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Foreword

Why Setsfor Mathematics?

This book is for students who are beginning the study of advanced mathematical
subjects such asalgebra, geometry, analysis, or combinatorics. A useful foundation
for these subjects will be achieved by openly bringing out and studying what they
have in common.

A significant part of what is common to al these subjects was made explicit
100 years ago by Richard Dedekind and Georg Cantor, and another significant part
50 years ago by Samuel Eilenberg and Saunders Mac Lane. The resulting idea of
categories of sets iSthe main content of thisbook. It isworth the effort to study this
ideabecauseit provides a unified guide to approaching constructions and problems
in the science of space and quantity.

More specifically, it has become standard practiceto represent an object of math-
ematical interest (for exampleasurfaceinthree-dimensional space) asa“structure.”
This representation is possible by means of the following two steps:

(1) First wedepletethe object of nearly al content. We could think of an idealized
computer memory bank that has been erased, leaving only the pure locations
(that could befilled with any new datathat are relevant). The bag of pure points
resulting from this process was called by Cantor a Kardinalzahl, but we will
usualy refer to it as an abstract set.

(2) Then, just ascomputerscan bewired up in specific ways, suitable specific map-
pings between these structureless sets will constitute a structure that reflects
the complicated content of a mathematical object. For example, the midpoint
operation in Euclidean geometry is represented as a mapping whose “value” at
any pair of pointsisaspecia third point.

To explain the basis for these steps there is an important procedure known as the
axiomatic method: That is, from the ongoing investigation of the ideas of setsand

iX



X Foreword

mappings, one can extract a few statements called axioms; experience has shown
that these axioms are sufficient for deriving most other true statements by pure
logic when that is useful. The use of this axiomatic method makes naive set theory
rigorous and helps students to master the ideas without superstition. An analogous
procedure was applied by Eilenberg and Steenrod to the ongoing development of
algebraic topology in their 1952 book [ES52] on the foundations of that subject as
well as by other practitioners of mathematics at appropriate stages in its history.

Some of the foundational questionstouched on here are treated in more detail in
the glossary (Appendix C) under headings such as Foundations, Set Theory, Topos,
or Algebraic Topology.

Organization

In Chapters 1-5 the emphasis is on the category of abstract sets and on some very
simple categorical generalities. The additional century of experience since Cantor
has shown the importance of emphasizing some issues such as:

(1) Each map needs both an explicit domain and an explicit codomain (not just a
domain, asin previous formulations of set theory, and not just a codomain, as
in type theory).

(2) Subsets are not mere sets with a special property but are explicit inclusion
maps. (This helps one to realize that many constructions involving subsets are
simplified and usefully generalized when applied appropriately to maps that
are not necessarily subsets.)

(3) Thealgebraof composition satisfies the familiar associative and identity rules;
other basic concepts, such as “belonging to” (e.g., membership in, and inclu-
sion among, subsets) and the dual “determined by” are easily expressible as
“division” relativetoit. It turns out that this adherence to algebra (showing that
“foundation” does not need a language distinct from that of ordinary mathe-
matics) has broad applicability; it is particularly appropriate in smoothing the
transition between constant and variable sets.

(4) Becausefunctionalsplay suchakey rolein mathematics, thealgebraisexplicitly
strengthened to include the algebra of evaluation maps and induced maps.

All of these issues are elementary and quite relevant to the learning of basic
mathematics; we hope that mathematics teachers, striving to improve mathematics
education, will take them to heart and consider carefully the particular positiverole
that explicit formulations of mathematical concepts can play.

Beginning in Chapter 6, examples of categories of cohesive and variable setsare
gradually introduced; some of these help to objectify features of the constant sets
such as recursion and coequalizers.
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We illustrate the use of the maximal principle of Max Zorn in Appendix B, and
weincludeaproof of itintheform of exerciseswith hints. Several other resultsthat
do not hold in most categories of variable or cohesive sets, such as the Schroeder—
Bernstein theorem and the total ordering of sizes, are treated in the same way.
Despite our axiomatic approach, we do not use the internal language that some
books on topos theory elaborate; it seemed excessively abstract and complicated
for our needs here.

Appendix A presents essentially a short course in “al that a student needs to
know about logic.” Appendix B, as mentioned, briefly treats a few of the specia
topics that a more advanced course would consider in detail. Appendix C provides
aglossary of definitionsfor reference. Some of the glossary entries go beyond bare
definition, attempting to provide awindow into the background.

Some exercises are an essentia part of the development and are placed in the
text, whereas othersthat are optional but recommended are for further clarification.

F. William Lawvere Robert Rosebrugh
June 2002
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1
Abstract Sets and Mappings

1.1 Sets, Mappings, and Composition

Let us discuss the idea of abstract constant sets and the mappings between them
in order to have a picture of this, our central example, before formalizing a math-
ematical definition. An abstract set is supposed to have elements, each of which
has no structure, and is itself supposed to have no internal structure, except that the
elements can be distinguished as equal or unequal, and to have no external structure
except for the number of elements. In the category of abstract sets, there occur sets
of all possible sizes, including finite and infinite sizes (to be defined later). It has
been said that an abstract set is like a mental “bag of dots,” except of course that
the bag has no shape; thus,

may be a convenient way of picturing a certain abstract set for some considerations,
but what is apparently the same abstract set may be pictured as

for other considerations.



2 Abstract Sets and Mappings

What gives the category of setsits power isthe concept of mapping. A mapping
f from an abstract set A to an abstract set B is often explained through the use of
the word value. (However, since the elements of B have no structure, it would be
misleading to always think of these values as quantities.) Each mapping f from A
to B satisfies

for each element x of A
there is exactly one element y of B
suchthat y isavalue of fat x

This justifies the phrase “the value”; the value of f at x is usualy denoted by
f(x);itisanelement of B. Thus, amappingissingle-valued and everywheredefined
(everywhereonitsdomain) asinanalysis, but it also hasadefinite codomain (usualy
bigger than its set of actual values). Any f at all that satisfies this one property is
considered to beamapping from A to B inthe category of abstract constant sets; that
iswhy these mappings are referred to as “arbitrary”. An important and suggestive
notation is the following:

Notation 1.1: The arrow notation A —> B Jjust means the domain of f is A and
the codomain of f is B, and we write dom(f) = A and cod(f) = B. (We will
usually use capital letters for sets and lowercase letters for mappings.) For printing
convenience, in simple cases this is aso written with a colon f: A— B. We
can regard the notation f: A—— B as expressing the statement dom(f) = A &
cod(f) = B, where & isthelogica symbol for and.

For small A and B, amapping from A to B can be pictured using its cograph or
internal diagram by

where f(x) isthe dot at the right end of the line that has x at its eft end for each
of the three possible elements x.

Abstract sets and mappings are a category, which means above all that there is
acomposition of mappings, i.e., given any pair f : A— B and g : B— C there
is a specified way of combining them to give aresulting mapping go f : A—C.
Note that the codomain set of the first mapping f must be exactly the same set
as the domain set of the second mapping g. It is common to use the notation o
for composition and to read it as “following,” but we will also, and much more
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often, denote the composite “g following f” just by gf. A particular instance of
composition can be pictured by an external diagram or by an internal diagram as
below. First consider any three mappings f, g, and m with domains and codomains
asindicated:

A / B
m g
C
External Diagram Internal Diagram

Theinternal cograph diagramsexpressthefull information about particular maps,
which is often more than we need; thus, we will use simple, external diagrams
wherever possible.

Since any mapping satisfies restrictions of the kind “for each. . . there is exactly
one...,” inthe diagram above, we observe that

o for each element a of Athereisexactly oneelement b of B for which bisavaue
of f ata (briefly f(a) =b);

e for each element b of B thereis exactly one element c of C for which cisavalue
of g at b (briefly g(b) = c);

e for each element a of A thereisexactly one element c of C for which cisavalue
of mat a (briefly m(a) = c).

The external diagram above is said to be a “commutative diagram”, if and only if
m is actually the composite of g following f; then, notationally, we write simply
m = gf.

More precisely, for the triangular diagram to be considered commutative, the
relation between f, g, m must have the following property:

For each element a of A we can find the value of m(a) by proceeding in two
steps. first find f (a) and then find g( f (a)); the latter is the same as m(a).

(Examining the internal diagram showsthat m = gf inthe figure above.)

A familiar example, when A = B = C isaset of numbers equipped with struc-
tural mappings providing addition and multiplication, involves f(x) = x? and
g(x) = x + 2 so that (g o )(x) = x?> + 2. The value of the composite mapping
at x istheresult of taking the value of g at the value of f at x. In contexts such as
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this where both multiplication and composition are present, it is necessary to use
distinct notations for them.

Exercise 1.2
Expressthe mapping that associatesto anumber x thevalue/x2 + 2 asacomposite
of three mappings. O

We need to be more precise about the concept of category. Theideas of set, map-
ping, and composition will guide our definition, but we need one more ingredient.
For each set A thereistheidentity mapping 15 : A— A whose values are deter-
mined by 15(X) = X. For any set A, this definition determines a particular mapping
among the (possibly many) mappings whose domain and codomain are both A.

On the basis of the preceding considerations we have part of the information
required to define the general notion of “category”. The first two items|isted corre-
spond to abstract sets and arbitrary mappingsin the example of the category of sets.

A category C has the following data:

e Objects: denoted A, B, C, ...

e Arrows: denoted f, g, h, ... (arrows are a so often called mor phisms or maps)

e Toeach arrow f isassigned an abject called its domain and an object called its
codomain (if f hasdomain A and codomain B, thisisdenoted f : A— B)

e Composition: To each f: A—=B and g: B——C there is assigned an arrow
gf : A—C caled “the composite of f and g” (or “g following f”)

e |dentities: To each object Aisassigned anarrow 1, : A— Acalled “theidentity
on A”.

1.2 Listings, Properties, and Elements

We have not finished defining category because the preceding data must be con-
strained by some general requirements. We first continue with the discussion of
elements. Indeed, we can immediately simplify things a little: an idea of element
iS not necessary as a separate idea because we may aways identify the elements
themselves as special mappings. That will be an extreme case of the parameterizing
of elements of sets. Let us start with a more intermediate case, for example, the
set of mathematicians, together with the indication of two examples, say Sir |saac
Newton and Gottfried Wilhelm Leibniz. Mathematically, the model will consist
not only of an abstract set A, (to stand for the set of all mathematicians) but also
of another abstract set of two elements 1 and 2 to act as labels and the specified
mapping with codomain A whose value at 1 is “Newton” and whose value at 2 is
“Leibniz’. The two-element set is the domain of the parameterization.

Such a specific parameterization of elements is one of two kinds of features of
aset ignored or held in abeyance when we form the abstract set. Essentially, all of
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the terms— parameterization, listing, family — have abstractly the same meaning:
simply looking at one mapping into a set A of interest, rather than just at the one
set A dl by itself.

Whenever we need to insist upon the abstractness of the sets, such a preferred
listing is one of the two kinds of features we are abstracting away.

The other of the two aspects of the elements of an actual concrete aggregation
(which areto beignored upon abstraction) involvesthe properties that the elements
might have. For example, consider the set of all the mathematiciansand the property
“wasborn during the seventeenth century” that some of the mathematicianshaveand
some do not. One might think that thisis an important property of mathematicians
as such, but nonetheless one might momentarily just be interested in how many
mathematicians there are.

Certain properties are interpreted as particular mappings by using the two-
element set of “truth values” — true, false — from which we also arrive (by the
abstraction) at the abstract set of two elements within which “true” could be taken
as exemplary. If we consider a particular mapping such as

A 2

N —
7
A

we seethat all those elementsof Athat goto “true” will constitute one portion of A,
and so f determinesaproperty “true” for some elements, and “not true,” or “false,”
for others. There are properties for which the codomain of f will need more than
two elements, for example, age of people: the codomain will need at |east as many
elements as there are different ages.

Asfar aslisting or parameterizing isconcerned, an extreme caseistoimaginethat
all the elements have been listed by the given procedure. The opposite extreme case
isone in which no examples of elements are being offered even though the actua
set A under discussion has some arbitrary size. That is, in this extreme case the
index set is an empty set. Of course, the whole listing or parameterization in this
extreme case amounts really to nothing more than the one abstract set A itself.

Just short of the extreme of not listing any islisting just one element. We can do
this using a one-element set as parameter set.

domain codomain
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To characterize mathematically what the one-element set is, we will consider it
in terms of the property that does not distinguish. The following is the first axiom
we require of the category of sets and mappings.

AXIOM: TERMINAL SET
Thereisaset 1 such that for any set A thereis exactly one mapping A—1. This
unique mapping is given the same name A as the set that isits domain.

We call 1 a terminal object of the category of sets and mappings. There may
or may not be more than one terminal object; it will make no difference to the
mathematical content. In a given discussion the symbol 1 will denote a chosen
terminal object; as we will see, which terminal object is chosen will also have no
effect on the mathematical content.

Several axioms will be stated as we proceed. The axiom just stated is part of the
stronger requirement that the category of setsand mappings hasfiniteinverselimits
(see Section 3.6). A typical cograph pictureis

A 1

Only aone-element set V = 1 can have the extreme feature that one cannot detect
any distinctions between the elements of A by using only “properties” A—V.
Having understood what a one-element set isin terms of mapping to it, we can now
use mappings fromit to get more information about arbitrary A.

Definition 1.3: An element of a set A is any mapping whose codomain is A and
whose domain is 1 (or abbreviated...1 -2~ A).

(Why does 1 itself have exactly one element according to this definition?)
The first consequence of our definition is that

element is a special case of mapping.
A second expression of the role of 1 isthat
evaluation is a special case of composition.

In other words, if we consider any mapping f from A to B and then consider any
element a of A, the codomain of a and thedomain of f are the same; thus, we can
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form the composite f a,

1/A\<B

which will be amapping 1 — B. But since the domain is 1, thismeansthat fa
isan element of B. Which element isit? It can only be, and clearly is, the value of
f ata:

Thatis, if aisan element, fa = f(a).
Finally, athird important expression of therole of 1 isthat

evaluation of a composite is a special case of the
Associative law

of composition (which will be one of the clauses in the definition of category). In
order to seethis, suppose m = gf and consider

The formula (in which we introduce the symbols ¥ to mean “for al” and = to
mean “implies”)

m=gf = [Va[l 2~ A= m(a) = g(fa)]]

expresses our idea of evaluation of the composition of two mappings; i. e. if mis
the composite of f and g, then for any element a of the domain of f the value of
m at a isequal tothevalue of g at f(a). More briefly, (gf )a = g(fa), whichisa
case of the associative law.

The three points emphasized here mean that our internal pictures can be (when
necessary or useful) completely interpreted in terms of external pictures by also
using the set 1.

Notice that the axiom of the terminal set and the definition of element imply
immediately that the set 1 whose existence is guaranteed by the axiom has exactly
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one element, namely, the unique mapping from 1 to 1. There is aways an identity
mapping from aset to itself, so thisunique mapping from 1to 1 must betheidentity
mapping on 1.

We want to introduce two more logical symbols: the symbol 3 isread “there ex-
ists,” and 3! isread “there exists exactly one”. Thus, we can repeat the characteristic
feature of every f : A—— B asfollows:

Va:1— A 3'b:1— B[bisavaueof f at a]
But thisisaspecial case of thefact that composition in general isuniquely defined.

1.3 Surjective and I njective Mappings
Recall the first internal diagram (cograph) of a mapping that we considered:

Note that it is hot the case for the f in our picture that

for each element b of B
thereis an element x of A
for whichbisthevalueof f at x. (f(x) = b)

Definition 1.4: Amapping f : A — B that has the existence property “for each
element b of B thereisanelement x of Aforwhichb = f(x)” iscalled asurjective
mapping.

Neither isit the case that the f in our picture has the property

for each element b of B
thereis at most one e ement x of A
for whichf(x) = b

Definition 1.5: A mapping f : A— B that has the uniqueness property “given
any element b of B there is a most one element x of A for which f(x) =b” is
called an injective mapping. In other words, if f isan injective mapping, then for
all elements x, x’ of A, if f(x) = f(x'), thenx = x'.

Definition 1.6: A mapping that is both surjective and injective is called bijective.
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Thus, the f pictured above is neither surjective nor injective, but in the figure
below g : A— B is an injective mapping from the same A and to the same B.

Exercise 1.7

Isthe pictured g surjective? O
Exercise 1.8

Are there any surjective mappings A— B for the pictured A, B? O
Exercise 1.9

How many mappings from the three-element set A to the seven-element set B are
there? Can we picture them all? O
Exercise 1.10

Same as 1.9, but for mappings B— A from a seven-element to a three-element
Set. %
Exercise 1.11

Are there any surjective B—— A? Are there any injective ones? O
Exercise 1.12

What definition of “f; # f,” is presupposed by the idea “number of” mappings
weused in 1.9 and 1.10? O

Exercises 1.9 and 1.12 illustrate that the feature “external number/internal in-
equality of instances” characteristic of an abstract set is also associated with the
notion “mapping from A to B,” except that the elements (the mappings) are not
free of structure. But abstractness of the setsreally means that the elements are for
the moment considered without internal structure. By considering the mappings
from Ato B with their internal structure ignored, we obtain a new abstract set BA.
Conversely, we will see in Chapter 5 how any abstract set F of the right size can
act as mappings between given abstract sets. (For example, in computers variable
programs are just a particular kind of variable data.)
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1.4 Associativity and Categories

Recall that wesaw in Section 1.2 that an “associativelaw” in aspecial case expresses
the evaluation of composition. Indeed, whenever we have

1AL %
then we have the equation (gf)(a) = g( f a).

If wereplacea by ageneral mappingu : T — Awhosedomainisnot necessarily
1, we obtain the Associative law

(9f)u=g(fu)
which actually turns out to be true for any three mappings that can be composed;
i.e., that from the commuitativity of the two triangles below we can conclude that
moreover the outer two composite paths from T to C have equal composites (it is
said that the whole diagram is therefore “commutative”).

A—Y ¢
@hu=gr N A
» B

r f

Since the 1 among abstract sets has the specia feature (which we discuss in
Section 1.5) that it can separate mappings, in abstract sets the general associative
law follows from the specia caseinwhich T = 1.

An important property of identity mappingsisthat they not only “do nothing” to
an element but that they have this same property with respect to composition. Thus,
if 1o: A— A and 15 : B—— B are identity mappings, then forany f : A—B
we have the equations

fla=f =1gf
With these ideas in hand we are ready to give the completed definition of category.
The beginning of our specification repeats what we had before:

Definition 1.13: A category C has the following data:

» Objects: denoted A, B,C, ...

o Arrows: denoted f, g, h, ... (arrows are also often called morphisms or maps)

e Toeach arrow f isassigned an object called its domain and an object called its
codomain (if f hasdomain A and codomain B, thisisdenoted f: A—B or
A B)

e Composition: Toeach f: A—=B and g: B—C, thereis assigned an arrow
gf : A—C called “the composite g following f”

e |dentities: To each object Aisassigned an arrow 1,: A— A cdled
“the identity on A”.



1.5 Separators and the Empty Set 11
The data above satisfy the axioms

« Associativity: if A—>B-%-C "~ D, then h(gf) = (hg) f
e Identity: if f:A—~B,then f = flaand f = 1gf.

As we have been emphasizing,

AXIOM: S ISA CATEGORY
Abstract sets and mappings form a category (whose objects are called sets, and
whose arrows are called mappings).

Thisisthebasic axiomimplicit in our referencesto the “category of abstract sets
and mappings” above. There are many other examples of categoriesto be found in
mathematics, and afew of these are described in the exercisesin Section 1.8 at the
end of the chapter.

1.5 Separatorsand the Empty Set

If apair of mappings
f1

A—=B
fa

has the same domain and has the same codomain (i.e., they are two mappings that

could be equal), then we can discover whether they are really equal by testing with
elements

(WVX[1 2> A= fix=fox]) = f1= 1

i.e, if thevalueof f; equalsthevalueof f, at every element x of A, then f; = f.
This is one of the ways in which we can conclude that f; = f,. The converse
implication of the statement istrivial becauseit is merely substitution of equalsfor
equals (a general idea of mathematics). But the indicated implication is a specid,
particularly powerful feature of one-element abstract sets. Initscontrapositiveform
it states: If f; # f,, then there exists at least one element x at which the values of
f; and f, are different. (Thisisthe answer to Exercise 1.12!) For a category C an
object with this property is called a separator.

Definition 1.14: Anobject Sina category C isaseparator if and only if whenever

f1
X:f;Y
2

are arrows of C then

(WX[SE- X = fix=fx]) = f1=f;
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As mentioned in 1.4 the property we have been describing is required of the
terminal object 1 as a further axiom in the category of abstract sets and arbitrary
mappings. It is a powerful axiom with many uses; it is specia to the category S
of abstract sets and will not hold in categories of variable and cohesive sets where
more general elements than just the “points” considered here may be required for
the validity of statements even anal ogous to the following one (see Section 1.6):

AXIOM: THE TERMINAL OBJECT 1 SEPARATES MAPPINGSIN S
Aone-element set 1isaseparatorin S, i.e, if
f1

X——=Y
f2

then
(VX[l X X = fix = sz]) = f1=1
Exercise 1.15
In the category of abstract sets S, any set A with at least one element 1 X~ A is
also a separator. (When an exercise is a statement, prove the statement.) O

Wereturn to the extreme case of listing or parameterization in which no elements
arelisted. In thiscasethere cannot be more than onelisting map (wewill use “map”
and “mapping” synonymousdly!) into A since the indexing set we are trying to use
is empty. On the other hand, there must be one since the statement defining the
property of a mapping is a requirement on each element of the domain set (that
there is assigned to it a unique value element in the codomain). This property
is satisfied “vacuously” by a mapping from a set without elements since there is
simply no requirement. Thus, there exists a unique mapping from an empty set to
any given set. We require such a set as an axiom.

AXIOM: INITIAL SET
Thereisa set 0 such that for any set A there is exactly one mapping 0 — A.

We call 0 an initial object of the category of sets and mappings.

Note that the form of this axiom is the same as the form of the axiom of the
terminal set, i.e. we require the existence of a set and a unique mapping for every
set except that the unique mapping is now to the arbitrary set whereas formerly
it was from the arbitrary set. Like the axiom of the terminal set, the axiom of the
initial set will become part of a stronger axiom later. The initia set is often caled
the empty set because, as we will later see, there are no maps 1—-0.
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Exercise 1.16
In the category of abstract sets S the initial set O is not a separator. (Assume that
two sets A and B exist with at least two maps A— B.) O

ADDITIONAL EXAMPLES:

D)

(2)

If T isanindex set of numbers, then
T XX
could be the listing of all the American presidents in chronological order. It
does turn out that the map is not injective — Cleveland was both the 22nd and
the 24th president.
If we want to ask who was the 16th president, the structure of the question
involves all three: the actual set, the actual listing, and a choice of index:

P R ¢

x;=xt

Lincoln derives by composing theindex i = 16 and thelist x of presidents.
There are at least two uses of two-element sets:

Index sets and truth-value sets

Consider

set of
all
tennis
players

1 = “best”, 2 = “second best”

The one that used to be the second-best tennis player could become the best;
encode that by noting that there is an endomapping (or self-mapping) ¢ that
interchanges the two denominations. Thelist f’ that is correct today can be the
reverse of thelist f that was true yesterday if an “upset” match occurred; i.e.
we could have f’' = fr.

A similar sort of thing happens also on the side of the possible properties of
the elements of X:
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which resultsin

In this case we could also compose with the ¢, but now it would instead be
following f (whichiswritten 7 ). Thisiscalledlogical negation sinceit transforms
f into not-f, i.e. (not-f)(x) = not-f(x). The composite property is the property of
not having the property f. Often in the same discussion both reparameteri zation of
lists and logical or arithmetic operations on properties occur, as suggested in the

following diagram:
T V
T’ X %

If we have alist x of elements and a property f, then the composite fx can be
thought of intwo equally good ways. Because V represents values, we can think of
this fx asjust aproperty of elements of T; for example, given the listing x of the
presidents, the property f of their being Democrats becomes a property of indices.
But fx could also be considered as alist (of truth values). The two concepts thus
reduce to the same in the special case T —V, giving

LIST TRUTH VALUES PROPERTY INDICES
or of or = or of or
FAMILY QUANTITIES MEASUREMENT PARAMETERS

Of course, thewordsfor T (indices/parameters) and thewordsfor V (truthval-
ues/quantities) only refer to structure, which is “forgotten” when T, V are abstract
sets (but which we will soon “put back in” in a more conscious way); we mention
this fact mainly to emphasize its usefulness (via specific x and f) even when the
structure forgotten on X itself was of neither of those kinds.

Exercise 1.17
Consider
S = Set of socksin adrawer in adark room
V = {white, black}
f = color
How big must my “sampler” T be in order that for all injective x, fx is not
injective (i.e., at least two chosen socks will be “verified” to have the same color)?
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S
/ Xcolor

objective

subjective

1.6 Generalized Elements
Consider the following three related statements (from Sections 1.2 and 1.4):

(1) Element isa specia case of mapping;
(2) Evaluation isa specia case of composition;
(3) Evaluation of acompositeisaspecial caseof theassociativelaw of composition.

Statement (2) in one pictureis
1
N
A 7 B

(that isto say, fa = b) inwhich a, b are elements considered as a special case of
the commutativity of the following in which a, b are general mappings.

T
N
A 7 B

“Taking the value” is the specia case of composition in which T istakento be 1.
For statement (3), recall that the associative law applies to a situation in which
we have in general three mappings.

(af)a
g) e) = @he

/\/

af

We can compute the triple composite in two ways. We can either form fa and
follow that by g, getting g( f a), or wecanfirstformgf (gfollowing f) and consider
a followed by that, obtainingwhat wecall (gf )a; theassociativelaw of composition
saysthat these are always equal for any three mappingsa, f, g.
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In a specia case, where T = 1, the description would be that the value of the
composite gf at an element a is by definition the element of C that we get by
successive evaluation of f and then of g, leading to the same picture

(fa) = (9f)a
| T2 o

Y,
f

B

A

&f

but one that is special because it emanates from the one-element set.
In many caseswewill actually want to reverse this specialization procedure; that
is, by the phrase

an element of A

we often actually mean a mapping to A fromany T (not only T = 1). In case of
confusion we may refer to thisas

ageneralized element of A

A generalized element of A is actualy nothing but an arbitrary mapping whose
codomain happens to be A. It has some domain, but we do not insist that that
domain be 1.

A more accurate description in terms of the content would be

variable element of A varying over T

Thisisavery ancient way of using theidea of element; for example, if we consider
the way people talk about temperature, they say the temperature, which seems to
be an element of the set of temperatures, and intend by it the actual temperature.
On the other hand, yesterday it was one value, and today it is another value. It is
varying, but it is still the. Just think of

T asthe set of days

for every day thereisan element in the constant sense. Theactual temperatureon that
day isthevalue of amapping; the mapping itself isthe temperature the weatherman
istalking about. It isvarying, but it is still considered as one entity, one “element”.
We speak thisway about many other situations. “I am adifferent person today than
| was yesterday, yet | am still the same person.” To explain anything that involves
that sort of variation, one very common kind of model for it will involve somehow
(not asits only ingredient by any means but as one ingredient)

¢ an abstract set that plays the role of the “temporal” parameters,
¢ another one that plays the role of values, and
¢ aspecific mapping that describes the result of the evolution process.
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The processitself has some cause that may al so have to be mentioned, but the result
of that cause will be a succession of values; change is often described that way.
But wewill always correctly persist in attaching the definite article “the” asin “the
temperature,” “the me” to express the underlying unity. An element of the set of
temperatures might very well be

(a) one single unchanging value of temperatures,
equally well it might be
(b) the temperature of Milan during one week,

in which caseit is still one (generalized) element of the set of temperatures, but its
domainisT.

Variable sets also occur in real life; for example, the set of people inhabiting a
particular house may vary from year to year. To mathematically model such situ-
ations, categories of variable sets are useful. In this chapter we are emphasizing
the category in which the sets themselves are constant, but later we will explicitly
describe and construct examples of categoriesin which the sets are (even continu-
oudly) variable.

1.7 Mappings as Properties

What about the mappings that have domain A? They certainly are not elements of
A in the usual sense; they could be called properties of (elementsof) A.

To dedl first with some trivial cases, let us review the definition of 1 and 0. The
characterizing features of an empty set O isthat

for each set A thereisjust one mapping 0— A,
whereas the characterizing features of aterminal set 1is
for each set A thereisjust one mapping A—- 1.

The descriptions of 0 and 1 look rather similar except that the arrows are reversed,
but we will see that these objects are quite different when we start talking about
mappings from 1 and into 0 such as

1—=B versus A—0

Whereas mappingsfrom 1— B exist for any B thatisnonempty —andtherewill be
many of them (depending on the size of B) — by contrast A— 0 will exist only if
A isaso empty, but even then thereis only one map.

So the sets whose existence is required by the axioms of the terminal set and the
initial set should be very different! To allow 0 = 1 would result in all sets having
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only one (narrow sense) element. We must clearly avoid that. For sets A and B,
the notation A = B, which isread “A is isomorphic to B,” means that there are
mappings f : A—=B and g: B—— A satisfying gf = 15 and fg = 15. We will
have much more to say about this concept later (see Section 3.2), but for now we
use it (in a negative way) in the following:

AXIOM: NONDEGENERACY OF S
01

Exercise 1.18
How many mappings are there from 0 to 1? from 0 to 0? from 1 to 0? (and so how
many elements does 0 have?)

Hint: To answer the third question requires more axioms than do the other two.
%

Notice that we could have taken the apparently stronger statement “there is
no mapping from 1 to 0” instead of the axiom as stated. The stronger statement
certainly implies the axiom, but as shown by the exercise the axiom implies the
stronger statement too.

We are considering the question, If V is a fixed set of values, then for any A,
what kind of properties A——V can there be? (“Property” is being used in such a
general sense that it means just an arbitrary mapping but from the dua point of
view to that of generalized elements.)

If V is0, we see that the answer to the preceding question is“none,” unless A is
itself empty, andinthat caseonly one. If V = 1, thereisexactly one mapping for any
A. We havetotakeaV that is somewhat larger if we want any interesting property
of (elements of) A at all. Thus, we will take a two-element set for V and see that
wein fact get enough propertiesto “discriminate” between the elements of any A.

The ability of “discriminating” elements by means of V-valued propertiesisfre-
guently expressed by the following:

Definition 1.19: An object V is a coseparator if for any A and for any parallel
pair

T2 A
a

(of “generalized elements”)

(Vo[ A~V = pag = pa]) = [a = a]
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Noticethat if V isacoseparator, then ag # a; entailsthat thereis A > V with
pag # ¢ag, i.e. V can discriminate elements. By what we have said here, neither
V = 0nor V = 1 can coseparate.

Exercise 1.20

Use the fact that 1 is a separator in the category of abstract sets to show that (in
that category), if V can discriminate elements, then it can discriminate generalized
elements. Thus, in S the general T in Definition 1.19 could safely be replaced by
T=1 0

Claim 1.21: If V isaset with exactly two elements, call it 2, then V isa coseparator
in the category of abstract sets.

Remar k 1.22: We are assuming that there exists a set 2 with exactly two elements:
1—> 2. We will make this existence more precise in Chapter 2. We also denote
by r : 2 — 2 the mapping completely defined by 7(0) = 1and (1) =

Hereisaprovisional justification of Claim 1.21 based on our naive conception
of V = 2; soon we will have enough axioms to formally prove it. Assume that A
is arbltrary but that there are maps 1i> A with ag # a;. We must “construct”
A > 2 with pag # ¢a; showing that ) coseparates (which follows by using the
result of Exercise 1.20). That this is possible is quite obvious from a picture, as
follows. If Aisan arbitrary abstract set mapped into the two element set by ¢

then A is divided in 2 parts. Conversely, any mutually exclusive and jointly ex-
haustive division of A into two parts arises from a mapping to the two-element set.
(Thesearecalled either indicator functionsor characteristic functionsin probability
theory, combinatorics, and other subjects.)

Theg istheindicator or characteristic function of thewhole partition intwo parts
and would be determined by such a pattern. In our problem there is no specific
partition. We merely want to show that a partition can be chosen with the two
elements in different parts. Thisis avery weak condition on ¢, so there are many
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such mappings; inthe extremewe could imaginethat only ag goesto onevalue, orin
the opposite extremethat only a; goesto the other value. Both are extreme concepts
of ¢, and both would satisfy the requirement, namely, that the composites are till
different. We can make that more specific. We insist that one of the composites
comes out to be the element 0 and the other one the element 1, where we have
structured the abstract set 2 by considering both of its elements as being listed:

1
\
\ \
\ \
\
a/#/a0 1\ \0 ©(ap) =0# 1= p(a)
/ AR
Al Ly
'

We can ssimply insist that the indexing is preserved by ¢. Among these maps there
isasort of lowest possible choice for ¢:

_Jlifa=4a
¢(a) = {O ifa;éal}
which is one possibility, and a highest possible choice for ¢,

. _Jlifa#ag
gD(a)_{o ifa:ao}

at the other extreme.

Both of these extreme cases of ¢ separate ag, a;. There will be many partitions
¢ in between these two that will also separate ag, a;, but since there exists at least
one, we have convinced ourselves that 2 is a coseparator.

How many properties are there exactly?

Exercise 1.23
Consider atwo-element set and a three-el ement set:

A B

Name the elements of A by ag and a; and the elementsof B by by, by, by. Draw the
cographs of al mappings f : A—B and al g: B— A. How many mappings
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are there from A—— B? (We should find that there are nine.) How many from
B —= A? (The answer is eight = 23.) Notice that if each cograph were reduced
to a dot we would obtain abstract sets of mappings with nine and eight elements;
these abstract sets can in turn be used to paramaterize the actual mappings (see
Chapters 5 and 7). O

Exercise 1.24
What about mappings from a five-element set into a two-element set? How many
mappings are there from

X V

8

Answer: 2° = 32 mappings O

In general, we can say that the number of (two-valued) properties on a set with n
elementsis 2". One of the ideas of Cantor was to give meaning to this statement
even when n is not finite, as we shall seein more detail later.

The coseparating property of 2isphrasedin such away thatitisrealy just adual
of the separating property that 1 has, i.e. there are enough elementsto discriminate
properties just as there are enough properties to discriminate elements.

Consider thevariouselementsin, and thevarious2-valued propertiesontheset A:

1 : A 2
—_— —_—
a’s ¢’s

We test whether ay, a; are different by using such properties as follows.

ap # & = Jp such that pag # pay

For each pair we find a ¢; for another pair we might need another ¢. The dual
Statement

1 # @2 = Ja at which g1a # pra

that there are enough elements, distinguishing between properties with any kind
V of value specializes to a statement about two-valued properties. g1 # ¢, means
that two mappings are different, but for mappings to be different there must be
some element a at which their values are different. (Again we warn the reader that
in categories of less abstract sets, these separating and coseparating roles will be
taken by families of objectsricher than 2 and 1.)
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Recall that the map A: A— 1 isunique. The statement “ f is constant” means
that there exists a single element of B such that f is the composite: the single
element following the unique map, i.e.

Definition 1.25: Anarrow A— > B is constant if and only if it factorsthrough 1;
i.e thereisanelementb:1— B of B suchthat f = bA: A—1—B.

In particular, if we form the composites of the unique map to 1 with the two
elements of 2, we get two constant maps 2— 2:

We will find various circumstancesin which it is useful to look at the system of
self-maps of 2 in its own right, not just as part of the category of abstract sets but
as a scheme for picking out another, more interesting kind of set called reversible
graph (see Section 10.3). For this and other reasons it is important to know how
these four maps compose. We can write down the “multiplication table” for this
four-map system. The self-maps of any given object can always be composed, and
having names for them (four in this case), we can show, in the multiplication table,
what is the name of the composite of any two of them taken in a given order. Here
isthe resulting table:

EACIENED
olofo]o
1f1fa1]1
101

The composing of constants (which comes up in computing this table) works in
general asfollows:

If f isconstant with constant value b, then for any g, gf is constant but with
constant value gb
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Similarly, if f is constant, then for any mapping a, fa is also constant with the
same constant value as f:

1
Exercise 1.26

Verify the composition table for endomappings of 2 by considering al four possi-

bilitiesfor each of the two arrowsin 2 — 2 —= 2 and computing the composite.
%

T

B

Exercise 1.27

Show how this four-element system acts as “logical operators’ on the properties
A—2 of (elements of ) any A but also acts in another way on the lists2— A
(or ordered pairs) of elements of A.

Hint: Recall the discussion of tennis playersin Section 1.5. O

1.8 Additional Exercises
Exercise 1.28
Uniqueness properties:
(8 Show that identity arrows in a category are unique, i.e. if 15: A— A and
1, : A— A both satisfy the equations for identity arrows, then 1, = 1/,.

(b) Show that the set 1 isunigque “up to uniqueisomorphism,” (i.e. if 1’ aso satisfies
the axiom of the terminal set then there are unique mappings f : 1—1’ and
g:1—1)andthat gf =1; and fg=1y.

(c) Similarly, show that the empty set 0 is unique up to unique isomorphism.

Exercise 1.29

(@ Showthatif f : A—= Bandg: B—C areinjective mappings, thensoisgf,
i.e. “composites of injectives are injective”.
(b) Show that composites of surjectives are surjective.
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Exercise 1.30
Categories of structures:

() Show that (finite-dimensional) vector spaces as objects and linear transforma-
tions as arrows form a category with composition of arrows defined by compo-
sition of mappings. Show that a one-dimensional space Sis a separator; isit a
coseparator? Is the terminal object a separator?

(b) Show that groups as objects and group homomorphisms as arrows form a
category with composition of arrows defined by composition of mappings.
Show that the additive group of integersis a separator. (Look up the definition
of “group” if necessary. We will discuss groups further in Section 10.1.)

(c) Show that partially ordered sets as objects and monotone (= order-preserving)
mappings as arrows form a category with composition of arrows defined by
composition of mappings. Is the terminal object a separator in this category?
Is there a coseparator? (Look up the definition of “partially ordered set” if
necessary. We will discuss partialy ordered sets further in Section 10.1.)

(d) A finite state machine with two inputs @ and 8 isafinite set Q of “states” and
apair of endomaps of Q corresponding to o and 8 that effect the elementary
state transitions of which the machine is capable. Given another such machine
with state set Q’, a homomorphism is a mapping ¢ : Q — Q’ of state sets
preserving the transitions in the sense that

pa =a'pandpp = B'g
where we have denoted by «’ and g’ the corresponding state transitions of

the second machine. Define composition of homomorphisms and show that a
category results.

Exercise 1.31
Categories as structures:

(a) Let V be a given vector space. Show that the following data define a cate-
gory V:
V hasjust one object called x;
the arrows of V from * to x are the vectorsv in V;
the identity arrow for * is the zero vector;
the composite of vectors v and v’ istheir sum.

Hint: With the data given, verify the equations of Definition 1.13.

(b) Let X be agiven partially ordered set (with partial order <). Show that the
following data define a category X:



1.8 Additional Exercises 25

the objects of X are the elements of X;
for elements x, X’ in X thereisan arrow from x to x’ exactly when x < x'.

(It follows that there is at most one arrow from x to x’.)

Hint: Here we did not specify the composition or identity arrows, but thereis
no choice about how to define them. Why?

Exercise 1.32

(a) (Dua categories) There are many methods of constructing new categoriesfrom
known categories. An important example isthe dual or opposite category of a
category. Let C be acategory. The dual category C% has the same objectsasC,
but for objects A and B the arrows from A to B in C® are exactly the arrows
from B to A in C. Show how to define composition and identities for C to
make it a category.

(b) (Slice categories) Another important construction isthe “dice category”. Let C
be acategory and X an object of C. The slice category of C by X, denoted C/ X,
has objectsthearrowsof C withcodomain X.Let f : A— Xandg: B— X
be objectsof C/ X. Thearrowsof C/ X from f to g arearrows h of C such that
f = gh, i.e. they are the same thing as commutative triangles from f to g.
Composition and identities areinherited from C. Verify that C/ X isacategory.

(c) (Pointed sets) If we define objects to be pairs consisting of a set A and an
element 12> A of A, and arrows from A, a to B, b to be mappings A'-B
such that fa = b, then we obtain a category denoted by 1/S. Verify that 1/S
isacategory. Does 1/S have an initial object? Does it have aterminal object?
Does the terminal object separate mappingsin 1/S7? (Thisis a special case of
adual notion to slice category: For C acategory and X an object of C, describe
the category X/C.)
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Sums, Monomorphisms, and Parts

2.1 Sum as a Universal Property
Our basic definitions of the fundamental operations

ADDITION MULTIPLICATION EXPONENTIATION

are all universal mapping properties; that is, we take as the defining condition on
such a construction essentially “what it is good for”.

Let us consider sums. Our naive picture of the sum is that the sum of two sets
contains two parts, that the two parts are the same size as the given sets, that the
sum does not have anything in it except those two parts, and that the two parts do
not overlap. These ideas can be expressed more briefly as follows:

The two parts are exhaustive and mutually exclusive.

The sum as defined by the universal mapping property will, in particular, have two
mutually disjoint parts equivalent to two given sets and that together exhaust the
whole sum. However, it is not satisfactory to take these conditions as a definition
for at least two different reasons:

(1) There are categories other than abstract sets; for objects in these categories
there is also a notion of sum but one in which the two parts may interact. The
description in terms of nonoverlapping would be incorrect in such a case (see
Exercise 2.40). It is better to use the same form of the definition so that we see
the similarity more transparently.

(2) The second reason is related to the gap between the naive picture and the
formalized axiomatics. We always have some kind of naive picture for the

26
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things we are trying to describe by mathematical formalism. But the naive
picture usually does not match up perfectly with the precise formalism. There
isagap between thetwo. Wetry to get them as close together aswe can. That is
one of the struggles that moves mathematics forward. In particular, the words
“mutually exclusive and exhaustive pair of parts’ describe formally much of
the naive picture of asum. However, if wetook that asthe formalized axiom, it
would not formally imply the needed stronger conclusion that we can always
do certain things with the sum. We take those certain uses as the axiom.

First, let us consider the particular case of the sum of two copiesof aone-element
Set.

Any two-element set will havetwo arrowsfrom 1 (elementsin the narrow sense);
we could give them names o and 1.

That the set 2 has two parts which are digjoint and exhaustive means that these two
arrows are different and that there are no other arrows 1— 2. If we tried to take
that as our definition, we would meet a difficulty with other things we want to do
with 2: Namely, what is a mapping from 2 into another set B? It should just mean
to give apair of elements of B because such a single mapping has to have a value
at one element and also avalue at the other element.

Obvioudly if we had a mapping 2. B, we could compose it with the two
elements of 2, and we would obtain two elements of B.

Conversely, given two elements of B, say by and b, then the naive picture of
2 and the “arbitrariness” of mappings suggest that there exists a unique mapping
f :2— B whosevalues arethe given elements. We are led to define this particul ar
sum as follows:

Definition 2.1: The statement

2=1+1

means that
there are given mappings 1 0. 2L 1such that
VB, 1B, 1% B 31 [f(0) = bgand f(1) = b1]

asin
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The uniqueness meansthat if we had two mappings £, g, both with the specified
values, then they would be equal. We already introduced the principle that there are
enough mappings from 1 to distinguish maps. From that the uniqueness part of the
conditionon f would follow if therewere only thetwo mapsfrom 1to 2; that istrue
for the category of abstract sets (but not for all categories of interest). Concerning
the existence of f, the naive idea that arbitrary mappings exist is a guide, but we
want to proveall of the existencetheoremsfrom just afew; thisisone of thefew that
we assume. For any set B, to map 2 into B it sufficesto specify two elements; then
there will be one and only one f. The exhaustiveness and disjointness of elements
will follow (with the help of the other axioms). Knowing how a given object maps
to all objects B in its category determines indirectly how each object mapsinto it,
but some work will be required to realize that determination, even for the object 2.

Recall the contrast of listings versus properties (see Chapter 1). A sum of 1’s
(such as 2) is clearly well-adapted to a simple listing of elements of an arbitrary
object B. Inthe category S of abstract sets (and in afew others), 2 also serves well
as acodomain for properties.

It isreally no more difficult to describe the sum of any two sets; but the sum of
two setsis not merely athird set; rather, it is two maps as follows:

Definition 2.2: A sum of the two sets Ag and Ay is a set A together with given
mappings Ao —>> A <~ Ay such that

VB, Ao B, A1 -L~B 3f [fio= foand fir = fi]

as in the commutative diagram

AO fo
i::\\?\

A-*-B

,41/
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We denote the unique f defined by the mappings fo and f; by

[ 5
f_{ﬁ

We abbreviate by writing A = Ag + A1 with the mappings ip and i; understood.

Thus, given any two sets Ag and A1, to make A the sum of the two, we must give
ip and i; with the universal mapping property presented at the beginning of this
Section. For any B atall, if wehaveamap A — B, then of course, by composing,
we get two maps Ag — B and A; — B; but the sum injections ip and i; are
specia so that conversely, given any f, defined on one part Ap and any f; defined
on the other part A;, there is exactly one f defined on the whole that composes
with the ig, i; to givetheorigina fy, f1.

AXIOM: BINARY SUMS _ _
Any two sets Ag, A1 have a sum Ag—2> A <"— Aj.

Exercise 2.3

Given aset Ag with exactly two elements and a set A; with exactly three elements,
specify a set A and two injection maps for which you can prove the universal
mapping property of asum of Ag and A;. That is, given any fo and f1, show how
to determine an appropriate 1. O

EXAMPLE: COGRAPHS

We have aready seen an important example of a mapping from a sum. The
cograph of a mapping, which we described with a picture in Section 1.1, is ac-
tually an instance. Indeed, suppose that f : A —= B is any mapping whatsoever.
We can defineamappingc:A+ B —= Bbyc= {11; That is, the following isa
commutative diagram:

A J

A+B—*°>D

B s

The cograph of a mapping isillustrated by itsinternal diagram (which we have
already used informally many times!) by drawing the sets A and B digointly and
showing alinking of an element a of A to an element b of B whenever f(a) = b;
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thus, two elementsin A + B are linked in the internal diagram if and only if they
are merged by the cograph mapping c.

Exercise 2.4
Illustrate the example from Exercise 2.3 by an internal cograph picture. O

Coming back to Definition 2.2, for any element 1~ A, we have

fa = foag ifigag=a for someelement aq of Ag
fa = fia; ifiiay =a forsomeeement a; of Ay

(%)

Naively, there could not be two different maps f that satisfy the condition (x),
for A is exhausted by the two parts; if there were an element a that could not be
expressed in either of these two forms, then we could imagine that there could be
maps f for which the equations (x) would be true and yet f could have various
values at such a. In other words the exhaustiveness of the two parts corresponds
naively to the uniquenessof the /. Onthe other hand, the disjointness has something
to do with the existence of the . What would happen if we had an element a that
could befed through both ig and i; (i.e., thetwo partsoverlap, at least on that point)?

Then we could imaginethat fo and f1 take different values at ag and a;; therefore,
there could not be any f at all because even fa would not be well-defined. The
naive content of the disjointness and exhaustiveness corresponds to the existence
and uniqueness of such maps f.

We will write Ag + A1 = A asakind of shorthand; it means that whenever we
need to apply the universal property we are given the ip and the i; required. The
universal mapping property has as a by-product that the “size” of A is determined
by the sizes of Ag and A1, but it has many more detailed uses than the mere “size”
statement.

How does the general sum relate to 2? If we are given a decomposition of any
Set A asasum of two other sets Ap and A1, we will automatically have a mapping
from A to 2, namely, the mapping that takes the two val ues on those two respective
parts. That follows from our definition, for we could apply the universal mapping
property by taking B = 2 and consider the two elements (one called o and the other
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called 1) of 2; each of those can be preceded by the unique map that always exists
from any set to the one-element set; i.e. we can take fy and f1 to be, respectively,

Ap’s unique map to 1 followed by the element o of 2
A1’s unique map to 1 followed by the other element 1 of 2

Now we have two maps, f, and f1 going from Ag and A; into the set 2, and so
thereisaunique f whose domain is the sum, whose codomain is 2, and such that
these composites are equal to the respective constant mappingsjust constructed, as
in the following commutative diagram:

Ay 1
\ \\0\\
20 f
AO + Al ————— =2
Ay 1

On the part i of the sum, this mapping f constantly takes the value o; the other
composite is constantly the other element 1 of 2.

Conversely, any mapping A .2 redl ly is of the preceding sort because, if we
aregiventhe f, then we can definetwo parts of which A isthe sum. We canimagine
that each part is the one whose members are all the elements for which f has a
fixed value. That is, we may construct mappings into 2 by other means and then
deduce the corresponding sum decomposition.

all this goes to 0:

all this goes to 1:

Anytime we have this situation, we may say A has been divided into two parts.
But what is a part and what is membership? We will discuss these conceptsin the
next section.

Exercise 2.5

Define explicitly what should be meant by a sum of three given sets. If V isany
fixed set with exactly three elements, show that any mapping A — V comes from
a unique sum decomposition of A into three parts. O
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2.2 Monomorphismsand Parts

Monomapping, Of monomorphism, isastronger version of injective, which we will
have to use to define part in general categories of sets and for other purposes al so:

Definition 2.6: An arrow S —> A is a monomapping or monomorphism if it has
the cancellation property with respect to composition on its right, i.e.,

VT Vsq,50.: T —=S [iSl =is) => 51 = S2]

so whenever we have the configuration

Ti:>>:S$A

and is1 = isy, then s1 = s2.

Equivalently,
VT Vx [T A = Ja mostones [is = x]]

Theexpression aboveiscalled acancellation property because, given an equation
involving composition with i on the left, we can cancel the i. Since s; and s>
are generalized elements, the property saysthat i isinjective even on generalized
elements. Thedifferencebetween monomorphic andinjective isthat, for the“mono”
property, we require the cancellation for all 7. This does not matter in the case of
abstract sets, where cancellation with the general T or with just 7 = 1 means the
samething (see Exercise2.7). That “mono” impliesinjective i stautol ogous because
ageneral statement alwaysimpliesany of its special cases. The converse statement
is not tautologous; it depends on the existence of sufficiently many elements.

Exercise 2.7
Using the axiom that 1 separates mappings, show that
injective = monomapping
in the category of sets S. O
Exercise 2.8
Show that if i and j are composable monomorphisms, then ji isamonomorphism,

i.e. a composite of monomorphisms is a monomorphism. (Recall that injective
mappings also compose.) O
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Exercise2.9
Show that any mapping 12> A whose domainis 1 isnecessarily amonomapping.

Exercise 2.10
Show that if U has the property that the unique U — 1 is a monomapping, then
any mapping U —2> A with domain U is necessarily a monomapping. O

Theorigin of these words (including the term epimorphic, seen later to berelated
to surjective) isin ancient Mediterranean languages as follows:

GREEK: LATIN:
monomorphic injective
epimorphic surjective

Weexploit thedifferencesin thewordsto get dlightly different meanings. Thedif-
ference between injection and monomorphismis not too great in practice, whereas
the difference between surjection and epimor phism (the dual of monomorphism,
which we will define later) is greater. What we mean by monomapping or injective
mapping is one that does not identify (in the sense of “make equa”) any elements
that were previously distinct.

We are now ready to define part.

Definition 2.11: A part of set A isany mappingi for which

(1) the codomain of i isA, and
(2) i isamonomapping.

Any part of A has some domain, say S, but the property (2) means that the
part keeps the elements distinct: if wehaveis, = is,, wecanconcludes; = s,. In
particular, if we return to the definition of sum, the injectionsinto asum haveto be
monomappings.

Exercise 2.12 _ _
Prove on the basis of the axiomsfor S so far introduced that if Ag—2~ A< A, is
asumin S, thenig isamonomapping. O

Here is an example of the notion of part: Thereisthe set A of chairsin aroom
and the set S of the students in the room. The mapping i assigns to every student
the chair in which she or he sits. That is an injective mapping. Why? Because we
have no situation of two students sitting in one seat. It is a monomorphism and
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therefore defines a part of the set of all seats. Students are not chairs — we have to
have a given mapping that specifies the way in which we have a part. The account
of “part of ” given in most books would make no sense for abstract sets: It isnot that
every element of Sisan element of Al In our concrete example, the latter would
mean that every student “is” a chair. But i is indeed a part in the sense that we
want to use the term in mathematics; it does define a condition on chairs — to be a
member of the part means to be an occupied chair.

2.3 Inclusion and Member ship

To express the relationship between parts that arises when they can be compared,
we have

Definition 2.13; Theparti isincluded in the part j (or thereisan inclusion from
i to j) meansthati and j are parts of the same A and that

Wewritei € j inthiscaseand we sometimesomit the subscript Aif the codomain
(“universe of discourse™) is obvious.

Exercise2.14
Show that if i isamonomorphism andi = fk, then k is a monomorphism. Give
an example to show that f need not be injective. O

Thus, the k whose existence is required in the definition is always a monomap-
ping, and so k isa part of thedomainV of j.

Definition 2.15: The (generalized) element a of A isa member of the parti of A,
denoted a € i, meansthat i isa monomapping and that

Notice that we give the definition of membership for generalized elements. In
the special case T = 1 we are stating that an element a of A isamember of the part
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i of Aif thereisan element a of the domain U of i that the part i interprets as a.
(Note that there can be at most one such a.)

Proposition 2.16: For anya, i and j (the “universe” A being understood),
aciandi C j=ae]
Proof. The hypothesis gives usa and k for whicha=ia and i = jk. To establish

the conclusion we would need a witha= j a. The only map at hand that even has
theright domain and codomain assuch anaiska; sodefinea = ka asinthediagram

and see whether it satisfies the correct equation:

ja=jka)
= (Jjka
=ia
=a
Hence, a = j a asrequired to provethata € j. [ ]
Exercise 2.17
Ifaei,thenfordlt,at ei. O

In order to follow the next construction it will be useful to make explicit the
logical rule of inference for implication-introduction.
If X,Y, Z are statements, then

(X&Y)= Z holds
if and only if
Y = (X = Z) holds

(For more details about the symbols, see Appendix C.2 and Appendix A.)

For example, if one takes X to be the statement a € j, Ytobei C j,and Z
to be a € j, the proposition we have just proved is the statement with & in the
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hypothesis. Thus, we could equally well say that we have proved the statement
with the = inside the conclusion:

iCj=>[aci=ac]j]

Note that the variable a now appearsin the conclusion but not in the hypothesis.
We a so need to make explicit the

logical rule of inference for V-introduction.

If Y and W are statements in which W depends on a variable a but Y does not,
then

Y = W holds
if and only if
Y = Va[W] holds

Thus, our proposition above is further equivalent to
i Caj=>Valaci =>acj]

where the statement on the right has the universal quantifier Va ranging over al
T -2~ Afor al sets T. The converse of (thisform of) the proposition

Va[aci =>acjl=iCaj

is aso of interest. This converse is trivially true if the domain of a is arbitrary
since, for the special case a=i,a= 1y provesi €i; hence, if the hypothesis
va[...= ...]istrue, wegetaprovingthati € j, but that isthe same asa proof k
thati C j.However, the converse becomes moreinteresting if werestrict therange
of the a’s for which we assume the hypothesis, for then it could be a nontrivial
property of our category that the conclusioni C j nonetheless still followed from
thisweaker hypothesis. Something of this sort will be true of categories of variable
sets, where it will be possible to restrict a to the indispensable domains of vari-
ation of the sets. In the case of abstract (= constant) sets there is no substantial
domain of variation, and so we can restrict the domain of atobe 1. That is, the cat-
egory of abstract sets satisfies the strengthened converse proposition (a weakened
hypothesis)

va[l-3-A= (aci=ac|)=icC]

Essentially, this follows from the idea of the arbitrariness of mappings. Note that
what iswanted in the conclusionis asingle actual map k for whichi = jk, yet the
hypothesis only says that

V1i-X-U[31-5V jy=ix]
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(Herethea isthe common value jy = a = ix). Since j isinjective, the 3y can be
strengthened to 3!y.
Thus, from the hypothesis we get

vx Ay [jy =iX]

The idea that mappings are arbitrary means that, whenever vYx3'y[. . .] holds, then
there does exist amapping k — in this case one for which

VX[ (kx) = iX]

Since there are “enough” 1-*=U, we conclude that jk = i, as required.

We will soon be able to prove this strengthened converse on a more explicit basis
that does not depend on the vague “arbitrariness of mappings” principle.

Historically many mathematicians such as Dedekind and Banach used the same
symbol C for both membership and inclusion, and indeed it is quite reasonable to
define x belongs to y for any two maps with codomain A and even to use the same
symbol for it

x Cyiff 3z[x = y7]

where iff isthe standard abbreviation for “if and only if”.

If y is not monomorphic, then such a z may not be unique; such z are often
called “liftings of x aong y”. In the formalized set theory following Peano, the
membership symbol was given a completely different meaning, but mathematical
use of it has been as we defined; thus, we feel justified in using the membership
symbol for this special case of the “belonging to” relation even though it is not
strictly needed. The notion obtained by reversing the arrows

may be called f is determined by h and is at least as important in mathematics
and its applications. Here the g, which shows away of determining f values from
h values, isoften called an “extension of f along h”; such ag isonly guaranteed to
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be uniqueif h is “epimorphic” (the dual cancellation property). Epimorphic maps
with agiven domain A are partitions (as opposed to parts) of A (see Section 4.4);
again the specia case where both f and h are partitions rates special attention: in
that case the determining g is often called a““coarsening” of partitions (rather than
an including of parts).

Exercise 2.18
If f isdetermined by h, then any further ¢f isalso determined by h.

General bel onging and determining often reduce to the special casesof belonging
to parts (i.e.,, membership) and, respectively, of determining by partitions. This
happens because frequently a map y can be expressed as y = yoy1, where yg is
“mono” and y; is“epi”’; then, if x belongsto v, it followsthat x isamember of the
part yo of A:

T—2+B—">C
\ ’ /
A
If z provesthat x belongsto y, then y,z proves the stated membership; conversely,
if X € yo, theninasense x “localy” belongsto y. O
Exercise 2.19

Formulate the dual construction, showing that if f isdetermined by h and if h has
a “mono/epi” factorization h = hghy, then f isan invariant of the partition hy of
the domain. (In suitable categories the converse will say that if f isan invariant
of hy, then some “expansion” of f is determined by h; the phrase “invariant of”
is frequently used in this context and is dua to “member of,” and we have used
the term “expansion” dualy to a common use of the term “covering” to explain
“holding locally”.) O

2.4 Characteristic Functions

Given a chosen set V thought of as “truth values” and a chosen constant element
1-%-V thought of as “true;” we can define a relationship as follows:

Definition 2.20: For any set A, mappingi with codomain A, and mapping A—%~V,
¢ isan indicator or characteristic function of i if and only if

(1) i ismonomorphic and
(2) forany T andany T 3> A

acai — pa=v1T
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(For any 1-~C, cT denotes the constant map
T-1-%C

with domain T and value c).
If we refer to the element v, as “true,” then a isamember of i if and only if pa
is“true” since that istruefor al a:

pi = U whereU = dom(i)

moreover for any a, if pa = v, T, thenthereisa for whicha=ia:

T---"-—>U 1
\i{ vy
A 7 14
Exercise 2.21
For example, if A=V and i =v4, then an indicator of v, as required above is
p=1y. O

The exercise shows that (1) v, is monomorphic, and (2) for any T and any
T2V

acy vy < lya=uvT

The idea of the indicator, then, is that the general membership relation can be
represented by this particular case. An important fact about the category of abstract
setsisthat for V = 2 and the chosen element 1> 2 we have unique characteristic
functionsfor al parts of all sets. That is,

AXIOM: MEMBERSHIP REPRESENTATION VIA TRUTH VALUES

(1) Any A—%>2isthe characteristic function of a part of A.
(2) Any part of A has a unique 2-valued characteristic function.

For categories of cohesive and variable sets there will still be aV # 2 satisfying
properties (1) and (2), but that the set 2 has these two properties is specia to the
category S and those special categories of variable sets called Boolean toposes.

The preceding principle will have agreat many uses. It enables us, for example,
to count parts by counting 2-valued functionsinstead. Recall that counting requires
aclear notion for distinguishing the things being counted.
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Proposition 2.22: Thefollowing are equivalent for partsU . AandV 1> Aof
aset A

DicCaj&jcCai,

(2 3h,k[j =ih&i=jk& hk=1, & kh=1y],and

(3) ¢ = v, where these are the characteristic functions of i and j, respectively.

Exercise 2.23
Prove the proposition, i.e. show that each of (1), (2), and (3) impliesthe others.

Hint: (2) obviously implies (1), but to see the converse remember that i and j are
parts. 0

Definition 2.24: Partsi and j of aset A are equivalent, whichwewritei =, | if
andonlyif i Ca j & j Cal.

Thus, characteristic functions do not distinguish equivalent parts, and parts are
distinguished for counting purposes only if they are not equivalent. Indeed, we will
sometimes abuse language by writing equivalent parts as equal. However, even if
two parts have the same number of elementsin the sense we will describe soonin
Section 3.2, they need not be equivalent.

Exercise 2.25

If i and | are parts of A and their mere domains are isomorphic, meaning that
there are h, k satisfying hk = 1, & kh = 1y, then neither part need be included
in the other. However, if k also provesthati Ca j, thenit followsthati =4 j as
parts. O

2.5 Inverselmage of a Part

A frequent use of partsisin restriction of mappings.

Definition 2.26: If X —'>Y and ifi isapart of X, then the composite fi
U-—-x-1oy
is called therestriction of f totheparti (often denoted f|i or f|;).

Exercise 2.27

Givean example of asurjective f and of apart of itsdomain such that therestriction
isnot surjective. Givean exampleof f that isnot injective but such that arestriction
of f isinjective. O
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For example, if f describes the temporal variation of temperature throughout
ayear and if j isthe subzero part of the temperature values, then there can be a
certain week i in January suchthat fi € j.

Exercise 2.28
Monomaps are only left-cancellable and are not usually right-cancellable. Give an
example of distinct f, g with equal restrictions to the same part. O

An operation of fundamental importance in geometry, anaysis, logic, and set
theory isthat of forming the

INVERSE IMAGE OF A PART ALONG A MAP

which also goes under names like “substitution” or “pullback™ in certain contexts.
Thus, if wearegivenanarbitrary map f from X toY andanarbitrary part vV S 4
of the codomain, then thereis apart U < X of the domain such that

(0) fordl T X=X

Xei< fxej

Thisis easily seen to imply that
(1) thereisacommutative square

v—1 v
X ; Y
and that, moreover,
(2) any commutative square
r—2 vV
’ [j
X 7 Y

can be expressed in terms of (1) by means of acommon X:
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In other words, f restricted to the part i hasitsimagein j, andi isthelargest
part of X with that property.
(3) TheX isunique (because we have assumed that i isamonomapping).

Exercise 2.29

(& Show that (0) = (1), (2), and (3).

(b) Show that (1), (2), (3), and j ismono = i ismono.
(c) Show that (1), (2), and (3) = (0).

(d) Show that for given f, |, if bothiy, i, satisfy (0), theni; =x i, aspartsof X.
O

Theparti described aboveiscalledtheinverse image of j along f. Theoperation
of inverse image has the following contravariant functoriality property:

Exercise 2.30
If j istheinverseimage of k aong g and if i isthe inverse image of | aong f,
theni istheinverseimage of k along gf.

U V w
X Y Z

O

When thereisatruth-valueobject V (such asthe set 2 in the case of abstract sets),
i.e. an object “classifying” all parts by means of unique characteristic functions,
theninverseimageisso intimately related to composing that the functoriality above
tranglates into a case of associativity (see Exercise 2.34).

Proposition 2.31: Y -~V isthe characteristic function of a part j if and only if
j isthe inverseimage along v of the one-element part 12~V of V.
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Exercise 2.32
Prove the Proposition 2.31.

Hint: Apply the definition of indicator. O

Theorem 2.33: If y isthe characteristic function of a part j, then for any f, ¢ f
is the characteristic function of the inverseimage of j along f.

Proof: Apply the functoriality of inverse image to the special case indicated.

U w 1
X 7 Y ” V
|
Exercise2.34
Interpret n(gf) = (ng) f interms of the inverse images:
1
lvl
x—l sy 7z 1 .9
O

Animportant special case of inverseimage isintersection, which iswhat results
from inverse image along a map that isitself a part.

Exercise 2.35
The composite of monomapsis again such. Hence, if both f, j are monomaps and
i istheinverseimageof j along f,thenm= fi = j f isalso apart, and for any y,

yem<=|yej&kyef
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Definition 2.36: For partsi and j with the same codomain Y, apart mof Y is
called their intersection if and only if for all T, for all T —Y>~Y

yem<|[yeci&yeij]

The m so defined isusually denotedm =i N j.

Remark 2.37: Exercise 2.35 proves that the inverse image of a part j aong a
monomapping f istheintersection of the two parts j and f.

Exercise 2.38
Prove that we have j1 N jo = j2 N 1. O

Inverseimagesal ong arbitrary maps preserveintersection of partsinthefollowing
sense:

Exercise 2.39

If X '~V and if i1, j» areany two parts of Y, and if iy isthe inverseimage of jx
aong f for k =1, 2, then the inverse image of j; N j, adong f isii Ni,, where
the latter indicates intersection of parts of X. Briefly, f 1(j1 N j2) = f~1(ji) N
f ~1(j.), where we have exploited the essential uniqueness of the inverse image
operation to justify introducing anotation f ~%( ) for it. O

2.6 Additional Exercises

Exercise 2.40
The category of vector spaces and linear transformations has sums, but they are
very different from thesumsin S. Let V and V' be vector spaces.

(&) Show that the vector spaceV x V' of ordered pairs consisting of avector from
V and one from V' (specify how thisis avector space!) isthe sum.

Hint: Theinjection V o,V x V' sends v to (v, 0).

(b) Show that monomorphisms areinjectivelinear transformations (i.e., those with
kernel 0). Thus, a subspace of a vector space determines a monomorphism to
the vector space (part of the space).

Recall that an object 1 that satisfies the axiom of the one-element set in a category
(i.e., for any object there is a uniqgue map to 1) is called aterminal object of the
category. Dually, an object O that satisfies the axiom of the empty set in a category
(i.e., for any object there is a unique map from 0) is called an initial object of the
category.
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(c) Show that the zero vector space is simultaneously a terminal object and an
initial object (such an object is called a zero object).

(d) Show that any part of a vector space has an inverse image along any linear
transformation. Remember to verify that the inverse image of the mapping isa
vector space.

Exercise 2.41

(8 Show that injective group homomorphisms are monomorphismsin the category
of groups and group homomorphisms.

(b) Show that the one-element group is a zero object.

The category of groupsalso hassums, but their constructionisrather complicated —
they are sometimes called “free products”.

(c) Show that any part (= subgroup) of a group has an inverse image along any
group homomorphism.

Exercise 2.42
() Show that the category of partially ordered sets has sums.

Hint: The sum partial order is on the sum of the two sets involved. Elements
are related in the sum exactly if they are related in a component of the sum of
sets.

(b) Show that monomorphismsinthe category of partially ordered setsareinjective
monotone mappings.

(c) Show that the one-element set and the empty set with the only possible order
relations are the terminal and initial ordered sets.

Exercise 2.43

An important case of slice categories (see Exercise 1.30(e)) is the category of X-
indexed families of abstract sets S/ X. Recall that in S/ X objects are mappings
with codomain X and arrows are commutative triangles. The name “family” arises
as follows: For any object A~ X of S/X and any element 1%~ X of X the
inverse image of x along f isa part of A denoted A, and is called “the fiber of
A over x;” Aisthe “sum” of the family of all of its fibers. Thisis avery simple
example of avariable set.

(8 Show that the category S/ X has binary sums that are computed “fiberwise”.

(b) Show that monomorphismsin S/ X arealso “fiberwise” and have characteristic

morphisms taking values in the object ©2 of S/ X, which has each fiber equal
to 2.
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(c) Show that the terminal objectin S/ X is X -2 X, and the initial object isthe
unique 0— X.

(d) Show that S/ X has inverse images computed using the inverseimagesin S.

Exercise2.44

(8) What are the parts of the terminal object in S/ X (see the previous exercise)?
Show a one-one correspondence between them and elements of the object Q2
above (i.e., arrows from the terminal object to €2).

(b) Show that the terminal object in S/ X isnot in general a separator. However,
show that for any parallel pair of different mapsin S/ X thereisamap from a
part of theterminal object to the common domain that distinguishesthe parallel
pair.

Exercise 2.45

A specia case of the preceding examples occurs when X =2. Here 2 has the
elements o and 1, and so each object of S/2 is just the sum of its two fibers. A
related category is the “category of pairs of sets” which we denote S x S. The
objects of this latter category are pairs written (Ao, A1) of objects of S. An arrow
from (Ag, A1) to (Bo, B,) isapair of mappings Aoi\ Bo, A1 . B;.

(@ Show that S x S isacategory.

(b) Show that any object (Ag, A1) of S x S defines a unique object of S/2, and
conversely. Show that any arrow of S x S defines aunique arrow of S/2, and
conversely.

(c) Show that the correspondences in (b) respect identities and composition and
have the property that when their actions on objects are “composed” with each
other the resulting object isisomorphic to the starting object. In this situation,
wesay that S x S and S/2 are equivalent as categories.

Exercise 2.46
(a) Show that the category of pointed sets 1/S (see Exercise 1.30(f)) has sums.

Hint: Thesum of A, a and B, b isthe set formed by taking the sum of the sets
A and B and then merging the elementsa and b in A + B. Thus, the sum of a
two-element pointed set and three-element pointed set hashow many el ements?

(b) Describe monomorphismsin1/S.
(c) Show that 1/S hasinverse images.
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Exercise 2.47
Let X be the category defined by an ordered set X (see Exercise 1.31(b)).

() Show that objects x, X’ of X (elements of X!) have a sum exactly when they
have aleast upper bound.

(b) Show that any arrow of X is amonomorphism.
(c) Show that agreatest element of X isaterminal object in X, whereas a smallest
element of X isaninitial object.

(d) Show that a part of x (i.e., u < x) has an inverse image along an arrow to x
(i.e, X’ < x)if and only if u and x’ have agreatest lower bound.
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Finite Inverse Limits

3.1 Retractions

We begin this chapter by observing an important condition which implies that a
mapping is a monomapping, namely, that it has a retraction.

Definition 3.1: For mappings r and i in any category, r is a retraction for i means
that ri is an identity mapping. In the same situation we say that i is a section for r.

To see more clearly what this says about domains and codomains, let X ——> Y’
then, we see that » must have domain Y (in order that ri be defined) and codomain
X (in order that ri could possibly be an identity mapping, necessarily that on X).

~ NG

Y Tizlx

For a given mapping i, there may or may not be a retraction r for i, and there
might be many. (Similarly, a mapping r need not have any sections.) But to have
even one retraction is a strong condition:

Proposition 3.2: If i has at least one retraction r, then i is a monomapping (=
left-cancellable mapping, which we have seen is the same as injective mapping.)

Proof: We must show that for any x, x, as shown
T—=X-'>v
2

thatix; = ix, = x1 = x».

48
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SO suppose ixy = ixp. Then,

r(ix1) = r(ixp), soassociativity of composition
(ri)x1 = (ri)x2, givesbut ri being anidentity
X1 = X2 map, thisis as desired
[ ]

(Note how closely this proof parallelsthe sort of calculation done in elementary
algebra: Suppose we know 7x1 = 7x3; then,

3(7x1) = 3(7x2)
(37)x1 = (G7)x2
1x; = Ix,
X1 = X2

The construction in our proof is analogous to division by 7; i.e. to multiplication
by amultiplicativeinversefor 7. The only new observation is that % doesnot redly
needto beaninversefor 7, that is, to satisfy both %7 =1land 7% = 1; only thefirst
of these equations was used — it is enough to have alefi-inverse to be able to cancel
afactor on the left.)

Notice that this calculation gives more than merely knowing that i can be
cancelled; having r providesaspecific reason, or proof, of theleft-cancellability of ;.

A mapping i that has aretraction is also called a split injection or split mono-
mapping. Thus,

Definition 3.3: The arrow i : X —=Y is a split injection if and only if
Ar:Y —X [ri = 1x]

Suchamapping r isalso sometimescalled a“splitting for i instead of “retraction
for i or “left-inverse for i”. Hereis a picture with internal diagrams (since thisis
amonomapping, it isaready apart of Y):
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Now for r to be aretraction from Y back to X along i, ri = 1y, we see that for
any element x

r(ix) = (ri)x = x

so any element y of Y that came from an x must be sent by » back to where it
camefrom, and that isall theequationri = 1y says. It saysnothing about the other
elements of Y, if there are any; but of course, to beamapping Y — X, » must be
defined for all those other elements of Y aswell, and r must send them somewhere
in X (it does not matter where we send them, and so there will usualy be many
possibilities for the mapping r).

X

One possibility is

For example, with S the set of students, C the set of chairs, and
§-t~C

assigning to each student the chair in which that student is sitting, » must assign
a student to every chair, and the equation says that to each occupied chair must
be assigned the student who is occupying it. But for the other chairs we can make
any definite decision wewant; for instance, r could assign all the unoccupied chairs
to one particular student, or any other rule could be adopted for the unoccupied
chairs and would nonethel ess compl ete the definition of yet another retraction » for
our giveni.

We hopethisexamplewill show that, inthe category of abstract sets, almost every
monomapping has at |east one retraction: just pick any element of the domain to be
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the recipient of all the extra elements of the codomain. The only difficulty arises
when the domain is empty and the codomain is not: the (unique) map

0—Y
isamonomapping but is not splitif Y # 0.

Claim 3.4: In the category of abstract sets and mappings, if XY is a
monomapping with domain X not empty, then i has a retraction.

To provethe claim wewill use two properties of the category of abstract setsand
arbitrary mappings whose precise relation to our axioms will be established later
in Section 6.1:

(D If X #£0,then X hasan element 1 —=
(2) every part X > Y hasacomplement X’ svie

Xyl x
isasumdiagram.

Now weproceedwithclaim 3.4; X isnotempty, solet1 —> X beaneementand
X’ L= Y acomplement of i . The defining property of sum says that to define any
mapping Y — X (in particular ther we arelooking for) isequivalent to specifying
mappings from the two parts whose sum is Y. We use the mappings we have,

X
\b{
Y X
Py
X1

where the bottom arrow isthe only mapping X’ — 1. Now the universal mapping
property of sum tellsusthat there will beamapping Y — X, making the diagram
commute as follows:

v--2x o r={.%
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Of course, we do not really need the commutativity of the bottom triangle, for the
top triangle saysri = 1y, which isal we wanted. [ |

A proposition of thistypeisdefinitely not truein other categorieswith more geo-
metrical content. Examples of such categories are in the next exercise. We discuss
additional examples below in Exercise 8.11.

Exercise 3.5

The category C has as objects those parts of R", for various n, which are open. The
arrows of C are mappings between the objects that are continuous. (For definitions
of open and continuous see any advanced calculus text.) Show that C is acategory,
that is, define composition and identities and check the axioms. A subcategory D
of C is defined when we restrict to mappings that have a derivative. What rule of
elementary cal culus showsthat D hascomposition? A subcategory of D isobtained
by restricting to the smooth mappings — those that have all derivatives. O

In the category C, even though the sphere is a retract of punctured space (the
open part of R" obtained by removing asingle point), it is not aretract of thewhole
(unpunctured) space. Itisimportant to look at exampleslikethisto get abetter idea
about what part of our reasoning can beusedinthesemoregeneral situationswithout
change (for instanceri = 1x alwaysimpliesi is a monomapping) and what part
is special to the category of abstract sets S (for instance i is a monomapping with
nonempty domainimplies3r [ri = 1]). Let usdescribe the example more precisely:

In n-dimensional space (e.g., n = 2, the plane) we havethe (n — 1)-dimensional
sphere (i.e., thecircle, if n = 2).

Claim 3.6: There does not exist any continuous retraction for the inclusion:
(n — 1)-dimensional unit sphere ' n-dimensional space, centered at theorigin.

Y

This claim is proved in analysis but is reasonable on the basis of the intuition of
continuity. On the other hand, if we change the situation only dightly and replace
the codomain Y by the “punctured plane” with the origin removed, then thereisa
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fairly obvious continuous retraction: just send each point in the punctured planeto
the unique point on the circle that lies on the same ray from the origin, i.e.,

\
™~
If our circle hasradius 1, the formulaforr is
Y1 Y2
r ) =\ 7
(Y1, ¥2) RN

where |y| o \/ Y2 + y2 is the distance from the point y = (y1, y2) in the plane to
the origin.

We could aso have considered as codomain a unit ball rather than the whole
Euclidean space with the same result: that the unpunctured version is completely
different from the punctured version with respect to the question of continuously
retracting onto the sphere.

Exercise 3.7 _
Suppose S —>~ B —L~ E are maps in any category. Then i has a retraction if ji
does. O

That our proof of the ubiquity of retractions for abstract sets does not work for
continuous sets can be understood more exactly if we recal that it was based on
the concept of sum and still more exactly on the concept of complementary part.
Although sums exist generally in the continuous category, it is emphatically not the
case that to every part Xo & Y thereisanother part X; —— Y together with
which it sumsto Y. Indeed, we might take X; asthe “rest of” Y after removing Xo,
but the defining property of sum, (that any pair of maps fqo, f1
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can be combined via definition by casesto giveasingle map Y — Z) will fail in
the continuous category C: eveniif fo, f; were both continuous, their combination
on'Y would not be unlessafurther condition were verified. For example, if Xgisthe
circleincluded by i asthe boundary of adisc Y andif i; isthe “rest” (i.e., the open
disk included by i, as everythingin Y except the boundary), then for continuity of
the “sum” map {Eg one needs not only continuity of fo, f1 separately but also that

1im fa(yn) = fo(x)

whenever y, isasequenceinthe openinterior ig, which tendsto x on the boundary.
These matters are discussed more fully in coursesin analysis and geometry.

3.2 Isomorphism and Dedekind Finiteness

“Equations” between sets, such as the statement that a set is the sum of two others
or that it isthe inverse image of a part along a map (and many others that we will
meet soon such as the commutative law for products, the laws of exponents, the
distributive law, etc.) are not really equations but rather statementsthat certain sets
havethe samenumber of elements. M oreprecisely, theintended statementsoften say
more: aspecific demonstration of theequinumerosity isstatedto beavailable. Sucha
demonstration isagivenisomor phismin the category of abstract setsand mappings.

Definition 3.8: X —~ Y isan isomorphism (or isinvertible) if and only if there
existsaY —%- X for which both equations gf = 1x and fg = 1y aretrue. Such
agiscalled a (two-sided) inverse for f.

We obviously have the implications

f isomorphism
Al
f hasaretraction and f hasasection
By
f isinjectiveand f issurjective
Def ¢
f ishijective
But we claim that implication A isreversible in any category and that implication
B is reversible in the category of abstract sets and arbitrary maps; thus, in this
category the isomorphisms are the same as the bijections (another name for which
iS one-to-one correspondences).
Thereversal of implication A above means that, even though retractions (= left
inverses) are not unique, and neither are sections (= right inverses), nonethelessif
both exist for the same f, then they are all equal:
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Proposition 3.9: In any category,

Y then

@ |

A rf=1xand fs=1y =r =s
C: Afrf =1lx]=Vso[fs=Lyand fs, =1y = 5 = ]

Proof: On the assumption of the hypothesis of A*,
r=rly=r(fs)=(f)s=1xs=s

proving the conclusion of A*. It should be clear that A* impliesthe converse of A.
Because A* isknown, the proof of C requires usonly to noticethat C isequivalent
to

Vs, Vrf =1y and fsg=1yand f, =1y = 5, = 5]
which follows from two applications of A* together with the remark that

r=gadr==s=%
|

Stated in words, C saysthat any two sectionsof f areequal provided that f has
at least one retraction; the proviso is certainly needed since most maps that have
sections have more than one.

The reversibility of implication B above, namely that any bijection has a two-
sided inverse, does not hold in some categories (such as that of continuous maps),
but it does hold in case theinverse is allowed to be an “arbitrary” map. One way to
prove it would be to assume that every surjective f has at least one section s (this
isthe axiom of choice; see Section 4.3) and then use the following generadly valid
proposition.

Proposition 3.10: If fs = 1y andif f isamonomorphism, then s isthetwo-sided
inverseof f.

Proof. We are supposed to prove that sf = 1y, but asin other cases when we can
hope to use a cancellation property, we first prove something alittle longer,
f(sf)=(fs)f =1y f = f = flx

from which the conclusion follows by left-cancellation of f. [ ]
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However, that bijection impliesisomorphism does not really depend on a power-
ful principle such as the axiom of choice; the latter is usually only required when
the map g to be constructed is not unique and hence must be chosen arbitrarily. But
the bijectivity of f says exactly that

vy e lfe=y] % X

the existence of x coming from the surjectivity of f and the uniqueness from
the injectivity of f. Hence, by the concept of “arbitrary map” there should be a
well-defined map g such that

gy = thex for which[fx =]

for al y; then of course gf x = x for all x and fgy = y for al y so that g isthe
two-sided inverse of f because 1 is a separator.

Notation: If gf = 1x and fg = 1y, wewrite f 1 = g.

Proposition 3.11: If X L vYisan isomorphism, then Y = X is also an
isomor phism.

Proof: Writing thetwo equationsgf = 1y, fg = 1x inthe opposite order, we see
that f = g7, i.e the f ! has f asatwo-sided inverse. u

Proposition 3.12: If each of fi, f5 isan isomorphism and if f, f; makes sense,
then f, f; isalso an isomorphism.

Proof: Let g1, g betwo-sided inverses

g I A <
X P Y 7 Z

The only obvious candidate for the inverse of the composite f = f, f; isthe com-
posite in opposite order g = g0 of the inverses. Indeed

gf = (9102)(f2f1) = 01(92f2) f1 = g1ly f1 = g1 f1 = 1x
fg = (f2f1)(0192) = f2(f101)02 = f2lvQe = 202 =17
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In other words,
( f2 fl)_l = fl_l fz_l

isthe required two-sided inverse. [ ]

Notation: f: X —= Y meansthat f isanisomorphism. We say X isisomorphic
with Y, written X 2 Y if there exists at least one f from X to Y, which is an
isomorphism, i.e.

3f [f:X-">Y]

As discussed previously this definition is used in every category, but in the case
of the category of abstract sets and arbitrary maps it is often referred to as being
equinumerous or having the same cardinality with isomorphic being reserved for
other categories in which naturally some further structure (such as group structure
or topological structure) will be the “same” between isomorphic X, Y. However,
abstract sets should be considered as the case of “zero structure,” and because
we have learned to treat the number zero on an (almost) equal footing with other
numbers, we should simplify terminology and our thinking by treating the cate-
gory of sets on an (almost) equal footing with other categories such as are met in
more structured parts of mathematics. That isomorphism of abstract sets gives us
away to study equinumerosity without counting (hence aso for infinite sets) was
exploited systematically by Cantor. (He was anticipated to some extent by Galileo
and Steiner.)

Exercise 3.13

[Galileo Galilei, 1638] The set of al nonnegative whole numbers is isomorphic
with the set of all square whole numbers because the map f (x) = x2 has (with the
stated domain and codomain) a two-sided inverse g. What is the usual symbol for
thisg? O

Of course counting will be one of the methodsfor investigating size (all methods
are consequences of the definition). Namely, if X isthought of as a “standard” set
(like{1, 2, 3, 4, 5}), then aspecific counting processthat countsaset Y isof course
a specific invertible map f : X—>Y. (Note that the same Y can be counted in
different “orders” by the same X, which would involve different maps.) If Z can
also be counted by the same X, we can then concludethat Y and Z are (objectively)
the same size (which is true independently of our subjectively chosen standard X
and of our choices of counting order):
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Corollary 3.14:

X
% x = Y =7
Y Z

Proof: By Propositions3.11 and 3.12, h o gf ~* shows the required existence.
]

The observation of Galileo that an infinite set can be isomorphic to a proper part
of itself was turned into a definition by Dedekind:

Definition 3.15: A set X issaid to be Dedekind-finite if and only if

VX . X and f monic = f isomor phism]

and correspondingly X is said to be Dedekind-infinite if and only if

If[X ", X and f monicand f not surjective]

Exercise 3.16
Show that X = [0, 1], the unit interval of calculus, is Dedekind-infinite. O

Exercise 3.17 '
If X is Dedekind-finite, A= X isapart of X and A is equinumerous with X
(i.e., A= X), thenthe part isthewholeinthe sensethat i itself isinvertible. ¢

3.3 Cartesian Productsand Graphs

Thereisacommon themeinvolving several different interrel ated constructionsthat
we will now explore:

FINITEINVERSE LIMITS

Terminal object

Inverse image (of a part along a map)
Intersection (of parts)

Equalizers

Cartesian operations ¢ Cartesian products

Pullbacks (= fibered products)

and numerous subsidiary notions like
Graphs, diagonal, projections
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The French philosopher René Descartes is said to have introduced the idea that
dealing with more than one quantity can be done by introducing higher-dimensional
space. Along with that goestheideaof describing parts of higher-dimensional space
by means of equations. For example, consider the portion (circle) of the plane
where a certain equation is true. The operation of passing from the coordinatized
plane to the portion where the equation x2 + y? = 1 istrue will be an example of
the equalizer process. We can also intersect figures in higher-dimensional space,
raising questions such as: If two figures are described by equations, then is their
intersection also described by equation(s)? and so on. There is arich interplay of
all these Cartesian operations, which are also called finite inverse limits.

Wewill find that Cartesian products and equalizerswill be sufficient to construct
inverse limits, and so it turns out that inverse images can be defined in terms of
equalizers and Cartesian product. Alternatively, equalizers can be defined in terms
of inverseimages, and thus we will have to understand not only what each of these
operationsis but also how some of them can be defined in terms of others because
these relationships are part of the lore of how the operations are used.

Let us consider first a very simple but important example, namely the product
2 x 2, where2isatwo-element set whose elementswe can call 0,1 for convenience.
It will then turn out that the product 2 x 2 has four elements, which can be labeled

(0, 1) (1, 1)
(0, 0) (1, 0)

by “ordered pairs’ of elements of 2. The universal mapping property, which we
will require of productsin general, amounts in this case to the following: Suppose
X isany set and suppose that

X242 XxX-Y2

are any two given maps with the same domain X and whose codomains are the
factors of the product 2 x 2 under consideration; then, there is a uniquely defined
single map

X eV o2

whose domainisstill X but whose codomain isthe product and whose value at any
element x isthe element of 2 x 2 labeled by the ordered pair of values determined
by the given ¢, ¥:

{0, ¥)X = (@X, ¥X)

The mapping (¢, ¥) can be understood in terms of the parts of X for which ¢,
arethe characteristic functionswith 1 interpreted astrue and O asfalse. If x belongs
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to the part characterized by ¢ but does not belong to the part characterized by v,
then, at such an x, (¢, ¥) hasthe value

(0. ¥)x=(10)

and similarly for the other three kinds of element x definableintermsof ¢, ¥. Now
the mappings

2x2—2

are usualy called propositional operations or truth tables. For example, the map &
described by thetable 2 x 2-%-2

PR OO
RroRro|<
RPrOOO | R

isusually called “conjunction” and read “and”. Now a composite

2% 2

o’ N
X prom 2

with a propositional operator such as & yields a new property & of (elements
of ) X constructed out of the two given properties ¢, ¥. A propositional operation
corresponds, via characteristic functions, to an operation on parts of any given X.

Proposition 3.18: If ¢ isthe characteristic function of the parti of X and v isthe
characteristic function of the part j of X, then

¢ & Y isthe characteristic functionof i N j

or, equivalently, if we denote by {X | ¢} the part of X with characteristic function
¢, we have

Xle&yt={X]e}N{X|y}

Exercise 3.19
Prove the proposition. O

The product of any two sets A, B should be thought of as a “bag of dots” P
that has “the right number of elements” and is moreover equipped with a pair of
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“projection” maps A, g that “arrange P in rectangular fashion” as follows:

TB

B P

mTA

A

These features will follow from the definition below for products that directly
expressthemost basi ¢ act we constantly do in actual use of products. Inthe category
of abstract sets and mappings we will use the same definition of product that we
usein any category.

Definition 3.20: In any category, a product of two objects A and B is a pair of
given mappings
A< P72 B
such that
VX, f: X—=A,g:X—=B 3h:X—P[f =7phand g = ngh]

asin the following commutative diagram:

AXIOM: BINARY PRODUCTS
Any two sets A, B have a product, A<2- P "% B,

Usually wewrite P = A x B, h = (f, g) so that the diagram in the axiom is
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Exercise 3.21
Show directly from the axiom that there isamap

Bx A 2. AxB

for which

AB __ _BA AB __ _BA
7TA tA,B_T[A 7TB TA’B—JTB

Using the uniqueness of the induced map as required in the axiom, show that
TABTB.A = laxB

the identity mapping. Caution: In dealing with more than one product, it is often
necessary to use amore precise notation for the projections as we have done in the
description of t. O

Exercise 3.22
Show that for any A, 1 x A= A

Hint: To show one of the equations requires using the uniqueness clause in the
definition of product. O

The uniqueness of the induced mapsinto a product enables oneto calculate their
valuesat (generalized) dements If X — > A, X —%~ B,andif T %~ X, consider
the diagram

9z B
We seethat ( f, g)x hasthe projections
wa((f, 9)x) = (walf, g))x = fx
me((f, 9)x) = (s (f, 9))x = gx
Hence, by uniqueness of maps with specified projections, we obtain
(f,g)x = (fx, gx)

An example apparently less abstract than that of 2 x 2 can be obtained by con-
sidering the description f of the flight of afly trapped in atin can C (during atime
interval T). If A denotes the points on the base of the can, and if B denotes the
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points on the side seam, then thereisamap C 4 A that assigns to each point of
the space in the can its “shadow” in A, and thereisalso C ™ B assigning to each
point in C the point on the seam at the same height. Then by composition we obtain

T I8
%‘ fa=maf ¢

fa l fB=mBf
A

LA

(==

But conversely, if wewere givenamapping T A Afromtimesto A (for example
by amovie film that had been shot with the cameralooking up from below through
a glass bottom), and if we were similarly given a temporal record T e B of
the heights, we could uniquely reconstruct the actual flight T ' Casthe only
mapping satisfying the two composition equations.

Definition 3.23: IfA '~ B isany mapping, then (relativeto a given object config-
ured asa product of Aand B) by thegraph of f ismeant themapping A L Ax B
whose projectionsaretheidentity map 1 and f respectively asin the commutative
diagram:

For example, for any element x of A thevaue of y¢ isy¢(X) = (X, fx) inthe
product:

Proposition 3.24: The graph of f is a part of A x B. The elements of A x B,
which are members of the part y;, are precisely all those whose form (x, y) has
the property that y = fx.
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Proof: Since may; = 1a, We have that 74 is aretraction for y; and hence y is
monic and therefore apart of itscodomain A x B.1f T —"~ A x B isany element
of A x B, itisnecessarily of the form

p=(Xy)
wherex = ap, Y=mgp.Ify = fx,theny;(x) = (X, fX) = (X, y) = psothat

T----2--->4
pE x /
Ax B
Conversely, if pisamember of y¢ theremust bean x that “proves” thismembership
sothat p = (X, fx). [ |

Using the picture of a product as a rectangular arrangement with pairs labeling
its elements, we get a very graphical internal picture of a map that is at least as
important as the cographical internal picture of f.

Ax B

(z, fx)
vz = (z, fz) B /?/\/

A

!
T

When we need to calculate explicitly using thisideathat the graph isalso amap,
we recover the original f just by composing

f =Byt

Proposition 3.25: Any section of the projection A x B =4 A is the graph of a
unique map A— B.

Proof: Recall that a section of amapping 7 isamapping s for which zs = 1. If
7 = 1 a iSthe projection from aproduct we can compose a given section s with the
other projection, obtaining

def
f = s
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But then s must be the graph of the f so defined because
ve = (1a, f)
is the unique map for which the projections are 15 and f, and by construction s
has those two projections. [ ]
Proposition 3.25 suggests considering that for any map
E-~A

(not necessarily a projection from aproduct), any section s of 7z could be regarded
as a “generalized map” with domain A but with a variable codomain, that is, the
value of such a“map” at 1>~ A liesin the fiber E, of 7 over x, and these fibers
may vary. This point of view is very important in mathematics when, for example,
considering vector functions, fiber bundles, and so forth.

Exercise 3.26
Show that the fiber (= inverse image of x along =) of = at x “is” B if = =
A Ax B—A O

Inthe case of aproduct with two (or more) factorsrepeated, we may useaslightly
different way of abbreviating the notation for the projections:

AxA=AZZ:>jA molag, @) =@  mi(ag, &) = ay

Moreover, among the many possible graphs in this case, there is an especialy
simple one that nonethel ess sometimes needs to be mentioned explicitly, the graph
of theidentity map on A, which isoften called the diagonal map 65 = (1a, 1a), SO

A A x AZ:;:A satisfies mda = 1afork =0, 1
A given map
A% P A

is often called a “binary algebraic operation on A” since, for any two elements
ag, & of A, 6 will produce a single element as aresult:

X

y wjal=0(ao,a1)
7 A

{ao
A2
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(A frequently used notation is to write the symbol for the operation between the
symbolsfor thetwo elementsof A, which arethe componentsof theelement of A to
which the operation isbeing applied). Thus, for example & isabinary operation on
A = 2 (the set of truth values), and multiplication IR?> — IR isabinary operation
ontheset A = IR of real numbers.

Exercise 3.27
What is the composite map
JR 9.
R B2 R
usually called? O

Exercise 3.28
A binary operation 6 is said to satisfy the “idempotent law” if the composite

o4 0
At g2t
A=
14

is the identity. Does multiplication of real numbers satisfy the idempotent law?
What about conjunction 2 x 2—2 of truth values? O

3.4 Equalizers

f .
Definition 3.29: Given A:g>> B, an equalizer for f with gisany map E—= A
such that

@) fi = gi
(2) VT WX [fXx = gx = 3 X [X = iX]]

asin the following commutative diagram:

Exercise 3.30
Any equalizer i (as in the definition) is a part of A. If i is an equalizer, then for
any x

Xei+= fx=gx
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Exercise3.31 _ .
Supposethat E —= Aand E’ i A areequalizersof theparallel pair A:g; B.
Show that E = E’ by an isomorphism compatible with i, i’; we say that i and i’
themselves are isomorphic.

Hint: Use the universal mapping property of equalizers to find candidate inverse
isomorphisms. 0

Notice that the same proof would also show that any two products of X and Y
are isomorphic. This justifies acommon abuse of language that allows us to speak
of the equalizer of f and g or the product of X and Y. That is, any two equalizers
(or products) are “equal” up to isomor phism, and this provides further examples of
the “equations” among sets that we mentioned at the beginning of Section 3.2. The
proof that the inverse image of a part along a map is unique up to isomorphism is
the same as those given above. The proof that the sum is unique up to isomorphism
isdual, i.e., it isthe same proof with the arrows reversed.

Because of their great importance in mathematics, we might want to assume as
an axiom that equalizers always exist for any parallel pair f, g of maps. However,
having assumed the existence of products and inverse images, it turns out that we
can prove the existence of equalizers— indeed by two different constructions.

Exercise 3.32 .
The equalizer of the projection maps B2 % B isthe diagonal B *& B2. Given
any A——= B, we can form the single map ( f, g) : A— B2 along which we can
take the inverse image of the part 6g.

E B
1[ |/;B
A B?

Provethat if i isassumed to have the universal mapping property appropriate to the
particular inverse image, it follows that i also has the universal mapping property
required of the equalizer of f withg. o

{fra)

The other construction of the equalizer will only use that special case of inverse
image known as intersection. Given A:g>> B, then each of them has a graph,
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whichisapart of A x B:

g Ax B

If we intersect these two parts of A x B, we clearly get apart of A x B that “sits
over” the desired part of A. To establish this fact rigoroudly, note that both of the
graphs actually have the same domain A, thus, their intersection E oA x B,
being included (<€) in both, participatesin a commutative diagram

E—t——4
vf e
ACT' AxB

where i and iy are the “proofs” of the respective inclusions. But i ¢, iy are both
maps from E to A, and the unusually special construction actually leads to the
following:

Proposition 3.33: it =ig.
Proof: Since ytit = yyig,

TAYtif = TaYglg
But by half of the definition of graph,

Tayte = 1a =AYy

hence i =igq. n
Exercise 3.34
Definei =i = igasinProposition3.33. Showthat fi = gi andthatindeedi isthe

equalizer of f with g. Hence, the equalizer of two maps can always be constructed
whenever we can form their graphs and intersect them. O
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3.5 Pullbacks

The constructions of terminal object, cartesian product, inverseimage, intersection,
and equalizer are all specia cases of one general construction called “limit”. In
practice there are several other instances that often occur, a frequent one being
“pullback” or “fibered product”. We will show in Section 3.6 that the existence of
equalizers and finite products suffices to guarantee the existence of al finite limits
and also that the existence of pullbacks and the terminal object suffices for the
existence of al finite limits.

Definition 3.35: Given any two maps with common codomain Ag oo g A a
pullback (or fibered product) of them means a pair of maps g, 717 with common
domain P that

(1) forma commutative square forrg = fim1

P L A,

o

bil

A B

fo

and, moreover,
(2) areuniversal among such squaresin that,
forany T, ag, a1

foag = fiay = Fa[ag = mpa and a; = ma]

~ ai
~ a
~N
~ N r
P — A
ag
WOJ lfl
Ag B

Jo

We point out that like products, equalizers, inverse images, and sums, pullbacks
are unique up to unigue isomorphism. The proof isonce again that of Exercise 3.31,
and we will speak of P asthe pullback of fg and f; without explicitly mentioning
7o and 1.

The uniqueness of the induced maps into a pullback enables one to calculate
their values at (generalized) elements: Suppose X —2- A, X -2 A; satisfy
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foao = f1a1, and so they define an arrow to the pullback denoted X 2% p. If
T X~ Xisany generalized element of X, then the value (ag, a;)x has the projec-
tions

mo({(@0, a1)X) = (mo(ap, a1))X = apX
m1((@0, @1)X) = (m1(@0, a1))X = ayX

Hence, by uniqueness of maps with specified projections, we obtain
(@0, a1)X = (@oX, a1X)
and hence the latter pair is the generalized element of P, which is the required

value.

Proposition 3.36: If products of two objects and equalizers exist, then pullbacks
exist.

Proof: Givendata fo, f1 asabove, first form the product Ag x A; with projections
now denoted p; fori = 0, 1. The square

AO X Al o Al

:

Ao

h

fo B

isusually not commutative, but we can form the equalizer P Lo Ay x Ajofthe
two composites fopg, f1p1, that isthe part of the product on which the diagram
becomes commutative. If we then define
o = Pol 71 = p1
wewill have forrg = fi71. If the(generalized) element (ag, a;) of Ag x A, satisfies
foag = fiay, thenit will actually be amember of i, with aunique “proof” a; but
(a0, 1) =ia=
a0 = Po{@o, a1) = poia = moa
a1 = pi{ao, ) = pria=ma

as required of a pullback. [ |

Proposition 3.37: The existence of pullbacks and terminal object impliesthe exis-
tence of binary products, inverse images, intersections, and equalizers.
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Proof: If B = 1, then there is only one possibility for fg, f1, and moreover any
square ending in B is commutative. Hence, the diagram

Ao

showsthat product isliterally aspecial case of pullback provided we have aterminal
object 1 (of coursein the category of setswe have aterminal object, namely a one-
element set). We have previously seen that equalizers can be constructed using
products and intersections (of graphs) or using products and inverse images (of
diagonal parts). Further, we saw that intersection may be considered as a specia
case of inverse image. The proposition will be proved if we can show that inverse
imageis aspecial case of pullback; the interesting aspect, which requires proof, is
considered in the following exercise.

Exercise 3.38
Suppose that

[J-

isapullback square and also that j isamonomorphism. Then it followsthat j isa
monomorphism. [ ]

3.6 InverseLimits

Now we want to describe the more general concept of limit. The data for a limit
constructioninvolveafamily A; of objectsand afamily f; of arrows between them.
Actually, we should specify adata type

d
J—c>|
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(or “directed graph”), where J isaset of indices for the arrows f; in specific data
of thistype and | is the set of indices for the objects A;. In data of the given type,
the domains and codomains are required to be given by the mapsd, c:

Ad(j) L>Ac(j) for all l—J>J

(Wecall the datatype finiteif | and J are finite. We do not require that the A;’s
be finite.)

Definition 3.39: Thelimit (also called inverse limit) of givendata A;, f; asabove
is given by a single object L together with a universal cone; here by a cone with
vertex L and with base the given data is meant a family

L Zs A for 1-—s1

of maps satisfying
A
fimag) = Tey L i foralll < J
Acgy)

That the above cone is universal means that for any object T and any cone with
vertex T and with the given data as base, i.e. for any family

T3 A for 1>

for which
fiaqjy = ag;) forall 1 1
thereisa unique
T 2L

that preserves the cone structure such that

a =ma foral 1-—>]

For example, products of | factors are easily seen to be limits according to the

datatype

0%'
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forinthecaseof productsthereareno given “bonding maps” f; and correspondingly
no equations presupposed in the universal property. On the other hand, equalizers
are limits according to the data type

2—9-5
C

where d, ¢ are the two distinct constant maps, because any equalizer data
f

A—=B

involves two given arrows between two given objects according to the scheme that
both arrows have the same domain A (hence constancy of d) but also the same
codomain B (hence constancy of c).

Exercise 3.40
Specify a pair of mappings 2——= 3 so that limits according to this data type are
pullbacks. O

Once again we note that limits are unique up to isomorphism.

AXIOM: FINITEINVERSE LIMITS
S hasall finite limits.

This means that thereis alimit for any data for any finite data type whatsoever.
Luckily the general property can be deduced from simpler information.

Theorem 3.41: In any category, if products and equalizers exist, then limits ac-
cording to any data type can be constructed.

To help in understanding the following proof notice that Proposition 3.36 is a
special case of this theorem and that the construction used in the proof of that
proposition is generalized here.

Proof: Given the datatype

\]%I

and also given A;, f; such that

A —> A, whenever dl

Q
~~ ~
—
~

i
|
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consider the products [ A andalso ] Agj).

151 153
Thus, for example, if the datatypeis
4—=5

expressing the graph

Ay Ay Ay
N N
A As

then the first product has five factors, namely al the A;’s, but the second product
hasfour factorsthat (since ¢ hasonly two values, etc.) arereally just A; takentwice
and As taken twice.

Now between the two products we can construct two maps.

IIAF%$>IIAW)
159

151

wherefor al j
IT4; L. 1Ay,
‘PJ' ij = fjpd(j)
Acg)

Pd(j)

Aagy

which determines f by determining all of its J coordinates as being (essentialy)
al the given bonding maps f;. The other map p is simpler for it does not depend
on the given bonding maps at all.

M4; ———— [lAy)

Pj PiP = Pe(y)

> Ac(y)

Tac()

Now if we are given any family of maps

T2 A for 11
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it can be considered asasinglemap T ——— IT; A;. Consider the diagram
T Bl I A === Ag))
By construction of pand f, (&), will satlsfy the equation
p@) = f(ah
if and only if the given family satisfies the family of compatibility equations

d(j) =i
i = fig whenever . .
= o(j) =1
Hence, if welet

L -S-TIA be an equalizer of p, f

then precisely such “ f; compatible” families will factor across the monic e. That
is, if we define

i =pe for 1-1=|

then 7; will have the universal mapping property required of the limit. ]

Corollary 3.42: If pullbacks and a terminal object exist in a category, then all
finite limits exist.

Proof: Proposition 3.37. [ ]
Exercise 3.43

A terminal object isan inverse limit.

Hint: The datatype for the limit hasboth | and J empty. O
Exercise 3.44

For any given single map X#Y, the pullback of f along itself is often called
“the equivalence relation associated to f”. This pullback involves a pair ofX maps
K —= X and hence asingle map e to X x X. For any parallel pair T—>X

fx; = fxoiff (Xq, X2) belongsto e. (See also Proposition 4.8 and ExerC|ses4 22
and 4.23.) O

3.7 Additional Exercises

Exercise 3.45
Show that the category of finite-dimensional vector spaces has al finite limits.

Hint: They are computed using the finite limitsin S.
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Exercise 3.46

(a) Show that in the category of finite-dimensional vector spaces the sum and the
product of two vector spaces V, V' are the same vector space that we usually
denote V @ V'. It has both projections and injections.

Thismeansthat if V isavector space thereisboth adiagonal linear transformation
V %V @ V and a codiagonal linear transformation V & V -~ V. Therefore
we can define abinary operation on linear transformations T, T : V — V', whose
result is the threefold composite

T+T' =V2%VeV—VeV %y
Themiddlearrow iscalled T & T'.

(b) Show how to define T @ T’, that 4+ coincides with the sum of linear transfor-
mationsmet in linear algebra, and that + makesthelinear transformationsfrom
V to V' into agroup.

Exercise 3.47
Show that the category of groups has al finite limits.

Exercise 3.48

(&) Show that the categories S/ X have al finite limits.
Hint: They are computed “fiberwise”.

More generally,

(b) for any category C that has al finite limits, show that C/ X hasall finite limits
forany X inC.

Exercise 3.49
Show that the category of pointed sets 1/S has all finite limits.

Exercise 3.50
Sets with action: Given a set A (frequently referred to as an “aphabet”), by an
“action” of A onaset Sismeant any mapping Sx A—~S.

() Show that sets equipped with given A-actions form a category if we take
as arrows from (S, 8) to (S, §') those mappings S—%> S such that ¢8 =
8'(¢ x 1p). (A special case where A hastwo elements was considered in Exer-
cise 1.30 (d).)

When § is given, it is convenient to abbreviate 5(s, a) ssimply by sa and call
it the action of a on s.

(b) Show that the category of A-sets has sums and finite limits.
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Exercise 3.51

M-sets: A monoid isaset M with an associativebinary operation (thatism(m'm”) =
(mm’)m” for any three elements) and an element 1 which is an identity (that is
Im=m=mlforany m). If M isamonoid and X isaset, a(right) action of M
on X isamapping X x M —> X suchthat x1 = x and (xm)m’ = x(mm’) (where
we are writing xm for §(x, m)). A set X equipped with an action of M is called
an M-set. A morphism of M-sets from X to X’ is a mapping X —%> X’ that is
equivariant, (i.e., it satisfies an equation like that above for A-sets.)

(8 Show that M-sets form a category.
(b) Show that the category of M-sets has sums and finite limits.

Actualy the category of A-setsis a specia example of a category of M-sets,
where M isthe specia free monoid

M=A"=1+ A+ AxA+AX AXxA+...
What should the infinite “sum” mean?
Exercise 3.52

If X isthe category formed from a partially ordered set X, show that a product of
two objects is exactly the same thing as a greatest lower bound.
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Colimits, Epimorphisms, and the Axiom of Choice

4.1 Colimits are Dual to Limits

Each notion of limit has a corresponding “dual” notion of colimit whose universal
mapping property is obtained by reversing all arrows. Thus, for example, the termi-
nal object 1 has the limit property that every object X maps uniquely o 1, whereas
the coterminal (or initial) object 0 has the dual property that every object ¥ has a
unique map from 0. The limit concept of product, i.e. a span (= pair of arrows
with common domain) A <~ A x B "%~ B such that spans A < x % Bas
below uniquely determine the (f, g) in

(which expresses the universal mapping property of projections), dualizes to the
concept of coproduct, i.e. a cospan of injections A —*> A + B <2~ B such that

cospans A L.y <. Basbelow uniquely determine the {g in

The universal mapping property for injections to the coproduct should be recognized
immediately as that for the injections to the sum. Similarly, the concept of equalizer

78
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for f, g, namely a(necessarily mono!) arrow E —> A for whicharrows X —> A
“equalizing” f and g (fx = gx) uniquely determinethe X —= E, asin

X
_| z
v f
E — A
v g

B

dualizesto theconcept of coequalizer for f, g, namely anarrow B —> Q for which
arrows B —= Y “coequalizing” f and g (i.e., yf = yg) uniquely determine the
0 —-2-Yin

I q 0
8 |
I_

\|y

¥

Y

which we will study in more detail later.

Exercise 4.1
Formulate the notion of “pushout,” the colimit concept dual to pullback. O

Exercise 4.2
Formulate the general notion of the colimit of a datatype

J%I

Exercise 4.3
Prove that the existence of pushouts and an initial object implies the existence of
coproducts.

Hint: Usethe dua of Proposition 3.37. O

Exercise 4.4
Find sufficient conditionsto guarantee the existence of all finite colimits. Prove that
the conditions are (necessary and) sufficient.

Hint: Usethe dua of Proposition 3.41. O
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Werequirethe axiom that the category of abstract setsand mappingshasall finite
colimits:

AXIOM: FINITE COLIMITSIN S
S has all finite colimits.

Thisaxiomisdual to theaxiom of finitelimits. It includesthe axiom of the empty
set and guarantees that finite sums, coequalizers, and pushouts all existin S.

4.2 Epimorphisms and Split Surjections

Although seemingly not alimit notion, the concept of monomorphism also has its
dual, that of epimorphism:

Definition 4.5: An epimorphism f is a map that has the right-cancellation prop-

ertyNo, ylof =vf = ¢ =yl

We will use the term epimapping (or epimap) interchangeably with the term
epimorphism for mappingsin S and also use the term epic as an adjective.

Exercise 4.6
Any coequalizer is an epimorphism.

Hint: Recall the dua proof! O

Exercise 4.7

Recall the definition of cograph from Section 2.1. Show that the cograph is an
epimorphism. Show that any retraction of theinjection B > A + B isthecograph
of aunique mapping from A to B. (These results are dua to Propositions 3.24 and
3.25) O

We will study below the relationship between epic and “surjective” (which in
formisnor dual to “injective,” although it does turn out to be equivalent to the dual
in very particular categories such as S).

Thereisactually an important link between cancellation properties and limits.

Proposition 4.8: A map i is a monomorphism if and only if when we form the
pullback of i with itself the two projections are egqual.

Proof: Suppose the square below is a pullback and moreover 7o = 71 = 7.
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If i Xo = iXy, then by theuniversal property of pullbacks, thereisaunique T %~ P
forwhichboth xg = mpX, X1 = m1X. Butsincewehaveassumed rg = 71, thisyields
Xo = X1; i.e. 1 hasleft-cancellation.

Conversely, assumei has cancellation and that g, 71 form apullback of i withi.

Thenin particular i mg = i1, hence by cancellation g = 3. [ |
Exercise 4.9

Without considering the internal picture, show that a map is epimorphic iff two
normally different maps in the pushout of the map with itself are equal. O

Using simple properties of the sets 1 and 2, one can show that in the category of
abstract sets and mappings:

Proposition 4.10: A mapping X —>Y isan epimapping iff it is surjective.
Proof: Assume pisepic, that is, it satisfies the right-cancellation law
p Y1
YoPp = vy1Pp= Yo=Y X—>YT’V

for al V. We want to show that p issurjective, that is

? z y
Vy3Jzpx =] L ?\\

where y is any element of Y with domain 1. To arrive at a proof by contradiction,
suppose that contrary to the desired conclusion there is at least one yp for which
there is no corresponding X, i.e. px # Yo for al x. Take V = 2 and let 1 be the
characteristic function of (the one-element part) yo, but let ¥y be the “constantly
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fase” map Y —2. Then for all elementsx:1— X of X

(¥1p)(X) = ¥a(px)
= falsesincepx # yp and ¥1(y) = trueiff y = yo

= Yo(pX)
= (Yo p)Xx

hence, Y1 p = Yop since 1 is a separator. But then v, = ¥ since we assumed p
epic. However, by the way we defined v and 1, ¥1Yo # ¥oYo, and so we reach
a contradiction, showing that thereis no such yy (i.e., p is surjective).

For the converse part of the proposition, assume that p is surjective and try to
show the right-cancellation property; thus, suppose ¥, p = ¥op, Where V is how
arbitrary, asare vg, ¥r1. Wewill usethefact that 1isaseparator. Let y bean arbitrary
element of Y. By surjectivity of pthereisanelement x: 1— X suchthat y = px,

and so Yoy = Yo(PxX) = (Yop)x = (Y1p)X = ¥1(PX) = Y1y.

1
7/
T s y
v \ Yo
X > Y V

Y1
Hence, ¥ = 1 since 1 separates. Because this cancellation holds for all V, we
have proved that p satisfies right-cancellation, i.e. it is epic. [ |

If westrengthen the notion of surjectivity to demand the extreme case of existence
of prevalues for al generalized elements, not only elements with domain 1, we
obtain the strong condition of split surjectivity:

Definition 4.11: Anarrow X —> Y issplit surjective if and only if

VTVy3alpe = y] N
%

One often expresses this property of p by saying that every y has alift x. To see
why, redraw the triangle with p vertical asis often done for continuous mappings
in topology.

Proposition 4.12: An arrow X —2=Y is split surjective iff there exists a section
for p.

Proof: If p is split surjective, let T =Y and y= 1y, the identity mapping of Y.
Then, asavery specia case of the split surjectivity, there exists x = s such that
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7/ 1Y
S —
// \ pS—lY
»

In other words, p has a section s (usualy there will be many).

Conversely, suppose p hasasection s; thenweareto show that pissplit surjective.
Soconsiderany T andany T —> Y. Thereisan obviousway to attempt to construct
the x we need: try x ] sy

T

s

X Y

p

We then have to show that the x so constructed really maps back to y under p, as
required for split surjectivity:

px = p(sy) by definition of x
= (ps)y by associativity
=1yy sinceswasasectionof p
=Yy

Thus p is split surjectiveif it has a section, and hence the proof of the proposition
is complete. [ |

Since split surjectivity trivially implies surjectivity (just take the special case
T = 1), we have, by means of thelogical equivalencesin the last two propositions,
actually aready proved the following proposition. However, we will also give a
direct proof in the hope of further clarifying the relationship between the concepts.
Note that the proof that followsisvalid in any category.

Proposition 4.13: Any mapping p that has a section is an epimor phism.
Proof: Let s be a section for p. We must show that p has the right-cancellation
property; thus, assume
[z
Yop=y1p X - Y=V
where V isarbitrary. But then

(Yop)s = (Y1p)s
Yo(ps) = ¥1(ps)
Yo=1y1 sSinceps=1ly

as was to be shown. [ ]
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4.3 The Axiom of Choice

The converse of the last proposition, namely that there are no epimappings except
for thosethat actually have sectionss, isnot at all obvious. Oncewehaveasectionin
hand, cancellation becomes the result of aconcrete process of calculation, asinthe
preceding proof, unlike the abstract leap involved in just “doing the cancellation”.
On the other hand, where the section comes from may also be mysterious. The
usua point of view isthat the converse is true for constant abstract sets (and isin
fact a strong testimony to the “arbitrariness” of the mapsin that category), whereas
itisobvioudly false for setsthat are less abstract, less constant, or both (as we will
soon see). The name of the converseis

AXIOM: THE AXIOM OF CHOICE
Every surjective mapping is split surjective (i.e., every epimap has a section).

Much ink has been spilled over this axiom.

Proposition 4.14: Any section s for amap p is a single procedure that
simultaneously chooses an element from each fiber of p

where the important notion of fiber is given by

Definition 4.15: For each X —2~ Y and 1 —Y~ Y, the fiber of p over Y is the
domain of inverse image of the singleton (= one element) part y along p

._1[

X, p~ ] x
1

Proof: (of Proposition4.14.) Since ps = 1y, p(sy) = V. i.e.sy € p~![y]; in other
words sy isamember of the fiber of p over y, but thisisso for all y. [ |

pr

Y

Now (as further axioms of higher set theory reinforce) any reasonable family of
sets parameterized by aset Y can be realized as the family of fibers of somesingle
map p with codomain Y. The setsin the family are al nonempty if and only if pis
surjective (see Exercise 4.16). Hence, the axiom of choice, “Every surjective map



4.4 Partitions and Equivalence Relations 85

is split surjective,” says that any family of nonempty sets has at |east one choice
map that chooses an element from each set in the family.

Exercise 4.16
Show that the mapping p is surjectiveiff each of its fibers has at | east one element.
O

Exercise4.17
Show that the mapping p isinjective iff each of its fibers has at most one element.
O

Thus, a mapping is bijective if and only if each of its fibers has exactly one
element.

Exercise4.18
Show that the mapping from real numbers to real numbers defined by the formula

f(x) = x?(x — 1)

is surjective and hence has sections in the category of abstract sets and arbitrary
mappings. Show, however, that none of these sectionsarein the continuous category
(see Exercise 3.5) because each one must have a “jump”. O

Aswewill seein Appendix B, an equivalent form of the axiom of choice, often
used in proofsin analysisand algebra, is
The Maximal Principle of Zorn

4.4 Partitionsand Equivalence Relations

The dua notion (obtained by reversing the arrows) of “part” is the notion of
partition.

Definition 4.19: A partition of A isany surjective mapping p with domain A. The
fibers of p are called the cells of the partition.

Proposition 4.20: Let A —= | be surjective, and for each 1 —~ | let A; bethe
cell of p over i. Then all the A; are nonempty parts of A; every element of Aisin
exactly one of the A;.

By way of explanation, note that every (not necessarily surjective) mapping with
domain A givesrisetoapartition of A, asdescribedinthe proposition, by restricting
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consideration to those elements of the codomain at which the fiber is nonempty. In
other words, a general mapping specifies more information than just the partition
of itsdomain in that it specifies also the size of the part of the codomain where the
fibers are empty. By restricting to the case where the latter part isempty (i.e., to the
case of surjective mappings), we are in the case of mappings that specify no more
(and no less) than a partition of the domain. This “justifies” Definition 4.19.

(A similar discussion could have been given for thedual concept “part of B”. That
is, any mapping with codomain B givesriseto apart of B, namely the part whose
membersarejust those elements of B that actually are values of the given mapping.
However, ageneral (not-necessarily-injective) mapping specifies much moreinfor-
mation than just this “image” part since the members of the image will have some
“multiplicity,” i.e. will bevalues of the map at more than one element of the domain
(multiplicity = size of fiber). Injective mappings (where all nonempty fibers have
multiplicity exactly one) are just parts, without any additional information.

Hereisatypical cograph picture of a partition of aset A into three parts:

In terms of partitions, the axiom of choice can be rephrased by saying that for any
partition p of any set, there exists at least one choice function s that chooses an
element from each cell of the partition

A I i.e s() €A,
for all 1 —~ I, where
ps = 1; A; is the fiber of p at 1.

The axiom of choice seems quite plausible because we are allowing “arbitrary”
mappings s. In categoriesin which only geometrically “reasonable” mappings are
alowed, the axiom of choice is usually not true; but this only points out that such
categories are distinct from the category of constant sets and arbitrary maps, which
itself exists as an especially simple extreme case with which to contrast the others
(Cantor’s abstraction). Some of the opposition to the axiom of choice stems from
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its consequence, the Banach-Tarski Paradox, which states that a solid ball can
be shattered into five parts of such an unreasonable “arbitrary” nature that they
can be reassembled into two solid balls of the same size as the original. The ab-
stractness of the sets, correlated with the arbitrary nature of the mappings, makes
such paradoxes possible, but of course such paradoxes are not possible in the real
world where things have variation and cohesion and mappings are not arbitrary.
Nonetheless, since Cantor mathematicians have found the constant noncohesive
sets useful as an extreme case with which continuously variable sets can be con-
trasted.
Closely related to the notion of partition is the concept of equivalence relation.

Definition 4.21; Arelation Rfrom X toY isapart R ®PY X x Y of the product
of XandY.If X =Y, wespeak of arelationon X. Theopposite of a binary relation
Risthebinary relation fromY to X with projections p; and po. It is denoted R°P,

Notice that there is an abuse of language in omitting the projections involved in
defining the binary relation R — and as a mapping R has the same domain as R!

Exercise 4.22
R% actually isapart of Y x X.

Hint: Usethe “twist” map tx y O

Supposethat A —% | isapartition, and let the following diagram be apullback:

Rp o A
pll @
A——F—1
Exercise 4.23
The resulting arrow R, ™2 A x A is amonomorphism. 0

Thus, Ry isarelationon A. It hassomespecial propertiesweareabout to explore,
but notice that the proof that (pg, p1) ismonic does not depend on thefact that pis
epi. We will need that only when we come to the proof of Proposition 4.32 below.
With A astest object and the identity mappingsto the vertices of the pullback above
we obtain amapping r : A— Ry:
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The mapping r satisfies por = 14 = paf. In generdl,

Definition 4.24: A relation R ¢®:PY X » X on X is called reflexive iff thereisa
mapping r : X — Rsuchthat pgr = 1x = par.

Exercise 4.25

Recall the diagonal map X -2 X x X. A relation R is reflexive if and only if it
contains the diagonal part, or if and only if for any (generalized) element x of X
we have (x, x) isamember of R. O

Combining thefact that (po, p1) ismonic with uniqueness of mappings to prod-
ucts, weseethat for areflexiverelation, r isunique. Thus, arelation either isor isnot
reflexive. In Section 10.4 we will study reflexive graphs determined by two sets E
and V and threemappings: s,t: E—V andr :V — E suchthat sr = 1, = tr.
Inthat caser ispart of the reflexive graph structure and need not be unique because
(s, t) need not be mono.

Therelation Ry, has two additional important properties we now define.

Definition 4.26: Arelation R {®PY X » X on X iscalled symmetric iff
R%P EXXX R.

Exercise 4.27
A relation R is symmetric if and only if for any (generalized) element (x, y) of
X x X we have

X, ¥) e R= (y,Xx) e R

if and only if the restriction of the twist mapping zx x to Riscontainedin R.

Exercise 4.28
Therelation Ry, is symmetric. O
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A third important property of R, isthe following:

Definition 4.29: Arelation Riscalledtransitive if and onlyif for any (generalized)
elements (x, y) and (y, z) of X x X we have

X, ¥y)eR& (y,2) e R— (X,2) € R

Exercise 4.30
Therelation R, associated to amap A —> | istransitive. 0

Combining these properties of Ry, we make the following definition:

Definition 4.31: A relation R on X is called an equivalence relation iff it is
reflexive, symmetric, and transitive.

Now if westart with an equivalencerelation R on X, wemay form the coequalizer
of R % X, which we denote by X 22 Pg. Thisisapartition of X. (Weobtaina
partition of X by forming the coequalizer of any two mappings with codomain
X —itisthe specia properties of equivalence relations that allow the next result.)
Taking the equivalence relation of a partition of X and taking the partition from an
eguivalence relation on X are inverse processes.

Proposition 4.32: If p isa partition of X, then p = pg,. If Ris an equivalence
relation on X then R = Ry,..

Exercise 4.33
Prove Proposition 4.32. O

4.5 Split Images

There is a version of the choice axiom that does not assume the given map is
surjective and correspondingly produces another map that is in general somewhat
less than a section.

If X —>Yis any mapping, provided X is nonempty, there
exists Y —2>- X for which fgf = f.

Exercise 4.34
Show that the principle just enunciated is equiva ent to the axiom of choice. (What
do you need to assume about the category to prove this equivalence?) 0

Proposition4.35: If fgf = f and f isepimorphic,then fg=1y (i.e,, gisasection
for ).
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Proof: fgf =1y f and f isright-cancellable. [ |

Proposition 4.36: If fgf = f and f is monomorphic, then gf = 1x (i.e, gisa
retraction for f).

Proof: Exercise. [ |

It will berecalled that we proved earlier that if X ', Yismonicand X # 0, then
f has aretraction using only the existence of complements for all parts and that
any nonempty set has an element; thus, this monic case of the fgf = f principle
does naot involve “choice” functions. The fgf = f principle can be used to derive
the main properties of theimage factorization of amapping f (whichweillustrate
with external and internal diagrams)

=1ip
\ / i mjectwe
p surjective

for any f by strengthening it to a split image (meaning p has a splitting or section
s):

f
){ Y f=ip
\ p e .
\ / i injective
N 1
SN I ps = ]-I

Exercise 4.37
If the factorization f = ip isasplit image for f, theni is the part of y whose
members are exactly all those elements of Y that are values of f;i.e.,

VT 4> Y[y ei < [y = fx]]
0

The section s in the split-image concept is not determined by f (even though the
imagefactorization f = i pisessentially determined), but ontheother handit makes
some calculations somewhat easier. The next few exercises are concerned with
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showing how split images can be derived from the pseudosections g for arbitrary
nonempty X.

Exercise 4.38
If fgf = f,wecanexplicitly define (by composition) another “better” g for which
both

o c o~ fur=1

X 5 Y and
\;/ 9/9=9

The improvement process goes no further: g = 7; i.e. if g aready satisfies both
equations, the process (~) will not change it. O
Exercise 4.39

If f =ip,where phasasectionsandi hasaretractionr, andif we defineg ot sr,
then the resulting g will already satisfy both fgf = f andgfg = g. O
Exercise 4.40

Suppose fgf = f andleti beanequalizer of fgwith 1y, whereY isthe codomain
of f. Show, using the universal mapping property of equalizers, that a unique
map p exists for which f = ip. Show that pgi = 1g and hence that if we define
s¥ gi,r o pgwegetthat ps = 1, andri = 1g. Moreoverir = fgandsp = gf.
How must g berelated to f in order to have further that g = sr? O

Although most categories do not have split images, often they do have image
factorization f = ipinthesensethati isthe smallest part of the codomain through
which f factorsand p isthe proof that f belongstoi. (It then followsthat pisan
epimap.)

With images avail able we can define acomposition of relations and give another
characterization of transitive relations.

If R-®PL x » Y isarelation from X to Y and S -®%L v x Z isarelation
fromY to Z, wedenote by S xy R the pullback of p; and qo; thus, we have

SXyR

p2 q2

R S
N TN
X Y Z
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Definition 4.41: Therelational composite of R and Sistheimage
So R = l(p,p,, qugp) Of the mapping (pop2, Q102) : S xy R—= X x Z.

Note that the graph y; of amapping X ' Yisareationfrom X to Y.

Exercise 4.42
If X—>Y and Y 2> Z then ygr = y4 0 ¥1. 0
Exercise 4.43
A relation R ¢PPL %« X on X istransitiveiff Ro R Cx«x R. O

4.6 The Axiom of Choice asthe Distinguishing Property
of Constant/Random Sets

Much of mathematics revolves around determining whether specific maps f have
sections s or not. In ageneral way thisis because the sets of mathematical interest
have some variation/cohesion within them and the maps (such as s) in the corre-
sponding categories are accordingly not “arbitrary”. However, for the category S
of constant sets and arbitrary maps, the axiom of choiceisusually assumed to hold.

Thename“choice” comesfromthefollowing observation: A map X " Ycanbe
viewed as afamily of sets

Xy ={x[fx=y}

parameterized by the elements y of Y. Then a section s for f isasingle rule that
chooses one element from each set in the family:

fs=1y = f(sy) =y = s(y) € Xy foreachy

The notion of part (including membership in apart and part defined by a condition)
asjust used in the explanation of theword “choice,” can itself be entirely explained
in terms of composition of mappings (without assuming rigid membership chains
or imposing an a priori model for every part).

The axiom of choiceimpliestwo other properties (which will not both be true of
genuinely variable sets), both of which can be stated in terms of parts. The Boolean
property statesthat for any partio : Ag——— X of any set X thereis another part
i1 A;—— Xof X (thecomplement of Ag) suchthat X isthecoproduct of Aqand
Ag;ieforalY,forany pair of arrows fo: A—=Y, f;: A; —Y with codomain
Y there existsaunique f : X —Y, making the diagram below commutative:
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It can be proved that the Boolean property follows from the axiom of choice.
Now we only point out the randomnessimplied by the Boolean property: The maps
fo, f1 canbe specified independently (no compatibility required on any “boundary”
between Ag, A;) and still be part of asingle map (on the whole X) that the Boolean
category allows; moreover, the uniqueness of theextended map f showsthat Ag, Ay
together exhaust X (for if there were any additional part, f could be varied on it
without disturbing the condition that f restricts to the given fq, f1).

There are many important categories of variable sets that satisfy the Boolean
property without satisfying the axiom of choice. The most important such examples
are determined by groups, and in Chapter 10 we will study enough group theory to
understand in a general way how these examples operate.

The other very restrictive consequence of the axiom of choice is sometimes
called the localic property or the property that “parts of 1 separate”. Recall from
Exercise2.44thatin S/ X theterminal object has many partsin general, and indeed
they separate maps in that category. In all of our categories there turn out to be
suitable objects B such that “parts of B separate,” meaning that there are enough
elements whose domains are (domains of) parts of B to distinguish maps between

any X,Y:
f:
z ’ H# fo=
JAdidx 4 is mono and
fiz # fox

A category of setsiscalled localic if thisholdsfor B = 1.

It can be shown that the localic property follows from the axiom of choice. Al-
though most of the examples of categories of variable sets are not localic, there are
agreat many that are localic even without satisfying the axiom of choice. The most
important localic examples correspond to topological spaces. In Exercise 10.27 we
will learn enough about topological spaces to comprehend how sets varying over
atopological parameter space “restrict” from one open region to a smaller one.
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There are a great many groups and a great many topological spaces, and each
one of each gives an example of a category of variable sets. But examplesthat are
both localic and Boolean and yet do not satisfy the axiom of choice are harder to
come by and indeed have only been known since Cohen’s 1963 discoveries. The
study of such “independence proofs” is a part of the multifaceted lore of variable
sets.

4.7 Additional Exercises

Exercise 4.44
Prove Proposition 4.20.

Exercise 4.45

(a) Show that the category of finite-dimensional vector spaces has finite colimits.

(b) Show that in the category of finite-dimensional vector spaces epimorphisms
are surjective linear transformations and, moreover, any epimorphism has a
section.

Exercise 4.46

(&) Show that in a dice category S/ X a morphism h from f: A— X to
g: B—— X isan epimorphism iff h isasurjective mappingin S.
(b) Show that the slice categories S/ X have finite colimits.

Hint: They are computed using colimitsin S.

Exercise 4.47

(@) Show that epimorphisms in the category of M-sets are equivariant mappings
that are surjective.
(b) Show that these categories have finite colimits.

Hint: They are computed using colimitsin S.

Exercise 4.48

(a) Show that the category of partially ordered sets has finite colimits.

(b) Show that epimorphismsin the category of partially ordered sets are surjective
(order-preserving) mappings.
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Exercise 4.49
Describe equivalence relations in the categories S/ X.

Exercise 4.50
Describe equivalence relations in the categories of M-sets.

Exercise 4.51

(a) Describe equivalence relations in the category of groups. In the category of
groups equivalence relations are called congruences. The congruences on a
group correspond bijectively to the normal subgroups.

(b) Show that the analogue of Proposition 4.20 holds in the category of groups
(whereit isusually called the First Isomorphism theorem.)

Exercise 4.52
Show that the axiom of choice holds in the categories S/ X.

Exercise 4.53
Show that the axiom of choice does not hold in the category of groups.

Exercise 4.54
Show that the axiom of choice does not hold in general in the category of M-sets.

Hint: Thereisavery small counterexample using the action of aone-letter al phabet
on setswith at most two elements. In fact, it can be shown that the axiom of choice
failsin M-setsunless M isthe monoid with only one element (in which case M -sets
areequivalent to S).

Exercise 4.55
On the other hand, if amonoid has aninversefor every element (i.e., isagroup G),
then as mentioned in Section 4.6 the Boolean property holds for G-sets.

Hint: Consider the nature of monomorphismsin G-sets; they are rather special.



5
Mapping Sets and Exponentials

5.1 Natural Bijection and Functoriality

The essential properties of the product operation can be summed up by the figure

@ X—>YOXY1

X—Yy, X—Y, a

where the horizontal bar will be interpreted in such contexts to mean there is a
natural process that, to every arrow of the type indicated above the bar, assigns one
of the type indicated below the bar, and there is also a natural process from below
to above, and these two natural processes are inverse to each other in the sense that
following one process by the other gives nothing new. Of course, in the example of
products the two processes in question are supposed to be

(1) taking the components of a map whose codomain is a product, and
(2) “pairing.”

Just from the idea that there should be such a couple of inverse processes, we can
(by a “bootstrap” procedure) discover more specifically how the processes must
work. Namely, from the presumption that @ should function for all X, Yy, Y;, and
for all maps as indicated, we can deduce two special cases: Let Yy, Y; be arbitrary
but suppose X = Y, x Yi; then, we make the very special choice “above the bar” of
ly,xy, which will correspond to something specific, namely, the projections below
the bar

Y()XY]—1>Y()XY]

Y0XY1ﬂ>Y0,Y0XY1L>Y1

Returning to the general X, the same projections are the means by which, through

96
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composition, the general top-to-bottom processiis effected as follows:

X$YOXY1

X 2Ly, x 2Ly,

Of course the bottom-to-top process is usually just indicated by pairing (the result
of which is often denoted by brackets),

X (fo. f1) Yo x Yi

T
X Loy, x iy

but this can also be analyzed further: First consider the special case in which X is
arbitrary but both Yo = X and Y; = X; then, we have the possibility of considering
the very specia pair of maps below the bar, which by the pairing process will lead
to a specific map

X 2 xxXx

x oy x oy

known asthediagonal 6y = (1x, 1x). Thediagonal helpsviacomposition to effect
thegeneral caseof the pairing process provided onefirst devel opsthe “functoriality”
of product (which can also be regarded as deduced from the basic @ ):

If Xo o, Yo, X1 i Y1 are any two mappings, thereis an induced map

XoXXlﬁj—XQYOXY]_

called the (Cartesian) product of thetwo mapsthat is characterized by the equations

XOXXI%YEJX}/I

l \ plfo X 1) = fie
k=0,1

Xk Yy

J

or, in terms of values, by

(fo x f1)(xo0, x1) = ( foxo, f1x1)
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Exercise5.1
(“Functoriality of product”) If Yo 5% Zo, Y, %% Z, are further maps, then

(go x g1)(fo x f1) = (g0f0) x (g1./1) o

Now the analysis of the pairing in terms of the product of maps and composition
with 8y isjust this:
If Xo=X, Xl_Xandle —> Yo, X —> Ylthen

(fo. f1) = (fo x f1)dx

asiseasily checked by following both sides of the equation with the projections.

This two-level method, applied here to summarize the transformations possible
with the product construction, will be applied to many different constructions|ater,
S0 let usrestate the levels: The crude idea that there should be a natural invertible
process |1 between maps of two kinds is refined to a precise suggestion of how
the process can be carried out, namely, to apply afunctoria construction and com-
pose with a specific map; a relationship between the two levels is essentially that
the crudeideaof theinvertible process, applied to avery special caseandtothevery
specia identity map, yields that specific map, which can be used in composition to
help effect the process.

5.2 Exponentiation

We will now discuss another important construction, that of exponentiation or
mapping set, wWhose description involves a strictly analogous two-tier process for
objects X, Y and B:

X—>Y5B

X X B—Y v

Immediately we can derive from this crude idea what the elements of Y2 must be
by considering the specia case X = 1. The process

1—v8

B—Y
must be an invertible process (recall from Exercise 3.22that 1 x B = B), i.e. there

must be just as many elements of Y # asthere are actual maps B — Y.
Now if we are given any map

XxB-Isy
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whose domain is equipped with a product structure (frequently one refers to such
f as afunction of two variables), then for each element 1 —= X of X we can
consider (with x the constant composite: B — 1 —*= X)

X x B
N
B . Y
In other words f, isthemap B—Y whose value at any element b is

fx(b) = f(x, D)
Thatis, suchasinglemap f onaproduct X x B givesrisetoafamily, parameterized
by X, of maps B— Y. Depending on the size of X and on the nature of f, one
may have (but usually will not have) the following two properties:

(1) Every map B—Y occursas f, foratleastonel — X (i.e, every B—Y
has at least one “name” provided by the scheme X, f).

(2) fr, = fr, Only when x1 =x», (i.e., “nameable” maps B—Y have only one
“name”.)

In case both properties are true, one often writes Y # in place of X and callsthemap
Y® x B —> Y evaluation (rather than callingit f).Forany B —/> v let1 -5 yB
be the unique element of Y # guaranteed by the properties (1) and (2); then we have
fordl f,b

1 B
ak)) [f eval("f,b) = fb
YBEx B———Y
eval

Suchauniversal map-parameterizing scheme (onewhich doesenjoy both properties
(1) and (2)) will have auniquerelationship to any map-parameterizing scheme X, f
(inwhich X x B L.y and any 1 = X names B N X), as expressed by the
natural invertible process

!’f‘l YB

X —
— U
XxB—Y
namely,
I—fo e !—fx—l
Thus, this extended naming processis related to the evaluation map by

eval("f7x, b) = f(x, b)
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or
eval(" /7 x 1) = f

For any f, ™ f7 isthe only map for which the latter equation is true, and thus we
can say briefly that any f is uniquely derivable from the evaluation map.

Asan exampleimaginethat the elementsof B represent particles of acontinuous
body of matter (such as a cloud); also imagine that a set E represents the points of
ordinary space and aset T represents the instants of time within a certain interval.
Then,

E® = placements of B

isaset, each element of which determines an entire map B — E telling where in
E each particle of B is(i.e., aplacement of B in E). Thus, a motion of B during
thetime interval T could be considered as a mapping

T m? EB

whose value at any instant is a placement.
By the fundamental transformation law for mapping sets, "m ™ corresponds to a
unique

T xB-"~E

which represents the same motion in a different mathematical aspect: for each
instant ¢+ and particle b, the value m(z, b) is the point in space at which the particle
b findsitself at instant ¢ during the motion. But thereis still athird way to describe
the same motion. Because of the natural twist map B x T — T x B, we have
B x T ™~ E, and hence by adifferent instance of the fundamental transformation
we find

B~ ET
which seems to describe the motion equally well. Here
ET = pathsin E

is a set, each element of which determines a whole map 7 — E from instants
of time to points of space (i.e., a “path”). The given motion determines, for each
particle b, the whole path that 5 follows during 7. The expressions
B—ET
BxT—E
T —E"
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are thus the three descriptions of the same motion of the cloud. The first and last
involve the infinite-dimensional function spaces E7 and E®, whereas the middle
oneinvolves only the finitedimensional B x T —>T x B.

Although maps whose codomain is a function space (= mapping set or expo-
nential) can always be “transformed down” in the indicated manner, nothing of the
sort istrue in general for mappings whose domain is a function space. Mappings
whose domain is a function space are often called

Operators or Functionals

and include such things as differentiation and integration. An example of an inte-
gration functional ariseswhen we consider the mass distribution on the body B and
the resulting map

EE s E

whose value at any placement is the center of mass (which isapoint of E) of that
placement. Thus, the description of a motion by means of

T—E?"

is necessary if we want to compute by composition
EB

the map whose typical valueisthe instantaneous position of the center of mass. On
the other hand, atypical differentiation operator is the “velocity”

T E

ET —vT

whose value at any path of pointsis the corresponding path of velocity vectors. If
we are to calculate the velocity field resulting from a particular motion m of an
extended body B, the appropriate description of the motion will be

B—=ET

for then we can just calculate by composition

ET

moti(V wfferentiate
B T

eV
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and then apply once again the fundamental transformation to get "vt ™
T—V5

whose value at any instant is the velocity field over the body.

5.3 Functoriality of Function Spaces

We will take as an axiom the following:

AXIOM: EXPONENTIATION AXIOM

For any two sets B, Y there exists a set Y5 and an evaluation Y x B 2% Y having
the universal property that for each X and for each X x B Lo Y thereisa unique
x L ys for which eval (" f7 x 1g) = f. Briefly,

x Loys
XxB-I-vy

with the evaluation map arising as the unique f for which™ f7 = 1ys.

B
Proposition 5.2: If Y1 —%> Y, then there is a unique Y Y~ Y for which
PreT="gg7  BE11HY,
forall g.
Proof: The axiom saysthat to construct a map whose codomain isafunction space

Y2 it suffices to construct the corresponding map whose domain is a product, in
our case Y x B. But thisis easily done as the following composition:

foBLall>Y1—¢>Y2

YE % vp
Notice that this means that ¢® = "¢ eval;™ by the axiom, and thus
evala(¢® x 1) = ¢ evaly

Furthermore (¢® x 15)("g™ x 13) = ¢®7¢7 x 1. Thus,
evala(p”mg™ x 1) = evala(p” x 1p)("g" x 1p)
=g evaly("g7 x 1p) = g
= evaly("pg™ x 1p)

That is, both ¢~ g™ and "pg ™ give the same result when crossed with 1z and then
composed with eval,. Since the axiom states the uniqueness of maps yielding a
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given result under this two-step transformation, we conclude that they are equal, as
Proposition 5.2 called for. [ ]

Remark: Notethat the argument worksjust aswell if g™ isageneralized element
of Y2, that is, for X x B —%> V.

Exercise 5.3
If Yy —%> Y, —Y~ Ya, then
(Wp)® =yBp® .

The preceding exercise establishes the “covariant functoriality of induced maps
on function spaces” with given domain B. But if we fix the codomain space Y and
instead | et the domain space B vary along maps, we find that there are again induced
maps on the function spaces, but of a contravariant nature, in the following sense:

Proposition 5.4: If B, N B; then thereisa unique
YBl Lﬁ_ Y82

for which
Yﬁr91 =rgp”

for all g.

Proof: Againwe construct by compositionthemap Y& x B, —= Y that uniquely
corresponds by the fundamental transformation of the axiom to the Y# desired:

VB B, 2L yB g, ¥y
This can be done aong the lines of the proof of Proposition 5.2. [ ]
Proposition 5.5: If B3 —*= B, _F B, then

Yhe — yayh

Proof: The proof of the propositionissimply a“higher” expression of the associa-
tivity of composition in

By—2% -B—" B
|
lg
1

y
Y
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Oneway Y#rg™ = gB™; hence,
Yﬂlyﬂrg—l — Y"‘rg,B"' — !—(gﬁ)a—l
but the other way
Yﬂarg‘l — rg(lga)‘l

hence the two are equal for each g, which accounts for the conclusion. [ |

In case B, —£> B isinjective, then Y8 —Y% Y js often called the operator of
restriction (of maps, restriction to the smaller domain along the part of their origi-
nal domain).

The next proposition shows that the operation on mappings that we take as most

fundamental, namely composition, can itself be expressed viaan actual mapping —
at least when the three setsinvolved are fixed.

rch

Proposition 5.6: Thereisamap Y,* x Y2 <= Y2 such that
rcj(l—(p"l, I_g—l) — r@g‘l
for all

B-LvY,- %Y,

Proof: Define ¢ by:

Y2 xYE x B . Y,
1$ 4
Y:ZYI X Y1

Notethat "¢ can be further transposed by another instance of the axiom to give
Yyt — (Y2

whose value at any "¢ is the name "¢ B of the (covariantly) induced map on the

function spaces with domain (= exponent) B. That is, the inducing operation is

itself represented by a mapping. In a similar fashion (taking a differently labeled
instance of c¢) the third way (asin our example of motion) yields

BE2 — (YB2)(Y™)

representing the contravariant-inducing process by an actual map.
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Recalling that the set 2 represents, via the notion of characteristic function, the
arbitrary parts of an arbitrary set B,

B—2
?2C—~=B
we can combine this bijection with the function-space axiom to get

1— 28
?2C——~= B

0 that the elements of the set 2B serve as effective names for the arbitrary parts
of B and, in particular, the “number” of parts can be defined to be the number of
elements of 28. Moreover, the meaning of the evaluation map in this case is just
“membership”:

98 B eval 2
eva(T¢7, b) = ¢b
thus, if ¢ isthe characteristic function of apart i, we could define
[bei]=eva("¢™, b)
as the truth value of the statement that b isamember of i.
Exercise 5.7
If B, > By, then
281 A 282
represents by a map the operation of taking the inverse image along g of arbitrary

parts of By. O

To justify the use of the exponential notation for function spaces, we will show
that for finite sets the number of maps from B to Y isthe numerical exponential —
number of elements of Y to the power number of elements of B.

Proposition 5.8:
YO -1
YA+B o YA % YB

Proof: To construct 1 — Y isequivalent to constructing 1 x 0 — Y, but since
O0x1-—=>1x0, that is equivalent to constructing 0 —= Y2, which is unique;
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the composite 1 — Y% — 1 is the identity because maps to 1 are unique, and
the composite Y? — 1 — Y? must be the identity since it corresponds to a map
0—= (Y)") of which thereis only one. For the second statement from the propo-
sition consider theinjectionsi a, i g into the sum A + B; by the functoriality of Y()
these induce “restriction” maps YATB — YA YATB _ YB which can be paired
toyield

v'ae

YA+B YA XYB

the map mentioned in the statement, which we want to show is invertible. To
construct an inverse we must construct first a candidate

YA x YB . YA+B
which is equivalent to constructing
A + B ﬁY(YAXYB)
which must necessarily be the “copair” of two maps
A—> Y(YAXYB)
B—- Y(YAXYB)
But such a couple of mapsis equivalent to
YA X YB YA
YAxYB —YB
for which the obvious choices are the projections; tracing back through the equiv-
alences, we then have our map
YA % YB . YA+B
whichwemust show istheinverse. Themapisthe onewhosevalueat apair of names
is the name of the copair,

r fal
(Tfa7, " g™ goesto { A
fg
which isindeed clearly inverse to the previous one whose value at " f 7 is
(Tfia?, " figT). [ |

Notice that the effect of Proposition 5.8 is to represent the invertible process
characteristic of sum
A+B—Y
A—Y,B—Y

2



5.3 Functoriality of Function Spaces 107

asan actua invertible map. In asimilar way the processes characteristic of product,
and even the processes characteristic of exponentiationitself (1), can be represented
by actual invertible maps by allowing the exponentia sets to intervene, as will be
shown in the following two propositions.

Proposition 5.9:
1B =1
(Yox Y1)B == Y2 x YP
Proof: Since the assertions of the proposition are that certain specific maps are

invertible, we must find these inverses. The inverse of the unique 1B —= 1 isthe
“name”’ 1— 1B of the unique B— 1. Themap (=, 7 ) hasan inverse,

Yo x Y© —(Yo x Y1)®
which is constructed as the map corresponding to

YEXYExB —>YoxY;
where

6(!‘901’ Fgl‘l’ b) = (gob5 glb>
|

Thus Proposition 5.9 internalizes or objectifies the defining property of the ter-
minal object and the defining process of the product concept.

Proposition 5.10:
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define the two maps inverse to each other for the first “equation”. For the second,
we have

yAxE 1, {}/b’)}( (Yb‘))( I yAxE
YX 8 e X 4 (YE) YE* x (X xB) 4 Y
Y¥Bx X xB ey (VB xX)xB %
r:vam A‘;
(YB)x B

Schematically, the first map is™ f '+ "x+— f(x, —)7, and itsinverse is "¢ >
(X, b) = (¢x)(b)™. (Do Exercise5.16.) Thus, theinvertible map of the proposition
internalizes the process
XxB—Y
X—YB
which is the defining property of exponentiation itself. [ ]

More surprising is that the existence of exponentiation implies a fundamental
“equation” that does not mention exponentiation but is only concerned with the
lower-order operations of sum and product. We refer to the distributive law, which
isdiscussed in Section 7.2.

5.4 Additional Exercises

Exercise5.11
In Exercise 3.46 we saw that the linear transformations between finite-dimensional
vector spaces V and V' have a natural commutative group operation. In fact they
even form a vector space, often denoted L(V, V'). Thisis easily seen by remem-
bering that the linear transformations may be represented by matrices (though this
representation depends on choosing bases for V and V).

Show, however, that L(V, V') does not satisfy the exponential axiom.

Hint: Thereisasimple dimension argument to show this.

Exercise 5.12
The categories S/ X have mapping sets. To see how these are constructed, let
A% XandB £~ X be objects. We canwritetheseasfamiliesof fibers: {(Ay)xex
and (By)xex. The mapping set o has, as fiber over the element x, the mapping set
in S denoted A2~

Show that «? has the correct universal property.
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Exercise5.13

For any monoid M the category of M-sets (see Exercise 3.51) has mapping sets.
Construct these from the equivariant mappings and show that the universal property
holds.

Hint: The construction is alittle more subtle than might be supposed. However, if
M happens to be a group, your general description of the M-set Y* for M-sets X
and Y can be shown to be equivalent to the following simpler description: Consider
the set of all arbitrary mappings from the underlying set of X to the underlying set
of Y and define on it an appropriate action of M.

(Caution: If your definition of this appropriate action does not explicitly involve
the inverse operation of the group, you will not be able to prove the universal

property.)

Exercise 5.14
The category of partially ordered sets has exponentials. If X and Y are partialy
ordered sets, the mappings from X to Y, which are order-preserving, have anatura
order inherited from the order on Y.

Show that this ordered set has the universal property of the exponential.

Exercise5.15
Complete the proof of Proposition 5.9 by showing that the maps defined areinverse
to each other as claimed.

Exercise 5.16
Completethe proof of Proposition 5.10 by showing that the mapsdefined areinverse
to each other as claimed.

Exercise 5.17
Let A and BB be categories. The concept of functor F from A to B is defined in
Appendix C.1, aswell asin 10.18.

() Show that the assignments A(X) = (X, X) for any set X and A(f) = (f, f)
for any mapping f defineafunctor A : S—S x S; A iscalled the diagonal
functor.

(b) Show that the assignments (— x B)(X) = X x B for any set X and
(— x B)(f) = f x 1 for any mapping f defineafunctor (— x B) : S§—S.

(c) Show that the assignments (—)B(X) = XB for any set X and (—)B(f) = fB
for any mapping f define afunctor (—)B : S —S.



110 Mapping Sets and Exponentials

(d) Show that the assignments — x —(X, Y) = X x Y for any pair of sets (X, Y)
and — x —(f,g) = f x g for any pair of mappings (f, g) define a functor
—-x—:8x8—S.

(e) If V and W are vector spaces considered as categories (Exercise 1.31) show
that any linear transformation between them is a functor.

(f) If Xand Y are partialy ordered sets considered as categories (Exercise 1.31),
show that a functor between them is the same thing as a monotone mapping.
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Summary of the Axioms and an Example
of Variable Sets

6.1 Axiomsfor Abstract Setsand Mappings

We have now seen most of the axioms we will require of the category S of abstract
sets and mappings. As we progressed, some of the earlier axioms were included
in later axioms. For example, the existence of the one-element set is part of the
axiom that S has finite limits. Although we did not insist on it earlier, it is also the
case that some of the axioms are more special than others. By this we mean that
even though they hold in & they will not generally hold in categories of variable
or cohesive sets. Thus, we are going to review the axioms here so that they can be
considered all at once and grouped according to their generality.
The very first axiom, of course, is

AXIOM: SIS A CATEGORY
We have been emphasizing all along that the fundamental operation in a category,
composition, is the basic tool for both describing and understanding all of the other
properties of S.

The next group of three axioms is satisfied by any category of sets, variable or
constant. In fact a category satisfying them is called a topos (in the elementary
sense), and these categories have been studied intensively since 1969.

AXIOM: FINITE LIMITS AND COLIMITS
S has all finite limits and colimits.

AXIOM: EXPONENTIATION
There is a mapping set YX for any objects X and Y in S.

AXIOM: REPRESENTATION OF TRUTH VALUES

There is a truth value object 1 —'> Q, i.e. there is a one—one correspondence be-
tween parts (up to equivalence) of an object X and arrows X — Q mediated by
pullback along t.

111
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Some of the consegquences of these axioms have been studied already. Note that
the truth value object 2 is not required to be 1 + 1. Indeed, in the next section we
will seeafirst example of variable sets, and it will beimmediately obviouswhenwe
compute the truth value object therethat it isnot 1 + 1. Thus, we now need to sepa-
ratetwo propertiesthat were merged in stating the truth-valuesaxiomin Section 2.4.

Since Q is atruth value object, the monomapping 0 ——  has a character-
istic mapping called — : @ — Q. Precomposing with 1 —~ © defines another
element of Q2 called f for false.

AXIOM: S ISBOOLEAN
Q isthe following sum: {tf :1+1— Qwheretheinjectionsaret and f.

The special toposes which (like S) satisfy this last axiom are called Boolean
toposes; they allow the use of classical logic (see Appendix A).

The next axiom has not been explicitly stated until now. We explain why below,
but it should be pointed out that there are Bool ean toposes that do not satisfy it. For
example, the category S/ X is aways a Boolean topos, but if X has more than one
element, then the category does not satisfy this axiom.

AXIOM: S ISTWO-VALUED
Q has exactly two elements.

The two elements of 2 must then bet and f. The axiom is equivaent to there-
quirement that 1 has exactly two parts.

Exercise 6.1
Prove that S/2 is not two-valued. O

AXIOM: THE AXIOM OF CHOICE
Any epimor phism has a section.

Thus, as we have already pointed out, there is a representation of the cells of a
partition by a choice of elements of the domain of the partition. This axiom has
a very different character from the others. For one thing it can be shown that it
implies the Boolean axiom (see McLarty [M92], Theorem 17.9).

The axiom of choice also implies, as a specia case, that for any set X the
epimorphic part of the unique mapping X — 1 isa split epimorphism. Since this
image is called the support of X, this specia property is sometimes referred to by
saying that supports split.
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The principlethat nonempty setshave el ementsisfal sein most toposesof variable
or cohesive sets; moreover, there are several different precise meaningsto the term
“nonempty” relative to which the principle may be true in various specia cases.
Rather than just X not equal to 0, the requirement that the terminal map X —1
be an epimorphism is sometimes a more reasonable expression of the idea that X
is not empty.

Recall that we assumed in Chapter 1 that S satisfies two other important pro-
perties:

(i) lisaseparator, and
(il) inS wehaveO # 1.

A topos that satisfies (i) and (ii) is called a well-pointed topos. It is a theorem
[MM92] that a topos is well-pointed if and only if it is Boolean, two-valued, and
supportssplit. Asaresult, thetwo propertieswerequired for S in Chapter 1, namely
(i) and (ii), that isthat S iswell-pointed, are actually consequences of theaxiomswe
have already stated. Conversely, our assumption in Chapter 1 that S iswell-pointed
implies that S is Boolean and two-valued. It also implies the special case of the
axiom of choice called “supports split”.

There is one more axiom we will require of S. The axioms so far say nothing
about the possibility of mathematical induction. When a starting element of a set
and a process for forming new elements of the set (an endo-mapping) are given, a
unique sequence determined by the starting element and the process should result.
Mathematical practice usually makes the idealization that al such sequences are
parameterizations by asingle object N; such an N must be “infinite”. However, the
axioms we have so far do not guarantee the existence of such an object; we will
consider it in Section 9.1. In fact, within any category of sets that has an infinite
object it is possible to find a Boolean topos that does not have such an object.

In summary then, we can say precisely what we mean by a category of abstract
sets and arbitrary mappings. It is a topos that is two-valued with an infinite
object and the axiom of choice (and hence is also Boolean). Experience shows that
mathematical structures of all kinds can be modeled as diagrams in such a topos.

We conclude this section by fulfilling the promises made within Claim 3.4. The
first of these is the following:

if X #£0, then X hasan element 1— X.

We will show that X # 0= X —1, and then the axiom of choice provides the
element weneed. Now the(split) imagefactorizationof X —lasX —| &——1
determines a subobject of 1. Since S istwo-valued and Boolean, there are only two
mappingsl—1+ 1 = Q. Theseclassify the only two subobjectsof 1, which thus
must be 1 and 0. Hence, | iseither 1 or 0. So we will have completed the proof if
we know that X — O implies X = 0.
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Exercise 6.2
Show that X x 0 -~ 0 is an isomorphism.

Hint: Recall that YO = 1. Use this to show that any arrow X — 0 has an inverse.
O

The second promise was that every part X =Y has a complement
X' <"~ Y. One way to see this follows from the next exercise:

Exeruse 6 3
Let Ag =% A+ A; <1 A;beasumand B -2~ Ag + A,. Inthediagramfollow-
ing with both squares defined to be pullbacks we have that the top row is asum.

Jo J1
0 B B,

8

Ap Ao + Ay Ay

O

Now, to fulfill the second promise, we may take the sum diagram for 2 (since S
is Boolean!) as the bottom row and use the characteristicmap Y —2 2 for X asg.
We conclude that Y isthe sum of X and X’ since X' is by definition the pullback
of ¢ along thefalsemap f.

6.2 Truth Valuesfor Two-Stage Variable Sets

Perhaps the simplest kind of variable set (beyond the constant kind whose category
S has been studied up to now) is the category S?* of two-stage sets with only
one connection between the stages. Here we will use the symbols2 =|U —1
to suggest a (previous) stage U, which, together with a present stage constitutes a
total movement 1. A set X inthe category S2” of all setsundergoing this movement
will be analyzed in terms of constant setsin S as

X1
£x
Xv
Here X1 in S isthe set of elements of X that persist throughout both stages, Xy in
S isthe set of elements of X that persisted through the previous stage, and &x is

the map describing the internal structure of X by specifying for each element x of
X1 the element (of Xy) that x “was” during the previous stage U ; the result of this
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specification is denoted by £x(x). A map X — Y in S2” isanalyzed asapair fi,
fu of mapsin S for which &y f1 = fyéy, that is the square below commutes:

X Y
X, bil Y
&x l &y
Xy fu Yy

Exercise 6.4
If & f1 = fuéx and €291 = guéy, then

&z(01 f1) = (qu fu)éx
O

By the exercise, we get awell-defined operation of composition of mapsin §2*:

@f)i=mufi  (@flu=afu
Theterminal set 1 of S** is (in its S-analysis)

1
1: \11
1

since, for any X, there is a unigue commutative square

X3 1
£X\ |
Xy 1

in S. To what extent do the maps

125X
in S%” represent the elements of X? The equation required of any map in this
category reducesto

1 o X,

s

Xy

zru
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in this case; thus, X is entirely determined by Xx;, and conversely any element x;
of X1 in S (no condition) determines, using £x, a unique Xy making the square
commutative, i.e. determines aunique 1 —> X in §?”. Thus, we may briefly say
that the maps 1 —*= X “are” the elements of X that live through both stages.

How can werepresent the elements of X intheir aspect of existence only through
the previous stage U ? To that end consider the variable set

0

o-]

1

which has no elements that persist through both the present and previous stages but
has one element throughout the previous stage. This U then is a honzero variable
set with no element in the narrow sense. The property that nonzero abstract sets do
have elements, as discussed in the previous section, is seen to be already violated
with this simple variation. Now for any X, the maps U —*> X in S%* may be
anadyzedin S as

x1

0 X1
l jéx
1 Xy

U

but x; is unique, and the square commutes no matter what element xy of Xy is
chosen. Thus, we may say themapsU X~ X “are” theelements of X that existed at
the previous stage.

Exercise 6.5
Thereis exactly one map U —=1in S*. Moreover, given any 1>~ X, the com-
positionU —> 1%~ X inS2” representsthe xy that the £y specifiesastheelement
that x “was” throughout U .

(Draw the appropriate diagram to verify the statement.) O

Exercise 6.6
A map A—> X in 82" isapart of X if and only if the following three conditions
are all satisfied.

A isapartof X;inS
Ay isapartof Xy inS

Exiy =liuéa
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Moreover, £, is uniquely determined (if it exists) by X, iq, iy; the condition that
Ep existsis
VX € Xi[X € Ay = &xXx € Ay]
A—2 X

fA‘ [gx

Ay - Xy

w

Now we will calculate the truth-value variable set P(1) = P»(1) in S?* that
precisely represents al partsin that category through characteristic functions

X —=P(1)
5 % It

An arbitrary part A 2~ X may involve elements of X that are not now in A but
were previously in A. Yet the characteristic function ¢ of A must be defined for all
elementsof X, and of course ¢ must beamapin S?*. By taking X = 1and X = U
above, thisforces

to have three truth values globally, but only two truth valuesin the previous stage.
For any A—— X, one can define ¢ at the “present” stage by

Oifx € ALEx(X) & A
piXx=<S Uifx g A éx(X) e A
lifxe A

Exercise 6.7
Definealso gy and show that gy &x = &p)¢1. For each of thetwo types of elements
of X,

XeA= px=1

6.3 Additional Exercises

Exercise 6.8
The categories S/ X satisfy most of the axiomsin Section 6.1, aswe have seenin
Exercises 3.48, 4.46, 4.52, 5.12. Show that S/ X has a truth-value object, namely,
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the projection 2 x X — X. Thus, §/ X failsto be a category of abstract sets and
mappings only in that it is not two-valued.

Exercise 6.9

(a) Show that thereisa(diagonal) functor (see Appendix C.1) denoted Ax from S
to S/ X whosevalueat aset Aistheobject of S/ X given by the projection map-
ping A x X — X. (Sodefine A x alsoonmappingsand show that it satisfiesthe
equations.)

(b) Show that thereisafunctor Xy (for sum, why?) from S/ X to S that sends an
object Y — X of S/ X totheset Y.
These two functors have the following important relationship:

(c) Show that for any set A in S and object Y %> X in S/ X there is a one-one
correspondence between mappings in S from Xx(¢) to A and mappings in
S/ X from g to Ax(A). (Xx isleft adjoint — see Appendix C.1-1t0 Ax.)

Exercise 6.10
Show that S2” has all finite limits and colimits.

Hint: They are computed “pointwise”.

Exercise 6.11
The previous exercise and the description in Section 6.2 of (1) show that S is
not Boolean. Show that it is not two-valued either.

Exercise 6.12

(@) Show that epimorphismsin S?* are pointwise. By “pointwise” here we mean
a property holding at both 1 and U. Thus, epimorphisms are pointwise means
that X — Y isepi in S?" iff f, and fy areepi in S.

(b) Show that supports split in S, but
(c) Show that the axiom of choice failsin S%”.

Hint: Thereisanonsplit epimorphism between objects with no more than two
elements at each vertex.

Exercise 6.13
Show how to construct mapping setsin S2*.

Hint: (YX)y = Y and (YX); isacertain set of pairs of mappings.



6.3 Additional Exercises 119

Exercise 6.14

(a8 Show that thereisa (diagonal) functor (see Appendix C.1) denoted A from S
to S?” whosevalueat aset A isthe object of $2* given by theidentity mapping
A— A. (So define A also on mappings and show it satisfies the equations.)

(b) Show that there is a functor dom from S%* to S that sends an object X =
X1i> Xy of SZOP to the set Xi.

(c) Show that there is a functor cod from S?” to S that sends an object X =
X1i> Xy of SZOP to the set Xu.

These three functors have the following important relationships. Show that
for any set A in S and object X = X; -~ Xy of SZ* there are one-one
correspondences

(i) between mappingsin S from cod(X) to A and mappingsin S%* from X to
A(A) (cod isleft adjoint — see Appendix C.1-to A) and

(i) between mappingsin S2* from A(A) to X and mappingsin S from A to
dom(X) (dom isright adjoint to A).

Exercise 6.15
If M isamonoid, the category of M-sets has finite limits and colimits as well as
mapping sets (Exercises 3.51, 4.47, 5.13), but does not satisfy the axiom of choice
(4.54). 1t does have a truth-value object. First, note that a subobject of an M-set X
issimply apart A X of X that is closed under theright action of M. For its
characteristic function g5 wesend x € X totheset | of i € M such that xi € A.
This | isapart of M closed under right multiplication by all of M (called a “right
ideal”). The set of right idealsof M, denoted Q, hasaright action by M given by
Im={jeM|mjel},andsoitisan M-set. It is the object we seek; M itself is
an element of Qy that playsthe role of “true”.

Show that, with the characteristic mappingsjust outlined 2\, isindeed the truth-
value abject.

Thus, the category of M-setsis atopos.
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Consequences and Uses of Exponentials

7.1 Concrete Duality: The Behavior of Monics and Epics under
the Contravariant Functoriality of Exponentiation

Any conceivable cancellation law states in effect that some algebraic process or
other is injective. This is most evident in the definition of the concept of monomor-
phism, whereby the “injectivity” of the algebraic process of composing with f on
the left turns out to be equivalent to injectivity of f itself as a map. In terms of
function spaces we can express the equivalence

f injective <= f monomorphic

simply by
f fr
X injective Y < VT [XT injective YT

since we see that to say that f7 is injective in its action on elements 1 —= X7
defined on 1 is equivalent to saying that for all x;, x,

Xy
T%X—f>Y, fxl:f)Cz:}Xl:xz
X

if we only recall that the action of f7 is
fIrx i =rfxforall T 2> X
But what if f is epimorphic? Since the statement

of=pf =0 =

is also a cancellation property, it also expresses that some process is injective, and
if we look a little more closely, we see that the process in question is the one

120
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represented by the contravariant functoriality of mapping sets. For later use it is
preferable to state this fact as property relative to a given object V.

Proposition 7.1: For a given X e Yanda given 'V,
vy YhoyX
is injective (on elements) exactly when
nf =f = 1= 92

holds for any Y % V.

Proof:

Vfr(pﬂ — rwf—\

Corollary 7.2: X ovis epimorphic if and only if
vY v vX

is injective for all V.

Itwill berecalled that the definition of (for example) “epimorphism” istheformal
dual of the definition of “monomorphism” in the sense that one simply reversesall
arrows in the relevant diagrams; of course if the origina diagrams had been given
specific interpretation in terms of specific sets and mappings, such interpretation
is lost when we pass to this forma dua in that the formal dualization process
in itself does not determine specific sets and specific mappings that interpret the
dualized statement. On the other hand, for any given V, we do have the process of
contravariant functoriality that for any specific diagram, say

X Y

produces a specific diagram (with “bigger” sets!) in which al arrows have been
reversed

VX VY

and that satisfies (at least) all the commutativities (= statements about equality of
compositions) satisfied by the original diagram except, of course, that the order of
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the composition has been reversed. This is often referred to as “concrete duality
with respect to V” or “dualizing into V. Not every statement will be taken into its
formal dua by the process of dualizing with respect to V, and indeed a large part
of the study of mathematics

space vs. quantity
and of logic
theory vs. example

may be considered as the detailed study of the extent to which formal duality and
concrete duality into afavorite V correspond or fail to correspond.

In the context of constant sets, the choice V =2 is the starting point of many
such duality theories.

f
Theorem 7.3: X — > Y isepimorphicif and only if 2 2, Xis monomor phic.

Proof: The “only if” directionisaspecia case of (the internalization of) the defi-
nition of “epic”. ‘

Conversely, if 2" 2, Xis monomorphic, then f satisfies the (restricted to 2)
right-cancellation property

f ¢
X—>Y(p:>>12, @1f:(pzf:}(pl:(p2

But we can take

@1 = characteristic function of the image of f
@2 = identically true,

whichwill surely satisfy ¢; f = ¢, f; if weapply theassumed cancellation property,
weseethat f isepimorphic (henceintuitively that theimageof f fillsup thewhole
of Y). [ |

Because the dualization functor is not reversible without modification, the fol-
lowing further duality property does not follow from the previous theorems.

f
Theorem 7.4: X —>Y is a monomorphism if and only if 2Y 2. X s
epimorphic.
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Proof: If T é; X —~ Y have equal composites, then by functoriality so do
X2

oY . oX — 27
and thus if 2 is epimorphic, then 2% = 2%, from which we will conclude shortly
that X; = Xp, sothat f is monomorphic.
Conversely, if f isassumed monomorphic, we need to conclude that
2Y 2f 2X

—

is epimorphic, for which it suffices to show that 2 is surjective. So assume "¢
is any element of 2X; we must show that there is at least one "y for which
2fry 1 =y i.e for which

I
I
v

\ ¥
72
2

But ¢ isthe characteristic function of aparti of X, and by assumption f isapart of
Y; thus, the composite fi isapart of Y; we naturally guess that taking v to be the
characteristic function of this composite part will satisfy our requirement, which
we can prove as follows:

pX=true<=xe€i
yy=true<=ye fi

S%xgy

RN

2

Calculate, for any x
(Y f)x =true

¢
Y (fx)=true

¢

fxe fi

¢

X€Ei

¢

pX =true
Hence, ¢ f = ¢ asrequired.
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We return to showing that
2 =2% = X1 =X,

A useful tool isthe singleton map { } defined as the exponential transpose of the
characteristic function of the diagonal

X % X x X
XxX—2

x L 2%

In other words if {x} = "¢ and i isthe part of X with characteristic function ¢,
then for any x’

X ei<e=x'=x

Now if we assume that T % X are such that in 2X —= 2T we have
2% — 2% then composingwith X — - 2X weget equal maps X —= 2T and hence
equal maps T x X —= 2 andthereforeequal partsof T x X. Butitiseasily seen
that the parts of T x X arising in this way are actualy the graphs of the corres-
ponding maps T —= X; if the graphs are equal, then the corresponding maps
are equal, as was to be shown. [ |

Theorem 7.4 about 2 in the category of constant sets becomes a definition of a
special kind of object V in more general categories.

Deﬁnltlon 7.5: An object V is an injective ob]ect if for every monomorphism
X'~ vand every X 2> V thereexists Y —%> V such that

In case the category has exponentiation, V is injective if and only if for every
monomorphism X — =Y, VY Y VX issurjective (on eements 1 —= VX). Itis
not surprising that most of the concrete dualitiesin mathematics and logic that work
well involve dualizing into an injective object V.
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Another twist on the same underlying problem is the following: Let V be any
given object and define X — Y to be co-surjective relativeto V to mean

f

VoIeles el N %

V

By abstract duality plus justifiable prejudice we might expect co-surjectivity to be
similar to injectivity for amap. To make this precise, consider one more definition:

Y

X1
ForT Xj) X, say that x; =y X, if and only if
2
VX > V]pxs = pXe]
This =y may be read as “congruent modulo V> or more simply as “equal insofar
as V-valued properties can distinguish”.

Proposition 7.6: If f isco-surjective relativeto V, then f is “monic modulo V,”
ie,

fxi=v FxXo=x1=v %

Proof: The hypothesis of the implication refers of course to testing relative to all
Y — V. Wemust show px1 = ¢X, for any given X —> V. But by co-surjectivity
¢ can be extendedto ag

px1 = (@ f)x
= 9(fx)
= o(fxo) by the hypothesis fx; =y fXx,
= (pf)x2

= QDXZ
|

Without yet going into detail concerning the modifications necessary to reverse
the concrete duality, we note that double dualization V(™ depends only on the
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dual VX and is acovariant functor in that X L Y induces
VVx . VvY

in the same direction. Moreover, thereisfor each X amap

x L yv*
defined by
X— T r— X"
and often written (ignoring the distinction between a map and the corresponding
element of a mapping set) as X(¢) = ¢(x). The map (), sometimes called the

Fourier transform or the Dirac delta, is natural in the sense that for any map
X —> Y the diagram

X ! Ve
<‘>‘ ‘(”)
VVX vvi VVY

is commutative. In case V is a coseparator, the map (') is monic and thus X is
(the domain of) a part of the double dual of X. The fact that this double dual
is much larger than X can often be overcome, and X can actually be recovered
from the knowledge of its dual A=V X by noting that the “variable quantities”
A and the “constant quantities” V have some agebraic structure in common and
consideringonly thepart A* = Hom (A, V) & VAwhosememberscorrespond
to those maps A — V that preserve this algebraic structure; the thus-tempered
X -4 (VX" hasabetter chance of being invertible, aswe shall seein Section 8.4.

7.2 TheDistributive Law
The distributive law states that a natural map

Ax X1+ Ax X2—>AX(X1+X2)

is actually invertible. Here the x and + denote product and coproduct (= sum
in the case of sets), and the natural map exists whenever product and coproduct
exist. In fact the natural map in question comes from a specia case of the fol-
lowing observation: to define amap ?—— A x Swhose codomain is a product is
equivalent to defining maps from ? to each of the factors, whereas to define a map
P + P, — ??whose domain is a coproduct is equivalent to defining maps from
each of the summandsto ??; hence, in casewe have both that the codomainisknown
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to be aproduct and that the domain isknown to be acoproduct, then defining amap
is equivalent to defining a “matrix” of (smaller) maps specifying each component
of thevalue of the big map for each kind (summand) of input. For example, any map

PL+P,—>AxS

(between the indicated combinations of any four given sets) is specified by a
2 x 2 matrix whose entries would be the four possible threefold composites with
projections and injections.

P A

7

P+ 5B Ax S

Py S

In the case at hand, where S= X; + X5, P« = A x Xy, we have enough structure
to actually specify such amatrix, where

P, —> AisAx X; 2%
P, — AisAx X, 2%
P, — SisAx X; 2% X; % X5+ X5

inj

P, —> SisAx X, 2% X, % X, 4+ X,

Of course, the natural map just described in detail is the one corresponding to
the intuitive picture of a product as a rectangular arrangement and of a coproduct
of setsasadigoint union:

X2 AXXQ
_— X1+ Xo
Xl AXXI
A A

However, although the “rectangular arrangement” picture of the elements of a
product isjustified by the defining property of products, the “disjoint sum” picture
of the elements of a coproduct is NOT justified by the defining property in itself
of coproducts. This is because the defining property of acoproduct X; + X, = S
refers to co-elements of S,

S—V
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and says nothing in itself about how to determine the elements
T—S

that Smight have. Indeed, in other important categories the coproduct may be quite
unlike adigoint sum; for example, in the basic category of linear algebra namely,
the category of vector spaces and linear transformations (also called linear spaces
and linear maps) the coproduct isthe same space as the product (see Exercise 3.46),
and hence neither the distributive law nor “disointness” could hold. Thus, the in-
vertibility of the natural map A x X1+ A x X, — A x (X1 + X3) inthe context
of nonlinear spaces and nonlinear maps (in particular for abstract sets and arbitrary
maps) must be due (like the digointness of +) to some further feature of these
categories beyond the mere existence of product and coproduct in themselves. The
existence of exponentiation turns out to supply this feature. For to show that the
natural map has an inverse we must construct a candidate

AX(X1+X2)—>AX X1+ Ax X,

and then verify that the candidate really isinverse; the construction is the step that
requires some additional ingredient. But note that the required candidate should
be a map whose domain is a product and that since the crucia feature of the
exponentiation axiom is an invertible process, we could just as well view that
axiom as aprescription for constructing lower-order maps A x S—Y by instead
constructing higher-order maps S— Y. This apparently perverse interpretation
of the exponentiation axiom turns out to be exactly what is needed in this case (and
in many other cases) since it enables us to gain accessto certain specia structures
that Shas. That is, the proof of the distributive law can be achieved by constructing
an inverse map

Ax (X1+ X2) =2 Ax X1+ Ax Xo
as we have seen. But by the exponentiation axiom, we can equivalently construct
X+ Xa —2= (Ax X+ Ax X)?

which (by the special coproduct structure of S= X; + X») is equivalent to the
problem of constructing two maps (for k = 1, 2)

X —2> (Ax X1+ Ax Xp)A

By applying exponentiation again, but in the opposite direction, this is equivalent
to constructing two maps

Ax Xk — Ax X1+ Ax Xy
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But such mapsare staring usintheface—thetwoinjections! Hence, we can construct
the required candidate map

A x (X1+X2)—>AX X1+ Ax X,
which can be shown to behave as expected,
(@, ikX) > ik(a, x)
on elements (when 1 = Xy).
Exercise 7.7

Verify that the candidate map just constructed really isthe two-sided inverse of the
natural map

Ax X1+ Ax X2—>AX(X1—|- X2)

O
Exercise 7.8
Prove (using exponentiation) that
0= AxO0
O
Exercise 7.9
Prove (using exponentiation) that if X L visan epimorphic map, then
Ax X 2 Axy
is aso epimorphic. O

7.3 Cantor’sDiagonal Argument
Over a century ago Georg Cantor proved an important theorem that includes the
result
X < 2%

for al sets X (see Def. 7.15 below). This result, well-known for finite sets X, was
quite new for infinite sets since it showed that some infinities are definitely bigger
than others (even though many constructions on infinite sets X tend to give sets of
the same cardinality, that is,

2x X=X, X2~ X
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hold for infinite abstract sets). Indeed, this specific and fundamental construction
leads to a potentially infinite sequence of larger and larger infinities

X 2%
X<2x<22 <22 <...

An even more fundamental consegquence of Cantor’s theorem is the obvious con-
clusion that there cannot exist a “universal set” V for which every set X appears
asthe domain of a part of V

X——V

becauseif thereweresuchaV, wecould take X = 2V to reach acontradiction since
(see Theorem 7.4) the restriction map

2V s 2X

is surjective, but Cantor showed that no map X — 2% is surjective.
Cantor’smethod for proving thistheoremisoften called the “diagonal argument”
even though the diagonal map 8y is only one of two equally necessary pillars on
which the argument stands, the second being a fixed-point-free self-map t (such as
logical negationinthe case of the set 2). Thisdiagonal argument hasbeen traced (by
philosophers) back to ancient philosophers who used something like it to mystify
people with the Liar’s paradox. Cantor, however, used his method to prove positive
results, namely inequalities between cardinalities. The philosopher Bertrand
Russell, who was familiar with Cantor’s theorem, applied it to demonstrate the
inconsistency of a system of logic proposed by the philosopher Frege; since then
philosophers have referred to Cantor’s theorem as Russell’s paradox and have even
used their relapse into the ancient paradox habit as a reason for their otherwise
unfounded rumor that Cantor’s set theory might be inconsistent. (Combatting this
rumor became one of the main preoccupations of the devel opers of the axiomatized
set theories of Zermelo, Fraenkel, von Neumann, and Bernays [Sup72]. This pre-
occupation assumed such an importance that the use of such axiom systems for
clarifying the role of abstract sets as a guide to mathematical subjects such as
geometry, analysis, combinatorial topology, etc., fell into neglect for many years.)
Around 1930 both Godel and Tarski again used exactly the same diagonal argu-
ment of Cantor, except in categories of a more linguistic nature than the category
of sets, to obtain their famous results to the effect that (Godel) for any proposed
axiom system for number theory there will always be further truths about the num-
ber system that do not follow as theorems in that axiom system, and (Tarski) even
though it is easy to construe mathematical statements ¢ as mathematical entities
T¢7, there can be no definition of a single “truth predicate” T such that, for any
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statement ¢ and every specific mathematical entity X,
T TX <= ¢(X)

isamathematical theorem.

We will first prove the theorem in a still more positive form as a fixed point
theorem, of which Cantor’s theorem will be the contrapositive. Cantor himself
proved cardinality inequalities not only for the set 2% of subsets but also for the
set R™ of real-valued functions, and correspondingly our fixed-point theorem will
deal with objects Y more general thanY = 2.

Definition 7.10: Aself-mapY —=> Y of an object Y issaidto have 1 —~ Y asa
fixed point if and only if ry =y. Thus, 7 issaid to be fixed-point-free if and only if
v1 -~ Y[ty #y]. Attheother extreme, an object Y issaid to have the fixed-point
property if and only if every self-map t has at least one fixed-point y.

Remark 7.11: Although the fixed-point-property is so rare as to be uninteresting
for the category of abstract constant setsand arbitrary maps, itismuch morefrequent
and useful in the category of continuous spaces and maps, where Brouwer proved
that the n-dimensional ball has the fixed point property; for n =1, thisfact implies
existential statements such as Rolle’s theorem, which involves continuous maps of
theinterval [—1, 1] into itself.

Theorem 7.12: SQuppose thereisan X and a map ¢
Xx X2V

such that for every X .Y thereis at least one 1—2~ X such that

f=g(@ -)
Then Y has the fixed-point property.

Proof: Consider any Y —Y. We must show that T has afixed point. Define an f
by the triple composite

Xx X2y

In other words, for all x

fX = te(X, X)
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Now by the assumed property of ¢, this f must be “p-represented” by some a:
fx = ¢(a, x)
for all x. Hence,
To(X, X) = ¢(a, x)
for al x. In particular, if wetake x = a,
t9(a,a) = ¢(a, a)

which meansthat if we define y in terms of a by commutativity of

1

X5—X>X X X—§0>Y
then y isafixed point of ¢

Ty=y .

Corollary 7.13: (Cantor) If Y hasat least one self-map t with no fixed points, then
for every X and for every

X 2. yX

® isnot surjective.

Proof: Surjectivity of ® expressed by the diagram

X——v*
is exactly the property assumed in the theorem for the corresponding ¢ for which
® ="¢". The corollary is the contrapositive of the theorem, and any statement
impliesits contrapositive. [ ]
Corollary 7.14: Thereis no surjective map

X —= 2%
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nor isthere any surjective map
X —=RX

where R isthe set of real numbers.

Proof: Logical negation 2 — 2 is fixed-point-free. Indeed, t(false) # false, and
7(true) # (true). For the second statement, all we need to know about R is that it
has a self-map t such as

t(X)=x+1

for which 7(x) # x for al 1 %= R. [ |

Definition 7.15: For sets X and Y we write X <Y when there exists at least one
monomapping from X to Y. Wewrite X <Y to mean X <Y and that moreover no
surjective maps X — Y exist.

Corallary 7.16:
X < 2% for all X
Indeed

X <YXforanyY with2 <Y
]

Another frequently cited application of Cantor’s argument shows that there are
strictly more real numbers than rational numbers. This can be established in three
steps as follows:

Q=N<{0,12345678N N -~ R

That is, we separately establish (by a snakelike counting of fractions) that the set of
rational numbers is isomorphic as an abstract set with the set of natural numbers,
and we note that among the real s there are those (nonnegative ones) whose decimal
expansion involves no 9’s. The latter set is equivalent to the function space Y*
indicated with a sequence N —2- {0, 1, ..., 8} mapping to the real with decimal
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expansion
o
a0 aaa3... = »_an10™"
n=0

Thus, we can apply our argument above with X =N, Y ={0, ..., 8}, noting that
the finite set Y does indeed have endomaps that move every element.

7.4 Additional Exercises

Exercise 7.17
Show that thetruth-value object ©2 isaninjectiveobject inany topos. Moregenerally
show that the mapping set Q% is an injective object for any object X.

Exercise 7.18
Find all of the injective objectsin the categories S/ X.

Hint: Start with the case X =1 (i.e,, the category of abstracts sets and mappings).

Exercise 7.19
Find all of the injective objectsin the category S%” .

Exercise 7.20
The distributive law holdsin any topos. Verify this explicitly for S%”.

Exercise 7.21
Categories with finite sums and products (including 0 and 1!) in which the dis-
tributive law holds are extremely important in theoretical computer science. For
example (see Walters [Wal91]), let f,g: A—=B and suppose ¢ : A—=2isa
“test function”. Show that the triple composite

&

AL A2 YA+ A B

can be interpreted as “i f ¢ then f el se g”. Indeed, if we call the composite
h: A— B, then

f(@) if p(a)=true
h(a) = {g(a) otherwise
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Exercise 7.22
The concept of natural transformation = from afunctor F to afunctor G isdefined
in Appendix C.1.

(@) Show that thereisanatural transformationa fromthefunctor dom : S — S
to the functor cod : S?* —= S (see Exercise 6.14) whose component for an
object X of S2* isthe mapping X1 —*~ Xy.

(b) Show that for any set B there is a natural transformation 8 from the functor
— x B: §—= & (see Exercise 5.17) to the identity functor 15 : S—S.

Hint: The components are projections.

(c) Functors can be composed. For example, the composite of the functors
A:S—SxSand—x — :SxS — S (seeExercise’5.17) isthe functor
(—x —)A:S — Swhosevalue at aset X is X x X. Show that the product
projections provide the components of two natural transformations from the
functor (— x —)A to theidentity functor 15 : S—S.
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More on Power Sets

8.1 Images

We have been introduced to the contravariant functoriality of 2%, which should be
understood both as

(1) aspecial case of the composition-induced contravariant functoriality (X —Y
induces VY —= V¥) of V-valued function spaces (5.5), and
(2) the operation of inverse image on parts

v

internalized using the special property that V = 2 has of encoding parts via char-
acteristic functions (2.30, 2.34).

The covariant functor 22X (obtained by composing the contravariant 2¢ ) with
itself) can be interpreted to consist of all “classes” of parts of X, since a map
2% %5 2 is the characteristic function of a definite part (or class) of the set 2% of
parts of X.

But we now want to consider an important way of making the smaller 2% a
covariant functor of X.

First let us agree to use a somewhat more convenient notation for parts. A part
of X consists of two components:

(1) the underlying set | A| of the part, which is the domain of the other component,
and
(2) ia, which is the monomorphic given inclusion of A into X.

136
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To say that A and B are equivalent parts of X meansthat thereis

A - |B]

NS

X

with & invertible and with the equation
iBh = iA

satisfied (which is denoted A =x B, see Definition 2.24). By contrast |A| = | B|
means merely that |A|, | B| have the same number of elements but nor necessarily
in away that respects the inclusions. We commonly say that “A is athree-element
part of X” to mean that A is a part of X such that |A| has three elements; two
given three-element parts of X could have no elements in common, could overlap
nontrivially, or even could have the same elements of X as members, but only in
the last case would they be isomorphic as parts of X. Once this much is clearly
understood, one then usually follows the “abuse of notation,” which drops the | |
sign and just uses the same symbol A to stand both for the part (which involves a
giveni, asunderstood) or for the domain of the part; one then seesfrom the context

whether morphisms of parts (i.e., inclusion relation) or maps of the underlying sets
are being discussed. Recall that our notion of membership is

T ——|A]

z € A if and only N .
if Ja[z = iqa] 4
X

For any X —/~ ¥ wewill construct an induced map

P
PX L. py
def def
2X 2Y

This operation arises so frequently that it has at |east four other notations
Pf=hH=fl1=3,=im;

where the f[ ] suggeststhat it is a generalization to parts of the evaluation of f at

elements, the 3, suggests its intimate connection with the “there exists” operation

of logic, and the last im/ indicates that it is the internalization of the “geometric”
operation of taking the direct image of apart of X. The latter operation, for given
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x-1- Y, isasfollows: Given any part A of X, factorize the composite fi, into
surjective and injective; the resulting part of Y is called f[A]. (See the picture
following Exercise 8.3.)

surjective
4] |7 [A]]
%A [ |/; 1A
X Y

Thefollowing exerciseimpliesin particular that any two such factorizations will
give equivalent parts of Y.

Exercise 8.1
(“diagonal fill-in)

/\

(=113

\/

If joisinjective, p; surjective, and jopo, = jip1, thenthere existsan i (necessarily
unique) for which both
p2=hp1
J1=Jj2h
%

Sinceequivalent partscorrespondto equal characteristicfunctions, wehaveamap
2X imy 2Y

at least if we rely on the principle that any well-defined process determines a map.

Such reliance can be avoided by a method (similar to that used before) to deduce

the existence of im, as amap from afew previously assumed specific axioms, as
follows:

Exercise 8.2
Let Ex denote the part of X x 2% whose characteristic function is the evaluation
map X x 2X =% 2. Show that theimage I, of Ex alongthemap f x Lpx

Ex I;

X o X
X x2 TXx Y %2
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isapart of Y x 2%, whose characteristic function Y x 2X¥ —= 2 hasthe desired
2X 1M o
asits exponential transpose; i.e.
im,~A7 =" f[A]"
where the further “abuse” of notation
TA7 =T characteristic function of A™

has been used. O

The connection of direct image with existential quantification islaid bare by the
following exercise:

Exercise 8.3

Ifin
| 4] - |B| T
| f/
X 7 Y

p is surjective; A, B are parts of X, Y, respectively; and fis, = igp, then for
any y
y € B<= Jx[fr =yand x € A]

X ! Y

|

¢

What is called in deductive logic the “rule of inference for existential quantifier
introduction and elimination” correspondsprecisely to ageometric property relating
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inverse image and direct image. You can prove this rule in Exercise 8.5 below, but
first note that

2frB—|:rfle—|: Bf

(The notation Bf is especially apt if one thinks of B here as the characteristic
function manifestation of the part.) If A isany part of X and B isany part of Y,
there may or may not exist amap 4 for which

(it would be unique since i 5 ismonic); if such amap does exist, we might write as
afurther definition

A Cr B
Exercise 8.4
ACy B¢ Vx[x e A= fx € B]. O
Exercise 8.5
Show that

fIA] Sy B

¢
A Cx Bf

by demonstrating that both are equivalentto A C; B, that is,

if forany x, A(x) implies B(fx)
then forany y, 3x[fx = y and A(x)] implies B(y)
and conversely. (Here A(x) meansx € A; i.e., we are using the same symbol A to

denote both apart and its characteristic function, which is an abuse of notation that
should cause no confusion since we now understand the difference.) O

Exercise 8.6
Interpret the foregoing exerciseinthecase X =Y x T, f = projectiontoY. ¢
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8.2 The Covariant Power Set Functor
The covariant power set functor P is by definition
PX =2X
Pf=img

The functoriality as usual refersto an equation:

Exercise 8.7
For X />y %~ 7 onehas

P(gf) = (Pg)P )
asmaps PX = 2X —=2%Z = PZ. In other words

(e/A] = gl fIAll
for any part A of X.

Hint: Usethediagonal fill-inexercise (andthefact that the compositesof surjectives
are surjective) to conclude that the composite on top in the following picture isthe
other half of the image factorization of (gf)ia:

]

f 8

Alternatively, (introducing properties, elements, and existential quantifiers) show
that for any z and for any property ...,

Ax[(gf)x =zand...] < Fy[gy = zand Ix[fx = yand.. ]]

Theclaimthat P f,
Ar—> f[A]
is one generalization of the basic evaluation
x — f(x)

on elements becomes more clear if we first internalize the idea that parts are gen-
eralized elementsin a definite manner

x - opx
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known as the singleton map, which assigns to every element x the name of the
characteristic function of x considered as a part of X. This map can be constructed
in basic steps as follows: The diagonal map

X2 x x X

isapartof X x X (sinceitissplit by the projections) and hence has a characteristic
map

X x X i
where (writing agb for the typical value ¢ (a, b) of amap A x B—%> ()
X1Exx2 =true &= x1 = x3
But like any map whose domain is a product, &, has an exponential transpose
X —2%
Exercise 8.8

If A x B—L~C hasthe two exponential transposes A >~ C* and B2 C4, and
if A= B,then

fi= fo< f(a,b) = f(b,a)fordl (a,b) e A x A
O

The latter condition is satisfied for &y. Hence, the diagona map gives rise by
the procedure above to (not two, but) one map

x - oX = px
such that
X exle=x'=x
Now the statement that P f generalizes evaluation at el ements becomes the fol-

lowing naturality (see “natural transformation” in Appendix C.1):

Exercise 8.9
For any X —/> v, the square below commutes

X ! v
03 ‘{ }
PX——57—PY
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In case f isitself a monomorphism (hence makes X the underlying set of part
of Y), P f can be calculated without any real use of existential quantification since
fi4 isdready injective (hence does not need to be further factored):

4] ——— I£14]
[ [ 7141 = 1A
it = fia

X 7 Y

Proposition 8.10: If f is a monomorphism, then 27 is a split epimorphism; in fact
P f is a section for 27 .
Proof: For any f onehas
f[A] € Bifandonly if A € Bf = 2/(B)
so in particular

fIA] € flA]ifand only if A € 2/ (f[A]) = (2/ o P £)(A)

AC (2ZPf)A)

for al parts A of X. Butif f ismonic, then i;psa = fia, Whose inverse image
2/( )isreducedto A. In other words, the square

A—e—=n—"A
iA[ F(Pm
X 7 Y

isalmost trivially seen itself to satisfy the universal mapping property of aninverse
image square, that is,

A =2/ ((Pf)(A) foral AinPX = 2%

We conclude that 2" -2> 2 s surjective, split by P f. [ |

Thecontravariant power set functor 20) and the covariant power set functor 7 both
come up in geometry and analysis in many ways, for example in connection with
the condition that a map be continuous or that it be locally bounded. A continuous
space (topological space) X isoften considered to consist of an underlying abstract
set | X| of points, together with a set Fx of “closed parts” and a structural map
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|X| x Fx =% 2indicating when any given point is amember of any given closed
part. The transpose of €y, Fx —=2*I = P|X| interprets each closed part of X
as a part of the set | X|. Usually, special conditions are assumed on Fy, €x, but
we will not need these here (however see Exercise 8.11 for a class of examples.)
On the other hand, alocal boundedness space (= bornological set) X involves an
underlying set | X| of points, aset By of “bounded parts,” and a membership map
|X| x By =% 2; this is apparently exactly the same sort of thing By — 2% asa
continuous space, except for the different words. The special axiomatic conditions
usually imposed on a system of bounded parts are, of course, quite different from
those usually imposed on asystem of closed parts (for example, an arbitrary subpart
of abounded part should again be bounded, whereas no such thing istruefor closed
sets; thewholepart 1y isalwaysconsidered closed, but 1y isbounded only for trivial
boundedness systems). However, the striking contrast between closed and bounded
is seen in the concepts of continuous versus bornological mapping. Namely, if
X and Y are continuous spaces, a continuous map X —— Y isamap | X| ML Y]
of points together with a proof that the inverse image of closed parts is closed:

f
77f>%r
olY| 7 9IX|

By contrast, if X and Y arelocal boundedness spaces, abornological map X Loy
isamap | X| ML |Y| of pointstogether withaproof that thedirect images of bounded

parts are bounded.

Y
PIX| g PV

Exercise 8.11
A metric space X involvesaset | X| of points and a distance function
|X] x |X| -2~ R,
where R‘;’O ={r|0 < r < oo} is the set of (nonnegative, extended) real numbers
and dy isrequired to satisfy
dx(x,x)=0
dx(x, y) +dx(y, z) = dx(x, 2)
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forany (x, y, z) € |X|3. Thisinequality can be pictured as

Y

N

x z

A map X Loy of metric spaces is (often required to be) distance-decreasing in
the weak sense that

dy(fx1, fx2) < dx(x1, x2)

for any (x1, xo) € |X|?. Each metric space has a natural notion of bounded part:
A part B of | X| isbounded if and only if it is contained in some ball with some
center and some finite radius, i.e.,

B e By & Axor[r < coandVx[x € B = dx(x, xo) < r]]

But each metric space also has a natural notion of closed part, namely, any part
containing each point that can be approximated by points known to be in the part:

A€ Fx &5 Vx[Vr[r > 0= Jafa € A and dx(x,a) < r]] = x € A]

Show that any map f of metric spaces (which is distance-decreasing in the weak
sense) is both continuous (in the sense that 2/ carries the natural closed parts of
the codomain back to natural closed parts of the domain) as well as bornological
(inthesensethat P f carriesthe natural bounded parts of the domain to the natural
bounded parts of the codomain). O

8.3 The Natural Map PX —> 22"

. . () . .
Both the functor P and the (larger) twice-contravariant 22" are covari ant; we will
describe adirect natural comparison

X
px Jo 22

between them (which will turn out to be injective). Given any part A of X,

0a

2X =2

will be amap
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namely, the one whose value at any X —%> 2 isthe truth value (in 2 = {0, 1})

| oA
xeX

calculated as follows: if thereisany x in A at which ¢ takes the value 1, then the
answer is1, whereasif ¢ restricted to A isconstantly O (¢ might takevalue 1 outside
of A; that does not matter), then the answer is 0. Of course, the ¢’s are “redly”
(characteristic functions of ) parts also, so the description of [, could equally well
be stated: for any given part A in PX, consider any part ¢ in 2X and ask if ¢
intersects A. If so the answer is 1, otherwise 0. For example,

Jx w1(x)A(dz) =0
Jx w2(x)A(dz) =1 ?’
[ ps() A(da) = 1 0

Thus,

A

2X fX_) 2

determines an element of 22X , but )t(hiscan be donefor any part A inP X, and hence
there should beamap PX — 22" The reason the domain is not bei ng called 2¥
will be seenin Exercise 8.13 below.

Exercise 8.12

The existence of the map [,, can be deduced from previous concrete constructions
and its nature clarified for later use. Note that 2 = P1 and that there is a canonical
“union” map

H1

PP1 P1

P2

that acts asfollows:
For each of the four parts of 2,

n1({0, 1)) = wa({1}) = 1
un1({0}) = n10=0
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Moreover, the covariant functoriality of P (discussed in the previous sections) may
be considered (further internalized) as a canonical map

YX x PX —PY
fi Ar— f[A]

Hence, in particular, taking Y = 2 = P1, we have

2X x PX —=PP1

Pl=2
and therefore by taking the exponential transpose of the composite we have
X
PX —22
which isthe same asour [y . O
Exercise 8.13
For any X /> v, the square
Jx "
PX 22
PJ lgﬂ
PY 92"
Jy
is commutative. O

Exercise 8.14X
Let X 2~ 22" pethe evaluation map 8(x)(¢) = ¢(x). Then thetriangle

X

v N

PX 92¥
Jx

is commutative. O

X
Now only some of the elements of 22" come from elements of PX by our |. X
process.

Exercise 8.15
If 2X %5 2 issuch that thereisan A for which

alp) = / _P0A@)
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for all X ¥~ 2, then « has the following properties:
a(0x) =0
where 0y : X — 1% 2 isthe constantly-0 function, and
a(prUg2) = ap1 vV ap;

for any X % 2, where

(1 U @2)(x) = @1(x) V @2(x)

foral x, wherev isdefined by v1 v v, = lifandonlyif v; = 1orv, = 1for vy, v
in 2. Give examples of maps 2% —%= 2 that do not have the two linearity properties
here shown to hold for [, ()A. O

Comment: Such linear «’s are sometimes called “grills”; they may be considered
as generaized parts in that every part A determines a grill, and the union of two
grills can be defined in away extending the union operation on parts. But there are
many grills that are not parts. For example, in the plane X, we can define an « by
a(p) = 1lif and only if ¢ isapart of the plane with positive area.

Remark: All the general constructions in Sections 8.1-8.3 (such as singleton,
the map from the covariant power set to the doubly contravariant one, etc.) are
applicable in any topos with 2 replaced by .

8.4 Measuring, Averaging, and Winning with V-Valued Quantities

Several natural restrictions can be placed on elements of VV" to yield a covariant
subfunctor

Hom V¥, V) &= vV*

of mathematical interest. When V' is equipped with some structure, asfor example
with V = 2 above, conditionssimilar to linearity may beimposed. But let usbriefly
consider two conditionsthat might reasonably be defined using only the knowledge
that V is a given set. We want that at least the evaluation functionals VX —> v
(givenby x(¢) = ¢(x) for dl ¢ (i.e., ¥ = §(x)) beincluded, and thiswill be true of
both our conditions.

Suppose that every month the same set X of people are to be asked which of a
set V of three brands of a product they prefer, giving aresult X —> V each month.
We want to devise asingle procedure « that will give a(¢p) an element of V so that
we can reasonably say that the people prefer v = a(¢) this month. One obvious
condition that o will need to satisfy is that it should be an averaging functional to
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the extent that if it should happen that all people choose at ¢ the same brand v, that
same v should surely be the result o(g).

Definition 8.16: VX —%~V is weakly averaging if for each v, if ¢,(x) “y for all
x, then
a(ﬁ”v) =v

Thisisobviously anextremely weak condition and may be satisfied by functionals
that nobody would want to consider asaveraging. (When V hasadditional structure,
it makes sense to require that « aso be linear, in which case there are often theo-
rems saying that a linear averaging procedure is an expectation with respect to a
probability distribution on X.)

Proposition 8.17: Forany x in X, VX —> V is weakly averaging. That is, if Homy
denotes the constant-preserving functionals, one has

Proof: Obvious. [ |

Thus, atrivial way of defining aweakly averaging VX — V isto choose some
singleindividual x in X and then evaluate every survey ¢ by merely noting how x
answered and presenting his or her answer as the “digested result of the survey”.
This offends our sense of fairness to the extent that we are led to formulate a
different sort of condition (which wewill not study here) that could be imposed on
an averaging functional:

Definition 8.18: The arrow VX —%=V is said to be symmetric if for every invert-
ible self-map (also called automorphism or permutation) of X, X e X

a(po) = a(p)
forall X 24> V.

We will emphasize instead a certain kind of highly skewed weakly averaging
functionals. Theideaisthat one might hopeto recover X from & = V¥ by putting
strong enough conditions on maps ® — V to characterize the values X of § in
case ® = VX. Such considerations are basic to aimost all situations in algebraic
geometry, particle physics, functional analysis, and so on, wherein one wants to
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locate or recapture points of space or states of motion X by comparing (in quantita-
tiveways) observable variable quantitiesin VX with (relatively) constant quantities
inv.

Definition 8.19: A V-generalized point of X is a functional VX %=V such that
for each V-2V,

a(rg) = Aa(p))

for all X 4>V, where ¢ denotes the composition and A(v) denotes usual evalu-
ation. That is

].VV X

VYV x vX VVxV
° eval
VX o V

should commute.

This condition is quite strong. For example, if V denotes the real numbers and
« isan expectation, and if we consider as an example of A the operation of multi-
plying by a constant (e.g., doubling), then

a(rg) = A(a(p))
follows from linearity. But instead take A to be squaring: just the case
a(p?) = a(p)?

of our condition forces (the distribution underlying) « to be so concentrated that
the standard deviation (relative to «) of al random variables ¢ is zero!

Proposition 8.20: Each point is a generalized point.

Proof: 1f « = %, thenforany X 2~V 2>V

a(rp) = (Ap)x = Apx) = A(a(p))

Exercise 8.21
Any generalized point is weakly averaging.

Hint: Each element of V determines a constant self-map of V, V &—— V", and
this can be used to show that

X & Homyv(V¥, V) &= Homy (VX, V)—s VV*
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where Homyv denotes the generalized points, that is, the functionals « that are
homogeneous with respect to al A in VV. O

To what extent all generalized points are really just the original elements has
long been of interest. I1sbell showed in 1960 [1s60] that if V isagiven infinite set,
then

X —=>Homyv(V¥, V)

for all sets X that arise in ordinary geometry and analysis even though by Cantor’s
theorem most of these X’s are larger than V. However, many set-theorists study
the possibility of the existence of sets X so large that they cannot be “measured”
by any fixed V in thisway (paradoxically, these hypothetical extremely large sets
are usually called “measurable cardinals”).

Forasmall V, likeV = 2, itiseasy to find examples of generalized points that
arenot pointsbut areinteresting in view of someapplications: V" hasfour elements
A, of which theidentity 1, contributes no restriction on generalized points. Thus,

Proposition 8.22: A functional 2X —%> 2 commutes with all A in 22 if and only if
a(CX) =1 «a0=0
a(p) =1 a(—¢)=0

(where — . 2—=2 is defined by =0 = 1, =1 = 0). [ |

Such generalized points « are sometimes considered to arise from a context in
whichtheelementsof X can“choosesides” invariouswaysto produce an alignment
@ that will either “win” a(¢) = 1 or “lose” «(¢) = 0. (The following is a further
restriction on o sometimes considered: if ¢ C ¢’ and a(¢) = 1 then a(¢’) = 1.
However, itisnot truein all situations « that ateam ¢’ bigger than awinning team
¢ would also win (consider what may happen if too many CIA and MI5 individuals
infiltrate our team)). We want to see that there are situations « that are generalized
points of X in the sensethat they preserve the action of all A € 22 but are not points
Xo; in other words, the situation « is more complex than one in which thereis such
atowering star player xq that for any ¢, ¢ isawinning team if and only if xo ison
@. If X istoo small, such complexity will not be possible.

Exercise 8.23

If X =V, then X —=>Hom,v(VX, V). Take the example ¢ = 1x but note that in
this case a condition A in V"V may be considered also as an arbitrary input for a
functional. O
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Thus, forV = 2, weneedtotake X with at least three elementsto find generalized
points « which do not come from points.

Exercise 8.24
If X has n elements, show that the number of maps 2% —%= 2 that commute with
the action of all four  in 22 is

22"t -1

Forthecasen = 3, X = {a, b, ¢}, determineexplicitly al eight «’sby displaying,
for each « all the teams ¢ that win «.
(Such ¢ can conveniently be displayed as subsets of {a, b, c}.) O

Exercise 8.25

Let V = 3. Show that the 27 conditions a generalized point must satisfy all follow
from amuch smaller number among them. Show that any generalized point of any
finite set X isin fact apoint of X itself. O

Remark 8.26: The recovery of X from measurement, i.e.,
X —=>Homyv(VX, V)

is also valid when X is “any” metrizable continuous space, V = R (the space of
real numbers), and all maps are continuous. O

8.5 Additional Exercises

Exercise 8.27

To define the covariant power set functor we used only the elementary (topos)
properties of S. Describeim; for an arrow X T vin S/ X. Notethat to do thisit
isfirst necessary to describe the objects P X (recall Exercises 5.12, 6.8).

Exercise 8.28
Describeim; for an arrow X — Y in 82,
Recall Section 6.2 and Exercise 6.13.

Exercise 8.29
Describeim; for an arrow X ' YinM-sets,
Recall Exercises 5.13, 6.15.
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Exercise 8.30

Similarly, to define the singleton arrow, X L pX, we again used only the ele-
mentary (topos) properties of S. Describe X L PX for an object X in each of
S/A, 8% and M-sets. Keep in mind that 2 in the construction of Section 8.2 must
be replaced by the appropriate truth-val ue object.

Exercise 8.31

Show that thediagonal arrow X A X x X providescomponentsof anatural trans-
formation (see Appendix C.1) from the identity functor to the composite functor
(— x —)A(see Exercise 5.17). Find a natura transformation from the composite
functor A(— x —) to theidentity functoron S x S.
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Introduction to Variable Sets

9.1 The Axiom of Infinity: Number Theory

Recall that we denote by S the category of (abstract, discrete, constant) sets and
arbitrary maps between them that we have studied till now. In the various branches
of mathematics (such as mechanics, geometry, analysis, number theory, logic)
there arise many different categories X of (not necessarily discrete, variable) sets
and respectful maps between them. The relation between S and the X’s is (at least)
threefold:

(0) S is “case zero” of an X in that in general the sets in X have some sort of
structure such as glue, motion and so on, but in S this structure is reduced to
nothing. However, the general X often has a functor X’ 1ls determining the
mere number (Cantor) | X | of each such emergent aggregate X.

(1) A great many of the mathematical properties of such a category X of variable
sets are the same or similar to properties of the category S of constant sets.
Thus, a thorough knowledge of the properties of S, together with some cate-
gorical wisdom, can be indispensable in dealing with problems of analysis,
combinatorics, and so forth. The main common properties include the concepts
of function spaces X7 and of power sets P(X).

(2) Many examples of categories of variable sets X are reconstructible from S as
X = 8™ where T is a datum (which can also be described in S) whose role is
to specify the general nature of the glue, motion, and so on, in which all sets in
X participate, and X is considered to consist of all possible examples having
that particular general nature. (Sometimes such a datum T is called a theory;
we will explicitly consider a few such theories, some of which can actually be
extracted in a fairly simple way from X itself.)

The connection between X and S™ often comes about in the following way:
among the variable sets in X’ there are a few special ones T ——— X such that
knowledge of the |X”| for T in T and their interactions as constant sets (in S)

154
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suffices to reconstruct any variable set X. (T =4 was considered in Chapter 6.) A
basic example of a mode of variability of setsis T = . That is, we consider a
category SQ of variable sets X in which X has not only elements but also an in-
ternal “dynamic” of the sort that any given element uniquely determines a “next”
element, and the maps between sets respect this internal dynamic. The category
S~ can be regarded as constructed from S as follows:

A set X of S “is” (i.e., determines and is determined by) a set of S together
with an endomap as structure

X9 ins

A mapofS'Q “is” two sets X9, Y98 and amapping f in S satisfying the equa-
tionin S,

féx =& f
so the following diagram commutes:
x—I -y
EX‘ Ify
X 7 Y

Composition in 5 of two maps X8 L yOb 8. 7O isonly defined in
case the codomain of f and the domain of ¢ (not only have the same underlying
abstract set of elementsbut also) havethe sameinternal dynamic &y . Inthat casethe
compositeisformed by forming the g f asin S and forgetting &y whileretaining &x
and &z. Note that we will sometimes abuse notation and not mention the dynamic
Ex of XQ&(.

Exercise9.1
If fex=¢&yf andif g&y =&,¢,then (gf)éx =&2(gf). That is, the composite de-
fined above really does give aresult that isagainamap in S~ O
Exercise 9.2

L et 1 denote aone-element set equipped with the only possible dynamic (endomap).
For any X in S, thereis aunique S ~-map X —> 1. Show also that S~ has
aninitial object. O
Exercise 9.3

Amapl-==Xin SQ is aways the same thing as afixed point of the dynamic of
X, that is, an element x of the underlying abstract set of X for which

Exx =x
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Thus, themapsfrom T = 1, although an extremely important aspect of the sets X
inS Q, fall far short of detecting all the elementsof the underlying set of X; another
object T = N is necessary for that purpose, and that will force the existencein S
itself of infinite sets. Inmoredetail, theunderlying abstract set of N (also denoted N)
must be equipped with an S-endomap NS (usually called “successor”) of the
underlying set (in order to be aset of S at all), and we want there to be a natural
invertible correspondence

N—X>Xin5©
12 XinS

Taking the case X = N, x = 1y, we deduce that there must be a distinguished
element

™

12=0 N

of the underlying abstract set of N. Sincejusttosay N —*> X inS'Q isto say that
Xo = &xX in S, we are led to the following statement characterizing the system

10, NOo

of mapsin S interms of S only:

AXIOM: DEDEKIND-PEANO
Thereexist 1 -2~ N —2> N in S such that for any diagram

120 X9t

in S there exists a unique sequence x for which both X0 = x¢ and xo = £x

< U ‘x

X

Here “sequence” isthe standard name for mapsin S with domain N. The equation
expressed by the commutativity of the square isthe condition that x be arespectful
map in variable sets, and the triangular equation expresses that the element xq
is being represented by x. Notice aso that the axiom is a statement about S. It
is precisely the axiom of infinity we promised in Chapter 6. With this axiom we
have completed our listing of axiomsfor S. In any category, an object N (or more
precisaly, the diagram 1 -2~ N —2> N) satisfying the Dedekind-Peano axiom is
called anatural number object.
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Now theclaimthat N isnot finite can bejustified by examplesof X. For example,
onevariable setin S is

/7N N N N
R R Y=

X5Z

le. {(z)=x+1 x<4; &4)=4

Hence, theremust existamap N %> XsinS < with this five-element codomai n,
that is,amap in S for which

x0=0
Xxc0=x0+1=1
X000=%x00+1=1+4+1=2
Xo000=X000+1=2+1=3
Xooo00=Xo0000+1=3+1=4
Xocooo00=&(4) =4

Hence, 0,00, 0600, 0000, 00000 must bedistinct elements of N since they have
distinct values under at least one map X. Of course under this x all the elements
0°0,5°0, ... get thesamevaluein Xs. But thesingle set N is supposed to work for
al X, soone could take X = Xg to seethat thereis at least one x that distinguishes
o°0 from o0, and so on. Thus, in N all elements obtained from 0 by successive
application of the successor map o aredistinct. If N had other elementsthan those so
obtained, an X could be constructed for which two mappings N ——= X represent
the same element of X, contradicting the uniqueness part of the universal mapping
property of N. Thus, we are led to the following intuitive idea:

N=1{0,123..} on=n+1

9.2 Recursion

The universal property of the successor o says (using the usual notation x, = xn
for the values of a sequence) that for any given “next step” rule X% on any set X
and any given starting value 1 —°~ X, there is a unique sequence x in X such that

Xo = the given starting value
Xn+1 = &(Xp) for al n

The sequence x is said to be defined by simple recursion from Xg, £. We will prove
in Lemma 9.5 the existence of sequences defined by somewhat more general kinds
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of recursionsaswell. First note that we can formally prove one of the characteristic
properties of infinite sets.

Theorem 9.4: 1+ N — N. The successor map is injective but not surjective,
therefore N is Dedekind infinite.

Proof. By the universal mapping property of coproduct there is a unique f for
which

We want to define an inverse N -2~ 1+ N =X for f by recursion. But the
“recursion” satisfied by g is
g0=i,
g(n+1) =in(n)
in which the right-hand side is not simply some function & of the “previous value”

g(n) but instead is some function of n and does not mention g(n). Even dependence
on both n and g(n) still permits recursive definition:

Lemma9.5: (RecursionLemma) If N x A LN Aisanygivenmapandif1 -2 A
is any given element, then there exists a unique sequence N —2~ A for which

g(0) = a
g(n + 1) = h(n, g(n))

Proof: (Thediscreteversion of astandard method for dealing with nonautonomous
differential equations: augment the state space to include al so the time coordinate).
Define

X=NxA, éx(n,a)=(n+1h(na), x =0, a)
Then by simple recursion there is a unique x for which

X(0) = Xo= (0, ap)
x(n+ 1) = &x(n)
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But if we define u and g by

" N
N2 >Nx4 ¢—par
Pa
X,
so that xn = (un, gn) for al n, then we have
(u0, g0) = (0, ao)

(u(n + 1), g(n + 1)) = §(u(n), g(n))
= (u(n) + 1, h(n, gn))
by definition of £. Hence, by taking projections
ui0)=0
un+1) =un)+1
that is, u = 1y by unigueness, and

9(0) = ao
g(n+1) =h(n, gn)
asrequired; g isuniquely determined since x is. [ ]

Corollary 9.6: Thereisa unique map N —P- N called the predecessor map for
which
p(0) =0
po = 1n
Inother words p(n + 1) = nfor all n. (Henceo isinjectivesinceit hasaretraction.)

Proof: Takethefirst projectionfrom N x N for hinthelemma. Thisistheopposite
extreme (from the original axiom) of the lemma, namely therule N x A — A
(with N = A) for computing the next value depends only on N rather than
on A. [ |

Now we can completethe proof of thetheorem 1 + N —> N becausetheinverse
g can be defined by

g(n+ 1) =in(n)
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(similar to, but not identical with, the predecessor function). Then

fg(0) = 0
(fg)(n+1) = fin(n)
= o(n) =n+1

sothat fg = 1y by uniqueness of functions defined by recursion. Also

gfi. =9g(0) =i.

gfin =go =in
so that gf = 1;,n by the uniqueness of maps from coproduct sets. Hence,
1+ N-—==N. |

9.3 Arithmeticof N

We also want to show that N x N = N, but we need first to develop some of the
arithmetic of N to be able to define the comparison maps.

Much of the arithmetic of N isimplicit in the internalization of the recursion
process itself. First note that

Proposition 9.7: Given any map A—*= A there is a sequence N < AA such
that

aozlA

o™ = @a" (composition)

(note the abuse of notation which ignores™ 7).

Proof: Apply the Dedekind—Peano axiom to the casewhere X = AA, xg = "1,7,
and where the “next stage” endomap

AA 5. pA
is the one that composes any map g with o: £(8) = af for al 12~ A7, u
Internalizing the proposition, we get
Theorem 9.8: For any set A thereisa map
AA ﬂ) (AA)N

that assigns to any « the (name of the) sequence of iterates of «.



9.3 Arithmetic of N 161
Exercise9.9
Show directly that iter  exists. O
For example, if A= N we have a procedure
NN itery (NN)N o~ NN><N
which assigns, to each map N —*= N, abinary operation @ on N satisfying

@(0,m) =mforal m
a(n+1,m)=a(@(n, m))foraln,m

For example, if we take o = o, the basic successor operation itself, then the
iteratively derived binary operation satisfies

o(0,m)=m
gn+1,m=oc(@nh,m)=ac(n,m+1

This proves the existence (as a map) of the operation of addition of natural
numbers

g(n,m=n+m
in which notation the above recursion rules for generating @ become the familiar
O+m=m
n+D)+m=(MNn+m)+1
Diagonalizing the addition map
N -2~ NxN-*N
we get the map N — N, which is usually denoted by 2 - (), “multiplication by

2”. Theiteration process can be applied to the latter to yield the binary operation &
for which

@(0,m)=m
ain+1,m)=2-a(n, m)

Exercise9.10
Determine the operation & satisfying the preceding recursion relations. O

Exercise9.11
Usethemaps?2- () and 2- () + 1 to set up an explicit invertible map
N+ N — N. O
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To obtain the existence of multiplication as a map, note that it should satisfy the
recursion

0-m=0
(n+) -m=n-m+m

More generally, given any set A equipped with an “addition” (assumed associative)
Ax A > Aanda“zero” 1 —°~ A, wecan simply apply theiterator to the trans-
pose of + and follow the result by evaluation at O

Ar_-&-;AAﬂ)(AA)NeLg‘)AN
obtaining a map whose transpose is the map
NxA—A

which isusually called multiplication.

Theideafor proving N x N —= N isbased on the observation that the fibers of
themap N x N —> N are finite (in fact the nth fiber has length n + 1), and so it
should be possibleto defineamap N — N x N that runs through each fiber one
after another, thus eventually running through all of N x N (without repetitions):

i

0,2 .\. N x N

0’1 .\.\. =+
NN\

0,0 1,0 2,0 3,0

A\

Theinverse N x N —'> N of the desired enumeration N —= N x N will indicate
the number of steps that have been traversed in the enumerated path in reaching a
given paint (X, y). The fiber of 4+ inwhich (x, y) liesisdetermined by X + y = n,
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and at the top (beginning) of the nth fiber the path has taken

nn+1) X+y)(x+y+1)
g(k—i—l): 5 = 5

steps. Thus, at the point (X, y) itself, where x additional (downward to the right)
steps have been taken, we get

fo ) = (x+y)(x2+y+l) iy

This quadratic expression is actually injective and surjective when considered with
only natural numbersin its domain and codomain, N x N '~ N. The best proof
of that isto recursively define the inverse map N %Y N x N whose components
are often called “pairing functions”.

Exercise9.12
Show that for any set A equipped with a commutative and associative operation
Ax A —> A withzero1 -2 A, thereisamap

AN AN

that assigns to any sequence a its sequence of partial sums

n-1
(Z a)n = Z A
k=0
(notethat (>~ a)o = 0 independent of a). O

The verification that, for example, the composition of two sequences defined
by recursion is equal to another given sequence defined by recursion can often
be done just by verifying that the effective recursion data are the same. But more
generally, such equality statements are usually proved by the method known as
induction. Note that the equalizer of two sequences is a part of N, therefore the
usual statement of induction involves parts of N rather than equations.

Theorem 9.13: (also known as Peano’s Postulate). If A isany part of N, one can
conclude that A isactually thewhole of N, A |_Z> N, provided one can show that
both
O A and
vnne A=n+1e Al

Proof: We need to recursively define an inverse x: N — A for theinclusionia
of Ain N. By the second part of the hypothesisthereisamap A 22 A for which
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iaoca =0ia. Since, moreover, 0 € A, thereis by recursion aunique N —*> A for
which

x0=0
Xo = opaX
Then,
iAXO =0
iAXO' = iAO'AX
= ol AX
— o(iaX)
Therefore,
iAX = 1N

asthe unique solution of the recursion problem whose solution is 1. Furthermore,
we have ia(Xia) = (iaX)ia = Inia = iala, and SO Xia = 1a SINCE i p IS MONIC.
Combining these showsthat i : A—> N, as claimed. [ |

Now the equation
A N
UA‘ \o‘ iAO—A = ?’Z-A
14 Mmonic

means that A~'?~is a part of N<7 in the sense of the category S Q(szee Exercise
9.18). The induction theorem says that if such a part contains the element 0 in its
underlying abstract set, then it can only be the whole N. But how many parts of N
(in the sense of S) are there altogether? There is of course the empty part. But,
moreover, given any element of N, for example 5, the representing map

N 2O N

isapart of N (asoin SQ) whose members are 5, 6, 7, 8. ... It should be clear
that there are no other partsof N in S~ (even though in S there is a huge number
2N of parts of N). This knowledge of the structure of parts of N will be essential
in understanding the nature of a different remarkable variable set P (1), the set of
truth values for S.

Exercise9.14
Determine the classifier P (1) for sub dynamical systems.
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Hint: Let O stand for “true” (“aready true”) and oo for “false” (i.e., “will never
become true”) and remember that the indicator map X —= Py(1) of any part A

of any X must beamapin S Q, whereas the internal dynamic of Py (1) must be
given once and for al independently of X. Show that every map N — P (1) has
finite image. O

9.4 Additional Exercises

Exercise 9.15
Why does the statement 1 + N = N imply that successor is not surjective?

Exercise 9.16
Show that the addition mapping N x N —~ N satisfies
(n+m)+ p=n+(M+ p)
n+m=m+n
Nn+p=m+p=>n=m

Exercise 9.17
Show that the multiplication mapping N x N — N satisfies

(n-m)-p=n-(m- p)
n-m=m-n
n-p=m-p=>n=morp=20

Exercise 9.18
Identify the monomorphismsin S Q.

Exercise 9.19
Show that S < has products and equalizers (and hence all finite limits). Show that
S~ hasall finite colimits.

Exercise 9.20
Show that §™ has exponential objects. Notice that this exercise combined with
the preceding exercise and Exercise 9.14 impliesthat S = isatopos.

Exercise9.21
Show that there isan object in S/ X that has an element 0 and an endomorphism o
(both in the sense of S/ X) that satisfies the Dedekind—Peano axiom.

Hint: Theobject isconstant asafamily, that is, asamapping to X itisaprojection.
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Exercise 9.22
Show that S?* has a natural number object.

Hint: The object has an identity asits transition arrow.

Exercise 9.23
Show that the category of M-sets has a natural number object.

Hint: The object hastrivia action by M.

Exercise 9.24
Show that S (1) has anatural number object.

Hint: The object has an identity as its structural endomorphism.

Exercise9.25

(&) Show that there is a (diagonal) functor (Appendix C.1) denoted A from S to
S~ whose value at a set A is the object of S given by A with the identity
endomorphism. (Define A also on mappingsand show it satisfiesthe equations.)

(b) Show that there is a functor Fix from 510 S that sends an object X of s
to its set of fixed points (see Exercise 9.3).
These two functors have the following important relationship:

(c) Show that for any set AinS and object X inS = there is aone-one correspon-

dence between mappingsin S <9 from A(A) to X and mappingsin S from A
to Fix(X). (A isleft adjoint — see Appendix C.1 - to Fix.)



10
Models of Additional Variation

10.1 Monoids, Posets, and Groupoids

The section title names three very special classes of categories that arise frequently.
Knowledge of these categories is helpful in analyzing less special situations.

Definition 10.1: A monoid is a category with exactly one object.

Hence any two maps in a monoid A can be composed; this composition is
associative and has a two-sided neutral element usually called 1. A monoid A is
often said to arise concretely if we are given some large category £ (of structures
or spaces), if we choose an object A of &£, and if we define A to consist of all
E-endomaps of A.

h

V NV

e
T

=

Thus, for example, all linear endomaps of the particular linear space A = IR,
i.e. all 3 x 3 real matrices, constitute a monoid .4, where composition is matrix
multiplication. Here £ could be the concrete category of all IR-linear spaces and
maps; hence, A can be considered to arise concretely in the preceding sense. We
will study in more detail in Section 10.3 another example, the concrete monoid
of all endomaps (in the sense of the concrete category £ = S of abstract sets and

167
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arbitrary maps) of the particular two-element set A = 2; the resulting monoid .4
has exactly four mapsin it, one of which isanon-identity involution (rt = 1) and
two of which are constant (cx = ¢ for all x in A); moreover,

TCo=C1,TC1 = Cp
where cq, ¢1 are the two constants.
Definition 10.2: In a category (not necessarily a monoid), the notion of constant

map A —> B can be defined as follows: for every object T thereisamap T —"> B
such that forall T —= A, cx =cr.

Note that in any category with a terminal object, a constant in the sense of
Definition 1.25 satisfies this definition also.

Exercise 10.3
Show that 2 > 2 isconstant in the sense of this definition even when we consider
it within the whole category S. O

On the other hand, monoids often arise non-concretely:

Exercise 10.4
With each real number s associate “abstractly” amap T, and define

1=Tp
I,T, = s+t

Show that amonoid (i.e., aone-object category) is thus obtained. Can this monoid
be realized concretely, as the full subcategory of all endomaps of a suitable object
A inthe category of all structured spaces of some kind? O

Exercise 10.5
For pairs (a, b) of real numbers, define

(az, bp) - (a1, b1) = (azay, azby + by)

Provethat thisisaone-abject category. Which pair {aq, bo) istheidentity map 1 of
this category? Can it be concretely realized? O

A second special class of categoriesis described by
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Definition 10.6: A category A is a poset (short for partially ordered set) if and
only if there is at most one map from any object to any other object:

f
We oftenwrite A’ < A(or A € Aor A’ A) to mean
Ff[A —A]

Sometimes it is important (though usually not) to distinguish between posets in
general and “strict” posetsin particular, the latter being those for which the further
condition

A<AandA<A = A=A

holds.

A poset A isoften said to arise concretely if we are given alarge category £ of
structured spaces, choose an object X in £, and define A to be a category of parts
of X (inthe sense of £) with inclusions as maps.

Exercise 10.7

Inaposet all mapsaremonomaps. If A isacategory that hasaterminal objectandin
which all maps are monomaps, then 4 isaposet. Give an example of acategory in
which all maps are monomaps but which is not a poset. O

Exercise 10.8

In any category B, we could define B’ < B to mean 3B’ — B. Explain how this
idea associates to every category B a poset B, and define a functor (see Defini-
tion 10.18) B— Bpo. When is this functor invertible? O

Exercise 10.9

Consider triples (x, y, r), where X, y are arbitrary real numbers but r isreal with
r > 0. Define (x,y,r) — (X,y,F) tomeanthatr <7 asreal numbersand f is
anonnegative real number f > 0 for which

X=X+ -y’ =@F—r+f)>

Define composition so asto make thisacategory. Isit aposet? Can it be concretely
realized? O



170 Models of Additional Variation

Exercise 10.10
Thereisonly one category that is both amonoid and aposet, and it isa“groupoid”
in the following sense: O

Definition 10.11: A category issaid to be a groupoid if and only if every arrow in
it has a two-sided inverse in the same category:

VA, AVA —'~ AJA-%- A[fg = 1a and gf = 1]

Usually the name group is reserved for those groupoids that are moreover
monoids, but frequently in applications groupoids arise that are not monoids; fortu-
nately, ailmost al the profound theorems proved in the past 200 yearsfor one-object
groups extend rather effortlessly to groups with many objects. Certainly for our
purposes, the property of having all maps invertible will be more significant as an
indicator of a qualitative particularity of variation/motion; the accident of being
described in terms of a single object will mainly serve the subjective purpose of
making some problems seem simpler. One sometimes saysthat agroupoid A arises
concretely if we are given acategory £ of structured spaces and we define A to be
the category of al isomorphismsin £

A =150(E)

that is, the objects of A arethe same asthose of £, but the maps of A are only those
maps of £ that have 2-sided inversesin £.

Exercise 10.12
laisinvertiblefor al A. If f,, f, areinvertible and composablein &, then f, fyis
invertiblein £. Hence, 1so(£) is a category. O
Exercise 10.13
If g isthe two-sided inverse for f, then g itself has a two-sided inverse. Hence
Iso(€) isagroupoid. O
Exercise 10.14

If we intersect the groupoid 1so(€) with the endomorphism monoid Endog (A) of
an object, we get

Aute(A) = 1s0(E) N Endog(A)

aone-object groupoid (called the automorphism group of Ain &). O
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Exercise 10.15
If Aisafinitesetinthe category £ = S of abstract sets and arbitrary maps, then

Auts(A) = Al (factorial)

O
Exercise 10.16
Show that there is a group with only three maps
1w, wz, wi=1
Can it berealized concretely? O

10.2 Actions

10.2.1 Actionsas a Typical Model of Additional Variation and
the Failure of the Axiom of Choice as Typical

The notion of “action” is defined for any (even abstractly given) category A, but
then the actions of A are the objects of a category A of structured spaces from
which we can extract concrete subcategories A’, which in turn (in their abstract
guise) have actions. This dialectic is quite essentia in all parts of mathematics
sinceevenif we start with the “self-action” of concrete A, other actions of the same
A immediately arise by mathematical constructions such as taking the spaces of
open subsets, of compact subsets, of continuous functions, or of measures, on the
original spaces. Actually, there are |eft actions and right actions of A. Let us first
consider the situation in which A is a given subcategory of a category £. For any
object X of £ we can consider the algebra A(X) of .4-valued functions on X (in
the sense of £) asfollows:

(0) For each object A of A thereisaset
AX)(A) E E(X, A)

defined in this case as the set of al £-maps X — A.

(1) For each element f of the set A(X)(A) and for each map A > A’ of A
there is an associated element «f of the set A(X)(A'), defined in this case as
composition.

(2) 1pf = f.

(3) (@) f =a(af)in A(X)(A”) whenever A <~ A" —%~ A”in A and whenever
f isan element of the set A(X)(A).

Any system of sets associated to the objects of a category A together with any
system of operations between these sets associated to the maps of A in such a
way as to satisfy conditions (2) and (3) is called a left A-action, or simply a left
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A-set, regardless of whether it isgiven by composition in terms of some enveloping
category £ and some object X init.

Exercise 10.17

The preceding description of the action of mapsin A as operations on the function
algebraof X isnot limited to unary operations because not only is.A not necessarily
amonoid, but it even may contain Cartesian products for some of its objects. For
example, if £ is the category of smooth (C*°) manifolds X (e.g., open balls and
their bounding spheres, tori, IR", etc.) and smooth (C*) maps between them, we
could take as A the subcategory of £ determined by the two objects IR and IR?;
then if 1, f, are any two elements of A(X)(IR) and if IR? %~ IR is addition or
multiplication, then there is a uniquely determined element f of A(X)(IR?) for
which f16f, = 6f in A(X)(IR). O

Thetotality of left .A-setsbecomesacategory S* by defining the appropriate con-
cept of map between them; in this case maps ¢ are often called .A-homomorphisms
or A-natural maps (or even .4-homogeneous maps). The crucial formulaexpress-
ing compatibility with the action is

(@Q)p = a(gp)
for all elements g of the domain of ¢ and all .A-maps « acting on both domain and
codomain of ¢; since each of the domain and codomain is realy afamily of sets,
one for each object A of A, correspondingly ¢ isreally afamily of set maps ¢a,
and the preceding formulais often expressed as the commutativity of the naturality
diagram

A o

[¢4 (63 (03
!

A war

(Since left A-sets are often “algebras” — as opposed to the “geometries” we will
usually deal with — it would not be inappropriate here to use |. N. Herstein’s con-
vention that in algebraeval uation and composition are written in the opposite order:
thus, (g)¢ would mean the value of the homomorphism ¢ at the element g, and gy
would mean first ¢ then +; we will not be using that notation in most contexts.)
We can sum up the discussion with the following definitions.

Definition 10.18: If A and B are categories, a functor ® from A to B is an
assignment of

e an object ®(A) in B for every object Ain A

e anarrow O(f) : ®(A)— ®(A) in B for every arrow A— A’'in A
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subject to the following eguations:

* d(1a) = Lon f
o d(gf) = d(g)P(f) whenever A —> A 9~ A"

Definition 10.19: The category of left A-sets S has as objects the functors @ :
A—=S. Amorphism ¢ in S from ® to &’ is a natural transformation, where a
natural transformation or homomorphism ¢ : & — @’ isafamily of morphisms
oa : ©(A)— D'(A) satisfying

' (a)pa = pa®(@) whenever A 4= A

Exercise 10.20
If A c & isafull subcategory and if X —~ Y isany map in &, then there is a
natural homomorphism of left A-sets

A(Y) — A(X)
between the associated function algebras defined by

g Qg
¢

Instead of trying to maintain two conventions on the order of composition (one
for algebra and one for geometry) most authors write something like

ACY) 2> A(X)

to denote the operation of “pulling back along ¢” the A-valued functionsgon'Y to
A-valued functionson X, i.e. ¢*g = g¢. One can prove the functoriality formula

(o) =g y”
very easily in this context. (The functor is objectively contravariant as X varies no
matter how we subjectively writeit.)
Some basic examples of right .A-actions also arise from some realization of A

as a concrete category and the choice of an object X in an enveloping category
& O A. Wewill use (for the moment) G 4(X) to denote the resulting right .A-set:

(O) For each object A of A thereisaset
Ga(X)(A) E E(A, X)

(1) For each element x of G 4(X)(A) and for each map A’ —*> A of A thereisan
associated element xo of G 4(X)(A).

2 X1a = X

©) X(ere) = (xer)er’ in G 4(X)(A")

o o

whenever A” > A" %> Ain A and x is an element of G 4(X)(A).
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Just aswe called the concrete example A(X) of aleft A-set a“function algebra’
with the action of A called “algebraic operations” on the functions, and natural
homogeneous maps “homomorphisms,” so we could call G 4(X) the “geometry
of figures” in X with the action of .4 expressing “incidence relations” among the
figures x, X’; the natural homogeneous maps could be called ““.A-smooth”. Note that
if xisapartof X andif X’ isagivenfigurein X, thenthereisat most one« suchthat
X" = Xa, inwhich case we could just write X’ —=x or X’ € x or X’ C x to describe
theincidencesituation. However, in general the description of anincidencesituation
will involve specifically naming elements « of the set G 4(X)(x’, X) of mapsin A
for which X’ = xa. Thisisbecausein general it is necessary to consider “singular”
figures x (i.e., those that are not parts) to do justice to the geometry G 4(X) of X, as
seen from A in £. For example, A itself may be shaped as a closed interval [0, 1],
X may beaplane, and “.A-smooth” may mean exactly “continuous’. Thefiguresin
G 4(X)(A) are continuous curves in the plane, including many that are parts of the
plane but also many loops x for which x(0) = x(1) and hence x is“singular”’! This
latter isactually anincidencerelation, for wecanincludeinour little category .A aso
the space A’ consisting of one point. A figure of type A’in X isthen just a specified
point X’ of the plane. There are two maps A' —= —= Aof particular interest here.

Exercise 10.21
Define ag, o1 SO that the incidence relationsin G 4(X)

Xog = X
Xop = X

are equivalent to saying that the curve x isaloop at the point x’. O

Exercise 10.22
If Ac & and X -2~ Y isan arrow of £ show that there is an induced .4-smooth
map of right A-sets:

Ga(X) = Ga(Y)

Exercise 10.23

Let A bethe opposite category for A, i.e., the category with the same objects as
A, but with A%°(A, A’) = A(A’, A) and composition derived from A’s. Show that
aright A-set isthe samething as aleft .4°°-set and further that the category of right
A-sets and all .A-smooth maps is exactly S, O

Briefly for right .A-setsthe action of .4 iscontravariant, whereasthebasicinduced
A-natural maps are covariant, (opposite to the situation for left A-sets).
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Of both left and right A-setsthereisasupply of especially fundamental examples
whose construction does not require imagining a concrete enveloping category &,
namely, we can consider A(X) and G 4(X), where X isan object of A itself. These
examples are usually referred to by names like “representable functors,” “regular
representation,” or “self-actions by trandation”. Of course, if A is a monoid this
supply of examplesis limited to one, even though the categories of left A-sets and
right A-sets are still quite vast and varied. But the representables are very useful
probes in studying the genera actions.

Exercise 10.24

(Yoneda’s lemma) For any category A, let C be an object of .4 and let ® be any
right A-set, i.e. a family of sets parameterized by objects of A and a family of
set-maps between these contravariantly parameterized by the maps of A, satisfying
the associative and unit laws

X1=x
X(aa') = (Xa)a’

Then any .4-smooth map
Ga(C)o
isactualy
¢ =X

for auniquely determined element x of ®(C) (figurein @ of typeC). Herex(c) ® xc
for any A —= C. Further, the actionin ® can be seen as composition of .4-smooth
maps. xa = K& for C' - C. O

Exercise 10.25
(Cayley) Every abstract monoid A can be realized concretely.

Hint: Take & = S, and take for A the (essentially unique) representable right
A-set; apply Yoneda’slemmawith @ = C = A, O

Exercise 10.26
(Dedekind, Hausdorff) Every abstract poset A can be realized concretely as
inclusions.

Hint: Take & = S“% and consider the particular object 1 such that

1(A) =aone-element set for all Ain A.
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Then there is a unique part

GuC)——1
in & for each C in A, and by Yoneda

lgA(B) € 6.(C) as parts of 1] lB—>C]

in& in A
If ® isan arbitrary right .A-set, then the action of B— C on an element x of ¢ at
C is represented as composition (in €& = S4™) with theinclusion

Ga(0)
/ \
Ga(B) P

z|p

(composition of x with an inclusion is in general often called “restriction” of x
from the larger part to the smaller). O

Exercise 10.27

The action by restriction along an inclusion is not necessarily either surjective or
injective.

Hint: Consider the category .A = [U —C] consisting of only two objects and
only one nonidentity map. It isaposet. Let (U) = the set of all continuous real-
valued functions on the openinterval (0, 1), but ®(C) = the set of al real functions
continuous on the closed interval [—1, 1]. Show that the single restriction process
®(C) — ®(U) is neither injective nor surjective. O

Exercise 10.28
If Aisjust aset of objects (no nonidentity maps), then

S = S/A.

10.3 Reversible Graphs

Let A be the concrete four-element monoid obtained as endomaps of the two-
element set in the category of sets. The concrete action of A on 2 is aleft action,
and indeed the discussion of “winning teams” in Proposition 8.22 and Exercise 8.24
concernsfunction algebras and homomorphismsrel ative to this category. However,
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we want here to describe instead some examples of right actions of this same
A. In this case we can visualize the right .A-sets as (reversible) “graphs” in the
following way. Suppose X isaset equipped witharight actionof A = {1, , cg, C1}.
Since

CGCj=¢G
holdsin A, one can show that thereisapart Xq of the underlying set of X that can
be described in severa equivalent ways:
Exercise 10.29
Each of the following four conditions on an element x of X implies the others
XCh =X, XC =X

IX[x'co=x], 3IX[x'cp =X] o

Let Xo—> X be the part of X whose members are all these special elements;
then we have

T =i
where t* isthe map defined by the action
X = X1
Moreover, there exists aunique pair of maps dg, d; asin

do
Xo —s XQT*

dy

such that idg = cp*, id; = ¢1*, where ¢ *x = xc¢, aswith 7. Then

dot* =d;, dit* =dy
The elements of X are often called “nodes” or “vertices”.
Definition 10.30: For A = {1, 7, Co, €1}, an element x of aright .A-set iscalled a
loop if and only if

XCo = XC1

An element x is called a one-lane loop if and only if

Xt =X
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Exercise 10.31
If xisaloop, then xt isalso aloop. Any one-laneloopisaloop (but not conversely),
and any member of Xg isaone-laneloop (but not conversely). O

The preceding calculations suggest a good way to picture an A-set X:

Definition 10.32: Say that a = bin X if and only if

XCo=aandxc,=Db

(Caution: X isnot usualy acategory since we are not given any composition rule,
and hence x isnot initself amap since we cannot apply it to anything — on the other
hand, we will sometimes consider various ways of enlarging X to get a category.)

Thus, we can picture any right .A-set asareversible graph. The general elements
of X are pictured as arrows that connect definite nodes as specified by the action of
Co, C1. For anodea it is convenient to picture the one-lane loop i a as an arrow that
is collapsed to a point, whereas all other arrows (including other loops and even
other one-lane loops) retain length. Since

a-2-be=bXLa

it is convenient to draw x, Xt next to one another like the two lanes of a two-lane
highway. Thus,

isavery important exampl e of afive-element right .4-set that has no two-laneloops.
[The representable right .A-set, the self-action, gets instead the following picture

since
Co 1 C1 TCh = C1

TCl—CO:|

The five-element example will be seen to consist of the “truth values” for the
whole category SA”.

Exercise 10.33
There is a unique .4-smooth (i.e., natural homogeneous) map ¢ from the repre-
sentable right .A-set into the truth-value graph for which

(1) = enter
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There is another one ¥ uniquely determined by
¥ (1) =foray

¢ isinjective and hence a part in S put Y is not injective on either nodes or
arrows. O

Exercise 10.34
Define (by atable) an action of A on a set of the right size so that the resulting

A-set can be pictured as the graph

and do the same for

0
Exercise 10.35
Define a surjective .A-smooth map p between the two .A-sets above
()] —— (D
Determine al .4-smooth maps s in the opposite direction and show that
ps #id
for al of them. O

Exercise 10.36
Define a surjective A-smooth map p “from the interval to the loop”

Determine al .A-smooth s in the opposite direction and show that ps £ id for all
suchs. 0
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The last two exercisesillustrate that the failure of the axiom of choiceistypical
for variable or cohesive sets.

10.4 Chactic Graphs

Several different kinds of structures are loosely referred to as “graphs”; for exam-
ple, we have already briefly introduced “reversible” graphs. In this section (and fre-
quently later) wewill call “graphs” the reflexive, not necessarily reversible graphs,
which are just the right actions of the three-element monoid

A1 = {1, 8¢, 61} 8|8J:8| |’J =0,1

Exercise 10.37
This monoid can be realized concretely as the order-preserving self-maps of the
nontrivial two element poset. O

If X issuch agraph, then for each element x, x3q is the beginning point of the
arrow X, and x§; is the endpoint. The points themselves are considered degenerate
arrows, which are special loops.

Definition 10.38: Thearrow x isaloop if and only if X9 = x§; and isdegenerate
if and only if

X8g = X = X871

Exercise 10.39
If X80 = X, then x is a degenerate |loop (use the multiplication table for A; and the
associativity of the action). O
Exercise 10.40

Write the action table for the seven-element right A;-set pictured here

O

A basic example of agraph isthe right action of A; onitself, which is pictured
as
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with the correspondences
u~1 0~38y 1~681inAq
Exercise 10.41

If X isany graph and x in X, then there is a unique map of graphs (= A1-smooth
map)

1

&

e

0

for which X(u) = x. %

We now want to discuss left-A; actions. There is a huge difference between
the left and right categories. The graphs have the capacity to encode arbitrarily
complicated information, and thus the complete classification of graphsis probably
not possible. On the other hand the | eft-actions can be completely classified amost
immediately. Their interest is that they will give rise to a class of right actions,
the chaotic graphs, which will include the recipients for many graph quantities of
interest.

In generd, if T isaset with agiven left action of amonoid A, and if V is any
set, then the set

T=>V
of al mapsfrom T to V has anatural right action of A:
(fa)it) = f(at)foraltinT

which defines f« asanew elementof T = V for any givenelement f of T = V.
The argument ot (at which f isevaluated to get thevalue at t of fa) isgiven by
the presupposed left actionon T of « in A.

Exercise 10.42
For an iterated action f (x1a2) = (f a1)ao Since both sides have the same value at
eachtinT. O

Now in particular aleft action on T of the three-element monoid A; means

§isjt =6t fori,j =01

Exercise 10.43
If 8ot = 8o, then §;t = 815 and conversely. O
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Hence, the orbitsof aleft action arejust determined by either of thetwo equations
in the exercise, and each of §g, 81 is constant on each orbit. In other words, a left
action with just one orbit is specified by an arbitrary set and a chosen pair to, t; of
elements, with

dot = 1o
at=1
for al t in the orhit.

(Recall that the basic example of aleft A; action involved two constant maps,
but the equations cannot force that to be taking place only on a two-element set.)
The most general left Aj-set is just a digoint sum (no interaction between the
summands) of summands, each of which isaleft A; set initsown right but with
the special property of having asingle orbit. Since

O - Ty=Vv=][[M=V)
k k

isagenera result, for our present purpose it will suffice to consider the case of a
single orbit. However,

Exercise 10.44
If 7o(T) denotes the set of orbits (components) of aleft Aj-set T, then the action
of 8o, 81 gives rise to two sections of the canonical surjection T —s 7o(T):

S

7TOT

O

The orbits are the fibers; each of these contains two labeled points tg, t1, but in
some fibers the labeled points may coincide. An arbitrary left A;-set is described
up to isomorphism by giving the set | of components (I = 7o(T) above) for each
i inl, giving the number N; of elementsin that fiber, and specifying the part 1, of
the componentsin which ty = t; (rather than ty # t;) isto hold; these are restricted
onlyby I; < and

N, > 1fordliinl
N; > 2foradli notinly
(I itself can be 0.)
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Returning to the construction of the chaotic graph T = V with agiven set V of
“values” and a given left A;-set T with one component: the arrows are arbitrary
functions f from T to V, and

(fdo)(t) = f(Sot) = f(to)
(fé1)(t) = f(61t) = f(ta)

define f g and f 8, as constant functions.

Exercise 10.45

The pointsof T = V are al the constant functions. Identifying these points with
the elements of V, the starting and ending points of any f are identified with the
valuesat to and t; of f, respectively. O

Theintuitive reason for calling T = V “chaotic” isthat, for given points vg, v1,
any function T .V for which f(to) = vo and f (t;) = v; is considered admis-
sible as an arrow from vg to v1. One way of relating these very specia graphs to
more general, more highly structured ones, is indicated as follows:

Exercise 10.46

If Xisany graphandif RisthechaoticgraphR=T = \t/ derived from the value
set V and the left A;-set of one component given by 1t:>>°T, then a graph map
X '~ Risdetermined by specifying avaue f(x) inV for each point of V and a
function f, : T—V for each arrow x of X subject to these conditions:

(1) if a—*~bin X then
t=to= fyx(t) = f(a)
t=t, = fy(t) = f(b)

(2) If x = x8p = X81 = aisadegenerate arrow of X, then f isthe constant func-

tion fy(t) = f(a)foraltinT. o

Among the chaotic graphs T = V are the codiscrete ones determined by an
arbitrary set V and by the extremely special two-element left Aj-set T in which
to # t1. Inother wordsthe codiscrete graph on'V pointshasasitsarrowsall ordered
pairs of elements of V with

(vo, v1)&i = (vi,v;) fori=0,1

That is, the projection and diagonal structure on the cartesian product V x V de-
termines the codiscrete graph structure. The universal mapping property becomes
simply the following:
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Proposition 10.47: If V is the codiscrete graph with V points and if X is any
graph, then any graph map

X—V

is entirely determined by a map Xo—V of sets, where X is the set of points of
X. That is, therestriction

(X=ap V) — (Xo=1V)

is an isomorphism of abstract sets.

Proof: No matter how many arrows a—=b there arein X, f(x) can only be the
arrow ( f(a), f(b)) in V, independently of x. [ |

Corollary 10.48: Thereis a graph 2 such that for any graph X, the graph maps
X —2 are in one-to-one correspondence with the arbitrary subsets of the set of
points (vertices) of X.

Proof: Theset 2 of two elementsisthetruth-val ue object for the category of abstract
sets. So consider the codiscrete graph 2 with four arrows and two points, and apply
Proposition 10.47. [ |

One can similarly “classify” sets of arrows (not just of vertices).

There is a completely different two-element left A;-set T, namely, the onein
which §ot = 84t for al t; in other words tg = t1, but there is one other element t
that is not avalue of either 8y or ;.

Exercise 10.49
For theleft A1-set T just described, thegraph T = V, for any given set V, satisfies

T=VX=VxV

the sum of V noninteracting copies of a graph V that has one point and V loops.
(Under the isomorphism the “name” of the degenerate loop depends on the sum-
mand.) O

Note that a “pointed set” can be viewed as either a graph or aleft A;-set. This
can be explained as follows:
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Exercise 10.50
If A isacommutative monoid, there exists an isomorphism of categories

left A-sets — right A-sets

Note: Anisomorphism of categories isafunctor that has an inverse, which means
afunctor in the opposite direction so that both composites of the two functors are
identity functors. O

Exercise 10.51
There is a commutative monoid {1, €} with two elements in which €2 = ¢ and a
surjective homomorphism (= functor) of monoids

A1 - {1’ 6}
Hence, any left (respectively right) {1, ¢ }-set has (viathe homomorphism) anatural
left (respectively right) A, action. O
Exercise 10.52
In the notation of the preceding exercise, any {1, €}-set is uniquely adigoint sum
of pointed sets. O
Exercise 10.53

A left A;-set arises by the process above from a pointed set if and only if it has a
single orbit (of arbitrary size T), and in that orbit the two distinguished points are
equal: to = t;. O

Exercise 10.54

A right A1-set arises by the procedure above from apointed set if and only if itisa
graph with precisely one point (= vertex), i.e. if and only if it is connected and all
arrows are loops. O

Exercise 10.55

A graphisof theform T = V, where T isaleft A;-set arising from a pointed set
(asabove) if and only if it isagraph consisting entirely of loops and in which every
vertex isthe site of the same number of loops, which number is moreover a power
of the total number of vertices. More exactly, if T = E + {ty = t1}, then one can
construct an isomorphism of graphs

V x (VE) == T =V
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10.5 Feedback and Control

Can agraph (1a, ¢) of amap A -~ B be part of a graph structure in the sense
of aright A1-set? One way of making this question definite is as follows: A right
Aq-set P can equivalently be described as a pair of sets and three maps

b

A P

v

forwhichy = 1, = yy; that is, the “reflexivity” y isacommon section for the
“source” map 7 and for the “target” map  so that it chooses for each “state” a
in A a particular “arrow” ya in P, which is actually aloop, i.e. an arrow from
atoaitsdf. Theright Aj-set structure on such a P is defined by p - 80 = y7p,

p-é1=yv¥p.

Exercise 10.56

Verify that these equations define aright A,-set. Conversely, show that any right
Aj-set P givesrise to such a diagram by defining the state set A to consist of the
trivial arrows, i.e. those p for which p- 8o = p = p- 1. Remember that not al
loops aretrivial. O

Exercise 10.57
If A %> Bandy = (1a, ¢) isitsgraph, thenontheset P = A x B we have part
of agraph structure

wherer = projectionto Asincery = 1a. (Themap ¢ isrecovered fromitsgraph
y by following instead with the projection to B.) Show that amap A x B YA
completes the structure of aright A;-set on A x Biff ¢(a, pa) = afordla. ¢

Givenany A x B Y. Atobeconsidered as “target,” pairing it with the projec-
tion 7 to A considered as “source,” we get a “graph” (not reflexive) in which the
arrows are labeled by the elements of B with the property that given any b and any
statea thereisexactly onearrow inthe graph with label b and source a; thetarget of
that arrow isa’ = y(a, b). Theelementsof B act viays on the states, and the graph
pictures the possible operation of the system; imagine that if b is activated when
the system isin state a, the system will move somehow to state a’. The element b
may be said to maintain a state a iff a = y(a, b), i.e. if b labelsaloop at a. The
problem of completing the information v with amap ¢ whose graph y = (1, ¢)
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makes this graph reflexive may be anontrivial oneif the maps areto bein ahighly
structured category such as a category from linear algebra.

Exercise 10.58

Let A and B be vector spaces and let B—> A be a linear map.We will consider
some action graphs in which « is one of the ingredients. A simple example is
essentialy just the vector subtractionin A

¥(a,b) =ad) —a
Show that, with this action graph, b maintains a iff

a(b) = 2a

Exercise 10.59

Using a “feedback” map A"~ B to “observe” the states permits one to adjust
the acting element b before applying «, leading to an action caled feedback
control

v(a,b) =a(b - p(a))
Show that b maintains a with feedback control iff

a(b) = (1+ap)a

Exercise 10.60

Given two opposed linear maps, the graph defined by feedback control  as above
may sometimes admit a completion to aright A; action on A x B; this requires
another linear map A —¥> B whose graph would supply the reflexivity; in other
words, ¢ would supply, for every state a, a chosen b that would succeed in main-
taining a. Show that a map ¢ works that way iff

ap =14+ ap

Show that if solutions ¢ to the latter equation exist, then « is surjective (and one
can take ¢ = o 4+ 8, where o is any chosen section of «). But note that in most
practical examples, dimA > dimB, so that no surjective « can exist. O

The preceding exercise raises the question of calculating the possible reflexivity
structureson subgraphsof agiven nonreflexivegraph A # P . Thus, weconsider
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homomorphisms

E P
O‘|P \7‘ 7| (¥
V A

ha
whereop = 1y = tp, mhp =hao, Y¥hp =hart.
Exercise 10.61

Show how to consider the diagram above as q*(Y) N X, where X is the given
A # P and where g is the inclusion functor between finite categories

where A; is a category with seven maps al told, the bottom object is in two
ways aretract of the top object, and the endomorphisms of the top are isomorphic
to A;. O

Exercise 10.62
For every X as above there is a well-defined reflexive graph (right A-set) g.(X)
such that for every Y thereisabijection

qg*Y —X

Y—0.X
between (nonreflexive) graph maps above the bar and A;-maps (i.e., graph maps
preserving given reflexivities) below the bar. In particular, each way of choosing

a reflexivity structure Y on a part of X can be indicated by factoring across the
canonical g*g, X —= X. O

Returning to the linear construction discussed in Exercises 10.51 through 10.59,
we point out that it also isafunctor. That is, we can consider diagrams

A~ a—T>p

of linear maps as concrete structures of a certain abstract kind (see Exercise 10.63).
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Exercise 10.63
Define morphisms between such structures in order to obtain a reasonable cate-
gory D of feedback-command data.

Hint: A morphism should consist of a pair of linear maps satisfying two commu-
tativity equations. O

Exercise 10.64
Show that there is a functor F from D to the category Aff* of nonreflexive affine
graphs such that

f(A%(_> B) — A #A % B
with ¥ (a, b) = a(b) — a as before. O

Exercise 10.65 5
Given any diagram X of shape A——=B in any category, consider the diagram
B(X) of the same shape

1g
—t- B

Ba

Show that there is anatural map X N B(X) of such diagrams (one leg of which
is1g). Inthelinear case, determine the graph 7 (B(X)) and explain why the func-

torialy induced F(B) “labels’ the arrows in the graph F(X). O
Exercise 10.66
Linearize and functorize Exercises 10.61 and 10.62. O

10.6 To and from Idempotents

Some constructions starting from an arbitrary given map may produce diagrams
involving idempotent maps e = e - e = €. In most categories idempotents can be
split, giving structures of the abstract shape

E— pp

wherein pi = 1, e = ip. Note that the category 2 = has the property that
functors 2 — A to any category A correspond exactly to morphismsin A.
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Exercise 10.67
Consider the three functors
N
2————E

corresponding to the morphisms of the same names in E. Given any ¢ in S with
0? = o, each of p*(0),i*(0), €*(c) = o isamapin S considered as a left 2-set.
Given any X —'. Y in S considered as a left 2-set M, there are thus six sets
equipped with idempotents that are universal with respect to mapsto or from M.
Show that these adjoints give specificaly

p!M = cograph of f

p:M = kernel pair (equivalence relation) of f

i!M = cokernel pair of f, gluing two copiesof Y along X

ixM = graphof f

all equipped with a natural idempotent, whereas

elM = cograph of f but with different adjunction map than p!M
e.M = graphof f but with different adjunction map thani,. M.

Determine al so the other two associated canonical adjunction maps. O

Exercise 10.68
Splitting the idempotents in a left action of A1 yields a diagram of the form of a
left action of A,

T P X
St

with the two s, s; having a common retraction p. It is sometimes said that p
“unites the two identical opposites” since the two subobjects sy, s; united in the
one X areidentical (with T) as mere objects (i.e., upon neglecting the inclusions)
but are often “opposite” in one sense or another. Because the two are subobjects
of the same object, we can intersect them, obtaining the subobject 5o N's; of X.
Sincethey al so have acommon domain, we can consider their equalizer k. However,
the presence of p impliesthat these two constructions give the sameresult. That is,
the natural map f, which provesinclusion in one direction,
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exists because spt = 5t = x impliesthat x € 59 and x € s1, but using p we can
also show that for any x in X, if

to proves x € spandt; provesx € s;

theninfact tg = t; so that actually x € j, thusdefining aninversefor f. O

10.7 Additional Exercises

Exercise 10.69
Inaposet A showthat A< Aand A < AimpliesA= A'.

Exercise 10.70

From a poset A may be constructed a strict poset A as follows. There is an
equivalence relation R on objects of A defined by ARA iff A< A'and A’ < A
As has objects given by the codomain As of the associated partition A "% As.
Thereisanarrow B < B’ in A iff thereare A < A’'in A suchthat pr(A) = B and
Pr(A) = B

(8 Show that Ag isastrict poset and that pg is afunctor (order-preserving).

(b) Show that A, satisfies a universal property: If A—F> B isafunctor to a strict
poset 3, then there is a unique functor As ——> B such that F'pg = F.

Exercise 10.71
Show that S/ X is the same as the category of left X-sets, where X isviewed asa
category with no nonidentity arrows. Compare Exercise 10.28.

Exercise 10.72

Show that the category S has finite limits and colimits. These are all computed
“pointwise”. For example, if ® and W areleft A-sets, then their product in S4 isa
left A-set @ x W with (® x W)(A) = ®(A) x W(A).

Exercise 10.73

Show that the category S+ has a natural number object.
Hint: All of the A-actionsin that object are identity.
Exercise 10.74

Show that the category S has a truth value object €2. This is a generalization of
Exercise 6.15.
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Hint: Asafunctor Q: A — S, thevalue of Q@ at X in A is given by the set of
“subfunctors” of the representable functor G 4(X).

Exercise 10.75
Show that the category S has mapping sets.

Hint: If ® and ¥ are left A-sets, then the functor ¥® : A — S hasvalue at X
given by the set of natural transformationsfrom @ x G 4(X) to . Writethe precise
formulafor the A-action on the latter sets.



Appendix A
Logic as the Algebra of Parts

A.0 Why Study L ogic?

The term “logic” has always had two meanings — a broader one and a narrower one:

(1) All the general laws about the movement of human thinking should ultimately
be made explicit so that thinking can be a reliable instrument, but

(2) already Aristotle realized that one must start on that vast program with a more
sharply defined subcase.

The achievements of this subprogram include the recognition of the necessity of

making explicit

(a) alimited universe of discourse, as well as

(b) the correspondence assigning, to each adjective that is meaningful over a whole
universe, the part of that universe where the adjective applies. This correspon-
dence necessarily involves

(c) an attendant homomorphic relation between connectives (like and and or) that
apply to the adjectives and corresponding operations (like inftersection and
union) that apply to the parts “named” by the adjectives.

When thinking is temporarily limited to only one universe, the universe as such
need not be mentioned; however, thinking actually involves relationships between
several universes. For example, the three universes (1) of differential equations,
(2) of functions of time, and (3) of formal power series are all distinct with differ-
ent classes of adjectives meaningful over each one. But there are key relationships
between these three universes that are the everyday preoccupation of users of many
mathematical sciences: a function might satisfy a differential equation, a power
series might approximate a function or might formally satisfy a differential equa-
tion, whereas we might seek to solve a differential equation or expand a function,
and so on. Each suitable passage from one universe of discourse to another induces

193
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(0) an operation of substitution in the inverse direction, applying to the adjectives
meaningful over the second universe and yielding new adjectives meaningful
over the first universe.

The same passage a so induces two operations in the forward direction:

(1) one operation corresponds to the idea of the direct image of apart but is called
“existential quantification” asit applies to the adjectives that name the parts;

(2) theother forward operationiscalled “universal quantification” on the adjectives
and corresponds to a different geometrical operation on the parts of the first
universe.

It is the study of the resulting algebra of parts of a universe of discourse and
of these three transformations of parts between universes that we sometimes call
“logic in the narrow sense”. Presentations of algebraic structures for the purpose
of calculation are always needed, but it is a serious mistake to confuse the arbitrary
formulations of such presentationswith the objective structureitself or to arbitrarily
enshrineone choiceof presentation asthe notion of |ogical theory, thereby obscuring
even the existence of the invariant mathematical content. In the long run it is best
totry to bring the form of the subjective presentation paradigm as much as possible
into harmony with the objective content of the objects to be presented; with the
help of the categorical method we will be able to approach that goal.

How much logic is actually relevant to the practice of amathematical scienceis
a question we can only scientifically answer after learning a significant fragment
of this logic. Some use of logic is essential in clarifying the successive states of
our calculations in the everyday algebra of ordinary variable quantities. In this
appendix wewill become familiar with someinstructive examples of such use after
making explicit the main features of thislogical algebra, both objectively in terms
of parts of universes of discourse aswell as subjectively in terms of the syntax and
symbolism commonly used to present thelogical algebrathat organizesthe naming
of these parts. As is customary, we begin with the propositional logic of asingle
universe of discourse and then proceed to the predicate logic where that universe
is varied; the variation of universes introduces new features even in those casesin
which it only involves passing from a given universe to a universe of ordered pairs
or ordered triples.

Note: In the foregoing preliminary remarks we have used the term “adjective,”
whereas in the remaining text of thisappendix werefer usually to “statements’; the
link between the two is expressed by the traditional term “predicate” as follows:
Over agiven universe of discourse (such asfunctions) an adjective (or more gener-
ally an adjectival phrase) such as “positive” corresponds to a predicate or statement
form such as “is positive,” which can in turn become many particular statements
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such as
1+ x? ispositive
e* ispositive

and so on; each thing or family of things (in the universe of discourse) for which
the resulting statement is true belongs to the part of the universe (e.g., the positive
functions) the adjective specifies.

Historical Note

It is sometimes objected that logic is alegedly not algebra since — for example —
nobody thinksin cylindric algebra. That isan unfortunate misunderstanding: cylin-
dric algebras (and polyadic algebras) were animportant initial attempt in the 1950s
to make explicit the objective algebra briefly described above; however, they were
excessively influenced by the styles of subjective presentation (of logical content)
that had become traditional since the 1930s under the name of “first order predicate
calculus’ or thelike. Those stylesof presentation involved various arbitrary choices
(such asthe specification of asingleinfinite list of variables) that proved to be quite
bizarre when confronted with ordinary mathematical practice; surely the logic of
mathematics is not cylindric algebra. For about a hundred years now, mathemat-
ical scientists have indeed had an intuitive distrust of attempts by some logicians
to interfere with mathematics. However, some explicit recognition of the role of
logical algebrais helpful and even necessary for the smooth and correct learning,
development, and use of mathematics, including even the high school algebra of
ordinary quantities.

A.1 Basic Operatorsand Their Rulesof Inference

Although the basic statements of mathematics are equations, many of the state-
ments of interest have a somewhat more complicated structure; often this more
complicated structure is expressed in the words that surround the equations, but
in order to bring this structure into sharper relief it is useful to introduce a few
“logical” symbols beyond just = (equals). These are

3, A, Vv, true, fase (positive)
v, = (negative)

used as operations to build up more complicated statements from simpler ones
(usually starting from equations as the “simplest,” although of course equations
themselves can be complicated) and the symbol I, which expresses that one state-
ment follows from another. (The reason for distinguishing the negative or higher
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operators from the positive onesis mentioned in Exercise A.16.) Thusif A, B are
statements, then

AANB

is the statement whose truth would mean that A istrue and B istrue, whereas
AV B

isthe statement whose truth would mean roughly that at least one of A or B istrue;
thus, A, v areread simply “and,” “or”. If we express by

CHD

therelation that “D followsfrom C” (often called “C entails D), then the essential
rules of inference that govern the use of A are asfollows:
If CkD,andif C+ Dy, then

CHDiA Dy
and conversely, if C = D1 A Dy, then both
CHD; and CHFD,
This can be expressed more briefly as
C=DyAD, iff CHDy,CHD;

or still more briefly as
CHEDiADy
C+Dy, CFD>
where the horizontal bar means “iff” in this context, i.e. if we know of three state-
ments C, D1, D, that they satisfy the deducibility (or “following from”) relation
above the line, then we can conclude that they satisfy the deducibility relations
below the line, and conversely. Since

CHC

holds for any statement, we can conclude, taking the special case where C is
Dy A Dy, that

D1 Dy Dy

D1 A Dy Doy
for any two statements D1, D,, and that in turn implies the “top to bottom” half of
the basic rule of inference above for A if we use the fact that “following from” is

transitive.
Whenever C-E, EF D, thendso C - D.
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To analyze the “bottom to top” half of the basic two-way rule of inference for A
similarly, note that

(@ (when we takethe casein which D,, D, are both C),
cHFCAC

for any C, and aso that
(b) (exercise!) whenever C; - D4, Co = D5 it follows that

CiNCobE Dy A D>y

Taking the case of (b), where C;, C;, are both C, and applying the transitivity
of I to that together with (a), we obtain that

whenever C+ Dy, CHD,, thendso CF DiA D>

Since we already understood what A means, the detailed analysis above of its
characterization in terms of - may seem pedantic; however, it is necessary to grasp
every detail of it because wewill apply exactly the same pattern of analysisto many
other concepts that will not be quite so obvious.

The statement “true” isroughly like the quantity 1. It is characterized by the fact
that

C true
holds for any statement C.

ExerciseA.1
The statements
CF C Atrue C Atrue = C
hold for any C. O

We oftenwrite C = C A true. Here A = B (read “A isequivaent” to B) means,
asin this case, that entailment - holds in both directions.
To say that a statement D istrue means that it follows from true:

true- D
Exercise A.2
Whenever

truet D4

true D,
then

true- D1 A D>



198 Logic as the Algebra of Parts
Therelation of “false” to I is essentially opposed to that of “true”. That is,
fase D
holds for any statement D, and
CHfase

means that C isfalse; for example 0 = 1 + false holdsin any nondegenerate ring.
The basic rule of inference for v is opposite to that for A:
CivCoED
Ci+D, CED

Note that the comma below the line till means “and” in the metalanguage even
though what we are describing is “or”.

Exercise A.3
Verify that the above rule of inference isintuitively reasonable; derive from it that

CiHEC1Vv (o l=1,2
DV DFD

holdsfor any Cq, C», D and also that whenever C1 = D4, C, + Do,
CivCot D1V Dy

then use transitivity and the identity inference to rederive the two-way rule from
these specia consequences, i.e. analyze the v rulein the “same pattern” by which

we analyzed the A rule. O
ExerciseA.4
(falsev C) = C, fordl C O

The operation = applied to a pair of statements B, D gives another statement
B = D, whichisusually read “B implies D” or “if B then D”. (Itisto be disting-
uished from B + D, which is a statement about statements usually written down
only when we mean to assert that D in fact follows from B, whereas B = D isa
statement which, like other statements, may be important to consider even when it
isonly partly true.) The rule of inference characterizing = is not only in terms of
F, but also involves A:

CH(B=D)
CABFD

(Thisissometimescalled “modus ponensand the deduction theorem” by logicians.)
That is, if weknow that D followsfrom C A B, then we can concludethat B = D
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follows from C aone (and also that C = D followsfrom B donesince C A B =
B A C); conversely, if weknow that B = D followsfrom C, then we can conclude
that D aone follows from the composite hypothesis C A B. In particular, since
(true AB) = B,

true-B= D
B+ED

holds for any two statements B, D; this motivates the frequent abuse of notation
whereby we often write = when we mean . Thisis an abuse that causes no major
problems when no more than one implication is involved, but (for example) when
we assert

(B= D)+ E

we are not asserting that E is necessarily true but only that it follows whenever
B = D istrue, whichinturn means. ... Butin particular the preceding discussion
indicates the basic strategy for proving the rruth of statements of theform B = D,
namely, we remporarily assume that B istrue and then try to show that D follows;
if we succeed, then we have proven the truth of B = D with no assumptions, for
that iswhat B = D means.

The = operator has many properties:

Exercise A.5
true = (B=B) forall B
BA(B=D) + D forall B, D
(A=B)A(B=C) F (A=0C) foral A, B, C
if BBy then (A= B1)F (A= B,) fordl A
ifAzl—Althen(AliB)l—(Az:B) for al B
((CAB)=D) = (C=(B= D)) foral C, B, D
B=(D1ADy) = (B=D))A(B= Dy) fordl B, D1, D,
(BiVBy)=D = (By=D)A(By= D) foral By, B, D
(true=D) = D
(fdse= D) = true
(D=true) = true

O

The expressions above are al to be proved using the basic rules of inference
for =. The presence of the operator = satisfying itsrule of inference enablesusto
prove an important “distributivity” between “and” and “or”” that does not explicitly
mention = but which cannot be proved without it:

AAN(BLV B2)=(AAB1)V(AAB))



200 Logic as the Algebra of Parts

Recall that the equivalence “=" is a metastatement (statement about statements)
whose assertion means that in fact ~ holds in both directions; using = we can
define an analog among statements themsel ves:

B<= D
is an abbreviation that stands for the compound statement
(B= D)A(D = B)

Often B <= Disread“B iff D,” andthestrategy for provingitstruth hastwo parts:
first temporarily assume B and deduce D; then forget that, temporarily assume
D, and try to prove B (this second part is called “proving the converse” since,
independently of their truth, D = B iscalled the converse of B = D); only if we
succeed in proving both of these do we have aright to assert the «— statement,
i.e. only then have we proved B <= D to betrue.

The reader may have noted the absence, in the exercise listing various properties
of =, of any simple equivalence for statements of the form (B = false). That is
because the abbreviation

—B=(B=fdse)

defines another important logical operation read “not B” roughly speaking because
the statement denying B is essentially the statement that assuming B would lead
to a contradiction. From the basic rules of inference we can prove the following
properties of —:

Exercise A.6
(BA—-B) = fdse
if (BAC)=fdsethenC+ —B
=(B1V B2) = (—=B1) A (—B)
(B=—-D) = —(BAD)
B + ——B
fase = —true
true = —fase
O
Exercise A.7

If we suppose (B v —B) = truefor al B (this “law of the excluded middle” is not
valid in al systems of statements of interest in mathematical analysis), then we
further have

-—B+ B
—(B1 A By) = (—B1) v (—B3) (de Morgan’s law)
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Of coursg, if B isan equation x = y, then we usually write

—B=x#£y
O

Remark A.8: It is often useful to introduce another logical operation B\ A called
“logical subtraction” and read “B but not A” characterized by arule of inference
dual to that for implication

B\AFC
BFAVC

Exercise A.9

Logical subtraction satisfies a whole list of properties roughly opposite to those
satisfied by =. In case the law of excluded middle holds, we could define logical
subtractionas(B\A) = B A (A = false). However, ingeneral \ may exist when =
isimpossible and in other cases = may exist but \ isimpossible. In terms of \ we
can define a different negation operator A’ = (true \ A), but even when borh oper-
ations (), —=() are present A" may be different from —A. (Example: the A’s, B’S,

etc., denote real numbers between 0, 1, and - denotes < of real numbers.) O
Exercise A.10
If we define

A=AANA

(read “boundary of A”) inasystemwhere) ispresent, thenfromtheruleof inference
follows

9(AAB)=((0A)AB)V (A A3IB)

aboundary formula of topology that isimportant for the boundary-value problems
of analysis and physics (note the similarity with the Leibniz rule for differentiation
of quantities). O

To specify the role of the existential quantifier 3 and the universal quantifier V it
is necessary to be more specific about the kinds of statements we are considering.
Consider two universes X, Y of things (points, bodies, quantities, etc.) being talked
about and amapping f between them:

x -y

Assume that there are two systems of statements both having some or all of the
logical operations previously discussed; one system refers to the thingsin X, the
other to thethingsin Y. Thus,

AbFx C
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means that both A, C refer to the things in X and that whenever A is true of
something in X, then C isalso true of the samething; thisis frequently symbolized
by the use of avariable x to denotethethingsin X, and A(x) signifiesthat x satisfies
the statement A. Then

A(x) Fx C(x)
means the same as
AlFx C

i.e, any x in X that satisfies A also satisfies C. Similarly,
By D

means the same sort of relation between statements about the thingsin Y. Now the
roleof thegiven mapping f isthis: it associatesto every thing x in X aspecific thing
fx inY. Hence, to any statement B about thethingsin Y thereis a corresponding
statement Bf about thingsin X

(Bf)(x) = B(f(x))
by definition. Thisprocessisoften called “substitution” or “inverseimage” along f .
For example, if f(x) = x? and B(y) = (y — 1 = 10), then (Bf)(x) = (x> — 1=
10), whereas if D(y) = (y + 1 = 0), then (Df)(x) = (x> + 1= 0). It iseasy to
see that

for any statements B, D about thingsinY. Thus, theprocessof substitution of f into
statements goes “backwards’ relativeto f, i.e,, it takes statements on the codomain
Y of f back to statements on the domain X of f, and moreover it “preserves
entallment +,” i.e. maps statements in fact related by Fy to statements related
by Fx.

Both operations V; and 3¢ by contrast are “covariant,” meaning that they goin
the same direction as f. Thus, in many situations, for any admissible statement A
on X, the statement 3+ A will be an admissible statement on Y, where 3; isrelated
to subgtitution along f by the following rule of inference

d:tAky B
Aty Bf
for any admissible statement B on Y, or using the “variable” notation,
FtA)(y) F B(y) foranyyinY
iff
A(X) + B(f(x)) foranyxinX
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Thisrule of inferenceis precisely the rulefor carrying out calculations on the basis
of the meaning of 3¢ A, whichis

“there exists something x in X
(31 A)(y) =« that satisfies A(x) and

goestoy under f ;: f(x)=y”
and is clearly a statement about y’s rather than x’s. For (going from below theline
to above) if A, B arerdated by A(x) Fx B(f(x)) for al x, thento infer B(y) for
agiven vy, it suffices to know that we can find some x for which y = f(x) and for
which A(x) holds; (going down) if conversely the existential statement entails B
onY for al y, then the entailment below the line must hold for al x.

The expression 3¢ A names the image of A along f, denoted f (A).

Exercise A.11

If Aq Fx AzthenEIfAl Fy 3¢ Ao
J; falsex =y fasey
(AL Vv Az) =y (FrA) VvV 31 A)
Ay (31Af
3:(Bf) Iy B
0

Similarly, the universal quantification V¢ along f ischaracterized by itsrelation to
substitution along f, which isthe rule of inference

By ViA

Bf x A
for all statements Aon X and B onY. Thisrule governsthe cal culations appropriate
to the meaning

(Vi A)(y) = “for dl things x in X for which fx =y, A(x) holds”

Exercise A.12
Formulate and prove the basic properties of V¢ that are dua to those stated in
Exercise A.11 for 3¢. 0

We now give three basic examples of mappings f along which quantification is
often performed. First, suppose Y = 1 is a universe with only one thing but X is
arbitrary. Then only one mapping f

X—1
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is possible. In the category of abstract, constant sets (which one usualy refers to
as “the” category of sets), 1 has only two subsets, so that up to equivalence there
are only two statements on 1, “true” and “false”. Their inverse images under the
unique f aretruey and falsey, but on X there arein general many more statements
A(x) possible (except if X isthe empty universe, in which casetruex = falsex). A
general A really dependson x in the sense that A(xg) may hold for one thing xg in
X, and A(x;) may not hold for another thing x; in X. But 3+ A no longer depends
on anything; it is either absolutely true (in case A(x) holds for at least one x) or
absolutely false (in case A(x) failsfor al x); in other words

3¢ A=, truey, A = fasey
=k AElfalsel, A= falsex

For amoregeneral and typical example, supposeY isanarbitrary set (or “universe
of things”) but that we have another set T and define X to be the cartesian product
T x Y. Then, asimple choice of f isthe projection map

f

X Y
‘ / fle)=yife=(t))
proj ie. f(t,y)=yall (t,y)in X
TxY

wherewerecall that everything x in X isuniquely expressibleintheformx = (t, y),
wheret isin T and y isin Y. Now if we consider any admissible statement B on
Y, we have

(B)(t.y) = B(y)

i.e. Bf isthe “same” statement as B but is now considered to depend (vacuously)
ontheadditional variablet. Onthe other hand, atypical statement A on X really de-
pendson botht and y (and for that reason is often called a““relation” between T and
Y), but its existential quantification along the projection f no longer dependsont:

3+ A)Y) Fy B(y)
At, y) Frxy B(y)

Usually, a notation for f is chosen emphasizing what it forgets (namely t) rather
than the rest of x (hamely y) that it retains; this is because, when given y, the
existence of an x that mapsto it by the projection is equivalent to the existence of
at such that the pair (t, y) has the required property, since x for which f(x) =y
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isuniquely of that form x = (t, y) for at uniquely determined by x (of courset is
not uniquely determined by y, except for special A). Thus, traditionally one writes

JdtA=3:A

for f the projection on a cartesian product that leaves out t, and A a statement on
that product, or (sightly confusingly) with all variables displayed

FAL, Y) =v @ A(Y)

where f (t, y) = y. Theleft-hand side depends on y but not on t; one says that the
operator 3t “binds” the variable t just as a definite integral fol f(t)dt ismerely a
number, not a function of t. Similarly

VEA(L, Y) =v (Vi A)(Y)

where f isthe projection f(t, y) = y and A is a statement on the entire cartesian
product X =T x Y since to say that all x for which fx =y have property A
(y being given) isinthis specia casethe same asto say that all t, when paired with
y, satisfy therelation A(t, y) owing to the nature of f.

Our first example is a special case of this second one, since if Y = 1 then
X =T xY =T. A further important subcase of this second example is as fol-
lows:supposeY = T? =T x T;thenX =T x Y =T x T? = T3, and thesame
projection f isnow

f(ty, to, t3) = (tg, t2)

The statements B on Y are binary relations on T, whereas the statements A on X
areternary relationson T. Quantifying along this f (either vV or 3) aternary relation
givesabinary relation. As an example of how thisis used in expressing properties
of particular binary relations B on T (i.e., statements on T?2), let us consider a
particular one we will denote by <:

ty <t =747 B(t1, to)

The notation suggests that we might want to consider whether B is “transitive”, a
condition usually written as

h<bAbb<Gz=1 <13

As mentioned before, we do not really need the complication of the = operator
to assert something as simple as this; the - relation on statements is good enough,
but which 2 Clearly, it must be the -3 between statements on X = T3 since
the left-hand side of the implication involves three variables, but then what is the
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meaning of the two sideswhen all we were given concretely to speak about wasthe
binary relation B, that is, acertain statement on Y = T2? There are three different
tautological f’sthat enter essentially into the construction even if we do not always
explicitly mention them,

X=T3_"<T2=-Y

namely, we define

m3(ty, to, t3) = (t1, t)
m1(ty, to, t3) = (t2, ta)
ma(ty, to, ta) = (tg, ta)

following the custom to name the projection for what it leaves out.Then with B
denoting the given < relation on T2,

(Bm3)(ty, to, t3) =t <ty
(Brra)(ta, to, t3) =tp < t3

are both statements on X = T3 so that the A operator for such statements can be
applied by forming

(B A Brrg)(ty, t2, t3) = (t1 < t2) A (12 < t3)
and the result compared with the other Bsr,. The expression
BJT3 AN B?Tl 3 BT[Z
isthen the entailment relation signifying that B on T2 istransitive. But now noting
that By is actually independent of the middle variable t,, we can (by the rule of
inference for 3) existentially quantify to get an entailment on T2,
E|7T2(BJT3 AN BJT]_) o B
which equally well expresses the same property of B; or in variable notation,

It <rAr <slkot<s

Thatis, toprovet < sby useof transitivity isindependent of any specificr between
them, it is sufficient to know that “there exists” one.
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Both of the preceding formsof thetransitivity conditionon B areusedineveryday
reasoning; it is essential to know that they are equivalent. However, one could say
crudely (and a similar comment can be made about each of the logical operators):
although the determining rule of inference says that the operator is “not needed”
when it occurson oneside of thet-, oncethe operator isdetermined it can al so occur
on the other side of the; thereit usually is essential and cannot be eliminated. For
example, we could expressC = D3 A Do without A just by listing C = Dy, C = Do,
but A B+ C expresses (except intrivial cases) that A, B must bejointly assumed
to deduce C; of course in that situation we can “eiminate” the A in favor of
the =, A+ (B = C), but we can in general go further: i.e. having introduced =,
we haveto admit the possibility of conditionslike (B = C) - D, but thereisno way
in general to eliminate this occurrence of =. Similarly C; v C,+ D is equivalent
to listing C; - D, but a condition like C -+ D1 v D, cannot be expressed in general
in terms of simpler operators. For example, the condition that a transitive binary
relation < be alinear order

truerz b2 [tl <t Vvt < t]_]
which isjust
true -, B Vv Bo O'(tl, tz) = (tr, ty)

in the notation used above, cannot be expressed in terms of equations or simple
logical operations such as A but requires the use of v. Now a similar remark
involving 3 concerns the statement that a transitive relation be “dense”. If we
consider atransitive binary relation

t <s=D(t,5s)
(using different symbolsto distinguish from B) it issaid to be denseif (in variables)
t<skarft<rar <g]

i.e., (roughly speaking) if more things can always be found between given things
(relative to D). Without variables, this says

D o 37T2[D7T3 AN D7T1]

For example, this property holds in the universe of real numbers but not in the
universe of whole numbers with the usua interpretation of D. So long as we
consider only the “structure” T, D by itself, and hence only statements that can be
built up logically from D, there is no way to eliminate the 3 (since it occurs on
theright hand side of ). The example of real numbers shows, however, that if we
have at our disposal additional structure, in particular if we can make statements of
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the type
t+s
F(r,t,s)zr:T
we can (using equational axioms, etc., about F) prove outright that if t < s, then
2 2
from which the 3r ... could be deduced since we already have something more
explicit.

Asathird example, wewill consider the caseinwhich X ' Yisthe“d agonal”

mapping

X -85 X x X
defined by

A(X) = (X, x)
Then, for any binary relation B on X (statement on X?)

(BA)(X) = B(x, Xx)

defines a unary relation (statement on X). Special interest attaches to

E = 3Ja(truey)

thebinary relation on X obtained by existentially quantifying thetrivialy trueunary
relation along the diagonal map. By the rule of inference for 3,

EH B
truex 1 BA
or in terms of variables,
E(Xl, X2) = B(Xl, X2)

holds if and only if B is a binary relation whose diagonalization is outright true,
that is,

truex = B(X, X)

To obtain a class of B with that property, consider any (unary) statement A on X
and consider

B(x1, %2) & (A(x1) = A(x2))

i.e B=(Ap1= Apy), where pi(x1, X2) =% 1 =1,2;
then

(BA)(X) = (A(X) = A(X))
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which is identically true since any statement truly implies itself. Hence, by the
preceding fragment of the rule of inference for 3,

E-B
proving
E(X1, X2) F (A(X1) = A(X2)) forany A
which isthe usual rule of inference for equality E,
X1 = xzdéf E(X1, X2)

the rule being often called the rule of substitution for equality. Using equality E,
we can make explicit the usual distinction between our B and D by

EFB
EADHF, faser:

which express that B is reflexive whereas D is antireflexive (stronger than merely
being nonreflexive). Although antireflexivity is thus expressed using only A and
false, we could introduce the somewhat more complicated operator = if wewished
by quoting itsrule of inference, yielding

D I (E = fase)

By the definition of “not,” we see that (when we can use the operator =) antire-
flexivity of D isequivalent to

D+ -E
or with variables
ti<thbHti £t
or if one prefers (since we used = anyway)
true-ti<tb =t #1t

Finally, since one usualy treats the “true " as understood when asserting
something,

h<b=>t#0b

An extremely important use of the equality relation E isin the definition of the
unique existential quantifier that establishes a link between the genera relations
expressed by “statements,” as discussed above on the one hand and the wel l-defined
“operations” of algebraand analysisontheother hand. First, we consider uniqueness
(without commitment about existence). If Aisany statement on T, we want to ex-
presstheideathat at most onethingin T satisfies A. Thiswould mean that whenever
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t1, to both have the property expressed by A, theninfactt,, t, denote the samething
(thetraditional exampleis A(t) = “t istheking of France at agiventime”); in other
words,

At)AAl)Fti =t
where the entailment F is obviously supposedto beon T x T. It is important to
allow additional variables, so we generalize thisto
Alts, Y) A Az, Y) Frexy i =t
where the right-hand side must mean Ex, when the map T? x Y -Z=Y is the
obvious projection, and the |eft-hand side is Ay A A, where the maps
T2 x Y::;iT x Y

are again obvious once we recognize that there are two of them. Finally, it is very
important to be able to consider this uniqueness property of A independently of
whether we know it is true, so we use = instead of I to define a new statement,
“uniquenessin T of A”

Unt A=V, [Ar, A Ary = Ex]
which isastatement on Y whenever Aisastatementon T x Y. With variables,
(Unt A)(y) = Vg, [ At, Y) A A, y) = t1 = t]

For example A(t, y) might have the meaning “t isasolution of acertain differential
equation with initial value y”. Then, to prove Uny A for y would mean that any
two solutions of the equation having initial value y are equal (as functions); thisis
a separate issue from that of whether there are any solutions starting from y, and
both are independent (unless we know more about the differential equation) from
the issue of whether existence or uniqueness holds for some other y.

Exercise A.13
Let T = IR=Y, i.e. both universes are the set of al real numbers. Consider the
relation

Alt,y)=[y =t(t —1)]
Then

1
FUnrA)(Y) <=y < ~2
For example,
(Unt A)(0) - false

(Draw graph.) O
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We have aready discussed
@r A)y) = 3tA(t, y)
and so we can define
A+A=3rAAUNnTA
astatement on 'Y, for any statement Aon T x Y, written in variables
AL, y) = Jt[A(L, y)] A Vi, [ A() A At) = t1 = tg]

and read “there exists auniquet for which A(t, y)”.

Exercise A.14
With the notation of the previous exercise,

F@ETAWY) <=y => —%

and
1
FETAY) = y=—
(Refer to the graph of the function defined in the previous exercise.) O

Now if Y -~ T is any given mapping, we can define astatement Gon T x Y
(often called the “graph” of g) by

G(t, y)=[t = g(y)]
Then it will be true (as a statement on 1) that
vyaltG(t, y)

Conversely, (by the very meaning of “arbitrary” mapping) if we have any statement
GonT x Y for which the above V3! statement on 1 istrue, there will be amapping
Y —2> T whose graph is G. What will be its value at any given thing y in Y? It
will be “the” t (justified by the ! clause) for which G(t, y) (which exists by the 3
clauseinthe 3!).
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Exercise A.15
If Gisastatementon T x Y and H isastatementon X x T, thentheir composition
is defined to be the statement X x Y expressed by

A[H(X, t) A G(t, ¥)]

Thisisactualy 3,[Hr A Grr], where each of the three r’s are different mappings
withdomain X x T x Y.A binary relationon T istransitiveif and only if it follows
fromitscompositionwithitsalf. If G, H aregraphsof mappingsY —T, T — X,
then their composition is the graph of amapping Y — X. O

Exercise A.16

The condition that G be the graph of a mapping can be expressed without
using vV, = by using instead 3, A. In fact, we can use 3, A in the simple com-
bination known as composition; namely, consider the transpose relation G* of G
defined by

G(y,t) = G(t.y)
and consider Et, Ey the equality relationson T and Y, respectively; then

G isthe graph of amapping only if the two entailments

Ey Fv2 G* 0 G
GoG* k2 Er

hold

where the small circle denotes composition. (In fact if for a given G there is any
relation G* that satisfies these two entailments, then G* must be the transpose of
G, as defined above, and hence G is the graph of a mapping.) This reformula-
tion is important since 3, A (which go into the definition of o) are stable under
many more geometrical transformations used in anaysis than are V, = (which
go into the definition of !). Moreover this latter kind of relation (expressed in the
box) between “relations” and “mappings” will persist in situations in which the
values of G(t, y) are much richer mathematical objects than just “yes” and “no”
answers. %

A.2 Fields, Nilpotents, Ildempotents
Examples of Logical Operatorsin Algebra

The proofs of many of the exercisesin this section will be clearer if explicit rules
of inference from the previous section are cited at the appropriate points.
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The most basic properties of algebraic structures such as rings, linear spaces,
and categories are expressed by equations; for example, the distributive property,
nilpotence, associativity, or the property of being a solution. However, in working
with these egquations we must frequently use stronger logical operators, both in
stating stronger axioms on the ground ring in linear algebra and in summarizing
the meaning of our complicated calculations. (It should be remarked, however, that
most of this logic again becomes equational when we pass to a higher realm.) For
example, using the logical symbol +, which can be read “entails,” the additional
axioms stating that agiven ring R isafield are that R is nondegenerate,

0=1F fase
(usually expressed by introducing “not” and saying
true -0 #£ 1)
and that every nonzero quantity in R has areciprocal,
X # 0+ 3y[xy = 1]

When the law of excluded middleisvalid, the latter is equivalent to the (in general
stronger) condition, involving the logical symbol for “or,”
x =0V 3Iy[xy=1]

being trueg (which has the virtue of being invariant under more geometrical trans-
formations but the drawback, in those caseslike continuous functionswhere the law
of excluded middleisfalse, of being lesslikely to be true). Usually, one expresses
thisfield axiomusingvV = as

true F Vx[x # 0 = 3Jy[xy = 1]]

with the understanding that the universe over which both x, y vary is R. Thus
Z={. —3,-2,-1,01,2 3...}isaring Rthatisnot afield since, for example,
5 # 0, but thereisno y in Z for which 5y = 1. In any ring we can deduce purely
equationally from the hypotheses

Xyp=1

Xy, =1
that y1 = y» (hereisthe deduction, using only [commutative] ring axioms and the
hypotheses:

Y1 = Y1l = yi(Xy2) = (Y1X)¥2 = (XY1)y2 = 1y2 = ¥»)

Therefore, we can conclude that in any ring, reciprocals are unique, and hencein
any field that (using the exclamation point to signify this uniqueness)

VX[x # 0= 3ly[xy = 1]]
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Further (since R isnondegenerateif it isafield), “the” (just justified) reciprocal of
X cannot be zero either.

Exercise A.17

If yisareciprocal of x, then x isareciproca of y; if, inany givenring R, O hasa
reciprocal, then R is degenerate. In case R is afield, if we restrict the universe to
the set G of all nonzero elements of R (G isno longer aring) the slightly simpler
Statement

vx3aly[xy = 1]

istrue over G. Since thisis the criterion for the existence of amapping, thereisa
mapping

cYla
called the reciprocal mapping whose graph is defined by
X-y=1
thatis,y = x~tifandonly if x -y = 1. O

Exercise A.18

A much better way of understanding the last construction is as follows: Let R be
any commutative ring (not necessarily a field, maybe even degenerate). Define G
to be the subset of R consisting of all elements x of R satisfying

Jy[xy = 1]

in R. Then there is a reciprocal mapping G—G, 1isin G, and G is closed
under multiplication; i.e., if xq, X» arein G, then x1x, isin G since1~! = 1, and
(x1%2) ! = x5 *x; 1. Thismeansthat G isa(commutative) group called “the multi-
plicative group of R”. If 0isin G, then Risdegenerate. For any x in G, —x isaso
in G. But X1, Xo in G does not imply X; + X2 in G. If R = IR, the real numbers,
then 1 + x? isalwaysin G for any x, and the same istrueif R = C(S) = thering
of all continuous real-valued functions on any continuous domain (“topological

space”) S. O

Now the condition that aring R be afield isjust that R be the digoint union of
{0} and G, namely that (reading the v form of the definition backwards and using
the symbol for “not™)

AIX[-G(X)]
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Since any ring R has a special element 1 and since R has an addition operation,
there are eementsin R that may as well be denoted

2=1+1
3=1+1+1

(not all of these need be distinct). Even if R isafield, not al of these need have
reciprocals, for example, there is an important field with only three elements in
al inwhich 3 = 0. However, a great many rings, even those that are not fields, do
involve IR in such away that al of the above do have reciprocals, which can be
denoted as usual by 1,1, ... Thus, 5 isin G, £ isin G..., where G denotes the
multiplicative group of any suchring R.

Exercise A.19
In any ring having 3,

true F Vx3ayly + vy = X] o

By asubring of a given ring R is meant a subset S of the elements of R that
contains0, 1 and isclosed under the addition, the subtraction, and the multiplication
of R. Thus, if p is any polynomia with coefficients in Z in several, say three,
variables, and if X, y, zarein S, then p(x, y, z) isalsoin S.

Exercise A.20

If Risaring having % and if Sisasubset containing O, 1 closed under addition and
closed under the unary operations of multiplication by % and by —1, then Sisa
subring if and only if Sisclosed under the unary operation of squaring. (Theanswer
isafrequently used formula.) O

Now a subring is not necessarily closed under division, even to the extent to
which divisionisdefinedin R. Thus, Z C IR isasubring, but Z isnot afield even
though IR is a field. But any subring of any field does have a specia property not
shared by all rings of interest, namely

Xy=0F[x=0vy=0]

Exercise A.21
Prove the statement just made in any subring of afield. O
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A nondegenerate ring Shaving thisproperty for al x, y in Siscalled an integral
domain. Thisisintimately related to the cancellation property

VXq, Xo[aX; = axo = X1 = X7]

for an element a, which (using subtraction) is easily proved equivalent to the “non-
zerodivisor” property of a

Vx[ax = 0= x = 0]

where all universal quantifiers range over all x, X1, X2 in the ring in which we are
considering a. Wemight call a “monomorphic” in that ring. Note that this property
uses the logical operatorsin an essential way since, when we want to prove

a ismonomorphic + something else about a

we cannot always eliminate the V, = implicit on the left-hand side. Of course,
if the “something else” is just ancther instance of the cancellation property, such
proof may present no problem. Now clearly a = 0 can not be monomorphic in a
nondegenerate ring since

ax=0-x=0

for any x, yet we could take x = 1; hence, it would not follow that x = 0. Now the
idea of an integral domain is that (if the law of excluded middle is assumed) the
only a that is not monomorphicin Risa = 0. That is, the validity for al ain R of
any one of

a£0=Vx[ax=0= x=0]

Ix[ax =0AX#0 =a=0

VX[ax =0=[a=0V x = 0]]
is equivalent (using the law of the excluded middle) to the condition that R is
an integral domain. The last form with v is the one familiar from high school as

a crucial step in the method of solving polynomia equations by factoring. This
method isused in proving

Theorem A.22: In any integral domain, the equation

2

X=X

has precisely two solutions.
Proof: If x?>=x thenx? — x =0, and hencex(x — 1) = 0(sincex(x — 1) =x? — x

in any ring). Now use the integral domain property toget x =0vx —-1=0,i.e.
X =0V x = 1. We say “precisely two” because the ring is nondegenerate. |
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Exercise A.23

In any commutative ring, an element satisfying x?> = x is called idempotent. If x
isan idempotent, then soisits “complement” 1 — x. The product of any two idem-
potents is an idempotent. If x and y are idempotents and if Xy = O (one says X, ¥y
are “digoint” or “orthogonal™) then x + y is also an idempotent. One says a ring
“has connected spectrum” if it has precisely two idempotents. In general, the idem-
potents describe chunks of the “spectrum,” for example, of alinear transformation
(which givesrise to aring). O

Very important in engineering calculus [B99], in analyzing linear transfor-
mations, and so on, are the nilpotent elements in commutative rings, where x is
nilpotent if and only if

In[x"1 = 0]

Here the 3n does not range over the ring we are talking about but rather over the set
0,1, 2, 3... of natural numbers, which act as exponents on elements of any ring
(or indeed of any system wherein at |east multiplication is defined). In more detail,
we could say that x is nilpotent of order 1 if

x>=0
while x # 0, that x is nilpotent of order 2 if
x3=0

while x? = 0, and so on. Of course 0 is nilpotent of order zero. In anondegenerate
ring X = 1 is not nilpotent of any order. Using commutativity, we find that the
product of a nilpotent with any element is again nilpotent. Again using commuta-
tivity, we discover that the sum of any two nilpotent elementsis nilpotent; however,
the order may increase. For example, if x2 = 0 and y? = 0, we can calculate that
(x +y)® = 0; asfor (x + y)?, it might be 0, but only in case xy = 0, which is not
always true. Analysis of the calculation leads to the idea that, to be sure of the
nilpotency of a sum, we have to add the orders of nilpotency of the summands:

Theorem A.24: If x™1 = 0, y™?! = 0in a commutative ring, then always
(x +y)"mt =0

Proof. Inany commutativering thedistributivelaw impliesthe binomial expansion
x+yP= 3 Cjxy!
i+j=p

forany x, yintheringand any pin N (notethat N C Z and that Z can be used as



218 Logic asthe Algebra of Parts
coefficients in any ring — indeed in any system in which addition and subtraction
are defined. In fact
(i+j)
inj!

Cij =

isin N despite the denominators, where ! denotes “factorial,” by Pascal). Thus, the
proof of the theorem reduces to the following fact about the elementary arithmetic
of N: [ |

LemmaA.25 i+j=n4+m+1 F [i>n+1 v [j >m+1].

Exercise A.26
Prove LemmaA.25. O

In any case, since
XM= x". x

isaproduct, it isimmediately clear that
Theorem A.27: Inanintegral domain, the only nilpotent element is 0.

An extremely important property (for analysis, linear algebra, computer science,
etc.) isthefollowing, showing that, although the existence of nilpotent elementshas
the“negative’ consequencesthat some elements (theones*“near” zero) aredefinitely
not invertible, it also has the “positive” consequence that some other elements
(those“near” 1) definitely areinvertible, and thereis even aspecific formulafor the
reciprocals.

Theorem A.28: If hiisany nilpotent element inaring, then 1 — h hasa reciprocal
in the samering. In fact if "1 = 0, then

1 2”: ‘
= —_N"h
1-h &
Proof: Calculate that the right-hand side, multiplied by 1 — h, gives 1. |

Remark A.29: In aring furnished with a notion of convergence, Theorem A.28
can often be generalized to some h for which h" merely convergesto 0 as n tends
to 0o, i.e. to small h’s not necessarily so small asto be “nilpotent”. But the formula
of the theorem is surprisingly often useful even just for the nilpotent case.
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Exercise A.30

If u hasareciprocal and h isnilpotent then u + h hasareciprocal. (A formula, only
slightly more complicated than that of the theorem, can either be deduced from the
theorem as a corollary or calculated and proved directly.) O

Exercise A.31

If uy=1—hyg,u, =1— h, are invertible elements of a (commutative) ring of
the form indicated with hy, hy nilpotent (with orders of nilpotency ni, n, say),
the product uju, is of course invertible; is it again of the specia form, namely
“infinitesimally near 1” in the sense that

U1U2:l—h

for some nilpotent h of some order? Start with the special case h?=0=h3,
hih,=0. What if h; =te, where €2 = 0? What if multiplication were non-
commutative? O

Remark A.32: (An Embedding) Any given integral domain R can berealized asa
subring of afield F by constructing F to consist of equivalence classes of fractions
g, wherex isin R, sisin R, and s # 0.

The condition that aring R has*“no” (i.e., no nonzero) nilpotent elementsis often
referred to in geometry and analysisby sayingthe Ris““reduced”. It ismoregenera
than the cancellation (i.e., integral domain) property since, for example, R = IR?
with coordinatewise multiplication is reduced (i.e., has no nilpotent element) but is
not an integral domain sinceit has nontrivial idempotent elements (0, 1), (1, 0). In
logical notation with variables, R isreduced if and only if

EIn[x“H = 0] Fx=0

holdsfor al x in R. Sincethe 3 occurs on theleft, thisisone of itseliminable cases.
But more profoundly (i.e., using something of the quantitative content of the theory
of rings and not merely logical form):

Exercise A.33
If aring satisfies

FVx[x?=0= x =0
then it is reduced.

Hint: Show that if x"*1 = 0, then x> = 0; hence, using our main assumption, then
also x" = 0. By induction, the n can be decreased until eventually n = 1. O



Appendix B

The Axiom of Choice and Maximal Principles

The axiom of choice was first formulated by Zermelo in 1904 and used to prove
his Well-Ordering theorem. The axiom was considered controversial because it
introduced a highly nonconstructive aspect that differed from other axioms of
set theory. For some time it was mainly used in the form of the Well-Ordering
theorem (which is actually equivalent to the choice axiom). In this formulation,
the axiom permits arguments by the so-called transfinite induction. For about the
last 50 years it has usually been used in the form of the Maximal Principle
of Zorn (published in the 1930s, though a version by Hausdorff was published
earlier.)

If nontrivial variation with respect to some category S of abstract sets and ar-
bitrary mappings is allowed in a category of variable sets, the axiom of choice
tends not to hold as we have seen in Exercises 4.54, 6.12, and Section 10.3. In
fact, the axiom is valid in certain very special toposes of variable sets determined
relative to a category of abstract sets and arbitrary mappings, as was mentioned in
Section 4.6.

Here we will demonstrate that Zorn’s Maximal Principle is equivalent to the
axiom of choice. We will show this for forms of the Maximal Principle that use
both chains and directed (or filtered) posets. The latter form is more suitable for
arguments made in mathematical practice, whereas it is the former that we will
see as a direct consequence of the axiom of choice. In addition we will consider
Hausdorff’s Maximal Principle and some other consequences of the choice axiom.
Our proofs of the maximal principles will follow directly from the famous Fixed-
Point theorem of Bourbaki (B.15 below).

To state the results we need a few definitions. First recall the definition of poset,
Definition 10.6, that is a category with at most one arrow between any two objects.
Any set of objects of a poset E determines a full subcategory, which is also a poset,
called a subposet of E.

220
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Definition B.1: Ler S be a set of objects of a poset E. An object u in E is an upper
bound for S if forany s in S, s < u.

Definition B.2: Let S be a set of objects of a poset E. The object u is a least upper
bound (abbreviated lub) or supremum (abbreviated sup) for S if it is an upper
bound for S, and moreover for any upper bound u’ for S we have u < u'.

Dually we have definitions of lower bound and greatest lower bound (abbre-
viated glb) or infimum (abbreviated inf) for aset S of objectsof E.

Definition B.3: Let D be a set of objects of a poset E. We say D is directed
if it is nonempty and every two-element part of D has an upper bound in D, or
equivalently

Vx,yeDIueDx<u&y=<u

Exercise B.4

Show that the power set PX of any set X is a poset with arrows given by the
inclusion relation C. Note that P X is directed as a part of itself. Indeed, any part
of PX hasasup. O

The next concept isimportant in the sequel.

Definition B.5: An object m of a poset E is maximal if
Vx m<x—mZ=x

A minimal object is defined dually.
Animportant specia caseis

Definition B.6: An object m of a poset E is a maximum if m is an upper bound
for all of E. A minimum object is defined dually.

Exercise B.7
Show that a maximum is maximal. Show that a maximum object of a subposet S
of Eisasupof S. O

We can now state (the directed version) of

The Maximal Principle of Zorn
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If every directed part of a poset E hasan upper bound, then E hasa maximal object.

We can immediately prove that Zorn’s Maximal Principle implies the axiom of
choice. This proof is avery typical example of the use of this principle in modern
mathematics.

Theorem B.8: The Maximal Principle of Zorn implies the axiom of choice.

Proof: We need to begin with an epimorphisme : A— B in S and find a section
for it. This section should be a maximal object in some suitable poset, for thisis
what Zorn’sprinciple provides. The objectsof our poset E will bepairs(i, s), where
i : BB“——=Bisapatof Bands: Bi— AsdatisfiesVb € i, es(b) = b. Note that
it isimmediate that such s must be mono. We call the pairs (i, s) partial sections
of e. Partial sections of e form a poset E when < is defined by

(i,s) < (i’,s)iffi Ci’ & therestrictionof s'to Bj iss

We will obtain a maximal object of E by showing that E has least upper bounds
for directed parts and applying the Maximal Principle. It will turn out that such a
maximal object provides a section. So let D be adirected part of E. Define a part
ip:Bp~——Bof Bby

Vb beip iff 3(i,s)inD&bei
Definesp : Bp — A by
sp(b) = s(b) whenever b € i and (i, s) in D

It is necessary to verify that sp iswell-defined by showing thatif b e i andb € i’,
then s(b) = s'(b). Thisiswherewe usethat D is directed: there is an upper bound
(i”,s"yin D for (i, s), (i’,s). Thus,i Ci”andi’ Ci”, and s(b) = s”"(b) = s'(b).
It isaso obviousthat (ip, Sp) isan upper bound for D since

Y(i,s)inD bei=beip
andsoi Cip.

Thus, E has amaximal object (i, Sm). We claim that s, isthe required section
of e, thatis, B, = B. If not, thereisbg : 1— B such that by isnot ini,, and so
i1={ibm ' Bn+1— > B

o
isapart of B. Sinceeisepi thereisa : 1— A such that e(a) = bp. Let
o

and then (i1, s;) is a partia section of s. However, im C i + 1, but {'b”g is not
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included in iy (since by ishotiniy), and this contradicts the maximality of in,.
Thus, s,, hasdomain B. [ |

There are many other uses of the Maximal Principle of Zorn. For example, it
impliesthat any proper ideal in acommutativering is contained in amaximal ideal
(see Exercise B.34) and that any vector space has abasis.

Definition B.9: A poset E is called a total order (or chain) if for objects x, y in
E either x <y or y < x. A subposet C of E, which isitself a chain is called a
chain in E.

Exercise B.10
Show that atotally ordered poset E is directed. O
With the definition we can state
The Maximal Principle of Zorn (chain version)

If E isaposet suchthat every chainin E hasan upper bound, then E hasa maximal
object.

ExerciseB.11
Show that the Maximal Principle of Zorn (chain version) implies the Maximal
Principle of Zorn. O

Notice that a proof very similar to that of Theorem B.8 will show directly that
the axiom of choice isimplied by the chain version of the Maximal Principle.

Definition B.12: For any set X, Vx denotes the characteristic function QX — Q
of the one-element part of Q* whose element is the composite X — 118 Q@
called trueyx for short. Thus

1
rtruex "‘/

QX vX Q2

.ﬁ.l

true

isa pullback.

Givenany | -7~ QX corresponding to an | -parameterized family of partsof X,
consider itstranspose 7 F; then, the composite Vv, [t F] isthe characteristic function
of the part of X called the intersection of the family F.
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We will use the higher dual distributive law of logic
Va(La or Ra) entailsJa(La) or Va(Ra)

We will discuss below in Exercise B.26 the question of when this law is valid
(it is certainly valid for any category S of abstract sets or any topos in which the
axiom of choiceistrue).

For ssimplicity wewill assumethat posetsarestrict inthesensethat x = y follows
fromx < yand y < x; then, sups are unique if they exist.

Definition B.13: If f is an endomap of a set X, then a fixed point for f isan
element x of X suchthat fx = x.

Definition B.14: If f isan endomap of the set of objects of a poset E, then an
f-chain isany chain C in E such that x € C implies fx € C. e denote the part
of the power set of the objects of E consisting of all f-chainsby ch¢(E).

Theorem B.15: (Bourbaki Fixed Point theorem 1950). Let E be a poset, and let
f be an inflationary endomap of the set of objects of E, that is, for all x in E,
x < f(x). Then f has at least one fixed point provided that any chain in E has a
supin E.

Proof: Define a subsystem to be any part (of the objects of E) closed with respect
to supsof f-chainsandto f itself. Let A be the intersection of all subsystems of
E. Thus

AOf chy(A) —2
and ‘
EQf Chf(E) Sip B

are commutative diagrams and A is the smallest part with those properties. Since
we have alowed the part 0 in ch¢(E), it follows that A is nonempty and indeed
has a smallest element 0. Because of the first diagram, any fixed point of Aisaso
afixed point of E. Thus, for the remainder of the proof wework in A.

We need to establish that any subsystem (such as A) whose only subsystem is
itself has the following two

Elementary Properties of Irreducible Subsystems

(P) t<aentailst=aor f(t) <a
(B) itistruethatt <aor f(a) <t
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These properties will suffice because they clearly imply the “f -trichotomy”
property for A,

t=a o f@=<t o f(t)<a

whichinturn easily impliesthat thewholeof Aisan f-chain. (Asoftenininductive
proofs, to reach thelatter goal we needed to prove something stronger.) But A being
an f-chain entails that sup A € A since we have assumed that A is closed under
such sups. Then sup Aisafixed point of f sincesup A < f(sup A),yetx < sup A
foral x € Aand f(sup A) € A.

In order to establish the two properties above, define a part of A:

P={acA|Vte Alt<a=[t=aor f(t) <a]]}

Then, more precisaly, what we will show isthat P = A.

It will suffice to show that P isasubsystem, for then A C P by definition of A.
To show that P isasubsystem, we first will need to show that for any givena € P
each of the following is a subsystem:

B.={be Alb<aor f(a) < b}

Exercise B.16
Becausea € P, B, isclosed under f. O

Exercise B.17
The subset B; is closed under any supsthat existin A.
Thus B, = A, i.e.any a € P isa“bridge point” for A.

Hint: Use the higher dual distributive law. O

Both of the clauses needed to show that P is a subsystem will depend on the
bridge-point property.

Exercise B.18
Assumea € P. Usethefact that a isabridge point to concludethat fae P. ¢

Exercise B.19
Applying a different case of the higher dua distributive law to the fact that each
element of P isabridge point, conclude that P isclosed under sups of f-chains.

Hint: SupposeC isany f-chainin P andt isany element of Afor whicht < supC;
then it must be shown thatt = supC or f(t) < supC. But al elements of C are
bridge points; hence, t satisfies

VaeC[t <aor f(a) <t]
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The higher dual distributive law can be applied by taking L(a) to be “t < a” and
Ri(a) tobe“f(a) < t,” leading to two possibilities:

(1) Ifvae C[f(a) <t],thenVa € C[a < t],andhencesupC < t,i.e.t =supC.
(2) Ift <aforsomea € C,thensincea € P,onehast =aor f(a) <t:
(@) if t =a, then f(t) = f(a), yet f(a) € C since C isan f-chain, and so
f(t) <supC;
(b) if f(a) <t, together witht <a < f(a), we havet = f(a) € C, and so
f(t) <supC.

Thus, in all these casest = supC or f(t) < supC; since thisistrue for all t <
supC, it followsthat supC € P. O

Since the foregoing holds for all f-chains C, we have completed the proof that
P is asubsystem. Therefore, P = A, and so, as shown above under “Elementary
Propertiesof Irreducible Systems,” f hasafixed point. Thus, the exercise completes
the proof of the Bourbaki Fixed-Point theorem. [ |

Exercise B.20
(Hausdorff 1914) The axiom of choiceimpliesthat any poset X containsamaximal
chain (the Hausdorff Maximal Principle). Indeed, if not, let ¢ be a section for the
first projectionin

[Proper inclusions of pairs of chainsin X]—— chains (X)

and let f be ¢ followed by the second projection. The sup of a chain of chains
aways exists and is again a chain.

Note: Thisproof of the Hausdorff Maximal Principle evidently uses Boolean logic
(which is actualy a consequence of the axiom of choice, see [D75] or [Joh77]).

O

Exercise B.21
(Zorn 1935) Any poset inwhich every chain hasan upper bound hasitself amaximal
element.

Hint: An upper bound of amaximal chainisamaximal element; indeed, if C isa
chain, and if mis any upper bound for C and x is any element with m < x, then
C U {x} isachain; thus, if Cismaximal, x € C and hence x = m. O

Combining this exercise with Theorem B.8 and Exercise B.11, we have

Theorem B.22: Theaxiomof choiceisequivalent to the Maximal Principleof Zorn
(either version!).
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As mentioned at the beginning of this appendix, Zermelo used the axiom of
choice to prove his Well-Ordering theorem.

Definition B.23: A poset E is called well-ordered if whenever S is a nonempty
part of the objects of E then S has a minimum object.

Exercise B.24
Show that awell-ordered poset E isatotal order.

Hint: Consider the minimum object of atwo-object set. 0

Exercise B.25
(Zermelo 1908) Every set X can be well-ordered.

Hint: Consider the set of all well-orderings of parts of X and order it by “initial
segment”; in this case a maximal well-ordering must have the whole X as set of
objects. O

A given surjectivemap hasasection provided that certain associ ated setsarewell-
orderable therefore the Well-Ordering theorem is actually equivalent to the axiom
of choice. In fact, there are literaly dozens of useful mathematical principlesin
topology and algebra that have also been shown equivalent to the choice axiom
over the past 75 years.

The higher dual distributive law of logic used in the above proof of the Theorem
B.15istrue in many toposes but not in most. This law is dua to the usual infinite
distributive law

u < u, for all aentailsuZwa < Zuawa

which istrue in any topos because of the existence of implication as an operation
on subaobjects. In a Boolean topos like S, the power sets are self-dual, and hence
the higher dual law holds as well.

Exercise B.26

Does the higher dual distributive law imply the Boolean property? Does it hold in
the topos S~ of all actions of C on abstract sets, in case C is discrete, or a group,
or a poset? 0

Here are some additional exercises:

Exercise B.27
Anirreducible f-systemisnot only closed with respect to sups of f-chains, butin
fact has sups of al chains.

Hint: Use athird instance of the higher dual distributive law. O
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Exercise B.28
Any irreducible f-system, such as P = A in Exercise B.19 has two further prop-
erties: The endomap f isorder-preserving, and every part has a sup. O

Note: The latter two properties are of importance even when f is not inflationary
and the system is not irreducible: Tarski’s fixed-point theorem states that every
order-preserving endomap of a poset having all sups has a fixed point. The reader
should beableto proveit; itiseasier than the Bourbaki theorem whose consequences
we are discussing in this appendix.

Exercise B.29

Use Tarski’s fixed-point theorem to show that if there are parts B—*> A and
AL B, then there exists an isomorphism A= B. This result depends on the
further assumption that all parts have Boolean complements; it is not true for most
categories of variable or cohesive sets.

Hint: Construct an order-preserving endomap of 2* by using complementation in
both A and B and also applying both « and 8; on afixed “point” of that endomap,
use B, and on the complement use aretraction for «. The construction actually can
be applied to any pair of maps; what conclusion can then be drawn? O

Exercise B.30

Using Zorn’s Maximal Principle (and Boolean logic) show that any family E — |
of setsmakes | achainwithrespecttotheordering:i < j iff thereexistsaninjective
Ei —E;.

Hint: If thereis no injective E; — E», then any maximal partial injection from
part of E; into E;

E2/X\E1

will actually have its domain total, that is X = E. 0

General Remark: Inductive arguments rely on special cases of the principle that
within any given set E asuniverse, if too many conflicting higher-order operations
are considered, they will be constrained to have some relation. The simplest sort of
such relation is a fixed point. For example, arbitrary sups and an order-preserving
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endomap are sufficiently conflicting, according to the Tarski theorem, as are sups
of chains and an inflationary endomap, according to the Bourbaki theorem. Some
systemsof operations, even higher-order ones, are sufficiently harmoniousto permit
“freedom” from such unexpected relations, as the following example shows:

Exercise B.31

Free sups exist. More precisely, given any set X, thereisaposet P X that has sups
of al parts and a map X —> P X such that, given any map X 2~ E, where E
is any poset having sups of all parts (no relations are assumed in E beyond the
definition of sups), there is a unique map P X Y E that preserves all sups and
satisfies¢'n = ¢. O

Of course systems of finitary operationsthat are free of any unexpected relations
do tend to exist because of the assumption that a natural number system exists on
some set. There are many variants of that theme, for example:

Exercise B.32

Consider systems E involving a nullary operation 1->°~ E and a unary operation
E--E subject to thecondition that f (co) = oco; acategory isobtained by consid-
ering that ahomomorphism between any two such systemsisamap of the carrying
sets that preserves both these operations. Show that there is a free such system N’
generated by the one-point set, i.e. thereis 1—2> N’ such that for any such system
E and for any given point 1—*~ E there is a unique homomorphism N’ =~ E for
which x’(0) = x. Does N’ have any f -fixed points other than co? (In the category
of abstract sets, N’ has an ordering for which all parts have sups, but in categories
of variable or cohesive setsthis N’ fails to have all sups.) O

Thus, it is the combining of higher-order operations with very distinct (even
finitary) ones that may be impossible to do in a “free” way within any fixed set.

Example: (Gaifman [G64]) Any infinite poset with arbitrary sups and an endomap
f of the underlying set for which ff = identity must satisfy some additional
relation. (Actually, Gaifman showed that there are no “free” [in a sense analogous
to those of Exercise B.31 and B.32] complete Boolean algebras except finite ones,
which implies our statement.) O

The irreducible subsystems (such as A in our proof of the Bourbaki theorem)
that help to reveal these relations seem to have the property that every element
is somehow “reached” from below by applying the operations. It has been found
useful (by Cantor and since) to make this reaching idea appear more precise by
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introducing well-orderings a ong which the operations can be “infinitely iterated”.
Inthe caseof our irreducible systems A = P with supsof chainsand aninflationary
f, thisis already achieved:

Exercise B.33

Consider achain C having sups of any part aswell as an order-preserving endomap
f such that x < fx for al x. (Then there is a smallest element O and a largest
element co, and moreover f(oo) = oo.) If C hasno partsclosed under f and sups
(other than C itself), then

f(X)=x=x=00

Can you show that C iswell-ordered? O

Returning to finitary algebra, the following is a typical application of Zorn’s
Maximal Principle:

Exercise B.34

If Aisany commutative ring in which it is false that 0= 1, then there exists a
field F and a surjective ring homomorphism A— F (such ahomomorphismisa
“closed point” of the space specA, which playsakey rolein algebraic geometry and
functional analysis. Sincetypicaly A hasagreat many surjective homomorphisms
to other rings A— B, wherealso 0 1 in B [such homomorphisms correspond to
nonempty closed subspacesof specA], by applying theexerciseto B and composing,
we see that specA typically has many closed points).

Hint: Surjective homomorphisms with domain A are determined by their kernels,
which are A-linear subgroups of A; the codomain of such a homomorphism is a
field iff the corresponding A-linear subgroup is maximal among those that do not
contain 1. The A-linear subgroups have been known since Dedekind asideals. ¢



Appendix C
Definitions, Symbols, and the Greek Alphabet

C.1 Definitions of Some Mathematical and
Logical Concepts

Included here are some of the main definitions from the text. Several entries go
beyond bare definition, in an attempt to provide a window into the historical and
foundational background.

Adjoint Functors:

Let X and A be categories and F : X — A and G : A— X be functors. We say
that F is left adjoint to G (or equivalently G is right adjoint to F, and write this
F = G) if for any objects X in X and A in A there is a given bijection ¢(X, A)
between arrows from F X to A and arrows from X to GA,

FX—A

X—GA
which is moreover natural in X and A. This means that the following holds. Suppose
that X’ —*> X in X and FX —I~ A, then

P(X, A)(f)ox = (X', A)(f o Fx)
and the similar condition holds for arrows A —%> A’:
P(X,A)ao f)=aop(X, A)(f)

There are many examples of this concept in the text and exercises. For exam-
ple, consider the the diagonal functor A : S—& x S, which sends a set X to
the pair (X, X) (and a mapping f to (f, f)). The sum functor 4+ : S x §—S,
which sends (A, B) to A + B is left adjoint to A, whereas the product functor
is right adjoint to A. Another key example is the exponential or mapping-space
functor (—)® whose properties follow from its definition as the right adjoint of
(— x B).

231
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In case F; and F, are both left adjoint to G, there is a natural isomorphism
F1 = F,, and, similarly, any two right adjointsto F are naturally isomorphic.

Algebraic Topology:.

The cohesive spaces of various categories (continuous, smooth, analytic, com-
binatorial) serve as domains for cohesively variable quantities and as arenas for
uninterrupted motion. But in particular, a space also has qualitative attributes that
collectively might be called its “shape,” the best-known such attribute being mea-
sured by the Euler characteristic and the Betti numbers that count the number
of k-dimensional “holes” in the space. (The qualitative attributes of a cohesive
space can make a crucial difference when dealing with the differential and inte-
gral calculus of quantities that vary over such a space as domain; such quantities
arise in electromagnetism and statistical mechanics, and the precise effect of the
shape on their behavior is expressed by theorems of de Rham and of Stokes.)
Not only Betti and Volterra, but also Vietoris and Noether, as well as Hurewicz
and Steenrod, and many others, devised algebraic and combinatorial construc-
tions for getting at these qualitative attributes. Those constructions were varied
and sometimes complex so questions naturally arose: Do they aways give the
“same answer,” and can they be adequately conceived in amore direct manner? In
1952 Eilenberg and Steenrod showed how to answer those questions by unifying
the subject in a way that also made possible the ensuing 50 years of remarkable
advance. Their use of the axiomatic method resulted from participating in the on-
going development, extracting the essential features, and making these features
explicit in order that they could serve as a basis and guide for further work in the
field.

The analogy between set theory and algebraic topology goes even further.
Namely, in both subjects the examples first considered satisfy a special axiom
concerning the one-point space 1: In the abstract-set categories there are enough
maps from 1 to separate maps between any two sets, and in singular conomol ogy,
thecohomology of 1 vanishesin higher dimensions. But later important usesof both
axiom systems have involved mathematically rich situationsin which those special
axioms do not hold. When it was first realized that these special axioms were too
restrictive, one spoke of “generalized elements’, “generalized cohomology theo-
ries,” respectively but asthe central role of these situations became established, the
word “generalized” was gradually dropped, and now we speak just of “elements”
(i.e., figures of various basic shapes, not just punctiform) and of “cohomology the-
ories” (which do not necessarily vanishin higher dimensions even for the one-point
space). In the case of set theory we approach these more general situations through
our investigations of variable sets.
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Category Theory:

Category Theory was made explicit by Eilenberg and Mac Lane. In 1945 [EM45]
they concentrated some of the essential general features of the developments up
to then in algebraic topology and in functional analysis, which are still-developing
branches of the sciencethat finds and usesthe rel ation between quality and quantity
inthe study of space and number. A further development of category theory camein
1958 [Kan58] when Kan made explicit the notion of adjoint functors, which were
then rapidly seen to be ubiquitous (even if implicit) in mathematics. In the 1960s
and 1970s it was established in detail that the mathematically useful portions of
set theory and of logic in the narrow sense can be seen as part of category theory
[LaB9b], [KR77], [FS79].

Characteristic Functions (2.20):

Suppose we have fixed an element 12~ V of aset V. (In the case of abstract sets
we will often take V to be a two-element set and call the distinguished element
“true”.) Then apart i of aset Aissaid to have amap A—%>V as characteristic
function iff the elementsof A, whicharemembersof i, are precisely thosetowhich
¢ givesthe value true. In symbols,

VT 2~ Alaci & ga=vT]

(here v, T denotes the composite map T —= 12V, which is constantly true).
Thatis, i = ¢~[v1] istheinverseimage of the one-element part “true” of V along
¢. In the category of sets, every part i has a unique characteristic function ¢ (to
V = 2), and for any map f the two ways of substituting f agree:

pi-1j) = @ f

Composition.

Value of the Composite Mapping / Associative Law
vx[(gf)x = g(fx)]

1
. (9f)z =9(fz)
/ N
A \fy C

af

T =1 €eements/vaues
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/ \(gm g(fz)

g.f

T = arbitrary set : the associative law

Contrapositive:
The contrapositive of a statement “P implies Q” is the statement that
“not Q impliesnot P” or in symbols: (-Q = —P)

If the original implication istrue, then the contrapositive is awaystrue also, and
in classical logic if the contrapositive is true, we can conclude that the original
statement was true (the latter procedure being often referred to as proof by con-
tradiction). For example: The statement that “1 is a separator in the category of
sets” in its contrapositive guise assumes the following form (which is sometimes
understood as the definition of equality for mappings):

[V 125X [f1X= f2X]]=> fi=1

Of course, to recognize the expression above as the contrapositive of the sepa-
rator condition involves one more ingredient beyond the notion of contrapositive
itself, namely, the recognition that existentially quantified statements are negated
asfollows:

—3IXP = V¥x—P

Converse of an Implication:

The converse of a statement of the form

P implies Q (or in symboals: P = Q)
is the statement

Q implies P (or in symbols: Q = P)

Even when the original statement is true, the converse statement may or may not
be true, depending on the case.
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Element (1.3).

e (in the narrow sense) An element of a set A is any mapping whose domain is
1 and whose codomain is A. This mapping is also sometimes referred to as the
indication of an element, but we will not distinguish between elements and their
indication.

e (inthe generalized sense) An element of A isjust another word for any mapping
with codomain A; such a generalized element may also be referred to as a
variable element or as a parameterization or listing of elements.

Epimorphism / Right Cancellation (4.5):

This concept is strictly “dual” to that of monomorphism. We say f is an epimor-
phism iff it satisfies the right-cancellation property

Vo1, 02 [o1f = @of = @1 = @]

Foundation:

A foundation makes explicit the essential general features, ingredients, and oper-
ations of a science as well as its origins and general laws of development. The
purpose of making these explicit is to provide a guide to the learning, use, and
further development of the science. A “pure” foundation that forgets this purpose
and pursues a speculative “foundation” for its own sakeis clearly a nonfoundation.

Foundation, Category of Categories as:

Among the general features of mathematics afoundation should make explicit are

(1) the nature and workings of the logical and algebraic theories within which we
reason and calcul ate;

(2) the nature and workings of the set-universes, whether abstract and constant,
or cohesive and variable, that we imagine as an objective or geometrical back-
ground;

(3) the nature and workings of the interpretations, known as structures or models,
of theories into set-universes.

These requirements have forced mathematics toward the foundational view we
havetriedto convey inthisglossary andinthisbook; thiscan beseeninthefollowing
way: The “category” of models of agiven theory in agiven set-universe must form
something like amathematical category since these structures are different realiza-
tionsof theonesinglesystem of featuresrequired by thetheory, and hencethere must
bewaysof comparing different onesby “morphisms” or mapsthat “preserve” those
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features. Something of that sort appliesroughly to concepts generally, but in math-
ematicsit is quite definite. For example, consider atheory A of addition and multi-
plication, whichin an appropriate background universe U hasmany modelssuch as

Q(1) = asystem of constant quantities;
Q(S) = asystem of quantities varying over aregion S of space; and
Q(T) = asystem of quantities varying over an interval T of time.

Then a specified motion m: T — S will yield a morphism that we name m* :
Q(S)—= Q(T), and a specified instant t : 1—T of time will yield a morphism
t*: Q(T)— Q(1), such morphisms being structure-preserving maps for the
theory A. The background universe U must also be a category since morphisms
of spaces (or sets) are the ingredients in the morphisms like t*, m* of structures.
A key discovery around 1962 (foreshadowed by the algebraic logic of the 1950s)
was that atheory A is also a category! That is because the most basic operation
of calculation and reasoning (which asit turned out uniquely determines the other
operations) is substitution, and substitution correctly objectified is composition.
(The symbolic schemes often called “theories” are a necessary but not uniquely
determined apparatus for presenting theories [in the usual algebraic sense of
presentation].) It seemsthat two things (like A and U) cannot be concretely related
unless they can be construed as objects of the same category; fortunately, in this
case we have that both A and U are categories, and so arelation like Q : A—U
isafunctor in acategory of categories. Moreover, the morphisms between different
models are just natural transformations between functors. These considerations
put a mathematical focus on some guestions that a foundation needs to address.

Function:

Although theword “function” is sometimes used in away synonymous with “map-
ping,” more frequently it is used to describe maps (in some category) whose
codomains are some special objects V deemed to have a “quantitative” charac-
ter (for exampleV = 2 or V = 2), and so one speaks of, for example, “the algebra
of smooth complex-valued functions” on any smooth space. The V-valued func-
tions on any object will always form an “algebra” (in a general sense) because the
mapsV —V,V x V—=V, and so on, will act as operations on them.

Functor (10.18):

Let A and B be categories. A (covariant) functor F, denoted F : A— 5 from
A to B isan assignment of

e anobject F(A) in B for every object Ain A
e anarrow F(f): F(A)—F(A)in B for every arow A— A'in A
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subject to the following equations:

° F(lA):lF(A) f
e F(gf) = F(g)F(f) whenever A—= A’ - A

A contravariant functor F : A—— B assigns objects to objects, and an arrow
F(f): F(A)—F(A) (note direction!) in B for every arow A— A’ in A. It
satisfies the equation F(gf) = F(f)F(g) instead of the second equation above.

Inclusion (2.13):

The notation
i"Cal
means bothii, i’ are parts of aset A and
Fk [i’ =iK]
which is equivalent to saying
Valaci'= aei]

When the set A isunderstood, we writesimply i’ Ci.

Intersection (2.36):
Ifiy, i, arepartsof A, then their intersection denoted
i1Niy
isalsoapart j of A characterized up to equivalence by having asmembersprecisely
those elements of A commontoi; andio

VT2~ Alacj<=acij&aci)) < j=iiNis

Among the many ways that intersection can be characterized is as the “inverse
image” aongij of iy.

Inverse Image (2.5):

fA-'~B isany mapping and j isany part of B, thecondition“f € j”istypicaly
not outright true but does have a““solution set”: the part of Afor which f € j holds,
more exactly the part i of A whose members are precisely all those elements a of
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Aforwhich fa € j.Insymbols:
VT 2~ AJaci < fac|j]
—i=fj]

Wecall f~1[j] theinverse image of j along f.

Injective / Monomap / Left-Cancellation / Part:

All four of these terms mean essentially the same thing but with different gram-
matical shadingsasin “A huge personisagiant.”

Injective (1.5):

Given an object |, we may say that f is | -injective iff f hasthe |eft-cancellation
property for al test pairs with domain | :

Vaj,a [| —or A& fag= fa, = a = aj]

Sincethedefinition of “monomorphism” containsthephrase“vT,” itisobviousthat
any monomorphism is always | -injective. The converse proposition, namely that
| -injective = monomorphism, holdsif | isaseparator, asiseasy to prove. In the
case of the category of abstract sets, we usually take | = 1 and refer to 1-injective
mappings simply as injective. Thus injective mappings f are usually considered
“by definition” to satisfy

fa=faa=a =a

where a;, a, are elements (in the narrow sense) of the domain of f; however, since
1isaseparator, injective mappingsin fact satisfy the full left-cancellation property.
In contrapositive form,

Vay, aplag # ap = fay # fay]

describesinjective/monic f, thusto show that acertain f isnot injective, it suffices
to exhibit that

Jdag, @ [fa; = fax & a1 # ay]

Left-Cancellation / Monomapping (2.6):

The statement f has the left-cancellation property means that for any a; and a,
for which fa; = fa, we can conclude a; = ap, or in symbols

VT Va; Vay [falz fa2=>a1:a2]
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asinthe diagram

If f has the left-cancellation property in a certain category, we say that f is a
monomorphism in that category. Since the morphisms in the category of sets
are called mappings, the monomorphisms in that category may also be called
monomappings.

Logic:

Thescienceof logicintheancient philosophical sensemeansthestudy of thegeneral
laws of the devel opment of thinking. Thinking (1) reflectsreality (i.e., hasacontent)
but also (2) isitself part of reality and so has some motions that are oblivious to
content. Therefore the science of logic findstwo aspects of thought’smotion: (1) the
struggle to form a conceptual image of reality that is ever morerefined, whose laws
we may call objectivelogic, and (2) the motion of thought initself (for examplethe
inference of statements from statements), whose lawswe may call subjectivelogic.
Although grammar and some aspects of algebra might be considered as subjective
logic, we will limit ourselves to the part we will sometimes refer to aslogic in the
narrow sense — that which isrelated to the inference of statements from statements
by means dependent on their form rather than on their content. (Logic in the narrow
senseis explained in more detail in Appendix A.)

Logicinthe narrow senseisuseful (at least in mathematics) if itismade explicit,
and the work of Boole and Grassmann in the 1840s, Schroder in the late 1800s,
Skolem in the early 1900s, Heyting in the 1930s (and of many others) hasled to a
high devel opment, most aspectsof whichwerereveal ed to be special casesof adjoint
functorsby 1970 [La69b]. The use of adjoint functors assistsin reincorporating the
subjective into itsrightful place as a part of the objective so that it can organically
reflect the objective and in general facilitate the mutual transformation of thesetwo
aspects of logic.

Logic, Objective:

Thelong chains of correct reasonings and cal cul ations of which subjectivelogicis
justly proud are only possible within a precisely defined universe of discourse, as
has ong been recognized. Since there are many such universes of discourse, think-
ing necessarily involves many transformations between universes of discourse as
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well as transformations of one universe of discourse into another. The results of
applying logicin the narrow senseto the laws of these objectivetransformationsare
necessarily inadequate; for example, such attempts have led to the use of phrases
such as“let X beaset inwhich there existsagroup structure,” which are essentially
meaningless. Rather than using “there exists” in such contexts, one needsinstead a
logic of “given.” Before category theory, at least one systematic discussion of the
laws of these abjective transformations was given by Bourbaki, who discussed how
one structure could be deduced from another. The concepts of categories, func-
tors, homomorphisms, adjoint functors, and so on, provide arich beginning to the
project of making objective logic explicit, but there is probably much more to be
discovered.

Logic, Intuitionistic:

A. Heyting, inthe 1930s, devel oped alogical algebrathat happensto be applicable
in any topos. This logic is weaker than the Boolean one because it allows for
the possibility of motion or internal variation in the sets or universes to which it
is being applied, and thus the typical Boolean inference (or subobject inclusion)
“not(not A) entails A” isusually not correct. Because Heyting’s work was intended
to model the “constructivist” philosophy of the intuitionist Brouwer, Heyting’s
logic is sometimesincorrectly referred to asintuitionistic logic, and for that reason
topos theory is sometimes referred to as constructive set theory; neither of these
does justice to the true generality of Heyting’s discovery or to Grothendieck’s
theory. Thereare afew toposesthat have been specifically constructed in an attempt
to understand the constructivist philosophy, but most toposes have little to do
with it.

Mapping (1.1):

In the category of abstract sets, f isamapping with domain A and codomain B
if for every element x of A thereis exactly one element y of B such that y is the
valueof f at x. In symbols,

v 1% A 31125 B[y = fx]

and as adiagram
1

N
7 B

A




C.1 Definitions of Some Mathematical and Logical Concepts 241
Membership (2.15):

Thenotationa € | meansi isapart of aset Aand 3a [a = ia] asin the diagram

T“>T
A

When, asis usually the case, the set A is understood, we writesimply a € i.

Natural Transformation (10.19):

Let F, G: A—B be functors. A natura transformation T from F to G is the
assignment of anarrow 7p : FA— GAin B for each object A of 4 subject to the
requirement that for each arrow A; —= A, in A the following square commutes:

TAl

FA; GA,
Fal [/Ga
FA, GA,

TA2

The arrows ta are called the components of the natural transformation. In case
each t isan isomorphismin B, then t is called a natural isomorphism; in that
case thereis an inverse natural transformation.

There are many examples in the text and exercises — notably the natural map
treated in Section 8.3, the singleton (see Exercise 8.9), and the arrows in the cate-
gories of A-setsin Section 10.2.

One-Element Set (Section 1.2):

The set 1 ischaracterized by the fact that for any set A thereisexactly one mapping
with domain A and codomain 1. In symbols,

VA 3t [A—=1]
that is, the statements below are both true:

EXISTENCE (@) 3f [A—>1]

AT MOST ONE () V1, g [A=——=1= f =]
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Part (2.11):

By a part of a set A is meant any monomapping i whose codomain is A. Nota-
tion: U ——— A. Partsof A are called equivalent if they areisomorphic as objects
of the dlice category S/ A.

Separator (1.14):

A set T isaseparator if there are enough mappings with it as domain to separate
pairs of mappings with arbitrary domains; i.e. when A is an arbitrary set and if f;
and f, are any two mappings with domain A and some common codomain B, if f;
isdistinct from f5 there should exist a mapping x with domain T and codomain A
suchthat fix isdistinct from f,x. Animportant property of the category of abstract
setsisthat the terminal set 1 isaseparator. In symboals,

VAVB V1, fz[[A% B& f1 % f,] =3 12 A[fix # f,X]]
2

asin the diagram:

1
AN
A —>f2 B

Set Theory:

Set theory was started in the late 1800s when Cantor made explicit an abstraction
process (arising from his own work on Fourier analysis) and applied the idea of
isomorphism (which he had learned fromthework of Steiner onal gebrai c geometry)
to the results of this abstraction process. Some of Cantor’s followers did not fully
appreciate this abstraction process (in editing Cantor’s works for publication they
issued judgments of it such as “kein glucklicher Versuch” and “um keinen Schritt
weitergekommen,” p. 35, edition of 1932 [C66]). For this and other reasons, too
much of the technical development of set theory has been rather detached from its
originsin the specific requirements of functional analysis and algebraic geometry.
Thus, the great functional analyst and algebraic geometer of the 1950s and 1960s,
Grothendieck, made only peripheral reference to set theory as known at the time
when he devised topos theory, an explicit theory of the categories of cohesive and
variable sets asthey actually occur in geometry and analysis[AGV 72]. In 1970 the
essential part of Grothendieck’stheory was drastically simplified in response to the
needs of continuum mechanics and algebraic topology [La71], [T72] (see [Joh77],
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[BW85], [MM92]). These developments made the bridging of the previous gap
between axiomatic set theory and naive set theory possible.

Set Theory, Axiomatic:

The use of the axiomatic method, to make explicit the basic general features of
the application of set theory to the study of mathematical subjects was delayed for
much of the twentieth century by the attempt to popularize a certain philosophical
view; according to that view the intersection of any two unrelated sets should have
a well-defined meaning. That contrasts with the phenomenon noted in practice
that inclusions, and more generally, relations between sets, are effected by specific
mappings. The description of this “cumulative hierarchy” came to be considered
by some as the only possible sort of formalized set theory.

Set Theory, Naive:

A certain body of set-theoretical methods and results is required for the learning
and development of analysis, geometry, and algebra. Because of the insufficiently
analyzed belief that this body could not be made logically precise without the
cumulative hierarchy and global inclusion, it became customary to describeitina
“nonformalized” manner known as “naive set theory” [H60]. One of the purposes
of this book is to overcome this division between naive and axiomatic aspects by
giving formal axioms sufficient to describe the applicable aspects of the set theory
that has been devel oped by Dedekind, Hausdorff and their many successors. For an
earlier version, see [Lab64].

Set Theory, Parameterization.

Many of the applications of naive set theory could be described as based on “para-
meterization”: aset isused to parameterize some things, some mappings on the set
are deemed to express relations among the things, calculation and reasoning are
applied to these maps, and the result is used to guide our dealing with the original
things. Sincein particular set theory should be partly applicabletoitself, several of
the axioms can be motivated by the observation that they simply assert that thereare
enough sets to parameterize some basic set-theoretic “things,” as in the following
three cases.

A set T can parameterize

(1) elementsof aset A, by meansof amap T — A; a bijective parameterization
can be achieved by taking T = A and 1, as the map;

(2) pairsof elementsof A, B by means of apair of maps T — A, T — B; here
abijective parameterization has T = A x B and the projections as the maps;
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(3) maps A— B by meansof amap T x A—— B; a bijective parameterization
ispossibleif we can take T = B and evaluation as the map.

Such parameterizations are the subject of the related ideas of universal mapping
property, representable functors, and adjoint functors developed by Grothendieck,
Kan, and Yoneda in the late 1950s.

(Sets [or spaces] themselves are T-parameterized in geometry by using a map
E — T withthefibers E; being the setsparameterized; Cantor’sdiagonal argument
showed that no single T can parameterize al sets.)

Surjective (1.4):

Thisconceptisnotlogically dual toinjectivesinceitisan existential conditionrather
than one of cancellation. Hence, the theorem that for some categories “surjective”
and “epimorphic” coincide will tell us something special about those categories.
The exact notion of “surjective” is related to a chosen object | (suchas| = 1in
the case of abstract sets). We say f is | -surjective iff

1

Wil =y 2 N\

A !

B

where X, y are both supposed to have domain | but respective codomains A, B.
That is, every | -element of the codomain isrequired to beavalueof f (for at least
one x).

To show that epimorphism = 1-surjective in the case of abstract sets, suppose
that f has the right-cancellation property but that (aiming toward a proof by con-
tradiction) there is a y that does not appear as a value of f. But then if we take
as ¢; the characteristic function of y and as ¢, the constantly “false”: B—2, it
follows that 1 f = ¢, f but 1 # o, contradicting that f has right cancellation.
Hence, thereisno such y, that is, f issurjective.

Topos:

Since 1970 [La7l], the geometrical constructions of Grothendieck in SGA 4
[AGV72] were unified with the constructions of the set theorists Cohen, Scott and
Solovay [B77] by the observation that both are largely concerned with categories
X that

(1) have finite products and in which, moreover, there exist
(2) for each object A, aright adjoint ( ) to the functor A x (), and
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(3) amap 1-™& , which is a universa part in the sense that for any part
o : A & X of any object in X, thereisaunique 1—>Q such that

A = 1
[ true
X Q

@

isapullback; i.e. for any T —= X
x belongsto « iff ox = true T

Thisissometimes called the “elementary” theory of toposes since the three axioms
arefinitary and internal to .

Topos and the Cantorian Contrast.

Thecohesiveand variabl e sets (“spaces”) are persistent ideas coll ectively devel oped
as part of our coping with the world of matter in motion of which we are an
interacting part. Cantor and subsequent mathematicians have found it useful to
apply something like the ancient Greek ideas of arithmos and chaos by analyzing
this variation and cohesion through contrasting it with constancy and noncohesion
Y, wherein objects are distinct and fixed enough to have a property like number
but nearly devoid of any other property. (Cantor further conjectured, in effect, that
if “nearly devoid” could be idealized to “totally devoid” for atopos ) of abstract
sets, then ) would satisfy some strong specia properties such as the continuum
hypothesis — a conjecture apparently proved in the 1930s by Godel, athough that
interpretation is still not widely accepted.) Mathematical practice made clear that
cohesion and variation occur in many diverse but related categories X'. Construing
some of those categories as toposes makes it possible to study the contrast arising
in Cantor’s abstraction process as a geometric morphism X —~ . This process
I, of extraction of pure points unites two opposite inclusions of ) into X': the
subcategory I'* of discrete spaces with zero cohesion and zero motion and the
subcategory T of codiscrete spaces with total (but banal) cohesion and motion.
These opposite but identical subcategories provide a zeroeth approximation to the
reconstruction of any space X by placing it canonicaly in an interval

ryX —X—TI'T, X

(Infact closer approximationsto X involving narrower interval sare often obtainable
by geometric morphismsinvolving alessabstract topos)’, but wedo not discussthat
here.) There are no nonconstant X’-mapsfrom acodiscrete spaceto adiscrete space;
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this sharply separates the two aspects (of a )-object) that the elements are totally
distinguished and yet have total lack of distinguishing properties; these aspects are
thus revealed to form not a conceptual inconsistency but a productive dialectical
contradiction.

Topos, Geometric Morphism:

A pair of adjoint functors
l"*
T, Y

with I'* left adjoint to T, is called a geometric morphism X —= in case I'*
preserves finite limits. The latter “exactness” property will automatically be true
in case there is a further left adjoint I, to I'*. (Note that thisstring I’y 4 ' - T,
isin objective analogy with the string 3 < substitution - V of logic in the narrow
sense.) When Ty exists, the morphism I is often called “essential”. Grothendieck’s
compact notation is: asterisks for functorsthat are present for every I', exclamation
points for functors that are present only for notably special T", whereas the lower
position (for either) denotes functors deemed to have the same direction as " and
the upper position denotes functors having the opposite direction to I". In case a
further right adjoint I'! to T, exists, a special geometric morphism & results in
the opposite direction with ®* = T', and ®, = I'*; such a ® may be called “flat”
because the left adjoint ®,(= I'*) not only exists but preserves finite limits.

All four functorsexistinthecase X = yAcfp, the category of reflexivegraphsina
topos ) (see Section 10.3), where ¥ —-—) isdetermined by I'* = theinclusion
of trivia graphs.

Topos of Abstract Sets:

For atopos i/ the conditions that
(1) epimorphisms have sections (axiom of choice), and
(2) there are (up to isomorphism) exactly two parts of 1,
are generally sufficient to exclude most traces of cohesion or variation, as Cantor
proposed. (It followsthat 2 = 2 and that 1 separates.)

Occasionally the (provably stronger) Generalized Continuum Hypothesis of
Cantor may be further imposed:

(GCH) Whenever monomorphisms A —= X —= 2A exist, then an isomorphism
AZ X or X X 2A aso exists.

Usually a topos of abstract sets is assumed to satisfy (1) and (2) and aso
Dedekind’s axiom concerning the existence of a set of natural numbers:



C.1 Definitions of Some Mathematical and Logical Concepts 247

(3) The forgetful functor &/’ —= U has a l€ft adjoint, where U/’ is the category
whose objects are the objects of U/ equipped with an action by an arbitrary
endomap.

Topos, Grothendieck:

For the devel opment of number theory, algebraic geometry, complex analysis, and
of the cohomology theories relevant thereto, it was found necessary in 1963 to
introduce explicitly certain categories that Grothendieck and Giraud called “U/-
toposes.” (“Topos” is a Greek term intended to describe the objects studied by
“analysis situs,” the Latin term previously established by Poincaré to signify the
science of place [or situation]; in keeping with those ideas, a i/-topos was shown
to have presentationsin various “sites”.)

In modern terms al/-toposis atopos X' equipped with ageometric morphism I'
to atoposi/ of abstract sets satisfying the condition that X' isboundedly generated
over U/ in the sense that some single map B——T"*| generates X'. In the cases
where one can choose | = 1, the generation condition means that the map

X(B,X)-B—X
isan epimorphism for al X, where by definition

X(B, X) = I',(XB)

U-B=(T*U)xB

The functor I, = X'(1, —) is sometimes called the “global sections” functor to
remind us that the objects of X' may be spatially more variable than those of 4, or
the “fixed points” functor to remind us that the objects of X may be dynamically
more active, or the “underlying discrete set” functor to remind us that they may be
more cohesive than those of U{.

Asan application of Grothendieck’s powerful method of relativization, itisvery
useful to consider U/-toposalsointhemoregeneral casewherel/ itself isanarbitrary
topos not necessarily consisting of purely abstract sets.

Union:

Thehierarchical philosophy led to theidentification of the notions of set and of sub-
set (part). Thisinturn led to aconfusion between sums (of sets) and unions (of parts
of a given set); for example, the editors of Cantor’s collected works [C66] com-
plained that he had defined the sum only in the case of digoint sets. If Aj —— X

isagiven family of parts (for example afamily consisting of only two parts), then
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the union of the family isapart of X obtained by (epi—-mono) image factorization
of the induced map from the sum

A;

inj \

In toposes, any epimorphism is a coequalizer of the induced equivalence relation
given by the self-pullback A xx A——= A. In turn this relation can be expressed
as

YA xx Aj—=ZA

(whereeach summand A; x x Aj isanintersection of partsand so isagain apart of
X). By the universal mapping property of coequalizers, any part B—— X towhich
each of the given parts belongs will also contain the union; i.e. in the category of
parts of X
UA CB
A C B, fordli

are equivalent; the objective form of the rules of inference for disunction (= re-
peated “or”’). However, the universal mapping property of the unionisstronger than
that since even if B is an arbitrary object (not necessarily the domain of a part of
X), any given family A P Bof maps (not necessarily monos) will be derivable
from aunique single map |J; Ai — B provided only that the equations

A xx A; A;
| Bi

e}

expressing agreement on the overlap are satisfied by the given family g;.

Yoneda Embedding:

A functor Q : A——= S is called representable if there is an object A in A and
an element q of the set Q(A) so that for al B in A, the map A(A, B)— Q(B),
which takes any A—P> B into Q(b)(q), is an isomorphism of sets. Equivalently,
there existsanatural isomorphism of functors A(A, —) = Q, where A(A, —) isthe
very specia functor A AR S whosevalues“are” (i.e., perfectly parameterize) the
maps with domain A provided by the category A. It is a consequence of Yoneda's
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lemmathat any two representing objectsfor the samefunctor Q areisomorphic, and
indeed there is a unique isomorphism a between them such that the induced Q(a)
takes the “universal element” g given with one representation into the universal
element given with the other. For any map a (not necessarily an isomorphism) from
A; to Az inacategory A, the composition of mapsinduces a corresponding natural
transformation a* : A(Az, —) — A(A1, —) (see Exercise 10.22) in the opposite
direction between the corresponding representable functors. Thus, thereisafunctor

A% Y SA

called the Yoneda embedding, defined by Y(A) = A(A, —).

The very same construction applied to the opposite category yields the notion of
contravariant representable functor A% %~ S as one for which X(B) = A(B, A)
naturally for all B but for afixed Athat issaid torepresent X. Becausetheresulting
Yoneda embedding

A Y §A7

isfull andfaithful (see Yoneda’slemma), one often suppressesany symbol for it and
considers A to be simply a special subcategory of S*”; and conversely, subcate-
goriesC of SA” that contain this A often embody very useful generalizations of the
concept that A itself embodied. The special casesinwhich A isamonoid or aposet
were already studied and used over acentury ago: Cayley observed that acanonical
example of aleft action of A is the action of A itself on the right, and Schroder,
Dedekind, Cantor, and others made much use of the canonical representation of
a poset as inclusions between certain subsets (actually right ideals) of a given set
(namely of its own set of objects). Note that the category 2 with one nonidentity
arrow (see Section 6.2) embeds in S as the sets 0 and 1 and that the Yoneda
embedding of a given category .4 actually belongs to the induced subcategory

2A0p( R S_AO:D

if and only if A isaposet.

Yoneda’s Lemma:

For any contravariant functor A% —*~ S to sets and for any given object A, the
value X(A) isisomorphic as a set to the (apriori “big”) set of natural transforma-
tions A(A, —) — X (see Exercise 10.24). When we introduce some still larger
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categories via exponentiation in the category of categories, wherein S isan object,
this says more fully that the functor “evauate at A”

SAT .8

is one of the representable functors on S”, indeed it is representable by the repre-
sentable functor on A, Corollaries of Yoneda’slemmainclude the fullness of the
Yoneda embedding, the unigqueness of representing objects, and the fact that “any”
set-valued functor is canonically a colimit of representable ones. In case A itself is
small relativeto S (which means that the objects of A can be parameterized by an
object of S and that .4 has small hom-sets), then the latter is equivalent to the fact
that any X has a presentation as a coequalizer of two maps between two infinite
sums of representable functors.

Yoneda and Totality:

For any category A such that the arrows between any two objects of A can be
parameterized by an object of S, we say that A has small hom-sets.

A category A with small hom-setsistotally cocomplete if its Yonedaembedding
Y, = Y hasaleft adjoint Y* : SA” — A. For example, the category of groups or
the category A = S of C-sets are totally cocomplete; Y* too may have a left
adjoint Y,. For example, C-sets, but not groups, have such an “opposite” embedding
Y, into the same functor category. One and only one category A has both a further
adjoint to Y, and also a still further left adjoint to that, i.e., an adjoint string of
length 5

UV Y H4Y* Y,

startingwith Y, = Y ontheright, relating A to SA”, namely A = S, the base cate-
gory of setsitself [RW94]. There are several subcategories of the functor category
S5” that still unite the opposites Y; and Y,; for example, the category of simplicial
complexes that are important in combinatorial topology. Another subcategory of
S5 containi ng Y, as the codiscrete objects is the category of bornological sets,
important in functional analysis, where X : S® —= S is considered as a structure
in which X(S) = Bor(S, X) acts as the set of “bounded” S-parameterized parts
of X.
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C.2 Mathematical Notations and L ogical Symbols
denoting amap (also called transformation or function)

from adomain A to acodomain B, A—B

A = B (Aimplies B) or (A only if B) or (if Athen B)
A < B (Aisimplied by B) or (Aif B) or (if B then A)

A & B asowritten “iff” (Aif and only if B)

A= B & B= A(Aimplies B and B implies A)

value at

amap that has an inverse (called isomorphism)

representing the domain as a part of the codomain

equals
equivalence of parts
for al

there exists
(existential statement)

membership
(amember of)

greater than
infinity
entails
and, aso &

composite of two maps
(read “f following g”)

but not

+

C

not equal

inclusion
(of apart in another part)

unique
(= exactly one)

not

intersection
(of parts)

smaller than
sum

integral sign
or

notation for ordered pairs
or triples or n-tuples

boundary of
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C.3 The Greek Alphabet

SincetheL atinlettersa, b, X, y, and so forth, are sometimes not enough to expressall
thedifferent mathematical entitiesthat may arisein agiven discussion, Greek |etters
are aso used in al fields where mathematics is applied. Usualy their meaning is
specified at the beginning of each discussion just asis done for the meaning of the
Latin letters. The Greek letters themsel ves are pronounced as follows:

«a apha v nu

B beta & Xi

y gamma 0 omicron
5 delta T pi

€ epsilon o rho

¢ zeta o sigma
n €a T tau

0 theta v upsilon
¢ iota @ phi

«  kappa x chi

A lambda ¥ ps

©w o mu ® omega

This list contains the lowercase Greek letters. The uppercase sigma and pi are
often used to denote sum and product and are written X and I1. Other frequently
occurring uppercase Greek letters are 2 (omega), A (delta), I' (gamma), ¥ (psi),
® (phi), and X" (chi).
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Definitions appear in bold type.

action, 76, 171ff
left A-action, 171
right A-action, 173
addition, 161
adjoint functors, 190, 231, 246
algebraic topology, 232
arithmetic, 160ff
Atristotle, 193
arrow, 10
associative law, 7, 10, 233
automorphism group, 170
averaging, 148ff
axiom for sets:
S is a category, 11, 111
1 separates mappings, 12
binary products, 61
binary sums, 29
Booleanness, 112
choice, 84, 112, 220ff
Dedekind—Peano, 156
exponentiation, 102, 111
finite colimits, 80, 111
finite inverse limits, 73, 111
initial set, 12
nondegeneracy of S, 18
terminal set, 6

truth values represent parts, 111

two-valuedness, 112
axiomatic method, ix

Index

Banach-Tarski paradox, 87
belongs to, 37
Bernays, 130
bijective mapping, 8
binary product, 61
Boole, 239
Boolean property, 92
bornological set, 144
bounded part, 144f
Bourbaki

Fixed-Point Theorem, 224
Brouwer, 131, 240

cancellation property, 120
Cantor, v, 129, 242, 245, 247
cardinality, 57
category, 10f
of abstract sets and arbitrary
mappings, 113
of categories, 235, 250
category theory, 233
Cayley, 175, 249
cell of partition, 85
chain, 223
characteristic function,
19, 38, 233
choice, axiom of, 84, 220ff
closed part, 143ff
codomain, 2
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coequalizer, 79

cograph, 2, 8, 29

colimit, 78

colimit axiom, 80

commutative ring, 213, 230

complement, 51, 92

component

of anatural transformation,

241

composite relation, 92, 212

composition, 2, 10, 233

cone, universal, 72

congruence, 95

constant arrow, 22

constant map, 168

continuous category, 52

continuous space, 143

continuum hypothesis, 245, 246

contrapositive statement, 234

contravariant, 103

converse statement, 234

coproduct, 78

coseparator, 18

cospan, 78

co-surjective, 125

coterminal object, 78

covariant functoriality, 103

datatype, 71
Dedekind, v, 175, 243, 249
Dedekind-finite, 58
Dedekind-infinite, 58
Dedekind-Peano axiom, 156
de Morgan’s law, 200
determined by, 37
diagonal

map, 65

functor, 109

argument, Cantor’s, 129ff
Dirac delta, 126
directed poset, 221
distance-decreasing, 145
distributive law, 126ff

in computer science, 134
domain, 2

Index

dual

category, 25

proof, 67

property, 21
duality, concrete, 120ff
dynamical system, 155

Eilenberg, v, 233
element, 6, 235

generalized, 16, 235
elementary topos, 111
empty set, 12
endomapping, 13
entails, 196

versusimplies, 198
epimorphism, 80, 235
equality,

rule of inference for, 209

equalizer, 66
equinumerous, 57
equivalencerelation, 89
equivalent parts, 40, 138
equivalent categories, 46
equivariant, 77
evaluation, 6, 99
excluded middle, 200
existential quantifier, 201ff
unique, 209
expectation, 149
exponentiation, 98
external diagram, 3

f-chain, 224

family, 5

feedback, 186ff
control, 187

fiber, 84

fibered product, 69

fiberwise, 45

field, 213, 230

finite state machines,
category of, 24

finite, Dedekind, 58

fixed point, 131, 224

fixed-point-free, 131



fixed-point property, 131
for all, 36, 203
foundation, v, 235

category of categories as, 235

Fourier transform, 126
Fraenkel, 130
free monoid, 77
Frege, 130
function, 236
functionals, 101
functor, 109, 172, 236
representable, 248
functoriaity
of products, 98
of function spaces, 102ff

Gaifman, 229
Galileo, 57
generalized
element, 16, 235
point, 150
continuum hypothesis, 246
Giraud, 247
Godel, 130
graph, 63, 212
chaotic, 180ff
of amapping, 63, 211ff
reversible, 176
Grassmann, 239
Grothendieck, 242
topos, 247
groupoid, 170
groups, category of, 24

Hausdorff, 175, 220, 243
Maximal Principle, 226

Heyting, 240

homomorphism, 172

ideal, 230
idempotent, 189, 217
identity

arrow, 10

law, 11

mapping, 4

Index

image, 90, 136

existential quantification and,

137, 139, 194, 203ff
implication, 35, 198
inclusion, 34, 237
indexed families, 45
indicator, 38
inference rules, 35, 195ff
infinite, Dedekind, 58
inflationary, 224, 228ff
initial object, 12
injective mapping, 8, 238
injective object, 124, 238
integral domain, 216
internal diagram, 2
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