c−1 ∫

(V )
dr Irt · Art to the right-hand side

of Eq. (1) and (4π/c)Ir to the right-hand side of Eq. (3). Such a
contribution describes the interaction of the modes Ar with external
charges.

Introducing the generalized momentum pν(t) ≡ dqν(t)/dt, we apply
the orthogonality and normalization conditions for the modes of Eq. (3)
to rewrite the energy of the field given by Eq. (1) as a sum of oscillator
energies:

Ef =
1
2

∑
ν

{
|pν(t)|2 + ω2

ν |qν(t)|2
}

. (5)

Since the solutions of Eq. (4) are proportional to exp(−iωνt), we have
the relation pν = −iωνqν . It is convenient to introduce the canonically
conjugate variables

Qν(t) =
qν(t) + q∗

ν(t)
2

, Pν(t) = −iων
qν(t) − q∗

ν(t)
2

, (6)

which are used here in order to rewrite the energy of the field as Ef =∑
ν

{
|Pν(t)|2 +ω2

ν |Qν(t)|2
}

/2. The equations of motion acquire Hamil-
tonian form: Ṗν = Q̈ν = −∂Ef /∂Qν , Q̇ν = ∂Ef /∂Pν .

In order to quantize the electromagnetic field, we have to replace
the canonically conjugate variables Qν(t) and Pν(t) by the operators of
generalized coordinate and momentum, Q̂ν and P̂ν , which satisfy the
commutation relation

[Q̂ν , P̂ν ′ ] = i�δνν ′ . (7)

Let us use the expression for the energy as a sum of the oscillatory con-
tributions (5) and take into account the relation P̂ν = −i�∂/∂Qν . Then
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we write the Hamiltonian of quantized field in the Q-representation:

Ĥph =
1
2

∑
ν

{
−�

2 ∂2

∂Q2
ν

+ ω2
νQ

2
ν

}
. (8)

A solution of the eigenstate problem ĤphΨ{nν} = E{nν}Ψ{nν} deter-
mines a set of occupation numbers, {nν}, for the given modes. The
symmetrized wave function, corresponding to the Bose-Einstein statis-
tics, is a product of the eigenfunctions of different modes, ψnν (Qν), while
the total energy, E{nν}, is given by a sum of the oscillator energies:

Ψ{nν} =
∏
ν

ψnν (Qν), E{nν} =
∑

ν

�ων

(
nν +

1
2

)
. (9)

The occupation numbers nν are integers (nν ≥ 0). As follows from Eq.
(9), the wave function Ψ{nν} is symmetric with respect to permutations
of each oscillatory function ψn(Q) (see Appendix A) with another oscil-
latory function. The matrix elements of the generalized coordinate for
the transitions between the states with quantum numbers nν and n′

ν are
equal to zero if n′

ν 	= nν ± 1, while for the transition between adjacent
levels these matrix elements are

〈n′
ν |Q̂ν |nν〉 =

√
�

2ων

{ √
nν + 1 ,√

nν ,
n′

ν = nν + 1
n′

ν = nν − 1 . (10)

The matrix elements of the generalized momentum are 〈n′
ν |P̂ν |nν〉 =

±iων〈n′
ν |Q̂ν |nν〉, where the signs ± correspond to the transitions be-

tween the states with occupation numbers n′
ν = nν ± 1 and nν . This

equation is consistent with the relation between the Fourier components
of coordinate and momentum used in Eq. (6). Instead of a pair of canon-
ically conjugate operators Q̂ν and P̂ν , we introduce, by analogy to Eq.
(A.11), two Hermitian conjugate creation and annihilation operators for
the mode ν:

b̂ν =
ωνQ̂ν + iP̂ν√

2�ων
, b̂+

ν =
ωνQ̂

+
ν − iP̂+

ν√
2�ων

. (11)

Representing the contribution of the state ν in the Hamiltonian (8) as
{. . .} = (ωνQ̂

+
ν − iP̂+

ν )(ωνQ̂ν + iP̂ν) + �ων , we rewrite Ĥph in the form

Ĥph =
∑

ν

�ων

(
b̂+
ν b̂ν +

1
2

)
. (12)

The Hamiltonian of the field is given as a sum of the contributions ĥosc

determined by Eq. (A.12), with the oscillator frequencies ων .
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Therefore, the electromagnetic field in a medium is presented as a
superposition of quantized normal vibrations with frequencies ων and
occupation numbers nν . It is convenient to use a representation de-
scribed by the ket-vector |{nν}〉 depending on the sets of occupation
numbers {nν}. Using these sets as independent variables of the problem
(instead of the generalized coordinates Qν), one may define the creation
and annihilation operators through their matrix elements

〈n′
ν |b̂+

ν |nν〉 =
√

nν + 1δn′
ν ,nν+1,

〈n′
ν |b̂ν |nν〉 =

√
nνδn′

ν ,nν−1, (13)

instead of using Eq. (11). This means that the operators b̂+
ν and b̂ν ,

while acting on the ket-vector |{nν}〉, change the occupation number of
the photons of the mode ν by ±1, respectively:

b̂+
ν |n1n2 . . . nν . . .〉 =

√
nν + 1|n1n2 . . . nν + 1 . . .〉,

b̂ν |n1n2 . . . nν . . .〉 =
√

nν |n1n2 . . . nν − 1 . . .〉. (14)

The commutation rules for these operators are obtained by using either
the matrix elements (13) or the expressions of these operators through
Q̂ν and P̂ν , Eq. (11). For the Hermitian conjugate operators, one has

[b̂ν , b̂
+
ν ′ ] = δnν ,nν′ , (15)

while the operators of the same kind (creation or annihilation) merely
commute with each other. It is the commutation rule (15) that leads
to the appearance of zero-field oscillation energy

∑
ν �ων/2 in Eq. (12);

see also Eqs. (A.11) and (A.12). By analogy to the case of a single
oscillator, see Eq. (A.18), the set of ket-vectors |{nν}〉 is presented as

|{nν}〉 =
∏
ν

(b̂ν)nν

√
nν !

|{0}〉, (16)

where |{0}〉 describes the vacuum state where only zero-field oscillations
due to quantum-mechanical uncertainty are present. The set of ket-
vectors also satisfies the completeness, orthogonality, and normalization
conditions:∑

ν

|{nν}〉〈{nν}| = 1̂, 〈{nν}|{n′
ν}〉 = δ{nν},{n′

ν}. (17)

The generalized Kronecker symbol δ{nν},{n′
ν} is equal to unity only when

all the occupation numbers from the sets {nν} and {n′
ν} coincide. The
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description of the electromagnetic field given by Eqs. (13)-(17) is called
the occupation number representation or the second quantization. It is
analogous to the description of a single oscillator given by Eqs. (A.16)-
(A.19). In this representation, the sets of independent variables describ-
ing the system are the numbers of quanta of the field in each mode.
These quanta are called the photons in medium, i.e., the system is de-
scribed in terms of quasiparticles. The operator of the photon number
for the mode ν is introduced as n̂ν = b̂+

ν b̂ν . The justification of this
definition is the same as for a single oscillator, and the ket-vector |{nν}〉
is the eigenvector of the operator n̂ν corresponding to the eigenvalue nν ,
according to n̂ν |{nν}〉 = nν |{nν}〉; see Eq. (A.20).

Using the expansion (2) and expressing the amplitudes of vibrations
according to Eqs. (6) and (11) through the creation and annihilation
operators as q̂ν =

√
�/ων b̂ν and q̂+

ν =
√

�/ων b̂
+
ν , we get the quantized

operator of the vector potential

Âr =
∑

ν

√
�

ων

(
Aν

r b̂ν + Aν∗
r b̂+

ν

)
, (18)

where the modes Aν
r are determined from Eq. (3). The operators of

the second-quantized fields, Êr and Ĥr, can be written by using Eq.
(18) together with the relation q̇ν(t) = −iωνqν(t) and by expressing
these fields through the vector potential according to Ert = −c−1Ȧrt
and Hrt = [∇ × Art]. The classical vector of the radiation flux density
(Poynting vector), Srt = (c/4π)[Ert × Hrt], is expanded in terms of the
modes as follows:

Srt = − 1
4π

[
∂Art

∂t
× [∇ × Art]

]
=

i

4π

∑
νν ′

ων ′
[(

qν ′(t)Aν ′
r

−q∗
ν ′(t)Aν ′∗

r

)
× (qν(t)[∇ × Aν

r ] + q∗
ν(t)[∇ × Aν∗

r ])
]
. (19)

In the second quantization representation, the operator of the radiation
flux density, Ŝr, is written as

Ŝr =
i�

4π

∑
νν ′

√
ων ′

ων

[(
b̂ν ′Aν ′

r − b̂+
ν ′Aν ′∗

r

)

×
(
b̂ν [∇ × Aν

r ] + b̂+
ν [∇ × Aν∗

r ]
)]

(20)

after expressing the amplitudes qν(t) in Eq. (19) through the corre-
sponding creation and annihilation operators.
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In a homogeneous and isotropic medium with dielectric permittivity
ε, the modes Aν

r are the plane waves Aqµ exp(iq · r) with wave vector q
and polarization µ. The amplitudes Aqµ are determined from the vector
equation

[q × [q × Aqµ]] +
(ωqµ

c

)2
εAqµ = 0 (21)

following from Eq. (3) and from the gauge condition (q · Aqµ) = 0.
Equation (21) is equivalent to a system of three algebraic equations for
the components of the vector Aqµ. The requirement of orthogonality
and normalization for the amplitudes is written as

V ε

2πc2 (A∗
qµ · Aqµ′) = δµµ′ , (22)

so that one can introduce the unit vectors of polarization, eqµ, according
to Aqµ =

√
2πc2/εV eqµ. These vectors have the properties of transver-

sity (following from the gauge conditions), orthogonality, and normal-
ization (following from Eq. (22)), while Eq. (21) leads to a polarization-
independent dispersion relation for the photon of frequency ωq :

(q · eqµ) = 0, (e∗
qµ · eqµ′) = δµµ′ , ωq = c̃q, c̃ =

c√
ε
. (23)

These relations describe propagation of the photons whose unit vectors
of polarization, eqµ=1 and eqµ=2, are directed in the plane perpendicular
to the wave vector q. The dispersion of the photons is linear in q, and the
proportionality coefficient c̃ is the velocity of light in the medium. The
Hamiltonian and the radiation flux density operator for the homogeneous
and isotropic medium are expressed, according to Eqs. (12) and (20),
through the photonic creation and annihilation operators for the states
ν = (q, µ). The polarization vectors and the frequency of these states
are given by Eq. (23). The operator of electric field can be obtained
from Eq. (18):

Êr = i
∑
qµ

√
2π�ωq

εV
eqµeiq·r

(
b̂qµ − b̂+

−qµ

)
, (24)

where we assumed that e∗
qµ = e−qµ. The magnetic-field operator is given

by a similar expression, which is obtained according to Ĥr = [∇ × Âr]
and contains the polarization factor [q×eqµ] under the sum. The matrix
element of Ŝr for the case of plane waves is determined according to
Eqs. (20), (22), and (13) as 〈nν |Ŝr|nν〉 = (q/q)c̃V −1

�ωq(nν + 1/2). In
this form, the Poynting vector has direct meaning of the flux of photon
energy density with velocity c̃ in the direction of q. In non-homogeneous
media, the description of the modes based upon Eqs. (3) and (18) is
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more sophisticated, though relatively simple results exist for the case of
one-dimensional inhomogeneities (problems 1.5 and 1.6).

Finally, let us calculate the averaged occupation number of the mode
ν for the equilibrium distribution of photons with temperature Tph. This
distribution is described by the density matrix

η̂eq = Z−1 exp(−Ĥph/Tph), Z = Sp exp(−Ĥph/Tph). (25)

The partition function Z is expressed through the photon energy (9)
written as E{nν} =

∑
ν �ωνnν + E0, where E0 is the energy of zero

vibrations, according to Z = exp(−E0/Tph)Z and

Z =
∑
{nν}

∏
ν

e−�ωνnν/Tph =
∏
ν

∑
n

e−�ωνn/Tph

=
∏
ν

(
1 − e−�ων/Tph

)−1
. (26)

The mean value of the occupation number of the mode ν is defined as
n̄ν = Spn̂ν η̂eq . It is expressed through Z as

n̄ν = Z−1
∑

{nν1}
nνe

−E{nν1}/Tph = −Tph
∂ lnZ

∂(�ων)
. (27)

Calculating the derivative in Eq. (27), we obtain the equilibrium Planck
distribution

n̄ν =
[
e�ων/Tph − 1

]−1
. (28)

This distribution allows one to describe various equilibrium properties
of the boson gas (problems 1.7 and 1.8). It is valid for all kinds of the
bosons whose number is not fixed.

4. Many-Electron System
In contrast to the case of photons, the dynamics of a system of elec-

trically charged particles depends on their interactions with external
electric fields (created by different, with respect to the system under
consideration, charges) and externally applied magnetic fields (note that
we consider non-magnetic materials only), as well as on the interaction
of these particles with each other. The existence of the spin variable
leads to a further sophistication of such dynamics. Below we discuss the
quantum dynamics for electrons, charged particles with two different
spin states. The electrons are an example of fermions, the particles with
an antisymmetric, with respect to particle permutation, wave function
corresponding to the Fermi-Dirac statistics.
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The Hamiltonian of the electron system in external fields is written
as

Ĥe =
∑

j

ĥj + Ĥf . (1)

Here ĥj is the one-electron (the index j numbers the electrons) operator
of the kinetic energy. It is given by the equation

ĥj =
(p̂j − eAxjt/c)2

2m
, (2)

where p̂j − eAxjt/c is the operator of kinematic momentum expressed
through the canonical momentum p̂ satisfying the ordinary commutation
relations [p̂α, xβ ] = −i�δαβ and through the vector potential Axjt. The
second term of Eq. (1), Ĥf , is the operator of the field energy Ef , the
latter is given by the first part of Eq. (3.1). Using the expressions

Ert = −1
c

∂Art

∂t
− ∇Φrt , Hrt = [∇ × Art] (3)

relating the electric and magnetic fields to the vector potential Art and
scalar potential Φrt, we rewrite Ef as

Ef =
∫

(V )

dr
8π

{
1
c2

∂Art

∂t
· ε̂r

∂Art

∂t
+ ([∇ × Art])2

}

+
∫

(V )

dr
4πc

∇Φrtε̂r
∂Art

∂t
+
∫

(V )

dr
8π

∇Φrtε̂r∇Φrt . (4)

This equation generalizes Eq. (3.1) to the case of non-zero gradient of
the scalar potential. The tensor ε̂r is assumed to be symmetric. Below
we again employ the Coulomb gauge ∇ · (ε̂rArt) = 0 and assume that
the fields go to zero at the boundaries of the region V (one may also
use the periodic boundary conditions). The first term of the expression
(4) corresponds to the energy of transverse vibrations of the field and
describes the photons in medium. After the quantization of the field
done in the previous section, we can denote this term as Ĥph. The
second term on the right-hand side of Eq. (4) is equal to zero because

∇Φrtε̂r
∂Art

∂t
= ∇ ·

(
Φrtε̂r

∂Art

∂t

)
(5)

in the gauge used, and the integral over the volume V is reduced to a
surface integral over an infinitely remote boundary where the fields are
equal to zero. The third term of the expression (4) can be rewritten



Elements of Quantum Dynamics 19

according to ∇Φε̂∇Φ = ∇·(Φε̂∇Φ)−Φ∇·(ε̂∇Φ), and only the last term
here remains finite after integrating over the volume. Next, by using the
Poisson equation ∇· (ε̂r∇Φrt) = −4πρrt, where ρrt is the charge density,
we obtain the following expression for this term:

−
∫

(V )

dr
8π

Φrt∇ · (ε̂r∇Φrt) =
1
2

∫
(V )

drΦrtρrt. (6)

Now we see that the third term on the right-hand side of Eq. (4) de-
scribes the interaction of electric charges with the longitudinal part of
the electric field. We denote it below as Eint. In a homogeneous and
isotropic medium with constant dielectric permittivity ε, one can easily
solve the Poisson equation as Φrt = ε−1 ∫

(V )
dr′ρr′t/|r − r′| so that Eint

is expressed through the charge densities only:

Eint =
1
2

∫
(V )

∫
(V )

drdr′ ρrtρr′t

ε|r − r′| . (7)

One should remember that both Φrt and ρrt include the contribu-
tions of the external fields and charges. To extract these contributions
from Eint, it is convenient to separate the contributions coming from
the internal (i) and external (e) charges under the integrals of Eq. (7).
Then,

Eint =
1
2

∫ ∫
(V )

drdr′ ρ(i)
rt ρ

(i)
r′t

ε|r − r′| +
1
2

∫ ∫
(V )

drdr′ ρ(e)
rt ρ(e)

r′t
ε|r − r′|

+
∫ ∫

(V )

drdr′ ρ(e)
rt ρ(i)

r′t
ε|r − r′| . (8)

The first term on the right-hand side of Eq. (8) is the energy of Coulomb
interaction between the electrons of the system (the electrostatic en-
ergy). The second term is the energy of interaction between the ex-
ternal charges. It should be omitted in the following, because such a
contribution is not relevant to the dynamics of the system under consid-
eration. Finally, the last term is the energy of interaction of electrons
with the longitudinal part of the external field. It can be rewritten as
e−1 ∫

(V )
drUrtρ

(i)
rt , where Urt is the potential energy of an electron in the

external field. One may introduce the potential of the external field as
Urt/e. Below we omit the index i in ρ(i)

rt .
To transform Eint into the operator of the interaction, Ĥint, one should

use the charge density operator ρ̂r = e
∑

j δ(r − xj) instead of ρrt. As a
result, we obtain

Ĥint =
1
2

∑
jj′

′ e2

ε|xj − xj′ | +
∑

j

Uxjt. (9)
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Because the interaction of an electron with itself should not be consid-
ered, the prime sign at the sum denotes the exclusion of the terms whose
indices coincide (in other words, j 	= j′ is assumed).

Combining Ĥint with the kinetic-energy part
∑

j ĥj , we find that the
total Hamiltonian of the system of interacting electrons in the presence
of external fields is given as

Ĥe =
∑

j

ĥj + Ĥee,

ĥj = ĥj + Uxjt, Ĥee =
1
2

∑
jj′

′ e2

ε|xj − xj′ | , (10)

where ĥj is the single-particle Hamiltonian comprising both kinetic and
potential energy operators, and Ĥee is the Hamiltonian of Coulomb inter-
action between the electrons in the medium with dielectric permittivity
ε. It is represented as a binary sum over all particles. We stress that the
vector potential Axjt standing in ĥj includes a contribution of the ex-
ternal fields. This contribution, in particular, describes the interaction
of electrons with a stationary magnetic field and with electromagnetic
waves (photon field). In the above consideration, we have omitted the
contribution corresponding to the Pauli interaction of the electron spin
with the magnetic field. We have also neglected relativistic corrections,
which are small if the energy of the particle is small in comparison to
the energy 2mc2.

The evolution of a many-electron system in external fields is described
by the Schroedinger equation analogous to Eq. (1.1):

i�
∂Ψ{xj}t

∂t
= ĤeΨ{xj}t. (11)

It determines the wave function of x-representation, which depends on
the set of coordinates {xj}. The charge density at the point (r, t) is
expressed through ρ̂r according to the general rule (1.3) for observable
values:

ρrt =
∫

d{xj}Ψ∗
{xj}tρ̂rΨ{xj}t, (12)

where the charge density operator ρ̂r is introduced above as a sum of
the δ-functions multiplied by the electron charge. Calculating the time
derivative of Eq. (12) with the use of Eq. (11), we take into account
that Ĥe is Hermitian and find

∂ρrt

∂t
=

i

�

∫
d{xj}Ψ∗

{xj}t

[
Ĥe, ρ̂r

]
Ψ{xj}t. (13)



Elements of Quantum Dynamics 21

One can see that both the potential energy Uxjt and Coulomb interaction
energy Ĥee commute with ρ̂r and do not contribute to the right-hand
side of Eq. (13). The calculation of the commutators [ĥj , δ(r − xj)]
(problem 1.9) gives us the continuity relation

∂ρrt

∂t
+ ∇ · Irt = 0, Irt =

∫
d{xj}Ψ∗

{xj}tÎrΨ{xj}t. (14)

The current density Irt at the point (r, t) is introduced by analogy to
Eq. (12), and the current density operator Îr is given by

Îr =
e

2m

∑
j

[
(p̂j − e

c
Axjt)δ(r − xj) + δ(r − xj)(p̂j − e

c
Axjt)

]
. (15)

This equation allows us to represent the Hamiltonian Ĥe introduced by
Eq. (10) in the form

Ĥe = Ĥe − 1
c

∫
dr Îr · Art (16)

so that Ĥe accounts for the interaction with longitudinal fields only,
while the second term gives us the interaction with transverse fields
entering through the vector potential Art. These fields are described by
the photon Hamiltonian Ĥph defined in Sec. 3 after the quantization of
the field.

Because the many-electron wave function Ψ{xj}t is antisymmetric with
respect to permutation of electrons (Fermi-Dirac statistics), one can in-
troduce the occupation number representation with the aid of the fol-
lowing antisymmetric function of N particles:

Φ{γk}({xj}) = det‖φ
(γk)
xj ‖/

√
N ! , (17)

where φ(γ)
x is a complete set of one-electron wave functions numbered

by the quantum numbers γ, and det‖ . . . ‖ denotes the determinant of
the matrix ‖ . . . ‖. The set {γk} in Eq. (17) determines the state of N
electrons with coordinates {xj} so that one can write N2 functions of the
kind of Eq. (17). A complete system of linearly independent functions
is obtained from Eq. (17) with the aid of a set of quantum numbers,
{γk}, ordered according to γ1 < γ2 < . . . . The expansion of Ψ{xj}t in
terms of the functions (17),

Ψ{xj}t =
∑

n{γk}

Ψ{nγk
}tΦ{γk}({xj}), (18)
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contains the numbers nγ which can be either 1 or 0. This property
directly follows from the antisymmetry of the wave functions (17) and
is known as the Pauli principle. The numbers are chosen in such a
way that nγ = 1 if the state γ belongs to Φ{γk}({xj}) and nγ = 0
for other γ, provided

∑
γ nγ = N . Therefore, each state of the N -

electron system corresponds to a set of occupation numbers {nγ}. It
is not necessary to specify the functions φ(γ)

x standing in Eq. (17) in
order to introduce the ket-vector |{nγ}t〉 instead of Ψ{nγk

}t. Such ket-
vectors form a complete, orthogonal, and normalized set: 〈{n′

γ}|{nγ}〉 =
δ{n′

γ},{nγ} (here and below the argument t is omitted). The creation
operator for the state γ̄ is introduced by the relation

â+
γ̄ |{nγ}〉 =

√
1 − nγ̄(−1)p(γ̄)| . . . , nγ̄ + 1, . . .〉, (19)

where p(γ̄) =
∑

γk<γ̄ nγk
is the number of occupied states preceding to

the state γ̄. If the state γ̄ is not present in the N -particle ket-vector
|{nγ}〉 (i.e., nγ̄ = 0), the operator â+

γ̄ transforms it to the (N + 1)-
particle ket-vector standing on the right-hand side of Eq. (19), i.e., the
creation operator adds an electron to the state γ̄ of the system. If the
state γ̄ is already present in the set {nγ}, one has â+

γ̄ |{nγ}〉 = 0. The
annihilation operator is introduced in a similar way:

âγ̄ |{nγ}〉 =
√

nγ̄(−1)p(γ̄)| . . . , nγ̄ − 1, . . .〉. (20)

This operator connects N - and (N − 1)-particle ket-vectors. The defi-
nitions of the creation and annihilation operators result in the anticom-
mutation rules

[â+
γ , âγ ′ ]+ = δγγ ′ , [â+

γ , â+
γ ′ ]+ = [âγ , âγ ′ ]+ = 0, (21)

which can be checked by the action of the pairs of operators from Eq.
(21) on an arbitrary ket-vector |{nγ}〉. The anticommutator in Eq. (21)
is introduced as [Â, B̂]+ = ÂB̂ + B̂Â, where Â and B̂ are arbitrary
operators.

The operator of the occupation number of the state γ is introduced
as n̂γ = â+

γ âγ . One can easily check that

n̂γ | . . . nγ . . .〉 = nγ | . . . nγ . . .〉. (22)

In the occupation number representation, each operator of the form
Ĥ =

∑
j ĥj (the examples of such additive operators are the Hamiltonian

of non-interacting electrons, the charge density operator, and the current
density operator) is written as

Ĥ =
∑
γ1γ2

〈γ1|ĥ|γ2〉â+
γ1

âγ2 , 〈γ1|ĥ|γ2〉 =
∫

dxφ(γ1)
x

∗ĥφ(γ2)
x . (23)
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For the binary operators of the form Ĥ2 = (1/2)
∑

jj′ v̂jj′ , where v̂jj′ =
v(xj ,xj′), we have

Ĥ2 =
1
2

∑
γ1γ2γ3γ4

〈γ1γ2|v̂|γ4γ3〉â+
γ1

â+
γ2

âγ3 âγ4 ,

〈γ1γ2|v̂|γ4γ3〉 =
∫

dx
∫

dx′φ(γ1)
x

∗φ(γ2)

x′
∗v(x,x′)φ(γ4)

x φ
(γ3)

x′ . (24)

The operator Ĥee given by Eq. (10) is an example of such operators.
Equations (23) and (24) are justified in view of the equivalence of their
matrix elements calculated with arbitrary ket-vectors |{nγ}〉 to the usual
expressions for the matrix elements of Ĥ and Ĥ2 calculated in the anti-
symmetric basis (17) (problem 1.10).

Instead of â+
γ̄ and âγ̄ , one can use the field operators Ψ̂+

x and Ψ̂x
defined by the relations

Ψ̂+
x =

∑
γ

φ(γ)
x

∗â+
γ , Ψ̂x =

∑
γ

φ(γ)
x âγ . (25)

The operator Ψ̂+
x should be considered as the creation operator for the

particle with coordinate x, while Ψ̂x is the corresponding annihilation
operator. The anticommutation rules for these operators are obtained
from Eq. (21) according to the condition of completeness for the sets of
one-electron wave functions φ(γ)

x :

[Ψ̂+
x , Ψ̂+

x′ ]+ = [Ψ̂x, Ψ̂x′ ]+ = 0,

[Ψ̂+
x , Ψ̂x′ ]+ =

∑
γ

φ(γ)
x

∗φ(γ)
x′ = δ(x − x′). (26)

The additive and binary operators introduced by Eqs. (23) and (24) are
written through the field operators in the following way:

Ĥ =
∑
γ1γ2

∫
dx φ(γ1)

x
∗ĥφ(γ2)

x â+
γ1

âγ2 =
∫

dxΨ̂+
x ĥΨ̂x,

Ĥ2 =
1
2

∫
dx
∫

dx′Ψ̂+
x Ψ̂+

x′v(x,x′)Ψ̂x′Ψ̂x. (27)

These expressions are analogous to the matrix elements of Eqs. (23) and
(24), where the one-electron functions are replaced by the field operators,
as though the ψ-function is quantized again. This explains the origin of
the term “second quantization.” If the many-electron Hamiltonian Ĥe

depends on spin variable or/and band indices (see the next section and
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Appendix B), one should consider x in Eqs. (25)−(27) as a combination
of the coordinate and discrete indices so that the integral

∫
dx must

include the sums over these indices.
To calculate the observable Qt, we substitute Q̂ in the form Q̂ =∑
γγ ′〈γ|q̂|γ′〉â+

γ âγ ′ into Eq. (1.18):

Qt = SpQ̂η̂t =
∑
δν

〈δ|q̂|ν〉Spâ+
δ âν η̂t ≡ spq̂n̂t. (28)

Here “Sp” and “sp” denote the traces over many-particle and single-
particle states, respectively. We have introduced the average of the
additive operator q̂ through the one-particle density matrix n̂t defined
as

〈ν|n̂t|δ〉 = Spâ+
δ âν η̂t. (29)

The dynamical equation for n̂t follows from the general many-particle
equation (1.20):

i�
∂

∂t
〈ν|n̂t|δ〉 = Spâ+

δ âν [Ĥ, η̂t] = Spη̂t[â+
δ âν , Ĥ]. (30)

In the case of a system of non-interacting electrons described by the
Hamiltonian Ĥ =

∑
j ĥj , one can write a closed equation for the single-

particle operator n̂t. We use the commutator

[â+
δ âν , â

+
γ âη ] = â+

δ âηδνγ − â+
γ âνδδη (31)

calculated according to the anticommutation relations (21) (problem
1.11). As a result, the dynamical equation for n̂t has the same form as
Eq. (1.20):

i�
∂n̂t

∂t
= [ĥ, n̂t]. (32)

Equation (32), however, contains one-electron variables only. According
to Eq. (28), the observable values are found by averaging the operator
q̂ with the density matrix n̂t.

Let us find the averaged occupation number n̄γ of the electron state γ
for the equilibrium distribution of electrons with temperature Te. This
distribution is described by the density matrix

η̂eq = Z−1 exp[−(Ĥe − µn̂)/Te], Z = Sp exp[−(Ĥe − µn̂)/Te]. (33)

This definition, in contrast to Eq. (3.25), accounts for the conservation
of the total number N of electrons described by the particle number
operator n̂ =

∑
γ n̂γ . The coefficient µ, called the chemical potential, is

determined from the condition
∑

γ n̄γ = N . Under the assumption of
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ideal Fermi gas, i.e., neglecting the contribution of the electron-electron
interaction to the equilibrium properties of the system, we use the Hamil-
tonian Ĥe =

∑
γ εγ â+

γ âγ . Then, the total energy is E{nγ} =
∑

γ εγnγ ,
where nγ is equal to 1 (0) for the occupied (empty) states. As a result,
the partition function takes the following form:

Z =
∑
{nγ}

∏
γ

exp[(µ − εγ)nγ/Te]

=
∏
γ

∑
n=0,1

exp[(µ − εγ)n/Te] =
∏
γ

[
1 + e(µ−εγ)/Te

]
. (34)

The mean value of the occupation number of the state γ is introduced
as the average of the operator n̂γ with the equilibrium density matrix
(33), n̄γ = Spn̂γ η̂eq :

n̄γ = Z−1
∑

{nγ1}
nγ exp

[
1
Te

(
µ
∑
γ1

nγ1 − E{nγ1}

)]
= −Te

∂ lnZ

∂εγ
. (35)

Substituting Z from Eq. (34) into Eq. (35), we find the equilibrium
Fermi distribution

n̄γ =
[
e(εγ−µ)/Te + 1

]−1
. (36)

If the temperature goes to zero, the electrons occupy only the states
whose energies are below the chemical potential µ. This is the case
of a degenerate electron gas. Another limiting case, the non-degenerate
electron gas, takes place when the average occupation numbers are small,
n̄γ � 1, and Eq. (36) is reduced to the Boltzmann distribution n̄γ =
e(µ−εγ)/Te .

5. Electrons under External Fields
After the general description of the system of interacting electrons

given in Sec. 4, we are going to discuss the solutions of one-electron
Schroedinger equations: ĥΨ = EΨ for stationary and i�∂Ψ/∂t = ĥΨ for
time-dependent problems. The Hamiltonian ĥ is given by Eqs. (4.10)
and (4.2) with particle index j omitted. We will consider the wave func-
tions and energy spectra of electrons for different kinds of external fields
entering this Hamiltonian. These particular problems form a part of the
quantum mechanics and are discussed in detail in the literature. For
this reason, in this section we cover only the problems whose solutions
will be used in the next chapters.

Free motion. Let us consider the electron states in the absence of any
external fields. Formally, it is convenient to assume that the electrons
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are confined into a cubic volume L3 with appropriate (zero or periodic)
boundary conditions, and the length L is greater than any characteristic
length of the problem. The dispersion law εp is obtained as a usual
kinetic energy with quasi-discrete (for L3 → ∞) i-th component of the
momentum, pi, and the Ψ-function is the plane wave:

ψ
(p)
r = L−3/2 exp

(
i

�
p · r

)
,

pi = ±ni
2π�

L
, ni = 1, 2, . . . , εp =

p2

2m
. (1)

The density of states (the number of electron states with energy E per
unit volume) is defined as

ρ(E) =
2
L3

∑
δ

δ(E − εδ), (2)

where the factor 2 takes into account double degeneracy of electron states
with respect to spin (it is assumed that the quantum state indices δ do
not include spin quantum numbers). Replacing the sum by the integral
over the momentum (problem 1.12), one can obtain ρ(E) in the form

ρ3D(E) =
m

√
2mE

π2�3 . (3)

Therefore, the density of states in the bulk (three-dimensional) media is
proportional to

√
E.

Electrons in crystals. To describe the electron states in crystals, one
has to introduce a periodic potential energy Ucr(r) in the Hamiltonian.
Besides, it is necessary to take into account the relativistic corrections de-
scribing the spin-orbit interaction (the other relativistic terms are small
in comparison to this one). The Hamiltonian has the following form:

ĥcr =
p̂2

2me
+ Ucr(r) +

�

(2mec)2
σ̂ · [∇Ucr(r) × p̂] , (4)

where p̂ = −i�∇ is the momentum operator, me is the free electron
mass, and σ̂ is the vector of Pauli matrices. Owing to periodicity of
the potential in Eq. (4), Ucr(r + Ri) = Ucr(r), where Ri is an arbitrary
lattice vector, the solutions of the eigenstate problem are Bloch functions

ψnσp(r) = L−3/2eip·r/�unσp(r), unσp(r + Ri) = unσp(r),

Enσ(p + G) = Enσ(p), (5)
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where p is defined inside the first Brillouin zone and referred to as quasi-
momentum, G is the reciprocal lattice vector, and the electron spectrum
Enσ(p) depends on the band index n and spin quantum number σ.

The spectrum Enσ(p) and the Bloch amplitudes unσp(r) are deter-
mined by the geometry of the lattice and by the type of interatomic
bond of the crystal. Usually, one can separate the following types: the
metallic bond, the hetero- and homeopolar bonds (also known as ionic
and covalent bonds, respectively), and the molecular bond, when the
crystal is formed due to van der Waals attraction between the molecules
or atoms. Simple metals can be considered as ensembles of positive ions
oscillating near their equilibrium positions in the crystal lattice and sur-
rounded by a gas of nearly free electrons. The total energy of the bond
is determined by a negative contribution of the electron-ion interaction
(∝ a−1, where a is the lattice period) and positive kinetic energy of
strongly degenerate electrons (∝ n2/3 ∝ a−2, where n is the electron
density). The value of a is determined by the condition of minimum en-
ergy. In the limiting cases considered above, the crystal is formed either
due to long-range interaction between the molecules, or can be consid-
ered as a single macroscopic molecule with periodically placed ions (the
metallic case). In the case of an ionic bond in biatomic crystals, the
lattice is formed by periodically placed positive and negative ions ap-
pearing as a result of electron transfer between the neighboring atoms.
Because each ion in such a lattice is surrounded by the ions of the oppo-
site sign, the Coulomb interaction leads to the attraction that provides
stability of the lattice. The covalent attractive bond appears between
neutral atoms because of the formation of the pairs of collectivized elec-
trons with antiparallel spins. This mechanism is completely analogous to
the valence bond in a single molecule. We point out that a large group
of insulators and semiconductors is characterized by the mixed ionic-
covalent bond. Although the eigenstate problem for electrons in crystals
is extremely complicated, a description of these particular materials can
be considerably simplified because their energy bands are either almost
empty or almost filled by electrons so that the electronic properties are
determined by the states near the band extrema. The dynamics of these
states is discussed below.

To describe the electron states near the band extrema (let us suppose
that the latter are at p = 0), we write the Hamiltonian (4) in the basis
ψlp(r) ≡ L−3/2 exp(ip · r/�)unσ(r), where l = (n, σ) and the Bloch
amplitude in the center of the Brillouin zone, unσ(r) ≡ unσ,p=0(r), is
determined by the equation ĥcrunσ(r) = εnunσ(r). Here εn is the energy
of n-th band extremum at p = 0, and each band is doubly degenerate
with respect to the spin σ. The matrix elements of the Hamiltonian (4)
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are

〈lp|ĥcr |l′p′〉 = δpp′δll′

(
εn +

p2

2me

)
+ δpp′p · vll′ ≡ δpp′Hll′(p), (6)

where the matrix elements of the velocity operator are non-diagonal in
the band index:

vll′ =
〈

l0
∣∣∣∣ p̂
me

+
�

(2mec)2
[σ̂ × ∇Ucr(r)]

∣∣∣∣ l′0〉 . (7)

The diagonal matrix elements of the velocity operator are equal to zero
in the point of extrema. Expanding the wave functions Ψ(r) over the
complete set ψlp(r), we write

Ψ(r) =
∑
lp

ϕlpψlp(r), (8)

and the Schroedinger equation is transformed into a set of equations for
the envelope functions ϕlp:∑

l′
Hll′(p)ϕl′p = Eϕlp. (9)

Equation (9) defines the many-band spectrum near the extremum. The
expressions for the matrix elements of the Hamiltonian and velocity op-
erator for the two-band model and the set of equations for envelope
functions ϕlp in the presence of externally applied electric and magnetic
fields are written in Appendix B.

To obtain the energy spectrum of electrons in the vicinity of the n-th
band extremum, one can calculate the diagonal contribution to Elp in
the second order of the perturbation theory:

Elp = εn +
p2

2me
+
∑

l′(l′ �=l)

(p · vll′)(p · vl′l)
εn − εn′

≡ εn +
1
2

∑
αβ

pαm−1
αβpβ . (10)

The spectrum appears to be quadratic in p. The right equation in Eq.
(10) defines the inverse effective mass tensor of the band l = (n, σ). This
tensor is expressed through the velocity matrix elements (7) as

m−1
αβ =

δαβ

me
+
∑

l′(l′ �=l)

vα
ll′v

β
l′l + vβ

ll′v
α
l′l

εn − εn′
. (11)

In the general case, the surfaces of equal energy for Elp of Eq. (10)
are the ellipsoids characterized by three principal values of the effective



Elements of Quantum Dynamics 29

masses along the main axes. In the uniaxial materials, there are two
(longitudinal and transverse) effective masses, while in the cubic mate-
rials the tensor (11) becomes a scalar δαβ/m. Depending on the sign
of m, the dispersion relation (10) describes electron (at m > 0) or hole
(at m < 0) states. This consideration is valid only in the vicinity of the
extremum, where the kinetic energy p2/2m is small in comparison to the
interband energies.

Therefore, the electrons moving in the periodic potential of a crystal
can be considered as free electrons with scalar effective mass m (positive
or negative near the band extrema) under certain conditions described
above. The result (3) for the density of states of free electrons can be
directly applied to this case by assuming that m denotes the effective
mass. More complicated cases are realized when: i) the effective mass
is a tensor; ii) several bands are close in energy and corresponding sev-
eral branches of the spectrum with different effective masses have to
be considered; iii) the kinetic energy is not small in comparison to the
interband energies and the non-parabolicity effects (in particular, the
deviation of the energy dispersion law from the quadratic form p2/2m)
have to be taken into account. Nevertheless, below we will concentrate
on the simplest case of scalar effective mass.

Landau quantization. The electron states in the presence of a magnetic
field H are described by the Schroedinger equation

(p̂ − eA/c)2

2m
ψr = Eψr, A = (0, Hx, 0), (12)

where the vector potential A is written for H||OZ and the magnetic
field is supposed to be homogeneous and time-independent. Owing to
the translational invariance of the problem (12) along OY and OZ, the
motion along these directions is described by the plane waves with wave
numbers py/� and pz/�. The Ψ-function for δ-state is written as a
product

ψ(δ)
r = (LyLz)−1/2 exp

[
i

�
(pyy + pzz)

]
ϕ

(Npy)
x , (13)

and the quantum numbers δ include both the momenta (py and pz) and
the number of discrete level, N . The quantization of electron states is
produced by the parabolic potential energy which appears from ∝ A2

contribution in Eq. (12). The equation for ϕ
(Npy)
x standing in Eq. (13)

is [
p̂2

x

2m
+

mω2
c

2
(
x − Xpy

)2]
ϕ

(Npy)
x = εNϕ

(Npy)
x . (14)
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The coordinate Xpy = −pyc/|e|H determines the position of the center
of harmonic-oscillator wave function. The electron energy E does not
depend on py (i.e., the electron states under consideration are degenerate
with respect to py). The momentum pz along the direction of H deter-
mines the longitudinal kinetic energy. The dispersion law ENpz is written
as a sum εN +p2

z/2m, where εN is the energy of the N -th level of the har-
monic oscillator (Appendix A) with frequency ωc = |e|H/mc called the
cyclotron frequency. The level numbers are the integers: N = 0, 1, . . . .
The eigenvalues of Eq. (14) and the corresponding wave functions are

εN = �ωc(N + 1/2) ,

ϕ
(Npy)
x =

1

π1/4l
1/2
H

√
2NN !

exp

[
−1

2

(
x − Xpy

lH

)2
]

HN

(
x − Xpy

lH

)
, (15)

where HN(x) is the Hermite polynomial and lH =
√

�c/|e|H is the mag-
netic length corresponding to the radius of cyclotron orbit in the classical
dynamics. The electron levels with the energies εN given by Eq. (15)
are called the Landau levels.

According to Eq. (2), the density of states is obtained by integrating
δ(E−ENpz) over py and pz . Because of the degeneracy of the states with
respect to py , we calculate

∑
py

. . . under the condition |Xpy | < Lx/2
corresponding to the requirement that the centers of the oscillator wave
functions are inside the normalization volume. The result contains the
sum over N :

ρ(E) =
2
Lx

∞∑
N=0

∫
|Xpy |<Lx/2

dpy

2π�

∫
dpz

2π�
δ(E − ENpz)

=
2|e|H

c(2π�)2

∞∑
N=0

√
2m

E − εN

θ(E − εN). (16)

The density of states has inverse-square-root divergences at the bottoms
of the Landau-level subbands, where E is close to εN .

Confinement. This is the simplest quantum-mechanical phenomenon,
the quantization of low-energy electron states in a potential well. Con-
sider first a one-dimensional confinement potential energy

U(z) =
{

0, |z| < d/2
U0, |z| > d/2 (17)

corresponding to the square well (U0 is the depth of the potential well
and d is the width). For the case E < U0, the underbarrier part of the
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wave function is written as

ψz ∝
{

e−κ(z−d/2), z > d/2
eκ(d/2+z), z < −d/2

, (18)

where the underbarrier penetration length κ−1 is determined by �κ =√
2m(U0 − E). Eliminating the underbarrier part of the ψ-function

with the aid of the boundary conditions p̂zψz |±d/2−0
±d/2+0 = 0, we obtain

the boundary condition of the third kind:[
p̂z ∓ i

√
2m(U0 − E)

]
ψz |z=±d/2 = 0, (19)

and the eigenstate problem should be solved in the well region |z| < d/2
only. Owing to the symmetry of the system, the solution takes the form

ψz =

√
2
d

{
cos(pnz/�), n = 1, 3 . . .
sin(pnz/�), n = 2, 4 . . .

, εn =
p2

n

2m
, (20)

where pn are determined by the dispersion relation following from the
boundary conditions (19). For the case U0 � εn, one can use zero
boundary conditions for the ψ-function at z = ±d/2 and obtain pn =
nπ�/d (the difference between this pn and pi in Eq. (1) should not be
confusing because pn in Eq. (20) is positive, and one obtains the same
result for the density of states if d approaches ∞). Thus, the dependence
εn ∝ n2 is realized for the lowest energy levels. The approximation when
one uses zero boundary conditions is called the hard-wall model of the
quantum well.

Another important situation takes place for narrow quantum wells,
when (π�/d)2/2m ≥ U0. In such a case, there is a single confined state
with energy ε0. The corresponding level is shallow, U0−ε0 � U0, and ψz

is a weakly varying function inside the well, ψz=±d/2 � ψz=0. Because
of this property, the Schroedinger equation is transformed to

p̂2
z

2m
ψz = U0ψz=0, |z| <

d

2
. (21)

By integrating this equation over the well region, we obtain the boundary
condition

dψz

dz

∣∣∣∣d/2

−d/2
=

2md

�2 U0ψz=0. (22)

Outside the well region, for |z| > d/2, we use the wave function (18)
with �κ =

√
2m(U0 − ε0), and the energy of the level becomes

ε0 = U0 − mU2
0

2(�/d)2
. (23)
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This expression verifies the shallow level condition. The wave function
is formed mostly by the tails outside the well; see Eq. (18).

Low-dimensional states. The dynamics of electrons is modified essen-
tially due to the above-described confinement effect. Apart from the
widely known case of attractive three-dimensional potentials describing
the states in atoms or the localized states on the impurity centers in
solids, there exist low-dimensional systems realized in solid-state nano-
structures. In the two-dimensional (2D) systems realized in quantum
wells, the electrons can move in a plane (say XOY ), while the potential
energy U(r) provides their confinement along the direction perpendicular
to this plane. In the one-dimensional (1D) systems realized in quantum
wires, the electrons can move only in one dimension (say along OX) and
are confined in two remaining dimensions. Accordingly, the Hamiltonian
can be written as

p̂2

2m
+ U(r), U(r) =

{
U(z), (2D)
U(y, z), (1D) , (24)

where m is the effective mass. The wave functions are written as prod-
ucts of the plane waves, which describe free motion of electrons with 2D
momenta p or 1D momenta p, by the localized wave functions describing
the confinement. The corresponding dispersion laws are written as sums
of the kinetic energy p2/2m and the energies of the levels which depend
on the discrete quantum numbers:

ψ
(np)
r = ψ(p)

x,y ψ(n)
z , εnp = εn +

p2

2m
,

ψ
(n1n2p)
r = ψ(p)

x ψ(n1n2)
y,z , εn1n2p = εn1n2 +

p2

2m
. (25)

The corresponding densities of states per unit square (L2 for the 2D
case) or per unit length (L for the 1D case) are obtained in line with the
general definition (2), after integrating over 2D or 1D momentum:

ρ2D(E) =
2
L2

∑
np

δ(E − εnp) = ρ2D

∑
n

θ(E − εn),

ρ1D(E) =
2
L

∑
n1n2p

δ(E − εn1n2p) (26)

=
1
π�

∑
n1n2

θ(E − εn1n2)

√
2m

|E − εn1n2 |
,
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where ρ2D = m/π�
2. The energy dependence of the density of states in

the 2D case is step-like, while in the 1D case it has the inverse-square-
root divergences, as in Eq. (16). Considering only the single-subband
contributions for the 2D and 1D cases, and counting the energy E from
the bottom of the corresponding subband, one may formally represent
the ratios ρD(E)/ρ2D, where D = 1D, 2D, 3D, as functions of a single
parameter, Em/�

2; see Fig. 1.2.

Figure 1.2. Density of states for 3D, 2D, and 1D electrons. Only the single-subband
contributions are shown for the 2D and 1D cases, and the energy is counted from the
bottom of the corresponding subband.

So far we have considered stationary problems. Below we analyze the
Schroedinger equation i�∂Ψ/∂t = ĤtΨ with time-dependent Hamilto-
nian Ĥt.

Homogeneous electric field. To describe the temporal evolution of
electron states in the electric field Et, one can express the field in the
Hamiltonian Ĥt either through the vector potential At = −c

∫ t
dt′Et′ or

through the scalar potential −(Et · x). For each of these variants, the
Schroedinger equation in the momentum representation is written as

i�
∂ψpt

∂t
= ε(πt)ψpt, πt = p + e

∫ t

dτEτ ,

i�

(
∂

∂t
+ eEt · ∂

∂π

)
ψπt = ε(π)ψπt, (27)
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where p and π denote the canonical and kinematic momenta, respec-
tively, and ε(p) = p2/2m. The initial conditions to Eq. (27) at t0 are
given by the Kronecker symbols δpp0

and δππ0 , where p0 and π0 are
the quantum numbers of the canonical and kinematic momenta. The
solution of the first equation of Eq. (27) is

ψ
(p0)
pt = exp

[
− i

�

∫ t

t0

dt′ε(πt′)
]

δpp0
, (28)

where πt satisfies the classical equation of motion. The second equa-
tion of Eq. (27) is a differential equation of the first order with partial
derivatives, and its solution is

ψ
(π0)
πt = exp

[
− i

�

∫ t

t0

dt′
(π + e

∫ t′
t dτEτ )2

2m

]
δππ0 . (29)

The wave function given by Eq. (29) coincides with the one of Eq. (28)
after a formal replacement of the kinematic momentum by the canonical
one. Therefore, the use of either vector or scalar potentials corresponds
to the formulation of the problem in terms of either p or π, respectively.
Under a time-independent electric field E, the momentum is linear in
time, p + eEt, while in the harmonic field E cos ωt it is convenient to
expand ψ

(p0)
pt into Fourier series. Such an expansion (problem 1.14)

demonstrates that a shift of time by 2π/ω changes the wave function
(28) by the phase factor exp[−2πiε(πt)/�ω], where the line over the ex-
pression denotes the averaging over the period 2π/ω. Some consequences
of this transformation are discussed below for a more general case.

Quasienergy. If the potential energy is a periodic function of time,
and the period is 2π/ω, one can write the wave function as

ψ(t) = exp(−iEt/�)uE(t), uE(t + 2π/ω) = uE(t), (30)

where E is referred to as quasienergy, since it is defined in the region
[0, �ω] (we note the analogy of Eq. (30) with the Bloch function in a
spatially periodic potential considered above). The states with differ-
ent E are orthogonal to each other. To find uE(t), it is convenient to
represent the Hamiltonian containing a periodic potential as

Ĥt = Ĥ +
∑

s

Ŵse
isωt, (31)

where Ĥ is the part of the Hamiltonian averaged over the period 2π/ω,
while Ŵs describes the oscillating part and can be associated with the
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perturbation due to an external field. Introducing this field through
the vector potential, it is easy to show that s = ±1,±2, because the
Hamiltonian is quadratic in the momentum. Further, with the Fourier
expansion uE(t) =

∑
s exp(−isωt)uE(s), the Schroedinger equation is

rewritten as a set of coupled equations

(E + s�ω − Ĥ)uE(s) =
∑
s′

Ŵs′uE(s − s′). (32)

In many cases, the time-dependent part of the Hamiltonian (31) can be
considered as a perturbation (of the first and of the second order in the
field for s = ±1 and s = ±2, respectively). Within the accuracy of the
second order, the perturbation theory gives us the following equation for
uE(t) = uE(s = 0) ≡ uE:

(E − Ĥ)uE =
∑

s=±1

Ŵs(E − s�ω − Ĥ)−1ŴsuE. (33)

This is the eigenstate problem determining the quasienergy spectrum of
the system. For an electron in a homogeneous harmonic electric field,
the quasienergy can be found from Eq. (28) by averaging ε(πt) over the
period. As a result, the parabolic spectrum is simply shifted in energy
by (eE/ω)2/4m.

6. Long-Wavelength Phonons
The small-amplitude vibrations of the crystal lattice are described by

a set of atomic displacement vectors us(Rnt), where Rn is the radius-
vector of the elementary crystal cell numbered by the integer vector
n and the index s numbers the atoms in the cell. The expansion of
the potential energy in the vicinity of the equilibrium positions of the
atoms begins with the second-order terms, quadratic in the displace-
ments. Accounting also for the anharmonic corrections described by the
cubic terms, we write the total energy as

E =
1
2

∑
nsk

Ms

[
u̇k

s (Rn)
]2

+
1
2

∑
n1n2

∑
s1s2k1k2

Gk1k2
s1s2

(|Rn1 − Rn2 |)

×uk1
s1

(Rn1)u
k2
s2

(Rn2) +
1
3!

∑
n1−3

∑
s1−3k1−3

Ak1k2k3
s1s2s3

(|Rn1 − Rn2 |, |Rn1 − Rn3 |)

×uk1
s1

(Rn1)u
k2
s2

(Rn2)u
k3
s3

(Rn3). (1)

The index k numbers the Cartesian coordinates, u̇s(Rn) is the velocity
of the atom s in the cell n, and Ms is its mass. The matrices Gk1k2

s1s2
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and Ak1k2k3
s1s2s3

are determined by the second and third derivatives of the
potential energy in the equilibrium position. Owing to periodicity of the
lattice, they depend only on the distances between the cells, |Rn −Rn′ |.

Taking into account only the second-order contributions in Eq. (1),
we obtain the classical equations of motion (problem 1.15)

Msü
k
s (Rn) +

∑
n′s′k′

Gkk′
ss′ (|Rn − Rn′ |)uk′

s′ (Rn′) = 0 (2)

describing harmonic vibrations determined by the force constants Gkk′
ss′ .

The anharmonic contribution to the energy is described by the last term
in the expression (1) and can be treated as a weak interaction between
the vibrational modes. The translational invariance allows us to repre-
sent us(Rnt) as a plane wave, Us exp(iq · Rn − iωt). This substitution
reduces the number of variables in Eq. (2) from 3Ns̄ to 3s̄, where N is
the number of elementary cells and s̄ is the number of atoms in the cell.
The amplitudes Us obey the following set of linear algebraic equations:

Msω
2Uk

s −
∑
k′s′

[∑
∆n

Gkk′
ss′ (|R∆n|)e−iq·R∆n

]
Uk′

s′ = 0, (3)

where R∆n ≡ Rn − Rn′ . There are 3s̄ solutions of this set, each corre-
sponds to a branch (mode) of the vibrational spectrum.

It is convenient to express the displacements in terms of the polariza-
tion vectors es(ql)/

√
Ms (the index l = 1, . . . , 3s̄ numbers the vibrational

modes) found from the equations∑
s′k′

[
ω2δss′δkk′ − Gkk′

ss′ (q)
]
ek′
s′ (ql) = 0,

Gkk′
ss′ (q) =

∑
∆n

Gkk′
ss′ (|R∆n|)√

MsMs′
e−iq·R∆n , (4)

which directly follow from Eq. (3). Because the matrix Gkk′
ss′ (q) is peri-

odic in q, one should consider q inside the first Brillouin zone so that q is
a quasi-wave vector. The set of solutions es(ql) is normalized according
to
∑

s e∗
s(ql)es(ql′) = δll′ , and e∗

s(ql) = es(−ql). Employing the nor-
mal coordinates Qql(t), which include the exponential time-dependent
factors, we write uns(t) ≡ us(Rnt) as

uns(t) = (NMs)−1/2
∑
ql

Qql(t)es(ql)eiq·Rn , (5)
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where Q∗
ql(t) = Q−ql(t) because the displacements are real. In order

to express the quadratic contributions of Eq. (1) through the nor-
mal coordinates, we take a sum over n with the aid of the relation
N−1∑

n exp[i(q − q′) · Rn] = ∆qq′ . The function ∆qq′ is equal to 1
when q and q′ either coincide or differ by a reciprocal lattice vector and
is equal to zero otherwise (problem 1.16). The energy of small-amplitude
vibrations takes the form

1
2

∑
ql

[
Q̇∗

ql(t)Q̇ql(t) + ω2
qlQ

∗
ql(t)Qql(t)

]
, (6)

which is quadratic in the normal coordinates and momenta Pql(t) ≡
Q̇ql(t). This is the energy of a set of harmonic oscillators with frequencies
ωql.

The quantization of the lattice vibrations can be done by analogy
with the case of photons described in Sec. 3. The normal coordinates
and normal momenta are replaced by the operators Q̂ql and P̂ql, which
satisfy the commutation relations similar to Eq. (3.7):

[Q̂ql, P̂−q′l′ ] = i�δqq′δll′ . (7)

The energy (6), after such a substitution, becomes a Hamiltonian of the
kind (3.8), where the index ν is replaced by the quantum numbers q
and l. The quasiparticles with these quantum numbers are called the
phonons. Their creation and annihilation operators, b̂+

ql and b̂ql, satisfy
the commutation relations

[b̂ql, b̂
+
q′l′ ] = δqq′δll′ . (8)

The Hamiltonian of phonons is written as a sum of the boson mode
contributions according to Eq. (3.12), and the relation between the
bosonic operators and normal coordinates and momenta is the same as
in Eq. (3.11). It can be rewritten as

Q̂ql = Q̂+
−ql =

√
�

2ωql
(b̂ql + b̂+

−ql),

P̂ql = P̂+
−ql = −i

√
�ωql

2
(b̂ql − b̂+

−ql). (9)

Substituting the expression for Q̂ql into Eq. (5), we obtain the second-
quantized displacement operator

ûns = (NMs)−1/2
∑
ql

√
�

2ωql
es(ql)eiq·Rn(b̂ql + b̂+

−ql) (10)
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written through the linear combination of creation and annihilation op-
erators. Therefore, the displacements us satisfy the oscillatory equations
(2) analogous to the equations for the electromagnetic field in the ab-
sence of free charges. To quantize the lattice vibrations, one should
express the displacements in terms of the generalized normal coordi-
nates and momenta and, further, introduce the elementary excitations,
phonons.

Below we consider the limit of long wavelengths (the region of small q),
when the lattice vibrations are described by a number of macroscopic
parameters. This approach is convenient for description of electron-
phonon and phonon-photon interactions. First we notice that under a
shift of the lattice as a whole, when us(Rnt) do not depend on Rn, the
force in Eq. (2) must be zero. This leads to the identity∑

∆ns′
Gkk′

ss′ (|R∆n|) = 0. (11)

Using Eq. (11) together with the symmetry property of the force matri-
ces, Gkk′

ss′ = Gk′k
s′s , we sum Eq. (3) over s. If q → 0, it gives us

ω2
∑

s

Msus = 0. (12)

Equation (12) describes two kinds of vibrations pertinent to the long-
wavelength limit: the acoustic phonons with ω → 0 at q → 0, and the
optical phonons with ω 	= 0. Under the optical vibrations, the center of
mass of the cell remains at rest, and the atoms of the cell oscillate in
antiphase,

∑
s Msus = 0. There are 3 acoustic modes and 3s̄− 3 optical

modes.
Let us consider the long-wavelength optical vibrations in a biatomic

(s̄ = 2) crystal with ionic bond, when the oppositely charged sublat-
tices oscillate as a whole with respect to each other. In this approxi-
mation, the displacements uns do not depend on n, and the vibrations
are described by two variables u± corresponding to two sublattices with
effective charges ±e∗ and atomic masses M±. According to Eq. (12),
M+u+ + M−u− = 0, and there is only one independent variable, the
relative ionic displacement u = u+ − u−. Under such vibrations, each
elementary cell has a dipole moment e∗u, and a significant contribution
to the interatomic forces comes from the long-range dipole-dipole inter-
action. One has to subdivide the atomic force constant matrices Gkk′

ss′ by
a short-range part, proportional to the relative shift u, and a long-range
part, given through the electric field with local strength EL. In this way,
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the equations of motion become

M+ü+ = −k(u+ − u−) + e∗EL

M−ü− = k(u+ − u−) − e∗EL

, (13)

where the coefficient k describes the short-range forces. The longitudinal
field EL in Eq. (13) induces the polarization (N/V )αEL, where α is the
polarizability of the cell and N/V is the number of the cells per unit
volume. The total polarization P is the sum of this induced contribution
and dipole moment e∗u. Thus, for u, EL, and P, we have

ü = −ω2
TOu +

e∗

M
EL,

P =
N

V
(e∗u + αEL). (14)

The first equation, which follows from Eq. (13), contains the reduced
mass M = M+M−/(M+ + M−). The contribution of the short-range
forces to this equation is expressed through the transverse mode fre-
quency ωTO, the latter is introduced as ωTO = (k/M)1/2. Since the
long-range electric fields are not generated by the transverse displace-
ments (see the picture of ionic crystal vibrations in Fig. 1.3), ωTO is the
frequency of transverse vibrations.

Figure 1.3. Pictures of the longitudinal (a) and transverse (b) vibrations of the ionic
crystal sublattices.

To consider the longitudinal vibration, one has to use an additional,
with respect to Eq. (14), relation between EL and P. Owing to electric
neutrality of the lattice, the Poisson equation for the longitudinal fields
gives us EL + 4πP = 0. Before applying it for solution of Eq. (14), it
is convenient to express the microscopic parameters e∗ and α through
the static and high-frequency dielectric constants, ε0 and ε∞. Let us in-
troduce the temporal Fourier components of the polarization and field,
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Pω and ELω . In the region of high frequencies, larger than the ionic vi-
bration frequency but smaller than the frequencies of interband electron
transitions, the sublattices do not shift, and at u → 0 these compo-
nents are connected by the relation P∞ = (N/V )αEL∞. On the other
hand, P∞ = (ε∞ − 1)EL∞/4π. In this way we express (N/V )α through
ε∞. In the static case, one has u̇ = 0, and Eq. (14) leads to P0 =
(N/V )[α + e∗ 2/ωTOM ]. On the other hand, P0 = (ε0 − 1)ELω=0/4π,
and we find an expression for the charge e∗. As a result,

α
N

V
=

ε∞ − 1
4π

, e∗2 N

MV
= ω2

TO

ε0 − ε∞
4π

. (15)

Further, it is convenient to introduce a new variable w = (NM/V )1/2u
instead of u (this variable will be also called below as the relative ionic
displacement, though its dimensionality is not a length). Using this
definition and Eq. (15), we rewrite Eq. (14) as

ẅ = −ω2
TOw + ωTO

√
ε0 − ε∞

4π
EL,

P = ωTO

√
ε0 − ε∞

4π
w +

ε∞ − 1
4π

EL. (16)

Excluding EL and P with the use of EL + 4πP = 0, we arrive at the
equation of motion ẅ+ω2

LOw = 0 for the longitudinal vibrations. Their
frequency, ωLO, is expressed through ωTO according to the Lyddane-
Sachs-Teller relation

ωLO =
√

ε0/ε∞ωTO. (17)

The Hamiltonian of longitudinal optical (LO) and transverse optical
(TO) phonons is given by Eq. (3.12) with q-independent frequencies
ωLO and ωTO. In the biatomic crystals there are two TO modes and one
LO mode.

In the long-wavelength limit, it is convenient to write the contribution
of the optical vibrations to the second-quantized displacement operator
(10) after replacing the discrete vector Rn by the continuous variable
r. The unit vectors of polarization, e±(q), are determined from the
normalization conditions and from the requirement of zero displacement
of the center of mass of the cell:

e2
+(q) + e2

−(q) = 1√
M+e+(q) +

√
M−e−(q) = 0 . (18)

Introducing the total mass of the cell, Mc = M+ + M−, we write the
solutions of Eq. (18) as e±(q) = ±

√
M∓/Mceql, where eql is the unit
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vector of polarization which depends on the mode index l (l = LO,
TO1, and TO2). Therefore, the second-quantized operator ŵ is given by

ŵ(r) =
∑
ql

√
�

2ωlV
eqle

iq·r
(
b̂ql + b̂+

−ql

)
. (19)

The polarization induced by the longitudinal modes is expressed through
w according to

P =

√
ω2

LO

4πε∗w,
1
ε∗ ≡ 1

ε∞
− 1

ε0
, (20)

where the effective dielectric constant ε∗ is introduced. The second-
quantized polarization operator is given by

P̂(r) =
∑
q

√
�ωLO

8πε∗V
eqLOeiq·r

(
b̂qLO + b̂+

−qLO

)
. (21)

The potential energy of interaction of electrons with the field induced by
the longitudinal vibrations is obtained from the Poisson equation in the
form U(r) = i4πe

∑
q exp(iq · r)(q · P(q))/q2. Choosing the unit vector

of longitudinal displacement as eqLO = −iq/q so that e∗
qLO = e−qLO, we

obtain the Hamiltonian of electron-phonon interaction:

Ĥe,LO(r) =

√
2πe2�ωLO

ε∗V

∑
q

q−1eiq·r
(
b̂qLO + b̂+

−qLO

)
. (22)

This expression is known as Froelich Hamiltonian. The electrons interact
with the lattice vibrations through the long-range electric field generated
by the longitudinal optical phonons.

Let us consider the interaction of the optical vibrations with the
electric field of a transverse electromagnetic wave propagating in the
isotropic ionic crystal. The energy of the interaction is expressed through
the dipole moment dn of n-th cell according to −

∑
n dn · E(Rnt),

where E(Rnt) is the field of the electromagnetic wave in the cell. Since
d = e∗(u+ − u−), the second-quantized operator of the dipole moment
is expressed, with the use of Eq. (10), as

d̂n =
∑
ql

√
�e∗ 2

2ωlMN
eql(b̂ql + b̂+

−ql)e
iq·Rn . (23)
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The operator of interaction of phonons with the electric field described
by the Fourier component Ek is given by

Ĥk = −
∑

l

√
�ω2

TO(ε0 − ε∞)V
8πωl

(ekl · Ek)(b̂−kl + b̂+
kl). (24)

One can see that only TO phonons interact with the transverse field in
the long-wavelength limit. To consider the phonon-photon interaction,
one has to substitute the second-quantized electric field (3.24) into the
operator of interaction. In this way we obtain the operator of phonon-
photon interaction:

Ĥph,pht = −i�
∑
qlµ

√
ωTOωq

ε0 − ε∞
4ε∞

(eql · eqµ)

×(b̂−ql + b̂+
ql)(b̂qµ − b̂+

−qµ). (25)

We point out the appearance of a product of second-quantized opera-
tors of the photon and phonon modes denoted by the indices µ and l,
respectively. Owing to the polarization factor (eql · eqµ), the photons
with polarization µ = 1 interact with TO1 phonons, while the photons
with µ = 2 interact with TO2 phonons. The Hamiltonian (25) should
be viewed as a perturbation coupling free photons to free phonons. For
a correct description of the phonon-photon system, this perturbation
has to be small in comparison to the unperturbed photon and phonon
energies. This occurs when the parameter of coupling, ε0/ε∞ − 1, is
much less than unity. A non-perturbative approach describing coupled
phonon-photon modes at arbitrary coupling strength will be presented
in Chapter 5.

When the long-wavelength acoustic phonons propagate in the crystal,
the elementary cell oscillates as a whole, the atoms are moving in phase,
and the displacement vector us determined by the equation of motion
(3) does not depend on s. The equation for the long-wavelength Fourier
components uq of the displacements under acoustic vibration is obtained
after a summation of Eq. (3) over s and subsequent expansion of the
forces in series of q up to q2 terms:

ω2uk
q +

1
2Mc

∑
k′

[ ∑
∆nss′

Gkk′
ss′ (|R∆n|)(q · R∆n)2

]
uk′
q = 0. (26)

The contribution linear in q is equal to zero since the function under the
sum

∑
∆n is odd with respect to ∆n. In Eq. (26) we have introduced

the total mass of the atoms in the cell, Mc =
∑

s Ms. It is convenient to
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introduce the elastic module tensor λkll′k′ and the crystal density ρ =
McN/V in order to rewrite Eq. (26) as an equation for the macroscopic
displacement field:

ρω2uk
q −

∑
k′ll′

λkll′k′qlql′u
k′
q = 0,

λkll′k′ =
ρ

2Mc

∑
ss′∆n

Gkk′
ss′ (|R∆n|)Rl

∆nRl′
∆n. (27)

In the isotropic media, the tensor λkll′k′ is expressed through two com-
ponents, according to λkll′k′ = µδll′δkk′ +(µ+λ)δklδk′l′ . The parameters
µ and λ are known as Lamé coefficients. The dispersion relation follow-
ing from Eq. (27) gives us a longitudinal (LA) and a pair of transverse
(TA) solutions:

ωqLA,TA = sl,tq, st =
√

µ/ρ, sl =
√

(λ + 2µ)/ρ, (28)

where we have introduced the longitudinal and transverse sound veloci-
ties, sl and st. The dispersion laws for long-wavelength acoustic phonons
are linear in q.

The second-quantized operator of the displacement field under acous-
tic vibrations is given by Eq. (10) with ûns independent of s. One may
replace es(q)/

√
Ms by eql/

√
Mc, where the index l numbers the acous-

tic modes and the mass of the cell stands here due to the normalization
conditions

∑
s |es(q)|2 = 1 and |eql|2 = 1. As a result, we obtain the

operator

ûac(r) =
∑
ql

√
�

2ρωqlV
eqle

iq·r
(
b̂ql + b̂+

−ql

)
. (29)

The relative change of the volume at the point r, generated by the
long-wavelength acoustic vibrations in the isotropic medium, is equal to
∇ · uac(r). Only the longitudinal vibrations contribute to this quantity.
This deformation changes the electron energy and, therefore, provides
a mechanism for electron-phonon interaction. Near the electron energy
band extrema in the cubic crystals, the interaction energy is equal to
D(∇ · uac), where D is the deformation potential (see Appendix B).
Again, applying eqLA = −iq/q, we obtain the Hamiltonian of electron-
phonon interaction:

Ĥe,LA(r) =
∑
q

√
�D2q

2ρslV
eiq·r

(
b̂qLA + b̂+

−qLA

)
. (30)

This expression is similar to Eq. (22). However, the electron-phonon
coupling energy is different: now it is expressed through the deformation
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potential, longitudinal sound velocity, and crystal density. Apart from
the Froelich and deformation-potential interactions given by Eqs. (22)
and (30), there exist other mechanisms of electron-phonon interactions,
namely i) the interaction with the optical phonons due to deformation
of the lattice, and ii) the interaction with the acoustic phonons due
to piezoelectric fields generated by the lattice vibration. The former is
important only in the non-ionic crystals where the Froelich interaction
is absent, while the latter is often weaker than the deformation-potential
interaction.

To complete this section, let us consider the phonon-phonon interac-
tion appearing due to the anharmonic contributions in Eq. (1). Substi-
tuting the expression (10) for the displacement operators into the last
(cubic) term of Eq. (1), we rewrite this term as

Ĥph,ph =
ρV

6

(
�

2ρV

)3/2 ∑
q1q2q3

∑
l1l2l3

βl1l2l3(q1,q2,q3)√
ωq1l1ωq2l2ωq3l3

×(b̂q1l1 + b̂+
−q1l1

)(b̂q2l2 + b̂+
−q2l2

)(b̂q3l3 + b̂+
−q3l3

), (31)

where the anharmonic coefficients βl1l2l3(q1,q2,q3) are introduced by
the following expression:

βl1l2l3(q1,q2,q3) =
1

ρV

∑
s1s2s3

M
3/2
c√

Ms1Ms2Ms3

×
∑

n1n2n3

∑
k1k2k3

Ak1k2k3
s1s2s3

(|Rn1 − Rn2 |, |Rn1 − Rn3 |) (32)

×ek1
s1

(q1l1)ek2
s2

(q2l2)ek3
s3

(q3l3) exp[i(q1 · Rn1 + q2 · Rn2 + q3 · Rn3)].

The factor 1/ρV is detached for the sake of convenience, to make the
anharmonic coefficients defined by Eq. (32) independent of the volume
V . In contrast to the operators (22) and (30), which are linear in b̂ql,
the operator (31) is cubic in b̂ql. It describes the modification of the
crystal energy due to vibrational anharmonicity. From the point of view
of second quantization, the Hamiltonian (31) accounts for three-phonon
processes corresponding to either a transformation (decay) of the phonon
into two other phonons (b̂b̂+b̂+ terms) or a fusion of two phonons into
one phonon (b̂b̂b̂+ terms). The terms containing b̂b̂b̂ and b̂+b̂+b̂+ do not
correspond to any transitions since a creation or annihilation of three
phonons in the absence of external perturbations is forbidden by the
energy conservation requirement. A shift by an arbitrary lattice vector
may not modify the coefficients βl1l2l3(q1,q2,q3). Therefore, the sum
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q1 + q2 + q3 is equal either to zero or to a reciprocal lattice vector.
It means that βl1l2l3(q1,q2,q3) ∝ ∆q1+q2+q3,0 , which expresses the
conservation of quasimomentum in the phonon-phonon collisions. One
can estimate the order of the absolute value of the anharmonic coeffi-
cients from the following consideration. The absolute value of Ak1k2k3

s1s2s3

is estimated as Mv2/a3, where M , v, and a are the averaged atomic
mass, sound velocity, and lattice constant. Therefore, if we assume that
qi · Rni ∼ 1 (i = 1, 2, 3) and account only for the nearest-neighbor in-
teraction in the n-sum in Eq. (32), we find |βl1l2l3(q1,q2,q3)| ∼ v2/a3

(here and below in this book the sign “∼” defines an order-of-value esti-
mate). If one, two, or all three phonons are the long-wavelength acoustic
ones, the estimate should be written, respectively, as q1v

2/a2, q1q2v
2/a,

and q1q2|q1 + q2|v2. These estimates are not essentially modified for the
ionic crystals with long-range interaction between the atoms. If only
the long-wavelength acoustic phonons are important, one may write the
anharmonic potential energy, i.e., the third term in the expression (1),
in the elastic continuum approximation as

1
3!

∫
(V )

dr
∑

k1k2k3

∑
αβγ

λk1α,k2β,k3γ
∂uk1

ac(r)
∂rα

∂uk2
ac(r)
∂rβ

∂uk3
ac(r)
∂rγ

, (33)

where λk1α,k2β,k3γ are the third-order anharmonic elastic constants which
have dimensionality of the energy density. To quantize this energy, one
should simply replace the vectors of acoustic-phonon displacements by
the operators of such displacements. Substituting these operators from
Eq. (29) into Eq. (33), we find

Ĥph,ph =
1
6

∑
q1q2q3

∑
l1l2l3

Bl1l2l3(q1,q2,q3)(b̂q1l1 + b̂+
−q1l1

)

×(b̂q2l2 + b̂+
−q2l2

)(b̂q3l3 + b̂+
−q3l3

),

Bl1l2l3(q1,q2,q3) = − i√
V

(
�

2ρ

)3/2 ∑
k1k2k3

∑
αβγ

λk1α,k2β,k3γ

×
ek1
q1l1

ek2
q2l2

ek3
q3l3

q1αq2βq3γ
√

ωq1l1ωq2l2ωq3l3

δq1+q2+q3,0 . (34)

Note that, instead of ∆q1+q2+q3,0 , we have obtained the conventional
Kronecker symbol expressing the conservation of momentum. This is a
consequence of the elastic continuum approximation. The coefficients
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λk1α,k2β,k3γ are related to Ak1k2k3
s1s2s3

in the following way:

∑
n1n2n3

[ ∑
s1s2s3

Ak1k2k3
s1s2s3

(|Rn1 − Rn2 |, |Rn1 − Rn3 |)
]

× exp[i(q1 · Rn1 + q2 · Rn2 + q3 · Rn3)] (35)

= i3λk1α,k2β,k3γq1αq2βq3γδ(q1 + q2 + q3).

This equation follows from a comparison of Eqs. (31) and (32) to Eq.
(34) (note that for acoustic phonons eql = es(ql)

√
Mc/Ms is indepen-

dent of the sort of the atom). Indeed, the right-hand side of Eq. (35) is
the leading term in the expansion of the left-hand side of this equation
in powers of small q1, q2, and q3. This term should be linear in each
of these wave vectors, as follows from the invariance of the anharmonic
energy with respect to the shift of the lattice as a whole. This invariance
gives us a relation similar to Eq. (11):∑

sini

Ak1k2k3
s1s2s3

(|Rn1 − Rn2 |, |Rn1 − Rn3 |) = 0, (36)

where the sum is taken over either pair of variables si and ni, i = 1, 2, 3.
This equation can be used to prove Eq. (35).

Problems
1.1. Write the dynamical equations (1.13) and (1.14) in the repre-

sentation of the quantum numbers of harmonic oscillator, analogous to
Eqs. (1.5) and (1.6) or to Eqs. (1.8) and (1.10).

Hint: Use the expansion of the wave function of x-representation in the oscillator
wave functions (Appendix A). This leads to the Schroedinger equation in the N -
representation,

i�
∂Ψ(δ)

Nt

∂t
=
∑
N′

HNN′Ψ(δ)
N′t,

and the observable is written as Q
(δ)

t =
∑

NN′〈δ, t|N 〉〈N |Q̂|N ′〉〈N ′|δ, t〉.

1.2. Check the equivalence of Eqs. (2.6) and (2.7).
Solution: Consider first the double integral

1
2

∫ t

t′
dt1

∫ t

t′
dt2T̂

{
Ĥt1Ĥt2

}
=

1
2

∫ t

t′
dt1

[∫ t1

t′
dt2Ĥt1Ĥt2 +

∫ t

t1

dt2Ĥt2Ĥt1

]
,

where the integrals are taken over the upper and lower triangles of the quadrant
t′ < t1,2 < t. If we change the order of the integrations in the second term and
permute the variables according to t1 ↔ t2, we find that the contribution

1
2

∫ t

t′
dt2

∫ t2

t′
dt1Ĥt2Ĥt1 =

1
2

∫ t

t′
dt1

∫ t1

t′
dt2Ĥt1Ĥt2
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coincides with the contribution of the first term. Thus, the transition from Eq. (2.6)
to Eq. (2.7) is checked for a double integral. A generalization to the case of n integrals
can be done by induction.

1.3. Prove the Hermiticity, unitarity, and multiplicativity of the S-
operator, expressed by Eq. (2.9).

Hint: Use Eq. (2.2).

1.4. Check the representation of the δ-function δ(E) as a limit, at
λ → +0, of the following expressions:

δλ(E) =
1
π

λ

E2 + λ2 , δλ(E) =
1√
πλ

e−(E/λ)2 , δλ(E) =
λ sin2(E/λ)

πE2 .

Also, check the relation

(E ± iλ)−1 =
P
E

∓ iπδ(E), λ → +0,

where P is the symbol of the principal value.
Solution: The δ-function must satisfy the requirement limλ→+0 δλ(E) = 0 at

E �= 0 and go to infinity at E = 0, which is checked directly. Another require-
ment,

∫
δ(E)dE = 1, is provided by appropriate normalization coefficients in the

different representations of δλ(E); the integrals over E can be calculated exactly.
The properties of the δ-function lead us to the equation

∫
∆ δ(E)F (E)dE = F (0),

where the region of integration, ∆, includes the point E = 0, and F (E) is assumed
to be continuous in the vicinity of E = 0. To check the last relation, we use the first
expression for the δ-function and obtain

lim
λ→+0

∫
F (E)
E ± iλ

dE =
∫

F (E)E
E2 + λ2 dE ∓ iπ

∫
F (E)δ(E)dE,

where
∫

F (E)EdE/(E2 + λ2) can be replaced by the principal value of the integral,
P
∫

[F (E)/E]dE.

1.5. Write the equations describing the modes of electromagnetic
field in the medium with one-dimensional inhomogeneity defined by the
dielectric function εz .

Solution: Let us write Aν
r as a superposition of plane waves with two-dimensional

wave vectors q (q⊥OZ and r = (x, z)):

Aν
r =

√
2πc2

εV
eiq·x

(
es
qz

[nz × q]
q

+ ep
qz

)
,

where nz is the unit vector along OZ , and z-dependent unit vectors es
qz and ep

qz de-
scribe two polarizations, s and p. The case Aν

r || [nz×q] corresponds to s-polarization,
and es

qz satisfies the wave equation

d2es
qz

dz2 +
[(ω

c

)2
εz − q2

]
es
qz = 0
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obtained directly from Eq. (3.3). For p-polarization, the vector Aν
r lies in the plane

defined by the vectors q and nz so that one can define two z-dependent components of
ep
qz directed along these two vectors. These components satisfy the equations similar

to the one given above. These equations contain both εz and its logarithmic derivative.

1.6. Assuming that ēz is an arbitrary complex solution of the wave
equation derived in the problem 1.5, one may define the flow Q:

Q =
1
i

(
ē∗
z

dēz

dz
− ēz

dē∗
z

dz

)
.

Prove that Q does not depend on z. Relate the behavior of the modes
ēz to the sign of the flow.

Solution: Let us calculate a derivative of Q over z, which gives us a sum of the
terms containing the products of the first derivatives of ēz and the second derivatives.
The products of the first derivatives vanish from dQ/dz. The second derivatives
can be expressed from the wave equation and also lead to zero contribution so that
dQ/dz = 0. Depending on the sign of Q, one may separate three kinds of solutions:
left (l), right (r), and local (L) modes. If Q > 0 (l-mode), the waves propagate from
the left to the right: in the region z → −∞ there are both incident and reflected
waves, while in the region z → +∞ there are only transmitted waves (the dielectric
permittivity is assumed to be constant at z → ±∞). When Q < 0 (r-mode), the
wave propagates from the right to the left. The case of Q = 0 (L-mode) corresponds
to a localized solution characterized by ēz→±∞ = 0.

1.7. Determine the energy density of equilibrium photons with fre-
quency ω.

Solution: Using Eq. (3.28), one can express the energy density of equilibrium
photons in three-dimensional media. The energy dE (per unit volume of space)
corresponding to the phase volume Ωq = 4πq2dq/(2π)3 of the state q is given as
dE = 2�ωqn̄qΩq, where n̄q is given by Eq. (3.28) and the factor of 2 stands because
of two polarizations of photons. Using Eq. (3.23) with ωq = ω, we obtain

dE

dω
=

�ω3

π2c̃3

[
e�ω/Tph − 1

]−1
.

This result is known as Planck’s formula.

1.8. Determine i) the total energy of equilibrium photons and ii) the
frequency corresponding to the maximum energy density, as functions
of the photon temperature Tph.

Hints: i) Calculate the integral of dE/dω over ω. ii) Calculate the derivative of
dE/dω over ω and equate it to zero.

1.9. Calculate the commutator [Ĥe, ρ̂r] in Eq. (4.13).
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Hint: Use the operator equation [â, b̂ĉ] = [â, b̂]ĉ + b̂[â, ĉ].

1.10. Check Eqs. (4.23) and (4.24).
Hint: Compare results of straightforward calculations based on the wave functions

(4.17) and on the second quantization formalism.

1.11. Check the commutation relation (4.31).
Hint: Using Eqs. (4.19)−(4.21), show that the terms containing products of four

operators disappear.

1.12. Prove the relation
∑

p . . . = V
∫

dp . . . /(2π�)3 at V → ∞.
Hint: Use the definition of quasidiscrete momentum from Eq. (5.1) and consider

the integral as a limit of the sum.

1.13. Find the spectrum and velocity of the electron in crossed (per-
pendicular to each other) electric and magnetic fields.

Solution: If we direct the electric field E along OX , the potential energy standing
in the Schroedinger equation is −eEx. The solution of the Schroedinger equation is
given by Eq. (5.13), where the oscillatory wave function is determined by the equation[

p̂2
x

2m
+

mω2
c

2

(
x − XE

py

)2
− eEXE

py
+

m

2

(
eE

mωc

)2
]

ϕ
(Npy)
x = ENpy ϕ

(Npy)
x ,

and XE
py

= Xpy +eE/mω2
c determines the shift of the oscillator center in the presence

of the electric field (compare to Eq. (5.14)). The wave functions ϕ
(Npy)
x are the same

as in Eq. (5.15), where XE
py

stands instead of Xpy , and the spectrum is given by

ENpy = εN +
m

2

(
eE

mωc

)2

− eEXE
py

.

It depends on py because of the presence of the electric field. The velocity is given
by the diagonal matrix elements of the kinematic velocity operator v̂ = [−i�∂/∂r −
eAr/c]/m. Owing to the electric field effect, the velocity is no longer zero in the
direction perpendicular to both E and H: vy = (py + �XE

py
/l2H)/m = eE/mωc. This

is the classical drift velocity v = c[E × H]/H2 for the particle in crossed electric and
magnetic fields. The spectrum ENpy within a single Landau level can be presented as
a sum of classical kinetic and potential energies of the particle with coordinate XE

py

(corresponding to the center of the oscillatory wave function) and velocity vy.

1.14. Consider an electron in the harmonic potential U cosQ · r and
harmonic electric field E cos Ωt. Write the Schroedinger equation in the
momentum representation for Fourier components of the wave function.

Solution: In the p-representation, the potential term in the Schroedinger equa-
tion is transformed to U (ψp+�Qt + ψp−�Qt)/2, while the kinematic momentum is
equal to p+(eE/Ω) sinΩt. Carrying out the temporal Fourier transformation ψpω =
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dteiωtψpt, we obtain[

�ω − p2

2m
− 1

4m

(
eE

Ω

)2
]

ψpω =
U

2
[ψp+�Qω + ψp−�Qω]

+
eE · p
2mΩi

[ψpω+Ω − ψpω−Ω] − 1
8m

(
eE

Ω

)2

[ψpω+2Ω + ψpω−2Ω].

This is a finite-difference equation.

1.15. Derive the equations of motion (6.2).
Solution: According to general principles, if the energy of the system depends on

the variables qi (i = 1, 2, ...) and their temporal and spatial derivatives, q̇i and ∇αqi,
one may introduce the Lagrangian L =

∑
i q̇ipi − E , where pi = ∂E/∂q̇i, and write

the Lagrange equations

∂L
∂qi

− ∂

∂t

∂L
∂q̇i

−
∑

α

∇α
∂L

∂∇αqi
= 0,

which are identified with the equations of motion. Applying this procedure to the
system of atoms in the crystal, when the energy is given by the expression (6.1), and
assuming qi = uk

s (Rn) so that the index i includes k, s, and n, we obtain Eq. (6.2).

1.16. Prove that

N−1
∑
n

eiq·Rn =
∑
m

δq,Gm ≡ ∆q,0 ,

where Gm is a reciprocal lattice vector.
Solution: Only when q · Rn is equal to 2πl (l is integer) for all n, the expression

N−1∑
n eiq·Rn is equal to 1. Otherwise, it is equal to 0. Since the reciprocal lattice

vector is defined as Gm · Rn = 2πl, the expression under consideration satisfies the
properties of the Kronecker symbol δq,Gm for all integer vectors m.



Chapter 2

ELECTRON-IMPURITY SYSTEM

Non-equilibrium states of the systems weakly coupled to a thermostat are well in-
vestigated because these systems are easily driven from equilibrium by relatively weak
external fields. On the other hand, weakly coupled systems are usually described by
means of kinetic equations, and this approach is developed below and in Chapters
4−7. In this chapter, the kinetic equation is derived and analyzed for the simplest
case of electrons in a weak potential of static inhomogeneities of the crystal, for ex-
ample, the impurity potential. A discussion of the approximations used below is not
presented in detail because this subject is widely covered in the literature. The main
features of the kinetic phenomena in solids are concerned with the complex nature
of quasiparticle dynamics and interactions. For this reason, the standard results ob-
tained for plasma have a limited applicability in solids. The quantum kinetic equation
is obtained below in the operator form, which is more convenient for the cases under
consideration. Such an approach allows one to formulate the kinetic equation in the
most general way so that in each concrete case one has just to choose a proper rep-
resentation for calculation of the matrix elements of the density matrix. Of course,
one has to analyze the validity conditions for the approach of kinetic equation in each
concrete case.

7. Kinetic Equation for Weak Scattering
We start from the equation for one-electron density matrix n̂t under

the assumption of weak interaction between the electrons and randomly
distributed identical impurities. The one-electron Hamiltonian of the
system is written as

ĥt + Uim(r), Uim(r) =
∑
α

v(r − Rα). (1)

51
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The general form of the one-electron Hamiltonian ĥt (the transition from
many-electron to one-electron description is discussed in Sec. 4) allows
one to consider the systems in arbitrary external fields. In Eq. (1) we
have introduced the coordinate Rα of α-th impurity (α = 1, 2, ..., Nim ,
where Nim is the number of impurities in the volume V ), and v(r) is
the potential of a single impurity placed at the origin of the coordinate
system. Thus, we rewrite Eq. (4.32) in the form

i�
∂n̂t

∂t
=

[
ĥt +

∑
α

v(r − Rα), n̂t

]
, (2)

where the one-electron density matrix n̂t depends on coordinates of all
impurities. The physical interest, however, is focused on the averaged,
with respect to the impurity distribution, characteristics of the system.
For this reason, the observable value Qt introduced by Eq. (4.28) must
be averaged. Since the one-particle operator q̂ of the observable (charge
density, current density, etc.) does not depend on Rα, the expression
for this observable is written as

Qt = 〈〈sp q̂n̂t〉〉 = spq̂ρ̂t, (3)

where 〈〈. . .〉〉 defines the averaging over the ensemble of randomly dis-
tributed impurities and ρ̂t = 〈〈n̂t〉〉 is the averaged density matrix which
does not depend on the set of coordinates Rα. Therefore, to derive a
kinetic equation, one should average Eq. (2) over the variables Rα. Un-
der the assumption of weak electron-impurity interaction, this procedure
leads to a closed equation for ρ̂t.

If the concentration of the impurities is low enough, one can neglect
the correlations between their positions. This means that the averaging
over each Rα should be done independently, as

〈〈. . .〉〉 = V −Nim

∫
dR1 . . .

∫
dRNim . . . . (4)

The procedure of averaging introduced by Eq. (4) includes a possibil-
ity for two (or more) impurity centers to coincide. Thus, to improve the
method for high impurity concentrations, one should insert a correlation
function of impurity positions under the integral. This function depends
on R1,R2, . . . ,RNim and is equal to zero if two or more impurity coordi-
nates coincide. Averaging Eq. (2) with the use of Eq. (4), we encounter
a new average taken over all impurities except the impurity α:

〈〈. . .〉〉α = V −Nim+1
∫

dR1 . . .

∫
dRα−1

∫
dRα+1 . . .

∫
dRNim . . . .

(5)



Electron-Impurity System 53

Again, applying this averaging to Eq. (2), we obtain the average over all
impurities except those numbered by α and β. It is defined in a similar
way and denoted as 〈〈. . .〉〉αβ (α 	= β). One can continue in this way
by introducing new averages of higher order. The quantities averaged
over the impurity ensemble are not equal to their exact values, but the
difference goes to zero at Nim → ∞ (problem 2.1).

Equation (2), averaged with the use of Eq. (4), becomes

i�
∂ρ̂t

∂t
=
[
ĥt, ρ̂t

]
+
∑
α

∫
dRα

V
[v(r − Rα), 〈〈n̂t〉〉α] , (6)

where ρ̂t depends on the coordinate of one electron. The operator 〈〈n̂t〉〉α

appearing on the right-hand side of Eq. (6) describes the correlation of
the electron with α-th impurity. The equation for 〈〈n̂t〉〉α is obtained
after averaging Eq. (2) with the aid of Eq. (5):

i�
∂〈〈n̂t〉〉α

∂t
=
[
ĥt + v(r − Rα), 〈〈n̂t〉〉α

]
+
∑

β(�=α)

∫
dRβ

V
[v(r − Rβ), 〈〈n̂t〉〉αβ ] . (7)

The operator 〈〈n̂t〉〉αβ describes the correlation of the electron with the
impurities α and β. In turn, the equation for this operator contains the
correlation function with three impurity variables. Proceeding in this
way, one has an infinite chain of equations, which should be cut under the
assumption of weak electron-impurity interaction (Born approximation)
as described below.

Defining a correlation operator accounting for the α-th impurity con-
tribution as

κ̂αt = 〈〈n̂t〉〉α − ρ̂t, (8)

and noting that
∫

dRαv(r − Rα) commutes with ρ̂t, one can transform
the last term on the right-hand side of Eq. (6) in the following way:∑

α

∫
dRα

V
[v(r − Rα), κ̂αt] . (9)

Since κ̂αt is equal to zero when the impurity potential is absent, the
contribution (9) is proportional to v2. With this accuracy, one may
neglect the last term in Eq. (7). Then, subtracting Eq. (6) from Eq.
(7), we obtain an equation for κ̂αt. In the first order in the electron-
impurity interaction, this equation has the following form:

i�
∂κ̂αt

∂t
=
[
ĥt, κ̂αt

]
+ [v(r − Rα), ρ̂t] . (10)
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The initial condition to Eq. (10) corresponds to the weakening of the
electron-impurity correlations at t → −∞:

κ̂αt→−∞ = 0. (11)

Using this initial condition, one can imagine that the impurity potential
is adiabatically turned on at t → −∞.

Therefore, Eq. (6) with the last term given by Eq. (9) and Eq. (10)
with the initial condition (11) form a closed system of equations. To solve
it, we first exclude the correlation operator κ̂αt. Expressing the solution
of Eq. (10) with the initial condition (11) through the evolution operator
defined by Eq. (2.2) with the Hamiltonian ĥt, we obtain (compare to
Eq. (2.19))

κ̂αt =
1
i�

∫ t

−∞
dt′eλt′Ŝ(t, t′) [v(r − Rα), ρ̂t′ ] Ŝ+(t, t′), (12)

where λ → +0. Substituting this result into Eq. (6) with the use of Eq.
(9), we obtain the quantum kinetic equation

∂ρ̂t

∂t
+

i

�

[
ĥt, ρ̂t

]
= Ĵim(ρ̂|t) (13)

for the one-electron density matrix averaged over the impurity ensemble.
The left-hand side describes the evolution of the electron distribution in
the absence of electron-impurity interactions, while the right-hand side
gives us the electron-impurity collision integral in the operator form.
The explicit expression for Ĵim(ρ̂|t) is written through the double com-
mutator,

Ĵim(ρ̂|t) =
1
�2

∫ t

−∞
dt′eλt′

∑
α

∫
dRα

V

×
[
Ŝ(t, t′) [v(r − Rα), ρ̂t′ ] Ŝ+(t, t′), v(r − Rα)

]
, (14)

and the averaging over the impurity distribution is directly given by the
integral over Rα. To calculate it, we transform the impurity potential
into Fourier series according to standard relations

v(r) =
1
V

∑
q

eiq·rv(q), v(q) =
∫

dre−iq·rv(r). (15)

Then, the impurity-dependent contribution in Eq. (14) is calculated as

v(q)v(q′)
∑
α

∫
dRα

V
ei(q·Rα+q′·Rα) = |v(q)|2Nimδq+q′,0 , (16)
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where the identity v(−q) = v∗(q) is applied since v(r) is real. Finally,
the collision integral takes the following form:

Ĵim(ρ̂|t) =
nim

�2V

∑
q

|v(q)|2
∫ t

−∞
dt′eλt′

×
[
Ŝ(t, t′)

[
eiq·r, ρ̂t′

]
Ŝ+(t, t′), e−iq·r

]
, (17)

where nim = Nim/V is the impurity concentration, and the sum is taken
over the momentum �q transmitted in the collisions.

The limiting transitions employed in the derivation of Eq. (17) are
carried out in a standard, thermodynamic sequence

V → ∞, Nim/V = const (I)

λ → +0 (II). (18)

First (I) the volume goes to infinity at a fixed impurity concentration,
and then (II) the interaction is adiabatically turned on. The physical
reasons for this sequence are clear. First, to ensure that the electrons
do not feel the boundaries, the volume is set at infinity, and then the
moment of time when the interaction is turned on can be shifted to −∞.
The kinetic equation derived above is non-Markovian, i.e., the density
matrix ρ̂t is determined by the preceding evolution of the system. The
main contribution to the integral over t in Eq. (17) comes from the
time τc determined by the characteristic period of oscillations of the S-
matrix. It can be estimated from Eqs. (2.2) and (2.3) as τc ∼ �/ε̄, where
ε̄ is the characteristic energy of electrons. If the evolution of electron
distribution is slower than the quantum oscillations characterized by τc,
one can neglect the non-Markovian contributions. This means that ρ̂t′

in the collision integral can be replaced by ρ̂t; see Sec. 8. The fast
processes must be considered more accurately; see Sec. 10.

The kinetic equation should be accompanied by a normalization con-
dition expressing the electron density conservation. This conservation is
proved by calculating the trace of Eq. (13) whose left-hand side contains
the commutator [ĥt, ρ̂t] and the right-hand side (the collision integral)
also contains a commutator; see Eq. (17). Since the trace of any com-
mutator is equal to zero, one has

∂

∂t
sp ρ̂t = 0,

1
V

sp ρ̂t = n. (19)

The second equation defines the electron density n. In some cases, for
example, for the system described by a many-band Hamiltonian, where
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the valence band contains an infinite number of electrons, the normaliza-
tion condition appears to be more complicated. The same procedure is
applied to prove the energy conservation condition for the systems with
time-independent Hamiltonian ĥ. After multiplying Eq. (13) by ĥ, we
calculate the trace and find that both the collisionless contribution com-
ing from [ĥ, ρ̂t] and the contribution coming from the elastic-scattering
collision integral do not change the energy (problem 2.2). Therefore,

∂

∂t
sp ĥρ̂t = 0, (20)

which means that sp ĥρ̂t = const and the total energy of the electron
system is conserved.

Since the observables introduced by Eq. (3) are real, the averaged
density matrix must be Hermitian, ρ̂+

t = ρ̂t. From Eqs. (13) and (17),
it follows directly that ρ̂+

t and ρ̂t are governed by the same equation. In
contrast to the classical Boltzmann equation, Eq. (13) exactly accounts
for the quantum nature of the electron dynamics in external fields and
even for the influence of the external fields on the scattering, since Eq.
(17) contains S-operators defined by Eq. (2.2). However, like the Boltz-
mann equation, the quantum kinetic equation (13) is derived under the
following assumptions: i) the approximation of weak interaction, which
allows one to cut the chain of equations in the second order in v, and ii)
the initial condition (11) for weakening of correlations, which enables one
to solve Eq. (10) and obtain a closed equation for ρ̂t. These assumptions
are valid when

ε̄ � �/τ̄ , (21)

i.e., when the characteristic relaxation time τ̄ , which gives an estimate
for the collision integral according to Ĵim(ρ̂|t) ∼ −ρ̂t/τ̄ , is much greater
than the time τc characterizing the period of oscillations of the S-matrix.
Condition (21) corresponds to a weak collision-induced broadening of
the electron states with energy ε̄. It justifies the validity of the Born
approximation for electron-impurity scattering. Generally, it is the main
condition for applicability of the kinetic approach based on a reduction
of various interactions of quasiparticles with their surrounding to the
form of collision integrals. The kinetic equation (13) can be derived for
the case of strong electron-impurity interaction when this interaction is
a short-range one, so the condition (21) is still valid. The general case of
strong interaction, when Eq. (21) is violated, is considered by using the
diagram technique for linear response (Chapter 3) and non-equilibrium
diagram technique (Chapter 8).

The derivation of the kinetic equation (13) can be generalized to
the case of an arbitrary random static potential Usc(r). The averaging
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should be done over all realizations of the random potential, and this
procedure is again denoted as 〈〈. . .〉〉. If the random potential obeys the
Gaussian statistics, the results of the averaging are expressed through
the binary correlation function 〈〈Usc(r)Usc(r′)〉〉 = w(|r − r′|) (problem
2.3), which corresponds to a macroscopically homogeneous and isotropic
case. The averaged potential energy 〈〈Usc(r)〉〉 can be set at zero, as
a reference point of energy. The correlation functions of the Fourier-
transformed potentials satisfy the following relation:

〈〈Usc(q)Usc(q′)〉〉 = V δq,−q′w(q), (22)

where w(q) is the Fourier transform of the correlation function w(|r|).
Although the potential

∑
α v(r−Rα) of randomly distributed impurities

does not satisfy the Gaussian statistics in the general case, only the pair
correlation functions appear in the Born approximation, and we have
(∆r = r − r′)

w(q) =
∫

d∆re−iq·∆r〈〈
∑
αβ

v(r − Rα)v(r′ − Rβ)〉〉 = nim |v(q)|2 . (23)

Accordingly, the collision integral for the general case of an arbitrary
random static potential Usc(r) is given by Eq. (17), where one should
replace nim |v(q)|2 by w(q). Similar as above, this collision integral is
obtained under the assumption of weakness of the potential Usc(r).

8. Relaxation Rates and Conductivity
In this section we analyze the kinetic equation (7.13) for a relatively

simple case, when the system is spatially homogeneous. The collision
integral (7.17) can be applied to calculate the times describing the re-
laxation of initially anisotropic, with respect to momenta, electron dis-
tribution due to electron-impurity scattering. The electron energies are
conserved in such scattering processes. In the absence of external fields,
we use the Hamiltonian

ĥ =
p̂2

2m
, p̂ = −i�

∂

∂x
, (1)

which should be substituted to the operator kinetic equation (7.13).
We write this equation in the momentum representation, by using the
solutions of the eigenstate problem ĥ|p〉 = εp|p〉 (see Sec. 5) and taking
into account the translational invariance of the system. The Hamiltonian
(1) commutes with the operator of translation, T̂R = exp(ip̂ · R/�),
where R is an arbitrary vector. Therefore, both T̂Rρ̂tT̂

+
R and ρ̂t satisfy

the same equation. To check this statement, we act on Eq. (7.13) by T̂R
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from the left and by T̂+
R from the right (note that a shift of the phase

by ±p · R/� in the factors exp(±iq · x) does not lead to a dependence
of the collision integral on R). If the density matrices ρ̂t and T̂Rρ̂tT̂

+
R

coincide at the initial moment of time t = t0, one has to consider only the
diagonal, with respect to p, components of the density matrix, because
the non-diagonal ones are equal to zero (problem 2.4).

As a result, the kinetic equation for the distribution function fpt =
〈p|ρ̂t|p〉 takes the form

∂fpt

∂t
= Jim(f |pt) ≡ 〈p|Ĵim(ρ̂|t)|p〉. (2)

Since the Hamiltonian ĥ is time-independent, the collision integral op-
erator (7.17) is transformed to

Ĵim(ρ̂|t) =
nim

�2V

∑
q

|v(q)|2
∫ 0

−∞
dτeλτ

×
[
eiĥτ /�

[
eiq·x, ρ̂t+τ

]
e−iĥτ /�, e−iq·x

]
, (3)

where the S-operator is expressed according to Eq. (2.3). In the mo-
mentum representation, the collision integral (3) is rewritten as

Jim(f |pt) =
nim

�2V

∑
p′

|v[(p − p′)/�]|2
∫ 0

−∞
dτeλτ

×
{
exp[i(εp − εp′)τ/�] + c.c.

}
(fp′t+τ − fpt+τ ). (4)

To obtain this equation, one should consider the matrix element

〈p|eiq·x|p′〉 = δp,p′+�q (5)

and take the sum over the transferred momentum �q expressed through
p′. As a result, the operator equation (7.13) is rewritten in the p-
representation as an integro-differential equation.

Below we use Eq. (7.21) and assume a locality of the collision integral
with respect to time. Indeed, fpt changes with time on the scale of the
order of characteristic relaxation time τ̄ (the latter is calculated below),
while the exponential factors in Eq. (3) oscillate with the characteristic
time τc ∼ �/ε̄. Therefore, the non-Markovian nature of the collision
integral is not essential under the conditions (7.21), and fpt+τ � fpt. In
this approximation, the integral over τ in Eq. (4) gives us the energy
conservation law (problem 2.5):

1
�

∫ 0

−∞
dτeλτ

{
exp[i(εp − εp′)τ/�] + c.c.

}
= 2πδ(εp − εp′). (6)
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As a result of the transformations made, we obtain a simple equation
describing the balance of occupation for the state with momentum p:

∂fpt

∂t
=

2π

�

nim

V

∑
p′

|v(|p − p′|/�)|2δ(εp − εp′)(fp′t − fpt)

≡
∑
p′

[
Wp′pfp′t − Wpp′fpt

]
=
∑
p′

Wpp′(fp′t − fpt). (7)

Thus, we have derived the explicit expression for the transition proba-
bility Wpp′ already introduced in Sec. 2:

Wpp′ =
2π

�

nim

V
|v(|p − p′|/�)|2δ(εp − εp′). (8)

This expression is symmetric with respect to the permutation p ↔ p′.
Equations (7) and (8) allow one to determine τ̄ and, therefore, the con-
dition (7.21) takes an explicit form. Equation (7) does not contain any
sources responsible for the anisotropy of the distribution in the p-space.
On the other hand, any stationary isotropic distribution f(εp) satisfies
Eq. (7) because of the elasticity property expressed by the δ-function
of energies in the collision integral. If an anisotropic initial distribution
fpt=0 = f̄p is created by external perturbations, Eq. (7) can be em-
ployed to describe the relaxation of such distribution to the isotropic
one.

Although the kinetic equation (7) is written above for 3D electrons,
the same result is obtained for low-dimensional (2D or 1D) states if only
one (the lowest) subband is considered; see the energy spectra (5.25).
Since the condition (7.21) is assumed to be valid, the localization of low-
dimensional electrons should be neglected; see the discussion after Eq.
(21) below. Consider first the case of 1D-electrons, when the symmet-
ric (s) and antisymmetric (a) parts of the distribution function can be
separated as

fpt = fs
pt + fa

pt, fs
−pt = fs

pt, fa
−pt = −fa

pt. (9)

Note that fs
pt does not depend on time (since the scattering is elastic) and

already satisfies the kinetic equation (7), while fa
pt should be found from

this equation. Since the energy is conserved, only the backscattering
processes with p′ = −p contribute to the collision integral. The factor
(fa

p′t − fa
pt) is replaced by −2fa

pt. As a result, the evolution of fa
pt is

described by the following equation:

∂fa
pt

∂t
= −νpf

a
pt, νp = 2

∑
p′

Wpp′ |p �=p′ =
πnim

�
|v(2p/�)|2ρ1D(εp), (10)
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where the density of states for one-dimensional electrons is given by Eq.
(5.26). The relaxation rate of 1D momentum, denoted here as νp, is
equal to the inverse time of departure from the state p.

In the 2D case, we introduce the polar angle φ and expand fpt into
Fourier series:

fpt = f (0)
εt +

∞∑
l=1

[
f (l+)

εt cos lφ + f (l−)
εt sin lφ

]
. (11)

Once again, the isotropic contribution f (0)
εt is not changed by the elastic

scattering, while the coefficients f (l±)
εt satisfy the following equations:

∂

∂t

∣∣∣∣ f (l+)
εt

f (l−)
εt

∣∣∣∣ =
1
π

∑
l′

∫ π

−π
dφ

∣∣∣∣ cos lφ
sin lφ

∣∣∣∣∑
p′

Wpp′

×
[
(cos l′φ′ − cos l′φ)f (l′+)

εt + (sin l′φ′ − sin l′φ)f (l′−)
εt

]
. (12)

According to Eq. (8), the probability Wpp′ depends on the energies ε
and ε′ and on the cosine of the angle between the momenta. This angle
is given as φ′′ = φ − φ′ = p̂p′. Substituting φ′ = φ − φ′′ into Eq. (12),
we calculate the integrals over φ and rewrite the right-hand side of this
equation as∑

p′
Wεε′(cos φ′′)

∣∣∣∣ (cos lφ′′ − 1)f (l+)
εt − sin lφ′′f (l−)

εt

(cos lφ′′ − 1)f (l−)
εt + sin lφ′′f (l+)

εt

∣∣∣∣ . (13)

The terms proportional to sin lφ′′ give zero contribution, and Eq. (12)
takes the form

∂f (l±)
εt

∂t
= −ν(l)

ε f (l±)
εt , ν(l)

ε =
∑
p′

Wpp′
[
1 − cos(lp̂p′)

]
. (14)

Therefore, the evolution of f (l±)
εt is described by the l-dependent relax-

ation rate ν(l)
ε .

To describe the evolution of 3D electrons, it is convenient to expand
fpt with the aid of a complete set of spherical harmonics Ylk according
to

fpt =
∑
lk

f (lk)
εt Ylk(θ, ϕ), |k| ≤ l, l = 0, 1, . . . , (15)

where θ and ϕ are the angles of the spherical coordinate system. The
equation for the coefficients f (lk)

εt , which describes the evolution of differ-
ent components of the anisotropic distribution, is obtained by using the
orthogonality and normalization condition for the spherical functions.
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First we have

∂f (lk)
εt

∂t
=
∑
l′k′

∫
dΩY ∗

lk(θ, ϕ)
∑
p′

Wpp′

×
[
Yl′k′(θ′, ϕ′) − Yl′k′(θ, ϕ)

]
f (l′k′)

εt , (16)

where dΩ = sin θdθdϕ is the differential of the solid angle. The range of
the angles is given by θ ∈ [0, π] and ϕ ∈ [0, 2π]. The angular integrals
in the first term of the right-hand side of Eq. (16) can be calculated
in the coordinate system where p is directed along OZ. The spherical
function Yl′k′(θ′, ϕ′) is written in this new coordinate system as a linear
combination of Yl′k1(θ

′′, ϕ′′) with the same l, because the Laplace oper-
ator generating the set of the spherical functions with a given l is not
modified by the rotation under consideration:

Yl′k′(θ′, ϕ′) =
l′∑

k1=−l′
Dl′

k′k1
(θ, ϕ)Yl′k1(θ

′′, ϕ′′). (17)

The matrix Dl′
k′k1

describes the rotation and depends on the angles θ
and ϕ defining the orientation of the vector p with respect to OZ axis.
Substituting this expansion into the right-hand side of Eq. (16), we
integrate this equation over ϕ′′ and find that only the term with k1 = 0
remains and the right-hand side is rewritten as∑

l′k′

∫
dΩY ∗

lk(θ, ϕ)
∑
p′

Wεε′(cos θ′′)

×
[
Dl′

k′0(θ, ϕ)Yl′0(θ′′, ϕ′′) − Yl′k′(θ, ϕ)
]
f (l′k′)

εt . (18)

From the theory of spherical functions, it is known that Dl′
k′0 is expressed

as

Dl′
k′0(θ, ϕ) =

√
4π

2l′ + 1
Yl′k′(θ, ϕ). (19)

Finally, employing the equation Yl′0(θ, ϕ) =
√

(2l′ + 1)/(4π)Pl′(cos θ),
where Pl are the Legendre polynomials, and calculating the angular in-
tegrals, we obtain

∂f (lk)
εt

∂t
= −ν(l)

ε f (lk)
εt , ν(l)

ε =
∑
p′

Wpp′
[
1 − Pl(cos p̂p′)

]
, (20)

where the momentum relaxation rates ν(l)
ε do not depend on k. Equa-

tions (10), (14), and (20) describe exponential damping of the initially
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anisotropic distributions. The relaxation rates for the 2D and 3D cases
depend on the numbers l.

A further simplification of the relaxation rates can be done for the case
of scattering by the impurities with short-range potential (point defects),
when v(r−Rα) � vδ(r−Rα). This is the limit when |v(q)|2 standing in
the expression for the transition probability Wp′p does not depend on q
and can be replaced by |v(0)|2 = v2. Applying this substitution, we find
that the arrival terms, containing cos p̂p′ in the expressions of ν(l)

ε for
2D and 3D problems, vanish after the integration over p′. As a result,
the relaxation rates do not depend on the number of harmonic and are
given by the expression

νε =
∑
p′

Wpp′ =
πnim

�
|v(0)|2ρD(εp), D = 1D, 2D, 3D, (21)

unifying 1D, 2D, and 3D cases. Note that Eq. (21) for the 1D case
directly follows from Eq. (10), since v(2p/�) = v(0) in the limit under
consideration. The relaxation rates are proportional to the densities
of states given by Eqs. (5.3) and (5.26) and essentially depend on the
dimensionality. As the latter is reduced, the validity condition (7.21)
becomes more rigid for low-energy electrons. Because of the inverse-
square-root divergence of ρ1D(εp) at εp → 0, the kinetic description of
low-energy 1D electrons is not valid even if the impurity potential is
weak. A more careful consideration demonstrates the role of quantum
interference and the appearance of weak-localization effects in the 2D
case (see Secs. 15 and 43), while non-interacting 1D electrons are found
to be localized even in an infinitely weak random potential (Sec. 59).

Below we calculate the frequency dispersion of the conductivity by
adding the potential energy −eEt · x, which describes the interaction
of electrons with a homogeneous, time-dependent electric field Et, to
the Hamiltonian (1). This contribution does not break the translational
invariance of the problem, because an additional contribution −eEt · R
appearing in the Hamiltonian after a translation by the vector R is
dropped out of the kinetic equation. However, in the presence of the
field, the commutator [ĥt, ρ̂t] is no longer equal to zero (problem 2.6)
and, instead of Eq. (2), we have the following spatially-homogeneous
kinetic equation: (

∂

∂t
+ eEt · ∂

∂p

)
fpt = Jim(f |pt). (22)

The field-induced current density is written as It = (2e/V )
∑

p vpfpt,
where vp = p/m is the velocity and the factor of 2 accounts for the spin
degeneracy. We consider weak electric fields and calculate a linear re-
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sponse to the Fourier component E exp(−iωt) of the field. The frequency
ω is assumed to be small in comparison to ε̄/� so that the collision inte-
gral Jim(f |pt) is again considered in the Markovian approximation, with
the use of Eq. (6). The distribution function is represented as a sum
of the equilibrium distribution f (eq)

ε (here ε = εp = p2/2m) and small
non-equilibrium correction, according to

fpt � f (eq)
ε + [∆fp exp(−iωt) + c.c.]. (23)

The correction is found from the non-homogeneous algebraic equation

(−iω + νε) ∆fp = −eE · ∂f (eq)
ε

∂p
=

eE · p
m

(
−df (eq)

ε

dε

)
, (24)

where νε = ν(1)
ε and the right-hand side is determined by the field E.

Equation (24) is a simple example of a linearized kinetic equation. When
transforming Eq. (22) to Eq. (24), one should take into account that
∆f−p = −∆fp and solve the linearized, with respect to ∆fp, equation
by assuming ∆fp ∝ cos Êp. Equivalently, one may search for ∆fp as
∆fp = (p/m) · gε, where gε is directed along E. The collision integral
is reduced to −ν(1)

ε ∆fp, where the relaxation rate of the first (l = 1)
harmonic of the anisotropic distribution appears. This rate is defined by
Eqs. (20) and (14) for the 3D and 2D cases, respectively. Since P1(x) =
x, the rate ν(1)

ε for both these cases is described by formally equivalent
expressions containing (1 − cos p̂p′) under the sum over momentum.
The related relaxation time τtr(ε) = 1/νε is called the transport time or,
equivalently, the momentum relaxation time. We note that in the case of
several scattering mechanisms, for example, scattering by random static
potential described by Eq. (7.23) or quasielastic scattering by acoustic
phonons considered in Chapter 7, the relaxation rate standing in Eq.
(24) is a sum of the relaxation rates for these mechanisms.

The induced Fourier-component of the current density It is I(ω)e−iωt+
c.c., and the linear response is described by the conductivity tensor
σαβ(ω) defined as

Iα(ω) =
∑
β

σαβ(ω)Eβ. (25)

Solving Eq. (24), one finds an expression of σαβ(ω) for the system of
dimensionality d in the form

σαβ(ω) = 2
( e

m

)2
∫

dp
(2π�)d

pαpβ

−iω + νε

(
−df (eq)

ε

dε

)

= δαβ
2e2

dm

∫
dερD(ε)

ε

−iω + νε

(
−df (eq)

ε

dε

)
, (26)
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where pαpβ → δαβp2/d after averaging over the angle of p. The con-
ductivity tensor appears to be diagonal, σαβ(ω) = δαβσ(ω), because of
the isotropy of the electron spectrum and macroscopic isotropy of the
scattering potential. The frequency-dependent conductivity is a complex
function of ω. The static conductivity (at ω = 0) is written as

σ =
e2n

m
τtr, τtr =

2
dn

∫
dερD(ε)ετtr(ε)

(
−df (eq)

ε

dε

)
, (27)

where n =
∫

dερD(ε)f (eq)
ε is the electron density. The last equation of

Eq. (27) should be considered as a definition of the averaged transport
time. This time, in general, depends on the energy distribution function
of electrons. However, if the time τtr(ε) does not depend on the energy
ε, the result of the averaging is merely equal to this time, without regard
to dimensionality. On the other hand, for degenerate electrons, when

−df (eq)
ε

dε
= δ(ε − εF ) + O[(T/εF )2] (28)

and εF is the Fermi energy, we obtain τtr � τtr(εF ). Therefore, the
conductivity of degenerate electrons does not depend on the electron
temperature T with the accuracy up to (T/εF )2.

In the high-frequency limit ωτ̄ � 1 (τ̄ is the characteristic relaxation
time), the denominator of the expression under the integral in Eq. (26)
is expanded according to

(−iω + νε)
−1 � i/ω + νε/ω2. (29)

Using this equation, we take the integral in Eq. (26) by parts and obtain

σ(ω) � i
e2n

mω
+

2e2

dmω2

∫
dερD(ε)ενε

(
−df (eq)

ε

dε

)
. (30)

The imaginary part of σ(ω) is expressed through the electron density n
and proportional to ω−1. The real part is proportional to the averaged,
according to the definition given by Eq. (27), relaxation rate (in contrast,
σ(0) is proportional to the averaged transport time). Regardless of the
scattering mechanism, this part is proportional to ω−2. We stress that
this behavior of the frequency dispersion is valid only in the classical
frequency region ω � ε̄/� considered in this section. A generalization
to the quantum region ω ∼ ε̄/� will be given in Sec. 10.

A simple description of the frequency dispersion of the conductivity
of degenerate electrons follows from Eqs. (26) and (28). Expressing the
density of states ρ3D(ε) through the electron density n, we obtain

σ(ω) = i
e2n

m(ω + iνεF )
. (31)
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Figure 2.1. Spectral dependence of the real (solid) and imaginary (dashed) parts of
the conductivity σ(ω) (a) and dielectric function ε(ω) (b). In the panel (a), σ0 =
e2n/mνεF . The curves 1 and 2 in the panel (b) correspond to ωp/νεF = 1 and
ωp/νεF = 10, respectively.

This expression also describes the dielectric function (dielectric permit-
tivity) of 3D electrons, since the latter is given by ε(ω) = ε+4πiσ(ω)/ω,
where ε is the dielectric permittivity of the isotropic medium (it is not
related to the electrons under consideration). In the collisionless approx-
imation, ε(ω) = ε[1 − (ωp/ω)2], where ωp =

√
4πe2n/mε is the plasma

frequency. The spectral dependence of the real and imaginary parts of
the conductivity and dielectric function is illustrated in Fig. 2.1.

9. Quasi-Classical Kinetic Equation
Let us consider the kinetic equation (7.13) for quasi-classical, i.e.,

slowly varying with time and smoothly varying in space, external fields.
The interaction of an electron with the electric and magnetic fields Ext

and Hxt can be taken into account through the vector potential Axt

standing in the one-electron Hamiltonian ĥt; see Eqs. (4.3) and (4.2).
In the coordinate representation,

〈x|ĥt|x′〉 =
[p̂ − (e/c)Axt]2

2m
δ(x − x′). (1)

We use the gauge where ∇x ·Axt = 0 and Uxt = 0. A similar considera-
tion is possible if the scalar potential is taken into account. The quantum
kinetic equation (7.13) in the coordinate representation is written as

∂ρt(x1,x2)
∂t

+
i

�

∫
dx′

{
〈x1|ĥt|x′〉ρt(x′,x2)

−ρt(x1,x′)〈x′|ĥt|x2〉
}

= 〈x1|Ĵim |x2〉, (2)
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where ρt(x1,x2) ≡ 〈x1|ρ̂t|x2〉. The response of the system at the point
(r, t) is described by the macroscopic current density Irt defined by the
general quantum-mechanical expressions (4.14) and (4.15) so that for
the δ-state characterized by the one-electron wave function Ψ(δ)

rt one has

I(δ)
rt = i

�e

2m

[
Ψ(δ)

rt ∇Ψ(δ)∗
rt − Ψ(δ)∗

rt ∇Ψ(δ)
rt
]
− e2

mc
ArtΨ

(δ)
rt Ψ(δ)∗

rt . (3)

Using the density matrix (1.17) in the coordinate representation, we
average Eq. (3) over the impurity ensemble and express Irt through
ρt(x1,x2) as

Irt =
e

m
lim

x1,2→r

[(
−i�

∂

∂x2
− e

c
Ax2t

)∗
+
(

−i�
∂

∂x1
− e

c
Ax1t

)]
×ρt(x1,x2), (4)

where the spin degeneracy leading to an extra factor of 2 is taken into
account. This expression, together with the kinetic equation (2), com-
pletely describes the response of the system to the external fields.

To simplify the equations in the case of quasi-classical fields, we intro-
duce new variables, a classical coordinate r and a differential coordinate
∆r, according to

r =
x1 + x2

2
, ∆r = x1 − x2, x1 = r +

∆r
2

, x2 = r − ∆r
2

. (5)

These coordinates are convenient for defining the Wigner distribution
function ft(r,p), which depends on the classical coordinate r and mo-
mentum p according to

ft(r,p) =
∫

d∆r exp
[
− i

�
Prt · ∆r

]
ρt

(
r +

∆r
2

, r − ∆r
2

)
, (6)

where Prt ≡ p+(e/c)Art differs from the kinematic momentum standing
in Eq. (1) by the opposite sign at (e/c). The inverse Wigner transfor-
mation is

ρt

(
r +

∆r
2

, r − ∆r
2

)
=
∫

dp
(2π�)3

exp
[

i

�
Prt · ∆r

]
ft(r,p). (7)

Although we have defined it for the 3D case, a similar expression con-
taining dp/(2π�)2 can be written for the 2D case. The normalization
condition (7.19), n = (2/V )

∫
dxρt(x,x), is written for ft(r,p) in the

classical form (the factor of 2 accounts for the spin degeneracy):

n = lim
∆r→0

2
V

∫
drρt

(
r +

∆r
2

, r − ∆r
2

)
=

2
V

∫
dr
∫

dp
(2π�)3

ft(r,p).

(8)
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However, the exact Wigner distribution function is not necessarily posi-
tive. One can use the variables of Eq. (5) and the corresponding relations
for the differential operators (problem 2.7),

∇x1 =
1
2
∇r + ∇∆r , ∇x2 =

1
2
∇r − ∇∆r , (9)

to transform the current density (4) as

Irt =
e

m
lim

∆r→0

[(
−i

�

2
∇r + i�∇∆r − e

c
Ar−∆r/2 t

)∗

+
(

−i
�

2
∇r − i�∇∆r − e

c
Ar+∆r/2 t

)]
ρt

(
r +

∆r
2

, r − ∆r
2

)
=

2e

m
lim

∆r→0

(
−i�∇∆r − e

c
Art

)∫ dp
(2π�)3

e(i/�)Prt·∆rft(r,p). (10)

After calculating the derivative over ∆r, we take the limit at ∆r → 0
and obtain

Irt = 2e

∫
dp

(2π�)3
vpft(r,p), vp =

p
m

, (11)

which is the standard classical expression for the current density.
Let us carry out the Wigner transformation of the kinetic equation

(2). We multiply this equation by exp[−(i/�)Prt · ∆r] from the left and
integrate it over ∆r. The part containing the time derivative ∂ρt(...)/∂t
is transformed to∫

d∆r
{

∂

∂t
+

i

�

e

c

(
∂Art

∂t
· ∆r

)}
exp

(
− i

�
Prt∆r

)

×ρt

(
r +

∆r
2

, r − ∆r
2

)
, (12)

where we have used the identity

exp
(

− i

�
Prt · ∆r

)
∂

∂t

=
[

∂

∂t
+

i

�

e

c

(
∂Art

∂t
· ∆r

)]
exp

(
− i

�
Prt · ∆r

)
. (13)

Since (i/�)∆r in the second term can be written as −∂/∂p, the contri-
bution (12), which corresponds to the time derivative on the left-hand
side of Eq. (2), is equal to (see Eq. (8.22))(

∂

∂t
+ eErt · ∂

∂p

)
ft(r,p). (14)



68 QUANTUM KINETIC THEORY

This contribution describes the evolution of the electron distribution in
the electric field Ert.

The Wigner transformation of the contribution coming from the com-
mutator [ĥt, ρ̂t] is more complicated. We first rewrite this contribution
as

i

�

{
[p̂1 − (e/c)Ax1t]2

2m
− [p̂2 − (e/c)Ax2t]2 ∗

2m

}
ρt(x1,x2)

=
i

2m�

(
p̂1 − e

c
Ax1t − p̂2 − e

c
Ax2t

)
·
(
p̂1 − e

c
Ax1t + p̂2 +

e

c
Ax2t

)
×ρt(x1,x2), (15)

where the gauge relation ∇x · Axt = 0 is taken into account. Using the
condition of smooth fields, λ̄ � �/p̄, where λ̄ is the characteristic spatial
scale of the fields and p̄ is the characteristic momentum, we have

Ar+∆r/2 t + Ar−∆r/2 t � 2Art,

Ar+∆r/2 t − Ar−∆r/2 t � (∆r · ∇r)Art. (16)

Therefore, the expression (15) is approximately equal to

i

m�

(
−i�

∂

∂∆r
− e

c
Art

)
·
[
−i�∇r − e

c
(∆r · ∇r)Art

]
×ρt(r + ∆r/2, r − ∆r/2), (17)

where the limited region of action of the operator ∇r is underlined.
Applying the Wigner transformation, we find that the expression in
the first round brackets of Eq. (17) is transformed to the momentum
p = mvp and obtain the transformed expression (17) in the form∫

d∆r exp
(

− i

�
Prt · ∆r

)(
vp ·

[
∇r − i

�

e

c
(∆r · ∇r)Art

])
×ρt(r + ∆r/2, r − ∆r/2). (18)

Using the commutation relation

exp
(

− i

�
Prt · ∆r

)
∇r

=
[
∇r +

i

�

e

c
∇r(Art · ∆r)

]
exp

(
− i

�
Prt · ∆r

)
, (19)

we rewrite the expression (18) as∫
d∆r

(
vp ·

[
∇r +

e

c
∇r(Art · i

�
∆r) − e

c
(
i

�
∆r · ∇r)Art

])
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× exp
(

− i

�
Prt · ∆r

)
ρt(r + ∆r/2, r − ∆r/2). (20)

Under the integral, one can use the identity

i

�
p
[
∇r(Art · ∆r) − (∆r · ∇r)Art

]
= [p × [∇r × Art]] · ∂

∂p
= [p × Hrt] · ∂

∂p
, (21)

where the vector potential is expressed through the magnetic field Hrt.
Combining Eqs. (20) and (21), we find that the contribution of the
commutator to the Wigner-transformed equation is given by(

vp · ∇r +
e

c
[vp × Hrt] · ∂

∂p

)
ft(r,p). (22)

From Eqs. (14) and (22) one can see that the left-hand side of the
transformed kinetic equation contains the classical Lorentz force

Frpt = eErt +
e

c
[vp × Hrt] (23)

expressed through the electric and magnetic field strengths, Ert and Hrt.
Now we turn to the Wigner transformation of the collision integral

(7.17). This implies the transformation of the operator products ĉt =
ât · b̂t and their commutators with the exponent exp (iq · x). As shown in
Appendix C, the Wigner-transformed operator product ct(r,p) is given
by the expansion

ct(r,p) = at(r,p)bt(r,p) +
i�

2

{
∂a

∂r
· ∂b

∂p
− ∂a

∂p
· ∂b

∂r

}
+ . . . , (24)

where the dots . . . correspond to ∝ �
2 and higher-order contributions.

Below we neglect the quantum (∝ �) corrections and write ct(r,p) as a
product of at and bt. The collision integral (7.17) contains fast-oscillating
expressions of the kind exp(iq · x)F̂ exp(−iq · x), where F̂ is an arbitrary
operator. The contribution from such terms is calculated directly with
the use of the definition (6) and leads to (problem 2.8)∫

d∆r exp
(

− i

�
Prt · ∆r

)

×
〈
r +

∆r
2

∣∣∣∣ exp(iq · x)F̂ exp(−iq · x)
∣∣∣∣r − ∆r

2

〉
= Fr,p−�q . (25)
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Let us write the collision integral (7.17) in the coordinate representation
through the variables (5) and use the relations (24) and (25). As a result,

Jim(f |rpt) =
nim

�2V

∑
p′

|v[(p − p′)/�]|2
∫ t

−∞
dt′eλt′

×
{
Srp(t, t′)S∗

rp′(t, t′) + c.c.
}

[ft′(r,p′) − ft′(r,p)]. (26)

The collision integral is expressed through the S-operators in the Wigner
representation.

To calculate Srp(t, t′), we write the operator equation (2.2) in the
coordinate representation as

i�
∂Sx1,x2(t, t

′)
∂t

=
[p̂1 − (e/c)Ax1t]2

2m
Sx1,x2(t, t

′),

Sx1,x2(t, t
′)t=t′ = δ(x1 − x2) (27)

and apply the Wigner transformation to this equation. Using the rela-
tions (13) and (19), we obtain the equation of motion(

∂

∂t
+ eErt · ∂

∂p

)
Srp(t, t′)

� 1
2m

(
p − i

�

2
∇r + i

�e

2c

[
Hrt × ∂

∂p

])2

Srp(t, t′) (28)

with the initial condition Srp(t, t′)t=t′ = 1 (problem 2.9). We consider
the case of smooth and slowly varying fields (λ̄ and t̄ are the character-
istic spatial and temporal scales of the fields, respectively) satisfying the
following conditions:

p̄ � �/λ̄, ε̄ � �/t̄, (29)

where p̄ and ε̄ are the characteristic momentum and energy. Therefore,
one can neglect ∇r on the right-hand side of Eq. (28). To estimate the
influence of the external fields Ert and Hrt on Srp(t, t′), we estimate the
other derivatives in Eq. (28) as

∂/∂p ∼ 1/p̄, ∂/∂t ∼ ε̄/�. (30)

We can neglect Hrt-contribution on the right-hand side of Eq. (28) under
the condition p̄2 � �(|e|/c)H or ε̄ � �ωc/2 (we note that ωc ≡ |e|H/mc
is the cyclotron frequency). On the other hand, the contribution of Ert
in Eq. (28) can be neglected at eE�/ε̄ � p̄. Under these assumptions,
the S-operator takes the form

Srp(t, t′) = Sp(t − t′) = exp
[
− i

�
εp(t − t′)

]
(31)
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and describes free motion of an electron. The same form of the S-
operator is used in the collision integral (8.4).

Substituting the S-operator of Eq. (31) into Eq. (26), we obtain the
collision integral

Jim(f |rpt) =
nim

�2V

∑
p′

|v[(p − p′)/�]|2
∫ 0

−∞
dτeλτ {exp[i(εp − εp′)τ/�]

+ exp[−i(εp − εp′)τ/�]}(frp′t+τ − frpt+τ ), (32)

which differs from Eq. (8.4) only by a parametric dependence on r
through the distribution function frpt ≡ ft(r,p). Under the condition
ε̄ � �/t̄, we replace frpt+τ by frpt and calculate the integral over τ .
Then, the coordinate-dependent collision integral becomes

Jim(f |rpt) =
∑
p′

[
Wp′pfrp′t − Wpp′frpt

]
, (33)

where Wp′p = Wpp′ is given by Eq. (8.8). The quasi-classical kinetic
equation, also known as Boltzmann equation, takes the following form:(

∂

∂t
+ vp · ∇r + Frpt · ∂

∂p

)
frpt = Jim(f |rpt). (34)

Apart from the general condition (7.21) for the applicability of the ki-
netic approach, the validity of Eq. (34) is determined by the conditions
(29) defining smooth and slow variations of the parameters of the system
and by the additional conditions

eE�/p̄ � ε̄, �ωc � ε̄ (35)

implying weak enough external fields. In terms of the characteristic
time τc = �/ε̄, one can rewrite the conditions (35) as eEτc/p̄ � 1 and
ωcτc � 1. These conditions have clear physical meaning: the relative
change of the momentum due to acceleration of an electron by the electric
field during the time τc must be small, and the quantization of electron
states by the magnetic field must be relatively weak. The conditions
(29) and (35) form the main result of the above consideration, since they
point out the limits of applicability of the quasi-classical kinetic equation.
Equation (34) can be considered as a relation balancing the collision-
induced arrival and departure of the electrons in the point (r,p, t) (the
right-hand side) with the collisionless change of the electron density in
this point (the left-hand side). This interpretation of the left-hand side
follows from the relation

∂frpt

∂t
+ ṙt · ∇rfrpt + ṗt · ∂frpt

∂p
=

dfrpt

dt
, (36)



72 QUANTUM KINETIC THEORY

where the classical equations of motion (Newton’s equations) ṙt = vp
and ṗt = Frt are used. The kinetic equations similar to Eq. (34) with
the collision integral (33) can be written for the electrons with a more
complicated energy spectrum, or when frpt is a matrix with respect to a
discrete variable. The quasi-classical kinetic equation derived above for
the 3D case can be applied, under the conditions (29) and (35), to the
2D case, provided that the Lorentz force is directed along the 2D plane.
It means that the magnetic field, if present, is applied perpendicular to
the 2D plane and the electric field is parallel to this plane.

10. Multi-Photon Processes
Once the exact S-operator (2.8) is used, the kinetic equation (7.13)

with the collision integral (7.17) describes a response of the electron-
impurity system to arbitrary external fields. As an example of the sit-
uation beyond the limits of applicability of the quasi-classical kinetic
equation, we consider the response to a strong, high-frequency electric
field (the first condition of Eq. (9.35) and the second condition of Eq.
(9.29) are violated). If a spatially homogeneous electric field E cos ωt is
applied to the system, the Hamiltonian is

[p̂ + (eE/ω) sinωt]2

2m
+ U(x), (1)

where the electric field is introduced through the vector potential and
U(x) is a random static potential formed, for example, by randomly
distributed impurities.

Below we apply a convenient formalism accounting for the influence
of the electric field on the scattering and introduce the multi-photon
processes. Instead of the one-electron density matrix n̂t controlled by
Eq. (7.2), we use a new operator r̂t defined by the unitary transformation
r̂t = V̂ +

t n̂tV̂t, where V̂ +
t V̂t = 1 and V̂t is introduced by the equation

i�
∂V̂t

∂t
=
{

[p̂ + (eE/ω) sinωt]2

2m
− p̂2

2m

}
V̂t

=
[

eE
mω

· p̂ sin ωt +
(eE/ω)2

2m
sin2 ωt

]
V̂t (2)

with V̂t = 1 at E = 0. This equation is solved as

V̂t = exp
{

− eE
mω

∫ t

dτ sin ωτ · ∇ − i

�

(eE/ω)2

2m

∫ t

dτ sin2 ωτ

}
. (3)

Therefore, Eq. (7.2) is transformed to
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i�
∂r̂t

∂t
=
[

p̂2

2m
+ V̂ +

t U(x)V̂t, r̂t

]
, (4)

where the kinematic momentum is changed to the canonical one. As a
result, the kinetic energy in Eq. (4) becomes time-independent, while the
transformed potential energy V̂ +

t U(x)V̂t depends on time. This potential
energy is rewritten as (problem 2.10)

V̂ +
t U(x)V̂t = U(xt), xt = x + vω

∫ t

dτ sin ωτ , (5)

where we have introduced a field-dependent velocity vω = eE/mω.
Averaging Eq. (4) over the realizations of the random potential U(x),

we express r̂t through the averaged density matrix ρ̂t and correlation
operator κ̂t introduced by analogy with Eq. (7.8):

ρ̂t = 〈〈r̂t〉〉, r̂t = ρ̂t + κ̂t. (6)

The correlation operator is determined by the equation

κ̂t =
1
i�

∫ t

−∞
dt′eλt′Ŝ(t − t′) [U(xt′), ρ̂t′ ] Ŝ+(t − t′) (7)

analogous to Eq. (7.12), while ρ̂t is expressed through κ̂t by an equation
similar to Eq. (7.6) with the last term (7.9). The field-independent
S-operator Ŝ(t − t′) is determined by Eq. (2.3) with the Hamiltonian
p̂2/2m. Excluding κ̂t, we obtain the quantum kinetic equation for the
averaged density matrix ρ̂t:

∂ρ̂t

∂t
+

i

�

[
p̂2

2m
, ρ̂t

]
=

1
�2

∫ t

−∞
dt′eλt′

×
〈〈[

Ŝ(t − t′) [U(xt′), ρ̂t′ ] Ŝ+(t − t′), U(xt)
]〉〉

. (8)

The collision integral on the right-hand side of this equation differs from
the one given by Eq. (7.17), since the external-field dependence is trans-
ferred from the S-operator to the scattering potential. Let us carry out a
spatial Fourier transformation of the potential U(xt) and use Eq. (7.22)
for the correlation functions of random potentials. We transform the
collision integral to its final form

Ĵim(ρ̂|t) =
1

�2V

∑
q

w(q)
∫ t

−∞
dt′eλt′ exp

{
−i(vω · q)

∫ t

t′
dτ sin ωτ

}

×
[
Ŝ(t − t′)

[
eiq·x, ρ̂t′

]
Ŝ+(t − t′), e−iq·x

]
. (9)
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This expression defines the right-hand side of the quantum kinetic equa-
tion (7.13) for the case under consideration. It differs from the collision
integral of Eq. (8.3) by an additional exponential factor describing the
oscillations of the electron in the field during the scattering process. In-
stead of the initial condition for this equation, we use the requirement
of periodicity, ρ̂t+2π/ω = ρ̂t, where 2π/ω is the period of the field oscil-
lations. The normalization condition (7.19) is also imposed on ρ̂t.

In the momentum representation, the distribution function fpt =
〈p|ρ̂t|p〉 satisfies the equation ∂fpt/∂t = Jim(f |pt), since the commu-
tator contribution on the left-hand side of Eq. (8) vanishes. In the
high-frequency case ωτ̄ � 1 (here τ̄−1 is the scattering rate estimating
the collision integral Ĵim), we search for the distribution function in the
following form:

fpt = fp + ∆fpt, ∆fpt = ∆fp,t+2π/ω, (10)

where the time-independent part fp is separated from the oscillating
part ∆fpt. This leads to a linearization of the kinetic equation, because
the oscillating contribution is small and can be neglected in the collision
integral. As a result, fp is determined by the period-averaged collision
integral

ω

2π

∫ π/ω

−π/ω
dtJim(f |pt) = 0, (11)

while ∆fpt is determined by the equation

∂∆fpt

∂t
= Jim(f |pt). (12)

This last equation shows us that ∆fpt is small as (ωτ̄)−1. Using the
periodicity with respect to time, we expand both ∆fpt and Jim(f |pt)
into Fourier series

∆fpt =
∞∑

k=−∞
e−ikωt∆f (k)

p , k 	= 0,

Jim(f |pt) =
∞∑

k=−∞
e−ikωtJ (k)

im (f |p), (13)

and rewrite Eq. (12) as

−ikω∆f (k)
p = J (k)

im (f |p). (14)

Equation (14) with k = 0 is equivalent to Eq. (11) determining the time-
averaged distribution, while the Fourier harmonics of the time-dependent
distribution are expressed through J (k)

im (f |p) with k 	= 0.
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To write the collision integral J (k)
im (f |p), we carry out a serial expansion

of the exponential factors describing the influence of the high-frequency
field. We use the identity

exp(iz cos ωt) =
∞∑

k=−∞
ikeikωtJk(z), (15)

where Jk(z) is the Bessel function of the first kind. Calculating the
integrals over t and t′, we find the k-th Fourier component of the collision
integral in the following form:

J (k)
im (f |p) =

ω

2π

∫ π/ω

−π/ω
dteikωtJim(f |pt)

=
2π

�V

∑
q

w(q)(fp+�q − fp)∆k(εp+�q − εp). (16)

This equation describes the balance of the departure and arrival terms
for the state with canonical momentum p. However, instead of the δ-
function entering Eq. (8.7) for the case of free motion, there appears a
field-dependent factor

∆k(E) =
ω

2π2�

∫ π/ω

−π/ω
dt

∫ 0

−∞
dτeλτ+ikωt

× cos
{

τE

�
− q · vω

ω
[cos ω(t + τ) − cos ωt]

}
=

1
2π

∞∑
s=−∞

Js

(q · vω

ω

)
×
{

i−k−1Js−k (q · vω/ω)
E − s�ω − iλ

+
i−k+1Js+k (q · vω/ω)

E − s�ω + iλ

}
, (17)

where λ → +0 and the Bessel functions come from the expansion (15).
Calculating the limit at λ → +0 according to problem 1.4, we find

that the averaged collision integral J (0)
im(f |p) contains the factor

∆0(E) =
∞∑

k=−∞

[
Jk

(q · vω

ω

)]2
δ(E − k�ω) (18)

so that the stationary kinetic equation is finally written as

J (0)
im(f |p) =

2π

�V

∑
q

w(q)(fp+�q − fp)∆0(εp+�q − εp) = 0. (19)

The scattering in the presence of a periodic electric field becomes inelas-
tic because of the factors δ(εp+�q − εp − k�ω) accounting for the multi-
photon processes. The contribution of k-photon process is described by
the weight factor [Jk(q ·vω/ω)]2 in Eq. (18) (note that the Bessel func-
tions are normalized according to

∑
k [Jk(x)]2 = 1). The electric field
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also makes the scattering anisotropic. The Bessel functions Jk rapidly
decrease with increasing |k| at eE · q/mω2 � 1. In these conditions one
can use the terms with k = 0, ±1 only. However, if the field is strong
enough, all terms in the sums of Eqs. (17) and (18) become significant.
To find the non-equilibrium distribution function fp from Eqs. (18) and
(19) (see Sec. 37), it is necessary to take into account inelastic relaxation
of the electron distribution due to electron-phonon and electron-electron
scattering.

The response with the frequency kω is given by the complex function
∆f (k)

p , which is written according to Eqs. (14), (16), and (17):

∆f (k)
p =

i1−k

k�ωV

∑
q

w(q)(fp+�q − fp)
∞∑

s=−∞
Js

(q · vω

ω

)

×
{

πδ(εp+�q − εp − s�ω)
[
Js+k

(q · vω

ω

)
+ Js−k

(q · vω

ω

)]
+

iP
εp+�q − εp − s�ω

[
Js+k

(q · vω

ω

)
− Js−k

(q · vω

ω

)]}
. (20)

It contains the contributions of both δ-functions and principal values
appearing in the limiting transition λ → +0 in Eq. (17). Since k 	= 0,
the oscillating part ∆f (k)

p goes to zero at E → 0. In the case of weak
electric field, one should retain only the terms linear in E, with k = ±1
and s = 0, ±1. The current density is expressed through the distribution
(10) over canonical momenta and electron velocity [p+(e/ω)E sin ωt]/m
according to

It = 2
e

m

∫
dp

(2π�)3
(
p +

e

ω
E sin ωt

)
fpt. (21)

Using the Fourier expansion (see Eq. (13)) of fpt together with the
normalization condition (2/V )

∑
p fpt = n, we rewrite Eq. (21) as

It =
e2n

ωm
E sin ωt +

∞∑
k=−∞

e−ikωt∆Ikω,

∆Ikω =
2e

m

∫
dp

(2π�)3
p∆f (k)

p . (22)

The collisionless contribution with the frequency ω is written here as
a separate term. The collision-dependent current is expressed through
∆f (k)

p given by Eq. (20). These contributions describe both the ab-
sorption of the electromagnetic radiation and nonlinear responses with
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the frequencies kω determining nonlinear susceptibility of the electron
system.

The absorbed power is obtained by averaging the product It · Et over
the period 2π/ω. The absorption coefficient αω is defined as a ratio
of this power to the averaged absolute value of the Poynting vector
describing the radiation flux in the medium with dielectric permittivity
ε. In the limit of weak absorption, we obtain the absorption coefficient
in the form (problem 2.11)

αω =
4π

c
√

ε
Re σ(ω). (23)

The real part of the conductivity can be expressed through the first har-
monics ∆I±1ω defined by Eq. (22) as Re σ(ω) = e · (∆I−1ω +∆I1ω)/|E|,
where e is the unit vector in the direction of E. Next, using Eq. (22)
for ∆Ikω and Eq. (20) for ∆f (k)

p , we obtain

αω =
(4π)2e

c
√

εm|E|�ω

∫
dp

(2π�)3
(e · p)

∫
dq

(2π)3
w(q)(fp+�q − fp)

×
∞∑

k=−∞
δ(εp+�q − εp − k�ω)Jk

(q · vω

ω

)
(24)

×
[
Jk+1

(q · vω

ω

)
+ Jk−1

(q · vω

ω

)]
.

The absorption coefficient αω determined by Eqs. (23) and (24) is ex-
pressed in units of cm−1. Equation (24) is the general expression of
nonlinear (field-dependent) absorption coefficient, which takes into ac-
count both the multi-photon processes described by the Bessel functions
and non-equilibrium distribution of electrons caused by the interaction
of the electrons with the field. We note that this distribution is deter-
mined by Eq. (19). In the linear regime, when |E| → 0, we can use the
equilibrium Fermi distribution function f (eq)

ε (here ε stands for the ki-
netic energy εp = p2/2m) instead of fp and expand the Bessel functions
up to the lowest order in |E|. In this approximation, only the terms
with k = ±1 have to be taken into account. After some transformations
including the angular averaging (e · q)(e · q) → q2/3, we obtain

αω =
8π2e2

3c
√

εm2ω3

∫
dp

(2π�)3

∫
dq

(2π)3
w(q)q2

×(f (eq)
ε − f (eq)

ε+�ω)δ(εp+�q − εp − �ω). (25)

Equation (25) describes the linear absorption by free electrons. Fur-
ther transformations of this equation can be done by introducing a
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new variable p′ = p + �q instead of q. In the classical limit, we use
εp+�q � εp, f (eq)

ε −f (eq)
ε+�ω � �ω(−df (eq)

ε /dε), and (�q)2 = p2+p′2−2p·p′ �
2p2(1 − cos p̂p′). Therefore, in this limit Eq. (25) is transformed into
αω = (4π/c

√
ε)Re σ(ω), where σ(ω) is given by Eq. (8.30) (we note that

Eqs. (24), (25), and (8.30) are valid at ωτ̄ � 1).
In the quantum region, Eq. (25) is considerably simplified under the

assumption of short-range scattering potential, when w(q) � w does
not depend on q. In this approximation, the term with p · p′ gives
zero after the integration over the angles of p and p′. This means that
the expression under the integrals over p and p′ does not contain any
angular dependence and, therefore, is proportional to the product of the
densities of states at the energies ε and ε + �ω. We finally have

αω =
4π2e2w

3c
√

εm�2ω3

∫ ∞

0
dε(2ε+�ω)ρ3D(ε)ρ3D(ε+�ω)(f (eq)

ε −f (eq)
ε+�ω). (26)

For strongly degenerate electrons, T � εF , the integral in Eq. (26) is
taken easily. We obtain

αω =
8π2e2

�w

c
√

εmεF

[ρ3D(εF )/3]2Φ(�ω/εF ),

Φ(x) = [(1 + x)3/2 − θ(1 − x)(1 − x)3/2]/x3, (27)

where θ(x) is the step function. The spectral dependence of the absorp-
tion is determined by the function Φ(�ω/εF ) (problem 2.12), which is
shown in Fig. 2.2. We point out that the approximation Φ(x) � 3/x2,
which is valid for the quasi-classical region of frequencies (x � 1), ap-
pears to be good in the quantum region as well.

In the general case, beyond the short-range scattering model, the spec-
tral dependence of the absorption is sensitive to the q-dependence of the
correlation function w(q). Therefore, the spectral dependence of the
absorption in the quantum region of frequencies can be used for iden-
tification of the scattering mechanism determining w(q). Direct infor-
mation about w(q) is obtained from the measurements of the frequency
dispersion of α(ω) at ω � ε̄. In this limit, Eq. (25) becomes

αω =
8π2e2n

3c
√

εm�ω2 ρ3D(�ω)w(
√

2mω/�). (28)

The examination of the frequency dispersion of conductivity allows one
to determine both the scattering mechanism (from the spectral depen-
dence of αω at �ω � ε̄) and its contribution to the relaxation rate (from
the transition point between the regimes ωτ̄ � 1 and ωτ̄ � 1; see Eq.
(8.31)). Apart from this, the ratio of n/m is determined from the posi-
tion of the plasma reflection peak. In conclusion, the measurements of
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Figure 2.2. Function Φ(x) determining the spectral dependence of the absorption
coefficient (the dashed line shows the dependence 3/x2).

the spectral dependence of both real and imaginary parts of the conduc-
tivity are useful for investigating the electron gas in solids.

11. Balance Equations
A direct method for determining the electron response to external

fields assumes solution of a kinetic equation and subsequent calculation
of the induced currents, charge densities, etc. When the spatial depen-
dence of frpt is essential, it is rather difficult to solve the kinetic equa-
tion even in the quasi-classical limit. In this section we discuss another
method, which implies a reduction of the kinetic equation to a set of
balance equations for macroscopic observables. Under certain approxi-
mations, the balance equations form a set which gives us an approximate
description of electron response. These equations do not contain quan-
tum numbers of electrons so that the response of the electron system
is approximately described without a solution of the operator equation
(7.13) or integro-differential equation (9.34). Below we derive the bal-
ance equations starting from the quasi-classical kinetic equation (9.34).

Summing both sides of Eq. (9.34) over p, we have (the factor 2 is due
to spin degeneracy)

∂nrt

∂t
+ ∇r · irt +

2
V

∑
p

Frpt · ∂frpt

∂p
=

2
V

∑
kp

Jk(f |rpt). (1)
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The index k at the collision integral numbers scattering mechanisms.
Equation (1) connects the local electron density and local electron flow
density defined by

nrt =
2
V

∑
p

frpt, irt =
2
V

∑
p

vpfrpt. (2)

Using Eq. (9.33) for the collision integral, we find that the right-hand
side of Eq. (1) vanishes:∑

pp′

[
Wp′pfrp′t − Wpp′frpt

]
= 0. (3)

This reflects the fact that the number of particles is conserved in the
collisions (to prove Eq. (3), one has to permute p and p′ in the second
term). The action of the fields also conserves the number of particles:∑

p

Frpt · ∂frpt

∂p
= −

∑
p

frpt
∂

∂p
· Frpt = 0, (4)

which is easy to check directly. As a result, we obtain the continuity
equation

∂nrt

∂t
+ div irt = 0. (5)

We point out that the microscopic continuity equation connecting the
charge density ρrt = enrt and electric current density Irt = eirt has been
derived in Sec. 4 for many-electron systems. The continuity equation is
a general condition of compatibility of the Maxwell equations in media,
and it must be valid for any approximate considerations.

One can write a balance equation for the flow density irt by multiply-
ing Eq. (9.34) by vp and summing it over p:

∂irt
∂t

+
2
V

∑
p

vp (vp · ∇r) frpt +
2
V

∑
p

vp

(
Frpt · ∂

∂p

)
frpt

=
2
V

∑
kp

vpJk(f |rpt). (6)

The second term, which contains ∇r, is expressed through the tensor of
the second rank,

Qαβ
rt =

2
V

∑
p

vα
pvβ

pfrpt , (7)

while the field contributions are expressed through the density and cur-
rent (problem 2.13):
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2
V

∑
p

vp

(
Frpt · ∂

∂p

)
frpt = − e

m
Ertnrt − e

mc
[irt × Hrt]. (8)

The collision-integral contribution in Eq. (6) is transformed as

2
V

∑
pp′

vp
[
Wp′pfrp′t − Wpp′frpt

]
=

2
V

∑
pp′

(vp′ − vp)Wpp′frpt ≡ Jrt.

(9)
Only the antisymmetric part fa

rpt of the distribution function contributes
to this expression, while the tensor Qαβ

rt is expressed through the sym-
metric part fs

rpt. These parts are introduced as frpt = fs
rpt +fa

rpt, where
fs
r,−pt = fs

rpt and fa
r,−pt = −fa

rpt. We find the current balance equation

∂iαrt
∂t

+
∑
β

∇β
rQαβ

rt − e

m
Eα

rtnrt + [irt × ωc(rt)]α = Jα
rt, (10)

where ωc(rt) is a vector whose absolute value coincides with the cy-
clotron frequency in the magnetic field Hrt and the direction coincides
with the direction of the field. Apart from nrt and irt, this equation
contains new quantities introduced by Eqs. (7) and (9).

In a similar way, multiplying the kinetic equation (9.34) by vα
pvβ

p and
by vα

pvβ
pvγ

p, we obtain two more equations of the infinite chain of equa-
tions written below:

∂nrt

∂t
+
∑
α

∇α
r iαrt = 0,

∂iαrt
∂t

+
∑
β

∇β
rQαβ

rt +
∑
βγ

eαβγiβrtω
γ
c − (e/m)Eα

rtnrt = Jα
rt,

∂Qαβ
rt

∂t
+
∑

γ

∇γ
rQ

αβγ
rt +

∑
γδ

(
eαγδQ

βγ
rt + eβγδQ

αγ
rt

)
ωδ

c

−(e/m)
(
Eα

rti
β
rt + Eβ

rti
α
rt

)
= Jαβ

rt , (11)

∂Qαβγ
rt

∂t
+
∑

δ

∇δ
rQ

αβγδ
rt +

∑
δν

(
eαδνQ

βγδ
rt + eβδνQ

αγδ
rt + eγδνQ

αβδ
rt

)
ων

c

−(e/m)
(
Eα

rtQ
βγ
rt + Eβ

rtQ
αγ
rt + Eγ

rtQ
αβ
rt

)
= Jαβγ

rt ,

. . . . . . . . . . . . . . . ,

where eαβγ is the antisymmetric unit tensor of the third rank (problem
2.14). The averages of the kind Qαβ...

rt appearing on the left-hand sides
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and the relaxation contributions standing on the right-hand sides are
given by the expressions

Qα1...αl
rt =

2
V

∑
p

vα1
p . . . vαl

p frpt,

Jα1...αl
rt =

2
V

∑
p

vα1
p . . . vαl

p Jk(f |rpt), (12)

which define symmetric tensors of l-th rank. Some of their components
have important physical meaning. For example,

∑
α Qαα

rt = (2/m)Ert,
where Ert is the local energy density of the electron gas, and

∑
α Jαα

rt =
−(2/m)Prt, where Prt is the power loss term (the local energy density
lost in the collisions in unit time). Equations (11) connect together the
local electron density (zero moment), the current density (first moment),
and the tensors Qα1...αl

rt (higher moments). One can see that the l-th
moment is connected with the (l + 1)-th moment through the spatial
gradient of the latter. Therefore, under the approximation

l̄ � v̄ max{t̄, τ̄}, (13)

where l̄, v̄, t̄, and τ̄ are the characteristic length of the spatial inho-
mogeneity, mean velocity of electrons, characteristic time, and mean
scattering time, respectively, one may cut the infinite chain with a re-
quired accuracy with respect to the gradients. In this way one obtains a
closed set of equations provided the collision-integral terms can be either
calculated or neglected. Some important examples are given below.

Let us consider the collision-integral term Jα
rt, assuming the elastic

scattering by impurities. As follows from Eq. (9),

Jα
rt = − 2

V

∑
p

frpt
2π

�
nim

∑
p′

|v(|p − p′|/�)|2δ(εp − εp′)(vα
p − vα

p′)

= − 2
V

∑
p

vα
pfrpt

τtr(εp)
. (14)

If the energy dependence of the transport time τtr(ε) can be neglected
(it is true, for example, for the 2D electrons scattering by the impurities
with short-range potential), the term Jrt is exactly equal to −irt/τtr .
In the general case of energy-dependent transport time, a similar reduc-
tion takes place for non-equilibrium distribution of degenerate electrons.
Indeed, in these conditions the antisymmetric part of the distribution
function contributing into Eq. (14) is essentially nonzero in the region
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|p| � pF (only the electrons near the Fermi level contribute to the cur-
rent). Therefore, one may neglect the energy dependence of τtr(ε) in
this narrow region by approximating τtr = τtr(εF ) and taking it out of
the integral. Then we again obtain Jrt = −irt/τtr .

In the spatially homogeneous systems, the continuity equation ensures
the conservation of the electron density, nrt = n. Since ∇β

rQαβ
rt = 0, the

current balance equation gives us a closed description of the electron
system if the collision-integral contribution Jt is known. Above we have
demonstrated that for degenerate electrons one has Jt � −it/τtr , where
the transport time τtr = τtr(εF ) is defined by Eq. (8.28). The current
balance equation is reduced to the form

∂it
∂t

+ [it × ωc] − en

m
Et = − it

τtr
. (15)

The electric current response It = eit to the Fourier component of the
field Eω exp(−iωt) (the case of rapidly changing field is considered in
problem 2.15) is written in the form Iω exp(−iωt). The vector Iω is
determined by the algebraic equation

(1 − iωτtr)Iω + [Iω × ωc]τtr = σ0Eω, (16)

where σ0 = e2nτtr/m is the static conductivity in the absence of mag-
netic fields; see Eq. (8.27). If ωc = 0, Eq. (16) describes the frequency
dispersion of the conductivity, which follows the law σ(ω) ∝ (τ−1

tr −iω)−1;
see Sec. 8. A general solution of Eq. (16) can be written after represent-
ing Iω through its component directed along the magnetic field (along
E‖

ω ||ωc) and two components in the plane perpendicular to the magnetic
field (along E⊥

ω and [ωc × E⊥
ω ], where E⊥

ω⊥ωc):

Iω = σd(ω)E⊥
ω + σ⊥(ω)[ωc × E⊥

ω ]/ωc + σ‖(ω)E‖
ω. (17)

The coefficients σd(ω), σ⊥(ω), and σ‖(ω) introduced in this equation
define the components of the conductivity tensor in the general equation
(8.25) connecting the current density and the electric field for the linear
regime. If we assume that the magnetic field is directed along OZ, we
obtain σxx = σyy ≡ σd, −σxy = σyx ≡ σ⊥, and σzz ≡ σ‖, while the other
components are equal to zero. The coefficients σd(ω), σ⊥(ω), and σ‖(ω)
can be easily determined after substituting Eq. (17) into Eq. (16). The
longitudinal component σ‖(ω) does not depend on the magnetic field
and is given by Eq. (8.31), while the transverse components are given
by the expressions

σd(ω) =
σ0(1 − iωτtr)

1 + (ω2
c − ω2)τ2

tr − 2iωτtr
, σ⊥(ω) =

σd(ω)ωcτtr

1 − iωτtr
. (18)



84 QUANTUM KINETIC THEORY

The power absorbed by the electron system is determined as Re Iω ·
Eω . It is described by the diagonal (dissipative) components σd and
σ‖ of the conductivity tensor. On the other hand, σ⊥ describes a non-
dissipative contribution to the conductivity. According to Eq. (17), this
contribution corresponds to the current perpendicular to both electric
and magnetic fields.

The current density in the static limit (ω = 0) is given by the expres-
sion

I = σ0

{
E⊥ + τtr [ωc × E]

1 + (ωcτtr)2
+ E‖

}
, (19)

which directly demonstrates that a classically weak magnetic field mod-
ifies only the conductivity in the plane perpendicular to ωc. The trans-
verse dissipative conductivity σd decreases with increasing ωc. If ωcτtr �
1, the conductivity is suppressed by the field as (ωcτtr)−2. The non-
dissipative conductivity σ⊥ first increases with increasing magnetic field,
then starts to decrease. It is suppressed at ωcτtr � 1 as (ωcτtr)−1. There-
fore, the component of the current perpendicular to ωc rotates from the
direction of E⊥ at ωc → 0 to the direction of [ωc × E] in the high-field
regime (Hall effect). The non-dissipative conductivity σ⊥ in this regime
is equal to the Hall conductivity |e|cn/H which does not depend on the
scattering mechanisms.

In the high-frequency region, the magnetic-field-induced inequality of
the diagonal components and the appearance of non-diagonal compo-
nents of the conductivity tensor modify the polarization characteristics
of the electromagnetic waves propagating in the system (Faraday and
Voigt effects). These effects, as well as the absorption of power in the
magnetic field, have resonant features when the electromagnetic wave
frequency ω coincides with the cyclotron frequency, due to the factor
(ω2

c − ω2)τ2
tr in the denominator of σd in Eq. (18). The solutions of the

wave equations containing the high-frequency current (17), which com-
pletely describe these effects, are not discussed here. Below we present
only the absorption coefficient for the wave polarized perpendicular to
ωc. According to Eqs. (10.23) and (18),

αω =
4πσ0

c
√

ε

1 + (ω2
c + ω2)τ2

tr

[1 + (ω2
c − ω2)τ2

tr ]2 + 4ω2τ2
tr

. (20)

The Lorentz peak of the absorbed power (the cyclotron resonance of
absorption) is realized at ωc � ω when ωc � τ−1

tr . The half-width of the
peak at half-maximum is equal to τ−1

tr . The spectral dependence of the
cyclotron absorption coefficient, expressed in units of αo = 4πσ0/c

√
ε, is

given in Fig. 2.3.
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Figure 2.3. Spectral dependence of the cyclotron absorption coefficient αω at
ωcτtr =0.5, 1, and 5 (curves 1, 2, and 3, respectively).

Let us apply the balance equations for calculating the linear response
to a spatially-inhomogeneous electric field given by its Fourier compo-
nent Eqωeiq·r−iωt. In the absence of the perturbation, the system is
homogeneous and characterized by the equilibrium distribution func-
tion. In the linear approximation, we replace the electron density nrt
standing in the second equation of Eq. (11) by its equilibrium value n.
The tensor Qαβ

rt in the fourth equation of Eq. (11) is also replaced by
its equilibrium value

Qαβ =
2
V

∑
p

vα
pvβ

pf (eq)
εp

= δαβ
2

3m
E0, (21)

where E0 is the equilibrium energy density of electron gas. On the other
hand, the flow density irt (as well as any tensor Qαβ...

rt of odd rank in Eq.
(11)) is equal to zero in equilibrium. This means that the contribution
proportional to Eαiβ in the third equation of the set (11) vanishes in
the linear approximation. Below we consider the long-wavelength limit,
when v̄q � ω, so that the condition (13) is valid. We neglect the gradi-
ents of Qαβγδ

rt in the fourth equation of the set (11), which corresponds
to the accuracy up to (v̄q/ω)2 in the calculation of the linear response;
see Eqs. (24) and (28) below. On the other hand, we assume ωτ̄ � 1
and neglect the collision-integral contributions. In this way we obtain
a closed set of linearized equations for the variables ∆nqω = nqω − n,



86 QUANTUM KINETIC THEORY

iqω , ∆Qαβ
qω = Qαβ

qω − Qαβ , and Qαβγ
qω . In the absence of magnetic fields

(a more sophisticated set of equations characterizes the system in the
homogeneous magnetic field, problem 2.16), we obtain

−iω∆nqω + i
∑
α

qαiαqω = 0,

−iωiαqω + i
∑
β

qβ∆Qαβ
qω = (en/m)Eα

qω ,

−iω∆Qαβ
qω + i

∑
γ

qγQαβγ
qω = 0, (22)

−iωQαβγ
qω = (2eE0/3m2)

(
Eα

qωδβγ + Eβ
qωδαγ + Eγ

qωδαβ

)
.

Excluding the tensors ∆Qαβ
qω and Qαβγ

qω , we obtain a linear relation be-
tween the flow density iqω and electric field Eqω . Introducing a non-local
conductivity tensor according to (see also Eq. (13.11) below)

eiαqω =
∑
β

σαβ(q, ω)Eβ
qω , (23)

we find the following expression for it:

σαβ(q, ω) = iδαβ
e2n

mω
+ i

2e2E0

3m2ω3 (δαβq2 + 2qαqβ). (24)

The first term is the same as in Eq. (8.31) for the collisionless limit,
while the next term gives us the q2-correction due to spatial dispersion.

The induced charge density ∆ρqω = e∆nqω can be expressed through
the electric field with the use of the continuity equation and Eq. (23):

∆ρqω = ω−1
∑
αβ

qασαβ(q, ω)Eβ
qω . (25)

Substituting this expression into the Poisson equation, we write

iq · Eqω =
4π

εω

∑
αβ

qασαβ(q, ω)Eβ
qω . (26)

Since q is an arbitrary wave vector, we obtain a set of homogeneous linear
equations for the components of the field. The solvability condition for
these equations at nonzero Eqω is

det
∣∣∣∣∣∣∣∣iδαβ − 4π

εω
σαβ(q, ω)

∣∣∣∣∣∣∣∣ = 0, (27)
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where det||Aαβ || is the determinant of the matrix Aαβ . Equation (27)
describes the oscillations of electron density (plasma oscillations, or plas-
mons). Substituting the expression (24) for the conductivity tensor into
Eq. (27), we obtain the dispersion law of the plasma oscillations,

ω2 = ω2
p + V 2

plq
2, V 2

pl = 2E0/mn, (28)

where the first term is associated with the plasma frequency ωp for in-
finitely long plasma waves, while the second term describes the correc-
tions caused by the spatial dispersion. The characteristic velocity Vpl is
equal to

√
3/5vF for degenerate electrons with Fermi velocity vF .

12. Conductance of Microcontacts
The characteristic features of stationary response of a strongly inho-

mogeneous system are determined by the correlation between its spatial
scale and the mean free path length ltr = v̄τtr introduced as a prod-
uct of the averaged velocity v̄ of electrons by the momentum relaxation
time (transport time) τtr . Another important point is the inhomogene-
ity of the electric field and current in such systems. It is convenient to
characterize the system by its conductance

G = I/V (1)

introduced as a ratio of the total current I flowing through the system
to the voltage V applied to the contacts to the system. In contrast
to the local relations of the kind (8.25), the conductance characterizes
the system as a whole and is expressed in units of Ohm−1, while the
units of conductivity are different for different dimensionalities. If the
characteristic size of the inhomogeneities is large in comparison to ltr ,
one may describe the linear response by introducing a local conductivity
and by considering a steady-state electrodynamic problem in order to
express the conductance through the local conductivity. On the other
hand, if the characteristic size of the system is comparable to ltr , a local
conductivity cannot be introduced, and the conductance must be found
from a solution of the quasi-classical kinetic equation, as far as we assume
that the characteristic scale of the inhomogeneities is large in comparison
to de Broglie wavelength. In this section we consider the conductance
of a microcontact defined as a small-size conductor connecting the left
(z → −∞) and right (z → +∞) macroscopic contact regions. The latter
are attached to the voltage sources so that the voltage drop between
them is equal to V . Since these contact regions are usually strongly
doped or metallic, they are often called the lead banks or, merely, the
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leads. It is possible to create the microcontacts both in 3D and 2D
electron gas environment. In Fig. 2.4 we show the microcontacts of
different geometries discussed below in this section.

Figure 2.4. Different schemes of microcontacts: (a) a plane with a hole; (b) a hy-
perboloid of rotation defining a channel with circular constriction.

If the voltage applied between the contact regions is smaller than the
Fermi energy of electrons in the microcontact, the distribution function
frp is found from the kinetic equation (9.34) with the force −∇Vr:

vp · ∂frp

∂r
− ∇Vr · ∂frp

∂p
= J(f |rp), (2)

where J(f |rp) is the collision integral, while the velocity is introduced
as vp = ∂εp/∂p so that both non-parabolicity and anisotropy of the
dispersion law (for example, in metals) can be taken into account. The
potential energy distribution Vr is determined by the Poisson equation

∆rVr = −4πe2

ε
∆nr , ∆nr =

2
V

∑
p

∆frp , (3)

which has to be solved with the boundary conditions Vr|z→±∞ = ∓eV/2.
The current distribution Ir is determined by Eq. (9.11), and the current
through the boundary Γ of the conducting region is absent: n · Ir|Γ = 0,
where n is the unit vector normal to the boundary. If the reflection from
the boundary is specular, this boundary condition can be replaced by a
more detailed one: [frp − frpR

]Γ = 0, where pR is the momentum of the
reflected electron which had the momentum p before the reflection at
the point r of the boundary.

Below we consider the case of a metallic microcontact, when the
screening length is much smaller than both the microcontact size and
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the mean free path length. Equation (3) in these conditions is replaced
by the electric neutrality requirement

∑
p ∆frp = 0. In semiconductor

structures, one should compare the microcontact size and the screen-
ing length: if they are comparable, the response is described by the
self-consistent set of equations (2) and (3).

We start from the description of a collisionless (ballistic) regime, when
the microcontact size is much smaller than ltr , and the right-hand side of
Eq. (2) can be set to zero. The kinetic equation becomes a differential
equation with partial derivatives of the first order, and the boundary
conditions express the requirement of equilibrium far away from the
contact, in the leads:

frp|z→±∞ = f (eq)(εp). (4)

Such a problem is solved by the method of characteristics. Let us intro-
duce the paths L(r) of the electron motion under the electrostatic force
−∇rVr. These paths are determined by Newton’s equations

dp
dt

= −∇rVr ,
dr
dt

= vp . (5)

The general solution of Eq. (2) with zero right-hand side is an arbitrary
function of the total energy εp +

∫
L dl ·∇V, where dl is the differential of

coordinate along the path L in the direction of motion (problem 2.17).
Accounting for the boundary conditions (4), we have the solution

frp = f (eq)

(
εp +

∫
L

dl · ∇V
)

, (6)

where the path L begins somewhere in the lead and ends at r. Since
the force is potential and the scattering from the surface Γ is elastic
(specular), the integral in Eq. (6) depends only on the initial and final
point positions. Using this fact, we rewrite Eq. (6) as

frp = f (eq)

(
εp − eV

2
ηrp + Vr

)
, (7)

where ηrp is equal to 1 for the electrons coming from z = −∞ and −1
for those from z = +∞. To find the distribution function, one has to
separate the electrons in the microcontact in two groups, depending on
the direction of their momenta. This can be done easily for the simplest
model of microcontact shown in Fig. 2.4 (a): the unpenetrable plane
(or, in the 2D case, the unpenetrable line) at z = 0, with a hole in it.
Since the microcontact is symmetric, one has Vr|z=0 = 0 and

ηrp|z=0 = sgn vz
p (8)
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in the region of the hole, (x, y) ∈ SΓ. The function sgn here and below
in this book denotes the sign of its argument (the sign of the velocity in
Eq. (8)). We point out that Eq. (8) is not valid if there is a considerable
number of the electrons which pass through the hole and return back
due to the action of the electric field. However, this situation can be
realized only in very strong electric fields (when eV exceeds the Fermi
energy) and is not considered in the following. With the aid of Eq. (8),
we find the distribution of electrons in the region of the hole from Eq.
(7):

frp|z=0 = f (eq)

(
εp − eV

2
sgn vz

p

)
. (9)

This equation describes a dynamical shift of the energy of an electron
when the latter passes the potential eV/2, moving from one side, or
−eV/2, moving from the other side. The current, according to Eq.
(9.11), is expressed as 2eS

∫
vz
pfrpdp/(2π�)d, where S is the square of

the hole SΓ (in the 2D case, S is the length of the hole). With the use
of Eq. (9), we obtain (problem 2.18)

I = 2eS

∫
vz
p>0

dsp

(2π�)d

vz
p

v⊥
p

∫
dεp

[
f (eq)(εp − eV/2) − f (eq)(εp + eV/2)

]
,

(10)
where dsp is the differential of the surface of equal energy in the p-space
and v⊥

p = |∂εp/∂p⊥| is the velocity normal to this surface. Equation
(10) is valid at arbitrary voltage V and resembles the expression for
the current due to tunneling through a barrier. This is not surprising,
since in both cases the distribution functions for the right/left moving
electrons are determined solely by the equilibrium distribution functions
of the proper (left/right) lead.

In the linear regime (eV � T ), the expression in the square brackets
in Eq. (10) is equal to eV δ(εp − εF ), and Eq. (10) describes the ohmic
current with the conductance

G =
2e2SSF

(2π�)d
〈cos θ〉 , (11)

where SF =
∫

dsp
∣∣
εp=εF

is the square of the Fermi surface in the mo-
mentum space, θ is the angle between v⊥

pF
and OZ, and 〈. . .〉 denote the

averaging over the Fermi surface under the condition vz
pF

> 0. Using the
isotropic quadratic dispersion law εp = p2/2m, in the 3D case we have
dsp = 2πp2

F sin θdθ and SF = 4πp2
F . The averaging over the angle then

gives us 〈cos θ〉 =
∫ π/2
0 dθ sin θ cos θ/

∫ π
0 dθ sin θ = 1/4. As a result, the

conductance is given by G = e2Sp2
F /4π2

�
3. In the 2D case, dsp = pF dθ,
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SF = 2πpF , 〈cos θ〉 = (1/2π)
∫ π/2
−π/2 cos θdθ = 1/π, and the conductance

is G = e2SpF /π2
�

2 (here S is the length). Equation (11) describes the
ballistic limit, when the conductance is determined by the square of the
Fermi surface and by the size of the hole but does not depend on scatter-
ing. For more complex geometries of microcontacts, one should multiply
the conductance by a numerical coefficient determined by the geometry.
We stress again the essential property used for deriving Eq. (11): the
electron coming from one contact region to the other does not return
back and goes to equilibrium with its new surrounding.

Let us study the microcontacts of the sizes comparable to the mean
free path. The scattering in the system is assumed to be elastic, and we
rewrite the collision integral in Eq. (2) as

J(f |rp) =
∫

εp=εp′

dsp′

(2π�)d

1
v⊥
p′

Wpp′ [frp′ − frp]. (12)

It is convenient to solve the kinetic equation by representing the distri-
bution function of electrons in the following way:

frp = αrpf (+) + [1 − αrp]f (−), (13)

where
f (±) = f (eq)(εp + Vr ∓ eV/2) (14)

and αrp is the probability for the electron to come into the point (r,p)
of the phase space from z = −∞. Accordingly, 1−αrp is the probability
to come from z = +∞. After a simple algebra, the kinetic equation for
frp can be rewritten as an equation for αrp:

vp · ∂αrp

∂r
− ∇Vr · ∂αrp

∂p
= J(α|rp). (15)

As we will see below, the function α changes with p on the scale p ∼ pF

and with r on the scale of the microcontact size. Therefore, the field
term in Eq. (15) leads only to small corrections in the limit eV � εF .
Neglecting it, we have the equation without the field:

vp · ∂αrp

∂r
= J(α|rp). (16)

The boundary condition (4) can be rewritten through the θ-function as

αrp||r|→∞ = θ(−z). (17)

It must be accompanied by the requirement of elastic scattering from
the boundary:

[αrp − αrpR
]Γ = 0. (18)
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An analytical solution of Eq. (16) with the boundary conditions (17)
and (18) is not available in the general case. Below we assume that the
characteristic size of the contact is large in comparison to ltr . This case
is referred to as the diffusive limit. We also restrict ourselves by the
isotropic dispersion law for electrons and isotropic scattering, Wpp′ =
W (|p − p′|). In these conditions, the elastic-scattering collision integral
in Eq. (16) is reduced to −αa

rp/τtr(εp), where αa
rp is the antisymmetric

in p part of αrp. Then we can solve Eq. (16) as

αrp = α0(r) − τtr(εp)vp · ∂α0(r)
∂r

+ . . . , (19)

where the dots denote the terms with higher-order derivatives. These
terms can be neglected since they decrease as powers of the ratio of ltr to
the size of the contact. The term containing the first derivative of α0 is
antisymmetric in p. For this reason, we retain this term in the expansion
(19), though it is small in comparison to the symmetric part α0(r). To
find α0, we substitute the expansion (19) into Eq. (16) and integrate the
latter over p. As a result, we obtain the Laplace equation ∆rα0(r) = 0,
which should be solved with the boundary conditions following from
Eqs. (17) and (18). In summary, we have a problem described by the
following equations:

∆rα0(r) = 0, α0(r)||r|→∞ = θ(−z), n · ∂α0(r)
∂r

∣∣∣∣
r∈Γ

= 0, (20)

where the last two are the boundary conditions. The quantity α0(r)
determines not only the distribution function but also the distribution of
the electrostatic potential, because of the electric neutrality requirement.
The latter can be written as ∇r

∑
p frp = 0. If we substitute frp given

by Eqs. (13) and (14) into this equation and retain only the first term
in the expansion (19), we obtain

∇rVr = −eV ∇rα0(r). (21)

As seen from Eqs. (19), (21), and (13), the distribution of electrons in
the momentum space is characterized by two concentric Fermi spheres:

εp = εF − V ± eV/2. (22)

Inside the sphere of a smaller radius, the distribution function frp is
equal to 1, and it is zero outside of the sphere of a larger radius. Between
these spheres, the distribution is non-equilibrium and anisotropic.

The boundary problem described by Eq. (20) is often met in elec-
trostatics, and its solutions for some simple boundaries are well known.
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Below we consider the 3D case and use a solution for the boundary de-
fined as a hyperboloid of rotation, (x2 +y2)/a2 −z2/(b2 −a2) = 1, where
b2 > a2; see Fig. 2.4 (b). The microcontact is cylindrically symmet-
ric and has a circular opening of a minimum radius a. The mentioned
solution is (problem 2.19):

α0(r) = θ(−z) − ϕ0(r)sgn z,

ϕ0(r) =
1
π

arctan

⎛⎜⎝
⎧⎨⎩ r2

2b2 − 1
2

+

[(
r2

2b2 − 1
2

)2

+
z2

b2

]1/2
⎫⎬⎭

−1/2
⎞⎟⎠ , (23)

where r = |r| = (x2 + y2 + z2)1/2. Note that the solution depends only
on the parameter b. Substituting the distribution function (13) with αrp
from Eq. (19) into Eq. (9.11), we use the cylindrical symmetry of the
problem and write the current as

I = 2e

∫ ρΓ(z)

0
dρ2πρ

∫
dp

(2π�)3
vz
p(f (+) − f (−))

×
[
α0(r) − τtr(εp)vp · ∂α0(r)

∂r

]
, (24)

where ρ = (x2 + y2)1/2 and ρΓ(z) = a[1 + z2/(b2 − a2)]1/2 in our case.
The current at eV � εF is ohmic since (f (+)−f (−)) = −eV [∂f(εp)/∂εp].
The first term in the square brackets in Eq. (24) gives zero contribution,
and the current appears to be proportional to the bulk conductivity
σ0 = e2nτtr/m. The conductance (1) is given by

G = −2πσ0

∫ ρΓ(z)

0
dρρ

∂α0(r)
∂z

. (25)

Calculating the integral over ρ (the result, of course, does not depend
on z because the continuity equation is satisfied), we find

G = 2σ0[b − (b2 − a2)1/2]. (26)

One can introduce the effective length L of the microcontact according
to the definition L = σ0S/πG, where S = πa2 is the minimum square of
the cross-section of the contact. The parameter b is then expressed as

b = L +
S

4πL
. (27)

The limit of a circular hole in a plane corresponds to the case b = a,
when we have G = 2σ0a.
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In conclusion, the conductance of a microcontact is always determined
by the size and geometry of the latter. Besides, in the ballistic limit,
when the size of the contact is much smaller than ltr , the conductance
depends on the Fermi momentum, while in the opposite limit it depends
on the bulk conductivity. The intermediate situation can be studied
by means of numerical solution of the kinetic equation. In this section
we have considered only the microcontacts which are wide enough to
ensure the applicability of the quasi-classical kinetic equation. The case
of nanoscale contacts whose conductance shows quantum properties is
considered in Sec. 58.

Problems
2.1. Let M be a quantity which depends on coordinates {Rα} of Nim

randomly placed impurities. Show that

lim
Nim→∞

〈〈[M − 〈〈M〉〉]2〉〉
〈〈M〉〉2 = lim

Nim→∞
〈〈M2〉〉 − 〈〈M〉〉2

〈〈M〉〉2 = 0.

Hint: Use the Fourier expansion

M = V −Nim
∑

q1...qNim

exp{i (q1 · R1 + . . . + qNim · RNim)}M (q1, . . . ,qNim)

and average the exponential factors standing in the expressions 〈〈M 2〉〉 and 〈〈M 〉〉2.

2.2. Check that the quantum kinetic equation (7.13) with the collision
integral (7.17) conserves the energy of electron system if the Hamiltonian
ĥ does not depend on time (relation (7.20)).

Solution: To prove Eq. (7.20), it is sufficient to show that spĥĴim(ρ̂|t) = 0. Using
Eq. (7.17) with Ŝ(t, t′) = Ŝ(t − t′), we obtain

spĥĴim(ρ̂|t) ∝
∫ t

−∞
dt′eλt′

sp
[
ĥŜ(t − t′)[eiq·r, ρ̂t′ ]Ŝ+(t − t′)e−iq·r

−Ŝ(t − t′)[eiq·r, ρ̂t′ ]Ŝ+(t − t′)ĥe−iq·r
]

Since ĥŜ(t−t′) = −i�∂Ŝ(t−t′)/∂t′ and Ŝ+(t−t′)ĥ = i�∂Ŝ+(t−t′)/∂t′, we transform
the expression above in the Markovian approximation (ρ̂t′ � ρ̂t) as

−i�

∫ t

−∞
dt′eλt′ ∂

∂t′ spŜ(t − t′)[eiq·r, ρ̂t]Ŝ+(t − t′)e−iq·r = −i�sp[eiq·r, ρ̂t]e−iq·r = 0,

where the identity Ŝ(0) = 1 is employed. The last expression is equal to zero because
eiq·re−iq·r = 1.
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2.3. Show that if a random potential U(r) obeys the Gaussian statis-
tics, the correlation functions of this potential are expressed through the
binary correlation function only.

Solution: Any random potential is characterized by a functional P[U ], which de-
scribes the probability of realization of the function U (r). The averaging of the quan-
tity M [U ] over possible realizations of the random potential is defined as a functional
integral

∫
δUP[U ]M [U ]. By definition, the Gaussian-class potential U is characterized

by the Gaussian distribution

P[U ] = NB exp
{

−1
2

∫
dr
∫

dr′U (r)B(|r − r′|)U (r′)
}

,

where NB is a coefficient determined from the normalization condition
∫

δUP[U ] =
1. Owing to macroscopic homogeneity and isotropy of the potential, the kernel B
characterizing the distribution depends only on the difference between the coordinates
r and r′. Therefore, its Fourier component Bq has the symmetry property Bq = B−q.

It is convenient to represent the product U (r1) . . . U (rk) in the form of a functional
derivative

U (r1) . . . U (rk) =
δkA[I ]

δI(r1) . . . δI(rk)

∣∣∣∣
I=0

, A[I ] = exp
(∫

drI(r)U (r)
)

.

The functional A is called the characteristic functional of the field U , and I is an
arbitrary function. To solve the problem, we need to average A. This is done easily
if we carry out Fourier transformations of the functions U , B, and I standing in the
definitions of P[U ] and A[I ]. This leads to

P[U ] = NB exp

(
−1

2

∑
q

BqUqU−q

)
, A[I ] = exp

(∑
q

UqI−q

)
,

and the product P[U ]A[I ] is represented as

NB exp

(
−1

2

∑
q

Bq(Uq − Iq/Bq)(U−q − I−q/Bq) − 1
2

∑
q

B−1
q IqI−q

)
.

Integrating this functional product, we take into account the normalization condition
and finally obtain

〈〈A[I ]〉〉 = exp

(
−1

2

∑
q

B−1
q IqI−q

)
= exp

(
−1

2

∫
dr
∫

dr′I(r)Ψ(|r − r′|)I(r′)
)

,

where Ψ and B are connected through their Fourier components, Ψq = B−1
q . There-

fore, the correlation function 〈〈U (r1) . . . U (rk)〉〉 = δk 〈〈A[I ]〉〉 /δI(r1) . . . δI(rk)
∣∣
I=0

of the order k is expressed through Ψ(|r − r′|). Moreover, one may easily verify that
Ψ(|r− r′|) = 〈〈U (r)U (r′)〉〉 is the binary correlation function of the Gaussian random
potential.

2.4. Show that any translation-invariant operator Â is diagonal in
the momentum representation.
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Solution: Using T̂ +
R |p〉 = exp (−ip · R/�) |p〉, we get 〈p| Â |p′〉 = 〈p| T̂RÂT̂ +

R |p′〉
= exp [i(p − p′) · R/�] 〈p| Â |p′〉. Since R is an arbitrary vector of displacement,
there must be 〈p| Â |p′〉 ∝ δpp′ .

2.5. Check Eq. (8.6).
Hints: Change the sign of τ in the complex conjugate contribution in the integral

and use the representation δ(x) = (2π)−1 ∫∞
−∞ dκeiκx. Another way: calculate the

integral and employ the results of problem 1.4.

2.6. Calculate the field-induced contribution to the kinetic equation
(8.22).

Hint: Use the operator of coordinate x̂ = i�∂/∂p to calculate the commutator
[E · x̂, ρ̂t] in the p-representation.

2.7. Prove the relations (9.9).
Hint: Consider a differential of an arbitrary function by using the coordinates in-

troduced by Eq. (9.5).

2.8. Carry out the Wigner transformation in order to prove Eq.
(9.25).

Hint: Use 〈r + ∆r/2| . . . |r − ∆r/2〉 written in the coordinate representation.

2.9. Check the initial condition to Eq. (9.28).
Hint: Carry out the Wigner transformation of the δ-function in Eq. (9.27).

2.10. Carry out the unitary transformation to prove Eq. (10.5).
Hint: Prove the identity ey·∇F (x)e−y·∇ = F (x + y) by expanding the exponents

in series.

2.11. Express the absorption coefficient through the real part of the
conductivity σ(ω).

Solution: The averaged absolute value of the Poynting vector is c
√

ε E2
t /4π. Since

Iω = σ(ω)Eω, we have ItEt = Reσ(ω)E2
t . Dividing the absorbed power ItEt by the

averaged absolute value of the Poynting vector, we obtain αω = (4π/c
√

ε)ItEt/E2
t =

(4π/c
√

ε)Reσ(ω).

2.12. Generalize Eq. (10.27) for the 2D and 1D cases. Show that
the absorption of electromagnetic radiation by degenerate 2D electrons
interacting with point defects follows its classical expression up to the
frequency εF /�.

Solution: Assuming that in the 2D case E is directed in the 2D plane, while in the
1D case it is directed along the 1D line, we can repeat all steps of the derivation for the
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low-dimensional electrons. However, we have to use the phase space (2π�)d (d = 2,1)
and take into account that in Eq. (10.25) and in all subsequent equations the factor
of 3 in the denominator is replaced by d because of appropriate angular averaging.
Starting from Eq. (10.26), ρ3D is replaced by ρ2D or by ρ1D. Finally, we obtain
Eq. (10.27), where [ρ3D(εF )/3]2Φ(�ω/εF ) is replaced by [ρD(εF )/d]2Φd(�ω/εF ), and
Φd(x) = [(1 + x)d/2 − θ(1 − x)(1 − x)d/2]/x3. If εF > �ω, this equation leads to a
simple result for the 2D case, αω = 4πe2nw/c

√
ε�3ω2, where n = ρ2DεF is the 2D

electron density. This result coincides with the one given by the classical expression
(8.31) for the conductivity in the approximation of point-defect scattering.

In the 2D electron systems, αω is dimensionless and defines the relative power loss
of the electromagnetic wave normally incident on the 2D plane. In the 1D case, αω

has dimensionality of cm and its physical meaning becomes clear if, for example, we
consider a planar array of equivalent 1D electron systems (quantum wires) with N
wires per unit length. The dimensionless quantity αωN defines the relative power
loss for the wave polarized in the wire direction and transmitted through this array.

2.13. Prove Eq. (11.8) which expresses the field contribution to the
balance equation for the flow density.

Solution: Let us integrate by parts in the left-hand side of Eq. (11.8). Then,
taking into account that ∂Frpt/∂p = 0, we rewrite this left-hand side as

− 2
V

∑
p

frpt

(
Frpt · ∂

∂p

)
vp.

This expression is directly transformed to the right-hand side of Eq. (11.8).

2.14. Write the vector product [A×B] in the Cartesian coordinates.
Solution: Since [A×B] is a vector perpendicular to both A and B, and [A×B] =

−[B × A], the component α of the vector product can be written through the anti-
symmetric unit tensor of the third rank, eαβγ , as [A × B]α =

∑
βγ eαβγAβBγ . Here

exyz = 1 and eαβγ is not changed under cyclic permutation of its indices. This tensor
changes its sign under a permutation of two indices and is equal to 0 when at least
two indices coincide.

2.15. Calculate the current response to an ultrashort (δ-shaped) pulse
of electric field, Et = EτEδ(t).

Solution: Using either Fourier or Laplace transformation, one may reduce the
differential equation (11.15) to a set of algebraic equations. After solving them and
carrying out the inverse transformation of the current, the result is written in the
following way:

It =
e2nτE

m
e−t/τtr

(
E⊥ cos ωct + H−1[H × E⊥] sin ωct + E‖) ,

where E⊥ and E‖ are the components of the field perpendicular and parallel to the
magnetic field, respectively. The current along the magnetic field decreases with time
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as e−t/τtr , while the transverse current also rotates with the cyclotron frequency.

2.16. Write the set of equations (11.22) at ωc 	= 0. Determine the
magnetoplasmon frequencies at q = 0.

Solution: Equations (11.22) at ωc �= 0 contain additional contributions to their
left-hand sides:

∑
βγ eαβγiβqωωγ

c in the second,
∑

γδ

(
eαγδ∆Qβγ

qω + eβγδ∆Qαγ
qω

)
ωδ

c in
the third, and

∑
δν

(
eαδνQβγδ

qω + eβδνQαγδ
qω + eγδνQαβδ

qω

)
ων

c in the fourth equation. To
describe the magnetoplasmon frequencies at q = 0, one may neglect the terms pro-
portional to q∆Qαβ

qω and q∆Qαβγ
qω . Then we have only two equations:

−iω∆nqω + i
∑

α

qαiαqω = 0 and − iωiαqω +
∑
βγ

eαβγiβqωωγ
c = (en/m)Eα

qω.

Solving them together with the Poisson equation, we obtain the equation[
(ω2 − ω2

p)δαβ + iω
∑

γ

eαβγωγ
c

]
qαiβqω = 0,

which gives us three plasmon frequencies: ω = ωp for the wave polarized along the
magnetic field and ω = ±ωc/2+

√
ω2

p + ω2
c/4 for the waves with perpendicular polar-

ization. The splitting of the plasmon spectrum exists because of the magnetic-field-
induced anisotropy.

2.17. Assuming that the function F (εp − gr) satisfies Eq. (12.2)
without the collision integral, find gr.

Hint: Substituting F in the kinetic equation, find a differential equation of the
first order for gr and integrate it.

2.18. Transform the integral
∫

dp... to the integral
∫

dsp
∫

dεp... .
Hint: Express the differential of the phase volume dp through the differentials of

the energy and of the surface of equal energy.

2.19. Check the solution given by Eq. (12.23) by a direct substitution
of this solution into Eq. (12.20).

Hint: Use the cylindrical coordinate system.



Chapter 3

LINEAR RESPONSE THEORY

A general formalism for describing the response of a system to weak external
perturbations can be developed in the linear approximation. In this chapter we con-
sider the response of electrons to weak electromagnetic fields, while the case of non-
mechanical perturbations (for example, temperature gradient) is discussed in Chapter
5. Using a solution of the linearized equation for the density matrix, one can write
exact expressions for the kinetic coefficients connecting induced currents to the exter-
nal fields. Such coefficients are expressed through the equilibrium characteristics of
the system so that the linear-response problem is reduced to a statistical averaging
(or to simple integrations in the case of non-interacting quasiparticles). The most ef-
fective and unified approach to such averaging is based upon diagrammatic expansion
of the Green’s function. The simplest variant of this method, developed for electron-
impurity systems, is described in this chapter. Another approach assumes expression
of the Green’s function through the path integral, when the quantum-mechanical and
statistical averaging can be done separately. Both these methods allow one to describe
the case of strong scattering, when the quantum kinetic equation with the collision
integral (7.17) is not valid.

13. Kubo Formula
To consider the linear response to the perturbation with frequency ω,

we write the total Hamiltonian of the system as

Ĥ +
(
∆̂Hωe−iωt + H.c.

)
, (1)

where Ĥ is the Hamiltonian of the unperturbed system characterized by
the density matrix η̂eq which depends only on Ĥ. The non-equilibrium
part of the density matrix, ∆̂ηω , is introduced by the relations η̂t = η̂eq +

99
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∆̂ηt and ∆̂ηt = ∆̂ηω exp(−iωt)+H.c. . It describes the linear response of
the system to the perturbation introduced in Eq. (1). Since η̂t satisfies
Eq. (1.20), we linearize this equation and obtain an inhomogeneous
operator equation for ∆̂ηt:

∂∆̂ηt

∂t
+

i

�
[Ĥ, ∆̂ηt] =

1
i�

[
(∆̂Hωe−iωt + H.c.), η̂eq

]
. (2)

The solution of Eq. (2) is expressed through the S-operator defined by
Eq. (2.3):

∆̂ηt =
1
i�

∫ t

−∞
dt′eλt′Ŝ(t − t′)

[
(∆̂Hωe−iωt′ + H.c.), η̂eq

]
Ŝ+(t − t′) , (3)

where λ → +0 indicates that the perturbation is adiabatically turned
on at t → −∞. Replacing t′ − t by τ , we express the Fourier component
∆̂ηω as

∆̂ηω =
1
i�

∫ 0

−∞
dτeλτ−iωτ eiĤτ /�

[
∆̂Hω, η̂eq

]
e−iĤτ /�. (4)

The linear response is determined by a small deviation ∆Q of the macro-
scopic quantity Q = Qeq + ∆Q from its equilibrium value Qeq . The
quantum-mechanical operator Q̂ corresponding to this quantity also can
be represented as Q̂ = Q̂0 + [∆̂Qω exp(−iωt) + H.c.], where ∆̂Qω is
caused by the small perturbation. Since Q is given as Q = SpQ̂η̂t,
where Sp . . . denotes the averaging over all variables of the system, the
Fourier component of the deviation can be expressed as

∆Q(ω) = Sp∆̂Qωη̂eq + SpQ̂0∆̂ηω. (5)

Substituting ∆̂ηω from Eq. (4) to this equation, we find that the lin-
ear response for the quantity Q is expressed through the equilibrium
characteristics of the system and through the quantum-mechanical per-
turbations ∆̂Hω and ∆̂Qω .

Below we consider the response of electron system to the electro-
magnetic field. Such a consideration can be applied to any system of
interacting electrons described by the Hamiltonian Ĥ. According to Eq.
(4.16), the first-order contribution for interaction of the electrons with
the transverse electric field described by the Fourier component of the
vector potential, A(r, ω) = (−ic/ω)E(r, ω), is

∆̂Hω =
i

ω

∫
dr Î(r) · E(r, ω), (6)
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where E(r, ω) is the Fourier component of the electric field at the point r
and Î(r) is the current density operator given by Eq. (4.15). Substituting
Î(r) into Eq. (6) in the linear approximation, one should consider it in
the absence of the perturbation, i.e., to neglect the vector potential
A = (−ic/ω)E(r, ω) in Eq. (4.15). Owing to spatial dependence of both
E and Î, the approach developed here can be applied to inhomogeneous
systems. Now, let Q in Eq. (5) be the current density. Using Eq. (4.15),
one can write the field-induced correction to the current density operator
as

∆̂Iω(r) =
ie2

mω

∑
j

δ(r − x̂j)E(r, ω). (7)

This operator is substituted as a quantum-mechanical perturbation ∆̂Qω

in Eq. (5). In place of Q̂0, we substitute the unperturbed current density
operator Î(r) given by Eq. (4.15) with A = 0. Having done this, we write
the Fourier component of non-equilibrium macroscopic current density
as

∆I(r, ω) =
ie2

mω
n(r)E(r, ω) +

1
i�

∫ 0

−∞
dτeλτ−iωτ

×Spη̂eq

[
e−iĤτ /�Î(r)eiĤτ /�, ∆̂Hω

]
. (8)

The first term in this expression is obtained with the use of the expres-
sion for the local density, n(r) ≡ Sp

∑
j δ(r − x̂j)η̂eq . This contribution

corresponds to the collisionless current. The second term is SpÎ(r)∆̂ηω ,
transformed by permutations of the operators under the trace. Accord-
ing to Eq. (6), ∆̂Hω standing in this term is expressed through Î(r).

The non-local conductivity tensor is introduced by the definition

∆Iα(r, ω) =
∑
β

∫
dr′σαβ(r, r′|ω)Eβ(r′, ω), (9)

and the expression for σαβ(r, r′|ω) is obtained after substituting the
perturbation (6) into Eq. (8):

σαβ(r, r′|ω) =
ie2n(r)

mω
δαβδ(r − r′) +

1
�ω

∫ 0

−∞
dτeλτ−iωτ

×Spη̂eq

[
e−iĤτ /�Îα(r)eiĤτ /�, Îβ(r′)

]
. (10)

The second term on the right-hand side of this equation describes the
correlation of the currents at the points (r, τ) and (r′, 0). The expres-
sions relating the linear kinetic coefficients to the equilibrium correlation
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functions are called the Kubo formulas. After a spatial Fourier transfor-
mation of the current and field according to Eq. (7.15), one finds

∆Iα(q, ω) =
1
V

∑
q′β

σαβ(q,q′|ω)Eβ(q′, ω), (11)

where the tensor σαβ(q,q′|ω) is obtained by the double Fourier trans-
formation of Eq. (10) (problem 3.1). The expression for this tensor
is

σαβ(q,q′|ω) =
ie2n(q − q′)

mω
δαβ +

1
�ω

∫ 0

−∞
dτeλτ−iωτ

×Spη̂eq

[
e−iĤτ /�Îα(q)eiĤτ /�, Îβ(−q′)

]
, (12)

where n(q − q′) is the Fourier transform of electron density and Î(q)
is the operator of q-th Fourier component of the unperturbed current
density. The expression for Î(q) follows from Eq. (4.15), where the
δ-function is replaced by the plane wave with wave vector q:

Î(q) =
e

2

∑
j

[
v̂je

−iq·x̂j + e−iq·x̂j v̂j

]
. (13)

We remind that v̂j = p̂j/m = −i(�/m)∂/∂xj is the velocity operator
for j-th electron.

In the case of a spatially-homogeneous system, the conductivity tensor
(10) depends only on the difference of coordinates, σαβ(r, r′|ω) = σαβ(r−
r′|ω). Introducing the averaged and differential coordinates according
to Eq. (9.5), we express the Fourier-transformed conductivity tensor
as σαβ(q,q′|ω) = V δqq′σαβ(q, ω). Now, instead of Eq. (11), we have
an algebraic relation between the current and the field, ∆Iα(q, ω) =∑

β σαβ(q, ω)Eβ(q, ω); see Eq. (11.23). The tensor σαβ(q, ω) describes
a reaction of the system on the inhomogeneous field (the effect of spatial
dispersion). Since n(∆q)|∆q=0 = V n, where n is the electron density in
the homogeneous system, the conductivity tensor is given by

σαβ(q, ω) =
ie2n

mω
δαβ +

1
V �ω

∫ 0

−∞
dτeλτ−iωτ

×Spη̂eq

[
e−iĤτ /�Îα(q)eiĤτ /�, Îβ(−q)

]
. (14)

Although this expression contains ω in the denominators of both terms,
the conductivity tensor σαβ(q, ω) is not divergent at ω = 0 if the colli-
sions are taken into account. We already know this property from Sec.
8, where the conductivity of electrons interacting with impurities has
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been calculated; see Eq. (8.26). Next, Eq. (14) demonstrates that the
conductivity tensor should go to zero at ω → ∞. Both these proper-
ties follow from the physical consideration that any response to a finite
perturbation should be finite.

Considering analytical properties of σαβ(q, ω) as a function of complex
variable ω, one may derive integral relations between real and imaginary
parts of the conductivity tensor (problem 3.2). In the absence of spatial
dispersion, for σαβ(ω) = σαβ(q = 0, ω), these relations are written in
the form

Reσαβ(ω) =
2
π

P
∫ ∞

0
dω′ ω′ Imσαβ(ω′)

ω′2 − ω2 ,

Imσαβ(ω) = − 2
π

P
∫ ∞

0
dω′ ω Reσαβ(ω′)

ω′2 − ω2 . (15)

Equations (15), known as Kramers-Kronig dispersion relations, are quite
general because they follow just from the causality principle. Using
them, one may find the imaginary part of the conductivity tensor at a
given ω if the real part is known in the whole spectral range (for example,
from the optical absorption measurements). Similar equations can be
written for the dielectric permittivity tensor εαβ(ω) which is directly
related to the conductivity tensor; see Sec. 17.

Let us consider symmetry properties of the conductivity tensor. Tak-
ing into account that Î+(r) = Î(r) (because the velocity and coordinate
operators are Hermitian), one can also write Î+(q) = Î(−q). Using
these relations in Eqs. (10) and (14), we obtain the general symmetry
properties

σαβ(r, r′|ω) = σ∗
αβ(r, r′| − ω), σαβ(q, ω) = σ∗

αβ(−q,−ω). (16)

On the other hand, one can take into account that Ĥ∗ = Ĥ, Î∗(r) =
−Î(r), and Î∗(q) = −Î(−q), as follows from the explicit expressions
of the time-independent Hamiltonian Ĥ and current density operator
Î(r) in the absence of the vector potential. These relations are the
consequences of the symmetry of classical equations of motion with re-
spect to time reversal (in quantum mechanics, the wave functions are
replaced by the complex conjugate ones under this reversal). Using
them, we derive the symmetry properties σαβ(r, r′|ω) = σ∗

βα(r′, r| − ω)
and σαβ(q, ω) = σ∗

βα(q,−ω) from Eqs. (10) and (14). Combining these
properties with those of Eq. (16), we find the important relations

σαβ(r, r′|ω) = σβα(r′, r|ω), σαβ(q, ω) = σβα(−q, ω) (17)

known as Onsager’s symmetry. In the presence of magnetic fields cre-
ated either by external magnets or by magnetization of the material
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itself, Eq. (17) should be modified. Indeed, the relations Ĥ∗ = Ĥ and
Î∗(r) = −Î(r) are no longer valid if p̂j is replaced by the kinematic
momentum operator p̂j − (e/c)Axj , where A is the vector potential de-
scribing the magnetic field. If, however, the sign of the vector potential is
changed simultaneously with complex conjugation of Ĥ and Î(r), these
relations again become true. Therefore, the relations (17) are valid if
the signs of the magnetic field in the left- and right-hand sides of these
relations are assumed to be opposite. The relation between the compo-
nents σxy(ω) and σyx(ω) of the conductivity tensor calculated in Sec. 11
in the presence of a magnetic field is a manifestation of this symmetry
principle. Onsager’s symmetry takes place for any kind of equilibrium
linear kinetic coefficients (generalized susceptibilities) introduced in a
similar way as in Eq. (9); see below in this section.

In the case of a long-wavelength (q → 0) perturbation described by
the field E(ω), the induced current density is written as ∆I(q, ω) =
V δq,0∆I(ω), while the relation between the current and the field takes
the form ∆Iα(ω) =

∑
β σαβ(ω)Eβ(ω); see also Eq. (8.25). The conduc-

tivity tensor becomes

σαβ(ω) =
ie2n

mω
δαβ +

e2

V �ω

∫ 0

−∞
dτeλτ−iωτ

×Spη̂eq

[
e−iĤτ /�v̂αeiĤτ /�, v̂β

]
, (18)

where the current density operator is expressed through the velocity op-
erator as Îα(q = 0) = ev̂α. The relations similar to Eqs. (10), (12),
(14), and (18) can be also written for the polarizability α describing a
linear response of electron charge distribution to the longitudinal field
given by the scalar potential Φ(r, ω) (problem 3.3). Owing to the gra-
dient invariance, the expression of the current density ∆I(r, ω) through
the electric field E(r, ω) = −∇rΦ(r, ω) should be identical to that given
by Eqs. (9) and (10). It is instructive to check this property directly
(problem 3.4).

The expressions for the complex conductivity tensor σαβ reduce the
problem of linear response to a calculation of the correlation function
of current densities (or electron velocities). Apart from Eqs. (10), (12),
(14), and (18), there exist other representations of the Kubo formula
for the conductivity (problem 3.5). Although the correlation functions
are the equilibrium ones, the calculations according to Kubo formulas
are often very complicated (for example, one has to take an average
over the impurity distribution when the potential of electron-impurity
interaction enters both S-operator and η̂eq). A convenient approach to
such calculations assumes expression of the correlation functions through
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the Green’s functions. This is done below for the conductivity of a
macroscopically homogeneous and isotropic electron-impurity system,
when the averaging over the impurity ensemble gives us σαβ = σδαβ .
Employing a full set of the ket-vectors |δ〉 determined from the eigenstate
problem Ĥ|δ〉 = εδ |δ〉, we introduce the equilibrium distribution function
f(εδ) = 〈δ|η̂eq |δ〉. In this basis, Spη̂eq . . . = 2〈〈

∑
δ f(εδ)〈δ| . . . |δ〉 〉〉,

where 〈〈. . .〉〉 denotes the averaging over the impurity ensemble and the
factor of 2 accounts for spin degeneracy (the spin index is not included
in δ). Therefore, the real part of the conductivity given by Eq. (18) is
rewritten as

Reσ(ω) =
2e2

�ωV
Re
∫ 0

−∞
dτ eλτ−iωτ

〈〈∑
δδ′

f(εδ)|〈δ|v̂α|δ′〉|2

×
{

e−i(εδ−εδ′ )τ /� − ei(εδ−εδ′ )τ /�

}〉〉
. (19)

Next, we permute δ and δ′ in the second term inside {. . .} and calcu-
late the integral

∫ 0
−∞ dτ exp[−i(εδ − εδ′ + �ω + iλ)τ/�]. The real part of

this integral, according to the relations discussed in problem 1.4, leads
to the δ-function δ(εδ − εδ′ + �ω) so that the equation εδ′ = εδ + �ω ex-
presses the energy conservation law. In this way we obtain the following
expression for the frequency-dependent conductivity:

Reσ(ω) =
2πe2

ωV

〈〈∑
δδ′

[f(εδ) − f(εδ + �ω)]

×|〈δ|v̂α|δ′〉|2δ(εδ − εδ′ + �ω)
〉〉

. (20)

The transition to the static limit is done with the use of the identity

lim
ω→0

f(εδ) − f(εδ + �ω)
�ω

= −df(εδ)
dεδ

, (21)

which means that at low temperatures only the electrons near the Fermi
surface contribute to the static conductivity σ = limω→0 σ(ω). The
imaginary part of the conductivity is equal to zero in the static limit.
Finally, we obtain

σ =
2π�e2

V

〈〈∑
δδ′

|〈δ|v̂α|δ′〉|2δ(εδ − εδ′)
(

−df(εδ)
dεδ

)〉〉
. (22)

This result is known as Greenwood-Peierls formula.
The equations obtained above describe an arbitrary many-electron

system. In the case of non-interacting electrons scattering by randomly
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distributed impurities (see Chapter 2), it is convenient to employ the
wave functions in the momentum representation, ψ(δ)

p ≡ 〈p|δ〉, when the
matrix elements of the velocity operator in Eq. (22) are

〈δ|v̂α|δ′〉 =
∑
p

ψ(δ)
p

∗ pα

m
ψ(δ′)

p . (23)

We also use the identity (problem 3.6)

δ(εδ − εδ′) =
∫

dEδ(εδ − E)δ(E − εδ′) (24)

in order to avoid the averaging of the electron distribution function f(εδ)
which depends on the characteristics of the state δ in a complicated way.
As a result, Eq. (22) is transformed to

σ =
2π�e2

m2V

∫
dE

(
−df(E)

dE

)∑
pp′

pαp′
α

×
〈〈∑

δδ′
ψ(δ)

p
∗ψ(δ)

p′ δ(εδ − E)ψ(δ′)
p ψ(δ′)

p′
∗δ(E − εδ′)

〉〉
, (25)

where the impurity averaging is applied to the expression containing four
ψ-functions.

Since the sums over δ and δ′ in Eq. (25) are separated, one may rewrite
the expression inside 〈〈. . .〉〉 through the spectral density function

AE(p,p′) =
∑

δ

ψ(δ)
p ψ(δ)

p′
∗δ(εδ − E), (26)

which depends on a pair of momenta and energy E. The expression
of AE(p,p′) through the Green’s functions is discussed in the next sec-
tion. Replacing pαp′

α by (p · p′)/d, according to the introduction of the
isotropic conductivity as σ =

∑
α σαα/d (here d =2 or 3, and the con-

ductivity of 1D electrons will be discussed in Chapter 12), we finally
obtain

σ =
2π�e2

m2V

∫
dE

(
−df(E)

dE

)∑
pp′

〈〈
AE(p,p′)AE(p′,p)

〉〉 (p · p′)
d

, (27)

where the normalization volume V is equal to L3 or to L2 in the cases
of 3D or 2D electrons, respectively. Therefore, to calculate the conduc-
tivity, one should average the product AE(p,p′)AE(p′,p) and integrate
the result of such averaging over p, p′, and E.
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Although only the electric current response has been considered above,
it is not difficult to formulate the linear response theory in a general way.
Let the perturbation be described by the linear relations

∆̂Hω =
∑
α

Q̂αFα(ω), ∆̂Qαω =
∑
β

B̂αβFβ(ω), (28)

where Fα(ω) is the Fourier component of the generalized force causing
the perturbation. The operators Q̂α and B̂αβ are, in general, many-
particle operators, and they can depend on ω. Introducing the general-
ized susceptibility χαβ(ω) according to

∆Qα(ω) =
∑
β

χαβ(ω)Fβ(ω), (29)

and using Eqs. (4) and (5), we find the susceptibility as

χαβ(ω) = Spη̂eqB̂αβ +
1
i�

∫ 0

−∞
dτeλτ−iωτ

×Spη̂eq

[
e−iĤτ /�Q̂αeiĤτ /�, Q̂β

]
. (30)

Below we assume that only the second term in Eq. (30) contributes to
the imaginary part of the susceptibility. Let us introduce the symmetric
part of the generalized susceptibility according to χ(s)

αβ(ω) = [χαβ(ω) +
χβα(ω)]/2. Employing the representation of exact eigenstates, we obtain

Imχ(s)
αβ(ω) = −2π

〈〈∑
δδ′

[f(εδ) − f(εδ′)]

×Re
[
〈δ|q̂α|δ′〉〈δ′|q̂β |δ〉

]
δ(εδ − εδ′ + �ω)

〉〉
. (31)

To derive Eq. (31), we have assumed that Q̂α is an additive operator,
Q̂α =

∑
j q̂j

α. Equation (31) is similar to Eq. (20) describing the real
part of the frequency-dependent conductivity. If the system is symmetric
with respect to time reversal, there exists Onsager’s symmetry χαβ(ω) =
χβα(ω), and the symmetrization procedure is not necessary. The product
〈δ|q̂α|δ′〉〈δ′|q̂β |δ〉 in these conditions is real so that the sign Re in Eq. (31)
can be omitted.

14. Diagram Technique
To describe the influence of the scattering on the spectral density

function (13.26), it is convenient to introduce the retarded and advanced
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Green’s functions GR
E and GA

E by the relation

GR,A
E (p,p′) =

∑
δ

ψ(δ)
p ψ(δ)

p′
∗

E − εδ ± iλ
, (1)

where the upper and lower signs correspond to the indices R and A,
respectively, and λ → +0. The wave functions ψ(δ)

p and energies εδ are
determined from the Schroedinger equation in the momentum represen-
tation:

(εδ − εp)ψ(δ)
p − 1

V

∑
p′

Uim(p − p′)ψ(δ)
p′ = 0, (2)

where εp = p2/2m is the kinetic energy. The potential of the randomly
distributed impurities, Uim(r) =

∑
α v(r − Rα), (as in Sec. 7, Rα is the

coordinate of α-th impurity) is written in this representation as

Uim(p − p′) =
∑
α

exp
[
−i(p − p′) · Rα/�

]
v(|p − p′|/�), (3)

where v(q) is the Fourier transform of the potential of single impurity
introduced by Eq. (7.15). According to Eq. (3), Uim(p−p′) = U∗

im(p′ −
p) and Eq. (2) leads to ψ(δ)

p = ψ(δ)∗
−p . This condition follows from the

invariance of the electron-impurity system with respect to time reversal
and causes the following symmetry property of the Green’s functions:

Gs
E(p,p′) = Gs

E(−p′, −p), s = R, A. (4)

The definition (1) also implies a relation between the retarded and ad-
vanced functions, GR

E(p,p′) = GA∗
E (p′,p). The spectral density function

(13.26) is connected to GR
E and GA

E by the following relation:

AE(p,p′) =
1

2πi

[
GA

E(p,p′) − GR
E(p,p′)

]
. (5)

Multiplying the Schroedinger equation (2) by ψ(δ)
p

∗, we calculate the
sum over δ and obtain equations for GR,A

E . Next, using the orthogonality
property

∑
δ ψ(δ)

p ψ(δ)
p′

∗ = δpp′ , we find

(E ± iλ − εp)Gs
E(p,p′) − 1

V

∑
p1

Uim(p − p1)Gs
E(p1,p′) = δpp′ , (6)

where the upper and the lower signs, as in Eq. (1), correspond to R
and A. The Green’s function Gs

E(p,p′) can be considered as a Fourier
transform of the Green’s function of time-dependent Schroedinger equa-
tion, Gs

tt′(r, r
′) (problem 3.7). In the momentum representation, it is
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determined by a non-homogeneous integral equation. In the absence of
scattering, this equation is reduced to the algebraic one:

(E ± iλ − εp)gs
E(p,p′) = δpp′ . (7)

It determines the Green’s function of free electron. Using Eq. (7), we
rewrite Eq. (6) as

Gs
E(p,p′) = gs

E(p,p′) +
1
V

∑
p1p2

gs
E(p,p1)Uim(p1 − p2)Gs

E(p2,p′)

= δpp′gs
E(p) +

1
V

∑
p1

gs
E(p)Uim(p − p1)Gs

E(p1,p′). (8)

To obtain this equation, we have employed the expression of the free-
electron Green’s function:

gs
E(p,p′) = δpp′gs

E(p), gs
E(p) = (E ± iλ − εp)−1. (9)

Equation (8) can be solved by iterations, leading to the following expan-
sion of the Green’s function into power series:

Gs
E(p,p′) = δpp′gs

E(p) + V −1gs
E(p)Uim(p − p′)gs

E(p′)

+V −2
∑
p1

gs
E(p)Uim(p − p1)gs

E(p1)Uim(p1 − p′)gs
E(p′) + . . . . (10)

Here and below we assume that the series of the kind (10) converge.
Similar power series can be written for the Green’s function Gs

tt′(r, r
′)

(problem 3.8).
To find the conductivity, one must average the product of the se-

ries (10). This requires a rather complicated procedure, which can be
simplified by developing a diagram technique operating with graphic im-
ages of such series. Let the Green’s functions (1) and (9) correspond to
double and single solid lines, respectively, while the impurity potential
corresponds to a vertical broken line attached to a vertex:

��
p p′ = Gs

E(p,p′) ,
p

= gs
E(p) , ������

���
�

p p1
= Uim(p − p1). (11)

Using these images, one can represent Eq. (10) in the form of diagram
series:

��
p p′ = δpp′

p
+ ������

���
�

p p′ +
p p1 p′

� �������
���

������
���

+ . . . , (12)

where summation over the inner momenta p1, . . . is implied. In this sec-
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tion we apply the diagram technique in order to calculate the averaged
Green’s function 〈〈

Gs
E(p,p′)

〉〉
= δpp′Gs

E(p). (13)

We note that the procedure of averaging is defined by Eq. (7.4). The
averaged Green’s function is diagonal in the momentum because of the
translational invariance of the averaged problem (macroscopic transla-
tional invariance).

Since we consider power series of the impurity potential, one has to
average the products of the exponential factors exp(−iq · Rα) from Eq.
(3). The diagram with k impurity lines is averaged according to the
equation

〈〈Uim(�q1) . . . Uim(�qk)〉〉 = v(q1) . . . v(qk)V −k

×
∑

α1...αk

∫
dRα1 . . .

∫
dRαk

exp(−iq1 · Rα1 . . . − iqk · Rαk
). (14)

The linear contribution (k = 1) is proportional to the averaged impurity
potential, since 〈〈∑

α

e−iq·Rα

〉〉
= 0|q�=0 (15)

and Uim(�q = 0) =
∫

drUim(r). This averaged impurity potential is
chosen as a reference point (zero energy). The second-order averages
(k = 2) lead to

1
V

〈〈∑
α1α2

e−iq1·Rα1e−iq2·Rα2

〉〉
= nimδq1,−q2 , (16)

where non-zero terms in the sum correspond to α1 = α2 and the Kro-
necker symbol appears from

∫
dRα exp(−iq · Rα) = V δq,0. As a result,

the contribution of paired broken lines in the averaged diagram is given
by the factor � �q

= nim |v(q)|2 , (17)

with transferred momentum �q. The third-order averages (k = 3) give
rise to

1
V

〈〈 ∑
α1α2α3

e−i(q1·Rα1+q2·Rα2+q3·Rα3 )

〉〉
= nimδq1+q2+q3,0 , (18)

which is calculated analogous to Eq. (16), and non-zero terms corre-
spond to α1 = α2 = α3. Next, the fourth-order contributions (k = 4)
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contain both the terms proportional to nim , coming from the integrals
with α1 = α2 = α3 = α4, and the terms proportional to n2

im , coming
from the integrals with α1 = α2 and α3 = α4 (α1 	= α3) and from similar
integrals obtained by permutations of the α-indices (there are three such
terms):

1
V

〈〈 ∑
α1−α4

e−i(q1·Rα1+q2·Rα2+q3·Rα3+q4·Rα4 )

〉〉

= nimδq1+q2+q3+q4,0 + V nim(nim − 1/V ) (19)

× (δq1,−q2δq3,−q4 + δq1,−q3δq2,−q4 + δq1,−q4δq2,−q3) .

Since Nim � 1, one must replace nim −1/V = (Nim −1)/V in the second
term by nim . It is the ∝ n2

im terms that give the main contribution in
Eq. (19) for the case of weak impurity potential. Indeed, the first term
of Eq. (19) and ∝ nim term of Eq. (18) contain additional smallness
in comparison to the contribution of Eq. (17), due to additional factors
v2 and v, respectively. One can neglect these contributions in the Born
approximation for electron-impurity scattering (a consideration beyond
the Born approximation is given in Sec. 49). Therefore, only the di-
agrams with even number (k = 2n) of impurity lines are essential in
the expansion (12). To carry out the averaging, one should consider all
possible pairings of the impurity lines, the total number of such pairings
is equal to (2n)!/2nn! in the term of the order 2n. Each pairing gives
us the factor defined by Eq. (17) in the analytical expression of the
averaged diagram. Owing to the δ-symbols in Eq. (16), the momentum
conservation law is fulfilled in each connecting point of the averaged
diagram.

One must point out the difference between the approximations used
in the derivation of the kinetic equation in Sec. 7 and the approxima-
tions used here in the averaging of the products of impurity potentials.
In both cases we used the Born approximation for the interaction of
an electron with a single impurity. However, in Sec. 7 we restricted
ourselves by the binary correlation functions only, which led us to the
contributions of the order of nim |v(q)|2. The contributions of the order
of [nim |v(q)|2]2 coming from the fourth-order correlation functions (see
Eq. (19)) and higher-order contributions were neglected. Now all such
correlation functions are taken into account. The scattering by a single
impurity is no longer considered separately from the scattering by the
other impurities, thus making the validity of the consideration indepen-
dent of the impurity concentration. This allows one to study kinetic
properties for strong-scattering regimes, beyond the range of the condi-
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tions (7.21). Apart from the Born approximation, we implied that the
concentration of the impurities was small enough to neglect the correla-
tions between the positions of different impurities. Both these approxi-
mations allowed us to express the correlation functions of an arbitrary
order k through the binary correlation functions only. The random po-
tentials U(r), whose statistical characteristics are completely expressed
through the binary correlation functions w(|r|), form a class called the
Gaussian potentials; see Sec. 7 and problem 2.3. The calculation of
the averages and the diagram technique given in this chapter can be
applied to any Gaussian potential, provided the product nim |v(q)|2 is
replaced by the Fourier component w(q) of the binary correlation func-
tion. Considering the impurity scattering, one can write w(q) instead
of nim |v(q)|2, keeping in mind that the correlation function w(q) in this
case is essentially determined by the nature of the impurity potential
(problem 3.9).

Let us denote the averaged Green’s function by a bold line so that
Eq. (13) is rewritten as

��
p p′

〉〉〈〈
= δpp′

p
. (20)

The diagrammatic expansion for Gs
E(p) is obtained by averaging the di-

agram equation (12) with the use of the definitions (17) and (20):

= + +

+ + + . . . .

p p p pp′
(21)

Here we have two kinds of diagrams: the reducible diagrams, which can
be divided in two parts by “cutting” only one electron line (for exam-
ple, the third diagram on the right-hand side of Eq. (21)), and the
irreducible ones, which cannot be divided in this way. The sum of all
reducible diagrams gives us the averaged Green’s function. Therefore,
Eq. (21) can be presented as the Dyson equation for Gs

E(p):

p
=

p
+

p

� �
� �

p
. (22)

The self-energy function Σs
E(p), denoted by a semi-oval in Eq. (22), is

given by the following diagram series involving the averaged Green’s
functions:
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Σs
E(p) =

� �
� � = + + . . . . (23)

This procedure corresponds to a partial summation of the series in Eq.
(21) so that only bold lines appear on the right-hand side of Eq. (23).
The Dyson equation (22) has the following analytical form:

Gs
E(p) = gs

E(p) + gs
E(p)Σs

E(p)Gs
E(p), (24)

and Gs
E(p) is expressed through Σs

E(p) as

Gs
E(p) = [E − εp − Σs

E(p)]−1. (25)

The real part of Σs
E(p) describes a “renormalization” of the kinetic en-

ergy εp, while the imaginary part introduces a finite imaginary contri-
bution to the denominator. It describes the broadening of the electron
states discussed at the end of this section. Equation (23), in the analyt-
ical form, becomes

Σs
E(p) =

nim

V

∑
q

|v(q)|2Gs
E(p − �q) +

n2
im

V 2

∑
q

∑
q′

|v(q)|2|v(q′)|2

×Gs
E(p − �q)Gs

E(p − �(q + q′))Gs
E(p − �q′) + . . . . (26)

Therefore, the Dyson equation for Gs
E(p) is written as a non-linear in-

tegral equation.
If the kinetic energy of electrons, εp, is large in comparison to Σs

E(p),
one can restrict the expansion (26) by the first term only, where Gs

E(p−
�q) is replaced by gs

E(p − �q). We obtain the self-energy function

ΣR,A
E (p) � nim

V

∑
p′

∣∣v(|p − p′|/�)
∣∣2 (E − εp′ ± iλ)−1. (27)

The imaginary part of this expression, Im ΣR,A
E (p), is equal to

∓πnim

∫
dp′

(2π�)d

∣∣v(|p − p′|/�)
∣∣2 δ(εp′ − E) = ∓ �

2τp(E)
. (28)

If εp is equal to E, the time τp(E) is equal to the departure time τ(E) of
the electron with energy E (compare to the introduction of the relaxation
rates in Sec. 8). The same statement is true for an arbitrary momentum
p if the scattering potential can be treated as a short-range one (point-
defect scattering), because in this case Σs

E(p) is momentum-independent.
In any case, the condition E, εp � |Σs

E(p)| implies that Σs
E(p) standing
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in Eq. (28) can be estimated at E � εp with the accuracy imposed by
this condition. Therefore,

GR,A
E (p) � [E − εp − ReΣs

E=εp
(p) ± i�/2τ(E)]−1. (29)

A comparison of this expression to gR,A
E (p) of Eq. (9) makes it clear

that a finite term i�/2τ(E) replaces an infinitely small term iλ, and a
renormalization of the kinetic energy, according to εp → εp+ReΣs

E=εp
(p),

takes place. Therefore, Eq. (29) describes a quasiparticle formed as a
result of electron-impurity interaction.

The formalism of Green’s functions can be applied for calculating the
equilibrium quantities of electron-impurity system characterized by the
density of electron states. According to the general definition (5.2), the
exact density of states, ρ(E) = (2/V )

∫
dr 〈〈

∑
δ |ψ(δ)

r |2δ(E − εδ)〉〉, is
expressed as (problem 3.10)

ρ(E) = ∓ 2
πV

Im
∫

dr
∫

d∆teiE∆t
〈〈

GR,A

∆t (r, r)
〉〉

= ∓ 2
πV

Im
∑
p

GR,A
E (p), (30)

where we have used the normalization condition
∫

dr|ψ(δ)
r |2 = 1. Note

that the factor of 2 appears above due to spin degeneracy. Substituting
the Green’s function of Eq. (29) into Eq. (30), we rewrite the latter as

ρ(E) =
2
π

∫
dp

(2π�)d

�/2τ(E)
[E − εp − ReΣs

E(p)]2 + [�/2τ(E)]2
. (31)

Therefore, the δ-function δ(E − εp) standing in the expression for the
density of states of free electrons is replaced by the Lorentz factor with
a characteristic broadening energy �/2τ(E). The integral over p can be
calculated easily under the assumption of short-range scattering poten-
tials, because Σs

E(p), estimated by the first term of the expansion in Eq.
(26), becomes p-independent in these conditions. In the 2D case, we
obtain (note that ImΣA

E = �/2τ(E) is positive and ReΣA
E = ReΣR

E)

ρ(E) = ρ2D

[
1
π

arctan
(

E − ReΣA
E

ImΣA
E

)
+

1
2

]
, (32)

which replaces the result of the collisionless approximation, ρ(E) = ρ2D

×θ(E), given by Eq. (5.26). In other words, the scattering shifts and
broadens the ideal step in the density of states near the threshold at E =
0. The shift ReΣA

E under the approximation of short-range scattering
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potential is given by ReΣA
E = V −1nim |v(0)|2Re

∑
p GA

E(p). Since this
expression diverges due to the contribution of large p, one should restrict
the summation by p < �/lc, where lc is the characteristic spatial scale
(correlation length) of the random potential. The scattering potential is
of short range when the ratio (�/lc)/

√
2mE is large. For the 2D case,

ReΣA
E calculated in this way is proportional to a logarithm of this ratio.

Although Eq. (32) provides a reasonable qualitative estimate of the
broadening, it cannot serve as a quantitative description of the density
of states at E → 0, because i) in this region we need to account all
terms in the expansion (26) of the self-energy, since there is no small
parameter allowing us to neglect them, and ii) the Born approximation
is no longer applicable for low-energy electrons. To describe the Green’s
functions of low-energy electrons, another approach appears to be useful,
when the Green’s function is written in the path-integral form. The
averaging over the random potential distribution in that case can be
done in a more efficient way as compared to the diagram technique. The
path-integral method will be considered in Sec. 16, while in the next
section we directly apply the diagram technique in order to calculate
the conductivity.

15. Bethe-Salpeter Equation
Let us consider the average of a pair of electron Green’s functions,

which stands in the expression (13.27) for the electrical conductivity.
According to Eq. (14.5), one has to calculate the averages (correlation
functions) of the products GRGR, GAGA, GRGA, and GAGR. Below we
consider the most general form of such correlation functions,

Kss′
EE′(p1,p3|p2,p4) ≡ 〈〈Gs

E(p1,p2)Gs′
E′(p3,p4)〉〉 , (1)

where s and s′ may be R or A. Each Green’s function is represented
according to Eq. (14.12). In the Born approximation, when one should
consider only pair correlation functions of the scattering potential, the
function K is graphically reproduced as the following sum of diagrams:

= δp1+p3,p2+p4

{
δp1p2 + ������

���

+ ������
���

+ ������
���

+ ������
���

������
���

+ � � � � � � �
� � � �

�������
����

+ . . .

}
.

p4p3

p1 p2 p1

p3

p1

p3

p2

p4

(p1−p2)/� (2)

We denote this function by a pair of extra bold lines. The bold lines
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in the right-hand part of Eq. (2) correspond to averaged one-particle
Green’s functions Gs

E(p), each of them can be represented according
to Eq. (14.25). Since the momentum transmitted between the lines is
conserved, Kss′

EE′(p1p3|p2p4) is proportional to δp1+p3,p2+p4 .
In order to write a self-consistent equation for the correlation function

(2), we again separate the diagrams of the series by reducible ones, which
can be divided into two parts by a vertical cut of a pair of solid lines
(for example, the third diagram in the second row of Eq. (2)), and
irreducible ones, which cannot be divided in this way (for example, the
last diagram in the second row of Eq. (2)). Summing the reducible
diagrams, we obtain, instead of the infinite series of Eq. (2), the Bethe-
Salpeter equation:

p4p3

p1 p2

= δp1+p3,p2+p4

{
δp1p2 +

p1

p3 p3

p1

p3+�q

p1−�q

p4

p2 }
. (3)

The vertex part, denoted by the rectangle in this equation, is intro-
duced through the diagram series

Γss′
EE′(p,p′|p − �q, p′ + �q) =

p

p′

p−�q

p′+�q

= q +������
������
�

������
������
�

� � � � � � �
� � � � � � �

�
�������

�������
�

������
������
�

+ + + . . . ,

p−�q+�q1

p′+�q1

q−q1 q1

(4)

representing a sum of all irreducible diagrams without the outer elec-
tron lines. The total momentum �q is transferred between the upper
and lower electron lines. The analytical form of the Bethe-Salpeter equa-
tion (3) is

Kss′
EE′(p1,p3|p2,p4) = δp1p2δp3p4G

s
E(p1)Gs′

E′(p3) + Gs
E(p1)Gs′

E′(p3)

× 1
V

∑
q

Γss′
EE′(p1,p3|p1−�q, p3+�q)Kss′

EE′(p1−�q, p3+�q|p2,p4). (5)

This is an integral equation with respect to the variables p1 and p3.
The other variables (p2 and p4) are “idle” and, therefore, not essential
here. The irreducible vertex part can be written in the analytical form
corresponding to the expansion (4) (here and below we use w(q) instead
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of nim |v(q)|2):

Γss′
EE′(p,p′|p − �q, p′ + �q) = w(q)

+
1
V

∑
q1

w(|q − q1|)w(q1)Gs
E(p − �q+�q1)Gs′

E′(p′ + �q1)

+
w(q)
V

∑
q1

w(q1)[Gs′
E′(p′ − �q + �q1)Gs′

E′(p′ + �q1) (6)

+Gs
E(p − �q + �q1)Gs

E(p + �q1)] + . . . .

The static conductivity is directly expressed through the correlation
function (1), according to Eq. (13.27) and (14.5):

σ =
�e2

2πm2V

∫
dE

(
−df (eq)

E

dE

)∑
pp′

(p · p′)
d

∑
s,s′=R,A

(−1)lKss′
E (p,p′),

Kss′
E (p,p′) ≡ 〈〈Gs

E(p,p′)Gs′
E (−p,−p′)〉〉 = Kss′

EE(p,−p | p′, −p′), (7)

where l = 1 for s = s′ and l = 0 for s 	= s′. In Eq. (7) we have
used the property (14.4) in order to shift the momenta p and p′ to
the left and right ends of the diagrams, respectively. For the coinciding
energies and momenta, the vertex part (6) is reduced to Γss′

E (p,p−�q) ≡
Γss′

EE(p,−p|p−�q, −p+�q). Therefore, the Bethe-Salpeter equation for
Kss′

E is rewritten as

Kss′
E (p,p′) = Gs

E(p)Gs′
E (p)

×
[
δpp′ +

1
V

∑
q

Γss′
E (p,p − �q)Kss′

E (p − �q,p′)

]
. (8)

Below we apply this equation in order to calculate the static conductivity
of electron-impurity system in the limit when the characteristic energy
of electrons, which is close to the Fermi energy εF (we consider the
case of degenerate electrons), is large in comparison to �/τ̄ , i.e., under
conditions when the kinetic equation considered in Sec. 7 is valid. In
these conditions, the main contribution to Γss′

E (p,p−�q) comes from the
first term of the expansion in Eq. (6). To prove this, let us estimate the
second term of this expansion. Owing to the presence of the product of
Green’s functions, Gs′

E (−p+�q1)Gs
E(p−�q+�q1), the main contribution

to the integral over q1 comes from the region (p − �q1)2/2m � (p −
�q + �q1)2/2m � E. Since p, q, and E are fixed, this condition leaves
very little space for q1 and, after the integral over q1 is calculated, it
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appears that this term contains an additional small factor of �/τ̄εF in
comparison to the first term. A similar consideration can be done for
the third and all other terms (see, however, the end of this section)
so that Γss′

E (p,p − q) � w(q). This approach is known as the ladder
approximation. Let us introduce the vector function

Mss′
E (p) =

1
V

∑
p1

w(|p − p1|/�)
∑
p′

p′Kss′
E (p1,p′). (9)

This function satisfies the following equation obtained from Eq. (8):

Mss′
E (p) =

1
V

∑
p′

w(|p − p′|/�)Gs
E(p′)Gs′

E (p′)
[
p′ + Mss′

E (p′)
]
. (10)

Therefore, the vector M must be directed along p, as follows from the
isotropy of the Green’s functions, Gs

E(p′) = Gs
E(p′). Accordingly, we

search for the function (9) in the form Mss′
E (p) = pMss′

E (p), where the
scalar function Mss′

E (p) is isotropic. Substituting it into the integral
equation (10), we approximately solve this equation, taking into account
that the main contribution to the integral over p′ comes from a narrow
region around p′ � pE ≡

√
2mE, due to the presence of the Green’s func-

tions under the integral. Assuming that Mss′
E (p) weakly varies within

this region (this assumption will be justified later), we multiply Eq. (10)
by p, put |p| = pE, and obtain

Mss′
E (pE) � [1 + Mss′

E (pE)]Λ(E)
1
V

∑
p

Gs
E(p)Gs′

E (p), (11)

where Λ(E) denotes the angular average of the correlation function
w(|p − p′|/�) at |p| = |p′| = pE, weighted with the factor cosϕ, where
ϕ = p̂p′. It is expressed through the difference between the ordinary
relaxation rate (inverse departure time) and transport relaxation rate:

Λ(E) ≡ w (2pE| sin(ϕ/2)|) cos ϕ =
�

πρD(E)

(
1

τ(E)
− 1

τtr(E)

)
. (12)

The conductivity (7) is expressed through Mss′
E (p) as

σ =
�e2

2πdm2V

∫
dE

(
−df (eq)

E

dE

) ∑
s,s′=R,A

(−1)l

×
∑
p

Gs
E(p)Gs′

E (p)p2[1 + Mss′
E (p)], (13)
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where l =0 for s 	= s′ and l =1 for s = s′. Again, the factor p2[1+Mss′
E (p)]

in Eq. (13) can be approximated by p2
E[1 + Mss′

E (pE)]. Therefore, both
Mss′

E (pE) and σ are expressed through
∑

p Gs
E(p)Gs′

E (p). Expressing the
Green’s functions according to Eq. (14.29), we calculate this sum as

1
V

∑
p

Gs
E(p)Gs′

E (p) �
{

πτ(E)ρD(E)/� s 	= s′
0 s = s′ . (14)

The product Gs
E(p)Gs′

E (p) at s 	= s′ is approximately equal to the Lorentz
factor {(εp − E)2 + [�/2τ(E)]2}−1, where E � �/2τ(E). Indeed, the
dependence of this product on εp has a sharp peak around εp = E. On
the other hand, the dependence of Mss′

E (p) on εp and E is much weaker,
since it is determined by the energy dependence of the density of states
and relaxation times.

Expressing Mss′
E (pE) from Eq. (11), we substitute it into Eq. (13)

and obtain

σ � 2�e2

πdm

∫
dE

(
−df (eq)

E

dE

)
E

×Re
[(

1
V

∑
p

GA
E(p)GR

E(p)
)−1

− Λ(E)
]−1

. (15)

Finally, using Eqs. (12) and (14), we observe that the term with τ(E)
vanishes and only the transport time contributes to Eq. (15). In this
way we obtain Eq. (8.27) (problem 3.11). Although we have not found
new results as compared to the results of Sec. 8, we have demonstrated
a regular method, which can be applied for determination of higher-
order corrections to the conductivity (with respect to the factor �/τεF )
by taking into account the higher-order contributions to the irreducible
vertex part.

Let us consider the contribution of the next terms in the diagram-
matic expansion (4) and show that in the 2D case the conductivity is
modified substantially due to backscattering processes described by the
maximally crossed diagrams, the first of them is the second one on the
right-hand side of Eq. (4). The irreducible vertex part corresponding to
the maximally crossed diagrams is given by the following infinite series:

Γss′
EE′(p,−p|p − �q, −p + �q)

� q +������
������
�

� � � � � � �
� � � � � � �

�
�������

�������
�

+ + . . . ≡ ������
������
�
������
������
�

� � � � � � � � � � � � � �
��������������

� � � � �
� � � � �

�
q−q1

q1−q2 q2

p−�q+�q1 p−�q+�q2

−p+�q2 −p+�q1

p−�q+�q1

−p+�q1

q−q1 q1

p

−p

p−�q

−p+�q

q , (16)
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where the double broken line is introduced to denote this particular class
of diagrams. The sum of the series (16) satisfies the diagram equation

������
������
�
������
������
�p

−p

p−�q

−p+�q

q = ������
������
�
q + � � � � � � �

� � � � � � �
�

� � � � � � �
� � � � � � �

�
�������

�������
�p−�q+�q1

−p+�q1

q−q1 q1 . (17)

It can be verified easily that a solution of Eq. (17) by iterations leads to
the expansion in Eq. (16). In the analytical form, Eq. (17) is written as

Γss′
EE′(p,−p|p − �q, −p + �q) = w(q) +

1
L2

∑
q1

w(|q − q1|) (18)

×Gs
E(p−�q+�q1)Gs′

E′(−p+�q1)Γss′
EE′(p−�q+�q1, −p|p−�q, −p+�q1).

Note that the second and the third arguments (−p and p − �q) are
idle and can be omitted in the vertex part. Below we assume equal
energies for upper and lower electron lines and define Γ̃ss′

E (p,−p+�q) ≡
Γss′

EE(p,−p|p − �q, −p + �q). The tilde indicates that the arguments
of this function are defined in a different way as compared to Γss′

E in
Eq. (8). Considering, for the sake of simplicity, the case of short-range
correlated inhomogeneities, when w(q) is approximated by the constant
w, we rewrite Eq. (18) at E = E′ as

Γ̃ss′
E (p,−p + �q) = w +

w

L2

∑
p1

Gs
E(2p − �q + p1)

×Gs′
E (p1)Γ̃ss′

E (2p − �q + p1,p1). (19)

Since the right-hand side of this equation depends only on the difference
between the arguments of Γ̃ss′

E , one can write Γ̃ss′
E (p1,p2) = Γ̃ss′

E (p1−p2).
When this expression is substituted into the integral term of Eq. (19),
the variable p1 drops out of Γ̃ss′

E so that the irreducible vertex part is
determined by a simple algebraic equation. Solving it, we obtain the
result

Γ̃ss′
E (∆p) = w

[
1 − w

L2

∑
p1

Gs
E(p1 + ∆p)Gs′

E (p1)
]−1

(20)

which is valid at �/τεF � 1.
Let us substitute the irreducible vertex part of Eq. (20) into the

Bethe-Salpeter equation (8). Note that in the simple case of short-
range correlated inhomogeneities one does not need to introduce the
vector Mss′

E (p), see Eq. (9), to solve Eq. (8). Instead, we introduce
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a scalar Kss′
E (p) =

∑
p′ p · p′Kss′

E (p,p′). Transforming Eq. (8) by the
substitutions p1 = p − �q and Γss′

E (p,p − �q) = Γ̃ss′
E (p,−p + �q) =

Γ̃ss′
E (p + p1), we obtain the following equation:

Kss′
E (p) = Gs

E(p)Gs′
E (p) (21)

×
[
p2 +

1
L2

∑
p1

Γ̃ss′
E (p + p1)

∑
p′

(p · p′)Kss′
E (p1,p′)

]
.

Since Kss′
E (p,p′) depends on cos p̂p′, we reduce Eq. (21) to a closed

integral equation for Kss′
E (p):

Kss′
E (p) = Gs

E(p)Gs′
E (p) (22)

×
[
p2 +

1
L2

∑
p1

Γ̃ss′
E (p + p1)

p

p1
cos p̂p1K

ss′
E (p1)

]
.

To find the conductivity, one needs to integrate Kss′
E (p) over p. If s = s′,

the second term in the denominator of the right-hand side of Eq. (20) is
small and, with Γ̃ss′

εF
(∆p) � w into Eq. (22), the integral term there be-

comes small and can be neglected. Therefore, Kss
E (p) � p2Gs

E(p)Gs
E(p)

and, according to Eq. (14), the terms with s = s′ do not modify the
conductivity in the limit �/τεF � 1.

The terms with s 	= s′ have to be considered carefully, because the
irreducible vertex part for them diverges at small momentum transfer.
Indeed, using the Green’s functions of Eq. (14.29), we rewrite Eq. (20)
in the following form:

Γ̃ss′
εF

(∆p) = w[1 − I(∆p)]−1, (23)

I(∆p) =
w

L2

∑
p

(εF − εp+∆p/2 + i�/2τ)−1(εF − εp−∆p/2 − i�/2τ)−1,

where E is replaced by εF since the electron gas is assumed to be strongly
degenerate. In the region ∆plF /� � 1 one has (problem 3.12)

I(∆p) � 1 − (∆plF /�)2/2, (24)

where lF = vF τ is the mean free path length. If ∆plF /� > 1, the function
I(∆p) decreases with ∆p. The solution of Eq. (22) by iterations is

KRA
εF

(p) = GR
εF

(p)GA
εF

(p) (25)

×
[
p2 +

1
L2

∑
p1

GR
εF

(p1)GA
εF

(p1)Γ̃RA
εF

(p + p1)(p · p1)
]
,
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and KAR
εF

(p) is written in a similar way.
The first term on the right-hand side of Eq. (25) corresponds to the

approximation Γ̃RA
E = w and leads to the main part of the conductivity,

σ = e2nτ/m. The second term (and a similar term in the equation for
KAR

εF
(p)) leads to a quantum correction to the conductivity, δσ. Calcu-

lating the conductivity according to Eq. (7) with the use of Eqs. (23)
and (24), we write the quantum correction as

δσ =
�

3e2w

πm2l2F

∫
dp

(2π�)2

∫
dp1

(2π�)2
(26)

×GR
εF

(p)GA
εF

(p)GR
εF

(p1)GA
εF

(p1)
(p · p1)

(p + p1)2
.

The accuracy in determining Γ̃ss′
εF

(∆p) restricts the region of integration
by the condition |p + p1| < �/lF . However, this restriction is not es-
sential, because the main contribution to the integral comes from the
region of much smaller |p + p1|. The quantum correction (26) appears
to be negative, because at p1 � −p one has p · p1 � −p2. It is caused
by a strong renormalization of the irreducible vertex part in the region
of momenta corresponding to backscattering processes. The divergence
of Γ̃RA

εF
(p + p1) at p1 = −p leads to a logarithmic divergence of the

integral in Eq. (26). The cut-off for this divergence can be achieved if
we take into account the factors which suppress the coherence of elec-
tron states, i.e., which lead to relaxation of the phase of electron wave
function. This occurs, for example, in the inelastic scattering processes.
Introducing a characteristic phase relaxation length lϕ, which restricts
the integration by the region |p+p1| > �/lD, where lD =

√
lF lϕ/2 is the

diffusion length, we calculate the integrals in Eq. (26) (problem 3.13)
and obtain

δσ � − e2

2π2�
ln

lϕ
lF

. (27)

The reason why the cut-off of the momentum should be done at �/lD
(and not, say, at �/lϕ) is based upon the strong inequality lF � lϕ
implying that the mean distance passed by an electron between the
inelastic collisions is lD. Note that the factor at the logarithm in Eq.
(27) depends only on the fundamental physical constants e and �. The
factor e2/2π� is known as the fundamental conductance quantum (we
note that in the 2D case the conductivity and conductance have the
same dimensionality, Ohm−1).

In summary, we have shown that δσ is proportional to the conductance
quantum e2/2π� multiplied by a large logarithm. Since the correction
δσ is negative, its effect looks like a localization of electrons and is known
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as weak localization. A comparison of the classical conductivity given
by Eq. (8.27) to the weak-localization correction δσ shows us that the
relative correction is small:

|δσ|
σ

=
�

2πεF τ
ln

lϕ
lF

� 1. (28)

Nevertheless, the presence of such small contributions can be easily veri-
fied experimentally, for example, from a logarithmic temperature de-
pendence of the conductivity. If lϕ ∝ T−α, where α is a positive con-
stant determined by the mechanism of phase relaxation, one obtains
δσ ∝ α lnT . The logarithmic increase of the conductivity with increas-
ing temperature, in contrast to its usual decrease with increasing T in
the classical transport regime, is caused by the thermal suppression of
the weak-localization correction. A magnetic field, since it changes the
phases of electron wave functions, induces a similar suppression of |δσ|
leading to a negative magnetoresistance. The effect of external fields on
the weak-localization correction is studied in Sec. 43. We stress that
the consideration given above is restricted by the simplest case of weak
scattering of electrons by short-range correlated inhomogeneities.

16. Green’s Function as a Path Integral
In this section we consider a widely employed method based on a

transformation of the exact Green’s function in the time-coordinate rep-
resentation into a path integral. For the electrons interacting with im-
purity potential, the Green’s function satisfies the differential equation
(see also problem 3.7)[

i�
∂

∂t
+

�
2∇2

r

2m
− Uim(r)

]
Gt−t′(r, r′) = δ(t − t′)δ(r − r′), (1)

where it is taken into account that the Green’s function depends only
on the difference between the times t and t′, because the Hamiltonian
is time-independent. Equation (1) can be viewed as a coordinate repre-
sentation of the following general operator equation:(

i�
∂

∂t
− Ĥ

)
Ĝt = δ(t)1̂. (2)

Indeed, if we note that 〈r|Ĥ|r〉 = −�
2∇2

r/2m + Uim(r) and 〈r|Ĝt|r′〉 =
Ĝt(r, r′), we obtain Eq. (1). Equation (2) defines the Green’s function
in the operator form. The retarded and advanced Green’s functions are
obtained as formal solutions of this equation with the initial conditions
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Ĝt=−∞ = 0 and Ĝt=∞ = 0, respectively, and are represented through
the evolution operators as

ĜR
t = − i

�
θ(t)e−iĤ t/�, ĜA

t =
i

�
θ(−t)e−iĤ t/�, (3)

where θ(t) is the theta-function. Below we consider only the retarded
Green’s function, since ĜA

t = ĜR+
−t . In the coordinate representation,

GR
t (r, r′) = 〈r|ĜR

t |r′〉 = − i

�
θ(t)〈r|e−iĤ t/�|r′〉. (4)

In order to calculate the matrix element of the evolution operator in
Eq. (4), we divide the interval [0, t] in N small parts with the lengths
τN = t/N and write the matrix element through a product of N factors
integrated over the intermediate coordinates r1, . . . , rN−1:

GR
t (r, r′) = − lim

τN→0

i

�
θ(t)

∫
drN−1 . . .

∫
dr1

×〈r|e−iĤτN/�|r1〉 . . . 〈rN−1|e−iĤτN/�|r′〉. (5)

In the limit τN → 0 (i.e., N → ∞), the matrix elements in Eq. (5) are
calculated exactly, because now we can neglect the commutator of the
kinetic and potential energies in exp(−iĤτN/�). Within the accuracy of
the order of τ2

N , any matrix element in Eq. (5) takes the form

〈ri|e−iĤτN/�|ri+1〉 = e−iτNUim(ri)/�ei�τN∇2
i /2mδ(ri − ri+1), (6)

where ∇i acts on the coordinate ri. Accordingly, the contribution of
the impurity potential in Eq. (5) is written as an infinite product of
exponential factors. In order to calculate the contribution of the kinetic
energy operator, we use the operator form of the integral

eÂ2
=

1√
π

∫ ∞

−∞
dξe−ξ2+2ξÂ (7)

for an arbitrary operator Â. In our case, Â =
√

i�τN/2m∇i. The opera-
tor of shift, e2ξÂ, acts on the argument of the δ-function in Eq. (6). Since
the Laplace operator ∇2

i is written as a sum of the second derivatives
over each Cartesian coordinate, the contributions of each dimension can
be calculated separately, and the total contribution is a product of these
partial contributions. The contribution of one dimension (coordinate x)
is obtained after calculating the integral of the δ-function with shifted
argument according to Eq. (7):

exp
[
i�τN

2m

d2

dx2
i

]
δ(xi − xi+1) =

√
m

2πi�τN

exp
im(xi − xi+1)2

2�τN

. (8)
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In the d-dimensional case, the matrix element (6) is written as

〈ri|e−iĤτN/�|ri+1〉 =
(

m

2πi�τN

)d/2

× exp
[
i
m(ri − ri+1)2

2�τN

− iτNUim(ri)/�

]
. (9)

Therefore, to calculate GR
t (r, r′), one should evaluate a product of in-

finitely small contributions:

GR
t (r, r′) = − lim

N→∞
i

�
θ(t)

∫
drN−1 . . .

∫
dr1

(
m

2πi�τN

)dN/2

× exp

{
i

�
τN

N∑
i=1

[
m(ri − ri−1)2

2τ2
N

− Uim(ri)
]}

. (10)

The infinite product standing in Eq. (5) is transformed to the sum in the
exponent of this expression. In the limit τN → 0, this sum is replaced
by the integral

i

�

∫ τ

0
dτ
[m

2
ṙ2
τ − Uim(rτ )

]
, r0 = r, rt = r′, (11)

where ṙτ ≡ drτ /dτ . Introducing the functional differential as

D{rτ } ⇒
(

m

2πi�τN

)dN/2

drN−1 . . . dr1, N → ∞, (12)

we finally rewrite the Green’s function in the following form:

GR
t (r, r′) = − i

�
θ(t)

∫ rt=r′

r0=r
D{rτ } exp

{
i

�

∫ t

0
dτ
[m

2
ṙ2
τ − Uim(rτ )

]}

= − i

�
θ(t)

∫ rt=r′

r0=r
D{rτ } exp

{
i

�

∫ t

0
dτL(rτ , ṙτ )

}
. (13)

The second equation employs the Lagrangian L(r, ṙ) = mṙ2/2−Uim(r).
Equation (13) is the exact expression of the Green’s function through
the path integral introduced with the aid of the above-described limiting
procedure.

To find the averaged Green’s function, one has to average the factor
exp

[
− i

�

∫ t
0 dτUim(rτ )

]
. Thus, the approach developed above allows one

to separate the statistical averaging over the random potential, described
in Sec. 14, from the quantum-mechanical averaging. Let us average the
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characteristic functional (see problem 2.3) defined as exp[
∫

drfrUim(r)],
where fr is an arbitrary function. First we expand the exponent in series.
Then, in the Born approximation for the electron-impurity scattering [as
well as for any Gaussian random potential Uim(r)], we consider only the
binary correlation functions and obtain〈〈

e
∫

drfrUim(r)
〉〉

= 1 +
1
2!

∫
dr1

∫
dr2fr1fr2 〈〈Uim(r1)Uim(r2)〉〉

+
1
4!

∫
dr1

∫
dr2

∫
dr3

∫
dr4fr1fr2fr3fr4

× 〈〈Uim(r1)Uim(r2)Uim(r3)Uim(r4)〉〉 + . . .

= 1 +
1
2

∫
dr
∫

dr′frw(|r − r′|)fr′ + . . . (14)

+
1
n!

[
1
2

∫
dr
∫

dr′frw(|r − r′|)fr′

]n

+ . . . ,

where the correlation function w(|r−r′|) introduced at the end of Sec. 7
is equal to (nim/V )

∑
q |v(q)|2eiq·(r−r′). The transformation in Eq. (14)

uses the fact that the number of possible binary correlation functions in
the potential correlation function of the order 2n is equal to (2n)!/2nn!;
see Sec. 14. Since the infinite sum on the right-hand side of Eq. (14) is
again transformed to an exponent, we have〈〈

e
∫

drfrUim(r)
〉〉

= exp
[
1
2

∫
dr
∫

dr′frw(|r − r′|)fr′

]
. (15)

Substituting fr = −(i/�)
∫ t
0 dτδ(rτ − r) into Eq. (15), we average Eq.

(13) with the aid of Eq. (15) and obtain

GR
t (|r − r′|) = − i

�
θ(t)

∫ rt=r′

r0=r
D{rτ } (16)

× exp
[
im

2�

∫ t

0
dτ ṙ2

τ − 1
2�2

∫ t

0
dτ1

∫ t

0
dτ2w(|rτ1 − rτ2 |)

]
.

One has to calculate the path integrals in this expression by taking
into account the contributions to the effective action (which stands in
the exponent) coming from the kinetic-energy term and from the non-
local term describing the collision processes. In the general case, it is a
complicated problem, which, however, can be formulated for numerical
calculations in a straightforward way.
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The density of states, according to Eqs. (14.30) and (16), is expressed
through the contour path integral

∮
D{rτ } . . . with r0 = rt = r:

ρ(E) =
2
π�

Re
∫ ∞

0
dteiEt/�

∮
D{rτ } (17)

× exp
[
im

2�

∫ t

0
dτ ṙ2

τ − 1
2�2

∫ t

0
dτ1

∫ t

0
dτ2w(|rτ1 − rτ2 |)

]
,

where we have carried out a Fourier transformation in the time domain.
An analytical result for the density of states can be obtained in the
case of classically smooth potentials, when w(|r − r′|) is replaced by the
constant w(0). This means that the path integral is determined only by
the kinetic energy of free electrons and reduced to a known expression,
which can be represented through the retarded Green’s function of free
d-dimensional electrons in the time-coordinate representation (problem
3.14):

gR
t (|r|) = − i

�
θ(t)

( m

2πi�t

)d/2
exp

(
imr2

2�t

)
. (18)

In view of the presence of θ(t) in Eq. (18), one can extend the lower
limit of integration over time in Eq. (17) to −∞ and write Eq. (17) as

ρ(E) = − 2
π

Im
∫ ∞

−∞
dteiEt/�gR

t (0)e−w(0)t2/2�
2

(19)

=
1
π�

( m

2π�

)d/2
∫ ∞

−∞
dt

(it + 0)d/2 e−w(0)t2/2�
2+iEt/�.

Note that the path of integration over time passes under the peculiar
point at t = 0. This is reflected by an infinitely small real positive term
added to the factor it in the denominator. In the absence of the impurity
potential, the integral in Eq. (19) is calculated easily, and we obtain the
density of states for free d-dimensional electrons; see Sec. 5. It w(0) 	= 0,
a simple result is obtained for 2D electrons, because the point t = 0 in
this case is a simple pole. We have

ρ2D(E) =
m

2π�2

[
1 + erf

(
E√

2w(0)

)]
, (20)

where erf(x) is the error function. Equation (20) demonstrates that the
presence of inhomogeneities leads to a symmetric smearing of the edge of
the density of states over the energy ∆E ∼

√
2w(0). A similar smearing

takes place for 3D and 1D electrons; see Fig. 3.1. Analytical expressions
for ρ3D and ρ1D can be written through the confluent hypergeometric



128 QUANTUM KINETIC THEORY

functions (problem 3.15). In the tail of the density of states, when
E < 0 and |E| �

√
w(0), one has

ρ(E) ∝ exp
(

− E2

2w(0)

)
, (21)

i.e., for arbitrary dimensionality, the density of states follows the expo-
nential law with E2 in the exponent.

Figure 3.1. Function D(x) = (2π)−d/2 ∫∞
−∞ dτ (iτ + 0)−d/2 exp[−τ 2/2 + ixτ ], which

defines the density of states of 1D, 2D, and 3D electron systems (d =1, 2, and 3,
respectively) in a classically smooth random potential. The dashed lines show the
function (2π)−d/2 ∫∞

−∞ dτ (iτ +0)−d/2 exp[ixτ ], which is proportional to the density of
states in the absence of the random potential, for d = 1 and d = 3.

Below we study how the density of states of 2D electrons in the mag-
netic field H perpendicular to the 2D plane is modified by the ran-
dom potential U in this plane. The density of states, again, is given
by Eq. (14.30). Neglecting spin splitting, we write the Hamiltonian
as Ĥ = π̂2/2m + U(r), where r = (x, y) is the 2D coordinate and
π̂ = p̂ − (e/c)Ar is the kinematic momentum of 2D electrons. In con-
trast to Eq. (5.12), it is convenient to choose the vector potential as
Ar = [H × r]/2 (symmetric gauge). The influence of the magnetic field
in the Hamiltonian Ĥ on the matrix elements standing in Eq. (5) is
taken into account by the operator of shift, exp(a · ∇)f(r) = f(r + a);
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see problem 2.10. The result is written as (compare to Eq. (9))

〈ri|e−iĤτN/�|ri+1〉 =
(

m

2πi�τN

)
exp

[
i
m(ri − ri+1)2

2�τN

−i
eAri · (ri − ri+1)

�c
− i

�
τNU(ri)

]
. (22)

In the limit τN → 0, instead of Eq. (13), we obtain

GR
t (r, r′) = − i

�
θ(t)

∫ rt=r′

r0=r
D{rτ }

× exp
{

i

�

∫ t

0
dτ
[m

2
ṙ2
τ − e

c
Arτ · ṙτ − U(rτ )

]}
, (23)

which corresponds to the Lagrangian L(r, ṙ) = mṙ2/2 − (e/c)Ar · ṙ −
U(r) = m[ẋ2 + ẏ2 + ωc(xẏ − yẋ)]/2 − U(x, y), where ωc is the cyclotron
frequency introduced in Sec. 5.

The procedure of averaging over the random potential is done accord-
ing to Eqs. (14) and (15) and leads to a non-local term containing the
correlation function w(|r−r′|) = 〈〈U(r)U(r′)〉〉 in the exponential factor.
We point out that the averaged Green’s function GR

t (r, r′) in a magnetic
field, in contrast to the one given by Eq. (16), depends on both r and
r′, not only on |r − r′|. Substituting rτ → rτ + r (so that in the new
coordinates r0 = 0 and rt = r′ − r), we obtain

GR
t (r, r′) = − i

�
θ(t) exp

(
− ie

2�c
H · [r × r′]

)∫ rt=r′−r

r0=0
D{rτ } (24)

× exp
{

i

�

∫ t

0
dτ

[
m

2
ṙ2
τ − e

c
Arτ·ṙτ − 1

2�2

∫ t

0
dτ1

∫ t

0
dτ2w(|rτ1 − rτ2 |)

]}
.

According to this equation, the Green’s function in a magnetic field is
represented as a product of a translation-invariant part, which depends
only on r − r′, by a phase factor containing the vector product [r × r′]
(see also Chapter 10 and Appendix G). This factor, however, has no
influence on the density of states:

ρ(E) =
2
π�

Re
∫ ∞

0
dteiEt/�

∮
D{rτ } exp

[
i

�

∫ t

0
dτ

(
mṙ2

τ

2
(25)

−eH · [rτ × ṙτ ]
2c

)
− 1

2�2

∫ t

0
dτ1

∫ t

0
dτ2w(|rτ1 − rτ2 |)

]
.
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The expression under the path integral, as compared to Eq. (17), has an
additional term in the exponent, due to the magnetic field. To calculate
this integral, we again assume the case of smooth inhomogeneities, when
w(|r|) is replaced by w(0). The density of states is written according to
the first equation of Eq. (19), where one should put the Green’s function
of free 2D electrons in the magnetic field:

gR
t (0) = − i

�
θ(t)

∮
D{rτ } (26)

× exp
[

i

�

∫ t

0
dτ

(
mṙ2

τ

2
− eH · [rτ × ṙτ ]

2c

)]
.

Calculating the contour path integral in this equation (problem 3.16),
we obtain

ρ(E) =
mωc

4π2i�2

∫
C

dt
e−w(0)t2/2�

2+iEt/�

sin(ωct/2)
, (27)

where the contour C goes along the real axis of complex variable t from
−∞ to ∞, passing under the poles tk = (2πk/ωc), where k is integer.
Note that at H = 0 we have only one such pole, t = 0. The integral over
time in Eq. (27) is easily calculated at w(0) = 0 by shifting the contour
to the upper half-plane (for positive energies E). The result is given as a
sum of contributions from each pole, ρ(E) = π−1l−2

H

∑
N

δ(E−εN), where
lH is the magnetic length and εN = �ωc(N + 1/2) is the Landau-level
energy (N = 0, 1, ...); see also Eq. (5.15). In the case of finite w(0), each
of the peaks of the density of states acquires a finite broadening. The
integral in Eq. (27) can be calculated if we assume that the characteristic
broadening energy

√
w(0) is small in comparison to the cyclotron energy

�ωc. Substituting E = εN + ∆E, where |∆E| � �ωc, we calculate the
density of states in the vicinity of each Landau level (problem 3.17). The
total density of states is reduced to a sum of the contributions from the
Landau levels:

ρ(E) =
2

(2π)3/2l2H
√

w(0)

∞∑
N=0

exp
[
−(E − εN)2

2w(0)

]
. (28)

Therefore, in the approximation of a classically smooth random potential
the density of states of 2D electrons in a strong magnetic field is given as
a sum of identical Gaussian peaks placed at the Landau level energies.

17. Dispersion of Dielectric Permittivity
The application of the Green’s functions or path integrals to the anal-

ysis of the Kubo formula appears to be an efficient way for studying the
influence of strong scattering on kinetic properties; see Secs. 15 and 18.
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Moreover, even in the collisionless regime, the expressions for the com-
plex conductivity tensor σαβ(q, ω) obtained in Sec. 13 describe a number
of non-trivial features of linear response related to both spatial and fre-
quency dispersion of the conductivity tensor (i.e., to its dependence on
q and ω, respectively). In this section we consider the contribution of
interband electron transitions to the dielectric permittivity of crystals.
The dielectric permittivity is introduced by the following relation

εαβ(q, ω) = καβ(q, ω) + i
4π

ω
σαβ(q, ω), (1)

where καβ(q, ω) describes the contribution of the crystal lattice due to
ionic polarization, which can be considered in terms of interaction of the
electromagnetic waves with TO phonons and will be studied in Sec. 27.
The second term on the right-hand side of Eq. (1) is proportional to the
complex conductivity, which takes into account the contribution of elec-
tron states near the conduction- and valence-band edges. The indepen-
dent introduction of the lattice contribution and electron contribution
to the crystal polarization is justified when the characteristic scales of
their dispersion are essentially different. In particular, the consideration
given below for constant καβ is not valid in the region of frequencies
close to ωLO and ωTO, where the response is determined mostly by the
phonon contribution.

Since the wave vectors q of the electromagnetic radiation are small
in comparison to characteristic wave vectors of the crystal, up to the
ultraviolet spectral region, we start our consideration with the case q =
0, when one should substitute the conductivity tensor of Eq. (13.18) into
Eq. (1). Since we consider the transitions of non-interacting electrons
placed into the mean field of the crystal, it is possible to study the linear
response by applying the linearized one-particle equation (4.32) for the
density matrix, instead of using the general equation (13.2). This means
that only one-particle operators remain under the trace in Eq. (13.18). It
is convenient to separate the terms proportional to ω−1, which describe
the divergence of σαβ at ω = 0 in the collisionless approximation. Thus,
we write the conductivity tensor as

σαβ(ω) =
e2

ωV
Spη̂eq

{
i

me
δαβ +

1
�

∫ 0

−∞
dτeλτ

[
e−iĤτ /�v̂αeiĤτ /�, v̂β

]}

+
e2

�ωV

∫ 0

−∞
dτeλτ

(
e−iωτ − 1

)
Spη̂eq

[
e−iĤτ /�v̂αeiĤτ /�, v̂β

]
, (2)

where the second term is finite at ω = 0. Calculating the trace in the
first term by using the full basis of Bloch wave functions (5.5), we find
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that the integral over time in this term leads to

1
�

∫ 0

−∞
dτeλτ Spη̂eq

[
e−iĤτ /�v̂αeiĤτ /�, v̂β

]
= i

′∑
δδ′

fδ
vα
δδ′v

β
δ′δ + vβ

δδ′vα
δ′δ

εδ − εδ′
.

(3)
Here fδ = 〈δ|η̂eq |δ〉 is the stationary distribution function of electrons
over the Bloch states |δ〉 ≡ |lp〉, p is the quasimomentum, and the index
l numbers both band and spin states. By the prime sign at the sum,
we indicate that the diagonal (δ = δ′) terms do not contribute to the
expression under consideration. Employing the f -sum rule, which gen-
eralizes Eq. (5.11) to the case of electrons with non-parabolic spectrum
(problem 3.18), we rewrite the first term on the right-hand side of Eq.
(2) in the form

ie2

ω

2
V

∑
p

fnp
∂2εnp

∂pα∂pβ
, (4)

where the contribution of filled bands with fnp = 1 becomes zero after
calculating the sum over p. Therefore, only free carriers (electrons or
holes) contribute to ∝ ω−1 response. In the case of parabolic electron
spectrum with effective mass m, this response is equal to iδαβe2n/mω,
which coincides with the collisionless contribution in Eq. (8.30).

Let us consider an insulating crystal, when the imaginary part of
the dielectric function (1) is determined by the interband transitions
described by the second term in Eq. (2). Again, we use the basis of
Bloch states with the spin-degenerate dispersion laws εcp and εvp for
the conduction (c-) and valence (v-) bands. The occupation numbers
are fvp = 1 and fcp = 0. Integrating over time, as in Eq. (3), we find
Imεαβ(ω) in the following form:

Imεαβ(ω) =
(2πe)2

ω2V

∑
p

Mαβ(p)δ(εvp − εcp + �ω),

Mαβ(p) =
∑
σσ′

vα
vσ,cσ′v

β
cσ′,vσ , (5)

where the sum over the spin number σ is written explicitly. We also
assume that the c- and v- bands are non-degenerate so that the sum
over them does not appear. The expression (5) is evaluated below for
the simplest two-band kp-model described by Eqs. (B.18)−(B.24). We
first assume that the frequency ω is close to the threshold of interband
transitions, εg/�. The dispersion laws for the parabolic approximation
give rise to εcp−εvp = εg+p2/2µ∗ in the argument of the δ-function. The
reduced mass µ∗ is expressed through the effective masses of electrons in



Linear Response Theory 133

conduction and valence bands, mc and mv , as µ∗−1 = m−1
c + m−1

v (note
that the sign of the valence-band electron mass is changed so that it is
positive and has the meaning of hole mass). According to Eqs. (B.23)
and (B.19), the interband velocity operator at small p is equal to sρ̂1σ̂,
and the factor Mαβ in Eq. (5) is transformed to Mαβ = s2trσσ̂ασ̂β =
δαβ2s2, where trσ denotes the trace over the spin variable and s is the
interband velocity of the two-band model. Therefore, for the case of
isotropic and homogeneous media we consider, the dielectric permittivity
tensor becomes a scalar, εω , and its spectral dependence is given by the
joint density of states at the energy �ω − εg > 0. The joint density of
states depends on the reduced mass µ∗ rather than on m. The absorption
coefficient αω is expressed through the imaginary part of the dielectric
permittivity according to αω = ωImεω/c

√
κ (see problem 3.19 as well as

Eq. (10.23) and problem 2.11), where κ is the dielectric permittivity of
the lattice at the frequency εg/�. We obtain

αω =
(2πes)2

ωc
√

κ
ρ3D(�ω − εg), (6)

where ρ3D is given by Eq. (5.3) with m replaced by µ∗. The square-root
spectral dependence of the absorption coefficient is valid only near the
edge of absorption. In the region �ω − εg ∼ εg , one should take into
account both non-parabolicity of the electron spectrum and momentum
dependence of the matrix elements of velocity. These factors lead to a
more complicated absorption spectrum.

Considering the spectral dependence of Reεω and Imεω for strongly
doped materials of n-type, we restrict ourselves to the case of low tem-
peratures (smaller than both εg and Fermi energy εF in the c-band),
when fvp = 1 and fcp = θ(εF −εcp). To find Mαβ(p), we use Eq. (B.23)
for the velocity operator and calculate the sum over the spin variables.
Using the isotropy of the electron spectrum, we average Mαβ(p) over the
angle of p and obtain Mαβ(p) = δαβMp, where Mp = 2s2(1 + 2η2

p)/3η2
p

and ηp =
√

1 + (p/ms)2. To find Imεω as a function of both ω and dop-
ing level determining the position of εF , one has to calculate the integral
over p (or, equivalently, over ηp) in Eq. (5). The result is

Imεω =
e2

�s

√
Ω2 − 1

2Ω2 + 1
6Ω3 θ(Ω − ηpF ), Ω =

�ω

εg
, (7)

where the θ-function written through the Fermi momentum pF describes
the Pauli blocking effect, i.e., the shift of the interband transition edge
due to occupation of the bottom of the conduction band by free electrons.
If the conduction band is empty, the factor θ(Ω − ηpF ) in Eq. (7) is
replaced by θ(Ω − 1).
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To calculate Reεω , we integrate over time in the general equation (2)
and take a sum over spin variables. For insulators, when fvp = 1 and
fcp = 0, we obtain

Reεω − κ =
4πe2

ω2 P
∫

dp
(2π�)3

Mp (8)

×
[
(εcp − εvp + �ω)−1 + (εcp − εvp − �ω)−1 − 2(εcp − εvp)−1]
=

4πe2

ω2 P
∫

dp
(2π�)3

2Mp(�ω)2

(εcp − εvp)[(εcp − εvp)2 − (�ω)2]
,

where P is the symbol of principal value. The right-hand side of Eq.
(8), which describes the contribution of virtual interband transitions,
is logarithmic-divergent at p → ∞. This divergent contribution is
frequency-independent and can be made finite when finite widths of c-
and v-bands are taken into account. Within the logarithmic accuracy,
we use the condition |p| < pm , where pm � π�/a and a is the lattice
constant, and include this contribution into the high-frequency dielectric
constant ε∞:

ε∞ = κ + 8π(e�)2
∫

|p|<pm

dp
(2π�)3

Mp

(εcp − εvp)3

= κ +
e2

3π�s

∫ ηm

1
dη
√

η2 − 1
1 + 2η2

η4 . (9)

As a result, the frequency dependence of Reεω near the interband ab-
sorption edge is given by

Reεω = ε∞ − e2Ω2

3π�s
P
∫ ∞

1
dη
√

η2 − 1
1 + 2η2

η4(Ω2 − η2)
. (10)

The variable of integration in Eq. (10) and in the second equation of Eq.
(9) is η = ηp. The spectral dependences given by Eqs. (10) and (7) are
presented in Fig. 3.2. One can see that the square-root spectral depen-
dence of the absorption at Ω = 1 corresponds to a non-analytic spectral
dependence of Reεω . In the case of step-like absorption threshold, which
is realized in strongly doped materials, Reεω is logarithmic-divergent
at the threshold. This property is easily checked with the use of the
Kramers-Kronig dispersion relations (problems 3.20 and 3.21).

The general expressions (1) and (2) can be used to describe the contri-
bution of non-equilibrium free carriers with an arbitrary steady-state dis-
tribution into the dielectric permittivity. Therefore, they can be applied
for studying the optical properties of hot electrons whose distribution is
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Figure 3.2. Spectral dependence of real and imaginary parts of the dielectric per-
mittivity εω − ε∞ of non-doped material described by the two-band model, in units
of e2/�s, according to Eqs. (17.7) and (17.10). Solid: Re(εω − ε∞), dashed: Imεω.

analyzed in Chapter 7. Indeed, the calculation of non-equilibrium part
of the density matrix according to Eq. (13.4) essentially assumes the
stationarity of the unperturbed statistical operator, but does not imply
that this operator corresponds to thermodynamic equilibrium. There-
fore, the expression for the complex conductivity is given by Eq. (13.18),
where the statistical operator is assumed to be diagonal with respect to
the band index and momentum. A stationary electric field applied to
the crystal along OZ creates an anisotropic distribution of free carriers.
As a result, the responses of the carriers to electromagnetic waves po-
larized parallel and perpendicular to the electric field become different.
The diagonal contribution to the dielectric permittivity tensor due to
free carriers in the conduction band is

∆εαα(ω) = −8πe2

ω2V

∑
p

fcp
∂2εcp

∂p2
α

− 4πe2

ω2V
P
∑
σσ′p

fcp|〈vσp|v̂α|cσ′p〉|2

×
[
(εcp − εvp + �ω)−1 + (εcp − εvp − �ω)−1 − 2(εcp − εvp)−1] . (11)

This equation is obtained in the way similar to that used in the derivation
of Eqs. (4) and (8).

The induced optical anisotropy leading to the Kerr effect due to free
carriers appears if one takes into account the non-parabolicity of the
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conduction-band spectrum and momentum dependence of the interband
matrix elements of the velocity operator. To estimate the strength of
the anisotropy, defined as δεω = ∆εzz(ω) − ∆ε⊥(ω) with ε⊥ = εxx = εyy ,
one may use the shifted Maxwell distribution, fp, obtained from the
distribution function (31.25) in the limit of non-degenerate electron gas.
Accounting for the drift corrections up to the second order, we have
fcp � fε[1 + (p · u)/Te + (p · u)2/2T 2

e ], where fε is the Boltzmann dis-
tribution of electrons with effective electron temperature Te and u||OZ
is the drift velocity. Assuming that Te � εg , we use the relations

∂2εcp

∂p2
α

� 1
m

(
1 − p2 + 2p2

α

mεg

)
, (12)

∑
σσ′

|〈vσp|v̂α|cσ′p〉|2 � 2s2
(

1 − 2p2
α

mεg

)
,

which follow from the expansions of Eqs. (B.22) and (B.23) in powers
of a small parameter p2/mεg . As a result,

δεω � 16πe2

mω2

∫
dp

(2π�)3
fcp

p2
z − p2

⊥
mεg

+
8π(es)2

ω2

∫
dp

(2π�)3
fcp

p2
z − p2

⊥
mεg

[
(εg + p2/2µ∗ + �ω)−1

+(εg + p2/2µ∗ − �ω)−1 − 2(εg + p2/2µ∗)−1] , (13)

where µ∗ is the reduced mass used in Eqs. (5) and (6). A non-zero
anisotropy results from the angular averaging of the contribution pro-
portional to u2 in fcp. The isotropic part of fcp gives zero contribution
into Eq. (13) because of the angular averaging. This averaging is done
according to the following formula:∫

dΩ̃
4π

(u · p)2(e1 · p)(e2 · p) =
p4

15
[(e1 · e2)u2 + 2(u · e1)(u · e2)], (14)

where dΩ̃ is the differential of the solid angle of the vector p and e1,2 are
the unit vectors of the Cartesian coordinate system. We use Eq. (14)
with e1 = e2. The spectral dependence of δεω is given by the integral
over a dimensionless momentum:

δεω = ε∞
(ωp

ω

)2 mu2

εg

32
15

√
π

∫ ∞

0
dxx6e−x2

×
{

1 +
εg

2
[
(εg + x2Tem/µ∗ + �ω)−1 (15)
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+(εg + x2Tem/µ∗ − �ω)−1 − 2(εg + x2Tem/µ∗)−1]}.

The plasma frequency is defined here as ω2
p = 4πe2n/ε∞m (we have

substituted ε = ε∞ into the definition of ωp given in the end of Sec. 8
because ω considerably exceeds the optical phonon frequencies). The
asymptotic behavior of the spectral dependence,

δεω � ε∞
(ωp

ω

)2
{

2mu2/[εg(1 − Ω2)], 1 − Ω � mTe/µ∗εg

2µ∗u2/(5Te), 1 − Ω � mTe/µ∗εg
, (16)

demonstrates a considerable, determined by the factor εg/Te � 1, en-
hancement of the anisotropy of dielectric permittivity near the funda-
mental absorption edge, when the small parameter mu2/εg is replaced
by µ∗u2/Te.

If the spatial dispersion is taken into account, i.e., q 	= 0, the dielectric
permittivity becomes anisotropic due to the linear term in the drift-
velocity expansion of fcp. We stress that in thermodynamic equilibrium
the linear in q terms in the dielectric permittivity tensor are equal to
zero due to Onsager’s symmetry relation (problem 3.22). The presence
of an electric current violates this relation and causes different responses
for the electromagnetic waves propagating along the current and in the
opposite direction (Fresnel drag of the radiation by the current). The
characteristic feature of the case under consideration is the stationarity
of the lattice. Only the drift of free electrons contributes to the drag.
Therefore, a macroscopic consideration of the Fresnel drag by a moving
medium is not applicable here, and one has to determine the dielectric
permittivity from a microscopic calculation.

To find the linear in q contribution δ̃ε to the dielectric permittivity
tensor, we use the general equation (13.14), where the linearized current
density operator ev̂−i(e/2)[v̂(q·x̂)+(q·x̂)v̂] is derived from Eq. (13.13).
As a result,

δ̃εαβ(q, ω) =
2πe2

�ω2V

∫ 0

−∞
dτeλτ−iωτ

×Spρ̂c

{[
e−iĤτ /�{v̂α(q · x̂) + (q · x̂)v̂α}eiĤτ /�, v̂β

]
−
[
e−iĤτ /�v̂αeiĤτ /�, v̂β(q · x̂) + (q · x̂)v̂β

]}
, (17)

where ρ̂c is the stationary density matrix describing non-equilibrium
electrons of c-band. Using the momentum representation of the velocity
and coordinate operators, v̂p = Ûpv̂Û+

p and x̂p = Ûpx̂Û+
p , see Eqs.
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(B.19)−(B.23), we obtain the following expressions:

v̂p � p
m

ρ̂3 + sρ̂1σ̂, x̂p � x̂ +
�√

2mεg
ρ̂2σ̂, (18)

where x̂ = i�∇p. The second terms in these expressions determine the
non-diagonal parts of the operators and are responsible for interband
transitions.

The contribution of the diagonal parts of the operators (18) to the
commutators standing in Eq. (17) is given by the expression

i
2�

m2 (qαpβ + pαqβ). (19)

These terms give the following contribution to the tensor (17):

− 4πe

mω3 (qαIβ + Iαqβ), (20)

where the stationary current density caused by the drift is introduced in
a standard way, as I = (e/mV )Sp(ρ̂cp). The contribution of interband
transitions into the expression in the braces {. . .} of Eq. (17) is written
as

2s2σ̂ασ̂β

(
q · ∂εvp

∂p

)
τ
[
ei(εcp−εvp)τ /� − e−i(εcp−εvp)τ /�

]
. (21)

Taking into account that the trace of σ̂ασ̂β over the spin variables is
equal to 2δαβ , we calculate the integral over time and transform the
interband contributions to δ̃εαβ(q, ω) as

−δαβ
4πe2

mω

∫
dp

(2π�)3
fcp

(q · p)
m

εg

�ω

×
[(

ω − εcp − εvp

�

)−2

−
(

ω +
εcp − εvp

�

)−2
]

. (22)

In a similar way as in Eq. (16) at |1 − �ω/εg | � (µ∗/m)Te/εg , we
obtain a simple expression for the anisotropic correction to the dielectric
permittivity:

δ̃εαβ(q, ω) = − 4πe

mω3 (qαIβ + Iαqβ) − δαβ
8πe

mω3 (q · I) Ω2

(1 − Ω2)2
. (23)

The contribution proportional to δαβ(q ·I) in this equation describes the
difference in the optical ways for the transverse electromagnetic waves
propagating along the current and in the opposite direction. Although
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this difference contains a relativistic smallness u/c, it can be measured
with the use of interference methods. Similar to the case of the quadratic
electro-optical effect described above, the contribution of free carriers to
the permittivity increases near the edge of fundamental absorption.

18. Interband Absorption under External Fields
In this section we consider the influence of external fields on the in-

terband transitions near the fundamental absorption edge, when the
energy of the photon, �ω, is close to the energy gap εg between the
conduction and valence bands. The absorption coefficient is essentially
modified if the energy |�ω − εg | is comparable to the characteristic ener-
gies associated with the external fields applied to insulators or non-doped
semiconductors. According to Eq. (10.23), the absorption coefficient is
expressed through the real part of the conductivity tensor given by the
general equation (17.2). Below we use the basis of eigenstates of the
Hamiltonian Ĥ describing the electrons in static external fields and in-
tegrate over time in Eq. (17.2) according to Eq. (8.6). The electron
states near the edges of c- and v-bands are |cσδ〉, where σ = ±1 is the
spin quantum number and δ describes the intraband motion under the
external field. The field is assumed to be small enough to neglect the in-
terband tunneling (see Sec. 60) so that we can use fcσδ = 0 and fvσδ = 1
and obtain

Reσαβ(ω) =
πe2

ωV

∑
δδ′σσ′

〈vσδ|v̂α|cσ′δ′〉〈cσ′δ′|v̂β |vσδ〉δ(εvδ −εcδ′ +�ω), (1)

where the δ-function describes the energy conservation.
If the fields acting on electrons are smooth on the scale of interband

length, see the discussion of Eq. (B.24), the matrix element of the ve-
locity operator can be written as 〈vσδ|v̂α|cσ′δ′〉 = vα

vσ,cσ′〈vδ|cδ′〉, where
the factor 〈vδ|cδ′〉 describes the overlap of coordinate-dependent enve-
lope wave functions of the c- and v-band states. Near the fundamental
absorption edge in the material described by the two-band model, we
use

∑
σσ′ vα

vσ,cσ′v
β
cσ′,vσ � δαβ2s2 and find the absorption coefficient

αω =
8(πes)2

ωc
√

κV

∑
δδ′

|〈vδ|cδ′〉|2δ(εvδ − εcδ′ + �ω). (2)

The overlap factor is written explicitly as 〈vδ|cδ′〉 =
∫

drψ(vδ)∗
r ψ(cδ′)

r ,
where the envelope functions satisfy the Schroedinger equations[

∓�
2∇2

r

2mj
+ Uj(r) + εj − εjδ

]
ψ(jδ)

r = 0 (3)
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obtained from the many-band equations (B.6). Equation (3) contains
the energy εj of j-band extremum and the effective mass mj near this
extremum. Note that we have changed the sign of the valence-band
effective mass to make it positive. The upper (lower) sign in Eq. (3)
and below corresponds to the conduction (valence) band. The potential
energy Uj(r), counted from the extremum of j-band, can depend on the
band index (this occurs, for example, in non-homogeneous alloys or in
non-ideal heterostructures).

In the absence of external fields, when the eigenstate indices δ and δ′
are replaced by the momenta p and p′, the overlap factor gives simply
δpp′ and Eq. (2) is reduced to Eq. (17.6). In quantized magnetic
fields and in quantum wells, the overlap factors are calculated with the
wave functions (5.15) and (5.20), respectively, and are reduced to the
Kronecker symbols of the corresponding quantum numbers. As a result,
the absorption coefficient is again expressed according to Eq. (17.6),
where the joint density of states is now determined by Eqs. (5.16) and
(5.26).

The influence of a stationary electric field E on the interband ab-
sorption, known as Frantz-Keldysh effect, leads to a more complicated
behavior of the absorption coefficient. In the case of a homogeneous field
E, each eigenstate is characterized by the transverse (perpendicular to
the field) momentum p⊥ and continuous quantum number ξ describing
the longitudinal motion. The overlap factor is δp⊥p′

⊥

∫∞
−∞ dpψ(vξ)∗

p ψ(cξ′)
p ,

where ψ(jξ)
p are the wave functions of one-dimensional Schroedinger equa-

tion in the momentum representation:(
± p2

2mj
+ i�|e|E d

dp
− ξ

)
ψ(jξ)

p = 0. (4)

The energies of the states in c- and v-bands are equal to εc +p2
⊥/2mc +ξ′

and εv − p2
⊥/2mv + ξ, respectively. The usage of independent equations

for the envelope functions ψ(cξ)
p and ψ(vξ)

p necessarily implies that there
is no interband tunneling. The solutions of these equations are

ψ(cξ)
p = NE exp

{
i

�|e|E

∫ p

0
dp1(p2

1/2mc − ξ)
}

,

ψ(vξ)
p = NE exp

{
i

�|e|E

∫ p

0
dp1(−p2

1/2mv − ξ)
}

, (5)

where the normalization factor NE = (2π�|e|E)−1/2 is obtained from
the condition

∫
dpψ(jξ)∗

p ψ(jξ′)
p = δ(ξ − ξ′). Substituting Eq. (5) into the
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overlap factor, we obtain

N2
E

∫ ∞

−∞
dp exp

{
i

�|e|E

[
p3

6µ∗ + (ξ − ξ′)p
]}

(6)

=
1

2π�ΩE

∫ ∞

−∞
du exp

{
iu3/3 + iu(ξ − ξ′)/�ΩE

}
=

1
�ΩE

Ai
(

ξ − ξ′

�ΩE

)
.

The result is expressed through the frequency ΩE = (|e|E)2/3 /(2�µ∗)1/3

and Airy function, Ai(x) ≡ (2π)−1 ∫∞
−∞ du exp(iu3/3 + iux).

Substituting the overlap factor (6) and band spectra into Eq. (2), we
find

αω =
8(πes)2

ωc
√

κV

∑
p⊥

∫
dξ

∫
dξ′(�ΩE)−2

×
[
Ai
(

ξ − ξ′

�ΩE

)]2

δ(�ω − εg − p2
⊥/2µ∗ + ξ − ξ′)

=
8(πes)2|e|E
ωc

√
κ(�ΩE)2

∫
dp⊥

(2π�)2

[
Ai
(

εg − �ω + p2
⊥/2µ∗

�ΩE

)]2

, (7)

where the have integrated over ξ − ξ′ with the use of the δ-function
and taken into account that

∫
dξ = |e|EL (the energy in a homogeneous

electric field is proportional to the normalization length). The cylindrical
symmetry of the problem permits us to rewrite Eq. (7) as

αω =
2π(es)2

√
�ΩE(2µ∗)3/2

ωc
√

κ�3 F

(
�ω − εg

�ΩE

)
, F (x) =

∫ ∞

−x
dzAi2(z). (8)

The function F (x) is shown in Fig. 3.3. The presence of the electric field
leads to a finite absorption below the interband transition threshold.
This absorption becomes exponentially small if εg − �ω � �ΩE. In this
limit, we use the asymptotic behavior of the Airy function, Ai(z) �
exp(−2z3/2/3)/(2

√
πz1/4) at z � 1, and obtain

αω ∝ exp

[
−4

3

(
εg − �ω

�ΩE

)3/2
]

. (9)

If �ω > εg , the function F (x) in Eq. (8) oscillates and approaches the
square-root dependence given by Eq. (17.6).

As an example of application of the path integral formalism, we con-
sider the influence of random external fields on the fundamental absorp-
tion edge. We assume that the random potentials Uj(r) are smooth
on the scale of the crystal lattice period and use Eq. (3) for the en-
velope functions. The squared overlap factor |〈vδ|cδ′〉|2 is written as∫

dr
∫

dr′ψ(vδ)∗
r ψ(cδ′)

r ψ(vδ)
r′ ψ(cδ′)∗

r′ . Our aim is to represent the absorption
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Figure 3.3. Function F (x) =
∫∞

−x
dzAi2(z) and

√
x (dotted line).

coefficient through the products of two Green’s functions averaged over
the random potential distribution, as in Eq. (13.27). First, we rewrite
the δ-function in Eq. (2) as

∫
dεδ(ε − εvδ)δ(ε − εcδ′ + �ω), in a sim-

ilar way as in Eq. (13.24). Then we use the integral representation
2πδ(E) =

∫∞
−∞ dteiEt for each of these δ-functions and employ the ex-

pressions of the Green’s functions given in problem 3.10. As a result,
Eq. (2) is rewritten in the form

αω =
8(πes)2

ωc
√

κV

∑
s,s′=R,A

(−1)l

∫
dε

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ei(ε+�ω)t/�+iεt′/�

×
∫

dr
∫

dr′
〈〈

G
s(v)
t′ (r, r′)Gs′(c)

t (r′, r)
〉〉

, (10)

where l =0 and 1 for s 	= s′ and s = s′, respectively. We stress that Gs(c)

and Gs(v) standing in Eq. (10) are the Green’s functions of the time-
dependent Schroedinger equations with the Hamiltonians ∓�

2∇2
r/2mj +

Uj(r) + εj (j = c, v); see Eq. (3).
To calculate the absorption coefficient, we use the path-integral ex-

pression (16.13). The first step is to find the average of the characteristic
functional exp

[∫
drfcrUc(r) +

∫
drfvrUv(r)

]
appearing in the product of

the Green’s functions. For arbitrary Gaussian random potentials, it can
be done by analogy with the calculations presented in Eqs. (16.14) and
(16.15). We obtain
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exp

{
− i

�

∫ t

0
dτUc(xτ ) − i

�

∫ t′

0
dτUv(yτ )

}〉〉
= exp

{
− 1

2�2

∫ t

0
dτ

∫ t

0
dτ ′wcc(|xτ − xτ ′ |) (11)

− 1
2�2

∫ t′

0
dτ

∫ t′

0
dτ ′wvv(|yτ − yτ ′ |) − 1

�2

∫ t

0
dτ

∫ t′

0
dτ ′wcv(|xτ − yτ ′ |)

}
,

where wjj′(|r − r′|) = 〈〈Uj(r)Uj′(r′)〉〉 so that three kinds of pair cor-
relation functions, the diagonal and non-diagonal ones, appear. The
absorption can be expressed as

αω =
(4π2es)2

ωc
√

κ
[RAR − RRR + c.c.] , (12)

where

RAR =
1

2π2�2V

∫
dε

∫ 0

−∞
dt′
∫ ∞

0
dtei(ε+�ω−εg)t/�+iεt′/�

∫
dr
∫

dr′

×
∫ yt′=r′

y0=r
D{yτ }

∫ xt=r

x0=r′
D{xτ } exp

{
− imv

2�

∫ t′

0
dτ ẏ2

τ +
imc

2�

∫ t

0
dτ ẋ2

τ

− 1
2�2

∫ t′

0
dτ1

∫ t′

0
dτ2wvv(|yτ1 − yτ2 |) − 1

2�2

∫ t

0
dτ1

∫ t

0
dτ2wcc(|xτ1 − xτ2 |)

− 1
�2

∫ t

0
dτ1

∫ t′

0
dτ2wcv(|xτ1 − yτ2 |)

}
. (13)

The functional integrals are taken along the valence-band electron paths
yτ and conduction-band electron paths xτ . The expression for RRR is
similar, but the integrals over t and t′ are taken in the same interval,
from 0 to ∞. Integrating over ε in Eq. (13), we immediately obtain
the delta-function δ(t + t′). This means that RRR � 0, since it contains
the contributions from positive t and t′ only. Therefore, the absorption
coefficient is proportional to (RAR + c.c.).

The approximation of classically smooth potentials Uc,v(r) allows us
to calculate RAR analytically in the way similar to that described in Sec.
16. Replacing wjj′(|r− r′|) by wjj′(0), we calculate the path integral. It
gives us a product of the free-electron Green’s functions so that

RAR =
1
π�

∫ ∞

0
dtei(ω−εg/�)t

∫
dr

(mcmv)3/2

(2πi�t)3

× exp
(

i(mc + mv)r2

2�t

)
exp

(
− w̃

2�2 t2
)

, (14)
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where w̃ = wcc(0) + wvv(0) − 2wcv(0). The integral over r in Eq. (14)
is taken easily. As a result, we find that RAR + c.c. is reduced to the
expression for the density of states given by Eq. (16.19), where E, m,
and w(0) are replaced, respectively, by �ω − εg , mcmv/(mc + mv) ≡ µ∗,
and w̃. Therefore, in the limit of classically smooth disorder, the ab-
sorption coefficient is determined by Eq. (17.6), where the joint density
of states ρ3D(�ω − εg) differs from the density of states of Eq. (16.19)
by substituting the reduced effective mass µ∗ and correlation function
w̃ in place of m and w(0), respectively. In the absence of the random
potential, as well as in the region �ω − εg � w̃, the frequency depen-
dence of the absorption coefficient near the fundamental absorption edge
(|�ω − εg | � εg) exactly follows the energy dependence of the density
of states with the reduced effective mass. On the other hand, far below
the fundamental edge, at εg − �ω � w̃, one finds

αω ∝ exp
[
−(�ω − εg)2/2w̃

]
. (15)

The broadening of the edge of the absorption spectrum cannot be
described within the approximation of classically smooth potentials if
Uc(r) = Uv(r) = U(r), i.e., when the spatial variations of the potential
energies of the valence- and conduction-band electrons do not result in
the variations of the energy gap, and w̃ = 0. Quantum corrections are
principally important in this case. To calculate them, we represent the
paths as

xτ = r′ +
τ

t
(r − r′) + δxτ , yτ = r +

τ

t
(r − r′) + δyτ , (16)

where δxτ and δyτ are the deviations from the straight paths. The
integrals along δxτ and δyτ are the contour path integrals since δx0 =
δxt = 0 and δy0 = δy−t = 0. Equation (13) can be rewritten as

RAR =
1
π�

∫ ∞

0
dtei(�ω−εg)t/�

∫
d∆r exp

(
i(mc + mv)∆r2

2�t

)

×
∮

D{δxτ }
∮

D{δyτ } exp
{

i

2�

∫ t

0

[
mcδẋ2

τ + mvδẏ2
τ−t

]
− 1

2�2

∫ t

0
dτ

∫ t

0
dτ ′ [w(|rτ−τ ′ + δyτ−t − δyτ ′−t|) (17)

+w(|rτ−τ ′ + δxτ − δxτ ′ |) − 2w(|rτ−τ ′ + δxτ − δyτ ′−t|)]
}

,

where ∆r = r−r′ and rτ−τ ′ ≡ ∆r(τ−τ ′)/t. In the transformations done,
we first calculated the integral over ε with the result δ(t′ + t). Then we
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calculated the integrals over t′ and (r + r′). Next, we took into account
that

∫ t
0 dτδẋτ =

∫ −t
0 dτδẏτ = 0 and wcc(x) = wvv(x) = wcv(x) ≡ w(x)

in order to transform, respectively, the kinetic and potential parts of
the expression in the exponent. So far the transformations have been
exact. Below we apply the approximation of small deviations and expand
the correlation functions w in series of their arguments. The first non-
vanishing contributions to the double integral over time in the exponent
are quadratic in δx and δy. The contributions of the higher order are
neglected. In this approximation, the potential part is independent of
∆r and characterized by the mean square of the potential gradient

ψ =
〈〈

[∇U(r)]2
〉〉

= lim
∆r→0

∇r · ∇r′w(|∆r|) = −3 lim
r→0

d2w(|r|)
d|r|2 . (18)

Calculating the integral over ∆r, we obtain

RAR =
1
π�

∫ ∞

0
dtei(�ω−εg)t/�

(
2πi�t

mc + mv

)3/2

×
∮

D{δxτ }
∮

D{δyτ } exp
{

i

2�

∫ t

0
dτ
[
mcδẋ2

τ + mvδẏ2
τ−t

]
(19)

− ψ

6�2

[∫ t

0
dτ(δxτ − δyτ−t)

]2}
.

In this expression we can replace δyτ−t by δyτ because the paths are
closed. Next, since the potential part depends on the difference z−

τ =
δxτ − δyτ only, it is convenient to use new coordinates, z−

τ and z+
τ =

(mcδxτ +mvδyτ )/(mc+mv), and carry out the transformation
∮

D{δxτ }
×
∮

D{δyτ } . . . →
∮

D{z+
τ }
∮

D{z−
τ } . . . . The kinetic-energy part of the

expression in the exponent of Eq. (19) is diagonal in these coordinates.
It is written as

i

2�

∫ t

0

[
(mc + mv)(ż

+
τ )2 + µ∗(ż−

τ )2
]
, (20)

which means that one can calculate the path integral over z+
τ separately

from that over z−
τ . The path integral over z+

τ has the same form as the
path integral for a free electron. The remaining path integral,∮

D{z−
τ } exp

{
iµ∗

2�

∫ t

0
dτ(ż−

τ )2 − ψ

6�2

(∫ t

0
dτz−

τ

)2
}

, (21)
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depends on the reduced mass only. To calculate this integral, let us
expand z−

τ into the sine Fourier series,

z−
τ =

∞∑
k=1

zk
πk

2t
sin

πkτ

t
. (22)

The factor πk/2t is included for convenience. The path integral becomes
a multiple integral over the vectors zk . Calculating the integrals over
time in the exponent of Eq. (21), we notice that only the terms with odd
k (k = 2l − 1, l = 1, 2, . . .) contribute to the potential-energy part. The
contribution of even k (k = 2l, l = 1, 2, . . .) enters the kinetic-energy
part only, and is equal to (iµ∗π4/4�t3)

∑∞
l=1(2l)4z2

2l. Transforming the
contour path integral

∮
D{z−

τ } . . . to a multiple integral over zk , one may
integrate out the variables z2l, including the result of such integration
(together with the Jacobian of the transformation and with the result
of integration over z+

τ ) into a time-dependent normalization factor Nt.
Obviously, this factor is independent of the potential energy. We do
not need to search for this factor explicitly, since it can be found by
comparison of our results in the limit ψ = 0 to the known result (17.6)
for the absorption in the absence of the potential. Therefore, retaining
the multiple integral over zk with odd k = 2l − 1, we obtain

RAR =
1
π�

∫ ∞

0
dtei(�ω−εg)t/�Nt

∫
dz1

∫
dz3 . . .

∫
dz2l−1 . . .

× exp
{

iµ∗π4

�t3

∞∑
l=1

(l − 1/2)4z2
2l−1 − ψ

6�2

∑
l,l′

z2l−1z2l′−1

}
. (23)

This integral contains a biquadratic form in the exponent and is calcu-
lated according to the relation

∞∏
l=1

{(
Al

π

)3/2 ∫
dz̃l exp

[
−Alz̃2

l − Bz̃l

∞∑
l′=1

z̃l′

]}

=

(
1 +

∞∑
l=1

B

Al

)−3/2

, (24)

where Al = µ∗π4(l − 1/2)4/i�t3, B = ψ/6�
2, and z̃l = z2l−1. Equation

(24) can be checked directly (problem 3.23). Finally, we make use of the
identity

∑∞
l=1(2l − 1)−4 = π4/96 and substitute the calculated RAR into

Eq. (12). The absorption coefficient is expressed as

αω =
4π2(es)2

ωc
√

κ

1
π�

(
µ∗

2π�

)3/2 ∫ ∞

−∞
dt

ei(�ω−εg)t/�

(it + 0)3/2[1 − (iEBt/�)3]3/2 , (25)
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where the characteristic broadening energy is EB = (ψ�
2/36µ∗)1/3. The

quantum nature of the broadening becomes clear if one estimates the
derivative d2w(|r|)/d|r|2 as w(0)/l2c , where lc is a characteristic length of
random potential inhomogeneities. Then EB is estimated as [w(0)Ec]1/3,
where Ec = �

2/12µ∗l2c is equal, within the accuracy of a numerical coef-
ficient, to the kinetic energy of a particle with effective mass µ∗ and de
Broglie wavelength lc. This quantum broadening can be interpreted as
Frantz-Keldysh effect in the electric field −∇U(r)/e.

The denominator in Eq. (25) goes to zero in four points: t1 = +i0,
t2 = −i�/EB, and t3,4 = �(i ±

√
3)/2EB. Since these points are not

simple poles, the integral over time in Eq. (25) cannot be calculated an-
alytically. However, in the region far below the fundamental absorption
edge, when εg − �ω � EB, the main contribution to the integral comes
from the vicinity of t = −i�/EB and

αω ∝ exp(−|�ω − εg |/EB) (26)

(compare this to Eq. (15)). Expression (26) describes the Urbach tail of
the interband absorption observed in bulk semiconductors doped with
impurities. Indeed, the impurity potential U(r) = Uim(r) is the same for
c and v bands, and the assumption Uc(r) = Uv(r) leading to Eq. (26) is
valid for this case.

Problems
3.1. Carry out the double Fourier transformation in Eqs. (13.9) and

(13.10).
Hint: The double Fourier transformation is defined as

σαβ(q,q′|ω) =
∫

dr
∫

dr′e−iq·rσαβ(r, r′|ω)eiq′·r′
.

3.2. Consider the analytical properties of the conductivity tensor
σαβ(q, ω) and derive the Kramers-Kronig dispersion relations (13.15).

Solution: From the formal point of view, one may consider ω in Eq. (13.14) as a
complex variable, though only real and positive ω have physical meaning. The factor
e−iωτ is finite at τ < 0 in the upper half-plane of the complex variable ω. According to
the theory of the functions of complex variable, the conductivity tensor is analytical
in the upper half-plane of ω and goes to zero in this half-plane at |ω| → ∞.

This analytical property, in fact, follows just from the causality principle. Intro-
ducing the generalized susceptibility χαβ(r, r′|t) characterizing a linear response of
the observable quantity ∆Qα(r, t) to the perturbation Fβ(r, t) according to (see also
Eqs. (13.28)−(13.30)),

∆Qα(r, t) =
∑

β

∫
dr′
∫

dt′χαβ(r, r′|t − t′)Fβ(r′, t′),
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one should demand that χαβ(r, r′|t − t′) is non-zero only at t > t′. The tempo-
ral Fourier transformation defines the function χαβ(r, r′|ω) =

∫∞
−∞ dteiωtχαβ(r, r′|t),

which is analytical in the upper half-plane of ω and goes to zero in this half-plane at
|ω| → ∞, i.e., has the analytical property mentioned above. One can also apply the
inverse Fourier transformation to Eq. (13.10) (or to Eq. (13.14)) to see directly that
σαβ(r, r′|t) (or σαβ(q, t)) is equal to zero for t < 0.

The analytical property of the conductivity tensor allows one to obtain integral
relations between real and imaginary parts of σαβ(q, ω). Indeed, using it, we can
write ∮

dω′ σαβ(q, ω′)
ω′ − ω

= 0,

where the path of integration is an arbitrary closed contour in the upper half-plane
of the complex variable ω′. Consider a contour which goes along the real axis from
−∞ to ∞, passing above the simple pole at ω′ = ω, and then goes from ∞ to −∞
along a semi-circle of infinite radius in the upper half-plane. Since the contribution
of this upper part is zero, the equation can be rewritten as

P
∫ ∞

−∞
dω′ σαβ(q, ω′)

ω′ − ω
− iπσαβ(q, ω) = 0,

where the integral along the real axis is written as a sum of the principal value of
this integral and the contribution from the infinitely small semi-circle over the pole
ω′ = ω. Separating the real and imaginary parts of the complex equation written
above, we obtain the Kramers-Kronig dispersion relations:

Reσαβ(q, ω) =
1
π

P
∫ ∞

−∞
dω′ Imσαβ(q, ω′)

ω′ − ω
,

Imσαβ(q, ω) = − 1
π

P
∫ ∞

−∞
dω′ Reσαβ(q, ω′)

ω′ − ω
.

If q = 0, the symmetry property (13.16) in the form Reσαβ(ω′) = Reσαβ(−ω′) and
Imσαβ(ω′) = −Imσαβ(−ω′) allows us to transform the integrals in these relations to
the integrals over positive ω′, and we obtain Eq. (13.15).

3.3. Consider the linear response of electrons to the longitudinal
electric field described by a scalar potential.

Solution: The Hamiltonian of the perturbation is written as ∆̂Hω =
∫

drρ̂rΦ(r, ω),
where Φ(r, ω) is the scalar potential which determines the electric field E(r, ω) =
−∇Φ(r, ω), and ρ̂r = e

∑
j δ(r − xj) is the charge density operator. The induced

charge density is ∆ρ(r, ω) = Spρ̂r∆̂ηω. One may also introduce the vector of po-
larization, ∆P(r, ω), according to ∇ · ∆P(r, ω) = −∆ρ(r, ω), and the corresponding
operator ∆̂Pr. Using Eq. (13.4) for non-equilibrium part of the density matrix, we
obtain

∆ρ(r, ω) =
1
i�

∫ 0

−∞
dτeλτ−iωτSpη̂eq

[
e−iĤτ/�ρ̂re

iĤτ/�, ∆̂Hω

]
=
∫

dr′α(r, r′|ω)Φ(r′, ω).

The last equation defines the non-local polarizability of electron system:

α(r, r′|ω) =
1
i�

∫ 0

−∞
dτeλτ−iωτSpη̂eq

[
e−iĤτ/�ρ̂re

iĤτ/�, ρ̂r′
]
.
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It is expressed through the density correlation function. The spatial Fourier trans-
form of the density perturbation is written as ∆ρ(q, ω) = V −1∑

q α(q,q′|ω)Φ(q′, ω)
(compare to Eq. (13.11)), where

α(q,q′|ω) =
∫

dr
∫

dr′e−iq·r+iq′·r′
α(r, r′|ω)

=
1
i�

∫ 0

−∞
dτeλτ−iωτSpη̂eq

[
e−iĤτ/�ρ̂qeiĤτ/�, ρ̂−q′

]
.

For translation-invariant systems, α(q,q′|ω) = V δqq′α(q, ω) and ∆ρ(q, ω) = α(q, ω)
×Φ(q, ω), where

α(q, ω) =
1

i�V

∫ 0

−∞
dτeλτ−iωτSpη̂eq

[
e−iĤτ/�ρ̂qeiĤτ/�, ρ̂−q

]
.

3.4. Prove that the expression for the linear conductivity derived for
the scalar potential perturbation ∆̂Hω =

∫
drρ̂rΦ(r, ω) coincides with

Eq. (13.10) derived for ∆̂Hω of Eq. (13.6), i.e., the gradient invariance
takes place.

Solution: For the scalar potential perturbation, we have

∆I(r, ω) =
1
i�

∫ 0

−∞
dτeλτ−iωτSpη̂eq

[
e−iĤτ/�Î(r)eiĤτ/�, ∆̂Hω

]
instead of Eq. (13.8). Integrating over τ by parts, we transform this expression to

∆I(r, ω) =
1

�ω
Spη̂eq[Î(r), ∆̂Hω] − i

�2ω

∫ 0

−∞
dτeλτ−iωτ

×Spη̂eq

[
e−iĤτ/�Î(r)eiĤτ/�, [Ĥ, ∆̂Hω]

]
.

The commutators in the first and second terms are calculated directly, with the use
of the expressions for Ĥ (see Eqs. (4.10) and (4.2)), Î(r) (Eq. (4.15)), and ∆̂Hω:

[Ĥ, ∆̂Hω] = i�

∫
dr Î(r) · E(r, ω), [Î(r), ∆̂Hω] =

ie2�

m

∑
j

δ(r − xj)E(r, ω).

Substituting these results into the expression for ∆I(r, ω) presented above, we obtain
Eqs. (13.9) and (13.10).

3.5. Write the Kubo formula for a spatially homogeneous perturba-
tion in the following compact form:

σαβ(ω) =
ie2n

mω
δαβ +

∫ 0

−∞
dτ

∫ 1/T

0
dλe−iωτ Sp

{
η̂eq Îα(−τ)Îβ(−i�λ)

}
,

where Îα(t) = eiĤt/�Îαe−iĤ t/� is the operator of the current density in
the Heisenberg representation.

Hints: First use the expression η̂eq = e−Ĥ/T /Sp(e−Ĥ/T ) for the equilibrium density
matrix and prove the operator identity [Â, e−Ĥ/T ] = −e−Ĥ/T

∫ 1/T

0 dλeĤλ[Â, Ĥ ]e−Ĥλ,
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where Â is an arbitrary operator. Then put Â = ∆̂Hω and apply this operator iden-
tity to Eq. (13.4). Expressing the perturbation through the scalar potential according
to ∆̂Hω = −eEω · x̂, use [x̂, Ĥ ] = i�v̂ to transform the commutator [∆̂Hω, Ĥ ].

3.6. Prove Eq. (13.24).
Hint: Use the properties of the δ-function, δ(E) = 0 at E �= 0, δ(0) = ∞, and∫

dEδ(E) = 1, to prove that the integral in Eq. (13.24) also has all these properties.

3.7. Prove that the Green’s function defined by Eq. (14.6) is given
by

GE(p,p′) =
∫

d(t − t′)
1
V

∫
dr
∫

dr′eiE(t−t′)/�e−i(p·r−p′·r′)/�Gtt′(r, r′),

where Gtt′(r, r′) is the Green’s function of the differential operator i�

×∂/∂t − Ĥ(r) with Ĥ(r) = −(�2/2m)∇2
r + Uim(r).

Solution: In mathematics, the Green’s function Gtt′(r, r′) of the differential equa-
tion M̂ (r, t)y(r, t) = 0, where M̂ is a differential operator, is introduced according to
M̂ (r, t)Gtt′(r, r′) = δ(t − t′)δ(r − r′). In our case, M̂ (r, t) = i�∂/∂t − Ĥ(r). Since
Ĥ(r) is time-independent, Gtt′(r, r′) depends only of t − t′. We point out that any
solution of the equation for Gtt′(r, r′) is ambiguous in the sense that this function
may contain the factors θ(t − t′) and θ(t′ − t). These cases correspond to retarded
and advanced Green’s functions, respectively.

Multiplying the equation for Gtt′(r, r′) by exp[−i(p · r− Et)/�] and exp[i(p′ · r′ −
Et′)/�], and calculating the integrals over times and coordinates with the aid of in-
tegration by parts, we transform this equation to Eq. (14.6).

3.8. Write an iterational solution for Gs
tt′(r, r

′) by analogy to Eq.
(14.10).

Solution: If Uim(r) = 0, then Gs
tt′(r, r′) = gs

tt′(r, r′) = gs
t−t′(|r − r′|). The dou-

ble Fourier transformation of this function in space and time gives us gs
E(p,p′) of

Eq. (14.9). The fact that the free-electron Green’s function in the coordinate rep-
resentation depends only on the difference between the coordinates is caused by the
translational invariance. This property is violated in inhomogeneous systems and in
the systems of finite size, where the boundary conditions are imposed. Equations
(14.8) and (14.10) in the time-coordinate representation have the following form:

Gs
tt′(r, r′) = gs

t−t′(r − r′) +
∫

dr1

∫
dt1g

s
t−t1(r − r1)Uim(r1)Gs

t1t′(r1, r′),

Gs
tt′(r, r′) = gs

t−t′(r − r′) +
∫

dr1

∫
dt1g

s
t−t1(r − r1)Uim(r1)gs

t1−t′(r1 − r′)

+
∫

dr1

∫
dr2

∫
dt1

∫
dt2g

s
t−t1(r − r1)Uim(r1)gs

t1−t2(r1 − r2)

×Uim(r2)gs
t2−t′(r2 − r′) + . . . .
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3.9. Find the pair correlation function w(r) and its Fourier transform
w(q) for the impurities with screened Coulomb potential energy v(r) =
e2e−r/r0/εr.

Solution: The Fourier component of the screened Coulomb potential is calculated
directly: v(q) = (4πe2/ε)(r−2

0 + q2)−1. Then we have w(q) = nim(4πe2/ε)2(r−2
0 +

q2)−2. Doing the inverse Fourier transformation of w(q), we obtain

w(r) = nim
2πe4

ε2
r0e

−r/r0 .

In the absence of screening (r0 → ∞), the correlation function w(q) diverges at small
q and w(r) goes to infinity.

3.10. Express the density of states by using different representations
of the Green’s function.

Hints: See problem 3.7, where the Green’s function in the time-coordinate rep-
resentation is defined. Prove that the retarded Green’s function can be represented
as

GR
∆t(r, r

′) = − i

�
θ(∆t)

∑
δ

e−iεδ∆t/�ψ(δ)
r ψ(δ)∗

r′ ,

where δ is the index of exact eigenstates. Carrying out a temporal Fourier transfor-
mation, find the energy-coordinate representation∫

d∆teiE∆t/�GR
∆t(r, r

′) = GR
E(r, r′) =

∑
δ

ψ(δ)
r ψ(δ)

r′
∗

E − εδ + iλ
, λ → +0,

which is similar to Eq. (14.1). Using these equations together with the general defi-
nition of the density of states in terms of exact eigenstates, check Eq. (14.30).

3.11. Derive Eq. (8.27) from Eq. (15.15).
Hint: Using Eqs. (15.12) and (15.14), obtain

(
V −1∑

p GA
E(p)GR

E(p)
)−1

− Λ(E) =

�[πρD(E)τtr(E)]−1.

3.12. Calculate I(∆p) given by Eq. (15.23) at small ∆p.
Hints: Expand the Green’s functions under the sum in series of ∆p up to the terms

∝ (∆p)2. Take into account that τ = �3/mw in the case of short-range correlated
inhomogeneities.

3.13. Calculate the integral in Eq. (15.26).
Solution: Introducing new variables P = (p − p1)/2 and ∆p = p + p1, we rewrite

this integral as

−
∫ ∞

0

d∆p

∆p

∫ 2π

0

dϕ

2π

∫ ∞

0

dP

(2π�2)2

× P (P 2 − ∆p2/4)
[(εP+∆p/2 − εF )2 + (�/2τ )2][(εP−∆p/2 − εF )2 + (�/2τ )2]

,

where ϕ = P̂ ∆p and τ = �3/mw. In the approximation εp − εF � vF (p−pF ), which
is valid at εF  �/2τ , one can calculate the integral over P by using the method of
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residue (two simple poles in the upper half-plane of the complex variable P − pF are
[±∆p cos ϕ + i�/τvF ]/2). After this, the integral over ϕ is taken elementary, and the
above expression becomes

−m3vF τ 2

π�6

∫ ∞

0

d∆p

∆p
√

(∆p)2 + (�/τvF )2
.

This integral diverges at ∆p = 0. Setting the lower limit of the integration at
�/
√

lϕlF /2, and substituting the result in Eq. (15.26), we obtain Eq. (15.27).

3.14. Obtain Eq. (16.18) in two different ways: by solving the differ-
ential equation (16.1) at Uim = 0, and by calculating the contour path
integral in Eq. (16.17) at w = 0.

Hints: In the case of free electrons, it is easy to find solutions of Eq. (16.1) in the
momentum representation, where the Hamiltonian −�2∇2

r/2m = p̂2/2m is diagonal.
Using Eq. (16.3), one has gR

t (p) = −(i/�)θ(t) exp(−ip2t/2m�). The Fourier trans-
formation of this expression to the coordinate representation leads to Eq. (16.18). To
calculate the path integral in Eq. (16.17), write the exponent exp

[
(im/2�)

∫ t

0 dτ ṙ2
τ

]
in the form exp

[
(im/2�τN)

∑N
i=1(ri − ri−1)2

]
, as in Eq. (16.10), and use Eq. (16.12).

Integrate out each intermediate coordinate with i = 1, . . . , N − 1 and take into ac-
count that r0 = rN .

3.15. Calculate the integrals over time in Eq. (16.19) in order to find
ρ3D and ρ1D.

Results:

ρ3D(E) =
m3/2[w(0)]1/4

21/4π5/2�3

{
Γ(3/4)

3
[
4 − Φ(3/4, 1/2; −E2/2w(0))

]
+

E

2
√

2w(0)
Γ(1/4)Φ(1/4, 3/2; −E2/2w(0))

}
,

ρ1D(E) =
m1/2

23/4π3/2�[w(0)]1/4

{
Γ(1/4)Φ(1/4, 1/2; −E2/2w(0))

+
21/2E√

w(0)
Γ(3/4)Φ(7/4, 3/2; −E2/2w(0))

}
,

where Φ(α, γ; z) is the confluent hypergeometric function and Γ(x) is the Gamma
function.

3.16. Calculate the contour path integral in Eq. (16.26).
Solution: Let us represent each time-dependent coordinate of the closed paths as

Fourier series

rτ =
N∑

k=0

[rc
k cos(2πkτ/t) + rs

k sin(2πkτ/t)] ,

where
∑N

k=0 rc
k = 0 and N → ∞, and rewrite the path integral as a multiple integral

over the coefficients rc
k = (xc

k, yc
k) and rs

k = (xs
k, ys

k). Substituting rτ defined in this
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way into the Lagrangian, we take the integral over time in the exponent and obtain
the term in the exponent in the following form:

(imπ2/t)
N∑

k=1

k2 [(xc
k)2 + (yc

k)2 + (xs
k)2 + (ys

k)2 + ωct(xc
kys

k − xs
kyc

k)/πk
]
.

Thus, the multiple integral over 4N variables is reduced to a product of N integrals
over four variables, xc

k, xs
k, yc

k, and ys
k. These integrals are easily calculated if we

write the term in the exponent as a full quadratic form. This procedure demonstrates
that the result of the integration differs from that in the absence of the magnetic field
by the factor

N∏
k=1

[
1 − (ωct/πk)2

]−1
.

Calculating this product at N → ∞, we finally obtain the Green’s function

gR
t (0) = −θ(t)

mωc

4π�2 sin(ωct/2)
.

It is easy to observe that this function goes to gR
t (0) of Eq. (16.18) when ωc → 0.

3.17. Calculate the integral over time in Eq. (16.27) by assuming
that

√
w(0) � �ωc.

Hints: For positive E, one can shift the contour in the upper half-plane by a finite
time, t = iτ + t′. The integral in Eq. (16.27) is written as an infinite sum of the
pole contributions plus the integral over t′. The latter integral is calculated easily
if we put τω/2  1 and appears to be small as exp[−(E + �ω/2)2/2w(0)]. The re-
maining infinite sum is transformed to the integral over the variable of summation if√

w(0) � �ωc and |E − εN | � �ωc. Calculating it, one obtains the density of states
in the form of Eq. (16.28).

3.18. Prove the f -sum rule

∂2εnp

∂pα∂pβ
=

δαβ

me
+
∑
σσ′n′

vα
nσ,n′σ′v

β
n′σ′,nσ + vβ

nσ,n′σ′vα
n′σ′,nσ

εnp − εn′p
,

which takes into account non-parabolicity of the band structure.
Hints: Carry out the kp-expansion of the energy analogous to Eqs. (5.6)−(5.10)

near the momentum p, with the accuracy up to the second order in the deviations.
As a result, the inverse effective mass is given by the right-hand side of Eq. (5.11),
taken in the point p. Since the free-electron mass me is large in comparison to the
effective mass, the contribution proportional to m−1

e can be neglected in Eq. (17.4).

3.19. Check the relation between αω and Imεω used in Eq. (17.6).
Hints: One may use the results of problem 2.11 and Eq. (17.1). Another way is to

write the wave equation in the medium with complex dielectric permittivity εω and
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calculate the imaginary part of wave vector determining the exponential decrease of
the intensity of radiation.

3.20. Using Eqs. (17.9) and (17.10), as well as Eq. (17.7) for non-
doped materials (ηpF = 1), check the dispersion relation

Reεω = κ +
2
π

P
∫ ∞

0
dω′ ω′Imεω′

ω′2 − ω2 ,

which follows from Eqs. (13.15) and (17.1), by a direct calculation.
Hints: Take into account that Imεω is non-zero at �ω > εg and use new variables

η and Ω instead of ω′ and ω, respectively.

3.21. Check that Reεω has a logarithmic divergence near the step-like
threshold of absorption in doped materials.

Hint: Substitute the step-like Imεω of Eq. (17.7) into the dispersion relation con-
sidered in the previous problem.

3.22. Prove that the terms linear in q in the dielectric permittivity
tensor are equal to zero due to Onsager’s symmetry relation.

Hint: This property is seen from Eqs. (13.17) and (17.1).

3.23. Prove Eq. (18.24) by a direct calculation of the multiple inte-
gral.

Solution: We need to take the multiple integral of the exponential function

exp[−(A1 + B)z̃2
1 − (A2 + B)z̃2

2 − (A3 + B)z̃2
3−

. . . − 2Bz̃1 · (z̃2 + z̃3 + . . .) − 2Bz̃2 · (z̃3 + z̃4 + . . .) − . . .].

Integrating this expression over z̃1, we obtain(
π

A1 + B

)d/2

exp
[
−A1A2 + B(A1 + A2)

A1 + B
z̃2
2 − 2A1B

A1 + B
z̃2 · (z̃3 + z̃4 + . . .)

− B2

A1 + B
(z̃3 + z̃4 + . . .)2 − (A3 + B)z̃2

3 − 2Bz̃3 · (z̃4 + z̃5 + . . .) − . . .

]
,

where d is the dimensionality of the vectors z̃l. Integrating over z̃2, we obtain a
new prefactor,

(
π2/[A1A2 + B(A1 + A2)]

)d/2, while z̃2
3 will enter the exponent with

the factor −[A1A2A3 + B(A1A2 + A2A3 + A1A3)]/[A1A2 + B(A1 + A2)]. Acting by
induction, we find that n integrations result in the following prefactor:

πnd/2
[
A1A2 . . . An + B

(
1

A1
+

1
A2

+ . . . +
1

An

)
A1A2 . . . An

]−d/2

.

Aiming n to infinity, substituting d = 3, and multiplying this expression by the factor∏∞
l=1(Al/π)3/2 standing on the left-hand side of Eq. (18.24), we obtain the right-hand

side of Eq. (18.24).



Chapter 4

BOSONS INTERACTING
WITH ELECTRONS

A consistent consideration of transport phenomena for different types of vibrational
modes in solids (the branches of phonon spectrum and the modes of electromagnetic
field introduced in Secs. 6 and 3, respectively) should be based upon the formalism
of second quantization. Below we introduce the density matrix for bosons and derive
kinetic equations for bosonic modes in the occupation number representation. The
non-diagonal components of the boson density matrix describe phase correlations. In
this chapter we study the case when the interaction of bosons with electron sub-system
is described by the Hamiltonian linear in the creation and annihilation operators of
bosons. This important case unifies the photon-electron and phonon-electron inter-
actions in solids. Then we consider the processes of spontaneous and stimulated
emission of bosons by non-equilibrium electrons, instabilities of phonon systems, and
emission of three-dimensional boson modes by two-dimensional electrons. The kinet-
ics of interacting bosons is considered in the next chapter for phonons.

19. Kinetic Equation for Boson Modes
A system of bosons (photons or phonons) interacting with electrons

is described by the Hamiltonian comprising both types of quasiparticles
and their interaction:

Ĥb + Ĥe + Ĥe,b. (1)

The Hamiltonian of free bosons, Ĥb, has the same form as Ĥph in Eq.
(3.12). The Hamiltonian of electrons, Ĥe, in Eq. (1) does not include
the electron-electron interaction term, in contrast to Ĥe introduced by
Eq. (4.10). Therefore, it is written as Ĥe =

∑
j ĥj , where ĥj is the

one-electron Hamiltonian containing, in the general case, a contribution
of external fields. In the second quantization representation, the Hamil-

155
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tonian Ĥe has the same form as Ĥ in Eq. (4.23). The electron-boson
interaction is described by the Hamiltonian linear in the creation and
annihilation operators of bosons, b̂+

q and b̂q . It can be represented as

Ĥe,b =
∑
jq

χ̂(j)
q b̂q + H.c., (2)

where the index q numbers a state of the boson system and the operator
χ̂(j)

q describes the interaction of j-th electron with this state. In the case
of electron-phonon interaction, an explicit form of this operator can be
obtained from the expressions (6.30) and (6.22) describing interaction
of a single electron at the point r with long-wavelength acoustic and
optical phonon modes, respectively (problem 4.1). For electron-photon
interaction, the Hamiltonian Ĥe,b can be identified with the second term
on the right-hand side of Eq. (4.16), where the current density operator
is given by Eq. (4.15) and the vector potential A is quantized according
to Eq. (3.18) (problem 4.2). The contributions quadratic in A should be
neglected. In the second quantization representation, the electron part
of the interaction operator (2) is written as

∑
j χ̂(j)

q =
∑

δη 〈δ|χ̂q |η〉 â+
δ âη ,

where â+
δ and âη are the second-quantization operators for electron states

|δ〉 and |η〉 (problem 4.3). The average Q of any one-boson operator
Q̂ =

∑
qq1

〈q|q̂|q1〉b̂+
q b̂q1 is written according to the general formula (1.18):

Q = SpQ̂η̂t =
∑
qq1

〈q|q̂|q1〉 Nt(q1, q). (3)

The one-boson density matrix Nt(q1, q) introduced in this equation is
defined as an average of the product of bosonic creation and annihilation
operators with many-particle statistical operator η̂t:

Nt(q, q1) ≡ Sp{b̂+
q1

b̂q η̂t}. (4)

The trace Sp is taken over the quantum numbers of both bosons and
electrons, and Nt(q, q1) depends on two bosonic variables, q and q1.

To derive the kinetic equation for bosons, we use Eq. (1.20) for η̂t

with the Hamiltonian (1). After multiplying this equation by b̂+
q1

b̂q , we
take the traces of the both sides of the equation obtained and find[

i�
∂

∂t
− �(ωq − ωq1)

]
Nt(q, q1) = −

∑
δη

〈δ|χ̂q1t|η〉 〈〈â+
δ âη b̂q〉〉t

+
∑
δη

〈δ|χ̂qt|η〉∗ 〈〈â+
δ âη b̂q1〉〉∗

t , (5)
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where 〈〈. . .〉〉t ≡ Sp{η̂t . . .}. The one-electron Hamiltonian Ĥe does not
contribute to this equation, while the free-boson Hamiltonian contributes
to the left-hand side. Although the operators χ̂q considered in problems
4.1 and 4.2 are time-independent, in Eq. (5) they are written as func-
tions of time. This corresponds to a more general case, when external,
time-dependent electric or magnetic fields modify the electron-boson in-
teraction. On the right-hand side of Eq. (5), we have the correlation
functions of the kind 〈〈â+

δ âη b̂q〉〉t, which satisfy the equation

i�
∂

∂t
〈〈â+

δ âη b̂q〉〉t = Sp{[â+
δ âη b̂q , Ĥb + Ĥe + Ĥe,b]η̂t} (6)

obtained from Eq. (1.20) in the way employed in the derivation of Eq.
(5). It contains higher-order correlation functions on the right-hand side.
They are evaluated according to the approximate equations

〈〈â+
δ âη b̂

+
q b̂q1〉〉t � 〈〈â+

δ âη〉〉t〈〈b̂+
q b̂q1〉〉t, 〈〈â+

δ âη b̂q b̂q1〉〉t � 0,

〈〈â+
δ â+

γ âη âν〉〉t � 〈〈â+
δ âν〉〉t〈〈â+

γ âη〉〉t − 〈〈â+
γ âν〉〉t〈〈â+

δ âη〉〉t, (7)

which would be exact in the absence of electron-boson interaction, be-
cause in that case the statistical operator η̂t is written as a product
of electron and boson statistical operators (we note that the second-
quantized operators of electrons commute with those of bosons). The
approximations (7) can be used to calculate the commutators on the
right-hand side of Eq. (6). Thus, we rewrite Eq. (6) as(

i�
∂

∂t
− �ωq

)
〈〈â+

δ âη b̂q〉〉t

−
∑

γ

{
〈η|ĥt|γ〉〈〈â+

δ âγ b̂q〉〉t − 〈γ|ĥt|δ〉〈〈â+
γ âη b̂q〉〉t

}
=
∑
γν

〈γ|χ̂+
qt|ν〉

{
〈〈â+

γ âν〉〉t〈〈â+
δ âη〉〉t + 〈〈â+

δ âν〉〉t

[
δγη − 〈〈â+

γ âη〉〉t

]}
+
∑
γq′

{
〈η|χ̂+

q′t|γ〉〈〈â+
δ âγ〉〉t − 〈γ|χ̂+

q′t|δ〉〈〈â
+
γ âη〉〉t

}
〈〈b̂+

q′ b̂q〉〉t. (8)

Equations (5) and (8) form a closed set of equations written with the
accuracy up to the second order in electron-boson coupling.

It is convenient to introduce the correlation operator K̂qt and the
one-electron density matrix ρ̂t (cf. Eq. (4.29)) defined by their matrix
elements:

〈η|K̂qt|δ〉 = 〈〈â+
δ âη b̂q〉〉t, 〈η|ρ̂t|δ〉 = 〈〈â+

δ âη〉〉t. (9)
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Equation (8) then acquires the following operator form:(
i�

∂

∂t
− �ωq

)
K̂qt −

[
ĥt, K̂qt

]
= Ĝqt,

Ĝqt ≡ 〈〈χ̂+
qt〉〉tρ̂t + (1 − ρ̂t)χ̂+

qtρ̂t +
∑
q′

[χ̂+
q′t, ρ̂t]Nt(q, q′), (10)

and Eq. (5) is written through K̂qt as[
i�

∂

∂t
− �(ωq − ωq1)

]
Nt(q, q1) =

(
spχ̂qtK̂q1t

)∗
− spχ̂q1tK̂qt, (11)

where sp . . . defines one-electron averaging.
Equations (10) and (11) form a closed system which can be used to

determine K̂qt and Nt(q, q1). These equations must be, however, accom-
panied by the initial condition describing the requirement of weakening
of correlations:

K̂qt |t→−∞ = 0 . (12)

This condition is similar to Eq. (7.11) applied to electron-impurity sys-
tem. Using the evolution operator defined in Sec. 2, one may exclude
K̂qt by writing the solution of Eq. (10) as

K̂qt =
1
i�

∫ t

−∞
dt′e−iωq(t−t′)Ŝ(t, t′)Ĝqt′Ŝ

+(t, t′). (13)

As a result, the quantum kinetic equation for bosons becomes[
∂

∂t
+ i(ωq − ωq1)

]
Nt(q, q1) = Jb,e(N |qq1t). (14)

The boson-electron collision integral Jb,e is expressed through the oper-
ator Ĝqt defined in Eq. (10) as

Jb,e(N |qq1t) =
1
�2

∫ t

−∞
dt′eλt′−iωq(t−t′)sp

[
χ̂q1tŜ(t, t′)Ĝqt′Ŝ

+(t, t′)
]

+(c.c., q ↔ q1). (15)

It contains the contributions independent of Nt, which correspond to
spontaneous emission of bosons by electrons, as well as the contributions
proportional to Nt, which describe the evolution of bosons due to their
interaction with the electrons.
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Equation (14) can be simplified if the system has the translational
symmetry. The set of quantum numbers q in this case defines the boson
polarization (branch) µ and wave vector q. The operator of translation,
T̂R, transforms the operator χ̂qt according to

T̂Rχ̂qtT̂
+
R = eiq·Rχ̂qt. (16)

Using this relation, one may prove, in a similar way as for the one-
electron density matrix, see Sec. 8 and problem 2.4, that Nt(q, q1) is
diagonal in the wave vector:

Nt(q, q1) = δqq1N
µµ1
qt . (17)

However, the bosonic distribution remains non-diagonal in the polariza-
tion indices µ and µ1. Below we derive a kinetic equation for Nµµ1

qt in the
case of degenerate and isotropic boson spectra, when the boson frequen-
cies ωqµ = ωq are independent of the polarization index µ as well as of
the direction of q. This consideration is directly applicable to photons.
In the single-mode approximation, it can be also applied to the phonons
in the isotropic crystals. Since 〈〈χ̂+

qt〉〉t = 0 for a translation-invariant
system, Eq. (10) for Ĝqt contains only the second and the third terms
on the right-hand side. As a result, we rewrite Eq. (14) as

∂Nµµ1
qt

∂t
= Iµµ1(qt) +

∑
µ′

∫ t

−∞
dt′eλt′ (18)

×
[
Nµµ′

qt′ Rµ′µ1(q|t, t′) + R∗
µ′µ(q|t, t′)Nµ′µ1

qt′

]
.

The first term on the right-hand side describes the spontaneous emission
of bosons,

Iµµ1(qt) =
1
�2

∫ t

−∞
dt′eλt′−iωq(t−t′) (19)

×sp
[
Ŝ+(t, t′)χ̂qµ1Ŝ(t, t′)(1 − ρ̂t′)χ̂+

qµρ̂t′
]

+ (c.c., µ ↔ µ1),

while the non-Markovian evolution of bosons is described by the second
term, where

Rµ′µ(q|t, t′) = �
−2e−iωq(t−t′)spρ̂t′

[
Ŝ+(t, t′)χ̂qµŜ(t, t′), χ̂+

qµ′

]
. (20)

The second term on the right-hand side of Eq. (18) can be either negative
or positive. The first case corresponds to the relaxation of bosons due
to their scattering by electrons, while the second case corresponds to
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the regime of induced emission of bosons (also known as negative boson
absorption). The second regime may be realized only if the electron
distribution is non-equilibrium.

For a stationary electron system with the Hamiltonian ĥ, we use Eq.
(2.3) for the evolution operator and substitute the time-independent
electron density matrix ρ̂ in Eqs. (19) and (20). Using the solutions of
the eigenstate problem ĥ|δ〉 = εδ |δ〉, we integrate over time in Eq. (19),
see Eq. (8.6) and problem 2.5, and obtain

Iµµ1(q) =
2π

�

∑
δη

〈η|χ̂qµ|δ〉∗〈η|χ̂qµ1 |δ〉δ(εδ − εη + �ωq)fη(1 − fδ), (21)

where fδ = 〈δ|ρ̂|δ〉 is the electron distribution function. Note that the
principal-value contribution drops out of Iµµ1 . Equation (21) contains
the factor fη(1−fδ), which accounts for the Pauli blocking effect for the
transitions from the state η to the state δ. However, the conventional
Fermi’s golden rule for such transitions does not exist in the case of
µ 	= µ1, because the squared absolute value of the matrix element is
obtained only for the diagonal component Iµµ(q). Similar operations
applied to the second term on the right-hand side of Eq. (18) transform
this term into

−1
2

∑
µ′

[
νµµ′(q)Nµ′µ1

qt + Nµµ′
qt νµ′µ1(q)

]
+i
∑
µ′

[
Nµµ′

qt Ωµ′µ1(q) − Ωµµ′(q)Nµ′µ1
qt

]
, (22)

where the matrix νµµ1 describes the relaxation of bosons,

νµµ1(q) =
2π

�

∑
δη

〈η|χ̂qµ|δ〉∗〈η|χ̂qµ1 |δ〉δ(εδ − εη + �ωq)(fδ − fη) , (23)

and Ωµµ1 determines the renormalization of the boson modes due to
interaction with electrons (we remind that P denotes principal value of
the integral):

Ωµµ1(q) =
P
�

∑
δη

〈η|χ̂qµ|δ〉∗〈η|χ̂qµ1 |δ〉
εδ − εη + �ωq

(fδ − fη). (24)

To derive Eq. (22), we have also assumed slow variation of the boson
density matrix with time so that the non-Markovian contributions have
been neglected. Representing the boson distribution function Nµµ1

qt in
the matrix form N̂qt with respect to the indices µ, we find that it satisfies
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the matrix kinetic equation

∂N̂qt

∂t
+ i[Ω̂q, N̂qt] = Îq − 1

2
[ν̂q, N̂qt]+ . (25)

The matrix elements of Îq, ν̂q, and Ω̂q are given by Eqs. (21), (23),
and (24), respectively. If the electrons are in equilibrium, so that fδ in
Eqs. (21), (23), and (24) is the Fermi distribution (4.36), a stationary
solution of Eq. (25) can be represented in the form δµµ1Nω , where
Nω = [e�ω/T − 1]−1 is the equilibrium Planck distribution function; see
Eq. (3.28). Indeed, the time derivative, as well as the commutator on the
left-hand side of Eq. (25) become zero, while in the right-hand side we
can use the energy conservation law to obtain the factor f(εδ + �ω)[1 −
f(εδ)] − Nω [f(εδ) − f(εδ + �ω)] under the sum over δ and η. It is easy
to see that this factor goes to zero if we use the Planck distribution Nω

as a solution.
The case of smooth (on the scale of boson wavelength) spatial inho-

mogeneity is described by the Wigner distribution function Nµµ1
rqt defined

according to the transformation

Nµµ1
rqt =

∑
g

eig·rNt

(
µ q +

g
2
, µ1 q − g

2

)
. (26)

This transformation is similar to the one given by Eq. (9.6) for electrons,
though Eq. (26) expresses the Wigner distribution function through the
density matrix written in the momentum representation. The inverse
transformation is done in a similar way as in Eq. (9.7):

Nt

(
µ q +

g
2
, µ1 q − g

2

)
=

1
V

∫
dre−ig·rNµµ1

rqt . (27)

Applying the transformation (26), we find that the term proportional to
ωq − ωq1 in the kinetic equation (14) is written as

i
∑
g

eig·r (ω|q+g/2| − ω|q−g/2|
)
Nt

(
µ q +

g
2
, µ1 q − g

2

)

� ∂ωq

∂q
·
∂Nµµ1

rqt

∂r
. (28)

To transform the right-hand side of Eq. (14), we make use of Eq. (9.24)
for the operator products (see Appendix C, where Eq. (9.24) is derived
in the coordinate representation). As a result, we obtain a quasi-classical
kinetic equation for bosons in the matrix form:

∂N̂rqt

∂t
+

∂ωq

∂q
· ∂N̂rqt

∂r
+ i[Ω̂rq, N̂rqt] = Îrq − 1

2
[ν̂rq, N̂rqt]+. (29)
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The parametric coordinate dependence of the boson generation rate Îrq,
as well as of the matrices ν̂rq and Ω̂rq, exists due to inhomogeneity of
the electron distribution.

The local energy density of bosons is defined as

Ert =
∑

µ

∫
dq

(2π)3
�ωqµNµ

rqt. (30)

This density is expressed through the diagonal elements Nµµ
rqt ≡ Nµ

rqt.
Multiplying the diagonal part of Eq. (29) by �ωqµ, integrating it over
q, and summing over µ, one can write the energy balance equation in
the following form:

∂Ert

∂t
+

∂Grt

∂r
= Prt +

(
∂Ert

∂t

)
sc

, (31)

where the energy flow density is defined as

Grt =
∑

µ

∫
dq

(2π)3
∂ωqµ

∂q
�ωqµNµ

rqt, (32)

and the power density due to boson generation,

Prt =
∑

µ

∫
dq

(2π)3
�ωqµIµµ(r,q), (33)

is given through the boson generation rate (21). The term (∂Ert/∂t)sc de-
scribes the dissipation of the energy density in unit time (power density
loss) due to absorption of bosons by electrons. In the local equilibrium,
the generation and absorption compensate each other, and the right-
hand side of Eq. (31) vanishes. After multiplying Eq. (29) by the group
velocity ∂ωqµ/∂q and energy �ωqµ, one can take the sums over µ and q
to obtain a balance equation for Grt, and so on. One may also define the
momentum density of bosons and write for it similar equations. In this
way one obtains a chain of equations similar to the balance equations
for electrons discussed in Sec. 11.

20. Spontaneous and Stimulated Radiation
Below we apply Eq. (19.25) to describe the photons interacting with

non-equilibrium electrons in a medium. In contrast to Chapters 2 and
3, where we considered the interaction of electrons with non-quantized
external fields (it is a good approximation when photon occupation num-
bers are large), the kinetic equation used here also takes into account the
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spontaneous processes described by the generation rate (19.21). In the
calculation of the generation rate (19.21) and other kinetic coefficients
entering Eq. (19.25), we apply the dipole approximation. The operator
χ̂qµ given in problem 4.2 is written as

χ̂qµ =
1
2

√
2π�e2

ωqεV

[
(v̂ · eqµ)eiq·x + eiq·x(v̂ · eqµ)

]

�
√

2π�e2

ωqεV
(v̂ · eqµ), (1)

where the photon polarization vector eqµ is determined by the conditions
e∗
qµ · eqµ1 = δµµ1 and q · eqµ = 0; see Eq. (3.23). In the case of

linear polarization of the electromagnetic waves, one may chose eqµ real,
and this is assumed below. We consider an isotropic medium with the
dielectric permittivity ε. Therefore, the group velocity of photons in Eq.
(19.29) is determined as ∂ωq/∂q = c̃q/q, where c̃ = c/

√
ε is the velocity

of light in the medium under consideration.
The generation rate of photons is obtained from Eqs. (1) and (19.21)

in the form

Iµµ1(q) =
(2πe)2

ωqεV

∑
δη

Mµµ1(δη|q)δ(εδ − εη + �ωq)fη(1 − fδ), (2)

and the coefficients (19.23) and (19.24) become

νµµ1(q) =
(2πe)2

ωqεV

∑
δη

Mµµ1(δη|q)δ(εδ − εη + �ωq)(fδ − fη) (3)

and

Ωµµ1(q) =
2πe2

ωqεV

∑
δη

Mµµ1(δη|q)
P

εδ − εη + �ωq
(fδ − fη). (4)

The matrix

Mµµ1(δη|q) = 〈η|(v̂ · eqµ)|δ〉∗〈η|(v̂ · eqµ1)|δ〉 (5)

introduced in Eqs. (2)−(4) is Hermitian, Mµµ1(δη|q) = M∗
µ1µ(δη|q). As

a result, the matrices (2)−(4) are Hermitian as well, and the Hermiticity
of the photon density matrix directly follows from Eq. (19.25) or Eq.
(19.29).

In this section we restrict ourselves by the interband transitions of
electrons and calculate the matrix elements in Eq. (5) by using the
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states of c- and v- bands. We denote these states as |nσp〉, n = c, v.
Their energy spectra εnp are assumed to be spin-degenerate and the
corresponding distribution functions are fnp. Using the two-band model
described in Appendix B, we substitute the interband velocity operators
of Eq. (B.23) into Eq. (5). Calculating the sum over spin variables, we
obtain

∑
σσ′ Mµµ′(vσ′p′, cσp|q) = δpp′Mµµ′(vc|p,q), where

Mµµ′(vc|p,q) = 2s2

[
δµµ′ − (eqµ · p)(eqµ′ · p)

p2

η2
p − 1
η2

p

]
. (6)

If the electron distribution is isotropic in the p-space, the expression (6)
is reduced to δµµ′2s2(2η2

p + 1)/3η2
p after averaging over the angle of p.

For the transitions near the interband absorption edge, when ηp � 1, this
expression becomes δµµ′2s2. The commutator [Ω̂rq, N̂rqt] in Eq. (19.29)
is equal to zero in this case, and the polarization of a photon mode is
independent of time and coordinate. The generation rate (2) drops out
of the kinetic equation if the electrons occupy the valence band only.
Omitting the polarization indices, we rewrite Eq. (19.29) as

nq · ∇rNrq = −αωNrq, αω =
νq

c̃
, nq =

q
q
, (7)

where Nrq is the photon distribution function. We also assume that the
distribution of electrons is homogeneous so that the absorption coeffi-
cient αω is coordinate-independent and described by Eq. (17.6) near
the edge of interband transitions. Equation (7) describes an exponential
decrease of the intensity of radiation transmitted along OZ, according
to exp(−αωz), provided the number of photons at z = 0 is fixed. This
dependence is known as Buger’s law (problem 4.4).

In the presence of free carriers, the interband transitions are modified.
In doped materials of n- or p-type, the edge of interband transitions is
shifted according to Eq. (17.7), while injection of additional electrons
and holes leads to a spontaneous emission of photons (photolumines-
cence), since the generation rate (2) is no longer zero. The increase in
the density of electron-hole pairs eventually leads to a stimulated ra-
diation (laser effect), because the absorption coefficient αω , expressed
according to Eqs. (7) and (3), becomes negative. A schematic represen-
tation of interband transitions for different occupations of the bands is
given in Fig. 4.1.

Consider the photoluminescence in the p-type material with a small
fraction of non-equilibrium conduction-band electrons described by the
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Figure 4.1. Different cases of conduction- and valence-band occupation: (a) intrinsic
material (no doping), (b) n-doped material, (c) p-doped material, and (d) material
with non-equilibrium electrons and holes. The arrows show interband optical transi-
tions.

Maxwell distribution function fcp = (nc/Nc) exp(−εcp/Te) with effective
temperature Te. Here nc is the electron density and Nc is a normalization
coefficient. The holes are described by the Fermi distribution. Since this
implies 1 − fvp = θ(εvp − εF ), only the states with p < pF participate
in the interband transitions. The electron density and Fermi energy
are related to the density of acceptors (problem 4.5). Assuming that
εg � εF , where εg = (εcp − εvp)p=0 is the gap energy, we transform the
generation rate (2) to δµµ1Iω with

Iω =
2(2πes)2

ωεV

∑
p

δ(εg + p2/2µ∗ − �ω)fcpθ(pF − p), (8)

where µ∗ is the reduced mass introduced in Secs. 17 and 18. Below we
assume that the density of holes is high enough to have |εF | � Te and
put θ(pF − p) = 1. Calculating the sum over p in Eq. (8), we obtain

Iω � ĨF

(
µ∗

mc

�ω − εg

Te

)
, Ĩ =

8π3/2
�(es)2nc

εεgTe

µ∗

mc
, (9)

where the spectral dependence is given by the function F (x) =
√

xe−x.
The intensity of the photoluminescence at the red (low-frequency) edge
is determined by the density of non-equilibrium electrons, while its de-
crease in the spectral region above the edge is determined by the electron
temperature. Therefore, measurements of the photoluminescence spec-
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tra allow one to characterize the distribution of non-equilibrium elec-
trons. The intensity of the photoluminescence from a slab of width d
is considered below by using the kinetic equation for the occupation
numbers of the photons propagating along OZ axis:

dNω(z)
dz

=
Iω

c̃
− αωNω(z), 0 < z < d. (10)

For the sake of convenience, we characterize the distribution function of
photons by the frequency ω = c̃q rather than by the wave number q and
put Nrq = Nω(z). Equation (10) takes into account both the sponta-
neous generation introduced by Eq. (8) and the absorption. The latter
is described by the coefficient αω including interband transitions (this
particular contribution is small due to the Pauli blocking effect because
the energy of the photoluminescence peak is below the absorption edge)
as well as other absorption mechanisms. If the width of the slab is small
in comparison to the characteristic absorption length estimated as α−1

ω ,
Eq. (10) gives us the number of the photons incident on the sample:

Nω(z) =
Iωd

c̃
, αωd � 1. (11)

If the interference of photons in the sample is not essential, the number of
outgoing photons is determined as a product of Nω(z) by the reflection
coefficient rω . In the opposite case, the consideration should include the
waveguide modes due to quantization of photons (instead of free photon
modes in the medium).

As the density of electron-hole pairs increases, the equations for the
generation rate and absorption coefficient are modified. Using the Fermi
distributions with effective Fermi energies εFc and εFv at low tempera-
tures, we obtain the absorption coefficient in the following form:

α̃ω =
2(2πes)2

c̃ωεV

∑
p

δ(εg + p2/2µ∗ − �ω)[θ(p − pFv) − θ(pFc − p)], (12)

where pFc and pFv are the Fermi momenta in the bands; see Fig. 4.1
(d). Taking into account the redistribution of non-equilibrium carriers
between c- and v-bands, we rewrite Eq. (12) as

α̃ω = αω

⎧⎨⎩ −1 0 < �ω − εg < p2
m/2µ∗

0 p2
m/2µ∗ < �ω − εg < p2

M/2µ∗
1 �ω − εg > p2

M/2µ∗
, (13)

where αω is given by Eq. (17.6). The momenta pm and pM are defined
as minimal and maximal values of the Fermi momenta of electrons and
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holes, pm = min{pFc, pFv} and pM = max{pFc, pFv}. If pFv > pFc, as in
Fig. 4.1 (d), one has pm = pFc and pM = pFv. In a similar way, the
generation rate is given by

Ĩω =
(2πes)2

ωε

2
V

∑
p

δ(εg + p2/2µ∗ − �ω)θ(pFc − p)θ(pFv − p)

=
(2πes)2

ωε
ρ3D(�ω − εg), 0 < �ω − εg < p2

m/2µ∗, (14)

so that the spontaneous radiation is emitted in the spectral region where
the absorption coefficient (13) is negative, and the generation rate is
related to this negative absorption as Ĩω = −c̃α̃ω . We note that ρ3D in
Eq. (14) is expressed through the reduced mass µ∗.

The occupation numbers of the photons propagating forward and
backward along the OZ axis are denoted below as N (+)

ω (z) and N (−)
ω (z),

respectively. They satisfy the following equation:

1
c̃

∂N (±)
ω (z, t)
∂t

± ∂N (±)
ω (z, t)
∂z

= c̃−1Ĩω − α̃ωN (±)
ω (z, t). (15)

If the absorption coefficient α̃ω is positive, this equation has a station-
ary and homogeneous solution Nω = Ĩω/α̃ω c̃. In this case, the initial
excitation decays on a characteristic time scale (α̃ω c̃)−1, and the con-
tributions of the boundary conditions are not essential at the distances
of the order of α̃−1

ω . If the absorption coefficient is negative, one has
to consider time-dependent or spatially inhomogeneous solutions of Eq.
(15). The homogeneous solution of this equation with the initial condi-
tion N (±)

ω (t)|t=0 = 0 describes an exponential growth of the number of
photons:

N (±)
ω (t) =

Ĩω

νω

[
eνωt − 1

]
, (16)

where νω = c̃|α̃ω | is the increment of amplification for the photons of
frequency ω. We note that, under the conditions described by Eqs. (13)
and (14), the factor Ĩω/νω is equal to unity. The stationary solution is
obtained with the aid of the boundary conditions

N (+)
ω (z)|z=0 = N (−)

ω (z)|z=0, rωN (+)
ω (z)|z=d = N (−)

ω (z)|z=d, (17)

which correspond to ideal reflection at z = 0 and partial reflection at
z = d, where the reflection coefficient rω is smaller than unity. Solving
Eq. (15) with the boundary conditions (17), we obtain

N (±)
ω (z) =

Ĩω

νω

rω(e|α̃ω |d − e±|α̃ω |z) + e±|α̃ω |z − e−|α̃ω |d

e−|α̃ω |d − rωe|α̃ω |d . (18)
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The nominator of this expression is always positive, while the denomina-
tor can be either negative or positive, depending on the values of rω and
|α̃ω |d. If rω < e−2|α̃ω |d, the occupation numbers N (±)

ω (z) of Eq. (18) are
positive, which means that stationary solutions of Eq. (15) exist. In the
opposite case, the occupation numbers continue to increase with time.
To describe such an increase, one can write a more general solution of Eq.
(15) by using both initial and boundary conditions (problem 4.6). A sat-
uration of the amplification in lasers occurs due to nonlinear effects such
as a decrease of the parameters rω and |α̃ω | with increasing occupation
numbers of photons, when the electromagnetic radiation modifies phys-
ical characteristics of the medium. As the stationary regime is reached,
the parameters satisfy the following relation:

rω � e−2|α̃ω |d, (19)

and N (±)
ω (z) � 1 so that the spontaneous emission can be neglected.

The number of outgoing photons, Nout = (1−rω)N (+)
ω (d), determines the

intensity of laser radiation. Equation (19) can be obtained by equating
Nout to the number of photons generated in the region of amplification
whose length is equal to 2d. This number is given by N (−)

ω (d)(e2|α̃ω |d−1).
To write Eq. (19) for the case of two partially transparent boundaries,
one should replace rω by the product of their reflection coefficients. Of
course, the model considered here is oversimplified. To describe realistic
laser devices, one should, in particular, quantize the waveguide modes
and use more sophisticated boundary conditions.

Let us study the influence of anisotropy of non-equilibrium electrons
on the characteristics of radiation. Consider the photoluminescence in
p-type materials with shifted Maxwell distribution of non-equilibrium
c-band electrons. The anisotropic contribution to the generation rate is
given by

∆Iµµ′(q) =
(2πe)2

ωqεV

∑
p

∆Mµµ′(p)δ(εg + p2/2µ∗ − �ω)∆fcp, (20)

where ∆fcp = (p · u/Te)2fcp/2 is the quadratic correction to the distri-
bution function (see Sec. 17), u is the drift velocity of electrons, and

∆Mµµ′(p) = −8s4

ε2
g

(eqµ · p)(eqµ′ · p) (21)

is the anisotropic correction to the matrix element (6) written in the ap-
proximation Te � εg , when non-parabolic corrections are not essential.
Averaging over the angle in Eq. (20) with the use of Eq. (17.14), we
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obtain

∆Iµµ′(q) = −(eqµ · u)(eqµ′ · u)
m2

cs
2Ĩ

ε2
g

F
(

µ∗

mc

�ω − εg

Te

)
, (22)

where the spectral dependence is given by the function F(x) = (16/15)
×x5/2e−x. If the sample width d is small in comparison to the absorption
length, the anisotropy of the photon distribution on the surface of the
sample is determined similar to the case described by Eq. (11):

∆N = N⊥ − N ‖ =
Ĩd

c̃

m2
cs

2u2

ε2
g

F
(

µ∗

mc

�ω − εg

Te

)
, (23)

where N ‖ and N⊥ are the occupation numbers of the photons polar-
ized parallel and perpendicular to the drift velocity u. By measuring
the polarization of photoluminescence, one can study the anisotropy of
non-equilibrium electron distribution. In the case considered above, the
polarization is weak due to a small parameter mcu

2/εg .

21. Phonon Instabilities
Apart from the stimulated photon emission considered above, there

exist several mechanisms of phonon-mode instabilities due to interac-
tion of phonons with non-equilibrium electrons. In this section we study
both the instabilities of the acoustic phonons interacting with the elec-
trons drifting with a supersonic velocity and those of the optical phonons
interacting with the electrons excited by the laser radiation (this mecha-
nism of excitation is discussed in Sec. 10). Considering the deformation-
potential interaction with long-wavelength longitudinal acoustic phonons
(LA) and Froelich interaction with long-wavelength longitudinal optical
phonons (LO), we use the factors

χ̂q = Cqe
iq·x, Cq =

{
D
√

�ωq/2s2
l ρV , ωq = slq, LA√

2πe2�ωq/ε∗q2V , ωq = ωLO, LO
(1)

in Eqs. (19.19) and (19.20); see Eqs. (6.22), (6.30), and problem 4.1.
Since the electrons interact with the longitudinal modes only, the phonon
density matrix is diagonal with respect to phonon branch indices, and
Eq. (19.18) is rewritten as an equation for the phonon distribution
function Nqt:

∂Nqt

∂t
= Iqt +

∫ t

−∞
dt′eλt′Rq(t, t′)Nqt′ . (2)
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The generation rate in Eq. (2) is obtained from Eq. (19.19) as

Iqt =
|Cq |2
�2

∫ t

−∞
dt′eλt′−iωq(t−t′) (3)

×sp{Ŝ+(t, t′)eiq·xŜ(t, t′)(1 − ρ̂t′)e−iq·xρ̂t′} + c.c.

and the kernel in the non-Markovian relaxation contribution is obtained
from Eq. (19.20) in the following form:

Rq(t, t′) = e−iωq(t−t′) |Cq |2
�2 sp[Ŝ+(t, t′)eiq·xŜ(t, t′), e−iq·x]ρ̂t′ + c.c. (4)

The non-equilibrium density matrix of electrons standing in Eqs. (3)
and (4) is to be found from a quantum kinetic equation of the kind of
Eq. (7.13).

Since we study a spatially homogeneous case, the traces in Eqs. (3)
and (4) can be calculated by using the plane-wave eigenstates. This
gives us

Iqt = 2
|Cq |2
�2

∫ t

−∞
dt′eλt′−iωq(t−t′)

∑
p

Fp(q|tt′)fpt′(1 − fp−�qt′) + c.c.,

Rq(t, t′) = 2e−iωq(t−t′) |Cq |2
�2

∑
p

Fp(q|tt′)(fpt′ − fp−�qt′) + c.c., (5)

where fpt = 〈p|ρ̂t|p〉 is the distribution function in the momentum rep-
resentation, the factor of 2 comes from the sum over electron spin, and

Fp(q|tt′) = 〈p|Ŝ+(t, t′)eiq·xŜ(t, t′)e−iq·x|p〉. (6)

Employing Eq. (2.5) for the S-operator, one can write the following
equation for F (problem 4.7):

i�
∂Fp(q|tt′)

∂t
= 〈p|[eiq·x, ĥt]e−iq·x|p〉Fp(q|tt′), (7)

with the initial condition Fp(q|tt) = 1. To describe an electron in a
homogeneous harmonic electric field, we employ the one-particle Hamil-
tonian ĥt = π̂2

t /2m ≡ ε(π̂t), where π̂t = p̂ + (e/ω)E sin ωt is the kine-
matic momentum; see Eqs. (5.27) and (10.1). Then, on the right-hand
side of Eq. (7) we have 〈p|[eiq·x, ĥt]e−iq·x|p〉 = ε(πt − �q) − ε(πt). The
solution of Eq. (7) in this case is

Fp(q|tt′) = exp
{

− i

�

∫ t

t′
dτ [ε(πτ − �q) − ε(πτ )]

}
. (8)
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If the field is stationary, ω → 0, the kinematic momentum is given
by πτ = p + eEτ . The electrons have a stationary distribution over
kinematic momenta, fpt′ = fπt′ . Substituting Eq. (8) into Eq. (5) and
replacing πt′ by p to have fπt′ → fp, we should simultaneously replace
ε(πτ − �q) − ε(πτ ) by ε(πτ−t′ − �q) − ε(πτ−t′) in the exponent. Next,
we change the variable of integration in the exponent as τ → τ + t′ so
that this integral becomes

∫ t−t′
0 dτ [ε(πτ − �q) − ε(πτ )]. We find the

time-independent generation rate

Iq = 2
|Cq |2
�2

∑
p

fp(1 − fp−�q)
∫ 0

−∞
dt′eλt′+iωqt′

× exp
{

− i

�

∫ −t′

0
dτ [ε(πτ − �q) − ε(πτ )]

}
+ c.c. , (9)

while the function Rq depends only on t − t′:

Rq(t − t′) = 2e−iωq(t−t′) |Cq |2
�2

∑
p

(fp − fp−�q)

× exp
{

− i

�

∫ t−t′

0
dτ [ε(πτ − �q) − ε(πτ )]

}
+ c.c. (10)

Using this expression in the kinetic equation (2), we substitute t′ → t′+t
and rewrite Eq. (2) in the following form:

∂Nqt

∂t
= Iq + 2

|Cq |2
�2

∑
p

(fp − fp−�q)
{∫ 0

−∞
dt′eλt′+iωqt′

× exp
[
− i

�

∫ −t′

0
dτ [ε(πτ − �q) − ε(πτ )]

]
Nqt+t′ + c.c.

}
. (11)

The phonon distribution function changes with time on the scale 1/ν
determined by the phonon relaxation rate, while the expression in the
exponent in Eq. (11) oscillates with a characteristic period to = (qv)−1,
where the electron velocity v is much greater than the velocity of sound.
Since νto � 1, one may substitute Nqt+t′ � Nqt so that Eq. (11)
becomes Markovian. We rewrite it as

∂Nqt

∂t
= Iq − νqNqt. (12)

If the characteristic electron momentum p is much greater than eEto, one
can neglect the influence of the field on the electron-phonon interaction.
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The relaxation rate of the mode q in Eq. (12) becomes

νq = 2
|Cq |2
�2

∑
p

fp

{∫ 0

−∞
dteλt+iωqt

[
e−i(εp+�q−εp)t/�

−ei(εp−�q−εp)t/�

]
+ c.c.

}
. (13)

Integrating over time in Eq. (13) according to Eq. (8.6), we find

νq =
4π

�
|Cq |2

∑
p

δ(εp − εp+�q + �ωq)(fp − fp+�q). (14)

A similar equation can be written for the generation rate (problem 4.8).
However, our primary goal is to study the influence of non-equilibrium
electron distribution on νq.

If the elastic scattering dominates, the electron distribution function
is determined by Eqs. (8.23) and (8.24) with ω = 0. Below, instead of
using these equations, we employ the shifted Fermi distribution (see Eq.
(31.25) below and its discussion)

fp =
[
exp

(
εp−mu − µ

Te

)
+ 1
]−1

≡ f(εp−mu), (15)

where u is the drift velocity of electron gas, which is proportional to the
driving electric field and depends on the relaxation mechanisms, and Te

is the effective temperature of electron gas, which may differ from the
equilibrium temperature T . The reliability of this approximation will be
discussed in Secs. 31 and 36. Substituting the distribution function (15)
into Eq. (14), we consider the interaction of electrons with LA phonons
and obtain

νq =
4π

�2 V |Cq |2
∫

dp⊥

(2π�)3

∫
dp‖δ

(
slq − p⊥ · q⊥ + p‖q‖

m
− �q2

2m

)
(16)

×
[
f

(
p2

⊥
2m

+
(p‖ − mu)2

2m

)
− f

(
(p⊥ + �q⊥)2

2m
+

(p‖ − mu + �q‖)2

2m

)]
,

where the components of the vectors p and q parallel and perpendicular
to the drift direction are separated. The integral over p‖ is calculated
with the use of the δ-function and gives us

νq =
4πmD2q

�slρq‖

∫
dp⊥

(2π�)3
{
f
[
(gq − p⊥ · q⊥/q‖ − �q‖/2)2/2m + p2

⊥/2m
]
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−f
[
(gq − p⊥ · q⊥/q‖ + �q‖/2)2/2m + (p⊥ + �q⊥)2/2m

]}
, (17)

where gq = msl

√
q2

⊥ + q2
‖/q‖ − �q2

⊥/2q‖ − mu. The integral over p⊥

can be calculated analytically in two limits: for degenerate electrons,
when f(ε) = θ(µ − ε), and for non-degenerate electrons, when f(ε) =
(n/Nc) exp(−ε/Te). Here n is the electron density and the normalization
coefficient is Nc = (mTe)3/2/

√
2π3/2

�
3. In the first case, we have the

following relaxation rate of acoustic phonons:

νq =
D2m2

2π�3slρ
Ωq , (18)

while in the second case we obtain

νq =
nD2

�slρ

√
πm

2Te
exp

[
−(mΩq/q − �q/2)2

2mTe

](
1 − e−�Ωq/Te

)
, (19)

where
Ωq = slq − u · q. (20)

Expression (18) remains valid as long as (�q/2 ± mΩq/q)2 < 2mµ. Be-
yond this region, νq depends also on the chemical potential µ. Since
Ωq/q is much smaller than the Fermi velocity, this validity condition
can be violated only for the phonons whose momenta are close to 2pF .

Equations (18) and (19) contain a characteristic frequency Ωq which
can be negative when the drift velocity is greater than the sound velocity
sl. The relaxation rate νq is also negative in this case, and the number of
the phonons moving at the angles smaller than arccos(sl/u) with respect
to the direction of u increases with time. A similar mechanism of photon
emission takes place for fast electrons in media (Cherenkov emission).
The emission appears when the velocity of electrons is higher than the
phase velocity of bosons (photons or phonons). Since sound velocities in
solids are small enough, the regime of acoustic-phonon instability is eas-
ily achievable both in metals and in semiconductors. The drift-induced
instability of optical phonons, in principle, is also possible. However, it
is very difficult to achieve this instability, since the phase velocities of
optical phonons are large, and the drift velocities of electrons are limited
by various relaxation processes.

Consider now the case of harmonic excitation. Calculating the inte-
grals over τ in the exponential factor (8), we obtain∫ t

t′
dτ [ε(pτ − �q) − ε(pτ )] = [−�p · q/m + �

2q2/2m](t − t′)

+(�q · vω/ω)[cos ωt − cos ωt′], (21)
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where vω is defined in Eq. (10.5). Using Eq. (10.15) to expand the
exponent in terms of the Bessel functions, we express Rq(t, t′) from Eqs.
(5) and (8) as

Rq(t, t′) = 2e−iωq(t−t′) |Cq |2
�2

∑
p

(fpt′ − fp−�qt′)e−i(εp−�q−εp)(t−t′)/�

×
∑
kk′

ik−k′
e−ikω(t−t′)+i(k−k′)ωtJk(q · vω/ω)Jk′(q · vω/ω) + c.c. (22)

The distribution function of the electrons excited by the harmonic field
is given by Eq. (10.10). The oscillating part ∆fpt of the distribution
function is small due to parameter 1/τω, where τ is the averaged time of
electron relaxation. Below we consider the response of optical phonons
whose energy �ωLO is much larger than �/τ . This allows us to neglect the
oscillating part in comparison to the time-independent part fp. Since
we are interested in the response averaged over a short period, 2π/ω,
we put k = k′ in Eq. (22). Neglecting the non-Markovian contribution
in the collision integral for the same reasons as in the stationary case
described above, we replace Nqt′ by Nqt and again obtain Eq. (12) for
the phonon distribution function, where the generation and relaxation
rates are given by∣∣∣∣ Iq

νq

∣∣∣∣ =
4π

�
|Cq |2

∞∑
k=−∞

[
Jk

(q · vω

ω

)]2∑
p

∣∣∣∣ fp+�q(1 − fp)
(fp − fp+�q)

∣∣∣∣
×δ(εp − εp+�q + �ωLO + k�ω). (23)

To calculate the integral over p, one should know the distribution
function fp governed by the kinetic equation (10.19). If the electric
field is weak enough to have q · vω/ω � 1, the distribution function is
isotropic, fp = f(εp). We approximate it by the Fermi distribution (see
Sec. 37), assuming that the temperature is small in comparison to both
Fermi energy εF � µ and phonon energy �ωLO. The condition of weak
electric field allows us to retain only the terms with k = 0 and k = ±1
in Eq. (23). We expand the corresponding Bessel functions according to
J0(x) � 1 − (x/2)2 and J±1(x) � ±x/2. Integrating over the angle of p
in Eq. (23) by using the δ-function, we transform the relaxation rate to
νq = ν(0)

q + ν(+)
q + ν(−)

q , where

ν(0)
q = |Cq |2

V m2

πq�5

[
1 − (q · vω)2

2ω2

] ∫ ∞

ε0

dε[f(ε) − f(ε + �ωLO)] (24)
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and

ν(±)
q = |Cq |2

V m2

πq�5

(q · vω

2ω

)2
∫ ∞

ε±
dε[f(ε) − f(ε + �ωLO ± �ω)]. (25)

The cut-off energies ε0 and ε± appear after the angular integration,
because of the restrictions imposed by the energy conservation law. They
are given by the following expressions:

ε0 =
mω2

LO

2q2 +
�

2q2

8m
− �ωLO

2
,

ε± =
m(ω ± ωLO)2

2q2 +
�

2q2

8m
− �(ωLO ± ω)

2
. (26)

Equations similar to Eqs. (24) and (25) can be written for the sponta-
neous generation rate Iq.

Below we consider the case ω � εF /�, ωLO, when we have εF < ε−
and can put f(ε + �ωLO + �ω) = 0. Therefore, from Eqs. (25) and (26)
we obtain

ν(±)
q = ±|Cq |2

V m2

πq�5

(q · vω

2ω

)2

×
[
εF +

�ω ± �ωLO

2
− �

2q2

8m
− (ω ± ωLO)2m

2q2

]
, (27)

where the expression in the square brackets must be positive, otherwise
ν(+)
q and ν(−)

q are equal to zero. This restriction originating from the
conservation laws shows us that the relaxation rates ν(+)

q and ν(−)
q are

non-zero only for the phonons whose wave numbers are in a narrow
interval around qω =

√
2ωm/�. On the other hand, the relaxation rate

ν(0)
q given by Eq. (24) corresponds to the wave numbers q ∼

√
2ωLOm/�

or q ∼
√

2εF m/�, which are much smaller than qω . Therefore, one can
consider the kinetic equation (12) separately for two groups of phonons.
The first group is the phonons with small wave numbers. For them we
have the relaxation rate νq = ν(0)

q , which is positive (since we assume
the equilibrium Fermi distribution of electrons, there is no inversion of
electron population). The second group includes the phonons with large
wave numbers, for whom νq � ν(+)

q + ν(−)
q . Since ν(−)

q is negative, νq can
be negative as well. Substituting |Cq |2 for optical phonons from Eq. (1),
and introducing a dimensionless constant of electron-phonon coupling

α =
e2

ε∗�

√
m

2�ωLO

, (28)



176 QUANTUM KINETIC THEORY

we obtain

νq � αωLO

(√
ωLO

ω

qω

q

)3 (q · vω

2ω

)2
[
1 −

(
qω

q

)2
]

(29)

in the region of the wave numbers determined according to

ωLO

ω
− 2
√

εF

�ω
<

q2

q2
ω

− 1 < −ωLO

ω
+ 2
√

εF

�ω
. (30)

To define this region, we have used the requirement of positiveness of the
expression in the square brackets in Eq. (27) for both ν(+)

q and ν(−)
q and

neglected the terms of the order of εF /�ω, (ωLO/ω)
√

εF /�ω, and of the
higher orders of smallness. According to Eq. (29), the optical-phonon
instability occurs at q < qω . Next, in the region

−ωLO

ω
− 2
√

εF

�ω
<

q2

q2
ω

− 1 < min
{

−ωLO

ω
+ 2
√

εF

�ω
,
ωLO

ω
− 2
√

εF

�ω

}
,

(31)
we have ν(+)

q = 0, and the relaxation rate

νq = ν(−)
q = −α

(√
ωLO

ω

qω

q

)3 (q · vω

2ω

)2

×
[
εF

�
+

ω − ωLO

2
− �q2

8m
− (ω − ωLO)2m

2�q2

]
(32)

is always negative. The region defined by Eq. (31) also corresponds to
q < qω . It is easy to show that the spontaneous generation rate Iq in this
region is equal to −νq (problem 4.9), and the solution of the kinetic equa-
tion (12) with the initial condition Nqt=0 = 0 is Nqt = exp(|νq|t) − 1.
In other words, the occupation number for q-th mode exponentially
increases with time. If we add a phenomenological relaxation term
−Nqt/τph due to phonon-phonon scattering (discussed in the next chap-
ter) into the right-hand side of Eq. (12), we obtain a stationary solution
Nq = τph|νq|/(1 − τph|νq|), which exists at τph|νq| < 1, when the re-
laxation overcomes the stimulated emission of phonons. In the opposite
case, Nq continues to increase with time. Nevertheless, like in the case
of photon instability in lasers considered in the previous section, the
nonlinear effects eventually stabilize the distribution of phonons.

22. Boson Emission by 2D Electrons
A special consideration is necessary if we are going to describe the

emission of bulk boson modes due to transitions of electrons between
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confined states (for example, between the states in quantum wells, wires,
and dots). In the problems of this kind, the interaction between quasi-
particles of different dimensionalities is essential in the kinetic phenom-
ena. The most important examples of such phenomena are the emission
of high-energy acoustic phonons by hot 2D electrons and the photolumi-
nescence from quantum wells. Both these phenomena are described be-
low on the basis of kinetic equation (19.14), where the factor χ̂q is given
by the expressions (21.1) and (20.1) for acoustic phonons and photons,
respectively (see also problems 4.1 and 4.2). The trace in Eq. (19.15) is
calculated with the use of a complete set of electron eigenstates |δ〉 with
energies εδ :

Jb,e(N |qq1) =
1
�2

∫ 0

−∞
dτeλτ+iωqτ

∑
δη

〈η|χ̂q1 |δ〉〈δ|Ĝq |η〉e−i(εη−εδ)τ /�

+(c.c., q ↔ q1). (1)

The matrix elements of the operator Ĝq defined in Eq. (19.10) are given
by the following expression:

〈δ|Ĝq |η〉 = δδηfδ

∑
γ

〈γ|χ̂+
q |γ〉 + (1 − fδ)fη〈δ|χ̂+

q |η〉

+
∑
q′

〈δ|χ̂+
q′ |η〉(fη − fδ)N(q, q′). (2)

Let us represent the collision integral (1) as a sum of the generation
rate I(q, q1) and the term J(q, q1), the latter is proportional to the boson
distribution function and describes the scattering of bosons by electrons.
Then the stationary kinetic equation is written as

i(ωq − ωq1)N(q, q1) = I(q, q1) + J(q, q1). (3)

Calculating the integral over time in Eq. (1), we write the generation
rate on the right-hand side of Eq. (3) as

I(q, q1) =
1

i�2ωq

∑
δ

〈δ|χ̂q1 |δ〉fδ

∑
γ

〈γ|χ̂+
q |γ〉 (4)

+
∑
δη

fη(1 − fδ)
〈η|χ̂q |δ〉∗〈η|χ̂q1 |δ〉

i�(εδ − εη + �ωq − iλ)
+ (c.c., q ↔ q1),

while the relaxation term J(q, q1) becomes
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J(q, q1) =
1
�

∑
δηq′

(fη − fδ)

×
{

P
i

[〈η|χ̂q′ |δ〉∗〈η|χ̂q1 |δ〉
εδ − εη + �ωq

N(q, q′) − 〈η|χ̂q |δ〉∗〈η|χ̂q′ |δ〉
εδ − εη + �ωq1

N(q′, q1)
]

+π
[
〈η|χ̂q′ |δ〉∗〈η|χ̂q1 |δ〉δ(εδ − εη + �ωq)N(q, q′) (5)

+〈η|χ̂q |δ〉∗〈η|χ̂q′ |δ〉δ(εδ − εη + �ωq1)N(q′, q1)
]}

.

The principal-value contribution in Eq. (5) describes the renormaliza-
tion of boson frequency, while the contribution containing the energy
conservation laws describes the relaxation of phonons or photons.

The general expressions (3)−(5) are used below to describe the photon
emission by the 2D electrons localized in the plane z = 0. The electron
eigenstates are written as |lp〉, where p is the 2D momentum and l
is the discrete quantum number including band index (c or v), spin
number σ, and size-quantization subband number n. We consider the
spin-degenerate case so that the corresponding energies εlp are εcnp and
εvnp, while the distribution functions flp are fcnp and fvnp. If these
distribution functions are isotropic in the 2D plane, the emission rate of
the photons with wave vector Q = (q, qz) is written as δqq′Iµµ′

q (qz, q
′
z),

where

Iµµ′
q (qz, q

′
z) =

2πe2

εV
√

ωQωQ′

∑
ll′p

〈lp|eQµ · v̂|l′p〉∗〈lp|eQ′µ′ · v̂|l′p〉flp(1−fl′p)

×
{

P
i

[
(�ωQ + εl′p − εlp)−1 − (�ωQ′ + εl′p − εlp)−1] (6)

+π
[
δ(�ωQ + εl′p − εlp) + δ(�ωQ′ + εl′p − εlp)

]}
.

This equation employs the general expression (4) with χ̂q written in
the dipole approximation according to Eq. (20.1). The photon density
matrix N(q, q′) satisfying Eq. (3) is diagonal in the 2D wave vectors and
can be written as δqq′Nµµ′

q (qz, q
′
z). The partial Wigner transformation

of Nµµ′
q (qz, q

′
z) is defined similar to Eqs. (9.6) and (19.26):

Nµµ′
q (z, qz) =

∑
g

eigzNµµ′
q

(
qz +

g

2
, qz − g

2

)
. (7)

The energy density and energy flow density can be expressed through
the photon distribution function Nµµ′

q (z, qz) according to Eqs. (19.30)
and (19.32).
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Applying this Wigner transformation to Eq. (3), we should consider
the equation

i
∑

g

eigz(ωq,qz+g/2 − ωq,qz−g/2)N
µµ′
q

(
qz +

g

2
, qz − g

2

)
(8)

=
∑

g

eigz
[
Iµµ′
q

(
qz +

g

2
, qz − g

2

)
+ J

µµ′
q

(
qz +

g

2
, qz − g

2

)]
,

taking into account that the quasi-classical approximation is not valid
near the 2D plane z = 0. In the remote zone, |z| � 2π/qz , one may
consider g small in comparison to the characteristic wave numbers qz ,
and the left-hand side of Eq. (8) is written as

v⊥
∂Nµµ′

q (z, qz)
∂z

, v⊥ =
∂ωQ

∂qz
, (9)

while the right-hand side is transformed to

L⊥∆(z)
[
Iµµ′
q (qz, qz) + Jµµ′

q (qz, qz)
]
, (10)

where L⊥ is the normalization length in z direction. The function ∆(z) =
L−1

⊥
∑

g exp(igz) can be approximated by the δ-function of z (problem
4.10). Therefore, the contribution (10) goes to zero in the remote zone.
Near the 2D plane, where |z| < 2π/qz , one has to analyze Eq. (8) more
carefully, and the problem becomes complicated. However, to describe
the emission of photons from the 2D layer, we can integrate Eq. (8) over
the region −z0 < z < z0, where z0 is placed somewhere in between the
remote zone and z = 0. As a result, we obtain the boundary condition

v⊥Nµµ′
q (z, qz)

∣∣∣z=z0

z=−z0
=
∫ z0

−z0

dz
∑

g

eigz (11)

×
[
Iµµ′
q

(
qz +

g

2
, qz − g

2

)
+ J

µµ′
q

(
qz +

g

2
, qz − g

2

)]
� Iµµ′

Q ,

where on the right-hand side we have used
∫ z0
−z0

dz exp(igz) � L⊥δg0

and made the definition Iµµ′
Q = L⊥Iµµ′

q (qz, qz) (we point out that I has
the dimensionality of velocity). The term J is neglected in the second
equation of Eq. (11), since we imply the condition lph � 2π/qz , where
lph is the photon absorption length due to electron transitions in the 2D
layer. The “glancing” photons, for which qz → 0, are excluded from the
consideration.
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Therefore, the emission of 3D photons by 2D electrons is described by
a quasi-classical kinetic equation with a boundary condition at z = 0.
This approach essentially implies that the photon wavelength is much
larger than the localization length of electrons in z direction. The prob-
lem is written in the form

v⊥
∂Nµµ′

q (z, qz)
∂z

= J̃ph, v⊥Nµµ′
q (z, qz)

∣∣∣z=+0

z=−0
= Iµµ′

Q , (12)

where z0 is aimed to zero. The phenomenologically introduced collision
integral J̃ph describes the relaxation of photon distribution outside the
2D layer. If this relaxation is neglected, the photon distribution be-
comes spatially homogeneous, according to Nµµ′

q (qz) = Iµµ′
Q /v⊥. The

spectral, polarization, and angular dependence of the radiation is deter-
mined entirely by the generation rate (6). The intensity of photon gener-
ation is obtained after summing this rate over the indices of polarization,
I0(Q) =

∑
µ=1,2 Iµµ

Q . The polarization characteristics of the photolumi-
nescence are determined by the matrix structure of Nµµ′ ∝ Iµµ′

. Let us
express the 2 × 2 matrix Iµµ′

Q through the Pauli matrices σ̂i (i = x, y, z)
as

ÎQ =
1
2

[I0(Q) + s(Q) · σ̂] . (13)

The coefficients sx and sz describe the degree and orientation of the
linear polarization, while sy describes the degree of the circular polar-
ization. Since the intensity of spontaneous radiation is not directly re-
lated to the polarization characteristics, it is convenient to introduce
the Stokes parameters according to ξ(Q) = s(Q)/I0(Q). The explicit
expressions for the components of this vector are

ξx(Q) =
I12

Q + I12∗
Q

I0(Q)
, ξy(Q) = i

I12
Q − I12∗

Q

I0(Q)
,

ξz(Q) =
I11

Q − I22
Q

I0(Q)
. (14)

We note that the unit vectors e1,2 describing the photon polarization are
perpendicular to each other and are placed in the plane perpendicular
to Q. It is convenient to direct these vectors at the angles ±π/4 with
respect to the intersection line of this plane with the plane determined
by the vectors Q and n, the latter is the unit vector perpendicular to
the 2D layer; see Fig. 4.2. Instead of ξx and ξz , we use the degree of
polarization lQ and the angle φQ between the maximum of polarization
and e1, according to the relations ξx = lQ sin 2φQ and ξz = lQ cos 2φQ.
The case lQ = 1 corresponds to completely polarized radiation. If φQ =
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−π/4, the maximum of polarization is in the 2D plane. If φQ = π/4, the
maximum is in the plane determined by the vectors Q and n.

Figure 4.2. Orientation of the vectors characterizing the photoluminescence from the
2D layer.

Let us find the polarization characteristics defined above. Consider
the intersubband transitions of the 2D electrons in the conduction band.
We omit the band index so that εlp = εnp and flp = fnp. In the simple
model given by Eqs. (5.24)−(5.25), only z-component of the velocity
contributes to the matrix elements of the intersubband transitions, and
from Eq. (6) we obtain

Iµµ′
Q = 2

(2πe)2

ωQε

∑
nn′

∫
dp

(2π�)2
(ez

Qµvz
nn′)∗(ez

Qµ′vz
nn′)

×δ(�ωQ + εn′p − εnp)fnp(1 − fn′p) (15)

=
2(2πe)2

ωQε

∫
dp

(2π�)2
ez ∗
Qµ ez

Qµ′ |vz
12|2δγ(�ωQ − ε21)f2p(1 − f1p),

where vz
nn′ = m−1〈n|p̂z |n′〉 and the factor of 2 comes from the sum

over spin. The second equation in Eq. (15) is written in the reso-
nance approximation, when �ωQ is close to the intersubband transition
energy ε21 = ε2p − ε1p so that the contribution of other subbands is ne-
glected. The energy ε21 is independent of p since we assume the identi-
cal, parabolic dispersion for the electrons in the subbands. The function
δγ(E) is defined as a “broadened” δ-function (see problem 1.4), where
the broadening energy γ for intersubband transitions is introduced phe-
nomenologically. This broadening is necessary to make the expression
(15) finite. For non-degenerate electrons, the generation rate depends on
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the density of electrons in the second subband. For degenerate electrons,
a non-zero generation takes place only in the case of negative interband
absorption. Using Eqs. (14) and (15), we find ξy(Q) = 0, while the other
polarization characteristics are expressed as a solution of the following
system of two equations:

lQ sin 2φQ =
2ez

1e
z
2

(ez
1)2 + (ez

2)2
, lQ cos 2φQ =

(ez
1)

2 − (ez
2)

2

(ez
1)2 + (ez

2)2
. (16)

If the unit vectors e1,2 are chosen as shown in Fig. 4.2, we have ez
1 = ez

2,
and the solutions are lQ = 1 and φQ = π/4. This result is understand-
able: if the intersubband transitions are excited by the wave polarized
perpendicularly to the 2D layer, the photoluminescence is linearly po-
larized in the plane determined by the vectors Q and n.

A description of the photoluminescence due to interband transitions
in quantum wells is more difficult. The spectral dependence of such pho-
toluminescence in p-type quantum wells is given by an expression anal-
ogous to Eq. (20.9). However, it is determined by the two-dimensional
joint density of states, and the square-root spectral dependence near
the edge of interband transitions is replaced by a step-like dependence
(compare Eqs. (5.3) and (5.26)). The polarization dependence of the
photoluminescence is determined both by the interband matrix elements
of the velocity operator (problem 4.11) and by the distribution of non-
equilibrium electrons (problem 4.12). The photoluminescence is often
used as a tool for optical characterization of heterostructures.

The consideration given above can be applied to describe the acous-
tic phonon emission by 2D electrons. We consider electron transitions
within the conduction band states |np〉, and assume that the electrons
are characterized by a non-equilibrium distribution and interact with
the longitudinal acoustic (LA) phonons via deformation potential. Sub-
stituting the corresponding operator χ̂q from Eq. (21.1) into Eq. (4),
we obtain

Iq(qz, q
′
z) = 2C∗

QCQ′
1
�

∑
nn′p

fnp(1 − fn′p−�q)〈n|eiqzz |n′〉∗〈n|eiq′
zz |n′〉

×
{

P
i

[
(�ωQ + εn′p−�q′ − εnp)−1 − (�ωQ′ + εn′p−�q − εnp)−1]

+π
[
δ(�ωQ + εn′p−�q′ − εnp) + δ(�ωQ′ + εn′p−�q − εnp)

]}
(17)

instead of Eq. (6). In contrast to the case of electron-photon interaction,
the polarization index is omitted since we have only one polarization.
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The Wigner distribution function of phonons, Nq(z, qz), satisfies a ki-
netic equation with a boundary condition, according to Eq. (12). The
boundary condition contains the generation velocity

IQ =
4π

�
L⊥|CQ|2

∑
nn′p

|〈n|eiqzz |n′〉|2δ(�ωQ + εn′p−�q − εnp)

×fnp(1 − fn′p−�q). (18)

The factor of 2 in Eqs. (17) and (18) comes from the sum over spin.
The homogeneous solution Nq(qz) = IQ/v⊥ is valid at the distances

small in comparison to the lateral size L of the 2D layer. At the dis-
tances much larger than L, the 2D structure can be viewed as a local
source of phonons placed at the origin of the coordinate system. This
consideration allows one to neglect edge effects and leads to a simple
stationary distribution

NrQ = FQ

(
x − qx

qz
z, y − qy

qz
z

)
, FQ(x, y) =

{
IQ/v⊥, (x, y) ∈ Γ
0, outside ,

(19)
where Γ is the area of the 2D layer covering the square L2. Substituting
this solution into the energy flow density (19.32), it is not difficult to
calculate G at R � L, where R is the distance between the point of
observation and the 2D structure. The tangential component of G van-
ishes, while the radial component Gr , which describes the energy flow
from the 2D layer in the direction determined by the angles θ and ϕ of
the spherical coordinate system, is given by

Gr =
L2

(2πsl)3R2

∫ ∞

0
dω�ω3I(ω, θ), (20)

where ω = ωQ = slQ = sl |qz/ cos θ| and the function IQ is expressed in
terms of the variables ω and θ (it is independent of the polar angle ϕ
because of the averaging over the angle of p in Eq. (18)). The radial
component Gr decreases as 1/R2 and is independent of the polar angle
due to the axial symmetry of the problem at R � L. The result (20) can
be expressed through the differential quantity δG defined as the energy
flow in a unit frequency interval inside a unit solid angle in the direction
determined by the angle θ:

δG =
�ω3

(2πsl)3
I(ω, θ). (21)

The total intensity of the radiation emitted by a unit area of the 2D
layer inside a unit solid angle in the direction determined by the angle
θ is defined as

∫∞
0 dωδG.
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The energy dependence of δG and angular distribution of emitted
phonons are calculated below for the electrons occupying the lowest sub-
band. The electrons are described by the quasi-equilibrium Fermi distri-
bution with effective electron temperature Te. This temperature can be
controlled by an applied electric field which heats the electron system.
The anisotropy of the electron distribution is neglected, since it is small
as a ratio of the drift velocity to the Fermi velocity (we stress, how-
ever, that this anisotropy leads to an anisotropy of the emitted phonon
distribution in the plane). From Eqs. (18) and (21) we find

δG =
�ω3

(2π)3s2
l | sin θ| |〈1|eiqzz |1〉|2

∫ ∞

εm

dε
f(ε)[1 − f(ε − �ω)]√

ε0(ε − εm)
. (22)

The energies entering this expression are

ε0 = 2
(

π�
3ρs2

l

D2m3/2

)2

(23)

and

εm =
ms2

l

2 sin2 θ

(
1 +

�ω

2ms2
l

sin2 θ

)2

. (24)

The latter is the cut-off energy appearing after the angular averaging,
because of the energy conservation law. The squared overlap factor
|〈1|eiqzz |1〉|2 in Eq. (22) is determined by the shape of the wave function
of the confined electron state and depends on the dimensionless parame-
ter qzd, where d is the width of the quantum well (problem 4.13). Under
the conditions �ω � εF and Te � εF , the differential energy flow is
independent of εm and given by

δG =
�ω3

(2π)3s2
l | sin θ| |〈1|eiqzz |1〉|2 �ω√

εF ε0

1
e�ω/Te − 1

. (25)

If �ω � Te, this function increases linearly with increasing Te. At low
temperatures it is exponentially suppressed because of the Pauli blocking
effect. Equation (25) is not valid for the phonons emitted perpendicular
to the 2D layer, when θ → 0. The cut-off energy εm for such phonons
becomes comparable to εF , in spite of smallness of the energy ms2

l , and
there appears an additional exponential suppression of δG.

Problems
4.1. Write the expressions for electron parts of the operators of

electron-acoustic phonon and electron-optical phonon interactions stand-
ing in Eq. (19.2).

Solution: Let us substitute the electron coordinates xj in place of r into the
expressions for Ĥe,LO(r) and Ĥe,LA(r) given by Eqs. (6.22) and (6.30), respectively.
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Summing these expressions over the particles, we obtain Ĥe,LO and Ĥe,LA in the form
of Eq. (19.2), where the index q includes both the wave vector q and the mode index
(LO or LA). The electron parts χ̂(j)

q are expressed as

χ̂
(j)
qLO =

√
2πe2�ωLO

ε∗q2V
eiq·xj , χ̂

(j)
qLA =

√
�D2q

2ρslV
eiq·xj .

4.2. Do the same as in problem 4.1 for electron-photon interaction.
Result:

χ̂(j)
qµ =

1
2

√
2π�e2

ωqµεV

[
(v̂j · eqµ)eiq·xj + eiq·xj (v̂j · eqµ)

]
.

4.3. Rewrite the operator of electron-boson interaction in the second
quantization representation.

Hint: Use the general formalism developed in Sec. 4 (see, for example, the discus-
sion leading to Eq. (4.23)).

4.4. Consider absorption of the photons incident on a half-space z > 0
with absorption coefficient αω .

Solution: Solving Eq. (20.7) with the boundary condition Nz=0 = N0 at the sur-
face, we obtain Nz = N0e

−αωz.

4.5. Consider the occupation of conduction and valence bands by
electrons in the materials of n- and p-type at T = 0. Consider also a
material with non-equilibrium electron-hole pairs.

Solution: The Fermi energies εFj (j = c, v) at zero temperature are expressed
through the densities nj of electrons or holes according to nj =

∫ εF j

0 dερj(ε), where
ρj is the density of states in the band j. The densities nc and nv in equilibrium are
equal to the concentrations of ionized donors and acceptors, ND and NA, respectively.
In the material with non-equilibrium electron-hole pairs, one should use the electric
neutrality equation nv + ND = nc + NA. This equation allows one to express nc

through ND, NA, and εFv.

4.6. Solve Eq. (20.15) with the initial condition N±
ω (z, t)|t=0 = 0 and

boundary conditions (20.17).
Hints: Using the Laplace transformation N (±)

ω (z, s) =
∫∞
0 dte−stN (±)

ω (z, t), reduce
Eq. (20.15) to an ordinary differential equation of the first order. Solve it with the
boundary conditions (20.17). Then apply the inverse Laplace transformation.

4.7. Derive Eq. (21.7).
Hint: Calculate the derivatives over time of both sides of Eq. (21.6) and use the

definition of S-operators given in Sec. 2.
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4.8. Write the generation term Iq in Eq. (21.12) under the assump-
tion that the influence of electric field on electron-phonon interaction
is neglected. Find a relation between Iq and νq in the case of Fermi
distribution of electrons.

Result:

Iq =
4π

�
|Cq|2

∑
p

δ(εp − εp+�q + �ωq)fp+�q(1 − fp) =
νq

e�ωq/Te − 1
.

The last expression corresponds to the case of Fermi distribution.

4.9. Check that the generation rate (21.23) for short-wavelength
phonons in the region (21.31) is equal to −νq given by Eq. (21.32).

Hint: Take into account that the quasi-equilibrium function fp = f(εp) satisfies
the following identity:

fp+�q(1 − fp) =
fp+�q − fp

1 − exp[(εp+�q − εp)/Te]
,

where Te is the effective temperature of electrons. Prove that the exponent in this
expression can be neglected in Eq. (21.23) at k = −1, if �ω  Te.

4.10. Consider the function ∆(z) entering Eq. (22.10).
Solution: By definition, the region of summation in ∆(z) = L−1

⊥
∑

η eiηz is re-
stricted by |η| < qz. The result of summation is written as ∆(z) = sin(qzz)/πz. This
function has a maximum at z = 0, while at z > π/qz it is small and oscillating.
Next, one has

∫ z0
−z0

dz∆(z) = 1 at z0  π/qz. Therefore, ∆(z) has the properties of
a broadened δ-function.

4.11. Consider the electron states in c- and v-bands of a symmetric
quantum well described by the two-band model; see Eqs. (B.16)−(B.24).
Calculate the matrix elements of the velocity operator for this system.

Solution: Let us use the Hamiltonian (B.18) with M → ∞ and consider the case of
symmetric c- and v-bands, assuming that the potentials of these bands change sym-
metrically at the boundaries z = ±d/2 of the quantum well. Carrying out a unitary
transformation of this Hamiltonian with the use of the operator (1 + iρ̂3σ̂z)/

√
2, we

obtain a Hamiltonian which can be easily diagonalized with respect to the spin vari-
able. The eigenstates are the four-component wave functions written below through
the two-component spinors: (

ϕ|σ〉
χ|σ〉

)
1
L

exp(ip · r/�),

where r and p are the two-dimensional coordinate and momentum. The spinors |σ〉
satisfy the eigenstate problem σ̂z|σ〉 = σ|σ〉 with σ = ±1, while the coordinate-
dependent functions ϕ and χ satisfy the following system of equations:

(εg(z)/2 − E)ϕ(z) + s(σp + �d/dz)χ(z) = 0,
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s(σp − �d/dz)ϕ(z) + (−εg(z)/2 − E)χ(z) = 0,

where εg(z) = ε<
g inside the well (|z| < d/2), and εg(z) = ε>

g outside the well
(|z| > d/2). The interband velocity s is assumed to be constant, it is not changed
across the interfaces z = ±d/2. The solutions for confined states are expressed
through the functions exponentially decreasing with the increase of |z| outside the
wells. Using this property, we reduce the problem to the region inside the well,
with the boundary conditions χ(−d/2) = −αlϕ(−d/2) and χ(d/2) = αrϕ(d/2),
where αl and αr are the functions of ε>

g , energy E, and momentum p. If the
band offsets at the interfaces are large, ε>

g  E, sp, one has simply αl = αr = 1.
Assuming that this condition is fulfilled, we search for the solutions in the form
ϕ(z) = c1e

ikz + c2e
−ikz and χ(z) = c3e

ikz + c4e
−ikz. The energy spectrum is written

as ε±n(p) = ±
√

(ε<
g /2)2 + (�skn)2 + (sp)2, where we use the indices + and − as the

band indices c and v, respectively. The discrete wave numbers kn > 0 are determined
from the dispersion relation tan(knd) = −2�skn/ε<

g (at ε<
g  �skn it is reduced to

the hard-wall quantization relation kn = πn/d, n = 1, 2, ...). The electron states in
the quantum well depend on the band index ±, subband number n, 2D momentum p,
and spin number σ. The spectrum, however, is spin-degenerate because the quantum
well is assumed to be symmetric. In the general case of an asymmetric quantum well,
the spectrum is spin-split at p �= 0; see Sec. 63.

Carrying out the unitary transformation of the velocity operator (B.16), and using
the four-component wave functions defined above, we obtain the interband matrix
elements of the velocity operator in the form

vnσ,n′σ′(p) = s(σσσ′ · [n × p])
[n × p]

p2 Ψnσ,n′σ′ + sσ
p
p

δσσ′Ψnσ,n′σ′ + isnδσσ′Φnσ,n′σ′ .

In this equation, σσσ′ = 〈σ|σ̂|σ′〉, n is the unit vector in the direction perpendicular
to the 2D plane, and

Ψν,ν′ =
∫ d/2

−d/2
dz[ϕ+νp(z)χ−ν′p(z) + χ+νp(z)ϕ−ν′p(z)],

Φν,ν′ =
∫ d/2

−d/2
dz[ϕ+νp(z)χ−ν′p(z) − χ+νp(z)ϕ−ν′p(z)],

where the multi-indices ν = nσ and ν ′ = n′σ′ are used for the sake of brevity.

4.12. Calculate the Stokes parameters for photon emission by non-
equilibrium electrons occupying the lowest (n = 1) conduction-band
level in the quantum well of p-type. Use the model of quantum well
described in problem 4.11.

Solution: Since the distribution of the 2D electrons and their energy spectra are
isotropic and spin-degenerate, the averaging over the angle of p and spin summation
in Eq. (22.6) is done in the following way:

∑
σσ′

∫ 2π

0

dϕ

2π
(eqµ · v+1σ,−n′σ′(p))∗ (eq′µ′ · v+1σ,−n′σ′(p))

� 2s2 [Ψ2
1,n′δµµ′ + (Φ2

1,n′ − Ψ2
1,n′)(eqµ · n)(eq′µ′ · n)

]
.
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The matrix elements Ψnσ,n′σ′ and Φnσ,n′σ′ of the previous problem are written here
in the approximation when their dependence on spin is neglected (accordingly, the
spin indices σ and σ′ are omitted). This approximation is valid if the momentum p is
small enough, for example, when the non-equilibrium electrons are described by the
Maxwell distribution with effective temperature Te � ε<

g . In the same approximation,
we neglect the dependence of the factors Ψ1,n′ and Φ1,n′ on p and express the Stokes
parameters for the transitions (+1) → (−n) as

ξx(q) =
e2

z(Φ2
1,n − Ψ2

1,n)
Ψ2

1,n + e2
z(Φ2

1,n − Ψ2
1,n)

, ξy(q) = ξz(q) = 0,

where ez = (e1,2 · n) = sin q̂n/
√

2. If q̂n = 0, the radiation is not polarized, while
at non-zero q̂n the radiation is polarized parallel to the 2D layer. The degree of this
linear polarization is determined by the parameters of the quantum well and by the
number n of the valence subband involved in the optical transition.

4.13. Calculate the squared matrix element
∣∣〈1|eiqz |1〉

∣∣2 for the hard-
wall quantum well.

Result:
∣∣〈1|eiqz|1〉

∣∣2 = [sin(qd/2)/(qd/2)]2[(qd/2π)2 − 1]−2, where d is the well
width. This function is close to 1 at qd < 2 and rapidly decreases as q exceeds 2π/d.



Chapter 5

INTERACTING PHONON SYSTEMS

In the absence of free charges, as in insulators and non-doped semiconductors, the
transport phenomena in solids are determined by the kinetics of interacting phonon
modes. Besides, the relaxation properties of the phonon system often control the en-
ergy and momentum transfer from non-equilibrium electrons to the lattice. Therefore,
the kinetics of interacting phonons deserves a special consideration. Below we derive
and analyze the kinetic equation for phonons involving phonon-phonon collisions and
describe, on its basis, the thermal conduction of insulators, the thermal waves (second
sound), and the features of non-equilibrium phonon relaxation determined by the dy-
namical properties of phonons. We consider perfect crystals, where the interaction of
phonons with impurities can be neglected. The last section of this chapter contains a
discussion of phonon-photon interaction and the calculation of the complex dielectric
function of ionic crystals with the aid of the linear response theory and the formalism
of double-time Green’s functions.

23. Phonon-Phonon Collisions
A system of interacting phonons is described by the Hamiltonian

Ĥph + Ĥph,ph, (1)

where Ĥph is the Hamiltonian of free phonons and Ĥph,ph is the interac-
tion Hamiltonian originating from the anharmonicity of crystal lattice vi-
brations. The interaction Hamiltonian is given by Eqs. (6.31) and (6.32).
Below, using the definition Bl1l2l3(q1,q2,q3) = (�/2)3/2βl1l2l3(q1,q2,q3)
/
√

ρV ωq1l1ωq2l2ωq3l3 , we rewrite this Hamiltonian as

Ĥph,ph =
1
6

∑
q1q2q3

∑
l1l2l3

Bl1l2l3(q1,q2,q3) (2)

×(b̂q1l1 + b̂+
−q1l1

)(b̂q2l2 + b̂+
−q2l2

)(b̂q3l3 + b̂+
−q3l3

),

189
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where li are the phonon branch numbers and qi are the phonon wave
vectors. The Hamiltonian (2) is cubic in the creation and annihilation
operators of phonons, which means that we restrict ourselves by the cu-
bic anharmonicity only. In some cases, however, one needs to account
for a higher-order anharmonicity, when the interaction Hamiltonian con-
tains products of four or more such operators.

Let us derive an equation for the one-phonon density matrix intro-
duced by Eq. (19.4). To do this, we substitute the Hamiltonian (1) into
Eq. (1.20), multiply this equation by b̂+

ql b̂q′l′ , and calculate the trace
over phonon variables. The left-hand side of the equation obtained is
transformed to the same form as in Eq. (19.5). The right-hand side
contains a trace of the product of the statistical operator η̂t by the com-
mutator [b̂+

ql b̂q′l′ , Ĥph,ph]. This commutator contains eight terms. Two
of them are given below:

[b̂+
ql b̂q′l′ , b̂q1l1 b̂q2l2 b̂

+
−q3l3

] = b̂+
ql b̂q1l1 b̂q2l2δl′l3δq′,−q3

−b̂q2l2 b̂
+
−q3l3

b̂q′l′δll1δq,q1 − b̂q1l1 b̂
+
−q3l3

b̂q′l′δll2δq,q2 , (3)

[b̂+
ql b̂q′l′ , b̂q1l1 b̂

+
−q2l2

b̂+
−q3l3

] = b̂+
ql b̂q1l1 b̂

+
−q3l3

δl′l2δq′,−q2

+b̂+
ql b̂q1l1 b̂

+
−q2l2

δl′l3δq′,−q3 − b̂+
−q2l2

b̂+
−q3l3

b̂q′l′δll1δq,q1 , (4)

and the other are written in a similar way. After straightforward but
cumbersome transformations, we find[

i�
∂

∂t
− �(ωq′l′ − ωql)

]
Nt(l′q′, lq)

= −1
6

∑
l1q1l2q2

{
[Bll1l2(q,q1,q2) + . . .]3 K(l′|l2l1)(q

′| − q2, −q1)

+ [Bll1l2(q,q1,q2) + . . .]6 K(l′l2|l1)(q
′,q2| − q1)

−
[
Bl′l1l2(−q′,q1,q2) + . . .

]
6 K(l2|l1l)(q2| − q1,q) (5)

−
[
Bl′l1l2(−q′,q1,q2) + . . .

]
3 K(l2l1|l)(q2,q1|q)

+ [Bll1l2(q,q1,q2) + . . .]3 Sp{b̂q1l1 b̂q2l2 b̂q′l′ η̂t}

−
[
Bl′l1l2(−q′,q1,q2) + . . .

]
3 Sp{b̂+

−q1l1
b̂+
−q2l2

b̂+
qlη̂t}

}
.

The phonon density matrix Nt(l′q′, lq) is defined by Eq. (19.4), and the
functions K... are introduced as

K(l3|l2l1)(q3|q2,q1) = Sp{b̂+
q1l1

b̂+
q2l2

b̂q3l3 η̂t},
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K(l3l2|l1)(q3,q2|q1) = Sp{b̂+
q1l1

b̂q2l2 b̂q3l3 η̂t}. (6)

The dots in [Bll1l2(q,q1,q2) + . . .]6 denote the coefficients B obtained
from the first one by five possible permutations of the indices lq, l1q1,
and l2q2, while the dots in [Bll1l2(q,q1,q2) + . . .]3 mean two possible
permutations under the condition that the order of the indices l1q1 and
l2q2 remains unchanged. Thus, the subindex p at the brackets [. . .]p,
where p = 3 or 6, denotes the number of the terms standing in the
brackets. As seen from the definition (6.32), the anharmonic coefficients
βl1l2l3(q1,q2,q3) and, consequently, Bl1l2l3(q1,q2,q3) are invariant with
respect to such permutations, since simultaneously one can permute the
indices si, ni, and ki under the sign of sum in Eq. (6.32). Therefore,
[Bl1l2l3(q1,q2,q3) + . . .]p = pBl1l2l3(q1,q2,q3).

To find the averages defined by Eq. (6), we multiply Eq. (1.20) by
b̂+
q1l1

b̂+
q2l2

b̂q3l3 one time and by b̂+
q1l1

b̂q2l2 b̂q3l3 another time. Calculating
the traces of the equations obtained in this way, we get[

i�
∂

∂t
− �(ωq3l3 − ωq2l2 − ωq1l1)

]
K(l3|l2l1)(q3|q2,q1)

= Sp{[b̂+
q1l1

b̂+
q2l2

b̂q3l3 , Ĥph,ph]η̂t} (7)

and [
i�

∂

∂t
− �(ωq3l3 + ωq2l2 − ωq1l1)

]
K(l3l2|l1)(q3,q2|q1)

= Sp{[b̂+
q1l1

b̂q2l2 b̂q3l3 , Ĥph,ph]η̂t}. (8)

Similar equations for the quantities Sp{b̂q1l1 b̂q2l2 b̂q3l3 η̂t} and Sp{b̂+
q1l1

×b̂+
q2l2

b̂+
q3l3

η̂t} contain the factors i�∂/∂t ± �(ωq3l3 + ωq2l2 + ωq1l1) on
the left-hand sides.

The commutators on the right-hand sides of Eqs. (7) and (8) are
reduced to sums of four-operator products. The next equation gives us
an example of such calculations:[

b̂+
ql b̂q′l′ b̂q′′l′′ , b̂q1l1 b̂

+
−q2l2

b̂+
−q3l3

]
= b̂+

ql b̂q′l′ b̂q1l1

(
b̂+
−q3l3

δl′′l2δq′′,−q2

+b̂+
−q2l2

δl′′l3δq′′,−q3

)
+ b̂+

ql b̂q1l1

(
b̂+
−q3l3

δl′l2δq′,−q2 (9)

+b̂+
−q2l2

δl′l3δq′,−q3

)
b̂q′′l′′ − b̂+

−q2l2
b̂+
−q3l3

b̂q′l′ b̂q′′l′′δll1δq,q1 .

The four-operator products are averaged with the use of the following
approximate equations:
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Sp{b̂+
q1l1

b̂+
q2l2

b̂q3l3 b̂q4l4 η̂t} � Nt(l4q4, l1q1)Nt(l3q3, l2q2)

+Nt(l4q4, l2q2)Nt(l3q3, l1q1), (10)

Sp{b̂q1l1 b̂q2l2 b̂q3l3 b̂q4l4 η̂t} � Sp{b̂+
q1l1

b̂+
q2l2

b̂+
q3l3

b̂+
q4l4

η̂t} � 0,

which would be exact in the absence of phonon-phonon interaction. Be-
low we neglect the phase correlations of different modes, i.e., consider
only the diagonal, with respect to the branch index l, phonon density ma-
trices. This is justified in the case of non-degenerate phonon spectrum,
when a characteristic difference in the phonon frequencies is much larger
than the relaxation rate of the phonons. Let us consider first a spatially
homogeneous (translation-invariant) case, when the density matrices are
also diagonal with respect to the wave vector: Nt(l′q′, lq) = δl′lδq′qNl

qt,
where Nl

qt is the distribution function of phonons. The terms on the
right-hand sides of Eqs. (7) and (8) become, respectively,

Bl3l2l1(−q3,q2,q1)
[
Nl1

q1tN
l2
q2t − Nl1

q1tN
l3
q3t

−(1 + Nl2
q2t)N

l3
q3t

]
≡ �G(1)

t (11)

and
Bl1l2l3(q1, −q2, −q3)

[
(1 + Nl2

q2t)N
l1
q3t + Nl1

q1tN
l3
q3t

−Nl2
q2tN

l3
q3t

]
≡ �G(2)

t . (12)

With the use of the definitions (11) and (12), Eqs. (7) and (8) can be
rewritten as [

i
∂

∂t
− Ωi

]
K(i)

t = G(i)
t , i = 1, 2, (13)

where Ω1 and Ω2 are the shortcuts for frequency-difference terms in
the round brackets in Eqs. (7) and (8), and K(1)

t and K(2)
t stand for

K(l3|l2l1)(q3|q2,q1) and K(l3l2|l1)(q3,q2|q1), respectively. We already
encountered and discussed such types of equations for the correlation
functions in the theory of electron-impurity and electron-boson systems
in Chapters 2 and 4. The solution of Eq. (13) satisfying the principle of
the weakening of correlations, K(i)

t→−∞ = 0, is written according to

K(i)
t = −i

∫ t

−∞
dt′eλt′−iΩi(t−t′)G(i)

t′ . (14)

The integral over t′ can be calculated in the Markovian approximation,
when it is assumed that the phonon distribution functions standing in
G(i)

t′ slowly vary on the time scale 2π/ω, where ω is a characteristic
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phonon frequency. Such integrals give both the terms proportional to
δ(Ωi), expressing the energy conservation law, and the principal-value
terms (the latter, however, disappear from the kinetic equation (5)). The
solutions for Sp{b̂q1l1 b̂q2l2 b̂q3l3 η̂t} and Sp{b̂+

q1l1
b̂+
q2l2

b̂+
q3l3

η̂t} obtained in
this way contain δ(ωq3l3 + ωq2l2 + ωq1l1) and cannot satisfy the energy
conservation law. Therefore, the two last terms on the right-hand side
of Eq. (5) should be neglected and only the terms containing K(i)

t are
considered there. Let us substitute the solutions of Eqs. (7) and (8) with
the right-hand sides (11) and (12) into Eq. (5). Taking into account the
property

Bl1l2l3(−q1, −q2, −q3) = B∗
l1l2l3(q1,q2,q3) , (15)

which is obvious from the definition of these coefficients and from Eq.
(6.32), we finally obtain the kinetic equation which describes homoge-
neous phonon distribution:

∂

∂t
Nl

qt = Jph,ph(N |qlt). (16)

The collision integral in this equation comprises two terms:

Jph,ph(N |qlt) =
1
V

∑
l1l2

∑
q1q2

1
2
W(l|l1l2)(q|q1,q2)δ(ωql − ωq1l1 − ωq2l2)

×[(Nl
qt + 1)Nl1

q1tN
l2
q2t − Nl

qt(N
l1
q1t + 1)(Nl2

q2t + 1)]

+
1
V

∑
l1l2

∑
q1q2

W(l2|l1l)(q2|q1,q)δ(ωql + ωq1l1 − ωq2l2) (17)

×[(Nl
qt + 1)(Nl1

q1t + 1)Nl2
q2t − Nl

qtN
l1
q1t(N

l2
q2t + 1)].

The scattering probabilities in Eq. (17) are expressed through the func-
tions (problem 5.1)

W(l1|l2l3)(q1|q2,q3) =
2πV

�2 |Bl1l2l3(q1, −q2, −q3)|2 ∝ ∆q1,q2+q3 , (18)

which are proportional to the generalized Kronecker symbol introduced
in Sec. 6. It is equal to 1 when q1 = q2 + q3 + g, where g is either zero
or one of the reciprocal lattice vectors, and equal to 0 otherwise. Thus,
the kinetic equation accounts both for the normal processes describing
transitions inside the Brillouin zone and for the umklapp processes with
g 	= 0. As follows from the energy conservation laws, the first term in
Eq. (17) describes a decay of the phonon ql into two other phonons
with quantum numbers q1l1 and q2l2, and the inverse process, when the
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phonons q1l1 and q2l2 fuse to form the phonon ql. The second term
corresponds to a fusion of the phonon ql with the phonon q1l1. As a
result, the phonon q2l2 is created. The inverse process is a decay of the
phonon q2l2 into the phonons ql and q1l1. The calculation has given
the factor 1/2 in the first term of the collision integral (17). This is
explained by the fact that the sum there contains the contribution of
two equivalent decay processes, formally differing in the permutation of
q2l2 and q1l1, and they have to be considered as a single process.

If there is a smooth spatial inhomogeneity of the phonon distribution,
one may introduce the Wigner distribution function Nl

rqt according to
Eq. (19.26). The factor −(ωq′l′ − ωql)Nt(l′q′, lq) on the left-hand side
of Eq. (5) at l = l′ is exactly transformed to i(∂ωql/∂q) · (∂Nl

rqt/∂r),
while the collision integral contains operator products which are approx-
imately replaced by corresponding products of the Wigner functions; see
Appendix C. We obtain

∂Nl
rqt

∂t
+

∂ωql

∂q
·
∂Nl

rqt

∂r
= Jph,ph(N |rqlt), (19)

where the collision integral is given by Eq. (17). It depends on r para-
metrically, through the coordinate dependence of the distribution func-
tions.

The dependence of the phonon-phonon scattering probabilities on the
wave vectors cannot be expressed analytically in the general case, when
the phonons are of short wavelength, i.e., when |qi| are comparable to
the size of the Brillouin zone. One can use the approximate expressions
for the anharmonic coefficients A given in the end of Sec. 6 to find an
order-of-value estimate

W ∼ �s̄/M, (20)

where s̄ is the averaged velocity of sound. However, if the temperature of
the crystal is small in comparison to the Debye temperature ΘD defined
as

ΘD � �s̄π/ā, (21)

the main contribution to kinetic phenomena often comes from the long-
wavelength acoustic phonons only. If the three phonons participating in
the transition are long-wavelength acoustic ones, the functions W(l1|l2l3)
(q1|q2,q3) can be expressed through the third-order anharmonic elas-
tic constants, according to Eq. (6.34). Substituting the coefficients
Bl1l2l3(q1,q2,q3) from Eq. (6.34) into Eq. (18), and taking into account
a linear dispersion of long-wavelength acoustic phonon modes, one can
see that the scattering probabilities in the collision integral (17) are pro-
portional to a product of the wave vectors of three phonons participating
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in the transitions. These probabilities contain the usual Kronecker sym-
bols, because the umklapp processes cannot be taken into account in the
theory of elasticity for continuous media. On the other hand, owing to
the conservation laws, at least two of the phonons participating in the
umklapp processes should be of short wavelength. Since the number of
these phonons exponentially decreases as the temperature goes down,
the description of the long-wavelength acoustic phonons at T � ΘD of-
ten can be done without a consideration of umklapp processes. Below
we show, however, that the umklapp processes are necessary to establish
thermal equilibrium in the interacting phonon system.

The phonon-phonon collisions lead to relaxation of non-equilibrium
phonon distribution to quasi-equilibrium, when the solution of the sta-
tionary and homogeneous kinetic equation Jph,ph(N |ql) = 0 is Nl

q =
[e�ωql/Tph − 1]−1. The phonon temperature Tph standing in this function
is not, in general, equal to the equilibrium temperature T . Therefore,
one cannot define the equilibrium temperature from a consideration of
the kinetic equation with phonon-phonon collision integral. Indeed, the
phonon-phonon collisions conserve the total energy of the phonon sys-
tem, and the equilibrium state can be reached only due to energy ex-
change between the phonon system and a thermostat. We note that
there exists another solution of the stationary and homogeneous kinetic
equation (problem 5.2),

Nl
q = cNl(0)

q (Nl(0)
q + 1)�ωql, (22)

where Nl(0)
q is the Planck distribution with temperature Tph and c is

an arbitrary constant. This solution, which can be added to any other
solution of the kinetic equation, is not an independent one: it is expressed
through the solution mentioned above. To show this, let us consider
the Planck function Nl(0)′

q with temperature T ′
ph, which is chosen under

condition that ∆T = T ′
ph −Tph is small in comparison to Tph. Expanding

this function, we obtain Nl(0)′
q = Nl(0)

q + (∂Nl(0)
q /∂Tph)∆T = Nl(0)

q +
∆T (�ωql/T 2

ph)Nl(0)
q (Nl(0)

q + 1). Now we see that the solution (22) is the

difference of the solutions Nl(0)′
q and Nl(0)

q if one choses c = ∆T/T 2
ph.

The ambiguity discussed above can be removed if we state the require-
ment that the energy density (19.30) of a stationary and homogeneous
non-equilibrium phonon system should be equal to the energy density of
the phonon system in thermodynamic equilibrium:

E =
1
V

∑
ql

�ωqlN
l
q =

1
V

∑
ql

�ωqlN
(eq)
lq , (23)
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where N (eq)
lq = [e�ωql/T − 1]−1 is the equilibrium distribution function.

The normalization condition (23) allows us to avoid a consideration of
the relaxation of phonon system due to interaction with a thermostat.
The relation between E and T remains the same as in thermodynamic
equilibrium. To demonstrate how the application of Eq. (23) removes
the ambiguity with respect to the temperature, let us suppose that we
have found a solution Nl

q of the kinetic equation. If this solution already
satisfies Eq. (23), one should leave it as it is. If this solution does not
satisfy Eq. (23), one should add it to the function (22) (at Tph = T , for
convenience) and determine the constant c by applying Eq. (23).

To describe non-stationary and/or non-homogeneous systems under
the conditions

t̄ � τ̄ , l̄ � s̄τ̄ , (24)

i.e., when the characteristic times and spatial scales of the inhomo-
geneities, t̄ and l̄, are large in comparison to the phonon-phonon scatter-
ing time τ̄ and phonon mean free path length s̄τ̄ , Eq. (23) is generalized
as

Ert =
1
V

∑
ql

�ωqlN
l
rqt =

1
V

∑
ql

�ωql

exp(�ωql/Trt) − 1
, (25)

where Trt is the local temperature. The introduction of this temperature
can be justified under the conditions (24). The relation between the
local quantities Ert and Trt again remains the same as in thermodynamic
equilibrium.

The normal processes alone cannot provide the relaxation of a phonon
system to equilibrium, because they conserve the total quasimomentum
of this system. This means that any stationary distribution function of
the kind

Nl
q = [e�(ωql−q·u)/Tph − 1]−1, (26)

where u is an arbitrary velocity vector, satisfies the stationary and homo-
geneous kinetic equation Jph,ph(N |ql) = 0, where the umklapp processes
in the collision integral are neglected. To show this, one may substitute
the distribution function (26) into the collision integral (17) and check
that each of its two terms vanishes because of the momentum conserva-
tion rule. The velocity u is the averaged group velocity of the phonon
gas (problem 5.3), and it is also called the phonon drift velocity. On the
other hand, let us define the momentum density of the phonon system
according to

Prt =
1
V

∑
ql

�qNl
rqt. (27)
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This momentum density is equal to zero in equilibrium. In the spatially
homogeneous case, we multiply both sides of the kinetic equation (16)
by �q and sum the equation obtained over l and q, which leads to

∂Pt

∂t
=

�

V 2

∑
ll1l2

∑
qq1q2

(q/2 − q2)W(l|l1l2)(q|q1,q2)δ(ωql − ωq1l1 − ωq2l2)

×[(Nl
qt + 1)Nl1

q1tN
l2
q2t − Nl

qt(N
l1
q1t + 1)(Nl2

q2t + 1)]. (28)

To derive Eq. (28), we have permuted the indices lq and l2q2 in the
second term of the collision integral (17). As a result, this term has
been united with the first one, and the factor q/2 − q2 has appeared. If
the umklapp processes are neglected, the momentum conservation term
included in W(l|l1l2)(q|q1,q2) gives us q = q1 + q2, and q/2 − q2 =
(q1 − q2)/2 becomes an odd function with respect to the permutation
l1q1 ↔ l2q2. On the other hand, the remaining part of the expression
under the sum in Eq. (28) is an even function with respect to this
permutation. Therefore, the integral is equal to zero, and ∂Pt/∂t = 0.
In conclusion, if only the normal processes are taken into account, the
total momentum of the phonon system is conserved. This statement is
true for an arbitrary phonon distribution function.

The scenario of phonon relaxation at low temperatures can be de-
scribed as follows. First, the normal processes establish the distribution
function (26). Then, the umklapp processes, which have a considerably
lower probability, finally drive the system to the equilibrium state. In
the next two sections we demonstrate the role of both these processes
in thermal conduction and develop a hydrodynamical approach for de-
scription of inhomogeneous phonon systems.

24. Thermal Conductivity of Insulators
The linear response to a weak temperature gradient ∇Tr created,

for example, by means of contacting the crystal to two media having
different temperatures, is described by a tensor καβ called the thermal
conductivity. It is defined as

Gα
r =

1
V

∑
ql

∂ωql

∂qα
�ωqlN

l
rq = −

∑
β

καβ
∂Tr

∂rβ
, (1)

where Gα
r is the energy flow density (19.32) in the stationary case con-

sidered in this section. The energy flows in the direction opposite to
the thermal gradient, as reflected by the minus sign in Eq. (1). In this
section we consider a homogeneous temperature gradient, which gives
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rise to a constant energy flow density Gr = G and does not break
the translational invariance of the system. To find the non-equilibrium
distribution function Nl

q which determines G, we linearize the kinetic
equation (23.19) in the stationary case, assuming Nl

q = N (eq)
lq + ∆Nl

q:

∂N (eq)
lq

∂T

∂ωql

∂q
· ∂Tr

∂r
= ∆Jph,ph(N |ql). (2)

The left-hand side of Eq. (2) is linear in the small temperature gradi-
ent, while the right-hand side contains the linearized collision integral,
which is linear in the small non-equilibrium part ∆Nl

q of the distribution
function. It is convenient to search for ∆Nl

q in the form

∆Nl
q = N (eq)

lq (N (eq)
lq + 1)ylq. (3)

The collision integral, expressed through the functions ylq ≡ y, is written
as

∆Jph,ph(N |ql) = − 1
V

∑
l1l2

∑
q1q2

1
2
(N (eq)

lq + 1)N (eq)
l1q1

N (eq)
l2q2

W(l|l1l2)(q|q1,q2)

×δ(ωql − ωq1l1 − ωq2l2)(y − y1 − y2) − 1
V

∑
l1l2

∑
q1q2

(N (eq)
l2q2

+ 1)N (eq)
l1q1

N (eq)
lq

×W(l2|l1l)(q2|q1,q)δ(ωql + ωq1l1 − ωq2l2)(y + y1 − y2), (4)

where y1 = yl1q1 and y2 = yl2q2 . Below we consider the collision integral
as a sum of two parts,

∆Jph,ph(N |ql) = ∆JN(y) + ∆JU(y), (5)

in order to take into account the normal (N) and umklapp (U) contri-
butions separately.

The left-hand side of Eq. (2) can be rewritten as

−ωql

T

∑
β

∂N (eq)
lq

∂qβ

∂Tr

∂rβ
. (6)

Therefore, if we multiply both sides of Eq. (2) by �qα and take a sum
over q and l, the left-hand side is transformed to (problem 5.4)

− 1
V

∑
βql

�ωql

T
qα

∂N (eq)
lq

∂qβ

∂Tr

∂rβ
= − 1

V

∑
βql

qα

∂σ(N (eq)
lq )

∂qβ

∂Tr

∂rβ
, (7)
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where
σ(N) = (N + 1) ln(N + 1) − N lnN. (8)

Calculating the integral over q on the right-hand side of Eq. (7) by
parts, we transform the expression (7) to the form

S
∂Tr

∂rα
, S =

1
V

∑
ql

σ(N (eq)
lq ). (9)

The quantity S is the density of entropy of the phonon system. On
the right-hand side of Eq. (2), the normal part of the collision integral
vanishes after multiplication by �q and summation over q and l, as
described in the previous section. We obtain

S
∂Tr

∂r
=

1
V

∑
ql

�q∆JU(y). (10)

To calculate the right-hand side of this expression, one needs to know the
distribution function of phonons determined by Eq. (2). Since the left-
hand side of this equation contains a small gradient, and the contribution
of the umklapp processes into the linearized collision integral is also
small, the distribution can be determined from the equation ∆JN(y) = 0.
The solution of this equation is proportional to the drift velocity of
phonons:

y = �q · u/T. (11)

This solution follows from a linearization of the distribution function
(23.26) at Tph = T . The requirement Tph = T follows from Eq. (23.23)
(problem 5.5). Substituting the solution (11) into ∆JU(y) of Eq. (10),
we find the equation

S
∂Tr

∂rα
= −

∑
β

λαβuβ, (12)

which expresses the drift velocity through the temperature gradient. As
a result of this substitution, the symmetric tensor λαβ is obtained in the
form

λαβ =
�

2

2V 2T

∑
ll1l2

∑
q1q2

(N (eq)
lq1+q2+g + 1)N (eq)

l1q1
N (eq)

l2q2
(13)

×W(l|l1l2)(q1 + q2 + g|q1,q2)δ(ωq1+q2+g,l − ωq1l1 − ωq2l2)gαgβ,

where the reciprocal lattice vector g is chosen (depending on q1 and q2)
to have q1 + q2 + g in the first Brillouin zone; see Eq. (23.18). One
can see that the temperature gradient is proportional to the probabil-
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ity of umklapp processes, while the distribution function is controlled
by the normal processes. This approach is valid at small temperatures.
If T becomes comparable to the Debye temperature, the umklapp pro-
cesses have influence on the phonon distribution function as well, and
the kinetic equation cannot be solved analytically.

Let us calculate the energy flow density by using the solution for y
obtained above. We have

Gα =
�

2

V T

∑
βql

ωql
∂ωql

∂qα
N (eq)

lq (N (eq)
lq + 1)qβuβ. (14)

Using the transformations similar to those employed in the transition
from Eq. (7) to Eq. (9), we obtain

G = TSu. (15)

Expressing u through ∇Tr, we substitute it to Eq. (15) and find the
thermal conductivity tensor introduced by Eq. (1). It is proportional to
the inverted tensor λαβ :

καβ = TS2(λ−1)αβ. (16)

Let us find an estimate for the thermal conductivity, describing the
phonon system by a model of three isotropic acoustic-phonon branches
with velocities sl (single LA branch) and st (two TA branches). Using
the definition (9), one may calculate the entropy at low temperatures
(T � ΘD):

S � 2π2T 3

15�3

(
1

3s3
l

+
2

3s3
t

)
. (17)

The estimates given below are done under a simplifying assumption sl �
st � s̄ so that the factor in the brackets of Eq. (17) is written as s̄−3. It
is convenient to introduce the umklapp scattering time τU according to
the definition

1
τU

= λαα

⎡⎣ �
2

V T

∑
ql

q2N (eq)
lq (N (eq)

lq + 1)

⎤⎦−1

. (18)

Calculating the sum in this equation, we obtain an order-of-value esti-
mate τ−1

U ∼ �
3s̄5λαα/T 4 (problem 5.6) valid at low temperatures. As a

result,

κ ∼ T 3τU

�3s̄
. (19)
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To estimate τU , one can calculate λ for a model of one-dimensional lattice
(problem 5.7) and multiply it by (π/ā)4 to account for the change in the
momentum-space dimensionality (note that the sum in Eq. (13) is taken
over two wave vectors). In this way we obtain

1
τU

∼ W
�s̄ā2

(
ΘD

T

)5

exp
(

−ΘD

T

)
. (20)

The thermal conductivity exponentially increases with decreasing tem-
perature.

Let us consider the case of high temperatures. The kinetic equa-
tion (2) cannot be solved analytically at T ∼ ΘD. However, one can
roughly approximate the linearized collision integral by the expression
−N (eq)

lq (N (eq)
lq +1)y/τ , where τ is the scattering time estimated according

to

1
τ

=
1
V

∑
l1l2

∑
q1q2

N (eq)
l1q1

N (eq)
l2q2

2N (eq)
lq

W(l|l1l2)(q|q1,q2)δ(ωql − ωq1l1 − ωq2l2) (21)

+
1
V

∑
l1l2

∑
q1q2

(N (eq)
l2q2

+ 1)N (eq)
l1q1

N (eq)
lq + 1

W(l2|l1l)(q2|q1,q)δ(ωql + ωq1l1 − ωq2l2).

Then we have

y ∼ τ
�ωql

T 2
∂ωql

∂q
· ∂T

∂r
. (22)

Finally, estimating ∂ωql/∂q as s̄, we obtain

κ ∼ τ
s̄2

V T 2

∑
ql

(�ωql)2N
(eq)
lq (N (eq)

lq + 1). (23)

At high temperatures T � ΘD, one has N (eq)
lq � T/�ωql � 1. Therefore,

according to Eq. (21), τ−1 ∝ T . Using these relations in Eq. (23), we
find the estimate

κ ∼ τ s̄2

ā3 ∝ T−1, (24)

which determines high-temperature behavior of the thermal conductiv-
ity.

25. Balance Equations for Phonons
The strong difference between the rates of normal and umklapp pro-

cesses makes it possible to develop a hydrodynamical theory of phonons.



202 QUANTUM KINETIC THEORY

This theory operates with balance equations for macroscopic quantities
and bears a similarity with the theory discussed in Sec. 11 for electrons.
Consider a smoothly inhomogeneous phonon system described by the
kinetic equation (23.19). After multiplying both sides of this equation
by �ωql, we sum it over the quantum numbers q and l and find that the
collision-integral contribution is zero. This is not surprising, since the
phonon-phonon interaction conserves the energy of the phonon system.
We obtain an exact equation connecting the energy density Ert with the
energy flow density Grt defined by Eqs. (23.25) and (24.1), respectively,
as

∂Ert

∂t
+

∂Grt

∂r
= 0. (1)

This is a continuity equation for the energy flow. In contrast to Eq.
(19.31) for the bosons interacting with electrons, Eq. (1) does not con-
tain any generation and relaxation terms. Let us multiply both sides
of Eq. (23.19) by �q and sum the equation obtained over q and l. We
obtain the momentum balance equation

∂Pα
rt

∂t
+
∑
β

∂Gαβ
rt

∂rβ
=

1
V

∑
ql

�qα∆JU(N |rqlt) ≡ Jα
rt. (2)

The local momentum density Prt is introduced by Eq. (23.27), while
Gαβ

rt is the tensor of the momentum flow density:

Gαβ
rt =

1
V

∑
ql

�qα
∂ωql

∂qβ
∆Nl

rqt. (3)

The right-hand side of Eq. (2) contains only the contribution of the
umklapp part of the collision integral, since the momentum is con-
served in the normal collision processes; see Eq. (23.28) and its dis-
cussion. Multiplying the kinetic equation (23.19) by �ωql(∂ωql/∂qβ)
and �qα(∂ωql/∂qβ), one can obtain the balance equations expressing
Grt and Gαβ

rt through the higher-order moments, and so on. Acting in
this way, one gets an infinite chain of equations describing the phonon
system (compare to the results of Sec. 11 for electrons).

Below we restrict ourselves by the balance equations (1) and (2). In
order to solve the kinetic equation (23.19) by iterations, we assume that
the inhomogeneities are smooth according to the conditions (23.24) and
that the temperature is low enough to have a strong difference between
the rates of normal and umklapp scattering processes. This allows us
to express Ert, Prt, Grt, and Gαβ

rt through the time- and coordinate-
dependent local temperature Trt and drift velocity urt of the phonon
system. First of all, we note that, according to Eq. (23.25), the energy
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density depends on time and coordinate only through the local temper-
ature. Therefore, the first term in Eq. (1) in the linear approximation
is written as C(∂Trt/∂t), where

C =
1
V

∑
ql

(�ωql)2

T 2 N (eq)
lq (N (eq)

lq + 1) = T
∂S

∂T
(4)

is the specific heat. If we estimate the entropy density S according to
Eq. (24.17), we have simply C = 3S. To determine the other terms, we
use the procedure of iterations. In the first-order approximation, using
the substitution (24.3) with ylq = y(1), we solve the linearized equation

∆JN(N |rqlt) ≡ ∆JN(y(1)) = 0. (5)

The solution of this equation,

y(1) = �ωql∆Trt/T 2 + �q · urt/T, (6)

is a small, non-equilibrium part of the distribution function (23.26),
obtained by its expansion in power series of small parameters ∆Trt =
Tph − T and u = urt. Substituting ∆Nl(1)

rqt = N (eq)
lq (N (eq)

lq + 1)y(1) into
the definitions of the momentum density, energy flow density, and mo-
mentum flow density (Eqs. (23.27), (19.32), and (3), respectively), we
obtain

Pα(1)
rt =

∑
β

χαβuβ
rt, χαβ =

�
2

V T

∑
ql

qαqβN (eq)
lq (N (eq)

lq + 1) (7)

and

Gα(1)
rt = STuα

rt, Gαβ(1)
rt = δαβS∆Trt, Jα

rt = −
∑
β

λαβuβ
rt. (8)

The collision-integral contribution Jα
rt is written through the tensor λαβ

as in Eq. (24.12). One may express λαβ through (κ−1)αβ according
to Eq. (24.16). Substituting the results (7) and (8) into the balance
equations (1) and (2), one finds the equations for ∆Trt and urt:

C
∂∆T

∂t
+ TS divu = 0, (9)

∑
β

χαβ
∂uβ

∂t
+ S

∂∆T

∂rα
= −TS2

∑
β

(κ−1)αβuβ. (10)
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The appearance of the gradients of drift velocity and temperature
gives rise to a modification of the phonon distribution function in the
presence of normal collision processes. To find this modification, one has
to consider the equation for the second-order correction to y:(

∂

∂t
+

∂ωql

∂q
· ∂

∂r

)
y(1) =

1
N (eq)

lq (N (eq)
lq + 1)

∆JN(y(2)). (11)

Substituting the solution (6) into the left-hand side of Eq. (11), we
rewrite this side as

�ωql

T 2
∂∆Trt

∂t
+
∑
α

�qα

T

∂uα
rt

∂t
+
∑
α

∂ωql

∂qα

⎛⎝�ωql

T 2
∂∆Trt

∂rα
+
∑
β

�qβ

T

∂uβ
rt

∂rα

⎞⎠
=
∑
α

Aα
ql

∂∆Trt

∂rα
+
∑
αβ

Bβα
ql

∂uβ
rt

∂rα
, (12)

where
Aα

ql =
�ωql

T 2
∂ωql

∂qα
−
∑
β

(χ−1)αβ
�qβ

T
S,

Bβα
ql =

�qβ

T

∂ωql

∂qα
− δαβ

�ωql

CT
S. (13)

In the transformation of the temporal derivatives to the spatial ones in
Eq. (12), we have used Eq. (9) and Eq. (10) without the right-hand
side caused by the umklapp processes. The left-hand side of the kinetic
equation (11) is split in two parts for the obvious reason: the vector Aα

ql

is an antisymmetric function of q, while the tensor Bαβ
ql is symmetric in

q. Accordingly, let us search for a solution of the kinetic equation (11)
in the form

y(2) =
∑
α

aα
ql

∂∆Trt

∂rα
+
∑
αβ

bβα
ql

∂uβ
rt

∂rα
. (14)

Since the collision integral conserves the symmetry with respect to q,
we obtain two separate equations for the coefficients aα

ql and bβα
ql . The

first of them is written as

Aα
ql = − 1

V

∑
l1l2

∑
q1q2

{
1
2

N (eq)
l1q1

N (eq)
l2q2

N (eq)
lq

W(l|l1l2)(q|q1,q2)

×δ(ωql − ωq1l1 − ωq2l2)(a
α
ql − aα

q1l1 − aα
q2l2) +

(N (eq)
l2q2

+ 1)N (eq)
l1q1

N (eq)
lq + 1
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×W(l2|l1l)(q2|q1,q)δ(ωql + ωq1l1 − ωq2l2)(a
α
ql + aα

q1l1 − aα
q2l2)

}
, (15)

and the second one is analogical: one should merely substitute Bβα in
place of Aα and bβα in place of aα.

Having the general form of the correction y(2), we can express the
corresponding corrections to the macroscopic quantities:

Pα(2)
rt =

∑
β

παβ
∂∆Trt

∂rβ
, παβ =

�

V

∑
ql

qαaβ
qlN

(eq)
lq (N (eq)

lq + 1), (16)

Gα(2)
rt = −

∑
β

µαβ
∂∆Trt

∂rβ
, µαβ = − �

V

∑
ql

ωql
∂ωql

∂qα
aβ
qlN

(eq)
lq (N (eq)

lq + 1),

(17)

Gαβ(2)
rt =

∑
γδ

γαβγδ
∂2V γ

rt

∂rβ∂rδ
, γαβγδ =

�

V

∑
ql

qα
∂ωql

∂qβ
bγδ
ql N

(eq)
lq (N (eq)

lq + 1).

(18)
These gradient-containing terms should be added to Pα(1), Gα(1), and
Gαβ(1) given by Eqs. (7) and (8). Substituting the improved expressions
for the momentum, energy flow, and momentum flow densities into the
balance equations, we finally obtain

C
∂∆T

∂t
+ TS

∑
α

∂uα

∂rα
−
∑
αβ

µαβ
∂2∆T

∂rα∂rβ
= 0, (19)

∑
β

χαβ
∂uβ

∂t
+S

∂∆T

∂rα
−
∑
βγδ

ναβγδ
∂2uγ

∂rβ∂rδ
+TS2

∑
β

(κ−1)αβuβ = 0, (20)

where ναβγδ = −γαβγδ+παβδγδTS/C. Equations (19) and (20) are called
the equations of dissipative phonon hydrodynamics. They are valid
when the characteristic spatial (temporal) scale of the inhomogeneity is
much larger than the phonon mean free path length (time) with respect
to normal scattering processes. The dissipation effects are determined
by three tensors: the thermal conductivity tensor καβ , the phonon-
hydrodynamical viscosity tensor ναβγδ , and the phonon-hydrodynamical
correction to the thermal conductivity, µαβ (the meaning of this cor-
rection is justified by its definition (17)). Another tensor entering the
theory is χαβ , which connects the averaged momentum to the drift ve-
locity and has the dimensionality of a mass. All tensors of the second
rank are positively defined and symmetric, while the fourth-rank ten-
sor ν is symmetric with respect to the permutation of a pair of indices:
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ναβγδ = νγδαβ . Let us estimate χ, µ, and ν (the tensor κ has been es-
timated in the previous section). A direct calculation according to Eq.
(7) gives us

χαα � TS

s̄2 ∼ T 4

�3s̄5 . (21)

To find the dissipative tensors, one may estimate a and b from the ki-
netic equations as aql ∼ τNAql and bql ∼ τNBql, where τN is the scat-
tering time with respect to normal processes. Knowing S, C, and χ,
we can estimate the coefficients Aql and Bql according to Eq. (13). If
|∂ωql/∂q| ∼ s̄, we have Aql ∼ �qs̄2/T 2 and Bql ∼ �qs̄/T . Combining
these results, we finally get

µ ∼ τNT 3

�3s̄
(22)

and

ν ∼ τNT 4

�3s̄3 . (23)

Note that the ratio µ/κ is estimated as τN/τU .
If the dissipation terms are neglected, Eq. (19) is reduced to Eq.

(9) while Eq. (20) is reduced to Eq. (10) with zero right-hand side.
Excluding the drift velocity from this system of equations, we obtain a
single differential equation

∂2∆T

∂t2
− TS2

C

∑
αβ

(χ−1)αβ
∂2∆T

∂rα∂rβ
= 0. (24)

Equation (24) describes the waves of temperature, ∆T ∝ ei(q·r−ωt), prop-
agating in the medium. The dispersion law for these waves,

ω2 =
TS2

C
(χ−1)αβqαqβ, (25)

is similar to that for sound waves (acoustic phonons) in anisotropic me-
dia. Using Eqs. (21) and (24.17), one can find that the absolute values of
the proportionality coefficients (TS2/C)(χ−1)αβ are close to the square
of the averaged sound velocity, s̄2. For this reason, these temperature
waves are also known as the second sound. The dissipation processes
lead to attenuation of the second sound. To investigate it, let us substi-
tute the wave solutions ∆T,u ∝ ei(q·r−ωt) into Eqs. (19) and (20). The
solvability condition of these equations is determined by the following
dispersion relation:

det||(−iωC + µγδqγqδ)[−iωχαβ + ναγβδqγqδ
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+TS2(κ−1)αβ ] + TS2qαqβ || = 0. (26)

If the wave is propagating along one of the symmetry axes in cubic
crystals, the tensors are reduced to scalars χ, κ, µ, and ν. In this case,
Eq. (26) is transformed to

(vIIq)2 = ω2
(

1 +
iνq2

χω
+

iTS2

κχω

)(
1 +

iµq2

Cω

)
, (27)

where the velocity of second sound is introduced according to vII =
S
√

T/χC. The attenuation of the intensity of second sound is deter-
mined by the quantity ΓII = 2Im q, which is found below under the
approximation that this attenuation is weak, Im q � Re q:

ΓII = ω2
(

µ

Cv3
II

+
ν

χv3
II

)
+

TS2

κχvII

. (28)

The contribution of umklapp processes in Eq. (28) leads to a frequency-
independent attenuation which is important at small ω. On the other
hand, the contribution of normal processes increases with the increase
of ω and suppresses the thermal waves at high frequencies. The favor-
able region, where the second sound is weakly damped, corresponds to
intermediate frequencies. Using the above estimates for χ, µ, ν, and κ,
we find an order-of-value estimate

ΓII

Re q
∼ ωτN +

1
ωτU

, (29)

which means that the second sound can exist at 1/τU � ω � 1/τN . This
is a wide region, since at T � ΘD one has τU � τN .

26. Relaxation of Long-Wavelength Phonons
The phonon-phonon interaction is responsible for relaxation of non-

equilibrium acoustic and optical phonons generated by hot electrons in
semiconductors. These phonons are always of long wavelength, since
their characteristic wave numbers are of the order of

√
mε/�, where ε

is the mean energy of electrons and m is the effective mass of electrons.
When electrons are excited by an intense laser radiation or accelerated
by a strong electric field, see Chapter 7, the main channel of their energy
exchange with the crystal lattice is known to be emission of longitudinal
optical (LO) phonons. On the other hand, when electrons are heated
by a moderate electric field at low temperatures, the electrons gener-
ate mostly the low-energy acoustic phonons. The consideration of the
relaxation of long-wavelength phonons is instructive in the sense that
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the restrictions in the conservation laws caused by smallness of the mo-
menta of relaxing phonons can simplify the kinetic equation even for
the cases of strongly non-equilibrium phonons and allow one to solve it
under physically reasonable assumptions.

The relaxation of non-equilibrium long-wavelength optical phonons
occurs through their decay into a pair of longitudinal acoustic phonons:
LO → LA1 + LA2. The process when a LO phonon fuses with another
phonon is forbidden by the conservation laws. Since the characteristic
time of the decay is typically larger than the time of LO phonon emis-
sion, the decay is known as the bottleneck for relaxation of the electron-
phonon system. The LA phonons produced are themselves nearly mo-
noenergetic, with frequencies close to ωLO/2. Their wave vectors q1 and
q2 are in the middle of the Brillouin zone and can be estimated by the
absolute value as ωLO/2s̄. The distribution of these LA phonons is con-
trolled by their interaction with other acoustic phonons belonging to
both longitudinal and transverse branches.

Consider a spontaneous emission of LO phonons by non-equilibrium
electrons whose energy spectrum and distribution are isotropic, like in
the case of photoexcited electrons. The generation rate Iq , see Sec. 21, is
also isotropic in this case. Let us model this generation rate by a function
which is equal to a constant I in the interval of wave numbers q < q0
and zero elsewhere. The wave number q0 can be roughly estimated as
q0 �

√
mωLO/�. Thus, we have the kinetic equation for LO phonons,

∂NLO
q

∂t
= Iq + Jph,ph(N |q LO t), Iq = Iθ(q0 − q), (1)

where the collision integral is given by Eq. (23.17). Considering, as de-
scribed above, only the first part of this collision integral, corresponding
to LO ↔ LA1 + LA2, we obtain, in the stationary case,

Iq =
1

2V

∑
q1q2

W(LO|LA,LA)(q|q1,q2)δ(ωqLO − ωq1LA − ωq2LA)

×[NLO
q (1 + NLA

q1
+ NLA

q2
) − NLA

q1
NLA

q2
]. (2)

Note that we have rewritten the factor containing the distribution func-
tions in a more simple form, taking into account that triple products of
the distribution functions drop out of this factor. The second term in the
square brackets of Eq. (2) describes the fusion process LA1+LA2 → LO
and can be neglected if the phonon system is considerably out of equi-
librium. Indeed, the volume in the reciprocal space occupied by the
LO phonons is much less than that of LA phonons. The ratio of these
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volumes is of the order of (q0/q1)2 ∼ mā2ωLO/π2
�, and this small pa-

rameter provides NLA � NLO. As a result, the kinetic equation (2) is
reduced to

Iq =
NLO

q

τq
,

1
τq

=
1

2V

∑
q1q2

W(LO|LA,LA)(q|q1,q2)

×δ(ωqLO − ωq1LA − ωq2LA)(1 + NLA
q1

+ NLA
q2

), (3)

where τq is the decay time of LO phonons. Below we use an isotropic
approximation both for the acoustic phonon spectrum, ωqLA = sq, and
for the scattering probability. The latter approximation means that
W(LO|LA,LA)(q|q1,q2) � W(LO|LA,LA)(0|nk0, −nk0), where n is the unit
vector in the direction of q1 and k0 = ωLO/2s, is independent of the
angle of q1 and constant. Therefore, the decay rate is expressed as

1
τq

= Γ
∫ ∞

0
q2
1dq1

∫ π

0
sin θdθ(1 + NLA

q1
+ NLA

q2
)δ[ωLO − s(q1 + q2)], (4)

where Γ = W(LO|LA,LA)(0|nk0, −nk0)/8π2 is constant and q2 is fixed by
the momentum conservation rule: q2 =

√
q2
1 + q2 − 2q1q cos θ with θ =

q̂q1. Integrating over the angle in Eq. (4) under the condition q � k0,
we obtain

1
τq

=
1

τsp

(
1 +

1
q

∫ k0+q/2

k0−q/2
dk[NLA

k + NLA
2k0−k ]

)
, (5)

where
τ−1
sp = Γk2

0/s (6)

is the spontaneous LO phonon decay time.
Though the occupation number NLA

k of acoustic phonons is much
smaller than NLO

q , it still can be large in comparison to unity, because
the phase space for the generated LA phonons is limited by a narrow
interval [k0 − q/2, k0 + q/2]. Therefore, a consideration of stimulated
LO phonon decay processes described by the integral term in Eq. (5) is
important. To determine the LA phonon distribution, one has to solve
the kinetic equation which takes into account both the generation of
LA phonons by LO phonon decay and the decay of LA phonons into
acoustic phonons of larger wavelengths. The latter term will be written
below through the acoustic phonon decay time τa, which is assumed to
be independent of NLA

k since the phase space for LA phonon decay is
large. The stationary kinetic equation Jph,ph(N |k LA) = 0 is, therefore,
written as J (LO)

ph,ph(N |k LA) − NLA
k /τa = 0, where J (LO)

ph,ph(N |k LA) is the
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contribution of the processes involving LO phonons. As already dis-
cussed, the main contribution to such processes is the generation of LA
phonons by LO phonon decay. Using Eq. (23.17), where now only the
second part of the collision integral is retained and only the generation
(arrival) term of this part is taken into account, we obtain

NLA
k

τa
=

1
V

∑
qk′

W(LO|LA,LA)(q|k′,k)δ(ωkLA + ωk′LA − ωqLO)

×NLO
q [1 + NLA

k + NLA
k′ ]. (7)

The integration over k′ with the aid of the momentum conservation law
k+k′ = q and over the angle between k and q with the aid of the energy
conservation law allows one to reduce this equation to

NLA
k =

2τa[1 + NLA
k + NLA

2k0−k ]
k2

0τsp

∫ 2k0

2|k−k0|
dqqNLO

q . (8)

We again assume that the spectrum and transition probabilities are
isotropic, which means that the phonon distribution functions depend
only on the absolute values of the phonon wave vectors and the function
W(LO|LA,LA)(q|k′,k) becomes a constant proportional to 1/τsp. Now we
have two coupled equations: Eq. (3) (with τq given by Eq. (5)) and Eq.
(8). Combining them, we obtain the integral equation for NLA

k :

NLA
k =

2τa[1 + NLA
k + NLA

2k0−k ]
k2

0

×
∫ 2k0

2|k−k0|
dq

qIq

1 + q−1
∫ k0+q/2
k0−q/2 dk1[NLA

k1
+ NLA

2k0−k1
]
. (9)

Its solution determines both the occupation numbers of LA phonons and
the lifetime of LO phonons; see Eq. (5).

Using Iq from Eq. (1), we rewrite Eq. (9) in the form

Ñ(x) = β[1 + 2Ñ(x)]
∫ 1

2|x|
ydy

1 + (2/y)
∫ y/2
−y/2 dx1Ñ(x1)

, (10)

expressed through the dimensionless variables

x = (k − k0)/q0, y = q/q0, Ñ(x) = NLA
k0+xq0

. (11)

The dimensionless parameter

β = 2Iτa
q2
0

k2
0

(12)
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describes the intensity of LO phonon generation. In the transformation
of Eq. (9) to Eq. (10), we have used the property Ñ(x) = Ñ(−x)
which follows from Eq. (9). For the case of β � 1, one can obtain a
formal solution of Eq. (10) by taking into account that in this case the
LA phonon distribution shrinks to the region of small x. This solution
describes a Lorentz-shaped LA phonon distribution around the middle
of the Brillouin zone:

Ñ(x) =
N0

1 + 4βx2 , N0 =
2β3/2

3π
. (13)

The inverse lifetime of LO phonons is given by

1
τq

=
1

τsp

{
1 + 4β3/2/3π, y � β−1/2

1 + 2βq0/3q, β−1/2 � y < 1
, (14)

and it decreases with increasing q. Both the increase of 1/τq with increas-
ing excitation β and the q-dependence of τq are caused by the stimulated
LO phonon decay. They disappear for small excitation, when β < 1. In
Fig. 5.1 we show numerically calculated Ñ(x) = NLA

k and τq as functions
of the parameters x and y, respectively.

Figure 5.1. The distribution function of LA phonons and LO phonon decay time
calculated from Eq. (26.10) for three different intensities of LO phonon generation.

Let us consider the relaxation of acoustic phonons. The energies of
the acoustic phonons generated by non-equilibrium electrons are often
considerably below the thermal energy. For example, if the phonons
are generated by non-degenerate electrons (ε ∼ T ), the mean energy
of the phonons is estimated as

√
2ms2T . This energy is considerably

smaller than T at T � 2ms2. Owing to smallness of the sound ve-
locities, this strong inequality can be satisfied even at T � ΘD. The
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relaxation of the low-energy phonons is determined by their collisions
with thermal acoustic phonons, the latter occupy the region of much
higher momenta, �q ∼ T/s. The thermal phonons can be characterized
by the equilibrium distribution function, since the collisions between
them occur much faster than their collisions with low-energy phonons.
This is because the phase space for the thermal phonons is larger, and
the probabilities of their mutual scattering, which are proportional to
the product of the wave numbers of three participating phonons, are
higher. For the same reason, describing the relaxation of non-equilibrium
phonons, one can neglect the processes when a low-energy phonon de-
cays into two phonons of even lower energies. Such processes are of much
smaller probability than the processes when the low-energy phonons fuse
with thermal phonons or are emitted by these phonons. Therefore, the
phonon-phonon collision integral standing in the stationary kinetic equa-
tion Jph,e(N |ql) + Jph,ph(N |ql) = 0 for low-energy phonons can be ap-
proximated by the second part of the collision integral (23.17). This
approximation gives rise to the following symmetric form of the kinetic
equation:

Ie
l (q) + Iph

l (q) − [νe
l (q) + νph

l (q)]Nl
q = 0. (15)

In this equation, Ie
l (q) and νe

l (q) are the generation and relaxation rates
of the phonons due to their interaction with electrons (the same quan-
tities as Iq and νq of Sec. 21), while Iph

l (q) and νph
l (q) are the phonon

generation and relaxation rates due to phonon-phonon interaction:∣∣∣∣∣ Iph
l (q)

νph
l (q)

∣∣∣∣∣ =
1
V

∑
l1l2,q1q2

W(l2|l1l)(q2|q1,q)

×
∣∣∣∣ Nl2

q2
(Nl1

q1
+ 1)

(Nl1
q1

− Nl2
q2

)

∣∣∣∣ δ(ωql + ωq1l1 − ωq2l2). (16)

If the temperature is small in comparison to the Debye temperature,
the wave numbers q1 and q2 of the thermal acoustic phonons are much
smaller than the size of the Brillouin zone. In this case, the phonon-
pnonon scattering probability standing in Eq. (16) is described according
to Eqs. (23.18) and (6.34):

W(l2|l1l)(q2|q1,q) = δq+q1,q2

π�qq1q2

4ρ3slsl1sl2

×

∣∣∣∣∣∣
∑

αα′ββ′γγ ′
λαα′,ββ′,γγ ′eα

qle
β
q1l1

eγ
q2,l2

nα′n1β′n2γ ′

∣∣∣∣∣∣
2

, (17)
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where n, n1, and n2 are the unit vectors directed along q, q1, and q2,
respectively. The dispersion relations for all three acoustic phonons are
assumed to be linear and isotropic. Taking into account the momentum
conservation rule q2 = q + q1, we find that the delta-function in Eq.
(16) is reduced to

δ
(
slq + sl1q1 − sl2 [q

2 + q2
1 + 2qq1 cos q̂q1]

1/2
)

. (18)

Below we consider the transitions within one branch, l = l1 = l2, and
omit the indices of phonon branches. In this case, the energy conserva-
tion law presented by the δ-function (18) tells us that q̂q1 is zero, i.e.,
the wave vectors of three interacting phonons are aligned, n = n1 = n2.
Considering the longitudinal phonons (l = LA) which interact with
conduction-band electrons via deformation potential, we also write the
polarization vectors as eql = eq1l1 = eq2l2 = −in; see Eq. (6.30). The
single-branch approximation is not unreasonable, since one can show
(problem 5.8) that the longitudinal acoustic phonon relaxation involv-
ing transverse branch for one or two other participating phonons is im-
possible at q � q1. Approximating Nl1

q1
and Nl2

q2
in Eq. (16) by the

equilibrium distribution functions N (eq)
q1 and N (eq)

q2 , we obtain isotropic
relaxation and generation rates νph

l (q) ≡ νph
q and Iph

l (q) ≡ Iph
q in the

form

νph
q =

�|λLA|2
16πρ3s4

∫ ∞

0
dq1 q2

1(q1 + q)2(N (eq)
q1

− N (eq)
q1+q), (19)

Iph
q =

νph
q

e�sq/T − 1
,

where s is the longitudinal sound velocity. The averaged anharmonic
elastic constant introduced in this equation is given by

λLA =
∑

αα′ββ′γγ ′
λαα′,ββ′,γγ ′nαnβnγnα′nβ′nγ ′ . (20)

The main contribution to the integral in Eq. (19) comes from the thermal
phonons, �sq1 ∼ T . Calculating this integral at �sq � T , we obtain

νph
q =

π3|λLA|2
60�3ρ3s8 T 4q. (21)

The relaxation rate (21) is very sensitive to temperature.
Expressing Iph

q through νph
q , one may write the solution of Eq. (15)

as

Nq =
Ie
q + νph

q N (eq)
q

νe
q + νph

q

. (22)
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The anisotropy of the non-equilibrium phonon distribution is determined
by the anisotropy of Ie

q and νe
q. Let us consider the case when the elec-

trons interacting with the low-energy phonons can be described by the
isotropic Fermi distribution with effective temperature Te. According to
the result of problem 4.8, Ie

q = Ie
q and νe

q = νe
q are related to each other

as Ie
q = νe

q /(e�sq/Te − 1), and Eq. (22) gives us

Nq =
(1 + νph

q /νe
q )

−1

e�sq/Te − 1
+

(1 + νe
q /νph

q )−1

e�sq/T − 1
. (23)

If νph
q � νe

q , the low-energy phonons interacting with electrons are
cooled to thermal equilibrium because of their interaction with ther-
mal phonons. In the opposite limit, the low-energy phonons remain out
of equilibrium, being heated to the electron temperature Te. This is a
bottleneck effect, when the energy transfer from electrons to the lattice
is determined by phonon-phonon collisions. The acoustic-phonon bot-
tleneck effect becomes important at low temperatures, when νph

q is small
(problem 5.9).

The processes of emission and absorption of non-equilibrium long-
wavelength acoustic phonons by the thermal phonons also describe atten-
uation of sound waves in insulating crystals. The sound wave, whose am-
plitude is proportional to eik·r−iωt, can be viewed as a flow of monochro-
matic acoustic phonons whose wave number k and energy �ω are typi-
cally much smaller than those of the thermal phonons. Therefore, the
results presented above are applicable to this case, and the relaxation
rate given by Eq. (21) can be used for evaluation of the attenuation
coefficient.

The above-used approximation of a single phonon branch with a lin-
ear dispersion cannot describe the angular relaxation of the momentum
of phonon system, because the phonons do not change the direction of
their motion in the collisions. Therefore, the anisotropic distributions
of the low-energy phonons emitted, for example, by drifting electrons
(see Sec. 21), cannot relax to equilibrium. The angular relaxation can
occur via other processes, such as phonon-impurity collisions and four-
phonon scattering, which are not considered here. However, a deviation
of the acoustic phonon spectrum from linearity makes it possible to reach
the isotropic distribution via three-phonon scattering within one branch.
The momentum and energy conservation laws in these conditions permit
such scattering only if the angles between the wave vectors of the partici-
pating phonons are small. If the spectrum is given by ωq = sq(1+ ξ(q)),
where |ξ(q)| � 1, the energy conservation law, δ(ωq + ωq1 − ω|q+q1|),
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becomes

s−1δ

(
qq1

q + q1

θ2

2
− (q + q1)ξ(q + q1) + qξ(q) + q1ξ(q1)

)
, (24)

where θ is the angle between q and q1. As seen from Eq. (24), this angle
must be small. Another requirement necessary to satisfy the energy
conservation law is ξ(q) > 0, i.e., the dispersion law must be superlinear.
The process of angular relaxation of phonon distribution due to a weak
dispersion of phonon velocities resembles a diffusion and is called the
transverse relaxation.

27. Polaritons and Dielectric Function of Ionic
Crystals

In Sec. 6 we considered the interaction of electromagnetic waves with
transverse optical vibrations in ionic crystals. Below we show that this
interaction leads to a reconstruction of the spectrum of bosonic elemen-
tary excitations of the crystal, when, instead of pure transverse phonons
and photons, one has coupled excitations known as polaritons. We also
calculate the dielectric function of the ionic crystal to describe the re-
sponse of interacting phonons to the perturbation introduced by an elec-
tromagnetic wave.

The quantum theory of electromagnetic waves in classical ionic crys-
tal is based upon the Maxwell equations in medium and Eq. (6.16)
describing the lattice polarization. We use the Maxwell equation

1
c

∂D
∂t

= [∇ × H], (1)

where D = E + 4πP = ε∞E + 4π∆P is the electrostatic induction and
∆P is the polarization of the crystal due to ionic motion only:

∆P = P − P∞, P∞ =
ε∞ − 1

4π
E. (2)

Taking into account that in the absence of longitudinal fields both E
and H are expressed through the vector potential as H = [∇ × A] and
E = −c−1∂A/∂t, we transform Eq. (1) to the wave equation

ε∞
c2

∂2A
∂t2

+ [∇ × [∇ × A]] =
4π

c

∂∆P
∂t

, (3)

which replaces Eq. (3.3). On the other hand, Eq. (6.16) is reduced,
after excluding w and expressing the electric field through the vector
potential, to

∆P̈ + ω2
TO∆P = −c−1ω2

TOβȦ, (4)
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where β = (ε0 − ε∞)/4π is the static polarizability. As usual, the dot
and the double dot over the functions denote the first and the second
derivative over time, respectively.

Now let us construct a Lagrange function expressed in terms of the
variables (generalized coordinates) A and ∆P. This function should led
to the Lagrange equations of motion coinciding with Eqs. (3) and (4).
It can be checked directly (problem 5.10) that the Lagrangian density
satisfying these properties is

L =
1
8π

(ε∞
c2 Ȧ2 − [∇ × A]2

)
+

1
2β

(ω−2
TO∆Ṗ2 − ∆P2) − 1

c
∆P · Ȧ. (5)

The first term in this expression is the Lagrangian density of electro-
magnetic field in the medium with dielectric permittivity ε∞, while the
second and the third terms describe the polarization and its interac-
tion with the electromagnetic field. To quantize the field described by
the Lagrangian density (5), we need to introduce canonically conjugate
momenta Π = ∂L/∂Ȧ and M = ∂L/∂∆Ṗ and write the Hamiltonian
density H = Π · Ȧ + M · ∆Ṗ − L (the same as the energy density;
see problem 1.15) through the generalized coordinates and momenta.
Having done this, we obtain

H =
1
2

(
4πc2

ε∞
Π2 +

1
4π

[∇ × A]2
)

+
1
2

(
ω2

TOβM2 +
ε0

ε∞β
∆P2

)
+

4πc

ε∞
Π · ∆P, (6)

where Eq. (6.17) is also taken into account. Now we quantize the vari-
ables according to

∆̂P(r) =
∑
ql

√
�ω2

TOβ

2ωLOV
eqle

iq·r
(
b̂ql + b̂+

−ql

)
,

M̂(r) = −i
∑
ql

√
�ωLO

2ω2
TOβV

eqle
iq·r

(
b̂ql − b̂+

−ql

)
, (7)

and the photonic operators take the form

Â(r) =
∑
qµ

√
2π�c

ε
1/2
∞ qV

eqµeiq·r (âqµ + â+
−qµ

)
,

Π̂(r) = −i
∑
qµ

√
�ε

1/2
∞ q

8πcV
eqµeiq·r (âqµ − â+

−qµ

)
, (8)
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where l = TO1 and TO2 and µ = 1, 2. For convenience, the creation
and annihilation operators of photons are given by the letters â (not by
b̂ as in Chapters 1 and 4), while the letter b̂ is reserved for the operators
of phonons. The operators given by Eqs. (7) and (8) can be repre-
sented as ∆̂P(r) =

∑
l ∆̂Pl(r), M̂(r) =

∑
l M̂l(r), Â(r) =

∑
µ Âµ(r),

and Π̂(r) =
∑

µ Π̂µ(r), where the partial (single-mode) operators sat-

isfy the commutation relations [∆̂Pl(r), M̂l′(r′)] = i�δll′δ(r − r′) and
[Âµ(r), Π̂µ′(r′)] = i�δµµ′δ(r − r′) (it is implied that the vectors stand-
ing in the commutators form the scalar products). These relations fol-
low from the commutation relations for the bosonic operators â and b̂
(problem 5.11). Because of orthogonality of the unit vectors of polar-
ization, the phonon-photon interaction does not mix different modes of
the bosons of the same kind (in other words, TO1 phonon interacts only
with µ = 1 photon and TO2 phonon only with µ = 2 photon). For this
reason, below we consider a single mode for each kind of bosons and
omit the polarization indices.

Substituting the operators given by Eqs. (7) and (8) into Eq. (6), we
obtain the Hamiltonian of phonon-photon system:

Ĥ =
∑
q

�ωq

(
â+
q âq +

1
2

)
+
∑
q

�ωLO

(
b̂+
q b̂q +

1
2

)

+i�
∑
q

Bq(â+
−qb̂+

q − â−qb̂q + â+
q b̂q − âqb̂+

q ), (9)

where ωq = cq/
√

ε∞ and Bq =
√

ωLOωq(ε0 − ε∞)/4ε0. Formally, the ex-
pression (9) looks like a sum of free-photon, free-phonon, and interaction
Hamiltonians. One may note that the “free-phonon” part contains the
quasiparticle energy of longitudinal optical phonons, though only the
transverse phonons interact with the electromagnetic radiation. Next,
the “interaction” part does not coincide with the phonon-photon inter-
action Hamiltonian introduced by Eq. (6.25). These “inconsistencies”
should not confuse the reader. They appear because the coupling of
phonons with photons is considered here within a non-perturbative ap-
proach, and the effects of renormalization of the energy spectrum and
interaction are already present in the Hamiltonian (9).

Since the Hamiltonian (9) contains binary products of creation and
annihilation operators, it can be diagonalized to the form

Ĥ =
∑
qn

�Ωqn

(
ĉ+
qnĉqn +

1
2

)
(10)
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by a canonical transformation

ĉqn = λn[âq + xnb̂q + ynâ+
−q + znb̂+

−q]. (11)

Here n = 1, 2 are the numbers of non-interacting polariton modes. The
coefficients xn, yn, and zn can be found from the equation of motion

�Ωqnĉqn = [ĉqn, Ĥ], (12)

which leads to a dispersion equation for the new modes (problem 5.12):

Ω4
qn − Ω2

qn(ω2
q + ω2

LO) + ω2
q ω

2
TO = 0. (13)

To determine the coefficients λn, xn, yn, and zn, one should use, apart
from Eq. (12), the commutation relation for new bosonic operators,
[ĉqn, ĉ+

q′n′ ] = δnn′δqq′ . We obtain

xn = i

[
ωq(Ωqn − ωq)(Ωqn + ωLO)
ωLO(Ωqn + ωq)(Ωqn − ωLO)

]1/2

,

yn = −Ωqn − ωq

Ωqn + ωq
, zn =

Ωqn − ωLO

Ωqn + ωLO

xn, (14)

and

|λn|2 =
(Ωqn + ωq)2(Ω2

qn − ω2
LO)

4Ωqnωq(2Ω2
qn − ω2

q − ω2
LO)

. (15)

The dispersion relation (13) has two solutions describing two polariton
modes:

Ω2
q1,2 =

c2q2 + ε0ω
2
TO ± [(c2q2 + ε0ω

2
TO)2 − 4ε∞ω2

TOc2q2]1/2

2ε∞
, (16)

where the signs + and − correspond to n = 1 and n = 2. At small
q, the dispersion of the first polariton follows the LO phonon branch,
Ω2

q1 = ω2
LO, while the second polariton behaves like a photon in the

medium described by the static dielectric permittivity, Ω2
q2 = c2q2/ε0.

At large q, the phonon-photon coupling becomes insignificant and the
second polariton behaves like an ordinary TO phonon, while the first
one behaves like a photon in the medium with high-frequency dielectric
permittivity, Ω2

q2 = ω2
TO and Ω2

q1 = c2q2/ε∞. The spectra of polaritons
for the cases of strong coupling ( ε0/ε∞ − 1 > 1) and weak coupling
( ε0/ε∞ − 1 � 1) are shown in Fig. 5.2. The correlation functions of
the operators (7) and (8) have poles at polaritonic frequencies (problem
5.13).
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Figure 5.2. Spectrum of polaritons at ε0 = 15.69 and ε∞ = 14.44 (solid), and ε0 =
5.62 and ε∞ = 2.25 (dashed).

According to the wave equation, the dispersion law for the photons
in dielectric crystals should follow the form ω2 = c2q2/κ(q, ω), where
κ(q, ω) is the dielectric permittivity whose dependence on the frequency
and wave vector is caused by the lattice polarization. On the other
hand, only the waves with frequencies ω2 = Ω2

q1,2 can propagate in the
crystal. Both these requirements are satisfied if we present the dielectric
permittivity as

κ(q, ω) = κ(ω) = ε∞ +
ω2

TO(ε0 − ε∞)
ω2

TO − ω2 . (17)

This equation can be formally obtained by substituting c2q2 = κ(q, ω)ω2

and Ω2
q1,2 = ω2 into Eq. (16). The dielectric permittivity (17) does not

depend on q and varies with ω in the infrared region of frequencies.
In the interval ωTO < ω < ωLO, the dielectric permittivity is negative,
which means that electromagnetic waves cannot propagate in the crystal.
This is clear, since the given interval of frequencies corresponds to the
quasiparticle gap, where no excitations can exist. We stress that Eq.
(17) can be obtained in a more simple way from Eq. (4), since the latter
already gives us a relation between the polarization and electric field.
Neither of these approaches, however, describes the region close to the
resonance ω = ωTO, where, according to Eq. (17), κ(ω) is infinitely large.
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To overcome this difficulty, one should introduce a finite lifetime for
TO phonons, which may result from phonon-phonon interaction. In the
remaining part of this section we bring this interaction into consideration
and calculate the dielectric function by using the linear response theory
and double-time Green’s functions for phonons; see Appendix D.

In the translation-invariant case, the dielectric function κ(q, ω) is
introduced as a proportionality coefficient in the linear relation be-
tween the Fourier components of electrostatic induction and electric
field, D = κ̂E. One may rewrite this linear relation, with the use of
the lattice polarization vector ∆P, as

∆Pα(q, ω) =
∑
β

καβ(q, ω) − δαβε∞
4π

Eβ(q, ω). (18)

Now we apply the linear response theory of Sec. 13 to calculate the
proportionality coefficient in Eq. (18). The perturbation Hamiltonian
describing the interaction of ionic motion with electromagnetic field is

∆̂Hω = −
∫

dr∆̂P(r) · E(r, ω) = − 1
V

∑
q

∆̂P(−q) · E(q, ω). (19)

To avoid misunderstandings, we have to point out that the lattice po-
larization operator ∆̂P(r) used here and below is not the same operator
as the one used above, in the theory of polaritons, though we apply
the same letter for it. This is because the physical quantity ∆P(r) cor-
responding to this operator is now governed by Eq. (4) without the
right-hand side and describes the lattice polarization in the absence of
perturbations. Therefore, this operator is no longer given by Eq. (7).
It is given by Eq. (6.16) at EL = 0, where the relative displacement
vector w is replaced by the corresponding operator (6.19). Now, let the
quantity Q in Eq. (13.5) be ∆P. Then one can write an equation similar
to Eq. (13.14):

καβ(q, ω) − δαβε∞
4π

= − 1
i�V

∫ 0

−∞
dτeλτ−iωτ

×Sp η̂eq

[
e−iĤτ /�∆̂Pα(q)eiĤτ /�, ∆̂Pβ(−q)

]
. (20)

It is directly seen that καβ(q, ω) is expressed through the retarded
double-time Green’s function (see Appendix D) defined as a correlation
function of polarization operators:

καβ(q, ω) − δαβε∞ = −4π

V
〈〈∆̂Pα(q)|∆̂Pβ(−q)〉〉R

�ω
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= −δαβ
�

2
ωTO(ε0 − ε∞)DTO,R

ω (q). (21)

In the second equation of Eq. (21), we have expressed ∆̂P through b̂q
and b̂+

q as described above and employed the definition of the Green’s
function of phonons given in the end of Appendix D. The usage of
Eqs. (6.16) and (6.19) for describing the polarization implies considera-
tion of small q, when the contribution comes from the long-wavelength
phonons only. In these conditions, the tensor καβ is reduced to a scalar,
καβ(q, ω) = δαβκ(q, ω). In the absence of phonon-phonon interaction,
one should use the Green’s function (D.25) of free phonons. Substituting
it into Eq. (21), we obtain Eq. (17) for the real part of κ(q, ω), while
the imaginary part is proportional to δ(ω ± ωTO).

Now let us consider a system of interacting phonons described by the
Hamiltonian (23.1). For a while, it is convenient to employ the operators
of canonical variables defined by Eq. (6.9) instead of using the opera-
tors b̂ql and b̂+

−ql. The canonical operators satisfy the commutation rule
(6.7). Let us use the equations of motion (D.13) for Green’s functions.
Taking into account that Q̂ql commutes with Ĥph,ph given by Eq. (23.2),
we compose a pair of equations, ∂〈〈Q̂ql|Q̂−ql〉〉s

t /∂t = 〈〈P̂ql|Q̂−ql〉〉s
t

and ∂〈〈P̂ql|Q̂−ql〉〉s
t /∂t = δ(t) + ω2

ql〈〈Q̂ql|Q̂−ql〉〉s
t + (i/�)〈〈[P̂ql, Ĥph,ph]|

Q̂−ql〉〉s
t . The index s can be R, A, or c, as in Appendix D, though be-

low we use only the retarded Green’s functions, s = R. Combining these
equations, we apply the energy representation of the Green’s functions
and obtain

(ω2 − ω2
ql)〈〈Q̂ql|Q̂−ql〉〉s

�ω − 1 =
∑

q1q2,l1l2

√
2ωq1l1ωq2l2ωql/�3

×Bl1l2l(q1,q2, −q)〈〈Q̂q1l1Q̂q2l2 |Q̂−ql〉〉s
�ω . (22)

The commutator [P̂ql, Ĥph,ph] has been calculated with the aid of Eq.
(23.2) for Ĥph,ph. As a result, the phonon-phonon interaction couples
〈〈Q̂ql|Q̂−ql〉〉s

�ω to the correlation function CQQ = 〈〈Q̂q1l1Q̂q2l2 |Q̂−ql〉〉s
�ω .

We are going to take into account the effects of the interaction up
to the second order in Ĥph,ph, which means that we have to write an
equation for this third-order correlation function. Let us denote the
other third-order correlation functions as CQP = 〈〈Q̂q1l1P̂q2l2 |Q̂−ql〉〉s

�ω ,
CPQ = 〈〈P̂q1l1Q̂q2l2 |Q̂−ql〉〉s

�ω , and CPP = 〈〈P̂q1l1P̂q2l2 |Q̂−ql〉〉s
�ω . Apply-
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ing Eq. (D.13) to them, we obtain four coupled equations

−iωCQQ = CQP + CPQ

−iωCQP = CPP − ω2
q2l2

CQQ − MQP

−iωCPQ = CPP − ω2
q1l1

CQQ − MPQ

−iωCPP = −ω2
q1l1

CQP − ω2
q2l2

CPQ − MPP

, (23)

where the interaction-dependent terms are expressed through the fourth-
order correlation functions:

MQP =
∑

q3q4,l3l4

√
2ωq3l3ωq4l4ωq2l2/�3Bl3l4l2(q3,q4, −q2)

×〈〈Q̂q1l1Q̂q3l3Q̂q4l4 |Q̂−ql〉〉s
�ω , (24)

MPP =
∑

q3q4,l3l4

{√
2ωq3l3ωq4l4ωq2l2/�3Bl3l4l2(q3,q4, −q2)

×〈〈P̂q1l1Q̂q3l3Q̂q4l4 |Q̂−ql〉〉s
�ω +

√
2ωq3l3ωq4l4ωq1l1/�3 (25)

×Bl3l4l1(q3,q4, −q1)〈〈Q̂q3l3Q̂q4l4P̂q2l2 |Q̂−ql〉〉s
�ω

}
,

and MPQ differs from MQP by the permutation of the indices 1 and 2.
Solving the system (23), we express CQQ through MQP , MPQ, and

MPP and substitute the result into Eq. (22). Thus, the right-hand side
of Eq. (22) becomes of the second order in the interaction. Within the
required accuracy, we can calculate the correlation functions entering
Eqs. (24) and (25) in the free-phonon approximation, replacing Ĥ =
Ĥph + Ĥph,ph in exp(±iĤt/�) by Ĥph. Below we consider the retarded
Green’s functions, s = R. After straightforward transformations, we
obtain

MR
QP � 2ωql〈〈Q̂ql|Q̂−ql〉〉R(0)

�ω Bll1l2(q,−q1, −q2)

×(2Nl1
q1

+ 1)
√

ωq2l2

2�ωq1l1ωql
(26)

and MR
PP = 0. The superscript (0) at 〈〈Q̂ql|Q̂−ql〉〉R(0)

�ω standing in Eq.
(26) indicates that this Green’s function is calculated in the free-phonon
approximation. Without a loss of accuracy, we replace it by the exact
Green’s function and omit the index (0). Let us substitute CQQ found
from Eq. (23) into the right-hand side of Eq. (22). This side becomes
equal to

2ωql〈〈Q̂ql|Q̂−ql〉〉R
�ω

1
�2

∑
q1q2,l1l2

|Bl1l2l(q1,q2,q)|2
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×
(2Nl1

q1
+ 1)ωq2l2(ω

2
q1l1

− ω2
q2l2

+ ω2) + (q1l1 ↔ q2l2)

d(++)
q1l1,q2l2

d(−−)
q1l1,q2l2

d(−+)
q1l1,q2l2

d(+−)
q1l1,q2l2

(27)

≡ −2iωqlγ
l
qω〈〈Q̂ql|Q̂−ql〉〉R

�ω ,

where d(±±)
q1l1,q2l2

= ω + i0 ± ωq1l1 ± ωq2l2 . We have added +i0 to ω
in the denominator in order to satisfy the analytical properties of the
retarded Green’s functions. Now Eq. (22) can be solved with respect to
〈〈Q̂ql|Q̂−ql〉〉R

�ω . Since Dl,R
ω (q) = 2ωql〈〈Q̂ql|Q̂−ql〉〉R

�ω/�, we obtain the
Green’s function of interacting phonons in the form

Dl,R
ω (q) =

1
�

2ωql

ω2 − ω2
ql + 2iωqlγl

qω

. (28)

Substituting l = TO in this equation, we finally transform Eq. (21) to

κ(q, ω) = ε∞ +
ω2

TO(ε0 − ε∞)
ω2

TO − ω2 − 2iωTOγTO
qω

. (29)

Figure 5.3. Real (solid) and imaginary (dashed) parts of κ(q, ω) calculated at ε0 =
5.62 and ε∞ = 2.25 under the assumption that γT O

qω = 0.05 ωT O.

The characteristic frequency γl
qω defined by Eq. (27) is complex. As

follows from Eq. (28), its imaginary part leads to a small shift of the
pole of the Green’s function from ω = ±ωql. On the other hand, the real
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part of γl
qω defines a broadening energy so that the Green’s function is

finite everywhere. A simple transformation of the left-hand side of Eq.
(27) gives us

2Reγl
qω =

2π

�2

∑
q1q2,l1l2

|Bl1l2l(q1,q2,q)|2
{

1
2
(1 + Nl1

q1
+ Nl2

q2
) (30)

×δ(ω − ωq1l1 − ωq2l2) + (Nl2
q2

− Nl1
q1

)δ(ω − ωq1l1 + ωq2l2)
}

≡ 1
τql(ω)

.

The time τql(ω) introduced in Eq. (30) is the scattering time of the
phonon in the state ql with energy �ω. This is seen directly, since the
term proportional to Nl

q in the collision integral (23.17) is −Nl
q/τql(ωql).

The two consecutive terms with different δ-functions in Eq. (30) corre-
spond to a decay of the phonon ql and to its fusion with another phonon,
respectively. In the case of long-wavelength TO phonons, only the decay
processes remain, since they can simultaneously satisfy the momentum
and energy conservation laws. This decay occurs in a similar way as the
decay of the long-wavelength LO phonons considered in the previous sec-
tion: a long-wavelength TO phonon decays into two short-wavelength
acoustic phonons. The probability of this process is small enough to
satisfy γTO

qω � ωTO. Thus, one can substitute the resonance frequency
ωTO instead of ω in γTO

qω . Next, since the momenta of photons are very
small, one can put q = 0 in γTO

qω with a high accuracy. Therefore, γTO
qω

in Eq. (29) can be approximated by a constant. The imaginary part
of κ(q, ω), which describes the absorption of infrared radiation in ionic
crystals, in this case is given by a Lorentzian function; see Fig. 5.3. The
phonon-phonon interaction is not the only one mechanism responsible
for broadening of the TO resonance in ionic crystals. A consideration of
other broadening mechanisms is beyond the scope of this book.

Problems
5.1. Give an explicit expression of W(l1|l2l3)(q1|q2,q3) defined by Eq.

(23.18) in terms of the anharmonic coefficients Ak1k2k3
s1s2s3

standing in Eq.
(6.1).

Result:

W(l1|l2l3)(q1|q2,q3) =
π�Ω0

4ωq1l1ωq2l2ωq3l3

∣∣∣∣∣∑
nn′

∑
s1s2s3

Ak1k2k3
s1s2s3 (|Rn|, |Rn′ |)√

Ms1Ms2Ms3

×ek1
s1 (q2 + q3 l1)ek2

s2 (−q2l2)ek3
s3 (−q3l3)e−iq2·Rn−iq3·Rn′

∣∣∣∣∣
2

∆q1,q2+q3 ,
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where Ω0 is the volume of the unit crystal cell and the other quantities are defined in
Sec. 6.

5.2. Check, by a direct substitution, that the phonon distribution
function (23.22) satisfies the kinetic equation (23.16).

Hint: Use the energy conservation laws expressed by the δ-functions standing in
the collision integral (23.17).

5.3. Show that when the phonon distribution function is given by Eq.
(23.26), the velocity u is the averaged group velocity of the phonons.

Hint: The averaged group velocity is defined as

∑
ql

∂ωql

∂q
N l

q

/∑
ql

N l
q .

Substitute N l
q from Eq. (23.26) and calculate the integral over q, employing the in-

tegration by parts.

5.4. Check the relation (24.7).
Hint: Write the right-hand side through dσ/dN = ln[(N + 1)/N ] and substitute

the equilibrium Planck distribution there.

5.5. Linearize the distribution function (23.26), where Tph = T +∆T ,
with respect to small u and ∆T . In order to obtain a general solution,
add the solution (23.22) at Tph = T to this linearized function. Find the
constant c from the normalization condition (23.23).

Solution: The general linearized solution obtained in this way is

N l
q = N (eq)

lq + N (eq)
lq (N (eq)

lq + 1)
[
�q · u/T + ωql(∆T/T 2 + c)

]
.

Substituting it into the normalization condition (23.23), we find that the first term in
the square brackets does not contribute to the integral over q. Therefore, to satisfy
Eq. (23.23), one should have c = −∆T/T 2, and we obtain the solution given by Eqs.
(24.3) and (24.11).

5.6. Calculate the sum standing in Eq. (24.18) by assuming only one
phonon branch with the linear dispersion law ω = sq.

Hint: Substituting q = ω/s, reduce the sum over q to the integral over �ω/T .

5.7. Calculate λ given by Eq. (24.13) in a one-dimensional lattice,
assuming linear phonon dispersion (ωq = sq) up to the edge of the
Brillouin zone.

Solution: The Brillouin zone is defined as −π/a < q < π/a and the relevant
reciprocal lattice vectors are ±2π/a. Two possible umklapp processes contributing
to the integral are: 1) q1, q2 > 0, g = −2π/a and 2) q1, q2 < 0, g = 2π/a. Their
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contributions are equal to each other. The δ-function of frequencies is reduced to
δ[2s(|q1|+ |q2|−π/a)]. The factor (N (eq)

q1+q2+g +1)N (eq)
q1 N (eq)

q2 is equal to exp(−�πs/aT )
everywhere except the regions of small q1 or q2. The integral over q1 is taken by using
the δ-function, and the remaining integral over q2 defines the averaged factor

W =
a

π

∫ π/a

0
dq2W(−π/a | π/a − q2, q2).

The result is written as

λ =
π�W
sa3T

exp
(

−�πs

aT

)
,

and one can see that λ exponentially increases with the increase of T .

5.8. Using the expression (26.18), find the conditions when the scat-
tering of longitudinal acoustic phonons (l = LA) involving transverse
branch for one or two other participating phonons is possible.

Result: For l = LA, the conservation law can be satisfied only if l1 = TA and
l2 = LA, at q > q1(1 − st/sl).

5.9. Assuming the case of degenerate electrons, find the temperature
when the ratio νph

q /νe
q becomes equal to unity.

Solution: The relaxation rate νe
q is given by Eq. (21.18), where Ωq = slq (the

drift is neglected). The ratio νph
q /νe

q appears to be q-independent, and the required
temperature is T = (301/4s2/π)

√
ρmD/|λLA|.

5.10. Obtain the equations of motion (27.3) and (27.4) by using the
Lagrangian density L of Eq. (27.5).

Hint: Apply the general procedure described in problem 1.15 to the Lagrangian
(27.5) with q1 = A and q2 = ∆P.

5.11. Check the commutation relations [∆̂Pl(r), M̂l′(r′)] = i�δll′δ(r−
r′) and [Âµ(r), Π̂µ′(r′)] = i�δµµ′δ(r − r′) .

Hints: Use the definitions (27.7) and (27.8) and the commutation rules for bosonic
creation and annihilation operators. Then use the normalization requirement for the
unit polarization vectors and take into account that the δ-function of coordinates is
obtained as V −1∑

q exp [iq · (r − r′)] = δ(r − r′).

5.12. Derive the dispersion relation (27.13).
Hints: Substitute the solution (27.11) into Eq. (27.12). Calculating the commu-

tators, obtain an equation linear in the operators âq, â+
q , b̂q, and b̂+

q . By demanding
that the four coefficients at these four operators be zeros, find four linear equations
connecting λn, λnxn, λnyn, and λnzn. The solvability condition of this system leads
to the dispersion relation (27.13).
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5.13. Calculate the Green’s function 〈〈∆̂P(q)|∆̂P(−q)〉〉R
�ω for the

polariton system.
Solution: To do this, one should express the polarization operator ∆̂P(q) given by

Eq. (27.7) through the creation and annihilation operators of polaritons. This can
be done with the aid of the dispersion relation (27.13) and expressions (27.14) for the
coefficients of the canonical transformation (27.11). The correlation functions of the
polaritonic operators cq1 and cq2 are given by the same expressions as the correlation
functions of free phonons (Appendix D), the difference is that, instead of the phonon
frequency ωT O, we put the polaritonic frequencies Ωqn and consider two modes, n =1
and 2. After a simple algebra, we obtain

〈〈∆̂P(q)|∆̂P(−q)〉〉R
�ω =

ω2
T O(ω2 − ω2

q)(ε0 − ε∞)
[(ω + i0)2 − Ω2

q1][(ω + i0)2 − Ω2
q2]

.

This function has simple poles at the polaritonic frequencies and goes to zero at
ω = ωq.



Chapter 6

EFFECTS OF ELECTRON-ELECTRON
INTERACTION

In this chapter we consider some features of transport phenomena caused by the
interaction between electrons. As in the previous chapters, the kinetic equation is
derived here under the assumption of weak electron-electron interaction. One should
take into account that there are important physical situations when this assumption
is not valid, and the electron-electron interaction rebuilds the ground state of the elec-
tron system and changes the nature of quasiparticles. The kinetic phenomena in such
strongly correlated electron systems are not studied in this book. It is important that,
in contrast to electron-impurity and electron-boson interactions, the terms linear in
the electron-electron interaction (proportional to the square of the electron charge, e2)
contribute to the kinetic equation for electrons and describe both the self-consistent
(mean) field and exchange effects. The kinetic equation written with this accuracy
is used below to study the shift of intersubband resonance in quantum wells and the
exciton absorption. The electron-electron scattering is described by the collision in-
tegral proportional to e4. The matrix elements of electron-electron scattering have to
be considered in more detail for the scattering with small momentum transfer, when
the effects of dynamical screening are important. The electron-electron interaction
can be directly probed by the Coulomb drag between the electrons in closely placed
parallel 2D layers.

28. Hartree-Fock Approximation
To describe the electron systems with interaction between the parti-

cles, we use the Hamiltonian (4.10)

∑
j

ĥj + Ĥee, (1)

229
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where ĥj is the one-electron Hamiltonian and Ĥee is the Hamiltonian
of the potential energy of electron-electron interaction. In the second
quantization representation, the Hamiltonian Ĥee is written according
to Eq. (4.24) in the form

Ĥee =
1
2

∑
γ1γ2γ3γ4

Φγ1γ2γ3γ4 â
+
γ1

â+
γ2

âγ3 âγ4 . (2)

The matrix element Φγ1γ2γ3γ4 =
∫

dx
∫

dx′φ(γ1)
x

∗φ(γ2)

x′
∗v(x,x′)φ(γ4)

x φ
(γ3)

x′
will be written below in the form valid for any dimensionality. Using
the spatial Fourier transformation of the Coulomb energy v(x,x′) =
(e2/ε)|x−x′|−1, where ε is the dielectric permittivity of the medium, we
have

Φγ1γ2γ3γ4 =
1
V

∑
q

′
vq〈γ1|e−iq·x|γ4〉〈γ2|eiq·x|γ3〉, vq =

4πe2

εq2 . (3)

We note that though the indices γ include the spin, the matrix element
Φγ1γ2γ3γ4 is spin-independent, i.e., contains the δ-symbols of spin states
γ1, γ4 and γ2, γ3. In the case of low-dimensional electrons, the eigen-
states |γ〉 describe confinement in one or two dimensions; see Eq. (5.25).
Summing the matrix element (3) over the transverse components of the
wave vector, one finds the contribution characterized by the momentum
transferred in the 2D plane or along the 1D channel. As a result, vq is
replaced by the effective Fourier component of the Coulomb interaction
potential in the 2D or 1D systems (problem 6.1).

Apart from the electron-electron interaction described by Eq. (2), the
Hamiltonian of electrons must contain the interaction of electrons with
positive static background charges (for example, the lattice ions in metals
or doping impurities in semiconductors). If the electron distribution is
spatially smooth (in comparison to the lattice constant or to the average
distance between the impurities), the positive background can be treated
as spatially homogeneous. In this case, the potential of this background
exactly compensates the term with q = 0 so that this term vanishes
from the sum in Eq. (3). This fact is reflected by the prime sign at
the sum in Eq. (3), which means that the sum is taken over non-zero
q. The contribution of small q in Eq. (3) appears to be ineffective
in Eq. (2) because of screening effects. These effects, considered in
the following on the basis of self-consistent description of many-electron
system, lead to finite (proportional to e2) terms in the denominator of
vq . The consideration given below is based upon iterations with respect
to the interaction. It can account for the screening within a logarithmic
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accuracy (in the 3D case), when the sum over q is cut below q � r−1
sc

(here rsc is the screening length).
Since the operator Ĥee is Hermitian, the matrix element (3) has the

symmetry property Φγ1γ2γ3γ4 = Φ∗
γ3γ4γ1γ2

. Another symmetry property,
Φγ1γ2γ3γ4 = Φγ2γ1γ4γ3 , directly follows from Eq. (3) and originates from
the identity of electrons. Using the anticommutation property of the
Fermi operators, we permute the indices as γ3 ↔ γ4 and find Ĥee =
−(1/2)

∑
γ1−4

Φγ1γ2γ4γ3 â
+
γ1

â+
γ2

âγ3 âγ4 so that the form (2) appears to be
ambiguous. In some cases, it is convenient to use the form which is
antisymmetric with respect to the indices γ3 and γ4:

Φ̃γ1γ2γ3γ4 =
1

2V

∑
q

′
vq

[
〈γ1|e−iq·x|γ4〉〈γ2|eiq·x|γ3〉

−〈γ1|e−iq·x|γ3〉〈γ2|eiq·x|γ4〉
]
. (4)

We stress that this ambiguity does not have any effect on the kinetic
equation derived below (problem 6.2).

To obtain an equation for the one-electron density matrix ρ̂t, we
average Eq. (1.20) according to the transformations given by Eqs.
(4.29)−(4.31). We also use the definition (2) and the commutator[

â+
α âβ , â+

γ1
â+

γ2
âγ3 âγ4

]
= δγ1β â+

α â+
γ2

âγ3 âγ4

+δγ2β â+
γ1

â+
α âγ3 âγ4 − δγ3αâ+

γ1
â+

γ2
âβ âγ4 − δγ4αâ+

γ1
â+

γ2
âγ3 âβ . (5)

As a result, we obtain the equation

∂

∂t
〈β|ρ̂t|α〉 +

i

�
〈β|[ĥt, ρ̂t]|α〉

= − i

2�

∑
γ1−4

Φγ1γ2γ3γ4

{
δγ1β〈〈â+

α â+
γ2

âγ3 âγ4〉〉t + δγ2β〈〈â+
γ1

â+
α âγ3 âγ4〉〉t (6)

−δγ3α〈〈â+
γ1

â+
γ2

âβ âγ4〉〉t − δγ4α〈〈â+
γ1

â+
γ2

âγ3 âβ〉〉t

}
whose left-hand side describes one-electron evolution; see Eq. (4.32).
The two-electron averages 〈〈â+

γ1
â+

γ2
âγ3 âγ4〉〉t on the right-hand side are

defined as Sp{â+
γ1

â+
γ2

âγ3 âγ4 η̂t}. It is convenient to separate the contribu-
tion of non-interacting electrons, Fγ1γ2γ3γ4(t), from the electron-electron
correlation function gγ1γ2γ3γ4(t) in these averages:

〈〈â+
γ1

â+
γ2

âγ3 âγ4〉〉t = Fγ1γ2γ3γ4(t) + gγ1γ2γ3γ4(t). (7)

The function Fγ1γ2γ3γ4(t) is obtained according to Eq. (19.7):
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Fγ1γ2γ3γ4(t) = 〈〈â+
γ1

âγ4〉〉t〈〈â+
γ2

âγ3〉〉t − 〈〈â+
γ1

âγ3〉〉t〈〈â+
γ2

âγ4〉〉t

≡ 〈γ4|ρ̂t|γ1〉〈γ3|ρ̂t|γ2〉 − 〈γ3|ρ̂t|γ1〉〈γ4|ρ̂t|γ2〉. (8)

Substituting the expression (7) into the right-hand side of Eq. (6), we
obtain

∂

∂t
〈β|ρ̂t|α〉 +

i

�
〈β|[ĥt, ρ̂t]|α〉 +

i

2�

∑
γ1−4

Φγ1γ2γ3γ4 {δγ1βFαγ2γ3γ4(t)

+δγ2βFγ1αγ3γ4(t) − δγ3αFγ1γ2βγ4(t) − δγ4αFγ1γ2γ3β(t)} = Jβα(t). (9)

The collision integral Jβα(t) standing on the right-hand side of Eq. (9)
is written through the electron-electron correlation functions,

Jβα(t) = − i

2�

∑
γ1−4

Φγ1γ2γ3γ4 {δγ1βgαγ2γ3γ4(t)

+δγ2βgγ1αγ3γ4(t) − δγ3αgγ1γ2βγ4(t) − δγ4αgγ1γ2γ3β(t)} , (10)

and will be considered later in this chapter.
The last term on the left-hand side of Eq. (9) describes a renormaliza-

tion of the one-electron Hamiltonian in the first order in the interaction.
This contribution seems to be qualitatively different from the renorma-
lization due to electron scattering by phonons and impurities, appearing
in the second order in the interaction. The difference becomes less promi-
nent if we take into account that the Coulomb interaction also can be
viewed as a process of the second order caused by exchange of the lon-
gitudinal photons between the electrons. Employing Eqs. (3) and (8),
we transform the first term of e2-contribution from the left-hand side of
Eq. (9) as∑

γ2−4

Φβγ2γ3γ4Fαγ2γ3γ4(t) =
1
V

∑
q

′
vq〈β|eiq·xρ̂t|α〉sp

(
e−iq·xρ̂t

)

− 1
V

∑
q

′
vq〈β|e−iq·xρ̂te

iq·xρ̂t|α〉, (11)

and the other terms are transformed in a similar way. Note that we use
the possibility to change the sign of q in the exponents under the sum
because vq is symmetric in q. Introducing the Fourier component of the
electron density,

nqt = sp
(
e−iq·xρ̂t

)
, (12)



Effects of Electron-Electron Interaction 233

we rewrite the e2-contribution on the left-hand side of Eq. (9) in the
following way:

i

�V

∑
q

′
vqnqt〈β|eiq·xρ̂t − ρ̂te

iq·x|α〉

− i

�V

∑
q

′
vq〈β|e−iq·xρ̂te

iq·xρ̂t − ρ̂te
−iq·xρ̂te

iq·x|α〉. (13)

This contribution is expressed through the commutators of the density
matrix and can be combined with the one-electron Hamiltonian ĥt. In
this way we obtain the effective Hamiltonian

h̃t = ĥt +
1
V

∑
q

′
vqnqte

iq·x − 1
V

∑
q

′
vqe

−iq·xρ̂te
iq·x (14)

describing the effects of Coulomb interaction in the Hartree-Fock ap-
proximation. With the use of Eq. (14), the quantum kinetic equation is
written in its conventional form

∂ρ̂t

∂t
+

i

�

[
h̃t, ρ̂t

]
= Ĵee(ρ̂|t), (15)

where the operator of the collision integral is defined by its matrix ele-
ments Jβα(t) = 〈β|Ĵee(ρ̂|t)|α〉 determined by Eq. (10). The last term of
the Hamiltonian (14) describes the exchange effects, while the second one
defines the mean-field potential energy Urt = V −1∑′

q vqnqt exp(iq ·r) at
the point (r, t). This energy as well can be determined from the Poisson
equation

∆Urt = −4πe2

ε
nrt, (16)

where nrt = sp{δ(r−x)ρ̂t} and nqt are related through a spatial Fourier
transformation. Considering any electroneutral system, one should add
the contribution of the positive background charge to the right-hand side
of the Poisson equation.

Let us consider spatially smooth distributions of electrons and rewrite
the left-hand side of Eq. (15) in the Wigner representation denoted
below as (...)rp. According to Eq. (9.24), the commutators are written
through the Poisson brackets(

[â, b̂]
)

rp
� i�

(
∂a

∂r
· ∂b

∂p
− ∂a

∂p
· ∂b

∂r

)
, (17)

and the mean field leads to the usual “force” term (i/�)([Uxt, ρ̂t])rp =
−∇Urt · ∂frpt/∂p in the kinetic equation. The exchange term can be
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transformed according to Eq. (9.25):(
e−iq·xÂeiq·x

)
rp

= Arp+�q, (18)

and its contribution to the kinetic equation is written as

− i

�V

∑
q

vq

([
e−iq·xρ̂te

iq·x, ρ̂t

])
rp

=
1
V

∑
q

vq

(
∂frp+�qt

∂r
· ∂frpt

∂p
− ∂frp+�qt

∂p
· ∂frpt

∂r

)
. (19)

Therefore, the left-hand side of the quasi-classical kinetic equation takes
the form{

∂

∂t
+
(
vp − ∂∆εrpt

∂p

)
· ∂

∂r
+
(
Frpt − ∇Urt +

∆εrpt

∂r

)
· ∂

∂p

}
frpt,

(20)
where the exchange correction to the energy depends on coordinate
through the Wigner distribution function:

∆εrpt =
1
V

∑
q

vqfrp+�qt =
4πe2

ε

∫
dq

(2π)3q2 frp+�qt. (21)

In summary, the kinetic equation describes the quasiparticles with the
spectrum p2/2m−∆εrpt. In the spatially homogeneous and equilibrium
case, Eq. (21) is rewritten as

∆εp =
e2

2π2�ε

∫
dp1θ(εF − εp1)

|p − p1|2
, (22)

where we also assume that the electron gas is degenerate. The renor-
malization energy ∆εp is estimated as e2/ελF , where λF = 2π/kF is the
length of electron wave expressed here through the Fermi wave number
kF of degenerate electron gas. Since the system is isotropic, the function
(22) depends only on p/pF ; see problem 6.3 and Fig. 6.1.

The consideration is more complicated for the low-dimensional case.
The renormalization of the j-th subband energy is given by

∆εjp =
1
V

∑
q

′
vq〈jp|e−iq·xρ̂eiq·x|jp〉 . (23)

For example, in the case of electron confinement in one direction (along
OZ) in a quantum well, we have

∆εjp =
4πe2

ε

∑
j′

∫
dqzdq
(2π)3

∣∣〈j|eiqzz |j′〉
∣∣2

q2
z + q2 fj′p+�q , (24)
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Figure 6.1. Functions ∆εp and ∆ε(2D)
p given by Eqs. (28.22) and (28.25).

where q = (qx, qy) is the 2D wave vector and fj′p is the distribution
function for subband j′. Strictly speaking, Eq. (24) does not give
us a solution of the problem of energy renormalization, because the
electron-electron interaction deforms the confinement potential so that
the wave functions |j〉 have to be found from a self-consistent calcu-
lation. Even when the exchange contribution is neglected, such self-
consistent procedure is rather complicated since it requires solution of
coupled Schroedinger and Poisson equations. However, in the 2D limit,
when only one 2D subband is populated (j′ = j) and pd/� � 1, where d
is the quantum well width, the result appears to be independent of the
explicit form of the wave functions:

∆ε(2D)
p =

e2

2π�ε

∫
dp1

θ(εF − εp1)
|p − p1|

. (25)

The energy ∆ε(2D)
p , as a function of p/pF , is also plotted in Fig. 6.1

(problem 6.3).

29. Shift of Intersubband Resonance
Consider the resonant response of electrons in quantum wells to elec-

tromagnetic radiation, when the transverse (perpendicular to the plane
XOY of the quantum well) component of electric field, E exp(−iωt),
excites intersubband transitions of the electrons. As a result of this
excitation, the coordinate-dependent current density Iωz exp(−iωt) ap-
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pears in the system. It is convenient to characterize the response by the
Fourier component of the current density per quantum well, Iω , defined
as Iω =

∫
dzIωz . Analogous to Eqs. (13.5)−(13.8), Iω is given by

Iω = i
e2n

mω
E +

e

L2 spv̂z δ̂ρ, (1)

where n = L−2spρ̂ is the density of electrons per unit square of the
quantum well, L2 is the normalization square, and v̂z = p̂z/m is the
transverse component of the velocity operator. The trace sp . . . in Eq.
(1) is taken over electron variables including the spin. The response to
the perturbation (ie/ω)Ev̂z is described by the linearized kinetic equa-
tion for the non-equilibrium part δ̂ρ of the density matrix:

−iωδ̂ρ +
i

�
[h̃, δ̂ρ] +

i

�
[δ̂h, ρ̂] = ∆̂J, (2)

where ρ̂ is the equilibrium density matrix and ∆̂J is the linearized colli-
sion integral in the operator form. The perturbation δ̂h is obtained after
linearizing the effective Hamiltonian h̃ given by Eq. (28.14):

δ̂h =
ie

ω
Ev̂z +

1
V

∑
q

′
vq

[
δnqeiq·x − e−iq·xδ̂ρeiq·x

]
, (3)

where δnq = sp(e−iq·xδ̂ρ) is the high-frequency Fourier component of
the perturbation of electron density.

It is convenient to rewrite h̃ by separating the mean-field potential
Uz , according to

h̃ = ĥ + Uz − 1
V

∑
q

′
vqe

−iq·xρ̂eiq·x. (4)

Below we use the basis |jσp〉 determined by the eigenstate problem
(ĥ + Uz)|jσp〉 = εjp|jσp〉, where p is the 2D momentum, σ is the spin
index, and the index j numbers the states of transverse motion (discrete
subbands in the well and continuous spectrum above the well). Using
the single-particle approach, one can obtain an explicit expression for
the current density Iω after solving Eq. (2) in the collisionless approxi-
mation. Such a consideration demonstrates that the second term in Eq.
(1) decreases with increasing ω faster than ω−1 at high frequencies corre-
sponding to electron transitions into the continuous spectrum (problem
6.4). Thus, the first term in Eq. (1) dominates in this spectral region,
and the response remains the same as in the case of free electrons; see
Eq. (8.30). On the other hand, if ω → 0, the response of localized
electrons goes to zero. One can prove this statement by using a relation
similar to the f -sum rule (see again problem 6.4).
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Figure 6.2. Energy spectrum of a two-level system in a quantum well. The arrows
show the optical transitions.

The most interesting case is realized when the frequency ω is close
to one of the frequencies of intersubband transitions. The effects of
Coulomb interaction in these conditions become essential. We restrict
ourselves by a pair of levels, j = 1, 2, between which the resonant tran-
sitions are excited, the lower level (j = 1) is occupied by electrons and
the higher one (j = 2) is empty; see Fig. 6.2. The matrix elements
of the velocity operator are diagonal in σ and p: 〈jσp|v̂z |j′σ′p′〉 =
δσσ′δpp′〈j|v̂z |j′〉. Since we consider the localized states, the diagonal
components 〈j|v̂z |j〉 are equal to zero, while the non-diagonal ones are
imaginary: 〈2|v̂z |1〉 ≡ vz

21 = −〈1|v̂z |2〉. The induced current density is
rewritten in the form

Iω = i
e2n

mω
E +

2evz
21

L2

∑
p

[δf12(p) − δf21(p)], (5)

where δfjj′(p) ≡ 〈jp|δ̂ρ|j′p〉 is the non-equilibrium part of the density
matrix, and the factor of 2 comes from the sum over spin. From Eqs.
(2)−(4) we find that δfjj′(p) is governed by the following system of
equations: (

−iω +
iε21(p)

�
+ ν

)
δf21(p) +

i

�
δh21f1p = 0,(

−iω +
iε12(p)

�
+ ν

)
δf12(p) − i

�
δh12f1p = 0, (6)
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where f1p is the equilibrium distribution function and δhjj′ is the matrix
element of the perturbation operator (3). The linearized collision inte-
gral 〈jp|∆̂J |j′p〉 is approximated in Eq. (6) as −νδfjj′(p), where ν is
a phenomenological relaxation rate. The energy separation between the
levels, ε21(p) = −ε12(p), is renormalized by the exchange contribution
according to Eq. (28.24):

ε21(p) = ε̃21 − 4πe2

ε

∫
dqzdq
(2π)3

|〈2|eiqzz |1〉|2 − |〈1|eiqzz |1〉|2
q2
z + q2 f1p+�q, (7)

where ε̃21 is the bare interlevel energy separation (determined by the
quantum well confinement potential and by the self-consistent potential
Uz) and q = (qx, qy) is the 2D wave vector.

Since the induced current (5) is expressed only through the difference
of the non-diagonal components, it is convenient to rewrite the system
of equations (6) by using δf (±)

p = δf12(p) ± δf21(p), which leads to

(ω + iν)δf (+)
p + ω21(p)δf (−)

p − f1p[δh21 − δh12]/� = 0,

(ω + iν)δf (−)
p + ω21(p)δf (+)

p + f1p[δh21 + δh12]/� = 0, (8)

where ω21(p) = ε21(p)/�. The matrix elements of the perturbation op-
erator (3) are transformed to the following forms:

δh21 − δh12 =
2ie

ω
Evz

21 +
∫

dp1

2πm

∑
ab

{2 [M12ba(0) − M21ba(0)]

+M1ab2 (|p − p1|/�) − M2ab1 (|p − p1|/�)} δfab(p1),

δh21 + δh12 =
∫

dp1

2πm

∑
ab

{2[M12ba(0) + M21ba(0)]

−M1ab2 (|p − p1|/�) − M2ab1 (|p − p1|/�)} δfab(p1), (9)

where we have introduced a dimensionless kernel

Mabcd(q) =
e2m

πε�2

∫ ∞

−∞
dqz

〈a|e−iqzz |b〉〈c|eiqzz |d〉
q2
z + q2 . (10)

Calculating the integral over qz , we rewrite Eq. (10) as (see also problem
6.1)

Mabcd(q) = (aBq)−1
∫

dzψ(a)
z ψ(b)

z

∫
dz′ψ(c)

z′ ψ(d)
z′ e−q|z−z′|, (11)

where aB = ε�2/e2m is the Bohr radius and ψ(a)
z is the wave function

describing confinement of the state a (the wave functions are chosen to
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be real). Using Eq. (7), we express the frequency of interlevel transitions
standing in Eq. (8) through the kernel (11) according to

ω21(p) = ω21 −
∫

dp1

2π�m

[
M2112

(
|p − p1|

�

)
− M1111

(
|p − p1|

�

)]
f1p1 ,

(12)
where ω21 = ε̃21/�.

Therefore, the linear response is described by a system of two non-
homogeneous integral equations for δf (±)

p . If one uses f1p = θ(εF −
p2/2m) corresponding to the Fermi distribution at zero temperature,
δf (±)

p are defined in the interval 0 < p < pF . Since the kernels of the
kind Mabcd(q) are invariant with respect to the permutations a ↔ b,
c ↔ d, and (ab) ↔ (cd), the contribution of M...(0) to δh21 − δh12
vanishes and the system (8) is rewritten as

(ω + iν)δf (+)
p + ω21δf

(−)
p −

∫
dp1

2π�m

{[
M1212

(
|p − p1|

�

)

−M1111

(
|p − p1|

�

)]
f1p1δf

(−)
p −

[
M1212

(
|p − p1|

�

)

−M1122

(
|p − p1|

�

)]
f1pδf

(−)
p1

}
=

2ie

�ω
Evz

21f1p ,

(ω + iν)δf (−)
p + ω21δf

(+)
p −

∫
dp1

2π�m

{[
M1212

(
|p − p1|

�

)

−M1111

(
|p − p1|

�

)]
f1p1δf

(+)
p +

[
M1212

(
|p − p1|

�

)

+M1122

(
|p − p1|

�

)
− 4M1212(0)

]
f1pδf

(+)
p1

}
= 0. (13)

The mean-field potential contribution has disappeared from the upper
equation and remains only in the lower one, through the term propor-
tional to M1212(0). We stress that, owing to isotropy of the electron
energy spectrum, the functions δf (±)

p do not depend on the direction
of p. Therefore, the integration of the kernels Mabcd(|p − p1|/�) over
the angle of p1 in Eq. (13) can be done independently, and Eq. (13)
is reduced to a system of integral equations with a single variable of
integration, p1 = |p1|.

A simple solution of Eq. (13) can be obtained in the 2D limit, when
the kernels M...(q) are expanded in power series of small parameter pF d/�

(d is the well width):
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Mabcd(q) =
δabδcd

aBq
− Labcd

aB

+ O

(
d

aB

pF d

�

)
,

Labcd =
∫

dzψ(a)
z ψ(b)

z

∫
dz′ψ(c)

z′ ψ(d)
z′ |z − z′|. (14)

After this expansion, Eq. (13) is rewritten as

(ω + iν)δf (+)
p + ω21δf

(−)
p +

∫
dp1

2π�maB

{
(L1212 − L1111)f1p1δf

(−)
p

−(L1212 − L1122)f1pδf
(−)
p1

+ �
f1p1δf

(−)
p − f1pδf

(−)
p1

|p − p1|

}
=

2ie

�ω
Evz

21f1p,

(ω + iν)δf (−)
p + ω21δf

(+)
p +

∫
dp1

2π�maB

{
(L1212 − L1111)f1p1δf

(+)
p

−(3L1212 − L1122)f1pδf
(+)
p1

+ �
f1p1δf

(+)
p − f1pδf

(+)
p1

|p − p1|

}
= 0. (15)

Defining the non-diagonal components of the electron density according
to δn± = (2/L2)

∑
p δf (±)

p , we find that the second term in the induced
current (5) is written as evz

21δn−. The equations for δn± are obtained
from Eq. (15) after integrating the latter over the momentum:

(ω + iν)δn+ + ω̃21δn− =
2ie

�ω
Evz

21n,

(ω + iν)δn− + ω21δn+ = 0. (16)

It is important that the integral contributions in Eq. (15) vanish af-
ter this procedure, and only the contributions containing Labcd remain.
They lead to a renormalization of the frequency of intersubband transi-
tions according to the equations

ω̃21 = ω21 +
εF

�

L1122 − L1111

aB

,

ω21 = ω21 +
εF

�

L1122 − L1111 − 2L1212

aB

. (17)

Therefore, the system of two integral equations (15) is transformed to
the system of algebraic equations (16). Solving it, we obtain the induced
current in the form

Iω = i
e2n

mω
E + i

e2|vz
21|2

�ω

2ω21nE

(ω + iν)2 − Ω2
21

≡ σωE, (18)
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where Ω21 =
√

ω̃21ω21 is the frequency of intersubband resonance shifted
because of the Coulomb interaction. We have taken into account that
(vz

21)
2 = −|vz

21|2. Equation (18) also defines the complex conductivity σω

describing the excitation of electrons in a quantum well by the transverse
field.

Let us consider a system of identical quantum wells placed with the
period l in a medium with dielectric permittivity ε. The dielectric per-
mittivity averaged over the layers is written by analogy to Eq. (17.1),

εω = ε − 4πn3D

mω2

[
1 +

m|vz
21|2

�

2ω21

(ω + iν)2 − Ω2
21

]

� ε − 4πn3D

mΩ2
21

[
1 +

m|vz
21|2

�

√
ω21

ω̃21

∆ω − iν

(∆ω)2 + ν2

]
, (19)

where n3D = n/l is the effective 3D electron density and ∆ω = ω−Ω21 is
the frequency shift from the resonance (detuning frequency). The second
equation is written in the resonance approximation, when |∆ω| � Ω21.
The imaginary part of εω describes the absorption on the frequency
Ω21, while the contribution to Re εω − ε caused by the intersubband
transitions usually appears to be small. A typical multiple quantum
well structure contains no more than one hundred layers so that its
total thickness remains smaller than the length of electromagnetic wave.
For this reason, the approximation of quasi-homogeneous medium is not
adequate in this case, and one needs a more realistic approach to describe
the intersubband transitions.

The expression (10.23) for the coefficient of optical absorption cannot
be directly applied to the 2D systems, because it has been derived for
the absorption on a finite length, while in the 2D systems the absorption
coefficient should be attributed to the whole 2D layer. The influence of
the 2D electron transitions on the propagation of electromagnetic waves
can be described under the approximation that the wavelength 2πc/ω

√
ε

is much larger than the width of the 2D layer. In these conditions, the
field is constant across the layer, and its influence is described by the
boundary conditions imposed on the spatial derivatives of the field. The
transverse component of the field, Eωz , satisfies the one-dimensional
wave equation (problem 6.5)[

d2

dz2 +
(ω

c

)2
ε

]
Eωz = −i

4πω

c2 Iωz, (20)

where the contribution of longitudinal wave vector is neglected and the
current density Iωz is related to the response Iω of Eq. (18) as Iω =∫

dzIωz . Let us assume that the layer is centered at z = 0. Taking into



242 QUANTUM KINETIC THEORY

account that Eωz is constant across the layer, we integrate Eq. (20)
across the layer and obtain the following boundary condition:

dEωz

dz

∣∣∣∣+0

−0
+ iQωEωz=0 = 0, Eωz |+0

−0 = 0, (21)

where Qω = 4πωσω/c2 is a characteristic wave number.
The general solution of Eq. (20) for the wave incident from the left

comprises incident (i) and reflected (r) waves at z < 0 and a transmitted
(t) wave at z > 0:

Eωz =
{

Eie
iqωz + Ere

−iqωz , z < 0
Ete

iqωz , z > 0 , (22)

where qω = (ω/c)
√

ε. The boundary condition (21), together with the
requirement of the field continuity, gives us two equations connecting
the amplitudes Ei, Er , and Et:

qωEt − qω(Ei − Er) + QωEt = 0
Et = Ei + Er

. (23)

The energy flows transmitted by each of the waves are given by the
Poynting vectors Sl = |El|2c

√
ε/2π, l = i, r, t. Multiplying Eq. (23) by

E∗
t , we find the following relation between the Poynting vectors: Si =

Sr + St(1 + ξω), where the contribution Stξω determines the energy loss
inside the quantum well. The dimensionless quantity ξω is, therefore, the
relative absorption coefficient of the 2D layer. It is expressed through
the real part of the complex conductivity defined by Eq. (18) as

ξω =
ReQω

qω
=

4π

c
√

ε
Reσω . (24)

This equation has the same form as Eq. (10.23), and the dielectric con-
stant ε in Eq. (24) corresponds to the medium surrounding the quantum
well.

Using Eqs. (24) and (18), we obtain the relative absorption coefficient
near the resonance frequency:

ξω =
e2

�c

4π|vz
21|2n√

εΩ2
21

ω21ν

(ω − Ω21)2 + ν2 , (25)

where we have taken into account that Ω21 � ν. Applying the hard-wall
model of the quantum well of width d, described by the wave functions
(5.20), we find that the characteristic lengths Labcd are proportional to
d and can be calculated analytically (problem 6.6). The renormalized
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frequencies ω̃21 and ω21 are estimated as ω̃21 � ω21 + 0.063(εF d/�aB)
and ω21 � ω21 + 0.288(εF d/�aB), which means that the intersubband
transition peak is shifted towards higher frequencies. If one neglects the
exchange contributions and accounts only for the mean field in Eq. (13),
ω̃21 is equal to ω21, while ω21 is equal to ω21−4(εF /�)(L1212/aB) � ω21+
0.450(εF d/�aB). This leads to a stronger shift called the depolarization
effect. Therefore, the exchange contribution weakens the shift of the
intersubband resonance, though it does not change the sign of this shift.

30. Exciton Absorption
The square-root frequency dependence of interband absorption in di-

electrics and non-doped semiconductors (see Sec. 17) is modified es-
sentially near the fundamental absorption edge even in perfect crystals.
Owing to Coulomb interaction between the electron and hole created by
the absorbed photon, a new state is formed. This coupled electron-hole
state can be viewed as a non-charged quasiparticle called the exciton.
The contribution of such states into the absorption, which has not been
taken into account in Sec. 17, leads to additional absorption peaks
shifted from the fundamental absorption edge by the coupling energies.
The absorption in these conditions is considered below both for bulk
materials and for the structures with low-dimensional states, where the
exciton coupling energies increase substantially.

The interband transitions excited by the homogeneous electric field
E exp(−iωt)+c.c. are described in the dipole approximation by a single-
particle operator of perturbation, δ̂h exp(−iωt) + H.c., where δ̂h =
i(e/ω)(E · v̂) and v̂ is the interband velocity operator; see Appendix B.
The induced current density is δIω exp(−iωt) + c.c., where the Fourier
component δIω is expressed through the matrix elements of the velocity
operator and non-equilibrium density matrix:

δIω =
e

V

∑
δη

vδηδρηδ. (1)

It is assumed that δ̂ρ is linear in the perturbation δ̂h. In order to describe
the exciton absorption, it is sufficient to determine the non-diagonal
(with respect to the band indices) part of δ̂ρ from the quantum kinetic
equation which takes into account the Coulomb interaction with the
accuracy of e2. Thus, one can use Eq. (28.15) linearized with respect
to δ̂h (see also Eq. (29.2)) and neglect the collision integral on the
right-hand side of this equation. Employing the basis determined by
the eigenstate problem ĥ|δ〉 = εδ |δ〉, where ĥ is the kp-Hamiltonian
describing the conduction (c-) and valence (v-) band states, we obtain a
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linearized kinetic equation in the form

−iωδρηδ +
i

�
(εη − εδ)δρηδ +

i

�
δhηδ(fη − fδ) +

i

2�

∑
γ1−4

Φγ1γ2γ3γ4

×[δγ1ηδFδγ2γ3γ4 +δγ2ηδFγ1αγ3γ4 −δγ3δδFγ1γ2ηγ4 −δγ4δδFγ1γ2γ3η ] = 0. (2)

The electron-electron correlations are described by the linearized func-
tion (28.8) as

δFγ1γ2γ3γ4 = δγ2γ3δργ4γ1fγ2 + δγ4γ1δργ3γ2fγ4

−δγ4γ2δργ3γ1fγ2 − δγ3γ1δργ4γ2fγ3 , (3)

and the Coulomb matrix element Φγ1γ2γ3γ4 is given by the general for-
mula (28.3); see also problem 6.1 for the case of low dimensions.

Below we describe the response near the absorption edge, when |�ω −
ε̄g | � ε̄g . Here ε̄g is the effective bandgap, renormalized by the con-
finement effects in low-dimensional structures and by the Coulomb in-
teraction; see Eqs. (5)−(7) below. For such a case, the states η and δ
correspond to c- and v-bands. Below we use the sets of indices nγ, where
n is the band number (c or v) so that the Greek indices describe the in-
traband motion only. We consider non-doped structures, where fvγ = 1
and fcγ = 0. Retaining in Eq. (3) the contributions proportional to the
resonant component δρcv

ηδ , taking into account that Φn1n2n3n4
γ1γ2γ3γ4

is non-zero
if n1 = n4 and n2 = n3, and using the identity Φn1n2n3n4

γ1γ2γ3γ4
= Φn2n1n4n3

γ2γ1γ4γ3
,

we transform the kinetic equation (2) to the following form:

(εcη − εvδ − �ω)δρcv
ηδ + δhcv

ηδ =

=
∑
γγ ′

[
Φcvvc

ηγδγ ′δρcv
γ ′γ − Φcvvc

ηγγγ ′δρcv
γ ′δ + Φvvvv

γ ′γγδδρ
cv
ηγ ′ − Φvvvv

γ ′γγ ′δδρ
cv
ηγ

]
. (4)

The second and the third Coulomb terms on the right-hand side give
us the contributions proportional to

∑
γ |ψv

γr|2 (here and below in this
section we denote the coordinate-dependent wave function of single elec-
tron in the state |nγ〉 of the band n as ψn

γr). These contributions can be
represented as∫

dr
∑
γ ′

U (v)
r
[
−ψc∗

ηrψ
c
γ ′rδρ

cv
γ ′δ + ψv∗

γ ′rψ
v
δrδρ

cv
ηγ ′
]
, (5)

where U (v)
r =

∫
dr′v|r−r′|

∑
γ |ψv

γr′ |2 (with v|r| = e2/ε|r|) is the potential
energy created by all valence-band electrons. Formally, U (v)

r is infinite,
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because in the two-band model the valence band spreads in energy to
−∞ and contains an infinite number of states. However, if we take into
account the positive-charge background, its potential compensates U (v)

r .
In addition, since U (v)

r is, in fact, coordinate-independent, the integral
over r in Eq. (5) produces δηγ ′ in the first term of Eq. (5) and δδγ ′ in
the second term, thereby making the sum of these terms equal to zero.
Therefore, the second and the third Coulomb terms on the right-hand
side of Eq. (4) are cancelled together. Using another identity,∑

γ ′
Φvvvv

γ ′γγ ′δ = δγδv|r|=0 , (6)

we consider the last Coulomb term on the right-hand side of Eq. (4) as a
contribution renormalizing the interband transition energy εcη −εvδ by a
constant. This renormalized energy is denoted below as Ecv

ηδ . We see that
only the first Coulomb term on the right-hand side of Eq. (4) remains
essential, and finally obtain the following equation for the density matrix
describing the interband polarization:

(Ecv
ηδ − �ω)δρcv

ηδ + δhcv
ηδ −

∑
γγ ′

Φcvvc
ηγδγ ′δρcv

γ ′γ = 0. (7)

The current density (1) is expressed through a solution of Eq. (7) ac-
cording to δIω = (e/V )

∑
δη vvc

δηδρ
cv
ηδ . Therefore, to describe the inter-

band absorption spectra modified by Coulomb interaction, one needs to
solve the non-homogeneous equation (7) and calculate the sum over the
indices δ and η by using an appropriate model of the band structure.

For the case of transitions between the edges of spin-degenerate c-
and v-bands described by the sets of quantum numbers η = (σ, η̄)
and δ = (σ′, δ̄), the interband matrix element of the velocity opera-
tor, vcη,vδ = vcσ,vσ′Icv

η̄δ̄
, is introduced in a similar way as in Secs. 17 and

18; see Eqs. (18.1) and (18.2) and their discussion. The overlap factor
Icv
η̄δ̄

=
∫

drψc∗̄
ηrψ

v
δ̄r is written through the conduction- and valence-band

envelope wave functions ψc
η̄r and ψv

δ̄r introduced below by Eq. (9). As a
result, the matrix elements of the perturbation operator in Eq. (7) are
given by

δhcv
ηδ = i

e

ω
E · vcσ,vσ′Icv

η̄δ̄ . (8)

For the sake of simplicity, we consider the transitions involving a single
spin-degenerate valence-band state, in spite of the fact that the struc-
ture of the valence band in most materials is more complicated: it
includes light-hole and heavy-hole states degenerate at zero quasimo-
mentum. Nevertheless, the consideration presented below gives an ap-
propriate description in view of a substantial difference in the effective
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masses for different branches of the valence-band spectrum. This differ-
ence gives rise to the different coupling energies for heavy- and light-hole
excitons in the bulk materials and different confinement energies in low-
dimensional structures. Using the effective-mass approximation near the
band extrema, one can determine ψc

η̄r and ψv
δ̄r from the single-particle

Schroedinger equations (compare to Eq. (18.3)):[
p̂2

2mc
+ Uc(r) − εη̄

]
ψc

η̄r = 0,

[
− p̂2

2mv
+ Uv(r) − εδ̄

]
ψv

δ̄r = 0. (9)

The energies εη̄ and εδ̄ are counted from the extrema of c- and v-bands,
p̂ = −i�∂/∂r is the operator of momentum, and mc and mv are the
effective masses of electrons and holes in the isotropic approximation.
In low-dimensional systems, the potentials Uc(r) and Uv(r) also describe
confinement of electron and hole states.

Since the Coulomb matrix element is diagonal with respect to spin
variables, Φcvvc

σ1γ̄1σ2γ̄2σ3γ̄3σ4γ̄4
= δσ1σ4δσ2σ3Φ

cvvc
γ̄1γ̄2γ̄3γ̄4

, it is convenient to in-
troduce a spin-independent function Gcv

β̄ᾱ
(εω) according to the relation

δρcv
ση̄σ′δ̄ = i

e

ω
E · vcσ,vσ′Gcv

η̄δ̄(εω), (10)

where εω = �ω − ε̄g is the excess energy of absorbed photons, which is
counted from the renormalized gap ε̄g . Substituting the expression (10)
into Eq. (7), we obtain an inhomogeneous equation

(εη̄ − εδ̄ − εω − iλ)Gcv
η̄δ̄(εω) −

∑
γγ ′

Φcvvc
η̄γ̄ δ̄γ̄ ′G

cv
γ̄ ′γ̄(εω) = −Icv

η̄δ̄ . (11)

The term −iλ with λ → +0 in this equation corresponds to the adiabatic
turning-on of the excitation field at t → −∞. The conductivity tensor
describing the response δIω to the field E is expressed as follows:

σαβ(ω) =
ie2

ωV

∑
σσ′

vα
vσ′,cσvβ

cσ,vσ′
∑
δ̄η̄

Ivc
δ̄η̄Gcv

η̄δ̄(εω). (12)

The polarization and spectral dependences of the interband absorption
appear to be separated for the simple model under consideration. The
polarization dependences are determined by the band structure, while
the spectral ones essentially depend on the Coulomb contribution into
Eq. (11). The factor depending on εω in Eq. (12) is transformed as∑

δ̄η̄

Ivc
δ̄η̄Gcv

η̄δ̄(εω) =
∫

drGεω(r, r), (13)
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where the Green’s function in the coordinate representation is introduced
according to Gεω(r, r′) =

∑
δ̄η̄ ψc

η̄rψ
v∗
δ̄r′G

cv
η̄δ̄

(εω). Using the one-particle
Schroedinger equations (9) and the relation

∑
δ̄η̄ ψv∗

δ̄r′ψ
c
η̄rI

cv
η̄δ̄

= δ(r − r′),
we transform Eq. (11) to the following equation for the Green’s function:(

ĥc − ĥ′
v − v|r−r′| − εω − iλ

)
Gεω(r, r′) = −δ(r − r′), (14)

where ĥc = −�
2∇2

r/2mc + Uc(r) and ĥ′
v = �

2∇2
r′/2mv + Uv(r′) are the

Hamiltonians of electrons and holes from Eq. (9).
The absorption coefficient is proportional to E · σ̂(ω) ·E, and its spec-

tral dependence is expressed through the function

E · σ̂(ω) · E ∝ − 1
V

Im
∫

drGεω(r, r) ≡ Ψ(εω). (15)

Below we solve Eq. (14) and analyze Ψ(εω) for bulk materials and 2D
layers. In the first case, we use new coordinates

R =
mcr + mvr′

mc + mv
, ∆r = r − r′, (16)

so that r = R + mv∆r/(mc + mv) and r′ = R − mc∆r/(mc + mv).
Writing the kinetic energy in these new coordinates (problem 6.7), and
assuming that there are no external fields, Uc,v(r) = 0, we transform Eq.
(14) to (

p̂2
R

2M
+

p̂2
∆r

2µ∗ − v|∆r| − εω − iλ

)
Gεω(R, ∆r) = −δ(∆r), (17)

where the mass of electron-hole pair is introduced according to M =
mc+mv , while the reduced mass µ∗ = mcmv/(mc+mv) has been already
introduced in Sec. 17. With these variables, the spectral dependence is
written as Ψ(εω) = −V −1Im

∫
dRGεω(R, 0). To consider the absorption

in a translation-invariant system, it is convenient to carry out a Fourier
transformation with respect to the variable R:

Gεω(P, ∆r) =
1
V

∫
dR exp

(
− i

�
P · R

)
Gεω(R, ∆r),

Gεω(R, ∆r) =
∑
P

exp
(

i

�
P · R

)
Gεω(P, ∆r). (18)

Therefore, Ψ(E) = −ImGE(P = 0, ∆r = 0). The Green’s function
GE(∆r) ≡ GE(P = 0, ∆r) satisfies the usual equation for a retarded
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Green’s function in the coordinate representation, similar to Eq. (16.1):(
εω +

�
2

2µ∗
∂2

∂∆r2 + v|∆r| + iλ

)
Gεω(∆r) = δ(∆r), (19)

where −v|∆r| plays the role of a potential energy. It is negative because
the electron and hole attract each other. The function Gεω(r) is ex-
pressed, according to problem 3.10, through the eigenfunctions of the
Schroedinger equation(

− �
2

2µ∗
∂2

∂∆r2 − v|∆r|

)
ψ(ν)

∆r = ενψ
(ν)
∆r (20)

containing the reduced effective mass and Coulomb potential energy. A
similar equation describes the energy spectrum of the hydrogen atom,
which is well known. The energies of confined states are given by εν =
−εB/n2, where εB = µ∗e4/2�

2ε2 is the Bohr energy of exciton and n
is an integer. The ground state (n = 1) is non-degenerate, its wave
function is π−1/2a

−3/2
B e−|∆r|/aB , where aB = �

2ε/µ∗e2 is the Bohr radius
of exciton. The states with n = 2, 3, . . . are degenerate. Considering r
as 2D or 1D coordinates, one may apply Eq. (20) for describing 2D or
1D excitons.

The spectral function is given by

Ψ(εω) = −Im
∑

ν

|ψ(ν)
∆r=0|2

εω − εν + iλ
= π

∑
ν

|ψ(ν)
∆r=0|

2δ(εν − εω), (21)

where we have carried out a limiting transition leading to the δ-function
of energy; see problem 1.4. Equation (21) differs from the usual expres-
sions of interband absorption (containing the joint density of states) by
an additional multiplier, |ψ(ν)

∆r=0|2, called the Sommerfeld factor. The
quantum numbers ν include both the continuous-spectrum states modi-
fied by Coulomb interaction (problem 6.8) and the local, discrete states.
For this reason, below the fundamental absorption edge one has a num-
ber of δ-peaks describing the exciton absorption. The first (lowest-
energy) peak is shifted below the edge by the energy of the ground
state, εB.

If the material is not homogeneous, the potential energies from Eq.
(9) should be taken into account and included into Eq. (17). In the case
of smooth inhomogeneities, whose characteristic length exceeds aB, one
can separate the relative motion of electron and hole from the motion
of electron-hole pair in the random potential and describe this latter
motion by using the path integral method (problem 6.9). As a result, the
exciton peaks become broadened and appear on the background of the
absorption tail described in Sec. 18 in the one-electron approximation.
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Let us study now the exciton absorption in quantum wells, when the
potentials for electrons and holes in Eq. (9) include the confinement
potentials Uh(z) and Uc(z). It is convenient to express the Green’s func-
tion by using the orbitals ϕc

nz and ϕv
n′z describing the confinement in c-

and v-band quantum wells:

Gεω(r, r′) =
∑
nn′

ϕc
nzϕ

v∗
n′z′Gεω(nx, n′x′). (22)

The sum is taken over the subband numbers. Let us substitute the
expression (22) into Eq. (14), multiply the latter by ϕc∗

n1zϕ
v
n′

1z′ from
the left, and take the integrals over z and z′. We find that the Green’s
function Gεω(nx, n′x′) satisfies an equation similar to Eq. (14), where r
and r′ are replaced by the 2D coordinates x and x′, the excess energy εω

is replaced by the energy ε(nn′)
ω depending on the quantization energies

of electron and hole states, and the factor
∫

dzϕc∗
nzϕ

v
n′z appears on the

right-hand side. The coordinates X and ∆x are expressed through x and
x′ in the same way as in Eq. (16), and one should remember that the
effective masses standing there are the effective masses for the in-plane
(2D) motion of electron and holes. The Green’s function is determined
by the solutions ψ(ν)

∆x of the eigenstate problem (20) for the 2D case
(problem 6.10), and the spectral function is given in the following way:

Ψ(εω) = π
∑
nn′ν

Λnn′ |ψ(ν)
∆x=0|

2δ(εν − ε(nn′)
ω ), (23)

Λnn′ =
∣∣∣∣∫ dzϕc∗

nzϕ
v
n′z

∣∣∣∣2 .

The squared overlap factor Λnn′ is equal to δnn′ for the hard-wall model
of the quantum well. Therefore, the picture of the exciton absorption in
low-dimensional systems is similar to that in bulk materials: the edge of
interband absorption is modified due to Coulomb interaction, and the ex-
citon absorption peaks appear below the fundamental edge. The ground
energies of the excitons increase with lowering dimension. We point out
that the two-dimensional approximation used here and in problem 6.10
is valid only if the characteristic radius of confinement is small in com-
parison to the exciton radius. If this requirement is not fulfilled, the
Coulomb interaction between electron and hole essentially modifies the
size quantization so that the mixing of in-plane motion and transverse
motion occurs and the wave functions cannot be written in the forms
ϕc

nzψ
c
nx and ϕv

n′zψ
v
n′x. While the two-dimensional approximation for ex-

citons in quantum wells gives reasonable results, the one-dimensional
approximation for excitons in quantum wires fails completely, because it
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leads to an infinitely large energy of the ground excitonic state (problem
6.11), which corresponds to an exciton of infinitely small radius. There-
fore, to find the exciton energies in quantum wires, one should consider
the wires of finite widths and include the transverse motion into the
Schroedinger equation with Coulomb potential.

31. Electron-Electron Collision Integral
To consider the contributions of the order of e4 describing electron-

electron collisions in the quantum kinetic equation (28.15), we introduce
a two-particle correlation operator Ĝ whose matrix elements are the cor-
relation functions introduced in Eq. (28.7):

gγ1γ2γ3γ4 = 〈γ4|〈γ3|Ĝt|γ2〉|γ1〉. (1)

The matrix elements (28.10) of the collision integral standing on the
right-hand side of Eq. (28.15) are given as (problem 6.12)

〈η|Ĵee(ρ̂|t)|δ〉 =
1

i�V

∑
q

vq

∑
γ1γ2γ3

{
〈η|e−iq·x|γ1〉〈γ2|eiq·x|γ3〉

×〈γ1|〈γ3|Ĝt|γ2〉|δ〉 − 〈η|〈γ3|Ĝt|γ2〉|γ1〉 〈γ1|e−iq·x|δ〉〈γ2|eiq·x|γ3〉
}

, (2)

and the collision integral can be rewritten in the operator form

Ĵee(ρ̂|t) =
1

i�V

∑
q

vqsp′
[
e−iq·(x−x′), Ĝt

]
. (3)

The definition of the “inner” trace sp′ . . . is clear from a comparison
of Eqs. (2) and (3). To obtain an explicit expression for the collision
integral with the accuracy e4, we have to find Ĝ from the equation of
motion taking into account only the contributions of the order of e2.
Using the definition given by Eq. (28.8), we express Fγ1−4(t) through the
one-particle density operators as F̂ = (1−P̂)ρ̂tρ̂

′
t, where the permutation

operator P̂ is defined according to

〈γ4|〈γ3|P̂ âb̂′|γ2〉|γ1〉 = 〈γ4|â|γ2〉〈γ3|b̂|γ1〉. (4)

Without this operator, we have 〈γ4|〈γ3|âb̂′|γ2〉|γ1〉 = 〈γ4|â|γ1〉〈γ3|b̂|γ2〉
(by convention, the operators with prime sign act on the “inner” states
|γ2〉 and |γ3〉). Multiplying Eq. (1.20) by â+

γ1
â+

γ2
âγ3 âγ4 , taking the trace

over the electron variables, and using Eq. (28.7), we obtain

∂

∂t
Ĝt +

i

�

[
ĥ′

t + ĥt, Ĝt

]
=

1
i�

K̂t, (5)
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where the operator K̂t is defined by its matrix elements

〈γ4|〈γ3|K̂t|γ2〉|γ1〉 = 〈γ4|〈γ3|(1 − P̂)
{

ρ̂t[ĥ′
t − h̃′

t, ρ̂
′
t] + [ĥt (6)

−h̃t, ρ̂t]ρ̂′
t

}
|γ2〉|γ1〉 +

1
2

∑
δ1−4

Φδ1δ2δ3δ4〈〈[â+
γ1

â+
γ2

âγ3 âγ4 , â
+
δ1

â+
δ2

âδ3 âδ4 ]〉〉t

and h̃t is introduced by Eq. (28.14). To obtain Eq. (6), the time deriva-
tives of the one-particle density matrices have been calculated according
to Eq. (28.15) without the collision integral. Within the same accuracy,
one should neglect the interaction when calculating the four-particle av-
erages in the last term of Eq. (6).

The commutator [â+
γ1

â+
γ2

âγ3 âγ4 , â
+
δ1

â+
δ2

âδ3 âδ4 ] in Eq. (6) is transformed
with the aid of the anticommutation relation (4.21):

{(δγ4δ1δγ3δ2 − δγ3δ1δγ4δ2)â
+
γ1

â+
γ2

âδ3 âδ4 − δγ4δ1 â
+
γ1

â+
γ2

â+
δ2

âγ3 âδ3 âδ4

+δγ3δ1 â
+
γ1

â+
γ2

â+
δ2

âγ4 âδ3 âδ4 + δγ4δ2 â
+
γ1

â+
γ2

â+
δ1

âγ3 âδ3 âδ4

−δγ3δ2 â
+
γ1

â+
γ2

â+
δ1

âγ4 âδ3 âδ4} − {γ ↔ δ}. (7)

Therefore, only two- and three-particle correlation functions contribute
to the right-hand side of Eq. (5). The two-particle correlation functions
are averaged according to Eq. (19.7). The three-particle correlation
functions are averaged in a similar way:

〈〈â+
γ1

â+
γ2

â+
γ3

âδ1 âδ2 âδ3〉〉t (8)

� 〈〈â+
γ1

âδ1〉〉t〈〈â+
γ2

âδ3〉〉t〈〈â+
γ3

âδ2〉〉t − 〈〈â+
γ1

âδ1〉〉t〈〈â+
γ2

âδ2〉〉t〈〈â+
γ3

âδ3〉〉t

+〈〈â+
γ1

âδ2〉〉t〈〈â+
γ2

âδ1〉〉t〈〈â+
γ3

âδ3〉〉t − 〈〈â+
γ1

âδ2〉〉t〈〈â+
γ2

âδ3〉〉t〈〈â+
γ3

âδ1〉〉t

+〈〈â+
γ1

âδ3〉〉t〈〈â+
γ2

âδ2〉〉t〈〈â+
γ3

âδ1〉〉t − 〈〈â+
γ1

âδ3〉〉t〈〈â+
γ2

âδ1〉〉t〈〈â+
γ3

âδ2〉〉t.

Since Eqs. (7) and (8) are rather cumbersome, let us first consider
the case of non-degenerate electrons, when the terms proportional to n3

(n is the electron density and ρ̂t ∝ n) can be neglected in the expression
for K̂t. The three-particle correlation functions and the first term on the
right-hand side of Eq. (6) are not essential in this situation. We obtain

K̂t =
1
V

∑
q

vq(1 − P̂)
(
e−iq·x′

ρ̂′
te

iq·xρ̂t − ρ̂′
te

−iq·x′
ρ̂te

iq·x
)

. (9)

Employing the initial condition of the correlation weakening,

Ĝt→−∞ = 0, (10)
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and the evolution operator introduced by Eq. (2.2), we solve Eq. (5) as

Ĝt =
1
i�

∫ t

−∞
dt1e

λt1Ŝ(t, t1)Ŝ′(t, t1)K̂t1Ŝ
′+(t, t1)Ŝ+(t, t1). (11)

Substituting this solution into Eq. (3), we find the Coulomb collision
integral for non-degenerate electrons:

Ĵee(ρ̂|t) =
1

�2V 2

∑
qq1

vqvq1

∫ t

−∞
dt1e

λt1sp′
[
Ŝ(t, t1)Ŝ′(t, t1)(1 − P̂)

×
{

e−iq·x′
ρ̂′

t1e
iq·xρ̂t1 − ρ̂′

t1e
−iq·x′

ρ̂t1e
iq·x
}

(12)

× Ŝ′+(t, t1)Ŝ+(t, t1), eiq1·(x′−x)
]
.

The operator of permutations can be excluded from Eq. (12) with the
use of the identities (problem 6.13)

sp′
[
e−iq·(x−x′), Ŝ(t, t1)Ŝ′(t, t1)P̂(ÂB̂′)Ŝ′+(t, t1)Ŝ+(t, t1)

]
=
[
e−iq·x, Ŝ(t, t1)ÂŜ+(t, t1)eiq·xŜ(t, t1)B̂Ŝ+(t, t1)

]
(13)

and
sp′
[
e−iq·(x−x′), Ŝ(t, t1)Ŝ′(t, t1)ÂB̂′Ŝ′+(t, t1)Ŝ+(t, t1)

]
=
[
e−iq·x, Ŝ(t, t1)ÂŜ+(t, t1)

]
sp
(
eiq·xŜ(t, t1)B̂Ŝ+(t, t1)

)
. (14)

Thus, we rewrite the collision integral as

Ĵee(ρ̂|t) =
1

�2V 2

∑
qq1

vqvq1

∫ t

−∞
dt1e

λt1
[
Ŝ(t, t1)ρ̂t1e

iq1·xŜ+(t, t1)

×
{{

eiq·xŜ(t, t1)ρ̂t1e
−iq1·xŜ+(t, t1)

}}
, e−iq·x

]
+ H.c. , (15)

where we have introduced {{Â}} ≡ Â − spÂ.
Let us calculate the matrix element 〈γ4|〈γ3|K̂t|γ2〉|γ1〉 defined by Eq.

(6) for the general case of arbitrary degeneracy. After some technical
efforts, we find that the sum of the first term on the right-hand side
of Eq. (6) with the contribution of the second term containing the
correlation functions 〈〈â+

γj
âγi〉〉t = 〈γi|ρ̂t|γj〉 is equal to zero. Therefore,

only the averages containing the “mixed” γδ correlation functions from
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the second term on the right-hand side of Eq. (6) remain. Using the
definition (28.4), we write the matrix element of K̂t in the form

〈γ4|〈γ3|K̂t|γ2〉|γ1〉 = 2
∑
δ1δ2

[Φ̃γ3γ4δ1δ2〈δ1|ρ̂|γ1〉〈δ2|ρ̂|γ2〉 − Φ̃∗
γ1γ2δ1δ2

×〈γ3|ρ̂|δ1〉〈γ4|ρ̂|δ2〉] + 2
∑
δδ1δ2

{
(1 − Pγ3γ4)Φ̃γ3δδ1δ2〈γ4|ρ̂|δ〉〈δ2|ρ̂|γ1〉 (16)

× 〈δ1|ρ̂|γ2〉 + (1 − Pγ1γ2)Φ̃
∗
γ1δδ1δ2〈δ|ρ̂|γ2〉〈γ3|ρ̂|δ1〉〈γ4|ρ̂|δ2〉

}
.

Equation (16) can be rewritten in the operator form, which gives us a
generalization of Eq. (9) to the case of degenerate electrons:

K̂t =
1
V

∑
q

vq(1 − P̂)
{

(1 − ρ̂t − ρ̂′
t)e

−iq·x′
ρ̂′

te
iq·xρ̂t

−ρ̂′
te

−iq·x′
ρ̂te

iq·x(1 − ρ̂t − ρ̂′
t)
}

. (17)

Let us substitute this expression into Eq. (11) and then substitute Ĝt

obtained in this way into Eq. (3). We obtain the collision integral in the
form (12), where, however, the expression in the braces {. . .} is replaced
by the expression in {. . .} of Eq. (17) taken at t = t1. This expression
contains the factors (1 − ρ̂t1 − ρ̂′

t1) accounting for the Pauli principle.
Further transformations are based upon the identities (13) and (14). We
finally obtain the collision integral in the operator form

Ĵee(ρ̂|t) =
1

�2V 2

∑
qq1

vqvq1

∫ t

−∞
dt1e

λt1

[
e−iq·x, (18)

Ŝ(t, t1)(1 − ρ̂t1)e
iq1·xρ̂t1Ŝ

+(t, t1)
{{

eiq·xŜ(t, t1)e−iq1·xρ̂t1Ŝ
+(t, t1)

}}
−Ŝ(t, t1)ρ̂t1e

iq1·x(1 − ρ̂t1)Ŝ
+(t, t1)

{{
eiq·xŜ(t, t1)ρ̂t1e

−iq1·xŜ+(t, t1)
}}

+Ŝ(t, t1)
[
ρ̂t1 , e

iq1·x] Ŝ+(t, t1)
{{

eiq·xŜ(t, t1)ρ̂t1e
−iq1·xρ̂t1Ŝ

+(t, t1)
}}]

.

The Hermiticity of the operator (18) is checked directly (problem 6.14).
The expression for the collision integral given above is rather compli-

cated. It is simplified essentially for the systems with time-independent
Hamiltonian ĥ. We use below the basis of the eigenstate problem ĥ|γ〉 =
εγ |γ〉 and account for the diagonal part of the density matrix 〈γ|ρ̂t|γ′〉
only. The non-diagonal matrix elements are assumed to be either small



254 QUANTUM KINETIC THEORY

due to �/ε̄τ̄ � 1, see Eq. (7.21), or vanish due to symmetry properties
(for example, when the Hamiltonian ĥ is translation-invariant and the
eigenstates |γ〉 are identified with eigenstates of momentum, |p〉). The
diagonal matrix element of the operator (18) are calculated by using the
definition of S-operators given by Eq. (2.3). Then we take the integral
over time and obtain

Jee(f |γt) =
2π

�

∑
νγ ′ν ′

V (γγ′|νν ′)δ(εγ + εγ ′ − εν − εν ′)

×[fνtfν ′t(1 − fγt)(1 − fγ ′t) − fγtfγ ′t(1 − fνt)(1 − fν ′t)], (19)

where fγt = 〈γ|ρ̂t|γ〉 is the distribution function. The principal-value
contributions have disappeared, and only the δ-function expressing the
energy conservation law remains. The probability of transition in Eq.
(19) is expressed through the Coulomb matrix element defined as

V (γγ′|νν ′) =
1

V 2

∑
qq1

vqvq1

{
〈γ|e−iq·x|ν〉〈ν|eiq1·x|γ〉〈γ′|eiq·x|ν ′〉 (20)

×〈ν ′|e−iq1·x|γ′〉 − Re〈γ|e−iq·x|ν〉〈ν|eiq1·x|γ′〉〈γ′|eiq·x|ν ′〉〈ν ′|e−iq1·x|γ〉
}

.

The first part of this expression originates from the terms containing
the trace in Eq. (18) (we remind that {{Â}} ≡ Â − spÂ) and is called
the direct Coulomb contribution to the probability of transition. The
remaining terms on the right-hand side of Eq. (18) contribute to the
second part of V (γγ′|νν ′), which is called the exchange contribution.
The matrix element (20) has the symmetry properties V (γγ′|νν ′) =
V (γ′γ|ν ′ν) = V (νν ′|γγ′) = V (ν ′ν|γ′γ) following from the symmetry
properties of Φγ1γ2γ3γ4 discussed in Sec. 28.

The collision integral Jee(f |rpt) for the electron system in quasi-
classical external fields is obtained from the operator expression (18)
in the way described in Sec. 9:

Jee(f |rpt) =
2π

�

∑
p′p1p′

1

δp+p′,p1+p′
1
V (pp′|p1p′

1)δ(εp + εp′ − εp1 − εp′
1
)

×{frp1tfrp′
1t(1 − frpt)(1 − frp′t) − frptfrp′t(1 − frp1t)(1 − frp′

1t)}. (21)

The matrix elements of the exponential factors exp(−iq·x) are calculated
in the basis |σ〉|p〉, where the coordinate parts |p〉 of the wave functions
are plane waves, so that 〈p′|〈σ′| exp(−iq · x)|σ〉|p〉 = δσσ′δp,p′+�q. The
spin contributions to such matrix elements produces the orthogonality
factor δσσ′ , while the coordinate contributions lead to the momentum



Effects of Electron-Electron Interaction 255

conservation law. The matrix element V (pp′|p1p′
1) is defined according

to ∑
σ′σ1σ′

1

V (pσp′σ′|p1σ1p′
1σ

′
1) =

1
V 2 δp+p′,p1+p′

1
{2|v|p−p1|/�|2

−v|p−p1|/�v|p−p′
1|/�} ≡ δp+p′,p1+p′

1
V (pp′|p1p′

1). (22)

The difference between the spin factors in the first (direct) and the sec-
ond (exchange) terms appears to be essential. These factors are δσσ1δσ′σ′

1
and δσσ1δσ1σ′δσ′σ′

1
δσ′

1σ for the first and for the second term, respectively.
After the sums over spins in Eq. (22) are taken, a factor of 2 appears
in the first term but does not appear in the second one. Because of
the exchange terms, the scattering probabilities for the electrons with
parallel and anti-parallel spins are different, which becomes essential for
spin-polarized electrons.

The conservation of the number of particles in the electron-electron
collisions directly follows from the equation spĴee(ρ̂|t) = 0. This means
that Eq. (7.19) is not modified in the presence of these collisions. For
the system with time-independent Hamiltonian, one can check that∑

γ

εγJee(f |γ) = 0 (23)

by using Eqs. (19) and (20) and the property V (γγ′|νν ′) = V (γ′γ|ν ′ν).
Therefore, the electron-electron collisions do not lead to energy relax-
ation. Finally, we use the explicit expression for the quasi-classical col-
lision integral (21) and permute the variables according to p ↔ p1 and
p′ ↔ p′

1. As a result, we obtain∑
p

pJee(f |rp) = 0, (24)

which means that the electron-electron collisions do not lead to momen-
tum relaxation and the current is conserved. The energy and momentum
conservation implies that any Fermi distribution function of the form

fp = [e(εp−p·u−µe)/Te + 1]−1 = {exp[(εp−mu − µ∗
e)/Te] + 1}−1 , (25)

where u is the electron drift velocity and Te and µe are the effective
electron temperature and chemical potential, satisfies the kinetic equa-
tion (compare this to a similar result for phonons, Eq. (23.26)). In the
second expression of Eq. (25), we have used the parabolic electron spec-
trum εp = p2/2m and made the definition µ∗

e = µe + mu2/2. One may
safely replace µ∗

e by µe, since the chemical potential is determined by the
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electron density. Besides, in the linear response problems, when the drift
velocity is small, the quadratic term mu2/2 should be neglected so that
we have µ∗

e = µe exactly. To provide the momentum and energy relax-
ation, when u goes to zero and Te goes to the equilibrium temperature
T , one must consider electron-impurity and electron-phonon scattering.
The latter is responsible for the energy relaxation and also contributes
to the relaxation of momentum. However, the momentum relaxation in
metals and semiconductors at low temperatures occurs mostly due to
electron-impurity scattering.

32. Coulomb Drag Between 2D Electrons
If two parallel 2D layers are placed close enough to each other, and a

current flows through one of the layers (drive layer), the interlayer mo-
mentum transfer caused by the Coulomb interaction between the elec-
trons of different layers leads to a net force acting on the electrons in
the other layer (drag layer). This force can be calculated by using the
electron-electron collision integral derived in Sec. 31. In the basis |jp〉
described by the wave functions ψ(j)

z L−1eip·x/�, where j = 1, 2 is the
layer number and x and p are the 2D coordinate and momentum, the
stationary kinetic equation is written as

eEj · ∂fjp

∂p
= Jee(f |jp) + Jim(f |jp), (1)

where Ej is the electric field in the layer j. The right-hand side of this
equation contains the electron-electron collision integral (31.19), written
in the given basis as

Jee(f |jp) =
2π

�L4

∑
j′p′p1p′

1

[2|v(jj′)
|p−p1|/�

|2 − δjj′v(jj)

|p−p1|/�
v(jj)

|p−p′
1|/�

]

×δp+p′,p1+p′
1
δ(εjp + εj′p′ − εjp1 − εj′p′

1
)

×[fjp1fj′p′
1
(1 − fjp)(1 − fj′p′) − fjpfj′p′(1 − fjp1)(1 − fj′p′

1
)], (2)

and the electron-impurity collision integral (see Eq. (8.7))

Jim(f |jp) =
2π

�L2

∑
p′

wj(|p − p′|/�)δ(εjp − εjp′)(fjp′ − fjp). (3)

Assuming that the temperature is low enough, we consider the relaxation
of momentum due to electron-impurity scattering and neglect electron-
phonon scattering. The expression (2) is a generalization of the collision
integral of Eqs. (31.21) and (31.22) to the case when several electron
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subbands are involved in the electron-electron collisions and there are
no transitions between different subbands, since the layers are isolated
from each other. The exchange contribution into the matrix element is
diagonal in the layer number j. The matrix elements v(jj′)

q standing in
Eq. (2) are written according to problem 6.1 (see also Eq. (29.10)):

v(jj′)
q =

4πe2

ε

∫ ∞

−∞
dqz

2π

〈j|e−iqzz |j〉〈j′|eiqzz |j′〉
q2
z + q2

=
2πe2

εq

∫
dz|ψ(j)

z |2
∫

dz′|ψ(j′)
z′ |2e−q|z−z′|. (4)

The symmetry v(12)
q = v(21)

q is seen explicitly.
One may rewrite Eq. (1) as a set of two equations for the two lay-

ers. The interlayer (j′ 	= j) and intralayer (j′ = j) collisions are sep-
arated if we write the collision integral (2) in the form Jee(f |jp) =
J intra

ee (f |jp)+J inter
ee (f |jp). The interlayer collisions typically have much

smaller probability because of spatial separation of the layers. As seen
from Eq. (4), v(12)

|p−p1|/�
∝ e−|p−p1|Z/�, where Z is the distance between

the layers, so that the electron transitions with large momentum trans-
fer between the layers are exponentially suppressed. Therefore, we can
consider the interlayer part J inter

ee (f |jp) of the electron-electron collision
integral as the weakest contribution and solve the kinetic equation by
iterations. In the zero-order approximation, we neglect J inter

ee (f |jp) and
Eq. (1) splits into two uncoupled, single-layer equations. We have

eEj ·
∂f (0)

jp

∂p
= J intra

ee (f (0)|jp) + Jim(f (0)|jp). (5)

Below we assume a linear transport regime and replace f (0)
jp on the left-

hand side of Eq. (5) by the equilibrium Fermi distribution function
f (eq)

jp . In this way we obtain an inhomogeneous equation whose solution
is determined by two scattering mechanisms. If the impurity scattering
dominates, one can use the results of Chapter 2 to write this solution
through the momentum-dependent, isotropic elastic-scattering transport
time τjp = τ (j)

tr (εp):

f (0)
jp = f (eq)

jp − eEj ·
∂f (eq)

jp

∂p
τjp . (6)

If the electron-electron collisions dominate, the function f (0)
jp is given by

the shifted Fermi distribution (31.25), where the electron drift velocity
u = uj is determined by the electron-impurity interaction in the layer j
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and Te = T since we assume no electron heating. If the momentum (or,
equivalently, energy) dependence of τjp can be neglected, one has uj =
τjeEj/m, and the distribution function is again given by Eq. (6). We
note that the transport time of 2D electrons is momentum-independent
in the case of short-range impurity potential. Therefore, the expression
(6) with τjp = τj is the exact solution of the single-layer kinetic equation
(5) in the case of energy-independent transport time. We will consider
this regime in the following.

In the next step of the iteration procedure, we assume

fjp = f (0)
jp + δfjp, (7)

where δfjp is a small correction caused by the interlayer momentum
transfer. Linearizing the collision integrals J intra

ee (f |jp) and Jim(f |jp)
with respect to this small correction, we obtain

4π

�L4

∑
p′p1p′

1

|v(12)

|p−p1|/�
|2δp+p′,p1+p′

1
δ(εjp + εj′p′ − εjp1 − εj′p′

1
)

×[f (0)
jp1

f (0)

j′p′
1
(1 − f (0)

jp )(1 − f (0)
j′p′) − f (0)

jp f (0)
j′p′(1 − f (0)

jp1
)(1 − f (0)

j′p′
1
)]

= −δJ intra
ee (f |jp) − δJim(f |jp), (8)

where the interlayer part (j′ 	= j) of the electron-electron collision inte-
gral stands on the left-hand side. Substituting the expression (6) there,
one should keep only the contributions linear in Ej . After a set of trans-
formations using the identity ∂f (eq)

jp /∂p = −(p/mT )f (eq)
jp (1 − f (eq)

jp ), the
interlayer part of the collision integral is rewritten as

4πe

L4mT

∑
p′q

|v(12)
q |2 q · [Ej′τj′ − Ejτj ]δ(εjp + εj′p′ − εjp−�q − εj′p′+�q)

×f (eq)
jp f (eq)

j′p′(1 − f (eq)
jp−�q)(1 − f (eq)

j′p′+�q). (9)

Let us multiply both sides of Eq. (8) by 2epτj/mL2 and sum the
equation obtained over p. Consider first the right-hand side of the equa-
tion found in this way. The contribution from the intralayer part of the
electron-electron collision integral vanishes since the scattering within
the layer conserves the momentum; see Eq. (31.24). The contribution
from the electron-impurity term is

4πe

�L4

∑
pp′

pτj

m
wj(|p − p′|/�)[δfjp − δfjp′ ]δ(εjp − εjp′)
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=
4πe

�mL4

∑
p

τjδfjp

∑
p′

(p − p′)wj(|p − p′|/�)δ(εjp − εjp′). (10)

According to Eq. (11.14), the sum over p′ is proportional to p/τj and
the expression (10) is equal to δIj , where

δIj = 2e

∫
dp

(2π�)2
p
m

δfjp (11)

is the current density associated with the interlayer momentum transfer.
Transforming the left-hand side of Eq. (8) (problem 6.15), we find

δIjα =
∑
j′β

δσjj′
αβEj′β , (12)

where α and β are the coordinate indices. The conductivity tensor
introduced by Eq. (12) contains both diagonal and non-diagonal, with
respect to the layer index, contributions:

δσjj′
αβ = (−1)lτjτj′

4πe2
�

m2T

∫
dq

(2π)2
qαqβ |v(12)

q |2
∫

dp
(2π�)2

∫
dp′

(2π�)2
(13)

×δ(εjp + εj′p′ − εjp−�q − εj′p′+�q)f (eq)
jp f (eq)

j′p′(1 − f (eq)
jp−�q)(1 − f (eq)

j′p′+�q),

where l = 0 for j 	= j′ and l = 1 for j = j′. The tensor δσjj′
αβ is symmet-

ric in the layer indices. Since the electron spectra and the matrix ele-
ment v(12)

q are isotropic, this tensor is diagonal in the coordinate indices.
Therefore, one may replace qαqβ by δαβq2/2 and omit the coordinate
indices.

The total current density in the layer j is given as

Ij = 2e

∫
dp

(2π�)2
p
m

f (0)
jp + δIj . (14)

The first term on the right-hand side of this equation is the usual expres-
sion for the current of electrons interacting with impurities; see Chapter
2. Therefore, we obtain the following solution of the linear response
problem for the Coulomb-coupled layers:

Ij =
∑
j′

σjj′
Ej′ . (15)

The conductivity tensor σjj′ is symmetric. Its non-diagonal part, which
is entirely determined by the interlayer momentum transfer, is called
the drag conductivity, σD ≡ δσjj′ , j′ 	= j. The diagonal components of
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the conductivity tensor have small negative corrections due to interlayer
momentum transfer:

σjj =
e2njτj

m
−

τ2
j

τ1τ2
σD, (16)

where nj is the electron density in the layer j. These corrections are
neglected in the following, and we put σjj � e2njτj/m. The quantity
usually measured in experiments is the drag resistivity ρD rather than
σD. If the layer 1 is the drive layer and the layer 2 is the drag layer (see
Fig. 6.3), this resistivity is defined as

ρD = −E2/I1 (17)

under the condition that the current in the drag layer is equal to zero,
I2 = 0. One may introduce the drag voltage V2 = eE2L, where L is the
length of the layers. Solving Eq. (15) in these conditions, we neglect the
corrections quadratic in σD and find

ρD =
σD

σ11σ22
. (18)

It is important that the sign of the drag voltage is opposite to the voltage
applied to the drive layer, because the drag voltage develops to counter-
act the driving force. To make ρD positive by definition, the minus sign
is introduced in Eq. (17).

Figure 6.3. Schematic representation of the Coulomb drag effect.

Collecting the results given by Eqs. (13), (16), and (18), we write the
expression for the drag resistivity:

ρD =
2π�

e2Tn1n2

∫
dq

(2π)2
q2|v(12)

q |2
∫

dp
(2π�)2

∫
dp′

(2π�)2
(19)

×δ(ε1p + ε2p′ − ε1p−�q − ε2p′+�q)f (eq)
1p f (eq)

2p′ (1 − f (eq)
1p−�q)(1 − f (eq)

2p′+�q).
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As seen, τ1 and τ2 have disappeared from this equation, and ρD depends
only on the interlayer electron-electron interaction. Below we rewrite
Eq. (19) in a more convenient form by using the following identities:

δ(ε1p + ε2p′ − ε1p−�q − ε2p′+�q)

= �

∫
dωδ(ε1p − ε1p−�q − �ω)δ(ε2p − ε2p′+�q + �ω) (20)

and

f (eq)
ε (1 − f (eq)

ε±�ω) =
f (eq)

ε − f (eq)
ε±�ω

1 − exp(∓�ω/T )
. (21)

We also introduce the function

Πj(q, ω) = 2
∫

dp
(2π�)2

f (eq)
jp − f (eq)

jp−�q

εjp − εjp−�q − �ω − iλ
, λ → +0, (22)

which has the symmetry property Πj(q, ω) = Π∗
j (−q,−ω) and depends,

due to isotropy of the electron spectrum, only on the absolute value of q.
Using it, we find that Eq. (19) can be rewritten through the imaginary
parts of Π1 and Π2:

ρD =
�

2

8π2e2Tn1n2

∫ ∞

0
dqq3|v(12)

q |2
∫ ∞

0
dω

ImΠ1(q, ω)ImΠ2(q, ω)
sinh2(�ω/2T )

. (23)

The characteristic frequencies ω contributing to the integral in Eq.
(23) are determined by the condition ω < 2T/�. Therefore, to describe
the drag at low temperatures, we use the low-frequency asymptote of
ImΠj (problem 6.16):

ImΠj(q, ω) � − m2ω

π�2qpFj
, q � pFj/�, (24)

which allows us to calculate the integral over ω analytically. We obtain
the expression

ρD =
m4T 2

6π2�5e2n1n2pF1pF2

∫ ∞

0
dqq|v(12)

q |2 (25)

describing a quadratic temperature dependence of the drag resistance.
The same behavior is seen experimentally. The drag resistance decreases
with decreasing temperature because at low temperatures the probabil-
ity of electron-electron scattering becomes smaller.

To complete the calculations, one should evaluate the integral over q
in Eq. (25). However, a direct substitution of v(12)

q given by Eq. (4) into
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Eq. (25) leads to a logarithmic-divergent expression for this integral, due
to the contribution of small q (small-angle scattering). To overcome this
difficulty, a self-consistent calculation of the interlayer Coulomb matrix
element v(12)

q is necessary (problem 6.17). As a result, we obtain the
“screened” matrix element

v(12)
q � 2πe2

ε

q

(8/a2
B) sinh qZ + (4q/aB + q2)eqZ

, (26)

which is derived under the approximation that the interlayer distance
Z, defined as the distance between the weight centers zj =

∫
dz|ψ(j)

z |2z
of the wave functions in the 2D layers, considerably exceeds the layer
widths dj . If qaB � 1, Eq. (26) gives us v(12)

q = (2πe2/εq)e−qZ , which
coincides, in the approximation Z � dj , with the result of Eq. (4).
On the other hand, v(12)

q of Eq. (26) is finite at small q. The main
contribution to the integral in Eq. (25) comes from q < 1/Z. Assum-
ing Z � aB/2, we approximate the expression (26) at q � 2/aB as
v(12)
q � πe2a2

Bq/4ε sinh qZ. Substituting this expression into Eq. (25),
we calculate the integral and finally obtain

ρD =
ζ(3)
128π

T 2m2a2
B

�3e2(n1n2)3/2Z4 , (27)

where ζ(p) = 1 + 1/2p + 1/3p + . . . is the zeta-function and ζ(3) � 1.2.
The drag resistivity decreases with increasing interlayer separation as
Z−4. It also decreases with increasing electron densities.

The Coulomb drag may occur between 1D electron systems, as well
as between the systems of different dimensionalities (we do not consider
such situations in this book). In the Coulomb drag effect, the electron-
electron interaction manifests itself directly through the measured trans-
port quantity, ρD. For this reason, the measurements of Coulomb drag
are important for investigating the Coulomb interaction in low dimen-
sions.

33. Dynamical Screening
Electron systems show collective behavior because of long-range na-

ture of Coulomb interaction. One of the manifestations of such behavior
is the plasma oscillations (plasmons) discussed in Sec. 11. Another im-
portant issue is the dynamical screening of the Coulomb potential. We
have already seen the necessity of consideration of the static screening in
the previous section, where the screening has removed the divergence of
electron-electron collision integral caused by the divergence of the matrix
element at small momentum transfer. A similar situation takes place for
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the electron-impurity collision integral when the impurity potential is
the Coulomb one; see problem 3.9. Now it is time to take a closer look
at the screening effect. In this section we discuss some useful approaches
for considering the screening in the problems of kinetics.

The issue of dynamical screening appears when we consider a linear
response of a system of interacting electrons to the charge density pertur-
bation (often named as trial charge) with Fourier component δρ(q, ω).
This perturbation causes the induced charge density ∆ρ(q, ω). The
macroscopic electric field E(q, ω) arising in the electron system due to
the perturbation is related to these densities according to the Poisson
equation

iq · E(q, ω) =
4π

ε∞
[δρ(q, ω) + ∆ρ(q, ω)] , (1)

where ε∞ is the dielectric permittivity of the medium without the elec-
trons whose response we study (the relativistic retardation effects are
neglected). Note that in the previous sections of this chapter, where the
dynamical response of electron system was neglected, we simply wrote
ε∞ = ε. If one considers an ionic crystal at ω comparable to or smaller
than the optical phonon frequencies, ε∞ should be replaced by κ(q, ω)
given by Eq. (27.29). Introducing the dielectric permittivity ε(q, ω) as

D(q, ω) = ε∞E(q, ω) + 4π∆P(q, ω) = ε(q, ω)E(q, ω), (2)

and taking into account that the polarization of electron system is related
to the induced density as ∇ · ∆P(r, ω) = −∆ρ(r, ω) or, equivalently,
iq · ∆P(q, ω) = −∆ρ(q, ω), we use Eq. (1) and obtain the following
relations:

iq · E(q, ω) =
4πδρ(q, ω)

ε(q, ω)
,

ε∞
ε(q, ω)

= 1 +
∆ρ(q, ω)
δρ(q, ω)

, (3)

which describe the response to the longitudinal field. A comparison
of Eqs. (1) and (3) shows us that the effective longitudinal electric
field in the system is determined by the Poisson equation containing
“bare” charge perturbation only, while the effects of polarization are
completely included into the dielectric permittivity ε(q, ω). To calculate
the latter, we note that ∆ρ(q, ω) = Spρ̂q∆̂ηω , see problem 3.3, and
search for the perturbation of the density matrix of electron system
following the external density perturbation δρ(q, ω). The Hamiltonian
of this perturbation is written in the form of the last term in Eq. (4.8):

∆̂Hω =
∫

dr
∫

dr′ δρ(r, ω)ρ̂r′

ε∞|r − r′| =
∑
q

4π

ε∞q2 ρ̂−qδρ(q, ω). (4)
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Substituting this Hamiltonian into Eq. (13.4), we use the latter to cal-
culate ∆ρ(q, ω). Then we can write the second equation of Eq. (3)
as

ε∞
ε(q, ω)

= 1 +
4πα(q, ω)

ε∞q2 , (5)

where α(q, ω) is the polarizability of electron system.
The expression of α(q, ω) in terms of the density-density correlation

function is given in problem 3.3:

α(q, ω) =
e2

i�V

∫ 0

−∞
dτeλτ−iωτ Spη̂eq

[
e−iĤτ /�n̂qeiĤτ /�, n̂−q

]
, (6)

where n̂q = ρ̂q/e is the Fourier transform of the operator of electron
density. If Ĥ standing in Eq. (6) is the Hamiltonian of many-electron
system, this equation is exact. Let us calculate α(q, ω) given by Eq.
(6) in the Hartree-Fock approximation, when the Coulomb interaction
in Ĥ is neglected. This approach gives only ∝ e2 terms in 1/ε(q, ω),
because α(q, ω) is already proportional to e2. Since we assume that the
system is translation-invariant, the one-electron eigenstates are plane
waves. In the second quantization representation, the operator n̂q can be
written as n̂q =

∑
σp â+

σp−�qâσp, where â+
σp and âσp are the creation and

annihilation operators for the plane-wave eigenstates with momentum p
and spin σ. In this approximation, the trace in Eq. (6) is equal to∑

σp

ei(εp+�q−εp)τ /�

[
〈〈â+

σpâσp+�qâ+
σp+�qâσp〉〉

− 〈〈â+
σp+�qâσpâ+

σpâσp+�q〉〉
]
, (7)

where the averaging is carried out for the case of non-interacting elec-
trons. As a result, 〈〈â+

σpâσp+�qâ+
σp+�qâσp〉〉 = fp(1 − fp+�q), where

fp is the equilibrium distribution function of electrons. Calculating the
integral over τ , we finally obtain

αHF (q, ω) = e2Π(0)R
ω (q),

Π(0)R
ω (q) =

2
V

∑
p

fp+�q/2 − fp−�q/2

εp+�q/2 − εp−�q/2 − �ω − iλ
, (8)

where the factor of 2 comes from the sum over the spin variable in Eq.
(7). The function Π(0)R

ω (q), which determines the Hartree-Fock polariz-
ability αHF , is called the retarded polarization function of free electrons
or, simply, the polarization function. The full meaning of this definition
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will become clear later. At this point, we note that the word “retarded”
reflects the fact that this function, just like any other generalized suscep-
tibility, does not have any poles in the upper half-plane of the complex
variable ω owing to the causality principle. This property is seen from
Eq. (8) directly. The symmetry property Π(0)R

−ω (−q) = Π(0)R∗
ω (q) is also

obvious from Eq. (8). We point out that the polarization function of
two-dimensional electrons has been introduced in the previous section
by Eq. (32.22). The definition (32.22) is very similar to the one given
by Eq. (8). The only difference is that in the 2D case q and p are the
2D vectors.

At zero temperature, one can reduce Eq. (6) to a simpler form,
because the averaging Spη̂eq . . . is reduced to the averaging 〈. . .〉o =
〈0| . . . |0〉 over the ground state |0〉 of many-electron system. In these
conditions, we apply the basis of the exact excited states |δ〉 and, taking
the integral over time, obtain

α(q, ω) = e2
∑

δ

[
|〈δ|n̂+

q |0〉|2

�ω − Eδ0 + iλ
− |〈δ|n̂q|0〉|2

�ω + Eδ0 + iλ

]
, (9)

where the energy Eδ0 = Eδ−E0 is the difference in the energies of excited
and ground states. To derive Eq. (9), we have used the transformations
〈0|n̂q|δ〉〈δ|n̂−q|0〉 = |〈δ|n̂+

q |0〉|2, according to the symmetry property
n̂+

q = n̂−q following from the Hermiticity of the density operator in the
coordinate representation, n̂+

r = n̂r. Evaluating the expression (9) in the
Hartree-Fock approximation, we obtain the same result as follows from
Eq. (8) in the case of zero temperature, when fp = θ(pF − p) (problem
6.18).

Since Π(0)R
ω (q) is finite at q → 0, the function 1/ε(q, ω) describing the

response of electron system remains divergent at q = 0 in the Hartree-
Fock approximation. To remove this divergence, let us discuss another
way for evaluating the dielectric permittivity, based upon the diagram
technique for interacting electron systems discussed in Appendix E. We
take into account that α(q, ω) =

∫
dre−iq·rα(r, 0|ω) and use the ex-

pression for α(r, r′|ω) given in problem 3.3. The density operators are
expressed through the field operators of electrons as n̂r = Ψ̂+

r Ψ̂r, and
we obtain

Spη̂eq

[
e−iĤτ /�ρ̂re

iĤτ /�, ρ̂r′
]

(10)

= e2Sp η̂eqΨ̂+
r (−τ)Ψ̂r(−τ)Ψ̂+

r′(0)Ψ̂r′(0) − c.c. ,

where Ψ̂r(t) is the field operator in the Heisenberg representation; see
Eq. (D.1). The commutator is transformed by using the Hermiticity
of both η̂eq and n̂r and the possibility for cyclic permutations of the
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operators under the sign of the trace. Employing the definition (E.6) of
two-electron Green’s functions and Eq. (10), we have

α(q, ω) = i�e2
∫

dre−iq·r
∫ ∞

0
dte−λt+iωt (11)

×
[
G(rt, r′0; rt + 0, r′ + 0)|r′=0 − c.c.

]
.

To obtain Eq. (11), one should substitute τ → −t in the equation for
α(r, r′|ω) in problem 3.3 and take into account that Ψ̂+

r (t + 0)Ψ̂r(t)
×Ψ̂+

r′(+0)Ψ̂r′(0) = T̂ Ψ̂r(t)Ψ̂r′(0)Ψ̂+
r′(+0)Ψ̂+

r (t + 0) at t > 0, where T̂
is the operator of chronological ordering; see Eq. (2.7). Equation (11)
is written here and analyzed below for the case of zero temperature.
Nevertheless, it is formally valid at arbitrary temperatures if the many-
electron Green’s functions are defined in such a way that the averaging
is carried out over the equilibrium electron distribution, i.e., 〈. . .〉o is
replaced by 〈〈. . .〉〉 = Spη̂eq . . . . The diagram technique developed in
Appendix E, of course, is valid only at T = 0. In Chapter 8 we involve
a more sophisticated diagram technique which takes care of the case of
finite temperatures.

Equation (11) can be rewritten as

α(q, ω) = e2
∫ ∞

−∞
dω′

2πi

K(q, ω′) + K∗(−q,−ω′)
ω′ − ω − iλ

, (12)

K(q, ω) = i�

∫
dr
∫ ∞

−∞
dteiωt−iq·rG(rt, r′0; rt + 0, r′ + 0)|r′=0 ,

where K(q, ω) is the Fourier transform of the two-particle Green’s func-
tion multiplied by i�. To calculate G(rt, r′0; rt + 0, r′ + 0), we use Eq.
(E.28):

G(rt, r′0; rt + 0, r′ + 0) = G(rt, rt + 0)G(r′0, r′ + 0) − G(rt, r′0)G(r′0, rt)

+
∫

dr1

∫
dr2

∫
dr′

1

∫
dr′

2

∫
dt1

∫
dt2

∫
dt′1

∫
dt′2 (13)

×G(rt, r1t1)G(r′0, r2t2)V(r1t1, r2t2; r′
1t

′
1, r

′
2t

′
2)G(r′

1t
′
1, rt)G(r′

2t
′
2, r

′0),

where the integral term is expressed through the scattering amplitude.
The latter is expanded in series of the screened interaction potential
V (r1t1, r2t2) defined by Eqs. (E.24) and (E.25):

V(r1t1, r2t2; r′
1t

′
1, r

′
2t

′
2) = i�V (r1t1, r2t2)[δ(r1 − r′

1)δ(r2 − r′
2) (14)

×δ(t1 − t′1)δ(t2 − t′2) − δ(r1 − r′
2)δ(r2 − r′

1)δ(t1 − t′2)δ(t2 − t′1)] + . . . ,
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the dots denote higher-order terms. Substituting this expansion into Eq.
(13), we obtain the corresponding expansion of the two-electron Green’s
function. In the language of diagrams, the expansion of i2G(rt, r′0; rt +
0, r′ + 0) is represented as

rt

r′0

rt+0

r′+0

=
rt r′0

+
rt r′0

+ � � � � � �
rt r′0r1t1

r′
1t′1

+ ����
��

+ . . . .
rt r′0

r1t1

r′
1t′1

(15)

The analytical expression of this equation can be written according to
the diagram rules described in Appendix E. The first term on the right-
hand side of Eq. (15), containing two separated, self-closed loops, is
proportional to the product of electron densities. It is real and does
not contribute into Eq. (11). The second and the fourth terms are the
first and the second diagrams in the expansion (E.26) of the polariza-
tion function i�−1Π(rt, r′0). The third term represents two “polariza-
tion loops” connected by a bold broken line, the latter corresponds to
−i�V (r1t1, r′

1t
′
1). The diagrams denoted by the dots “. . .” contain two

or more bold broken lines. Some of these diagrams describe various cor-
rections to i�−1Π(rt, r′0). Such diagrams can be constructed if we add
more broken lines to the loop in the fourth diagram or add more lines
connecting two loops to the third diagram on the right-hand side of Eq.
(15). The remaining diagrams describe various corrections to the third
diagram on the right-hand side of Eq. (15) (this particular diagram is
reducible and, by definition, does not enter the polarization function).
Such diagrams, for example, contain the broken lines connecting the
points within each of the two loops. Taking all the diagrams discussed
above into account, one should replace the polarization loops in the sec-
ond and third terms on the right-hand side of Eq. (15) by the exact
polarization functions (the second and the fourth terms are unified in
this way). Therefore, the analytical expression of Eq. (15) is written as

G(rt, r′0; rt + 0, r′ + 0) = −n2

�2 − i

�
Π(rt, r′0) − i

�

∫
dr1

∫
dr′

1

×
∫

dt1

∫
dt′1Π(rt, r1t1)V (r1t1, r′

1t
′
1)Π(r′

1t
′
1, r

′0). (16)

This expression is exact as far as the polarization function is assumed
to be exact. Carrying out the Fourier transformations of G(rt, r′0; rt +
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0, r′ + 0) in both time and space, we find the analytical expression of
K(q, ω) corresponding to Eq. (16):

K(q, ω) = −(i/�)n2δ(ω)δ(q) + Πω(q)[1 + Vω(q)Πω(q)]. (17)

To express Vω(q) through the polarization function, we use Eq. (E.32)
in the form Vω(q) = vq [1 − vqΠω(q)]−1, where vq = 4πe2/ε∞q2 for the
case of Coulomb interaction. Now we obtain

K(q, ω) + K∗(−q,−ω) =
Πω(q)

1 − vqΠω(q)
+

Π∗−ω(−q)
1 − vqΠ∗−ω(−q)

. (18)

According to this equation, the polarizability given by Eq. (12) is ex-
pressed through the exact polarization function. Note that the term

Πω(q)
1 − vqΠω(q)

= Πω(q) + vq [Πω(q)]2 + v2
q [Πω(q)]3 + . . . (19)

is represented as a sum of infinite series of reducible diagrams contain-
ing chains of the exact polarization functions (denoted in Appendix E by
circles) connected by the “bare” interaction lines. Owing to the symme-
try property Πω(q) = Π−ω(−q), the expression (18) is real. Therefore,
using Eq. (18), we rewrite Eq. (12) as

α(q, ω) =
∫ ∞

−∞
dω′

2πi

e2

ω′ − ω − iλ

[
ΠR

ω′(q)
1 − vqΠR

ω′(q)
+

ΠA
ω′(q)

1 − vqΠA
ω′(q)

]
, (20)

where ΠA
ω(q) = ΠR ∗

ω (q). The retarded polarization function ΠR
ω(q) is

defined in such a way that its real part and absolute value coincide with
the real part and absolute value of Πω(q), and ΠR

ω(q) is analytical in
the upper half-plane of the complex variable ω. Each term in the square
brackets of Eq. (20) can be expanded according to Eq. (19). Thus, the
function ΠR

ω′(q)/[1 − vqΠR
ω′(q)] is analytical in the upper half-plane of

the complex variable ω′, while ΠA
ω′(q)/[1 − vqΠA

ω′(q)] is analytical in the
lower half-plane of ω′. The representation of the expression under the
integral over ω′ through the sum of retarded and advanced functions is
very convenient. Indeed, when this integral is taken, only the retarded
term, with ω′ = ω, remains. Having calculated α(q, ω), we substitute it
into Eq. (5) and find the main result of this section:

α(q, ω) =
e2ΠR

ω(q)
1 − vqΠR

ω(q)
, ε(q, ω) = ε∞ − 4πe2

q2 ΠR
ω(q) . (21)

These expressions describe the dynamical response of electrons. One
can see that 1/ε(q, ω) is no longer divergent at small q, because the
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screening effects remove this divergence. The expressions (21) are exact
if the polarization function Πω(q) is calculated by taking into account
all relevant diagrams.

Let us consider an approximation when Πω(q) is evaluated in the
lowest order in the interaction, i.e., i�−1Πω(q) is given by the second
diagram of the expansion (15), where the exact one-particle Green’s func-
tions are replaced by the Green’s functions of non-interacting electrons.
This approach is called the polarization approximation, or, more often,
the random phase approximation (RPA). The corresponding analytical
expression is

Π(0)
ω (q) =

2
V

∑
p

∫
dε

2πi
gε+�ω/2(p + �q/2)gε−�ω/2(p − �q/2). (22)

The factor of 2 comes from the spin summation implicitly assumed
above. The one-electron Green’s functions gε(p) are given by Eq. (E.33).
Substituting them into Eq. (22), we calculate the integral over energy
and, after some transformations, obtain

Π(0)
ω (q) =

2
V

∑
p

fp+�q/2 − fp−�q/2

εp+�q/2 − εp−�q/2 − �ω − iλ sgnω
. (23)

We note that we consider the case of T = 0 so that the distribution
function is fp = θ(pF − p). The fact that the analytical properties of
Πω(q) at T = 0 are determined by the sign of the frequency ω is general
and is not related to the approximation used in the derivation of Eq. (23)
(problem 6.19). A direct comparison of Π(0)

ω (q) of Eq. (23) to Π(0)R
ω (q)

of Eq. (8) shows us that the real parts and absolute values of these
functions coincide, and the difference is only in the analytical properties.
Therefore, Π(0)R

ω (q) is in the same relationship to Π(0)
ω (q) as ΠR

ω(q) from
Eq. (21) to Πω(q). In summary, using the RPA, we replace ΠR

ω(q)
in Eq. (21) by Π(0)R

ω (q) given by Eq. (8). Comparing αRPA obtained
in this way to αHF given by Eq. (8), we find that they differ by the
factor 1−vqΠ

(0)R
ω (q) resulting from the screening effects. In the language

of diagrams, the Hartree-Fock approximation corresponds just to the
second diagram on the right-hand side of Eq. (15), where the exact one-
particle Green’s functions are replaced by the Green’s functions of non-
interacting electrons. Both Hartree-Fock and RPA polarizabilities are
determined by the retarded free-electron polarization function Π(0)R

ω (q)
only. In view of its importance, let us present the expression of Π(0)R

ω (q)
for the electrons with isotropic parabolic dispersion εp = p2/2m. This
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expression is known as the Lindhard formula:

ReΠ(0)R
ω (q) = − mkF

2π2�2

[
1 +

k2
F − (mω

�q + q
2)2

2kF q
ln

(
kF + mω

�q + q
2

kF − mω
�q − q

2

)

+
k2

F − (mω
�q − q

2)2

2kF q
ln

(
kF − mω

�q + q
2

kF + mω
�q − q

2

)]
, (24)

ImΠ(0)R
ω (q) =

⎧⎪⎨⎪⎩
−m2ω/2π�

3q , ω < Ω(−)
q

−
(

mk2
F

4π�2q

) [
1 − (ω−�q2/2m)2

q2v2
F

]
, Ω(−)

q < ω < Ω(+)
q

0 , ω > Ω(+)
q

,

where kF = pF /� and Ω(±)
q = vF q ±�q2/2m. If vqΠ

(0)R
ω (q) � 1, the RPA

and Hartree-Fock polarizabilities coincide. As follows from Eq. (24),
this limit is realized with increasing q and ω. This corresponds to the
situation when the dielectric permittivity is no longer determined by the
electron system and goes to ε∞.

In the static limit ω → 0, the imaginary part of Π(0)R goes to zero,
while the real part is equal to −mkF /π2

�
2 at q2 � 12k2

F . Substituting
this result into Eq. (21), we find the static dielectric permittivity ε(q)
and the static Fourier component of the screened interaction potential
energy, V (q) = ε∞vq/ε(q), in the RPA:

ε(q) = ε∞
(

1 +
q2

TF

q2

)
, V (q) =

4πe2

ε∞(q2 + q2
TF )

, qTF =

√
4e2mkF

π�2ε∞
. (25)

The length q−1
TF is called the Thomas-Fermi screening length. If ω � vF q,

the imaginary part of Π(0)R is again zero, while the real part gives us

ε(q, ω) = ε∞ − 4πe2n

mω2 = ε∞
(

1 −
ω2

p

ω2

)
,

Vω(q) =
4πe2

ε∞q2(1 − ω2
p/ω2)

. (26)

One can see that ε(q, ω) goes to zero and the Fourier component of
the interaction potential energy diverges at the plasma frequency ωp =√

4πe2n/ε∞m. This is a manifestation of collective effects in the re-
sponse of electron system. The plasmon spectrum ω(q) = ωp at q → 0
is obtained as a solution of the dispersion relation ε(q, ω) = 0 which,
according to Eq. (17.1), follows from Eq. (11.27) in the isotropic case.
In the ionic crystals, where ε∞ should be replaced by the frequency-
dependent dielectric permittivity of the crystal lattice, κ(q, ω), the plas-
mons are transformed to coupled plasmon-phonon modes (problem 6.20).

The plasma waves become damped when the wave number q exceeds
a critical value determined from the condition ω(q) = Ω(+)

q , i.e., when
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the imaginary part of ε(q, ω) appears. This effect, known from the the-
ory of plasma as Landau damping, is not related to the collision-induced
damping of quasiparticles considered in the previous chapters. It can be
viewed as a decay of plasmons into single-particle excitations, the elec-
tron above the Fermi surface and the “hole” below the Fermi surface.
From the classical point of view (valid in the region q � kF ), the dissi-
pation of the energy of the longitudinal wave Eeiq·r−iωt occurs because
of the electrons moving in phase with the wave. The velocity vp of these
electrons is determined by the relation q · vp = ω. We stress that the
existence of non-zero imaginary part of ε(q, ω) in the absence of any
interaction, means, according to Eq. (17.1), the existence of the real
part of frequency-dependent conductivity which is not related to any
scattering. The conductivity describing the response to the longitudinal
perturbation (E‖q) is written in the limit q � kF as

Re σl(q, ω) =
(emω)2

2π�3q3 θ(vF q − ω). (27)

The presence of the theta-function reflects the fact that the resonant
condition q · vp = ω can be fulfilled only at vF q > ω. Equation (27)
can be as well derived from Eq. (13.14) or from the kinetic equation
(9.34), where the collision integral is neglected. Besides, these equations
allow us to find the response to the transverse perturbation, with E ⊥ q
(problem 6.21).

How good is the RPA? To obtain an answer on this question, one
should consider the diagrams we have neglected and find the conditions
when this neglect is justified. Let us consider, for example, the third
and the fourth diagrams on the right-hand side of Eq. (15) and replace
the exact Green’s functions in these diagrams by the Green’s functions
of non-interacting electrons. Since both these diagrams are of the first
order in the screened interaction V , they can be compared to each other.
In the RPA, we take into account the third diagram, whose contribution
to K(q, ω) is Vω(q)[Π(0)

ω (q)]2, and neglect the fourth one. The latter
diagram results in the following contribution to K(q, ω):

− 2
V 2

∑
pp′

∫
dε

2πi

∫
dε′

2πi
V(ε−ε′)/�

[
(p − p′)/�

]
gε+�ω/2(p + �q/2)

×gε−�ω/2(p − �q/2)gε′+�ω/2(p
′ + �q/2)gε′−�ω/2(p

′ − �q/2). (28)

We evaluate it below in the static limit, approximating also Vω′(q′)
standing in Eq. (28) by its static value V (q′) at small q′, given by Eq.
(25). The integrals over ε and ε′ in this approximation are calculated
independently and the expression (28) becomes
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− 2
V 2

∑
pp′

4πe2

ε∞[(p − p′)2/�2 + q2
TF ]

×
fp+�q/2 − fp−�q/2

εp+�q/2 − εp−�q/2

fp′+�q/2 − fp′−�q/2

εp′+�q/2 − εp′−�q/2
. (29)

The double sum is easily calculated at small q, when [fp+�q/2 −fp−�q/2]
/[εp+�q/2 − εp−�q/2] � −δ(εp − εF ). We obtain the contribution

−
(

mkF

π2�2

)2 πe2

2ε∞k2
F

ln
(

1 +
4k2

F

q2
TF

)
. (30)

We need to compare this contribution to V (q)[Π(0)
ω=0(q)]2 estimated at

small q. The absolute value of the ratio of these contributions is

q2 + q2
TF

8k2
F

ln
(

1 +
4k2

F

q2
TF

)
. (31)

If the wave numbers q are comparable to or smaller than qTF , this ratio is
small at q2

TF � k2
F . The other diagrams we have neglected bring similar

small factors. If, however, q2
TF ∼ k2

F , the ratio (31) is not small, without
regard to q. Therefore, the validity of RPA at q � kF is determined by
the relation q2

TF � k2
F , which is equivalent to aBkF � 1. In other words,

the mean distance between the electrons should be small in comparison
to the screening length. It is possible to have aBkF > 1 both in metals
and in doped semiconductors, but the strong inequality aBkF � 1 is
difficult to achieve. Therefore, the RPA has a limited applicability for
quantitative description of electron plasma in solids. In spite of this, it
is widely used for describing the dynamical screening, because it reflects
essential features of electron response.

To complete this section, we briefly discuss how the dynamical screen-
ing modifies the scattering matrix element V (pp′|p1p′

1) in the electron-
electron collision integral Jee(f |p) given by Eq. (31.21). In contrast to
the “bare” matrix element defined by Eq. (31.22), the “screened” matrix
element is written as

V (pp′|p1p′
1) � 1

V 2

2|v|p−p1|/�|2

|ε[(p − p1)/�, (εp − εp1)/�]/ε∞|2
. (32)

Indeed, since �ω = εp − εp1 and �q = p − p1 are the energy and mo-
mentum transferred in the collision, one may expect that the effective
interaction potential vq = v|p−p1|/� should be replaced by ε∞vq/ε(q, ω).
Of course, this simple physical consideration is not a justification of Eq.
(32). Moreover, it tells us nothing about how to “screen” the exchange
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contribution which stands in Eq. (31.22) but omitted in Eq. (32). A
rigorous derivation of the collision integral with the matrix element (32)
is done in problem 8.10. It shows us that Eq. (32) is justified un-
der conditions when the RPA is valid, which means that the dielectric
permittivity standing in Eq. (32) should be taken in this particular ap-
proximation. In the RPA, the scattering matrix element (32) is largest
at q2 < q2

TF � k2
F and decreases as q exceeds qTF . This means that the

kinetics of interacting electrons in a single band is mostly determined
by the small-angle electron-electron scattering, when the characteristic
transferred momenta are small in comparison to the Fermi momentum.
In these conditions, the exchange terms, indeed, can be neglected, and
Eq. (32) is a good approximation. On the other hand, the electron-
electron collisions involving interband transitions (Auger processes, see
Sec. 66) may occur only with large momentum and energy transfer,
due to conservation of the energy and momentum. In this case, the fac-
tor vqΠω(q) is small, and one should use the collision integral (31.19)
with the “bare” matrix element (31.20) including both direct and ex-
change terms. We also point out that the effect of dynamical screening
on the electron-electron collision integral can be described by the theory
of electron density fluctuations; see Sec. 69.

Problems
6.1. Find the Coulomb matrix elements Φγ1γ2γ3γ4 for two-dimensional

and one-dimensional electrons.
Solution: The wave functions of the 2D electrons in the subband j are written

as ψ(j)
z L−1 exp(ip · r/�), where p and r are 2D vectors. In a similar way, for 1D

electrons we have ψ(j)
y,zL−1/2 exp(ipx/�). Substituting these functions into Eq. (28.3),

we calculate the following integrals for the 2D and 1D cases, respectively:∫
dqz

2π

eiqz(z−z′)

q2
z + q2

⊥
=

e−q⊥|z−z′|

2q⊥
,

where q⊥ =
√

q2
x + q2

y, and∫ ∫
dqzdqy

(2π)2
eiqz(z−z′)+iqy(y−y′)

q2
z + q2

y + q2
x

= (2π)−1K0

(
qx

√
(z − z′)2 + (y − y′)2

)
.

Here K0 is the modified Bessel function of the second kind. The matrix elements are

Φ(2D)
j1j2j3j4

(p1,p2,p3,p4) =
2πe2�

ε|p1 − p4|

∫ ∫
dzdz′

×e−|p1−p4||z−z′|/�ψ(j4)
z ψ(j1)∗

z ψ
(j3)
z′ ψ

(j2)∗
z′ δp1+p2,p3+p4 ,

Φ(1D)
j1j2j3j4

(p1, p2, p3, p4) =
2e2

ε

∫ ∫
dzdz′

∫ ∫
dydy′

×K0

(
|p1 − p4|

√
(y − y′)2 + (z − z′)2/�

)
ψ(j4)

y,z ψ(j1)∗
y,z ψ

(j3)
y′,z′ψ

(j2)∗
y′,z′ δp1+p2,p3+p4 .
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6.2. Prove that the ambiguity in the definition of Φ (Eq. (28.3) versus
Eq. (28.4)) does not manifest itself in the quantum kinetic equation with
the Hamiltonian Ĥee given by Eq. (28.2).

Hint: Prove, by a direct calculation, that the commutator of Ĥee with any combi-
nation of Fermi operators is the same, whether we use Eq. (28.3) or Eq. (28.4).

6.3. Calculate ∆εp given by Eqs. (28.22) and (28.25) for 3D and 2D
electrons, respectively.

Solution: Calculating the integrals over the angles between p and p1, we obtain

∆εp =
e2

π�εp

∫ pF

0
dp1p1 ln

∣∣∣∣p1 + p

p1 − p

∣∣∣∣ , ∆ε(2D)
p =

e2

π�ε

∫ pF

0
dp1

2p1

p1 + p
K

(
2
√

p1p

p1 + p

)
,

where K(x) is the full elliptic integral of the first kind. Both ∆εp and ∆ε(2D)
p are

functions of p/pF . The integral over p1 in the expression for ∆εp can be taken
analytically. The result is

∆εp =
e2pF

π�ε

[
1 +

1 − (p/pF )2

2(p/pF )
ln
∣∣∣∣1 + p/pF

1 − p/pF

∣∣∣∣] .

Note that ∂∆εp/∂p diverges logarithmically at p → pF .

6.4. Write the complex frequency-dependent conductivity of electrons
in quantum wells and examine its behavior at ω → ∞ and ω → 0.

Solution: Substituting the solution of Eq. (29.2) in the exact eigenstate repre-
sentation into Eq. (29.1), we obtain the conductivity σω = Iω/E in the following
form:

σω = i
e2n

mω
+ i

e2

ωL2

∑
δδ′

|vz
δδ′ |2(fδ − fδ′)

εδ − εδ′ − �ω − iλ
,

where δ numbers the exact eigenstates of electrons (the spin number σ is included in δ)
and vz

δδ′ is the matrix element of z-component of the velocity operator. The equation
above can also be obtained from the Kubo formula. In the collisionless approximation,
|δ〉 = |jσp〉, where j is the subband number and p is the 2D momentum. Therefore,
the matrix element is expressed as vz

δδ′ = δσσ′δpp′〈j|p̂z/m|j′〉. The conductivity takes
the following form:

σω = i
e2n

mω
− i

2e2�2

m2ωL2

∑
jj′

∑
p

∣∣∣∣∫ dzψ(j′)
z

∂

∂z
ψ(j)

z

∣∣∣∣2 fjp − fj′p

εj′ − εj − �ω − iλ

� i
e2n

mω

⎡⎣1 − �2

m

∑
j′

∣∣∣∣∫ dzψ(j′)
z

∂

∂z
ψ(1)

z

∣∣∣∣2 1
εj′ − ε1 − �ω − iλ

⎤⎦ ,

where εj is the energy of size quantization and ψ(j)
z is the corresponding wave function

satisfying the Schroedinger equation (p̂2
z/2m +Uz)ψ(j)

z = εjψ
(j)
z with the confinement

potential Uz. The second equation is written under a simplifying assumption that
only the lowest (j = 1) 2D subband is occupied by electrons and the terms containing
εj′ − ε1 + �ω in the denominator are neglected (resonance approximation). Now,
let us assume that j′ belongs to continuous spectrum above the well so that

∑
j′ is
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transformed to the integral over continuous wave number k and εj′ = �2k2/2m. At
large energies, k  π/d, where d is the well width, the second term in the square
brackets is transformed to

−�2

m

∫ ∞

0

dk

π

∣∣∣∣∫ dzeikz ∂

∂z
ψ(1)

z

∣∣∣∣2 1
�2k2/2m − �ω − iλ

.

The squared matrix element in this expression is roughly estimated as (2π2/d)[1 −
cos(kd)]/(kd)2. Since the main contribution to the integral over k comes from the re-
gion �2k2/2m � �ω, this expression decreases with increasing ω and can be neglected.
Therefore, the conductivity at large ω is given by σω � ie2n/mω.

To consider the low-frequency region, we use the following chain of identities:∑
δδ′

|vz
δδ′ |2(fδ − fδ′)

εδ − εδ′
=
∑
δδ′

fδ

(
vz

δ′δv
z
δδ′

εδ − εδ′
− vz

δδ′vz
δ′δ

εδ′ − εδ

)

=
i

�

∑
δδ′

fδ(zδδ′vz
δ′δ − zδ′δv

z
δδ′) =

i

�m

∑
δ

fδ 〈δ|[z, v̂z]|δ〉 = −L2 n

m
.

Therefore,

σω = i
e2

ωL2

∑
δδ′

|vz
δδ′ |2(fδ − fδ′)

(
1

εδ − εδ′ − �ω − iλ
− 1

εδ − εδ′

)

= i
�e2

L2

∑
δδ′

|vz
δδ′ |2(fδ − fδ′)

(εδ − εδ′ − �ω − iλ)(εδ − εδ′)
.

Since |vz
δδ′ | = |vz

δ′δ|, the property limω→0 σω = 0 can be checked by permutation of
the indices. In the intermediate region of frequencies, the frequency dispersion of the
conductivity appears to be rather complicated.

6.5. Obtain Eq. (29.20) from the Maxwell equations.
Solution: The Maxwell equations lead to the wave equation [∇ × [∇ × E(r, ω)]] −

(ω/c)2D(r, ω) = 0, where the vector of electrostatic induction is written as Dα(r, ω) =
εEα(r, ω) + i(4π/ω)

∑
β

∫
dr′σαβ(r, r′|ω)Eβ(r′, ω) = εEα(r, ω) + i(4π/ω)Iα(r, ω). We

substitute this expression into the wave equation and write the latter for z- compo-
nents of the field and current density, Ez(r, ω) ≡ Eωz and Iz(r, ω) ≡ Iωz, when it is
reduced to Eq. (29.20).

6.6. Calculate L1111, L1212, L1122, and L2222 by using Eq. (29.14)
with the wave functions of hard-wall confinement.

Results: L1111 = d(1/3−5/4π2), L1122 = d(1/3−5/8π2), L2222 = d(1/3−5/16π2),
L1212 = −10d/9π2.

6.7. Write the kinetic energy of an electron-hole pair by using the
coordinates defined by Eq. (30.16).

Hint: Take into account that the derivatives are expressed as

∂

∂r
=

mc

mc + mv

∂

∂R
+

∂

∂∆r
,

∂

∂r′ =
mv

mc + mv

∂

∂R
− ∂

∂∆r
.
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6.8. Calculate the Sommerfeld factor for the states of continuous
spectrum.

Solution: The solutions of the Schroedinger equation (30.20) for positive εν can
be represented as combinations of plane waves and spherical waves coming out from
the origin of the coordinate system. The states are characterized by the wave vector
k and have energies εk = �2k2/2µ∗. The normalized wave functions are

ψ(k)
r = V −1/2eπ/2kaB Γ(1 − i/kaB)eik·rΦ(i/kaB, 1; i(kr − k · r)),

where aB is the Bohr radius of the exciton, Φ is the confluent hypergeometric function,
and Γ is the Gamma function. Taking into account that Γ(1 − i/kaB)Γ(1 + i/kaB) =
(π/kaB)/ sinh(π/kaB) and |Φ(i/kaB, 1; 0)|2 = 1, we find the Sommerfeld factor

|ψ(k)
r=0|2 =

1
V

(2π/kaB)
1 − exp(−2π/kaB)

.

This function is close to 1/V at large energies and increases as 1/
√

εk at small energies.
This increase leads to enhanced absorption near the edge of interband transitions.

6.9. Consider the broadening of exciton absorption line in the poten-
tials smooth on the scale of exciton radius.

Solution: If Uc,v(r) �= 0, we have an additional term [Uc(R+ ∆rmv/M ) − Uv(R−
∆rmc/M )]Gεω (R, ∆r) on the left-hand side of Eq. (30.17). If the potentials are
smooth on the scale of exciton radius, the expression in the square brackets is ap-
proximated as ∆U (R) + ∆r[mv∂Uc(R)/∂R + mc∂Uv(R)/∂R]/M , where ∆U (R) =
Uc(R)−Uv(R). Let us assume that Uc(R) �= Uv(R) and neglect the derivatives. It is
convenient to introduce the Green’s function Gεω (R,R′|∆r) satisfying the following
equation: [

εω − ĤR − Ĥ∆r + iλ
]
Gεω (R,R′|∆r) = δ(R − R′)δ(∆r),

where λ → +0 and

ĤR = − �2

2M

∂2

∂R2 + ∆U (R), Ĥ∆r = − �2

2µ∗
∂2

∂∆r2 − v|∆r|,

so that Gεω (R, ∆r) =
∫

dR′Gεω (R,R′|∆r). The solutions of this equation are

Gεω (R,R′|∆r) =
∑
δν

χ
(δ)
R χ

(δ)∗
R′ ψ

(ν)
∆rψ

(ν)∗
0

εω − εδ − εν + i0
,

where χ
(δ)
R and ψ

(δ)
∆r are the eigenfunctions of the Hamiltonians ĤR and Ĥ∆r, respec-

tively, and εδ and εν are the corresponding eigenvalues. Introducing the retarded
Green’s function of the Schroedinger equation with the Hamiltonian ĤR as

GR
E(R,R′) =

∑
δ

χ
(δ)
R χ

(δ)∗
R′

E − εδ + iλ
,

we express the spectral dependence of the absorption as

Ψ(εω) = − 1
V

∑
ν

|ψ(ν)
∆r=0|

2
∫

dR
∫

dR′ImGR
εω−εν

(R,R′).
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The function GR
E(R,R′) is expressed through the path integral in the way de-

scribed in Sec. 16. The double integral V −1 ∫ dR
∫

dR′GR
E(R,R′) is equivalent to∫

d∆RGR
E(|∆R|), where GR

E(|∆R|) is the Green’s function averaged over the ran-
dom potential distribution. In the case of a Gaussian potential ∆U (R), the averaged
Green’s function depends on w(|R − R′|) = 〈〈∆U (R)∆U (R′)〉〉. If ∆U (R) is classi-
cally smooth, the correlation function w(|R−R′|) is replaced by w(0) and the Green’s
function is found exactly, see Sec. 16:

GR
E(|∆R|) = − i

�

∫ ∞

0
dteiEt/�

(
M

2πi�t

)3/2

exp
(

iM |∆R|2
2�t

− w(0)t2

�2

)
.

Using this equation, we obtain

Ψ(εω) =
√

π

2w(0)

∑
ν

|ψ(ν)
∆r=0|

2 exp
[
− (εν − εω)2

2w(0)

]
,

instead of Eq. (30.21). Each exciton line is broadened, the sharp δ-peaks become
Gaussian peaks.

6.10. Find the energy spectrum of 2D excitons and the Sommerfeld
factor for the first exciton absorption peak.

Solution: Expressing the 2D coordinate vector x = (x, y) in the cylindrical coordi-
nates ρ and ϕ, we search for the 2D exciton wave function ψ(ν)

x in the form ψm(ρ)eimϕ,
where m is an integer. The Schroedinger equation (30.20) is then rewritten as an
equation for ψm(ρ):[

− �2

2µ∗

(
d2

dρ2 +
1
ρ

d

dρ
− m2

ρ2

)
− e2

ερ
− εν

]
ψm(ρ) = 0.

Considering the confined states (εν < 0), we substitute ψm(ρ) = ρ|m|e−βρχ(ρ), where
β =

√−2µ∗εν/�, and transform this equation to

ρd2χ/dρ2 + (2|m| + 1 − 2βρ)dχ/dρ − 2βαχ = 0, α = |m| + 1/2 − µ∗e2/�
2βε,

whose solutions are confluent hypergeometric functions, χ(ρ) ∝ Φ(α, 2m + 1; 2βρ),
and α must be either zero or negative integer, α = −l. Therefore, the spectrum is
given by εν = −εB/(l + |m| + 1/2)2, where εB = µ∗e4/2�2ε2 is the Bohr energy of
exciton. The energy of the ground state (l = m = 0) is 4εB, which is four times
greater than the ground state energy of 3D exciton. The corresponding normalized
wave function is

√
8/πa2

Be−2ρ/aB so that the Sommerfeld factor is equal to 8/πa2
B,

where aB = �2ε/µ∗e2.

6.11. Find the energy spectrum of 1D excitons. Prove that the energy
of the ground state is infinite.

Solution: Searching for confined states, we introduce the dimensionless energy
ε̃ = εν/εB and coordinate x̃ = 2x

√
|ε̃|/aB. With these variables, the Schroedinger

equation (30.20) for 1D exciton is rewritten as

d2ψ(ν)
x /dx̃2 + |ε̃|−1/2|x̃|−1ψ(ν)

x − ψ(ν)
x /4 = 0.
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Its solutions are either even (symmetric in x) or odd (antisymmetric), and we search
for them in the forms e−|x̃|/2χe(x̃) and x̃e−|x̃|/2χo(x̃), respectively. It is easy to
find (see the previous problem) that χe(x̃) ∝ Φ(−1/

√
|ε̃e|, 0; x̃) with ε̃e = −1/l2,

l = 0, 1, 2, ... and χo(x̃) ∝ Φ(1 − 1/
√

|ε̃o|, 2; x̃) with ε̃o = −1/(l + 1)2, l = 0, 1, 2, ... .
The energy of the ground state (the even state with l = 0) is infinite.

6.12. Check that the first and the third terms on the right-hand side
of Eq. (28.10) are equal, respectively, to the second and the fourth ones.

Hint: Use the symmetry properties of Φγ1γ2γ3γ4 discussed in Sec. 28.

6.13. Prove the operator identities (31.13) and (31.14).
Hint: It is convenient to write the expressions of the traces through the matrix

elements of the operators.

6.14. Check the Hermiticity of the operator (31.18).
Hint: Use the identity (ÂB̂)+ = B̂+Â+, the Hermiticity of ρ̂t1 , and the possibility

to change the signs of q and q1 under the sum in Eq. (31.18).

6.15. Derive the expression for the drag conductivity tensor (32.13).
Hints: After multiplying Eq. (32.9) by 2epτj/m and summing it over p, make the

substitutions p → p + �q/2 and p′ → p′ − �q/2. Show that the factor

δ(εjp+�q/2 + εj′p′−�q/2 − εjp−�q/2 − εj′p′+�q/2)

×f (eq)
jp+�q/2f

(eq)
j′p′−�q/2(1 − f (eq)

jp−�q/2)(1 − f (eq)
j′p′+�q/2)

under the sum
∑

p′q is symmetric in q.

6.16. Calculate the low-frequency limit of ImΠj(q, ω) at �q � pFj .
Solution: The imaginary part of the expression (32.22) contains the δ-function

δ(εjp − εjp−�q − �ω) under the integral. Expanding the distribution function f (eq)
jp−�q

in series of small �ω, we obtain

ImΠj(q, ω) =
ω

�

∫ ∞

0
pdp

∂f (eq)
jp

∂εjp

∫ 2π

0

dϕ

2π
δ

(
�pq

m
cos ϕ − �2q2

2m

)
� − m2ω

�2pFjq

∫ 2π

0

dϕ

2π
δ(cos ϕ − �q/2pFj),

where ϕ = p̂q. The second equation corresponds to the case of strongly degenerate
electrons. Integrating over the angle ϕ at �q � pFj , we obtain Eq. (32.24).

6.17. Derive the screened matrix element (32.26).
Solution: Let Uqz be the Fourier component of the potential energy created by a

trial unit charge at z0, and ∆njq is the electron density perturbation created in the
layer j by this charge. The Poisson equation for the double-layer system is[

d2

dz2 − q2
]

Uqz = −4πe2

ε

∑
j=1,2

∆njq|ψ(j)
z |2 − 4πe2

ε
δ(z − z0).
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Since the density of states ρ2D = m/π�2 is constant, one has simply

∆njq = −ρ2DUjq, Ujq =
∫

dzUqz|ψ(j)
z |2.

For simplicity purpose, we assume that the layers are infinitely narrow so that |ψ(j)
z |2

is approximated as δ(z − zj), where zj are the centers of the layers and |z1 − z2| = Z .
The solution of the Poisson equation with δ-like right-hand side is known, and we
obtain a set of two coupled equations for U1q and U2q:

(1 + 2/aBq)U1q + (2/aBq)e−qZU2q = 2πe2/qε ,

(1 + 2/aBq)U2q + (2/aBq)e−qZU1q = (2πe2/qε)e−qZ ,

where aB is the Bohr radius. We have assumed that the trial charge is located in the
layer 1, z0 = z1. This substitution identifies v(12)

q with U2q. Solving the system of
coupled equations, we obtain Eq. (32.26).

6.18. Calculate the polarizability (33.9) in the Hartree-Fock approx-
imation.

Solution: If the interaction is neglected, the ground and excited states of many-
electron system are antisymmetric products of the plane-wave states |p〉. The operator
n̂+
q , when acting on the ground state, takes an electron in the state with momentum

p inside the Fermi surface and places it in the state with momentum p + �q outside
the Fermi surface. For such transitions, the absolute value of the matrix element
〈δ|δn̂+

q |0〉 is equal to unity. The energy of this transition is Eδ0 = εp+�q − εp. If
the transitions occur outside or inside the Fermi surface, the matrix element is zero,
according to the Pauli principle. Therefore, the first term in the expression (33.9) is
reduced to ∑

p

θ(pF − p)θ(|p + �q| − pF )
�ω − (εp+�q − εp) + iλ

,

where one can shift the momentum according to p → p − �q/2. The second term is
transformed in a similar way. Collecting both these terms, we obtain the polarizabil-
ity in the form of Eq. (33.8), where θ(pF − |p ± �q/2|) stand instead of fp±�q/2.

6.19. Prove that the analytical properties of Πω(q) at T = 0 are
determined by the sign of the frequency ω.

Solution: Let us express the polarization function by using the one-electron Green’s
functions in the exact eigenstate representation described by the wave functions
〈r|δ〉 = ψ(δ)

r and corresponding energies εδ. The exact polarization function in the
energy-coordinate representation is written as

Πω(r, r′) =
∫

dE

2πi
GE+�ω(r, r′)GE(r′, r),

where the Green’s function is expressed through the coordinate-dependent wave func-
tions as in problem 3.10:

GE(r, r′) =
∑

δ

ψ(δ)
r ψ(δ)

r′
∗

E − εδ + iλ sgn(εδ − εF )
.
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Calculating the integrals over E, we obtain

Πω(r, r′) =
∑
δδ′

ψ(δ)
r ψ(δ)∗

r′ ψ(δ′)
r′ ψ(δ′)∗

r

[
θ(εF − εδ)θ(εδ′ − εF )

εδ − εδ′ − �ω + i0
− θ(εF − εδ′)θ(εδ − εF )

εδ − εδ′ − �ω − i0

]
.

The nominators of the fractions can be rewritten as [θ(εF −εδ)−θ(εF −εδ′)]θ(εδ′ −εδ)
and −[θ(εF − εδ) − θ(εF − εδ′)]θ(εδ − εδ′), respectively. Therefore, the real part of
the expression in the square brackets is written in the form independent of the sign
of εδ − εδ′ :

Re[. . .] =
θ(εF − εδ) − θ(εF − εδ′)

εδ − εδ′ − �ω
.

The imaginary part of the expression in the square brackets is proportional to

δ(εδ − εδ′ − �ω)[θ(εδ − εδ′) − θ(εδ′ − εδ)] = δ(εδ − εδ′ − �ω)sgnω .

Therefore, one can write

Πω(r, r′) =
∑
δδ′

ψ(δ)
r ψ(δ)

r′
∗ψ(δ′)

r′ ψ(δ′)
r

∗ θ(εF − εδ) − θ(εF − εδ′)
εδ − εδ′ − �ω − iλ sgnω

.

6.20. Find the spectrum of plasmon-phonon waves in ionic crystals.
Solution: Using Eq. (33.26), where ε∞ is replaced by κ(q, ω) given by (27.29), we

obtain the following dispersion relation:

ε(q, ω) = ε∞ +
ω2

T O(ε0 − ε∞)
ω2

T O − ω2 − 4πe2n

mω2 = 0,

which is reduced to ω4 − ω2(ω2
LO + ω2

p) + ω2
T Oω2

p = 0 describing two branches with
the frequencies

ω2
± =

ω2
LO + ω2

p

2
±
√

(ω2
LO + ω2

p)2

4
− ω2

T Oω2
p .

6.21. Using the quasi-classical kinetic equation (9.34), calculate the
real part of the conductivity σ(q, ω) caused by the Landau damping.

Result: In the collisionless approximation, the solution of Eq. (9.34) for the Fourier
transform of the distribution function is written in a straightforward way, and we
obtain

σαβ(q, ω) =
2e2

m2

∫
dp

(2π�)3

(
−∂f(εp)

∂εp

)
pαpβ

i(q · vp − ω) + λ
, λ → +0.

The conductivity tensor is diagonal if one of the coordinate axes is directed along
q. The integrand determining the real part of the conductivity is proportional to
δ(q · vp − ω). The longitudinal (Oα ‖ q) and transverse (Oα ⊥ q) components of
the conductivity tensor are different. The real part of the longitudinal component is
given by Eq. (33.27), while the real parts of two transverse components are equal
to Re σl(q, ω)[(vF q/ω)2 − 1]/2. The imaginary part of the conductivity at small q is
given by Eq. (11.24). Note that the Landau damping effects are not captured by the
formalism of balance equations given in Sec. 11.



Chapter 7

NON-EQUILIBRIUM ELECTRONS

The structure of the kinetic equation for the electrons interacting with bosons
(phonons or photons) is similar to the one for the case of electron-impurity system
considered in Chapter 2. However, a consideration of electron scattering with emis-
sion or absorption of bosons leads to a more sophisticated collision integral, because
the Pauli principle is essential for inelastic scattering. This kinetic equation is derived
by analogy to the case of non-equilibrium bosons considered in Chapter 4. The colli-
sion integral for inelastic scattering derived below describes the energy relaxation of
electron system, the evolution of the occupation numbers of different electron states,
etc. For this reason, it has numerous applications for strongly non-equilibrium elec-
tron systems. In this chapter we discuss the distribution of the electrons heated by
a static electric field or high-frequency field of laser radiation in the cases when ei-
ther electron-phonon or electron-electron collisions dominate. In the latter case, it
is convenient to introduce the energy balance equations. Besides, we consider the
interaction of non-equilibrium electrons with photons, in particular, in the process of
radiative interband recombination. This process is described by the density balance
equations. In this connection, we also study the phonon-assisted redistribution of
electron population between the subbands in nanostructures of different dimension-
alities.

34. Electron-Boson Collision Integral
In a similar way as in Chapter 4, the kinetic equation for electrons

interacting with bosons is derived from Eq. (1.20) for the density ma-
trix by using the Hamiltonian (19.1). It is convenient to subdivide the
averaging Sp . . . over all variables of the system by the averaging Spe . . .
over electron variables only and another averaging, Spb . . . , over boson
variables so that Sp . . . = SpeSpb . . . . Applying the averaging Spe . . .

281
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to the definition (4.29), we introduce the one-electron density matrix
n̂t depending on the bosonic variables q. Then, multiplying Eq. (1.20)
by a+

δ aγ and taking the trace Spe . . . of both its sides, we obtain the
following equation for n̂t:

i�
∂n̂t

∂t
=

[
ĥt + Ĥb +

∑
q

(χ̂qtb̂q + H.c.), n̂t

]
+ L̂t , (1)

where L̂t appears because of the impossibility of permutation of Ĥe,b

with electron operators under the sign of Spe. For this reason, Eq. (1)
is not reduced to an equation for the one-electron density matrix. The
operator L̂t is defined by its matrix elements

〈γ|L̂t|δ〉 ≡
∑
νη

{
〈ν|
∑

q

(χ̂qtb̂q + H.c.)|η〉Spe(â+
ν â+

δ âη âγ η̂t)

−Spe(â+
δ â+

ν âγ âη η̂t)〈ν|
∑

q

(χ̂qtb̂q + H.c.)|η〉
}

(2)

containing two-particle averages. Because of this contribution, the Pauli
principle is satisfied for electron-boson scattering processes (for the case
of elastic scattering considered in Chapter 2, this principle was satisfied
automatically). Besides, the contribution L̂t describes electron-electron
interaction through the boson field. This effect, however, should be
neglected within the second-order accuracy with respect to electron-
boson interaction, which is assumed below.

Averaging Eq. (1) over boson variables, we get the one-electron den-
sity matrix ρ̂t = Spbn̂t on the left-hand side. The contributions [Ĥb, n̂t]
and L̂t on the right-hand side disappear after this averaging, because
(problem 7.1)

Spb

[
Ĥb, n̂t

]
= 0, SpbL̂t = 0. (3)

Therefore, we obtain the following equation for ρ̂t:

i�
∂ρ̂t

∂t
=
[
ĥt, ρ̂t

]
+ Spb

[∑
q

(χ̂qtb̂q + H.c.), n̂t

]
, (4)

which is similar to Eq. (7.6). To evaluate the last term on the right-hand
side of Eq. (4), we introduce the averages Sp(q)

b . . . over all boson modes
except the q-th one, and Sp(qq′)

b . . . over all modes except the q-th and q′-
th. Further, we define the trace trq . . . over the quantum numbers of q-th
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boson mode so that Spb . . . = trqSp(q)
b . . . and Sp(q)

b . . . = trq′Sp(qq′)
b . . . .

Introducing the operator

n̂(q)
t = Sp(q)

b n̂t, (5)

which depends on electron variables and q-th mode variables, we rewrite
the last term on the right-hand side of Eq. (4) as

∑
q trq

[
(χ̂qtb̂q + H.c.),

n̂(q)
t

]
. The equation for n̂(q)

t can be obtained after averaging Eq. (4) by
application of Sp(q)

b . . . . One should employ the following equations:

Sp(q)
b

[
Ĥb, n̂t

]
=
[
�ωqb̂

+
q b̂q , n̂

(q)
t

]
,

Sp(q)
b

⎡⎣∑
q′

(χ̂q′tb̂q′ + H.c.), n̂t

⎤⎦ =
[
(χ̂qtb̂q + H.c.), n̂(q)

t

]
+

∑
q′(q′ �=q)

trq′
[
(χ̂q′tb̂q′ + H.c.), Sp(qq′)

b n̂t

]
, (6)

and the term with Sp(qq′)
b n̂t should be neglected if we stay within the

second-order accuracy. As a result, we arrive at the equation similar to
Eq. (7.7):

i�
∂n̂(q)

t

∂t
=
[
ĥt + �ωqb̂

+
q b̂q , n̂

(q)
t

]
+
[
χ̂qtb̂q + χ̂+

qtb̂
+
q , n̂(q)

t

]
+ Sp(q)

b L̂t , (7)

where the last term describes electron pair correlations with the boson
mode q. This term is determined by the matrix elements

〈γ|Sp(q)
b L̂t|δ〉 =

∑
νη

{
〈ν|χ̂qtb̂q + χ̂+

qtb̂
+
q |η〉Sp(q)

b Spe(â+
δ â+

ν âη âγ η̂t)

−Sp(q)
b Spe(â+

δ â+
ν âη âγ η̂t)〈ν|χ̂qtb̂q + χ̂+

qtb̂
+
q |η〉

}
. (8)

Considering Eq. (4) within the second-order accuracy with respect to
electron-boson interaction, we introduce a correlation operator

κ̂qt = n̂(q)
t − ñ(q)

t , (9)

where ñ(q)
t is the density matrix n̂(q)

t for non-interacting electron-boson
system. It satisfies the following equation:

i�
∂ñ(q)

t

∂t
=
[
ĥt + �ωqb̂

+
q b̂q , ñ

(q)
t

]
. (10)



284 QUANTUM KINETIC THEORY

Within the zero-order accuracy in the interaction, the averages

gγδ
ην (qt) = Sp(q)

b Spe(â+
δ â+

ν âη âγ η̂t) (11)

contributing into Eq. (8) are expressed through ñ(q)
t according to

gγδ
ην (qt) � 〈γ|ñ(q)

t |δ〉〈η|ρ̂t|ν〉 − 〈γ|ñ(q)
t |ν〉〈η|ρ̂t|δ〉. (12)

To check this equation, one may write an equation of motion for gγδ
ην

(i.e., consider i�∂gγδ
ην/∂t) and use Eqs. (4) and (10) (problem 7.2). It is

convenient to apply again the operator of permutations P̂, introduced
by Eq. (31.4), to rewrite the two-particle average in Eq. (8) in the
operator form:

Sp(q)
b L̂t = sp′

[
χ̂′

qtb̂q + χ̂′+
qt b̂+

q , (1 − P̂)ñ(q)
t ρ̂′

t

]
. (13)

Using Eqs. (7) and (10), we obtain the following equation for the corre-
lation operator:

i�
∂κ̂qt

∂t
=
[
ĥt + �ωqb̂

+
q b̂q , κ̂qt

]
+
[
χ̂qtb̂q + χ̂+

qtb̂
+
q , ñ(q)

t

]
+sp′

[
χ̂′

qtb̂q + χ̂′+
qt b̂+

q , (1 − P̂)ñ(q)
t ρ̂′

t

]
. (14)

Equations (4) and (14) form a closed set, similar to Eqs. (7.6) and
(7.10) for the electron-impurity system. One should use the initial con-
dition of weakening of correlations,

κ̂qt→−∞ = 0, (15)

to solve Eq. (14). The solution is written through the evolution operator
Ŝ(t, t′) defined by Eq. (2.2) with the one-electron Hamiltonian ĥt:

κ̂q =
1
i�

∫ t

−∞
dt′eλt′ exp[−iŵq(t − t′)]Ŝ(t, t′)

{[
χ̂qt′ b̂q + χ̂+

qt′ b̂
+
q , ñ(q)

t

]
+sp′

[
χ̂′

qt′ b̂q + χ̂′+
qt′ b̂

+
q , (1 − P̂)ñ(q)

t′ ρ̂′
t′
]}

Ŝ+(t, t′) exp[iŵq(t − t′)], (16)

where ŵq ≡ ωqb̂
+
q b̂q , and λ → +0 means that the electron-boson interac-

tion is turned on adiabatically. Since ñ(q)
t depends on bosonic operators

in the combination b̂+
q b̂q only (this property follows from Eq. (10)), one

has
trq

[
χ̂qtb̂q + χ̂+

qtb̂
+
q , ñ(q)

t

]
= 0. (17)
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Finally, Eq. (4) for ρ̂t is reduced to the following kinetic equation:

∂ρ̂t

∂t
+

i

�

[
ĥt, ρ̂t

]
=

1
i�

∑
q

trq

[
χ̂qtb̂q + χ̂+

qtb̂
+
q , κ̂q

]
≡ Ĵe,b(ρ̂|t), (18)

where the right-hand side is the collision integral in the operator form.
To calculate the averages trq . . . in this equation, we use the identities

trq b̂q b̂q ñ
(q)
t = trq b̂

+
q b̂+

q ñ(q)
t = 0,

trq b̂
+
q b̂q ñ

(q)
t = Nqtρ̂t, trq b̂q b̂

+
q ñ(q)

t = (Nqt + 1)ρ̂t, (19)

where Nqt = Nt(q, q) is the diagonal part of the one-boson density ma-
trix governed by Eq. (19.14). For equilibrium bosons, Nqt is time-
independent and reduced to the Planck distribution function.

After substituting κ̂qt into the right-hand side of Eq. (18), it is con-
venient to split the collision integral in two parts:

Ĵe,b(ρ̂|t) = Ĵ (e)
e,b(ρ̂|t) + Ĵ (a)

e,b (ρ̂|t). (20)

The contribution Ĵ (e)
e,b describes the emission of bosons by electrons:

Ĵ (e)
e,b(ρ̂|t) =

1
�2

∑
q

∫ t

−∞
dt′eλt′(Nqt′ + 1) (21)

×
{

e−iωq(t−t′)
[
Ŝ(t, t′)

(
χ̂+

qt′ ρ̂t′ + sp′χ̂′+
qt′(1 − P̂)ρ̂t′ ρ̂

′
t′
)

Ŝ+(t, t′), χ̂qt

]
−eiωq(t−t′)

[
Ŝ(t, t′)

(
ρ̂t′χ̂qt′ + sp′χ̂′

qt′(1 − P̂)ρ̂t′ ρ̂
′
t′
)

Ŝ+(t, t′), χ̂+
qt

]}
,

while Ĵ (a)
e,b accounts for the absorption of bosons and is directly obtained

from Eq. (21) after formal substitutions

(Nqt′ + 1) → Nqt′ , ωq → −ωq, χ̂+
qt → χ̂qt. (22)

The collision integral can be simplified if we exclude the permutation
operator according to sp′b̂′P̂ âĉ′ = âb̂ĉ and rewrite Eq. (21) as

Ĵ (e)
e,b(ρ̂|t) =

1
�2

∑
q

∫ t

−∞
dt′eλt′(Nqt′ + 1) (23)

×
{

e−iωq(t−t′)
[
Ŝ(t, t′)

(
(1 − ρ̂t′)χ̂+

qt′ ρ̂t′ + ρ̂t′spχ̂+
qt′ ρ̂t′

)
Ŝ+(t, t′), χ̂qt

]
−eiωq(t−t′)

[
Ŝ(t, t′)

(
ρ̂t′χ̂qt′(1 − ρ̂t′) + ρ̂t′spχ̂qt′ ρ̂t′

)
Ŝ+(t, t′), χ̂+

qt′

]}
.
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Thus, the quantum-kinetic description of the electrons interacting with
boson modes, within the second-order accuracy in this interaction, is
given by Eqs. (18), (20), (23), and (22).

In the translation-invariant case, we use the basis of plane waves |p〉
with energies εp to describe the electron states and introduce the dis-
tribution function fpt = 〈p|ρ̂t|p〉; see a similar consideration in Sec. 8.
We obtain the kinetic equation ∂fpt/∂t = Je,b(f |pt) with the collision
integral Je,b(f |pt) = 〈p|Ĵe,b(ρ̂|t)|p〉 = J (e)

e,b(f |pt) + J (a)
e,b (f |pt), where

J (e)
e,b(f |pt) =

1
�2

∑
p′q

∫ t

−∞
dt′eλt′(Nqt′ + 1)|〈p|χ̂qt′ |p′〉|2

×
{

[ei(εp′−εp−�ωq)(t−t′)/� + c.c.]fp′t′(1 − fpt′) (24)

−[ei(εp′−εp+�ωq)(t−t′)/� + c.c.]fpt′(1 − fp′t′)
}

,

and J (a)
e,b is obtained from this expression by means of the substitutions

(22). We point out that the terms containing the averages spχ̂qtρ̂t and
spχ̂+

qtρ̂t in Eq. (23) do not contribute to the collision integral since these
terms are invariant with respect to translation. In the Markovian ap-
proximation, when the temporal dependence of Nqt′ and fpt′ is neglected
on the time scale �/ε̄ determined by the characteristic energy of elec-
trons, we calculate the integral over t′ and obtain the collision integral
in the form

Je,b(f |pt) =
2π

�

∑
p′q

|〈p|χ̂q |p′〉|2
{
δ(εp′ − εp − �ωq)

×
[
fp′t(1 − fpt)(Nqt + 1) − fpt(1 − fp′t)Nqt

]
(25)

+ δ(εp′ − εp + �ωq)
[
fp′t(1 − fpt)Nqt − fpt(1 − fp′t)(Nqt + 1)

]}
.

It is not difficult to generalize this equation to the case of weakly in-
homogeneous systems, when fpt is replaced by the Wigner distribution
function frpt. The corresponding transformations are completely analo-
gous to those presented in Sec. 9. If several bands of electron spectrum
are considered, the eigenstates |lp〉 are described by both the momen-
tum and the band index l. Nevertheless, one can often neglect the
non-diagonal (interband) part of the density matrix for non-degenerate
bands, because the interband energy considerably exceeds the energy
broadening due to collisions. In this case, the collision integral again
takes the form of Eq. (25), the only difference is that the band in-
dex stays together with the momentum. A similar collision integral can
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be written for the diagonal part of the density matrix of any quasi-
stationary system described by the eigenstates |δ〉 (problem 7.3).

Introducing the transition probabilities Wpp′ , one can rewrite the col-
lision integral (25) in the form similar to Eq. (8.7), where, however, the
Pauli principle is taken into account:

Je,b(f |rpt) =
∑
p′

[
Wp′pfrp′t(1 − frpt) − Wpp′frpt(1 − frp′t)

]
. (26)

The transition probabilities Wpp′ and Wp′p are given by∣∣∣∣ Wpp′

Wp′p

∣∣∣∣ =
2π

�

∑
q

|〈p|χ̂q |p′〉|2
[ ∣∣∣∣ Nq + 1

Nq

∣∣∣∣ δ (εp′ − εp + �ωq

)
+
∣∣∣∣ Nq

Nq + 1

∣∣∣∣ δ (εp′ − εp − �ωq

)]
, (27)

where the processes of emission and absorption of bosons correspond to
the terms proportional to Nq +1 and Nq , respectively. Note that Wpp′ =
Wp′p exp[(εp − εp′)/T ] if Nq is the Planck distribution with temperature
T . The stationary kinetic equation for the electrons interacting with the
bosons described by the equilibrium Planck distribution is satisfied if we
substitute the equilibrium Fermi distribution in place of frpt. It is easy
to check this property from Eqs. (26) and (27), since such a substitution
makes the collision integral equal to zero (problem 7.4).

The electron-boson collision integral contains a sum over different
types of bosons (acoustic and optical phonons or photons of different
polarizations). Thus, we can rewrite Eq. (18) as a quantum kinetic
equation containing the collision integrals caused by various scattering
mechanisms:

∂ρ̂t

∂t
+

i

�

[
ĥt, ρ̂t

]
=
∑

k

Ĵk(ρ̂|t), (28)

where Ĵk is the collision integral for the k-th scattering mechanism (in
the operator form). To justify Eq. (28), let us show that, in the second
order with respect to electron-phonon interaction, there is no interference
between different scattering mechanisms induced by the same phonon
branch. As already mentioned in Sec. 6, the long-wavelength phonons
can interact with electrons through both macroscopic and microscopic
(deformation) potentials. Thus, there are four kinds of electron-phonon
interactions: deformation (Eq. (6.30)) and piezoelectric mechanisms
for acoustic phonons and deformation and polarization (Eq. (6.22))
mechanisms for optical phonons. It is essential that the relation be-
tween the deformation potential and piezoelectric potential of acoustic
phonons contains the phase factor eiπ/2 = i. The same statement is
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true for the deformation and polarization potentials of optical phonons.
Therefore, the squares of the absolute values of the matrix elements
|〈p|χ̂ql|p′〉|2, where l numbers the phonon branches, are written as sums
of macroscopic and microscopic field contributions for each branch. For
example, the longitudinal optical branch generates both deformation
optical (DO) and polar optical (PO) contributions, and one can write
|〈p|χ̂qLO|p′〉|2 = |〈p|χ̂qDO|p′〉|2 + |〈p|χ̂qPO|p′〉|2. In other words, the mi-
croscopic and macroscopic fields do not interfere with each other. Each
of these contributions gives a separate term in the collision integral and,
for this reason, can be viewed as one of the scattering mechanisms for
electrons.

The kinetic equation (28) satisfies the requirement of electron density
conservation, ∂(spρ̂t)/∂t = 0. This requirement follows from spĴk(ρ̂|t) =
0, which is easy to prove by using Eq. (23) for the collision integral and
taking into account that the traces of any commutators are equal to zero.
On the other hand, the energy of electrons is not conserved because of
energy exchange between electrons and bosons. From the formal point
of view, this property is related to the inequality spĥtĴk(ρ̂|t) 	= 0, in
contrast to the case of electron-impurity interaction; see Eq. (7.20) and
problem 2.2.

The transition probabilities (27) can be represented in the form (2.16)
if the operator V̂ standing in Eq. (2.16) is assumed to be the Hamiltonian
of electron-boson interaction,

∑
q χ̂q b̂q + H.c. , and the initial and final

states are treated as the states of electron-boson system in the absence
of the interaction. Indeed, acting by the Hamiltonian V̂ on the state
|i〉 = |η〉|N1, N2, . . . , Nq, . . .〉 with the energy εi, we can obtain either
|δ〉|N1, N2, . . . , Nq − 1, . . .〉 with the energy εf = εi + εδ − εη − �ωq , or
|γ〉|N1, N2, . . . , Nq + 1, . . .〉 with εf = εi + εγ − εη + �ωq . According
to Eqs. (3.13) and (3.14), the matrix elements for such transitions are√

Nq〈δ|χ̂q |η〉 and
√

Nq + 1〈γ|χ̂+
q |η〉, respectively. Therefore, applying

Fermi’s golden rule (2.16), we derive the transition probabilities standing
in the kinetic equation of problem 7.3. If the electron states are the
eigenstates of momentum, we obtain the transition probabilities in the
form of Eq. (27). This approach can be applied to derive the kinetic
equation for diagonal components of the density matrix in an arbitrary
order in electron-boson interaction. This means that, instead of using
the unperturbed initial and final states of electron-boson system in Eq.
(2.16), one has to substitute there the states modified by electron-boson
interaction, with a required accuracy. The first-order expansion of the
wave function |i〉 in terms of the unperturbed states |j〉0 is presented
as |i〉 = |i〉0 +

∑′
j0〈j|it〉|j〉0, where the overlap factor 〈j|it〉 is given by

Eq. (2.20) (it is time-independent at λ → 0). Therefore, the next-order
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correction to the matrix element 〈f |V̂ |i〉 is written as∑
j

′ 〈f |V̂ |j〉〈j|V̂ |i〉
εi − εj

, (29)

where the prime sign at the sum indicates that the state j is different
from i. The matrix elements in Eq. (29) are taken in the basis of non-
perturbed states (the index 0 is omitted). The probability of two-boson
transition, when an electron comes from the state δ to the state γ, is
given by

W (2)
δγ =

2π

�

∑
qq1

∑
s,s1=±1

∣∣∣∣∣∑
ν

〈γ|χ̂q1,s1 |ν〉〈ν|χ̂q,s|δ〉
εδ − εν − s�ωq

+ (q ↔ q1, s ↔ s1)

∣∣∣∣∣
2

×δ(εδ − εγ − s�ωq − s1�ωq1)
(

Nq1 +
1
2

+
s1

2

)(
Nq +

1
2

+
s

2

)
, (30)

where χ̂q,+1 ≡ χ̂+
q and χ̂q,−1 ≡ χ̂q . The sum inside | . . . | is taken over

the intermediate electron states ν and two different intermediate states
of the boson system. Four different combinations of s and s1 in Eq. (30)
describe four possible kinds of transitions. For example, the process
when both bosons are emitted corresponds to s = s1 = +1. The two-
boson contribution to the electron-boson collision integral is expressed
through the two-boson transition probabilities in a similar way as in Eq.
(26):

J (2)
e,b(f |δt) =

∑
γ

[
W (2)

γδ fγt(1 − fδt) − W (2)
δγ fδt(1 − fγt)

]
. (31)

This collision integral can be derived from Eq. (18) if the higher-order
contributions to the correlation operator κ̂q are taken into account. Such
a derivation, however, requires a long and careful calculation, and we do
not present it here. Though the probabilities (30) of two-boson tran-
sitions are of the fourth order in the electron-boson interaction, these
transitions become important if, for some reasons, the one-boson tran-
sitions between the electron states δ and γ are suppressed or forbidden;
see Sec. 38.

35. Quasi-Isotropic and Streaming Distributions
In this section we consider the electrons which are accelerating by a

stationary electric field and scattering by equilibrium phonons (acoustic
and optical). The current-voltage characteristics (i.e., the dependences
of the current density on the strength of the applied electric field) for
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such hot-electron systems are determined by a competition between the
increase in electron momentum and energy due to the acceleration and
the transfer of momentum and energy from electrons to phonons via
collisions. These processes are described by the quasi-classical kinetic
equation (9.34). We consider this equation for a spatially-homogeneous
case, by applying the collision integral (34.26) and assuming that the
electron gas is non-degenerate. Even with these simplifying assumptions,
it is impossible to obtain a general solution of such integro-differential
equation, and the simulation procedures based upon the Monte-Carlo
numerical method prove to be useful. Nevertheless, an analytical con-
sideration can be carried out under some additional assumptions about
the scattering. We study the cases of quasielastic and strongly inelas-
tic scattering, when the distribution of electrons appears to be nearly
isotropic and strongly anisotropic, respectively. We restrict ourselves by
the transport of 2D electrons (the hot-electron problem for the 3D case
is extensively studied in the literature), when the kinetic equations are
simplified because of constant density of states. We also use the simplest
model of bulk phonon modes to describe the scattering.

If the characteristic energy transmitted to the phonon system in the
collision processes is small in comparison to the energy of electrons, one
has a quasielastic regime of relaxation. This situation takes place for
the scattering by acoustic phonons (if the temperature is high enough)
and is justified because the sound velocities are small in comparison
to the average electron velocity. In this case, it is convenient to write
the general expression (34.26) through the half-sum Wpp′ and difference
∆Wpp′ of the transition probabilities defined by Eq. (34.27):∣∣∣∣ Wpp′

∆Wpp′

∣∣∣∣ =
2π

�

∑
qz

|CQ|2|〈1|eiqzz |1〉|2 (1)

×
∣∣∣∣ (NQ + 1/2)

[
δ
(
εp′ − εp + �ωQ

)
+ δ

(
εp′ − εp − �ωQ

)][
δ
(
εp′ − εp + �ωQ

)
− δ

(
εp′ − εp − �ωQ

)] ∣∣∣∣ .
Using the basis (5.25) for 2D electrons, we have written the matrix ele-
ment 〈1p′|χ̂q |1p〉 in this equation as CQ〈1|eiqzz |1〉δp′,p+�q, where CQ is
the matrix element of electron-phonon interaction given by Eq. (21.1)
for LA phonons. Next, Q = (q, qz) is the 3D wave vector, and the
overlap factor 〈1|eiqzz |1〉 is calculated with the use of the wave functions
describing the confinement in the ground-state subband, 〈z|1〉 = ψ(1)

z .
The conservation law for the 2D momentum, following from the ho-
mogeneity of the system in the 2D plane, leads to the substitution
Q =

√
(p − p′)2/�2 + q2

z , which is assumed in Eq. (1). The phonon
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spectrum ωQ = slQ is determined by the longitudinal sound velocity sl.
We also assume that the phonons are not heated by electrons so that
NQ is the Planck distribution function characterized by the equilibrium
temperature T .

Using Eq. (1), we rewrite the collision integral (34.26) for non-
degenerate electrons interacting with acoustic phonons in the form

Jac(f |p) =
∑
p′

Wpp′
(
fp′ − fp

)
− 1

2

∑
p′

∆Wpp′(fp′ + fp). (2)

Following the quasielastic approximation, we expand the transition prob-
abilities as

Wpp′ � L−2K|p−p′|δ
(
εp′ − εp

)
+ L−2∆K|p−p′|δ′′ (εp′ − εp

)
, (3)

∆Wpp′ � L−2δK|p−p′|δ′ (εp′ − εp

)
,

where L2 is the normalization square in the 2D plane and the symbols
δ′(εp′ − εp) and δ′′(εp′ − εp) stand for the first and second derivatives
of δ(εp′ − εp) over εp′ . The coefficients K|p−p′|, ∆K|p−p′|, and δK|p−p′|
depend only on the transverse wave number qz under the condition p̄ �
�/d, where d is the width of the 2D layer (note that the characteristic qz

contributing to the overlap factor are estimated as 1/d). For the same
reason, we can approximate ωQ as ωqz . Using the equipartition condition
for phonons, �ωqz � T , we approximate NQ + 1/2 as T/�ωqz and write
the coefficients of the expansion (3) in the following form:

K � 2π

�
L2
∑
qz

|Cqz |2|〈1|eiqzz |1〉|2 2T

�ωqz

,

∆K � 2π

�
L2
∑
qz

|Cqz |2|〈1|eiqzz |1〉|2�ωqzT � δKT

2
. (4)

Let us separate the symmetric (isotropic) part of the distribution func-
tion, fε =

∫ 2π
0 dϕfp/2π, where ε = εp and ϕ is the polar angle of the

momentum p in the 2D plane, from the asymmetric part ∆fp = fp −fε.
This representation is convenient, since one can neglect a small non-
elasticity in the relaxation of the asymmetric part and introduce the
momentum relaxation rate νac similar to the case of short-range static
potential considered in Sec. 8:

Jac(∆f |p) � −νac∆fp, νac = Kρ2D/2. (5)

The symmetric part of the collision integral is expressed through the
coefficients ∆K and δK. This part is reduced to a differential form of
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the second order:

Jac(f |ε) � νacε̄
2 d

dε

(
dfε

dε
+

fε

T

)
, (6)

where we have introduced a characteristic energy ε̄ through the relation
νacε̄

2 = ∆Kρ2D/2. According to Eqs. (4) and (5), the momentum
relaxation rate is proportional to T , and ε̄ is of the order of �sl/d.
Explicit expressions for νac and ε̄ can be written if the eigenstates |1〉
are known (problem 7.5).

Using Eq. (5), we present the asymmetric part of the distribution
function as ∆fp = −(e/νac)E · ∂fε/∂p (see Eq. (8.24) and problem
7.6, where the elastic-scattering contribution is taken into account) and
obtain a closed equation for the symmetric part of electron distribution:∫ 2π

0

dϕ

2π

(
eE · ∂

∂p

)
e

νac
E · ∂fε

∂p
+ Jac(f |ε) = 0. (7)

The angular averaging transforms the first term on the left-hand side of
Eq. (7) to

(eE)2

mνac

(
dfε

dε
+ ε

d2fε

dε2

)
=

(eE)2

mνac

d

dε

(
ε
dfε

dε

)
. (8)

Then, the symmetric part satisfies an ordinary differential equation of
the second order. This equation is represented below as a continuity
equation for the electron flow Iε along the energy axis:

dIε

dε
= 0, Iε = νac

[
(ε̄2 + εεE)

dfε

dε
+

ε̄2

T
fε

]
. (9)

The characteristic energy εE = (eE/νac)2/m introduced here determines
the non-equilibrium part of the distribution function. For degenerate
electrons, the last term in the expression for Iε contains fε(1−fε) instead
of fε (problem 7.7). In zero electric field, εE = 0, the solution of Eq. (9)
is merely the Boltzmann distribution with the temperature T . Equation
(9) has the following analytical solution:

fε = N
(
1 + εεE/ε̄2)−ε̄2/T εE + C, (10)

where the coefficients N and C are determined by two conditions. The
first condition is the requirement of fε = 0 at ε = ∞. It gives us
C = 0, which corresponds to zero flow along the energy axis. The
second one is the normalization condition ρ2D

∫∞
0 dεfε = n2D, where n2D

is the 2D electron density. In the case of εE = 0, the solution (10)
is transformed to the Boltzmann distribution according to the limiting
transition (1 + ξ)x/ξ |ξ→0 = ex. The normalization condition is written
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as
n2D

ρ2D

=
{

N(1/T − εE/ε̄2)−1, ε̄2/TεE > 1
∞, ε̄2/TεE < 1 . (11)

With the increase of the applied field, at εE > ε̄2/T , the distribution
cannot be normalized because the integral

∫∞
0 dεfε starts to be diver-

gent. Substituting ∆fp into the expression for the current, we have
σ = e2n2D/mνac (compare to Eq. (8.27)). Therefore, both n2D and
σ appear to be divergent when the field E exceeds the critical value
(ε̄νac/e)

√
m/T . This non-physical situation is called the run-away ef-

fect. For an adequate description of the distribution function in high
fields, one has to take into account the other scattering mechanisms pre-
venting the electrons from running away. The spontaneous emission of
optical phonons efficiently serves this purpose by keeping the electrons
in the low-energy region. Its inclusion into the kinetic equation gives
rise to fε � 0 in the region ε > �ωLO (active region) if the temperature
is low in comparison to the optical phonon energy �ωLO. Before consid-
ering the optical-phonon scattering in more detail, we point out that the
run-away effect is absent in the case of 3D electrons heated by a station-
ary electric field (problem 7.8), owing to the increase in the density of
states with increasing energy, and, consequently, to the increase of the
LA phonon scattering probability.

To describe the non-equilibrium distribution under the spontaneous
emission of optical phonons by electrons, one has to consider the kinetic
equation of the kind of Eq. (9.34), where the contribution

JLO(f |p) =
2π

�

∑
Q

|C(LO)
Q |2|〈1|eiqzz |1〉|2 (12)

× [δ(εp − εp+�q + �ωLO)fp+�q − δ(εp − εp−�q − �ωLO)fp]

is added to the collision integral (2); see Eq. (34.28). The matrix ele-
ment C(LO)

Q is given by Eq. (21.1) for LO phonons. If the optical-phonon
scattering dominates the active region, i.e., the characteristic rate of
spontaneous emission, νLO, is much larger than νac at ε > �ωLO, and
the field is not very strong, |e|E/νLO � pLO ≡

√
2m�ωLO, the distribu-

tion function of electrons is anisotropic in the passive region ε < �ωLO

only. At low temperatures, only the spontaneous emission of optical
phonons is possible, and JLO(∆f |p) = 0 in the passive region. Thus, the
scattering by optical phonons does not modify the expression for ∆fp
given above. Equation (7) for the symmetric part fε of the distribution
function should be modified by adding there the collision integral (12)
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averaged over the angle:∫ 2π

0

dϕ

2π
JLO(f |p) = ν(+)

ε fε+�ωLO
− ν(−)

ε fε, (13)

ν(±)
ε =

2π

�

∑
Q

|C(LO)
Q |2|〈1|eiqzz |1〉|2δ(εp − εp±�q ± �ωLO).

The relaxation rate ν(−)
ε is the rate of spontaneous emission of optical

phonons. Since ν(−)
ε = 0 in the passive region, it is convenient to write

the kinetic equation for fε as

dIε

dε
+ ν(+)

ε fε+�ωLO
= 0, ε < �ωLO

dI(0)
ε

dε
+ ν(+)

ε fε+�ωLO
− ν(−)

ε fε = 0, ε > �ωLO. (14)

For the passive region, the flow Iε introduced by Eq. (9) takes into
account both the quasielastic acoustic-phonon scattering and the field
contribution. To define the flow in the active region, I(0)

ε , we neglect the
field contribution, because the asymmetric part of the distribution func-
tion in this region is suppressed by strong optical-phonon scattering. In
other words, I(0)

ε is given by Eq. (9) with εE = 0. Although this neglect
requires an additional strong inequality, (eE)2�ωLO/(mνacνLO) � ε̄2,
this assumption does not influence the final result given below by Eq.
(18). The boundary conditions to the system (14) express the conti-
nuity of both fε and Iε at the upper boundary of the passive region:
fε|�ωLO+0

�ωLO−0 = 0 and Iε|�ωLO+0
�ωLO−0 = 0.

In the active region, fε rapidly decreases because of |e|E/νLO � pLO.
Therefore, we neglect the term ν(+)

ε fε+�ωLO
and substitute the threshold

energy ε = �ωLO into ν(−)
ε in the second equation of the system (14).

As a result, we transform this equation into a second-order differential
equation with constant coefficients, whose solution, describing the active
region, is written below as

fε = f�ωLO
e−λLO(ε−�ωLO), λLO =

√
ν(−)

�ωLO
/νac

ε̄
. (15)

The expression for λLO is obtained with the use of the strong inequality
ν(−)

�ωLO
/νac � (ε̄/T )2. This inequality remains valid even at ν(−)

�ωLO
∼

νac because of the conditions ε̄ � T ensuring the quasielasticity under
acoustic-phonon scattering. Using the boundary conditions for fε and Iε

written above, we exclude the constant f�ωLO
and obtain the boundary



Non-Equilibrium Electrons 295

condition of the third kind,(
dfε

dε
+

λLO

1 + εE�ωLO/ε̄2 fε

)
ε=�ωLO

= 0, (16)

which is to be used together with the first equation of the system (14)
to find the distribution in the passive region. According to Eq. (15), the
contribution of fε+�ωLO

into the equations for the passive region exists
in a narrow low-energy interval, ε < λ−1

LO. Integrating the first equation
of Eq. (14) over this interval, we use Eq. (15) and find the following
effective boundary condition for low energies:(

Iε +
ν(+)

ε

λLO

f�ωLO

)
ε=0

= 0. (17)

Therefore, we again obtain Eq. (9) in the passive region, while the
spontaneous emission of optical phonons provides the conditions (16)
and (17) at the boundaries of this region. The solution of Eq. (9) in such
conditions is given by Eq. (10), where, however, C is a non-zero constant
proportional to N . The latter is to be found from the normalization
condition ρ2D

∫
�ωLO

0 dεfε = n2D. In fact, to solve the problem, we need
only one of the boundary conditions, either (16) or (17), since they
are not independent of each other because of conservation of the flow
along the energy axis (problem 7.9). Expressing C through N by using
the boundary condition (16), we apply the normalizarion condition and
obtain the normalized distribution function in the passive region:

fε = N
[(

1 + εεE/ε̄2)−ε̄2/T εE −
(
1 + �ωLOεE/ε̄2)−ε̄2/T εE

]
, (18)

N =
n2D

ρ2D

(
1
T

− εE

ε̄2

)[
1 −

(
1 +

�ωLO

T

)(
1 +

�ωLOεE

ε̄2

)−ε̄2/T εE
]−1

.

In the transformation leading to this equation, we have used the expres-
sion for λLO given in Eq. (15) and the strong inequality ν(−)

�ωLO
/νac �

(ε̄/T )2 (or, equivalently, λLOT � 1). We point out that fε appears
to be independent of the optical-phonon scattering rate and goes to
zero at ε = �ωLO. The latter property corresponds to the case of zero
boundary condition at the edge of the passive region. Indeed, since λ−1

LO

is small in comparison to the characteristic energy scale of the distri-
bution function in the passive region, Eq. (16) effectively works as a
zero boundary condition. The transition from the Boltzmann distribu-
tion fε ∝ e−ε/T to the distributions spreading over the passive region
is demonstrated in Fig. 7.1. Though the energy distribution remains
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monotonic as the electric field increases, the mean energy of electrons,
determined as EE = (ρ2D/n2D)

∫
�ωLO

0 dε εfε, increases. For the case of
relatively strong fields, when εE > ε̄2/T , this energy is given by

EE � �ωLO

εET − ε̄2

4εET − 2ε̄2 . (19)

This equation shows us that, with the increase of the electric field, EE

can rise up to �ωLO/4.

Figure 7.1. Energy distribution of the 2D electrons interacting with acoustic and
optical phonons in a stationary electric field. The calculation is carried out according
to Eq. (35.18) for several values of λE = εE�ωLO/ε̄2 at T = �ωLO/10. The distribu-
tion function fε is expressed in units of fε=0 at λE = 0. The narrow solid line at the
bottom is the distribution function in the case when the optical-phonon scattering
is neglected (Eq. (35.10) with C = 0) and the field is close to the threshold for the
run-away effect, εE = 0.9 ε̄2/T .

The consideration given above is restricted by the case of quasi-
isotropic distribution of electrons in the passive region, under the con-
dition |e|E/νac � pLO. As the field increases, the situation νac �
|e|E/pLO � νLO is possible (here we define the characteristic rate of
spontaneous emission as νLO = ν(−)

�ωLO
, problem 7.10). In these condi-

tions, the electrons move through the passive region nearly ballistically
and have a strongly anisotropic (streaming) distribution, while in the
active region the scattering by optical phonons makes fp rapidly de-
creasing with increasing energy. The stationary distribution is formed
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as follows. The electrons are accelerated by the field until their energy
exceeds �ωLO. Then they emit optical phonons, return to the low-energy
region, and the cycle is repeated again. To describe the electron distri-
bution quantitatively, we neglect the scattering by acoustic phonons and
write the kinetic equation as

eE · ∂fp

∂p
= JLO(f |p), (20)

where the collision integral is given by Eq. (12). Assuming that the field
is applied along OX in the negative direction, we rewrite Eq. (20) in
the passive region as

|e|E ∂fp

∂px
=

2π

�

∑
p′

wLO(|p − p′|)δ(εp − εp′ + �ωLO)fp′ , p < pLO, (21)

where the effective squared matrix element of electron-phonon inter-
action is introduced as wLO(|p − p′|) =

∑
qz

|C(LO)
Q |2|〈1|eiqzz |1〉|2 with

Q =
√

(p − p′)2/�2 + q2
z . According to the energy conservation law, fp′

belongs to the active region. In the active region, Eq. (20) is written as

|e|E ∂fp

∂px
= −νLOfp, p > pLO. (22)

Since fp rapidly decreases with increasing energy in this region, we have
neglected the term corresponding to the arrival of electrons from higher-
energy states in Eq. (22). For the same reason, we have approximated
the energy-dependent relaxation rate ν(−)

ε by its threshold value νLO.
Equation (22) is solved as

fp = F (py) exp[−(px − px,LO)νLO/|e|E], p > pLO, (23)

where px,LO =
√

p2
LO − p2

y defines the boundary of the active region at a
fixed py and F (py) is the distribution function fp at px = px,LO, which
will be determined below. The rapid decrease of fp into the active
region along px is seen explicitly: only the interval where px − px,LO ∼
|e|E/νLO � pLO is essential. Below we also prove that the distribution
F (py) is very narrow. Therefore, after substituting the function given
by Eq. (23) into the right-hand side of Eq. (21), we can put |p′| � pLO

(and, consequently, |p| � 0) in wLO(|p − p′|), approximating it by the
constant wLO(pLO). Equation (21) is rewritten as

|e|E ∂fp

∂px
=

1
�
wLO(pLO)ρ2D

∫ ∞

−∞
dp′

yF (p′
y) (24)

×
∫ ∞

0
d∆p′

x exp(−∆p′
xνLO/|e|E)δ(2∆p′

xp′
x,LO − p2),
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where we have introduced a small deviation ∆p′
x = p′

x − p′
x,LO and ne-

glected the term with ∆p′2
x when transforming the argument of the δ-

function. After calculating the integral over ∆p′
x on the right-hand side

of Eq. (24), we integrate this equation over px and write its solution
describing the passive region:

fp =
νLO

2π|e|E

∫ ∞

−∞

dp′
yF (p′

y)√
p2

LO − p′2
y

∫ px

−∞
dp′

x exp

⎡⎣−
νLO(p′2

x + p2
y)

2|e|E
√

p2
LO − p′2

y

⎤⎦ .

(25)
The px-dependence of this function is essential only at small |px| ∼√

2|e|EpLO/νLO � pLO, where fp increases from zero to a function which
depends on py only. This latter function is F (py), because fp is contin-
uous at the boundary of the active region. Therefore, aiming px in Eq.
(25) at +∞, we obtain the following integral equation for F (py):

F (py) =
√

νLO

2π|e|E

∫ ∞

−∞
dp′

y

F (p′
y)

(p2
LO − p′2

y )1/4 exp

⎛⎝−
νLOp2

y

2|e|E
√

p2
LO − p′2

y

⎞⎠ .

(26)
It shows us that F (py) is non-zero in the region of small |py | ∼ (2|e|EpLO

/νLO)1/2 � pLO so that one can approximate p2
LO −p′2

y under the integral
as p2

LO. The solution is

F (py) = C1 exp

(
−

νLOp2
y

2|e|EpLO

)
, (27)

and the distribution function in the passive region is given by

fp =
F (py)

2

[
1 + erf

(√
νLO

2|e|EpLO

px

)]
, p < pLO, (28)

where erf(x) is the error function and F (py) is given by Eq. (27).
The factor [1 + erf . . .]/2 describes the buildup of the distribution func-
tion from 0 to F (py), which mostly takes place in the narrow region
−
√

2|e|EpLO/νLO < px <
√

2|e|EpLO/νLO. The entire distribution given
by Eqs. (28) and (23) can be approximately viewed as a narrow stripe be-
ginning at px = 0 and ending at px = pLO. The constant C1 is determined
from the normalization condition n2D = 2

∫
dpfp/(2π�)2 � 2pLO

∫
dpy

×F (py)/(2π�)2, and we find

C1 =
√

2π3/2
�

2n2D√
|e|E/νLOp

3/2
LO

. (29)
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One may often approximate the distribution function by a needle-like
distribution

fp =
(2π�)2

2pLO

n2Dδ(py)
{

1, 0 < px < pLO

exp[−(px − pLO)νLO/|e|E], px > pLO

. (30)

We stress again that the necessary condition to have the streaming dis-
tribution is νac � νLO.

The streaming distribution of 3D electrons is not unlike the one dis-
cussed above. The main difference is that, owing to the square-root
energy dependence of the 3D density of states, the rate of spontaneous
emission of optical phonons goes to zero as p approaches pLO. Near the
threshold εp = �ωLO, this rate is νLO(εp) � 2αωLO

√
εp/�ωLO − 1, where

α is the constant of electron-phonon coupling introduced by Eq. (21.28)
(problem 7.11). Substituting this rate into Eq. (22) in place of νLO,
we then integrate this equation and find that the function describing
the decrease of the electron distribution in the active region contains
(px − px,LO)3/2 in the exponent. Finally, approximating the distribution
over the momenta p⊥ = (py, pz) perpendicular to px by a δ-function, we
write, in a similar way as in Eq. (30),

fp =
(2π�)3

2pLO

n3Dδ(p⊥)

{
1, 0 < px < pLO

exp
[
−ν̃(px − pLO)3/2/|e|Ep

1/2
LO

]
, px > pLO

,

(31)
where ν̃ = 4

√
2αωLO/3. Neglecting the exponential tail in the active

region, one finds that the degree of anisotropy of the streaming distribu-
tion is not sensitive to the electric field under the approximations used
in Eqs. (30) and (31). For this reason, the absolute value of the cur-
rent density calculated with the aid of the distributions (30) or (31) is
field-independent and equal to enD�ωLO/pLO, while the direction of the
current coincides with the direction of the electric field.

If the field is so strong that |e|E/pLO � νLO, the electrons penetrate
deep into the active region and their average energy is much larger than
�ωLO. The scattering by optical phonons in this case becomes quasielas-
tic and makes the electron distribution quasi-isotropic again. This dis-
tribution can be described in the way similar to the case of quasielastic
scattering by acoustic phonons discussed in the beginning of this section.

36. Diffusion, Drift, and Energy Balance
The description of electron distribution in the external fields slowly

varying with time and smoothly varying in space is simplified in the
case when electron-electron scattering mostly controls the energy relax-
ation in electron system and the fields are not very strong so that the
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anisotropy of the electron distribution is weak. In this section we con-
sider the quasi-classical kinetic equation (9.34), whose right-hand side
contains a sum of the collision integrals for different scattering mech-
anisms, like in Eq. (34.28). We take into account electron-electron,
electron-phonon, and electron-impurity scattering. If the mean free path
lengths v̄τ̄ and relaxation times τ̄ due to these scattering mechanisms
are small in comparison to the characteristic spatial and temporal scales
of the inhomogeneities, l̄ and t̄, i.e., when

l̄ � v̄τ̄ , t̄ � τ̄ , (1)

we write the distribution function frpt as a sum of the symmetric part
f (s)
rt (εp) and small antisymmetric part ∆frpt. The symmetric part corre-

sponds to a local equilibrium owing to electron-electron scattering and
is represented as a Fermi distribution function whose parameters (tem-
perature T and chemical potential µ) depend on both coordinate and
time:

f (s)
rt (εp) =

[
exp

(
εp − µrt

Trt

)
+ 1
]−1

. (2)

This function is the symmetric part of the general expression (31.25)
containing the local chemical potential and temperature. To find the an-
tisymmetric part, we assume that the momentum relaxation is still con-
trolled by the electron-impurity and electron-phonon scattering mecha-
nisms. In these conditions, ∆frpt satisfies the following equation:

∂∆frpt

∂t
+

e

c
[vp × Hrt] · ∂∆frpt

∂p
+ vp · ∂f (s)

rt (εp)
∂r

+ eErt · ∂f (s)
rt (εp)
∂p

= Jim(∆f |rpt) + Je,ph(∆f |rpt), (3)

where Ert and Hrt are the strengths of the electric and magnetic fields,
respectively, and the collision integral Jee(∆f |rpt) on the right-hand
side is neglected. This neglect is justified because the electron-electron
collisions themselves do not cause the relaxation of momentum, and
an inclusion of Jee(∆f |rpt) would not essentially modify the transport
time introduced below. Since we use the quasi-equilibrium distribution
(2), the electron-electron contribution, Jee(f (s)|rεpt), on the right-hand
side of the symmetric part of the kinetic equation is equal to zero, and
we retain only the electron-phonon collision integral there (note that
Jim(f (s)|rεpt) = 0 for any symmetric distribution):

∂f (s)
rt (εp)
∂t

+
e

c
[vp × Hrt] ·

∂f (s)
pt (εp)
∂p

+ vp · ∂∆frpt

∂r
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+eErt · ∂∆frpt

∂p
= Je,ph(f (s)|rεpt). (4)

This equation is used below to find the slowly varying parameters µrt
and Trt.

If only the acoustic phonons contribute to electron-phonon scattering,
we can estimate Je,ph(∆f |rpt) in Eq. (3) in the elastic approximation
and rewrite the right-hand side as

Jim(∆f |rpt) + Je,ph(∆f |rpt) =
∑
p′

Wpp′(∆frp′t − ∆frpt),

Wpp′ =
2π

�

[
nim |v(|p − p′|/�)|2/V (5)

+|C|p−p′|/�|2 coth(sl|p − p′|/2T )
]
δ(εp − εp′),

where the transition probability Wpp′ contains a sum of impurity and LA
phonon contributions, which are obtained from Eqs. (8.8) and (34.27),
respectively. Equation (5) is written here for the 3D case, under the as-
sumption of equilibrium acoustic phonon distribution, when 2Nq + 1 =
coth(�ωq/2T ). To consider the case of 2D electrons, one should replace
|C|p−p′|/�|2 coth(sl|p−p′|/2T ) by

∑
qz

|〈1|eiqzz |1〉|2 |Cq |2 coth(�slq/2T ),
where q = [(p−p′)2/�

2 + q2
z ]

1/2; see the previous section. In both cases,
the elastic approximation is justified under the equipartition condition,
when coth(�slq/2T ) � 2T/�slq, and, since |Cq |2 ∝ q, the acoustic-
phonon contribution to Wpp′ appears to be independent of electron mo-
menta. For the scattering by the short-range potential of impurities,
when the dependence of v(|p−p′|/�) on its argument can be neglected,
the entire transition probability Wpp′ is independent of electron mo-
menta. The elastic approximation for Je,ph(∆f |rpt) allows one to solve
Eq. (3) exactly, by means of the substitution ∆frpt = vp · grt(εp); see
also the consideration of Eq. (8.24). The vector-function grt(ε) satisfies
the algebraic equation

∂grt

∂t
− [ωc × grt] +

grt

τtr(ε)
= −∂f (s)

rt (ε)
∂r

− eErt
∂f (s)

rt (ε)
∂ε

. (6)

The transport time τtr(ε) is introduced here according to the definitions
given in Sec. 8. To apply them, one should merely replace the transition
probability (8.8) by the one defined by Eq. (5) (see also problem 7.6).
If the transition probability Wpp′ is independent of electron momenta,
the energy dependence of the transport time is determined entirely by
the energy dependence of the density of states, τtr(ε) ∝ ρ−1

D (ε).
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According to the condition t̄ � τ̄ , one may neglect the time derivative
in Eq. (6). This means that, in the absence of magnetic fields, grt is
equal to the product of τtr(ε) by the right-hand side of Eq. (6). Rewrit-
ing this right-hand side through the spatial gradients of the chemical
potential and temperature, we obtain

grt(ε) = τtr(ε)
∂f (s)

rt (ε)
∂ε

(
e∇rwrt +

ε − µrt

Trt
∇rTrt

)
, (7)

wrt = µrt/e + Φrt,

where the electric field is expressed through the electrostatic potential
Φrt as Ert = −∇rΦrt, and the local electrochemical potential wrt is
introduced. The local electric current density, Irt = eirt, (see Eq. (11.2)
which defines the local flow density irt) is determined by ∆frpt and equal
to (2e/V )

∑
p vp(vp · grt). Therefore, the current density is expressed

through the gradients of the electrochemical potential and temperature:

Irt =
2e2

dm

∫
dερD(ε)ετtr(ε)

∂f (s)
rt (ε)
∂ε

(
∇rwrt +

ε − µrt

eTrt
∇rTrt

)
= −σrt(∇rwrt + αrt∇rTrt), (8)

where d is the dimensionality of the problem and ρD(ε) is the density of
states; see Eqs. (5.3) and (5.26). The local conductivity σrt is introduced
according to Eq. (8.27), where the quasi-equilibrium function f (s)

rt (ε)
stands instead of the equilibrium function f (eq)

ε . The coefficient

αrt =
2e

dmσrt

∫ ∞

0
dερD(ε)τtr(ε)ε

ε − µrt

Trt

[
−∂f (s)

rt (ε)
∂ε

]
(9)

introduced in Eq. (8) is called the thermo-electromotive force. It is ex-
pressed through the local temperature and chemical potential (problem
7.12). In the absence of temperature gradients, the current is determined
entirely by the gradient of the electrochemical potential. In equilibrium,
when the current and the temperature gradient are zero everywhere in
the sample, the electrochemical potential is constant.

The expression for the current density can be written in another way,
through the gradient of the electron density. Let us introduce the diffu-
sion coefficient Drt according to Einstein’s relation

σrt = e2Drt
∂nrt

∂µrt
, (10)

where the local electron density nrt is defined by Eq. (11.2) and deter-
mined only by the symmetric part of the distribution function. For de-
generate electrons, when ∂f (s)

rt (ε)/∂ε is non-zero only in a narrow energy
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interval near the local chemical potential µrt, the diffusion coefficient is
given by a simple relation, Drt = v2

rtτtr(µrt)/d, where vrt =
√

2µrt/m is
the local Fermi velocity. The expression of the flow in terms of the local
density and temperature is obtained from Eq. (8):

irt = −Drt∇rnrt + urtnrt − βrt∇rTrt , (11)

where the drift velocity

urt =
σrtErt

enrt
=

eτtr(r, t)
m

Ert (12)

is introduced to describe the response of the electron system to the
electric field. The proportionality coefficient |e|τtr(r, t)/m, where the
local averaged transport time τtr(r, t) is introduced according to Eq.
(8.27) with f (s)

rt (ε) in place of f (eq)
ε , is called the mobility. The drift

velocity for electrons (e < 0) is directed against the electric field. The
coefficient βrt in Eq. (11) describes the response of electrons to the
temperature gradient in the absence of drift and diffusion:

βrt =
σrt

e2

[
eαrt −

(
∂nrt

∂Trt

)/(
∂nrt

∂µrt

)]
. (13)

According to Eq. (11), the flow of electrons is represented as a sum
of the diffusion (due to the density gradient), drift, and thermoinduced
currents. Substituting Eq. (11) into the continuity equation (11.5), we
obtain

∂nrt

∂t
= ∇r · (Drt∇r − urt)nrt + ∇r · (βrt∇rTrt). (14)

This equation describes the evolution of the electron density distribution
in space and time.

Neglecting the drift term and temperature gradient, one can easily
solve Eq. (14) in the linear approximation, assuming that nrt = n +
∆nrt, where n is the equilibrium density and ∆nrt is the non-equilibrium
correction to the density caused by small deviations of the chemical
potential and temperature from their equilibrium values. This allows
one to consider Drt as a constant determined by the density n and
temperature T . As a result, Eq. (14) is reduced to the linear diffusion
equation ∂∆nrt/∂t = D∇2

r∆nrt. With the initial condition ∆nrt=0 =
∆n0δ(r) describing a perturbation of the density at r = 0 and t = 0, the
solution of this equation is well-known:

∆nrt =
∆n0

(4πDt)d/2 exp
(

− r2

4Dt

)
. (15)
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It can be checked by a direct substitution into the diffusion equation.
The solution (15) shows isotropic expansion of the narrow initial dis-
tribution due to diffusion. This solution describes electrically neutral
systems, and cannot be applied to electron systems (or other systems
of charged particles) because a redistribution of charged particles in-
evitably creates electric fields, and, consequently, drift currents, which
are not taken into account in Eq. (15). To consider them, one has to
solve Eq. (14) together with the Poisson equation. With the use of Eq.
(12), the Poisson equation is rewritten for the case of 3D electrons as

∇r · εrurt

τtr(r, t)
=

4πe2

m
(nrt − N (+)

r ), (16)

where we have introduced the coordinate-dependent density N (+)
r of pos-

itive background charges and the dielectric permittivity εr. In the linear
approximation (small deviations from equilibrium) and in the absence
of the temperature gradient, Eqs. (14) and (16) form a closed system of
two differential equations for non-equilibrium part of electron density,
∆nrt, and drift velocity urt. The latter can be excluded, and we obtain
a single equation,

∂∆nrt

∂t
=
(
D∇2

r − τ−1
M

)
∆nrt, τ−1

M = ω2
pτtr, (17)

written under the assumption that N (+)
r and εr do not depend on r. To

exclude N (+), we have used the electric neutrality condition n = N (+).
The characteristic time introduced in Eq. (17) is called the Maxwell
relaxation time. It determines the temporal scale of the relaxation of
charge density perturbations. This time is expressed through the plasma
frequency introduced in the end of Sec. 8 and the averaged transport
time defined by Eq. (8.27). For degenerate electrons, one may express
the Maxwell relaxation time through the conductivity and dielectric per-
mittivity, as τM = ε/4πσ. The diffusion length LD =

√
τMD associated

with this relaxation time determines the relaxation length of the charge
density perturbation. For example, if one maintains a non-equilibrium
density n+∆n0 at the boundary x = 0, the perturbation ∆nx decreases
inside the sample as e−|x|/LD . An example of non-stationary solutions
of Eq. (17) is presented in problem 7.13.

In the general case, Eqs. (14) and (16) are non-linear. They do
not form a closed system of equations even when ∇rTrt = 0, because the
diffusion coefficient and averaged transport time depend on the chemical
potential and temperature (or, equivalently, on the electron density and
temperature). Therefore, to complete the description, we should add
one more equation describing the balance of temperature. It can be
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obtained from the symmetric part of the kinetic equation, i.e., from Eq.
(4), where ∆frpt = vp ·grt(εp) is expressed through f (s)

rt . However, since
we have already written f (s)

rt in terms of the local chemical potential and
temperature, it is more convenient to use the third balance equation
of Eq. (11.11) instead of using Eq. (4). The right-hand side of this
balance equation is reduced to δαβ(2/3V )

∑
p v2

pJe,ph(f (s)|rεpt). After
multiplying the third equation of Eq. (11.11) by m/2, we sum it over
the coordinate index α = β and obtain the energy balance equation
(problem 7.14)

∂Ert

∂t
+ ∇r · Grt − Irt · Ert + Prt = 0. (18)

The magnetic-field term has disappeared from this equation. In Eq.
(18), Ert = (2/V )

∑
p εpfrpt is the local energy density introduced in

Sec. 11,

Grt =
2
V

∑
p

vpεpfrpt =
2

dm

∫ ∞

0
dερD(ε)ε2grt(ε) (19)

is the energy flow density for electrons (compare it to the energy flow
density for bosons given by Eq. (19.32)), and

Prt = − 2
V

∑
p

εpJe,ph(f (s)|rεpt) = −
∫ ∞

0
dερD(ε)εJe,ph(f (s)|rεt) (20)

is the energy density absorbed by the phonon system in unit time (the
power loss term).

Equation (18) shows us that the local energy of electrons changes with
time due to the energy transfer in space described by the term ∇r ·Grt,
the power gained by the electrons moving in the electric field, (Irt ·Ert),
and the power transferred to phonons, Prt. For strongly degenerate 3D
electrons, Ert = (3/5)nrtµrt = (3/5)nrt�

2(3π2nrt)2/3/2m, while for non-
degenerate electrons Ert = (3/2)nrtTrt. In zero magnetic field, when
Eq. (7) is valid, the energy flow density can be written through the
temperature gradient and current as (problem 7.15)

Grt = (αrtTrt + µrt/e)Irt − κrt∇rTrt, (21)

where κ is the thermal conductivity of the electron system:

κrt =
2

dm

∫ ∞

0
dερD(ε)τtr(ε)ε

(ε − µrt)2

Trt

[
−∂f (s)

rt (ε)
∂ε

]
− α2

rtσrtTrt. (22)
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The thermal conductivity of degenerate electron gas is determined by
the first term on the right-hand side of Eq. (22), because the second one
contains an extra smallness of (T/µ)2, and we obtain

κrt =
π2

3e2 σrtTrt. (23)

According to this equation, the ratio of the thermal conductivity to
the electric conductivity is equal to the temperature multiplied by a
universal factor π2/3e2. For non-degenerate electrons, both terms in the
expression (22) are essential (see problem 7.12, where α is calculated)
and, assuming that the product ρD(ε)τtr(ε) is energy-independent, we
find that the thermal conductivity is equal to 2σrtTrt/e2.

Let us consider the power loss term Prt. Substituting the collision
integral defined by Eqs. (34.26) and (34.27) into Eq. (20), we find

Prt =
4π

V

∑
pq

|Cq |2ωqδ(εp−�q − εp + �ωq) (24)

×
{
(Nq + 1)f (s)

rt (εp)[1 − f (s)
rt (εp−�q)] − Nqf

(s)
rt (εp−�q)[1 − f (s)

rt (εp)]
}

for 3D electrons. Since the property of isotropy of f (s)
rt (εp) has not

been used in the derivation of Eq. (24), one may replace f (s)
rt (εp) in

this equation by the exact distribution function frpt (its anisotropic
part ∆frpt does not contribute to the power losses). Using Eq. (2),
it is easy to show that the term {. . .} in Eq. (24) is proportional to
[exp(�ωq/T ) − exp(�ωq/Trt)], where T is the equilibrium temperature.
Therefore, the energy exchange between electrons and phonons occurs
only if their effective temperatures are different. Considering the elec-
tron scattering by acoustic phonons in the quasielastic approximation
(see problem 7.8 for the 3D case), we calculate the sum over q and
represent Eq. (24) as

Prt = ν(e)
rt nrt(Trt − T ), (25)

ν(e)
rt =

23/2D2m5/2

π�4ρnrt

∫ ∞

0
dερ3D(ε)ε3/2

[
−∂f (s)

rt (ε)
∂ε

]
.

This equation defines the energy relaxation rate ν(e)
rt . For degenerate (A)

and non-degenerate (B) electrons, we have

ν(e)
rt =

34/3m2D2

π1/3�3ρ
n

1/3
rt =

3ms2
l

τLA(µrt)T
, (A),

ν(e)
rt =

27/2m5/2D2

π3/2�4ρ
T

1/2
rt =

8ms2
l

π1/2τLA(Trt)T
, (B). (26)
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The transport time τLA(ε) for quasielastic electron-phonon scattering is
defined in problem 7.8.

In a stationary and homogeneous system, Trt and µrt should be re-
placed by the constant electron temperature Te and chemical potential
µe, respectively, and Eq. (18) is reduced to (I · E) = P . Expressing
the current through the conductivity, we use Eq. (25) for the power loss
term and find the energy balance equation in the form

Te = T + [eEτ(µe, Te)]2/m, τ(µe, Te) =
√

τtr/ν(e), (27)

where both the averaged transport time τtr and the energy relaxation
rate ν(e) depend on Te and µe because of the dependence of f (s)(εp)
on these parameters. In the case of small deviations from equilibrium
(“warm” electrons), one may use the equilibrium values of τtr and ν(e)

in Eq. (27). As a result, this equation demonstrates that the electric
field E increases the effective electron temperature above the equilibrium
temperature T according to E2 law. If the deviations from equilibrium
are not small, Eq. (27) becomes non-linear. It should be solved together
with the electric neutrality condition n(µe, Te) = N (+), which follows
from the Poisson equation (16) in the homogeneous case and allows one
to express µe through Te. If the effective temperature of electrons is not
small in comparison to the optical phonon energy, or the electric field is
strong enough to move a considerable amount of electrons to the active
region ε > �ωLO, the optical-phonon scattering also contributes to the
energy losses (problem 7.16).

Equations (14), (16), and (18), where all terms are expressed through
the quantities nrt, urt, and Trt, form a closed system which can be used
for determining these quantities in non-homogeneous electron systems.
In the general case, this system is non-linear and rather complicated. A
considerable degree of simplifications is achieved for the stationary case
in the linear approximation, when one considers small non-homogeneous
deviations of the electron density and temperature (∆nr and ∆Tr, re-
spectively) from the equilibrium values n and T . Thus, the drift velocity
ur can be excluded from Eq. (14), and the latter is reduced to(

D∇2
r − τ−1

M

)
∆nr + β∇2

r∆Tr = 0, (28)

and Eq. (18), where the linearity of the problem leads to Pr = nν(e)∆Tr,
becomes a closed equation for ∆Tr:(

κ∇2
r − nν(e)

)
∆Tr = 0. (29)

According to Eq. (29), the temperature changes on a characteristic
length LT =

√
κ/nν(e), while the spatial distribution of the density
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deviation ∆nr is characterized by two lengths, LD =
√

τMD and LT .
Since LT , in contrast to LD, is determined by slow energy relaxation,
one has LT � LD for typical parameters of electron-phonon systems.
This means that large-scale inhomogeneities of the electron density can
exist only in the presence of temperature gradients.

To complete this section, we discuss the situation when both energy
and momentum relaxation are controlled by the electron-electron scat-
tering mechanism. In this case, we search for the distribution function
frpt in the form of shifted Fermi distribution (31.25), where we put µrt,
Trt, and urt instead of µe, Te, and u. To determine the temporal and
spatial dependence of these parameters, one can use two first equations
of the system (11.11) together with Eq. (18) (we remind that the latter
follows from the third equation of this system). The quantities irt, Qαβ

rt ,
Ert, and Grt standing in these three equations are determined with the
aid of the shifted Fermi distribution as

i = nu, Qαβ = nuαuβ + δαβ
2E∗

3m
,

E = n
mu2

2
+ E∗, G = u

(
n

mu2

2
+

5
3
E∗
)

, (30)

where the time and coordinate indices are omitted for brevity. In this
equation, E∗

rt is the energy density calculated for a non-shifted Fermi
distribution (like the one given by Eq. (2)), where the chemical potential
is replaced by µ∗

rt = µrt + mu2
rt/2. The electron density is calculated in

a similar fashion (see Eq. (31.25) and the discussion thereafter), and we
have ∣∣∣∣ nrt

E∗
rt

∣∣∣∣ =
2
V

∑
p

(
exp

εp − µ∗
rt

Trt
+ 1
)−1 ∣∣∣∣ 1

εp

∣∣∣∣ . (31)

Employing Eq. (31), one can express the shifted chemical potential
µ∗

rt and energy density E∗
rt through the electron density and temper-

ature. As a result, i, Qαβ , E , and G are determined by nrt, urt,
and Trt. Note, however, that the expressions for i and G are differ-
ent from Eqs. (11) and (21), since the antisymmetric part of the dis-
tribution function (31.25) differs from ∆frpt introduced above. The
power density Prt transmitted to phonons and the velocity density Urt =
−(2/V )

∑
p vp[Jim(f |rpt) + Je,ph(f |rpt)] transmitted to impurities and

phonons in unit time are also expressed through nrt, urt, and Trt. In
the case of weak anisotropy (small u), the expression for Prt is the same
as given above. To make the problem formally closed, we need to add
the Maxwell equations to the three balance equation discussed above,
in order to express the electric and magnetic fields through the charge
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and current densities. Under the conditions (1), one may neglect the
inhomogeneous part of the magnetic field Hrt and use only the Poisson
equation written as ∇r · εrErt = 4πe(nrt − N (+)

r ).

37. Heating under High-Frequency Field
The character of non-equilibrium distribution of electrons in the high-

frequency field E cos ωt is different from that described in previous sec-
tions, because of equivalence of the directions along E and opposite to
E. Moreover, if �ω exceeds the mean energy of electrons, ε̄, one should
take into account the discrete nature of the energy absorbed by electrons
in the photoinduced transitions; see Sec. 10. We start our consideration
from the classical case �ω � ε̄, when the distribution is determined by
the kinetic equation (9.34) for the homogeneous electron system, with
the force term Ft = eE cos ωt. Introducing the canonical momentum
P instead of p − (e/ω)E sin ωt, we write this equation for the distribu-
tion function fPt by using also the condition of periodicity over the time
variable:

∂fPt

∂t
=
∑

k

Jk(f |Pt), fPt+2π/ω = fPt. (1)

The transformation of the collision integrals for electron-impurity and
electron-phonon scattering (see Eqs. (8.8) and (34.27), respectively) to
this representation shows us that the energy conservation terms in the
transition probabilities contain the expressions εP − εP ′ − (P′ − P) ·
vω sin ωt, where the characteristic velocity vω introduced in Sec. 10 de-
scribes the field contribution. As for the electron-electron collision inte-
gral, the field contribution does not enter the energy conservation terms
because the total momentum is conserved in the collisions. Therefore,
Jee(f |Pt) is given by the expression (31.21).

In the high-frequency limit, when ω exceeds the characteristic scat-
tering rates, the distribution function fPt is written as a sum of the
contribution fP, averaged over the period, and a small correction; see
Eq. (10.10). The averaged contribution satisfies Eq. (10.11), whose left-
hand side contains the sum of the collision integrals discussed above. The
delta-functions δ(E) in the collision integrals for electron-impurity and
electron-phonon scattering standing in this equation should be replaced
by the averaged expressions

∆0(E) =
ω

2π

∫ π/ω

−π/ω
dtδ(E − A sin ωt) =

∫ ∞

−∞
dτ

2π
eiEτ J0(Aτ)

=
{

π−1(A2 − E2)−1/2, E2 < A2

0, E2 > A2 , (2)
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where A = (P′ − P) · vω is determined by the high-frequency field
and transmitted momentum, and J0(x) is the Bessel function; see Eq.
(10.15). The function ∆0(E) is independent of the signs of E and A.
In weak fields (A → 0), the expression (2) is reduced to δ(E), since any
smooth function FE satisfies the integral relation

∫
dEFE∆0(E)

∣∣
A→0 =

F0. After averaging the collision integral standing in Eq. (8.7) over the
period, we obtain

ω

2π

∫ π/ω

−π/ω
dtJim(f |Pt) =

2π

�V

∑
q

w(q)∆0(εP − εP+�q)(fP+�q − fP), (3)

and a similar averaging of the collision integral (34.26) gives us

ω

2π

∫ π/ω

−π/ω
dtJe,ph(f |Pt) =

2π

�

∑
q

|Cq |2 {∆0(εP − εP+�q + �ωq)

×[(Nq + 1)fP+�q − NqfP] + ∆0(εP − εP−�q − �ωq) (4)

×[NqfP−�q − (Nq + 1)fP]
}

.

The collision integral of electron-phonon scattering is written here for
the case of non-degenerate electron gas. Its generalization to the case
of arbitrary degeneracy is obvious. It is easy to check that the electron
density is conserved in the presence of collisions in the high-frequency
field (problem 7.17).

Denoting the averaged collision integrals defined by Eqs. (3) and
(4) as Jim(f |P) and Je,ph(f |P), one can write the stationary kinetic
equation as

Jim(f |P) + Je,ph(f |P) + Jee(f |P) = 0. (5)

After multiplying Eq. (5) by the energy εP , we integrate it over the
canonical momentum and obtain the energy balance equation

2
V

∑
kP

εP

ω

2π

∫ π/ω

−π/ω
dtJk(f |Pt) = 0, (6)

where k = im and e, ph, and the electron-electron collision integral is
dropped out of Eq. (6) because of Eq. (31.23). The impurity contribu-
tion into the energy balance equation in transformed with the aid of the
substitution εP (fP′ −fP) = (εP ′ −εP )fP. Next, (εP ′ −εP ) is replaced by
the time-dependent contribution (P − P′) · vω sin ωt from the argument
of the δ-function of Eq. (2). As a result, the impurity contribution into
the energy balance equation becomes

ω

2π

∫ π/ω

−π/ω
dt sin ωt

2
V

∑
P

(vω · P)
2π

�V

∑
P′

w

(
|P − P′|

�

)
∆0(εP − εP ′)
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×(fP − fP′) = − ω

2π

∫ π/ω

−π/ω
dt sin ωt

e

ω
E · 2

V

∑
P

vPJim(f |Pt). (7)

Let us show that the contribution (7) is reduced to the averaged
absorbed power Pim = It · Et = (ω/2π)

∫ π/ω
−π/ω dt(E · It) cos ωt, where

the current density It is expressed in the usual way, through the high-
frequency correction ∆fPt to the distribution function in the presence
of elastic scattering; see Eqs. (10.21) and (10.22). This correction is
determined by Eq. (10.14). Taking into account that the power Pim

is proportional to (ω/2π)
∫ π/ω
−π/ω dt∆fPt cos ωt, and using Eqs. (10.14)

and (10.16), we see that the expression (7) is equal to Pim . Next, con-
sidering the phonon contribution into the energy balance equation (6),
we replace εP − εP+�q by �(q · vω sin ωt − ωq). The first term in this
expression gives us the contribution to the averaged absorbed power due
to electron-phonon scattering, and we denote this power as Pph. Now
we may rewrite Eq. (6) as

Pim + Pph =
4π

V

∑
Pq

|Cq |2ωq∆0(εP−�q − εP + �ωq)

×
[
(Nq + 1)fP − NqfP−�q

]
≡ P (ω). (8)

The right-hand side of this equation, denoted as P (ω), describes the
power transmitted to phonons. In the static limit, when P = p, ∆0(E) =
δ(E), and fP = fp, this power is given by the expression (36.24), if we
write the latter for non-degenerate electrons and substitute there fp
instead of f (s)

rt (εp). Thus, P (ω) differs from the power loss term P in
the balance equation (36.18) because of an additional field dependence
on the right-hand side of Eq. (8), where the energy conservation law is
modified by the high-frequency field, according to Eq. (2).

The consideration we just presented can be easily repeated for the
quantum region of frequencies. Under the condition �ω ≥ ε̄, Eq. (2) is
replaced by Eq. (10.18), which takes into account the discrete energy
�ω (problem 7.18). Substituting Eqs. (3) and (4) with ∆0(E) from Eq.
(10.18) into Eq. (6), we obtain

4π

V 2

∑
Pq

w(q)fP

∞∑
k=−∞

kω
[
Jk

(q · vω

ω

)]2
δ(εP−�q − εP − k�ω)

+
4π

V

∑
Pq

|Cq |2
[
(Nq + 1)fP − NqfP−�q

] ∞∑
k=−∞

(kω − ωq) (9)

×
[
Jk

(q · vω

ω

)]2
δ(εP−�q − εP + �ωq − k�ω) = 0,
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where the terms proportional to kω in the impurity and phonon con-
tributions are the absorbed powers Pim and Pph, respectively (problem
7.19), while the term proportional to ωq is equal to −P (ω) defined by Eq.
(8), if we substitute the quantum expression of ∆0(E) there. Once again,
the population factor is written for the non-degenerate case. To rewrite
Eq. (9) for the case of arbitrary degeneracy, one should replace the fac-
tor (Nq +1)fP−NqfP−�q by (Nq +1)fP(1−fP−�q)−NqfP−�q(1−fP).
The quantum expression for the absorbed power shows us that the en-
ergy of electromagnetic field is absorbed in quanta k�ω (k 	= 0). Such
multi-photon processes have been considered in Sec. 10 for the electrons
interacting with a random static potential, which corresponds to the im-
purity contribution in Eq. (9). This contribution can be represented as
Reσ(ω)E2/2, where Reσ(ω) is determined by Eqs. (10.23) and (10.24).
The efficiency of multi-photon absorption with respect to single-photon
absorption is characterized by a dimensionless parameter

γ ≡ mv2
ω

6�ω
. (10)

If γ � 1, which is the case of large ω and small E, only single-photon
absorption is essential.

If the electron-electron scattering gives the main contribution to the
kinetic equation (5), fP is given by a quasi-equilibrium (Maxwell) distri-
bution over canonical momenta, with the effective temperature Te. To
determine this temperature, one can use either the balance equation (8)
or its quantum analog (9). After substituting the Maxwell distribution
into Eq. (9), we calculate the integral over P and present both Pph and
P (ω) as ∣∣∣∣ Pph

P (ω)

∣∣∣∣ = 2n

√
2πm

Te

∑
q

(�q)−1|Cq |2(Nq + 1)
∞∑

k=−∞

∣∣∣∣ kω
ωq

∣∣∣∣
×
[
Jk

(q · vω

ω

)]2
exp

{
−(�q/2 + mωq/q − mkω/q)2

2mTe

}
(11)

× [1 − exp (−�ωq/T + �(ωq − kω)/Te)] ,

where n is the electron density. Below we calculate the absorbed power
in the case of quasielastic scattering of electrons by LA phonons, while
the scattering by LO phonons is neglected. If the electric field is not very
strong and only one-photon processes are essential, the Bessel function is
approximated as J±1(x) � ±x/2 and Pph is proportional to E2. Under
the quasi-classical conditions �ω � Te, Eq. (11) leads to (Pph = PLA)
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PLA =
4

3
√

π

nmv2
ω

τLA(Te)
, (12)

where τLA(ε) is defined in problem 7.8. Equation (12) can be rewritten
in the form PLA = σLA(ω)E2/2, where the linear high-frequency conduc-
tivity σLA(ω) is calculated according to Eq. (8.26), where νε = τ−1

LA (ε)
and ω � νTe . The term Pim is also represented in the form σim(ω)E2/2,
where the high-frequency conductivity σim(ω) is expressed through the
relaxation rate νε for electron-impurity scattering calculated in Sec. 8.
Under the conditions ω � νTe , the total high-frequency conductivity
σ(ω) is the sum of the partial contributions σLA(ω) and σim(ω). There-
fore, we write Pim + PLA = σ(ω)E2/2 under the quasi-classical condi-
tions. The impurity contribution to σ(ω) is large if the scattering is
caused by ionized impurities, because the momenta transferred in the
collisions are small. However, with the increase of ω, the ionized impu-
rity contribution decreases much faster than the LA phonon contribu-
tion. Calculating PLA in the quantum limit �ω � Te, we find

PLA =
nmv2

ω

6τLA(�ω)
Φ
(√

2ms2
l �ω/2Te

)
, Φ(x) = x coth x, (13)

where sl is the longitudinal sound velocity. This expression is valid for
electrons of arbitrary degeneracy. If 2ms2

l �ω � T 2
e , the function Φ in

Eq. (13) is equal to unity.
Considering, under the same approximations, the power transmitted

to LA phonons, we need to take into account both photonless (k = 0)
and one-photon (k = ±1) contributions. The latter, however, appear
to be small due to quasielasticity of the scattering. This means that
the power P (ω)

LA for this mechanism is equal to P of Eq. (36.25), where
ν(e) for non-degenerate electrons is presented by Eq. (36.26), case B.
Equating this power to PLA from Eq. (12), we find the relation Te −
T = (T/6)(vω/sl)2 demonstrating that the heating is sensitive to the
frequency of electromagnetic field, Te − T ∼ ω−2. In the quantum limit,
a similar procedure based upon Eq. (13) gives us Te ∼ ω−4/3 for strong
heating, Te � T . We point out that the high-frequency field not only
determines the amount of power absorbed by electrons, but also modifies
the rate of energy transmission to the crystal lattice.

If the scattering is essentially inelastic, the one-photon contributions
to the power loss become important. Considering the scattering of elec-
trons by optical phonons at �ωLO � Te, T , we may neglect the power
loss due to photonless (k = 0) processes, because it is proportional to
e−�ωLO/Te (see problem 7.16). This small factor does not appear for
one-photon processes if the frequency ω is close to ωLO or exceeds it.
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Calculating PLO and P (ω)
LO from Eq. (11) in these conditions, we find

that only the terms with k = 1 are essential:

PLO =
ω

ωLO

P (ω)
LO = n

e2m3/2ωLOv2
ω

√
|∆ω|

3
√

2�3/2ε∗ω
Ψ(�∆ω/2Te),

Ψ(x) =
√

2|x|/πK1(|x|)ex, (14)

where ∆ω = ω − ωLO is the excess frequency and K1 is the modified
Bessel function of the second kind. The expression (14) shows us that
the absorbed power increases with the increase of ∆ω. The function
Ψ in Eq. (14) is equal to unity if �∆ω � Te. In this region, both
P (ω)

LO and PLO are temperature-independent. The power absorption PLA

given by Eq. (13) is also temperature-independent at 2ms2
l �ω � T 2

e .
Collecting the terms discussed above (we remind that P (ω)

LA is frequency-
independent and determined by Eqs. (36.25) and (36.26), case B), we
write the energy balance equation

PLA + PLO(1 − ωLO/ω) = n
8ms2

l (Te − T )√
πτLA(Te)T

(15)

valid in the high-frequency region �∆ω � Te at
√

2ms2
l �ω � Te �

�ωLO. The left-hand side of Eq. (15) is temperature-independent and
proportional to n. However, its frequency dependence modifies the ef-
fective electron temperature which is to be determined from Eq. (15).

The distribution of electrons over quasienergies becomes more com-
plicated when the electron density is low and electron-electron scatter-
ing is not essential. At low temperatures and in the frequency region
ω > ωLO, one has to take into account both quasielastic scattering and
spontaneous emission of optical phonons, as in Sec. 35. Below we con-
sider the case γ � 1, when only one-photon transitions are essential.
The field-induced anisotropy of the distribution function fP in this case
can be neglected, and we write this function as fε, where ε = εP . The
kinetic equation (5) is written for this distribution function as

Jac(f |ε) + JLO(f |ε) + Jr(f |ε) = 0, (16)

where we have neglected the electron-electron and electron-impurity col-
lision integrals as well as the part of the electron-LA phonon collision
integral describing one-photon transitions. The remaining (zero-photon)
part of this collision integral is the quasielastic collision integral Jac(f |ε)
written in problem 7.8. The collision integrals JLO(f |ε) and Jr(f |ε),
which describe, respectively, zero-photon and one-photon transitions
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with spontaneous emission of optical phonons, are given below:

JLO(f |ε) =

√
ε + �ωLO

ε
νLO(ε + �ωLO)fε+�ωLO

− νLO(ε)fε, (17)

Jr(f |ε) =

√
�ωLO

ε
{νr(ε, ε + �ωLO + �ω)fε+�ωLO+�ω

+νr(ε, ε + �ωLO − �ω)fε+�ωLO−�ω (18)

−[νr(ε, ε − �ωLO + �ω) + νr(ε, ε − �ωLO − �ω)]fε} .

These contributions contain finite-difference terms. The rate of sponta-
neous emission of LO phonons, νLO(ε), is given in problem 7.11. The one-
photon contribution follows from the terms containing [J±1(q·vω/ω)]2 �
[(q · vω)/2ω]2 in the spherically-symmetric part of Eq. (5). The optical
absorption rate νr(ε, ε′) is expressed through the matrix elements (21.1)
of electron-LO phonon interaction according to (problem 7.20)

νr(ε, ε′) =
πV

�

ρ(ε)ρ(ε′)
ρ(�ωLO)

∫
dΩ̃
4π

∫
dΩ̃′

4π
|C(LO)

q |2

×
[
vω · (p − p′)

2�ω

]2

= 2αγωLO

√
εε′

�ω
, (19)

where ρ(ε) is the density of states, α is the constant of electron-phonon
coupling given by Eq. (21.28), and dΩ̃ is the differential of the solid
angle of the vector p. We have defined νr(ε, ε′) in such a way that
the factor (�ωLO/ε)1/2, inversely proportional to the density of states,
is separated in Eq. (18). This definition is convenient because both
Jac(f |ε) and JLO(f |ε) are also proportional to ε−1/2 and this factor can
be taken out of the kinetic equation. Besides, this definition makes
νr(ε, ε′) symmetric, νr(ε, ε′) = νr(ε′, ε).

Since we consider one-photon transitions and νr � νLO, the photoex-
cited electrons rapidly relax into the passive region ε < �ωLO, where
their distribution remains essentially non-equilibrium if νr > νqe, where
νqe is introduced in problem 7.8. The character of this non-equilibrium
distribution is determined by the energy transferred to the passive region
in the process of relaxation. This energy is defined as δεω = �ω−p�ωLO,
where p is the integer part of the ratio ω/ωLO determining the number
of optical phonons emitted by the photoexited electrons. The sequential
transitions leading to the shifts of electron energy by δεω are shown in
Fig. 7.2. The electrons excited into the region ε > (p + 1)�ωLO return
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to the passive region with the energies smaller than the energies of the
electrons excited into the region �ω < ε < (p + 1)�ωLO. The kinetic
equation for the passive region is reduced to√

ε

�ωLO

Jac(f |ε) + θ(δεω − ε)νr(ε + p�ωLO, ε + �ωLO − δεω)fε+�ωLO−δεω

+θ(ε − δεω)νr [ε + (p − 1)�ωLO, ε − δεω ]fε−δεω (20)

−νr [ε, ε + (p − 1)�ωLO + δεω ]fε = 0.

This equation can be formally derived in the following way. We represent
fε as a sum of f

(k)
ε = fε+k�ωLO

, where ε belongs to the passive region:
fε =

∑∞
k=0 f

(k)
ε . Instead of Eqs. (16), (17), and (18), we write a chain

of equations for f
(k)
ε , where the quasielastic contribution is taken into

account in the passive region (k = 0) only. This chain of equations is
reduced to Eq. (20) if we assume that νLO � νr in the active region,
which means that the electrons absorb photons only in the passive region.
Once coming to the active region, the electrons rapidly go back to the
passive region by emitting a cascade of optical phonons (or just one
optical phonon). That is why Eq. (20) does not contain the rate of
spontaneous LO phonon emission, though essentially exploits the optical
phonon energy.

To solve Eq. (20), we consider the case of small shift (detuning)
from the photon-phonon resonance, when 0 < δεω � �ωLO or 0 <
�ωLO − δεω � �ωLO. Since the energy shifts during each optical tran-
sition are small, one may replace the finite-difference terms in Eq. (20)
by the differential ones. Before doing this, we introduce a small di-
mensionless variable δω defined as δω = δεω/�ωLO if δεω � �ωLO and
δω = δεω/�ωLO − 1 if �ωLO − δεω � �ωLO. In contrast to δεω , which is
positive by definition, δω can be either positive or negative. It is conve-
nient also to introduce the integer p′ as p′ = p if δω > 0 and p′ = p + 1
if δω < 0 so that p′ gives us the number of the integer photon-phonon
resonance which we detune from by δω. Let us use Jac(f |ε) written
in the problem 7.8 and express all energies in units of �ωLO according
to ξ = ε/�ωLO and t = T/�ωLO. We obtain the equation describing
diffusion and drift along the energy axis:

d

dξ

(
Dξ

dfξ

dξ
− uξfξ

)
= 0, (21)

where the diffusion coefficient and drift velocity along the energy axis, Dξ

and uξ , contain both radiative and quasielastic scattering contributions:

Dξ =
1
2
(δω)2νr(ξ, ξ + p′ − 1) + tξ3/2νqe(ξ),
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Figure 7.2. Transitions of electrons interacting with photons and optical phonons.
(a) Upward drift of electrons for small positive detuning from the first integer photon-
phonon resonance ω = ωLO. (b) One cycle of electron evolution for the fractional
photon-phonon resonance of the second order, ω = (3/2)ωLO. The dashed line shows
the boundary of the passive region.

uξ = δωνr(ξ, ξ + p′ − 1) − ξ3/2νqe(ξ). (22)

Here and below in this section, the notations νr(ξ, ξ′) and νqe(ξ) stand for
the rates νr(ξ�ωLO, ξ′

�ωLO) and νqe(ξ�ωLO), respectively. In the trans-
formation of the finite-difference terms to the differential ones, we have
kept the factor (δω)2 at the second derivatives only and neglected the
terms proportional to higher powers of δω. However, in the case of p′ = 1
all terms proportional to (δω)2 are taken into account in Eq. (22), and
the accuracy of Eq. (21) is improved in this way.

Equation (21) is considered in the interval ξ ∈ [0, 1]. The boundary
condition at the edge of the passive region can be derived in the form
similar to Eq. (35.16). However, since νLO(ε) rapidly overcomes νqe(ε) as
ε exceeds �ωLO, this boundary condition is reduced to fξ=1 = 0 reflecting
a rapid emptying of the active region due to spontaneous LO phonon
emission. The flow Dξ(dfξ/dξ) −uξfξ is conserved in the passive region.
Denoting it as −C, where the constant C is to be determined from
the normalization condition, we write the general solution of Eq. (21)



318 QUANTUM KINETIC THEORY

satisfying the boundary condition fξ=1 = 0 as

fξ = C

∫ 1

ξ

dξ′

Dξ′
exp

[∫ ξ

ξ′
dξ′′ uξ′′

Dξ′′

]
. (23)

In the absence of photoexcitation, or at δω = 0, this solution is reduced
to the Boltzmann distribution fξ ∝ e−ξ/t (we remind that under the
assumed strong inequality t � 1, the boundary condition fξ=1 = 0 is
not essential in this case). As |δω| increases, different kinds of behavior
are possible. Consider first the case of negative detuning, δω < 0, when
the drift velocity uξ is negative in the entire passive region. Let us
represent the integral in the exponent of Eq. (23) as∫ ξ

ξ′
dξ′′ uξ′′

Dξ′′
= F (ξ′) − F (ξ), F (ξ) = −

∫ ξ

0
dξ′ uξ′

Dξ′
. (24)

The derivative dF (ξ)/dξ = −uξ/Dξ is always positive. Therefore, since
the strong inequalities |δω| � 1 and t � 1 ensure |uξ/Dξ | � 1, the
function eF (ξ′) exponentially increases to the end of the passive region
and the main contribution to the integral over ξ′ comes from ξ′ � 1,
where F (ξ′) can be expanded as F (1)+(u1/D1)(1−ξ′). The integration
over ξ′ then gives us

fξ = C̃e−F (ξ) {1 − exp[(ξ − 1)|u1|/D1]} , C̃ =
C

|u1|
eF (1), (25)

where the term inside the braces {. . .} can be replaced by unity if ξ is
not too close to 1. To estimate the function F (ξ), we use the explicit
expressions for the quasielastic relaxation rate (see problem 7.8) and
photon absorption rate (19), representing them as νqe(ξ) = νqe(1)

√
ξ

and νr(ξ, ξ′) = νr(1, 1)
√

ξξ′. We find

F (ξ) =
ξ

t

[
1 −

(
1 +

δω

2t

)
1
ξ

×
∫ ξ

0

dξ′

(r/δω)ξ′3/2/(ξ′ + p′ − 1)1/2 + δω/2t

]
, (26)

where r = νqe(1)/νr(1, 1) � 1. In the special case of p′ = 1, the integral
in Eq. (26) is taken easily (problem 7.21). Since δω is negative, Eqs.
(25) and (26) describe a cooling of the electron gas at |δω| < 2t and its
heating at |δω| > 2t. The distribution e−F (ξ) in this case is very close to
the Boltzmann one, with the effective temperature t � |δω|/2, because
only the region ξ ∼ t or ξ ∼ |δω| is essential, where the integral over ξ′
in Eq. (26) is approximately equal to 2tξ/δω.
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Let us consider the case of positive detuning. The drift velocity uξ

is determined by a competition of two terms with different signs. The
quasielastic term, which gives a negative contribution to uξ , increases
with ξ faster than the radiative term. Nevertheless, if δω > r/

√
p′, the

latter term is more important and the drift velocity always remains pos-
itive in the passive region. The function F (ξ′) exponentially decreases
with increasing ξ′, and the main contribution to the integral over ξ′ in
Eq. (23) comes from the region ξ′ � ξ. In this region we may expand
F (ξ′) − F (ξ) as (uξ/Dξ)(ξ − ξ′). Integrating over ξ′, we find

fξ = C/uξ. (27)

This simple solution is obtained under the assumption that ξ is not too
close to the edge of the passive region. Otherwise, this solution should
be multiplied by the factor {. . .} standing in Eq. (25). Equation (27)
describes the distribution which spreads over the entire passive region.
This distribution can be normalized because at small energies the veloc-
ity uξ is proportional to

√
ξ(ξ + p′ − 1), and the integral

∫ 1
0 dξρ(ξ)fξ ,

where ρ(ξ) ∝
√

ξ is the density of states, converges.
A completely different situation occurs at δω < r/

√
p′, where uξ

changes its sign from positive to negative in a single point ξ = ξs deter-
mined from the equation uξs = 0. This equation is transformed into

ξ3
s − (δω/r)2ξs − (δω/r)2(p′ − 1) = 0. (28)

If p′ = 1, we obtain ξs = δω/r. In the point ξs, the radiative drift flow
and quasielastic drift flow compensate each other. As δω increases from
0 to r/

√
p′, this point moves through the passive region, from 0 to 1. If

ξs is not too close to the edge of the passive region, the integral over ξ′
in Eq. (23) is, in a similar way as in the case of negative δω, determined
by the region ξ′ � 1, where eF (ξ′) is exponentially large. The result is
again given by Eq. (25), i.e., the distribution function is proportional
to e−F (ξ), where F (ξ) is given by Eq. (26). However, the properties of
this exponent are essentially different from those in the case of negative
detuning. The function F (ξ) has a minimum at ξ = ξs. Near this point,
we have F (ξ) = F (ξs)+

∫ ξ
ξs

dξ′D−1
ξs

(duξ/dξ)ξ=ξs(ξ
′ −ξs) and the solution

is written as

fξ = Cs exp
[
−(ξ − ξs)2

2Γ2
s

]
, Γs =

(
Dξs

|duξ/dξ|ξ=ξs

)1/2

, (29)

where Cs is to be found from a normalization condition. The distribution
in the form of a Gaussian peak appears because the electrons, being
driven towards higher energies by the radiation, are accumulated in the
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narrow region where their flow is stopped by the quasielastic relaxation.
The width of the peak is given by

Γs =
[

ξs(t + δω/2)
3/2 − (δω/rξs)2/2

]1/2

, (30)

and can be estimated as Γs ∼
√

ξs(t + δω/2). If p′ = 1, this estimate
becomes an exact relation. If ξs � t + δω/2, the peak is well-defined,
because Γs � ξs. If δω is so small that ξs < t + δω/2, we have a
monotonic distribution of electrons, which is reduced to the equilibrium
Boltzmann distribution as δω goes to zero. In summary, the evolution
of the distribution function with the increase of δω can be represented
as follows (see Fig. 7.3). At large enough negative detuning, we have
a Boltzmann-like heated distribution, which becomes exact Boltzmann
at δω = −2t. At −2t < δω < 0, we have a Boltzmann-like cooled
distribution, which becomes again the exact Boltzmann distribution at
δω = 0. In the region of small positive δω, the distribution is heated until
a peak is formed at the bottom of the passive region. As δω increases
further, the peak moves towards higher energies and becomes broader.
When δω exceeds r/

√
p′, the peak is gone, and we have the distribution

(27).
We have considered electron behavior in the vicinity of the integer

photon-phonon resonance ω = p′ωLO. Such resonance can be named as
the first-order photon-phonon resonance. If ω is close to (p + m/n)ωLO,
where n and m are integer numbers and m < n, one can consider
fractional photon-phonon resonances of the n-th order. The simplest
case of multiple-order resonances is the second-order resonance, when
�ω = (p + 1/2)�ωLO + δεω ; see Fig. 7.2 (b). To study it quantitatively,
let us use Eq. (20). We write this equation twice: first for the energy
ε < �ωLO/2 and then for the energy ε + �ωLO/2. As a result, we obtain
two coupled equations for fε and gε = fε+�ωLO/2, where the energy ε is
defined in the interval 0 < ε < �ωLO/2. Introducing a small deviation
δεω as explained above, we transform the finite-difference terms in these
two equations to the terms containing derivatives of fε and gε. Finally,
adding and subtracting these equations, we reduce them to the following
system:

d

dξ

(
D̃ξ

dfξ

dξ
− ũξfξ + D̃ξ+1/2

dgξ

dξ
− ũξ+1/2gξ

)
= 0, (31)

νr(ξ, ξ+p−1/2)
(

fξ − δω

2
dfξ

dξ

)
= νr(ξ+1/2, ξ+p)

(
gξ − δω

2
dgξ

dξ

)
, (32)

where we again use the dimensionless variables δω and ξ. Equations
(31) and (32) allow one to determine fξ and gξ defined in the interval
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Figure 7.3. Modification of the distribution function of electrons interacting with
photons, optical phonons, and acoustic phonons for small detuning δω from the first-
order photon-phonon resonance at p′ = 1. The parameters used in the calculations
are T = 0.025 �ωLO and r = νqe(�ωLO)/νr(�ωLO, �ωLO) = 0.05. The solid curves
1-4 show the Boltzmann distribution (δω = 0), cooled distribution (δω = −0.025),
distribution with a peak (δω = 0.025), and broad distribution (δω = 0.075), respec-
tively. The dashed curves 3 and 4 show the approximate solutions (37.29) and (37.27),
respectively.

ξ ∈ [0, 1/2]. The diffusion coefficient and drift velocity standing in Eq.
(31) are given by D̃ξ = (δω)2νr(ξ, ξ + p − 1/2)/2 + tξ3/2νqe(ξ) and ũξ =
δωνr(ξ, ξ + p − 1/2) − ξ3/2νqe(ξ). The boundary conditions to Eqs. (31)
and (32) are gξ=1/2 = 0 and fξ=1/2 = gξ=0. The analysis of these
coupled equations shows us that, for a positive detuning δω, one can get
two peaks, one of them is placed in the region [0, 1/2], while the other is
shifted up by ∆ξ = 1/2 and appears in the region [1/2, 1] (problem 7.22).
The origin of the single peak is the same as described above, while the
doubling occurs because the points ξ and ξ + 1/2 are strongly coupled;
see Fig. 7.2 (b). In a similar way, a system of n equidistant peaks,
separated by an interval 1/n, appears in the case of small detuning from
the photon-phonon resonance of n-th order. The region of δω where
these peaks exist rapidly decreases with increasing n.

38. Relaxation of Population
Interaction of electrons with bosons determines not only the electron

energy distribution, but also the population of different states by elec-
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trons, for example, the densities of electrons and holes in conduction
and valence bands, or the occupation of different confined states (sub-
bands or discrete levels) in nanostructures. If one excludes the case
of zero-gap semiconductors, the phonon-assisted interband relaxation
of non-equilibrium electrons and holes may occur due to multi-phonon
processes only. These processes are not efficient at low temperatures
in the materials with weak electron-phonon coupling. Therefore, the
main contribution to the relaxation rate in the intrinsic semiconductors
and insulators comes from the radiative recombination, when the elec-
trons jump from the conduction band to the valence one by emitting
photons, and from the Auger recombination due to interband electron-
electron scattering. In quantum wells and quantum wires, where the
electrons occupy 2D and 1D subbands, respectively, the phonon-assisted
intersubband relaxation is important, because it is not forbidden by the
energy conservation law even when the energy separation between the
subbands is larger than the LO phonon energy; see Fig 7.4. In quantum
dots, where the electrons occupy discrete levels, the phonon-assisted re-
laxation becomes important if the energy separation between the levels
is small enough or close to the LO phonon energy. Below we consider the
radiative interband recombination with one-photon emission in bulk ma-
terials, as well as phonon-assisted intersubband and interlevel relaxation
of electrons in the nanostructures listed above.

Figure 7.4. (a) Intersubband phonon-assisted transitions in quantum wells and wires.
(b) Transitions between discrete levels in quantum dots.

The boson-assisted interband relaxation of the electrons occupying
the conduction-band state |cδ〉 is described by the interband collision
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integral obtained in a similar way as Eq. (34.25), see also problem 7.3:

J (inter)
e,b (f |cδ) � −2π

�

∑
qγ

|〈cδ|χ̂q |vγ〉|2δ(εcδ − εvγ − �ωq)

×fcδt(1 − fvγt) = −ν(δ)
R fcδt. (1)

Note that we have neglected the stimulated emission and absorption
(since Nq � 1) and omitted the arrival term proportional to fvγt(1 −
fcδt), because εcδ − εvγ + �ωq 	= 0. In p-type materials, where the Fermi
momentum of holes is greater than the momenta of non-equilibrium
electrons (Fig. 4.1 (d)), one may neglect the Pauli blocking factor 1−fvγt

and write the recombination rate introduced in Eq. (1) as

ν(δ)
R =

2π

�

∑
qγ

|〈cδ|χ̂q |vγ〉|2δ(εcδ − εvγ − �ωq). (2)

The operator χ̂q = χ̂qµ for the electron-photon interaction is given by
Eq. (20.1), and the dipole approximation is justified because the wave
numbers of photons are much smaller than those of recombinating elec-
tron states.

To consider the transitions between spin-degenerate electron states
near the extrema of c- and v-bands in bulk semiconductors, we use
the matrix element of the two-band model (see Secs. 17 and 18 and
Appendix B). Let us employ the plane-wave basis, when the quantum
number δ is replaced by σp. The sum over the spin variable is reduced
to ∑

σ′
|〈cσp|χ̂q |vσ′p′〉|2 =

2π�e2

V ωqε

∑
σ′

|〈cσp|(v̂ · eqµ)|vσ′p′〉|2

=
2π�(es)2

V ωqε
δpp′ , (3)

where s is the interband velocity. The rate of interband recombination
is written as

ν(p)
R � 2

∑
q

(2πes)2

V ωqε
δ(εg + p2/2µ∗ − �ωq), (4)

where the doubling occurs because of the sum over photon polariza-
tions, and µ∗ is the reduced mass defined in Sec. 17. Using the photon
spectrum in the medium with dielectric permittivity ε, ωq = cq/

√
ε, we

calculate the sum over q and obtain the result νR = ν(0)
R for the electrons

at the bottom of the conduction band (p = 0):

νR � (2es)2
√

ε

�2c3

∫ ∞

0
dξ ξδ(εg − ξ) = 4

e2√ε

�c

(s

c

)2 εg

�
. (5)
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If the kinetic energies of electrons and holes are small in comparison
to εg , the rate of radiative interband recombination is independent of
these energies and equal to νR given by Eq. (5). Therefore, this rate en-
ters the density balance equation directly, as a constant. The interband
recombination of the electrons occupying confined states in nanostruc-
tures is very similar to the one described above. One should merely
renormalize the energy gap εg (due to confinement effects) and multiply
νR of Eq. (5) by the squared overlap factor of electron and hole states
defined in Eq. (30.23). If both electron and hole states belong to the
ground-state subbands, the overlap factor is close to unity. In the model
of hard-wall confinement, the overlap factor is equal to unity exactly
so that Eq. (5) can be applied to low-dimensional structures without
changes. This rule, however, is not valid in the heterostructures with
spatially separated ground states of electrons and holes (so-called type
II quantum well structures), where the overlap factor is small and the
recombination is suppressed.

Let us consider the phonon-assisted transitions between two subbands
of a quantum well. As in Sec. 35, we use the model of bulk (3D)
phonon states and describe electrons in the basis |np〉 with coordinate-
dependent wave functions ψ(n)

z L−1eip·r/�, where n is the subband number
and r = (x, y) and p are the 2D coordinate and momentum. The rate
of electron transitions from the state |np〉 to the subband n′ is given by

ν(nn′)(p) =
2π

�

∑
Q

|CQ|2|〈n′|eiqzz |n〉|2
[
(NQ + 1)δ(εnp − εn′p−�q − �ωQ)

×(1 − fn′p−�q) + NQδ(εnp − εn′p+�q + �ωQ)(1 − fn′p+�q)
]
, (6)

where Q = (q, qz). Equation (6) takes into account both emission and
absorption of phonons. The collision integral for the distribution func-
tion of electrons in the subband n can be written according to problem
7.3. It contains the term −ν(nn′)(p)fnp describing the departure of elec-
trons from the state |np〉 as well as the contribution describing the arrival
of electrons to this state from all subbands.

Consider first the relaxation due to interaction of electrons with LO
phonons. At low temperatures, one may neglect both absorption and
stimulated emission of these phonons. Neglecting also the Pauli blocking,
we replace (1 − fn′p−�q) by unity. Substituting C(LO)

Q from Eq. (21.1),
we integrate over qz in Eq. (6) and obtain

ν(nn′)
LO (p) =

2π2e2ωLO

ε∗L2

∑
q

∫
dz

∫
dz′ e−q|z−z′|

q
ψ(n)

z ψ(n′)
z ψ(n)

z′ ψ(n′)
z′
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×δ

(
εnn′ − �ωLO +

�p · q
m

− �
2q2

2m

)
, (7)

where we have used the parabolic energy dispersion εnp = εn + p2/2m
and introduced the intersubband energy εnn′ = εn − εn′ as in Secs. 22
and 29. Integrating over the angle of q in Eq. (7), we find

ν(nn′)
LO (p) = 2ωLO

ε

ε∗

∫ qmax

qmin

dq
qMnn′nn′(q)

[(q2 − q2
min)(q2

max − q2)]1/2 , (8)

�qmin =
∣∣∣∣p −

√
p2 + p̃2

nn′

∣∣∣∣ , �qmax = p +
√

p2 + p̃2
nn′ , p̃2

nn′ = p2
nn′ − p2

LO,

where Mabcd(q) is defined by Eq. (29.11), p2
nn′ = 2mεnn′ , and pLO =√

2m�ωLO is introduced in Sec. 35. If n′ = n, Eq. (8) describes the
intrasubband transition rate (the intrasubband transitions exist at p >
pLO). The integral over q standing in Eq. (8) is determined by p, εnn′ −
�ωLO, and quantum well parameters. If p is small in comparison to p̃nn′ ,
the wave number q is fixed due to the energy conservation law. The
matrix element Mnn′nn′ in this case is approximated by a constant, and
the integral in Eq. (8) is transformed by using a new variable, q2 −
(p̃nn′/�)2, leading to the following momentum-independent relaxation
rate:

ν(nn′)
LO = πωLO(ε/ε∗)Mnn′nn′(p̃nn′/�). (9)

The relaxation of electrons with small p is realized, for example, when
these electrons are excited from the low-occupied ground-state subband
to the subband n by light; see Sec. 29. If the intersubband energy
is close to the optical phonon energy (in other words, pnn′ is close to
pLO), the approximation p2 � p̃2

nn′ is not valid. Nevertheless, Eq. (9)
remains correct, because in this case one can expand Mnn′nn′(q) in Eq.
(8) in series of small q, which again leads to a constant Mnn′nn′(q) �
−Lnn′nn′/aB at n 	= n′; see Eq. (29.14).

Applying Eq. (6) to the acoustic phonon-assisted relaxation under the
condition T � �sl/d, where d is the width of the quantum well, we use
the elastic approximation and neglect the Pauli blocking. Substituting
CQ for acoustic phonons from Eq. (21.1), we integrate over qz and find

ν(nn′)
LA (p) =

2πD2T

�ρs2
l L

2

∫
dz|ψ(n)

z |2|ψ(n′)
z |2

∑
q

δ

(
εnn′ +

�p · q
m

− �
2q2

2m

)
.

(10)
The sum over q in Eq. (10) can be written as

∑
p′ δ(εnn′+εp−εp′), where

p′ = p − �q. Therefore, employing the 2D density of states introduced
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in Eq. (5.26), we obtain the momentum-independent relaxation rate

ν(nn′)
LA =

D2Tm

ρs2
l �

3

∫
dz|ψ(n)

z |2|ψ(n′)
z |2. (11)

If the electron transitions occur between the ground-state subband n′ =
1 and first excited subband n = 2, the overlap integral standing in this
equation is equal to 1/d for the hard-wall model of the quantum well.

If the quantum well is made of ionic material, the rate ν(nn′)
LA is usually

much smaller than ν(nn′)
LO and may become essential only at εn1 < �ωLO,

when LO phonon-assisted relaxation of electrons with small momenta is
forbidden. Typically, the intersubband energies in quantum wells exceed
the optical phonon energies, and the non-equilibrium electrons occupying
the excited subband n leave it with the total rate

∑n−1
n′=1 ν(nn′)

LO (p). If, for
example, the non-equilibrium electrons occupy the second subband (n =
2) and their kinetic energy is smaller than �ωLO, they relax to the first
(ground-state) subband by emitting a LO phonon and cannot come back
to the second subband either by spontaneous LO phonon emission or by
quasielastic scattering. This condition justifies the neglect of the arrival
terms in the intersubband collision integral, when the latter is written as
−ν(21)

LO (p)f2p. If, in addition, ε21 considerably exceeds �ωLO, the rate ν(21)
LO

is momentum-independent, and the density balance equation is written
as

dn2

dt
= −ν(21)

LO n2 + Gω, Gω = ξω
|E|2c

√
ε

2π�ω
≡ νωn1. (12)

On the right-hand side, we have added the photogeneration term Gω

describing the number of photons absorbed in unit time by unit square of
the quantum well layer under the excitation by the electric field Ee−iωt+
c.c. of monochromatic electromagnetic wave. This number is equal to the
number of electrons photoexcited from the first subband to the second
one. The relative absorption ξω is given by Eq. (29.25). Since it is
proportional to the electron density in the first subband, the generation
term can be represented as νωn1, where νω is the photogeneration rate.
In the stationary case, Eq. (12) gives us a simple relation between the
densities n1 and n2, namely n2 = (νω/ν(21)

LO )n1. One should remember
that the consideration given above is valid if the electrons returning to
the first subband have enough time to relax there before absorbing a
photon. This assumes a weak photoexcitation, when n2 � n1.

The phonon-assisted electron relaxation between the 1D subbands of
quantum wires is similar to the relaxation in quantum wells. Let us
consider a wire along the OX direction and introduce the basis |np〉
with the wave functions ψ(n)

r⊥ L−1/2eipx/�, where p is the 1D momentum,
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r⊥ = (y, z), and n = (n1, n2); see Eq. (5.25). Instead of Eq. (6), we
have

ν(nn′)(p) =
2π

�

∑
Q

|CQ|2|〈n′|eiq⊥·r⊥ |n〉|2
[
(NQ + 1)δ(εnp − εn′p−�q

−�ωQ)(1 − fn′p−�q) + NQδ(εnp − εn′p+�q + �ωQ)(1 − fn′p+�q)
]
, (13)

where Q = (q,q⊥). For LO phonon scattering, it is convenient to intro-
duce the matrix elements

Kabcd(q) =
∫

dr⊥

∫
dr′

⊥K0(q|r⊥ − r′
⊥|)ψ(a)

r⊥ψ(b)
r⊥ψ(c)

r′
⊥
ψ(d)

r′
⊥
. (14)

This expression is written through the Bessel function K0(x) (the same
as in problem 6.1) after integrating over q⊥ in Eq. (13) with |CQ|2 =
|C(LO)

Q |2 ∝ Q−2. The remaining integral over the scalar variable q is
calculated by using the δ-functions. The result is

ν(nn′)
LO (p) =

�ωLO

aB

√
p̃2

nn′ + p2

ε

ε∗ [Knn′nn′(qmin) + Knn′nn′(qmax)] , (15)

where qmin, qmax, and p̃2
nn′ are given by the same relations as in Eq.

(8). Typically, the intersubband energies in artificial quantum wires are
considerably smaller than the optical phonon energies, and the acoustic-
phonon relaxation remains significant. In the quasielastic approxima-
tion, this mechanism leads to the following intersubband relaxation rate
(compare to Eq. (11)):

ν(nn′)
LA (p) =

2D2Tm

ρs2
l �

2
√

p2
nn′ + p2

∫
dr⊥|ψ(n)

r⊥ |2|ψ(n′)
r⊥ |2, (16)

which is momentum-independent at p2 � p2
nn′ . The specific features

of the transitions between 1D states can manifest themselves in the re-
laxation of the Landau level population (problem 7.23), because the
dynamics of 3D electrons in strong magnetic fields resembles 1D mo-
tion, with a characteristic inverse-square-root divergence of the density
of states at the bottom of each Landau level; see Sec. 5.

Let us consider the relaxation of electrons in quantum dots. A quan-
tum dot is a small region of the crystal, where the electrons are localized
due to a three-dimensional confinement potential. The electron transi-
tions occur between the discrete levels of the localized states described
by the wave functions 〈r|n〉 = ψ(n)

r depending on the sets of discrete
quantum numbers, n. If the dot contains two or more electrons, the
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state n should be considered as a state of many-electron system, like in
atoms. The properties of the dots are essentially determined by Coulomb
interaction between the electrons and depend on the number of electrons
in the dot (we will discuss this issue later, in Sec. 61). Below we restrict
ourselves by the single-electron approximation and write the probability
of phonon-assisted transition between the states n and n′ as

Wnn′ =
2π

�

∑
q

|Cq |2|〈n′|eiq·r|n〉|2 [δ(εn − εn′ − �ωq)(Nq + 1)

+δ(εn − εn′ + �ωq)Nq ] . (17)

The phonon emission (first term) takes place when εnn′ = εn − εn′ is
positive. If it is negative, the phonon absorption (second term) occurs.
Therefore, for a given pair of states n and n′, one should consider ei-
ther the first or the second term in Eq. (17). The sum over q in this
equation is calculated easily, because the phonon wave number q is fixed
by the energy conservation law, and only the matrix element 〈n′|eiq·r|n〉
depends on the angle of q. The transition probability due to LA phonon
emission is calculated as

W (LA)
nn′ =

D2q3
nn′Lnn′nn′(qnn′)

2π�ρs2
l

(Nqnn′ + 1), qnn′ = εnn′/�sl > 0, (18)

where the dimensionless factor

Labcd(q) =
∫

dr
∫

dr′ sin(q|r − r′|)
q|r − r′| ψ(a)

r ψ(b)
r ψ(c)

r′ ψ(d)
r′ (19)

comes from the averaging of the squared matrix element |〈n′|eiq·r|n〉|2
over the angle. To introduce the relaxation rate and express it through
the probability W (LA)

nn′ calculated above, one should take into account
possible degeneracy of the levels in the quantum dot. If we denote the
energy level by the index N , it can contain PN different states n. The
relaxation rate ν(NN′)

LA is defined as

ν(NN′)
LA = P−1

N

∑
n∈N

∑
n′∈N ′

W (LA)
nn′ . (20)

Considering an ensemble of equivalent isolated dots, one can introduce
the occupation number fN t as the number of the dots containing an
electron in a state n belonging to the level N divided by the total number
of the dots. The balance equation

∂fN t

∂t
=
∑
N ′

[
ν

(N′N)
LA fN′t − ν

(NN′)
LA fN t

]
(21)
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reflects the evolution of the occupation numbers and provides the rela-
tion fN /fN′ = (PN /PN′) exp[(εN′ − εN )/T ] in the stationary case and
when the phonons are in equilibrium.

The relaxation rate ν(NN′)
LA considerably depends on εnn′ = εNN′ , be-

cause the factor Lnn′nn′(qnn′) rapidly decreases as qnn′ exceeds the in-
verse size of the dot, 1/d. Estimating εnn′ as �

2/md
2, we find that

qnn′d ∼ (εnn′/ms2
l )

1/2, which means that the relaxation becomes weak
even at relatively small energies εnn′ . For example, considering the tran-
sitions between the ground and first excited levels in a single-electron
quantum dot with the parabolic confinement potential mΩ2r2/2 (prob-
lem 7.24), we obtain

ν(21)
LA =

D2Ω4 exp(−�Ω/2ms2
l )

12πρms7
l [1 − exp(−�Ω/T )]

. (22)

To derive this equation, we have used Eqs. (18) and (20) with ε21 = �Ω
for the model under consideration. The exponential decrease of ν(21)

LA

with increasing ε21 makes the interlevel relaxation inefficient. In this
case, multi-phonon processes become important. Consider, for example,
the relaxation with emission of two acoustic phonons. Substituting the
two-phonon transition probability, calculated according to Eq. (34.30),
in place of W (LA)

nn′ , we find

ν(NN′)
2LA

=
2π

�

∑
qq1

|C(LA)
q |2|C(LA)

q1
|2 1

PN

∑
n∈N

∑
n′∈N ′

×
∣∣∣∣∣2∑

m

〈n′|e−iq1·r|m〉〈m|e−iq·r|n〉
εN − εm − �ωq

∣∣∣∣∣
2

(23)

×(Nq1 + 1)(Nq + 1)δ [εN − εN′ − �sl(q + q1)] .

Since we consider the emission of two equivalent bosons, the two terms
forming the effective matrix element in Eq. (34.30) are equivalent, and
we have a single term multiplied by 2 in Eq. (23). Formally, this reduc-
tion is justified by permutation of the variables q and q1 under the sign
of sum.

Further analysis of Eq. (23) becomes convenient for the model of
parabolic confinement potential. According to the result of problem 7.24,
the effective matrix element in Eq. (23) is proportional to exp[−�2(q2 +
q2
1)/4], where � =

√
�/mΩ. Since both q and q1 are smaller than qnn′ =

(εN − εN′)/�sl, this exponential factor is larger than the corresponding
factor for single-phonon processes. Therefore, as the interlevel energy
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increases, the two-phonon transitions become more important than the
single-phonon ones. This occurs at q, q1 � �−1, when the exponential
factor is small. To estimate the relaxation rate (23), we restrict ourselves
only by the states m belonging to the levels N and N ′, because they
give the smallest denominators in the effective matrix element in Eq.
(23). Assuming also that q, q1 � �−1, we obtain

1
PN

∑
n∈N

∑
n′∈N′

∣∣∣∣∣∣2
∑

m∈N ,N′

〈n′|e−iq1·r|m〉〈m|e−iq·r|n〉
εN − εm − �slq

∣∣∣∣∣∣
2

� (q · q1)2�6

6�2s2
l

exp[−�2(q2 + q2
1)/2], N = 2, N ′ = 1. (24)

Substituting this approximate relation into Eq. (23), we integrate over q
and q1. The rate of relaxation from the first excited state to the ground
one is finally estimated as

ν(21)
2LA

∝ D4Ω8� exp(−�Ω/4ms2
l )

ρ2m2s15
l [1 − exp(−�Ω/2T )]2

. (25)

The main contribution to this relaxation rate comes from q � q1, when
the exponential factor in Eq. (24) is maximal. The consideration given
above can be generalized to take into account three-phonon processes
and so on. In these conditions, the efficiency of multi-phonon processes
increases with increasing temperature, similar to the two-phonon case
described by Eq. (25)

The LO phonon-assisted relaxation in quantum dots can take place
only if εNN′ comes in resonance with the LO phonon energy. This case is
more complicated, because, due to discrete nature of electron spectrum,
the relaxation rate diverges at εNN′ = �ωLO, and one has to introduce
either a weak dispersion of LO phonons or a finite broadening of the
levels, as in Sec. 29. If one considers an ensemble of dots, this broaden-
ing may be attributed to a random dispersion of the level energies. In
contrast, for a single isolated quantum dot the broadening of the lev-
els appears only due to interaction of electrons with bosons (problem
7.25). If |εNN′ − �ωLO| exceeds the broadening energy but still remains
small, an efficient relaxation is possible via two-phonon processes, when
an optical phonon is emitted and an acoustic phonon is either emitted
or absorbed. Using Eq. (34.30), we write the rate of such transitions as

ν
(NN′)
LO±LA =

2π

�

∑
qq1

|C(LA)
q |2|C(LO)

q1
|2 1

PN

∑
n∈N

∑
n′∈N′
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×
∣∣∣∣∣∑

m

〈n′|e−iq1·r|m〉〈m|e∓iq·r|n〉
εN − εm ∓ �slq

+
∑
m′

〈n′|e∓iq·r|m′〉〈m′|e−iq1·r|n〉
εN − εm′ − �ωLO

∣∣∣∣∣
2

×
(

Nq +
1
2

± 1
2

)
δ(εN − εN′ − �ωLO ∓ �slq). (26)

We assume that the temperature is low enough and only the spontaneous
emission of LO phonons is essential. The energy denominators in the
effective matrix elements are small (equal to the acoustic phonon energy)
only if m belongs to N and m′ belongs to N ′. Taking this into account
and using the parabolic potential model, we find (N = 2, N ′ = 1)

1
PN

∑
n∈N

∑
n′∈N′

|. . .|2 =
(q · q1)2�6

24�2s2
l

exp
[
−�2(q2 + q2

1)
2

]
. (27)

Substituting this expression into Eq. (26), one can calculate the integrals
over q and q1 separately. The first integral is calculated with the use of
the δ-function, while the second one is taken elementary. We obtain

ν(21)
LO±LA =

D2e2ωLO�3|Ω − ωLO|5
29/29π3/2�2ε∗ρs9

l

exp
[
−�(Ω − ωLO)2

2ms2
l Ω

]

×
∣∣∣∣1 − exp

[
�(ωLO − Ω)

T

]∣∣∣∣−1

. (28)

The relaxation rate ν(21)
LO+LA exponentially decreases with increasing |Ω−

ωLO|, in a similar way as the single-phonon relaxation rate of Eq. (22)
decreases with increasing Ω. Though the derivation of Eqs. (22), (25),
and (28) has been based upon a model of the dots with parabolic con-
finement, the qualitative features of the interlevel energy dependence of
the relaxation rate remain valid for any model, provided that the popu-
lation of the dot ensemble is not high, less than one electron per dot in
average, and the single-electron approximation is reliable.

Problems
7.1. Check the relations (34.3).
Hints: Take into account that Ĥb is an operator with respect to bosonic variables

only and can be permuted with n̂t under the trace Spb . . . . To check the second
relation, use Eq. (34.2) for L̂t and take into account that Spe . . . is an operator with
respect to bosonic variables only.

7.2. Prove the expression (34.12) for the average (34.11).
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Solution: The equation of motion for gγδ
ην is written as

i�
∂gγδ

ην(qt)
∂t

=
∑

κ

{〈γ|ĥt|κ〉gκδ
ην(qt) − gγκ

ην (qt)〈κ|ĥt|δ〉

+〈η|ĥt|κ〉gκν
γδ (qt) − gηκ

γδ (qt)〈κ|ĥt|ν〉} + [�ωq b̂
+
q b̂q, g

γδ
ην(qt)],

where we have used the identities gγδ
ην(qt) = gην

γδ (qt) = −gγν
ηδ (qt) = −gηδ

γν(qt) follow-
ing from the anticommutation relations for Fermi operators. The same expression
is obtained when we differentiate the right-hand side of Eq. (34.12) over time and
multiply it by i�.

7.3. Using the eigenstate problem ĥ|δ〉 = εδ |δ〉 with non-degenerate
states |δ〉, derive a kinetic equation for fδt, where the collision integral
is written in the form similar to Eq. (34.25).

Solution: The non-diagonal elements 〈δ|ρ̂t|δ′〉 of the density matrix are small if
the interlevel energies considerably exceed the collision-induced broadening of the
levels; see also problem 11.1. The terms proportional to spχ̂+

q ρ̂t and spχ̂q ρ̂t in Eq.
(34.23) give zero contribution if only the diagonal matrix elements 〈δ|ρ̂t|δ〉 = fδt are
taken into account. Using an intermediate expression of the kind of Eq. (34.24), we
calculate the integral over time and obtain

∂fδt

∂t
=

2π

�

∑
γq

{|〈δ|χ̂+
q |γ〉|2δ(εδ − εγ + �ωq)[fγt(1 − fδt)(Nqt + 1) − fδt(1 − fγt)Nqt]

+|〈δ|χ̂q|γ〉|2δ(εδ − εγ − �ωq)[fγt(1 − fδt)Nqt − fδt(1 − fγt)(Nqt + 1)]}.

7.4. Check that the equilibrium Fermi distribution is a solution of
the stationary kinetic equation if the bosons are described by the Planck
distribution.

Solution: The Planck distribution of the bosons with temperature T satisfies the
identity Nq + 1 = Nqe

�ωq/T . Employing it in Eq. (34.27), we get a relation be-
tween the transition probabilities, which is called the principle of detailed balance:
Wpp′ = Wp′p exp[(εp − εp′)/T ]. With this relation, one may check that the collision
integral (34.26) is equal to zero for equilibrium Fermi distribution of electrons. This
result is valid for any stationary system, for example, the system considered in prob-
lem 7.3.

7.5. Calculate νac and ε: a) for a rectangular quantum well of
width d in the hard-wall model, and b) for a triangular quantum well
formed in a selectively-doped heterojunction (use the wave function
ψz = (z/b

√
2b)e−z/2b obtained by the variational method).

Results:

νac =
πD2Tρ2Dk0

�s2
l ρ

, ε2 = �
2s2

l k
3
2/2k0,
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where the characteristic wave numbers k0 and k2 are defined as k0 =
∫

dzψ4
z and k2 =

[
∫

dz(dψ2
z/dz)2]1/3. For the models (a) and (b), we have k0 = 3/2d, k2 = 3

√
2π2/d,

and k0 = 3/16b, k2 = 1/2 3
√

2b, respectively.

7.6. Consider the heating of 2D electrons by a stationary electric
field, taking into account both quasielastic scattering by phonons and
elastic scattering by the impurity potential.

Solution: The collision integral in the equation for the asymmetric part ∆fp con-
tains two terms, the phonon-induced term (35.5) and the impurity-induced term
−νε∆fp standing in Eq. (8.24). In the stationary case, ∆fp = −τtr(ε)eE·vp(dfε/dε),
where the transport time τtr(ε) = (νε + νac)−1 is determined by these two scattering
mechanisms. As a consequence, the energy εE standing in Eq. (35.9) becomes pro-
portional to τtr(ε)ν−1

ac instead of ν−2
ac .

7.7. Check that, for an arbitrary degeneracy of the electron gas, the
last term in the expression (35.9) for Iε contains fε(1−fε) instead of fε.

Hints: Replace [fp + fp′ ] by [fp + fp′ − 2fpfp′ ] in Eq. (35.2) and repeat the
calculations leading to Eq. (35.9).

7.8. Consider the heating of 3D electrons by a stationary electric
field, assuming that the electrons interact with acoustic phonons.

Solution: Using the quasielastic approximation in a similar way as in the 2D case,
we find the collision integral (ε = εp, p′ = p + �q):

Jac(f |ε) = 2π
∑
p′

|Cq|2ωq

[
∂Aε

∂ε
δ(εp′ − εp) − 2Aεδ

′(εp′ − εp)
]

,

where
Aε = T

∂fε

∂ε
+ fε(1 − fε).

This integral is transformed to

Jac(f |ε) = ε−1/2 ∂

∂ε
ε3/2νqe(ε)Aε, νqe(ε) =

23/2m5/2D2

π�4ρ
ε1/2,

where we have introduced the rate of quasielastic energy relaxation, νqe(ε). Calculat-
ing the field contribution on the left-hand side of the kinetic equation, we write the
stationary kinetic equation as

− 2e2E2

3mε1/2

∂

∂ε

[
ε3/2τtr(ε)

∂fε

∂ε

]
= Jac(f |ε).

The transport time, in general, includes different scattering mechanisms (as in prob-
lem 7.6). Considering only the acoustic-phonon scattering in the quasielastic ap-
proximation, we put τtr(ε) = τLA(ε), where τLA(ε) = (2ms2

l /T )ν−1
qe (ε). The kinetic

equation is finally reduced to the form dIε/dε = 0, as in Eq. (35.9), where

Iε = ε3/2νqe(ε)
[
(T + ζ2

E/ε)
dfε

dε
+ fε(1 − fε)

]
, ζ2

E =
4
3

[
eEsl

νqe(T )

]2
.
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The characteristic energy ζE is independent of ε. The structure of the flow Iε is
different from that of Eq. (35.9). Indeed, the term standing at dfε/dε in the equation
above decreases with increasing ε. By equating Iε to zero (the flow is continuous), we
find

fε = Ne−ε/T (1 + εT/ζ2
E)ζ2

E/T2

for the non-degenerate electron gas. The field effect is described by a multiplier to the
Boltzmann distribution. This distribution function always can be normalized, which
means that the electrons do not run away.

7.9. Check the compatibility of the boundary conditions (35.16) and
(35.17).

Hint: Using the expressions for λLO and Iε given by Eqs. (35.15) and (35.9), re-
spectively, show that Iε=0 determined by Eq. (35.17) is equal to Iε=�ωLO within the
accuracy of the approximations used in the derivation of the expression for λLO.

7.10. Calculate the rate of spontaneous emission of LO phonons by
2D electrons at the threshold (ε = �ωLO).

Result: νLO = πωLO(ε/ε∗)M1111(pLO/�), where the matrix elements Mabcd(q) are
defined by Eq. (29.11).

7.11. Calculate the rate of spontaneous emission of LO phonons by
3D electrons.

Result:

νLO(ε) = αωLO

√
�ωLO

ε
ln
∣∣∣∣√ε +

√
ε − �ωLO√

ε −
√

ε − �ωLO

∣∣∣∣ ,
where ε is the electron energy and α is introduced by Eq. (21.28).

7.12. Calculate αrt introduced in Eq. (36.8) for degenerate and
non-degenerate electron gases. Assume that the product ρD(ε)τtr(ε) is
energy-independent.

Result: Calculating the integral (36.9), we obtain α = π2T/3eµ for degenerate
electrons and α = 2/e − µ/eT for non-degenerate electrons.

7.13. Solve Eq. (36.17) with the initial condition ∆nrt=0 = ∆n0δ(r).
Result:

∆nrt =
∆n0

(4πDt)3/2 exp
(

− r2

4Dt
− t

τM

)
.

7.14. Obtain Eq. (36.18) directly from Eq. (36.4).
Hint: Multiply Eq. (36.4) by εp and integrate the equation obtained over p.

7.15. Derive Eq. (36.21).
Hints: Applying Eq. (36.19) with g from Eq. (36.7), separate the term (µ/e)I from

G and write the remaining part of G through the gradients of the temperature and
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electrochemical potential, employing the kinetic coefficient α defined by Eq. (36.9).
Use Eq. (36.8) to exclude the electrochemical potential.

7.16. Consider the energy balance of the electrons interacting with
LO phonons. Approximate the electron distribution a) by the isotropic
Maxwell distribution with the effective temperature Te and b) by the
streaming distribution.

Solution: Substituting |Cq|2 = 2πe2�ωLO/V ε∗q2 and ωq = ωLO into Eq. (36.24),
we calculate the sum over q and find the power loss term

P =
2
V

∑
p

�ωLOνLO(εp)(NLO + 1)f(εp) [1 − exp(�ωLO/Te − �ωLO/T )] ,

where f(εp) = exp[(µ − εp)/Te] and the rate of spontaneous LO phonon emission,
νLO(ε), is given in problem 7.11. If Te � �ωLO, we expand the logarithm standing
there near the threshold ε = �ωLO and find P = 2nα�ω2

LO

(
e−�ωLO/Te − e−�ωLO/T

)
.

Considering the streaming conditions, we can neglect the absorption of phonons and
use the expression given above, where the factor in the square brackets is replaced
by unity and the streaming distribution (35.31) stands instead of f(εp). Again, after
integrating over electron momenta, we obtain P = n�ωLO|e|E/pLO. This expression
has clear physical meaning because pLO/|e|E is the time of ballistic motion of electrons
to the active region, where they emit the phonons with energy �ωLO.

In the case of Maxwell distribution, the energy balance equation P = I·E, with the
optical-phonon power loss term P calculated above, gives us a logarithmic increase
of the electron temperature Te with increasing electric field. In the case of streaming
distribution, the balance equation coincides with the expression for the current den-
sity I = en�ωLO/pLO obtained in the end of Sec. 35.

7.17. Check the particle conservation in the collisions described by
the integrals Jim(f |Pt) and Je,ph(f |Pt) in Sec. 37.

Hint: Integrate Jim(f |Pt) and Je,ph(f |Pt) over P.

7.18. Compare Eqs. (10.18) and (37.2) expressing ∆0(E) in the
quantum and quasi-classical cases, respectively.

Solution: Equation (10.18) follows from the general expression (10.17). Using this
expression, we have

∆0(E) =
ω

2π2�

∫ π/ω

−π/ω

dt

∫ 0

−∞
dτeλτ cos

{
τE

�
− A

�ω
[cos ω(t + τ ) − cos ωt]

}
,

where A = �q · vω. Under the quasi-classical condition E  �ω, we carry out the
expansion cos ω(t + τ ) − cos ωt � −ωτ sin ωt. Calculating the integral over τ , we
obtain the δ-function averaged over the period according to Eq. (37.2).

7.19. Using the results of Sec. 10, prove that the first term on the
left-hand side of Eq. (37.9) is equal to the power of electromagnetic
radiation absorbed by the electrons interacting with impurities.
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Solution: According to Sec. 10, this power is equal to σ(ω)E2
t = σ(ω)E2/2, where

σ(ω) is determined by Eqs. (10.23) and (10.24). Under the integrals over p and q
in Eq. (10.24), one may replace p(fp+�q − fp) by �qfp. Finally, using the identity
[Jk−1(x) + Jk+1(x)]x = 2kJk(x), one proves the required statement.

7.20. Using Eq. (34.30), represent Jr(f |ε) as a two-boson (one photon
and one LO phonon) contribution to the electron-boson collision integral
and reduce it to the form given by Eqs. (37.18) and (37.19).

Solution. Let q1 in Eq. (34.30) numbers photon states and q numbers LO phonon
states. Considering the monochromatic photons in the dipole approximation and at
Nq1  1, we obtain, from Eqs. (34.30) and (34.31),

J
(2)
e,b (f |δ) =

2π

�

(
eE

2ω

)2∑
γ

∑
q

|C(LO)
q |2

∑
s=±1

{∣∣∣∣∣∑
ν

〈γ|v̂ · e|ν〉〈ν|e−iq·r|δ〉
εδ − εν − �ωLO

+
∑

ν

〈γ|e−iq·r|ν〉〈ν|v̂ · e|δ〉
εδ − εν − s�ω

∣∣∣∣∣
2

δ(εδ − εγ − s�ω − �ωLO)[fγ(1 − fδ)NLO

−fδ(1 − fγ)(NLO + 1)] +

∣∣∣∣∣∑
ν

〈γ|v̂ · e|ν〉〈ν|eiq·r|δ〉
εδ − εν + �ωLO

+
∑

ν

〈γ|eiq·r|ν〉〈ν|v̂ · e|δ〉
εδ − εν − s�ω

∣∣∣∣∣
2

×δ(εδ − εγ − s�ω + �ωLO)[fγ(1 − fδ)(NLO + 1) − fδ(1 − fγ)NLO]

}
,

where NLO is the occupation number of optical phonons and e is the unit vector along
E. Using the basis of plane waves, we have 〈p′|eiq·r|p〉 = δp′,p+�q and 〈p′|v̂ · e|p〉 =
(vp · e)δp′,p. Assuming that the electron gas is non-degenerate, we find

J
(2)
e,b (f |p) =

v2
ωe2ωLO

2ω2ε∗

∫ ∞

0
dq

∫
dΩ̃q

4π
(q · e)2

×
∑

s=±1

{δ(εp − εp−�q − s�ω − �ωLO)[fp−�qNLO − fp(NLO + 1)]

+δ(εp − εp+�q − s�ω + �ωLO)[fp+�q(NLO + 1) − fpNLO]} ,

where dΩ̃q is the differential of the solid angle of the vector q. Assuming that fp =
f(εp), we average J

(2)
e,b (f |p) over the angle of p, Jr(f |ε) = (4π)−1 ∫ dΩ̃pJ

(2)
e,b (f |p), and

obtain Eqs. (37.18) and (37.19). Equation (37.18) is written at NLO � 1, when the
optical phonons are frozen out.

7.21. Using the expressions for νqe(ξ) and νr(ξ, ξ′), calculate the
integral standing in the exponent of Eq. (37.23) at p′ = 0.

Result: ∫ ξ

ξ′
dξ′′ uξ′′

Dξ′′
=

ξ′ − ξ

t
+

δω(1 + δω/2t)
rt

ln
[

ξ + (δω)2/2rt

ξ′ + (δω)2/2rt

]
.
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7.22. Analyze Eqs. (37.31) and (37.32).
Solution: With the use of Eq. (37.32) and under the conditions νqe � νr, Eq.

(37.31) can be rewritten as an equation for fξ:

d

dξ

[
D(ξ)

dfξ

dξ
− u(ξ)fξ

]
= 0,

where

D(ξ) = (δω)2νr(ξ, ξ + p − 1/2) + t
[
ξ3/2νqe(ξ) + (ξ + 1/2)3/2νqe(ξ + 1/2)ηξ

]
,

u(ξ) = 2δωνr(ξ, ξ + p − 1/2) −
[
ξ3/2νqe(ξ) + (ξ + 1/2)3/2νqe(ξ + 1/2)

(
ηξ + t

∂ηξ

∂ξ

)]
,

and ηξ = νr(ξ, ξ + p − 1/2)/νr(ξ + 1/2, ξ + p). This drift-diffusion equation has the
same form as Eq. (37.21) and can be analyzed in a similar way. If t is small and
0 < δω < r[1/4+

√
p/(2p + 1)]/

√
2p, the function u(ξ) changes its sign in the interval

[0, 1/2] from positive to negative, and the distribution fξ has a peak. This peak is
repeated in the upper half of the passive region because gξ � ηξfξ according to Eq.
(37.32). Therefore, we have two peaks in the passive region. The interval of existence
of these peaks is smaller than in the case of integer photon-phonon resonance. If δω

exceeds this interval, one gets a broad distribution.

7.23. Calculate the LA phonon-assisted relaxation rate between the
Landau levels of 3D electrons.

Result: Consider the electron in the Landau level N with momentum pz along
the magnetic field (see the description of the Landau quantization in Sec. 5). The
relaxation rate of this state due to quasielastic LA phonon-assisted transitions to the
level N ′ is given by

ν(NN′)
LA (pz) =

2D2Tm

ρs2
l �2
√

p2
NN′ + p2

z

∫ ∞

0

du

2πl2H
ΦN′N(u),

where p2
NN′ = 2m�ωc(N − N ′), lH is the magnetic length, and the function ΦN′N(u)

is defined by Eq. (48.14).

7.24. Calculate the matrix elements 〈n|eiq·r|n′〉 by using the eigen-
states |n〉 of the Schroedinger equation with the spherically-symmetric
potential energy V (r) = mΩ2r2/2.

Solution: Considering the Schroedinger equation for the electron in the parabolic
potential,[

− �2

2m

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
+

mΩ2

2
(x2 + y2 + z2) − εn

]
ψ(n)

r = 0,

we search for the wave function in the form ψ(n)
r = ψxψyψz. The three-dimensional

problem is reduced to the one-dimensional harmonic oscillator problem considered in
Appendix A. The normalized wave function is presented as a product of the eigen-
functions of the harmonic oscillator:

ψ(n)
r =

Hn1(x/�)Hn2(y/�)Hn3(z/�)√
n1!n2!n3!2n1+n2+n3π3/2�3

exp(−r2/2�2),
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where � = (�/mΩ)1/2 estimates the size of the quantum dot. The quantum number
n should be considered as a combination of the numbers n1, n2, and n3, each of them
is either zero or positive integer. The energy spectrum of the quantum dot depends
on the sum of these numbers as εn = �Ω(N +1/2), where N = n1 +n2 +n3 +1 is the
level number. The degeneracy of the level is given by PN = N (N +1)/2. The ground
level (N = 1) contains a single state n = (0, 0, 0), while the first exited level (N = 2)
is triple degenerate, since it contains the states (1, 0, 0), (0, 1, 0), and (0, 0, 1). The
matrix elements are calculated according to Eq. (A.27):

〈n|eiq·r|n′〉 =

√
n1!n2!n3!
n′

1!n′
2!n′

3!

(
iqx�√

2

)n′
1−n1

(
iqy�√

2

)n′
2−n2

(
iqz�√

2

)n′
3−n3

e−q2�2/4

×L
n′
1−n1

n1 (q2
x�2/2)Ln′

2−n2
n2 (q2

y�2/2)Ln′
3−n3

n3 (q2
z�2/2).

Taking into account Eq. (38.20), it is convenient to introduce the squared matrix
element

|〈N ′|eiq·r|N 〉|2 ≡ P −1
N
∑
n∈N

∑
n′∈N ′

|〈n′|eiq·r|n〉|2.

For the transition between the ground and first excited states, we obtain

〈000|eiq·r|100〉 = (iqx�/
√

2)e−q2�2/4,

while the matrix elements 〈000|eiq·r|010〉 and 〈000|eiq·r|001〉 differ from this expres-
sion by substitutions of qy and qz in place of qx. Therefore, the average over all
degenerate states gives us

|〈1|eiq·r|2〉|2 =
1
3

[
|〈000|eiq·r|100〉|2 + |〈000|eiq·r|010〉|2

+|〈000|eiq·r|001〉|2
]

= (q2�2/6)e−q2�2/2.

The same result is obtained if we average |〈000|eiq·r|100〉|2 over the angle of q.
The probability of electron transitions between the levels is exponentially small at
(q�)2  1.

7.25. Consider the energy broadening of a non-degenerate discrete
level due to interaction of electrons with equilibrium bosons.

Solution: Let us introduce the retarded double-time Green’s function GR
tt′ =

〈〈â|â+〉〉R
tt′ , where â and â+ are the operators of annihilation and creation of electrons

in the single state |0〉 of the non-degenerate level with the energy ε0. The Hamiltonian
of the problem is Ĥ = Ĥe + Ĥb + Ĥe,b, where Ĥe = ε0â

+â, Ĥb =
∑

q �ωq b̂
+
q b̂q, and

Ĥe,b = â+â
∑

q[〈0|χ̂q|0〉b̂q + 〈0|χ̂+
q |0〉b̂+

q ]. The problem is stationary and the func-
tion GR

tt′ depends only on t − t′. Let us write Eq. (D.13) for this function and use
the energy representation. We obtain the expression of GR

ε through the higher-order
correlation functions:

[ε − ε0 + iλ]GR
ε − 1 =

∑
q

〈〈
â[〈0|χ̂q|0〉b̂q + 〈0|χ̂+

q |0〉b̂+
q ]
∣∣∣ â+

〉〉R

ε
, λ → +0.

Applying Eq. (D.13) to the Green’s functions 〈〈âb̂q|â+〉〉R
ε and 〈〈âb̂+

q |â+〉〉R
ε , we retain

the contributions linear in 〈0|χ̂q|0〉. This allows us to express these Green’s functions
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through GR
ε and rewrite the right-hand side of the equation above in the form ΣR

ε GR
ε ,

where the self-energy function is given by

ΣR
ε �

∑
q

|〈0|χ̂q|0〉|2
[

Nq

ε − ε0 + �ωq + iλ
+

Nq + 1
ε − ε0 − �ωq + iλ

]
.

This corresponds to the second-order approximation with respect to electron-boson
interaction. The occupation numbers of bosons are introduced in a standard way,
Nq = 〈〈b̂+

q b̂q〉〉. The Green’s function is expressed as in Sec. 14, GR
ε = [ε−ε0 −ΣR

ε ]−1.
The real part of ΣR

ε determines a shift of the energy ε0, while the imaginary part
determines the broadening energy. Calculating the broadening energy caused by the
interaction with LA phonons, we find

Im ΣR
ε0+δε = − D2

4πρs2
l

|δε/�sl|3 L0000(δε/�sl)
|1 − exp(−δε/T )| ,

where Labcd is introduced by Eq. (38.19) and δε = ε − ε0. Since the broadening
energy goes to zero at δε → 0, the energy dependence of the density of states is
rather complicated.



Chapter 8

NON-EQUILIBRIUM DIAGRAM
TECHNIQUE

The description of transport phenomena under conditions far from equilibrium re-
quires a more careful consideration for the systems with strong scattering, since both
the reconstruction of energy spectrum and the distribution of quasiparticles have
to be considered simultaneously. For these purposes, it is convenient to use the non-
equilibrium diagram technique, which operates, apart from the retarded and advanced
Green’s functions, with an additional function determining non-equilibrium distribu-
tion of the quasiparticles. The one-electron formulation of this technique, given below
for the electron-impurity system, is a generalization of the kinetic description devel-
oped in Chapter 2 for the case of weak scattering. The non-equilibrium diagram
technique (NDT) allows one to derive kinetic equations for describing the response of
a system to external fields (not necessarily in the linear regime) in a unified way, by
considering the series of diagrams with a required accuracy with respect to the inter-
action. In this way one can describe, for example, the systems of interacting electrons
and the interacting electron-phonon systems, which cannot be treated diagrammati-
cally at non-zero temperature with the use of the technique given in Chapter 3. Since
the applications of the NDT often require a complex and lengthy consideration, below
we present only a limited number of examples of this kind.

39. Matrix Green’s Function
Let us begin our consideration with the case of electron-impurity sys-

tem. Equation (7.2) for the one-electron density matrix n̂t is written
below in the coordinate representation, analogous to Eq. (9.2):

i�
∂

∂t
nt(x1,x2) −

(
Ĥx1t − Ĥ∗

x2t

)
nt(x1,x2) = 0, (1)

where nt(x1,x2) ≡ 〈x1|n̂t|x2〉. The Hamiltonian of the system is written
as Ĥxt = ĥxt +Uim(x). It contains the one-electron Hamiltonian ĥxt de-

341
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scribing electron dynamics in external fields and the perturbation Uim(x)
describing the interaction of electrons with randomly distributed impu-
rities. The procedure of averaging over the impurity distribution has
been discussed in Secs. 7 and 14. To consider the evolution of nt(x1,x2)
simultaneously with the scattering-induced modification of the electron
spectrum, it is convenient to introduce a 2 × 2 matrix[

G−−(x1t1,x2t2) G−+(x1t1,x2t2)
G+−(x1t1,x2t2) G++(x1t1,x2t2)

]
. (2)

The diagonal and non-diagonal components of this matrix satisfy, by
definition, the following equations:(

i�
∂

∂t1
− Ĥ1

)
G∓∓(1, 2) = ±δ(1 − 2), (3)

(
i�

∂

∂t1
− Ĥ1

)
G∓±(1, 2) = 0,

where either upper or lower pairs of signs are considered. The multi-
indices 1 and 2 stand for (x1, t1) and (x2, t2). One can write similar
equations with the operators acting on the variables x2 and t2:(

i�
∂

∂t2
− Ĥ2

)∗
G∓∓(1, 2) = ±δ(1 − 2), (4)

(
i�

∂

∂t2
− Ĥ2

)∗
G∓±(1, 2) = 0.

The multi-indices 1, 2, . . . can also include discrete variables such as spin,
band number, etc. For example, the function δ(1 − 2) denotes the δ-
functions of spatial and temporal variables,

δ(1 − 2) ⇒ δ(x1 − x2)δ(t1 − t2), (5)

and can include, if necessary, the Kronecker symbols of discrete variables
(spin, etc.). The diagonal (−− and ++) components of the 2×2 matrix
function (2) satisfy the equations with δ-source on the right-hand sides,
in a similar way as in the equations for the ordinary Green’s functions;
see, for example, Eq. (14.6) and problem 3.7. On the other hand,
the non-diagonal components satisfy the homogeneous equations. This
difference can be taken into account by introducing a double time axis.
We assume that the times t1 and t2 in the diagonal components of the
matrix (2) are in the same axis so that the inhomogeneous contributions
appear at t1 = t2. In the non-diagonal components, the times t1 and t2
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are in the different axes and no δ-functions appear; see Fig. 1 in Sec. 41
below.

By comparing the Hermitian conjugate Eq. (3) to Eq. (4), we see
that

G−−(1, 2) = −[G++(2, 1)]∗, G±∓(1, 2) = −[G±∓(2, 1)]∗, (6)

which means that G−−(1, 2) and G++(1, 2) are anti-Hermitian with re-
spect to each other, while G−+(1, 2) and G+−(1, 2) are anti-Hermitian by
themselves. It is also assumed that the relations like those in Eq. (6)
can be applied to the initial conditions to Eqs. (3) and (4). Taking a
sum of the equations for G++ and G−−, and, separately, of the equations
for G−+ and G+−, one finds that the sums (G++ +G−−) and (G+− +G−+)
satisfy the same equation. As a result,

G−−(1, 2) + G++(1, 2) = G−+(1, 2) + G+−(1, 2), (7)

and we should consider the expression (2) as a matrix Green’s function
with only three linearly-independent components, provided that Eq. (7)
is true for the initial conditions to Eqs. (3) and (4) as well. To derive
a relation between the exact density matrix (governed by Eq. (1)) and
non-diagonal components of the matrix Green’s function (2), we subtract
the equation for non-diagonal component in Eq. (3) from the analogous
equation in Eq. (4) and obtain[

i�

(
∂

∂t1
+

∂

∂t2

)
− Ĥ1 + Ĥ∗

2

]
G∓±(1, 2) = 0. (8)

At t1,2 → t, this equation coincides with Eq. (1) for nt(x1,x2) (note
that since t1 and t2 are in the different axes, the sum of the derivatives
over these times is equal to ∂/∂t). Since G−+ is anti-Hermitian and n̂t is
Hermitian, the relation between these functions should contain a factor
of i. In the following, we specify this relation as

−i� lim
t1,2→t

G−+(x1t1,x2t2) = nt(x1,x2). (9)

Equation (9) completes the definition of the function G−+, which oth-
erwise would contain an undefined numerical coefficient. The function
G+− is expressed through G−+ with the use of Eq. (7).

The one-electron density matrix ρt(x1,x2), averaged over the impurity
distribution, is introduced as

ρt(x1,x2) = 〈〈nt(x1,x2)〉〉. (10)

It is expressed through G−+ as

ρt(x1,x2) = −i�〈〈G−+(x1t,x2t)〉〉 ≡ −i�G−+(x1t,x2t), (11)
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where the second equation introduces the averaged non-diagonal com-
ponent of the matrix Green’s function Ĝ. The latter is determined from
the definition (2) as

Ĝ(1, 2) =
[

〈〈G−−(1, 2)〉〉 〈〈G−+(1, 2)〉〉
〈〈G+−(1, 2)〉〉 〈〈G++(1, 2)〉〉

]
. (12)

To avoid misunderstandings, we point out that Ĝ is not a quantum-
mechanical operator, since we have already employed the coordinate
representation in the multi-indices. The hat over G merely reflects the
matrix structure of the Green’s function under consideration. On the
other hand, the Hamiltonians below remain quantum-mechanical oper-
ators. Thus, the “hat” symbols have two different meanings. Below we
derive a set of equations for the components of Ĝ(1, 2) for the case of
electron interaction with randomly distributed impurities.

In order to carry out a diagrammatic expansion of Ĝ(1, 2), we rewrite
Eqs. (3) and (4) for the matrix Green’s function Ĝ(1, 2) in the form(

i�
∂

∂t1
− Ĥ1

)
Ĝ(1, 2) = σ̂zδ(1 − 2), (13)

(
i�

∂

∂t2
− Ĥ2

)∗
Ĝ(1, 2) = σ̂zδ(1 − 2).

The Pauli matrix σ̂z on the right-hand sides reflects the difference in
signs between the right-hand sides of the equations for G−− and G++. In
the absence of scattering, the system is described by the Green’s function
of ideal electron gas, ĝ(1, 2), and(

i�
∂

∂t1
− ĥ1

)
ĝ(1, 2) = σ̂zδ(1 − 2), (14)

(
i�

∂

∂t2
− ĥ2

)∗
ĝ(1, 2) = σ̂zδ(1 − 2).

Using Eq. (14), one can reduce Eq. (13) to the following matrix integral
equations:

Ĝ(1, 2) = ĝ(1, 2) +
∫

d1′ĝ(1, 1′)σ̂zU1′ Ĝ(1′, 2), (15)

Ĝ(1, 2) = ĝ(1, 2) +
∫

d1′Ĝ(1, 1′)U1′ σ̂z ĝ(1′, 2),

which are valid for any time- and coordinate-dependent scattering po-
tential U1′ ≡ Ux′

1t′1 , though in this section we consider time-independent
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(static) potentials. These equations are analogical to the scalar integral
equation (14.8) employed in the diagram technique for retarded and ad-
vanced Green’s functions in Chapter 3.

The diagram technique for the components of the matrix Green’s func-
tion defined above is called the non-equilibrium diagram technique, and
these components will be named below as the non-equilibrium Green’s
functions. The non-equilibrium diagram technique formulated here dif-
fers from the diagram technique of Chapter 3, in spite of the fact that in
both cases we consider the electron-impurity interaction (or, more gen-
eral, interaction of electrons with a random static potential). Now, the
Green’s function depends on two time variables and cannot be reduced
to the Green’s function of a stationary problem, which depends on the
electron energy. The integral over the time variable enters the last terms
in Eq. (15), and this makes the diagrammatic expansion more difficult.
Each electron line connecting the points 1 and 2 corresponds to the ma-
trix Green’s function Ĝ(1, 2) multiplied by i (i.e., the present definition
differs by the factor of i from that given by Eq. (14.11)). The vertices
also have matrix structure. As seen from Eq. (15), one has to put

������
���
�
1

= −iσ̂zU1 (16)

in contrast to Eq. (14.11). These modifications, however, do not change
the basic structure of the diagrams, and the procedure of averaging over
the random potential remains the same. Similar as in Sec. 14, we can
introduce the self-energy matrix Σ̂(1, 2) and write the matrix Dyson
equation:

Ĝ(1, 2) = ĝ(1, 2) +
∫

d1′
∫

d2′ĝ(1, 1′)Σ̂(1′, 2′)Ĝ(2′, 2) (17)

= ĝ(1, 2) +
∫

d1′
∫

d2′Ĝ(1, 1′)Σ̂(1′, 2′)ĝ(2′, 2).

This equation has the same form as the Dyson equation (14.22) written
in the coordinate representation. For the purpose of graphical represen-
tation, we denote iĜ and iĝ by bold and thin electron lines, respectively,
and −iΣ̂ by a semi-oval, like in Eqs. (14.22) and (14.23). Then, the rep-
resentation of Eq. (17) looks similar to Eq. (14.22). We remind that the
definitions of the graphic elements used in the non-equilibrium diagram
technique differ from those of Chapter 3 not only because of the matrix
structure of the vertices and lines, but also due to the presence of the
factors i or −i. The introduction of these factors is necessary because
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we are going to apply the diagram technique not only to the case of
electron-impurity interaction, but also to the cases of electron-electron
and electron-boson interaction. This will become clear in Sec. 41, where
the general formulation of the non-equilibrium diagram technique justi-
fies the convenience of such factors.

The self-energy matrix is given by a diagrammatic expansion analo-
gous to Eq. (14.23):

−iΣ̂(1, 2) =
1 2

+
1 2′ 1′ 2

+ . . . . (18)

The broken lines connecting vertices 1 and 2 imply the pair correlation
functions 〈〈U1U2〉〉 of the potentials at the vertices, in a similar way as in
Eq. (14.17). In the analytical form, Eq. (18), multiplied by i, is written
as

Σ̂(1, 2) = 〈〈U1U2〉〉σ̂zĜ(1, 2)σ̂z (19)

+
∫

d1′
∫

d2′〈〈U1U1′〉〉〈〈U2′U2〉〉σ̂zĜ(1, 2′)σ̂zĜ(2′, 1′)σ̂zĜ(1′, 2)σ̂z + . . . .

It differs from Eq. (14.26) by the additional matrix factors σ̂z com-
ing from the vertices, as well as by the additional integrals over time.
Note that, since the potentials Ui (i = 1, 2, ...) are assumed to be time-
independent, these integrals are applied to the Green’s functions only.

Instead of writing the matrix diagram expressions, one may use the
diagonality of the vertex matrix σ̂z and attribute the indices + or − to
the ends of electron lines, implying the sums over these indices in all
vertices of the diagram. According to Eq. (16), the vertex 1 with the
index s (s = ±) gives the contribution siU1 to the analytical expression
of the diagram. Therefore, attributing the broken line connecting the
vertices 1s and 2s′ to the correlation function 〈〈U1U2〉〉, we should si-
multaneously attach the factors si and s′i to these vertices. Using the
rules we just formulated, one may write the expression

−iΣs1s2(1, 2) = 〈〈U1U2〉〉is1is2iG
s1s2(1, 2)

+is1is2

∫
d1′
∫

d2′〈〈U1U1′〉〉〈〈U2′U2〉〉 (20)

×
∑

s′
1,s′

2=±
is′

1is
′
2iG

s1s′
2(1, 2′)iGs′

2s′
1(2′, 1′)iGs′

1s2(1′, 2) + . . .

for each element of the matrix −iΣ̂(1, 2) given by the diagrammatic
expansion (18). Here and below, the factors s1, s2, etc. in the expressions
like Eq. (20) are equal to +1 or −1, corresponding to the indices + or −
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of the Green’s functions. The equivalence of Eqs. (20) and (19) is easy
to check by observing that the matrix element [σ̂zĜ(1, 2)σ̂z ]s1s2 is equal
to s1s2G

s1s2(1, 2). The general formulation of the diagram technique
using the vertices with extra indices + or − is given in Sec. 41.

After acting by the operators (i�∂/∂t1−ĥ1) and (i�∂/∂t2−ĥ2)∗ on the
matrix integral equations (17), we use Eq. (14) and obtain the following
integro-differential equations:(

i�
∂

∂t1
− ĥ1

)
Ĝ(1, 2) = σ̂zδ(1 − 2) +

∫
d1′σ̂zΣ̂(1, 1′)Ĝ(1′, 2),

(
i�

∂

∂t2
− ĥ2

)∗
Ĝ(1, 2) = σ̂zδ(1 − 2) +

∫
d1′Ĝ(1, 1′)Σ̂(1′, 2)σ̂z . (21)

Averaging Eq. (7) over the impurity distribution, we see that the relation
between the components of Ĝ(1, 2) has the same form as Eq. (7):

G−−(1, 2) + G++(1, 2) = G−+(1, 2) + G+−(1, 2). (22)

A similar linear relation can be written for the components of Eq. (17).
Doing this, one can see that the inhomogeneous contribution due to
ĝ(1, 2) vanishes and only the integral term remains:∫

d1′[Σ−−(1, 1′) + Σ++(1, 1′) + Σ−+(1, 1′) + Σ+−(1, 1′)]

×[G−−(1′, 2) + G−+(1′, 2)] = 0. (23)

Generally speaking, Σ̂ and Ĝ are not independent of each other. How-
ever, since they depend on the parameters of the system in different
fashions, and Eq. (23) must be valid in the entire region of these param-
eters, there is only one possible way to satisfy Eq. (23), the following
linear relation between the components of the self-energy matrix:

Σ−−(1, 2) + Σ++(1, 2) + Σ−+(1, 2) + Σ+−(1, 2) = 0. (24)

Therefore, there are only three independent components of the self-
energy matrix, which have to be considered together with three inde-
pendent components of the matrix (12).

40. Generalized Kinetic Equation
Using the linear relations (39.22) and (39.24), we can write Eqs.

(39.17) and (39.21) through the three independent components of the
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matrices Ĝ(1, 2) and Σ̂(1, 2). The transition to the “triangular” rep-
resentation of the Green’s and self-energy matrices is realized by the
unitary transformation

R̂ =
1 + iσ̂y√

2
, R̂−1 =

1 − iσ̂y√
2

. (1)

Using Eq. (39.22), we obtain the matrix

R̂−1Ĝ(1, 2)R̂ =
[

0 GA(1, 2)
GR(1, 2) F (1, 2)

]
, (2)

whose components are

GR(1, 2) = G−−(1, 2) − G−+(1, 2) = G+−(1, 2) − G++(1, 2),

GA(1, 2) = G−−(1, 2) − G+−(1, 2) = G−+(1, 2) − G++(1, 2), (3)

F (1, 2) = G−−(1, 2) + G++(1, 2) = G−+(1, 2) + G+−(1, 2).

The same transformation, when applied to Σ̂(1, 2), gives us the self-
energy matrix

R̂−1Σ̂(1, 2)R̂ =
[

Ω(1, 2) ΣR(1, 2)
ΣA(1, 2) 0

]
(4)

with the components

ΣR(1, 2) = Σ−−(1, 2) + Σ−+(1, 2),

ΣA(1, 2) = Σ−−(1, 2) + Σ+−(1, 2), (5)

Ω(1, 2) = Σ−−(1, 2) + Σ++(1, 2).

To write the density matrix ρt(x1,x2) through the components of the
Green’s function (3), one should carry out the inverse unitary transfor-
mation of the right-hand side of Eq. (2) according to R̂[. . .]R̂−1. Ex-
pressing G−+ through the components of the matrix (2), we obtain

ρt(x1,x2) = − i�

2
lim

t1,t2→t
[F (1, 2) + GA(1, 2) − GR(1, 2)] (6)

according to Eq. (39.11).
From the relations (39.6) we find

GA(1, 2) = GR∗(2, 1), F (1, 2) = −F ∗(2, 1), (7)

which means that the component GA is completely determined by GR.
Therefore, one may consider the equations for GR and F only. Applying
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the unitary transformation (1) to Eq. (39.21), we transform the vertex
with the use of the relation R̂−1σ̂zR̂ = σ̂x (problem 8.1). This leads to
the following equations for GR:(

i�
∂

∂t1
− ĥ1

)
GR(1, 2) = δ(1 − 2) +

∫
d1′ΣR(1, 1′)GR(1′, 2), (8)

(
i�

∂

∂t2
− ĥ2

)∗
GR(1, 2) = δ(1 − 2) +

∫
d1′GR(1, 1′)ΣR(1′, 2).

These equations are similar to Eq. (14.6), which means that GR and GA

are the conventional retarded and advanced Green’s functions. These
functions describe the dynamical properties of the system, including the
case when external fields are present. The equations for F are obtained
from Eq. (39.21) in the following form:(

i�
∂

∂t1
− ĥ1

)
F (1, 2) =

∫
d1′[Ω(1, 1′)GA(1′, 2)+ΣR(1, 1′)F (1′, 2)], (9)

(
i�

∂

∂t2
− ĥ2

)∗
F (1, 2) =

∫
d1′[GR(1, 1′)Ω(1′, 2) + F (1, 1′)ΣA(1′, 2)],

and the function F (1, 2) determines the kinetic properties of the system
under consideration.

The explicit expressions for the impurity vertices has not been used
in the derivation of Eqs. (8) and (9). They have to be considered only in
the self-energy matrices, i.e., in the calculation of the matrix products
like R̂−1Σ̂R̂ appearing in the unitary transformation of Eq. (39.19). Any
term of this kind contains products of the form

σ̂xR̂−1ĜIR̂σ̂xR̂−1ĜIIR̂σ̂x . . . σ̂xR̂−1Ĝ...R̂σ̂x, (10)

where the indices I, II, . . . denote the sets of internal coordinates of
the Green’s functions. The integrals over these coordinates and the
correlation functions of the impurity potentials (which are scalars) are
not written in Eq. (10). By defining the matrix

G̃ ≡ σ̂xR̂−1ĜR̂σ̂x =
[

F GR

GA 0

]
, (11)

we rewrite the expression (10) as G̃IR̂
−1ĜIIR̂G̃III . . . . The product of

the matrices (2) and (11) gives us

G̃IR̂
−1ĜIIR̂ =

[
GR

I GR
II FIG

A
II + GR

I FII

0 GA
I GA

II

]
, (12)
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and the product of a pair of the matrices (12) becomes[
GR

I GR
IIG

R
IIIG

R
IV GR

I GR
IIFIII,IV + FI,IIG

A
IIIG

A
IV

0 GA
I GA

IIG
A
IIIG

A
IV

]
, (13)

where, by definition, FI,II ≡ FIG
A
II + GR

I FII . Since the product (10)
contains an odd number of the Green’s functions, one should finally
multiply the matrix of the kind of Eq. (13) by the matrix (11), which
gives us [

GR
I GR

II . . . F . . .
0 GA

I GA
II . . .

] [
F GR

GA 0

]
=
[

GR
I GR

II . . . F + F . . . GA GR
I GR

II . . . GR

GA
I GA

II . . . GA 0

]
. (14)

The coordinates of the last matrix are not written here. One can see
that Σs (s = R, A) contains the products GsGs . . . , while Ω is linear in
F . Note that the retarded Green’s functions GR in the expression for Ω
stand left to F , while GA stand right to F .

Introducing the diagram representation of the components of the “tri-
angular” Green’s function according to

iGR(A)(1, 2) =
R(A)1 2

(15)

iF (1, 2) =
F1 2

, (16)

we obtain the diagrammatic expansion of the self-energy component Ω:

−iΩ(1, 2) =
F

+ [
R R F

] +[ RFA ] + [ FAA ] + . . . . (17)

The second-order term with line sequence [RRF ] is shown here explic-
itly, and the terms [RFA] and [FAA] differ from it only by the indices
of the corresponding Green’s functions. The whole expansion can be
written by analogy. One should remember that the line F appears only
one time per diagram, and the retarded (advanced) Green’s functions
always stand left (right) to F . Note that each vertex gives only a fac-
tor of i into analytical expressions, because the matrix multiplication is
already done. The expansion of the components −iΣR(A)(1, 2) has the
same form as Eq. (39.18), one has merely to replace the matrix vertices
(39.16) by the conventional, scalar ones, and assume that the solid lines
correspond to iGR(A) according to Eq. (15). The linear relation between
the functions Ω and F exists because the Pauli principle in the case of
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electron-impurity scattering is automatically satisfied so that the factors
of the kind (1 − F ) disappear.

In order to get a convenient set of equations for GR and F , we employ
Eqs. (8) and (9). Using Eq. (8), we add the second equation of the pair
to the first one. Using Eq. (9), we subtract the second equation from
the first one. As a result, we obtain[

i�

(
∂

∂t1
− ∂

∂t2

)
− ĥ1 − ĥ∗

2

]
GR(1, 2) = 2δ(1 − 2)

+
∫

d1′ [ΣR(1, 1′)GR(1′, 2) + GR(1, 1′)ΣR(1′, 2)
]

(18)

(the equation for GA(1, 2) differs from this one merely by the substitution
of the index A in place of R), and[

i�

(
∂

∂t1
+

∂

∂t2

)
− ĥ1 + ĥ∗

2

]
F (1, 2) =

∫
d1′ [Ω(1, 1′)GA(1′, 2)

−GR(1, 1′)Ω(1′, 2) + ΣR(1, 1′)F (1′, 2) − F (1, 1′)ΣA(1′, 2)
]
. (19)

The equation for GR is independent of F , i.e., the modification of elec-
tron dynamics due to scattering does not depend on the electron distri-
bution. On the other hand, both the non-equilibrium distribution and
the interaction-modified quasiparticle dynamics are important in Eq.
(19) for F . This equation should be considered as a generalization of
the quantum kinetic equation, and its right-hand side is the generalized
collision integral describing both the relaxation of electron distribution
and the renormalization of electron spectrum due to electron-impurity
scattering. Therefore, Eqs. (18) and (19) describe the response of the
quasiparticles formed in the electron-impurity system. In contrast to the
ordinary kinetic equation, written for the density matrix with a single
time variable, the generalized kinetic equation is written for the function
F depending on two time variables.

However, if the external fields acting on the system are slowly varying
with time, one may carry out a quasi-classical transformation of the
time variables, analogous to the Wigner transformation of the coordinate
variables used in Sec. 9. Introducing t = (t1 + t2)/2, τ = t1 − t2, and
carrying out the Fourier transformation over τ , we obtain

ĜR
εt =

∫
dτeiετ /�ĜR

t+τ /2,t−τ /2, ĜR

t+τ /2,t−τ /2 =
∫

dε

2π�
e−iετ /�ĜR

εt. (20)

The Green’s function is written here in the operator form, and the co-
ordinate representation is given as usual, GR

εt(x1,x2) = 〈x1|ĜR
εt|x2〉. If
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necessary, one may add discrete indices (spin, etc.) to the Green’s func-
tion. The functions GA, F , ΣR, ΣA, and Ω are transformed in the same
way. One can see that ĜR

εt = ĜA+
εt and F̂εt = −F̂+

εt . The expression for
the density matrix follows from Eqs. (6) and (20):

ρ̂t = −i

∫
dε

4π

(
F̂εt + ĜA

εt − ĜR
εt

)
. (21)

Let us write the equations for ĜR
εt and F̂εt in the case of slowly varying

external fields, when the modifications of the Green’s functions on the
quantum scale of time �/ε are small. This means that all functions stand-
ing under the integrals over time in Eqs. (18) and (19) are transformed
into the functions with the same arguments ε and t after the Wigner
transformation (20) (compare to the results of Appendix C, where the
Wigner transformation of operator products is considered). Transform-
ing Eq. (18), we also assume that ĥt±τ /2 � ĥt on the left-hand side,
which is true for slowly varying external fields. The transformed Eq.
(18) is written below in the operator form:

εĜR
εt − 1

2
[ĜR

εt, ĥt]+ = 1 +
1
2
[Σ̂R

εt, Ĝ
R
εt]+. (22)

In the transformation of Eq. (19), we use a more detailed expansion,
ĥt±τ /2 � ĥt ± (∂ĥt/∂t)τ/2, since F̂εt may commute with ĥt. Therefore,
Eq. (19) is transformed into

i�
∂

∂t
F̂εt + [F̂εt, ĥt] +

i�

2

[
∂F̂εt

∂ε
,
∂ĥt

∂t

]
+

= Ω̂εtĜ
A
εt − ĜR

εtΩ̂εt + Σ̂R
εtF̂εt − F̂εtΣ̂A

εt. (23)

The operator products of the kind Ω̂εtĜ
A
εt assume the integrals over inter-

nal coordinates, according to 〈x1|Ω̂εtĜ
A
εt|x2〉 =

∫
dx3Ωεt(x1,x3)GA

εt(x3,
x2). Equation (23), together with Eq. (22) and diagrammatic expan-
sions of ΣR, ΣA, and Ω, generalizes the quantum kinetic equation (7.13)
to the case when the electron-impurity interaction is strong and the
condition (7.21) is not satisfied.

In the stationary case described by the time-independent Hamiltonian
Ĥx, one has the exact relation (problem 8.2)

F̂ε = χε

(
ĜA

ε − ĜR
ε

)
, (24)

where χε is an arbitrary function of energy. One can demonstrate that a
substitution of F̂ε from Eq. (24) to the right-hand side of Eq. (23) makes
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this side, i.e., the generalized collision integral, equal to zero (prob-
lem 8.3). In the case of thermodynamic equilibrium, when the electron
system weakly interacts with a thermostat (for example, with acoustic
phonons), χε = 2f (eq)

ε − 1, where f (eq)
ε is the equilibrium distribution

function of the electron system.
The quasi-classical kinetic equation can be derived from Eqs. (22)

and (23) when the scattering potential is weak (under the condition
(7.21)) and when the Green’s functions are weakly varying in space on
the scale of electron wavelength �/p̄. We specify the Hamiltonian ĥxt

as [p̂ − (e/c)Axt]2/2m + Ux, where Axt is the vector potential of the
external field and Ux is the potential energy, and use the spatial Wigner
transformation defined by Eq. (9.6). This transformation, when applied
to Eq. (22) or to a similar equation for the advanced Green’s function
(s = R, A below), gives us[

ε − p2

2m
− Ur +

�
2

8m

(
∂

∂r
+

e

c

[
Hrt × ∂

∂p

])2
]

Gs
εt(r,p)

= 1 + Σs
εt(r,p)Gs

εt(r,p), (25)

where Hrt is the magnetic field expressed through the vector potential
according to Eq. (4.3). To derive Eq. (25), we have neglected the
quantum corrections when transforming the operator product on the
right-hand side of Eq. (22). The quantum corrections in the calculation
of the anticommutator give us the last (proportional to �

2) term on the
left-hand side of Eq. (25). Since we consider the case of smooth spatial
inhomogeneity and weak magnetic field, this term also can be neglected
under the conditions (9.29) and (9.35). As a result, Eq. (25) is rewritten
as

Gs
ε(r,p) = [ε − εp − Ur − Σs

ε(r,p)]−1 , s = R, A, (26)

where εp = p2/2m. The dependence of Gε and Σε on r is parametric, it
is caused by the presence of the smooth potential Ur. In the absence of
this potential, Eq. (26) coincides with Eq. (14.25).

The Wigner transformation of Eq. (23) is done in a similar way as in
Sec. 9. The anticommutator [(∂F̂εt/∂ε), (∂ĥt/∂t)]+/2 is transformed to
(e/m)(Ert · p)[∂Fεt(r,p)/∂ε]. The quantum corrections in the transfor-
mation of the right-hand side of Eq. (23) are neglected. As a result, the
transformed Eq. (23) is written as

i

(
∂

∂t
+ v · ∂

∂r
+ eErt · v ∂

∂ε
+ eErt · ∂

∂p

+
e

c
[v × Hrt] · ∂

∂p

)
Fεt(r,p) = Jεt(F |rp), (27)
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Jεt(F |rp) = Ωεt(r,p) [GA
ε (r,p) − GR

ε (r,p)] /�

+Fεt(r,p) [ΣR
ε (r,p) − ΣA

ε (r,p)] /�,

where v = p/m. The collision integral Jεt is evaluated below in the limit
of weak scattering, when the functions ΣR, ΣA, and Ω are calculated in
the lowest order with respect to the scattering potential. This implies
that we take into account only the lowest terms in the diagrammatic
expansions for these functions:

Σs
ε(r,p) =

1
V

∑
p′

w(|p − p′|/�)Gs
ε(r,p

′),

Ωεt(r,p) =
1
V

∑
p′

w(|p − p′|/�)Fεt(r,p′), (28)

and replace ΣR and ΣA in the expression (26) for the Green’s functions
by −i0 and +i0, respectively. As a result, GA

ε (r,p)−GR
ε (r,p) = 2πiδ(ε−

εp − Ur) and

Jεt(F |rp) = i
2π

�V

∑
p′

w(|p − p′|/�) (29)

×
[
δ(ε − εp − Ur)Fεt(r,p′) − δ(ε − εp′ − Ur)Fεt(r,p)

]
.

Equation (27) already resembles the quasi-classical kinetic equation.
To complete the derivation of the latter, we integrate Eq. (27) over the
energy ε. The third term on the left-hand side of Eq. (27) vanishes as a
result of this integration. By using the identity (2πi)−1 ∫ dε[GA

ε (r,p) −
GR

ε (r,p)] = 1, we transform Eq. (21) to

2ft(r,p) − 1 =
∫

dε

2πi
Fεt(r,p), (30)

where ft(r,p) is the quasi-classical distribution function of electrons.
With the use of Eq. (30), the integration of the left-hand side of Eq. (27)
over energy becomes straightforward, and we obtain the quasi-classical
kinetic equation(

∂

∂t
+ v · ∂

∂r
+ eErt · ∂

∂p
+

e

c
[v × Hrt] · ∂

∂p

)
ft(r,p)

= − 1
4π

∫
dεJεt(F |rp). (31)

To ensure that the right-hand side of this equation is reduced to the
quasi-classical electron-impurity collision integral Jim(f |rpt) given by
Eq. (9.33), one needs to express Fεt(r,p) standing in Jεt(F |rp) through
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ft(r,p). Under the approximation of weak scattering, the influence of
the scattering potential on Fεt(r,p) in the collision integral should be
neglected. In these conditions, Fεt(r,p) is to be found from Eq. (9)
without the right-hand sides. Since the external fields are smooth in
space and slowly varying with time, such a solution, satisfying Eq. (30),
is

Fεt(r,p) = 2πi[2ft(r,p) − 1]δ(ε − εp − Ur). (32)

Substituting this solution into Eq. (29), we integrate Jεt(r,p) over ε
as specified in Eq. (31) and finally obtain the quasi-classical electron-
impurity collision integral. In the absence of external potentials, Eq.
(32) represents the exact relation between the non-equilibrium Green’s
function Fε(p) of the ideal electron gas and the distribution function fp.
Using it, one can write the expressions for the elements of the matrix
ĝε(p) in the following way:

g−+
ε (p) = 2πifpδ(ε − εp),

g−− = gR + g−+, g++ = −gA + g−+, g+− = gR − gA + g−+, (33)

where the retarded and advanced Green’s functions of the ideal electron
gas are gR

ε (p) = gA∗
ε (p) = (ε − εp + i0)−1.

41. General Formulation of NDT
So far we considered the electrons interacting with impurities. In

this section we show how the non-equilibrium diagram technique is in-
troduced for all types of quasiparticles to take into account various
interactions between them. The total Hamiltonian of the system is
Ĥ = Ĥ0+Ĥint, where Ĥ0 describes unperturbed quasiparticles and Ĥint

includes the interaction between these quasiparticles and their interac-
tion with external fields. It is necessary to define the non-equilibrium
Green’s functions G−−, G++, G−+, and G+− as correlation functions of
a pair of Heisenberg field operators Ψ̂x1(t1) and Ψ̂+

x2
(t2). The function

G−− coincides with the causal Green’s function introduced in Appendix
D by Eq. (D.14):

G−−(1, 2) = − i

�
θ(t1 − t2)〈〈Ψ̂x1(t1)Ψ̂

+
x2

(t2)〉〉 (1)

± i

�
θ(t2 − t1)〈〈Ψ̂+

x2
(t2)Ψ̂x1(t1)〉〉 ≡ − i

�
〈〈T̂ Ψ̂(1)Ψ̂+(2)〉〉.

Here and below, we use the upper sign for fermions and the lower one
for bosons. The operator of chronological ordering, T̂ , is introduced
by Eq. (2.7). The double angular brackets also include the averaging
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over random potentials of static inhomogeneities (if these potentials are
present). It is easy to check that the function G−−(1, 2) of Eq. (1)
satisfies the equations of motion (39.3) and (39.4), where, instead of the
Hamiltonian of electron-impurity system, we should substitute the total
Hamiltonian Ĥ0 +Ĥint. The corresponding equations for G++(1, 2) have
the opposite sign of the inhomogeneous terms (right-hand sides), which
results in the inverted chronological ordering with respect to Eq. (1):

G++(1, 2) = − i

�
θ(t2 − t1)〈〈Ψ̂x1(t1)Ψ̂

+
x2

(t2)〉〉 (2)

± i

�
θ(t1 − t2)〈〈Ψ̂+

x2
(t2)Ψ̂x1(t1)〉〉 ≡ − i

�
〈〈T̃ Ψ̂(1)Ψ̂+(2)〉〉 ,

where we have introduced the operator T̃ of inverse chronological order-
ing. The function G−+, as we already know, is directly related to the
density matrix of the quasiparticles; see Eq. (39.11). This relation is
also evident if we represent this function in the form

G−+(1, 2) = ± i

�
〈〈Ψ̂+

x2
(t2)Ψ̂x1(t1)〉〉 , (3)

which satisfies the equations of motion (39.3) and (39.4) with the Hamil-
tonian Ĥ0 + Ĥint. Using Eq. (4.29) rewritten in the coordinate repre-
sentation, we have ρt(x1,x2) = 〈〈Ψ̂+

x2
(t)Ψ̂x1(t)〉〉 ≡ Sp{η̂Ψ̂+

x2
(t)Ψ̂x1(t)}

(note that the statistical operator η̂ is independent of time in the Heisen-
berg representation). Therefore, the function G−+(1, 2) defined by Eq.
(3) for fermions satisfies Eq. (39.11). For bosons, by convention, the
sign of G−+(1, 2) is altered. Therefore, the one-boson density matrix
can be expressed as ρt(x1,x2) = i�G−+(x1t,x2t), which is similar to Eq.
(39.11) with the opposite sign of the right-hand side. Finally, we find
the remaining function G+−(1, 2) by using Eqs. (1)−(3) and the linear
relation (39.22):

G+−(1, 2) = − i

�
〈〈Ψ̂x1(t1)Ψ̂

+
x2

(t2)〉〉. (4)

Expressing the retarded and advanced Green’s functions as GR = G−− −
G−+ and GA = G−− − G+−, see Eq. (40.3), we find that they are
the retarded and advanced double-time Green’s functions introduced by
Eq. (D.14). To write the non-equilibrium Green’s function Gs1s2(1, 2)
(s1, s2 = ±) in the explicit form, we use two equivalent notations,
Gs1s2(x1t1,x2t2) and Gs1s2

t1t2
(x1,x2).

The diagram technique is built as a perturbation theory with respect
to the operator of interaction Ĥint. Therefore, it is convenient to express
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the field operators in the interaction representation, using the basis |λt)
introduced in Sec. 2. We stress that the Green’s functions (1)−(4) do
not depend on the representation used for the field operators, provided
that the statistical operator is written in the same representation. In the
interaction representation, the statistical operator satisfies the equation
of motion

i�
∂η̂t

∂t
= [Ĥint(t), η̂t], Ĥint(t) = eiĤ0t/�Ĥinte

−iĤ0t/�, (5)

where we have introduced the operator Ĥint(t). The equation expressing
Ĥint(t) through Ĥint also demonstrates how to transform an arbitrary
operator from the Schroedinger representation to the interaction repre-
sentation. Equation (5) shows us that the statistical operator depends
on time because of the interaction. It is desirable, however, to write
Eqs. (1)−(4) by using the statistical operator η̂(0) of the non-interacting
system. It can be done with the aid of the following formal transfor-
mation. We assume that the interaction is adiabatically turned on at
t = −∞ and use Eq. (2.11), where Ĥint stands in place of V̂t, with the
initial condition |λ, t = −∞) = |i〉 to find |λt) = Ŝ0(t, −∞)|i〉. Here
|i〉 is the quantum state of the non-interacting (unperturbed) system of
quasiparticles. The operator Ŝ0(t, t′) is introduced in a similar way as
the evolution operator (2.8), the only difference is that instead of Ĥτ we
substitute the operator Ĥint(τ):

Ŝ0(t, t′) = T̂ exp
[
− i

�

∫ t

t′
dτĤint(τ)

]
. (6)

With the use of this operator, the bra-vector (λt| is expressed as (λt| =
〈i|Ŝ0(−∞, t) = 〈i|Ŝ+

0 (t, −∞). The average 〈〈T̂ Ψ̂(1)Ψ̂+(2)〉〉 = Sp{η̂T̂
×Ψ̂(1)Ψ̂+(2)} can be rewritten as∑

i

P (0)
i

{
θ(t1 − t2)〈i|Ŝ+

0 (t1, −∞)Ψ̂0(1)Ŝ0(t1, t2)Ψ̂+
0 (2)Ŝ0(t2, −∞)|i〉

∓θ(t2 − t1)〈i|Ŝ+
0 (t2, −∞)Ψ̂+

0 (2)Ŝ0(t2, t1)Ψ̂0(1)Ŝ0(t1, −∞)|i〉
}

, (7)

where P (0)
i = 〈i|η̂(0)|i〉 is the probability to find the unperturbed system

in the state i; see Sec. 1. The subscripts 0 at the field operators indicate
that these operators are written in the interaction representation. Next,
applying the identity Ŝ+

0 (t, −∞) = Ŝ+
0 (∞, −∞)Ŝ0(∞, t) to Ŝ+

0 (t1, −∞)
and Ŝ+

0 (t2, −∞) in the first and in the second terms, respectively, we
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rewrite the expression (7) as∑
i

P (0)
i

{
〈i|Ŝ+

0 (∞, −∞)
[
θ(t1 − t2)Ŝ0(∞, t1)Ψ̂0(1)Ŝ0(t1, t2)Ψ̂+

0 (2)

×Ŝ0(t2, −∞) ∓ θ(t2 − t1)Ŝ0(∞, t2)Ψ̂+
0 (2)Ŝ0(t2, t1)Ψ̂0(1)Ŝ0(t1, −∞)]|i〉

}
=
∑

i

P (0)
i 〈i|Ŝ+

0 (∞, −∞)[T̂ ŜΨ̂0(1)Ψ̂+
0 (2)]|i〉, (8)

where

Ŝ = exp
[
− i

�

∫ ∞

−∞
dtĤint(t)

]
(9)

denotes the operator Ŝ0(∞, −∞) without the chronological ordering.
The term Ŝ+

0 (∞, −∞) = Ŝ0(−∞,∞) in Eq. (8) can be written as T̃ Ŝ−1.
Therefore, we obtain

i�G−−(1, 2) = 〈〈[T̃ Ŝ−1][T̂ ŜΨ̂0(1)Ψ̂+
0 (2)]〉〉0 , (10)

where 〈〈. . .〉〉0 = Sp(η̂(0) . . .) denotes the averaging over the states of
the unperturbed system. The interaction terms are present only in the
exponents Ŝ, which can be expanded in series to find the contributions
of arbitrary order in the interaction. The other averages standing in
Eqs. (2)−(4) are transformed in a similar way (problem 8.4):

i�G++(1, 2) = 〈〈[T̃ Ψ̂0(1)Ψ̂+
0 (2)Ŝ−1][T̂ Ŝ]〉〉0 , (11)

i�G−+(1, 2) = ∓〈〈[T̃ Ψ̂+
0 (2)Ŝ−1][T̂ ŜΨ̂0(1)]〉〉0 , (12)

i�G+−(1, 2) = 〈〈[T̃ Ψ̂0(1)Ŝ−1][T̂ ŜΨ̂+
0 (2)]〉〉0 . (13)

Instead of using two operators of direct and inverse chronological order-
ing, one may introduce the operator T̂C defining the ordering along the
contour C, which starts at −∞, goes to ∞, then turns back and ends
at −∞. This contour is shown in Fig. 8.1. The first its branch is in-
dicated by the sign −, while the second (backward) branch is indicated
by the sign +. Both field operators standing in G−− (G++) belong to
the first (second) branch. To emphasize this property, one may add the
subscripts − (or +) to these operators. The field operators standing in
G−+ and G+− belong to the different branches and bear the different
subscripts. Introducing the operator

ŜC = exp
[
− i

�

∫
C

dtĤint(t)
]

, (14)
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one may write Eqs. (10)−(13) as a single equation

i�Gs1s2(1, 2) = 〈〈T̂CŜCΨ̂0s1(1)Ψ̂+
0s2

(2)〉〉0 , s1, s2 = ±. (15)

This equation identifies the indices ± of the Green’s functions with the
contour branch indices of the field operators. Therefore, the four Green’s
functions of the non-equilibrium diagram technique can be considered
as four different kinds of causal Green’s functions defined on a special
double-branch time contour C.

Figure 8.1. Double-time contour containing + and − branches. The arrows show
the direction of chronological ordering.

Let us evaluate the Green’s functions for different interactions. Con-
sider first the case of external potential perturbation, when Ĥint(t) =∫

dxΨ̂+
0x(t)UxtΨ̂0x(t). Substituting this form into Ŝ, we expand the ex-

ponents Ŝ in Eqs. (10)−(13) in series. Consider, for example, G−−(1, 2).
The expansion up to the first-order corrections gives us

iG−−(1, 2) = ig−−(1, 2) +
i

�2

∫
d3〈〈[T̃ Ψ̂+

0 (3)U3Ψ̂0(3)][T̂ Ψ̂0(1)Ψ̂+
0 (2)]〉〉0

− i

�2

∫
d3〈〈[T̂ Ψ̂+

0 (3)U3Ψ̂0(3)Ψ̂0(1)Ψ̂+
0 (2)]〉〉0 + . . . , (16)

where g−−(1, 2) = −(i/�)〈〈T̂ Ψ̂0(1)Ψ̂+
0 (2)〉〉0 is the unperturbed Green’s

function and U3 = Ux3t3 . The averaging of the field-operator products
standing in the perturbation terms is done in a similar way as the aver-
aging of the products of creation and annihilation operators of electrons
and phonons in Chapters 4−7. Namely, we make all possible pairings
(contractions) of the operators, and write the correlation function of the
product as a product of the pair correlation functions. Each pair includes
one creation and one annihilation field operator (if both of them are cre-
ation or annihilation operators, their correlation function is zero). The
order of the operators in the pairs is the same as in the original product
(creation and annihilation operators are not permuted). For fermions,
the final expression should contain a factor of (−1)n, where n is the num-
ber of permutations done to bring the operators in the pairs together.
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These rules can be derived from the knowledge of how the bosonic and
fermionic operators act on the quantum states; see Eqs. (3.14), (4.19),
and (4.20). Applying these rules to the chronologically-ordered prod-
ucts, one should keep the ordering intact. Thus, the two correlation
functions standing in Eq. (16) are transformed as

〈〈[T̃ Ψ̂+
0 (3)Ψ̂0(3)][T̂ Ψ̂0(1)Ψ̂+

0 (2)]〉〉0 (17)

= ∓〈〈Ψ̂+
0 (3)Ψ̂0(1)〉〉0〈〈Ψ̂0(3)Ψ̂+

0 (2)〉〉0 = (i�)2G−+(1, 3)G+−(3, 2),

〈〈[T̂ Ψ̂+
0 (3)Ψ̂0(3)Ψ̂0(1)Ψ̂+

0 (2)]〉〉0 (18)

= ∓〈〈T Ψ̂+
0 (3)Ψ̂0(1)〉〉0〈〈T Ψ̂0(3)Ψ̂+

0 (2)〉〉0 = (i�)2G−−(1, 3)G−−(3, 2).

Note that we have omitted the correlation functions containing the pair-
ing of Ψ̂0(1) with Ψ̂+

0 (2), because they give zero contribution in Eq. (16).
Substituting the transformations (17) and (18) into Eq. (16), we obtain

iG−−(1, 2) = ig−−(1, 2) +
∫

d3 [(−iU3)ig−−(1, 3)ig−−(3, 2)

+(iU3)ig−+(1, 3)ig+−(3, 2)] + . . . , (19)

where the integration is carried out over the internal variable 3. The
calculations can be repeated for each Green’s function. Let us carry out
these calculations in a unified way, by using Eq. (15) with the ordering
along the contour C:

iGs1s2(1, 2) = igs1s2(1, 2) +
1
�2

∑
s3=±

∫
d3 is3U3

×〈〈T̂CΨ̂+
0s3

(3)Ψ̂0s3(3)Ψ̂0s1(1)Ψ̂+
0s2

(2)〉〉0 + . . . . (20)

As a result,
iGs1s2(1, 2) = igs1s2(1, 2)

+
∑

s3=±

∫
d3 igs1s3(1, 3)is3U3ig

s3s2(3, 2) + . . . . (21)

Expanding ŜC up to the n-th order, one can see that the factor 1/n!,
which appears in the expansion of the exponent, vanishes after unifica-
tion of the terms differing by permutations of internal variables. The
correction of an arbitrary order looks like

igs1s3(1, 3)is3U3 . . . is4U4ig
s4s2(4, 2) = ������

��
. . . ������

��
1s1 3s3 4s4 2s2

. (22)
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It is diagrammatically represented as a sequence of connected lines with
vertices. Each igss′

(X, X ′) is shown by a thin line with the indices Xs
and X ′s′, and each vertex Xs brings the factor isUX to the analytical
expression; see also Eq. (39.16). The integrals over the internal variables
(including the sums over the indices s3, . . . ,s4) are implied. These are
the diagram rules for the interaction of quasiparticles with an external
potential.

If the external potential perturbation Uxt contains a random static po-
tential, the expression (22) should be averaged over realizations of this
potential. The averaging procedure leads us to the diagram technique
already discussed in Sec. 39. Therefore, the random and the regular po-
tentials call for different treatment: the former enters the diagrammatic
expansions in the form of binary correlation functions (broken lines),
while the latter introduces separate vertices. By choosing a number of
such vertices, one can calculate the response of the system to this regular
potential perturbation in the corresponding order. The linear response
theory can be derived as a particular case of the non-equilibrium dia-
gram technique, when the applied potential contribution is treated in
the first, linear order (problem 8.5). One should mention that the linear
response of any kind of interacting quasiparticles also can be described
within an approach called the temperature diagram technique. We do
not consider this approach, since the non-equilibrium diagram technique
is a more general method and can be formulated for the case of linear
response in a straightforward way.

Consider now the interaction between the quasiparticles of the same
kind. The Hamiltonian Ĥint(t) has the same form as Ĥ2 given by Eq.
(4.27), where the field operators should be written in the interaction
representation. In the first order, we obtain

iGs1s2(1, 2) = igs1s2(1, 2) +
1

2�3

∑
s=±

∫
d3
∫

d4 isU3−4

×〈〈T̂CΨ̂+
0s(3)Ψ̂+

0s(4)Ψ̂0s(4)Ψ̂0s(3)Ψ̂0s1(1)Ψ̂+
0s2

(2)〉〉0 + . . . . (23)

By definition,
U3−4 = �δ(t3 − t4)v(x3 − x4). (24)

The dimensionality of U3−4 is energy in power 2. The six-operator prod-
uct in Eq. (23) brings us four possible ways to make the contractions
(the pairing of Ψ̂0s1(1) with Ψ̂+

0s2
(2) is not considered, since it gives zero

contribution). The four terms obtained are equal in pairs, differing only
by the permutation of the variables of integration (3 and 4). Therefore,
only two terms remain, and the factor of 2 in the denominator vanishes
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(it is easy to see that this property takes place in an arbitrary order).
Transforming the correlation function in Eq. (23), we find

iGs1s2(1, 2) = igs1s2(1, 2) +
∑
s=±

∫
d3
∫

d4 isU3−4 (25)

× [−igss(4, 4)igs1s(1, 3)igss2(3, 2) + igs1s(1, 3)igss(3, 4)igss2(4, 2)] + . . . .

The two perturbation terms can be represented, respectively, as two
diagrams

������
1s1 3s 2s2

4s

1s1 3s 4s 2s2
, , (26)

where the broken lines with vertex indices 3s and 4s denote the fac-
tor isU3−4. The factor −igss(4, 4) corresponds to the self-closed loop
in the first diagram. If the spin variable is implicitly introduced into
the multi-indices 1, 2, . . . , and the interaction U3−4 is spin-independent,
the sum over the spin variable of the multi-index 4 in the first term
gives us the spin degeneracy factor (which is equal to 2 for electrons).
On the other hand, there are no other spin sums in the expression (25),
since we consider the contractions of the field operators with equal spins.
Therefore, the spin of the multi-index 3 in the first term and the spins
of the multi-indices 3 and 4 in the second term are equal to the spin
of the multi-indices 1 and 2. The factor −i�gss(4, 4), summed over the
spin variable of the multi-index 4, is equal to the quasiparticle density
nx4t4 , regardless of the vertex sign s. Thus, the first diagram of Eq. (26)
corresponds to the mean-field correction, while the second one gives us
the exchange correction to the Green’s function Gs1s2(1, 2) due to the
interaction. The corrections of an arbitrary order are constructed dia-
grammatically from the solid lines ig and broken lines isU connecting
the vertices with the same index s. Each closed loop of the solid lines
brings us a factor of −1 (or −2, if the spin variables are not included in
the multi-indices). The integrals over the internal indices are assumed.
The order of the diagram is equal to the number of the broken lines.

We note that the Green’s functions of the systems described by sta-
tionary Hamiltonians depend only on the difference of their time vari-
ables. For this reason, the energy representation becomes more conve-
nient for them, and the exact eigenstate representation of Gs1s2(1, 2) can
be written in a rather simple way (problem 8.6).
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The diagram technique allows us to operate with blocks of diagrams,
introducing such graphic elements as the self-energy functions. We have
already seen it on the example of electron-impurity interaction; see Eq.
(39.17). A similar Dyson equation describes a system of interacting
quasiparticles, one just needs to redefine the matrix Σ̂. The diagram-
matic expansion of −iΣs1s2(1, 2) is written in the same fashion as Eq.
(E.23) for interacting electrons at zero temperature, where the signs +
or − should be added to the internal vertices in all possible ways, and
the signs s1 and s2 should be added to the external vertices 1 and 2.
The thin broken line −i�v(1, 2) introduced in Appendix E is equivalent
to the thin broken line isU1−2 of the non-equilibrium diagram technique
at s = −. Therefore, if one considers interacting electrons, U1−2 is equal
to �v(1, 2), though the notation U1−2 is more general in the sense that it
can be applied to any kind of interacting quasiparticles. Since the thin
broken lines denoting the interaction must have equal signs at their ends,
the expansion of the non-diagonal elements Σ−+(1, 2) and Σ+−(1, 2) be-
gins with the terms quadratic in the interaction, like the third and the
fourth diagrams on the right-hand side of Eq. (E.23) (problem 8.7). The
expansion of the diagonal elements Σ−−(1, 2) and Σ++(1, 2) begins with
the linear terms. One can also write matrix equations similar to Eq.
(39.21), which lead to the generalized kinetic equation for interacting
quasiparticles in the form

−
[
i�

(
∂

∂t1
+

∂

∂t2

)
− Ĥ0(1) + Ĥ∗

0 (2)
]

G−+(1, 2)

= −
∑
s=±

∫
d1′ [Σ−s(1, 1′)Gs+(1′, 2) + G−s(1, 1′)Σs+(1′, 2)

]
. (27)

Using Eq. (27) with relevant self-energy functions, one can derive the
expression for the electron-electron collision integral in the form given
by Eqs. (31.21) and (31.22) (problem 8.8).

Other useful blocks are the polarization function Πs1s2(1, 2) and the
screened interaction V s1s2(1, 2), which are also introduced and denoted
in a similar way as in Appendix E. We denote (i/�)Πs1s2(1, 2) and
−i�V s1s2(1, 2), respectively, by a circle and by a bold broken line, with
the indices 1s1 and 2s2. The polarization function is a sum of all ir-
reducible diagrams constructed from two or more Green’s functions of
electrons (solid lines) connecting the points 1s1 and 2s2. Its expansion
in the diagram form is given by Eq. (E.26) with the indices + or −
added to each vertex. In the analytical form,

(i/�)Πs1s2(1, 2) = −2iGs1s2(1, 2)iGs2s1(2, 1) + . . . . (28)
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The factor of −2 appears because of the electron loop, where the spin
degeneracy is taken into account. The components of the polarization
function satisfy the linear relation

Π−−(1, 2) + Π++(1, 2) = Π−+(1, 2) + Π+−(1, 2), (29)

which is similar to Eqs. (39.7) and (39.22). The screened interaction
is expressed through the polarization function as described by the dia-
gram equation (E.25), where we have to add the signs + or − to each
vertex and take into account that the signs at the ends of the bare po-
tential lines (thin broken lines) coincide. Therefore, instead of a single
equation (E.24) for the zero-temperature case, we obtain four equations
connecting Πs1s2(1, 2) and V s1s2(1, 2). We write this system of equations
as

V s1s′
1(1, 1′) = −s1δs1s′

1
v(1, 1′) − s1

∫
d2v(1, 2)

∫
d2′

×
∑
s=±

Πs1s(2, 2′)V ss′
1(2′, 1′). (30)

The four equations are split in two pairs of equations, the first one
connects V −− and V +−, while the second one connects V ++ and V −+.
The introduction of Πs1s2(1, 2) and V s1s2(1, 2) allows one to consider
the problem of dynamical screening (see Sec. 33) for the case of finite
temperatures (problem 8.9). It is also convenient for studying the influ-
ence of the dynamical screening on the electron-electron collision integral
(problem 8.10).

42. NDT Formalism for Electron-Boson System
Let us apply the formalism of non-equilibrium diagram technique to

study the interaction of electrons with phonons and photons. Since we
have two kinds of quasiparticles, the Hamiltonian Ĥ0 is presented as a
sum of electron and boson Hamiltionians, Ĥ0 = Ĥe + Ĥb, where Ĥb is
either the phonon Hamiltonian Ĥph or the photon Hamiltonian Ĥpht.
The averaging in the correlation functions 〈〈. . .〉〉0, as in Eq. (41.15), is
carried out over the unperturbed electron and boson states, which are
the eigenstates of Ĥe and Ĥb, respectively. In addition to the electron
Green’s function, we introduce the Green’s functions of phonons and
photons, and the operator of interaction is assumed to be linear in the
bosonic coordinate.

Consider first the deformation-potential interaction of electrons with
acoustic phonons; see Eq. (6.30). In the interaction representation dis-
cussed in the previous section, the operator of the interaction is written
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as
Ĥint(t) = D

∫
dxΨ̂+

0x(t)∇x · û0(x, t)Ψ̂0x(t), (1)

where û0(x, t) = exp(iĤpht/�)ûac(x) exp(−iĤpht/�) is the operator of
lattice displacement in the interaction representation. The displacement
operator ûac(x) in the Schroedinger representation is defined by Eq.
(6.29) as a linear combination of creation and annihilation operators.
Therefore, when the operator Ŝ defined by Eq. (41.9) is expanded in
series, only the terms containing products of even numbers of û0(x, t)
contribute to the correlation functions. According to Eqs. (41.14) and
(41.15), the first perturbation term in the expansion of the electron
Green’s function Gs1s2(1, 2) is of the second order in electron-phonon
interaction:

iGs1s2(1, 2) = igs1s2(1, 2) +
D2

2�3

∑
s3,s4=±

is3 is4

∫
d3
∫

d4

×〈〈T̂C (∇x3 · û0s3(3)) (∇x4 · û0s4(4)) Ψ̂+
0s3

(3)Ψ̂0s3(3) (2)

×Ψ̂+
0s4

(4)Ψ̂0s4(4)Ψ̂0s1(1)Ψ̂+
0s2

(2)〉〉0 + . . . ,

where we use û0(i) ≡ û0(xi, ti) and attribute the contour branch indices
s3 and s4 to the lattice displacement operators.

At this point, we need to introduce the non-equilibrium Green’s func-
tions Dαβ,s1s2(x1t1,x2t2) ≡ Dαβ,s1s2

t1t2
(x1,x2) ≡ Dαβ,s1s2(1, 2) according

to
Dαβ,−−(1, 2) = − i

�
〈〈T̂ ûα(1)ûβ(2)〉〉,

Dαβ,++(1, 2) = − i

�
〈〈T̃ ûα(1)ûβ(2)〉〉, (3)

Dαβ,+−(1, 2) = − i

�
〈〈ûα(1)ûβ(2)〉〉,

Dαβ,−+(1, 2) = − i

�
〈〈ûβ(2)ûα(1)〉〉,

where α and β are the coordinate indices (so that Dαβ,s1s2 are tensors)
and û(i) are the Heisenberg operators of the lattice displacement vectors.
The averaging is carried out over the states of the interacting system.
The set of equations (3) can be written as a single equation:

Dαβ,s1s2(1, 2) = − i

�
〈〈T̂Cûα

s1
(1)ûβ

s2(2)〉〉 , (4)

with the chronological ordering along the contour C. The displacement
operators are Hermitian, û(i) = û+(i). Therefore, there is no difference
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whether we put the cross superscript or not, and the definitions (3)
formally coincide with Eqs. (41.1)−(41.4) for bosons if we replace Ψ̂(i)
by the vectors ûα(i). It is easy to find that Dαβ,s1s2(1, 2) satisfy the
relation D−−+D++ = D−++D+− similar to Eqs. (39.7) and (39.22). The
retarded and advanced Green’s functions are expressed through the non-
equilibrium Green’s functions in a standard way, as DR = D−− − D−+

and DA = D−− − D+−. The Hermiticity of û(i) leads to the following
symmetry property:

Dαβ,s1s2(1, 2) = Dβα,s2s1(2, 1). (5)

In the absence of interactions, Eq. (3) describes the Green’s functions of
free phonons, dαβ,s1s2(1, 2) = −(i/�)〈〈ûα

s1
(1)ûβ

s2(2)〉〉0. The correspond-
ing retarded and advanced Green’s functions are the Green’s functions
of the elasticity theory; see further in Sec. 47.

Now we can express the contraction of the displacement operators
û0s3(3) and û0s4(4) standing in Eq. (2) through the Green’s function
of free phonons. The contractions of six field operators of electrons
can be done in six possible ways. Using Eq. (5), one can prove that
the six corresponding terms are equal in pairs, differing only by the
permutation of the indices 3s3 and 4s4. This cancels the factor of 2 in
the denominator of Eq. (2), and only three terms remain. Two of them,
containing the pairings of Ψ̂0s1(1) with Ψ̂+

0s2
(2) and Ψ̂0s3(3) with Ψ̂+

0s3
(3)

give zero contribution in Eq. (2). Therefore, only one perturbation term
of this order remains:

iGs1s2(1, 2) = igs1s2(1, 2) + �D2
∑

s3,s4=±
is3 is4

∫
d3
∫

d4 (6)

×igs1s3(1, 3)igs3s4(3, 4)igs4s2(4, 2)
∑
αβ

∇α
x3

∇β
x4

idαβ,s3s4(3, 4) + . . . .

The diagram representation of the perturbation term in Eq. (6) can be
written as

1s1 3s3 4s4 2s2
,α β (7)

where idαβ,s3s4(3, 4) is denoted by a thin wavy line. The solid lines
denote the electron Green’s functions ig, which do not contain the Carte-
sian coordinate indices (for example, the line connecting the points 3s3α
and 4s4β corresponds to igs3s4(3, 4)). With these definitions, one can
formulate the following diagram rules. Each perturbation term con-
tributing to the electron Green’s function of the order of 2n contains 2n
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vertices, n phonon (wavy) lines, and 2n + 1 electron (solid) lines. Two
electron lines and one phonon line meet at each vertex, one electron line
begins there, and the other ends. The vertex denoted as 1sα brings
the factor is�

1/2D∇α
x1

, where the differential operator acts on the argu-
ment of the phonon Green’s function associated with this vertex. One
should take the sum over internal Cartesian indices. Each closed loop
of electron lines brings the factor of −1 (or −2, if the electron spins are
not included in the multi-indices). The diagrams containing the loops
connected to the other parts by a single phonon line should be omitted,
since their contribution is zero.

The same rules are used when we need to find the corrections to the
phonon Green’s function due to electron-phonon interaction. Using the
formalism developed in the previous section, we can write (compare to
Eq. (41.15))

i�Dαβ,s1s2(1, 2) = 〈〈T̂CŜCûα
0s1

(1)ûβ
0s2(2)〉〉0 , (8)

where the averaging is carried out over the states of the unperturbed
phonon system. Expanding the exponent ŜC in series, we compose rele-
vant contractions and obtain

iDαβ,s1s2(1, 2) = idαβ,s1s2(1, 2) − 2�D2
∑

s3,s4=±
is3 is4

∫
d3
∫

d4 (9)

×igs3s4(3, 4)igs4s3(4, 3)
∑
γδ

∇γ
x3

∇δ
x4

idαγ,s1s3(1, 3)idδβ,s4s2(4, 2) + . . . .

This expansion is also written as

= + + . . . ,
1s1

α

2s2

β

1s1

α

2s2

β

2s21s1

βα

3s3 4s4

γ δ
(10)

where the bold wavy line corresponds to the dressed (i.e., modified by
the electron-phonon interaction) Green’s function iD. The factor of −2
in the first perturbation term of Eq. (9) appears because of the closed
loop of electron lines (the spin variable is not included in the multi-
indices). In such diagrams, each perturbation term of the order of 2n
contains n + 1 phonon lines and 2n electron lines.

The consideration of the series (6) leads to the Dyson equation (39.17),
where the self-energy function is given by the diagrammatic expansion
similar to Eq. (39.18), with dressed phonon lines instead of impurity-
potential correlation functions. In the analytical form,
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−iΣs1s2(1, 2) = is1is2�D2iGs1s2(1, 2)
∑
αβ

∇α
x1

∇β
x2

iDαβ,s1s2(1, 2)

+is1is2�
2D4

∑
s′
1s′

2

is′
1is

′
2

∫
d1′
∫

d2′iGs1s′
2(1, 2′)iGs′

2s′
1(2′, 1′)iGs′

1s2(1′, 2)

×
∑
αβγδ

∇α
x1

∇β
x2

∇γ
x′

1
∇δ

x′
2
iDαγ,s1s′

1(1, 1′)iDδβ,s′
2s2(2′, 2) + . . . . (11)

This equation becomes formally equivalent to Eq. (39.20) if the ver-
tex contributions is�

1/2D∇α
x1

are replaced by is and the phonon lines
iDαβ,s1s2(1, 2) are replaced by the correlation functions 〈〈U1U2〉〉.

To find the phonon Green’s functions, we consider the expansion (9)
leading to the matrix Dyson equation of the following form:

D̂αβ(1, 2) = d̂αβ(1, 2) + D2
∑
γδ

∫
d1′
∫

d2′∇γ
x′

1
d̂αγ(1, 1′)

×σ̂zΠ̂(1′, 2′)σ̂z∇δ
x′

2
D̂δβ(2′, 2) = d̂αβ(1, 2) (12)

+
∑
γδ

∫
d1′
∫

d2′d̂αγ(1, 1′)
[
D2σ̂z∇γ

x′
1
∇δ

x′
2
Π̂(1′, 2′)σ̂z

]
D̂δβ(2′, 2) .

In this equation, instead of writing the indices + and −, we use the
matrix form D̂ for the phonon Green’s function. It is defined in a sim-
ilar way as in Eq. (39.2). The phonon self-energy function, defined by
the expression in the square brackets of Eq. (12), is directly related to
the polarization function Πs1s2 introduced by Eq. (41.28). The expan-
sion of this function in the presence of electron-phonon interaction is
represented diagrammatically as

(i/�)Πs1s2(1, 2) ≡ ��
�	� � = + + . . . .

1s1 2s2 1s1 2s2 1s1 2s2
4s4δ

3s3γ

(13)

The corresponding analytical expression can be written with the aid
of the diagram rules given above (problem 8.11).

The function Dαβ,−+(1, 2) at t1 = t2 is not related directly to the
phonon density matrix introduced in Chapter 4. Moreover, the presence
of a differential operator at each vertex, such as in Eqs. (6), (9), and (11),
is not convenient for calculations. Therefore, it is helpful to introduce
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another Green’s function of phonons in the momentum representation.
This function depends on the vibrational mode indices l1 and l2 and is
defined as

Dl1l2,s1s2
t1t2

(q1,q2)

= − i

�
〈〈T̂C [b̂q1l1(t1) + b̂+

−q1l1
(t1)]s1 [b̂−q2l2(t2) + b̂+

q2l2
(t2)]s2〉〉 . (14)

One can see that that Dl1l2,−−
t1t2

coincides with the causal Green’s function
of phonons, Dl1l2,c

t1t2
, introduced by Eq. (D.21). In the limit t1 → t2, we

have
i� lim

t1,t2→t
Dl1l2,−+

t1t2
(q1,q2)

= Nt(l1q1, l2q2) + Nt(l2 − q2, l1 − q1) + δl1l2δq1q2 , (15)

where Nt(l1q1, l2q2) is the density matrix of phonons; see Eq. (19.4)
and Sec. 23. To express Dαβ,s1s2

t1t2
(x1,x2) through Dl1l2,s1s2

t1t2
(q1,q2), we

use Eq. (6.29) and obtain

Dαβ,s1s2
t1t2

(x1,x2) =
1
V

∑
l1l2

∑
q1q2

�eα
q1l1

eβ∗
q2l2

2ρ
√

ωq1l1ωq2l2

×Dl1l2,s1s2
t1t2

(q1,q2)eiq1·x1−iq2·x2 . (16)

In the crystals with cubic symmetry there are one longitudinal and two
transverse acoustic phonon modes. Since only the longitudinal modes in-
teract with electrons via deformation-potential interaction, we omit the
mode indices in the phonon Green’s functions and take into account that
eqLA = −iq/q and ωqLA = slq. The expressions with spatial derivatives
standing in Eq. (11) can be represented as (see Eq. (21.1))

D2
∑
αβ

∇α
x1

∇β
x2

D̂αβ
t1t2

(x1,x2)

=
∑
q1q2

C(LA)
q1

C(LA)
q2

D̂t1t2(q1,q2)eiq1·x1−iq2·x2 , (17)

where D̂ is the matrix form of the Green’s function (14), and it is assumed
that l1 = l2 = LA.

In the absence of external fields and crystal inhomogeneities, when
the system is homogeneous in space and time, the Green’s function of
electrons can be written as Gss′

tt′ (x1,x2) = Gss′
t−t′(x1 − x2). Doing both

temporal and spatial Fourier transformations of this function, we obtain
Gss′

ε (p). In the same conditions, Dss′
tt′ (q,q′) = δqq′Dss′

t−t′(q), and the
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temporal Fourier transformation of Dss′
t−t′(q) gives us Dss′

ω (q). In this
case, the Dyson equation for the electron Green’s function is written in
the most simple way, as a system of four algebraic equations, or as a
single 2 × 2 matrix equation

Ĝε(p) = ĝε(p) + ĝε(p)Σ̂ε(p)Ĝε(p), (18)

where ĝε(p) is the Green’s function of free electrons in the energy-
momentum representation, and the self-energy function Σ̂ is given by
the following expansion:

−iΣs1s2
ε (p) = is1is2�

∫
dω

2π

∫
dq

(2π)3
V2

q iGs1s2
ε−�ω(p − �q)iDs1s2

ω (q)

+is1is2�
2
∑

s′
1s′

2=±
is′

1is
′
2

∫
dω

2π

∫
dω′

2π

∫
dq

(2π)3

∫
dq′

(2π)3
V2

q V2
q′ (19)

×iG
s1s′

2
ε−�ω(p − �q)iGs′

2s′
1

ε−�(ω+ω′)[p − �(q + q′)]iGs′
1s2

ε−�ω′(p − �q′)

×iDs1s′
1

ω (q)iDs′
2s2

ω′ (q′) + . . . .

For the sake of convenience, we have introduced the quantity Vq =√
V C(LA)

q =
√

�D2q/2ρsl, which is independent of the normalization
volume V . Equation (19) is presented diagrammatically as

−iΣs1s2
ε (p) = + . . . .+

s1 s2p−�q
ε−�ω

ω,q

p−�q p−�q′

ω,q ω′,q′

s1 s2s′
2 s′

1ε−�ω ε−�ω′
(20)

The electron and phonon Green’s functions are represented by the solid
and wavy lines with energy and momentum indices. In each vertex, a
phonon line is “emitted” or “absorbed” by an electron line in such a
way that the momentum and energy conservation laws are fulfilled. The
factor is�

1/2Vq is attributed to the vertex s where a phonon line with
wave vector q begins or ends. Then, the integrals over all transferred
frequencies and wave vectors are taken. These are the diagram rules for
electron-phonon interaction in the energy-momentum representation.

Equation (12) for the homogeneous systems can be rewritten as a
matrix equation for D̂ω(q) in the following way:

D̂ω(q) = d̂ω(q) + d̂ω(q)V2
q σ̂zΠ̂ω(q)σ̂zD̂ω(q), (21)

where the polarization function in the energy-momentum representation
is given by the expansion

i

�
Πs1s2

ω (q) = −2
∫

dε

2π�

∫
dp

(2π�)3
iGs1s2

ε+�ω(p + �q)iGs2s1
ε (p) (22)
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−2�

∑
s3,s4=±

is3is4

∫
dε

2π�

∫
dp

(2π�)3

∫
dω′

2π

∫
dq′

(2π)3
V2

q′iGs1s3
ε+�ω(p + �q)

×iGs3s2
ε+�(ω−ω′)[p + �(q − q′)]iGs2s4

ε−�ω′(p − �q′)iGs4s1
ε (p)iDs3s4

ω′ (q′) + . . . .

It can be obtained either by Fourier transformations of the analytical
form of Eq. (13) or by direct application of the diagram rules we just
formulated. The first term of the expansion of Πs1s2

ω (q) has the same
form as in problem 8.9, because it does not contain the phonon Green’s
function explicitly. Equations (18) and (21) with the self-energy (19)
and polarization function (22) form a set of equations for the Green’s
functions of electrons and phonons interacting with each other. To com-
plete this set, one should define gs1s2

ε (p) and ds1s2
ω (q). The former are

given by Eq. (40.33), while the latter are

d−+
ω (q) = −2πi�−1 [Nqδ(ω − ωq) + (N−q + 1)δ(ω + ωq)] ,

d−− = dR + d−+, d++ = −dA + d−+, d+− = dR − dA + d−+, (23)

where ωq = slq and Nq is the occupation number of acoustic phonons.
The expressions (23) can be directly derived from Eq. (14). The retarded
and advanced Green’s functions, dR

ω(q) and dA
ω(q) in Eq. (23), are given

by Eq. (D.25), where the mode index µ is omitted. In the equilibrium
case, when Nq = [e�ωq/T − 1]−1, the function d−+

ω (q) can be expressed
through dR

ω(q) and dA
ω(q) by using Eq. (D.11) with Â = b̂q + b̂+

−q and
B̂ = b̂−q + b̂+

q .
Although so far we discussed the deformation-potential interaction

with acoustic phonons, it is not difficult to bring other mechanisms of
electron-phonon interaction into consideration. All we have to do is
to substitute the corresponding energy spectra and matrix elements of
interaction. For example, in the case of polarization-potential interaction
of electrons with LO phonons, when the interaction Hamiltonian is given
by Eq. (6.22), one can apply Eqs. (18)−(22) with Vq =

√
V C(LO)

q =√
2πe2�ωLO/ε∗q2, see Eq. (21.1), and use ωq = ωLO in Eq. (23).
A similar diagram technique can be built to describe the interaction

of electrons with photons. The operator of interaction of electrons with
the electromagnetic field described by the vector potential Art and scalar
potential Φrt is written as (see Eq. (4.16))

Ĥint = −1
c

∫
dr Îr · Ârt +

∫
drρ̂rΦ̂rt , (24)

where the vector and scalar potentials are quantized. If the gauge with
zero scalar potential, only the first term of this expression remains. The
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current density operator is given by Eq. (4.15) and can be written
through the field operators of electrons:

Îx = − i�e

2m

[
Ψ̂+

x ∇xΨ̂x − (∇xΨ̂+
x )Ψ̂x

]
− e2

mc
AxtΨ̂+

x Ψ̂x , (25)

while the charge density operator is written as ρ̂x = eΨ̂+
x Ψ̂x. The ex-

pansion of the exponential operator ŜC in the expressions like (41.15)
contains products of the electron field operators as well as those of the
vector and scalar potentials. The last term on the right-hand side of
Eq. (25) is neglected because it brings non-linear terms in the inter-
action Hamiltonian. The non-linear interaction can be essential only
in some special cases which are not considered here. We introduce the
Green’s functions of the vector potentials of electromagnetic field in a
similar way as in Eq. (4), replacing the displacement operators by the
vector-potential operators:

Dαβ,s1s2(1, 2) = − i

�
〈〈T̂CÂα

s1
(1)Âβ

s2(2)〉〉 . (26)

In addition to this function, one may also introduce the Green’s func-
tion of the scalar potentials, as well as the mixed Green’s function de-
scribing the correlation of Âxt and Φ̂xt. The function Dαβ,−−(1, 2) co-
incides with the causal double-time Green’s function 〈〈Âα

x1
|Âβ

x2〉〉c
t1t2 .

The retarded and advanced functions, Dαβ,R(1, 2) and Dαβ,A(1, 2), are
expressed through Dαβ,s1s2(1, 2) in a standard way, as in Eq. (40.3)
(problem 8.12).

Considering the interaction of electrons with transverse electromag-
netic fields in the gauge ∇ · Axt = 0, we use Eq. (3.18) expressing the
operator of the vector potential through the creation and annihilation
operators of photons. Assuming e∗

qµ = e−qµ, we obtain

Dαβ,s1s2
t1t2

(x1,x2) =
1
V

∑
µ1µ2

∑
q1q2

2π�c2

ε
√

ωq1ωq2

eα
q1µ1

eβ∗
q2µ2

×Dµ1µ2,s1s2
t1t2

(q1,q2)eiq1·x1−iq2·x2 , (27)

where µ = 1, 2 is the polarization index, eqµ is the unit vector of po-
larization of the photon, Dµ1µ2,s1s2

t1t2
(q1,q2) is defined by Eq. (14) with

photon operators b̂qµ standing in place of phonon operators, and ωq is
given by Eq. (3.23). Without repeating the calculations given above, we
mention that the diagram technique in the homogeneous systems again
leads to Eqs. (18)−(22) for Gs1s2

ε (p) and Dµ,s1s2
ω (q), where, however,
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the polarization index enters the vertices, and Vq is replaced by

Vµ(p,q) =

√
2π�e2

ωqε
(vp · eqµ), (28)

where vp = p/m. The similarity of the description of electron-phonon
and electron-photon interactions is explained by the fact that the oper-
ators of the interaction in both cases are written as (see Eq. (19.2) and
below) ∑

pqµ

〈p + q|χ̂qµ|p〉â+
p+qâpb̂qµ + H.c. , (29)

where µ is either the mode index of phonons or the polarization index
of photons, and the matrix element of the effective interaction potential
is written as 〈p + q|χ̂qµ|p〉, where χ̂qµ is specified for each mechanism
of electron-boson interaction in Chapter 4. The diagram technique can
be generalized in a straightforward way for describing the electrons oc-
cupying several bands (or subbands in low-dimensional structures). In
this case, one should add the band (or subband) index n to each elec-
tron Green’s function and calculate the matrix elements of χ̂qµ by using
the corresponding eigenstates |np〉. The kinetic equation for the elec-
trons interacting with bosons, see Sec. 34, can be derived from the
non-equilibrium diagram technique described above (problem 8.13).

At zero temperature, the diagram technique is simplified considerably,
because all the diagrams for −− (++) Green’s functions containing +
(−) vertices give zero contribution. This rule is general and valid for arbi-
trary interactions. Let us demonstrate it for the case of electron-phonon
interaction, considering first the correction (7) to the electron Green’s
function in the energy-momentum representation, which is proportional
to gs1s3

ε (p)gs3s4
ε−�ω(p − �q)ds3s4

ω (q)gs4s2
ε (p). Assuming that s1 = s2 = −,

we can write four diagrams differing by the signs s3 and s4. It is essential
that Eq. (40.33) at T = 0 gives us g−+

ε (p) = 0 at ε > εF and g+−
ε (p) = 0

at ε < εF (we put ε > 0). This immediately makes the contribution with
s3 = s4 = + equal to zero. To analyze the contributions with s3 	= s4,
we note that Nq = 0 at T = 0. Therefore, one has d−+

ω (q) = 0 at ω > 0
and d+−

ω (q) = 0 at ω < 0. At s3 = + (s4 = −), the product of electron
Green’s function is non-zero only if ε < εF and ε−ω > εF , i.e., ω must be
negative. Since in these conditions ds3s4

ω (q) = 0, the contribution is zero.
The case s3 = − (s4 = +) is considered in a similar way, again with zero
contribution. Therefore, only the diagram with s3 = s4 = − remains.
Since the consideration can be repeated for the diagrams of arbitrary
order, one should retain only the diagrams with “minus” vertices in the
series for G−−

ε (p) (and in the series for D−−
ω (q) as well). For the same
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reasons, the series for G++ and D++ would contain only the diagrams
with “plus” vertices (a consideration of such diagrams, however, would
not give us any additional information about the system at T = 0). We
remind that G−− and D−− are the causal Green’s functions of electrons
and phonons. The diagram technique operating with these functions at
T = 0 is called the zero-temperature diagram technique. An application
of this technique to the case of electron-electron interaction is considered
in Appendix E. Since the zero-temperature diagram technique appears
to be a particular case of the non-equilibrium diagram technique, the di-
agram rules for this technique are, in fact, already formulated (problems
8.14 and 8.15).

43. Weak Localization under External Fields
To give an example of application of the formalism developed in Secs.

39 and 40, we calculate the quantum corrections to the linear response
of electron-impurity systems in the presence of quasi-classical (slowly
varying with time and smoothly varying in space) electric and magnetic
fields, Ext and Hxt. The linear response to a stationary electric field in
the absence of magnetic fields has been considered in Sec. 15 by using the
diagram technique for electron-impurity systems. The non-equilibrium
diagram technique provides a more general way of calculating the quan-
tum corrections, based upon the generalized kinetic equation.

As we have seen in Sec. 40, the equations of the non-equilibrium
diagram technique in quasi-classical fields are transformed to the quasi-
classical (Boltzmann) kinetic equation when the self-energies standing in
the collision integral of Eq. (40.27) are evaluated in the lowest order with
respect to the impurity potential, see Eq. (40.28), which corresponds to
the Born approximation. The non-equilibrium diagram technique allows
one to take into account the higher-order diagrams describing backscat-
tering processes. Below we again evaluate ΣR,A(x1t1,x2t2) ≡ ΣR,A(1, 2)
in the Born approximation, because, as in Sec. 15, the higher-order
corrections appear to be small. However, in the diagrammatic expan-
sion (40.17) of Ω(x1t1,x2t2) ≡ Ω(1, 2), we take into account all max-
imally crossed diagrams corresponding to the backscattering processes
with small total momentum transfer; see Sec. 15. The expression for
−iΩ(1, 2) is represented as

1 2F
+

1 2′ 1′ 2R F A
+

1 3 2′ 1′ 3′ 2R R F A A
+ . . . . (1)

The first diagram corresponds to the Born contribution Ω(1, 2) = w12
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×F (1, 2), where w12 ≡ 〈〈Ux1Ux2〉〉 = w(|x1 − x2|). The other diagrams
correspond to a quantum correction δΩ(1, 2), which can be written as a
product of w11′w22′F (2′, 1′) by the infinite sum

GR(1, 2′)GA(1′, 2) + w33′GR(1, 3)GR(3, 2′)GA(1′, 3′)GA(3′, 2) + . . . (2)

integrated over the variables denoted by the primed indices. The sum
(2) is easily identified with the correlation function 〈〈GR(1, 2′)GA(1′, 2)〉〉
of retarded and advanced Green’s functions written in the ladder ap-
proximation. Therefore,

δΩ(1, 2) �
∫

d1′
∫

d2′w11′w2′2〈〈GR(1, 2′)GA(1′, 2)〉〉F (2′, 1′). (3)

To find the Green’s function F in quasi-classical fields, we consider the
kinetic equation (40.27) in the local approximation, when the spatial
gradient and time derivative on the left-hand side are neglected:

i�

(
eErt · vp

∂

∂ε
+ eErt·∇p +

e

c
[vp × Hrt] · ∇p

)
Fεt(r,p) (4)

+[ΣA
ε (r,p) − ΣR

ε (r,p)]Fεt(r,p) = Ωεt(r,p)[GA
ε (r,p) − GR

ε (r,p)].

Using the quasi-classical expression (9.11) for the current density and
Eq. (40.21), one can write the induced current density as

Irt = e

∫
dp

(2π�)3
vp

∫
dε

2πi
∆Fεt(r,p), (5)

where ∆F is the non-equilibrium part of the Green’s function F . The
equilibrium part F (eq) of this function is given by Eq. (40.24), where
χε = 2f (eq)

ε − 1. Taking into account that both F (eq) and the right-hand
side of Eq. (4) are proportional to GA − GR, we search for ∆F in the
form

∆Fεt(r,p) = ∆sεt(r,p) [GA
ε (r,p) − GR

ε (r,p)]

� 2πi∆sεt(r,p)δτ (ε − εpr). (6)

To transform GA −GR in this equation, we have used Eq. (40.26), where
the self-energy is written through the coordinate-dependent relaxation
time τr:

ΣA
ε (r,p) � −ΣR

ε (r,p) � i�/2τr. (7)

The broadened δ-function in Eq. (6) is defined as δτ (E) = (�/2πτ)[E2 +
(�/2τ)2]−1 (see problem 1.4), and εpr = εp + Ur.

Neglecting the terms containing the derivatives of 1/τr over p and
ε, one can find that the factor GA

ε (r,p) − GR
ε (r,p) commutes with the
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operator proportional to Ert and Hrt on the left-hand side of Eq. (4).
Therefore, Eq. (4) can be written as an equation for ∆sεt(r,p):(

eErt · vp
∂

∂ε
+ eErt · ∇p +

e

c
[vp × Hrt] · ∇p

)
[2f (eq)

ε − 1 + ∆sεt(r,p)]

= − 1
τr

∆sεt(r,p) − i

�
∆Ωεt(r,p). (8)

This equation is obtained by taking into account that the equilibrium
part of F makes the collision integral equal to zero. The non-equilibrium
part of Ω standing in Eq. (8) is a sum of the Born contribution and
quantum correction δΩ:

∆Ωεt(r,p) = 2πi

∫
dp1

(2π�)3
w(|p − p1|/�)∆sεt(r,p1)δτ (ε − εp1r)

+δΩεt(r,p). (9)

In this equation, as in Eq. (40.28), w(q) is the Fourier transform of
the impurity potential correlation function w(r). To simplify the cal-
culations, we assume the case of short-range impurity potential, when
w(q) � w is independent of q.

To obtain a linearized quasi-classical kinetic equation, one should sub-
stitute ∆Ω from Eq. (9) into Eq. (8), neglect the quantum correction,
multiply Eq. (8) by δ(ε−εpr), and integrate it over ε. After these trans-
formations, the function ∆sεprt(r,p) is identified with 2∆ft(r,p) and
Eq. (5) is reduced to Eq. (9.11) for the current density. Below we solve
Eq. (8) by iterations, assuming that ∆sεt(r,p) = ∆̃sεt(r,p)+ δsεt(r,p),
where ∆̃sεt(r,p) satisfies Eq. (8) without the quantum correction. In the
limit of classically weak magnetic fields, when the cyclotron frequency
ωc is small in comparison to 1/τr, we have

∆̃sεt(r,p) � −2τr

(
eErt · vp + τr

e2

mc
vp · [Ert × Hrt]

)
df (eq)

ε

dε
, (10)

where we keep only the terms linear in Ert. The quantum correction
δsεt(r,p) is determined from the following equation:(

eErt · vp
∂

∂ε
+ eErt · ∇p +

e

c
[vp × Hrt] · ∇p

)
δsεt(r,p)

+
δsεt(r,p)

τr
= − i

�
δΩεt(r,p), (11)
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where the right-hand side is found by using ∆Fεt(r,p) = 2πi∆̃sεt(r,p)
×δτ (ε − εpr). Equation (11) should be solved by iterations. Since δΩ is
already linear in Ert, the solution linear in Ert and Hrt is

δsεt(r,p) � − iτr
�

δΩεt(r,p)

−τr
e

c
[vp × Hrt] · ∇p

[
− iτr

�
δΩεt(r,p)

]
H=0

. (12)

Substituting the expressions (10) and (12) into Eq. (6), we calculate the
current density according to Eq. (5) and obtain Irt = jrt + δjrt, where
the classical and quantum contributions, respectively, are given by

jrt = σr

(
Ert + τr

e

mc
[Ert×Hrt]

)
(13)

and

δjrt = − iτr
�

e

∫
dp

(2π�)3

∫
dεδτ (ε − εpr)

×
[
vpδΩεt(r,p) + τr

e

mc
[vp × Hrt] δΩεt(r,p)|H=0

]
. (14)

The local conductivity is introduced according to σr = e2nrτr/m, where
nr is the local electron density. The second term under the integral in
Eq. (14) is transformed by using the integration by parts.

To calculate the quantum correction δjrt, one has to write δΩ given
by Eq. (3) in the Wigner representation. As a result of the Wigner
transformations, we have

δΩεt(r,p) = w2
∫

dt′
∫

dε′

2π�

∫
dp′

(2π�)3
∆Fε′t′(r,p′)

×
∫

dρ exp
{

− i

�

[
p + p′ + �κr(t, t′)

]
·ρ
}

Cεε′
(
r+

ρ

2
t, r−ρ

2
t′
)

, (15)

where �κr(t, t′) = e(Art + Art′)/c and

Cεε′
(
rt, r′t′

)
=
∫

dτ

∫
dτ ′ei(ετ+ε′τ ′)/�

×〈〈GR(r t + τ/2, r′ t′ − τ ′/2)GA(r t′ + τ ′/2, r′ t − τ/2)〉〉 . (16)

The correlation function of the Green’s functions in Eq. (16) satisfies
the Bethe-Salpeter equation in the ladder approximation, which has the
following form [see also Eqs. (15.3) and (15.4)]:
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r′t′2rt′1

rt1 r′t2

= +

rt1 r′t2

rt′1 r′t′2

rt1 r′t2

rt′1 r′t′2

r3t3

r3t′3
������
���

. (17)

Owing to the assumed weak spatial and temporal variation of the fields,
one should calculate the function (16) in the hydrodynamic region of
parameters, |r − r′| > lF and |t − t′| > τF , where lF and τF are the
mean free path length and scattering time at the Fermi surface (below
we consider a strongly degenerate electron gas). Such an approximation
considerably simplifies the calculation of the correlation function from
Eq. (17). The details of this calculation are presented in Appendix F.

The function (16) becomes proportional to δ(ε − ε′), according to

Cεε′
(
rt, r′t′

)
= 2π2ρ3D (ε − Ur) δ(ε − ε′)C

(
rt, r′t′

)
. (18)

The Cooperon C (rt, r′t′) introduced by Eq. (18) satisfies the following
equation:[

1
2

(
∂

∂t
− ∂

∂t′

)
+ [−i∇r − κr(t, t′)] · Dr[−i∇r − κr(t, t′)] +

1
τϕ

]
×C

(
rt, r′t′

)
= δ(t − t′)δ

(
r − r′) . (19)

The term “Cooperon” is traditionally used because the pair correlation
functions of the kind 〈〈G(r, r′)G(r, r′)〉〉 have been encountered earlier
in the theory of superconductivity. The local diffusion coefficient in Eq.
(19) is introduced as Dr = v2

F τr/3. The phase relaxation time τϕ is
introduced phenomenologically, to provide a finite value of C(rt, r′t′) for
the stationary and spatially homogeneous case at Art = 0. In the case of
2D electrons, the introduction of the phase relaxation length lϕ = vF τϕ

leads to a cutoff of the logarithmic divergence of the static conductivity;
see Sec. 15.

Substituting Cεε′ (rt, r′t′) given by Eq. (18) and ∆Fεt(r,p) � 2πi

×∆̃sεt(r,p)δτ (ε − εpr) into Eq. (15), we find the quantum correction to
the current in the form

δjrt =
2π

�
ew

∫
dp

(2π�)3

∫
dε[δτ (ε − εpr)]2

∫
dt′C

(
rt, rt′

)
×
[
vp∆̃sεt′(r,−p) + τr

e

mc
[vp × Hrt]∆̃sεt′(r,−p)|H=0

]
. (20)

If we substitute the function ∆̃sεt(r,p) given by Eq. (10) to this expres-
sion and take the integral over ε with the use of −df (eq)

ε /dε = δ(ε − εF ),
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we also find

δjrt = −4π

�
e2wτr

∫
dp

(2π�)3
vp[δτ (εF − εpr)]2

×
∫

dt′C
(
rt, rt′

)
vp ·

(
Ert′ + 2τr

e

mc
[Ert′×Hrt′ ]

)
. (21)

The integral over the angle of p transforms pαpβ to p2δαβ/3, and the
integral over |p| is calculated easily. As a result, we obtain

δjrt = − 2
π

σr

�ρr

∫
dt′C

(
rt, rt′

) (
Ert′ + 2τr

e

mc
[Ert′×Hrt′ ]

)
, (22)

where ρr ≡ ρ3D (ε − Ur) is the local density of states. Equations (13)
and (22) are valid in the regions where εF − Ur > 0 (the conductivity is
of metallic type). The results presented above can be applied to the case
of 2D electrons if σr, ρr, Dr, and τr are considered as 2D conductivity,
density of states, diffusion coefficient, and relaxation time, respectively.
The density of states m/π�

2 in this case is coordinate-independent, and
the diffusion coefficient is equal to v2

F τr/2.
Consider the linear response to the homogeneous electric field Ee−iωt+

c.c. at H = 0. In the linear regime, one should neglect κr(t, t′), and the
Cooperon depends on t−t′. The quantum correction to the conductivity,
δσ, is introduced as usual, according to δjrt = δσr(ω)Ee−iωt + c.c. It
is expressed through the temporal Fourier transform Cω(r, r′) of the
Cooperon:

δσr(ω) = − 2
π

σr

�ρr
Cω (r, r) ,(

−iω − ∇r · Dr∇r +
1
τϕ

)
Cω

(
r, r′) = δ

(
r − r′) . (23)

In the spatially homogeneous case the Cooperon depends on r− r′. The
equation for Cω (r, r′) in Eq. (23) is transformed into an algebraic one by
a spatial Fourier transformation, and the response is found in a straight-
forward way:

δσ(ω) = − 2σ

π�ρD

∫
dq

(2π)d

(
Dq2 +

1
τϕ

− iω

)−1

, d = 2, 3. (24)

When calculating the integral in Eq. (24), one should introduce a cutoff
at large q, of the order of (vF τF )−1, because the Cooperon is large only
in the hydrodynamic region of parameters. Equation (24) allows one to
study the region of frequencies τ−1

F > ω > τ−1
ϕ . In the 3D case, the rel-

ative correction δσ/σ in this region is small and frequency-independent,
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while in the 2D case it contains a large logarithmic factor, ln(ωτF ). In
the static limit ω → 0, the integration over q in Eq. (24) leads to Eq.
(15.27) (problem 8.16).

To study a transition between the 2D and 3D regimes, let us con-
sider Eq. (23) at ω = 0 for a film of width d. The film is placed
at −d/2 < z < d/2, and the problem is translation-invariant in the
plane XOY . Therefore, it is convenient to introduce a two-dimensional
Fourier transform of the Cooperon C(r, r′) ≡ Cω=0(r, r′) according to
Cq (z, z′) =

∫
d∆xe−iq·∆xC(xz,x′z′), where x = (x, y) is the 2D coordi-

nate and ∆x = x−x′. Taking into account that the diffusion coefficient
goes to zero in the region |z| > d/2 (outside the film), we integrate Eq.
(23) across the boundaries and find [dCq(z, z′)/dz]z=±d/2 = 0. To satisfy
these boundary conditions, we write the following solution of Eq. (23):

Cq

(
z, z′) =

∞∑
n=0

χnzχ
∗
nz′

Dq2 + νn + 1/τϕ
, (25)

where χnz are the eigenfunctions of the problem −Dd2χnz/dz2 = νnχnz

with the boundary conditions [dχnz/dz]z=±d/2 = 0 and n = 0, 1, . . .

is the mode number. We find that χnz =
√

2/d cos[πn(z/d − 1/2)]
and νn = D(πn/d)2. The characteristic frequency interval between the
modes is estimated as D(π/d)2 = (πlF /d)2/3τF . Introducing the sheet
conductivity as δσ� =

∫ d/2
−d/2 δσdz, we obtain

δσ� = − 2σ

π�ρ3D

∫
dq

(2π)2

∞∑
n=0

(
Dq2 + νn + 1/τϕ

)−1
. (26)

The two-dimensional regime is realized if the main contribution to the
sum in Eq. (26) comes from n = 0. The condition for this regime is
νnτϕ � 1 for n 	= 0, which can be rewritten as

√
lF lϕ � d. Since

lϕ � lF , this condition remains valid even at lF < d. Therefore, the
quantum corrections to the 2D conductivity also describe the classical
thin films whose width d exceeds the mean free path length lF but still
remains smaller than

√
lF lϕ.

Equations (19) and (22) describe various features of the linear re-
sponse in the weak localization regime. One of them is the negative
magnetoresistance of 2D electrons in weak stationary magnetic fields.
To investigate it, let us substitute the vector potential A = (0, Hx, 0) in
Eq. (19) and search for the Cooperon C(x,x′) in the form of a product
of the phase factor exp[−i(x + x′)(y − y′)/l2H ], where lH is the magnetic
length introduced in Sec. 5, by a translation-invariant part C̃(|x − x′|).
The spatial Fourier transform C̃q of this part satisfies the equation
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−D

l4H

d2

dq2 + Dq2 +
1
τϕ

)
C̃q = 1, (27)

which is related to the equation for the Green’s function of the harmonic
oscillator (see Appendix A). Its solution is written as (problem 8.17)

C̃q = e−q2l2H/2
∞∑

n=0

(−1)nL0
n(q2l2H)

D(2n + 1)/l2H + 1/2τϕ
, (28)

where L0
n is the Laguerre polynomial. Integrating C̃q over q, we deter-

mine C̃(0) = C(x,x) and substitute it into Eq. (22) to find the current.
The quantum correction to the diagonal component of the conductivity
tensor is represented as (we use D = v2

F τF /2 for 2D electrons)

δσd = − e2

2π2�

∞∑
n=0

1
(n + 1/2) + l2H/(4Dτϕ)

. (29)

The sum over n is logarithmic-divergent at large n. We cut it off at
n = nm , where nm is the integer part of l2H/2l2F , and obtain

δσd =
e2

2π2�

[
ψ

(
1
2

+
1

Dτϕ

�c

4|e|H

)
+ ln

(
4|e|H

�c
DτF

)]
, (30)

where ψ(x) = d ln Γ(x)/dx is the logarithmic derivative of the Gamma
function. If H is so small that (4|e|H/�c)Dτϕ � 1, the function ψ(1/2+
x) approaches lnx and we recover the result (15.27). Expanding ψ in
series, we find that the quantum correction increases as H2 in weak
magnetic fields. When (4|e|H/�c)Dτϕ > 1, the second term in Eq.
(30) dominates and δσd increases as ln H. The increase of δσd with
increasing H leads to a negative magnetoresistance which often serves
as a signature of the weak localization effect. The quantum correction
to the non-diagonal components of the conductivity tensor is expressed
as δσ⊥ = 2ωcτF δσd. It is much smaller than δσd in the limit of small
ωcτF . Using this expression for δσ⊥, one may check that there is no
quantum correction to the Hall effect (problem 8.18). We also point
out an unusual non-linear response due to the electric field entering Eq.
(19). This effect, however, can take place only at ω 	= 0, because the
stationary electric field drops out of Eq. (19) (problem 8.19).

Problems
8.1. Prove the relation R̂−1σ̂zR̂ = σ̂x, where R̂ is given by Eq. (40.1).
Hint: Use σ̂ασ̂β = δαβ + ieαβγ σ̂γ , where the tensor eαβγ is introduced in Sec. 11

and problem 2.14.
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8.2. Prove Eq. (40.24) by using the definition of non-equilibrium
Green’s functions.

Solution: According to the definition of F , one may equivalently prove a similar
property for Ĝ−+

ε . Using the dynamical equations (39.3) and (39.4) for G−+(1, 2), we
find the following general solution for the stationary case:

G−+(1, 2) =
∑

δ

Nδψ
(δ)
x1 ψ(δ)∗

x2 exp[−iεδ(t1 − t2)/�],

where we have employed the exact eigenstates 〈x|δ〉 = ψ(δ)
x and eigenvalues εδ of the

Schroedinger equation Ĥxψ(δ)
x = εδψ

(δ)
x , and Nδ is a coefficient. The temporal Fourier

transformation of G−+(1, 2) gives us, in the operator form,

Ĝ−+
ε = 2π�

∑
δ

Nδ|δ〉〈δ| δ(ε − εδ).

The coefficient Nδ can be determined with the use of Eq. (39.9), which is rewritten
as n̂ = (2πi)−1 ∫ dεĜ−+

ε . After substituting Ĝ−+
ε found above into this equation, we

have 〈δ|n̂|δ〉 ≡ fδ = (�/i)Nδ, where fδ is the distribution function of electrons over
the quantum states δ. Therefore,

G−+
ε (x1,x2) = 2πi

∑
δ

fδψ
(δ)
x1 ψ(δ)∗

x2 δ(ε − εδ).

In the stationary case, fδ can depend only on the energy εδ. Owing to the presence
of the δ-function, we write fδ = f(εδ) = f(ε) under the sum. Employing Eqs. (13.26)
and (14.5) to the equation above, averaging this equation over the impurity distri-
bution, and using the operator representation for the Green’s functions, we finally
obtain

Ĝ−+
ε = f(ε)[ĜA

ε − ĜR
ε ],

which also proves that χε = 2f(ε)−1 in Eq. (40.24). In thermodynamic equilibrium,
f(ε) = f (eq)

ε is the equilibrium distribution function.

8.3. Prove that the Green’s function of Eq. (40.24) makes the gen-
eralized collision integral (the right-hand side of Eq. (40.23)) equal to
zero.

Hints: Use the diagrammatic expansion of Ω and Σ to prove this property in each
order of the perturbation theory. Take into account that Ω is proportional to χε

because F appears only one time in each diagram for Ω.

8.4. Derive Eqs. (41.11)−(41.13), following the way we derived Eq.
(41.10).

Hint: In the derivation of Eq. (41.12), replace Ŝ0(t2, t1) standing between the field
operators by Ŝ0(t2, ∞)Ŝ0(∞, t1). Proceed in a similar way to derive Eq. (41.13).

8.5. Derive the Kubo formula by using the non-equilibrium diagram
technique.

Solution: Let us consider the response of the electrons interacting with a random
potential Uxt to the homogeneous external perturbation V̂t = i(eE · v̂/ω)e−iωt by
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taking into account the diagrams linear in V̂t, i.e., the diagrams containing only
one perturbation-potential vertex. According to the rules of the diagram technique
explained in Secs. 39 and 41, the correction to the Green’s function due to the
perturbation is given by

δ̂G
−+

t1t2 = 〈〈δ̂G−+

t1t2〉〉 =
∫

dt′
〈〈

i2Ĝ−+
t1t′ V̂t′ Ĝ++

t′t2 − i2Ĝ−−
t1t′ V̂t′ Ĝ−+

t′t2

〉〉
,

where the double angular brackets denote the averaging over the random potential.
The non-averaged Green’s functions Ĝs1s2

t1t2
describe the electron system in the absence

of the perturbation potential. We use the operator form of these functions (as well as
of the perturbation potential) so that one may choose a suitable representation later
on. In the coordinate representation, 〈x1|Ĝs1s2

t1t2
|x2〉 = Gs1s2(x1t1,x2t2) ≡ Gs1s2(1, 2)

satisfy Eq. (39.15). The current density is given by

It =
ie2n

mω
Ee−iωt +

e

V
Sp (n̂tv̂) ,

where the trace includes the averaging over the random potential, n̂t is the one-
electron density matrix, and n = V −1Spn̂eq is the electron density expressed through
the equilibrium density matrix n̂eq. The contribution to the current density comes
from the correction δ̂nt = n̂t − n̂eq linear in the perturbation. Therefore, expressing
n̂t through Ĝ−+

tt according to Eq. (39.9), we obtain

Iα
t =

ie2n

mω
Eαe−iωt +

e2

V ω
Eβ

∫
dt′e−iωt′

Spv̂α

[
Ĝ−−

tt′ v̂βĜ−+
t′t − Ĝ−+

tt′ v̂βĜ++
t′t

]
.

If the random potential U is time-independent (static), we have Ĝss′
tt′ = Ĝss′

t−t′ . Carry-
ing out the temporal Fourier transformation of the Green’s functions, we can calculate
the integral over t′ and obtain the expression for the frequency-dependent conductiv-
ity tensor:

σαβ(ω) =
ie2n

mω
δαβ +

e2

V ω

∫
dε

2π
Spv̂α

[
Ĝ−−

ε v̂βĜ−+
ε−�ω − Ĝ−+

ε v̂βĜ++
ε−�ω

]
.

Let us express Ĝ++ and Ĝ−− through Ĝ−+, ĜR, and ĜA as Ĝ++ = Ĝ−+ − ĜA and
Ĝ−− = Ĝ−+ + ĜR. To find Ĝ−+ in thermodynamic equilibrium, we can use the result
of problem 8.2, Ĝ−+

ε = f (eq)
ε (ĜA

ε − ĜR
ε ). Since the averaging over the random static

potential does not influence the energy distribution function f (eq)
ε , this relation has

the same form for the averaged Green’s functions. The terms quadratic in f (eq)
ε drop

out of the expression for σαβ(ω), and the final expression is

σαβ(ω) =
ie2n

mω
δαβ

+
e2

2πωV

∫
dεf (eq)

ε Sp
[
v̂αĜR

ε+�ω v̂β

(
ĜA

ε − ĜR
ε

)
+ v̂α

(
ĜA

ε − ĜR
ε

)
v̂βĜA

ε−�ω

]
.

We stress that the trace includes the averaging over the random potential distribu-
tion so that the expression for the conductivity tensor contains correlation functions
of the retarded and advanced Green’s functions. Representing the Green’s functions
in the operator form according to Eq. (16.3), one can find that the expression above
is reduced to the Kubo formula (13.18); see also the beginning of Sec. 49 for more
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details. Using the momentum representation in this expression, it is easy to show
that the diagonal conductivity tensor of a macroscopically homogeneous system at
ω = 0 is given by Eq. (13.27).

8.6. Write the Green’s function G−+ as a function of energies and
quantum numbers of exact one-particle eigenstates of the Hamiltonian
Ĥ which does not depend on time.

Solution For the case of time-independent Hamiltonian, the Green’s function Gss′

(xt,x′t′) depends on t − t′. Therefore, it is convenient to use the energy represen-
tation. Introducing the exact eigenstates described by the wave functions ψ(δ)

x and
corresponding energies εδ, one may define the Green’s functions Gss′

ε (δ) in the exact
eigenstate representation, according to

Gss′
(xt,x′t′) =

∑
δ

ψ(δ)
x ψ(δ)∗

x′

∫
dε

2π�
e−iε(t−t′)/�Gss′

ε (δ).

If Ĥ contains a random potential, the right-hand side of this equation should be
averaged over this potential. It is easy to find that

G−+
ε (δ) = ±2πinδδ(ε − εδ),

where nδ are the occupation numbers of Fermi or Bose quasiparticles (not neces-
sarily the equilibrium ones). The other three Green’s functions are expressed as
G−− = GR + G−+, G++ = −GA + G−+, and G+− = GR − GA + G−+, where the
retarded and advanced Green’s functions are given by Eq. (D.20). If the system is
translation-invariant, the exact eigenstates are the plane waves ϕ(δ)

x = V −1/2eip·x/�,
and the quantum number δ is replaced by the momentum p (see also the case of ideal
electron gas described by the Green’s functions of Eq. (40.33)).

8.7. Write the analytical expressions of the leading-order correction
to Σ−+ and Σ+− with respect to the particle-particle interaction.

Result:

Σ−+(1, 2) = −G−+(1, 2)
∫

d3
∫

d4G−+(3, 4)G+−(4, 3)U1−3U2−4

+
∫

d3
∫

d4G−+(1, 3)G+−(3, 4)G−+(4, 2)U1−4U2−3.

To obtain Σ+−(1, 2), permute the indices + and − everywhere in this expression.

8.8. Using Eq. (41.27), derive the quasi-classical kinetic equation for
interacting electrons.

Solution: Let us put t1 = t2 = t in Eq. (41.27). If Ĥ0(1) = −(�2/2m)∂2/∂x2
1, the

left-hand side of this equation is equal to

−i�

[
∂

∂t
− i

�

m

∂

∂r
· ∂

∂∆r

]
G−+(r + ∆r/2 t, r − ∆r/2 t),
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where r = (x1 + x2)/2 and ∆r = x1 − x2. The Wigner transformation in space,
according to Eq. (39.11), transforms this expression to the left-hand side of the
quasi-classical kinetic equation, (∂/∂t +vp ·∇r)frpt. Carrying out the Wigner trans-
formation of the products Σ−s(1, 1′)Gs+(1′, 2) and G−s(1, 1′)Σs+(1′2), we write the
right-hand side of Eq. (41.27) as

−
∫

dε

2π�

∑
s=±

[
Σ−s

εt (r,p)Gs+
εt (r,p) + G−s

εt (r,p)Σs+
εt (r,p)

]

=
∫

dε

2π�

[
Σ+−

εt (r,p)G−+
εt (r,p) − Σ−+

εt (r,p)G+−
εt (r,p)

]
,

where the dependence of G and Σ on the coordinate r and time t is parametric. The
right-hand side of this equation is obtained with the aid of Eqs. (39.22) ans (39.24).
Using the expressions for Σ−+(1, 2) and Σ+−(1, 2) given in the previous problem, we
find the corresponding Σ−+

εt (r,p) and Σ+−
εt (r,p) which have to be substituted in the

expression above. Having done this, one can show that this expression is equal to the
collision integral Jee(f |rpt) of Eqs. (31.21) and (31.22). Indeed, since the self-energy
functions are quadratic in the interaction, it is sufficient to employ the expressions
G−+

εt (r,p) = 2πifrptδ(ε−εp) and G+−
εt (r,p) = −2πi(1−frpt)δ(ε−εp) for the Green’s

functions of free electrons; see Eq. (40.33). This immediately gives us Eqs. (31.21)
and (31.22), because the integral over ε is calculated with the use of the δ-function.
The first terms in Σ−+(1, 2) and Σ+−(1, 2) (see problem 8.7), corresponding to the
diagrams like the third one on the right-hand side of Eq. (E.23), give the direct
Coulomb term in the matrix element (31.22). The second terms in Σ−+(1, 2) and
Σ+−(1, 2), corresponding to the diagrams like the fourth one on the right-hand side
of Eq. (E.23), give the exchange term in this matrix element.

8.9. Using the NDT formalism, express the dielectric permittivity of a
macroscopically homogeneous electron system through the polarization
functions Πs1s2

ω (q) and calculate it in the random phase approximation.
Solution: The dielectric permittivity of a macroscopically homogeneous electron

system is expressed through the polarizability given by Eq. (33.12), where K(q, ω) is
expressed through the Fourier transform of the causal two-electron Green’s function.
The diagram expansion of the latter in terms of single-electron Green’s functions is
given by Eq. (33.15). We may use this equation in the case of finite temperatures if
we add the indices “−” to the initial and final vertices, rt and r′0, and the indices
“+” and “−” to all internal vertices in every possible way. Instead of Eq. (33.17), we
obtain

K(q, ω) = −(i/�)n2δ(ω)δ(q) + Π−−
ω (q) +

∑
s1s2

Π−s1
ω (q)V s1s2

ω (q)Πs2−
ω (q),

where the functions Πs1s2 and V s1s2 are expressed in the energy-momentum rep-
resentation, using the homogeneity of electron system. To find V s1s2

ω (q), we use
Eq. (41.30) written in the energy-momentum representation as a system of alge-
braic equations. Its solutions are V −−

ω (q) = vq[1 + vqΠ++
ω (q)]/D(q, ω), V ++

ω (q) =
−vq[1 − vqΠ−−

ω (q)]/D(q, ω), and V s1s2
ω (q) = −v2

qΠs1s2
ω (q)/D(q, ω) at s1 �= s2. The
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determinant D(q, ω) is given by

D(q, ω) = 1 − vq[Π−−
ω (q) − Π++

ω (q)] + v2
q [Π−+

ω (q)Π+−
ω (q) − Π−−

ω (q)Π++
ω (q)]

= [1 − vqΠR
ω(q)][1 − vqΠA

ω(q)],

ΠR
ω(q) = ΠA∗

ω (q) = [Π−−
ω (q) − Π++

ω (q)]/2 − [Π−+
ω (q) − Π+−

ω (q)]/2

= ReΠ−−
ω (q) − [Π−+

ω (q) − Π+−
ω (q)]/2 ,

where we have employed the linear relation (41.29) and introduced the retarded and
advanced polarization functions, ΠR and ΠA, by taking into account the properties
Π−+ = −(Π−+)∗, Π+− = −(Π+−)∗, and Π++ = −(Π−−)∗. Substituting V s1s2

ω (q) into
the expression for K(q, ω), we find

K(q, ω) + K∗(−q, −ω) =
ΠR

ω(q)
1 − vqΠR

ω(q)
+

ΠA
ω(q)

1 − vqΠA
ω(q)

.

Using the exact eigenstate representation, one may check that ΠR
ω(q) is analytical

in the upper half-plane of complex variable ω, while ΠA
ω(q) is analytical in the lower

half-plane. As explained in Sec. 33, only the retarded term contributes to the integral
over ω′ in Eq. (33.12), and we again obtain the result (33.21):

ε(q, ω)/ε∞ = 1 − vqΠR
ω(q),

where ΠR
ω(q) is now expressed through the components of the polarization function

of NDT and can be found at finite temperatures with a required accuracy. After the
Fourier transformations of Eq. (41.28) in space and time, we find

Πs1s2
ω (q) =

2
V

∑
p

∫
dε

2πi
Gs1s2

ε+�ω(p + �q)Gs2s1
ε (p) + . . . .

In particular, the RPA leads to (compare this to Eq. (33.22))

Πs1s2
ω (q) =

2
V

∑
p

∫
dε

2πi
gs1s2

ε+�ω(p + �q)gs2s1
ε (p),

where the Green’s functions of the ideal electron gas are given by Eq. (40.33). Substi-
tuting them into the equation above, one can find the corresponding RPA expressions
for each component of the polarization function:

Π−−
ω (q) = −[Π++

ω (q)]∗

=
2
V

∑
p

[
fp+�q/2(1 − fp−�q/2)

εp+�q/2 − εp−�q/2 − �ω + iλ
− fp−�q/2(1 − fp+�q/2)

εp+�q/2 − εp−�q/2 − �ω − iλ

]
,

∣∣∣∣ Π−+
ω (q)

Π+−
ω (q)

∣∣∣∣ = −2πi
2
V

∑
p

δ(εp+�q/2 − εp−�q/2 − �ω)
∣∣∣∣ fp+�q/2(1 − fp−�q/2)

fp−�q/2(1 − fp+�q/2)

∣∣∣∣ ,
where fp is the distribution function of electrons and λ → +0. Using these expres-
sions, we find that ΠR

ω(q) calculated in the random phase approximation is equal to
Π(0)R

ω (q) of Eq. (33.8). In conclusion, the generalization of the expressions for the
RPA polarizability and dielectric permittivity to the case of finite temperatures is
straightforward: one should write the distribution function fp at finite temperature
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instead of the distribution function at zero temperature. The function fp is assumed
to be quasi-stationary but not necessarily the equilibrium one.

8.10. Derive the expression for the electron-electron collision integral
accounting for the dynamical screening.

Solution: One has to act in the same way as in problem 8.8. However, instead
of using the expressions for Σ−+(1, 2) and Σ+−(1, 2) given in problem 8.7 and cor-
responding to the second order with respect to the “bare” interaction potential, one
should use their expressions in the leading order with respect to the screened inter-
action potential. In the diagram form,

−iΣs1s2(1, 2) �
1s1 2s2

s1 �= s2 .

The corresponding analytical expression is Σs1s2(1, 2) = i�V s1s2(1, 2)Gs1s2(1, 2).
Carrying out the Wigner transformation of the self-energy functions, and employ-
ing the expressions for V −+

ω (q) and V +−
ω (q) from the previous problem, we find

Σ−+
ε (p) = − i�

V

∑
q

v2
q

∫
dω

2π
G−+

ε−�ω(p − �q)Π−+
ω (q)/D(q, ω),

where D(q, ω) is introduced in problem 8.9. The expression of the polarization func-
tion in terms of the Green’s functions Gs1s2

ε (p) is also given in problem 8.9. Substi-
tuting it into the equation for Σ−+

ε (p) above, we can write the following expression
for the collision integral:

2
V 2

∫
dε

2π

∫
dε′

2π

∫
dω

2π

∑
p′q

v2
q

D(q, ω)
[
G−+

ε−�ω(p − �q)G+−
ε (p)

×G−+
ε′+�ω(p′ + �q)G+−

ε′ (p′) − G+−
ε−�ω(p − �q)G−+

ε (p)G+−
ε′+�ω(p′ + �q)G−+

ε′ (p′)
]
.

Finally, approximating G−+ and G+− by g−+ and g+−, we find that our expression
for the collision integral differs from the direct Coulomb contribution in the colli-
sion integral (31.21) only by the denominator D[(p − p1)/�, (εp − εp1)/�]. As we
know from the previous problem, D(q, ω) = ε(q, ω)ε∗(q, ω)/ε2∞. Therefore, we ob-
tain the collision integral (31.21) with the scattering matrix element (33.32). The
higher-order contributions to Σ−+ and Σ+− can be neglected under the approxima-
tion q < q2

T F � k2
F , where �q is the momentum transferred in the electron-electron

collisions. This corresponds to the range of validity of the RPA; see Sec. 33.

8.11. Write the analytical expression of the second diagram on the
right-hand side of Eq. (42.13).

Hint: Take into account that the vertices 3s3γ and 4s4δ bring the operator is3is4

�D2∇γ
x3∇δ

x4 acting on the coordinates of the phonon Green’s function.

8.12. Calculate the retarded Green’s function Dαβ,R(1, 2) of non-
interacting photons in a homogeneous medium in the energy-momentum
representation.
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Solution: Consider the gauge ∇ · A = 0. One should express the vector po-
tentials according to Eq. (3.18) and take into account that 〈〈b̂qµ(t1)b̂+

q′µ′(t2)〉〉 =
e−iωqµ(t1−t2)δqq′ δµµ′(1+Nµ

q ) and 〈〈b̂+
qµ(t1)b̂q′µ′(t2)〉〉 = eiωqµ(t1−t2)δqq′δµµ′Nµ

q . The
Fourier transformation of the retarded Green’s function

Dαβ,R
t1t2

(x1,x2) = −(i/�)θ(t1 − t2)〈〈Âα
x1(t1)Â

β
x2(t2) − Âβ

x2(t2)Â
α
x1(t1)〉〉

over the spatial and temporal variables, (x1 −x2) and (t1 − t2), leads to the following
result (λ → +0):

Dαβ,R
ω (q) =

∑
µ

2πc2

εωqµ

[
1

ω − ωqµ + iλ
− 1

ω + ωqµ + iλ

]
eα
qµeβ∗

qµ.

Since ωqµ = cq/
√

ε and q · eqµ = 0 for both polarizations, one has
∑

µ eα
qµeβ∗

qµ =
δαβ − qαqβ/q2. Finally, we obtain

Dαβ,R
ω (q) = Dαβ,A ∗

ω (q) =
4π(δαβ − qαqβ/q2)
(ω + iλ)2ε/c2 − q2 .

8.13. Derive the electron-boson collision integral standing in the
quasi-classical kinetic equation (see Eq. (34.25) and problem 7.3) from
the NDT formalism.

Solution: The expression of the collision integral in terms of Gs1s2
ε (p) and Σs1s2

ε (p)
is given in problem 8.8. One should substitute there the corresponding self-energy
function for electron-boson interaction, which, for the case of acoustic phonons,
is given by Eq. (42.19). Below we rewrite it in the general form, valid for any
electron-boson interaction described by the Hamiltonian (19.2). Taking into account
only the diagonal contribution Ds1s2

t1t2
(q) ≡ Ds1s2

t1t2
(q, q) to the boson Green’s function

Ds1s2
t1t2

(q, q′) = −(i/�)〈〈T̂C [b̂q(t1) + b̂+
q (t1)]s1 [b̂q′(t2) + b̂+

q′(t2)]s2〉〉, we obtain

−iΣs1s2
ε (p) = is1is2�

∫
dω

2π

∑
q

∑
p1

|〈p|χ̂q|p1〉|2iGs1s2
ε−�ω(p1)iDs1s2

ω (q)

+is1is2�
2
∑
s′
1s′

2

is′
1is

′
2

∫
dω

2π

∫
dω′

2π

∑
qq′

∑
p1p2p3

〈p|χ̂q|p1〉

×〈p1|χ̂q′ |p2〉〈p2|χ̂+
q |p3〉〈p3|χ̂+

q′ |p〉

×iG
s1s′

2
ε−�ω(p1)iG

s′
2s′

1
ε−�(ω+ω′)(p2)iG

s′
1s2

ε−�ω′(p3)iD
s1s′

1
ω (q)iDs′

2s2
ω′ (q′) + . . . .

To apply this equation to the case of electron-phonon interaction in the single-mode
approximation, one should treat q as the wave vector q of the phonon belonging to
the corresponding mode and take χ̂q from Eq. (21.1). This allows one to express p1,
p2, and p3 through p, q, and q′ according to the momentum conservation rule, which
leads to Eq. (42.19). In the lowest order in the interaction, we take into consideration
only the first term of the expression for Σs1s2

ε (p). To obtain Eq. (34.25), we need
to substitute Σ−+

ε (p) and Σ+−
ε (p) into the collision integral presented in problem 8.8

and calculate the integrals over ε and ω by using the free-electron and free-boson
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Green’s functions given by Eqs. (40.33) and (42.23).

8.14. Using the Dyson equation (42.18) at zero temperature, find
the energy shift and renormalization of the effective mass of low-energy
electrons due to their interaction with LO phonons (the polaronic effect).

Solution: Let us calculate Σ−−
ε (p) from the expression given in the previous prob-

lem by using the free-electron and free-phonon Green’s functions, the parabolic dis-
persion law εp = p2/2m, and χ̂q corresponding to the interaction of electrons with LO
phonons (Eq. (21.1)). Substituting the result into the Dyson equation, we express
the Green’s function as

G−−
ε (p) = [ε − εp + α(�ωLO + p2/12m) + iλsgn(p − pF )]−1,

where λ → +0 and α is the constant of electron-phonon coupling defined by Eq.
(21.28). Thus, the renormalized energy is ε∗

p = −α�ωLO + p2/2m∗, where the renor-
malized mass is m∗ = m(1 + α/6). These results are valid for α � 1.

8.15. Using the Dyson equation (42.21) at zero temperature, find: a)
the renormalization of the longitudinal sound velocity due to interaction
of LA phonons with electrons, b) the lifetime of LA phonons due to this
interaction, and c) the renormalization of the LO phonon frequency due
to electron-phonon interaction.

Solution: According to the Dyson equation,

D−−
ω (q) =

1
�

2ωq

ω2 − ω2
q − 2ωqV2

q Π−−
ω (q)/�

.

If T = 0, the function Π−−
ω (q), calculated within the RPA (see problem 8.9), coincides

with the Π(0)R
ω (q) given by Eq. (33.24) at positive ω (the case of ω > 0 is assumed

in the following). For acoustic phonons, ωq = slq and V2
q = �D2q/2ρsl. In the

limits ω � vF q and q � kF , we have Π−−
ω (q) � −mkF /π2�2 − im2ω/2π�3q. The

real part of 2ωqV2
q Π−−

ω (q) is proportional to q2 and can be appended to ω2
q, leading

to the renormalized spectrum ω∗
q = s∗

l q with the reduced LA phonon velocity s∗
l =√

s2 − mkF D2/π2�2ρ. The phonon lifetime due to the imaginary part of Π−−
ω (q)

(compare to Eq. (27.28)) is given by τ−1 = m2D2q/2π�3ρ.
In the case of optical phonons, we have ωq = ωLO and V2

q = 2π�e2ωLO/ε∗q2.
We take the limit ω  vF q, which leads to Π−−

ω (q) � k3
F q2/3π2ω2m (the imagi-

nary part can be neglected). Using the identity n = k3
F /3π2 and the definition of

the plasma frequency, ωp =
√

4πe2n/ε∞m, we obtain D−−
ω (q) = 2�−1ωLO/[ω2 −

ω2
LO − ω2

pω2
LO(1 − ε∞/ε0)/ω2]. Therefore, the LO phonon frequency becomes ω∗

LO �√
ω2

LO + ω2
p(1 − ε∞/ε0). The frequency ω+ of the phonon-like plasmon-phonon mode

(see problem 6.20) is given by the same expression in the limit ω2
p � ω2

LO.

8.16. Obtain Eq. (15.27) by calculating the integral in Eq. (43.24)
for the 2D case at ω = 0.
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Hint: The integral is proportional to ln(q2 + (Dτϕ)−1)|q=qmax
q=0 , where the cutoff at

large q is introduced as explained in the discussion following Eq. (43.24).

8.17. Prove Eq. (43.28).
Solution: One may use Eq. (43.27) to obtain Eq. (43.28). It is more instructive,

however, to start from Eq. (43.19), which is written in the steady-state limit as[
−D

∂2

∂x2 + D

(
−i

∂

∂y
+

2|e|H
�c

x

)2

+
1
τϕ

]
C(x,x′) = δ(x − x′),

where x = (x, y) and we use the gauge A = (0, Hx, 0). This equation formally
coincides with the equation for the Green’s function of electron in the magnetic field
if we substitute D → −�2/2m, 1/τϕ → ε, and 2|e| → |e|. Therefore, its solution
is written according to the result of problem 3.10 with the aid of the eigenfunctions
ψ(δ)

x = L
−1/2
y eipy/�ϕ(np)

x , where the oscillatory functions ϕ(np)
x are given by Eq. (5.15):

C(x,x′) =
∞∑

n=0

∫ ∞

−∞

dp

2π�

exp[ip(y − y′)/�]
2nn!

√
πl̃H

exp
[
− (x − Xp)2

2l̃2H
− (x′ − Xp)2

2l̃2H

]

×Hn[(x − Xp)/l̃H ]Hn[(x′ − Xp)/l̃H ]
2D(n + 1/2)/l̃2H + 1/τϕ

,

where p = py, Xp = −pc/2|e|H , and l̃2H = l2H/2 = �c/2|e|H . To calculate the integral
over p, we use the identity

∫∞
−∞ dxe−x2

Hn(x + a)Hn(x − b) = 2nn!
√

πL0
n(2ab) and

obtain C(x,x′) = exp[−(x + x′)(y − y′)/l2H ]C̃(|x − x′|), where

C̃(r) = π−1 exp(−r2/2l2H)
∞∑

n=0

L0
n(r2/l2H)

4D(n + 1/2) + l2H/τϕ
.

To obtain Eq. (43.28), one should carry out a Fourier transformation of C̃(r).

8.18. Prove that the quantum correction to the Hall resistance can
be neglected in comparison to the quantum correction to the diagonal
resistance.

Solution: The conductivity tensor is written in the form[
σd + δσd −ωcτF (σd + 2δσd)

ωcτF (σd + 2δσd) σd + δσd

]
.

Assuming δσd � σd, we find the Hall resistivity:

ρ⊥ = (H/|e|nc)/{1 + 2(ωcτF )2(δσd/σ0) + [1 + (ωcτF )2](δσd/σ0)2}.

At small fields, ωcτF � 1, the correction to the classical Hall resistivity H/|e|nc is
quadratic in δσd/σ0 and can be neglected.

8.19. Prove that a time-independent electric field E does not affect
C(rt, r′t′).

Hint: Use the vector potential A = −cEt in Eq. (43.19).



Chapter 9

KINETICS OF BOUNDED SYSTEMS

To derive the general kinetic equations in the previous chapters, we did not em-
ploy the condition of homogeneity, except for Chapter 5, where the basis of phonon
wave vectors was used in the initial equations. Nevertheless, in each concrete case,
a detailed analysis has been carried out either for homogeneous systems, when the
momentum (or quasimomentum) conservation rule is valid, or for the systems with
slowly varying macroscopic parameters, when one can effectively employ the Wigner
representation of the density matrix. On the other hand, if a system has the abrupt
inhomogeneities which can be defined in a regular way, for example, the interfaces
between different materials, or just the surfaces, the quasi-classical kinetic equations
should be considered together with the boundary conditions at such interfaces. In
this chapter we derive the boundary conditions for the Wigner distribution functions
of electrons and phonons in the presence of non-ideal (rough) surfaces and interfaces
and study the influence of the surfaces and interfaces on transport phenomena.

44. Boundary Conditions at Non-Ideal Surface
The description of electron states in the kp-approximation discussed

in Sec. 5 and Appendix B cannot be directly applied near the surfaces
or interfaces where the potential energy changes abruptly, on the scale
of the crystal lattice constant. Even in the simplest case of conduction-
band electrons with isotropic effective mass m described by the bulk
Hamiltonian p̂2/2m, the envelope wave function ψr satisfies a boundary
condition of the third kind; see Eq. (5.19). In the many-band approach,
different components of the columnar function ϕlr (see Appendix B)
are mixed due to the interface potential, and spin-flip transitions at
the interface become possible (problem 9.1). Below we consider the
simplest case of zero boundary conditions Ψ|Γ = 0 at the surface Γ in

391
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the vicinity of the plane z = 0. Such non-ideal (rough) surface is shown
in Fig. 9.1. It can be described by the equation z = ξ(x), where ξ(x)
is the deviation of the surface from its average position 〈〈ξ(x)〉〉 = 0
at the point x of the plane z = 0. The brackets 〈〈. . .〉〉 denote the
averaging over the random surface. The scale of the roughness in the
plane (the correlation length) is assumed to be large in comparison to
the electron wavelength. We also assume that the mean square deviation
ξ =

√
〈〈ξ(x)ξ(x)〉〉 is small in comparison to the transverse component

λ⊥ = 2π�/
√

2m(ε − ε‖) of de Broglie wavelength of the electron. Here ε
is the total energy of the electron and ε‖ is the kinetic energy associated
with electron motion along the plane. The condition ξ � λ⊥ is easy
to satisfy in semiconductors. In metals, where the wavelength of the
electrons on the Fermi surface is comparable to the lattice constant,
this condition can be satisfied only for the glancing electrons (for whom
ε − ε‖ � ε) if ξ is of the order of the lattice constant. However, it is the
glancing electrons that give the main contribution to the transport along
the surface z = ξ(x). Within the accuracy up to the first order in ξ,
one can transform the boundary condition Ψ|z=ξ(x) = 0 to the following
form:

Ψ|z=0 + ξ(x)
∂Ψ
∂z

∣∣∣∣
z=0

= 0. (1)

This approximation allows us to calculate the averages within the accu-
racy up to ξ

2.

Figure 9.1. Diffuse scattering of particles on a rough surface. The angle of incidence
θ does not coincide with the angle of reflection.

Before considering the density matrix in the near-surface region, let
us discuss the problem of electron wave reflection from the non-ideal
surface. This problem is described by the Schroedinger equation for a
half-space z > 0, which is to be solved with the boundary condition (1).
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It is convenient to reformulate the problem by using a mixed coordinate-
momentum representation, when the wave function Ψpz , which depends
on the two-dimensional momentum p, satisfies the Schroedinger equa-
tion (

p̂2
z

2m
+

p2

2m

)
Ψpz = εΨpz . (2)

The boundary condition (1) is transformed to the following integro-
differential equation:

Ψpz=0 +
∫

dp′

(2π�)2
ξ(p − p′)

∂Ψp′z

∂z

∣∣∣∣
z=0

= 0, (3)

where ξ(p) =
∫

dx exp(−ip · x/�)ξ(x) is the 2D Fourier transform of
the deviation. The averaging over the surface is done below with the
use of the correlation function 〈〈ξ(p)ξ(p′)〉〉 = (2π�)2δ(p + p′)W (|p|),
introduced by analogy with Eq. (7.22). For concrete calculations, the
function W (|p|) can be chosen Gaussian, W (p) = πl2c ξ

2 exp[−(plc/2�)2],
where the correlation length lc is introduced according to 〈〈ξ(x)ξ(x′)〉〉 =
ξ
2 exp[−(x − x′)2/l2c ].
The solution of the problem defined by Eqs. (2) and (3) is written as

a sum of the incident (−) and reflected (+) plane waves:

Ψpz =
1√
L

[
ψ(−)

ppε
e−ipεz/� + ψ(+)

ppε
eipεz/�

]
, (4)

where pε =
√

2mε − p2 is the transverse momentum and L is the nor-
malization length. The total energy ε is assumed to be greater than the
kinetic energy of in-plane motion so that p2

ε > 0. The coefficients ψ(−)
ppε

and ψ(+)
ppε are connected through the boundary condition (3), which is

rewritten below as

ψ(−)
ppε

+ ψ(+)
ppε

− i

�

∫
dp′

(2π�)2
ξ(p − p′)p′

ε

(
ψ(−)

p′p′
ε
− ψ(+)

p′p′
ε

)
= 0. (5)

To solve Eq. (5) by iterations, we use the approximation of weak scatter-
ing, when the amplitude ψ(+)

ppε of the reflected wave is expressed through
the amplitude ψ(−)

ppε of the incident wave within the accuracy of the sec-
ond order in the deviations:

ψ(+)
ppε

� −ψ(−)
ppε

+
i

�

∫
dp′

(2π�)2
ξ(p − p′)p′

ε2ψ(−)
p′p′

ε
(6)

+
1
�2

∫
dp′

(2π�)2

∫
dp′′

(2π�)2
ξ(p − p′)ξ(p′ − p′′)p′

εp
′′
ε2ψ(−)

p′′p′′
ε

,
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where p′
ε =

√
2mε − p′2 and p′′

ε =
√

2mε − p′′2. Equations (4) and
(6) describe a solution of the second-order differential equation with a
boundary condition at z = 0, and the amplitude ψ(−)

ppε is to be determined
from a boundary condition at z → ∞.

According to the standard interpretation of quantum mechanics, the
squared absolute values of the wave functions, |ψ(−)

ppε |2 and |ψ(+)
ppε |2, deter-

mine the densities of the incident and reflected electrons at the surface.
To find a relation between the averaged densities of the incident and re-
flected electrons (the incident electron density is determined at z → ∞
and does not depend on the properties of the rough surface), we write

〈〈|ψ(+)
ppε

|2〉〉 � |ψ(−)
ppε

|2 +
(

2
�

)2 ∫ dp′

(2π�)2

∫
dp′′

(2π�)2
p′

εp
′′
ε

×〈〈ξ(p − p′)ξ∗(p − p′′)〉〉ψ(−)
p′p′

ε
ψ(−)∗

p′′p′′
ε

− 2
�2

∫
dp′

(2π�)2

∫
dp′′

(2π�)2
p′

εp
′′
ε

×
[
〈〈ξ(p − p′)ξ(p′ − p′′)〉〉ψ(−)∗

ppε
ψ(−)

p′′p′′
ε

+ c.c.
]
. (7)

Note that the contributions linear in ξ have disappeared after the aver-
aging. Taking into account that 〈〈ξ(p)ξ(p′)〉〉 = (2π�)2δ(p+p′)W (|p|),
we obtain

〈〈|ψ(+)
ppε

|2〉〉 �
[
1 −

∫
dp′

(π�)2
pεp

′
ε

�2 W (|p − p′|)
]

|ψ(−)
ppε

|2

+
∫

dp′

(π�)2
p′

ε
2

�2 W (|p − p′|)|ψ(−)
p′p′

ε
|2. (8)

The factor [1 − . . .] on the right-hand side describes the departure of
electrons from the state (p, ε), while the integral term describes the
arrival of electrons to this state as a result of the scattering. The specular
reflection is realized in the limiting case of ideal surface, when ξ = 0 and
the amplitudes |ψ(−)

ppε |2 and |ψ(+)
ppε |2 are equal to each other since the 2D

momentum is conserved.
The densities of the reflected (incident) electrons with momenta p, pz

(p,−pz) are directly proportional to the occupation numbers f(p, pz)
[f(p,−pz)] of these states at z = 0 and inversely proportional to the
transverse component of the velocity. Thus, Eq. (8) can be rewritten
as a boundary condition for the distribution function at the surface.
Explicitly, we use the substitution

〈〈|ψ(±)
ppε

|2〉〉 ∝ f (±)(p, pz)
pz

(9)

and assume that pz > 0. It is convenient to use the variables p and pz

instead of p and ε, since the reflected waves (with transverse momentum
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pz) and the incident waves (with −pz) are described by the distribution
functions f (+)(p, pz) and f (−)(p, pz), respectively. Multiplying the equa-
tion connecting f (+)(p, pz) with f (−)(p, pz) by pz , we obtain the following
boundary condition:

f (+)(p, pz) �
[
1 −

∫
dp′

(π�)2
pzp

′
z

�2 W (|p − p′|)
]

f (−)(p, pz) (10)

+
∫

dp′

(π�)2
pzp

′
z

�2 W (|p − p′|)f (−)(p′, p′
z),

where p′
z =

√
p2

z + p2 − p′2. One should mention that at pz → 0 the
influence of the interface roughness can be neglected, i.e., the glancing
electrons, for whom the reflection angles θ are close to ±π/2, scatter
specularly: f (+)(p, pz) = f (−)(p, pz). The consideration given above is
not, of course, a rigorous derivation of the boundary condition, and
it does not give us validity conditions of Eq. (10). To formulate the
problem rigorously, we introduce a Wigner density matrix in a half-space
and derive the boundary conditions for it.

The one-electron density matrix in the (p, z)-representation is

ρpp′(z, z′) = Spη̂tΨ̂+
p′z′Ψ̂pz =

∑
δδ′

Ψδ
pzΨ

δ′∗
p′z′ρδδ′ , (11)

where Sp . . . denotes the averaging over all states (electron, phonon,
etc.) of the system. The field operators Ψ̂pz and Ψ̂+

pz in Eq. (11) are
expressed as

∑
δ Ψδ

pz âδ and
∑

δ Ψδ∗
pz â

+
δ , respectively, and the definition

ρδδ′ = Spη̂tâ
+
δ′ âδ is applied; see Eq. (4.29). Taking into account the inter-

face roughness scattering discussed above, we consider the wave function
Ψδ

pz as the eigenstate of the Schroedinger equation (2) corresponding to
the eigenvalue ε = εδ . The one-particle density matrix ρδδ′ satisfies the
quantum kinetic equation in the δ-state representation:

∂ρδδ′

∂t
+

i

�
(εδ − εδ′)ρδδ′ = Jδδ′ , (12)

where Jδδ′ = 〈δ|Ĵ |δ′〉 is the collision integral describing the scattering of
electrons by impurities, phonons, etc. Note that the properties of this
scattering can be modified in the near-surface region.

Expressing Ψδ
pz according to Eq. (4) with pε =

√
2mεδ − p2 ≡

pz(δ, p), we obtain

ρpp′(z, z′) =
1
L

∑
δδ′

ρδδ′
∑
rr′

ψ
δ(r)
ppz(δ,p)ψ

δ′(r′)∗
p′pz(δ′,p′)

×ei[rpz(δ,p)z−r′pz(δ′,p′)z′]/�, (13)
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where r, r′ = ± so that the sum over r and r′ includes four terms.
Equation (13) defines the density matrix in the mixed representation.
It is convenient, however, to work with the density matrix ρpp′(pz, p

′
z)

in the momentum representation. We write this matrix as ρ(rr′)
pp′ (pz, p

′
z),

where the arguments pz and p′
z are assumed to be positive, while the

directions of the momenta pz and p′
z are determined by the indices r and

r′, respectively. The different representations are connected as

ρpp′(z, z′) = L

∫ ∞

0

dpz

2π�

∫ ∞

0

dp′
z

2π�

∑
rr′

ρ(rr′)
pp′ (pz, p

′
z)e

i(rpzz−ir′p′
zz′)/� . (14)

Comparing Eqs. (13) and (14), we get the expression

ρ(rr′)
pp′ (pz, p

′
z) =

(
2π�

L

)2 pzp
′
z

m2

∑
δδ′

ρδδ′δ[εδ − (p2 + p2
z)/2m]

×δ[εδ′ − (p′2 + p′2
z )/2m]ψδ(r)

ppz ψ
δ′(r′)∗
p′p′

z
(15)

with positive pz and p′
z . To check this equation, one may substitute Eq.

(15) into Eq. (14) and reduce the latter to Eq. (13) by integrating over
pz and p′

z . Let us use the boundary condition (3). The expansion of the
wave function ψδ(+)

ppz in terms of ψδ(−)
ppz is obtained from Eq. (6) if we use

the variable pz instead of pε:

ψδ(+)
ppz

� −ψδ(−)
ppz

+
4i

�

∫
dp1

(2π�)2

∫ ∞

0
dp1zp

2
1zδ(2mεδ − p2

1 − p2
1z) (16)

×ξ(p − p1)ψδ(−)
p1p1z

+
8
�2

∫
dp1

(2π�)2

∫
dp2

(2π�)2

∫ ∞

0
dp1z

∫ ∞

0
dp2zp

2
1zp

2
2z

×δ(2mεδ − p2
1 − p2

1z)δ(2mεδ − p2
2 − p2

2z)ξ(p − p1)ξ(p1 − p2)ψδ(−)
p2p2z

.

We substitute this expansion into ρ(++)
pp′ (pz, p

′
z) of Eq. (15) and average

the latter over the rough surface, taking into account the terms up to the
second order in ξ. As a result, we obtain the integral equation connecting
f (+)
pp′(pz, p

′
z) = 〈〈ρ(++)

pp′ (pz, p
′
z)〉〉 and f (−)

pp′(pz, p
′
z) = 〈〈ρ(−−)

pp′ (pz, p
′
z)〉〉:

f (+)
pp′(pz, p

′
z) � f (−)

pp′(pz, p
′
z)
{

1 −
∫

dp1

(π�2)2

∫ ∞

0
dp1zp

2
1z [pzW (|p − p1|)

×δ(p2 + p2
z − p2

1 − p2
1z) + p′

zW (p′ − p1)δ(p′2 + p′2
z − p2

1 − p2
1z)
]}

+4
∫

dP1

(π�2)2
W (|P − P1|)

∫ ∞

0
dp1z

∫ ∞

0
dp′

1zpzp
′
zp1zp

′
1z (17)
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×δ(P 2
1 −P 2+(P1−P)·∆p+p2

1z −p2
z)δ(P

2
1 −P 2−(P1−P)·∆p+p′2

1z −p′2
z )

×f (−)

P1+∆p/2,P1−∆p/2(p1z , p
′
1z),

where we have introduced the variables P = (p+p′)/2 and ∆p = p −p′
in the integral term. Let us transform Eq. (17) by using the Wigner
distribution function

f (±)
px (pz, z) = L

∑
∆p

∫ 2pz

−2pz

d∆pz

2π�
exp

(
i

�
∆p · x +

i

�
∆pzz

)
×f (±)

p+∆p/2,p−∆p/2(pz + ∆pz/2, pz − ∆pz/2), (18)

where the limits of integration over ∆pz appear because of the require-
ment pz ±∆pz/2 > 0. In the quasi-classical case, when f (±)

px (pz, z) weakly
changes with z on the scale of �/pz , this integral converges at small ∆pz

and the limits become insignificant. Applying the transformation (18)
to Eq. (17), we assume that the characteristic spatial scales |x| and z of
the Wigner distribution functions f (±)

px (pz, z) are large in comparison to
the longitudinal and transverse components of the electron wavelength:

|x| � �

|p| , z � �

pz
. (19)

This corresponds to the quasi-classical limit. The terms of the order
of �

2∂2f (−)
px (pz, z)/∂x2, �

2∂2f (−)
px (pz, z)/∂z2, and �

2 ∂2f (−)
px (pz, z)/∂x∂z

should be neglected in comparison to the terms of the order of (p2 +
p2

z)f
(−)
px (pz, z). Therefore, we obtain

f (+)
px (pz, z) �

[
1 −

∫
dp′

(π�2)2
pz

√
p2

z + p2 − p′2W (|p − p′|)
]

f (−)
px (pz, z)

+
∫

dp′

(π�2)2
p2

zW (|p − p′|)L
∫ 2pz

−2pz

d∆pz

2π�
ei∆pzz/� (20)

×f (−)
p′x

⎛⎝√p2 − p′2 +
(

pz +
∆pz

2

)2

,

√
p2 − p′2 +

(
pz − ∆pz

2

)2
⎞⎠ .

The distribution function in the integral term appears as a result of the
Wigner transformation in the plane (x, y):

f (±)
px (p1z , p2z) =

∑
∆p

ei∆p·x/�f (±)

p+∆p/2,p−∆p/2(p1z , p2z). (21)

One can substitute p′
z =

√
p2

z + p2 − p′2 in Eq. (20). Since the functions
f (±)(p, pz) standing in Eq. (10) are identified with f (±)

px (pz, z) at z = 0,
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we see that Eq. (20) already resembles Eq. (10). Finally, we need to
check the equivalence of the integral terms in Eqs. (10) and (20). Taking
into account the second strong inequality of Eq. (19), we find that the
integral over ∆pz in Eq. (20) converges at ∆pz � pz, p

′
z . Therefore, this

integral can be approximated as

L

∫ ∞

−∞
d∆pz

2π�
ei∆pzz/�f (−)

p′x

(
p′

z +
pz∆pz

2p′
z

, p′
z − pz∆pz

2p′
z

)
(22)

and estimated as (p′
z/pz)f

(−)
p′x [p′

z , (p
′
z/pz)z] after introducing a new vari-

able of integration, (pz/p′
z)∆pz , instead of ∆pz . The discussion pre-

sented above shows that Eq. (20) at z = 0 is reduced to Eq. (10). The
latter, therefore, corresponds to the quasi-classical limit of the general
boundary condition derived from the quantum kinetic consideration.

45. Size-Dependent Conductivity
According to the boundary condition (44.10), the collisions of elec-

trons with non-ideal surfaces change the longitudinal momenta of the
electrons. Such processes contribute to the resistance of thin films,
whose widths are smaller than or comparable to the mean free path
length, the latter is determined by various scattering mechanisms in the
bulk; see Secs. 8, 11, and 35. The non-linear dependence of the conduc-
tivity on the width of the film is called the size effect. The frequency
and magnetic-field dependences of the conductivity of thin films are also
modified in comparison to those in bulk media. Below we consider such
effects by using the quasi-classical kinetic equation derived in Sec. 9,
together with the boundary conditions derived in the previous section.

We consider a linear response to the perturbation Ee−iωt, assuming
that the electric field E is applied in the plane of the film (XOY ) and
the magnetic field H is directed perpendicular to this plane. The film of
width d is placed within 0 < z < d and assumed to be macroscopically
homogeneous in the plane. The linearized kinetic equation is obtained
from the general quasi-classical equation (9.34) in the form(

−iω + vz
∂

∂z
+ [ωc × p] · ∇p − Ĵc

)
∆fzp = eE · vδ(εF − εp), (1)

where ∆fzp is the non-equilibrium part of the distribution function de-
pending on the transverse coordinate z and 3D momentum p. Next, vz

is the transverse component of the velocity v = p/m and ωc = |e|H/mc
is the cyclotron frequency vector introduced in Sec. 11. The action of
the operator Ĵc on ∆fzp defines the linearized collision integral. The
right-hand side of Eq. (1) is written in the zero-temperature approxi-
mation, since we consider a degenerate electron gas with Fermi energy
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εF . The presence of two boundaries at z = 0 and z = d implies two
boundary conditions for fzp. These boundary conditions directly follow
from Eq. (44.10) and can be rewritten in the same form for ∆fzp, be-
cause of their linearity. For the sake of simplicity, we assume that the
surface at z = d is ideal, while the roughness of the surface at z = 0 is
described by a small correlation length. For this case, W (|p − p′|) can
be approximated by a constant, and the integral term on the right-hand
side of Eq. (44.10) vanishes when the distribution function is antisym-
metric in p. Thus, the boundary conditions are rewritten as algebraic
equations

∆f |pz>0 = (1 − Pθ)∆f |pz<0, z = 0,

∆f |pz>0 = ∆f |pz<0, z = d, (2)

where Pθ is the diffusivity of scattering, which depends on the angle θ
as Pθ = P0| cos θ|, according to Eq. (44.10).

One can represent the non-equilibrium part of the distribution func-
tion as

∆fzp = eEvF δ(εF − εp)χzϕpz , (3)

where vF is the Fermi velocity determined by the electron density n. The
function χzϕpz depends on the coordinate z and on the angles ϕ and θ,
the dependence on θ enters through pz . Using the identity [ωc × p]·∇p =
ωc∂/∂ϕ (problem 9.2), we rewrite Eq. (1) as an equation for χ:(

−iω + vz
∂

∂z
+ ωc

∂

∂ϕ
− Ĵc

)
χzϕpz = (ex cos ϕ + ey sin ϕ) sin θ, (4)

where ex and ey are the components of the unit vector in the direction
of the electric field. Since the problem is periodic in ϕ, i.e., χz,ϕ+2π,pz =
χzϕpz , one can search for χzϕpz in the form

χzϕpz = χ(+)
zpz

eiϕ + χ(−)
zpz

e−iϕ. (5)

The functions χ(±)
zpz satisfy the ordinary differential equations of the first

order: [
−i(ω ∓ ωc) + vz

∂

∂z
+ νF

]
χ(±)

zpz
=

ex∓iey

2
sin θ , (6)

where the integral operator −Ĵc describing the scattering in the bulk is
replaced by the momentum relaxation rate νF on the Fermi surface. This
substitution is rigorously justified in Sec. 8 for the case of elastic scat-
tering. We note, however, that in the case of a strongly inhomogeneous
system, when the symmetric part of the distribution function appears
to be significant, this substitution becomes invalid and can be used for
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estimates only. The boundary conditions to Eq. (6) are obtained from
Eq. (2):

χ(±)
z=0,pz

= (1 − Pθ)χ
(±)
z=0,−pz

, χ(±)
z=d,pz

= χ(±)
z=d,−pz

. (7)

The general solution of the inhomogeneous differential equation (6) is

χ(±)
zpz

=
(ex∓iey) sin θ

2 [νF − i(ω ∓ ωc)]

[
1 + F (±) exp

{
− z

vz
[νF − i(ω ∓ ωc)]

}]
. (8)

The second term in this expression satisfies Eq. (6) with zero right-
hand side. It depends on z exponentially and oscillates at non-zero ω
or H. The first term, which appears due to the inhomogeneous part of
Eq. (6), is chosen to be z-independent. The coefficients F (±) are to be
determined from the boundary conditions (7). The solution given by
Eq. (8) determines the distribution of the current density in the film,
Ir = Iz , in the usual way; see Eq. (9.11). Integrating the current density
over the transverse coordinate according to I� =

∫ d
0 dzIz , we obtain

I� =
2e

m

∫ d

0
dz

∫
dp

(2π�)3
p∆fzp = σ̂�E, (9)

where the second equation defines the tensor of sheet conductivity. Note
that this conductivity is equal to the conductance of a square-shaped
film (the conductance does not depend on the size of such a film). The
explicit expressions for the components of the conductivity tensor are
obtained after substituting ∆fzp defined by Eqs. (3), (5), and (8) into
Eq. (9). The diagonal components σ�

xx = σ�
yy ≡ σ�

d are given by

σ�
d =

3e2n

4m

∫ d

0
dz

∫ 1

−1
dζ(1 − ζ2)

⎧⎨⎩1 + F (+)
ζ exp

[
−z νF −i(ω−ωc)

vF ζ

]
2 [νF − i(ω − ωc)]

+
1 + F (−)

ζ exp
[
−z νF −i(ω+ωc)

vF ζ

]
2 [νF − i(ω + ωc)]

⎫⎬⎭ , (10)

while for the non-diagonal components σ�
yx = −σ�

xy ≡ σ�
⊥ we find

σ�
⊥ = i

3e2n

4m

∫ d

0
dz

∫ 1

−1
dζ(1 − ζ2)

⎧⎨⎩1 + F (+)
ζ exp

[
−z νF −i(ω−ωc)

vF ζ

]
2[νF − i(ω − ωc)]

−
1 + F (−)

ζ exp
[
−z νF −i(ω+ωc)

vF ζ

]
2[νF − i(ω + ωc)]

⎫⎬⎭ . (11)
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To obtain these expressions, we have calculated the integrals over the
angle ϕ determining the symmetry of the conductivity tensor and over
the absolute value of p by using the δ-function of Eq. (3). Instead of θ,
we have introduced the variable ζ = cos θ.

The coefficients F (±)
ζ are discontinuous functions of ζ. For this reason,

the integrals in Eqs. (10) and (11) should be calculated separately in
the regions ζ < 0 and ζ > 0. Using Eq. (8), we rewrite the boundary
conditions (7) as linear equations for these coefficients:

F (±)
ζ>0 exp

{
−d [νF − i(ω ∓ ωc)]

vF |ζ|

}
= F (±)

ζ<0 exp
{

d [νF − i(ω ∓ ωc)]
vF |ζ|

}
,

1 + F (±)
ζ>0 = (1 − Pζ )(1 + F (±)

ζ<0). (12)

The solutions of Eq. (12) are

F (±)
ζ>0 =

−Pζ

1 − (1 − Pζ ) exp {−2d [νF − i(ω ∓ ωc)] /vF |ζ|} ,

F (±)
ζ<0 =

−Pζ exp (−2d [νF − i(ω ∓ ωc)] /vF |ζ|)
1 − (1 − Pζ ) exp {−2d [νF − i(ω ∓ ωc)] /vF |ζ|} , (13)

and their substitution into Eqs. (10) and (11) solves the problem after
calculating the integrals over z and ζ. The integrals over z are evaluated
easily, and we obtain

σ�
d = σ0d(A+ + A−)/2, σ�

⊥ = −iσ0d(A+ − A−)/2, (14)

where σ0 = e2n/mνF ,

A± = r± − r2
±

3lF
2d

∫ 1

0
dζ ζ(1 − ζ2)

(
2
Pζ

+ coth
d

r±lF ζ
− 1
)−1

, (15)

lF = vF /νF is the mean free path length, and

r± = [1 − i(ω ± ωc)/νF ]−1. (16)

One can see that the first terms in A+ and A− describe the bulk con-
ductivity, see Eq. (11.18), while the second (integral) terms describe the
surface-induced contribution. In order to calculate the integral in Eq.
(15), one should specify Pζ . Below we use Pζ = P0ζ. This form is valid in
the limit of small correlation lengths, when the algebraic boundary con-
ditions (2) are justified, and P0 estimated according to Eq. (44.10) ap-
pears to be much smaller than unity (problem 9.3). We stress, however,
that the conditions (2) are often considered as phenomenological bound-
ary conditions, where Pζ is a physically reasonable function. Therefore,
we first present some results valid for arbitrary Pζ .
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In the limit of thick films, when d � lF , the factor cothx − 1 in the
denominator of Eq. (15) should be neglected, and the integral over ζ is
calculated with the following result:

A± = r±

(
1 − βlF

d
r±
)

, β =
3
4

∫ 1

0
dζPζζ(1 − ζ2). (17)

Substituting these A+ and A− into Eq. (14), one can see that the surface
gives a small correction to the bulk conductivity. In the case of Pζ = P0ζ,
the constant β is equal to P0/10.

In the limit of thin films, d � lF , we consider two cases. The first one
corresponds to moderate frequencies and/or magnetic fields, ω, ωc �
τ−1
d , where τd = d/vF is the time of passage of the electron with Fermi

velocity across the film. In this case one still can have ω, ωc � νF .
Since d � |r±|lF , we replace coth x by 1/x in Eq. (15). Next, using
the identity (3/2)

∫ 1
0 dζ(1 − ζ2) = 1, we replace the first term in A± by

(3r±/2)
∫ 1
0 dζ(1 − ζ2), unify it with the second term, and obtain

A± =
3d

2lF

∫ 1

0
dζ

(1 − ζ2)
ζPζ/(2 − Pζ ) + d/lF r±

. (18)

The result depends on Pζ and d/lF r±. In the case of Pζ = P0ζ,

A± =
3d

P0lF

[
(B± + B−1

± ) arctanB± − 1
]
, B± =

√
P0lF
2d

r±. (19)

At non-zero ω and/or ωc, the dimensionless functions B± are complex.
Since P0 � 1, the absolute values of these functions are not necessarily
large in comparison to unity. If they are large, A± takes a simpler form:

A± =
3π

4

√
2dr±

lF P0
. (20)

If ω = ωc = 0, Eq. (19) is valid for an arbitrary ratio d/lF . This property
follows from the fact that the term coth(d/lF ζ) in Eq. (15) contributes
to the denominator only when this term is large in comparison to 1
(because 2/Pζ � 1), i.e., when the expansion coth(d/lF ζ) � lF ζ/d is
valid.

The second case corresponds to intermediate and large frequencies
and/or magnetic fields, when ω, ωc ∼ τ−1

d and ω, ωc � τ−1
d , respectively.

Since we consider thin films, this necessarily implies ω, ωc � νF . Cal-
culating the integrals over ζ in Eq. (15), we take into account only the
oscillating part of the exponents in cothx and obtain

A± = r± − r2
±

3lF
2d

∫ 1

0
dζ

ζ(1 − ζ2)
2/Pζ − 1 + i cot[(ω ± ωc)τd/ζ]

. (21)
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The integral in Eq. (21) is taken analytically in the limit of large fre-
quencies or magnetic fields, when one can average the fast-oscillating
term under the integral over the period of the oscillations. This averag-
ing gives us [2/Pζ − 1 + i cot y]−1 → Pζ/2. Therefore, A± is again given
by Eq. (17), where r± is written at ω, ωc � νF :

A± � iνF

ω ± ωc
+

ν2
F

(ω ± ωc)2

(
1 +

βlF
d

)
. (22)

Let us apply the above analysis for describing the conductivity in some
limiting cases, always assuming that Pζ = P0ζ and P0 � 1. The static
conductivity at zero magnetic field depends on a single dimensionless
parameter, the ratio of the film width to the mean free path length.
Using Eqs. (14), (17), and (20) at ω = ωc = 0, we obtain

σ�
d = σ0d

{
(1 − lF P0/10d), d � lF P0

(3π/4)
√

2d/lF P0, d � lF P0
. (23)

Both these limits can also be derived by substituting the result (19),
which is generally applicable at P0 � 1 and ω = ωc = 0, into Eq. (14).
In the limit of thin films, the conductivity decreases considerably due to
the surface scattering.

Now let us consider the frequency dispersion of the conductivity of
thin films (d � lF ) in zero magnetic field and at ω � νF . For moderate
frequencies, under the conditions νF � ω � P0/τd, we use Eqs. (14)
and (20) and obtain

σ�
d = (1 + i)

3π

4
e2nd

m

√
τd

ωP0
. (24)

In this limit, the frequency dispersion of the conductivity essentially
differs from that of a bulk sample. We have σ�

d ∝ ω−1/2 for both real
and imaginary parts. For large frequencies, we use Eqs. (14) and (22) at
ωc = 0 and find that, apart from the imaginary part Im σ�

d = e2nd/mω,
the conductivity has a small real part containing the contributions of
both bulk and surface scattering:

Re σ�
d =

e2nd

mω2

(
νF +

P0

10τd

)
. (25)

Since Eq. (22) is derived in the limit vF /d � νF , the surface scattering
can give the main contribution even at P0 � 1. For the intermediate
frequencies, ω ∼ τ−1

d , we use Eqs. (14) and (21) leading to

σ�
d =

e2nd

mω
[i + F (ωτd)] +

e2ndνF

mω2 ,
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F (y) =
3
2y

∫ 1

0
dζ

ζ2(1 − ζ2)
2/P0 + iζ cot(y/ζ)

. (26)

In this case, the oscillations of cot(y/ζ) cause the oscillations of the
conductivity as a function of ω. The period of such oscillations is of the
order of τd. At P0 � 1, however, these oscillations are weak.

Consider now the components of the static conductivity tensor (ω = 0)
in the presence of a magnetic field. We restrict ourselves by the limit of
thick films, when d � lF . Using Eqs. (14) and (17), we have

σ�
d =

σ0d

1 + ω2
c /ν2

F

(
1 − βlF

d

1 − ω2
c /ν2

F

1 + ω2
c /ν2

F

)
,

σ�
⊥ =

σ0dωc/νF

1 + ω2
c /ν2

F

(
1 − βlF

d

2
1 + ω2

c /ν2
F

)
. (27)

These expressions describe a weak negative magnetoresistance

ρd(H)
ρd(0)

− 1 = −2
(

βlF
d

)2 ω2
c

ν2
F + ω2

c

, (28)

which decreases at ωc � νF as −H2 and saturates at classically strong
magnetic fields, when ωc � νF . The appearance of a finite classical
magnetoresistance can be qualitatively explained by the presence of two
groups of carriers with different effective relaxation times: the first is the
electrons moving perpendicular to the surface, and the other is the glanc-
ing electrons. The negative sign of the magnetoresistance is explained
by a decrease in the number of electrons scattering on the surface as
the magnetic field increases. For the same reasons, the Hall coefficient
RH = ρxy(H)/H deviates from its classical value 1/|e|nc and depends
on the magnetic field according to

RH(H)
RH(0)

− 1 = 2
(

βlF
d

)3 ω2
c

ν2
F + ω2

c

. (29)

We remind that since Pζ = P0ζ, one should put β = P0/10 in Eqs.
(27)−(29). In the limit of thin films, d � lF , the qualitative behavior
of σ�

d and σ�
⊥ is similar to those for the real and imaginary parts of

the frequency-dependent conductivity obtained above. If ωc ∼ τ−1
d ,

the components of the conductivity tensor oscillate as functions of the
magnetic field.

If one assumes Pζ other than P0ζ, the results given by Eqs. (23)−(26)
are modified. For example, in the case of pure diffuse reflection, when
Pζ = 1, the static conductivity in the limit of thin films, d � lF , is
proportional to (d/lF ) ln(lF /d) (problem 9.4). Nevertheless, any choice
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of the function Pζ does not affect the main qualitative features discussed
above, such as the decrease of the conductivity with decreasing d, the
modification of the frequency dispersion of the conductivity, the negative
magnetoresistance, and the oscillations of the resistance as a function of
both frequency and magnetic field. Finally, we remind that the valid-
ity of the algebraic boundary conditions (2) is limited, and one should
generally describe the size effect by using the integral equation (44.10).

46. Thermal Conductivity of Bounded Insulators
According to Chapter 5, the low-temperature thermal conductivity of

insulators increases exponentially as the temperature goes down. This
is true under the assumption that the heat transfer is limited by the
phonon-phonon interaction. At low enough temperatures, however, the
thermal conductivity is observed to decrease with decreasing tempera-
ture in a power-law fashion. In clean samples, where the scattering of
phonons by lattice imperfections can be neglected, this decrease is ex-
plained by diffuse scattering of phonons on rough surfaces. This mecha-
nism appears to be rather efficient, because the mean free path lengths
of phonons, even those associated with the normal collision processes,
are fairly large and can exceed the transverse size of the sample.

To study the effect of boundaries, we introduce an algebraic boundary
condition for the phonon distribution function Nl

rq at a non-ideal surface
Γ in a similar way as it was done for the electrons in the previous section:

Nl
rq|vln>0 = (1 − Pl)Nl

rq|vln<0 , r ∈ Γ, (1)

where Pl is the diffusivity of scattering for the l-th phonon mode and vln

is the component of the phonon group velocity normal to the surface.
The case of vln > 0 corresponds to reflected phonons. A microscopic
justification of Eq. (1) is rather complicated. It requires, at least, a
number of crude approximations such as conservation of the energy,
phonon number, and mode index in the reflection processes. Below
we treat Eq. (1) as a phenomenological boundary condition and are
interested mostly in the case of pure diffuse reflection, when Pl = 1.
Since the case of low temperatures is implied, we consider only three
low-frequency acoustic phonon modes: l = LA, TA1, and TA2. The
dispersion of the modes is assumed to be isotropic. It is described by
the longitudinal and transverse phonon velocities, sl and st. We consider
the samples shaped as long rods, assuming that the length of the rod is
large in comparison to its transverse size, and the modifications of heat
transfer near the ends of the rod do not affect the energy flux through
the cross-section of the sample. This flux is characterized by the integral
of the energy flow density (19.32) over the surface of the cross-section
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C:

G =
∑

l

∫
dq

(2π)3
1
sc

∫
(C)

dsc · ∂ωql

∂q
�ωql∆Nl

rq , (2)

where dsc is the differential of the square of this surface (the vector sc is
directed perpendicular to the surface) and ∆Nl

rq is the non-equilibrium
part of the phonon distribution function. Since we have divided the
result by the square sc of the cross-section, G is the averaged energy
flow density along the rod. The kinetic equation (23.19), in the station-
ary regime and in the linear approximation with respect to the thermal
gradient ∇T , is written as

∂ωql

∂q
·
∂∆Nl

rq

∂r
+

∂N (eq)
lq

∂T

∂ωql

∂q
· ∇T = ∆Jph,ph(N |rql). (3)

In contrast to Eq. (24.2), it contains the term associated with coordinate
dependence of ∆Nl

rq. The linearized collision integral depends on r
through ∆Nl

rq. In the case of pure diffuse reflection, Eq. (1) gives us
a simple boundary condition to this equation, ∆Nl

rq|vln>0 = 0 at the
non-ideal surface Γ. If the characteristic transverse size of the sample
is much smaller than the mean free path for normal collision processes,
the collision integral on the right-hand side can be neglected, and Eq.
(3) is solved exactly:

∆Nl
rq = −

∂N (eq)
lq

∂T
(r − rΓ) · ∇T . (4)

The constant of integration, rΓ, is dictated by the boundary conditions.
It is the coordinate of the point on the surface Γ where the last reflection
has occurred. This constant depends on the surface geometry, coordinate
r, and direction of the group velocity (the direction is given by the unit
vector q/q in the isotropic approximation we use). To determine rΓ for
given r and q, one should draw a straight line passing through the point
r in the direction opposite to q until this line intersects with the surface;
the point of the intersection is rΓ. The distribution function given by Eq.
(4) is zero at the surface for the phonons with wave vectors q directed
inside the sample. Substituting ∆Nl

rq from Eq. (4) into Eq. (2), we find

G = −
∑

l

∫
dq

(2π)3
1
sc

∫
(C)

dsc · q
�ω2

ql

q2

∂N (eq)
lq

∂T

×(r − rΓ) · ∇T = −κ∇T . (5)
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The thermal conductivity κ is introduced here by taking into account
that the vector r − rΓ is directed along q/q. This thermal conductivity
is given by the expression

κ =
1
sc

∫
(C)

dsc

∑
l

∫
dq

(2π)3
∂N (eq)

lq

∂T

�ω2
ql

q
|r − rΓ| cos2 θ, (6)

where dsc is the differential of the square of the cross-section perpendic-
ular to the thermal gradient along the axis of the rod and θ is the angle
between the vector q and the thermal gradient.

Transforming
∫

dq . . . in Eq. (6) as
∫∞
0 q2dq

∫
dΩ̃ . . . , where dΩ̃ is

the differential of the solid angle of q, and taking into account that rΓ is
independent of both q = |q| and l, we rewrite this equation in the form

κ =
1
3
CΛv. (7)

In Eq. (7) we have introduced the specific heat C = 3S, where the
entropy S is given by Eq. (24.17), the characteristic velocity

v =
s−2
l + 2s−2

t

s−3
l + 2s−3

t

, (8)

and the characteristic length

Λ =
3

4πsc

∫
(C)

dsc

∫
dΩ̃|r − rΓ| cos2 θ, (9)

which is entirely determined by the geometry of the sample and approx-
imately equal to its transverse size. For a cylindrical sample of radius R,
one has Λ = 2R (problem 9.5). Equation (7) resembles the expression
for the thermal conductivity of a gas of particles with mean free path
length Λ. In the collisionless limit studied here, it is the transverse size
of the sample that plays the role of the mean free path length. We stress
that an estimate for the thermal conductivity of a bulk sample is also
represented in the form of Eq. (7), where Λ should be treated as the
mean free path length for umklapp scattering, lU = sτU ; see Eq. (24.19).
Equation (7) can be improved to account for partly specular scattering,
when Pl in Eq. (1) is not equal to 1. For the sake of simplicity, we
assume that Pl does not depend on the angle of incidence and mode
index, Pl = P . It is easy to find that Eq. (4) should be modified as

∆Nl
rq = −

∂N (eq)
lq

∂T
P [(r − rΓ) + (1 − P )(r − r′

Γ)

+(1 − P )2(r − r′′
Γ) + . . .] · ∇T , (10)

where r′
Γ, r

′′
Γ, . . . are the coordinates of the points on the surface at which
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Figure 9.2. Multiple reflections of phonons in a cylinder.

we should arrive if we continued back beyond rΓ to where the specularly
reflected “particle” previously left the surface, and so on (Fig. 9.2). The
extra terms represent the contributions of multiple reflections of various
orders to the energy flow. To check that the function (10) satisfies Eq.
(3) (without the right-hand side), we notice that P [1 + (1 − P ) + (1 −
P )2 + . . .] = 1. To check that it satisfies the boundary condition (1),
we consider ∆Nl

rq at r = rΓ. For the phonons reflected at rΓ, the factor
in the square brackets in Eq. (10) is equal to (1 − P )[(rΓ − r′

Γ) + (1 −
P )(rΓ − r′′

Γ) + . . .]. For the phonons incident at rΓ, one should make
the substitutions rΓ → r′

Γ, r′
Γ → r′′

Γ, and so on in Eq. (10), according
to the definition of the points rΓ, r′

Γ, . . . . Therefore, the factor in
the square brackets in Eq. (10) for these phonons becomes equal to
[(rΓ − r′

Γ) + (1 − P )(rΓ − r′′
Γ) + . . .], and the boundary condition (1) is

satisfied. Substituting the expression P [. . .] from Eq. (10) in place of
(r − rΓ) into Eq. (9), we can calculate the integrals for a cylindrical
sample like that in problem 9.5. This calculation demonstrates that the
term (r− r′

Γ) contributes 3 times more than the term (r− rΓ), since the
average length of this path is three times the average length of (r − rΓ).
The term (r − r′′

Γ) contributes 5 times more, and so on. Calculating the
sum of the series,

∑∞
k=0 zk(2k + 1) = (1 + z)/(1 − z)2, where z = 1 − P ,

we find that the effective Λ we should substitute in Eq. (7) is

Λ =
2 − P

P
Λ|P=1, (11)

where Λ|P=1 is given by Eq. (9). Naturally, the thermal conductivity
increases with decreasing P .
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Now we consider another limiting case, when the transverse size of
the sample is large in comparison to the mean free path length lN for
normal collision processes. There still can be an arbitrary relation be-
tween lU and the transverse size, because lU � lN . The distribution
function is determined by the normal collision processes. Therefore, the
hydrodynamic transport regime is realized, and we can use the balance
equations (25.19) and (25.20). Below we show that the last term in
Eq. (25.19) should be neglected within the accuracy assumed. Thus,
for the stationary case Eq. (25.19) is reduced to the continuity equation
∇ · u = 0, where u is the drift velocity of the phonon gas. Equation
(25.20) is written as

S
∂T

∂rα
−
∑
βγδ

ναβγδ
∂2uγ

∂rβ∂rδ
+ TS2

∑
β

(κ(0) −1)αβuβ = 0, (12)

where we have added the index (0) to the bulk thermal conductivity
tensor in order to distinguish it from the effective thermal conductivity
of a bounded medium. The approximation of pure diffuse reflection, in
terms of the macroscopic variables, means that u = u(r) satisfies the
following boundary condition at the surface Γ:

u|r∈Γ = 0. (13)

In the isotropic crystals, where the tensors ναβγδ and κ(0)
αβ are reduced

to the scalars δαγδβδν and δαβκ(0), the velocity u is directed along the
thermal gradient. Let us solve Eq. (12) for a sample of cylindrical
geometry. Assuming that the axis of the cylinder is OZ, we obtain
∂uz/∂z = 0 from the continuity equation, which means that |u| = u = uz

does not depend on z. Introducing the cylindrical coordinates according
to r = (r⊥, z), we rewrite Eq. (12) as

ν
1
r⊥

∂

∂r⊥

(
r⊥

∂u

∂r⊥

)
− TS2

κ(0)
u = S

∂T

∂z
, (14)

where we have taken into account that u depends only on r⊥ = |r⊥|, due
to cylindrical symmetry of the problem. As follows from Eq. (13), the
boundary condition for u = u(r⊥) is u(R) = 0, where R is the radius of
the cylinder. A finite solution of the inhomogeneous differential equation
(14) is expressed through the modified Bessel function of the first kind,
I0(x):

u = −κ(0)

TS

∂T

∂z
+ cI0

(
r⊥

R0

)
, (15)

where

R0 =

√
κ(0)ν

TS2 ∼
√

lU lN (16)
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is the characteristic scale of the phonon drift velocity distribution. The
estimate for it is obtained with the aid of Eqs. (24.17), (24.19), and
(25.23). The constant of integration, c, is to be found from the require-
ment u(R) = 0.

Finally, we remind that the energy flow density is given by G = TSu,
see Eq. (24.15), and write the averaged energy flow density (2) through
the cylindrical sample (sc = πR2) as

G =
1

πR2 ST

∫ R

0
2πr⊥dr⊥u(r⊥) = −κ(0) 2

R2

∫ R

0
dr⊥r⊥

×
[
1 − I0(r⊥/R0)

I0(R/R0)

]
∇T. (17)

Calculating the integral over r⊥, we write the thermal conductivity
through the Bessel functions I0 and I1:

κ = κ(0)

[
1 − 2R0

R

I1(R/R0)
I0(R/R0)

]
. (18)

Similar expressions can be obtained for other geometries (problem 9.6).
Using the asymptotic behavior of the Bessel functions at large argu-
ments, we obtain

κ = κ(0)(1 − 2R0/R), R � R0, (19)

which means that the size effect introduces a small correction to the
thermal conductivity. The bulk regime of energy transfer, when this
correction can be neglected, corresponds to R �

√
lU lN , when R still

can be smaller than lU . In the opposite limit,

κ = κ(0) R2

8R2
0

=
TS2R2

8ν
, R � R0. (20)

Using the results (19) and (20), we can justify the neglect of the term
µ∂T/∂r in comparison to TSu in Eq. (25.19). In the limit R � R0,
when κ � κ(0), the relative contribution from this term is of the order
of µ/κ(0), which is small as lN/lU . In the limit R � R0, when κ is given
by Eq. (20), this relative contribution is small as (lN/R)2.

Equation (20) demonstrates that the effective thermal conductivity of
a sufficiently narrow cylinder does not depend at all on the bulk ther-
mal conductivity coefficient. Instead, it is determined by the phonon-
hydrodynamical viscosity coefficient ν and proportional to the rate of
normal phonon-phonon scattering processes. Indeed, in the limit R �
R0 (or, equivalently, R �

√
lU lN , see Eq. (16)) the last term on the
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left-hand side of Eq. (14) can be neglected, and this equation is reduced
to the one for a viscous liquid in a tube. By analogy to the theory of
liquids, one may denote this limit, lN � R �

√
lU lN , as the diffusive

regime. On the other hand, the limit R � lN studied in the beginning
of this section is analogous to the ballistic regime in the theory of gases.
Comparing Eqs. (7) and (20), we find that in these regimes the tem-
perature dependence of κ follows the same power law ∝ T 3. However,
the coefficient of proportionality is greater for the diffusive regime. The
umklapp scattering does not influence the thermal conductivity in both
regimes. To describe the transition region R ∼ lN between these regimes,
one needs to solve the kinetic equation (3) with the collision integral ac-
counting for the normal processes only. Since this problem cannot be
solved analytically, we do not consider it here. We just mention that
assumptions about the phonon spectrum appear to be essential in such
kind of calculations (problem 9.7).

47. Electron Relaxation by Near-Surface Phonons

The character of lattice vibrations is modified in the region near the
surface. In particular, mixing of different vibrational modes takes place,
and there can appear additional modes localized at the surface. De-
scribing the electron-phonon interaction in the vicinity of the surface,
one should take into account the modification of phonon dynamics. A
detailed analysis of the incident, reflected, and localized phonon modes
is a complex task. Below we apply a more compact approach using the
Green’s function for the phonons in the half-space z > 0. We consider
the interaction of 2D electrons, whose confinement in a quantum well
near the surface is described by the wave function ψz , with the deforma-
tion potential generated by the long-wavelength acoustic vibrations of
the crystal lattice. The formalism of non-equilibrium Green’s functions
developed in Chapter 8 appears to be convenient for deriving the kinetic
equation in the inhomogeneous medium defined by the half-space for
phonons and by the quantum well for electrons.

We start from the generalized kinetic equation (41.27), where Ĥ0(1) =
−(�2/2m)[∂2/∂x2

1 + ∂2/∂z2
1 ] is the Hamiltonian of free electrons, and

Σs1s2(1, 2) is the self-energy function for the case of electron-phonon
interaction considered in Sec. 42; see Eq. (42.11). We note that the
multi-indices (1, 2, . . .) include both time and coordinate variables. In
the 2D approximation, we search for the Green’s function of electrons in
the form Gs1s2(1, 2) = ψz1ψ

∗
z2

Gs1s2
t1t2

(x1,x2), where x = (x, y) is the 2D
coordinate. Let us substitute this function into Eq. (41.27), multiply
this equation by ψ∗

z1
ψz2 , and integrate it over z1 and z2. As a result, we
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obtain

−
[
i�

(
∂

∂t1
+

∂

∂t2

)
+

�
2

2m
(∇2

x1
− ∇2

x2
)
]

G−+
t1t2

(x1,x2)

= −
∑
s=±

∫
dt3

∫
dx3

[
Σ−s

t1t3
(x1,x3)Gs+

t3t2
(x3,x2) (1)

+G−s
t1t3

(x1,x3)Σs+
t3t2

(x3,x2)
]
,

where the self-energy function of 2D electrons is introduced as

Σs1s2
t1t2

(x1,x2) =
∫

dz1

∫
dz2ψ

∗
z1

ψz2Σ
s1s2
t1t2

(r1, r2). (2)

The self-energy function standing under the integral in this equation
depends on the 3D coordinates r = (x, z). According to Eq. (42.11),
the main contribution to this function can be written within the second-
order accuracy with respect to electron-phonon interaction:

Σs1s2
t1t2

(r1, r2) = s1s2�D2ψ∗
z1

ψz2G
s1s2
t1t2

(x1,x2)

×
∑
αβ

∇α
r1

∇β
r2

iDαβ,s1s2
t1t2

(r1, r2), (3)

where D is the deformation potential and Dαβ,s1s2
t1t2

(r1, r2) is the Green’s
function of phonons defined in Sec. 42.

As we already know (see problem 8.8), the Wigner transformation of
the left-hand side of Eq. (1) in the limit t1 = t2 = t reduces it to the
left-hand side of the quasi-classical kinetic equation for the electron dis-
tribution function fxpt, where p is the 2D momentum. Transforming the
right-hand side (i.e., the generalized collision integral), we use the quasi-
classical approximation, neglecting the dependence of both Gs1s2

t1t2
(x1,x2)

and Σs1s2
t1t2

(x1,x2) on the average time t = (t1 + t2)/2 and 2D coordinate
x = (x1+x2)/2 on the quantum scales �/ε̄ and �/p̄, respectively. There-
fore, the right-hand side of Eq. (1) is transformed to

−
∑
s=±

∫
dε

2π�
[Σ−s

εt (x,p)Gs+
εt (x,p) + G−s

εt (x,p)Σs+
εt (x,p)]

=
∫

dε

2π�
[Σ+−

εt (x,p)G−+
εt (x,p) − Σ−+

εt (x,p)G+−
εt (x,p)] , (4)

as in problem 8.8. It is convenient to introduce the function

Ks1s2
ωt (x,q) = is1s2D2

∫
dz1

∫
dz2|ψz1 |2|ψz2 |2

∫
dτ

∫
d∆x
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×eiωτ−iq·∆x
∑
αβ

∇α
r1

∇β
r2

Dαβ,s1s2
t+τ /2,t−τ /2(r1, r2), (5)

where the coordinanes r1 and r2 are given by r1 = (x + ∆x/2, z1) and
r2 = (x − ∆x/2, z2). This function is expressed through the Wigner
transform of the factor

∑
αβ ∇α

r1
∇β

r2 Dαβ,s1s2
t1t2

(r1, r2). The collision inte-
gral (4) is rewritten as (the parametric arguments x and t are omitted
below for brevity)∫

dε

2π

∫
dω

2π

∫
dq

(2π)2
[
K+−

ω (q)G+−
ε−�ω(p − �q)G−+

ε (p)

−K−+
ω (q)G−+

ε−�ω(p − �q)G+−
ε (p)

]
. (6)

To find the collision integral in the lowest (second) order in the in-
teraction, it is sufficient to substitute the free-electron Green’s func-
tions G−+

ε (p) � g−+
ε (p) = 2πifpδ(ε − εp) and G+−

ε (p) � g+−
ε (p) =

2πi(fp − 1)δ(ε − εp), see Eq. (40.33), into Eq. (6) and calculate the
integral over ε. As a result, the kinetic equation is written as(

∂

∂t
+ vp · ∂

∂x

)
fxpt = Je,ph(f |xpt), (7)

where the electron-phonon collision integral is given in the form (34.26)
with the following transition probabilities:

Wpp′ = − 1
L2

∫
dωK+−

ω [(p − p′)/�]δ(εp − εp′ − �ω),

Wp′p = − 1
L2

∫
dωK−+

ω [(p − p′)/�]δ(εp − εp′ − �ω). (8)

The functions Ks1s2 in this equation are determined by the phonon
Green’s functions Dαβ,s1s2 ; see Eq. (5). Since K−+ and K+− are al-
ready quadratic in the interaction, we use the free-phonon Green’s func-
tions dαβ,s1s2 instead of Dαβ,s1s2 in Eq. (5). Thus, the probabilities of
electron-phonon collisions are expressed through the Green’s functions of
elastic vibrations in the medium under consideration. Since this medium
is inhomogeneous along OZ, there exists surface-induced mixing of dif-
ferent acoustic modes. For this reason, it is not convenient to express
the Green’s function according to Eq. (42.16).

To describe the equilibrium lattice vibrations, we write the defini-
tions (42.3) by using the notations for equilibrium correlation functions
introduced by Eq. (D.6). In these notations, the Green’s functions of
phonons in the energy representation are expressed as dαβ,−+

ω (r1, r2) =
−(i/�)J

uβ
r2uα

r1
(ω) and dαβ,+−

ω (r1, r2) = −(i/�)J
uα
r1

uβ
r2

(ω), where ûr ≡



414 QUANTUM KINETIC THEORY

ûac(r), see Eq.(6.29), is the displacement operator in the elastic medium.
Employing the relations (D.7) and (D.11), we obtain

Dαβ,∓±
ω (r1, r2) = (Nω + 1/2 ∓ 1/2)[dαβ,R

ω (r1, r2) − dαβ,A
ω (r1, r2)], (9)

where Nω =
(
e�ω/T − 1

)−1
is the Planck distribution function. The

retarded and advanced Green’s functions standing in Eq. (9) are the
Green’s functions of the theory of elasticity, in the usual mathematical
sense. The retarded function is determined by∑

β

[
(ω + i0)2δαβ + s2

t ∇2
rδαβ + (s2

l − s2
t )∇α

r ∇β
r

]
dβγ,R

ω (r, r′)

= ρ−1δαγδ(r − r′), (10)

where ρ is the crystal density. The differential operator on the left-hand
side is expressed through the longitudinal and transverse sound velocities
(problems 9.8 and 9.9). The equation for the advanced Green’s function
differs from Eq. (10) by the factor (ω − i0) in place of (ω + i0). These
functions are expressed through each other as dβγ,A

ω (r, r′) = dγβ,R ∗
ω (r′, r).

Introducing the function

Kω(q) =
∫

dz

∫
dz′|ψz |2|ψz′ |2Kω(q|z, z′) (11)

with

Kω(q|z, z′) = iD2
∫

d∆xe−iq·∆x
∑
αβ

∇α
r ∇β

r′ [dαβ,R
ω (r, r′) − dαβ,A

ω (r, r′)],

(12)
where r = (x + ∆x/2, z) and r′ = (x − ∆x/2, z′), we can rewrite the
transition probabilities (8) as

Wpp′ =
1
L2

∫
dωKω [(p − p′)/�](Nω + 1)δ(εp − εp′ − �ω),

Wp′p =
1
L2

∫
dωKω [(p − p′)/�]Nωδ(εp − εp′ − �ω). (13)

To find dαβ,R
ω (r, r′) for a semi-infinite medium, it is necessary to solve

Eq. (10) with proper boundary conditions at the surface of this medium.
The Green’s function dαβ,R

ω (r, r′) depends only on ∆x = x − x′ because
the medium is homogeneous in the plane XOY . This function can be
written in the mixed (q, z)-representation as

dαβ
ω (q|z, z′) =

∫
d∆xe−iq·∆xdαβ,R

ω (r, r′), (14)
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where ω = ω + i0 is implied and the index R is omitted for brevity.
Using the isotropy of the medium in the plane XOY (which means that
dαβ

ω (q|z, z′) = dαβ
ω (q|z, z′) does not depend on the direction of q), one

may direct the vector q along OX so that q = (q, 0). Therefore, Eq.
(10) is rewritten in the mixed representation as[

ω2 − s2
l q

2 + s2
t d

2/dz2 iq(s2
l − s2

t )d/dz
iq(s2

l − s2
t )d/dz ω2 − s2

t q
2 + s2

l d
2/dz2

] ∣∣∣∣ dxγ
ω (q|z, z′)

dzγ
ω (q|z, z′)

∣∣∣∣
=
∣∣∣∣ δxγ

δzγ

∣∣∣∣ 1
ρ
δ(z − z′), (15)

where γ is either x or z.
The boundary conditions for dαβ

ω (q|z, z′) are determined by the elastic
properties of the surface z = 0. We consider two limiting cases: i) a rigid
surface, for which the displacement urt is zero at z = 0 so that

dαβ
ω (q|z, z′)

∣∣∣
z=0

= 0, (16)

and ii) a free surface, for which the normal stress is zero at z = 0. The
latter case implies the boundary conditions (problem 9.10)[

∂

∂z
dxx

ω (q|z, z′) + iqdzx
ω (q|z, z′)

]
z=0

= 0,

[
∂

∂z
dzx

ω (q|z, z′) + iq(1 − 2s2
t /s2

l )d
xx
ω (q|z, z′)

]
z=0

= 0,[
∂

∂z
dzz

ω (q|z, z′) + iq(1 − 2s2
t /s2

l )d
xz
ω (q|z, z′)

]
z=0

= 0, (17)[
∂

∂z
dxz

ω (q|z, z′) + iqdzz
ω (q|z, z′)

]
z=0

= 0.

A straightforward calculation of the components of the matrix Green’s
function from Eq. (15) leads to⎛⎜⎜⎝

dxx

dzz

dzx

dxz

⎞⎟⎟⎠ = Clle
−κl(z+z′)

⎛⎜⎜⎝
1

κ2
l /q2

iκl/q
κl/iq

⎞⎟⎟⎠+ Ctte
−κt(z+z′)

⎛⎜⎜⎝
1

q2/κ2
t

iq/κt

q/iκt

⎞⎟⎟⎠

+Clte
−κlz−κtz′

⎛⎜⎜⎝
1

κl/κt

iκl/q
q/iκt

⎞⎟⎟⎠+ Ctle
−κtz−κlz

′

⎛⎜⎜⎝
1

κl/κt

iq/κt

κl/iq

⎞⎟⎟⎠ (18)
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−e−κl|z−z′|

2ρω2

⎛⎜⎜⎝
q2/κl

−κl

iqsgn(z − z′)
iqsgn(z − z′)

⎞⎟⎟⎠+
e−κt|z−z′|

2ρω2

⎛⎜⎜⎝
κt

−q2/κt

iqsgn(z − z′)
iqsgn(z − z′)

⎞⎟⎟⎠ ,

where κj =
√

q2 − ω2/s2
j can be either real or imaginary.

The coefficients Cjj′ (j, j′ = l, t) are to be found from the boundary
conditions. To describe the electron-phonon scattering, we need only
one of these coefficients, Cll, because the function given by Eq. (12) is
transformed to

Kω(q|z, z′) = −2D2Im
[
q2dxx

ω (q|z, z′) + iq
d

dz′ d
xz
ω (q|z, z′)

−iq
d

dz
dzx

ω (q|z, z′) +
d2

dzdz′ d
zz
ω (q|z, z′)

]
(19)

= Im
ω2D2

ρs4
l κl

[
e−κl|z−z′| + Rωqe

−κl(z+z′)
]
, Rωq = −Cll

2ρω2κl

q2 .

The term proportional to e−κl|z−z′| describes the bulk-phonon contribu-
tion (it depends only on the longitudinal sound velocity), while the term
proportional to Rωqe

−κl(z+z′) describes a correction due to reflection of
the sound waves from the surface. To determine the reflectance coef-
ficient Rωq , we apply the boundary conditions (16) and (17). For the
cases of rigid (i) and free (ii) surface, we obtain

Rωq =

⎧⎨⎩
κlκt+q2

κlκt−q2 (i)
4q2κlκt+(κ2

t +q2)2

4q2κlκt−(κ2
t +q2)2 (ii)

. (20)

The rule of continuation of κj into the region ω > sjq is determined
by the fact that ω contains an infinitely small positive imaginary part
i0 and Re κj > 0. This implies κj → −i sgn(ω)kj , where kj =√

ω2/s2
j − q2. The electron transitions may occur in the region ω > stq,

where Kω(q|z, z′) is non-zero.
As an application of the general formulas derived in this section, we

investigate the energy and momentum relaxation of 2D electrons due to
the scattering described above. The energy relaxation is characterized by
the absorbed power, P , which is introduced by Eq. (36.20). One can also
introduce another quantity, U, to characterize the velocity relaxation
(see the end of Sec. 36). The equations for these quantities in the 2D
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case are written in the following way:

P = − 2
L2

∑
p

εpJe,ph(f |p), U = − 2
L2

∑
p

p
m

Je,ph(f |p). (21)

Assuming that the electrons are described by the non-equilibrium distri-
bution function given by Eq. (31.25), we substitute the collision integral
(34.26) with transition probabilities (13) into Eq. (21) and obtain∣∣∣∣ P

U

∣∣∣∣ =
2
L4

∑
pq

∫ ∞

−∞
dωKω(q)

∣∣∣∣ εp

p/m

∣∣∣∣ (22)

× [1 − e�ω/Te−�ω/T −�q·u/T ]δ(εp − εp−�q − �ω)
[1 − e−�ω/T ][e(εp−p·u−µ)/Te + 1][e(−εp−�q+(p−�q)·u+µ)/Te + 1]

,

where Te, u, and µ are the electron temperature, drift velocity, and
chemical potential, respectively.

Below we assume that the deviation of the electron distribution func-
tion from the equilibrium one is small and search for the contributions
linear in Te − T and u. Taking into account the antisymmetry property
K−ω(q) = −Kω(q), we transform the integral over ω in Eq. (22) to the
region of positive ω and rewrite Eq. (22) as∣∣∣∣ P

U

∣∣∣∣ =
1

2L4

∑
pq

∫ ∞

0
dω

Kω(q)
sinh(�ω/2T )

∣∣∣∣ (�ω/T )2(Te − T )
�

2(q · u)q/mT

∣∣∣∣
× δ(εp − εp−�q − �ω)

cosh(�ω/2T ) + cosh[(εp − µ)/T − �ω/2T ]
. (23)

The integral over the angle of p gives us∫ 2π

0

dϕp

2π
δ(εp − εp−�q − �ω) =

1
π�

[(pq

m

)2
−
(

ω +
�q2

2m

)2
]−1/2

. (24)

Using Eq. (24), we have

1
L2

∑
p

δ(εp − εp−�q − �ω)
cosh(�ω/2T ) + cosh[(εp − µ)/T − �ω/2T ]

=
mT

2π2�2

∫ ∞

−(µ+�ω/2)/T

dy

cosh(ω/2T ) + cosh y

×
[
2q2T

m
y +

q2(2mµ − �
2q2/4)

m2 − ω2
]−1/2

(25)
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� m2ω

π2�2q

1
sinh(�ω/2T )

1√
(2pF )2 − �2q2

.

The final transformation of this expression has been carried out in the
approximation of strongly degenerate electron gas, when µ = εF � T .
We also take into account that the characteristic energies �ω contributing
to the integral in Eq. (23) are either of the order of T or smaller than T .
Let us introduce the energy and momentum relaxation rates, ν(e) and
ν(m), according to P = ν(e)n2D(Te − T ) and U = ν(m)n2Du, where n2D is
the 2D electron density. After substituting the result given by Eq. (25)
into Eq. (23), the averaging over the angle of q transforms (q · u)q to
q2u/2. We obtain ν(e) and ν(m) in the following form:∣∣∣∣ ν(e)

ν(m)

∣∣∣∣ =
m2

4π3n2DT

∫ ∞

0
dω

ω

sinh2(�ω/2T )

×
∫ 2pF /�

0
dq

Kω(q)√
(2pF )2 − �2q2

∣∣∣∣ ω2/T
q2/2m

∣∣∣∣ . (26)

Equation (26) is convenient for further analysis, where we apply the
explicit form of Kω(q|z, z′) given by Eqs. (19) and (20).

Below we consider the 2D limit, pF � π�/d, where d is the quantum
well width, and introduce two characteristic temperatures:

T0 = 2slpF , T1 = 2sl�/d (27)

(one can see that T0 � T1). Let us study the region of relatively high
temperatures, T � T0. This means that the frequencies ω contributing
to the integral in Eq. (26) are large in comparison to sjq (below we
show that either �ω ∼ T or �ω ∼ T1) and κj � −iω/sj . The reflectance
coefficient Rωq in this case is presented in the most simple form: R = 1
for a rigid surface and R = −1 for a free surface. To find Kω(q) from
Kω(q|z, z′), we consider a rectangular potential well in the hard-wall
model, with ψz =

√
2/d cos[π(z − z0)/d], where z0 is the distance of the

center of the well from the surface. To take the integrals over z and z′
in Eq. (11), one may transform the double integral to a squared single
integral and use the result of problem 4.13 with q replaced by ω/sl. We
obtain

Kω(q) � ωD2

ρs3
l

sin2(ωd/2sl)
(ωd/2sl)2[1 − (ωd/2πsl)2]2

[1 ± cos(2ωz0/sl)], (28)

where the upper and the lower signs correspond to the cases of rigid
and free surface, respectively. The presence of the surface leads to the
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contribution proportional to cos(2ωz0/sl). After substituting Eq. (28)
into Eq. (26), we calculate the integral over q and obtain∣∣∣∣ ν(e)

ν(m)

∣∣∣∣ = ν
T 2

T 2
0

∫ ∞

0
dx

x2FT (x)
sinh2(x/2)

∣∣∣∣ Tx2/2εF

1

∣∣∣∣ [1 ± cos(Γx)], (29)

FT (x) =
sin2(Tx/T1)

(Tx/T1)2[1 − (Tx/πT1)2]2
,

where we have introduced the relaxation rate

ν =
D2p2

F m

π�4ρsl
(30)

and the dimensionless variables x = �ω/T and Γ = 4z0T/dT1.
If the case of high temperatures T � T1 (corresponding to the equi-

partition condition for LA phonons), the main contribution to the in-
tegral in Eq. (29) comes from x ∼ T1/T � 1, and one may replace
x2/ sinh2(x/2) by 4. Calculating the integral over x in the limit of re-
mote surface (z0 � d), when the interference term cos(Γx) can be ne-
glected, we obtain ν(m) = νac and ν(e) = νac(ε2/εF T ). The quantities νac

and ε are the quasielastic momentum relaxation rate for 2D electrons
and characteristic energy introduced in Sec. 35. For the quantum well
model considered here, these quantities are calculated in problem 7.5.
The above expression for ν(e) through νac and ε can be obtained by inte-
grating the product εJac(f |ε), where Jac(f |ε) is given by Eq. (35.6) with
fε/T replaced by fε(1 − fε)/T , over ε. Therefore, Eqs. (29) and (30)
at z0 � d describe the relaxation of electrons by bulk phonon modes,
while at z0 ∼ d there appears a correction caused by the presence of the
surface.

At intermediate temperatures T1 � T � T0, when the main contri-
bution comes from x ∼ 1, one has FT (x) � 1. As a result, the relaxation
rates do not depend on the well width d, and Eq. (29) with FT (x) = 1
can be applied for a quantum well of an arbitrary shape. However, the
dependence of the relaxation rates on z0 exists and remains essential
even if z0 is considerably larger than d. If z0 ∼ d, one has Γ � 1 and the
interference term cos(Γx) is equal to unity at x ∼ 1. For a rigid surface,
it simply means that the rates ν(e) and ν(m) increase twice in comparison
to the case of z0 → ∞, while for a free surface the rates go to zero.
Only when z0 � (T1/T )d, the interference contribution becomes small
because of the averaging of the fast-oscillating term cos(Γx).

In the low-temperature regime, when T ∼ T0, one cannot neglect q in
comparison to ω/sj . Since in this case Kω(q) essentially depends on q,
the analysis of Eq. (26) becomes rather complicated and can be done
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only numerically. An interesting feature of this temperature regime is
that the 2D electrons can effectively interact with the Rayleigh surface
waves existing in the region stq < ω < slq. These waves are characterized
by an exponential decrease of their amplitudes away from the surface.

The formalism of Green’s functions is also convenient for studying
the interaction of electrons with optical phonons in the inhomogeneous
media containing interfaces and surfaces. The guidelines for such appli-
cations are given in problems 9.11 and 9.12.

Problems
9.1. Write the boundary conditions describing the spin-flip processes

on a surface.
Solution: Taking into account the spin-orbit interaction by analogy to Eq. (5.4),

we write the Schroedinger equation for the two-component wave function (spinor) Ψr

as [
p̂2

2m
+ U (r) + ασ̂[∇U (r) × p̂] − E

]
Ψr = 0,

where U (r) = θ(−z)U0 is a step-like potential describing the surface and α is a
coefficient describing the efficiency of the spin-orbit interaction. Inside of the crystal
(z > 0), this equation in the (p, z)-representation is written as(

p̂2
z

2m
+

p2

2m
− E

)
Ψpz = 0, z > 0,

where p is the 2D momentum parallel to the surface. Let us integrate the equation
for Ψr across the surface (from −δ to δ, where δ → +0 determines the width of the
boundary region). Taking into account that at z < 0 one has Ψpz = Ψp,z=0e

κz with
�κ =

√
2m(U0 − E + p2/2m), we obtain the boundary conditions[

p̂z + iχσ̂[nz × p] + i
√

2m(U0 − E + p2/2m)
]

Ψpz|z=0 = 0,

where χ = −2mU0α/� and nz is the unit vector along OZ . The components of Ψpz

mix with each other at the surface, owing to the presence of the spin-dependent con-
tribution ∝ χ.

9.2. Prove that [ωc × p] · ∇p = ωc∂/∂ϕ.
Hint: Take into account that ωc is parallel to OZ and use the polar coordinates.

9.3. Estimate P0 for the case of small correlation lengths by using
Eq. (44.10).

Solution: From Eq. (44.10) it follows that Pζ = P0ζ, where

P0 =

√
p2

z + p2

π2�4

∫ √
p2

z+p2

0
p′dp′

∫ 2π

0
dϕ′W (|p − p′|)

√
p2

z + p2 − p′2

and ϕ′ is the angle of the 2D vector p. The total 3D momentum
√

p2
z + p2 can be re-

placed by the Fermi momentum pF . Let us approximate W by a Gaussian correlation
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function. Assuming that the correlation length is small, we have W (|p−p′|) � πl2cξ
2
.

The integrals in this case are taken easily, with the result P0 � (2/3)(pF /�)4l2cξ
2
.

The limit of small correlation length implies (pF lc/�)2 � 1. On the other hand, we
have already assumed (see the beginning of Sec. 44) that ξpF /� < 1. Therefore, one
always has P0 � 1 in the limit of small correlation length.

9.4. Based on Eqs. (45.14) and (45.15), find the static conductivity
in the limit of thin film (d � lF ) for the case of diffuse scattering.

Hints: Substitute Pζ = 1 and r± = 1 into Eq. (45.15) and calculate the integral
over ζ under the assumption d � lF , keeping the terms ∝ d/lF and ∝ (d/lF )2 ln(lF /d).

9.5. Calculate the length Λ given by Eq. (46.9) for the samples with
circular cross-section (cylinders).

Solution: Using the cylindrical coordinate system with r = (r⊥ cos α, r⊥ sin α, z),
we obtain

Λ =
3

4π2R2

∫ R

0
dr⊥r⊥

∫ 2π

0
dα

∫ 2π

0
dϕ

∫ π

0
dθ sin θ cos2 θ |r − rΓ|,

where R is the radius of the cylinder and dΩ̃ is replaced by dθ sin θdϕ. Next, we find
that

|r − rΓ| =
[√

R2 − r2
⊥ sin2(ϕ − α) ± r⊥ cos(ϕ − α)

]
/ sin θ,

where the sign + or − depends on the direction of q (Λ does not depend on this sign).
An elementary integration leads to the result Λ = 2R.

9.6. Find the thermal conductivity of a thin film of width d in the
hydrodynamical regime and investigate the limiting cases d � R0 and
d � R0.

Result: The analog of Eq. (46.18) in the film geometry is κ = κ(0)[1 − (2R0/d)
× tanh(d/2R0)]. In the limits d  R0 and d � R0, we have κ = κ(0)(1 − 2R0/d) and
κ = Td2S2/12ν, respectively.

9.7. Consider a phonon system containing only one branch with
strictly linear dispersion law. Prove that the solution (46.4) obtained
in the collisionless limit is always valid for such a system if we neglect
the umklapp processes in the collision integral of Eq. (46.3).

Hint: One has to prove that a substitution of this solution into the linearized colli-
sion integral (24.4) makes the latter equal to zero. It is important to take into account
that the collision integral for the system defined above describes only the processes
for which the wave vectors of three participating phonons are in the same direction.
As a result, the non-equilibrium parts of the distribution functions of these phonons
contain the same rΓ.
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9.8. Derive the elasticity equation

∂2

∂t2
urt − s2

t ∇2urt − (s2
l − s2

t )∇(∇ · urt) = 0,

starting from the following expression for the elastic energy of a cubic
crystal:

Eel =
ρ

2

∫
(V )

dr

⎡⎣(∂urt

∂t

)2

+ s2
t

∑
αβ

(∇αuβ
rt)

2 + (s2
l − s2

t )(∇ · urt)2

⎤⎦ ,

where urt is the vector of lattice displacement, ρ is the crystal density,
and sl and st are the longitudinal and transverse sound velocities.

Hint: Using the expression for Eel, find the Lagrangian density as a function of urt

and u̇rt ≡ ∂urt/∂t. Compose the Lagrange equations according to problem 1.15.

9.9. Prove that the Green’s function Dαβ,R
tt′ (r, r′) = 〈〈ûα

r |ûβ
r′〉〉R

tt′ is
determined by Eq. (47.10) if the Hamiltonian corresponds to the elastic
energy defined in the previous problem.

Solution: The energy Eel is quantized by introducing the canonically conjugate
variables qr =

√
ρur and pr =

√
ρdur/dt. In terms of these variables, one has

p = q̇ = ∂εel/∂p and ṗ = q̈ = −∂εel/∂q, where εel = εel(r) is the elastic energy
density (the relation for ṗ becomes obvious when q̈ is expressed according to the
elasticity equation of the previous problem). Therefore, we replace qr and pr by
the operators of generalized coordinate and momentum satisfying the commutation
relation [q̂α

r , p̂β
r′ ] = i�δαβδ(r − r′). The Hamiltonian is quadratic in these operators:

Ĥel =
1
2

∫
(V )

dr

[
p̂2

r + s2
t

∑
αβ

(∇αq̂β
r )2 + (s2

l − s2
t )(∇ · q̂r)2

]
.

Using Eq. (D.13), one can find that i�∂Dαβ,R
tt′ (r, r′)/∂t = 〈〈[ûα

r , Ĥel]|ûβ
r′〉〉R

tt′ . Taking
the derivative of this equation over time, we obtain

�
2 ∂2

∂t2
Dαβ,R

tt′ (r, r′) = −δ(t − t′)〈〈[[ûα
r (t), Ĥel], ûβ

r′(t)]〉〉 + 〈〈[Ĥel, [ûα
r , Ĥel]]|ûβ

r′〉〉R
tt′ .

Substituting the Hamiltonian given above into this equation, we transform the com-
mutators with the use of the commutation relations for q̂ and p̂. Finally,

ρ
∑

β

[
∂2

∂t2
δαβ − s2

t ∇2
rδαβ − (s2

l − s2
t )∇α

r ∇β
r

]
Dβγ,R

tt′ (r, r′) = −δαγδ(t − t′)δ(r − r′).

In the energy representation, this equation is equivalent to Eq. (47.10).

9.10. Derive the boundary conditions (47.17) for a free surface.
Solution: The stress tensor σαβ(r) is defined as

σαβ(r) = λ(∇ · ur)δαβ + µ

(
∂uα

r

∂xβ
+

∂uβ
r

∂xα

)
,
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where xα are the Cartesian coordinates and λ and µ are the Lamé coefficients ex-
pressed through the sound velocities according to Eq. (6.28). By definition, the
normal stress σzβ(r) should be zero at the surface z = 0. Since the in-plane Fourier
transform of the derivative ∂uα

r /∂xβ with β = x, y is iqβuα
qz, we obtain the following

boundary conditions for the displacement vectors in the (p, z)-representation:(
dux

qz

dz
+ iqxuz

qz

)
z=0

= 0,

(
duz

qz

dz
+ iqx

λ

λ + 2µ
ux
qz

)
z=0

= 0.

The boundary conditions (47.17) for the Green’s functions directly follow from these
equations at qx = q and qy = 0 if we notice that λ/(λ + 2µ) = 1 − 2(st/sl)2.

9.11. Derive the kinetic equation for the electrons interacting with
long-wavelength optical phonons in a spatially-inhomogeneous medium.

Solution: The interaction of electrons with electrostatic field generated by long-
wavelength ionic vibrations is described by the potential energy U (r) introduced in
Sec. 6. In the homogeneous media, this energy is quantized according to Eq. (6.22).
Considering spatially-inhomogeneous systems, it is convenient to introduce the oper-
ator Ûr corresponding to the potential energy U (r) and compose the Green’s func-
tions dR,A

tt′ (r, r′) = 〈〈Ûr|Ûr′〉〉R,A

tt′ . Further consideration is the same as in the case of
deformation-potential interaction considered in Sec. 47, and Ûr replaces the Hamil-
tonian D(∇ · ûr) in Eq. (47.12). Therefore, the function Kω(q|z, z) determining the
transition probabilities (47.13) in the collision integral (34.26) is now defined as

Kω(q|z, z′) = i

∫
d∆xe−iq·∆x[dR

ω(r, r′) − dA
ω(r, r′)]

= i[dR
ω(q|z, z′) − dA

ω(q|z, z′)].

To derive an equation for the Green’s function, we write the mechanical energy of the
long-wavelength longitudinal optical vibrations (see Sec. 6):

ELO =
1
2

∫
(V )

dr
(
ẇ2 + ω2

LOw2) = 2π

∫
(V )

dr ε∗
(
Ṗ2/ω2

LO + P2
)

=
1

8πe2

∫
(V )

dr ε∗
[
(∇U̇ )2/ω2

LO + (∇U )2
]
,

where P is the lattice polarization. To transform this expression, we have used Eq.
(6.20) together with the Poisson equation ∇U/e = 4πP. The effective dielectric
constant ε∗ and LO phonon frequency ωLO depend on coordinate r in spatially-
inhomogeneous media. Using the last expression of ELO, one can compose the La-
grange equation of motion for U and the corresponding equation for the Green’s
function (compare ELO to Eel of problem 9.8):[

(ω + i0)2∇ ε∗

ω2
LO

∇ − ∇ε∗∇
]

dR
ω(r, r′) = 4πe2δ(r − r′).

This equation replaces Eq. (47.10). Solving it with proper boundary conditions (see
problem 9.12), one can find Kω(q|z, z′) written above.
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9.12. Calculate the Green’s function dR
ω(r, r′) (see problem 9.11) for a

system composed of two different materials occupying the regions z > 0
and z < 0.

Solution: The parameters ε∗ and ωLO are assumed to be constants in the regions
z > 0 and z < 0, but they change abruptly at the interface. It is convenient to
introduce the function γ(z) = ε∗[(ω + i0)2/ω2

LO −1] equal to γ+ at z > 0 and to γ− at
z < 0. The Green’s function can be written in the (q, z)-representation as dR

ω(q|z, z′).
It is independent of the direction of q and satisfies the equation[

∂2

∂z2 − q2
]

dR
ω(q|z, z′) =

4πe2

γ±
δ(z − z′)

in the regions z > 0 (+) and z < 0 (−). This equation is to be solved with the bound-
ary conditions demanding that dR

ω(q|z, z′) and γ(z)∂dR
ω(q|z, z′)/∂z are continuous at

z = 0 and that dR
ω(q|z, z′) is finite at z = ±∞. We obtain the following result:

dR
ω(q|z, z′) = −2πe2

γ±q

(
e−q|z−z′| +

γ± − γ∓

γ+ + γ−
e−q|z|−q|z′|

)
,

where the upper and lower indices correspond to z > 0 and z < 0, respectively. Since
this function is invariant with respect to the permutation of z and z′, the function
Kω(q|z, z′) determining the probability of electron-phonon interaction is equal to
−2ImdR

ω(q|z, z′). In addition to the poles γ± = 0 at the frequencies of bulk LO

phonon modes of the materials, the Green’s function has one more pole determined
by the equation γ+ + γ− = 0. This pole corresponds to a mode localized at the
interface.



Chapter 10

QUANTUM MAGNETOTRANSPORT

A magnetic field causes electrons to rotate in the plane perpendicular to this field.
As a result (see Sec. 11), the anisotropy of the response along the field and in the
plane perpendicular to the field appears, and the kinetic coefficients are modified con-
siderably if the cyclotron frequency exceeds the relaxation rate. Further qualitative
modifications take place under the transition from the quasi-classical fields satisfying
Eq. (9.35) to quantizing magnetic fields. Even when the cyclotron energy is still small
in comparison to the Fermi energy, there appear oscillations of the conductivity as
a function of the magnetic field. Another kind of oscillations takes place because of
interaction of electrons with the dispersionless optical phonons. In the region where
the cyclotron energy is comparable to the Fermi energy, the validity condition (7.21)
of the kinetic equation (7.13) must be critically reconsidered because of accumulation
of electrons at the bottoms of the Landau levels, where the density of states (5.16)
increases according to the inverse square root dependence, leading to an increase in
the relaxation rate. In the case of 2D electron gas in the magnetic field perpendic-
ular to the 2D plane, the density of states of free electrons is represented by a set
of δ-peaks associated with the Landau levels; see Sec. 16. For this reason, any de-
scription of electron transport based upon the quasi-classical kinetic equation (9.34)
becomes invalid, and completely new kinetic phenomena, such as the quantum Hall
effect, appear. The quantization of electron states in magnetic fields also has a con-
siderable influence on the optical properties of dielectrics. There exists an anisotropy
of the response due to virtual interband transitions, and the characteristics of exciton
absorption are dramatically modified.

425
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48. Method of Iterations
In strong fields, when the cyclotron frequency is much greater than

the relaxation rate, it is possible to solve the kinetic equation (9.34) by
iterations with respect to the collision integral, similar to what we did
when considering the response to the high-frequency field in Secs. 10 and
37. For the stationary and spatially-homogeneous case, the distribution
function is written as f(εp) + ∆fp, where f(ε) is the Fermi distribution
function and ∆fp describes a linear response to the electric field E.
Under the conditions ωcτtr � 1, one uses the expansion ∆fp = ∆f (0)

p +
∆f (1)

p + . . . , and the zero-order equation takes the form

e

c
[vp × H] · ∂∆f (0)

p

∂p
= −eE · vp

∂f(εp)
∂εp

, (1)

where we have neglected a small contribution of the collision integral.
The exact solution of Eq. (1) is

∆f (0)
p =

c

H2
∂f(εp)

∂εp
[H × E] · p. (2)

If we substitute it into Eq. (9.11) for the electric current and consider
the latter in the direction perpendicular to H, we obtain the expression
for the non-dissipative Hall current, I = |e|cn[H × E]/H2, which can be
also found from Eq. (11.19) in the limit ωcτtr � 1. The correction ∆f (1)

p
is governed by the kinetic equation of the first-order approximation:

e

c
[vp × H] · ∂∆f (1)

p

∂p
= Jim(∆f (0)|p). (3)

For degenerate electron gas, this correction leads to the contribution
∆I = (e2nτtr/m)(ωcτtr)−2E to the current density (problem 10.1). It is
easy to identify this contribution with the density of dissipative current
in the limit ωcτtr � 1; see again Eq. (11.19). The corrections of higher
order give higher-order terms to the expansion of the current in powers
of 1/ωcτtr .

The iterations with respect to the factor 1/ωc can be also used for cal-
culating the transverse conductivity in the strong-field regime, when the
requirement (9.35) is violated and the quasi-classical kinetic equation is
no longer applicable. Below we apply the Kubo formula to calculate the
diagonal part of the transverse conductivity tensor in strong magnetic
fields. Then we show how the conductivity can be found from a semi-
classical consideration of the electrons hopping between the sites defined
as cyclotron orbit centers. Finally, we generalize our results to describe
the electrons interacting with phonons and consider the magnetophonon
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oscillations of the transverse conductivity. It is convenient to write the
Kubo formula (13.18) as (problem 10.2)

σαβ(ω) = i
�e2

V

∑
δδ′

〈δ|v̂β |δ′〉〈δ′|v̂α|δ〉 f(εδ) − f(εδ′)
(εδ − εδ′ − �ω − iλ)(εδ − εδ′)

, (4)

where the energies εδ and the states |δ〉 are determined from the eigen-
state problem Ĥ|δ〉 = εδ |δ〉. In the presence of the magnetic field
H = [∇ × A] = (0, 0, H), Eq. (4) contains the velocity operators
v̂α = π̂α/m = [p̂α − (e/c)Aα]/m. In the basis of Landau states |Npypz〉
described by the wave functions ψ

(Npypz)
r given by Eqs. (5.13) and (5.15)

[the vector potential is A = (0, Hx, 0)], these operators have the follow-
ing matrix elements:

〈Npypz |
∣∣∣∣ v̂x

v̂y

∣∣∣∣ |N ′p′
yp

′
z〉 =

√
�ωc

2m

(√
NδN′,N−1

∣∣∣∣ i
1

∣∣∣∣
+

√
N ′δN′,N+1

∣∣∣∣ −i
1

∣∣∣∣) δpyp′
y
δpzp′

z
, (5)

and 〈Npypz |v̂z |N ′p′
yp

′
z〉 = (pz/m)δN′Nδpyp′

y
δpzp′

z
. Using Eqs. (4) and

(5), one can see that in the absence of scattering, when the Landau
states are identified with the exact eigenstates, the real parts of the
diagonal components σxx and σyy at ω = 0 are equal to zero, since
their expressions contain δ-functions of energies, δ(εδ − εδ′). The energy
conservation law εδ = εδ′ cannot be satisfied because the matrix elements
(5) are diagonal in the longitudinal momentum pz but non-diagonal in
the Landau level numbers. In contrast, the non-diagonal components σxy

and σyx remain non-zero in the absence of scattering, which corresponds
to the non-dissipative transport.

We have emphasized that the transverse dissipative transport in a
magnetic field is a scattering-assisted process. To find the diagonal con-
ductivity from Eq. (13.18), one has to expand the density matrix η̂eq and
the exponential operators e±iĤτ /�, where Ĥ = π̂2/2m+Usc(r), in series
with respect to the potential energy Usc(r) responsible for the scattering
and search for the first nonvanishing contribution. The most convenient
way of doing it is based upon the operator identities

v̂x =
1

mωc

∂Usc(r)
∂y

− i

�ωc
[v̂y , Ĥ], v̂y = − 1

mωc

∂Usc(r)
∂x

+
i

�ωc
[v̂x, Ĥ]. (6)

To check these relations, one may calculate the commutators on the
right-hand sides by taking into account that [π̂x, π̂2

y ]/2m = −i�ωcπ̂y and
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[π̂y , π̂
2
x]/2m = i�ωcπ̂x. Equations (6) have clear physical meaning. The

velocity of the electron moving in the direction perpendicular to H is
subdivided in two parts. The first part, containing the gradients of the
potential energy, corresponds to the motion of the cyclotron orbit center,
while the second part describes the rotational motion in the cyclotron
orbit.

Let us substitute the velocity operators rewritten according to Eq.
(6) into Eq. (13.18) for σxx. The commutator standing in Eq. (13.18)
is written as a sum of three terms:[

e−iĤτ /�v̂xeiĤτ /�, v̂x

]
= −(�ωc)−2

[
e−iĤτ /�[v̂y , Ĥ]eiĤτ /�, [v̂y , Ĥ]

]
−i(�mω2

c )
−1
([

e−iĤτ /�[v̂y , Ĥ]eiĤτ /�, (∂Usc/∂y)
]

+
[
e−iĤτ /�(∂Usc/∂y)eiĤτ /�, [v̂y , Ĥ]

])
(7)

+(mωc)−2
[
e−iĤτ /�(∂Usc/∂y)eiĤτ /�, (∂Usc/∂y)

]
.

Only the third (last) term of this sum contributes to the conductivity
at ω = 0 (below we are interested only in Reσxx = σxx; the imaginary
part vanishes at ω = 0). This statement can be checked if one writes the
Kubo formula in the basis of exact eigenstates. In this representation,
the first and the second terms of the expansion (7) give the contributions
proportional to ω[f(εδ) − f(εδ + ω)] and f(εδ) − f(εδ + ω), respectively,
which vanish when ω goes to zero. We have, therefore,

σxx =
e2

�V m2ω2
c

lim
ω→0

1
ω

Re
∫ 0

−∞
dτeλτ−iωτ

×Spη̂eq

[
e−iĤτ /�(∂Usc/∂y)eiĤτ /�, (∂Usc/∂y)

]
. (8)

This equation is exact, and its main advantage is that the velocity oper-
ators are expressed through the gradients of the potential energy. The
conductivity given by Eq. (8) is proportional to the factor (Usc/�ωc)2,
where Usc gives an estimate of the random potential amplitude. An
expansion of e±iĤτ /� and η̂eq in powers of Usc demonstrates that all
subsequent terms contain higher powers of this factor. Therefore, to
find the conductivity in the limit of high fields, one may neglect the
scattering-potential contribution to the Hamiltonian by substituting the
Hamiltonian Ĥ = π̂2/2m into Eq. (8) and calculating the trace over
the Landau states which become the exact eigenstates in this approx-
imation. The simplest application of this method is realized for the
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electron-impurity system. We obtain

σxx =
2πe2

V m2ω2
c

lim
ω→0

1
ω

∑
δδ′

〈〈
|〈δ|∂Uim(r)/∂y|δ′〉|2

〉〉
×δ(εδ − εδ′ + �ω)[f(εδ) − f(εδ′)], (9)

where |δ〉 and |δ′〉 denote the Landau states |Npypz〉 and |N ′p′
yp

′
z〉, re-

spectively. Equation (9) can be also obtained from Eq. (4) by substi-
tuting there the matrix elements of v̂x expressed according to Eq. (6).
Since the spin splitting is neglected, the factor 2 in Eq. (9) accounts for
the spin degeneracy (in the general case σxx can be represented as a sum
of the contributions from spin-up and spin-down states, and the only dif-
ference between these contributions is a Zeeman shift of the energies; see
the next section for more details). The double angular brackets denote
the averaging over the random potential of impurities. This averaging
gives us (see Sec. 14)〈〈

|〈δ|∂Uim(r)/∂y|δ′〉|2
〉〉

=
nim

V

∑
q

q2
y |v(q)|2|〈δ|eiq·r|δ′〉|2. (10)

Since the matrix elements of eiq·r contain the δ-function δpy ,p′
y+�qy , one

can replace q2
y in Eq. (10) by (Xpy − Xp′

y
)2/l4H , where Xpy = −pyc/|e|H

is the “weight center” of the oscillatory wave function (the classical cy-
clotron orbit center). Finally, we obtain the following expression for the
static conductivity:

σxx =
2e2

TV

∑
δδ′

f(εδ)[1 − f(εδ′)]νδδ′(Xδ − Xδ′)2/2, (11)

where Xδ = Xpy does not depend on N and

νδδ′ =
2π

�

nim

V

∑
q

|v(q)|2|〈δ|eiq·r|δ′〉|2δ(εδ − εδ′) (12)

is the probability of the impurity-assisted transition between the states
δ and δ′. Equation (11) is known as Adams-Holstein formula. It is
written in the general form valid for describing any scattering-assisted
hopping conductivity; see also Sec. 62. In our case, the positions of
the sites between which the hopping occurs coincide with the centers of
the classical cyclotron orbits, Xδ . To obtain Eq. (11), one can present
a semiclassical consideration based upon the equation for the hopping
current density (problem 10.3).
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The matrix elements of the exponent eiq·r in the basis of Landau
states are given by (compare to Eq. (A.27))

〈Npypz |eiq·r|N ′p′
yp

′
z〉 =

√
N !2N′

N ′!2N
[i(qx + iqy)/2lH ]N

′−NLN′−N
N (q2

⊥l2H/2)

×e−q2
⊥l2H/4e−ipyqxl2H/�+iqyqxl2H/2δpz ,p′

z+�qzδpy ,p′
y+�qy , (13)

where q2
⊥ = q2

x + q2
y and LM

N (x) are the Laguerre polynomials. The
squared absolute value of this matrix element does not depend on the
phase factor and can be presented as

|〈Npypz |eiq·r|N ′p′
yp

′
z〉|2 = ΦNN′(q2

⊥l2H/2)δpz ,p′
z+�qzδpy ,p′

y+�qy ,

ΦNN′(u) =
N !
N ′!

uN′−Ne−u[LN′−N
N (u)]2. (14)

Equations (13) and (14) are written for N ′ ≥ N (if N ′ < N , one has
to permute the indices, N ↔ N ′). The impurity-scattering-assisted con-
ductivity defined by Eqs. (11), (12), and (14) can be expressed in a more
simple way in the case of degenerate electrons interacting with a short-
range impurity potential. Since εδ = εδ′ , we put f(εδ)[1 − f(εδ′)]/T �
δ(εδ − εF ), where εF is the Fermi energy. Next, we replace nim |v(q)|2
by nim |v(0)|2 ≡ w and substitute the expression (12) into Eq. (11).
Taking into account that the energies of electron states do not depend
on the variables py and p′

y , we integrate over these variables (note that∫
dpy = Lx|e|H/c, where Lx is the normalization length; see Eq. (5.16))

and over qz . The integrals over pz and p′
z are easily calculated by using

the δ-functions of energies, since εδ = εNpz = p2
z/2m + �ωc(N + 1/2).

The remaining integrals over qx and qy are reduced to a single integral
over q⊥, which is transformed to

∫∞
0 du uΦNN′(u). This latter integral is

equal to N +N ′ +1 (problem 10.4), and the expression for σxx is finally
written as

σxx =
e2wm2ωc

4π3�4

Nmax∑
NN′

N + N ′ + 1√
εF − εN

√
εF − εN′

, (15)

where εN = �ωc(N + 1/2). Only the discrete sums over the Landau
level numbers remain in Eq. (15). The upper limit of the sums is
determined by the requirement that the expressions under the square
roots must be positive, i.e., Nmax is equal to the integer part of the
expression εF /�ωc − 1/2. Using Eq. (15), it is easy to carry out the
quasi-classical limiting transition at εF � �ωc. Introducing the con-
tinuous variables ε = �ωc(N + 1/2) and ε′ = �ωc(N ′ + 1/2) instead
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of N and N ′, we take the integrals over these variables and obtain
σxx = 4e2wm2ε2

F /3π2
�

7ω2
c . Introducing the relaxation time according

to Eq. (8.21) as 1/τ = πwρ3D(εF )/�, one can then express the Fermi
energy through the electron density n and identify this result with the
quasi-classical expression σxx � e2n/mω2

c τ obtained earlier.
The scattering probability (12) can be written as a sum of partial

contributions from all possible scattering mechanisms. So far we have
considered the elastic scattering. Below we derive Eq. (11) for the case
of electron-phonon interaction. We replace Usc(r) in Eq. (8) by the
second-quantized electron-phonon interaction Hamiltonian Ĥe,ph(r) =∑

ql C
(l)
q eiq·r(b̂ql + b̂+

−ql) describing the energy of the interaction at the
point r; see Eqs. (6.22) and (6.30). The coupling energy C(l)

q for the
interaction of electrons with the longitudinal optical (l = LO) and lon-
gitudinal acoustic (l = LA) phonons is given by Eq. (21.1). The gradient
of the potential energy takes the following form:

∂Ĥe,ph(r)
∂y

= i
∑
ql

qyC
(l)
q eiq·r(b̂ql + b̂+

−ql). (16)

Neglecting the contributions of higher order with respect to (C(l)
q /�ωc)2,

and using the second quantization representation, we obtain

σxx =
e2

�V m2ω2
c

lim
ω→0

1
ω

Re
∑
qq′l

qyq
′
yC

(l)
q C(l)

q′

×
∑

δδ′δ1δ′
1

〈δ|eiq·r|δ′〉〈δ′
1|e−iq′·r|δ1〉

∫ 0

−∞
dτeλτ−iωτ (17)

×Spη̂eq

[
e−iĤτ /�â+

δ âδ′(b̂ql + b̂+
−ql)e

iĤτ /�, â+
δ′
1
âδ1(b̂−q′l + b̂+

q′l)
]
,

where

Ĥ = Ĥe + Ĥph =
∑

δ

εδâ
+
δ âδ +

∑
ql

�ωql

(
b̂+
ql b̂ql +

1
2

)
(18)

is the Hamiltonian describing non-interacting electrons and phonons,
and the equilibrium statistical operator η̂eq is determined by this Hamil-
tonian. Therefore, the traces over electron and phonon variables in Eq.
(17) can be taken separately. Calculating the trace over phonon vari-
ables, see Sec. 34 for details, we obtain the following expression:
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Sp . . . = δqq′
(
Speη̂eq â

+
δ (−τ)âδ′(−τ)â+

δ′
1
âδ1

)
×[(Nl

q +1)eiωqlτ +Nl
qe

−iωqlτ ]− δqq′
(
Speη̂eq â

+
δ′
1
âδ1 â

+
δ (−τ)âδ′(−τ)

)
(19)

×[(Nl
q + 1)e−iωqlτ + Nl

qe
iωqlτ ],

where â+
δ (t) = eiĤet/�â+

δ e−iĤet/� and âδ(t) = eiĤet/�âδe
−iĤet/� are the

creation and annihilation operators in the Heisenberg representation.
Next, Nl

q are the phonon occupation numbers (since we consider equi-
librium phonons, the distribution over the wave vectors q is isotropic).
The remaining trace Spe . . . is taken over the electron states described
by the Hamiltonian Ĥe. Therefore, we have â+

δ (t) = â+
δ eiεδt/�, âδ(t) =

âδe
−iεδt/�, and Speη̂eq â

+
δ âδ′ â+

δ′
1
âδ1 = 2δδδ1δδ′δ′

1
f(εδ)[1−f(εδ′)], where the

factor of 2 appears because of spin degeneracy if the spin index is not
included in δ. Expression (19) is rewritten as a product of 2δqq′δδδ1δδ′δ′

1
by the factor

ei(εδ′−εδ+�ωql)τ /�

{
f(εδ)[1 − f(εδ′)](Nl

q + 1) − f(εδ′)[1 − f(εδ)]Nl
q

}
(20)

+ei(εδ′−εδ−�ωql)τ /�

{
f(εδ)[1 − f(εδ′)]Nl

q − f(εδ′)[1 − f(εδ)](Nl
q + 1)

}
.

We use Eq. (20) in order to calculate the integral over τ in Eq. (17).
Carrying out the limiting transition ω → 0 in Eq. (17), we obtain Eq.
(11) with the electron-phonon scattering probability

νδδ′ =
2π

�

∑
ql

|C(l)
q |2|〈δ|eiq·r|δ′〉|2 (21)

×
[
δ(εδ − εδ′ − �ωql)(Nl

q + 1) + δ(εδ − εδ′ + �ωql)Nl
q

]
.

Let us calculate the conductivity σxx of the electrons interacting
with long-wavelength optical phonons whose dispersion can be neglected:
ωql = ωLO and Nl

q = NLO = [e�ωLO/T − 1]−1. Substituting Eq. (21) into
Eq. (11), we calculate the integrals over py , p′

y , p′
z , and qz by using the

delta-functions δpz ,p′
z+�qz and δ(εNpz − εN′p′

z
± �ωLO). As a result,

σ(LO)
xx =

2e2NLO

(2π)4�2ωcT

∫
dε
∑
NN′

ANN′(ε)
f(ε)[1 − f(ε + �ωLO)]√
ε − εN

√
ε − εN′ + �ωLO

, (22)

where we employ the variable ε = εNpz instead of pz . In Eq. (22) we
have introduced a slowly varying function of energy and Landau level
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numbers according to

ANN′(ε) =
π

2

∫ ∞

0
dq2

⊥

(
V
∑
±

|C(LO)
q± |2

)
q2

⊥ΦNN′(q2
⊥l2H/2), (23)

where
q± =

√
q2
z±(ε) + q2

⊥,

q2
z±(ε) =

2m

�2

[√
ε − εN ±

√
ε − εN′ + �ωLO

]2
. (24)

The quantity �qz± is the momentum transferred along the magnetic field
for backscattering (+) and forward-scattering (−) electron transitions.

The energy dependence of the function under the integral in Eq. (22)
has inverse-square-root divergences at ε = εN and ε = εN′ −�ωLO. They
appear due to the divergences in the density of electron states in the
magnetic field; see Sec. 5. Under the conditions of magnetophonon
resonance, ωLO = Mωc, when the optical phonon frequency is equal
to an integer number of the cyclotron frequencies (M = N ′ − N), the
expression under the integral diverges as (ε−εN)−1 and the conductivity
diverges logarithmically. Therefore, each resonance gives a peak, and the
conductivity oscillates as a function of the magnetic field. It is periodic
in (1/H) with the period |e|/mωLOc determined by the optical phonon
frequency. This phenomenon is called the magnetophonon oscillations.
The shape of the magnetophonon resonance at small deviations δ =
ωLO/ωc −M � 1 can be calculated analytically. Near the resonance, the
main contribution to the integral in Eq. (22) comes from the energies
ε � εN at N ′ = N + M . This means that the momentum transfer along
the direction of the field is small, q2

z±(ε) � q2
⊥. In these conditions, the

product |C(LO)
q± |2q2

⊥ does not depend on q⊥, see Eq. (21.1), and ANN′

is easily calculated analytically (see the normalization integral for the
Laguerre polynomials in problem 10.4). The remaining integral over
the energy ε is analytically calculated for the case of non-degenerate
electrons, and the conductivity takes the form

σ(LO)
xx =

αne2NLO

2
√

πωcm

(
�ωLO

T

)3/2

exp
(

−δ�ωc

2T

)
K0

(
δ�ωc

2T

)
, (25)

where α is the coupling constant defined by Eq. (21.28) and K0(x) is the
modified Bessel function of the second kind. If δ � 2T/�ωc, this function
behaves as −C + ln(4T/δ�ωc), where C � 0.577 is Euler’s constant, so
that the conductivity diverges at δ = 0. This logarithmic divergence is
suppressed because of the scattering-induced broadening of the Landau



434 QUANTUM KINETIC THEORY

levels. To take this suppression into account, δ should be cut at (ωcτ)−1,
where τ is the characteristic scattering time. If the temperature is con-
siderably smaller than �ωLO, this time is caused by elastic scattering
mechanisms. However, the presence of the factor NLO � exp(−�ωLO/T )
in Eq. (26) suppresses the magnetophonon oscillations at low temper-
atures. The oscillations cannot be observed if the temperature is so
low that the conductivity is dominated by elastic scattering. At high
temperatures, when T is comparable to �ωLO, the broadening of the
Landau levels is dominated by LO phonon scattering and the magne-
tophonon oscillations are suppressed again. The most favorable region
for observing these oscillations corresponds to intermediate tempera-
tures, when the Landau level broadening depends on elastic scattering,
but the resistivity is significantly influenced by LO phonon scattering.
The magnetophonon oscillations also occur in the longitudinal part of
the conductivity tensor, σzz .

The method of iterations leading to the Adams-Holstein formula es-
sentially implies that the cyclotron frequency is much larger than the
average scattering rate 1/τ̄ . For this reason, it does not describe the
low-field conductivity at ωcτ̄ ≤ 1. Moreover, the Adams-Holstein for-
mula is not applicable for describing the longitudinal conductivity σzz .
To calculate all components of the conductivity tensor in a wide range of
fields, it is convenient to apply a unified approach based on the Green’s
function formalism. This is done in the next sections.

49. Green’s Function Approach
To calculate the conductivity tensor, we consider the model of elastic

scattering and employ the Kubo formula (13.18) for linear response.
Using the operator representation (16.3) of Green’s functions, we express
the exponents e±iĤτ /� in terms of the Green’s function operators and
rewrite Eq. (13.18) as

σαβ(ω) =
ie2n

mω
δαβ +

�e2

V ω

∫ ∞

−∞
dτe−iωτ (1)

×Sp
[
η̂eq(ĜA

τ − ĜR
τ )v̂αĜR

−τ v̂β + v̂βĜA
τ v̂α(ĜA

−τ − ĜR
−τ )η̂eq

]
.

In contrast to Eq. (13.18), the integral over time in Eq. (1) is taken
from −∞ to ∞. The region from 0 to ∞ does not contribute to the
integral due to the presence of ĜR−τ ∝ θ(−τ) in the first term and ĜA

τ ∝
θ(−τ) in the second term under the integral. Transforming the Green’s
function operators to the energy representation according to ĜR,A

τ =
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(2π�)−1 ∫ dεe−iετ /�ĜR,A
ε , we take the integral over time in Eq. (1) and

obtain

σαβ(ω) =
ie2n

mω
δαβ +

e2

2πωV

∫
dε (2)

×Sp
[
η̂eq(ĜA

ε − ĜR
ε )v̂αĜR

ε+�ωv̂β + v̂βĜA
ε−�ωv̂α(ĜA

ε − ĜR
ε )η̂eq

]
.

Evaluating the trace in the exact eigenstate representation |δ〉 defined
by the eigenstate problem Ĥ|δ〉 = εδ |δ〉, one may notice that 〈δ|(ĜA

ε −
ĜR

ε )|δ〉 ∝ δ(ε − εδ). For this reason, the statistical operator η̂eq in both
terms of the integrand of Eq. (2) can be replaced by the equilibrium
distribution function f(ε), since this operator stands next to ĜA

ε − ĜR
ε .

Doing this, we obtain the result of problem 8.5, which has been derived in
a different way. To find the static conductivity, one needs to carry out the
limiting transition ω → 0 in Eq. (2). Let us expand ĜR

ε+�ω and ĜA
ε−�ω

in series of ω up to linear terms, as Ĝs
ε±�ω = Ĝs

ε ± �ω(∂Ĝs
ε/∂ε). The

contribution coming from zero-order terms of such expansions appears to
be imaginary and vanishes together with the first term on the right-hand
side of Eq. (2). Thus, only the terms containing the derivatives of the
Green’s functions remain, and we finally obtain the general expression
for the tensor of static conductivity:

σαβ =
�e2

2πV

∫
dεf(ε) (3)

×
〈〈

Sp
{

v̂α
∂ĜR

ε

∂ε
v̂β(ĜA

ε − ĜR
ε ) − (ĜA

ε − ĜR
ε )v̂β

∂ĜA
ε

∂ε
v̂α

}〉〉
.

The averaging 〈〈. . .〉〉 over the random potential is separated here from
the quantum-mechanical averaging Sp . . . including the trace over spin
variables. Since the velocity operators are Hermitian and ĜA+

ε = ĜR
ε ,

the conductivity given by Eq. (3) is real. A more simple form of Eq.
(3) is obtained for the diagonal components of the conductivity tensor.
Assuming α = β, we integrate over energy by parts and find

σαα = − �e2

4πV

∫
dε

(
−df(ε)

dε

)〈〈
Spv̂α(ĜA

ε − ĜR
ε )v̂α(ĜA

ε − ĜR
ε )
〉〉

. (4)

Equation (4) is the Greenwood-Peierls formula (13.22) written in terms
of the Green’s functions in the operator form. The conductivity tensor
is expressed through the correlation functions of certain combinations of
the retarded and advanced Green’s functions. In the case of degenerate
electrons, the contribution to the diagonal conductivity comes only from



436 QUANTUM KINETIC THEORY

the states near the Fermi level. In contrast, all the states below the Fermi
level contribute to the non-diagonal part of σαβ . Applying Eqs. (3) and
(4) to the case of electrons in a magnetic field, one should write the
velocity operators as v̂α = [p̂α − (e/c)Aα]/m.

The correlation functions in Eqs. (3) and (4) can be rewritten in the
Landau level representation (see Appendix G). We have (s, s′ = R, A)

1
LxLy

〈〈
Spv̂αĜs

εv̂βĜs′
ε

〉〉
=

1
πl2H

∑
N1−N4

∑
pzp′

z

vα
N4N1

vβ
N2N3

×Kss′
εε (N1, N4; pz |N2, N3; p′

z), (5)

where vα
NN′ is defined according to 〈Npypz |v̂α|N ′p′

yp
′
z〉 = vα

NN′ δpyp′
y
δpzp′

z
.

The correlation function Kss′
εε′ (N1, N4; pz |N2, N3; p′

z) describing the aver-
age of a product of Green’s functions is defined by Eqs. (G.21) and
(G.28). Below we consider the limit of short-range scattering potential,
when this function is reduced to the product Gs

ε(pz, N1)Gs′
ε (pz, N4)δN1N2

×δN4N3δpzp′
z
, provided the higher-order contributions to the vertex part

are neglected; see Eq. (G.31). Using the matrix elements (48.5), we
obtain

σd ≡ σxx = σyy =
e2

�ω2
c

2π2

∫
dε

(
−∂f(ε)

∂ε

)∫
dpz

2π�

∞∑
N=0

(N + 1)

×Re [GA
ε (pz, N)GR

ε (pz, N + 1) − GA
ε (pz, N)GA

ε (pz, N + 1)] . (6)

Next, since vz
NN′ = δNN′pz/m, we find

σ‖ ≡ σzz =
e2ωc

2π2m

∫
dε

(
−∂f(ε)

∂ε

)∫
dpz

2π�
p2

z

∞∑
N=0

×Re [GA
ε (pz, N)GR

ε (pz, N) − GA
ε (pz, N)GA

ε (pz, N)] . (7)

Finally, the non-diagonal components of the conductivity tensor are ex-
pressed from Eq. (3) as

σ⊥ ≡ σyx = −σxy =
e2

�ω2
c

2π2

∫
dε

∫
dpz

2π�

∞∑
N=0

(N + 1)

×Im
[
∂f(ε)

∂ε
GA

ε (pz, N)GR
ε (pz, N + 1) (8)

+f(ε)
(

GR
ε (pz, N)

∂GR
ε (pz, N + 1)

∂ε
− ∂GR

ε (pz, N)
∂ε

GR
ε (pz, N + 1)

)]
.
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The term proportional to ∂f(ε)/∂ε in Eq. (8) is obtained after integrat-
ing by parts in Eq. (3). However, the term proportional to f(ε), which
describes the contribution of the states below the Fermi level, remains.

It is convenient to write Eqs. (6)−(8) through the self-energy func-
tion given by Eq. (G.19), with the use of Eq. (G.16). After some
transformations, we have

σd =
e2ωc

2π2

∫
dε

(
−∂f(ε)

∂ε

)
(2Σ′′

ε )
2

(2Σ′′
ε )2 + (�ωc)2

×
∫

dpz

2π�

∞∑
N=0

ε − p2
z/2m − Σ′

ε

(ε − εN − p2
z/2m − Σ′

ε)2 + (Σ′′
ε )2

, (9)

σ‖ =
e2ωc

2π2

∫
dε

(
−∂f(ε)

∂ε

)

×
∫

dpz

2π�

∞∑
N=0

ε − εN − Σ′
ε + p2

z/2m

(ε − εN − p2
z/2m − Σ′

ε)2 + (Σ′′
ε )2

, (10)

where Σ′′
ε = ImΣA

ε and Σ′
ε = ReΣA

ε . To transform the contribution
proportional to f(ε) in Eq. (8), let us use the identity ∂Gs

ε(pz, N)/∂ε =
(∂Σs

ε/∂ε − 1) [Gs
ε(pz, N)]2. As a result, this contribution is given by

Im
∞∑

N=0

[
GR

ε (pz, N)
∂GR

ε (pz, N + 1)
∂ε

− ∂GR
ε (pz, N)
∂ε

GR
ε (pz, N + 1)

]

=
2

(�ωc)2

∞∑
N=0

Im
[(

1 − ∂ΣA
ε

∂ε

)
GA

ε (pz, N) − εN

∂GA
ε (pz, N)
∂ε

]
, (11)

and we obtain the non-diagonal component of the conductivity as

σ⊥ =
e2

π2�

∫
dε

∫
dpz

2π�

∞∑
N=0

{
f(ε)Im

1 − ∂ΣA
ε /∂ε

ε − εN − p2
z/2m − ΣA

ε

(12)

−∂f(ε)
∂ε

Σ′′
ε

(2Σ′′
ε )2 + (�ωc)2

�
2ω2

c (ε − εN − p2
z/2m − Σ′

ε) − (2Σ′′
ε )

2εN

(ε − εN − p2
z/2m − Σ′

ε)2 + (Σ′′
ε )2

}
.

The self-energy function, according to Eq. (G.19), is determined from
the implicit equation

Σ′
ε + iΣ′′

ε =
w

2πl2H

∑
N

∫
dpz

2π�

1
ε − εN − p2

z/2m − Σ′
ε − iΣ′′

ε

. (13)
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Using Eq. (13), we rewrite Eq. (12) as

σ⊥ =
|e|cn
H

− e2

2π2�

∫
dε

(
−∂f(ε)

∂ε

)
(2Σ′′

ε )
3

(2Σ′′
ε )2 + (�ωc)2

×
∫

dpz

2π�

∞∑
N=0

ε − p2
z/2m − Σ′

ε

(ε − εN − p2
z/2m − Σ′

ε)2 + (Σ′′
ε )2

. (14)

Apart from the classical Hall conductivity |e|cn/H, the non-diagonal
component σ⊥ contains a dissipative term which differs from σd of Eq.
(9) only due to the presence of an extra factor −2Σ′′

ε /�ωc under the
integral over energy. In the transformations leading to Eq. (14), we
have expressed the electron density as

n =
2

πw

∫
dεΣ′′

ε f(ε). (15)

This equation is obtained from n =
∫

dερ(ε)f(ε) with the use of the
general expression for the density of states (see Eq. 14.30 and problem
3.10) written in the Landau level representation:

ρ(ε) =
2
π

1
2πl2H

∫
dpz

2π�

∞∑
N=0

ImGA
ε (pz, N), (16)

where GA
ε (pz, N) should be expressed through the self-energy function.

The spin splitting appearing due to the Pauli interaction, see Appendix
B, is neglected in the equations presented above. Nevertheless, this
splitting (Zeeman splitting) is directly taken into account by assum-
ing the spin dependence of the Landau level energy, εN → εNσ =
�ωc(N +1/2)−σµBgH/2, where g is the effective g-factor, µB is the Bohr
magneton, and σ = ±1 is the spin number. Owing to this dependence,
the Green’s functions and self-energy functions themselves become spin-
dependent, and the right-hand sides in Eqs. (9), (10), (14), (15), and
(16) should include the spin sum

∑
σ replacing the factor 2. There is no

sum over spin in Eq. (13) because the spin number is conserved in the
scattering processes.

Let us consider the case of degenerate electron gas by taking the spin
splitting into account. Integrating over pz in Eqs. (9), (10), and (14),
we obtain

σd =
e2ωcm

1/2

21/2π2�

∑
σ

Σ′′
σεF

(2Σ′′
σεF

)2 + (�ωc)2

×
∞∑

N=0

Re
εNσ + iΣ′′

σεF

(εF − εNσ − Σ′
σεF

− iΣ′′
σεF

)1/2 , (17)
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σ‖ =
e2ωcm

1/2

23/2π2�

∑
σ

1
Σ′′

σεF

∞∑
N=0

Re
εF − εNσ − Σ′

σεF
+ iΣ′′

σεF
/2

(εF − εNσ − Σ′
σεF

+ iΣ′′
σεF

)1/2 , (18)

σ⊥ =
|e|cn
H

− 21/2e2m1/2

π2�2

∑
σ

(Σ′′
σεF

)2

(2Σ′′
σεF

)2 + (�ωc)2

×
∞∑

N=0

Re
εNσ + iΣ′′

σεF

(εF − εNσ − Σ′
σεF

− iΣ′′
σεF

)1/2 . (19)

Using these results, let us find the conductivity of a 3D conductor in the
ultraquantum limit, when only the ground-state spin-split Landau level
is occupied. We put N = 0 in the expressions above and consider only
one spin state (σ = +1 if the g-factor is positive). Let us denote ΣσεF

at σ = +1 as ΣF and shift the reference point of energy according to
ε̃F = εF − �ω/2 + µBgH/2 − Σ′

F . Then we find

σd =
e2m1/2Σ′′

F

23/2π2�2
√

ε̃F

, σ‖ =
e2m1/2ωc

√
ε̃F

23/2π2�Σ′′
F

, σ⊥ =
|e|cn
H

(20)

in the leading order with respect to Σ′′
F . To complete the description,

one needs to calculate Σ′′
F . From Eq. (13) we obtain

Σ′′
F � w

2l2H

∫
dpz

2π�
δ(ε̃F − p2

z/2m) =
wm3/2ωc

23/2π�2
√

ε̃F

, (21)

since only the term with N = 0 and σ = +1 contributes to the imaginary
part of the self-energy function. The expressions (20) and (21) are valid if
ε̃F � Σ′′

F , which means that the broadening of the ground Landau level is
smaller than the kinetic energy of the electrons occupying this level. On
the other hand, at a fixed electron density n the energy ε̃F decreases with
increasing H while Σ′′

F increases. Therefore, the requirement of small
broadening is violated in strong enough magnetic fields. Expressing the
electron density in the ultraquantum limit as (problem 10.5)

n =
(2m)3/2ωc

√
ε̃F

(2π)2�2 =
�ωc

2
ρ3D(ε̃F ), (22)

one should restrict the magnetic field strength according to

ωc � �
2
(

(2n)3π7

wm6

)1/4

. (23)

This is the condition of validity of the expressions (20).
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Combining Eqs. (20), (21), and (22), we find

σd =
e2wm5ω3

c

16π7�8n2 . (24)

This equation can be also obtained from the Adams-Holstein formula in
the form (48.15) if we retain only one term in the sum, N = N ′ = 0.
Next, we have

σ‖ =
2π3

�
5e2n2

wm4ω2
c

. (25)

The difference between these equations, as concerns the dependence on
the magnetic field and scattering potential correlation function w =
nim |v(0)|2, is determined by the difference between the mechanisms of
transport and can be understood as follows. The scattering helps the
transport perpendicular to H and suppresses the transport along H.
The magnetic field produces the same effect, since it pushes the electrons
closer to each other (note that the density of states is proportional to
1/

√
ε̃F ) thereby increasing the scattering probability.

The condition (23) is not the only one restriction on the magnetic
field from the upper side. Another restriction comes from the limited
applicability of the Born approximation for the scattering by a single
impurity. Indeed, when the magnetic field increases, the kinetic energy
of electrons becomes smaller, an electron spends most of its time near
a single impurity, and the applicability of the Born approximation is
violated. To introduce the diagram technique describing multiple scat-
tering (beyond the Born approximation), we consider first the case of
zero magnetic field. In the procedure of averaging described in Sec. 14,
we neglected the terms nimδq1+q2+q3,0, nimδq1+q2+q3+q4,0, and so on;
see Eq. (14.14) and below. If we take into account all such terms, the
Born amplitudes, proportional to the squared Fourier transform |v(q)|2
of the single-impurity scattering potential, will be replaced by the exact
scattering amplitudes. Determining the exact scattering amplitudes for
an arbitrary scattering potential is a complex problem which, however,
is simplified for the case of short-range potential, when v(q) does not
depend on q.

Let us recall the expansion (14.10) and write it explicitly up to the
fourth-order terms with respect to the impurity potential:

Gε(p,p′) = δpp′gε(p) + gε(p)
{

V −1v[(p − p′)/�]
∑
α

e−i(p−p′)·Rα/�

+V −2
∑
α1α2

∑
q1q2

δq1+q2,(p−p′)/�v(q1)gε(p − �q1)v(q2)e−iq1·Rα1−iq2·Rα2
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+V −3
∑

α1α2α3

∑
q1q2q3

δq1+q2+q3,(p−p′)/�v(q1)gε(p − �q1)v(q2)

×gε(p − �q1 − �q2)v(q3)e−iq1·Rα1−iq2·Rα2−iq3·Rα3 (26)

+V −4
∑

α1−α4

∑
q1−q4

δq1+q2+q3+q4,(p−p′)/�v(q1)gε(p − �q1)

×v(q2)gε(p − �q1 − �q2)v(q3)gε[p − �(q1 + q2 + q3)]v(q4)

×e−iq1·Rα1−iq2·Rα2−iq3·Rα3−iq4·Rα4 + . . .

}
gε(p′).

To average this expression, one should calculate the integrals over the
impurity coordinates Rαi ; see Sec. 14. This procedure leads to the
Dyson equation (14.24), where the self-energy function is given by

Σε(p) =
nim

V

∑
q1

[
|v(q1)|2gε(p − �q1) +

1
V

∑
q2

v(q1)v(q2)v(−q1 − q2)

×gε(p−�q1)gε(p−�q1−�q2)+
1

V 2

∑
q2q3

v(q1)v(q2)v(q3)v(−q1−q2−q3)

×gε(p − �q1)gε(p − �q1 − �q2)gε[p − �(q1 + q2 + q3)] + . . .

]
+

n2
im

V 2

∑
q1q2

[
|v(q1)|2|v(q2)|2gε(p − �q1)gε(p)gε(p − �q2) (27)

+|v(q1)|2|v(q2)|2gε(p − �q1)gε(p − �q1 − �q2)gε(p − �q1)

+|v(q1)|2|v(q2)|2gε(p − �q1)gε(p − �q1 − �q2)gε(p − �q2) + . . .

]
+ . . . .

This expansion can be diagrammatically represented as

Σε(p) = � � � � �
� � �

�����
���

p−�q1 p−�q1 p−�q1−�q2
+ � � � � �

� � �
�����
���

�����
���

+ � � � � �
� � �
� � � � �

� � �
�����

���
�����

���
+ . . .

+ �����
���

�����
���

�����
���

�����
���

+ � � � � �
� � �

� � � � � � ������ �����
���

+ � � � � �
� � �

�����
���

� � � � �
� � �

�����
���

+ . . . , (28)

where each vertex connecting two or more impurity-potential lines brings
the factor nim . Some of the terms of this expansion are reducible, and
the other (the second, the third, and the last) are not. The second and
the third terms contain more than two impurity lines attached to a single
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vertex and correspond to the contribution beyond the Born approxima-
tion. In the following, we neglect the contributions from the diagrams
with crossed lines, like the last one. These diagrams describe the inter-
ference of the scattering by different impurities, and their contribution is
small due to the parameter �/τ ε̄, where ε̄ is the mean kinetic energy of
electrons. Applying the model of short-range potential v(q) � v(0) = v
(note that v is real and |v|2 = v2), we can calculate the sum of all re-
maining diagrams. By taking into account all reducible diagrams, we
replace the free-electron Green’s functions gε(p) by Gε(p). Then we
write the expansion

Σε(p) = nim
v2

V

∑
q1

Gε(p − �q1) (29)

×
[
1 +

v

V

∑
q2

Gε(p − �q1 − �q2)
(

1 +
v

V

∑
q3

. . .

)]
,

which is represented as an infinite embedded chain: the expression under
each sum is a product of a Green’s function by the factor 1+(v/V )

∑
. . .,

where an analogical expression stands under the sum, and so on. How-
ever, each sum appears to be momentum-independent, because one can
shift the variables of summation. For example,

∑
q1

Gε(p − �q1) =∑
p Gε(p). Therefore, Σε(p) is momentum-independent as well. Finally,

using the sum rule for geometric progressions, we find

Σε = nim
v2

V

[∑
p

Gε(p)
]{

1 +
v

V

∑
p

Gε(p) +
[

v

V

∑
p

Gε(p)
]2

+ . . .

}
= nimv2

[∫
dp

(2π�)3
Gε(p)

]/[
1 − v

∫
dp

(2π�)3
Gε(p)

]
. (30)

Although the above consideration is done for the Green’s functions
in the momentum representation in the absence of magnetic fields, it
is rather straightforward to generalize the result for the Landau level
representation, because this result depends only on the averaged Green’s
function integrated over the phase space. In the magnetic field, the
integrals over px and py are transformed to the sum over the Landau
level number N multiplied by the factor (2πl2H)−1 appearing due to the
orbital degeneracy of the Landau levels. Therefore, we obtain (spin
indices of Σ, G, and S are omitted)

Σ′
ε + iΣ′′

ε =
nimvSε

1 − Sε
, Sε =

v

2πl2H

∑
N

∫
dpz

2π�
GA

ε (pz, N). (31)

In the ultraquantum limit, SεF ≡ S � ivm3ω2
c /4π3

�
4n. According to

Eq. (31), the results (24) and (25) are valid at |S| � 1. In the case of



Quantum Magnetotransport 443

doped semiconductors, when n ∼ nim , the condition (23) is equivalent
to the requirement |S| � 1. In the case of metals, when n � nim , there
exists the region of fields where |S| � 1 while the condition (23) is still
valid. Taking into account that Σ′′

F = nimv|S|/(1+|S|2), we substitute it
into Eq. (20) and obtain a more general description of the ultraquantum
limit. In particular, at |S| � 1 one has

σd =
|e|cnim

πH
, σ‖ =

1
(2π)3

e4H2

c2nim
. (32)

Both components of the conductivity in these conditions do not depend
on the scattering potential v. Apart from the fundamental constants,
only the magnitude of the field and the impurity concentration enter
these equations.

50. Quasi-Classical Conductivity
The method of Green’s functions can be applied at relatively weak

magnetic fields, when ωc is comparable to or less than the scattering
rate. This corresponds to �ωc � ε, where ε is the mean electron energy
estimated by the Fermi energy and temperature for the cases of degener-
ate and non-degenerate electrons, respectively. Therefore, the sums over
N in Eqs. (49.17)−(49.19) and (49.9)−(49.14) can be roughly approxi-
mated by integrals, according to

∑
N

F (N) = (�ωc)−1 ∫ dεNF (εN/�ωc).
Neglecting the terms of the order of Σ′′

ε /ε, from Eq. (49.13) we find
Σ′′

ε � �/2τ(ε), where τ−1(ε) is the relaxation rate of electrons due to
scattering by a short-range potential in the absence of the magnetic field.
This rate is determined according to Eq. (8.21) as (πw/�)ρD(ε). There-
fore, τ−1(ε) = wm3/2

√
2ε/π�

4 for 3D electrons and τ−1(ε) = wm/�
3 for

2D electrons. The time τ(εF ) for the degenerate electron gas coincides
with the transport time τtr introduced in Chapter 2. Evaluating the
sums over N in Eqs. (49.17)−(49.19) as explained above and under the
condition Σ′′

ε � εF , one can find (problem 10.6) the classical expression
for the conductivity tensor in the magnetic field; see Eq. (11.19).

Apart from the classical contributions we just discussed, even at small
H there exist small oscillating contributions both to the self-energy and
to the conductivity. These contributions can be calculated if the sums
over N are evaluated in a more careful way. We still assume �ωc � ε.
Since the main contribution to the sum over N comes from the Landau
levels with N � 1, we extend the sum to −∞ and employ the identity

∞∑
N=−∞

F (N) =
1
2i

∫
C

dz cot(πz)F (z), (1)
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where the contour C passes below the poles of cot(πz) (they are placed at
real integer z = N) and above all peculiar points zi of the function F (z).
To prove Eq. (1), one should shift the contour to the upper half-plane
and note that the residue of cot(πz) in each pole, [res cot(πz)]z=N , is
equal to 1/π. On the other hand, if the peculiar points zi are poles, one
can transform the integral in Eq. (1) into the sum over [resF (z)]z=zi by
shifting the contour down to −i∞, with the result

∫
C

dz cot(πz)F (z) =
−2πi

∑
i[resF (z)]z=zi cot(πzi). Considering such sums, it is convenient

to use the Fourier expansion of the function cot(πz):

cot(πz) = i + 2i

∞∑
k=1

e−2ikπz , Im z < 0. (2)

To consider the region Im z > 0, one may use the expression which is
complex conjugate to Eq. (2).

Let us apply this method of calculation in order to evaluate Σε ≡ ΣA
ε

described by Eq. (49.13). The sum over N is transformed to a contour
integral according to Eq. (1). Since the expression under the integral
has a single simple pole at z = [ε − p2

z/2m − Σ′
ε − iΣ′′

ε ]/�ωc − 1/2, we
obtain

Σ′
ε + iΣ′′

ε =
wm

2�2

∫
dpz

2π�
cot
[

π

�ωc
(ε − p2

z/2m − Σ′
ε − iΣ′′

ε ) − π

2

]
(3)

= i
wm

2�2

∫
dpz

2π�

{
1 + 2

∞∑
k=1

(−1)k exp
[
−i

2kπ

�ωc
(ε − p2

z/2m − Σ′
ε − iΣ′′

ε )
]}

.

The expression {. . .} contains both non-oscillating and oscillating parts.
The integral over pz on the right-hand side of Eq. (3) must be taken
over the interval [−pε, pε], where pε =

√
2mε. This is because the

sum in Eq. (49.13) rapidly decreases when p2
z/2m − ε exceeds either

Σ′′
ε or �ωc. This property is not reflected explicitly in Eq. (3), since

the extension of the sum over N to −∞ is not valid when p2
z/2m is

close to ε. Thus, the non-oscillating part of Σ′
ε + iΣ′′

ε is estimated as
iwm3/2

√
2ε/2π�

3 = i�/2τ(ε). On the other hand, the oscillating part
is not affected by the presence of the limits ±pε because it contains a
factor which rapidly oscillates with pz , and the integral over pz con-
verges before |pz | reaches pε. The integral over pz in the oscillating part
brings the factor

√
m�ωc/2k multiplied by an oscillating function of en-

ergy. Thus, the oscillating terms contain a small factor of the order of
(�ωc/ε)1/2 with respect to the non-oscillating contribution. For this rea-
son, we can substitute the main (non-oscillating) part of the self-energy,
Σ(0)

ε = i�/2τ(ε), into these terms. In this way we obtain an approximate
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solution of the implicit equation (3). It contains a sum of oscillating
terms (harmonics) characterized by their numbers k:

Σ′
ε =

�

2τ(ε)

∞∑
k=1

√
�ωc

2kε
(−1)kDk(ε) sin

(
2πkε

�ωc
− π

4

)
, (4)

Σ′′
ε =

�

2τ(ε)

[
1 +

∞∑
k=1

√
�ωc

2kε
(−1)kDk(ε) cos

(
2πkε

�ωc
− π

4

)]
. (5)

The coefficients

Dk(ε) = exp
[
− kπ

ωcτ(ε)

]
, (6)

called the Dingle factors, describe the exponential decrease of the con-
tributions of higher harmonics (with large k). In weak magnetic fields,
when ωcτ(ε) < 1, these factors are exponentially small and only the first
harmonic (k = 1) is essential. Since the imaginary part of the self-energy
is proportional to the inverse lifetime of an electron, Eq. (5) describes
the oscillations of the scattering rate, as a function of energy, in the
magnetic field.

Apart from the oscillations of the scattering rate, there exist weak
oscillations of the chemical potential, since the electron density n is fixed
(for example, by doping level) and stays independent of the magnetic
field. As a consequence, different macroscopic equilibrium quantities
characterizing the system also oscillate (we mention, for example, de
Haas - van Alphen oscillations of the magnetization). Below we consider
the case of strongly degenerate electron gas. One can show that the
relative amplitudes of the Fermi energy oscillations contain an additional
smallness with respect to the factor (�ωc/εF )1/2D1(εF ) characterizing
the first harmonic of the oscillations of the scattering rate at the Fermi
level. To show this, we express the electron density n in the presence
of a weak magnetic field through the Fermi energy. Substituting Σ′′

ε

from Eq. (5) to Eq. (49.15), we calculate the integral over energy,
neglecting, for simplicity, the energy dependence of the Dingle factors:
Dk(ε) � Dk(εF ) ≡ Dk . At zero temperature,

n =
(2mεF )3/2

3π2�3

{
1 +

3
2π

∞∑
k=1

(
�ωc

2kεF

)3/2

×(−1)kDk

[
sin
(

2πkεF

�ωc
− π

4

)
+

1√
2

]}
. (7)

The magnetic-field-induced modification of the electron density as a
function of the Fermi energy is described by the second term in this
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expression. The dependence of εF on the magnetic field can be found by
iterations: we substitute εF = ε(0)

F + δεF to the first term and εF = ε(0)
F

to the second, oscillating term, and determine δεF . It is easy to see that
the relative correction, δεF /ε(0)

F , is small as (�ωc/εF )3/2D1. Therefore,
one may neglect the modification of the Fermi energy.

Now we calculate the components of the conductivity tensor given
by the expressions (49.9), (49.10), and (49.14). Since the functions un-
der the sums in all these expressions have two simple poles at εN =
ε − p2

z/2m − Σ′
ε ∓ Σ′′

ε , the sum over N and the integral over pz are cal-
culated in a similar way as above. Moreover, neglecting the oscillating
contributions whose amplitude is of the order of �ωc/ε (they appear af-
ter calculating the integrals containing products of p2

z by the oscillating
contribution of Σε), one can express the conductivity through Σ′′

ε :

σd = σ0

∫
dε

(
−∂f(ε)

∂ε

)
2Σ′′

ε [3Σ′′
ε − �/2τ(εF )]

(�ωc)2 + (2Σ′′
ε )2

, (8)

σ‖ = σ0

∫
dε

(
−∂f(ε)

∂ε

)
�

2τΣ′′
ε

, (9)

σ⊥ =
|e|cn
H

− σ0

∫
dε

(
−∂f(ε)

∂ε

)
(2Σ′′

ε )
2

�ωc

3Σ′′
ε − �/2τ(εF )

(�ωc)2 + (2Σ′′
ε )2

, (10)

where σ0 = e2nτ(εF )/m is the static conductivity at zero magnetic field.
To obtain these expressions, we have replaced ε by εF in the slowly
varying functions of energy. Nevertheless, the integration over energy
in Eqs. (8)−(10) is not trivial because Σ′′

ε contains a rapidly oscillat-
ing function of energy, see Eq. (5), whose period can be smaller than
the temperature T . Since we consider only the first-order contributions
with respect to the small parameter (�ωc/kεF )1/2 Dk(εF ), the oscillating
parts of the integrands in Eqs. (8)−(10) are proportional to the oscil-
lating part of Σ′′

ε . Thus, the averaging over energy in Eqs. (8)−(10)
is reduced to the averaging of the function cos (2πkε/�ωc − π/4). With
the aid of the identities (−∂f(ε)/∂ε) = {4T cosh2[(ε − εF )/2T ]}−1 and∫∞
−∞ dxe±iax/ cosh2(x/b) = πab2/ sinh(πab/2), we obtain∫

dε

(
−∂f(ε)

∂ε

)
cos

(
2πkε

�ωc
− π

4

)
= Bk cos

(
2πkεF

�ωc
− π

4

)
, (11)

where

Bk =
(2kπ2T/�ωc)

sinh(2kπ2T/�ωc)
. (12)

Equation (11) gives us the rule of integration over energy in Eqs.
(8)−(10): the oscillating part of the expressions under the integrals
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should be taken at ε = εF and multiplied by the temperature damping
factor Bk . This factor approaches unity at small temperatures, while at
T � �ωc/2π2 it is exponentially small. Using Eqs. (5) and (11), we
transform Eqs. (8)−(10) to

σd = σ0
1

1 + (ωcτ)2

[
1 +

(
5
2

− 2
1 + (ωcτ)2

)
Fosc

]
, (13)

σ‖ = σ0 [1 − Fosc] , (14)

and

σ⊥ = σ0
ωcτ

1 + (ωcτ)2

[
1 − 1

(ωcτ)2

(
7
2

− 2
1 + (ωcτ)2

)
Fosc

]
, (15)

where

Fosc =
∞∑

k=1

√
�ωc

2kεF

(−1)kDkBk cos
(

2πkεF

�ωc
− π

4

)
, (16)

τ = τ(εF ), and Dk ≡ Dk(εF ). Therefore, at �ω � εF all the compo-
nents of the conductivity tensor show weak oscillations as functions of
the magnetic field. They are known as Shubnikov - de Haas oscillations.
The oscillations are periodic in H−1 (we remind that the deviations of
the Fermi energy from its zero-field value εF = (3π2

�
3n)2/3/2m can be

neglected). Since the period is determined entirely by εF ∝ n2/3/m, the
measurements of these oscillations can serve as a source for determining
the effective mass provided the electron density n is known from an in-
dependent experiment, for example, from the Hall measurements. The
oscillations are suppressed due to the scattering-induced broadening of
the Landau levels (described by the Dingle factors Dk) and due to the
thermal smearing of the Fermi distribution of electrons (described by the
temperature damping factors Bk). The presence of a large numerical fac-
tor 2π2 in the argument of hyperbolic sine in Eq. (12) indicates that one
needs low enough temperatures in order to observe the oscillations of the
conductivity: even at T ∼ �ωc the oscillations are exponentially weak.
In semimetals and doped semiconductors, the oscillations are typically
observed in the magnetic fields of the order of one Tesla and at liquid
helium temperatures. The oscillations of the diagonal component of the
resistivity ρd = σd/(σ2

d + σ2
⊥) are shown in Fig. 10.1. The oscillations

of σ⊥ and of the Hall resistivity ρ⊥ = σ⊥/(σ2
d + σ2

⊥) have much weaker
amplitudes and should be neglected.

The spin splitting of electron states has been neglected in the calcu-
lations above. It it not difficult to take it into account if the amplitude
of the oscillations is small. We have two groups of electrons whose
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Figure 10.1. Magnetic-field dependence of the diagonal resistivity ρd = σd/(σ2
d +σ2

⊥)
calculated according to Eqs. (50.13) and (50.15) at εF τ/� = 20 for T = 0 and
T = 0.5 �/τ .

energies are shifted with respect to each other by the Zeeman energy
�ΩH = gµBH; see the discussion after Eq. (49.16). Therefore, we obtain
two sets of oscillations shifted by the phase 2πkΩH/ωc with respect to
each other. This means that the k-th harmonic of the function Fosc

acquires an additional factor cos(2πkΩH/ωc). Since both ΩH and ωc are
linear in H, this factor does not modify the oscillation picture (it just re-
duces the oscillating term). However, in stronger magnetic fields, when
the oscillating part of the conductivity is no longer small with respect
to the non-oscillaring part, the oscillation picture is modified: the peaks
of the conductivity become split due to spin splitting.

The Shubnikov - de Haas oscillations are also observed in the 2D
systems, when H is perpendicular to the 2D plane. Equations (49.9),
(49.13), and (49.14) can be formally applied to this case if we put pz = 0
and remove the integrals

∫
dpz/(2π�) from the expressions. Calculating

the sums over N with the use of Eq. (1), we find that the self-energy
function is determined by the implicit complex equation

Σ′
ε + iΣ′′

ε =
�

2τ
cot
[

π

�ωc
(ε − �ωc/2 − Σ′

ε − iΣ′′
ε )
]

, (17)



Quantum Magnetotransport 449

where τ−1 = wm/�
3 is the 2D scattering rate for the case of short-range

scattering potentials. At weak enough magnetic fields, when 2πΣ′′
ε �

�ωc, Eq. (17) can be solved analytically, with the result

Σ′′
ε � �

2τ

[
1 − 2e−π/ωcτ cos

(
2πε

�ωc

)]
. (18)

The oscillating contribution is small only when the Dingle factor e−π/ωcτ

is small (for this reason, only the principal harmonic is essential). If the
Dingle factor is comparable to 1, Eq. (18) is not valid and one should
use the more general Eq. (17). Similar to the 3D case, the oscillations
of the Fermi energy at a fixed electron density appear to be small in
comparison to the oscillations of Σ′′

ε (problem 10.7). The conductivity
is calculated in a similar way as in the 3D case. Below we present the
result for σd:

σd =
σ0

1 + (ωcτ)2

[
1 − 4

(ωcτ)2

1 + (ωcτ)2
e−π/ωcτ B1 cos

(
2πεF

�ωc

)]
. (19)

With the increase of the field, the Dingle factor becomes comparable to
1, which means that the Landau levels become well-defined. Equations
(18) and (19) are not valid in this region. They show only a tendency
for the oscillating part of σ to increase and be comparable with the non-
oscillating part provided that the temperature is low enough. Moreover,
the theory given in this and previous sections is not valid for 2D electrons
in this region of fields. For a correct description, it is necessary to take
into account all higher-order corrections to the self-energy and to the
vertex part in the Bethe-Salpeter equation. Though this cannot be done
analytically, a description of the 2D electrons in strong magnetic fields
is feasible for the case of smooth potentials; see the next section.

Let us consider the magnetophonon oscillations in the quasi-classical
region of magnetic fields. We assume that the temperature is low enough
and the broadening of the Landau levels is dominated by elastic scat-
tering. The scattering rate of electrons by LO phonons is assumed to
be smaller than the cyclotron frequency. These approximations allow us
to consider the electron-phonon interaction by perturbations, i.e., to use
Eq. (48.17) with the trace expressed according to Eq. (48.19). How-
ever, since we need to take into account the elastic-scattering-induced
broadening, the free-electron Hamiltonian Ĥe in Eq. (48.19) should be
replaced by the Hamiltonian of electrons interacting with a random static
potential. In summary, the LO-phonon-assisted part of the conductivity
is given by the following expression:
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σ(LO)
xx =

e2

�V m2ω2
c

lim
ω→0

1
ω

Re
∑
q

q2
y |C(LO)

q |2

×
∑

δδ′δ1δ′
1

〈δ|eiq·r|δ′〉〈δ′
1|e−iq·r|δ1〉

∫ 0

−∞
dτeλτ−iωτ (20)

×
{

〈〈Spη̂eqe
−iĤτ /�â+

δ âδ′eiĤτ /�â+
δ′
1
âδ1〉〉[(NLO + 1)eiωLOτ + NLOe−iωLOτ ]

−〈〈Spη̂eq â
+
δ′
1
âδ1e

−iĤτ /�â+
δ âδ′eiĤτ /�〉〉[(NLO + 1)e−iωLOτ + NLOeiωLOτ ]

}
,

where Ĥ is the Hamiltonian of electrons in the random static potential.
The double angular brackets denote the averaging over this potential. If
|δ〉 are the exact eigenstates of the Hamiltonian Ĥ, we find

Spη̂eqe
−iĤτ /�â+

δ âδ′eiĤτ /�â+
δ′
1
âδ1

= δδδ1δδ′δ′
1
ei(εδ′−εδ)τ /�2f(εδ)[1 − f(εδ′)], (21)

and the second trace standing in Eq. (20) is expressed in a similar way.
The product of the matrix elements of e±iq·r in Eq. (20) is written
as |〈δ|eiq·r|δ′〉|2 =

∫
dr
∫

dr′eiq·(r′−r)ψ(δ)
r ψ(δ)∗

r′ ψ(δ′)
r′ ψ(δ′)∗

r , where ψ(δ)
r is the

wave function of the state |δ〉. Integrating over τ in Eq. (20), we obtain,
in the limit ω = 0, the following expression:

σ(LO)
xx =

2π�e2NLO

V Tm2ω2
c

∑
q

q2
y |C(LO)

q |2
∫

dr
∫

dr′(e−iq·(r−r′) + c.c.)

×
∫

dεf(ε)[1 − f(ε + �ωLO)]〈〈Aε(r, r′)Aε+�ωLO
(r′, r)〉〉 , (22)

where Aε(r, r′) = [GA
ε (r, r′)−GR

ε (r, r′)]/2πi is the spectral density func-
tion (13.26) in the coordinate representation. The expression of the
Green’s functions through ψ(δ)

r and εδ is given in problem 3.10. Below
we consider the correlation functions of the Green’s functions in the Lan-
dau level representation and approximate them, like in the beginning of
the previous section, by the products of the averaged Green’s functions,
assuming the case of short-range scattering potential. We take into ac-
count Eqs. (G.8) and (G.9) and integrate over coordinates in Eq. (22)
with the aid of Eq. (48.14). Then we integrate over py , p′

y , and qz . As
a result, Eq. (22) is transformed to

σ(LO)
d =

e2NLO

16π3Tmωc

∑
NN′

∫
dpz

2π�

∫
dp′

z

2π�

∫ ∞

0
dq2

⊥ q2
⊥V (23)
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×|C(LO)√
q2
⊥+(pz−p′

z)2/�2
|2ΦNN′(q2

⊥l2H/2)
∫

dεf(ε)[1 − f(ε + �ωLO)]

×[GA
ε (pz, N) − GR

ε (pz, N)][GR
ε+�ωLO

(p′
z , N

′) − GA
ε+�ωLO

(p′
z , N

′)].

This equation generalizes the result described by Eqs. (48.22)−(48.24)
since it takes into account the influence of elastic scattering on the elec-
tron spectrum. For free electrons, the product [GA

ε (pz, N) − GR
ε (pz, N)]

×[GR
ε+�ωLO

(p′
z , N

′) − GA
ε+�ωLO

(p′
z , N ′)] is equal to (2π)2δ(ε − εNpz)δ(ε +

�ωLO − εN′p′
z
) and, integrating over pz and p′

z , we recover Eqs. (48.22)−
(48.24). Though the problem described by Eq. (23) is more complicated,
a simple analytical consideration is possible if we neglect the dependence
of the factor

∫∞
0 dq2

⊥ q2
⊥|C(LO)√

q2
⊥+(pz−p′

z)2/�2
|2ΦNN′(q2

⊥l2H/2) on the Landau

level numbers and on pz −p′
z . This neglect is justified when (pz −p′

z)
2/�

2

is much smaller than q2
⊥ contributing to the integral, which corresponds

to near-resonance conditions; see Sec. 48. Then we assume that T � �ωc

and calculate the sums over N and N ′ in the quasi-classical approxima-
tion by using Eqs. (1) and (2). The sum over N gives us

1
2πi

∑
N

[GA
ε (pz, N) − GR

ε (pz, N)] =
1
π

∑
N

Σ′′
ε

(ε − εNpz − Σ′
ε)2 + (Σ′′

ε )2

� 1
�ωc

[
1 + 2

∞∑
k=1

(−1)kDk(ε) cos
(

2πkε

�ωc
− πkp2

z

m�ωc

)]
, (24)

where only the main (non-oscillating) part of the self-energy is substi-
tuted in the oscillating contribution; see Eqs. (4)−(6). The expression
(24) should be integrated over pz in a similar way as in the transition
from Eq. (3) to Eqs. (4) and (5). Calculating also the sum over N ′ and
the integral over p′

z of the factor [GA
ε+�ωLO

(p′
z , N

′) − GR
ε+�ωLO

(p′
z , N

′)],
we obtain

1
(2πi)2

∑
N

∫
dpz [GA

ε (pz, N) − GR
ε (pz, N)]

×
∑
N′

∫
dp′

z [G
A
ε+�ωLO

(p′
z , N

′) − GR
ε+�ωLO

(p′
z , N

′)]

� 4
(�ωc)2

[√
2mε +

∞∑
k=1

(−1)k
√

�ωcm/kDk(ε) cos
(

2πkε

�ωc
− π

4

)]
×
[√

2m(ε + �ωLO) +
∞∑

k′=1

(−1)k′√
�ωcm/k′

×Dk′(ε + �ωLO) cos
(

2πk′ε
�ωc

+
2πk′ωLO

ωc
− π

4

)]
. (25)
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The expression on the right-hand side of Eq. (25) contains the part
which rapidly oscillates with energy due to the phase factors 2πkε/�ωc

as well as the part which does not oscillate with energy. Under the
assumed condition T � �ωc, the oscillating part changes with energy
much faster than the distribution function f(ε) and, therefore, gives a
small contribution to the integral over energy. For this reason, we should
retain only the part which does not oscillate with energy. It is equal to

8m
√

ε(ε + �ωLO)
(�ωc)2

+
2m

�ωc

∞∑
k=1

k−1Dk(ε)Dk(ε + �ωLO) cos
(

2πkωLO

ωc

)
.

(26)
The principal contribution (k = 1) in the second term of this expression
describes the magnetophonon oscillations. Keeping only this contribu-
tion, one may approximate the oscillating part δσ(LO)

d of the conductivity
by the following expression:

δσ(LO)
d ∝ exp

(
−2πΓ

�ωc

)
cos

(
2π

ωLO

ωc

)
, (27)

where the energy dependence of the Dingle factors is neglected. The
broadening energy Γ introduced in Eq. (27) is roughly estimated by the
averaged electron-impurity scattering rate, Γ � �/τ̄ . Equation (27) is
consistent with experimental observations. The magnetophonon oscilla-
tions described by Eq. (27) are also observed in the 2D electron systems
in the quasi-classical region of magnetic fields.

51. Quantum Hall Effect
With the increase of the magnetic field applied perpendicular to the

plane of a 2D electron system, the amplitudes of Shubnikov - de Haas
oscillations of σxx increase until the oscillation picture is transformed
to a sequence of sharp peaks. In between the peaks, the diagonal part
of the conductivity vanishes, σxx = 0. Moreover, when σxx = 0, the
Hall resistivity ρ⊥ = σyx/(σ2

xx +σ2
yx) is constant and equal to 2π�/Nfe2,

where Nf is an integer. In other words, the Hall resistivity is quantized
in units of 2π�/e2. Its dependence on the magnetic field H (or on the 2D
electron density n) looks like a staircase which replaces the well-known
dependence ρ⊥ = H/|e|cn following from Eq. (11.19). This experimental
fact is called the quantum Hall effect (QHE). Since in the region of
plateaus (where ρ⊥ is constant) the diagonal part of the conductivity is
zero, one may also write

σyx ≡ σ⊥ =
e2

2π�
Nf . (1)
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The integer Nf is identified with the number of filled Landau levels.
Indeed, if Nf Landau levels are completely filled, the electron density
n is equal to Nf/2πl2H . Substituting Nf = 2πl2Hn into Eq. (1), we find
σ⊥ = |e|cn/H, i.e., in these conditions σ⊥ coincides with its classical
value.

Can the quantization of the Hall conductivity be explained in the
absence of any external (or random scattering) potential? To answer
this question, let us consider a system of free 2D electrons and apply
the Kubo formula in the form (48.4) at ω = 0 in order to find the
Hall conductivity. Substituting the Landau eigenstates |Npy〉 of the 2D
electrons with the wave functions L

−1/2
y eipyy/�ϕ

(Npy)
x in place of exact

eigenstates |δ〉, we use the matrix elements (48.5) of the velocity operator
and the expression for electron spectrum εNσ = εN − σ�ΩH/2, where
�ΩH = gµBH. The expression for σ⊥ takes the form

σ⊥ = −�e2ω2
c

2π

∑
σ=±1

∑
NN′

f(εNσ)
NδN′,N−1 − N ′δN′,N+1

(εN − εN′)2
(2)

=
e2

2π�

∑
σ=±1

∞∑
N=0

(N + 1)[f(εNσ) − f(εN+1,σ)] =
e2

2π�

∑
σ=±1

∞∑
N=0

f(εNσ).

If there are Nf completely filled levels (say, N+
f with spin σ = 1 and N−

f

with spin σ = −1), one has f(εN,±1) = 1 for N < N±
f , and f(εN,±1) = 0

for N ≥ N±
f . Since N+

f + N−
f = Nf , the Hall conductivity in this

case is given by Eq. (1). This result seems to be consistent with the
picture of the quantum Hall effect but does not really lead to plateaus
as the magnetic field changes. To clarify this statement, let us analyze
the dependence of the Fermi level on the magnetic field. The density
of states for free 2D electrons in the magnetic field (see Sec. 16) is
represented as a set of δ-shaped peaks corresponding to discrete Landau
levels:

ρ2D(E) =
1

2πl2H

∑
σ=±1

∞∑
N=0

δ(E − εN + σ�ΩH/2). (3)

Each Landau level is multiply degenerate and can accumulate the elec-
tron density up to nf = 1/2πl2H for each spin state. In a free-electron
system, the Fermi level at T = 0 cannot stay in the gap between the
Landau levels because there are no states in the gap. If the electron
density is not equal to an integer number of nf , the highest occupied
Landau level is not completely filled. It can be characterized by the
filling factor ν introduced according to

n = nf (Nf + ν), ν ∈ [0, 1]. (4)
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If the magnetic field or electron density are changed, the Fermi level at
T = 0 remains pinned to a Landau level as long as the filling factor
lies in the region [0, 1]. Then, the Fermi level jumps to another Landau
level but cannot stay in the gap. In conclusion, the conditions when one
has completely filled levels (ν = 0 or ν = 1) are realized only for fixed
values of the magnetic field, when, indeed, |e|cn/H is equal to an integer
number of e2/2π�. From the formal point of view, according to Eq. (3),
the total electron density is given by

n =
∫

dEρ2D(E)f(E) =
1

2πl2H

∑
σ=±1

∞∑
N=0

f(εNσ). (5)

Combining Eq. (5) with Eq. (2), we find σ⊥ = |e|cn/H. Therefore, in
an infinite free-electron system, i.e., in the absence of any external po-
tentials or boundaries, there is no quantization of the Hall conductivity.

One may also emphasize the role of the external potentials in the
following way. Let us substitute the operator identities (48.6) into the
Kubo formula (48.4) for σyx at ω = 0. We remind that in Sec. 48 we
have carried out a similar procedure for σxx. We obtain

σ⊥ = i
e2

L2�ω2
c

∑
δδ′

〈
δ|v̂x|δ′〉 〈δ′|v̂y |δ

〉
[f(εδ) − f(εδ′)]

+i
e2l4H
L2�

∑
δδ′

〈
δ

∣∣∣∣∂U

∂x

∣∣∣∣ δ′
〉〈

δ′
∣∣∣∣∂U

∂y

∣∣∣∣ δ〉 f(εδ) − f(εδ′)
(εδ − εδ′)2

−e2l4Hm

L2�2

∑
δδ′

[〈
δ|v̂x|δ′〉〈δ′

∣∣∣∣∂U

∂y

∣∣∣∣ δ〉 (6)

−
〈

δ

∣∣∣∣∂U

∂x

∣∣∣∣ δ′
〉〈

δ′|v̂y |δ
〉] f(εδ) − f(εδ′)

εδ − εδ′
.

The last (third) term in this expression is equal to zero (problem 10.8).
The first term is proportional to the commutator [v̂x, v̂y ] averaged with
the equilibrium distribution. Since this commutator is constant and
equal to −i�ωc/m, the first term of Eq. (6) is equal to |e|cn/H. There-
fore, the Hall conductivity can be presented as σ⊥ = |e|cn/H + δσ⊥,
where δσ⊥ is the second term on the right-hand side of Eq. (6). This
term is proportional to the square of potential gradients. Thus, the very
fact of the Hall quantization is caused by the existence of these gradients.
From this consideration one may conclude that δσ⊥ should depend on the
scattering potential, at least on its averaged characteristics. Neverthe-
less, the conductivity (1) is determined only by the fundamental physical
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constants. In this connection, we notice that the quantum Hall effect
is usually observed in clean samples, where the potentials are mostly
macroscopic in the sense that they modify the electron dynamics but
cannot be treated as scattering potentials. Below we prove the existence
of the quantum Hall effect in the presence of a classically smooth po-
tential, when the variations of the potential energy U(r) with in-plane
coordinate r are small on the scale of the magnetic length.

We first derive a convenient form for the kinetic equation describing
motion of electrons in the smooth potential. The one-electron density
matrix n̂t satisfies Eq. (4.32). In the presence of a magnetic field, we
write this equation by using the Landau level representation:

∂nσt(Np, N ′p′)
∂t

+
i

�
(εN − εN′)nσt(Np, N ′p′) (7)

+
i

�

∑
N1p1

[
UNN1(p, p1)nσt(N1p1, N

′p′) − nσt(Np, N1p1)UN1N′(p1, p
′)
]

= 0,

where p denotes the y-component of electron momentum (the index y
is omitted for brevity here and below in this section), nσt(Np, N ′p′) =
〈Np|n̂t|N ′p′〉, and UNN1(p, p1) = 〈Np|U(r)|N1p1〉. The spin index σ is
not important here since the interaction we consider does not change
the spin numbers provided the spin-orbit interaction is weak and can
be neglected. Equation (7) is exact. However, for a smooth potential
energy U(r), one may neglect the mixing between different Landau levels
in strong magnetic fields and consider only the diagonal contributions of
UNN′(p, p′) and nσt(Np, N ′p′). In this approximation, nσt(Np, N ′p′) �
δNN′ρNσt(p, p′), where ρNσt(p, p′) satisfies the equation

∂ρNσt(p, p′)
∂t

+
i

�

∑
p1

[
UNN(p, p1)ρNσt(p1, p

′)

−ρNσt(p, p1)UNN(p1, p
′)
]

= 0. (8)

Since N and σ are conserved, the evolution of this density matrix is
entirely described by the momentum variables. It is possible to intro-
duce the Wigner distribution function as ρNσt(y, p) =

∑
k eikyρNσt(p +

�k/2, p − �k/2). The integral
∫

dpρNσt(y, p)/2π� is the local number of
electrons in the subband Nσ per unit length along the OY axis. The
same result should be obtained if we integrate the local electron density
in this subband over x. Taking into account that the Wigner momentum
p is related to the x-coordinate of the oscillator center of the electron
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wave function, we introduce the distribution function having the prop-
erties of the local electron density in the subband Nσ as

ρNσt(x, y) =
∫

dp

2π�
δ(x + l2Hp/�)

∑
k

eikyρNσt

(
p +

�k

2
, p − �k

2

)
. (9)

If we consider x and y as classical coordinates of electrons in the plane,
ρNσt(x, y) ≡ ρNσt(r) can be treated as a quasi-classical distribution func-
tion of electrons in the coordinate representation. Below we will see that
this function, indeed, satisfies a quasi-classical kinetic equation.

Transforming Eq. (8) according to Eq. (9), we obtain

∂ρNσt(x, y)
∂t

=
2i

π�l2H

∫
dx′

∫
dy′ρNσt(x′, y′) (10)

×
∑

p

[
UNN

(
−2�x′

l2H
− p, −2�x

l2H
− p

)
e2ip(y−y′)/�+2i(xy−x′y′)/l2H − c.c.

]
.

The matrix elements of the potential energy standing in this equation
are expressed according to their definition given above:

UNN

(
−2�x′

l2H
− p, −2�x

l2H
− p

)
=

1
Ly

√
πlH2NN !

∫
dx′′

∫
dy′′U(x′′, y′′)

×e2iy′′(x′−x)/l2H e−[(x′′−2x)/lH−plH/�]2/2−[(x′′−2x′)/lH−plH/�]2/2 (11)

×HN

[
x′′ − 2x

lH
− plH

�

]
HN

[
x′′ − 2x′

lH
− plH

�

]
.

Substituting this expression into Eq. (10), we calculate the sum over p by
using the following identity:

∫∞
−∞ due−u2−a2+2ibuHN(u + a)HN(u − a) =

√
π2NN !e−a2−b2L0

N [2(a2 + b2)]. As a result, Eq. (10) is written in the
form

∂ρNσt(r)
∂t

= − 2
π2�l4H

∫
dr1

∫
dr2ρNσt(r + r1)U(r + r2)

×e−r2
1/l2H L0

N

(
2r2

1/l2H
)
sin(2nz · [r1 × r2]/l2H), (12)

where nz is the unit vector in the direction of the magnetic field, r =
(x, y), and the differential 2D coordinates are introduced as r1 = (x′ −
x, y′ − y) and r2 = (x′′ − x, y′′ − y).

The function standing at ρNσt(r + r1)U(r + r2) under the integrals
changes on the characteristic lengths r1, r2 ∼ lH . If the variations of the
potential energy and distribution function on the scale of the magnetic
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length lH are weak, one may expand U(r+r2) and ρNσt(r+r1) in power
series of r2 and r1. The contributions containing zero-order terms of such
expansion (either U(r) or ρNσt(r)) vanish, and the first nonvanishing
contribution on the right-hand side of Eq. (12) is

− 2
π2�l4H

∫
dr1

∫
dr2 (∇rρNσt(r) · r1) (∇rU(r) · r2)

×e−r2
1/l2H L0

N

(
2r2

1/l2H
)
sin
(

2nz · [r1 × r2]
l2H

)
. (13)

Let us first calculate the integral over r2 in this expression:∫
dr2 (∇rU(r) · r2) sin

(
2nz · [r1 × r2]

l2H

)
=

l2H
2

(∇rU(r) · [∇r1 × nz ])

×
∫

dr2 cos
(

2nz · [r1 × r2]
l2H

)
=

π2l6H
2

(∇rU(r) · [∇r1 × nz ]) δ(r1). (14)

The remaining integral over r1 is calculated by parts, using the properties
of δ(r1). One should also take into account that ∇r1e

−r2
1/l2H L0

N(2r2
1/l2H)

vanishes at r1 = 0. As a result, we obtain

∂ρNσt(r)
∂t

+ v⊥ · ∂ρNσt(r)
∂r

= 0, v⊥ =
1

mωc
[∇rU(r) × nz ]. (15)

This equation has a dynamical interpretation (compare to Eq. (9.36))
because it can be written as ∂ρNσt(R)/∂t + (dR/dt) · ∂ρNσt(R)/∂R =
dρNσt(R)/dt = 0, where R is the coordinate of the oscillator center
satisfying the classical equation of motion dR/dt = (1/mωc) [∇RU(R)×
nz ]. This equation is consistent with the result of problem 1.13, where
the classical drift velocity dR/dt has been calculated as a function of
the external field E = |e|−1∇RU(R). Equation (15) can be obtained in
a simpler way by employing the property of smoothness of U(r) directly
in Eq. (8). As a result, the right-hand side of Eq. (10) is approximately
written through the Poisson brackets; see Eqs. (C.15) and (C.16).

The quasi-classical kinetic equation (15) describes the particles whose
group velocities v⊥ are determined entirely by the magnetic field and
potential. It reflects the dynamical properties of 2D electrons in the
magnetic field. If, apart from the smooth potential energy U(r), there
are additional scattering potentials (generated, for example, by phonons
or impurities), their contribution to the quantum kinetic equation should
give collision integrals on the right-hand side of Eq. (15). These colli-
sion integrals describe the jumps between the states with different coor-
dinates r and r′ and provide thermodynamic equilibrium in the system.
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The probability of such jumps decreases exponentially if |r− r′| exceeds
the magnetic length. For this reason, the collision integrals have local
forms, i.e., depend on U(r) in a parametric way.

Below we consider a stationary problem. Equation (15) in this case is
satisfied for any function depending on coordinate r through U(r). How-
ever, if the thermalizing collisions are present, the equilibrium solution
of Eq. (15) should be written as

ρ(eq)
Nσ (r) =

f (eq)
Nσ (r)
2πl2H

, f (eq)
Nσ (r) =

{
e[εNσ+U (r)−εF ]/T + 1

}−1
, (16)

where f (eq)
Nσ (r) is the Fermi distribution function which parametrically

includes the variation of the Landau level energy due to the presence of
the potential. The normalization factor nf = 1/2πl2H standing in Eq.
(16) is determined from the requirement that the total electron den-
sity (LxLy)−1 ∫ Lx

0 dx
∫ Ly

0 dyρNσ(r) associated with a completely filled
Landau level is equal to nf (note that we consider a 2D system with
dimensions Lx and Ly). In general, one can write ρNσ(r) in the form
similar to Eq. (16), ρNσ(r) = (2πl2H)−1fNσ(r), where fNσ(r) is a di-
mensionless local occupation number. Since the coordinate dependence
of this function is reduced to a dependence on the energy εNσ + U(r),
the electrons can be characterized by their energy. The electrons be-
longing to each Landau level move along the equipotential lines deter-
mined by the relation ε = εNσ + U(r), and their group velocities are
v⊥ = (mωc)−1[∇rU(r) × nz ]U=ε−εNσ

.
Let us assume that the amplitude of the potential energy U(r) is

smaller than both the cyclotron energy and Zeeman splitting energy.
We also assume that the temperature is low enough (at least, T is much
smaller than the amplitude of U(r)). The classical expression for the
electron density

n =
1

LxLy

∑
Nσ

∫ Lx

0

∫ Ly

0

dxdy

2πl2H
fNσ(r) (17)

gives us Eq. (4) with the filling factor ν = Sf (U)/LxLy , where Sf is
the square of the area covered by the occupied states of the highest
occupied Landau level denoted below by the indices Nm and σm . This
area is determined from the relation εNmσm +U(r) < εF . The occupation
of each Landau level by electrons begins with filling of the local minima
of the function εNσ+U(r). From the geometrical point of view, this looks
like filling of “lakes”, and each lake is separated from the other similar
lakes. On the other hand, for an almost filled Landau level, the filled
area covers almost all plane, except a number of “hills”, also separated
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from each other. Electrons move in the lakes or around the hills along
closed paths.

Now we proceed to calculating the Hall conductivity. If the electric
field Ex is applied along OX, the total current Iy passing through the
straight line between the points (0, y) and (Lx, y) is given by the classical
formula

Iy = e
∑
Nσ

∫ Lx

0

dx

2πl2H
v⊥yfNσ(r), (18)

where we integrate the local currents, proportional to v⊥yρNσ(r), over
the length of the system. Due to current continuity, Iy must be inde-
pendent of y. Note that the current (18) is zero in equilibrium (problem
10.9). The linear Hall conductivity σ⊥ is equal to L−1

x limEx→0(Iy/Ex).
In the presence of the homogeneous electric field, the potential energy
becomes equal to UE(x, y) = U(x, y) − eExx. The group velocity is also
modified, v⊥y = −(mωc)−1∂U(x, y)/∂x + eEx/mωc. Substituting this
last expression into Eq. (18), we linearize the latter with respect to the
field Ex and find the conductivity in the form

σ⊥ =
e2

2π�

∑
Nσ

1
Lx

∫ Lx

0
dx

×
[
f (eq)

Nσ (x, y) − e−1 ∂U(x, y)
∂x

∂fNσ(x, y)
∂Ex

∣∣∣∣
Ex=0

]
, (19)

where the second term appears from the expansion of fNσ(x, y) in powers
of Ex. The function fNσ(x, y) is equal to 1 for each completely filled
Landau level. This means that the second term on the right-hand side of
Eq. (19) vanishes, while the first term is reduced to e2/2π�. Therefore,
summing the contributions of the completely filled Landau levels, we
obtain Eq. (1).

Let us find the contribution of the partly filled Landau level (N = Nm

and σ = σm), assuming that this level is almost empty, which means
that the electrons occupy local minima (lakes) of the potential energy
εNmσm + U(r). Since each lake, numbered by the index λ, is a separate
sub-system, the electrons there stay in the local equilibrium character-
ized by the local Fermi energy εFλ and the distribution function

f (λ)
Nσ(r) =

{
e[εNσ+U (r)−eExx−εFλ]/T + 1

}−1
. (20)

The conductivity associated with this Landau level is represented as a
sum over the contributions of the local minima:
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σ⊥|
N=Nm,σ=σm

=
e2

2π�

1
Lx

∑
λ

∫
(λ)

dx

×
[
f (eq,λ)

Nσ (x, y) + x
∂U(x, y)

∂x

∂f (eq,λ)
Nσ (x, y)

∂U

]
. (21)

In this expression, f (eq,λ)
Nσ (r) is given by Eq. (16) with εF replaced by

εFλ. Taking into account that (∂U(x, y)/∂x)(∂f (eq,λ)
Nσ (x, y)/∂U) is equal

to ∂f (eq,λ)
Nσ (x, y)/∂x, we transform the second term under the integral in

Eq. (21) by using the integration by parts:∫
(λ)

dx x
∂f (eq,λ)

Nσ (x, y)
∂x

= −
∫

(λ)
dx f (eq,λ)

Nσ (x, y). (22)

As a result, σ⊥|
N=Nm,σ=σm

= 0. We have demonstrated that when the
filling of the (Nf + 1)-th level starts, the Hall conductivity remains con-
stant and given by Eq. (1). This is a proof of the quantum Hall effect
for the electrons moving in a smooth potential. In a similar way, one
can consider an almost filled Landau level and, using the requirement of
local equilibrium for the electron states moving around the hills, demon-
strate that the Hall conductivity associated with this level is equal to
e2/2π�, as though this level is completely filled (problem 10.10). It is
important that the consideration given above does not employ any other
assumptions about the potential energy U(r) apart from its smoothness
and finiteness. Besides, a logical consequence of this consideration shows
us that in a certain range of the filling factors, when the map of the po-
tential energy εNmσm + U(r) below (above) the Fermi energy cannot be
represented as isolated lakes (hills), the Hall conductivity is not given
by Eq. (1). As this range is passed, the Hall conductivity changes by a
conductance quantum e2/2π�. The percolation theory considering clas-
sical motion of 2D particles proves that for an arbitrary potential there is
only one energy at which the particles are delocalized. Therefore, at zero
temperature the region of the filling factors corresponding to the change
of the Hall conductivity by e2/2π� is narrow, and the conductivity has
sharp steps.

It is easy to explain the absence of σd in the conditions (1). For
an almost empty (filled) Landau level, the electrons able to carry the
current at low temperature, i.e., the electrons with energies near the
Fermi level, move around the lakes (hills) and are localized. Since the
jumps of electrons between the lakes (hills) are exponentially rare if
the potential is smooth on the scale of lH , the diagonal part of the
conductivity is practically zero. It is possible to get a non-zero σd by
applying a strong electric field which modifies the “lake-hill” map of the
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potential energy εNmσm + U(r). With the increase of the electric field,
the conductivity (both σd and σ⊥) changes abruptly and a breakdown
of the quantum Hall effect takes place.

The broadening of the steps of the quantum Hall staircase is essential
when the characteristic spatial scale of U(r) becomes comparable to the
magnetic length lH . No analytical approach can describe this broadening
in the general case. However, there exists a simple model which allows
one to carry out such a description on the basis of a quasi-classical ki-
netic equation. Let us assume that the potential energy U(r) contains
a one-dimensional periodic component V (x) = V (x + nd), where d is
the period and n is an integer number. For convenience, we also as-
sume the symmetry V (x) = V (−x). The remaining part of U(r) is the
scattering potential Usc(r) caused by short-range potentials of randomly
distributed impurities. The amplitude of the periodic component is as-
sumed to be much smaller than the cyclotron energy �ωc so that one
can neglect mixing between different Landau levels. Under this condi-
tion, one can also use the wave functions of zero-order approximation,
ψ(Np)

r ≡ 〈r|Np〉 = L
−1/2
y eipy/�ϕ(Np)

x , where ϕ(Np)
x is given by Eq. (5.15),

to calculate the matrix elements of the scattering potentials. Thus, the
electron spectrum is found in the first-order approximation with respect
to V :

ENσp = εNσ + ENp, ENp = 〈Np|V |Np〉 . (23)

We remind that p ≡ py . The contribution 〈Np|V |Np〉 introduces a fi-
nite dispersion of the spectrum and produces a subband out of the N -th
Landau level, the width of this subband is denoted below as 2AN . There-
fore, the spectrum is no longer degenerate in p. Since V (x) is periodic,
the symmetry of ϕ(Np)

x makes the energy spectrum a periodic function
of the cyclotron orbit center Xp. This function retains the symmetry
properties of V (x), in particular, it has the same period d. Taking into
account the relation Xp = −pl2H/�, one can state that the energy spec-
trum is a periodic and symmetric function of p, and its period is equal
to 2pH , where pH = �d/2l2H . For example, if the modulation potential is
harmonic, V (x) = V0 cos(2πx/d), one has ENp = AN cos(πp/pH), where
AN = V0L

0
N

(
2π2l2H/d2

)
exp

(
−π2l2H/d2

)
. Below we also assume that the

subband width 2AN is smaller than the Zeeman splitting energy. This
means that there is only one partly filled Landau-level subband with
a given spin number, and the low-temperature transport properties are
entirely determined by electron kinetics in this subband. For this reason,
below we either omit the indices N and σ or imply that these indices
correspond to the partly filled subband.
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We apply a semiclassical kinetic theory for the electrons whose spec-
trum is given by Eq. (23). The electrons interact with an effective
two-dimensional short-range potential Usc(r) formed by randomly dis-
tributed impurities. To justify the applicability of such approach, one
must have the subband width much greater than the collision-broadening
energy �/τ determined by the scattering time τ introduced below. As
seen from the estimates above, AN rapidly decreases when lH exceeds d.
Therefore, only the region d ≥ lH is important below. In the presence
of a weak external electric field E = (Ex, Ey), one can write a linearized
kinetic equation

eEy
∂f (eq)

p

∂p
=

2π

�

∑
p′

wN(p, p′)
[
δ(εp − εp′)(∆fp′ − ∆fp)

+δ(εp − εp′ + eExl2H(p − p′)/�)(f (eq)
p′ − f (eq)

p )
]
, (24)

where we have omitted the Landau-level index N of the energy spectra
(ENp → εp) and distribution functions. The contribution proportional to
Ey enters this equation through the dynamical term, see Sec. 8, while
the contribution proportional to Ex is associated with the shift of elec-
tron energy in the electric field, according to εp → εp −eExXp. Equation
(24) allows us to determine the non-equilibrium part ∆fp of the distri-
bution function fp = f (eq)

p + ∆fp, where f (eq)
p is the equilibrium Fermi

distribution function which depends on the energy εp. The right-hand
side of Eq. (24) contains the squared matrix element of the scattering
potential averaged over the impurity distribution:

wN(p, p′) =
w√

2πlHLy

e−l2H(p−p′)2/2�
2
QN [l2H(p − p′)2/�

2]. (25)

Since we consider a short-range scattering potential, the 2D Fourier
transform w(q) of the correlation function 〈〈Usc(r)Usc(r′)〉〉, see Eqs.
(7.22) and (7.23), is independent of q and equal to w = w(0). The
function

QN(x) =
1√
π

∫ ∞

−∞
due−u2

[L0
N(u2 + x/2)]2 (26)

is a polynomial equal to 1 for N = 0 and to 3/4−x/2+x2/4 for N = 1.
Since the kinetic equation (24) is one-dimensional, it is solved exactly;

see Sec. 8. The non-equilibrium part of the distribution function is an-
tisymmetric, ∆f−p = −∆fp = −∆fp+2pHm , where m is integer. There-
fore, the contribution to the first term on the right-hand side of Eq. (24)
comes from p′ = −p + 2mpH . This term can be written as −∆fp/τp,
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where the scattering time τp is given by τ−1
p = (2π/�)

∑
p′ wN(p, p′)(1 −

vp′/vp)δ(εp − εp′) and vp = ∂εp/∂p is the group velocity. The second
term on the right-hand side of Eq. (24) is written in the linear approx-
imation as eExVp(∂f (eq)

p /∂εp), where Vp = (2πl2H/�
2)
∑

p′ wN(p, p′)(p −
p′)δ(εp − εp′) is a characteristic velocity. Taking into account the peri-
odicity of εp, we find that the contribution to this sum also comes from
p′ = −p + 2mpH . As a result,

∆fp = e
∂f (eq)

p

∂εp

[
−Eyτpvp + Ex

d

2

(
p

pH

− S(1)
p

S(0)
p

)]
, (27)

and

τ−1
p =

√
2
π

wS(0)
p

�2lH |vp|
, (28)

where the quantities S(k)
p are the infinite sums over an integer variable:

S(k)
p =

∞∑
m=−∞

mk exp
[
−d2(p/pH − m)2

2l2H

]
QN [d2(p/pH − m)2/l2H ]. (29)

The density of the dissipative current is expressed through the non-
equilibrium part ∆ρN(p, p′) of the one-electron density matrix ρN(p, p′)
= 〈Np|ρ̂|Np′〉 and through the matrix elements of the velocity operator
v̂ in the usual way: I = e(LxLy)−1∑

pp′ 〈Np′|v̂|Np〉 ∆ρN(p, p′). Only
the diagonal in N matrix elements remain in this expression because
the mixing between the Landau levels is neglected. The current can be
expressed through the non-equilibrium part of the distribution function
∆fp ≡ ∆ρN(p, p). For example, the component of the current density
perpendicular to the modulation axis is given as in the classical kinetic
theory, Iy = e(LyLx)−1∑

p vp∆fp. This current is of the dynamical
origin. On the other hand, the current along the modulation axis is a
hopping current. It is given by an expression similar to that of problem
10.3 (problem 10.11). Apart from the dissipative currents, there are also
non-dissipative Hall currents I(H)

x = −|e|cnEy/H and I(H)
y = |e|cnEx/H.

These currents are not related to ∆fp and do not affect the equilibrium
in the system. The non-dissipative currents can be found from a con-
sideration of the non-diagonal in N components of the electron density
matrix in the absence of any potential, in a similar way as in the begin-
ning of this section; see Eqs. (2) and (5). Let us substitute the solution
of the kinetic equation into the expression for Iy given above and add
the non-dissipative part I(H)

y there. The components of the conductivity
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tensor found from this consideration are

σyx =
e2d

2LxLy

∑
p

vp

(
p

pH

− S(1)
p

S(0)
p

)
∂f (eq)

p

∂εp
+

|e|cn
H

(30)

and

σyy =
e2

LxLy

∑
p

τpv
2
p

(
−∂f (eq)

p

∂εp

)
. (31)

Other components can be found by considering Ix (problem 10.12). The
non-diagonal components σ⊥ = σyx are independent of the scattering po-
tential characteristics and of the amplitude of the periodic potential, but
are sensitive to both d and lH . In the limit d � lH , the Hall conductivity
has sharp steps at half-filling of the Landau-level subbands and quantized
Hall plateaus between the steps. Below we assume that the temperature
is zero. Expressing the filling factor introduced by Eq. (4) through the
Fermi momentum pF in the Landau-level subband as ν = 1−pF /pH (we
define pF within the first Brillouin zone, 0 < pF < pH), one gets a simple
relation

σ⊥ =
e2

2π�

[
Nf +

gNm(1 − ν)
gNm(ν) + gNm(1 − ν)

]
, (32)

gN(x) = QN(d2x2/l2H)e−d2x2/2l2H .

We remind that Nm is the Landau level number for the partly filled sub-
band contributing to the transport. Equation (32) clearly demonstrates
the quantization of σ⊥, since the second term in the brackets is equal to
1/2 at half-filling (ν = 1/2), small in the region ν < 1/2, and close to 1 at
ν > 1/2. The behavior of the Hall conductivity calculated numerically
according to Eq. (30) is shown in Fig. 10.2 for the region of magnetic
fields corresponding to the occupation of up to three lowest Landau-level
subbands. For the sake of simplicity, only the subbands with the same
spin number are assumed to be occupied. The figure shows us how the
quantized Hall conductance picture is improved with the increase of d.

The model of the 2D electron gas modulated by a one-dimensional
periodic potential can be directly applied to the cases when 2D layers are
formed on crystal substrates with high Miller indices in order to provide
the modulation period d much greater than the lattice constant (as a
result, a large-scale periodic potential appears at the interface), or when
the 2D gas is electrostatically depleted by a periodic surface Schottky
gate. It is not surprising that this model shows quantization of the Hall
conductivity, because it reflects the main features of the 2D electron
dynamics in the presence of a smooth (large-scale) potential discussed
above. We have considered the plane-state approach to the problem
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Figure 10.2. Dependence of the Hall conductivity σ⊥ of a periodically modulated
2D electron gas on the magnetic field for two different periods of the modulation:
d =

√
60/2πn (1) and d =

√
150/2πn (2). The magnetic field changes in the region

where up to three Landau-level subbands are populated, and only one orientation of
electron spin is considered. The dashed curve shows the classical Hall conductivity
|e|cn/H . The dotted curves (corresponding to the upper scale) demonstrate the
dependence of σ⊥ on the filling factor ν.

of the quantum Hall effect. However, this effect, especially in small
samples, can be also viewed as a manifestation of the edge transport,
when the conductivity is determined by the electron states localized near
the edges of the 2D layer in the presence of a strong magnetic field. This
approach will be considered in Sec. 59.

Without regard to the subject of this section, we mention that the
quasi-classical (low-field) transport of 2D electrons in the presence of
a periodic one-dimensional potential is characterized by a special kind
of oscillations whose properties are determined by the magnetic length,
Fermi wavelength, and modulation period d (problem 10.13).

52. Magnetooptics
Below we consider the influence of magnetic fields on the optical prop-

erties of insulators due to interband transitions of electrons. The mag-
netic field considerably modifies the electron states near the edges of
the conduction (c) and valence (v) bands but does not affect consid-
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erably the deep valence-band states. Therefore, one can calculate the
magnetic-field-induced anisotropy of dielectric permittivity according to
the general expression (17.2), by using the eigenstates of the two-band
model described by Eqs. (B.16)−(B.19). According to Eqs. (17.2) and
(17.3), the contribution to the conductivity tensor proportional to ω−1

is given by

ie2

ωV

∑
δδ′

[
δδδ′δαβ

me
+

〈vδ|v̂α|cδ′〉〈cδ′|v̂β |vδ〉 + (α ↔ β)
εvδ − εcδ′

]
, (1)

where δ is the quantum number of the eigenstates near the extrema of
the bands, and we assume that the valence band is completely filled while
the conduction band is empty, fvδ = 1 and fcδ = 0. The matrix elements
of the velocity operator can be expressed through the matrix elements
of the coordinate operator according to the relation v̂α = i[ĥ, x̂α]/�, and
the second term in Eq. (1) is rewritten as

ie2

meωV

∑
δ

1
i�

〈vδ|[p̂α, x̂β ]|vδ〉 . (2)

The sum of this term with the first term of Eq. (1) is zero, which means
that the contribution ∝ ω−1 vanishes for insulators.

The last term on the right-hand side of Eq. (17.2) is transformed in a
similar way (problem 10.14), and the conductivity tensor is reduced to
the following form:

σαβ(ω) = −i�
e2

V

∑
δδ′

〈cδ|v̂β |vδ′〉〈vδ′|v̂α|cδ〉
(εcδ − εvδ′)(εcδ − εvδ′ − �ω − iλ)

+(c.c., ω → −ω) , (3)

which can be also obtained from Eq. (48.4). In the low-frequency region
�ω � εg , the non-diagonal component of the conductivity tensor is
written as

σxy � i�
e2

V

∑
δδ′

〈cδ|v̂x|vδ′〉〈vδ′|v̂y |cδ〉 − c.c.

(εcδ − εvδ′)2
. (4)

Again, expressing the matrix elements of velocity through the matrix ele-
ments of coordinate, we transform the sum in Eq. (4) to

∑
δ〈cδ|[x̂, ŷ]|cδ〉

and prove that the right-hand side of Eq. (4) is zero. This means that
the Faraday effect is absent in the absence of free carriers (this effect ap-
pears, however, in the high-frequency region). Considering the diagonal
components, we also use the condition �ωc � εg which is normally valid
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(apart from the case of narrow-gap semiconductors in strong enough
magnetic fields). Under these conditions, the magnetic-field-induced
modifications of the diagonal conductivity are small. Nevertheless, the
electron responses to the electromagnetic radiation polarized along the
magnetic field (along the OZ axis) and perpendicular to it are different.
Thus, even in the case ω, ωc � εg/�, there exists an anisotropy of the di-
electric permittivity described by the difference δεH = (4πi/ω)(σ‖ −σd).
Using Eq. (3), we find

δεH = 8π
(e�)2

V

∑
δδ′

|〈cδ|v̂z |vδ′〉|2 − |〈cδ|v̂x|vδ′〉|2
(εcδ − εvδ′)3

(5)

at �ω � εg .
To evaluate the anisotropy (5), we use the symmetric two-band model

described by the Hamiltonian (B.18) with M → ∞, where the kinematic
momentum operator π̂ = p̂− (e/c)A stands in place of p. The solutions
of the eigenstate problem for c- and v- bands (problem 10.15) depend on
the Landau level number N , spin number σ = ±1, and two components
of the momentum determining the position of the oscillator center and
the kinetic energy along the magnetic field; see Eqs. (5.12)−(5.15). The
interband matrix elements of the longitudinal velocity operator v̂z are
proportional to δNN′ for the transitions without spin flip, while the spin-
flip processes assume a change in the Landau level number:

|〈cNσpypz |v̂z |vN ′σpypz〉|2 = δNN′s2
(

ms2 + EN,σpz

2EN,σpz

)2

×
[
1 +

(sp0)2(N + 1/2 + σ/2) − (spz)2

(ms2 + EN,σpz)2

]2

, (6)

|〈cNσpypz |v̂z |vN ′, −σpypz〉|2 = δN′,N+σ
(s3p0pz)2(N + 1/2 + σ/2)

(ms2 + EN,σpz)2E2
N,σpz

,

where p0 =
√

2�/lH . On the other hand, the matrix elements of the
transverse velocities are proportional to δN,N′±1 for spin-conserving tran-
sitions, while the spin-flip processes contain both ∝ δNN′ and ∝ δN,N′±2

contributions:
|〈cNσpypz |v̂x|vN ′σpypz〉|2

=
[δN′,N−1N + δN′,N+1N

′](s3p0pz)2

4EN,σpzEN′,σpz(ms2 + EN,σpz)(ms2 + EN′,σpz)
,
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|〈cNσpypz |v̂x|vN ′, −σpypz〉|2 = δNN′s2 (ms2 + EN,σpz)(ms2 + EN,−σpz)
4EN,σpzEN,−σpz

×
[
1 +

(spz)2

(ms2 + EN,σpz)(ms2 + EN,−σpz)

]2

(7)

+δN′,N+2σs2 (sp0)4(N + σ)(N + 1 + σ)
4EN,σpzEN+σ,σpz(ms2 + EN,σpz)(ms2 + EN+σ,σpz)

.

The squared matrix elements of v̂y are also given by Eq. (7), for obvious
symmetry reasons. The energy EN,σpz entering Eqs. (6) and (7) is
defined in problem 10.15. Introducing the dimensionless variables x =
spz/εg and h = �ωc/εg describing the momentum and magnetic field,
we rewrite this energy as

EN,σpz =
εg

2

√
1 + (2x)2 + 4h(N + 1/2 + σ/2) ≡ εg

2
ηN,σx, (8)

where ηN,σx is the dimensionless energy introduced by analogy to ηp of
Appendix B. The energy (8) satisfies the property EN,+1pz = EN+1,−1pz .

We calculate δεH by substituting the matrix elements (6) and (7) into
Eq. (5) with |cδ〉 = |vNσpypz〉 and |vδ′〉 = |vN ′σ′pypz〉. The energies
εcδ and εvδ′ in Eq. (5) should be replaced by εcNσpz = EN,σpz and
εvN′σ′pz = −EN′,σ′pz . Since the energies and the matrix elements are
independent of py , the sum (LxLy)−1∑

py
. . . is reduced to the Landau-

level degeneracy factor (2πl2H)−1; see Eq. (5.16). The sums over N , N ′,
σ, and σ′ are transformed to a sum over N and σ by using the selection
rules presented by Eqs. (6) and (7). After careful but straightforward
transformations, we obtain

δεH =
e2

π�s
h
∑
Nσ

∫ ∞

−∞
dx[Φ(‖)

Nσ(x) − Φ(⊥)
Nσ(x)], (9)

where the dimensionless functions

Φ(‖)
Nσ(x) = [1 + 4h(N + 1/2 + σ/2)]/η5

N,σx (10)

and

Φ(⊥)
Nσ(x) = 4

1 + ηN,σxηN+1,σx + 4x2 − 8σhx2/[(1 + ηN,σx)(1 + ηN+1,σx)]
(ηN,σx + ηN+1,σx)3ηN,σxηN+1,σx

(11)
describe the contributions of parallel and perpendicular polarizations.
Note that the last (proportional to σ) term in the nominator of Eq. (11)
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can be safely neglected because the contributions from N , σ = +1 and
N + 1, σ = −1 states to this term cancel each other in the sum so that
only the contribution from the state with N = 0 and σ = −1 remains
there.

To evaluate the integral over x and the sum over N in Eq. (9), a care-
ful consideration is required. In the case of zero magnetic field studied
in Sec. 17, the zero-frequency contribution to the dielectric permittivity
described by the symmetric two-band model appears to be divergent.
For the same reason, the contributions in Eq. (9) coming from Φ(‖) and
Φ(⊥) are divergent, if considered separately. Their difference, which de-
termines δεH , is not divergent. However, the result for δεH depends on
the way we calculate the integral and the sum in Eq. (9). The only
correct, physically justified way is to introduce an upper limit for the
energy, ηN,σx < ηm , where ηm � 1, see also Eq. (17.9), and calculate
the integral over x and the sum over N by using this restriction. Then,
to obtain the result independent of ηm , one should carry out the limiting
transition ηm → ∞.

Applying the calculation method described above, one can prove that
δεH goes to zero at h → 0, though the functions Φ(‖) and Φ(⊥) are not
equal to each other in these conditions. Indeed, at h → 0 one can
neglect the difference between ηN,σx and ηN+1,σx, ignore the spin split-
ting, and introduce a continuous variable ζ2 = hN so that h

∑
N

. . . =
2
∫∞
0 ζdζ . . . . We obtain

h

Nm∑
N=0

∫ xm

−xm

dx

∣∣∣∣ Φ(‖)
Nσ(x)

Φ(⊥)
Nσ(x)

∣∣∣∣
�
∫ ζm

0
ζdζ

∫ xm

0
dx

4
[1 + 4(x2 + ζ2)]5/2

∣∣∣∣ 1 + 4ζ2

1 + 2ζ2 + 4x2

∣∣∣∣ (12)

with xm =
√

(η2
m − 1)/4 − ζ2, Nm = (η2

m−1)/4h, and ζm =
√

η2
m − 1/2.

An elementary calculation of the integrals shows us that the upper and
the lower contributions are equal to each other. To find the first non-
vanishing (∝ h) contributions into δεH , we expand ηN+1,σx as ηN,σx +
2h/ηN,σx and ηN,σx as

√
1 + 4x2 + 4hN +h(1+σ)/

√
1 + 4x2 + 4hN . Ne-

glecting the terms proportional to σh in this expansion for the reason
explained above, we find

δεH =
e2C0

π�s
h . (13)

The numerical constant C0 is defined as



470 QUANTUM KINETIC THEORY

C0 = lim
h→0

4
Nm∑
N=0

∫ xm

0
dx

[
2hN − 4x2

(1 + 4x2 + 4hN)5/2

+5h
1 + 8x2

(1 + 4x2 + 4hN)7/2

]
. (14)

The contribution from the second term in the brackets of this expression
can be calculated by introducing a continuous variable instead of N . The
result is 4/3. If we calculate the first term in this approximation, we ob-
tain zero. One needs, therefore, to take into account the discrete nature
of the sum over N . It is done in problem 10.16, and the contribution
from the first term is −1/3. As a result, we obtain C0 = 1. Numeri-
cal calculations according to Eqs. (9)−(11) show a sublinear deviation
from the linear dependence (13), though the relative deviation does not
exceed 10% up to h = 0.05. One can calculate the anisotropy of the
frequency-dependent part of the dielectric permittivity in a similar way
(problem 10.17).

Let us consider the interband absorption. To describe the influence of
the magnetic field on the absorption spectrum in the one-particle approx-
imation, one should take into account the corresponding modification of
the joint density of states; see Eq. (17.6). Near the edge of fundamen-
tal absorption, where the non-parabolicity effects can be neglected, the
joint density of states is given by Eq. (5.16) containing the reduced
mass µ∗ in place of m. Considering the Coulomb interaction between
photoexcited electrons and holes, one obtains an additional contribution
due to exciton absorption, which is also modified by the magnetic field.
This contribution is studied below in the frames of the general approach
developed in Sec. 30. To take into account the magnetic field in Eq.
(30.14), one should substitute the kinematic momenta p̂ − (e/c)Ar and
p̂′ + (e/c)Ar′ to the Hamiltonians ĥc and ĥ′

v , respectively. The spectral
dependence of the absorption is expressed through the retarded Green’s
function Gεω(r, r′) according to Eq. (30.15). Below we use the variables
R and ∆r introduced by Eq. (30.16). Applying the symmetric gauge
Ar = [H × r]/2, we search for the Green’s function in the form

Gεω(r, r′) = exp
(

− ie

2�c
[H × ∆r] · R

)
G̃εω(R, ∆r), (15)

where we have separated the phase factor introduced in Eq. (16.24) and
Appendix G (note that H · [r × r′] = H · [∆r × R] = [H × ∆r] · R). The
function G̃εω should be translation-invariant. To write an equation for
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this function, one has to carry out a canonical transformation

exp
(

ie

2�c
[H × ∆r] · R

)
(ĥc − ĥ′

v) exp
(

− ie

2�c
[H × ∆r] · R

)
. (16)

As a result of this transformation, R drops out of the operator of kinetic
energy (problem 10.18). In the absence of external potentials, we obtain(

p̂2
R

2M
− e

Mc
[H × ∆r] · p̂R +

p̂2
∆r

2µ∗ − eγ

2µ∗c
[H × ∆r] · p̂∆r

+
e2

8µ∗c2 [H × ∆r]2 − v|∆r| − εω − iλ

)
G̃εω(R, ∆r) = −δ(∆r), (17)

where λ → +0 and γ = (mv −mc)/(mv +mc). Transforming the Green’s
function according to Eq. (30.18), we find(

p̂2
∆r

2µ∗ − eγ

2µ∗c
[H × ∆r] · p̂∆r +

e2

8µ∗c2 [H × ∆r]2

−v|∆r| − εω − iλ

)
G̃εω(∆r) = −δ(∆r) (18)

for G̃εω(∆r) ≡ G̃εω(P = 0, ∆r). The spectral dependence of the absorp-
tion is expressed in terms of this function as Ψ(E) = −ImG̃E(∆r = 0).
The motion of the exciton does not affect the absorption in a spatially
homogeneous case.

The magnetic field acts differently on the particles with different ef-
fective masses. That is why the second term on the left-hand side of Eq.
(18) appears. Using the cylindrical coordinates, one can show that this
term is equal to −i(γ�ω̃c/2)∂/∂ϕ, where ω̃c = |e|H/µ∗c and ϕ is the
polar angle in the plane perpendicular to the magnetic field. This term
is linear in H, but it does not contribute to the energy of the ground
state of the exciton in the first order with respect to �ω̃c/εB, where εB is
the Bohr energy of the exciton. The main correction to the ground-state
energy comes from the third term, which is quadratic in H. This correc-
tion is equal to (�ω̃c)2/2εB. The second term on the left-hand side of Eq.
(18) does not contribute to this correction in the second order, because
this term does not couple the ground state to the other eigenstates of
the hydrogen atom problem. On the other hand, this term, in the first
order, contributes to the ∝ H corrections to the energies of the excited
states with non-zero magnetic quantum number m, because the wave
functions of these states are proportional to eimϕ. Denoting the states
of the hydrogen atom problem by their quantum indices n, l, m, where
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n is the main quantum number, l is the orbital number (l < n), and m
is the magnetic number (|m| ≤ l), we have

εν ≡ εnlm � −εB/n2 + mγ�ω̃c/2 (19)

so that the degeneracy of the excited states is removed and, according
to Eq. (30.21), this leads to a fine structure of the absorption spectrum.

Consider now the limit of high magnetic fields, when the ratio εB/�ω̃c

is small. Using the cylindrical coordinate system with (∆r)x = ρ cos ϕ,
(∆r)y = ρ sin ϕ, and (∆r)z = z, we search for the excitonic wave func-
tion ψ(ν)

∆r in the form ψ(ν)
∆r = (2π)−1/2eimϕFm(ρ, z). We remind that

the excitonic wave function and the Green’s function are related as
G̃εω(∆r) =

∑
ν ψ(ν)

∆rψ
(ν)∗
0 /[εω − εν + iλ]; see Eqs. (30.19), (30.20), and

problem 3.10. The function Fm satisfies the equation[
Ĥm(ρ) − �

2

2µ∗
d2

dz2 − e2

ε
√

ρ2 + z2
− ε

]
Fm(ρ, z) = 0, (20)

Ĥm(ρ) = − �
2

2µ∗

(
d2

dρ2 +
1
ρ

d

dρ
− m2

ρ2

)
+

e2H2ρ2

8µ∗c2 + m
γ�ω̃c

2
,

where the Hamiltonian Ĥm(ρ) depends only on the radial coordinate.
One can search for Fm(ρ, z) in the form Fm(ρ, z) =

∑
n Rnm(ρ)Wnm(z),

where Rnm(ρ) are the eigenfunctions of Ĥm(ρ) (problem 10.19). They
are characterized by the quantum number n corresponding to the Lan-
dau level number. Let us multiply Eq. (20) by ρR∗

n′m(ρ) from the left
and integrate the equation obtained over ρ, taking into account the or-
thogonality and normalization condition

∫∞
0 dρ ρR∗

n′m(ρ)Rnm(ρ) = δnn′ .
We obtain a system of coupled differential equations for Wnm(z):(

− �
2

2µ∗
d2

dz2 + εnm − ε

)
Wnm(z) +

∑
n′

U
(m)
nn′ (z)Wn′m(z) = 0, (21)

U
(m)
nn′ (z) = −e2

ε

∫ ∞

0
dρ ρ

R∗
nm(ρ)Rn′m(ρ)√

ρ2 + z2
,

where εnm are the eigenvalues of Ĥm(ρ). The mixing between the
Landau-like states with different numbers n and n′ is caused by the
non-diagonal matrix elements U

(m)
nn′ (z). So far the treatment was ex-

act. The approximation we use below corresponds to the case of high
magnetic fields, when such mixing is neglected. Indeed, the radial coor-
dinates ρ contributing into the integral in Eq. (21) are of the order of
lH . In the case of high magnetic fields, they are much smaller than the
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characteristic axial coordinates |z|, and the non-diagonal part of U
(m)
nn′ (z)

becomes small due to the orthogonality condition for Rnm(ρ).
Therefore, for each number n we obtain a differential equation similar

to that appearing in the theory of 1D exciton; see problem 6.11. Such
equations describe the fine structure of the magnetoexciton spectrum
existing because the degeneracy of each Landau-like level is lifted by the
Coulomb interaction. The equation for the lowest level (n = m = 0) is[

− �
2

2µ∗
d2

dz2 − e2

εl2H

∫ ∞

0
dρ ρ

exp(−ρ2/2l2H)√
ρ2 + z2

− ∆ε

]
W (z) = 0, (22)

where we have put ε − ε00 ≡ ∆ε(0,0) and omitted the indices (n, m) =
(0, 0). Since at large z the effective potential energy behaves like 1/|z|,
we have an infinite number of quantized states. However, in contrast
to the Schroedinger equation with the potential energy −e2/ε|z| (see
problem 6.11), the effective potential energy in Eq. (22) is finite at
z = 0, and the energy of the ground state is also finite. Let us search
for this energy in the form ∆ε0 = −εB/λ2, where λ is a dimensionless
parameter. The wave function for the case of an infinite magnetic field
is written as W (z) = (aBλ)−1/2e−|z|/aBλ, where aB = �

2ε/µ∗e2 is the
Bohr radius of exciton; see problem 6.11. Using this function in order
to calculate the matrix element of the interaction potential in Eq. (22)
in the limit λaB �

√
2lH , we find that λ satisfies an implicit algebraic

equation
λ−1 = 2 ln(aBλ/

√
2lH) − C, (23)

where C � 0.577 is Euler’s constant. The Sommerfeld factor for the
ground state is given by

|ψ(0)
∆r=0|

2 =
1

2πl2HaBλ
. (24)

The energies of excited levels, which are given by −εB/l2 (l = 1, 2, . . .)
in the limit of infinite H, see problem 6.11, also acquire small corrections.
These corrections can be found directly, with the aid of the perturbation
theory with respect to the difference between −e2/ε|z| and the effective
potential energy entering Eq. (22). We obtain

∆εl = −εB

(
1
l2

− bl

l3

)
, b−1

l = ln
(

aBl√
2lH

)
− ψ(l) − 1

2l
− 3C

2
, (25)

where ψ(x) is the logarithmic derivative of the Gamma function. Apart
from these solutions, which correspond to the even (symmetric in z)
wave functions, there exist odd (antisymmetric in z) solutions. As we
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know from problem 6.11, their energies coincide with ∆εl of Eq. (25) in
the case of infinite H. The shift of the energies of odd states at finite
H, however, is small in comparison to that given by Eq. (25), because
the latter shift is small only in the logarithmic sense. Therefore, the
degeneracy of even and odd states no longer exists in the case of finite
magnetic fields. The odd states are not important for exciton absorption,
since the Sommerfeld factors for them are zeros. The zero-order wave
functions of the even (symmetric) excited states are also equal to zero
at z = 0. The first-order corrections to these wave functions are finite
at z = 0, and the corresponding Sommerfeld factors are

|ψ(l)
∆r=0|

2 =
b2
l

2πl2HaBl3
, (l 	= 0). (26)

A schematic picture of magnetoexciton absorption in strong magnetic
fields is shown in Fig. 10.3. Each absorption line associated with the
level with quantum numbers n and m, see problem 10.19, has a fine
structure characterized by the quasi-one-dimensional exciton spectrum
∆ε(n,m)

l . The absorption peaks occur at εω = εnm + ∆ε(n,m)
l . To avoid

confusions, we remind that the numbers n, m, and l of the problem
of exciton in a strong magnetic field differ from the quantum numbers
of the hydrogen atom problem (i.e., from the numbers standing in Eq.
(19)).

Figure 10.3. Schematic picture of exciton levels in the case of strong magnetic fields.

Let us consider the effect of a spatially-smooth external potential on
the exciton absorption. If we neglect the potential gradients (see problem
6.9), only one additional term, ∆U(R)G̃εω(R, ∆r), enters the left-hand
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side of Eq. (17). We expand the Green’s function in this equation by
using the eigenstates ψ(ν)

∆r of the problem for relative motion of electron
and hole considered above, G̃E(R, ∆r) =

∑
ν G(ν)

E (R)ψ(ν)
∆r. Because of

the presence of the second term on the left-hand side of Eq. (17), the
motion of the exciton as a whole is coupled to the relative motion (in the
absence of magnetic fields, see problem 6.9, these motions are separated).
Substituting the expansion given above into Eq. (17), multiplying this
equation by ψ(ν)∗

∆r from the left, and integrating it over ∆r, we obtain
the following system of equations:[

− �
2

2M

∂2

∂R2 + ∆U(R) + εν − E − iλ

]
G(ν)

E (R)

−i
�|e|
Mc

∑
ν ′

[H × (∆r)νν ′ ] · ∂

∂R
G(ν′)

E (R) = −ψ(ν)∗
∆r=0. (27)

The index ν defines the set (n, m, l). The matrix elements (∆r)νν ′ ≡
〈ν|∆r|ν′〉 are non-zero only for m′ = m±1. Using a method of perturba-
tions based upon the assumed smallness of the derivatives ∂G(ν)

E (R)/∂R
(this method is analogous to the kp-approach described in Appendix
B), we find{

− �
2

2M

∂2

∂R2 +
∑
ββ′

�
2α(ν)

ββ′

2M2c2

[
H × ∂

∂R

]
β

[
H × ∂

∂R

]
β′

+∆U(R) + εν − E − iλ

}
G(ν)

E (R) = −ψ(ν)∗
∆r=0, (28)

where

α(ν)
ββ′ = 2e2

∑
ν ′

〈ν|∆rβ|ν ′〉〈ν ′|∆rβ′ |ν〉
εν ′ − εν

(29)

is the polarizability of an electron-hole pair. Since α(ν)
xx = α(ν)

yy and α(ν)
xy =

−α(ν)
yx , the second term in Eq. (28) does not lead to an anisotropy of the

effective mass of exciton in the plane XOY . However, the anisotropy
of this mass with respect to the directions parallel and perpendicular to
the magnetic field appears to be strong. Indeed, calculating the matrix
elements in Eq. (29) for the ground state |ν〉 = |n = 0, m = 0, l〉, we
find that only the states |ν ′〉 = |n′ = 0, m′ = ±1, l′〉 contribute to the
polarizability, and

α(00l)
xx =

∑
±

∑
l′

e2l2HI±
ll′

�ω̃c(1 ± γ)/2 + ∆ε(0,±1)
l′ − ∆ε(0,0)

l

, (30)



476 QUANTUM KINETIC THEORY

where the squared overlap factor of quasi-one-dimensional exciton states
is defined as I±

ll′ = |
∫

dzW00l(z)W0,±1,l′(z)|2. It is essential to take into
account the fine structure of the levels. If we neglect it by using ∆ε(n,m)

l =
0 and I±

ll′ = δll′ , we obtain α(00l)
xx = Mc2/H2 (note that 2/(1 − γ) +

2/(1 + γ) = M/µ∗). Substituting this result into Eq. (28), we find that
the effective mass corresponding to the motion perpendicular to the
field is infinite. A finite transverse mass occurs only when the Coulomb
interaction is taken into account. In summary, the motion of the exciton
as a whole in a strong magnetic field is described by a Schroedinger
equation with anisotropic effective mass. The mass in the direction
perpendicular to the field, M⊥, is much larger than the free-exciton mass
M . If ∆U(R) is a regular potential of bonding nature (as the potentials
of quantum dots; see Sec. 38), the Green’s function G(ν)

E (R), according
to Eq. (28), contains a number of poles corresponding to a set of discrete
levels whose energy spacing is estimated as (�/lc)2/M⊥, where lc is the
characteristic spatial scale of the potential. These levels contribute to a
more fine structure of the absorption spectrum.

Problems
10.1. Find the distribution function ∆f (1)

p from Eq. (48.3) and cal-
culate the current density ∆I associated with it.

Hints: Use the cylindrical coordinates to express the left-hand side of Eq. (48.3)
as ωc∂∆f (1)

p /∂ϕ, where ϕ is the polar angle of p. Then expand ∆f (1)
p in the basis eimϕ.

10.2. Derive Eq. (48.4) from Eq. (13.18).
Hints: Integrate over τ by parts, using the identities �v̂α = i[Ĥ, x̂α] and [x̂α, v̂β ] =

δαβi�/m. Then use the exact eigenstate representation.

10.3. Obtain the conductivity (48.11) by using a semiclassical con-
sideration of electron hopping.

Solution: A semiclassical expression for the current density Ix can be written in
the form

Ix = − e

V

2π

�

∑
δδ′(Xδ′ >Xδ)

(Xδ′ − Xδ)
〈〈

|〈δ|Usc|δ′〉|2
〉〉

×δ [εδ − εδ′ + eEx(Xδ′ − Xδ)] [f(εδ) − f(εδ′)],

where Ex is the electric field along the current. The current is expressed through the
probability of hopping between the centers δ′ and δ with x-coordinates Xδ′ and Xδ in
unit time. The probability is calculated according to Fermi’s golden rule. To obtain
the current density, one should multiply this probability by the distance of hopping
in the given direction and by the electron charge e, take the sum over all centers,
and divide the result by the normalization volume V . This is the way we obtain the
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equation given above. Next, in the linear regime,

δ [εδ − εδ′ + eEx(Xδ′ − Xδ)] [f(εδ) − f(εδ′)] =
df(εδ)
dεδ

eEx(Xδ − Xδ′).

Replacing
∑

δδ′(Xδ′ >Xδ) . . . by (1/2)
∑

δδ′ . . . , we find the conductivity σxx = Ix/Ex

in the form (48.11).

10.4. Calculate the integral
∫∞
0 du uΦNN′(u), where ΦNN′(u) is given

by Eq. (48.14).
Solution: The Laguerre polynomials satisfy the identity Lα−1

n (u) = Lα
n(u) −

Lα
n−1(u) so that [LN′−N

N (u)]2 = [LN′−N+1
N (u)]2 + [LN′−N+1

N−1 (u)]2 − 2LN′−N+1
N (u)

×LN′−N+1
N−1 (u). Applying the normalization condition∫ ∞

0
du uαe−uLα

n(u)Lα
m(u) = δnm

(α + n)!
n!

for α = N ′ − N + 1, we find
∫∞
0 du uΦNN′(u) = N + N ′ + 1.

10.5. Derive the expression for the electron density in the ultraquan-
tum limit from Eq. (5.16).

Hint: Consider only one term (N = 0) in the sum in Eq. (5.16).

10.6. Obtain the classical expressions for the components of the con-
ductivity tensor from Eqs. (49.17)−(49.19).

Hint: Replace the sums over N by integrals and Σ′′
σεF

by �/2τtr.

10.7. Find the oscillations of the Fermi energy in the 2D case by
assuming that the electron density n is constant and the oscillations of
the scattering rate are small (ωcτ/π � 1).

Result:
εF = ε(0)

F

[
1 + e−π/ωcτ (�ωc/πε(0)

F ) sin(2πε(0)
F /�ωc)

]
,

where ε(0)
F = n/ρ2D .

10.8. Prove that the last term in Eq. (51.6) is equal to zero.
Solution: Using the operator identity

[e−βĤ , Â] = e−βĤ

∫ β

0
dλ eĤλ[Â, Ĥ ]e−Ĥλ,

where β = 1/T (see problem 3.5), we find

Sp[e−βĤ , Â]B̂ = Spe−βĤ [Â, B̂] =
∫ β

0
dλ Spe−βĤeĤλ[Â, Ĥ ]e−ĤλB̂,

for arbitrary operators Â and B̂. Writing this equation in the exact eigenstate repre-
sentation, we obtain∑

δ

f(εδ)〈δ|[Â, B̂]|δ〉 = −
∑
δδ′

〈δ|[Â, Ĥ ]|δ′〉〈δ′|B̂|δ〉f(εδ) − f(εδ′)
εδ − εδ′

.
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Consider the Hamiltonian Ĥ = (p̂ − eA/c)2/2m + U (r), where A = (0, Hx, 0).
Let us substitute the operator of x-coordinate of the cyclotron orbit center in place
of Â (so that Â = il2H∂/∂y) and the velocity operator v̂x = −(i�/m)∂/∂x in place
of B̂. Since these operators commute, the left-hand side of the equation above is
zero. Considering the right-hand side, we take into account that Â commutes with
the kinetic-energy part of Ĥ so that [Â, Ĥ ] ∝ ∂U/∂y. Therefore, the equation above
is reduced to ∑

δδ′

〈
δ|∂U/∂y|δ′〉 〈δ′|v̂x|δ

〉 f(εδ) − f(εδ′)
εδ − εδ′

= 0,

which means that the first part of the last term in Eq. (51.6) is zero. To prove that
the second part of the last term in Eq. (51.6) is also zero, we substitute the operator
of y-coordinate of the cyclotron orbit center in place of Â (so that Â = y − il2H∂/∂x)
and the velocity operator v̂y = (�/m)[−i∂/∂y + x/l2H ] in place of B̂. We have again
[Â, B̂] = 0 and [Â, Ĥ ] ∝ ∂U/∂x, which gives us the required proof.

10.9. Prove that Iy given by Eq. (51.18) is equal to zero in equilib-
rium, when Ex=0.

Solution: In equilibrium, v⊥y = −(mωc)−1∂U (x, y)/∂x and fNσ(r) is given by Eq.
(51.16). Therefore, the contribution to the current density from each completely filled
Landau level (when fNσ(r) = 1 everywhere) is proportional to [U (Lx, y)−U (0, y)]/Lx.
This value goes to zero after the limiting transition Lx → ∞. For the partly filled
Landau level Nmσm, the current density is proportional to∑

λ

∫ xλ
2 (y)

xλ
1 (y)

dx ∂U (x, y)/∂x =
∑

λ

[U (xλ
2 (y), y) − U (xλ

1 (y), y)],

where λ numbers the intervals occupied by electrons, and xλ
1 (y) and xλ

2 (y) are the
coordinates of the left and right ends of these intervals. Since these coordinates are
determined by the equation ENmσm + U (xλ

1,2(y), y) = εF , the expression above is
zero. As a result, the current is zero.

10.10. Prove that the Hall conductivity associated with an almost
filled Landau level is equal to e2/2π�.

Hint: The problem can be reduced to the solved one for an almost empty Landau
level, if one treats the empty electron states of an almost filled Landau level as “hole”
states.

10.11. Find the expression of the current parallel to the modulation
axis in the 2D gas placed in a strong magnetic field and one-dimensional
periodic potential.

Solution: Let us express the current density through the one-electron density ma-
trix in the momentum representation, as Ix = e(LxLy)−1∑

pp′〈Np′|v̂x|Np〉ρN(p, p′).
The non-diagonal in p part of the density matrix is found from Eq. (4.32) written in
this representation as

i�
∂ρN(p, p′)

∂t
= (Ep − Ep′)ρN(p, p′) + 〈Np|Usc|Np′〉(fp′ − fp),
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where the right-hand side is written with the accuracy up to the terms linear in the
scattering potential Usc. The diagonal part of the density matrix is the distribution
function fp ≡ ρN(p, p), and Ep = ENσp + eExl2Hp/� is the diagonal matrix element
of the Hamiltonian in the presence of electric field. The energy spectrum ENσp is
given by Eq. (51.23). To calculate the matrix elements of velocity, we use the first
operator identity (48.6), taking into account that the term containing [v̂y, Ĥ ] does
not contribute to the matrix element because of 〈Np′|v̂y|Np〉 ∝ δpp′ . Solving the
equation above, we find ρN(p, p′) and substitute it into the expression for Ix. Finally,
we average this expression over the random scattering potential and represent fp as
a sum of equilibrium and non-equilibrium parts, f (eq)

p + ∆fp. As a result,

Ix =
e

LxLy

π

�

∑
pp′

p − p′

mωc
wN(p, p′)[δ(εp − εp′)(∆fp − ∆fp′)

+δ(εp − εp′ + eExl2H(p − p′)/�)(f (eq)
p − f (eq)

p′ )],

where wN(p, p′) is given by Eqs. (51.25) and (51.26). The non-equilibrium part of
the distribution function is expressed through Ex and Ey according to Eqs. (51.27)−
(51.29). When describing the response to Ey, one should also add the non-dissipative
current −|e|cnEy/H to Ix.

10.12. Using the result of problem 10.11, find σxx and prove, by a
direct calculation, that σxy = −σyx.

Result:

σxx =
e2d2

4LxLy

∑
p

1
τp

[(
S

(1)
p

S
(0)
p

)2

− S
(2)
p + S

(2)
0

S
(0)
p

]
∂f (eq)

p

∂εp
.

10.13. Analyze the conductivity σyy of the 2D electrons modulated by
a harmonic potential V0 cos(2πx/d) in the presence of a weak magnetic
field. Assume that the collision broadening of Landau levels is much
smaller that the Landau level separation �ωc.

Solution: The conductivity tensor is given by Eq. (48.4), where we put a finite
broadening energy �/τ in place λ. The energy spectrum in the basis of Landau states
is εδ ≡ ENσp, as given by Eq. (51.23). For the harmonic potential given above (see
the discussion of Eq. (51.23) in Sec. 51),

ENσp = �ωc(N + 1/2) − σgµBH/2 + AN cos(πp/pH),

AN = V0L
0
N(2π2l2H/d2) exp(−π2l2H/d2),

where pH = �d/2l2H . The matrix elements of the velocity operator v̂y are given by Eq.
(48.5) for N ′ �= N and are equal to the group velocity vNp = ∂ENσp/∂p for N = N ′.
The existence of the diagonal in N matrix elements is caused by the presence of the
periodic potential. Thus, the conductivity (48.4) has two terms: the first one (with
non-diagonal matrix elements) is reduced to the Drude conductivity proportional to
1/ω2

c , while the second one (with diagonal matrix elements) gives us the contribution

∆σyy =
e2

LxLy

∑
Nσp

τv2
Np

[
−∂f(ENσp)

∂ENσp

]
,
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which can be formally obtained from Eq. (51.31) by introducing the sums over the
Landau-level index N and spin index σ. Using the equation for the spectrum, ne-
glecting the spin splitting, and assuming zero temperature, we find

∆σyy ∝
∑
Np

τA2
N sin2(πp/pH)δ [εF − �ωc(N + 1/2) − AN cos(πp/pH)] .

This expression shows us that N is fixed by the Fermi energy, according to N =
NF , where NF � εF /�ωc, and the contribution ∆σyy is proportional to A2

NF
. This

contributions goes to zero when A2
NF

= 0. Using the asymptotic form of the Laguerre
polynomials at large N , we find

AN � V0

π

(
d2

2Nl2H

)1/4

cos

[√
8Nπ2l2H

d2 − π

4

]
.

Substituting N = NF , one can see that this expression oscillates as a function of the
magnetic field and goes to zero when pF = pH(k − 1/4). Therefore, the conductivity
demonstrates the oscillations periodic in 1/H . Their period, |e|d/2cpF , is different
from the period of Shubnikov - de Haas oscillations.

10.14. Obtain Eq. (52.3) by calculating the integral over time in Eq.
(17.2).

Hint: Use the identity [1/x − 1/(z + x)]/z = 1/[x(z + x)].

10.15. Find the energy spectrum and eigenstates for the symmetric
two-band model in a magnetic field.

Solution: We search for the eigenstate of the matrix equation (ĥ−E)Ψ = 0, where
ĥ is the Hamiltonian (B.18) in the magnetic field, in the form

Ψ =

⎛⎜⎜⎝
F+(x)
F−(x)
Φ+(x)
Φ−(x)

⎞⎟⎟⎠ 1
(LzLy)1/2 ei(pzz+pyy)/� ,

where the components Fσ and Φσ describe σ = ±1 states of the conduction and
valence bands, respectively. Substituting this solution into the matrix equation, one
can express Φσ through Fσ and obtain two independent equations for F+ and F−.
They are written below as a single equation:[

(ms2)2 − E2 + (spz)2 + (spy)2 − (�s)2
∂2

∂x2

+2
�s2py

l2H
x +

(
�s

l2H

)2

x2 + σ

(
�s

lH

)2
]
Fσ(x) = 0.

Since this equation has the same form as Eq. (5.14), we easily find the eigenvalues
EcNσpz = EN,σpz and EvNσpz = −EN,σpz , where

EN,σpz =
√

(ms2)2 + (spz)2 + 2ms2�ωc(N + 1/2 + σ/2).
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According to this equation, the Zeeman splitting energy in the symmetric two-band
model coincides with the cyclotron energy. This property leads to an additional
degeneracy of the spectrum, EN,+1pz = EN+1,−1pz . The wave functions (j = c, v) are
written as (LyLz)−1/2ei(pzz+pyy)/�〈x|jNσpypz〉, where

〈x|cN, +1pypz〉 = CEN,+1pz

⎛⎜⎜⎝
(EN,+1pz + ms2)ϕ(Npy)

x

0
spzϕ

(Npy)
x

sp0
√

N + 1ϕ
(N+1py)
x

⎞⎟⎟⎠ ,

〈x|cN, −1pypz〉 = CEN,−1pz

⎛⎜⎜⎝
0

(EN,−1pz + ms2)ϕ(Npy)
x

sp0
√

Nϕ
(N−1py)
x

−spzϕ
(Npy)
x

⎞⎟⎟⎠ ,

〈x|vN, +1pypz〉 = CEN,+1pz

⎛⎜⎜⎝
−spzϕ

(Npy)
x

−sp0
√

N + 1ϕ
(N+1py)
x

(EN,+1pz + ms2)ϕ(Npy)
x

0

⎞⎟⎟⎠ ,

〈x|vN, −1pypz〉 = CEN,−1pz

⎛⎜⎜⎝
−sp0

√
Nϕ

(N−1py)
x

spzϕ
(Npy)
x

0
(EN,−1pz + ms2)ϕ(Npy)

x

⎞⎟⎟⎠ .

Here p0 =
√

2�/lH , CE = 1/
√

2E(E + ms2), and the oscillator function ϕ
(Npy)
x is

given by Eq. (5.15).

10.16. Calculate the contribution of the first term in the square
brackets of Eq. (52.14).

Hint: To calculate the sum, use the identity

lim
a→0

[
N2∑

N=N1

F (aN ) −
∫ N2

N1

dNF (aN )

]
= F (aN2) − 1

2

N2−1∑
N=N1

dF (aN )
dN

which leads to

N2∑
N=N1

F (aN ) =
1
a

∫ aN2

aN1

dyF (y) +
1
2
[F (aN1) + F (aN2)] + O(a).

10.17. Find the magnetic-field-induced anisotropy of the frequency-
dependent contribution to the real part of the dielectric permittivity at
small ω.

Result: According to Eq. (52.3), the first frequency-dependent term in the expan-
sion of δεH in powers of �ω/εg is

δεH(ω) = 8π
(e�2ω)2

V

∑
δδ′

|〈cδ|v̂z|vδ′〉|2 − |〈cδ|v̂x|vδ′〉|2
(εcδ − εvδ′)5

.
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If �ωc � εg, this term is reduced to

δεH(ω) =
�2e2ω2ωc

6πsε3
g

.

10.18. Transform the kinetic energy in the equation for the Green’s
function of magnetoexciton to the translation-invariant form.

Hint: Use the relations

exp
(

ie

2�c
[H × ∆r] · R

)
p̂R exp

(
− ie

2�c
[H × ∆r] · R

)
= p̂R − e

2c
[H × ∆r],

exp
(

ie

2�c
[H × ∆r] · R

)
p̂∆r exp

(
− ie

2�c
[H × ∆r] · R

)
= p̂∆r +

e

2c
[H × R].

10.19. Solve the Schroedinger equation [Ĥm(ρ) − ε]R(ρ) = 0, where
Ĥm(ρ) is defined by Eq. (52.20).

Solution: Let us search for R(ρ) in the form R(ρ) = ρ|m| exp(−ρ2/4l2H)χ(ρ). In-
troducing a new variable x = ρ2/2l2H , we obtain

xd2χ/dx2 + (1 + |m| − x)dχ/dx − αχ = 0, α = −ε/�ω̃c + (|m| + 1 + γm)/2.

The solutions of this equation are the confluent hypergeometric functions Φ(α, 1 +
|m|; x), where α is zero or negative integer. Therefore, the energy spectrum is

ε = εnm = �ω̃c[n + 1/2 + (|m| + γm)/2],

and the normalized eigenfunctions R(ρ) = Rnm(ρ) can be written through the La-
guerre polynomials:

Rnm(ρ) =

√
n!

(n + |m|)!
x|m|/2

lH
e−x/2L|m|

n (x), x = ρ2/2l2H .

If γ = 1 (the case of infinite hole mass), this solution represents the spectrum and
radial wave functions of electrons in the magnetic field described in the symmetric
gauge. The Landau levels (with the numbers N = n for m < 0 and N = n + m for
m > 0) are multiply degenerate over the quantum number m describing the angular
momentum quantization. This degeneracy is analogous to the degeneracy over py in
the Landau gauge. Since 0 < γ < 1, the degeneracy over m is lifted for excitons.



Chapter 11

PHOTOEXCITATION

The evolution of the system excited by a high-frequency electromagnetic field can
be investigated by averaging the statistical operator over the period of perturbation.
Applying this approach to electrons, one can introduce the rate of photogeneration,
which is proportional to the intensity of the radiation and describes electron redistri-
bution between the ground and excited states. Below, as examples of such approach,
we discuss the photon drag current under the intersubband transitions and the re-
sponse to ultrafast photoexcitation. The distribution of photoexcited electrons is
essentially non-equilibrium, and this property causes some peculiar features of the
linear response to an additional probe field. For example, the negative transient con-
ductivity appears. If the electromagnetic field is strong enough, the radiation cannot
be treated as a perturbation. Beyond the second-order response, the non-Markovian
photogeneration leads to the Rabi oscillations. A more careful approach is applied
for studying the mixing of electron and hole states by the field of the radiation, when
one should introduce new quasiparticles. We also consider the coherent response of
the phonon system to the radiation and describe the relaxation of coherent phonon
oscillations due to phonon-phonon interaction.

53. Photogeneration Rate
The Hamiltonian of the electrons placed in the electric field Ete

−iωt +
c.c. can be presented as

Ĥ +
(
∆̂Hte

−iωt + H.c.
)

,

Ĥ =
ω

2π

∫ π/ω

−π/ω
dt Ĥt , ∆̂Ht =

ie

ω
(Et · v̂). (1)
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The interaction of the electrons with the field is written here in the dipole
approximation. The term Ĥ determines the quasienergy spectrum, see
Eqs. (5.30)−(5.33), while the perturbation ∆̂Ht describes interband or
intersubband electron transitions and accounts for slow variations of the
field with time. We have neglected the terms proportional to e±2iωt,
which do not excite the transitions under consideration. Using Eq. (1),
we rewrite Eq. (1.20) for the density matrix η̂t as

∂η̂t

∂t
+

i

�
[Ĥ, η̂t] =

1
i�

[(
∆̂Hte

−iωt + H.c.
)

, η̂t

]
. (2)

With the initial condition η̂t→−∞ = η̂−∞, we transform this equation to
the integral form (λ → +0)

η̂t − η̂−∞ =
1
i�

∫ t

−∞
dt′eλt′−iωt′e−iĤ(t−t′)/�[∆̂Ht′ , η̂t′ ]eiĤ(t−t′)/� + H.c.

=
∫ 0

−∞
dτ

i�
eλτ−iω(t+τ )eiĤτ /�[∆̂Ht+τ , η̂t+τ ]e−iĤτ /� + H.c. , (3)

which is more convenient for describing the interband (or intersubband)
transitions.

Representing η̂t in Eq. (3) as a sum of slowly varying contribution
η̂t and high-frequency part [∆̂ηte

−iωt + H.c.], we write the first-order
expression for the latter:

∆̂ηt =
∫ 0

−∞
dτ

i�
eλτ−iωτ eiĤτ /�[∆̂Ht+τ , η̂t+τ ]e

−iĤτ /�. (4)

Substituting η̂t = η̂t + [∆̂ηte
−iωt + H.c.] with ∆̂ηt from Eq. (4) into

the right-hand side of Eq. (2), we average Eq. (2) over the period and
obtain the following equation for η̂t:

∂η̂t

∂t
+

i

�
[Ĥ, η̂t] =

1
�2

∫ 0

−∞
dτeλτ−iωτ

×
[
eiĤτ /�[∆̂Ht+τ , η̂t+τ ]e

−iĤτ /�, ∆̂H
+
t

]
+ H.c. ≡ Ĝt. (5)

The high-frequency contributions ∝ e±2iωt disappear after the averaging
procedure. The right-hand side of Eq. (5) forms the operator of inter-
band photogeneration rate, Ĝt. Substituting ∆̂Ht from Eq. (1) into Eq.
(5), we find

Ĝt =
( e

�ω

)2
∫ 0

−∞
dτeλτ−iωτ (6)
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×
[
eiĤτ /�

[
(Et+τ · v̂), η̂t+τ

]
e−iĤτ /�, (Et · v̂)+

]
+ H.c.

In this form, the generation rate still depends on the interaction of elec-
trons with impurities, phonons, and other electrons, since Ĥ contains
the corresponding interaction terms. If these processes are neglected in
Eq. (6), the slowly varying part ρ̂t of the one-electron density matrix
satisfies the quantum kinetic equation

∂ρ̂t

∂t
+

i

�
[ĥ, ρ̂t] = Ĝt + Ĵ(ρ̂|t), (7)

where Ĵ(ρ̂|t) is the collision integral in the operator form and Ĝt is
given by Eq. (6) with Ĥ replaced by the one-electron Hamiltonian ĥ.
We point out the non-Markovian temporal dependence of the genera-
tion rate. This dependence appears because of exclusion of the high-
frequency contribution describing the perturbation-induced polarization
in the equation averaged over the period. This mechanism of memory is
purely dynamical and, for this reason, is qualitatively different from the
non-Markovian temporal dependence of the collision integrals describing
the memory effects in the scattering processes; see Secs. 7, 19, 23, and
34.

Using the basis of quasienergy states, ĥ|δ〉 = εδ |δ〉, we rewrite Eq. (7)
as a system of kinetic equations for the matrix elements 〈δ′|ρ̂t|δ〉. The
non-diagonal (interband or intersubband) components of this matrix are
small if the characteristic frequencies |εδ −εδ′ |/� are large in comparison
to both the generation rate and the collision relaxation rate 1/τ (problem
11.1). The diagonal components, fδt = 〈δ|ρ̂t|δ〉, are the distribution
functions whose evolution is described by the kinetic equation

∂fδt

∂t
= Gδt + J(f |δt), (8)

where J(f |δt) and Gδt = 〈δ|Ĝt|δ〉 are the collision integral and photogen-
eration rate for the state δ, respectively. If the external field is varying
slower than both generation and relaxation occur, one can calculate Gδt

by using the approximations Et+τ � Et and fδ,t+τ � fδt. The integral
over τ in this Markovian approximation gives us the energy conservation
laws, and the photogeneration rate is written as

Gδt =
2π

�

( e

ω

)2∑
δ′

(fδ′t − fδt)
{
|〈δ|(Et · v̂)|δ′〉|2δ(εδ − εδ′ − �ω)

+|〈δ|(Et · v̂)+|δ′〉|2δ(εδ − εδ′ + �ω)
}

, (9)
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where we have separated the stimulated emission and the absorption
(the first and the second contributions, respectively).

The equations given above are applicable for describing the photoex-
citation processes in spatially-homogeneous systems, where the index δ
includes a discrete quantum number l (it can be, for example, a combina-
tion of the band and spin indices, as in Appendix B) and the momentum
p. If there exist smooth (with respect to the quantum scale �/p̄) inho-
mogeneities, one should carry out the Wigner transformation of Eq. (7)
as described in Sec. 9. As a result, we obtain a kinetic equation for the
distribution function flrpt:

∂flrpt

∂t
+ vlp · ∂flrpt

∂r
= Glrpt + J(f |lrpt), (10)

where the group velocity vlp depends on the quantum number l. This
kinetic equation is written under the approximation that the force term
(which appears, for example, in Eq. (9.23)) can be neglected. The
generation rate Glrpt standing in Eq. (10) is obtained from Eq. (9) when
a parametric dependence of the electron distribution on coordinate is
taken into account. The same procedure is applied to obtain the collision
integral J(f |lrpt), which is given by an equation of the kind of Eq.
(9.33). If the inhomogeneities are smooth on the scale of characteristic
relaxation lengths, one may use the balance equations (see Secs. 11 and
36) to describe the photoexcitation processes. Introducing the density
and flow density of electrons in the state l as nlrt = (1/V )

∑
p flrpt and

ilrt = (1/V )
∑

p vlpflrpt, respectively, we obtain the density balance
equation in the form

∂nlrt

∂t
+ ∇ · ilrt = Glrt − Rlrt, (11)

where the terms Glrt = (1/V )
∑

p Glrpt and Rlrt are the local genera-
tion and recombination rates per unit volume for the l-th state. The flow
density is expressed through the drift and diffusion currents in the usual
way; see Sec. 36. For a spatially-homogeneous system, Eq. (11) has
the same form as Eq. (38.12) describing the density balance in quantum
wells. Equations (9)−(11), together with the electrodynamical equa-
tions describing the distribution of electromagnetic fields, allow one to
consider the photoelectric phenomena in semiconductors and insulators.

To describe the momentum transfer between photons and electrons
in the processes of interband or intersubband transitions, one should go
beyond the dipole approximation and use the operator of interaction
determined by Eqs. (13.6) and (13.13) instead of ∆̂Ht in Eq. (1):

∆̂hω =
ie

2ω
E ·
(
v̂eiq·r + eiq·rv̂

)
. (12)
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In other words, one should replace v̂ in Eqs. (1), (6), and (9) by(
v̂eiq·r + eiq·rv̂

)
/2. As a result, the photogeneration rate (9) contains

the q-dependent matrix elements determining the transfer of photon mo-
mentum to electrons. This transfer leads to the effect called the photon
drag. It is considered below for the case of intersubband transitions of
electrons in a quantum well. In the basis |np〉, where n is the subband
number, the matrix element of the perturbation (12) is

|〈np|∆̂hω |n′p′〉|2 = δp,p′+�q

( e

ω
E⊥

)2
|〈n|v̂z |n′〉|2 , (13)

where 〈n|v̂z |n′〉 is the matrix element of the velocity operator along the
confinement direction OZ and E⊥ is the transverse electric field exciting
the intersubband transitions (E⊥ is assumed to be real). For the tran-
sitions between the ground (n = 1) and first excited (n = 2) states, the
generation rate (6) is written as

G1p =
2π

�

( e

ω
E⊥

)2
|vz

21|2(f2p+�q − f1p)δγ(ε1p − ε2p+�q + �ω),

G2p =
2π

�

( e

ω
E⊥

)2
|vz

21|2(f1p−�q − f2p)δγ(ε2p − ε1p−�q − �ω). (14)

The notation vz
21 ≡ 〈2|v̂z |1〉 is taken from Sec. 29. To make the expres-

sions finite, we have introduced a broadening energy γ into the energy
conservation law, as in Eq. (22.15), according to the definition of the
δ-function used in problem 1.4. Below we neglect redistribution of elec-
trons between the subbands and substitute the equilibrium distribution
functions into Eq. (14).

Considering the photon drag of strongly degenerate 2D electrons oc-
cupying the ground-state subband, we take into account that the photon
momentum �q is small in comparison to the Fermi momentum. There-
fore, we separate the small (linear in q) anisotropic contributions in Eq.
(14) and write them in the following way:

δG1p � −2πq · vp

( e

ω
E⊥

)2
|vz

21|2θ(εF − εp)δ′
γ(ε21 − �ω),

δG2p � 2πq · vp

( e

ω
E⊥

)2
|vz

21|2
[
θ(εF − εp)δ′

γ(ε21 − �ω)

+δ(εp − εF )δγ(ε21 − �ω)] , (15)

where vp = p/m and δ′
γ(E) ≡ dδγ(E)/dE. The anisotropic parts of the

distribution functions, δf1p and δf2p, caused by the generation terms
(15) are determined from the equations

δG1p − δf1pν1p = 0, δG2p − δf2p
[
ν2p + ν(21)

p

]
= 0 (16)
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obtained from Eq. (10) after representing the collision integrals through
the isotropic intrasubband and intersubband relaxation rates ν1p, ν2p,
and ν(21)

p ; see Secs. 8 and 38. For the case of electrons interacting with
a short-range static potential, these rates are momentum-independent
(problem 11.2). Equations (15) and (16) explicitly define the anisotropic
parts of stationary distribution of electrons under intersubband photoex-
citation.

The photoinduced density of stationary current is calculated from
the general formula IRt = SpÎRtη̂t, where the current density operator
is given by Eq. (4.15). This operator contains field-dependent terms
entering through the vector potential. Owing to these terms, not only
the stationary density matrix ρ̂, but also the high-frequency corrections
to ρ̂ contribute to the current density averaged over the period 2π/ω.
The averaging over the 2D layer width leads to the current density

I =
ω

2π

∫ π/ω

−π/ω
dt

∫
dzIRt =

e

L2 spv̂ρ̂ + ∆I. (17)

The additional part ∆I is found after averaging the product of the ex-
ternal field by ∆̂ηt of Eq. (4) over the period:

∆I = −e2/m

�ω
E∗e−iq·X

∫ 0

−∞
dτe−i(ω+iλ)τ

×spδ(x − X)eiĥτ /�[∆̂hω, ρ̂]e−iĥτ /� + c.c. (18)

This expression is independent of the macroscopic coordinate X along
the 2D layer because the system is translation-invariant in the 2D plane.
Further calculations are done by using the one-electron basis |np〉. Tak-
ing into account only the contributions linear in q, we obtain

∆I =
2e2E∗

m�ωL2

∫ 0

−∞
dτe−i(ω+iλ)τ

∑
np

〈np| ie
ω

E · v̂|np〉(fnp+�q − fnp)

+c.c. � −4e2E∗

mω2

∫
dp

(2π�)2
( e

ω
E · vp

)
δ(εp − εF )(q · vp). (19)

The current density ∆I is associated with intrasubband transitions and
excited by the field parallel to the 2D layer.

The first term in I is written through the anisotropic contributions
δfnp in the usual way, and the total current density is given by

I = 2e

∫
dp

(2π�)2
vp(δf1p + δf2p) + ∆I. (20)
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Note that the factor of 2 in Eqs. (19) and (20) comes from spin summa-
tion. Comparing the first term on the right-hand side of Eq. (20) to the
second one, given by Eq. (19), we find that the latter contains a quantity
of the order of (q · vp/mω)(eE/ω)2δ(εp − εF ) in place of δf1p + δf2p in
the first term. Therefore, ∆I is small as (ωτ)−1 and can be neglected.
Using Eqs. (15) and (16), we finally obtain

I � 2πq
en2D

m

( e

ω
E⊥

)2
|〈2|v̂z |1〉|2

×
[
−εF δ′

γ(ε21 − �ω)τ1 + δγ(ε21 − �ω)τ2
]
, (21)

where n2D is the 2D electron density. The characteristic times are in-
troduced as τ1 = ε−2

F

∫ εF

0 dεp εp[ν−1
1p − (ν2p + ν(21)

p )−1] and τ2 = (ν2pF +
ν(21)

pF )−1. The photon drag current is essential at ω � ε21/� and depends
on the frequency of detuning, ∆ω = ω − ε21/�, according to

I ∝ Φ∆ω ≡ δγ(�∆ω) + εF

τ1

τ2
δ′
γ(�∆ω). (22)

The function Φ∆ω characterizes the spectral dependence of the photon
drag. Since the broadening energy is much smaller than the Fermi en-
ergy, the second term in Eq. (22) dominates. Since this term changes its
sign together with ∆ω, the drag current also changes its sign. At small
∆ω, the first term of Φ∆ω also becomes important so that the point of
sign inversion is slightly shifted away from the exact resonance ∆ω = 0.

The photon drag effect is caused by the same elementary processes
which are responsible for the drag of electromagnetic field by a cur-
rent (see the last part of Sec. 17, where this drag has been considered
for the case of interband transitions). The order-of-value estimate of I
can be written as µξωSωq/ω, where µ = |e|τ̄ /m is the electron mobil-
ity, ξω is the relative absorption coefficient given by Eq. (29.25), and
Sω = |E|2c

√
ε/2π is the absolute value of the Poynting vector describing

the energy flow of monochromatic photons. Since ξωSωq/ω is the pho-
ton momentum flow absorbed by the 2D electrons, this estimate has a
clear physical meaning. Note that the contribution of the excited states
(where the density of electrons is small) to the photon drag current is of
the same order as the contribution of the ground states. The presence
of the spectral inversion of the drag current is explained as follows. The
photons with ∆ω > 0 induce the intersubband transitions only for the
electrons whose momenta have positive components in the direction of
q. Selective excitation of such electrons gives rise to a current within the
ground subband, corresponding to the motion of electrons in the direc-
tion opposite to q. At the same time, electrons excited into the subband
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2 for ∆ω > 0 have positive velocities in the direction of q. When the
frequency ∆ω becomes negative, the currents within the subbands 1 and
2 (and the total current) change their signs.

54. Response to Ultrafast Excitation
Let us consider the response to an ultrashort pulse of electromagnetic

radiation. The electric field of this pulse is written as Ete
−iωt + c.c.,

where Et = Ewt. The envelope form-factor wt describes the pulse of
duration τp, and we assume that τp � 2π/ω, though τp can be smaller
than other characteristic times of the system. The linear response to
this perturbation is described by the general expression (13.18) for the
complex conductivity. Applying it, one should take into account that the
Fourier transform of the electric field includes the form-factor wt, and
the Fourier components of the induced current are excited in a narrow
interval around ω. To describe the second-order response, it is convenient
to use the generation rate introduced in the previous section, where the
time-dependent amplitude Et is taken into account; see Eq. (53.6).
Below we consider this response for the case of interband excitation of
electrons in insulators or non-doped semiconductors. We also study the
nonlinear ultrafast excitation of intersubband transitions in quantum
wells, including the case of coherent control under two-pulse pumping.

To write the photogeneration rate due to electron transitions from the
fully occupied valence band to the empty conduction band within the
accuracy up to E2, we use the one-particle approximation in the general
equation (53.6) by substituting the density matrix of the valence-band
electrons, ρ̂v , into this equation:

Ĝt =
( e

�ω

)2
∫ 0

−∞
dτeλτ−iωτ

×
[
eiĥτ /� [(Et+τ · v̂), ρ̂v ] e−iĥτ /�, (Et · v̂)+

]
+ H.c. (1)

The constant λ in this equation can be treated phenomenologically as a
small, though still finite, relaxation rate which causes a finite broadening
(see the beginning of the next section for a more careful consideration).
Assuming that the operators ĥ and v̂ are the one-particle Hamiltonian
and velocity operator of the two-band model, respectively, we write all
operators in the basis |nσp〉 and introduce the generation rate in the c-
band as G(c)

pt = (1/2)
∑

σ〈cσp|Ĝt|cσp〉. By analogy to the consideration
given in Sec. 17, we obtain

G(c)
pt =

( e

�ω

)2
∫ 0

−∞
dτeλτ−iωτ

(
Et+τ · M̂ · E∗

t

)



Photoexcitation 491

×
[
e−i(εcp−εvp)τ /� + c.c.

]
+ c.c. , (2)

where the tensor Mαβ = (1/2)
∑

σσ′〈cσ|v̂α|vσ′〉〈vσ′|v̂β |cσ〉 is written
through the spin-dependent matrix elements of the velocity operator
near the extrema of the bands at p = 0. Although we assume that the
field Et is linearly polarized, the spin averaging of G(c)

pt makes the re-
sult independent of whether the field is linearly or elliptically polarized.
Using also Et = Ewt and Mαβ = δαβs2, we transform Eq. (2) to the
form

G(c)
pt =

(
eEs

�ω

)2

wt

∫ 0

−∞
dτeλτ−iωτ wt+τ

[
e−i(εcp−εvp)τ /� + c.c.

]
+ c.c. (3)

In the resonance approximation, only the contributions containing the
exponential factors with the energy ∆p = εcp − εvp −�ω should be taken
into account. Then, the kinetic equation for the c-band distribution
function fcpt is written as

∂fcpt

∂t
= G(c)

pt , G(c)
pt = 2

(
eEs

�ω

)2

wtReW∆p(t). (4)

The generation rate is expressed through the function

W∆(t) =
∫ 0

−∞
dτwt+τ e

−i∆τ /�, (5)

where we omit the term eλτ under the integral (see, however, problem
11.3). Using the initial condition fcpt→−∞ = 0, we find the photoexcited
electron distribution as fcpt =

∫ t
−∞ dτG(c)

pτ . Its momentum dependence
is entirely determined by the momentum dependence of the generation
rate through ∆p.

At |∆|τp/� � 1 (and λτp � 1), the function (5), with the use of
integration by parts, is transformed to

W∆(t) � i�

∆
wt +

(
�

∆

)2 dwt

dt
, (6)

which means that away from the resonance the photogeneration rate is

G(c)
pt = 2

(
eEs

ω∆p

)2 1
2

dw2
t

dt
. (7)

In the exact resonance, when ∆p = 0, the function (5) is equal to∫ t
−∞ dτwτ and we obtain

G(c)
pt

∣∣
∆p=0

= 2
(

eEs

�ω

)2 1
2

d

dt

(∫ t

−∞
dτwτ

)2

. (8)
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As a result, the distribution function in these limiting cases is written
as

fcpt =
(

eEs

�ω

)2
{

(wt�/∆p)2, ∆pτp � �[∫ t
−∞ dτwτ

]2
, ∆pτp � �

, (9)

This equation demonstrates that the temporal dependences of the dis-
tribution in the resonance and away from the resonance are essentially
different. The non-equilibrium electrons with momenta corresponding
to the non-resonant regime are generated during the action of the short
pump pulse. The density of these electrons goes to zero when the pulse
is terminated. For the region of momenta close to the resonance, the to-
tal density of the photoexcited electrons at t � τp is proportional to the
intensity of the radiation, which is written through the integral of the

amplitude of the field over time, fcpt→∞ ∝
(∫∞

−∞ dτwτ

)2
. If, however,

the amplitude of the field changes with time slower than the relaxation
occurs, i.e., τp � �/λ, one should take into account that λ is finite,
which gives us Re W∆(t) � π�δ�λ(∆)wt (problem 11.3). The generation
rate (4) in this case depends on time through w2

t , being proportional to
the intensity of the radiation, and the electrons are excited only in the
resonance region.

The general picture of photoexcited electron distribution becomes
clear from the limiting cases analyzed above. However, to consider the
temporal evolution of the electron density, we need to sum Eq. (4) over
p. This sum is analytically calculated in the case of 2D electrons, when
the interband excitation in a quantum well is considered. The electron
density is given by nt = ρ̃2D

∫∞
0 dξfξt, where ρ̃2D = µ∗/π�

2 is the 2D
density of states with the reduced mass µ∗ introduced in Sec. 17, and
we write the energy distribution function fξt, with the corresponding
kinetic energy ξ = p2/2µ∗, in place of fcpt. Integrating Eq. (4) with
W∆p(t) from Eq. (5) over ξ, we use the identity∫ ∞

0
dξ exp[−i(τ/� − iλ)ξ] = π�δ(τ) − i�

P
τ

, (10)

where λ → +0 enters due to relaxation. In order to calculate the re-
maining integral

∫ 0
−∞ dτ . . . , one should take into account that only a

half of the delta-function δ(τ) from Eq. (10) contributes to this integral.
The expression for nt is obtained from Eq. (4) in the form

dnt

dt
= ρ̃2D

∫ ∞

0
dξG(c)

ξt ≡ gt,

gt =
N2D

2τp

[
w2

t +
2wt

π

∫ 0

−∞
dτ

τ
wt+τ sin

(�ω − εg)τ
�

]
, (11)
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where N2D = 2πρ̃2D(eEs̃/ω)2τp/� is a characteristic density determined
by the parameters of the pulse. The velocity s̃ is equal to the interband
velocity s multiplied by the overlap integral of the envelope functions
describing confinement of c- and v-band states in the quantum well, and
εg is the energy gap renormalized due to this confinement.

The density generation rate gt entering Eq. (11) is considerably sim-
plified in the case of very short pulses, when |�ω − εg |τp � � and the
second term in the brackets in Eq. (11) can be neglected. As a result,
the total density of photoexcited electrons, nt→∞ ≡ n∞ =

∫∞
−∞ dtgt,

is equal to N2D

∫∞
−∞ dtw2

t /2τp. In particular, for a properly normalized
Gaussian pulse

wt =
(

2
π

)1/4

e−(t/τp)2 , (12)

one finds
∫∞
−∞ dtw2

t = τp and n∞ = N2D/2. For the pulses of finite du-
ration, n∞ depends on the dimensionless parameter z = (�ω − εg)τp/�.
For the Gaussian pulses (12), this dependence (see Fig. 11.1) is given
by the analytical expression n∞(z) = N2D[1 + erf(z/

√
2)]/2, where erf

is the error function. For the excitation above the threshold of inter-
band absorption, z > 0, the density n∞ increases and approaches the
saturation value N2D at z � 1. For the excitation below the threshold,
z < 0, the density n∞ decreases but remains finite. This dependence
is a manifestation of the general principle of quantum mechanics, the
energy-time uncertainty.

Consider now the resonant excitation of electrons from the ground-
state subband of a quantum well to a higher subband. Using the dipole
approximation and the basis |np〉, where n = 1, 2 are the numbers of
ground (n = 1) and excited (n = 2) subbands, we obtain the following
generation rates from Eq. (53.6):

G1pt = −G2pt =
(

e|vz
21|

�ω

)2

E∗
t

∫ 0

−∞
dτeλτ ei(ε21−�ω)τ /�

×Et+τ (f2pt+τ − f1pt+τ ) + c.c. , (13)

where the distribution function for n-th state is introduced as fnpt =
〈np|η̂t|np〉, and vz

21 = 〈2|v̂z |1〉 is the intersubband matrix element of
the velocity operator. The distribution function satisfies the kinetic
equation ∂fnpt/∂t = Gnpt + J(f |npt), where J(f |npt) is a collision
integral. Summing both sides of this equation over the 2D momentum,
we obtain the balance equations

dn1t

dt
= Gt +

(
∂n1

∂t

)
sc

,



494 QUANTUM KINETIC THEORY

Figure 11.1. Dependence of the photoexcited electron density n∞ on the parameter
z = (�ω − εg)τp/� for the case of interband excitation of electrons in quantum wells
by the Gaussian pulse (54.12).

dn2t

dt
= −Gt +

(
∂n2

∂t

)
sc

, (14)

where n1,2t = (2/L2)
∑

p f1,2pt are the electron densities in the subbands
1 and 2. The density generation rate under intersubband transitions
is introduced as Gt = (2/L2)

∑
p G1pt, and the terms (∂n1/∂t)sc =

−(∂n2/∂t)sc describe the collision-induced relaxation of population in
the subbands (note that the total density n1t + n2t = n2D is conserved).

Let us consider first the case of weak pumping, when n2t � n1t � n2D.
The equation describing the density evolution in the excited subband
takes the form

dn2t

dt
= n2D

(
e|vz

21|
�ω

)2

E∗
t

∫ 0

−∞
dτeλτ−i∆ωτ Et+τ + c.c. , (15)

where ∆ω = ω−ε21/� and n2,t→−∞ = 0. Under the pumping by a single
pulse Et = Ewt, where wt is real, the excited density n2∞ ≡ n2,t→∞ is
given by

n2∞
n2D

= 2
(

eE|vz
21|

�ω

)2 ∫ ∞

−∞
dtwt

∫ t

−∞
dt′wt′ cos[∆ω(t − t′)]. (16)

If ∆ω = 0, one has n2∞/n2D =
√

2π(eE|vz
21|τp/�ω)2 for the Gaussian

pulse (12). With increasing |∆ω|, the density n2∞ decreases but remains
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finite according to the energy-time uncertainty principle. The condition
of small redistribution, n2∞ � n2D, is equivalent to eE|vz

21|τp � �ω.
Consider the response to the field Et = E(wt + wt−tde

iφ) describing
a pair of identical coherent pulses with relative phase shift φ and delay
time td (we assume that wt is real). For such a case, Eq. (15) can be
rewritten in the following way:

dn2t

dt
= 2n2D

(
eE|vz

21|
�ω

)2{
wt

∫ t

−∞
dt′wt′ cos[∆ω(t − t′)]

+wt−td

∫ t

−∞
dt′wt′−td cos[∆ω(t − t′)] + wt

∫ t

−∞
dt′wt′−td (17)

× cos[∆ω(t − t′) + φ] + wt−td

∫ t

−∞
dt′wt′ cos[∆ω(t − t′) − φ]

}
.

In the resonance, ∆ω = 0, the expression in the braces {. . .} is written as
(dT 2

t /dt)/2+(dT 2
t−td

/dt)/2+[d(TtTt−td)/dt] cos φ, where Tt =
∫ t
−∞ dt′wt′ .

By aiming t to ∞, it is easy to find

n2∞
n2D

= 2
(

eE|vz
21|T∞

�ω

)2

(1 + cos φ), (18)

where T∞ =
∫∞
−∞ dtwt is equal to (2π)1/4τp for the Gaussian pulse (12).

The excited density depends on the phase shift φ as n2∞ ∝ (1 + cos φ).
Therefore, a coherent phase control of the ultrafast response is possible.
At finite ∆ω, the phase of the oscillations of n2∞ is changed by ∆ωtd
(problem 11.4), and their amplitude decreases when |∆ω| exceeds 1/τp.

To investigate the non-linear regime of coherent response, we use,
instead of Eq. (14), the balance equation describing redistribution of
electrons between the ground and excited states, ∆nt = n1t − n2t. The
density generation rate in this case is written as

Gt = −2
(

eE|vz
21|

�ω

)2

wt

∫ 0

−∞
dτwt+τ cos(∆ωτ)∆nt+τ , (19)

and the generation at the instant t depends on the density distribution
at the previous moments of time. The collision-induced relaxation at
low temperatures takes place mostly due to transitions of electrons from
the excited state to the ground state by spontaneous emission of optical
phonons; see Sec. 38. Thus, we have (∂n2/∂t)sc = −(∂n1/∂t)sc =
−ν(21)

LO n2t, where the relaxation rate ν(nn′)
LO is given by Eqs. (38.8) and

(38.9). As a result, we obtain the following equation for the density
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redistribution:

d∆nt

dt
+ω2

Rwt

∫ t

−∞
dtwt′ cos[∆ω(t−t′)]∆nt′ +ν(21)

LO (∆nt −n2D) = 0, (20)

where ωR =
√

2|eEvz
21|/�ω is a characteristic frequency proportional

to the electric field strength. This equation should be solved with the
initial condition ∆nt→−∞ = n2D. The non-linear regime of the response
is realized at ωRτp ≥ 1 and can be observed in asymmetric quantum
wells by the transient radiation caused by the oscillations of the total
dipole moment after the excitation. This dipole moment is introduced
according to

Dt = (n1td1 + n2td2)/n2D ∝ (1 − d2/d1)∆nt/n2D, (21)

where d1 and d2 are the dipole moments of the subbands 1 and 2, re-
spectively.

In the case of resonant excitation, ∆ω = 0, and in the absence of
the relaxation (the latter approximation corresponds to the time scale
t � 1/ν(21)

LO ), Eq. (20) is reduced to a differential equation of the second
order,

d2∆nt

dt2
− 1

wt

dwt

dt

d∆nt

dt
+ ω2

Rw2
t ∆nt = 0, (22)

with an additional initial condition, [w−1
t (d∆nt/dt)]t→−∞ = 0 (problem

11.5). The general solution of this equation is written in the form

∆nt = n2D cos
(

ωR

∫ t

−∞
dt′wt′

)
. (23)

The redistribution at t → ∞ is determined by the integral of the enve-
lope form-factor of electric field. According to Eq. (23), the final phase is
written as Ap = ωR

∫∞
−∞ dtwt = ωRT∞. The effect of periodic modulation

of ∆nt→∞ with Ap is caused by the Rabi oscillations, because during the
excitation the electrons oscillate between the subbands with a charac-
teristic frequency ωR (problem 11.6). The complete transfer of electrons
into the upper (excited) subband takes place at Ap = (2k+1)π, where k
is an integer number. If Ap = 2kπ, the excited subband remains empty.
The case of equal occupation, ∆nt = 0, occurs at Ap = (2k + 1/2)π.
The temporal evolution of the density distribution is presented in Fig.
11.2 for ∆ω = 0. If the frequency ω is shifted away from the resonance
(∆ω 	= 0), the amplitude of the modulation becomes smaller because of
the oscillating kernel in the integral term of Eq. (20). In such a case,
the integro-differential equation (20) should be solved numerically.
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Figure 11.2. Temporal evolution of the density distribution in the two-level system
under a resonant excitation by the Gaussian pulse (54.12) for Ap = 6π (1), Ap = 6.5π
(2), and Ap = 7π (3).

55. Partially Inverted Electron Distribution
In this section we describe the relaxation of the electrons excited by a

short laser pulse. As follows from Eq. (54.9), in the collisionless approx-
imation the energy distribution of such electrons is a narrow peak whose
position is determined by the frequency of laser radiation. The width
of this peak is determined by the pulse duration. As the pulse duration
increases, the peak of the energy distribution becomes narrower, and one
has to take into account the collision-induced broadening which deter-
mines the width of the peak in the limit of a long pulse. Because of the
energy-time uncertainty principle, the elastic scattering also contributes
to the broadening of the peak. Therefore, at the initial moments of time,
when the energy relaxation is not yet important, there exists a partially
inverted electron distribution fε with decreasing high-energy part and
increasing low-energy part. According to Eqs. (8.26), (8.27), and (8.30),
the linear response of the electrons with partially inverted distribution
becomes essentially different in comparison to the quasi-equilibrium case:
since the sign of (−dfε/dε) can be negative, it is possible to obtain a neg-
ative transient conductivity and negative absorption of electromagnetic
radiation. Describing temporal evolution of this response, it is necessary
to consider a quasielastic relaxation of the initial excited distribution.
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We consider first the photoexcitation of electrons in the presence of
elastic scattering by including the interaction of electrons with static
inhomogeneities into the Hamiltonian ĥ in the expression (54.1) for the
interband photogeneration rate. Using the basis of exact eigenstates,
ĥ|δ〉 = εδ |δ〉, we write the matrix elements of the c-band photogeneration
rate in the form

〈δ|Ĝt|δ′〉 =
( e

�ω

)2
∫ 0

−∞
dτeλτ−iωτ

∑
δv

ei(εδ−εδv )τ /�

× 〈δ|Et+τ · v̂|δv〉
〈
δv |E∗

t · v̂|δ′〉+ (c.c., δ ↔ δ′), (1)

where |δv〉 is the set of eigenstates of the completely filled valence band.
In this way, the scattering of electrons is taken into account exactly so
that the density matrix of c-band electrons is governed by Eq. (53.7)
without the collision integral. Such an equation should be solved with
the initial condition ρ̂t→−∞ = 0, and the result is written below:

ρδδ′(t) =
∫ t

−∞
dt′ei(εδ−εδ′ )(t′−t)/�〈δ|Ĝt′ |δ′〉. (2)

One can use the wave functions ψ(δ)
p ≡ 〈p|δ〉 to write the density matrix

in the momentum representation:

ρpp′(t) =
∑
δδ′

ψ(δ)
p ρδδ′(t)ψ(δ′)∗

p′ . (3)

Below we consider the photoexcitation of electrons in the quantum
wells with non-ideal interfaces, when the 2D electrons of c-band scat-
ter because of the fluctuations of quantization energy caused by the
variations of the well width. These variations have much less effect on
the valence-band 2D electrons in view of larger effective mass of these
electrons. Therefore, the 2D electrons of v-band can be treated as al-
most ideal and characterized by their in-plane momentum. We assume
that the electrons are photoexcited from the highest 2D subband of the
valence band, where the eigenstates are the plane waves |p1〉 with the
dispersion law εδv = −εg −p2

1/2mv , to the lowest 2D subband of the con-
duction band. After calculating the sums over spin numbers, by analogy
to Eqs. (54.2) and (54.3), we rewrite the photogeneration matrix (1) in
the form

〈δ|Ĝt|δ′〉 =
(

eEs̃

�ω

)2

wt

∫ 0

−∞
dτeλτ−iωτ wt+τ

×
∑
p1

ei(εδ+εg+p2
1/2mv)τ /�ψ(δ)∗

p1
ψ(δ′)

p1
+ (c.c., δ ↔ δ′). (4)
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We remind that s̃ is the interband velocity s renormalized due to confine-
ment of c- and v-band states. After substituting this photogeneration
matrix into Eq. (2), we use Eq. (3) and obtain the density matrix in
the momentum representation,

ρpp′(t) =
(

eEs̃

�ω

)2 ∫ t

−∞
dt′wt′

∫ 0

−∞
dτwt′+τ

∑
δδ′p1

ei(εδ−εδ′ )(t′−t)/�

×ei(εδ−�∆ω+p2
1/2mv)τ /�ψ(δ)

p ψ(δ)∗
p1

ψ(δ′)
p1

ψ(δ′)∗
p′ + (c.c.,p ↔ p′) , (5)

where the elastic scattering of electrons is taken into account exactly. In
Eq. (5) and below, ∆ω = ω − εg/�.

The averaged, over the random potential of the inhomogeneities, den-
sity matrix is diagonal in p because of macroscopic homogeneity of the
system, 〈〈ρpp′(t)〉〉 = δpp′fpt. When t becomes great in comparison to
both the pulse duration and the scattering time, a quasi-stationary dis-
tribution f (0)

p = fp,t→∞ is formed. It is convenient to write the result
through the retarded and advanced Green’s functions defined in the op-
erator representation by Eq. (16.3). Taking into account that both t′ − t
and τ are negative, we obtain

〈〈
ρpp′(t)

〉〉
=
(

eEs̃

ω

)2 ∫ t

−∞
dt′wt′

∫ 0

−∞
dτwt′+τ

∑
p1

ei(p2
1/2mv−�∆ω)τ /�

×
〈〈

GR
t−t′−τ (p,p1)GA

t′−t(p1,p′)
〉〉

+ (c.c.,p ↔ p′). (6)

According to the results of Sec. 15, the averaging of such a pair of
Green’s functions gives us δpp′ . It is convenient to use the energy rep-
resentation of the Green’s functions, when〈〈

GR
t−t′−τ (p,p1)GA

t′−t(p1,p′)
〉〉

= δpp′

∫
dE

2π�

∫
dε

2π�
(7)

×ei(E+ε/2)τ /�eiε(t′−t)/�

〈〈
GR

E+ε/2(p,p1)GA

E−ε/2(p1,p)
〉〉

.

Below we search for the correlation function 〈〈GR

E+ε/2(p,p1)GA

E−ε/2
(p1,p)〉〉 by using the Bethe-Salpeter equation (15.8) in the ladder ap-
proximation, ΓRA � w(q). This approximation is justified for the pho-
toexcitation far above the fundamental threshold, where the kinetic en-
ergy of electrons, εp, is much greater than the broadening energy �/τs

associated with the scattering under consideration. In the case of short-
range correlated inhomogeneities, when w(q) � w, the Bethe-Salpeter
equation has the following solution:
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GR

E+ε/2(p,p1)GA

E−ε/2(p1,p)
〉〉

= GR

E+ε/2(p)GA

E−ε/2(p)

×
[
δpp1

+
w

1 − Sε

1
V

GR

E+ε/2(p1)GA

E−ε/2(p1)
]

, (8)

where
Sε =

w

V

∑
p

GR

E+ε/2(p)GA

E−ε/2(p) � i�/τs

ε + i�/τs
. (9)

The last equation is based upon the expression (14.29) for the averaged
Green’s function, where we have neglected the irrelevant real part of the
self-energy function and put τ(E) = τs. We also remind the relation
τ−1
s = mw/�

3 for the 2D case. The presence of the second (correlation)
term on the right-hand side of Eq. (8) is essential. It is the term that
contains the pole at ε = 0 leading to a stationary distribution of electrons
at t � τp, τs (see the factor eiε(t′−t)/� in Eq. (7)). We have∫ ∞

−∞
dE

2π
ei(E+ε/2)τ /�

∑
p1

eip2
1τ /2mv�

〈〈
GR

E+ε/2(p,p1)GA

E−ε/2(p1,p)
〉〉

=
i

ε
exp

[
i

�
εp

(
1 +

mc

mv

)
τ +

τ

2τs

]
(10)

×
{

1 +
i�/τs

ε + i�/τs

(
exp

[(
− i

�
ετ +

τ

τs

)
mc

mv

]
− 1
)}

,

where εp = p2/2mc. According to Eqs. (6) and (7), in order to find
the distribution function fpt, one has to multiply the right-hand side
of Eq. (10) by eiε(t′−t)/� and integrate the result over ε. Since t′ < t,
this integral is calculated by shifting the contour of integration into the
lower half-plane of complex ε. Therefore, the contour should pass above
the pole ε = 0 to provide a finite distribution function at t → ∞. As a
result,

fpt = 2
(

eEs̃

�ω

)2 ∫ t

−∞
dt′wt′

∫ 0

−∞
dτwt′+τ

×eτ/2τs cos
[
εpτ

�

(
1 +

mc

mv

)
− ∆ωτ

]
(11)

×
[
exp

(
τmc

τsmv

)
θ

(
t − t′ +

mc

mv
τ

)
+ exp

(
t′ − t

τs

)
θ

(
−t + t′ − mc

mv
τ

)]
.

Only the first term in this expression is important at t � τp, τs, and the
quasi-stationary isotropic distribution f (0)

p = f (0)
εp is given by

f (0)
ε = 2

(
eEs̃

�ω

)2 ∫ ∞

−∞
dt′wt′

∫ 0

−∞
dτwt′+τ
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×eτ/τ ∗
cos

[
ετ

�

(
1 +

mc

mv

)
− ∆ωτ

]
(12)

=
nex

π�ρ̃2D

∫ 0

−∞
dτeτ/τ ∗

e−τ 2/2τ 2
p cos

[
ετ

�

(
1 +

mc

mv

)
− ∆ωτ

]
,

where τ∗ = τs/(1/2+mc/mv). The final expression in Eq. (12) is written
for the case of excitation by the Gaussian pulse (54.12) and normalized
by the total photogenerated density nex = nt→∞.

We remind that we consider the photoexcitation far above the thresh-
old, which means that the energy width of the distribution (12) is much
smaller than the photoexcitation energy εex = �∆ω/(1 + mc/mv). In
these conditions, the total photogenerated density nex is independent of
∆ω and equal to N2D introduced in Sec. 54. The shape of the distribu-
tion (12) is determined by a competition of the collision-induced broad-
ening, described by the time τ∗, and dynamical broadening existing due
to a finite pulse duration τp. If the dynamical broadening is more essen-
tial (τ∗ � τp), one can neglect the term eτ/τ ∗

in the integrand and obtain
f (0)

ε = (nex/
√

πρ2D∆ε) exp[−(ε − εex)2/(∆ε)2], where ∆ε =
√

2�/τp. In
the opposite case, τ∗ � τp, the shape of the peak is determined by the
collision-induced broadening: f (0)

ε = (nex/πρ2D)∆ε/[(ε − εex)2 + (∆ε)2],
where ∆ε = �/τ∗. In the general case, the distribution (12) is more
complicated, though it can be expressed analytically through the error
function [erf(. . .)] of complex argument, and the broadening energy is
roughly estimated as ∆ε ∼ �/τ∗ + �/τp.

The relaxation of the peak-shaped distribution (12) occurs due to
quasielastic scattering of electrons by acoustic phonons. This is the
case when the peak is formed in the passive region (in other words, the
photoexcitation energy in the c-band, εex, is smaller than �ωLO). If
εex > �ωLO, the photoexcitation is followed by fast emission of a cas-
cade of optical phonons until the peak is transferred into the passive
region. The broadening associated with this process is weak because
the dispersion of the optical phonons is negligible. Therefore, for both
cases of photoexcitation, the evolution of electron distribution can be
represented as follows. During a short time interval (about tens of pi-
coseconds), a narrow peak is formed in the passive region. Then, this
peak relaxes on a nanosecond scale of time due to quasielastic scattering
of electrons by acoustic phonons. A special consideration, however, is
necessary in the case when εex is close to a multiple of �ωLO so that the
high-energy electrons emit one more optical phonon during the initial
step of the relaxation. As a result, the electron distribution in the pas-
sive region looks like two half-peaks localized near zero energy and near
�ωLO.
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The temporal evolution in the passive region is governed by the equa-
tion describing drift and diffusion along the energy axis:

∂fεt

∂t
=

∂

∂ε

(
Dε

∂fεt

∂ε
+ Vεfεt

)
. (13)

It is considered with the initial condition fε,t=0 = f (0)
ε . The diffusion

coefficient Dε and drift velocity Vε can be assumed energy-independent
in the case of 2D electrons. If the characteristic energies of acoustic
phonons are small in comparison to the temperature T , the right-hand
side of Eq. (13) is given by Eq. (35.6) and D = V T . In the general
case, D and V are connected by a more complicated relation (problem
11.7). The boundary conditions to Eq. (13) are

fεt|ε→∞ = 0,

(
Dε

∂fεt

∂ε
+ Vεfεt

)
ε=0

= 0. (14)

The condition of zero energy flow at ε = 0 implies that the recombination
of photoexcited electrons (see Sec. 38) is neglected. The condition at
ε → ∞ is valid if we neglect penetration of electrons into the active
region, assuming that the energy broadening of the distribution function
during the whole period of evolution remains small in comparison to
�ωLO.

If the coefficients D and V are energy-independent, Eq. (13) with the
boundary conditions (14) is solved as

fεt =
∫ ∞

0
dε′ Gt(ε, ε′)f (0)

ε′ , (15)

where Gt(ε, ε′) is the Green’s function of the drift-diffusion equation.
This function is defined in the quadrant ε > 0, ε′ > 0 and satisfies the
boundary conditions (14). We obtain the expression

Gt(ε, ε′) =
1√

4πDt

[
e−(ε−ε′+V t)2/4Dt + e−V ε/De−(ε+ε′−V t)2/4Dt

]
+

V

2D
e−V ε/D

[
1 − erf

(
ε + ε′ − V t√

4Dt

)]
, (16)

which can be derived by using the Green’s function of the ordinary dif-
fusion equation (problem 11.8). During the initial steps of the relax-
ation, when the boundary condition at zero energy is still not important,
Gt(ε, ε′) is reduced to the fundamental solution of the one-dimensional
drift-diffusion equation: Gt(ε, ε′) � (4πDt)−1/2e−(ε−ε′+V t)2/4Dt. The
solution (15) in this case describes the photoexcited distribution peak
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which drifts towards low energies and, simultaneously, becomes broad-
ened due to diffusion. If the initial distribution is a Gaussian function,
f (0)

ε = (nex/
√

πρ2D∆ε) exp[−(ε − εex)2/(∆ε)2], which is the case when
τ∗ � τp in Eq. (12), the initial evolution of such distribution is given
by the analytical expression

fεt =
nex√

πρ2D∆εt
exp

[
−(ε − εex + V t)2

(∆εt)2

]
. (17)

The maximum of this distribution moves down with the velocity V , while
the broadening is described by the function ∆εt =

√
(∆ε)2 + 4Dt.

At large t, only the second term on the right-hand side of Eq. (16)
becomes important, and 1 − erf(. . .) � 2. Therefore, the final steady-
state distribution is given by

fε,t→∞ =
nex

ρ2D

V

D
exp

(
−V

D
ε

)
. (18)

This function is reduced to the equilibrium Boltzmann distribution at
D/V = T . At low temperatures, when D/V ∼ �sl/d > T (here sl

is the longitudinal sound velocity and d is the well width; see problem
11.7), the distribution (18) does not coincide with the equilibrium one.
We stress, however, that the condition of quasielasticity implies that the
energy scale of the distribution function is large in comparison to the
energy of acoustic phonons, while the distribution (18) does not satisfy
this condition at D/V ∼ �sl/d. Therefore, the drift-diffusion equation
(13) is not valid for describing the final part of the relaxation if the
temperature T is so low that the equipartition condition for the phonons
is violated. A more careful consideration is necessary in this case. The
general expressions (15) and (16) allow one to follow the transformation
of the high-energy peak (17) to the monotonic low-energy distribution
(18). Carrying out a numerical integration in Eq. (15), we find the
distribution functions shown in Fig. 11.3.

Consider now the evolution of two peaks at the boundaries of the
passive region, which is the case when the excitation energy εex is close
to a multiple of �ωLO. The low-energy electrons remain localized near
the bottom of the passive region, and their mean energy changes from
the value determined by the half-width of the excited peak to the tem-
perature T . The high-energy part is modified due to drift and diffusion
towards lower energies as well as due to the diffusion-induced penetra-
tion of electrons into the active region and subsequent fast relaxation of
these electrons by emission of optical phonons. The diffusion maintains
a finite electron density at the boundary ε = �ωLO during the initial
steps of the evolution. To study the region of energies in the vicinity of
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Figure 11.3. Temporal evolution of the energy distribution function fεt in the case
of infinitely narrow initial distribution f

(0)
ε ∝ δ(ε − εex) at D/V = εex/5. The curves

1-5 correspond to t/tV = 0.02, 0.1, 0.3, 0.5, and 5, where tV = εex/V is the drift time.

�ωLO, we introduce a new variable, ξ = ε − �ωLO, and the distribution
functions of electrons in the passive and active regions, f<

ξt and f>

ξt, re-
spectively. The spontaneous emission of optical phonons is described by
the relaxation rate ν = νLO introduced in Sec. 35. Thus, at |ξ| � �ωLO

we have the following system of equations:

∂f<

ξt

∂t
= D

∂2f<

ξt

∂ξ2 + V
∂f<

ξt

∂ξ
, ξ < 0

∂f>

ξt

∂t
= D

∂2f>

ξt

∂ξ2 + V
∂f>

ξt

∂ξ
− νf>

ξt, ξ > 0 . (19)

It should be solved with the boundary conditions expressing the con-
tinuity of the distribution functions and their derivatives at ξ = 0,
f>

ξ=0,t = f<

ξ=0,t and (∂f<

ξt/∂ξ)ξ=0 = (∂f>

ξt/∂ξ)ξ=0, as well as with the
boundary conditions f>

ξ→∞,t = 0 and f<

ξ→−∞,t = 0. The initial condition
is fξ,t=0 = f (0)

ξ+�ωLO
.

By fixing the value of the distribution function at the boundary,
f>

ξ=0,t = f<

ξ=0,t ≡ fξ=0,t, one can solve Eq. (19) as

f<

ξt =
e−V 2t/4D

√
4πDt

∫ 0

−∞
dξ′e−V (ξ−ξ′)/2D

[
e− (ξ−ξ′)2

4Dt − e− (ξ+ξ′)2
4Dt

]
fξ′,t=0
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−ξe−V ξ/2D

√
4πD

∫ t

0
dt′e−V 2(t−t′)/4D e−ξ2/4D(t−t′)

(t − t′)3/2 fξ=0,t′ , (20)

and

f>

ξt =
e−V 2t/4D−νt

√
4πDt

∫ ∞

0
dξ′e−V (ξ−ξ′)/2D

[
e− (ξ−ξ′)2

4Dt − e− (ξ+ξ′)2
4Dt

]
fξ′,t=0

+
ξe−V ξ/2D

√
4πD

∫ t

0
dt′e−V 2(t−t′)/4D−ν(t−t′) e

−ξ2/4D(t−t′)

(t − t′)3/2 fξ=0,t′ . (21)

The function fξ=0,t is yet to be found. To do this, we calculate the
derivatives ∂f<

ξt/∂ξ and ∂f>

ξt/∂ξ of the functions (20) and (21). By
equating these derivatives to each other at ξ = 0, we obtain∫ t

0
dt′K(t − t′)f̃ξ=0,t′ = R(t), f̃ξ=0,t′ = eV 2t′/4Dfξ=0,t′

K(τ) = (e−ντ + 1)
(

∂

∂τ
τ−1/2e−ξ2/4Dτ

)
ξ→0

, (22)

R(t) =
1

2Dt3/2

∫ ∞

−∞
dξ fξ,t=0ξe

V ξ/2De−ξ2/4Dt
[
e−νtθ(ξ) − θ(−ξ)

]
.

This integral equation is reduced to an algebraic one by means of the
Laplace transformation of both its sides. The result is expressed through
the inverse Laplace transformation of the ratio Rs/Ks, where Rs and Ks

are the Laplace transforms (images) of the functions R(t) and K(t):

fξ=0,t =
e−V 2t/4D

2πi
√

D

∫
C

ds
est

√
s +

√
s + ν

∫ ∞

−∞
dξ fξ,t=0e

V ξ/2D

×
[
exp

(
−
√

s + ν

D
ξ

)
θ(ξ) + exp

(√
s

D
ξ

)
θ(−ξ)

]
. (23)

To obtain this expression, we have taken into account that the Laplace
image of e−νt(ξ/2

√
πDt3/2)e−ξ2/4Dt is equal to exp(−

√
(s + ν)/Dξ) and

that Ks =
√

π(
√

s + ν +
√

s). The contour of integration, C, goes from
−i∞ to +i∞ and passes the peculiar points of the integrand, s = 0 and
s = −ν, from the right. The solution (23) can be obtained by means
of direct Laplace transformation of Eq. (19) with the use of the above
boundary conditions (problem 11.9).

The integral over s in Eq. (23) is calculated analytically in the limiting
case t � ν−1, and we obtain
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fξ=0,t =
1√
πDt

∫ 0

−∞
dξ

fξ,t=0

1 +
√

1 + 4Dνt2/ξ2
exp

[
−(ξ − V t)2

4Dt

]

+
e−νqet

√
4πDνt3/2

∫ ∞

0
dξ fξ,t=0 exp

(
−
√

ν

D
ξ

)
, (24)

where νqe = V 2/4D is the quasielastic relaxation rate. It is related to
the energy relaxation rate ν(e) of quasi-equilibrium non-degenerate 2D
electrons interacting with acoustic phonons under equipartition condi-
tion as νqe = ν(e)/4 (note that ν(e) can be found by equating the power
loss term −ρ2D

∫∞
0 dε εJac(f |ε), where Jac(f |ε) is given by Eq. (35.6),

to ν(e)n2D(Te − T ), where Te is the effective temperature of the quasi-
equilibrium electrons). This quasielastic relaxation rate is much smaller
than ν. Below we restrict ourselves by the case when, during the time
ν−1, the diffusion-induced broadening of the peak, 2

√
D/ν, is much

larger than the drift-induced shift of the peak, V/ν, and much smaller
than the width ∆ε of the initial excited distribution. These conditions
are reasonable because ν is large. In this case, there exists a time interval

ν−1 � t � τD, ν−1
qe , (25)

where τD = (∆ε)2/4D is the time of diffusive broadening of the initial
distribution. The condition t � τD follows from t � ν−1

qe if ∆ε is not
small in comparison to 4D/V . Under the conditions (25), the charac-
teristic |ξ| contributing to the first integral of Eq. (24) is estimated as√

4Dt so that 4Dνt2/ξ2 ∼ νt � 1 and the integral can be taken analyt-
ically. Moreover, the conditions (25) allow one to expand the exponent
in powers of V and replace fξ,t=0 by its value at ξ = 0. The contribution
to the second integral in Eq. (24) comes from ξ ∼

√
D/ν � ∆ε, and

one can replace fξ,t=0 by fξ=0,t=0 in this term as well. If t � ν−1, the
first integral in Eq. (24) gives the main contribution to fξ=0,t, and we
obtain a simple result

fξ=0,t � fξ=0,t=0

(
1√
πνt

− V

2
√

νD

)
(26)

valid under the conditions (25). We remind that fξ=0,t=0 = f (0)
�ωLO

is
the initial (determined by the photoexcitation) distribution function of
electrons at the boundary of the active region. Though the time scale for
the decrease of fξ=0,t is given by ν = νLO, this decrease is not exponential
because of arrival of electrons from the passive region due to diffusion.
Therefore, the high-energy electrons, for a long enough period of time,
have a distribution which essentially differs from a simple peak moving
in the passive region; see Eq. (17).
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Below we discuss some features of the transient linear response of the
electrons with the partially inverted distribution described by Eqs. (20),
(21), and (26). This distribution depends on time parametrically. Using
Eq. (8.27), we write the time-dependent conductivity of 2D electrons as

σt =
e2ρ2D

m

∫ ∞

0
dεετ tot

ε

(
−∂fεt

∂ε

)
,

1
τ tot
ε

=
1
τε

+
1

τopt
ε

. (27)

We take into account both the elastic scattering and the scattering by op-
tical phonons described by the momentum relaxation times τε and τopt

ε ,
respectively. The total relaxation time is a sum of the partial relax-
ation rates, because the right-hand side of the kinetic equation contains
a sum of the collision integrals for different scattering mechanisms; see
Eq. (34.28). If the temperature is small in comparison to �ωLO, a strong
relaxation of momentum by electron-phonon scattering is essential only
due to spontaneous LO phonon emission in the active region. Since in
the passive region τ tot

ε = τε � τopt
ε , the main contribution to the con-

ductivity comes from this region, and the upper limit of integration in
Eq. (27) can be set at �ωLO. Integrating by parts, we obtain

σt =
e2ρ2D

m

[∫
�ωLO

0
dεfεt

d

dε
(ετε) − (fεtετε)ε=�ωLO

]
. (28)

The transient conductivity σt contains a positive contribution from the
passive region (usually d(ετε)/dε > 0) and a negative contribution from
the transition region between the passive and active regions. If the
electrons are photoexcited into the passive region, σt remains positive.
However, if the excitation occurs near the boundary of the active region,
the negative contribution becomes essential.

A simple expression for σt is obtained when the relaxation time is
energy-independent, τε = τ . This situation takes place for the 2D elec-
trons interacting either with short-range correlated inhomogeneities or
with acoustic phonons under the equipartition condition. The first term
in Eq. (28) then gives us the electron density nex = ρ2D

∫
�ωLO

0 dεfεt,
while the second term can be transformed according to Eq. (26). Ne-
glecting the drift-induced term in Eq. (26), we have

σt = σ

(
1 − ρ2D�ωLO

nex
fξ=0,t

)
� σ

(
1 −

√
τu

t

)
, (29)

where σ = e2nexτ/m. In the case of a Gaussian initial distribution
formed at εex = �ωLO (so that fξ=0,t=0 = nex/

√
πρ2D∆ε), the character-

istic time introduced in Eq. (29) is given by τu = π−2(�ωLO/∆ε)2ν−1.
Since this time is assumed to be much greater than ν−1, the transient
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conductivity σt can be negative in the interval ν−1 � t < τu. Under
these conditions, there should arise an instability of the transient re-
sponse. A description of this instability requires a special investigation.
One may expect a similar transient behavior for the other quantities
characterizing the system. For example, the theory given above sug-
gests a negative cyclotron absorption in the transient state (problem
11.10).

56. Photoinduced Interband Hybridization
The picture of linear interband absorption given in Sec. 17 is based

upon the approximation that the electric field E of the electromagnetic
wave is so small that the rate of interband transitions remains much
smaller than the energy relaxation rates of conduction- and valence-
band electrons. In these conditions, the interband transitions do not
modify the electron distribution so that one can use the equilibrium
Fermi distribution function to describe the absorption. As E increases,
this approximation is no longer valid, and the distribution becomes dis-
torted: the density of the valence-band electrons with momenta close to
pω determined from the condition p2

ω/2µ∗ = �ω−εg decreases, while the
density of the conduction-band electrons with such momenta increases.
The situation becomes more complicated if the frequency of interband
Rabi oscillations of electron density, determined as |e|Evcv/�ω, where vcv

is a characteristic interband velocity, becomes comparable to or larger
than the average scattering rate. In this case, the interband coherence
takes place and, instead of the conduction- and valence-band electrons,
one has to introduce new quasiparticles with a more sophisticated energy
spectrum. These quasiparticles appear as a result of hybridization of c-
and v-band states coupled by the electromagnetic field, and the mech-
anism of interband absorption becomes qualitatively different from the
linear absorption. This mechanism is now determined by the scattering
of the quasiparticles by impurities and phonons, because this scattering
destroys the interband coherence.

Consider a semiconductor described by the two-band model, see Ap-
pendix B, in the high-frequency electric field E cos ωt. The interaction
of electrons with this field is written below in the dipole approximation,
and the Hamiltonian is diagonal in the momentum representation:

Ĥt(p) = ĥp − e

c
v̂p · At . (1)

This Hamiltonian is a 4 × 4 matrix with respect to band and spin in-
dices. Here and below we use the symmetric two-band model with
M → ∞ in Eq. (B.18). It is convenient to employ the diagonal rep-
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resentation, when the matrices of the free-electron Hamiltonian ĥp and
velocity v̂p are given by the right-hand sides of Eqs. (B.21) and (B.23).
The vector potential corresponding to the electric field defined above is
At = −i(cE/2ω)e−iωt + c.c. Let us write the Hamiltonian (1) in the
second quantization representation, introducing the operators of anni-
hilation (creation) of electrons in the conduction and valence bands as
âcσp and âvσp (â+

cσp and â+
vσp), respectively:

Ĥt =
∑
σp

[
Ec(p, t)â+

cσpâcσp + Ev(p, t)â+
vσpâvσp

]
−
∑
σσ′p

Wσσ′(p, t)
(
â+

cσpâvσ′p + â+
vσpâcσ′p

)
. (2)

The time-dependent energies are given by

Ec,v(p, t) = ±ms2ηp ∓ ep · At

cηpm
, (3)

where the upper and lower signs stand for the c- and v-bands, respec-
tively. The interband matrix elements of the perturbation operator are
defined as

Wσσ′(p, t) =
es

c
At ·

[
σ̂ − ηp − 1

ηp

p(σ̂ · p)
p2

]
σσ′

. (4)

Since the interband coupling may occur between different spin states,
the matrix Wσσ′ , in general, is not diagonal in the spin index σ = ±1.

Below we considerably simplify the problem by using the resonance
approximation for the interaction of electrons with the field. We also
assume that the excitation quantum �ω is close to the energy gap εg

so that the energies of the conduction- and valence-band electrons in-
teracting with the field are not far from the band extrema, and the
non-parabolicity effects can be neglected. The Hamiltonian (2) in these
approximations is reduced to (problem 11.11)

Ĥt =
∑
σp

[
Ec(p)â+

cσpâcσp + Ev(p)â+
vσpâvσp

]
+
∑
σσ′p

i
es

2ω
E · 〈σ|σ̂|σ′〉

(
e−iωtâ+

cσpâvσ′p − eiωtâ+
vσpâcσ′p

)
, (5)

where Ec,v(p) � ±[εg/2 + p2/2m]. It is convenient to apply the electric
field E along OZ axis to make the second term of the Hamiltonian (5)
diagonal in the spin index, since 〈σ|σ̂z |σ′〉 = σδσσ′ . The time-dependent
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Schroedinger equation i�∂ψ(t)/∂t = Ĥtψ(t) can be transformed by the
unitary transformation ψ(t) = Ûtφ(t) with

Ût = exp

[
− iωt

2

∑
σp

(â+
cσpâcσp − â+

vσpâvσp)

]
. (6)

As a result, we obtain the Schroedinger equation i�∂φ(t)/∂t = Ĥφ(t) for
the wave function φ(t), where the Hamiltonian Ĥ is time-independent:

Ĥ = Û+
t ĤtÛt − i�Û+

t

∂Ût

∂t
. (7)

Calculating the right-hand side of Eq. (7) with the use of Eqs. (5) and
(6), we find (problem 11.12)

Ĥ =
∑
σp

[
ξp

(
â+

cσpâcσp − â+
vσpâvσp

)
− iσβ

(
â+

cσpâvσp − â+
vσpâcσp

)]
, (8)

where β = |e|Es/2ω and ξp = p2/2m − (�ω − εg)/2.
The Hamiltonian (8) can be diagonalized by introducing new opera-

tors of creation and annihilation according to

ĉ+,σp = λ+pâcσp − iσλ−pâvσp,

ĉ−,σp = λ−pâcσp + iσλ+pâvσp. (9)

The coefficients describing the transformation (9) are assumed to be
real, and they are normalized according to λ2

+p + λ2−p = 1. The inverse
transformation from quasiparticles to electrons is given by

âcσp = λ+pĉ+,σp + λ−pĉ−,σp,

âvσp = iσ(λ−pĉ+,σp − λ+pĉ−,σp). (10)

Choosing the coefficients as

λ+p =

√√√√1
2

+
ξp

2
√

ξ2
p + β2

, λ−p =

√√√√1
2

− ξp

2
√

ξ2
p + β2

, (11)

we find
Ĥ =

∑
i=±

∑
σp

εipĉ
+
iσpĉiσp , ε±,p = ±

√
ξ2
p + β2. (12)

The new spin-degenerate quasiparticle states described by the opera-
tors ĉ+,σp and ĉ−,σp are obtained as a result of hybridization of c-
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and v- states under interband photoexcitation. These quasiparticles
are quasienergy states (we remind that the notion of quasienergy ap-
pears as a generalization of the notion of stationary state for the case
when the Hamiltonian is a periodic function of time). The spectrum of
the new quasiparticles, ε±,p, is shown in Fig. 11.4 (a). Due to a finite
strength of electric field of the electromagnetic wave, the degeneracy
of the quasienergy states at |p| = pω ≡

√
m(�ω − εg) is lifted. As a

result, a gap opens in the energy spectrum in the vicinity of pω . The
magnitude of the gap, 2β = |e|Es/ω, is proportional to the field. The
new quasiparticles are fermions, and they obey the anticommutation
relations ĉiσpĉ+

i′σ′p′ + ĉ+
i′σ′p′ ĉiσp = δii′δσσ′δpp′ .

Figure 11.4. (a) Spectrum of quasiparticles at β = 0.2 p2
ω/m. (b) Stationary distri-

bution function fcp for the cases when we take into account only excitation (solid),
see Eq. (56.14), excitation and electron-phonon scattering (dashed), see Eq. (56.15),
and excitation and recombination (dotted), see Eq. (56.20).

Since the Hamiltonian (12) is diagonal, the quasiparticle densities n+
and n− are conserved. Moreover, if the excitation is turned on adia-
batically, the distribution functions of quasiparticles, fip = 〈〈ĉ+

iσpĉiσp〉〉,
as well as the non-diagonal components (i 	= i′) of their density matrix
〈〈ĉ+

iσpĉi′σp〉〉 should remain the same as in the absence of the excitation,
i.e., at β = 0. Therefore, they are found according to

〈〈ĉ+
+,σpĉ+,σp〉〉 = 〈〈ĉ+

+,σpĉ+,σp〉〉β=0 = λ2
−p|β=0 = θ(pω − p),

〈〈ĉ+
−,σpĉ−,σp〉〉 = 〈〈ĉ+

−,σpĉ−,σp〉〉β=0 = λ2
+p|β=0 = θ(p − pω), (13)

〈〈ĉ+
+,σpĉ−,σp〉〉 = 〈〈ĉ+

−,σpĉ+,σp〉〉 = −λ+pλ−p|β=0 = 0.

To obtain Eq. (13), we have taken into account that 〈〈â+
vσpâvσp〉〉β=0 = 1

and 〈〈â+
cσpâcσp〉〉β=0 = 〈〈â+

cσpâvσp〉〉β=0 = 〈〈â+
vσpâcσp〉〉β=0 = 0. Equa-
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tions (10) and (13) allow us to find the distribution functions of electrons
in the case of a finite excitation:

fcp = 〈〈â+
cσpâcσp〉〉 =

1
2

− |ξp|
2
√

ξ2
p + β2

, fvp = 1 − fcp. (14)

The distribution looks like a kink around pω , with a characteristic energy
width β; see Fig. 11.4 (b). If p = pω , we have fcp = fvp = 1/2, which
means that an electron can be found in the c- and v-bands with equal
probabilities, in accordance with the dynamical picture of an electron
undergoing interband oscillations and spending half of its time in each
band.

Of course, the behavior discussed above may take place only in the
absence of any relaxation. If the electron-phonon scattering is taken into
consideration, the electrons coming into the conduction band have a fi-
nite probability to scatter away from the resonance region and remain
for a long time in this band instead of going back to the valence band.
Eventually, a steady-state distribution corresponding to saturated opti-
cal absorption is reached, when (at T → 0 and β → 0) the c-band is
completely filled at p < pω , while the v-band is empty in this region. The
distribution functions of quasiparticles, fip = 〈〈ĉ+

iσpĉiσp〉〉, in this case
are the ordinary Fermi functions with common chemical potential. At
low temperatures, T � 2β, the distribution functions are f+p � 0 and
f−p � 1. Using Eq. (10), we find the distribution functions of electrons
in these conditions:

fcp = 1 − fvp =
1
2

− ξp

2
√

ξ2
p + β2

. (15)

This function looks like a Fermi distribution function broadened around
pω with a characteristic energy β, and fcp = fvp = 1/2 at p = pω .

Let us forget for a while about electron-phonon scattering and other
intraband scattering mechanisms, and consider the radiative interband
recombination. This process is important because it changes the occu-
pation numbers in the c- and v-bands. The Hamiltonian describing the
interaction of electrons with photons in the dipole approximation, see
Sec. 19 and Eq. (20.1), is written in the second quantization represen-
tation as

Ĥe,pht =
∑
µσσ′

∑
pq

√
2π�e2

ωqεV

[
〈cσp|v̂ · eqµ|vσ′p〉â+

cσpâvσ′p

+〈vσp|v̂ · eqµ|cσ′p〉â+
vσpâcσ′p

]
b̂qµ + H.c. , (16)
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where b̂qµ is the operator of annihilation of the photon with wave vector
q and polarization index µ (µ = 1, 2). We consider only the interband
matrix elements of the velocity operator in this Hamiltonian. The uni-
tary transformation defined by the operator (6) brings the factors eiωt at
â+

cσpâvσ′p and e−iωt at â+
vσpâcσ′p thereby making the Hamiltonian time-

dependent: Ĥe,pht → Ĥe,pht(t). In the resonance approximation, only
the terms proportional to eiωtbqµâ+

cσpâvσ′p and e−iωtb+
qµâ+

vσpâcσ′p are es-
sential in this Hamiltonian. Let us apply the canonical transformation
(10) to Ĥ + Ĥe,pht(t). The Hamiltonian obtained in this way describes
the interaction of quasiparticles with photons. Assuming that the quasi-
particles are well-defined, which means that β/� is large in comparison
to the radiative recombination rate νR, one can derive a kinetic equa-
tion for quasiparticles in the diagonal approximation (by neglecting the
non-diagonal components of the density matrix) in a similar way as in
Sec. 19; see also problems 7.3 and 11.1. Neglecting also the occupa-
tion numbers of equilibrium photons under the condition when only the
spontaneous recombination is essential, we write the kinetic equation as
(problem 11.13)

∂f+p

∂t
= −∂f−p

∂t
= 2

∑
q

(2πes)2

V ωqε

{
λ4

−pδ(2
√

ξ2
p + β2 + �ωq − �ω)

×f−p(1 − f+p) − λ4
+pδ(2

√
ξ2
p + β2 − �ωq + �ω)f+p(1 − f−p)

}
. (17)

The sum over q is calculated in a similar way as in Eqs. (38.4) and
(38.5). Neglecting the ratio 2

√
ξ2
p + β2/�ω, we reduce Eq. (17) to

∂f+p

∂t
= −∂f−p

∂t
= JR(f | + p)

= νR[λ4
−pf−p(1 − f+p) − λ4

+pf+p(1 − f−p)], (18)

where the recombination rate νR is given by Eq. (38.5). Equation (18)
can be solved by using the relation f−p = 1 − f+p, which is just a re-
quirement of conservation of the total number of quasiparticles with a
given momentum p (the radiative recombination in the dipole approx-
imation conserves the momentum). In the stationary case, there is a
simple solution

f+p = λ2
−p , f−p = λ2

+p , (19)

which also gives us the distribution functions of electrons

fcp = 1 − fvp = 2λ2
+pλ

2
−p =

1
2

β2

ξ2
p + β2 . (20)
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This is a Lorentz function of the variable ξp; see Fig. 11.4 (b). The radia-
tive recombination smooths the sharp kink of the electron distribution
function (14).

The scattering due to different mechanisms smears the narrow sta-
tionary distribution (20) over a wide region of momenta. As we already
noted, the electron-phonon scattering, if it occurs much faster than the
recombination, establishes the distribution (15). The electron-impurity
scattering alone cannot establish such a distribution, because it is elas-
tic. Nevertheless, this kind of scattering tends to a similar smearing.
Below we consider the kinetic equation which accounts for both electron-
impurity scattering and recombination. The second-quantized Hamil-
tonian of electron-impurity interaction, Ĥe,im = V −1∑

σpp′ Uim(p −
p′)[â+

cσpâcσp′ + â+
vσpâvσp′ ], where Uim is given by Eq. (14.3), is not mod-

ified by the unitary transformation defined by the operator (6). Applying
the canonical transformation (10), we rewrite this Hamiltonian as

Ĥe,im =
1
V

∑
σpp′

Uim(p − p′)
{
(λ+pλ+p′ + λ−pλ−p′)[ĉ+,σpĉ+,σp′ (21)

+ĉ−,σpĉ−,σp′ ] + (λ+pλ−p′ − λ−pλ+p′)[ĉ+,σpĉ−,σp′ − ĉ−,σpĉ+,σp′ ]
}

.

To derive the electron-impurity collision integral based on the Hamil-
tonian (21), one should act in a similar way as in Chapter 2. The
weight factors containing λ+ and λ− manifest themselves in the matrix
elements determining the scattering probabilities for the quasiparticles.
In the diagonal approximation, we neglect interband scattering of the
quasiparticles, because it is forbidden by the energy conservation law.
As a result (compare to Eq. (8.7)), we obtain (i = ±)

Jim(f |ip) =
2πnim

�V

∑
p′

|v(|p − p′|/�)|2δ(εip − εip′)

×(λ+pλ+p′ + λ−pλ−p′)2(fip′ − fip). (22)

The scattering described by Eq. (22) is elastic: the quasiparticle tran-
sitions occur between the states with equal energies. If p2 > 2p2

ω , there
is only one branch of the isoenergetic surfaces in the spectrum of quasi-
particles of each kind; see Fig. 11.4 (a). The collision integral (22)
for this region is equal to zero because the quasiparticle distribution is
isotropic. In the region p2 < 2p2

ω , there are two branches corresponding
to ξp < 0 (or, equivalently, p < pω) and ξp > 0 (p > pω). The collision
integral is non-zero only if p and p′ belong to the different branches.
This scattering corresponds to the electron scattering between c- and
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v-bands in the presence of a high-frequency field, and its probability
rapidly decreases away from the resonance p = pω . The isotropy of elec-
tron distribution allows one to average |v(|p − p′|/�)|2 over the angle of
p′. Below, however, we use the model of short-range impurity potential,
when v(|p − p′|/�) � v is independent of p − p′.

The stationary kinetic equations JR(f |ip) + Jim(f |ip) = 0, where JR

is given by Eq. (18), can be written for i = + and i = −, under the
assumption that the momentum p belongs either to the branch ξp < 0
(“<” branch) or to the branch ξp > 0 (“>” branch). Introducing four
functions, f<

± and f>
±, which are equal to f±p for < and > branches,

respectively, we obtain four algebraic equations connecting these func-
tions:

a−(f>
+ − f<

+) + b>2
p f<

−(1 − f<
+) − b<2

p f<
+(1 − f<

−) = 0,

a−(f>
− − f<

−) + b<2
p f<

+(1 − f<
−) − b>2

p f<
−(1 − f<

+) = 0,

a+(f<
+ − f>

+) + b<2
p f>

−(1 − f>
+) − b>2

p f>
+(1 − f>

−) = 0, (23)

a+(f<
− − f>

−) + b>2
p f>

+(1 − f>
−) − b<2

p f>
−(1 − f>

+) = 0,

where b>
p = 1/2 + ηp, b<

p = 1/2 − ηp, ηp = |ξp|/2
√

ξ2
p + β2, and a±(p) =

r(β2/
√

ξ2
p + β2|ξp|)

√
1 ∓ 2m|ξp|/p2

ω . According to Eq. (11), b>
p = λ2

+p

and b<
p = λ2−p at ξp > 0 (in a similar way, b>

p = λ2−p and b<
p = λ2

+p at
ξp < 0). The coefficients a±(p) are proportional to the ratio r = νim/νR,
where νim = nim |v|2mpω/π�

4 is the electron-impurity scattering rate
at p = pω . The square-root factor

√
1 ∓ 2m|ξp|/p2

ω describes the mo-
mentum dependence of the scattering rate corresponding to the energy
dependence of the density of states. This factor can be neglected in the
region |ξp| � p2

ω/2m.
Equations (23) should be accompanied by the normalization condition

f<
+ + f>

+ + f<
− + f>

− = 2 expressing the particle conservation. As a result,
we have f>

− = 1−f>
+ and f<

− = 1−f<
+, and the system is reduced to two

equations

x + y =
2η

a−

(
x2 − 1 + 4η2

4η
x +

1
4

)
,

x + y =
2η

a+

(
y2 − 1 + 4η2

4η
y +

1
4

)
, (24)

where η = ηp, x = f<
+ − 1/2 and y = −f>

+ + 1/2. In the vicinity of
the point ξp = 0, where a+ = a−, one has x = y, and an approxi-
mate solution at r � 1 can be written as x = 0. In other words, the
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electron-impurity scattering tends to make the distribution function of
quasiparticles flat (equal to 1/2) in some region around p � pω . To
describe the whole region of p, one should solve Eq. (24) numerically.
The results of such calculations for several different r are shown in Fig.
11.5, where we plot the distribution functions of the conduction-band
electrons, fcp = 1/2 − 2ηx at p < pω and fcp = 1/2 − 2ηy at p > pω ,
instead of the distribution functions of quasiparticles. As the impurity
scattering becomes stronger, fcp comes closer to the dependence given
by Eq. (15) rather than to the one of Eq. (20).

Figure 11.5. Stationary distribution function fcp determined by mutual action of
recombination and electron-impurity scattering. It is assumed that β = 0.2 p2

ω/m,
and the curves correspond to different ratios r = νim/νR.

So far we have considered the case when the quasiparticles are well-
defined. However, if the high-frequency field is not very strong, the gap
energy, 2β, can become comparable to the energy of collision-induced
broadening. In this case the coherence is suppressed, and the gap
in the spectrum may vanish. This effect is demonstrated below on
the example of linear absorption of an additional weak electromagnetic
wave E1e

−iω1t + c.c. whose frequency ω1 is close to ω. We consider
the interaction of electrons with the impurity potential described by
the Hamiltonian Ĥe,im given above. The absorption coefficient α(E)

ω1 =
4πReσ(ω1)/c

√
ε, where the superscript (E) indicates the absorption in

the presence of interband pumping, is expressed through the real part
of the conductivity σ(ω1). The latter is defined according to It =
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(e/V )Sp∆̂ηtv̂ = σ(ω1)E1e
−iω1t + c.c. To apply the formalism of Sec. 13

for calculating the non-equilibrium part ∆̂ηt of the statistical operator,
one should carry out the unitary transformation described by the opera-
tor (6) and making the equilibrium Hamiltonian time-independent. The
transformed Hamiltonian is Ĥ = Ĥ + Ĥe,im , and we remind that Ĥe,im

is not changed by the unitary transformation. The operator of the inter-
band perturbation, i(es/ω1)E1 · σ̂ρ̂1e

−iω1t + H.c. ≡ ∆̂Hω1e
−iω1t + H.c.,

should be transformed accordingly (we remind that the matrices ρ̂i,
i = 1, 2, 3 are defined by Eq. (B.19)). Finally, ∆̂ηt is determined by
the inverse unitary transformation of the expression obtained in this
way (compare the equation given below to Eq. (13.3)):

∆̂ηt = Ût
1
i�

∫ t

−∞
dt′eλt′eiĤ(t′−t)/�

×
[
Û+

t′

(
∆̂Hω1e

−iω1t′ + H.c.
)

Ût′ , η̂eq

]
e−iĤ(t′−t)/�Û+

t . (25)

Applying this expression in order to calculate the current density It, we
use the identity Û+

t σ̂ρ̂1Ût = eiωtσ̂P̂cv + e−iωtσ̂P̂vc, where the interband
projection operators are defined as P̂cv = (ρ̂1 + iρ̂2)/2 and P̂vc = (ρ̂1 −
iρ̂2)/2. With τ = t′ − t, we write the conductivity in the form

σ(ω1) =
(es)2

�ω1V

∫ 0

−∞
dτeλτ−iδωτ Spη̂eq

[
e−iĤτ /�P̂vce

iĤτ /�, P̂cv

]
, (26)

where δω = ω1 − ω.
Evaluating the trace in Eq. (26) in the exact eigenstate representation,

one should use 〈δ|P̂jj′ |δ′〉 =
∑

p〈δ|jp〉〈j′p|δ′〉, where j, j′ = c, v. Acting
in this way, we express the real part of the conductivity through the
two-particle averages of the retarded and advanced Green’s functions in
the momentum representation. These functions are defined as

GR,A
ε (jp, j′p′) =

∑
δ

ψ(δ)
jpψ(δ)∗

j′p′

ε − εδ ± iλ
, (27)

where the upper and lower signs stand for R and A, respectively. This
equation is an obvious generalization of Eq. (14.1) to the case of several
bands. With the use of Eq. (27), the absorption coefficient is written as

α(E)
ω1

=
2(es)2

c
√

εω1V

∫
dε[f(ε) − f(ε + �δω)]

∑
s,s′=R,A

(−1)l

×
∑
pp′

〈〈Gs
ε+�δω(cp, cp′)Gs′

ε (vp′, vp)〉〉, (28)
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where l = 0 for s 	= s′, l = 1 for s = s′, and f(ε) is the equilibrium Fermi
distribution function. The sign of α(E)

ω1 is determined by the sign of
[f(ε) − f(ε + �δω)]. We stress that the equilibrium state of the electron
system under a strong interband excitation is a saturated state with
inverted population of electrons at p < pω . It is for this reason that the
absorption coefficient is positive for δω > 0 and negative for δω < 0. For
a perfect crystal, when the electron-impurity interaction is absent and
the exact eigenstates are the quasiparticle states introduced above, we
have GR,A

ε (vp′, vp) = δpp′ [λ2−p/(ε− ε+,p ± iλ)+λ2
+p/(ε− ε−,p ± iλ)] and

GR,A
ε (cp, cp′) = δpp′ [λ2

+p/(ε− ε+,p ± iλ)+λ2−p/(ε− ε−,p ± iλ)] according
to Eqs. (27) and (12). Since at T � 2β f(ε+,p) = 0 and f(ε−,p) = 1,
we write the absorption coefficient as

α(E)
ω1

=
(2es)2

c
√

ε�3ω1

∫ ∞

0
dp p2

[
λ4

+pδ(2
√

ξ2
p + β2 − �δω)

−λ4
−pδ(2

√
ξ2
p + β2 + �δω)

]
. (29)

The absorption is an antisymmetric function of δω. It has a gap, which
means that the absorption is absent at |δω| < 2β/�. Near the edges δω =
±2β/�, there is a simple relation α(E)

ω1 = (αω/2)δω/
√

(δω)2 − (2β/�)2,
where αω is given by Eq. (17.6) (note that µ∗ = m/2 for the symmetric
two-band model we use). The inverse-square-root divergence of the ab-
sorption at the edges reflects effective one-dimensional behavior of the
density of states near the extremum for the quasiparticles whose energy
spectrum is shown in Fig. 11.4 (a). The divergence of this kind should
be washed out if we take into account scattering of the quasiparticles.

To find the absorption in the presence of impurities, one has to eval-
uate the two-particle average in Eq. (28). Without going into details of
such calculation, we put some general remarks concerning properties of
the Green’s functions. The basis of c- and v-states appears to be conve-
nient, because the matrix elements of electron-impurity interaction are
diagonal with respect to the band indices. Therefore, the diagram tech-
nique developed in Secs. 14 and 15 can be applied in a straightforward
way when calculating such averages. The only difference is that all rele-
vant equations, in particular, the Dyson and Bethe-Salpeter equations,
should be written for 2 × 2 matrices with (jj′) = (cc), (cv), (vc), and
(vv) elements (problem 11.14). The one-particle Green’s function, av-
eraged over the impurity ensemble, is a matrix Ĝs

ε(p) whose elements
are [Gs

ε(p)]jj′ . Since the Hamiltonian (8) in this matrix representation
can be written through the Pauli matrices as σ̂zξp + σ̂yσβ, the averaged
Green’s function is governed by the following equation:

[ε − σ̂zξp − σ̂yβ − Σ̂s
ε(p)]Ĝs

ε(p) = 1̂, (30)
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which is equivalent to four scalar equations. Strictly speaking, β in Eq.
(30) should be multiplied by σ = ±1 for different spin states. This
substitution, however, does not change any observable value, while spin
summation leads only to a factor of 2 in the expressions for observable
values. For this reason, we omit the spin index in the Green’s functions.
The matrix of the self-energy functions is given by an expansion similar
to Eq. (14.26). In the lowest order in the perturbation,

Σ̂s
ε(p) =

nim

V

∑
p′

|v(|p − p′|/�)|2Ĝs
ε(p

′). (31)

Using this relation together with Eq. (30), we express the components
of Σ̂s

ε(p) as [Σs
ε(p)]vc = −[Σs

ε(p)]cv ≡ Σ̃s
ε(p) and [Σs

ε(p)]cc = [Σs
ε(p)]vv ≡

Σs
ε(p). The Green’s functions are expressed as (we take into account

that the averaged Green’s functions are isotropic in p)

[Gs
ε(p)]cc = [ε + ξp − Σs

ε(p)]/Ds
ε(p),

[Gs
ε(p)]vv = [ε − ξp − Σs

ε(p)]/Ds
ε(p),

[Gs
ε(p)]vc = −[Gs

ε(p)]cv = [iβ + Σ̃s
ε(p)]/Ds

ε(p), (32)

Ds
ε(p) = [ε − Σs

ε(p)]2 − ξ2
p − [β − iΣ̃s

ε(p)]2.

Since we are interested in the region p � pω and |ε| � β, the contribution
to the sum over p′ in Eq. (31) comes from the region p′ � pω , where
the denominator Ds

ε(p
′) is small. We may, therefore, transform this sum

to an integral over ξp, setting the limits of the integration at ±∞. In
this approximation and under the assumption of short-range scattering
potential, Σs and Σ̃s appear to be independent of momentum. Substi-
tuting the expressions (32) into Eq. (31), we find a couple of equations
for Σs and Σ̃s in this approximation. It is convenient to write these
equations through the function u(ε) = (ε − ΣR

ε )/(β − iΣ̃R
ε ):

ΣR
ε = −�νim

2
u√

1 − u2
, Σ̃R

ε = −i
�νim

2
√

1 − u2
. (33)

The system of equations (33) is reduced to a single equation for u(ε):

ε

β
= u − u

χ
√

1 − u2
, χ =

β

�νim
. (34)

This equation is to be solved numerically. The function u(ε) can be used
to express the density of states (problem 11.15) whose energy dependence
is shown in Fig. 11.6. The spectral dependence of the absorption α(E)

ω1 is
similar to the energy dependence of the density of states. In particular,
the absorption has a gap only at χ > 1.
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Figure 11.6. Density of electron states under interband pumping in the presence of
impurities for χ = β/�νim =0.5, 1, 2, and 10 (ρ0 is defined in problem 11.15). The
dashed line shows the density of states in the absence of impurities, when χ → ∞.

57. Excitation of Coherent Phonons
The description of the lattice vibration modes carried out in Secs.

19, 21, 22, and 27 was based upon the formalism of phonon density
matrix. This matrix is quadratic in atomic displacements or, equiva-
lently, in the operators of creation and annihilation of phonons. Such
quadratic forms were also used in the definition of the Green’s functions
of phonons in Sec. 42 and Appendix D. However, the coherent vibra-
tion of the lattice involves non-zero average displacements, and one has
to consider equations of motion for 〈〈b̂q〉〉t and 〈〈b̂+

q 〉〉t by taking into
account electron-phonon and phonon-phonon interactions. The coher-
ent phonon oscillations can be excited in semiconductors or insulators
by ultrashort laser pulses causing abrupt redistribution of electron den-
sity. The electric fields and elastic displacements appearing as a result
of such redistribution lead to the lattice vibration characterized by the
coherent amplitudes of atomic displacements. Experimental observa-
tion of the coherent phonon oscillations is possible with the use of the
double-pulse technique. A powerful pump pulse creates the lattice oscil-
lations which modify the optical characteristics of the medium. Then,
a weak probe pulse is used to measure these modified characteristics.
Below we consider the photoexcitation of coherent phonon oscillations



Photoexcitation 521

by an ultrashort laser pulse and their damping owing to the relaxation
caused by the phonon-phonon interaction, without going into details of
the detection of coherent phonons.

The operator of atomic displacement is expressed in terms of the nor-
mal coordinate Q̂ql describing the l-th phonon mode with wave vector q,
according to Eq. (6.5). The normal coordinate is expressed through the
creation and annihilation operators according to Eq. (6.9). The long-
wavelength acoustic phonons are described by the coordinate-dependent
lattice displacement ûac(r), see Eq. (6.29), which is written as

ûac(r) =
∑
ql

eql√
ρV

eiq·rQ̂ql. (1)

The relative ionic displacement ŵ(r) characterizing the long-wavelength
optical phonons has the same form; see Eq. (6.19). The difference be-
tween these two cases is taken into account just by a formal substitution,
ρ → ρ, where ρ for the case of optical phonons is expressed through the
reduced mass of crystal cell, M , which enters Eq. (6.14). The aver-
aged displacement is given in terms of the averaged normal coordinate,
〈〈Q̂ql〉〉t, which satisfies the following equation:

∂〈〈Q̂q〉〉t

∂t
= − i

�
Sp[Ĥ, η̂t]Q̂q = − i

�
〈〈[Q̂q, Ĥph + Ĥe,ph + Ĥph,ph]〉〉t . (2)

Here and below we use the multi-indices q ≡ ql and −q ≡ −ql. The
free-phonon Hamiltonian, Ĥph, the Hamiltonian of electron-phonon in-
teraction, Ĥe,ph, and the Hamiltonian of phonon-phonon interaction,
Ĥph,ph, are given by Eqs. (3.12), (19.2), and (6.31), respectively. After
calculating the commutators, one can transform Eq. (2) to the form

∂〈〈Q̂q〉〉t

∂t
= 〈〈P̂q〉〉t − i√

2�ωq

〈〈∑
j

(χ̂(j)+
q − χ̂(j)

−q)

〉〉
t

, (3)

where P̂q ≡ P̂ql is the operator of normal momentum. This operator
appears from the commutator [Q̂q, Ĥph] and is expressed in terms of cre-
ation and annihilation operators according to Eq. (6.9). The commuta-
tion relation for P̂q and Q̂q is given by Eq. (6.7). Since [Q̂q, Ĥph,ph] = 0,
the phonon-phonon collisions do not influence the evolution of the av-
eraged coordinate in a direct way. However, the contribution of higher-
order correlation functions leads to the relaxation of the averaged coordi-
nate due to these collisions, see below. We also note that the second term
on the right-hand side of Eq. (3) is equal to zero because the Hamilto-
nian of electron-phonon interaction is Hermitian and, as a consequence,
χ̂(j)+

q = χ̂(j)
−q .
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Calculating the second derivative of the normal coordinate over time,
one obtains the equation of motion

∂2〈〈Q̂q〉〉t

∂t2
=

1
i�

〈〈[P̂q , Ĥph + Ĥe,ph + Ĥph,ph]〉〉t , (4)

which is conveniently rewritten in the form(
∂2

∂t2
+ ω2

q

)
〈〈Q̂q〉〉t = Fqt +

1
i�

〈〈[P̂q , Ĥph,ph]〉〉t . (5)

The term ∝ ω2
q follows from the commutator with Ĥph. In the right-

hand side of Eq. (5), apart from the relaxation contribution due to
phonon-phonon collisions, we have introduced the driving force caused
by electron-phonon interaction:

Fqt =
1
i�

〈〈[P̂q , Ĥe,ph]〉〉t = −
√

ωq

2�

〈〈∑
j

(χ̂(j)+
q + χ̂(j)

−q)

〉〉
t

. (6)

This force is proportional to the constants of electron-phonon coupling.
Consider, for example, a simple two-band model, where∑

j

χ̂(j)
ql = 2

∑
pq

C(c)
ql â+

cp+�qâcp + 2
∑
pq

C(v)
ql â+

vp+�qâvp. (7)

The factor of 2 comes from the sum over spin variables. Note that, in the
case of interaction with long-wavelength phonons, the coupling constants
C(c)

ql and C(v)
ql do not depend on p. Equation (7) is a straightforward

generalization of the single-band model, and the constants C(c)
ql = Cq

for the cases of deformation-potential interaction of conduction-band
electrons with longitudinal acoustic phonons and Froelich interaction
with longitudinal optical phonons are given by Eq. (21.1). Taking into
account Eqs. (6) and (7), we obtain

Fqt ≡ Fqlt = −
√

2ωql

�

(
C(c)

ql − C(v)
ql

) ρq(t)
e

, (8)

where the Fourier component of the charge density in the conduction
band, ρq(t) = 〈〈ρ̂q〉〉t , appears after averaging the charge density oper-
ator ρ̂q = 2e

∑
p â+

cpâcp+�q.
Since the density of electrons generated in the conduction band by an

optical pulse is equal to the density of electrons coming from the valence
band, we obtain the difference of the coupling constants in Eq. (8).
Considering the deformation mechanism of electron-phonon interaction,
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one can always assume that this difference is not equal to zero, because
the microscopic fields acting on electrons in the conduction and valence
bands are different. For example, expressing the constants of electron
coupling to longitudinal acoustic phonons in terms of the deformation
potentials, we obtain

C(c)
qLA − C(v)

qLA =

√
�q

2slρV
(D(c) − D(v)), (9)

where sl is the longitudinal sound velocity. Therefore, there exists a
driving force directly proportional to the Fourier component of the pho-
toexcited electron density. If we consider the excitation of phonons by
macroscopic electric fields, the driving force is equal to zero, because the
total generated charge is zero (the number of conduction-band electrons
is equal to the number of holes in the valence band) and the electro-
static field is absent. However, this is true only for homogeneous media.
In real samples the excitation takes place in the depletion region near
the surface. There, owing to the presence of a built-in electric field,
the excited electrons and holes start to drift in the opposite directions
thereby creating a macroscopic electrostatic field which acts on the ionic
sublattices. The excitation of the longitudinal optical phonons becomes
possible in this way (problem 11.16).

It is important that a single optical pulse creates carriers in a macro-
scopically uniform state, and the photoexcited electron density can con-
tain only the components with very small q, of the order of inverse size
of the laser beam spot or inverse absorption length. Optical excitation
with two pulses may result in a transient density grating with |q| of the
order of inverse light wavelength. In any case, the driving force Fqlt

excites only the phonons with q much smaller than the Brillouin zone.
Microscopically, one can regard them as phonons with q = 0, expressing
the driving force according to Eq. (8) with ρq(t) = δq,0eV nct, where
nct = (2/V )

∑
p fcpt is the electron density. Therefore, according to Eq.

(54.4), the temporal dependence of the driving force is determined by the
ultrafast photogeneration. A strong optical pulse creates a macroscop-
ically large number of coherent phonons in the center of the Brillouin
zone.

If we neglect the phonon-phonon relaxation term in Eq. (5), this
equation, with the initial condition 〈〈Q̂q〉〉t→−∞ = 0, is solved as

〈〈Q̂q〉〉t =
∫ t

−∞
dt′k(t − t′)Fqt, k(τ) =

sin ωqτ

ωq
. (10)

Because of the oscillating nature of the kernel k(t − t′) in this integral
expression, the coherent phonon oscillations can be efficiently excited
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only under an ultrafast pump, when the characteristic time scale of Fqt

is smaller than ω−1
q .

Let us consider the damping of coherent phonons due to their interac-
tion with equilibrium phonons. First, we simply replace the relaxation
contribution in Eq. (5) by −2γq〈〈P̂q〉〉t = −2γq(∂〈〈Q̂q〉〉t/∂t), where γq is
a phenomenological relaxation rate. As a result, we obtain the equation
of motion for the classical oscillator damped by a friction force:(

∂2

∂t2
+ 2γq

∂

∂t
+ ω2

q

)
〈〈Q̂q〉〉t = Fqt. (11)

Its solution is also given by Eq. (10), where, however, the kernel k(τ) =
ω̃−1

q e−γqτ sin ω̃qτ contains an exponentially decreasing factor and the

renormalized frequency ω̃q =
√

ω2
q − γ2

q . If γq � ωq , this solution de-
scribes weakly damped oscillations, and the frequency decreases because
the friction slows down the response of the system. A microscopic de-
scription of the damping of coherent oscillations cannot be directly re-
duced to the description given in Chapter 5 for the relaxation of the
phonon density matrix. Below we consider the damping based on a
microscopic theory.

Calculating the commutator in Eq. (5), we reduce the last term on
the right-hand side of this equation to the form

− 1
2
√

ρV

∑
q1q2

β(−q, q1, q2)〈〈Q̂q1Q̂q2〉〉t ≡ −
∑
q1q2

CQQ, (12)

where CQQ ≡ β(−q, q1, q2)〈〈Q̂q1Q̂q2〉〉t/2
√

ρV . The correlation function
〈〈Q̂q1Q̂q2〉〉t satisfies the following equation:

∂〈〈Q̂q1Q̂q2〉〉t

∂t
=

1
i�

〈〈[Q̂q1Q̂q2 , Ĥph + Ĥph,ph]〉〉t . (13)

Neglecting the mixing of electron-phonon and phonon-phonon contri-
butions, we do not include the Hamiltonian Ĥe,ph in the commuta-
tor. Equation (13) couples 〈〈Q̂q1Q̂q2〉〉t to the correlation functions
〈〈Q̂q1P̂q2〉〉t and 〈〈P̂q1Q̂q2〉〉t . They, in turn, satisfy equations of mo-
tion similar to Eq. (13) and are coupled to 〈〈P̂q1P̂q2〉〉t . By analogy to
Eq. (12), we introduce three other coefficients,∣∣∣∣∣∣

CQP

CPQ

CPP

∣∣∣∣∣∣ =
β(−q, q1, q2)

2
√

ρV

∣∣∣∣∣∣
〈〈Q̂q1P̂q2〉〉t

〈〈P̂q1Q̂q2〉〉t

〈〈P̂q1P̂q2〉〉t

∣∣∣∣∣∣ , (14)
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and compose the system of equations

∂CQQ/∂t = CQP + CPQ

∂CQP /∂t = CPP − ω2
q2

CQQ − MQP

∂CPQ/∂t = CPP − ω2
q1

CQQ − MPQ

∂CPP /∂t = −ω2
q1

CQP − ω2
q2

CPQ − MPP

(15)

with zero initial conditions at t = 0. This system has the same form as
Eq. (27.23).

The terms MQP , MPQ, and MPP come from the commutators of Ĥph,ph

with Q̂q1P̂q2 , P̂q1Q̂q2 , and P̂q1P̂q2 , respectively. The system (15) becomes
closed if we calculate these terms within the second-order accuracy with
respect to phonon-phonon coupling coefficients β. This implies that the
three-operator averages appearing in MQP , MPQ, and MPP after calcu-
lating the commutators are evaluated in the free-phonon approximation.
For example,

〈〈Q̂q1Q̂q2Q̂q3〉〉t � 〈〈Q̂q1〉〉t〈〈Q̂q2Q̂q3〉〉t + 〈〈Q̂q2〉〉t〈〈Q̂q1Q̂q3〉〉t

+〈〈Q̂q3〉〉t〈〈Q̂q1Q̂q2〉〉t = 〈〈Q̂q1〉〉tδ−q2,q3(2Nq2 + 1)�/2ωq2 (16)

+〈〈Q̂q2〉〉tδ−q3,q1(2Nq3 + 1)�/2ωq3 + 〈〈Q̂q3〉〉tδ−q1,q2(2Nq1 + 1)�/2ωq1 ,

where Nq is the occupation number of phonons (Nq = N−q since the
system is isotropic). Neglecting possible heating of the phonon system
during the photoexcitation, one can treat Nq as the equilibrium Planck
distribution given by Eq. (3.28). Applying the procedure of averaging
given by Eq. (16) to the commutators of Ĥph,ph with Q̂q1P̂q2 , P̂q1Q̂q2 ,
and P̂q1P̂q2 , one should omit the terms which contain the averages of two
phonon operators standing in the Hamiltonian Ĥph,ph. The calculation
done in this way leads us to the following expressions:

MQP (t) =
�(Nl1

q1
+ 1/2)

2ρV ωq1l1

∑
l′

βll1l2(−q,q1,q2)

×βl′l1l2(q,−q1, −q2)〈〈Q̂l′q〉〉t , (17)

MPQ(t) =
�(Nl2

q2
+ 1/2)

2ρV ωq2l2

∑
l′

βll1l2(−q,q1,q2)

×βl′l1l2(q,−q1, −q2)〈〈Q̂l′q〉〉t , (18)
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and MPP (t) = 0. To obtain these expressions, we have used the property
βl1l2l3(q1,q2,q3) ∝ ∆q1+q2+q3,0 (see Sec. 6 and Chapter 5), and the
umklapp processes have been neglected because q is small.

The exact solution of the system (15) with respect to CQQ is written
as (problem 11.17)

CQQ(t) =
∫ t

−∞
dt′
{

MQP (t′)
sin[ωq2(t

′ − t)]
ωq2

cos[ωq1(t
′ − t)]

+MPQ(t′)
sin[ωq1(t

′ − t)]
ωq1

cos[ωq2(t
′ − t)] (19)

−MPP (t′)
sin[ωq1(t

′ − t)]
ωq1

sin[ωq2(t
′ − t)]

ωq2

}
.

Since MPP (t) = 0 under the approximations we use, the last term in
this expression vanishes. The terms containing MQP and MPQ can be
transformed by integrating over t′ by parts. As a result, only the deriva-
tives of the averaged coordinate remain in Eq. (19) after substituting
the expressions (17) and (18) there. Therefore, the general form of the
relaxation term (12) is

∑
l′

[
K(ll′)

q (0)〈〈Q̂l′q〉〉t −
∫ t

−∞
dt′K(ll′)

q (t − t′)
∂〈〈Q̂l′q〉〉t′

∂t′

]
, (20)

where the kernel K(ll′)
q (τ) depends on the absolute value of τ . The ex-

plicit form of this kernel is deduced from the expressions (17)−(19):

K(ll′)
q (τ) =

∑
l1l2

∑
q1q2

�βll1l2(−q,q1,q2)βl′l1l2(q,−q1, −q2)
4ρV ωq1l1ωq2l2

×
[
(Nl1

q1
+ Nl2

q2
+ 1)

cos[(ωq1l1 + ωq2l2)τ ]
ωq1l1 + ωq2l2

(21)

+(Nl2
q2

− Nl1
q1

)
cos[(ωq1l1 − ωq2l2)τ ]

ωq1l1 − ωq2l2

]
.

The first term in this expression corresponds to a decay of the coher-
ent phonon ql into two phonons, q1l1 and q2l2, while the second term
corresponds to a fusion of this phonon with another one. Both these
processes are responsible for phonon relaxation; see Chapter 5.

Substituting the expression (20) in place of the last term of the right-
hand side of Eq. (5), one can see that the phonon-phonon collisions
lead to non-Markovian contribution to phonon dynamics. Apart from
this, different modes with the same wave vector mix because of these
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collisions. Neglecting this mixing, i.e., considering only the terms with
l′ = l in K(ll′)

q (τ), we obtain a single-mode integro-differential equation

(
∂2

∂t2
+ ω2

q

)
〈〈Q̂q〉〉t +

∫ t

−∞
dt′ Kq(t − t′)

∂〈〈Q̂q〉〉t′

∂t′
= Fqt, (22)

where we again use the multi-indices q ≡ ql and the definition Kq(τ) ≡
K(ll)

q (τ). According to Eq. (21), Kq(τ) is real since βll1l2(−q,q1,q2) =

β∗
ll1l2

(q,−q1, −q2). The frequency ωq =
√

ω2
q − Kq(0) is slightly smaller

than ωq due to the contribution of the first term from the expression
(20). To prove that the integral term in Eq. (22) leads to dissipation,
one can carry out a Fourier transformation of Eq. (22). As a result of
this transformation, Eq. (22) becomes an algebraic equation, and the
Fourier component 〈〈Q̂q〉〉ω =

∫∞
−∞ dteiωt〈〈Q̂q〉〉t is given by

〈〈Q̂q〉〉ω = − Fqω

ω2 − ω2
q + iωΓqω

, (23)

where Fqω is the Fourier transform of the driving force. Next, Γqω =∫ 0
−∞ dτ e−iωτ+λτ Kq(τ), where λ → +0. Since the real part of Γqω is

normally positive (problem 11.18), the expression (23) corresponds to a
damped mode (check with the corresponding results of Sec. 27).

To prove that the microscopically derived equation (22) is related to
the phenomenological equation (11), one needs to investigate the kernel
Kq(t − t′). We have already noted that Kq(t − t′) depends only on the
absolute value of its argument. One can expect that Kq(t− t′) decreases
with increasing |t − t′|, because it is formed as a sum of the oscillating
functions cos[(ωq1 ± ωq2)(t − t′)] over the modes q1 and q2 with different
frequencies (problem 11.19). The characteristic scale of the decrease is
estimated as ∆ω−1, where ∆ω is the width of the frequency band of
the phonons participating in the collisions. In the case of phonon decay
processes (the first term in Eq. (21)), ∆ω is of the order of optical
phonon frequency. For the dynamical processes whose characteristic
times (the period of oscillations and decay time) are large in comparison
to ∆ω−1, the kernel Kq(t − t′) can be effectively approximated by a δ-
function. In particular, when Kq(t−t′) = 4γqδ(t−t′), Eq. (22) is directly
reduced to Eq. (11). Therefore, the phenomenological equation (11) is
microscopically justified for the acoustic phonons whose frequencies ωq

are small. However, this equation cannot be justified for application to
the coherent oscillations of optical phonon modes.
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Problems
11.1. Prove that the non-diagonal components of the density matrix,

〈δ|ρ̂t|δ′〉 ≡ ρδδ′ , are small if |εδ − εδ′ |/� is large in comparison to the
rates of generation and collision-induced relaxation.

Solution: In the basis |δ〉, Eq. (53.7) is written as

∂ρδδ′

∂t
+

i

�
(εδ − εδ′)ρδδ′ = 〈δ|Ĝt + Ĵ(ρ̂|t)|δ′〉.

Estimating 〈δ|Ĵ(ρ̂|t)|δ′〉 as −ρδδ′/τ and 〈δ|Ĝt|δ′〉 as νGρδδ′ , where νG is a character-
istic rate of generation, we obtain the required proof.

11.2. Calculate the rates of intra- and intersubband transitions of
the 2D electrons interacting with impurities.

Solution. Consider a quantum well in the plane XOY . The relaxation rates (see
Sec. 8) due to electron transitions from the 2D state |np〉, described by the wave
function ψ(n)

z L−1eip·r/�, to the subband n′ are given by the following expression:

ν(nn′)
p =

2π

�

∫
dp′

(2π�)2
wnn′(|p − p′|/�)δ(εnp − εn′p′),

where εnp = εn+p2/2m is the energy of the 2D state and wnn′(q) is the Fourier trans-
form of the effective 2D correlation function of the random potential of impurities.
Assuming that the impurities are homogeneously distributed in space, we obtain

wnn′(q) = nim

∫ ∞

−∞

dqz

2π
|v(Q)|2|〈n|eiqzz|n′〉|2,

where Q = (q, qz) is the 3D wave vector, v(Q) is the 3D Fourier transform of the
single-impurity potential, and nim is the concentration of impurities. The character-
istic qz contributing to the integral are of the order of inverse width of the well, 1/d. If
one can neglect the Q-dependence of v(Q) on this scale, wnn′(q) is equal to nim|v(0)|2
multiplied by the overlap factor

∫
dz|ψ(n)

z |2|ψ(n′)
z |2 roughly estimated as 1/d. In this

case, corresponding to a short-range impurity potential, wnn′(q) is independent of q.
Therefore, ν(nn′)

p becomes momentum-independent and equal to mwnn′/�3.

11.3. Prove that ReW∆(t) � π�δ�λ(∆)wt in the case of slowly varying
electric field Ewt.

Solution: Instead of Eq. (54.5), we have

W∆(t) =
∫ 0

−∞
dτwt+τeλτ−i∆τ/� � wt

∫ 0

−∞
dτeλτ−i∆τ/� = wt(λ − i∆/�)−1,

and the real part of this expression is equal to wt�
2λ/[(�λ)2 + ∆2] = π�δ�λ(∆)wt,

where we use the first representation of the broadened δ-function from problem 1.4.
Note that a substitution of a finite broadening energy in place of an infinitely small
�λ gives us only an order-of-value estimate.
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11.4. Consider the coherent control with two infinitely short pulses.
Solution: Substituting wt ∝ δ(t) into Eq. (54.17), we calculate the integrals over

time and obtain n2∞ ∝ 1 + cos(φ − ∆ωtd). The amplitude of the oscillations is inde-
pendent of ∆ω in this approximation. The model of δ-pulse excitation is valid in the
limit τp � (∆ω)−1, td.

11.5. Derive Eq. (54.22) from Eq. (54.20) at ∆ω = 0 and ν(21)
LO = 0.

Hint: Differentiate Eq. (54.20) over time.

11.6. Consider the non-linear regime of intersubband response to a
stationary excitation which is abruptly turned on at t = 0.

Solution: In the collisionless approximation and at ∆ω = 0, we use Eq. (54.22)
with wt = 1 at t > 0 ,

d2∆nt

dt2
+ ω2

R∆nt = 0,

and solve it with the initial condition ∆nt=0 = n2D. The solution ∆nt = n2D cos ωRt
describes the Rabi oscillations. In the general case, a substitution of wt = θ(t) into
Eq. (54.20) and subsequent Laplace transformation of this equation with the above
initial condition leads us to an algebraic equation for ∆ns =

∫∞
0 dte−st∆nt:

s∆ns − n2D + ω2
R

s∆ns

s2 + (∆ω)2
+ ν(21)

LO

(
∆ns − n2D

s

)
= 0.

The evolution is determined by three frequencies, ωR, ∆ω, and ν(21)
LO . The final dis-

tribution is given by the limiting transition ∆nt→∞ = lims→0(s∆ns). In the exact
resonance, ∆ω = 0, the electrons occupy both levels with equal densities, ∆nt→∞ = 0,
while at ∆ω �= 0 only the lowest level remains occupied at t > |∆ω|−1.

11.7. Using the general equations (35.2) and (35.3), find the coeffi-
cients Dε and Vε entering Eq. (55.13).

Solution: Averaging Eq. (35.2) with the transition probabilities (35.3) over the
angle of p, we obtain the collision integral

Jac (f |εt) =
ρ2D

2

∫ ∞

0
dε′∆Kεε′δ′′ (ε′ − ε

)
(fε′t − fεt)

−ρ2D

4

∫ ∞

0
dε′δKεε′δ′ (ε′ − ε

)
(fε′t + fεt)

describing the energy relaxation of isotropic electron distribution (ε = p2/2m and
ε′ = p′2/2m). The coefficients in this expression are given by∣∣∣∣ ∆Kεε′

δKεε′

∣∣∣∣ = 2π

�
L2
∫ 2π

0

dϕ

2π

∑
q⊥

|CQ|2|〈1|eiq⊥z|1〉|2
∣∣∣∣ (2NQ + 1) (�ωQ)2/2

2�ωQ

∣∣∣∣ ,
where Q =

√
q2

⊥ + (p − p′)2/�2. Integrating the expression for Jac by parts, we
write it in the form of the right-hand side of Eq. (55.13), where Dε = ρ2D∆Kεε/2
and Vε = ρ2DδKεε/4. The characteristic q⊥ are of the order of 1/d, where d is the
quantum well width. Therefore, at �/d 

√
2mε the transverse components of the
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phonon wave numbers are much larger than the in-plane components, Q � q⊥, and
the energy dependence of the coefficients can be neglected:∣∣∣∣ D

V

∣∣∣∣ = πρ2D

�

∫ ∞

−∞

dq⊥

2π

D2�ωq⊥
2s2

l ρ
|〈1|eiq⊥z|1〉|2

∣∣∣∣ coth(�slq⊥/2T ) (�slq⊥)2/2
�slq⊥

∣∣∣∣ ,
where we assume the equilibrium distribution of phonons. If �sl/d � T , the scat-
tering by equipartition phonons occurs, and D/V = T . In the low-temperature case,
when �sl/d > T , one obtains D/V ∼ �sl/d. For a more detailed calculation, one may
use the expression of

〈
1|eiq⊥z|1

〉
given in problem 4.13.

11.8. Find the Green’s function of the drift-diffusion equation (55.13)
with the boundary conditions (55.14).

Solution: This Green’s function is determined by the equation[
∂

∂t
− ∂

∂ε

(
D

∂

∂ε
+ V

)]
Gt(ε, ε′) = δ(t)δ(ε − ε′),

which is reduced to (
∂

∂t
− D

∂2

∂ε2

)
G̃t(ε, ε′) = δ(t)δ(ε − ε′)

after the substitution Gt(ε, ε′) = exp[−V 2t/4D −V (ε− ε′)/2D]G̃t(ε, ε′). The bound-
ary condition at zero energy is transformed by this substitution as(

D
∂

∂ε
+ V

)
Gt(ε, ε′)

∣∣∣∣
ε=0

= 0 ⇒
(

D
∂

∂ε
+

V

2

)
G̃(ε, ε′)

∣∣∣∣
ε=0

= 0.

Finally, the solution G̃t(ε, ε′) satisfying the above boundary condition is written in
the form

G̃(ε, ε′) =
1√

4πDt

[
e−(ε−ε′)2/4Dt + e−(ε+ε′)2/4Dt

+
V

D

∫ ∞

0
dε′′e−(ε+ε′+ε′′)2/4Dt+V ε′′/2D

]
,

where the integral can be expressed through the error function, erf(. . .).

11.9. Apply the Laplace transformation to the system (55.19) and
solve the transformed system.

Solution: Searching for the distribution function in the form fξt = exp(−V 2t/4D−
V ξ/2D)wξt, we carry out the Laplace transformation

∫∞
0 dte−st . . . of both sides of

Eq. (55.19) and obtain

sw<
ξs − D

∂2w<
ξs

∂ξ2 = w<
ξ,t=0 , ξ < 0

(s + ν)w>
ξs − D

∂2w>
ξs

∂ξ2 = w>
ξ,t=0 , ξ > 0

with the boundary conditions

w>
ξ=0,s = w<

ξ=0,s , (∂w<
ξs/∂ξ)ξ=0 = (∂w>

ξs/∂ξ)ξ=0 ,
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w>
ξ→∞,s = 0 , w<

ξ→−∞,s = 0.

The initial condition is transformed as wξ,t=0 = eV ξ/2Dfξ,t=0. The solutions of the
non-homogeneous differential equations written above are expressed in terms of the
fundamental solutions exp(±

√
(s + ν)/Dξ) and exp(±

√
s/Dξ) as

w<
ξs = C<e

√
s/Dξ +

∫ 0

−∞

dξ′

2
√

Ds
e−

√
s/D|ξ−ξ′|wξ′,t=0 , ξ < 0,

w>
ξs = C>e−

√
(s+ν)/Dξ +

∫ ∞

0

dξ′

2
√

D(s + ν)
e−

√
(s+ν)/D|ξ−ξ′|wξ′,t=0 , ξ > 0.

Let us take the spatial derivatives of these solutions and exclude the constants C>

and C<. We obtain

∂w<
ξs

∂ξ

∣∣∣∣
ξ=0

−
√

s

D
w<

ξ=0,s = −
∫ 0

−∞

dξ′

D
e
√

s/Dξ′
wξ′,t=0 ,

∂w>
ξs

∂ξ

∣∣∣∣
ξ=0

+

√
s + ν

D
w>

ξ=0,s =
∫ ∞

0

dξ′

D
e−

√
(s+ν)/Dξ′

wξ′,t=0 .

Finally, applying the boundary conditions, we find

wξ=0,s =
1√

D(s + ν) +
√

Ds

[∫ ∞

0
dξe−

√
(s+ν)/Dξwξ,t=0 +

∫ 0

−∞
dξe

√
s/Dξwξ,t=0

]
,

which leads to Eq. (55.23) for fξ=0,t.

11.10. Consider the transient cyclotron absorption of photoexcited
2D electrons.

Solution: The conductivity tensor is found from the quasi-classical kinetic equation
(9.34), where the collision integral is written in the form −fpt/τε:

σαβ = 2e2
∫

dp
(2π�)2

vα
vβ(τ−1

ε − iω) + [ωc × v]β
(τ−1

ε − iω)2 + ω2
c

(
−∂fεt

∂ε

)
with v = p/m. Since the angular averaging results in vαvβ → δαβε/m, and vα[ωc ×
v]α → 0, the real part of the diagonal component of this tensor is written as

Re σd =
e2ρ2D

m

∫ ∞

0
dε ε Re

τ−1
ε − iω

(τ−1
ε − iω)2 + ω2

c

(
−∂fεt

∂ε

)
� σt

2
1

1 + (∆ωτ )2
,

where σt is the transient conductivity in the absence of magnetic fields and at ω = 0.
The last equation is written for the case of energy-independent relaxation time τ and
under the conditions |∆ω| = |ω − ωc| � ωc and ωcτ � 1.

11.11. Justify the resonance approximation for interband excitation
in the symmetric two-band model.

Solution: The columnar wave functions ψ(p, t) of the time-dependent Schroedinger
equation i�∂ψ(p, t)/∂t = Ĥt(p)ψ(p, t) with Ĥt(p) from Eq. (56.1) (the vector
potential is At = −(cE/ω) sin ωt) can be represented according to Eq. (5.30):
ψ(p, t) = e−iεt/�upε(t). Expanding the periodic columnar amplitude as upε(t) =
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∑
k e−ikωtupε(k), one can write the following equation for the Fourier components

upε(k) (see also problem 1.14):(
ε + k�ω − ĥp

)
upε(k) =

ie

2ω
E · v̂p[upε(k − 1) − upε(k + 1)].

The four-component columns upε(k) are represented below as combinations of two-
component spinors ucpε(k) and uvpε(k) describing conduction and valence bands. In
the following, the kinetic energy p2/2m is assumed to be small in comparison to εg/2
so that the parabolic approximation is valid. Assuming also that �ω = εg + �∆ω,
where |�∆ω| is small in comparison to εg/2, we rewrite the equation above as a system
of equations coupling ucpε(k) to ucpε(k′):(

p2

2m
− k�∆ω +

εg

2
− ε − kεg

)
ucpε(k) +

ie

2mω
E · p[ucpε(k − 1) − ucpε(k + 1)]

+
ies

2ω
E · σ̂[uvpε(k − 1) − uvpε(k + 1)] = 0,(

− p2

2m
− k�∆ω − εg

2
− ε − kεg

)
uvpε(k) − ie

2mω
E · p[uvpε(k − 1) − uvpε(k + 1)]

+
ies

2ω
E · σ̂[ucpε(k − 1) − ucpε(k + 1)] = 0.

Considering the quasienergies ε in the region ε = ±εg/2 + δε, where |δε| � εg/2, we
write this system for k = 0 and k = ±1. Such a procedure shows us that the system
couples ucpε(0) to uvpε(−1) and ucpε(1) to uvpε(0) only. The other amplitudes are
small as eE�s/2ε2

g and can be neglected. Carrying out the inverse Fourier transfor-
mation from ucpε(k) and uvpε(k) to ucpε(t) and uvpε(t), it is easy to show that this
resonance approximation is equivalent to a usage of the truncated Hamiltonian (56.5).

11.12. Carry out the unitary transformation (56.7).
Hint: Expand the exponent in Ût of Eq. (56.6) in series.

11.13. Derive the collision integral standing in Eq. (56.17).
Hint: Take into account that

â+
vσpâcσ′p = −iσ[λ+pλ−p(ĉ+

+,σpĉ+,σ′p − ĉ+
−,σpĉ−,σ′p)

+λ2
−pĉ+

+,σpĉ−,σ′p − λ2
+pĉ+

−,σpĉ+,σ′p].

Only the last two terms, which lead to transitions between + and − states, are im-
portant in the collision integral.

11.14. Write the Bethe-Salpeter equation for the correlation func-
tion Kss′

ii′,jj′ (p,p′) = 〈〈Gs
ε(ip, jp′)Gs

ε′(i′ − p, j′ − p′)〉〉 in the ladder
approximation.

Result: The Bethe-Salpeter equation is

Kss′
ii′,jj′(p,p′) = δpp′ [Gs

ε(p)]ij [Gs′
ε′(p)]i′j′
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+
∑
kk′

[Gs
ε(p)]ik[Gs

ε′(p)]i′k′
1
V

∑
p1

nim|v(|p − p1|/�)|2Kss′
kk′,jj′(p1,p′).

For short-range scattering potential, when nim|v(|p − p1|/�)|2 � nim|v(0)|2 = w is
constant, this equation is reduced to a system of four algebraic equations,

M ss′
ii′,jj′(ε, ε′) = Lss′

ii′,jj′(ε, ε′) + w
∑
kk′

Lss′
ii′,kk′(ε, ε′)M ss′

kk′,jj′(ε, ε′),

where M ss′
ii′,jj′(ε, ε′) = V −1∑

pp′ Kss′
ii′,jj′(p,p′) and

Lss′
ii′,jj′(ε, ε′) =

1
V

∑
p

[Gs
ε(p)]ij [Gs′

ε′(p)]i′j′ .

According to Eq. (56.28), the absorption coefficient is obtained by integrating the
functions M ss′

cv,cv(ε + �δω, ε)[f(ε) − f(ε + �δω)] over ε.

11.15. Calculate and analyze the density of states of electrons in the
presence of interband pumping and elastic scattering by impurities.

Solution: The density of states ρ(ε) is given by −(2/πV )Im
∑

p trĜR
ε (p), where

tr . . . denotes the matrix trace. This expression also can be written as

ρ(ε) = −4mpω

π2�3 Im[ΣR
ε /�νim] = ρ0Im

u√
1 − u2

, ρ0 = 2
m3/2√�ω − εg

π2�3 .

Analyzing Eq. (56.34), we find that ρ(ε = 0) is zero at χ > 1 and non-zero at χ < 1.
Therefore, the gap exists at χ > 1, or, equivalently, at β > �νim. If χ > 1, the
threshold energy, where the density of states starts to be non-zero, is given by Eq.
(56.34) with u = umin =

√
1 − χ−2/3.

11.16. Derive and analyze the equations describing the longitudinal
vibration of ionic sublattices in the presence of an external electric field
and free charges.

Solution: In the presence of an external electric field and free charges, the longitu-
dinal electric field EL entering the system of equations (6.16) should be found from
the equation ε∞EL + 4π(Platt + Pext + Pe) = 0. In this equation, Platt is the lattice
polarization given by (see the second equation of the system (6.16))

Platt = P − ε∞ − 1
4π

EL = γ12w,

where γ12 = ωT O

√
(ε0 − ε∞)/4π and P is the total polarization in the absence of

external electric fields and free charges. Next, Pext is the polarization due to external
static charges (for example, surface charges and doping), which is related to the ex-
ternal electric field as ε∞Eext +4πPext = 0. Finally, Pe is the polarization associated
with free carriers (electrons and holes) with total charge density ρrt = ne

rt − nh
rt. It

satisfies the equation ∇ · Pe = −ρrt.
Substituting EL found in this way into the first equation of the system (6.16), we

obtain the equation of motion

ẅ + ω2
LOw = −4πγ12

ε∞
(Pext + Pe), (I)
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where the right-hand side contains the polarization of free charges. To complete the
description, one should derive another equation for Pe. This can be done by applying
the first pair of balance equations (11.11) to electrons and holes. If we neglect the
spatial gradients

∑
β ∇βQαβ

rt and estimate the collision-integral terms in the transport
time approximation, with the same τtr for electrons and holes, we obtain

e
∂2ne

rt

∂t2
+

e

τtr

∂ne
rt

∂t
+

e2ne
rt

me
∇ · EL = 0

and

e
∂2nh

rt

∂t2
+

e

τtr

∂nh
rt

∂t
− e2nh

rt

mh
∇ · EL = 0.

Let us consider the case of strong excitation, when ne
rt + nh

rt ≡ 2Nrt  |ne
rt − nh

rt|.
After subtracting the first equation from the second one, we take into account the
definition of Pe and arrive at

P̈e + τ−1
tr Ṗe =

e2Nrt

µ∗ EL,

where µ∗ is the reduced mass. Finally, expressing the electric field in terms of polar-
izations, we find the equation of motion for electronic polarization:

P̈e + τ−1
tr Ṗe + ω∗2

p Pe = −ω∗2
p (Pext + γ12w), (II)

where ω∗
p =

√
4πe2Nrt/ε∞µ∗ is the frequency of the electron-hole plasma. Equa-

tions (I) and (II) form a closed system describing coupled dynamics of relative ionic
displacement w and electronic polarization Pe. In the absence of external field and
collision-induced damping, the solutions of the system are coupled plasmon-phonon
modes; see problem 6.20. In the presence of an external electric field, Eq. (I) has a
stationary solution before the excitation, when Pe = 0: w = −(4πγ12/ε∞ω2

LO)Pext.
Once a carrier density Nrt is created by the excitation pulse, the current flows in the
system until the electronic polarization compensates the external field, Pe = −Pext,
and the sublattices shift to another equilibrium position, w = 0. Because both the
lattice and the electrons possess a certain inertia represented by the second-derivative
terms in Eqs. (I) and (II), the system will oscillate around the new equilibrium po-
sition. Both plasmon-phonon modes should be involved in the oscillatory transient.
However, since the plasmon frequency ω∗

p depends on the coordinate-dependent car-
rier density Nrt, the plasmon features are washed out by inhomogeneous broadening,
while the density-independent LO-phonon features remain preserved.

11.17. Solve the system (57.15).
Hint: Using the Fourier transformation, reduce Eq. (57.15) to a system of four

algebraic equations, then solve it and carry out the inverse Fourier transformation of
the result.

11.18. Using Eq. (57.21), find the sign of the real part of the integral∫ 0
−∞ dτe−iωτ+λτ K(ll)

q (τ).
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Solution: According to Eq. (57.21), the function K (ll)
q (τ ) can be represented as a

sum of the expression A(+)
q1q2 cos[(ωq1 + ωq2)τ ] + A(−)

q1q2 cos[(ωq1 − ωq2)τ ] over phonon
modes q1 and q2. The coefficients A(+) and A(−), whose explicit form can be deduced
from Eq. (57.21), are real and positive. Substituting the form described above into
the integral, one can check that the real part of the result is positive.

The coefficient A(+) is positive for an arbitrary phonon distribution. However, the
coefficient A(−) is positive under the condition that the phonon occupation numbers
decrease with increasing phonon frequencies. This implies a normal situation, with no
inversion of phonon population. If the phonon population is inverted, the real part of
the integral

∫ 0
−∞ dτe−iωτ+λτK (ll)

q (τ ), in principle, can be negative for some regions of
ω. This means that the coherent phonon oscillations are amplified due to stimulated
phonon emission, which leads to phonon instability.

11.19. Calculate the integral
∫ ωm

0 dωωk cos(ωτ), where k is a positive
integer number, in the limit τ � ω−1

m .
Result: In this limiting case, the result is ωk

m sin(ωmτ )/τ . The function sin(ωmτ )/τ

rapidly decreases at |τ | > π/ωm and can be approximated by πδ(τ ) at ωm → ∞.



Chapter 12

BALLISTIC AND HOPPING TRANSPORT

The picture of collision-limited (diffusive) transport fails in many cases, as we have
seen on the example of electron transport in magnetic fields; see Chapter 10. The
other examples considered in this chapter are i) the ballistic transport under the
conditions when the size of the sample is comparable to the mean free path length
so that electrons experience a few or any scattering events, and ii) the transport in
mesoscopic samples at low temperatures, when the inelastic scattering is practically
absent. In the absence of inelastic scattering, when the phase coherence takes place,
the conductance of the sample is determined by the quantum-mechanical transmission
probabilities and depends both on the geometry of the sample and on the scattering
potential distribution. The phase memory leads to such phenomena as the localiza-
tion of electrons in one-dimensional conductors and the Aharonov-Bohm oscillations.
The low-temperature current between the regions separated by potential barriers is
limited by the quantum-mechanical probability of tunneling transmission. In more
complex cases, when the energy and momentum conservation requirements cannot
be satisfied simultaneously without involvement of scattering, the tunneling becomes
scattering-assisted, and the current is inversely proportional to the scattering time.
Next, the tunneling current through small metallic islands appears to be sensitive to
the electric charge quantization leading to Coulomb blockade phenomena. The elec-
tron transport in all these cases is conveniently treated by introducing the Hamiltonian
of tunnel-coupled systems, which describes the low-probability hopping of electrons
between the regions where the electrons are in local equilibrium. A similar Hamilto-
nian describes the localization of electrons in the crystal lattice in the presence of a
strong electron-phonon interaction (the polaronic effect) and allows one to calculate
the hopping current. This current demonstrates thermal-activation behavior, and its
dependence on the strength and frequency of the applied electric field is essentially
different from that considered in previous chapters.

537
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58. Quantized Conductance
Considering transport of electrons in non-homogeneous media, one

can meet the situation when low-resistivity regions (contact regions, or
leads) are connected to each other through a short region whose resis-
tance is much higher than that of the leads. This region may contain,
for example, potential barriers through which the electrons have to be
transmitted by tunneling or thermal activation. The regions of small
size, such as the microcontacts studied in Sec. 12, also have high resis-
tance in comparison to the leads. The leads in this situation should be
considered as independent sub-systems, each having its own electrochem-
ical potential, since the current densities inside these regions are small
and, owing to scattering processes, the quasi-equilibrium distributions
are established there. For this reason, the transport is determined mostly
by the properties of the high-resistance regions. In these regions, if they
are small enough, the electrons can move either without scattering, when
it is said that the transport is ballistic, or experience a few scattering
events. If the temperature is low enough and the inelastic scattering is
suppressed, the scattering events are mostly elastic even in the regions
whose size is large in comparison to the mean free path length. Thus,
the conduction electrons maintain quantum phase coherence, and this
property causes a variety of interesting interference phenomena. Such
regions are called the mesoscopic systems, to emphasize that their size
is intermediate between microscopic and macroscopic sizes. We point
out that modern microfabrication techniques make it possible to create
a great variety of nanostructures where the above-mentioned transport
regimes are realized.

Based on the qualitative picture given above, one may write a rather
general formula describing the current through a high-resistance region:

I =
∑
δδ′

i(+)
δδ′ f

(eq)(εδ − eV/2)[1 − f (eq)(εδ′ + eV/2)]

−
∑
δδ′

i(−)
δ′δ f (eq)(εδ′ + eV/2)[1 − f (eq)(εδ − eV/2)]. (1)

The coefficients i(+)
δδ′ are the microscopic currents describing electron

transmission from the state δ on the left to the state δ′ on the right.
In a similar way, i(−)

δ′δ describe the backward transmission from the right
to the left. In the case of ballistic transport through a microcontact
modelled by a hole in an unpenetrable plane, the current is given by Eq.
(12.10), which is a particular case of Eq. (1). The current (12.10) is pro-
portional to the square of the hole, since we assume that the hole size is
large in comparison to the electron wavelength λ. To find what happens
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if this size becomes comparable to λ, we introduce a finite thickness L
of the unpenetrable region and assume L � λ so that the microcontact
is represented by a wire connected to the leads at the points z = 0 and
z = L. Let us find i(±)

δδ′ for such a case, assuming that the electrons move
through the wire ballistically and neglecting, for simplicity, the reflection
of the electron waves at the ends z = 0 and z = L. This neglect corre-
sponds to adiabatic transport in the vicinity of z = 0 and z = L, and we
are going to discuss the conditions of the adiabaticity later. Now we can
treat the states δ and δ′ as eigenstates of a quasi-one-dimensional sys-
tem (quantum wire) and describe them in terms of the one-dimensional
momentum p and 1D subband number n, see Sec. 5, which are con-
served in the ballistic transport. The microscopic current is described
by the semi-classical expressions i(+)

δδ′ = i(+)
np,n′p′ = 2evnpθ(vnp)δnn′δpp′ and

i(−)
δδ′ = −2evnpθ(−vnp)δnn′δpp′ , where vnp = ∂εnp/∂p is the group velocity

of electrons in the subband n and the factor of 2 stands because of the
assumed spin degeneracy. Taking into account that εnp = εn,−p, we find
from Eq. (1)

I = 2e
∑

n

∫ ∞

−∞
dp

2π�
vnpθ(vnp)[f (eq)(εnp − eV/2)−f (eq)(εnp + eV/2)]. (2)

In the linear case, when the energy |eV | is much smaller than the
temperature T , one can introduce the conductance G according to I =
GV . It is calculated by expanding the distribution functions in series of
eV/2 (here and below f(ε) = f (eq)(ε)):

G =
e2

π�

∑
n

∫ ∞

−∞
dp vnpθ(vnp)

[
−∂f(εnp)

∂εnp

]
. (3)

Since vnp [−∂f(εnp)/∂εnp] = −∂f(εnp)/∂p, we obtain

G =
e2

π�

∑
n

f(εn) =
e2

2π�
Nf , (4)

where εn = εn,p=0. Equation (4) is valid not only for the electrons
with parabolic spectrum (εnp = εn + p2/2m), but also in any case when
εnp monotonically increases with increasing |p|. The right-hand side of
Eq. (4) corresponds to zero temperature, and Nf is the total number
of occupied 1D subbands (for which f(εn) = 1) multiplied by the spin
degeneracy factor 2. The conductance quantization is determined by
the fundamental conductance quantum, G0 = e2/2π�. Note that the
final result (4) has the same form as Eq. (51.1) for the quantized Hall
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conductivity. As we will see in the next section, this is not a simple co-
incidence. In the quasi-classical case, when Nf is large, one has, approx-
imately, Nf/2 = p2

F S/4π�
2 for the 3D case and Nf/2 = pF S/π� for the

2D case, where pF is the Fermi momentum and S is the cross-section of
the wire. This estimate provides a link between the conductance (4) and
the conductance of classical microcontacts under collisionless regime; see
Eq. (12.11) and its discussion in Sec. 12.

A rigorous consideration of the linear conductance is based upon the
linear response theory discussed in Chapter 3. Below we apply this
formalism to the case when one has an arbitrary number of leads con-
nected to a high-resistance region, the latter is called below the meso-
scopic sample or, simply, the sample. It is assumed that the voltage
VN is maintained at the N -th lead so that the boundary conditions are
Vr∈SN

= VN , where SN is the contact area where the N -th lead is con-
nected to the sample. Another boundary condition is the requirement
that the current is equal to zero at the boundary of the sample, where
there are no contacts. Using Eq. (13.9), where the electric fields are
expressed as Eβ(r) = −∂Vr/∂rβ , we integrate over r′ by parts. Apply-
ing the boundary conditions and the current continuity requirement, we
obtain the current density inside the sample in the form

Iα(r) =
∑

N

VN

∑
β

∫
r′∈SN

dr′σαβ(r, r′)nβ
SN

(r′), (5)

where the integral is taken over the surface of the N -th contact and
nSN

is the unit vector normal to this surface and directed inside the
sample. To find the total current IM entering the sample through the
M -th contact, we use

IM =
∑
α

∫
r∈SM

drnα
SM

(r)Iα(r) (6)

and finally obtain
IM = −

∑
N

GMNVN , (7)

where the multi-terminal conductance is given by

GMN = −
∑
αβ

∫
r∈SM

dr
∫
r′∈SN

dr′nα
SM

(r)σαβ(r, r′)nβ
SN

(r′). (8)

Using the current continuity requirement, one has
∑

M
IM = 0. Since this

relation should be valid for arbitrary voltages VN , we obtain
∑

M
GMN =

0, which is also represented as
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GNN = −
∑

M (M 
=N)

GMN = −
∑

M (M 
=N)

GNM . (9)

The last equation follows from Onsager’s symmetry; see Eq. (23) below.
Equation (9) shows that the diagonal components of the conductance are
entirely determined by the off-diagonal components. This property also
means that the currents IM can depend only on the differences between
the potentials VN (there are no currents proportional to

∑
N

VN).
Equations (7) and (8) tell us that the linear conductance of a sam-

ple can be introduced rigorously through the non-local conductivity
σαβ(r, r′). The latter is a well-defined quantity, without regard to the
properties of the transport inside the sample (the transport may be bal-
listic or not). It can be calculated from the Kubo formula (13.10). Let
us write Eq. (13.10) in the exact eigenstate representation at ω → 0 and
zero magnetic field. Acting in a similar way as in the derivation of Eq.
(13.22) from Eq. (13.18), and using the property σαβ(r, r′) = σβα(r′, r)
valid at H = 0, we obtain

σαβ(r, r′) = 2π�

∑
δδ′

〈δ|Îα(r)|δ′〉〈δ′|Îβ(r′)|δ〉δ(εδ − εδ′)
[
−∂f(εδ)

∂εδ

]
. (10)

In a similar way as in Eq. (13.22), the quantum numbers δ and δ′ do not
include the spin, and the spin degeneracy leads to the factor of 2 in the
right-hand side. It is not difficult to apply Eq. (10) to the quasi-1D wire
considered above. The eigenstate indices δ and δ′ describe 1D subband
numbers, n and n′, as well as one-dimensional momenta, p and p′. Using
Eqs. (4.15) for the current density operator and Eq. (5.25) for the 1D
electron wave function and spectrum (note that in a homogeneous wire
ψ(p)

x = L
−1/2
x eipx/�), we obtain

〈np|Îα(r)|n′p′〉 = δαxψ(n)∗
y,z ψ(n′)

y,z

e(p + p′)
2mLx

ei(p′−p)x/�, (11)

where ψ(n)
y,z is the wave function describing the confinement in the Y OZ

plane. Calculating the component σxx according to Eq. (10) in the case
of low temperatures T → 0, we find

σxx(r, r′) =
e2

π�

{∑
n

|ψ(n)
y,z |2|ψ

(n)
y′,z′ |2θ(εF − εn)

+
∑

nn′(n �=n′)

ψ(n)∗
y,z ψ(n′)

y,z ψ(n′)∗
y′,z′ ψ

(n)
y′,z′

∑
±

(v(F )
n ± v(F )

n′ )2

4v(F )
n v(F )

n′
(12)

× cos[(p(F )
n ∓ p(F )

n′ )(x − x′)/�]θ(εF − εn)θ(εF − εn′)
}

,
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where p(F )
n and v(F )

n are the Fermi momentum and Fermi velocity in the
subband n. Finally, denoting the left and the right sides of the wire by
the indices 1 and 2, respectively, we apply Eq. (8) for calculating the
conductance G21 = −G11. The integrals over the transverse coordinates
y, z, y′, and z′ are calculated according to the property of orthogo-
nality and normalization,

∫
dy
∫

dzψ(n)∗
y,z ψ(n′)

y,z = δnn′ . Therefore, only
the first term in Eq. (12) contributes to the conductance, and we find
G21 = e2Nf/2π�, in accordance with Eq. (4). The above calculation
demonstrates the usefulness of the non-local conductivity tensor. The
latter can be applied as well for calculating the local response (problem
12.1).

Figure 12.1. A mesoscopic sample connected to the leads 1,2,3,. . . , N . The voltages
and currents for the contacts 1 and 2 are also shown.

The conductance GMN is directly expressed through the quantum-
mechanical transmission coefficients of electrons. To prove this, let us
consider the region to which the currents are fed by ideal wires (Fig.
12.1). The asymptotic behavior of the wave functions in these wires is
determined by

ϕ(±)
Nnε(r) =

1√
vnε

ψ(Nn)
r⊥N

exp(±iknεr‖N), (13)

where N is the wire number and n is the subband number. Next, vnε and
knε are the group velocity and wave number of electrons, which depend
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on the subband number and energy. The representation based upon the
quantum numbers n and ε instead of n and p is more convenient for our
purposes. By r‖N we denote the coordinate along the wire N , while r⊥N

is the coordinate perpendicular to this wire. The signs + and − stand
for incoming and outgoing electrons, respectively. Using the functions
(13), one can construct a complete set of orthogonal eigenstates whose
asymptotic behavior in the M -th wire is determined by

ΨNnε(r)|r∈M = δNMϕ(+)
Mnε(r) +

∑
m

SMm,Nn(ε)ϕ(−)
Mmε(r). (14)

The coefficient SMm,Nn is the quantum-mechanical amplitude of scatter-
ing from the state n of wire N to the state m of wire M . The coefficient
SNm,Nn describes the backscattering in the wire N . The scattering am-
plitude is a unitary matrix which satisfies the symmetry relation

SNn,Mm(ε) = SMm,Nn(ε)|H→−H . (15)

In the case of zero magnetic field we consider, this equation means that
SNn,Mm is symmetric. The unitarity condition, therefore, can be written
as ∑

Mm

S+
Mm,N1n1

(ε)SMm,N2n2(ε) (16)

=
∑
Mm

S∗
Mm,N1n1

(ε)SMm,N2n2(ε) = δN1N2δn1n2 .

The choice of normalization of ϕ(±)
Nnε(r) implies that the functions (14)

are normalized according to (problem 12.2)∫
drΨ∗

Nnε(r)ΨN′n′ε′(r) = 2π�δNN′δnn′δ(ε − ε′). (17)

With this normalization rule, the Kubo formula (10) is transformed to

σαβ(r, r′) =
1

2π�

∑
N1N2

∑
n1n2

∫
dε

∫
dε′〈N1n1ε|Îα(r)|N2n2ε

′〉

×〈N2n2ε
′|Îβ(r′)|N1n1ε〉δ(ε − ε′)

[
−∂f(ε)

∂ε

]
, (18)

where the matrix elements are calculated by using the eigenstates (14).
Therefore, according to Eq. (8),

GMN = − 1
2π�

∑
N1N2

∑
n1n2

∫
dεI (M)

N1n1,N2n2(ε, ε)I
(N)
N2n2,N1n1(ε, ε)

[
−∂f(ε)

∂ε

]
,
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I(M)
N1n1,N2n2(ε, ε

′) =
∫
r∈SM

dr〈N1n1ε|Î(r)|N2n2ε
′〉 · nSM

(r). (19)

Calculating the matrix elements of the current density operator (4.15),
we obtain

I(M)
N1n1,N2n2(ε, ε

′) = e

[
δN1MδN2Mδn1n2

−
∑
m

S∗
Mm,N1n1

(ε)SMm,N2n2(ε
′)
]
. (20)

Substituting this into the expression (19) for the conductance, we find
that the terms which do not proportional to S contain δNM . The terms
of the fourth order in S contain the sum

∑
N1n1

S∗
Mm,N1n1

SNn,N1n1 mul-
tiplied by a similar sum over N2 and n2. As a result, these terms are
also proportional to δNM , according to Eqs. (15) and (16). Therefore,
the only contribution to the off-diagonal components of the conductance
matrix comes from the terms quadratic in S. Finally, we obtain

GMN =
e2

π�
TMN (M 	= N), (21)

where TMN is the probability of transmission from the lead N to the lead
M averaged over the energy near the Fermi surface:

TMN =
∫

dε

[
−∂f(ε)

∂ε

]
TMN(ε), TMN(ε) =

∑
mn

T (mn)
MN (ε),

T (mn)
MN (ε) = S+

Mm,Nn(ε)SMm,Nn(ε). (22)

At zero temperature, TMN = TMN(εF ). The coefficient T (mn)
MN is the

probability of transmission from the state n of lead N to the state m of
lead M , it is also called the transmission coefficient. Since the electron
states are assumed to be spin-degenerate, the sum over spin indices is
accounted for by a factor of 2. In the general case, one should include
the spin indices into the indices of the states and omit this factor. The
diagonal components GNN are found from Eq. (21) according to Eq. (9).

Introducing ŜMN as the operator representation of the matrix SMm,Nn

with respect to the indices of the states, one may rewrite the lead-to-
lead transmission probability from Eq. (22) as TMN(ε) = trŜMN Ŝ+

MN ,
where tr . . . indicates the matrix trace. The matrix (ŜMN Ŝ+

MN)nn′ stand-
ing under the trace can be diagonalized by a unitary transformation to
the form δnn′T (n)

MN(ε). In this way, a set of independent quantum chan-
nels characterized by the transmission coefficients T (n)

MN is defined. This
formalism is called the channel representation. The transmission prob-
ability in this representation is a sum of the transmission coefficients of
the channels, TMN(ε) =

∑
n T (n)

MN(ε).
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Although Eqs. (21) and (22) have been derived from the Kubo formula
at H = 0, they remain valid in the presence of magnetic fields, and the
symmetry property (15) leads to similar properties of the transmission
probability and conductance:

T (mn)
MN = T (nm)

NM |H→−H, GMN = GNM |H→−H . (23)

Equations (21) and (22) form the main result of this section. They relate
the conductivity of a mesoscopic region to simple quantum-mechanical
properties of electron waves. The derivation of Eqs. (21) and (22)
from the Kubo formula implies the absence of inelastic scattering in this
region and in the wires. The inelastic scattering, however, should be
present in the reservoirs (leads) to which these wires are connected, to
maintain local equilibrium in each of the reservoirs. The presence of the
wires connected, from the one side, to the mesoscopic region and, from
the other side, to reservoirs with uniform electrochemical potentials is a
necessary element of the derivation, since it allows us to divide, formally,
the entire system by the mesoscopic region (sample) and macroscopic
regions (leads).

Figure 12.2. Adiabatic constriction for 2D electrons.

Having expressed the conductance through the transmission coeffi-
cients, we discuss the conductance of 2D microcontacts at zero temper-
ature on simple examples. Consider first a constriction (narrow part)
formed in a wide waveguide with hard-wall confinement. The width
d(x) of the waveguide is coordinate-dependent (Fig. 12.2), and the wave
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function can be searched for in the form

Ψ(x, y) =
∑

n

ϕn(x)ψ(n)
y , (24)

ψ(n)
y =

√
2/d(x) sin {πn[2y + d(x)]/2d(x)} , n = 1, 2, . . . .

Substituting this function into the Schroedinger equation, we find a
matrix equation for ϕn(x) (problem 12.3). The non-diagonal terms
in this matrix equation describe the mixing of different 1D-subband
states. This mixing exists due to the parametric x-dependence of ψ(n)

y

through d(x). If the logarithmic derivative d′(x)/d(x) is small in com-
parison to the wave numbers of electrons, the non-diagonal terms can
be neglected. This is the case of adiabatic transport, when the elec-
tron motion in the subband n can be separated from the motion in
the other subbands and, therefore, becomes effectively one-dimensional.
This motion occurs in the presence of an effective potential energy
Vn(x) = [π�n/d(x)]2/2m representing a potential barrier. The elec-
trons from higher subbands, whose energies are smaller than the barrier
height Vn(0) = [π�n/d(0)]2/2m (we assume that the narrowest part of
the waveguide is an ideal wire placed at −L/2 < x < L/2), cannot
pass through this barrier, since the probability of transmission expo-
nentially decreases with increasing L. In contrast, the electrons from
lower subbands travel above the potential barrier without backscatter-
ing. Formally, one can introduce the partial transmission coefficients
T (nm)(εF ) ∝ δnm as T (nn)(εF ) = 1 for n ≤ n0 and T (nn)(εF ) = 0 for
n > n0, where n0 is defined by Vn0(0) < εF < Vn0+1(0) and εF is
the Fermi energy. The conductance in these conditions is equal to
G = e2n0/π�. By varying d(0) continuously, one gets a staircase-like
modulation of the conductance, since n0 is a discrete variable. However,
if we decrease the wire length L, the electrons in the subband n0 can be
reflected back under the condition that εF is close enough to Vn0(0). In a
similar way, the electrons in the subband n0 +1 have a finite probability
to penetrate through the barrier. For this reason, one cannot have ideal
(sharp) steps of the conductance: a finite smearing of the steps always
occurs. A small-size constriction connecting two macroscopic reservoirs
and demonstrating the quantization of the conductance is usually called
the quantum point contact.

Another example is the exactly solvable quantum-mechanical problem
of the 2D electron transmission through the region where the potential
energy is approximated by a saddle point:

V (x, y) = V0 +
m

2
(ω2

yy
2 − ω2

xx2). (25)
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Since V (x, y) is a sum of the x-dependent component and y-dependent
one, the Schroedinger equation is solved exactly. Its solution (problem
12.4) leads to the conductance

G =
e2

π�

∑
nm

T (nm)(εF ) =
e2

π�

∞∑
n=0

1
1 + exp(−2πεn)

, (26)

εn = [(εF − V0)/� − (n + 1/2)ωy ]/ωx.

This conductance is exponentially small when εF − V0 < �ωy/2 and
|εF − V0 − �ωy/2| � �ωx, i.e., when the dimensionless variable εn is
large and negative for arbitrary n. With increasing Fermi energy (or
with decreasing V0), the conductance shows steps each time when εF −
V0 increases by �ωy . The steps are clearly seen at ωy/ωx > 2, and
the quantized conductance staircase is improved when the ratio ωy/ωx

increases, i.e., when the curvature of the equipotential lines εF = V (x, y)
decreases. The smearing of the steps in the energy scale is estimated as
�ωx. When ωx goes to zero, the quantum point contact becomes an ideal
wire and its conductance shows the ideal steps described by Eq. (4).

These two simple examples demonstrate that Eqs. (21) and (22) not
only predict the conductance quantization, but also describe the effects
of finite size of the quantum point contacts and finite curvature of their
boundaries. These effects are responsible for the deviation of the con-
ductance quantization from the ideal staircase. More complex examples
of application of this formalism can be found in the next section. The
methods discussed above can be used for calculating various kinetic co-
efficients in the ballistic transport regime. For example, the thermal
conductance is calculated in problem 12.5.

The formalism introduced above can be developed to describe the
intrinsic conductance of one-dimensional samples. This conductance
should be defined in such a way that it is no longer determined by the
presence of the leads. Let us consider a small piece of a disordered 1D
conductor whose ends are assumed to be ideal 1D conductors. If the
electron transmission probability through the given piece is small, Eq.
(21) can be applied directly for the conductance of this piece, because
there is local equilibrium at the ends of the piece. In the opposite case,
when the transmission probability is not small, one still has to define the
electrochemical potentials at the ends. Below we assume that there are
no longitudinal electric fields so that the consideration will be done in
terms of chemical potentials instead of electrochemical ones. One may
introduce the exact distribution function f1,2(p) at the points 1 (left end)
and 2 (right end). Since this function depends on the sign of p, it is more
convenient to work with the energy distribution functions f (±)

1,2 (ε) for the
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right-moving (+) and left-moving (−) electrons. In the linear transport
regime and for a degenerate electron gas, these functions differ from the
equilibrium distribution function f(ε) only in a narrow energy interval
near the Fermi energy. Therefore, one can write f1,2(p) = f(ε)+∆f1,2(p)
and f (±)

1,2 (ε) = f(ε) + ∆f (±)
1,2 (ε), where the non-equilibrium parts ∆f are

non-zero in the vicinity of the Fermi energy. The current through the
point 1 is written as

I1 =
e

π�

∫
dε
{
[1 − R1(ε)]f

(+)
1 (ε) − T12(ε)f

(−)
2 (ε)

}
� e

π�

∫
dε[(1 − R1)∆f (+)

1 (ε) − T12∆f (−)
2 (ε)]. (27)

where T12(ε) is the backward transmission coefficient and R1(ε) is the
reflection coefficient for the point 1 (in the second equation these energy-
dependent coefficients are approximated by the energy-independent co-
efficients T12 = T12(εF ) and R1 = R1(εF )). A similar equation involving
R2 and T21 can be written for the current I2 through the point 2. How-
ever, since I2 = I1 = I, R1 + T21 = 1, R2 + T12 = 1, T12 = T21 = T and
R1 = R2 = R, such an equation gives us nothing new in comparison to
Eq. (27).

Let us formally introduce the chemical potentials for the right- and
left-moving electrons according to

µ(±)
1,2 = µ0 +

∫
dp |vp|θ(±vp)∆f1,2(p) = µ0 +

∫
dε∆f (±)

1,2 (ε), (28)

where µ0 is the equilibrium chemical potential. Using Eqs. (27) and
(28) together with the identity 1 − R = T , we have

I =
e

π�
T (µ(+)

1 − µ(−)
2 ). (29)

In other words, if we define the conductance of a piece of 1D conductor
as I/∆Vinc, where ∆Vinc = (µ(+)

1 − µ(−)
2 )/e is the difference in electro-

chemical potentials for the electrons incoming to this piece from both
sides, the conductance is given by Eq. (21). The definition (28) also
means that

I =
e

π�
(µ(+)

1 − µ(−)
1 ) =

e

π�
(µ(+)

2 − µ(−)
2 ). (30)

This equation expresses the 1D current through the local differences
in the chemical potentials for the right- and left-moving electrons, and
the proportionality coefficient is the conductance of an ideal 1D wire
divided by e. We also introduce the averaged chemical potentials µ1 =
(µ(+)

1 + µ(−)
1 )/2 and µ2 = (µ(+)

2 + µ(−)
2 )/2. These potentials are related to
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the electron densities at the points 1 and 2, because these local densities
are expressed as

n1,2 =
1
π�

∫
dεp|vp|−1[f (+)

1,2 (εp) + f (−)
1,2 (εp)]

� n0 +
1

π�vF

∫
dε[∆f (+)

1,2 (ε) + ∆f (−)
1,2 (ε)], (31)

where n0 is the equilibrium density and vF is the Fermi velocity. There-
fore,

n1 − n2 = 2
µ1 − µ2

π�vF

=
µ1 − µ2

ρ1D(εF )
. (32)

Applying Eqs. (29) and (30) in order to express the current through the
averaged chemical potentials, we obtain

I = G̃(µ1 − µ2)/e, G̃ =
e2

π�

T

R
. (33)

The conductance G̃, which describes the intrinsic response of a 1D con-
ductor, coincides with the 1D conductance e2T/π� only in the case of
low transmission, when R = 1 − T is close to 1. In the case of high
transmission, when R → 0, G̃ is much greater than e2T/π�.

59. One-Dimensional Conductors
Considering the weak localization of 2D electrons in Sec. 15, we have

found that the corrections to the 2D conductivity are proportional to
the fundamental conductance quantum e2/2π�. These corrections have
interference origin, they occur because the phases of electron waves are
not destroyed in the elastic scattering processes. In the case of metallic
2D conductivity, the relative correction (15.28) is small. This is not true
for 1D conductors. Indeed, if we formally rewrite Eq. (15.26) for the 1D
case, the quantum correction to the conductivity is estimated as

δσ1D ∼ − 2e2

π2�
lD, (1)

where lD is the diffusion length introduced in Sec. 15. On the other
hand, the conductivity of a piece of 1D conductor of length L can be es-
timated according to Eq. (58.33) as (e2/π�)(T/R)L (the dependence of
(T/R) on L is discussed below in this section). This simple calculation
shows us that, if the phase relaxation length due to inelastic scattering
is large enough, δσ1D can be comparable to or larger than the conductiv-
ity itself. Moreover, with the increase of this length, the absolute value
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of the quantum correction increases rapidly (not in a slow logarithmic
fashion as in the 2D case). Therefore, the weak localization becomes, in
fact, a strong mechanism of electron localization in 1D conductors. The
1D conductivity is considerably influenced by the quantum-mechanical
interference which eventually leads to complete localization of electrons
if the sample is long enough and the inelastic scattering is absent. We
discuss this phenomenon first, and then we consider the magnetotrans-
port properties of 1D conductors.

Let us consider a piece of 1D conductor at 0 ≤ x ≤ l containing point-
like obstacles (scatterers) at its ends x = 0 and x = l. Formulating the
quantum-mechanical transmission-reflection problem for this sample, we
write the wave function in the form eikx+Ae−ikx at x < 0, Beikx+Ce−ikx

at 0 < x < l, and Deik(x−l) at x > l, where k is the wave number of
the electron. To connect the four unknown coefficients, we introduce the
complex transmission and reflection amplitudes, t and r, characterizing
separately each scatterer (1 or 2) and assume that the primed amplitudes
correspond to the left-moving electrons. Introducing also the phase ϕ =
kl associated with the electron path between x = 0 and x = l, we obtain
the linear relations

A = r1 + Ct′1, B = t1 + Cr′
1 , Ce−iϕ = Beiϕr2, D = Beiϕt2. (2)

For example, r′
1 describes reflection of the left-moving electrons from

the point 1 while t1 describes transmission of the right-moving electrons
through this point. Because of the symmetry (58.15), t′1 = t1 and t2 = t′2.
Solving the system (2), we find the transmission coefficient

T ≡ T21 = |D|2 =
|t1|2|t2|2

1 + |r1|2|r2|2 − 2|r1||r2| cos θ
, (3)

where θ depends on the phase ϕ as well as on the arguments of the
complex reflection amplitudes, θ = 2ϕ+arg(r′

1)+arg(r2). We have taken
into account that |r′

1|2 = |r1|2. Denoting the individual transmission and
reflection coefficients of the scatterers 1 and 2 as |t1|2 = T1, |t2|2 = T2,
|r1|2 = R1 = 1 − T1 and |r2|2 = R2 = 1 − T2, we use the result (3) to
find the ratio of the reflection coefficient R = 1 − T to the transmission
coefficient T :

R

T
=

R1 + R2 − 2
√

R1R2 cos θ

T1T2
. (4)

This is the intrinsic resistance expressed in units of the resistance quan-
tum π�/e2, see Eq. (58.33), for a piece of the 1D conductor. Let us
consider an ensemble of similar pieces. By averaging the intrinsic resis-
tance over the random phases θ so that the cosine term disappears, one



Ballistic and Hopping Transport 551

gets 〈
R

T

〉
=

R1 + R2

(1 − R1)(1 − R2)
. (5)

In contrast, the result which one may expect by series addition of two
resistances R1/(1 − R1) and R2/(1 − R2) is (R1 + R2 − 2R1R2)/[(1 −
R1)(1 − R2)]. Therefore, Ohm’s law is not valid for 1D conductors: the
dimensionless intrinsic resistance 〈R/T 〉 is larger than expected. As long
as we consider series addition of good-transmittance regions (R1,2 � 1),
this fact makes no difference, because 2R1R2 � R1, R2. However, if we
consider series addition of many resistances Ri/(1 − Ri), the situation
dramatically changes. In the limit Ri � 1, one can show (problem 12.6)
that the averaged resistance of the 1D conductor containing N scatterers
increases as 〈

R

T

〉
=

R1 + R2 + . . . + RN

(1 − R1)(1 − R2) . . . (1 − RN)
. (6)

The denominator in this expression decreases with each addition in a
non-linear fashion. Denoting the average on the left-hand side of Eq.
(6) as RN+1, one may compose a finite-difference equation:

RN+1 − RN =
RN

1 − RN

[
RN +

1
(1 − R1) . . . (1 − RN−1)

]
� RN(RN + 1).

(7)
While the approximation 1/(1 − RN) � 1 is straightforward because of
RN � 1, the approximation of the second term in the square brackets
by unity is not obvious because this term becomes larger than unity at
large N . However, when this happens, RN is much larger than this term
so that the latter can be neglected. Therefore, the approximation is jus-
tified for arbitrary N . Equation (7) can be also written as a differential
equation, dRN/dN = R(RN +1), where R � 1 is the averaged reflection
coefficient for one piece in the series. This differential equation gives us
a scaling law in the form

R = eL/L0 − 1, (8)

where L = Nl is the length of the 1D wire and L0 is the localization
length equal to l/R. The normalization coefficient at the exponent is
chosen to have the result R � L/L0 at L � L0. The intrinsic resistance
linearly increases with increasing L at small L. However, when L be-
comes larger than L0, the resistance increases exponentially. This is the
phenomenon of localization in one-dimensional systems.

Now we consider two 1D conductors, labeled as 1 and 2, connected
in parallel. Such a system can be also viewed as a ring connected to
two leads, Fig. 12.3. Each branch (i = 1, 2) of the ring is characterized
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Figure 12.3. One-dimensional ring with two contacts.

by the transmission and reflection amplitudes ti, t′i, ri, and r′
i, which

connect the amplitudes Bi and Ci of the forward- and backward-moving
electron waves near the point A with similarly defined amplitudes B′

i
and C ′

i near the point B. If the branch i is an ideal ballistic wire, one
has simply ri = r′

i = 0 and ti = t′i = eiϕi , where ϕi = kili is the phase
acquired by the electron passing the length li of this branch with the
wave number ki. The relevant equations are

B′
i = Biti + C ′

ir
′
i, Ci = Biri + C ′

it
′
i (i = 1, 2). (9)

The electrons also experience scattering in the contacts A and B, where
three 1D channels converge. Each such contact is characterized by a
three-terminal scattering matrix. For the contact A, we denote the
transmission amplitudes from the external channel to the branch 1(2) as
t1A(t2A), the backward transmissions as tA1(tA2), and the transmission
between the branches 1 and 2 as tA

21 and tA
12. The reflection amplitudes

near this contact are denoted as rA, rA
1 , and rA

2 . Applying similar nota-
tions to the scattering amplitudes in the contact B, we compose a system
of equations connecting the incoming wave eik(x−xA) +Ae−ik(x−xA) with
the transmitted wave Deik(x−xB) through the waves in the branches:

A = rA + C1tA1 + C2tA2, B1 = t1A + C1r
A
1 + C2t

A
12,

B2 = t2A + C1t
A
21 + C2r

A
2 , C ′

1 = B′
1r

B
1 + B′

2t
B
12, (10)

C ′
2 = B′

1t
B
21 + B′

2r
B
2 , D = B′

1tB1 + B′
2tB2.

Using these equations, one can find the conductance of the ring, which
is proportional to |D|2. For the case of ideal ballistic wires, this conduc-
tance oscillates as a function of the phases ϕ1 and ϕ2.
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Suppose that there is an external magnetic field Hr. The electron
wave function in this field acquires an additional phase shift, whose
magnitude, however, depends on the gauge of the vector potential (see
Appendix G). In contrast, the phase acquired by the electron which
has completed a closed path in this field is gauge-invariant. Indeed,
expressing the phase associated with the vector potential as

φ =
e

�c

∮
r∈l

drAr · nl, (11)

where the integral is calculated over a closed electron path l and nl is the
unit vector in the direction along this path, one may apply the Stokes
theorem to transform the contour integral to the integral of [∇ × Ar] =
Hr over the area S encircled by the path (we assume that the motion
occurs in a plane). This transformation gives us the following result:

φ = 2π
Φ
Φ0

, Φ =
∫
r∈S

dr Hr · nS, (12)

where nS is the unit vector perpendicular to the plane of S and

Φ0 = 2π�c/|e|. (13)

The direction of nS is determined from the following rule: if the plane
where the electron moves is XOY , then nS is directed along OZ for
clockwise motion and in the opposite direction for counterclockwise mo-
tion. The quantity Φ is the magnetic flux through the area S, and the
quantity Φ0, which depends only on the universal constants, is called the
magnetic flux quantum. The phase changes periodically with the mag-
netic field, each period corresponds to penetration of one flux quantum
into the area encircled by the electron path. Of course, φ is meaningful
only modulo 2π so that the phases associated with Φ and Φ+nΦ0, where
n is integer, cannot be distinguished. One may show that the phase (12)
enters the Schroedinger equation for the electron moving in an ideal ring
(problem 12.7), and the electron energy is a continuous function of this
phase.

Now we are ready to modify Eq. (9) in the presence of a magnetic
flux. The electrons moving from the point A to the point B gain the
phase φ1 in the branch 1 (clockwise motion) and φ2 in the branch 2
(counterclockwise motion). The difference φ = φ1 −φ2 is the phase (12).
To take these phases into account, one should make the substitutions

t1 → t1e
iφ1 , t2 → t2e

iφ2 , t′1 → t1e
−iφ1 , t′2 → t2e

−iφ2 . (14)

These substitutions satisfy the symmetry (58.15). The reflection ampli-
tudes ri and r′

i are not modified in the presence of the flux. The physi-
cally meaningful quantity |D|2 depends only on φ = φ1 − φ2. Below, for
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the sake of simplicity, we consider a model of symmetric, totally trans-
parent contacts, where rA

1 = rA
2 = rB

1 = rB
2 ≡ r, tA

12 = tA
21 = tB

12 = tB
21 ≡ t,

tA2 = tB2 = tA1 = tB1 = t2B = t2A = t1B = t1A ≡ t′ and rA = rB = 0.
The unitarity conditions for the scattering matrices of the three-terminal
contacts lead to |t′|2 = 1/2, |t|2 = 1/4, and r = −t. The phases of t and
t′ still remain indefinite. Choosing them in such a way that t = −1/2
and t′ = −1/

√
2, we express the intrinsic conductance as

G =
e2

π�

T (φ)
1 − T (φ)

, T (φ) = 4
|P+eiφ/2 + P−e−iφ/2|2

|P0 + P cos φ|2 , (15)

where

P = 2t1t2, P0 = t21 + t22 − (2 − r1 − r2)(2 − r′
1 − r′

2),

P+ = t1[t22 − (1 − r2)(1 − r′
2)], P− = t2[t21 − (1 − r1)(1 − r′

1)], (16)

and one should also take into account the unitarity conditions for the

scattering matrices Ŝi =
(

ri ti
ti r′

i

)
leading to |ti|2 + |ri|2 = 1 and r′

i

= −r∗
i ti/t∗i . The last equation is equivalent to

|r′
i| = |ri|, arg(r′

i) = 2 arg(ti) − arg(ri) + π. (17)

Even in the absence of the magnetic flux, the conductance shows quan-
tum effects. For example, making the transmission amplitude through
one of the branches (say 1) zero, t1 = 0, one still can change the trans-
mission coefficient from 0 to 1 by modifying the phases of r1 and r′

1.
The system in this case is equivalent to a single wire 2 with two lat-
erally attached dead ends (stubs), and the control of G is caused by
the interference between the transmitted electron wave and the waves
reflected in the stubs. In the presence of the magnetic flux, the conduc-
tance (15) oscillates as a function of φ. The period of these oscillations
corresponds to a change of the flux Φ by Φ0. This phenomenon is called
the Aharonov-Bohm oscillations. In the simplest case of two equivalent
ballistic wires, when t1 = t2 = eiϕ and r1 = r2 = r′

1 = r′
2 = 0, the

transmission coefficient given by Eq. (15) is reduced to

T (φ) =
4(1 − cos 2ϕ)(1 + cos φ)

5 − 4 cos 2ϕ + cos2 φ + 2 cos φ(1 − 2 cos 2ϕ)
. (18)

Though the conductance is a periodic function of φ, it is not a harmonic
function of this variable. The higher harmonics, whose periods are given
by ∆φ = 2π/n with integer n, are also present.

A configuration of scatterers in the ring is unique so that the coeffi-
cients ti, ri, and r′

i are well-defined. Suppose, however, that one has an
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ensemble of the rings with different distributions of the same scatterers.
To obtain the average transmission coefficient 〈T 〉 for such ensemble,
one has to average the transmission coefficient T of Eq. (15) over four
random phases arg(t1), arg(t2), arg(r1), and arg(r2), while the phases
of r′

1 and r′
2 are expressed through these four according to Eq. (17).

It seems that such an averaging is expected to destroy the Aharonov-
Bohm oscillations. The averaging, indeed, destroys the ∆φ = 2π pe-
riodicity of the transmission, but the ∆φ = π periodicity remains. To
understand why it happens, let us consider T (φ) and T (φ + π) given
by Eq. (15). For a given configuration {δ} of the scatterers, with fixed
arg(ti){δ} and arg(ri){δ}, these transmission coefficients are different.
However, for each {δ} one can find another (non-equivalent) configura-
tion {δ′}, for which T{δ′}(φ+π) is equal to T{δ}(φ). For example, this is
the case when arg(t1){δ′} = arg(t1){δ} + π, arg(t2){δ′} = arg(t2){δ}, and
arg(ri){δ′} = arg(ri){δ}. One may check this property directly from Eq.
(15), using Eqs. (16) and (17). In other words, T (φ) and T (φ + π), as
functions of arg(t1), differ from each other just by a linear translation
arg(t1) → arg(t1)+π, and the procedure of averaging over this argument
makes them equal to each other. The averaged quantity

〈T (φ)〉arg(t1) =
∫ 2π

0

d arg(t1)
2π

T (φ) =
∫ 2π

0

d arg(t1)
2π

T (φ + π) (19)

is a periodic function of φ (and of arg(t2)), and its period is equal to π.
The averaging over arg(t2), arg(r1), and arg(r2) conserves this period-
icity so that finally we have 〈T (φ)〉 = 〈T (φ + π)〉. Thus, the ensemble-
averaged conductance of a system of 1D rings remains periodic in the
magnetic flux, and the period is equal to Φ0/2, in contrast to the con-
ductance of a single 1D ring whose periodicity is Φ0.

The periodicity Φ0/2 takes place in macroscopic rings, where the self-
averaging takes place. The oscillating part of the conductivity in this
case is associated with the quantum (weak-localization) correction (see
Secs. 15 and 43), and the periodicity Φ0/2 instead of Φ0 formally appears
because the effective charge entering Eq. (43.19) for the Cooperon is 2e
instead of e. One may consider, for example, a 2D layer folded into a
cylinder along the magnetic field so that Eq. (43.19) should be solved
with periodic boundary conditions (problem 12.8). This consideration
shows us that the Φ0/2 oscillations are caused by the self-interference of
electron waves associated with closed paths around the ring.

Consider now an isolated ring (without leads). In the presence of a
finite magnetic flux, a diamagnetic current should flow around the ring in
equilibrium. Indeed, according to Eq. (4.16), the energy ∆E associated
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with the vector potential is ∆E = −c−1 ∫ dr Ir ·Ar. In application to the
1D ring, this integral is a contour integral. The steady-state current Ir
in the 1D case is constant, because of the continuity requirement. Since
this current is directed along the circumference of the ring, we can write
Ir = Inl. Using the Stokes theorem, we obtain

∆E = −I

c

∮
r∈l

dr Ar · nl = −IΦ
c

. (20)

Here we assume the clockwise direction of the current. For the counter-
clockwise direction, the sign of ∆E should be changed. The current is
obtained as a derivative of the total energy of the electron system, E ,
over the flux:

I = −c
∂E
∂Φ

. (21)

In the case of ideal transmission of electrons around a circular ring of
radius ρ0, the energy is given as a sum over occupied discrete states,
E = 2

∑∞
n=−∞ εnθ(εF − εn), where εn = (�2/2mρ2

0)[n + Φ/Φ0]2; see
problem 12.7. Owing to the alternating signs of the derivative ∂εn/∂Φ
for consecutive levels, there is a strong cancellation, and the sum is of
the order of the last term (with εn nearest to the Fermi energy εF ). This
leads to an estimate

I ∼ 2|e|εF

π�N
� |e|vF

L
, (22)

where L = 2πρ0 is the length of the circumference, N �
√

2mL2εF /π� is
the number of occupied discrete states, and vF =

√
2εF /m is the Fermi

velocity. Thus, I is the current associated with the motion of a single
electron around the ring. We stress that I is an equilibrium current. It
is often called the persistent current.

In the presence of elastic scattering, the persistent current flows with-
out dissipation. To prove this, let us calculate the energy spectrum of
the electrons in a non-ideal ring. The relation between the amplitudes of
forward- and backward-moving electron waves on both sides of a disor-
dered one-dimensional conductor are given by Eq. (9), where the index i
should be omitted since we consider a single conductor. Let us transform
the conductor to a ring, which implies the boundary conditions B′ = B
and C ′ = C. This immediately gives us the equation

(1 − t)(1 − t′) = rr′. (23)

We remind that the primed letters describe the transmission and re-
flection of backward-moving electrons. In the presence of a magnetic
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flux (assuming that the forward motion of electrons in the conductor
becomes the clockwise motion in the ring) one should make the sub-
stitutions t → teiφ and t′ → te−iφ, where the new variable t is the
transmission amplitude at zero flux. The reflection amplitudes are not
modified by the flux, and they are described according to Eq. (17).
Taking these properties into account, we find the relation

cos[arg(t)] = |t| cos φ, (24)

which directly follows from Eq. (23). The quantity arg(t) + 2πn, where
n is an integer, is the phase acquired by the electron in one revolution
around the ring (the total phase is arg(t)+2πn+φ). The electron energy
associated with this state is proportional to [n + arg(t)/2π]2. Equation
(24) is, therefore, a dispersion relation. Only the waves whose phases
satisfy Eq. (24) can propagate in the ring. As a result of this restric-
tion, there appears a miniband structure of the electron spectrum as a
function of the flux. The situation is analogous to the case of electrons
with a characteristic wave number k = φ/L in a one-dimensional crystal.
For nearly ideal rings, where |t| � 1, the bands are broad, and there are
narrow forbidden gaps near φ = 0 and φ = ±π. In the case of strongly lo-
calized electrons, when |t| � 1, the bands are narrow and their positions
correspond to arg(t) = π/2 and arg(t) = 3π/2. The energy spectrum of
a circular ring of radius ρ0 in this case is quasi-discrete,

εn � �
2π2

2mL2

[(
n +

1
2

)2

− (−1)n

π
(2n + 1)|t| cos φ

]
, (25)

and the flux dependence is harmonic, since it corresponds to the tight-
binding situation. The persistent current still exists, but its magnitude
is much smaller than the one given by Eq. (21). The inelastic scattering
cannot destroy the persistent current, but it causes its fluctuations with
time. Such fluctuations become important in non-stationary processes,
as described in the next paragraph.

If the magnetic field changes with time, there appears an electric field
E directed along the circumference of the ring. Indeed, applying the
Stokes theorem to the Maxwell equation [∇ × E] = −c−1∂H/∂t, we
obtain the electromotive force

V =
∮
r∈l

dr E · nl = −1
c

∂Φ
∂t

, (26)

which is constant for a linear variation of the flux with t. Since the
properties of the ring are periodic in Φ, the constant electromotive force
induces Bloch oscillations of the current I. The frequency of these os-
cillations, ω = |e|V/�, is determined from the periodicity Φ0 given by



558 QUANTUM KINETIC THEORY

Eq. (13). This frequency is proportional to V . In the presence of in-
elastic scattering, which transfers an electron between the minibands at
a constant flux Φ, the Bloch motion leads to a stationary dissipative
current. To find it, we assume the case of low temperatures, when the
fluctuations of the occupation numbers are important only for the two
minibands, n and n + 1, closest to the Fermi level. Denoting these oc-
cupation numbers as fn and fn+1, we write the time-averaged current
(21) as

〈I〉 = −2c

〈
fn

∂εn

∂Φ
+ fn+1

∂εn+1

∂Φ

〉
. (27)

Since the occupation numbers satisfy the equation fn + fn+1 = 1 follow-
ing from the particle conservation requirement, one can eliminate fn+1
from Eq. (27). To determine fn, let us write a balance equation

∂fn

∂t
= −1

τ
(fn − f (eq)

n ), (28)

where f (eq)
n is the equilibrium occupation number. The functions fn,

f (eq)
n , and εn depend on the flux, while the relaxation time τ , for the sake

of simplicity, is assumed to be independent of the flux. The problem is
solved after substituting a solution of Eq. (28) into Eq. (27). To facil-
itate the averaging over time, which is defined as (ω/2π)

∫ 2π/ω
0 dt . . . ,

one may introduce the Fourier expansions f (eq)
n =

∑
k fk cos(kωt) and

εn −εn+1 =
∑

k ∆k cos(kωt). The averaged current is expressed through
the coefficients in these expansions as

〈I〉 = −|e|
�

∞∑
k=1

fk∆k
k2ωτ

1 + (kωτ)2
. (29)

This current, as a function of ω, is maximal at ω ∼ 1/τ . If ω � 1/τ , the
current is a linear function of the voltage V = �ω/|e|. This corresponds
to a dissipative conductance proportional to e2τ .

A special case of one-dimensional transport is realized in the 2D sam-
ples of finite size in the presence of a magnetic field. If this field is strong
enough, the Fermi electrons move along the well-defined equipotential
lines, according to Eq. (51.15). In small (but still macroscopic) sam-
ples this motion occurs near the edges of the sample and has a classical
interpretation in terms of skipping cyclotron orbits. In the quantum-
mechanical interpretation, the wave functions of electrons in the presence
of a magnetic field and smooth boundary potential become localized. An
example of such situation is the exactly solvable problem of a 2D electron
whose motion in the XOY plane is restricted by the parabolic potential
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energy U(x) = mω2
0x

2/2. Using the gauge A = (0, Hx, 0), we search
for the electron wave function in the form L

−1/2
y eipy/�ψ(x) and write the

Schroedinger equation for ψ(x) as (spin splitting is neglected)[
− �

2

2m

∂2

∂x2 +
mω2

2
(x − Xp)2 + ε̃p − ε

]
ψ(x) = 0, (30)

ω =
√

ω2
c + ω2

0, ε̃p =
(ω0

ω

)2 p2

2m
, Xp = −

(ωc

ω

)2 pl2H
�

.

This is an equation for the harmonic oscillator with shifted center and
renormalized frequency. Therefore, the energy spectrum is ε = εNp =
�ω(N + 1/2) + ε̃p. It contains a renormalized kinetic energy describ-
ing the drift motion of electrons along OY . The wave functions are
given by Eq. (5.15) with Xpy = Xp and lH → � =

√
�/mω. By

equating εNp to the Fermi energy εF , one can define the position of
the state originating from the Landau level N as XpN , where |pN | =
(ω/ω0)

√
2m[εF − �ω(N + 1/2)]. The states with smaller Landau level

numbers N are placed closer to the boundary. The states are localized
if the size � of the wave function is small in comparison to the distance
|XpN − XpN+1 |. In the model under consideration, this occurs when the
ratio ωc/ω0 becomes much greater than the square root of the number
of occupied Landau levels (estimated as

√
εF /�ω). This consideration

proves us that the localization always occurs with increasing magnetic
field. The positions of the localized states in this model are distributed
over the parabolic potential well. However, if one considers an edge po-
tential, for example, U(x) = mω2

0x
2/2 at x > 0 and U(x) = 0 at x < 0,

the localized states occupied by electrons exist only near the edge, since
their number is equal to the number of the filled Landau levels in the
bulk of the sample. For this reason, these states are called the magnetic
edge states.

The electrons in the magnetic edge states can move only in one di-
rection determined by the potential gradient. Their group velocity, in
the physically reasonable case of smooth edge potentials, is given by
Eq. (51.15). In the example given above, the electrons at x < 0 are
moving in the positive direction, while those at x > 0 are moving in the
negative direction. The group velocity (51.15) for the parabolic poten-
tial U(x) = mω2

0x
2/2 always coincides with dεNp/dp = (ω2

0/ω2)(p/m),
without regard to the value of ω0 (problem 12.9). The ability to move
only in one direction, called the chirality, is an important property of
the magnetic edge states. This property is essential for describing the
magnetotransport in small 2D samples. First of all, the current carried
by an edge state is a usual 1D current, and the consideration leading to
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Eq. (58.4) is applicable to a system of Nf edge-state channels, which be-
have like effective 1D wires spatially separated from each other. In other
words, if we have a sample connected to two leads, 1 and 2, the lead-
to-lead transmission probability for the electrons at the Fermi surface,
T21, is equal to the number Nf of the edge-state channels connecting the
leads; the electrons in these states move in the same direction, from 1 to
2. The zero-temperature conductance of such a sample is given by Eq.
(58.4). The backscattering processes, which cause deviation of the trans-
mission coefficients from unity, are exponentially suppressed in the case
of edge-state transport, because of spatial separation of forward- and
backward-moving states. The scattering between the states moving in
the same direction is also exponentially suppressed. This leads to two im-
portant consequences. The first one is related to small-size constrictions,
where the ballistic transport is considerably improved by application of
a strong enough magnetic field. It is instructive to check this property
on the example of the saddle-point potential (58.25), where there is an
exact solution for the transmission in the magnetic field (problem 12.10).
The other consequence is related to macroscopic 2D samples, where the
inelastic scattering is present, but only within each edge channel. Since
this scattering does not change the number of electrons and the direction
of electron motion, the coefficient TMN describing the total transmission
probability from the lead N to the lead M is simply equal to the number
of magnetic edge channels in which the electrons travel from N to M .
The multi-terminal conductance in this case is described by Eq. (58.21).
In other words, since we have isolated chiral 1D channels, the phase co-
herence becomes non-essential for the lead-to-lead transmission, and the
consideration of electron transport in terms of quantized conductance
appears to be valid for macroscopic samples.

The above consideration allows one to describe the quantum Hall
effect as a manifestation of the edge-state transport. The relevant ge-
ometry for the Hall measurements includes at least four leads, see Fig.
12.4, two of them (1 and 3) are source and drain, and the other two (2
and 4) are voltage probes. Let us apply the formalism of Sec. 58 to such
four-terminal system. The four equations for the current follow from Eq.
(58.7) with M, N =1, 2, 3, and 4. Strictly speaking, we need only three
equations, since I1 + I2 + I3 + I4 = 0, and the result should depend only
on the differences of the voltages. Thus, we consider a system of three
equations by setting V4 = 0 and omitting the equation for I1:

I2 = G21(V2 − V1) + G23(V2 − V3) + G24V2,

I3 = G31(V3 − V1) + G32(V3 − V2) + G34V3, (31)

I4 = −G41V1 − G42V2 − G43V3.
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We need to find V2 under the condition that I2 = I4 = 0 and divide it by
I = I1 = −I3. The ratio V2/I is the Hall resistance R⊥. Since we have
the edge-state transport, the non-zero GMN are G21 = G32 = G43 =
G14 = e2Nf/2π�, and we obtain R⊥ = (2π�/e2)1/Nf . The number of
the edge channels, Nf , is equal to the number of filled Landau levels,
which is determined by the magnetic field. This result correlates with
Eq. (51.1) discussed in Sec. 51 (we point out that the Hall resistivity ρ⊥
in the 2D case is formally equal to the Hall resistance R⊥). Therefore,
the quantization of the Hall resistance is obtained by considering the
one-dimensional transport of electrons in the edge states. One can find
also V1 = V2 and V3 = V4. A similar consideration, when the current
is fed through the leads 1 and 2 and the voltages are measured at the
leads 3 and 4, shows us that V3 − V4 = 0, which means the absence of
the longitudinal resistance in the quantum Hall effect regime.

Figure 12.4. Edge-state transport in the four-terminal geometry.

If the leads are connected to the sample through narrow constrictions,
the number of the edge channels penetrating into these leads is not, in
general, equal to the number Nf of filled Landau levels, it can be smaller.
However, if at least two of the leads can accommodate all (Nf ) edge
channels, the quantization of the Hall resistance is again determined
only by the number of the Landau levels. If there is only one such lead,
the upper edge channel(s) coming from it form loop(s) around the sample
and return back to the lead, without contributing to the transport. A
similar situation takes place when no one of the leads can accommodate
all edge channels; in this case the upper edge channel(s) form closed
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loop(s) around the sample without penetrating into any lead. Since all
such upper channel(s) should be excluded from the consideration, the
Hall resistance shows anomalous behavior: it is not determined by the
number Nf , but by the number of the edge states contributing to the
transport. The number of these edge states can be varied not only by
the magnetic field, but also by the gate voltages controlling the widths of
the constrictions. Considering the four-terminal geometry of Fig. 12.4,
one can find the Hall resistance as

R⊥ =
2π�

e2Nmax
, (32)

where Nmax ≤ Nf is the maximal number of the edge states capable to
transfer electrons between leads (problem 12.11). To determine Nmax,
one should consider two leads whose contacts transmit the highest num-
bers of edge states, say M and M ′, and take the minimum transmission
of these two, Nmax = min(M, M ′).

60. Tunneling Current
The tunneling, as a quantum-mechanical property of particles to pass

through the classically unpenetrable potential barriers, has numerous
manifestations in physics. Since the tunneling processes, as usual, have
exponentially small probabilities, one can describe the tunneling current
according to the basic equation (58.1). The description of the coefficients
i(±)
δδ′ in each particular case requires solution of a quantum-mechanical

problem. This is sufficient if the electron transport through the barriers
can be treated as ballistic. In more complicated cases, such as the tun-
neling between low-dimensional systems, it is also necessary to consider
scattering of electrons. In this section we study different manifestations
of the tunneling in the case of one-dimensional potential energy U(z).
The potential diagram in Fig. 12.5 shows us that even in this simple case
there are several variants of tunneling transport of electrons. First, there
exists tunneling between 3D states, which can be described by calculat-
ing the quantum-mechanical transmission coefficients. This tunneling,
when associated with the presence of a quasibound 2D state in the bar-
rier, requires a more complex description, especially when the scattering
causes electron relaxation in this quasibound state. The tunneling be-
tween 2D states requires another description, because the direction of
electron motion (in-plane motion) is different from the direction in which
they tunnel. The tunneling between 2D and 3D states can be viewed
as a tunneling decay of a quasibound state, with a characteristic de-
cay rate. We will show that a unified description of all these cases can
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be done by using the method of tunneling Hamiltonian (Appendix H).
The tunneling processes shown in Fig. 12.5 correspond to a single-band
model. Apart from this, we will consider the Zener tunneling between
the 3D conduction- and valence-band electron states, which occurs in
the presence of a strong electric field; see Fig. 12.6 below.

Figure 12.5. Different manifestations of tunneling in the presence of one-dimensional
potential energy U (x): tunneling between bulk (3D) states (a), resonant tunneling
through a quasibound 2D state (b), tunneling between 2D states (c), and tunneling
between 3D and 2D states (d).

To calculate the tunneling conductance through a potential barrier
between 3D regions, one may use the formalism described in Sec. 58;
see Eqs. (1), (21), and (22). Since the eigenstates for transverse motion
(parallel to the barrier) are the plane waves described by the 2D momen-
tum p which is conserved in the tunneling transitions, the conductance
per unit square is given by

G =
e2

2π�

∫
dε

[
−∂f(ε)

∂ε

] ∫
dp

(2π�)2
Tpε. (1)

The tunneling current per unit square is written as

IT =
e

2π�

∫
dε

∫
dp

(2π�)2
[fl(ε) − fr(ε)] Tpε, (2)
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where fr(ε) and fr(ε) are the quasi-equilibrium electron distribution
functions on the left (l) and right (r) sides. We use the coordinate
system where the OZ axis is perpendicular to the barrier. The coefficient
Tpε ≡ 2T

(k′
zp,kzp)

rl is the probability of transmission between the states
with the wave numbers kz on the left and k′

z on the right (see the general
definition of T (mn)

MN in Eq. (58.22)) summed over spin (we assume that
the electron spectrum is spin-degenerate and the spin is conserved in
the tunneling transitions). These wave numbers, as well as the group
velocities vz and v′

z on both sides, are functions of the electron energy ε
and momentum p. For the particles with isotropic parabolic spectrum
moving in the potential with the asymptotic behavior U(z → −∞) = 0
and U(z → +∞) = −∆U , one has

�kz =
√

2m(ε − p2/2m), �k′
z =

√
2m(ε + ∆U − p2/2m). (3)

The transmission coefficient should be calculated from the quantum-
mechanical problem assuming incident and reflected electron waves on
the left and transmitted waves on the right,

Ψ1 = (eikzz + re−ikzz)/
√

vz, Ψ2 = teik′
zz/
√

v′
z , (4)

where vz = vz(ε, p) = �kz/m and v′
z = v′

z(ε, p) = �k′
z/m. This transmis-

sion coefficient is expressed through the amplitude of the transmitted
wave as Tpε = 2|t|2. Such a consideration implies the introduction of the
wave functions proportional to eκz and e−κz in the barrier region, where
κ−1 is the underbarrier penetration length (problem 12.12). Assum-
ing that the potential barrier U(z) is high and thick enough to provide
exponentially small transmission probability, one can always find the
transmission coefficient with the exponential accuracy:

Tpε ∼ exp

[
−2
∫ z′

0

z0

dzκ(z)

]
, �κ(z) =

√
2m[U(z) − ε] + p2, (5)

where z0 and z′
0 are the classical return points determined by the equa-

tion κ(z) = 0. In this limit, the main contribution to the tunneling
current comes from the electrons whose transverse momenta are small,
p � pF , so that the exponentially-accurate expression for the tunneling
conductance is

G ∝
∫

dε

[
−∂f(ε)

∂ε

]
exp

[
−2

√
2m

�

∫ z′
0

z0

dz
√

U(z) − ε

]
. (6)

At zero temperature, the tunneling conductance is proportional to Tpε

calculated at p = 0 and ε = εF . The conductance stays independent
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of temperature in the low-temperature region. However, if the integral
in the exponent of Eq. (6) decreases with increasing ε faster than lin-
early, the thermal-activated tunneling appears to be important even at
relatively low temperatures. In particular, this is the case of triangular
barriers, when U(z) = 0 at z < 0 and U(z) = U0(1−z/d) at z > 0 so that∫ z′

0
z0

dz
√

U(z) − ε = (2d/3U0)(U0−ε)3/2. The characteristic energy of the
tunneling electrons in the degenerate case is εF . As the temperature T
increases and the energy U0−Ed(U0/T )2, where Ed = �

2/8md2, becomes
greater than εF , the characteristic tunneling energy becomes equal to
U0 − Ed(U0/T )2. The conductance in these conditions shows a thermal-
activation behavior according to G ∝ exp[−(U0 − εF )/T + EdU

2
0 /3T 3].

The dependence on the barrier width d exists in a narrow temperature
interval where the current is switched from the pure tunneling current
to the pure thermal-activated one.

In the situation denoted as (b) in Fig 12.5, one should consider a
barrier containing quasibound states. The simplest example of this kind
is a double-barrier structure with U(z) = U0 at 0 < z < z1 and z2 <
z < z3, and U(z) = 0 elsewhere. Since the transverse momentum p
is conserved in the transitions, the quantum-mechanical transmission
coefficient for such a structure is analogous to the coefficient already
calculated for the one-dimensional conductors with two obstacles; see
Eq. (59.3). The coefficients |ti|2 and |ri|2 = 1−|ti|2 are the transmission
and reflection coefficients of individual barriers calculated for fixed values
of the energy and transverse momentum. The phase θ, apart from the
slowly varying arguments arg(r′

1) and arg(r2), contains the dynamical
phase 2ϕ = 2kz(z2 − z1) which is a fast function of both energy and
momentum. If this phase changes, for example, as a function of the Fermi
energy, the transmission coefficient varies from a small value |t1|2|t2|2/4
to 4|t1|2|t2|2/(|t1|2+|t2|2)2; see Eq. (59.3). The peaks in the transmission
correspond to cos θ = 1, they are narrow, and their line shape is close
to a Lorentz function (this statement can be proved by expanding the
cosine in Eq. (59.3) around its resonant value). In the case of identical
barriers, |t1|2 = |t2|2, the peak transmission coefficient is equal to unity
even if the transmission coefficients of individual barriers are small. The
appearance of such peaks corresponds to resonant tunneling of electrons
through the quasibound states. We have considered the case of coherent
tunneling. If the quantum coherence is suppressed by scattering (see
the description of the sequential tunneling below), the peak transmission
coefficient becomes small, though the peak structure of the transmission
remains.

The electrons in crystals can tunnel between the energy bands in
the presence of a homogeneous electric field E. To consider this phe-
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nomenon (Zener tunneling), it is convenient to apply the time-dependent
Schroedinger equation

i�
∂Ψ
∂t

=
(
ĥcr − eE · r

)
Ψ, (7)

where ĥcr is the Hamiltonian (5.4) which contains a periodic potential.
In the absence of the electric field, the solution of this equation would
be ψlp(r)e−iEl(p)t/�, where the Bloch function ψlp(r) of the l-th band
corresponding to the energy El(p) is given by Eq. (5.5). If the electric
field is applied, the electrons are accelerating according to p → pt =
p + eEt. However, since p is a quasimomentum, they experience Bragg
reflection at the edge of the Brillouin zone and start moving again across
this zone. This process can be also viewed as Bloch oscillations, when the
electron energy is a periodic function of time, El(pt). The wave function
which takes into account this motion in the adiabatic approximation is

ψl(rpt) = L−3/2ulpt(r)e
ipt·r/� exp

[
− i

�

∫ t

dt′El(pt′)
]

. (8)

It satisfies Eq. (7) except for the term ∝ E · ∂ulpt(r)/∂pt. The contri-
bution of this term is responsible for the tunneling between the bands.
It can be taken into account by expanding the exact wave function in
the form Ψ =

∑
l Cl(t)ψl(rpt). Substituting this expansion into Eq. (7),

multiplying the latter by ψ∗
l′(rpt) from the left, and integrating over r by

using the orthogonality of the Bloch functions, we obtain an equation for
Cl(t) in the form ∂Cl(t)/∂t =

∑
l′ All′(t)Cl′(t). This gives us the prob-

ability Pll′ = |
∫

TB
0 dtAll′(t)|2 of the transition between the bands l′ and

l during the period of the Bloch oscillations, TB. Taking into account
that the index l (l′) includes both the band number n (n′) and the spin
number σ (σ′), we introduce the total probability summed over all spins
(the bands are assumed to be spin-degenerate) according to

Pnn′ =
∑
σσ′

∣∣∣∣∫ TB

0
dtXnσ,n′σ′(pt) exp

{
i

�

∫ t

dt′[En(pt′) − En′(pt′)]
}∣∣∣∣2 ,

Xnσ,n′σ′(p) =
|e|
Vc

∫
Vc

dr u∗
nσp(r)E · ∂

∂p
un′σ′p(r). (9)

The integral over r in the last equation is taken over the volume of the
crystal cell, Vc.

The integral over time t in Eq. (9) contains a fast-oscillating factor,
and the main contribution to this integral comes from the region where
the bands n and n′ are closest to each other. This is the region of the
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band extrema, where the bands are separated by a direct gap εg . There-
fore, one may extend the limits in the integral over t to ±∞ and use
the kp-formalism to describe the interband transitions. The quantity
Pnn′ in this case describes transmission of the n′-th band electron to
the adjacent band n as this electron is decelerating and reflecting back
from the potential wall created by the electric field. Therefore, we again
obtain a transmission-reflection problem, as in the case of single-band
electron tunneling through the potential barriers considered above. Be-
low we use the symmetric two-band model of Appendix B to calculate
the probability of transmission from the conduction band to the valence
one. Assuming that the field is directed along OZ, we have

Pvc ≡ Tp =
∑
σσ′

∣∣∣∣∫ ∞

−∞
dpz

|e|E Xvσ,cσ′(pz,p) exp
[

2i

�|e|E

∫ pz

0
dp′

zE(p′
z , p)

]∣∣∣∣2 ,

E(p′
z , p) =

√
(εg/2)2 + s2p2 + s2p′2

z . (10)

This transmission coefficient is independent of energy because the elec-
tric field is homogeneous. Since Tp decreases exponentially with in-
creasing p = (px, py), one can put p = 0 in Xvσ,cσ′(pz,p) and obtain
Xvσ,cσ(pz,p = 0) = δσσ′σs|e|Eεg/[2E(pz, 0)]2. This expression is found
by a direct calculation taking into account that in the symmetric two-
band model Xvσ,cσ′(pz,p) = |e|EΨ∗

vσ(pz,p) · ∂Ψcσ′(pz,p)/∂pz , where
Ψnσ(pz,p) are the columnar eigenstates (eigenvectors) of the 4×4 matrix
Hamiltonian (B.18) with M → ∞, similar to the eigenstates introduced
in problem 10.15. The integral over pz in Eq. (10) is taken analyti-
cally by shifting the contour of integration into the upper half-plane of
complex pz up to the pole ip0 = i

√
(εg/2s)2 + p2, where E(pz, p) = 0

(problem 12.13). The result is

Tp =
2π2

9
exp

{
−πm1/2(εg/2)3/2

�|e|E

(
1 +

2p2

mεg

)}
, (11)

where we use the mass m = εg/2s2 at the bottom of the band rather
than the velocity s. The exponent in Eq. (11) at p = 0 is similar to that
of Eq. (18.9) at ω = 0, the difference is only in a numerical factor.

The probability of Zener tunneling calculated above can be used to
write the tunneling current through the n-i-p diode, whose energy band
diagram is represented in Fig. 12.6. With the aid of Eq. (2), we find the
density of the tunneling current between the n- and p-doped regions:
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Figure 12.6. Zener tunneling in the n-i-p diode structure.

IT =
em

18�3 exp

[
−πm1/2(εg/2)3/2

�|e|E

]

×
∫

dε

∫ εmax

0
dε⊥e−ε⊥/ε0 [fl(ε) − fr(ε)], (12)

where ε⊥ = p2/2m is the energy of transverse motion and ε0 is a
characteristic energy equal to �|e|E/π

√
2mεg . Since the total energy

and transverse momentum are conserved, the energy ε⊥ is limited by
εmax = min(ε, WD − ε), where WD = ∆ − εg > 0 and ∆ is the total
drop of the potential energy across the structure. We assume WD � εg

so that the parabolic approximation is justified. Integrating over ε⊥, we
obtain

∫ εmax

0 dε⊥e−ε⊥/ε0 = ε0[1 − e−εmax/ε0 ]. If a bias eV is applied to
the n-i-p diode, the energy WD changes as WD = W (eq)

D −eV because the
electron density on the left and the hole density on the right are fixed
by the doping level. The current at zero temperature is given by

IT = e
m|e|E

18π�2
√

2mεg
exp

[
−πm1/2(εg/2)3/2

�|e|E

]
D, (13)

D =
∫ min(W (eq)

D −eV,µ)

max(0,µ−eV )
dε

{
1 − exp

[
−min(ε, W (eq)

D − eV − ε)
ε0

]}
,

where µ is the equilibrium chemical potential counted from the bottom
of the conduction band in the left (n-doped) side of the diode. The
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modification of the exponential factor in IT associated with the depen-
dence of the electric field E on eV can be neglected if |eV | � 4ε0, and the
current-voltage characteristics in this case are entirely determined by the
function D. At a small bias, when the upper and lower limits of integra-
tion in Eq. (13) are µ and µ−eV , respectively, the current IT is linear in
V . If |eV | becomes comparable to W (eq)

D , the current-voltage character-
istics essentially depend on the sign of V . In the case of negative bias,
the tunneling current monotonically increases with |V |. In the region
of positive bias, the current increases, goes through a maximum, and,
finally, decreases to zero at eV = W (eq)

D , when the tunneling becomes
forbidden. The tunneling current is exponentially small at ε0 � εg . If
ε0 is small in comparison to the Fermi energies of electrons and holes,
µ and W (eq)

D − µ, respectively, only the electrons with ε⊥ � 0 contribute
to the current, and the exponential term in the expression for D can be
neglected. The voltage dependence of the function D in this case has
the most simple form (in particular, this function is always equal to eV
in the case of negative bias).

Having considered the tunneling between 3D regions, we now study
the tunneling decay of a metastable 2D state into a continuum of 3D
states, the process (d) in Fig. 12.5. In the 3D region the wave function
of this state should behave as an outgoing plane wave. This require-
ment leads to a special dispersion relation for the state quantized in the
well so that the energy of this state acquires a small negative imaginary
part, −iΓ, to ensure conservation of the electron flow across the struc-
ture, ψ∗

z (dψz/dz) − (dψ∗
z /dz)ψz =const. One may, therefore, introduce

a characteristic rate ν = 2Γ/� describing an exponential decay of the
metastable state. If the electron density in such “leaky” quantum well is
maintained by an external source, a steady-state current flows between
the well and the continuum. According to Eq. (58.1), the tunneling
current per unit square can be written as a sum of partial contributions
from all discrete 2D states characterized by the level number k and 2D
momentum p. Taking into account the energy conservation law, we
obtain

IT = 2e

∫
dp

(2π�)2
∑

k

νk [fl(εlk + εp) − fr(εlk + εp)], (14)

where fl(ε) is the quasi-equilibrium Fermi distribution function in the
well (left region), which depends on the sum of the in-plane kinetic
energy εp = p2/2m and discrete size-quantization energy εlk . The func-
tion fr(ε) is the quasi-equilibrium Fermi distribution function in the 3D
(right) region. The usage of the quasi-equilibrium distribution functions
in Eq. (14) is justified if νk is small in comparison to the energy relax-
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ation rates in the well and in the continuum. This is easy to achieve,
since νk is proportional to an exponentially small factor similar to the
one standing in Eq. (6). The decay rate νk is calculated in problem 12.14
for the electrons escaping from a rectangular quantum well through a
rectangular potential barrier. Since we assume a parabolic band with a
coordinate-independent effective mass, νk is fixed by the potential U(z)
and does not depend on εp. Therefore, the tunneling current (14) can
be expressed through the tunneling conductance given by

G = e2ρ2Dν, ν =
∑

k

νkθ(εF − εlk), (15)

where ρ2D = m/π�
2 is the 2D density of states and ν is the sum of

the tunneling rates over all populated discrete states. Although we have
considered the 3D-2D tunneling, one can introduce the tunneling rate νk

in any case when there is a coupling between a metastable (quasibound)
state and a continuum of states.

In the general case, the tunneling currents described by Eqs. (2) and
(14) can be written through the tunneling matrix elements introduced
in Appendix H. Using Eq. (H.15) for the tunneling probability in unit
time, we write the tunneling current according to Eq. (58.1) as

IT =
4πe

�

∫
dp

(2π�)2
∑
kk′

∫
dε|tlk′,rk |2δ(εlk′p − ε)δ(ε − εrkp)[fl(ε) − fr(ε)].

(16)
This equation can be also obtained with the use of IT = Spρ̂tÎT , where
the statistical operator ρ̂t satisfies the equation i�∂ρ̂t/∂t = [ĤT , ρ̂t],
the Hamiltonian ĤT is given by Eq. (H.13), and the operator of the
tunneling current, ÎT , is defined according to Eq. (H.18). If both k and
k′ are continuous variables, from a comparison of Eqs. (2) and (16) we
obtain

Tpε = 8π2
∑
kk′

|tlk′,rk |2δ(εlk′p − ε)δ(ε − εrkp). (17)

To check this relation on a simple example, one may consider the tun-
neling of 3D electrons through a rectangular potential barrier (problem
12.15). For the case of tunneling between a single discrete (2D) state
k′ on the left and a continuum of states k on the right, we find simply
νk′ =

∑
k Wlk′p,rkp, where the probability of transition in unit time is

determined according to Fermi’s golden rule; see Eqs. (H.15) and (H.30).
The tunneling between 2D states, which occurs when two 2D electron

layers are brought close together in real space, requires a special con-
sideration. If we directly apply Eq. (H.15) to this case, using the 2D
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states with the energies εlp = ∆/2 + εp and εrp = −∆/2 + εp, where
εp = p2/2m, we find that the probability of tunneling is infinite in the
resonance (at ∆ = 0) and zero out of the resonance, when ∆ 	= 0. The
absence of out-resonance tunneling is associated with the conservation
of the in-plane (2D) momentum p. To cancel this restriction, one should
include the scattering potentials into the Hamiltonian. For the double-
layer system, in the basis of l- and r- orbitals, this Hamiltonian is written
as an effective 2 × 2 matrix 2D Hamiltonian derived in Appendix H; see
Eqs. (H.25) and (H.26). The one-electron statistical operator is also
written in the matrix form,

ρ̂t =
∣∣∣∣ ρ̂lt ρ̃t

ρ̃+
t ρ̂rt

∣∣∣∣ , (18)

which is used below to express the tunneling current through the oper-
ator of this current in the matrix representation, see Eq. (H.27):

IT = −etlr
�

2
L2 Sp(σ̂y ρ̂t). (19)

The trace in this equation includes both the 2 × 2 matrix trace and
the trace over the 2D variables (the trace over the spin variables is
already taken and gives the factor of 2 in Eq. (19)). The equation
i�∂ρ̂t/∂t = [ĤT , ρ̂t], when written in the matrix representation, takes
the following form:

∂ρ̂jt

∂t
+

i

�

[
ĥj , ρ̂jt

]
= ± itlr

�
(ρ̃t − ρ̃+

t ) ,

∂ρ̃t

∂t
+

i

�

(
ĥlρ̃t − ρ̃tĥr

)
=

itlr
�

(ρ̂lt − ρ̂rt) , (20)

where ĥjt is the Hamiltonian of the layer j, and the signs + and − on
the right-hand side of the first equation stand for j = l and j = r,
respectively. The second equation in the set (20) allows one to express
the non-diagonal components through the diagonal ones:

ρ̃t =
itlr
�

∫ t

−∞
dt′eλt′e−iĥl(t−t′)/�(ρ̂lt′ − ρ̂rt′)eiĥr(t−t′)/�, (21)

where λ → +0 describes an adiabatic turn-on of the tunneling at t →
−∞.

The trace in Eq. (19) should be taken over exact eigenstates of tunnel-
coupled layers. However, since tlr is small, we are searching for the
∝ t2lr contributions to the tunneling current and neglect all higher-order
contributions. In this approximation, the matrix trace in Eq. (19) can
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be taken separately from the trace over the variables characterizing the
layers. Using a set of exact single-layer eigenstates |jδ〉, we rewrite Eq.
(19) as

IT = −i
etlr
�

2
L2

〈〈∑
δ

〈jδ|(ρ̃t − ρ̃+
t )|jδ〉

〉〉
. (22)

The result does not depend on whether we put j = l or j = r in this
expression. The double angular brackets in Eq. (22) denote the average
over effective random 2D potentials of the l- and r-layers. After substi-
tuting Eq. (21) into Eq. (22), we calculate the integral over time and
obtain

IT =
2πet2lr

�

2
L2

〈〈∑
δδ′

|〈rδ|lδ′〉|2δ(εrδ − εlδ′)(flδ′ − frδ)

〉〉
, (23)

where fjδ = 〈jδ|ρ̂jt|jδ〉 are the distribution functions in the layers. This
expression can be rewritten through the correlation function of the spec-
tral density functions of the layers in the momentum representation, see
Sec. 13:

IT =
2πet2lr

�

∫
dε[fl(ε) − fr(ε)]

2
L2

∑
pp′

〈〈
Alε(p,p′)Arε(p′,p)

〉〉
. (24)

The spectral density function Ajε(p,p′) is expressed through the Green’s
functions GR,A

jε (p,p′) according to Eq. (14.5). These Green’s functions
satisfy single-layer equations of the kind of Eq. (14.6), where εp is re-
placed by εjp (εlp = ∆/2 + εp and εrp = −∆/2 + εp) and Uim(p − p1)
is replaced by the spatial Fourier transform of the effective potential
energy V (j)(x) introduced in Eq. (H.26).

One can reasonably assume that there is no correlation between the
scattering potentials of the different layers. This is always true when
the scattering is caused by short-range potentials. In this approxi-
mation, the correlation function in Eq. (24) is expressed through the
averaged Green’s functions, 〈〈Alε(p,p′)Arε(p′,p)〉〉 = −δpp′ [GA

lε(p) −
GR

lε(p)][GA
rε(p) − GR

rε(p)]/(2π)2. These functions, in the Born approxi-
mation, are given by Eq. (14.29) generalized to include the layer index:

GR
jε(p) = GA∗

jε (p) = [ε − εjp + i�/2τj(ε)]−1, (25)

The real part of the self-energy, ReΣjε, is omitted, since it always can
be taken into account by proper shifts of ε and ∆. After using Eq. (25)
in Eq. (24), we write the tunneling current as

IT =
2et2lr

(2π)2�τlτr

∫
dε[fl(ε) − fr(ε)] (26)
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×
∫ ∞

0

pdp

[(ε − εlp)2 + (�/2τl)2][(ε − εrp)2 + (�/2τr)2]
.

We have taken into account that the 2D scattering times τj are energy-
independent in the case of short-range scattering potentials. The integral
over p in Eq. (26) can be calculated easily. Then, substituting the
Fermi distribution functions with the quasi-Fermi energies εF l and εFr =
εF l − eV in place of fl(ε) and fr(ε), we integrate over ε and obtain the
following expression for the tunneling conductance G = IT /V :

G =
e2ρ2D

2τ

(2tlr)2

∆2 + (�/τ)2
,

1
τ

=
1
2

(
1
τl

+
1
τr

)
. (27)

The conductance is a Lorentz function of the energy shift ∆. In the
linear transport regime, when εF l and εFr are close to each other, this
shift is expressed through the difference in the 2D electron densities
in the layers, ∆ = (nr − nl)/ρ2D. In the resonance, when the electron
densities are matched and ∆ = 0, the tunneling current is proportional to
τ , while far from the resonance it is proportional to 1/τ , indicating that
the tunneling in this regime is a scattering-assisted process. Introducing
the scattering-dependent tunneling rate according to ν = τ−12t2lr/[∆2 +
(�/τ)2], one may express the conductance (27) in the form (15).

In practice, the contacts to 2D layers are made laterally, which means
that the current in the double-layer system has both the tunneling (per-
pendicular to the layers) component IT and the in-plane components
Ij = (Ix

j , Iy
j ), j = l, r. As a result, the resistance of the system is not

entirely determined by the tunneling conductance: it depends also on
the 2D conductivities of the layers and on the size of the system. To
investigate this effect, we write the continuity equations for the layers
l and r as ∇Il(r) + IT (r) = 0 and ∇Ir(r) − IT (r) = 0, where the local
current densities are expressed through the 2D conductivities, σj , and
local electrochemical potentials, wjr, according to Ij(r) = −σj∇wjr (see
Sec. 36). The ratio IT (r)/G = wlr − wrr ≡ Vr represents the local
interlayer voltage. These expressions are written in the linear approx-
imation, when the coordinate dependence of the 2D conductivities σj

and of the tunneling conductance G is neglected. Substituting Ij and IT

into the continuity equations, we find a closed system of equations for
the electrochemical potentials wjr, which is conveniently written as

∇[σl∇wlr + σr∇wrr] = 0,

∇2Vr − l−2
T Vr = 0, l−1

T =

√
G

(
1
σl

+
1
σr

)
. (28)
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The equation for Vr introduces a characteristic tunneling length lT . Since
the tunneling conductance is exponentially small, this length is much
greater than the mean free path lengths. This property justifies the
introduction of the local electrochemical potentials in the layers. How-
ever, lT can be comparable to or smaller than the size of the 2D tunneling
resistor.

Consider, for example, a double-layer system of length L and width
Ly , where the voltage V/2 is applied to the edge x = −L/2 of the left
layer and the voltage −V/2 is applied to the edge x = L/2 of the right
layer. The continuity of the potentials assumes wl,x=−L/2 = V/2 and
wr,x=L/2 = −V/2, while the termination of the layers at x = ±L/2
implies the boundary conditions for the currents, Ix

l (x = L/2) = 0 and
Ix
r (x = −L/2) = 0. This is the case when the currents and the potentials

depend only on x, the transverse currents Iy
j are equal to zero, and the

general solution of the system (28) is written as

wlx = w0 − Ix − σrVx

σl + σr
, wrx = w0 − Ix + σlVx

σl + σr
, (29)

Vx = c1e
x/lT + c2e

−x/lT ,

where w0 is the reference point for the potentials (non-essential in the
following) and I = Ix

l (x) + Ix
r (x) is the total current per unit width.

Let us introduce the electrical resistance per square LLy according to
RT = V L/I. Applying the boundary conditions specified above to the
solution (29), we determine the coefficients c1,2 and obtain

RT =
L2

σl + σr

[
1 +

(σl + σr)2

2σlσr

lT
L

coth
L

2lT

+
(σl − σr)2

2σlσr

lT
L

tanh
L

2lT

]
. (30)

If L � lT , we have RT = G−1, while at L � lT we find RT = L2/(σl+σr)
corresponding to the ohmic resistance of two layers connected in parallel.
In the intermediate region, L ∼ lT , the resistance depends on the size in
a more complex way.

61. Coulomb Blockade
If the probability of tunneling through the quasibound states in a po-

tential well is small enough, the electrons experience multiple inelastic
scattering in these states and lose their coherence before getting out of
the potential well. In this case, the intermediate (potential-well) region
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can be considered as a local reservoir where the electrons are charac-
terized by a quasi-equilibrium distribution function. The tunneling is
viewed as a two-step process. First, an electron tunnels through the left
barrier into the intermediate region containing quasibound states and
is thermalized there because of the scattering. Then, an electron from
the intermediate region tunnels through the right barrier. An equivalent
process is realized when an electron first tunnels from the intermedi-
ate region to the right, and then another electron tunnels to this region
from the left. Such transport is called the sequential tunneling. Assum-
ing that a voltage V is applied between the left and right leads, and Vi

is the electrochemical potential of electrons in the intermediate region,
counted from the right-lead potential, we write the ohmic current as
I = Gl(V − Vi) = GrVi, where Gl (Gr) are the tunneling conductances
characterizing the transitions between the continuum states in the left
(right) lead and the quasibound states in the intermediate region. This
current is rewritten as I = (G−1

l + G−1
r )V , and the effective tunneling

conductance is given by

G =
GlGr

Gl + Gr
= e2ρi

νlνr

νl + νr
. (1)

Note that we have expressed the tunneling conductances through the
tunneling rates, Gj = e2ρiνj , j = l, r, where ρi is the density of electron
states in the intermediate region; see also Eq. (60.15). Equation (1)
describes the ohmic conductance for two resistances connected in series.

The sequential tunneling through finite-size regions is particularly in-
teresting because of discrete nature of the electric charge. If the energy
associated with addition of a single electron to this region is compa-
rable to or higher than the temperature T , the conductance appears
to be considerably affected by the charging effects. The conductance
in this case is no longer described by Eq. (1). To give an elementary
consideration of the charging effects, we consider a small conducting re-
gion (island) containing N electrons and separated from the conducting
environment (current-carrying leads and other electrodes). Assuming
that the Coulomb energy of such a system does not depend on the
distribution of electrons in the island and is determined only by the
number N , we can treat the system in terms of effective capacitors as
shown in Fig. 12.7. Since the electric charge Qk at the capacitor k
is given by Qk = Ck(Vi − Vk), the total electron charge of the island,
−|e|N =

∑
k Qk , is related to the voltage Vi (electrochemical potential

of the island) as −|e|N = CVi −Q, where Q =
∑

k CkVk and C =
∑

k Ck

is the total capacitance. Therefore, the Coulomb energy of the system
containing the island with N electrons is written as
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EN =
(−|e|N + Q)2

2C
, (2)

The variable Q can be viewed as an excess charge of the environment,
which is equal to a sum of excess charges over all regions coupled to the
island by electrostatic fields and having the voltages Vk . This variable
can be continuously varied by the applied voltages. On the other hand,
the charge −|e|N is discrete. According to Eq. (2), one can introduce a
single-electron charging energy

EN+1 − EN =
(

N +
1
2

− Q

|e|

)
e2

C
. (3)

Since the electron charge is small, the charging effects can manifest
themselves only if the size of the intermediate region is so small that
the capacitance C characterizing its electrostatic coupling to the leads
is comparable to or smaller than e2/T .

Figure 12.7. Isolated conductor surrounded by three electrodes and its schematic
representation in terms of effective capacitors.

Let us assume that the island initially contains N electrons and the
quasi-Fermi energy of the electrons in the left lead, εF l, is higher than
that in the right lead, εFr . We also assume that the island is macro-
scopic and the electron distribution there is a Fermi distribution with a
chemical potential µ determined by the number N (since N � 1, one
can ignore the difference in µ for the cases of N and N ± 1 electrons
in the island). At low temperature, an electron can tunnel from the
left lead to the island only if the difference εF l − µ is greater than the
charging energy (3). Next, the tunneling from the island (which now
contains N +1 electrons) to the right lead is possible if µ−εFr is greater
than the charging energy (3) with the opposite sign. To have a cur-
rent through the structure, both these conditions have to be satisfied
simultaneously, εF l − µ > EN+1 − EN > εFr − µ. A similar situation
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takes place when an electron first tunnels from the island to the right
lead, and then another electron tunnels to the island from the left lead,
εF l − µ > EN − EN−1 > εFr − µ. Using these inequalities together with
Eq. (3), we arrive at the conclusion that, to have a non-zero current, one
should apply a finite bias eV = εF l − εFr determined from the condition

eV >
2e2

C

∣∣∣∣Nmin +
1
2

− ξ

∣∣∣∣ , (4)

where ξ is a continuous dimensionless variable defined as

ξ = Q/|e| + (εF − µ)C/e2, (5)

εF = (εF l + εFr)/2, and Nmin is the integer number for which the ex-
pression |Nmin + 1/2 − ξ| is minimal. According to this definition, this
expression can be varied from 0 (for half-integer ξ) to 1/2 (for integer ξ).
The threshold bias eVth, which is defined by the right-hand side of Eq.
(4), varies from 0 to e2/C as ξ varies from half-integer to integer val-
ues. The existence of the threshold for the electron transport through
the small islands is called the Coulomb blockade, and the sequential
tunneling under the condition eVth + 2e2/C > eV > eVth is called the
single-electron tunneling. Since ξ is a linear function of the voltages of
all the regions electrostatically coupled to the island (we remind that
Q =

∑
k CkVk), it can be linearly varied by each of these voltages. It is

often convenient to have fixed voltages of the source and drain electrodes
(so that eV is constant) and change the voltage of the gate electrode (V3
in Fig. 12.7) to control the threshold bias through ξ. The above con-
sideration suggests that the linear-response current (eV → 0) at zero
temperature exists only for certain discrete ξ equal to half-integers. The
current, as a function of ξ, looks like a periodic sequence of sharp peaks,
each peak corresponds to addition of an electron to the island. This
phenomenon is called the Coulomb blockade oscillations.

Below we study the Coulomb blockade oscillations by using the meth-
ods of quantum kinetic theory. Let us write Eq. (1.20) in the form

i�
∂η̂t

∂t
= [Ĥ + δ̂H, η̂t], Ĥ = Ĥ0 + ĤC , (6)

where Ĥ0 comprises the one-electron Hamiltonians describing l- and r-
leads and the island,

Ĥ0 =
∑
jp

εjpâ
+
jpâjp +

∑
q

εq ĉ
+
q ĉq (7)

with j = l, r. We assume that the electrons in the leads are characterized
by a continuous set of quantum numbers p, and those in the island by



578 QUANTUM KINETIC THEORY

discrete quantum numbers q. Next, ĤC is the Hamiltonian of Coulomb
interaction,

ĤC =
e2

2C

(
n̂ − Q

|e|

)2

, n̂ =
∑

q

ĉ+
q ĉq , (8)

written through the operator of the number of electrons in the island, n̂.
This Hamiltonian is formally obtained from the expression (2) for the
Coulomb energy if the number of electrons, N , is replaced by its opera-
tor, n̂. One can also derive the Hamiltonian (8) by using the general form
of the interaction Hamiltonian, (1/2)

∑
qq′q1q′

1
Wi(qq′; q1q

′
1)ĉ

+
q ĉ+

q′ ĉq′
1
ĉq1 +∑

qq′ Ui(q, q′)ĉ+
q ĉq′ (see Sec. 4 and Chapter 6), where the first and the

second terms describe the interaction between the particles in the island
and the interaction of these particles with external fields, respectively.
Under the simplifying approximations Wi(qq′; q1q

′
1) = Wiδqq1δq′q′

1
and

Ui(q, q′) = Uiδqq′ , which correspond to the mean-field interaction sen-
sitive only to the number of the electrons, we obtain a model interac-
tion Hamiltonian, (Wi/2)

∑
qq′ ĉ+

q ĉ+
q′ ĉq′ ĉq + Ui

∑
q ĉ+

q ĉq , which is easily

reduced to the quadratic form with respect to n̂, similar to ĤC of Eq.
(8). Finally, δ̂H in Eq. (6) is the tunneling Hamiltonian

δ̂H = δ̂Hl + δ̂Hr, δ̂Hj =
∑
pq

[
tjp,q â

+
jpĉq + tq,jpĉ

+
q âjp

]
. (9)

It describes the electron transfer between the leads and the island.
The Hamiltonian ĤC is diagonal in the representation using a many-

electron state |N〉 with N electrons in the island, 〈N |ĤC |N ′〉 = δNN′EN .
Therefore, it is convenient to employ this representation. We introduce
the probability to have N electrons in the island as

ρNt = SpN η̂t = Sp〈N |η̂t|N〉 =
∑

δ

〈Nδ|η̂t|Nδ〉, (10)

where SpN . . . means the trace over all states with N electrons, while
Sp . . . denotes the full trace. After solving Eq. (6) by perturbations up
to the terms quadratic in the tunneling Hamiltonian, we calculate the
trace SpN of the equation obtained and find

dρNt

dt
= − 1

�2

∫ t

−∞
dt′eλt′SpN [δ̂H, [δ̂H(t′ − t), η̂t′ ]], λ → +0, (11)

where δ̂H(τ) = eiĤτ /�δ̂He−iĤτ /� is the tunneling Hamiltonian δ̂H in
the Heisenberg representation. The operator η̂t in Eq. (11) satisfies the
equation i�∂η̂t/∂t = [Ĥ, η̂t].
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The tunneling Hamiltonian changes the number of electrons in the
island by one, while the Hamiltonian Ĥ does not change this number.
Therefore, the trace of the commutator in Eq. (11) is calculated as

SpN [δ̂H, [δ̂H(t′ − t), η̂t′ ]] = Sp
∑

N′=N±1

{
〈N |η̂t′ |N〉

[
〈N |δ̂H|N ′〉

×〈N ′|δ̂H(t′ − t)|N〉 + 〈N |δ̂H(t′ − t)|N ′〉〈N ′|δ̂H|N〉
]

− 〈N ′|η̂t′ |N ′〉
(12)

×
[
〈N ′|δ̂H|N〉〈N |δ̂H(t′ − t)|N ′〉 + 〈N ′|δ̂H(t′ − t)|N〉〈N |δ̂H|N ′〉

]}
.

Since the trace on the right-hand side is complete, one may carry out
cyclic permutations of the operators 〈N |η̂t′ |N〉 and 〈N |δ̂H|N ′〉 under the
sign of Sp. Moreover, according to the properties of the Hamiltonian
ĤC , one has 〈N |δ̂H(τ)|N ′〉 = ei(EN−EN′ )τ /�δ̂H

′
(τ), where δ̂H

′
(τ) =

eiĤ0τ /�δ̂He−iĤ0τ /� and the energy EN given by Eq. (2) is the eigenvalue
of ĤC . Then, according to Eq. (D.16),

δ̂H
′
(τ) =

∑
jpq

[
tjp,q â

+
jpĉqe

i(εjp−εq)τ /� + H.c.
]
. (13)

With these substitutions, we rewrite the right-hand side of Eq. (12) as∑
jpq

|tjp,q |2Sp
{

〈N |η̂t′ |N〉
[
〈N |â+

jpĉq ĉ
+
q âjp|N〉

(
e

i
�
(εq−εjp+EN+1−EN )(t′−t)

+c.c.
)
+〈N |ĉ+

q âjpâ
+
jpĉq |N〉

(
e

i
�
(εq−εjp+EN−EN−1)(t′−t) + c.c.

)]
−〈N − 1|η̂t′ |N − 1〉〈N − 1|â+

jpĉq ĉ
+
q âjp|N − 1〉

(
e

i
�
(εq−εjp+EN−EN−1)(t′−t)

+c.c.
)
−〈N + 1|η̂t′ |N + 1〉〈N + 1|ĉ+

q âjpâ
+
jpĉq |N + 1〉 (14)

×
(
e

i
�
(εq−εjp+EN+1−EN )(t′−t) + c.c.

)}
.

The variables describing the leads and the island are separated under
the trace, since η̂t in Eqs. (11), (12), and (14) is the statistical op-
erator for uncoupled sub-systems (we remind that the accuracy of our
consideration is restricted by the second order in the coupling).

The trace over the variables of the leads is independent of the number
of electrons in the island. Therefore, if we substitute the expression (14)
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into Eq. (11) and integrate over time in the Markovian approximation,
η̂t′ � η̂t, we obtain the following kinetic equation:

dρNt

dt
= −2π

�

∑
jpq

|tjp,q |2
[
δ(εq − εjp + EN − EN−1)ρNtf

(N)
qt (1 − fjp)

+δ(εq − εjp + EN+1 − EN)ρNt(1 − f (N)
qt )fjp

−δ(εq − εjp + EN − EN−1)ρN−1t(1 − f (N−1)
qt )fjp (15)

−δ(εq − εjp + EN+1 − EN)ρN+1tf
(N+1)
qt (1 − fjp)

]
.

Here fjp = Sp{η̂tâ
+
jpâjp} is the distribution function of electrons in the

lead j. This is a quasi-equilibrium Fermi distribution function: fjp =
fj(εjp) =

[
e(εjp−εFj)/T + 1

]−1
. Next,

f (N)
qt = SpN{η̂tĉ

+
q ĉq}/ρNt (16)

is the average occupation number of the state q under the condition
that the island contains N electrons. The first two terms of the collision
integral (i.e., of the right-hand side of Eq. (15)) describe, respectively,
the departure of an electron from the island with N electrons due to
tunneling to the leads and the arrival of an electron to this island from
the leads. The second two terms describe the opposite processes, the
arrival of an electron to the island with N−1 electrons and the departure
of an electron from the island with N + 1 electrons.

The kinetic equation (15) in the stationary case, dρNt/dt = 0, has a
solution corresponding to the detailed balance of electron occupation.
To prove this statement, we rewrite the stationary kinetic equation (15)
as
∑

q [JN(q) − JN+1(q)] = 0, where JN(q) is the part of the collision
integral originating from the terms containing δ(εq − εjp + EN − EN−1)
in Eq. (15) (these are the first and the third terms). Since the relation∑

q [JN(q) − JN+1(q)] = 0 is valid for arbitrary N , there should be a
detailed balance, JN(q) = 0. Let us introduce the densities of electron
states in the leads, Nj(εjp), and the tunneling rates near the quasi-Fermi
levels, νjq , as ∑

jp

. . . =
∑

j

∫
dεjpNj(εjp) . . . ,

νjq =
2π

�

[
Nj(εjp)|tjp,q |2

]
εjp=εFj

. (17)

With the aid of these definitions, the detailed balance equation, JN(q) =
0, is rewritten in the form

ρNf (N)
q

∑
j=l,r

νjq [1 − fj(εq + EN − EN−1)]
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= ρN−1(1 − f (N−1)
q )

∑
j=l,r

νjqfj(εq + EN − EN−1). (18)

In equilibrium, when fl(ε) = fr(ε) = f(ε) = [e(ε−εF )/T +1]−1, Eq. (18) is
reduced to ρNf (N)

q = ρN−1(1 − f (N−1)
q )e−(εq+EN−EN−1−εF )/T . Its solution

is (problem 12.16)

ρN =
∑
{nγ}

PN({nγ}), f (N)
q =

∑
{nγ}

PN({nγ})nq , (19)

where nγ = 0, 1 is the occupation number of the state γ in the island
and

PN({nγ}) = Z−1 exp
[
− 1

T

(∑
γ

εγnγ + EN − εF N

)]
∑

γ nγ=N

(20)

is the equilibrium probability of realization of the set of occupation
numbers {nγ}, see Sec. 4, under the condition that the island con-
tains N electrons. Equations (19) and (20) are obtained when Eqs.
(10) and (16) with η̂t = η̂eq are rewritten in the occupation number
representation. Since only the variables describing the island are rel-
evant, one may use the equilibrium statistical operator of the island,
η̂(i)

eq = Z−1 exp[−(
∑

γ εγ ĉ+
γ ĉγ + ĤC − εF n̂)/T ], instead of η̂eq . The par-

tition function Z is defined in the usual way, Z = Spη̂(i)
eq , which means

that Z =
∑

N

∑
{nγ} PN({nγ}) in the occupation number representation.

Considering Eq. (18) for the case of small deviation from equilibrium,
when an infinitely small bias eV is applied between the leads, we put
εF l = εF + eV/2 and εFr = εF − eV/2. Expanding the distribution
functions fj in Eq. (18) up to the terms linear in V , we obtain

ρNf (N)
q − ρN−1(1 − f (N−1)

q )e−(εq+EN−EN−1−εF )/T

=
eV

2T

νlq − νrq

νlq + νrq
(ρNf (N)

q )eq . (21)

By convention, the functions inside (. . .)eq are the equilibrium ones. In
equilibrium, when V = 0, the expression on the left-hand side of Eq. (21)
is equal to zero, as already mentioned. Equation (21) is used below for
calculating the linear-response current through the island. This current
is equal to e

∑
N
(dρN/dt)i→r , where (dρN/dt)i→r is the net number of

electrons going from the island with N electrons to the right lead in unit
time. Extracting the corresponding terms from the collision integral in
Eq. (15), we find
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I =
2πe

�

∑
qNp

|trp,q |2δ(εq + EN − EN−1 − εrp)

×
[
ρNf (N)

q (1 − frp) − ρN−1(1 − f (N−1)
q )frp

]
. (22)

To consider the linear regime, we expand frp = [e(εrp−εF +eV/2)/T + 1]−1

up to the terms linear in eV . Applying the definition (17), we obtain

I = e
∑
qN

νrq

{
ρNf (N)

q [1 − f(εq + EN − EN−1)] − ρN−1(1 − f (N−1)
q )

×f(εq + EN − EN−1) +
eV

2T
[ρNf (N)

q + ρN−1(1 − f (N−1)
q )]eq (23)

×f(εq + EN − EN−1)[1 − f(εq + EN − EN−1)]} .

Using the relation (21) in this equation, we rewrite the latter as I = GV ,
where the linear conductance is

G =
e2

T

∑
qN

νlqνrq

νlq + νrq
(ρNf (N)

q )eq [1 − f(εq + EN − EN−1)]. (24)

Let us consider some limiting cases described by the general expression
(24). If N � 1 and the level separation in the island, ∆q = εq − εq−1,
is much smaller than the temperature T , the function f (N)

q , at arbitrary
N , is represented in the form

f (N)
q � fi(εq) = [e(εq−µ)/T + 1]−1, ∆q � T, N � 1. (25)

The equilibrium function ρN in these conditions is equal to exp{−[EN −
(εF − µ)N ]/T}/

∑
N

exp{−[EN − (εF − µ)N ]/T}. This relation can be
obtained by substituting the distribution (25) into the left-hand side
of Eq. (21) and taking into account that this side is equal to zero in
equilibrium. Equivalently, one can find ρN directly from Eqs. (19) and
(20). We can put µ = εF in the equilibrium expressions for ρN and f (N)

q .
The discrete sum over q in Eq. (24) is replaced by the integral over
εq multiplied by the density of states in the island, ρi(εq). The factor
fi(εq)[1 − f(εq + EN − EN−1)] is non-zero in a narrow interval near the
Fermi level, where the q-dependence of ρi(εq) and νjq can be neglected.
Therefore, the integral over εq is calculated according to

1
T

∫
dεf(ε)[1 − f(ε + x)] =

x/T

1 − e−x/T
. (26)

Finally, using Eq. (2) for EN , we find

G = e2ρi
νlνr

νl + νr

∑
N

e−κ(N−ξ−1/2)2κ(N − ξ − 1/2)
sinh[κ(N − ξ − 1/2)]
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×
[∑

N

e−κ(N−ξ)2+κ/4

]−1

, (27)

where ξ is defined by Eq. (5) with µ = εF . The dimensionless variable
κ = e2/2CT characterizes the charging effects. The regime described
by Eqs. (25) and (27) is called the classical Coulomb blockade. At
high temperatures, when κ � 1, one can replace the sum over N in
Eq. (27) by the integral over N − ξ − 1/2, and the main contribution
to this integral comes from the region |N − ξ − 1/2| � κ−1, where
κ(N − ξ − 1/2)/ sinh[κ(N − ξ − 1/2)] � 1. Therefore, we obtain the
conductance G in the form of Eq. (1). In the opposite case of strong
Coulomb blockade, κ � 1, we retain only one or two terms in the sum
over N , those for which |N − ξ − 1/2| is minimal. The conductance, as
a function of the variable ξ, shows a periodic sequence of sharp peaks at
ξ = ξN = N − 1/2. The periodicity ∆ξ = 1 corresponds to the addition
energy e2/C (we remind that each peak signifies the addition of one
electron to the island). In the vicinity of the peaks,

G

Gκ=0
=

κ(ξ − ξN)
sinh[2κ(ξ − ξN)]

. (28)

Therefore, the maximum of the ratio G/Gκ=0 at κ � 1 is fixed at
1/2, and the peaks are narrowing with decreasing temperature. In the
minima (at integer ξ), the conductance is proportional to e−κ. Figure
12.8 shows three periods of the Coulomb blockade oscillations calculated
according to Eq. (27) for different κ.

Consider now the case when one of the conditions ∆q � T and N � 1
is violated. The function f (N)

q in this regime is not reduced to the form
(25) (problem 12.17) and cannot be written in any simple way if N is
large. The shape of the Coulomb blockade oscillations can be represented
in terms of elementary functions in the limit ∆q � T , when, for each N ,
there is only one realization of the occupation numbers (for simplicity,
we assume that the energy levels are not degenerate). This implies that
there are N completely occupied levels, f (N)

q = 1 at q ≤ N and f (N)
q = 0

at q > N , and the conductance is proportional to
∑

N

∑
q≤N

ρN [1 −
f(εq + EN − EN−1)]. Next, ρN = Z−1 exp[−(

∑
N

γ=1 εγ + EN − εF N)/T ];
see Eqs. (19) and (20). The partition function is calculated as

Z =
∞∑

N′=1

exp

⎡⎣− 1
T

⎛⎝ N′∑
γ=1

εγ + EN′ − εF N ′

⎞⎠⎤⎦
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Figure 12.8. Classical Coulomb blockade oscillations at e2/2CT =2, 5, and 30.

= exp

⎡⎣− 1
T

⎛⎝ N∑
γ=1

εγ + EN − εF N

⎞⎠⎤⎦ (29)

×
∞∑

N′=1

exp

⎡⎣ 1
T

⎛⎝ N∑
γ=1

εγ −
N′∑

γ=1

εγ + EN − EN′ − εF (N − N ′)

⎞⎠⎤⎦ .

The exponential factor which enters ρN is taken out of the infinite sum
over N ′. Using Eq. (29) together with the expression for ρN given above,
one can identify (ρN)−1 with the sum from the right-hand side of Eq.
(29). The main contribution to this sum comes from the terms with N ′
close to N . Indeed, if we rewrite this sum in more detail, we obtain

ρN =
[
. . . + e2EN/T e−∆N/T −e2/CT

+eEN/T + 1 + e−EN/T e−∆N+1/T −e2/CT + . . .
]−1

, (30)

where EN = εN + EN − EN−1 − εF and ∆N = εN − εN−1. The terms with
N ′ = N − 2, N − 1, N , and N + 1 under the sum in Eq. (29) are written
in Eq. (30) explicitly, while the other terms (with N ′ = 1, . . . , N −3 and
N ′ = N +2, . . .) are denoted by the dots. These terms contain products
of the exponentially small expressions e−∆M/T −e2/CT multiplied by the
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powers of e±EN/T . Since only the terms with |EN | ∼ T contribute to the
conductance, all the terms containing e−∆M/T −e2/CT should be neglected
in the sum in Eq. (30). Therefore, ρN = [eEN/T +1]−1 and ρN [1−f(εN +
EN − EN−1)] = [eEN/2T + e−EN/2T ]−2.

In summary, if the level separation ∆q is much larger than the temper-
ature T , only the terms with q = N contribute into the sum in Eq. (24),
and the product (ρNf (N)

q )eq [1 − f(εq + EN − EN−1)] should be replaced
by [eEN/2T + e−EN/2T ]−2, where EN = εN + EN − EN−1 − εF . Expressing
EN − EN−1 according to Eq. (3), we finally obtain

G =
e2

4T

∑
N

νlNνrN

νlN + νrN

cosh−2
[
εN − εF

2T
+

e2

2CT

(
N − 1

2
− Q

|e|

)]
. (31)

This equation describes the regime of quantum Coulomb blockade. The
conductance (31), similar to that of Eq. (27), shows series of thermally
broadened peaks as the variable Q is varied continuously. The separa-
tion of the peaks increases in comparison to the case of classical Coulomb
blockade, since the energy level separation, ∆N , is added to the charg-
ing energy e2/C. The energy ∆N depends on N , which means that
the Coulomb blockade oscillations are not exactly periodic. Next, the
N -dependence of νlN and νrN results in different heights of the peaks.
The peak heights are proportional to 1/T , in contrast to the classical
Coulomb blockade, when they are temperature-independent. This prop-
erty allows one to separate the two regimes experimentally. Usually,
the classical Coulomb blockade takes place in metallic islands, while the
quantum Coulomb blockade is realized in small semiconductor quantum
dots, where the energy level separation is large enough. Equation (31)
can be viewed as an expression for the resonant tunneling conductance,
which takes into account the effects of thermal broadening and the in-
fluence of the charging energies on the resonance condition.

62. Polaronic Transport
Considering the electron-phonon interaction in previous chapters, we

assumed that this interaction was sufficiently weak to be treated as a
perturbation causing electron transitions with emission or absorption
of phonons. The situation becomes more complicated in a number of
ionic and molecular crystals, where the interaction is strong and must
be treated in a non-perturbative way. Equivalently, one may say that
an electron interacts simultaneously with many phonons. As a result of
this interaction, the lattice atoms surrounding the electron are displaced
to new positions thereby decreasing the energy of the electron-lattice
system. The induced displacements provide a potential well for the
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electron, where the latter occupies a bound state. The electron is unable
to move unless accompanied by the well, that is, by the induced lattice
deformation. The quasiparticle consisting of the electron and its self-
induced lattice deformation is called the polaron.

To introduce the polaron, we expand the wave function of the electron
in the crystal by using the basis of single-site orbitals ϕ(r − Rn), where
Rn is the radius-vector of the crystal cell numbered by the integer vector
n,

Ψ(r) =
∑
n

anϕ(r − Rn), (1)

and the function ϕ is normalized according to
∫

dr|ϕ(r)|2 = 1. Equation
(1) defines the wave function in the site representation. Considering
the electron-phonon interaction described by the Hamiltonian Ĥe,ph, we
calculate the matrix elements of the Hamiltonian Ĥ = ĥcr + Ĥph + Ĥe,ph

in this basis. Here ĥcr is the Hamiltonian of the crystal, see Eq. (5.4),
and Ĥph is the Hamiltonian of free phonons. In the second quantization
representation, the Hamiltonian Ĥ takes the following form:

Ĥ =
∑
n

ε0â
+
n ân +

∑
nm (m�=0)

Jmâ+
n+mân +

∑
q

�ωq(b̂+
q b̂q + 1/2)

−
∑
nmq

�ωq

[
unmqâ+

n+mânb̂+
q + H.c.

]
. (2)

In this equation,

ε0 =
∫

drϕ∗(r)ĥcr(r)ϕ(r), Jm =
∫

drϕ∗(r − Rm)ĥcr(r)ϕ(r), (3)

and

unmq = −
γ∗
q√
2
e−iq·Rn

∫
dre−iq·rϕ∗(r − Rm)ϕ(r). (4)

For the sake of brevity, we do not write spin indices at the electron op-
erators, though the spin sums are implicitly assumed, leading to a factor
of 2 in the expressions for the current below. The phonon mode index
is omitted since we consider the interaction with only one mode. The
dimensionless factor γq describes the strength of such interaction. For
the interaction of electrons with long-wavelength phonons in cubic crys-
tals, this factor is isotropic, γq = γq =

√
2Cq/�ωq ; see the expressions

for Cq in Eq. (21.1). For example, γq = q−1
√

4πe2/ε∗�ωLOV in the
case of Froelich interaction with long-wavelength LO phonons. In the
transformations leading to Eqs. (2)−(4), we have used the periodicity
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of the crystal Hamiltonian. The index n + m at the operator â+ cor-
responds to creation of an electron in the crystal cell with coordinate
Rn+m = Rn +Rm. Usually, a crystal cell contains more than one atom.
Nevertheless, in ionic crystals with high degree of ionicity the electron
is localized near the ions for which the affinity to the electron charge
is largest. Therefore, the vector Rn characterizes uniquely the required
ion in the n-th cell. This means that the diagonal matrix element of
coordinate in the basis under consideration is reduced to this vector:
〈n|x̂|n〉 =

∫
dr|ϕ(r − Rn)|2r � Rn.

The coefficients Jm describe the probabilities of electron jumps be-
tween the sites. These probabilities can be sufficiently high and extend
over several neighboring sites. This case is described by the model of
nearly free electrons and corresponds to wide bands and small band gaps.
In the opposite case, the probabilities of jumps to the nearest-neighbor
sites are small (Jm � ε0), and the jumps to the further-neighbor sites
can be neglected at all. This is the tight-binding model, which results
in narrow bands (problem 12.18). The basis functions ϕ(r−Rn) in this
case are strongly localized and the integral over r in Eq. (4) is close
to unity for m = 0, because q−1 is much larger than the size of the
wave function. If m 	= 0, this integral is reduced to a small overlap in-
tegral of the neighboring orbitals. Neglecting these small contributions
appearing in the last term of the Hamiltonian (2) in comparison to the
second term, we obtain a Hamiltonian which is very similar to the effec-
tive Hamiltonian of tunnel-coupled systems; see Eq. (H.14). Each two
nearest-neighbor sites now play the role of two tunnel-coupled regions,
and there is a local interaction with the scattering potential (created,
in our case, by the lattice vibrations) on each site. A similar Hamilto-
nian describes the superlattice, i.e., a periodic system of quantum wells
coupled by tunneling (problem 12.19).

Therefore, we write the last term in Eq. (2) in the local approxima-
tion, as −

∑
nq �ωqâ+

n ân[u∗
nqb̂q + unqb̂+

q ] with unq = −γ∗
qe−iq·Rn/

√
2.

Let us carry out the canonical transformation

H̃ = e−Ŝ ĤeŜ , Ŝ =
∑
nq

â+
n ân[unqb̂+

q − u∗
nqb̂q] (5)

implying the following exact relations for the transformed operators:

ãn = e−Ŝ âneŜ = ân exp

[∑
q

(
unqb̂+

q − u∗
nqb̂q

)]
(6)

and
b̃q = e−Ŝ b̂qeŜ = b̂q +

∑
n

unqâ+
n ân, (7)
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while the operators ã+
n and b̃+

q are described by Hermitian conjugate
expressions. Note that the transformed operators ãn and b̃q obey the
usual fermionic and bosonic commutation relations, respectively. The
product â+

n ân is invariant with respect to this transformation so that all
single-site operators related to the electron system (such as the coordi-
nate operator x̂ =

∑
n Rnâ+

n ân) remain unchanged. The Hamiltonian is
transformed to

H̃ =
∑
n

(ε0 − ∆ε)â+
n ân +

∑
n′n

Jn′−nΦ̃n′nâ+
n′ ân +

∑
q

�ωq(b̂+
q b̂q + 1/2)

−
∑
n′n

′ â+
n ânâ+

n′ ân′
∑
q

�ωqRe[u∗
nqun′q], (8)

where ∆ε =
∑

q �ωq|γq|2/2 is the polaronic shift (renormalization) of
the electron energy (problem 12.20). The prime sign at the sum in the
last term of the Hamiltonian means that n′ 	= n. Next,

Φ̃n′n = exp

[∑
q

(
v∗
n′nqb̂+

q − vn′nqb̂q

)]
, (9)

vn′nq =
1√
2
(eiq·Rn′ − eiq·Rn)γq

is the multi-phonon operator. The last term in Eq. (8) describes the
interaction of the electrons occupying different sites by exchange of vir-
tual phonons. Since this intersite term is quadratic in the interaction,
we do not keep it in the following. We have already neglected a more
significant (linear) term, the intersite contribution to the last term in
the Hamiltonian (2).

The Hamiltonian (8) can be generalized in the presence of electric
and magnetic fields of arbitrary strengths (problem 12.21) and takes the
final form

H̃ = H̃0 + δ̃H, H̃0 =
∑
n

εnâ+
n ân +

∑
q

�ωq(b̂+
q b̂q + 1/2),

δ̃H =
∑
n′n

Jn′nΦ̃n′nâ+
n′ ân, (10)

where εn = ε0−∆ε−eE·Rn and Jn′n = Jn′−n exp{ieH·[Rn×Rn′ ]/2�c}.
The Hamiltonian H̃0 describes two independent sub-systems, the elec-
trons localized at the sites and the phonons. The Hamiltonian δ̃H de-
scribes the jumps of the electron surrounded by the phonon “cloud”
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between the sites. This Hamiltonian can be represented as a sum of two
parts:

δ̃H = δ̃H0 + δ̃H1, δ̃H0 =
∑
n′n

Jn′nΦn′nâ+
n′ ân,

δ̃H1 =
∑
n′n

Jn′nδ̃Φn′nâ+
n′ ân, (11)

where Φn′n = 〈〈Φ̃n′n〉〉ph is the operator (9) averaged over the phonon
variables and δ̃Φn′n = Φ̃n′n − Φn′n. The Hamiltonian δ̃H0 describes
the jumps without emission or absorption of real phonons. However,
the probabilities of such jumps are renormalized by the factor Φn′n be-
cause of emission and absorption of virtual phonons. In other words,
when hopping between the sites, the electron carries with it the entire
load of atomic displacements. Below we will see that Φn′n is exponen-
tially small if the electron-phonon interaction is strong. As a result, the
hopping caused by the contribution δ̃H0 is considerably suppressed, and
the effective band width, estimated as 2ΦJ (see problem 12.18), becomes
narrow. This is another manifestation of the polaronic effect, apart from
the renormalization −∆ε of the electron energy. One can say that δ̃H0
describes the tunneling of the polaron.

The second term in Eq. (11), δ̃H1, describes the phonon-assisted hop-
ping, when electrons emit or absorb phonons to move between the sites.
With the increase of temperature, this mechanism becomes considerably
more important than the jumps described by the contribution δ̃H0. The
physical reason for this is the following. The electron localized at a site
is separated from the other sites by potential barriers. By absorbing the
phonons, the electron increases its energy and overcomes the potential
barriers. At high temperatures, this activation process appears to be
more efficient than the tunneling process.

The localization of electrons at the sites is characterized by the pa-
rameter J/∆ε, which is roughly the ratio of the kinetic energy of free
electron to the depth of the potential well created by the polaronic effect.
When this parameter is much less than unity, the polaron is called small,
since its radius does not extend the lattice period. In the theory of small
polaron the term δ̃H1 is treated as a small perturbation with respect to
other terms. Depending on the value of the term δ̃H0, there are two im-
portant limiting cases characterizing the kinetics of small polaron: the
hopping transport and the band transport. The hopping transport takes
place when the localization is so strong that δ̃H0 can be neglected. The
case of band transport assumes weak enough electron-phonon interaction
and non-perturbative treatment of δ̃H0.
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Below we consider the hopping transport regime. Let us obtain a
kinetic equation for this case. We introduce the distribution function
ρnt = Sp{η̃tã

+
n ãn} = Sp{η̃tâ

+
n ân}, which describes the probability of

occupation of the site n (note that η̃t = e−Ŝ η̂te
Ŝ). The evolution of the

distribution function is governed by δ̃H1, while δ̃H0 is neglected. Within
the accuracy up to the terms quadratic in δ̃H1, we obtain (λ → +0)

dρnt

dt
= − 1

�2

∫ t

−∞
dt′eλt′Sp

{
η̃(0)

t′ [δ̃H1(t′ − t), [δ̃H1, â
+
n ân]]

}
, (12)

where δ̃H1(τ) = eiH̃0τ /�δ̃H1e
−iH̃0τ /� denotes the Heisenberg represen-

tation. The statistical operator η̃(0)
t′ in Eq. (12) satisfies Eq. (1.20)

with the Hamiltonian H̃0, i.e., describes independent systems of elec-
trons and phonons. Therefore, the averages over electron and phonon
variables are separated from each other. Calculating the trace over the
electron variables by using Eq. (D.16), we have

Sp
{

η̃(0)
t′ [δ̃H1(t′ − t), [δ̃H1, â

+
n ân]]

}
= Spphη̃ph

∑
m

JnmJmn

×
{

ρnt′(1 − ρmt′)[δ̃Φnmδ̃Φmn(t′ − t)ei(εm−εn)(t′−t)/� + H.c.] (13)

−ρmt′(1 − ρnt′)[δ̃Φmnδ̃Φnm(t′ − t)ei(εn−εm)(t′−t)/� + H.c.]
}

,

where η̃ph is the phonon part of the statistical operator.
The remaining trace over the phonon variables in Eq. (13) is more

complicated because δ̃Φnm contains the phonon operators in the expo-
nent. To proceed with this calculation, we first note that the Heisenberg
representation of Φ̃ is reduced to a substitution of the Heisenberg oper-
ators b̂q(t) and b̂+

q (t) in place of the time-independent ones in Eq. (9).
This property is checked directly by expanding the operator exponent
in Eq. (9) in series. Therefore, Φ̃mn(t) can be represented as

Φ̃mn(t) = exp

{∑
q

[
v∗
mnq(t)b̂+

q − vmnq(t)b̂q
]}

, (14)

where we have transferred the time dependence from the operators to
the coefficients by using b̂q(t) = b̂qe−iωqt and introducing a new variable
according to vmnq(t) = vmnqe−iωqt. Next, the commutators of the two
operators entering the exponents in Eqs. (9) and (14) are reduced to
scalars. We may, therefore, use the operator identity (A.22) to simplify
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the calculation of phonon averages. According to Eqs. (9), (14), and
(A.22),

Φ̃nmΦ̃mn(τ) = exp

{
−
∑
q

[
|vnmq|2

2
+

|vmnq|2
2

+ vnmqv∗
mnq(τ)

]}
(15)

× exp

{∑
q

[v∗
nmq + v∗

mnq(τ)]b̂+
q

}
exp

{
−
∑
q

[vnmq + vmnq(τ)]b̂q

}
,

and the other operator products standing in Eq. (13) are transformed
in a similar way.

Let us calculate the average of the product of two operator exponents
of the form (15), assuming the equilibrium phonon distribution:

Spph

[
η̃ph exp

(∑
q

µ∗
qb̂+

q

)
exp

(
−
∑
q

µqb̂q

)]

= Z
−1∏

q

∞∑
nq=0

e−�ωqnq/T 〈nq| exp(µ∗
qb̂+

q ) exp(−µqb̂q)|nq〉, (16)

where nq is the occupation number of the phonon state q, µq ≡ vnmq +
vmnq(τ), and Z =

∏
q(1 − e−�ωq/T )−1 is the bosonic partition function

(3.26). To calculate the matrix elements in Eq. (16), we expand the
operator exponents in series and use Eq. (3.13) for the matrix elements
of the bosonic operators. The result is a sum over integer number n:

〈nq| exp(µ∗
qb̂+

q ) exp(−µqb̂q)|nq〉 =
nq∑

n=0

(−1)n |µq|2nnq!
(n!)2(nq − n)!

. (17)

Calculating the sums over n and nq (problem 12.22), we finally obtain

Spph

[
η̃ph exp

(∑
q

µ∗
qb̂+

q

)
exp

(
−
∑
q

µqb̂q

)]

= exp
(

−
∑
q

|µq|2Nq

)
, (18)

where Nq is the equilibrium (Planck) distribution function of phonons.
With the aid of Eqs. (15) and (18), one can calculate the bosonic

averages 〈〈. . .〉〉ph ≡ Spph{η̃ph . . .} of the operator products standing in

Eq. (13) and determine the function Φnm standing in δ̃H0. Using the
expression of vnmq from Eq. (9), we find
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Φnm ≡ 〈〈Φ̃nm〉〉ph = 〈〈Φ̃mn〉〉ph

= exp

[
−
∑
q

|vnmq|2(Nq + 1/2)

]
= e−Sm−n/2,

〈〈δ̃Φnmδ̃Φmn(τ)〉〉ph = 〈〈δ̃Φmnδ̃Φnm(τ)〉〉ph = e−Sm−n

×
[
exp

{∑
q

Sm−n(q)[Nqe−iωqτ + (Nq + 1)eiωqτ ]

}
− 1

]
, (19)

〈〈δ̃Φnm(τ)δ̃Φmn〉〉ph = 〈〈Φ̃mn(τ)Φ̃nm〉〉ph = e−Sm−n

×
[
exp

{∑
q

Sm−n(q)[Nqeiωqτ + (Nq + 1)e−iωqτ ]

}
− 1

]
.

The factors appearing in these expressions are

Sm−n(q) = |vnmq|2 = |γq|2{1 − cos[q · (Rm − Rn)]},

Sm−n =
∑
q

Sm−n(q) coth(�ωq/2T ). (20)

We point out that the term δ̃H0 in the Hamiltonian (11) is exponen-
tially suppressed at Sm−n � 1, as already mentioned. The small factor
e−Sm−n is also present in the averages 〈〈δ̃Φnmδ̃Φmn(τ)〉〉ph, see Eq. (19),
but it is partly compensated by the large exponential factor standing in
the square brackets.

Collecting the results (13), (19), and (20), we finally write the kinetic
equation (12) in the Markovian approximation as

dρnt

dt
=
∑
m

[Wmnρmt(1 − ρnt) − Wnmρnt(1 − ρmt)] , (21)

where the probability of transition (hopping) in unit time is given by
the integral

Wmn = e(εm−εn)/T Wnm =
1
�2 JnmJmne−Sm−n

×
∫ ∞

−∞
dτei(εm−εn)τ /�Pm−n(τ + i�/2T ), (22)

Pn−m(t) = exp

[∑
q

Sm−n(q)
cos(ωqt)

sinh(�ωq/2T )

]
− 1.
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The variable of integration is τ = t′ − t, and we have noticed that the
expression under the integral

∫ 0
−∞ dτ . . . is symmetric in τ so that this

integral is transformed to
∫∞
−∞ dτ . . . . The quantity Pn−m(t) depends

only on |Rm − Rn|. The product JnmJmn also depends only on |Rm −
Rn|, even in the presence of a magnetic field. Therefore, the hopping
probability is isotropic unless an electric field is present.

If an electric field is applied, a current flows in the system because
the hopping probability becomes anisotropic. To calculate this cur-
rent, one may use the general expression for the current density, It =
(2e/V )Sp(η̂tv̂). It is convenient to employ the identity v̂ = (i/�)[Ĥ, x̂]
expressing the velocity operator through the coordinate operator. Using
the transformed Hamiltonian (10), we obtain It = (2ei/�V )Sp{η̃t[H̃, x̂]}
(we note that x̂ is invariant with respect to the transformation (5)).
Since H̃0 commutes with x̂, and the contribution of δ̃H0 can be neglected
in comparison to the contribution of δ̃H1, we replace H̃ in the commuta-
tor by δ̃H1. To find η̃t, we solve the equation i�∂η̃t/∂t = [H̃0 + δ̃H1, η̃t]
with the initial condition η̃t→−∞ = 0 by perturbations up to the terms
linear in δ̃H1. Substituting the result into the expression for It, we
obtain

It = − 2e

�2V

∫ 0

−∞
dt′eλt′Sp

{
η̃(0)

t′ [δ̃H1(t′ − t), [δ̃H1, x̂]]
}

. (23)

Since x̂ =
∑

n Rnâ+
n ân, the trace in this expression is the same as in

Eq. (12), and It = (2e/V )
∑

n Rn(dρnt/dt). With the aid of Eq. (21),
we obtain the stationary current density in the form

I =
2e

V

∑
nm

Wnmρn(1 − ρm)(Rm − Rn)

=
e

V

∑
nm

[Wnmρn(1 − ρm) − Wmnρm(1 − ρn)] (Rm − Rn). (24)

This equation has clear physical meaning: the current is proportional to
the number of electrons hopping between the sites in unit time multiplied
by the radius-vector of the hop (see also Sec. 48).

In a perfectly ordered crystal placed in a homogeneous electric field,
ρn is independent of n and equal to its equilibrium value ρeq . It describes
the average occupation of the site (per spin) and is related to the total
electron density n as n/2 = ρeqN/V , where N is the number of elemen-
tary cells (or, equivalently, the number of sites). The hopping proba-
bility Wnm, however, becomes anisotropic and field-dependent. Taking
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into account that εn − εm = eE · (Rm − Rn), we find

I =
en(1 − ρeq)

N�2

∑
nm

(Rn − Rm)JmnJnme−Sm−n (25)

× sinh[eE · (Rn − Rm)/2T ]
∫ ∞

−∞
dt eieE·(Rn−Rm)t/�Pn−m(t).

To obtain this expression, we have put t = τ + i�/2T in Eq. (22) and
shifted the contour of integration accordingly, taking into account that
Pn−m(t) = Pn−m(−t). The linear current is obtained by expanding the
hyperbolic sine in Eq. (25) in series of E up to the first (linear) term.
The hopping conductivity, introduced as Iα =

∑
β σαβEβ , is given by

(compare to Eq. (48.11))

σαβ =
e2n(1 − ρeq)

2TN

∑
nm

W (0)
nm(Rn − Rm)α(Rn − Rm)β , (26)

where W (0)
nm = W (0)

mn = �
−2JmnJnme−Sm−n

∫∞
−∞ dtPn−m(t) is the equi-

librium hopping probability.
To evaluate the current density (25), we use the approximation of

nearest-neighbor hopping in the simple cubic lattice, when JmnJnm = J2

and Sm−n = S are constants for arbitrary n 	= m. Assuming that the
field is directed along one of the axes of the lattice (say OX), we find
the absolute value of the current density in the form

I =
2ea

�2 n(1 − ρeq)J2e−S sinh
eEa

2T

∫ ∞

−∞
dt ei(eEa/�)t

×
{

exp

[∑
q

Sq
cos(ωqt)

sinh(�ωq/2T )

]
− 1

}
, (27)

where Sq = |γq|2[1 − cos(qxa)] and a is the lattice constant. Only
the hops along the field contribute to the current. The case of strong
electron-phonon coupling is realized when the factor Sq/ sinh(�ωq/2T )
is large. The main contribution to the integral over time comes from a
narrow region near the maximum of the function

F (t) = Re

{∑
q

Sq
cos(ωqt)

sinh(�ωq/2T )
+ i

eEa

�
t

}
(28)

in the plane of the complex variable t. Strictly speaking, there are many
local maxima of this function associated with Re t = 2πk/ωq, where k is
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integer. These maxima are well separated from each other in the case of
optical phonons. Assuming a finite dispersion of these phonons, one can
show that the maximum at Re t = 0 is the highest. For this reason, it is
the only one that should be considered. The position of the maximum is
given by t = iτ0, where τ0 is determined from the equation dF (t)/dt = 0.
In the limit τ0ωq � 1, we find τ0 = eEa/[

∑
q(�Sqω2

q/ sinh(�ωq/2T ))]
and obtain

I = σhE
sinh(eEa/2T )

(eEa/2T )
exp

[
−(eEa)2

16E2

]
, (29)

where

E2 =
�

2

8

∑
q

Sqω2
q

sinh(�ωq/2T )
(30)

and

σh = e2n(1 − ρeq)
√

πa2J2

2�TE e−EA/T , EA = T
∑
q

Sq tanh
(

�ωq

4T

)
. (31)

The quantity σh is the linear static conductivity in the hopping regime,
which can also be obtained from the Kubo formula (problem 12.23). This
conductivity is proportional to the exponential factor e−EA/T , which
becomes an activation exponent in the high-temperature limit, T �
�ωq/2, when EA �

∑
q Sq�ωq/4 is temperature-independent. In this

limit E =
√

EAT . Beyond the ohmic region, when E reaches 2T/ea,
the current starts to increase exponentially, as exp(eEa/2T ). When
the energy eEa reaches 4

√
EAT , the increase slows down. The current

density I has a maximum at eEa = 4EA and decreases at eEa > 4EA.
Near the maximum, I follows a Gaussian dependence on the field, I ∝
exp[−(eEa − 4EA)2/16EAT ].

To complete this section, we consider the case of weak electron-phonon
coupling, when Sm−n(q) � sinh(�ωq/2T ). Even when Sm−n � 1, this
case can be realized at low enough temperatures. After expanding the
exponent in Pn−m(t) from Eq. (25) in series, the integral over time gives
us the δ-functions expressing the energy conservation in the phonon-
assisted hopping:

I =
2πen(1 − ρeq)

N�

∑
nm

(Rn − Rm)JmnJnm

×e−Sm−n
∑
q

|γq|2{1 − cos[q · (Rn − Rm)]}
1 − e−�ωq/T

(32)

×
{

δ[eE · (Rn − Rm) − �ωq] + e−�ωq/T δ[eE · (Rn − Rm) + �ωq]
}

.
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In the case of nearest-neighbor hopping along the main axis of the cubic
lattice,

I =
2πen(1 − ρeq)

�
aJ2e−S

∑
q

Sq[δ(eEa − �ωq) − δ(eEa + �ωq)]. (33)

This current shows the electrophonon resonance when the energy drop
between the nearest-neighbor sites, eEa, coincides with the LO phonon
energy. Higher-order (multi-phonon) resonances are described by the
next terms in the expansion of Pn−m(t).

Finally, we note that the magnetic-field dependence of the current (in
particular, the Hall effect) in the hopping regime cannot be described
within the approximation of the second order in the phonon-assisted
hopping, δ̃H1. This is because the magnetic field disappears from the
expression JnmJmn if the modification of the basis functions by the mag-
netic field is neglected. To study the hopping magnetotransport, it is
necessary to include the terms of the third order in δ̃H1 in the consid-
eration. The corresponding process is called the three-site hopping.

Problems
12.1. Using the real part of the non-local conductivity tensor for the

1D case, find the real and imaginary parts of the local 1D conductivity
tensor σxx(ω) at small ω.

Solution: From Eq. (13.10) at small ω, we obtain

σαβ(r, r′|ω → 0) = π�
∑
δδ′

〈δ|Îα(r)|δ′〉〈δ′|Îβ(r′)|δ〉[δ(εδ − εδ′ + �ω)

+δ(εδ − εδ′ − �ω)]
(

−∂f(εδ)
∂εδ

)
+ O(ω),

where O(ω) denotes the terms which are proportional to ω and do not contain
singularities. To find the real part of the local conductivity along OX for the
electrons occupying a single 1D subband, one should express the matrix elements
of the currents according to Eq. (58.11), with the result Reσxx(r, r′|ω → 0) =
(e2/π�)|ψy,z|2|ψy′,z′ |2 cos[ω(x − x′)/vF ], and integrate Reσxx(r, r′|ω → 0) over y,
z, y′, z′, and (x − x′). The result is Reσxx(ω) = (2e2vF /�)δ(ω) = e2nπδ(ω)/m,
where n is the electron density. The imaginary part is found according to the
Kramers-Kronig dispersion relation (13.15) leading to the free-electron conductiv-
ity Imσxx(ω) = e2n/mω.

12.2. Check the normalization condition (58.17).
Hints: Using the definitions (58.13) and (58.14), calculate the integral over coor-

dinate in the half-space r‖N < 0, taking into account the orthogonality and normal-
ization conditions for ψ(Nn)

r⊥N . Then use Eq. (58.16).



Ballistic and Hopping Transport 597

12.3. Write a matrix equation for ϕn(x) in Eq. (58.24) corresponding
to the problem of an electron waveguide with hard-wall confinement and
coordinate-dependent width d(x).

Result:

− �2

2m

∂2ϕn(x)
∂x2 −

∑
n′

[
Ann′(x)

∂ϕn′(x)
∂x

+ Enn′(x)ϕn′(x)
]

= 0,

where

Ann′(x) =
�2

m

∫
dyψ(n)

y

∂ψ(n′)
y

∂x
,

Enn′(x) = δnn′

{
ε − [�πn/d(x)]2

2m

}
+

�2

2m

∫
dyψ(n)

y

∂2ψ(n′)
y

∂x2 .

The non-diagonal elements of the matrices Ann′(x) and Enn′(x) contain the deriva-
tives of d(x) over x.

12.4. Find the transmission probability of a 2D electron through the
saddle-point constriction defined by the potential energy (58.25).

Solution: Substituting the wave function Ψ(x, y) =
∑

n ϕn(x)ψn(y
√

mωy/�),
where ψn(q) is the harmonic oscillator function defined in Appendix A, into the
Schroedinger equation [

− �2

2m

∂2

∂r2 + V (x, y) − E

]
Ψ = 0,

where r = (x, y) and E is the electron energy, we obtain an ordinary differential
equation for ϕn(x):[

− �2

2m

d2

dx2 + �ωy

(
n +

1
2

)
+ V0 − mω2

xx2

2
− E

]
ϕn(x) = 0.

Therefore, the problem is reduced to a calculation of the transmission probability
through the parabolic potential barrier in one dimension. Introducing the dimension-
less coordinate ξ = x

√
mωx/� and dimensionless energy εn defined in Eq. (58.26),

we find the asymptotes of the wave function in the form

ϕn(ξ) = e−iξ2/2|ξ|−iεn−1/2 + rneiξ2/2|ξ|iεn−1/2, x → −∞,

ϕn(ξ) = tneiξ2/2|ξ|iεn−1/2, x → ∞,

where tn and rn are the transmission and reflection amplitudes. The wave function
at an arbitrary x is expressed as a linear combination of confluent hypergeometric
functions. By matching this wave function to the asymptotic forms given above, we
find rn = −itne−πεn . Finally, using the requirement |rn|2 + |tn|2 = 1, we obtain

|tn|2 = 1/(1 + e−2πεn).

This is the transmission coefficient for an electron in the state n described by the
function ψn. Since this state is conserved in the transmission, T (nm) = δnm|tn|2.
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12.5. Find the thermal conductance due to electron transmission
through an ideal 1D quantum wire.

Solution: Consider a quantum wire connecting electron reservoirs 1 and 2 with
different temperatures T1 and T2. If only one spin-degenerate 1D subband in the wire
is occupied, the energy flow between the reservoirs is given by the expression

2
∫

dp

2π�
vpθ(vp)εp[f1(εp) − f2(εp)],

where vp and εp are the group velocity and energy of the 1D electrons, and f1 and
f2 are the quasi-equilibrium Fermi distribution functions with effective temperatures
T1 and T2 (the electrochemical potentials on both sides are assumed to be equal to
each other). In the linear transport regime, when the difference |T1 − T2| is small in
comparison to (T1 + T2)/2 ≡ T , the energy flow is equal to κ(T1 − T2), where κ is
the thermal conductance. For degenerate electrons, κ = πT/3� = (π2/3e2)GT , where
G = e2/π� is the electric conductance of the 1D quantum wire. We point out that
the relation (36.23) between the thermal and electric conductivities remains valid in
the ballistic transport regime.

12.6. Calculate the dimensionless resistance R/T of the piece of 1D
conductor with three obstacles (point scatterers) and generalize the re-
sult to the case of N obstacles.

Solution: The electrons in the piece containing three point scatterers at x = 0, l1, l2
are described by the wave functions eikx + Ae−ikx at x < 0, B1e

ikx + C1e
−ikx at

0 < x < l1, B2e
ik(x−l1) +C2e

−ik(x−l1) at l1 < x < l2, and Deik(x−l1−l2) at x > l1 + l2.
To find the six coefficients entering these expressions, we compose equations similar
to Eq. (59.2). In the matrix form,⎛⎜⎜⎜⎜⎜⎜⎝

1 0 −t′
1 0 0 0

0 1 −r′
1 0 0 0

0 −eiφ1r2 e−iφ1 0 −t′
2 0

0 −eiφ1 t2 0 1 −r′
2 0

0 0 0 −eiφ2r3 e−iφ2 0
0 0 0 −eiφ2 t3 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
A
B1

C1

B2

C2

D

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
r1

t1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
where φ1 and φ2 are the phases acquired by the electron waves propagating from 0
to l1 and from l1 to l2, respectively. An extension of this equation to the case of
an arbitrary number of obstacles is obvious. Using the symmetry t′

i = ti and the
unitarity property which gives us ti/t′∗

i = −ri/r′∗
i , we find

D =
t1t2t3e

i(φ1+φ2)

(1 − |r1||r2|eiθ1)(1 − |r2||r3|eiθ1) + |r1||r3|(1 − |r2|2)ei(θ1+θ2) ,

where θ1 = 2φ1 + arg(r′
1) + arg(r2) and θ2 = 2φ2 + arg(r′

2) + arg(r3). Calculating the
absolute value of D, we express the intrinsic resistance of the piece as

R

T
=

R1 + R2 + R3 + R1R2R3 + . . .

T1T2T3
,

where the dots indicate the oscillating terms proportional to cos θ1, cos θ2, and cos(θ1±
θ2), which disappear after averaging over random phases. If Ri are small, one can



Ballistic and Hopping Transport 599

write, with the accuracy up to R
2
, 〈R/T 〉 = (R1 + R2 + R3)/T1T2T3. Acting by

induction, we find Eq. (59.6) for the case of N scatterers.

12.7. Find the energy spectrum of electrons in an ideal ring placed
in the magnetic field H perpendicular to the plane of the ring.

Solution: Applying H along OZ , we use the gauge A = (−Hy/2, Hx/2, 0) and
write the Schroedinger equation in the cylindrical coordinate system:{

− �2

2m

[
∂2

∂z2 +
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂ϕ2

]
− i

�ωc

2
∂

∂ϕ
+

e2H2ρ2

8mc2 + U (ρ, z) − E

}
Ψ = 0,

where ρ is the radial coordinate, ϕ is the polar angle, and U (ρ, z) is a confinement
potential defining the ring at ρ � ρ0 and z � 0. We represent the wave function in
the form of the expansion Ψ =

∑
n χn(ρ, z)ψn(ϕ), where χn is the eigenfunction of

the Hamiltonian

− �2

2m

[
∂2

∂z2 +
∂2

∂ρ2 +
1
ρ

∂

∂ρ

]
+ U (ρ, z),

which is independent of the magnetic field. The eigenvalues of this Hamiltonian are εn.
After substituting the expansion introduced above into the Schroedinger equation, we
multiply the latter by χ∗

n(ρ, z) from the left and integrate it over ρ and z. Neglecting
the non-diagonal matrix elements of ρ2 and 1/ρ2 in the adiabatic approximation,
when the ring is narrow, we obtain[

− �2

2m

(
1
ρ2

)
nn

∂2

∂ϕ2 − i
�ωc

2
∂

∂ϕ
+

e2H2(ρ2)nn

8mc2 + εn − E

]
ψn(ϕ) = 0.

Finally, approximating the ground-state (n = 1) wave function as |χ1(ρ, z)|2 ∼ δ(ρ −
ρ0)δ(z), we find the following equation:[

�ω

(
−i

∂

∂ϕ
+

Φ
Φ0

)2

− ε

]
ψ(ϕ) = 0,

where Φ = πρ2
0H is the magnetic flux, ε = E −ε1, and ω = �/2mρ2

0 is a characteristic
frequency describing the energy quantization. This equation has a simple solution
ψl(ϕ) = eilϕ and εl = �ω[l + Φ/Φ0]2, where l = 0, ±1, ±2, . . . . This solution de-
scribes the quantization of the angular momentum.

12.8. Find the quantum correction to the conductivity of a two-
dimensional cylinder of radius ρ0 and length Lz placed along the mag-
netic field H.

Solution: The stationary (ω = 0) correction is given by δσ = −(2σ/π�ρ2D)C(r, r),
see Eq. (43.23), where r is the 2D coordinate on the cylindrical surface. Assuming
that the axis of the cylinder is along OZ , we use the coordinates z and ρ0ϕ, where ρ0

is the radius of the cylinder and ϕ ∈ [0, 2π] is the polar angle. Since ρ0 is constant,
we write the Cooperon C(r, r′) as a function of the variables z and ϕ, i.e., C(r, r′) =
C(zϕ, z′ϕ′). This function satisfies the diffusion equation following from the general
equation (43.19) in the stationary case:[

1
ρ2
0

(
−i

∂

∂ϕ
+ 2

Φ
Φ0

)2

− ∂2

∂z2 +
1
l2D

]
C(zϕ, z′ϕ′) =

1
ρ0D

δ(z − z′)δ(ϕ − ϕ′),
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where lD =
√

Dτϕ is the diffusion length. Assuming that −Lz/2 < z < Lz/2, we
use the boundary conditions [∂C(zϕ, z′ϕ′)/∂z]z=±Lz/2 = 0. There is also a periodic
boundary condition, C(z ϕ + 2π, z′ϕ′) = C(zϕ, z′ϕ′). The equation for C(zϕ, z′ϕ′)
with these boundary conditions has the following solution:

C(zϕ, z′ϕ′) =
ρ0

2πDLz

∞∑
m=−∞

∞∑
n=−∞

exp[in(ϕ − ϕ′)]

×cos[πm(z/Lz − 1/2)] cos[πm(z′/Lz − 1/2)]
(n + 2Φ/Φ0)2 + (πmρ0/Lz)2 + (ρ0/lD)2

.

To find δσ, one should calculate the discrete sums in this expression at z = z′ and
ϕ = ϕ′. Since

∞∑
n=−∞

1
(n + 2Φ/Φ0)2 + b2 =

π

b

sinh(2πb)
cosh(2πb) − cos(4πΦ/Φ0)

,

the result is always periodic in Φ with the period Φ0/2. In particular, for a short
cylinder with Lz � lD only the term with m = 0 is essential in the sum over m, and

δσ = − e2

π�

lD
Lz

sinh(2πρ0/lD)
cosh(2πρ0/lD) − cos(4πΦ/Φ0)

.

If the circumference of the cylinder, 2πρ0, becomes greater than lD, the oscillations
are suppressed exponentially.

12.9. Calculate the group velocity of the edge-state electrons in the
parabolic potential U(x) = mω2

0x
2/2.

Solution: Using Eq. (51.15), one has |v⊥| = (ω2
0/ωc)|x|. In the quasi-classical ap-

proximation, x is identified with the center of the oscillator, Xp, entering Eq. (59.30).
Thus, the absolute value of the group velocity is equal to (ω0/ω)2(p/m).

12.10. Calculate the transmission probability of a 2D electron with
energy E through the saddle-point potential constriction (58.25) in the
presence of a magnetic field directed perpendicular to the 2D plane.

Result: The transmission coefficient is given by the same equation as in problem
12.4, but the dimensionless energy εn is defined in a different way: εn = [E − E2(n +
1/2)−V0]/E1, where E1 = �[(ω4 +4ω2

xω2
y)1/2 −ω2]1/2/

√
2, E2 = �[(ω4 +4ω2

xω2
y)1/2 +

ω2]1/2/
√

2, and ω2 = ω2
c + ω2

y − ω2
x.

12.11. Consider the anomalous quantum Hall effect and prove Eq.
(59.32) for the geometry of Fig. 12.4.

Hints: Assuming that the leads 1, 2, 3, and 4 can accommodate N1, N2, N3,
and N4 edge channels, respectively, use Eq. (59.31) together with the relations∑

M′ GM′M =
∑

M′ GMM′ = G0NM , where M ′ �= M and G0 = e2/2π� is the conduc-
tance quantum. Apply the equations G21 = G0min(N1, N2), G32 = G0min(N2, N3),
G43 = G0min(N3, N4), and G14 = G0min(N4, N1).
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12.12. Calculate the probability of electron tunneling through a rect-
angular potential defined by U(z) = U at 0 < z < d, U(z) = 0 at z < 0,
and U(z) = −∆U at z > d.

Solution: The wave functions at z < 0 and z > d are given by Eq. (60.3). The
wave function in the barrier is C1e

κz + C2e
−κz, where �κ =

√
2m(U − ε) + p2. The

boundary conditions assuming the continuity of the wave function and its derivative
at z = 0 and z = d give us four equations, from which one can find the amplitude t
of the transmitted wave. Calculating the square of the absolute value of t, we obtain

Tpε = 2
16kzk′

zκ2

(k2
z + κ2)(k′2

z + κ2)
e−2κd,

where the factor of 2 appears due to spin degeneracy.

12.13. Calculate the probability of Zener tunneling in the two-band
model.

Solution: The probability is given by Eq. (60.10). Shifting the contour of integra-
tion in the upper half-plane of complex pz up to the point ip0 = i

√
(εg/2s)2 + p2, we

get a sum of two contributions. The first one is associated with a semi-circle around
ip0, denoted as Csc,∫

Csc

dpz
1

p2
z + p2

0
exp

{
2i

�|e|E

∫ pz

0
dp′

zE(p′
z, p)

}

=
π

2p0
exp

{
2i

�|e|E

∫ ip0

0
dp′

zE(p′
z, p)

}
,

while the second contribution is due to a straight-path integral,
∫

Csp
dpz . . . , over

δpz = pz − ip0. If the field E is not very strong, this last integral converges rapidly
in the vicinity of δpz = 0, and one can expand

∫ pz

0 dp′
zE(p′

z, p) as
∫ ip0
0 dp′

zE(p′
z, p) +

(2s/3)
√

2ip0(δpz)3/2 at δpz > 0 and as
∫ ip0
0 dp′

zE(p′
z, p) + (2s/3)

√
2ip0i|δpz|3/2 at

δpz < 0. Combining the contributions from the regions δpz > 0 and δpz < 0,
substituting ξ = |δpz|3/2, and using the integral

∫∞
0 dξ ξ−1e−bξ sin(bξ) = π/4, we find∫

Csp

dpz
1

p2
z + p2

0
exp

{
2i

�|e|E

∫ pz

0
dp′

zE(p′
z, p)

}

=
1
3

∫
Csc

dpz
1

p2
z + p2

0
exp

{
2i

�|e|E

∫ pz

0
dp′

zE(p′
z, p)

}
.

Combining together these two contributions, we finally notice that
∫ ip0
0 dp′

zE(p′
z, p) =

iπsp2
0/4 and obtain Eq. (60.11).

12.14. Find the decay time of electron states in the leaky quantum
well created by the potential energy U(z) = ∞ at z < 0, U(z) = V at
a < z < b, and U(z) = 0 at 0 < z < a and z > a + b.

Solution: Let us consider the Schroedinger equation describing the motion of the
particles with effective mass m and in-plane kinetic energy εp in the potential specified
above. Representing the wave function in the form A sin(kz) at z < a, c+eκ(z−a) +
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c−e−κ(z−a) at a < z < a+b, and teik(z−a−b) at z > a+b, where k =
√

2m(ε − εp)/�2

and κ =
√

2mV/�2 − k2, we derive the dispersion relation

κ sin(ka) + k cos(ka) = e−2κb κ + ik

κ − ik
[κ sin(ka) − k cos(ka)],

which gives us the imaginary part of the energy. In the approximation e−κb � 1 we
find

ν = −2Imε

�
=

8�k3κ3

m(κ2 + k2)2(1 + κa)
exp(−2κb),

while the wave number k, which is related to the quantization energy �2k2/2m of the
state in the well, is found from the algebraic equation κ sin(ka) + k cos(ka) = 0.

12.15. Using Eqs. (60.17) and (H.19), find the transmission co-
efficient Tpε for the case of tunneling through a rectangular potential
barrier. Compare it to the result of problem 12.12.

Solution: We use Eqs. (60.17) and (H.19) together with the relations εlk′p =
U0l + p2/2m + �2k′2/2m and εrkp = U0r + p2/2m + �2k2/2m. Taking into account
that the sums over continuous variables are transformed to integrals as

∑
k′ . . . =

(Ll/2π)
∫

dk′ . . . and
∑

k . . . = (Lr/2π)
∫

dk′ . . . , we find

Tpε = 8π2 16�4

m2

∫
dk

2π

∫
dk′

2π

(kk′)2e−2κd

(k2 + κ2)(k′2 + κ2)

×δ(ε − U0l − p2/2m − �
2k′2/2m)δ(ε − U0r − p2/2m − �

2k2/2m).

The integrals over k and k′ are calculated with the use of the δ-functions, and we ob-
tain the result of problem 12.12, where kz ≡ k, k′

z ≡ k′, and κ are expressed through
ε and p2/2m.

12.16. Show that the distribution functions given by Eqs. (61.19)
and (61.20) satisfy the principle of detailed balance in equilibrium.

Hint: Prove that

∑
{nγ}

exp

(
− 1

T

∑
γ

εγnγ +
εq

T

)
nq

∣∣∣∣∣∑
γ nγ=N

=
∑
{nγ}

exp

(
− 1

T

∑
γ

εγnγ

)
(1 − nq)

∣∣∣∣∣∑
γ nγ=N−1

.

12.17. Find the equilibrium occupation numbers f (N)
q for a two-level

system (q = 1, 2) at N = 1.
Result: f (1)

1 = [1 + e(ε1−ε2)/T ]−1 and f (1)
2 = [1 + e(ε2−ε1)/T ]−1.

12.18. Find the spectrum of electrons in the simple cubic lattice by
using the tight-binding approximation.
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Solution: In the absence of electron-phonon interaction, the Hamiltonian of elec-
trons, Ĥe, is given by the first two terms of the Hamiltonian (62.2). Let us make the
transformation

ân = N−1/2
∑
k

âkeik·Rn ,

which relates the site representation (62.1) to the representation of Bloch waves with
wave vectors k. The corresponding basis functions of the new representation are
ψk(r) = V −1/2uk(r)eik·r, where uk(r) = V

1/2
c

∑
n ϕ(r−Rn)e−ik·(r−Rn) are the Bloch

amplitudes and Vc = V/N is the volume of elementary cell. Using the identity given
in problem 1.16, we write the Hamiltonian in the form

Ĥe =
∑
k

εkâ+
k âk, εk = ε0 +

∑
m

Jme−ik·Rm .

In the tight-binding approximation the sum over m is finite and accounts only for the
nearest-neighbor sites. Since Jm = J for all nearest-neighbor sites in the simple cubic
lattice, we obtain εk = ε0 + 2J [cos(akx) + cos(aky) + cos(akz)], where a is the lattice
period and the wave vector k is defined in the Cartesian coordinate system oriented
along the main axes.

12.19. Consider electron transport along the biased one-dimensional
superlattice described by the Hamiltonian

Ĥ =
∑
np

(εn + εp)â+
npânp +

∑
nn′p

′ tnn′ â+
npân′p

+
1
L2

∑
npp′

Un[(p − p′)/�]â+
npânp′ ,

where n is the layer index, εn = ε0 − eEdn is the potential energy of
the layer n determined by the electric field E and superlattice period d,
εp = p2/2m is the kinetic energy of in-plane motion, tnn′ is the tunneling
matrix element describing hopping between the layers, and Un(q) is the
Fourier transform of the effective random scattering potential in the
layer n.

Solution: The density of electric current is given by It = (2e/V )Sp(v̂z ρ̂t), where
v̂z is the operator of velocity in the direction z perpendicular to the layer planes and
ρ̂t is the one-electron statistical operator averaged over the scattering potential; see
Sec. 7. In the basis |np〉, the current density is expressed as

It =
2e

Nd

∑
nn′

∫
dp

(2π�)2
〈n′|v̂z|n〉ρnn′(pt) =

2ie

�N

∑
nn′

tn′n(n − n′)
∫

dp
(2π�)2

ρnn′(pt),

where N = Lz/d is the total number of layers. We have used the identity 〈n′|v̂z|n〉 =
(i/�)〈n′|[Ĥ, ẑ]|n〉 = (i/�)tn′n(nd − n′d). The matrix ρnn′(pt) = 〈np|ρ̂t|n′p〉 satisfies
the quantum kinetic equation

∂ρnn′(pt)
∂t

+
i

�
(εn − εn′)ρnn′(pt) +

i

�
tnn′(fn′p − fnp) = 〈np|Ĵ(ρ̂|t)|n′p〉 ,
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where fnp = 〈np|ρ̂t|np〉 is the distribution function in the layer n. The collision
integral in the operator representation is defined by (compare to Eq. (8.3))

Ĵ(ρ̂|t) =
1

�2L2

∑
mm′q

wmm′(q)
∫ 0

−∞
dτeλτ

[
eiĥτ/�[P̂meiq·x, ρ̂t+τ ]e−iĥτ/�, P̂m′e−iq·x

]
,

where ĥ is the Hamiltonian of superlattice in the absence of the scattering potential,
wmm′(q) = L−2〈〈Um(q)Um′(−q)〉〉 is the correlation function of the potentials in the
layers m and m′, and P̂m is the operator of projection on the layer m. This operator
is defined by 〈n|P̂m|n′〉 = δnmδn′m.

Below we neglect the interlayer correlation of the scattering potentials and take
into account that the layers are macroscopically identical. As a result, wmm′(q) =
δmm′w(q). Next, we assume weak interlayer coupling and calculate the matrix ele-
ments of Ĵ(ρ̂|t) by neglecting the non-diagonal in the layer index components of ĥ.
As a result, the kinetic equation in the stationary case can be written as

i

�
(εn − εn′)ρnn′(p) + νnn′(p)ρnn′(p) =

i

�
tnn′(fnp − fn′p),

where

�νnn′(p) =
∫

dp′

(2π�)2
w(|p − p′|/�)

[
πδ(εp − εp′ + εn − εn′) + πδ(εp′ − εp + εn − εn′)

−iP 1
εp − εp′ + εn − εn′

− iP 1
εp′ − εp + εn − εn′

]
.

The imaginary part of νnn′(p) describes a renormalization of the potential energies
in the layers and can be neglected, while the real part describes the relaxation of the
non-diagonal component of the density matrix. In the simplest case of short-range
scattering potential, when w(q) � w, and under the condition that |εn − εn′ | does
not exceed typical kinetic energies of electrons, the real part of νnn′(p) is equal to
1/τ = mw/�3. Substituting this result into the stationary kinetic equation, one can
find ρnn′(p) = tnn′(fnp − fn′p)/(εn − εn′ − i�/τ ). Therefore, the stationary current
density is given by

I =
2ie

�N

∑
nn′

|tnn′ |2(n − n′)
εn − εn′ − i�/τ

∫
dp

(2π�)2
(fnp − fn′p)

= −2ie

�

∑
k=±1

t2

keEd + i�/τ

∫
dp

(2π�)2
k(fnp − fn−k,p).

The last equation corresponds to the tight-binding approximation with |tn,n±1|2 ≡ t2.
Assuming that the electron distribution in each layer is quasi-equilibrium, with quasi-
Fermi energies εFn = εF − eEnd, we estimate the integral over p as −ρ2DeEd/2 and
finally obtain

I =
e2ρ2DEd

2τ

(2t)2

(eEd)2 + (�/τ )2
.

This current density can be represented as I = GV , where V = Ed is the voltage per
period and G is the tunneling conductance given by Eq. (60.27) with ∆ = eEd and
tlr = t. At small bias, the current linearly increases with the applied field, while at
(eEd)2 > (�/τ )2 the current decreases because the field drives the 2D states out of
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resonance.

12.20. Estimate ∆ε by assuming the Froelich interaction of electrons
with LO phonons.

Result: ∆ε ∼ e2/ε∗r0 with r0 = π/q0, where q0 is the characteristic wave num-
ber at which the Froelich interaction (∝ 1/q2 at q � π/a) is cut off. Since r0 is
of the order of the lattice constant a, the energy ∆ε can be of 1 eV scale, especially
in the crystals with high ionicity, where ε0 and ε∞ considerably differ from each other.

12.21. Prove that the Hamiltonian (62.8) (without the last term)
is written in the form (62.10) in the presence of uniform electric and
magnetic fields.

Hints: To describe the effect of electric field, add the potential energy −eE · r to
ĥcr(r) in Eq. (62.3). To describe the effect of magnetic field, take into account that
the wave function of the electron which jumps from the site n to the site n′ acquires
the phase (e/2�c)H · [Rn × Rn′ ], according to the general consideration given in Ap-
pendix G.

12.22. Prove Eq. (62.18).
Solution: To calculate the sums over nq and n in Eqs. (62.16) and (62.17), it is

convenient to use a new variable l = nq − n rather than nq. With the aid of the
integral representation of the factorial, (l + n)! = Γ(l + n + 1) =

∫∞
0 dxe−xxl+n, the

expression (62.16) is transformed as

∏
q

(
1 − e−�ωq/T

) ∞∑
n=0

∞∑
l=0

e−�ωq(n+l)/T (−1)n |µq|2n(n + l)!
(n!)2l!

=
∏
q

(
1 − e−�ωq/T

) ∞∑
n=0

e−�ωqn/T (−1)n |µq|2n

(n!)2

∫
dxxne−x

∞∑
l=0

xle−�ωql/T

l!
.

The sum over l is, in fact, a serial expansion of the exponent exp(xe−�ωq/T ). Then,
the integral over x is calculated elementary, and the remaining sum over n is again a
serial expansion of an exponent. The final transformation of the expression (62.16) is

∏
q

∞∑
n=0

e−�ωqn/T (−1)n |µq|2n

n!
(
1 − e−�ωq/T

)n = exp

(
−
∑
q

|µq|2Nq

)
.

12.23. Find the frequency-dependent polaronic conductivity in the
hopping regime by using the Kubo formula (13.18).

Solution: Let us replace the velocity operators in Eq. (13.18) by (i/�)[Ĥ, x̂] and
apply the transformation (62.5) to the operators. As a result, the Kubo formula is
rewritten as

σαβ(ω) =
ie2n

mω
δαβ − e2

V �3ω

∫ 0

−∞
dτeλτ−iωτ

×Sp η̃eq

[
e−iH̃τ/�[H̃, x̂α]eiH̃τ/�, [H̃, x̂β ]

]
,
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where Sp . . . includes the spin trace and H̃ is defined by Eqs. (62.10) and (62.11).
The matrix elements of the commutators in the site representation are written as
〈m|[H̃, x̂]|n〉 = 〈m|H̃ |n〉(Rn−Rm) = 〈m|δ̃H0+ δ̃H1|n〉(Rn−Rm). Therefore, in the
hopping regime, when δ̃H0 is neglected, the expression under the integral is already
quadratic in δ̃H1. This means that, with the required accuracy, one may replace the
Hamiltonian H̃ standing in e±iH̃τ/� by H̃0 and use the equilibrium statistical operator
η̃eq determined by H̃0. The trace over electron and phonon variables is calculated as
described in Sec. 62, with the result

σαβ(ω) =
ie2n

mω
δαβ +

2e2

V

∑
nm

ρn(1 − ρm)
JnmJmn

�3ω
(Rn − Rm)α(Rn − Rm)β

×e−Sm−n

∫ 0

−∞
dτeλτ−iωτ

[
ei(εm−εn)τ/�Pm−n(τ − i�/2T ) − c.c.

]
,

where the factor of 2 appears due to spin degeneracy. Taking into account that all
quantities in this equation are the equilibrium ones, we put εn = εm and ρn = ρm =
ρeq. Transforming the integral over τ by introducing t = τ − i�/2T , we find the real
part of the conductivity:

Reσαβ(ω) =
e2n(1 − ρeq)

2�2TN

∑
nm

(Rn − Rm)α(Rn − Rm)β

×JmnJnme−Sm−n sinh(�ω/2T )
(�ω/2T )

∫ ∞

−∞
dteiωtPn−m(t).

Note that in the limit ω = 0 we obtain Eq. (62.26). The integral over time is
very similar to that in Eq. (62.25). Therefore, considering the simple cubic lattice
in the nearest-neighbor approximation, we obtain the diagonal frequency-dependent
conductivity in the form

Reσ(ω) = σh
sinh(�ω/2T )

(�ω/2T )
exp

[
− (�ω)2

16E2

]
,

where the static hopping conductivity σh and the characteristic energy E are given
by Eqs. (62.31) and (62.30), respectively. At high temperatures, T  �ωq/2, there
exists a resonant absorption at ω = 4EA/�, with a Gaussian line shape.



Chapter 13

MULTI-CHANNEL KINETICS

The transitions of electrons, or other quasiparticles, between the states belonging
to different branches of energy spectrum are often met in transport theory and can
be described with the use of coupled kinetic equations for the distribution functions
of these quasiparticles. There are, however, the cases when this approach is not valid,
because the branches of energy spectrum are close to each other, and the consider-
ation of non-diagonal (with respect to the branch index) components of the density
matrix becomes essential. The formalism which adequately describes such cases is
based upon matrix kinetic equations. In this chapter we study two examples of this
kind: the electrons in different spin states coupled by spin-orbit interaction, and a
pair of two-dimensional electron layers weakly coupled by tunneling. We also consider
other important examples of multi-channel transport: the relaxation of electrons due
to the interband transitions caused by electron-electron interaction (Auger processes)
and the anomalies of electrical conductivity due to spin-dependent scattering of elec-
trons by localized states of magnetic impurities (Kondo effect). The description of
these processes is based upon a detailed consideration of the multi-channel scattering.

63. Spin-Flip Transitions
In most cases, the spin degree of freedom of electrons manifests itself

only in Zeeman splitting of the electron energy spectrum in magnetic
fields. However, one should also take into account that the spin-orbit
contribution to the Hamiltonian leads to a spin-dependent interaction
of electrons with the potentials caused by imperfections of the crystal
lattice or with external electric fields. This interaction provides an ad-
ditional channel of electron scattering due to spin-flip transitions and is
responsible for the spin relaxation in the crystals which do not contain
magnetic impurities. Near the extremum of the conduction band, when

607
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the mean electron energy ε is much smaller than the gap energy εg , elec-
trons experience an additional, spin-dependent interaction described by
the term

χ�

mεg
(σ̂ · [∇Ur × p̂]) , (1)

where σ̂ is the vector of Pauli matrices, Ur is the potential energy, and m
is the effective mass near the extremum. The coefficient χ is determined
by the details of the band structure and equal to 1/2 for the two-band
model discussed in Appendix B (problem 13.1). This coefficient is small
in the materials with weak spin-orbit interaction.

Consider the relaxation of spin caused by spin-flip transitions of elec-
trons due to their interaction with randomly distributed impurities. The
total Hamiltonian of such interaction is obtained by adding the term (1)
to the potential energy Ur = Uim(r) from Eq. (7.1). Acting in the same
way as described in Sec. 7, we obtain the kinetic equation (7.13) with the
collision integral (7.17), where eiq·r is replaced by eiq·r{1 + i(χ�/mεg)
×(σ̂ · [q× p̂])}. In the momentum representation, one may introduce the
distribution function f̂pt = 〈p|ρ̂t|p〉, which is a 2×2 matrix with respect
to the spin indices. This function satisfies the matrix kinetic equation

∂f̂pt

∂t
=

2nim

�2V

∑
q

|v(q)|2
∫ 0

−∞
dτeλτ cos [(εp − εp−�q) τ/�]

×
(
ξ̂qf̂p−�q,t+τ ξ̂

+
q − f̂pt+τ ξ̂qξ̂+

q

)
, (2)

where the 2 × 2 matrix ξ̂q is defined according to

ξ̂q = 1 + i
χ�

mεg
(σ̂ · [q × p]) . (3)

In the transformations leading to Eq. (2), we have taken into account
that ξ̂−q = ξ̂+

q and that ξ̂qξ̂+
q = 1 + (χ�/mεg)2[q × p]2 is a scalar. Here

and below in this chapter, the scalar part of 2 × 2 matrix expressions of
the kind of Eq. (3) means the contribution standing at the unit matrix
1̂. The collision integral in Eq. (2) is a generalization of the collision
integral (8.4) to the case of interaction with the effective potential con-
taining the matrix contribution (1). Because of the presence of the term
ξ̂qf̂p−�q,t+τ ξ̂

+
q , this collision integral mixes different components of the

matrix f̂pt+τ .
Let us represent the matrix distribution function as a combination of

scalar and vector parts:

f̂pt = fpt + σ̂ · fpt , fpt =
1
2
trσf̂pt , fpt =

1
2
trσσ̂f̂pt , (4)
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where trσ . . . defines the trace over the spin variable, fpt is the distribu-
tion function averaged over spin, while the vector function fpt describes
the distribution of the electrons whose spins are polarized along the di-
rection of f . For example, z-component of this function, fzpt = [〈σ =
+1|f̂pt|σ = +1〉 − 〈σ = −1|f̂pt|σ = −1〉]/2, is expressed through the di-
agonal components and equal to the half-difference of the distributions
of electrons with up and down spins with respect to the spin quanti-
zation axis OZ. In the Markovian approximation, the spin-averaged
distribution function fpt is determined by Eq. (8.7), where the transi-
tion probability is multiplied by the factor 1 + (χ/mεg)2[p × p′]2. This
factor is close to unity since ε � εg .

The spin distribution is governed by the following vector equation
obtained from Eq. (2) with the use of Eqs. (3) and (4):

∂fpt

∂t
=

2πnim

�V

∑
q

|v(q)|2 δ (εp − εp−�q)

×
{[

1 −
(

χ�

mεg

)2

[q × p]2
]
fp−�qt

+2
(

χ�

mεg

)2

(fp−�qt · [q × p]) [q × p] (5)

+2
χ�

mεg
[fp−�qt × [q × p]] −

[
1 +

(
χ�

mεg

)2

[q × p]2
]
fpt

}
.

If we consider the times which are much greater than the momentum
relaxation time, the distribution fpt becomes isotropic with respect to
the momentum p. Replacing fpt by fεt, where ε = εp, we average the
kinetic equation (5) over the angles of p and express the collision integral
through the spin relaxation time:

∂fεt
∂t

= − fεt
τs(ε)

, (6)

τ−1
s (ε) =

4πnim

�V

∑
q

|v(q)|2
(

χ�

mεg

)2

[q × p]2⊥ δ (εp − εp−�q) ,

where [q × p]⊥ is the component of the vector [q × p] perpendicular
to fεt. In the case of scattering by point defects, when v(q) � v(0),
the calculation of the sum over q in Eq. (6) is reduced to the angular
averaging of [q × p]2⊥. As a result,

τ−1
s (ε) =

32
9

(
χε

εg

)2

νε , (7)
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where νε is given by Eq. (8.21). Therefore, the spin relaxation rate
is equal to the momentum relaxation rate multiplied by a small factor
characterizing the efficiency of spin flip.

Another mechanism of spin relaxation takes place if the potential en-
ergy Ur is quasi-classically smooth. The contribution (1) containing the
gradient of this potential energy can be viewed as a Pauli interaction of
electrons with an effective magnetic field whose direction is determined
by the electron momentum p. The axis of precession of electron spin in
this field changes frequently because of scattering of electrons by impuri-
ties, and this leads to spin relaxation. To describe the spin precession in
the presence of random scattering, let us introduce the Wigner distribu-
tion function f̂rpt =

∫
d∆re−ip·∆r/�〈r+∆r/2|ρ̂t|r−∆r/2〉 and generalize

the formalism of Sec. 9 to the case of matrix distribution functions. One
can derive the following quasi-classical matrix kinetic equation for this
function (problem 13.2):

∂f̂rpt

∂t
+

1
2

[
vp + �

∂σ̂ · Ωrp

∂p
,
∂f̂rpt

∂r

]
+

+ i
[
(σ̂ · Ωrp) , f̂rpt

]

−1
2

[
∂Ur

∂r
+ �

∂σ̂ · Ωrp

∂r
,
∂f̂rpt

∂p

]
+

= Ĵ(f̂ |rpt), (8)

where vp = p/m and the brackets [. . . , . . .]+ define the anticommuta-
tors. The frequency characterizing the spin precession, Ωrp = (χ/mεg)
× [∇Ur × p], is obtained from Eq. (1). It is assumed that the vectors
standing in the anticommutators in Eq. (8) form the scalar products.
The spin-dependent contributions into the collision integral can be ne-
glected so that this integral is written in the form (9.33), where the
scalar frpt is replaced by the matrix f̂rpt.

Let us represent f̂rpt as a sum of symmetric and antisymmetric con-
tributions, according to f̂rpt = f̂rεt +∆̂frpt, where ε = εp. We search for
the symmetric part f̂rεt in the form f̂t(ε + Ur) so that its coordinate de-
pendence is purely parametric. This parametric representation is valid
in the fields smooth on the scale of the mean free path length and in
the absence of gradients of electrochemical potential and temperature,
when there are no drift and diffusion currents; see Sec. 36. Then we
neglect weak temporal and spatial variations of ∆̂frpt on the scale of
the momentum relaxation time and mean free path length determined
by the collision integral. Considering the antisymmetric part of the ki-
netic equation (8) under the assumed condition f̂rεt � f̂t(ε + Ur), we
obtain ∆̂frpt � [(σ̂ · Ωrp) , f̂rεt]/iνε. Using this relation in the symmet-
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ric (averaged over the angle of p) part of Eq. (8), we write the latter
as

∂f̂rεt

∂t
+
∫

dΩ̃p

4πνε

[
(σ̂ · Ωrp) ,

[
(σ̂ · Ωrp) , f̂rεt

]]
= 0, (9)

where dΩ̃p is the differential of the solid angle of the vector p. All the
terms associated with drift and diffusion have disappeared from Eq. (9)
after the angular averaging.

The second term on the left-hand side of Eq. (9) describes the spin
relaxation of electrons. To prove this, we write the matrix distribution
function as a combination of scalar and vector parts, f̂rεt = frεt + σ̂ ·frεt,
as in Eq. (4). Then we make use of the identity [(σ̂ · A), (σ̂ · B)] =
2iσ̂ · [A × B] and transform the double commutator in Eq. (9) to the
form −4[(σ̂ · Ωrp)(frεt · Ωrp) − (σ̂ · frεt)Ω2

rp]. The angular averaging of
Ωα

rpΩβ
rp gives us (χp/mεg)2[(∇Ur)2δαβ − ∇αUr∇βUr]/3, and we rewrite

the second term on the left-hand side of Eq. (9) as

4
3
ν−1

ε

(
χp

mεg

)2∑
αβ

σ̂αfβrεt[(∇Ur)2δαβ + ∇αUr∇βUr]. (10)

Finally, let us average Eq. (9) over realizations of the random potential
Ur under the condition 〈〈Ur〉〉 = 0. As a result, the averaged distribution
function fεt = 〈〈frεt〉〉 satisfies the following equation:

∂fεt
∂t

= − fεt
τsp(ε)

, τ−1
sp (ε) =

32
9

χ2εψ

mνεε2
g

, (11)

where ψ = 〈〈(∇Ur)2〉〉 is the mean square of the potential gradient; see
Eq. (18.18). By comparing the times τs and τsp given by Eqs. (7) and
(11), respectively, we obtain τs/τsp ∼ l2εψ/ε2, where lε =

√
2ε/m/νε is

the mean free path length of the electrons with energy ε. Estimating
ψ as 〈〈U2

r 〉〉/l2c , where lc is the correlation length (characteristic spatial
scale) of the potential, we find that in the hydrodynamic approximation,
when lε � lc, the mechanism of relaxation caused by the spin precession
is much less important than the spin-flip scattering. However, a sim-
ilar mechanism of relaxation becomes significant in the crystals with-
out center of inversion (non-centrosymmetric crystals), where, instead
of Ωrp introduced in Eq. (8), one should use a coordinate-independent
frequency Ωp proportional to the third power of momentum (problem
13.3).

The spin-polarized electron distribution can appear in various non-
equilibrium processes which are sensitive to spin orientation. Let us dis-
cuss the interband photoexcitation of electrons by a circular-polarized
electromagnetic wave. This process is described by the general expres-
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sion for the photogeneration rate Ĝt, see Eq. (54.1), where the elec-
tric field of the wave is given by E(±)

t = E±wte
−iωt + c.c. and the

field strength for the wave propagating along OZ is chosen as E± =
(E/

√
2, ±iE/

√
2, 0). The envelope form-factor wt should be set to unity

in the case of a stationary photoexcitation. Calculating the matrix el-
ements of Ĝt in the basis of conduction-band states, one gets a 2 × 2
matrix of generation rate whose elements 〈cσp|Ĝt|cσ′p〉 are proportional
to the spin-dependent factors

Ψ(±)
σσ′ = 2

∑
σv

(E± · vcσ,vσv)
(
vvσv ,cσ′ · E∗±

)∑
σσv

(E± · vcσ,vσv)
(
vvσv ,cσ · E∗±

) . (12)

For the excitation near the band edge, the matrix elements of the velocity
operator are obtained from Eq. (B.23) in the limit ηp � 1, with the result
vcσ,vσv � s〈σ|σ̂|σv〉. Using the identity [E± × E∗±]/|E±|2 = (0, 0, ∓i),
we obtain the polarization factor (12) in the form of a 2 × 2 matrix:

Ψ̂(±) = 1 ± σ̂z . (13)

The circular-polarized waves E(+)
t and E(−)

t excite only spin-up and spin-
down electrons, respectively. If the complex field strength E± is chosen
in a different way, for example, E± = (E1/

√
2, ±iE2/

√
2, 0) (elliptic

polarization if E1 	= E2), the spin polarization of the photoexcited elec-
trons is not complete. The matrix of generation rate, 〈cp|Ĝt|cp〉, is
represented as G(c)

pt Ψ̂
(±), where G(c)

pt is the spin-averaged generation rate
given by Eq. (54.3). In the problems of relaxation of photoexcited spin-
polarized electrons, this matrix should be added to the right-hand side
of the corresponding 2 × 2 matrix kinetic equation, for example, to the
right-hand side of Eq. (2). Calculating the matrix trace of the equa-
tion obtained in this way (note that (1/2)trσΨ̂(±) = 1), one can check
that the distribution function fpt satisfies Eq. (54.4) in the absence of
scattering.

The intraband spin-flip optical transitions also become allowed if the
terms of the order of ε/εg are taken into account. Using the general
expression for the coefficient of absorption (see Eqs. (10.23) and (48.4)),

αω =
(2πe)2

c
√

εωV

∑
δδ′

|
〈
δ|v̂α|δ′〉 |2δ(εδ − εδ′ + �ω) (fδ − fδ′) , (14)

where fδ = f(εδ) is the distribution function of electrons in the state
δ, we consider the transitions between the Landau levels in the ultra-
quantum limit, when both the cyclotron energy �ωc and the Zeeman
splitting energy |gµBH| exceed the mean energy of electrons, ε. Be-
low we assume that the magnetic field is directed along OZ and use the



Multi-Channel Kinetics 613

gauge A = (0, Hx, 0). Let us calculate the absorption (14) by employing
the basis of the conduction-band states of the two-band model. Since
only the lowest state, |N = 0, σ = −1, pypz〉, is occupied by electrons,
Eq. (14) is reduced to

αω =
(2πe)2

c
√

εωV

∑
N ′σ′pypz

f0,−1pz

∣∣〈c0,−1pypz |v̂α|cN ′, σ′pypz

〉∣∣2
×δ(E0,−1pz − EN′,σ′pz

+ �ω), (15)

where the eigenstates are presented in problem 10.15 and the energy
spectrum EN,σpz is given by Eq. (52.8). The electron transitions between
these levels are caused by the electromagnetic waves polarized perpen-
dicular to the magnetic field, and we should consider either α = x or
α = y in Eq. (15). The corresponding matrix elements presented below
are obtained in the approximation ε/εg � �ωc/εg � 1:

|〈c0,−1pypz |v̂x|cN, −1pypz〉|2 = δN1
�ωc

2m
,

|〈c0,−1pypz |v̂x|cN, +1pypz〉|2 = δN0

(
pz�ωc

2mεg

)2

. (16)

We also present the expressions for the energy spectra obtained from
Eq. (52.8) in this approximation:

E0,+1pz = E1,−1pz =
εg

2

√
1 +

(
2spz

εg

)2

+ 4
�ωc

εg
� εg

2
+ �ωc +

p2
z

2mH

,

E0,−1pz =
εg

2

√
1 +

(
2spz

εg

)2

� εg

2
+

p2
z

2m
, (17)

where mH � m(1 + 2�ωc/εg).
According to Eq. (16), the high-frequency electric field perpendicular

to H causes the transitions between the states with different N and the
same σ (cyclotron resonance, CR), as well as the transitions between
the states with the same N and different σ (combined resonance, cr).
The absorption coefficients corresponding to these two types of optical
transitions are ∣∣∣∣ α(CR)

ω

α(cr)
ω

∣∣∣∣ =
(2πe)2

c
√

εωV

∑
pypz

f0,−1pz

×δγ

(
�ω − �ωc +

p2
z

2m

2�ωc

εg

) ∣∣∣∣ �ωc/2m
(pz/2m)2(�ωc/εg)2

∣∣∣∣ , (18)
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where δγ(E) = π−1γ/(E2 + γ2). By applying this function, we take into
account the collision-induced broadening of the energy levels, with the
broadening energy γ, in addition to the broadening caused by the differ-
ence in the energy dispersion of the states due to non-parabolicity (note
that m−1 − m−1

H � 2�ωc/mεg is already used in Eq. (18)). For the two-
band model, the energies of Zeeman splitting and Landau-level splitting
coincide, though it is not the case for the majority of materials, where
the CR and cr peaks in the absorption spectrum appear at different ener-
gies. The calculation of the shape of the peaks based upon Eq. (18) can
be done with the use of V −1∑

pypz
. . . = [|e|H/(2π�)2c]

∫∞
−∞ dpz . . . . In

the case of non-degenerate electrons described by the Maxwell distribu-
tion f0,−1pz = (n/N ) exp(−p2

z/2mT ), where n is the electron density and
N is the normalization constant, the result is written in the following
way: ∣∣∣∣ α(CR)

ω

α(cr)
ω

∣∣∣∣ =
π3/2e2nεg

c
√

εωmT

∣∣∣∣ Φ(CR)
λ (∆)

(�ωcT/ε2
g) Φ(cr)

λ (∆)

∣∣∣∣ , (19)

where ∣∣∣∣ Φ(CR)
λ (∆)

Φ(cr)
λ (∆)

∣∣∣∣ =
∫ ∞

0
dxe−xδλ(x + ∆)

∣∣∣∣ x−1/2

x1/2

∣∣∣∣ . (20)

In these equations, ∆ = (εg/2T )(ω/ωc − 1) and λ = (εg/2T )(γ/�ωc) are
the dimensionless parameters describing the shift from the resonance and
the broadening, respectively. If λ � 1 (weak broadening), the function
δλ(x + ∆) can be replaced by the true δ-function. Both Φ(CR)

λ (∆) and
Φ(cr)

λ (∆) in this case show strongly asymmetric peaks. The absorption
is absent at ∆ > 0, while at ∆ < 0 the absorption is proportional
to |∆|∓1/2e−|∆| (the upper and lower signs stand for the CR and cr
absorption, respectively). In the opposite case of λ � 1, the collision-
induced broadening is more important than the non-parabolicity effect.
As a result, both Φ(CR)

λ (∆) and Φ(cr)
λ (∆) are proportional to δλ(∆) =

π−1λ/(λ2 + ∆2). The absorption in this case is described by symmetric
Lorentzian peaks. In any case, since we assume εg � T and γ � �ωc, the
absorption takes place in the vicinity of the resonance, where |ω −ωc| �
ωc.

Apart from the combined resonance caused by the presence of the
spin-orbit interaction, there exists another mechanism of spin-flip opti-
cal transitions. This mechanism, called the electron spin resonance, is
caused by the Pauli contribution to the Hamiltonian due to the magnetic
field of the electromagnetic wave. The absorption coefficient associated
with this mechanism does not contain the factor ε−2

g . On the other
hand, this absorption coefficient is proportional to c−2 and often can
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be neglected in comparison to the coefficient of cr absorption (problem
13.4).

In low-dimensional electron systems the electron spectrum can become
split even in the absence of magnetic fields, owing to the spin-orbit
interaction. The existence of these spin-split states and the interplay of
the spin-orbit splitting with Zeeman splitting considerably influence the
transport phenomena. Consider a two-dimensional electron gas confined
in the XOY plane by an asymmetric potential U(z). The asymmetry of
the potential leads to the presence of a spin-orbit term

Ĥso = vs · [σ̂ × p̂] (21)

in the Hamiltonian of the 2D electrons. The velocity vs is directed per-
pendicular to the plane and determined by the shape of the confinement
potential and by the wave functions of electrons (problem 13.5). To con-
sider the 2D electron gas in the presence of external fields, one should
use the Hamiltonian

Ĥ =
π̂2

xt

2m
+ vs · [σ̂ × π̂xt] − �

2
ΩH · σ̂, (22)

where π̂xt = p̂ − (e/c)Axt is the operator of kinematic momentum and
Axt is the vector potential describing external electric and magnetic
fields (the gauge is chosen in such a way that A in Eq. (22) is a 2D vector
depending only on the in-plane coordinate x; see problem 13.6). The
last term in Eq. (22) describes Zeeman splitting, and the corresponding
frequency vector ΩH is equal to gµBH/�, where µB is the Bohr magneton
and g is the effective g-factor (see Appendix B and Chapter 10). In the
absence of external fields, one can use the basis of plane waves, |p〉, to
represent the Hamiltonian (22) in the form of an algebraic 2 × 2 matrix
ĥp = 〈p|Ĥ|p〉. By diagonalizing this matrix with the aid of the unitary
transformation ÛpĥpÛ+

p , where Ûp = [1 + i(σ̂ · p)/p] /
√

2, we obtain
the spin-split electron spectrum p2/2m ± vsp consisting of two isotropic
branches.

Let us consider the spin-flip transitions between the branches de-
scribed above in the presence of a high-frequency electric field Ee−iωt +
c.c. The Hamiltonian of the perturbation caused by this field is written
as (ie/ω)(E·v̂p)e−iωt+H.c. , where v̂p = ∂ĥp/∂p = p/m+[vs×σ̂] is the
matrix of the group velocity of 2D electrons. The high-frequency com-
ponent of the density matrix of electrons, δ̂fpe−iωt + H.c., is governed
by the linearized equation

(�ω + iγ) δ̂fp −
[
ĥp, δ̂fp

]
− i

e

ω

[
(E · v̂p) , f̂p

]
= 0, (23)
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where a weak broadening energy γ comes from the collision-integral con-
tribution. The equilibrium density matrix f̂p is given by

f̂p = f (+)
p +

σ̂ · [p × vs]
vsp

f (−)
p , (24)

where f (±)
p = [θ(εF − εp − vsp) ± θ(εF − εp + vsp)]/2 for the case of zero

temperature (here εp = p2/2m). Since trσ δ̂fp = 0 (as it follows from
Eq. (23)), one can search for δ̂fp in the form δ̂fp = σ̂ · δfp. The real
part of the high-frequency Fourier component of the current density is
expressed as

Re Iω = Re
e

L2

∑
p

trσ v̂p · δ̂fp = Re
2e

L2

∑
p

[vs × δfp] . (25)

After multiplying Eq. (23) by σ̂, we take the trace of the equation ob-
tained and find an equation for δfp. Since vs is perpendicular to the 2D
plane, we write this equation as a system of two equations connecting the
in-plane vector component δf (‖)

p = (δfxp, δfyp) with the scalar component
δf(⊥)

p ≡ δfzp in the direction of vs:

(�ω + iγ) δf (‖)
p = −2ipvsδf(⊥)

p ,

(�ω + iγ) δf(⊥)
p = 2ivs(p · δf (‖)

p ) − 2e

ωp
f (−)

p (E · [p × vs]). (26)

The current (25) is expressed through δf (‖)
p and appears to be propor-

tional to E after averaging the vector product [vs × δfp] over the angle of
p. Therefore, one may find the real part of the conductivity introduced
as ReIω = ReσωE:

Reσω = −Re
4e2

ωL2

∑
p

vs

p

i(vsp)2f (−)
p

(�ω + iγ)2 − (2vsp)2
. (27)

Substituting the above-given expression for f (−)
p into Eq. (27), we find

the relative absorption coefficient defined by Eq. (29.24) in the form

ξω =
e2

�c
√

ε

4v3
s

�ω
Re
∫ p0+mvs

p0−mvs

dp
ip2

(�ω + iγ)2 − (2vsp)2
, (28)

where p0 =
√

2mεF + (mvs)2 = �
√

2πn2D is the effective Fermi momen-
tum in the presence of the spin splitting of electron spectrum.



Multi-Channel Kinetics 617

To calculate the integral in Eq. (28), we assume that mvs � p0 and
approximately replace dp p2 by (p0/2)dp2, with the result

ξω =
e2

�c
√

ε

vsp0

2�ω
arctan

(2vsp)2 − (�ω)2 + γ2

2�ωγ

∣∣∣∣p=p0+mvs

p=p0−mvs

. (29)

This equation describes the frequency dependence of the absorption
which takes place in the vicinity of �ω = 2vsp0. We remind that the
broadening energy γ is related to the relaxation rate. If γ � 2mv2

s

(weak relaxation), the function arctan(E/γ) in Eq. (29) can be approx-
imated by a step function of the energy E , as −π/2 + πθ(E). As a
result, the absorption ξω is equal to (πe2/2�c

√
ε)(vsp0/�ω) in the in-

terval |�ω − 2vsp0| < 2mv2
s (in these conditions Reσω � e2/16� is of

the order of the fundamental conductance quantum) and goes to zero
elsewhere. Therefore, the absorption line shape is given by a narrow
rectangle. In the opposite case, when γ � 2mv2

s , one can expand the
expression (29) in series of mvs/p0 so that the derivative of the arctan-
gent appears there. In these conditions, assuming also that γ � �ω, we
write the result in the form of a Lorentzian peak

ξω =
e2

�c
√

ε

mv2
s

�ω

2vsp0γ

(�ω − 2vsp0) + γ2 . (30)

In the exact resonance, the relative absorption described by this ex-
pression is equal to (e2/�c

√
ε)(mv2

s /γ). It is considerably smaller than
the fundamental constant e2/�c � 1/137. For this reason, the absorp-
tion caused by the transitions between spin-split branches is difficult to
observe. Nevertheless, such transitions can be studied experimentally
owing to their influence on the plasmon spectrum of 2D electron gas.

64. Spin Hydrodynamics
A simple description of the spin degree of freedom determining the

magnetic moment (and other spin-dependent quantities) of electron sys-
tems can be carried out in the case of smooth spatial and slow temporal
variations of the parameters of the systems. To do this, it is necessary
to generalize the hydrodynamic approach developed in Secs. 11 and 36
by introducing additional equations for the spin density srt and related
spin-dependent currents. Owing to the weakness of the coupling between
the spin and kinematic degrees of freedom (for this reason, the spin re-
laxation time often appears to be much greater than the momentum
relaxation time), this approach proves to be satisfactory for describing
various spin-dependent transport phenomena. In this section we con-
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sider the hydrodynamical equations for 3D and 2D electrons describing
the evolution of spin density and spin flow density.

The quasi-classical kinetic equation derived in Sec. 9 can be general-
ized by including the Pauli term −�ΩH · σ̂/2, where ΩH = gµBH/�, see
Eq. (63.22), into the Hamiltonian. This term describes the interaction
of electron spins with the external magnetic field H. Next, the density
matrix in the coordinate representation, ρt(r1, r2), should be replaced by
a 2 × 2 matrix. As a result of the Wigner transformation (9.6) applied
to this matrix, we obtain a quasi-classical matrix kinetic equation(

∂

∂t
+ vp · ∂

∂r
+ Frpt · ∂

∂p

)
f̂rpt − i

2
[ΩH · σ̂, f̂rpt] = Ĵ(f̂ |rpt), (1)

where vp = p/m and Frpt is the Lorentz force (9.23). The spin preces-
sion in the magnetic field enters Eq. (1) through the commutator, as in
Eq. (63.8). The collision integral in Eq. (1) is given by Eq. (8.7) or Eq.
(34.27) without spin-flip scattering. If there is a need to include such
scattering, the collision integral can be taken from Eq. (63.2). Equation
(1) can be used in the case of coordinate-dependent magnetic field if
this dependence is smooth enough to neglect the terms proportional to
∂(σ̂ · ΩH)/∂r. A transition to the hydrodynamic description is done by
introducing the 2 × 2 matrices of electron density and flow. Summing
both sides of Eq. (1) over the momentum p, we obtain

∂n̂rt

∂t
+ div îrt − i

2
[(ΩH · σ̂), n̂rt] =

1
V

∑
p

Ĵ(f̂ |rpt), (2)

n̂rt =
1
V

∑
p

f̂rpt, îrt =
1
V

∑
p

vpf̂rpt.

The right-hand side of this balance equation is not equal to zero if the
spin-flip scattering is taken into account. However, trσ

∑
p Ĵ(f̂ |rpt) = 0

because of particle conservation. Calculating the trace of both sides of
Eq. (2), one should notice that trσn̂rt = nrt and trσ îrt = irt are the
electron density and electron flow density introduced by Eq. (11.2). As
a result, we obtain the continuity equation (11.5).

Let us represent the matrices n̂ and î in the form

n̂rt =
1
2
[nrt + srt · σ̂], îβrt =

1
2
[iβrt +

∑
α

σ̂αqαβ
rt ], (3)

where the spin density vector and the spin flow density tensor are given
by srt = trσσ̂n̂rt and qαβ

rt = trσσ̂αîβrt, respectively. Substituting Eq. (3)
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into Eq. (2), we find the following equation for srt:

∂sα
rt

∂t
+
∑
β

∇β
r qαβ

rt + [ΩH × srt]α =
1
V

trσσ̂α

∑
p

Ĵ(f̂ |rpt). (4)

To find qαβ
rt , we represent the matrix distribution function f̂rpt as a sum

of symmetric and antisymmetric parts, f̂rεt + ∆̂frpt. The collision inte-
gral in the equation for ∆̂frpt can be written in the approximation when
the spin-flip scattering is neglected, as Ĵ(∆̂f |rpt) � −∆̂frpt/τtr(εp),
where τtr(ε) is the transport time; see Secs. 8, 11, and 36. In the
case of weak magnetic field, when ωcτtr � 1 and ΩHτtr � 1, we have
∆̂frpt = −τtr(ε)vp ·

(
∂f̂rεt/∂r + eErt∂f̂rεt/∂ε

)
, where ε = εp. In the

hydrodynamic approximation, the symmetric part of the distribution
function can be searched for in the form

f̂rεt =
[
exp

(
ε − �ΩH · σ̂/2 − µ̂rt

T

)
+ 1
]−1

(5)

corresponding to the local equilibrium (here and below we assume that
the temperature is constant). The term �ΩH ·σ̂/2 in the exponent can be
neglected in comparison to the mean kinetic energy of electrons (in fact,
we have already assumed a stronger inequality, ΩH � τ−1

tr ). The matrix
of the local chemical potential introduced in Eq. (5) is reduced to a scalar
µrt if the distribution of the spin density is relaxed to the equilibrium one,
that is, to srt = 0 (at ΩH � ε). To have an idea of how the distribution
(5) looks like, we stress that, according to Eq. (H.28), f(ε + A · σ̂) =
f (+) + (A · σ̂/|A|)f (−), where f (±) = [f(ε + |A|) ± f(ε − |A|)]/2, for an
arbitrary vector A (see also Eq. (63.24)).

Using Eq. (5) and the relation between ∆̂frpt and f̂rεt given above,
one can find linearized expressions for the matrix of the flow density:

îrt = − 1
2e

σrt∇rŵrt, ŵrt = e−1µ̂rt + Φrt, (6)

and
îrt = −Drt∇rn̂rt + urtn̂rt, (7)

which generalize Eqs. (36.8) and (36.11) written in the absence of tem-
perature gradients. The matrix of the local electrochemical potential,
ŵrt, is defined in a similar way as in Eq. (36.7), and the local con-
ductivity, diffusion coefficient, and drift velocity (σrt, Drt, and urt) are
described in Sec. 36. Equation (5) also leads to

n̂rt =
e

2
∂nrt

∂µrt
ŵrt, (8)
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where the derivative of nrt over µrt is the same as in Eq. (36.10). Substi-
tuting the expression (7) into qαβ

rt = trσσ̂αîβrt, we find a relation between
qαβ
rt and srt. Therefore, Eq. (4) can be rewritten as

∂srt
∂t

− (∇r · Drt∇r)srt + (∇r · urt)srt + [ΩH × srt] = −srt
τs

. (9)

The right-hand side of this equation is written through the spin relax-
ation time τs considered in Sec. 63. Though 1/τs is much smaller than
the momentum relaxation rate, it can be comparable to ΩH . Therefore,
both relaxation and precession of the spin density vector are important.
In strong magnetic fields (ΩH ∼ ε) or in ferromagnetic materials, when
the equilibrium spin density is not zero and the relaxation is anisotropic,
one should use a more complicated form of the right-hand side of Eq.
(9), namely −νs⊥(srt − seq) − (νs‖ − νs⊥)h [(srt − seq) · h], where seq is
the equilibrium spin density and h is the unit vector in the direction of
the magnetic field (or in the direction of the magnetization in ferromag-
netic materials). The quantities νs⊥ and νs‖ are called the transverse
and longitudinal relaxation rates.

In the presence of photoexcitation by a circularly polarized electro-
magnetic wave, one should add the photogeneration term gt = V −1∑

p

×G(c)
pt trσσ̂Ψ̂(±), see Sec. 63, to the right-hand side of Eq. (9). If the

diffusion and drift of the spin density are absent, such an equation de-
scribes both precession and relaxation of the excited spin density. Be-
cause of this precession, the excitation of the component of the spin
density vector normal to the magnetic field is suppressed. For example,
the absolute value of this component, created by a stationary excita-
tion, decreases with ΩH as |s⊥| = |g|τs/

√
1 + (ΩHτs)2 (problem 13.7).

The spin precession in a weak magnetic field also suppresses polariza-
tion of the photoluminescence caused by the interband recombination of
spin-polarized electrons and holes.

Apart from the relaxation and precession, Eq. (9) describes the dif-
fusion and drift of the spin density. These processes are caused by the
spatial gradients. We remind that the corresponding contributions in Eq.
(9) are evaluated for the case of weak magnetic field, when ωcτtr � 1
and ΩHτtr � 1. The relaxation of a non-equilibrium electron density
perturbation (created, for example, by photoexcitation) is fast because
of the screening effects discussed in Sec. 36 (see Eq. (36.17) and problem
7.13), and the gradients of the electric field become screened out. For
this reason, one can neglect the gradients of the drift velocity and write
the term (∇r · urt)srt in Eq. (9) as (u · ∇r)srt, where u is a constant
drift velocity. For the same reasons, the diffusion coefficient in Eq. (9)
is also constant, and the second term on the left-hand side is written as
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−D∇2
rsrt. In the absence of magnetic fields and in the stationary regime,

it is convenient to write Eq. (9) as an equation describing spatial dis-
tribution of electrochemical potentials. Indeed, using the representation
ŵr = wr + wr · σ̂ and Eqs. (6) and (8), we obtain

∇2
rwr − l−2

s wr = 0, ls =
√

Dτs. (10)

The scalar component satisfies the Laplace equation ∇2
rwr = 0 because

of current continuity. The characteristic spatial scale of relaxation of
the non-equilibrium spin distribution is determined by the spin diffu-
sion length ls (problem 13.8). Equation (10) has the same form as Eq.
(60.28) for the distribution of electrochemical potentials in the tunnel-
coupled layers. This is understandable because both these equations
describe relaxation processes in weakly coupled sub-systems within the
hydrodynamic approach.

Now we consider a more complicated case, the two-dimensional elec-
tron gas confined in the XOY plane by an asymmetric potential in a
heterostructure. Apart from the Zeeman term considered in Eq. (1),
one should include the spin-orbit term, and the Hamiltonian in the pres-
ence of external fields is given by Eq. (63.22). If the external fields are
quasi-classically smooth and slowly varying with time, one can derive the
following matrix kinetic equation for the Wigner distribution function
f̂rpt:

∂f̂rpt

∂t
− i

2

[
(2[vs × p]/� + ΩH) · σ̂, f̂rpt

]
+

1
2

[
v̂p,

∂f̂rpt

∂r

]
+

+
1
2

[
eErt +

e

c
[v̂p × Hrt] +

�

2
∂(ΩH · σ̂)

∂r
,
∂f̂rpt

∂p

]
+

= Ĵ(f̂ |rpt). (11)

The procedure of derivation of this equation is similar to that of Eqs.
(63.8) and (1) (see, however, problem 13.9). Similar as in Eq. (63.8), it
is assumed that the vectors standing in the anticommutators form the
scalar products. In contrast to Eq. (1), the commutator describing the
spin precession contains a momentum-dependent precession frequency.
The matrix of the group velocity, v̂p = p/m + [vs × σ̂], is already
introduced in Sec. 63. With the use of f̂rpt = frpt+frpt ·σ̂, we transform
Eq. (11) to a system of scalar and vector equations:(

∂

∂t
+ vp · ∂

∂r
+ Frpt · ∂

∂p

)
frpt −

[
vs × ∂

∂r

]
· frpt

−e

c

[
vs ×

[
H × ∂

∂p

]]
·frpt +

�

2

∑
γ

∂ΩH

∂rγ
· ∂frpt

∂pγ
=

1
2
trσĴ(f, f |rpt), (12)
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and (
∂

∂t
+ vp · ∂

∂r
+ Frpt · ∂

∂p

)
frpt + [(2[vs × p]/� + ΩH) × frpt]

−
[
vs × ∂

∂r

]
frpt − e

c

[
vs ×

[
H × ∂

∂p

]]
frpt +

�

2

∑
γ

∂ΩH

∂rγ

∂frpt

∂pγ

=
1
2
trσσ̂Ĵ(f, f |rpt). (13)

Apart from the contributions containing the sum of the temporal deriva-
tive, spatial gradient, and Lorentz force term, these equations contain
the terms responsible for the mixing of spatial motion and spin dy-
namics due to both spin-orbit interaction and inhomogeneous magnetic
field. These are three last terms on the left-hand sides of Eqs. (12)
and (13). For spatially-homogeneous magnetic fields, the last terms
on the left-hand sides of these equations disappear, and the mixing of
spatial motion and spin dynamics exists only due to the spin-orbit in-
teraction. If the magnetic field H is parallel to the 2D plane, the terms
with [vs × [H × (∂/∂p)]] disappear as well. The collision integrals on the
right-hand sides of Eqs. (12) and (13), in principle, can be evaluated for
any scattering mechanism. To facilitate the evaluation of such integrals
(see below), one should use the condition (7.21) and make additional
assumptions concerning the characteristic energies of spin splitting:

�ΩH � ε, vsp � ε, �ν � ε, (14)

where ε and p are the mean energy and momentum of electrons, and ν is
the momentum relaxation rate. The conditions (9.35) are also assumed.
In other words, the mean energy of electrons is large in comparison to
the other characteristic energies appearing in the problem.

In the following, we employ the method of moments, similar to the
one discussed in Sec. 11. The local density nrt and spin density srt
are introduced in the same way as in Eqs. (2) and (3). The local
flow density and spin flow density, however, require a more elaborate
definition, because of the matrix nature of the group velocity in the
presence of the spin-orbit term:

irt =
1
L2

∑
p

trσ v̂pf̂rpt =
2
L2

∑
p

{vpfrpt + [vs × frpt]} , (15)

qαβ
rt =

1
L2

∑
p

trσûαβ
p f̂rpt =

2
L2

∑
p

[
vβ
pfαrpt + vseαβzfrpt

]
. (16)
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We note that the antisymmetric unit tensor eαβγ has been introduced
in Sec. 11 and problem 2.14. The matrix of the spin-velocity tensor
used in Eq. (16) is defined as an anticommutator: ûαβ

p = [σ̂α, v̂β
p]+/2.

To introduce the spin flow density qαβ , one may equivalently employ
the matrix of flow density, îβrt = L−2∑

p[v̂β
p, f̂rpt]+/2, multiply it by σ̂α,

and take the matrix trace. The local magnetic moment Mrt and spin
current density tensor Iαβ

rt of the electron system are expressed according
to Mα

rt = gµBsα
rt and Iαβ

rt = eqαβ
rt . In the definitions of qαβ , ûαβ , and

Iαβ , we place the Cartesian coordinate indices in such a way that the
first one indicates the direction of spin polarization, which can be x, y,
or z, while the second one indicates the direction of motion, which can
be x or y.

Summing Eq. (12) over the momentum p, we obtain the continuity
equation (11.5). Then, summing Eq. (13) over the momentum, we find

∂sα
rt

∂t
+
∑
β

∇β
r qαβ

rt + [ΩH × srt]α

+
2mvs

�
{qzα

rt − δαz(qxx
rt + qyy

rt )} = −
sα
rt − sα

eq

τs
. (17)

This equation differs from Eq. (4) by the presence of the last term on
the left-hand side. This term, proportional to the velocity vs, originates
from the momentum-dependent precession due to spin-orbit interaction.
The relaxation term (the right-hand side) is written in the isotropic
approximation through the spin relaxation time, as in Eq. (9). The
equilibrium spin density seq , which exists because of Zeeman splitting
of electron spectrum, is proportional to ΩH (note that the equilibrium
spin density has been neglected in Eq. (9)). To describe the second-
order moments (i.e., the flow densities (15) and (16)), it is convenient to
multiply the matrix equation (11) by v̂p and ûαβ

p , respectively, take the
matrix trace, and sum the equations obtained over p. Using also Eqs.
(17) and (11.5), we find the next pair of equations:

∂iβrt
∂t

+ vs

∑
γ

eβγz
∂sγ

rt

∂t
+
∑
αγ

eβαγωγ
c iαrt +

∑
γ

∂Qβγ
rt

∂rγ

−eEβ

m
nrt − �

2m

∑
γ

∂Ωγ
H

∂rβ
sγ
rt = −νiβrt (18)

and
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∂qαβ
rt

∂t
+ vseβαz

∂nrt

∂t
+
∑
δγ

(eβδγωγ
c qαδ

rt + eαγδΩ
γ
Hqδβ

rt ) +
∑

γ

∂Pβαγ
rt

∂rγ

−eEβ

m
sα
rt − �

2m

∂Ωα
H

∂rβ
nrt +

2mvs

�

[
Pβzα

rt − δαz(P
βxx
rt + Pβyy

rt )
]

(19)

−vs(δαβΩz
s − δαzΩβ

s )nrt = −νqαβ
rt .

We remind that ωc = |e|H/mc is the vector whose absolute value is
equal to the cyclotron frequency ωc. The collision-integral contribu-
tions standing on the right-hand sides of Eqs. (18) and (19) have been
evaluated in the approximation of elastic scattering by impurities with
short-range potential, and the spin-flip scattering has been neglected.
The terms of the order of mv2

s /ε and (�ΩH/ε)2 have been neglected as
well. The scattering rate ν obtained in this way is given by Eq. (8.21)
for the 2D case (problem 13.10).

In Eqs. (18) and (19) we have introduced two new moments:

Qβγ
rt =

1
L2

∑
p

vβ
ptrσv̂γ

pf̂rpt =
2
L2

∑
p

vβ
p

(
vγ
pfrpt + vs

∑
α

eαγz fαrpt

)
,

P βαγ
rt =

1
L2

∑
p

vβ
ptrσûαγ

p f̂rpt =
2
L2

∑
p

vβ
p
(
vγ
pfαrpt + vseαγzfrpt

)
. (20)

The first equation generalizes the definition (11.7). To find these mo-
ments, one should compose the equations which express them through
higher-order moments. This leads to an infinite chain of coupled equa-
tions, as in Sec. 11. In our case, however, the number of equations
increases because the spin degree of freedom is taken into account. At
this point, to avoid consideration of higher-order moments, one may cut
the chain by using the approximate relations

Qβγ
rt � δβγ

ε

m
nrt, P βαγ

rt � δβγ
n2D

mρ2D

sα
rt, (21)

where n2D is the equilibrium electron density and ε is the mean energy
of the electron system, which is related to the energy density E0 (intro-
duced by Eq. (11.21) for the 3D case) as ε = E0/n2D. The relations
(21) are justified, for example, if we represent the distribution function
in the form similar to Eq. (5), f̂rpt = {exp([εp + ([p × vs] − �ΩH/2) · σ̂

−µ̂rt]/T ) + 1}−1, and take into account the strong inequalities (14).
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Substituting Pβαγ
rt from Eq. (21) into Eq. (19), we find the spin po-

larization in equilibrium, seq = ρ2D�ΩH/2, which can also be obtained
from a simple physical consideration. The equilibrium spin polarization
exists due to Zeeman splitting and disappears at H = 0.

Equations (17)−(19), accompanied by the approximate relations (21)
and the continuity equation (11.5), form a closed set, which can be writ-
ten as a system of twelve differential equations with partial derivatives.
A general analysis of this system would be complicated enough. Be-
low we consider the spatially homogeneous case, when the terms with
spatial derivatives are dropped out. First, let us find characteristic fre-
quencies of the system in the absence of the external fields. The Fourier
components sα

ω and qzα
ω , where α = x, y, are coupled by the following

equations:

(−iω + νs)sα
ω + (2mvs/�)qzα

ω = 0,
−(2vsn2D/�ρ2D)sα

ω + (−iω + ν)qzα
ω = 0,

(22)

where we put νs ≡ 1/τs. A similar system of equations which couples
sz
ω and (qxx

ω + qyy
ω ) can be obtained from Eq. (22) after formal substi-

tutions vs → −vs, n2D → 2n2D, sα
ω → sz

ω , and qzα
ω → (qxx

ω + qyy
ω ). The

characteristic frequencies are determined from the dispersion relation
ω2 + iω(ν + νs) − ννs − 4πn2Dv2

s = 0 which has two solutions:

ω(‖)
± = −i

ν + νs

2
∓ i

√
(ν − νs)2

4
− ω2

s , ω2
s = 4πn2Dv2

s . (23)

The superscript (‖) indicates that this expression describes the frequen-
cies of the in-plane components of spin density, sx

ω and sy
ω . The char-

acteristic frequencies of the perpendicular component sz
ω are described

by a similar expression with ω2
s → 2ω2

s . If the spin-orbit interaction
is weak, ωs � ν, the solutions (23) are imaginary: ω(‖)

+ � −iν and
ω(‖)

− � −i(νs + ω2
s /ν). They describe fast relaxation with the rate ν

and slow relaxation with the rate νs + ω2
s /ν. It is not hard to iden-

tify ω2
s /ν with the relaxation rate due to a spin-precession mechanism

similar to that considered in Sec. 63 and problem 13.3. Indeed, if
we substitute the frequency [p × vs]/� in place of Ωrp in Eq. (63.9)
(compare the commutators in Eqs. (63.8) and (11)) and take into ac-
count that the non-equilibrium spin distribution occurs near the Fermi
surface (p � �

√
2πn2D � pF ), we obtain the relaxation rate ω2

s /ν for
the components sx and sy (and 2ω2

s /ν for the component sz). If ωs is
comparable to ν, both characteristic frequencies ω(‖)

± describe fast relax-
ation. Finally, if ωs > (ν − νs)/2, one has ω(‖)

± � −iν/2 ± Ωs, where
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Ωs =
√

ω2
s − (ν − νs)2/4. The relaxation of spin density in this case is

accompanied by the oscillations due to spin precession. The absence of
slow spin relaxation at ωs ∼ ν is explained by the fact that the branches
of spin-split spectrum of 2D electrons are well defined under these condi-
tions, and (since the electron spin orientation in these branches depends
on momenta) the momentum relaxation cannot be separated from the
spin relaxation.

Consider now a linear response of the electron system to a harmonic
field perturbation Et = Ee−iωt + c.c. in the presence of a magnetic field.
This perturbation excites non-equilibrium densities and flows with the
Fourier components δnω = nω − n2D, δsα

ω = sα
ω − sα

eq , iβω , and qαβ
ω .

Assuming that the magnetic field is directed along OZ (perpendicular
to the 2D layer), we obtain a system of 12 linear equations for these
quantities. The first one, following from the continuity equation, gives
simply δnω = 0. The remaining 11 equations are split in two sub-
systems. The first sub-system couples 5 quantities, qxβ , qyβ , and δsz ,
while the second one couples 6 quantities, iβ , qzβ , δsx, and δsy (β = x, y).
The equations of the first sub-system do not contain the electric-field
terms in the linear approximation. Therefore, qxβ = qyβ = δsz = 0.
The equations of the second sub-system are (the index ω is omitted for
brevity)

(−iω + νs)δsx − ΩHδsy + (2mvs/�)qzx = 0,
(−iω + νs)δsy + ΩHδsx + (2mvs/�)qzy = 0,

(24)

(−iω + ν)ix + ωci
y − ivsωδsy = en2DEx/m,

(−iω + ν)iy − ωci
x + ivsωδsx = en2DEy/m,

(25)

and

(−iω + ν)qzx + ωcq
zy − (2vsn2D/�ρ2D)δsx = esz

eqEx/m,
(−iω + ν)qzy − ωcq

zx − (2vsn2D/�ρ2D)δsy = esz
eqEy/m,

(26)

each pair follows, respectively, from Eqs. (17), (18), and (19). We
remind that sz

eq = ρ2D�ΩH/2 is the equilibrium spin density existing due
to Zeeman splitting. Solving the system of four equations given by Eqs.
(24) and (26), we obtain

δsx = −2evs

�
sz
eq

ExR1 + EyR2

R2
1 + R2

2
,

δsy = −2evs

�
sz
eq

EyR1 − ExR2

R2
1 + R2

2
. (27)

In these expressions,

R1 = −(ω + iν)(ω + iνs) + ωcΩH + ω2
s ,
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R2 = iωc(ω + iνs) − iΩH(ω + iν), (28)

and ω2
s is introduced in Eq. (23). The spin flow densities qzx and qzy

are expressed through δsx and δsy of Eq. (27) with the use of Eq. (24).
Substituting δsx and δsy into Eq. (25), we find the current density

Iβ
ω = eiβω in the form Iβ

ω =
∑

γ σβγEγ , where σxx = σyy ≡ σd and σyx =
−σxy ≡ σ⊥ are the diagonal and non-diagonal components of the con-
ductivity tensor; see Sec. 11. The absorbed power of the electromagnetic
radiation, which is equal to Re It · Et = Re Iω · E/2 = Reσd(ω)E2/2, is
determined by the diagonal component. The latter is represented as

σd(ω) = σ(CR)
d (ω) + σ(cr)

d (ω). (29)

The first term is the conductivity in the absence of the spin-orbit inter-
action. This term is given by the first expression of Eq. (11.18) with
τtr = ν−1 and describes the cyclotron absorption. The second term rep-
resents a correction to the conductivity due to the spin-orbit interaction:

σ(cr)
d (ω) = −iσ(cr)

0 [∆+(ω) − ∆−(ω)],

∆±(ω) =
νΩHω

(R1 ± iR2)(ω + iν ± ωc)
, (30)

where σ(cr)
0 = e2v2

sρ2D/2ν. In a similar way, the non-diagonal part is
written as σ⊥(ω) = σ(CR)

⊥ (ω) + σ(cr)
⊥ (ω), where σ(CR)

⊥ is given by the
second expression of Eq. (11.18) and σ(cr)

⊥ (ω) = −σ(cr)
0 [∆+(ω)+∆−(ω)].

The terms σ(cr)
d and σ(cr)

⊥ are caused by the mixing of the spin dynamics
and spatial motion of electrons. These terms contain new resonances. In
particular, when the relaxation is negligible, the denominators R1+isR2,
where s = ±1, go to zero at the frequencies

ω(s)
± = s

ΩH − ωc

2
±
√

(ΩH + ωc)2

2
+ ω2

s . (31)

If the spin-orbit interaction is weak, ωs � ΩH , ωc, the resonances ap-
pear at ω � ΩH and ω � ωc. The first one is the combined resonance
corresponding to the spin-flip transitions caused by the presence of the
spin-orbit term (63.21) in the Hamiltonian of 2D electrons. The fre-
quency dependence of σ(cr)

d (ω) is shown in Fig 13.1 for some chosen
parameters. The broadening of the combined resonance is determined
by the spin relaxation rate νs. We have considered the simplest case
when the magnetic field is directed perpendicular to the 2D plane. If
the magnetic field is tilted, the combined-resonance absorption depends
on the direction of the electric field.
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Figure 13.1. Line shape of the combined resonance at ωs = 0.5 ΩH , ν = 0.3 ΩH ,
and νs = 0.02 ΩH for two cyclotron frequencies: ωc = 2 ΩH (solid) and ωc = 1.1 ΩH

(dashed).

We point out that, because of crudeness of the approximation (21),
the balance equations considered above do not describe the effect of ab-
sorption due to electron transitions between the spin-split subbands con-
sidered in the end of Sec. 63 in the absence of magnetic fields. Another
important effect, the spin polarization of electrons by a steady-state cur-
rent, is also left beyond. This effect, however, can be described with the
aid of Eq. (11) (problem 13.11). From a qualitative point of view, the
spin polarization appears as a result of the field-induced redistribution of
electrons in the momentum space. If the electron spectrum is split due
to spin-orbit interaction, the anisotropic distribution of electrons in the
momentum space causes the spin polarization. For the same reasons, a
non-equilibrium spin density (created, for example, by photoexcitation)
induces the electric current along the 2D layer.

65. Coupled Quantum Wells
The consideration of the tunneling between 2D electron systems in

Sec. 60 has been based upon the approximation of weak tunnel cou-
pling, when the 2D electrons in the left (l) and right (r) quantum wells
can be considered as separate sub-systems and the tunneling current is
calculated according to the perturbation theory. However, if the tunnel
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barrier is narrow enough, one needs to take into account the coupling
(hybridization) of the states belonging to different wells. The 2D Hamil-
tonian describing this hybridization is obtained in the basis of l- and
r-well eigenstates, |l〉 and |r〉, as (see Appendix H)

Ĥ =
π̂2

xt

2m
+

∆
2

σ̂z + tlrσ̂x + V̂x, (1)

where π̂xt = p̂− (e/c)Axt is the operator of kinematic momentum, ∆ is
the level splitting energy in the absence of the tunnel coupling, and tlr
is the tunneling matrix element describing the strength of this coupling.
It is assumed that the magnetic field, which enters Eq. (1) through the
vector potential, is directed perpendicular to the 2D planes (along OZ)
and is weak enough to neglect the Zeeman splitting. In a similar way as
in Secs. 63 and 64, we use the Pauli matrices to express the Hamiltonian
of two coupled sub-systems (so-called isospin representation). To intro-
duce the matrix of potential energy, V̂xt, which describes the scattering
of electrons by impurities (or other static inhomogeneities), one should
take into account that the impurity distribution across the coupled quan-
tum wells can be substantially inhomogeneous, for example, the densities
of impurities in the wells are different. The potential energy is written
as a diagonal matrix

V̂x =
∑
α

[
P̂lvl(x − Xα|Zα) + P̂rvr(x − Xα|Zα)

]
, (2)

where P̂l = (1 + σ̂z)/2 and P̂r = (1 − σ̂z)/2 are the projection matri-
ces, the index α numbers the impurities with coordinates (Xα, Zα), and
vj(x−Xα|Zα) = 〈j|v(x − Xα, z − Zα)|j〉 is the effective two-dimensional
potential created in the layer j by a single impurity. In the absence of the
magnetic field and potential energy V̂x, the Hamiltonian (1) in the mo-
mentum representation is written as p2/2m+(∆/2)σ̂z +tlrσ̂x and can be
diagonalized by a unitary transformation to the form p2/2m+(∆T /2)σ̂z ,

where ∆T =
√

∆2 + 4t2lr is the level splitting energy renormalized due
to tunnel coupling. This Hamiltonian describes two parabolic branches
of electron energy spectrum shifted by ∆T with respect to each other,
and the density of states is formed by two step functions: ρ(ε) =
ρ2D[θ(ε + ∆T /2) + θ(ε − ∆T /2)].

The presence of a non-symmetric scattering potential considerably
modifies the density of states of 2D electrons near the edge. To con-
sider this effect, let us introduce a matrix Green’s function satisfying
the following equation (at zero magnetic field):[

ε +
�

2

2m

∂2

∂x2 − ∆
2

σ̂z − tlrσ̂x − V̂x

]
Ĝε(x,x′) = δ(x − x′). (3)
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The averaged (retarded, s = R, or advanced, s = A) Green’s function
in the momentum representation satisfies the matrix Dyson equation
(compare to Eq. (56.30)):[

ε − εp − (∆/2)σ̂z − tlrσ̂x − Σ̂s
ε(p)

]
Ĝs

ε(p) = 1. (4)

The self-energy matrix in the Born approximation is given by

Σ̂s
ε(p) =

1
L2

∑
jj′

∑
p′

wjj′(|p − p′|/�)P̂jĜ
s
ε(p

′)P̂j′ , (5)

where the correlation function wjj′(q) is defined according to (∆x =
x − x′)

wjj′(q) =
∫

d∆xe−iq·∆x〈〈
∑
αβ

vj(x − Xα|Zα)vj′(x′ − Xβ |Zβ)〉〉. (6)

To obtain Eqs. (4)−(6), it is sufficient to write the diagram equations
of the kind of Eqs. (14.21)−(14.23) for the matrix Green’s function and
notice that each vertex associated with the scattering potential brings
the matrix contribution (2). Since wjj′ = wj′j , one may permute the
indices of the projection matrices in Eq. (5). In the approximation of
short-range scattering potential, the correlation function becomes diag-
onal in the layer index and independent of q. The self-energy matrix
in these conditions is diagonal and independent of momentum. Repre-
senting it as Σ̂s

ε = Σs(+)
ε + σ̂zΣ

s(−)
ε , we can compose a pair of coupled

equations following from Eqs. (4) and (5):

Σs(+)
ε − µΣs(−)

ε =
mw+

4π�2 (1 − µ2)(L(+)
ε + L(−)

ε ),

Σs(−)
ε − µΣs(+)

ε =
mw+

4π�2 (1 − µ2)
(∆/2 + Σs(−)

ε )(L(+)
ε − L(−)

ε )√
(∆T /2)2 + Σs(−)

ε ∆ + (Σs(−)
ε )2

, (7)

where

L(±)
ε = ln

[
−ε + Σs(+)

ε ±
√

(∆T /2)2 + Σs(−)
ε ∆ + (Σs(−)

ε )2
]

− lnE0. (8)

These equations contain the averaged correlation function w+ = (wll +
wrr)/2 and the degree of scattering asymmetry, µ = (wll − wrr)/(wll +
wrr). The cut-off energy E0 is introduced in order to make the real part
of Σs(±)

ε finite; see the discussion at the end of Sec. 14.
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Although the system of equations (7) is rather complicated, one can
get a general idea about behavior of the density of states without a
detailed consideration. Indeed, the density of states is given by

ρ(ε) = − 2
πL2

∑
p

Im tr ĜR
ε (p) = − 4

πw+(1 − µ2)
Im(ΣR(+)

ε −µΣR(−)
ε ). (9)

In the limit of weak non-symmetric scattering, when |Σs(−)
ε | � ∆T /2,

we expand the square root in Eqs. (7) and (8) as ∆T /2 + (∆/∆T )Σs(−)
ε .

The density of states (9) in these conditions is written as

ρ(ε) = ρ2D[F−(ε) + F+(ε)], (10)

F±(ε) =
1
2

+
1
π

arctan
ε ∓ ∆T /2 − Re[Σ(+)

ε ± (∆/∆T )Σ(−)
ε ]

Im[Σ(+)
ε ± (∆/∆T )Σ(−)

ε ]
,

where Σ(±)
ε ≡ ΣA(±)

ε (we point out that Im[ΣA(+) ± (∆/∆T )ΣA(−)] is posi-
tive). In comparison to Eq. (14.32), this density of states is composed of
two broadened steps, and the broadening energies are different. Besides,
the broadening near the edge (at ε � −∆T /2) is sensitive to the sign of
∆. If, for example, the left well is more doped than the right one, the
broadening at the edge is more considerable at negative ∆, when the
wave function of the ground state is localized mostly in the left well. If,
however, the levels are aligned (∆ = 0), the broadening of both steps
is described by a single quantity, ImΣ(+)

ε (since this quantity depends
on ε, the actual broadening energies of the steps are different from each
other). This behavior is qualitatively different from that at weak tunnel
coupling (tlr � ImΣ(−)

ε ), when the density of states (9) is formed merely
as a superposition of independent densities of electron states in the l and
r wells.

The interband optical absorption in double quantum well structures
is considerably influenced by the non-symmetric scattering. The coeffi-
cient of this absorption is expressed according to Eq. (18.10) through a
correlation function of the Green’s functions of conduction- and valence-
band electrons. In a similar way as in Sec. 55, one may consider the
approximation of almost ideal valence-band 2D electrons, because the
valence-band effective mass mv is large. The frequency dependence of
the relative absorption ξω in this case is given by

ξω ∝ − 1
L4 Im

∫
dx
∫

dx′∑
p

e−ip·(x−x′)/�trP̂v〈〈ĜR

εω−p2/2mv
(x,x′)〉〉

= − 1
L2

∑
p

Im trP̂vĜ
R

εω−p2/2mv
(p), (11)
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where εω = �ω − ε̄g is the excess energy of optical quanta and ε̄g is
the effective gap renormalized by the quantization energies of c- and
v-band states. The projection matrix P̂v introduced in Eq. (11) is
expressed through the overlap factors of v-band states with l- and r-
well conduction-band states: 〈j|P̂v |j′〉 = 〈j|v〉〈v|j′〉. If, for example,
the highest valence-band electron states are localized in the left well so
that 〈l|v〉 � 1 and 〈r|v〉 � 0, the matrix P̂v is reduced to the projection
matrix P̂l introduced above. In this case and under the approximation
|Σs(−)

ε | � ∆T /2, we obtain

ξω ∝
(

1 − ∆
∆T

)
F−(εω) +

(
1 +

∆
∆T

)
F+(εω). (12)

The frequency dependence of the interband absorption coefficient, there-
fore, is similar to the energy dependence of the density of states (10).
Since both the broadening energy and the absolute value of the absorp-
tion coefficient near the edge εω = −∆T /2 are sensitive to ∆, there
exists a possibility to control the spectral characteristics of interband
absorption and photoluminescence by an external bias applied across
the double quantum well structure.

Consider now the in-plane transport properties of coupled quantum
wells. Introducing the matrix Wigner distribution function f̂rpt, one can
derive a matrix kinetic equation similar to Eqs. (64.1) and (64.11). Be-
low we consider the spatially-homogeneous case, when the matrix kinetic
equation is written as

∂f̂pt

∂t
+

i

�

[
∆
2

σ̂z + tlrσ̂x, f̂pt

]
+ Fpt · ∂f̂pt

∂p
= Ĵ(f̂ |pt). (13)

The matrix structure of the Hamiltonian (1) leads to the commutator
on the left-hand side of this equation and dictates the matrix form of
the collision integral. The latter is written below in the Markovian
approximation:

Ĵ(f̂ |pt) =
1

�2L2

∑
p′

∑
jj′

wjj′(|p − p′|/�)
∫ 0

−∞
dτeλτ

{
eiĥpτ /� (14)

×(P̂j f̂p′t − f̂ptP̂j)e−iĥp′τ /�P̂j′ − P̂j′eiĥp′τ /�(P̂j f̂pt − f̂p′tP̂j)e−iĥpτ /�

}
,

where ĥp = p2/2m + (∆/2)σ̂z + tlrσ̂x. Equation (14) can be obtained
from Eq. (7.14) in the way described in Secs. 7 and 8. It is valid
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under the usual quasi-classical assumptions that both the momentum
relaxation rate and cyclotron frequency are small in comparison to ε/�.

Below we omit the time index and write the matrices f̂p and Ĵ(f̂ |p)
as (problem 13.12)

f̂p = P̂lf
l
p + P̂rf

r
p + σ̂xfx

p + σ̂yf
y
p

Ĵ(f̂ |p) = P̂lJl(f̂ |p) + P̂rJr(f̂ |p) + σ̂xJx(f̂ |p) + σ̂yJy(f̂ |p). (15)

To find a simple expression for Ĵ , let us assume that ∆T � ε. Expressing
the operator exponents according to the relation (H.28), we obtain

Jj(f̂ |p) =
2π

�L2

∑
p′

wjj(|p−p′|/�)(fj
p′ − fj

p)δ(εp − εp′), (j = l, r) (16)

and

Jk(f̂ |p) =
2π

�L2

∑
p′

[
wlr(|p − p′|/�)fk

p′ − w+(|p − p′|/�)fk
p

]
×δ(εp − εp′), (k = x, y), (17)

where εp = p2/2m and w+(q) = [wll(q) + wrr(q)]/2. The matrix kinetic
equation (13) is written as four scalar equations[

∂

∂t
+
(
eE +

e

c
[vp × H]

)
· ∂

∂p

] ∣∣∣∣ f l
p

fr
p

∣∣∣∣− 2tlr
�

∣∣∣∣ 1
−1

∣∣∣∣ fy
p =

∣∣∣∣ Jl

Jr

∣∣∣∣ (18)

and [
∂

∂t
+
(
eE +

e

c
[vp × H]

)
· ∂

∂p

] ∣∣∣∣ fx
p

fy
p

∣∣∣∣
+

∆
�

∣∣∣∣ fy
p

−fx
p

∣∣∣∣+ tlr
�

∣∣∣∣ 0
1

∣∣∣∣ (f l
p − fr

p) =
∣∣∣∣ Jx

Jy

∣∣∣∣ . (19)

Let us apply Eqs. (18) and (19) for calculating the linear response to
a homogeneous electric field Ee−iωt +c.c. The density of electric current
along the layers is determined by

I =
2e

L2

∑
p

vptrδ̂fp , (20)

where δ̂fp is the non-equilibrium part of the matrix distribution func-
tion. We search for this part in the form

δ̂fp = −eE · vp
∂f (eq)

εp

∂εp
[ξ̂+eiϕ + ξ̂−e−iϕ], (21)
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where f (eq)
εp is the equilibrium distribution function and ϕ is the polar

angle of the 2D momentum p. The matrices ξ̂± are independent of this
angle. In the case of degenerate electron gas, when −(∂f (eq)

εp /∂εp) =
δ(εp − εF ), we express the components of the linearized collision integral
through the transport times for diagonal and non-diagonal parts:

1

τ j
tr

=
m

�3

∫ 2π

0

dθ

2π
wjj(2pF | sin(θ/2)|/�)(1 − cos θ), (22)

1
τ1

=
m

�3

∫ 2π

0

dθ

2π
[w+(2pF | sin(θ/2)|/�) − wlr(2pF | sin(θ/2)|/�) cos θ] .

The matrix kinetic equation is reduced to a system of linear algebraic
equations for the components of the matrices ξ̂±:

(−iω ± ωc + 1/τ l
tr)ξ

l
± − (2tlr/�)ξy

± = 1,

(−iω ± ωc + 1/τr
tr)ξ

r
± + (2tlr/�)ξy

± = 1, (23)

and

(−iω ± ωc + 1/τ1)
∣∣∣∣ ξx

±
ξy

±

∣∣∣∣+ ∆
�

∣∣∣∣ ξy
±

−ξx
±

∣∣∣∣ =
tlr
�

∣∣∣∣ 0
ξr

± − ξl
±

∣∣∣∣ . (24)

Solving the system of equations (23) and (24), we describe the linear
response in terms of the complex conductivity tensor whose components,
σxx = σyy = σd and σyx = −σxy = σ⊥, are given by

σd = σ0[Ψ(Ω − Ωc) + Ψ(Ω + Ωc)]/2,

σ⊥ = σ0[Ψ(Ω − Ωc) − Ψ(Ω + Ωc)]/2. (25)

In these expressions, σ0 = e2nτtr/m is the averaged static conductivity of
the 2D layers, n = 2ρ2DεF is the doubled (because of the presence of two
layers) 2D electron density, and τtr = 2τ l

trτ
r
tr/(τ l

tr + τr
tr) is the averaged

transport time. Next, Ωc = τtrωc and Ω = τtrω are the dimensionless
cyclotron frequency and perturbation field frequency. The function Ψ is
given by the expression

Ψ(x) =
1

1 − ix

[
1 + µ2 λ2

x + δ2

[(1 − ix)2 − µ2](λ2
x + δ2) + Ω2

T (1 − ix)λx

]
(26)

with λx = 1 − ixτ1/τtr , µ = (τr
tr − τ l

tr)/(τr
tr + τ l

tr), δ = τ1∆/�, and
ΩT = 2tlr

√
τtrτ1/�. In the presence of the scattering asymmetry de-

scribed by the parameter µ, the behavior of the conductivity tensor
is rather sophisticated. The conductivity tensor in these conditions de-
pends on the level splitting ∆ and on the strength of the tunnel coupling
characterized by the tunneling matrix element tlr .



Multi-Channel Kinetics 635

Let us analyze the behavior of the static conductivity at zero magnetic
field. Equations (25) and (26) at Ω = Ωc = 0 give us

σd = σ0

(
1 +

µ2

(1 − µ2) + Ω2
T /(1 + δ2)

)
. (27)

The conductivity is minimal at δ = 0 and increases up to σ0/(1 − µ2)
at |δ| � ΩT . Therefore, the resistivity ρ = 1/σd has a peak at ∆ = 0,
when the levels are aligned. This phenomenon is called the resistance
resonance. Its physical explanation is the following. When we connect
two uncoupled (|∆| � tlr) layers with different resistances in parallel,
the current flows mostly through the layer with lower resistivity, the one
which is less doped by impurities. When the tunnel-coupled states are
considered, the wave functions of electrons in the resonance condition
∆ � 0 are spread over both layers, and all electrons “feel” the scattering
potential in average. The resistivity is larger in this case. It is important
that the effect described above is suppressed when ΩT = 2tlr

√
τtrτ1/� de-

creases. This is because the scattering suppresses the tunnel coherence.
The characteristic time for this suppression is

√
τtrτ1.

Figure 13.2. Weak resonant features in the frequency dependence of absorption coef-
ficient in the coupled quantum wells with non-symmetric scattering at 2tlrτtr/� = 10,
∆ = 0, µ = 0.8, and τ1 = τtr. The curves are plotted for ωc = 0 (solid), ωcτtr = 7.5
(dashed), and ωcτtr = 12.5 (dotted).

In the presence of a magnetic field, both σd and σ⊥ are non-zero. Con-
sidering the stationary case, it is convenient to present the dissipative
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resistivity ρd and Hall coefficient RH = ρxy/H, since they are inde-
pendent of the magnetic field for a single layer (or for the double-layer
system at µ = 0):

ρdσ0 = 1 − µ2

1 + Ω2
c

[
1 − Ω2

T

1 + δ2 + Ω2
T − 3Ω2

c

(1 + δ2 + Ω2
T − Ω2

c )2 + 4Ω2
c

]
, (28)

RH

R(0)
H

= 1 +
µ2

1 + Ω2
c

[
1 − Ω2

T

3 + δ2 + Ω2
T − Ω2

c

(1 + δ2 + Ω2
T − Ω2

c )2 + 4Ω2
c

]
, (29)

where R(0)
H = 1/|e|nc. The non-symmetric scattering causes a magnetic-

field dependence of ρd and RH . If ΩT → 0, this dependence is given by
a Lorentz function and can be explained by the presence of two groups
of carriers with different mobilities. However, if the tunnel coherence is
present, this dependence is more complicated, and one may even expect
a negative magnetoresistance (problem 13.13). In this case, both ρd and
RH depend also on ∆ and tlr .

Finally, we consider the coefficient of absorption of electromagnetic
waves, which is proportional to the real part of σd given by the general
expressions (25) and (26). These expressions describe the cyclotron res-
onance absorption peak. In the resonance approximation, when |Ω −
Ωc| � Ωc and Ωc � 1, this peak is symmetric and its maximum is
placed at Ω = Ωc. The real part of the conductivity in the maximum
is equal to σ0Ψ(0)/2 = σd/2, where σd is given by Eq. (27). Therefore,
the height of the cyclotron absorption peak is minimal at ∆ = 0. The
relative width of the peak, which is estimated as 1/Ψ(0), is maximal
in the resonance conditions ∆ = 0. The effect of resonant broadening
of the cyclotron absorption peak has the same origin as the resistance
resonance. Apart from this peak, one should also mention the resonant
features of absorption appearing at combined frequencies, when

ω = |ωc ± ∆T /�|, (30)

see Fig. 13.2. These features exist only in the case of non-symmetric
scattering.

66. Auger Processes
The electron-electron collisions conserve the total number of electrons

as well as their total energy and momentum. However, if the electrons of
several bands (or subbands) are involved in such collisions, the number
of electrons in each band may change due to interband transitions. Let
us consider the kinetic equation describing electron-electron scattering
in a two-band model, when the indices of quantum states in the electron-
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electron collision integral given by Eqs. (31.19) and (31.20) include the
band index j (j = c, v). Summing this kinetic equation over momentum
and spin, we find

∂nj

∂t
=

1
V

∑
σp

Jee(f |jσp), (1)

where nj is the electron density in the band j. The balance equations of
this kind describe the Auger recombination process. Owing to conser-
vation of the total number of electrons, one has (∂nc/∂t) = −(∂nv/∂t).
Therefore, it is sufficient to consider Eq. (1) only for j = c. Below
we assume that the electron bands are spin-degenerate and isotropic:
εjσp = εjp. In these conditions,∑

σ

Jee(f |jσp) =
2π

�

∑
j′j1j′

1

∑
p′p1p′

1

δp+p′,p1+p′
1

×V (jp j′p′|j1p1 j′
1p

′
1)δ(εjp + εj′p′ − εj1p1 − εj′

1p′
1
) (2)

×[fj1p1fj′
1p

′
1
(1 − fjp)(1 − fj′p′) − fjpfj′p′(1 − fj1p1)(1 − fj′

1p
′
1
)].

The matrix element describing the scattering is written as

V (jp j′p′|j1p1 j′
1p

′
1) =

(
4πe2

�
2

εV

)2 ∑
σσ′σ1σ′

1

×
{

|ϕjσ,j1σ1(p,p1)|2|ϕj′σ′,j′
1σ′

1
(p′,p′

1)|2

|p − p1|4
(3)

−Re
ϕjσ,j1σ1(p,p1)ϕj1σ1,j′σ′(p1,p′)ϕj′σ′,j′

1σ′
1
(p′,p′

1)ϕj′
1σ′

1,jσ(p′
1,p)

|p − p1|2|p′ − p1|2

}
,

where ϕjσ,j1σ1(p,p1) is the overlap factor defined according to

〈jσp|e−iq·x|j1σ1p1〉 = δp+�q,p1ϕjσ,j1σ1(p,p1). (4)

To express ϕjσ,j1σ1(p,p1) through the parameters of the two-band model
of Appendix B, one should use Eq. (B.24).

Equation (1) with the collision integral defined by Eqs. (2)−(4) is
written as (j = c)

∂nc

∂t
=

2π

�V

∑
j′j1j′

1

∑
pp′p1p′

1

δp+p′,p1+p′
1

×V (cp j′p′|j1p1 j′
1p

′
1)δ(εcp + εj′p′ − εj1p1 − εj′

1p′
1
) (5)

×[fj1p1fj′
1p

′
1
(1 − fcp)(1 − fj′p′) − fcpfj′p′(1 − fj1p1)(1 − fj′

1p
′
1
)].
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Since each of the band indices j′, j1, and j′
1 can be either c or v, there are

eight possible terms in the sum in Eq. (5), corresponding to the processes
cj′ ↔ j1j

′
1. Some of these processes, however, are either forbidden by

the energy conservation law, such as cc ↔ vv, or do not contribute to
the sum, such as cc ↔ cc, cv ↔ cv, and cv ↔ vc. Each of the processes
cc ↔ vc and cv ↔ cc contributes to the sum separately, but their total
contribution is equal to zero (problem 13.14). Therefore, there are only
two essential contributions, cc ↔ cv and cv ↔ vv. In the first process,
the electron drops from the conduction band to the valence one, and
its energy is spent to excite a transition of the other electron inside the
conduction band. The second process is similar: when an electron drops
from the conduction band to the valence one, the other electron jumps
up inside the valence band. Denoting these processes by the indices Ac
and Av, we write Eq. (5) in the form

∂nc

∂t
= −JAc − JAv, (6)

JAj =
2π

�V

∑
pp′p1p′

1

δp+p′,p1+p′
1
V (cpjp′|jp1vp′

1)δ(εcp + εjp′ − εjp1 − εvp′
1
)

×[fcpfjp′(1 − fjp1)(1 − fvp′
1
) − fjp1fvp′

1
(1 − fcp)(1 − fjp′)].

Using the quasi-equilibrium Fermi distribution functions with chemical
potentials µc and µv , fjp = [e(εjp−µj)/T + 1]−1, we rewrite the factor in
the square brackets as

[. . .] = fcpfjp′(1 − fjp1)(1 − fvp′
1
)
[
1 − e(µv−µc)/T

]
. (7)

In the case of small deviations of the chemical potentials from the
equilibrium ones, when µc = µ + ∆µc and µv = µ + ∆µv , one approxi-
mately has 1 − e(µv−µc)/T � (∆µc − ∆µv)/T , where |∆µc − ∆µv | � T
is assumed. Using ∆µc = ∆nc/(dnc/dµc) and ∆µv = ∆nh/(dnh/dµv),
where ∆nc and ∆nh are the excess densities of electrons and holes, we
employ the electric neutrality equation ∆nc = ∆nh ≡ ∆n and obtain

1 − e(µv−µc)/T � ∆n

T

[(
dnc

dµc

)−1

−
(

dnh

dµv

)−1
]

. (8)

This equation is simplified for the case of non-degenerate electrons, when
dnc/dµc = nc/T and dnh/dµv = −nh/T . In the intrinsic (non-doped)
semiconductor, when nc = nh ≡ n, Eq. (8) takes the most simple form
1−e(µv−µc)/T � 2∆n/n, and the right-hand side of the balance equation
can be represented as −JAc − JAv = −νA∆n while the left-hand side is
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written as ∂∆n/∂t. Such equation describes an exponential decrease of
the excess density of electrons with a characteristic rate νA.

Calculating the Auger recombination rate νA for realistic (many-band)
models is a complicated problem, which requires a correct account of
non-parabolicity of electron spectrum and momentum dependence of
the overlap factors standing in Eq. (3) (problem 13.15). The sums
over momenta in Eq. (6) are usually calculated numerically. Below
we consider the simplest approximation, when the momentum depen-
dence of the overlap factors is neglected so that bjj1 and Bjj1j′j′

1
intro-

duced by the relations
∑

σσ1
|ϕjσ,j1σ1(p,p1)|2 = 2bjj1 and

∑
σσ′σ1σ′

1
Re

ϕjσ,j1σ1(p,p1)ϕj1σ1,j′σ′(p1,p′)ϕj′σ′,j′
1σ′

1
(p′,p′

1)ϕj′
1σ′

1,jσ(p′
1,p) = 2Bjj1j′j′

1
are constants. We also consider conduction and valence bands with
mc = m and mv → ∞. In the model with infinitely large mv , only the
contribution JAc is non-zero. It is determined by

JAc =
4π

�V 3

(
4πe2

�
2

ε

)2 ∑
pp′p1

[
2bccbcv

|p − p1|4
− Bcccv

|p − p1|2|p′ − p1|2

]

×δ(εcp +εcp′ −εcp1 +εg)fcpfcp′(1−fcp1)e
−(µv+εg)/T (1−e(µv−µc)/T ), (9)

To obtain this expression, we have taken into account that the holes at
mv → ∞ are always non-degenerate (note that nh must be finite) so that
1− fvp′

1
has been replaced by e

(εvp′
1
−µv)/T

. Next, εvp′
1

has been replaced
by −εg (the energy is counted from the bottom of the conduction band),
and the integral over p′

1 has been taken by using the momentum conser-
vation law. The expression (9) does not contain any parameters related
to the energy spectrum and distribution of the valence-band electrons
apart from the factor e−µv/T (1 − e(µv−µc)/T ) which is finite. Integrating
over the angles of p and p′ in Eq. (9), we obtain

JAc =
8e4

π3ε2�6

∫ ∞

0
p2dp

∫ ∞

0
p′2dp′

∫ ∞

0
p2
1dp1

{
2bccbcv

(p2 − p2
1)2

− Bcccv

4pp′p2
1

ln
p1 + p

p1 − p
ln

p1 + p′

p1 − p′

}
δ

(
p2

2m
+

p′2

2m
− p2

1
2m

+ εg

)
(10)

×fcpfcp′(1 − fcp1)e
−(µv+εg)/T (1 − e(µv−µc)/T ).

Below we take into account that the temperature (or the Fermi energy
of electrons) is small in comparison to the gap energy εg . In these
conditions, p2 and p′2 are small in comparison to p2

1, the factor 1 −
fcp1 can be replaced by unity, and the integrals in Eq. (10) are taken
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elementary. Finally, using 1−e(µv−µc)/T � 2∆n/n, we express the Auger
recombination rate as

νA =
4
√

2(2bccbcv − Bcccv)πe4n

ε2m1/2ε
3/2
g

e−(µv+εg)/T

=
4(2bccbcv − Bcccv)e4mT 3/2

π1/2�3ε2ε
3/2
g

e−εg/T . (11)

To obtain the last equation, we have taken into account that µv �
µc near equilibrium and expressed µc through the equilibrium elec-
tron density n for the case of non-degenerate electrons, ne−µc/T �
(mT )3/2/

√
2π3/2

�
3. The rate (11) is estimated as (εB/�)(ε/εg)3/2e−εg/T ,

where εB is the Bohr energy and ε is the mean kinetic energy of electrons.
The presence of the exponentially small factor, e−εg/T , strongly sup-
presses the Auger recombination in wide-gap materials. In narrow-gap
semiconductors, the Auger processes give a considerable contribution to
the interband recombination at room temperature.

The exponential factor e−εg/T is modified if the hole mass mv is finite.
Without giving the details of calculations for this case, we notice that
as the ratio r = mc/mv increases, the momenta p and p′ effectively
contributing to the sum in Eq. (6) become comparable to p1 so that
the effective gap for electron transitions increases. Assuming that the
electron gas is non-degenerate, we write the exponential factor standing
in the expression for JAc (see Eqs. (6)−(8)) as exp(−p2

1/2mcT ). The
momentum p1 is determined from the conservation law

p2 + p′2 − p2
1 + 2mcεg + r(p1 − p − p′)2 = p2 + p′2 − p2

1 + 2mcεg

+r(p2
1 +p2 +p′2 +2pp′ cos θpp′ −2pp1 cos θpp1 −2p′p1 cos θp′p1) = 0, (12)

where θpp′ is the angle between the vectors p and p′, and the other
angles are defined by the same notation. Let us minimize the function
p2
1 implicitly defined by the conservation law (12). This function depends

on five variables: p, p′, θpp′ , θpp1 , and θp′p1 . By noting that p and p′ enter
the conservation law symmetrically, we assume them equal to each other.
This reduces the number of variables of the function p2

1 to two, p and
θpp1 . Solving the quadratic equation obtained in this way, we find p1:

p1 = −2rp cos θpp1

1 − r
+

√
2
1 + r − 2r2 sin2 θpp1

(1 − r)2
p2 +

2mcεg

1 − r
. (13)

This function decreases with increasing cos θpp1 for arbitrary p. Thus,
we put cos θpp1 = 1. After minimizing p1 as a function of p, we obtain
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p2
1min = 2mcεg(1 + 2r)/(1 + r). Therefore, the exponential temperature

dependence of the Auger recombination rate is given by

νA ∝ exp
(

−εg

T

1 + 2r

1 + r

)
. (14)

One should remember that there is also a contribution of the Av process,
which brings a similar exponent with mc/mv replaced by mv/mc, as
follows from the mutual symmetry of the Ac and Av processes. As long
as mc < mv , there is no need to account for the Av process. In the case
of equal c- and v-band masses, the effective gap is maximal and equal
to 3εg/2.

A more detailed calculation based upon many-band models and ac-
counting for the momentum dependence of the overlap integrals can give
another temperature dependence of the Auger recombination rate in the
prefactor of the exponent. The effects of non-parabolicity also modify,
to some extent, the exponential factor. We do not consider such calcula-
tions in this book. It is important to mention, however, that for the sym-
metric variant (M → ∞) of the two-band model described in Appendix
B the Auger transitions appear to be forbidden because the conservation
of energy and momentum cannot be satisfied simultaneously (problem
13.16). Since the Hamiltonian of the symmetric two-band model is for-
mally equivalent to the Dirac Hamiltonian, the absence of the Auger
transitions in this model correlates with a known result of the relativis-
tic quantum theory: the annihilation of an electron-positron pair with
energy transferred to another electron or positron is forbidden.

Let us study the intersubband Auger transitions in a quantum well.
Employing the general form of electron-electron collision integral given
by Eqs. (31.19) and (31.20), we write the kinetic equation as follows:

∂fjp

∂t
=

(2π�)3

m2L4

∑
j1j′j′

1

∑
p1p′p′

1

δp+p′,p1+p′
1
δ(εjp + εj′p′ − εj1p1 − εj′

1p′
1
)

×
[
2M2

jj1j′j′
1
(|p − p1|/�) − Mjj1j′j′

1
(|p − p1|/�)Mj′

1jj1j′(|p′ − p1|/�)
]

×(fj1p1fj′
1p

′
1
− fjpfj′p′), (15)

where the sum over spin variables is already calculated. We have em-
ployed the coefficients Mabcd(q) defined by Eq. (29.11) (these coefficients
are real since the wave functions describing the confinement are chosen
to be real) and assumed that electrons are non-degenerate. The in-
dex j is now a subband number, and the electron spectrum is given by
εjp = εj + p2/2m. Considering only the ground and first excited sub-
bands, we apply Eq. (15) for describing the relaxation of electrons from
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the excited subband to the ground one. Let us put j = 2 and sum Eq.
(15) over p, with the result ∂n2/∂t = −JA. The Auger processes con-
tributing to such relaxation are 21 ↔ 11, 22 ↔ 21, 22 ↔ 11, 22 ↔ 12,
and 21 ↔ 22. The contributions of the last two processes cancel one
another, as we already know from the consideration of interband Auger
transitions. Note that the conservation rules do not forbid the process
22 ↔ 11, since the electron spectra for each subband are described by
the same effective mass. Nevertheless, if the subband 2 is much less
populated than the ground one, the processes 22 ↔ 21 and 22 ↔ 11 give
a small contribution, and only one process, 21 ↔ 11, remains essential.
Taking it into account, we obtain

JA = 2
(2π�)3

m2L6

∑
pp1p′p′

1

δp+p′,p1+p′
1

[
2M2

2111(q) − M2111(q)M2111(q′)
]

×δ(ε2p + ε1p′ − ε1p1 − ε1p′
1
)(f2pf1p′ − f1p1f1p′

1
), (16)

where q = (p−p1)/� and q′ = (p′ −p1)/�. It is convenient to calculate
the sums by using the variables q, q′, and P = (p + p′)/2. Below we
neglect the arrival term proportional to f1p1f1p′

1
because of the assumed

strong inequality T � ε21, where ε21 = ε2 − ε1 is the energy level
separation. Approximating f2p and f1p′ by the Maxwell distribution
functions with effective chemical potentials µ2 and µ1, we find

JA � 2π2
�

3

m3T 2 n1n2

∫ ∞

0
PdP

∫ ∞

0
qdq

∫ ∞

0
q′dq′

×
∫ π

0

dϕ

π

[
2M2

2111(q) − M2111(q)M2111(q′)
]

(17)

×δ
(mε21

�2 − qq′ cos ϕ
)

exp
[
−4P 2 + �

2(q2 + q′2 − 2qq′ cos ϕ)
4mT

]
,

where ϕ is the angle between q and q′. Note that we have expressed
the factors eµ1/T and eµ2/T through the densities of the 2D electrons in
the subbands 1 and 2 according to nj = eµj/T ρ2DT , where j = 1, 2 and
ρ2D = m/π�

2. Integrating over ϕ with the use of the δ-function and,
independently, over P , we reduce Eq. (17) to

JA � π�
3

m2T
n1n2e

ε21/2T

∫ ∞

0
qdq

∫ ∞

0
q′dq′

×
exp

[
−�

2(q2 + q′2)/4mT
]√

(qq′)2 − (mε21/�2)2
[2M2

2111(q) − M2111(q)M2111(q′)], (18)
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where the expression under the square root must be positive. Analyzing
Eq. (18) at low temperatures, when 2T � ε21, we find that the main
contribution to the integrals comes from q � q′ � √

mε21/�. Calculating
the remaining integrals, we finally obtain

JA � π2
�

m
M2

2111(
√

mε21/�)n1n2. (19)

Since q � q′, the exchange contribution reduces the result by half.
The details of the calculation make it clear that the main contribution

to the Auger relaxation comes from the process when an electron from
the bottom of the excited subband descends to the state with the energy
ε21/2 and momentum p in the ground-state subband, while an electron
from the bottom of the ground-state subband jumps to the state with
the same energy and the opposite momentum, −p. Therefore, Eq. (19)
remains valid for any distribution of electrons in the subbands, provided
that the mean kinetic energies of electrons in both subbands are small
in comparison to ε21/2. Since there is no energy gap, the intersubband
Auger transitions considered above lead to a fast depopulation of the
second subband, with the rate ν(21)

A � πM2
2111(

√
mε21/�)(ε/�), where

ε = T for the non-degenerate case and ε = n1/ρ2D = εF for the degen-
erate case. However, if the quantum well is symmetric, the coefficient
M2111(q) is zero, which means that the Auger transitions involving the
states with different parity of their wave functions appear to be forbid-
den. In asymmetric wells, the Auger processes can give a substantial
contribution to intersubband relaxation. For typical values of n1, this
contribution is comparable to the contribution (38.9) due to spontaneous
LO phonon emission.

We now return to consideration of the interband Auger transitions. If
there is an excess of high-energy electrons or holes, as in the case when
the electron gas is heated by an applied electric field, the Auger processes
can increase the electron and hole densities. This phenomenon is called
the impact ionization. To describe it, on can use the balance equation
(6). Let us consider this equation under the assumption that the dis-
tribution function of electrons in the conduction band is controlled by
electron-electron scattering and represented in the form (31.25). This
function is characterized by the effective temperature Te and drift ve-
locity u. In what follows, we again use the limit of infinite valence-band
mass, retaining only the term with j = c in Eq. (6). Since the acceler-
ation of the valence-band electrons by the electric field is not effective,
their effective temperature is equal to the equilibrium temperature T ,
and their drift velocity is zero. Both electrons and holes are assumed
to be non-degenerate. Substituting the distribution functions described
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above into the expression for JAc given by Eq. (9), we rewrite the balance
equation as

∂nc

∂t
=

4π

�V 3

(
4πe2

�
2

ε

)2 ∑
pp′p1

[
2bccbcv

|p − p1|4
− Bcccv

|p − p1|2|p′ − p1|2

]

×δ(p2/2m + p′2/2m − p2
1/2m + εg) exp[−(p2

1/2mTe − µc)/Te] (20)

×
{

eu·p1/Te − eu·(p+p′)/Tee(µc+εg)/Tee−(µv+εg)/T
}

.

Evaluating the term in the braces {. . .} in the case of small deviations
from equilibrium (µc = µ + ∆µc, µv = µ + ∆µv and Te = T + ∆T ), we
use ∆nh = −∆µvnh/T and the following relation for the deviation of
electron density obtained from Eq. (31.25):

∆nc = ∆µc
nc

T
+ ∆T

nc

T

(
3
2

− µ + mu2/2
T

)
. (21)

This expression contains the contribution quadratic in u. After the an-
gular averaging in Eq. (20), the terms containing u in the factor {. . .}
also lead to a contribution quadratic in u, since the electron spectrum
is isotropic. In the linear approximation with respect to small devia-
tions of electron densities and temperature, all such quadratic terms are
neglected. Therefore,

{. . .} � (µ + ∆µv + εg)/T − (µ + ∆µc + εg)/(T + ∆T )

� −2
∆n

n
+

∆T

T

(
εg

T
+

3
2

)
, (22)

where the last equation is written for an intrinsic material (with nc =
nh). Employing our results for the Auger recombination rate in the linear
regime under the conditions T � εg , we write the linearized balance
equation as

∂∆n

∂t
= −νA[∆n − (nεg/2T 2)∆T ], (23)

where νA is given by Eq. (11). If the second, proportional to ∆T , term
on the right-hand side becomes greater than the first term, the electron
density increases with time. This process, however, saturates if ∆T is
constant. Expressing the electron temperature through the electric field
E according to Eq. (36.27), one can find the steady-state excess density
which depends on the energy relaxation rate ν(e):

∆n =
e2E2τtrεg

2mν(e)T 2 . (24)
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Since the result is proportional to E2, and the square of the drift velocity
is also proportional to E2 (note that u = eEτtr/m according to Eq.
(36.12)), one may improve the consideration by including the terms ∝ u2

into the right-hand side of Eq. (22) (problem 13.17). However, under
the conditions ν(e) � τ−1

tr which are often met in semiconductors, the
square of the drift velocity increases with increasing field much slower
than the effective temperature. Therefore, Eq. (24) is justified. If,
apart from the Auger processes, there are other mechanisms of interband
recombination, the steady-state excess density depends on the ratio of
the corresponding recombination rates to νA. Equations (23) and (24)
describe the case of quasi-isotropic electron distribution.

To investigate the behavior of electron system beyond the linear ap-
proximation, we calculate the sums over momenta in Eq. (20), assuming
that Te � εg , when p2 � p2

1 and p′2 � p2
1. The balance equation be-

comes
∂nc

∂t
= nc

2(2bccbcv − Bcccv)e4mT
3/2
e

π1/2�3ε2ε
3/2
g

e−εg/Te (25)

×
[

sinh
√

2mεgu/Te√
2mεgu/Te

e−mu2/2Te − e(µc+εg)/Tee−(µv+εg)/T emu2/2Te

]
.

The first term on the right-hand side of this equation is calculated in the
approximation mu2 � εg . This term can be presented as νiinc, where νii

is the rate of impact ionization under the condition that the second term,
which describes Auger recombination of hot electrons, can be neglected
in comparison to the first one. Owing to the presence of the factor
sinh

√
2mεgu/Te, this rate exponentially increases with increasing drift

velocity at u > Te/
√

2mεg . Still, if 2mu2 � εg , the dependence of the
impact ionization rate on the electric field is determined mostly by the
factor e−εg/Te . Assuming that the electron temperature is proportional
to E2, one gets the following law:

νii ∝ exp
(
−E2

0/E2) , (26)

where E0 is a threshold field. To determine this field, one should con-
sider a system of energy balance and momentum balance equations for
conduction-band electrons, taking into account the contribution of the
Auger processes in these equations.

Application of the distribution (31.25) for calculating the impact ion-
ization rate in strong electric fields is not enough justified. In fact, a
conduction-band electron must have a very high energy (ε ∼ εg) to ex-
cite the interband transition of another electron, and it is not evident
that Eq. (31.25) describes such high-energy electrons as well. There ex-
ists a different approach to the problem. It is assumed that the impact
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ionization is produced by the electrons which have avoided collisions
and gained a high energy. The number of these electrons is small. If l
is the mean free path between the collisions, considered as a constant,
and εg is the threshold energy for ionization in the intrinsic semiconduc-
tor, the probability for an electron to avoid a collision is proportional to
exp(−εg/|eE|l). Therefore, the ionization rate, in the simplest approxi-
mation, takes the form

νii ∝ exp (−εg/|eE|l) . (27)

The field dependence in this expression is distinctly different from the
one given by Eq. (26). In practice, the interval of the fields over which
νii is measured is often too small to decide between the two predicted
field dependences, and both types have been reported in the literature.

67. Kondo Effect
The atoms of the transition metals, which have in the isolated state

unfilled d- or f - shells and a non-zero electron spin, can retain this prop-
erty when embedded in a non-magnetic metal. The interaction of elec-
trons with such magnetic impurities involves manifestation of the spin
degree of freedom which leads to certain peculiarities of the conductivity.
The most important feature of the electron-impurity scattering in this
system is that this scattering becomes spin-dependent. Indeed, when
the incoming electron with momentum p has the opposite projection
of its spin with respect to the electron spin of the impurity atom, the
scattering can proceed in the following ways: i) the electron localized at
the magnetic impurity is transformed into a free electron with momen-
tum p′, and then the incoming electron is transformed into a localized
one, and ii) the incoming electron is transformed into a localized one so
that the intermediate state is a filled shell containing two electrons with
opposite spins, then one of the localized electrons is transformed into
a free electron with momentum p′. The process (ii) does not exist in
the case when the localized and incoming electrons have the same pro-
jection of spin, because of the Pauli principle. Therefore, the scattering
probabilities for these two cases are different, and the Hamiltonian of
electron-impurity interaction should have an additional term depending
on the spin polarization of the free electron with respect to that of the
localized electron.

The term which we add to the potential energy Uim(r) of Eq. (7.1)
can be written as a matrix

−
∑

n

J(r − Rn)σ̂ · Ŝn (1)
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where Rn is the coordinate of the n-th impurity, Ŝn is the impurity spin
operator (if the absolute value of spin is S = 1/2, this operator is equal
to the vector of Pauli matrices σ̂ divided by 2), and the energy J(r −
Rn) describes the strength of the spin-dependent contribution to the
interaction. The spin-dependent factor σ̂ · Ŝn makes the expression (1)
essentially different from Uim(r) of Eq. (7.1). In the second quantization
representation, the term (1) is written as a spin-dependent Hamiltonian
of the interaction,

δ̂He,im = −
∑
nσσ′

∫
dr J(r − Rn)Ψ̂+

σ′r(σ̂)σ′σ · ŜnΨ̂σr. (2)

The index σ numbers the spin states of electrons (+1 and −1, corre-

sponding to the spinors
∣∣∣∣ 1

0

∣∣∣∣ and
∣∣∣∣ 0

1

∣∣∣∣, respectively), (σ̂)σ′σ ≡ 〈σ′|σ̂|σ〉

are the matrix elements of the Pauli matrices, and Ψ̂σr is the field op-
erator of electrons. Since the spin correlation of the free and localized
electrons manifests itself at rather small distances, we make an approxi-
mation of short-range interaction, J(r − Rn) � (J/N )δ(r − Rn), where
N is the density of the host-metal atoms introduced for normalization
purpose (the constant J has the dimensionality of energy). Although we
have introduced the Hamiltonian δ̂He,im phenomenologically, it can be
rigorously derived from a Hamiltonian which allows hopping of electrons
between free and localized states (problem 13.18).

To consider the scattering by magnetic impurities, we add the Hamil-
tonian (2) to the electron-impurity interaction Hamiltonian Ĥe,im =∑

σ

∫
drUim(r)Ψ̂+

σrΨ̂σr describing the spin-independent scattering. Let
us write Eq. (D.13) for the retarded Green’s function of electrons in the
energy-momentum representation:

(ε − εp)GR
ε (σp, σ′p′) = δσσ′δpp′ + 〈〈[âσp, Ĥe,im + δ̂He,im ]|â+

σ′p′〉〉R
ε , (3)

where we have introduced the creation and annihilation operators ac-
cording to Ψ̂σr = V −1/2∑

p eip·r/�âσp. The Green’s function is ex-
pressed through such operators according to Eq. (D.15): GR

ε (σp, σ′p′) =
〈〈âσp|â+

σ′p′〉〉R
ε . The last term on the right-hand side of Eq. (3) is trans-

formed as
1
V

∑
p1

Uim(p − p1)GR
ε (σp1, σ

′p′)

− J

N

∑
p1

∑
n

e−i(p−p1)·Rn/�QR
εn(σp1, σ

′p′), (4)
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where the first and the second terms come, respectively, from the com-
mutators with Ĥe,im and δ̂He,im , and N = NV is the number of the host
atoms in the crystal. The Green’s function QR

εn in the second term is
defined as QR

εn(σp1, σ
′p′) =

∑
σ1

〈〈(σ̂ · Ŝn)σσ1 âσ1p1 |â+
σ′p′〉〉R

ε . Since Ŝn is
the operator of atomic spin, it does not act on the electron spin variables.
The matrix element (σ̂ ·Ŝn)σσ1 = (σ̂)σσ1 ·Ŝn is an operator acting on the
spin variables of n-th atom. For this reason, the second term in the ex-
pression (4) cannot be written in the same form as the first term, where
the Fourier component Uim(p − p1) =

∑
n v(|p − p1|/�)e−i(p−p1)·Rn/�

is recognized as the scattering amplitude (14.3). Instead, one should try
to get an approximate expression for the total scattering amplitude by
using Eq. (D.13) for QR

εn(σp1, σ
′p′):

(ε − εp1)Q
R
εn(σp1, σ

′p′) = δp1p′(σ̂ · Ŝn)σσ′ +
1
V

∑
p2

Uim(p1 − p2)

×QR
εn(σp2, σ

′p′) − J

N

∑
σ1σ2σ′

2

∑
p2p′

2

∑
n′

e−i(p′
2−p2)·Rn′/�

×〈〈(σ̂ · Ŝn)σσ1(σ̂ · Ŝn′)σ′
2σ2 âσ1p1 â

+
σ′
2p

′
2
âσ2p2 (5)

−(σ̂ · Ŝn′)σ′
2σ2(σ̂ · Ŝn)σσ1 â

+
σ′
2p

′
2
âσ2p2 âσ1p1 |â+

σ′p′〉〉R
ε .

This equation is exact.
The correlation function standing in the last term on the right-hand

side of Eq. (5) cannot be reduced to a simpler one because the oper-
ators Ŝn and Ŝn′ do not commute at n′ = n. To find this function,
one should substitute it in Eq. (D.13), which couples this function to
higher-order correlation functions through the terms proportional to J ,
because of the spin-dependent interaction. Below we consider an approx-
imation of weak spin-dependent interaction, when the electron creation
and annihilation operators in Eq. (5) can be averaged separately from
the operators of atomic spin. The products of four electron operators
are averaged according to the following approximate transformations:

〈〈âσ1p1 â
+
σ′
2p

′
2
âσ2p2 |â+

σ′p′〉〉R
ε � 〈〈âσ1p1 â

+
σ′
2p

′
2
〉〉〈〈âσ2p2 |â+

σ′p′〉〉R
ε

� δσ1σ′
2
δp1p′

2
(1 − fp1)G

R
ε (σ2p2, σ

′p′), (6)

〈〈â+
σ′
2p

′
2
âσ2p2 âσ1p1 |â+

σ′p′〉〉R
ε � −〈〈â+

σ′
2p

′
2
âσ1p1〉〉〈〈âσ2p2 |â+

σ′p′〉〉R
ε

� −δσ1σ′
2
δp1p′

2
fp1G

R
ε (σ2p2, σ

′p′),
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where fp1 is the distribution function of electrons. Since we assume
that the electrons are not spin-polarized in average, this function is spin-
independent. The terms proportional to 〈〈â+

σ′
2p

′
2
âσ2p2〉〉 � δσ2σ′

2
δp2p′

2
fp2

are intentionally omitted on the right-hand sides of the equations (6),
because these terms do not contribute into Eq. (5). Applying Eq. (6),
we write the last term on the right-hand side of Eq. (5) as

− J

N

∑
σ1σ2

∑
p2

∑
n′

e−i(p1−p2)·Rn′/�

[
(σ̂ · Ŝn)σσ1(σ̂ · Ŝn′)σ1σ2(1 − fp1)

+(σ̂ · Ŝn′)σ1σ2(σ̂ · Ŝn)σσ1fp1

]
GR

ε (σ2p2, σ
′p′). (7)

Below we use Eqs. (3), (4), and (5) to find QR
εn(σp1, σ

′p′) by itera-
tions, as QR

εn(σp1, σ
′p′) = QR(0)

εn (σp1, σ
′p′) + QR(1)

εn (σp1, σ
′p′) + . . . . In

the zero order in J , we neglect the last term on the right-hand side of
Eq. (5) and search for QR

εn(σp1, σ
′p′) in the form

QR(0)
εn (σp1, σ

′p′) =
∑
σ1

(σ̂ · Ŝn)σσ1G
R(0)
ε (σ1p1, σ

′p′), (8)

where GR(0)
ε satisfies Eq. (3) written without the spin-dependent part of

the interaction Hamiltonian. Without a loss of accuracy, GR(0)
ε in Eq.

(8) can be replaced by the exact Green’s function GR
ε (σ1p1, σ

′p′). The
next iteration leads us to the following equation:

(ε − εp1)Q
R(1)
εn (σp1, σ

′p′) =
1
V

∑
p2

Uim(p1 − p2)QR(1)
εn (σp2, σ

′p′)

− J

N

∑
σ1σ2p2

∑
n′

e−i(p1−p2)·Rn′/�

[
(σ̂ · Ŝn)σσ1(σ̂ · Ŝn′)σ1σ2(1 − fp1) (9)

+(σ̂ · Ŝn′)σ1σ2(σ̂ · Ŝn)σσ1fp1

]
GR(0)

ε (σ2p2, σ
′p′),

where the second term on the right-hand side contains the zero-order
Green’s function of electrons. Again, we replace this function by the
exact Green’s function. Neglecting the first term on the right-hand side
of Eq. (9), we can find QR(1)

εn (σp1, σ
′p′) explicitly. In summary, we

obtain an approximate solution in the form

QR
εn(σp1, σ

′p′) �
∑
σ2p2

{
(σ̂ · Ŝn)σσ2δp1p2 − J

N

∑
n′

e−i(p1−p2)·Rn′/�

× 1
ε − εp1

∑
σ1

[
(σ̂ · Ŝn)σσ1(σ̂ · Ŝn′)σ1σ2(1 − fp1) (10)
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+(σ̂ · Ŝn′)σ1σ2(σ̂ · Ŝn)σσ1fp1

]}
GR

ε (σ2p2, σ
′p′).

Substituting this result to the second term of the expression (4), we
notice the appearance of a double sum over the impurity coordinates,∑

nn′ e−i(p−p1)·Rn/�e−i(p1−p2)·Rn′/� . . . . Assuming that the positions of
different impurities are not correlated, we put n′ = n in this sum. This
means that we consider scattering of an electron by a single impurity
atom independently of the scattering by other atoms. Moreover, if the
spins of different impurity atoms are not correlated, only the terms with
n′ = n are essential for the effects studied in this section. To calculate
the sum over σ1 in Eq. (10) at n′ = n, we use the operator identities
(problem 13.19)

(σ̂ · Ŝn)(σ̂ · Ŝn) = S(S + 1) − (σ̂ · Ŝn),∑
αβ

σ̂ασ̂β ŜnβŜnα = S(S + 1) + (σ̂ · Ŝn) (11)

and find
∑

σ1
[(σ̂·Ŝn)σσ1(σ̂·Ŝn)σ1σ2(1−fp1)+(σ̂·Ŝn)σ1σ2(σ̂·Ŝn)σσ1fp1 ] =

S(S + 1)δσσ2 − (1 − 2fp1)(σ̂ · Ŝn)σσ2 . After some transformations, we
obtain

− J

N

∑
p1

∑
n

e−i(p−p1)·Rn/�QR
εn(σp1, σ

′p′)

� 1
V

∑
σ1p1

∑
n

e−i(p−p1)·Rn/�Aεn(σ, σ1)GR
ε (σ1p1, σ

′p′), (12)

where

Aεn(σ, σ1) = − J

N

{
(σ̂ · Ŝn)σσ1 [1 − J(2γε − γ(0)

ε )] − JS(S + 1)δσσ1γ
(0)
ε

}
,

(13)
and the factors γ(0) and γ are defined as

γ(0)
ε =

1
N

∑
p

1
ε − εp

, γε =
1
N

∑
p

fp

ε − εp
. (14)

Expressions (12)−(14) describe the spin-dependent interaction of elec-
trons with magnetic impurities in terms of its contribution into the scat-
tering amplitude,

∑
n e−i(p−p1)·Rn/�Aεn(σ, σ1). This scattering ampli-

tude depends on electron energy because of the terms proportional to
J2 in Aεn(σ, σ1). Let us analyze these J2-terms in more detail. They
are determined by the sums (14) and contain an extra factor Jn/εF N
with respect to the main term proportional to J , where n is the electron
density and εF is the Fermi energy. Should we keep the J2-terms under
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the condition Jn/εF N � 1? At first glance, it seems worth to retain the
terms proportional to γ(0)

ε , because they have a logarithmic divergence.
However, this divergence is caused by the approximation of short-range
spin-dependent interaction and can be formally removed by introducing
a cutoff momentum. In any case, it appears that the energy dependence
of γ(0)

ε in the region close to the Fermi energy εF is not essential and
can be neglected. On the other hand, the function γε diverges at ε = εF

if the temperature is zero (problem 13.20). Therefore, we should keep
the term containing γε rather than the terms containing γ(0)

ε , because of
the strong energy dependence of the former. Retaining only this par-
ticular term, we write the following expression for the total scattering
amplitude:

Uσσ′(p − p′) =
∑

n

e−i(p−p′)·Rn/�

×
[
δσσ′v(|p − p′|/�) − (σ̂)σσ′ · Ŝn

J

N (1 − 2Jγε)
]

. (15)

This scattering amplitude depends on spins of electrons. Moreover, it
is an operator with respect to spin states of impurity atoms. Below we
assume that the spins of different impurity atoms are not correlated so
that the average over the atomic spin can be carried out separately for
each atom. For this reason, we omit the index n at the atomic spin
operator Ŝ.

To derive the collision integral based upon the scattering amplitude
(15) in this case, one should merely repeat the derivation given in Secs.
7 and 8 by using the basis |σp〉 instead of the plane-wave basis |p〉. The
kinetic equation is written for the spin-dependent distribution functions
fσpt = 〈σp|ρ̂t|σp〉. Instead of Eq. (8.7), we obtain

∂fσpt

∂t
=

2π

�

nim

V

∑
σ′p′

vMM′
σσ′ (εp, q)vM′M

σ′σ (εp, q)δ(εp − εp′)(fσ′p′t − fσpt),

(16)
where q = |p − p′|/�. This equation describes evolution of the diagonal
components of the averaged density matrix. The non-diagonal compo-
nents, 〈σ1p|ρ̂t|σ2p〉, are zero if the initial distribution of electrons is diag-
onal in the spin index (problem 13.21). The matrix element vMM′

σσ′ (εp, q)
describes scattering of an electron by a single atom when the projection
of the atomic spin changes between M and M ′:

vMM′
σσ′ (ε, q) = δσσ′δMM′v(q) − (σ̂)σσ′ · (Ŝ)MM′

J

N [1 − 2Jγε]. (17)

The line in Eq. (16) denotes the average of the product of the matrix
elements over the projection of the localized spin. Before calculating
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this average, let us write this product by using Eq. (17):

vMM′
σσ′ (εp, q)vM′M

σ′σ (εp, q) = δσσ′δMM′ |v(q)|2+(σ̂)σσ′ ·(Ŝ)MM′(σ̂)σ′σ ·(Ŝ)M′M

× J2

N 2 [1 − 2Jγεp ]2 − 2v(q)
J

N [1 − 2Jγεp ]δσσ′δMM′(σ̂)σσ · (Ŝ)MM . (18)

Denoting, for brevity, the electron spin indices σ = ±1 as + and −, we
make use of the identities

(σ̂)++ · (Ŝ)MM′ = (Ŝz)MM′ = δMM′M,

(σ̂)−− · (Ŝ)MM′ = −(Ŝz)MM′ = −δMM′M, (19)

and

(σ̂)+− · (Ŝ)MM′ = (Ŝ−)MM′ = δM′,M+1

√
(S + M ′)(S − M ′ + 1),

(σ̂)−+ · (Ŝ)MM′ = (Ŝ+)MM′ = δM′,M−1

√
(S + M)(S − M + 1), (20)

where Ŝ± = Ŝx ± iŜy .
Taking into account that the localized spins are randomly oriented

(the magnetization of the crystal is zero), we find

(Ŝz)MM(Ŝz)MM = M2 = S(S + 1)/3,

(Ŝ+)M,M−1(Ŝ−)M−1,M = S2 + S − M2 + M = 2S(S + 1)/3, (21)

(Ŝ−)M,M+1(Ŝ+)M+1,M = S2 + S − M2 − M = 2S(S + 1)/3.

The average of the expression (18) is

vMM′
σσ′ (εp, q)vM′M

σ′σ (εp, q) = δσσ′
[
|v(q)|2 + (J/N )2(1 − 4Jγεp)S(S + 1)/3

]
+δσ,−σ′(J/N )2(1 − 4Jγεp)2S(S + 1)/3, (22)

where we have neglected the terms proportional to J4. Note that the
interference term proportional to v(q)J in Eq. (18) disappears after the
averaging over the impurity spins, because (Ŝz)MM = M = 0. As a
result, the contributions caused by the interaction Hamiltonians Ĥe,im

and δ̂He,im enter the kinetic equation as independent scattering mech-
anisms. Unless the electrons are spin-polarized by some external per-
turbation, there are no reasons to have different distribution functions
for different σ, and fσp = fp. We have already used this property in
Eq. (6). Therefore, the terms proportional to δσσ′ and δσ,−σ′ in Eq.
(22) can be combined together, according to

∑
σ′(δσσ′B1 + δσ,−σ′B2) =

(δσ,+1 + δσ,−1)(B1 + B2) = B1 + B2.
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Let us consider the response of the electron system to a stationary
and homogeneous electric field E. The stationary kinetic equation is

eE · ∂fp

∂p
= Jim(f |p) + δJim(f |p), (23)

where Jim(f |p) is the electron-impurity collision integral considered in
Sec. 8; see Eqs. (8.7) and (8.8). The other collision integral is caused
by the spin-dependent scattering:

δJim(f |p) =
2π

�

J2S(S + 1)nim

N 2V

∑
p′

(1−4Jγεp)δ(εp−εp′)(fp′−fp). (24)

Below we assume the isotropic dispersion law, εp = εp = p2/2m. The
conductivity characterizing the linear response of the electron system is
found in a straightforward way, according to Eq. (8.27) with

τtr(ε) = [νε + δνε]−1,

δνε = ν̃(1 − 4Jγε), ν̃ =
3πJ2S(S + 1)

2εF �

nnim

N 2 . (25)

To find the transport time τtr(ε), we have used Eq. (8.21), taking into
account that the density of electron states is expressed through the elec-
tron density n and Fermi energy εF as ρ3D(εF ) = (3/2)n/εF . In the
case of strongly degenerate electrons, the static conductivity is equal to
σ = e2n/m(νεF + ν̃) + δσ. The correction δσ is temperature-dependent:

δσ =
e2n

m

4Jν̃

(νεF + ν̃)2
m3/2

√
2π2�3N

∫ ∞

0
dε

∂fε

∂ε

∫ ∞

0
dε′√ε′ fε′

ε′ − ε
, (26)

where fε is the equilibrium Fermi distribution function. To estimate the
double integral in Eq. (26), we integrate over ε′ by parts:∫ ∞

0
dε′√ε′ fε′

ε′ − ε
= −

∫ ∞

0
dε′ ∂fε′

∂ε′

(
2
√

ε′ +
√

ε ln

∣∣∣∣∣
√

ε −
√

ε′
√

ε +
√

ε′

∣∣∣∣∣
)

. (27)

Substituting this transformation into Eq. (26), we obtain

δσ = −e2n2

mN
3Jν̃

εF (νεF + ν̃)2

×
(

2 +
∫ ∞

−∞
dx

∫ ∞

−∞
dx′ ln(|x − x′|T/4εF )

16 cosh2(x/2) cosh2(x′/2)

)
, (28)
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where x = (ε− εF )/T , and we have extended the lower limits of integra-
tion to −∞ because of εF � T . We finally may neglect all temperature-
independent terms in the expression (28) and write the resistivity ρ =
σ−1 in the form

ρ = ρ0 + ρ1

(
1 +

3Jn

εF N ln
T

εF

)
, (29)

where ρ0 = mνεF /e2n is the static resistivity obtained in Sec. 8 and
ρ1 = mν̃/e2n is the temperature-independent part of the correction to
this resistivity caused by the scattering by magnetic impurities. Equa-
tion (29) describes the temperature dependence of the resistivity for
the metals containing magnetic impurities. This unusual temperature
behavior is called the Kondo effect. The resistivity decreases with in-
creasing temperature if the sign of J is negative. If this sign is positive,
the resistivity increases with increasing temperature. Moreover, both
kinds of behavior are experimentally observed, though the first case,
corresponding to negative J , is met more often.

If the temperature is so small that the temperature-dependent cor-
rection becomes comparable to the main contribution to the resistivity,
the theory presented above is not valid. This characteristic temperature,
estimated as

TK ∼ εF exp
(

−εF N
3Jn

)
(30)

is called the Kondo temperature. To describe the conductivity in this
case, one should take into account not only the lowest-order term in the
expansion of the scattering amplitude, but a sum of all relevant terms.
Such a calculation requires a special diagram technique involving the
Green’s functions composed from atomic spin operators.

Problems
13.1. Using the two-band model, find the effective Hamiltonian of the

spin-orbit interaction for the conduction-band electrons in the presence
of a potential energy Ur.

Solution: The effective interaction term for the c-band electrons is determined by
the matrix elements of the potential energy Ur in the two-band model:

〈cp|Ur|cp′〉 = U(p−p′)/�〈c|ÛpÛ+
p′ |c〉 � U(p−p′)/�

[
1 +

(σ̂ · p)(σ̂ · p′)
(2ms)2

]
.

To obtain this equation, we have employed Eq. (B.24) and the expansion ηp �
1+(p/ms)2/2 valid near the extremum of the band. Using the identity (σ̂ ·p)(σ̂ ·p′) =
p ·p′ + iσ̂ · [p×p′], we can neglect the spin-independent contribution proportional to
p ·p′ because of a small parameter (p/2ms)2. Therefore, introducing q = (p−p′)/�,
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we write the Fourier transform of the effective potential as

Uq

[
1 − i�

σ̂ · [p × q]
2mεg

]
,

where εg = 2ms2. The second term in this expression is a 2×2 matrix with respect to
spin variables. Applying the inverse Fourier transformation according to Eq. (7.15),
we obtain this term in the coordinate representation:

�

2mεg
(σ̂ · [∇Ur × p]) .

Therefore, χ = 1/2 in Eq. (63.1) for the model under consideration.

13.2. Derive the quasi-classical matrix kinetic equation (63.8).
Hint: Take into account that the commutator of the Hamiltonian (63.1) with the

density matrix ρ̂t in the coordinate representation is equal to

−χi�2

mεg

{[
σ̂ × ∂Ur1

∂r1

]
· ∂ρ̂t(r1, r2)

∂r1
+

∂ρ̂t(r1, r2)
∂r2

·
[
σ̂ × ∂Ur2

∂r2

]}
and carry out the Wigner transformation f̂rpt =

∫
d∆re−ip·∆r/�ρ̂t(r + ∆r/2, r −

∆r/2).

13.3. Consider the spin-precession mechanism of spin relaxation in
non-centrosymmetric crystals.

Solution: The symmetry property of the equations of motion with respect to time
reversal allows the corrections of the third power in quasimomenta, ∝ σ̂αpβpγpδ, to
the effective-mass Hamiltonian of electrons in such crystals. In the isotropic approxi-
mation, these corrections give zero contribution, because the spectrum should depend
only on |p|. In the cubic crystals, there are three invariants,

σ̂xpx(p2
y − p2

z), σ̂ypy(p2
z − p2

x), σ̂zpz(p2
x − p2

y),

and the spin-dependent term of the Hamiltonian in the momentum representation
can be written as a scalar product �(σ̂ ·Ωp), where �Ωp = α(2m

√
2mεg)−1κp, κp =[

px(p2
y − p2

z), py(p2
z − p2

x), pz(p2
x − p2

y)
]
, and α is a dimensionless constant determining

the magnitude of the spin-orbit splitting. The distribution function f̂εt satisfies the
kinetic equation

∂f̂εt

∂t
+
∫

dΩ̃p

4πνε

[
(σ̂ · Ωp) ,

[
(σ̂ · Ωp) , f̂εt

]]
= 0

similar to Eq. (63.9). The angular average of κα
pκβ

p is equal to δαβ(4p6/105), and the
kinetic equation is reduced to

∂fεt

∂t
= − fεt

τsp(ε)
, τ−1

sp (ε) =
32
105

α2ε3

�2νεε2
g

.

Because of ε3 dependence of the spin relaxation rate τ−1
sp (ε), the efficiency of spin

relaxation rapidly increases with increasing electron energy.
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13.4. Calculate the absorption coefficient α(esr)
ω due to electron spin

resonance and compare it to the absorption coefficient due to combined
resonance.

Solution: The Hamiltonian of the perturbation causing the electron spin resonance
is written as −(gµB/2)σ̂ ·H1e

−iωt +H.c. , where H1 is the amplitude of the magnetic
field of the wave. According to the Maxwell equations, H1 =

√
ε[n × E], where E is

the electric field of the wave and n is the unit vector in the direction of propagation
of the wave. The Hamiltonian describing the perturbation due to electric field is
(ie/ω)v̂ · Ee−iωt + H.c. . Therefore, to calculate α(esr)

ω , one can use Eq. (10.23) and,
for example, Eq. (48.4), with a formal substitution v̂ ⇒ (iωgµB

√
ε/2e)[σ̂ × n]. In

the resonance approximation, we find (the non-parabolicity of the energy spectrum is
neglected and the spin splitting energy is introduced as �ΩH = |gµBH |)

α(esr)
ω =

(2πe)2

c
√

εωV

∑
pypz

f0,−1pz δγ (�ω − �ΩH)
ε(ωgµB)2

4e2 .

Comparing this to the result for α(cr)
ω given by Eq. (63.18), we find the ratio

α(esr)
ω /α(cr)

ω ∼ (εg2m/me)(εg/T )(εg/mec
2), where me is the free-electron mass, and

the kinetic energy p2
z/2m in Eq. (63.18) is estimated by the temperature T . This

ratio is small because the energy 2mec
2 is very large. In the two-band model, where

|g| = 2me/m, one has α(esr)
ω /α(cr)

ω ∼ ε(εg/T )(s/c)2.

13.5. Consider the origin of the spin-orbit term in the Hamiltonian
of 2D electrons.

Solution: Let us add an asymmetric confinement potential U (z) to Ucr(r) in the
Hamiltonian (5.4) and search for the wave function in the form ψ(x)φ(z)unσ(r), where
x is the 2D coordinate, unσ(r) is the Bloch amplitude, and φ(z) is the envelope func-
tion of electrons in the ground-state subband. Multiplying the Schroedinger equa-
tion by u∗

nσ(r)φ∗(z) from the left, and integrating it over the lattice cell volume
and over z, one can obtain a 2D Schroedinger equation for ψ(x), which contains a
spin-orbit term in the form (63.21). We stress that, in the effective mass approxima-
tion, φ(z) is the eigenfunction of the Hamiltonian p̂2

z/2m + U (z). As a consequence,∫
dz|φ(z)|2∇zU (z) = 0 for arbitrary U (z). This property can be checked by using the

integration by parts. For this reason, to obtain a non-zero spin-orbit term (63.21),
one should either assume that U (z) changes considerably on the scale of the lattice
constant or go beyond the effective mass approximation.

13.6. Find a suitable gauge to introduce the vector potential A de-
scribing the external magnetic field H in the two-dimensional Hamilto-
nian (63.22).

Solution: One can use the vector potential (Hyz, Hzx − Hxz, 0) in the three-
dimensional Hamiltonian. After transforming the 3D Schroedinger equation to the
2D one, the coordinate z is transformed to 〈1|z|1〉, where |1〉 is the ground eigenstate,
and should be considered as a coordinate of the weight center of the wave function of
this eigenstate. Since this coordinate can be set to zero, we finally obtain the effective
vector potential in the form of a 2D vector, A = (0, Hzx).
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13.7. Write the general solution of the vector equation ∂st/∂t+[ΩH ×
st] = −st/τs + gt. In the stationary case, find the absolute value of the
component s⊥ perpendicular to ΩH .

Results: If ΩH is directed along OZ ,

sx
t =

∫ t

−∞
dt′e−(t−t′)/τs

[
gx

t′ cosΩH(t − t′) + gy
t′ sinΩH(t − t′)

]
,

sy
t =

∫ t

−∞
dt′e−(t−t′)/τs

[
gy

t′ cosΩH(t − t′) − gx
t′ sinΩH(t − t′)

]
,

and sz
t =

∫ t

−∞ dt′e−(t−t′)/τsgz
t′ . In the case of a stationary excitation, sx = τs(gx +

gyΩHτs)/[1 + (ΩHτs)2] and sy = τs(gy − gxΩHτs)/[1 + (ΩHτs)2], and we obtain
|s⊥| = |g|τs/

√
1 + (ΩHτs)2 so that s⊥ is suppressed when ΩHτs  1.

13.8. Find the matrix of electrochemical potential in a half-space
(x > 0) if a homogeneous spin-polarized current Î = [I + ∆Iσ̂z ]/2 is
injected through the interface at x = 0.

Solution: The electrochemical potential depend only on x. Therefore, the solution
of Eq. (64.10) satisfying the requirement of finiteness of the gradients of wr = wx at
x → ∞ is wx = ce−x/ls . The Laplace equation for the scalar component is solved
as wx = w0 − (I/σ)x, where σ is the conductivity of the medium. The total current
through the interface, I = trσ Î , is conserved. The constant c is determined from
the boundary condition expressing current continuity under the assumption that no
spin flip occurs at the interface: trσσ̂Î = −σ(dwx/dx)x=0. As a result, we obtain
ŵx = w0 − (I/σ)x+ σ̂z(∆Ils/σ)e−x/ls . The spin polarization of the current decreases
inside the sample and vanishes at x  ls.

13.9. Using the Hamiltonian (63.22), derive the matrix kinetic equa-
tion (64.11) for the Wigner distribution function

f̂rpt =
∫

d∆r exp (−iPrt · ∆r/�) ρ̂t(r + ∆r/2, r − ∆r/2),

where Prt = p + (e/c)Art.
Solution: The consideration of the kinetic-energy contribution is done in the same

way as in Sec. 9. Let us consider the contribution of the spin-orbit term. Substituting
the spin-orbit part of the Hamiltonian (63.22) into the integral term of Eq. (9.2), we
transform this term to

i

�

{
[vs × σ̂](−i�∇x1 − e

c
Ax1t)ρ̂(x1,x2) − (i�∇x2 − e

c
Ax2t)ρ̂(x1,x2)[vs × σ̂]

}
.

Using the new coordinates r = (x1 +x2)/2 and ∆r = x1 −x2, we expand the compo-
nents of the vector potential as Aα

x1,2t � Aα
rt ± (∂Aα

rt/∂r) · ∆r/2. Writing the spatial
derivatives according to Eq. (9.9), one can see that the terms proportional to ∂ρ/∂∆r
and ∂ρ/∂r contribute to commutators and anticommutators, respectively. After mul-
tiplying the term transformed in this way by exp (−iPrt · ∆r/�), we integrate it over
∆r and obtain

i

�
[p · [vs × σ̂], f̂rpt] +

1
2

[
[vs × σ̂],

∂f̂rpt

∂r

]
+

+
e

2c

[
[[vs × σ̂] × [∇r × Art]] ,

∂f̂rpt

∂p

]
+

,
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which is the spin-orbit contribution standing in Eq. (64.11).

13.10. Calculate the collision-integral contributions in Eqs. (64.18)
and (64.19).

Solution: To find the collision integral Ĵ(f̂ |rpt), let us use Eq. (8.3) in the mo-
mentum representation and take into account the matrix nature of the problem by
replacing 〈p|ĥ|p〉 and 〈p|ρ̂t|p〉 by ĥp = p2/2m + vs · [σ̂ × p] − �ΩH · σ̂/2 and f̂rpt,
respectively. In the Markovian approximation,

Ĵ(f̂ |rpt) =
nim

�2L2

∑
p′

|v(|p − p′|/�)|2
∫ 0

−∞
dτeλτ

×
[
eiĥpτ/�(f̂rp′t − f̂rpt)e−iĥp′ τ/� + eiĥp′ τ/�(f̂rp′t − f̂rpt)e−iĥpτ/�

]
.

To transform the matrix exponents containing the Pauli matrices, one should use the
exact relation (H.28). To simplify calculation of the integrals over momenta, one may
assume the case of short-range scattering potential, v(|p − p′|/�) � v(0) = v. After
lengthy but straightforward calculations, one finds that the collision-integral contri-
butions in Eqs. (64.18) and (64.19) are reduced to −νiβrt and −νqαβ

rt if the terms
proportional to mv2

s/ε and (�ΩH/2ε)2 are neglected. The momentum relaxation rate
ν is given by Eq. (8.21).

13.11. Calculate the spin density appearing in the 2D system with a
stationary electric current.

Solution: The stationary kinetic equation for the matrix distribution function
f̂p + δ̂fp is obtained from Eq. (64.11) written in the absence of magnetic fields and
spatial gradients. The linearized kinetic equation is

i

�

[
vs · [σ̂ × p], δ̂fp

]
+ eE · ∂f̂p

∂p
= Ĵ(δ̂f |p),

where E is the in-plane electric field, the equilibrium distribution function f̂p is given
by Eq. (63.24), and the collision integral is given in problem 13.10 (one should replace
f̂rpt by δ̂fp and put ĥp = p2/2m+vs ·[σ̂×p] since there is no magnetic field). Keeping
the terms of the order mvs/p (and neglecting the terms of higher order) in the collision
integral, we can write the linearized matrix kinetic equation as a set of equations for
the scalar and vector parts of the matrix distribution function:

eE · ∂fp

∂p
=

2πnim|v|2
�V

∑
p′

[
(δfp′ − δfp)δ(εp − εp′)

+
∑
αβ

eαβzvs(pβ − p′
β)(δfα

p′ − δfα
p )δ′(εp − εp′)

]
,

2vs

�
[pαδfz

p − δαz(pxδfx
p + pyδfy

p)] + eE · ∂fα
p

∂p
=

2πnim|v|2
�V

×
∑
p′

[
(δfα

p′ − δfα
p )δ(εp − εp′) +

∑
β

eαβzvs(pβ − p′
β)(δfp′ − δfp)δ′(εp − εp′)

]
,



Multi-Channel Kinetics 659

where εp = p2/2m. We have formally introduced the derivative δ′(x) = dδ(x)/dx. In
the first equation, the correction ∝ vs to the collision integral can be neglected, while
in the second one such a correction should be kept, because the field term containing
fα
p is also proportional to vs. Excluding the scalar part of the distribution function,
we get the following equation for the vector part:

2vs

�

[
pαδfz

p − δαz(pxδfx
p + pyδfy

p)
]
+ e

∑
βγ

Eβvseαγz

(pβpγ

m
− δβγεp

) ∂2

∂ε2
p

f(εp)

=
2πnim|v|2

�V

∑
p′

(δfα
p′ − δfα

p )δ(εp − εp′),

where f(εp) is the equilibrium distribution function. Solving this equation, we find
the vector part of the distribution function:

δfp = − e

mν
(E · p)[p × vs]

∂2f(εp)
∂ε2

p

,

where the momentum relaxation rate ν is given by Eq. (8.21). Note that, since this
solution is symmetric in p, the first term on the left-hand side of the kinetic equation
can be left out. Finally, the spin density is s = L−2∑

p trσσ̂δ̂fp = (2/L2)
∑

p δfp =
e[vs ×E]ρ2D/ν. The spin polarization is perpendicular to the direction of the current
determined by the applied field.

13.12. Find the components f l, fr , fx, and fy of the electron distri-
bution function in the coupled quantum wells in thermodynamic equi-
librium.

Solution: The equilibrium matrix distribution function is f̂p = {exp[(ĥp −µ)/T ] +
1}−1. It is convenient to express its elements by using the representation of exact
(hybridized) states |+〉 and |−〉. The distribution function is diagonal in this repre-
sentation: f (±)

p = {exp[(εp ±∆T /2−µ)/T ]+1}−1 and f (+−)
p = f (−+)

p = 0. Expressing
the states |l〉 and |r〉 in the basis |+〉 and |−〉, we find

f l
p = [f (+)

p + f (−)
p ]/2 + [f (+)

p − f (−)
p ](∆/2∆T ),

f r
p = [f (+)

p + f (−)
p ]/2 − [f (+)

p − f (−)
p ](∆/2∆T ),

fx
p = (tlr/∆)(f l

p − f r
p ), and fy

p = 0.

13.13. Find a criterion for negative magnetoresistance by using Eq.
(65.28).

Result: The derivative dρd/dωc at ωc → 0 is negative at 1 + δ2 < ΩT

√
Ω2

T + 4.

13.14. Prove that the sum of the contributions of the processes j =
c, j′ = c ↔ j1 = v, j′

1 = c and j = c, j′ = v ↔ j1 = c, j′
1 = c is zero.

Hint: Carry out the permutations p ↔ p′
1 and p′ ↔ p1, and use the symmetry

property V (jp j′p′|j1p1 j′
1p

′
1) = V (j′

1p1 j1p1|j′p′ jp) following from the symmetry
of the matrix elements (31.20).
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13.15. Consider the overlap factors ϕjσ,j′σ′(p,p′) for the two-band
model described in Appendix B. Calculate the expressions∑

σσ′
|ϕcσ,cσ′(p,p′)|2 and

∑
σσ′

|ϕcσ,vσ′(p,p′)|2.

Solution: The overlap factor ϕjσ,j′σ′(p,p′) for the two-band model is equal to the
matrix element 〈jσ| . . . |j′σ′〉 of the product ÛpÛ+

p′ given by Eq. (B.24). Thus, the
first two terms in the braces of Eq. (B.24) describe intraband transitions, while the
third term, proportional to ρ̂2, describes interband transitions. Taking the sums over
spin variables, we find that the first required expression is

(ηp + 1)(ηp′ + 1)
2ηpηp′

{[
1 +

(
ηp − 1
ηp + 1

ηp′ − 1
ηp′ + 1

)1/2 p · p′

pp′

]2

+
ηp − 1
ηp + 1

ηp′ − 1
ηp′ + 1

[p × p′]2

(pp′)2

}

and the second one is

(ηp + 1)(ηp′ + 1)
2ηpηp′

{
ηp − 1
ηp + 1

+
ηp′ − 1
ηp′ + 1

− 2
(

ηp − 1
ηp + 1

ηp′ − 1
ηp′ + 1

)1/2 p · p′

pp′

}
.

13.16. Prove that for the two-band model described in Appendix B
the Auger transitions are forbidden at M → ∞.

Solution: To write the energy conservation law (for example, for Ac processes), we
introduce new variables: P = (p+p′)/2, ∆P = (p−p′)/2, and P1 = p1 − (p+p′)/2
so that p′

1 = P1 − (p + p′)/2. The conservation law becomes:√
(ms)2 + (P + ∆P)2 +

√
(ms)2 + (P − ∆P)2

=
√

(ms)2 + (P + P1)2 −
√

(ms)2 + (P − P1)2.

If one calculates the squares of the left- and right-hand sides of this equation and
repeats the procedure for the equation obtained to eliminate the square roots, one
can find that the equation expressing the energy conservation law has no solutions.

13.17. Write the density balance equation (66.23) with the accuracy
including the terms ∝ u2.

Hint: Expand the terms containing u in Eq. (66.25) in powers of u.

13.18. Consider the Anderson Hamiltonian which describes the in-
teraction of free electrons with the electrons localized in a single atomic
orbital. Derive the interaction term (67.2) by considering the interaction
as a perturbation.

Solution: The Anderson Hamiltonian has the following form:

Ĥ =
∑
σp

εpâ+
σpâσp +

∑
σ

εdd̂+
σ d̂σ + Ud̂+

+1d̂+1d̂
+
−1d̂−1

+
∑
σp

(
Vpâ+

σpd̂σ + V ∗
p d̂+

σ âσp

)
,
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where d̂+
σ and d̂σ are the creation and annihilation operators of localized electrons,

εd is the energy of these electrons, U is the Coulomb repulsion energy between the
electrons with opposite spins localized in the same orbital of the impurity atom, and
Vp is the energy describing the interaction of free and localized electrons. Let us carry

out the unitary transformation Ĥ = eŜĤe−Ŝ , where

Ŝ =
∑
σp

∑
δ=±

Vp

εp − εα
n(α)

d,−σâ+
σpd̂σ − H.c. ,

ε+ = εd +U , ε− = εd, n(+)
d,−σ = d̂+

−σ d̂−σ, and n(−)
d,−σ = 1− d̂+

−σ d̂−σ. In the general case,
the transformed Hamiltonian is complicated. The problem is simplified if we consider
the last term in the Anderson Hamiltonian as a perturbation (we denote this term as
Ĥ1). Using the Born approximation, we retain only the terms of the second order in

Vp. Then the transformation gives us the Hamiltonian Ĥ = Ĥ0 + Ĥ2, where Ĥ0 is
the sum of the first three terms of the Anderson Hamiltonian, while

Ĥ2 =
1
2
[Ŝ, Ĥ1] = Ĥex + Ĥdir + Ĥ ′

0 + Ĥch.

In this expression,

Ĥex = −1
2

∑
pp′

Jp′p
∑
σσ′

â+
σ′p′(σ̂)σ′σâσp ·

∑
σdσ′

d

d̂+
σ′

d
(σ̂)σ′

d
σd

d̂σd

is the spin-dependent (exchange) contribution to electron-impurity interaction,

Ĥdir =
∑
pp′

⎛⎝Wp′p +
1
2
Jp′p

∑
σd

d̂+
σd

d̂σd

⎞⎠∑
σ

â+
σp′ âσp

is the spin-independent (direct) contribution to electron-impurity interaction, where

Jp′p =
1
2
Vp′V ∗

p [(εp − ε+)−1 + (εp′ − ε+)−1 − (εp − ε−)−1 − (εp′ − ε−)−1]

and
Wp′p =

1
2
Vp′V ∗

p [(εp − ε−)−1 + (εp′ − ε−)−1].

Next,
Ĥ ′

0 = −
∑
σp

(
Wpp + Jppd̂+

−σ d̂−σ

)
d̂+

σ d̂σ

and
Ĥch =

1
2

∑
σpp′

Jp′p â+
−σp′ â

+
σpd̂σ d̂−σ + H.c.

The part Ĥ ′
0 can be appended to Ĥ0 by proper renormalization of the energies

ε+ and ε−. The contribution Ĥch changes the number of localized electrons by
two and, therefore, should be neglected. Therefore, only Ĥex and Ĥdir are essen-
tial. The latter is analogous to the spin-independent electron-impurity interaction
considered in Chapter 2, while the former is analogous to the Hamiltonian (67.2)
with S = 1/2. Indeed, let us take into account that Ψ̂σr = V −1/2∑

p eip·r/�âσp

and (1/2)
∑

σdσ′
d

d̂+
σ′

d
(σ̂)σ′

d
σd

d̂σd = Ŝn. If we define the matrix elements Jp′p as
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Jp′p = V −1 ∫ drJ(r−Rn) exp [−i(p′ − p) · r/�] and sum Ĥex over the impurity num-
ber n, we obtain δ̂He,im of Eq. (67.2).

13.19. Prove the operator identities (67.11).
Hint: Consider the matrix elements of the operators on the left- and right-hand

sides of these identities.

13.20. Calculate the factor γε given by Eq. (67.14) in the isotropic
approximation (εp = p2/2m) at T = 0.

Result:

γε = − 3z

2εF

(
1 +

√
ε

4εF

ln
∣∣∣∣√ε − √

εF√
ε +

√
εF

∣∣∣∣) ,

where z = n/N is the ratio of the electron density to the host atom density.

13.21. Prove that the scattering of electrons by magnetic impurities
does not mix the non-diagonal in the spin index components of the
averaged density matrix with the diagonal ones.

Solution: The kinetic equation for the non-diagonal components ρσ1σ2(p, t) =
〈σ1p|ρ̂t|σ2p〉 is derived in a similar way as Eq. (67.16) (consider a generalization
of the collision integral (7.14) when the scattering amplitude (67.15) is taken into
account) and, in the Markovian approximation, has the following form:

∂ρσ1σ2(p, t)
∂t

=
π

�

nim

V

∑
p′

∑
σσ′

{
2vMM′

σ1σ (εp, q)vM′M
σ′σ2

(εp, q)ρσσ′(p′, t)

−
[
vMM′

σσ′ (εp, q)vM′M
σ′σ2

(εp, q)ρσ1σ(p, t) + vMM′
σ1σ (εp, q)vM′M

σσ′ (εp, q)ρσ′σ2(p, t)
]}

×δ(εp − εp′),

where the matrix elements are given by Eq. (67.17). Calculating the averages as
described in Eqs. (67.18)−(67.21), one can prove that vMM′

σσ′ (εp, q)vM′M
σ′σ2

(εp, q) ∝ δσσ2

and that vMM′
σ1σ (εp, q)vM′M

σ′σ2
(εp, q) is proportional to δσ1σ2 only if σ = σ′ (if σ �= σ′,

this average is non-zero only for σ1 �= σ2). In conclusion, the kinetic equation written
above does not couple diagonal and non-diagonal components of the density matrix.
If the initial distribution of electrons is diagonal in the spin index, it remains diagonal
in the presence of the scattering by magnetic impurities.



Chapter 14

FLUCTUATIONS

Each system is characterized by a number of physical quantities, which are often
described by their mean values obtained as a result of the averaging of the operators
of these quantities according to Eq. (1.18). Such a description is of the main interest
in physics, because these mean values are the observable values. Nevertheless, one can
obtain a more detailed information about the system, taking into account that the
physical quantities defined at a given moment of time or/and in a given spatial point
deviate from their mean values. The behavior of these deviations with time or from
one small volume to another allows one to consider them as fluctuations of the physical
quantities around their mean values. A detailed theoretical description of the evolu-
tion of the physical quantities fluctuating with time is not possible because, even if we
take into account all interactions, we still do not have initial conditions. Fortunately,
such a description is not necessary, since the physical measurements cannot follow
this evolution. Instead of the detailed description of the fluctuating quantities, one
can characterize them by correlation functions, which have direct physical meaning
(for example, the noise in physical systems) and can be investigated experimentally.
In this chapter we define the correlation functions of the fluctuations of physical
quantities, derive a relation between these functions and generalized susceptibilities
in thermodynamic equilibrium, and consider the kinetic equations for fluctuations,
which can be applied for calculating the correlation functions of non-equilibrium sys-
tems. Then we describe the light scattering due to fluctuations of electron and phonon
systems in solids and discuss the current and conductance fluctuations in mesoscopic
systems. Finally, we demonstrate how to calculate the correlation functions by using
the methods of non-equilibrium diagram technique. Since we do not consider the sys-
tems undergoing phase transitions, only the fluctuations whose amplitudes are small
in comparison to the mean values are studied below.

663
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68. Non-Equilibrium Fluctuations
Consider a quantity Qt which behaves classically and undergo small

variations with time, fluctuating around its mean value Q. To have
an example of such fluctuations, one can imagine a classical system of
particles and count the number of particles NV in a given volume V
inside of the system. This number changes with time, though the relative
change decreases with increasing V , and the average over time (or over
many identical volumes inside of the system) gives us the averaged value
NV which is related to the particle density, n = NV /V . Of course, if
we consider a closed system, the total number of particles and the total
energy of the system do not change with time. In practice, however,
completely isolated systems do not exist. For example, the electrons in
solids interact with phonons, and the physical quantities characterizing
the system of electrons (the energy of electrons, the electric current, etc.)
inevitably fluctuate.

There exists a correlation between the values of Qt at different in-
stants. This means that the value of Q at a given instant t affects
the probabilities of its various values at a later instant t′. One can
characterize this correlation by composing the product ∆Qt′∆Qt, where
∆Qt = Qt − Q is the deviation from the mean value, and average this
product over all possible values (realizations) of the quantity Q at the
instants t and t′. The result of this averaging depends only on the differ-
ence t′ − t provided that the system is in a stationary state. Therefore,
we introduce the correlation function as

Φ(t′ − t) = 〈〈∆Qt′∆Qt〉〉. (1)

It is worth mentioning that the statistical averaging in Eq. (1) is equiv-
alent to the averaging over time t (or t′) when the difference t′ − t is kept
constant: Φ(∆t) = limτ→∞ τ−1 ∫ τ

0 dtQt+∆tQt.
To generalize the definition (1) to the case of quantum variables, we

replace the function Qt by its operator Q̂(t) in the Heisenberg represen-
tation; see Eq. (D.1). For convenience, we consider the symmetrized
product of these operators. The correlation function is defined as

Φ(t′ − t) =
1
2
〈〈∆̂Q(t′)∆̂Q(t) + ∆̂Q(t)∆̂Q(t′)〉〉

≡ 1
2
Sp{η̂[∆̂Q(t′), ∆̂Q(t)]+}. (2)

We remind that the statistical operator η̂ is independent of time in
the Heisenberg representation (see Appendix D), and the dependence
of Φ(t′ − t) on time enters through the operators ∆̂Q. The symmetry of
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the correlation function with respect to time reversal, Φ(∆t) = Φ(−∆t),
is obvious from the definition (2). The correlation function Φ(0) ex-
presses the mean square of the fluctuations (variance), which is denoted
also as (∆Q)2. Since ∆Q = 0, one can write Φ(0) ≡ (∆Q)2 = Q2 − (Q)2

(problem 14.1). To introduce correlation functions of different quantities
(for example, electric current and electric field, or different components
of electric current), we denote the operators of these quantities as Q̂i

and define the correlation function as

Φij(t′ − t) =
1
2
〈〈∆̂Qi(t

′)∆̂Qj(t) + ∆̂Qj(t)∆̂Qi(t
′)〉〉. (3)

This equation is a generalization of Eq. (2). The subscripts i and j
should be considered as multi-indices including the index of the physical
quantity itself (current, density, field, etc.) as well as the index of both
discrete and continuous (for example, macroscopic coordinate) variables
on which this quantity depends. It is seen directly from Eq. (3) that
Φij(∆t) = Φji(−∆t). To study temporal dependence of the correla-
tion function (3), it is often convenient to consider its spectral (Fourier)
representation

Φij(ω) =
∫ ∞

−∞
d∆teiω∆tΦij(∆t), (4)

which has the symmetry property Φij(ω) = Φji(−ω).
In the case of thermodynamic equilibrium, the statistical operator is

determined by the temperature T and by the Hamiltonian of the system.
Let us show that in this case there exists a simple expression relating
Φij(ω) to the generalized susceptibility of the system with respect to the
variable Q. Assuming that the mean values of Qi and Qj are zeros so
that ∆̂Qi(t) = Q̂i(t), we use Eqs. (D.2), (D.3), (D.7), and (D.11) with
Â = Q̂i and B̂ = Q̂j . The correlation function is represented as

Φij(ω) =
1
2

coth
�ω

2T

∫
dteiωt〈〈Q̂i(t)Q̂j(0) − Q̂j(0)Q̂i(t)〉〉. (5)

Using the second quantization representation of the operators, Q̂i =∑
δδ′〈δ|q̂i|δ′〉â+

δ âδ′ , we assume that the ket-vectors |δ〉 are the exact
eigenstates and employ Eq. (D.16) in order to calculate the correlation
functions. The commutators of the pairs of creation and annihilation
operators are reduced to products of one creation and one annihilation
operators, and we obtain

〈〈Q̂i(t)Q̂j(0) − Q̂j(0)Q̂i(t)〉〉

= 2
∑
δδ′

ei(εδ−εδ′ )t/�〈δ|q̂i|δ′〉〈δ′|q̂j |δ〉[f(εδ) − f(εδ′)], (6)
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where f(εδ) = Sp{η̂â+
δ âδ} is the one-particle distribution function in

equilibrium. The sum over spin variables is taken out of the sum over δ
and δ′ and gives the factor of 2 in Eq. (6). Calculating the integral over
time in Eq. (5), we finally obtain

Φij(ω) = 2π� coth
�ω

2T

∑
δδ′

〈δ|q̂i|δ′〉〈δ′|q̂j |δ〉

×δ(εδ − εδ′ + �ω)[f(εδ) − f(εδ′)]. (7)

The symmetry properties Φij(ω) = Φji(−ω) = Φ∗
ji(ω) are seen directly

from this expression. The symmetry of the equations of motion with
respect to time reversal, if the sign of the magnetic field H is changed
simultaneously, imposes the symmetry property

Φij(ω) = Φji(ω)|H→−H , (8)

which is related to Onsager’s symmetry of linear kinetic coefficients dis-
cussed in Sec. 13.

Substituting the operators of electric current density, Îα(r) and Îβ(r′),
in place of q̂i and q̂j , one may compare the result (7) to the expression
(13.10), writing the trace in the latter in the exact eigenstate represen-
tation. We find

1
2
[
Sαβ(r, r′|ω) + Sβα(r′, r|ω)

]
= �ω coth

�ω

2T
Re σ(s)

αβ(r, r′|ω), (9)

Sαβ(r, r′|ω) ≡ 1
2
〈〈Îα(r, t)Îβ(r′, 0) + Îβ(r′, 0)Îα(r, t)〉〉ω ,

where σ(s)
αβ(r, r′|ω) ≡ [σαβ(r, r′|ω)+σβα(r′, r|ω)]/2 is the symmetric part

of the conductivity tensor and 〈〈. . .〉〉ω ≡
∫

dteiωt〈〈. . .〉〉 defines the tem-
poral Fourier transform of the correlation function 〈〈. . .〉〉. The current-
current correlation function Sαβ(r, r′|ω) is called the noise power (prob-
lem 14.2). In a spatially homogeneous system, where σαβ(r, r′|ω) =
σαβ(r − r′|ω), this correlation function depends only on the differen-
tial coordinate r − r′. The equilibrium fluctuations of low frequency,
ω � T/�, are classical. Indeed, the factor �ω coth(�ω/2T ) in this case
is reduced to 2T , and the Planck constant no longer enters the equation.
In addition to the above example of the current-current correlation func-
tions, one can consider a more general case. Comparing Eq. (7) to the
expression (13.31) describing the symmetric part of the generalized sus-
ceptibility, we find that

Φ(s)
ij (ω) = −� coth

�ω

2T
Imχ(s)

ij (ω), (10)
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where the left-hand side contains the symmetric part of the correla-
tion function (7). This simple equation is known as the fluctuation-
dissipation theorem. A particular case of it is given by Eq. (9) (because
of the factor of i standing in the relation (13.6) between the perturbation
Hamiltonian and the current, the correlation function of the fluctuations
is proportional to the real part of the conductivity). Using Eq. (10),
one can study, for example, the equilibrium fluctuations of the density
of electron gas (problem 14.3).

To study fluctuations in non-equilibrium conditions, one cannot use
the approach described above. Instead, one should take into account
the characteristic features of the system under consideration: energy
spectrum, interactions, etc. Similar as in Eqs. (6) and (7), we assume
that the operators Q̂i of the fluctuating quantities Qi are additive, i.e.,
representable through the products of one creation and one annihilation
operators, as in Eq. (4.23). Therefore, to find the correlation function
(3), one has to average a product of four (two creation and two annihila-
tion) operators. This product can be found from the equation of motion
for Heisenberg operators (see Appendix D):

d

dt
Â(t) =

i

�
[Ĥ, Â(t)], (11)

where Ĥ is the Hamiltonian of the system and Â is an arbitrary oper-
ator in the Heisenberg representation. Let us choose this operator as a
product of the Heisenberg creation and annihilation operators taken at
the same instant t. Consider, for example, the electron-boson system de-
scribed by the Hamiltonian (19.1). We assume that the electrons occupy
a single band with an isotropic parabolic energy spectrum in a macro-
scopically homogeneous crystal and are characterized by the momentum
p. These electrons interact with a single phonon mode characterized by
the wave vector q. Therefore, the Hamiltonian under consideration is
written as

Ĥ =
∑
p

εpâ+
p âp+

∑
q

�ωq

(
b̂+
q b̂q +

1
2

)
+
∑
pq

Cqâ
+
p+�qâp(b̂q+b̂+

−q), (12)

where the matrix element of electron-phonon interaction, Cq , is assumed
to be real. For the deformation-potential interaction of electrons with
LA phonons or Froelich interaction with LO phonons, this coefficient is
given by Eq. (21.1). Strictly speaking, the creation and annihilation op-
erators of electrons should bear spin indices σ, and the sums over these
indices in the first and third terms of the Hamiltonian (12) are implied.
However, since below we study the equations for the operator products



668 QUANTUM KINETIC THEORY

with coinciding spin indices and do not consider spin-dependent inter-
actions, these indices are omitted. Substituting â+

p′(t)âp(t) ≡
{

â+
p′ âp

}
t

in place of Â(t) in Eq. (11) with the Hamiltonian (12), we obtain the
equation[

d

dt
+

i

�
(εp − εp′)

]
â+
p′ âp = − i

�

∑
q

Cq(b̂q + b̂+
−q)(â+

p′ âp−�q − â+
p′+�qâp),

(13)
where the coinciding time arguments of the operators are omitted for
brevity. Its right-hand side contains the products of three operators: one
bosonic and two fermionic. The equations of motion for these operator
products are[

d

dt
− i

�
∆±(p1,p2)

]
Â±(p1,p2) = F̂±(p1,p2), (14)

where Â−(p1,p2) = b̂qâ+
p1

âp2 , Â+(p1,p2) = b̂+
−qâ+

p1
âp2 , and ∆±(p1,p2)

= εp1 − εp2 ± �ωq. The expression for F̂+ and F̂− standing on the
right-hand side of Eq. (14) is written as∣∣∣∣ F̂+(p1,p2)

F−(p1,p2)

∣∣∣∣ = ± i

�
Cqâ

+
p1

âp2

∑
p′

â+
p′−�qâp′ (15)

− i

�

∑
q′

Cq′(b̂q′ + b̂+
−q′)

∣∣∣∣∣ b̂+
−q

b̂q

∣∣∣∣∣ (â+
p1

âp2−�q′ − â+
p1+�q′ âp2

)
,

Omitting, for brevity, the arguments of ∆, Â, and F̂ , we write the general
solution of Eq. (14) as

Â±(t) = ei∆±(t−t0)/�Â±(t0) +
∫ t

t0

dt′ei∆±(t−t′)/�F̂±(t′), (16)

where t0 is an arbitrary time. The first term on the right-hand side of
this expression describes the influence of the initial conditions (at t = t0)
on the evolution of the three-operator products denoted here by Â±. The
second term, which is linear in the electron-phonon interaction, describes
the influence of the scattering on this evolution. After substituting the
solution (16) into Eq. (13), one can see that this term leads to the
contributions quadratic in the interaction.

According to the above consideration, we rewrite the operator equa-
tion (13) as(

d

dt
+ ivp · k

){
â+
p− �k

2
âp+ �k

2

}
t

= K̂t(p,k) + M̂t(p,k), (17)
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where vp = p/m is the electron velocity. We have done the substitu-
tions p′ → p − �k/2 and p → p + �k/2. The operators K̂t(p,k) and
M̂t(p,k) denote all the contributions coming, respectively, from the first
and second terms on the right-hand side of Eq. (16). Let us neglect the
term M̂t(p,k), since it is quadratic in the electron-phonon interaction,
while the term K̂t(p,k) is linear in this interaction. This neglect is jus-
tified if |ω −vp ·k|, where ω is the frequency of the Fourier transform of
{â+

p−�k/2âp+�k/2}t, is large in comparison to the electron-phonon scat-
tering rate. Equation (17) can be solved in the form (16). Introducing
the temporal Fourier transform K̂ω(p,k) of the operator K̂t(p,k), we
present the solution as{

â+
p− �k

2
âp+ �k

2

}
t

= K̂0
t (p,k)+

∫
dω

2π
e−iωt iK̂ω(p,k)

ω − vp · k [1−ei(ω−vp·k)(t−t1)],

(18)
where

K̂0
t (p,k) =

{
â+
p− �k

2
âp+ �k

2

}
t1

e−ivp·k(t−t1). (19)

As follows from Eqs. (13) and (16),

K̂ω(p,k) = −2πieiωt0
∑
q

Cq (20)

×
[{

b̂qâ+
p− �k

2
âp+ �k

2 −�q

}
t0

δ
(
εp− �k

2
− εp+ �k

2 −�q − �ωq + �ω
)

+
{

b̂+
−qâ+

p− �k
2

âp+ �k
2 −�q

}
t0

δ
(
εp− �k

2
− εp+ �k

2 −�q + �ωq + �ω
)

−
{

b̂qâ+
p− �k

2 +�q
âp+ �k

2

}
t0

δ
(
εp− �k

2 +�q − εp+ �k
2 −�ωq

+ �ω
)

−
{

b̂+
−qâ+

p− �k
2 +�q

âp+ �k
2

}
t0

δ
(
εp− �k

2 +�q − εp+ �k
2

+ �ωq + �ω
)]

.

We point out that the expression under the integral in Eq. (18) does
not diverge at ω = vp · k because of the presence of the expression in
the square brackets which goes to zero in these conditions. Nevertheless,
since we assume that the main contribution to the integral comes from
the region where |ω − vp · k| is large in comparison to the electron-
phonon scattering rate, one should neglect the contribution of the second
term in these square brackets. This contribution has the same temporal
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dependence (∝ e−ivp·kt) as the collisionless term K̂0, but also contains
the smallness associated with weak electron-phonon coupling.

The operators (19) and (20) are called the Langevin sources. The first
of them describes a collisionless (dynamical) evolution of the pair prod-
uct of fermionic operators. The second one describes the influence of the
electron-phonon scattering on this evolution. Below we are interested
in the functions of the kind 〈〈{â+

p−�k/2âp+�k/2}t{â+
p′−�k′/2âp′+�k′/2}t′〉〉,

which are determined by the correlation functions of the operators (19)
and (20). As already mentioned, the operators â and â+ bear spin
indices, which are not written explicitly since we consider the products
â+
p−�k/2âp+�k/2 of the operators with coinciding spin indices. In a similar

way, the four-operator correlation function written above and the corre-
lation functions of the Langevin sources (19) and (20) (see Eqs. (22) and
(23) below) are considered for the case of coinciding spin indices (for this
reason we also omit the spin indices at the Langevin sources). The tem-
poral dependence of K̂0

t (p,k) and the frequency dependence of K̂ω(p,k)
are determined by the initial moments of time, t1 and t0, respectively,
which can be chosen in an arbitrary way. However, under the assump-
tion of weak interaction, the correlation functions 〈〈K̂0

t (p,k)K̂0
t′(p

′,k′)〉〉
and 〈〈K̂ω(p,k)K̂ω′(p′,k′)〉〉 become independent of t1 and t0, because
they are proportional to δk,−k′δp,p′ and δ(ω + ω′), respectively. Indeed,
since we have already taken into account the terms of the lowest order in
the electron-phonon interaction (note that the product of two Langevin
sources K̂ω(p,k) is quadratic in the interaction), we can calculate these
correlation functions by averaging over the states of non-interacting sys-
tem. Using the temporal dependence of the creation and annihilation
operators of free quasiparticles, see Eq. (D.16), we have, for example,〈〈{

b̂qâ+
p− �k

2
âp+ �k

2 −�q

}
t0

{
b̂+
−q′ â

+
p′− �k′

2

âp′+ �k′
2 −�q′

}
t0

〉〉

� δq,−q′δk,−k′δp′,p−�q′(Nq + 1)fp− �k
2

(
1 − fp+ �k

2 −�q

)
, (21)

where Nq and fp are the distribution functions of phonons and electrons,
respectively.

Considering the other relevant terms in a similar way, we obtain the
expressions

〈〈K̂0
t (p,k)K̂0

t′(p
′,k′)〉〉 = δk,−k′δp,p′fp− �k

2

(
1 − fp+ �k

2

)
e−ivp·k(t−t′)

(22)
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and

〈〈K̂ω(p,k)K̂ω′(p′,k′)〉〉 =
(2π)2

�
δ(ω + ω′)δk,−k′

∑
q

|Cq |2

×(δp′,p − δp′,p−�q)
[
δ
(
εp− �k

2
− εp+ �k

2 −�q − �ωq + �ω
)

×(Nq + 1)fp− �k
2

(
1 − fp+ �k

2 −�q

)
+ δ

(
εp− �k

2 −�q

−εp+ �k
2

− �ωq + �ω
)

(N−q + 1)fp− �k
2 −�q

(
1 − fp+ �k

2

)
(23)

+δ
(
εp− �k

2
− εp+ �k

2 −�q + �ωq + �ω
)

N−qfp− �k
2

(
1 − fp+ �k

2 −�q

)
+δ
(
εp− �k

2 −�q − εp+ �k
2

+ �ωq + �ω
)

Nqfp− �k
2 −�q

(
1 − fp+ �k

2

)]
,

which can be used for calculating various correlation functions. The
times t0 and t1 do not enter the correlation functions. A considera-
tion of the other scattering mechanisms brings additional terms into the
Langevin sources (problem 14.4). It is important to notice that the
mixed correlation functions 〈〈K̂0K̂〉〉 are equal to zero, since K̂ is lin-
ear in the bosonic operators (we do not consider the case of coherent
phonons studied in Sec. 57). In the case of electron-impurity interac-
tion considered in problem 14.4, such mixed correlation functions are
also equal to zero because they are linear in the random potential whose
average is zero.

To find the symmetrized correlation function of the electric current
densities (noise power) defined in Eq. (9), it is convenient to write
the current density operator Î(k, t) =

∫
dre−ik·rÎ(r, t) in the second

quantization representation (problem 14.5). Then we obtain

Sαβ(r, r′|ω) =
e2

2m2
1

V 2

∑
pp′

pαp′
β

∑
kk′

eik·r+ik′·r′

×
∑
σσ′

〈〈[{
â+

σp− �k
2

âσp+ �k
2

}
t

,

{
â+

σ′p′− �k′
2

â
σ′p′+ �k′

2

}
t′

]
+

〉〉
ω

. (24)

The spin indices at the operators â and â+ are written explicitly since
the correlation function in Eq. (24) contains the operators of electrons
with different spins. It is easy to see that this correlation function is
proportional to δσσ′ , and the sum over spin gives an extra factor of 2
in the equations below. Let us substitute the solution (18) (without
the second term in the square brackets under the integral, as discussed
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above) into Eq. (24) and employ Eqs. (22) and (23). We obtain, after
some transformations, the following result:

Sαβ(r, r′|ω) =
1
V

∑
k

eik·(r−r′)
[
S(0)

αβ(k, ω) + S(1)
αβ(k, ω)

]
, (25)

where

S(0)
αβ(k, ω) =

2πe2

m2V

∑
p

pαpβδ(ω − vp · k)

×
[
fp− �k

2

(
1 − fp+ �k

2

)
+ fp+ �k

2

(
1 − fp− �k

2

)]
(26)

comes from the correlation function (22) and describes the free-electron
fluctuations, while the contribution S(1)

αβ(k, ω) comes from the correlation
function (23) and describes the influence of electron-phonon scattering
on the fluctuations of current density. Below we write S(1)

αβ(k, ω) in the
local approximation, when ω is large enough and the spatial dispersion
can be neglected, S(1)

αβ(k, ω) � S(1)
αβ(k = 0, ω) ≡ S(1)

αβ(ω):

S(1)
αβ(ω) =

2π�e2

m2ω2V

∑
pq

|Cq |2qαqβ

×[δ(εp − εp−�q − �ωq + �ω) + δ(εp − εp−�q − �ωq − �ω)] (27)

×[(Nq + 1)fp(1 − fp−�q) + Nqfp−�q(1 − fp)].

We point out that Sαβ(r, r′|ω) � δ(r − r′)S(1)
αβ(ω) in this approximation,

since the collisionless part (26) is equal to zero at k → 0 and ω 	= 0.
In the case of isotropic electron and phonon systems, S(1)

αβ(ω) = δαβ

×S(1)(ω) is diagonal in the coordinate index (the factor qαqβ is replaced
by δαβq2/3 as a result of angular averaging in Eq. (27)). In equilibrium,
one can prove the identity (9) by substituting the Fermi distribution
function for electrons and Planck distribution function for phonons into
Eq. (27). Indeed, Eq. (9) is written in the local approximation as
S(1)

αβ(ω) = �ω coth(�ω/2T )Reσαβ(ω) (note also that σαβ(ω) = δαβσ(ω)
since there are no magnetic fields). In order to compare S(1)

αβ(ω) and
Reσαβ(ω) (problem 14.6), the real part of the high-frequency conductiv-
ity under electron-phonon scattering should be extracted from Eq. (37.9)
written in the limit E → 0, when [J±1(q · vω/ω)]2 = (eE · q/2mω2)2

(we remind that the absorbed power Pph given by the contribution pro-
portional to kω in the second term on the left-hand side of Eq. (37.9) is
expressed through the conductivity as Pph = Reσ(ω)E2/2):

Reσ(ω) =
2πe2

3m2ω3V

∑
pq

|Cq |2q2[(Nq+1)fp(1−fp−�q)−Nqfp−�q(1−fp)]
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×[δ(εp − εp−�q − �ωq + �ω) − δ(εp − εp−�q − �ωq − �ω)]. (28)

In a similar way, one can prove (problem 14.6) that the collisionless con-
tribution to the correlation function (25) in thermodynamic equilibrium
satisfies the identity (9), where the real part of the conductivity in the
collisionless limit (which is responsible for the Landau damping) is given
in problem 6.21.

If the electron-phonon system is out of equilibrium, the deviations
from the fluctuation-dissipation theorem can be substantial. In particu-
lar, when the distribution function of electrons is anisotropic, the non-
diagonal (α 	= β) components of the current-current correlation function
are not equal to zero. If the distribution is isotropic, it is convenient to
characterize the non-equilibrium systems by the noise temperature Tn

introduced as

Tn =
〈〈[Îα(r, t), Îα(r′, 0)]+〉〉ω

4Reσαα(r, r′|ω)
=

S(1)
αα(ω)

2Reσαα(ω)
. (29)

Figure 14.1. Field dependence of the high-frequency (τ−1
LA � ω � 2T/�) noise tem-

perature in the model of quasielastic scattering of electrons by acoustic phonons. The
dashed curve shows the function 1+ (E/E0)2/2 approximating the ratio Tn/T at low
fields.

This temperature is equal to T in equilibrium and at �ω � 2T . If the
electrons are heated, for example, by an external homogeneous electric
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field E, the noise temperature increases. Below we demonstrate this ef-
fect on the example of non-degenerate electrons interacting with acoustic
phonons via deformation potential in the quasielastic conditions, when
the temperature is high in comparison to the characteristic energies of
the phonons. The electron distribution function is calculated for this
case in problem 7.8, where we have introduced a characteristic energy
ζE ∝ E. Neglecting the phonon energy �ωq under the δ-functions in Eqs.
(27) and (28), and taking into account that the factor |Cq |2(Nq + 1/2)
is independent of the phonon wave number q, we obtain

Tn =
�ω

2

∑
pq q2(fp + fp−�q)δ(εp − εp−�q + �ω)∑
pq q2(fp − fp−�q)δ(εp − εp−�q + �ω)

. (30)

The sums in Eq. (30) are calculated easily in the limit �ω � 2T . Intro-
ducing a characteristic field E0 according to ζE/T = E/E0, we have

Tn

T
= κ

∫∞
0 dx x2(1 + x/κ)κe−x∫∞

0 dx x3(1 + x/κ)κ−1e−x
, (31)

where κ = (E/E0)2. The dependence of the noise temperature on the
electric field E calculated according to Eq. (31) is shown in Fig. 14.1.

69. Quasi-Classical Approach
In this section we study the long-wavelength fluctuations with |k| �

p̄/�, where p̄ is the characteristic momentum of electrons. Our aim is
to linearize Eq. (68.17) with respect to small fluctuations in this quasi-
classical region. We need, however, to give some preliminary remarks.
Let us introduce the operator of the number of electrons with a given
spin σ at the point (r,p) of the phase space at the instant t:

f̂σrpt =
∫

d∆re−ip·∆r/�Ψ̂+
σr−∆r

2
(t)Ψ̂σr+∆r

2
(t)

=
∑
k

eik·r
{

â+
σp− �k

2
âσp+ �k

2

}
t

. (1)

Using this definition together with Eqs. (4.29) and (9.6) (at zero vector
potential), one can find that the average 〈〈f̂σrpt〉〉 ≡ Spη̂f̂σrpt is the
Wigner distribution function ft(r,p) ≡ frpt. Since below we consider
spin-degenerate electron states only, and the Hamiltonian of the system
does not mix the states with different spins, this distribution function
does not depend on the spin number σ. For the sake of brevity, we will
also omit the spin index at the operators âσp and f̂σrpt whenever possible
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and retain this index only when it is necessary, for example, when there
appear correlation functions of two operators f̂σrpt with different spins
(see Eqs. (21)−(31)).

We first consider a stationary and spatially homogeneous electron
system, where the Wigner distribution function does not depend on time
and coordinate, frpt = fp. The fluctuating part of the operator (1) is
given by ∆̂frpt = f̂rpt − fp. These fluctuations are not small. Indeed,
the mean square 〈〈(∆̂frpt)2〉〉 appears to be large in comparison to f2

p

(problem 14.7). This property reflects the fact that ∆̂frpt describes the
fluctuation of the number of electrons in the infinitely small (point-like)
region of the phase space. To obtain the operator whose fluctuations are
small, one should average ∆̂frpt over a considerably large volume of the
phase space, according to

∆̂f
(av)

rpt =
1

(∆L∆K)3

∫
|p′

α−pα|<π�∆K

dp′

(2π�)3

∫
|r′

α−rα|<∆L/2
dr′∆̂fr′p′t ,

(2)
where α = x, y, z is the Cartesian coordinate index, ∆L is a length in
the coordinate space, and ∆K is a length in the space of the variable
pα/(2π�). Accordingly, (∆L∆K)3 is a dimensionless parameter called
below the normalized phase volume. We choose ∆L and ∆K in such
a way that variations of the distribution function fp and energy εp are
small if p increases by π�/∆L or π�∆K. Calculating the mean square
of the fluctuation, we obtain

〈〈(∆̂f
(av)

rpt )
2〉〉 =

1
(∆L∆K)6

∫
dp1

(2π�)3

∫
dp2

(2π�)3

∫
dr1

∫
dr2

×
∑
k1k2

eik1·r1+ik2·r2

〈〈
â+
p1− �k1

2

âp1+ �k1
2

â+
p2− �k2

2

âp2+ �k2
2

〉〉
(3)

− 2fp

(∆L∆K)3

∫
dp1

(2π�)3

∫
dr1

∑
k1

eik1·r1

〈〈
â+
p1− �k1

2

âp1+ �k1
2

〉〉
+ f2

p ,

where the integrals over p1, p2, r1, and r2 have the same limits as
in Eq. (2). Under the approximation of non-interacting electrons, the
correlation function of four electron operators in Eq. (3) is equal to
δk1,−k2δp1,p2fp1−�k1/2 (1 − fp1+�k1/2) + δk1,0δk2,0fp1fp2 . Further calcu-
lations are based upon the assumed smallness of 1/∆L and ∆K. As a
result,

〈〈(∆̂f
(av)

rpt )
2〉〉 � fp(1 − fp)

(∆L∆K)3
. (4)
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Therefore, the mean square of the fluctuations of ∆̂f
(av)

rpt is small in
comparison to f2

p when (∆L∆K)3 is large in comparison to 1/fp. In
other words, the normalized phase volume (∆L∆K)3 must contain many
particles. In any case (∆L∆K)3 � 1, which means that the phase vol-
ume over which the averaging occurs is large in comparison to the quan-
tum (2π�)3 given by the momentum-coordinate uncertainty principle.
One can always choose ∆L large enough to fulfil this condition together
with the assumed smallness of the interval ∆K. However, by averaging
the operator ∆̂frpt over the large volume (∆L)3, we can describe only
the fluctuations whose characteristic lengths are larger than ∆L. Ap-
plying the averaging procedure (2) to Eq. (1), we calculate the integral
over coordinate and find

f̂ (av)
rpt =

∑
k

eik·r
( ∏

α=x,y,z

sin kα∆L/2
kα∆L/2

)
(5)

×
∫

|p′
α−pα|<π�∆K

dp′

(2π�∆K)3

{
â+
p′− �k

2
âp′+ �k

2

}
t

.

The function (
∏

. . .) is (roughly) close to unity at |kα| < π/∆L, while
beyond this region (

∏
. . .) is small and oscillating. We also notice that

the integral (∆L/2π)3
∫

dk . . . of this function is equal to unity. In other
words, Eq. (2) defines a truncation procedure which makes the wave
vectors k entering the terms in Eq. (68.17) shrink into the region of
about |k| < π/∆L = k0. If |k| lies within this region, the averaging does
not change these terms. For larger |k|, the averaged operator product
â+
p−�k/2âp+�k/2 becomes small. Approximately, the presence of the func-

tion (
∏

. . .) in Eq. (5) is equivalent to the truncation
∑

k →
∑

|k|<k0
.

Applying the averaging procedure (2) to Eq. (68.17), let us write this
equation in the Wigner representation. The left-hand side of Eq. (68.17)
is reduced to (

d

dt
+ vp · ∂

∂r

)
∆̂f

(av)

rpt , (6)

and the averaged Langevin source in this representation is given by

K̂(av)
t (p, r) =

∫
dω

2π

∑
|k|<k0

eik·r−iωt

∫
|p′

α−pα|<π�∆K

dp′

(2π�∆K)3
K̂ω(p′,k).

(7)
Taking into account the assumed smallness of |k| and ∆K, one can see
that the correlation functions of the averaged sources are the same as for
the non-averaged ones; see Eq. (68.20). Therefore, we obtain the same
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expression (68.23) for the correlation function of the averaged Langevin
sources. Moreover, in this expression one can neglect k in the energies
and distribution functions. To consider the remaining term M̂t(p,k)
in Eq. (68.17), we need to introduce the operator of the number of
phonons:

N̂rqt =
∑
k

eik·r
{

b̂+
q−k

2
b̂q+k

2

}
t

. (8)

The average Spη̂N̂rqt is the Wigner distribution function Nrqt given by
Eq. (19.26) (since we consider a single phonon mode, the mode indices of
this distribution function are omitted), and Nrqt = Nq in the stationary
and spatially homogeneous case. The fluctuations of the number of
phonons are described by the operator ∆̂Nrqt = N̂rqt − Nq, and the
average of this operator over the phase space is defined by

∆̂N
(av)

rqt =
1

(∆L∆Q)3

∫
|q′

α−qα|<π∆Q

dq′

(2π)3

∫
|r′

α−rα|<∆L/2
dr′∆̂Nr′q′t. (9)

Equations (8) and (9) are written by analogy to Eqs. (1) and (2). More-
over, ∆Q for phonons has the same meaning as ∆K for electrons.

According to the consideration presented in Sec. 68, the function
M̂t(p, r) can be written as

M̂t(p, r) � − 1
�2

∑
k

eik·r
∫ t

t0

dt′
{∑

qp1

|Cq |2

×
[
â+
p− �k

2
âp+ �k

2 −�qâ+
p1−�qâp1

(
eiΩ−(t−t′) − eiΩ+(t−t′)

)
+â+

p− �k
2 −�q

âp+ �k
2

â+
p1+�qâp1

(
e−iΩ−(t−t′) − e−iΩ+(t−t′)

)]
+
∑
qq′

CqCq′

[(
â+
p− �k

2
âp+ �k

2 −�(q+q′) − â+
p− �k

2 +�q′ âp+ �k
2 −�q

)
(10)

×
(
b̂+
−q′ b̂qeiΩ−(t−t′) + b̂q′ b̂+

−qeiΩ+(t−t′)
)

+
(

â+
p− �k

2 −�(q′+q)
âp+ �k

2
− â+

p− �k
2 −�q

âp+ �k
2 +�q′

)
×
(
b̂−q′ b̂+

q e−iΩ−(t−t′) + b̂+
q′ b̂−qe−iΩ+(t−t′)

)]}
,

where Ω± = (εp − εp−�q)/� ± ωq, and we have used the approximation
εp±�k/2 � εp, since |k| is small. The products of Heisenberg creation
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and annihilation operators in Eq. (10) depend on t′. Considering slow
temporal variations of these operators in comparison to the fast oscil-
lations of the exponential factors, one can replace the argument t′ by
t, which corresponds to the Markovian approximation applied to derive
the collision integrals in previous chapters. Next, the time t0 can be
aimed to −∞, and the factor eλ(t′−t) (where λ → +0), which describes
the weakening of correlations at t′ → −∞, should be placed under the
integral to make it convergent. Having applied these approximations, we
express the operator products through the fluctuations of the operators
(1) and (8). For example,

â+
p− �k

2
âp+ �k

2 −�(q+q′)b̂
+
−q′ b̂q = δq,−q′δk,0fpNq (11)

+δq,−q′Nq
1
V

∫
dre−ik·r∆̂frpt + δq,k−q′fp− �k

2

1
V

∫
dre−ik·r∆̂Nrq−k

2 t

+
1

V 2

∫
dr1e

i(q+q′−k)·r1∆̂f
r1p− �(q+q′)

2 t

∫
dr2e

−i(q+q′)·r2∆̂N
r2

q−q′
2 t

.

The other operator products are written in a similar way. Each one of
them contain a term proportional to the distribution functions (the first
one), two terms linear in the fluctuations of ∆̂f or ∆̂N (the second and
the third terms in Eq. (11)), and a term quadratic in the fluctuations
(the last one). Substituting all such terms into Eq. (10), we average
M̂t(p, r) according to Eq. (2) and find that the terms proportional just
to the distribution functions form together the electron-phonon collision
integral Je,ph(f |p) given by Eq. (34.25). This collision integral is equal
to zero, since the stationary kinetic equation in the absence of external
fields is written as Je,ph(f |p) = 0. Next, the averaging of the terms lin-
ear in the fluctuations ∆̂f and ∆̂N results merely in the substitutions
∆̂frpt → ∆̂f

(av)

rpt and ∆̂Nrqt → ∆̂N
(av)

rqt . Collecting all such terms, we find

that their sum forms the operator ∆̂Je,ph(∆̂f
(av)

, ∆̂N
(av)|rpt), which can

be formally obtained by a linearization of the collision integral Je,ph(f |p),

where one substitutes fp → fp + ∆̂f
(av)

rpt and Nq → Nq + ∆̂N
(av)

rqt ev-

erywhere, with respect to the fluctuations ∆̂f
(av)

rpt and ∆̂N
(av)

rqt . When
carrying out such a transformation, one should take into account that
C|q±k| � Cq because |k| is small. Finally, the last terms, quadratic in the

fluctuations ∆̂f and ∆̂N , are reduced to the terms quadratic in ∆̂f
(av)

and ∆̂N
(av)

(problem 14.8), and should be neglected.



Fluctuations 679

Summarizing the results obtained above, we can write the kinetic
equation for the fluctuations of electron distribution in the form(

∂

∂t
+ vp · ∂

∂r

)
∆̂f

(av)

rpt − ∆̂Je,ph(∆̂f
(av)

, ∆̂N
(av)|rpt) = K̂(av)

t (p, r).

(12)
The usage of the quasi-classical linearized collision integrals ∆̂Je,ph in

Eq. (12) essentially implies that ∆̂f
(av)

rpt slowly varies with time on the

quantum scale �/ε̄. In other words, the fluctuations ∆̂f
(av)

rpt are quasi-
classical not only by their coordinate dependence (as it was initially
assumed), but also by their dependence on time. To describe the quan-
tum region of frequencies, one should consider the non-Markovian term
M̂t(p, r) given by Eq. (10). Fortunately, if ∆̂f

(av)

rpt varies with time
much faster than the relaxation occurs, the contribution M̂t(p, r) can
be neglected in comparison to the term given by the temporal deriva-
tive in Eq. (12). Moreover, in this high-frequency region one may also
neglect the term proportional to the spatial gradient in Eq. (12). There-
fore, a high-frequency solution for the Fourier component ∆̂f

(av)

kpω =∫
dteiωt

∫
dre−iq·r∆̂f

(av)

rpt is written merely as ∆̂f
(av)

kpω = iV ω−1K̂(av)
ω (p,k).

Using this solution, one can obtain, for example, the noise power in the
form (68.27).

The collision-integral contribution in Eq. (12) depends on the opera-
tor ∆̂N

(av)

rqt . Therefore, the description of the fluctuations is still incom-
plete. To give a complete description, one should write an additional
equation for ∆̂N

(av)

rqt . Let us compose an operator equation similar to
Eq. (68.13):[

d

dt
+ i(ωq − ωq′)

]
b̂+
q′ b̂q =

i

�

∑
σp

(Cq′ b̂qâ+
σp+�q′ âσp − Cqb̂

+
q′ â

+
σp−�qâσp).

(13)
The spin indices are written explicitly in this equation to emphasize
that both spin states of electrons contribute to the evolution of the
phonon operators through the electron-phonon interaction (we remind
that this interaction is spin-independent). Considering equations of mo-
tion for the operators b̂+

q′ â
+
σp−�qâσp and b̂qâ+

σp+�q′ âσp, we obtain the
kinetic equation describing the fluctuations of phonon distribution in
the quasi-classical region,(

∂

∂t
+

∂ωq

∂q
· ∂

∂r

)
∆̂N

(av)

rqt − ∆̂Jph,e

(
∆̂N

(av)
, ∆̂f

(av)
|rqt

)
= K̂(av)

t (q, r),

(14)
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where ∆̂Jph,e

(
∆̂N

(av)
, ∆̂f

(av)
|rqt

)
is the linearized phonon-electron col-

lision integral; see Sec. 19. The Fourier transform of the exact Langevin
source for phonons is

K̂ω(q,k) = −2πieiωt0
∑
σp

[
C|q+k

2 |

{
b̂+
q−k

2
â+

σp−�(q+k
2 )âσp

}
t0

×δ
(
εp−�(q+k

2 ) − εp + �ωq−k
2

+ �ω
)

− C|q−k
2 | (15)

×
{

b̂q+k
2
â+

σp+�(q−k
2 )âσp

}
t0

δ
(
εp+�(q−k

2 ) − εp − �ωq+k
2

+ �ω
)]

,

where the initial time t0 has the same meaning as in Eq. (68.20). The
phase factor eiωt0 disappears in the correlation function written below:

〈〈K̂ω(q,k)K̂ω′(q′,k′)〉〉 = 2
(2π)2

�
δ(ω + ω′)δk,−k′δq,q′

×
∑
p

[
|C|q+k

2 ||
2δ
(
εp−�(q+k

2 ) − εp + �ωq−k
2

+ �ω
)

Nq−k
2

×fp−�(q+k
2 )(1 − fp) + |C|q−k

2 ||
2δ
(
εp−�(q−k

2 ) − εp + �ωq+k
2

− �ω
)

×
(
Nq+k

2
+ 1
)

fp

(
1 − fp−�(q−k

2 )

)]
. (16)

The factor of 2 comes from the sum over electron spin. The correlation
function of the averaged Langevin sources standing in Eq. (14) is de-
scribed by Eq. (16) where one can neglect the small wave number k in
the energies, distribution functions, and matrix elements C. Equations
(12) and (14) with the right-hand sides described by Eqs. (68.20) and
(15), respectively, form a complete system.

So far we neglected external electric and magnetic fields, Ert and Hrt.
These fields modify the dynamics of the fluctuations for charged parti-
cles. The external fields are considered below as quasi-classical in the
sense explained in Sec. 9. They are described by the scalar and vector
potentials, Φrt and Art. In the presence of the vector potential, the
definition of f̂rpt should be modified as f̂rpt =

∫
d∆re−i[p+(e/c)Art]·∆r/�

×Ψ̂+
r−∆r/2(t)Ψ̂r+∆r/2(t). Therefore, according to Eqs. (4.29) and (9.6),

the statistical averaging Spη̂f̂rpt of the operator f̂rpt defined in this way
again gives us the Wigner distribution function frpt; see the discussion
of Eq. (1) in the beginning of this section. We point out that the defi-
nition of f̂rpt in the presence of the vector potential formally coincides
with Eq. (1) if the momentum p in the argument of f̂rpt is treated
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as the kinematic momentum p − (e/c)Art which depends on both time
and coordinate. For this reason, instead of the partial derivatives stand-
ing in Eq. (12), one should put the full derivatives. Next, one should
take into account that the Hamiltonian (68.12) acquires an additional
contribution

1
V

∑
pq

[
− e

mc

(
p +

�q
2

)
· Aqt +

e2

2mc2

(
1
V

∑
q′

Aq/2+q′ t · Aq/2−q′ t

)

+eΦqt

]
â+
p+�qâp (17)

expressed here through the spatial Fourier transforms of the scalar and
vector potentials. After calculating the commutators of â+

p−�k/2âp+�k/2

with the Hamiltonian (17) (problem 14.9), we neglect the contributions
quadratic in (e/c)A by using the quasi-classical conditions (9.35). As a
result, we obtain the following operator equation:⎛⎝ ∂

∂t
+ vp · ∂

∂r
− e

c

∂Art

∂t
· ∂

∂p
− e

c

∑
αβ

vβ
p
∂Aα

rt

∂rβ

∂

∂pα

⎞⎠ f̂rpt

− ie

�mcV 2

∑
kq

∫
dr′eik·r−i(k−q)·r′

Aqt ·
[(

p − �q
2

+
�k
2

)
f̂r′p− �q

2 t

−
(
p +

�q
2

− �k
2

)
f̂r′p+ �q

2 t

]
+

ie

�V

∑
q

Φqte
iq·r

(
f̂rp− �q

2 t
− f̂rp+ �q

2 t

)
= K̂t(p, r) + M̂t(p, r). (18)

Applying the statistical averaging Spη̂ . . . to this equation under the
quasi-classical conditions (9.29) and (9.35), we obtain the kinetic equa-
tion (9.34) for the distribution function frpt = Spη̂f̂rpt. This function
slowly varies in space and time because of the presence of external fields.
Introducing the fluctuating part of the operator f̂rpt = frpt + ∆̂frpt, we
can apply the averaging procedure (2) to Eq. (18). The contributions
coming from the external fields are easily averaged in this way, because
they are linear in f̂rpt. After lengthy but straightforward transforma-
tions under the assumption that ∆̂f

(av)

rpt weakly depends on r on the
quantum scale, we use Eq. (4.3) to express the potentials through Ert
and Hrt. Finally, we obtain a linearized kinetic equation called the
Boltzmann-Langevin equation:∑

p1

L̂rt(p,p1)∆̂f
(av)

rp1t = K̂(av)
t (p, r), (19)
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∑
p1

L̂rt(p,p1)∆̂f
(av)

rp1t ≡
(

∂

∂t
+ vp · ∂

∂r
+ Frpt · ∂

∂p

)
∆̂f

(av)

rpt

−∆̂Je,ph

(
∆̂f

(av)
, ∆̂N

(av)|rpt
)

,

where Frpt is the Lorentz force (9.23). Equation (19) is a generalization
of Eq. (12). Its left-hand side is represented as an action of the integro-
differential operator L̂ on the fluctuating part of the electron distribution
function. If the fluctuations of phonon distribution are neglected so that
∆̂Je,ph is a linear functional of ∆̂f

(av)
, one can apply Eq. (19) in order

to obtain the equation∑
p1p′

1

L̂rt(p,p1)L̂r′t′(p′,p′
1)〈〈∆̂f

(av)

rp1t∆̂f
(av)

r′p′
1t′〉〉

= 〈〈K̂(av)
t (p, r)K̂(av)

t′ (p′, r′)〉〉 (20)

directly describing the correlation function of the fluctuations of elec-
tron distribution. The right-hand side of this equation contains the
correlation function of Langevin sources. If only the electron-phonon in-
teraction is considered, this right-hand side is determined by the double
Fourier transformation of the expression (68.23) over the wave vectors
and frequencies.

Apart from the external fields contributing into the Lorentz force in
Eq. (19), we consider the random fields appearing as a result of the
fluctuations of the charge density and electric current. The fluctuations
of the magnetic field may be neglected as small relativistic corrections.
The fluctuations of the electric field can be described, in the regular way,
if we include the Coulomb interaction term (28.2) into the Hamiltonian
(68.12) and compose the operator equations in a similar way as above.
However, taking into account that these fluctuations are of large scale,
it is convenient to apply another approach, when the fluctuations of the
electrostatic potential energy, ∆Urt, are expressed through the fluctua-
tions of the electron density nrt with the use of the Poisson equation. To
simplify the consideration, we neglect in the following both the electron-
phonon scattering and the external fields. The linearized quasi-classical
kinetic equation is written as(

∂

∂t
+ vp · ∂

∂r

)
∆̂f

(av)

σrpt − ∂∆̂Urt

∂r
· ∂fp

∂p
= 0, (21)

where

ε∞∇2
r∆̂Urt = −4πe2∆̂nrt, ∆̂nrt =

1
V

∑
σp

∆̂f
(av)

σrpt. (22)
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The spin index at ∆̂f
(av)

σrpt is written explicitly to emphasize that both
spin-degenerate states contribute to the fluctuations of the electron den-
sity and electrostatic potential energy.

The solution of Eq. (21), obtained in a similar way as Eq. (68.18), is
written for the Fourier components ∆̂f

(av)

σkpω =
∫

dteiωt
∫

dre−iq·r∆̂f
(av)

σrpt:

∆̂f
(av)

σkpω = ∆̂f
(av)

σkpt02πeiωt0δ(ω − vp · k) − k · (∂fp/∂p)∆̂Ukω

ω − vp · k + iλ
, (23)

where the factor iλ with λ → +0 can be viewed as a collision-integral
contribution in the limit when the scattering is negligible. Let us sum
both sides of Eq. (23) over σ and p. With ∆̂Ukω = (4πe2/ε∞k2)∆̂nkω

following from Eq. (22), we express the fluctuation of the Fourier com-
ponent of electron density as

∆̂nkω =
ε∞

ε(k, ω)
1
V

∑
σp

∆̂f
(av)

σkpt02πeiωt0δ(ω − vp · k), (24)

where

ε(k, ω) = ε∞ +
4πe2

k2
2
V

∑
p

k · (∂fp/∂p)
ω − vp · k + iλ

(25)

is the RPA dielectric permittivity at |k| � p̄/�; see Sec. 33. Taking
into account that 〈〈∆̂f

(av)

σkpt0∆̂f
(av)

σ′k′p′t0〉〉 = V 2δσσ′δk,−k′δp,p′fp−�k/2(1 −
fp+�k/2) � δσσ′V 2δk,−k′δp,p′fp(1 − fp) and ε(k, ω) = ε∗(−k,−ω), we
find the correlation function of the fluctuating potential energies:

〈〈∆̂Ukω∆̂Uk′ω′〉〉 = 2πδ(ω + ω′)δk,−k′
64π3e4

k4|ε(k, ω)|2

×
∑
p

fp(1 − fp)δ(ω − vp · k). (26)

One can find also the function describing the correlations of the potential
energy and the fluctuating electron distribution:

〈〈∆̂Ukω∆̂f
(av)

σk′pω′〉〉 =
k · (∂fp/∂p)

−ω + vp · k + iλ
〈〈∆̂Ukω∆̂Uk′ω′〉〉

+2πV δ(ω + ω′)δk,−k′
8π2e2

k2ε(k, ω)
fp(1 − fp)δ(ω − vp · k). (27)

This correlation function is spin-independent. Finally, we present the
correlation function of the fluctuations of electron distribution:

〈〈∆̂f
(av)

σkpω∆̂f
(av)

σ′k′p′ω′〉〉 = 2πV δ(ω + ω′)δk,−k′

{
2πV δσσ′δp,p′δ(ω − vp · k)
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×fp(1 − fp) − 8π2e2

k2

[
k · (∂fp/∂p)fp′(1 − fp′)δ(ω − vp′ · k)

ε(k, ω)(ω − vp · k + iλ)
(28)

+(p ↔ p′, c.c.)
]}

+
k · (∂fp/∂p) k · (∂fp′/∂p′) 〈〈∆̂Ukω∆̂Uk′ω′〉〉

(ω − vp · k + iλ)(ω − vp′ · k − iλ)
.

The possibility to express the fluctuations of the electrostatic field
through the dielectric permittivity describing the dynamical screening
is related to quasi-classical (long-wavelength) nature of the fluctuations,
when the characteristic length π/k is large in comparison to the screening
length and the collective effects are important; see Sec. 33. The formal-
ism of kinetic equations for fluctuations allows one to obtain the electron-
electron collision integral, which describes the screened Coulomb inter-
action, in the most elegant way. Indeed, the equation for the operator
f̂ (av)

σrpt = fp + ∆̂f
(av)

σrpt in the presence of the fluctuating electrostatic po-
tential has the following form (compare to Eq. (21)):(

∂

∂t
+ vp · ∂

∂r

)
f̂ (av)

σrpt =
∂∆̂Urt

∂r
·
∂f̂ (av)

σrpt

∂p
. (29)

The averaging 〈〈. . .〉〉 transforms the operator equation (29) into a kinetic
equation for the distribution function fp. The collision integral in this
kinetic equation is expressed through the correlation function (27):

Je,e(f |p) =

〈〈
∂∆̂Urt

∂r
·
∂∆̂f

(av)

σrpt

∂p

〉〉
(30)

=
1

V 2

∑
kk′

ik · ∂

∂p

∫ ∫
dω

2π

dω′

2π

〈〈
∆̂Ukω∆̂f

(av)

σk′pω′
〉〉

.

We have already taken into account that the correlation function on the
right-hand side is proportional to δ(ω + ω′). Using Eqs. (27) and (26)
for non-degenerate electrons, we obtain

Je,e(f |p) =
2π

V 2

∑
αβ

∂

∂pα

∑
p′k

(4πe2)2

|ε(k,vp · k)|2k4 δ(vp · k − vp′ · k)

×kαkβ

(
fp′

∂fp

∂pβ
− fp

∂fp′

∂p′
β

)
. (31)

This quasi-classical collision integral describes the case of small momen-
tum transfer in the collisions of non-degenerate electrons. It is called
the Balescu-Lenard collision integral. The general form of the electron-
electron collision integral derived in Chapter 6 can be reduced to the
form (31) in the limit of small momentum transfer (problem 14.10).



Fluctuations 685

70. Light Scattering
Below we consider the scattering of light by fluctuations of electron

system. The physical reason for the fact that the light scattering is de-
termined by the fluctuations is related to random spatial and temporal
dependence of the physical properties of the system. For example, in
the medium with smooth spatial variations of the dielectric permittiv-
ity (opaque medium), there exists elastic scattering of electromagnetic
waves. This scattering is described by the equations of classical electro-
dynamics (problem 14.11). If the temporal variations of the dielectric
permittivity are taken into account, the inelastic scattering takes place.
If these spatial and temporal variations are comparable to characteristic
quantum lengths and quantum times of the system under considera-
tion, the quantum effects become essential. In particular, the spectrum
of inelastic light scattering contains a number of peaks corresponding
to characteristic discrete frequencies of the system, for example, the
frequency of the optical phonons which interact with electrons or the
frequency of intersubband transitions of electrons. Such effects are the
subject of the quantum theory of light scattering.

The scattering is usually described by a cross-section. This quantity
is introduced as a ratio of the energy loss of incident radiation in unit
time to the intensity (the absolute value of the energy density flux) of
this radiation. The intensity is equal to c̃�ωINI/V , where ωI and NI are
the frequency and the number of quanta in the incident beam, c̃ = c/

√
ε

is the velocity of light in the medium with dielectric permittivity ε, and
V is the normalization volume. Taking into account that the departure
rate from the initial state i to all other states f is written through the
transition probabilities Wif , we express the energy loss in unit time as
�ωI

∑
if Wif fi(1 − ff ), where fi and ff are the occupation numbers of

electrons in the initial and final states, respectively. As a result, the
cross section is given by

σ =
V

NI c̃

∑
if

Wif fi(1 − ff ). (1)

The differential cross-section, which depends on the wave vectors qS and
polarizations µS of the scattered photon modes, is introduced as

σ =
1
V

∑
qsµs

(
dσ

dqS

)
µs

=
∑
µs

∫ ∞

0
dωS

∫
dΩ
(

∂2σ

∂ωS∂Ω

)
µs

, (2)

where Ω is the solid angle in the space of wave vectors of the scattered
photons. The equations written above are general in the sense that they
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are valid for arbitrary systems and arbitrary mechanisms of interaction
between the scattering quasiparticles and the system.

To find the cross-section from a microscopic theory, we take into ac-
count both ∝ e and ∝ e2 terms in the operator of interaction of electrons
with the second-quantized electromagnetic field described by the vector
potential Âr given by Eq. (3.18). The Hamiltonian of the interaction is
written in the form V̂ = Ĥ (1) + Ĥ (2), where

Ĥ (1) = − e

2c

∑
j

(
v̂j · Ârj + Ârj · v̂j

)
, Ĥ (2) =

(e/c)2

2me

∑
j

Â2
rj

, (3)

rj and v̂j are the operators of coordinate and velocity of j-th electron,
and me is the mass of free electron. Below we are interested in the prob-
ability of transitions between the states with the same total number of
photons. Since the operator Â changes the number of photons by ±1,
the matrix elements of such transitions should be at least quadratic in
the vector potential. Therefore, these matrix elements are to be calcu-
lated within the second-order accuracy in the electron-photon interac-
tion. Taking into account that the second-order correction to the matrix
element 〈f |V̂ |i〉 is given by Eq. (34.29), we write the total transition
probability (2.13) as

Wif =
2π

�

∣∣∣∣∣〈f |Ĥ (2)|i〉 +
∑

k

′ 〈f |Ĥ (1)|k〉〈k|Ĥ (1)|i〉
εi − εk

∣∣∣∣∣
2

δ(εf − εi), (4)

where k denotes an intermediate state which does not coincide with
the states i and f . Since the operator Ĥ (1) does not couple the states
with a given number of photons, its contribution enters only the second-
order term in the matrix element in Eq. (4). The states i, k, and f
are the states of the electron-photon system in the absence of electron-
photon interaction. Therefore, their wave functions are represented in
the factorized form, as products of electron and photon components. For
example, the initial state is described by the wave function |{Ni}〉|δi〉.
The wave function of photons, |{Ni}〉, is characterized by the set of
occupation numbers Ni. It is given by Eq. (3.16). The wave function
of electrons, |δi〉, is characterized by the set of quantum numbers δi

of many-electron states. The initial state contains NI incident photons
and zero scattered photons, while the final state contains NI −1 incident
photons and one scattered photon.

The matrix element of Ĥ (2) is written with the use of Eq. (3.18) as

〈f |Ĥ (2)|i〉 =
π�e2

V
√

ωqµωq′µ′εme

∑
qµq′µ′

〈
δf

∣∣∣∣∑
j

ei(q−q′)·rj

∣∣∣∣δi

〉
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×
〈
NI − 1, 1S

∣∣∣(eqµb̂qµ + e∗
−qµb̂+

−qµ

)
·
(
e−q′µ′ b̂−q′µ′ (5)

+e∗
q′µ′ b̂+

q′µ′

)∣∣∣NI , 0S

〉
=

2π�e2√NI(eI · e∗
S)

V
√

ωIωSεme

〈
δf

∣∣∣∣∑
j

ei(qI−qS)·rj

∣∣∣∣δi

〉
.

Here and below, ωI ≡ ωqIµI , ωS ≡ ωqSµS , eI ≡ eqIµI , and e∗
S ≡ e∗

qSµS
.

Calculating the matrix elements of the bosonic operators entering Ĥ (1),
one should take into account that the intermediate state contains ei-
ther NI incident and one scattered photons or NI − 1 incident and zero
scattered photons. We obtain

∑
k

〈f |Ĥ (1)|k〉〈k|Ĥ (1)|i〉
εi − εk

=
2π�

√
NI

V
√

ωIωSε

∑
δk

×
{〈δf |Î(qS) · e∗

S|δk〉〈δk |Î(−qI) · eI |δi〉
εδi

− εδk
+ �ωI

(6)

+
〈δf |Î(−qI) · eI |δk〉〈δk |Î(qS) · e∗

S|δi〉
εδi

− εδk
− �ωS

}
,

where Î(q) is the operator of the current density given by Eq. (13.13).
After substituting the contributions (5) and (6) into the transition prob-
ability (4), we find the differential cross-section according to Eqs. (1)
and (2):(

dσ

dqS

)
µs

=
(2π)3�
ωIωSε2c̃

∑
δiδf

fδi
(1 − fδf

)δ
(
εδi

− εδf
+ �ωI − �ωS

)

×
∣∣∣∣ e2

me
(eI · e∗

S)
〈

δf

∣∣∣∣∑
j

ei(qI−qS)·rj

∣∣∣∣δi

〉

+
∑
δk

{〈δf |Î(qS) · e∗
S|δk〉〈δk |Î(−qI) · eI |δi〉

εδi
− εδk

+ �ωI

(7)

+
〈δf |Î(−qI) · eI |δk〉〈δk |Î(qS) · e∗

S|δi〉
εδi

− εδk
− �ωS

}∣∣∣∣2.
To obtain this expression, we have taken into account that

∑
if fi(1 −

ff ) . . . =
∑

δiδf

∑
qsµs

fδi
(1 − fδf

) . . . .
Let us apply the general equation (7) to describe the light scattering

by free electrons. The velocity operator is −(i�/me)∂/∂r, and the wave
functions of electrons are the plane waves characterized by momenta.
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Denoting the momenta of the initial and final states by p and p′, re-
spectively, we calculate the expression standing inside | . . . |2 in Eq. (7).
The result is

δp−p′,�(qS−qI)
e2

me

∑
αβ

eα
I eβ∗

S

{
δαβ +

1
me

(p + �qI/2)α(p′ + �qS/2)β

εp − εp+�qI
+ �ωI

+
1

me

(p′ − �qI/2)α(p − �qS/2)β

εp − εp−�qS
− �ωS

}
. (8)

The matrix element of the scattering contains the Kronecker symbol
expressing the momentum conservation law. The energy conservation
law (the δ-function in Eq. (7)) gives us p2 − p′2 = 2me�(ωS − ωI). Since
the dispersion laws for photons contain the velocity of light (which is
much greater than the characteristic group velocity v̄ of non-relativistic
electrons), the conservation rules can be simultaneously satisfied only
for nearly elastic scattering, when ωS � ωI . In these conditions, the
second and the third terms in Eq. (8), which originate from the second-
order contribution (6), nearly cancel each other. Their sum contains a
small factor of the order v̄/c (problem 14.12) and should be neglected in
comparison to the first term originating from the first-order contribution
(5). Therefore, only the contribution (5) should be taken into account
in the case of free electrons.

Now we turn to a more complex example, the light scattering by
electrons in crystals. The electron states in the vicinity of the band
extrema are described by the many-band kp approach; see Appendix B
and Sec. 5. The wave functions of non-interacting electrons are products
of the plane waves V −1/2 exp(ip · r/�) by the Bloch amplitudes ul(r)
which retain the periodicity of the crystal potential (we remind that
the quantum number l includes both the band number n and the spin
number σ). Near the band extrema, the plane waves are smooth on the
scale of the lattice constant. Using these functions for calculating the
matrix elements, we obtain the expression standing inside | . . . |2 in Eq.
(7) in the form

δp−p′,�(qS−qI)e
2
∑
αβ

eα
I eβ∗

S

{
δll′δαβ

me
(9)

+
∑
l1

(
vα
l′l1v

β
l1l

εlp − εl1p−�qS
− �ωS

+
vβ
l′l1v

α
l1l

εlp − εl1p+�qI
+ �ωI

)}
,

where the initial and final states are denoted by the sets of quantum
numbers lp and l′p′, respectively, and the index l1 includes both spin
and band numbers of the intermediate state. We have already neglected
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the second-order contributions originating from the action of the momen-
tum operator −i�∂/∂r on the plane-wave factors exp(ip · r/�). These
contributions couple the states in the same band with the same spin
(l′ = l1 = l) and are analogous to those written in Eq. (8). All such
contributions appear to be small as relativistic corrections; see the dis-
cussion following Eq. (8). The remaining second-order contributions
correspond to interband coupling (l1 	= l, l′) and are expressed through
the matrix elements (5.7). If the energies of the incident and scattered
light quanta are smaller than the interband gaps, the energy conserva-
tion law forbids the interband transitions of electrons so that the initial
and final electron states belong to the same band (the possibility of spin
flip, however, remains and l 	= l′ in general). In this case, the electron
transitions occur near the extremum of a partially filled band (conduc-
tion band for n-type and valence band for p-type materials). Moreover,
if the energies of the quanta are much smaller than the energy gap, the
spin-flip processes can be neglected, which means l = l′. One can also
neglect the momentum dependence of the electron energies and remove
small energies �ωI and �ωS from the denominators in Eq. (9). As a
result of these approximations, the total contribution inside the braces
{. . .} in Eq. (9) is reduced to δll′m

−1
αβ , where the effective mass tensor is

given by Eq. (5.11).
Although only the non-interacting electrons have been considered

above, the calculations can be repeated for any electrons whose wave
functions are represented as products of envelope (smooth on the scale
of the lattice constant) functions ψ(nδ)

r of the electron states belonging to
the band n by the Bloch amplitudes unσ(r). Denoting the initial, final,
and intermediate envelope states as |nδ〉, |n′δ′〉, and |n1δ1〉, we rewrite
Eq. (7) in the form(

∂2σ

∂ωS∂Ω

)
µs

=
ω2

S

(2πc̃)3

(
dσ

dqS

)
µs

=
�e4

c4
ωS

ωI

∑
σσ′

∑
nn′

∑
δδ′

δ (εnδ − εn′δ′ + �ωI − �ωS) fnδ(1 − fn′δ′)

×
∣∣∣∣∑

αβ

eα
I eβ∗

S

{
δαβδnn′δσσ′

me

〈
nδ′
∣∣∣∣∑

j

ei(qI−qS)·rj

∣∣∣∣nδ

〉
(10)

+
∑

n1σ1δ1

(
vα
n′σ′,n1σ1

vβ
n1σ1,nσ

εnδ − εn1δ1 − �ωS

+
vβ
n′σ′,n1σ1

vα
n1σ1,nσ

εnδ − εn1δ1 + �ωI

)

×
〈

n′δ′
∣∣∣∣∑

j

eiqI ·rj

∣∣∣∣n1δ1

〉〈
n1δ1

∣∣∣∣∑
j

e−qS ·rj

∣∣∣∣nδ

〉}∣∣∣∣2,
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where dq/(2π)3 is written as ω2dωdΩ/(2πc̃)3. If the energies of the
quanta are much smaller than the energy gaps, one may remove �ωI

and �ωS from the denominators and put n = n′, σ = σ′, εnδ � εn,
and εn1δ1 � εn1 (however, the energy spectra standing in the δ-function
should remain as they are). Since the envelope functions form complete
orthogonal sets for each band, the sum

∑
δ1

〈nδ′|
∑

j eiqI ·rj |n1δ1〉〈n1δ1|∑
j e−iqS ·rj |nδ〉 over the intermediate envelope states is reduced to 〈nδ′|∑
j ei(qI−qS)·rj |nδ〉. This matrix element is the same one that stands

in the first-order contribution, and the combined first-order and second-
order contributions again form the effective mass tensor for the band n.
In the case of a scalar effective mass, m−1

αβ = m−1δαβ , one may write
(the band index n is omitted)(

∂2σ

∂ωS∂Ω

)
µs

= r2
o

ωS

ωI

|eI · e∗
S|2 2�

∑
δδ′

δ (εδ − εδ′ + �∆ω)

×fδ(1 − fδ′)
∣∣∣∣〈δ′

∣∣∣∣∑
j

ei∆q·rj

∣∣∣∣δ〉∣∣∣∣2, (11)

where ∆q = qI − qS, ∆ω = ωI − ωS, and the factor 2 comes from the
sum over the spin index σ. We have introduced the classical radius of
electron with mass m, ro = e2/mc2, so that the dimensionality of the
differential cross-section (11) (square over frequency) is seen explicitly.
The most efficient light scattering occurs when the polarizations of the
incident and scattered electromagnetic waves are parallel or antiparallel.

To study the light scattering under conditions when �ωI and �ωS are
comparable to the interband gap energy εg , we use the two-band model
of electron states described in Appendix B. If the electron transitions
take place near the band extrema (the kinetic energies of electrons in the
bands are considerably smaller than εg = 2ms2), the components of the
velocity matrix (B.23) are large for interband transitions only. Therefore,
one should consider the case when the initial and final states of electrons
belong to the same (partially filled) band, while the intermediate state
belongs to the other band. Let us assume that the material is of n-type
so that the initial and final states (whose spins are σ and σ′, respectively)
belong to the conduction (c) band. Consequently, the intermediate state
belongs to the valence (v) band. The differential cross-section (10) in
these conditions is written as(

∂2σ

∂ωS∂Ω

)
µs

=
�e4

c4
ωS

ωI

∑
δδ′

fcδ(1 − fcδ′)
∣∣∣∣〈cδ′

∣∣∣∣∑
j

ei∆q·rj

∣∣∣∣cδ〉∣∣∣∣2 (12)



Fluctuations 691

×δ (εcδ − εcδ′ + �∆ω)
∑
σσ′

∣∣∣∣(eI · e∗
S)

me
δσσ′ +

εgA+(σ, σ′) + �ωA−(σ, σ′)
ε2
g − (�ω)2

∣∣∣∣2 .

The spin-dependent factors

A±(σ, σ′) =
∑
σv

[〈
cσ′|v̂ · eI |vσv

〉
〈vσv |v̂ · e∗

S|cσ〉

±
〈
cσ′|v̂ · e∗

S|vσv

〉
〈vσv |v̂ · eI |cσ〉

]
(13)

contain the sums over the spin index of the intermediate state. Taking
into account that �∆ω � εg , we have put �ωS � �ωI = �ω and εcδ −
εvγ � εg in the denominators of Eq. (10). Let us consider the velocity
matrix in the parabolic approximation, when v̂ � sσ̂ρ̂1. We obtain

A+(σ, σ′) = 2s2(eI · e∗
S)δσ′σ, A−(σ, σ′) = i2s2σσ′σ · [eI × e∗

S] . (14)

The coefficients A− and A+ characterize the contributions to the cross-
section due to virtual interband transitions with and without spin flip,
respectively. The term with these coefficients in Eq. (12) describes a
resonant enhancement of the cross-section in the vicinity of �ω = εg .
Since 2mes

2 � εg , the non-resonant term proportional to m−1
e in Eq.

(12) can be neglected in comparison to the resonant term containing A+.
Let us substitute A− and A+ from Eq. (14) into Eq. (12) and calculate
the sums over σ and σ′. We obtain the cross-section in the form(

∂2σ

∂ωS∂Ω

)
µs

= r2
o

ωS

ωI

P (eI , eS)2�

∑
δδ′

δ (εδ − εδ′ + �∆ω)

×fδ(1 − fδ′)
∣∣∣∣〈δ′

∣∣∣∣∑
j

ei∆q·rj

∣∣∣∣δ〉∣∣∣∣2, (15)

where the band index c is omitted. The polarization factor

P (eI , eS) =
|eI · e∗

S|2

(1 − Ω2)2
+
(

Ω
1 − Ω2

)2

|[eI × e∗
S]|2 (16)

depends on the dimensionless frequency Ω = �ω/εg . Equation (15)
generalizes Eq. (11) to the case of large energies of light quanta. If
Ω → 0, the factor P (eI , eS) is reduced to |eI · e∗

S|2, and the results (15)
and (11) are equivalent to each other. When Ω becomes comparable to 1,
the light scattering can occur for crossed polarizations, eI⊥e∗

S, because
of spin-flip processes. The formal divergence of the cross-section (15)
at Ω = 1 should be cut off at 1 − Ω � ε/εg , where ε is the mean
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kinetic energy of electrons in the conduction band; see the analogous
calculations leading to Eq. (17.16).

The δ-function in Eqs. (11) and (15) can be represented in the form
of an integral over time, as in Eq. (8.6). Then, it is convenient to write
the sum

∑
δδ′ fδ(1−fδ′)ei(εδ−εδ′ )t/�〈δ′|

∑
j ei∆q·rj |δ〉〈δ|

∑
j e−i∆q·rj |δ′〉 as

a correlation function of the spatial Fourier transforms of the oper-
ators of electron density, n̂q =

∫
dre−iq·rn̂(r) =

∑
j e−iq·rj , in the

Heisenberg representation. Indeed, in the second quantization repre-
sentation n̂∆q(t) =

∑
δδ′〈δ|

∑
j e−i∆q·rj |δ′〉â+

δ (t)âδ′(t), where â+
δ (t) =

eiεδt/�â+
δ . Introducing the operator of the fluctuations of electron den-

sity as ∆̂n∆q(t) = n̂∆q(t) − 〈〈n̂∆q(t)〉〉, one can see that the correlation
function 〈〈∆̂n∆q(t)∆̂n−∆q(0)〉〉 is equal to

∑
δδ′
∑

δ1δ′
1
〈δ|
∑

j e−i∆q·rj |δ′〉
×〈δ′

1|
∑

j ei∆q·rj |δ1〉 ei(εδ−εδ′ )t/�

[
〈〈â+

δ âδ′ â+
δ′
1
âδ1〉〉 − 〈〈â+

δ âδ′〉〉〈〈â+
δ′
1
âδ1〉〉

]
,

and the factor in the square brackets is reduced to fδ(1 − fδ′)δδδ1δδ′δ′
1
.

Accordingly, Eq. (15) is rewritten as(
∂2σ

∂ωS∂Ω

)
µs

=
r2
o

2π

ωS

ωI

P (eI , eS)〈〈∆̂n∆q(t)∆̂n−∆q(0)〉〉∆ω . (17)

Therefore, the problem of light scattering is solved by calculating the
Fourier transform of the density-density correlation function, 〈〈∆̂n∆q(t)
∆̂n−∆q(0)〉〉∆ω =

∫∞
−∞ dtei∆ωt〈〈∆̂n∆q(t)∆̂n−∆q(0)〉〉. In thermodynamic

equilibrium, this correlation function is expressed through the polariz-
ability α(∆q, ∆ω), see Sec. 33 and problems 3.3 and 14.3, and can be
calculated with the aid of various diagram methods described in this
book. Expressing the polarizability through the dielectric permittivity
according to Eq. (33.5), we obtain(

∂2σ

∂ωS∂Ω

)
µs

=
r2
oV ε2∞|∆q|2�

4π2e2
ωS

ωI

P (eI , eS)
1 − e−�∆ω/T

Im
(

− 1
ε(∆q, ∆ω)

)
.

(18)
This equation relates, under the condition of thermodynamic equilib-
rium, the differential cross-section to the dielectric properties of the
medium. The cross-section (18) is always positive since Im ε−1(q, ω)
is negative at ω > 0 and positive at ω < 0. The inelastic light scatter-
ing with absorption (emission) of the energy of electromagnetic waves
corresponds to ∆ω > 0 (∆ω < 0) and is called the Stokes (anti-Stokes)
scattering. Owing to the property Im ε(∆q, −∆ω) = −Im ε(∆q, ∆ω),
the probability of the Stokes scattering in equilibrium is e�|∆ω|/T times
greater than that of anti-Stokes scattering.

The relation of the differential cross-section to the linear response to
the perturbation with frequency ∆ω is already seen from Eqs. (11) and
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(15). Indeed, in equilibrium one can write fδ(1 − fδ′) = (fδ − fδ′) [1 −
exp(−�∆ω/T )]−1, and the differential cross-section contains the sum∑

δδ′ Wδδ′(∆ω) (fδ − fδ′), where the transition probability Wδδ′(∆ω) is

proportional to δ (εδ − εδ′ + �∆ω)
∣∣∣〈δ′|

∑
j ei∆q·rj |δ〉

∣∣∣2. Thus, the differ-
ential cross-section can be treated in terms of the absorbed power U∆ω

defined by Eq. (2.23).
Let us calculate the differential cross-section (18) by using different

approximations for ε(∆q, ∆ω). The free-electron approximation takes
place if we substitute the Hartree-Fock (HF) polarizability (33.8) into
Eq. (18):

ε2∞|∆q|2
4π2e2 Im

(
− 1

ε(∆q, ∆ω)

)
� − 1

πe2 Im αHF (∆q, ∆ω) (19)

= 2
∫

dp
(2π�)3

(fp−�∆q/2 − fp+�∆q/2)δ(εp+�∆q/2 − εp−�∆q/2 − �∆ω).

Since the dispersion laws for photons contain the velocity of light, which
is large in comparison to the group velocities of electrons, the scattering
is nearly elastic, and the δ-function in Eq. (19) can be approximated by
δ(�∆ω). This δ-function is not sensitive to electron momenta, and the
differential cross-section (18) in this approximation is expressed as(

∂2σ

∂ωS∂Ω

)
µs

� r2
oNP (eI , eS)δ(ωI − ωS). (20)

This equation is written for non-degenerate electron gas and contains
the total number of electrons, N = V n, where n is the electron density.
Using Eq. (20), one can calculate the integral cross-section of light
scattering per one electron (problem 14.13).

A more sophisticated approach, which takes into account the collective
behavior of electron system, is the random phase approximation (RPA)
considered in Sec. 33. As follows from the results of Sec. 33,(

∂2σ

∂ωS∂Ω

)RPA

µs

=
(

∂2σ

∂ωS∂Ω

)HF

µs

∣∣∣∣ ε∞
ε(∆q, ∆ω)

∣∣∣∣2 . (21)

Therefore, to obtain the RPA result, one should divide the result of
the free-electron approximation by the squared absolute value of the
RPA dielectric permittivity normalized by ε∞. The relation (21) has
two important consequences. First, if |∆q| is small in comparison to
the Thomas-Fermi screening length, see Eq. (33.25), the quasielastic
scattering is screened out. Second, since ε(∆q, ∆ω) has plasmon poles
at ∆ω = ±ωp, see Eq. (33.26), there exists inelastic (Raman) scattering
with Stokes (ωS = ωI −ωp) and anti-Stokes (ωS = ωI +ωp) components.



694 QUANTUM KINETIC THEORY

In the general case, the correlation function 〈〈∆̂n∆q(t) ∆̂n−∆q(0)〉〉∆ω

has to be found from the equations of motion for pair products of creation
and annihilation operators (n̂q(t) =

∑
δδ′〈δ|

∑
j e−iq·rj |δ′〉{â+

δ âδ′}t in the
second quantization representation). The methods of such calculations
are developed in Secs. 68 and 69. Considering the correlation function
which enters Eq. (17), we notice that the difference in the wave vectors,
∆q, is small in comparison to the typical inverse lengths of electron
waves, since the group velocities of electrons are small in comparison to
the velocity of light (the maximal |∆q| corresponds to backscattering
of light and is equal to (ωI + ωS)/c̃). In other words, the fluctuations
leading to the light scattering belong to the quasi-classical length scale.
To describe them, one may use the equations of Sec. 69 for the averaged
operator ∆̂f

(av)

σrpt. Let us assume that the electrons interact only with the
self-consistent electric field appearing due to the fluctuations of electron
density. According to Eqs. (69.21) and (69.22), the Fourier transform
of the electron density operator is given by Eq. (69.24). We obtain

〈〈∆̂n∆q(t)∆̂n−∆q(0)〉〉∆ω = 2π

∣∣∣∣ ε∞
ε(∆q, ∆ω)

∣∣∣∣2 (22)

×2
∑
p

fp−�∆q/2(1 − fp+�∆q/2)δ(∆ω − vp · ∆q),

where ε(∆q, ∆ω) is given by Eq. (69.25). Using Eq. (22) in equilibrium,
one may notice that fp−�∆q/2(1−fp+�∆q/2) = (fp−�∆q/2−fp+�∆q/2)[1−
e−�∆ω/T ]−1 � −�∆q·(∂fp/∂p)[1−e−�∆ω/T ]−1, which leads to the result
(18) with the RPA dielectric permittivity calculated in the limit of small
∆q. Equation (22) is valid for electrons with an arbitrary distribution
function, and this distribution function should be as well substituted
into Eq. (69.25) for ε(∆q, ∆ω) entering Eq. (22). Since the differential
cross-section is sensitive to fp, the inelastic light scattering can be used
to probe the electron distribution. In the case of inverted electron distri-
bution (for example, when non-equilibrium electrons are created in the
conduction band by a strong laser pulse), the anti-Stokes components of
inelastic light scattering become stronger than the Stokes components.
The anisotropy of electron distribution (for example, in the presence of
a strong electric field) can be studied by both frequency and angular
dependence of the scattered radiation. The inelastic light scattering is
one of the most important tools for experimental probing of collective
excitations not only in bulk media, but also in low-dimensional elec-
tron systems. In particular, it allows one to study the two-dimensional
plasmon modes whose dispersion is different from that of the usual three-
dimensional plasma waves (problem 14.14).
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So far we have neglected the electron-phonon interaction. One of the
effects of this interaction is the contribution of the lattice vibrations in
ionic crystals into the frequency-dependent dielectric permittivity; see
Sec. 27 and problem 6.20. As a result, the operator of the fluctuating
potential energy entering Eq. (69.21) includes effects of both electron
and lattice polarization. Its Fourier transform is written as ∆̂Ukω =
(4πe/ε∞k2)[e∆̂nkω − γ12ik · ŵkω ], where γ12 = ωTO

√
(ε0 − ε∞)/4π and

ŵkω is the Fourier transform of the operator of relative displacement
found from the equation [ω2 − ω2

LO](ik · ŵkω) = −(4πeγ12/ε∞)∆̂nkω

which follows from the consideration given in problem 11.16. As a con-
sequence of these modifications, the constant ε∞ entering Eqs. (69.24)
and (69.25) for ∆̂nkω is replaced by the dielectric permittivity of the
ionic crystal lattice, κ(ω), given by Eq. (27.17). The correlation func-
tion of the electron densities is again given by Eq. (22), where ε∞ is
replaced by κ(∆ω) and the total dielectric permittivity ε(∆q, ∆ω) also
contains κ(∆ω) in place of ε∞. The equilibrium cross-section (18) un-
dergoes the same modifications. If ∆q → 0, the RPA expression for
the real part of the total dielectric permittivity has zeros at coupled
plasmon-phonon frequencies ω±; see problem 6.20. Thus, in the ab-
sence of the Landau damping, when the imaginary part of the dielectric
permittivity goes to zero (this is the case of strongly degenerate elec-
tron gas at ∆ω > vF |∆q|), the differential cross-section has sharp peaks
at |∆ω| = ω± corresponding to excitation of coupled plasmon-phonon
modes (problem 14.15).

The plasmon-phonon peaks observed in experiments are, however,
considerably broadened due to collision-induced relaxation of the elec-
tron density fluctuations. If the Landau damping is weak, the relaxation
gives the main contribution to the imaginary part of ε(∆q, ∆ω). Con-
sider, for example, electron-phonon scattering. If the spatial dispersion
is neglected, one finds Im ε(∆q, ∆ω) � Im ε(∆ω) = (4π/ω)Re σ(∆ω),
where the function Re σ(ω) is given by Eq. (68.28). One may also
use a simplified approach based upon the Drude formula ε(ω) � κ(ω) −
ε∞ω2

p/[ω(ω + iν)] with a frequency-independent relaxation rate ν; see
Eq. (8.31). This approach is rigorously justified at εF � �ω. Then, the
differential cross-section is given by(

∂2σ

∂ωS∂Ω

)
µs

=
r2
oV ε∞|∆q|2�

4π2e2
ωS

ωI

P (eI , eS)F (∆ω)
1 − exp(−�∆ω/T )

, (23)

F (ω) =
(ω2 − ω2

LO)2ω2
pων

[ω4 − ω2(ω2
LO + ω2

p) + ω2
TOω2

p ]2 + (ω2 − ω2
LO)2ω2ν2 .
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The frequency-dependent form-factor of light scattering, F (∆ω), con-
tains broadened plasmon-phonon resonances shown in Fig. 14.2. The
cross-section (23) goes to zero at ∆ω = ±ωLO because the fluctuations
of electron density are completely screened out at LO phonon frequency
by ionic motion. Equation (23) is valid for the equilibrium case only. To
take into account the collision-induced relaxation of density fluctuations
in the general (non-equilibrium) case, one should use Eq. (69.21) with
linearized collision integrals and corresponding Langevin sources on the
right-hand side.

Figure 14.2. Frequency dependence of the differential cross-section of light scattering
by coupled plasmon-phonon excitations at ωp = ωLO, ωp = 0.8 ωLO, and ωp =
1.2 ωLO (solid, dashed, and dotted curves, respectively). The calculation is carried
out according to Eq. (70.23) with ε0 = 15.69, ε∞ = 14.44 (ωT O/ωLO � 0.96), and
ν = 0.2 ωLO.

Apart from the light scattering by the electron density fluctuations,
there exists another inelastic scattering mechanism associated with the
lattice vibrations. It is called the phonon-assisted Raman scattering.
The light interacts with the lattice not directly but rather through the
electron sub-system. The lattice vibrations produce in the medium a
transient optical superlattice and it is from the latter that the scattering
occurs. The efficiency of the scattering is connected with the intensity of
the corresponding fluctuations of the dielectric permittivity, δεαβ(r, t).
The differential cross-section can be represented in the form (problem
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14.16)(
∂2σ

∂ωS∂Ω

)
µs

=
(ωS/c)4

32π3

∑
αβγδ

eδ
Seγ∗

I eα∗
S eβ

I 〈〈δεδγ(∆q, t)δεαβ(−∆q, 0)〉〉
∆ω .

(24)
This expression is derived from the classical electrodynamics. In order to
apply it to the quantum case, one should consider the fluctuations of the
dielectric permittivity standing in Eq. (24) as operators in the Heisen-
berg representation. The quantity δε contains the terms linear in the
deformation tensor (B.12): δεαβ(r) =

∑
α′β′(∂εαβ/∂εα′β′)εα′β′(r). The

partial derivative in this expression is treated merely as a proportionality
coefficient (a constant dimensionless tensor of the fourth rank). Express-
ing the deformation tensor through the quantized displacement vector
(6.29), one can write the correlation function in Eq. (24) through the
correlation functions of two bosonic creation and annihilation operators.
After simple transformations, we obtain the differential cross-section for
the light scattering by acoustic phonons:

(
∂2σ

∂ωS∂Ω

)
µs

=
(ωS/c)4

(4π)2
�V |∆q|2
2ρω∆ql

∣∣∣∣∣∣
∑

αβα′β′

(
∂εαβ

∂εα′β′

)
eα∗

S eβ
I eα′

∆ql

∆qβ′

∆q

∣∣∣∣∣∣
2

×
[
(Nl

∆q + 1)δ(∆ω − ω∆ql) + Nl
∆qδ(∆ω + ω∆ql)

]
. (25)

The Stokes and anti-Stokes contributions correspond to the emission and
absorption of phonons, respectively.

In the ionic crystals, one uses the expansion

δεαβ(r) =
∑

γ

[(
∂εαβ

∂wγ

)
wγ(r) +

(
∂εαβ

∂ELγ

)
ELγ(r)

]
(26)

in terms of the relative ionic displacement w and longitudinal electric
field EL = −4πP associated with this displacement; see Eqs. (6.14)−
(6.21). Employing the expression (6.19) for the quantized relative dis-
placement together with the relation (6.20), we calculate the correlation
functions of two bosonic operators and find(

∂2σ

∂ωS∂Ω

)
µs

=
(ωS/c)4

(4π)2
2π�V ωLO

ε∗ |A∆q|2

× [(NLO + 1)δ(∆ω − ωLO) + NLOδ(∆ω + ωLO)] , (27)

where the LO phonon dispersion is neglected. The factor A∆q is given
by the following expression:
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A∆q =
∑
αβγ

(
∂εαβ

∂ELγ

)
eα∗

S eβ
I

∆qγ

∆q

− ε∞
ωTO

√
4π(ε0 − ε∞)

∑
αβγ

(
∂εαβ

∂wγ

)
eα∗

S eβ
I

∆qγ

∆q
. (28)

The inelastic light scattering described by Eq. (27) brings the resonant
contribution at ∆ω = ±ωLO. Such a contribution is missing in the
spectrum of collective plasmon-phonon excitations; see Eq. (23). To
describe the broadening of the LO phonon peak, one should consider
the damping due to phonon-phonon interaction; see the final part of
Sec. 27. Since this damping is weak in comparison to the damping
of the electron density fluctuations, the LO phonon peaks observed in
experiments are sharper than the plasmon-phonon peaks.

71. Fluctuations in Mesoscopic Conductors
We remind that mesoscopic conductors are the systems whose size

is small in comparison to the inelastic scattering length so that only
the elastic scattering of electrons has to be taken into account. The
averaged current through such systems is described in Sec. 58 within
the scattering-matrix formalism. Let us use this formalism in order to
calculate the correlation function of the currents in the leads contacted
to a mesoscopic sample. The correlation function of the currents in the
leads N and M (noise power) is defined by analogy to Eq. (68.9):

SNM(ω) =
1
2
〈〈ÎN(t)ÎM(0) + ÎM(0)ÎN(t)〉〉ω. (1)

The Heisenberg operator of the current is given by

ÎM(t) =
∫
r∈SM

dr Î(r, t) · nSM
(r), (2)

where Î(r, t) = eiĤt/�Î(r)e−iĤ t/� with Î(r) defined by Eq. (4.15), and
nSM

(r) is the unit vector perpendicular to the surface SM of the contact
M and directed inside the sample. Employing the basis |Nnε〉 described
by the wave functions (58.14), we introduce the operators of creation and
annihilation of the electrons which have the energy ε in the state n and
come to the sample through the lead N : â+

Nnε and âNnε. These operators
satisfy the fermionic anticommutation rule similar to Eq. (4.21):

âNnεâ
+
Mmε′ + â+

Mmε′ âNnε = δNMδnmδ(ε − ε′). (3)
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Expressing the operator Î(r, t) in the second quantization representation,
we find

ÎM(t) =
1

2π�

∑
N1N2

∑
n1n2

∫
dε

∫
dε′ei(ε−ε′)t/�I(M)

N1n1,N2n2(ε, ε
′)â+

N1n1εâN2n2ε′ ,

(4)
where I(M)

N1n1,N2n2(ε, ε
′) is defined in Eq. (58.19). Let us substitute Eq.

(4) into Eq. (1) and average the products of four second-quantization
operators (a similar averaging is already considered in Eq. (68.24) ). We
obtain

SNM(ω) =
1

2π�

∑
N1N2

∑
n1n2

∫
dεI (N)

N1n1,N2n2(ε, ε + �ω)I(M)
N2n2,N1n1(ε + �ω, ε)

× {fN1(ε)[1 − fN2(ε + �ω)] + fN2(ε + �ω)[1 − fN1(ε)]} , (5)

where fN(ε) is the electron distribution function in the lead N . It is
introduced according to 〈〈â+

Nnε âN′n′ε′〉〉 = δNN′δnn′δ(ε − ε′)fN(ε). This
function depends only on the energy ε, because each lead is assumed
to be in local equilibrium (since the chemical potentials of electrons in
different leads are different, we retain the index N). Note that we have
multiplied SNM(ω) by the spin degeneracy factor 2 because the spin index
is not written explicitly in â+

Nnε and âNnε. The correlation function (5)
has the symmetry property SNM(ω) = SMN(−ω).

Let us consider the static noise, ω = 0. Substituting the expressions
(58.20) of the matrix elements I(M)

N1n1,N2n2(ε, ε
′) into Eq. (5), we find

SNM =
e2

π�

∫
dε

[
NNfN(1 − fN)δNM − TMNfN(1 − fN) − TNMfM(1 − fM)

+
1
2

∑
N1N2

tr
(
Ŝ+

NN1
ŜNN2 Ŝ

+
MN2

ŜMN1

)
(fN1 + fN2 − 2fN1fN2)

]
. (6)

We note (see Sec. 58) that ŜNN′ is the matrix whose elements are
SNn,N′n′(ε), and tr . . . defines the matrix trace over the states n, n′, . . . .
Next, NN is the total number of channels in the lead N . The scattering
matrices, transmission coefficients, and electron distribution functions
in Eq. (6) have the same argument, ε, which is omitted for brevity. In
the equilibrium case, when the distribution function f(ε) is independent
of the lead index, the last term on the right-hand side of Eq. (6) is
transformed according to Eq. (58.16) to a term proportional to NNδNM .
The non-diagonal (N 	= M) correlation function in the case of equilib-
rium electron distribution with temperature Te is expressed with the
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use of f(ε)[1 − f(ε)] = −Te[∂f(ε)/∂ε]. Employing also Eqs. (58.21)
and (58.22) together with the symmetry property GNM = GMN in the
absence of magnetic fields, one can see that

SNM = −e2Te

π�

∫
dε

(
−∂f(ε)

∂ε

)
[TNM(ε) + TMN(ε)] = −2TeGNM . (7)

Therefore, the current-current correlation function is proportional to the
conductance between the leads N and M . Taking into account the linear
relation (58.7), we find that Eq. (7) is a manifestation of the fluctuation-
dissipation theorem (68.9) at �ω � Te. Note that the sign of SNM is
negative. One can prove that the correlation functions of the currents in
the different leads are always negative (problem 14.17). Consequently,
the correlation functions of the currents in the same lead are always
positive, because of current conservation; see Eq. (58.9).

Consider a two-terminal conductor, where there are only left (L) and
right (R) leads, and S ≡ SLL = SRR = −SLR = −SRL since the current
is conserved. Applying Eq. (6) to this case, it is convenient to consider
non-diagonal components, for example, N = L and M = R. By using
Eq. (58.16) (see also problem 14.17) and the channel representation (see
the discussion after Eq. (58.22)), we obtain

S =
e2

π�

∫
dε

(
T (ε) {fL(ε)[1 − fL(ε)] + fR(ε)[1 − fR(ε)]}

+
∑

n

Tn(ε)[1 − Tn(ε)][fL(ε) − fR(ε)]2
)

, (8)

where Tn(ε) ≡ T (n)
RL (ε) is the channel transmission probability and T (ε) =

TRL(ε) =
∑

n Tn(ε) is the total transmission probability at the energy ε.
The first term in Eq. (8) describes the quasi-equilibrium noise due to
fluctuations in the leads, the latter are considered as local-equilibrium
sub-systems. The second term is associated with the current and called
the shot noise. This term is of the second order in the distribution
functions. It increases the total noise power and cannot be neglected if
the applied bias eV is comparable to the temperature Te. On the other
hand, one may often neglect the energy dependence of T (ε) and Tn(ε)
on the scale of Te and eV and replace the transmission coefficients by
those taken at the Fermi energy. Then, the integral over energy gives us

S =
e2

π�

[
2Te

∑
n

T 2
n + eV coth

(
eV

2Te

)∑
n

Tn(1 − Tn)

]
. (9)
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The noise power (9) is a complicated function of temperature and voltage
rather than a superposition of equilibrium and shot noises. For low
voltages, eV � Te, we obtain the equilibrium formula S = 2TeG, in
accordance with the general result (7). One can derive a similar formula
for frequency-dependent noise (problem 14.18).

For zero temperature, when coth(eV/2Te) = 1, the shot noise contri-
bution in Eq. (9) is much greater than the equilibrium one and propor-
tional to eV

∑
n Tn(1 − Tn). The factor 1 − Tn describes the reduction

of the shot noise associated with a finite transparency of the mesoscopic
sample and originates from the correlations imposed by the Pauli princi-
ple. As a result, the ratio of the shot noise power to the Poissonian noise
power SP = eI (which corresponds to low-transparent conductors such
as tunneling junctions) is less than 1. Depending on the transparency of
the sample, this ratio, denoted below as F , varies between 0, for high-
transmitting channels, and 1, for low-transmitting channels. Under the
approximation of energy-independent transmission, as in Eq. (9), the
factor F is given by

F =
∑

n Tn(1 − Tn)∑
n Tn

. (10)

In the classical limit of disordered conductors containing many channels,
one has a universal value F = 1/3, without regard to the degree of
disorder, size, and any other properties of the sample. This important
result can be obtained by considering quasi-classical fluctuations of the
current through the microcontacts described in Sec. 12 (problem 14.19).
To find a link between the classical result and Eq. (10), one may notice
that in the limit of many channels the sums in Eq. (10) are equivalent
to averages over the transmission coefficient distribution. Thus, F =∫

dTP (T )T (1−T )/
∫

dTP (T )T , where P (T ) is the distribution function
of transmission coefficients. In the case of a disordered conductor, when
the characteristic length L of the sample is large in comparison to the
mean free path length lF of Fermi electrons but small in comparison to
the localization length L0 (see Sec. 59), one has

P (T ) =
lF

2L0

1
T

√
1 − T

, Tmin < T < 1, Tmin = 4e−2L0/lF , (11)

and the result F = 1/3 follows immediately. Equation (11) is presented
here without a derivation. Such a derivation is based upon the random
matrix theory which we do not consider in this book. The most remark-
able feature of P (T ) is its bimodal form: almost open (T → 1) and
almost closed (T → 0) channels are preferred. In spite of L � lF , the
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sample is assumed to be mesoscopic, the inelastic scattering is absent. If
the inelastic scattering becomes significant, the shot noise is suppressed.

The conductance of a mesoscopic sample is unique and determined
by the sample geometry and by a given distribution (configuration) of
the scattering centers in the sample. If one takes several samples of the
same shape and with the same number of identical scatterers, the con-
ductances of these samples will be different, because the configurations
of the scatterers are different. Therefore, apart from the fluctuations
of electric current described above, there exist fluctuations of the con-
ductance. Let us express the conductance G in fundamental units and
introduce a dimensionless function g according to G = (e2/2π�)g. One
may introduce the variance (∆g)2 = g2 − (g)2, where g is the dimension-
less conductance averaged over configurations of the scattering potential.
The impurities and defects in the sample can move between the sites in
the process of diffusion. This process produces fluctuations of the con-
ductance of a single sample with time. Next, by applying a magnetic
field H or by changing the Fermi energy εF of electrons in the sample
(for example, by biasing a gate electrode), one considerably rearranges
electron paths in the sample. Therefore, a fluctuating dependence of the
conductance on the external fields should be expected.

One may naively assume that the relative variance of the conductance
fluctuations, (∆g)2/(g)2, decreases with increasing sample size or with
the number of the scattering centers. This statement is not correct, be-
cause the electrons keep phase coherence over large parts of the sample,
and the concept of self-averaging, which works well for classical vari-
ables (see problem 14.1), is not valid for the mesoscopic samples. The
remarkable result discussed below is that the variance of g is a universal
constant of the order of unity, independent of the size of the system and
its dimensionality. Thus, taking into account that the conductance of a
d-dimensional sample is proportional to Ld−2, where L is the linear size
of the sample, we obtain

(∆g)2

(g)2
∝ 1

L2(d−2) . (12)

If d ≤ 2, this quantity does not decrease with increasing L, which means
that no self-averaging occurs. By rearranging the scattering potential
pattern, we close some channels and open other channels, but the uni-
versality of (∆g)2 means that the fluctuations of the effective number of
open channels remain of the order of unity. A rigorous proof of this prop-
erty is presented below with the use of the Green’s function formalism
developed in Secs. 14 and 15.
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To describe the conductance fluctuations, let us introduce the corre-
lation function

F (∆E, ∆H) = 〈〈∆g(εF , H)∆g(εF + ∆E, H + ∆H)〉〉 (13)

which depends on the variations of the Fermi energy, ∆E, and magnetic
field, ∆H. Here 〈〈. . .〉〉 denotes the averaging over the random poten-
tials. The conductances entering Eq. (13) are expressed through the
Green’s functions as described in Sec. 13. We consider metallic samples
with dimensions Lx, Ly , and Lz , assuming that the current flows along
OZ. In the absence of magnetic fields, the dimensionless conductance is
expressed through the static conductivity σ given by Eq. (13.27), where,
however, the averaging over the random potentials should be omitted:

g(εF ) =
2π�LxLy

e2Lz
σ =

(
�

mLz

)2∑
ss′

∑
pp′

pzp
′
z(−1)lGs

εF
(p,p′)Gs′

εF
(p′,p).

(14)
It is assumed that the temperature is zero. The indices s and s′ denote
retarded (R) or advanced (A) Green’s function, and l = 1 (or 0) for
s = s′ (or s 	= s′). Therefore, Eqs. (13) and (14) lead to

F (∆E) =
(

�

mLz

)4 ∑
s1s′

1s2s′
2

∑
p1p2p′

1p
′
2

p1zp
′
1zp2zp

′
2z(−1)l1+l2〈〈Gs1

εF
(p1,p′

1)

(15)
×G

s′
1

εF (p′
1,p1)Gs2

εF +∆E(p2,p′
2)G

s′
2

εF +∆E(p′
2,p2)〉〉 − g(εF )g(εF + ∆E).

The first term of this expression contains the contribution g(εF )g(εF +
∆E) which corresponds to independent averaging of the first and second
pairs of the Green’s functions, 〈〈Gs1

εF
G

s′
1

εF 〉〉〈〈Gs2
εF +∆EG

s′
2

εF +∆E〉〉. This
contribution cancels with the second term in Eq. (15). Thus, only
the averages including the Green’s functions both of the first and of the
second pair contribute to F (∆E). The simplest contribution of this kind,
denoted below as F1(∆E), is written through the correlation functions
defined by Eq. (15.1):

F1(∆E) =
(

�

mLz

)4 ∑
s1s′

1s2s′
2

∑
p1p2p′

1p
′
2

p1zp
′
1zp2zp

′
2z(−1)l1+l2

×
[
K

s1s′
2

EE′ (p1,p′
2|p′

1,p2)K
s′
1s2

EE′ (p′
1,p2|p1,p′

2) (16)

+Ks1s2
EE′ (p1,p2|p′

1,p
′
2)K

s′
1s′

2
EE′ (p′

1,p
′
2|p1,p2)

]
,
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where E = εF and E′ = εF + ∆E.
The methods of calculation of the correlation functions entering Eq.

(16) are described in detail in Sec. 15. These functions satisfy Eq. (15.5)
containing the irreducible vertex part Γ. Consider, for example, the cor-
relation function K

s1s′
2

EE′ (p1,p′
2|p′

1,p2). Since we are interested in quan-
tum interference effects, we evaluate the vertex part by considering the
contribution of maximally crossed diagrams; see Eqs. (15.16)−(15.19).
An obvious generalization of these equations by the substitutions p → p1
and −p → p′

2 leads to (see Eq. (15.20))

Γs1s′
2

EE′ (p1,p′
2|p1 − �q,p′

2 + �q) (17)

= w

[
1 − w

V

∑
p

Gs1
E

(
p +

∆p
2

)
G

s′
2

E′

(
p − ∆p

2

)]−1

≡ Γ̃s1s′
2

EE′ (∆p),

where ∆p = p1 − p′
2 − �q and Gs

E(p) is the averaged Green’s func-
tion. Here and below in this section, we assume the case of short-range
scattering potentials, when the Fourier transform of the random poten-
tial correlation function is a constant, w. We consider the metallic case
εF τ/� � 1, where τ is the scattering time defined, according to Eq.
(8.21), by �/τ = πwρD(εF ). In these conditions, the divergent contribu-
tion to Γ from Eq. (17) appears at s1 	= s′

2; see Sec. 15. Calculating the
sum over p in Eq. (17) for q � �/lF and ∆E � �/τ , we obtain

Γ̃AR

EE′(�q) =
w

τ
C∆E/�(q), C∆E/�(q) =

1
Dq2 − i∆E/�

, (18)

where D = v2
F τ/d is the diffusion coefficient. This vertex part has been

calculated in Sec. 15 for the two-dimensional case (d = 2) at ∆E = 0;
see Eqs. (15.23) and (15.24). The function C∆E/�(q) can be viewed as
a spatial Fourier transform of the Cooperon C∆E/�(r, r′) satisfying the
diffusion equation (43.23) for a spatially homogeneous system.

Therefore, to find K
s1s′

2
EE′ (p1,p′

2|p′
1,p2), one should solve Eq. (15.5) by

iterations, with the use of Eq. (17). However, in contrast to the results
of Sec. 15, such a solution is more complicated because the singular
contribution may appear at p1 − p2 → 0 as well as at p1 + p′

2 → 0
(problem 14.20):

K
s1s′

2
EE′ (p1,p′

2|p′
1,p2) = δp1p′

1
δp2p′

2
Gs1

E (p1)G
s′
2

E′(p′
2)

+
δp1−p2,p′

1−p′
2

V
Gs1

E (p1)G
s′
2

E′(p′
2)
[
Γ̃s1s′

2
EE′ (p1 − p2) (19)
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+Γ̃s1s′
2

EE′ (p1 + p′
2) − w

]
Gs1

E (p′
1)G

s′
2

E′(p2).

The factor w in the square brackets should be neglected because the
corresponding term is not associated with singularities and gives, in the
metallic case we consider, a small contribution in comparison to the first
term on the right-hand side of Eq. (19).

Considering the other correlation functions on the right-hand side of
Eq. (16) in a similar way, one may conclude that the main divergent
contribution to F1 comes from the terms where s-indices of each corre-
lation function are different. This necessarily implies (−1)l1+l2 = 1 so
that all contributing terms are positive. The second term in the square
brackets of Eq. (16) gives the same contribution as the first one (this can
be checked by the permutation p′

2 ↔ p2). Next, since only the terms
containing products of two vertex parts with the same arguments (either
p1 −p2 or p1 +p′

2) are essential, the presence of the two different vertex
parts in Eq. (19) leads to doubling of the results. Therefore, using Eqs.
(18) and (19), we transform Eq. (16) to

F1(∆E) = 8
(

�

mLz

)4 w2

τ2
1

V 2

∑
pp′q

pzp
′
z(pz − �qz)(p′

z − �qz)

×
{∣∣C∆E/�(q)GR

εF
(p)GR

εF
(p′)GR

εF +∆E(p − �q)GR
εF +∆E(p′ − �q)

∣∣2 (20)

+Re
[
C∆E/�(q)GA

εF
(p)GA

εF
(p′)GR

εF +∆E(p − �q)GR
εF +∆E(p′ − �q)

]2}
.

The region of interest is associated with small q and ∆E. Since the
singular behavior for q → 0 and ∆E → 0 is already present in C∆E/�(q),
one may neglect q and ∆E in the Green’s functions. As a result, Eq.
(20) is reduced to

F1(∆E) = 4
(

�

mLz

)4 w2

τ2

∑
q

[ReC∆E/�(q)]2 (21)

×
[

2
V

∑
p

p2
z

[(εF − p2/2m)2 + (�/2τ)2]2

]2

.

The contribution (2/V )
∑

p . . . standing in the square brackets is equal
to πp2

F ρD(εF )(2τ/�)3/2d, and we finally obtain

F1(∆E) = 4
(

2
π

)4∑
q

⎛⎝Re

[(
qLz

π

)2

− i
∆E

Ec

]−1
⎞⎠2

, (22)
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where the energy Ec = π2
�D/L2

z is associated with the time of diffusion
through the sample, L2

z/D. This energy defines the correlation range so
that the conductances g(εF ) and g(εF +∆E) are statistically independent
at ∆E � Ec.

Considering the variance (∆g)2 = F (0), we have to introduce a cutoff
for q to make the result convergent. In the absence of inelastic scattering
(the case we consider), this cutoff is determined by the characteristic size
L of the sample, according to q > π/L. This means that F1(0) given by
Eq. (22) at ∆E = 0 is a constant independent of the size of the sample.
To take into account the shape of the sample, one needs a more careful
consideration. We have already noticed that C0(q) is a spatial Fourier
transform of the Cooperon C0(r, r′). Consequently,

∑
q [ReC0(q)]2 in

Eq. (21) should be replaced by
∫

dr
∫

dr′ [ReC0(r, r′)]2. Let us find the
Cooperon from the diffusion equation (43.23) with physically reasonable
boundary conditions. Namely, at the boundaries x = ±Lx/2 and y =
±Ly/2, where the diffusion stops, the normal derivatives dC0(r, r′)/dx
and dC0(r, r′)/dy, respectively, are equal to zero. At the current-carrying
boundaries z = ±Lz/2, the function C0(r, r′) should be equal to zero,
because the leads are assumed to be good conductors, where the diffusion
coefficients are large in comparison to the diffusion coefficient in the
mesoscopic sample. Imposing these boundary conditions, we find

C0(r, r′) =
∑
m

χmrχ
∗
mr′

νm
, m = (mx, my, mz), (23)

where mx, my , and mz are integer numbers. The eigenfunctions χmr
and eigenvalues νm are given by

χmr =

√
8

LxLyLz
cos

[
πmx

(
x

Lx
− 1

2

)]

× cos
[
πmy

(
y

Ly
− 1

2

)]
sin
[
πmz

(
z

Lz
− 1

2

)]
,

νm = D
π2

L2
z

[
m2

z +
L2

z

L2
x

m2
x +

L2
z

L2
y

m2
y

]
≡ D

π2

L2
z

λm . (24)

The integers mx and my run from 0 to infinity, while mz runs from 1 to
infinity. With the aid of the dimensionless quantity λm introduced by
Eq. (24), we rewrite Eq. (22) at ∆E = 0 as

F1(0) = 4
(

2
π

)4 ∞∑
mx,my=0

∞∑
mz=1

(
Reλ−1

m
)2

. (25)
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For the samples long in z direction (mesoscopic wires), the main con-
tribution to the sum comes from mx = my = 0. Therefore, one has
λm = m2

z and F1(0) = 32/45.
We have calculated the contribution F1 which comes from the corre-

lations of two Green’s functions in Eq. (15). The correlation function of
four Green’s functions, however, contains additional contributions which
are not reduced to double correlation functions of the kind (15.1). One
can find only two types of such contributions, presented in the diagram
form as

p1

p′
1

p2

p′
2

p′
1

p1

p′
2

p2

,

p1

p′
1

p2

p′
2

p′
1

p1

p′
2

p2

. (26)

As in Sec. 15, the rectangle stands for the irreducible vertex part. The
two diagrams of Eq. (26) are irreducible. The other diagrams of such
kind can be obtained by permutations of the vertex parts. Denoting
the contribution coming from the irreducible diagrams containing three
and four vertex parts by F2 and F3, respectively, we present the result
without details of derivation:

F2(0) = −16
(

2
π

)4

Re
∞∑

mx,my=0

∞∑
nx,ny=0

∞∑
mz=1,3,...

∞∑
nz=2,4,...

×(fmznz)2

λmλn

(
1

λm
+

1
λn

)
, (27)

F3(0) = 48
(

2
π

)4

Re
∞∑

mx,my=0

∞∑
nx,ny=0

∞∑
lx,ly=0

∞∑
kx,ky=0

×
∞∑

mz ,lz=1,3,...

∞∑
nz ,kz=2,4,...

fmznzfnz lzflzkzfkzmz

λmλnλlλk
, (28)

where fmn = 4mn/[π(m2 − n2)]. The total contribution is

F (0) = F1(0) + F2(0) + F3(0). (29)

A numerical calculation of the sums gives us [(∆g)2]1/2 =
√

F (0) =
0.729 for a wire, 0.862 for a square, and 1.088 for a cube. The shape
dependence becomes strong when either Lx or Ly are longer than Lz ,
and it is possible to obtain [(∆g)2]1/2 considerably greater than 1.
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The introduction of the phase relaxation due to inelastic scattering
can be done by adding the phase relaxation rate 1/τϕ to νm in Eq.
(23), like in Eq. (43.25). The conductance fluctuations are suppressed
if the diffusion length

√
Dτϕ associated with the phase relaxation time

τϕ becomes less than the size of the sample. The magnetic field sup-
presses the conductance fluctuations when the magnetic length becomes
less than the sample size L⊥ in the direction perpendicular to the field.
This suppression, however, is not complete. Indeed, by adding the term
proportional to the vector potential to each of the momenta in Eq. (15),
we suppress only one of the two singular vertex part present in Eq. (19),
namely Γ̃s1s′

2
EE′ (p1+p′

2). Therefore, in strong enough magnetic field, when
the magnetic length is much smaller than L⊥, one may expect F (∆E)
twice smaller than in the absence of this field. The correlation field Hc,
which characterizes the suppression of F (∆E, ∆H) with ∆H, is esti-
mated as Hc ∼ Φ0/L2

⊥, where Φ0 is the flux quantum (59.13).

72. NDT Formalism for Fluctuations

The central problem of the quantum theory of fluctuations is to find
the fourth-order correlation function 〈〈{â+

p′
1
âp1}t1{â+

p′
2
âp2}t2〉〉, see, for

example, Eq. (68.24), or the function 〈〈Ψ̂+
x′

1
(t1)Ψ̂x1(t1)Ψ̂

+
x′

2
(t2)Ψ̂x2(t2)〉〉

expressed in terms of the field operators. The diagram technique con-
sidered in Appendix E allows one to derive closed equations for the
correlation functions of arbitrary order at zero temperature provided
that all time arguments are different so that one can use a formalism
of Green’s functions. Such equations cannot be, in general, written for
the above-defined correlation functions depending only on two time vari-
ables. A similar situation has been encountered in Chapter 8. We remind
that since the usual double-time Green’s functions are not defined for
coinciding time arguments, one cannot use them to obtain equations
for the averages of the operators of physical quantities. It is neces-
sary to introduce a two-branch time contour and consider four (instead
of one) Green’s functions, which leads to the non-equilibrium diagram
technique.

One can act in a similar way to obtain the desired equations for
the correlation functions of fluctuations. Below we generalize the non-
equilibrium diagram technique developed in Chapter 8 to the case of
two-particle correlation functions. We present a brief outline of this
method without considering its possible applications. Let us introduce
a four-branch time contour C4, see Fig. 14.3, by adding one more for-
ward and one more backward branches to the contour shown in Fig. 8.1.
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By definition,

Cs1s′
1s2s′

2(11′; 22′) = 〈〈T̂C4Ψ̂s1(1)Ψ̂+
s′
1
(1′)Ψ̂s2(2)Ψ̂+

s′
2
(2′)〉〉

−〈〈T̂C4Ψ̂s1(1)Ψ̂+
s′
1
(1′)〉〉〈〈T̂C4Ψ̂s2(2)Ψ̂+

s′
2
(2′)〉〉, (1)

where T̂C4 is the operator of chronological ordering along the contour
C4. The contour branch indices (s1, s′

1, s2, and s′
2 in Eq. (1)) can take

values from 1 to 4, in contrast to Sec. 41, where there are only two
branch indices denoted as − and + (equivalent to 1 and 2 of the present
technique, respectively).

Figure 14.3. Four-branch time contour used in the calculations of the correlation
functions of fluctuations.

The one-particle Green’s functions defined through the double cor-
relation functions of the field operators become 4 × 4 matrices in the
four-branch representation. There are, however, only three linearly-
independent components of such matrices, because of the obvious prop-
erties G33 = G11 ≡ G−−, G44 = G22 ≡ G++, Gss′ |s<s′ = G12 ≡ G−+,
and Gss′ |s>s′ = G21 ≡ G+−. Therefore, one may write the 4 × 4 matrix
Green’s function G̃ in terms of 2 × 2 matrix blocks:

G̃ =
(

Ĝ G−+(σ̂x + 1̂)
G+−(σ̂x + 1̂) Ĝ

)
, (2)

where Ĝ is the 2 × 2 matrix (39.12). In a similar fashion, the 4 × 4
self-energy matrix is defined as Σ33 = Σ11 ≡ Σ−−, Σ44 = Σ22 ≡ Σ++,
Σss′ |s<s′ = (−1)s+s′+1Σ12 ≡ (−1)s+s′+1Σ−+, and Σss′ |s>s′ = (−1)s+s′+1

Σ21 ≡ (−1)s+s′+1Σ+−, or, equivalently,

Σ̃ =
(

Σ̂ Σ−+(σ̂x − 1̂)
Σ+−(σ̂x − 1̂) Σ̂

)
(3)

with Σ̂ determined by Eqs. (39.17)−(39.20). Using these definitions, one
can generalize the Dyson equations (39.21) for G̃ and Σ̃. These 4 × 4
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matrix equations have exactly the same form as (39.21), though instead

of σ̂z one should substitute σ̃z =
(

σ̂z 0̂
0̂ σ̂z

)
(problem 14.21):

(
i�

∂

∂t1
− ĥ1

)
G̃(1, 1′) = σ̃zδ(1 − 1′) +

∫
d3σ̃zΣ̃(1, 3)G̃(3, 1′),

(
i�

∂

∂t′1
− ĥ1′

)∗
G̃(1, 1′) = σ̃zδ(1 − 1′) +

∫
d3G̃(1, 3)Σ̃(3, 1′)σ̃z . (4)

By subtracting the second equation in this set from the first one, we
write for G̃(1, 1′) an equation similar to the generalized kinetic equations
(40.19) and (41.27):[

i�

(
∂

∂t1
+

∂

∂t′1

)
− ĥ1 + ĥ∗

1′

]
G̃(1, 1′)

=
∫

d3
[
σ̃zΣ̃(1, 3)G̃(3, 1′) − G̃(1, 3)Σ̃(3, 1′)σ̃z

]
. (5)

The correlation function (1) is a tensor of the fourth rank. Let us
consider a particular form of this function, when the arguments 1 and
1′ correspond to the second pair of the time contour axes (s1, s

′
1 = 3, 4)

while the second pair of arguments (2 and 2′) corresponds to the first
pair of the axes (s2, s

′
2 = 1, 2). Such functions can be also written in the

form
Cs1s′

1s2s′
2(11′; 22′) = −�

2〈〈δ̂G
s1s′

1(1, 1′)δ̂G
s2s′

2(2, 2′)〉〉, (6)

where δ̂G are the operators of fluctuations:

i�δ̂G
s1s′

1(1, 1′) = T̂CΨ̂s1(1)Ψ̂+
s′
1
(1′) − 〈〈T̂CΨ̂s1(1)Ψ̂+

s′
1
(1′)〉〉. (7)

The ordering in Eq. (7) is carried out along the usual two-branch contour
C, but one should have in mind that this contour is a part of the contour
C4, and the two operators of fluctuations entering Eq. (6) are ordered
within different pairs of branches of the contour C4. As follows from the

definition (7), 〈〈δ̂G
s1s′

1(1, 1′)〉〉 = 0. There are obvious relations between
the elements of the matrix Cs1s′

1s2s′
2 . Such relations are quite similar to

the relations (39.22) between the one-particle Green’s functions:

C34s2s′
2 + C43s2s′

2 = C33s2s′
2 + C44s2s′

2 ,

Cs1s′
112 + Cs1s′

121 = Cs1s′
111 + Cs1s′

122. (8)
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Using the first equation, we define three linearly-independent correlation
functions

CR,s2s′
2 = C33s2s′

2 − C34s2s′
2 ,

CA,s2s′
2 = C33s2s′

2 − C43s2s′
2 , (9)

CF ,s2s′
2 = C34s2s′

2 + C43s2s′
2

by analogy with Eq. (40.3). Considering combinations of the functions
with different second pairs of the branch indices, one can use the second
identity of Eq. (8) and construct nine independent correlation functions
of the type (6): CRR, CRA, CRF , CAR, CAA, CAF , CFR, CFA, and CFF .
For example, CRR = CR,11 − CR,12.

To develop the diagram technique, one should express the two-particle
Green’s functions in terms of the correlation functions of the field oper-
ators in the interaction representation, similar to Eq. (41.15):

〈〈T̂C4Ψ̂s1(1)Ψ̂+
s′
1
(1′)Ψ̂s2(2)Ψ̂+

s′
2
(2′)〉〉 (10)

= 〈〈T̂C4 ŜC4Ψ̂0s1(1)Ψ̂+
0s′

1
(1′)Ψ̂0s2(2)Ψ̂+

0s′
2
(2′)〉〉 .

The operator ŜC4 is defined by Eq. (41.14), where the integral is now
taken along the contour C4. Expanding this operator in series of the
interaction Hamiltonian, one can obtain expressions for the two-particle
Green’s functions in a given order with respect to the interaction. Since
we work with causal Green’s functions defined on a special time contour,
such expressions can be constructed in a similar way as in Appendix E,
where many-particle Green’s functions have been considered. In partic-
ular, one can write the Bethe-Salpeter equation similar to Eq. (E.29)
by adding the contour branch indices (s = 1 − 4) to each variable and
implying summation over internal branch indices, which is equivalent to
multiplication of 4 × 4 matrices. In the following, to simplify the no-
tations in the operations with 4 × 4 matrices, we include the contour
branch indices into the multi-indices, i.e., write C(11′; 22′) instead of
Cs1s′

1s2s′
2(11′; 22′) and so on. The expressions whose multi-indices do

not include the branch indices will contain these indices in the super-
scripts, as in Eq. (6), or will be written in the form of 4 × 4 matrices
denoted by the sign of tilde, as in Eqs. (4) and (5).

The correlation function (1) is related to the two-electron Green’s
function (E.6) according to C(11′; 22′) = −�

2[G(1, 2; 1′, 2′) − G(1, 1′)
G(2, 2′)]. To find an equation for this correlation function, one can use,
in principle, the Bethe-Salpeter equation (E.29) for G(1, 2; 1′, 2′). For
our purposes, however, it is convenient to use an alternative form of
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the Bethe-Salpeter equation, which is written as an integral relation be-
tween G(1, 2; 1′, 2′) and G(2̃′, 2; 2̃, 2′), in contrast to the relation between
G(1, 2; 1′, 2′) and G(1̃′, 2̃′; 1′, 2′) given by Eq. (E.29). The general inte-
gral relation of this kind can be written as an equation for the correlation
function:

C(11′; 22′) = �
2G(1, 2′)G(2, 1′) (11)

+
∫

d3
∫

d3′
∫

d4
∫

d4′G(1, 3)G(3′, 1′)I(33′44′)C(4′4; 22′).

To find the vertex part I(33′44′) standing in Eq. (11) for the systems
with pair interaction, we first remind that, in the diagram representation,
this interaction couples only the vertices with the same branch indices.
In the diagram technique of Sec. 41, the broken line connecting the
vertices 1s1 and 2s2 corresponds to the factor is1δs1s2U1−2, where U1−2
is given by Eq. (41.24). In the present technique, this line corresponds to
the factor −iU1−2, where U1−2 is given by (−1)s1+1δs1s2�δ(t1−t2)v(r1−
r2). With this definition, one can carry out a diagrammatic expansion
of G(1, 2; 1′, 2′) according to the general rules described in Appendix E.
As a result,

I(33′44′) = −iU3−4[δ33′δ44′ − δ34′δ3′4] + U3−4U3′−4′ [G(3, 3′)G(4, 4′)

−G(3, 4′)G(4, 3′)] + U3−4′U4−3′G(3, 3′)G(4, 4′)

−δ43′U3−4′

∫
d5U4−5G(3, 5)G(5, 4′) (12)

−δ34′U4−3′

∫
d5U3−5G(4, 5)G(5, 3′)

+δ34′δ3′4

∫
d5
∫

d5′U3−5U5′−3′G(5, 5′)G(5′, 5) + . . . ,

where the dots . . . indicate higher-order terms with respect to the inter-
action. Other interactions can also be considered (problem 14.22). The
vertex part satisfies the symmetry property I(33′44′) = I(44′33′) and is
presented as a functional derivative of the self-energy over the Green’s
function:

I(33′44′) = δΣ(3, 3′)/δG(4′, 4). (13)

This equation can be checked by comparing the expansions of I(33′44′)
and Σ(3, 3′) in series with respect to the interaction.

The integrals over the internal variables in Eqs. (11) and (12) also
imply the sums over the branch indices si. For a further simplification
of notations, we do not write these integrals in the following, implicitly
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assuming integration over repeated variables, and skip the dividing com-
mas in the expressions for v, G and Σ. Let us consider two equations:

C(11′; 22′) = �
2G(12′)G(21′) + G(13)G(3′1′)I(33′44′)C(4′4; 22′),

C(11′; 22′) = �
2G(12′)G(21′) + C(11′; 3′3)I(33′44′)G(24)G(4′2′). (14)

The first of them is Eq. (11) written in the simplified notations (the
integrals over the variables 3, 3′, 4, and 4′ are implied on the right-hand
side), while the second one is obtained from Eq. (11) by using the
symmetry properties C(11′; 22′) = C(22′; 11′) and I(33′44′) = I(44′33′).

Let us introduce the operator Ĝ−1
13 by the relation Ĝ−1

13 G(31′) = δ11′

(or G(3′1)Ĝ−1
13 = δ33′). As explained above, the integrals over the re-

peated variables 3 (or 1) are implied in these relations. According to
Eq. (4), the operator Ĝ−1

13 can be expressed as

Ĝ−1
13 = σz(1)

(
i�

∂

∂t1
− ĥ1

)
δ13 − Σ(13), (15)

where σz(1) = (−1)s1+1 (problem 14.23). Acting by Ĝ−1
13 from the left

on the first equation of Eq. (14) written for C(31′; 22′), then acting by
Ĝ−1

3′1′ from the right on the same equation for C(13′; 22′), we obtain a
couple of equations

Ĝ−1
13 C(31′; 22′) = G(5′1′)I(15′3′3)C(33′; 22′) + δ12′�2G(21′),

C(13′; 22′)Ĝ−1
3′1′ = G(15)I(51′3′3)C(33′; 22′) + δ1′2�

2G(12′). (16)

Let us act, in a similar way, on the second equation of Eq. (14) by Ĝ−1
24

from the left and by Ĝ−1
4′2′ from the right. We obtain another couple of

equations:

Ĝ−1
24 C(11′; 42′) = C(11′; 44′)I(4′425′)G(5′2′) + δ1′2�

2G(12′),

C(11′; 24′)Ĝ−1
4′2′ = C(11′; 44′)I(4′452′)G(25) + δ12′�2G(21′). (17)

The further step is to derive equations for the correlation function (6)
as a function of t1 = (t1 + t′1)/2 and t2 = (t2 + t′2)/2 (we note that
∂/∂t1+∂/∂t′1 = ∂/∂t1). Let us multiply all terms in the first and second
equations of Eq. (16) by σz(1) and σz(1′), respectively, and subtract the
second equation obtained in this way from the first one. The result is(

i�
∂

∂t1
− ĥ1 + ĥ∗

1′

)
C(11; 22′) − σz(1)Σ(13)C(31′; 22′) + C(13′; 22′)

×Σ(3′1′)σz(1′) −
[
σz(1)G(5′1′)I(15′3′3) − σz(1′)G(15)I(51′3′3)

]
(18)
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×C(33′; 22′) = σz(1)δ12′�2G(21′) − σz(1′)δ1′2�
2G(12′).

Transforming the equations of Eq. (17) in a similar way, we find(
i�

∂

∂t2
− ĥ2 + ĥ∗

2′

)
C(11; 22′) − σz(2)Σ(24)C(11′; 42′) + C(11′; 24′)

×Σ(4′2′)σz(2′) −
[
σz(2)I(4′425′)G(5′2′) − σz(2′)I(4′452′)G(25)

]
(19)

×C(11′; 44′) = σz(2)δ1′2�
2G(12′) − σz(2′)δ12′�2G(21′).

The left-hand sides of Eqs. (18) and (19) can be viewed as a result of
the action of integro-differential operators on the correlation function.
In Eq. (18) these operators act on the first pair of variables, while in
Eq. (19) they act on the second pair. Let us retain on the left-hand
sides of these equations only the operators which realize the integral
transformation within the same pair of the branch indices (as mentioned
above, we consider C(11′; 22′) with s1 and s′

1 equal to either 3 or 4 and
s2 and s′

2 equal to either 1 or 2). We denote this part as L̂. The rest of
the terms are transferred to the right-hand sides and denoted by M . In
more detail,

L̂(11′33′)C(33′; 22′) = M(11′33′)C(33′; 22′)

+σz(1)δ12′�2G(21′) − σz(1′)δ1′2�
2G(12′),

L̂(22′44′)C(11′; 44′) = M(22′44′)C(11′; 44′) (20)

+σz(2)δ1′2�
2G(12′) − σz(2′)δ12′�2G(21′),

where

L̂(11′33′) ≡
(

i�
∂

∂t1
− ĥ1 + ĥ∗

1′

)
δ13δ1′3′ − σz(1)Σ(13)δ1′3′(δs33 + δs34)

+Σ(3′1′)σz(1′)δ13(δs′
33 + δs′

34) −
[
σz(1)G(5′1′)I(15′3′3)

−σz(1′)G(15)I(51′3′3)
]
(δs33 + δs34)(δs′

33 + δs′
34), (21)

L̂(22′44′) ≡
(

i�
∂

∂t2
− ĥ2 + ĥ∗

2′

)
δ24δ2′4′ − σz(2)Σ(24)δ2′4′(δs41 + δs42)

+Σ(4′2′)σz(2′)δ24(δs′
41 + δs′

42) −
[
σz(2)I(4′425′)G(5′2′)

−σz(2′)I(4′452′)G(25)
]
(δs41 + δs42)(δs′

41 + δs′
42)

and

M(11′33′) ≡ σz(1)Σ(13)δ1′3′(δs31 + δs32) − Σ(3′1′)σz(1′)δ13(δs′
31 + δs′

32)
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+
[
σz(1)G(5′1′)I(15′3′3) − σz(1′)G(15)I(51′3′3)

]
×[1 − (δs33 + δs34)(δs′

33 + δs′
34)], (22)

M(22′44′) ≡ σz(2)Σ(24)δ2′4′(δs43 + δs44) − Σ(4′2′)σz(2′)δ24(δs′
43 + δs′

44)

+
[
σz(2)I(4′425′)G(5′2′) − σz(2′)I(4′452′)G(25)

]
×[1 − (δs41 + δs42)(δs′

41 + δs′
42)].

One has to emphasize that the internal branch indices s5 and s′
5 in the

expression for L̂(11′33′) take, in fact, only the values within the pair
to which the indices s1, s′

1, s3, and s′
3 belong. If s5, s

′
5 < s1, s

′
1 (i.e.,

s5, s
′
5 = 1, 2), the Green’s functions G(15) = G+−(1, 5) and G(5′1′) =

G−+(5′, 1′) remain the same when the indices s5 and s′
5, respectively, are

changed (from 1 to 2 or from 2 to 1). Under these changes, the signs of
I(51′3′3) and I(15′3′3), respectively, are reversed according to Eqs. (13)
and (3). Therefore, the partial internal sums

∑
s5=1,2 G(15)I(51′3′3) and∑

s′
5=1,2 G(5′1′)I(15′3′3) are equal to zero. A similar property can be

checked for the operator L̂(22′44′). In conclusion, each of the operators
L̂(11′33′) and L̂(22′44′) is defined within its own pair of the contour
branch indices.

Let us find the result of the action of both L̂(11′33′) and L̂(22′44′) on
the correlation function:

L̂(11′33′)L̂(22′44′)C(33′; 44′) = L̂(11′33′)[δ23′�2G(32′)σz(2)

−δ2′3�
2G(23′)σz(2′) + M(22′44′)C(33′; 44′)] = L̂(22′44′) (23)

×[δ14′�2G(41′)σz(1) − δ41′�2G(14′)σz(1′) + M(11′33′)C(33′; 44′)].

Since the numbers s1, s′
1, s3, and s′

3 are equal to 3 or 4, while s2, s′
2, s4,

and s′
4 are equal to 1 or 2, the terms containing the δ-symbols vanish,

and only the contributions containing M remain on the right-hand sides.
Taking into account Eq. (20), we obtain the following equation for the
correlation functions:

L̂(11′33′)L̂(22′44′)C(33′; 44′) = �
2R(11′22′)

+M(11′33′)M(22′44′)C(33′; 44′). (24)

The first term on its right-hand side is introduced as

R(11′22′) = M(22′41)G(41′)σz(1) − M(22′1′4′)G(14′)σz(1′)

= M(11′32)G(32′)σz(2) − M(11′2′3′)G(23′)σz(2′)

= −σz(2)Σ(21′)σz(1′)G(12′) − σz(1)Σ(12′)σz(2′)G(21′) (25)
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+[σz(1)G(5′1′)I(15′23) − σz(1′)G(15)I(51′23)]G(32′)σz(2)

−[σz(1)G(5′1′)I(15′3′2′) − σz(1′)G(15)I(51′3′2′)]G(23′)σz(2′),

where the last equation is obtained after substituting M from Eq. (22).
The second term on the right-hand side of Eq. (24) is a linear func-
tional of the correlation functions which do not belong to the kind (6).
However, this term, according to the definition of M , contains higher
powers of the interaction Hamiltonian as compared to R(11′22′) (prob-
lem 14.24). Therefore, this term can be neglected in the case of weak
interaction. In this approximation, Eq. (24) becomes a closed equation
for the correlation functions (6), because each of the operators L̂(11′33′)
and L̂(22′44′) acts within its own pair of the contour branch indices.
The approximate equation

L̂(11′33′)L̂(22′44′)C(33′; 44′) � �
2R(11′22′) (26)

will be considered below instead of Eq. (24).
The operators L̂(11′33′) and L̂(22′44′) on the left-hand side of Eq.

(26) can be identified with the operators of linearized generalized kinetic
equation in the ordinary non-equilibrium diagram technique. Indeed,
subtracting the second equation of the set (39.21) from the first one, we
can linearize the equation obtained and write it in the form(

i�
∂

∂t1
− ĥ1 + ĥ∗

1′

)
δG(11′)−σz(1)Σ(13)δG(31′)+ δG(13′)Σ(3′1′)σz(1′)

−
[
σz(1)

δΣ(15′)
δG(33′)

G(5′1′) − σz(1′)G(15)
δΣ(51′)
δG(33′)

]
δG(33′) = 0, (27)

where the multi-indices include the branch indices of the two-branch
contour. Applying Eq. (13), one can see that Eq. (27) is formally
equivalent to L̂(11′33′)δG(33′) = 0. The equivalence of the relations
obtained within four-branch and two-branch techniques takes place be-
cause the internal branch indices s5 and s′

5 in the expression for L̂(11′33′)
and the indices s1, s′

1, s3, and s′
3 belong to the same pair of branches. In

spite of the formal analogy, G(11′) in the generalized kinetic equation is
a function, while δ̂G(11′) entering the definition (6) is an operator, and
the fluctuations of δ̂G(11′) are not small. Nevertheless, by observing
that δ̂Σ(11′) = [δΣ(11′)/δG(33′)]δ̂G(33′), one can write∑

s3s′
3

L̂34s3s′
3(11′33′)δ̂G

s3s′
3(33′) =

(
i�

∂

∂t1
− ĥ1 + ĥ∗

1′

)
δ̂G

−+
(11′)
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−
∑
s=±

[
Σ−s(13)δ̂G

s+
(31′) + δ̂Σ

−s
(13)Gs+(31′) (28)

+δ̂G
−s

(13)Σs+(31′) + G−s(13)δ̂Σ
s+

(31′)
]
.

The multi-indices in this equation do not include the contour branch
indices, the latter are written explicitly. The integration over the internal
variable 3 is implied in the second term on the right-hand side of Eq.
(28). Let us consider this integral in the quasi-classical approximation
(see Sec. 40 and problem 8.8) and assume that ĥ1 = p̂1/2m (no external
fields) and t1 = t′1 = t. Then we transform Eq. (28) to

−
∫

d∆re−ip·∆r/�
∑
s3s′

3

L̂34s3s′
3(11′33′)δ̂G

s3s′
3(33′)

=
(

∂

∂t
+ vp · ∂

∂r

)
∆̂frpt +

∑
s=±

∫
dε

2π�

[
Σ−s

εt (r,p)δ̂G
s+

εt (r,p) (29)

+δ̂Σ
−s

εt (r,p)Gs+
εt (r,p) + δ̂G

−s

εt (r,p)Σs+
εt (r,p) + G−s

εt (r,p)δ̂Σ
s+

εt (r,p)
]
,

where ∆r = r1 − r′
1 and r = (r1 + r′

1)/2. The transformations have
been based upon the definitions (69.1) and (7) so that −i�

∫
d∆re− i

�
p·∆r

×δ̂G
−+

(r+∆r/2 t, r−∆r/2 t) = ∆̂frpt. If we consider the lowest-order
contributions to Σ for the case of electron-phonon interaction and take
into account linear relations between the components of electron and
phonon Green’s functions, we can prove, like in problem 8.8, that the
collision-integral part of Eq. (29) depends only on δ̂G

−+
and δ̂G

+−
.

Therefore, application of the averaging procedure (69.2) to Eq. (29)
reduces its right-hand side to

∑
p1

L̂rt(p,p1)∆̂f
(av)

rp1t, where L̂rt(p,p1) is
the operator introduced in Eq. (69.19). The expression

∑
s4s′

4
L̂12s4s′

4(22′

44′)δ̂G
s4s′

4(44′) can be analyzed in a similar way.
The spatial Fourier transform of the left-hand side of Eq. (26) is

written as ∫
d∆r

∫
d∆r′e−ip·∆r/�−ip′·∆r′/� (30)

×
∑

s3s′
3s4s′

4

L̂34s3s′
3(11′33′)L̂12s4s′

4(22′44′)Cs3s′
3s4s′

4(33′; 44′),

where ∆r = r1 −r′
1 and ∆r′ = r2 −r′

2, while Cs3s′
3s4s′

4(33′; 44′) is defined
according to Eq. (6). Let us set t1 = t′1 = t, t2 = t′2 = t′, (r1 +r′

1)/2 = r,
and (r2 + r′

2)/2 = r′ in Eq. (30) and apply the averaging procedure
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(69.2) to this equation in the quasi-classical limit. The expression (30) is

reduced to −�
2∑

p1

∑
p′

1
L̂rt(p,p1)L̂r′t′(p′,p′

1)〈〈∆̂f
(av)
rp1t∆̂f

(av)
r′p′

1t′〉〉, i.e.,
to the left-hand side of Eq. (69.20) multiplied by −�

2.
Let us consider the expression on the right-hand side of Eq. (26) and

prove that this expression is directly related to the correlation function
of the Langevin sources at t1 = t′1 = t and t2 = t′2 = t′. In other words,
one has to check the identity

〈〈Kt(p, r)Kt′(p′, r′)〉〉 = −
∫

d∆r
∫

d∆r′e−ip·∆r/�−ip′·∆r′/� (31)

×R3412

(
r +

∆r
2

t, r − ∆r
2

t, r′ +
∆r′

2
t′, r′ − ∆r′

2
t′
)

.

Below we prove it directly, by considering the electron-phonon interac-
tion in the lowest-order approximation. In this case, the Fourier trans-
form of the correlation function on the right-hand side of Eq. (31),

〈〈Kω(p,k)Kω′(p′,k′)〉〉 =
1

V 2

∫
dr
∫

dr′
∫

dt

∫
dt′ei(ωt+ω′t′−k·r−k′·r′)

×〈〈Kt(p, r)Kt′(p′, r′)〉〉 , (32)

is given by Eq. (68.23). On the other hand, using the result of problem
14.22, one can find R from Eq. (25):

R3412(r1t, r′
1t, r2t

′, r′
2t

′) � −iG−+
t′t (r2, r′

1)G
+−
tt′ (r1, r′

2)
[
D̄−+

t′t (r2, r′
1)

+D̄−+
t′t (r′

2, r1) − D̄−+
t′t (r2, r1) − D̄−+

t′t (r′
2, r

′
1)
]
, (33)

where D̄ is defined in problem 14.24 (this function is proportional to the
Green’s function of phonons introduced in Sec. 42). It is important to
notice that Rs1s′

1s2s′
2 does not depend on its four contour branch indices

in the lowest-order approximation. This invariance takes place in a more
general case, when I(33′44′), as a matrix in the space of the indices s3,
s′
3, s4, and s′

4, can be represented in the form I(33′44′)+ Ĩ(33′44′), where
I contains only the terms with s3 = s′

4 and s′
3 = s4, while Ĩ contains only

the terms with s3 = s4 and s′
3 = s′

4 (problem 14.25). This representation
is always valid in the second-order approximation with respect to the
interaction potential; see Eq. (12) and problem 14.22. We note that the
contribution proportional to δ33′δ44′ in Eq. (12) can be safely omitted
since it does not affect L̂, R, and M . For the same reason, one can omit
the contributions to Σ(12) proportional to δ12. Because of the invariance
discussed above, it is not necessary to show the contour branch indices
of R, and such indices will be omitted in the following.
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In the homogeneous case, the Green’s functions depend only on the
differences of their coordinate and time arguments. Expressing these
functions in the energy-momentum representation, we apply the double
spatial and temporal Fourier transformations to Eq. (33) and obtain

− 1
V 2

∫
dr
∫

dr′
∫

dt

∫
dt′ei(ωt+ω′t′−k·r−k′·r′)

×R

(
r +

∆r
2

t, r − ∆r
2

t, r′ +
∆r′

2
t′, r′ − ∆r′

2
t′
)

= iδ(ω + ω′)δk,−k′

∫
dε1

2π

∫
dω1

1
V 2

∑
p1q

|Cq |2ei(p1/�+q/2)·(∆r+∆r′)

×G−+
ε1

(
p1 − �k

2

)
G+−

ε1+�(ω1+ω)

(
p1 + �q +

�k
2

)
D−+

ω1
(q) (34)

×
[
eiq·(∆r+∆r′)/2 + e−iq·(∆r+∆r′)/2 − eiq·(∆r−∆r′)/2 − e−iq·(∆r−∆r′)/2

]
,

where |Cq |2 for the acoustic-phonon scattering is given by Eq. (21.1).
The Green’s function D−+

ω (q) is introduced in Sec. 42. Within the
lowest-order accuracy, one can replace the Green’s functions of elec-
trons and phonons in Eq. (34) by those in the absence of interaction,
Gss′

ε (p) � gss′
ε (p) and Dss′

ω (q) � dss′
ω (q). Finally, employing the expres-

sions (40.33) and (42.23) for these functions, we find that the Fourier
transform

∫
d∆r

∫
d∆r′e−ip·∆r/�−ip′·∆r′/� . . . of the right-hand side of

Eq. (34) coincides with the expression on the right-hand side of Eq.
(68.23), i.e., with 〈〈Kω(p,k)Kω′(p′,k′)〉〉. Therefore, Eq. (31) is proved.
In summary, we have demonstrated that Eq. (26) with s1 = 3, s′

1 = 4,
s2 = 1, and s′

2 = 2 is a quantum analog of Eq. (69.20).
Equation (26) is the central result of this section. It allows one to

calculate the correlation functions (6) by taking into account external
fields and interactions with a required accuracy. Let us use the invariance
of R(11′22′) against all its four contour branch indices (valid in the case
of weak interaction) and write Eq. (26) as a system of nine equations for
nine linearly-independent correlation functions Cs̄s̄′

, where the indices s̄
take the values R, A, and F (see Eq. (9) and its discussion). Introducing
the operators L̂s̄1s̄′

1 in a similar way as Cs̄s̄′
(for example, L̂RR = L̂3311 −

L̂3411 − L̂3312 + L̂3412), we obtain

L̂s̄1s̄′
1(11′33′)L̂s̄2s̄′

2(22′44′)Cs̄′
1s̄′

2(33′; 44′) � δs̄1F δs̄2F 4�
2R(11′22′). (35)

These equations are, in general, coupled. The non-zero right-hand side
exists only in one of these equations, where s̄1 = s̄2 = F .
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The spectral densities of the fluctuations of physical quantities, for
example, the noise power (68.9), are expressed through the Fourier
transforms of the symmetrized correlation functions. Owing to the sym-
metry of the left-hand side of Eq. (26) with respect to permutation
of the variables, the symmetrized correlation function Cs(33′; 44′) =
[C(33′; 44′) + C(44′; 33′)]/2 satisfies the equation L̂(11′33′)L̂(22′44′)Cs

(33′; 44′) � �
2Rs(11′, 22′) with the symmetrized right-hand side Rs(11′

22′) = [R(11′22′)+R(22′11′)]/2. This equation can be used for calculat-
ing any correlation functions of the kind (68.3). In order to consider cor-
relation functions of N operators of physical quantities (these functions
are representable through 2N field operators), it is possible to introduce
2N -branch time contours. Such a technique would be a generalization
of the approach used in Chapter 8 and in this section.

To conclude this section and the monograph itself, we stress that any
physical interpretation of the double-branch or, in general, many-branch
time contours (see Figs. 8.1 and 14.3) is currently missing. Using other
words, one may ask: does the multi-time dynamics introduced in order
to formulate the non-equilibrium diagram technique lead to new physi-
cal consequences? At the present state of development of the quantum
kinetic theory, the approach of many-branch time contours remains just
a convenient formal trick. It is not clear whether it can have more
profound influence on such issues of modern physics as irreversibility,
memory effects, and quantum theory of measurements.

Problems
14.1. Find the mean square of the fluctuations of the number of gas

particles in a half-volume of a box if the total number of the particles in
the box is N .

Solution: The probability that n particles out of N occupy a given half of the
volume is PN(n) = Cn

N/2N , where Cn
N = N !/n!(N − n)! is the binomial coefficient

and 2N =
∑N

n=0 Cn
N is the normalization constant. The probability satisfies the nor-

malization condition
∑N

n=0 PN(n) = 1. The mean value of the number of particles is
n =

∑N

n=0 nPN(n) = N/2, where the line denotes the averaging with the probability
PN(n). The mean square of n is n2 =

∑N

n=0 n2PN(n) = N (N + 1)/4, and the mean
square of the fluctuation ∆n = n − n is (∆n)2 = n2 − (n)2 = N/4. As N increases,
the ratio (∆n)2/(n)2 = 1/N goes to zero.

14.2. Express the noise power Sαβ(r, r′|ω) in terms of Fourier trans-
forms of the current density operators.

Result:

2πδ(ω + ω′)Sαβ(r, r′|ω) =
1
2
〈〈Îα(r, ω)Îβ(r′, ω′) + Îβ(r′, ω′)Îα(r, ω)〉〉.
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14.3. Express the correlation function 〈〈∆̂nr(t)∆̂nr′(t′)〉〉, which de-
scribes the density fluctuations in a homogeneous ideal electron gas,
through the polarizability α(q, ω). Calculate this correlation function
at t = t′ in the Hartree-Fock approximation at zero temperature.

Solution: The polarizability (see problem 3.3) is defined as a generalized suscep-
tibility describing the charge density response to the scalar potential (generalized
force). The operator ∆̂nr(t) is equal to the Heisenberg operator of the charge den-
sity deviation divided by the electron charge e. Therefore, the fluctuation-dissipation
theorem (68.10) can be applied directly. We obtain

〈〈∆̂nr(t)∆̂nr′(t′)〉〉 = − �

V

∑
q

eiq·(r−r′)
∫

dω

2π
e−iω(t−t′) 2Imα(q, ω)/e2

1 − exp(−�ω/T )
.

The Hartree-Fock polarizability calculated in Sec. 33 is α(q, ω) = e2Π(0)R
ω (q), and

the polarization function Π(0)R
ω (q) at zero temperature is given by Eq. (33.24). To

calculate the integral over ω at t = t′, we use the expression for the imaginary part
of this function and take into account that ω[1 − exp(−�ω/T )]−1 = ωθ(ω) at T → 0.
The result is

〈〈∆̂nr(t)∆̂nr′(t)〉〉 =
1
V

∑
q

eiq·(r−r′) k2
F q

4π2

(
1 − q2

12k2
F

)
.

The main contribution to this expression comes from q2 � k2
F , since we are interested

in the case when |r − r′| is large in comparison to the wavelength of Fermi electrons.
Finally,

〈〈∆̂nr(t)∆̂nr′(t)〉〉 � − k2
F

4π4|r − r′|4 .

The correlation function rapidly decreases as the distance |r − r′| increases. The
negative sign of the correlation function reflects an effective repulsion between the
electrons due to Pauli principle.

14.4. Find the correlation function of the Langevin sources K̂ω(p,k)
for the electrons interacting with impurities.

Solution: The consideration is similar to the case of electron-boson interaction,
since the Hamiltonian of electron-impurity interaction in the second quantization
representation is given by V −1∑

pp′ Uim(p − p′)â+
p âp′ , where Uim(p − p′) given by

Eq. (14.3) is the Fourier transform of the random potential created by all impurities.
The Langevin source is

K̂ω(p,k) = −2πi

V

∑
q

Uim(�q)
[
â+
p−�k/2âp+�k/2−�qδ(εp−�k/2 − εp+�k/2−�q + �ω)

−â+
p−�k/2+�qâp+�k/2δ(εp−�k/2+�q − εp+�k/2 + �ω)

]
,

and the correlation function is found in the form

〈〈K̂ω(p,k)K̂ω′(p′,k′)〉〉 =
(2π)2

�V
δ(ω + ω′)δk,−k′

∑
q

nim|v(q)|2(δp′,p − δp′,p−�q)
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×
[
δ(εp−�k/2 − εp+�k/2−�q + �ω)fp−�k/2(1 − fp+�k/2−�q)

+δ(εp−�k/2−�q − εp+�k/2 + �ω)fp−�k/2−�q(1 − fp+�k/2)
]
.

The averaging in this expression includes both the trace with the statistical operator
and the averaging over the random potential distribution.

14.5. Prove the expression Î(k, t) = V −1∑
p

ep
m {â+

p−�k/2âp+�k/2}t

for the operator of current density.
Hint: Expand the field operators in Eq. (42.25) over the plane-wave basis and

carry out a spatial Fourier transformation of this equation.

14.6. i) Check that the local current-current correlation function
(68.27) in thermodynamic equilibrium is expressed according to the
fluctuation-dissipation theorem (68.9). ii) Check the same statement
for the collisionless part (68.26) of the correlation function.

Hints: i) Use the relation

[(Nq + 1)fp(1 − fp−�q) + Nqfp−�q(1 − fp)]

= coth
�ω

2T
[(Nq + 1)fp(1 − fp−�q) − Nqfp−�q(1 − fp)]

valid at εp − εp−�q − �ωq + �ω = 0 in equilibrium.
ii) Use the relation

fp−�k/2(1 − fp+�k/2) + fp+�k/2(1 − fp−�k/2)

= coth
�ω

2T
[fp−�k/2 − fp+�k/2] � coth

�ω

2T
�k · vp

(
−∂fp

∂εp

)
valid at εp+�k/2 − εp−�k/2 = �vp · k = �ω in equilibrium. Compare the result for
S(0)

αβ(k, ω) obtained in this way from Eq. (68.26) to the equation for σαβ(q, ω) in
problem 6.21.

14.7. Estimate 〈〈(∆̂frpt)2〉〉 for ideal electron gas.
Solution: According to the definition of f̂rpt, we obtain

〈〈(f̂rpt)2〉〉 =
∑
kk′

ei(k+k′)·r〈〈â+
p−�k/2âp+�k/2â

+
p−�k′/2âp+�k′/2〉〉

=
∑
k

fp−�k/2(1 − fp+�k/2) + f2
p,

where the correlation function of four fermionic operators is calculated under ap-
proximation of ideal (non-interacting) electron gas. The first term on the right-
hand side is of the order of the total number of electrons in the system. Therefore,
〈〈(∆̂f rpt)

2〉〉 = 〈〈(f̂rpt)2〉〉 − f2
p is large in comparison to f2

p, because f2
p < 1.

14.8. Prove that the contribution of the last term on the right-
hand side of Eq. (69.11) into M̂t(p, r) can be neglected after averaging
M̂t(p, r) according to Eq. (69.2).
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Solution: This contribution is written as

− 1
V

∑
q ∆q

C|q+∆q/2|C|q−∆q/2|

∫
dr′ei∆q·(r−r′)∆̂f r p−�∆q/2 t∆̂N r′qt

× 1
�2

∫ t

t0

dt′ exp
{

i

�
[εp − εp−�(q−∆q/2) − �ωq+∆q/2](t − t′)

}
,

where we have done the substitutions q + q′ = ∆q and (q − q′)/2 → q. Averaging
over the phase volume, we assume that |∆q| � π/∆L. This allows us to neglect ∆q
everywhere except the exponential factor ei∆q·(r−r′), and the averaged contribution
becomes

− 1
V

∑
q ∆q

|Cq|2
∫

dr′ei∆q·(r−r′)∆̂f
(av)

rpt ∆̂N
(av)

r′qt

× 1
�2

∫ t

t0

dt′ exp
[

i

�
(εp − εp−�q − �ωq)(t − t′)

]
.

The integral over ∆q in this expression converges at |∆q| < π/|r − r′|, and ∆̂N
(av)

r′qt

varies with r′ on a scale much larger than ∆L. Therefore, ∆q contributing to the
integral is small so that the assumption |∆q| � π/∆L is justified. The averaged
contribution given by the equation above is quadratic in small fluctuations and can
be neglected.

14.9. Calculate the commutator of â+
p−�k/2âp+�k/2 with the first term

of the perturbation Hamiltonian (69.17). Write the result through the
operator f̂rpt defined by Eq. (69.1).

Result:

e

mcV 2

∑
q

∫
dr′e−i(k−q)·r′

Aqt ·
[(

p − �q
2

+
�k
2

)
f̂r′p−�q/2 t

−
(
p +

�q
2

− �k
2

)
f̂r′p+�q/2 t

]
.

14.10. Transform the collision integral (31.21) with V (pp′|p1p′
1)

from Eq. (33.32) to the form (69.31).
Hints: In the limit of small momentum transfer �k = p − p1 = p′

1 − p′, expand
the distribution functions in series of k up to the terms quadratic in k. Also use the
expansions

|ε(k,vp · k − �k2/2m)|−2 � |ε(k,vp · k)|−2 − �k
2

· ∂

∂p
|ε(k,vp · k)|−2

and

δ(vp′ · k − vp · k + �k2/m) � δ(vp′ · k − vp · k) + �k · ∂

∂p′ δ(vp′ · k − vp · k).

Integrate over p′ by parts to transform the second term in the latter expansion.
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14.11. Determine the energy loss of a plane electromagnetic wave
in the medium with small variations of the dielectric permittivity, εr =
ε + δεr.

Solution: The electric field of the electromagnetic wave is represented as Er =
V −1∑

k Ekeik·r−iωt + c.c. Assuming a local isotropic relation between the field and
electric induction, Dr = εrEr, we find that the amplitude Ek satisfies the wave
equation

k (k · Ek) − k2Ek +
(ω

c

)2
εEk +

(ω/c)2

V

∑
k′

δεk−k′Ek′ = 0,

where δεq is the spatial Fourier transform of the inhomogeneous part of the dielectric
permittivity. Expressing the field as Ek = Ek + δEk, we average the wave equation
over possible realizations of the spatial distribution of random inhomogeneities and
obtain

k
(
k · Ek

)
− k2Ek +

(ω

c

)2
εEk = − (ω/c)2

V

∑
k′

〈δεk−k′δEk′〉 .

The right-hand side of this equation contains the correlation function of the variations
of the field and dielectric permittivity. The random part of the field is determined
from the linearized wave equation

k (k · δEk) − k2δEk +
(ω

c

)2
εδEk = − (ω/c)2

V

∑
k′

δεk−k′Ek′ .

This equation has the following solution:

δEk = − 1
V

∑
k′

δεk−k′

{
k
(
k · Ek′

)
k2ε

−
[
k ×

[
k × Ek′

]]
k2
[
ε − (ck/ω)2

]} .

Substituting this expression into the right-hand side of the averaged wave equation,
we find

kα

(
k · Ek

)
− k2E

α
k +

(ω

c

)2∑
β

[εδαβ − Qαβ(k, ω)] E
β
k = 0,

Qαβ(k, ω) =
1
V

∑
k′

W|k−k′|

{
k′

αk′
β

k′2ε
− k′

αk′
β − δαβk′2

k′2[ε − (ck′/ω)2]

}
.

The variations of the dielectric permittivity are described here by the Fourier trans-
form of their correlation function, Wk =

∫
d∆r exp(−ik · ∆r) 〈δεrδεr′〉, where ∆r =

r − r′. Due to macroscopic homogeneity of the medium, the average 〈δεrδεr′〉 is
independent of r + r′ so that Wk is equally introduced as 〈δεkδεk′〉 = δk,−k′V Wk.
In the case of short-scale (in comparison to the length of the electromagnetic wave)
inhomogeneities, Wk � W is a constant and Qαβ(k, ω) � δαβQω, where

Qω =
1
V

∑
k′

W

[
1
3ε

+
2/3

ε − (ck′/ω)2

]
.

The dispersion of transverse waves is determined from the relation k2 − (ω/c)2(ε −
iImQω) = 0, where ε = ε − ReQω. The imaginary part of Qω describes the de-
crease in the amplitude of the field due to elastic scattering, with the decrement
Imk � −(ω/c)ImQω/2

√
ε. The decrement of the energy losses is twice greater. The
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expression for ImQω is obtained from the general expression by using a formal sub-
stitution ω → ω + i0. As a result,

ImQω = − 2π

3V

∑
k

W δ

[
ε −

(
ck

ω

)2
]

= −
√

ε

6π

(ω

c

)3
W,

and the decrement of the energy losses is equal to (ω/c)4W/6π (the difference between
ε and ε is neglected as a second-order effect).

14.12. Transform the expression (70.8) by taking into account that
the group velocities of electrons are small in comparison to the velocity
of light.

Solution: In this approximation, the expression standing inside the braces {. . .} in
Eq. (70.8) is equal to

δαβ +
p0αq0β + p0βq0α

meω0
,

where p0 = (p + p′)/2, q0 = (qI + qS)/2, and ω0 = (ωI + ωS)/2. Since ω0 =
c̃(qI + qS)/2, the second term is of the order of p0/mec̃ � 1 and can be neglected in
comparison to the first term.

14.13. Find the cross-section of elastic light scattering by free elec-
trons at �ωI � εg , when P (eI , eS) = |(eI · e∗

S)|2.
Solution: One should integrate the result (70.20) over ωS and over the solid angle of

the vector qS. The first integration is trivial because of the presence of the δ-function,
while the integral

∫
dΩ|(eI · e∗

S)|2 is equal to 8π/3 (note that eS is perpendicular to
qS). The cross-section per one electron is equal to (8π/3)r2

o.

14.14. Consider the light scattering by two-dimensional electrons.
Solution: Let us consider a quantum well in the plane XOY containing electrons in

the single 2D state described by the envelope function ψzφ(δ)
x , where x = (x, y) is the

in-plane coordinate. The fluctuations of electron distribution in the plane, ∆̂f
(av)

σxpt,
where p is the 2D momentum, satisfy an equation analogous to Eq. (69.21):(

∂

∂t
+ vp · ∂

∂x

)
∆̂f

(av)

σxpt − ∂∆̂Uxt

∂x
· ∂fp

∂p
= 0,

The fluctuating potential energy in the 2D plane is given by ∆̂Uxt =
∫

dz|ψz|2∆̂Uxzt,
where ∆̂Uxzt is found from the Poisson equation ε∞∇2Ûxzt = −4πe2 ∆̂nxzt. Since
the fluctuating 3D electron density ∆̂nxzt is equal to |ψz|2∆̂nxt, where ∆̂nxt =
L−2∑

σp ∆̂f
(av)

σxpt, we obtain

∆̂Ukω =
∫

dt

∫
dxeiωt−ik·xÛxt =

2πe2

ε∞k
I(k)∆̂nkω,

I(k) =
∫

dz

∫
dz′|ψz|2|ψz′ |2e−k|z−z′|,
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where k is the in-plane wave vector. Assuming that ∆q = (∆k, ∆qz) is small in
comparison to the inverse width of the quantum well (in these conditions I(k) � 1
and

∫
dz|ψz|2e−i∆qzz � 1), we obtain (compare to Eqs. (69.24) and (69.25))

∆̂n∆q,∆ω =
ε∞

ε2D(∆k, ∆ω)
1
L2

∑
σp

∆̂f
(av)

σ∆kpt0
2πei∆ωt0δ(∆ω − vp · ∆k),

ε2D(k, ω) = ε∞ +
2πe2

k

2
L2

∑
p

k · (∂fp/∂p)
ω − vp · k + iλ

,

where ε2D(k, ω) is the 2D dielectric permittivity. The density correlation function is
independent of ∆qz. It is given by the expression

〈〈∆̂n∆q(t)∆̂n−∆q(0)〉〉∆ω = 2π

∣∣∣∣ ε∞
ε2D(∆k, ∆ω)

∣∣∣∣2
×2
∑
p

fp−�∆k/2(1 − fp+�∆k/2)δ(∆ω − vp · ∆k),

which is similar to Eq. (70.22). Assuming ω  vp · k, one can obtain ε2D(k, ω) �
ε∞[1 − (ω(2D)

k /ω)2], where ω(2D)
k =

√
2πe2n2Dk/ε∞m is the 2D plasmon frequency

expressed through the 2D electron density n2D. Therefore, the light scattered by the
2D electron layer has peaks at ∆ω = ±

√
2πe2n2D|∆k|/ε∞m corresponding to the 2D

plasmon excitation.

14.15. Find the differential cross-section of light scattering by cou-
pled plasmon-phonon modes at T = 0 and in the absence of relaxation.

Result: (
∂2σ

∂ωS∂Ω

)
µS

=
r2

oV |∆q|2�

8πe2

ωS

ωI

P (eI , eS)

× ε∞ω4
p

(ω2
+ − ω2

−)

[
ω2

+ − ω2
T O

ω3
+

δ(∆ω − ω+) +
ω2

T O − ω2
−

ω3
−

δ(∆ω − ω−)
]

.

Only the Stokes components are present at T = 0.

14.16. Derive Eq. (70.24) for the differential cross-section of light
scattering in the medium with spatial and temporal variations of the
dielectric permittivity.

Solution: We start from the wave equation

[∇ × [∇ × Ert]] +
1
c2

∂2

∂t2
Drt = 0, Drt = [ε + δ̂ε(r, t)]Ert,

where D is the electric induction locally related to the electric field. The fluctuation
of the dielectric permittivity, δ̂ε(r, t), is assumed to be a tensor in the Cartesian coor-
dinate space, and δ̂ε(r, t)Ert defines a vector whose components are

∑
β δεαβ(r, t)Eβ

rt.
The wave equation can be used to find the amplitude of the scattered waves, E′

rt,
as a weak response to the perturbation described by the monochromatic plane wave
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Ert = E0ekµeik·r−iωt + c.c. Substituting the total field (scattered wave + perturba-
tion) to the wave equation, we take the first iteration and obtain

∇2D′
rω′ +

(
ω′

c

)2

εD′
rω′ = −E0

∫
dteiω′t[∇ × [∇ × δ̂ε(r, t)ekµ]]eik·r−iωt

= −E0[∇ × [∇ × δ̂ε(r, ω′ − ω)ekµ]]eik·r.

This equation describes the temporal Fourier transform of the electric induction of
scattered wave as a response to the plane wave E0ekµeik·r−iωt. We have taken into
account that (∇·D′) = 0, which leads to [∇× [∇×D′]] = −∇2D′. The solution of the
inhomogeneous equation for D′

rω′ is expressed with the aid of the Green’s function

G(r, r′) = − eik′|r−r′|

4π|r − r′|

satisfying the equation [∇2 + k′2]G(r, r′) = δ(r − r′). We obtain

D′
rω′ =

E0

4π

∫
dr′ e

ik′|r−r′|

|r − r′| [∇′ × [∇′ × δ̂ε(r′, ω′ − ω)ekµ]]eik·r′
,

where ∇′ ≡ ∂/∂r′ and k′ = ω′√ε/c is the wave number of the scattered wave. In the
region far away from the sample, when |r|  |r′|, one has k′|r − r′| � k′|r| − k′ · r′,
where k′ = k′r/|r|. Besides, in this region D′ = εE′, and we have

E′
rω′ = −E0e

ik′|r|

4πε|r| [k′ × [k′ × δ̂ε(k′ − k, ω′ − ω)ekµ]].

This solution is represented in the form of a wave radiating from the sample in all
directions.

The cross-section of light scattering is equal to the ratio of the averaged energy
scattered in unit time, −

∫
dr〈〈∂Ert/∂t〉〉, where Ert is the energy density of the elec-

tromagnetic field, to the absolute value of the energy density flux (Poynting vector)
of the incident radiation, |S(I)|. The latter is independent of coordinate since the
incident radiation is a plane wave:

S(I) =
c

4π
[Ert × Hrt] =

c2|E0|2
2πω

[ekµ × [k × e∗
kµ]] =

c
√

ε|E0|2
2π

k
|k| ,

where the line denotes the averaging over time. Expressing the energy density Ert

according to the continuity equation ∂Ert/∂t + ∇ · S(S)
rt = 0 through the Poynting

vector of the scattered radiation, we obtain

σ =

∫
dr
〈〈

∇ · S(S)
rt

〉〉
|S(I)| =

∫
r∈Γ dr

〈〈
S(S)

rt · nΓ

〉〉
|S(I)| .

The averaging 〈〈. . .〉〉 is carried out over the motion of the particles in the medium
which scatters the light. We have transformed the integral of ∇·S(S)

rt over the volume
to the integral over an arbitrary surface Γ enclosing this volume. It is convenient to
consider a spherical surface, when the unit vector normal to the surface, nΓ, is equal
to r/|r| = k′/k′ and the integral

∫
r∈Γ dr . . . is written as

∫
dΩ|r|2 . . . , where dΩ is

the differential of the solid angle. Since E′
rω′ ∝ |r|−1, the integral

∫
r∈Γ dr(S(S)

r · nΓ)



728 QUANTUM KINETIC THEORY

is independent of r. Taking into account that ∇eik′|r|/|r| � ik′eik′|r|/|r| for large |r|,
we have

S(S)
rt · nΓ =

c
√

ε

2π

k′

k′ ·
[
E′

rt ×
[
k′

k′ × E′∗
rt

]]
=

c
√

ε

2π

∫
dω′′

2π

∫
dω′

2π
ei(ω′−ω′′)t (E′

rω′′ · E′∗
rω′
)
,

where E′
rω′ is calculated above. Using also the identity [k′×[k′×a]] = −k′2a+k′(k′·a),

where a = δ̂ε(k′ − k, ω′ − ω)ekµ, we obtain∫
r∈Γ

dr(S(S)
rt · nΓ) =

|S(I)|
(4πε)2

∫
dΩ
∫

dω′
∫

dω′′

(2π)2
k′′2ei(ω′−ω′′)(t−|r|√ε/c)

×
{

k′2
(
δ̂ε(k′′ − k, ω′′ − ω)ekµ · δ̂ε

∗
(k′ − k, ω′ − ω)e∗

kµ

)
−
(
k′ · δ̂ε(k′′ − k, ω′′ − ω)ekµ

)(
k′ · δ̂ε

∗
(k′ − k, ω′ − ω)e∗

kµ

)}
with k′′ = k′(ω′′/ω′). The average 〈〈

∫
r∈Γ dr(S(S)

rt · nΓ)〉〉 is non-zero only at ω′′ = ω′

so that the dependence on t and |r| vanishes. With the aid of the symmetry property
εαβ(k, ω) = ε∗

αβ(−k, −ω), the differential cross-section (see also Eq. (70.2)) is written
as

∂2σ

∂ω′∂Ω
=

(ω′/c)4

32π3

∑
αβγδ

eγ∗
kµeβ

kµ

(
δδα − k′

δk
′
α

k′2

)
×
〈〈

δεδγ(k − k′, t)δεαβ(k′ − k, 0)
〉〉

ω−ω′ ,

where the spectral density is introduced as 〈〈. . .〉〉ω ≡
∫

dteiωt〈〈. . .〉〉. The equa-
tion above describes the differential cross-section summed over all polarizations of
the scattered light. In the case of a scalar, time-independent dielectric permittivity,
δεαβ(q, t) = δαβεq, one has 〈〈δεδγ(k − k′, t)δεαβ(k′ − k, 0)〉〉ω−ω′ = 2πδγδδαβδ(ω −
ω′)V W|k−k′|, where the correlation function Wk is introduced in problem 14.11. The
scattering in this case is elastic and

∂σ

∂Ω
=

(ω/c)4V
(4π)2

∑
αβ

W|k−k′|e
α∗
kµeβ

kµ

(
δαβ − k′

αk′
β

k′2

)
.

For the short-range inhomogeneities, when W|k−k′| � W , the integration over the
solid angle gives us the integral cross-section σ = (ω/c)4V W/6π which does not
depend on the polarization of incident light. The decrement of energy losses calculated
in problem 14.11 is equal to σ/V , in agreement with the definition of σ and energy
conservation requirement.

To find the cross-section for the scattering with a given polarization, ek′µ′ , of
the scattered light, one should calculate the Poynting vector S(S)

rt by using the field
E′

rω′µ′ = ek′µ′(e∗
k′µ′ · E′

rω′) instead of E′
rω′ . This means that (E′

rω′′ · E′∗
rω′) in the

expression for S(S)
rt · nΓ should be replaced by (e∗

k′′µ′ · E′
rω′′)(ek′µ′ · E′∗

rω′). The result
is (

∂2σ

∂ω′∂Ω

)
µ′

=
(ω′/c)4

32π3

∑
αβγδ

eδ
k′µ′eγ∗

kµeα∗
k′µ′eβ

kµ

×
〈〈

δεδγ(k − k′, t)δεαβ(k′ − k, 0)
〉〉

ω−ω′ .
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We remind that ω, k, and µ are the frequency, wave vector and polarization index of
the incident light, while ω′, k′, and µ′ correspond to the scattered light.

14.17. Prove that the correlations described by Eq. (71.6) are always
negative at N 	= M .

Hint: Assuming N �= M and using the unitarity property of the scattering matrix,
reduce the last term under the integral in Eq. (71.6) to

−tr

[(∑
N1

ŜMN1 Ŝ
+
NN1fN1(ε)

)(∑
N2

ŜNN2 Ŝ
+
MN2fN2(ε)

)]
.

14.18. Find the noise power in two-terminal mesoscopic conductors at
finite frequencies ω � εF /�. Check the fluctuation-dissipation theorem
for this case.

Results:

S(ω) =
e2

2π�

{
2�ω coth

(
�ω

2Te

)∑
n

T 2
n +

[
(�ω + eV ) coth

(
�ω + eV

2Te

)

+(�ω − eV ) coth
(

�ω − eV

2Te

)]∑
n

Tn(1 − Tn)

}
.

In equilibrium, when V = 0, one has S(ω) = �ωG coth (�ω/2Te).

14.19. Calculate the static noise power of a microcontact in the
diffusive regime, when the size of the microcontact is much greater than
the mean free path of electrons.

Solution: The fluctuating part of the current operator is given by

∆̂IN(t) = e

∫
r∈SN

dr
∑

σ

∫
dp

(2π�)d
vp · nSN ∆̂f

(av)

σrpt,

where d = 3 or d = 2 is the dimensionality of the contact. The operator ∆̂f
(av)

σrpt satis-
fies the Boltzmann-Langevin equation (69.19), where, however, the collision integral
and Langevin source should be taken for the case of electron-impurity interaction.
Because of the current conservation (continuity), the surface SN can be chosen as
an arbitrary cross-section of the microcontact, not necessarily at the leads N = L
or N = R. For this reason, we omit the index N and chose the surface SN as a
plane perpendicular to the contact axis OZ . Besides, if we integrate the current over
an arbitrary interval of length L along OZ and divide the result by L, the current
will remain the same. Thus, we represent the operator of fluctuating current in the
following form:

∆̂I(t) =
e

L

∫
Vc

dr
∑

σ

∫
dp

(2π�)d
vz
p∆̂f

(av)

σrpt.

The integral is taken over the microcontact volume defined by the boundary of the
contact and by −L/2 < z < L/2. The steady-state Boltzmann-Langevin equation
in the diffusive regime, when the spatial gradient contribution can be neglected in
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comparison to the collision-integral contribution, is solved as ∆̂f
(av)

σrpt � τtrK̂
(av)
t (p, r),

where τtr is the transport time at the Fermi level. We obtain the correlation function

〈〈∆̂I(t)∆̂I(0)〉〉ω = 2
e2τ 2

tr

L2m2

∫
Vc

dr
∫

Vc

dr′
∫

dp
(2π�)d

∫
dp′

(2π�)d

×pzp′
z〈〈K̂ (av)

t (p, r)K̂ (av)
0 (p′, r′)〉〉ω ,

where the sum over spin is already calculated. Using the expression for the correlation
function given in problem 14.4, we take into account only the symmetric, with respect
to p, part of the electron distribution functions. After some transformations, we find
the following formula for the noise power at ω = 0:

S =
4e2τtr

L2m2d

∫
Vc

dr
∫

dp
(2π�)d

p2frp(1 − frp).

The symmetric distribution function frp is given by Eqs. (12.13) and (12.14) with
αrp = α0(r), and α0(r) is defined according to Eq. (12.20). Therefore,

frp = α0(r)fR + [1 − α0(r)]fL,

where the quasi-equilibrium distribution functions in the leads, fL and fR, exactly
correspond to f− and f+ of Sec. 12. We search for α0(r) in the simplest geometry,
when the microcontact is a linear tube along OZ (or a linear stripe in the case
of d = 2), so that α0(r) depends only on z. The condition at the boundary Γ is
automatically satisfied, while the condition at |r| → ∞ in Eq. (12.20) is reduced to
α0(z = L/2) = 1 and α0(z = −L/2) = 0. The only solution satisfying both the
Laplace equation and these boundary conditions is α0 = 1/2 + z/L. Substituting it
into the expression for frp, we find

1
L

∫ L/2

−L/2
dzfrp(1 − frp) =

1
2
fL(1 − fL) +

1
2
fR(1 − fR) +

1
6
(fL − fR)2.

Let us calculate the sum over p in the expression for S, assuming that the electron
temperature Te and bias eV are much smaller than the Fermi energy. The result is

S = 2G[2Te/3 + (eV/6) coth(eV/2Te)],

where G = σ0S/L is the conductance expressed through the bulk conductivity σ0 =
e2nτtr/m and cross-section S of the microcontact. Note that the electron density in
the d-dimensional case is related to the Fermi energy as n = 2εF ρD(εF )/d. In the
limit eV  Te, the noise power S = eV G/3 = eI/3 is three times smaller than the
Poissonian noise power eI . This result is reproducible for other geometries, for ex-
ample, for the hyperbolic boundary considered in Sec. 12, though the corresponding
calculations are more complicated.

14.20. Assuming the case of short-range scattering, solve the Bethe-
Salpeter equation (15.5) for K

s1s′
2

EE′ (p1,p′
2|p′

1, p2).
Solution: Let us write this equation in the form

K
s1s′

2
EE′ (p1,p′

2|p′
1,p2) = Gs1

E (p1)G
s′
2

E′(p
′
2)
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×
[
δp1p′

1
δp2p′

2
+

w

V

∑
q

K
s1s′

2
EE′ (p1 − �q,p′

2 + �q|p′
1,p2)

+
1
V

∑
q

[Γ̃s1s′
2

EE′ (p1 − p′
2 − �q) − w]Ks1s′

2
EE′ (p1 − �q,p′

2 + �q|p′
1,p2)

]

and note that the factor Γ̃ − w in the last term is close to 0 everywhere, except for
a narrow region |p1 − p′

2 − �q| < �/lF , where the vertex part Γ̃ at s1 �= s′
2 has a

singularity. Without this last term, the solution is written exactly, as

K
s1s′

2
EE′ (p1,p′

2|p′
1,p2) = Gs1

E (p1)G
s′
2

E′(p
′
2)

[
δp1p′

1
δp2p′

2

+
w

V

Gs1
E (p′

1)G
s′
2

E′(p2)δp1−p2,p′
1−p′

2

1 − (w/V )
∑

p Gs1
E (p + ∆p/2)Gs′

2
E′(p − ∆p/2)

]

= Gs1
E (p1)G

s′
2

E′(p
′
2)
[
δp1p′

1
δp2p′

2
+

1
V

δp1−p2,p′
1−p′

2
Gs1

E (p′
1)G

s′
2

E′(p2)Γ̃
s1s′

2
EE′ (∆p)

]
,

where ∆p = p1 + p′
2. Substituting this solution into the last term of the Bethe-

Salpeter equation written above, we solve this equation by iterations and obtain Eq.
(71.19).

14.21. Prove that the Dyson equations (39.21) and (72.4) have the
same form.

Hint: Use Eqs. (39.22) and (39.24).

14.22. Find, in the lowest-order approximation, the vertex part
I(33′44′) and the self-energy function Σ(33′) for the electrons interacting
(a) with the random static potential Ur and (b) with the deformation
potential of acoustic phonons.

Result:
(a) I(33′44′) = δ34′δ3′4(−1)s3+s′

3〈〈Ur3Ur′
3
〉〉,

Σ(33′) = G(33′)(−1)s3+s′
3〈〈Ur3Ur′

3
〉〉,

(b) I(33′44′) = �D2δ34′δ3′4(−1)s3+s′
3
∑
αβ

∇α
r3∇β

r3′ iD
αβ(33′),

Σ(33′) = �D2G(33′)(−1)s3+s′
3
∑
αβ

∇α
r3∇β

r3′ iD
αβ(33′),

where Dαβ(33′) is the Green’s function of phonons introduced in Sec. 42 (the contour
branch indices are included in the multi-indices). The expressions for Σ are obvious
generalizations of Eqs. (39.20) and (42.11) to the case of four-branch contour. It is
easy to check that Eq. (72.13) is valid for each kind of interaction.

14.23. Derive the expression (72.15) for Ĝ−1
13 .



732 QUANTUM KINETIC THEORY

Solution: In the matrix form, one can check that the 4 × 4 matrix

G̃−1
13 = σ̃z

(
i�

∂

∂t1
− ĥ1

)
δ13 − Σ̃(1, 3)

satisfies
∫

d3G̃−1
13 G̃(3, 1′) = 1̂δ11′ , according to Eq. (72.4). In the simplified notations,

when the contour branch indices are included in the multi-indices, this expression
is transformed into Eq. (72.15). Note that, instead of the matrix σ̃z acting from
the left on an arbitrary 4 × 4 matrix Ã(1, 1′), we have introduced a scalar quantity
σz(1) = (−1)s1+1 so that this action is expressed as σz(1)A(11′). In a similar way,
the action Ã(1, 1′)σ̃z is expressed as σz(1′)A(11′).

14.24. Find M(11′33′) and M(22′44′) in the lowest order with respect
to the interaction of electrons with deformation potential of acoustic
phonons.

Solution: Substituting the result of problem 14.22 into Eq. (72.22), we obtain (the
multi-indices and contour branch indices are written separately):

M s1s′
1s3s′

3(11′33′) = δ3′1′δs′
3s′

1
(δs31 − δs32)iG+−(13)[D̄−+(31) − D̄−+(31′)]

+δ31δs3s1(δs′
31 − δs′

32)iG
−+(3′1′)[D̄−+(3′1) − D̄−+(3′1′)],

M s2s′
2s4s′

4(22′44′) = δ4′2′δs′
4s′

2
(δs43 − δs44)iG−+(24)[D̄−+(24) − D̄−+(2′4)]

+δ42δs4s2(δs′
43 − δs′

44)iG
+−(4′2′)[D̄−+(24′) − D̄−+(2′4′)],

where D̄s1s2(12) = �D2∑
αβ ∇α

r1∇β
r2Dαβ,s1s2(12). It is taken into account that s1

and s′
1 can be either 3 or 4, while s2 and s′

2 can be either 1 or 2. We have also used
the symmetry property (42.5).

14.25. Prove the invariance of Rs1s′
1s2s′

2(11′22′) against all its four
contour branch indices under the condition I(33′44′) = I(33′44′) +
Ĩ(33′44′), where I contains only the terms with s3 = s′

4 and s′
3 = s4,

while Ĩ contains only the terms with s3 = s4 and s′
3 = s′

4.
Solution: Under the conditions given above and with the aid of Eqs. (72.2) and

(72.3), we rewrite Eq. (72.25) in the following way:

Rs1s′
1s2s′

2(11′22′) = Σ−+(21′)G+−(12′) + Σ+−(12′)G−+(21′)

+[G−+(5′1′)σz(1)I(15′23)σz(2) − G+−(15)σz(1′)Ĩ(51′23)σz(2)]G+−(32′)

−[G−+(5′1′)σz(1)Ĩ(15′3′2′)σz(2′) − G+−(15)σz(1′)I(51′3′2′)σz(2′)]G−+(23′).

We have taken into account that s1 and s′
1 belong to the pair 3, 4 and s2 and s′

2

belong to the pair 1, 2. The invariance becomes obvious when we write, for example,

σz(1)I(15′23)σz(2) ≡ (−1)s1+1Is1s2s2s1(15′23)(−1)s2+1

= (−1)s1+s2δΣs1s2(15′)/δGs1s2(32) = −δΣ+−(15′)/δG+−(32)

according to Eqs. (72.13) and (72.3). Similar transformations can be carried out for
all terms containing I and Ĩ .



Appendix A
Harmonic Oscillator

Quantum-mechanical description of small vibrations of a particle in the one-dimen-
sional potential U (x) near the equilibrium position x = x0 (determined by the require-
ment dU (x)/dx = 0) is carried out by expanding U (x) in powers of (x − x0) with the
accuracy up to the second-order terms. By choosing x0 = 0, we have

U (x) = U (0) +
1
2

(
d2U

dx2

)
x=0

x2, (A.1)

and the eigenstate problem ĥoscψ(x) = Eψ(x) is determined by the Hamiltonian of
the harmonic oscillator

ĥosc =
p̂2

2m
+

mω2

2
x2, ω =

√
1
m

(
d2U

dx2

)
x=0

, (A.2)

which is quadratic in both momentum and coordinate. The energy E is counted from
U (0), and ω is the vibration frequency of the classical oscillator near the minimum of
the potential energy at x = 0. Introducing the dimensionless coordinate and energy
according to q = x

√
mω/� and ε = E/�ω, we rewrite the eigenstate problem in the

form [
1
2

(
− d2

dq2 + q2
)

− ε

]
ψ(q) = 0. (A.3)

If |q| is large in comparison to unity, the wave function decreases as exp(−q2/2), and
the main contribution from the kinetic-energy term is equal to −(q2/2) exp(−q2/2)
and cancels the potential-energy term. Therefore, such a solution satisfies Eq. (A.3)
for ε ∼ 1. In the general case, the wave function is written as a product of exp(−q2/2)
by a finite-order polynomial. The eigenstate problem (A.3) with the boundary con-
dition ψ||q|→∞ = 0 has the following solution:

ψn(q) = Nne−q2/2Hn(q), εn = n +
1
2
, n = 0, 1, 2, . . . , (A.4)

where the quantum number n numbers the levels, the normalization constant Nn =
[n!2n√

π]−1/2 is determined by using the identity
∫∞

−∞ dq exp(−q2)[Hn(q)]2 = 2nn!
√

π,

733
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and the Hermite polynomial of n-th order is introduced according to

Hn(q) = (−1)neq2 dn

dqn
e−q2

. (A.5)

Since the Hamiltonian (A.2) is even (symmetric) with respect to x, the wave functions
can be either even or odd. According to Eq. (A.4), their parity coincides with the
parity of n, as it is seen from Eq. (A.5) or from the expressions

H0(q) = 1, H1(q) = 2q, H2(q) = 4q2 − 2,

H3(q) = 8q3 − 12q, H4(q) = 16q4 − 48q2 + 12, . . . . (A.6)

Using the recurrence relations for the Hermite polynomials,

qHn(q) = nHn−1(q) +
1
2
Hn+1(q),

dHn

dq
= 2nHn−1(q), (A.7)

we obtain the following connection between the wave functions of the neighboring
states:

qψn(q) =
√

n

2
ψn−1(q) +

√
n + 1

2
ψn+1(q),

dψn

dq
= 2
√

n

2
ψn−1(q) − qψn(q) =

√
n

2
ψn−1(q) −

√
n + 1

2
ψn+1(q). (A.8)

Using them, one can show that the matrix elements of coordinate are non-zero for
neighboring states only:

〈n′|x̂|n〉 =

√
�

2mω

{ √
nδn′,n−1√
n + 1δn′,n+1

. (A.9)

The same property takes place for the matrix elements of the momentum operator:

〈n′|p̂|n〉 = i

√
m�ω

2

{
−√

nδn′,n−1√
n + 1δn′,n+1

. (A.10)

Using the operator identity q2−d2/dq2 = (q−d/dq)(q+d/dq)+1, one can reformulate
the eigenstate problem (A.3) by introducing new operators

b̂ =
1√
2

(
q +

d

dq

)
, b̂+ =

1√
2

(
q − d

dq

)
, (A.11)

which also connect the neighboring states only. The Hamiltonian ĥosc is expressed in
terms of these operators as

ĥosc =
�ω

2

(
− d2

dq2 + q2
)

= �ω

(
b̂+b̂ +

1
2

)
. (A.12)

The operators (A.11) are Hermitian conjugate and satisfy the commutation relation

[b̂, b̂+] = 1. (A.13)

The operator b̂+ increases the number n of the oscillator state, while the operator b̂
decreases this number:

b̂+ψn(q) =
√

n + 1ψn+1(q), b̂ψn(q) =
√

nψn−1(q). (A.14)
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The coordinate and momentum operators, which mix the n-th and (n ± 1)-th states,
are expressed through b̂+ and b̂ as

x̂ =

√
�

2mω
(b̂+ + b̂), p̂ = −i�

√
mω

�

d

dq
= i

√
m�ω

2
(b̂+ − b̂). (A.15)

Let us act by the operator b̂+ on the function ψ0(q) describing the ground (“vacuum”)
state. After n sequential actions, we obtain the wave function of the n-th state:

ψn(q) =
(b̂+)n

√
n!

ψ0(q), (A.16)

while ψ0(q) is determined from the equation b̂ψ0(q) = 0. Using the explicit form of b̂
from Eq. (A.11), we have ψ0(q) = N0 exp(−q2/2).

Let us reformulate the harmonic oscillator problem by turning from the coordinate
representation to the occupation number representation. We introduce a set of ket-
vectors

|0〉, |1〉, . . . |n〉, . . . ≡ {|n〉} (A.17)

corresponding to the levels 0, 1, . . . n . . . . They are connected to each other by the
relations analogous to the ones introduced in Eq. (A.14):

b̂+|n〉 =
√

n + 1|n + 1〉, b̂|n〉 =
√

n|n − 1〉. (A.18)

Each element of the set {|n〉} is obtained from the ground-state ket-vector |0〉 after a
number of actions of the operator b̂+, as in Eq. (A.16):

|n〉 =
(b̂+)n

√
n!

|0〉. (A.19)

Therefore, the operators b̂+ (b̂) describe creation (annihilation) of a quantum with
energy �ω. If the Hamiltonian of the oscillatory type describes vibrational modes of
electromagnetic field or small vibrations of crystal lattice, such quanta correspond
to quasiparticles, photons or phonons. The Hermitian operator N̂ = b̂+b̂ is called
the quantum (particle) number operator, since |n〉 satisfies the eigenstate problem
N̂ |n〉 = n|n〉. To check it, one may use the operator equation N̂ b̂+ = b̂+(N̂ + 1) and
the explicit form of the ket-vector |n〉. This leads to a chain of n equations

N̂ |n〉 =
b̂+

√
n!

(N̂ + 1)(b̂+)n−1|0〉 = . . . =
(b̂+)n

√
n!

(N̂ + n)|0〉 = n|n〉. (A.20)

One may rewrite the Hamiltonian (A.12) in terms of N̂ as ĥosc = �ω(N̂ + 1/2).
As an example of the operator algebra based on the properties of b̂+ and b̂, we

calculate the matrix element 〈n|eikx|n′〉. Such elements appear, for example, in cal-
culation of the matrix elements of a potential V (x) expressed through its Fourier
transform according to V (x) = (2π)−1 ∫ dkeikxV (k). Expressing the coordinate op-
erator according to Eq. (A.15), we rewrite the matrix element as

〈n|eikx|n′〉 = 〈n|eiκ(b̂++b̂)|n′〉, κ = k

√
�

2mω
, (A.21)

where κ is a dimensionless wave number. Further, we use the operator identity (known
as Weyl identity)

eÂ+B̂ = eÂeB̂e−[Â,B̂]/2 (A.22)
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which is true under the requirement that the commutator [Â, B̂] commutes with both
Â and B̂. We substitute Â = iκb̂+ and B̂ = iκb̂ and obtain [Â, B̂] = κ2 so that this
requirement is fulfilled. Now we have

〈n|eiκ(b̂++b̂)|n′〉 = e−κ2/2
∑

l

〈n|eiκb̂+ |l〉〈l|eiκb̂|n′〉. (A.23)

The matrix elements of the exponential operators are calculated by expanding the
exponents in series, exp(Â) =

∑∞
p=0(Â)p/p!. Then we use Eq. (A.18) and obtain

〈l|eiκb̂|n′〉 =
(iκ)n′−l

(n′ − l)!

√
n′!
l!

, 〈n|eiκb̂+ |l〉 =
(iκ)n−l

(n − l)!

√
n!
l!

, (A.24)

because only the terms with p = n′ − l and p = n − l contribute to the matrix
elements 〈l|eiκb̂|n′〉 and 〈n|eiκb̂+ |l〉, respectively. The sum over l in Eq. (A.23) runs
up to l = min{n, n′}. Below we put n′ > n and choose the variable of summation as
m = n − l, where m runs from 0 to n. Using Eq. (A.24), we obtain

〈n|eiκ(b̂++b̂)|n′〉 = e−κ2/2
n∑

m=0

√
n!n′!(iκ)n′−n+2m

m!(n′ − n + m)!(n − m)!
. (A.25)

The sum over m can be written through the Laguerre polynomials defined as

Lα
n(x) =

n∑
m=0

(−1)m (n + α)!
(n − m)!(α + m)!m!

xm. (A.26)

Substituting α = n′ − n and x = κ2, we finally find

〈n|eikx|n′〉 =

√
n!
n′!

(iκ)n′−ne−κ2/2Ln′−n
n (κ2), κ = k

√
�

2mω
. (A.27)

This result, of course, can be obtained directly after calculating the integrals with the
wave functions (A.4). Equation (A.27) have numerous applications, in particular, in
magnetotransport theory.



Appendix B
Many-Band KP-Approach

Let us consider the electron states in crystals under external fields. The dynamics
of the electrons can be described by the kp-formalism if these fields are smooth
on the scale of the lattice constant. The electric and magnetic field strengths, Ert

and Hrt, are expressed through the vector potential Art and scalar potential Φrt

according to Eq. (4.3). By including the field-induced contributions into the one-
electron Hamiltonian (5.4), we obtain

ĥcr(t) = ĥcr − e

2mec
(p̂ · Art + Art · p̂) +

(e/c)2

2me
A2

rt

+Urt + µB(σ̂ · [∇ × Art]), (B.1)

where me is the free-electron mass, Urt = eΦrt is the potential energy proportional
to the scalar potential, and µB = |e|�/2mec is the Bohr magneton. The last term
in Eq. (B.1) describes the Pauli interaction of electrons with the magnetic field, and
we have neglected the contribution (µB/2mec

2)σ̂ · [∇Ucr(r) × Art] coming from the
spin-orbit interaction term for the reason of its smallness. Near the extremum p = 0
(a generalization to the case of an arbitrary extremum p = p0 is straightforward), we
write a complete set of eigenfunctions as ψlp(r) = V −1/2 exp(ip · r/�)ul(r); see Eq.
(5.5). We remind that the index l contains both the band number n and the spin
number σ. The matrix elements of Art and Urt can be written through their spatial
Fourier transforms, where q = (p − p′)/�:

〈lp|Art|l′p′〉 � δll′Aqt, 〈lp|Urt|l′p′〉 � δll′Uqt,

〈lp|A2
rt|l′p′〉 � δll′A

2
qt . (B.2)

Therefore, within the kp-approach the matrix elements of the Hamiltonian (B.1) take
the form

〈lp|ĥcr(t)|l′p′〉 = δpp′Hll′(p) + δll′

[
− e

2mec
(p + p′) · Aqt

+
e2

2mec2 A2
qt + Uqt

]
+ µB(σll′ · Hqt) − e

c
Aqt · vll′ , (B.3)

737
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where Hll′(p) is introduced by Eq. (5.6), σll′ is the interband matrix element of
the spin operator, and the matrix elements of the velocity operator, vll′ , are given
by Eq. (5.7). The time-dependent envelope functions ϕlpt in the expansion (5.8) is
determined from the system of equations

i�
∂

∂t
ϕlpt =

∑
l′p′

〈lp|ĥcr(t)|l′p′〉ϕl′p′t (B.4)

describing the dynamics of many-band electron states.
Since the problem is spatially inhomogeneous, it is convenient to use the coordi-

nate representation of the envelope function instead of the momentum representation.
Expanding the exact wave function as in Eq. (5.8), Ψ(rt) =

∑
lp ϕlptψlp(r), we may

write it as Ψ(rt) =
∑

l ϕlrtul(r), where ϕlrt is connected to ϕlpt by the Fourier trans-
formations

ϕlrt =
1√
V

∑
p

eip·r/�ϕlpt, ϕlpt =
1√
V

∫
dre−ip·r/�ϕlrt . (B.5)

The sum over p must be taken inside the first Brillouin zone. The coordinate-
dependent envelope function ϕlrt is governed by the following equation:

i�
∂

∂t
ϕlrt =

∑
l′

Ĥll′ϕl′rt,

Ĥll′ = δll′(εl + Urt) + vll′ · π̂rt (B.6)

+
1
4

∑
αβ

Dαβ
ll′ (π̂α

rtπ̂
β
rt + π̂β

rtπ̂
α
rt) + µBGll′ · Hrt,

where π̂rt = p̂ − eArt/c is the kinematic momentum operator. Equation (B.6) de-
scribes the electron dynamics in external fields when there are several bands, num-
bered by the indices l and l′, close to each other in energy. The contribution of the
other, remote bands is taken into account through the symmetric inverse effective
mass tensor

Dαβ
ll′ =

δll′δαβ

me
+

1
2

∑
s
=l,l′

(vα
lsv

β
sl′ + vβ

lsv
α
sl′)[(εl − εs)−1 + (εl′ − εs)−1] , (B.7)

which generalizes the tensor (5.11) to the many-band case. The effective spin vector,

Gα
ll′ = σα

ll′ − i
me

2

∑
s
=l,l′

[vls × vsl′ ]α[(εl′ − εs)−1 + (εl − εs)−1] , (B.8)

is also determined by the remote band contributions and describes modification of the
g-factor of electrons in the crystal. In order to describe the remote bands in the way
given by Eqs. (B.6)−(B.8), one needs, apart from the condition |εl − εs|  |εl′ − εl|,
the requirements of smoothness of external fields on the scale of the lattice constant
and of low frequency of these fields, to ensure ω � |εl − εs|/�.

The many-band current density operator Îll′(r, t) is introduced as a proportionality
coefficient determining the correction to the Hamiltonian due to a small variation of
the vector potential, δArt, according to the expression

δĤll′ = −1
c

∫
dr Îll′(r, t) · δArt . (B.9)
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In other words, the current density operator is a functional derivative of the matrix
Hamiltonian (B.3) over the vector potential. Comparing Eqs. (B.9) and (B.6), we
obtain the explicit expression for Îll′(r, t):

Îα
ll′(r, t) = evα

ll′δ(x − r) +
e

2

∑
β

Dαβ
ll′ [p̂βδ(x − r) + δ(x − r)p̂β ] (B.10)

−e2

c

∑
β

Dαβ
ll′ Aβ

xtδ(x − r) − ie

2me
{[p̂ × Gll′ ]αδ(x − r) − δ(x − r)[p̂ × Gll′ ]α}.

The first term is the contribution of the bands l and l′ which are included in the matrix
Hamiltonian (B.6). The next two terms describe the remote-band contributions. The
last term is a spin-dependent contribution to the current. In the simplest case of a non-
degenerate band, when there is only one state in the set l, the matrix Dαβ

ll′ is reduced
to the inverse effective mass tensor (5.11), while −2Gα

ll′ becomes a scalar effective g-
factor multiplied by the vector of Pauli matrices so that the Pauli contribution to the
electron Hamiltonian is written as −gµBσ̂ · Hrt/2. The first term in the expression
(B.10) is omitted in this case. In the dipole approximation, one has to consider only
the Fourier component Îll′(q, t) =

∫
drÎll′(r, t) exp(−iq · r) at q = 0. Since the spin

contribution in Eq. (B.10) is equal to zero in this case, the current density operator
Îll′(q = 0, t) ≡ Îll′(t) is written as

Îα
ll′(t) = evα

ll′ + e
∑

β

Dαβ
ll′

(
p̂β − e

c
Aβ

t

)
, (B.11)

where only the vector potential of the homogeneous field remains. If the energies
of electrons in the bands l and l′ are small in comparison to the interband energy
|εl − εl′ |, only the first term in Eq. (B.11) is essential.

Consider the electron states in deformed crystals. Small deformations of elastic
materials are described by a symmetric tensor of deformation, εαβ = εαβ(r):

εαβ =
1
2

(
∂uα

∂rβ
+

∂uβ

∂rα

)
, (B.12)

where u = u(r) is the displacement vector at the point r. The deformation changes
the symmetry of the crystal lattice and the potential energy W (r) in the elementary
cell. Since the point r under the deformation is shifted to the point (1 + ε̂)r, the
momentum is transformed to (1 − ε̂)p, within the linear accuracy. The linear in u(r)
contribution to the crystal Hamiltonian (5.4) is written as

δ̂H(ε) = −
∑
αβ

p̂αεαβ p̂β

me
+
∑
αβ

Vαβ(r)εαβ . (B.13)

The spin-orbit contribution is neglected in this expression because the relativistic
corrections to δ̂H(ε) are small. The matrix Vαβ describes the deformation-induced
modification of the potential energy W (r) according to

Wε[(1 + ε̂)r] − W (r) =
∑
αβ

Vαβ(r)εαβ . (B.14)

Using the set of eigenfunctions (5.5), we find the deformation-induced contributions
to the kp-Hamiltonian (5.6):

δHll′(ε) =
∑
αβ

Ξαβ
ll′ εαβ , Ξαβ

ll′ = − (pαpβ)ll′

me
+ Vαβ

ll′ . (B.15)
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To estimate the deformation-potential tensor Ξαβ
ll′ , one may use the models of

crystal lattice with either rigid or deformed ions. In the deformed ion approximation,
the change of the potential energy is small so that Ξαβ

ll′ is determined only by the first
term of Eq. (B.15). In the rigid ion model, the crystal potential W (r) is approximated
by a sum of atomic potentials Va(r − Ri) placed at the lattice sites Ri, and the
deformation merely shifts the site positions to (1+ ε̂)Rk without any change of Va(r).
For both approximations, the tensors Ξαβ

ll′ appear to be of the order of atomic energies,
though the deviations of their values from experimental data are considerable. One
should use a more detailed description of the band structure in order to calculate Ξαβ

ll′ .
In the vicinity of a non-degenerate extremum of the conduction band, it is convenient
to consider the deformation-potential tensor in the main axes whose orientation is
determined by the crystal symmetry. According to Eq. (B.15), the symmetry of this
tensor is the same as for the effective mass tensor (5.11). If the surfaces of equal
energy are uniaxial ellipsoids, the deformation-induced contribution (B.15) to the
Hamiltonian is expressed through two constants, the longitudinal, d‖, and transverse,
d⊥, deformation potentials, as δHcc(ε) = d⊥(εxx + εyy) + d‖εzz. In the spherically-
symmetric case, one has d‖ = d⊥ = D, and the induced energy δHcc(ε) = D∑α εαα =
Ddivu(r) is proportional to the change of the crystal volume due to the deformations.
In other words, the isotropic conduction band is simply shifted in energy due to the
hydrostatic component of the deformation and does not feel the displacements induced
by uniaxial stresses.

Consider the simplest case described by the many-band kp-approach, when there
are two spin-degenerate bands (conduction and valence bands) close in energy. Their
contributions to the Hamiltonian (5.6) should be considered in the frames of a two-
band kp-model. The envelope wave function has four components numbered by the
band index n = c, v and spin index σ = ±1. There are only two non-zero components
of the velocity matrix (5.7), the interband velocities vcv and vvc. Since the velocity
operator is Hermitian, v∗

cv = vvc. Below we consider the case of cubic crystals, when
these velocities are isotropic (the isotropy, however, exists only if we consider an
extremum in the center of the Brillouin zone). Defining vcv = vvc ≡ s, one may write
the velocity (5.7) in the form of a 4 × 4 matrix

v̂α = s

∣∣∣∣ 0̂ σ̂α

σ̂α 0̂

∣∣∣∣ , (B.16)

where α = x, y, z is the Cartesian coordinate index, 0̂ defines a 2 × 2 matrix whose
elements are zeros, and σ̂α is a 2 × 2 matrix which acts on spin variables only. One
should choose this matrix in such a way that the right-hand side of Eq. (5.11) be-
comes spherically-symmetric and independent of the spin quantum number σ. These
conditions are fulfilled if the set of 2 × 2 matrices satisfies the anticommutation rela-
tions

σ̂ασ̂β + σ̂β σ̂α = 0, α �= β, σ̂ασ̂α = 1̂, (B.17)

where 1̂ is the unit 2 × 2 matrix. Therefore, σ̂α may be chosen as the Pauli matrices:

σ̂x =
∣∣∣∣ 0 1

1 0

∣∣∣∣, σ̂y = i

∣∣∣∣ 0 −1
1 0

∣∣∣∣, and σ̂z =
∣∣∣∣ 1 0

0 −1

∣∣∣∣. Let us set the reference point

of energy in the middle of the gap between the bands and introduce the effective mass
m according to 2ms2 = εg. Then we write 4 × 4 matrices of the Hamiltonian ĥ and
velocity operator v̂ as

ĥ = ms2ρ̂3 + (p · v̂) +
p2

2M
, v̂ = sρ̂1σ̂ . (B.18)
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The Hamiltonian in Eq. (B.18) differs from the Dirac Hamiltonian for a relativistic
electron only due to the presence of the remote-band contribution p2/2M , which
appears since the tensor (B.7) in the case under consideration is reduced to a scalar
denoted as M−1. The 4×4 matrices ρ̂i (i = 1, 2, 3) satisfy the commutation relations
(B.17) and can be chosen in the form

ρ̂1 =
∣∣∣∣ 0̂ 1̂

1̂ 0̂

∣∣∣∣ , ρ̂2 = i

∣∣∣∣ 0̂ −1̂
1̂ 0̂

∣∣∣∣ , ρ̂3 =
∣∣∣∣ 1̂ 0̂

0̂ −1̂

∣∣∣∣ . (B.19)

The symbolic product of ρ̂i by a Pauli matrix, used in Eq. (B.18) and below, simply
means that each of the unit matrices in ρ̂i should be replaced by the Pauli matrix.
We also note that the scalar contributions to the matrix expressions, like p2/2M in ĥ
of Eq. (B.18), should be formally considered as the contributions standing at the unit
matrices. If the contribution of the remote bands is not essential so that M = ∞, the
expressions (B.18) and (B.19) describe a “relativistic” electron of mass m, while the
interband velocity s plays the role of the velocity of light.

In a similar way as in the relativistic quantum theory, the Hamiltonian ĥ is diag-
onalized by a p-dependent unitary transformation

Ûp =
(

ηp + 1
2ηp

)1/2

+ iρ̂2
σ̂ · p

p

(
ηp − 1
2ηp

)1/2

, ηp =
√

1 + (p/ms)2 (B.20)

according to

ÛpĥÛ+
p = ms2ηpρ̂3 +

p2

2M
. (B.21)

Since σ̂ has dropped out of this expression, the electron states appear to be spin-
degenerate. The energy spectra are determined from the eigenstate problem for the
Hamiltonian (B.21):

εcp =
p2

2M
+ ms2ηp, εvp =

p2

2M
− ms2ηp . (B.22)

The energy spectrum is parabolic, ±[εg/2+p2/2m]+p2/2M , at p � ms and becomes
linear, ±sp, at p  ms. This behavior, corresponding to a transition from non-
relativistic to relativistic regimes for a Dirac electron, is called the non-parabolicity
of energy spectrum. In the limiting case of zero energy gap, εg = 0, one has m → 0
and the energy spectra at M → ∞ are always linear, εc,vp = ±sp. This situation takes
place in some semiconductor alloys, where a change in the alloy composition leads to
inversion of the sign of εg. Such materials are called the gapless semiconductors of
type I. Another kind of gapless materials (type II) form Cd1−xHgxTe alloys, where
the zero-gap situation is realized in a certain range of alloy composition, and the
energy spectra are parabolic. To describe this case, one needs to take into account
more sophisticated band models involving several energy bands, which is beyond the
scope of this book. Nevertheless, the two-band Hamiltonian described above reflects
essential features of narrow-gap and zero-gap materials.

When the diagonalization of the Hamiltonian by the unitary transformation (B.20)
is carried out, the interband velocity matrix v̂ and the potential energy Ur = V −1

×∑p eiq·rUq are transformed accordingly. The velocity matrix becomes

Ûpv̂Û+
p =

p
mηp

ρ̂3 + sρ̂1

[
σ̂ − ηp − 1

ηp

p(σ̂ · p)
p2

]
. (B.23)
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The interband (proportional to ρ̂1) part of this operator is of the order of s, while
the diagonal, with respect to the band index, part changes from p/m for small p to
sp/p for large p. To consider the transformation of the potential energy, we use the
momentum representation. Namely, the matrix element 〈p|Ur|p′〉 is transformed into
U(p−p′)/�ÛpÛ+

p′ , where the matrix factor is

ÛpÛ+
p′ =

1
2

√
(ηp + 1)(ηp′ + 1)

ηpηp′

{
1 +

(σ̂ · p)(σ̂ · p′)
pp′

√
ηp − 1
ηp + 1

ηp′ − 1
ηp′ + 1

+iρ̂2

[
(σ̂ · p)

p

√
ηp − 1
ηp + 1

− (σ̂ · p′)
p′

√
ηp′ − 1
ηp′ + 1

]}
. (B.24)

This factor is close to unity for small momenta. The second term on the right-hand
side of Eq. (B.24) contains the contribution proportional to σ̂[p × p′]. This contri-
bution is responsible for the intraband spin-flip scattering, which becomes important
with increasing p/ms. The interband (proportional to ρ̂2 in Eq. (B.24)) contribu-
tions become essential when the momentum transfer |p − p′| is comparable to ms,
i.e., when the characteristic spatial scale of the potential energy Ur is comparable to
the interband length �/ms.



Appendix C
Wigner Transformation of Product

The product of operators, ĉt = âtb̂t, is written in the coordinate representation as

ct(x1,x2) =
∫

dx′at(x1,x′)bt(x′,x2). (C.1)

Below we consider the transformation of Eq. (C.1) to the Wigner representation.
According to the general definition of the Wigner transformation in Sec. 9, we have

ct(r,p) =
∫

d∆r exp
(

− i

�
Prt · ∆r

)
×
∫

dx′at

(
r +

∆r
2

,x′
)

bt

(
x′, r − ∆r

2

)
, (C.2)

where at(. . .) and bt(. . .) can be written by using the inverse Wigner transformation
(9.7):

at

(
r +

∆r
2

,x′
)

=
∫

dp1

(2π�)3
at

(
r + x′

2
+

∆r
4

,p1

)
× exp

[
i

�

(
p1 +

e

c
A(r+x′)/2+∆r/4,t

)
·
(
r − x′ +

∆r
2

)]
, (C.3)

bt

(
x′, r − ∆r

2

)
=
∫

dp2

(2π�)3
bt

(
x′ + r

2
− ∆r

4
,p2

)
× exp

[
i

�

(
p2 +

e

c
A(x′+r)/2−∆r/4,t

)
·
(
x′ − r +

∆r
2

)]
. (C.4)

Instead of the variables x′ and ∆r in Eq. (C.2), we introduce new coordinates r1

and r2 according to

r1 =
r + x′

2
+

∆r
4

, r2 =
r + x′

2
− ∆r

4
, (C.5)

so that ∆r = 2(r1 − r2) and x′ = r1 + r2 − r. Using these variables and Eqs. (C.3)
and (C.4), we rewrite Eq. (C.2) in the form

ct(r,p) =
∫

dp1

(2π�)3

∫
dp2

(2π�)3

∫
dr1

∫
dr2|J3|at(r1,p1)bt(r2,p2)

×e−(2i/�)Prt·(r1−r2)e(2i/�)Pr1t·(r−r2)e(2i/�)Pr2t·(r1−r), (C.6)
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where Prkt ≡ pk + (e/c)Arkt is introduced in Eq. (9.6), and the Jacobian of the
coordinate transformation is introduced in the usual way, as

|J3| =
∂(∆r,x′)
∂(r1, r2)

. (C.7)

These expressions are written for the 3D case. To consider one- or two-dimensional
problems (d = 1 or d = 2) one should write the phase volume (2π�)d in the integrals
over momenta. To calculate the Jacobian (C.7), we use

∂∆rα

∂r1β
= 2δαβ ,

∂∆rα

∂r2β
= −2δαβ ,

∂x′
α

∂r1β
=

∂x′
α

∂r2β
= δαβ (C.8)

and obtain Jd = 22d, d = 1, 2, 3. The exact formula for the operator product trans-
formation takes the form

ct(r,p) =
∫

dp1

(2π�)d

∫
dp2

(2π�)d

∫
dr1

∫
dr2|Jd|

×at(r1,p1)bt(r2,p2) exp
[
2i

�
S(rp, r1p1, r2p2)

]
, (C.9)

where the factor S(rp, r1p1, r2p2) in the exponent is determined by

S(rp, r1p1, r2p2) = (Prt − Pr2t) · (r − r1) − (Prt − Pr1t) · (r − r2). (C.10)

In order to simplify Eq. (C.9) for smooth functions at(r,p) and bt(r,p), we intro-
duce new variables ∆r1,2 = r1,2 − r and ∆p1,2 = p1,2 − p, and expand the function
in the expression under the integrals of Eq. (C.9) by using Ar − Ar+∆r1,2 � 0. As a
result, we have

ct(r,p) = |Jd|
∫

d∆p1

(2π�)d

∫
d∆p2

(2π�)d

∫
d∆r1

∫
d∆r2

[
at(r,p)

+
∂at

∂r
· ∆r1 +

∂at

∂p
· ∆p1 + . . .

] [
bt(r,p) +

∂bt

∂r
· ∆r2 +

∂bt

∂p
· ∆p2 + . . .

]
× exp

[
2i

�
(∆r1 · ∆p2 − ∆r2 · ∆p1)

]
. (C.11)

The contribution proportional to atbt in Eq. (C.11) is determined by the integral

|Jd|
∫

d∆p1

(2π�)d

∫
d∆p2

(2π�)d

∫
d∆r1

∫
d∆r2 exp

[
2i

�
(∆r1 · ∆p2 − ∆r2 · ∆p1)

]

= 22d

∫
d∆p1

∫
d∆p2δ(2∆p1)δ(2∆p2) = 1. (C.12)

The products of at and bt by the derivatives of these functions vanish from Eq. (C.11),
since they are multiplied by the integrals containing the contributions linear in ∆r1,2

or ∆p1,2. These integrals are equal to zero (this can be checked by the substitutions
∆r1,2 → −∆r1,2 or ∆p1,2 → −∆p1,2). If the products ∆rα

1,2∆rβ
1,2 or ∆pα

1,2∆pβ
1,2 stay

under an integral of the type (C.12), they also vanish. This means that the products
(∂at/∂rα)(∂bt/∂rβ) or (∂at/∂pα)(∂bt/∂pβ) drop out of Eq. (C.11). Therefore, only
the integrals

|Jd|
∫

d∆p1

(2π�)d

∫
d∆p2

(2π�)d

∫
d∆r1

∫
d∆r2
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× exp
[
2i

�
(∆r1 · ∆p2 − ∆r2 · ∆p1)

] ∣∣∣∣ ∆rα
1 ∆pβ

2

∆pα
1 ∆rβ

2

∣∣∣∣ (C.13)

remain. These integrals stay at the products of the first derivatives over coordinate
and over momentum. If α �= β, we again have zero in Eq. (C.13). One may prove
this statement by changing the signs of the variables. The contribution ∝ δαβ is
calculated analogous to Eq. (C.12), using the integration by parts. The expression
(C.13) is equal to

δαβ2d

(∫
d∆p

2π�

∫
d∆re±(2i/�)∆r∆p

)d−1 ∫
d∆p

2π�

∫
d∆re±(2i/�)∆r∆p∆r∆p

= δαβ2d

[∫
d∆pδ(2∆p)

]d−1 ∫
d∆p

2π�

∆p

2

∫
d∆r

(
∓i�

∂

∂∆p
e±(2i/�)∆r∆p

)
= ±δαβ

i�

2
. (C.14)

Therefore, the quasi-classical expression for the operator product is given as fol-
lows:

ct(r,p) = at(r,p)bt(r,p) +
i�

2
(at, bt)rp + . . . . (C.15)

The contribution linear in the Planck constant � is written through the classical
Poisson brackets

(at, bt)rp =
(

∂at

∂r
· ∂bt

∂p
− ∂at

∂p
· ∂bt

∂r

)
. (C.16)

These expressions are consistent with Eq. (9.24), and the quantum correction deter-
mined by Eq. (C.16) can be neglected under the condition �/λ̄ � p̄, where λ̄ and p̄
are the characteristic spatial scale and momentum for the functions at and bt. The
�2-corrections to Eq. (C.15) can be written if the next terms of the expansion in Eq.
(C.11) are taken into account.

Let us use the quasi-classical expression (C.15) in order to check the commutation
relation for coordinate and momentum, [r̂α, p̂β ] = i�δαβ . According to Eq. (C.15),
the products of the operators standing in the commutator take the form

r̂αp̂β → rαpβ +
i�

2
δαβ , p̂β r̂α → pβrα − i�

2
δαβ . (C.17)

Therefore, the classical contributions to the commutator annihilate and the com-
mutator is equal to i�δαβ . In a similar fashion, one may prove that the relation
v̂α = (i/�)[ĥ, r̂α] connecting the coordinate and velocity operators is consistent with
the classical expression for the group velocity. According to Eq. (C.15),

ĥr̂α → εrprα − i�

2
∂εrp

∂pα
, r̂αĥ → rαεrp +

i�

2
∂εrp

∂pα
. (C.18)

Composing the commutator, we obtain the classical expression vrp = ∂εrp/∂p.



Appendix D
Double-Time Green’s Functions

The introduction of the Green’s functions of electrons in Chapter 3 is based
upon the averaging, over the impurity distribution, of the Green’s function of the
Schroedinger equation. Below we present a more general definition of Green’s func-
tions, which is widely used in statistical physics. Let us first introduce the Heisenberg
representation of an arbitrary operator Â:

Â(t) = eiĤt/�Âe−iĤt/�, (D.1)

where Ĥ is the time-independent Hamiltonian. The operator Â can be expressed
in terms of creation and annihilation operators obeying either bosonic or fermionic
commutation rules. The retarded, advanced, and causal Green’s functions, which are
labeled by the indices R, A, and c, respectively, are defined through the correlation
functions of a pair of Heisenberg operators Â(t) and B̂(t′) according to

GR
tt′ = − i

�
θ(t − t′)〈〈Â(t)B̂(t′) ± B̂(t′)Â(t)〉〉 ≡ 〈〈Â|B̂〉〉R

tt′ , (D.2)

GA
tt′ =

i

�
θ(t′ − t)〈〈Â(t)B̂(t′) ± B̂(t′)Â(t)〉〉 ≡ 〈〈Â|B̂〉〉A

tt′ , (D.3)

Gc
tt′ = − i

�
θ(t − t′)〈〈Â(t)B̂(t′)〉〉 ± i

�
θ(t′ − t)〈〈B̂(t′)Â(t)〉〉 ≡ 〈〈Â|B̂〉〉c

tt′ . (D.4)

Here and below, the upper and lower signs in equations stand for the fermion and
boson operators, respectively. This definition is made for the sake of convenience, to
employ the commutation rules for fermions and bosons in the equations of motion
for the Green’s functions, see below. The double angular brackets denote the aver-
aging in the sense of Eq. (1.18), 〈〈. . .〉〉 = Sp(η̂ . . .), and the statistical operator η̂
is time-independent in the Heisenberg representation. In the case of thermodynamic
equilibrium, when the statistical operator η̂ = η̂eq commutes with the Hamiltonian
Ĥ , one can easily show that Gs

tt′ (s = R, A, c) depend only of t− t′, i.e., Gs
tt′ = Gs

t−t′ .
Therefore, it is convenient to use the energy representation of the Green’s functions
according to

Gs
t−t′ =

∫ ∞

−∞

dε

2π�
e−iε(t−t′)/�Gs

ε, Gs
ε =

∫ ∞

−∞
dteiεt/�Gs

t . (D.5)
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The energy representation of the Green’s function is also denoted as 〈〈Â|B̂〉〉s
ε.

In the case of thermodynamic equilibrium, the correlation function 〈〈Â(t)B̂(t′)〉〉
can be expressed through the retarded and advanced Green’s functions in the energy
representation. Let us introduce

JAB(ω) =
∫

d(t − t′)eiω(t−t′)〈〈Â(t)B̂(t′)〉〉,

JBA(ω) =
∫

d(t − t′)eiω(t−t′)〈〈B̂(t′)Â(t)〉〉. (D.6)

First we note that
JAB(ω) = e�ω/T JBA(ω). (D.7)

This identity can be checked easily if we calculate the traces in 〈〈. . .〉〉 in the exact
eigenstate representation and use the equilibrium statistical operator which is ex-
pressed through the temperature T . Using Eq. (D.7), we rewrite GR

ε and GA
ε , where

ε = �ω, as∣∣∣∣ GR
ε

GA
ε

∣∣∣∣ = i

�

∫ ∞

−∞
dt

∣∣∣∣ −θ(t)
θ(−t)

∣∣∣∣ eiωt

∫ ∞

−∞

dω′

2π
(e�ω′/T ± 1)JBA(ω′). (D.8)

The step function θ(t) can be represented as

θ(t) =
i

2π

∫ ∞

−∞
dx

e−ixt

x + iλ
, λ → +0. (D.9)

We substitute this expression into Eq. (D.8), integrate this equation over t and x,
and obtain

GR,A
ε =

1
2π�

∫ ∞

−∞

dω′

ω − ω′ + iλ
(e�ω′/T ± 1)JBA(ω′), (D.10)

where λ → +0 for the retarded (R) and λ → −0 for the advanced (A) Green’s
function. Equation (D.10) leads to the exact relation

GA
ε − GR

ε =
i

�
(eε/T ± 1)JBA(ω). (D.11)

Assuming that JBA(ω) is real, we also find GA
ε = GR∗

ε so that the left-hand side of
Eq. (D.11) can be rewritten as 2iImGA

ε or −2iImGR
ε . Let us express [ω − ω′ + iλ]−1

through the principal value P(ω − ω′)−1 and delta-function δ(ω − ω′) as in problem
1.4. We find that Eq. (D.10) leads to the following dispersion relations:

ReGR
ε =

1
π

P
∫ ∞

−∞

dε′

ε′ − ε
ImGR

ε′ ,

ReGA
ε = − 1

π
P
∫ ∞

−∞

dε′

ε′ − ε
ImGA

ε′ . (D.12)

The spectral representation (D.10) and dispersion relations (D.12) are directly related
to the spectral representation and dispersion relations for the kinetic coefficients de-
scribing the linear response of the system under consideration, since these kinetic
coefficients can be expressed through the retarded Green’s functions. We note that
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equations similar to Eqs. (D.10) and (D.12) can be written for the causal Green’s
function as well.

Since the Heisenberg operators Â(t) satisfy the equation of motion i�dÂ(t)/dt =
Â(t)Ĥ − ĤÂ(t), one can write the following equation of motion for the Green’s func-
tions:

i�
dGs

tt′

dt
= δ(t − t′)〈〈Â(t)B̂(t) ± B̂(t)Â(t)〉〉 + 〈〈[Â, Ĥ ]|B̂〉〉s

tt′ . (D.13)

The double-time Green’s function 〈〈[Â, Ĥ ]|B̂〉〉s
tt′ standing on the right-hand side of

Eq. (D.13) is determined from a similar equation of motion and expressed through
another double-time Green’s function containing the commutator [[Â, Ĥ ], Ĥ ]. In this
way one gets a chain of coupled equations which can be cut under appropriate ap-
proximations. In particular, for the systems with weak interaction one can retain
only the terms of a given order (linear, quadratic, etc.) in the interaction part of the
Hamiltonian.

The Green’s functions of quasiparticles are defined by substituting the field opera-
tors Ψ̂x and Ψ̂+

x (or the annihilation and creation operators of these quasiparticles) in
place of Â and B̂. The one-particle Green’s function in the coordinate representation
is introduced as

Gs
tt′(x,x′) = 〈〈Ψ̂x|Ψ̂+

x′〉〉s
tt′ . (D.14)

Expanding Ψ̂x over a set of quantum states as Ψ̂x(t) =
∑

k ψ(k)
x âk(t), where the

index k numbers these states, we have Gs
tt′(x,x′) =

∑
kk′ Gs

tt′(k, k′)ψ(k)
x ψ(k′)∗

x′ . The
one-particle Green’s function in the k-state representation is given by

Gs
tt′(k, k′) = 〈〈âk|â+

k′〉〉s
tt′ . (D.15)

If ψ(k)
x are exact eigenstates of the Hamiltonian Ĥ , i.e., when Ĥ =

∑
k εkâ+

k âk, the
correlation functions are calculated with the use of the following identities:

âk(t) = e−iεkt/�âk, â+
k (t) = eiεkt/�â+

k , 〈〈â+
k âk′〉〉 = nkδkk′ , (D.16)

where nk are the occupation numbers for the quasiparticles (fermions or bosons).
The Green’s function in the exact eigenstate representation is diagonal, Gs

tt′(k, k′) =
δkk′Gs

t−t′(k), where

GR
t−t′(k) = − i

�
θ(t − t′)e−iεk(t−t′)/�, (D.17)

GA
t−t′(k) =

i

�
θ(t′ − t)e−iεk(t−t′)/�, (D.18)

and
Gc

t−t′(k) =
i

�
[−θ(t − t′)(1 ∓ nk) ± θ(t′ − t)nk]e−iεk(t−t′)/�. (D.19)

We note that the retarded and advanced Green’s functions in the exact eigenstate
representation are temperature-independent. The energy representation of these func-
tions coincides with the one given for electrons in Chapter 3, see Eq. (14.9), where
the momentum p stands in place of the quantum number k. In contrast, the causal
Green’s function depends on the occupation number nk. One has

GR
ε (k) = GA∗

ε (k) =
1

ε − εk + iλ
,

Gc
ε(k) =

±nk

ε − εk − iλ
+

1 ∓ nk

ε − εk + iλ
(D.20)
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with λ → +0.
Considering photons and phonons, it is convenient to introduce Green’s functions

in another way. We note that the observable physical values related to the photons
and phonons are expressed through the vector potential of electromagnetic field and
through the atomic displacement vectors, respectively. The Hamiltonians describing
the interaction of photons and phonons with electrons, as well as the interaction of
photons with phonons and phonon-phonon interaction, are also expressed in terms of
these vectors. Since the spatial Fourier transforms of both the vector potential and the
vectors of atomic displacement contain bosonic creation and annihilation operators
in the combination b̂qµ + b̂+

−qµ, where µ is the mode index (polarization), it is natural
to define the Green’s function of photons (or phonons) as

Dµµ′,s
tt′ (q,q′) = 〈〈b̂qµ + b̂+

−qµ|b̂−q′µ′ + b̂+
q′µ′〉〉s

tt′ . (D.21)

We use the letter D instead of G to emphasize the difference of the definition (D.21)
with respect to (D.15). If the photons (or phonons) are described by the free-boson
Hamiltonian Ĥb =

∑
qµ �ωqµ(b̂+

qµb̂qµ + 1/2), we can use Eq. (D.16) rewritten for the

boson operators b̂ and b̂+. As a result, Dµµ′,s
tt′ (q,q′) = δµµ′δqq′Dµ,s

t−t′(q), where

Dµ,R
t−t′(q) = − i

�
θ(t − t′)[e−iωqµ(t−t′) − eiωqµ(t−t′)], (D.22)

Dµ,A
t−t′(q) =

i

�
θ(t′ − t)[e−iωqµ(t−t′) − eiωqµ(t−t′)], (D.23)

and
Dµ,c

t−t′(q) = − i

�

{
θ(t − t′)[(Nµ

q + 1)e−iωqµ(t−t′) + Nµ
−qeiωqµ(t−t′)]

+ θ(t′ − t)[Nµ
q e−iωqµ(t−t′) + (Nµ

−q + 1)eiωqµ(t−t′)]
}

. (D.24)

Here Nµ
q is the distribution function of photons or phonons, which becomes the Planck

distribution function in equilibrium. In the energy representation,

Dµ,R
ω (q) = Dµ,A ∗

ω (q) =
1

�ω − �ωqµ + iλ
− 1

�ω + �ωqµ + iλ
, (D.25)

where ω = ε/� and λ → +0. In Eqs. (D.22)−(D.25) we have used the symmetry
property ω−qµ = ωqµ following from the symmetry with respect to time reversal. For
the same reason, Nµ

−q in Eq. (D.24) can be replaced by Nµ
q .



Appendix E
Many-Electron Green’s Functions

To describe a system of many electrons, one can use a set of n-particle Green’s
functions describing evolution of the system when n electrons are added to it at
the instant t′

1 and taken out at the instant t1. The one-particle Green’s function
G(r1t1, r′

1t
′
1) is introduced as

G(r1t1, r′
1t

′
1) = −i〈T̂ Ψ̂r1(t1)Ψ̂

+
r′
1
(t′

1)〉o

=

{
−i〈Ψ̂r1(t1)Ψ̂

+
r′
1
(t′

1)〉o , t1 > t′
1

i〈Ψ̂+
r′
1
(t′

1)Ψ̂r1(t1)〉o , t1 < t′
1

, (E.1)

where 〈. . .〉o = 〈0| . . . |0〉 is the quantum-mechanical averaging over the ground state
|0〉 of the system, Ψ̂r(t) is the electron field operator (see Sec. 4) in the Heisenberg
representation (D.1), and T̂ is the operator of chronological ordering introduced in
Sec. 2. The field operators and the Green’s functions depend on times and coordinates
as well as on spin variables. For the sake of brevity, we omit the corresponding spin
indices. We also put � = 1 in Eq. (E.1) and below. Since the averaging 〈0| . . . |0〉 is
equivalent to the averaging Spη̂eq . . . at zero temperature, the function G(r1t1, r′

1t
′
1)

is the causal zero-temperature double-time Green’s function (D.4), where the electron
field operators Ψ̂r1 and Ψ̂+

r′
1

stand in place of Â and B̂. The Hamiltonian Ĥ = Ĥ0+Ĥee

contains the free-electron and electron-electron interaction terms

Ĥ0 =
∫

dr1Ψ̂+
r1 ĥ1Ψ̂r1 , Ĥee =

1
2

∫
dr1

∫
dr2Ψ̂+

r1Ψ̂
+
r2v12Ψ̂r2Ψ̂r1 , (E.2)

where ĥ1 ≡ ĥr1 is the one-electron Hamiltonian and v12 = v21 = v(r1, r2) is the
potential energy of electron-electron interaction; see Eqs. (4.27), (28.1), and (28.2).
The field operators satisfy the relations

[Ψ̂rk , Ĥ0] = ĥkΨ̂rk , [Ψ̂rk , Ĥee] =
∫

dr1vk1Ψ̂+
r1Ψ̂r1Ψ̂rk . (E.3)

The equation of motion for G(r1t1, r′
1t

′
1) can be obtained from Eq. (D.13):

i
∂G(r1t1, r′

1t
′
1)

∂t1
= δ11′ − i〈T̂ [Ψ̂r1(t1), Ĥ ]Ψ̂+

r′
1
(t′

1)〉o , (E.4)
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where δ11′ ≡ δ(t1 − t′
1)δ(r1 − r′

1). Substituting the relations (E.3) into Eq. (E.4), we
find (

i
∂

∂t1
− ĥ1

)
G(r1t1, r′

1t
′
1) = δ11′ + i

∫
dr2v12〈T̂ Ψ̂r1(t1)Ψ̂r2(t1)

×Ψ̂+
r2(t1 + 0)Ψ̂+

r′
1
(t′

1)〉o = δ11′ − i

∫
dr2v12G(r1t1, r2t1; r′

1t
′
1, r2t1 + 0). (E.5)

The interaction contribution is expressed in this equation through the two-particle
Green’s function introduced as

G(r1t1, r2t2; r′
1t

′
1, r

′
2t

′
2) = (−i)2〈T̂ Ψ̂r1(t1)Ψ̂r2(t2)Ψ̂

+
r′
2
(t′

2)Ψ̂
+
r′
1
(t′

1)〉o . (E.6)

The infinitely small factor +0 is introduced in Eq. (E.5) to provide correct ordering
of the field operators with the same time argument t1 under the operator T̂ . The
function (E.6) satisfies an equation similar to Eq. (E.5), where the interaction term
is expressed through the three-particle Green’s function which, in turn, satisfies an
equation containing four-particle Green’s function. Therefore, we obtain an infinite
chain of equations.

The n-particle Green’s function is defined as

G(r1t1, . . . , rntn; r′
1t

′
1, . . . , r

′
nt′

n) = (−i)n

×〈T Ψ̂r1(t1) . . . Ψ̂rn(tn)Ψ̂+
r′

n
(t′

n) . . . Ψ̂+
r′
1
(t′

1)〉o , (E.7)

which generalizes the definitions given by Eqs. (E.1) and (E.6). Let us prove that
the Green’s function (E.7) satisfies an equation similar to Eq. (E.5). Differentiating
this function over t1, we obtain the term 〈T̂ (∂Ψ̂r1(t1)/∂t1) . . .〉o as well as the con-
tributions appearing due to permutations of Ψ̂-operators when the times t1 and tk

(2 ≤ k ≤ n), or t1 and t′
k (1 ≤ k ≤ n), change their order. Such contributions are

proportional to derivatives of the θ-functions and contain sets of paired terms whose
signs are determined by the number of permutations leading to a given ordering of
the Ψ̂-operators:

∂θ(t1 − tk)
∂t1

〈. . . Ψ̂r1(t1)Ψ̂rk (tk) . . .〉o − ∂θ(tk − t1)
∂t1

〈. . . Ψ̂rk (tk)Ψ̂r1(t1) . . .〉o

= δ(t1 − tk)〈. . . (Ψ̂r1Ψ̂rk + Ψ̂rk Ψ̂r1) . . .〉o = 0, (E.8)

∂θ(t1 − t′
k)

∂t1
〈. . . Ψ̂r1(t1)Ψ̂

+
r′

k
(t′

k) . . .〉o − ∂θ(t′
k − t1)
∂t1

〈. . . Ψ̂+
r′

k
(t′

k)

×Ψ̂r1(t1) . . .〉o = δ(t1 − t′
k)〈. . . (Ψ̂r1Ψ̂

+
r′

k
+ Ψ̂+

r′
k
Ψ̂r1) . . .〉o = 〈. . . δ1k′ . . .〉o. (E.9)

Collecting such expressions with all possible permutations of the operators (the total
number n − 1 + n − k = 2(n − k) + k − 1 of the permutations brings us the factor
(−1)k−1), we finally obtain the sum of all contributions coming from the derivatives
of the θ-functions:

n∑
k=1

(−1)k−1〈T̂ Ψ̂2(t2) . . . Ψ̂rn(tn)Ψ̂+
r′

n
(t′

n) . . .

×Ψ̂+
rk+1(t

′
k+1)Ψ̂

+
rk−1(t

′
k−1) . . . Ψ̂+

r′
1
(t′

1)〉oδ1k′ . (E.10)
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Using Eq. (E.10), one can write, for example, an equation for the two-particle
Green’s function (E.6) in the form(

i
∂

∂t1
− ĥ1

)
G(r1t1, r2t2; r′

1t
′
1, r

′
2t

′
2) = [δ11′G(r2t2; r′

2t
′
2)]As

−i

∫
dr3v13G(r1t1, r2t2, r3t1; r′

1t
′
1, r

′
2t

′
2, r3t1 + 0), (E.11)

where the antisymmetrization of the inhomogeneous term with respect to the primed
indices is defined as

[δ11′G(r2t2; r′
2t

′
2)]As ≡ δ11′G(r2t2; r′

2t
′
2) − δ12′G(r2t2; r′

1t
′
1). (E.12)

For the n-particle Green’s function we obtain(
i

∂

∂t1
− ĥ1

)
G(r1t1, . . . , rntn; r′

1t
′
1, . . . , r

′
nt′

n) (E.13)

= [δ11′G(r2t2, . . . , rntn; r′
2t

′
2, . . . , r

′
nt′

n)]As

−i

∫
drn+1v1,n+1G(r1t1, . . . , rntn, rn+1t1; r′

1t
′
1, . . . , r

′
nt′

n, rn+1t1 + 0),

where the inhomogeneous term, according to Eq. (E.10), is antisymmetrized as

[δ11′G(r2t2, . . . , rntn; r′
2t

′
2, . . . , r

′
nt′

n)]As ≡
n∑

k=1

δ1k′(−1)k−1

×G(r2t2, . . . , rntn; r′
1t

′
1, . . . , r

′
k−1t

′
k−1, r

′
k+1t

′
k+1, . . . , r

′
nt′

n). (E.14)

This equation should be also considered as a definition of the antisymmetrization
operation [. . .]As if, instead of δ11′ and δ1k′ , one substitutes arbitrary functions of
r1t1 and r′

1t
′
1 and of r1t1 and r′

kt′
k, respectively.

In the following, it is helpful to introduce the function v(r1t1, r′
1t

′
1) = v11′δ(t1 −

t′
1). This allows one to write the integral on the right-hand side of Eq. (E.5) as∫
dr2

∫
dt2v(r1t1, r2t2)G(r1t1, r2t2; r′

1t
′
1, r2t2 + 0). The integrals on the right-hand

side of Eqs. (E.11) and (E.13) are transformed in a similar way. At this point, it
becomes convenient to unify the coordinate and time variables into the multi-indices
k = rktk so that G(r1t1, r′

1t
′
1) ≡ G(1, 1′), v(r1t1, r′

1t
′
1) ≡ v(1, 1′), and so on. To define

rktk + 0, we use the multi-index k+ so that G(r1t1, r2t2; r′
1t

′
1, r2t2 + 0) is written as

G(1, 2; 1′, 2+). The spin variables, which so far have been implicitly assumed, can be
included in the multi-indices as well. Using these new notations, we rewrite Eq. (E.5)
in the integral form

G(1, 1′) = g(1, 1′) − i

∫
d1̃g(1, 1̃)

∫
d2v(1̃, 2)G(1̃, 2; 1′, 2+), (E.15)

where we have introduced the one-particle Green’s function g(1, 1′) = g(r1t1, r′
1t

′
1) for

non-interacting electrons, which satisfies Eq. (E.5) without the integral term:(
i

∂

∂t1
− ĥ1

)
g(1, 1′) = δ11′ . (E.16)

Since the Hamiltonian ĥ1 is time-independent, g(1, 1′) depends only on t1 − t′
1. Equa-

tion (E.11) is rewritten in the integral form in a similar fashion:
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G(1, 2; 1′, 2′) = [g(1, 1′)G(2, 2′)]As (E.17)

−i

∫
d1̃g(1, 1̃)

∫
d3 v(1̃, 3)G(1̃, 2, 3; 1′, 2′, 3+).

With the use of Eqs. (E.13) and (E.16), the integral equations of such kind can be
written for any n-particle Green’s function. They form an infinite chain of integral
equations. This chain can be cut in order to find the Green’s functions with a given
accuracy. For example, searching for the contributions quadratic in the interaction,
one may neglect the interaction term in the equation for the three-particle Green’s
function. This leads to

G(1, 2, 3; 1′, 2′, 3′) � [g(1, 1′)G(2, 3; 2′, 3′)]As (E.18)

= g(1, 1′)G(2, 3; 2′, 3′) − g(1, 2′)G(2, 3; 1′, 3′) + g(1, 3′)G(2, 3; 1′, 2′).

Substituting this expression into Eq. (E.17), we obtain a closed system of two non-
linear integral equations (E.15) and (E.17). The one-particle Green’s function found
from this system has the second-order accuracy with respect to the interaction. If
we need to have just the first-order accuracy, we write an approximate solution of
Eq. (E.17) as G(1, 2; 1′, 2′) � [g(1, 1′)G(2, 2′)]As and substitute it into Eq. (E.15),
reducing the latter to

G(1, 1′) � g(1, 1′) − i

∫
d1̃g(1, 1̃)

∫
d2v(1̃, 2) (E.19)

×
[
g(1̃, 1′)G(2, 2+) − g(1̃, 2)G(2, 1′)

]
.

This is a single integral equation. The first-order correction to the one-electron
Green’s function is obtained by the substitutions G(2, 2+) → g(2, 2+) and G(2, 1′) →
g(2, 1′) in the integral term.

The infinite chain of integral equations discussed above can be solved by iterations
with a given accuracy. Though this procedure is complicated, it can be simplified
by introducing graphic images (diagrams). The one-electron Green’s function g(1, 1′)
multiplied by i corresponds to a single thin solid line with the ends 1 and 1′. The
exact one-electron Green’s function G(1, 1′) multiplied by i is denoted by a bold solid
line. The interaction-potential term −iv(1, 1′) corresponds to a broken line with the
ends 1 and 1′. The two-particle (n-particle) Green’s functions multiplied by i2 (in)
are represented by two (n) lines entering and exiting a rectangle:

iG(1, 1′) =
1 1′

ig(1, 1′) =
1 1′

−iv(1, 1′) = � � � � � � � � � � � � �
1 1′

, ,i2G(1, 2; 1′, 2′) =
1

2

1′

2′

inG(1, 2, . . . n; 1′, 2′, . . . n′) = 
 
 
 
 
 
 
 

1
2

n

1′
2′

n′

. (E.20)

All terms in the iterative expansion of the one-particle Green’s functions can be
represented by combinations of solid and broken lines. Each vertex of such diagrams
contains one entering and one exiting solid line (electron lines) and one broken line
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(potential line), similar to the case of the diagram technique for electron-impurity
system considered in Secs. 14 and 15 (we note, however, that the broken lines in
Secs. 14 and 15 have a different meaning). A summation over the multi-indices of
the vertices is implied. There exist the diagrams containing loops of electron lines,
each such loop gives a factor of −1 to the corresponding analytical expression of the
diagram. For example, the perturbation term in Eq. (E.19) can be represented as a
sum of two diagrams:

������
1 1̃ 1′

+

2

1 1̃ 2 1′
. (E.21)

The loop in the first diagram of Eq. (E.21) is self-closed. Such self-closed loops, con-
nected to the other part of the diagram by a single potential line, can appear in the
diagrams of arbitrary order. Each of them gives a constant factor proportional to the
electron density n, because G(k, k+) = G(rktk, rktk + 0) = i〈Ψ̂+

rk
(tk)Ψ̂rk (tk)〉o = in.

The diagrammatic expansion of iG(1, 1′) contains both reducible and irreducible
diagrams. Separating these two kinds of diagrams in a similar way as in Sec. 14, we
obtain the Dyson equation

G(1, 1′) = g(1, 1′) +
∫

d1̃g(1, 1̃)
∫

d1̃′Σ(1̃, 1̃′)G(1̃′, 1′) , (E.22)

where Σ(1̃, 1̃′) is the self-energy function formed as a sum of all irreducible diagrams.
The structure of the leading terms of the diagrammatic expansion of −iΣ(1, 1′) can
be understood from a comparison of Eq. (E.22) to Eq. (E.19) and diagrams (E.21):
−iΣ(1, 2) = −δ12

∫
d3[−iv(1, 3)]iG(3, 3+) + [−iv(1, 2)]iG(1, 2+) + . . . . The terms up

to the second order in the interaction are given by

1 2
−iΣ(1, 2) ≡

� 	� � = δ12
1

3������ +
1 2

(E.23)

+
1 2

3 4������ ������ +
1 3 4 2

+ . . . .

Apart from the diagrams similar to those on the right-hand side of Eq. (14.23)
(the second and the fourth), the self-energy function contains various diagrams with
loops of electron lines. Some of these diagrams allow a further reduction if one can
separate some blocks of lines out of them by cutting just two potential lines. The
third diagram on the right-hand side of Eq. (E.23) is an example of such diagrams.
The sums of all diagrams contributing into each of these blocks are denoted by bold
broken lines and describe the effective (screened) interaction potential V (1, 1′). The
bold broken line with the indices 1 and 1′ corresponds to −iV (1, 1′) [to −i�V (1, 1′)
in the usual notations]. To describe the screened potential, one can also write the
equation

V (1, 1′) = v(1, 1′) +
∫

d1̃v(1, 1̃)
∫

d1̃′Π(1̃, 1̃′)V (1̃′, 1′), (E.24)
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or, in the diagram form,

� � � � � � � = � � � � � � � � � � + � � � � � � � � � � ��
�	� ��� � � � � �

1 1′ 1 1′ 1′1 1̃ 1̃′
. (E.25)

The circle with the indices 1̃, 1̃′ corresponds to iΠ(1̃, 1̃′) [to (i/�)Π(1̃, 1̃′) in the usual
notations]. The function Π(1̃, 1̃′), which plays the role of the self-energy function in
such equations, is called the polarization function. It is given by the infinite series
containing all irreducible diagrams. Two leading-order terms of such expansion are
shown below:

iΠ(1, 2) ≡ ��
�	� � = + ����

��
+ . . . .

1 2 1 2 1 2
4

3

(E.26)

The terms denoted by the dots . . . may contain several loops connected to each other
by two or more broken lines. All such diagrams are irreducible. On the other hands,
the diagrams containing the loops connected to each other by a single broken line
are reducible and, by definition, does not enter the polarization function. The po-
larization function and the screened potential are symmetric in their multi-indices:
Π(1, 1′) = Π(1′, 1) and V (1, 1′) = V (1′, 1). The introduction of the screened in-
teraction makes the third diagram on the right-hand side of Eq. (E.23) reducible.
Replacing the thin broken lines in Eq. (E.23) by the bold broken lines, one should
omit this diagram because it is united with the second one.

Consider now the diagrammatic expansion of two-particle Green’s functions. Ac-
cording to Eq. (E.17),

1

2

1′

2′

1

2

1′

2′

1

2

1′

2′

= − + . . . , (E.27)

where the dots . . . define all possible terms containing the potential lines. Evaluating
these terms by iterations as described above, we find that some of them describe all
possible corrections to the one-particle Green’s functions g(1, 1′) and g(1, 2′). Ac-
counting for all such terms, we replace g(1, 1′) and g(1, 2′) by G(1, 1′) and G(1, 2′),
respectively. In other words, the thin lines on the right-hand side of Eq. (E.27) should
be replaced by the bold lines. The other terms in the sum denoted by the dots . . .
contain the potential lines connecting the upper and lower electron lines. All these
terms can be described by the scattering amplitude V(1̃, 2̃; 1̃′, 2̃′) defined in such a
way that Eq. (E.17) is rewritten as

G(1, 2; 1′, 2′) = G(1, 1′)G(2, 2′) − G(1, 2′)G(2, 1′) (E.28)

+
∫

d1̃
∫

d2̃G(1, 1̃)G(2, 2̃)
∫

d1̃′
∫

d2̃′V(1̃2̃; 1̃′2̃′)G(1̃′, 1′)G(2̃′, 2′).

We point out the symmetry properties of the scattering amplitude, V(1, 2; 1′, 2′) =
V(2, 1; 2′, 1′) = −V(2, 1; 1′, 2′) = −V(1, 2; 2′, 1′), following from the definition of the
two-particle Green’s function. The expansion of the scattering amplitude is written
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as V(1, 2; 1′, 2′) = δ11′δ22′ iV (1, 2) − δ12′δ21′ iV (1, 2) + . . . , where the dots include
the second-order and all higher-order terms with respect to the screened interaction.
Equation (E.28) can be rewritten in the form of the Bethe-Salpeter equation (see Eqs.
(15.3) and (15.4)) if we describe all irreducible diagrams contributing to the integral
term of this equation by the irreducible vertex part Γ(1̃, 2̃; 1̃′, 2̃′):

G(1, 2; 1′, 2′) = G(1, 1′)G(2, 2′) − G(1, 2′)G(2, 1′) (E.29)

+
∫

d1̃
∫

d2̃G(1, 1̃)G(2, 2̃)
∫

d1̃′
∫

d2̃′Γ(1̃, 2̃; 1̃′, 2̃′)G(1̃′, 2̃′; 1′, 2′).

The first- and second-order terms in the expansion of the vertex part with respect to
the screened interaction look similar to those in Eq. (15.4):

−Γ(12; 1′2′) =

1

2

1′

2′

δ11′δ22′

1

2

+���
���
�

���
���
�

� � � �
� � � �

����
����

���
���
�

δ11′

1

2 2′

δ22′+ +

2

1 1′

+ . . . . (E.30)

We have already mentioned that the Green’s function of the electrons described
by a stationary one-particle Hamiltonian depends only on the difference of its time
arguments, g(1, 1′) ≡ g(r1t1; r′

1t
′
1) = gt1−t′

1
(r1, r′

1). As follows from the diagram
equations discussed above, the same property is true for the functions G, Σ, V ,
and Π. Therefore, in many cases it is convenient to carry out the temporal Fourier
transformation according to Eq. (D.5) and use the energy representation of these
functions. Next, in a homogeneous system, when the one-particle Hamiltonian is
translation-invariant, the functions G, Σ, V , and Π depend only of the difference of
their coordinate arguments so that one may work with spatial Fourier transforms of
these functions. Carrying out both temporal and spatial Fourier transformations, we
obtain G, Σ, V , and Π in the energy-momentum representation. Equations (E.22)
and (E.24) connecting these functions are transformed to the algebraic equations

Gε(p) = gε(p) + gε(p)Σε(p)Gε(p) (E.31)

and
Vω(q) = vq + vqΠω(q)Vω(q). (E.32)

We point out the symmetry properties Πω(q) = Π−ω(−q) and Vω(q) = V−ω(−q). Ac-
cording to Eq. (D.20), the one-electron Green’s function of non-interacting electrons
in the energy-momentum representation is

gε(p) = lim
T→0

[
fp

ε − εp − iλ
+

1 − fp

ε − εp + iλ

]
=

1
ε − εp + iλ sgn(p − pF )

, (E.33)

where λ → +0 and one should take into account that fp = θ(pF −p) at zero tempera-
ture. Though the analytical properties of this function are simple, they are essentially
determined by the absolute value of electron momentum. With the aid of Eq. (E.33),
we rewrite Eq. (E.31) as Gε(p) = [ε − εp − Σε(p) + iλsgn(p − pF )]−1. It describes a
quasiparticle with a renormalized spectrum. The Hartree-Fock approximation, when
Σε(p) is independent of ε and equal to −∆εp given by Eq. (28.22), is realized when
one takes into account only the first two diagrams on the right-hand side of Eq. (E.23),
replacing the bold solid lines by the thin ones. The first (Hartree) diagram describes a



758 QUANTUM KINETIC THEORY

constant shift of the electron energy compensated by the positive background charge,
and only the second (Fock) diagram contributes to the electron spectrum.



Appendix F
Equation for Cooperon

The Bethe-Salpeter equation, given in the diagrammatic form by Eq. (43.17), can
be rewritten as an equation for the function Cεε′ (rt, r′t′) introduced by Eq. (43.16):

Cεε′
(
rt, r′t′)−

∫
dτ

∫
dτ ′ei(ετ+ε′τ ′)/�GR

(
r t +

τ

2
, r′ t′ − τ ′

2

)
(F.1)

×GA

(
r t′ +

τ ′

2
, r′ t − τ

2

)
= w

∫
dτ

∫
dτ ′ei(ετ+ε′τ ′)/�

∫
d∆t

∫
d∆t′

∫
d∆x

×GR
(
r t +

τ

2
, r + ∆x t +

τ

2
+ ∆t

)
GA

(
r t′ +

τ ′

2
, r + ∆x t′ +

τ ′

2
+ ∆t′

)
×
〈〈

GR

(
r + ∆x t +

τ

2
+ ∆t, r′ t′ − τ ′

2

)
GA

(
r + ∆x t′ +

τ ′

2
+ ∆t′, r′ t − τ

2

)〉〉
.

We use r + ∆x instead of r3, and the time variables are shifted according to t3 =
t+τ/2+∆t and t′

3 = t′+τ ′/2+∆t′. Let us carry out the inverse Wigner transformation
of the retarded and advanced Green’s functions according to

GR,A (rt, r + ∆x t + ∆t) =
∫

dε1

2π�
eiε1∆t/�

∫
dp1

(2π�)3
(F.2)

× exp
[
− i

�

(
p1 +

e

c
Ar+∆x/2,t+∆t/2

)
· ∆x

]
GR,A

ε1

(
r +

∆x
2

,p1

)
and rewrite the right-hand side of Eq. (F.1) as

w

∫
dτ

∫
dτ ′ei(ετ+ε′τ ′)/�

∫
d∆t

∫
d∆t′

∫
dε1

2π�

∫
dε2

2π�
ei(ε1∆t+ε2∆t′)/�

×
∫

d∆x
∫

dp1

(2π�)3

∫
dp2

(2π�)3
e

−i

[
(p1+p2)/�+κr+∆x/2

(
t+∆t+τ

2 ,t′+∆t′+τ′
2

)]
·∆x

×GR
ε1

(
r +

∆x
2

,p1

)
GA

ε2

(
r +

∆x
2

,p2

)
(F.3)

×
〈〈

GR

(
r + ∆x t +

τ

2
+ ∆t, r′ t′ − τ ′

2

)
GA

(
r + ∆x t′ +

τ ′

2
+ ∆t′, r′ t − τ

2

)〉〉
,
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where κr(t, t′) is defined in Sec. 43. Using the variables ∆p = p1+p2, ε̄ = (ε1+ε2)/2,
and ∆ε = ε1 − ε2, we transform the expression (F.3) to the following form:

w

∫
d∆t

∫
d∆t′

∫
d∆x

∫
dε̄

2π�

∫
d∆ε

2π�
exp

{
i

�

[
ε̄(∆t + ∆t′) +

∆ε

2
(∆t − ∆t′)

]}

×
∫

d∆p
(2π�)3

exp
{

− i

�

[
∆p + �κr+∆x/2

(
t +

∆t

2
, t′ +

∆t′

2

)]
· ∆x

}
×
∫

dp1

(2π�)3
GR

ε̄+∆ε/2

(
r +

∆x
2

,p1

)
GA

ε̄−∆ε/2

(
r +

∆x
2

, ∆p − p1

)
(F.4)

×
∫

dτ

∫
dτ ′ei(ετ+ε′τ ′)/�

〈〈
GR

(
r + ∆x t +

τ

2
+ ∆t, r′ t′ − τ ′

2

)
× GA

(
r + ∆x t′ +

τ ′

2
+ ∆t′, r′ t − τ

2

)〉〉
.

Since ε and ε′ are of the order of the Fermi energy, only small τ and τ ′ are essential,
and we have omitted corresponding temporal shifts in the vector potentials. After
the substitutions τ → τ − ∆t and τ ′ → τ ′ − ∆t′, Eq. (F.4) is rewritten as

w

∫
d∆t

∫
d∆t′e−i(ε∆t+ε′∆t′)/�

∫
dε̄

2π�

∫
d∆ε

2π�
eiε̄(∆t+∆t′)/�e∆ε(∆t−∆t′))/2�

×
∫

d∆x
∫

d∆p
(2π�)3

exp
{

− i

�

[
∆p + �κr+∆x/2

(
t +

∆t

2
, t′ +

∆t′

2

)]
· ∆x

}
×
∫

dp1

(2π�)3
GR

ε̄+∆ε/2

(
r +

∆x
2

,p1

)
GA

ε̄−∆ε/2

(
r +

∆x
2

, ∆p − p1

)
(F.5)

×Cεε′

(
r + ∆x t +

∆t

2
, r′ t′ +

∆t′

2

)
so that Eq. (F.1) with the right-hand side given by Eq. (F.5) becomes a closed
integral equation for the function Cεε′ (rt, r′t′).

Substituting the Green’s functions of Eq. (F.2) into the inhomogeneous term of
Eq. (F.1), we transform this term by using the variables ∆p, ε̄, and ∆ε given above.
As a result, the inhomogeneous term becomes∫

dτ

∫
dτ ′ei(ετ+ε′τ ′)/�

∫
dε̄

2π�

∫
d∆ε

2π�
e−i[ε̄(τ+τ ′)+∆ε(t−t′)]/�

×
∫

d∆p
(2π�)3

exp
[

i

�

(
∆p +

2e

c
A(r+r′)/2,(t+t′)/2

)
· (r − r′)

]
(F.6)

×
∫

dp1

(2π�)3
GR

ε̄+∆ε/2

(
r + r′

2
,p1

)
GA

ε̄−∆ε/2

(
r + r′

2
, ∆p − p1

)
.

In a similar way as in Eq. (F.4), a weak dependence of the vector potentials on τ and
τ ′ is omitted here. The integrals over τ and τ ′ give us the factor (2π�)2δ(ε−ε̄)δ(ε̄−ε′).
After calculating the integral over ε̄, we transform the expression (F.6) to

δ(ε − ε′)
∫

d∆εe−i∆ε(t−t′)/�

∫
d∆p

(2π�)3
(F.7)

× exp
[

i

�

(
∆p +

2e

c
A(r+r′)/2,(t+t′)/2

)
· (r − r′)

]
w−1Iε,∆ε

(
∆p,

r + r′

2

)
,
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where

Iε,∆ε (∆p, r) = w

∫
dp1

(2π�)3

(
ε +

∆ε

2
− εp1 − Ur +

i�

2τr

)−1

×
(

ε − ∆ε

2
− ε∆p−p1 − Ur − i�

2τr

)−1

. (F.8)

For spatially homogeneous 2D systems and at ∆ε = 0, this integral is reduced to the
function defined in Eq. (15.23). We remind that Ur is the potential energy which
smoothly varies in space. In the hydrodynamical region, when |∆p|lF /� � 1 and
|∆ε|τF /� � 1, one can expand the integrand in Eq. (F.8) up to the contributions
proportional to ∆ε and (∆p)2 so that

Iε,∆ε(∆p, r) � w

∫
dp

(2π�)3

[
(E − εp)2 +

(
�

2τr

)2
]−1{

1 +
∆ε

2

[(
E − εp − i�

2τr

)−1

−
(

E − εp +
i�

2τr

)−1
]

− (∆p · vp)2

4

(
E − εp − i�

2τr

)−1(
E − εp +

i�

2τr

)−1

+
(∆p · vp)2

4

[(
E − εp − i�

2τr

)−2

+
(

E − εp +
i�

2τr

)−2
]}

, (F.9)

where E = ε−(∆p)2/8m−Ur, p = p1−∆p/2, and vp = p/m. The main contribution
into the integral over momentum in Eq. (F.9) comes from εp = E, and we obtain

Iε,∆ε (∆p, r) � 1 + i
∆ετr

�
− 1

3

(
∆plr

�

)2

,
∆ετr

�
< 1,

∆plr
�

< 1, (F.10)

where lr = vrτr is the mean free path length for the electrons with coordinate-
dependent velocities vr defined as vr =

√
2(ε − Ur)/m. A similar calculation for

the 2D case gives the factor 1/2 instead of 1/3 in the last term of the right-hand side
of Eq. (F.10); see Eq. (15.24). We substitute Iε,∆ε � 1 in the expression (F.7) for
the inhomogeneous term of Eq. (F.1) and restrict the consideration by the regions
|∆p| < �/lF and |∆ε| < �/τF . Below we also assume that the external fields are weak,
|2eA/c| � �/lF . In these conditions, the remaining integrals give us δ-functions, and
the inhomogeneous term is finally written as

2π�

w
δ(ε − ε′)δ(t − t′)δ(r − r′). (F.11)

Since the variables ε and ε′ enter the integral term of the expression (F.5) as
parameters, Cεε′ (rt, r′t′) becomes proportional to δ(ε − ε′), and one can search for
this function in the form given by Eq. (43.18). Substituting this equation into Eq.
(F.5), we use the expression (F.11) and write the integral equation for C (rt, r′t′):

C
(
rt, r′t′)− �δ(t − t′)δ(r − r′)

πwρ3D(ε − Ur)
=
∫

d∆x
∫

d∆t

∫
d∆t′

∫
dε̄

2π�

×ei(ε̄−ε)(∆t+∆t′)/�

∫
d∆ε

2π�
ei∆ε(∆t−∆t′)/2�

∫
d∆p

(2π�)3

× exp
{

− i

�

[
∆p + �κr+∆x/2

(
t +

∆t

2
, t′ +

∆t′

2

)]
· ∆x

}
Iε̄,∆ε

(
∆p, r +

∆x
2

)
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×ρ3D(ε − Ur+∆x/2)
ρ3D(ε − Ur)

C

(
r + ∆x t +

∆t

2
, r′ t′ +

∆t′

2

)
. (F.12)

Substituting the approximate expression (F.10) for I to the right-hand side of this
equation, one may neglect its dependence on ε̄ which comes only from the energy
dependence of τr and lr. Thus, the integral over ε̄ gives δ(∆t+∆t′) on the right-hand
side of Eq. (F.12). After substituting ∆p + �κr+∆x/2(t + ∆t/2, t′ − ∆t/2) → ∆p,
this equation is rewritten in the form

C
(
rt, r′t′)− τrδ(t − t′)δ(r − r′) =

∫
d∆x

∫
d∆t

∫
d∆ε

2π�
ei∆ε∆t/�

×
∫

d∆p
(2π�)3

e−i∆p·∆x/�
ρ3D(ε − Ur+∆x/2)

ρ3D(ε − Ur)
C

(
r + ∆x t +

∆t

2
, r′ t′ − ∆t

2

)
(F.13)

×
{

1 + i
∆ετr+∆x/2

�
−1

3

(
lr+∆x/2

�

)2 [
∆p − �κr+∆x/2

(
t +

∆t

2
, t′ − ∆t

2

)]2}
with coordinate-dependent scattering time τ and mean free path length l. It is as-
sumed that the integrals are taken in the hydrodynamical region of the variables,
|∆ετr+∆x/2| < � and |∆p − �κr+∆x/2(t + ∆t/2, t′ − ∆t/2)|lr+∆x/2 < �.

One can replace
∫

d∆ε ei∆ε∆t/� . . . by 2π�δ(∆t) . . . and
∫

d∆p e−i∆p·∆x/� . . . by
(2π�)3δ(∆x) . . . if the functions denoted here by the dots do not depend on ∆ε and
∆p, respectively. Therefore, the contribution from the unity in the braces {. . .} of
the right-hand side of Eq. (F.13) gives C (rt, r′t′), which annihilates with C (rt, r′t′)
of the left-hand side of this equation. Transforming the contribution proportional to
∆ε, one may replace

∫
d∆ε ei∆ε∆t/�(i∆ε/�) . . . by 2π�[dδ(∆t)/d∆t] . . . and carry out

the further transformations by using the integration by parts:∫
d∆x

∫
d∆t τr+∆x/2

dδ(∆t)
d∆t

δ(∆x)C
(
r t +

∆t

2
, r′ t′ − ∆t

2

)
(F.14)

= −τr
d

d∆t
C

(
r t +

∆t

2
, r′ t′ − ∆t

2

)∣∣∣∣
∆t=0

= − τr
2

(
∂

∂t
− ∂

∂t′

)
C
(
rt, r′t′) .

Considering the last term on the right-hand side of Eq. (F.13), we notice that
τr+∆x/2ρ3D(ε − Ur+∆x/2)/ρ3D(ε − Ur) = τr. Therefore, it is convenient to express
l2r = (vrτr)2 through the diffusion coefficient Dr = v2

rτr/3. Expanding Dr+∆x/2 as
Dr + ∆x · ∇rDr/2, we transform this term to

− τr
�

∫
d∆x

∫
d∆p

(2π�)3
e−i∆p·∆x/�Dr+∆x/2[∆p − �κr+∆x/2(t, t

′)]2 (F.15)

×C
(
r + ∆x t, r′t′) � −τr[−i∇r − κr(t, t′)] · Dr[−i∇r − κr(t, t′)]C

(
rt, r′t′) ,

where the coordinate-dependent diffusion coefficient stands between the gradients.
Collecting together Eqs. (F.13)−(F.15), we obtain the equation for the Cooperon:{

1
2

(
∂

∂t
− ∂

∂t′

)
+ [−i∇r − κr(t, t′)] · Dr[−i∇r − κr(t, t′)]

}
×C

(
rt, r′t′) = δ(t − t′)δ

(
r − r′) . (F.16)

In the absence of time-dependent fields, when C (rt, r′t′) depends only on t − t′,
this equation defines the Green’s function of the diffusion equation with coordinate-
dependent diffusion coefficient. Equation (F.16) is applicable to 2D electrons if r is
treated as a 2D coordinate and the diffusion coefficient is given by its 2D expression.



Appendix G
Green’s Function in Magnetic Field

To generalize the diagram technique described in Chapter 3 to the case when a
magnetic field is present, one should take into account that the Green’s function,
even after the averaging over a macroscopically homogeneous and isotropic impurity
distribution, is not translation-invariant in the plane perpendicular to the magnetic
field. However, it is possible to separate the translation-invariant part of the Green’s
function in the way shown below. Let us consider first the Green’s function of free
electrons in the magnetic field H directed along OZ axis and described by the vector
potential A = (0, Hx, 0). Using the coordinate representation (see problem 3.10), we
have

gs
E(r, r′) =

∑
pzpyN

gs
E(pz, N )ψ(Npypz)

r ψ
(Npypz)∗
r′ ,

gs
E(pz, N ) = [E − p2

z/2m − εN ± iλ]−1, (G.1)

where λ → +0, r = (x, y, z) is the 3D coordinate, gs
E(pz, N ) is the free-electron Green’s

function in the Landau level representation, and εN is the energy of the Landau level
N . The upper and lower signs at iλ correspond to the retarded (s = R) and advanced
(s = A) Green’s functions, respectively. The wave functions ψ

(Npypz)
r describing the

Landau eigenstates in the gauge chosen above are given by Eqs. (5.13) and (5.15).
Using them, we calculate the sum over py in Eq. (G.1) and obtain

gs
E(r, r′) = e−(i/2l2H )(x+x′)(y−y′)gs

E(|x − x′|, |z − z′|),

gs
E(|x − x′|, |z − z′|) =

∫
dpz

2π�
eipz(z−z′)/�gs

E(|x − x′|, pz), (G.2)

where x = (x, y) is the in-plane coordinate vector, lH is the magnetic length,

gs
E(|x − x′|, pz) =

1
2πl2H

e−|x−x′|2/4l2H
∑

N

L0
N

(
|x − x′|2

2l2H

)
gs

E(pz, N ), (G.3)

and L0
N(x) is the Laguerre polynomial introduced by Eq. (A.26). The integral over

pz in Eq. (G.2) can be calculated as

∫
dpz

2π�
eipz(z−z′)/�gs

E(pz, N ) =

√
m exp

[
±i
√

2m(E − εN ± iλ)|z − z′|/�

]
±i
√

2(E − εN ± iλ)�
. (G.4)

763
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The Green’s function is presented as a product of the phase factor eiθ(x,x′), where
θ(x,x′) = −(1/2l2H)(x+x′)(y−y′), by a translation-invariant function gs

E(|x−x′|, |z−
z′|), which is also gauge-invariant. On the other hand, any gauge transformation
changes the phase factor of the Green’s function, because it changes the phase of the
wave functions (according to the transformation p̂ → p̂ − (e/c)Ar, the phase factor
of the wave function ψr of the electron moving along the path l in the presence of
the vector potential can be represented as exp

[
(ie/�c)

∫ r
r′∈l

dr′Ar′ · nl

]
, where the

integral is calculated over the path l and nl is the unit vector along this path).
Of course, this change does not modify any observable physical quantity. In the
symmetric gauge A = [H × r]/2 = (−Hy/2, Hx/2, 0), the phase is written in the
form θ(x,x′) = −(e/2�c)H · [r × r′] = nz · [x × x′]/2l2H , where nz is the unit vector
in the direction of H.

The averaged Green’s function Gs
E(r, r′) of the electrons interacting with a random

scattering potential has the same property:〈〈
Gs

E(r, r′)
〉〉

= eiθ(x,x′)Gs
E(|x − x′|, |z − z′|). (G.5)

To demonstrate this, let us consider the elastic scattering model and write the third
term of the perturbation expansion of the Green’s function in the coordinate repre-
sentation (see, for example, problem 3.8) as∫

dr1

∫
dr2e

i[θ(x,x1)+θ(x1,x2)+θ(x2,x′)]gs
E(|x − x1|, |z − z1|)

×Usc(r1)gs
E(|x1 − x2|, |z1 − z2|)Usc(r2)gs

E(|x2 − x′|, |z2 − z′|). (G.6)

Averaging this expression over the random potential, we obtain the correlation func-
tion 〈〈Usc(r1)Usc(r2)〉〉 = w(|r1 − r2|) which depends on |x1 − x2|. Introducing new
coordinates according to r1 = r′

1 + r and r2 = r′
2 + r′ , we rewrite (G.6) as

eiθ(x,x′)
∫

dr′
1

∫
dr′

2e
inz·([x′

1×x′
2]+[(x−x′)×(x′

1+x′
2)])/2l2H gs

E(|x′
1|, |z′

1|) (G.7)

×gs
E(|x′

1 − x′
2 + x − x′|, |z′

1 − z′
2 + z − z′|)w(|r′

1 − r′
2 + r − r′|)gs

E(|x′
2|, |z′

2|),
where the phase factor eiθ(x,x′) is separated. Since the expression under the inte-
gral depends only on the differences x − x′ and z − z′, the first-order (with respect
to w(|r1 − r2|)) contribution to the averaged Green’s function satisfies the property
(G.5). In a similar fashion, this property can be checked for the contributions of ar-
bitrary order (and for different mechanisms of interaction) provided the system pos-
sesses macroscopic translational invariance in the plane perpendicular to the magnetic
field. In conclusion, the symmetry properties of the free-electron Green’s function are
conserved for the averaged Green’s function of the electron interacting with random
scattering potentials.

The most natural and often convenient basis for representing the Green’s functions
in magnetic fields is the basis of the Landau states. Applying it, we obtain

Gs
E(r, r′) =

∑
pzpyN

ψ
(Npypz)
r ψ

(N′p′
yp′

z)∗
r′ Gs

E(py, pz, N |p′
y, p′

z, N ′), (G.8)

where Gs
E(py, pz, N |p′

y, p′
z, N ′) is the Green’s function in the Landau level represen-

tation. For free electrons, when the Landau states are exact eigenstates, we have
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Gs
E(py, pz, N |p′

y, p′
z, N ′) = δpyp′

y
δpzp′

z
δNN′gs

E(pz, N ) and Eq. (G.8) is reduced to Eq.
(G.1). A similar property is valid for the averaged Green’s function:〈〈

Gs
E(py, pz, N |p′

y, p′
z, N ′)

〉〉
= δpyp′

y
δpzp′

z
δNN′Gs

E(pz, N ). (G.9)

Below we prove Eq. (G.9) by using the general symmetry property (G.5). We apply a
transformation from the coordinate representation to the Landau level representation:

Gs
E(py, pz, N |p′

y, p′
z, N ′) =

∫
dr
∫

dr′ψ(Npypz)∗
r Gs

E(r, r′)ψ
(N′p′

yp′
z)

r′ . (G.10)

Then we average Eq. (G.10) and use the explicit form of the functions ψ
(Npypz)
r

in order to calculate the integrals over r and r′. Let us introduce new coordinates
according to r+ = (r+r′)/2 and r− = r−r′. The integrals over z+ and y+ immediately
give the factors δpzp′

z
and δpyp′

y
. Next, the integral over z− transforms Gs

E(|x−x′|, |z−
z′|) into Gs

E(|x−|, pz). Therefore, after the averaging, the expression on the right-hand
side of Eq. (G.10) becomes proportional to

δpzp′
z
δpyp′

y

∫
dx−

∫
dy−e−(x2

−+y2
−)/4l2H Gs

E(|x−|, pz)

×
∫

du+e−(u++iy−/2lH )2HN(u+ + x−/2lH)HN(u+ − x−/2lH), (G.11)

where u+ = x+/lH + lHpy/� and HN(x) is the Hermite polynomial used in Eq. (5.15).
Note that the expression (G.11) does not depend on py. After calculating the integral
over u+, we introduce the polar coordinates r = |x−| and ϕ = arctan(y−/x−) and
obtain 〈〈

Gs
E(py, pz, N |p′

y, p′
z, N ′)

〉〉
= δpzp′

z
δpyp′

y

∫ ∞

0
rdr

∫ 2π

0
dϕe−r2/4l2H

×Gs
E(r, pz)

√
2N′N !
2NN ′!

(−r/2lH)N′−Neiϕ(N′−N)LN′−N
N (r2/2l2H). (G.12)

Since
∫ 2π

0 dϕeiϕ(N′−N) = 2πδNN′ , Eq. (G.12) is reduced to〈〈
Gs

E(py, pz, N |p′
y, p′

z, N ′)
〉〉

= δpzp′
z
δpyp′

y
δNN′Gs

E(pz, N ),

Gs
E(pz, N ) = 2π

∫ ∞

0
rdre−r2/4l2H L0

N(r2/2l2H)Gs
E(r, pz). (G.13)

Using the orthogonality property
∫∞
0 due−uL0

N(u)L0
N′(u) = δNN′ , we can express

Gs
E(r, pz) through Gs

E(pz, N ):

Gs
E(|x − x′|, pz) =

1
2πl2H

e−|x−x′|2/4l2H
∑
N

L0
N

(
|x − x′|2

2l2H

)
Gs

E(pz, N ). (G.14)

This expression has the same form as Eq. (G.3) for the free-electron Green’s function.
Therefore, the averaged Green’s function is diagonal in the Landau level representa-
tion.

To find the averaged Green’s function, we need to sum diagram series. This
leads us to the Dyson equation, which is conveniently written in the mixed (x, pz)-
representation:
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Gs
E(|x − x′|, pz) = gs

E(|x − x′|, pz)

+
∫

dx1

∫
dx2e

i[θ(x,x1)+θ(x1,x2)+θ(x2,x′)+θ(x′,x)] (G.15)

×gs
E(|x − x1|, pz)Σs

E(|x1 − x2|, pz)Gs
E(|x2 − x′|, pz),

where the self-energy function Σs
E(x1,x2, pz) is written as eiθ(x1,x2)Σs

E(|x1 − x2|, pz).
Using Eq. (G.15), one can derive the Dyson equation in the Landau level representa-
tion. First of all, we note that the self-energy function eiθ(x1,x2)Σs

E(|x1 − x2|, pz) in
the Landau level representation is diagonal with respect to the Landau state indices
and does not depend on py. This property is derived in the same way as the analogical
property of the averaged Green’s function; see Eq. (G.13). Transforming Eq. (G.15)
with the use of the Landau basis, we obtain an algebraic Dyson equation

Gs
E(pz, N ) = gs

E(pz, N ) + gs
E(pz, N )Σs

E(pz, N )Gs
E(pz, N ). (G.16)

Let us consider the self-energy function. In the leading order with respect to the
interaction, Σs

E(pz, N ) is given by the expression∫
dr
∫

dr′ψ(Npypz)∗
r ψ

(Npypz)

r′

∫
dp′

z

2π�

∫
dq

(2π)3
w
(√

q2
⊥ + q2

z

)
×eiq⊥·(x−x′)ei(qz+p′

z/�)(z−z′)eiθ(x,x′)Gs
E(|x − x′|, p′

z). (G.17)

We use the Fourier transformation w(|r|) = (2π)−3 ∫ dqeiq·rw(|q|) with q = (q⊥, qz).
Substituting Gs

E(|x − x′|, p′
z) from Eq. (G.14), we calculate the integrals and obtain

Σs
E(pz, N ) =

∑
N′

∫
dq

(2π)3
ΦNN′(q2

⊥l2H/2)w(|q|)Gs
E(pz − �qz, N ′), (G.18)

where ΦNN′(u) is defined by Eq. (48.14). The self-energy defined by Eq. (G.18)
loses its dependence on pz and N for the scattering by a short-range potential, when
w(|q|) � w is independent of q:

Σs
E =

w

2πl2H

∑
N

∫
dpz

2π�
Gs

E(pz, N ). (G.19)

The next correction to Σs
E(pz, N ) is a contribution of the second order with respect

to w(q). It is given by the diagram with two crossed impurity lines, similar to that
in Eq. (14.23). Calculating this correction for the model of short-range potential, we
obtain

δΣs(2)
E (pz, N ) =

(
w

2πl2H

)2 ∑
N1N2N3

∫ ∞

0
due−2uL0

N(u)L0
N1

(u)L0
N2

(u)L0
N3

(u)

×
∫

dqz

2π�

∫
dq′

z

2π�
Gs

E(pz − �qz, N1)Gs
E(pz − �qz − �q′

z, N2)Gs
E(pz − �q′

z, N3). (G.20)

The results given above can be easily modified for application to the 2D electron
gas occupying the plane XOY . To do this, one should simply omit the variables
pz and qz and remove the integrals

∫
dpz/(2π�) and

∫
dqz/(2π) from the equations.

The function w(|q|) in this case should be considered as an effective 2D correlation
function of the scattering potentials. The equations obtained below can be modified
in a similar way.
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To average the correlation functions of two Green’s functions, one should use the
Bethe-Salpeter equation for the function

Kss′
EE′(r1, r4|r2, r3) ≡

〈〈
Gs

E(r1, r2)Gs′
E′(r3, r4)

〉〉
=
∑

γ1−γ4

Kss′
EE′(γ1, γ4|γ2, γ3)ψ(γ1)

r1 ψ(γ3)
r3 ψ(γ2)∗

r2 ψ(γ4)∗
r4 , (G.21)

where γi is a multi-index for the quantum numbers Ni, pyi, and pzi. Equation
(G.21) defines the correlation function in the Landau level representation. The Bethe-
Salpeter equation in this representation becomes

Kss′
EE′(γ1, γ4|γ2, γ3) = Gs

E(γ1)Gs′
E′(γ4)

×
[
δγ1γ3δγ4γ2 +

1
V

∑
γ5γ6

Γss′
EE′(γ1γ4|γ5γ6)Kss′

EE′(γ5, γ6|γ2, γ3)

]
, (G.22)

where the vertex part is given by the expansion

Γss′
EE′(γ1γ4|γ5γ6) =

∑
q

w(q)〈γ1|eiq·r|γ5〉〈γ6|e−iq·r|γ4〉

+
1
V

∑
qq′

w(q)w(q′)
∑
γ7γ8

{
〈γ1|eiq·r|γ7〉〈γ7|eiq′·r|γ5〉〈γ6|e−iq·r|γ8〉 (G.23)

×〈γ8|e−iq′·r|γ4〉Gs
E(γ7)Gs′

E′(γ8) + 〈γ1|eiq·r|γ5〉〈γ6|eiq′·r|γ8〉〈γ8|e−iq·r|γ7〉
×〈γ7|e−iq′·r|γ4〉Gs′

E′(γ7)Gs′
E′(γ8) + 〈γ1|eiq·r|γ7〉〈γ7|eiq′·r|γ8〉

×〈γ8|e−iq·r|γ5〉〈γ6|e−iq′·r|γ4〉Gs
E(γ7)Gs

E(γ8)
}

+ . . . .

All the contributions linear and quadratic in w(q) are presented explicitly in Eq.
(G.23). Equations (G.22) and (G.23) are analogous to Eqs. (15.5) and (15.6) written
in the momentum representation in the absence of the magnetic field.

Calculating the conductivity in the magnetic field, one encounters the expressions
of the kind ∑

γ1−γ4

〈γ4|v̂α|γ1〉〈γ2|v̂β |γ3〉Kss′
EE′(γ1, γ4|γ2, γ3) (G.24)

≡
∑

N1−N4

∑
pyp′

y

∑
pzp′

z

vα
N4N1

vβ
N2N3

Kss′
EE′(N1, N4; py; pz|N2, N3; p′

y; p′
z),

where we use the definitions 〈Npypz| v̂α

∣∣N ′p′
yp′

z

〉
= vα

NN′δpyp′
y
δpzp′

z
and Kss′

EE′(N1,

N4; py; pz|N2, N3; p′
y; p′

z) = Kss′
EE′(N1pypz, N4pypz|N2p

′
yp′

z, N3p
′
yp′

z). Since vx
NN′ and

vy
NN′ are non-zero only for N = N ′ ± 1 and vz

NN′ is non-zero only for N = N ′, the
sum in Eq. (G.24) is really taken over two (instead of four) Landau level indices.
Next, due to the momentum conservation law, the vertex part Γss′

EE′(γ1γ4|γ5γ6) is
non-zero only for py1 − py4 = py5 − py6 and pz1 − pz4 = pz5 − pz6. Therefore, one
can rewrite the vertex part standing in the equation for the correlation functions
Kss′

EE′(N1, N4; py; pz|N2, N3; p′
y; p′

z) according to

Γss′
EE′(N1pypz, N4pypz|N5p

′
yp′

z, N6p
′′
yp′′

z ) ≡ δp′′
y p′

y
δp′′

z p′
z

(G.25)

×
∑

QyQz

δp′
y,py−�Qy δp′

z,pz−�QzΓss′
EE′(N1, N4; py; pz|N5, N6; py − �Qy; pz − �Qz),
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where �Qy and �Qz are the components of the total momentum �Q transmitted
through the vertex from the upper to the lower line of the diagrams. The Bethe-
Salpeter equation for the two-particle correlation functions introduced by Eq. (G.24)
takes the form

Kss′
EE′(N1, N4; py; pz|N2, N3; p′

y; p′
z)

= Gs
E(pz, N1)Gs′

E′(pz, N4)
[
δN1N2δN4N3δpyp′

y
δpzp′

z
(G.26)

+
1
V

∑
QyQz

∑
N5N6

Γss′
EE′(N1, N4; py; pz|N5, N6; py − �Qy; pz − �Qz)

× Kss′
EE′(N5, N6; py − �Qy; pz − �Qz|N2, N3; p′

y; p′
z)
]
.

We point out that Γss′
EE′(N1, N4; py; pz|N5, N6; py −�Qy; pz −�Qz) does not depend on

py. This follows from the fact that the vertex part of an arbitrary order is built from
a product of averaged Green’s functions (which are independent on the y-momenta)
multiplied by a product of the matrix elements 〈Nj py −�qyk| exp(iqxix)|Nj′ py −�qyk

−�qyi〉. Since the oscillator functions 〈x|N py − �qyk〉 ≡ ϕ
(N py−�qyk)
x depend on x in

the combination x + l2H(py/� − qyk), see Eq. (5.15), each matrix element of this kind
depends on py only through the phase factor exp(−il2Hqxipy/�). On the other hand,
due to the conservation rule

∑
i qxi = 0, the product of all such phase factors is equal

to 1. Since Γss′
EE′(N1, N4; py; pz|N5, N6; py − �Qy; pz − �Qz) is independent of py, we

can integrate Eq. (G.26) over py and p′
y and obtain

Kss′
EE′(N1, N4; pz|N2, N3; p′

z) = Gs
E(pz, N1)Gs′

E′(pz, N4)
[
δN1N2δN4N3δpzp′

z

+
∑

N5N6

∫
dQz

2π
Γss′

EE′(N1, N4; pz|N5, N6; pz − �Qz) (G.27)

×Kss′
EE′(N5, N6; pz − �Qz|N2, N3; p′

z)
]
,

where

Kss′
EE′(N1, N4; pz|N2, N3; p′

z) =
2πl2H
LxLy

∑
pyp′

y

Kss′
EE′(N1, N4; py; pz|N2, N3; p′

y; p′
z),

Γss′
EE′(N1, N4; pz|N5, N6; pz − �Qz) (G.28)

=
1

LxLy

∑
Qy

Γss′
EE′(N1, N4; py; pz|N5, N6; py − �Qy; pz − �Qz).

Finally, we note that Γss′
EE′(N1, N4; pz|N5, N6; pz −�Qz) is non-zero only for N1−N4 =

N5 − N6. To prove this, one may use the matrix elements (48.13) and show that
Γss′

EE′(N1, N4; py; pz|N5, N6; py −�Qy; pz −�Qz) =
∑

Qx
eiΦ(N1−N4−N5+N6) . . . , where

Φ is the polar angle of the 2D vector (Qx, Qy), and the contribution denoted here by
the dots depends only on the absolute value of this vector. Then Eq. (G.27) takes its
final form

Kss′
EE′(N1, N4; pz|N2, N3; p′

z) = Gs
E(pz, N1)Gs′

E′(pz, N4)
[
δN1N2δN4N3δpzp′

z

+
∑
N

∫
dQz

2π
Γss′

EE′(N1, N4; pz|N1 − N, N4 − N ; pz − �Qz) (G.29)
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× Kss′
EE′(N1 − N, N4 − N ; pz − �Qz|N2, N3; p′

z)
]
.

Since, according to Eqs. (G.24) and (G.28), the components of the conductivity tensor
in the magnetic field are expressed through Kss′

EE′ (N1, N4; pz|N2, N3; p′
z), Eq. (G.29)

is the basic equation for evaluating the conductivity.
The Bethe-Salpeter equation (G.29) has a simple solution in the case when the

higher-order terms of the vertex part can be neglected and the scattering is described
by a short-range potential. Indeed, let us retain in the expansion (G.23) only the first
term with w(q) = w and use Eqs. (G.25) and (G.28). We obtain

Γss′
EE′(N1, N4; pz|N5, N6; pz − �Qz) =

w

2πl2H
δN1N4δN5N6 . (G.30)

The integral equation (G.29) in this case has the following solution:

Kss′
EE′(N1, N4; pz|N2, N3; p′

z) (G.31)

= Gs
E(pz, N1)Gs′

E′(pz, N4)δN1N2δN4N3δpzp′
z

+ δKss′
EE′ .

The term δKss′
EE′ is proportional to δN1N4 . For this reason, it does not contribute to the

transverse conductivity, because vx
N4N1

and vy
N4N1

are zero for N1 = N4. Next, since
δKss′

EE′ does not depend on pz, it does not contribute to the longitudinal conductivity,
because the integral

∫
dpzvz

N4N1
δKss′

EE′ ∝
∫∞

−∞ dpzpz is equal to zero. Therefore,
the conductivity in this approximation is expressed through the product of averaged
Green’s functions.

The situation is not that simple when the higher-order terms of the vertex part
must be taken into account. Let us present the expressions for the second-order
corrections to the vertex part, under the approximation of short-range potential:

δΓss′(2)
EE′ (N1, N4; pz|N1 − N, N4 − N ; pz − �Qz) =

(
w

2πl2H

)2 ∑
N7N8

×
∫

dqz

2π

{
Λ(1)

N7N8
(N1, N4, N )Gs

E(pz − �qz, N7)Gs′
E′(pz − �(Qz − qz), N8)

+Λ(2)
N7N8

(N1, N4, N )
[
Gs

E(pz − �qz, N7)Gs
E(pz − �(Qz + qz), N8) (G.32)

+Gs′
E′(pz − �qz, N7)Gs′

E′(pz − �(Qz + qz), N8)
]}

.

The numerical coefficients Λ(1) and Λ(2) are given by∣∣∣∣∣ Λ(1)
N7N8

(N1, N4, N )
Λ(2)

N7N8
(N1, N4, N )

∣∣∣∣∣ = 2
π2

1
2N1+N4+N7+N8−N

×
∫

du1du2dv1dv2e
−2(u2

1+u2
2+v2

1+v2
2)

N7!N8!
√

N1!N4!(N1 − N )!(N4 − N )!
(G.33)

×

∣∣∣∣∣∣∣∣∣∣
HN1(u1 + v1)HN4(u2 + v1)HN4−N(u1 − v1)HN1−N(u2 − v1)
×HN8(u1 + v2)HN8(u2 + v2)HN7(u1 − v2)HN7(u2 − v2)

HN1(u1 + v1)HN4(u2 + v1)HN4−N(u2 − v2)HN1−N(u1 − v2)
×HN8(u1 − v1)HN8(u2 − v1)HN7(u1 + v2)HN7(u2 + v2)

∣∣∣∣∣∣∣∣∣∣
.
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The momentum space for pz and �Qz in Eq. (G.32) is reduced because of the in-
tegral over qz. As a result, δΓss′(2)

EE′ (N1, N4; pz|N1 − N, N4 − N ; pz − �Qz) is small
in comparison to the first-order vertex part given by Eq. (G.30) provided that the
mean kinetic energy of electrons, p2

z/2m, is greater than the characteristic energy of
collision-induced broadening of the Landau levels. The broadening energy is estimated
as the imaginary part of the self-energy function given by Eq. (G.19). This situation
can be violated only in very high magnetic fields, when the Fermi energy is close to
the bottom of the lowest Landau level. On the other hand, for 2D electrons, when the
motion along OZ is absent, the correction (G.32), and, therefore, all higher-order cor-
rections, become important when the cyclotron energy exceeds the broadening of the
Landau levels. Nevertheless, if the Fermi energy is much greater than the cyclotron
energy (so that many Landau levels are populated), the mean (non-oscillating) part
of the conductivity is not affected by the higher-order corrections.



Appendix H
Hamiltonian of Tunnel-Coupled Systems

Consider the electrons with a simple parabolic energy spectrum in the presence
of a one-dimensional potential energy U (z) which creates a barrier separating left (l)
and right (r) regions of the coordinate space, as shown in Fig. H.1. It is convenient
to choose z = 0 at the point where the potential is maximal and to count the energies
from this maximum. The Schroedinger equation describing the electron states in this
system is written as

(Ĥ − ε)Ψ(x, z) = 0, Ĥ =
p̂2

z + p̂2
x

2m
+ U (z) + V (x, z), (H.1)

where x = (x, y) is the 2D coordinate. The electron energy is assumed to be negative,
ε < 0, so that the barrier is classically unpenetrable. The Hamiltonian (H.1) also
contains a random potential V (x, z) describing scattering of the electrons.

Figure H.1. Potential barrier U (z) separating the left (z < 0) and right (z > 0)
regions.

Let us decompose U (z) into two parts, namely

U (z) = Ul(z) + Ur(z), (H.2)

771
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Ul(z) =
{

U (z), z < 0
0, z > 0 , Ur(z) =

{
0, z < 0

U (z), z > 0 ,

which means that Ul and Ur represent unpenetrable potential walls for the electrons
in the left and right regions, respectively. For each region (j = l, r), we introduce the
basis functions Fjk(z) ≡ 〈z|jk〉 satisfying the following one-dimensional Schroedinger
equations: [

p̂2
z

2m
+ Uj(z) − εjk

]
Fjk(z) = 0. (H.3)

These functions form complete sets for each region j. They belong either to continuous
spectrum, when k is a continuous variable, or to discrete spectrum. The discrete
electron states exist if the region j contains a potential well where the size quantization
occurs. In any case, the functions Fjk(z) are orthogonal, and they are normalized
according to ∫ ∞

−∞
dz F ∗

jk′(z)Fjk(z) = δkk′ . (H.4)

The functions from different regions, however, are not orthogonal. Their overlap
integrals

Sj′k′,jk ≡ 〈j′k′|jk〉 =
∫ ∞

−∞
dz F ∗

j′k′(z)Fjk(z), (j′ �= j) (H.5)

are not equal to zero.
Let us calculate the matrix elements of the Hamiltonian (H.1) in the basis |jk〉

described above. The elements diagonal in j are

〈jk′|Ĥ |jk〉 = δkk′

[
p̂2

x

2m
+ εjk

]
+ 〈jk′|V (x, z)|jk〉 + 〈jk′|Uj′(z)|jk〉j′ 
=j . (H.6)

The last term in this expression contains an exponential smallness of the second order
with respect to the overlap factors (H.5). Indeed, this term is formed as an integral
of a product of two wave functions of the region j over the region j′ �= j, where
these functions decrease exponentially. We neglect such terms in the following. The
remaining part of Eq. (H.6) represents the effective Hamiltonian of the region j. The
non-diagonal elements of Ĥ are represented as (j′ �= j)

〈j′k′|Ĥ |jk〉 = Sj′k′,jk

[
p̂2

x

2m
+

εj′k′ + εjk

2

]
+ tj′k′,jk + 〈j′k′|V (x, z)|jk〉

+
1
2
〈j′k′|Uj′(z) − Uj(z) − εj′k′ + εjk|jk〉, (H.7)

where we have separated the contribution

tj′k′,jk =
1
2
〈j′k′|Ul(z) + Ur(z)|jk〉 =

1
2
〈j′k′|U (z)|jk〉 (H.8)

called the tunneling matrix element. The last term in Eq. (H.7) is equal to zero. One
can prove this statement by writing this term, with the use of Eq. (H.3), as

−1
2
〈j′k′|Uj(z) − εjk|jk〉 +

1
2
〈j′k′|Uj′(z) − εj′k′ |jk〉

=
1

4m

∫ ∞

−∞
dz
[
F ∗

j′k′(z)p̂2
zFjk(z) − Fjk(z)p̂2

zF ∗
j′k′(z)

]
. (H.9)
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The integral over z in this expression should be transformed by parts. Taking into
account that either Fjk(z) or F ∗

j′k′(z) is equal to zero at z = ±∞, we complete the
required proof.

Let us search for the wave function from Eq. (H.1) in the form

Ψ(x, z) =
1
L

∑
j=l,r

∑
kp

Ajkpeip·x/�Fjk(z), (H.10)

where L is the normalization length in the plane XOY . Using the matrix elements
(H.6) and (H.7), we write the following equation for the coefficients Ajkp:

(εjkp − ε)Ajkp +
1
L2

∑
j′k′p′

〈jk|V [(p − p′)/�, z]|j′k′〉Aj′k′p′

+
∑

k′(j′ 
=j)

[
tjk,j′k′ + Sjk,j′k′

(
εj′k′ + εjk

2
− ε

)]
Aj′k′p = 0, (H.11)

where εjkp = εjk + p2/2m and V (q, z) is the spatial 2D Fourier transform of V (x, z).
Equation (H.11) is exact, except for the fact that we have already neglected the terms
containing higher exponential smallness (originating from the last term in Eq. (H.6)).
It is often reasonable to neglect also the contribution non-diagonal in j in the second
term on the left-hand side of Eq. (H.11), since the random potential V (x, z) is much
smaller than the regular potential U (z) determining the tunneling matrix element.
The last term on the left-hand side of Eq. (H.11) describes the tunneling with conser-
vation of the in-plane momentum p. By noticing that |tjk,j′k′ | ∼ U0|Sjk,j′k′ |, where
U0 is a characteristic energy scale of U (z), we neglect the contribution proportional
to Sjk,j′k′ in this term in the region∣∣∣∣ε − εj′k′ + εjk

2

∣∣∣∣� U0. (H.12)

It is the region of energies that is important for considering the tunneling. In these
approximations, Eq. (H.11) is reduced to the effective eigenstate problem (ĤT −ε)A =
0, where the Hamiltonian ĤT is defined by its matrix elements in the basis |jkp〉
described by the wave functions L−1eip·x/�Fjk(z):

〈j′k′p′|ĤT |jkp〉 = δjj′
{
δkk′δpp′εjkp + L−2V (j)

k′k[(p′ − p)/�]
}

+ δpp′ tj′k′,jk, (H.13)

where V (j)
k′k(q) = 〈jk′|V (q, z)|jk〉. The Hamiltonian ĤT is the effective Hamiltonian

of tunnel-coupled systems. It is written with the use of the overfilled basis consisting
of two complete sets of l- and r- states described by Eqs. (H.3)−(H.5). The non-
diagonal part of ĤT , which describes the coupling of the left and right regions, is
called the tunneling Hamiltonian.

In the second quantization representation, we rewrite Eq. (H.13) as follows:

ĤT =
∑
jkp

εjkpâ+
jkpâjkp +

1
L2

∑
jkk′pp′

V (j)
k′k[(p′ − p)/�]â+

jk′p′ âjkp

+
∑
kk′p

[tlk′,rkâ+
lk′pârkp + trk,lk′ â+

rkpâlk′p], (H.14)

where â+
jkp and âjkp are the creation and annihilation operators of the electron in

the state |jkp〉. Note that the Hamiltonian (H.14) is Hermitian since tlk′,rk = t∗
rk,lk′ .
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Considering the tunneling Hamiltonian as a perturbation, one may write the probabil-
ity of tunneling transition between the states |jkp〉 and |j′k′p′〉 in unit time according
to Fermi’s golden rule, see Eq. (2.16):

Wj′k′p′,jkp = δpp′
2π

�
|tj′k′,jk|2δ(εjkp − εj′k′p′), j′ �= j. (H.15)

These transitions conserve the in-plane momentum p. One may also consider higher-
order contributions into the transition probability, which include both the tunneling
and the scattering. Such contributions describe the scattering-assisted tunneling in
which the in-plane momentum is not conserved.

Let us write the matrix elements of the operator of electric current through the
barrier (the tunneling current). Using the general expression (4.15), we obtain the
current operator at the point Z :

ÎT (Z) =
e

2m
[p̂zδ(z − Z) + δ(z − Z)p̂z]. (H.16)

The matrix element of the operator of the tunneling current per unit square is calcu-
lated as

〈j′k′p|ÎT (Z)|jkp〉 =
e

2mL2

[
F ∗

j′k′(z)p̂zFjk(z) − (p̂zF ∗
j′k′(z))Fjk(z)

]
z=Z

= − ie�

2mL2

∫ Z

−∞
dz[F ∗

j′k′(z)∇2
zFjk(z) − (∇2

zF ∗
j′k′(z))Fjk(z)]

= − ie

2�L2

{∫ Z

−∞
dz[Uj(z) − Uj′(z) − εjk + εj′k′ ]F ∗

j′k′(z)Fjk(z) (H.17)

−
∫ ∞

Z

dz[Uj(z) − Uj′(z) − εjk + εj′k′ ]F ∗
j′k′(z)Fjk(z)

}
.

If we choose Z = 0 and take into account Eq. (H.3) and the energy conservation law
from Eq. (H.15), we obtain

〈lk′p|ÎT |rkp〉 =
ie

�L2 tlk′,rk, 〈rkp|ÎT |lk′p〉 = − ie

�L2 trk,lk′ . (H.18)

Therefore, the matrix elements of the tunneling current are expressed through the
tunneling matrix elements (H.8). The current is independent of the choice of Z ,
according to the continuity equation (4.14). The latter can be written as dÎT (Z)/dZ =
0 in the stationary case and in the absence of in-plane currents, when Îr = [0, 0, ÎT (Z)].
The presence of infinite normalization lengths in Eq. (H.18), as well as in the tunneling
matrix elements (H.19) and (H.21) below, should not create a confusion, because these
lengths vanish in the observable quantities (such as the density of tunneling current).

Below we present the expressions for tlk′,rk calculated directly for three simple
potentials shown in Fig. H.2. This corresponds to the cases of 3D-3D (a), 2D-3D (b),
and 2D-2D (c) tunneling. In the case (a),

tlk′,rk =
4�2

m
√

LlLr

k′kκe−κd

(κ + ik′)(κ − ik)
, (H.19)

where Lj is the normalization length along z in the region j, which appears because
of normalization of the wave function of continuous spectrum. The underbarrier
penetration length, κ−1, is related to the wave numbers k and k′ according to

�κ =
√

2m|ε − p2/2m|, �k =
√

2m(ε − U0r − p2/2m),
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Figure H.2. Rectangular potentials defining tunnel-coupled systems of different di-
mensionalities.

�k′ =
√

2m(ε − U0l − p2/2m), (H.20)

where ε is the energy of the tunneling electron and U0j is the potential energy in the
region j. In the case (b),

tlk′,rk =
2�2

m
√

Lr

k′kκ3/2e−κd

(κ − ik)
√

(κ2 + k′2)(1 + alκ/2)
. (H.21)

The relations (H.20) remain valid, though k′ is now discrete and determined by the
dispersion relation

cot(k′al) =
k′2 − κ2

2k′κ
. (H.22)

The values of k and κ are fixed by k′. Finally, in the case (c)

tlk′,rk =
�2

m

k′kκ2e−κd√
(κ2 + k′2)(κ2 + k2)(1 + alκ/2)(1 + arκ/2)

. (H.23)

The wave number k in this case is also discrete. Therefore, apart from Eqs. (H.20)
and (H.22), one has

cot(kar) =
k2 − κ2

2kκ
. (H.24)

In this case, the tunneling (without scattering) may occur only if the parameters of
the system are adjusted to satisfy Eqs. (H.20), (H.22), and (H.24) simultaneously.
This tunneling occurs between the states k and k′ with matched energies. The values
of tlk′,rk given by Eqs. (H.19), (H.21), and (H.23) are defined with the accuracy up
to a phase factor eiφ, since the phases of the wave functions Flk′ and Frk can be
chosen in an arbitrary way. This phase factor is not essential, because the transition
probabilities and tunneling currents are expressed through the squared absolute values
of the tunneling matrix elements. If both |lk′〉 and |rk〉 are discrete states, the wave
functions Flk′ and Frk can be chosen real. The tunneling matrix elements in this case
are real and symmetric, tlk′,rk = t∗

lk′,rk = trk,lk′ .
In the case of tunneling between discrete states, one may consider only a pair of

the states k and k′ with closely matched energies. The indices k and k′, therefore, can
be omitted, and the Hamiltonian of such tunnel-coupled electron systems is written
in the form of a 2 × 2 matrix in the basis |l〉 and |r〉:

ĤT = P̂lĥl + P̂rĥr + σ̂xtlr , (H.25)
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where P̂l = (1+ σ̂z)/2 and P̂r = (1− σ̂z)/2 are the operators of projection, σ̂i are the
Pauli matrices, and tlr is the tunneling matrix element for the pair of states under
consideration. The Hamiltonians of the left and right regions are

ĥj = εj +
p̂2

x

2m
+ V (j)(x), (H.26)

where V (j)(x) =
∫

dz |Fj(z)|2V (x, z). According to Eq. (H.18), the operator of the
tunneling current in this basis is expressed through the Pauli matrix σ̂y:

ÎT = −etlr

�
σ̂y. (H.27)

It is convenient to use the Pauli matrices for applications, since the matrix algebra
(the commutation relations, etc.) for these matrices is well known. For example, we
present a useful formula for the operator exponent:

exp(iσ̂ · A) = cos |A| + i
σ̂ · A
|A| sin |A| , (H.28)

where A is an arbitrary vector.
Although we have considered the case of one-dimensional potential barriers sepa-

rating two regions, the method used above suggests that introducing the tunneling
matrix elements is feasible for the case of a system consisting of several weakly-coupled
regions numbered by the index j. Assuming that each region is characterized by a set
of eigenstates |jδ〉, which are the exact eigenstates in the absence of tunneling, one
can write the Hamiltonian of the system in the form

ĤT =
∑
jδ

εjδâ
+
jδâjδ +

∑
jδj′δ′

[
tj′δ′,jδ â+

j′δ′ âjδ + H.c.
]
j 
=j′ . (H.29)

The probability of transitions between the regions in unit time is given by

Wjδ,j′δ′ =
2π

�
|tj′δ′,jδ|2δ(εjδ − εj′δ′), j′ �= j. (H.30)

Calculating the tunneling matrix elements for each particular case is a complicated
procedure. It is convenient to choose them as parameters.
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