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8.2.2 “Mixed” Deformed Poincaré Algebra . . . . . . . . . 161
8.2.3 Infinitesimal and Finite Deformed

Translations in DSR . . . . . . . . . . . . . . . . . . 165



viii Contents

9 Deformed Minkowski Space as Generalized Lagrange
Space 171
9.1 Generalized Lagrange Spaces . . . . . . . . . . . . . . . . . 171
9.2 Generalized Lagrangian Structure of ˜M . . . . . . . . . . . 176
9.3 Canonical Metric Connection of ˜M . . . . . . . . . . . . . . 177
9.4 Intrinsic Physical Structure of a Deformed Minkowski Space:

Gauge Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 179

III EXPERIMENTS ON DEFORMED
SPACE–TIME 183

10 Lorentz and CPT Symmetries in DSR 185

11 Lorentz Invariance Breakdown: A Brief Survey 189
11.1 Theoretical Developments . . . . . . . . . . . . . . . . . . . 189
11.2 Experimental Tests . . . . . . . . . . . . . . . . . . . . . . . 191

12 Superluminal Propagation of Electromagnetic Waves 195

13 The Shadow of Light: Lorentzian Violation
of Electrodynamics in Photon Systems 199
13.1 Double-Slit-Like Experiments . . . . . . . . . . . . . . . . . 199
13.2 Crossing Photon Beam Experiments . . . . . . . . . . . . . 204
13.3 The Shadow of Light: Hollow Wave, LLI Breakdown

and Violation of Electrodynamics . . . . . . . . . . . . . . . 206

14 The Coil Experiment 213
14.1 Experimental Setup and Results . . . . . . . . . . . . . . . 213
14.2 LLI Breakdown Parameter . . . . . . . . . . . . . . . . . . . 216
14.3 Interpretation in Terms of DSR . . . . . . . . . . . . . . . . 219

15 The Speed of Gravity 221
15.1 How Fast Is Gravity? . . . . . . . . . . . . . . . . . . . . . . 221
15.2 Cavendish-like Experiment . . . . . . . . . . . . . . . . . . . 224

15.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . 224
15.2.2 Measurement Analysis and Results . . . . . . . . . . 226

15.3 Interpretation in Terms of DSR . . . . . . . . . . . . . . . . 231

16 Piezonuclear Reactions in Cavitated Water 235
16.1 Can Pressure Waves Trigger Nuclear Reactions? . . . . . . 235
16.2 Cavitating Water Experiments . . . . . . . . . . . . . . . . 237

16.2.1 First Experiment . . . . . . . . . . . . . . . . . . . . 237
16.2.2 Second Experiment . . . . . . . . . . . . . . . . . . . 238
16.2.3 Third Experiment . . . . . . . . . . . . . . . . . . . 240

16.3 Phenomenological Model of Piezonuclear Reactions . . . . . 242



Contents ix

16.3.1 Classical Cavitation Model . . . . . . . . . . . . . . 242
16.3.2 Application to Europium . . . . . . . . . . . . . . . 245
16.3.3 Limits of the Classical Model . . . . . . . . . . . . . 248
16.3.4 Deformed Space–Time of Strong Interaction . . . . . 248
16.3.5 Threshold Energy for Piezonuclear Reactions . . . . 249

17 Piezonuclear Reactions in Cavitated Solutions 253
17.1 The Thorium Experiment . . . . . . . . . . . . . . . . . . . 253

17.1.1 Experimental Setup and Results . . . . . . . . . . . 253
17.1.2 Hadro-Leptonic Thorium Decay in DSR . . . . . . . 255

17.2 Evidence for Neutron Emission
in Non-Minkowskian Conditions . . . . . . . . . . . . . . . . 257
17.2.1 First Investigation . . . . . . . . . . . . . . . . . . . 257
17.2.2 Second Investigation . . . . . . . . . . . . . . . . . . 266

IV DEFORMED SPACE–TIME IN FIVE
DIMENSIONS: GEOMETRY 273

18 Multidimensional Space–Time 275

19 Embedding Deformed Minkowski Space
in a 5D Riemann Space 279
19.1 From LLI Breakdown to Energy as Fifth Dimension . . . . 279
19.2 The 5D Space–Time–Energy Manifold �5 . . . . . . . . . . 281
19.3 Phenomenological 5D Metrics of Fundamental Interactions . 285

20 Einstein’s Field Equations in �5 and Their Solutions 287
20.1 Riemannian Structure of �5 . . . . . . . . . . . . . . . . . . 287
20.2 Vacuum Einstein’s Equations . . . . . . . . . . . . . . . . . 290

20.2.1 Case (i): Space Isotropy . . . . . . . . . . . . . . . . 290
20.2.2 Case (ii): Power Ansatz . . . . . . . . . . . . . . . 291
20.2.3 Phenomenological Metrics in the Power Ansatz . . . 292

20.3 Solving Einstein’s Equations . . . . . . . . . . . . . . . . . . 296
20.4 Discussion of Solutions . . . . . . . . . . . . . . . . . . . . . 298
20.5 DR5 and Warped Geometry . . . . . . . . . . . . . . . . . . 300

21 Killing Equations in the Space �5 303
21.1 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . 303
21.2 The Hypothesis Υ of Functional Independence . . . . . . . . 306
21.3 Solving Killing Equations in �5 in the Υ -Hypothesis . . . . 308
21.4 Power Ansatz and Reductivity of the Hypothesis Υ . . . . . 310

22 Killing Symmetries for the 5D Metrics
of Fundamental Interactions 313
22.1 Electromagnetic and Weak Interactions . . . . . . . . . . . 313

22.1.1 Validity of the Υ -Hypothesis . . . . . . . . . . . . . 313



x Contents

22.1.2 Killing Isometries for Electromagnetic and Weak
Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 317

22.1.3 Solution of Killing Equations below Threshold
with Violated Υ -Hypothesis . . . . . . . . . . . . . . 318

22.2 Strong Interaction . . . . . . . . . . . . . . . . . . . . . . . 320
22.2.1 Validity of the Υ -Hypothesis . . . . . . . . . . . . . 320
22.2.2 Killing Isometries for Strong Metric . . . . . . . . . 323
22.2.3 Solution of Strong Killing Equations above

Threshold with Violated Υ -Hypothesis . . . . . . . . 326
22.3 Gravitational Interaction . . . . . . . . . . . . . . . . . . . . 328

22.3.1 Validity of the Υ -Hypothesis . . . . . . . . . . . . . 328
22.3.2 The 5D Υ -Violating Metrics of Gravitation . . . . . 331

22.4 Infinitesimal-Algebraic Structure of Killing Symmetries
in �5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
22.4.1 Metric with Constant Space–Time Coefficients . . . 336
22.4.2 Strong Metric for Violated Υ -Hypothesis . . . . . . . 342
22.4.3 Power Ansatz Metrics with Violated Υ -Hypothesis . 344

22.5 Features of Killing Isometries in �5 . . . . . . . . . . . . . . 353

V DEFORMED SPACE–TIME
IN FIVE DIMENSIONS: DYNAMICS 355

23 Dynamics in DR5 357
23.1 Proper Time in DR5 . . . . . . . . . . . . . . . . . . . . . . 358
23.2 Geodesics Equations in �5 . . . . . . . . . . . . . . . . . . . 358

24 Solution of the Geodesic Equations in the Power Ansatz 361
24.1 General Solution . . . . . . . . . . . . . . . . . . . . . . . . 361
24.2 Geodesic Motions for the 5D Metrics

of Fundamental Interactions . . . . . . . . . . . . . . . . . . 364
24.2.1 Generating Function for Electromagnetic and Weak

Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 364
24.2.2 Generating Function for Strong and Gravitational

Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 366
24.2.3 Geodesics for Electromagnetic and Weak Interactions 368
24.2.4 Geodesics for Strong and Gravitational Interactions 369

24.3 Gravitational Metric of the Einstein Type . . . . . . . . . . 374
24.4 Class VIII and the Heisenberg Time–Energy Uncertainty . 375

25 Complete Solutions of Geodesic Equations 379
25.1 Minkowskian Behavior . . . . . . . . . . . . . . . . . . . . . 380
25.2 Non-Minkowskian Behavior . . . . . . . . . . . . . . . . . . 381

25.2.1 Electromagnetic and Weak Interactions
under Threshold . . . . . . . . . . . . . . . . . . . . 381



Contents xi

25.2.2 Strong Interaction above Threshold . . . . . . . . . 383
25.2.3 Gravitational Interaction above Threshold . . . . . . 384

25.3 Slicing and Dynamics . . . . . . . . . . . . . . . . . . . . . 387

26 Conclusions and Perspectives 389

A Reductivity of the Υ -Hypothesis 395
A.1 Analysis of Reductivity of the Υ -Hypothesis . . . . . . . . . 395

A.1.1 Class (I) . . . . . . . . . . . . . . . . . . . . . . . . . 395
A.1.2 Class (II) . . . . . . . . . . . . . . . . . . . . . . . . 397
A.1.3 Class (III) . . . . . . . . . . . . . . . . . . . . . . . . 398
A.1.4 Class (IV) . . . . . . . . . . . . . . . . . . . . . . . . 398
A.1.5 Class (V) . . . . . . . . . . . . . . . . . . . . . . . . 398
A.1.6 Class (VI) . . . . . . . . . . . . . . . . . . . . . . . . 399
A.1.7 Class (VII) . . . . . . . . . . . . . . . . . . . . . . . 400
A.1.8 Class (VIII) . . . . . . . . . . . . . . . . . . . . . . . 400
A.1.9 Class (IX) . . . . . . . . . . . . . . . . . . . . . . . . 400
A.1.10 Class (X) . . . . . . . . . . . . . . . . . . . . . . . . 401
A.1.11 Class (XI) . . . . . . . . . . . . . . . . . . . . . . . . 403
A.1.12 Class (XII) . . . . . . . . . . . . . . . . . . . . . . . 404

A.2 Solution of the 5D Killing Equations for Totally Violated
Υ -Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . 406
A.2.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 406
A.2.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 408
A.2.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 409
A.2.4 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 410
A.2.5 Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 410

B Gravitational Killing Symmetries 413
B.1 Form I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

B.1.1 (Ia) . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
B.1.2 (Ib) . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

B.2 Form II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
B.2.1 (IIa) . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
B.2.2 (IIb) . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

B.3 Form III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
B.3.1 (IIIa) . . . . . . . . . . . . . . . . . . . . . . . . . . 421
B.3.2 (IIIb) . . . . . . . . . . . . . . . . . . . . . . . . . . 422

B.4 Form IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
B.4.1 (IVa) . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
B.4.2 (IVb) . . . . . . . . . . . . . . . . . . . . . . . . . . 424

B.5 Form V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
B.5.1 (Va) . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
B.5.2 (Vb) . . . . . . . . . . . . . . . . . . . . . . . . . . . 425



xii Contents

B.6 Form VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
B.6.1 (VIa) . . . . . . . . . . . . . . . . . . . . . . . . . . 427
B.6.2 (VIb) . . . . . . . . . . . . . . . . . . . . . . . . . . 427

B.7 Form VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
B.7.1 (VIIa) . . . . . . . . . . . . . . . . . . . . . . . . . . 430
B.7.2 (VIIb) . . . . . . . . . . . . . . . . . . . . . . . . . . 432

B.8 Form VIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
B.8.1 (VIIIa) . . . . . . . . . . . . . . . . . . . . . . . . . 433
B.8.2 (VIIIb) . . . . . . . . . . . . . . . . . . . . . . . . . 433

B.9 Form IX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
B.9.1 (IXa) . . . . . . . . . . . . . . . . . . . . . . . . . . 435
B.9.2 (IXb) . . . . . . . . . . . . . . . . . . . . . . . . . . 436

B.10 Form X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
B.10.1 (Xa) . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
B.10.2 (Xb) . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

B.11 Form XI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
B.11.1 (XIa) . . . . . . . . . . . . . . . . . . . . . . . . . . 440
B.11.2 (XIb) . . . . . . . . . . . . . . . . . . . . . . . . . . 442

C Explicit and Implicit Forms of Geodesics for the 12 Classes
of Solutions of Einstein’s Equations in Vacuum in the Power
Ansatz 445
C.1 Class (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
C.2 Class (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
C.3 Class (III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
C.4 Class (IV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
C.5 Class (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
C.6 Class (VI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
C.7 Class (VII) . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
C.8 Class (VIII) . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
C.9 Class (IX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
C.10 Class (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
C.11 Class (XI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
C.12 Class (XII) . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

References 481

Index 491



PREFACE

“............................human kind

Cannot bear very much reality.”

(T.S. Eliot: “Four Quartets – Burnt Norton”)

“Exegi monumentum aere perennius

........Non omnis moriar.”

(Quintus Horatius Flaccus: Carmina III, 30)

The possible solution to the fundamental issue concerning the structure
of the physical world – an old-debated problem, starting from presocratic
philosophers – greatly benefited in the twentieth century from the final
merging of the separate streams of geometry and physics in a broad river of
synthesis and progress. Actually, it can be traced back to Pythagoras him-
self the awareness of the intimate link (and the reciprocal feedback) between
the physical measurements of times, spaces and distances and their math-
ematical representation in terms of relations among abstract geometrical
entities. This leads for instance to attach a physical meaning, within Euclid-
ean geometry, to the mere spatial relations between objects. However, only
the basic work by Lorentz, Poincaré, Minkowski, and Einstein permitted
to state that space–time is something more than the simple union of space
and time. Indeed, the Special and General theories of Relativity allowed



xiv Preface

physicists and mathematicians to recognize the arena where physical phe-
nomena take place as a 4D manifold, endowed with a global, Riemannian
geometrical structure of Lorentzian signature, which links together space
and time in an indissoluble bond. What’s more, it was possible for the first
time not only to use the mathematical language in order to express physical
laws (in accordance with the fundamental teaching by Galilei), but even
to identify a physical interaction – gravity – with a geometric property
of space–time itself – Cauchy–Riemann curvature – namely to geometrize
physics.

As is well known, many attempts at generalizing the 4D relativistic pic-
ture have been made later on. Such efforts are roughly of two types, accord-
ing to the mathematical tools exploited and the physical purposes pursued.
A possibility is assuming the existence of further dimensions, in order to
build up unified schemes of the fundamental interactions. The prototype
theory of this kind, due to Kaluza and Klein (KK), was based on a 5D
space–time and aimed at unifying gravitation and electromagnetism in a
single geometrical structure. In the KK scheme, the fifth dimension is com-
pactified, i.e., “rolled up” and assumed so small as to be unobservable. The
Kaluza–Klein formalism has been subsequently extended to more dimen-
sions, in the hope of achieving unification of all interactions, including weak
and strong forces.

In the second group of generalizations, the 4D space–time manifold is
preserved, but it is equipped with a global and/or local geometry different
from the Minkowskian or the Riemannian one. Such a kind of approach
points essentially at account for possible violations of standard relativ-
ity and Lorentz invariance. In this connection, we have discussed in the
past some physical phenomena, ruled by different fundamental interac-
tions, whose experimental data seem to provide some intriguing evidence
of a (local) breakdown of Lorentz invariance. All the phenomena consid-
ered show indeed an inadequacy of the Minkowski metric in describing
them, at different energy scales and for the four fundamental interac-
tions involved (electromagnetic, weak, gravitational and strong). On the
contrary, they apparently admit a consistent interpretation in terms of a
deformed Minkowski space–time, with metric coefficients depending on the
energy exchanged in the process considered.

The analysis and the discussion of such experiments led us therefore to
envisage a (4D) generalization of the (local) space–time structure which is
based on an energy-dependent deformation of the usual Minkowski geom-
etry. In such a framework, the corresponding deformed metrics obtained
from the fit to experimental data provide an effective dynamic description
of the interactions which rule the phenomena examined (at least at the
energy scale and in the energy range considered).

This formalism (Deformed Special Relativity, DSR) permits therefore
to implement for all fundamental interactions the Principle of Solidarity
(formulated by the Italian mathematician Bruno Finzi), according to which
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each interaction produces its own space–time geometry. The properties
of DSR, consequence of Finzi’s principle, establish a connection of this
scheme with Lorentzian Relativity (LR) (rather than with the Einsteinian
one, ER). Let us recall that LR is the version of Special Relativity due to
Lorentz and Poincaré, whose main points of departures from the Einstein
view are the existence of a preferred reference frame and the nonuniqueness
of the light speed and of the coordinate transformations connecting inertial
observers. These features, rather than constituting drawbacks of LR with
respect to the ER unifying principles of uniqueness and invariance, actually
testify the more flexible mathematical structure of Lorentzian relativity,
thus able to fit the diversified nature of the different physical forces. As a
matter of fact, all the present experimental tests in favor of ER do support
LR, too, whereas there are sound clues for the existence of a preferred
frame (like the frame of isotropy of the 2.7 K cosmological background
radiation).

Due to the deformation of the space–time metric it describes, DSR
belongs therefore to the second kind of generalizations of Einstein’s relativ-
ities. However, it must be noted that, within DSR, the energy exchanged
in the process considered (i.e., the energy measured by the electromag-
netic interaction with the detectors in Minkowski space) plays the role of
a true dynamic variable. It represents therefore a characteristic parame-
ter of the phenomenon considered (so that, for a given process, it can-
not be changed at will). In other words, when describing a given process,
the deformed geometry of space–time (in the interaction region where the
process is occurring) is “frozen” by those values of the metric coefficients
corresponding to the energy value of the process itself. Otherwise speaking,
from a geometrical point of view, all goes on as if we were actually working
on “slices” (sections) of a 5D space, in which the fifth dimension is just
represented by the energy.

The leading idea is that the 4D, deformed, energy-dependent space–time
is only a manifestation (a “shadow,” to use the famous word of Minkowski)
of a larger, 5D space, in which energy plays the role of extra dimension. By
imposing Einstein (vacuum) equations to the 5D metric, we have been able
to show that the deformed, energy-dependent, phenomenological metrics,
derived by the analysis of the earlier quoted experiments, can be obtained as
the relevant 4D slices at constant energy of particular solutions of Einstein
equations in the 5D space.

The DSR approach shares therefore the features of either kind of theories
generalizing Einstein’s relativities we outlined earlier. Indeed, on one side,
it is endowed with a 4D space–time metric of the Finsler type; on the other
hand, it can be naturally embedded in a 5D space with energy as extra
dimension. So, this formalism is a Kaluza–Klein-like one, whereby now the
fifth coordinate is a physically sensible dimension. Thus, on this respect, it
belongs to the class of noncompactified KK theories.
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Aim of the present book is to introduce and discuss the physical foun-
dations and the mathematical formalism of such a generalized KK scheme
– we called Deformed Relativity in Five Dimensions (DR5) – namely to
guide the reader in the exploration of the new space–time–energy land.
The book is organized as follows. Part I provides an introduction to the
physical grounds of DSR and gives the explicit expressions of the deformed
metrics obtained, for the fundamental interactions, by the phenomenolog-
ical analysis of the experimental data. In Part II, we discuss in detail the
mathematical structure of the 4D deformed space–time (including a thor-
ough analysis of the related Killing symmetries). In Part III, we describe
the experiments, related to all four fundamental interactions, which test
and confirm some of the predictions of the DSR formalism, thus provid-
ing a possible evidence for the deformation of space–time. Among them,
let us quote the anomalous behavior of some photon systems (at variance
with respect to standard electrodynamics and quantum mechanics); the
measurement of the speed of propagation of gravitational effects; the effec-
tiveness of ultrasounds in speeding up the decay of radioactive elements and
in triggering nuclear reactions in liquid solutions. Moreover, such experi-
ments point out the need for considering the energy as a fifth coordinate,
thus casting a bridge toward the 5D formalism of DR5. In Part IV, we
introduce the 5D scheme of DR5, based on a Riemannian space in which
the 4D space–time is deformed (according to the DSR scheme) and the
energy plays the role of an extra dimension. We write down the related 5D
Einstein equations in vacuum, with all five metric coefficients depending
on energy, and solve them in some cases of physical relevance. The solu-
tions obtained and their physical meaning are discussed. We discuss the
isometries of the 5D space by solving the related Killing equations for all
four fundamental interactions. The dynamics of DR5 is dealt with in Part
V, by considering the 5D geodesics equations in the main cases of physical
interest. We also incidentally show how a particular solution leads to an
intriguing relation which reminds the uncertainty relation between energy
and time in quantum mechanics. Concluding remarks and possible further
developments of the formalism are put forward.
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1
The Principle of Solidarity:
Geometrical Descriptions
of Interactions

1.1 The Finzi Principle of Solidarity

In 1955 the Italian mathematician Bruno Finzi, in his contribution to the
book “Fifty Years of Relativity” [1], stated his “Principle of Solidarity”
(PS),1 that sounds “It’s (indeed) necessary to consider space–time TO
BE SOLIDLY CONNECTED with the physical phenomena occurring in
it, so that its features and its very nature do change with the features
and the nature of those. In this way not only (as in classical and special-
relativistic physics) space–time properties affect phenomena, but recipro-
cally phenomena do affect space–time properties. One thus recognizes in
such an appealing “Principle of Solidarity” between phenomena and space–
time that characteristic of mutual dependence between entities, which is
peculiar to modern science.” Moreover, referring to a genericN -dimensional
space: “It can, a priori, be pseudoeuclidean, Riemannian, non-Riemannian.
But – he wonders – how is indeed the space–time where physical phenomena
take place? Pseudoeuclidean, Riemannian, non-Riemannian, according to
their nature, as requested by the principle of solidarity between space–time
and phenomena occurring in it.”

1It’s quite difficult to express in English in a simple way the Italian words “soli-
darietà” and “solidale,” used by Finzi to mean the feedback between space–time and
interactions. A possible way to render them is to use “solidarity” and “solidly con-
nected,” respectively, – at the price of partially loosing the common root of the Italian
words –, with the warning that what Finzi really means is that the very structure of
space–time is determined by the physical phenomena which do take place in it.
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Of course, Finzi’s main purpose was to apply such a principle to
Einstein’s Theory of General Relativity, namely to the class of gravitational
phenomena. However, its formulation is as general as possible, so to apply
in principle to all the known physical interactions. Therefore, Finzi’s PS is
at the very ground of any attempt at geometrizing physics, i.e., describing
physical forces in terms of the geometrical structure of space–time.

Such a project (pioneered by Einstein himself) revealed itself unsuccessful
even when only two interactions were known, the electromagnetic and the
gravitational one. It was fully abandoned starting from the middle of the
twentieth century, due to the discovery of the two nuclear interactions,
the weak and the strong one (apart from recent attempts based on string
theory).

Let us notice that the Principle of Solidarity can in general apply also to
interactions nonlocal and not derivable from a potential. Let us therefore
clarify what it is meant by such terms in this book.

Essentially two definitions of nonlocality exist in literature. The first
amounts to contradict the so-called Einstein–Bell locality, which can be
stated as follows:

The elements of physical reality of a system cannot be
affected instantaneously at a distance (Einstein)

or

The probability of two measurements performed on events
separated by a space-like interval is simply the product of the
probabilities of the two measurements separately (Bell).

It is easy to see that such a nonlocality (of quantum nature) is basically
connected to the possibility of superluminal signals.

The second definition is related to the space–time functional dependence
of the force. A force is local when it depends on a space–time point (or,
better, on an infinitesimal neighborhood of the point); it is nonlocal when
it depends on a whole (finite) space–time region. In the following, we shall
just mean this latter definition whenever using the term nonlocal.

Let us stress, however, that “local” interaction (in the sense specified
earlier) and “potential” interaction are not synonymous, in general. Once
one fixes a space–time point, a local interaction is uniquely determined
by an infinitesimal neighborhood of the point, whereas a potential inter-
action is just determined by the value the potential function takes at the
point considered. Notice that the derivability from a potential requires
the uniqueness of the potential function on the whole space–time region
where the force field is defined.
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An example of a nonlocal but potential interaction is provided by an
interaction described by the potential

V (xi) =
∫

∏

xj∈{x},j �=i

dxjV ({x}), (1.1)

where {x} is the set of metric coordinates, the integration can be definite
or indefinite (in the latter case, the potential will depend also on the geom-
etry of the integration regions) and V ({x}) is regular enough to ensure its
integrability (for instance, in the Riemann sense).

On the other side, the electromagnetic (e.m.) interaction associated to a
magnetic monopole is an example of a local but nonpotential interaction. In
this case, due to the presence of the singular Dirac string, the force field of
the monopole is irrotational locally but not globally.2 This implies that the
monopole field is described by many (in general different) local potentials.
By the nonuniqueness of the potential, the e.m. interaction of the magnetic
monopole is nonpotential, but it is local indeed.

Apart from the earlier questions, the basic problem is how to implement
Finzi’s Principle of Solidarity for all interactions on a mere geometrical
basis. Since, from an historical point of view, General Relativity (GR) is the
only successful theoretical realization of geometrizing an interaction (the
gravitational one), it is usually believed that the goal of geometrization of
interactions can only be achieved by the tools of Riemannian spaces or of
their suitable generalizations.

We want instead to show that implementing the Finzi principle can be
obtained in the mere framework of Special Relativity, provided its very
foundations are taken into proper account and suitably exploited. To this
aim, let us analyze Special Relativity from an axiomatic standpoint.

1.2 An Axiomatic View to Special Relativity

Special Relativity (SR) is essentially grounded on the properties of space–
time, i.e., isotropy of space and homogeneity of space and time (as a
consequence of the equivalence of inertial frames) and on the principle of
relativity.

The two basic postulates of SR in its axiomatic formulation are [2]:
1. Space-time properties. Space and time are homogeneous and space is

isotropic.
2. Principle of Relativity (PR). All physical laws must be covariant when

passing from an inertial reference frame K to another frame K ′, moving
with constant velocity relative to K.

2In the language of differential geometry, the field of a Dirac magnetic monopole is
associated to a differential form which is closed but not globally exact.
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The second postulate can be traced back to Galilei himself, who of course
enunciated and applied it with reference to the laws of classical mechanics
(the only ones known at his times). In fact, the Relativity Principle con-
tains implicitly (somewhat hidden, but actually easily understood after a
moment’s thought) the basic point that, for a correct formulation of SR,
it is necessary to specify the total class, CT, of the physical phenomena to
which the PR applies. The importance of such a specification is easily seen
if one thinks that, from an axiomatic viewpoint, the only difference between
Galilean and Einsteinian relativities just consists in the choice of CT (i.e.,
the class of mechanical phenomena in the former case, and of mechanical
and electromagnetic phenomena in the latter).

It is possible to show that, from the earlier two postulates, there follow
– without any additional hypothesis – all the usual “principles” of SR,
i.e., the “principle of reciprocity,” the linearity of transformations between
inertial frames, and the invariance of light speed in vacuum.

Concerning this last point, it can be shown in general that postulates
1 and 2 earlier imply the existence of an invariant, real quantity, having
the dimensions of the square of a speed, whose value must be experimen-
tally determined in the framework of the total class CT of the physical
phenomena.3 Such an invariant speed depends on the interaction (fun-
damental, or at least phenomenological) ruling the physical phenomenon
considered. Therefore there is, a priori, an invariant speed for every inter-
action, namely, a maximal causal speed for every interaction.

All the formal machinery of SR in the Einsteinian sense (including
Lorentz transformations and their implications, and the metric structure
of space–time) is simply a consequence of the earlier two postulates and
of the choice, for the total class of physical phenomena CT, of the class of
mechanical and electromagnetic phenomena.

If different explicit choices of CT are made, one gets a priori different real-
izations of the theory of relativity (in its abstract sense), each one embed-
ded in the previous. Of course, the principle of relativity, together with the
specification of the total class of phenomena considered, necessarily entails
in all cases, for consistency, the uniqueness of the transformation equations
connecting inertial reference frames.4

The attempt at including the class of nuclear and subnuclear phenomena
in the total class of phenomena for which Special Relativity holds true is

3The invariant speed is obviously ∞ for Galilei’s relativity, and c (light speed in
vacuum) for Einstein’s relativity.

4The hypothesis of the existence a priori of different relativities for different inter-
actions – formulated by Recami and one of the present authors (R.M.) on the basis of
the above critical analysis of the foundations of Special Relativity – can be considered
a generalization of the point of view advocated by Lorentz, according to which differ-
ent interactions require different coordinate transformations between inertial reference
frames.
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therefore expected to imply a generalization of Minkowski metric, analo-
gously to the generalization from the Euclidean to the Minkowski metric
in going from mechanics to electrodynamics.

However, in order to avoid misunderstandings, it must be stressed that
such an analogy with the extension of the Euclidean metric has to be
understood not in the purely geometric meaning, but rather in the sense
(as already stressed by Penrose [3]) of Euclidean geometry as a physical
theory.

Indeed, the generalized metric must be equipped with a dynamic charac-
ter and be not only a consequence, but also an effective description of (the
interaction involved in) the class of phenomena considered. This allows one
in this way to get a feedback between interactions and space–time struc-
ture, already accomplished for gravitation in General Relativity.

This complies with the “Principle of Solidarity” stated by Finzi in the
form already quoted earlier, which can be embodied in the following third
principle of Relativity:

3. Principle of Solidarity (PS). Each class of phenomena (namely, each
interaction) determines its own space–time.

The fundamental problem is now: How to endow the metric of the
Minkowski space–time with a geometrical structure able to describe the
interaction involved in a given process? This is just the aim of this book.

1.3 Energy and the Finzi Principle

At present, General Relativity (GR) is the only successful theoretical
realization of geometrizing an interaction (the gravitational one). As is
well known, energy plays a fundamental role in GR, since the energy–
momentum tensor of a given system is the very source of the gravitational
field.

A moment’s thought shows that this occurs actually also for other inter-
actions. Let us remind, for instance, the case of Euclidean geometry in its
intrinsic meaning of a theory of physical reality at its basic classical (macro-
scopic) level. In fact, it describes in a quantitative way, in mathematical
language, the relations among measured physical entities – distances, in
this case –, and therefore the physical space in which phenomena occur.

However, the measurement of distances depends on the motion of the
body which actually performs the measurement. Such a dependence is
indeed not on the kind of motion, but rather on the energy needed to
let the body move, and on the interaction providing such energy. The mea-
surement of time needs as well a periodic motion with constant frequency,
and therefore it too depends on the energy and on the interaction.

This simple example shows how energy does play a fundamental role
in determining the very geometrical structure of space–time (in analogy
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with the General-Relativistic case, where – as already noted – the energy-
momentum tensor is the source of the gravitational field). Let us stress
that such a viewpoint is very similar, on many respects, to the Ehlers–
Pirani–Schild scheme [4] (based on the earlier work of Weyl), in which the
geometry of space–time is operationally determined by using the trajec-
tories of free-falling objects (geodesics). In this framework, the points of
space–time become physically real in virtue of the geometrical relations
between them, and the classical particle motion is exploited to obtain the
geometry of space–time (the argument can be extended to quantum motion
as well [5]).

Generalizing such an argument, we can state that exchanging energy
between particles amounts to measure operationally their space–time sep-
aration.5 Of course such a process depends on the interaction involved
in the energy exchange; moreover, each exchange occurs at the maximal
causal speed characteristic of the given interaction. It is therefore natural
to assume that the measurement of distances, performed by the energy
exchange according to a given interaction, realizes the “solidarity princi-
ple” between space–time and interactions at the microscopic scale.

By starting from such considerations, a possible way to implement Finzi’s
principle for all fundamental interactions is provided by the formalism of
deformed special relativity (DSR) developed in the last decade of the twen-
tieth century. It is based on a deformation of the Minkowski space, namely a
space–time endowed with a metric whose coefficients just depend on energy
(in the sense specified later on). Such an energy-dependent metric does
assume a dynamic role, thus providing a geometrical description of the fun-
damental interaction considered and implementing the feedback between
space–time structure and physical interactions which is just the content
and the heritage of Finzi’s principle.

The generalization of the Minkowski space implies, among the others,
new, generalized transformation laws, which admit, as a suitable limit,
the Lorentz transformations (just like Lorentz transformations represent a
covering of the Galilei–Newton transformations) [6].

Then, the solidarity principle allows one to recover the basic features of
the relativity theory in the Lorentz (not Einstein) view (Lorentzian rel-
ativity), namely different interactions entail different coordinate transfor-
mations and different invariant speeds (an in-depth discussion of this issue
will be given in Sect. 3.3.7).

5Notice that, in this framework, a space–time point has only a mathematical (geo-
metrical) meaning, since it physically corresponds to an energy insufficient to the motion
(for the interaction considered).
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Description of Interactions
by Energy-Dependent Metrics

We will now show how the dynamic role of the energy, in describing the
structure of space–time, can be exploited in order to geometrize all four
fundamental interactions, so to comply with the Finzi principle. As already
stressed earlier, this can be achieved by suitably deforming space–time,
according to what dictated by the energy involved in the process, ruled by
the interaction considered. Speaking in a figurative language, we can say
that in such a view space–time is not a rigid (and passive) background, but
a sort of elastic carpet, able to change its shape according to the (energy of)
the interaction involved, and to react in turn on the process, thus affecting
its dynamics in an active way.

2.1 Deformed Minkowski Space–Time

In the attempt at a geometrical implementation of the Finzi principle, we
have therefore – on the basis of the discussion of Chap. 1 – to take into
account the role of energy in determining an interaction, and the different
“relativities” obtained in correspondence to different classes of physical
phenomena.

As is well known, the Minkowski metric1

1Throughout this book, unless otherwise specified, lower Latin indices take the val-
ues {1, 2, 3} and label spatial dimensions, whereas lower Greek indices vary in the range
{0, 1, 2, 3}, with 0 referring to the time dimension. Ordinary three-vectors are denoted in
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g = diag(1,−1,−1,−1) (2.1)

is a generalization of the Euclidean metric ε = diag(1, 1, 1). By the consid-
erations of Chap. 1, we can assume that the metric describes, in an effective
way, the interaction, and that there exist interactions more general than the
electromagnetic ones (which, as well known, are long-range and derivable
from a potential).

The simplest generalization of the space–time metric which accounts for
such more general properties of interactions is provided by a deformation,
η, of the Minkowski metric (2.1), defined as [6]

η = diag(b20,−b21,−b22,−b23). (2.2)

Of course, from a formal point of view metric (2.2) is not new at all.
Deformed Minkowski metrics of the same type have already been proposed
in the past in various physical frameworks, starting from Finsler’s general-
ization of Riemannian geometry [7] to Bogoslowski’s anisotropic space–time
[8] to isotopic Minkowski space [9]. A phenomenological deformation of the
type (2.2) was also obtained by Nielsen and Picek [10] in the context of the
electroweak theory. Moreover, although for quite different purposes, “quan-
tum” deformed Minkowski spaces have been also considered in the context
of quantum groups [11]. Leaving to later considerations the true specifica-
tion of the exact meaning of the deformed metric (2.2) in our framework,
let us right now stress two basic points.

1. Firstly, metric (2.2) is supposed to hold at a local (and not global)
scale, i.e., to be valid not everywhere, but only in a suitable (local) space–
time region (characteristic of both the system and the interaction consid-
ered). We shall therefore refer often to it as a “topical” deformed metric2.

boldface. Upper Latin indices are used in the 5D framework, and assumed to take the val-
ues {0, 1, 2, 3, 5}. For brevity’s sake, we shall denote simply by x the (contravariant) four-
vector (x0, x1, x2, x3) whenever this notation cannot ingenerate confusion. Accordingly,
the volume element dx0dx1dx2dx3 in Minkowski space will be denoted shortly by d4x.
Moreover, we adopt the signature (+,−,−,−) for the 4D space–time, and employ the
notation “ESC on” (“ESC off”) to mean that the Einstein sum convention on repeated
indices is (is not) used.

2Notice that the assumed local validity of (2.2) differentiates this approach from
those based on Finsler’s geometry or from the Bogoslowski’s one (which, at least in
their standard meaning, do consider deformed metrics at a global scale), and makes it
similar, on some aspects, to the philosophy and methods of the isotopic generalizations
of Minkowski spaces [9]. However, it is well known that Lie-isotopic theories rely in an
essential way, from the mathematical standpoint, on (and are strictly characterized by)
the very existence of the so-called isotopic unit. In the following, such a formal device
will not be exploited (because unessential on all respects), so that the present formalism
is not an isotopic one. Moreover, from a physical point of view, the isotopic formalism is
expected to apply only to strong interactions. On the contrary, it will be assumed that
the (effective) representation of interactions through the deformed metric (2.2) does hold
for all kinds of interactions (at least for their nonlocal component). In spite of such basic
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In the present case, the term “local” must be understood in the sense that
a deformed metric of the kind (2.2) describes the geometry of a 4D variety
attached at a point x of the standard Minkowski space–time, in the same
way as a local Lorentz frame is associated (as a tangent space) to each point
of the (globally Riemannian) space of Einstein’s GR. Another example, on
some respects more similar to the present formalism, is provided by a space–
time endowed with a vector fiber-bundle structure, where a Riemann space
with constant curvature is attached at each point x.

2. Secondly, metric (2.2) is regarded to play a dynamic role. So, in order
to comply with the solidarity principle, we assume that the parameters
bµ(µ = 0, 1, 2, 3) are, in general, real and positive functions of a given set of
observables {O} characterizing the system (in particular, of its total energy
exchange, as specified later):

{bµ} = {bµ({O})} ∈ R+
0 , ∀ {O} . (2.3)

The set {O} represents therefore, in general, a set of nonmetric variables
({xn.m.}).

Equation (2.2) therefore becomes:

ηµν = ηµν({O}) (2.4)

= diag(b20({O}),−b21({O}),−b22({O}),−b23({O}))
ESC off= δµν(δµ0b

2
0({O})− δµ1b

2
1({O})− δµ2b

2
2({O}) − δµ3b

2
3({O})).

However, for the moment the deformation of the Minkowski space will
be discussed only from a formal point of view, by disregarding the problem
of the observables on which the coefficients bµ actually depend (it will be
faced later on).

It is now possible to define a generalized (“deformed”) Minkowski
space ˜M(x, η({O}))with the same local coordinates x of M (the four-
vectors of the usual Minkowski space), but with metric given by the
metric tensor η (2.4). The generalized interval in ˜M is therefore given by
(xµ = (x0, x1, x2, x3) = (ct, x, y, z), with c being the usual light speed in
vacuum) (ESC on) [6]:

ds2̃({O}) ≡
≡ b20({O})c2dt2 − b21({O})

(

dx1
)2

−b22({O})
(

dx2
)2 − b23({O})

(

dx3
)2

(2.5)
= ηµν({O})dxµdxν = dx ∗ dx.

differences this formalism shares some common formal results – as we shall see in the
following – with isotopic relativity (like the mathematical expression of the generalized
Lorentz transformations).
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The last step in (2.5) defines the scalar product ∗ in the deformed
Minkowski space ˜M . Moreover, according to (2.5), we shall use the following
notation for the deformed square norm of a four-vector:

|x|2∗ ≡ x ∗ x = ηµν({O})xµxν = x2̃. (2.6)

In the following, in order to emphasize the dependence of the deformed
Minkowski space on the set of observables {O}, the notation ˜M({O}) will
be also used.

In ˜M , it is possible a priori to consider two scalar products between three-
vectors v1, v2: the standard, Euclidean product·, defined by means of the
metric tensor gik = δik, and the deformed one, induced by the deformed
scalar product ∗ in ˜M , and defined by means of the metric tensor

−ηik({O}) ESC off= b2i ({O})δik,

(where the sign − is obviously introduced in order to get a positive three-
vector norm) as follows (cf. (2.5)):

v1 ∗ v2 ≡ −
3
∑

i=1

ηij({O}) (v1)
i (v2)

j (2.7)

=

3
∑

i=1

b2
i ({O})δij (v1)

i (v2)
j

= b2
1({O}) (v1)

1 (v2)
1 + b2

2({O}) (v1)
2 (v2)

2 + b2
3({O}) (v1)

3 (v2)
3 .

The 3D space embedded in ˜M({O}) and endowed with the (3D restriction
of the) deformed scalar product ∗ will be denoted by ˜E3({O}). Accordingly,
parallelism and orthogonality of three-vectors can be defined either by the
usual scalar product (that actually means one is working in E3 ⊂ M) or by
the deformed one. Moreover, in the following, |v|∗ will denote the absolute
value of a three-vector in ˜E3({O}), whereas the notation |v| = v will be
used for the norm of v with respect to the standard product · in the usual
3D Euclidean space E3.

The existence of these two possible Euclidean structures may lead to
ambiguities, if not carefully taken into account. For instance, the spatial
unit vectors

{

̂xi
DSR({O})

}

∈ ˜E3({O}) ⊂ ˜M({O})

in the deformed Minkowski space are a priori different from the corres-
ponding unit vectors

{

̂xi
SR

}

∈ E3 ⊂ M.
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This is easily seen by noting that, by definition, a unit vector has unit
norm, where the norm has to be evaluated according to the scalar product
naturally induced by the metric considered. Then, in ˜M({O})

̂x0
DSR({O}) ⇔ gµν,DSR({O})

(

̂x0
DSR({O})

)µ (
̂x0
DSR({O})

)ν

(2.8)

= b20({O})
(

̂x0
DSR({O})

)2

= 1;

̂xi
DSR({O}) ⇔ gµν,DSR({O})

(

̂xi
DSR({O})

)µ (
̂xi
DSR({O})

)ν

(2.9)

= −b2i ({O})
(

̂xi
DSR({O})

)2

= 1,

where the purely imaginary nature of the nonzero components of
̂xi
DSR({O}) is merely due to the 4D dimensional signature (+,−,−,−)

being used. Therefore, one gets the following relation between the two sets
of coordinate unit vectors in M and ˜M({O}):

b20({O})
(

̂x0
DSR({O})

)2

= 1 =
(

̂x0
SR

)2

⇔ ̂x0
DSR({O}) = b−1

0 ({O})̂x0
SR

(2.10)
and (ESC off):

−b2i ({O})
(

̂xi
DSR({O})

)2

= 1 = −
(

̂xi
SR

)2

⇔ ̂xi
DSR({O}) = b−1

i ({O})̂xi
SR.

(2.11)
Summarizing (ESC off)

̂xµ
DSR({O}) = b−1

µ ({O})̂xµ
SR , ∀µ = 0, 1, 2, 3. (2.12)

The orthogonality of the coordinate axes is of course expressed by

̂xµ
SR ·̂xν

SR = δµν and ̂xµ
DSR({O}) ∗ ̂xν

DSR({O}) = δµν .

It follows by the earlier relation that the unit vectors in the standard
Minkowski space M and in the deformed one ˜M({O}) are proportional,
and therefore they specify the same directions in either space (this is due
to very nature of the deformation g → η({O}), preserving the diagonality
of the metric tensor, while destroying its isochrony and spatial isotropy).
However, since any coordinate unit vector is rescaled by a different coeffi-
cient in the metric deformation, vectors with the same components in the
spaces M and ˜M({O}) are not parallel to each other.

In the following, in order to evidence some implications of metric (2.4)
not strictly related to its space anisotropy, we shall sometimes consider (for
simplicity’ sake and without loss of generality) an isotropic 3D space, i.e.,

b21({O}) = b22({O}) = b23({O}) ≡ b2({O}), (2.13)
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so that the corresponding deformed metric reads:

ηµνISO.
({O})

= diag(b20({O}),−b2({O}),−b2({O}),−b2({O}))
ESC off= δµν

[

δµ0b
2({O}) − (δµ1 + δµ1 + δµ1) b2({O})

]

. (2.14)

It is worth to recall that the deformation of the metric, resulting in the
interval (2.5), represents a geometrization of a suitable space–time region
(corresponding to the physical system considered) that describes, in the
average, the effect of nonlocal interactions on a test particle. It is clear that
there exist infinitely many deformations of the Minkowski space (precisely,
∞4), corresponding to the different possible choices of the parameters bµ,
a priori different for each physical system.

Moreover, since the usual, “flat” Minkowski metric g (2.1) is related in
an essential way to the electromagnetic interaction, we shall always mean
in the following – unless otherwise specified – that electromagnetic inter-
actions imply the presence of a fully Minkowskian metric. Actually, as it
will be seen, a deformed metric of the type (2.4) is required if one wants to
account for possible nonlocal electromagnetic effects.

Once the mathematical body of our formalism is specified, one has now
to give a physical soul to it, in order to comply with the Finzi principle. On
the basis of the discussion of Sect. 1.3, we have to take, as observable O on
which the metric coefficients bµ({O}) depend, the total energy E exchanged
by the physical system considered during the interaction process:

{O} ≡ E ⇔ {bµ({O})} ≡ {bµ(E)} ,∀µ = 0, 1, 2, 3. (2.15)

Actually, since all the functions {bµ} are dimensionless, they must depend
on a dimensionless variable. Then, one has to divide the energy E by a
constant E0 (in general characteristic of each fundamental interaction),
with dimensions of energy, so that:

{bµ({O})} ≡
{

bµ

(

E

E0

)}

,∀µ = 0, 1, 2, 3. (2.16)

As it will be seen, E0 has the meaning of a “threshold energy.”
Thus, the distance measurement is accomplished by means of the

deformed metric tensor function of the energy, given explicitly by

ηµν(E) = diag(b20 (E) ,−b21(E),−b22(E),−b23(E)) ESC off=

= δµν(δµ0b
2
0(E) − δµ1b

2
1(E) − δµ2b

2
2(E) − δµ3b

2
3(E)). (2.17)

Any interaction can be therefore phenomenologically described by metric
(2.17) in an effective way.This is true in general, but necessary in the case



2.1 Deformed Minkowski Space–Time 15

of nonlocal and nonpotential interactions. For force fields which admit a
potential, such a description is complementary to the actual one.3

One is therefore led to put forward a revision of the concept of
“geometrization of an interaction”: each interaction produces its own met-
ric, formally expressed by the metric tensor (2.17), but realized via different
choices of the set of parameters bµ(E). Otherwise said, the bµ(E)’s are pecu-
liar to every given interaction. The statement that (2.17) provides us with
a metric description of an interaction must be just understood in such a
sense.

Therefore, the energy-dependent deformation of the Minkowski metric
implements a generalization of the concept of geometrization of an interac-
tion (in accordance with Finzi’s principle). The GR theory implements a
geometrization (at a global scale) of the gravitational interaction, based on
its derivability from a potential and on the equivalence between the inertial
mass of a body and its “gravitational charge.” The formalism of energy-
dependent metrics allows one instead to implement a geometrization (at
a local scale) of any kind of interaction, at least on a phenomenological
basis. As already stressed before, such a formalism applies, in principle,
to both fundamental and phenomenological interactions, either potential
(gravitational, electromagnetic) or nonpotential (strong, weak), local and
nonlocal (in the sense already specified), for which either an Equivalence
Principle holds (as it is the case of gravitation) or (in the more general
case) the inertial mass of the body is not in general proportional to its
charge in the force field considered (e.m., strong and weak interaction).

Let us explicitly stress that the theory of SR based on metric (2.4) has
nothing to do with General Relativity . Indeed, in spite of the formal sim-
ilarity between the interval (2.5), with the bµ functions of the coordinates,
and the metric structure of a Riemann space, in this framework no men-
tion at all is made of the equivalence principle between mass and inertia,
and among noninertial, accelerated frames. Moreover, General Relativity
describes geometrization on a large-scale basis, whereas the special relativ-
ity with topical deformed metric describes local (small-scale) deformations
of the metric structure (although the term “small scale” must be referred to
the real dimensions of the physical system considered). But the basic differ-
ence is provided by the fact that actually the deformed Minkowski space ˜M
has zero curvature, as it is easily seen by remembering that, in a Riemann
space, the scalar curvature is constructed from the derivatives, with respect
to space–time coordinates, of the metric tensor. In others words, the space
˜M is intrinsically flat – at least in a mathematical sense.

Namely, it would be possible, in principle, to find a change of coordinates,
or a rescaling of the lengths, so as to recover the usual Minkowski space.

3As we shall see, an example is just provided by the gravitational interaction in the
Newtonian limit.
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However, such a possibility is only a mathematical, and not a physical one.
This is related to the fact that the energy of the process is fixed, and cannot
be changed at will. For that value of the energy, the metric coefficients do
possess values different from unity, so that the corresponding space ˜M ,
for the given energy value, is actually different from the Minkowski one.
The usual space–time M is recovered for a special value E0 of the energy
(characteristic of any interaction), such that indeed

η(E0) = g = diag(1,−1,−1,−1). (2.18)

Such a value E0 (which must be derived from the phenomenology) will be
referred to as the threshold energy of the interaction considered. As we shall
see, it is just the constant introduced in (2.16) by dimensional arguments.

As we shall see in Part II, the choice of the Minkowskian energy E as the
observable O on which the metric parameters depend gives the deformed
Minkowski space ˜M the structure of a Generalized Lagrange Space [12].

Special cases of the metric (2.17) correspond to

1. A space ˜M spatially isotropic:

b1(E) = b2(E) = b3(E) = b(E) (2.19)

(cf. (2.13), (2.14));

2. A space ˜M locally conform with the Minkowski space M :

b0(E) = b1(E) = b2(E) = b3(E) = b(E). (2.20)

This is a particular case of the Miron–Tavakol metric [13] which sat-
isfies the Ehlers–Pirani–Schild axiomatics.

2.2 Energy as Dynamic Variable

The basic point of the present way of geometrizing an interaction (thus
implementing the Finzi legacy) consists in a “upsetting” of the space–time–
energy parametrization. Whereas for potential interactions there exists a
potential energy depending on the space–time metric coordinates, one has
here to deal with a deformed metric tensor η, whose coefficients depend on
the energy, that thus assumes a dynamic role. However, the identification
of energy as the physical observable on which the metric must depend
leaves open the question, what energy? Let us answer this question.

From the physical point of view, E is the measured energy of the sys-
tem, and thus a merely phenomenological variable. As is well known, all
the present physically realizable detectors work via their electromagnetic
interaction in the usual space–time M . This is why, in this formalism, the
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Minkowski space and the e.m. interaction do play a fundamental role. The
former is – as already stressed – the cornerstone on which to build up the
generalization of Special Relativity based on the deformed metric (2.17).
The latter is the comparison term for all fundamental interactions. Let us
recall that they are strictly interrelated, since it is just electromagnetism
which determines the Minkowski geometry. Then, stating that the mea-
surement of E occurs via the e.m. interaction amounts to say that it is
measured in M . This ensures that the total energy is conserved, due the
validity of the Hamilton theorem in Minkowski space. In summary, E has
to be understood as the energy measured by the detectors through the e.m.
interaction in Minkowskian conditions and under validity of total energy
conservation.

From the mathematical standpoint, E has to be considered as a dynamic
variable, because it specifies the dynamic behavior of the process under con-
sideration, and, through the metric coefficients, provides us with a dynamic
map – in the energy range of interest – of the interaction ruling the given
process.

Let us notice that metric (2.17) plays, for nonpotential interactions, a
role analogous to that of the Hamiltonian H for a potential interaction. In
particular, the metric tensor η as well is not an input of the theory, but
must be built up from the experimental knowledge of the physical data of
the system concerned (in analogy with the specification of the Hamiltonian
of a potential system). However, there are some differences between η and
H worth to be stressed. Indeed, as is well known, H represents the total
energy Etot of the system irrespective of the value of Etot and the choice
of the variables. On the contrary, η(E) describes the variation in the mea-
surements of space and time, in the physical system considered, as Etot

changes; therefore, η does depend on the numerical value of H, but not
on its functional form. The explicit expression of η depends only on the
interaction involved.

It is moreover worth recalling that the use of an energy-dependent space–
time metric can be traced back to Einstein himself, who generalized the
Minkowski interval as follows

ds2 =
(

1 +
2φ
c2

)

c2dt2 − (dx2 + dy2 + dz2), (2.21)

(where φ is the Newtonian gravitational potential), in order to account for
the modified rate of a clock in presence of a (weak) gravitational field.

One may be puzzled about the dependence of the metric on the energy,
which is not an invariant under usual Lorentz transformations, but trans-
forms like the time-component of a four vector.

Actually, energy has to be regarded, in this formalism, from two different
points of view. One has, on one side, the energy as measured in full
Minkowskian conditions, which, as such, behaves as a genuine four-vector
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under usual Lorentz transformations (in the sense that it changes in the
usual way if we go, say, from the laboratory frame to another frame in
uniform motion with respect to it). Once fixed the frame, one gets a
measured value of the energy for a given process. This is the value which
enters, as a parameter, in the expression (2.17) of the deformed metric.
Such an energy, therefore, is no longer to be considered as a four vector
in the deformed Minkowski space, but it is just a quantity whose value
determines the deformed geometry of the process considered (or, otherwise
speaking, which selects the deformed space–time we have to use to describe
the phenomenon).4

The problem of a metric description of a given interaction is thus formally
reduced to the determination of the coefficients bµ(E) from the data on
some physical system, whose dynamic behavior is ruled by the interaction
considered.

4This different view to energy constitutes the basic point to building up a 5D space–
time, in which E does just represent the extra dimension (see Parts IV and V).



3
Deformed Special Relativity

3.1 Postulates of Deformed Special Relativity

In order to develop the relativity theory in a deformed Minkowski space–
time, one has to suitably generalize and clarify the basic concepts which
are at the very foundation of SR.

Let us first of all define a “topical inertial frame”:

1. A topical “inertial” frame (TIF) is a reference frame in which space–
time is homogeneous, but space is not necessarily isotropic.

Then, a generalized principle of relativity, or “principle of metric
invariance,” can be stated as follows:

2. All physical measurements within every topical “inertial” frame must
be carried out via the same metric.

We named DSR [6] the generalization of SR based on the earlier two postu-
lates, and whose space–time structure is given by the deformed Minkowski
space ˜M introduced in Sect. 2.2. The notation DSR4 has been also used
in literature, in order to stress that the deformed Minkowski space we are
concerned with is a 4D one (and to distinguish the theory from its 5D coun-
terpart we shall discuss in Parts IV and V). Let us also warn the reader
against confusing this formalism with a different generalization of SR, i.e.,
Doubly Special Relativity [14], that uses the same acronym. This latter
theory is essentially based on the quantum deformation of the Poincar é
algebra, precisely, its κ-deformation. In such a kind of deformation, one
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essentially modifies the commutation relations of the Poincaré generators,
whereas in the DSR framework the deformation concerns primarily the met-
rical structure of the space–time (although the Poincaré algebra is affected,
too: see Part II). However, it is not clear at present if the two theories may
have some points in common (for instance, the energy dependence of the
metric in position space).

Moreover, henceforth we shall use the notation gDSR for the metric tensor
of DSR (in order to distinguish it from – but also to stress its affinities with
– the standard Minkowskian metric tensor g ≡ gSR ), so that (with reference
to (2.17))

gµν,DSR(E) = diag(b20 (E) ,−b21(E),−b22(E),−b23(E)) (2.17a)

is the covariant deformed metric tensor of ˜M , whereas

gµν
DSR(E) = diag(b−2

0 (E) ,−b−2
1 (E),−b−2

2 (E),−b−2
3 (E)) (2.17b)

is its contravariant counterpart.
The corresponding deformed interval is of course

ds2̃(E)=gµν,DSR(E)dxµdxν =b20(E)c2dt2−b21(E)dx2−b22(E)dy2−b23(E)dz2.
(2.17c)

In matrix notation, one can write

dX =

⎛

⎜

⎜

⎝

dx0

dx1

dx2

dx3

⎞

⎟

⎟

⎠

. (3.1)

Then, the deformed interval (2.17c) reads

ds2̃(E) = (dX)T gDSR(E)dX, (3.2)

where the upper “T” denotes matrix transposition, and gDSR(E) is the 4×4
matrix (2.17a).

Let us remark the mathematically self-evident, but physically basic,
point that the generalized metric (2.17a) (and the corresponding inter-
val) is clearly not preserved by the usual Lorentz transformations. If ΛSR

is the 4 × 4 matrix representing a standard Lorentz transformation, this
amounts to say that the similarity transformation generated by ΛSR does
not preserve the deformed metric tensor gDSR:

(ΛSR)T gDSRΛSR 
= gDSR. (3.3)

This is by no means an unexpected result, at the light of the axiomatic for-
mulation of Special Relativity (see Sect. 1.2). However, as a consequence,
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the deformed metric structure of ˜M violates the standard Lorentz invari-
ance, characteristic of the usual Minkowski space–time M . In this sense,
therefore, we can state that DSR is strictly related to (and able to describe)
the possible breakdown of Lorentz invariance, since the deformed metrics
are no longer kept invariant by the standard Lorentz transformations.

3.2 Maximal Causal Speed

As is well known, the maximal causal speed in M is obtained by putting
ds2 = 0, whence

ds2 = 0 ⇔ c2dt2 − dx2 − dy2 − dz2 = 0 ⇔ dx2 + dy2 + dz2

dt2
= c2. (3.4)

Then one interprets c as the maximal causal speed along any direction
of the (Euclidean) space R3 (embedded in the pseudoeuclidean Minkowski
space–time M). Such an interpretation is obviously based on the physical
fact that c coincides with the light speed in vacuum, and on the isotropy
of R3. Therefore c represents the value of any of the three components of
the maximal causal velocity vector (m.c.v.) of SR, uSR, namely:

uSR = (c, c, c). (3.5)

Then, c2 is not, in general, a square modulus, but the square of any
component of uSR, whose square modulus (with respect to the Euclidean
scalar product ·), is instead:

|uSR|2 ≡
3
∑

i=1

(

ui
SR

)2
= 3c2, (3.6)

so that
ui

SR =
1√
3
|uSR| , ∀i = 1, 2, 3. (3.7)

The earlier procedure must be suitably modified in the DSR case, due
to the space anisotropy of ˜M .

Actually, in order to sort out a single component of the three-vector
m.c.v., in a general 4D special-relativistic theory (characterized by a
diagonal metric tensor ηµν({O}), where {O} is a set of observables cor-
responding to nonmetrical variables), one has to exploit a “directional
separation” (or “dimensional separation”) method, which consists of the
following three-step recipe (ESC off throughout):

1. Set ds2̃ equal to zero:

ds2̃ = 0 ⇔ η00({O})c2dt2 +
3
∑

i=1

ηii({O})(dxi)2 = 0; (3.8)
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2. In order to find the ith component ui({O}) of the m.c.v., put dxj = 0
(j 
= i), thus getting

η00({O})c2dt2 + ηii({O})(dxi)2 = 0; (3.9)

3. Evidence on the l.h.s. of (3.9) a quantity with physical dimensions
[space]/[time] = [velocity]; at this point, we have two different sub-
cases:

(I) One carries to the l.h.s. of (3.9) dxi/dt, which amounts to consider
the 3D Euclidean product ·, thus getting an anisotropic m.c.v.:

ui({O}) ≡ dxi

dt
=

(η00({O}))1/2

(−ηii({O}))1/2
c , ∀i = 1, 2, 3; (3.10)

(II) One carries to the l.h.s. of (3.9) (−ηii({O}))1/2 dxi/dt, which
amounts to consider the 3D deformed product ∗ defined by −ηij({O})
= δij |ηii({O})|, thus getting an isotropic m.c.v.:

ui({O}) ≡ (−ηii({O}))1/2 dxi

dt
= (η00({O}))1/2

c , ∀i = 1, 2, 3.

(3.11)

The two subcases I and II differ essentially by the different way of
implementing the space anisotropy. In the former case, the anisotropy
is embedded in the definition of m.c.v.; in the latter one, in the scalar
product.1

Specializing the earlier equations to the DSR framework, we get therefore,
in the two subcases:

(I)

ui
DSR,I(E) ≡ ui(E) = c

b0(E)
bi(E)

; (3.12)

1Let us notice that the directionally separating procedure can be consistently applied
only to (special or general relativistic) metrics which are fully diagonal. This is obvi-
ously due to the mixings between different space directions which arise in the case of
nondiagonal metrics.

Of course, such a procedure gives (in either subcase) the same standard result when
applied to SR. In fact:

ui
SR = (−ηii)

1/2 dxi

dt
= (η00)1/2 c =

dxi

dt

=
(η00)1/2

(−ηii)
1/2

c = c ∀i = 1, 2, 3.
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|uDSR,I(E)| =

(

3
∑

i=1

(

ui
DSR,I(E)

)2

)1/2

= cb0(E)
(

1
b21(E)

+
1

b22(E)
+

1
b23(E)

)1/2

; (3.13)

(anisotropic m.c.v. u);2

(II)
ui

DSR,II(E) ≡ wi(E) = cb0(E); (3.14)

|uDSR,II(E)|∗ =

(

3
∑

i=1

b2i (E)
(

ui
DSR,II(E)

)2

)1/2

= cb0(E)
(

b21(E) + b22(E) + b23(E)
)1/2

, (3.15)

(isotropic m.c.v. w); whence

ui
DSR,II(E) =

(

b21(E) + b22(E) + b23(E)
)−1/2 |uDSR,II(E)|∗ (3.16)

i.e., in this subcase (unlike the previous one, see (3.13),(3.12)) one can
state a proportionality relation by an overall factor (even if dependent on
the metric coefficients) between ui

DSR,II(E) and |uDSR,II(E)|∗.
We have therefore shown that the two different procedures of directional

separation lead to two different mathematical definitions of maximal causal
velocity, an isotropic (w, (3.15)) and an anisotropic (u, (3.13)) one.3 The
choice between them must be done on a physical basis (see Sect. 3.3.6).

Moreover, it must be stressed the basic physical difference with respect to
the SR case. In the standard relativistic framework, the light speed c must
be regarded as an absolute maximal causal speed, i.e., it is the same for all
interactions and for all values of energy exchanges. In the DSR framework,
we get instead a relative maximal causal speed, namely a m.c.v. different
for any interaction. We shall come back to this point in Sect. 3.4.

2Of course, in the case of space isotropy, we get for u, too, an isotropic maximal
causal velocity given by

ui
iso(E) = ui

DSR,I(E)
∣

∣

bi(E)=b(E)
= c

b0(E)

b(E)
∀i = 1, 2, 3;

|uiso(E)| =

(

3
∑

i=1

(

ui
iso(E)

)2

)1/2

=
√

3c
b0(E)

b(E)
.

3Clearly, in both cases, the light speed in vacuum, c, does merely play the role of a
phenomenological parameter on which the values of u and w depend.
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3.3 Boosts in DSR

3.3.1 Deformed Lorentz Transformations along a Coordinate
Axis

It follows from the postulates (i)and (ii) of DSR that the transformation
equations connecting topical “inertial” frames, i.e., the generalized Lorentz
transformations, are those which leave invariant the deformed metric when
passing from a topical “inertial” frame K, to another frame K ′, moving
with constant velocity with respect to K. Then, physical laws are to be
covariant with respect to such generalized transformations.

In other words, the generalized Lorentz transformations are the isome-
tries of the deformed Minkowski space ˜M . We shall refer to them in the
following as deformed Lorentz transformations (DLT). If X denotes a col-
umn four-vector, a DLT is therefore a 4 × 4 matrix ΛDSR connecting two
topical inertial frames K, K ′

X ′ = ΛDSR(E)X (3.17)

and leaving the deformed interval (2.17c) invariant, namely

ΛT
DSR(E)gDSR(E)ΛDSR(E) = gDSR(E). (3.18)

(cf. (3.3)). Equation (3.18) means that, unlike the case of a standard LT,
a deformed Lorentz transformation generates a similarity transformation
which leaves the deformed metric tensor invariant. Let us also notice the
explicit dependence of ΛDSR on the energy E.

The explicit form of a pure DLT (i.e., a boost) can be derived by the
same procedure followed in order to find the Lorentz boost expression in
the usual Minkowski space (a more formal derivation will be given in Part
II) [6].

Consider two TIF, K and K ′; by definition, the DLT’s leave invariant
the deformed interval (2.5), i.e.,

b20c
2t2 − b21x

2 − b22y
2 − b23z

2

= b20c
2t′2 − b21x

′2 − b22y
′2 − b23z

′2. (3.19)

Moreover, it can be assumed, without loss of generality, that the frames
K and K ′ are in standard configuration (i.e., their spatial frames coincide
at t = t′ = 0). By choosing the boost direction along ̂x1 = x̂, we have
therefore y′ = y, z′ = z and (3.19) reduces to

b20c
2t2 − b21x

2 = b20c
2t′2 − b21x

′2. (3.20)

From space–time homogeneity it follows that the functional rela-
tions between the two sets of coordinates {x, y, z, t} and {x′, y′, z′, t′}



3.3 Boosts in DSR 25

must be linear. Then, in general, the deformed coordinate transformations
are to be searched in the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x′ = A11x+A14t,
y′ = y,
z′ = z,
t′ = A41x+A44t,

(3.21)

where the coefficients A11, A14, A41, A44 depend a priori in general on v
and x̂ (and, parametrically, on the energy).

Notice that the origin O′ of TIF K ′ must move in K with velocity v =
v1x̂, and therefore:

x′ = 0, x = vt ⇔ A14 = −vA11 ⇔ x′ = A11(x− vt). (3.22)

Replacing (3.21), (3.22) in (3.20) yields

b20c
2t2 − b21x

2 = b20c
2(A41x+A44t)2 −A2

11b
2
1x

2(x− vt)2, (3.23)

which entails the following 3 × 3 quadratic system:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

c2 = c2A2
44 −

(

b1
b0

)2

A2
11v

2

−1 = c2
(

b0
b1

)2

A2
41 −A2

11

0 = c2
(

b0
b1

)2

A41A44 +A2
11v

(3.24)

with general solution

A11 = A44 = ±
(

1 −
(

vb1
cb0

)2
)−1/2

; (3.25)

A41 = ∓
(

vb21
c2b20

)

(

1 −
(

vb1
cb0

)2
)−1/2

= −
(

vb21
c2b20

)

A11. (3.26)

The final result is
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x′ = γ̃(x− vt) = γ̃

(

x− ˜β b0
b1
ct

)

,

y′ = y,
z′ = z,

t′ = γ̃

(

t− vb21
c2b20

x

)

= γ̃

(

t−
˜β

2

v
x

)

,

(3.27)
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where v is the relative speed of the reference frames, and4

˜β =
v

u
, (3.28)

γ̃ = (1 − ˜β
2
)−1/2 , (3.29)

are the deformed velocity parameter and deformed relativistic γ-factor,
respectively. Quantity u is the anisotropic maximal causal speed defined
by (3.12). Notice that parametrizing the boost (3.27) in terms of u does
not imply any a priori choice between the two m.c.v. u and w. The final
choice will be done in Sect. 3.3.6 on a physical basis.

For a boost in the direction x̂i, we have
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

xi′ = ˜γi

(

xi − ˜β
i b0
bi
ct

)

xk �=i′ = xk �=i

t′ = ˜γi

⎛

⎜

⎝
t−

(

˜β
i
)2

vi
xi

⎞

⎟

⎠

, (3.27a)

where
˜β

i
=
vi

u
; (3.28 a)

˜γi =
(

1 −
(

˜β
i
)2
)−1/2

=

(

1 −
(

vibi
cb0

)2
)−1/2

(ESC off). (3.29 a)

It must be carefully noted that, like the metric, also the general-
ized Lorentz transformations depend on the energy. This means that
one gets different transformation laws for different values of E, but still
with the same functional dependence on the energy, so that the invari-
ance of the deformed interval (2.17c) is always ensured (provided that the
process considered does always occur via the same interaction).

Indeed, the energy E can be considered fixed also because, from a quan-
tum point of view, energy can be transferred only by finite amounts.
Differentiating (3.27), we get therefore

4Transformations (3.27) do formally coincide with the isotopic Lorentz transforma-
tions. However, in the present context their physical meaning is different, as it is easily
seen e.g., by the identification of the maximal causal speed u with the speed characteristic
of the quanta of a given interaction (see Sect. 3.3.6). In particular, the parametrization
(3.28) of the deformed velocity parameter β̃ in terms of u immediately shows that is
always β̃ < 1, so that γ̃ never takes imaginary values (contrarily to the isotopic case).
Moreover, no reference at all is made, in this framework, to the existence of an underlying
“medium.”
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⎧

⎨

⎩

udt′ + t′du = γ̃(u dt− ˜βdx) + [dγ̃(ut− ˜βx) + γ̃(t du− xd˜β];

dx′ = γ̃(dx− ˜βudt) + [dγ̃(x− ˜βut) − γ̃(t˜βdu+ t d˜β)],
(3.30)

where, by the earlier argument, dE = 0 and therefore dγ̃ = d˜β = du = 0.
Squaring (3.30) and subtracting, we find

dx
′2 − u2dt

′2 = γ̃2[(dx− ˜βdt)2 − (u dt− ˜βdx)2] = dx2 − u2dt2 (3.31)

where in the last step use has been made of (3.20). Exploiting the explicit
expression of u, (3.12), one has finally

ds
′2 = ds2, (3.32)

i.e., the DLT (3.27) are actually (some of) the isometries of the deformed
Minkowski space ˜M , in spite of their dependence on the energy.

Notice that the DLT reduce to the standard ones of SR in the limit
gDSR −→ gSR. The set of the DLT’s does therefore represent a covering
of the usual LT’s, just like the set of LT’s is a relativistic covering of the
Galilei–Newton transformations (at group level, the latter are obtained
from the LT’s by an Inönü-Wigner procedure of group contraction).

3.3.2 Boost in a Generic Direction

In this case, the relative velocity is v = v1x̂ + v2ŷ + v3ẑ , and we have to
suitably generalize definitions (3.28), (3.29) as follows:

˜β ≡ v
u

≡
(

v1b1(E)
cb0(E)

,
v2b2(E)
cb0(E)

,
v3b3(E)
cb0(E)

)

; (3.33)

γ̃ ≡
(

1 −
∣

∣

∣

˜β
∣

∣

∣

2
)−1/2

, (3.34)

where (cf. (3.12))

u =
(

c
b0(E)
b1(E)

, c
b0(E)
b2(E)

, c
b0(E)
b3(E)

)

. (3.35)

Notice that
˜β ≡ v

u

= v

u
.

This follows from the anisotropy of the three-vector u, and it has to be
compared with the SR case, where

β ≡ v
u

=
v
c
.
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In general, it is possible to state that

m
n

=
1
n
m ⇔ n = (n, n, n)

i.e., iff n is a spatially isotropic three-vector.
In order to derive the expression of the deformed boost in a generic

direction, it is possible to use the same method of the previous case. How-
ever, it is simpler to take advantage of the scalar-product properties of
three-vectors in ˜M(E). Namely, we consider the physical 3D space ˜E3(E)
embedded in ˜M(E) (see (2.7)), and decompose the space vector x in two
components, x‖ and x⊥, parallel and orthogonal, respectively, to the boost
direction v̂:

x = x‖ + x⊥; (3.36)

x‖ ≡ v̂(v̂ ∗ x) =
v

|v|2∗
(v ∗ x) =

v
v ∗ v

(v ∗ x)

=
∑3

i=1 b
2
i (E)vixi

∑3
i=1 b

2
i (E) (vi)2

v 
= ̂˜β(̂˜β ∗ x)

=
˜β
∣

∣

∣

˜β
∣

∣

∣

2

∗

(˜β ∗ x) =
˜β

˜β ∗ ˜β
(˜β ∗ x)

=
∑3

i=1 b
2
i (E)˜β

i
xi

∑3
i=1 b

2
i (E)

(

˜β
i
)2
˜β; (3.37)

xi
‖ ≡

∑3
k=1 b

2
k(E)vkxk

∑3
k=1 b

2
k(E) (vk)2

vi 
=
∑3

k=1 b
2
k(E)˜β

k
xk

∑3
k=1 b

2
k(E)

(

˜β
k
)2
˜β

i
; (3.38)

x⊥ ≡ x − x‖ = x −
∑3

i=1 b
2
i (E)vixi

∑3
i=1 b

2
i (E) (vi)2

v


=x −
∑3

i=1 b
2
i (E)˜β

i
xi

∑3
i=1 b

2
i (E)

(

˜β
i
)2
˜β; (3.39)

xi
⊥ ≡ xi −

∑3
k=1 b

2
k(E)vkxk

∑3
k=1 b

2
k(E) (vk)2

vi (3.40)


= xi −
∑3

k=1 b
2
k(E)˜β

k
xk

∑3
k=1 b

2
k(E)

(

˜β
k
)2
˜β

i
.
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It is easily checked that indeed

x ∗ v =
3
∑

i=1

b2i (E)xivi =
∑3

i=1 b
2
i (E)xivi

∑3
i=1 b

2
i (E) (vi)2

3
∑

k=1

b2k(E)
(

vk
)2

=
∑3

i=1 b
2
i (E)xivi

∑3
i=1 b

2
i (E) (vi)2

v ∗ v = x‖ ∗ v =
∣

∣x‖
∣

∣

∗ |v|∗ ; (3.41)

x⊥ ∗ v = x ∗ v − x‖ ∗ v = 0. (3.42)

Then, applying boost (3.27a) to x‖ and x⊥ yields

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x′
‖ = γ̃(x‖ − vt)

x′
⊥ = x⊥

t′ = γ̃

(

t−
∑3

i=1

vib2i (E)
c2b20(E)

xi

)

= γ̃(t− ˜B · x) = γ̃
(

t− ˜B(∗) ∗ x
)

,

(3.43)
where we put5

γ̃ ≡ (1 − ˜β · ˜β)−1/2 = (1 − ˜β
(∗)

∗ ˜β
(∗)

)−1/2 =

(

1 −
3
∑

i=1

vib2i (E)
c2b20(E)

)−1/2

=

[

1 −
(

v1b1(E)
cb0(E)

)2

−
(

v2b2(E)
cb0(E)

)2

−
(

v3b3(E)
cb0(E)

)2
]−1/2

; (3.44)

˜β
(∗)

≡ v
w

=
(

v1

cb0(E)
,

v2

cb0(E)
,

v3

cb0(E)

)

=
1

cb0(E)
v ; (3.45)

w ≡ (cb0(E), cb0(E), cb0(E)); (3.46)

˜B ≡ v
u2

=
(

v1b21(E)
c2b20(E)

,
v2b22(E)
c2b20(E)

,
v3b23(E)
c2b20(E)

)

; (3.47)

˜B(∗) ≡ v
w2

=
1

c2b20(E)
v . (3.48)

5Care must be exercized in not confusing γ̃ (given by (3.44)) with ˜γi (3.29a). Indeed,

it is γ̃ �= ˜γi ∀i = 1, 2, 3. Moreover, these quantities are related in a nontrivial way by

˜γi = γ̃|
v=vi

̂xi

namely, γ̃ reduces to ˜γi when the deformed boost with velocity v in the generic space

direction v̂ reduces to the deformed boost with velocity vi along ̂xi.
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It follows therefore that the deformed boosts admit a double treatment,
either:

(I) In terms of the Euclidean scalar product ·, of the (anisotropic) m.c.v.
u and of the related “rapidities” ˜β and ˜B, or

(II) In terms of the deformed product ∗, of the (isotropic) m.c.v. w and

of the related quantities ˜β
(∗)

and ˜B(∗).6

Then, the space vector transforms as:

x′ = x′
‖ + x′

⊥ = γ̃(x‖ − vt) + x⊥

= x + (γ̃ − 1)v̂(v̂ ∗ x) − γ̃vt

= x + (γ̃ − 1)
v

|v|2∗
(v ∗ x) − γ̃vt (3.49)

and we eventually find the expression of the deformed boost in a generic
direction7:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x′ = x + (γ̃ − 1)
v

|v|2∗
(v ∗ x) − γ̃vt.

t′ = γ̃
(

t− ˜B · x
)

= γ̃
(

t− ˜B(∗) ∗ x
)

.

(3.50)

6It is possible to show that, in this case, more equivalent forms of the deformed boost

(3.43) exist. As is easily seen, this is due to the fact that, in general,
̂

˜β �= v̂ and
̂

˜B �= v̂,

whereas
̂

˜β
(∗)

= v̂ =
̂

˜B(∗).
7Notice that, from the definitions (3.33) and (3.45) of ˜β(g) and ˜β

(∗)
(g), it follows:

|v(g)|2∗ ≡
3
∑

k=1

b2i (x5)
(

vi(g)
)2

= c2b20(x
5)
∣

∣
˜β(g)
∣

∣

2
;

|v(g)|2∗ ≡
3
∑

k=1

b2i (x5)
(

vi(g)
)2

= c2b20(x
5)

∣

∣

∣

˜β
(∗)

(g)

∣

∣

∣

2

∗
.

on account of the fact that (as it is easy to verify)
∣

∣

∣

˜β
(∗)

(g)

∣

∣

∣

2

∗
=
∣

∣
˜β(g)
∣

∣

2

and

∣

∣w(x5)
∣

∣

2

∗
=

3
∑

k=1

b2i (x5)
(

wi(x5)
)2

= c2b20(x5)

3
∑

k=1

b2i (x5);

∣

∣u(x5)
∣

∣

2
=

3
∑

k=1

(

ui(x5)
)2

= c2b20(x5)

3
∑

k=1

b−2
i (x5),

so that, in general
∣

∣w(x5)
∣

∣

2

∗
�=
∣

∣u(x5)
∣

∣

2
.
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3.3.3 Symmetrization of Deformed Boosts

As in the case of standard SR, it is possible to symmetrize the expression
of boosts in DSR by introducing suitable time coordinates.

Let us first consider a deformed boost along ̂xi (i = 1, 2, 3); the
symmetrization transformation (a “dimensionally homogenizing dilato-
contraction”) of t is given by

x0 ≡ uit = c
b0(E)
bi(E)

t; xi′ ≡ xi. (3.51)

The deformed metric tensor in the new “primed” coordinates,
{xµ′} =

{

x0, x, y, z
}

, reads:

gµν,DSR(E) ESC on= gαβ,DSR(E)
∂xα

∂xµ′
∂xβ

∂xν′

= diag(b2i (E),−b21(E),−b22(E),−b23(E))

ESC off= δµν

[

b2i (E)δµ0 − b21(E)δµ1 − b22(E)δµ2 − b23(E)δµ3

]

.

(3.52)

Equation (3.27a) takes therefore the symmetric form in xi and x0 (ESC
off):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xi′ = γ̃(xi − ˜β
i
x0),

xk �=i′ = xk �=i,

x0′ = γ̃(x0 − ˜β
i
xi).

(3.53)

Transformation (3.51) does not symmetrize the deformed boost in a
generic direction (unlike the case of SR, where the same transformation
x0 = c t symmetrizes both boosts). In this case, the symmetrization is pos-
sible only if the treatment II (based on the deformed scalar product ∗) is
used.

In fact, by using the proportionality (see (3.45), (3.48)) among ˜β
(∗)

, ˜B(∗)

and v, the following transformation on t (see (3.46))

x0 ≡ c b0(E)t = wkt (∀k = 1, 2, 3) ; xi′ ≡ xi (∀i = 1, 2, 3) (3.54)
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does symmetrize (3.43) in x‖ e x0:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x′
‖ =

(

1 − ˜β
(∗)

∗ ˜β
(∗)
)−1/2(

x‖ − ˜β
(∗)
x0

)

x′
⊥ = x⊥

x0′ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

1 − ˜β
(∗)

∗ ˜β
(∗)
)−1/2(

x0 − ˜β
(∗)

∗ x
)

=
(

1 − ˜β
(∗)

∗ ˜β
(∗)
)−1/2(

x0 − ˜β
(∗)

∗ x‖

)

. (3.55)

Under transformation (3.54), the metric tensor becomes:

g′µν,DSR(E) ESC on= gαβ,DSR(E)
∂xα

∂xµ′
∂xβ

∂xν′

= diag(1,−b21(E),−b22(E),−b23(E))
ESC off= δµν

[

δµ0− b21(E)δµ1− b22(E)δµ2− b23(E)δµ3

]

. (3.56)

Therefore the symmetrization of the deformed boost in a generic direction
makes the 4D metric isochronous, since g′00,DSR = 1.

Let us finally notice that, like in the SR case, the boost in generic direc-
tion expressed in terms of x e t (3.50) cannot in general be symmetrized.

As to the boost along a coordinate axis (3.27), it is asymmetrical in the
behavior of x′ and t′, unlike the usual Lorentz transformations, which are
fully symmetric when putting x0 = c t. However, such asymmetry is only
formal. It can be removed by introducing a time coordinate defined in terms
of the anisotropic maximal causal speed u in the generalized Minkowski
space considered (see (3.12)):

x0 = ut =
(

b0
b
c

)

t (3.57)

and changing the metric tensor gDSR into

g′DSR = diag(b2,−b2,−b2,−b2) = b2gSR . (3.58)

Then, the generalized Lorentz transformations in ˜M ′ take the symmet-
rical form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x0′ = γ̃(x0 − ˜βx1)
x1′ = γ̃(x1 − ˜βx0)

x2′ = x2

x3′ = x3

. (3.59)

It is easily seen that the deformed Minkowski spaces ˜M and ˜M ′, with
metrics (2.2) and (3.58), respectively, are isometric, because they have the
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same interval (2.5). They are therefore fully equivalent in every respect,
and it is therefore possible to use indifferently either transformation (3.27)
or (3.59). The main advantage of the latter ones is that, due to relation
(3.57), the formulae holding for ˜M ′ are immediately got from those of the
standard special relativity by simply replacing everywhere c by u.

3.3.4 Choosing the Boost Direction in DSR

We want now to remark a difficulty arising in the context of DSR, due to
the space anisotropy.

Indeed, the space anisotropy (reflected in the physical anisotropic m.c.v.
u) produces a triple indetermination in the process of identifying the motion
axis with any of the space coordinate axes, since now – unlike the SR case –
the space dimensions are no longer equivalent.

However, this indeterminacy can be removed (at least in principle) by
means of the following Gedankenexperiment. Consider three particles (ruled
by one and the same interaction) in general different but able to move at
the maximal causal velocity ui(E). Suppose they are moving in the 3D
Euclidean space along mutually independent (orthogonal) spatial direc-
tions. Assigning an arbitrary labeling to the particle motion directions, we
can fix an orthogonal, left-handed frame of axes. Since by assumption we
know the interaction which the particles are subjected to, we know the
deformed metric and therefore the metric coefficients as functions of the
energy, b2µ(E). Then, a measurement of the particle velocities allows us to
determine the right labeling of the spatial frame.

This implies that in the context of DSR, too, it is always possible, at phys-
ical level, to let one of the three space axes to coincide with the direction
of motion of a physical object, and therefore apply the suitable deformed
boost.

3.3.5 Recovering Lorentz Invariance in DSR

We have stressed in Sect. 3.1 that the deformed interval in ˜M is not pre-
served by standard Lorentz transformations. In this sense, we can state
indeed that DSR is strictly related to the breakdown of Lorentz invariance
(LI), since the deformed metric is no longer kept invariant by the standard
Lorentz transformations. However, by construction the deformed Lorentz
boosts (and, in general, the DLT, i.e., the isometries of ˜M : see Part II) do
preserve the generalized metric and interval (2.17a, c). Therefore, Lorentz
invariance, broken by the energy-dependent deformation of the space time
in its usual sense, namely as a special-relativistic symmetry property of the
interactions and/or the physical systems, is recovered, in the framework of
DSR, in a generalized, wider meaning. We shall name deformed Lorentz
invariance (DLI)this extended LI.
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The mathematical formulation of DLI is provided by (3.18), which we
rewrite here for reader’s convenience, by emphasizing the dependence of
the DLT on the interaction considered:

ΛT
DSR,int.(E)gDSR,int.(E)ΛDSR,int.(E) = gDSR,int.(E). (3.18a)

It can be read as follows:
– For every physical interaction, which affects the space–time geometry

by deforming it in a way described by the metric tensor gDSR.int., it is
always possible to find DLT ΛDSR,int. preserving the deformed geometri-
cal structure of space–time for the interaction considered, namely (from a
mathematical point of view) generating similarity transformations which
leave the deformed metric tensor invariant.

Then, we can state that DSR not only permits to deal with LI break-
down on a physical basis, but allows one to recover Lorentz invariance as
an extended, higher symmetry of physics, valid for systems and/or inter-
actions violating LI according to the usual Special Relativity, in the usual
Minkowski space–time.

3.3.6 Velocity Composition Law in ˜M and the Invariant
Maximal Speed

We have seen in Sect. 3.2 that the directionally separating approach
(mandatory in the deformed case) yields two different mathematical defini-
tions u (3.12) and w (3.14) of maximal causal velocity in DSR. The choice
between them must be done on a physical basis, by checking their actual
invariance under deformed boosts.

To this aim, one has to derive the generalized velocity composition law
valid in ˜M . For a deformed boost in the direction ̂xi, differentiating the
inverse of (3.27a) yields (on account of the fact that dE = 0 in DSR) (ESC
off):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

dxi = γ̃(dxi′ + vidt′)

dxk �=i = dxk �=i′

dt = γ̃

(

dt′ +
vib2i (E)
c2b20(E)

dxi′
)

, (3.60)

with γ̃ given by (3.29). Since

dxi

dt
= vi,

dxi′

dt′
= vi′,

dxk �=i

dt
= vk �=i,

dxk �=i′

dt′
= vk �=i′ (3.61)
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one gets the deformed velocity composition law (in compact notation, ESC
off)

vk =
vk′ + δikv

i

[

1 +
(

bi(E)
b0(E)

)2
vivi′

c2

]

{γ̃(E) + δik [1 − γ̃(E)]}
. (3.62)

This relation can be expressed in terms of the standard 3D scalar prod-
uct · (and therefore of the anisotropic maximal velocity u) (approach I)
as

vk =
vk′ + δikv

i

[

1 +
v · v′

(ui(E))2

]

{γ̃(E) + δik [1 − γ̃(E)]}

=
vk′ + δikv

i

[

1 +
˜β · v′

ui(E)

]

{γ̃(E) + δik [1 − γ̃(E)]}
, (3.63)

where
˜β

i
(E) =

vi

ui(E)
; γ̃(E) =

(

1 − ˜β(E) · ˜β(E)
)−1/2

. (3.64)

Alternatively, we can use approach II, based on the deformed scalar product
∗ (and therefore the isotropic maximal velocity w) and write (3.63) as:

vk =
vk′ + δikv

i

[

1 +
v ∗ v′

(wi(E))2

]

{γ̃(E) + δik [1 − γ̃(E)]}

=
vk′ + δikv

i

⎡

⎣1 +
˜β

(∗)
∗ v′

wi(E)

⎤

⎦ {γ̃(E) + δik [1 − γ̃(E)]}

, (3.65)

with

β̃
(∗)i

(E) =
vi

wi(E)
; γ̃(E) =

(

1 − ˜β
(∗)

(E) ∗ ˜β
(∗)

(E)
)−1/2

. (3.66)

It is now an easy task to check the truly maximal character of the two
velocities. Indeed, if vi′ = ui(E), one gets, from (3.63)

vi =
ui(E) + vi

1 +
vi

ui(E)

= ui(E), (3.67)
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whereas, for vi′ = wi(E), (3.65) yields

vi =
wi(E) + vi

1 +
(bi(E))2 vi

wi(E)


= wi(E). (3.68)

We can therefore conclude, on a physical basis, that u is the maximal,
invariant causal velocity in DSR, and it plays in the deformed Minkowski
space ˜M the role of the light speed in standard SR.

It is now easy to see why – although approach (II) looks at first sight
more rigorous mathematically, because it permits to connect the peculiar
features of spatial anisotropy of DSR to the deformed product ∗, “naturally
induced” from the metric of ˜M(E) – actually it is approach (I) which
yields the physically relevant result. Indeed, the velocity u is just defined
as dx/dt, and it therefore represents the physically measured velocity, for
a particle moving in the usual, physical Euclidean 3D space. On the other
hand, this result clearly shows that the space anisotropy introduced by the
deformed metric is not a mere mathematical artifact, but it reflects itself
in the physical properties (imposed by the interaction involved) of the
phenomenon described by the deformed space–time.

It is actually a strict consequence of the spatial anisotropy of the space–
time region considered that, in a given Minkowski space with deformed
metric, there exist infinitely many different, maximal causal velocities,
corresponding to the different possible directions of motion (although, of
course, only three of them are independent).

Let us remark that u depends explicitly on the metric parameters bµ,
which are a priori different for every physical system. However, since the
deformation of the metric represents, on average, the effects of the nonlocal
interactions involved, it is expected that physical systems with the same
kind of interactions (besides the electromagnetic ones) are described by
metric parameters of the same order of magnitude (or, at least, this holds
true for the ratio b0/b ). In this sense it is possible to refer to u as a “speed
of interaction,” rather than “speed of the physical system” considered (of
course, at the same energy scale). It is worth noticing that a similar result
(namely, a “maximum attainable speed,” a priori different for different
physical processes) was also obtained by Coleman and Glashow [15], in the
framework of a discussion of possible effects breaking Lorentz invariance
(essentially on a local scale).

The comparison of the deformed boost expression (3.27) with the cor-
responding ones of the standard Lorentz boosts shows clearly that the
transition from SR (based on M) to DSR (based on ˜M) is simply carried
out by letting

uSR = (c, c, c) −→ uDSR(E) =
(

cb0(E)
b1(E)

,
cb0(E)
b2(E)

,
cb0(E)
b3(E)

)

. (3.69)
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In other words, the difference between M and ˜M(E) (at least as far as the
finite coordinate transformations are concerned) is completely embodied in
the three-vector m.c.v. u. Equation (3.69) amounts to a passage from an
absolute (namely, interaction and energy independent) m.c.v. uSR = c to
a relative (i.e., interaction and energy dependent) m.c.v. uDSR = u(E)
in passing from SR to DSR. However, u(E) remains invariant – for fixed
energy values – under generalized Lorentz transformations from a given
reference frame to another.

In the case of an isotropic 3D space (i.e., b21(E) = b22(E) = b23(E) ≡
b2(E)), the corresponding deformed metric is given by (2.14), (2.19), and
one gets, for any component of u:

u =
b0(E)
b(E)

c. (3.70)

In (3.70), the value of u is parametrized in terms of c, and depends on
the physical system (and its interactions). Moreover, it is

u � c ⇔ b0(E)
b(E)

� 1. (3.71)

In other words, there may be maximal causal speeds either subluminal
or superluminal, depending on the interaction considered.

An example is obtained by applying (3.70) to the (spatially isotropic)
Einstein metric (2.21). In this case,

b0 =

√

1 +
2φ
c2
,

and therefore the maximal causal speed is given (in the limit of weak
gravitational field φ, so that φ/c2  1) by

u =
b0(E)
b(E)

c = c

√

1 +
2φ
c2

� c

(

1 +
φ

c2

)

= c

(

1 − 2Gm
c2r

)

, (3.72)

with G being the Newton constant. This amounts to a modified light speed
u < c. Such a modification of the light speed in a gravitational field can
be thought of as propagation in a medium endowed with a refractive index

n =
(

1 − 2Gm
c2r

)−1

. We recall that such an interpretation was pioneered

by Levi-Civita [16].
The light-like world-lines in ˜M , given by (3.8), read in the isotropic case

ds2̃(E) = 0 ⇔ b20(E)c2dt2 − b2(E)
[

(

dx1
)2

+
(

dx2
)2

+
(

dx3
)2
]

= 0

⇔ u2dt2 − dx2 − dy2 − dz2 = 0. (3.73)
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Such an equation represents a Deformed Light Cone. Precisely, it is a
Super-Light Cone8 or a Sub-Light Cone according to u ≷ 1. It constitutes
the counterpart of the usual light cone in standard SR, and provides a
geometrical representation of the maximal causal role played by u for the
interaction considered.

The maximal causal speed u can be therefore interpreted, from a physical
standpoint, as the speed of the quanta of the interaction which requires a
representation in terms of a deformed Minkowski space. Since these quanta
are associated to the Deformed Light Cone in ˜M (see (3.8)), they must be
zero-mass particles (with respect to the interaction considered), in analogy
with photons (with respect to the e.m. interaction) in the usual SR.

Let us clarify the latter statement. The carriers of a given interaction
propagating with the speed u typical of that interaction are expected to
be strictly massless only inside the space whose metric is determined by
the interaction considered. A priori, nothing forbids that such “deformed
photons” may acquire a nonvanishing mass in a deformed Minkowski space
related to a different interaction.

This might be the case of the massive bosons W+, W− and Z0, carriers
of the weak interaction, which would therefore be massless in the space
˜M(gDSR,weak(E)) related to the weak interaction, but would acquire a
mass when considered in the standard Minkowski space M of SR (that, as
already stressed, is strictly connected to the electromagnetic interaction,
ruling the operation of the measuring devices). In this framework, there-
fore, it is not necessary to postulate a “symmetry breaking” mechanism
(like the Goldstone one in gauge theories) to let particles acquire mass.9

Mass itself would assume a relative nature, related not only to the interac-
tion concerned, but also to the metric background where one measures the
energy of the physical system considered. This can be seen if one takes into
account the fact in general, for relativistic particles, mass is the invariant
norm of 4-momentum, and what is usually measured is not the value of
such an invariant, but of the related energy. It is possible indeed, in this
framework, to give a geometrical meaning to the electron mass, and relate
it to the breakdown of local Lorentz invariance [6].

3.3.7 DSR and Lorentzian Relativity

The exposition of the foundations and properties of DSR we did up to
now allow us to establish some connections between DSR and Lorentzian
Relativity (LR).

8The term “Super Light Cone” was coined by D. Mugnai, in connection with the
superluminal propagation of X-waves.

9On the contrary, if one could build up measuring devices based on interactions
different from the e.m. one, the photon might acquire a mass with respect to such a
non-e.m. background.
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Let us recall that LR is the pre-Einsteinian version of relativity theory,
according to Lorentz [17] and Poincaré [18]. It represents an evolution of
the ether theory, due to Lorentz himself (LET). Like Einsteinian Relativity
(ER), the Lorentzian one is based on the relativity principle, and has the
Lorentz transformations as its main mathematical tools. However, these
latter have a different meaning in the two frameworks. Actually, in SR
Lorentz transformations involve time, space and mass, whereas in LR they
affect only matter, i.e., the clocks and the meter sticks used to measure
time, space and momentum. This has to be compared with the effects of
temperature, whose increase causes a clock to slow and a meter stick to
increase its length, yet this does not mean that temperature affects time
or space [19]. In LR, unlike SR, time and space are simply dimensions
(concepts), and cannot be changed by motion. Larmor time dilation and
Lorentz–Fitzgerald length contraction in LR are therefore real effects, not
kinematical appearances. As a matter of fact, all the experiments support-
ing SR, being based on Lorentz transformations, do support LR, too.

To the present purposes, let us stress the following two basic points of
departure of LR from standard Einstein SR:

(1) In LR the speed of light is not invariant, but depends on the observer.

(2) In SR, all motions are relative, and no preferred frame exists. In LR,
the motion is relative to a preferred reference frame.

The preferred frame of reference of LR was originally the ether. Such a
point of view subsequently changed. Let us recall that, in the last twenty
years, there was a revival of the problem of the existence of an absolute
frame Σ0 [20]. Possible candidates for Σ0 are:

(a) The frame where the 2.7 ◦K background thermal radiation is isotropic
for all the velocities of light

(b) The Hubble frame, where an observer would see all galaxies receding
away with the Hubble expansion velocity

(c) The frame tied to the moving arm of our Galaxy

(d) The frame of the stochastic background gravitational radiation

A reanalysis of classical and modern ether-drift experiments has been also
carried out [21], seemingly showing positive evidence for such a preferred
frame on the basis of the old data by Michelson, Morley and Miller.

However, in the further developments of LR [22] the absolute reference
frame is identified with the local gravitational field (as pioneered in [23]),
which is of course a different frame from place to place. The possible exis-
tence of a preferred frame is nothing, in today language, but the possibility
of breakdown of Lorentz invariance(see Chap. 10).
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It is easy to see that the earlier two features of LR, namely, the non-
invariance of light speed and the existence of a preferred frame, are also
present in DSR.

The first point is evident from the discussion of Sect. 3.2 and Sect. 3.3.6.
The maximal causal speed uint. depends on the interaction considered;
within a given interaction, the speed varies with the energy of the process,
and is a priori different for different space directions (see (3.35)). It follows
that there is no longer a unique invariant velocity, exactly as in LR.

The local gravitational field, which is the substitute of ether as preferred
frame in the modern view to LR, is nothing but a Lorentz frame, where
space–time is Minkowskian. Let us recall that the idea of the flat Minkowski
space as replacing the ether can be traced back to Einstein himself, who,
after abandoning the idea of ether in the old sense, identified it, within
General Relativity, as a substratum without mechanical and kinematical
properties, but able to codetermine mechanical and electromagnetic events.

We have stressed more and more (see e.g., Sect. 2.2) the leading role
played by Minkowski space in DSR. Indeed, all the physical measurements,
in particular that of the energy which determines the metric, and there-
fore the space–time deformation, are carried out in Minkowskian conditions
via the electromagnetic interaction. Every local deformation of space–time
described by the DSR formalism always implies an underlying Minkowskian
frame of reference, which, in this sense, does play the role of (local) pre-
ferred frame.

Finally, let us recall that in Lorentzian Relativity it is understood that
Lorentz transformations only apply to electromagnetic phenomena (so clas-
sical Galilei transformations still hold for mechanical laws). In other words,
different coordinate transformations correspond to different classes of phys-
ical phenomena (see the comments to the second postulate of SR, Sect. 1.2).
This is exactly what happens in DSR.

Due to these common features of DSR and LR, in the following physical
phenomena at variance with Special Relativity, which can be ascribed to
them, will be just called Lorentzian effects.

3.4 Kinematics and Wave Propagation
in a Deformed Minkowski Space

3.4.1 Dynamic Definition of Proper Time

Proper Time in SR

We recall that, in general, a definition of (infinitesimal) proper time can
be given, in SR, as the space–time path parameter entering the time-like,
unit geodesic equation
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dτ : gµν
dxµ

cdτ
dxν

cdτ
= 1 ⇐⇒ dτ2 =

ds2

c2
. (3.74)

Notice that such a definition holds true irrespective of the number of dimen-
sions and of the nature of the metric tensor g.

Equation (3.74) can be interpreted as a normalization condition on the
four-velocity V µ ≡ dxµ/dτ :

gµνV
µV ν = c2. (3.75)

Since dτ is an invariant, it is possible to choose a suitable inertial frame
in order to simplify its expression. As is well known, one takes the rest
frame of the particle, i.e.,

dx1 = dx2 = dx3 = 0
(

SR natural frame :
(

x0, x1, x2, x3
)

SR,nat

=
(

x0, x1, x2, x3
))

.

Therefore
dτSR = dtnat = dt0 (3.76)

(where we denoted by t0 the time tnat in the natural frame) or, in integral
form

τSR = t0. (3.77)

Such a definition of proper time in SR must be consistent with the
dynamics in Minkowski space, namely with the geodetic equations

d2xµ(τSR)
dτ2

SR

= 0 ⇐⇒ xµ(τSR) = αµ1τSR + αµ2 (3.78)

with αµ1, αµ2 real constants. The expressions (3.76), (3.77) of the proper
time in SR are therefore compatible with the following class of solutions of
the geodesic equations

xµ(τSR)ESC on= δµ0αµ1τSR + αµ2, α01 = c, α02 = 0, αi2 = xi, i=1, 2, 3.

(3.79)

Proper Time in DSR

The same procedure can be followed to define proper time in DSR. We
have

(dτDSR(E))2 =
1
c2

(dsDSR(E))2

=
1
c2

[

b20(E)c2dt2 − b21(E)
(

dx1
)2

−b22(E)
(

dx2
)2 − b23(E)

(

dx3
)2
]

. (3.80)
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The natural topical reference frame corresponds in this case to the frame
where the particle is at rest with fixed energy E, namely with dx1 = dx2 =
dx3 = dE = 0, so that the DSR natural frame is characterized by

(

x0, x1, x2, x3
)

DSR,nat
=
(

x0, x1, x2, x3
)

E=E
. (3.81)

Then
(

dτDSR(E)
)2

=
1
c2
(

dsDSR(E)
)2
∣

∣

∣

∣

nat

= b20(E))dt20. (3.82)

Finally, omitting the dependence on E, one gets for the infinitesimal proper
time in DSR

dτDSR = b0dt0 (3.83)

or, in finite form:
τDSR = b0t0. (3.84)

Such relations are analogous to those between proper time and coordinate
time found in General Relativity (dτGR =

√
g00dt).10 In the DSR case,

too, the proper time does not coincide with the time measured by the local
observer in the particle frame.11 Like in GR, therefore, one has to distin-
guish between the real (proper) time τ and the coordinate (or universe)
time t. As is well known, such a distinction is fundamental, within GR, for
the analysis of gravitational phenomena (like gravitational collapse). Some-
thing analogous occurs in the DSR framework for interactions described by
asynchronous metrics (like the strong one: see Sect. 4.1), for which this fact
may have deep physical implications.

As for SR, the definition of proper time must be consistent with
the dynamics of free particles. The geodesic equations in the deformed
Minkowski space ˜M are:

d2xµ(τDSR)
dτ2

DSR

= 0 ⇐⇒ xµ(τDSR) = αµ1τDSR + αµ2 (3.85)

(αµ1, αµ2 real). Therefore, at fixed energy (E = E), the compatibility con-
dition in DSR between proper time definition and dynamics is expressed by

xµ(τDSR) ESC on= δµ0αµ1τDSR + αµ2, α01 =
c

b0
, α02 = 0, αi2 = xi,

i = 1, 2, 3, (3.86)

that can be regarded as a dynamic definition of natural, topical reference
frame.

10Indeed, since gDSR00 = b20, the general-relativistic relation for τ becomes exactly
the DSR relation (3.83).

11An exception is provided by the case of the symmetrizing transformation x0 ≡
cb0(E)t. Then, one gets gDSR00 = 1, so that τ = t (namely proper time coincides with
coordinate time).
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3.4.2 Deformed Relativistic Kinematics

From the knowledge of the generalized Lorentz transformations it is easy
to derive the main kinematical and dynamic laws valid in DSR [6]. In this
section, we shall merely list those which are useful to phenomenological
purposes.

Velocity Composition Law (cf. (3.62))

Vtot =
v1 + v2

1 +
v1v2

u2

, (3.87)

which obviously for, say, v1 = u yields Vtot = u.
If the condition of spatial isotropy is given up, the composition law for

motion, say, along the xk-axis, becomes

V =
v1 + v2

1 +
v1v2

u2
k

; uk =
cb0
bk

(3.88)

and we recover the result (already derived in Sect. 3.3.6) that the invariant
velocity is

uk =
cb0
bk

. (3.89)

Time dilation

∆t = γ̃(E)∆t0; (3.90)

Length contraction

∆L = γ̃−1(E)∆L0; (3.91)

Four-velocity

V µ(E) =
dxµ

dτ(E)
= γ̃(E)

dxµ

b0(E)dt
, (3.92)

(where (3.83), (3.90) have been taken into account). One gets explicitly, for
the spatial part of V µ:

V k(E) = γ̃(E)
vk

b0(E)
= γ̃(E)ṽk, (3.93)
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with vk = dxk/dt being the components of the standard three-vector veloc-
ity v, and we introduced the deformed 3-velocity

ṽk ≡ vk

b0(E)
. (3.94)

Notice that such a definition is analogous to that used in General Relativity
(in agreement with the definition of proper time in DSR). As to the time
component V 0(E), its expression depends on the dimensional-conversion
factor used to define x0. We get:

(a) x0 = ct:

V 0(E) = γ̃(E)
c

b0(E)
; (3.95)

(b) x0 = cb0(E)t = wit (where w is the isotropic m.c.v. for the interac-
tion considered):

V 0(E) = γ̃(E)c; (3.96)

(c)

x0 = ui(E)t = c
b0(E)
b(E)

t,

(where u is the anisotropic m.c.v. in the case of spatial isotropy):

V 0(E) = γ̃(E)
ui(E)
b0(E)

. (3.97)

Therefore, the generalized expression of the momentum four-vector is

pµ(E) = mV µ(E) =
mγ̃(E)
b0(E)

⎧

⎨

⎩

(c,v)
(

wi(E),v
)

(

ui(E),v
)

, (3.98)

where m is the rest mass.
As is well known, in SR the energy is the time component of pµ. However,

in the general-relativistic case, the conserved quantity is the covariant com-
ponent of the four-momentum vector.12 Accordingly, in the general case,
we take as deformed relativistic energy, for a particle subjected to a given

12Indeed, the energy for a particle in a stationary gravitational field (covariant com-
ponent p0 of the four-momentum) is

E0 = mc2γ
√

g00, (*)

where the speed v in γ is defined with respect to the proper time τ . In the Newtonian
limit of weak field, g00

∼= 1 + 2φ/c2 (with φ being the gravitational potential), so that

E0 � mc2γ

(

1 +
φ

c2

)

,
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interaction and moving along ̂xi, the quantity:

EDEF = mcγ̃(E)b0(E)

⎧

⎨

⎩

c
wi(E)
ui(E)

. (3.99)

Let us stress that EDEF is the energy the system under consideration possess
in the deformed space–time, and is a consequence of the deformation of the
metric. It must not be confused with E, that is instead the interaction
energy measured in Minkowskian conditions. The difference between the
two energies can be understood by considering the internal dynamics (of
geometrical origin) inherent in the mathematical structure of the space ˜M
(see Part II)13.

Let us notice that (3.99) implies a generalized dispersion relation between
energy and momentum in the deformed space–time. We have in fact

E2
DEF =

1
b20(E)

[

m2c4 − b2i (E)(cpi)2
]

. (3.100)

As is well known, generalized dispersion relations of such a kind are a char-
acteristic feature of theories allowing for violation of local Lorentz invari-
ance [24]. In particular, they arise in the context of multidimensional space–
time theories [25]. As we shall see in Parts IV and V, DSR admits a natural
embedding in a 5D Riemannian space. Equation (3.100) constitutes, in a
sense, a manifestation of this for now “hidden” extra dimension.

Lastly, let us consider a plane wave propagating with speed u (e.g., in
the xy plane, at angles θ, θ′ in frames K, K ′) with dispersion relation u =
λν = λ′ν′, where ν, ν′ are the wave frequencies in K, K ′. Applying the
DLT, it is easy to get the following laws:

Doppler effect

ν = γ̃(E)ν′(1 + ˜β(E)cosθ′); (3.101)

Aberration law

tgθ =
sinθ′

γ̃(E)(˜β(E) + cosθ′)
. (3.102)

which is fully analogous to the expression of the relativistic energy of a charged particle
in a constant electromegnetic field. Moreover, in the nonrelativistic limit, one gets

E0 � mc2 +
1

2
mv2 + mφ,

just showing that (*) is the correct general-relativistic definition of the energy for a
particle in a gravitational field.

13Precisely, in the internal fields arising from its structure of Generalized Lagrange
Space (see Chap. 9).
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TABLE 3.1. Kinematical laws in standard and deformed Minkowski space

Minkowski space deformed Minkowski space

Vtot =
v1 + v2

1 +
v1v2

c2

Vtot =
v1 + v2

1 +
(

b

b0

)2
v1v2

c2

∆t =
∆t0

(

1 − v2

c2

)1/2
∆t =

∆t0
[

1 −
(

b

b0

)2
v2

c2

]1/2

∆L = ∆L0

(

1 − v2

c2

)1/2

∆L = ∆L0

[

1 −
(

b

b0

)2
v2

c2

]1/2

We want now to provide a comparison between the main kinematical
laws in the usual Minkowski space M and in the deformed one ˜M (in the
hypothesis of spatial isotropy), because their different behaviors may help
one to understand the peculiar features of leptonic, hadronic (and gravita-
tional) interactions with respect to the electromagnetic one. Such laws are
summed up in Table 3.1, where the maximal speed u has been expressed
in terms of c, in order to emphasize the dependence of the deformed laws
on the parameter ratio b/b0 and exhibit their scale invariance.

In the limiting case v = c, one gets explicitly

v1 = c =⇒ Vtot =
c+ v2

1 +
(

b

bo

)2
v2

c

; (3.103)

v = c =⇒ ∆t =
∆t0

[

1 −
(

b

bo

)2
]1/2

; (3.104)

v = c =⇒ ∆L = ∆L0

[

1 −
(

b

b0

)2
]1/2

. (3.105)

Remember that, in this framework, c has lost its meaning of maximal
causal speed, by preserving the mere role of maximal causal speed for elec-
tromagnetic phenomena in M .

To the purpose of experimental verification, it is worth to express the
deformed kinematical laws of time dilation and length contraction for a
particle of rest mass m in terms of the usual energy E. Clearly, for E �
mc2, E can be considered the total energy of the particle, measured by
electromagnetic methods in the usual Minkowski space. We report such
laws in Table 3.2 (in comparison with the standard, Einsteinian ones):
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TABLE 3.2. Time dilation and length contraction as functions of energy

Minkowski space deformed Minkowski space

∆t = ∆t0
E

m
∆t = ∆t0

[

1 −
(

b

bo

)2

+
(

b

bo

)2
(m

E

)2
]−1/2

∆L = ∆L0
m

E
∆L = ∆L0

[

1 −
(

b

bo

)2

+
(

b

bo

)2
(m

E

)2
]1/2

It is easily seen that, in the case of the time-dilation law, the main differ-
ence is the loss of linearity in the dependence on the energy of the deformed
law, as compared to the Minkowskian one. Such a different behavior is
therefore a clear signature of the presence of nonlocal effects in the inter-
action considered, or of LI breakdown.

3.4.3 Wave Propagation in a Deformed Space–Time

Deformed Helmholtz Equation

We want now to approach the problem of wave propagation in a deformed
Minkowski space–time produced by an interaction whose metric has a
threshold behavior in energy,14 namely it is non-Minkowskian for, say,
E < E0 [6]. To this end, let us introduce the generalized D’Alembert oper-
ator ˜�, defined by means of the scalar product ∗ in ˜M (see (2.5)):

˜� ≡ ∂ ∗ ∂ = gµν,DSR∂
µ∂ν =

b20
c2
∂2

t − (b21∂
2
x + b22∂

2
y + b23∂

2
z ). (3.106)

Therefore, the deformed Helmholtz–D’Alembert wave equation is given by
˜�f = 0, (3.107)

with f being any component of the field associated to the wave considered.
For instance, the field of such a wave propagating in the Minkowski space
˜M can be written as:

f(x) = A(x)eik∗x, (3.108)
where k is the wavevector and eik∗x is the generalized phase.

By assuming a spatially isotropic deformed metric (see (2.19)), in
the corresponding deformed space–time the generalized phase takes the
“Minkowskian-like” form eik̃·x (where the dot denotes the usual scalar prod-
uct in the Minkowski space), with

k̃µ =
(

2πν
c
, k̃x, k̃y, k̃z

)

(3.109)

14As it will be seen in Chap. 4, this is just the case of the phenomenological metrics
of all the four fundamental interactions.
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and ν is the frequency measured in the ordinary Minkowski space–time.
Then, (3.108) becomes

f(x) = A(x)eik̃·x. (3.110)

A wave propagating in a deformed Minkowski space–time (whatever the
interaction ruling it) will be referred to in the following as a Lorentzian
wave.

Deformation Tensor

A scalar wave propagating in a finite region (of size L) of a deformed space–
time (along the z-direction) can be expanded in a Fourier series as

f(z) =
∞
∑

n=−∞
cnein2πz/L. (3.111)

In particular, for an evanescent wave e−χz, with

χ =
2π
c

√

ν2
c − ν2 (3.112)

(where νc is a critical frequency), one has (for χL � 1)

cn =
(1/L)

χ+ in 2π
L

. (3.113)

It is easily seen that each Fourier component of the Lorentzian wave
propagates in a different deformed Minkowski space–time. This is clearly
related to the energy (and momentum) dependence of the parameters of
the deformed metric. If g(n)

µν,DSR is the deformed metric “seen” by the nth

Fourier component of the wave, with metric coefficients b(n)
µ , we can build

an effective metric tensor gµν,DSR for the wave as follows:15

gµν,DSR(cn) =

∑

n |cn|2g(n)
µν,DSR

∑

n |cn|2
. (3.114)

Clearly, outside the region where the space–time is deformed, all the Fourier
waves propagate in a Minkowskian space–time, and definition (3.114)
reduces to the usual Minkowski metric tensor gµν . In fact, in such a
region we are in full Minkowskian conditions (according to the assump-
tion we made, this means that the energy of the process is higher than
the threshold energy, E > E0), i.e., b(n)2

µ = 1, µ = 0, 1, 2, 3, and therefore
g
(n)
µνDSR = gµν∀n.

15Analogous results hold in the case of a growing wave, or when both an evanescent
and a growing wave are present in the space–time deformation region.
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Notice that tensor (3.114) is analogous to the Cauchy stress tensor of a
continuous medium. In fact, let us consider, in orthogonal Cartesian coor-
dinates, an infinitesimal tetrahedron with edges parallel to the coordinate
axes and the oblique face S opposite to the vertex O, origin of the Cartesian
frame. If the tetrahedron is a part of a continuous body, the stress vector
across S in the point O is given by

φa(O) =
∑

i φi(O)ai
∑

i |ai|2
, (3.115)

where a is a vector normal to S and φi(O) (i = 1, 2, 3) is the stress vector
on the face of the tetrahedron orthogonal to the i-th axis. The nine compo-
nents of the three vectors φi(O) do just constitute the rank-two, symmetric
Cauchy tensor.

The tensor gDSR can be therefore regarded as the average tensor
representing the space–time deformation inside the deformed region
(corresponding to the energy E < E0) globally “seen” by the wave (3.110).
So, we can name it average tensor of the space–time deformation (related
to the interaction considered), gDSR,int.. It can be stated in full general-
ity that the Minkowski space is always subjected to a stress, whenever
crossed by a wavepacket. Such a stress is related to the deformation of the
space–time, which may be described by the tensor gDSR = gSR (ineffectual
deformation) or by a tensor gDSR 
= gSR (effectual deformation). The two
cases gDSR = gSR, gDSR 
= gSR are obviously determined by the interaction
ruling the wavepacket propagation and by the energy of the wavepacket
components.

It was shown that a description in terms of propagation in a deformed
space–time holds for the tunneling of particles and photons through a
barrier. In such a case, the propagation is known to be superluminal
(the so-called Hartmann–Fletcher effect [26,27], namely the tunneling time
becomes independent of the barrier width d for sufficiently large d). The
approach to faster-than-light propagation in terms of a deformation ten-
sor is similar, in some respects, to that where superluminal propagation
(e.g., of light between parallel mirrors) is connected to vacuum effects [28].
In this case, the influence of the (structured) vacuum is described in an
effective way in terms of a refractive index N (as pioneered by Sommer-
feld). The speed of propagation of electromagnetic signals, ue.m., is related
to the “speed of light” parameter c (which appears in standard Lorentz
transformations) by ue.m. = c/N (of course, this allows one to single out a
preferred reference frame, namely the one where light propagates isotrop-
ically with speed ue.m.: see Sect. 3.3.7). Something analogous happens in
General Relativity, too: many gravitational phenomena (like the bending
of light rays near a massive body), usually described in terms of the curved
(Riemannian) structure of space–time, can be treated by considering (in
an Euclideanspace) the vacuum as a polarizable medium endowed with an
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effective refraction index (see (3.72)), in which light propagates [16,29]. In
some cases, such a propagation – due to the influence of the gravitational
vacuum – turns out to be superluminal (the refractive index is less than one,
N < 1) [30].16 The deformed metric approach can be therefore regarded
as dual to the general relativistic one, in which the space–time curvature
for electromagnetic signals is replaced by a refractive index. In the DSR
formalism, the vacuum or nonlocal effects which affect propagation inside
the barrier are described in terms of a space–time deformation (and the
role of the refractive index is played by the deformation tensor).

3.5 Field Deformation

We want now to show that the deformation of space–time, expressed by
the metric gDSR (2.17), does affect also the external fields applied to the
physical system considered.

Let us consider for instance the case of a physical process ruled by the
electromagnetic interaction. Therefore, the Minkowski space M is endowed
with the electromagnetic tensor Fµν(x) (external e.m. field) acting on the
system. Of course Fµ

ν (x) = gµρ
SRFρν(x).

In the deformed Minkowski space ˜M , the covariant components of the
electromagnetic tensor read (ESC on)

˜Fµν = gµρDSRF
ρ
ν = gµρDSRg

µσ
SRFσν , (3.116)

where (ESC off)

(gµρDSRg
µσ
SR) = diag(b20, b

2
1, b

2
2, b

2
3) = (b2σδ

σ
ρ ). (3.117)

We have therefore

˜F0ν = b20F0ν ; ˜F1ν = b21F1ν ; ˜F2ν = b22F2ν ; ˜F3ν = b23F3ν , (3.118)

or (ESC off)
˜Fµν = b2µFµν , µ, ν = 0, 1, 2, 3. (3.119)

It follows that the tensor ˜Fµν is not antisymmetric:

˜Fµν 
= − ˜Fνµ. (3.120)

16Let us recall that the evidence for such a superluminality in the gravitational field
– strictly related to the dependence of the light speed c on the gravitational potential
φ – has been recognized by Einstein himself, in the early years of General Relativity.
However, he later preferred to adopt the point of view by Nordström, in which the
dependence of c on φ (and therefore the superluminality) is removed and rather ascribed
to the mass.
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The result shown here for the electromagnetic interaction can be gener-
alized to other fundamental interactions described by tensor fields.

On account of the well-known identification

˜F0i = ˜Ei, ˜F12 = −˜B3, ˜F23 = −˜B1, ˜F31 = −˜B2 (3.121)

(and analogously for Fµν), we can write, for the energy density ˜E of the
deformed electromagnetic field:

˜E =
˜E2 + ˜B2

8π
=
b40E

2 + b41B
2
3 + b42B

2
1 + b43B

2
2

8π
, (3.122)

to be compared with the standard expression for the e.m. field E, B:

E =
E2 + B2

8π
. (3.123)

There is therefore a difference in the energy associated to the electro-
magnetic field in the deformed space–time region. We have, for the energy
density

∆E = E − ˜E . (3.124)

We can state that the difference ∆E represents the energy spent by the
interaction in order to deform the space–time geometry.

We can therefore conclude that the deformation of space–time does affect
the field itself that deforms the geometry of the space. There is therefore a
feedback between space and interaction which fully implements the Soli-
darity Principle.



4
Metric Description
of Interactions

4.1 Review of Phenomenological Metrics

We want now to review the results obtained for the deformed metrics,
describing the four fundamental interactions – electromagnetic, weak,
strong and gravitational –, from the phenomenological analysis of the
experimental data. A more detailed treatment can be found in [6].

The explicit functional form of the metric

gDSR,int.(E) = diag(b20,int.(E),−b21,int.(E),−b22,int.(E),−b23,int.(E)) (4.1)

for the four interactions (in its covariant form) is as follows.

4.1.1 Electromagnetic Interaction

The experiments considered were those on the superluminal propagation of
e.m. waves in conducting waveguides with variable section (first observed
at Cologne [31–33] and Florence [34,35]). The introduction, in this frame-
work, of a deformed Minkowski space was motivated by ascribing the
superluminal speed of the signals to some nonlocal e.m. effect, inside the
narrower part of the waveguide, which can be described in terms of an
effective deformation of space–time inside the barrier region. Since one is
dealing with electromagnetic forces (which are usually described by the
Minkowskian metric), it is possible to assume b20 = 1 (this is also justified
by the fact that all the relevant deformed quantities depend actually on
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the ratio b/b0). Assuming moreover an isotropically deformed three-space
(b1 = b2 = b3 = b),1 the fit to the experimental data yields

gDSR,e.m.(E) = diag
(

1,−b2e.m.(E),−b2e.m.(E),−b2e.m.(E)
)

; (4.2)

b2e.m.(E) =
{

(E/E0e.m.)1/3, 0 ≤ E < E0e.m.

1, E0e.m. < E

= 1 +Θ(E0e.m. − E)

[

(

E

E0e.m.

)1/3

− 1

]

, E > 0 (4.3)

(where Θ(x) is the Heaviside theta function). The threshold energy E0e.m.

is the energy value at which the metric parameters attain a constant value,
i.e., the metric becomes Minkowskian. The value obtained by the fit is

E0,e.m. = (4.5 ± 0.2) µeV . (4.4)

Notice that the value obtained for E0,e.m. is of the order of the energy Ecoh

corresponding to the coherence length of a photon for radio-optical waves
(used in waveguide experiments). Indeed, for such waves it is ν ≈ 100 MHz
(i.e., 10−8 s), and therefore λ ≈ 102 cm so that

Ecoh ≡ hc

λ
� 1µeV. (4.5)

Moreover, it must be noted that, since – as stressed in Sect. 3.3.5 – the
departure of the metric from the Minkowskian one is a signature of the
Lorentz invariance breakdown (in its usual meaning), breaking LI in electro-
magnetic processes is expected to occur at low (not high, as commonly
thought) energies. As we shall see in Part III, from an experimental analy-
sis, this seems to be indeed the case. This seemingly strange fact2 can be
understood by recourse to the following analogy. Consider the surface of
liquid (or an elastic film, like a soap film). If one puts quite gently on it
a very light object, for instance a needle, by virtue of the surface tension

1Notice that the assumption of spatial isotropy for the electromagnetic interaction
in the waveguide propagation is only a matter of convenience, since waveguide exper-
iments do not provide any physical information on space directions different from the
propagation one (the axis of the waveguide). An analogous consideration holds true for
the weak case, too.

2For a similar “strange” fact in physics – with a phenomenon occurring at low, rather
than high, energy, contrarily to what supposed –, let us quote the erroneous belief –
however widely spread in the physicist community at the beginning of the twentieth
century – that only fast, highly energetic neutrons could be able to induce radioactivity.
Such a prejudice was overcome only by the experimental evidence obtained by Fermi and
coworkers in 1935 for the effectiveness of slow neutrons in producing nuclear reactions,
and the related mechanism fully understood after a deep comprehension of nuclear forces.
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the liquid surface bends but the needle does not sink. As is well known,
this occurs because the weight of the needle is so light that the tension
forces are able to balance it. On the contrary, a more massive body, like
a stone, does break the surface film, and the body sinks. The surface felt
by the needle is a curved, deformed one; the stone is unable to feel the
curvature. In an analogous way, a particle with energy much greater than
the electromagnetic energy threshold E0,e.m. cannot “feel” the space–time
deformation.

4.1.2 Weak Interaction

The experimental input was provided by the data on the pure leptonic
decay of the meson K0

s , whose lifetime T is known in a wide energy range
(30/350 GeV) (an almost unique case) [36, 37]. Use has been made of the
deformed law of time dilation as a function of the energy, which reads
(cf. Table 3.2)

T =
T0

[

1 −
(

b

b0

)2

+
(

b

b0

)2
(m

E

)2
]1/2

. (4.6)

As in the electromagnetic case, an isotropic three-space was assumed,
whereas the isochrony with the usual Minkowski metric (i.e., b20 = 1) was
derived by the fit of (4.6) to the experimental data. The corresponding
metric is therefore given by

gDSR,weak(E) = diag
(

1,−b2weak.(E),−b2weak.(E),−b2weak.(E)
)

; (4.7)

b2weak.(E) =
{

(E/E0 weak)1/3, 0 ≤ E < E0 weak

1 E0 weak < E

= 1 +Θ(E0 weak. − E)

[

(

E

E0 weak

)1/3

− 1

]

, E > 0, (4.8)

with
E0, weak = (80.4 ± 0.2) GeV. (4.9)

Two points are worth stressing. First, the value of E0 weak – i.e., the energy
value at which the weak metric becomes Minkowskian – corresponds to
the mass of the W -boson, through which the K 0

s-decay occurs. Moreover,
the leptonic metric (4.7)–(4.9) has the same form of the electromagnetic
metric (4.2)–(4.4). Therefore, one recovers, by the DSR formalism, the well-
known result of the Glashow–Weinberg–Salam model that, at the energy
scale E0 weak, the weak interaction and the electromagnetic one are mixed.
We want also to notice that, in both the electromagnetic and the weak
case, the metric parameter exhibits a “sub-Minkowskian” behavior, i.e.,
b(E) approaches 1 from below (E < E0) as energy increases.
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4.1.3 Strong Interaction

The phenomenon considered was the so-called Bose–Einstein (BE) effect in
the strong production of identical bosons in high-energy collisions, which
consists in an enhancement of their correlation probability. The DSR for-
malism permits to derive a generalized BE correlation function, depending
on all the four metric parameters bµ(E). By using the experimental data
on pion pair production, obtained in 1984 by the UA1 collaboration at
CERN [38], one gets the following expression of the strong metric for the
two-pion BE phenomenon:

gDSR,strong(E) = diag
(

b2strong(E),−b21,strong(E),

−b22,strong(E),−b2strong(E)
)

; (4.10)

b2strong(E) =
{

1, 0 ≤ E < E0strong

(E/E0strong)2, E0strong < E

= 1 +Θ(E − E0,strong)

[

(

E

E0,strong

)2

− 1

]

,

E > 0; (4.11)

b21,strong(E) =
(√

2/5
)2

; (4.12)

b22,strong = (2/5)2, (4.13)

with
E0,strong = (367.5 ± 0.4) GeV. (4.14)

The threshold energy E0,strong is still the value at which the metric becomes
Minkowskian. Let us stress that, in this case, contrarily to the electro-
magnetic and the weak ones, a deformation of the time coordinate occurs;
moreover, the three-space is anisotropic, with two spatial parameters con-
stant (but different in value) and the third one variable with energy in an
“over-Minkowskian” way. It is also worth to recall that the strong metric
parameters bµ admit of a sensible physical interpretation: the spatial para-
meters are (related to) the spatial sizes of the interaction region (“fireball”)
where pions are produced, whereas the time parameter is essentially the
mean life of the process. We refer the reader to [6] for further details.

It is also worth noticing that – like a physical meaning can be attributed
to E0,weak as the energy scale of the intermediate vector bosons for elec-
troweak interactions – an analogous interpretation can be given to E0,strong.
A possible suggestion is that the value of E0,strong does represent the energy
scale corresponding to the upper limit of the mass of the Higgs boson, that
– as is well known – breaks the gauge invariance of the electroweak mixed
interactions by endowing the weak interaction carriers with mass.
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Let us explicitly notice that the hadronic metric (4.10) is not always
isochronous with the usual Minkowski metric (b20 = 1). Actually, it follows
from (4.11) that it is b20 
= 1 for E0,strong < E.

Such a case is not new; indeed, as is well known, the same happens for
the gravitational interaction, as shown e.g., by the various measurements
of red or blue shifts of electromagnetic radiation in a gravitational field, or
by the relative delays of atomic clocks put at different heights in presence
of gravity.

Let us investigate the possible implications of such an anisochronism
of the hadronic metric. We denote by dthad the time interval taken by a
certain hadronic process for a particle at rest (“hadronic clock”). The same
process, when referred to a Minkowskian electromagnetic metric, will take
a time dte.m. to happen. The former time corresponds to the real time felt
by the particle in its local frame, namely to the proper time τDSR in the
Minkowski space deformed by the strong interaction.3 The latter is the
coordinate time of an external observer, who looks at the process by means
of his electromagnetic instruments.4 The two times are therefore related by
(3.83), so that we get

dthad

dte.m.
= b0,strong (4.15)

or, on account of the explicit form the strong metric (4.11):

dthad

dte.m.
=
{

1, 0 ≤ E ≤ E0,strong

E0,strong/E, E0,strong ≤ E
. (4.16)

Equation (4.16) provides the law of time deformation in a hadronic field.
It is easily seen that there is isochronism at low energies (i.e., physical
processes have the same rate either when referred to a hadronic metric or
to an electromagnetic one), whereas there is a time contraction at high
energies. In other words, hadronic processes are faster when observed with
respect to an electromagnetic metric.

By the way, such results provide an interesting representation of two
fundamental features of strong interactions, i.e., asymptotic freedom and
confinement. Briefly stated, these two effects can be thought of as related
to the different time rates required by the electromagnetic and the strong
interactions, respectively, in order to transfer the same amount of energy
to the hadronic constituents. As a consequence, hadron constituents look

3The situation reminds one of the gravitational fall of a particle toward a collapsing
body. In that case, the proper time is the real time measured by the particle (influenced
by the body gravitational field), whereas the coordinate time is that measured by a
distant observer in fully Minkowskian conditions.

4The interpretation of dte.m. as the coordinate (Minkowskian) time is supported
also by the fact that the energy of an hadronic process is in general much higher than
the electromagnetic energy threshold E0,e.m., and therefore the e.m. metric is fully
Minkowskian.
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“free” when electromagnetically probed. See [6] for a deeper discussion of
this interesting point.

4.1.4 Gravitation

It is possible to show that the gravitational interaction, too (at least on a
local scale, i.e., in a neighborhood of Earth) can be described in terms of
an energy-dependent metric, whose time coefficient was derived by fitting
the experimental results on the relative rates of clocks at different heights
in the gravitational field of Earth, obtained by Alley in 1974–1976 [39]. No
information can be derived from the experimental data about the space
parameters. The energy-dependent gravitational metric was thus obtained
in the form

gDSR,grav(E) = diag
(

b20,grav(E),−b21,grav(E),−b22,grav(E),−b23,grav(E)
)

;
(4.17)

b20,grav(E) =
{

1 , 0 ≤ E < E0grav
1
4 (1 + E/E0grav)2, E0grav < E

= 1 +Θ(E − E0,grav.)

[

1
4

(

1 +
E

E0,grav.

)2

− 1

]

,

E > 0 (4.18)

with the coefficients b2k,grav(E) (k = 1, 2, 3) undetermined and

E0,grav = (20.2 ± 0.1) µeV. (4.19)

Intriguingly enough, the value of the threshold energy for the gravitational
case E0,grav is approximately one order of magnitude less than the thermal
energy corresponding to the 2.7 K cosmic microwave background radiation
(CMWBR) in the Universe (ECMWBR ≈ 232.67µeV).

Let us notice that for the gravitational metric (unlike the e.m. and
weak cases, and in analogy with the strong metric) a deformation of the
time coordinate occurs. The time coefficient varies with energy in an over-
Minkowskian way, namely, it approaches the Minkowskian limit from above
(E0 < E). The relation between proper time and coordinate time, (3.83),
corresponding to the time coefficient (4.18) reads:

dτ =
(

1 +
E

E0

)

dt, (4.20)

at variance with the Einsteinian one (derived from metric (2.21))

dτ =
(

1 +
E

E0

)1/2

dt. (4.21)



4.1 Review of Phenomenological Metrics 59

As to the explicit form of the spatial part of the gravitational metric (on
which the experimental data do not provide any information), two possi-
bilities are open:

1. The spatial, 3D metric is Euclidean, i.e., b2k,grav(E) = 1 ∀k = 1, 2, 3;

2. The spatial metric is anisotropic and energy-dependent, i.e., the 4D
metric has a structure similar to the strong one (4.10), namely

gDSR,grav(E) = diag
(

b2grav(E),−b21,grav(E),−b22,grav(E),−b2grav(E)
)

;
(4.17a)

b2grav(E) =

{

1 , 0 ≤ E < E0,grav

1
4 (1 + E/E0,grav)2, E0,grav < E

= 1 +Θ(E − E0,grav.)

[

1
4

(

1 +
E

E0,grav.

)2

− 1

]

,

E > 0, (4.18a)

with, in general, b21 
= b22. Assuming a gravitational deformation of space,
allowing also for spatial anisotropy, seems to be the more sound choice on
physical grounds, on account of the experimental evidences (see Chap. 15).
This is why in the following, unless otherwise specified, we shall mean for
gravitational metric the form (4.17a), (4.18a).

Let us stress explicitly that nothing can be said from the experimental
point of view about the behavior of the metrics (4.2)–(4.4), (4.7)–(4.9),
(4.10)–(4.14), (4.17)–(4.19) at the threshold energies (however, in Part V,
suitable mathematical assumptions will be made on this behavior for con-
venience’ reasons). Moreover, notice that, formally, some metrics become
degenerate for E = 0. However, actually it does not make sense, from a
physical point of view, to consider a vanishing energy in our framework,
because no physical process at all does take place at zero energy.

The general pattern of the four phenomenological metrics is shown in
Fig. 4.1.

Let us remark that the non-Minkowskian behavior of the four phenom-
enological metrics, at variance with respect to Special Relativity, implies a
violation of Lorentz invariance in its usual meaning (namely, as the metric
homomorphisms of the Minkowski space–time M) (see Sect. 3.1). However,
as already noted, the existence of the DLT permits to recover Lorentz
invariance in a generalized sense in the framework of DSR, still in the form
of isometries, but now of the deformed Minkowski space ˜M (see Sect. 3.3.5).
We referred to this new symmetry within DSR as deformed Lorentz invari-
ance. Then, it is possible in a sense to state that physical phenomena,
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FIGURE 4.1. General pattern of the phenomenological metrics for the four funda-
mental interactions

exhibiting a Lorentz-violating behavior in the standard meaning, inside the
standard Minkowski space M , actually do yield evidence (provided such a
violation occurs according to the DSR conditions and modes) for deformed
Lorentz invariance. For a given interaction, such an invariance is obviously
dependent on the energy range considered. Such a restriction does no longer
apply when embedding DSR within DR5 (its 5D counterpart, obtained by
taking energy as extra metric coordinate: see Parts IV and V).

4.2 Threshold Energies and Recursive Metrics

A comparison among the threshold energies for the electromagnetic, weak,
strong and gravitational interactions, given by (4.4), (4.9), (4.14), (4.19),
yields

E0el < E0grav < E0w < E0s, (4.22)

i.e., an increasing arrangement of E0 from the electromagnetic to the strong
interaction. Moreover

E0grav

E0el
= 4.49 ± 0.02;

E0s

E0w
= 4.57 ± 0.01, (4.23)

namely
E0grav

E0el
� E0s

E0w
, (4.24)

an intriguing result indeed.
A further remark concerns the possible pattern of interactions ensuing

from DSR. According to the results summarized earlier, we have two pairs
of interactions (i) electromagnetic and gravitational and (ii) weak and
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strong, ordered by the increasing arrangement of the threshold energies.
Moreover, in each pair the former interaction is sub-Minkowskian, and the
latter is over-Minkowskian. The first question is: Does this pattern end
with the second pair, or not? If a third pair exists, we can assume that
the threshold energies of the new pair, E0,5 and E0,6, are related to the
threshold energies of the previous sub-Minkowskian and over-Minkowskian
metrics according to

E0,2n

E0,2n−1
=
E0,2n+2

E0,2n+1
, n = 1, 2 (4.25)

(with E0el = E0,1; E0grav = E0,2; E0w = E0,3; E0s = E0,4). In such hypoth-
esis, with the values (4.4), (4.9), (4.14), (4.19) of the threshold energies for
the known interactions, one gets

E0,5 � 1.3 × 1018 GeV;

E0,6 � 6.7 × 1018 GeV. (4.26)

A possible representation of the recursive pattern of the phenomenological
metrics is illustrated in Fig. 4.2.

Such a pattern may recur again, or not, and it is of course a matter of
experiment to check the real existence of these new pairs of interactions.
What to be excluded is that it recurs ad infinitum. In this connection,
we recall that it was shown that the maximum possible force in Nature is
provided by the Kosntro constant (or Planck force) K, given by [40]

K =
c4

G
= 1.211 × 1044N = 7.556 × 1051GeV cm−1, (4.27)

FIGURE 4.2. Qualitative behavior of recursive and asymptotic metrics
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where G is the gravitational constant (G = 1.072 × 10−10cm5 [GeV s4]−1).
The corresponding maximum energy, i.e., the energy of the whole Universe,
is therefore (assuming R0 ∼ 1010 light-years)

Emax = KR0 ∼ 1079 GeV. (4.28)

Either in the case of new interactions (besides the known ones) or not,
we deem that the interaction pattern in the DSR scheme is bounded from
above by the value Emax (4.28) related to the Kostro limit. This holds, in
particular, for the asymptotic behavior of the over-Minkowskian metrics.

Let us also stress that, in the sub-Minkowskian case, the deformed
metrics can vanish, in general, for an energy value W0 
= 0, i.e., by
definition

b2µ(W0) = 0. (4.29)

(see Fig. 4.2). The physical meaning of the metric vanishing is that, at the
energy W0, the interaction is unable to measure the space–time separation.
In particular, such a value of the energy corresponds to a point-like object
for the interaction considered. Examples of this fact are provided by the
inertial mass of the photon for an electromagnetic metric, or the neutrino
masses for a leptonic metric. Indeed, for the e.m. interaction, W0,e.m. is
essentially the upper limit for the photon inertial mass.

4.3 Asymptotic Metrics

Of course, the paucity of the phenomena, and the related experimental
data, on which the phenomenological analysis is based, makes just prelimi-
nary and provisional the resulting metrics obtained for the electromagnetic,
weak, gravitational and strong interactions.

In this connection, it is worth listing the possible functional forms of
deformed metrics which might be able to describe physical interactions.
We shall divide them in two main classes, according to the functional form
of the parameters b2µ(E):

(I) First class
⎧

⎨

⎩

b20(E) = const;

b2k(E) =
(

1 − W0k

E

)nk

,
(4.30)

with nk ∈ R.
Coefficients with the functional form (4.30) are characteristic of

sub-Minkowskian metrics, which are asymptotically Minkowskian with
increasing energy. Metrics of the first class are suitable for representing
the electromagnetic and leptonic interactions.
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(II) Second class
⎧

⎪

⎪

⎨

⎪

⎪

⎩

b20(E) =
(

1 +
E

W00

)n0

;

b2k(E) =
(

1 +
E

W0k

)nk

.

(4.31)

Metrics of class II are obviously over-Minkowskian, divergent with increas-
ing energy, asymptotically Minkowskian with decreasing energy. They
are suitable for the representation of the hadronic and the gravitational
interaction.

From these results and those of Sect. 4.2 on threshold energies, it is pos-
sible to illustrate on a qualitative basis the behavior of the asymptotic
metrics, as done in Fig. 4.2.

Notice that both first- and second-class metrics become spatially
isotropic if constants W0k, nk reduce to only two, W0 and n. It is worth
stressing some interesting implications of the earlier metrics.

For both classes, the constants W0k have the natural meaning of scale
energy of the interaction described by the corresponding metrics. Moreover,
in metrics of the first kind they represent the energy values at which the
spatial part of the metric vanishes.

Indeed, let us recall that, applying an isotropic metric of type I to the
data on e.m. wave propagation, one gets for W0k,e.m. values compatible
with the present upper bounds on the photon inertial mass.

As a last consequence, consider the general form of the time deformation
law in a hadronic field, that reads:

∆thad

∆te.m.
=

1
√
g00,DSR

=
(

1 +
E

W00

)−n0/2

. (4.32)

For n0 ≤ 2 (on account of the results of the previous section) the earlier
expression shows a behavior asymptotically decreasing toward zero as the
energy E increases, whereas, for W00 ≥ E > 0, it goes to 1 as the energy
decreases. As we have seen in Sect. 4.1, for strong interaction such a behav-
ior can be interpreted in terms of confinement and asymptotic freedom of
hadronic constituents.

As a last remark, we want to stress that there is presently no clear under-
standing of what happens from the metric point of view when two or more
interactions are involved at the same time. Roughly speaking, one could
state that the resulting space–time deformation arises from the superpo-
sition of the metrics concerned, according to their energy thresholds and
their sub- or over-Minkowskian behavior. By recourse to an analogy we
already exploited, one can think to the deformation of an elastic carpet
ensuing from putting two or more bodies on it. However, a rigorous treat-
ment of such a problem would require a study of the metric structure of a
manifold endowed with more different metrics. As a matter of fact, there
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is at least an experiment whose results need recourse to two phenomeno-
logical metrics (the electromagnetic and the gravitational one) in order to
be fully explained (see Chap. 14).

4.4 DSR as Metric Gauge Theory

It is clear from the discussion of the phenomenological metrics describing
the four fundamental interactions in DSR that the Minkowski space M is
the space–time manifold of background of any experimental measurement
and detection (namely, of any process of acquisition of information on phys-
ical reality). In particular, we can consider this Minkowski space as that
associated to the electromagnetic interaction above the threshold energy
E0,e.m.. Therefore, in modeling the physical phenomena, one has to take
into account this fact. If one believes in the geometrical nature of interac-
tions, i.e., assumes the validity of the Finzi principle, this means that one
has to suitably gauge (with reference to M) the space–time metrics with
respect to the interaction – and/or the phenomenon – under study. In other
words, one needs to “adjust” suitably the local metric of space–time accord-
ing to the interaction acting in the region considered. We can name such
a procedure “Metric Gaugement Process” (M.G.P.). Like in usual gauge
theories a different phase is chosen in different space–time points, in DSR
different metrics are associated to different space–time manifolds according
to the interaction acting therein. We have thus a gauge structure on the
space of manifolds

˜M ≡ ∪gDSR∈P(E)
˜M (gDSR) , (4.33)

where P(E) is the set of the energy-dependent pseudoeuclidean metrics of
the type (2.17). This is why it is possible to regard DSR as a Metric Gauge
Theory.

However, let us notice that DSR can be considered as a metric gauge
theory from another point of view, on account of the dependence of the
metric coefficients on the energy. Actually, once the MGP has been applied,
by selecting the suitable gauge (namely, the suitable functional form of
the metric) according to the interaction considered (thus implementing
the Finzi principle), the metric dependence on the energy implies another
different gauge process. Namely, the metric is gauged according to the
process under study, thus selecting the given metric, with the given values
of the coefficients, suitable for the given phenomenon. The analogy of this
second kind of metric gauge with the standard, non-abelian gauge theories
is more evident in the framework of the 5D space–time �5 (with energy
as extra dimension) embedding ˜M , on which Deformed Relativity in Five
Dimensions (DR5) is based (see Parts IV and V). In �5, in fact, energy is no
longer a parametric variable, like in DSR, but plays the role of fifth (metric)
coordinate. The invariance under such a metric gauge, not manifest in four
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dimensions, is instead recovered in the form of the isometries of the 5D
space–time–energy manifold �5.

We have therefore a double metric gaugement, according, on one side,
to the interaction ruling the physical phenomenon examined, and on the
other side to its energy, in which the metric coefficients are the analogous
of the gauge functions.

Another connection of DSR with standard gauge theory will be discussed
at the end of Part II.



Part II

MATHEMATICS
OF DEFORMED
SPACE–TIME



5
Generalized Minkowski Spaces
and Killing Symmetries

In the first Part of this book, we discussed the physical foundations of
the DSR in four dimensions. This second Part will be devoted to dealing in
detail with the mathematical features and properties of DSR. In this frame-
work, the isometries of the deformed Minkowski space ˜M play a basic role.
The mathematical tool needed to such a study are the Killing equations,
whose solution will allow us to determine both the infinitesimal and the
finite structure of the deformed chronotopical groups of symmetries [41–43].
An important result we shall report at the end of this Part – due to its
physical implications – is the geometrical structure of ˜M as a generalized
Lagrange space [12,13,44].

5.1 Generalized Minkowski Spaces

The structure of the deformed space–time ˜M of DSR can be generalized
to what we shall call generalized Minkowski space ˜MN ({x}n.m.). We define
˜MN ({x}n.m.) as aN -dimensional Riemann space with a global metric struc-
ture determined by the (in general nondiagonal) metric tensor gµν({x}n.m.)
(µ, ν = 1, 2, ..., N), where {x}n.m. denotes a set of Nn.m. nonmetrical coor-
dinates (i.e., different from the N coordinates related to the dimensions of
the space considered) [41]. The interval in ˜MN ({x}n.m.) therefore reads

ds2 = gµν({x}n.m.)dx
µdxν . (5.1)
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We shall assume the signature (T, S) (T time-like dimensions and S =
N − T space-like dimensions). It follows that ˜MN ({x}n.m.) is flat, because
all the components of the Riemann–Christoffel tensor vanish.

Of course, an example is just provided by the 4D deformed Minkowski
space ˜M(E). In the following, in order to comply with the notation adopted
for generalized Minkowski spaces, we shall denote the DSR deformed space–
time with ˜M(x5), where the coordinate x5 has to be interpreted as the
energy. The index 5 explicitly refers to the already mentioned fact that
the deformed Minkowski space can be “naturally” embedded in a 5D
(Riemannian) space (see Parts IV and V).

5.2 Maximal Killing Group of a N -Dimensional
Generalized Minkowski Space

5.2.1 Lie Groups, P.B.W. Theorem and the Transformation
Representation

Let us recall the essential content of the Poincaré-Birkhoff–Witt (P.B.W.)
theorem and of the Lie theorems: Given a Lie group GL of order M , it is
always possible to build up an exponential representative mapping of any
finite element g of GL:

∀gfinite ∈ GL

⇒ ∃{αi}i=1...M ∈ RM ({αi} = {αi(g)}) : g = exp

(

M
∑

i=1

αiT
i

)

,

(5.2)

where
{

T i
}

i=1...M
is the generator basis of the Lie algebra of GL and

{αi = αi(g)}i=1...M is a set of M real parameters (of course depending on
g ∈ GL).

Therefore, by a series development of the exponential

g = exp

(

M
∑

i=1

αiT
i

)

=
∞
∑

k=0

1
k!

(

M
∑

i=1

αi(g)T i

)k

∀g finite ∈ GL, (5.3)

we get, for an infinitesimal element (g → δg) (⇔ {αi(g)}i=1...M ∈ RM →
{αi(g)}i=1...M ∈ I0 ⊂ RM ):1

δg = 1 +
M
∑

i=1

αi(g)T i +O(
{

α2
i (g)
}

) ∀δg infinitesimal ∈ GL. (5.4)

1I0 ⊂ RM is a generic neighborhood of 0 ∈ RM .
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Since any Lie group admits a representation as a group of transformations
acting on a N -dimensional manifold SN (“N -dimensional vector space of
transformation representation,” not to be confused with thegroup manifold
VM ), given x ∈ SN , one has, for the action of a finite and infinitesimal
element of GL, respectively:

gx =

[

exp

(

M
∑

i=1

αi(g)T i

)]

x =

⎡

⎣

∞
∑

k=0

1
k!

(

M
∑

i=1

αi(g)T i

)k
⎤

⎦x = x′ ∈ SN ;

(5.5)

(δg)x =
[

1 +
∑M

i=1 αi(g)T i
]

x = x+
(

∑M
i=1 αi(g)T i

)

x = x′ ∈ SN ;

δg : SN � x → x′ = x+ δx(g)(x) ∈ SN

⎫

⎬

⎭

⇒

⇒ δx(g)(x) =

(

M
∑

i=1

αi(g)T i

)

x. (5.6)

5.2.2 Killing Equations in a N-Dimensional Generalized
Minkowski Space

In general SN is endowed with a metric structure we shall assume in the
following to be at most Riemannian. The interval in SN is therefore:

ϕ(x) ≡ ds2(x) = gµν(x)dxµdxν , (5.7)

with gµν(x) being the symmetric, rank-two metric tensor. By carrying out
an infinitesimal transformation of the type

xµ′ = xµ + ξµ(x), (5.8)

one has:

δdxµ(x)
[δ,d]=0

= dδxµ(x) =
∂ξµ(x)
∂xγ

dxγ ;

δgµν(x) =
∂gµν(x)
∂xβ

ζβ(x), (5.9)

and therefore

δϕ(x) ≡ δds2(x) = δ(gµν(x)dxµdxν)
= (δgµν(x)) dxµdxν + gµν(x) (δdxµ(x)) dxν + gµν(x)dxµ (δdxν(x))
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=
(

∂gµν(x)
∂xβ

ζβ(x)
)

dxµdxν + gµν(x)
(

∂ξµ(x)
∂xγ

dxγ

)

dxν

+ gµν(x)dxµ

(

∂ξν(x)
∂xχ

dxχ

)

=
∂gµν(x)
∂xβ

ζβ(x)dxµdxν + gνβ(x)
∂ξβ(x)
∂xµ

dxµdxν

+ gµβ(x)
∂ξβ(x)
∂xν

dxµdxν

=

(

∂gµν(x)
∂xβ

ζβ(x) + gνβ(x)
∂ξβ(x)
∂xµ

+ gµβ(x)
∂ξβ(x)
∂xν

)

dxµdxν

(5.10)

The invariance of the infinitesimal interval under transformation (5.8)
requires therefore

δds2(x) = 0 ⇔
(

∂gµν(x)
∂xβ

ζβ(x) + gνβ(x)
∂ξβ(x)
∂xµ

+ gµβ(x)
∂ξβ(x)
∂xν

)

= 0;

(5.11)

aµ(x) ≡ gµη(x)aη(x)
gµη(x)gηχ(x)=δχ

µ ∀x∈SN⇔ aη(x) = gηµ(x)aµ(x); (5.12)

∂aη(x)
∂xν

≡ aη(x),ν

=
∂ (gηµ(x)aµ(x))

∂xν
=
∂gηµ(x)
∂xν

aµ(x) + gηµ(x)
∂aµ(x)
∂xν

. (5.13)

Let us introduce the covariant derivative on SN , defined by

aµ(x);ν ≡ aµ(x),ν − Γλ
µν(x)aλ(x) (5.14)

with Γλ
µν(x) being the affine connection

Γλ
µν(x) =

1
2
gρλ(x)

(

∂gνρ(x)
∂xµ

+
∂gµρ(x)
∂xν

− ∂gνµ(x)
∂xρ

)

. (5.15)

Since the covariant derivative of the metric tensor vanishes (gµη;ρ(x) = 0),
it is possible to rewrite (5.11) as:

δds2(x) = 0 ⇔ ξµ(x);ν + ξν(x);µ = 0, (5.16)

or, in compact form:
ξ[µ(x);ν] = 0, (5.17)

where the bracket [..] means symmetrization with respect to the enclosed
indices.
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As is well known, the N(N + 1)/2 (5.17) in the N components of the
covariant N -vector ξµ(x) are the Killing equations of the space SN . As is
clearly seen from their derivation, the contravariant Killing vectors corres-
pond to directions along which the infinitesimal interval – and therefore the
metric tensor – remains unchanged. Then, they determine the infinitesimal
isometries of SN . Another very useful property of Killing vectors is that
they are associated to constants of motion, namely to quantities which
keep their value along any geodesic. Any N -dimensional Riemannian space
admits a Killing group with at most N(N + 1)/2 parameters; in this
latter case, the space is called “maximally symmetric.” It can be shown
that a Riemann space is maximally symmetric iff its scalar curvature R
is constant.

In index notation, (5.6) can be written as:

δxµ
(g)(x) =

[(

M
∑

i=1

αi(g)T i

)

x

]µ

, µ = 1, ..., N. (5.18)

Let us denote simply by α the parametric M -vector {αi}i=1...M of the
representation (5.2) of the element g ∈ GL. Then, from (5.6) and (5.8) one
gets

δxµ
(g)(x, α) = ξµ

(g)(x, α); (5.19)

ξµ
(g)(x, α) =

[(

M
∑

i=1

αi(g)T i

)

x

]µ

, (5.20)

namely δxµ
(g)(x, α) is the contravariant N -vector of the infinitesimal trans-

formation associated – in the transformation representation of the Lie group
GL – to the infinitesimal element δg.

We can now define the mixed second-rank N -tensor δωµ
ν (g) of an infini-

tesimal transformation (associated to δg ∈ GL) as:

δxµ
(g)(x) =

[(

M
∑

i=1

αi(g)T i

)

x

]µ

≡ δωµ
ν (g)xν . (5.21)

The number of independent components of the tensor δωµ
ν (g) is equal to

the order M of the Lie group; in general, nothing can be said about its sym-
metry properties. Notice that, in the context of generalized N -dimensional
Minkowski spaces, the infinitesimal mixed tensor depends in general on the
set of nonmetric variables, i.e., δωµ

ν = δωµ
ν (g, {x}n.m.). From (5.18)–(5.20)

it follows
ξµ
(g)(x) = δωµ

ν (g)xν , (5.22)

showing that δωµ
ν (g) is the tensor of the “rotation” parameters in SN . Let us

stress that (5.20)–(5.21), associating the global tensor δωµ
ν (g) (
= δωµ

ν (g, x))
to δxµ

(g)(x) (in general local), imply a reductive assumption on the possible



74 5. Generalized Minkowski Spaces and Killing Symmetries

Lie groups considered. Actually, as is easily seen, the introduction of δωµ
ν (g)

(independent of x) is possible only iff δxµ
(g)(x) is a linear and homogeneous

function of x. Of course, this imposes severe restrictions on the possible
types of Lie groups under consideration.

Indeed, let us stress that the transformation representation of the
M -order Lie group GL we considered above is not a group representation of
GL (in the usual meaning of the term). Indeed, although GL can be inter-
preted as a suitable transformation group acting on SN (with M 
= N
in general), such coordinate transformations are not necessarily linear.
Otherwise speaking, GL does not admit, in general, a N-order matrix rep-
resentation. In other words, its M infinitesimal generators T i (i = 1, ...,M)
cannot in general be represented by N×N matrices acting on SN . Although
(5.3) for g in terms of the generators

{

T i
}

can be linearized with respect
to the group parameters {αi} (by means of a “parametric MacLaurin deve-
lopment” in the neighborhood of the null M -vector of parameters), thus
getting the infinitesimal element δg (5.4), δgx is not necessarily linear in
x, due to the possible dependence of some of the T i’s on x.

Therefore, introducing the tensor δωµ
ν (g) amounts to consider only those

Lie groups admitting a N×N matrix representation on SN (corresponding
to linear and homogeneous coordinate transformations).

5.2.3 Maximal Killing Group of ˜MN

To our present aims, we have to impose two further conditions. First, we
assume that the Lie groups under consideration, in the related transfor-
mation representation, are Killing groups of SN (not necessarily maximal),
namely (from (5.17), (5.18), and (5.20)):

ξ(g)µ(x);ν + ξ(g)ν(x);µ = 0 ⇔ δx(g)µ(x);ν + δx(g)ν(x);µ = 0

⇔
[(

M
∑

i=1

αi(g)T i

)

x

]

µ;ν

+

[(

M
∑

i=1

αi(g)T i

)

x

]

ν;µ

= 0

⇔ (δωµρ(g)xρ);ν + (δωνρ(g)xρ);µ = 0

⇔
(

δω[µρ(g)xρ
)

;ν]
= 0 (5.23)

Last (5.23) can be derived from the first one on account of (5.22) and of

ξ(g)µ(x) = gµνξ
ν
(g)(x) = gµνδω

ν
ρ(g)xρ = δωµρ(g)xρ. (5.24)

Moreover, SN is assumed to be endowed with a global metric structure,
independent of x ∈ SN (but dependent, in general, on a set {x}n.m. of
nonmetric coordinates), i.e.,:

gµν({x}n.m.) 
= gµν(x). (5.25)
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This second requirement entails that in SN all components of the Riemann–
Christoffel tensor vanish (so that the covariant derivative reduces to the
ordinary derivative), and then it is a flat manifold. In other words, we
are assuming that SN is a N-dimensional generalized Minkowski space, as
defined in Sect. 5.1. Therefore, we shall henceforth use the notation ˜MN

instead of SN .
Notice that although, in general, δωµ

ν (g, {x}n.m.) does depend on possible
nonmetric variables, its completely covariant form does not, due to the
dependence of gµν on {x}n.m.:

δωµρ(g) = gµσ({x}n.m.)δω
σ
ρ (g, {x}n.m.) 
= δωµρ({x}n.m.). (5.26)

On the contrary, its completely contravariant form does depend on {x}n.m.:

δωµρ(g, {x}n.m.) = gµσ({x}n.m.)δω
ρ
σ(g, {x}n.m.). (5.27)

We can therefore state that, in a generalized Minkowski space, any form of
the N -tensor δω(g) is global (i.e., independent of all metric variables), but
its completely covariant expression is independent of possible nonmetric
variables, too. This independence is related to the fact that (as it will be
seen in the following: see (5.26)) δωαβ(g) is nothing but the antisymmet-
ric tensor of the space–time rotation parameters. Thus the dependence of
δωαβ on the physical theory concerned is reducible to its very dependence
on the element g of the space–time rotation group of the N -d generalized
Minkowski space under consideration. That is why, in the following, paren-
theses will be sometime used in the covariant components of δω (e.g., in
the form δωαβ,(DSR) (g) or δωcov.,(DSR) (g)).

In ˜MN , the following formulae hold ∀δg infinitesimal ∈ GL:

δg : ˜MN � x → x′({x}m. , {x}n.m.) = x+ x(g)({x}m. , {x}n.m.) ∈ ˜MN ;
(5.28)

δxµ
(g)(x, {x}n.m.) =

[(

M
∑

i=1

αi(g)T i({x}n.m.)

)

x

]µ

= δωµ
ν (g, {x}n.m.)x

ν = ξµ
(g)(x, {x}n.m.); (5.29)

ξ(g)µ(x),ν + ξ(g)ν(x),µ = 0, (5.30)

where “, µ” denotes ordinary derivation with respect to xµ. From (5.21)
and (5.27) it follows also:

ξ(g)µ(x),ν + ξ(g)ν(x),µ = 0
⇔ (δωµν(g)xρ),ν + (δωνρ(g)xρ),µ = 0. (5.31)

The last equation entails the antisymmetry of δωµν(g):

δωµν(g) + δωνµ(g) = 0, (5.32)
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which therefore has N(N − 1)/2 independent components (such a number,
as stressed earlier, is also equal to to the order M of GL, M = N(N−1)/2),
i.e., the (rotation) transformation group related to the tensor δωµν(g) is a
N(N − 1)/2-parameter Killing group.

Let us observe that a N -dimensional, generalized Minkowski space, being
(as noted earlier) a special case of a Riemann space with constant curvature,
admits a maximal Killing group with N(N + 1)/2 parameters. Since the
(rotation) transformation group related to the tensor δωµν(g) is a N(N −
1)/2-parameter Killing group, we have still to find another N -parameter
Killing group of ˜MN (because N +N(N − 1)/2 = N(N + 1)/2).

This is easily done by noting that the N(N + 1)/2 Killing equations in
such a space

ξµ(x),ν + ξν(x),µ = 0 ≡
∂ξµ(x)
∂xν

+
∂ξν(x)
∂xµ

= 0 (5.33)

are trivially satisfied by constant covariant N -vectors ξµ 
= ξµ(x), to which
there corresponds the infinitesimal transformation

δg : xµ → xµ′(x, {x}n.m.) = xµ + δxµ
(g)({x}n.m.) = xµ + ξµ

(g)({x}n.m.)
(5.34)

with δxµ
(g)({x}n.m.) , ξµ

(g)({x}n.m.) constant (with respect to xµ).

In conclusion, a N -d generalized Minkowski space ˜MN ({x}n.m.) admits a
maximal Killing group which is the (semidirect) product of the Lie group of
the N -dimensional space–time rotations (or N -d generalized, homogeneous
Lorentz group SO(T, S)N(N−1)/2

GEN. ) with N(N −1)/2 parameters, and of the
Lie group of the N -dimensional space–time translations Tr.(T, S)N

GEN. with
N parameters:

P (T, S)N(N+1)/2
GEN. = SO(T, S)N(N−1)/2

GEN. ⊗s Tr.(T, S)N
GEN. (5.35)

The semidirect nature of the group product is due to the fact that, as it
shall be explicitly derived (in the case N = 4, T = 1, S = 3 of DSR, without
loss of generality) in Chap. 7, in general we have that

∃ at least 1 (µ, ν, ρ) ∈ {1, 2, ..., N}3 :
: [Iµν

GEN.({x}n.m.), Υ
ρ
GEN.({x}n.m.)] 
= 0, ∀ {x}n.m. , (5.36)

where Iµν
GEN.({x}n.m.) and Υ ρ

GEN.({x}n.m.) are the infinitesimal genera-
tors of SO(T, S)N(N−1)/2

GEN. and Tr.(T, S)N
GEN., respectively. We will refer to

P (S, T )N(N+1)/2
GEN. as the generalized (or inhomogeneous Lorentz ) group .

5.2.4 Solution of Killing Equations in a 4D Generalized
Minkowski Space

We want now to solve the Killing equations in a 4D generalized Minkowski
space ˜M({x}n.m.) (S ≤ 4, T = 4−S). A covariant Killing four-vector ξµ(x)
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must satisfy (5.17), which explicitly amounts to the system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(I) ξ0(x),0 = 0;

(II) ξ0(x),1 + ξ1(x),0 = 0;

(III) ξ0(x),2 + ξ2(x),0 = 0;

(IV) ξ0(x),3 + ξ3(x),0 = 0;

(V) ξ1(x),1 = 0;

(VI) ξ1(x),2 + ξ2(x),1 = 0;

(VII) ξ1(x),3 + ξ3(x),1 = 0;

(VIII) ξ2(x),2 = 0;

(IX) ξ2(x),3 + ξ3(x),2 = 0;

(X) ξ3(x),3 = 0.

(5.37)

From equations (5.37) (I ,V,VII, and X) one gets:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ξ0 = ξ0(x1, x2, x3);
ξ1 = ξ1(x0, x2, x3);
ξ2 = ξ2(x0, x1, x3);
ξ3 = ξ3(x0, x1, x2).

(5.38)

Solving system (5.37) is cumbersome but straightforward [41]. The final
result is:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ0(x) = −ζ1x1 − ζ2x2 − ζ3x3 + T 0;

ξ1(x) = ζ1x0 + θ2x3 − θ3x2 − T 1;

ξ2(x) = ζ2x0 − θ1x3 + θ3x1 − T 2;

ξ3(x) = ζ3x0 + θ1x2 − θ2x1 − T 3,

(5.39)

where ζi, θi (i = 1, 2, 3) and Tµ (µ = 0, 1, 2, 3) are real coefficients.
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We can draw the following conclusions:

1. In spite of the fact that no assumption was made on the functional
form of the Killing vector, we got a dependence at most linear (inho-
mogeneous) on the metric coordinates for all components of ξµ(x).
Therefore, in order to determine the (maximal) Killing group of a
generalized Minkowski space,2 one can, without loss of generality,
consider only groups whose transformation representation is imple-
mented by transformations at most linear in the coordinates.

2. In general, ξµ 
= ξµ({x}n.m.), i.e., the covariant Killing vector does
not depend on possible nonmetric variables.3 On the contrary, the
contravariant Killing four-vector does indeed, due to the dependence
of the fully contravariant metric tensor on {x}n.m.:

ξµ(x, {x}n.m.) = gµν({x}n.m.)ξν(x). (5.40)

Such a result is consistent with the fact that δωµν(g), unlike
δωµ

ν (g, {x}n.m.), is independent of {x}n.m. (cf.(5.28),(5.29)).

3. Solution (5.39) does not depend on the metric tensor. This entails
that all 4D generalized Minkowski spaces admit the same covari-
ant Killing four-vector. It corresponds to the covariant four-vector of
infinitesimal transformation of the space–time rototranslational group
of ˜M({x}n.m.). Therefore, assuming the signature (+,−,−,−) (i.e.,
S = 3, T = 1), in a basis of “length-dimensional” coordinates, we can
state that:

(a) ζ = (ζ1, ζ2, ζ3) is the three-vector of the dimensionless parame-
ters (“rapidity”) of a generalized 3D boost

(b) θ = (θ1, θ2, θ3) is the three-vector of the dimensionless parame-
ters (angles) of a generalized 3D rotation

(c) Tµ = (T 0,−T 1,−T 2,−T 3) is the covariant four-vector of
the (“length-dimensional”) parameters of a generalized 4D
translation

2In fact, although we discussed explicitly the 4D case, the extension to the generic
N -d case is straightforward.

3Indeed

ξµ(g)(x) = gµν,DSR4({x}n.m.)ξ
ν
(g)(x, {x}n.m.)

= gµν,DSR4({x}n.m.)δων
ρ(g, {x}n.m.)x

ρ = δωµρ(g)xρ.



6
Infinitesimal Structure
of Generalized Space–Time
Rotation Groups

We shall now take advantage of the results derived in Chap. 5 on the Killing
vectors of generalized N -d Minkowski spaces in order to study in detail the
infinitesimal structure of their space–time rotation groups [41]. Needless to
say, special emphasis will be given to the 4D case, and in particular to the
deformed Minkowski space ˜M of DSR.

6.1 Finite-Dimensional Representation
of Infinitesimal Generators
and Generalized Lorentz Algebra

6.1.1 Generalized Lorentz Algebra

As in the standard special-relativistic case, we can decompose the mixed
N -tensor of infinitesimal transformation parameters δωµ

ν (g, {x}n.m.) (see
(5.21)) as:1

δωµ
ν (g, {x}n.m.) =

1
2
δωαβ(g)(Iαβ)µ

ν ({x}n.m.), (6.1)

i.e., as a linear combination of N(N − 1)/2 matrices (independent
of the group element g)

{

(Iαβ)µ
ν ({x}n.m.)

}

α,β=1...N
2 with coefficients

1The factor 1/2 is inserted only for further convenience.
2The pair of indices (α β ) labels the different infinitesimal group generators,

whereas – in the (N(<∞)-dimensional) matrix representation of the generators we are
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{δωαβ(g)}α,β=1...N . Such matrices represent the infinitesimal generators
of the space–time rotational component of the maximal Killing group of
˜MN ({x}n.m.). Since in this case δωµν(g) is antisymmetric (see (5.32)), the
basis matrices

{

(Iαβ)µ
ν

}

α,β=1...N
, too, are antisymmetric in indices α and β:

{

(Iαβ)µ
ν ({x}n.m.)

}

α,β=1...N
= −

{

(Iβα)µ
ν ({x}n.m.)

}

α,β=1...N
. (6.2)

For the fully covariant δωµν(g) the analogous decomposition reads

δωµν(g) = gµρ({x}n.m.)δω
ρ
ν(g, {x}n.m.)

=
1
2
δωαβ(g)gµρ({x}n.m.)(I

αβ)ρ
ν({x}n.m.)

=
1
2
δωαβ(g)(Iαβ)µν({x}n.m.). (6.3)

But, since δωµν(g) is independent of {x}n.m., the same holds for its com-
ponents δωαβ(g), and therefore (6.3) implies

(Iαβ)µν 
= (Iαβ)µν({x}n.m.). (6.4)

In order to find the explicit form of the infinitesimal generators in the
N -d matrix representation, let us exploit the antisymmetry of δωµν(g):

δωµν(g) = −δωνµ(g) ⇔ δωµν(g)

=
1
2
(δωµν + δωµν) =

1
2
(δωµν − δωνµ)

=
1
2
gα

µg
β
ν δωαβ − 1

2
gβ

µg
α
ν δωαβ =

1
2
δωαβ(gα

µg
β
ν − gβ

µg
α
ν )

=
1
2
δωαβ(g)(δα

µδ
β
ν − δβ

µδ
α
ν ). (6.5)

Comparing (6.3) and (6.5) yields:3

gµρ({x}n.m.)(I
αβ)ρ

ν({x}n.m.) ≡ (Iαβ)µν = (δα
µδ

β
ν − δβ

µδ
α
ν ). (6.6)

considering – the controvariant (covariant) index is a row (column) index. This latter
remark holds true for δωµ

ν (g, {x}n.m.), too.
3Equation (6.6) shows clearly that the factors with a nonmetric dependence in

gµρ({x}n.m.) and (Iαβ)ρ
ν({x}n.m.) cancel each other (cf. (6.4)). The same does not hap-

pen when both µ and ν are contravariant:

(Iαβ)µν ≡ gµρ({x}n.m.)g
νσ({x}n.m.)(I

αβ)ρσ

= gµρ({x}n.m.)g
νσ({x}n.m.)(δ

α
ρ δβ

σ − δβ
ρ δα

σ )

= gµα({x}n.m.)g
νβ({x}n.m.) − gµβ({x}n.m.)g

να({x}n.m.).
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We get therefore the following explicit form for the mixed matrix represen-
tation of the generators:4

(Iαβ)µ
ν ({x}n.m.) = gµρ({x}n.m.)(I

αβ)ρν

= gµρ({x}n.m.)(δ
α
ρδ

β
ν − δβ

ρδ
α
ν )

= gµα({x}n.m.)δ
β
ν − gµβ({x}n.m.)δ

α
ν . (6.7)

Let us now find out the Lie algebra of the generators
{

(Iαβ)µ
ν ({x}n.m.)

}

α,β=1...N
, with product defined by the commutator

[, ]. Since such an algebra is independent of the representation, we can
evaluate such a commutator for their matrix representation (6.7). One
has, for the generators (αβ) and (ρσ)

(

IαβIρσ
)µ

ν
=
(

Iαβ
)µ

χ
(Iρσ)χ

ν (6.8)

and therefore

[Iαβ , Iρσ]µν =
(

IαβIρσ − IρσIαβ
)µ

ν

=
(

IαβIρσ
)µ

ν
−
(

IρσIαβ
)µ

ν

=
(

Iαβ
)µ

χ
(Iρσ)χ

ν − (Iρσ)µ
χ

(

Iαβ
)χ

ν

=
(

gµαδβ
χ − gµβδα

χ

)

(gχρδσ
ν − gχσδρ

ν)

−
(

gµρδσ
χ − gµσδρ

χ

) (

gχαδβ
ν − gχβδα

ν

)

=
(

gµαδβ
χgχρδσ

ν − gµαδβ
χgχσδρ

ν − gµβδα
χgχρδσ

ν + gµβδα
χgχσδρ

ν

)

−
(

gµρδσ
χgχαδβ

ν − gµρδσ
χgχβδα

ν − gµσδρ
χgχαδβ

ν + gµσδρ
χgχβδα

ν

)

=
(

gµαgβρδσ
ν − gµαgβσδρ

ν − gµβgαρδσ
ν + gµβgασδρ

ν

)

−
(

gµρgσαδβ
ν − gµρgσβδα

ν − gµσgραδβ
ν + gµσgρβδα

ν

)

= gασ
(

gβµδρ
ν − gρµδβ

ν

)

+ gβρ (gαµδσ
ν − gσµδα

ν )

−gαρ
(

gβµδσ
ν − gσµδβ

ν

)

− gβσ (gαµδρ
ν − gρµδα

ν )

= gασ
(

Iβρ
)µ

ν
+ gβρ (Iασ)µ

ν − gαρ
(

Iβσ
)µ

ν
− gβσ (Iαρ)µ

ν ,

(6.9)

4We have analogously

(Iαβ)ν
µ({x}n.m.) = gνρ({x}n.m.)(I

αβ)µρ

= gνρ({x}n.m.)(δ
α
µδβ

ρ − δβ
µδα

ρ )

= gνβ({x}n.m.)δ
α
µ − gνα({x}n.m.)δ

β
µ.
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namely

[Iαβ({x}n.m.), I
ρσ({x}n.m.)]

µ
ν

= gασ({x}n.m.)
(

Iβρ
)µ

ν
({x}n.m.) + gβρ({x}n.m.) (Iασ)µ

ν ({x}n.m.)

−gαρ({x}n.m.)
(

Iβσ
)µ

ν
({x}n.m.) − gβσ({x}n.m.) (Iαρ)µ

ν ({x}n.m.).
(6.10)

By omitting row and column indices, we get eventually

[Iαβ({x}n.m.), I
ρσ({x}n.m.)]

= gασ({x}n.m.)I
βρ({x}n.m.) + gβρ({x}n.m.)I

ασ({x}n.m.)
−gαρ({x}n.m.)I

βσ({x}n.m.) − gβσ({x}n.m.)I
αρ({x}n.m.). (6.11)

Equation (6.11) defines the generalized Lorentz algebra, associated to
the generalized, homogeneous Lorentz group SO(T, S)N(N−1)/2

GEN. of the N -
dimensional generalized Minkowski space ˜MN ({x}n.m.).

6.1.2 Dependence of the Transformation Commutativity
on the Parametric Level

Infinitesimal transformations do commute in ˜MN ({x}n.m.). In fact, let us
consider a generic product of infinitesimal coordinate transformations of
SO(T = N − S, S)GEN., expressed in terms of δωαβ(g) and Iαβ (Greek
indices have a cardinality N , denoted by {[N ]}) (ESC off on α and β):5

xµ′
(g) =

⎧

⎨

⎩

∏

α,β∈{[N ]},α>β

[

1 + δωαβ(g)Iαβ({x}n.m.

]

⎫

⎬

⎭

µ

ν

xν . (6.12)

By neglecting terms of order ≥ 2 in the parametric tensor, one gets (ESC
on):

xµ′
(g)

∼=
[

1 + δωαβ(g)Iαβ({x}n.m.)
]µ

ν
xν

=
[

δµ
ν + δωαβ(g)

(

Iαβ
)µ

ν
({x}n.m.)

]

xν

= xµ + δωαβ(g)
(

Iαβ
)µ

ν
({x}n.m.)x

ν . (6.13)

Equation (6.13) contains a matrix sum of generators, which entails com-
mutativity of the infinitesimal transformations.

5The generator product in (6.12) is to be meant as that defined on the Lie group
considered. In particular, in the N -dimensional matrix representation, it coincides with
the usual product of square matrices.
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The earlier properties hold for any Lie group GL in the transformation
representation, and for the related space SN . Indeed, let us consider the
product of infinitesimal transformations (see (5.17)–(5.20))

xµ′
(g) =

((

M
∏

i=1

(

1 + αi(g)T i
)

)

x

)µ

, (6.14)

where x is a contravariant N -vector of SN . Although GL does not admit,
in general, a matrix representation on ˜MN ({x}n.m.), it is still possible to
neglect terms of order � 2 in the infinitesimal transformation parameters
and write

xµ′
(g) =

[(

1 +
N
∑

i=1

αi(g)T i

)

x

]µ

= x+

[(

N
∑

i=1

αi(g)T i

)

x

]µ

= xµ +

[(

N
∑

i=1

αi(g)T i

)

x

]µ

= xµ +
N
∑

i=1

αi(g)
(

T ix
)µ
, (6.15)

which entails again that infinitesimal transformations do commute.
The nontrivial nature of the algebraic structure of the Lie groups (not

necessarily abelian) reveals itself at the finite level of their realization.
Indeed, in the transformation representation, we have, by the P.B.W. and
Lie theorems (cf. (5.2)):

SN � gx =

[

exp

(

M
∑

i=1

αi(g)T i

)]

x. (6.16)

Consider two arbitrary finite elements g′, g′′ ∈ GL such that

{

αi(g′) = δii′αi′(g′);

αi(g′′) = δii′′αi′′(g′′),
(6.17)

and their products (where ◦ denotes the product in GL)

g′ ◦ g′′ = g̃ ∈ GL (6.18)

g′′ ◦ g′ = ˜g̃ ∈ GL (6.19)

(with g̃ 
= ˜g̃, because ◦ is in general non-abelian). The finite coordinate
transformations associated to g̃ and ˜g̃ are, respectively, (ESC off):

SN � g̃x =
[

exp
(

αi′(g)T i′
)

exp
(

αi′′(g)T i′′
)]

x; (6.20)

SN � ˜g̃x =
[

exp
(

αi′′(g)T i′′
)

exp
(

αi′(g)T i′
)]

x. (6.21)
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The condition to be satisfied in order to have g̃x = ˜g̃x is

g̃x = ˜g̃x ⇔ exp
(

αi′(g)T i′
)

exp
(

αi′′(g)T i′′
)

�= exp
(

αi′(g)T i′ + αi′′(g)T i′′
)

= exp
(

αi′′(g)T i′′ + αi′(g)T i′
)

�= exp
(

αi′′(g)T i′′
)

exp
(

αi′(g)T i′
)

. (6.22)

Exploiting the Baker–Campbell–Hausdorff (BCH) formula , we get

exp
(

αi′(g)T i′
)

exp
(

αi′′(g)T i′′
)

= expαi′(g)T i′ + αi′′(g)T i′′

⇔ 0 = [αi′(g)T i′ , αi′′(g)T i′′ ] = αi′(g)αi′′(g)[T i′ , T i′′ ] ⇔ [T i′ , T i′′ ] = 0,
(6.23)

namely the equalities of (6.22) marked with “�” do hold iff the commu-
tator of T i′ and T i′′ vanish for any pair of generators, which is not true in
general due to the non-abelian nature of GL. This implies that finite coordi-
nate transformations in the transformation representation of a non-abelian
Lie group do not commute.

The results of the present section apply in particular to the Killing groups
of the generalized N -dimensional Minkowski spaces ˜MN ({x}n.m.), i.e., to
the generalized Poincaré groups P (T = N−S, S)N(N+1)/2.

GEN. and their space–
time rotation components (namely the generalized homogeneous Lorentz
groups SO(T = N − S, S)N(N−1)/2

GEN. ).
Let us notice that the (parametric) dependence of the metric of a general-

ized Minkowski space on the set {x}n.m. of nonmetrical coordinates reflects
itself also at the group level. In particular, such a dependence shows up in:

1. The N ×N matrix representation of the infinitesimal generators

2. The infinitesimal group transformations

3. The structure constants of the Lie algebra of generators

Moreover, since to any fixed value {x̄}n.m. of {x}n.m. there corresponds
a generalized Minkowski space ˜MN ({x̄}n.m.), we have a family of N -d gen-
eralized Minkowski spaces

{

˜MN ({x}n.m.)
}

{x}n.m.∈R{x}n.m.

, (6.24)

where R{x}n.m.
is the range of the set {x}n.m.; if the cardinality of the range

of each element of the set {x}n.m. is infinite, the cardinality of R{x}n.m.



6.2 The Case of a 4D Generalized Minkowski Space 85

(and of the family (6.24)) is ∞Nn.m. . In correspondence, one gets a family
of generalized Poincaré groups

{

P (T, S)N(N+1)/2
GEN. ({x}n.m.)

}

{x}n.m.∈R{x}n.m.

(6.25)

with the same cardinality structure as (6.24).
This can be symbolically summarized as:

(Hyper)spatial level of N-d generalized Minkowski spaces:

1)
{

˜MN ({x}n.m.)
}

{x}n.m.∈R{x}n.m.

2)˜MN ({x}n.m.) ≡˜MN ({x̄}n.m.)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

⇔

⇔

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Group level of related maximal Killing groups:

1)
{

P (T, S)
N(N+1)/2
GEN. ({x}n.m.)

}

{x}n.m.∈R{x}n.m.

=

=
{

SO(T, S)
N(N−1)/2
GEN. ({x}n.m.) ⊗s Tr.(T, S)N

GEN.({x}n.m.)
}

{x}n.m.∈R{x}n.m.

2) P (T, S)
N(N+1)/2
GEN. ({x}n.m.) ≡ P (T, S)

N(N+1)/2
GEN. ({x̄}n.m.)

(6.26)

6.2 The Case of a 4D Generalized Minkowski Space

6.2.1 Self-Representation of the Infinitesimal Generators

Let us specialize the results of Sect. 6.1.2 to a 4D generalized Minkowski
space. Assuming therefore that Greek indices take the values {0, 1, 2, 3},
and a signature (S � 4.T = 4 − S), we can write explicitly the generator
(αβ) of SO(T = 4 − S, S)GEN as the antisymmetric matrix:

Iαβ({x}n.m.)

=

⎛

⎜

⎜

⎝

0 I01({x}n.m.) I02({x}n.m.) I03({x}n.m.)
−I01({x}n.m.) 0 I12({x}n.m.) I13({x}n.m.)
−I02({x}n.m.) −I12({x}n.m.) 0 I23({x}n.m.)
−I03({x}n.m.) −I13({x}n.m.) −I23({x}n.m.) 0

⎞

⎟

⎟

⎠

.

(6.27)
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Like any rank-2, antisymmetric 4-tensor, Iαβ({x}n.m.) can be expressed
in terms of an axial and a polar three-vector. By introducing the following
infinitesimal generators (i, j, k = 1, 2, 3, ESC on throughout)

Si({x}n.m.) ≡ 1
2
εijkI

jk({x}n.m.); (6.28)

Ki({x}n.m.) ≡ I0i({x}n.m.), (6.29)

(where εijk is the rank-3, fully antisymmetric Levi-Civita 3-tensor with
ε123 ≡ 1), components of the axial three-vector

S({x}n.m.) ≡ (I23({x}n.m.), I
31({x}n.m.), I

12({x}n.m.)) (6.30)

and of the polar one

K({x}n.m.) ≡ (I01({x}n.m.), I
02({x}n.m.), I

03({x}n.m.)). (6.31)

Iαβ({x}n.m.) can be rewritten as:

Iαβ({x}n.m.)

=

⎛

⎜

⎜

⎝

0 K1({x}n.m.) K2({x}n.m.) K3({x}n.m.)
−K1({x}n.m.) 0 S3({x}n.m.) −S2({x}n.m.)
−K2({x}n.m.) −S3({x}n.m.) 0 S1({x}n.m.)
−K3({x}n.m.) S2({x}n.m.) −S1({x}n.m.) 0

⎞

⎟

⎟

⎠

.

(6.32)

The set of generators S({x}n.m.), K({x}n.m.) constitutes the self-
representation basis for SO(T = 4 − S, S)GEN.. Unlike the case of stan-
dard SR – where S, K do represent the rotation and boost generators,
respectively – one cannot give them a precise physical meaning, because
this latter depends on both the number S of space-like dimensions and the
assignment of dimensional labeling (we left here unspecified).

6.2.2 Decomposition of the Parametric 4-Tensor δωµν(g)

We can now exploit the self-representation form of the infinitesimal gen-
erators of SO(T = 4 − S, S)GEN. (S ≤ 4) to decompose the infinitesimal
parametric 4-tensor δωµν(g).

Equation (5.29), on account of (6.3), can be written as:

δxµ
(g)(x, {x}n.m.) = δωµ

ν (g, {x}n.m.)x
ν

=
1
2
δωαβ(g)(Iαβ)µ

ν ({x}n.m.)x
ν , (6.33)

which is valid in the general case of SO(T = N − S, S)GEN..
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In the case N = 4 , we have by (6.32):

δxµ
(g)

(x, {x}n.m.) = δωµ
ν (g, {x}n.m.)x

ν =
1

2
δωαβ(g)(Iαβ)µν ({x}n.m.)x

ν

=
1

2
δωij(g)(Iij)µν ({x}n.m.)x

ν + δω0i(g)(I0i)µν ({x}n.m.)x
ν

=
1

2
δωij(g)(Iij)µν ({x}n.m.)x

ν + δω0i(g)(Ki)µν ({x}n.m.)x
ν .

(6.34)

Moreover, from (6.28) it follows:6

Si({x}n.m.) ≡
1
2
εijkI

jk({x}n.m.) ⇔ Ijk({x}n.m.) = εjk
lS

l({x}n.m.).

(6.35)
Replacing (6.35) in (6.34) one has:

δxµ
(g)(x, {x}n.m.) =

1

2
δωij(g)(Iij)µ

ν ({x}n.m.)x
ν + δω0i(g)(Ki)µ

ν ({x}n.m.)x
ν

=
1

2
δωij(g)(εij

lS
l({x}n.m.))

µ
ν xν + δω0i(g)(Ki)µ

ν ({x}n.m.)x
ν

=
1

2
εij

lδωij(g)(Sl)µ
ν ({x}n.m.)x

ν + δω0i(g)(Ki)µ
ν ({x}n.m.)x

ν

(6.36)

(where in the last step the change of notation (εijlS
l({x}n.m.))

µ
ν =

εijl(S
l)µ

ν ({x}n.m.) has been made).
We can now define an axial and a polar parametric three-vector by

θi(g) ≡ −1
2
ε jk
i δωjk(g); (6.37)

ζi(g) ≡ −δω0i(g), (6.38)

namely
θ(g) ≡ (−δω23(g),−δω31(g),−δω12(g)); (6.39)

ζ(g) ≡ (−δω01(g),−δω02(g),−δω03(g)). (6.40)

6One has indeed

Si({x}n.m.) ≡ 1

2
εi
jkIjk({x}n.m.)

=
1

2
εi
jkεjk

l
Sl({x}n.m.) = δi

lS
l({x}n.m.) = Si({x}n.m.),

where use has been made of the formula

εijkεk
lm = δilδjm − δimδjl,

whence
εi
jkεjk

l
= εi

jkεjk
l

= δi
lδ

j
j − δi

jδj
l

= 3δi
l − δi

l = 2δi
l .
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Therefore, δωαβ(g) can be written in matrix form as:

δωαβ(g) =

⎛

⎜

⎜

⎝

0 −ζ1(g) −ζ2(g) −ζ3(g)
ζ1(g) 0 −θ3(g) θ2(g)
ζ2(g) θ3(g) 0 −θ1(g)
ζ3(g) −θ2(g) θ1(g) 0

⎞

⎟

⎟

⎠

. (6.41)

Having left the number S of space-like dimensions and the dimensional
labeling unspecified, we cannot attribute a physical meaning to the para-
metric three-vectors (6.37)–(6.40) (unlike the case of standard SR, where
θ(g) and ζ(g) are the space rotation and boost parameters, respectively).

Equation (6.36) can be rewritten in terms of the 3D Euclidean scalar
product · as:

δxµ
(g)(x, {x}n.m.) = −θl(g)(Sl)µ

ν ({x}n.m.)x
ν − ζi(g)(K

i)µ
ν {x}n.m.)x

ν

=
[

−θl(g)Sl({x}n.m.) − ζi(g)K
i({x}n.m.)

]µ

ν
xν

= [−θ(g) · S({x}n.m.) − ζ(g) · K({x}n.m.)]
µ
ν
xν .

(6.42)

Let us stress that with the signature S=3, T=1, in the limit

gµν({x}n.m.) → gµν,SR, (6.43)

all results valid at group-transformation level in a 4D generalized
Minkowski space reduce to the standard ones in SR.

6.3 Space–Time Rotations in a 4D Deformed
Minkowski Space

6.3.1 Deformed Lorentz Group and Self-Representation Basis
of Infinitesimal Generators

We want now to specialize the results obtained to the case of DSR, i.e.,
considering a 4D deformed Minkowski space ˜M(x5).

Let us recall that the N -dimensional representation of the infinitesimal
generators of the Killing group in a N -d generalized Minkowski space is
determined (by means of (6.7)) by the mere knowledge of its metric tensor.
In the DSR case we have therefore

(Iαβ)µ
ν,DSR(x5) = gµρ

DSR(x5)(Iαβ)ρν,DSR

= gµρ
DSR(x5)(δα

ρδ
β
ν − δβ

ρδ
α
ν ) = gµα

DSR(x5)δβ
ν − gµβ

DSR(x5)δα
ν

ESC off= δµα
(

b−2
0 (x5)δµ0 − b−2

1 (x5)δµ1 − b−2
2 (x5)δµ2 − b−2

3 (x5)δµ3
)

δβ
ν

−δµβ
(

b−2
0 (x5)δµ0 − b−2

1 (x5)δµ1 − b−2
2 (x5)δµ2 − b−2

3 (x5)δµ3
)

δα
ν .

(6.44)
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From (6.44) we get the following 4 × 4 matrix representation of the
infinitesimal generator of the deformed homogeneous Lorentz group
SO(1, 3)DEF. (space–time rotation component of the deformed Poincaré
group P (1, 3)DEF.):

I10
DSR(x5) =

⎛

⎜

⎜

⎝

0 −b−2
0 (x5) 0 0

−b−2
1 (x5) 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

; (6.45)

I20
DSR(x5) =

⎛

⎜

⎜

⎝

0 0 −b−2
0 (x5) 0

0 0 0 0
−b−2

2 (x5) 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

; (6.46)

I30
DSR(x5) =

⎛

⎜

⎜

⎝

0 0 0 −b−2
0 (x5)

0 0 0 0
0 0 0 0

−b−2
3 (x5) 0 0 0

⎞

⎟

⎟

⎠

; (6.47)

I12
DSR(x5) =

⎛

⎜

⎜

⎝

0 0 0 0
0 0 −b−2

1 (x5) 0
0 b−2

2 (x5) 0 0
0 0 0 0

⎞

⎟

⎟

⎠

; (6.48)

I23
DSR(x5) =

⎛

⎜

⎜

⎝

0 0 0 0
0 0 0 0
0 0 0 −b−2

2 (x5)
0 0 b−2

3 (x5) 0

⎞

⎟

⎟

⎠

; (6.49)

I31
DSR(x5) =

⎛

⎜

⎜

⎝

0 0 0 0
0 0 0 b−2

1 (x5)
0 0 0 0
0 −b−2

3 (x5) 0 0

⎞

⎟

⎟

⎠

. (6.50)

Comparing (6.45)–(6.50) with the 4D matrix representation of the infin-
itesimal generators of the standard homogeneous Lorentz group SO(1, 3)
shows that deforming the metric structure implies the loss of symmetry of
the boost generators and of antisymmetry of space-rotation generators.

The antisymmetry of the generators in the labeling indices (αβ) still
holds:
{

(Iαβ)µ
ν,DSR(x5)

}

α,β=0,1,2,3
= −

{

(Iβα)µ
ν,DSR(x5)

}

α,β=0,1,2,3
(6.51)

or
Iαβ
DSR(x5) = −Iβα

DSR(x5) (α, β = 0, 1, 2, 3). (6.52)
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Therefore, there are only six independent generators. In matrix form:

Iαβ
DSR(x5) =

⎛

⎜

⎜

⎜

⎜

⎝

0 I01
DSR(x5) I02

DSR(x5) I03
DSR(x5)

−I01
DSR(x5) 0 I12

DSR(x5) I13
DSR(x5)

−I02
DSR(x5) −I12

DSR(x5) 0 I23
DSR(x5)

−I03
DSR(x5) −I13

DSR(x5) −I23
DSR(x5) 0

⎞

⎟

⎟

⎟

⎟

⎠

(6.53)

We can now pass to the self-representation basis of the generators of
SO(1, 3)DEF. by introducing the following axial and polar three-vectors by
means of the Levi-Civita tensor

Si
DSR(x5) ≡ 1

2
εijkI

jk
DSR(x5); (6.54)

Ki
DSR(x5) ≡ I0i

DSR(x5), (6.55)

or

SDSR(x5) ≡ (I23
DSR(x5), I31

DSR(x5), I12
DSR(x5)) ; (6.56)

KDSR(x5) ≡ (I01
DSR(x5), I02

DSR(x5), I03
DSR(x5)). (6.57)

Then, Iαβ
DSR(x5) can be written as:

Iαβ
DSR(x5) =

⎛

⎜

⎜

⎜

⎜

⎝

0 K1
DSR(x5) K2

DSR(x5) K3
DSR(x5)

−K1
DSR(x5) 0 S3

DSR(x5) −S2
DSR(x5)

−K2
DSR(x5) −S3

DSR(x5) 0 S1
DSR(x5)

−K3
DSR(x5) S2

DSR(x5) −S1
DSR(x5) 0

⎞

⎟

⎟

⎟

⎟

⎠

.

(6.58)

In DSR, like in the SR case, we can identify (apart from a sign) Si
DSR(x5)

with the infinitesimal generator of the deformed 3D space rotation around
̂xi, and Ki

DSR(x5) with the infinitesimal generator of the deformed Lorentz
boost with motion direction along ̂xi.

6.3.2 Decomposition of the Parametric 4-Tensor in DSR

We can now specialize (6.1) (expressing the infinitesimal variation of the
contravariant four-vector xµ in the self-representation) to the DSR case,
getting (ESC on):

δxµ
(g),DSR(x, x5) = δωµ

ν,DSR(g, x5)xν =
1
2
δωαβ,(DSR)(g)(Iαβ)µ

ν,DSR(x5)xν

=
1
2
εijl δωij,(DSR)(g)(Sl)µ

ν,DSR(x5)xν

+δω0i,(DSR)(g)(Ki)µ
ν,DSR(x5)xν .

(6.59)
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It follows from (6.54):7

Si
DSR(x5) ≡ 1

2
εijkI

jk
DSR(x5) ⇔ Ijk

DSR(x5) = εjk
lS

l
DSR(x5). (6.60)

Replacing (6.60) in (6.59) we get:

δxµ
(g),DSR

(x, x5) =
1

2
δωij(g)(Iij)µν,DSR(x5)xν + δω0i(g)(Ki)µν,DSR(x5)xν

=
1

2
δωij(g)(εij

lS
l
DSR(x5))µν xν + δω0i(g)(Ki)µν,DSR(x5)xν

(εij
l
Sl

DSR(x5))µ
ν =εij

l
(Sl

DSR)µ
ν (x5)

=
1

2
εij

lδωij(g)(Sl
DSR)µν (x5)xν + δω0i(g)(Ki)µν,DSR(x5)xν

=
1

2
ε ij

l δωij(g)(Sl)µν,DSR(x5)xν + δω0i(g)(Ki)µν,DSR(x5)xν .

(6.61)

Therefore, the DSR parametric 4-tensor δωαβ(g) can be written in the form
(6.41)

δωαβ(g) =

⎛

⎜

⎜

⎜

⎝

0 −ζ1(g) −ζ2(g) −ζ3(g)
ζ1(g) 0 −θ3(g) θ2(g)
ζ2(g) θ3(g) 0 −θ1(g)
ζ3(g) −θ2(g) θ1(g) 0

⎞

⎟

⎟

⎟

⎠

, (6.62)

where the axial three-vector θ(g) and the polar three-vector ζ(g) are still
defined by

θ(g) = (θi(g)) ≡
(

−1
2
ε jk
i δωjk(g)

)

= (−δω23(g),−δω31(g),−δω12(g)); (6.63)

7In fact one gets, from (5.54) and (6.60):

Si
DSR(x5) ≡ 1

2
εi

jkIjk
DSR(x5)

=
1

2
εi

jkεjk
l
Sl

DSR(x5) = δi
lS

l
DSR(x5) = Si

DSR(x5),

on account of the relations

εijkε k
lm = δilδjm − δimδjl

εi
jkεjk

l
= εi

jkε jk
l

= δi
lδ

j
j − δi

jδj
l

= 3δi
l − δi

l = 2δi
l .
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ζ(g) = ζi(g) ≡ (−δω0i(g))

= (−δω01(g),−δω02(g),−δω03(g)), (6.64)

(cf. (6.37)–(6.40)), but now they correspond to a true deformed rotation
and to a deformed boost, respectively, as in the standard SR case.

6.3.3 Infinitesimal Transformations of the 4D Deformed
Lorentz Group

We can utilize the results of the previous two sections to write (6.42) as:

δxµ
(g),DSR(x, x5) = −θl(g)(Sl)µ

ν,DSR(x5)xν − ζi(g)(K
i)µ

ν,DSR(x5)xν

=
(

−θ(g) · SDSR(x5) − ζ(g) · KDSR(x5)
)µ

ν
xν . (6.65)

Therefore, the infinitesimal space–time rotation transformation in the
deformed Minkowski space ˜M(x5) corresponding to the element g of
SO(1, 3)DEF., can be expressed as:

δg : xµ → xµ′
(g)(x

5) = xµ + δxµ
(g),DSR(x, x5)

= (1 − θ1(g)S1
DSR(x5) − θ2(g)S2

DSR(x5)

−θ3(g)S3
DSR(x5) − ζ1(g)K

1
DSR(x5)

−ζ2(g)K
2
DSR(x5) − ζ3(g)K

3
DSR(x5))µ

νx
ν ,

(6.66)

where 1 is the identity of SO(1, 3)DEF..8

Then, on account of the physical meaning of the 3D parameter and gen-
erator vectors, θ(g), ζ(g), and SDSR(x5), KDSR(x5), we can get, from the
matrix representation of the SO(1, 3)DEF. generators, the explicit expres-
sions of all the different kinds of infinitesimal transformations of the
deformed Lorentz group, namely:

1. 3D deformed space (true) rotations (parameters θ(g) and generators
SDSR(x5)), which constitute the group SO(3)DEF. of rotations in a
deformed 3D space, non-abelian, noninvariant proper subgroup of
SO(1, 3)DEF.:

– (Clockwise) infinitesimal rotation by an angle θ1(g) around ̂x1:

8Corresponding to the origin of the deformed Lorentz algebra su(2)DEF. ⊗su(2)DEF.

(see Sect. 6.3.4).
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xµ′
(g)(x

5) = (1 − θ1(g)S1
DSR)µ

ν (x5)xν

⇔

⎛

⎜

⎜

⎜

⎝

x0′
(g),DSR(x5)

x1′
(g),DSR(x5)

x2′
(g),DSR(x5)

x3′
(g),DSR(x5)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1 0 0 0

0 1 0 0

0 0 1 θ1(g)b−2
2 (x5)

0 0 −θ1(g)b−2
3 (x5) 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

x0

x1

x2 + θ1(g)b−2
2 (x5)x3

−θ1(g)b−2
3 (x5)x2 + x3

⎞

⎟

⎟

⎟

⎠

; (6.67)

– (Clockwise) infinitesimal rotation by an angle θ2(g) around ̂x2 :

xµ′
(g)(x

5) = (1 − θ2(g)S2
DSR)µ

ν (x5)xν

⇔

⎛

⎜

⎜

⎜

⎝

x0′
(g),DSR(x5)

x1′
(g),DSR(x5)

x2′
(g),DSR(x5)

x3′
(g),DSR(x5)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1 0 0 0

0 1 0 −θ2(g)b−2
1 (x5)

0 0 1 0

0 θ2(g)b−2
3 (x5) 0 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

x0

x1 − θ2(g)b−2
1 (x5)x3

x2

θ2(g)b−2
3 (x5)x1 + x3

⎞

⎟

⎟

⎟

⎠

; (6.68)

– (Clockwise) infinitesimal rotation by an angle θ3(g) around ̂x3:

xµ′
(g)(x

5) = (1 − θ3(g)S3
DSR)µ

ν (x5)xν

⇔

⎛

⎜

⎜

⎜

⎝

x0′
(g),DSR(x5)

x1′
(g),DSR(x5)

x2′
(g),DSR(x5)

x3′
(g),DSR(x5)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1 0 0 0

0 1 θ3(g)b−2
1 (x5) 0

0 −θ3(g)b−2
2 (x5) 1 0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

x0

x1 + θ3(g)b−2
1 (x5)x2

−θ3(g)b−2
2 (x5)x1 + x2

x3

⎞

⎟

⎟

⎟

⎠

. (6.69)

2. 3D deformed space–time (pseudo) rotations, or deformed Lorentz
boosts (parameters ζ(g) and generators KDSR(x5)); they do not form
a group:
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– Infinitesimal boost with rapidity ζ1(g) along ̂x1:

xµ′
(g)(x

5) = (1 − ζ1(g)K1
DSR)µ

ν (x5)xν

⇔

⎛

⎜

⎜

⎜

⎝

x0′
(g),DSR(x5)

x1′
(g),DSR(x5)

x2′
(g),DSR(x5)

x3′
(g),DSR(x5)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1 −ζ1(g)b−2
0 (x5) 0 0

−ζ1(g)b−2
1 (x5) 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

x0 − ζ1(g)b−2
0 (x5)x1

−ζ1(g)b−2
1 (x5)x0 + x1

x2

x3

⎞

⎟

⎟

⎟

⎠

; (6.70)

– Infinitesimal boost with rapidity ζ2(g) along ̂x2:

xµ′
(g)(x

5) = (1 − ζ2(g)K2
DSR)µ

ν (x5)xν

⇔

⎛

⎜

⎜

⎜

⎝

x0′
(g),DSR(x5)

x1′
(g),DSR(x5)

x2′
(g),DSR(x5)

x3′
(g),DSR(x5)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1 0 −ζ2(g)b−2
0 (x5) 0

0 1 0 0

−ζ2(g)b−2
2 (x5) 0 1 0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

x0 − ζ2(g)b−2
0 (x5)x2

x1

−ζ2(g)b−2
2 (x5)x0 + x2

x3

⎞

⎟

⎟

⎟

⎠

; (6.71)

– Infinitesimal boost with rapidity ζ3(g) along ̂x3:

xµ′
(g)(x

5) = (1 − ζ3(g)K3
DSR)µ

ν (x5)xν ⇔

⇔

⎛

⎜

⎜

⎜

⎝

x0′
(g),DSR(x5)

x1′
(g),DSR(x5)

x2′
(g),DSR(x5)

x3′
(g),DSR(x5)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1 0 0 −ζ3(g)b−2
0 (x5)

0 1 0 0

0 0 1 0

−ζ3(g)b−2
3 (x5) 0 0 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

x0 − ζ3(g)b−2
0 (x5)x3

x1

x2

−ζ3(g)b−2
3 (x5)x0 + x3

⎞

⎟

⎟

⎟

⎠

. (6.72)

The explicit form of the infinitesimal contravariant four-vector
δxµ

(g),DSR(x, x5), corresponding to an element g ∈ SO(1, 3)DEF., is therefore
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⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

δx0
(g),DSR(x, x5) = −ζ1(g)b

−2
0 (x5)x1 − ζ2(g)b

−2
0 (x5)x2 − ζ3(g)b

−2
0 (x5)x3

= b−2
0 (x5)(−ζ1(g)x1 − ζ2(g)x2 − ζ3(g)x3);

δx1
(g),DSR(x, x5) = −ζ1(g)b

−2
1 (x5)x0 + θ3(g)b−2

1 (x5)x2 − θ2(g)b−2
1 (x5)x3

= −b−2
1 (x5)(ζ1(g)x0 − θ3(g)x2 + θ2(g)x3);

δx2
(g),DSR(x, x5) = −ζ2(g)b

−2
2 (x5)x0 − θ3(g)b−2

2 (x5)x1 + θ1(g)b−2
2 (x5)x3

= −b−2
2 (x5)(ζ2(g)x0 + θ3(g)x1 − θ1(g)x3);

δx3
(g),DSR(x, x5) = −ζ3(g)b

−2
3 (x5)x0 + θ2(g)b−2

3 (x5)x1 − θ1(g)b−2
3 (x5)x2

= −b−2
3 (x5)(ζ3(g)x0 − θ2(g)x1 + θ1(g)x2).

(6.73)
The covariant components of such a four-vector are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

δx0(g),DSR(x) = −ζ1(g)x1 − ζ2(g)x2 − ζ3(g)x3;

δx1(g),DSR(x) = ζ1(g)x0 − θ3(g)x2 + θ2(g)x3;

δx2(g),DSR(x) = ζ2(g)x0 + θ3(g)x1 − θ1(g)x3;

δx3(g),DSR(x) = ζ3(g)x0 − θ2(g)x1 + θ1(g)x2.

(6.74)

Comparing (6.74) with the expression (5.39) of the covariant Killing vec-
tor, we see the perfect correspondence between the space–time rotational
component of ξµ(x) (unique for all the 4D generalized Minkowski spaces)
and the covariant four-vector δxµ(g),DSR(x) related to SO(1, 3)DEF. (see
point 3 of Sect. 5.2.4).

6.3.4 4D Deformed Lorentz Algebra

Let us specialize (6.10) to the DSR case, in order to derive the 4D deformed
Lorentz algebra, i.e., the Lie algebra of the 4D deformed, homogeneous
Lorentz group SO(1, 3)6DEF.. We get

[Iαβ
DSR(x5), Iρσ

DSR(x5)] = gασ
DSR(x5)Iβρ

DSR(x5) + gβρ
DSR(x5)Iασ

DSR(x5)

−gαρ
DSR(x5)Iβσ

DSR(x5) − gβσ
DSR(x5)Iαρ

DSR(x5)

= δασ
(

b−2
0 (x5)δα0 − b−2

1 (x5)δα1 − b−2
2 (x5)δα2 − b−2

3 (x5)δα3
)

Iβρ
DSR(x5)

+δβρ
(

δβ0b−2
0 (x5) − δβ1b−2

1 (x5) − δβ2b−2
2 (x5) − δβ3b−2

3 (x5)
)

Iασ
DSR(x5)

−δαρ
(

δα0b−2
0 (x5) − δα1b−2

1 (x5) − δα2b−2
2 (x5) − δα3b−2

3 (x5)
)

Iβσ
DSR(x5)

−δβσ
(

δβ0b−2
0 (x5) − δβ1b−2

1 (x5) − δβ2b−2
2 (x5) − δβ3b−2

3 (x5)
)

Iαρ
DSR(x5).

(6.75)
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On account of the physical interpretation of the infinitesimal generators,
one has therefore the following kinds of commutators:

1. Commutator of generators of 3D deformed space rotations:

[Iij
DSR(x5), I lm

DSR(x5)]

= δim
(

δi0b−2
0 (x5) − δi1b−2

1 (x5) − δi2b−2
2 (x5) − δi3b−2

3 (x5)
)

Ijl
DSR(x5)

+δjl
(

δj0b−2
0 (x5) − δj1b−2

1 (x5) − δj2b−2
2 (x5) − δj3b−2

3 (x5)
)

Iim
DSR(x5)

−δil
(

δi0b−2
0 (x5) − δi1b−2

1 (x5) − δi2b−2
2 (x5) − δi3b−2

3 (x5)
)

Ijm
DSR(x5)

−δjm
(

δj0b−2
0 (x5) − δj1b−2

1 (x5) − δj2b−2
2 (x5) − δj3b−2

3 (x5)
)

Iil
DSR(x5)

ESC off on i, j
= −δimb−2

i (x5)Ijl
DSR(x5) − δjlb−2

j (x5)Iim
DSR(x5)

+δilb−2
i (x5)Ijm

DSR(x5) + δjmb−2
j (x5)Iil

DSR(x5);

(6.76)

2. Commutator of generators of 3D deformed boosts:

[Ii0
DSR(x5), Ij0

DSR(x5)]

= δi0
(

δi0b−2
0 (x5) − δi1b−2

1 (x5) − δi2b−2
2 (x5) − δi3b−2

3 (x5)
)

I0j
DSR(x5)

+δ0j
(

δj0b−2
0 (x5) − δj1b−2

1 (x5) − δj2b−2
2 (x5) − δj3b−2

3 (x5)
)

Ii0
DSR(x5)

−δij
(

δi0b−2
0 (x5) − δi1b−2

1 (x5) − δi2b−2
2 (x5) − δi3b−2

3 (x5)
)

I00
DSR(x5)

−δ00
(

δ00b−2
0 (x5) − δ01b−2

1 (x5) − δ02b−2
2 (x5) − δ03b−2

3 (x5)
)

Iij
DSR(x5)

= −b−2
0 (x5)Iij

DSR(x5);
(6.77)

3. “Mixed” commutator of 3D deformed space and boost generators:

[Iij
DSR(x5), Ik0

DSR(x5)]

= δi0
(

δi0b−2
0 (x5) − δi1b−2

1 (x5) − δi2b−2
2 (x5) − δi3b−2

3 (x5)
)

Ijk
DSR(x5)

+δjk
(

δj0b−2
0 (x5) − δj1b−2

1 (x5) − δj2b−2
2 (x5) − δj3b−2

3 (x5)
)

Ii0
DSR(x5)

−δik
(

δi0b−2
0 (x5) − δi1b−2

1 (x5) − δi2b−2
2 (x5) − δi3b−2

3 (x5)
)

Ij0
DSR(x5)

−δj0
(

δj0b−2
0 (x5) − δj1b−2

1 (x5) − δj2b−2
2 (x5) − δj3b−2

3 (x5)
)

Iik
DSR(x5)

ESC off on i, j
= −δjkb−2

j (x5)Ii0
DSR(x5) + δikb−2

i (x5)Ij0
DSR(x5).

(6.78)

In the “self-representation” basis of SO(1, 3)6.DEF., it is easy to show
that commutation relations (6.75)–(6.78) read:
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⎪
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⎪
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⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[Si
DSR(x5), Sj

DSR(x5)]
ESC on=

(

∑3
s=1(1 − δis)((1 − δjs)b−2

s (x5)
)

εijkS
k
DSR(x5)

= εijkb
−2
k (x5)Sk

DSR(x5);

[Ki
DSR(x5),Kj

DSR(x5)]

ESC on= −b−2
0 (x5)εijkS

k
DSR(x5);

[Si
DSR(x5),Kj

DSR(x5)]
ESC “on′′ on l,ESC “off′′ on j

= εijlK
l
DSR(x5)

(

∑3
s=1 δjsb

−2
s (x5)

)

= εijlb
−2
j (x5)Kl

DSR(x5),
(6.79)

where use has been made of the relation

εimsεjrsb
−2
s (x5)

(δijδmr − δirδmj)

(

3
∑

k=1

(1 − δik)(1 − δmk)b−2
k (x5)

)

, (6.80)

which generalizes to the DSR case the well-known formula εimsεjrs =
δijδmr − δirδjm.9

The commutators (6.79) define the (4D) deformed Lorentz algebra
su(2)DEF. ⊗ su(2)DEF. of generators of SO(1, 3).DEF., and generalize to the

9Let us prove it. One has

εimsεjrsb−2
s (x5)

= εim1εjr1b−2
1 (x5) + εim2εjr2b−2

2 (x5) + εim3εjr3b−2
3 (x5)

=

s=1
︷ ︸︸ ︷

[

ε231ε231(= 1) ε231ε321(= −1)
ε321ε321(= 1) ε321ε231(= −1)

]

b−2
1 (x5)

+

s=2
︷ ︸︸ ︷

[

ε132ε132(= 1) ε132ε312(= −1)
ε312ε312(= 1) ε312ε132(= −1)

]

b−2
2 (x5)

+

s=3
︷ ︸︸ ︷

[

ε123ε123(= 1) ε123ε213(= −1)
ε213ε213(= 1) ε213ε123(= −1)

]

b−2
3 (x5)

= δijδmrb−2
k �=i,k �=m

(x5) − δirδmjb−2
k �=i,k �=m

(x5)

= (δijδmr − δirδmj)

(

3
∑

k=1

(1 − δik)(1 − δmk)b−2
k

(x5)

)

,

where the square brackets [...] do not denote matrices, but only mean a generic array
enumerating the nonzero elements, arranged according to the sum index s.
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DSR case the infinitesimal algebraic structure of the standard homogeneous
Lorentz group SO(1, 3). They admit interpretations wholly analogous
to those of the commutators of the usual Lorentz algebra. First (6.79)
expresses the closed nature of the algebra of the deformed rotation genera-
tors; consequently the 3D deformed space rotations form a three-parameter
subgroup of SO(1, 3).DEF., SO(3)DEF.. On the contrary, the deformed boost
generator algebra is not closed (according to second (6.79)), and then the
deformed boosts do not form a subgroup of the deformed Lorentz group.
This implies that SO(1, 3).DEF. cannot be considered the product of two
subgroups. This is further confirmed by the noncommutativity of deformed
space rotations and boosts, expressed by third commutator (6.79). More-
over, first and third (6.79) show that both SDSR(x5) and KDSR(x5) behave
as three-vectors under deformed spatial rotations.

Needless to say, in the limit

gµν,DSR(x5) → gµν,SR

⇔ δµν(δµ0b
2
0(x

5) − δµ1b
2
1(x

5) − δµ2b
2
2(x

5) − δµ3b
2
3(x

5))

→ δµν(δµ0 − δµ1 − δµ2 − δµ3) ⇔ b2µ(x5) → 1 ∀µ = 0, 1, 2, 3, (6.81)

all results valid at group-transformation level in DSR reduce to the stan-
dard ones in SR. In general, this is the limit in which all the results and
reasonings of DSR become the corresponding ones in SR (due to its nature
of “anisotropizing deforming” generalization of SR).



7
Finite Structure of Deformed
Chronotopical Groups

In Chap. 6, we discussed the infinitesimal structure of the chronotopical
group of generalized Minkowski spaces and, in particular, of the deformed
Minkowski space ˜M(x5) of DSR. We want now to discuss the corresponding
finite structure, so deriving in a rigorous way the DLT [42].

7.1 Space–Time Rotations in a 4D Generalized
Minkowski Space

7.1.1 General Case

We shall consider, without loss of generality, the case of a 4D generalized
Minkowski space with S(< 4) space-like and T = 4−S time-like dimensions.
On the basis of the results of Chap. 6, in particular exploiting (6.34) which
yields the infinitesimal transformation corresponding to the element g of
the generalized, homogeneous Lorentz group SO(T = 4−S, S)GEN., and in
the self-representation basis of the generators, S({x}n.m.) and K({x}n.m.)
(6.30)–(6.31), we can write the finite space–time rotation in ˜M({x}n.m.)
corresponding to g ∈ SO(T = 4 − S, S)GEN. as:

SO(T = 4 − S, S)GEN. � g : xµ → xµ′
(g)(x, {x}n.m.)

= exp(−θ(g) · S({x}n.m.) − ζ(g) · K({x}n.m.))
µ
νx

ν
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= exp(−θ1(g)S1({x}n.m.) − θ2(g)S2({x}n.m.) − θ3(g)S3({x}n.m.)

− ζ1(g)K
1({x}n.m.) − ζ2(g)K

2({x}n.m.) − ζ3(g)K
3({x}n.m.))

µ
νx

ν .
(7.1)

In matrix notation, and by a series development of the exponential, we can
write:

Λ(g, {x}n.m.) =

∞
∑

n=0

1

n!
(−θ(g) · S({x}n.m.) − ζ(g) · K({x}n.m.))

n

=

∞
∑

n=0

1

n!

[

−θ1(g)S1({x}n.m.)−θ2(g)S2({x}n.m.)−θ3(g)S3({x}n.m.)

−ζ1(g)K1({x}n.m.) − ζ2(g)K2({x}n.m.) − ζ3(g)K3({x}n.m.)
]n

.

(7.2)

Here, θ(g) and ζ(g) are the rotation parameter axial three-vector and
the boost parameter polar three-vector, respectively, defined by (6.63)–
(6.64). Since the generalized Lorentz algebra (6.11) is noncommutative, the
group SO(T, S)N(N−1)/2

GEN. is non-abelian, and therefore the 4D finite trans-
formations (7.1), (7.2) do not commute. Thus one has, using the Baker–
Campbell–Hausdorff formula:

Λ(g, {x}n.m.) = exp(−θ1(g)S1({x}n.m.) − θ2(g)S2({x}n.m.) − θ3(g)S3({x}n.m.)

− ζ1(g)K1({x}n.m.) − ζ2(g)K2({x}n.m.) − ζ3(g)K3({x}n.m.))

�= exp(−θ1(g)S1({x}n.m.))× exp(−θ2(g)S2({x}n.m.))

× exp(−θ3(g)S3({x}n.m.)) × exp(−ζ1(g)K1({x}n.m.))

× exp(−ζ2(g)K2({x}n.m.)) × exp(−ζ3(g)K3({x}n.m.)), (7.3)

where × denotes matrix product.

7.1.2 Deformed Lorentz Group of DSR

In the case of the deformed Minkowski space–time ˜M(x5), we know that the
generalized Lorentz algebra (6.11) becomes the 4D deformed Lorentz alge-
bra su(2)DEF.⊗su(2)DEF., and the infinitesimal space–time rotation (6.42)
is given by (6.66). Moreover, the parameters θ(g) and ζ(g) are, respec-
tively, the deformed rotation and boost Euclidean three-vectors, whereas
SDSR(x5) and KDSR(x5) are the generators of the corresponding transfor-
mations of the deformed, homogeneous Lorentz groupSO(1, 3)DEF., satis-
fying the (4D) deformed Lorentz algebra su(2)DEF. ⊗ su(2)DEF.(6.79).
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Therefore, in the DSR case, (7.1), (7.2) for a finite transformation
become, respectively,

SO(1, 3)DEF. � g : Λ(g, x5) = exp(−θ(g) · SDSR(x5) − ζ(g) · KDSR(x5))

= exp(−θ1(g)S1
DSR(x5) − θ2(g)S2

DSR(x5)

− θ3(g)S3
DSR(x5) − ζ1(g)K

1
DSR(x5)

− ζ2(g)K
2
DSR(x5) − ζ3(g)K

3
DSR(x5))

=
∞
∑

n=0

1
n!

(−θ(g)·SDSR(x5) − ζ(g)·KDSR(x5))n

=
∞
∑

n=0

1
n!

(−θ1(g)S1
DSR(x5) − θ2(g)S2

DSR(x5)

− θ3(g)S3
DSR(x5) − ζ1(g)K

1
DSR(x5)

− ζ2(g)K
2
DSR(x5) − ζ3(g)K

3
DSR(x5))n; (7.4)

SO(1, 3)DEF. � g : Λ(g, x5) = exp(−θ1(g)S1
DSR(x5) − θ2(g)S2

DSR(x5)

− θ3(g)S3
DSR(x5) − ζ1(g)K1

DSR(x5)

− ζ2(g)K2
DSR(x5) − ζ3(g)K3

DSR(x5))

�= exp(−θ1(g)S1
DSR(x5)) × exp(−θ2(g)S2

DSR(x5))

× exp(−θ3(g)S3
DSR(x5)) × exp(−ζ1(g)K1

DSR(x5))

× exp(−ζ2(g)K2
DSR(x5)) × exp(−ζ3(g)K3

DSR(x5)).

(7.5)

7.2 Finite Space–Time Rotations in ˜M

7.2.1 Infinitesimal Generators

The explicit form of the matrices of the infinitesimal generators Iαβ
DSR(x5)

of the group SO(1, 3)DEF. in the 4D representation have been derived in
Sect. 6.3 (see (6.45)–(6.50)). In the following, we shall need the 4×4 matri-
ces Ai, Bi (i = 1, 2, 3), defined by

A1 ≡

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

; (7.6)
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A2 ≡

⎛

⎜

⎜

⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞

⎟

⎟

⎠

; (7.7)

A3 ≡

⎛

⎜

⎜

⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞

⎟

⎟

⎠

; (7.8)

B1 ≡

⎛

⎜

⎜

⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠

; (7.9)

B2 ≡

⎛

⎜

⎜

⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞

⎟

⎟

⎠

; (7.10)

B3 ≡

⎛

⎜

⎜

⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞

⎟

⎟

⎠

. (7.11)

Let us evaluate the powers of the deformed boost generators: we have
for instance, for I10

DSR(x5):

(

I10
DSR(x5)

)2 =

⎛

⎜

⎜

⎝

b−2
0 (x5)b−2

1 (x5) 0 0 0
0 b−2

0 (x5)b−2
1 (x5) 0 0

0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

; (7.12)

(

I10
DSR(x5)

)3
=

⎛

⎜

⎜

⎝

0 −b−4
0 (x5)b−2

1 (x5) 0 0
−b−2

0 (x5)b−4
1 (x5) 0 0 0

0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

; (7.13)

(

I10
DSR(x5)

)4
=

⎛

⎜

⎜

⎝

b−4
0 (x5)b−4

1 (x5) 0 0 0
0 b−4

0 (x5)b−4
1 (x5) 0 0

0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

; (7.14)

(

I10
DSR(x5)

)5
=

⎛

⎜

⎜

⎝

0 −b−6
0 (x5)b−4

1 (x5) 0 0
−b−4

0 (x5)b−6
1 (x5) 0 0 0

0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

. (7.15)
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By induction, we get the general formula
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

I10
DSR(x5)

)2n = b−2n
0 (x5)b−2n

1 (x5)

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

, n ∈ N ;

(

I10
DSR(x5)

)2n+1 = b−2n
0 (x5)b−2n

1 (x5)I10
DSR(x5)

= b−2n
0 (x5)b−2n

1 (x5)

⎛

⎜

⎜

⎝

0 −b−2
0 (x5) 0 0

−b−2
1 (x5) 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

, n ∈ N ∪ {0} .

(7.16)
The analogous relations for the other deformed generators are:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

I20
DSR(x5)

)2n = b−2n
0 (x5)b−2n

2 (x5)

⎛

⎜

⎜

⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞

⎟

⎟

⎠

, n ∈ N ;

(

I10
DSR(x5)

)2n+1 = b−2n
0 (x5)b−2n

2 (x5)I20
DSR(x5)

= b−2n
0 (x5)b−2n

2 (x5)

⎛

⎜

⎜

⎝

0 0 −b−2
0 (x5) 0

0 0 0 0
−b−2

2 (x5) 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

, n ∈ N ∪ {0} ;

(7.17)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

I30
DSR(x5)

)2n = b−2n
0 (x5)b−2n

3 (x5)

⎛

⎜

⎜

⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞

⎟

⎟

⎠

, n ∈ N ;

(

I30
DSR(x5)

)2n+1 = b−2n
0 (x5)b−2n

3 (x5)I30
DSR(x5)

= b−2n
0 (x5)b−2n

3 (x5)

⎛

⎜

⎜

⎝

0 0 0 −b−2
0 (x5)

0 0 0 0
0 0 0 0

−b−2
3 (x5) 0 0 0

⎞

⎟

⎟

⎠

, n ∈ N ∪ {0} .

(7.18)
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On account of definitions (7.6)–(7.11), (7.16)–(7.18) can be summarized
as (ESC off):
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

Ii0
DSR(x5)

)0 = 14D;

(

Ii0
DSR(x5)

)2n = b−2n
0 (x5)b−2n

i (x5)Ai , n ∈ N ;

(

Ii0
DSR(x5)

)2n+1 = b−2n
0 (x5)b−2n

i (x5)Ii0
DSR(x5) , n ∈ N ∪ {0}

(7.19)

(i = 1, 2, 3, with 14D being the identity 4×4 matrix).
For the rotation generators, one gets, for e.g., I12

DSR(x5):

(

I12
DSR(x5)

)2 =

⎛

⎜

⎜

⎝

0 0 0 0
0 −b−2

1 (x5)b−2
2 (x5) 0 0

0 0 −b−2
1 (x5)b−2

2 (x5) 0
0 0 0 0

⎞

⎟

⎟

⎠

;

(7.20)

(

I12
DSR(x5)

)3 =

⎛

⎜

⎜

⎝

0 0 0 0
0 0 b−4

1 (x5)b−2
2 (x5) 0

0 −b−2
1 (x5)b−4

2 (x5) 0 0
0 0 0 0

⎞

⎟

⎟

⎠

;

(7.21)

(

I12
DSR(x5)

)4
=

⎛

⎜

⎜

⎝

0 0 0 0
0 b−4

1 (x5)b−4
2 (x5) 0 0

0 0 b−4
1 (x5)b−4

2 (x5) 0
0 0 0 0

⎞

⎟

⎟

⎠

; (7.22)

(

I12
DSR(x5)

)5
=

⎛

⎜

⎜

⎝

0 0 0 0
0 0 −b−6

1 (x5)b−4
2 (x5) 0

0 b−4
1 (x5)b−6

2 (x5) 0 0
0 0 0 0

⎞

⎟

⎟

⎠

; (7.23)

and so on. Therefore
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

I12
DSR(x5)

)2n = (−1)nb−2n
1 (x5)b−2n

2 (x5)

⎛

⎜

⎜

⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞

⎟

⎟

⎠

, n ∈ N ;

(

I12
DSR(x5)

)2n+1
= (−1)nb−2n

1 (x5)b−2n
2 (x5)I12

DSR(x5)

= (−1)nb−2n
1 (x5)b−2n

2 (x5)

⎛

⎜

⎝

0 0 0 0
0 0 −b−2

1 (x5) 0
0 b−2

2 (x5) 0 0
0 0 0 0

⎞

⎟

⎠
, n ∈ N ∪ {0} .

(7.24)
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Analogously, the powers of the other two generators are expressed by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

I23
DSR(x5)

)2n
= (−1)nb−2n

2 (x5)b−2n
3 (x5)

⎛

⎜

⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎠
, n ∈ N ;

(

I23
DSR(x5)

)2n+1
= (−1)nb−2n

2 (x5)b−2n
3 (x5)I23

DSR(x5)

= (−1)nb−2n
2 (x5)b−2n

3 (x5)

⎛

⎜

⎝

0 0 0 0
0 0 0 0
0 0 0 −b−2

2 (x5)
0 0 b−2

3 (x5) 0

⎞

⎟

⎠
, n ∈ N ∪ {0} ;

(7.25)
⎧
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⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

I31
DSR(x5)

)2n
= (−1)nb−2n

1 (x5)b−2n
3 (x5)

⎛

⎜

⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞

⎟

⎠
, n ∈ N ;

(

I31
DSR(x5)

)2n+1
= (−1)nb−2n

1 (x5)b−2n
3 (x5)I31

DSR(x5)

= (−1)nb−2n
1 (x5)b−2n

3 (x5)

⎛

⎜

⎝

0 0 0 0
0 0 0 b−2

1 (x5)
0 0 0 0
0 −b−2

3 (x5) 0 0

⎞

⎟

⎠
, n ∈ N ∪ {0} .

(7.26)
Equations(7.24)–(7.26) can be summarized as (ESC off):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

Iij
DSR(x5)

)0

= 14D;

(

Iij
DSR(x5)

)2n

= (−1)nb−2n
i (x5)b−2n

j (x5)Bs�=i,s �=j

= (−1)nb−2n
i (x5)b−2n

j (x5)
(

∑3
s=1(1 − δsi)(1 − δsj)Bs

)

ESC “off′′ on i and j, ESC “on′′ on k
= (−1)nb−2n

i (x5)b−2n
j (x5) |εijk|Bk , n ∈ N ;

(

Iij
DSR(x5)

)2n+1

= (−1)nb−2n
i (x5)b−2n

j (x5)Iij
DSR(x5) , n ∈ N ∪ {0} ,

(7.27)
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where |εijk| ≡ sgn (εijk) εijk. Notice that (7.19) and (7.27), although
obtained by utilizing a 4D representation of the infinitesimal generators
of SO(1, 3)DEF., hold true in general at abstract group level (i.e., they are
representation independent).

7.2.2 Finite Deformed Boost along a Coordinate Axis

Let us first consider a finite deformed boost transformation, with rapidity
parameter ζ1(g) alonĝx1. Recalling that Ki

DSR(x5) ≡ I0i
DSR(x5) ∀i = 1, 2, 3,

we get, from (7.5):

SO(1, 3)DEF. � g : ΛDSR(g, x5)

= exp(−ζ1(g)K1
DSR(x5)) = exp(ζ1(g)I10

DSR(x5)

=

∞
∑

n=0

1

n!
(ζ1(g)I10

DSR(x5))n

=

∞
∑

n=0

1

n!
(ζ1(g))n(I10

DSR(x5))n

= 14D +

∞
∑

n=1

1

(2n)!
(ζ1(g))2n(I10

DSR(x5))2n

+

∞
∑

n=0

1

(2n + 1)!
(ζ1(g))2n+1(I10

DSR(x5))2n+1

= 14D + A1

∞
∑

n=1

1

(2n)!
b−2n
0 (x5)b−2n

1 (x5)(ζ1(g))2n

+ I10
DSR(x5)

∞
∑

n=0

1

(2n + 1)!
b−2n
0 (x5)b−2n

1 (x5)(ζ1(g))2n+1

= 14D + A1

∞
∑

n=1

1

(2n)!
(ζ1(g)b−1

0 (x5)b−1
1 (x5))2n

+ I10
DSR(x5)b0(x

5)b1(x
5)

∞
∑

n=0

1

(2n + 1)!
(ζ1(g)b−1

0 (x5)b−1
1 (x5))2n+1

= 14D +
((

cosh ζ1(g)b−1
0 (x5)b−1

1 (x5)
)

− 1
)

A1

+ b0(x
5)b1(x

5)
(

sinh ζ1(g)b−1
0 (x5)b−1

1 (x5)
)

I10
DSR (x5), (7.28)

where in the last passage the series expansions of hyperbolic functions have
been used.
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Let us denote by Λ
B,DSR,̂x1(g, x

5) the 4×4 matrix representing a boost

with rapidity parameter ζ1(g) along ̂x1, namely:

Λ
B,DSR,̂x1(g, x

5) ≡ 14D +
((

cosh ζ1(g)b
−1
0 (x5)b−1

1 (x5)
)

− 1
)

A1

+ b0(x5)b1(x5)
(

sinh ζ1(g)b
−1
0 (x5)b−1

1 (x5)
)

I10
DSR (x5).

(7.29)

Then, (7.28) can be rewritten as:

SO(1, 3)DEF. � g : x → x′(g)(x, x
5) = Λ

B,DSR,̂x1(g, x
5)x, (7.30)

where x′, x have to be meant as column four-vectors.
We find therefore

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x0′
(g)(x, x

5)

x1′
(g)(x, x

5)

x2′
(g)(x, x

5)

x3′
(g)(x, x

5)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= Λ
B,DSR,̂x1(g, x

5) ×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎨

⎩

(

cosh ζ1(g)b
−1
0 (x5)b−1

1 (x5)
)

x0+

−b−1
0 (x5)b1(x5)

(

sinh ζ1(g)b
−1
0 (x5)b−1

1 (x5)
)

x1

⎧

⎨

⎩

−b0(x5)b−1
1 (x5)

(

sinh ζ1(g)b
−1
0 (x5)b−1

1 (x5)
)

x0

+
(

cosh ζ1(g)b
−1
0 (x5)b−1

1 (x5)
)

x1

x2

x3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(7.31)

Analogously, one gets, respectively, for the finite deformed boosts with
rapidity parameter ζ2(g) alonĝx2 and with rapidity parameter ζ3(g) along
̂x3:
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SO(1, 3)DEF. � g : Λ
B,DSR,̂x2(g, x

5)

= exp(−ζ2(g)K
2
DSR(x5)) = exp(ζ2(g)I

20
DSR(x5))

=
∞
∑

n=0

1
n!

(ζ2(g)I
20
DSR(x5))n =

∞
∑

n=0

1
n!

(ζ2(g))
n(I20

DSR(x5))n

= 14D +
∞
∑

n=1

1
(2n)!

(ζ2(g))
2n(I20

DSR(x5))2n

+
∞
∑

n=0

1
(2n+ 1)!

(ζ2(g))
2n+1(I20

DSR(x5))2n+1

= 14D +A2

∞
∑

n=1

1
(2n)!

b−2n
0 (x5)b−2n

2 (x5)(ζ2(g))
2n

+ I20
DSR(x5)

∞
∑

n=0

1
(2n+ 1)!

b−2n
0 (x5)b−2n

2 (x5)(ζ2(g))
2n+1

= 14D +A2

∞
∑

n=1

1
(2n)!

(ζ2(g)b
−1
0 (x5)b−1

2 (x5))2n

+ I20
DSR(x5)b0(x5)b2(x5)

∞
∑

n=0

1
(2n+ 1)!

(ζ2(g)b
−1
0 (x5)b−1

2 (x5))2n+1

= 14D +
((

cosh ζ2(g)b
−1
0 (x5)b−1

2 (x5)
)

− 1
)

A2

+ b0(x5)b2(x5)
(

sinh ζ2(g)b
−1
0 (x5)b−1

2 (x5)
)

I20
DSR (x5); (7.32)

SO(1, 3)DEF. � g : Λ
B,DSR,̂x3(g, x

5)

= exp(−ζ3(g)K
3
DSR(x5)) = exp(ζ3(g)I

30
DSR(x5))

=
∞
∑

n=0

1
n!

(ζ3(g)I
30
DSR(x5))n =

∞
∑

n=0

1
n!

(ζ3(g))
n(I30

DSR(x5))n
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= 14D +
∞
∑

n=1

1
(2n)!

(ζ3(g))
2n(I30

DSR(x5))2n

+
∞
∑

n=0

1
(2n+ 1)!

(ζ3(g))
2n+1(I30

DSR(x5))2n+1

= 14D +A3

∞
∑

n=1

1
(2n)!

b−2n
0 (x5)b−2n

3 (x5)(ζ3(g))
2n

+ I30
DSR(x5)

∞
∑

n=0

1
(2n+ 1)!

b−2n
0 (x5)b−2n

3 (x5)(ζ3(g))
2n+1

= 14D +A3

∞
∑

n=1

1
(2n)!

(ζ3(g)b
−1
0 (x5)b−1

3 (x5))2n

+ I30
DSR(x5)b0(x5)b3(x5)

∞
∑

n=0

1
(2n+ 1)!

(ζ3(g)b
−1
0 (x5)b−1

3 (x5))2n+1

= 14D +
((

cosh ζ3(g)b
−1
0 (x5)b−1

3 (x5)
)

− 1
)

A3

+ b0(x5)b3(x5)
(

sinh ζ3(g)b
−1
0 (x5)b−1

3 (x5)
)

I30
DSR (x5). (7.33)

The boost matrices Λ
B,DSR,̂x2(g, x

5), Λ
B,DSR,̂x3(g, x

5) explicitly read

Λ
B,DSR,̂x2(g, x

5) ≡ 14D +
((

cosh ζ2(g)b
−1
0 (x5)b−1

2 (x5)
)

− 1
)

A2

+b0(x5)b2(x5)
(

sinh ζ2(g)b
−1
0 (x5)b−1

2 (x5)
)

I20
DSR (x5); (7.34)

Λ
B,DSR,̂x3(g, x

5) ≡ 14D +
((

cosh ζ3(g)b
−1
0 (x5)b−1

3 (x5)
)

− 1
)

A3

+b0(x5)b3(x5)
(

sinh ζ3(g)b
−1
0 (x5)b−1

3 (x5)
)

I30
DSR (x5), (7.35)

so that one gets from (7.32) and (7.33), in matrix notation:

SO(1, 3)DEF. � g : x → x′(g)(x, x
5) = Λ

B,DSR,̂x2(g, x
5)x; (7.36)

SO(1, 3)DEF. � g : x → x′(g)(x, x
5) = Λ

B,DSR,̂x3(g, x
5)x. (7.37)



110 7. Finite Structure of Deformed Chronotopical Groups

The explicit form of transformations (7.36), (7.37) for the boosts along ̂x2

and ̂x3 is therefore:
⎛

⎜

⎜

⎜

⎝

x0′
(g)(x, x

5)
x1′

(g)(x, x
5)

x2′
(g)(x, x

5)
x3′

(g)(x, x
5)

⎞

⎟

⎟

⎟

⎠

= Λ
B,DSR,̂x2(g, x

5) ×

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎨

⎩

(

cosh ζ2(g)b
−1
0 (x5)b−1

2 (x5)
)

x0

−b−1
0 (x5)b2(x5)

(

sinh ζ2(g)b
−1
0 (x5)b−1

2 (x5)
)

x2

x1

⎧

⎨

⎩

−b0(x5)b−1
2 (x5)

(

sinh ζ2(g)b
−1
0 (x5)b−1

2 (x5)
)

x0

+
(

cosh ζ2(g)b
−1
0 (x5)b−1

2 (x5)
)

x2

x3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

;

(7.38)

⎛

⎜

⎜

⎜

⎝

x0′
(g)(x, x

5)
x1′

(g)(x, x
5)

x2′
(g)(x, x

5)
x3′

(g)(x, x
5)

⎞

⎟

⎟

⎟

⎠

= Λ
B,DSR,̂x3(g, x

5) ×

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎨

⎩

(

cosh ζ3(g)b
−1
0 (x5)b−1

3 (x5)
)

x0

−b−1
0 (x5)b3(x5)

(

sinh ζ3(g)b
−1
0 (x5)b−1

3 (x5)
)

x3

x1

x2

⎧

⎨

⎩

−b0(x5)b−1
3 (x5)

(

sinh ζ3(g)b
−1
0 (x5)b−1

3 (x5)
)

x0

+
(

cosh ζ3(g)b
−1
0 (x5)b−1

3 (x5)
)

x3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(7.39)
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Let us introduce the (effective) deformed rapidity ˜ζ(g, x5), defined by1

˜ζi(g, x
5) ≡ ζi(g)b

−1
0 (x5)b−1

i (x5) ∀i = 1, 2, 3. (7.40)

Then, a finite deformed boost transformation, with rapidity parameter
ζi(g) along ̂xi can be written in compact form as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

x0′ =
(

cosh˜ζi(g, x5)
)

x0 − b−1
0 (x5)bi(x5)

(

sinh˜ζi(g, x5)
)

xi ;

xi′ = −b0(x5)b−1
i (x5)

(

sinh˜ζi(g, x5)
)

x0 +
(

cosh˜ζi(g, x5)
)

xi ; .
xk �=i′ = xk �=i.

(7.41)

By recalling the expression of a boost in SR
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x0′ = (cosh ζi(g))x0 − (sinh ζi(g))xi;

xi′ = − (sinh ζi(g))x0 + (cosh ζi(g))xi;

xk �=i′ = xk �=i,

, (7.42)

it is easily seen that the deforming transition SR→DSR corresponds – at the
level of group parameters – to the deforming and anisotropizing rescaling
of rapidities ζi(g) → ˜ζi(g, x5) ∀i = 1, 2, 3.

Parametric Change of Basis for a Deformed Boost along a Coordinate Axis

We recall that a deformed boost with speed parameter vi along ̂xi reads
(see Sect. 3.3.2) (ESC off throughout):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

xi′ = γ̃(g)(xi − vi(g)t) = γ̃(g)
(

xi − ˜β(g)
b0(x5)
bi(x5)

ct

)

;

xk �=i′ = xk �=i;

t′ = γ̃(g)
(

t− vi(g)b2i (x
5)

c2b20(x5)
xi

)

= γ̃(g)

(

t−
˜β

2
(g)

vi(g)
xi

)

,

(7.43)

where we made explicit the dependence on the considered element g ∈
SO(1, 3)DEF. .(the dependence on x5 is omitted, but understood), and (cf.
(3.28a)–(3.29a))

1Note that ˜ζ
i
(g, x5) = ˜ζi(g, x5) ∀i = 1, 2, 3, i.e., that, as ζ(g), the (effective)

deformed rapidity three-vector ˜ζ(g, x5) is Euclidean. This follows from definition (7.40),
because ζi(g) = ζi(g) and the position of the index i in bi(x

5) is a notational convention.
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˜β(g) = ˜βi(g) ≡ vi(g)bi(x5)
cb0(x5)

≡ vi(g)
ui

; (7.44)

γ̃(g) = ˜γi(g) ≡
(

1 −
(

˜βi(g)
)2
)−1/2

=

(

1 −
(

vi(g)bi(x5)
cb0(x5)

)2
)−1/2

.

(7.45)

Quantity ui is the maximal causal speed (along ̂xi) in ˜M(x5), defined by
(3.12).

As already shown in Sect. 3.3, (7.43) can be put in symmetrical form
with respect to time and space coordinates by introducing the dimensional
coordinate x̃0 = uit:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

xi′ = γ̃(g)(xi − ˜βi(g)x̃0);
xk �=i′ = xk �=i;

x̃0′ = γ̃(g)(x̃0 − ˜βi(g)xi).

(7.46)

Such a symmetry is lost if we use the “standard” time coordinate x0 ≡ ct,
which is related to x̃0 by

x̃0 = x0 b0(x
5)

bi(x5)
. (7.47)

In terms of x0, we have in fact

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

xi′ = γ̃(g)
(

xi − ˜βi(g)
b0(x5)
bi(x5)

x0

)

;

xk �=i′ = xk �=i;

x0′ = γ̃(g)
(

x0 − ˜βi(g)
bi(x5)
b0(x5)

xi

)

.

(7.48)

Comparing (7.48) with (7.41) allows us to get the relations connecting
the dimensional parametric basis of velocities

{

vi
}

and the dimensionless

basis of (effective) deformed rapidities
{

˜ζ
i
(g, x5)

}

defined by (7.40) (the

dependence on x5 is now fully made explicit):
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

I) cosh˜ζi(g, x5) = γ̃(g, x5)

=
(

1 −
(

˜βi(g, x5)
)2
)−1/2

=

(

1 −
(

vi(g)bi(x5)
cb0(x5)

)2
)−1/2

;

II) b−1
0 (x5)bi(x5)

(

sinh˜ζi(g, x5)
)

= γ̃(g, x5) ˜βi(g, x5)
bi(x5)
b0(x5)

=
vi(g)b2i (x

5)
cb20(x5)

(

1 −
(

vi(g)bi(x5)
cb0(x5)

)2
)−1/2

;

III) b0(x5)b−1
i (x5)

(

sinh ζ̃i(g, x5)
)

= γ̃(g, x5) ˜βi(g, x5)
b0(x5)
bi(x5)

=
vi(g)
c

(

1 −
(

vi(g)bi(x5)
cb0(x5)

)2
)−1/2

,

∀i = 1, 2, 3. (7.49)

From the earlier system one gets (ESC off):2

(

1 −
(

vi(g)bi(x5)
cb0(x5)

)2
)−1/2

= γ̃(g, x5)

≡ γ̃i(g, x5) = cosh˜ζi(g, x

5);

(7.50)

vi(g)bi(x5)
cb0(x5)

(

1 −
(

vi(g)bi(x5)
cb0(x5)

)2
)−1/2

= γ̃(g, x5) ˜βi(g, x5)


≡ γ̃i(g, x5) ˜βi(g, x5)

= sinh˜ζi(g, x
5). (7.51)

2Notice that γ̃(g, x5), by the identities marked with “�”, is endowed with an (arbi-

trarily contravariant) index i ∈ {1, 2, 3}, on account of its dependence on ˜β(g, x5) =

˜βi(g, x5) =
vi(g)bi(x

5)

cb0(x5)
.
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Such relations are consistent with the properties of the hyperbolic func-
tions, since (∀i = 1, 2, 3) (ESC off)

cosh2
˜ζi(g, x

5) − sinh2
˜ζi(g, x

5) = 1

⇔
(

1 −
(

vi(g)bi(x5)
cb0(x5)

)2
)−1

−
(

vi(g)bi(x5)
cb0(x5)

)2
(

1 −
(

vi(g)bi(x5)
cb0(x5)

)2
)−1

=

(

1 −
(

vi(g)bi(x5)
cb0(x5)

)2
)

(

1 −
(

vi(g)bi(x5)
cb0(x5)

)2
) = 1. (7.52)

Equations (7.50) and (7.51) reduce of course to the standard SR relations
in the limit ˜M(x5) −→ M , i.e., in the limit gµν,DSR(x5) → gµν,SR.

7.2.3 Finite Deformed Rotation about a Coordinate Axis

Let us now consider a finite true (clockwise) deformed rotation
by an angle θ1(g) about ̂x1. By recalling that SDSR(x5) ≡
(I23

DSR(x5), I31
DSR(x5), I12

DSR(x5)), it follows:

SO(1, 3)DEF. � g : xµ → xµ′
(g)(x, x

5)

= exp(−θ1(g)S1
DSR(x5))µ

νx
ν = exp(θ1(g)I32

DSR(x5))µ
νx

ν

=

( ∞
∑

n=0

1
n!

(θ1(g)I32
DSR(x5))n

)µ

ν

xν =

( ∞
∑

n=0

1
n!

(θ1(g))n(I32
DSR(x5))n

)µ

ν

xν

=

(

14D +
∞
∑

n=1

1
(2n)!

(θ1(g))2n(I32
DSR(x5))2n

+
∞
∑

n=0

1
(2n+ 1)!

(θ1(g))2n+1(I32
DSR(x5))2n+1

)µ

ν

xν

=

(

14D +B1

∞
∑

n=1

(−1)n

(2n)!
b−2n
2 (x5)b−2n

3 (x5)(θ1(g))2n

+ I32
DSR(x5)

∞
∑

n=0

(−1)n

(2n+ 1)!
b−2n
2 (x5)b−2n

3 (x5)(θ1(g))2n+1)

)µ

ν

xν
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=

(

14D +B1

∞
∑

n=1

(−1)n

(2n)!
(θ1(g)b−1

2 (x5)b−1
3 (x5))2n

+I32
DSR(x5)b2(x5)b3(x5)

∞
∑

n=0

(−1)n

(2n+ 1)!
(θ1(g)b−1

2 (x5)b−1
3 (x5))2n+1

)µ

ν

xν

=
(

14D +
((

cos θ1(g)b−1
2 (x5)b−1

3 (x5)
)

− 1
)

B1

+b2(x5)b3(x5)
(

sin θ1(g)b−1
2 (x5)b−1

3 (x5)
)

I32
DSR(x5)

)µ

ν
xν , (7.53)

where in the last passage the series expansions of trigonometric functions
have been used.

By introducing the matrix

Λ
R,DSR,̂x1(g, x

5) ≡ 14D +
((

cos θ1(g)b−1
2 (x5)b−1

3 (x5)
)

− 1
)

B1

+b2(x5)b3(x5)
(

sin θ1(g)b−1
2 (x5)b−1

3 (x5)
)

I32
DSR(x5), (7.54)

(7.53) can be rewritten in matrix notation as:

SO(1, 3)DEF. � g : x → x′(g)(x, x
5) = Λ

R,DSR,̂x1(g, x
5)x, (7.55)

or explicitly:
⎛

⎜

⎜

⎜

⎝

x0′
(g)(x, x

5)
x1′

(g)(x, x
5)

x2′
(g)(x, x

5)
x3′

(g)(x, x
5)

⎞

⎟

⎟

⎟

⎠

= Λ
R,DSR,̂x1(g, x

5) ×

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x0

x1

⎧

⎨

⎩

(cos θ1(g)b−1
2 (x5)b−1

3 (x5))x2+

+b−1
2 (x5)b3(x5)

(

sin θ1(g)b−1
2 (x5)b−1

3 (x5)
)

x3

⎧

⎨

⎩

−b2(x5)b−1
3 (x5)

(

sin θ1(g)b−1
2 (x5)b−1

3 (x5)
)

x2+

+(cos θ1(g)b−1
2 (x5)b−1

3 (x5))x3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(7.56)
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Analogous relations hold for the finite true (clockwise) deformed rotations
by an angle θ2(g) about ̂x2 and by an angle θ3(g) about ̂x3:

SO(1, 3)DEF. � g : xµ → xµ′
(g)(x, x

5)

= exp(−θ2(g)S2
DSR(x5))µ

νx
ν = exp(θ2(g)I13

DSR(x5))µ
νx

ν

=

( ∞
∑

n=0

1
n!

(θ2(g)I13
DSR(x5))n

)µ

ν

xν

=

( ∞
∑

n=0

1
n!

(θ2(g))n(I13
DSR(x5))n

)µ

ν

xν

=

(

14D +
∞
∑

n=1

1
(2n)!

(θ2(g))2n(I13
DSR(x5))2n

+
∞
∑

n=0

1
(2n+ 1)!

(θ2(g))2n+1(I13
DSR(x5))2n+1

)µ

ν

xν

=

(

14D +B2

∞
∑

n=1

(−1)n

(2n)!
b−2n
1 (x5)b−2n

3 (x5)(θ2(g))2n

+I13
DSR(x5)

∞
∑

n=0

(−1)n

(2n+ 1)!
b−2n
1 (x5)b−2n

3 (x5)(θ2(g))2n+1

)µ

ν

xν

=

(

14D +B2

∞
∑

n=1

(−1)n

(2n)!
(θ2(g)b−1

1 (x5)b−1
3 (x5))2n

+I13
DSR(x5)b1(x5)b3(x5)

∞
∑

n=0

(−1)n

(2n+ 1)!

×(θ2(g)b−1
1 (x5)b−1

3 (x5))2n+1
)µ

ν
xν

=
(

14D +
((

cos θ2(g)b−1
1 (x5)b−1

3 (x5)
)

− 1
)

B2

+b1(x5)b3(x5)
(

sin θ2(g)b−1
1 (x5)b−1

3 (x5)
)

I13
DSR(x5)

)µ

ν
xν ; (7.57)

SO(1, 3)DEF. � g : xµ → xµ′
(g)(x, x

5)

= exp(−θ3(g)S3
DSR(x5))µ

νx
ν = exp(θ3(g)I21

DSR(x5))µ
νx

ν

=

( ∞
∑

n=0

1
n!

(θ3(g)I21
DSR(x5))n

)µ

ν

xν =

( ∞
∑

n=0

1
n!

(θ3(g))n(I21
DSR(x5))n

)µ

ν

xν
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=

(

14D +
∞
∑

n=1

1
(2n)!

(θ3(g))2n(I21
DSR(x5))2n

+
∞
∑

n=0

1
(2n+ 1)!

(θ3(g))2n+1(I21
DSR(x5))2n+1

)µ

ν

xν

=

(

14D +B3

∞
∑

n=1

(−1)n

(2n)!
b−2n
1 (x5)b−2n

2 (x5)(θ3(g))2n

+I21
DSR(x5)

∞
∑

n=0

(−1)n

(2n+ 1)!
b−2n
1 (x5)b−2n

2 (x5)(θ3(g))2n+1

)µ

ν

xν

=

(

14D +B3

∞
∑

n=1

(−1)n

(2n)!
(θ3(g)b−1

1 (x5)b−1
2 (x5))2n

+I21
DSR(x5)b1(x5)b2(x5)

∞
∑

n=0

(−1)n

(2n+ 1)!
(θ3(g)b−1

1 (x5)b−1
2 (x5))2n+1

)µ

ν

xν

=
(

14D +
((

cos θ3(g)b−1
1 (x5)b−1

2 (x5)
)

− 1
)

B3

+b1(x5)b2(x5)
(

sin θ3(g)b−1
1 (x5)b−1

2 (x5)
)

I21
DSR(x5)

)µ

ν
xν . (7.58)

Equations (7.57) and (7.58) can be rewritten as:

SO(1, 3)DEF. � g : x → x′(g)(x, x
5) = Λ

R,DSR,̂x2(g, x
5)x; (7.59)

SO(1, 3)DEF. � g : x → x′(g)(x, x
5) = Λ

R,DSR,̂x3(g, x
5)x, (7.60)

where we defined the rotation 4×4 matrices

Λ
R,DSR,̂x2(g, x

5) ≡ 14D +
((

cos θ2(g)b−1
1 (x5)b−1

3 (x5)
)

− 1
)

B2

+b1(x5)b3(x5)
(

sin θ2(g)b−1
1 (x5)b−1

3 (x5)
)

I13
DSR(x5); (7.61)

Λ
R,DSR,̂x3(g, x

5) ≡ 14D +
((

cos θ3(g)b−1
1 (x5)b−1

2 (x5)
)

− 1
)

B3

+b1(x5)b2(x5)
(

sin θ3(g)b−1
1 (x5)b−1

2 (x5)
)

I21
DSR(x5). (7.62)
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Then, the finite true (clockwise) rotations in the deformed Minkowski space
˜M(x5) along ̂x2 and along ̂x3 read, respectively:

⎛

⎜

⎜

⎜

⎝

x0′
(g)(x, x

5)
x1′

(g)(x, x
5)

x2′
(g)(x, x

5)
x3′

(g)(x, x
5)

⎞

⎟

⎟

⎟

⎠

= Λ
R,DSR,̂x2(g, x

5) ×

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x0

⎧

⎨

⎩

(cos θ2(g)b−1
1 (x5)b−1

3 (x5))x1

−b−1
1 (x5)b−1

3 (x5)
(

sin θ2(g)b−1
1 (x5)b−1

3 (x5)
)

x3

x2

⎧

⎨

⎩

b1(x5)b−1
3 (x5)

(

sin θ2(g)b−1
1 (x5)b−1

3 (x5)
)

x1+

+(cos θ2(g)b−1
1 (x5)b−1

3 (x5))x3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

;

(7.63)

⎛

⎜

⎜

⎜

⎝

x0′
(g)(x, x

5)
x1′

(g)(x, x
5)

x2′
(g)(x, x

5)
x3′

(g)(x, x
5)

⎞

⎟

⎟

⎟

⎠

= Λ
R,DSR,̂x3(g, x

5) ×

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x0

⎧

⎨

⎩

(cos θ3(g)b−1
1 (x5)b−1

2 (x5))x1

+b−1
1 (x5)b2(x5)

(

sin θ3(g)b−1
1 (x5)b−1

2 (x5)
)

x2

⎧

⎨

⎩

−b1(x5)b−1
2 (x5)

(

sin θ3(g)b−1
1 (x5)b−1

2 (x5)
)

x1

(cos θ3(g)b−1
1 (x5)b−1

2 (x5))x2

x3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(7.64)
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By introducing the (effective) deformed angles ˜θ(g) (i 
= j, i 
= k, j 
= k)3

˜θi(g, x5) ≡ θi(g)b−1
j (x5)b−1

k (x5)

ESC “off′′ on i, ESC “on′′ on j and k
=

1
2
θi(g) |εijk| b−1

j (x5)b−1
k (x5), ∀i = 1, 2, 3,

(7.65)

Equations (7.56), (7.63), (7.64) can be written in compact form, respec-
tively, as

⎛

⎜

⎜

⎝

x0′

x1′

x2′

x3′

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

x0

x1

(cos˜θ1(g, x5))x2 + b−1
2 (x5)b3(x5)

(

sin˜θ1(g, x5)
)

x3

−b2(x5)b−1
3 (x5)

(

sin˜θ1(g, x5)
)

x2 + (cos˜θ1(g, x5))x3

⎞

⎟

⎟

⎟

⎟

⎠

;

(7.66)
⎛

⎜

⎜

⎝

x0′

x1′

x2′

x3′

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

x0

(cos˜θ2(g, x5))x1 − b−1
1 (x5)b3(x5)

(

sin˜θ2(g, x5)
)

x3

x2

−b2(x5)b−1
3 (x5)

(

sin˜θ1(g, x5)
)

x2 + (cos˜θ1(g, x5))x3

⎞

⎟

⎟

⎟

⎟

⎠

;

(7.67)
⎛

⎜

⎜

⎝

x0′

x1′

x2′

x3′

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

x0

(cos˜θ3(g, x5))x1 + b−1
1 (x5)b2(x5)

(

sin˜θ3(g, x5)
)

x2

−b1(x5)b−1
2 (x5)

(

sin˜θ3(g, x5)
)

x1 + (cos˜θ3(g, x5))x2

x3

⎞

⎟

⎟

⎟

⎟

⎠

.

(7.68)
By comparing the finite true (clockwise) rotations by an angle θi(g) about
̂xi in SR

⎛

⎜

⎜

⎝

x0′

x1′

x2′

x3′

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

x0

x1

(cos θ1(g))x2 + (sin θ1(g))x3

− (sin θ1(g))x2 + (cos θ1(g))x3

⎞

⎟

⎟

⎟

⎟

⎠

; (7.69)

3Definition (7.65) of ˜θ(g) does only formally coincides with that of the isotopic angles
introduced by Santilli.

Note also that ˜θ
i
(g, x5) = ˜θi(g, x5) ∀i = 1, 2, 3, i.e., that, as θ(g), the (effective)

deformed angle three-vector ˜θ(g, x5) is Euclidean. This follows from (7.65), because
θi(g) = θi(g) and, as mentioned before for the deformed rapidity, the position of the
index i in bi(x

5) is a notational convention.
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⎛

⎜

⎜

⎝

x0′

x1′

x2′

x3′

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

x0

(cos θ2(g))x1 − (sin θ2(g))x3

x2

(sin θ2(g))x1 + (cos θ2(g))x3

⎞

⎟

⎟

⎟

⎟

⎠

; (7.70)

⎛

⎜

⎜

⎝

x0′

x1′

x2′

x3′

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

x0

(cos θ3(g))x1 + (sin θ3(g))x2

− (sin θ3(g))x1 + (cos θ3(g))x2

x3

⎞

⎟

⎟

⎟

⎟

⎠

(7.71)

with those in DSR, it is easily seen that the deforming transition SR→DSR
corresponds – at the level of group parameters – to the deforming and
anisotropizing rescaling of angles θi(g) → ˜θi(g, x5) ∀i = 1, 2, 3.

7.2.4 Antisymmetric Tensor of Deformed Rotation
Parameters

We have seen in Sect. 5.3 that, for a generalized Minkowski space, all forms
of the tensor δω are global, i.e., independent of the set of metric variables
x =

{

x0, x1, x2, x3
}

, but only δωαβ(g) is a priori independent of possible
nonmetric variables {x}n.m.. For instance, consider the completely con-
travariant form of δω:

δωαβ(g, {x}n.m.) ≡ gαγ({x}n.m.)g
βδ({x}n.m.)δωαβ(g) (7.72)

or, in matrix form:

δωcontrav.(g, {x}n.m.) ≡ gT
contrav.({x}n.m.) × δωcov.(g) × gcontrav.({x}n.m.).

(7.73)

In the DSR case, the completely contravariant metric tensor reads

gµν
DSR(x5) = diag(b−2

0 (x5),−b−2
1 (x5),−b−2

2 (x5),−b−2
3 (x5))

ESC off= δµν(δµ0b−2
0 (x5) − δµ1b−2

1 (x5) − δµ2b−2
2 (x5) − δµ3b−2

3 (x5)) (7.74)
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or

gcontrav.DSR(x5) =

⎛

⎜

⎜

⎝

b−2
0 (x5) 0 0 0

0 −b−2
1 (x5) 0 0

0 0 −b−2
2 (x5) 0

0 0 0 −b−2
3 (x5)

⎞

⎟

⎟

⎠

.

(7.75)
Therefore

δωαβ
DSR(g, x5) ≡ δωcontrav.,DSR(g, x5)

≡ gT
contrav.DSR(x5) × δωcov.,(DSR)(g) × gcontrav.DSR(x5)

=

⎛

⎜

⎜

⎝

b−2
0 (x5) 0 0 0

0 −b−2
1 (x5) 0 0

0 0 −b−2
2 (x5) 0

0 0 0 −b−2
3 (x5)

⎞

⎟

⎟

⎠

(7.76)

×

⎛

⎜

⎜

⎝

0 −ζ1(g) −ζ2(g) −ζ3(g)
ζ1(g) 0 −θ3(g) θ2(g)
ζ2(g) θ3(g) 0 −θ1(g)
ζ3(g) −θ2(g) θ1(g) 0

⎞

⎟

⎟

⎠

×

⎛

⎜

⎜

⎝

b−2
0 (x5) 0 0 0

0 −b−2
1 (x5) 0 0

0 0 −b−2
2 (x5) 0

0 0 0 −b−2
3 (x5)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

b−2
0 (x5) 0 0 0

0 −b−2
1 (x5) 0 0

0 0 −b−2
2 (x5) 0

0 0 0 −b−2
3 (x5)

⎞

⎟

⎟

⎠

×

⎛

⎜

⎜

⎝

0 ζ1(g)b−2
1 (x5) ζ2(g)b−2

2 (x5) ζ3(g)b−2
3 (x5)

ζ1(g)b−2
0 (x5) 0 θ3(g)b−2

2 (x5) −θ2(g)b−2
3 (x5)

ζ2(g)b−2
0 (x5) −θ3(g)b−2

1 (x5) 0 θ1(g)b−2
3 (x5)

ζ3(g)b−2
0 (x5) θ2(g)b−2

1 (x5) −θ1(g)b−2
2 (x5) 0

⎞

⎟

⎟

⎠

,

whence, by recalling definitions (7.40) and (7.65) of the (effective) deformed
rapidity and angle (Euclidean) three-vectors, we obtain:
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

δω0i
DSR(g, x5) = ζi(g)b−2

0 (x5)b−2
i (x5)

= ˜ζ
i
(g, x5)b−1

0 (x5)b−1
i (x5), ∀ i = 1, 2, 3;

δω12
DSR(g, x5) = −θ3(g)b−2

1 (x5)b−2
2 (x5) = −˜θ

3
(g, x5)b−1

1 (x5)b−1
2 (x5)

δω13
DSR(g, x5) = θ2(g)b−2

1 (x5)b−2
3 (x5) = ˜θ

2
(g, x5)b−1

1 (x5)b−1
3 (x5)

δω23
DSR(g, x5) = −θ1(g)b−2

2 (x5)b−2
3 (x5) = −˜θ

1
(g, x5)b−1

2 (x5)b−1
3 (x5)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

⇒ δωjk
DSR(g, x5)

ESC on on i, ESC off on j and k
= εikj

˜θ
i
(g, x5)b−1

j (x5)b−1
k (x5),

∀ (j, k) ∈ (1, 2, 3) .
(7.77)

The earlier relation between the components of δωαβ,(DSR)(g) and those
of δωαβ

DSR(g, x5) can be therefore written as (i, j = 1, 2, 3) (ESC off):
{

δωij,(DSR)(g) = b2i (x
5)b2j (x

5)δωij
DSR(g, x5);

δω0i,(DSR)(g) = −b−2
0 (x5)b−2

i (x5)δω0i
DSR(g, x5).

(7.78)

By recalling the expressions (7.40) and (7.65) of the deformed rapidity
and angle three-vectors, we can therefore state that the formal “anisotropiz-
ing deforming” transition SR→DSR is summarized, at the group parameter
level, by the passage from the antisymmetric, parametric covariant tensor
δωαβ,(SR)(g)4 to the antisymmetric contravariant tensor δωαβ

DSR(g, x5) of
the (effective) deformed parameters of SO(1, 3)DEF. .

Let us notice that the same conclusion (namely, the characterization
of δωαβ

DSR(g, x5) as tensor of the effective deformed parameters) does not
hold at the infinitesimal level. Indeed, in DSR (see Part I) – and in SR
as well – one cannot rescale parameters in a unique way, since in any
fixed infinitesimal transformation typology the related group parameter is
rescaled in a different way, depending on the coordinate concerned. Effective
deformed group parameters can be therefore defined only at the finite level

4Notice that formally

δωαβ,(SR)(g) = δωαβ,(DSR)(g), (◦)

but the g’s belong to different space–time rotation groups. In the l.h.s of (◦) g ∈
SO(1, 3)STD. (homogeneous Lorentz group), while in the r.h.s. of (◦) g belong to
the “deformed” counterpart, i.e., g ∈ SO(1, 3)DEF. (homogeneous “deformed” Lorentz
group).
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of the space–time rotation component SO(1, 3)DEF. of the maximal Killing
group P (1, 3)DEF. of the deformed 4D Minkowski space ˜M(x5).

The possibility of generalizing such results to the generalized 4D (S,T=
4-S) (and possibly to the N -d (S,T=N–S)) Minkowskian spaces depends
strongly on the explicit form of the metric tensor. For instance, for a non-
diagonal N -d metric tensor, the parametric tensor δωαβ(g, {x}n.m.) in gen-
eral has no definite symmetry property, and therefore it is more difficult
(or even impossible) to identify its components with possible (effective)
generalized parameters.

7.2.5 Parameter Range and Group Compactness

As is by now well known, in general, in the generalized 4D (S,T=4-S)
Minkowski spaces, the rank-2, completely covariant, antisymmetric tensor
δωµν(g) is – apart from a sign – the tensor of the 4(4 − 1)/2 = 6 dimen-
sionless parameters of the rotational component SO(T = 4 − S, S)6GEN. of
the (maximal) Killing group P (T = 4 − S, S)10GEN. of a generalized 4D
Minkowski space. Moreover, due to its antisymmetry, it can always be
decomposed in an axial three-vector θ(g) and a polar three-vector ζ(g). The
physical interpretation of such (Euclidean) three-vectors is strictly related
to the number of space-like (or time-like) dimensions and on their labeling.

In the standard case (including SR and DSR) of S = 3, T = 1, with
usual index range {0, 1, 2, 3} and dimensional labeling, the components of
the axial (Euclidean) three-vector θ(g) are the rotation angles about the
three space-like directions (i.e., the physical space in SR and in DSR), and
therefore:

θi(g) ∈ [0, 2π] ∀i = 1, 2, 3. (7.79)

On the other hand, the components of the polar (Euclidean) three-vector
ζ(g) are the dimensionless parameters (rapidities) of the (pseudo-)rotations
in a mixed (space-like–time-like and space–time in SR and in DSR) plane.
Since they enter the expressions of finite pseudorotations as arguments of
hyperbolic functions, each component of the rapidity three-vector has a
noncompact range (the whole real line):

ζi(g) ∈ R ≡ (−∞,+∞) ∀i = 1, 2, 3. (7.80)

Then, the chronotopical rotation group SO(1, 3)GEN. of a generalized
4D (3,1) Minkowski space is noncompact. This is obviously related to the
existence of at least one time-like dimension, namely of pseudorotations (or
boost transformations).

Such a conclusion holds true, in general, for the N -dimensional case. The
presence of time-like dimensions (i.e., T > 0), and therefore of true space–
time mixing, entails the lack of compactness of the chronotopical rotation
group of the N -d generalized Minkowski space, i.e., of the homogeneous
component of the corresponding (maximal) Killing group P (T, S)GEN..
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An example supporting the earlier statement is provided by the tran-
sition from the 4D Euclidean space E4(T = 0, S = 4, with metric tensor
gµν,E4 = −δµν) to the standard 4D Minkowski space M (T = 1, S = 3,

with metric tensor gµν,SR
ESCoff= δµν(δµ0 − δµ1 − δµ2 − δµ3)). The transition

E4 → M amounts to a signature change of a space-like dimension (which
becomes time-like). By keeping the Euclidean metric unchanged, such a
change can be expressed by an “inverse Wick rotation,” i.e., by a formal
complexification of the dimension considered:5

x0
E4

= ix0
M . (7.81)

Whereas the chronotopical rotation group SO(4)STD. of E4 is compact –
since all its transformations are true rotations between space-like dimen-
sions, and therefore their parameters can be interpreted as real rotation
angles –, the corresponding rotation group SO(1, 3)STD. of M is not com-
pact, due to the time-like dimension (parameterized by x0).

In SR, the light speed c being the maximal causal velocity (m.c.v.) implies
that the range of the dimensional boost parameter vi(g) is the real, noncom-
pact (since bounded but open) interval (−c,+c) ∀g ∈ SO(1, 3)STD.(namely,
“luminal” boosts are not allowed).6 Analogously, in DSR, where the m.c.v.
is given by ui

DSR = b0(x
5)

bi(x5) c, the range of the dimensional velocity parameter
vi(g) of the deformed boost is the real, noncompact interval:

(

−ui
DSR = −cb0(x

5)
bi(x5)

,+ui
DSR = +c

b0(x5)
bi(x5)

)

vi(g) ∈ (−ui
DSR,+u

i
DSR) ∀i = 1, 2, 3, ∀g ∈ SO(1, 3)DEF. (7.82)

since
˜βi(g)|vi(g)=±ui

DSR
= ±ui

DSR

ui
DSR

= ±1; (7.83)

˜γi(g)|vi(g)=±ui
DSR

=

[

(

1 −
(

˜βi(g)
)2
)−1/2

]

|vi(g)=±ui
DSR

= 1 −
[

(

˜βi(g)|vi(g)=±ui
DSR

)2
]−1/2

= ∞. (7.84)

5Notice the merely formal meaning of the complexification procedure of x0. The
inverse Wick rotation (7.81) implies only the change of signature of the time dimension
and not the change of range of x0 (which is in general real and unbounded both in E4

and in M).
6As is well known, this amounts to say that no rest frame exists for a massless particle.
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7.2.6 Deformed Boosts as Pseudorotations

As in the SR case, for deformed boosts, too, it is possible to make some
considerations essentially related to the time-like nature of x0.

Firstly, it is easily seen that the finite expression (7.41) of a deformed
boost along ̂xi in the parametric basis of effective deformed rapidities
{

˜ζ
i
(g)
}

looks very much (except for some signs) like a true deformed (clock-

wise) rotation by an angle ˜ζ
i
(g) in the 2D deformed plane Π(x0,xi)def. ⊂

˜M(x5) (endowed with the metric structure determined by gab,DSR
ESCoff=

δab(δa0b
2
0(x

5) − δaib
2
i (x

5)), with a, b ∈ {0, i}), except for the replacement
of the trigonometric functions sin and cos with the hyperbolic functions
sinh and cosh. As in the SR case, this can be regarded as an inverse Wick
rotation on the effective rotation angle ˜ζ

i
(g):

˜ζ
i
(g) → i˜ζ

i
(g) ∀i = 1, 2, 3. (7.85)

Such a result can be actually extended to an arbitrary, N -d generalized
Minkowski space (with T time-like and S space-like dimensions), and there-
fore boost transformations can be regarded as deformed pseudorotations
(by an imaginary angle, in the Wick sense specified earlier), mixing time-
like and space-like dimensions.

Like in the SR case, it is possible to further highlight the pseudorotational
character of a deformed boost by trying to represent it as a true rotation
by a real angle θi(g) (instead of an imaginary angle ˜ζ

i
(g)), on a deformed

2D plane Π(x0,xi)def ⊂ ˜M(x5). To this aim, consider the expression (7.43)
of a deformed boost along ̂xi in the parametric basis of velocities

{

vi(g)
}

,
we can rewrite as:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x′0 =
1

√

1 −
(

˜βi(g)
)2

(

x0 − ˜βi(g)
bi(x5)
b0(x5)

xi

)

;

xi′ =
1

√

1 −
(

˜βi(g)
)2

(

xi − ˜βi(g)
b0(x5)
bi(x5)

x0

) (7.86)

(we omitted the components orthogonal to the boost direction, which are
unaffected by the transformation). Dividing and multiplying the r.h.s. by

quantity

√

1 +
(

˜βi(g)
)2

, one gets
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x′0 =

√

√

√

√

√

√

1 +
(

˜βi(g)
)2

1 −
(

˜βi(g)
)2

⎡

⎢

⎢

⎣

x0 − ˜βi(g)
bi(x5)
b0(x5)

xi

√

1 +
(

˜βi(g)
)2

⎤

⎥

⎥

⎦

;

xi′ =

√

√

√

√

√

√

1 +
(

˜βi(g)
)2

1 −
(

˜βi(g)
)2

⎡

⎢

⎢

⎣

xi − ˜βi(g)
b0(x5)
bi(x5)

x0

√

1 +
(

˜βi(g)
)2

⎤

⎥

⎥

⎦

.

(7.87)

Defining the deformed angular parameters7

θi
def(g) = θi(g)b−1

0 (x5)b−1
i (x5) ≡ arctg

(

˜βi(g)
)

⇔ ˜βi(g) ≡ tg
(

θi
def(g)

)

,

(7.88)
one gets

1
√

1 +
(

˜βi(g)
)2

= cos
(

θi
def(g)

)

; (7.89)

˜βi(g)
√

1 +
(

˜βi(g)
)2

= sin
(

θi
def(g)

)

. (7.90)

Moreover, by putting

αi
DSR(g) ≡

√

√

√

√

√

√

1 +
(

˜βi(g)
)2

1 −
(

˜βi(g)
)2 , (7.91)

(7.86) becomes
⎧

⎪

⎪

⎨

⎪

⎪

⎩

x′0 = αi
DSR(g)x0 cos

(

θi
def(g)

)

− b−1
0 (x5)bi(x5)xi sin

(

θi
def(g)

)

;

xi′ = αi
DSR(g)xi cos

(

θi
def(g)

)

− b0(x5)b−1
i (x5)x0 sin

(

θi
def(g)

)

.
(7.92)

Apart from the “DSR length-deformation parameter” αi
DSR(g), (7.92)

does not represent a true 3D-deformed rotation of axes ̂x0 and ̂xi. In fact,
it is easily seen (from the parity properties of functions sin and cos) that
∀i ∈ {1, 2, 3} axes ̂x0 and ̂xi rotate by the same deformed angle θi

def(g) =

7Not to be confused with the effective deformed angles ˜θi given by (7.65)!
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θi(g)b−1
0 (x5)b−1

i (x5) but in opposite verses. In other words, when repre-
sented as a deformed rotation by a real angle on the deformed plane
Π(x0,xi),def. ⊂ ˜M(x5), a deformed boost implies not only a length deforma-
tion, but also a transition from a pair (̂x0, ̂xi) of orthogonal axes8 to a pair
(̂x0′,̂xi′) of oblique axes (in strict analogy with the SR case).

Needless to say, the earlier results, obtained in the finite transformational
case, hold true at the infinitesimal level, too. This is easily seen by recalling
the expression of a deformed infinitesimal boost along ̂xi in the rapidity
basis (see (7.41))

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x0′
(g)(x, x

5) = x0 − ζi(g)b−2
0 (x5)xi;

xi′
(g)(x, x

5) = −ζi(g)b−2
i (x5)x0 + xi :

xk �=i′
(g) (x, x5) = xk �=i

(7.93)

and comparing it with a true deformed infinitesimal rotation by an angle
θi(g) about ̂xi, say i = 1 (see (7.56)):

⎛

⎜

⎜

⎜

⎝

x0′
(g)(x, x

5)
x1′

(g)(x, x
5)

x2′
(g)(x, x

5)
x3′

(g)(x, x
5)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

x0

x1

x2 + θ1(g)b−2
2 (x5)x3

−θ1(g)b−2
3 (x5)x2 + x3

⎞

⎟

⎟

⎟

⎟

⎠

(7.94)

(now, of course, the role of the real deformed angle θi(g) is played by ζi(g)).

7.3 Deformed True Rotation about a Generic Axis

7.3.1 Parametric Decomposition

We want now to derive the finite, deformed true (clockwise) rotations by a
generic angle ϕ(g) about a generic axis ε̂(g) in the physical 3D space ˜E3(x5)
embedded in ˜M(x5), by exploiting the form of the infinitesimal generators
of the DSR chronotopical group SO(1, 3)DEF. derived in Sect. 6.3.1. The
unit vector of the rotation axis is ε̂(g) = ε1(g)̂x1+ ε2(g)̂x2 + ε3(g)̂x3, with
|̂ε(g)|2∗ ≡

∑3
i=1 b

2
i (x

5)
(

εi(g)
)2 = 1 (remember that |·|∗ is the 3D norm

associated to −gij,DSR(x5)).
In general, by the very basic properties of a group, it is always possi-

ble to find a (not unique) axial-parametric decomposition which transfers
– once fixed the three coordinate axes in the space considered – all the

8Here orthogonality must be obviously meant in the deformed Minkowski space
˜M(x5), namely according to the deformed metric gDSR (see Sect. 3.1).
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dependence on the group element g only to the transformation parameters
{

θi(g)
}

i=1,2,3
9

(ε̂(g), ϕ(g)) → (̂x1, θ1(g))(̂x2, θ2(g))(̂x3, θ3(g)). (7.95)

At the infinitesimal (i.e., algebraic) level, such a decomposition is inde-
pendent of the order, due to the commutativity of the infinitesimal elements
(i.e., of the transformations at an algebraic level) of any Lie group of trans-
formations. This of course does no longer hold at a finite (i.e., group) level
– due to the non-abelian nature of Lie groups of chronotopical transforma-
tions – and therefore the order on the r.h.s. of (7.95) is fixed for a given
pair (ε̂(g), ϕ(g)).

Needless to say, at the algebraic and group level the rotation angles ϕ(g)
and

{

θi(g)
}

i=1,2,3
are infinitesimal and finite, respectively. In the treated

case of finite deformed true (clockwise) rotation with generic finite angle
ϕ (g) around the axis ε̂ (g) of ˜E3(x5), it is possible to write down a pos-
sible explicit dependence of the assigned couple (ϕ (g) , ε̂ (g)) on the set
{

θi(g)
}

i=1,2,3
, i.e., on the components of the finite deformed angle Euclid-

ean three-vector θ(g); this corresponds to the following possible axial-
parametric decomposition:

(ε̂(g), ϕ(g)) → ( ̂x1
DSR, θ

1(g))( ̂x2
DSR, θ

2(g))( ̂x3
DSR, θ

3(g)). (7.96)

We proceed in the following way. Let us define a deformed three-vector

ψ (g) ≡ ϕ(g)ε̂(g)

= ϕ(g)ε1(g) ̂x1
DSR + ϕ(g)ε2(g) ̂x2

DSR + ϕ(g)ε3(g) ̂x3
DSR.

(7.97)

Then, the set
{

ψi(g) ≡ ϕ(g)εi(g)
}

i=1,2,3
, when understood as the set of

components of an Euclidean three-vector ψEucl (g), can be identified with
{

θi(g)
}

i=1,2,3
; that is, we have:

θ(g) ≡ ψEucl (g)

= ϕ(g)ε1(g)̂x1
SR + ϕ(g)ε2(g)̂x2

SR + ϕ(g)ε3(g)̂x3
SR. (7.98)

In this sense, we have “axially-parametrically decomposed” the expres-
sion −ϕ (g) ε̂ (g) · SDSR(x5) in (7.4)–(7.5).

As mentioned before, let us stress that the axial-parametric decom-
position considered is not unique; this is due to the fact that (infin-
itesimal) finite deformed true rotations do form a proper (subalgebra)

9In general, with

{

̂x1, ̂x2, ̂x3

}

fixed in ˜E3(x5), θi = θi
(

ε̂(g), ϕ(g)
)

= θi(g), but, for

simplicity’s sake, the short notation θi(g) will be used ∀i = 1, 2, 3.
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non-abelian subgroup of the larger embedding deformed space–time rota-
tion (i.e., deformed Lorentz homogeneous) group, namely (su(2)DEF. ⊂
su(2)DEF. ⊗ su(2)DEF.) SO(3)DEF. ⊂ SO(1, 3)DEF. .

We have therefore, in DSR (· is the Euclidean scalar product):

−ϕ(g)ε̂(g) · SDSR(x5)

→ −θ1(g)S1
DSR(x5) − θ2(g)S2

DSR(x5) − θ3(g)S3
DSR(x5)

= −
3
∑

i=1

θi(g)Si
DSR(x5) (7.99)

(infinitesimal level, any composition order);10

exp
(

−ϕ(g)ε̂(g) · SDSR(x5)
)

→ exp
(

−θ1(g)S1
DSR(x5)

)

× exp
(

−θ2(g)S2
DSR(x5)

)

×exp
(

−θ3(g)S3
DSR(x5)

)

(7.100)

(finite level, fixed composition order).
A different axial-parametric decomposition utilizes the Euler angles
{

θi
1(g), θ

j �=i

(g), θ
i

2(g)
}

:

(ε̂(g), ϕ(g)) → ( ̂xi, θi
1(g))(

̂

xj , θ
j

(g))( ̂xi , θ
i

2(g));

i, j ∈ {1, 2, 3} , i 
= j. (7.101)

In this case, only two coordinate space axes, ̂xi and ̂xj �=i, are used, with
a special composition order. At infinitesimal level, one has

(ε̂(g), ϕ(g))

→ ( ̂xi, θi
1(g))(

̂

xj �=i, θ
j �=i

(g))( ̂xi , θ
i

2(g)) ≡ ( ̂xi, θi
1(g) + θ

i

2(g))(
̂

xi , θ
i

2(g)).
(7.102)

For DSR, we have

−ϕ(g)ε̂(g) · SDSR(x5)

−→ −θi
1(g)S

i
DSR(x5) − θj �=i(g)Sj �=i

DSR(x5) − θi
2(g)S

i
DSR(x5)

= −
(

θi
1(g) + θi

2(g)
)

Si
DSR(x5) − θj �=i(g)Sj �=i

DSR(x5) (7.103)

10For precision’s sake, in (7.99) – and in general for infinitesimal deformed true rotation
transformations – g ∈ SO(3)DEF. should be replaced by δg, where δg ∈ su(2)DEF., i.e.,
it is an element of the deformed true rotation algebra. But, for simplicity’s sake, we will
omit, but mean, this cumbersome notation.
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(infinitesimal level, any composition order);

exp
(

−ϕ(g)ε̂(g) · SDSR(x5)
)

→ exp
(

−θi
1(g)S

i
DSR(x5)

)

× exp
(

−θj �=i(g)Sj �=i
DSR(x5)

)

× exp
(

−θi
2(g)S

i
DSR(x5)

)

(7.104)

(finite level, fixed composition order).
It is also possible to find out by direct computation (namely, by integra-

tion on the group parameters) the 4×4 matrix representative of the finite
element g of the rotation group SO(1, 3)DEF. in DSR corresponding to a
rotation by ϕ(g) about ε̂(g). We have

−ϕ(g)ε̂(g) · SDSR(x5)

= −ϕ(g)
3
∑

i=1

εi(g)Si
DSR(x5)

integration on group parameters→

→ exp
(

−ϕ(g)ε̂(g) · SDSR(x5)
)

= exp

(

−ϕ(g)
3
∑

i=1

εi(g)Si
DSR(x5)

)


=
3
∏

i=1

exp
(

−ϕ(g)εi(g)Si
DSR(x5)

)

, (7.105)

where in the last passage the Baker–Campbell–Hausdorff formula is
exploited, the non-abelian nature of SO(3)DEF. ⊂ SO(1, 3)DEF. is used,
and matrix product is understood in

∏3
i=1.

Let us notice an interesting fact. Define the following functions:

Γ(algebraic) : su(2)DEF. � δg → ((ε̂(g), ϕ(g))) ∈
(

˜M(x5) ⊃
)

˜E3(x5) × Iε(0);
(7.106)

Γ(group) : SO(3)DEF. � g → ((ε̂(g), ϕ(g))) ∈
(

˜M(x5) ⊃
)

˜E3(x5)×[−2π, 2π] ;
(7.107)

∆(algebraic) : (boost component of) su(2)DEF. ⊗ su(2)DEF. � δg

→ ((ε̂(g), ρ(g))) ∈ ˜M(x5)
(

⊃ ˜E3(x5)
)

× Iε(0); (7.108)

∆(group) : (boost component of) SO(1, 3)DEF. � g

→ ((ε̂(g), ρ(g))) ∈ ˜M(x5)
(

⊃ ˜E3(x5)
)

×R; (7.109)
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where R ⊃ Iε(0) ≡ (−ε, ε) is a generic neighborhood centered in 0 with
radius ε and the notation ˜M(x5)

(

⊃ ˜E3(x5)
)

means that ε̂(g) ∈ ˜E3(x5),
but deformed boost transformations do affect the time-like time coordinate,
also.

It can be seen, on a physically-grounded basis, that these “group-
mapping” functions have a periodicity Z2, i.e., they identify “diametrically
opposed” points of their codomain manifolds; therefore,. the correct defin-
ing expressions are:

Γ(algebraic) : su(2)DEF. � δg

→ ((ε̂(g), ϕ(g))) ∈
((

˜M(x5) ⊃
)

˜E3(x5) × Iε(0)
)

/Z2 = ˜E3(x5) × I+
ε (0);

(7.110)

Γ(group) : SO(3)DEF. � g

→
(

((ε̂(g), ϕ(g)))∈
(

˜M(x5) ⊃
)

˜E3(x5)×[−2π, 2π]
)

/Z2 = ˜E3(x5) × [0, 2π] ;

(7.111)

∆(algebraic) : (boost component of) su(2)DEF. ⊗ su(2)DEF. � δg

→ ((ε̂(g), ρ(g))) ∈
(

˜M(x5)
(

⊃ ˜E3(x5)
)

× Iε(0)
)

/Z2; (7.112)

∆(group) : (boost component of) SO(1, 3)DEF. � g

→
(

((ε̂(g), ρ(g))) ∈ ˜M(x5)
(

⊃ ˜E3(x5)
)

×R
)

/Z2, (7.113)

where R ⊃ Iε(0) ≡ [0, ε) is a generic right neighborhood of 0 with radius ε.
In fact, as it is intuitively reasonable, it can be argued on physical grounds

that the same (algebraic) group element (δ) g is equivalently mapped in the
following ways, respectively:

(δ) g → Γ ((δ) g) =
{

(ε̂(g), ϕ(g))
(−ε̂(g),−ϕ(g))

⇔ (δ) g−1 → Γ
(

(δ) g−1
)

=
{

(ε̂(g),−ϕ(g))
(−ε̂(g), ϕ(g)) ; (7.114)
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(δ) g → ∆((δ) g) =
{

(ε̂(g), ρ(g))
(−ε̂(g),−ρ(g))

⇔ (δ) g−1 → ∆
(

(δ) g−1
)

=
{

(ε̂(g),−ρ(g))
(−ε̂(g), ρ(g)) . (7.115)

In other words, the codomain manifolds of the “group-mapping” func-
tions Γ and ∆ have a discrete “antipodal” symmetry group Z2. Whence
the physical identification of algebraic and group elements must be made
modulo a parity space-symmetry.

In the case of true rotations, this topologically means that

Π0 (O(3)DEF.) (= Π0 (O(3)STD.)) = Z2, (7.116)

i.e., that the zeroth homotopy group of the – standard or deformed – orthog-
onal Lie group of order three is Z2.

7.3.2 Exponentiating the Deformed Infinitesimal Rotation

Needless to say, all the parametrization procedures we discussed earlier are
physically equivalent (although they may yield different formal results).
We shall exploit the first one. Let us denote by R(ϕ(g),̂ε(g)),DSR

(x5) the

4×4 matrix corresponding to an infinitesimal (clockwise) rotation by an
(infinitesimal) angle ϕ(g) about the axis ε̂(g) (matrix belonging a 4D rep-
resentation of the algebra of SO(3)DEF., namely su(2)DEF.):

R(ϕ(g),̂ε(g)),DSR
(x5) ≡

≡ −ϕ(g)ε̂(g) · SDSR(x5)

axial-parametric decomposition

(algebraic level) (7.117)

→
(

−θ1(g)S1
DSR(x5) − θ2(g)S2

DSR(x5) − θ3(g)S3
DSR(x5)

)

passage to finite (i.e., group) level:

Exponentiation
→ exp(R(ϕ(g),̂ε(g)),DSR

(x5))

= exp
(

−θ1(g)S1
DSR(x5) − θ2(g)S2

DSR(x5) − θ3(g)S3
DSR(x5)

)

=
∞
∑

n=0

1
n!
(

−θ1(g)S1
DSR(x5) − θ2(g)S2

DSR(x5) − θ3(g)S3
DSR(x5)

)n
, (7.118)
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where exp(R(ϕ(g),̂ε(g)),DSR
(x5)) is the 4×4 matrix corresponding to a finite

(clockwise) rotation by a (finite) angle ϕ(g) about the axis ε̂(g), belonging
to a 4D representation of SO(3)DEF., of course.

On account of the explicit form of SDSR(x5) and of the deformed rotation
generators (see Sect. 7.2.1), we have

R(ϕ(g),̂ε(g)),DSR
(x5)

=

⎛

⎜

⎜

⎜

⎝

0 0 0 0
0 0 θ3(g)b−2

1 (x5) −θ2(g)b−2
1 (x5)

0 −θ3(g)b−2
2 (x5) 0 θ1(g)b−2

2 (x5)

0 θ2(g)b−2
3 (x5) −θ1(g)b−2

3 (x5) 0

⎞

⎟

⎟

⎟

⎠

(7.119)

and therefore the corresponding finite form is given by the matrix

Λ
R(ϕ(g),̂ε(g)),DSR

(x5) ≡ exp(R(ϕ(g),̂ε(g)),DSR
(x5))

= exp

⎛

⎜

⎜

⎜

⎝

0 0 0 0
0 0 θ3(g)b−2

1 (x5) −θ2(g)b−2
1 (x5)

0 −θ3(g)b−2
2 (x5) 0 θ1(g)b−2

2 (x5)

0 θ2(g)b−2
3 (x5) −θ1(g)b−2

3 (x5) 0

⎞

⎟

⎟

⎟

⎠

.

(7.120)

By calculating the first powers of the matrixR(ϕ(g),̂ε(g)),DSR
(x5), one gets

the following recursive relations (with 14D being the 4D unit matrix):11

11
∣

∣θ̃(g, x5)
∣

∣

2
is the Euclidean norm of the (effective) deformed rotation angle (Euclid-

ean) three-vector θ̃(g, x5) defined by (7.65):

∣

∣θ̃(g, x5)
∣

∣

2
=

=
(

θ1(g)
)2

b−2
2 (x5)b−2

3 (x5) +
(

θ2(g)
)2

b−2
1 (x5)b−2

3 (x5) +
(

θ3(g)
)2

b−2
1 (x5)b−2

2 (x5).
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⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1)
(

R(ϕ(g),̂ε(g)),DSR
(x5)

)0

= 14D;

(2)
(

R(ϕ(g),̂ε(g)),DSR
(x5)

)2n

= (−1)n−1
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2(n−1) (

R(ϕ(g),̂ε(g)),DSR
(x5)

)2

= −
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

−2

(−1)n
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2n (

R(ϕ(g),̂ε(g)),DSR
(x5)

)2

, n ∈ N ;

(3)
(

R(ϕ(g),̂ε(g)),DSR
(x5)

)2n+1

= (−1)n
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2n

R(ϕ(g),̂ε(g)),DSR
(x5), n ∈ N ∪ {0} .

(7.121)
By comparing relations (7.121) with the corresponding “undeformed” ones
valid in SR, and recalling the explicit forms of R(ϕ(g),̂ε(g)),DSR

(x5) (see

(7.117)), of
(

R(ϕ(g),̂ε(g)),DSR
(x5)

)2

and of the corresponding “undeformed”

counterparts in SR, it can be immediately seen that the (local) general-
izing “anisotropizing deforming” transition SR→DSR entails the loss of
symmetry of all the powers of R(ϕ(g),̂ε(g)),DSR

(x5) (this is due to the loss
of symmetry of the 4D representation of the infinitesimal generators of
SO(1, 3)DEF.: see Sect. 6.3.1).

Then, it is possible to evaluate the exponential of R(ϕ(g),̂ε(g)),DSR
(x5):

exp(R(ϕ(g),̂ε(g)),DSR
(x5)) =

∞
∑

n=0

1
n!

(

R(ϕ(g),̂ε(g)),DSR
(x5)

)n

= 14D +
∞
∑

n=1

1
(2n)!

(

R(ϕ(g),̂ε(g)),DSR
(x5)

)2n

+
∞
∑

n=0

1
(2n+ 1)!

(

R(ϕ(g),̂ε(g)),DSR
(x5)

)2n+1

= 14D −
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

−2 (

R(ϕ(g),̂ε(g)),DSR
(x5)

)2 ∞
∑

n=1

(−1)n

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2n

(2n)!

+R(ϕ(g),̂ε(g)),DSR
(x5)

∞
∑

n=0

(−1)n

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2n

(2n+ 1)!

= 14D −
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

−2 (

R(ϕ(g),̂ε(g)),DSR
(x5)

)2 ∞
∑

n=1

(−1)n

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2n

(2n)!

+
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

−1

R(ϕ(g),̂ε(g)),DSR
(x5)

∞
∑

n=0

(−1)n

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2n+1

(2n+ 1)!
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= 14D −
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

−2

(cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1)
(

R(ϕ(g),̂ε(g)),DSR
(x5)

)2

+
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

−1

sin
∣

∣

∣

˜θ(g, x5)
∣

∣

∣R(ϕ(g),̂ε(g)),DSR
(x5). (7.122)

In conclusion, we have, for the finite, deformed (clockwise) true rotation
by an angle ϕ(g) about a generic axis ε̂(g) of ˜E3(x5)

(

⊂ ˜M(x5)
)

:12

⎛

⎜

⎜

⎜

⎝

x0′(g, x, x5)
x1′(g, x, x5)
x2′(g, x, x5)
x3′(g, x, x5)

⎞

⎟

⎟

⎟

⎠

= Λ
R(ϕ(g),̂ε(g)),DSR

(x5)

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

,

(7.123)

with explicit components (where × denotes the usual algebraic multiplica-
tion)

x0′(g, x, x5) =
3
∑

µ=0

(

Λ
R(ϕ(g),̂ε(g)),DSR

(x5)
)0

µ
xµ = x0; (7.124)

x1′(g, x, x5) =
3
∑

µ=0

(

Λ
R(ϕ(g),̂ε(g)),DSR

(x5)
)1

µ
xµ

=

⎡

⎢

⎢

⎣

1 +

(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

(

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

−
(

θ1(g)
)2
b−2
2 (x5)b−2

3 (x5)
)

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

⎤

⎥

⎥

⎦

x1

+
θ3(g)b−2

1 (x5)
∣

∣

∣

˜θ(g, x5)
∣

∣

∣ sin
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2 x2

12In general (∀µ = 0, 1, 2, 3)

xµ′
DSR = xµ′

DSR(ϕ(g), ε̂(g), {x}m. , x5) = xµ′
DSR(g, x, x5)

but, for simplicity’s sake, the simpler notation xµ′
DSR(g, x, x5) will be used.
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−

(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

θ1(g)θ2(g)b−2
1 (x5)b−2

3 (x5)
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2 x2

−
θ2(g)b−2

1 (x5)
∣

∣

∣

˜θ(g, x5)
∣

∣

∣ sin
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2 x3

+

(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

θ1(g)θ3(g)b−2
1 (x5)b−2

2 (x5)
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2 x3

=
1

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

{[

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

(7.125)

+
(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

(

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

−
(

θ1(g)
)2
b−2
2 (x5)b−2

3 (x5)
)]

x1

+
[

θ3(g)b−2
1 (x5)

∣

∣

∣

˜θ(g, x5)
∣

∣

∣ sin
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

−
(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

θ1(g)θ2(g)b−2
1 (x5)b−2

3 (x5)
]

x2

−
[

θ2(g)b−2
1 (x5)

∣

∣

∣

˜θ(g, x5)
∣

∣

∣ sin
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

+
(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

θ1(g)θ3(g)b−2
1 (x5)b−2

2 (x5)
]

x3
}

;

x2′(g, x, x5) =
3
∑

µ=0

(

exp(R(ϕ(g),̂ε(g)),DSR
(x5))

)2

µ
xµ

= −
θ3(g)b−2

2 (x5)
∣

∣

∣

˜θ(g, x5)
∣

∣

∣ sin
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2 x1

+

(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

θ1(g)θ2(g)b−2
2 (x5)b−2

3 (x5)
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2 x1

+

⎡

⎢

⎢

⎣

1 +

(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

(

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

−
(

θ2(g)
)2
b−2
1 (x5)b−2

3 (x5)
)

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

⎤

⎥

⎥

⎦

x2
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+
θ1(g)b−2

2 (x5)
∣

∣

∣

˜θ(g, x5)
∣

∣

∣ sin
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2 x3

−

(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

θ2(g)θ3(g)b−2
1 (x5)b−2

2 (x5)
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2 x3

=
1

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

{

−
[

θ3(g)b−2
2 (x5)

∣

∣

∣

˜θ(g, x5)
∣

∣

∣ sin
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

+
(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

θ1(g)θ2(g)b−2
2 (x5)b−2

3 (x5)
]

x1

+
[

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

+
(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

×
(

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

−
(

θ2(g)
)2
b−2
1 (x5)b−2

3 (x5)
)]

x2

+
[

θ1(g)b−2
2 (x5)

∣

∣

∣

˜θ(g, x5)
∣

∣

∣ sin
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

−
(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

θ2(g)θ3(g)b−2
1 (x5)b−2

2 (x5)
]

x3
}

; (7.126)

x3′(g, x, x5) =
3
∑

µ=0

(

Λ
R(ϕ(g),̂ε(g)),DSR

(x5)
)3

µ
xµ

=
θ2(g)b−2

3 (x5)
∣

∣

∣

˜θ(g, x5)
∣

∣

∣ sin
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2 x1

−

(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

θ1(g)θ3(g)b−2
2 (x5)b−2

3 (x5)
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2 x1

−
θ1(g)b−2

3 (x5)
∣

∣

∣

˜θ(g, x5)
∣

∣

∣ sin
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2 x2

+

(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

θ2(g)θ3(g)b−2
1 (x5)b−2

3 (x5)
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2 x2
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+

⎡

⎢

⎢

⎣

1 +

(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

(

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

−
(

θ3(g)
)2
b−2
1 (x5)b−2

2 (x5)
)

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

⎤

⎥

⎥

⎦

x3

=
1

∣

∣

∣θ̃(g, x5)
∣

∣

∣

2

{[

θ2(g)b−2
3 (x5)

∣

∣

∣

˜θ(g, x5)
∣

∣

∣ sin
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

−
(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

θ1(g)θ3(g)b−2
2 (x5)b−2

3 (x5)
]

x1

−
[

θ1(g)b−2
3 (x5)

∣

∣

∣

˜θ(g, x5)
∣

∣

∣ sin
∣

∣

∣

˜θ(g, x5)
∣

∣

∣

+
(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

θ2(g)θ3(g)b−2
1 (x5)b−2

3 (x5)
]

x2

+
[

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

+
(

cos
∣

∣

∣

˜θ(g, x5)
∣

∣

∣− 1
)

×

×
(

∣

∣

∣

˜θ(g, x5)
∣

∣

∣

2

−
(

θ3(g)
)2
b−2
1 (x5)b−2

2 (x5)
)]

x3

}

.

(7.127)

7.4 Finite 3D Deformed Boosts in a Generic
Direction

7.4.1 Parametric Decomposition

We want now to derive the finite, deformed pseudorotations (boosts) with
generic dimensionless parameter (rapidity) ρ(g) along a generic direction
ε̂(g) in the physical 3D space ˜E3(x5) ⊂ ˜M(x5), by exploiting the form of
the infinitesimal generators of the DSR chronotopical group SO(1, 3)DEF..
obtained in Chap. 6.

One can proceed in a way similar to the case of finite deformed true
rotations treated in Sect. 7.3.2, and write down the following (not unique)
axial-parametric decomposition:

(ε̂(g), ρ(g)) → (̂x1, ζ1(g))(̂x2, ζ2(g))(̂x3, ζ3(g)). (7.128)

In the discussed case of a finite deformed boost with generic finite rapidity
ρ (g) along the axis ε̂ (g) of ˜E3(x5), it is possible to make explicit a possible
dependence of the assigned couple (ρ (g) , ε̂ (g)) on the set

{

ζi(g)
}

i=1,2,3
,

i.e., on the components of the finite, deformed rapidity (Euclidean) three-
vector ζ(g). This corresponds to the axial-parametric decomposition:

(ε̂(g), ρ(g)) → ( ̂x1
DSR, ζ

1(g))( ̂x2
DSR, ζ

2(g))( ̂x3
DSR, ζ

3(g)). (7.129)
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One can proceed in the following way. Let us define a deformed three-vector

π (g) ≡

≡ ρ(g)ε̂(g) = ρ(g)ε1(g) ̂x1
DSR + ρ(g)ε2(g) ̂x2

DSR + ρ(g)ε3(g) ̂x3
DSR.

(7.130)

Then, the set
{

πi(g) ≡ ρ(g)εi(g)
}

i=1,2,3
, when understood as the set of

components of an Euclidean three-vector πEucl (g), can be identified with
{

ζi(g)
}

i=1,2,3
; that is, one has:

ζ(g) ≡ πEucl (g)

= ρ(g)ε1(g)̂x1
SR + ρ(g)ε2(g)̂x2

SR + ρ(g)ε3(g)̂x3
SR. (7.131)

In this sense, we have “axially-parametrically decomposed” the expres-
sion −ρ (g) ε̂ (g) · KDSR(x5) in (7.4)–(7.5):

(ε̂(g), ρ(g)) → ( ̂x1
DSR, σ

1(g))( ̂x2
DSR, σ

2(g))( ̂x3
DSR, σ

3(g)). (7.132)

As mentioned before, let us stress that the above axial-parametric decom-
position is not unique, and it is due to the fact that (infinitesimal) finite
deformed pseudorotations do belong to the deformed Lorentz (algebra)
group (su(2)DEF. ⊗ su(2)DEF.) SO(1, 3)DEF..

Therefore, we obtain in DSR (· denotes the Euclidean scalar product):

−ρ(g)ε̂(g) · KDSR(x5)

→ −ζ1(g)K1
DSR(x5) − ζ2(g)K2

DSR(x5) − ζ3(g)K3
DSR(x5)

= −
3
∑

i=1

ζi(g)Ki
DSR(x5) (7.133)

(infinitesimal level, any composition order);

exp
(

−ρ(g)̂ε(g) · KDSR(x5)
)

→ exp
(

−ζ1(g)K1
DSR(x5)

)

× exp
(

−ζ2(g)K2
DSR(x5)

)

× exp
(

−ζ3(g)K3
DSR(x5)

)

(7.134)

(finite level, fixed composition order).
Denoting by B(ρ(g),̂ε(g)),DSR

(x5) the 4×4 matrix corresponding to an

infinitesimal boost with (infinitesimal) rapidity ρ(g) about the axis ε̂(g)
(matrix belonging to a 4D representation of the deformed Lorentz algebra
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su(2)DEF. ⊗ su(2)DEF.), we have to go through the following steps:

B(ρ(g),̂ε(g)),DSR
(x5) ≡ −ρ(g)ε̂(g) · KDSR(x5)

axial-parametric decomposition

(algebraic level)

→
(

−ζ1(g)K1
DSR(x5) − ζ2(g)K2

DSR(x5) − ζ3(g)K3
DSR(x5)

)

passage to finite (i.e., group) level:

Exponentiation
→ exp(B(ρ(g),̂ε(g)),DSR

(x5))

= exp
(

−ζ1(g)K1
DSR(x5) − ζ2(g)K2

DSR(x5) − ζ3(g)K3
DSR(x5)

)

=
∞
∑

n=0

1
n!
(

−ζ1(g)K1
DSR(x5) − ζ2(g)K2

DSR(x5) − ζ3(g)K3
DSR(x5)

)n
,

(7.135)

where exp(B(ρ(g),̂ε(g)),DSR
(x5)) is the 4×4 matrix corresponding to a finite

pseudorotation with finite rapidity ϕ(g) along the axis ε̂(g), belonging to
a 4D representation of SO(1, 3)DEF., of course.

On account of the explicit form of KDSR(x5) and of the deformed boost
generators (see Sects. 7.1 and 7.2), we have

B(ρ(g),̂ε(g)),DSR
(x5) =

=

⎛

⎜

⎜

⎝

0 −ζ1(g)b−2
0 (x5) −ζ2(g)b−2

0 (x5) −ζ3(g)b−2
0 (x5)

−ζ1(g)b−2
1 (x5) 0 0 0

−ζ2(g)b−2
2 (x5) 0 0 0

−ζ3(g)b−2
3 (x5) 0 0 0

⎞

⎟

⎟

⎠

,

(7.136)

and so the corresponding finite form is given by the matrix

Λ
B(ρ(g),̂ε(g)),DSR

(x5) ≡ exp
(

B(ρ(g),̂ε(g)),DSR
(x5)

)

= exp

⎛

⎜

⎜

⎝

0 −ζ1(g)b−2
0 (x5) −ζ2(g)b−2

0 (x5) −ζ3(g)b−2
0 (x5)

−ζ1(g)b−2
1 (x5) 0 0 0

−ζ2(g)b−2
2 (x5) 0 0 0

−ζ3(g)b−2
3 (x5) 0 0 0

⎞

⎟

⎟

⎠

.

(7.137)
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Therefore, in matrix form, the deformed boost transformation reads
⎛

⎜

⎜

⎝

x0′
DSR

(

g, x, x5
)

x1′
DSR

(

g, x, x5
)

x2′
DSR

(

g, x, x5
)

x3′
DSR

(

g, x, x5
)

⎞

⎟

⎟

⎠

= Λ
B(ρ(g),̂ε(g)),DSR

(x5)

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

⇔

⎛

⎜

⎜

⎝

x0′ (g, x, x5
)

x1′ (g, x, x5
)

x2′ (g, x, x5
)

x3′ (g, x, x5
)

⎞

⎟

⎟

⎠

= exp

⎛

⎜

⎜

⎝

0 −ζ1(g)b−2
0 (x5) −ζ2(g)b−2

0 (x5) −ζ3(g)b−2
0 (x5)

−ζ1(g)b−2
1 (x5) 0 0 0

−ζ2(g)b−2
2 (x5) 0 0 0

−ζ3(g)b−2
3 (x5) 0 0 0

⎞

⎟

⎟

⎠

×

⎛

⎜

⎜

⎝

x0

x1

x2

x3

⎞

⎟

⎟

⎠

. (7.138)

A remark is in order. As mentioned in Sect. 7.3, finite deformed true
rotations do form a proper non-abelian subgroup of the deformed homo-
geneous Lorentz group, namely SO(3)DEF. ⊂ SO(1, 3)DEF. (this can be
seen at an algebraic level, because the algebra of the infinitesimal genera-
tors of deformed true rotations is closed, and forms a proper Lie subalge-
bra of the deformed Lorentz algebra su(2)DEF. ⊂ su(2)DEF. ⊗ su(2)DEF.:
see Sect. 6.3.4). Thus the axial-parametric decompositions (7.96)–(7.98) are
valid, and in Sect. 7.3 just the explicit form of the infinitesimal generators of
SO(3)DEF. (and not of the larger, covering group SO(1, 3)DEF.) was needed.

In general, finite deformed boosts do not form a proper subgroup of
SO(1, 3)DEF. (this can be seen at an algebraic level, because the algebra of
the infinitesimal generators of deformed boosts is not closed, and doesn’t
form a proper Lie subalgebra of the deformed Lorentz algebra su(2)DEF. ⊗
su(2)DEF.: see Sect. 6.3.4). Thus, in order to obtain the finite, deformed
pseudorotations with generic rapidity ρ(g) along a generic direction ε̂(g)
in the physical 3D space ˜E3(x5) ⊂ ˜M(x5), the explicit form of all the
infinitesimal generators of SO(1, 3)DEF. should in general be needed.

This means that, by the very basic properties of a group (namely
SO(1, 3)DEF.), it is always possible to find a (not unique) axial-parametric
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decomposition which transfers – once fixed the four space–time coordinate
axes of ˜M(x5) – all the dependence on the group element g only on the
deformed true rotation angles

{

θi(g)
}

i=1,2,3
and on the deformed rapidities

{

ηi(g)
}

i=1,2,3
:

(ε̂(g), ρ(g))

−→ (̂x1, θ1(g))(̂x2, θ2(g))(̂x3, θ3(g))(̂x1, η1(g))(̂x2, η2(g))(̂x3, η3(g)).
(7.139)

In general, with
{

̂x0,̂x1,̂x2,̂x3
}

fixed in ˜M(x5), θi = θi (ε̂(g), ρ(g)) =

θi (g) and ηi = ηi (ε̂(g), ρ(g)) = ηi (g), but, for simplicity’s sake, the short
notations θi (g) and ηi (g) has been used ∀i = 1, 2, 3.

As already noticed in Sect. 7.3, at the algebraic level, such a decomposi-
tion is independent of the order, due to the commutativity of the infinites-
imal elements (i.e., of the transformations at an algebraic level) of any Lie
group of transformations. This of course does no longer hold at a finite (i.e.,
group) level – due to the non-abelian nature of SO(1, 3)DEF. – and there-
fore the order on the r.h.s. of the expression (7.139) is fixed for a given pair
(ε̂(g), ρ(g)). Needless to say, at the algebraic and group level parameters
ρ(g) and

{

θi(g)
}

,
{

ηi(g)
}

i=1,2,3
are infinitesimal and finite, respectively.

This will be understood, and, for simplicity’s sake, no notational distinc-
tion will be made.

In summary, all the earlier equations should have an “hidden” depen-
dence on the parametric sets

{

θi(g)
}

and
{

ηi(g)
}

i=1,2,3
; that is, for instance

(7.135) would actually have to read explicitly:

B(ρ(θ(g),η(g)),̂ε(θ(g),η(g))),DSR
(x5)

≡ −ρ(θ(g),η(g))ε̂(θ(g),η(g)) · KDSR(x5). (7.135 a)

For simplicity’s sake, we have omitted, but understood, this cumbersome
notation.

7.4.2 Deformed Generic Boost from Velocity Decomposition

As noticed in Sect. 7.3, all the possible procedures applicable in these frame-
works are equivalent (although they may yield different formal results).
Thus, in order to obtain the general form of a finite, deformed boost with
generic rapidity ρ(g) along a generic direction ε̂(g) in ˜E3(x5) ⊂ ˜M(x5),
let us exploit the approach of velocity decomposition (already used in
Sect. 3.3.2), instead of explicitly calculating exp

(

B(ρ(g),̂ε(g)),DSR
(x5)

)

.

Consider a generic finite, deformed boost with generic velocity v(g) =
v(g)v̂(g) ≡ v(g)ε̂(g) along a generic direction ε̂(g) in ˜E3(x5) ⊂ ˜M(x5).
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Let us decompose the three-vector x in two components x‖(g) and x⊥(g),
respectively, parallel and orthogonal to v(g). Here, “parallelism” and
“orthogonality” are to be meant in the deformed 3D space ˜E3(x5) ⊂ ˜M(x5)
(namely according to the deformed scalar product ∗ associated to the 3D

metric tensor −gij,DSR(x5) ESC off= b2i (x
5)δij : see Sect. 3.1). We have, in the

notation of Sect. 3.3.2:

x‖(g) ≡ v̂(g)(v̂(g) ∗ x) =
v(g)

|v(g)|2∗
(v(g) ∗ x) =

v(g)
v(g) ∗ v(g)

(v(g) ∗ x)

=
∑3

i=1 b
2
i (x

5)vi(g)xi

∑3
i=1 b

2
i (x5) (vi(g))2

v(g)
β̃(g)≡(v(g)

u ) �=v(g)
u


= ̂

˜β(g)(̂˜β(g) ∗ x)

=
˜β(g)
∣

∣

∣

˜β(g)
∣

∣

∣

2

∗

(˜β(g) ∗ x) =
˜β(g)

˜β(g) ∗ ˜β(g)
(˜β(g) ∗ x)

=
∑3

i=1 b
2
i (x

5)˜β
i
(g)xi

∑3
i=1 b

2
i (x5)

(

˜β
i
(g)
)2
˜β(g); (7.140)

xi
‖(g) ≡

∑3
k=1 b

2
k(x5)vk(g)xk

∑3
k=1 b

2
k(x5) (vk(g))2

vi

β̃(g)≡(v(g)
u ) �=v(g)

u


=
∑3

k=1 b
2
k(x5)˜β

k
(g)xk

∑3
k=1 b

2
k(x5)

(

˜β
k
(g)
)2
˜β

i
(g),∀i = 1, 2, 3; (7.141)

x⊥(g) ≡ x − x‖(g) = x −
∑3

i=1 b
2
i (x

5)vi(g)xi

∑3
i=1 b

2
i (x5) (vi(g))2

v(g)

β̃(g)≡(v(g)
u )�= v(g)

u


= x −
∑3

i=1 b
2
i (x

5)˜β
i
(g)xi

∑3
i=1 b

2
i (x5)

(

˜β
i
(g)
)2
˜β(g); (7.142)
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xi
⊥(g) ≡ xi −

∑3
k=1 b

2
k(x5)vk(g)xk

∑3
k=1 b

2
k(x5) (vk(g))2

vi(g)

β̃(g)≡(v(g)
u )�= v(g)

u


= xi −
∑3

k=1 b
2
k(x5)˜β

k
(g)xk

∑3
k=1 b

2
k(x5)

(

˜β
k
(g)
)2
˜β

i
(g),∀i = 1, 2, 3, (7.143)

with ˜β(g) being given by (3.33).
On account of the form of a finite, deformed boost along a coordinate

axis (cf. (3.27)), a finite, deformed boost with generic (finite) velocity v(g)
in a generic direction v̂(g) is therefore given by (see Sect. 3.3) (· denotes,
as before, the Euclidean 3D scalar product)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x‖
′(g) = γ̃(g)(x‖(g) − v(g)t);

x′
⊥(g) = x⊥(g);

t′ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

γ̃(g)
(

t−
∑3

i=1

vi(g)b2i (x
5)

c2b20(x5)
xi

)

= γ̃(g)
(

t− B̃(g) · x
)

= γ̃
(

t− B̃(∗)(g) ∗ x
)

.

(7.144)
where γ̃(g), B̃(g), B̃(∗)(g) are are defined in (3.44), (3.47), and (3.48).

In terms of the three-vector x = x‖(g) + x⊥(g), the deformed boost
(7.144) in a generic direction v̂(g) reads therefore

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x′(g) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x′
‖(g) + x′

⊥(g) =

= x + (γ̃(g) − 1)
v(g)

|v(g)|2∗
(v(g) ∗ x) − γ̃(g)v(g)t =

= x + (γ̃(g) − 1)
∑3

k=1 b
2
k(x5)vk(g)xk

∑3
k=1 b

2
k(x5) (vk(g))2

v(g) − γ̃(g)v(g)t;

t′(g) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ̃(g)(t− B̃(g) · x) = γ̃(g)(t− B̃(∗)(g) ∗ x) =

= γ̃(g)
(

t−
∑3

k=1

vk(g)b2k(x5)
c2b20(x5)

xk

)

,

(7.145)
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or (as usual x0 ≡ ct, and × now denotes usual algebraic multiplication)
(∀i = 1, 2, 3):

x0′(g, x5) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

γ̃(g)
(

x0 −
∑3

k=1

vk(g)b2k(x5)
cb20(x5)

xk

)

=

(

1 −
∑3

k=1

(

vk(g)b2k(x5)
cb20(x5)

)2
)−1/2

×
(

x0 −
∑3

k=1

vk(g)b2k(x5)
cb20(x5)

xk

)

;

xi′(g, x5) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

xi + (γ̃(g) − 1)
∑3

k=1 b
2
k(x5)vk(g)xk

∑3
k=1 b

2
k(x5) (vk(g))2

vi(g)

−γ̃(g)
vi(g)
c

x0

= xi +

⎡

⎣

(

1 −
∑3

k=1

(

vk(g)b2k(x5)
cb20(x5)

)2
)−1/2

− 1

⎤

⎦

×
∑3

k=1 b
2
k(x5)vk(g)xk

∑3
k=1 b

2
k(x5) (vk(g))2

vi(g)

−1
c

(

1 −
∑3

k=1

(

vk(g)b2k(x5)
cb20(x5)

)2
)−1/2

x0vi(g).

(7.146)

Different explicit forms of a finite, deformed boost with generic velocity
v(g) = v(g)v̂(g) ≡ v(g)ε̂(g) along a generic direction ε̂(g) in ˜E3(x5) ⊂
˜M(x5), and consequently of Λ

B(ρ(g),̂ε(g)),DSR
(x5), can also be obtained by

exploiting relations (3.44)–(3.48).
Notice that the lack of symmetry properties of the 4× 4 matrices repre-

senting deformed boosts is obviously related to the “anisotropizing deform-
ing” character of the DSR generalization of SR, i.e., to the fact that, in
general

bµ(x5) 
= bν(x5) ∀µ, ν ∈ {0, 1, 2, 3} , µ 
= ν, (7.147)

where the bµ(x5)’s are the coefficients of the deformed metric gµν,DSR(x5).
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7.4.3 Parametric Change of Basis for a Deformed Boost
in a Generic Direction

On account of (7.50)–(7.51), which relate, through the use of definition
(7.40), the dimensionless parameter basis of deformed rapidities

{

ζi(g)
}

and the dimensional parameter basis of deformed boost velocities
{

vi(g)
}

,
one gets (ESC off)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

I)
vi(g)bi(x5)
cb0(x5)

≡ ˜β
i
(g) = bi(x5)˜β

i(∗)
(g) = tgh

(

ζi(g)b
−1
0 (x5)b−1

i (x5)
)

;

II)
(

1 − b2i (x
5)

c2b20(x5)
(

vi(g)
)2
)−1/2

= (1 − (˜β
i
(g))2)−1/2

= (1 − b2i (x
5)(˜β

i(∗)
(g))2)−1/2 ≡ γ̃i(g) = cosh

(

ζi(g)b
−1
0 (x5)b−1

i (x5)
)

,

(7.148)
and therefore

γ̃(g) ≡

≡
(

1 − 1
c2b20(x5)

3
∑

k=1

(

vi(g)
)2
b2i (x

5)

)−1/2

=

(

1 −
3
∑

i=1

(˜β
i
(g))2

)−1/2

=

(

1 −
3
∑

i=1

b2i (x
5)(˜β

i(∗)
(g))2

)−1/2

=

(

1 −
3
∑

i=1

(tgh
(

ζi(g)b
−1
0 (x5)b−1

i (x5)
)

)2
)−1/2

;

(7.149)

(

˜βi(g)
)2

|˜β(g)|2
=
b2i (x

5)
(

˜βi
(∗)

(g)
)2

|˜β
(∗)

(g)|2∗
=

(

˜βi(g)
)2

˜β(g) · ˜β(g)

=
b2i (x

5)
(

˜βi
(∗)

(g)
)2

˜β
(∗)

(g) ∗ ˜β
(∗)

(g)
=

(

˜βi(g)
)2

∑3
k=1(

˜

βk(g))2
=

b2i (x
5)
(

˜βi
(∗)

(g)
)2

∑3
k=1 b

2
k(x5)(˜βk

(∗)
(g))2
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=

(

tgh
(

ζi(g)b
−1
0 (x5)b−1

i (x5)
))2

∑3
k=1(tgh

(

ζk(g)b−1
0 (x5)b−1

k (x5)
)

)2
; (7.150)

˜βi(g)˜βj(g)

|˜β(g)|2
=
bi(x5)bj(x5) ˜βi

(∗)
(g)˜βj

(∗)
(g)

|˜β
(∗)

(g)|2∗

=
˜βi(g)˜βj(g)
˜β(g) · ˜β(g)

=
bi(x5)bj(x5) ˜βi

(∗)
(g)˜βj

(∗)
(g)

˜β
(∗)

(g) ∗ ˜β
(∗)

(g)

=
˜βi(g)˜βj(g)

∑3
k=1(˜β

k
(g))2

=
bi(x5)bj(x5) ˜βi

(∗)
(g)˜βj

(∗)
(g)

∑3
k=1 b

2
k(x5)(˜β

k(∗)
(g))2

=

(

tgh
(

ζi(g)b
−1
0 (x5)b−1

i (x5)
)) (

tgh
(

ζj(g)b
−1
0 (x5)b−1

j (x5)
))

∑3
k=1(tgh

(

ζk(g)b−1
0 (x5)b−1

k (x5)
)

)2
; (7.151)

˜β
2
≡ |˜β|2 = |˜β

(∗)
|2∗ = ˜β(g) · ˜β(g) = ˜β

(∗)
(g) ∗ ˜β

(∗)
(g)

=
3
∑

k=1

(˜β
k
(g))2 =

3
∑

k=1

b2k(x5)(˜β
k(∗)

(g))2

=
3
∑

k=1

(tgh
(

ζk(g)b−1
0 (x5)b−1

k (x5)
)

)2. (7.152)

The earlier relations between the sets
{

ζi(g)
}

i=1,2,3
and

{

vi(g)
}

i=1,2,3

express the change of parametric base for deformed boosts in DSR, from the
dimensional parameter basis of deformed boost velocities to the dimension-
less parameter basis of deformed rapidities By means of (7.149)–(7.152)
one can therefore express exp

(

B(ρ(g),̂ε(g)),DSR
(x5)

)

(derived in Sect. 7.4.2)
in terms of rapidities. We leave this task to the interested reader.
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Inverting (7.148) one gets

ζi(g) = b0(x5)bi(x5) arctgh
(

vi(g)bi(x5)
cb0(x5)

)

. (7.153)

Then, (7.135) can be rewritten as

B(ρ(g),̂ε(g)),DSR
(x5)

= −b0(x5)b1(x5) arctgh
(

v1(g)b1(x5)
cb0(x5)

)

K1
DSR(x5)

−b0(x5)b2(x5) arctgh
(

v2(g)b2(x5)
cb0(x5)

)

K2
DSR(x5)

−b0(x5)b3(x5) arctgh
(

v3(g)b3(x5)
cb0(x5)

)

K3
DSR(x5)

= −b0(x5)
3
∑

i=1

bi(x5) arctgh
(

vi(g)bi(x5)
cb0(x5)

)

Ki
DSR(x5); (7.154)

exp(B(ρ(g),̂ε(g)),DSR
(x5))

= exp(−b0(x5)b1(x5) arctgh
(

v1(g)b1(x5)
cb0(x5)

)

K1
DSR(x5)

−b0(x5)b2(x5) arctgh
(

v2(g)b2(x5)
cb0(x5)

)

K2
DSR(x5)

−b0(x5)b3(x5) arctgh
(

v3(g)b3(x5)
cb0(x5)

)

K3
DSR(x5))

= exp

(

−b0(x5)
3
∑

i=1

bi(x5) arctgh
(

vi(g)bi(x5)
cb0(x5)

)

Ki
DSR(x5)

)

. (7.155)

We have already stressed that the dimensionless parametric three-vectors
θ(g) and ζ(g) are Euclidean in DSR (as well as in SR). On the contrary,
the dimensional parametric three-vector of boost velocity, v(g), changes
its nature according to the metric framework considered. In particular,
v(g) ∈ E3 ⊂ M in SR and v(g) ∈ ˜E3(x5) ⊂ ˜M(x5) in DSR, namely v(g) is
an Euclidean three-vector in SR and a deformed one in DSR. By (7.153),
the relation between ζ(g) and v(g) is therefore
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ζ(g) = b0(x5)b1(x5) arctgh
(

v1(g)b1(x5)
cb0(x5)

)

̂x1

+b0(x5)b2(x5) arctgh
(

v3(g)b3(x5)
cb0(x5)

)

̂x2

+b0(x5)b3(x5) arctgh
(

v3(g)b3(x5)
cb0(x5)

)

̂x3

= |ζ(g)|̂ζ(g) = (ζ(g) · ζ(g))1/2
̂ζ(g)

=

(

3
∑

i=1

(

b0(x5)bi(x5) arctgh
(

vi(g)bi(x5)
cb0(x5)

))2
)1/2

̂ζ(g), (7.156)

where, on account of the Euclidean nature of ζ(g) in DSR, the unit vector
̂ζ(g) is given by

̂ζ(g) ≡ ζ(g)
(

∑3
i=1

(

b0(x5)bi(x5) arctgh
(

vi(g)bi(x5)
cb0(x5)

))2
)1/2

. (7.157)

Equation (7.154), (7.155) can be therefore rewritten as:

B(ρ(g),̂ε(g)),DSR
(x5) = −ζ(g) · KDSR(x5)

= −
(

b0(x5)
3
∑

i=1

(

bi(x5) arctgh
(

vi(g)bi(x5)
cb0(x5)

))2
)1/2

̂ζ(g) · KDSR(x5);

(7.158)

Λ
B
(

ρ(g),̂ε(g)
)

,DSR
(x5) = exp

(

−ζ(g) · KDSR(x5)
)

= exp

⎛

⎝−

(

b0(x
5)

3
∑

i=1

(

bi(x
5) arctgh

(

vi(g)bi(x
5)

cb0(x5)

))2
)1/2

̂ζ(g) · KDSR(x5)

⎞

⎠ .

(7.159)

Let us remark that care must be exercised in relating the unit vectors
v̂(g) and ̂ζ(g) in DSR. In fact, consider the special case of a deformed
boost along a coordinate axis, namely v̂(g) ≡ ̂xk (k ∈ {1, 2, 3}). Then
(7.153) becomes

ζ(g) = b0(x5)bk(x5) arctgh
(

vk(g)bk(x5)
cb0(x5)

)

̂xk. (7.160)
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We have therefore

̂ζ(g) = ̂xk; (7.161)

v̂(g) ≡ ̂xk. (7.162)

However, unlike the SR case, such relations do not allow one to conclude
that v̂(g) = ̂ζ(g). The reason is that actually the two unit vectors ̂xk in
(7.161) and (7.162) are different : Whereas the ̂xk in (7.161) is Euclidean
(due to the Euclidean nature of ζ(g) in DSR), thêxk in (7.162) is deformed,
because v(g) in the DSR case is defined in ˜E3(x5) ⊂ ˜M(x5). In other words,
we have

⎧

⎨

⎩

˜M(x5) ⊃ ˜E3(x5) � ̂xk
DSR ≡ v̂(g) 
= ̂ζ(g) = ̂xk

SR ∈ E3 ⊂ M ;
̂xk
DSR ≡ v̂(g) = b−1

k (x5)̂ζ(g) = b−1
k (x5)̂xk

SR,
(7.163)

where the notation ̂xk
SR , ̂xk

DSR is used in order to stress the Euclidean or
deformed nature of the coordinate unit vector. Then

ζ(g) = b0(x5)bk(x5) arctgh
(

vk(g)bk(x5)
cb0(x5)

)

̂xk
SR

= b0(x5)b2k(x5) arctgh
( |v(g)|∗
cb0(x5)

)

v̂(g), (7.164)

where |v(g)|∗ is the deformed norm of a three-vector. On account of (7.156),
this equation can also been rewritten as

ζ(g) = b0(x5)b2k(x5) arctgh
(

˜

βk(g)
)

v̂(g)

= b0(x5)b2k(x5) arctgh
(

bk(x5)˜βk
(∗)

(g)
)

v̂(g)

= b0(x5)b2k(x5) arctgh
(

bk(x5)˜βk
(∗)

(g)
)

̂

˜β
(∗)

(g)

∗∗= b0(x5)b2k(x5) arctgh
(

˜

βk(g)
)

̂

˜β(g), (7.165)

where the last step (marked with “∗∗”) follows from the fact that, although

in general ̂˜β(g) 
= v̂(g), in the special case v(g) = vk(g)̂xk (ESC off) it is
̂

˜β(g) = v̂(g).
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For a deformed boost in a generic direction v̂(g) ≡ ε̂(g), it is still v̂(g) 
=
̂ζ(g) and we have explicitly13

ζ(g) = b0(x5)b1(x5) arctgh
(

v1(g)b1(x5)
cb0(x5)

)

̂x1
SR

+b0(x5)b2(x5) arctgh
(

v3(g)b3(x5)
cb0(x5)

)

̂x2
SR

+b0(x5)b3(x5) arctgh
(

v3(g)b3(x5)
cb0(x5)

)

̂x3
SR

=

(

3
∑

i=1

(

b0(x5)bi(x5) arctgh
(

vi(g)bi(x5)
cb0(x5)

))2
)1/2

̂ζ(g), (7.166)

whence

̂ζ(g) ≡
b0(x5)b1(x5) arctgh

(

v1(g)b1(x5)
cb0(x5)

)

(

∑3
i=1

(

b0(x5)bi(x5) arctgh
(

vi(g)bi(x5)
cb0(x5)

))2
)1/2

̂x1
SR

+
b0(x5)b2(x5) arctgh

(

v2(g)b2(x5)
cb0(x5)

)

(

∑3
i=1

(

b0(x5)bi(x5) arctgh
(

vi(g)bi(x5)
cb0(x5)

))2
)1/2

̂x2
SR

+
b0(x5)b3(x5) arctgh

(

v3(g)b3(x5)
cb0(x5)

)

(

∑3
i=1

(

b0(x5)bi(x5) arctgh
(

vi(g)bi(x5)
cb0(x5)

))2
)1/2

̂x3
SR;

(7.167)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

v(g) = v1(g) ̂x1
DSR + v2(g) ̂x2

DSR + v3(g) ̂x3
DSR =

=
(

∑3
i=1 b

2
i (x

5)
(

vi(g)
)2
)1/2

v̂(g)

13Notice that the vector v̂(g) ∈ ˜E3(x5) ⊂ ˜M(x5), and therefore it has unit norm
according to the 3D deformed scalar product ∗ (with metric tensor – ESC off –

δijb2i (x5) = −gij,DSR(x5)), unlike ̂ζ(g) ∈ E3 ⊂ M which is a unit vector according
to the Euclidean scalar product · (with metric tensor δij = −gij,SR).
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↔

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

v̂(g) ≡ v1(g)
(

∑3
i=1 b

2
i (x5) (vi(g))2

)1/2
̂x1
DSR

+
v2(g)

(

∑3
i=1 b

2
i (x5) (vi(g))2

)1/2
̂x2
DSR +

v3(g)
(

∑3
i=1 b

2
i (x5) (vi(g))2

)1/2
̂x3
DSR

=
b−1
1 (x5)v1(g)

(

∑3
i=1 b

2
i (x5) (vi(g))2

)1/2
̂x1
SR

+
b−1
2 (x5)v2(g)

(

∑3
i=1 b

2
i (x5) (vi(g))2

)1/2
̂x2
SR +

b−1
3 (x5)v3(g)

(

∑3
i=1 b

2
i (x5) (vi(g))2

)1/2
̂x3
SR.

(7.168)

Therefore, for a deformed boost along the coordinate axis ̂xk
DSR, the

matrix B(ρ(g),̂ε(g)),DSR
(x5) reads

B(ρ(g),̂ε(g)),DSR
(x5) = −ζ(g) · KDSR(x5)

= −b0(x5)b2k(x5) arctgh
(

˜

βk(g)
)

̂

˜β(g) · KDSR(x5)

= −b0(x5)b2k(x5) arctgh
(

bk(x5)˜βk
(∗)

(g)
)

̂

˜β
(∗)

(g) · KDSR(x5)

= −b0(x5)b2k(x5) arctgh
(

˜

βk(g)
)

v̂(g) · KDSR(x5)

= −b0(x5)b2k(x5) arctgh
(

˜

βk(g)
)

̂xk
DSR · KDSR(x5)

= −b0(x5)bk(x5) arctgh
(

˜

βk(g)
)

̂xk
SR · KDSR(x5)

= −b0(x5)bk(x5) arctgh
(

˜

βk(g)
)

Kk
DSR(x5)

Ki
DSR(x5)=I0i

DSR(x5)=−Ii0
DSR(x5)

= b0(x5)bk(x5) arctgh
(

˜

βk(g)
)

Ik0
DSR(x5),

(7.169)

whence one gets finally, by exponentiation, the expression (ESC off):

Λ
B(ρ(g),̂ε(g)),DSR

(x5) = exp
(

b0(x5)bk(x5) arctgh
(

˜

βk(g)
)

Ik0
DSR(x5)

)

.

(7.170)
Of course, it is only a matter of convenience to use one of the (physically

equivalent) forms we derived for the deformed boosts in this chapter.
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Let us remark the basic common feature of all these expressions, i.e.,their
dependence on the metric of the deformed Minkowski space, and there-
fore on the interaction considered. Such a result was of course expected,
since DLT are the isometries of ˜M . As already noted in Sect. 3.3.7, DSR
shares with Lorentzian Relativity the property that different sets of space–
time coordinate transformations correspond to different classes of physi-
cal phenomena. The adaptability of the mathematical structure of DSR
allows DLT to change suitably, in such a way to fit the distortions of
space–time produced by interactions different from (the Minkowskian part
of) the electromagnetic one. The space–time deformations associated to
non-Minkowskian interactions, which are felt as departures from the usual
Minkowski metric when probed by the standard, special-relativistic Lorentz
transformations – and therefore as signatures of breakdown of usual Lorentz
invariance –, are in a sense “mathematically absorbed” by the flexible
instrument of deformed LT’s. The consequence is the physical recovering
of Lorentz invariance in DSR (as discussed in Sect. 3.3.5). We shall come
back to these issues in the conclusive Chap. 26.



8
Deformed Space–Time
Translations in Four
Dimensions

8.1 Translations in 4D Generalized
Minkowski Spaces

We want now to discuss the translational component of the generalized
Poincaré group [43]. Without loss of generality, we shall consider the
4D case.

In the case N = 4, it was seen in Sect. 5.2.4 that the components ξµ

of the covariant Killing four-vector of a generic 4D generalized Minkowski
space ˜M({x}n.m.) read (cf. (5.39))

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ0(x) = −ζ1x1 − ζ2x2 − ζ3x3 + T 0;

ξ1(x) = ζ1x0 + θ2x3 − θ3x2 − T 1;

ξ2(x) = ζ2x0 − θ1x3 + θ3x1 − T 2;

ξ3(x) = ζ3x0 + θ1x2 − θ2x1 − T 3

(8.1)

(we omitted, for simplicity’s sake, the dependence on the group element
g ∈ Tr.(T = 4 − S, S)GEN. ⊂ P (T = 4 − S, S)GEN.). Then – as already
stressed –, independently of the explicit form of the metric tensor, all 4D
generalized Minkowski spaces admit the same covariant Killing vector. In
particular, with the signature (+,−,−,−) (namely T = 1, S = 3) of SR
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and DSR, we have shown that ζ = (ζ1, ζ2, ζ3) is the (Euclidean) three-
vector of the dimensionless parameters (i.e., “generalized rapidities”) of a
generalized 3D boost and θ = (θ1, θ2, θ3) is the (Euclidean) three-vector
of the dimensionless parameters (i.e., generalized angles) of a generalized
3Dtrue rotations, whereas

Tµ = (T 0,−T 1,−T 2,−T 3) (8.2)

is the covariant four-vector of the length-dimensioned parameters of a gen-
eralized 4D translation.

Notice that the “length-dimensioned,” parametric contravariant four-
vectors Tµ(g) are to be regarded as infinitesimal at the algebraic level and
finite at the group level. This will be understood, and, for simplicity’ sake,
no notational distinction will be made. As it will be explicitly seen later (in
the DSR case, without loss of generality), the infinitesimal or finite nature
of the translation parameter N -vectors (such as Tµ

DSR(g, x5) in DSR) is
in general the only difference between the algebraic and the group level
in translation coordinate transformations in a generalized N -d Minkowski
space ˜MN ({x}n.m.).

The inhomogeneity of the (infinitesimal) translation transformation (8.1)
obviously entails that it cannot be represented by a 4 × 4 matrix (at the
infinitesimal, and then at the finite, level), i.e., no 4D representation of the
infinitesimal generators of Tr.(1, 3)GEN. exists. However, it is possible to
get a matrix representation of the infinitesimal generators of the general-
ized translation group Tr.(T = 4 − S, S)GEN. ⊂ P (T = 4 − S, S)GEN. by
introducing a fifth, constant auxiliary coordinate [45] y = 1, devoid of any
physical or metric meaning, as it is clearly seen by the fact that its total
differential is zero. This fictitious extra coordinate plays only a parametriz-
ing role, i.e., it is introduced in order to span the “transformative degree
of freedom” associated to the inhomogeneous component of the (maximal)
Killing group P (1, 3)GEN. of the 4D (3, 1) generalized Minkowski space
˜M ({x}n.m.) considered. In other words, y = 1 has to express the transla-
tion component of the Poincaré generalized coordinate transformations of
˜M ({x}n.m.).

More generally, the introduction of y is necessary to give an explicit
(N + 1)-dimensional (matrix) representation of the infinitesimal genera-
tors of the generalized translation group Tr.(T = N − S, S)GEN., and
then to calculate the (representation-independent) N(S, T ) generalized
“mixed” Poincaré algebra, i.e., the commutator-exploited algebraic struc-
ture between the infinitesimal generators of SO(T = N − S, S)GEN. and
the infinitesimal generators of Tr.(T = N − S, S)GEN. (for the case N = 4,
T = 1, S = 3 of DSR, see Sect. 6.3).
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Then, following the notation of [45],1 one can consider2 the following 5D
(matrix) representation of the infinitesimal generators3

{

(Υµ)A
B

}

µ=0,1,2,3

of the group Tr.(1, 3)GEN.:

Υ0 ≡

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

; Υ1 ≡

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

; (8.3)

Υ2 ≡

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

; Υ3 ≡

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

. (8.4)

Namely, the only nonzero components of the above 5D representative matri-
ces are:

(Υ0)
0
6 = (Υ1)

1
6 = (Υ2)

2
6 = (Υ3)

3
6 = 1 (8.5)

or

(Υµ)A
B = δA

µ δ6B . (8.6)

From (8.4) and (8.5) one easily find the following properties of the above
considered 5D representation of the covariant infinitesimal generators of
Tr.(1, 3)GEN. (here and in the following, 05D and 15D denote the 5× 5 zero
and unity matrix, respectively):

1The only difference with [45] (treating the SR case) is an overall minus sign. This
is fully justifiable assuming that the parametric contravariant four-vector εµ, used in
(6−5.35) of page 150 in [45], is the opposite of T µ

SR; that is, by omitting, for simplicity’s
sake, the dependence on g ∈ Tr(1, 3)STD. ⊂ P (1, 3)STD.:

εµ ≡ −T µ
SR =

(

−T 0,−T 1,−T 2,−T 3
)

.

2This choice could now seem a bit arbitrary, but it will prove to be justified and self-
consistent from the following results, obtained, without loss of generality, in the case of
DSR.

3In the following, the upper-case Latin indices have range {0, 1, 2, 3, 6}, where the
index 6 labels the auxiliary coordinate:

x6 ≡ x6 = y = 1

Moreover, independently of the contravariant or covariant nature of infinitesimal gen-
erators, contravariant and covariant indices in their (matrix) representations convention-
ally stand for row and column indices, respectively.
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(Υµ)n = 05D,∀n ≥ 2 ⇒ exp(Υµ) = 15D + Υµ; (8.7)

[Υµ, Υν ] = 05D, ∀ (µ, ν) ∈ {0, 1, 2, 3}2 ; (8.8)
Υµ 
= Υµ (x, {x}n.m.) . (8.9)

In the following, we shall see that, in the DSR case, properties (8.8)
and (8.9) still hold for the 5D matrix representation of the contravariant
infinitesimal deformed translation generators. Moreover, as it is clear from
(8.4)–(8.7), the 5D representation of the covariant infinitesimal generators
of Tr.(1, 3)GEN. are independent of the metric tensor (namely, they are
the same irrespective of the 4D generalized Minkowski space ˜M({x}n.m.)
considered). On the contrary, the contravariant generators do depend on
the generalized metric, since

Υµ ESC on= gµρ({x}n.m.)Υρ = Υµ({x}n.m.). (8.10)

The assumed explicit 5D representations (8.4) and (8.5) are justifiable by
the following reasoning. Equation (8.1) expresses the independence of Tµ(g)
on the (geo)metric context considered; instead, its contravariant form will
in general be “context-dependent,” of course (see Footnote 5):

Tµ(g, {x}n.m.)
ESC on≡ gµν({x}n.m.)Tν(g). (8.11)

Therefore, since in general a 4D “context-dependent” scalar product

Tµ(g)Υµ({x}n.m.) = Tµ(g)gµν({x}n.m.)Υν = Tµ(g, {x}n.m.)Υµ (8.12)

appears in the explicit form of the 5D matrix of the infinitesimal generalized
translation (e.g., in DSR case, TT µ

DSR(g,x5),DSR(x5) of (8.41)), it is clear that
the set of the covariant infinitesimal generalized translation generators has
to be “context-independent,” i.e., has to be the same irrespective of the 4D
generalized Minkowski space ˜M({x}n.m.) considered.

What just said is a consequence of a peculiar feature of the transla-
tion component Tr.(1, 3)GEN. of the 4D (1, 3) generalized Poincaré group
P (1, 3)GEN..

Indeed, the elements of the 4D (1, 3) generalized rotation group
SO(1, 3)GEN. correspond, at either infinitesimal and finite level, to coordi-
nate transformations homogeneous in their arguments, i.e., in the “length-
dimensioned” coordinate basis {xµ}µ=0,1,2,3. Therefore, the generalized
parametric (Euclidean) three-vectors θ(g) and ζ(g) must be dimensionless.
In the cases S = 3, T = 1 of SR (corresponding to M) and of DSR (corre-
sponding to ˜M

(

x5
)

) θ(g) and ζ(g) can be identified with the generalized
true rotation angle and generalized “boost rapidity” three-vectors, respec-
tively. By using the dimension-transposing constant velocity c, it is possible
to introduce a “velocity-dimensioned” boost parametric three-vector v(g),
that is a contravariant three-vector in the 3D physical space embedded in
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the 4D Minkowski space considered (E3 ⊂ M in SR, and ˜E3

(

x5
)

⊂ ˜M
(

x5
)

in DSR, respectively).
Analogously, because of the fact that the elements of the 4D generalized

translation group Tr.(1, 3)GEN. correspond, both at infinitesimal and finite
level, to purely inhomogeneous coordinate transformations, it is clear that
the generalized translation parametric four-vector Tµ(g) must be “length-
dimensioned” and have a “context-dependent” geometric nature. For exam-
ple the translation parameters are a standard contravariant four-vector
Tµ

SR(g) of M in SR, and instead a deformed one Tµ
DSR(g) of ˜M

(

x5
)

in
DSR.

That is why, e.g., in the DSR case, both 3D Euclidean scalar products
θ(g) · SDSR(x5) and ζ(g) · KDSR(x5), and 4D “deformed” scalar products
(ESC on)

Tµ,(DSR)(g)Υ
µ
DSR(x5) = Υµ

DSR(x5)gµν,DSR(x5)T ν
DSR(g, x5) (8.13)

do enter into the general expression of the 5 × 5 matrix corresponding
to a finite transformation of the 4D deformed (inhomogeneous Lorentz)
Poincaré group P (1, 3)DEF. (see (8.46)). The notation “(DSR)” in Tµ,(DSR)

has been just used to remember that, as already stressed, Tµ(g) is indepen-
dent of the 4D metric context considered.

8.2 The Group of 4D Deformed Translations

8.2.1 5D Representation of the Infinitesimal Contravariant
Generators

Let us consider the case of Tr.(1, 3)DEF., i.e., the deformed space–time
translation group of the 4D deformed Minkowski space ˜M(x5) of DSR.
Then, on account of (8.4),(8.5), and (8.11), the considered 5D matrix repre-
sentation of the infinitesimal contravariant deformed translation generators
reads

Υ 0
DSR(x5) ≡

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 b−2
0 (x5)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

; (8.14)

Υ 1
DSR(x5) ≡

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 −b−2

1 (x5)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

; (8.15)
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Υ 2
DSR(x5) ≡

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 −b−2

2 (x5)
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

; (8.16)

Υ 3
DSR(x5) ≡

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −b−2

3 (x5)
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

. (8.17)

The only nonzero components are therefore given by

(

Υ 0
DSR(x5)

)0

6
= −b−2

0 (x5)
b−2
1 (x5)

(

Υ 1
DSR(x5)

)1

6

= −b−2
0 (x5)
b−2
2 (x5)

(

Υ 2
DSR(x5)

)2

6
= −b−2

0 (x5)
b−2
3 (x5)

(

Υ 3
DSR(x5)

)3

6
= b−2

0 (x5)

(8.18)

or (ESC off):

(

Υµ
DSR(x5)

)A

B

=
(

b−2
0 (x5)δµ0 − b−2

1 (x5)δµ1 − b−2
2 (x5)δµ2 − b−2

3 (x5)δµ3
)

δ A
µ δ6B .

(8.19)

From (8.16)–(8.19) one immediately gets the following (representation-
independent) properties of the contravariant deformed translation infini-
tesimal generators in ˜M(x5):

(

Υµ
DSR(x5)

)n
= 05D,∀n ≥ 2

⇒ exp(Υµ
DSR(x5)) = 15D + Υµ

DSR(x5); (8.20)

[Υµ
DSR(x5), Υ ν

DSR(x5)] = 05D,∀µ, ν ∈ {0, 1, 2, 3} ; (8.21)

Υµ
DSR = Υµ

DSR(x5), Υµ
DSR 
= Υµ

DSR(x). (8.22)

It follows from (8.21) that (tr.(1, 3)DEF.) Tr.(1, 3)DEF. is a proper (sub-
algebra) abelian subgroup of the 4D deformed Poincaré (algebra) group
(su(2)DEF. ⊗ su(2)DEF. ⊗s tr.(1, 3)DEF.) P (1, 3)DEF., whose infinitesimal
(contravariant) generators (by (8.22)) are independent of the metric
variables of ˜M(x5), but do (parametrically) depend on the nonmetric
variable x5.
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8.2.2 “Mixed” Deformed Poincaré Algebra

It is now possible to find the “mixed” algebraic structure of the 4D
deformed Poincaré group P (1, 3)DEF. of DSR; this can be carried out by
evaluating the commutators (which, as in the case of the 4D deformed
Lorentz algebra su(2)DEF. ⊗ su(2)DEF., are representation-independent)
among the infinitesimal generators of Tr.(1, 3)DEF. and the infinitesimal
generators of the deformed homogeneous Lorentz group SO(1, 3)DEF.. To
this aim, one has to represent the infinitesimal generators of SO(1, 3)DEF. as
5×5 matrices in the auxiliary fictitious 5D space with y = 1 as extra dimen-
sion. It is easy to see that this amounts to the following trivial replacement

Iαβ
DSR(x5) →

(

Iαβ
DSR(x5) 0

0 0

)

∀ (α, β) ∈ {0, 1, 2, 3}2
, (8.23)

where Iαβ
DSR(x5) are the infinitesimal generators of the 4D deformed homo-

geneous Lorentz group SO(1, 3)DEF. of DSR in the 4D matrix representa-
tion derived in Sect. 6.3. Needless to say, the trivial process of “dimensional
embedding” (4D→5D) of the (matrix) representation of the infinitesimal
generators of the group SO(1, 3)GEN. (as expressed by (8.23)), does not
change the infinitesimal-algebraic structure in any way. This is due to the
fact that the matrix rows and columns corresponding to the “auxiliary
coordinate” y do not “mix” with the homogeneous components of the coor-
dinate transformations being considered.

We have therefore

I10
DSR(x5) =

⎛

⎜

⎜

⎜

⎜

⎝

0 −b−2
0 (x5) 0 0 0

−b−2
1 (x5) 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

; (8.24)

I20
DSR(x5) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 −b−2
0 (x5) 0 0

0 0 0 0 0
−b−2

2 (x5) 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

; (8.25)

I30
DSR(x5) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 −b−2
0 (x5) 0

0 0 0 0 0
0 0 0 0 0

−b−2
3 (x5) 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

; (8.26)
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I12
DSR(x5) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 −b−2

1 (x5) 0 0
0 b−2

2 (x5) 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

; (8.27)

I23
DSR(x5) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 −b−2

2 (x5) 0
0 0 b−2

3 (x5) 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

; (8.28)

I31
DSR(x5) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 b−2

1 (x5) 0
0 0 0 0 0
0 −b−2

3 (x5) 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

. (8.29)

From (8.16)–(8.19) and (8.24)–(8.29) one gets the following form of the
4D “mixed” deformed Poincaré algebra (∀ (i, j, k) ∈ {1, 2, 3}3):
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[Ii0
DSR(x5), Υ 0

DSR(x5)] = b−2
0 (x5)Υ i

DSR(x5);

[Ii0
DSR(x5), Υ j

DSR(x5)] ESC off on i= δij(x5)b−2
i (x5)Υ 0

DSR(x5);

[Iij
DSR(x5), Υ 0

DSR(x5)] = 0;

[Iij
DSR(x5), Υ k

DSR(x5)]
ESC off on i and j

= δikb−2
i (x5)Υ j

DSR(x5) − δjkb−2
j (x5Υ i

DSR(x5),

(8.30)

or, in compact form (∀ (µ, ν, ρ) ∈ {0, 1, 2, 3}3):

[Iµν
DSR(x5), Υ ρ

DSR(x5)] = gνρ
DSR(x5)Υµ

DSR(x5) − gµρ
DSR(x5)Υ ν

DSR(x5)

ESC off= δνρ
(

b−2
0 (x5)δν0 − b−2

1 (x5)δν1 − b−2
2 (x5)δν2 − b−2

3 (x5)δν3
)

Υµ
DSR(x5)

−δµρ
(

b−2
0 (x5)δµ0 − b−2

1 (x5)δµ1 − b−2
2 (x5)δµ2 − b−2

3 (x5)δµ3
)

Υ ν
DSR(x5),

(8.31)

whence in general

∃ at least 1 (µ, ν, ρ) ∈ {0, 1, 2, 3}3 : [Iµν
DSR(x5), Υ ρ

DSR(x5)] 
= 0, ∀x5 ∈ R+
0 .

(8.32)

Therefore, although (su(2)DEF. ⊗ su(2)DEF.) SO(1, 3)DEF. and (tr.
(1, 3)DEF.) Tr.(1, 3)DEF. are proper (subalgebras) subgroups – non-abelian
and abelian, respectively – of the 4D deformed Poincaré (algebra) group,
they determine it only by their semidirect product.
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Let us change the basis of the infinitesimal generators of SO(1, 3)DEF.

to the “self-representative” one of the (Euclidean) three-vector, deformed,
space–time infinitesimal generators SDSR(x5), KDSR(x5), defined by
(6.54)–(6.57). In this basis, the “mixed” part of the 4D deformed Poincaré
algebra can be written as (ESC off):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[Ki
DSR(x5), Υ 0

DSR(x5)] = −b−2
0 (x5)Υ i

DSR(x5);

[Ki
DSR(x5), Υ j

DSR(x5)] ESC off on i= −δijb−2
i (x5)Υ 0

DSR(x5);

[Si
DSR(x5), Υ 0

DSR(x5)] = [12ε
i
jkI

jk
DSR(x5), Υ 0

DSR](x5)

= 1
2ε

i
jk[Ijk

DSR(x5), Υ 0
DSR(x5)] = 0;

[Si
DSR(x5), Υ k

DSR(x5)] = [12ε
i
jlI

jl
DSR(x5), Υ k

DSR(x5)]

= 1
2ε

i
jl[I

jl
DSR(x5), Υ k

DSR(x5)]

= 1
2ε

i
jl

(

δjkb−2
j (x5)Υ l

DSR(x5) − δlkb−2
l (x5)Υ j

DSR(x5)
)

ESC off on k= 1
2

(

εikl b
−2
k (x5)Υ l

DSR(x5) − εikj b
−2
k (x5)Υ j

DSR(x5)
)

ESC off on k= εiklb
−2
k (x5)Υ l

DSR(x5).

(8.33)

On account of the results obtained in Sect. 6.3 for the 4D deformed
(homogeneous) Lorentz algebra su(2)DEF. ⊗ su(2)DEF., we can write the
Lie algebra (su(2)DEF. ⊗ su(2)DEF.) ⊗s tr.(1, 3)DEF. of the 4D deformed
Poincaré group P (1, 3)DEF. (i.e., the algebraic-infinitesimal structure of the
maximal Killing group of ˜M(x5)) as:

4D Deformed space–time

rotation algebra

su(2)DEF. ⊗ su(2)DEF.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[Iαβ
DSR(x5), Iρσ

DSR(x5)]

= gασ
DSR(x5)Iβρ

DSR(x5) + gβρ
DSR(x5)Iασ

DSR(x5)

−gαρ
DSR(x5)Iβσ

DSR(x5) − gβσ
DSR(x5)Iαρ

DSR(x5)
ESC off= δασ(b−2

0 (x5)δα0 − b−2
1 (x5)δα1

−b−2
2 (x5)δα2 − b−2

3 (x5)δα3)Iβρ
DSR(x5)

+δβρ(δβ0b−2
0 (x5) − δβ1b−2

1 (x5)

−δβ2b−2
2 (x5) − δβ3b−2

3 (x5))Iασ
DSR(x5)

−δαρ(δα0b−2
0 (x5) − δα1b−2

1 (x5)

−δα2b−2
2 (x5) − δα3b−2

3 (x5))Iβσ
DSR(x5)

−δβσ(δβ0b−2
0 (x5) − δβ1b−2

1 (x5)

−δβ2b−2
2 (x5) − δβ3b−2

3 (x5))Iαρ
DSR(x5);

(8.34)
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4D Deformed space–time

translation algebra

tr.(1, 3)DEF.

[Υµ
DSR(x5), Υ ν

DSR(x5)] = 0;

(8.35)

4D “Mixed” deformed space–time

rototranslational algebra

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[Iµν
DSR(x5), Υ ρ

DSR(x5)]

= gνρ
DSR(x5)Υµ

DSR − gµρ
DSR(x5)Υ ν

DSR

ESC off= δνρ(b−2
0 (x5)δν0 − b−2

1 (x5)δν1

−b−2
2 (x5)δν2 − b−2

3 (x5)δν3)Υµ
DSR(x5)

−δµρ(b−2
0 (x5)δµ0 − b−2

1 (x5)δµ1

−b−2
2 (x5)δµ2 − b−2

3 (x5)δµ3)Υ ν
DSR(x5),

(8.36)

or, in the “self-representation” basis of the deformed infinitesimal genera-
tors:

4D Deformed space–time

rotation algebra

su(2)DEF. ⊗ su(2)DEF.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[Si
DSR(x5), Sj

DSR(x5)]
ESC off on i and j

=

=
(

∑3
s=1(1 − δis)((1 − δjs)b−2

s (x5)
)

εijkS
k
DSR(x5)

= εijkb
−2
k (x5)Sk

DSR(x5);

[Ki
DSR(x5),Kj

DSR(x5)]

= −b−2
0 (x5)εijkS

k
DSR(x5);

[Si
DSR(x5),Kj

DSR(x5)]
ESC off on j

=

= εijlK
l
DSR(x5)

(

∑3
s=1 δjsb

−2
s (x5)

)

ESCoff on j
= εijlb

−2
j (x5)Kl

DSR(x5);
(8.37)

4D Deformed space–time

translation algebra

tr.(1, 3)DEF.

[Υµ
DSR(x5), Υ ν

DSR(x5)] = 0;

(8.38)



8.2 The Group of 4D Deformed Translations 165

4D “Mixed” deformed space–time

rototranslational algebra

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[Ki
DSR(x5), Υ 0

DSR(x5)] = −b−2
0 (x5)Υ i

DSR(x5);

[Ki
DSR(x5), Υ j

DSR(x5)]

ESC off on i
= −δijb−2

i (x5)Υ 0
DSR(x5);

[Si
DSR(x5), Υ 0

DSR(x5)] = 0;

[Si
DSR(x5), Υ k

DSR(x5)]

ESC off on k
= εiklb

−2
k (x5)Υ l

DSR(x5).

(8.39)

8.2.3 Infinitesimal and Finite Deformed Translations in DSR

Let us consider the infinitesimal (i.e., algebraic) element4 δg ∈ tr.
(1, 3)DEF. ⊂ ((su(2)DEF. ⊗ su(2)DEF.) ⊗s tr.(1, 3)DEF.). It corresponds, in
˜M(x5), to a deformed, infinitesimal 4D space–time translation by the para-
metric, length-dimensioned (infinitesimal) contravariant four-vector

Tµ
DSR(g, x5) ≡ gµρ

DSR(x5)Tρ(g)

=
(

b−2
0 (x5)T 0, b−2

1 (x5)T 1, b−2
2 (x5)T 2, b−2

3 (x5)T 3
)

. (8.40)

The 5 × 5 matrix TT µ
DSR(g,x5),DSR(x5) representing such a translation is

defined by

TT µ
DSR(g,x5),DSR(x5) ≡ Tµ

DSR(g, x5)Υµ,(DSR)

= gµρ
DSR(x5)Tρ(g)Υµ,(DSR) = Tµ(g)Υµ

DSR(x5)

= T 0(g)Υ 0
DSR(x5) − T 1(g)Υ 1

DSR(x5) − T 2(g)Υ 2
DSR(x5) − T 3(g)Υ 3

DSR(x5),
(8.41)

(where the “DSR” in brackets in Υµ,(DSR) means again that – as already
stressed – the deformed translation infinitesimal covariant generators are
independent of the (geo)metric context considered) or, explicitly

TT µ
DSR(g,x5),DSR(x5) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 b−2
0 (x5)T 0(g)

0 0 0 0 b−2
1 (x5)T 1(g)

0 0 0 0 b−2
2 (x5)T 2(g)

0 0 0 0 b−2
3 (x5)T 3(g)

0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

. (8.42)

4For precision’s sake, at the infinitesimal transformation level δg ∈ tr.(1, 3)DEF.

⊂ ((su(2)DEF. ⊗ su(2)DEF.) ×s tr(1, 3)DEF.) should be substituted for g ∈
Tr.(1, 3)DEF. ⊂ P (1, 3)DEF.. But, for simplicity’s sake, we will omit, but understand,
this cumbersome notation.
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Therefore, the 4D deformed, infinitesimal space–time translation by
the (infinitesimal) vector (8.40) in ˜M(x5) – corresponding to δg ∈ tr.
(1, 3)DEF. – is given by (ESC on; for simplicity’s sake, the dependence
on x is omitted):

⎛

⎜

⎜

⎜

⎜

⎝

x0′(g, x5)
x1′(g, x5)
x2′(g, x5)
x3′(g, x5)

y′

⎞

⎟

⎟

⎟

⎟

⎠

ESC on=
(

15D + TT µ
DSR(g,x5),DSR(x5)

)A

B
xB

=

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0 b−2
0 (x5)T 0(g)

0 1 0 0 b−2
1 (x5)T 1(g)

0 0 1 0 b−2
2 (x5)T 2(g)

0 0 0 1 b−2
3 (x5)T 3(g)

0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

x0

x1

x2

x3

(y =) 1

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

x0 + b−2
0 (x5)T 0(g)

x1 + b−2
1 (x5)T 1(g)

x2 + b−2
2 (x5)T 2(g)

x3 + b−2
3 (x5)T 3(g)
(y =) 1

⎞

⎟

⎟

⎟

⎟

⎠

. (8.43)

At the finite transformation level, one has to evaluate the
exponential of the matrix TT µ

DSR(g,x5),DSR(x5), i.e., the 5 × 5 matrix

exp
(

TT µ
DSR(g,x5),DSR(x5)

)

, representing the finite (i.e., group) element
g ∈ Tr.(1, 3)DEF. ⊂ SO(1, 3)DEF. which corresponds to a deformed, finite
4D space–time translation by a parametric, length-dimensioned (finite)
contravariant four-vector Tµ

DSR(g, x5):

exp
(

TT µ
DSR(g,x5),DSR(x5)

)

=
∞
∑

n=0

1
n!

(

TT µ
DSR(g,x5),DSR(x5)

)n

= 15D + TT µ
DSR(g,x5),DSR(x5). (8.44)

Then, as anticipated in Sect. 8.1, for translation transformations the only
difference between the infinitesimal level and the finite one is provided by
the infinitesimal or finite nature of the contravariant translation parameters
Tµ

DSR(g, x5). Such a result is a peculiar feature of the space–time translation
component of the 4D deformed Poincaré group P (1, 3)DEF., and in general
of translation coordinate transformations in N -d generalized Minkowski
spaces ˜MN ({x}n.m.). Still in the case of DSR, it can be recovered also
by exploiting the abelian nature of Tr.(1, 3)DEF. and the property of the
powers of its infinitesimal generators (see (8.20)), and by using the Baker–
Campbell–Hausdorff formula; one has indeed
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exp

(

TT
µ
DSR(g,x5),DSR(x5)

)

= exp(T 0(g)Υ 0
DSR(x5) − T 1(g)Υ 1

DSR(x5)

−T 2(g)Υ 2
DSR(x5) − T 3(g)Υ 3

DSR(x5)) = exp
(

T 0(g)Υ 0
DSR(x5)

)

× exp
(

T 1(g)Υ 1
DSR(x5)

)

× exp
(

T 2(g)Υ 2
DSR(x5)

)

× exp
(

T 3(g)Υ 3
DSR(x5)

)

=

(

∑∞
n=0

(T0(g))n

n!

(

Υ 0
DSR(x5)

)n
)

×
(

∑∞
n=0

(T1(g))n

n!

(

Υ 1
DSR(x5)

)n
)

×
(

∑∞
n=0

(T2(g))n

n!

(

Υ 2
DSR(x5)

)n
)

×
(

∑∞
n=0

(T3(g))n

n!

(

Υ 3
DSR(x5)

)n
)

=
(

15D + T 0(g)Υ 0
DSR(x5)

)

×
(

15D + T 1(g)Υ 1
DSR(x5)

)

×
(

15D + T 2(g)Υ 2
DSR(x5)

)

×
(

15D + T 3(g)Υ 3
DSR(x5)

)

= 15D + T 0(g)Υ 0
DSR(x5) + T 1(g)Υ 1

DSR(x5) + T 2(g)Υ 2
DSR(x5)

+T 3(g)Υ 3
DSR(x5)

= 15D + TT
µ
DSR(g,x5),DSR(x5). (8.45)

On account of the noncommutativity of the infinitesimal generators of
Tr.(1, 3)DEF. and of SO(1, 3)DEF. (see (8.30),(8.31)), and by exploiting
again the BCH formula, it is possible to state the following inequality for the
5D matrix representing the finite (i.e., group) element g ∈ P (1, 3)DEF. cor-
responding to a finite, 4D deformed space–time rototranslation in ˜M(x5),
of dimensionless, parametric deformed angular (Euclidean) three-vector
θ(g), dimensionless parametric deformed rapidity (Euclidean) three-vector
ζ(g) and “length-dimensioned,” parametric, translational contravariant
(deformed) four-vector Tµ

DSR(g, x5):5

exp
(

−θ(g) · SDSR(x5) − ζ(g) · KDSR(x5) + Tµ(g)Υ µ
DSR(x5)

)

�= exp
(

−θ(g) · SDSR(x5) − ζ(g) · KDSR(x5)
)

× exp
(

Tµ(g)Υ µ
DSR(x5)

)

= exp
(

−θ(g) · SDSR(x5) − ζ(g) · KDSR(x5)
)

× exp
(

TT
µ
DSR(g,x5),DSR(x5)

)

= exp
(

−θ(g) · SDSR(x5) − ζ(g) · KDSR(x5)
)

×
(

15D + TT
µ
DSR(g,x5),DSR(x5)

)

5Let us instead notice that, at infinitesimal level, all the transformations of the Lie
group P (1, 3)DEF. commute.
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= exp
(

−θ(g) · SDSR(x5)
)

× exp
(

−ζ(g) · KDSR(x5)
)

×
(

15D + TT µ
DSR(g,x5),DSR(x5)

)


= exp
(

−θ1(g)S1
DSR(x5)

)

× exp
(

−θ2(g)S2
DSR(x5)

)

× exp
(

−θ3(g)S3
DSR(x5)

)

× exp
(

−ζ1(g)K1
DSR(x5)

)

× exp
(

−ζ2(g)K2
DSR(x5)

)

× exp
(

−ζ3(g)K3
DSR(x5)

)

×
(

15D + TT µ
DSR(g,x5),DSR(x5)

)

, (8.46)

where in the last two lines the noncommutativity of deformed true rotation
and boost generators has been used (see (8.36) and (8.39)).

By comparing (8.43) with the expression of a translation in the usual
Minkowski space M of SR (as before ESC on and, for simplicity’s sake,
dependence on {xm.} is omitted)

⎛

⎜

⎜

⎜

⎜

⎝

x0′(g)
x1′(g)
x2′(g)
x3′(g)
y′

⎞

⎟

⎟

⎟

⎟

⎠

=
(

15D + TT µ
SR(g),SR

)A

B
xB

=

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0 T 0(g)
0 1 0 0 T 1(g)
0 0 1 0 T 3(g)
0 0 0 1 T 3(g)
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

x0

x1

x2

x3

(y =) 1

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

x0 + T 0(g)
x1 + T 1(g)
x2 + T 2(g)
x3 + T 3(g)

(y =) 1

⎞

⎟

⎟

⎟

⎟

⎠

, (8.47)

it is easily seen that passing from SR to DSR – i.e., locally deforming and
spatially anisotropizing M – amounts to the following parameter change
(as far as space–time translations are concerned)

Tµ
SR(g) =

(

T 0(g), T 1(g), T 2(g), T 3(g)
)

→ Tµ
DSR(g, x5)

=
(

b−2
0 (x5)T 0(g), b−2

0 (x5)T 1(g), b−2
0 (x5)T 2(g), b−2

0 (x5)T 3(g)
)

≡ ˜Tµ
DSR(g, x5). (8.48)

Then, extending the meaning of effective transformation parameters (cf.
(7.40) and (7.65) for the effective rapidities and angles, respectively) to the
translation ones, we can say that in the translational case the (“length-
dimensioned”) deformed translation parameter four-vector Tµ

DSR(g, x5)
coincides with the effective (“length-dimensioned”)6 deformed translation

6The contravariant four-vector identity (8.49), at index – and not component – level,
is due to the very fact that the passage SR→DSR:

gµν,SR =diag (1,−1,−1,−1) → gµν,DSR(x5)=diag
(

b20(x5),−b21(x5),−b22(x5),−b23(x5)
)
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parameter four-vector ˜Tµ
DSR(g, x5):

Tµ
DSR(g, x5) = ˜Tµ

DSR(g, x5). (8.49)

This is a peculiar feature of the translation component Tr.(1, 3)DEF. of the
4D deformed Poincaré group P (1, 3)DEF., and it is due to the following
fact. While for 4D space–time rotations (homogeneous coordinate transfor-
mations) the deformed transformation parameter three-vectors θ (g) and
ζ (g) are Euclidean (see Chap. 7), in the case of 4D deformed transla-
tions (inhomogeneous coordinate transformations) the translation parame-
ter (contravariant) four-vector Tµ

DSR(g, x5) is “length-dimensioned” and
deformed, i.e., dependent on the metric structure under consideration (as
already pointed out).

Let us finally stress that the (local) “deforming anisotropizing” general-
ization of SR corresponding to DSR is fully self-consistent at space–time
translation level, too. Namely, all the results obtained for the Lie group
Tr.(1, 3)DEF. of space–time deformed translations in the 4D “deformed”
Minkowski space ˜M(x5) reduce, in the limit gµν,DSR(x5) → gµν,SR (i.e., for
b2µ(x5) → 1,∀µ = 0, 1, 2, 3), to the well-known special-relativistic results
concerning the Lie group Tr.(1, 3)STD. of space–time translations in the
standard 4D Minkowski space M .

preserves the diagonality of the 2-rank, symmetric metric 4-tensor, still destroying its
isochrony and spatial isotropy.



9
Deformed Minkowski Space
as Generalized Lagrange Space

9.1 Generalized Lagrange Spaces

We want now to show that the deformed Minkowski space ˜M of DSR does
possess another well-defined geometrical structure, besides the deformed
metrical one. Precisely, we will show (following [44]) that ˜M is a generalized
Lagrange space.

Let us give the definition of generalized Lagrange space [12], since usually
one is not acquainted with it.

Consider a N -dimensional, differentiable manifold M and its (N -
dimensional) tangent space in a point, TMx (x ∈ M). As is well known,
the union

⋃

x∈M
TMx ≡ TM (9.1)

has a fiber bundle structure. Let us denote by y the generic element of
TMx, namely a vector tangent to M in x. Then, an element u ∈ TM is a
vector tangent to the manifold in some point x ∈ M. Local coordinates for
TM are introduced by considering a local coordinate system (x1, x2, ..., xN )
on M and the components of y in such a coordinate system (y1, y2, ..., yN ).
The 2N numbers (x1, x2, ..., xN , y1, y2, ..., yN ) constitute a local coordinate
system on TM. We can write synthetically u = (x,y). TM is a 2N -
dimensional, differentiable manifold.

Let π be the mapping (natural projection) π : u = (x,y) −→ x. (x ∈ M,
y ∈TMx). Then, the tern (TM, π,M) is the tangent bundle to the base
manifold M. The image of the inverse mapping π−1(x) is of course the
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tangent space TMx, which is called the fiber corresponding to the point
x in the fiber bundle One considers also sometimes the manifold ̂TM =
TM/ {0}, where 0 is the zero section of the projection π. We do not dwell
further on the theory of the fiber bundles, and refer the reader to the wide
and excellent literature on the subject [46].

The natural basis of the tangent space Tu(TM) at a point

u = (x,y) ∈ TMis
{

∂

∂xi
,
∂

∂yj

}

, i, j = 1, 2, ..., N.

A local coordinate transformation in the differentiable manifold TM
reads

⎧

⎪

⎨

⎪

⎩

x′i = x′i(x), det
(

∂x′i

∂xj

)


= 0,

y′i =
∂x′i

∂xj
yj .

(9.2)

Here, yi is the Liouville vector field on TM, i.e., yi ∂

∂yi
.

On account of (9.2), the natural basis of TMx can be written as:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂

∂xi
=
∂x′k

∂xi

∂

∂x′k
+
∂y′k

∂xi

∂

∂y′k
,

∂

∂yj
=
∂y′k

∂yj

∂

∂y′k
.

(9.3)

Second (9.3) shows therefore that the vector basis (∂/∂yj), j = 1, 2, ..., N ,
generates a distribution V defined everywhere on TM and integrable, too
(vertical distribution on TM).

If H is a distribution on TM supplementary to V, namely

Tu(TM) = Hu ⊕ Vu , ∀u ∈ TM, (9.4)

then H is called a horizontal distribution, or a nonlinear connection on TM.
A basis for the distributions H and V are given, respectively, by δ/δxi and
∂/∂yj , where the basis in H explicitly reads

δ

δxi
=

∂

∂xi
−Hj

i(x,y)
∂

∂yj
. (9.5)

Here, Hj
i (x,y) are the coefficients of the nonlinear connection H. The basis

{

δ

δxi
,
∂

∂yj

}

=
{

δi, ∂̇j

}

is called the adapted basis.
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The dual basis to the adapted basis is
{

dxi, δyj
}

, with

δyj = dyj +Hj
i(x,y)dxi. (9.6)

A distinguished tensor (or d-tensor) field of (r,s)-type is a quantity whose
components transform like a tensor under the first coordinate transforma-
tion (9.2) on TM (namely they change as tensor in M). For instance, for
a d-tensor of type (1, 2):

R′i
jk =

∂x′i

∂xs

∂xr

∂x′j
∂xp

∂x′k
Rs

rp. (9.7)

In particular, both δ/δxi and ∂/∂yj are d-(covariant) vectors, whereas dxi,
δyj are d-(contravariant) vectors.

A generalized Lagrange space is a pair GLN=(M, gij(x,y)), with
gij(x,y) being a d-tensor of type (0,2) (covariant) on the manifold TM,
which is symmetric, nondegenerate1 and of constant signature.

A function
L : (x,y) ∈ TM → L(x,y) ∈ R (9.8)

differentiable on ̂TM and continuous on the null section of π is named a
regular Lagrangian if the Hessian of L with respect to the variables yi is non-
singular. A generalized Lagrange space GLN=(M, gij(x,y)) is reducible to
a Lagrange space LN if there is a regular Lagrangian L satisfying

gij =
1
2

∂2L

∂yi∂yj
(9.9)

on ̂TM . In order that GLN is reducible to a Lagrange space, a necessary
condition is the total symmetry of the d-tensor (∂gij/∂y

k). If such a con-
dition is satisfied, and gij are 0-homogeneous in the variables yi, then the
function L = gij(x,y)yiyj is a solution of the system (9.9). In this case,
the pair (M, L) is a Finsler space2 defined for x ∈ M and ξ ∈TxM such
that Φ(x, ·) is a possibly nonsymmetric norm on TxM.

Notice that every Riemann manifold (M, g) is also a Finsler space, the
norm Φ(x, ξ) being the norm induced by the scalar product g(x).

A finite dimensional Banach space is another simple example of Finsler
space, where Φ(x, ξ) ≡‖ξ‖ . (M,Φ), with Φ2 = L. One says that GLN is
reducible to a Finsler space.

Of course, GLN reduces to a pseudo-Riemannian (or Riemannian) space
(M, gij(x)) if the d-tensor gij(x,y) does not depend on y. On the con-
trary, if gij(x,y) depends only on y (at least in preferred charts), it is a
generalized Lagrange space which is locally Minkowski.

1Namely it must be rank ‖gij(x,y)‖ = N .
2Let us recall that a Finsler space [7] is a couple (M, Φ), where M is be an N -

dimensional differential manifold and Φ : TM ⇒ R a function Φ(x, ξ)
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Since, in general, a generalized Lagrange space is not reducible to a
Lagrange one, it cannot be studied by means of the methods of symplectic
geometry, on which – as is well known – analytical mechanics is based.

A linear H−connection on TM (or on ̂TM) is defined by a couple of
geometrical objects CΓ (H) = (Li

jk, C
i
jk) on TM with different trans-

formation properties under the coordinate transformation (9.2). Precisely,
Li

jk(x,y) transform like the coefficients of a linear connection on M,
whereas Ci

jk(x,y) transform like a d-tensor of type (1,2). CΓ (H) is called
the metrical canonical H−connection of the generalized Lagrange space
GLN .

In terms of Li
jk and Ci

jk one can define two kinds of covariant derivatives:
a covariant horizontal (h-) derivative, denoted by “�,” and a covariant ver-
tical (v-) derivative, denoted by “|.” For instance, for the d-tensor gij(x,y)
one has

⎧

⎪

⎨

⎪

⎩

gij�k =
δgij

δxk
− gsjL

s
ik − gisL

s
jk;

gij|k =
∂gij

∂xk
− gsjC

s
ik − gisC

s
jk.

(9.10)

The two derivatives gij�k and gij|k are both d-tensors of type (0,3).
The coefficients of CΓ (H) can be expressed in terms of the following

generalized Christoffel symbols:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Li
jk = 1

2g
is

(

δgsj

δxk
+
δgks

δxj
+
δgjk

δxs

)

;

Ci
jk = 1

2g
is

(

∂gsj

∂xk
+
∂gks

∂xj
+
∂gjk

∂xs

)

.

(9.11)

Moreover, by means of the connection CΓ (H) it is possible to define a
d-curvature in TM by means of the tensors R i

j kh, S i
j kh and P i

j kh given by

R i
j kh =

δLi
jk

δxh
−
δLi

jh

δxk
+ Lr

jkL
i
rh − Lr

jhL
i
rk + Ci

jrR
r
kh;

S i
j kh =

∂Ci
jk

∂yh
−
∂Ci

jh

∂yk
+ Cr

jkC
i
rh − Cr

jhC
i
rk;

P i
j kh =

∂Li
jk

∂yh
− Ci

j�h + Ci
jrP

r
kh. (9.12)

Here, the d-tensor Ri
jk is related to the bracket of the basis δ/δxi:

[

δ

δxi
,
δ

δxj

]

= Rs
ij

∂

∂ys
(9.13)
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and is explicitly given by3

Ri
jk =

δHi
j

δxk
− δHi

k

δxj
. (9.14)

The tensor P i
jk, together with T i

jk, Si
jk, defined by

P i
jk =

∂Hi
j

∂yk
− Li

jk;

T i
jk = Li

jk − Li
kj ;

Si
jk = Ci

jk − Ci
kj (9.15)

are the d-tensors of torsion of the metrical connection CΓ (H).
From the curvature tensors one can get the corresponding Ricci tensors

of CΓ (H):
⎧

⎨

⎩

Rij = R s
i js; Sij = S s

i js;
1

P ij = P s
i js

2

P ij = P s
i sj ,

(9.16)

and the scalar curvatures

R = gijRij ; S = gijSij . (9.17)

Finally, the deflection d-tensors associated to the connection CΓ (H) are
{

Di
j = yi

�j = −Hi
j + ysLi

sj ;

di
j = yi

|j = δi
j + ysCi

sj ,
(9.18)

namely the h- and v-covariant derivatives of the Liouville vector fields.
In the generalized Lagrange space GLN it is possible to write the Einstein

equations with respect to the canonical connection CΓ (H) as follows:
⎧

⎪

⎨

⎪

⎩

Rij − 1
2Rgij = κ

H

T ij ;
1

P ij = κ
1

T ij ;

Sij − 1
2Sgij = κ

V

T ij ;
2

P ij = κ
2

T ij ,

(9.19)

where κ is a constant and
H

T ij ,
V

T ij ,
1

T ij ,
2

T ij are the components of the
energy-momentum tensor.

3Ri
jk plays the role of a curvature tensor of the nonlinear connection H. The corre-

sponding tensor of torsion is instead

tijk =
∂Hi

j

∂yk
−

∂Hi
k

∂yj
.
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9.2 Generalized Lagrangian Structure of ˜M

On the basis of the previous considerations, let us analyze the geometrical
structure of the deformed Minkowski space of DSR ˜M , endowed with the by
now familiar metric gµν,DSR(E). As explained in Part I, E is the energy of
the process measured by the detectors in Minkowskian conditions. There-
fore, E is a function of the velocity components, uµ = dxµ/dτ , where τ is
the (Minkowskian) proper time:

E = E

(

dxµ

dτ

)

. (9.20)

The derivatives dxµ/dτ define a contravariant vector tangent to M at x,
namely they belong to TMx. We shall denote this vector (according to the
notation of Sect. 9.1) by y = (yµ). Then, (x,y) is a point of the tangent
bundle to M . We can therefore consider the generalized Lagrange space
GL4 = (M, gµν(x,y)), with

⎧

⎨

⎩

gµν(x,y) = gµν,DSR(E(x,y)),

E(x,y) = E(y).
(9.21)

Then, it is possible to prove the following theorem:
The pair GL4 = (M, gµν,DSR(x,y)) ≡ ˜M is a generalized Lagrange space

which is not reducible to a Riemann space, or to a Finsler space, or to a
Lagrange space.

We already proved the first statement in Sect. 2.2 of Part I, on account
of the dependence of the deformed metric tensor on E (and therefore on y)
only: gµν,DSR(x,y) ≡gµν,DSR(y). To prove that GL4 is reducible neither to
a Lagrange space nor to a Finsler one, it is sufficient (as stated in Sect. 9.1)
to show that the d-tensor field (∂gµν,DSR/∂y

ρ) is not totally symmetric,
i.e., the equation

∂gµν,DSR

∂yρ
=
∂gµρ,DSR

∂yν
(9.22)

does not hold. Let us assume by absurdum that (9.22) is satisfied. Then,
for µ = ν 
= ρ, one gets

∂gµµ,DSR

∂yρ
=
∂gµρ,DSR

∂yµ
(9.23)

whence
∂gµν,DSR

∂yρ
= 0, µ 
= ρ (9.24)

(since gDSR,µν is diagonal). Equation (9.24) implies

∂gµµ,DSR

∂E

∂E

∂yρ
= 0, ∀µ, ρ;µ 
= ρ =⇒ ∂E

∂yρ
= 0, (9.25)
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which is impossible. This proves the theorem. Notice that such a result
is strictly related to the fact that the deformed metric tensor of DSR is
diagonal, and therefore it does not hold, in general, for the generalized
Minkowski spaces we defined in Chapter 5.

If an external electromagnetic field Fµν is present in the Minkowski
space M , in ˜M the deformed electromagnetic field is given by ˜Fµ

ν(x,y) =
gµρ
DSRFρν(x) (see Sect. 3.5). Such a field is a d-tensor and is called the elec-

tromagnetic tensor of the generalized Lagrange space. Then, the nonlinear
connection H is given by

Hµ
ν =

{

µ
νρ

}

yρ − ˜Fµ
ν(x,y), (9.26)

where
{

µ
νρ

}

, the Christoffel symbols of the Minkowski metric gµν , are

zero, so that
Hµ

ν = − ˜Fµ
ν(x,y). (9.27)

The adapted basis of the distribution H reads therefore

δ

δxµ
=

∂

∂xµ
+ ˜F ν

µ(x,y).
∂

∂yν
. (9.28)

The local covector field of the dual basis (cf. (9.6)) is given by

δyµ = dyµ − ˜Fµ
ν(x,y)dxν . (9.29)

9.3 Canonical Metric Connection of ˜M

The derivation operators applied to the deformed metric tensor of the space
GL4 = ˜M yield

δgµν,DSR

δxρ
=
∂gµν,DSR

∂xρ
+ ˜F σ

ρ

∂gµν,DSR

∂yσ
= ˜F σ

ρ

∂gµν,DSR

∂E

∂E

∂yσ
, (9.30)

∂gµν,DSR

∂yσ
=
∂gµν,DSR

∂E

∂E

∂yσ
. (9.31)

Then, the coefficients of the canonical metric connection CΓ (H) in ˜M (see
(9.11)) are given by
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Lµ
νρ = 1

2g
µσ
DSR

∂E

∂yα

(

∂gσν,DSR

∂E
˜Fα

ρ +
∂gσρ,DSR

∂E
˜Fα

ν − ∂gνρ,DSR

∂E
˜Fα

σ

)

,

Cµ
νρ = 1

2g
µσ
DSR

∂E

∂yα

(

∂gσν,DSR

∂E
δα

ρ +
∂gσρ,DSR

∂E
δα

ν − ∂gνρ,DSR

∂E
δα

σ

)

.

(9.32)
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The vanishing of the electromagnetic field tensor, Fα
ρ = 0, implies

Lµ
νρ = 0.
One can define the deflection tensors associated to the metric connection

CΓ (H) as follows (cf. (9.18)):

Dµ
ν = yµ

�ν =
δyµ

δxν
+ yαLµ

αν = ˜Fµ
ν + yαLµ

αν ;

dµ
ν = yµ

|ν = δµ
ν + yαCµ

αν . (9.33)

The covariant components of these tensors read

Dµν = gµσ,DSRDσ
ν = gµσ,DSR

(

˜F σ
ν + yαLσ

αν

)

= Fµν(x) +
1

2
yσ ∂E

∂yα

(

∂gµσ,DSR

∂E
˜F α

ν +
∂gµν,DSR

∂E
˜F α

σ − ∂gσν,DSR

∂E
˜F α

µ

)

;

dµν = gµσ,DSRdσ
ν

= gDSR,µν +
1

2
yσ ∂E

∂yα

(

∂gµσ,DSR

∂E
δα

ν +
∂gµν,DSR

∂E
δα

σ − ∂gσν,DSR

∂E
δα

µ

)

.

(9.34)

Let us show how the formalism of the generalized Lagrange space allows
one to recover some results on the phenomenological energy-dependent met-
rics discussed in Chap. 4.

Consider the following metric (c = 1):

ds2 = a(E)dt2 + (dx2 + dy2 + dz2), (9.35)

where a(E) is an arbitrary function of the energy and spatial isotropy (b2 =
1) has been assumed. In absence of external electromagnetic field (Fµν =
0), the nonvanishing components Cµ

νρ of the canonical metric connection
CΓ (H) (see (9.32)) are
⎧

⎨

⎩

C0
00 =

a′

a
y0, C0

01 = −a′

a
y1, C0

02 = −a′

a
y2, C0

03 =
a′

a
y3,

C1
00 = −a′y1, C2

00 = −a′y2, C0
00 = −a′y3,

(9.36)

where the prime denotes derivative with respect to E: a′ = da/dE.
According to the formalism of generalized Lagrange spaces, we can write

the Einstein equations in vacuum corresponding to the metrical connection
of the deformed Minkowski space (see (9.19)). It is easy to see that the
independent equations are given by

a′ = 0; (9.37)

2aa′′ − (a′)2 = 0. (9.38)



The first equation has the solution a = const., namely we get the Minkowski
metric. Equation (9.38) has the solution

a(E) =
1
4

(

a0 +
E

E0

)2

, (9.39)

where a0 and E0 are two integration constants.
This solution represents the time coefficient of an over-Minkowskian met-

ric of the second class, (4.31), with n0 =2. For a0 = 0 it coincides with (the
time coefficient of) the phenomenological metric of the strong interaction,
(4.11). On the other hand, by choosing a0 = 1, one gets the time coefficient
of the metric for gravitational interaction, (4.18).

In other words, considering ˜M as a generalized Lagrange space permits
to recover (at least partially) the metrics of two interactions (strong and
gravitational) derived on a phenomenological basis.

It is also worth noticing that this result shows that a space–time defor-
mation (of over-Minkowskian type) exists even in absence of an external
electromagnetic field (remember that (9.37),(9.38) have been derived by
assuming Fµν = 0).

9.4 Intrinsic Physical Structure of a Deformed
Minkowski Space: Gauge Fields

As we have seen, the deformed Minkowski space ˜M , considered as a gen-
eralized Lagrange space, is endowed with a rich geometrical structure. But
the important point, to our purposes, is the presence of a physical richness,
intrinsic to ˜M . Indeed, let us introduce the following internal electromag-
netic field tensors on GL4 = ˜M , defined in terms of the deflection tensors:

Fµν ≡ 1
2

(Dµν −Dνµ)

= Fµν(x) +
1
2
yσ ∂E

∂yα

(

∂gµσ,DSR

∂E
˜Fα

ν − ∂gνσ,DSR

∂E
˜Fα

µ

)

(9.40)

(horizontal electromagnetic internal tensor) and

fµν ≡ 1
2

(dµν − dνµ)

=
1
2
yσ ∂E

∂yα

(

∂gµσ,DSR

∂E
δα

ν − ∂gνσ,DSR

∂E
δα

µ

)

(9.41)

(vertical electromagnetic internal tensor).
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The internal electromagnetic h- and v-fields Fµν and fµν satisfy the
following generalized Maxwell equations

2 (Fµν�ρ + Fνρ�µ + Fρµ�ν) = yα
(

Rβ
µνCβαρ +Rβ

νρCβαµ +Rβ
ρµCβαν

)

,

Rβ
µν = gβσ ∂Fµν

∂xσ
; (9.42)

Fµν|ρ + Fνρ|µ + Fρµ|ν = fµν�ρ + fνρ�µ + fρµ�ν ; (9.43)

fµν|ρ + fνρ|µ + fρµ|ν = 0. (9.44)

Let us stress explicitly the different nature of the two internal electro-
magnetic fields. In fact, the horizontal field Fµν is strictly related to the
presence of the external electromagnetic field Fµν , and vanishes if Fµν = 0.
On the contrary, the vertical field fµν has a geometrical origin, and depends
only on the deformed metric tensor gµν,DSR(E(y)) of GL4 = ˜M and on
E(y). Therefore, it is present also in space–time regions where no external
electromagnetic field occurs. As we shall see in Part III, this fact has deep
physical implications.

A few remarks are in order. First, the main results obtained for the
(abelian) electromagnetic field can be probably generalized (with suitable
changes) to non-abelian gauge fields. Second, the presence of the internal
electromagnetic h- and v-fields Fµν and fµν , intrinsic to the geometri-
cal structure of ˜M as a generalized Lagrange space, is the cornerstone to
build up a dynamics (of merely geometrical origin) internal to the deformed
Minkowski space.

The important point worth emphasizing is that such an intrinsic dynam-
ics springs from gauge fields. Indeed, the two internal fields Fµν and fµν (in
particular the latter one) do satisfy equations of the gauge type (cf. (9.42)–
(9.44)). Then, we can conclude that the (energy-dependent) deformation
of the metric of ˜M , which induces its geometrical structure as generalized
Lagrange space, leads in turn to the appearance of (internal) gauge fields.

Such a fundamental result can be schematized as follows:

˜M = (M, gµν,DSR(E)) =⇒ GL4 = (M, gµν(x,y)) =⇒
(

˜M,Fµν , fµν

)

(9.45)
(with self-explanatory meaning of the notation).

We want also to stress explicitly that this result follows by the fact
that, in deforming the metric of the space–time, we assumed the energy as
the physical (nonmetric) observable on which letting the metric coefficients
depend (see Chap. 2). This is crucial in stating the generalized Lagrangian
structure of ˜M , as shown in Sect. 9.2.

As is well known, successfully embodying gauge fields in a space–time
structure is one of the basic goals of the research in theoretical physics
starting from the beginning of the twentieth century. The almost unique
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tool to achieve such objective is increasing the number of space–time dimen-
sions. In such a kind of theories (whose prototype is the celebrated Kaluza–
Klein formalism), one preserves the usual (special-relativistic or general-
relativistic) structure of 4D space–time, and gets rid of the nonobservable
extra dimensions by compactifying them (for example to circles). Then
the motions of the extra metric components over the standard Minkowski
space satisfy identical equations to gauge fields. The gauge invariance of
these fields is simply a consequence of the Lorentz invariance in the enlarged
space. In this framework, gauge fields are external to the space–time,
because they are added to it by the hypothesis of extra dimensions.

In the case of the DSR theory, gauge fields arise from the very geomet-
rical, basic structure of ˜M , namely they are a consequence of the met-
ric deformation. The arising gauge fields are intrinsic and internal to the
deformed space–time, and do not need to be added from the outside. As a
matter of fact, DSR is the first theory based on a 4D space–time able to
embody gauge fields in a natural way.

Such a conventional, intrinsic gauge structure is related to a given
deformed Minkowski space ˜M , in which the deformed metric is fixed:

˜M = (M, ḡµν,DSR(E)) . (9.46)

On the contrary, with varying gDSR, we have another gauge-like structure –
as already stressed in Sect. 4.4 – namely what we called a metric gauge. In
the latter case, the gauge freedom amounts to choosing the metric according
to the interaction considered.

The circumstance that the deformed Minkowski space ˜M is endowed
with the geometry of a generalized Lagrange space testifies the richness
of nontrivial mathematical properties present in the seemingly so simple
structure of the deformation of the Minkowski metric. This will be fur-
ther supported in Part IV, where we shall show that ˜M can be naturally
embedded in a 5D Riemannian space.

9.4 Intrinsic Physical Structure of a Deformed Minkowski Space: Gauge Fields



Part III

EXPERIMENTS
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10
Lorentz and CPT Symmetries
in DSR

One of the fundamental teachings of Einstein’s relativity theories is that
the geometry of the (4D) space–time is globally curved (Riemannian) and
locally flat (Minkowskian). This implies the existence of a local frame in
which Special Relativity (SR) strictly holds for nongravitational interac-
tions. Such a property is referred to as local Lorentz invariance (LLI)
(distinct in principle from local position invariance, LPI, i.e., the inde-
pendence of such a local Lorentzian frame from space–time position). An
alternative statement of LLI is that all inertial frames of reference are
(locally) equivalent. However, it is a long-disputed problem whether LLI
preserves its validity at any length or energy scale (far enough from the
Planck scale – corresponding to the Planck length lPlanck =

√

G�/c3 –,
when quantum fluctuations are expected to come into play and affect the
very geometrical structure of space–time). Doubts as to the reliability of
a Lorentz-invariant description of physical phenomena at subnuclear dis-
tances were e.g., put forward, in the mid of the twentieth century, even
in standard (and renowned) textbooks [47]. Typically, a violation of LLI
would single out an individual frame in which a preferred inertial observer
is at rest.

It must also be stressed that Lorentz invariance is strictly related to
CPT symmetry, namely the combined transformation of charge conju-
gation (C), parity inversion (P), and time reversal (T ). This is due to
the celebrated CPT theorem of quantum field theory (however, a classi-
cal explanation of the strict connection between LLI and CPT invariance
can be given by taking into account that the inversion of both the time
and the space axes is a proper Lorentz transformation, by applying it also
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to the energy–momentum space, and taking into account the Stückelberg–
Feynman–Sudarshan “reinterpretation principle” [48,2]).

However, experiments carried out till now show to exceptionally high
precision that all the basic laws of nature seem to have both Lorentz and
CPT symmetry. By this evidence, the problem of their possible breakdown
has been completely out of the mainstream until the last decade of the
twentieth century. Only at that time some physicists started questioning
seriously the validity of LLI and CPT – and therefore of Special Relativity
(SR) – from both the theoretical and the experimental side.

The relevance of testing Lorentz and CPT invariance is obviously due to
the basic fact that a positive evidence for their breakdown would constitute
a significant signature of new, unconventional physics.

This is why LLI breakdown has been investigated by means of several,
quite different approaches, sometimes extending, sometimes relaxing the
concepts and the formalism of SR.

As already stressed in Part I, a deep connection exists between the DSR
formalism and the breakdown of LLI. In fact, the usual Lorentz trans-
formations do not preserve the deformed interval (2.17c), as expressed by
(3.3). This is also clearly seen, on a phenomenological point of view, by
inspecting the very form of the metrics we derived from the analysis of the
experimental data in Sect. 4.1. Indeed, they show a departure of the space–
time metric from the Minkowskian one for the four fundamental interac-
tions. This occurs below the energy thresholds for sub-Minkowskian metrics
(corresponding to the electromagnetic and weak interactions) and above the
energy thresholds for over-Minkowskian ones (strong and gravitational).
The most straightforward meaning of such results is that (apart from the
gravitational case, where of course a departure from the Minkowskian met-
ric is expected and natural) the three phenomena considered (i.e., the super-
luminal propagation of evanescent e.m. waves in waveguide, the Ko

S decay
and the BE correlation) do show a violation of the usual Lorentz symmetry
for the electromagnetic, weak and strong interaction, respectively.

In this connection, two points deserve a moment’s thought. Firstly, one
may wonder whether such an LLI breakdown should be considered as an
actual or an effective one. Namely, two interpretations can be given to the
need for a deformed Minkowski metric in order to describe the above pheno-
mena. The first one is to state that such results correspond to an actual
local deformation of the space–time geometry, induced by the interaction
considered. This would constitute an evidence in favor of a real analogy
of the e.m., weak and strong interactions with the gravitational one, and
therefore of the real validity of the solidarity principle for all the four inter-
actions. The second possible interpretation is inspired by the analysis of the
e.m. case. Indeed, in the e.m. wave propagation in waveguides, it is perhaps
more sound to understand the nonminkowskian metric as describing, in an
effective way, the nonlocal e.m. effects which occur inside the waveguide and
give rise to the superluminal propagation. In the same spirit, one can regard
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the arising of nonminkowskian metrics in the description of Ko
S decay and

BE correlation as due to the presence of nonlocal forces responsible for such
phenomena. Otherwise speaking, the nonminkowskian metrics involved in
such cases would play an effective role, in the sense that they would actu-
ally be a signature of the presence and effectiveness of nonpotential effects
in the phenomena considered. In such a minimalist interpretation, DSR
would only constitute a suitable formalism to parametrize and to account
for the breakdown of local Lorentz invariance.

Another basic point worth emphasizing is related to what we stressed in
the previous two parts. Namely, physical phenomena exhibiting a Lorentz-
invariance breaking behavior according to standard Special Relativity, can
be regarded as preserving LLI in the generalized sense of DSR, namely satis-
fying deformed (local) Lorentz invariance (DLLI). Then, the breakdown of
LLI can be considered as evidence for DLLI, and therefore signature of
a (local at least) deformation of space–time, provided the violation of LI
occurs as prescribed and predicted by DSR (see Sect. 3.3.5).

In this Part, we shall discuss some experiments – most of which directly
inspired by DSR – whose results are seemingly in favor of DSR as describ-
ing a real deformation of (local) space–time geometry for the interaction
considered, and provide evidence for violation of the usual Lorentz invari-
ance, and for its recover in the DSR, deformed sense (i.e., as DLLI). In the
following, when speaking about LLI breaking, we shall always mean it in
the usual, special-relativistic sense (unless otherwise specified).



11
Lorentz Invariance Breakdown:
A Brief Survey

11.1 Theoretical Developments

As said in Chap. 10, serious interest in the question of the validity of LLI
and SR can be traced back only to the end of the twentieth century. This
did not prevent some pioneering people from facing the problem many years
ago. For instance, early theoretical speculations (in the mid of the 1900) on
a possible breakdown of LLI, and its experimental consequences, are due
e.g., to Bjorken [49], Blokhintsev [50] and Redei [51], Phillips [52]. These
works are based on the main characteristics of LLI violation. In general,
it can be stated that the LLI breakdown, in its simplest formulations, is
associated to an absolute object in vacuum. The existence of a preferred
frame (which can be also the space–time vacuum itself) entails that the
four-velocity of this preferred inertial observer is a (time-like) vector field
which has almost the same value throughout space–time. This is the sim-
plest example of an absolute vector object, the so-called internal vector Nµ

[50, 52, 10].
Another physical feature of a Lorentz-noninvariant vacuum is provided

by the concept of universal length l0 [50,10]. Such a length can be thought
off as the minimal limiting length for all physical distances whose measure-
ment can be carried out relative to a large (ideally infinite) number of physi-
cally equivalent inertial frames. Clearly, the length l0 acts as an absolute
demarcation line between macroscopic (large) distances and microscopic
(small) ones, and it too is an absolute property of a Lorentz-noninvariant
vacuum.
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In Bjorken’s model, Lorentz invariance is spontaneously broken, but it
has no physical consequences [49]. In Blokhintsev’s approach, the origin of
the breakdown is the existence of a fundamental length [50], which yields
observable effects in the meanlife of unstable particles [51]. The Phillips
proposal of a cosmological background field [52] leads to a preferred frame
of reference.

In the next years, the issue was faced from a different, more basic point of
view, namely by questioning the very foundations and formalism of Special
Relativity (SR) – at least in its usual, Einsteinian formulation. For instance,
in the years 1972–1975 Recami and one of the present authors (R.M.) –
in the framework of a generalization of SR including also superluminal
reference frames – carried out a critical examination of the basic principles
of SR [2]. As already stressed in Chap. 1, they pointed out, among the
others, that:

1. A correct use of the Relativity Principle requires to specify the class
of physical phenomena to which it applies

2. A priori, for each different class of phenomena considered, a different
formal (and therefore mathematical) formulation of SR is expected
to hold (in particular, the usual SR is expected to be strictly valid
only for processes ruled by the electromagnetic interaction)

3. Different invariant speeds correspond, in general, to the different for-
mulations of SR

Among the most serious attempts at generalizing the SR mathemati-
cal formalism (i.e., the structure of the Minkowski space), more or less
based on the above critical analysis of the SR foundations, let us recall the
anisotropic theory of Bogoslowski [8] (based on a Finslerian metric [7]), and
the “isotopic” SR [9] (we already quoted them as theories with prototype
deformed metrics in Sect. 2.1). Moreover, a (constant) nonminkowskian
metric was introduced on a phenomenological basis, for weak interactions,
by Nielsen and Picek [10].

In recent times, a number of theoretical formalisms do admit for observ-
able effects of LLI violation [17]. They can be roughly divided in two classes:
unified theories and theories with modified space–times. To the former one
belong e.g., Grand-Unified Theories, (Super) String/Brane theories, (Loop)
Quantum Gravity, and the so-called “effective field theories.” The latter
include e.g., foam-like quantum space–times, space–times endowed with a
nontrivial topology or with a discrete structure at the Planck length, κ-
deformed Lie algebra noncommutative space–times (for instance Doubly
Special Relativity [14]). Theories with a variable speed of light or variable
physical constants also imply LLI breakdown.

A very interesting analysis of LLI breakdown within the framework of the
Standard Model have been considered e.g., by Coleman and Glashow[15],
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with the proposal of new tests of SR in cosmic-ray and neutrino physics.
They developed a perturbative approach whereby to deal with the observ-
able implications of tiny departures from LLI, and carried out a thorough
investigation of possible Lorentz-violating mechanisms within the Standard
Model. It has also been proposed that such small departures from LLI can
affect particle kinematics in such a way to remove the cosmological Greisen–
Zatsepin–Kuz’min cutoff (of the order of 4× 1019 eV )[53]. The problem of
violation of LLI and CPT by Chern–Simons terms was also considered by
Jackiw [54].

Lastly, in order to take account of the LLI breaking effects, an exten-
sion of the Standard Model has been proposed by Kostelecky [55]. He
essentially assumes that the breakdown of Lorentz and/or CPT invariance
is due to spontaneous symmetry breaking (namely to a noninvariance of
the vacuum under these symmetries). Therefore, his approach is similar
in spirit to the old Bjorken one. Such a kind of CPT and LLI breakdown
poses however some unsolved questions. The basic one is the nature of the
Nambu–Goldstone bosons in this framework. Actually, Goldstone’s theo-
rem doesn’t apply to a discrete symmetry like CPT. For global Lorentz
symmetry, it implies that spontaneous breaking must be accompanied by
massless bosons, which might be identified with photons. But if gravity is
included then Lorentz symmetry becomes local, and the identification of
the Goldstone boson with the photon becomes controversial. In spite of
these problems, the Kostelecky model is able to suggest a number of new
tests of LLI and CPT, and to put stringent limits on their breakdown. We
refer the reader to [55] for a thorough discussion of the Standard Model
Extension.

11.2 Experimental Tests

From the experimental side, the main classical tests of LLI can be roughly
divided in three groups [56]:

(a) Michelson–Morley (MM)- type experiments, aimed at testing isotropy
of the round-trip speed of light

(b) Tests of the isotropy of the one-way speed of light (based on atomic
spectroscopy and atomic timekeeping)

(c) Hughes–Drever-type (HD) experiments, testing the isotropy of nu-
clear energy levels

All such experiments put stringent upper limits on the degree of violation
of LLI.

The breakdown of standard local Lorentz invariance is expressed by the
LLI breaking factor parameter δ [56]. We recall that two different kinds
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of LLI violation parameters exist: the isotropic (essentially obtained by
means of experiments based on the propagation of e.m. waves, for instance
of the Michelson–Morley type), and the anisotropic ones (obtained by
experiments of the Hughes–Drever type, which test the isotropy of the
nuclear levels).

In the former case, the LLI violation parameter reads [56]

δ =
(u

c

)2

− 1; (11.1)

u = c+ v, (11.2)

where c is, as usual, the speed of light in vacuo, v is a phenomenological
LLI invariance breakdown speed (for example. the speed of the preferred
frame) and u is the new speed of light.1 Notice that u is nothing but
the “maximal causal speed” of the electromagnetic interaction, in DSR, or
the “maximum attainable speed,” in the words of Coleman and Glashow
[15]. In the anisotropic case, there are different contributions δA to the
anisotropy parameter from the different interactions. In the HD experiment,
it is A = S, HF , ES, W , meaning strong, hyperfine, electrostatic and weak,
respectively. These correspond to four parameters δS (due to the strong
interaction), δES (related to the nuclear electrostatic energy), δHF (coming
from the hyperfine interaction between the nuclear spins and the applied
external magnetic field) and δW (the weak interaction contribution).

Many other tests of LLI (different from (a)–(c) above) have been pro-
posed in the framework of the so-called THεµ formalism [56] or the
Robertson–Mansouri–Sexl test theory of SR [57,58]. Space experiments
have also been envisaged [59,60].

Moreover, a lot of tests based on the Standard Model Extension (that
provides a quantitative theoretical framework within which various experi-
mental tests of CPT and Lorentz symmetry can be studied and compared)
have been proposed by Kostelecky [55]. They include:

– Observations of neutral-meson oscillations

– Observations of neutrino oscillations

– Clock-comparison tests on Earth and in space

– Studies of the motion of a spin-polarized torsion pendulum

– Spectroscopy of hydrogen and antihydrogen

– Comparative tests of QED in Penning traps

– Determination of muon properties

1Needless to say, (11.1) holds true only for u > c, and does not includes cases with
u < c (well possible, like that of (3.72)).
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– Measurements of cosmological birefringence

– Tests with microwave cavities and lasers

– Observation of the baryon asymmetry

To our present aims, let us stress that, on one side, DSR allows one to
shed new light on some aspects of LLI breakdown (for instance, in superlu-
minal propagation); on the other hand, it permits to explicitly design new
tests (and therefore new classes of experiments) aimed at testing LLI for
all four fundamental interactions. It is just the purpose of the next chap-
ters to examine these aspects of LLI violation, namely those concerning its
(theoretical and experimental) connections with DSR.



12
Superluminal Propagation
of Electromagnetic Waves

In the last five years of the twentieth century some experimental results in
different branches of physics have provided significant evidence for phenom-
ena involving faster-than-light (superluminal) speeds [61,62]. In particular,
a number of experiments have been carried out concerning the superlu-
minal propagation of electromagnetic signals. These include superluminal
photon tunneling – both in the microwave range and in the optical domain
– in experiments performed in a number of laboratories; optical experi-
ments with total internal reflection (in which the barrier is represented
by the air gap between two prisms); optical propagation in media with
anomalous dispersion; and finally propagation of e.m. X-waves (i.e., non-
monochromatic, nondispersive Bessel beams) in free space. Propagation at
a group velocity greater than the light velocity has been therefore experi-
mentally demonstrated not only for evanescent (tunneling) waves, but also
for nonevanescent ones (like X-shaped waves).

It must be noticed that, from a kinematical point of view, the existence
of faster-than-light e.m. signals is related to the breakdown of LLI through
the parameter δ defined by (11.1).1

One of the main problems for a theoretical treatment of the superluminal
photon propagation is due to the fact that it was observed in different

1Actually, this is not strictly true if one takes into account the generalization of SR to
superluminal inertial frames built up by Recami and one of the present authors (RM) in
the early 1970s of the past century [2]. This is why the true signature of LLI breakdown
in superluminal e.m. propagation is represented by the link with energy provided by
DSR.
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FIGURE 12.1. Rectangular waveguide with variable section used in the Cologne
experiment. L is the length of the narrow part of the waveguide (“barrier”); h
is height of the guide; a is thickness of the guide; AE is area of the large section
(“emitter”); AR is the area of the small section (“receiver”)

kinds of experiments [61,62], which are not easily comparable. It is so quite
impossible to state if the results of different experiments are compatible
with each other.

However, it can be shown (by just using, among the others, the DSR for-
malism) that two of the first performed experiments on superluminal pho-
ton propagation, namely, the 1992 Cologne experiment on the tunneling of
evanescent waves in an undersized waveguide (see Fig. 12.1) [32,33], and the
1993 Florence experiment on the microwave propagation in air between two
not-coaxial horn antennas (see Fig. 12.2) [35], do admit a common inter-
pretation. Precisely, both experimental devices behave as a high-pass filter
[6]. We got this result by two different methods, one based on the Friis law
(which yields the efficiency of a transmitting device), and the other on the
deformation of the Minkowski space–time. This allowed us to set intriguing
connections between these two (a priori different) classes of experiments.
In particular, in either case the superluminal propagation can be described
as a tunneling and is related to evanescent waves. Let us also recall that
the results of the Cologne experiment allowed us to derive the explicit form
(4.2), (4.3) of the DSR metric for the electromagnetic interaction, by assum-
ing that, inside the barrier, the space–time is no longer Minkowskian but
is just endowed with an energy-dependent (spatially isotropic), deformed
metric, with energy threshold E0,e.m. = (4.5 ± 0.2) µeV.

We do not enter into the details of this derivation (based on (3.70) and
Sect. 3.4.3) and refer the reader to [6]. Let us only stress that the analysis
of the Florence experiment by the formalism of the deformed Minkowski
space permits also to describe the behavior of the Florence device as a
barrier, with a decaying law for the energy of the evanescent-wave type,
and therefore to interpret the experiment as a genuine tunneling one. It
confirmed also the value of the energy threshold for the electromagnetic
interaction, E0,e.m., originally derived by the fit to the data of the Cologne
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FIGURE 12.2. Schematic view of the two horn antennas used in the Florence
experiment. L is the distance between antennas; S is distance between the centers
of the antenna surfaces; d is distance between the axes of antennas

tunneling experiment (see Sect. 4.1). What’s more, by means of such an
analysis it was possible to get the fundamental result that the breakdown
of LLI exhibits also a spatial threshold, � � 9 cm. This finding reveals itself
of basic relevance in designing new electromagnetic tests of LLI and of
DSR, as we shall see in Chap. 13.



13
The Shadow of Light:
Lorentzian Violation
of Electrodynamics in Photon
Systems

The experiments on superluminal group propagation, analyzed in terms
of the tools of DSR, provided evidence for a breakdown of local Lorentz
invariance with a threshold both in energy and space (at least for the
electromagnetic interaction). In order to confirm these results, we carried
out new experiments explicitly designed to test them. Let us briefly discuss
these experiments, together with their implications.

13.1 Double-Slit-Like Experiments

The experiments we performed were optical ones, in the infrared range, of
the double-slit type. We were essentially aimed at searching for a possible
anomalous photon behavior, at variance with the predictions of classical
and/or quantum electrodynamics, and therefore related to Lorentz invari-
ance violation. Let us briefly report the main features and results of these
three experiments, carried out at L’Aquila University [63–66].

The employed apparatus (schematically depicted in Fig. 13.1) consisted
of a Plexiglas box with wooden base and lid. The box (thoroughly screened
from those frequencies susceptible of affecting the measurements) contained
two identical infrared (IR) LEDs, as (incoherent) sources of light, and three
identical photodiodes, as detectors (A, B, C). The two sources S1, S2 were
placed in front of a screen with three circular apertures F1, F2, F3 on it. The
apertures F1 and F3 were lined up with the two LEDs A and C respectively,
so that each IR beam propagated perpendicularly through each of them.
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FIGURE 13.1. Above view of the experimental apparatus used in the first
double-slit experiment

The geometry of this equipment was designed so that no photon could
pass through aperture F2 on the screen.1 Let us stress that the dimensions
of the apparatus were inferred from the geometrical size of the Florence
microwave experiment [35], namely the horizontal distance between the
planes of the antennas (see Fig. 12.2).

The wavelength of the two photon sources was λ = 8.5×10−5 cm. The
apertures were circular, with a diameter of 0.5 cm, much larger than λ.
We worked therefore in absence of single-slit (Fresnel) diffraction. However,
the Fraunhofer diffraction was still present, and its effects have been taken
into account in the background measurement.

Detector C was fixed in front of the source S2; detectors A and B were
placed on a common vertical, movable panel (see Fig. 13.1). This latter
feature allowed us to study the space dependence of the anomalous effect,
predicted by DSR.

Let us highlight the role played by the three detectors. Detector C
destroyed the eigenstates of the photons emitted by S2. Detector B ensured
that no photon passed through the aperture F2. Finally, detector A mea-
sured the photon signal from the source S1.

In summary, detectors B and C played a controlling role and ensured
that no spurious and instrumental effects could be mistaken for the anom-
alous effect which had to be revealed on detector A. The design of the

1In this connection, let us notice that the dotted line S in Fig. 13.1 is a mere geo-
metrical one, and does not represent any physical trajectory of photons emitted by the
source S2, since the aperture F2 was well outside the emission cone of S2 [63]. It is only
to mean that the distance between S2 and the detector A is the same as the distance S
in Fig. 12.2.
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box and the measurement procedure were conceived so that detector A
was not influenced by the source S2 according to the known and officially
accepted laws of physics governing electromagnetic phenomena: classical
and/or quantum electrodynamics. In other words, with regards to detector
A, all went as if the source S2 was not there at all or as if it was always
kept turned off.

In essence, the experiment just consisted in the measurement of the signal
of detector A (aligned with the source S1) in two different states of source
lighting. Precisely, a single measurement on detector A consisted of two
steps:

1. Sampling measurement of the signal on A with source S1 switched on
and source S2 off

2. Sampling measurement of the signal on A with both sources S1 and
S2 on

As already stressed, due to the geometry of the apparatus, no differ-
ence in signal on A between these two source states ought to be observed,
according to either classical or quantum electrodynamics. If A(S1i S2k)
(i, k = on, off) denotes the value of the signal on A when source S1 is in
the lighting state i and S2 in the state k, a possible nonzero difference
∆A = A(S1“on′′ S2“off ′′) − A(S1“on′′ S2“on′′) in the signal measured by
A when source S2 was off or on (and the signal in B was strictly null) has
to be considered evidence for the searched anomalous effect.

The outcomes of the first experiment were positive, namely the differ-
ences ∆A between the measured signals on detector A in the two conditions
were different from zero and below the threshold value of energy for the
breakdown of local Lorentz invariance as predicted by DSR. In particular,
∆A ranged from (2.2±0.4) to (2.3±0.5)µV, values well below the threshold
E0,e.m.=4.5µV. Moreover, such an anomalous effect was observed within a
distance of at most 4 cm from the sources [63], thus confirming the spatial
threshold obtained from the analysis of the Cologne and Florence experi-
ments (see Chap. 12). We can consider such an effect as the consequence of
an “hidden” (Lorentzian) interference.

The purpose of the second experiment was to corroborate the results of
the previous one [64,65]. The experimental set-up was essentially the same
(for instance, the dimensions of the apparatus, and the relevant quantities,
like photon wavelength and aperture diameter, were identical to those of
the first experiment). The main difference with respect to the equipment
of the first experiment was in a right-to-left inversion along the bigger side
of the box, and in the three used detectors, which were not photodiodes
but phototransistors (of the type with a convergent lens). In this way, it
was possible to study how the phenomenon changes under a spatial parity
inversion and for a different type of detector. We want to point out that
in this second experiment the time procedure to sample the signals on the
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detectors was different from that used in the first experiment. We indeed
realized that the sampling time procedure was apparently crucial in order
to observe the anomalous interference effect.

The results of this second experiment confirmed those of the first one.
The value of the difference measured on detector A was (0.008± 0.003)µV,
which is consistent, within the error, with the difference ∆A � 2.3µV
measured in the first experiment, provided that the unlike efficiencies of
the phototransistors with respect to those of the photodiodes are taken into
account [64].2 The consistency between the results of the first two experi-
ments shows apparently that the effect is not affected by the parity of the
equipment and by the type of detector used (at least for photodiodes and
phototransistors). Let us notice that one was compelled to use two different
sampling time procedures for the two different types of detecting devices in
order to make the effect evident. It turned out that there was apparently a
sort of unavoidable bond between detector and sampling-time procedure,
to be taken into account in order to reveal the effect.

The third experiment was planned and carried out in order to shed some
light on this issue and to obtain a further evidence of the searched effect [66].
In order to test the apparent bond between detectors and sampling time
procedures, the experiment was carried out by means of the box with pho-
todiodes but using the sampling-time procedure adopted with phototran-
sistors. The results of this third experiment were consistent with those of
the two previous ones. By this statement we mean that the average value
of the differences on detector A in the two lighting situations of the sources
was below the threshold energy for the breakdown of LLI for the electro-
magnetic interaction, as required by the theory. In particular the maxima
of |∆A| accumulate around the value of 2.3µV (see Fig. 13.2), in agreement
with the results of the other two experiments.3 One can conclude that the
sampling time procedure, which permitted the effect to be evidenced on
phototransistors, could reveal it on photodiodes as well.

2One can define the relative geometrical efficiency ηg of the phototransistor (with
respect to the photodiode) as the ratio of their respective sensitive areas, and their
relative time efficiency ηt as the ratio of their respective detection times. Then, one
can define the relative total efficiency ηT of the phototransistor with respect to the
photodiode as the product ηT=ηgηt . From the values of ηg and ηt in this case, one gets
ηT=0.0015 [64].

Therefore, it was reasonable to foresee that the value of the expected phenomenon in
the second experiment to be given by the product of the total relative efficiency times
the value measured in the first experiment, i.e., ηT[(2.3 ± 0.5)µV]= (0.004 ± 0.001) µV ,
in agreement with the experimental result.

3Let us note that the photodiodes used as detectors in the first and third experiment
were integrated to a transimpedance amplifier, transducing the photocurrent signal into
a voltage signal. Such a voltage, measured by means of a multimeter, does not depend
therefore on the value of the circuit resistances of the voltage measuring system.
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FIGURE 13.2. Value of the differences ∆A of signal sampled on detector A for
the two lighting states of the sources S1 on, S2 off, and S1 on, S2 on (third
experiment). The differences are clearly incompatible with zero

Therefore, it is possible to state that, although there is not such a tight
bond between detector and time procedure, the latter plays a very impor-
tant role in giving evidence to the effect. More explicitly, one could say that
the phenomenon one tried to detect and to study possesses very complex
features, which make it hard to be grasped both in literal and figurative
sense. We already know that the anomalous Lorentzian interference mani-
fests itself only under precise conditions, namely below an energy threshold
and within some spatial threshold as well. In this sense, it is endowed with
a peculiar structure both in energy and in space. The global view of these
three experiments teaches us that there exists also some sort of threshold
for the sampling time interval. Because of this time structure, the effect
looks quite different depending on the time procedure adopted to sample
the signals on the detectors, as it is apparent from the two responses we
got from the first and the third experiments. In order to evidence this
anomalous photon behavior, which is the consequence of a very complex
physical phenomenon, i.e., the breakdown of LLI, one has to adapt the
physical inquiry to it and be aware of the existence of these thresholds in
energy, space and time.

We want to add that the third experiment was repeated several times
over a whole period of four months in order to collect a fairly large amount
of samples and hence have a significant statistical reproducibility of the
results. Thanks to this large quantity of data, it was possible to study the
distribution of the differences of signals on detector A, which is shown in
Fig. 13.2. For clarity’ sake, we reported only the differences ∆A outside
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the interval [−1, 1], which is the interval of compatibility with zero of the
values of ∆A.

The circumstance that the majority of the differences ∆A is negative
(namely A(S1on S2off) < A(S1on S2on)) might wrongly induce to deem
that, when source S2 was turned on, the signal detected on A increased.
One might then be incorrectly tempted to account for this by stating that
some photons of S2 passed through aperture F2 (see Fig. 13.1). Conversely,
if one takes into account the mode of operation of the photodiodes chosen
as detectors,4 it becomes immediately apparent that the above inequality
means exactly the opposite situation. Namely, when S2 was turned on,
detector A recorded a lower signal and hence received less photons, although
there was a larger number of photons in the box because both sources were
on.5 On the other hand, it is impossible to account for this reduction of the
signal on A when S2 got turned on and S1 was already on as a destructive
interference between photons from the two sources, because the LEDs are
incoherent sources of light.

13.2 Crossing Photon Beam Experiments

The results of the double-slit experiments suggest that similar anomalous
effects can be observed also in different experimental situations involving
photon systems, like e.g., in interference experiments. Further evidence for
the anomalous photon system behavior (and for the related anomalous
photon-photon cross section) was observed indeed in orthogonal crossing
photon beams.

These interference experiments were carried out after our first one, one
with microwaves emitted by horn antennas (see Fig. 13.2), at IFAC-CNR
(Ranfagni and coworkers) [67–69], and the other with infrared CO2 laser
beams (Fig. 13.3), at INOA-CNR (Meucci and coworkers) [69]. Let us sum-
marize the results obtained.

4In order to understand this point, let us give some brief details about the mode
operation of the type of photodiode (OPT301 Burr Brown) used in the third experiment.
First of all, we have to say that its pins were connected to the input pins of a trans-
impedance operational amplifier which was integrated along with the photodiode on
the same chip. The photodiode was not inversely polarized and the dark current was
always greater than the photocurrent. As is well known, the two currents flow in opposite
directions, and the total current flowing in the photodiode is given by their subtraction.
When the total current increases, the op-amp output voltage increases too. However, a
rise of the total current (and hence a rise of the output voltage) means a decrease of the
photocurrent (the dark current cannot change) and this means a drop of the number of
photons received by the photodiode. Thus, when both sources were on, the increase of
the output voltage means that the photodiode A was receiving less photons.

5Needless to say, the stability of power supplies was constantly checked.
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FIGURE 13.3. Schematic view of the crossed-beam experiment in the infrared
range, exploiting a CO2 laser emitting at 10.6 µm on the fundamental TEM00

Gaussian mode. The laser beam is split in two orthogonal beams (beam 1 and
beam 2) by means of a beam splitter. By using two flat mirrors the two beams
are directed to the crossing area within the near field of the Gaussian mode,
estimated at 1.5 m from the out-coupler mirror of the laser cavity. Beam 2 is
periodically interrupted by means of a chopper whose frequency is the reference
frequency in a lock-in amplifier connected to the detector

The main result of the IFAC experiment consists in an unexpected trans-
fer of modulation from one beam to the other, which cannot be accounted
for by a simple interference effect. This confirms the presence of an anom-
alous behavior in photon systems, in the microwave range too.

In the optical experiment carried out at INOA-CNR [69], the wavelength
of the used infrared laser beams was 10,600 nm, namely one order of mag-
nitude higher than the wavelength of the sources (LEDs) used in our exper-
iments (850 nm). Let us also remark that the energy of the photons of the
three double-slit experiments was 104 times higher than that of the photons
in the Cologne and Florence experiments [32, 33, 35], and 10 times higher
than that of the INOA-CNR experiment [69].

The optimum alignment which can be achieved with lasers and the laser
beam confinement make this optical set-up especially suitable for investi-
gating the anomalous behavior of the photon systems. This allowed one to
perform a statistical test on the averaged results [64, 69]. The signal sta-
tistics provided a significant variation in the mean values obtained with or
without beam crossing. Hence the chance to have two identical statistics
was rejected with a sufficient level of confidence. Moreover, it was esti-
mated [64] that the actual shift of the crossed beam signal with respect to
the single beam signal is (2.08 ± 0.13)µV. This value agrees excellently
with that obtained in our first experiment ∆A � 2.3µV. Notice that the
laser experiment shows that the observed phenomenon does depend neither
on the infrared wavelength, nor on the coherence properties of the light.

Although further checks are needed, one can conclude that the cross-
ing photon-beam experiments do preliminarily support the evidence for
an anomalous interference effect under the space and energy constraints
obtained by the DSR formalism.
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13.3 The Shadow of Light: Hollow Wave, LLI
Breakdown and Violation of Electrodynamics

We want now to provide an interpretation, and discuss the implications, of
the observed anomalous photon behavior.

Needless to say, the results obtained in different photon systems in dif-
ferent experiments are consistent with LLI breakdown. The signature of
violation of LLI is provided by the marked threshold behavior the phe-
nomenon exhibited. In fact, the anomalous effect was observed within a
distance of at most 4 cm from the sources (1 cm in the second experiment),
and the measured signal difference on detector A ranged from ∆A � 2.3µV
(first and third experiment) to ∆A � 0.008µV (second experiment) [63–66].
These values are consistent with the space and energy threshold behavior
for the electromagnetic breakdown of LLI, obtained in the framework of
DSR (see Chapt. 4 and 12).

Moreover, in our opinion, the results of the photon experiments described
earlier cannot be explained in the framework of the Copenhagen interpre-
tation of quantum wave [65], or in its implementation in terms of path
integrals in Feynman’s approach.

Indeed, let us consider the difference ∆A in the signal measured by detec-
tor A according to whether only S1 is turned on or both sources are on,
and recall the role played by the three detectors in our experiments (see
Sect. 13.1). On one side, detector C measures – and hence destroys – the
superposition of states belonging to the photons emitted by S2 (thus man-
ifesting their corpuscle nature); on the other hand, detector B is always
underneath the dark voltage threshold, thus ensuring no transit of photons
through aperture F2. Therefore in no way – according to the Copenhagen
interpretation – photons from S2 can interact with those from S1, thus
accounting for the signal difference on detector A.

On the contrary, such a result can be understood by interpreting – fol-
lowing Einstein, de Broglie and Bohm [70–72] – the quantum wave as a
pilot (or hollow) wave.

In such a framework, pilot waves can interact with quantum objects
(as assumed by de Broglie and Andrade y Silva [73]). Then, the region
outside aperture F2 is optically forbidden to the photons emitted by the
source S2, but not to the hollow waves associated to them. Thence, the
photons emitted by the source S1 can interact with the hollow waves of
photons from the source S2, which have gone through the aperture F2.
Consequently, the change ∆A in the A signal – in absence of any change in
the response signal of detectors B and C – finds a natural explanation, in
the Einstein–de Broglie–Bohm interpretation of quantum wave, in terms of
the interaction of the S1 photons (and their hollow waves) with the hollow
waves (of S2 photons) passed through F2.
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The role played by the aperture F2 is fundamental, since, although hollow
waves can penetrate in optically forbidden regions, nonetheless the mass
distribution and density are expected to affect their propagation. Hence,
they can pass only through space regions with a lower mass density.

Since, according to DSR, the breakdown of LLI is connected to a
deformation of the Minkowski metrics, it is possible to put forward the
hypothesis [63] that the hollow wave (at least for photons) is nothing but
a deformation of space–time geometry, intimately bound to the quantum
entity (“shadow of light”).

This can be depicted as follows. Most of the energy of the photon is
concentrated in a tiny extent; the remaining part is employed to deform the
space–time surrounding it and, hence, it is stored in this deformation. It is
just the deformations (“shadows”) of the photons from S2 that expand, go
through F2 and interact with the shadows of the photons emitted from S1.

Therefore, in this view, the difference of signal measured by the detec-
tor A in all the double-slit experiments can be interpreted as the energy
absorbed by the space–time deformation itself, which cannot be detected by
the central detector B.6 In other words, the experimental device, used in
these experiments, “weighed” the energy corresponding to the space–time
deformation by the measured difference on the first detector.

If the interpretation we have given here is correct, the double-slit exper-
iments do provide for the first time, among the others, direct evidence for
the Einstein–de Broglie–Bohm waves and yield a measurement of the energy
associated to them.

The hypothesis of the hollow wave as space–time deformation is able
to explain also the anomalous behavior observed in crossed photon-beam
experiments (see Sect. 13.2). In fact, the shadow of the photon spreads
beyond the border of the space and time sizes corresponding to the photon
wavelength and period, respectively. This changes the photon-photon cross
section (strongly depressed both in classical and in quantum electrodynam-
ics),7 and gives rise to the anomalous effects observed in the photon–photon
interactions in crossing beams.

The earlier interpretation is of course incompatible with standard electro-
dynamics (either classical or quantum). This is also easily seen by the ensu-
ing violation of LLI, on account of the strict connection between Lorentz
invariance and electrodynamics (as is well known, the standard Lorentz
group is the covariance group of Maxwell equations). We want now to show
that a more detailed analysis of the measurements of the third experiment

6One might think to detect such an “energy of deformation field” (corresponding to
the hollow waves of photons) by a detector operating by the gravitational interaction,
rather than the electromagnetic one. However, this would still be impossible, because
the deformation value lies within the energy interval for a flat (Minkowski) gravitational
space–time, according to DSR (see Sect. 4.1).

7In fact it goes as α4 (with α being the fine structure constant).
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FIGURE 13.4. Values of the differences ∆A′ of signal sampled on detector A with
both sources on (third experiment). The differences are clearly compatible with
zero

are just in favor of the anomalous (Lorentzian) interference observed as
signature of a possible violation of electrodynamics.

This is easy to realize, by noting that the distribution of the results
of the third experiment (reported in Fig. 13.2) is unmistakably different
from that expected from the theoretical predictions of both quantum and
classical electrodynamics.

With reference to Sect. 13.1, we recall that Fig. 13.2 shows the signal
differences measured on A in correspondence to the two different states of
lighting of the sources, ∆A = A(S1on S2off)−A(S1on S2on). For compari-
son, we report in Fig. 13.4 the differences of the two values sampled on A in
the same lighting condition of the sources, i.e., with both sources turned on:
∆A′ = A(S1on S2on)−A(S1on S2on). Again, for clarity’ sake, we show only
the differences outside the interval [−1, 1]. There is no surprise in observ-
ing that the differences are almost evenly distributed around zero, since
the subtracted values belong to the same population. However, by the very
design of the experimental box, according to either classical or quantum
electrodynamics detector A was not to be affected by the state of lighting
of the source S2. Hence, one would expect that the mean value of these dif-
ferences was zero and that the differences ∆A were uniformly distributed
around it. In other words, one would expect to find roughly the same num-
ber of positive and negative differences, and therefore that Figs.13.2 and
13.4 displayed two compatible distributions of differences evenly scattered
across zero. On the contrary, the differences in Fig. 13.2 are not uniformly
distributed around zero but are markedly shifted downward (as compared to



13.3 Hollow Wave, LLI Breakdown and Violation of Electrodynamics 209

FIGURE 13.5. Oscillations of the percentage of differences ∆A in the five mea-
surement sessions of the third experiment

those in Fig. 13.4), and hence the number of negative differences is larger
than the positive ones.

One can go into this point in more depth by considering the oscilla-
tions of the percentage of negative differences ∆A (Fig. 13.5). The five
points in such a figure represent the five percentages of negative differences
attained in the five different sessions of the third experiment. It is quite
evident that they do oscillate around a mean value as expected, but this
mean value is approximately 85% and not 50% as predicted by electrody-
namics. Then, it follows that the downward displacement of the differences
in going from Fig. 13.4 to Fig. 13.2 is not a mere chance, but is a sys-
tematic result obtained every time the experiment was performed. Let us
notice that each of the five sessions reported in Fig. 13.5 has actually to be
counted as if it were four sessions, due to the particular procedure adopted
to sample the signal on detector A [66]. Then one has 20 sessions of the
experiment in which the percentage of negative differences is always much
greater than 50%.

In order to further enforce the evidence for the difference of the two
physical situations corresponding to Figs.13.2 and 13.4, we carried out a
statistical analysis of the results found in the two cases (only the differ-
ences outside the interval [−1, 1] have been considered), by taking also
into account the instrumental drift. The Gaussian curves obtained are
shown in Fig. 13.6. The dashed curve refers to the signal differences ∆A =
A(S1on S2off) − A(S1on S2on), whereas the solid one to ∆A′ = A(S1on
S2on)−A(S1on S2on). The two curves differ by 2.5 σ, clearly showing that
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FIGURE 13.6. Gaussian curves (normal frequency vs. signal difference in µV )
for the signal differences ∆A and ∆A′ on detector A for the two cases of source
S2 off and on (dashed and solid curve, respectively). The instrumental drift has
been taken into account. It is ∆A = −3.15 (σ =0.45); ∆A′ = −2.56 (σ =0.24)

the two cases are statistically distinct, the latter one representing a mere
fluctuation (unlike the former).

We can therefore conclude that the results obtained on the anomalous
behavior of photon systems brings to light a more complex physics of
the electromagnetic interaction, which again calls for giving up the local
Lorentz invariance in order to be accounted for. They are apparently at
variance with both standard quantum mechanics (in the Copenhagen inter-
pretation) and usual (classical and quantum) electrodynamics.

The interpretation in terms of DSR is quite straightforward. Under
the energy threshold E0,e.m.=4.5 µeV, the metric of the electromagnetic
interaction is no longer Minkowskian. The corresponding space–time is
deformed. Such a space–time deformation shows up as the hollow wave
accompanying the photon, and is able to affect the motion of other pho-
tons. This is the origin of the anomalous interference observed. It was noted
at the beginning of this section that the difference of signal measured by
the detector A in all the double-slit experiments can be regarded as the
energy spent to deforme space–time. In space regions where the external
electromagnetic field is present (regions of “standard” photon behavior),
we can associate such energy to the difference ∆E , (3.124), between the
energy density corresponding to the external e.m. field Fµν and that of the
deformed one ˜Fµν given by (3.119).
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But it is known from the experimental results that the anomalous inter-
ference effects observed can be explained in terms of the shadow of light,
namely in terms of the hollow waves present in space regions where no
external e.m. field occurs. How to account for this anomalous photon behav-
ior within DSR? The answer is provided by the internal structure of the
deformed Minkowski space discussed in Sect. 9.4. In fact, we have seen that
the structure of the deformed Minkowski space ˜M as Generalized Lagrange
Space implies the presence of two internal e.m. fields, the horizontal field
Fµν and the vertical one, fµν . Whereas Fµν is strictly related to the pres-
ence of the external electromagnetic field Fµν , vanishing if Fµν = 0, the
vertical field fµν is geometrical in nature, depending only on the deformed
metric tensor gDSR,µν (E) of GL4 = ˜M and on E. Therefore, it is present
also in space–time regions where no external electromagnetic field occurs.
In our opinion, the arising of the internal electromagnetic fields associ-
ated to the deformed metric of ˜M as Generalized Lagrange space is at
the very physical, dynamic interpretation of the experimental results on
the anomalous photon behavior. Namely, the dynamic effects of the hollow
wave of the photon, associated to the deformation of space–time – which
manifest themselves in the photon behavior contradicting both classical
and quantum electrodynamics –, arise from the presence of the internal
v-electromagnetic field fµν (in turn strictly connected to the geometrical
structure of ˜M).

Moreover, as is well known, in relativistic theories, the vacuum is noth-
ing but Minkowski geometry. An LLI breaking connected to a deformation
of the Minkowski space is therefore associated to a lack of Lorentz invari-
ance of the vacuum. Then, the view by Kostelecky [55] that the breakdown
of LLI is related to the lack of Lorentz symmetry of the vacuum accords
with our results in the framework of DSR, provided that the quantum
vacuum is replaced by the geometric vacuum. Notice also that in the Kost-
elecky formalism it is impossible to recover local Lorentz invariance. On the
contrary, DSR recovers it in a generalized sense, in the form of deformed
Lorentz invariance (see Sects. 3.3.5, 3.3.7). Let us also recall (as we shall
see in Part IV) that, as already said, DSR admits a natural immersion in a
5D-space, and that the vacuum solutions of the Einstein equations in such a
space reproduce the phenomenological metrics discussed in Sect. 4.1. In this
connection, it was proved [74] that waves and particles admit a common
geometrical interpretation as isometries of a 5D space. One can therefore
hazard the view that local Lorentz invariance, apparently violated, is actu-
ally recovered in the 5D version of DSR as an exact symmetry, intimately
related to the propagation of quantum waves in the 4D space–time.



14
The Coil Experiment

In Chap. 13, we discussed some experiments which provide evidence for a
deformation of space–time of electromagnetic nature. In the present one,
we shall describe an experimental test of Lorentz invariance whose results
require recourse, in order to be explained, not only to an electromagnetic,
but also to a gravitational deformation of the space–time geometry.

14.1 Experimental Setup and Results

At the end of the twentieth century we proposed, together with Bartocci
[75], a new electromagnetic experiment aimed at testing LLI and able of
providing direct evidence for its breakdown. The results obtained in a first,
preliminary experimental run carried out in June 1998 – essentially aimed
at providing new upper limits on the LLI breakdown parameter by an
entirely new class of electromagnetic experiments – admitted as the most
natural interpretation the fact that local Lorentz invariance is in fact bro-
ken [6, 75]. The experiment was just repeated in 1999 in a different place
(100 Km far from the previous one), with a completely new and improved
apparatus, and confirmed the positive evidence of the first one [6, 76].

The new proposed test is based on the possibility of detecting a nonzero
Lorentz force between the magnetic field B generated by a stationary cur-
rent I circulating in a closed loop γ, and a charge q, on the assumption
that both q and γ are at rest in the same inertial reference frame. Such a
force is zero, according to the standard (relativistic) electrodynamics. The
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FIGURE 14.1. Schematic view of the experimental setup in the coil experiment

theoretical estimate of the effect related to the violation of the standard
electrodynamic law can be found in [6].

The experimental setup was devised in order not only to put new upper
limits on the breakdown of LLI, but also to test possible anisotropic effects
in such limits. Measurements of the voltage “V” across the capacitor were
carried out for the system lying in the different coordinate planes (x, y),
(x, z), (y, z), and at different values of the orientation angle α of the circuit
in the plane considered (spaced by π/4). The orientation of the coil γ and
the verse of the current I were chosen so that, when γ lay on (x, y), its
magnetic field B was directed as z; when γ was on (y, z), B was directed
as x; for γ on (x, z), B was directed as BT (Earth magnetic field).

The experimental device used is schematically depicted in Fig. 14.1.
It consisted of a Helmholtz coil γ and a copper conductor R placed inside
it on a plane orthogonal to the γ axis. The conductor R was connected in
series to a capacitor C, and a voltmeter was connected in parallel to the
capacitor, so as to measure the voltage due to a possible gradient of charge
across R. The conductor could change its orientation in the coil plane.
Moreover, the whole system of the RC circuit and the coil could turn to
make its plane coincide with one of the coordinate planes. The center of
the geometrical coordinate system coincided with the center of the coil.
The coordinate system was chosen as follows: the (x, y)-plane tangent to
the Earth surface, with the y-axis directed as the (local) Earth’s magnetic
field BT; the z-axis directed as the outgoing normal to the Earth’s surface,
and the x-axis directed so that the coordinate system was left-handed. The
conductor orientation in the plain coil was parameterized in terms of an
angle α (ranging from 0 to 2π). The rotation of α was chosen clockwise
in the plain coil with respect to an observer oriented along the coordinate
axis orthogonal to the coil plane. The first orientation of R corresponding
to the angle α = 0 was along the negative direction of the z-axis in the
case of the two vertical canonical planes and along the negative direction
of the y-axis in the case of the horizontal plane. A steady-state current I
circulating in the coil produced a constant magnetic field B in which the
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RC circuit was embedded. The circuit and the coil were mutually at rest
in the laboratory frame.

In the first experiment, the measurements performed with the system
lying on the planes (x, y) and (y, z) gave values of V compatible with the
instrument zero. Indeed, in such cases the statistical tests of correlation
showed that each of the points outside the zero-voltage band is uncorrelated
with the preceding and the subsequent point either, and the whole set of
points was shown to be uncorrelated (R2 < 30%). Let us stress that each
point was the average of five measurements, taken at the same angle. As
to the measurements in the plane (x, z), it was shown instead that the four
points outside the zero band were statistically correlated (R2> 80%), and
so they represented a valid candidate for a nonzero signal.

A polynomial interpolating curve for these points is shown in Fig. 14.2.
Such an interpolating procedure was essentially aimed at finding the angle
αmax corresponding to the maximum value of V , Vxzmax = (3.6 ± 1.0) ×
10−5 volt. The value found was αmax = 3.757 rad. The knowledge of αmax

was needed in order to determine the value of the anisotropic LLI violation
parameter in our case [6, 76].

FIGURE 14.2. Curve interpolating the data obtained with the apparatus in the
(x, z) plane, showing the angle of maximum signal αmax = 3.757 rad
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In the second experiment, a signal candidate was analogously found in
the plane (x, z). For B = B1 = (5.14 ± 0.01) mT, the average peak value
was in excellent agreement with the result of the former experiment: V ′xz

max =
(3.54± 0.01)× 10−5 volt. The signal was again highly anisotropic, and its
behavior with α is the same as depicted in Fig. 14.2. However, possible
signal candidates were now also found in the planes (x, y) and (y, z) (this
was also a consequence of the higher sensitivity of the multimeter, improved
by two orders of magnitude). In those planes, there was no dependence on α,
and therefore no spatial anisotropy. On the contrary, a time anisotropy was
found in the (x, y) plane, since the measurements taken a.m. gave values
within the instrument zero. The average level values found for B = B1 were
V ′xy = (3.07 ± 0.01) × 10−5 volt and V ′yz = (2.66 ± 0.01) × 10−5 volt.
The measurements taken with the halved value of the coil magnetic field,
B = B2 = (2.58 ± 0.01)mT , gave similar results, with voltage values
V ′xz

max = (4.18 ± 0.01) × 10−5 volt, V ′xy = (3.44 ± 0.01) × 10−5 volt and
V ′yz = (3.06± 0.01)×10−5 volt. Not only these values were not halved with
respect to those obtained for B =B1 (as expected in the case of a linear
relation between V and I, like that derived via the Lorentz force), but,
surprisingly enough, they came out slightly higher! Moreover, a check was
made by reversing the coil current. No change in the sign of V occurred.
This allows one to conclude that the observed effect is independent of the
magnitude and direction of the current.

14.2 LLI Breakdown Parameter

First of all, let us stress that effects analogous to that observed in the coil
experiment have been foreseen [77–84]. For instance, it was shown that a
nonzero electric field is expected to exist outside wires and/or closed loops
carrying a constant current, whereas a nonnull Lorentz force between a
charge and a coil both at rest in the same reference frame was predicted
by the classically interpreted Maxwell theory. Moreover, some claims of
evidence for such anomalous electromagnetic phenomena are present in
literature, although they are controversial [77–84]. However, all such (both
theoretical and experimental) effects do depend on the magnitude and/or
the verse of the current, and are fully isotropic, and therefore they have
nothing to do with ours.

Among the possible interpretations, the effect can be thought to arise
due to a kinematical decoupling of the magnetic field B from the coil that
generates it. As a consequence, the coil and the conductor are at rest in
the same frame (the laboratory frame), whereas the field B is at rest with
respect to an absolute reference frame Σ0 (see Sect. 3.3.7). In the framework
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of this interpretation, it is possible to give an estimate of the Earth’s speed
v with respect to such an absolute frame. One obtains:

v = (5.906 ± 0.001) × 10−2ms−1. (14.1)

It is now easy to see why it is impossible to detect such an effect by
means of an experiment of the Michelson–Morley-type. As is well known,
the displacement ∆n of the interference fringe in an MM experiment is
given by

∆n =
�1 + �2

λ

(vR

c

)2

, (14.2)

where �1, �2 are the lengths of the arms of the interferometer, λ is the light
wavelength, and vR � 3 ×108 m s−1 is the velocity of Earth’s revolution.
In the original MM experiment, it is �1 + �2 = 22 m, λ= 5.5 ×10−7 m,
∆n = 0.4. In our case, we have to replace vR by the Earth’s speed v with
respect to the absolute reference frame Σ0, whose value, according to our
experimental findings (and the interpretation we proposed), is given by the
above estimate, v � 0.06 m/s. Then, by using the same parameters of the
original MM experiment, one gets

∆n � 0.2 × 10−11 (14.3)

a fringe displacement completely unobservable even by modern tools.
We want to stress that the estimated degree of breakdown of LLI ensu-

ing from our experiments is in agreement with the existing limits [56]. A
detailed discussion of this point is given in [76]. Here, we confine ourselves
to summarizing the main results.

We recall that two different kinds of LLI violation parameters δ exist:
Isotropic (essentially obtained by means of experiments based on the prop-
agation of e.m. waves, e.g., of the Michelson–Morley type), and anisotropic
parameters (obtained via experiments of the Hughes–Drever type [56],
which test the isotropy of the nuclear levels). The smallest upper limit
obtained in the former case is δ < 10−8, whereas the upper limits on the
anisotropic parameter range from δ < 10−18 of the HD experiment to δ <
10−27 of the Washington experiment [56]. In either case, one has to con-
sider, for the evaluation of δ according to (11.1), the effective LLI break-
down speed v. In our framework, the speed v is the Earth’s speed with
respect to the absolute frame Σ0 given by (14.1). Then, it is possible to
show [76] that the isotropic LLI parameter corresponding to our effect has
the value δ �4 ×10−10, which is lower by two orders of magnitude than the
upper limit for the isotropic case. In the anisotropic case, the parameter δ
is in the range 2 ×10−29 < δ < 6 ×10−20, and therefore compatible with
the anisotropic upper limits.

We want to stress that, in general, in the usual analysis of the LLI violat-
ing parameters, one looks for an LLI breakdown speed v which is in a sense
external to the interaction ruling the physical system under measurement.
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Indeed, typical candidates for v are the Earth revolution speed around the
Sun (v = 30 Km/s) or the drift speed of the solar system in the Galaxy
(v = 300 Km/s). In the present case, one is assuming that the LLI break-
ing speed is actually internal to the system. It parametrizes the amount
of LLI breakdown inherent to (and characteristic of) the interaction ruling
the process. This different point of view is typical of the DSR formalism,
and is reflected in the derivation we made of the anisotropic parameters
(see [76]). Indeed, in order to calculate δ in the anisotropic case, one exploits
the values of the maximal causal speeds derived from the analysis of the
strong interaction based on BE correlation (the only interaction at present
described by a spatially anisotropic metric: see Sect. 4.1.3)

The present experimental status of the LLI parameters, in the light of
our results, is summarized in Fig. 14.3.

In conclusion, in two experiments, carried out in different places, with
different experimental apparatuses, there was observed an effect of a volt-
age induced across a conductor by a stationary magnetic field that could be

FIGURE 14.3. The present experimental situation of the limits on the LLI break-
down parameter d (adapted from Will, [49], p.322). The three horizontal straight
lines are the limits obtained in the coil experiments. See the text
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interpreted as a violation of local Lorentz invariance. Moreover, its parame-
trization in terms of an effective speed yields values of the LLI breakdown
parameters consistent with the existing upper limits.

14.3 Interpretation in Terms of DSR

Let us now attempt to give an interpretation of the earlier results in terms
of DSR.

To take account of the spatial anisotropy of the observed effect, we define
the quantities

D = V xz
am − V xy

am, (14.4)

∆ =< V xz > −V xy
am. (14.5)

The averages < D >, < ∆ > are

< D > = (21.1 ± 0.9)µV ;
< ∆ > = (20.7 ± 1.0)µV. (14.6)

A possible (although preliminary) interpretation of these results requires
recourse to an LLI breakdown not only electromagnetic, but also gravita-
tional. Both experiments show a (peak) signal in the (x, z)-plane. Such an
effect could, at a first sight, be attributed to a gravitational breakdown
of the local Lorentz invariance. However, the results we obtained in the
second experiment, which show a (level) signal in the plane (x, y), suggest
that the effect we observed is both gravitational and electromagnetic. If so,
then we can conclude that the difference between the measured voltages in
the two planes (namely, the quantities < D >, < ∆ > provide a measure
of the amount of the gravitational contribution to the measured voltage
versus the electromagnetic one.

This is indeed supported by the agreement of the values (14.6) with the
threshold energy for the gravitational metric E0,grav (see (4.19)).

On the other hand, let us evaluate the differences in the voltages mea-
sured in the three planes. According to the second experiment with B = B1,
the transitions of the LLI breakdown value of the voltage:

1. From the space anisotropy in the plane (x, z) < V xz >= (36.2 ±
0.7)µV to the time anisotropy in the plane (x, y) (V xy

pm = (30.7 ±
1.5)µV)

2. From the time anisotropy in the plane (x, y) to the space–time
isotropy in the plane (y, z) (< V yz >= (26.5 ± 1.8)µV)

do occur for steps < ∆ >= 4.85µV :

< V xz > −V xy
pm = 5.5µV ;

V xy
pm− < V yz >= 4.1µV. (14.7)
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This does just agree with the value (4.4) of the threshold energy for the
electromagnetic metric E0.e.m. (see Sect. 4.1).

The earlier discussion shows that the observed space anisotropies of
the effect are probably related to the behavior in energy of the pheno-
menological metrics describing, in DSR, the two interactions involved
(electromagnetic and gravitational). In fact, the gravitational metric is
over-Minkowskian, and reaches the limit of Minkowskian metric for decreas-
ing values of E (with E > E0,grav) (see (4.17)–(4.18)), whereas the elec-
tromagnetic metric is sub-Minkowskian and thus attains the Minkowskian
limit for increasing values of the energy (E < E0,e.m.) (see (4.2)–(4.3)).
Therefore the two metrics become Minkowskian for energy variations of
opposite sign.

On the contrary, there is presently no explanation of the observed time
anisotropy. We stress that just taking the time anisotropy into account per-
mits to highlight the role of electromagnetic interaction in the breakdown
of LLI and to get the related contributions, (14.7). However, it might be
argued that some connection exists with the time structure observed in
the measurement sampling in the double-slit experiments (see Chap. 13).
Let us in fact recall that the plane (x, y) (in which the time anisotropy
was observed) is the same of the layout of the interference experiment (see
Fig. 13.1). We shall come back to this point in Part V.

We can therefore conclude that, even if the first experiment left open
the possibility of a mere gravitational explanation of the observed effect,
the results of the second one are strongly in favor also of an inescapable
electromagnetic contribution to the breakdown of LLI.

Moreover, the analysis of the experiments discussed in Chaps. 12–14, all
based on the electromagnetic interaction, confirms that the electromagnetic
breaking of the local Lorentz invariance occurs indeed at very low energies,
in agreement with the sub-Minkowskian behavior of the electromagnetic
metric (cf. Sect. 4.1.1).
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The Speed of Gravity

15.1 How Fast Is Gravity?

It is well known that gravitational interactions between bodies in all
dynamic systems are always taken to happen instantaneously. In fact, a
finite gravity speed would give rise to the aberration phenomenon, whereby
the gravitational acceleration vector would be directed toward the retarded
position of the source, not toward the instantaneous one. It is experi-
mentally ascertained that gravitational effects do not present aberration
(unlike the electromagnetic ones). This is why astronomers can calculate
orbits using instantaneous forces. However, this instantaneous propagation
of gravitational effects is indeed an instantaneous action-at-a-distance with
all its unphysical consequences and problems. This has been a major con-
cern for many physicists who have therefore carried out experiments in
order to put a lower limit to the speed of gravity. As a matter of fact, the
problem of the speed of transmission of gravitational effects is an old one.
It can be traced back to Laplace, who, in his monumental work “Mecanique
Celeste” in 1825, estimated ugrav ≥ 108c by analyzing the motion of the
Moon with respect to the gravitational pull exerted on it by the Earth and
the Sun.

Let us clarify what we mean by “speed of gravitational effects” . As is well
known, General Relativity predicts the existence of gravitational waves, i.e.,
weak disturbances of the space–time metric1 (obeying a Helmholtz wave

1In fact, gravitational radiation is a fifth order effect in v/c .
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equation) which propagate at the speed of light. Indirect confirmation of
this fact was provided by Taylor and Hulse in 1974 by their analysis of
binary pulsars (see the Nobel Lectures [85, 86]). Gravitational radiation
does admit retarded-potential solutions of electromagnetic type. It there-
fore describes propagation of the perturbations of a static (or near static)
gravitational potential field.

On the contrary, how much is the propagation speed of the gravitational
force? By this we mean the speed at which variations of the gravitational
force do travel. It answers the question of how much time a target body
will take to respond to the acceleration of a source mass. Such a time is
obviously zero, in Newtonian mechanics. Borrowing a beautiful analogy
from [87], let us consider a buoy floating on sea surface. The buoy is con-
nected by a chain to an anchor holding it in place. If the anchor is moved,
the chain causes the buoy to move too. In turn, the buoy motion sets off
water waves. Translated in gravitational language, the anchor is the source
mass, the chain is the gravitational force, the buoy the target mass. The
water waves caused by the buoy motion (induced by the anchor motion)
travel at the sound speed in water, and are the analogous of gravitational
waves: there is no connection between their speed and the speed of transmis-
sion of the force field from the anchor to the buoy by the chain. Variations
of the gravitational force (namely, variations of the whole space–time geo-
metry) originate from acceleration of the source mass; gravitational waves
(i.e., small ripples of the space–time geometry) originate from acceleration
of the target body.

Let us stress that, in the framework of unified theories of fundamental
interactions (including gravity) based on multidimensional spaces (see [18]
and Chap. 18), the gravity speed ugrav is different both from the speed
of light (namely, the speed of propagation of the electromagnetic signals,
ue.m.) and from the speed parameter c entering the Lorentz transformation
(the relation between them being ue.m. = c/N , with N being the vacuum
refractive index: see Sect. 3.4.3).

The experiments testing the speed of gravity are essentially of three
types: Solar system, astrophysical and laboratory experiments. The Laplace
estimate was just of the first type. The same arguments by Laplace were
applied, at an astrophysical level, by Van Flandern [88] to binary pulsars.
Thus he got a lower limit of 2·1010 c for the speed of gravity.2 Due to
the extremely high value of the speed of gravity, all attempts to measure
it directly by means of tabletop setups could not produce any reasonable
value (let us, however, quote the experiment performed by Walker and

2For reader’s convenience, we recall that the equation for the gravitational speed used

by Van Flandern is vg =

[

12π2

pṗ

(

a
c

)

]

c, where p is the period of the orbit of the binary

pulsar, ṗ is its time variation, and a is the major semiaxis of the orbit. The data refer
to the binary pulsars PSR1913+16 and PSR1534+12.



15.1 How Fast Is Gravity? 223

Dual, which apparently confirms the superluminal propagation of gravita-
tional effects [89]). The most recent attempt to evaluate the gravity speed
was based on the analysis of astronomical interferometry data from mea-
surement of the deflection of light from a quasar by planet Jupiter [90]. The
conclusion was that the speed of gravity is between 0.8 and 1.2 times the
speed of light, in agreement with the standard prediction of General Rela-
tivity. However, such a claim has been criticized by several physicists, on
the grounds that the results of the measurements have been misinterpreted
(see e.g., [91, 92]).

What are the predictions of DSR for the speed of gravitational force?
According to the general discussion of Sects. 3.2 and 3.3.5, the maximal
causal speed for a given interaction is a function of the energy-dependent
coefficients of the metric describing the interaction considered, and is differ-
ent for each space direction for an anisotropic space (see (3.69)). We have
seen in Sect. 4.1 that, for gravity, only the time coefficient b0(E) can be
derived from the experimental data on clock rates. The gravitational met-
ric is therefore given by (4.17) and (4.18). According to the possible guess
on the spatial metric coefficients bk(E), one gets different results for the
gravity maximum speed ugrav [6]. In particular, by assuming a gravita-
tional metric analogous to the strong one (see (4.17a), (4.18a)), and two
of the space coefficients bk(E) = 1 (k = 1, 2), one finds both ugrav = c
and ugrav 
= c. In the latter case, the expression of the (energy-dependent)
gravitational speed is

ugrav(E) =
(

1 +
E

E0,grav

)

c (15.1)

with E0,grav � 20.2 µeV is the threshold energy for the gravitational inter-
action (see (4.19).

An estimate of the lower limit of the gravitational speed ugrav (15.1) can
be given by considering, for the energy E, the rest energy associated to
the gravitational object of minimal mass constituting the matter, i.e., the
electron (mec

2 � 0.5 MeV). Replacing such a value in (15.1) yields [6]

ugrav ≥
(

1 +
mec

2

E0,grav

)

c = 2.5 · 1010c, (15.2)

in astonishing agreement with the astronomical estimate by Van
Flandern [88].

In spite of the difficulty in carrying out tabletop experiments, at the end
of the twentieth century we designed and performed a laboratory experi-
ment aimed at estimating a lower limit for the speed of gravity. It is essen-
tially a Cavendish-like experiment. However – since the single delay of
propagation due to the finite speed of gravity would be too short to be
measured with a reasonable accuracy – we exploited the stratagem of pro-
longing the measurement for a sufficiently long amount of time in order
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to let these delays to accumulate. This produced a total delay easy to be
measured, from which it was possible to estimate a lower limit to the speed
of gravity.

15.2 Cavendish-like Experiment

15.2.1 Experimental Setup

The experiment was carried out at L’Aquila in 1999–2000. The experimen-
tal setup used is shown in Fig. 15.1. It consisted of an asymmetric rotor,
i.e., an unbalanced one, with only one sphere of mass M = 1.5 kg, which
revolved in front of a Cavendish torsion balance contained in a suitable box
in order to prevent disturbances from the surroundings (air displacements

FIGURE 15.1. Experimental setup employed in the Cavendish-like experiment
aimed at testing the speed of gravity
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and vibrations). The spheres at the end of the torsion balance crossbar
had a mass m = 0.012 Kg. At the beginning of the experiment the dis-
tance between the revolving sphere and the center of the crossbar was
d = 2 cm, as indicated in the figure. The maximum excursion of the cen-
ter of the revolving sphere from its closest position to the torsion balance
crossbar was S = 32.7 cm. In order to measure the torsion of the balance,
we conveyed a laser light onto a mirror attached to the polyethylene wire to
which the crossbar was suspended, collected the reflected spot of light on a
graduated screen and measured its excursion l. The distance of the screen
from the center of the balance crossbar was D = 213 cm (see Fig. 15.1).
At the beginning, when the rotor occupied its closest position to the bal-
ance, the torsion of the wire was null as well as the excursion of the laser
spot on the graduated screen. This position corresponded to an initial angle
α0 = 0.175 rad. The maximum excursion of the laser spot (obtained in the
measuring time of 200 min) was lmax = l(t = 200 min) = 3.6 cm. The excur-
sion of the spot on the graduated screen was sampled every TC = 1200 s
(20 min).

The purpose of the experiment was to estimate the delay, due to the
(finite) speed of gravity, of the response of the Cavendish torsion balance
gravitationally excited by a revolving weight, i.e., the asymmetric rotor.

The measurements were carried on for a long interval of time in order to
accumulate this delay which otherwise would be at maximum 1 ns, because
of the small dimensions of the apparatus (refer to Fig. 15.1).

The Cavendish torsion balance used in the experiment could oscillate
both like a compound pendulum, with free-oscillation period TP = 1.1 s,
and like a torsion pendulum, with free-oscillation period TT = 160 s. This
means that the two types of oscillation were in phase roughly every 160 s,
i.e., about 4 times every 10 min and about 8 times every 20 min. This
circumstance suggested to choose a revolution frequency ν = 0.25 Hz (cor-
responding to a 4 s period) for the asymmetric rotor put in front of the of
the torsion balance (see Fig. 15.1). The rotor exerted a gravitational pull
on either sphere of the balance, which was thus forced to oscillate with
frequency ν.

It was verified that the torsion balance was indeed affected by this
periodic forcing, by checking that a 4-second oscillation was superimposed
on its free oscillations.

To this aim, we used a rectangular array of photo-resistances which was
lain along and amid the graduated screen where the excursion of the laser
spot, corresponding to the torsion of the balance, was measured. The photo-
resistance width was so chosen that the laser spot was entirely contained
within it as the laser swept the whole length of the photo-resistance. The
electric signal collected at the photo-resistance was visualized by an oscillo-
graph. As the laser spot got closer to the mid point of the photo-resistance,
the trace on the oscillograph screen was a mounting ramp because of the
increase of the received light. The 4-second oscillation was clearly visible as
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a periodic ripple superimposed on this ramp. This means that the length of
the photo-resistance was long enough to make out the 4-second oscillation.

One could think that the delay, due to the finite speed of gravity, can
be determined from the phase difference between the response signal of the
torsion balance (whose period is 4 s) to the rotor gravitational pull and the
4-second signal corresponding to the rotation of the rotor. Unfortunately
this method has two main problems. The first is the impossibility to extract
a sufficiently clean and clear response signal from the complex oscillations
of the balance, and hence to measure a significant phase difference. The
second problem lies with the features of the delay. Namely, even if a phase
difference would be measurable and the delay could be determined by this
phase difference, it would still be impossible to know if the delay remains
constant with the measuring time or if it has a rule of variability with it.

Thus we preferred to wait for the single delays to accumulate and then
estimate the whole delay from the experimental data. Making such a choice
meant to make some hypotheses, as to the way the single delays accumu-
late, in order to be able to estimate the speed of gravity from the whole
delay. Obviously, at the end of the analysis of the experimental data, it
was necessary to verify a posteriori the correctness of these hypotheses by
comparing our estimate of the speed of gravity with the theoretical and
experimental estimates known in literature.

15.2.2 Measurement Analysis and Results

In general a kinematical estimate of the speed of gravitational effects would
be given by

ugrav =
s

tr
, (15.3)

where s is the distance between the sphere of the rotor, exerting the grav-
itational pull, and the axis of the balance, and tr is the time delay due to
the finite gravity speed.

However, we deem that relation (15.3), being purely kinematical, is not
completely exact, because it does not take into account the peculiar features
of the experimental apparatus. In order to do this, one has to introduce
suitable variation coefficients (or deformation coefficients) both for the dis-
tance s in space and for the time delay tr.

Since the oscillation period of the torsion pendulum is an entire multiple
of the time taken by the rotor to complete one revolution, we inferred
that within TC = 1, 200 s (interval of time between two samplings of the
excursion) there are TC/TT = 7.5 gravitational pulls in phase out of a total
number of pulls equal to TC · ν = 300. Hence there are 7.5 pulls in phase
and 292.5 pulls out of phase. This is to say that within 5 times 20 min
(1,200 s), i.e., 100 min, there are Alin = 7.5 · 5 = 37.5 gravitational pulls in
phase for which the effect of each delay is added linearly to the others. On
the other hand, 300 – 7.5 = 292.5 times within 1,200 s (20 min), the torque
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exerted by the rotor is not in phase with the two types of oscillation of the
balance and hence the effects of the delays cannot be added linearly.

Thus, we made the working hypothesis to add up the effects of all the
delays within every sampling interval, and therefore to consider the whole
final effect as the result of successive amplifications of the phenomenon of
propagation delay.

One is guaranteed that this procedure is independent of the sampling
interval by the fact that for different sampling intervals, being equal the
rotation frequency of the rotor and the geometrical disposition of the whole
apparatus, the measurement results of the torsion of the balance would be
different.

Besides, we hypothesized that the effect due to the delay induces an
amplification with gain A of the oscillation.

Let a = 292.5 be the amplification coefficient and k = 5 the sampling
coefficient, i.e., the number of times this amplification must be applied.
Then, one has a nonlinear amplification gain A = ak = (292.5)5 over the
first 100 min out of the whole measuring time of 200 min. In short, we can
say that the phenomenon is described as the consequence of k stages of
amplification a, which yield a final amplification equal to A = ak.

Thus, over the first 100 min the accumulated effect due to the delay is
the sum of two contributions: the linear one, embodied by the amplification
gain Alin, and the nonlinear one given by the amplification gain A. Then the
total amplification coefficient is Atot = A+Alin � A (since Alin  A). We
want to stress here that the definitions of linear and nonlinear amplification
have to be understood as being related to the in-phase gravitational pulls
and the out-of-phase ones, respectively.

On the other hand, if we take into account the entire measuring time
of 200 min, the sampling coefficient k′ is twice as big as k (k′ = 5·2),
corresponding to an amplification coefficient A′ = ak′

= (292.5)5·2 = A2.
Moreover, the response of the apparatus shows a phase inversion in moving
from the first 100 min to the second 100 min (see Fig. 15.2). In order to
take this decreasing effect into account, it is necessary to introduce, over
200 min, a coefficient with negative exponent. The total amplification gain
is therefore given by

A′
tot = A′ ·A−1 = A2 ·A−1 = A. (15.4)

The experimental results for the (maximum) excursions of the laser spot
on the screen, l, as function of time are shown in Fig.15.2. The same figure
reports also the graph p of the least-squares fit polynomial, which approx-
imates the experimental data with a correlation coefficient R2 = 0.99, and
two linear fits of the data: r1 (continuous line), the least-squares line fit-
ting the data with the minimum slope (this line goes through two main
points: the point corresponding to the first measurement increased by its
experimental error and the point corresponding to the last measurement
decreased by its experimental error); r2 (dashed line), the least-squares line



228 15. The Speed of Gravity

FIGURE 15.2. Laser spot excursions l as function of time

fitting the data with the maximum slope (this line goes through two main
points: the point corresponding to the first measurement decreased by its
experimental error and the point corresponding to the last measurement
increased by its experimental error).

The equations of the polynomial curve and of the lines are:

p : l = 8 · 10−6t3 − 0.0023t2 + 0.3027t+ 7.8247;

r1 : l = t
23
190

+
195.5
19

; (15.5)

r2 : l = t
29
190

+
132.5
19

,

where the independent variable time (t) is expressed in “min”, and the
dependent variable excursion (l) in “mm”.

With respect to these two lines, the experimental data show a periodic
pseudosinusoidal wave shape. Thus the intersections of these two lines with
the polynomial best fit allow us to estimate the value of the delay τ and of
the corresponding error from the experimental data.

Indeed, the delay τ is given by the sum of the time interval between
the two intersections of the lines and the polynomial curve at the begin-
ning of the pseudosinusoidal wave shape and the time interval between
the two intersections of the lines and the polynomial curve at the end of
the pseudosinusoidal wave shape. Moreover, the time difference between the
intersections of the two lines and the fitting curve near the flex point cor-
responds to the error ∆τ . In fact, passed the polynomial curve through the
intersecting point of the two lines, there would be no error and furthermore
the delay at the beginning and the one at the end of the pseudosinusoidal
shape of the data would be identical.
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It is quite evident that the intersections of the two lines with the polyno-
mial best-fit do not depend on the experimental errors, since for different
errors – measurement accuracy and sampling procedure being equal – we
would get in general different data.

Thus, we have at our disposal the time delay and its error, i.e., τ ± ∆τ .
This means that we can provide four kinematical estimates of the values
of the speed of the gravitational effect, two of them related to the Einstein
metric tensor for a weak gravitational field and the other two related to
the deformed space–time. Of course, both couples correspond to the two
possible values of the delay, i.e., τmin = τ − ∆τ and τmax = τ + ∆τ .

The time coordinates of the intersections of the two lines r1, r2 with the
curve p are the following (see Fig. 15.3):

r1p : t11 = 17.09 min, t12 = 100.87 min, t13 = 189.52 min;
r2p : t21 = −5.24 min, t22 = 102.36 min, t23 = 210.36 min.

(15.6)

The negative value of t21 does not make physical sense and then we
replace it by t21 = 0, which is the nearest value to have physical sense with
regards to the measurements carried out. This is justified by the fact that,
because of the initial transient effects (not reported in Fig. 15.2) in the
experimental measuring apparatus, it is impossible to extrapolate to zero
either the two lines or the polynomial curve.

With reference to Fig. 15.3, one gets the following values for the delay τ
and its measurement error:

τ = (t11 − t21) + (t23 − t13) = 37.93 min = 2276 s;
∆τ = (t22 − t12) = 1.49 min = 89 s. (15.7)

FIGURE 15.3. Intersections of the lines r1, r2 with the polynomial curve p
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According to General Relativity, a local weak gravitational field affects
the measure of time only (see (2.21)). Then, if one adheres to the GR view,
the amplification effect has to be applied only to the measured value τ of the
delay accumulated during the experiment. On the other hand, according
to DSR, it is the whole 4D space–time to be in principle deformed, so the
amplification would affect both time and space (in different ways of course).

Both in GR and in DSR, the relation between proper time and coordinate
time is the same, τ =

√
g00t (see (3.84)). Moreover, one has tr/τ = 1/A, so

the delay tr in terms of the measured delay τ is given by the expression

tr =
τ

A
, (15.8)

valid for both a flat space and a deformed one.
In terms of a flat space (i.e., with the Einstein metric tensor (2.21)), the

measure of distances is not affected and hence s = S (remember that S
is the maximum linear excursion of the center of the rotor exciting sphere
from its closest position to the torsion balance crossbar: see Fig.15.1). On
the other hand, according to DSR, the 3D space is deformed and therefore
the distance s is related to S by

s = SA′
tot = SA2 = 1.5 × 1021Km (15.9)

(see (15.4) for A′
tot).

The expressions used to estimate the speed ugrav of the gravitational
effects by means of (15.3) in the two cases of flat space and deformed
space–time are as follows:

– Flat space:

ugrav =
SA

τ
; (15.10)

– Deformed space–time:

ugrav =
SA2

τ
(15.11)

We report in Tables 15.1 and 15.2 the minimum and maximum values
of ugrav corresponding to the estimated delays τ for the two theoretical
hypotheses about the metric of space–time: Einstein metric (flat space)
and deformed space–time, respectively. The speeds are expressed in units
of the vacuum light speed c. From the values in Tables 15.1, 15.2 we obtain

TABLE 15.1. Values of τ and ugrav for a flat space.

Flat Space
τ (s) τmin = 2,187 τmax = 2, 365

ugrav (units of c) ugrav max = 1.07 ugrav min = 0.99
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TABLE 15.2. Values of τ and ugrav for a deformed space.

Deformed Space–Time
τ (s) τmin = 2,187 τmax = 2,365

ugrav (units of c) ugrav max = 2.29 × 1012 ugrav min = 2.11 × 1012

the following two different estimates of the speed of gravity ugrav:

Flat space : ugrav = (1.03 ± 0.04)c; (15.12)

Deformed space–time : ugrav = (2.20 ± 0.09) · 1012c. (15.13)

15.3 Interpretation in Terms of DSR

We want now to discuss the compatibility of results (15.12), (15.13) with
the theoretical predictions of DSR concerning the speed of gravitational
effects and the variability of its value with energy. However, let us warn
the reader about the physical difference between the experiment on clock
rates (whose data have been utilized in order to derive the gravitational
metric: see Sect. 4.1 and [6] for a detailed discussion) and the Cavendish-like
experiment considered in Sect. 15.2. As a matter of fact, in the former case
one worked in a static condition (the Earth gravitational field), i.e., in the
language of DSR, inside an already (gravitationally) deformed space–time.
On the contrary, in the latter case, we faced with a nonstatic (dynamic)
situation, namely the settling of the gravitational deformation of space–
time. Accordingly, the very meaning of the maximal causal speed ugrav for
gravity must be changed, in the sense that, in this framework, it is better
to be regarded as the speed of the gravitational action (product of energy
by time) which brings about the deformation of space–time.

In spite of the earlier remarks, let us show that the experimental values
(15.12), (15.13) of ugrav are in fact consistent with the DSR formalism.
According to the discussion of Sect. 15.1, the value of the maximal causal
speed for gravity obtained in DSR can be either ugrav = c or ugrav �2·1010c.
In particular, in the latter case the expression of ugrav is given by (15.1),
with E0,grav �20.2 µeV = 3.2 · 10−24 J. Notice first of all that the value
(15.13) ugrav 
= c is compatible with the DSR lower limit (15.2).

Let us apply (15.1) to the Cavendish-like experiment in order to get a
theoretical estimate of ugrav based on the formalism of DSR. In this case,
according to the very grounds of DSR (see Chap. 2), E is the torsion energy
of the Cavendish balance, measured in flat space conditions by the electric
interaction. Accordingly, it is the consequence of the electric repulsion of
the atoms of the wire to which the crossbar of the balance is suspended,
and can be calculated from the torsion constant K.
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The torsion energy Etor is defined as:

Etor =
1
2
Kϑ2, (15.14)

where ϑ is the torsion angle of the balance and, in our case, K =
1.19·10−7Nmrad−1.

We use the maximum value ϑmax of the torsion angle of the balance in
order to estimate the maximum value of the measured energy. Since it is
impossible to take into account all the energy losses due to the internal
friction of the entire balance, the value of the energy estimated by ϑmax is
only a lower bound of the gravitational energy exchanged. Consequently,
one can obtain only a lower limit of the speed of gravity ugrav(E).

From the geometry of the apparatus (see Fig. 15.1) it is easy to get the
following expression for ϑmax:

2ϑmax = αmax = arctg
(

lmax

D

)

. (15.15)

By putting the values of lmax and D (see Sect. 15.2.1) in (15.15), one finds
ϑmax = 0.01 rad. Then, (15.14) yields for the torsion energy the valueEtor =
4.28× 10−12 J, much greater than E0,e.m. = 4.5µeV = 7.2×10−25 J. There-
fore, according to DSR, we are guaranteed that the measure (performed by
means of the electromagnetic interaction) took place in Minkowskian condi-
tions. Moreover, it is also Etor � E0,grav, namely the gravitational metric
is over threshold and therefore in non-Minkowskian conditions, ensuring
that gravity was indeed deforming space–time. We are thus entitled to use
(15.1) in order to estimate ugrav.

Being Etor a lower limit of the energy of the gravitational effects, it
provides only a lower limit of the speed of gravity ugrav(E), which has to
be verified by kinematical measurements of ugrav. By (15.1) such a value
is:

ugrav(Etor) =
(

1 +
Etor

E0,grav

)

c = 1.5×1012c < ugrav = (2.20±0.09)×1012c.

(15.16)
It is therefore possible to conclude that both measurement results for

ugrav obtained by the torsion balance experiment are in good agreement
with the theoretical predictions of DSR, in particular as far as (15.1) is
concerned.

DSR allows one to get a possible explanation of the huge value (15.9)
obtained for s in the case of deformed space, by hypothesizing that the
deformation of space occurred in the form of a Riemann foliation. One can
think that each pull of the rotor on the torsion balance produces a Riemann
surface. The time ∆t of production of a surface is therefore given by

∆t =
S

u
=

⎧

⎨

⎩

τ

A
, flat space;

τ

A2
, deformed space,

(15.17)
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where τ � 2.3 × 103 s is the cumulative delay time. So, the number N of
Riemann surfaces produced in the total measuring time T = 12 × 103 s is

N =
T

∆t
=

⎧

⎪

⎨

⎪

⎩

T

τ
A � 5.2A , flat space;

T

τ
A2 � 5.2A2 , deformed space.

(15.18)

Needless to say, such a kind of space deformation has nothing to do with the
simple deformations described by the phenomenological metrics of Sect. 4.1
(although let us recall that the experimental data on clock rates do not
provide any information on the space metric coefficients). However, it must
be again emphasized that – as already stressed before – in those cases the
situation was a static one, whereas we faced, in this experiment, a truly
dynamic behavior of a given interaction. In such cases, it is not enough –
in order to account for the phenomenon in fieri – to consider energy as a
parameter, but one has to change its nature into that of a true coordinate.
As already said, this amounts to embed the deformed Minkowski space into
a 5D Riemann space with energy as extra dimension (see Parts IV and V).



16
Piezonuclear Reactions
in Cavitated Water

16.1 Can Pressure Waves Trigger Nuclear
Reactions?

At the end of the twentieth century and at the beginning of the twenty-first
one, experiments of cavitating water and of explosions of foils in water have
provided possible evidence for production of stable, unstable and artificial
nuclides induced by ultrasounds and shock waves, i.e., for nuclear reactions
catalyzed by pressure waves.

Let us recall that the process of cavitation [93,94] consists in subjecting
gaseous liquids to elastic pressure waves of suitable power and frequency
(in particular to ultrasounds). The main physical phenomena occurring in
a cavitated liquid (like e.g., sonoluminescence [95]) can be accounted for in
terms of a hydrodynamic model based on the formation and the collapse
of gas bubbles in the liquid [93,94].

Three different experiments on cavitation carried out in the last years
[96–98] provided evidence for an anomalous production of intermediate and
high mass number (both stable, unstable and artificial) nuclides within a
sample of water subjected to cavitation, in turn induced by ultrasounds
with 20 kHz frequency. These results together seem to show that ultra-
sounds and cavitation are able to generate nuclear phenomena bringing to
modifications of the nuclei involved in the process (in particular, sononu-
clear fusion). Let us also stress that the measurement of ionizing radiation
performed in the first experiment yielded no signal out of the background.
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Such findings (in particular those of the first experiment) are similar
under many respects to those obtained by Russian teams at Kurchatov
Institute and at Dubna JINR [99–102] in the experimental study of elec-
tric explosion of titanium foils in liquids. In a first experiment carried out
in water, the Kurchatov group [99] observed change in concentrations of
chemical elements and the absence of significant radioactivity. These results
have been subsequently confirmed at Dubna [100]. Later, the experiments
have been carried out in a solution of uranyl sulfate in distilled water,
unambiguously showing [101] a distortion of the initial isotopic relation-
ship of uranium and a violation of the secular equilibrium of Th234. More-
over, the neutron flux was measured and found to be very low (< 103
neutron/electric explosion), so that the change in the uranium isotopic
composition cannot be attributed to the induced fission. Due to the simi-
larity of such results with the cavitation ones, it is more than likely that the
two observed phenomena share a common origin. Namely, one might argue
that the shock waves caused by the foil explosion act on the matter in a
way similar to ultrasounds in cavitation. In other words, the results of the
Russian teams, together with those obtained by cavitating water, support
the evidence for nuclear reactions induced by high pressures (piezonuclear
reactions).

A connection can also be envisaged with the experiment by Taleyarkhan
et al. [103] on nuclear fusion induced by cavitation. In such an experiment,
it was observed emission of neutrons in deuterated acetone subjected to cav-
itation. The neutron flux measured was compatible with d–d fusion during
bubble collapse. This result was subsequently disclaimed by another Oak
Ridge group [104], which measured a neutron flux three orders of magni-
tude smaller than that required for tritium production. Such a disproof
has been rebutted by Taleyarkhan et al. [105]. Although therefore gen-
eral agreement exists on the emission of neutrons in the phenomenon, the
controversial point is whether or not the observed neutron flux is com-
patible with d–d fusion and consequent tritium production. Notice that,
in the first cavitation experiment we carried out, proton number is con-
served, whereas neutron number is apparently not. In our opinion, the Oak
Ridge experiments have only shown that cavitation does affect nuclei, by
inducing them to emit neutrons, but have not provided firm evidence for
cavitation-generated nuclear reactions (in particular fusion). In our view,
one could interpret the Oak Ridge experiments as a transmutation of nuclei
induced by cavitation, in which the emission of neutrons, although not con-
sistent with fusion of deuteron nuclei, could be due to other piezonuclear
processes in bubble collapse. In fact, in no Oak Ridge experiment either
a mass-spectrometer analysis of the liquid before and after cavitation was
performed in order to match the detected neutron emission with possi-
bly occurred nuclear reactions in the cavitated liquid. A further factor of
confusion about the real validity and conclusions of the Oak Ridge exper-
iments is due to the fact that the deuterated acetone was preliminarily
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irradiated with neutrons (before subjecting it to the ultrasounds), in order
to generate deuterium gas bubbles. Then, it is not clear at all if the mea-
sured neutron flux was a consequence of the neutron irradiation or of the
cavitation process (or even of both of them).

It follows from the earlier discussion that the emission of neutrons in the
processes possibly involving piezonuclear reactions is a fundamental issue.

In this chapter, we shall give only a brief account of the three experiments
which provided a possible evidence for transmutation of elements in water
induced by cavitation (the reader is referred to [96–98] for a thorough
examination of this subject). A model able to account for piezonuclear
reactions will be also illustrated. We will instead discuss in detail in Chapter
17 some new recent cavitation experiments in which it was possible to detect
emission of neutrons. The purpose is matching these new phenomena (the
piezonuclear ones) with the predictions of DSR, in particular as far as the
strong interaction (and its metric: see Sect. 4.1 and [6] is concerned.

16.2 Cavitating Water Experiments

16.2.1 First Experiment

In the first experimental work (carried out at Perugia University in 1998), a
sample of bidistilled and deionized water was cavitated by means of a new
type of sonotrode (“cavitator”) with a very long working time (> 30 min).
The cavitation lasted without stopping for a total time of 210 min, at the
constant power of 630 watt and the frequency of 20 kHz.

After cavitation, the cavitated water sample was analyzed, by confining
the analysis to the stable chemical elements (from Z = 1 to Z = 92), and
the results compared with those of the uncavitated water. Very surpris-
ingly, relevant changes were found in the concentrations of the elements in
the cavitated sample (despite the very low original concentrations). The
analysis of the water both before and after cavitation was carried out by
three different procedures, reaching the precision of one p.p.b. and with a
SD on concentrations σ = 10−5µ g L−1, namely:

1. Mass atomic absorption (Inducted Coupled Plasma, ICP)

2. Cyclotron spectrometry (ICR)

3. Mass spectrometry (MS)

In order to asset the changes in the chemical elements, the variation factors
have been accepted only for a value ≥ 2 in the concentration ratios in
water after and before cavitation. Evidence was found for 10 increasing
and 19 decreasing elements. Let us notice, in particular, that the decrease
concerned stable elements with low mass number.
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One checked the possible contributions to such changes due to impurities,
possibly arising from the titanium tip of the cavitator and the flint glass of
the vessel, by three different methods:

1. Mass atomic absorption (ICP) on cavitated water sample

2. Electron microscopy on dusts of tip and vessel

3. X-ray microanalysis, carried out on both the dusts of tip and vessel
and the dry residues of the two (cavitated and uncavitated) water
samples

The results obtained excluded contributions due to impurities to the
observed concentration changes [96].

During the cavitation, it was looked for possible emission of radiation by
putting, on the external walls of the vessel, slabs of colloid LR115, sensitive
to ionization energies in the range 100 KeV–4 MeV, which are typical e.g.,
of α-particles. The results obtained were compatible with the flux intensity
of the background radiation in the laboratory (210–150 Bqm−2).

A basic point to be stressed is that the number of protons between
increasing and decreasing elements was conserved, whereas that of neutrons
was not.

Moreover, a huge increase in the concentration of uranium was found.
This result caused to perform the second experiment.

16.2.2 Second Experiment

The measurements of the first experiment were confined to the stable chem-
ical elements. We therefore performed a second cavitation experiment by
using a standard sonotrode, and analyzed the mass composition of cavi-
tated water by a spectrometer in the mass region 210<M< 271.

A mass of bidistilled and deionized water of about 30 g was subjected
to cavitation by a standard sonotrode. The cavitation was carried out in
a different underground laboratory in a different place, in order to get rid
of possible local background effects. The sonotrode worked at the constant
power of about 300 watt and the frequency of 20 kHz. Four subsequent
cavitation runs, of 10 min each, were carried out on the water mass, with
a cooling interval between any two of them of 15 min.

Four mass measurements were carried out on samples from water cavi-
tated one, two, three and four times. Therefore, the whole cavitation time
ranged from 10 min for the first water sample to 40 min for the last water
sample. Each measurement was performed immediately after each cavita-
tion run. We confined ourselves to merely counting the different masses
identified by the spectrometer. An error ∆M = 0.1 was accepted in the
mass value determination.
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FIGURE 16.1. Numbers ni (i = 0, . . . , 4) of nuclides vs. the number k
(k = 1, . . . , 4) of cavitation runs. Left: Behavior of n0, n1, and n2 Right: Behavior
of n2, n3 and n4

Let us label by k and i (k = 1, . . . , 4; i = 0, . . . , 4), respectively, the four
measurement runs carried out and the mass intervals (the total interval 0:
210<M < 271, was split in the two subintervals 1: 210<M < 238, and 2:
238<M < 271; the subinterval 2 was in turn split in the subintervals 3:
238<M < 264, and 4: 264<M < 271). The numbers nik are defined as:

nik ≡ Nik −NBi, (16.1)

where Nik is the number of nuclei measured in the ith mass interval in
the kth water sample cavitated k times, and NBi is the number of nuclei
measured in the ith mass interval in the background/blank measurement
(which of course includes the masses of the calibration compound).

In Fig. 16.1 the numbers of nuclides ni (i = 0, . . . , 4) are plotted as
functions of the cavitation runs k. On the left it is seen that the excess in
the number of masses identified in run 3, in the water sample cavitated 3
times, has to be ascribed to masses in region 2, 238<M < 271. In such a
region 2, the contribution to the excess in the number of masses appears
to be due to masses in the transuranic region, 238<M < 264, as shown on
the right in Fig. 16.1.

One might argue that the excess in the number of masses could be due
to the formation of macromolecules by processes like e.g., dimerization.
However, such a possibility is unable to explain why the excess is just con-
centrated in a definite mass interval, i.e., in the transuranic region. On the
other hand, possible contributions from cosmic-rays induced phenomena
(like spallation) even at altitudes less than 200 m a.s.l.– as it is indeed the
case of the experiment sites – could give rise to an excess of light nuclei,
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but cannot explain an increment of heavy nuclei (even less the presence of
nuclei heavier than uranium). Moreover, the actual presence of transuranic
elements is supported by the huge increase of uranium found in the first
experiment, which might just be explained in terms of the formation and
subsequent decay of transuranic elements. The results of the first experi-
ment do agree with the results of the second one, showing the rearrange-
ment of elements, with the decrease in the concentrations of light-medium
elements, and the increase in those of the heavy ones. Although a definite
conclusion can only be drawn by carrying out a further experiment in the
whole mass range, including both stable and transuranic elements, it is
reasonable to assume that the excess of masses in the transuranic region
are compensated by a simultaneous deficit of masses in the stable element
region.

Such a picture is supported by the different behavior of the ni’s (i =
1, 2, 3, 4). The net increase of n1 is due to the fact that in the mass range
210<M < 238 there are mainly stable nuclei, and therefore their number
increases following the production. On the contrary, in the range Z =
92/114 and 238<M < 270, there are only unstable radionuclides (either
experimentally known or theoretically predicted). Thus, their number first
increases, then decreases (after the third cavitation) as soon as the decay
rate overcomes the rate of production.

16.2.3 Third Experiment

We have seen that the first two experiments provided evidence for a change
in concentrations of stable and transuranic chemical elements in cavitated
water [96]. The third experiment was aimed at looking for the production
of the so-called rare earth elements, and was performed at the Univer-
sity of Rome “La Sapienza” [97]. To cavitate water, the same sonotrode
device of the second experiment was employed, but with a reduced power
setup (still able to induce cavitation), in order to account for the differ-
ent contributions to the phenomenon due to both the cavitation and the
ultrasounds at different powers. The sonotrode was made of a column of
piezoelectrics directly connected to a steel tip, shaped like a truncated cone.
The sonotrode tip was plunged into an open vessel at atmospheric pressure,
filled with water at room temperature. The sonotrode was cooled by air at
room temperature (20◦C) and had a working frequency ν = 20 kHz, and
transmitted power P = 100 watt. The continuous operation folding time
of this sonotrode was 15 min, followed by a cooling period (15 min) of the
column of piezoelectrics. During the cooling period the sonotrode was off.

For the analysis of the water, we exploited an ICP mass spectrometer,
with temperature of the ionization chamber T > 9000◦C.

The water vessel was a Pyrex beaker, previously washed by using a
sulphochromic mixture. It was filled by 300 cc of deionized and bidistilled
water, whose resistivity was of 0.1µS. A Teflon tube was used to transfer
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the water from the Pyrex beaker, where the cavitation occurred, to the
ICP mass ionization chamber.

It was chosen to examine, through ICP, two mass intervals, from 90 to
150 amu and from 200 to 255 amu, since they include also the rare earth
elements one was looking for.

For every mass value in the two intervals, subdivided into steps of
0.01 amu, the results of the ICP mass count were analyzed. The count
series coincided with the measure series; the latter were obtained using the
count data acquisition program PQ Vision supplied by Thermo Elemental.
The aim of this analysis was to highlight the count variations (decrease or
increase compared with the previous count).

For each mass the upper limit for the count background was evaluated,
including both blank and noise. One took into consideration the masses
whose upper count was higher than this upper limit. A given mass was
taken into account only if its count was at least twice greater than the
upper limit.

This criterion was applied to the counts obtained, for the same mass
values, from measures performed with scanning times of both 10 and 150 s.

No mass whose counts satisfied the described criterion was identified for
scanning times of 150 s, whereas only one mass was found for the scanning
time of 10 s, namely M = (137.93 ± 0.01) amu.

We performed differential measurements with a time interval of 300 s,
corresponding to the cavitation interval time. Then one got the differential
counts, from which we derived the integral counts plotted in Fig. 16.2 as
function of the cavitation interval time. In this way the data have been
ensured from instrumental pile-up effects.

The identification of the observed peak with a given radionuclide required
the determination of the lifetime. This could be done by analyzing Fig. 16.2,
and interpreting it as two subsequent cycles of production and decay of
the observed element [98]. Thus it was possible to evaluate its halftime
T1/2 = (12 ± 1) s within 1.5 σ.

From the tables of nuclides [108] we got as possible candidate the isotope
of europium Eu138

63 [98].
During the first experiment the concentration of Eu63 was not changed.

It is known that the abundance on Earth of stable europium is less than
1.06 ppm (the natural Eu is a mixture of two isotopes, Eu151

63 with a per-
centage abundance of 47.77% and Eu153

63 with a percentage abundance of
52.23%). The candidate identified during the third experiment does not
exist in nature; it is an artificial radionuclide (discovered only in 1995–
1997 [108]) that can be produced at the present time in nuclear reactors
and by synchrotrons.

There are two ways whereby Eu138
63 can be produced: by nuclear fission

or by nuclear fusion. The former process requires less energy. However,
from the results of the first two experiments [96,97], the quantity of heavy
nuclei which can produce Eu138 by nuclear fission is very much smaller
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FIGURE 16.2. Integrated counts for M = 137.93 amu in the third experiment of
cavitating water

(by two-three orders of magnitude) than that of the intermediate nuclei
which can produce it by fusion (on account also of the impurities of the
tip). As a matter of fact, a rough estimate (just based on the detected
abundance of heavy nuclei in the second experiment) yields a probability
of 10−6 − 10−8 for the production of Eu138 by fission. Moreover, nuclear
fusion is the only possible explanation of the changes in concentration of
stable elements, induced by cavitation, observed in the first experiment.

16.3 Phenomenological Model of Piezonuclear
Reactions

16.3.1 Classical Cavitation Model

The fundamental and intriguing question posed by the experiments of
cavitating water is therefore: How can the pressure waves generated by
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FIGURE 16.3. Conversion of a plane pressure wave into a spherical pressure wave
on the bubble surface during cavitation process

cavitation trigger nuclear fusion? The answer comes possibly from the well-
known fact that cavitation allows one to achieve an extreme concentration
of energy for unit time in the collapsing bubble [106,107]. Indeed there exist
speculations on the possibility that cavitation (in particular, sonolumines-
cence) might be a viable approach to inertial-confinement fusion (provided
that the temperature attained in the process is substantially higher than
that predicted by a simple thermal model, namely 104◦K) [106,107]. Let us
illustrate a classical model of piezonuclear reactions, based on the earlier
features of the cavitation process [109].

In order to explain how cavitation can produce the energies needed to
induce nuclear fusion, let us take into consideration the physics underlying
the cavitation process. It consists, as is well known, in the implosive collapse
of a gas bubble within a liquid under suitable pressure conditions. In our
case (water sample) the speed of sound is about v �103 m s−1, which – on
account of the used frequency ν � 104 Hz – corresponds to a wavelength
λ � 10−1 m. In order to get the gas bubble to implode, the plane pressure
wave of the ultrasounds must be converted into a symmetric spherical shock
wave on the bubble surface (see Fig. 16.3).

Therefore, the condition to be satisfied for an implosive collapse is that
the wavelength must be much greater than the bubble size. Taking as exam-
ple a spherical bubble with radius R, this means λ � R. Since the size of
a bubble subjected to cavitation is of the order of magnitude R = 10−6 m
(see [94]), the collapsing condition is respected in all the three experiments.

We now remark that – contrary to what previously believed – the only
atoms influenced by the shock wave producing the cavitation are the ones
lying on the surface of the bubble itself. These atoms are trapped by the sur-
face tension of the bubble (generated by the combined electrostatic repul-
sion of the liquid and of the bubble) in a double-layer film at the border
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liquid-bubble. Namely, all other atoms inside the bubble volume escape to
the outside during the collapse, due to the fact that the inner pressure, cor-
responding to the saturated vapor pressure of water, is far lower than the
external pressure. The trapping of atoms at the bubble surface is expected
to be more effective for metals. Indeed, it is known that usually metals and
metal cations do not enter the cavitation bubble, but stay at the interface
between bubble and bulk solution. At room temperature (300◦K) – as it
was the case of all experiments – the saturated vapor pressure of water is
0.02 bar, whereas we estimated that the pressure induced by the implosive
shock wave, for a transmitted power of 100 watt is of the order of 109 bar.
This circumstance entails that there is no limit to the spatial size attain-
able by the collapse. It is therefore reasonable to hypothesize that the lower
limit of this size can be identified with the nuclear size. As a matter of fact,
there is in literature no experimental information on the value of the min-
imum size attained by a collapsing cavitation bubble. Therefore, we can
suppose that at the end of collapse the bubble dimensions become near to
the nuclear dimensions, commonly about 10−15 m (Fermi radius).

As stated before, if the wavelength λ of the plane pressure wave satisfies
the condition λ � R , where R is the bubble radius, the plane pressure wave
becomes a spherical shock wave symmetrically acting on the bubble. Let P
be the power of the plane pressure wave, and R, r the radius of the bub-
ble before and after collapse, respectively. Then, the power density on the
bubble before and after collapse are DP = P/(4πR2) and D′

P = P/(4πr2).
If the initial energy flux (i.e., the energy for unit time and unit surface) is
conserved (due to the continuity equation and to energy conservation), we
have

P = SDP = (πr2)D′
P =⇒ D′

P = DP (S/πr2) = fDP (16.2)

where f = (S/πr2) is the amplification factor.
As a consequence, the power density on the bubble surface, generated by

the power of the plane pressure wave, produces after implosion a power den-
sity increased by the factor f on the reduced bubble surface. Such a factor,
caused by the implosion, ranges from fA ∼ 108 (when the bubble collapses
to the atomic size, rA = 10−8 cm) to fN ∼ 1018 (collapse to nuclear radius,
rN = 10−13 cm). In the three experiments we used powers ranging from
100 to 630 watt, i.e., from 6 ×1020 to 4 ×1021 eV s−1. Thus the final power
density DN for collapse to the nuclear radius is DN �2×1046 eV (s cm−2),
corresponding to an equivalent temperature (for a low-density plasma) of
at least 1020◦K. We think that this power density allows a heavy-ion-fusion-
like process between two parent nuclei to generate a son nucleus. When the
bubble collapses and the bubble surface shrinks to the nuclear dimensions,
trapped atoms do move together with the surface and come closer and
closer. The collapsing surface of the bubble acts therefore as an “inertial
accelerator” of neutral atoms and the squeezing of the surface to the nuclear
dimension produces on the bubble surface the energy required to activate
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the fusion.1 At the final stage of this process, atomic electrons are stripped
away, and a kind of heavy-ion cold fusion (in the sense of Oganessian [110])
can occur.

16.3.2 Application to Europium

Let us apply the model discussed earlier to the fusion of europium, in order
to explain the results of the third experiment. Possible candidates as parent
nuclei for Eu138

63 are Zr9040 and V 51
23 . A feasible reaction scheme could be:

Zr9040 + V 51
23 −→ Eu138

63 + 3n. (16.3)

Where the nuclides Zr and V could come from? A possible answer to
this question can be found in the impurities lying on the surface of the
sonotrode tip. The latter was shaped through mechanical tools (lathes)
made by alloys of iron, vanadium and zirconium, introduced to harden
the tools themselves. During the manufacturing, small numbers of atoms
should remain trapped inside the iron lattice of the sonotrode tip. Impurity
atoms are more loosely bond to the iron lattice than the iron atoms, so the
ultrasonic vibrations of the tip can remove them from the lattice. By the
way, the possibility of the neutron excess (see (16.3)) could be explained
by the observations already made by other research groups working on
cavitation-induced nuclear reactions [105] (see Sect. 16.1).

The Coulomb barrier against fusion for Zr (Z1 = 40, A1 = 90) and V
(Z2 = 23, A2 = 51) can be evaluated by the formula

Ecoul =
Z1Z2

A
1/3
1 +A

1/3
2

MeV = 112MeV (16.4)

or also by

Ecoul =
Z1Z2

d
MeV = 140MeV, (16.5)

with d = r1 + r2 + 2r0 (where r1 = 4.5× 10−13 cm and r2 = 3.7× 10−13 cm
are the nuclear radii of Zr and V , respectively, and r0 = 0.5× 10−13 cm is
the characteristic Bohr–Wheeler nuclear length).

From the power density DPN on the bubble surface after collapsing from
a radius of 10−4 cm to the nuclear radius rN estimated earlier, it is possible
to evaluate the energy and the energy per nucleon needed to bring about
the formation of europium 138 from vanadium and zirconium according to
reaction (16.3).

1The fact that the collapsing bubble surface is responsible for the nuclear reaction
ignition is confirmed by the evaluation of the number of interacting atoms, endowed
with the velocity required to overcome the internuclear Coulomb barrier, present on the
bubble surface for a given overpressure. Indeed, it can be shown that this number is
incompatible with the number of atoms inside a (even rarefied) bubble (see [97]).
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FIGURE 16.4. Nuclear radius and shell extension of the virtual pions around the
nucleus

With reference to Fig. 16.4, let rN and RN be, respectively, the radius
of the nucleus and the radius of the shell of extension of the virtual pions.
One has

rN = 0.5 × 10−13 3
√
Acm;

RN � RF = 0.5 × 10−13cm. (16.6)

Then, the effective nuclear radius R is given by

R =
rN +RN

2
=

1
2

(

1
2

3
√
A+

1
2

)

10−13cm

= 0.25 ×
(

3
√
A+ 1

)

10−13cm � rN . (16.7)

The effective nuclear surface S is therefore S = 4πr2N = A
2
3π10−26 cm2.

For vanadium and zirconium one gets, respectively:

For vanadium: SV = 4.3 × 10−25cm2;
For zirconium: SZ = 6.3 × 10−25cm2. (16.8)

The mean value is S � 5.3 × 10−25cm2.
In order to find the energy achieved in this case, the collapse time of

the bubble must be estimated. For an employed frequency ν = 20 kHz, the
period is T = 1/ν = 5 × 10−5s. The collapse time is obviously comprised
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between T (upper limit) and the time ts = R/vs taken by the pressure
wave to travel the bubble radius (at the sound speed): ts < tc < T . In
deionized and bidistilled water, the sound speed is vs � 1.4×103 m s−1.
This corresponds to the lower time limit for collapse ts = 7 × 10−10 s.
The energy transmitted by the bubble implosion to the V − Zr system is
therefore

Ec min = SDPN ts < Ec < Ec max = SDPNT (16.9)

One gets

Ec min = 3.3 × 106 MeV;
Ec max = 2.5 × 1011 MeV. (16.10)

The total number of nucleons is N = 90 + 51 = 141. Thus the energy for
nucleon ε = E/N ranges in the interval

εmin � 2.3 × 104 MeV < ε < εmax � 1.8 × 109 MeV. (16.11)

Let us notice that εmin is much higher than the maximum estimated
Coulomb barrier for the europium formation. Moreover, the range of values
of ε corresponds to the energies of the direct nuclear reactions induced by
photons and to the production of pairs e+e− due to photon conversion in
the nuclear electric field, many orders of magnitude higher than the energy
required to overcome the Coulomb barrier.

Then, one can conclude that the mechanism proposed for piezonuclear
fusion is able indeed to account for europium formation generated by the
cavitation process.

The simple phenomenological model discussed earlier may of course be
also responsible of the results we got in the first two experiments. In this
case, the atoms of some elements (the decreasing ones of the first exper-
iment) may have been subjected to the inertial-fusion-like process due to
bubble collapse to generate new elements (the increasing ones and/or the
transuranic elements observed in the second experiment).

Moreover, this mechanism avoids the need for the introduction of a
nuclear shape deformation, invoked sometimes to increase the nuclear tun-
neling probability. We remind, to this regard, that Zr and V are typically
spherically shaped nuclei, at least in their fundamental state, so that a
shape deformation would be very difficult to justify.

On the other hand, an Oganessian-like low temperature heavy ion nuclear
fusion [110] could be possible even by the following mechanism. Let us sup-
pose that there be some kind of oversaturated vapor of the π-meson (boson)
gas, caused by the final power density, all around the parent nuclei. The
π-mesons are emitted, but they are absorbed more slowly – as if they would
condensate (something like a Bose–Einstein condensation) –, typically after
a time which, on the basis of the previous values of the energy-space–time
density, we estimate as 10−16 s (to be compared with the typical nuclear
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time of 10−23 s). As a consequence, the probability of nuclear interactions is
enhanced and there is an anomalous increase of the nucleus–nucleus cross
section.

16.3.3 Limits of the Classical Model

In spite of its effectiveness in accounting for the europium production, the
classical model illustrated earlier suffers from some drawbacks we are going
to discuss [109].

First of all, it must be noticed that not all of the power from the sonotrode
is concentrated in one bubble of nuclear dimension. Also, much of the power
put in is dissipated in other processes (in fact, energy is subtracted e.g., by
sonoluminescence and by endothermic sonochemical reactions. This could
be taken into account by an approximated energy efficiency factor, useful
for nonsonochemical reactions; the latter are to be identified with those
reactions that involve parent nuclei to generate composite nuclei with a
greater mass. Moreover, a crucial parameter is just represented by the final
size reached by the implosed bubble (which critically determines the energy
available for the fusion process).

Another intrinsic limit of this model is due to the very phenomenology
of nuclear fusion of heavy nuclei. At energies below the barrier, the fusion
probability is low and rises exponentially with energy. At energies just
above the barrier, the probability for parent nuclei to fuse and form a
composite nucleus does increase further but not indefinitely. As a matter
of fact, at energies of about 10 MeV per nucleon, the cross section for
forming a composite system is low and diminishes at a rate of 1/Ecm (where
Ecm is the center-of-mass energy of the relative motion of the two nuclei).
Such a decrease occurs because the composite system (for instance, V +
Zr), formed at such high relative energies, is a highly excited nucleus and
has large angular momentum. This causes the composite system to fission
instantaneously (with a time frame much shorter than 10−22 s). For nuclear
collisions at the energies we estimated in Sect. 16.3.2, the fusion does not
occur at all.

16.3.4 Deformed Space–Time of Strong Interaction

A possible answer to both these questions may come from the formalism of
DSR. In particular, we have to take into account the hadronic deformation
of space–time described by the strong metric, (4.10)–(4.14).

Let us recall that the energy Ec corresponding attained for collapse of
a cavitating bubble to the nuclear radius ranges in the interval between
Ecmin ∼ 106 MeV and Ecmax ∼ 1011 MeV. Then, Ecmin is about one order
of magnitude higher than the threshold energy of the DSR strong inter-
action, E0,strong � 4×105 MeV. This entails that the hadronic interaction
between nuclei occurs in the non-Minkowskian part of the strong interaction
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metric, i.e., the (hadronic) space–time geometry is deformed in the final
collapse region. As already noted, in the (usual) flat Minkowskian metric
the interacting nuclei, although overcoming the Coulomb barrier, produce,
after fusion, a nucleus in an highly excited state, and therefore with high
probability of spontaneous fission. On the contrary, in the deformed space–
time produced by the over-threshold hadronic condition, the excess energy
after fusion goes in deforming the space–time region, thus leaving the son
nucleus (produced by the fusion of the two parent nuclei) in a low-excited
(or even unexcited) state.

Therefore, the stability of the nuclei produced by cavitation is due
(according to DSR) to the deformation of space–time in the collapse region
ensuing from the non-Minkowskian behavior of the strong interaction in
the range Ec > E 0,strong. This explains why no emission of radiation was
observed in the first cavitation experiment.

16.3.5 Threshold Energy for Piezonuclear Reactions

Let us show that DSR is also able to predict the cavitation power needed
to produce piezonuclear reactions in a stable way. This is a consequence of
the law of time deformation in an hadronic field, (4.16), we rewrite here for
reader’s convenience:

dthadr.

dte.m.
=
E0,strong

E
. (16.12)

A way to read (16.12) is as follows. It can be regarded as an action-
reaction relation, i.e., as the equality between two energy speeds: An
electromagnetic speed We.m. of supplying energy to the atoms by the elec-
tromagnetic interaction (action) and an hadronic speed Wstrong of response
by the strong interaction of nuclei (reaction)

Wstrong =
E0,strong

dthadr.
=

E

dte.m.
= We.m.. (16.13)

In order to attain the threshold of LLI breakdown for strong nuclear
interaction, during the time taken by a generic cavitating bubble to col-
lapse, for a given electric energy E, an energy speed We.m. must be supplied
such to equate the nuclear one.

Let dthadr. the nuclear reaction time given by

dthadr. = γstrong∆t (16.14)

where γstrongis the deformed strong relativistic factor and ∆t = h/mπ is
the Yukawa time (nuclear year).

An estimate of dthadr. at the energy threshold E0,strong can be gotten
by means of the relation γstrong = E0,strong/mπ (on account of the well-
known fact that γ = E/m is the relativistic factor of time dilation in
Minkowskian conditions for E ≤ E0,strong, and by recalling that the process
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occurs approaching E0,strong from below). Replacing such an expression of
γstrong in (16.13) yields

dthadr. =
h

m2
π

E0,strong (16.15)

(h = 4.136 × 10−15 eV s; mπ = (m±
π +m0

π)/2 = 1.373×108 eV).
For the energy of the electric action we have

E = dte.m.E0,strong
m2

π

E0,strongh
= dte.m.Wstrong. (16.16)

Since E = dte.m.(m2
π/h), Wstrong reads

Wstrong = m2
π/h = 4.8 × 1030eV s−1 = 7.6 × 1011 W. (16.17)

Let us assume for dte.m. the time taken by a microbubble of radius R to
collapse to the nuclear size with r ∼ 10−13 cm (due to the electric repulsion
of the water atoms subjected to the ultrasonic pressure wave). The collapse
can occur at the velocity of sound in distilled water, v = vs = 1.4 ×
103 ms−1, or at the velocity of the shock wave, v = vu = 4vs. Because the
ultrasound wavelength is much greater than the microbubble diameter, it
is dte.m. = R/v in either case.

Therefore we have, for the threshold energy Ethres:

Ethres =
Rm2

π

vh
. (16.18)

The values of Ethres deduced from (16.18) range from 5×102 J to 2×103 J
for the collapse speed vs (with radius R of the collapsing microbubbles
varying from 1 µ to 4 µ) and from 102 J to 2×103 J for vu (with 1 µ <
R <8 µ).

In order to produce stable piezonuclear reactions, and therefore a stable
emission of nuclear radiation, it is necessary to supply constantly an energy
E ≥ Ethres to the system of distilled water and solute. Such a condition
permits to trigger piezonuclear reactions in presence of broken local Lorentz
invariance.

By using a cavitator absorbing 2,000 watt and able to provide a stable
supply from 100 J up to a maximum of 2,000 J, it is possible to investigate
the collapse of bubbles with size ranging from 1 µ to 8 µ, by taking either
vs or vu = 4vs as collapsing speed.

However, the previous experiments were carried out with energies of the
order of one hundred joules and provided evidence for the occurring of
nuclear reactions. This is in favor of the velocity of the shock wave as
collapsing velocity, and therefore of the model in which the ultrasound
pressure plane wave generates a symmetrical, spherical shock wave around
the bubble.
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Nothing can be said about the total mass of water and compound to
be cavitated, or about the amplitude of the ultrasonic wave. Both of them
are phenomenological parameters, to be determined empirically. Needless
to say, a higher supplied energy corresponds to a greater amplitude and
a lower energy is available for cavitation and bubble collapse if a greater
mass is subjected to ultrasounds.

As we have seen, the existence of the threshold Ethres is a direct conse-
quence of the existence of of the energy threshold E0,strong for the hadronic
interaction. This circumstance allows one to discriminate between signals
coming from the nuclear reactions produced by cavitation.

In fact, if the nuclear radiation emitted by the nuclei after interaction are
neutrons, the son nuclei are left in an excited rotational state. Therefore,
due to angular momentum conservation, they decay to a lower state by
emitting γ radiation. Then, from a classical viewpoint, such a disexcitation
process is accompanied by both neutron and photon radiation. However,
if the interaction among nuclei occurs in non-Minkowskian conditions (for
E > E0,strong), the excess energy is partly absorbed by the hadronic space–
time deformation, so that there is no emission of γ radiation.

The two facts of the energy threshold overcoming, E > E0,strong, and
of the neutron emission in absence of γ radiation do provide the complete
signature of piezonuclear reactions produced by the cavitating collapse of
gas bubbles of water in non-Minkowskian conditions.

By measuring the radiation produced by the piezonuclear reactions gen-
erated by cavitation at or over threshold it is possible, in principle, to
determine the radiative calorimetry of the produced process.

In conclusion, let us remark that the hypothesis of power conservation –
which is at the very basis of the model of piezonuclear processes – made in
Sect. 16.3.1, can be drawn from a different interpretation of the hadronic
law of time deformation (16.11). This latter can be indeed regarded as an
equality of energies per unit time, i.e., an equality of powers, and hence
interpreted as a relation of power conservation.

In turn, this new interpretation of (16.11) in terms of power conservation
acquires a deeper and more natural meaning within the frame of the penta-
dimensional geometrical representation of interactions by a 5D metric in
which the extra dimension is the energy (see Parts IV and V). In this
framework, such a relation means moving along the fifth dimension at a
constant speed. In other words, the hadronic law of time deformation can
be regarded as a principle of inertia regarding the energy.



17
Piezonuclear Reactions
in Cavitated Solutions

We have seen in Sect. 16.2.1 that the analysis of the change in concentration
of stable chemical elements, observed in the first cavitation experiment,
leads one to conclude that in such processes the number of protons is con-
served, whereas that of neutrons does not [96, 97]. Moreover, according
to the model of piezonuclear reactions discussed in Sect. 16.3, a possible
signature of non-Minkowskian conditions in such processes is provided by
neutron emission without a concomitant photon radiation. This is why we
carried out new experiments, explicitly aimed at detecting and analyzing
the radiation possibly emitted during cavitation.

17.1 The Thorium Experiment

17.1.1 Experimental Setup and Results

We recall that a Russian team observed a violation of the thorium-234
secular equilibrium induced by electric foil explosion [101,102]. In order to
check the possible effects of cavitation on thorium decay, an experiment dif-
ferent from the previous ones was carried out. Instead of water, a solution
of thorium in water was subjected to cavitation. Precisely, we prepared 12
identical solutions of Th228 in deionized bidistilled water, with concentra-
tion ranging from 0.01 to 0.03 ppb (part per billion). Th228 is an unstable
element whose half life is t1/2 = 1.9 years = 9.99×105 min. It decays by
emitting 6 α and 3 β−. The minimum emission energy of the alpha particles
is 5.3 MeV, which is nearly equal to the energy of the α’s emitted by radon
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222. This alikeness allowed us to use the detector CR39, a polycarbonate
whose energy calibration is just designed to detect those emitted by radon
222.

Eight solutions out of the twelve were divided into two groups of four,
and each of them was cavitated for tc = 90 min at a frequency of 20 kHz and
a power of 100 watt. The remaining four were not cavitated, and regarded
as reference solutions.

The 12 detectors CR39 corresponding to the 12 solutions were examined
and the traces impressed on them by the alpha particles counted.

The results obtained are depicted in Fig. 17.1. Precisely, the first column
shows the four detectors CR39 used with the four noncavitated solutions
taken as reference, whereas in the second and third columns one sees the
eight detectors used with the eight cavitated solutions. The circles in the

FIGURE 17.1. Traces left by α-particles emitted from thorium decay on detectors
CR39 (circles) for noncavitated (left) and cavitated (right) solutions
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TABLE 17.1. Content of Th228 in noncavitated (reference) solutions

Mass-spectrometer analysis cps ppb

Sample 1 287 0.020
Sample 3 167 0.012
Sample 4 363 0.026
Mean values 272.33 0.019

TABLE 17.2. Content of Th228 in cavitated solutions

Mass-spectrometer analysis cps ppb

Sample 1 (first group) 231 0.016
Sample 3 (first group) 57 0.004
Sample 4 (second group) 79 0.006
Mean values 122.33 0.009
Ratio of mean values noncavitated/cavitated 2.2 2.1

figure highlight the traces left by the particles α produced by thorium
decay. On the four CR39 used with the four reference solutions one counted
3 traces of alpha particles in all. The same number of traces was counted
on the eight CR39 used with the eight cavitated solutions.

Then, the ratio of the number of traces and the number of solutions
is 3/4 for the reference solutions and 3/8 for the cavitated ones. Thus,
there is evidence of a reduction of the number of traces of alpha particles
from thorium decay in the cavitated solutions with respect to those in the
noncavitated ones. In particular, it is evident that the reduction in the
number of traces from the former to the latter is by a factor 2.

The content of Th228 in those solutions providing evidence of alpha parti-
cles from thorium decay was analyzed by a mass spectrometer. The amount
of Th228 (both in ppb and in counts per second, cps) found in the three
cavitated solutions (whose CR39 showed the traces of the alpha particles
emitted by thorium) is half of that in the three reference solutions cor-
responding to an α-emission. The results are reported in Tables 17.1 and
17.2, and allow one to conclude that the process of cavitation reduced the
content of Th228 in the solutions.

17.1.2 Hadro-Leptonic Thorium Decay in DSR

The spontaneous decay of Th228 through the weak interaction halves it in
a time t1/2= 1.9 years = 9.99×105 min. The ratio between the half life of
thorium, t1/2 , and the time interval of cavitation, tc = 90 min, is t1/2/
tc = 104. This means that cavitation brought about the transformation
of Th228 at a rate 104 times faster than the natural leptonic decay would
do. On the other hand, the experiments of the Russian team [101, 102]
provided no evidence of spontaneous fission. One is therefore led to deem
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that we are facing a phenomenon of accelerated thorium decay, and that the
transformation of thorium into some other nuclide, induced by cavitation,
is rather due to strong interaction, in particular to its non-Minkowskian
part.

By bearing this in mind, it is possible to interpret t1/2/tc = 104 as
the ratio between the decaying time of Th228 via the leptonic interaction
(leptonic time tlep), and the transformation time of Th228 via the hadronic
interaction (hadronic time thad). Namely, one has:

t1/2

tc
= 104 =

tlep
thad

. (17.1)

Let us recall that the time coefficients of both metrics of electromag-
netic and weak interactions, b0,e.m. and b0,weak, are equal to each other,
energy independent, and always equal to 1 (see Sect. 4.1). Either metrics
is therefore always Minkowskian in time. Moreover, the space coefficients
of both metrics have the same energy behavior (cf. (4.3), (4.8)). Thank to
this circumstance, it will be always true, for the intervals of time dte.m. and
dtweak, that dte.m.=dtweak. Hence we can write:

tweak

thad
=
te.m.

thad
= 104. (17.2)

On account of the hadronic law of time deformation (16.12), the same
relation of proportionality holds between the threshold hadronic energy
and the hadronic time and between the electromagnetic energy and the
electromagnetic time. In the present case, (16.12) can be rewritten in terms
of the time intervals tweak = te.m. and thad – whose ratio, experimentally
determined, is given by (17.2) – as:

thad

tweak
=
E0,had

Ee.m.
. (17.3)

From the earlier relation it is possible to estimate the unknown variable
Ee.m., i.e., the energy transferred by the electrical (Minkowskian) interac-
tion to the nuclei of thorium (which get transformed into other nuclides by
the strong interaction). One gets

Ee.m. = E0,had
te.m.

thad
= 367.5GeV × 104 = 3.675 × 1015 eV. (17.4)

This value of energy is compatible with the maximum energy for nucleon
εmax estimated for the cavitation experiment which provided evidence of
the production of the europium isotope 138 (see (16.11)). Let us recall that
such an estimate was done by considering power conservation, according
to a continuity equation applied to the bubble collapse due to cavitation.
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17.2 Evidence for Neutron Emission
in Non-Minkowskian Conditions

Both the signature of the occurring of piezonuclear reactions in non-
Minkowskian conditions, i.e., the production of neutrons without concomi-
tant emission of γ radiation, and the energy required to induce them
according to the prediction of DSR, have been checked in experiments on
cavitation of water solutions, carried out at CNR National Laboratories
(Rome 1 Area) and Italian Army technical facilities in 2004–2006. We
report in the following the details of these experiments. Two separate inves-
tigations have been carried out, so the section is divided into two parts.

17.2.1 First Investigation

Experimental Setup

The sonotrode employed was endowed with a compressed air cooling sys-
tem. The ultrasound parameters were the same for all the experiments, i.e.,
the oscillation amplitude of the piezoelectric ceramics was kept to 50% (the
sonotrode worked at a frequency of 20 kHz , with an amplitude of 30µm at
tip,and hence the power transmitted into the solutions was constant and
equal) and the water was always deionized and bidistilled. The first investi-
gation was made up of five different cavitation experiments. We subjected
to cavitation not only pure water, but also solutions of four different salts
in H2O (with a concentration of 1 ppm), namely:

1. 250 ml of H2O

2. 250 ml of H2O solution of iron chloride Fe(Cl)3

3. 250 ml of H2O solution of aluminium chloride Al(Cl)3

4. 250 ml of H2O solution of lithium chloride LiCl

5. 500 ml of H2O solution of iron nitrate Fe(NO3)3

The first four cavitations lasted 90 min while the fifth one did 120 min.
The immersion depth of the sonotrode in the solution was 6 cm. It was

suitably studied with reference to the cavitation chamber, in order to max-
imize the concentration of energy utilized for cavitation (by taking advan-
tage also of the pressure waves reflected by the bottom of the cavitation
chamber toward the sonotrode tip, and reducing the energy dispersion in
the piezoconvective motions of the cavitated liquid).

Measurements of ionizing (α, β, and γ) radiation background were
carried out, along with measurements of neutron radiation background.
The latter were conducted during every cavitation of the five solutions
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FIGURE 17.2. Morphology and distribution of bubbles produced in a Defender
by the passage of neutrons (left); heavy ions (right)

above with the same type of detectors in a room suitably separated from
that in which cavitation was taking place.

The detector of ionizing radiation was a Geiger counter with a mica
window transparent to α, β, and γ radiation. It was provided with
two aluminium filters 1 and 3 mm thick, to screen α radiation and α
and β, respectively. During every cavitation, further measurements of α
radiation were carried out by CR39 polycarbonate detectors, sensitive to
ionizing radiation in the energy range 40 keV–4 MeV. A CR39 plate was
positioned underneath each cavitation chamber in order to detect the radi-
ation possibly emitted during the process. Moreover, in the first exper-
iment of cavitation of mere water, a CR39 detector was put inside the
bottle, in order to get a response without the filter of the glass of the
bottle.

To detect neutrons we used integrating, passive dosimeters called
Defender and produced by BTI.1 They consist of minute droplets of a
superheated liquid dispersed throughout an elastic polymer gel. When neu-
trons strike these droplets, they form small gas bubbles that remain fixed in
the polymer. The number of bubbles is directly related to the amount and
the energy of neutrons, so the obtained bubble pattern provides an immedi-
ate visual record of the dose. Due to their very operation way, the Defenders
are sensitive to ionizing radiation too. However, the morphology and the
distribution of the bubbles are quite different, as shown by Fig. 17.2 (sup-
plied by the manufacturer, BTI). In the picture on the left one sees the
effect produced by neutrons in two Defenders. The bubbles are big and
spread out the whole volume. Conversely, the two detectors on the right
show a different type and a different distribution of bubbles (generated by
heavy ions), gathered in a cluster and much smaller than those produced
by neutrons. The detectors Defender are sensitive to neutron energies in

1The matriculation number of the Defenders employed was composed by 6 figures.
However, since the first three were the same (100) for all, in the following they will be
identified by using only the last three digits.
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FIGURE 17.3. Layout of the experimental setup used to cavitate solutions and
measure the emitted radiation

the interval 10 keV–15 MeV. The choice of using passive neutron detectors,
instead of electronic ones, was made in order to avoid the well-known prob-
lems encountered with electronic devices (like background electronic noise,
dead times, pileups).

The schematic layout of the experimental equipment is shown in
Fig. 17.3. The cavitation chamber (bottle) was in the center and the
sonotrode has to be imagined perpendicular to the plane of the figure,
just over the bottle and lined up with it. For each cavitation experiment,
three detectors Defender (of cylindrical shape) were used. They were placed
vertically, coaxially to the sonotrode, arranged as shown in Fig. 17.3. One
of the Defenders was screened by immersing it in a cylinder of carbon
(moderator) 3 cm thick. The Geiger counter was pointed towards the area
inside the bottle where cavitation took place. A second equal arrangement
of the three Defenders and the bottle containing the uncavitated solution
(blank), placed in a different room, was used to measure the neutron radi-
ation background at the same time when cavitation was taking place.

Radiation Measurements

The radiations α β γ, β γ and γ, measured in all the cavitation runs, turned
out to be compatible with the background radiation.2

In particular, all the polycarbonate detectors CR39, i.e., both those used
for cavitation experiments and those used in background measurement,
recorded a radiation compatible with a normal background level. Therefore,
either no ionizing radiation is produced during cavitation (at least the type
of radiation with energy within the range of CR39’s sensitivity, namely in
the interval 40 keV–4 MeV) or the ionizing radiation able to affect CR39
could not escape the bottle or, if it got out, its energy was outside the
energy range of CR39 detectors.

2This agrees with the results on the absence of radiation emission in the first cavita-
tion experiment (see Sect. 16.2.1).
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FIGURE 17.4. Showing the magnified central parts of the CR39 plate immersed
in water (a) and of that underneath the bottle (b)

Due to their calibration, the CR39 are sensitive not only to α-particles,
but to heavy ions and protons too, provided their ionizing energy is within
the detector energy range. Unfortunately all these particles can be easily
slowed down by the water in which they are emitted, and then almost
completely screened by the thick glass of the bottle in which cavitation
took place. On the contrary, gamma rays can easily pass through the water
and the glass of the bottle, but CR39 are not sensitive to them. However,
as we stated before, gamma ray measurements carried out by a Geiger
counter yielded doses of this radiation absolutely compatible with gamma
background doses.

We remind that, in the first cavitation run with mere water, a CR39 was
immersed directly into the water and hence was not screened by the glass
of the bottle. We report in Fig. 17.4 two pictures showing the magnified
central parts of the CR39 plate immersed in water and of that underneath
the bottle.

It is impressive the difference in the amount of traces between the detec-
tor immersed in water on the left and that outside the bottle on the right.
This fact induces one to deem that a great deal of radiation compatible with
the CR39 detecting features was emitted inside the bottle and remained
trapped in it. As just said, this radiation cannot consist of gamma rays, as
they would have been detected by the Geiger counter outside the bottle,
and moreover CR39 is not affected by them. Thus, one might suppose that
the tracks on the CR39 plate were impressed by alpha particles or heavy
ions (fission or fusion fragments) or by protons and electrons emitted by
beta decays of those neutrons which had not succeeded to escape outside
the bottle.

As to the neutron radiation, the measurements carried out in the exper-
iments with H2O, aluminium chloride and lithium chloride were com-
patible with the background level. On the contrary, in the second and
the fifth experiment, with iron chloride and iron nitrate, respectively, the
measured neutron radiation was incompatible with the neutron background
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level; moreover, in the last 30 min of cavitation the measured dose was sig-
nificantly higher than the background.

Let us comment these results. The negative outcomes of the three exper-
iments with water, aluminium chloride and lithium chloride allow one to
conclude that the neutrons emitted during the cavitation of iron chloride
cannot be related to the presence of H2O and Cl in this experiment. As to
the positive outcomes of the fifth experiment with iron nitrate, although it
cannot be excluded that the neutron emission be related to the presence
of nitrogen, we can certainly state that this emission took place when iron
was part of the cavitated solution.

Moreover, the absence of ionizing radiation α, β, and γ above the back-
ground level in all the experiments – even in those two in which we got the
evidence of neutron emission – means that neutrons were produced without
the usual consequent emission of gamma radiation.

One can therefore state that only the presence of iron in the cavitated
solution gave rise to neutron emission (and therefore to nuclear processes
induced by cavitation), but without the accompanying emission of γ radia-
tion. According to the discussion of Sect. 16.3, such a pattern of radiation
emission agrees with the features (and is the signature) of the occurrence
of piezonuclear reactions in presence of non-Minkowskian strong interac-
tions.

It is now clear, the reasons whereby we chose to cavitate solutions with
salts of lithium, aluminium, and iron. Actually, this choice was just aimed
at checking the role of non-Minkowskian strong interaction in piezonuclear
reactions. Fe is the nucleus with the highest value of the bond energy per
nucleon. In Minkowskian conditions, it is nuclei with a lower bond energy
per nucleon, like Li and Al, which would be expected to give rise to
nuclear signals, once subjected to stresses able to affect and make unstable
their structure. This is exactly the contrary of what was observed: iron,
neither lithium nor aluminium, is effective in producing nuclear signals.
This is easily understood by the considerations carried out in Sect. 16.3.4.
It is just iron which, with increasing energy in non-Mikowskian conditions,
can overcome the hadronic threshold energy E0,strong before all other nuclei,
in particular the light nuclei preceding it (namely those with mass num-
ber A < 56). The purpose of repeating the experiment with two chemical
solutions containing two different iron salts, Fe(Cl)3 and Fe(NO3)3, was to
exclude spurious effects and to assert beyond any doubt the role of iron in
generating nuclear signals, thus stating the validity of the non-Minkowskian
model of piezonuclear reactions.

Evidence for Neutrons

Due to their physical relevance, let us discuss in detail the two experiments
that provided evidence for neutron emission, namely those performed with
solutions of Fe(Cl)3 and Fe(NO3)3.
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FIGURE 17.5. Defenders used to detect neutron emission induced by cavitation
for solution 1 (300ml of H2O with 300 µl of iron chloride). Left: Defenders 171
and 176 in presence of cavitation (case ii); right: Defenders 168 and 179 in absence
of cavitation (blank). The morphology and the distribution of the bubbles in the
former case corresponds to neutron detection (compare with Fig. 17.2)

Iron Chloride Solution

In the cavitation run with Fe(Cl)3 the ultrasonic power transmitted into
the solution was about 100 W by using a power set up of 1,000 W.

The typical aspect of the Defender detectors obtained is shown in
Fig. 17.5, which refers to cavitated and uncavitated (blank) Fe(Cl)3 solu-
tion (2)). The Defender 171 and 176 at left correspond to the cavitated
solution, whereas the Defender 168 and 179 at right to the blank (namely
to uncavitated solution). Notice the difference in bubble number and size
between the two detector pairs. In fact, the bubbles of Defender 171 and
176 are about three times higher in number and larger in size than those of
168 and 179.3 Moreover, a comparison with Fig. 17.2 shows that the mor-
phology and the distribution of the bubbles of the former pair correspond to
detection of neutrons emitted as consequence of cavitation.

3The larger number of bubbles of Defender 171 with respect to the 176 (as seen in
Fig. 17.5) is a consequence of the different response of the two kinds of detectors, in
agreement with the calibration provided by the manufacturer. Actually the measure-
ment after calibration showed that both Defenders detected the same neutron dose.
This testifies both their correct working and the reality of the observed phenomenon of
neutron emission.
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There is one more interesting difference between the two detector pairs.
The pair on the right contains some bubbles as well – due to the detector
thermodynamic background – but they are distributed almost uniformly
in the whole volume of the two detectors. Conversely, the distribution of
the bubbles in the two detectors on the left is not uniform at all, as the
bubbles are concentrated in the lower half of the active volume. This is
easily seen to be due to the very geometry of the apparatus. Indeed, the
lower half of the active volume, where the bubbles gather, was contained in
the semi-space which extended from the tip of the sonotrode downwards. In
this region, and especially between the tip of the sonotrode and the bottom
of the bottle, the process of cavitation was more vigorous and hence the
emission of neutrons more likely.

The evidence for neutron emission is enforced by comparing the content
of bubbles in Defender 172 – screened by inserting it in the cylinder with the
moderator (carbon) – and in Defenders 171 and 176. The former displays a
lower number of bubbles, and hence a lower dose of neutrons (comparable
with the dose in all Defenders used in the background case). Thus, we can
conclude that the moderator, by which Defender 172 was screened, reduced
the energy of the neutrons that struck it to a value below the lower energy
threshold of the detector (10 keV). This fact constitutes a further proof of
the neutron nature of the detected signals, and allows one to get a rough
estimate of the lower energy value of the neutrons emitted during cavita-
tion. These neutrons were emitted in the water inside the bottle and hence
slowed down by hydrogen before escaping the bottle. Since the Defender
sensitivity is in the energy range 10 keV–15 MeV, the neutrons emitted by
cavitation had to be at least epithermal with an energy of 15 keV. This
allowed them to come out of the bottle with an energy content still above
10 keV, which is the minimal energy threshold for neutrons to be revealed
by the two unscreened defenders (171 and 176). However, they could not
be detected by Defender 172, since they had still to pass a layer of mod-
erator which surrounded it and lowered the neutron energy below 10 keV.
This consideration does not mean that neutrons emitted during could be
only epithermal or fast. They could be thermal neutrons as well, which,
however, were condemned to be trapped within the bottle and eventually
decayed.

Analogous considerations hold for the neutron background measurement.
The content and the spreading of bubbles in Defender 175, screened by the
moderator, came out comparable with the content of bubbles of the other
two Defenders (168 and 179) and of Defender 172 as well.

A more quantitative behavior of the phenomenon is illustrated by
Fig. 17.6, which reports the neutron doses in nano-Sievert as function of the
cavitation time. The horizontal line represents the measured neutron back-
ground level (chosen pessimistically among all the performed background
measurements). The cavitation process lasted 90 min and one checked the
number of bubbles in the detectors before starting cavitation and then
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FIGURE 17.6. Neutron dose (nSv) vs. the cavitation time for Fe(Cl)3 solution.
The horizontal line represents the background level

every 30 min. It is seen from Fig. 17.6 that until approximately 60 min
of cavitation the neutron dose remained well below the background level.
After 60 min, the curve derivative increases and the dose of neutrons grows
bigger over the background value.

The behavior of the neutron dose plotted in Fig. 17.6 entails the necessity
to exceed a threshold in energy in order to start the emission of neutrons.
Taken for granted that one transmits into the solution a power higher than
the required threshold, the emission of neutrons begins only after a certain
time interval. Clearly, amount of minutes is synonym of amount of energy.

In summary, the experiment with iron chloride provided the following
main evidences in favor of neutron emission by cavitation. First of all,
the morphology and distribution of the bubbles obtained from cavitation
in the detectors do match those stated by the Defender manufacturer to be
due to neutrons. Moreover, there occurs what one might call a “tropism” in
the response of the detectors, which is localized exactly in the part of the
active volume next to the area where cavitation is more intense. Finally,
the neutron emission shows a threshold behavior in time (and therefore in
energy).

Iron Nitrate Solution

Let us now consider the cavitation run carried out with the solution (5)
of Fe(NO3)3, in order to show that the evidences collected are absolutely
consistent with those found in the experiment with iron chloride. For this
run, a power setup of 2,000 W was applied in the last 30 min of cavitation.

We stress that in this case the whole active volume of the detector
(and not only half of it) laid inside the semi-space that extended from
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FIGURE 17.7. Showing both the unscreened Defenders used in the cavitation
run with the Iron Nitrate solution. The bubbles are spread all over the detecting
volume

the plane containing the sonotrode tip downwards. Then, if the bubble
tropism (which was inferred from the bubble distribution in the detectors
in the previous experiment) is a correct deduction, one would have to get
bubbles in the whole active volume of the detectors. This is exactly the case,
as seen from Fig. 17.7 of the unscreened Defenders used in the cavitation
run.

The measurement of the neutron background was carried out and the
detector response was compatible with that obtained in the previous exper-
iment.

The behavior of the neutron as function of cavitation time is shown in
Fig. 17.8. We recall that in this case the cavitation process lasted 120 min.
During the initial 90 min the bubbles in the detectors have been counted
every 30 min, while in the last 30 min of cavitation the bubble number was
checked every 10 min. One sees that the dose curve stays well below the
background level during all the first 90 min. Thereafter, the curve begins
to rise and the dose increases fairly over the background one in the final
30 min. We therefore find again the energy-threshold behavior noted with
the iron chloride. As expected, the amount of minutes (and therefore the
energy) needed to trigger neutron emission depends on the quantity of
cavitated solution (60 min for 250 ml in the Fe(Cl)3 case and 90 min for
500 ml of the Fe(NO3)3 solution).

Therefore, the cavitation run carried out with iron nitrate confirms
the evidences for neutron emission found with iron chloride. However, it
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FIGURE 17.8. Neutron dose (nSv) vs. the cavitation time for Fe(NO3)3 solution.
The horizontal line represents the background level

remains to dispel any possible doubt about the fact that the bubbles
observed in the detectors were indeed produced by neutrons. By having
excluded ionizing radiation, the only other physical cause might be the
ultrasounds employed to induce cavitation. But we remind the reader that
all five experiments were carried out with the same geometrical arrange-
ment of the detectors with respect to the source of ultrasounds, and that
the ultrasonic power was always the same for all of them. Therefore, would
ultrasounds instead of neutrons be the cause of the bubbles, one would
have had to observe the same bubble pattern in all cavitation runs. On the
contrary, only two experiments out of five gave evidences of neutron emis-
sion (i.e., of a number of bubbles greater than the number corresponding to
the neutron background level). In the other three experiments, the bubbles
in the detectors near cavitation were absolutely compatible with those in
the detectors far from cavitation. This fact demonstrates that ultrasounds
cannot be considered the cause of the bubbles observed in the Defenders.

17.2.2 Second Investigation

Experimental Setup

The second investigation was carried out in order to get more evidences
about neutron emission with a different experimental setup, different detec-
tors, and in a different geographical area with a soil of completely diverse
geological origin.
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Since the first investigation confirmed the hypothesis of the basic role
of iron in producing piezonuclear reactions in non-Minkowskian conditions
(according to the predictions of DSR based on the behavior of the strong
metric with energy), the second one was devoted to a systematic study
of such an evidence, by using solutions with only iron nitrate. Then, six
cavitation runs (each lasting 90 min) were carried out on the same quantity
(250 ml) of deionized and bidistilled water and of a solution of Fe(NO3)3
with different concentration, subjected to ultrasounds of different power,
namely:

(1’) H2O (oscillation amplitude 50%)

(2’) H2O (oscillation amplitude 70%)

(3’) H2O solution of Fe(NO3)3 (concentration 1 ppm oscillation amplitude
50%)

(4’) H2O solution of Fe(NO3)3 (concentration 10 ppm; oscillation ampli-
tude 50%)

(5’) H2O solution of Fe(NO3)3 (concentration 1 ppm; oscillation ampli-
tude 70%)

(6’) H2O solution of Fe(NO3)3 (concentration 10 ppm; oscillation ampli-
tude 70%)

Therefore, the cavitated solutions could have three possible concentra-
tions, 0, 1, and 10 ppm. Moreover, the oscillation amplitude and hence the
transmitted ultrasonic power assumed two different values, 50% and 70%,
corresponding to about 100 and 130 W, respectively. The energy delivered
to the solution within the whole cavitation time was 0.54 and 0.70 MJ in
the two cases.

During each cavitation we carried out ionizing radiation measurements
by two Geiger counters and neutron radiation measurements by five new
neutron detectors of the Defender type XL, but with higher sensitivity
(by one order of magnitude). Background neutron measurements were also
conducted, but – unlike the previous investigation – they were accomplished
only at the beginning of the whole set of cavitations.

Two pictures of the experimental apparatus used in the six cavitation
runs are shown in Fig. 17.9. The bottle in which cavitation took place
is visible in the middle of both pictures and the sonotrode, the vertical
tapered metal stick, is aligned with and inserted in it. The green pipe sur-
rounding the sonotrode was part of the compressed air cooling system and
conveyed the cooling air onto the sonotrode surface. The three horizontal
greyish cylinders with a black cylindrical endcap are the neutron detectors.
Two of them were positioned next to the bottle at a height with respect
to the tip of the sonotrode, in order to be struck by horizontally emit-
ted neutrons. They were not screened from neutrons by anything but a
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FIGURE 17.9. Experimental apparatus used in the second investigation. The
cavitation chamber is visible in the middle of both pictures and the sonotrode,
the vertical tapered metal stick, is aligned with and inserted in it. The green pipe
surrounding the sonotrode conveyed the cooling air onto the sonotrode surface.
The three horizontal greyish cylinders with a black cylindrical endcap are the
neutron detectors. The two orange and creamy vertical cylinders contained the
two screened Defenders

1.5 cm thick layer of water of the bottle. The third detector was placed
underneath the bottle in order to collect the vertically emitted neutrons
(a vertex detector). Like the other two, it was not screened from neutrons
by anything but a 7 cm thick layer of water of the bottle. The two orange
and creamy vertical cylinders contained one neutron detector each, of the
same type of the three horizontal ones. The Defenders in the orange and
creamy cylinders were surrounded, and hence screened, by boron powder
(thermal neutron absorber) and by carbon powder (neutron moderator),
respectively. Eventually two orange Geiger counters, pointed towards the
cavitation area, can be spotted underneath the bottle. One of them was
used to measure gamma rays only, the other one was used to measure alpha,
beta and gamma radiation.

A difference with respect to the previous investigation to be stressed is
that the immersion depth of the sonotrode in the solution was 1 cm.

Neutron Measurements

In all of the six experiments evidence of neutron emission was got in the
unscreened Defenders, namely the phenomenon was perfectly reproducible.
The screened Defenders (both by boron and carbon) always detected a
reduced neutron dose, comparable with the background one, as in the first
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FIGURE 17.10. Example of the bubble pattern obtained in the second investiga-
tion

investigation. Analogously, the ionizing radiation measured by the Geiger
counters was always compatible with the background level.

Thus, the results of the second investigation too provided evidence
for the emission of anomalous nuclear radiation, since neutrons were not
accompanied by gamma rays. Hence the piezonuclear reactions producing
such a radiation were consequence of non-Minkowskian strong interactions,
according to the discussion of Sect. 16.3.5.

An example of the neutron bubble pattern obtained in the six experi-
ments is shown in Fig. 17.10. This figure refers to one of those two detectors
which were laid horizontally beside the bottle.

The bubbles are distributed in the whole volume but they are mostly
concentrated in the central part of the Defender. The part in which there
are more bubbles was just the closest to the cavitation area. From this
evidence and from all the rest of the pictures of bubbles in the detectors, it
is possible to infer that the neutron emission from the cavitation area has
roughly the shape of a semi-sphere.

As for the first series of cavitations, we plotted the measured doses (in
nano-Sievert), for all the six experiments, as function of the cavitation
time. In this case, the number of bubbles was counted every 10 min. Each
curve corresponds to one concentration of the Fe(NO3)3 solution, from 0
to 10 ppm, and one oscillation amplitude (and therefore ultrasonic power),
50% (100 W) or 71% (130 W). The six graphs are reported in Fig. 17.11.
They are displaced in a Cartesian coordinate system with concentration
on the y-axis and amplitude (power) on the x-axis. The horizontal black
line represents the neutron background level of 3.5 nSv, which is due to the
thermodynamical behavior of the detector.

The examination of the six graphs of Fig. 17.15 shows immediately that
the second series of cavitations supports the conclusions already drawn
from the experiments with iron solutions in the first series. One sees indeed
that in all experiments there exists a certain threshold of energy which has
to be exceeded in order to start the emission of neutrons, provided that
the power transferred to the solution is already higher than the threshold
power. According to the discussion of Sect. 16.3.5, this amounts to say that
the velocity in the coordinate energy is greater than the threshold velocity.

Moreover, Fig. 17.11 disproves further the possible criticism about a
possible generation of the bubbles by ultrasounds rather than by neutrons.
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FIGURE 17.11. The six graphs (one for each cavitation of the second series)
showing the neutron dose (in nSv) as a function of time in minutes (time interval
10 min). Each curve corresponds to one value of concentration and one of the
amplitude. The horizontal line in all graphs corresponds to the thermodynami-
cal background of 3.5 nSv. The graphs are displaced in a Cartesian plane with
concentration (in ppm) on the y-axis and amplitude (power) on the x-axis

Indeed, by looking at the compound graph and reading it along its columns,
i.e., keeping the amplitude (power) fixed, it is seen that the curves are
different, while the ultrasonic power is always the same. Conversely, had
ultrasounds been the real cause of the bubbles, one should have had equal
effects.

A difference between the two series of cavitations is instead provided
by the different amount of neutron doses in the two cases. Actually (as it
can be seen by comparing Fig. 17.11 with Figs. 17.4 and 17.8) the neutron
doses yielded by cavitation in the experiments of the first investigation are
nearly one order of magnitude higher than the neutron doses yielded by
cavitation in the second one. This fact is even more puzzling since one
would expect higher doses in those experiments carried out with a greater
amplitude and hence higher ultrasonic power. A possible explanation can
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be found in the different immersion depth of the sonotrode in the solution.
Indeed, the immersion depth in the first investigation, about 6 cm, was just
chosen in order to get the cavitation process more effective. However, this
circumstance needs some further investigations in new experiments in which
neutron emission could be studied as a function of the immersion depth of
the sonotrode, by investigating both how the sonotrode tip wears out (in
connection with its oscillation mode, first or second Bessel harmonic) and
how the piezoconvective motions of the cavitated liquid go on.

Let us also remark that in the second investigation one got evidence for
neutron emission also in cavitating pure water, unlike the case of the first
one. This is obviously due to the higher sensitivity of the detectors employed
in the second investigation. Such a result agrees with the indirect evidence
for neutron emission obtained in the first experiment of water cavitation,
in which the changes in concentration of the stable elements occurred with
a variation in neutron number (see Sect. 16.2.1).

A fundamental point we want to stress is that piezonuclear reactions are
completely incomprehensible from a standard, quanto-mechanical point of
view. Atomic sizes are of the order of 10−8 cm, whereas the nuclear ones
are 10−13 cm, five orders of magnitude smaller. On the contrary, the cor-
responding energies are �10 and 106 eV, respectively. This means that the
interactions of atoms and nuclei are inconceivable in standard quantum
mechanics. We have discussed in Sects. 16.3.4 and 16.3.5 possible DSR mod-
els whereby atoms can indeed affect nuclei. The production of neutrons by
cavitation is therefore another example (besides the shadow of light dis-
cussed in Chap. 13) of a phenomenon contradicting quantum mechanics.

In conclusion of the review of the cavitation experiments, let us notice
that the cavitation process (like the case of the Cavendish experiment for
the measurement of the gravity speed discussed in Chap. 15) is a dynamic
one, in the sense that energy changes during the process. Indeed, the macro-
scopic energy (namely, that supplied to the liquid by the sonotrode) is fixed,
but in the single microscopic processes of cavitation the energy transferred
to the bubbles can vary depending on the bubble radius (see Sect. 16.3.5, in
particular (16.18)). Such a kind of physical dynamic phenomenon is better
dealt with in the framework of DR5 than in DSR. This point will be tackled
again in Part V.



Part IV

DEFORMED
SPACE–TIME IN FIVE

DIMENSIONS:
GEOMETRY



18
Multidimensional Space–Time

Einstein’s relativity theories contain, among the others, two basic precepts.
First, they stated beyond any reasonable doubt that our Universe is (at
least) (3+1)-dimensional. Moreover, Einstein taught us that introducing
extra dimensions (time, in this case) can provide a better description of
(and even simplify) the laws of nature (electromagnetism for Special Rela-
tivity and gravity for General Relativity).

This latter teaching by Einstein was followed by Kaluza [111] and
Klein [112], who added a fifth dimension to the four space–time ones in
order to unify electromagnetism and gravitation (let us recall however
that Nordström [113] was the first to realize that in a 5D space–time
the field equations do split naturally into Einstein’s and Maxwell’s equa-
tions). Although unsuccessful, the Kaluza–Klein (KK) theory constituted
the first attempt to unification of fundamental interactions within a mul-
tidimensional space–time. The KK scheme, in which the coefficient of the
fifth coordinate is constant, was later generalized by Jordan [114] and
Thiry [115], who considered it to be a general function of the space–
time coordinates. The 5D KK formalism has been later extended to higher
dimensions, also in the hope of achieving unification of all interactions,
including weak and strong forces [116–118]. Six dimensions were e.g., con-
sidered by Ingraham [117] and Podolanski [118]. However, a true revival
of multidimensional theories starting from 1970 was due to the advent
of string theory [119] and supersymmetry [120]. As is well known, their
combination, superstring theory [121], provides a framework for gravity
quantization. Modern generalizations [122,123] of the Kaluza–Klein scheme
require a minimum number of 11 dimensions in order to accommodate the



276 18. Multidimensional Space–Time

Standard Model of electroweak and strong interactions; let us recall that
11 is also the maximum number of dimensions required by supergravity
theories [124]. For an exhaustive review of Kaluza–Klein theories we refer
the reader to [125].

A basic problem in any multidimensional scheme is the hidden nature
of the extra dimensions, namely to explain why the Universe looks 4D.
A possible solution (first proposed by Klein) is assuming that each extra
dimension is compactified, namely it is curled up in a circle, which from
a mathematical standpoint is a compact set, whence the name (cylindric-
ity condition).1 In such a view, therefore, space–time is endowed with a
cylindrical geometrical structure. The radius R of the circle is taken to be
so small (roughly of the order of the Planck length) as to make the extra
dimension unobservable at distances exceeding the compactification scale.

In the last decade of the past century the hypothesis of noncompacti-
fied extra dimensions began to be taken into serious consideration. Five-
dimensional theories of the Kaluza–Klein type, but with no cylindricity
condition on the extra dimension, were built up e.g., by Wesson (the so-
called “Space–Time–Mass” (STM) theory, in which the fifth dimension is
the rest mass [123]) and by Fukui (“Space–Time–Mass–(Electric) Charge”
(STMC) theory with charge as extra dimension [126]). In such a kind of
theories, the (noncompactified) extra dimension is a physical quantity, but
not a spatial one in its strict sense. More recently, instead, the idea of a
true hyperspace, with large space dimensions, was put forward (starting
from the 1998 pioneering ADD model [127]). The basic assumption is that
gravity is the only force aware of the extra space dimensions. This leads
to view the physical world as a multidimensional space (“bulk”) in which
the ordinary space is represented by a 3D surface (“3D brane”). Electro-
magnetic, weak, and strong forces are trapped within the brane, and do
not “feel” the extra space dimensions. On the contrary, gravitons escape
the brane and spread out the whole hyperspace. In this picture, the reason
the gravitational force appears to be so weak is because it is diluted by the
extra dimensions. In the ADD scheme (and similar), the size L of the extra
dimensions is related to their number. Only one extra dimension would
have a size greater than the solar system, and therefore would have been
already discovered. For two extra dimensions, it is possible to show that
L ∼ 0.2 mm, whereas for three it is L ∼ 1 nm. In this framework, therefore,
the extra dimensions are still finite (although not microscopic as in the KK
theories).

The ADD model has been also modified in order to allow for infinite
(in the sense of unlimited) extra dimensions. In the “warped-geometric”
model [128], it is still assumed that the ordinary space is confined to a

1Compactification of the extra dimensions can be achieved also by assuming compact
spaces different from (and more complex than) a circle.
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3D brane embedded in a bulk. Only the gravitons can escape the brane
along the extra dimension, but they feel the gravitational field of the brane
and therefore do not venture out of it to long distances. This amounts to
say that the geometry of the extra dimension is warped (the 5D metric of
the hyperspace contains an exponentially decreasing “warp factor,” namely
the probability of finding a graviton decays outside the brane along the
extra dimension). An analogous result can be obtained by hypothesizing the
existence of two branes, put a distance L apart along the extra dimension,
one trapping gravity and the other not. If the two branes have opposite
tension, the geometry of space between the branes is warped too. Models
with both an infinite, warped extra dimension and a finite compact one
have been also considered [25].

Needless to say, it is impossible to get direct evidence of extra dimensions.
However, one can probe them in an indirect way, because the existence of
extra dimensions has several observational consequences, both in astro-
physics and cosmology and in particle physics, depending on the model
considered. In compactified theories, new excited states appear within the
extra dimensions (Kaluza–Klein towers), with energies En = nhc/R. They
affect the carriers of the electromagnetic, weak, and strong forces by turn-
ing them into a family of increasingly massive clones of the original particle,
thus magnifying the strengths of the nongravitational forces. Such effects
can therefore be detected in particle accelerators. A research carried at
CERN’s Large Electron–Positron (LEP) Collider provided no evidence of
such extradimensional influences at up to an energy of 4 TeV. This result
puts a limit of 0.5 × 10−19 m to the size L of the extra dimensions [129].
The ADD model foresees deviations from the Newton’s inverse-square law
of gravity for objects closer together than the size of the extra dimen-
sion. Such a stronger gravitational attraction (∼ r−4) could be observed
in tabletop experiments (of the Cavendish type ). In general, in models
with a 3D brane, gravitons leaving the brane into, or entering it from, the
extra dimensions could provide signatures for the hyperspace in acceler-
ator experiments. In the former case, one has to look for missing energy
in a collision process, due to the disappearing of the gravitons into the
extra dimensions. In the latter, since gravitons can decay into pairs of pho-
tons, electrons, or muons, detecting an excess of these particles at specific
energy and mass levels would indirectly provide evidence for the existence
of dimensions beyond our own.

It must also be noted that other fields besides the gravitational one are
expected to be present in the bulk. Bulk gauge fields are associated with
“new forces,” the strength of which is predicted to be roughly a million
times stronger than gravity. These stronger forces can manifest themselves
in different ways, and could be detectable also in tabletop experiments.
For example, they can simulate antigravity effects on submillimeter dis-
tance scales, since gauge forces between like-charged objects are naturally
repulsive.
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The hypothesis of a multidimensional space–time allows one not only to
unify interactions and quantize gravity, but to solve or at least to address
from a more basic viewpoint a number of fundamental problems still open in
particle physics and astrophysics. Let us mention for instance the weakness
of the gravitational force, the abundance of matter over antimatter, the
extraordinarily large number of elementary particles, the nature of dark
matter and the smallness of the cosmological constant.

In the following, we shall see that DSR admits a natural extension to a
further extra dimension, in the sense that the deformed Minkowski space–
time ˜M can be embedded in a 5D Riemannian space.



19
Embedding Deformed
Minkowski Space in a 5D
Riemann Space

19.1 From LLI Breakdown to Energy as Fifth
Dimension

Both the analysis of the physical processes considered in deriving the
phenomenological energy-dependent metrics for the four fundamental inter-
actions, and the experiments discussed in Part III, seem to provide evidence
(indirect and direct, respectively) for a breakdown of LLI invariance (at
least in its usual, special-relativistic sense). But it is well known that, in
general, the breakdown of a symmetry is the signature of the need for a
wider, exact symmetry. In the case of the breaking of a space–time symme-
try – as the Lorentz one – this is often related to the possible occurrence of
higher-dimensional schemes. It will be shown that this is indeed the case,
and that energy does in fact represent an extra dimension.

In the description of interactions by energy-dependent metrics, we saw
that energy plays in fact a dual role. On one side, as more and more stressed,
it constitutes a dynamic variable. On the other hand, it represents a para-
meter characteristic of the phenomenon considered (and therefore, for a
given process, it cannot be changed at will). In other words, when describ-
ing a given process, the deformed geometry of space–time (in the inter-
action region where the process is occurring) is “frozen” at the situation
described by those values of the metric coefficients

{

b2µ(E)
}

µ=0,1,2,3
cor-

responding to the energy value of the process considered. Namely, a fixed
value of E determines the space–time structure of the interaction region at
that given energy. In this respect, therefore, the energy of the process has
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to be considered as a geometrical quantity intimately related to the very
geometrical structure of the physical world. In other words, from a geo-
metrical point of view, all goes on as if were actually working on “slices”
(sections) of a 5D space, in which the extra dimension is just represented
by the energy. Then, the 4D, deformed, energy-dependent space–time is
just a manifestation (or a “shadow,” to use the famous word of Minkowski)
of a larger space with energy as fifth dimension.

The simplest way to take account of (and to make explicit) the double
role of energy in DSR is assuming that E represents an extra metric dimen-
sion – on the same footing of space and time – and therefore embedding
the 4D deformed Minkowski space ˜M(E) of DSR in a 5D (Riemann) space
�5. This leads to build up a “Kaluza–Klein-like” scheme, with energy as
fifth dimension, we shall refer to in the following as 5D Deformed Relativity
(DR5) [6,130,131].

Let us recall that the use of momentum components as metric variables on
the same foot of the space–time ones can be traced back to Ingraham [117].
On the contrary, it was just shown by Lee that time (namely, a space–time
coordinate) can be used as a (discrete) dynamic variable [132]. Moreover,
many authors (starting from Dirac [133]) treated mass as a dynamic variable
in the context of scale-invariant theories of gravity [134,135]. Such a point
of view has been advocated also in the framework of modern Kaluza–Klein
theories by the already quoted “Space–Time–Mass” (STM) theory [123].

It is worth stressing that, apart from the previous considerations, we
already ran across some clues of a possible 5D structure underlying DSR.
One such an indication is provided e.g., by generalized energy-momentum
dispersion law (3.100), which – as already stressed – is typical of mul-
tidimensional theories. Another one is provided by the form of the phe-
nomenological metric of strong interaction (see Sect. 4.1.3), in particular
expressions (4.12), (4.13) of the space coefficients b2,strong =

√
2/5 and

b3,strong = 2/5. Indeed, the 5 at the denominators are reminiscent of
the same factor entering the relation between the Ricci tensor and the
scalar curvature in a 5D Riemann space, RAB = (R/5)gAB , with gAB

being the 5D metric tensor.1 Another clue is the interpretation of the

1In fact, let us consider the vacuum Einstein equations with a cosmological constant
Λ in a N -dimensional Riemann space:

RAB − 1

2
RgAB = ΛgAB .

By contracting on A, B and using the well-known property gDAgAB = δD
B , one gets

R =
2n

2 − n
Λ.

Then

RAB =

(

1

2
R + Λ

)

gAB =
R

n
gAB

(M. Mamone Capria, private communication).
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hadronic law of time deformation, (17.3), as a relation of power conser-
vation, W = const. (needed to explain the mechanism of piezonuclear
reactions: see Sect. 16.3.5). As already stressed, in a 5D optics this means
moving along the extra dimension energy at constant speed (namely it
amounts to a principle of inertia for energy). Another possible experimental
inkling of the fifth dimension can be found in the double-slit-like experi-
ments (Chap. 13). Indeed, we have seen that, in order to put the anomalous
interference effect into evidence, it is necessary to employ a suitable time
sampling of the measurements. On account of the fact that the phenom-
enon has a threshold behavior both in space and in energy, we can state
it to occur in a well-defined space–time–energy, 5D region. Moreover, the
crucial dependence on the time sampling can be interpreted as follows. As
is well known, a way to realize one lives on a curved manifold is by means of
the geodesic deviation. For instance, on Earth surface, moving from Equa-
tor along two meridians shows that the meridian separation decreases, thus
implying Earth surface is curved (Wheeler’s “parable of the two travelers”).
However, the travelers are able to discern the decrease of their relative sep-
aration only if they move an appreciable distance (compared to the Earth
radius of curvature). Otherwise, no separation is seen and they remain con-
vinced that Earth is flat. In our opinion, the anomalous interference effect
is not only related to the deformation of space–time (and therefore to the
breakdown of LLI), but also to the Gaussian curvature of the 5D space–
time–energy manifold �5. Selecting the suitable time sampling amounts
therefore to choose the time magnitude scale necessary to detect the cur-
vature of the 5D region in which the anomalous effect shows up.

19.2 The 5D Space–Time–Energy Manifold �5

On the basis of the arguments of Sect. 19.1, we assume therefore that
physical phenomena do occur in a world which is actually described by
a 5D space–time–energy manifold �5 endowed with the energy-dependent
metric:2

gAB,DR5(E) ≡ diag(b20(E),−b21(E),−b22(E),−b23(E), f(E)) ESC off=

= δAB

(

b20(E)δA0 − b21(E)δA1 − b22(E)δA2 − b23(E)δA3 + f(E)δA5

)

.
(19.1)

2In the following, capital Latin indices take values in the range {0, 1, 2, 3, 5}, with
index 5 labeling the fifth dimension. We choose to label by 5 the extra coordinate,
instead of using 4, in order to avoid confusion with the notation often adopted for the
(imaginary) time coordinate in a (formally) Euclidean Minkowski space.
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It follows from (19.1) that E, which is an independent nonmetric variable
in DSR, becomes a metric coordinate in �5. Then, whereas gµν,DSR(E)
(given by (2.17)) is a deformed, Minkowskian metric tensor, gAB,DR5(E) is
a genuine Riemannian metric tensor.

Therefore, the infinitesimal interval of �5 is given by

ds2
DR5(E) ≡ dS2(E) ≡ gAB,DR5(E)dxAdxB

= b2
0(E)

(

dx0
)2 − b2

1(E)
(

dx1
)2 − b2

2(E)
(

dx2
)2 − b2

3(E)
(

dx3
)2

+ f(E)
(

dx5
)2

= b2
0(E)c2 (dt)2 − b2

1(E)
(

dx1
)2 − b2

2(E)
(

dx2
)2 − b2

3(E)
(

dx3
)2

+ f(E)l20 (dE)2 ,

(19.2)

where we have put
x5 ≡ l0E , l0 > 0. (19.3)

The constant l0 provides the dimensional conversion energy→ length,
and it has therefore the dimensions of the inverse of a force. On physical
grounds, it is expected to be a fundamental constant of DR5, so it is worth
trying to guess a possible identification of l0. Let us recall that in Sect. 4.2
we already came across a quantity built up by fundamental constants with
dimensions of a force: the Kostro constant or Planck force K = c4/G (see
(4.27), which can be interpreted as the greatest possible force in Nature
[40]). Then, it is natural to assume

l0 =
1
K

=
G

c4
=

1
8π

κ, (19.4)

where κ is the gravitational coupling constant of the usual, four dimen-
sional Einstein equations Gµν = κTµν (with Gµν = Rµν − 1

2gµνR and
Tµν being the Einstein curvature tensor and the energy–momentum ten-
sor, respectively). Therefore, identifying l0 with the inverse of the Kostro
constant has as consequence that it coincides with the gravitational con-
stant κ apart from the numerical factor 8π (which however is essentially
due to the choice of the unit system). As is well known, in General Rela-
tivity κ determines the effectiveness of the energy density of the source in
deforming space–time and can be interpreted as the force per unit area
required to give space–time a unit curvature.3 If the identification (19.4)
is correct, then l0, and consequently κ, plays an analogous role in DR5,
namely it is related in an essential way to the curvature of �5 – which in
turn reflects itself in the deformation of the 4D space–time ˜M – whatever
the interaction involved. In the framework of DR5, therefore, the gravita-
tional constant rises, from mere coupling constant for the gravity only, to
the role of universal constant of deformation, valid for all interactions.

Since the space–time metric coefficients are dimensionless, it can be
assumed that they are functions of the ratio E/E0, where E0 is an energy

3Remember that curvature has dimensions l−2.
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scale characteristic of the interaction (and the process) considered (for
instance, the energy threshold in the phenomenological metrics of Sect. 4.1).
The coefficients

{

b2µ(E)
}

of the metric of ˜M(E) can be therefore expressed
as

{

bµ

(

E

E0

)}

≡
{

bµ

(

x5

x5
0

)}

=
{

bµ(x5)
}

∀µ = 0, 1, 2, 3, (19.5)

where we put
x5

0 ≡ l0E0 . (19.6)

As to the fifth metric coefficient, one assumes that it too is a function
of the energy only: f = f(E) ≡ f(x5) (although, in principle, nothing
prevents from assuming that, in general, f may depend also on space–time
coordinates {xµ}, f = f({xµ} , x5)). Unlike the other metric coefficients, it
may be f(E) ≶ 0. Therefore, a priori, the energy dimension may have either
a time-like or a space-like signature in �5, depending on sgn (f(E)) = ±1.
In the following, it will be sometimes convenient assuming f(E) ∈ R+

0 and
explicitly introducing the double sign in front of the fifth coefficient.

In terms of x5, the (covariant) metric tensor can be written as

gAB,DR5(x5) = diag(b20(x
5),−b21(x5),−b22(x5),−b23(x5),±f(x5))

ESC off
= δAB

[

b20(x
5)δA0 − b21(x

5)δA1 − b22(x
5)δA2 − b23(x

5)δA3 ± f(x5)δA5

]

.

(19.7)

On account of the relation

gAB
DR5(x

5)gBC,DR5(x5) = δA
C , (19.8)

the contravariant metric tensor reads

gAB
DR5(x

5) = diag(b−2
0 (x5),−b−2

1 (x5),−b−2
2 (x5),−b−2

3 (x5),±
(

f(x5)
)−1

)

ESC off
= δAB

[

b−2
0 (x5)δA0 − b−2

1 (x5)δA1 − b−2
2 (x5)δA2 − b−2

3 (x5)δA3

±
(

f(x5)
)−1

δA5

]

.

(19.9)

The space �5 has the following “slicing property”

�5|dx5=0⇔x5=x5 = ˜M(x5) =
{

˜M(x5)
}

x5=x5
(19.10)

(where x5 is a fixed value of the fifth coordinate) or, at the level of the
metric tensor:

gAB,DR5(x5)
∣

∣

dx5=0⇔x5=x5∈R+
0

= diag
(

b20(x5),−b21(x5),−b22(x5),−b23(x5),±f(x5)
)

= gAB,DSR(x5).

(19.11)
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We recall that in general, in the framework of 5D Kaluza–Klein (KK)
theories, the fifth dimension must be necessarily space-like, since, in order
to avoid the occurrence of causal (loop) anomalies, the number of time-like
dimensions cannot be greater than one. But it is worth to stress that the
present theory is not a Kaluza–Klein one. In “true” KK theories, due to
the lack of observability of the extra dimensions, it is necessary to impose
to them the cylindricity condition. This is not required in the framework
of DR5, since the fifth dimension (energy) is a physically observable quan-
tity (think to the Minkowski space of standard SR: There is no need to
hide the fourth dimension, since time is an observable quantity). Actu-
ally, in DR5 not only the cylindricity condition is not implemented, but
it is even reversed. In fact, the metric tensor gAB,DR5(x5) depends only
on the fifth coordinate x5. Therefore, one does not assume the compactifi-
cation of the extra coordinate (one of the main methods of implementing
the cylindricity condition in modern hyperdimensional KK theories, as dis-
cussed in Chap. 18), which remains therefore extended (i.e., with infinite
compactification radius). The problem of the possible occurrence of causal
anomalies in presence of more time-like dimensions is then left open in the
“pseudo-Kaluza–Klein” context of DR5. This is reflected in the uncertainty
in the sign of the energy metric coefficient f(x5). In particular, it cannot be
excluded a priori that the signature of x5 can change. This occurs whenever
the function f(x5) does vanish for some energy values. As a consequence,
in correspondence to the energy values which are zeros of f(x5), the metric
gAB,DR5(x5) is degenerate.

DR5 belongs therefore to the class of noncompactified KK theories .
Moreover, it has some connection with Wesson’s STM theory [123]. Both
in the DR5 formalism and in the STM theory (at least in its more recent
developments) it is assumed that all metric coefficients do in general depend
on the fifth coordinate. Such a feature distinguishes either models from
true Kaluza–Klein theories. However, DR5 differs from the STM model –
as well as from similar ones, like e.g., the Fukui STMC [126] – at least in
the following main respects:

(1) Its physical motivations are based on the phenomenological analysis
of Part I and on the experimental results of Part III, and therefore
are not merely speculative.

(2) The fact of assuming energy (which is a true variable), and not rest
mass (which instead is an invariant), as fifth dimension.4

(3) The local (and not global) nature of the 5D space �5, whereby the
energy-dependent deformation of the 4D space–time is assumed to
provide a geometrical description of the interactions.

4In this respect, therefore, the DR5 formalism rensembles more the one due to Ingra-
ham [117].
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We want to stress that, in embedding the deformed Minkowski space ˜M(x5)
in �5, energy does lose its character of dynamic parameter (the role it plays
in DSR), by taking instead that of a true metrical coordinate, on the same
footing of the space–time ones. This has a number of basic implications.
The first one is of geometrical nature, and is just the passage from a (flat)
pseudoeuclidean metric to a genuine (curved) Riemannian one. The others
consequences pertain to both symmetries and dynamics, as we shall see
in this Part and in the next one. In such a change of role of energy, with
the consequent passage from ˜M(x5) to �5, some of the geometrical and
dynamic features of DSR are lost, whereas others are still present and new
properties appear. Among the former, we recall the basic one – valid at the
slicing level x5 = const. (dx5 = 0) – related to the Generalized Lagrange
Space structure of ˜M(x5), which implies the natural arising of gauge fields,
intimately related to the inner geometry of the deformed Minkowski space
(see Part II). Let us also stress that, in the framework of �5, the depen-
dence of the metric coefficients on a true metric coordinate make them fully
analogous to the gauge functions of non-abelian gauge theories, thus imple-
menting DR5 as a metric gauge theory (in the sense specified in Sect. 4.4).

19.3 Phenomenological 5D Metrics of Fundamental
Interactions

Let us now consider the 4D metrics of the deformed Minkowski spaces
˜M(x5) for the four fundamental interactions (electromagnetic, weak,
strong, and gravitational) (see Sect. 4.1). In passing from the deformed,
special-relativistic 4D framework of DSR to the general-relativistic 5D one
of DR5 – geometrically corresponding to the embedding of the deformed
4D Minkowski spaces

{

˜M(x5)
}

x5∈R+
0

(where x5 is a parameter) in the 5D

Riemann space �5 (where x5 is a metric coordinate), in general the phenom-
enological metrics (4.2)–(4.3), (4.7)–(4.8), (4.10)–(4.13), and (4.17)–(4.18)
take the following 5D form (f(x5) ∈ R+

0 ∀x5 ∈ R+
0 ):

gAB,DR5,e.m.(x
5)

= diag

(

1,−

{

1 + ̂Θ(x5
0,e.m. − x5)

[

(

x5

x5
0,e.m.

)1/3

− 1

]}

,

−

{

1 + ̂Θ(x5
0,e.m. − x5)

[

(

x5

x5
0,e.m.

)1/3

− 1

]}

,

−

{

1 + ̂Θ(x5
0,e.m. − x5)

[

(

x5

x5
0,e.m.

)1/3

− 1

]}

,±f(x5)

)

; (19.12)
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gAB,DR5,weak(x
5)

= diag

(

1,−

{

1 + ̂Θ(x5
0,weak − x5)

[

(

x5

x5
0,weak

)1/3

− 1

]}

,

−

{

1 + ̂Θ(x5
0,weak − x5)

[

(

x5

x5
0,weak

)1/3

− 1

]}

,

−

{

1 + ̂Θ(x5
0,weak − x5)

[

(

x5

x5
0,weak

)1/3

− 1

]}

,±f(x5)

)

; (19.13)

gAB,DR5,strong(x
5)

= diag

(

1 + ̂Θ(x5 − x5
0,strong)

[

(

x5

x5
0,strong

)2

− 1

]

,−
(√

2

5

)2

,

−
(

2

5

)2

,−

{

1 + ̂Θ(x5 − x5
0,strong)

[

(

x5

x5
0,strong

)2

− 1

]}

,±f(x5)

)

; (19.14)

gAB,DR5,grav.(x
5)

= diag

(

1 + ̂Θ(x5 − x5
0,grav.)

[

1

4

(

1 +
x5

x5
0,grav.

)2

− 1

]

,−b2
1,grav.(x

5),

−b2
2,grav.(x

5),−

{

1 + ̂Θ(x5 − x5
0,grav.)

[

1

4

(

1 +
x5

x5
0,grav.

)2

− 1

]}

,±f(x5)

)

.

(19.15)

As we are going to show, all the earlier metrics – derived on a mere phe-
nomenological basis, from the experimental data on some physical phe-
nomena ruled by the four fundamental interactions, at least as far as their
space–time part is concerned – can be recovered as solutions of the vacuum
Einstein equations in the 5D space �5, natural covering of the deformed
Minkowski space ˜M(x5).



20
Einstein’s Field Equations in �5
and Their Solutions

20.1 Riemannian Structure of �5

We have seen that, unlike ˜M(x5), which is a flat pseudoeuclidean space,
�5 is a genuine Riemann one. Its affine structure is determined by the 5D
affine connection ΓA

BC(x5) (which rules the parallel transport of vectors in
�5), defined by

ΓA
BC(x5) ≡ ∂xA

∂ξD

∂2ξD

∂xB∂xC
, (20.1)

where
{

ξA
}

,
{

xA
}

are the coordinates in a locally inertial (Lorentzian)

frame and in a generic frame, respectively. Let us recall that ΓA
BC is not a

true tensor, since it vanishes in a locally inertial frame (namely, in absence
of a gravitational field).

Due to the compatibility between affine geometry and metric geometry
in Riemann spaces (characterized by the vanishing of the covariant deriva-
tive of the metric, and therefore torsion-free), it is possible to express the
connection components in terms of the metric tensor as

Γ I
AB(x5) =

1
2
gIK
DR5(∂BgKA,DR5 + ∂AgKB,DR5 − ∂KgAB,DR5) =

{

I
AB

}

,

(20.2)

where the quantities
{

I
AB

}

are the second-kind Christoffel symbols.
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Then, it is easy to check that the only nonzero components of ΓA
BC(x5)

are (the prime denotes derivation with respect to x5)1

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Γ 0
05 = Γ 0

50 =
b′0
2b0

; Γ 1
15 = Γ 1

51 =
b′1
2b1

;

Γ 2
25 = Γ 2

52 =
b′2
2b2

; Γ 3
35 = Γ 3

53 =
b′3
2b3

;

Γ 5
00 = −b0b

′
0

2f
; Γ 5

11 =
b1b

′
1

2f
; Γ 5

22 =
b2b

′
2

2f
;

Γ 5
33 =

b3b
′
3

2f
; Γ 5

55 =
f ′

2f
.

(20.3)

The Riemann–Christoffel (curvature) tensor in �5 is given by

RA
BCD(x5) = ∂CΓ

A
BD − ∂DΓ

A
BC + ΓA

KCΓ
K
BD − ΓA

KDΓ
K
BC . (20.4)

Let us give, for readers’ convenience, the only nonzero components of the
(covariant) Riemann–Christoffel tensor RABCD(x5):

R0101 =
b′0b

′
1

4f
; R0202 =

b′0b
′
2

4f
; R0303 =

b′0b
′
3

4f
;

R0505 =
b′0f

′b0 + (b′0)
2 − 2b′′0b0f

4b0f
;

R1212 = −b′1b
′
2

4f
; R1313 = −b′1b

′
3

4f
; R1515 =

b′1f
′b+ (b′1)

2 − 2b′′1b1f
4b1f

;

(20.5)

R2323 = −b′2b
′
3

4f
; R2525 =

b′2f
′b2 + (b′2)

2 − 2b′′2b2f
4cf

;

R3535 =
b′3f

′b3 + (b′3)
2 − 2b′′3b3f

4b3f
.

By contraction of RA
BCD on two and four indices, respectively, we get as

usual the 5D Ricci tensor RAB(x5), given explicitly by

RAB(x5) = ∂IΓ
I
AB − ∂BΓ

I
AI + Γ I

ABΓ
K
IK − ΓK

AIΓ
I
BK , (20.6)

and the scalar curvature R(x5) = RA
A(x5).

1Henceforth, in order to simplify the notation, we adopt units such that c = (velocity
of light)= 1 and �0 = 1.
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The nonvanishing components of the Ricci tensor RAB(x5) read thence
as follows:

R00 = −1
2
b′′0
f

− b′0
4f

(

−b′0
b0

+
b′1
b

+
b′2
b2

− f ′

f

)

; (20.7)

R11 =
1
2
b′′1
f

+
b′1
4f

(

b′0
b0

− b′1
b1

+
b′2
b2

+
b′3
b3

− f ′

f

)

; (20.8)

R22 =
1
2
b′′2
f

+
b′2
4f

(

b′0
b0

+
b′1
b1

− b′2
b2

+
b′3
b3

− f ′

f

)

; (20.9)

R33 =
1
2
b′′3
f

+
b′3
4f

(

b′0
b0

+
b′1
b1

+
b′2
b2

− b′3
b3

− f ′

f

)

; (20.10)

R44 = −1
2

(

b′0
b0

+
b′1
b1

+
b′2
b2

+
b′3
b3

)′
+

f ′

4f

(

b′0
b0

+
b′1
b1

+
b′2
b2

+
b′3
b3

)

−1
4

[

(

b′0
b0

)2

+
(

b′1
b1

)2

+
(

b′2
b2

)2

+
(

b′3
b3

)2
]

.

(20.11)

The scalar curvature in five dimensions, R(x5), is finally given by the
lengthy expression:

R(x5) =
b1b

′
1f(b′2b3b0 + b′3b2b0 + b′0b2b3) + b2b3

[

2b′′1 b1f − b0(b
′
1)

2f − b0b
′
1f

′b1

]

4b2
1f

2b2b3b0

+
b′2b2f(b′1b3b0 + b′3b0b1 + b′0b3b1) + b0b1b3

[

2b′′2 b2f − (b′2)
2f − b′2f

′b2

]

4b2
2f

2b3b0b1

+
b′3b3f(b′1b0b2 + b′2b0b1 + b′0b2b1) + b0b1b2

[

2b′′3 b3f − (b′3)
2f − b′3f

′b3

]

4b2
3f

2b2b0b1

+
b′0b0f (b′1b2b3 + b′2b3b1 + b′3b2b1) + b1b2b3

[

2b′′0 b0f − (b′0)
2f − b′0f

′b0

]

4b2
0f

2b2b3b1

+
1

4f2b2
1b

2
2

{

b2
2

[

2b′′1 b1f−(b′1)
2f−b′1f

′b1

]

+ b2
1

[

2b′′2 b2f−(b′2)
2f−b′2f

′b2

]}

+
1

4f2b2
0b

2
3

{

b2
0

[

2b′′3 b3f−(b′3)
2f−b′3f

′b3

]

+ b2
3

[

2b′′0 b0f−(b′0)
2f−b′0f

′b0

]}

.

(20.12)
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20.2 Vacuum Einstein’s Equations

From the knowledge of the Riemann–Christoffel tensor and of its contrac-
tions it is possible to derive the Einstein equations in the space �5 by
exploiting the Hamilton principle. The 5D Hilbert–Einstein action in �5

reads

SDR5 = − 1

16π ˜G

∫

d5x
√

±g̃(x5)R(x5) − Λ(5)

∫

d5x
√

±g̃(x5), (20.13)

where g̃(x5) = det gDR5(x5), ˜G is the 5D “gravitational” constant, and
Λ(5) is the “cosmological” constant in �5. The form of the second term
of the action (20.13) clearly shows that Λ(5) is assumed to be a genuine
constant, although it might also, in principle, depend on both the fifth
coordinate (namely, on the energy E) and the space–time coordinates x:
Λ(5) = Λ(5)(x, x5). The double sign in the square root accords to that in
front of the fifth metric coefficient f(x5). Among the problems concerning
SDR5, let us quote its physical meaning (as well as that of ˜G) and the
meaning of those energy values x5 such that SDR5(x5) = 0 (due to a possible
degeneracy of the metric).

Then, a straightforward use of the variational methods yields the (vac-
uum) Einstein equations in �5 in the form

RAB(x5) − 1
2
gAB,DR5(x5)R(x5) = Λ(5)gAB,DR5(x5). (20.14)

We want here to consider some special cases of the 5D Einstein equations
(20.14) which – according to the discussion of Part I– seem to have a special
physical relevance. They are (i) the case of spatial isotropy; and (ii) the case
in which all the metric coefficients are pure powers in the energy (Power
Ansatz ).

20.2.1 Case (i): Space Isotropy

For a spatial isotropic deformation, it is b1(E) = b2(E) = b3(E) = b(E),
so that the metric reduces simply to

gDR5(E) = diag(b20(E),−b2(E),−b2(E),−b2(E), f(E)). (20.15)

The independent Einstein equations obviously reduce to the following three
ones (for simplicity of notation, we omit the explicit functional dependence
of all quantities on E):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

3(−2b′′f + b′f ′) = 4Λ(5)bf
2;

f
[

b20(b
′)2 − 2b0b′0bb

′ − 4b20bb
′′ − 2b0b′′0b

2 + b2(b′0)
2
]

+b0bf ′(2b0b′ + b′0b) = 4Λ(5)b
2
0b

2f2;

3b′(b0b)′ = −4Λ(5)b0b
2f.

(20.16)
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20.2.2 Case (ii): Power Ansatz

We have seen in Sect. 19.2 that the space–time metric coefficients can be
considered functions of the ratio E/E0 (see (19.5)). Therefore, for the
metric gDR5 written in the form (19.1), we can put, following also the hints
from phenomenology (see Sect. 4.1):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

b20(E) = (E/E0)q0 ;

b21(E) = (E/E0)q1 ;

b22(E) = (E/E0)q2 ;

b23(E) = (E/E0)q3 ,

qµ ∈ R ∀µ = 0, 1, 2, 3. (20.17)

In the following we shall refer to the form (20.17) as the “Power Ansatz”.
For the dimensional parameter f(E) we assume here simply (in order to
simplify solution of the Einstein equations)

f(E) = Er (20.18)

(r ∈ R), being understood that the characteristic parameter E0 is possibly
contained in �0. Of course, the Einstein equations (20.14) reduce now to
the following algebraic equations in the five exponents q0, q1, q2, q3, r:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(2 + r)(q3 + q1 + q2) − q21 − q22 − q23 − q1q2 − q1q3 − q2q3 = 4Λ(5)E
r+2 ;

(2 + r)(q3 + q0 + q2) − q22 − q23 − q20 − q2q3 − q2q0 − q3q0 = 4Λ(5)E
r+2 ;

(2 + r)(q3 + q0 + q1) − q21 − q23 − q20 − q1q3 − q1q0 − q3q0 = 4Λ(5)E
r+2 ;

(2 + r)(q0 + q1 + q2) − q21 − q22 − q20 − q1q2 − q1q0 − q2q0 = 4Λ(5)E
r+2 ;

q1q2 + q1q3 + q1q0 + q2q3 + q2q0 + q3q0 = −4Λ(5)E
r+2 .

(20.19)
Of course, for consistency one would have to impose the compatibility con-
dition that Λ(5), too, is a power of the energy, and precisely one should
assume Λ(5)(E) � E−(r+2). The energy dependence of Λ(5) is however in
contrast with the action (20.13). Needless to say, the vacuum prescription
Λ(5) = 0 is compatible with this hypothesis.

In the following, we shall also use for the 5D metric in the Power Ansatz
the form

gAB,DR5power(q̃, x5) =

= diag
((

x5

x5
0

)q0

,−
(

x5

x5
0

)q1

,−
(

x5

x5
0

)q2

,−
(

x5

x5
0

)q3

,±
(

x5

x5
0

)r)

(20.20)
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(q0, q1, q2, q3, r ∈ Q, A,B = 0, 1, 2, 3, 5), in which the double sign of
the energy coefficient has been made clear and the (fake) five-vector
q̃ ≡ (q0, q1, q2, q3, r) introduced.2

20.2.3 Phenomenological Metrics in the Power Ansatz

We have seen in Sect. 19.3 that embedding the DSR phenomenological met-
rics for the four interactions in �5 leads to expressions (19.12)–(19.15). In
the context of the Power Ansatz, and by making their piecewise structure
explicit, they can be written in the form

gAB,DR5,e.m.,weak(x5)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

diag

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1,−
(

x5

x5
0,e.m.,weak

)1/3

,−
(

x5

x5
0,e.m.,weak

)1/3

,

−
(

x5

x5
0,e.m.,weak

)1/3

,±
(

x5

x5
0,e.m.,weak

)r

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

0 < x5 < x5
0,e.m.,weak;

diag

(

1,−1,−1,−1,±
(

x5

x5
0,e.m.,weak

)r)

,

x5 ≥ x5
0,e.m.,weak;

(20.21)

gAB,DR5,strong(x5)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

diag

⎛

⎜

⎜

⎜

⎜

⎝

(

x5

x5
0,strong

)2

,−
(√

2
5

)2

,−
(

2
5

)2

,

−
(

x5

x5
0,strong

)2

,±
(

x5

x5
0,strong

)r

⎞

⎟

⎟

⎟

⎟

⎠

,

x5 > x5
0,strong;

diag

⎛

⎝1,−
(√

2
5

)2

,−
(

2
5

)2

,−1,±
(

x5

x5
0,strong

)r
⎞

⎠ ,

0 < x5 ≤ x5
0,strong;

(20.22)

2In the following, we shall use the tilded-bold notation ṽ for a (true or fake) vector
in �5, in order to distinguish it from a vector v in the usual 3Dspace.
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gAB,DR5,grav.(x5)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

diag

⎛

⎜

⎜

⎜

⎜

⎝

1
4

(

1 +
x5

x5
0,grav.

)2

,−b21,grav.(x
5),−b22,grav.(x

5),

1
4

(

1 +
x5

x5
0,grav.

)2

,±
(

x5

x5
0,grav.

)r

⎞

⎟

⎟

⎟

⎟

⎠

,

x5 > x5
0,grav.;

diag

(

1,−b21,grav.(x
5),−b22,grav.(x

5),−1,±
(

x5

x5
0,grav.

)r)

,

0 < x5 ≤ x5
0,grav..

(20.23)

In the gravitational metric gAB,DR5,grav.(x5) the expressions of the two
space coefficients b21,grav.(x

5) and b22,grav.(x
5) have not been made explicit,

due to their indeterminacy at experimental level.
It must be stressed that the embedding of the phenomenological 4D

metrics, obtained in the framework of DSR, in the 5D space �5, implies –
in the context of the Power Ansatz – a dependence of the corresponding
5D metrics on the parameter r (exponent of the metric coefficient of the
fifth, energetic dimension). This reflects itself in the dynamics of �5, as we
shall see in Part V.

The phenomenological 5D metrics in the Power Ansatz are therefore
characterized by the parameter sets

q̃e.m./weak =

{ (

0, 1
3 ,

1
3 ,

1
3 , r
)

, 0 < x5 < x5
0,e.m./weak;

(0, 0, 0, 0, r) , x5 ≥ x5
0,e.m./weak;

; (20.24)

q̃strong =

{

(2, (0, 0) , 2, r) , x5 > x5
0,strong;

(0, (0, 0) , 0, r) , 0 < x5 ≤ x5
0,strong;

; (20.25)

q̃grav. =

{

(2, ?, ?, 2, r) , x5 > x5
0,grav.;

(0, ?, ?, , 0, r) , 0 < x5 ≤ x5
0,grav.

, (20.26)

where the question marks “?” reflect the unknown nature of the two grav-
itational spatial coefficients.

Let us clarify the notation adopted for q̃strong and q̃grav.. The zeros in
brackets in q̃strong reflect the fact that such exponents do not refer to the
metric tensor gAB,DR5power(x5) (20.20), but to the more general tensor

gAB,DR5power-conform(x5) =

= diag
(

ϑ0

(

x5

x5
0

)q0

,−ϑ1

(

x5

x5
0

)q1

,−ϑ2

(

x5

x5
0

)q2

,−ϑ3

(

x5

x5
0

)q3

,±ϑ5

(

x5

x5
0

)r)

(20.27)
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with ˜ϑ= (ϑA) being a constant five-vector. Equation (20.27) can be written
in matrix form as

gDR5power-conform(x5) = gDR5power(x5)˜ϑ (20.28)

where ˜ϑ is meant to be a column vector. The passage from the metric
tensor gAB,DR5power(x5) to gAB,DR5power-conform(x5) is obtained by means
of the tensor transformation law in �5 (ESC on)

gAB,DR5power-conform(x5) =
∂xK

∂x′A
∂xL

∂x′B
gKL,DR5power(x5) (20.29)

induced by the following 5D anisotropic rescaling of the coordinates of �5:

dxA =
√

ϑAdx′A ↔ xA =
√

ϑAx
′
A. (20.30)

Such a transformation allows one to get, in the Power Ansatz, metric coef-
ficients constant (i.e., independent of the energy) but different. This is just
the case of the two constant space coefficients b21(x

5), b22(x
5) in the strong

metric. In this case, the vector ˜ϑ explicitly reads

˜ϑstrong =

⎛

⎝0,

(√
2

5

)2

,

(

2
5

)2

, 0, ?

⎞

⎠ , (20.31)

where the question mark “?” reflects again the unknown nature of ±f(x5).
As we shall see in Part V, the coordinate rescaling (20.30) does not modify
the dynamics of DR5 (the geodesics in �5 remain unchanged).

The underlined 2, 2, in q̃grav. are due to the fact that actually the

functional form of the related metric coefficients is not

(

x5

x5
0,grav.

)2

but

1
4

(

1 +
x5

x5
0,grav.

)2

. Again, it is possible to recover the phenomenological

5D metric gAB,DR5,grav.(x5) from the Power Ansatz form gAB,DR5power(x5)
by a rescaling and a translation of the energy. In fact, one has

x5 −→ x5′ = x5 − x5
0 ⇔ dx5′ = dx5. (20.32)

Such a translation in energy is allowed because we are just working in the
framework of DR5. Therefore

b20(x
5) = b20(x

5′ + x5
0) = b20,new

(

x5′) =

(

x5′ + x5
0

x5
0

)2

=

(

x5′

x5
0

+
x5

0

x5
0

)2

.

(20.33)
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By rescaling the threshold energy (in a physically consistent way, because
it amounts to a redefinition of the scale of measure of energy)

x5
0 −→ x5′

0 = x5
0

(

˜x5
0

x5
0

)

, (20.34)

one gets

b20,new

(

x5′) =

(

x5′

x5′
0

˜x5
0

x5
0

+
˜x5

0

x5′
0

)2

=

(

˜x5
0

x5′
0

)2(

1 +
x5′

x5
0

)2

. (20.35)

This metric time coefficient is of the gravitational type, except for the factor
(

˜x5
0

x5′
0

)2

, which, however, can be got rid of by the following rescaling of the

time coordinate:

x0 −→ x′0 =
˜x5

0

x5′
0

x0. (20.36)

This is a conformal transformation corresponding to a redefinition of
the scale of measure of time. Notice that the above rescaling proce-
dure of energy and time does not account for the factor 1/4 in front of
(

1 +
x5

x5
0,grav.

)2

. This can be dealt with by the method followed for q̃strong,

namely by considering the generalized metric gAB,DR5power-conform(x5),
where now the vector ˜ϑ is given by ˜ϑ=

(

1
4 , ?, ?,

1
4 , ?
)

(as before, the question
marks reflect the unknown nature of the related metric coefficients).

Notice that both in (20.21)–(20.23) and (20.24)–(20.26) it was assumed
that

qµ,int.(x5
0,int.) = 0, µ = 0, 1, 2, 3 , int. = e.m.,weak, strong, grav., (20.37)

for simplicity reasons, since – as already stressed in Chap. 4 – nothing can
be said on the behavior of the metrics at the energy thresholds.

Let us introduce the left and right specifications ̂ΘL (x), ̂ΘR (x) of the
Heaviside theta function, defined, respectively, by

̂ΘL (x) ≡
{

1, x > 0,
0, x ≤ 0, (20.38)

̂ΘR (x) ≡
{

1, x ≥ 0,
0, x < 0, (20.39)

and satisfying the complementarity relation

1 − ̂ΘR (x) = ̂ΘL (x) . (20.40)
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Then, the exponent sets (20.24)–(20.26) can be written in compact form as

q̃e.m./weak =
(

0,
1
3
̂ΘL

(

x5
0,e.m./weak − x5

)

,

1
3
̂ΘL

(

x5
0,e.m./weak − x5

)

,
1
3
̂ΘL

(

x5
0,e.m./weak − x5

)

, r

)

, (20.41)

q̃strong =
(

2 ̂ΘL

(

x5 − x5
0,strong

)

, (0, 0) , 2 ̂ΘL

(

x5 − x5
0,strong

)

, r
)

, (20.42)

q̃grav. =
(

˜2 ̂ΘL

(

x5 − x5
0,grav.

)

, ?, ?,˜2 ̂ΘL

(

x5 − x5
0,grav.

)

, r

)

, (20.43)

where the tilde and the question marks have the same meaning as earlier.

20.3 Solving Einstein’s Equations

Solving Einstein’s equationsin the 5D, deformed space �5 in the general
case is quite an impossible task. On the contrary, one can show that, in the
two special cases considered above, some classes of solutions can be found
for (20.16) and (20.19) (corresponding, respectively, to spatial isotropy and
metric coefficients which are powers of the energy), at least for Λ(5) = 0.
Notice that assuming a vanishing cosmological constant has the physical
motivation (at least as far as gravitation is concerned and one is not inter-
ested into quantum effects) that Λ(5) is related to the vacuum energy; exper-
imental evidence shows that, at least in our 4D space, Λ � 3 · 10−52 m−2.

We recall moreover that (20.14) imply3 R(E) = − 10
3 Λ(5). Since Λ(5) = 0

(and consequently R(E) = 0) the spaces we will find are obviously Ricci
flat. However, they differ, in general, from a 5D flat space, as it can be
easily checked by showing explicitly that some components of the Riemann
curvature tensor do not vanish.

In the former case (spatial isotropy), by putting Λ(5) = 0, the system of
differential equations (20.16) takes the form

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−2b′′f + b′f ′ = 0 ;

f
[

b20(b
′)2 − 2b0b′0bb

′ − 4b20bb
′′ − 2b0b′′0b

2 + b2(b′0)
2
]

+b0bf ′(2b0b′ + b′0b) = 0 ;

b′(b0b)′ = 0 .

(20.44)

If b0 = const., then the third equation (20.44) entails b′ = 0; it is then
easy to see that the remaining equations are identically satisfied. Hence
system (20.44) admits only the solution b = const., f(E) undetermined,

3See the footnote of Sect. 19.1.
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which can be shown to correspond (modulo rescaling) to a flat 5D space.
This entails, as one should suspect, that a 5D Minkowski space can be a
solution of our system.

If b0 is not a constant, then the third equation implies either (1) b′ =
0, (b0b)′ 
= 0 or (2) b′ 
= 0, (b0b)′ = 0. Let us consider these two cases.

(1) In this case b = const. and the system (20.44) admits solutions with
b0(E) arbitrary and f(E) determined by the only remaining nontriv-
ial equation, namely:

f [(b′0)
2 − 2b0b′′0 ] = −b0b′0f ′. (20.45)

Putting

A(E) =
2b0b′′0 − (b′0)

2

b0b′0
=
f ′

f
(20.46)

we get therefore

f(E) = ke
∫ E

A(ξ)dξ, (20.47)

where k is an integration constant. We remark that, if f(E) = const.,
(20.45) becomes

(b′0)
2 − 2b0b′′0 = 0. (20.48)

It is easy to see that (20.48) admits the only solution

b20(E) =
(

1 +
E

E0

)2

(20.49)

with E0 constant. Therefore, this shows that the gravitational metric
(19.15) corresponds to f = const., in the case of spatial isotropy.

(2) In this second case, it is not difficult to get the following class of
solutions:

f(E) = k [b′(E)]2 ;
b0(E) = b(E)−1 ,

(20.50)

where k is a constant (which fixes the sign of f) and b(E) is an
arbitrary function of E.

Let us now discuss the case of the metric coefficients which are pure
powers of the energy. For Λ(5) = 0 (20.19) admit 12 possible classes of
solutions, which can be classified according to the values of the 5D set
q̃≡(q0, q1, q2, q3, r) built up from the energy exponents of the metric coef-
ficients (see (20.17), (20.20)). Explicitly one has:

Class (I) q̃I =
(

q2,−q2
(

2q3 + q2
2q2 + q3

)

, q2, q3,
q23 − 2q3 + 2q2q3 − 4q2 + 3q22

2q2 + q3

)

.

Class (II) q̃II = (0, q1, 0, 0, q1 − 2).
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Class (III) q̃III = (q2,−q2, q2, q2,−2(1 − q2)).

Class (IV) q̃IV = (0, 0, 0, q3, q3 − 2).

Class (V) q̃V = (−q3,−q3,−q3, q3,−(1 + q3)).

Class (VI) q̃VI = (q0, 0, 0, 0, q0 − 2).

Class (VII) q̃VII = (q0,−q0,−q0,−q0,−2 − q0) .

Class (VIII) q̃VIII = (0, 0, 0, 0, r).

Class (IX) q̃IX = (0, 0, q2, 0,−2 + q2).

Class (X) q̃X =
(

q0,−
q3q0 + q2q3 + q2q0

q2 + q3 + q0
, q2, q3, rX

)

with

rX =
q23 + q3q0 − 2q3 + q2q3 − 2q2 + q2q0 + q22 − 2q0 + q20

q2 + q3 + q0
.

Class (XI) q̃XI =
(

q0,−
q2(2q0 + q2)

2q2 + q0
, q2, q2,

3q22 − 4q2 + 2q2q0 − 2q0 + q20
2q2 + q0

)

.

Class (XII) q̃XII =
(

q0, q2, q2,−
q2(2q0 + q2)

2q2 + q0
, rXII

)

with

rXII =
q23 + q3q0 − 2q3 + q2q3 − 2q2 + q2q0 + q22 − 2q0 + q20

q2 + q3 + q0
.

In the following section, we shall discuss the physical relevance of the earlier
solutions.

20.4 Discussion of Solutions

As we said in the earlier section, in the case of spatial isotropy the analytical
solution of (20.45) for f = const., yields immediately the gravitational
metric (19.15).

On the other hand, the 12 classes of solutions found in the Power Ansatz
allow one to recover, as special cases, all the phenomenological metrics
discussed in Sect. 4.1. Let us write explicitly the interval in �5 in such
a case:

dS2 =
(

E

E0

)q0

dt2 −
(

E

E0

)q1

dx2 −
(

E

E0

)q2

dy2 −
(

E

E0

)q3

dz2 +ErdE2.

(20.51)
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Then, it is easily seen that the Minkowski metric is recovered from all
classes of solutions. Solution (VIII) corresponds directly to a Minkowskian
space–time, with the exponent r of the fifth coefficient undetermined. In
the other cases, we have to put: q1 = 0 for class (II); q2 = 0 for classes (III)
and (IX); q3 = 0 for (IV) and (V); q0 = 0 for (VI) and (VII) (for all the
previous solutions, it is r = −2); q2 = q3 = 0 for class (I); q2 = q3 = q0 = 0
for class (X); q2 = q0 = 0 for class (XI); q2 = q0 = 0 for class (XII).
The latter four solutions have r = 0 , and therefore correspond to a 5D
Minkowskian flat space.

If we set q1 = 1/3 in class (II), q3 = 1/3 in class (IV), or q2 = 1/3
in class (IX) (corresponding in all three cases to the value r = 5/3 for the
exponent of the fifth metric coefficient), we get a metric of the “electroweak
type” (see (19.12),(19.13)), i.e., with unit time coefficient and one space
coefficient behaving as (E/E0)1/3, but spatially anisotropic, since two of
the space metric coefficients are constant and Minkowskian (precisely, the
y, z coefficients for class (II); the x, y coefficients for class (IV); and the x, z
ones for class (IX)). Notice that such an anisotropy does not disagree with
the phenomenological results; indeed, in the analysis of the experimental
data one was forced to assume spatial isotropy in the electromagnetic and
in the weak cases, simply because of the lack of experimental information
on two of the space dimensions.

Putting q0 = 1 in class (VI), we find a metric which is spatially
Minkowskian, with a time coefficient linear in E, i.e., a (gravitational)
metric of the Einstein type (2.21).

Class (I) allows one to get as a special case a metric of the strong type (see
(19.14)). This is achieved by setting q2 = 2, whence q1 = −4(q3+1)/(q3+4);
r = (q23 + 2q3 + 4)/(q3 + 4). Moreover, for q3 = 0, it is q1 = −1; r = 1. In
other words, one finds a solution corresponding to b0(E) = b(E) = (E/E0)
and spatially anisotropic, i.e., a metric of the type (20.22).

Finally, the three classes (X)–(XII) admit as special case the gravitational
metric (20.23), which is recovered by putting q0 = 2 and q1 = q2 = q3 = 0
(whence also r = 0) and by a rescaling and a translation of the energy (see
Sect. 20.2.3).

In conclusion, we can state that the formalism of DR5 permits to recover,
as solutions of the vacuum Einstein equations, all the phenomenological
energy-dependent metrics of the electromagnetic, weak, strong and gravita-
tional type (and also the gravitational one of the Einstein kind, (2.21)).

Let us mention that the functional form of the metric parameter b0(E) in
the gravitational case (see (20.23)) suggests to introduce a modified proper
time function τ(t, E) by setting:

τ =
(

1 +
E

E0

)

t. (20.52)
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With this position, the gravitational interval takes the form:

dS2 ≡ dτ2 − b(E)[dx2 + dy2 + dz2]

+
[

f(E) +
τ2

(E + E0)2

]

dE2 − 2
τ

(E + E0)
dτdE,

(20.53)

which shows a 5D “Gaussian behavior” (with lapse function equal to one).

20.5 DR5 and Warped Geometry

We have seen in Chap. 18 that in some multidimensional space–time theo-
ries the geometry of the extra (spatial) dimension(s) is warped, in order to
avoid recourse to compactification.

If ζ is the extra coordinate, a typical 5D warped interval reads:

dS2 = a(ζ)gµνdxµdxν − dζ2, (20.54)

where gµν is the Minkowski metric and a(ζ) the warp factor, given by

a(ζ) = e−k|ζ|. (20.55)

The decay constant k > 0 is proportional to σ, the energy density (per
unit three-volume) of the brane. It is assumed of course that the brane is
located at ζ = 0. As a consequence, the metric induced on the brane is
Minkowskian.

It can be shown that metric (20.54) is a solution of the 5D Einstein
equations with a cosmological constant proportional to the square of the
energy density of the brane: Λ(5) ∼ σ2.

A generalization of the above warped interval is

dS2 = a(ζ)c2dt2 − b(ζ)dx2 − dζ2;
a(0) = b(0) = 1, (20.56)

where the warp factors of time and 3D space, a(ζ) and b(ζ), are different.
This metric accounts for Lorentz-violating effects, provided the wave func-
tion of the particles spreads in the fifth dimension (this may be the case
for gravitons).

We want to remark that intervals (20.54), (20.56) are just special cases
of the DR5 interval (19.2). The by now expert reader recognizes that either
metric is, for the space–time part, a spatially isotropic metric of the type
(20.15), and with f(E) = −1.

Of course, the warped metrics (20.54), (20.56) and the DR5 metrics have
a profound physical difference. In the former ones, ζ is an hidden space
dimension: the (exponentially decaying) warp factors are just introduced
in order to make this extra dimension unobservable. In the DR5 framework,
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the fifth dimension is the energy, and therefore an observable physical quan-
tity. This entails, among the others, that the metric coefficients may have
any functional form. Moreover – as repeatedly stressed – DSR and DR5
metrics are assumed to provide a local description of the physical processes
ruled by one of the fundamental interactions; on the contrary, warped met-
rics do describe the physical world at a large, global scale.

However, the similar structure of the two types of metrics has as conse-
quence that the mathematical study of the formal properties of the space �5

of DR5 can be of some utility for warped geometry, too. Results obtained
e.g., for DR5 isometries may hold in some cases for the warped models
(or be adapted with suitable changes). This provides a further reason to
exploring the mathematical features of DR5.



21
Killing Equations
in the Space �5

In the present and in the following chapters, we shall deal with the problem
of the isometries of the space �5 of DR5. This will allow us to determine
the symmetry properties of DR5, by getting also preliminary information
on the infinitesimal structure of the related algebras. Let us recall that the
metric homomorphisms of �5 are strictly connected to the invariance under
what we called the Metric Gaugement Process of DSR (see Sect. 4.4).

21.1 General Case

Let us discuss the Killing symmetries of the space �5 [136].
In �5, the Lie derivative L of a rank-2 covariant tensor field TAB along

the five-vector field ˜ξ =
{

ξA(x, x5) ≡ ξA(xB)
}

is given as usual by

L
ξ̃

TAB = TC
AξC;B + TC

BξC;A + TAB;Cξ
C (21.1)

with “;A” denoting covariant derivative with respect to xA. If the tensor
coincides with the metric tensor gAB (whose covariant derivative vanishes),
its Lie derivative becomes

L
ξ̃

gAB = ξA;B + ξB;A = ξ[A;B], (21.2)

where the bracket [..] means symmetrization with respect to the enclosed
indices (see (5.17)).
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Then, a five-vector ˜ξ is a Killing vector if the Lie derivative of the metric
tensor with respect to ξ vanishes, i.e.,

L
ξ̃

gAB = 0 ⇔ ξ[A;B] = 0 ⇔ ξA;B + ξB;A = 0 (21.3)

are the Killing equations in �5. Since the Lie derivative is nothing but the
generalization of directional derivative, this means that the Killing vec-
tors correspond to isometric directions, namely one recovers the property
expressed by (5.11), (5.16). The integrability conditions of (21.3) are given
by

ξA;BC = ξC;[BA] = RD
CBAξD ⇔ L

ξ̃

ΓA
BC = 0, (21.4)

where RABCD and ΓA
BC are the 5D Riemann–Christoffel tensor and affine

connection (20.4), (20.1), respectively. In turn, (21.4) are integrable under
the conditions

L
ξ̃

RABCD = 0. (21.5)

For metric (19.7), from the Christoffel symbols ΓA
BC of the metric

gAB,DR5(x5), (21.3) take the form of the following system of 15 coupled,
partial derivative differential equations in �5 for the Killing vector ξA(xB):

f(x5)ξ0,0(xA) ± b0(x5)b′0(x
5)ξ5(xA) = 0; (21.6)

ξ0,1(xA) + ξ1,0(xA) = 0
ξ0,2(xA) + ξ2,0(xA) = 0
ξ0,3(xA) + ξ3,0(xA) = 0

⎫

⎬

⎭

type I conditions; (21.7)

b0(x5)(ξ0,5(xA) + ξ5,0(xA)) − 2b′0(x
5)ξ0(xA) = 0

}

type II condition;

(21.8)

f(x5)ξ1,1(xA) ∓ b1(x5)b′1(x
5)ξ5(xA) = 0; (21.9)

ξ1,2(xA) + ξ2,1(xA) = 0
ξ1,3(xA) + ξ3,1(xA) = 0

}

type I conditions; (21.10)

b1(x5)(ξ1,5(xA) + ξ5,1(xA)) − 2b′1(x
5)ξ1(xA) = 0

}

type II condition;

(21.11)

f(x5)ξ2,2(xA) ∓ b2(x5)b′2(x
5)ξ5(xA) = 0; (21.12)
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ξ2,3(xA) + ξ3,2(xA) = 0
}

type I condition; (21.13)

b2(x5)(ξ2,5(xA) + ξ5,2(xA)) − 2b′2(x
5)ξ2(xA) = 0

}

type II condition;

(21.14)

f(x5)ξ3,3(xA) ∓ b3(x5)b′3(x
5)ξ5(xA) = 0; (21.15)

b3(x5)(ξ3,5(xA) + ξ5,3(xA)) − 2b′3(x
5)ξ3(xA) = 0

}

type II condition;

(21.16)

2f(x5)ξ5,5(xA) − f ′(x5)ξ5(xA) = 0, (21.17)

where now “, A” denotes ordinary derivative with respect to xA.
Equations (21.6)–(21.17) can be divided in “fundamental” equations and

“constraint” equations (of type I and II). The earlier system is in general
overdetermined, i.e., its solutions will contain numerical coefficients satis-
fying a given algebraic system. Explicitly solving it yields

ξµ(xA) = Fµ(xA�=µ)

±(−δµ0 + δµ1 + δµ2 + δµ3)bµ(x5)b′µ(x5)(f(x5))−1/2

∫

dxµF5(x); (21.18)

ξ5(x
A) = (f(x5))1/2F5(x). (21.19)

The five unknown functions FA(xB �=A) are restricted by the two following
types of conditions:

(I) Type I (Cardinality 4, µ 
= ν 
= ρ 
= σ):

±Aµ(x5)G,νρσ (x) +Bµ(x5)G,µµνρσ (x)

+bµ(x5)Fµ,5(xA�=µ) − 2b′µ(x5)Fµ(xA�=µ) = 0. (21.20)

(II) Type II (Cardinality 6, symm. in µ, ν, µ 
= ν 
= ρ 
= σ):

Fµ,ν(xA�=µ) + Fν,µ(xA�=ν)+

±(−δµ0 + δµ1 + δµ2 + δµ3)bµ(x5)b′µ(x5)(f(x5))−1/2G,ννρσ (x)+

±(−δν0 + δν1 + δν2 + δν3)bν(x5)b′ν(x5)(f(x5))−1/2G,µµρσ (x) = 0,
(21.21)
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where we introduced the fake four-vectors1 (ESC off)

Aµ(x5) ≡ (−δµ0 + δµ1 + δµ2 + δµ3)bµ(x5)(f(x5))−1/2

×
[

−
(

b′µ(x5)
)2

+ bµ(x5)b′′µ(x5) − 1
2
bµ(x5)b′µ(x5)f ′(x5)(f(x5))−1

]

;

(21.22)

Bµ(x5) ≡ bµ(x5)(f(x5))1/2; (21.23)

and defined the function

G(x) ≡
∫

d4xF5(x). (21.24)

21.2 The Hypothesis Υ of Functional Independence

In order to get the explicit forms of the functions FA(xB �=A) (and therefore
of the Killing vector (21.18), (21.19)), it is necessary to analyze conditions
I and make suitable simplifying hypotheses.

To this aim, consider the following equation in the (suitably regular)
functions α1(x5), α2(x5) and β1(xµ), β2(xµ):

α1(x5)β1(x
µ) + α2(x5)β2(x

µ) = 0. (21.25)

If α1(x5) 
= 0, α2(x5) 
= 0, the solutions of (21.25) are given by the following
two cases:

(1) ∃γ ∈ R0 : α1(x5) = γα2(x5) (∀x5 ∈ R0) (functional linear dependence
between α1(x5) and α2(x5)). Then β2(xµ) = −γβ1(xµ) (∀xµ ∈ R,
µ = 0, 1, 2, 3).

(2) �γ ∈ R0 : α1(x5) = γα2(x5) (∀x5 ∈ R0) (functional linear inde-
pendence between α1(x5) and α2(x5)). Then β2(xµ) = 0 = β1(xµ)
(∀xµ ∈ R, µ = 0, 1, 2, 3).

Let us now consider type I conditions for µ = 0. By taking their derivative
with respect to x0 one gets:

∂0

(

I)|µ=0

)

:

±A0(x5)G,0123 (x) +B0(x5)G,000123 (x) = 0

⇔ ±A0(x5)F5(x) +B0(x5)F5,00(x) = 0. (21.26)

1Indeed, it is in general (ESC off) (i = 1, 2, 3)

bµ(x5) = gµµ,DR5(x
5) (δµ0 − δµi) ,

fµ(x5) = ±g55,DR5(x
5),

which clearly show the nonvector nature of Aµ(x5) and Bµ(x5) in the 4D subspaces
of �5.
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If A0(x5) 
= 0 and B0(x5) 
= 0, we have the following two possibilities:

(1) ∃c0 ∈ R0 : ±A0(x5) = c0B0(x5) (∀x5 ∈ R+
0 ). From (21.26) one gets

(∀x0, x1, x2, x3 ∈ R):

G,000123 (x) = ∓c0G,0123 (x) ⇔ F5,00(x) = ∓c0F5(x); (21.27)

(2) �c0 ∈ R0 : ±A0(x5) = c0B0(x5) (∀x5 ∈ R+
0 ). It follows from (21.26)

(∀x0, x1, x2, x3 ∈ R):

G,000123 (x) = 0 = G,0123 (x) ⇔ F5,00(x) = 0 = F5(x). (21.28)

In general, let us take the derivative with respect to xµ of type I conditions
(ESC off):

∂µI) :

±Aµ(x5)G,µνρσ (x) +Bµ(x5)G,µµµνρσ (x) = 0

⇔ ±Aµ(x5)F5(x) +Bµ(x5)F5,µµ(x) = 0. (21.29)

If G(x) satisfies the Schwarz lemma at any order, since µ 
= ν 
= ρ 
= σ, one
gets

G,µνρσ (x) = G,0123 (x)(= F5(x)), (21.30)

namely the function F5(x) is present in ∂µI) ∀µ = 0, 1, 2, 3. It is therefore
sufficient to assume that there exists at least a special index

µ ∈ {0, 1, 2, 3} :

⎧

⎨

⎩

�cµ ∈ R0 : ±Aµ(x5) = cµBµ(x5)(∀x5 ∈ R+
0 )

Aµ(x5) 
= 0, Bµ(x5) 
= 0
(21.31)

in order that (∀x0, x1, x2, x3 ∈ R)

(F5(x) =)G,0123 (x) = 0 = G,µµµ123 (x)(= F5,µµ(x))
⇒

(in gen.)
�

⇒
(in gen.)

�

G,µµµ123 (x)(= F5,µµ(x)) = 0, ∀µ = 0, 1, 2, 3. (21.32)

In the following the existence hypothesis:

∃ (at least one) µ ∈ {0, 1, 2, 3} :
⎧

⎨

⎩

�cµ ∈ R0 : ±Aµ(x5) = cµBµ(x5)(∀x5 ∈ R+
0 )

Aµ(x5) 
= 0, Bµ(x5) 
= 0
(21.33)

will be called “Υ -hypothesis” of functional independence.
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The earlier reasoning can be therefore summarized as

Hp.Υ :
∃ (at least one) µ ∈ {0, 1, 2, 3} :

{

�cµ ∈ R0 : ±Aµ(x5) = cµBµ(x5)(∀x5 ∈ R+
0 );

Aµ(x5) 
= 0, Bµ(x5) 
= 0,
︸ ︷︷ ︸

⇓
(F5(x) =)G,0123 (x) = 0,∀x0, x1, x2, x3 ∈ R,
︸ ︷︷ ︸

⇓
(F5,µµ(x) =)G,µµµ123 (x) = 0 ∀x0, x1, x2, x3 ∈ R ∀µ = 0, 1, 2, 3. (21.34)

21.3 Solving Killing Equations in �5
in the Υ -Hypothesis

Then, by assuming the hypothesis Υ of functional independence to hold,
and replacing (21.34) in (21.18) and (21.19), one gets for the covariant
Killing five-vector ξA(x, x5):

ξµ(xA) = Fµ(xA�=µ), ∀µ = 0, 1, 2, 3,
ξ5(xA) = 0

}

⇒ ξA(xB) =
(

Fµ(xA�=µ), 0
)

.

(21.35)

The conditions to be satisfied now by the 4 unknown functions Fµ(xA�=µ)
(∀µ, ν = 0, 1, 2, 3) are obtained by substituting (21.34) in (21.20) and
(21.21) and read

(I) Type I (Cardinality 4):

bµ(x5)Fµ,5(xA�=µ) − 2b′µ(x5)Fµ(xA�=µ) = 0; (21.36)

(II) Type II (Cardinality 6, symmetry in µ, ν, µ 
= ν):

Fµ,ν(xA�=µ) + Fν,µ(xA�=ν) = 0.

Solving the equations of type I yields

Fµ(xA�=µ) = b2µ(x5)˜Fµ(xν �=µ),∀µ = 0, 1, 2, 3 (21.37)

and eventually (∀µ, ν = 0, 1, 2, 3, µ 
= ν)

Fµ,ν(xA�=µ) + Fν,µ(xA�=ν) = 0
Fµ(xA�=µ) = b2µ(x5)˜Fµ(xν �=µ)

} ⇒
(in gen.)⇐

⇒
(in gen.)⇐

{

b2µ(x5)
∂˜Fµ(xρ�=µ)

∂xν
+ b2ν(x5)

∂˜Fν(xρ �=ν)
∂xµ

= 0. (21.38)
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Summarizing, we can state that, in the hypothesis Υ of functional inde-
pendence, the covariant Killing five-vector ξA(x, x5) has the form (ESC
off)

ξA(xB) =
(

b2µ(x5)˜Fµ(xν �=µ), 0
)

, (21.39)

where the four unknown real functions of three real variables
{

˜Fµ(xρ�=µ)
}

are solutions of the following system of six (due to the symmetry in µ and
ν) nonlinear, partial derivative equations:

b2µ(x5)
∂˜Fµ(xρ �=µ)

∂xν
+ b2ν(x5)

∂˜Fν(xρ�=ν)
∂xµ

= 0, µ, ν = 0, 1, 2, 3, µ 
= ν,

(21.40)
which is in general overdetermined, i.e., its explicit solutions will depend
on numerical coefficients obeying a given system.

Solving system (21.40) is quite easy (although cumbersome: for details,
see [136]). The final solution yields the following expressions for the com-
ponents of the contravariant Killing five-vector ξA(x, x5) satisfying the 15
Killing equations (21.6)–(21.17) in the hypothesis Υ of functional indepen-
dence (21.34):

ξ0(x1, x2, x3) = ˜F0(x1, x2, x3)

= d8x
1x2x3 + d7x

1x2 + d6x
1x3 + d4x

2x3

(d5 + a2)x1 + d3x
2 + d2x

3 + (a1 + d1 +K0); (21.41)

ξ1(x0, x2, x3) = −˜F1(x0, x2, x3)

= −h2x
0x2x3 − h1x

0x2 − h8x
0x3 − h4x

2x3

− (h7 + e2)x0 − h3x
2 − h6x

3 − (K1 + h5 + e1) ; (21.42)

ξ2(x0, x1, x3) = −˜F2(x0, x1, x3)

= −l2x0x1x3 − l1x
0x1 − l6x

0x3 − l4x
1x3

− (l5 + e4)x0 − l3x
1 − l8x

3 − (l7 +K2 + e3); (21.43)
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ξ3(x0, x1, x2) = −˜F3(x0, x1, x2)

= −m8x
0x1x2 −m7x

0x1 −m6x
0x2 −m4x

1x2

− (m5 + g2)x0 −m3x
1 −m2x

2 − (m1 + g1 + c); (21.44)

ξ5 = 0 
= ξ5(x, x5). (21.45)

where (some of) the real parameters di , hi, li , mi (i = 1, 2, . . . , 8), ek

(k = 1, 2, 3, 4), gl, al (l = 1, 2) satisfy the following algebraic system of six
constraints:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(01)

{

b20(x
5)
[

d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)

]

+b21(x
5)
[

h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)

]

= 0;

(02)

{

b20(x
5)
(

d8x
1x3 + d7x

1 + d4x
3 + d3

)

+b22(x
5)
[

l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)

]

= 0;

(03)

{

b20(x
5)
(

d8x
1x2 + d6x

1 + d4x
2 + d2

)

+b23(x
5)
[

m8x
1x2 +m7x

1 +m6x
2 + (m5 + g2)

]

= 0;

(12)

{

b21(x
5)
(

h2x
0x3 + h1x

0 + h4x
3 + h3

)

+b22(x
5)
(

l2x
0x3 + l1x

0 + l4x
3 + l3

)

= 0;

(13)

{

b21(x
5)
(

h2x
0x2 + h8x

0 + h4x
2 + h6

)

+b23(x
5)
(

m8x
0x2 +m7x

0 +m4x
2 +m3

)

= 0;

(23)

{

b22(x
5)
(

l2x
0x1 + l6x

0 + l4x
1 + l8

)

+b23(x
5)
(

m8x
0x1 +m6x

0 +m4x
1 +m2

)

= 0.
(21.46)

21.4 Power Ansatz and Reductivity
of the Hypothesis Υ

We want now to investigate if and when the simplifying Υ -hypothesis
(21.34) – we exploited in order to solve the Killing equations in �5 –
is reductive. To this aim, one needs to consider explicit forms of the
5D Riemannian metric gAB,DR5(x5). As we have seen in Chap. 20, the
“Power Ansatz” allows one to recover all the phenomenological metrics
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derived for the four fundamental interactions. So it is worth consider-
ing such a case, corresponding to a 5D metric of the form (20.20) with
q̃≡(q0, q1, q2, q3, r) = (qµ, r).

In the Power Ansatz, the (fake) four-vectors Aµ(x5) and Bµ(x5) ((21.22),
(21.23)) take the following explicit forms:

Aµ,power(x5) =
1

(x5
0)

2 (δµ0 − δµ1 − δµ2 − δµ3)
qµ

2

(

1 +
r

2

)

(

x5

x5
0

)
3
2 qµ− 1

2 r−2

= Aµ,power(q̃;x5); (21.47)

Bµ,power(x5) =
(

x5

x5
0

)(1/2)qµ+(1/2)r

= Bµ,power(q̃;x5). (21.48)

Therefore

±Aµ,power(q̃; x5)

Bµ,power(q̃;x5)
= ± 1

(x5
0)

2
(δµ0 − δµ1 − δµ2 − δµ3)

qµ

2

(

1 +
r

2

)

(

x5

x5
0

)qµ−r−2

.

(21.49)

Since x5 ∈ R+
0 , one gets, respectively

Aµ,power(q̃;x5) 
= 0 ⇔ qµ

2

(

1 +
r

2

)


= 0

⇔
{

qµ 
= 0
1 + r

2 
= 0 ⇔ 2 + r 
= 0 ; (21.50)

Bµ,power(q̃;x5) 
= 0,∀qµ, r ∈ Q. (21.51)

Then

±Aµ,power(q̃;x5)
Bµ,power(q̃;x5)

= c(µ;qµ,r) ∈ R(0),∀x5 ∈ R+
0 ⇔ qµ − r − 2 = 0. (21.52)

It follows that, if Aµ,power(q̃;x5) 
= 0 and Bµ,power(q̃;x5) 
= 0, assuming
the Power Ansatz form for gAB,DR5(x5) amounts to express the hypothesis
Υ of functional independence (21.34) as

∃ (at least one) µ ∈ {0, 1, 2, 3} :

⎧

⎨

⎩

qµ − (r + 2) 
= 0
{

qµ 
= 0
r + 2 
= 0

⎫

⎬

⎭

⇔ qµ 
= 0, r + 2 
= 0, qµ 
= r + 2. (21.53)

In other words, in the framework of the “Power Ansatz” for the metric
tensor the reductive nature of the Υ -hypothesis depends on the value of the
rational parameters q0, q1, q2, q3 and r, exponents of the components of
gAB,DR5power(x5).
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A similar result holds true if one assumes for the �5 metric the gener-
alized form gAB,DR5power-conform(x5) (20.27), obtained by the anisotropic
rescaling (20.30). We have, in this case, for Aµ(x5) and Bµ(x5):

Aµ,power-conform(x5)

=
1

(x5
0)

2

(ϑµ)3/2

(ϑ5)
1
2

(δµ0 − δµ1 − δµ2 − δµ3)
qµ

2

(

1 +
r

2

)

(

x5

x5
0

)(3/2)qµ−(1/2)r−2

=
(ϑµ)3/2

(ϑ5)
1/2

Aµ,power(x5); (21.54)

Bµ,power-conform(x5)

= (ϑµϑ5)
1/2

(

x5

x5
0

)(1/2)qµ+(1/2)r

= (ϑµϑ5)
1/2

Bµ,power(x5) (21.55)

whence

±Aµ,power(q̃;x5)
Bµ,power(q̃;x5)

= ± 1

(x5
0)

2

ϑµ

ϑ5
(δµ0 − δµ1 − δµ2 − δµ3)

qµ

2

(

1 +
r

2

)

(

x5

x5
0

)qµ−r−2

(21.56)

and

±Aµ,power(q̃;x5)
Bµ,power(q̃;x5)

= c(µ;qµ,r) ∈ R(0) ∀x5 ∈ R+
0 ⇔ qµ − r− 2 = 0. (21.57)

Therefore conditions (21.50)–(21.52), obtained in the power case, hold
unchanged, together with expression (21.53) of the Υ -hypothesis. Thus,
we can conclude that, independently of a possible anisotropic, conformal
rescaling of the coordinates of the type (20.30), the reductive nature of
the Υ -hypothesis depends only on the value of the parameters q0, q1, q2, q3,
and r.

The discussion of the possible reductivity of the Υ -hypothesis for all the
12 classes of solutions of the 5D Einstein equations in vacuum derived in
Sect. 4.1 (labeled by the 5D set q̃≡ (q0, q1, q2, q3, r)) allows one to state that
in five general cases such hypothesis of functional independence is reductive
indeed. The Killing equations can be explicitly solved in such cases. We
refer the reader to Appendix A for these general cases, and go to discuss
the special cases of the 5D phenomenological power metrics describing the
four fundamental interactions (see Sect. 19.3).



22
Killing Symmetries for the 5D
Metrics of Fundamental
Interactions

We want now to investigate the possible reductivity of the hypothesis Υ
of functional independence (21.34) for the 5D metrics (19.12)–(19.15), and
solve the related Killing equations. Due to the piecewise structure of these
phenomenological metrics, we shall distinguish the two energy ranges x5 �
x5

0 (above threshold, case (a) and 0 < x5 < x5
0 (below threshold, case (b)

for sub-Minkowskian metrics (electromagnetic and weak), and 0 < x5 ≤ x5
0

(below threshold, case (a’) and x5 > x5
0 (above threshold, case (b’) for over-

Minkowskian metrics (strong and gravitational). Needless to say, cases (a,
a’) correspond to the Minkowskian behavior of the related metrics, whereas
(b, b’) refer to the non-Minkowskian one.

22.1 Electromagnetic and Weak Interactions

22.1.1 Validity of the Υ -Hypothesis

(Case a) (Minkowskian conditions). In the energy range x5 � x5
0 the

5D metrics (19.12), (19.13) read:

gAB,DR5(x5) = diag
(

1,−1,−1,−1,±f(x5)
)

. (22.1)

This metric is a special case of

gAB,DR5(x5) = diag
(

a,−b,−c,−d,±f(x5)
)

(22.2)
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(a, b, c, d, f(x5) ∈ R+
0 ). From definitions (21.22) and (21.23) one gets:

Aµ(x5) = 0

Bµ(x5) =
(

f(x5)
) 1

2

}

∀µ = 0, 1, 2, 3. (22.3)

Therefore the hypothesis Υ of functional independence (21.34) is not sat-
isfied ∀µ ∈ {0, 1, 2, 3}. The 15 Killing equations corresponding to the e.m.
and weak metrics (19.12), (19.13) are:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f(x5)ξ0,0(xA) = 0;
ξ0,1(xA) + ξ1,0(xA) = 0;
ξ0,2(xA) + ξ2,0(xA) = 0;
ξ0,3(xA) + ξ3,0(xA) = 0;
ξ0,5(xA) + ξ5,0(xA) = 0;

f(x5)ξ1,1(xA) = 0;
ξ1,2(xA) + ξ2,1(xA) = 0;
ξ1,3(xA) + ξ3,1(xA) = 0;
ξ1,5(xA) + ξ5,1(xA) = 0;

f(x5)ξ2,2(xA) = 0;
ξ2,3(xA) + ξ3,2(xA) = 0;
ξ2,5(xA) + ξ5,2(xA) = 0;

f(x5)ξ3,3(xA) = 0;
ξ3,5(xA) + ξ5,3(xA) = 0;

2f(x5)ξ5,5(xA) − f ′(x5)ξ5(xA) = 0.

(22.4)

Solving this system requires some cumbersome algebra but is trivial. The
result for the contravariant Killing vector is

ξ0(x1, x2, x3, x5) = T 0 −B1x1 −B2x2 −B3x3 +Ξ0F (x5); (22.5)

ξ1(x0, x2, x3, x5) = T 1 −B1x0 +Θ3x2 −Θ2x3 −Ξ1F (x5); (22.6)

ξ2(x0, x1, x3, x5) = T 2 −B2x0 −Θ3x1 +Θ1x3 −Ξ2F (x5); (22.7)

ξ3(x0, x1, x2, x5) = T 3 −B3x0 +Θ2x1 −Θ1x2 −Ξ3F (x5); (22.8)

ξ5(x, x5) = ±
(

f(x5)
)− 1

2 [T 5 −Ξ0x0 −Ξ1x1 −Ξ2x2 −Ξ3x3]. (22.9)

Here, we have put

F (x5) =
∫

dx5
(

f(x5)
)1/2

(22.10)

and omitted an unessential integration constant in (22.10) (it would only
amount to a redefinition of Tµ, µ = 0, 1, 2, 3 in (22.5)–(22.9)). By inspection
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of such equations, it is easy to get the following physical interpretation of
the real parameters entering into the expression of ξA(x, x5):

Θ1, Θ2, Θ3 ∈ R
space–space angles of true rotations

periodicity T=2π−→ Θ1, Θ2, Θ3 ∈ [0, 2π);

boost rapidity

B1, B2, B3 ∈ R
space–time angles of pseudorotations

;

T 0, T 1, T 2, T 3 ∈ R
space–time translation parameters

.

(22.11)
As to the parameters Ξµ (µ = 0, 1, 2, 3) and T 5, their physical meaning (if
any) depends on the signature of the fifth dimension.

The metric (22.2) can be dealt with along the same lines with only minor
changes. In particular, the contravariant Killing vector is obtained from
(22.5)–(22.9) by a suitable rescaling of the parameters in the space–time
components, namely

ξ0(x1, x2, x3, x5) =
1
a

[

T 0 −B1x1 −B2x2 −B3x3 +Ξ0F (x5)
]

; (22.5’)

ξ1(x0, x2, x3, x5) =
1
b

[

T 1 −B1x0 +Θ3x2 −Θ2x3 −Ξ1F (x5)
]

; (22.6’)

ξ2(x0, x1, x3, x5) =
1
c

[

T 2 −B2x0 −Θ3x1 +Θ1x3 −Ξ2F (x5)
]

; (22.7’)

ξ3(x0, x1, x2, x5) =
1
d

[

T 3 −B3x0 +Θ2x1 −Θ1x2 −Ξ3F (x5)
]

; (22.8’)

ξ5(x, x5) = ±
(

f(x5)
)− 1

2 [T 5 −Ξ0x0 −Ξ1x1 −Ξ2x2 −Ξ3x3]. (22.9’)

(Case b)(Non-Minkowskian conditions) In this energy range the form
of the metrics (19.12), (19.13) is

gAB,DR5(x5)=diag

(

1,−
(

x5

x5
0

)1/3

,−
(

x5

x5
0

)1/3

,−
(

x5

x5
0

)1/3

,±f(x5)

)

.

(22.12)
We have, from the definitions (21.22) and (21.23) of the “vectors” Aµ(x5)

and Bµ(x5):

A0(x5) = 0;

Ai(x5)

= −
(

x5

x5
0

)1/6 1

6
√

f(x5) (x5)
2
3 (x5

0)
1
3

[

1
x5

+
1
2
f ′(x5)
f(x5)

]

,

∀i = 1, 2, 3; (22.13)
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B0(x5) = 0;

Bi(x5) =
√

f(x5)
(

x5

x5
0

)1/6

∀i = 1, 2, 3. (22.14)

Therefore

±Ai(x5)
Bi(x5)

= ∓ 1

6f(x5) (x5)
2
3 (x5

0)
1/3

[

1
x5

+
1
2
f ′(x5)
f(x5)

]

∀i = 1, 2, 3.

(22.15)
Then, the Υ hypothesis (21.34) is not satisfied for µ = 0 but it does for
µ = i = 1, 2, 3 under the following condition:

1
x5

+
1
2
f ′(x5)
f(x5)


= cf(x5)
(

x5
)2/3

, c ∈ R. (22.16)

Therefore, on the basis of the results of Sect. 21.4, it is easy to get that
the contravariant components of the 5D Killing vector ξA(x, x5) for metric
(22.12) in the range 0 < x5 < x5

0 are given by (21.41)–(21.45), where (some
of) the real parameters satisfy the following system (namely system (21.46)
for metric (22.12)):

(01)

⎧

⎪

⎨

⎪

⎩

[

d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)

]

+
(

x5

x5
0

)1/3
[

h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)

]

= 0;

(02)

⎧

⎪

⎨

⎪

⎩

(

d8x
1x3 + d7x

1 + d4x
3 + d3

)

+
(

x5

x5
0

)1/3
[

l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)

]

= 0;

(03)

⎧

⎪

⎨

⎪

⎩

(

d8x
1x2 + d6x

1 + d4x
2 + d2

)

+
(

x5

x5
0

)1/3
[

m8x
1x2 +m7x

1 +m6x
2 + (m5 + g2)

]

= 0;

(12)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

x5

x5
0

)1/3
(

h2x
0x3 + h1x

0 + h4x
3 + h3

)

+
(

x5

x5
0

)1/3
(

l2x
0x3 + l1x

0 + l4x
3 + l3

)

= 0;

(13)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

x5

x5
0

)1/3
(

h2x
0x2 + h8x

0 + h4x
2 + h6

)

+
(

x5

x5
0

)1/3
(

m8x
0x2 +m7x

0 +m4x
2 +m3

)

= 0;

(23)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

x5

x5
0

)1/3
(

l2x
0x1 + l6x

0 + l4x
1 + l8

)

+
(

x5

x5
0

)1/3
(

m8x
0x1 +m6x

0 +m4x
1 +m2

)

= 0.

(22.17)



22.1 Electromagnetic and Weak Interactions 317

Solving system (22.17) yields:

d2 = d3 = d4 = d6 = d7 = d8 = 0;
m4 = m6 = m7 = m8 = 0; m5 = −g2;
h1 =h2 =h4 =h8 =0; h3 =−l3; h6 =−m3; h7 =−e2; h8 = −m7;
l1 = l2 = l4 = l6 = 0; l5 = −e4; l8 = −m2;
a2 = −d5.

(22.18)
Then, one gets the following expression for ξA(x, x5):

ξ0 = ˜F0 = (a1 + d1 +K0); (22.19)

ξ1(x2, x3) = −˜F1(x2, x3) = l3x
2 +m3x

3 − (K1 + h5 + e1) ; (22.20)

ξ2(x1, x3) = −˜F2(x1, x3) = −l3x1 +m2x
3 − (l7 +K2 + e3); (22.21)

ξ3(x0, x1, x2) = −˜F3(x0, x1, x2) = −m3x
1−m2x

2− (m1 +g1 + c); (22.22)

ξ5 = 0. (22.23)

22.1.2 Killing Isometries for Electromagnetic and Weak
Metrics

The 5D contravariant Killing vector ξA(x, x5) for the whole range of ener-
gies, (22.5)–(22.9) and (22.19)–(22.23), can be cast in a compact form by
using the distribution ̂ΘR(x5 − x5

0) (right specification of the Heaviside
distribution: see (20.39)), by redenominating (∀i = 1, 2, 3)

Bi ≡ ζi;
Θi ≡ θi;
Ξ0 ≡ ζ5

(22.24)

and putting
(a1 + d1 +K0) = T 0;
− (K1 + h5 + e1) = T 1;
−(l7 +K2 + e3) = T 2;
−(m1 + g1 + c) = T 3;
l3 = Θ3;
m3 = −Θ2;
m2 = Θ1.

(22.25)

Then, one gets

ξ0(x1, x2, x3, x5)

= ̂ΘR(x5 − x5
0)
[

−ζ1x1 − ζ2x2 − ζ3x3 + ζ5F (x5)
]

+ T 0; (22.26)



318 22. Killing Symmetries for 5D Interactions Metrics

ξ1(x0, x2, x3, x5)

= ̂ΘR(x5 − x5
0)
[

−ζ1x0 −Ξ1F (x5)
]

+ θ3x2 − θ2x3 + T 1; (22.27)

ξ2(x0, x1, x3, x5)

= ̂ΘR(x5 − x5
0)
[

−ζ2x0 −Ξ2F (x5)
]

− θ3x1 + θ1x3 + T 2; (22.28)

ξ3(x0, x1, x2, x5)

= ̂ΘR(x5 − x5
0)
[

−ζ3x0 −Ξ3F (x5)
]

+ θ2x1 − θ1x2 + T 3; (22.29)

ξ5(x, x5)

= ̂ΘR(x5 − x5
0)
{

∓
(

f(x5)
)− 1

2 [ζ5x0 +Ξ1x1 +Ξ2x2 +Ξ3x3 − T 5]
}

,

(22.30)

valid for both ranges 0 < x5 < x5
0 and x5 � x5

0.
By considering slices of �5 at dx5 = 0, one gets:

x5 = x5 ∈ R+
0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⇔ dx5 = 0 ⇒
(in gen.)

�

F (x5) =
∫

dx5
(

f(x5)
) 1

2 = 0;

⇒
(in gen.)

�

ξ5(x, x5) = 0.

(22.31)

Therefore, it easily follows from the expression of the Killing vector (22.26)–
(22.30) that, in the energy range x5 � x5

0, the 5D Killing group of such
constant-energy sections is the standard Poincaré group P (1, 3):

P (1, 3)STD. = SO(1, 3)STD. ⊗s Tr.(1, 3)STD. (22.32)

(as it must be), whereas, in the energy range 0 < x5 < x5
0, the Killing

group is given by
SO(3)STD. ⊗s Tr.(1, 3)STD.. (22.33)

22.1.3 Solution of Killing Equations below Threshold
with Violated Υ -Hypothesis

In case (b), the hypothesis Υ of functional independence (21.34) does not
hold for any value of µ if the metric coefficient f(x5) satisfies the following
equation
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1
2
f ′(x5)
f(x5)

− cf(x5)
(

x5
)2/3

+
1
x5

= 0, c ∈ R. (22.34)

Such ordinary differential equation (ODE) belongs to the homogeneous
class of type G and to the special rational subclass of Bernoulli’s ordinary
differential equations (it becomes separable for c = 0). The only solution
of (22.34) is

f(x5) =
1

6c(x5)5/3 + γ(x5)2
, c, γ ∈ R. (22.35)

Since f(x5) must be dimensionless, it is convenient to make this feature
explicit by introducing the characteristic parameter x5

0 ∈ R+
0 (which, as by

now familiar, is the threshold energy of the interaction considered) so that
f(x5) ≡ f

(

x5

x5
0

)

. Equation (22.34) can be therefore rewritten as

f(x5) ≡ f

(

x5

x5
0

)

=
1

6c
(

x5

x5
0

)
5
3

+ γ

(

x5

x5
0

)2
, c, γ ∈ R, (22.36)

where of course a rescaling of constants c and γ occurred. Moreover, because
in general f(x5) has to be strictly positive ∀x5 ∈ R+

0 , c and γ must neces-
sarily satisfy the condition:

c, γ ∈ R : 6c+ γ

(

x5

x5
0

)1/3

> 0 ∀x5 ∈ R+
0 ⇔

⇔ c, γ ∈ R+
(not both zero). (22.37)

Therefore, imposing the complete violation of the Υ -hypothesis of functional
independence allows one to determine the functional form of the fifth met-
ric coefficient. This result will be seen to hold also for the strong and
the gravitational interaction above threshold (see Sects. 22.2.3 and 22.3.2).
On account of the possible dynamical role of the coefficient f(x5) in the
5D description of processes occurring in the standard 4D space–time (cf.
Chap. 26), it can be ventured that the Υ -hypothesis is perhaps something
more than a mere mathematical simplifying assumption.

Then, we get the following expression for the 5D metric describing e.m.
and weak interactions in the energy range 0 < x5 < x5

0 if the Υ -hypothesis
is not satisfied by any value of µ:

gAB,DR5(x5) = diag

(

1,−
(

x5

x5
0

)1/3

,−
(

x5

x5
0

)1/3

,−
(

x5

x5
0

)1/3

,

±
(

6c
(

x5

x5
0

)5/3

+ γ

(

x5

x5
0

)2
)−1

⎞

⎠ . (22.38)
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The solution of the Killing equations is cumbersome in this case, too. After
some tedious and lengthy algebra, one gets the following expression for the
contravariant Killing five-vector ξA(x, x5) corresponding to the e.m. and
weak metric (22.38):

ξ0 = c0; (22.39)

ξ1(x2, x3) = −
(

a2x
2 + a3x

3 + a4

) (

x5
0

)1/3
; (22.40)

ξ2(x1, x3) =
(

a2x
1b1x

3 − b6
) (

x5
0

)1/3
; (22.41)

ξ3(x1, x2) =
(

a3x
1 − b1x

2 − b2
) (

x5
0

)1/3
; (22.42)

ξ5 = 0, (22.43)

where the dimensions of the real transformation parameters are (on account
of the fact that ξ has the dimension of a length)

[a2] = [a3] = [b1] = l−1/3, [a4] = [b2] = [b6] = l2/3, [c0] = l. (22.44)

The 5D Killing group of isometries is therefore

SO(3)STD.(E3) ⊗s Tr.(1, 3)STD. (22.45)

with E3 being the 3D manifold with metric gij = −
(

x5

x5
0

)1/3

diag (1, 1, 1).

22.2 Strong Interaction

22.2.1 Validity of the Υ -Hypothesis

(Case a’) (Minkowskian conditions). In the energy range 0 < x5 � x5
0

the metric (20.22) for strong interaction reads:

gAB,DR5(x5) = diag
(

1,− 2
25
,− 4

25
,−1,±f(x5)

)

. (22.46)

From (21.22) and (21.23) one finds, for the fake vectors Aµ(x5), Bµ(x5) in
this case:

Aµ(x5) = 0∀µ = 0, 1, 2, 3;

B0(x5) = B3(x5)=
5√
2
B1(x5)=

5
2
B2(x5)=

(

f(x5)
)1/2

. (22.47)

Therefore the Υ -hypothesis (21.34) is not satisfied by any value of
µ ∈ {0, 1, 2, 3}. The 15 Killing equations corresponding to metric
(22.46) are given by (22.4), i.e., coincide with those relevant to the 5D
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e.m. and weak metrics in the range x5 � x5
0. Since the contravariant metric

tensor is

gAB
DR5(x

5) = diag
(

1,−25
2
,−25

4
,−1,±

(

f(x5)
)−1
)

, (22.48)

the components of the contravariant Killing five-vector ξA(x, x5) ESC on=
gAB
DR5(x

5)ξB(x, x5) are given by

ξ0(x1, x2, x3, x5) = −B1x1 −B2x2 −B3x3 +Ξ0F (x5) + T 0; (22.49)

ξ1(x0, x2, x3, x5) =
25
2
[

−B1x0 +Θ3x2 −Θ2x3 −Ξ1F (x5) + T 1
]

;

(22.50)

ξ2(x0, x1, x3, x5) =
25
4
[

−B2x0 −Θ3x1 +Θ1x3 −Ξ2F (x5) + T 2
]

;

(22.51)
ξ3(x0, x1, x2, x5) = −B3x0 +Θ2x1 −Θ1x2 −Ξ3F (x5) + T 3; (22.52)

ξ5(x, x5) = ∓
(

f(x5)
)− 1

2 [Ξ0x0 +Ξ1x1 +Ξ2x2 +Ξ3x3 − T 5], (22.53)

in the same notation of (22.5)–(22.10).

(Case b’) (Non-Minkowskian conditions). In the energy range x5 >
x5

0 the 5D strong metric takes the form:

gAB,DR5(x5) = diag

(

(

x5

x5
0

)2

,− 2
25
,− 4

25
,−
(

x5

x5
0

)2

,±f(x5)

)

. (22.54)

From (21.22) and (21.23) one gets:

A0(x5) = −A3(x5) =

(

x5
)2

(x5
0)

3

(

f(x5)
)− 1

2

(

1
x5

+
1
2
f ′(x5)
f(x5)

)

;

A1(x5) = A2(x5) = 0; (22.55)

B0(x5) = B3(x5) =
x5

x5
0

(

f(x5)
)

1
2 ;

B1(x5) =
1√
2
B2(x5) =

√
2

5
(

f(x5)
)1/2

; (22.56)

±A0(x5)
B0(x5)

=
∓A3(x5)
B3(x5)

= ± x5

f(x5) (x5
0)

2

(

1
x5

+
1
2
f ′(x5)
f(x5)

)

. (22.57)
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Therefore, on account of the strict positiveness of f(x5), the hypothesis
Υ of functional independence is satisfied by µ = 0, 3 under the following
constraints:

1
x5

+
1
2
f ′(x5)
f(x5)


= 0;

x5

f(x5)

(

1
x5

+
1
2
f ′(x5)
f(x5)

)


= c ⇔ 1
x5

+
1
2
f ′(x5)
f(x5)


= c
f(x5)
x5

, c ∈ R0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⇔ 1
x5

+
1
2
f ′(x5)
f(x5)


= c
f(x5)
x5

, c ∈ R. (22.58)

The case is analogous to the case (b) of the e.m. and weak metrics. Thus,
the components of the contravariant Killing five-vector ξA(x, x5) for the
phenomenological strong metric in the range x5 > x5

0 are given by (21.41)–
(21.45), where (some of) the real parameters are constrained to obey the
following system (see (22.17)):

(01)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

x5

x5
0

)2
[

d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)

]

+
2
25
[

h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)

]

= 0;

(02)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

x5

x5
0

)2
(

d8x
1x3 + d7x

1 + d4x
3 + d3

)

+
4
25
[

l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)

]

= 0;

(03)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

x5

x5
0

)2
(

d8x
1x2 + d6x

1 + d4x
2 + d2

)

+
(

x5

x5
0

)2
[

m8x
1x2 +m7x

1 +m6x
2 + (m5 + g2)

]

= 0;

(12)

⎧

⎪

⎨

⎪

⎩

2
25
(

h2x
0x3 + h1x

0 + h4x
3 + h3

)

+
4
25
(

l2x
0x3 + l1x

0 + l4x
3 + l3

)

= 0;

(13)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
25
(

h2x
0x2 + h8x

0 + h4x
2 + h6

)

+
(

x5

x5
0

)2
(

m8x
0x2 +m7x

0 +m4x
2 +m3

)

= 0;

(23)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4
25
(

l2x
0x1 + l6x

0 + l4x
1 + l8

)

+
(

x5

x5
0

)2
(

m8x
0x1 +m6x

0 +m4x
1 +m2

)

= 0.

(22.59)
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The solutions of this system are given by:

d3 = d4 = d6 = d7 = d8 = 0; d2 = − (m5 + g2) ;
m2 = m3 = m4 = m6 = m7 = m8 = 0;
h1 = h2 = h4 = h6 = h8 = 0;
l1 = l2 = l4 = l6 = l8 = 0; l5 = −e4;
h3 = −2l3; h7 = −e2; a2 = −d5.

(22.60)

Replacing (22.60) into (21.41)–(21.45) yields the explicit form of the Killing
five-vector ξA(x, x5):

ξ0(x3) = ˜F0(x3) = d2x
3 + (a1 + d1 +K0); (22.61)

ξ1(x2) = −˜F1(x2) = 2l3x2 − (K1 + h5 + e1) ; (22.62)

ξ2(x1) = −˜F2(x1) = −l3x1 − (l7 +K2 + e3); (22.63)

ξ3(x0) = −˜F3(x0) = d2x
0 − (m1 + g1 + c); (22.64)

ξ5 = 0. (22.65)

22.2.2 Killing Isometries for Strong Metric

As in the e.m. and weak case, it is possible to express the contravariant
Killing vector of the phenomenological strong metric in a unique form, valid
in the whole energy range. This is done by redenominating the parameters
in (22.49)–(22.53) as follows:

⎧

⎨

⎩

Bi ≡ ζi;
Θi ≡ θi;
Ξ0 ≡ ζ5

(22.66)

(∀i = 1, 2, 3) and putting, in (22.61)–(22.65):

(a1 + d1 +K0) = T 0;

− (K1 + h5 + e1) =
25
2
T 1;

−(l7 +K2 + e3) =
25
4
T 2;

−(m1 + g1 + c) = T 3;

l3 =
25
4
Θ3 :

d2 = −B3.

(22.67)

Then, exploiting the right specification ̂ΘR(x5
0 − x5) of the step function,

we get the following general form of the contravariant Killing five-vector
ξA(x, x5) for the 5D phenomenological metric of the strong interaction:

ξ0(x1, x2, x3, x5)

= ̂ΘR(x5
0 − x5)

[

−ζ1x1 − ζ2x2 + ζ5F (x5)
]

− ζ3x3 + T 0; (22.68)



324 22. Killing Symmetries for 5D Interactions Metrics

ξ1(x0, x2, x3, x5)

=
25
2
̂ΘR(x5

0 − x5)
[

−ζ1x0 − θ2x3 −Ξ1F (x5)
]

+
25
2
θ3x2 +

25
2
T 1; (22.69)

ξ2(x0, x1, x3, x5)

=
25
4
̂ΘR(x5

0 − x5)
[

−ζ2x0 + θ1x3 −Ξ2F (x5)
]

− 25
4
θ3x1 +

25
4
T 2; (22.70)

ξ3(x0, x1, x2, x5)

= ̂ΘR(x5
0 − x5)

[

θ2x1 − θ1x2 −Ξ3F (x5)
]

− ζ3x0 + T 3; (22.71)

ξ5(x, x5)

= ̂ΘR(x5
0 − x5)

{

∓
(

f(x5)
)− 1

2 [ζ5x0 +Ξ1x1 +Ξ2x2 +Ξ3x3 − T 5]
}

.

(22.72)

By redefining

25
2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

T 1

ζ1

θ2

Ξ1

≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

T 1′

ζ1′

θ2′

Ξ1′

25
4

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

T 2

ζ2

θ1

θ3

Ξ2

≡

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

T 2′

ζ2′

θ1′

θ3′

Ξ2′

(22.73)

in (22.68)–(22.72) (and omitting the apices) one finds eventually:

ξ0(x1, x2, x3, x5)

= ̂ΘR(x5
0 − x5)

[

− 2
25
ζ1x1 − 4

25
ζ2x2 + ζ5F (x5)

]

− ζ3x3 + T 0; (22.74)

ξ1(x0, x2, x3, x5)

= ̂ΘR(x5
0 − x5)

[

−ζ1x0 − θ2x3 −Ξ1F (x5)
]

+ 2θ3x2 + T 1; (22.75)

ξ2(x0, x1, x3, x5)

= ̂ΘR(x5
0 − x5)

[

−ζ2x0 + θ1x3 −Ξ2F (x5)
]

− θ3x1 + T 2; (22.76)
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ξ3(x0, x1, x2, x5)

= ̂ΘR(x5
0 − x5)

[

2
25
θ2x1 − 4

25
θ1x2 −Ξ3F (x5)

]

− ζ3x0 + T 3; (22.77)

ξ5(x, x5)

= ̂ΘR(x5
0 − x5)

{

∓
(

f(x5)
)− 1

2 [ζ5x0 +
2
25
Ξ1x1 +

4
25
Ξ2x2 +Ξ3x3 − T 5]

}

.

(22.78)

The 5D strong metric (22.46) in the energy range 0 < x5 � x5
0 can be

put in the form:

gAB,DR5(x5) = diag
(

gµν,M4
(x5),±f(x5)

)

, (22.79)

where M4 is a standard 4D Minkowskian manifold with the following coor-
dinate rescaling (contraction):

x1 −→
√

2
5
x1 ⇒

(in gen.)
�

dx1 −→
√

2
5

dx1;

x2 −→ 2
5
x2 ⇒

(in gen.)
�

dx2 −→ 2
5
dx2. (22.80)

Considering slices at dx5 = 0 of �5 entails ξ5(x, x5) = 0 (see (22.31)).
Then, the explicit form (22.74)–(22.78) of the Killing vector entails that
– as expected – the Killing group is the standard Poincaré group P (1, 3)
(suitably rescaled):

[P (1, 3)STD. = SO(1, 3)STD. ⊗s Tr.(1, 3)STD.]|x1−→
√

2
5 x1,x2−→ 2

5 x2 . (22.81)

For x5 > x5
0 the strong metric is given by (22.54). Therefore, it easily

follows from (22.74)–(22.78) that the 5D Killing group of the constant-
energy sections of �5 is

(

SO(2)STD.,Π(x1,x2−→
√

2x2) ⊗Bx3,STD.

)

⊗s Tr.(1, 3)STD.. (22.82)

Here SO(2)STD.,Π(x1,x2−→
√

2x2) = SO(2)
STD.,Π(x1−→

√
2

5 x1,x2−→ 2
5 x2)

is the
1-parameter group (generated by the usual, special-relativistic generator
S3

SR

∣

∣

x2−→
√

2x2) of the 2D rotations in the plane Π(x1, x2) (characterized
by the coordinate contractions (22.80)), and Bx3,STD. is the usual one-
parameter group (generated by the special-relativistic generator K3

SR) of
the standard Lorentzian boosts along ̂x3. The direct and semidirect nature
of the group products in (22.81) and (22.82) has the following explanation.
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In general (independently of contractions and/or dilations of coordinates)
the standard mixed Lorentz algebra is given by the commutation relations
(ESC on):

[Si
SR,K

i
SR] = εijlK

l
SR,∀i, j = 1, 2, 3, (22.83)

where as usual εijl is the Levi-Civita 3-tensor of rank 3 and Si
SR and Ki

SR

are the ith generator of (true) rotations and Lorentz boosts, respectively.
It follows that:

[S3
SR,K

3
SR]
∣

∣

x2−→
√

2x2

(

= [S3
SR

∣

∣

x2−→
√

2x2 ,K
3
SR]
)

= 0 (22.84)

what justifies the presence of the direct group product in (22.82). The semi-
direct product of

(

SO(2)STD.,Π(x1,x2−→
√

2x2) ⊗Bx3,STD.

)

by Tr.(1, 3)STD.

is due instead to the fact that the standard mixed Poincaré algebra (inde-
pendently of contractions and/or dilations of coordinates) is defined by the
following commutation relations (ESC on) (∀i, j, k = 1, 2, 3):

[Ki
SR, Υ

0
SR] = −Υ i

SR;

[Ki
SR, Υ

j
SR] = −δijΥ 0

SR;

[Si
SR, Υ

0
SR] = 0;

[Si
SR, Υ

k
SR] = εiklΥ

l
SR,

(22.85)

where Υ 0
SR, Υ

1
SR, Υ

2
SR and Υ 3

SR are the generators of the standard space–time
translations.

22.2.3 Solution of Strong Killing Equations above Threshold
with Violated Υ -Hypothesis

In the energy range x5 > x5
0 , if condition (22.58) is not satisfied, the

hypothesis Υ of functional independence (21.34)does not hold for any value
of µ. In this case the metric coefficient f(x5) obeys the equation

1
2
f ′(x5)
f(x5)

− c
f(x5)
x5

+
1
x5

= 0, c ∈ R. (22.86)

Such ODE is separable ∀c ∈ R. By solving it, one gets the following form
of the 5D metric of the strong interaction (for x5 > x5

0 and when the
Υ -hypothesis (21.34) is violated):

gAB,DR5(x5)

= diag

⎛

⎜

⎜

⎜

⎝

(

x5

x5
0

)2

,− 2
25
,− 4

25
,−
(

x5

x5
0

)2

,± 1

γ

(

x5

x5
0

)2

+ c

⎞

⎟

⎟

⎟

⎠

(22.87)
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with

c, γ ∈ R : γ
(

x5

x5
0

)2

+ c > 0,∀x5 ∈ R+
0 ⇔ c, γ ∈ R+

(not both zero). (22.88)

Solving the related Killing equations (after lengthy but elementary calcula-
tions) yields for the contravariant Killing five-vector ξA(x, x5) the following
compact form (valid for c, γ ∈ R+ but not vanishing simultaneously):

ξ0(x3; c, γ) = (1 − δc,0)
[

−
(

x5
0

)2 (
(1 − δγ,0) d3x

3 + T0

)

]

; (22.89)

ξ1(x2; γ) = − (1 − δγ,0)
25
2
d2x

2 − 25
2
T1; (22.90)

ξ2(x1; γ) = (1 − δγ,0)
25
4
d2x

1 − 25
4
T2; (22.91)

ξ3(x0; c, γ) = − (1 − δc,0) (1 − δγ,0)
(

x5
0

)2 (
d3x

0 + T3

)

; (22.92)

ξ5
(

x5; c, γ
)

= ±δc,0
γα

(x5
0)

2x
5, (22.93)

where we identified −ε = T0 in (22.89), highlighted the parametric depen-
dence of ξA on c and γ, and introduced the Kronecker δ.

The dimensions and ranges of the transformation parameters are

[α] = l2, [d3] = l−2, [T0] = [T3] = l−1, [T1] = [T2] = l, [d2] = l0;
(22.94)

α, d2, d3, T0, T1, T2, T3 ∈ R. (22.95)

The 4D Killing group (i.e., the isometry group of the slices of �5 at
dx5 = 0), too, can be written in the compact form
[

Tr.
̂x1,̂x2STD.

⊗ (1 − δc,0) Tr.
̂x0STD.

⊗ (1 − δc,0) (1 − δγ,0) Tr.
̂x3STD.

]

⊗s

⊗s

[

(1 − δγ,0) SO(2)STD.(Π2) ⊗ (1 − δc,0) (1 − δγ,0)BSTD.̂x3

]

. (22.96)

Here, Π2 is the 2D manifold
(

x1, x2
)

with metric rescaling x2 −→
√

2x2

with respect to the Euclidean level, and SO(2)STD.(Π2), BSTD. ̂x3 are the
1-parameter abelian groups generated by S3

SR|x2−→
√

2x2 and K3
SR, respec-

tively. The semidirect nature of the group product is determined by the fol-
lowing commutation relations of the mixed, rototranslational, space–time
Lorentz algebra (ESC on):

[

Si
SR, Υ

j
SR

]

= εijlΥ
l
SR. (22.97)
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The direct product of SO(2)STD.(Π2) and B
STD. ̂x3 and of the translation

groups Tr.
̂x1,̂x2 STD.

, Tr.
̂x0 STD.

, Tr.
̂x3 STD.

is instead a consequence of the
commutativity of the generators:

[

S3
SR,K

3
SR

]∣

∣

x2−→
√

2x2 = 0; (22.98)

[Υµ
SR, Υ

ν
SR] = 0. (22.99)

22.3 Gravitational Interaction

22.3.1 Validity of the Υ -Hypothesis

(Case a’) (Minkowskian conditions). In the energy range 0 < x5 � x5
0

the 5D metric for gravitational interaction (20.23) becomes:

gAB,DR5(x5) = diag
(

1,−b21(x5),−b22(x5),−1,±f(x5)
)

. (22.100)

The “vectors” Aµ(x5) and Bµ(x5) (21.19) and (21.23) read therefore:

A0(x5) = A3(x5) = 0;

B0(x5) = B3(x5) =
(

f(x5)
)1/2

; (22.101)

Ai(x5) = bi(x5)(f(x5))−1/2

·
[

−
(

b′i(x
5)
)2

+ bi(x5)b′′i (x5) − 1
2
bi(x5)b′i(x

5)f ′(x5)(f(x5))−1

]

,

i = 1, 2; (22.102)

Bi(x5) = bi(x5)(f(x5))1/2, i = 1, 2; (22.103)

±Ai(x5)
Bi(x5)

= ± (f(x5))−1
[

−
(

b′i(x
5)
)2

+ bi(x5)b′′i (x5)

−1
2
bi(x5)b′i(x

5)f ′(x5)(f(x5))−1

]

,

i = 1, 2. (22.104)



22.3 Gravitational Interaction 329

One has

Ai(x
5) �= 0 ⇔

⇔
[

−
(

b′i(x
5)
)2

+ bi(x
5)b′′i (x5) − 1

2
bi(x

5)b′i(x
5)f ′(x5)(f(x5))−1

]

�= 0;

Bi(x
5) �= 0 ∀x5 ∈ R+

0 (no condition) ;
±Ai(x

5)

Bi(x5)
�= c, c ∈ R0

⇔ −
(

b′i(x
5)
)2

+ bi(x
5)b′′i (x5) − 1

2
bi(x

5)b′i(x
5)f ′(x5)(f(x5))−1 �= cf(x5),

c ∈ R0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

⇔ −
(

b′i(x
5)
)2

+ bi(x
5)b′′i (x5) − 1

2
bi(x

5)b′i(x
5)f ′(x5)(f(x5))−1

�= cf(x5), c ∈ R, i = 1, 2. (22.105)

Therefore the validity for µ = 1, 2 of the Υ -hypothesis (21.34) (not satis-
fied for µ = 0, 3) depends on the nature and the functional form of the
metric coefficients b21(x

5) and b22(x
5). In general the 15 Killing equations

corresponding to metric (22.100) are:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f(x5)ξ0,0(xA) = 0;
ξ0,1(xA) + ξ1,0(xA) = 0;
ξ0,2(xA) + ξ2,0(xA) = 0;
ξ0,3(xA) + ξ3,0(xA) = 0;
ξ0,5(xA) + ξ5,0(xA) = 0;

f(x5)ξ1,1(xA) ∓ b1(x5)b′1(x
5)ξ5(xA) = 0;

ξ1,2(xA) + ξ2,1(xA) = 0;
ξ1,3(xA) + ξ3,1(xA) = 0;

b1(x5)(ξ1,5(xA) + ξ5,1(xA)) − 2b′1(x
5)ξ1(xA) = 0;

f(x5)ξ2,2(xA) ∓ b2(x5)b′2(x
5)ξ5(xA) = 0;

ξ2,3(xA) + ξ3,2(xA) = 0;
b2(x5)(ξ2,5(xA) + ξ5,2(xA)) − 2b′2(x

5)ξ2(xA) = 0;
f(x5)ξ3,3(xA) = 0;

ξ3,5(xA) + ξ5,3(xA) = 0;
2f(x5)ξ5,5(xA) − f ′(x5)ξ5(xA) = 0.

(22.106)

By making suitable assumptions on the functional form of the metric coef-
ficients b2i (x

5) (i = 1, 2), it is possible in 11 cases (which include all those
of physical and mathematical interest) to solve the relevant Killing equa-
tions for the gravitational interaction and get the related isometries (see
Appendix B).
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(Case b’) (Non-Minkowskian conditions). In the energy range x5 >
x5

0 the 5D gravitational metric (20.23) reads:

gAB,DR5(x5)

= diag

(

1
4

(

1 +
x5

x5
0

)2

,−b21(x5),−b22(x5),−1
4

(

1 +
x5

x5
0

)2

,±f(x5)

)

.

(22.107)

Equations (21.22) and (21.23) yield

A0(x5) = −A3(x5) =

=
1
8

(

1 +
x5

x5
0

)

x5

(x5
0)

2

(

f(x5)
)− 1

2

[

1
x5

+
1
2

(

1 +
x5

0

x5

)

f ′(x5)
f(x5)

]

;

B0(x5) = B3(x5) =
1
2

(

1 +
x5

0

x5

)

(

f(x5)
)1/2 ;

(22.108)

±A0(x5)
B0(x5)

=
∓A3(x5)
B3(x5)

=±1
4

1
f(x5)

x5

(x5
0)

2

[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]

,

(22.109)

whereas (22.101)–(22.104) of the previous case still hold for Ai(x5) and
Bi(x5) (i = 1, 2). Then, since f(x5) is strictly positive and

x5, x5
0 ∈ R+

0

⇒
(in gen.)

�

(

1 +
x5

0

x5

)

∈ R+
0 , (22.110)

the Υ -hypothesis of functional independence for the gravitational met-
ric over threshold is satisfied at least for µ = 0, 3 under the following
conditions:

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)


= 0;

x5

f(x5)

[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]


= 	 ⇔

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)


= 	f(x5)
x5

, 	 ∈ R0,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

⇔ 1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)


= 	f(x5)
x5

, 	 ∈ R. (22.111)

Therefore, in the energy range x5 > x5
0, if the Υ -hypothesis of functional

independence for the gravitational metric is not satisfied for µ = 0, 3, the
metric coefficient f(x5) obeys the following equation:
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1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

− 	f(x5)
x5

+
1
x5

= 0, 	 ∈ R, (22.112)

which, since x5
0, x

5, f(x5) ∈ R+
0 , can be rewritten as

f ′(x5) +
2

x5 + x5
0

f(x5) − 2	
x5 + x5

0

(

f(x5)
)2

= 0, 	 ∈ R. (22.113)

Such ordinary differential equation belongs to the separable subclass of the
Bernoulli type ∀	 ∈ R. Its only solution is

f(x5) =
1

γ(x5 + x5
0)2 + 	 , 	, γ ∈ R, (22.114)

which can be expressed in dimensionless form as (by suitably rescaling the
constants 	, γ):
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

f(x5) ≡ f

(

x5

x5
0

)

=
1

γ

(

1 +
x5

x5
0

)2

+ 	
,

c, γ ∈ R : γ
(

1 +
x5

x5
0

)2

+ 	 > 0 ∀x5 ∈ R+
0 ⇔ 	, γ ∈ R+ (not both zero).

(22.115)
The corresponding 5D gravitational metric is therefore

gAB,DR5(x5)

= diag

⎛

⎜

⎜

⎜

⎜

⎝

1
4

(

1 +
x5

x5
0

)2

,−b21(x5),−b22(x5),

−1
4

(

1 +
x5

x5
0

)2

,±
(

γ

(

1 +
x5

x5
0

)2

+ 	
)−1

⎞

⎟

⎟

⎟

⎟

⎠

.

(22.116)

Thus, in both energy ranges the Υ -hypothesis is violated for µ = 0, 3. Below
threshold this is automatically ensured by the form of the gravitational
metric (22.100), whereas above threshold such a requirement determines
the expression of the fifth metric coefficient f(x5).

22.3.2 The 5D Υ -Violating Metrics of Gravitation

We want now to discuss the 5D gravitational metrics which violate the Υ -
hypothesis of functional independence ∀µ = 0, 1, 2, 3 in either energy range
0 < x5 � x5

0,grav and x5 > x5
0,grav.

It was shown in Sect. 22.3.1 that, when the Υ -hypothesis is not satisfied
by µ = 0, 3, the gravitational metric is given by (22.100) and (22.116) below
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threshold and over threshold, respectively. If one imposes in addition that
the Υ -hypothesis is violated also by µ = 1 and/or 2, such a requirement
permits to get the expressions of the metric coefficients b21(x

5), b22(x
5) in

terms of f(x5).
Indeed, in this case it follows from (22.105) that the metric coefficients

b21(x
5), b22(x

5) and f(x5) satisfy the following ODE (ESC off)1

−
(

b′k(x5)
)2

+ bk(x5)b′′k(x5)− 1
2
bk(x5)b′k(x5)f ′(x5)(f(x5))−1 − ckf(x5) = 0,

ck ∈ R, k = 1 and/or 2, (22.117)

whose solution for f(x5) in terms of bk(x5) is:

f(x5) =

(

b′k(x5)
)2

dkb2k(x5) − ck
⇔

⇔ dkb
2
k(x5)f(x5) −

(

b′k(x5)
)2 − ckf(x5) = 0,

k = 1 and/or 2, dk ∈ R+, ck ∈ R−
(not both zero). (22.118)

In dimensionless form for f(x5) and b2k(x5), we have

f(x5) ≡ f

(

x5

x5
0

)

=

(

b′k

(

x5

x5
0

))2

dkb2k

(

x5

x5
0

)

− ck

⇔ dkb
2
k

(

x5

x5
0

)

f

(

x5

x5
0

)

−
(

b′k

(

x5

x5
0

))2

− ckf

(

x5

x5
0

)

= 0,

k = 1 and/or 2. (22.119)

By assuming f(x5) known, one gets the following implicit solution of
(22.117) for bk(x5) (dk > 0):

αk ±
∫ x5

dx5′√−f(x5′) +
1√
dk

arctan

( √
dkbk(x5)

√

ck − dkb2k (x5)

)

= 0,

k = 1 and/or 2, αk ∈ R, (22.120)

under the constraint

ck − dkb
2
k

(

x5

x5
0

)

> 0, k = 1 and/or 2 ∀x5 ∈ R+
0 ⇔ dk ∈ R+, ck ∈ R−.

(22.121)

1In the following, the lower index “k” in the constants means that, in general, these
depend on the metric coefficient bk considered.
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Equation (22.120) can be solved for all possible pair of values (dk, ck) (even
in the limit case of bk constant). Precisely, one can distinguish the following
three cases (k = 1, 2):

(I) (dk, ck) ∈ R+
0 ×R−

0 :

b2k(x5) =
ck
dk

tanh2
[√

dk

(

αk ∓ F (x5)
)]

{

tanh2
[√

dk (αk ∓ F (x5))
]

− 1
}

= − ck
dk

{

cosh
[

2
√

dk

(

αk ∓ F (x5)
)

]

− 1
}

, αk ∈ R, (22.122)

where F (x5) is still given by (22.10).

(II) (dk, ck) ∈ {0} ×R−
0 :

b2k(x5) =
(

±
√
−ckF (x5) + δk

)2
, δk ∈ R. (22.123)

(III) (dk, ck) ∈ R+
0 × {0}:

b2k(x5) = κ2
k exp

(

2
√

dkF (x5)
)

= κ2
k1 exp

(

2
√

dkF (x5)
)

+ κ2
k2 exp

(

−2
√

dkF (x5)
)

,

κk, κki ∈ R0, i = 1, 2. (22.124)

Let us note that all the previous results hold true in general for any µ ∈
{0, 1, 2, 3}. They have been discussed by considering µ = k = 1 and/or 2 in
order to apply the results to the case of the DR5 metric of the gravitational
interaction, characterized by the indeterminacy of the metric coefficients
bk(x5), k = 1, 2, and requiring therefore a treatment of the Υ -violation for
µ = k = 1 and/or 2.

The earlier general formalism allows one to deal with the 5D metrics of
DR5 for the gravitational interaction which violate Υ ∀µ = 0, 1, 2, 3 in the
energy ranges 0 < x5 � x5

0,grav and x5 > x5
0,grav.

In the first case the functional form of f(x5) is undetermined, since in
general it must only satisfy the condition f > 0 ∀x5 ∈ R+

0 . As to the
space coefficients bk(x5), k = 1, 2, one has nine possible cases, obtained
by considering all the possible pairs (I1, I2) (I1, I2 = I, II, III) of the
functional typologies for bk(x5) corresponding to the pairs of values (dk, ck)
(see (22.122)–(22.124)). Since the two space coefficients are expressed in
terms of the fifth metric coefficient, one gets “f(x5)-dependent,” i.e., in
general “functionally parametrized” metrics.
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In the energy range x5 > x5
0,grav, the fifth coefficient is determined by

(22.112) with solution (22.115). The Υ -violating gravitational metric has
the form (22.116), and the space coefficients b21(x

5), b22(x
5) are still given

by (22.122)–(22.124). However, now the function F (x5) can be explicitly
evaluated. One has

F (x5) ≡
∫

dx5
(

f(x5)
)1/2

= +
∫

dx5
√

f(x5)

= x5
0

∫

dx5

√

γ (x5)2 + 2γx5
0x

5 +
(

	 + γ
)

(x5
0)

2

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x5

√
	

for (γ, 	) ∈ {0} ×R+
0 (case A);

x5
0√
γ

ln
(

1 +
x5

x5
0

)

for (γ, 	) ∈ R+
0 × {0} (case B);

x5
0√
γ

arcsinh
[√

γ

	

(

1 +
x5

x5
0

)]

for (γ, 	) ∈ R+
0 ×R+

0 (case C).

(22.125)

Replacing the earlier expressions (22.125), corresponding to the three pos-
sible pairs

(

γ, 	
)

, in (22.122)–(22.124), one gets all the possible forms of
the coefficients b21(x

5) and b22(x
5) of the Υ -violating gravitational metric

above threshold. The functional typologies of the spatial coefficients can
be labeled by the pair (L, I) (with L = A,B,C labeling the three cases
of (22.125) and I = I, II, III referring as before to the three expressions
(22.122)–(22.124)). Then, one gets 27 possible forms for the 5D gravi-
tational metrics violating the hypothesis Υ in the energy range. They
can be labeled by (L1I1,L2I2) (L1,L2 = A,B,C, I1, I2 = I, II, III),
in the notation exploited for the functional typology of the metric coef-
ficients b2k(x5) for the indices 1 and 2, according to the earlier discus-
sion. Their explicit form is easy to write down, and can be found in
[136].

In correspondence to the different gravitational metrics, one gets 27 sys-
tems of 15 Killing equations, which would require an explicit solution (or
at least not exploiting theΥ -hypothesis), in order to find the corresponding
isometries. However, solving these systems is far from being an easy task,
even by using symbolic-algebraic manipulation programs.

A possible method of partial solution could be the Lie structural
approach, based on the Lie symmetries obeyed by the system equations.
Such a resolution could in principle be also applied to the general system
(22.106), in which no assumption is made on the functional forms of the
metric coefficients b2µ(x5) (µ = 0, 1, 2, 3) and f(x5).
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22.4 Infinitesimal-Algebraic Structure of Killing
Symmetries in �5

From the knowledge of the Killing vectors for the 5D metrics of the four
fundamental interactions, we can now discuss the algebraic-infinitesimal
structure of the related Killing isometries.

As is well known, the M independent Killing vector fields of a differen-
tiable, N -dimensional manifold SN do span a linear space K. The maximum
number of independent Killing vectors (i.e.,the maximum dimension of K)
is N(N + 1)/2 ≥ M . On the basis of the general discussion of Sect. 5.2, an
infinitesimal transformation in SN can be written as (cf. (5.8)):

x′A(x, α) = xA + δxA(x, α) + O(α2)

= xA + ξA(x, α) + O(α2), A = 1, 2, ..., N, (22.126)

where {αA} (A = 1, 2, . . . ,M) is the parametric M -vector and the con-
travariant Killing N-vector ξA(x, α) of the manifold reads (see (5.18)–
(5.20)) (ESC on):

ξA(x, α) = ξA
A(x)αA . (22.127)

Quantities ξA
A(x) are the components of the linearly-independent Killing

vectors of K, and are given by

ξA
A(x) =

∂x′A(x, α)
∂αA

∣

∣

∣

∣ αB=0
∀B=1,...,15

. (22.128)

The general form of an infinitesimal metric automorphism of SN is therefore

x′A(x, α) ESC on= xA + ξA
A(x)αA +O(α2), A = 1, 2, ..., N, (22.129)

By introducing the canonical vector basis
{

∂A ≡ ∂/∂xA
}

in SN , one has,
for the Killing N -vector ˜ξ(x) (ESC on on A and A):2

˜ξ(x) = ξA
A(x)αA∂A = ˜ξA(x)αA , (22.130)

where (ESC on)3
˜ξA(x) = ξA

A(x)∂A. (22.131)

2In this section, of course, the notation ṽ means a N -vector.
3Care must be exercised in distinguishing the two different vector spaces involved

in (22.130)–(22.131). On one hand, ξA(x) are the (contravariant) components of the
N -dimensional Killing vector ξ(x), belonging to the (tangent space of) the manifold SN .

On the other side, ˜ξA(x) are the components of the M -dimensional vector belonging

to the M -d Killing space. According to (22.131), each ˜ξA(x) is in turn a vector in (the
tangent space of) the manifold SN .

22.4 Infinitesimal-Algebraic Structure of Killing Symmetries
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The M vectors ˜ξA(x) are the infinitesimal generators of the algebra of the
Killing symmetries of SN . The product of this algebra is, as usual, the
commutator

[

˜ξA(x),˜ξB(x)
]

, A,B = 1, 2, . . . ,M. (22.132)

The Killing algebra is then specified by the set of commutation relations
[

˜ξA(x),˜ξB(x)
]

= CC
AB
˜ξC(x), (22.133)

where CC
AB = −CC

BA are the M(M−1)/2 structure constants of the algebra.
In the present case of the space �5, it is obviously A = 0, 1, 2, 3, 5. As to

the dimension M (≤ 15) of the Killing manifold, it depends on the explicit
solution ξA(x, x5) of the 15 Killing equations (21.6)–(21.15), and therefore
on the metric gDR5,int.(x5). In the following, we shall consider all possible
cases of metrics of physical relevance.

22.4.1 Metric with Constant Space–Time Coefficients

Let us consider the 5D-metric (22.2) gAB,DR5(x5) = diag
(

a,−b,−c,−d,±f(x5)
)

, special cases of which are the electromag-
netic and weak metrics above threshold (x5 ≥ x5

0e.m.,weak), (22.1), and the
strong metric below threshold (0 < x5 ≤ x5

0,strong), (22.46).
The solution of the related Killing system for the contravariant Killing

five-vector ξA(x, α) is given by (22.5’)–(22.9’), we rewrite here for reader’s
convenience:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ0(x1, x2, x3, x5) =
1
a

[

T 0 −B1x1 −B2x2 −B3x3 +Ξ0F (x5)
]

;

ξ1(x0, x2, x3, x5) =
1
b

[

T 1 −B1x0 +Θ3x2 −Θ2x3 −Ξ1F (x5)
]

;

ξ2(x0, x1, x3, x5) =
1
c

[

T 2 −B2x0 −Θ3x1 +Θ1x3 −Ξ2F (x5)
]

;

ξ3(x0, x1, x2, x5) =
1
d

[

T 3 −B3x0 +Θ2x1 −Θ1x2 −Ξ3F (x5)
]

;

ξ5(x, x5) = ±
(

f(x5)
)− 1

2 [T 5 −Ξ0x0 −Ξ1x1 −Ξ2x2 −Ξ3x3]
(22.134)

(F (x5) =
∫

dx5
(

f(x5)
)1/2).

Without loss of generality we can make the following identifications:

α1 =
1
a
T 0; α2 =

1
a
T 1; α3 =

1
a
T 2; α4 =

1
a
T 3;

α5 = −B1; α6 = −B2; α7 = −B3;
α8 = Θ3; α9 = Θ2; α10 = Θ1;

α11
(±) = ±T 5; α12 = Ξ0; α13 = Ξ1; α14 = Ξ2; α15 = Ξ3.

(22.135)
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Equation (22.134) becomes therefore
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ0(x1, x2, x3, x5) = α1 +
1
a

[

α5x1 + α6x2 + α7x3 + α12F (x5)
]

;

ξ1(x0, x2, x3, x5) = α2 +
1
b

[

α5x0 + α8x2 − α9x3 − α13F (x5)
]

;

ξ2(x0, x1, x3, x5) = α3 +
1
c

[

α6x0 − α8x1 + α10x3 − α14F (x5)
]

;

ξ3(x0, x1, x2, x5) = α4 +
1
d

[

α7x0 + α9x1 − α10x2 −−α15F (x5)
]

;

ξ5(x, x5) =
(

f(x5)
)− 1

2
(

α11 ∓ α12x0 ∓ α13x1 ∓ α14x2 ∓ α15x3
)

.
(22.136)

Then, it follows from (22.128):

ξA
A(x) =

⎛

⎜

⎜

⎜

⎜

⎝

ξµ
A,SR(x)

0

⎞

⎟

⎟

⎟

⎟

⎠

,A = 1, 2, 3, 4; (22.137)

ξA
5 (x0, x1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1

a
x0

b
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= δA
0

x1

a
+ δA

1

x0

b
; (22.138)

ξA
6 (x0, x2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x2

a
0
x0

c
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= δA
0

x2

a
+ δA

2

x0

c
; (22.139)

ξA
7 (x0, x3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x3

a
0
0
x0

d
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= δA
0

x3

a
+ δA

3

x0

d
; (22.140)

ξA
8 (x1, x2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
x2

b

−x1

c
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= δA
1

x2

b
− δA

2

x1

c
; (22.141)
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ξA
9 (x1, x3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

−x3

b
0
x1

d
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= −δA
1

x3

b
+ δA

3

x1

d
; (22.142)

ξA
10(x

2, x3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

x3

c

−x2

d
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= δA
2

x3

c
− δA

3

x2

d
; (22.143)

ξA
11(x

5) =

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0
0

∓
(

f(x5)
)−1/2

⎞

⎟

⎟

⎟

⎟

⎠

= ∓δA
5

(

f(x5)
)−1/2

; (22.144)

ξA
12(x

0, x5) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

F (x5)
a
0
0
0

∓
(

f(x5)
)−1/2

x0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= δA
0

F (x5)
a

∓ δA
5

(

f(x5)
)−1/2

x0;

(22.145)

ξA
13(x

1, x5) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
F (x5)
b
0
0

∓
(

f(x5)
)−1/2

x1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= δA
1

F (x5)
b

∓ δA
5

(

f(x5)
)−1/2

x1;

(22.146)

ξA
14(x

2, x5) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0

−F (x5)
c

0
∓
(

f(x5)
)−1/2

x2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= −δA
2

F (x5)
c

∓ δA
5

(

f(x5)
)−1/2

x2;

(22.147)
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ξA
15(x

3, x5) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0

−F (x5)
d

∓
(

f(x5)
)−1/2

x3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= −δA
3

F (x5)
d

∓ δA
5

(

f(x5)
)−1/2

x3.

(22.148)
It is easy to see that the four Killing five-vectors ξA

A(x), A = 1, 2, 3, 4
(22.138) are the generators Υµ (µ = 0, 1, 2, 3) of the standard transla-
tion group Tr.(1, 3),4 whereas the six Killing five-vectors ξA

A(x), A =
5, . . . , 10 ((22.139)–(22.145)) are the generators of the deformed Lorentz
group SO(1, 3)DEF. (see Sect. 6.3). As is well known, the six generators of
SO(1, 3)DEF.in the self-representation basis are given by the three-vectors
SDSR and KDSR (associated to deformed space rotations and boosts,
respectively: see Sect. 6.3.1).

The other five Killing five-vectors ξA
A(x), A = 11, ..., 15, can be identified

with the new generators of the Killing algebra as follows.5 By its expression
(22.144), the Killing vector ξA

11(x5) is of course the translation generator
along x5:

ξA
11(x

5) = Υ 5A(x5). (22.149)

As to the other ξA
A(x) for A = 12, . . . , 15, it is easily seen from (22.145)–

(22.148) that their interpretation as rotation or boost generators depends
on the signature of the fifth coordinate x5, namely on its time-like or space-
like nature:

ξA
12(x

0, x5) =
{

“ + ” : Σ1A(x0, x5);
“ − ” : Γ 1A(x0, x5); (22.150)

ξA
13(x

1, x5) =
{

“ + ” : Γ 1A(x1, x5);
“ − ” : Σ1A(x0, x5); (22.151)

ξA
14(x

2, x5) =
{

“ + ” : Γ 2A(x2, x5);
“ − ” : Σ2A(x2, x5); (22.152)

ξA
15(x

3, x5) =
{

“ + ” : Γ 3A(x3, x5);
“ − ” : Σ3A(x3, x5); (22.153)

where ΣiA and Γ iA (i = 1, 2, 3) denote the new generators (with respect to
the SR ones) corresponding, respectively, to rotations and boosts involving
the fifth coordinate.

4This is due to the adopted choice of embodying the constants a, b, c, d in the defi-
nitions of the translational parameters αµ (see (22.135)). It is easily seen that, on the
contrary, the identification αµ = T µ leads to the generators of the deformed translation
group Tr.(1, 3)DEF. (with the consequent changes in the commutator algebra).

5Needless to say, the identifications of the Killing vectors ξA
A(x) with the generators

of the Killing symmetry algebra hold except for a sign here and in the subsequent cases.
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By direct evaluation of the commutators (22.133),6 it follows that the
ensuing Killing algebra is made of two pieces: The deformed Poincaré alge-
bra P (1, 3)DEF. = {su(2)DEF. ⊗ su(2)DEF.} ⊗s tr.(1, 3)STD., generated by
SDSR., KDSR and Υµ (µ = 0, 1, 2, 3) (corresponding to A = 1, . . . , 10),
expressed by (8.37)–(8.39), and the “mixed” algebra, involving also gener-
ators related to the energy dimension. This latter depends on the time-like
or space-like nature of x5(see (22.150)–(22.153)) and is specified by the
following commutation relations (∀µ = 0, 1, 2, 3 and ∀i, j, k = 1, 2, 3):7

(1) Timelike x5:

“ + ”

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

˜Υ 5, ˜Υµ
]

= 0 ;

[

˜Υ 0, ˜Σ1
]

= −˜Υ 5;
[

˜Υ 0, ˜Γ i
]

= 0;

[

˜Υ i, ˜Γ j
]

= −˜Υ 5δij ;
[

˜Υ i, ˜Σ1
]

= 0;

[

˜Ki, ˜Γ j
]

=
1

gii,DR5

˜Σ1δij ;
[

˜Ki, ˜Σ1
]

=
1
a
˜Γ i =

1
g00,DR5

˜Γ i;

[

˜Ki, ˜Υ 5
]

= 0;
[

˜Si, ˜Υ 5
]

= 0;

[

˜Si, ˜Σ1
]

= 0;
[

˜Si, ˜Γ j
]

ESC on on k= εijk
1

gjj,DR5

˜Γ k;

[

˜Υ 5, ˜Σ1
]

=
1
a
˜Υ 0 =

1
g00,DR5

˜Υ 0;
[

˜Υ 5, ˜Γ i
]

= −˜Υ i;

[

˜Σ1, ˜Γ i
]

= ˜Ki;
[

˜Γ i, ˜Γ j
]

ESC on= −εijk
˜Sk.

(22.154)

6Remember that the products in the commutator (22.132) has to be meant as
row×column products of matrices, so that

[ξA(x), ξB(x)] =
[

ξB
A(x)∂B , ξA

B (x)∂A

]

=
[

ξB
A(x)ξA

B,B(x) − ξB
B (x)ξA

A,B(x)
]

∂A →

→ [ξA(x), ξB(x)]A = ξB
A(x)ξA

B,B(x) − ξB
B (x)ξA

A,B(x).

7In the following, for simplicity, we shall omit the DSR specification in the generator
symbols.
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It contains the following subalgebras:

[

˜Si, ˜Sj
]

ESC on on k= −εijk
1

gkk,DR5

˜Sk;
[

˜Si, ˜Γ j
]

ESC on on k= εijk
1

gjj,DR5

˜Γ k;
[

˜Γ i, ˜Γ j
]

ESC on= −εijk
˜Sk,

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

su(2)DEF. ⊗ su(2)DEF.;

(22.155)
[

˜Υ ν , ˜Υµ
]

= 0 ;
[

˜Υ 5, ˜Υµ
]

= 0 ,

⎫

⎬

⎭

tr.(2, 3)STD.. (22.156)

(2) Space-like x5:

“−”

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

˜Υ 5, ˜Υµ
]

= 0 ;

[

˜Υ 0, ˜Γ 1
]

= ˜Υ 5;
[

˜Υ 0, ˜Σi
]

= 0;

[

˜Υ i, ˜Σj
]

= ˜Υ 5δij ;
[

˜Υ i, ˜Γ 1
]

= 0;

[

˜Ki, ˜Σj
]

= − 1
gii,DR5

˜Γ 1δij ;
[

˜Ki, ˜Γ 1
]

=
1
a
˜Σi =

1
g00,DR5

˜Σi;

[

˜Ki, ˜Υ 5
]

= 0;
[

˜Si, ˜Υ 5
]

= 0;

[

˜Si, ˜Γ 1
]

= 0;
[

˜Si, ˜Σj
]

ESC on on k= −εijk
1

gjj,DR5

˜Σk;
[

˜Υ 5, ˜Γ 1
]

=
1

g00,DR5

˜Υ 0;
[

˜Υ 5, ˜Σi
]

= − 1
gii,DR5

˜Υ i;
[

˜Γ 1, ˜Σi
]

= − ˜Ki;
[

˜Σi, ˜Σj
]

ESC on= −εijk
˜Sk

(22.157)
with the subalgebras

[

˜Si, ˜Sj
]

ESC on on k= −εijk
1

gkk,DR5

˜Sk;
[

˜Si, ˜Σj
]

ESC on on k= −εijk
1

gjj,DR5

˜Σk;
[

˜Σi, ˜Σj
]

ESC on= −εijk
˜Sk,

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

su(2)DEF. ⊗ su(2)DEF.;

(22.158)
[

˜Υ ν , ˜Υµ
]

= 0 ;
[

˜Υ 5, ˜Υµ
]

= 0 ,

⎫

⎬

⎭

tr.(1, 4)STD.. (22.159)
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Since in this case there are 15 independent Killing vectors, the corre-
sponding Riemann spaces, for the e.m. and weak interactions above thresh-
old and for the strong one below threshold, are maximally symmetric and
have therefore constant curvature (zero for the e.m. and weak interactions,
as it is straightforward to check directly by means of (20.12)).

22.4.2 Strong Metric for Violated Υ -Hypothesis

Let us consider the case of the strong metric above threshold (x5 ≥
x5

0,strong) when the hypothesis Υ of functional independence is violated
∀µ = 0, 1, 2, 3 (see Sect. 22.2.3). The metric is given by (22.87) and for
c = 0 takes the form:

gAB,DR5(x5)

= diag

⎛

⎜

⎜

⎜

⎝

(

x5

x5
0

)2

,− 2
25
,− 4

25
,−
(

x5

x5
0

)2

,± 1

γ

(

x5

x5
0

)2

⎞

⎟

⎟

⎟

⎠

. (22.160)

The contravariant Killing vector ξA(x, x5) is given by (22.90)–(22.93),
which read now:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ0 = 0;

ξ1(x2) = −25
2
d2x

2 − 25
2
T1 = α3x2 + α1;

ξ2(x1) =
25
4
d2x

1 − 25
4
T2 =

1
2
α3x1 + α2;

ξ3 = 0;

ξ5
(

x5
)

= ± γα

(x5
0)

2x
5 = ±α4x5,

(22.161)

where the dependence on the transformation parameters αA (A=1,2,3,4)
has been made explicit.

The contravariant Killing vectors ξA
A(x) are therefore

ξA
1 (x) =

⎛

⎜

⎜

⎜

⎜

⎝

ξµ
2,SR(x)

0

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0
1
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

; (22.162)

ξA
2 (x) =

⎛

⎜

⎜

⎜

⎜

⎝

ξµ
3,SR(x)

0

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0
0
1
0
0

⎞

⎟

⎟

⎟

⎟

⎠

; (22.163)
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ξA
3 (x1, x2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
x2

−x1

2
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

; (22.164)

ξA
4,±(x5) =

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0
0

±x5

⎞

⎟

⎟

⎟

⎟

⎠

. (22.165)

It is possible to do the following identifications:

ξA
1 =

⎛

⎜

⎜

⎜

⎜

⎝

Υ 1µ
SR

0

⎞

⎟

⎟

⎟

⎟

⎠

= Υ 1A, α1 = ∓T 1′; (22.166)

ξA
2 =

⎛

⎜

⎜

⎜

⎜

⎝

Υ 2µ
SR

0

⎞

⎟

⎟

⎟

⎟

⎠

= Υ 2A, α2 = ∓T 2′; (22.167)

ξA
3 (x1, x2) =

⎛

⎜

⎜

⎜

⎜

⎝

S3µ(x)|x2−→
√

2x2

0

⎞

⎟

⎟

⎟

⎟

⎠

= S3A, α3 = ∓Θ3; (22.168)

ξA
4,±(x5) = R(x5). (22.169)

In (22.168), the notation for S3 has to be interpreted in the sense of
Sect. 22.2.3, namely it is the generator of rotations in the 2D manifold
Π2 =

(

x1, x2
)

with metric rescaling x2 −→
√

2x2. One therefore gets the
following Killing algebra

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

˜Υ 1, ˜Υ 2
]

= 0;
[

˜Υ 1, ˜S3
]

= −1
2
˜Υ 2;

[

˜Υ 2, ˜S3
]

= ˜Υ 1;
[

˜Υ i, ˜R
]

= 0, i = 1, 2;
[

˜S3, ˜R
]

= 0.

(22.170)
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22.4.3 Power Ansatz Metrics with Violated Υ -Hypothesis

We shall now discuss the infinitesimal algebraic structure of DR5 for the
metrics in the Power Ansatz when the hypothesis Υ of functional indepen-
dence is not satisfied by any µ = 0, 1, 2, 3. According to Appendix A, this
occurs in five cases (only three of which are independent). We will consider
only the two which correspond to physical metrics.

Case 1

This corresponds to the VI class of solutions, characterized by the exponent
set q̃VI = (p, 0, 0, 0, p− 2). The 5D metric is given by (A.75). The con-
travariant Killing five-vector ξA(x, x5) depends on the time-like or space-
like nature of the fifth coordinate, and writes (cf. (A.79)–(A.83))

ξ0(x0, x5; p)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

“ + ” :

(

x5
0

)p−1
[

A cos
(

p

2
x0

x5
0

)

−B sin
(

p

2
x0

x5
0

)]

(x5)−p/2 + α(x5
0)

p;

“ − ” :
(

x5
0

)p−1
[

C cosh
(

p

2
x0

x5
0

)

+D sinh
(

p

2
x0

x5
0

)]

(x5)−p/2 + α(x5
0)

p;

ξ1(x2, x3) = −Θ3x2 −Θ2x3 + T 1;

ξ2(x1, x3) = Θ3x1 −Θ1x3 + T 2;

ξ3(x1, x2) = Θ2x1 +Θ1x2 + T 3;

ξ5(x0, x5, p)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

“ + ” :

(

x5
0

)p−2
[

A sin
(

p

2
x0

x5
0

)

+B cos
(

p

2
x0

x5
0

)]

(x5)−((p/2)−1);

“ − ” :

−
(

x5
0

)p−2
[

C sinh
(

p

2
x0

x5
0

)

+D cosh
(

p

2
x0

x5
0

)]

(x5)−((p/2)−1).

(22.171)

By the identifications

−Θ3 = α5; Θ2 = α6; Θ1 = −α7;

α(x5
0)

p = T 0(α, x5
0, p) = α1(α, x5

0, p);T
i = αi+1, i = 1, 2, 3;

“ + ”

{

A
(

x5
0

)(p/2)−2 = α8

B
(

x5
0

)(p/2)−2 = α9
; “ − ”

{

C
(

x5
0

)(p/2)−2 = α8

D
(

x5
0

)(p/2)−2 = α9
,

(22.172)
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the Killing vector can be written as8

ξ0(x0, x5; p)

= α1 +

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

“ + ” :
(

x5
0

)(p/2)+1
[

α8 cos
(

p

2
x0

x5
0

)

− α9 sin
(

p

2
x0

x5
0

)]

(x5)−(p/2);

“ − ” :
(

x5
0

)(p/2)+1
[

α8 cosh
(

p

2
x0

x5
0

)

+α9 sinh
(

p

2
x0

x5
0

)]

(x5)−(p/2);

ξ1(x2, x3) = α2 + α5x2 − α6x3;

ξ2(x1, x3) = α3 − α5x1 + α7x3;

ξ3(x1, x2) = α4 + α6x1 − α7x2;

ξ5(x0, x5, p)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

“ + ” :
(

x5
0

)p/2
[

α8 sin
(

p

2
x0

x5
0

)

+ α9 cos
(

p

2
x0

x5
0

)]

(x5)−((p/2)−1);

“ − ” : −
(

x5
0

)p/2
[

α8 sinh
(

p

2
x0

x5
0

)

+ α9 cosh
(

p

2
x0

x5
0

)]

(x5)−((p/2)−1).

(22.173)

One gets therefore, for the Killing vectors ξA
A(x) (A = 1, . . . , 9):

ξA
A(x) =

⎛

⎜

⎜

⎜

⎜

⎝

ξµ
A,SR(x)

0

⎞

⎟

⎟

⎟

⎟

⎠

, A = 1, 2, 3, 4; (22.174)

ξA
5 (x1, x2) =

⎛

⎜

⎜

⎜

⎜

⎝

0
x2

−x1

0
0

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

ξµ
8,SR(x)

0

⎞

⎟

⎟

⎟

⎟

⎠

; (22.175)

ξA
6 (x1, x3) =

⎛

⎜

⎜

⎜

⎜

⎝

0
−x3

0
x1

0

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

ξµ
9,SR(x)

0

⎞

⎟

⎟

⎟

⎟

⎠

; (22.176)

8The definitions of αA for A = 8, 9 have been chosen so to make also these transfor-
mation parameters dimensionless.
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ξA
7 (x2, x3) =

⎛

⎜

⎜

⎜

⎜

⎝

0
0
x3

−x2

0

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

ξµ
10,SR(x)

0

⎞

⎟

⎟

⎟

⎟

⎠

; (22.177)

ξA
8,±(x0, x5, p) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

x5
0

)(p/2)+1 cosh
(

p

2
x0

x5
0

)

(x5)−p/2

0
0
0

±
(

x5
0

)p/2 sinh
(

p

2
x0

x5
0

)

(x5)−((p/2)−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

; (22.178)

ξA
9,±(x0, x5, p) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∓
(

x5
0

)(p/2)+1 sinh
(

p

2
x0

x5
0

)

(x5)−p/2

0
0
0

±
(

x5
0

)p/2 cosh
(

p

2
x0

x5
0

)

(x5)−((p/2)−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (22.179)

The earlier Killing vectors can be identified with generators as follows:

ξA
1 =

⎛

⎜

⎜

⎜

⎜

⎝

Υ 0µ
SR

0

⎞

⎟

⎟

⎟

⎟

⎠

= Υ 1A; (22.180)

ξA
i+1 =

⎛

⎜

⎜

⎜

⎜

⎝

Υ iµ
SR

0

⎞

⎟

⎟

⎟

⎟

⎠

= −Υ iA, i = 1, 2, 3; (22.181)

ξA
i+4 (x) =

⎛

⎜

⎜

⎜

⎜

⎝

ξµ
i+7,SR (x)

0

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

S3µ
SR(x)

S2µ
SR(x)

S1µ
SR(x)
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= SiA, i = 1, 2, 3;

(22.182)
ξA
8,±(x0, x5; p) = Z1A

± (x0, x5; p); (22.183)

ξA
9,±(x0, x5; p) = Z2A

± (x0, x5; p). (22.184)
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The Killing algebra is then specified by the following commutation rela-
tions:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

˜Υµ, ˜Υ ν
]

= 0 ∀µ, ν = 0, 1, 2, 3;
[

˜Si(x), ˜Sj(x)
]

ESC on= εijk
˜Sk ∀i, j = 1, 2, 3;

[

˜Si(x), ˜Υ 0
]

= 0 ∀i, j = 1, 2, 3;
[

˜Si(x), ˜Υ j
]

ESC on= εijk
˜Υ k ∀i, j = 1, 2, 3;

[

˜Υ 0, ˜Z1
±(x0, x5, p)

]

=
p

2x5
0

˜Z2
±(x0, x5, p);

[

˜Υ 0, ˜Z2
±(x0, x5, p)

]

= ∓ p

2x5
0

˜Z1
±(x0, x5, p);

[

˜Υ i, ˜Z1
±(x0, x5, p)

]

=
[

˜Υ i, ˜Z2
±(x0, x5, p)

]

= 0;
[

˜Si(x), ˜Zm
± (x0, x5, p)

]

= 0 ∀i = 1, 2, 3, ∀m = 1, 2.

(22.185)

It is easily seen that the Killing algebra for this case contains the subal-
gebra su(2)STD. ⊗s tr.(1, 3)STD..

Cases 2–4

The metrics belonging to classes II (q̃II = (0, p, 0, 0, p− 2)), IV (q̃IV =
(0, 0, 0, p, p− 2)) and IX (q̃IX = (0, 0, p, 0, p− 2)) differ only for an
exchange of spatial axes (see (A.86) for the first case). They are discussed in
Sects. A.2.2–A.2.4. The Killing algebra for all these three (physically equiv-
alent) metrics can be dealt with by an unitary mathematical approach.

Let us label the three classes II, IV, and IX by i = 1, 2, 3, respectively
(according to the space axis involved). The metric coefficients are given, in
compact form, by

gAB,DR5,i

⎧

⎪

⎨

⎪

⎩

g00 = −gjj = 1, j 
= i, j ∈ {j1, j2} , j1 < j2;

gii

(

x5
)

= −
(

x5

x5
0

)p

; g55
(

x5
)

= ±
(

x5

x5
0

)p−2

.
(22.186)

As easily seen, the three indices i, j1, j2 take the values {123; 213; 312}.
The contravariant Killing vector has the form (cf. (A.88)–(A.92))

ξ0(xj1 , xj2 ;α) = α1 + α5xj1 + α6xj2 ;

ξi
±(xi, x5;α) = αi+1(α, x5

0, p)

+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

“ + ” :
(

x5
0

)(p/2)+1
[

α8 cosh
(

p

2
xi

x5
0

)

+ α9 sinh
(

p

2
xi

x5
0

)]

(x5)−p/2;

“ − ” :
(

x5
0

)(p/2)+1
[

α8 cos
(

p

2
xi

x5
0

)

− α9 sin
(

p

2
xi

x5
0

)]

(x5)−p/2;

(22.187)
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ξj1(x0, xj2 ;α) = αj1+1 + α5x0 + α7xj2 ;

ξj2(x0, xj1 ;α) = αj2+1 + α6x0 − α7xj1 ;

ξ5±(xi, x5;α) =

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

“ + ” :
(

x5
0

)p/2
[

α8 sinh
(

p

2
xi

x5
0

)

+ α9 cosh
(

p

2
xi

x5
0

)]

(x5)−((p/2)−1);

“ − ” : −
(

x5
0

)p/2
[

α8 sin
(

p

2
xi

x5
0

)

+ α9 cos
(

p

2
xi

x5
0

)]

(x5)−((p/2)−1),

(22.188)

(22.189)

where

“ + ”

{

A
(

x5
0

)(p/2)−2 = α8;

B
(

x5
0

)(p/2)−2 = α9;
“ − ”

{

C
(

x5
0

)(p/2)−2 = α8;

D
(

x5
0

)(p/2)−2 = α9;

αi+1(α, x5
0, p) = −α(x5

0)
p;

α7 =

⎧

⎨

⎩

∓Θ, i = 1;
±Θ, i = 2;
∓Θ, i = 3.

(22.190)

The parameter α7 corresponds to a true infinitesimal rotation in the 2D
Euclidean plane Π(xj1 ,xj2 ).

Therefore the explicit form of the Killing vectors ξA
A(x) (A = 1, . . . , 9) is

ξA
A(x) =

⎛

⎜

⎜

⎜

⎜

⎝

ξµ
A,SR(x)

0

⎞

⎟

⎟

⎟

⎟

⎠

, A = 1, i+ 1, j1 + 1, j2 + 1; (22.191)

ξA
5 (x0, xj1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

xj1

x0

(j1th row)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

i = 1 :
(

ξµ
6,SR(x0, x2)

0

)

;

i = 2 :
(

ξµ
5,SR(x0, x1)

0

)

;
(22.192)

ξA
6 (x0, xj2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

xj2

x0

(j2th row)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

i = 1 :
(

ξµ
7,SR(x0, x3)

0

)

;

i = 2 :
(

ξµ
7,SR(x0, x3)

0

)

;

i = 3 :
(

ξµ
6,SR(x0, x2)

0

)

;

(22.193)
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ξA
7 (xj1 , xj2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
xj2

(j2th row)

0
xj1

(j1th row)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

i = 1 :
(

ξµ
10,SR(x2, x3)

0

)

;

i = 2 :
(

−ξµ
9,SR(x1, x3)

0

)

;

i = 3 :
(

−ξµ
8,SR(x1, x2)

0

)

;

(22.194)

ξA
8,±(xi, x5; p) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
⎧

⎪

⎪

⎨

⎪

⎪

⎩

“ + ” :
(

x5
0

)(p/2)+1 cosh
(

p

2
xi

x5
0

)

(x5)−p/2

“ − ” :
(

x5
0

)(p/2)+1 cos
(

p

2
xi

x5
0

)

(x5)−p/2

(ith row)

0
0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

x5
0

)p/2 sinh
(

p

2
xi

x5
0

)

(x5)−((p/2)−1)

(

x5
0

)p/2 sin
(

p

2
xi

x5
0

)

(x5)−((p/2)−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

;

(22.195)

ξA
9,±(xi, x5 : p) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
⎧

⎪

⎪

⎨

⎪

⎪

⎩

“ + ” :
(

x5
0

)(p/2)+1 sinh
(

p

2
xi

x5
0

)

(x5)−p/2

“ − ” : −
(

x5
0

)(p/2)+1 sin
(

p

2
xi

x5
0

)

(x5)−(p/2)

(ith row)

0
0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
(

x5
0

)p/2 cosh
(

p

2
xi

x5
0

)

(x5)−((p/2)−1)

−
(

x5
0

)p/2 cos
(

p

2
xi

x5
0

)

(x5)−((p/2)−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(22.196)
The nine Killing vectors can be identified with the generators of the related
algebra as follows:

ξA
1 =

⎛

⎜

⎜

⎜

⎜

⎝

Υ 0µ
SR

0

⎞

⎟

⎟

⎟

⎟

⎠

= Υ 1A, α1 = T 0; (22.197)
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ξA
A =

⎛

⎜

⎜

⎜

⎜

⎝

ΥAµ
SR

0

⎞

⎟

⎟

⎟

⎟

⎠

= ΥAA, A = i, j1, j2,

⎧

⎪

⎨

⎪

⎩

αi+1(α, x5
0, p) = −T i(α, x5

0, p),
αj1+1(α, x5

0, p) = −T j1(α, x5
0, p),

αj2+1(α, x5
0, p) = −T j2(α, x5

0, p);

(22.198)

ξA
5 (x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

{

i = 1 : K2µ
SR(x)

i = 2, 3 : K1µ
SR(x)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, α5 =
{

ρ2, i = 1,
ρ1, i = 2, 3; (22.199)

ξA
6 (x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

{

i = 1, 2 : K3µ
SR(x)

i = 3 : K2µ
SR(x)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, α6 =
{

ρ3, i = 1, 2,
ρ2, i = 3; (22.200)

ξA
7 (x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

i = 1 : S1µ
SR(x)

i = 2 : −S2µ
SR(x)

i = 3 : S3µ
SR(x)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, α7 =

⎧

⎨

⎩

−Θ1, i = 1,
Θ2, i = 2,
−Θ3, i = 3;

(22.201)

ξA
8,∓(xi, x5; p) = Z1A

∓ (xi, x5; p); (22.202)

ξA
9,∓(xi, x5; p) = Z2A

∓ (xi, x5; p). (22.203)

The commutation relations of the Killing algebra are therefore
[

˜Υµ, ˜Υ ν
]

= 0 ∀µ, ν = 0, 1, 2, 3;
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

i = 1 :
[

˜K2(x), ˜K3(x)
]

= −˜S1(x),

i = 2 :
[

˜K1(x), ˜K3(x)
]

= ˜S2(x),

i = 3 :
[

˜K1(x), ˜K2(x)
]

= −˜S3(x);
[

˜Z1
∓(xi, x5; p), ˜Z2

∓(x0, x5; p)
]

= 0;
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

˜Υ 0,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

i = 1 :

{

˜K2(x)
˜K3(x)

i = 2 :

{

˜K1(x)
˜K3(x)

i = 3 :

{

˜K1(x)
˜K2(x)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

{

˜Υ j1 ,
˜Υ j2 ;
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⎡

⎢

⎣

˜Υ 0,

⎧

⎪

⎨

⎪

⎩

i = 1 : ˜S1(x)
i = 2 : −˜S2(x)
i = 3 : ˜S3(x)

⎤

⎥

⎦
= 0;

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

˜Υ i,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

i = 1 :

⎧

⎪

⎨

⎪

⎩

˜K2(x)
˜K3(x)
˜S1(x)

i = 2 :

⎧

⎪

⎨

⎪

⎩

˜K1(x)
˜K3(x)
−˜S2(x)

i = 3 :

⎧

⎪

⎨

⎪

⎩

˜K1(x)
˜K2(x)
˜S3(x)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0;

[

˜Υ j1 ,

{

i = 1 : ˜K2(x)
i = 2, 3 : ˜K1(x)

]

= ˜Υ 0;

[

˜Υ j1 ,

{

i = 1, 2 : ˜K3(x)
i = 3 : ˜K2(x)

]

= 0;

⎡

⎢

⎣

˜Υ j1 ,

⎧

⎪

⎨

⎪

⎩

i = 1 : ˜S1(x)
i = 2 : −˜S2(x)
i = 3 : ˜S3(x)

⎤

⎥

⎦
= −˜Υ j2 ;

[

˜Υ j2 ,

{

i = 1 : ˜K2(x)
i = 2, 3 : ˜K1(x)

]

= 0;

[

˜Υ j2 ,

{

i = 1, 2 : ˜K3(x)
i = 3 : ˜K2(x)

]

= ˜Υ 0;

⎡

⎢

⎣

˜Υ j2 ,

⎧

⎪

⎨

⎪

⎩

i = 1 : ˜S1(x)
i = 2 : −˜S2(x)
i = 3 : ˜S3(x)

⎤

⎥

⎦
= ˜Υ j1 ;

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

i = 1 :
[

˜K2(x), ˜S1(x)
]

= − ˜K3(x),

i = 2 :
[

˜K1(x),−˜S2(x)
]

= − ˜K3(x),

i = 3 :
[

˜K1(x), ˜S3(x)
]

= − ˜K2(x);
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

i = 1 :
[

˜K3(x), ˜S1(x)
]

= ˜K2(x),

i = 2 :
[

˜K3(x),−˜S2(x)
]

= ˜K1(x),

i = 3 :
[

˜K2(x), ˜S3(x)
]

= ˜K1(x);
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[

˜Υ 0, ˜Z1
∓(x; p)

]

=
[

˜Υ 0, ˜Z2
∓(x; p)

]

= 0;
[

˜Υ i, ˜Z1
∓(x; p)

]

=
p

2x5
0

˜Z2
∓(x; p);

[

˜Υ i, ˜Z2
∓(x; p)

]

= ∓ p

2x5
0

˜Z1
∓(x; p);

[

˜Υ j1 , ˜Z1
∓(x; p)

]

=
[

˜Υ j1 , ˜Z2
∓(x; p)

]

= 0;
[

˜Υ j2 , ˜Z1
∓(x; p)

]

=
[

˜Υ j2 , ˜Z2
∓(x; p)

]

= 0;

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

˜Z1,2
∓ (x; p),

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

i = 1 :

⎧

⎪

⎨

⎪

⎩

˜K2(x)
˜K3(x)
˜S1(x)

i = 2 :

⎧

⎪

⎨

⎪

⎩

˜K1(x)
˜K3(x)
−˜S2(x)

i = 3 :

⎧

⎪

⎨

⎪

⎩

˜K1(x)
˜K2(x)
˜S3(x)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0.

(22.204)

It is easy to see that in all three cases i = 1, 2, 3 the Killing algebra
contains the subalgebra so(1, 2) ⊗s tr.(1, 3), generated by

˜Υµ
︸︷︷︸

tr.(1,3)

;

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

i = 1 : ˜K2(x); ˜K3(x); ˜S1(x);

i = 2 : ˜K1(x); ˜K3(x);−˜S2(x);

i = 3 : ˜K1(x); ˜K2(x); ˜S3(x).
︸ ︷︷ ︸

so(1,2)

(22.205)

Some remarks are in order. For all metrics discussed in this section, it
was possible, in general, neither to identify the global algebra obeyed by
the Killing generators, nor even ascertain its Lie nature. Such an issue
deserves further investigations. However, it is clearly seen from the explicit
forms of the generators and of the commutation relations that, even in
cases (like that corresponding to metric (22.1)) in which the space–time
sector is Minkowskian, the presence of the fifth dimension implies transfor-
mations involving the energy coordinate (see definitions (22.150)–(22.153)
of the generators ˜Σi, ˜Γ j), and therefore entirely new physical symmetries.
Moreover, it is easily seen from (22.126), expressing the general infinitesi-
mal form of a metric automorphism in �5, and from the explicit form of the
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Killing vectors, that the isometric transformations are in general nonlinear
(in particular in x5). Then, the preliminary results obtained seemingly show
that the isometries of �5 related to the derived Killing algebras require an
invariance of physical laws under nonlinear coordinate transformations, in
which energy is directly involved.

22.5 Features of Killing Isometries in �5

The examples of Killing symmetries we just discussed show some peculiar
features of �5 isometries corresponding to the 5D phenomenological metrics
of the four fundamental interactions. Indeed, due to the piecewise nature of
such metrics, the respective symmetries are strongly related to the energy
range considered. This is at variance with the DSR case, in which the
(deformed) isometries of ˜M are independent of the energy parameter x5.
This is why we never speak of a symmetry as related to a given interaction
in the DSR context. On the contrary, in DR5 the metric nature of x5,
and the consequent piecewise structure of the phenomenological metrics,
is fundamental in determining the �5 isometries. As a matter of fact, for
a given interaction, in general different Killing symmetries are obtained in
the two energy ranges below and above threshold. This is reflected in the
discontinuous behavior of the �5 Killing vectors at the energy threshold
x5

0,int., namely one has in general

lim
x5−→x5+

0,int.

ξA
DR5,int.(x

5) 
= lim
x5−→x5−

0,int.

ξA
DR5,int.(x

5). (22.206)

Conversely, at metric level, there is a continuity in the 5D metric tensor at
the energy threshold (as clearly seen by their expressions in terms of the
Heaviside function: see Sect. 19.3)

lim
x5−→x5+

0,int.

gAB,DR5,int.(x5) = lim
x5−→x5−

0,int.

gAB,DR5,int.(x5)

= gAB,DR5,int.(x5
0,int.). (22.207)

This implies that symmetries present in an energy range in which the space–
time sector is standard Minkowskian – or at least its metric coefficients are
constant – may no longer hold when (in a different energy range) the space–
time of �5 becomes Minkowskian deformed, and vice versa.

As already stressed, this is essentially due to the change of nature (from
parameter to coordinate) of the energy x5 in the passage DSR→DR5, i.e., in
the geometrical embedding of ˜M in �5. In this process, at the metric level,
the slicing property (19.10) holds, namely the sections of �5 at constant
energy x5 = x5 (dx5 = 0) do possess the same metric structure of ˜M

(

x5
)

.
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This is no longer true at the level of the Killing symmetries. We can write,
symbolically:

Isometries of �5|dx5=0⇔x5=x5


= Isometries of ˜M
(

x5 = x5
)

= Deformed Poincaré group P (1, 3)10DEF..

(22.208)

In fact, in increasing the dimension number by taking energy as the fifth
coordinate, some of the 10 symmetry degrees of freedom of the maximal
Killing group of DSR (i.e., the deformed Poincaré group) are lost.

The Killing isometries are therefore strictly related to the geometrical
context considered. This is easily seen on account of the fact that the slicing
process is carried out in a genuine Riemannian geometric framework, in
which the effect of the fifth coordinate is perceptible even at the 4D level of
space–time sections. From the point of view of the algebraic structure, this
is reflected by the arising of new generators, associated to true or pseudo
rotations involving both the space–time coordinates and the energy one.
This situation exactly reminds that occurring in Special Relativity, where
the presence of time as a genuine coordinate – no longer a parameter as
in classical physics – together with the ensuing geometrical structure of
the Minkowski space, does affect the physics in the ordinary, Euclidean 3-
space (the “shadow” of the pseudoeuclidean metric of M). This is a further
evidence that the embedding of ˜M in �5 is not a mere formal artifact, but
has deep physical motivations and implications.

We shall see in the next Part that similar considerations apply to
dynamics, too.



Part V

DEFORMED
SPACE–TIME IN FIVE

DIMENSIONS:
DYNAMICS



23
Dynamics in DR5

It is well known that, in a Riemann space, the dynamic laws are actually
geometrical laws. As familiar from General Relativity, the motion of a body
in a gravitational field is described by the geodesic equations, which are in
turn related to the affine and metric properties of the Riemann space–time.
Analogously, we expect that, in the framework of DR5, the local dynamics
of particles ruled by the four fundamental interactions – described by the
5D embeddings of the DSR phenomenological metrics: see Sect. 19.3 – is
embodied in the 5D geodesic equations in �5.

This has to be compared with the case of DSR, where – as in any special-
relativistic theory – the geodesics equations are trivially given by

d2xµ(τDSR)
dτ2

DSR

= 0, (23.1)

(with τDSR being the proper time in DSR: see Sect. 3.4.1) and yield solu-
tions which are straight word-lines:

xµ(τDSR) = αµ1τDSR + αµ2 (23.2)

(µ = 0, 1, 2, 3). Actually, as it was seen in Part II, the nontrivial dynamics
of DSR is related to the intrinsic geometrical structure of the deformed
Minkowski space ˜M as Generalized Lagrange space (see Sect. 9.2).

On the contrary, we shall see that the geodesic equations in �5 do pos-
sess a nontrivial structure, corresponding to an extrinsic dynamic behavior
which complements the intrinsic one related to the embedded space–time
˜M ⊂ �5.
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23.1 Proper Time in DR5

The proper time in DR5 can be found by a procedure analogous to that
followed in DSR. We have

(

dτDR5(x5)
)2

=
1
c2
(

dsDR5(x5)
)2

=
1
c2
(

dS(x5)
)2

=
1
c2

[

b20(x
5)c2dt2 −

∑

i

b2i (x
5)
(

dxi
)2 ± f(x5)

(

dx5
)2

]

. (23.3)

As in DSR, the natural frame is the frame where the particle is at rest with
fixed energy, namely1

(

x0, x1, x2, x3, x5
)

DR5,nat
=
(

x0, x1, x2, x3, x5
)

. (23.4)

In other words, due to the slicing structure of �5 (cf. (19.10)), the natural
frame in DR5 is the 5D, local (since the fifth metric coordinate is fixed)
generalization of the 4D, global inertial (topical) natural frame of DSR.

Then
(

dτDR5(x5)
)2

=
1
c2

(

dS(x5)
)2
∣

∣

∣

∣

nat

= b20(x5)dt2

=⇒ dτDR5 = b0dt, (23.5)

or, in finite form:
τDR5(x5) = b0(x5)t (23.6)

(where t is the coordinate time in the natural frame (23.4)). One gets
therefore the same result of DSR (see Sect. 3.4.1), as expected on physical
and mathematical grounds, on account of the embedding ˜M(x5) ⊂ �5.

23.2 Geodesics Equations in �5

Let us therefore consider the geodesics in the 5D space–time–energy Rie-
mannian space �5, in order to clarify their possible physical meaning (see
[137] for a thorough discussion of the geodesic equation of motion in a
general Kaluza–Klein model).

The geodesic equations are

d2xA

dτ2
+ ΓA

BC

dxB

dτ
dxC

dτ
= 0, (23.7)

1However, let us notice that, in the DR5 framework, the natural frame is in general
noninertial, due to the Riemannian structure of �5.
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where, for massive particles, τ = τDR5 is the proper time in �5 (or another
affine parameter – not necessarily invariant – for massless particles).2 The
compatibility condition of the definition (23.6) of τDR5 with the geodesic
equations (23.7) in �5 is straightforward (the components of the connection
ΓA

BC vanish for x5 = x5: see (20.2)).
On account of the explicit form (20.3) of the affine connection, one gets

the following system of five coupled differential equations
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d2xµ(τ)

dτ2
+ 2

b′µ(x5(τ))

bµ(x5(τ))

dxµ(τ)

dτ

dx5(τ)

dτ
= 0,

µ = 0, 1, 2, 3 (ESC off);

d2x5(τ)

dτ2
=

= ± 1

f(x5(τ))

[

gαβbα(x5(τ))b′β(x5(τ))

(

dxα(τ)

dτ

)2

∓ f ′(x5(τ))

(

dx5(τ)

dτ

)2
]

(ESC on),

(23.8)

where as by now familiar the prime denotes derivation with respect to x5

and gαβ is the Minkowskian metric tensor.
System (23.8) does not admit solutions in general. In the following, we

shall confine ourselves to look for physically significant solutions in the
simpler case of the Power Ansatz for the metric coefficients.

2Indeed, let us recall that, in a Riemannian space, the geodesic equations – although
formally identical in any reference frame – actually do depend on the chosen frame, due
to the nontensor nature of the affine connection Γ A

BC .
For instance, it is possible to parametrize the space–time trajectory of a massless

particle in terms of x0, determined by the null-interval condition as follows:

ds2
DR5 = 0

⇐⇒ b20
(

dx0
)2 −

∑

i

b2i (x5)
(

dxi
)2 ± f(x5)

(

dx5
)2

= 0

⇐⇒ dx0 =
1

b0

√

√

√

√

[

∑

i

b2i (x5) (dxi)2 ∓ f(x5) (dx5)2

]

.



24
Solution of the Geodesic
Equations in the Power Ansatz

It has been seen in Sect. 20.4 that the phenomenological metrics for the
electromagnetic, weak, gravitational, and strong interactions, derived in the
context of DSR, can be recovered as 5D metrics found, in the Power Ansatz,
as solutions of the Einstein equations in vacuum and with cosmological
constant Λ(5) = 0. In this chapter we will solve the geodesic equations in
the Power Ansatz, and apply the results obtained to the 5D metrics of the
four fundamental interactions.

24.1 General Solution

In the Power Ansatz for the metric coefficients (see Chap. 20), the system
of geodesic equations (23.8) takes the form
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d2x0

dτ2
+

q0

x5

dx0

dτ

dx5

dτ
= 0;

d2x1

dτ2
+

q1

x5

dx1

dτ

dx5

dτ
= 0;

d2x2

dτ2
+

q2

x5

dx2

dτ

dx5

dτ
= 0;

d2x3

dτ2
+

q3

x5

dx3

dτ

dx5

dτ
= 0;

d2x5

dτ2
± r

2x5

(

dx5

dτ

)2

∓ 1

2 (x5)r+1

[

q0

(

x5

x5
0

)q0
(

dx0

dτ

)2

−q1

(

x5

x5
0

)q1
(

dx1

dτ

)2

− q2

(

x5

x5
0

)q2
(

dx2

dτ

)2

− q3

(

x5

x5
0

)q3
(

dx3

dτ

)2
]

= 0.

(24.1)
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It can be synthetically written as

d2xµ

dτ2
+
qµ

x5

dxµ

dτ
dx5

dτ
= 0, µ = 0, 1, 2, 3 (ESC off); (24.2)

d2x5

dτ2
∓ 1

2

[

gαβqα

(

x5

x5
0

)qα−r−1 1
x5

0

(

dxα

dτ

)2

∓ r

2x5

(

dx5

dτ

)2
]

= 0 (ESC on)

(24.3)
with gαβ denoting, as usual, the Minkowskian metric tensor.

The solution of (24.2) in terms of x5 reads (ESC off)

xµ(τ) = Cµ1 + Cµ2

∫

dτ
(

x5(τ)
)−qµ

, (24.4)

where Cµ1, Cµ2 are real integration constants. Replacing (24.4) in (24.3)
yields (ESC on)

d2x5

dτ2
∓ 1

2
(

x5
0

)r (
x5
)−r−1

gαβC
2
α2qα

(

x5

x5
0

)−qβ

+
r

2x5

(

dx5

dτ

)2

= 0. (24.5)

By solving this equation one gets the following implicit functional relation
for x5(τ):

τ +A1 ∓
(

x5
0

)−r/2
∫

dζF±(ζ; q̃, A2)
∣

∣

∣

∣

ζ=x5(τ)

= 0, (24.6)

(A1, A2 ∈ R), where (ESC on)

F±(ζ; q̃, A2) ≡
{

∓
[

gµν

(

x5
0

)qµ
C2

µ2ζ
−r−qν ∓

(

x5
0

)−r
A2ζ

−r
]}−1/2

(24.7)

and q̃ = (q0, q1, q2, q3, r) is the parametric set of exponents of the metric
coefficients (in the Power Ansatz) for the class of solutions considered (see
Sect. 20.4). Of course, the explicit form of the function F±(ζ; q̃, A2), and
therefore of the indefinite integral in ζ in (24.6), depends on the set q̃
(and on the integration constant A2); moreover, it determines the geodesic
motions in �5 for the class of solutions characterized by the exponent set
q̃. This is why we shall refer to it as the geodesic generating function. The
integral in (24.6) then becomes (ESC on)

∫

dζF±(ζ; q̃, A2)

=
∫

dζ
[

αµ,±(qµ, C
2
µ2,
(

x5
0

)

)δµνζ
−r−qν + α5(r,A2,

(

x5
0

)

)ζ−r
]−1/2

(24.8)
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with

α0,±(q0, C2
02,
(

x5
0

)

) = ∓
(

x5
0

)q0
C2

02;

α1,±(q1, C2
12,
(

x5
0

)

) = ±
(

x5
0

)q1
C2

12;

α2,±(q2, C2
22,
(

x5
0

)

) = ±
(

x5
0

)q2
C2

22;

α3,±(q3, C2
32,
(

x5
0

)

) =
(

x5
0

)q3
C2

32;

α5(r,A2,
(

x5
0

)

) =
(

x5
0

)−r
A2. (24.9)

Such an integral is of the type (ESC on)
∫

dx
xr/2

√

a+ δµνcµx−qν
(24.10)

with a, cµ (µ = 0, 1, 2, 3) real constants. For r 
= −2, putting y = x
r
2 +1

yields
∫

dx
xr/2

√

a+ δµνcµx−qν
=

2
r + 2

∫

dy
√

a+ δµνcµyγν(qν ,r)
, (24.11)

where γν(qν , r) = − 2qν

r + 2
. For r = −2 one gets instead, by the substitution

y = lnx (x ≥ 0)
∫

dx
x
√

a+ δµνcµx−qν
=
∫

dy
√

a+ δµνcµe−qνy
. (24.12)

The Riemann integrals (24.11) and (24.12) do not exist in literature for
generic values of the constants. Then, the general solution of the geodetic
equations (24.2), even in the Power Ansatz, can only be expressed in terms
of such integrals by means of (24.6)–(24.12), and therefore takes the implicit
form

xµ(τ) = Cµ1 + Cµ2

∫

dτ
(

x5(τ)
)−qµ (ESC off); (24.13)

τ +A1 ∓
(

x5
0

)−r/2
∫

dζF±(ζ; q̃, A2)
∣

∣

∣

∣

ζ=x5(τ)

= 0 (24.14)

with the generating function given by (24.7). Equation (24.14) for the
energy coordinate explicitly reads

τ +A1

ESC on= ±
2
(

x5
0

)−r/2

r + 2

∫

dy
√

αµ,±(qµ, C2
µ2, (x

5
0))δµνyγν(qν ,r) + α5(r,A2, (x5

0))
=0,

γν(qν , r) = − 2qν

r + 2
, y = (x5(τ))

r
2+1, r 
= −2; (24.15)
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τ +A1

ESC on= ±
(

x5
0

)−r/2
∫ x5(τ) dx

√

αµ,±(qµ, C2
µ2, (x

5
0))δµνx−qν + α5(r,A2, (x5

0))
=0,

r = 2; (24.16)

α0,±(q0, C2
02,
(

x5
0

)

) = ∓
(

x5
0

)q0
C2

02;

α1,±(q1, C2
12,
(

x5
0

)

) = ±
(

x5
0

)q1
C2

12;

α2,±(q2, C2
22,
(

x5
0

)

) = ±
(

x5
0

)q2
C2

22;

α3,±(q3, C2
32,
(

x5
0

)

) =
(

x5
0

)q3
C2

32;

α5(r,A2,
(

x5
0

)

) =
(

x5
0

)−r
A2. (24.17)

The geodesic motions expressed by (24.13), (24.14) for all classes (I)–
(XII) of the Einstein equations in vacuum in the Power Ansatz, discussed
in Sect. 20.4, can be found in Appendix C.

24.2 Geodesic Motions for the 5D Metrics
of Fundamental Interactions

24.2.1 Generating Function for Electromagnetic and Weak
Metrics

The metrics for electromagnetic and weak interactions are characterized by

the power dependence
(

x5

x5
0

)1/3

. Then, as shown in Sect. 20.4, they can be
obtained from the following classes of solutions of the algebraic Einstein
equations (20.19) with Λ(5) = 0:

(1) Class II for m =
1
3
, characterized therefore by the coefficient set

q̃II,int. = (0, 1/3, 0, 0,−5/3), int.=e.m., weak. One gets:

gAB,DR5,II,m= 1
3
(x5)

= diag

(

1,−
(

x5

x5
0

)1/3

,−1,−1,±
(

x5

x5
0

)−5/3
)

. (24.18)

The geodesic generating function F± (24.7) takes the form

F±,II

(

ζ;m =
1
3
, A2

)

=
{

±
[

C2
22 + C2

32 − C2
02 ±A2

(

x5
0

)5/3
]

ζ5/3 ± C2
12

(

x5
0

)1/3
ζ4/3
}−1/2

.

(24.19)
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(2) Class IV for p =
1
3

(q̃IV,int. = (0, 0, 0, 1/3,−5/3)):

gAB,DR5,IV,p= 1
3
(x5) = diag

(

1, ,−1,−1,−
(

x5

x5
0

)1/3

,±
(

x5

x5
0

)5/3
)

;

(24.20)

F±,IV

(

ζ; p =
1
3
, A2

)

=
{

±
[

C2
12 + C2

22 − C2
02 ±A2

(

x5
0

)5/3
]

ζ5/3 ± C2
32

(

x5
0

)1/3
ζ4/3
}−1/2

.

(24.21)

(3) Class IX for n =
1
3

(q̃IX,int. = (0, 0, 1/3, 0,−5/3)):

gAB,DR5,IX,n= 1
3
(x5) = diag

(

1, ,−1,−
(

x5

x5
0

)1/3

,−1, ,±
(

x5

x5
0

)−5/3
)

;

(24.22)

F±,IX

(

ζ;n =
1
3
, A2

)

=
{

±
[

C2
12 + C2

32 − C2
02 ±A2

(

x5
0

)5/3
]

ζ5/3 ± C2
22

(

x5
0

)1/3
ζ4/3
}−1/2

.

(24.23)

It is easily seen that, at level of both the metric structure gAB,DR5(x5) and
of the integrand function F±(ζ; q̃, A2), the following relations hold:

II)|m= 1
3

⇔
x1↔x3(C12↔C32)

IV )|p= 1
3

⇔
x2↔x3(C22↔C32)

IX)|n= 1
3

⇔
x1↔x2(C12↔C22)

II)|m= 1
3
. (24.24)

This essentially means that (as it is also seen by the expressions of the coef-
ficient sets) the three cases are equivalent – apart from a redenomination
of the spatial axes – and it is therefore possible to consider any of them
without loss of generality.

The forms (24.19), (24.21), (24.23) of the function F±,int.(ζ; q̃, A2)
(int. = e.m.,weak) for the three classes can be summarized as

F±,int.(ζ;A2,K1,±,int.,K2,int.) =
[

±
(

K1,±,int.ζ
5/3 +K2,int.ζ

4/3
)]−1/2

,
(24.25)

where the constants K1,±,int., K2,int. are given by

II)|m= 1
3

:

K1,±,int. = C2
22 + C2

32 − C2
02 ±A2

(

x5
0,int.

)5/3
,

K2,int. = C2
12

(

x5
0,int.

)1/3
; (24.26)
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IV )|p= 1
3

:

K1,±,int. = C2
12 + C2

22 − C2
02 ±A2

(

x5
0,int.

)5/3
,

K2,int. = C2
32

(

x5
0,int.

)1/3
; (24.27)

IX)|n= 1
3

:

K1,±,int. = C2
12 + C2

32 − C2
02 ±A2

(

x5
0,int.

)5/3
,

K2,int. = C2
22

(

x5
0,int.

)1/3
. (24.28)

24.2.2 Generating Function for Strong and Gravitational
Metrics

The metrics for strong and gravitational interactions are characterized by

the power dependence
(

x5

x5
0

)2

, and can be therefore obtained from the fol-
lowing classes of solutions:

(1) Class I for n = 2 (p = 0) (q̃I,int. = (2,−1, 2, 0, 1), int.=strong, grav.).
One gets:

gAB,DR5,I,n=2(x5)

= diag

(

(

x5

x5
0

)2

,−
(

x5

x5
0

)−(4+4p)/(4+p)

,

−
(

x5

x5
0

)2

,−
(

x5

x5
0

)p

,±
(

x5

x5
0

)(p2+2p+4)/(4+p)
)

; (24.29)

gAB,DR5,I,n=2,p=0(x5)

= diag

(

(

x5

x5
0

)2

,−
(

x5

x5
0

)−1

, −
(

x5

x5
0

)2

,−1,±
(

x5

x5
0

)

)

; (24.30)

whence the following forms of the generating function:

F±,I(ζ;n = 2, p, A2)

=
[

±
(

x5
0

)−(4+4p)/(4+p)
C2

12ζ
− p2−2p

4+p

±
(

x5
0

)2 (
C2

22 − C2
02

)

ζ−(p2+4p+12)/(4+p) +

±
(

x5
0

)p
C2

32ζ
−(2p2+6p+4)/4+p)

±A2

(

x5
0

)−(p2+2p+4)/(4+p)
ζ−

p2+2p+4
4+p

]−1/2

, (24.31)
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F±,I(ζ;n = 2, p = 0, A2)

=
{

±C2
12

(

x5
0

)−1
+
(

±C2
32 +A2

(

x5
0

)−1
)

ζ−1

±
(

x5
0

)2 (
C2

22 − C2
02

)

ζ−3
}−1/2

. (24.32)

The last equation can be written as

F±,I,int.(ζ;K1,±,int.,K2,±,int.,K3,±,int.)

=
[

K1,±,int. +K2,±,int.ζ
−1 +K3,±,int.ζ

−3
]−1/2

(24.33)

with

K1,±,int. = ±C2
12

(

x5
0

)−1
,

K2,±,int. = ±C2
32 +A2

(

x5
0

)−1
,

K3,±,int. = ±
(

x5
0

)2 (
C2

22 − C2
02

)

. (24.34)

(2) Class X for q = 2, n = p = 0 (q̃X,int. = (2, 0, 0, 0, 0)):

gAB,DR5,X,q=2,n=p=0(x5) = diag

(

(

x5

x5
0

)2

,−1,−1,−1,±1

)

;

(24.35)

F±,X(ζ; q = 2, n = p = 0, A2)

=
{

±
(

C2
12 + C2

22 + C2
32

)

+A2 ∓
(

x5
0

)2
C2

02ζ
−2
}−1/2

. (24.36)

(3) Class XI for q = 2, n = 0 (q̃XI,int. = (2, 0, 0, 0, 0)):

gAB,DR5,XI,q=2,n=0(x5) = diag

(

(

x5

x5
0

)2

,−1,−1,−1,±1

)

; (24.37)

F±,XI(ζ; q = 2, n = 0, A2)

=
{

±
(

C2
12 + C2

22 + C2
32

)

+A2 ∓
(

x5
0

)2
C2

02ζ
−2
}−1/2

. (24.38)

(4) Class XII for q = 2, n = 0 (q̃X,int. = (2, 0, 0, 0, 0)):

gAB,DR5,XII,q=2,n=0(x5) = diag

(

(

x5

x5
0

)2

,−1,−1,−1,±1

)

; (24.39)
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F±,XII(ζ; q = 2, n = 0, A2)

=
{

±
(

C2
12 + C2

22 + C2
32

)

+A2 ∓
(

x5
0

)2
C2

02ζ
−2
}−1/2

. (24.40)

The last three cases are perfectly equivalent at level both of the metric
structure gAB,DR5(x5) and of the generating function F±(ζ; q̃, A2):

X)|q=2,n=p=0 = XI)|q=2,n=0 = XII)|q=2,n=0 . (24.41)

The function F±(ζ) for all three cases can be therefore written in the com-
pact form

F±,int.(ζ;K1,±,int.,K2,int.) =
[

±
(

K1,±,int. +K2,int.ζ
−2
)]−1/2

, (24.42)

where we put

K1,±,int. =
(

C2
12 + C2

22 + C2
32

)

±A2,

K2,int. = −
(

x5
0,int.

)2
C2

02. (24.43)

24.2.3 Geodesics for Electromagnetic and Weak Interactions

It is now possible, on account of the results of Sect. 24.1 and Sect. 24.2.1,
to write the explicit expressions of the geodesics in �5 corresponding to
the electromagnetic and weak metrics. Equation (24.14) for the energy
coordinate reads, in this case:

τ +A1

= ±
(

x5
0

)5/6
∫

dζF±,e.m.,weak(ζ;A2,K1,±,K2)
∣

∣

∣

∣

ζ=x5(τ)

, (24.44)

whence, from (24.25)

x5
±,int.(τ) = ± 1

K3
1,±,int.

⎡

⎢

⎣

K2
1,±,int.

36
(

x5
0,int.

)5/3

(

τ2 + 2A2τ +A2
2

)

∓K2,int.

⎤

⎥

⎦

3

.

(24.45)
This equation can be also put in the form

x5
±,int.(τ) = ±a1,±,int.

(

a2,±,int.τ
2 + a3,±,int.τ + a4,±,int.

)3
(24.46)

with

a1,±,int. =
1

K3
1,±,int.

; a2,±,int. =
K2

1,±,int.

36
(

x5
0,int.

)5/3
;

a3,±,int. =
K2

1,±,int.A2

18
(

x5
0,int.

)5/3
; a4,±,int. =

K2
1,±,int.A

2
2

36
(

x5
0,int.

)5/3
∓K2,int..

(24.47)



24.2 Geodesic Motions for the 5D Metrics of Fundamental Interactions 369

As noted in Sect. 24.2.1, one can, without loss of generality, consider
any of the three classes (which only differ by the name of the spatial axes).
Taking e.g., class II, we get, for the space–time coordinates of the geodesics
(cf. (24.13)):

xµ
±,int.(τ) = Cµ1 + Cµ2

∫

dτ
(

x5(τ)
)−qµ

= Cµ1 + Cµ2

(

τ + χµ

)

= ˜Cµ1 + Cµ2τ ,

˜Cµ1 = Cµ1 + Cµ2χµ, µ = 0, 2, 3; (24.48)

x1
±,int.(τ) = C11 + C12

∫

dτ
(

x5(τ)
)−q1 = C11 + C12

∫

dτ
(

x5(τ)
)−1/3

= C11+C12

∫

dτ
[

±a1,±,int.

(

a2,±,int.τ
2 + a3,±,int.τ + a4,±,int.

)3
]−1/3

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C11 +C12(±a1,±,int.)−1/3 2
√

|∆±|
arctg

(

2a2,±,int.τ + a3,±,int.
√

|∆±|

)

,

∆± < 0,

C11+C12(±a1,±,int.)−1/3 1
√

∆±
arctg

(

2a2,±,int.τ + a3,±,int. −
√

∆±

2a2,±,int.τ + a3,±,int. +
√

∆±

)

,

∆± > 0,

C11 + C12 (±a1,±,int.)
−1/3 2

2a2,±,int.τ + a3,±,int.
,

∆± = 0,
(24.49)

where we put

∆± = a2
3,±,int. − 4a2,±,int.a4,±,int.. (24.50)

24.2.4 Geodesics for Strong and Gravitational Interactions

Analogously to what done in Sect. 24.2.3 for the electromagnetic and the
weak interaction, one can exploit the results of Sect. 24.1 and Sect. 24.2.2
in order to get the expressions of the geodesics in �5 for particles subjected
either to the strong force or to the gravitational one. On account of the
fact that the last three metrics discussed in Sect. 24.2.2 are equivalent (they
differ only for labeling of the spatial axes), it is possible to consider only
two cases (and the related subcases).
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Case 1 (Class I for n = 2, p = 0) In this case the energy coordinate is
determined by the equation (int.=strong, grav.)

τ +A1

= ±
(

x5
0,int.

)−r/2
∫

dζF±,I,int.(ζ;K1,±,int.,K2,±,int.,K3,±,int.)
∣

∣

∣

∣

ζ=x5(τ)

(24.51)

= ±
(

x5
0,int.

)−1/2
∫

dζ
[

K1,±,int. +K2,±,int.ζ
−1 +K3,±,int.ζ

−3
]−1/2

∣

∣

∣

∣

ζ=x5(τ)

(24.52)

(cf. (24.14),(24.42)). Let us consider the following subcases:

(i) K3,±,int. = 0:

(i.1) K1,±,int. = 0, K2,±,int. 
= 0:

x5
±,int.(τ) =

[

±2
3

√

x5
0,int.K2,±,int. (τ +A1)

]2/3

; (24.53)

(i.2) K1,±,int. 
= 0, K2,±,int. = 0:

x5
±,int.(τ) = ±

√

x5
0,int.K1,±,int. (τ +A1) ; (24.54)

(i.3) K1,±,int. 
= 0, K2,±,int. 
= 0: The function x5
±,int.(τ) is deter-

mined implicitly by the equation

τ +A1 = ±
(

x5
0,int.

)−1/2

{

x5
±,int.(τ)
√

K1,±,int.

√

1 +
K2,±,int.

x5
0,int.K1,±,int.

− K2,±,int.

2K3/2
1,±,int.

⎡

⎢

⎢

⎢

⎢

⎣

̂Θ (K1,±,int.) ln

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 +

√

1 +
K2,±,int.

x5
0,int.K1,±,int.

1 −
√

1 +
K2,±,int.

x5
0,int.K1,±,int.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+2 ̂Θ (−K1,±,int.) ̂Θ

(

1 −
√

1 +
K2,±,int.

x5
0,int.K1,±,int.

)

× ̂Θ

(

1 +

√

1 +
K2,±,int.

x5
0,int.K1,±,int.

)

arctgh

(√

1 +
K2,±,int.

x5
0,int.K1,±,int.

)]}

;

(24.55)

(ii) K2,±,int. = 0:
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(ii.1) K1,±,int. 
= 0, K3,±,int. 
= 0: The Riemann integral at the right-
hand side of (24.51) is unknown in this case;

(ii.2) K1,±,int. 
= 0, K3,±,int. = 0:

x5
±,int.(τ) = ±

√

x5
0,int.K1,±,int. (τ +A1) ; (24.56)

(ii.3) K1,±,int. = 0, K3,±,int. 
= 0:

x5
±,int.(τ) =

[

±5
2

√

x5
0,int.K3,±,int. (τ +A1)

]2/5

; (24.57)

(iii) K1,±,int. = 0:

(iii.1) K2,±,int. 
= 0, K3,±,int. 
= 0:

(iii.1.1)
K2,±,int.

K3,±,int.
> 0: The Riemann integral at the right-hand side of

(24.51) is unknown;

(iii.1.2)
K2,±,int.

K3,±,int.
< 0: The function x5

±,int.(τ) = x5(τ) is determined

implicitly by the equation

τ +A1

= ±
(

x5
0,int.

)−1/2

{

±i
2
√

K3,±,int.

3K2,±,int.

̂Θ

(√

−K2,±,int.

K3,±,int.
− 1
x5
±,int.(τ)

)

×

⎡

⎢

⎣

(

−K2,±,int.

K3,±,int.

)− 1
4
∫

√

1− 1
x5
±,int.

(τ)

√

−K3,±,int.
K2,±,int.

0

dt
√

(1 − t2) (2 − t2)

+

√

−K2,±,int.

K3,±,int.

(

x5
±,int.(τ)

)3

− x5
±,int.(τ)

]

−
2
√

K3,±,int.

3K2,±,int.

̂Θ

(

1
x5
±,int.(τ)

−
√

−K2,±,int.

K3,±,int.

)
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×

⎧
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⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎣

−
(

−K2,±,int.

K3,±,int.

)−1/4
∫

√

1−x5
±,int.

(τ)

√

−K3,±,int.
K2,±,int.

0

dt
√

(1 − t2) (2 − t2)

−
√

−K2,±,int.

K3,±,int.

(

x5
±,int.(τ)

)3

− x5
±,int.(τ)

]}

,

(24.58)
or

×
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⎪

⎪

⎪

⎪

⎪

⎪
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⎨

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

−K2,±,int.

K3,±,int.

)−1/4
∫

√

√

√

√

√

2

√

−
K2,±,int.
K3,±,int.

1
x5
±,int.

(τ)
+

√

−
K2,±,int.
K3,±,int.

0

dt
√

(1 − t2) (2 − t2)

−
√

−K2,±,int.

K3,±,int.

(

x5
±,int.(τ)

)3

− x5
±,int.(τ)

]}

;

(iii.2) K2,±,int. 
= 0, K3,±,int. = 0:

x5
±,int.(τ) =

[

±2
3

√

x5
0,int.K3,±,int. (τ +A1)

]2/3

; (24.59)

(iii.3) K2,±,int. = 0, K3,±,int. 
= 0:

x5
±,int.(τ) =

[

±5
2

√

x5
0,int.K3,±,int. (τ +A1)

]2/5

; (24.60)

(iv) K1,±,int.,K2,±,int.,K3,±,int. 
= 0: The Riemann integral at the
right-hand side of (24.51) is unknown.

The space–time coordinates xµ are obtained from (24.13) by substituting
the expressions (24.52)–(24.55) obtained in the various subcases.

Case 2 (Classes X)|q=2,n=p=0 = XI)|q=2,n=0 = XII)|q=2,n=0) As stressed
earlier, these three cases are equivalent. The fifth coordinate is determined
by the equation (int. = strong, grav.)

τ +A1 = ±
(

x5
0,int.

)−r/2
∫

dζF±,,int.(ζ;K1,±,int.,K2,,int.)
∣

∣

∣

∣

ζ=x5(τ)

= ±
∫

dζ
[

±K1,±,int. +K2,int.ζ
−2
]−1/2

∣

∣

∣

∣

ζ=x5(τ)

, (24.61)

whose explicit solution is

x5
±,int.(τ) =

√

± 1
K1,±,int.

[

K2
1,±,int. (τ +A1)

2 ∓K2,int.

]

(24.62)
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(we discarded the solution x5
±,int.(τ) < 0, on account of the physical mean-

ing of the fifth coordinate, energy, in DR5).
Solution (24.62) can be also written as

x5
±,int.(τ) =

√

±α1,±,int.τ2 ± α2,±,int.τ + α3,±,int., (24.63)

where we put

α1,±,int. = K1,±,int.; α2,±,int. = 2A1K1,±,int.;

α3,±,int. = ±A2
1K1,±,int. −

K2,int.

K1,±,int.
. (24.64)

The space–time coordinates are obtained by replacing (24.63) in (24.13)
and using the expressions (24.64) and (24.43) of the constants. One gets,
for the time coordinate:

x0
±,int.(τ) = C01 + C02

∫

dτ
(

x5(τ)
)−q0 = C01 + C02

∫

dτ
(

x5(τ)
)−2

= C01 + C02

∫

dτ
±α1,±,int.τ2 ± α2,±,int.τ + α3,±,int.

=

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C01 + C02
2

√

|∆±|
arctg

(

±2α1,±,int.τ ± α2,±,int.
√

|∆±|

)

,

∆± < 0,

C01 + C02
1

√

∆±
ln

∣

∣

∣

∣

∣

±2α1,±,int.τ ± α2,±,int. −
√

∆±

±2α1,±,int.τ ± α2,±,int. +
√

∆±

∣

∣

∣

∣

∣

,

∆± > 0,

C01 − C02
2

±2α1,±,int.τ ± α2,±,int.
,

∆± = 0,

(24.65)

where
∆± = α2

2,±,int. ∓ 4α1,±,int.α3,±,int.. (24.66)

Finally, the space coordinates read

xi
±,int.(τ) = Ci1 + Ci2

∫

dτ
(

x5(τ)
)−qi

= Ci1 + Ci2 (τ + χi) = ˜Ci1 + Ci2τ ,

˜Ci1 = Ci1 + Ci2χi, i = 1, 2, 3. (24.67)
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24.3 Gravitational Metric of the Einstein Type

Let us consider the class VI of solutions of the vacuum Einstein equa-
tions in the Power Ansatz, characterized by the coefficient set q̃VI =
(q, 0, 0, 0, q − 2), to which correspond the 5d metric

gAB,DR5,VI(x5) = diag

(

(

x5

x5
0

)q

,−1,−1,−1,±
(

x5

x5
0

)q−2
)

(24.68)

and the function

F±,VI(ζ; q,A2)

=
{

±
[

C2
12 + C2

22 + C2
32 ±A2

(

x5
0

)2−q
]

ζ2−q ∓ C2
02

(

x5
0

)q
ζ2−2q

}−1/2

.

(24.69)

By putting q = 1, these equations become

gAB,DR5,VI,q=1(x5) = diag

(

x5

x5
0

,−1,−1,−1,±
(

x5

x5
0

)−1
)

; (24.70)

F±,V I(ζ; q = 1, A2) =
{

±
[

C2
12 + C2

22 + C2
32 ±A2x

5
0

]

ζ ∓ C2
02x

5
0

}−1/2
.

(24.71)
Metric (24.70) has standard Minkowskian structure for the spatial part,
whereas the time metric coefficient is linear in the energy coordinate x5.
Then, as far as the space–time sector is concerned, it is similar to the 4D
gravitational metric (2.21) introduced by Einstein in order to account for
the slowing down of clocks in a (weak) gravitational field.

Let us derive the geodesic equations for such a metric. The function
F±,V I can be written as

F±,V I(ζ;K1,K2,±.) = [± (K1 +K2,±ζ)]
−1/2 , (24.72)

where

K1 = −C2
02x

5
0;

K2,± = C2
12 + C2

22 + C2
32 ±A2x

5
0. (24.73)

On account of the results of Sect. 24.1, one gets therefore, for the fifth
coordinate of the geodesic equation:

x5
±(τ) = ±K2,±

4x5
0

τ2 ± K2,±A1

2x5
0

τ ± K2,±A
2
1

4x5
0

−K1, (24.74)

or also
x5
±(τ) = ±a1,±τ

2 ± a2,±τ ± a3,±, (24.75)
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where

a1,± =
K2,±
4x5

0

; a2,± =
K2,±A1

2x5
0

; a3,± =
K2,±A

2
1

4x5
0

∓K1. (24.76)

The time coordinate is given by

x0
±(τ) = C01 + C02

∫

dτ
(

x5(τ)
)−q0 = C01 + C02

∫

dτ
(

x5(τ)
)−1

= C01 + C02

∫

dτ
±a1,±.τ2 ± a2,±τ + a3,±.

=
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⎪

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪

⎪

⎨

⎪

⎪
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⎪

⎩

C01 + C02
2

√

|∆±|
arctg

(

±2a1,±.τ ± a2,±
√

|∆±|

)

,

∆± < 0,

C01 + C02
1

√

∆±
ln

∣

∣

∣

∣

∣

±2a1,±τ ± a2,± −
√

∆±

±2a1,±τ ± a2,± +
√

∆±

∣

∣

∣

∣

∣

,

∆± > 0,

C01 − C02
2

±2a1,±τ ± a2,±
,

∆± = 0,

(24.77)

where
∆± = a2

2,± ∓ 4a1,±a3,±. (24.78)

Finally, the space coordinates read

xi
±,int.(τ) = Ci1 + Ci2

∫

dτ
(

x5(τ)
)−qi

= Ci1 + Ci2 (τ + χi) = ˜Ci1 + Ci2τ ,

˜Ci1 = Ci1 + Ci2χi, i = 1, 2, 3. (24.79)

The result obtained is therefore identical to that of classes X)q=2,n=p=0 =
XI)|q=2,n=0 = XII)|q=2,n=0 for the strong and gravitational interactions
(as expected on physical grounds).

24.4 Class VIII and the Heisenberg Time–Energy
Uncertainty

As a final case we shall consider the solution of (24.13), (24.14) for the class
VIII of solutions (q̃VIII = (0, 0, 0, 0, r) ). The corresponding metric is

gAB,DR5,VIII(x5) = diag
(

1,−1,−1,−1,±
(

x5

x5
0

)r)

, (24.80)
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whose 4D space–time sector is a standard Minkowski space (which, as by
now familiar, represents, in the DSR framework, the electromagnetic inter-
action), whereas the energy exponent is undetermined.

The generating function F±,V III reads

F±,V I(ζ; r,A2) =
{

±
[

C2
12 + C2

22 + C2
32 − C2

02 ±A2

(

x5
0

)−r
]}−1/2

ζr/2

= K1,±ζ
r/2, (24.81)

where we put

K1,± =
{

±
[

C2
12 + C2

22 + C2
32 − C2

02 ±A2

(

x5
0

)−r
]}−1/2

. (24.82)

It is therefore easily got for the fifth coordinate

x5
±(τ ; r) =

[

± r + 2
2K1,±

(

x5
0

)r/2
(τ +A1)

]2/(r+2)

(24.83)

or
x5
±(τ ; r) = λ±

r + 2
2

(τ +A1)
2/(r+2)

, (24.84)

where

λ± =

[

±
(

x5
0

)r/2

K1,±

]2/(r+2)

. (24.85)

As to the space–time coordinates, they read (ESC off)

xµ
±(τ) = Cµ1 + Cµ2

∫

dτ
(

x5(τ)
)−qµ

= Cµ1 + Cµ2

(

τ + χµ

)

= ˜Cµ1 + Cµ2τ ,

µ = 0, 1, 2, 3, ˜Cµ1 = Cµ1 + Cµ2χµ. (24.86)

Let us consider the expression (24.84) of the energy coordinate. Putting
A1 = 0 and r = −4, one gets

x5
±(τ ; r = 4) = −λ±

(

C2
02, C

2
12, C

2
22, C

2
32, A2,

(

x5
0

)

, r = −4
)

τ−1, (24.87)

where the parametric dependence of λ± has been made explicit.
Taking

λ± = −��0 (24.88)

with � being the Planck constant, one obtains

x5(τ) = ��0τ
−1 ⇐⇒ x5

�0
τ = � ⇐⇒ Eτ = �. (24.89)
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From (24.86) one gets

x0(τ) = ct(τ) = ˜C01 + C02τ ⇔ τ(t) =
1
C02

(

ct− ˜C01

)

, (24.90)

where t is the time coordinate. Therefore, by putting ˜C01 = 0, C02 = c,

Et = � (24.91)

namely (24.84) takes a form which reminds the quantum-mechanical,
Heisenberg uncertainty relation for time and energy. Otherwise stated,
we can say that the geodesics in a 5D space–time, endowed with the 5D
metric (24.80) (with suitable values of the coefficient r and of the con-
stants), embedding a standard 4D Minkowski space (i.e., whose 4D slices at
dx5 = 0 coincide with M), correspond to trajectories (5D world lines) of
minimal time–energy uncertainty. This result seemingly indicates that the
5D scheme of DR5 may play a role toward understanding certain aspects of
quantum mechanics in purely classical (geometrical) terms. Similar conclu-
sions on the connection between Heisenberg’s principle and Kaluza–Klein
theory can be drawn also in the context of the Space–Time–Matter model
[138–140].

Let us remark that actually this result – showing that a seemingly strict
quantum effect like the uncertainty relation can be derived on a mere clas-
sical basis – is not surprising, on account of the experimental findings on
the anomalous behavior of photon systems discussed in Chap. 13. Indeed,
we have seen that such results cannot be explained in the framework of the
Copenhagen interpretation of quantum mechanics, and are more in favor of
the Einstein–de Broglie–Bohm quantum theory, based on the hollow wave.
The latter can be interpreted as a deformation of space–time, described by
the DSR formalism. In DR5, the propagation of such a deformation in the
4D space–time can possibly be associated to a geodesic motion in �5. If
this hypothesis is right, then the �5 geodesics would assume the role, in a
mere classical framework, of the quantum Feynman paths, and a presumed
probabilistic phenomenon in four dimensions would be thus brought back
to a deterministic one in five dimensions.



25
Complete Solutions of Geodesic
Equations for the 5D Metrics

We discussed in Chap. 24 the solutions of the geodesic equations for the
four phenomenological metrics of the fundamental interactions, obtained
as special cases of the classes of solutions of the vacuum Einstein equations
in the Power Ansatz. However, it is easily seen that they hold only for
the energy ranges where the metrics are not Minkowskian (namely below
threshold for the electromagnetic and weak metrics, and above thresh-
old for the strong and gravitational ones). Moreover, in most cases the
value of the parameter r was fixed (as functions of the other coefficients
qµ, µ = 0, 1, 2, 3) by the structure of the Einstein equations. We want
now to give the general solutions of the geodesic equations for the four
interactions, starting from the general form of the metrics (20.21)–(20.23),
obtained by the 5D embedding of the 4D DSR phenomenological metrics in
the DR5 framework. As already stressed, such a procedure leaves undeter-
mined the fifth metric coefficient f(x5), and therefore yields r-parametrized
metrics.

The general expression of the geodesic generating function F±(ζ; q̃, A2),
which determines the geodesic motions in the Power Ansatz, is
given by (24.7). On account of it, and of the exponent sets q̃int.

(int.=e.m.,weak,strong,grav.), (20.41)–(20.43), one gets, in correspondence
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to the 5D metrics of the four fundamental interactions in the Power Ansatz:

F±,e.m./weak(ζ; r,A2, x
5
0,e.m./weak)

= ζr/2

{

A2

(

x5
0,e.m./weak

)−r

∓ C2
02

±
[(

x5
0,e.m./weak

)

ζ−1
]1/3Θ̂L(x5

0,e.m./weak−x5) (
C2

12 + C2
32

)

}−1/2

; (25.1)

F±,strong(ζ; r,A2, x
5
0,strong)

= ζr/2
{

A2

(

x5
0,strong

)−r ±
(

C2
12 + C2

22

)

+

±
[(

x5
0,strong

)

ζ−1
]2Θ̂L(x5−x5

0,strong) (C2
32 − C2

02

)

}−1/2

; (25.2)

F±,grav.(ζ; r,A2, x
5
0,grav.)

= ζr/2
{

(

x5
0,grav.

)−r
A2 ±

(

x5
0,grav.

)?
ζ−?
(

C2
12 + C2

22

)

+

±
[(

x5
0,grav.

)

ζ−1
]

˜2Θ̂L(x5−x5
0,grav.) (C2

32 − C2
02

)

}−1/2

, (25.3)

(25.4)

where the tilde and the question marks in F±,grav.(ζ; r,A2, x
5
0,grav.) have

the meaning clarified in Sect. 20.2.3.
The solutions for the geodesic equations are still given by (24.4), (24.6).

Let us distinguish the two cases of Minkowskian and non-Minkowskian
behavior.

25.1 Minkowskian Behavior

This is the case of the electromagnetic and weak interactions above thresh-
old, i.e., for x5 ≥ x5

0,e.m./weak, and of the strong and gravitational inter-
actions below threshold, i.e., for x5 ≤ x5

0,strong and x5 ≤ x5
0,grav. In these

cases, the exponent sets of the metrics reduce to

q̃e.m./weak

(

x5 ≥ x5
0,e.m./weak

)

= (0, 0, 0, 0, r) ; (25.5)

q̃strong

(

0 < x5 ≤ x5
0,strong

)

= (0, (0, 0) , 0, r) ; (25.6)

q̃grav.

(

0 < x5 ≤ x5
0,grav.

)

= (0, (0, 0) , 0, r) . (25.7)
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These coefficient sets are identical to that of Class VIII we already discussed
in Sect. 24.4. The corresponding solution for the fifth coordinate is therefore

x5
±,int.(τ ;x

5
0,int., rint.) =

[

± rint. + 2
2K1,±,int.

(

x5
0,int.

)rint/2
(τ +A1)

]2/(rint+2)

,

(25.8)

K1,±,int. =
{

±
[

C2
12 + C2

22 + C2
32 − C2

02 ±A2

(

x5
0,int.

)−rint.
]}−1/2

,

(25.9)

whereas the space–time coordinates are given by (ESC off)

xµ
±,int.(τ) = Cµ1 + Cµ2

∫

dτ
(

x5(τ)
)−qµ

= Cµ1 + Cµ2

(

τ + χµ

)

= ˜Cµ1 + Cµ2τ ,

µ = 0, 1, 2, 3, ˜Cµ1 = Cµ1 + Cµ2χµ. (25.10)

25.2 Non-Minkowskian Behavior

Let us consider separately the different cases.

25.2.1 Electromagnetic and Weak Interactions
under Threshold

(a.1) ∓C2
02 +A2

(

x5
0,e.m./weak

)−r

= 0, C2
12 + C2

22 + C2
32 
= 0:

(a.1.1) 3r + 7 
= 0:

x5
±,e.m./weak.(τ)

=
[

±3r + 7
6

√

± (C2
12 + C2

22 + C2
32)
(

x5
0,e.m./weak

)(3r+1)/6

(τ +A1)
]6/(3r+7)

;

(25.11)

(a.1.2) r = −7
3
:

x5
±,e.m./weak.(τ)

= exp
[

±
√

± (C2
12 + C2

22 + C2
32)
(

x5
0,e.m./weak

)(3r+1)/6

(τ +A1)
]

;

(25.12)
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(a.2) ∓C2
02 +A2

(

x5
0,e.m./weak

)−r


= 0, C2
12 + C2

22 + C2
32 = 0:

(a.2.1) r 
= −2:

x5
±,e.m./weak.(τ)

=
[

±r + 2
2

√

∓C2
02 +A2(x5

0,e.m./weak)
−r(x5

0,e.m./weak)
r/2(τ +A1)

]2/(r+2)

;

(25.13)

(a.2.2) r = −2:

x5
±,e.m./weak.(τ)

= exp

[

±
√

∓C2
02 +A2

(

x5
0,e.m./weak

)−r (

x5
0,e.m./weak

)r/2

(τ +A1)

]

;

(25.14)

(a.3) ∓C2
02 +A2

(

x5
0,e.m./weak

)−r


= 0, C2
12 + C2

22 + C2
32 
= 0:

(a.3.1) 3r + 7 
= 0:

τ +A1 = ±
6
(

x5
0,e.m./weak

)(−3r+2)/9

(3r + 7)
√

± (C2
12 + C2

22 + C2
32)

×

⎡

⎢

⎣

−
(

C2
12 + C2

22 + C2
32

)

C2
02 ∓A2

(

x5
0,e.m./weak

)−r

⎤

⎥

⎦

(3r+7)/6
∫

dt
√

t
2

3r+7 + 1
,

(25.15)

where

t=

[

−C2
02 ±A2(x5

0,e.m./weak)
−r

(x5
0,e.m./weak)

1/3(C2
12 + C2

22 + C2
32)

](3r+7)/2

(x5
±,e.m./weak.(τ))

(3r+7)/6;

(25.16)

(a.3.2) r = −7
3
:

x5
±,e.m./weak.(τ)

= x5
0,e.m./weak

⎡

⎢

⎣

C2
12 + C2

22 + C2
32

−C2
02 ±A2

(

x5
0,e.m./weak

)−r

⎤

⎥

⎦

3

(25.17)

× sinh−6

[

±1
6

√

± (C2
12 + C2

22 + C2
32)
(

x5
0,e.m./weak

)(3r+1)/6

(τ +A1)
]

.

(25.18)
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25.2.2 Strong Interaction above Threshold

(b.1) ±
(

C2
12 + C2

22

)

+A2

(

x5
0,strong

)−r = 0, C2
02 − C2

32 
= 0:

(b.1.1) r 
= −4:

x5
±,strong(τ) =

[

±r + 4
2

(τ +A1)(x5
0,strong)

(r+2)/2
√

∓(C2
02 − C2

32)
]2/(r+4)

;

(25.19)
(b.1.2) r = −4:

x5
±,strong(τ) = exp

[

± (τ +A1)
(

x5
0,strong

)(r+2)/2
√

∓ (C2
02 − C2

32)
]

;

(25.20)

(b.2) ±
(

C2
12 + C2

22

)

+A2

(

x5
0,strong

)−r 
= 0, C2
02 − C2

32 = 0:

(b.2.1) r 
= −2:

x5
±,strong(τ)

=
[

±r + 2
2

√

±(C2
12+C2

22) +A2(x5
0,strong)−r(x5

0,strong)
r/2(τ +A1)

]2/(r+2)

;

(25.21)

(b.2.2) r = −2:

x5
±,strong(τ)

= exp
[

±
√

± (C2
12 + C2

22) +A2(x5
0,strong)−r(x5

0,strong)
r/2(τ +A1)

]

;

(25.22)

(b.3) ±
(

C2
12 + C2

22

)

+A2

(

x5
0,strong

)−r 
= 0, C2
02 − C2

32 
= 0:

(b.3.1) r 
= −4:

τ +A1 = ±
2
[

∓
(

C2
02 − C2

32

)](r−2)/4

(r + 4)
[

± (C2
12 + C2

22) +A2

(

x5
0,strong

)−r
](r+4)/4

×
∫

dt√
t4/(r+4) + 1

, (25.23)

where

t =

[

±
(

C2
12 + C2

22

)

+A2

(

x5
0,strong

)−r

(

x5
0,strong

)2 (∓C2
02 ± C2

32)

](r+4)/4
(

x5
±,strong(τ)

)(r+4)/2
;

(25.24)
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(b.3.2) r = −4:

x5
±,strong(τ) = x5

0,strong

√

−C2
02 + C2

32

C2
12 + C2

22 ±A2

(

x5
0,strong

)−r

× sinh−1

[

±
√

∓ (C2
02 − C2

32)
(

x5
0,strong

)(r+2)/2
(τ +A1)

]

.

(25.25)

25.2.3 Gravitational Interaction above Threshold

(I) ? = 0:

(c.I.1) ±
(

C2
12 + C2

22

)

+A2

(

x5
0,grav

)−r = 0, C2
02 − C2

32 
= 0:

(c.I.1.1) r 
= −4:

x5
±,grav(τ) =

[

±r + 4
2

(τ +A1)
(

x5
0,grav

)(r+2)/2
√

∓ (C2
02 − C2

32)
]2/(r+4)

;

(25.26)
(c.I.1.2) r = −4:

x5
±,grav(τ) = exp

[

± (τ +A1)
(

x5
0,grav

)(r+2)/2
√

∓ (C2
02 − C2

32)
]

;

(25.27)

(c.I.2) ±(C2
12 + C2

22) +A2(x5
0,grav)−r 
= 0, C2

02 − C2
32 = 0:

(c.I.2.1) r 
= −2:

x5
±,grav(τ)

=
[

±r + 2
2

√

± (C2
12 + C2

22) +A2

(

x5
0,grav

)−r (
x5

0,grav

)r/2
(τ +A1)

]2/(r+2)

;

(25.28)

(c.I.2.2) r = −2:

x5
±,grav(τ)

= exp
[

±
√

± (C2
12 + C2

22) +A2

(

x5
0,grav

)−r (
x5

0,grav

)r/2
(τ +A1)

]

;

(25.29)

(c.I.2) ±
(

C2
12 + C2

22

)

+A2

(

x5
0,grav

)−r 
= 0, C2
02 − C2

32 
= 0:



25.2 Non-Minkowskian Behavior 385

(c.I.2.1) r 
= −4:

τ +A1 = ±
2
[

∓
(

C2
02 − C2

32

)](r−2)/4

(r + 4)
[

± (C2
12 + C2

22) +A2(x5
0,grav)−r

](r+4)/4

×
∫

dt√
t4/(r+4) + 1

(25.30)

where

t =

[

±
(

C2
12 + C2

22

)

+A2

(

x5
0,grav

)−r

(

x5
0,grav

)2 (∓C2
02 ± C2

32)

](r+4)/4
(

x5
±,grav(τ)

)(r+4)/2
;

(25.31)
(c.I.2.2) r = −4:

x5
±,grav(τ) = x5

0,grav

√

−C2
02 + C2

32

C2
12 + C2

22 ±A2

(

x5
0,grav

)−r

× sinh−1

[

±
√

∓ (C2
02 − C2

32)
(

x5
0,grav

)(r+2)/2
(τ +A1)

]

.

(25.32)

(II) ? = 2̃:

(c.II.1) A2

(

x5
0,grav

)−r = 0, ∓
(

x5
0,grav

)2̃ (
C2

02 − C2
12 − C2

22 − C2
32

)


= 0:

(c.II.1.1) r 
= −4:

x5
±,grav(τ)

=
[

±r + 4
2

(τ +A1)(x5
0,grav)(r+2)/2

×
√

∓(x5
0,grav)2̃(C2

02 − C2
12 − C2

22 − C2
32)
]2/(r+4)

; (25.33)

(c.II.1.2) r = −4:

x5
±,grav(τ) = exp

[

± (τ +A1)
(

x5
0,grav

)(r+2)/2
√

∓ (C2
02 − C2

32)
]

;

(25.34)

(c.II.2) A2(x5
0,grav)−r 
= 0, ∓(x5

0,grav)2̃
(

C2
02 − C2

12 − C2
22 − C2

32

)

= 0:
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(c.II.2.1) r 
= −2:

x5
±,grav(τ) =

[

±r + 2
2

√

A2

(

x5
0,grav

)−r (
x5

0,grav

)r/2
(τ +A1)

]2/(r+2)

;

(25.35)
(c.II.2.2) r = −2:

x5
±,grav(τ) = exp

[

±
√

A2

(

x5
0,grav

)−r (
x5

0,grav

)r/2
(τ +A1)

]

;

(25.36)

(c.II.3) A2

(

x5
0,grav

)−r 
= 0, ∓
(

x5
0,grav

)2̃ (
C2

02 − C2
12 − C2

22 − C2
32

)


=
0:

(c.II.3.1) r 
= −4:

τ +A1

= ±
(

x5
0,grav

)−r/2 2

(r + 4)
√

∓
(

x5
0,grav

)2̃ (C2
02 − C2

12 − C2
22 − C2

32)

×

⎡

⎣

∓
(

x5
0,grav

)2̃ (
C2

02 − C2
12 − C2

22 − C2
32

)

A2

(

x5
0,grav

)−r

⎤

⎦

(r+4)/4
∫

dt√
t4/(r+4) + 1

,

(25.37)

where

t=

⎡

⎣

A2

(

x5
0,grav

)−r

∓
(

x5
0,grav

)2̃ (C2
02 − C2

12 − C2
22 − C2

32)

⎤

⎦

(r+4)/4

(

x5
±,grav(τ)

)(r+4)/2
;

(25.38)
(c.II.3.2) r = −4:

x5
±,grav(τ) =

√

√

√

√

∓
(

x5
0,grav

)2̃ (C2
02 − C2

12 − C2
22 − C2

32)

A2

(

x5
0,grav

)−r

× sinh−1

[

±
√

∓
(

x5
0,grav

)2̃ (C2
02 − C2

12 − C2
22 − C2

32)
(

x5
0,grav

)r/2
(τ +A1)

]

.

(25.39)

Let us stress that, in both special cases ? = 0, 2̃, the treat-
ment is quite analogous to those of the strong interaction
above energy threshold.
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25.3 Slicing and Dynamics

It must be by now clear, from the examples discussed in Sect. 25.2, that the
explicit form of the geodesics in �5 (namely, its dynamics) strictly depends
on the sets of metric exponents q̃int. ((20.24)–(20.26)), which determine
xA(τ) through the knowledge of the generating function F±(ζ; q̃, A2).

But – as is easily seen from their expressions – the exponent sets q̃int.

are discontinuous at the threshold energy x5
0,int.:

lim
x5−→x5+

0,int.

q̃int.(x5) 
= lim
x5−→x5−

0,int.

q̃int.(x5), (25.40)

namely, for a given interaction, different sets are obtained in the two dif-
ferent energy ranges (below and above threshold). This entails among the
others that, as done in Sect. 20.2, it is necessary to use the right and left
specifications of the Heaviside function in order to write q̃int. in the com-
pact form (20.41)–(20.43), valid on the whole energy range. In turn, such
a discontinuity in q̃int. at x5

0,int. causes an analogous behavior in the geo-
desic motions. In fact, let x5

int.,<(τ), x5
int.,>(τ) denote the solutions of the

geodesic equation (24.3) for the fifth coordinate under and above thresh-
old, respectively. Then, it is possible to impose e.g., x5

int.,<(τ) = x5
0,int. and

find the corresponding value τ ∈ R. However, if such a value is replaced in
the geodesic solution corresponding to the other energy range, one finds in
general x5

int.,>(τ) = x5
int. 
= x5

0,int..
The situation is exactly analogous to that we encountered in the case of

the Killing symmetries (Sect. 22.4). The nontrivial “bifurcation of dynam-
ics” in the two energy ranges is clearly related to the nature change
(from parameter to coordinate) the variable x5 undergoes in the passage
DSR→DR5. Therefore, dynamic structures present in an energy range in
which the space–time sector is standard Minkowskian – or at least its met-
ric coefficients are constant – may no longer occur when (in a different
energy range) the space–time of �5 becomes Minkowskian deformed, and
vice versa.

Such a change of role of energy in the geometrical embedding of ˜M in �5

implies also, in full analogy with the case of the Killing isometries, that the
dynamics in a given 4D space ˜M

(

x5 = x5
)

is different from the dynamics

obtained for the slice of �5 at constant energy x5 = x5 with space–time
sector coinciding with ˜M

(

x5 = x5
)

. Symbolically one has:

Dynamics in �5|dx5=0⇔x5=x5 
= Dynamics in ˜M
(

x5 = x5
)

. (25.41)

In fact the change of role of x5 causes the destruction of the nonhomoge-
neous linearity in τ of the geodesic motions in DSR, which is no longer
recovered in the inverse process of slicing of �5 at dx5 = 0. This is again
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at variance with the metric level, where (see (19.10)) the constant-energy
sections of �5 at x5 = x5 are endowed with the same metric structure of
˜M
(

x5
)

. Again, as in the case of the Killing symmetries, it is possible to
understand this point by remembering that one is considering sections of
a genuine Riemannian space, which therefore do keep memory of the fifth
coordinate.

An explicit example of the key dynamic role played by the fifth coordinate
in the embedding process is provided by the results of Sect. 24.4 for the
geodesics relevant to class VIII of solutions of the 5D Einstein’s equations.
As already noted, the 5D metric (24.80) corresponding to the exponent set
q̃VIII = (0, 0, 0, 0, r) has a standard Minkowski structure for its space–time
sector. In spite of this, the embedding of such a Minkowski space in �5 (i.e.,
the presence and the form of the fifth metric coefficient) makes the dynamic
behavior genuinely nontrivial, because to the standard geodesic motion of
M it is added the further condition that the geodesics must correspond to
a minimal value of the time–energy uncertainty.

We can therefore conclude that not only Killing isometries, but dynamics,
too, depends on the geometrical framework. This further supports the deep
physical (not only mathematical) significance of the geometrical embedding
of ˜M in �5.



26
Conclusions and Perspectives

“Two roads diverged in a wood, and I –

I took the one less traveled by,

And that has made the difference.”

(R. Frost: “The road not taken,”

from Mountain interval)

After the in-depth exposition of Deformed Relativity (DR) in four and
five dimensions carried out in this book, it is worth making some remarks,
drawing a few conclusions and outlining possible developments.

The implementation of the Finzi principle of solidarity – our cornerstone,
a real first principle – for all the fundamental interactions (electromagnetic,
weak, gravitational and strong) led us to generalize Special Relativity by
building up DSR and its 5D extension, DR5. Their formalism allows one
to geometrically represent interactions as space–time deformations (flat in
the DSR case and curved in the DR5 one), described by metrics depending
on the energy of the process considered.

Such a geometrization of interactions, in agreement with (and conse-
quence of) the solidarity principle, was attained by paying a price for. The
paid price was abandoning two unifying principles of (Einsteinian) Special
Relativity , namely the invariance of the light speed (and its feature of max-
imal causal velocity for all interactions) and the uniqueness of the trans-
formations connecting inertial frames (Lorentz transformations). Indeed,
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we have seen that DSR (and therefore DR5) implies a different maximal
causal velocity for each interaction – and even unlike velocities for a given
interaction, depending on the physical process and/or the space direction
considered – and different sets of space–time coordinate transformations.
Notice that, on the basis of the axiomatic formulation of SR, discussed in
Sect. 1.2, it is implicit in the Principle of Relativity that one has to specify
the class of physical phenomena to which it must apply (as first stressed
in [2]). As a result, there exist a priori more relativities, depending on the
class of phenomena considered and the interaction(s) ruling them.

This scenario is not new at all. As already said in Sect. 3.3.7, both
these features of DSR, the noninvariance of the light speed and the exis-
tence of diverse sets of coordinate transformations for different interac-
tions, are already present in the Lorentz–Poincaré version of Special Relati-
vity. We can therefore state that Deformed Relativity inherits the legacy of
Lorentzian Relativity .

This aspect of DSR is by no means a drawback of our formalism. Actu-
ally, the structure of Lorentzian Relativity is richer and in a sense more
flexible than that of the Einsteinian one. Its great merit lies in its ability of
fitting physical phenomena, by allowing maximal causal speeds and coor-
dinate transformations suited to the interactions involved. Apparently this
occurs at the price of loosing the unifying tissue provided, in Einstein’s view
to relativity, by the uniqueness of light speed and of the coordinate trans-
formations. However, in Lorentzian and even more in Deformed Relativity
there is a perhaps more profound and fundamental unifying principle: sym-
metry. Indeed, whereas the too rigid structure of Einsteinian Relativity is
forced to take into account the possibility of breakdown of Lorentz invari-
ance, when facing with interactions different from the electromagnetic one,
Deformed Relativity in its role of heir of LR is able to adjust its geometric
structure in order to suit the other interactions (or their nonlocal parts), by
deforming its space–time and then its isometric transformations. In other
words, the unifying principle of both LR and DR is Lorentz invariance,
which, although apparently broken by some physical phenomena (see Part
III), is actually recovered as deformed Lorentz invariance (see Sect. 3.3.5).

Contrarily to Einstein’s view, both LR and DR oust the speed of light c
from its privileged position of absolute velocity and scale it down to an ordi-
nary physical quantity, relative to the observer and/or the interaction. In
this way, they seemingly give up the second unifying feature of Einsteinian
Relativity, i.e., the existence of an universal constant. However, it must
be stressed that the formalism of Deformed Relativity actually contains a
constant with an universal character. Indeed, it follows from the discussion
of Sect. 19.1 that in DR5 the energy–length conversion constant l0 (intro-
duced for dimensional consistency in the 5D interval in �5: see (19.3)) can
be identified with the standard gravitational constant κ, and be interpreted
as determining the deformation of space–time for all interactions. Then, κ
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is an universal constant in DR (the deformation constant) and plays the
unifying role of the light speed c in Einsteinian Relativity .

In this sense, we can maintain that Einstein was right in looking for
unifying principles in Relativity, and that the main difference between ER
on one side, and LR and DR on the other side, is simply in the choice of
such principles. In our opinion, the choice originally done by Lorentz and
Poincaré (and inherited by DR) is more fundamental, and perhaps – as
we tried among the others to show in this book – more open to significant
developments.

An important point concerns the relations between DSR and DR5. It has
been shown that the formalism of Deformed Relativity, in either num-
ber of dimensions, provides us with a geometrization of interactions ruling
physical phenomena for electromagnetic, weak, strong and gravitational
processes. This is accomplished in terms of a deformed Minkowskian (DSR)
or Riemannian (DR5) metric structure, by allowing for the dependence of
metric on the energy. The connection between DSR and DR5 is apparently
a mere mathematical one, implemented by embedding the deformed, 4D
Minkowski space ˜M(x5) in the 5D Riemannian space �5 with energy as
fifth dimension. This seemingly entails that energy-constant slices of �5

at x5 = x5 would have to be equivalent in all respects to ˜M
(

x5 = x5
)

.
Although this is in fact true at metric level, actually this equivalence is
lost as far as isometries and dynamics are concerned (see Sects. 22.4 and
25.3, respectively). We have also seen that in some cases, like the geodesic
motions for Class VIII of solutions of Einstein equations (Sect. 24.4), which
implies an Heisenberg-type time–energy uncertainty relation, the presence
of the fifth coordinate affects the behavior of geodesics in the standard
Minkowski space in a nontrivial way.

This physical influence of the extra dimension present in DR5 on the
physics in the standard 4D space–time has another implication, of which
some inklings have been already come into light in the experimental review
of Part III. In fact, it can be seen that (as already noted) some of the
experiments discussed involve physical processes occurring at fixed energy,
like the double-slit and the coil experiments. In these cases, a treatment
in terms of DSR (or of constant-energy sections of DR5) is enough. For
DR5, this means leaving aside the fifth metric coefficient f(x5). On the
contrary, in the Cavendish-like experiment to measure the gravity speed,
and in the cavitation experiments (at least at microscopic level), energy
changes during the involved processes. Then, a treatment in terms of DSR
is not enough, and one has to make recourse to the whole 5D structure of
DR5. In particular, the energy coefficient f(x5) is expected to play a basic
role in the description of dynamic processes. Let us notice that, in this
framework, the terms “dynamic” and “static” refer to the energy behavior.
By “static” we mean a process occurring at constant energy, described
by a fixed deformation of space–time. It corresponds just to zero speed
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in energy – i.e., to a static situation in the 5D space – like in the cases
of the double-slit and coil experiments . The geometrical picture of such
a process is gotten in terms of a fixed-energy metric, either in DSR or
in (constant-energy slices of) DR5. A “dynamic” process occurs instead
with variable energy, and in this context amounts to the establishing of
the space–time deformation. In �5, dynamic processes may occur with a
constant speed in energy (like in cavitation: see Sect. 16.3) or with a variable
one (the case of the gravity speed experiment, Sect. 15.3). Accounting for
such a dynamic case (in which the space–time deformation is changing
too) requires the full machinery of the 5D DR5 formalism, in particular by
taking into account the energy coefficient f(x5) and its functional form.
In other words, the experiments of Part III teach us that, whereas DSR is
able to geometrically describe interactions only in a static (“frozen”) case,
DR5 permits to describe the dynamic settling of the space–time deformation
brought about by the interaction considered. In this connection, we recall
that in the DR5 framework room is allowed also for metrics with space
coefficients depending either functionally or parametrically on f(x5) (see
for instance the gravitational case in Sect. 22.3). This permits the energy
dimension to affect the space deformation in a direct way.

Still concerning the influence of the extra dimension on the physics in
the 4D deformed space–time, other points worth investigating are the pos-
sible connection between Lorentz invariance in DR5 and the usual gauge
invariance, and the occurrence of parity violation as consequence of space
anisotropy when viewed from the standpoint of the space–time–energy
manifold �5.

A further basic topic deserving study in DSR is the extension to the
non-abelian case of the results obtained for the abelian gauge fields (like
the e.m. one), based on the structure of the deformed Minkowski space ˜M
as Generalized Lagrange Space (see Sect. 9.4). In other words, it would be
worth verifying if also non-abelian internal gauge fields can exist in absence
of external fields, due to the intrinsic geometry of ˜M .

As to DR5, its formalism lends itself to a number of possible, future
developments. These include e.g., solving the general Einstein equations
with a nonzero cosmological constant, Λ(5) 
= 0. Further improvements of
the predictive power of the theory may come from the explicit introduc-
tion of a space–time-coordinate dependence in the fifth metric coefficient
f and/or in the cosmological constant Λ(5), i.e., assuming f = f(E, x),
Λ(5) = Λ(5)(E, x). As is easily seen, this amounts to taking into account
also the presence of matter in the DR5 scheme. In some cases, it comes
out possible to relate mass (and therefore matter) to the LLI breakdown in
four dimensions (see [6]). However, solving the 5D Einstein equations with
matter sources is expected to be a quite formidable task.

The Killing symmetries of DR5 deserve further investigation on many
respects. Let us quote, for instance: The Lie nature of the infinitesimal sym-
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metries derived; the passage from the infinitesimal level to the finite one;
and, last but not least, the physical meaning of the symmetries obtained.
As far as this last point is concerned, the results obtained seemingly show
an invariance of physical laws under nonlinear coordinate transformations
(in particular in time and energy).

Besides the above “classical” problems, there are also what we may call
the possible “quantum” aspects of the formalism. The basic question is
whether the extra dimension energy can classically account for quantum
features in four dimensions. A first result in this direction is provided by the
Heisenberg-type time–energy uncertainty relation obtained from geodesic
motion in �5 for the class VIII of solutions of vacuum Einstein equa-
tions. This agrees with similar results derived within other noncompactified
Kaluza–Klein-like models [138–140]. Actually, 5D schemes seem to provide
a classical framework where to deal with (4D) quantum properties, includ-
ing not only uncertainty relations but also quantization rules [123]. In DR5,
the fact that energy is the fifth dimension is apparently a further complica-
tion factor, since actually, in most systems of physical interest at a micro-
scopical level, energy is quantized. The two basic issues to be faced are to
determine how energy quantization matches in this scheme, and to account
for energy jumps within an apparently completely classical framework. A
possible working hypothesis on heuristic ground is to explore the topology
induced, for each interaction, by its own metric in the 5D space �5. Such
topologies may exhibit discontinuities or even singularities. Indeed, whereas
in DSR the geometrical properties of the deformed Minkowski space for a
given interaction are caused by the “frozen” 4D metric at fixed energy, it
is the whole structure of the interaction 5D metric on the whole energy
range which determines the �5 geometry in DR5.1 As we have seen in
Sect. 19.3, the phenomenological 5D metrics of the four fundamental inter-
actions are discontinuous at the threshold energy E0,int. (int.=e.m., weak,
grav., strong). The metric discontinuities may well affect the corresponding
topologies in a neighborhood of E0,int.. By means of suitable mathematical
tools (like the Mordell conjecture , exploiting diophantine equations [141],
or the homology theory [142]), such “holes” in topologies can be associated
to integers. These latter, in turn, can be possibly connected to quantized
physical quantities like energy, charge, and other “charges” and quantum
numbers related to the interaction considered.

If the above conjecture will reveal itself feasible, in the DR5 formal-
ism quantization rules will arise from geometry of the space �5 (topo-
logical structure), whereas uncertainty relations will be determined by its

1We can say, somewhat loosely, that �5 is a functional of the metric:

�5 = �5 [g] .
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dynamics (geodesic motions). The task is far from easy, and the jour-
ney expected to be long, but we hope to have convinced the reader that
exploring the space–time–energy land, by both theoretical and experimen-
tal instruments, is well worth the effort.



Appendix A
Reductivity of the
Υ -Hypothesis for the 12 Classes
of the Vacuum Einstein
Equations in the Power Ansatz

We shall discuss here the possible reductivity of the Υ -hypothesis of func-
tional independence, stated in Sect. 21.2, for the 12 classes of Power Ansatz
solutions of the Einstein equations in vacuum (derived in Sect. 20.2), and
solve explicitly the Killing equations in the five cases in which this hypoth-
esis is violated. In the notation of Sect. 20.2, each class will be specified by
an exponent set q̃≡(q0, q1, q2, q3, r).

A.1 Analysis of Reductivity of the Υ -Hypothesis

A.1.1 Class (I)

q̃I =
(

n,−n
(

2p+ n

2n+ p

)

, n, p,
p2 − 2p+ 2np− 4n+ 3n2

2n+ p

)

.

One gets

r + 2 =
p2 + 2np+ 3n2

2n+ p
(A.1)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

q0 − r − 2 = q2 − r − 2 =
3n3 − 7n2 − 4np+ np2 + 2n2p− p2

2n+ p
;

q1 − r − 2 = − (2n+ p) ;

q3 − r − 2 =
p3 − 3p2 − 6np+ 2np2 + 3n2p− 3n2

2n+ p
.

(A.2)
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The condition of nonvanishing denominators yields

Den. 
= 0 ⇐⇒ 2n+ p 
= 0 ⇐⇒ q1 − r − 2 
= 0. (A.3)

Therefore, under the further assumptions
⎧

⎪

⎪

⎨

⎪

⎪

⎩

q1 = −n
(

2p+ n

2n+ p

)


= 0 ⇐⇒
{

n 
= 0,
2p+ n 
= 0,

r + 2 =
p2 + 2np+ 3n2

2n+ p

= 0 ⇐⇒ p2 + 2np+ 3n2 
= 0,

(A.4)

one finds that the Υ -hypothesis is satisfied at least by µ = 1.
Moreover, we have the following possible degenerate cases (i.e., those in

which the Υ -hypothesis is violated for any value of µ):

(Ia) n = 0 ⇒ p 
= 0. Then
⎧

⎨

⎩

q0 − r − 2 = q2 − r − 2 = −p 
= 0;
q1 − r − 2 = − (2n+ p) 
= 0;

q3 − r − 2 = p (p− 3) ,
(A.5)

whence for p 
= 3 the Υ -hypothesisis satisfied only by µ = 3, and the case
considered is not a degenerate one.

Therefore the true degenerate case of this class is characterized by

n = 0, p = 3 (A.6)

and corresponds to the 5D metric

gAB,DR5power(x5) = diag

(

1,−1,−1,−
(

x5

x5
0

)3

,±x5

x5
0

)

, (A.7)

special case for p = 3 of the metric

gAB,DR5power(x5) = diag

(

1,−1,−1,−
(

x5

x5
0

)p

,±
(

x5

x5
0

)p−2
)

, (A.8)

that will be discussed in Sect. A.2.4.

(Ib) 2n+ p ⇐⇒ n = −2p. From (A.3) it follows:

2n+ p = −3p 
= 0 (A.9)

and therefore
⎧

⎪

⎪

⎨

⎪

⎪

⎩

q0 − r − 2 = q2 − r − 2 = p (6p+ 7) ;
q1 − r − 2 = 3p 
= 0;

q3 − r − 2 = −3p
(

p− 1
3

)

.
(A.10)
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Then, the Υ -hypothesis is satisfied for p 
= − 7
6 by µ = 0, 2, and p 
= −1

3 by
µ = 3.

For p = − 7
6 one gets

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

q0 − r − 2 = q2 − r − 2 = 0;

q1 − r − 2 = −7
2
;

q3 − r − 2 = −
21
4
.

(A.11)

and the Υ -hypothesisis still satisfied by µ = 3.
For p = 1

3 it is

⎧

⎨

⎩

q0 − r − 2 = q2 − r − 2 = 3;
q1 − r − 2 = 1;
q3 − r − 2 = 0.

(A.12)

and the Υ -hypothesis is still satisfied by µ = 0, 2.

(Ic) p2 +2np+3n2 = 0. The only pair of real solutions of this equation is
(n, p) = (0, 0), that must be discarded because it entails the vanishing
of the denominators.

A.1.2 Class (II)

q̃II = (0,m, 0, 0,m− 2) .

We have
r + 2 = m; (A.13)

{

q0 − r − 2 = q2 − r − 2 = q3 − r − 2 = −m,
q1 − r − 2 = 0. (A.14)

The Υ -hypothesis is violated ∀m ∈ R and ∀µ ∈ {0, 1, 2, 3}.
In general Class (II) corresponds to the 5D metric

gAB,DR5power(x5) = diag

(

1,−
(

x5

x5
0

)m

,−1,−1,±
(

x5

x5
0

)m−2
)

, (A.15)

we shall consider in Sect. A.2.2.
In particular, for m = 0 one gets

gAB,DR5power(x5) = diag

(

1,−1,−1,−1,±
(

x5

x5
0

)−2
)

, (A.16)
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whose space–time part is the same as the standard Minkowski space M .
This metric is a special case of

gAB,DR5power(x5) = diag
(

a,−b,−c,−d,±f
(

x5
))

, (A.17)

whose Killing equations coincide with those of the metric with a = b = c =
d = 1, solved in Sect. 22.1.1.

A.1.3 Class (III)

q̃III = (n,−n, n, n,−2(1 − n)) .

It is
r + 2 = 2n; (A.18)

{

q0 − r − 2 = q2 − r − 2 = q3 − r − 2 = −n,
q1 − r − 2 = −3n. (A.19)

The Υ -hypothesis is satisfied for n 
= 0 ∀µ ∈ {0, 1, 2, 3}.
The degenerate case is characterized by n = 0 and corresponds to metric

(A.16).

A.1.4 Class (IV)

q̃IV = (0, 0, 0, p, p− 2) .

One gets
r + 2 = m; (A.20)

{

q0 − r − 2 = q1 − r − 2 = q3 − r − 2 = −p,
q3 − r − 2 = 0. (A.21)

The Υ -hypothesis is violated ∀p ∈ R and ∀µ ∈ {0, 1, 2, 3}.
In general this class corresponds to the 5D metric (A.8), whose special

case p = 0 is given by metric (A.16).

A.1.5 Class (V)

q̃V = (−p,−p,−p, p,− (1 + p)) .

We have
r + 2 = 1 − p; (A.22)

{

q0 − r − 2 = q1 − r − 2 = q2 − r − 2 = −1,
q3 − r − 2 = 2p− 1. (A.23)

Therefore the Υ -hypothesis is satisfied for p 
= 0, p 
= 1 by µ = 0, 1, 2 (and
for p 
= 0, p 
= 1, p 
= 1

2 also by µ = 3).
There are three possible degenerate cases:
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(Va) p = 1. One has
⎧

⎨

⎩

q0 = q1 = q2 = −1;
q3 = 1;
r = −2.

(A.24)

The Υ -hypothesis is not satisfied by any value of µ. The corresponding 5D
metric is

gAB,DR5power(x5)

= diag

(

(

x5

x5
0

)−1

,−
(

x5

x5
0

)−1

,−
(

x5

x5
0

)−1

,−x5

x5
0

,±
(

x5

x5
0

)−2
)

(A.25)

and is discussed in Sect. A.2.5.

(Vb) p = 0. It is
{

q0 = q1 = q2 = q3 = 0;
r = −1. (A.26)

and the Υ -hypothesis is violated by any value of µ. The corresponding 5D
metric is

gAB,DR5power(x5) = diag

(

1,−1,−1,−1,±
(

x5

x5
0

)−1
)

, (A.27)

special case of the metric (A.17).

(Vc) p = 1
2 . One gets

r + 2 =
1
2
; (A.28)

⎧

⎪

⎨

⎪

⎩

q0 = q1 = q2 = −1
2
,

q3 =
1
2
.

(A.29)

Therefore the Υ -hypothesis is satisfied by µ = 0, 1, 2.

A.1.6 Class (VI)

q̃VI = (q, 0, 0, 0, q − 2)

One has
r + 2 = q; (A.30)

{

q0 − r − 2 = 0,
q1 − r − 2 = q2 − r − 2 = q3 − r − 2 = −q. (A.31)
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The Υ -hypothesis is not satisfied ∀q ∈ R and ∀µ ∈ {0, 1, 2, 3}.
The corresponding 5D metric reads

gAB,DR5power(x5) = diag

(

(

x5

x5
0

)q

,−1,−1,−1,±
(

x5

x5
0

)q−2
)

(A.32)

(with special case q = 0 given by (A.16)), and is discussed in Sect. A.2.1.

A.1.7 Class (VII)

q̃VII = (q,−q,−q,−q,−q,−2)

It is
r + 2 = −q; (A.33)

{

q0 − r − 2 = 2q,
q1 − r − 2 = q2 − r − 2 = q3 − r − 2 = 0. (A.34)

The Υ -hypothesis is satisfied for q 
= 0 by µ = 0.
The degenerate case q = 0 corresponds to the 5D metric (A.16).

A.1.8 Class (VIII)

q̃VIII = (0, 0, 0, 0, r ∈ R)
One has

q0 − r − 2 = q1 − r − 2 = q3 − r − 2 = q3 − r − 2 = −r − 2. (A.35)

The Υ -hypothesis is violated ∀r ∈ R and ∀µ ∈ {0, 1, 2, 3}.
The Class (VIII) corresponds to the 5D metric

gAB,DR5power(x5) = diag

(

1,−1,−1,−1,±
(

x5

x5
0

)−r
)

, (A.36)

that generalizes metric (A.16) and is a special case of the metric (A.17).

A.1.9 Class (IX)

q̃IX = (0, 0, n, 0, n− 2)
We have

r + 2 = n; (A.37)
{

q0 − r − 2 = q1 − r − 2 = q3 − r − 2 = −n,
q2 − r − 2 = 0. (A.38)

The Υ -hypothesis is not satisfied ∀n ∈ R and ∀µ ∈ {0, 1, 2, 3}.
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The corresponding 5D metric is

gAB,DR5power(x5) = diag

(

1,−1,−
(

x5

x5
0

)n

,−1,±
(

x5

x5
0

)n−2
)

(A.39)

and is discussed in Sect. A.2.3 (whereas n = 0 gives metric (A.16)).

A.1.10 Class (X)

q̃X =

(

q, −pq + np + nq

n + p + q
, n, p,

(n + p + q)(n + p + q − 2)− (pq + np + nq)

n + p + q

)

.

One gets

r + 2 =
(n+ p+ q)2 − (pq + np+ nq)

n+ p+ q
; (A.40)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

q0 − r − 2 = −p2 + n2 + np

n+ p+ q
;

q1 − r − 2 = − (n+ p+ q) ;

q2 − r − 2 = −q2 + p2 + pq

n+ p+ q
;

q3 − r − 2 = −q2 + n2 + nq

n+ p+ q
.

(A.41)

The condition of nonvanishing denominators yields

Den. 
= 0 ⇐⇒ n+ p+ q 
= 0 ⇐⇒ q1 − r − 2 
= 0. (A.42)

Therefore, under the further assumptions
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

q1 = −pq + np+ nq

n+ p+ q

= 0 ⇐⇒ pq + np+ nq 
= 0;

r + 2 =
(n+ p+ q)2 − (pq + np+ nq)

n+ p+ q

= 0

⇐⇒ p2 + n2 + q2 + pq + np+ nq 
= 0,

(A.43)

one finds that the Υ -hypothesis is satisfied at least by µ = 1.
Then, we have the following possible degenerate cases:

(Xa) pq + np+ nq = 0. Therefore

r + 2 = n+ p+ q 
= 0; (A.44)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

q0 − r − 2 = −p2 + n2 + np

n+ p+ q
;

q1 − r − 2 = − (n+ p+ q) 
= 0;

q2 − r − 2 = −q2 + p2 + pq

n+ p+ q
;

q3 − r − 2 = −q2 + n2 + nq

n+ p+ q
.

(A.45)
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One has to consider the following subcases:

(Xa.1) q = 0. Then

np = 0, n+ p 
= 0 ⇐⇒

⎧

⎨

⎩

(Xa.1.1) n = 0, p 
= 0
or
(Xa.1.2) n 
= 0, p = 0.

(A.46)

(Xa.1.1) One gets
r = p− 2; (A.47)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

q0 − r − 2 = −p 
= 0;
q1 − r − 2 = p 
= 0;
q2 − r − 2 = −p 
= 0;

q3 − r − 2 = 0.

(A.48)

Therefore the Υ -hypothesis is satisfied by no value of µ. The corresponding
metric is given by (A.8) (Class (IV)).

(Xa.1.2) One finds

r = n− 2; (A.49)
⎧

⎨

⎩

q0 − r − 2 = q1 − r − 2 = −n 
= 0;
q2 − r − 2 = 0;

q3 − r − 2 = −n 
= 0.
(A.50)

Again, the Υ -hypothesis is not satisfied by any value of µ. The correspond-
ing 5D metric is given by (A.39) (Class (IX)).

(Xa.2) n = 0. Then

pq = 0, p+ q 
= 0 ⇐⇒

⎧

⎨

⎩

(Xa.2.1) p = 0, q 
= 0
or
(Xa.2.2) p 
= 0, q = 0.

(A.51)

(Xa.2.1) One gets

r = q − 2; (A.52)
{

q0 − r − 2 = 0;
q1 − r − 2 = q2 − r − 2 = q3 − r − 2 = −q 
= 0. (A.53)

Therefore the Υ -hypothesis is satisfied by no value of µ. The corresponding
metric coincides with that of Class (VI), (A.32).

The case (Xa.2.2) coincides with the case (X a.1.1).
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(Xa.3) p = 0. It is

nq = 0, n+ q 
= 0 ⇐⇒

⎧

⎨

⎩

(Xa.3.1) n = 0, q 
= 0
or
(Xa.3.2) n 
= 0, q = 0,

(A.54)

and therefore the subcases (Xa.3.1) and (Xa.3.2) coincide with subcases
(Xa.2.1) and (Xa.1.2), respectively.

(Xa.4) q0 − r − 2 = 0 ⇔ p2 + n2 + np = 0. The only possible pair of real
solutions of this equation is (p, n) = (0, 0). From the condition of
nonvanishing denominators it then follows q 
= 0. Therefore such a
case coincides with (Xa.2.1).

(Xa.5) q1 − r − 2 = 0 ⇔ n + p + q = 0. This condition expresses the
vanishing of the denominators, and therefore this case is impossible.

(Xa.6) q2 − r − 2 = 0 ⇔ q2 + p2 + pq = 0. The only real solution of this
equation is (q, p) = (0, 0). The condition of nonvanishing denomina-
tors entails n 
= 0, and then this case coincides with subcase (Xa.1.2).

(Xa.7) q3 − r − 2 = 0 ⇔ q2 + n2 + nq = 0. The only real solution is
(q, n) = (0, 0). The condition of nonvanishing denominators entails
p 
= 0. Therefore this case coincides with subcase (Xa.1.1).

(Xb) p2 + n2 + q2 + pq + np + nq = 0. The only possible solution of such
equation is (p, n, q) = (0, 0, 0), which contradicts the nonvanishing
condition of denominators. This case is impossible, too.

A.1.11 Class (XI)

q̃XI =
(

q,−n (2q + n)
2n+ q

, n, n,
3n2 − 4n+ 2nq − 2q + q2

2n+ q

)

One gets

r + 2 =
3n2 + 2nq + q2

2n+ q
; (A.55)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

q0 − r − 2 = − 3n2

2n+ q
;

q1 − r − 2 = − (2n+ q) ;

q2 − r − 2 = q3 − r − 2 = −q2 + n2 + nq

2n+ q
.

(A.56)

The condition of nonvanishing denominators yields

Den. 
= 0 ⇐⇒ 2n+ q 
= 0 ⇐⇒ q1 − r − 2 
= 0. (A.57)
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Then, by assuming further
⎧

⎪

⎪

⎨

⎪

⎪

⎩

q1 = −n (2q + n)
2n+ q


= 0 ⇐⇒
{

n 
= 0;
2q + n 
= 0, ;

r + 2 =
3n2 + 2nq + q2

2n+ q

= 0 ⇐⇒ 3n2 + 2nq + q2 
= 0

, (A.58)

one gets that the Υ -hypothesisis satisfied at least by µ = 1.
We have also the following possible degenerate cases:

(XIa) n = 0 ⇒ q 
= 0. Then

r = q − 2; (A.59)
{

q0 − r − 2 = 0;
q1 − r − 2 = q2 − r − 2 = q3 − r − 2 = −q 
= 0. (A.60)

Therefore the Υ -hypothesis is satisfied by no value of µ. The corresponding
metric coincides with that of Class (VI).

(XIb) 2q + n = 0 (which, together with 2n+ q 
= 0, entails q 
= 0). Then

r = −3q − 2; (A.61)
⎧

⎨

⎩

q0 − r − 2 = 4q 
= 0;
q1 − r − 2 = 3q 
= 0;

q2 − r − 2 = q3 − r − 2 = q 
= 0.
(A.62)

Therefore the Υ -hypothesis is satisfied by µ = 0, 2, 3.

(XIc) 3n2 + 2nq + q2 = 0. The only possible solution of such equation is
(n, q) = (0, 0), contradicting the nonvanishing condition of denomi-
nators, whence the impossibility of this case.

A.1.12 Class (XII)

q̃XII =
(

q, n, n,−n(2q + n)
2n+ q

,
p2 + pq − 2p+ np− 2n+ nq + n2 − 2q + q2

n+ p+ q

)

We have

r + 2 =
p2 + n2 + q2 + pq + np+ nq

n+ p+ q
; (A.63)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

q0 − r − 2 = −p2 + n2 + np

n+ p+ q
;

q1 − r − 2 = q2 − r − 2 = −p2 + q2 + pq

n+ p+ q
;

q3 − r − 2 =

= −3n3 + q3 + 6n2q + 5nq2 + 2np2 + 3pn2 + q2p+ p2q + 5npq
(n+ p+ q) (2n+ q)

.

(A.64)
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The condition of nonzero denominators yields

Den. 
= 0 ⇐⇒
{

2n+ q 
= 0;
n+ p+ q 
= 0. (A.65)

Let us put
n+ p+ q = a ∈ R0

2n+ q = b ∈ R0

}

⇒ p = a− q + b

2
. (A.66)

Considering e.g., µ = 0, one has

q0 − r − 2 = −p2 + n2 + np

n+ p+ q

=
1
4a

[

3 (q − a)2 + (a− b)2
]

q 
= a or a 
= b
︸ ︷︷ ︸

≷ 0, sgn (a) =
{

1,
−1. (A.67)

By assuming q 
= a and/or a 
= b, the vanishing of the denominators entails
q0 − r − 2 
= 0. Then, under the further assumptions

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

q0 = q 
= 0;

r + 2 =
p2 + n2 + q2 + pq + np+ nq

n+ p+ q

= 0

⇐⇒ p2 + n2 + q2 + pq + np+ nq 
= 0,

(A.68)

one gets that the Υ -hypothesis is satisfied at least by µ = 0.
The possible degenerate cases are:

(XIIa) q = 0 ⇒
{

n 
= 0,
n+ p 
= 0. Then

r + 2 =
p2 + n2 + np

n+ p
; (A.69)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

q0 − r − 2 = −p2 + n2 + np

n+ p
;

q1 − r − 2 = q2 − r − 2 = − p2

n+ p
;

q3 − r − 2 = −3n2 + 2p2 + 3pn
2 (n+ p)

.

(A.70)

It is r + 2 
= 0 and q0 − r − 2 
= 0 because the only possible solution
of p2 + n2 + np = 0 is the pair (p, n) = (0, 0), incompatible with the
nonvanishing of the denominators. Therefore this case is impossible.

We have the following subcases:
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(XIIa.1) p = 0. Then

r = n− 2; (A.71)
⎧

⎪

⎨

⎪

⎩

q0 − r − 2 = −n 
= 0;
q1 − r − 2 = q2 − r − 2 = 0;

q3 − r − 2 = −3
2
n 
= 0.

(A.72)

Therefore the Υ -hypothesis is satisfied by µ = 3.

(XIIa.2) 3n2 +2p2 +3pn = 0. This equation admits as only real solu-
tion the pair (p, n) = (0, 0), incompatible with the nonvanishing
of the denominators. Therefore, this case is impossible.

(XIIb) p2 + n2 + q2 + pq + np + nq = 0. This equation has the only real
solution (p, n, q) = (0, 0, 0), contradicting the nonvanishing of the
denominators, and then this case has to be discarded.

(XIIc) q = a = b ⇐⇒ n = p = 0. We have

r = a− 2; (A.73)
{

q0 − r − 2 = 0;
q1 − r − 2 = q2 − r − 2 = q3 − r − 2 = −a 
= 0. (A.74)

Consequently the Υ -hypothesis is satisfied by no value of µ. The metric
obtained is the same of Class (VI).

A.2 Solution of the 5D Killing Equations
for Totally Violated Υ -Hypothesis

The analysis of the previous section has shown that, in the framework
of the Power Ansatz, there exist five cases (actually only three of them
are independent) in which the hypothesis Υ of functional independence is
violated ∀µ = 0, 1, 2, 3. In the following, we shall explicitly solve the Killing
equations in such cases.

A.2.1 Case 1

In the framework of the Power Ansatz, the first case we shall consider in
which the Υ -hypothesis is not satisfied by any value of µ corresponds to
the 5D metric belonging to the VI class (p ∈ R)

gAB,DR5,1(x5) = diag

(

(

x5

x5
0

)p

,−1,−1,−1,±
(

x5

x5
0

)p−2
)

. (A.75)
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For p = 0 one gets the metric

gAB,DR5(x5) = diag

(

1,−1,−1,−1,±
(

x5

x5
0

)−2
)

(A.76)

that is a special case of the metric

gAB,DR5(x5) = diag
(

a,−b,−c,−d,±f
(

x5
))

, (A.77)

whose Killing equations (coincident with those relevant to the metric with
a = b = c = d = 1) have been solved in Sect. 22.1.1. Therefore, one can
assume p ∈ R0.

The Killing system (21.6)–(21.17) in this case reads
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

±ξ0,0(xA) +
p

2
x5

(x5
0)

2 ξ5(x
A) = 0;

ξ0,1(xA) + ξ1,0(xA) = 0;
ξ0,2(xA) + ξ2,0(xA) = 0;
ξ0,3(xA) + ξ3,0(xA) = 0;

ξ0,5(xA)x5 − pξ0(xA) + ξ5,0(xA)x5 = 0;
ξ1,1(xA) = 0;

ξ1,2(xA) + ξ2,1(xA) = 0;
ξ1,3(xA) + ξ3,1(xA) = 0;
ξ1,5(xA) + ξ5,1(xA) = 0;

ξ2,2(xA) = 0;
ξ2,3(xA) + ξ3,2(xA) = 0;
ξ2,5(xA) + ξ5,2(xA) = 0;

ξ3,3(xA) = 0;
ξ3,5(xA) + ξ5,3(xA) = 0;

−2ξ5,5(xA)x5 + (p− 2) ξ5(xA) = 0.

(A.78)

Its solution depends on the signature (time-like or space-like) of x5. One
gets, for the covariant Killing five-vector:

ξ0(x
0, x5; p)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

“ + ” :
(

x5
0

)−1
[

A cos
(

p

2
x0

x5
0

)

−B sin
(

p

2
x0

x5
0

)]

(x5)p/2 + α(x5)p;

“ − ” :
(

x5
0

)−1
[

C cosh
(

p

2
x0

x5
0

)

−D sinh
(

p

2
x0

x5
0

)]

(x5)p/2 + α(x5)p;

(A.79)

ξ1(x
2, x3) = Θ3x

2 +Θ2x
3 − T1; (A.80)

ξ2(x
1, x3) = −Θ3x

1 +Θ1x
3 − T2; (A.81)

A.2  Solution of the 5D Killing Equations for Totally Violated Υ -Hypothesis
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ξ3(x
1, x2) = −Θ2x

1 +Θ1x
2 − T3; (A.82)

ξ5(x
0, x5; p) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

“ + ” :
[

A cos
(

p

2
x0

x5
0

)

+B sin
(

p

2
x0

x5
0

)]

(x5)(p/2)−1;

“ − ” :
[

C cosh
(

p

2
x0

x5
0

)

+D sinh
(

p

2
x0

x5
0

)]

(x5)(p/2)−1

(A.83)

with Θi,Ti (i = 1, 2, 3), A, B, C, D, α ∈ R. Since
[

x5
0

]

= l, the dimensions
of the transformation parameters are

[A] = [B] = [C] = [D] = l−((p/2)−1), [α] = l−p, [Ti] = l , [ Θi] = l0 ∀i.
(A.84)

The 3D Killing group(of the Euclidean sections at dx5 = 0, dx0 = 0)
is trivially the group of rototranslations of the Euclidean space E3 with
metric δij = diag(−1,−1,−1) ((i, j) ∈ {1, 2, 3}2):

SO(3)STD. ⊗s Tr.(3)STD.. (A.85)

A.2.2 Case 2

The 5D metric for this case is

gAB,DR5,2(x5) = diag

(

1,−
(

x5

x5
0

)p

,−1,−1,±
(

x5

x5
0

)p−2
)

. (A.86)

The corresponding Killing equations are
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ0,0(xA) = 0;
ξ0,1(xA) + ξ1,0(xA) = 0;
ξ0,2(xA) + ξ2,0(xA) = 0;
ξ0,3(xA) + ξ3,0(xA) = 0;
ξ0,5(xA) + ξ5,0(xA) = 0;

∓ξ1,1(xA) +
p

2
x5

(x5
0)

2 ξ5(x
A) = 0;

ξ1,2(xA) + ξ2,1(xA) = 0;
ξ1,3(xA) + ξ3,1(xA) = 0;

ξ1,5(xA)x5 − pξ1(xA) + ξ5,1(xA)x5 = 0;
ξ2,2(xA) = 0;

ξ2,3(xA) + ξ3,2(xA) = 0;
ξ2,5(xA) + ξ5,2(xA) = 0;

ξ3,3(xA) = 0;
ξ3,5(xA) + ξ5,3(xA) = 0;

−2ξ5,5(xA)x5 + (p− 2) ξ5(xA) = 0.

(A.87)
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Having as solution the covariant Killing vector

ξ0(x
2, x3) = ζ2x

2 + ζ3x
3 + T0; (A.88)

ξ1(x
1, x5; p)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

“ + ” :
(

x5
0

)−1
[

A cosh
(

p

2
x1

x5
0

)

+B sinh
(

p

2
x1

x5
0

)]

(x5)p/2 + α(x5)p;

“ − ” :
(

x5
0

)−1
[

C cos
(

p

2
x1

x5
0

)

−D sin
(

p

2
x1

x5
0

)]

(x5)p/2 + α(x5)p;

(A.89)

ξ2(x
0, x3) = −ζ2x

1 +Θ1x
3 − T2; (A.90)

ξ3(x
0, x2) = −ζ3x

1 −Θ1x
2 − T3; (A.91)

ξ5(x
1, x5; p)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

“ + ” :
[

A sinh
(

p

2
x1

x5
0

)

+B cosh
(

p

2
x1

x5
0

)]

(x5)(p/2)−1;

“ − ” :
[

C sin
(

p

2
x1

x5
0

)

+D cos
(

p

2
x1

x5
0

)]

(x5)(p/2)−1

(A.92)

with ζk(k = 2, 3), Θ1,Tν (ν = 0, 2, 3), A, B, C, D, α ∈ R. The dimensions
of the transformation parameters are

[A] = [B] = [C] = [D] = l−((p/2)−1), [α] = l−p, [Tν ] = l , [ ζi] = [Θ1] = l0.
(A.93)

The 3D Killing group(of the sections at dx5 = 0, dx1 = 0) is trivially
the group of rototranslations of the pseudoeuclidean space E′

3 with metric
gµν = diag(1,−1,−1) ((µ, ν) ∈ {0, 2, 3}2):

SO(2, 1)STD. ⊗s Tr.(2, 1)STD.. (A.94)

A.2.3 Case 3

In this case the 5D metric reads

gAB,DR5,3(x5) = diag

(

1, ,−1,−
(

x5

x5
0

)p

,−1,±
(

x5

x5
0

)p−2
)

(A.95)

which is the same as Case 2, apart from an exchange of the space axes x
and y. The Killing vector is therefore obtained from the previous solution
(A.88)–(A.92) by the exchange 1 ↔ 2.

A.2  Solution of the 5D Killing Equations for Totally Violated Υ -Hypothesis
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A.2.4 Case 4

The 5D metric of this case

gAB,DR5,4(x5) = diag

(

1,−1,−1,−
(

x5

x5
0

)p

,±
(

x5

x5
0

)p−2
)

(A.96)

amounts again to an exchange of space axes (1 ↔ 3) with respect to case
2. Accordingly, the solution for the Killing vector is obtained by such an
exchange in the relevant equations.

A.2.5 Case 5

The 5D metric of this case is given by

gAB,DR5,5(x5)

= diag

(

(

x5

x5
0

)−1

,−
(

x5

x5
0

)−1

,−
(

x5

x5
0

)−1

,−x5

x5
0

,±
(

x5

x5
0

)−2
)

(A.97)

to which corresponds the Killing system
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2ξ0,0(xA)x5
0 ∓ ξ5(xA) = 0;

ξ0,1(xA) + ξ1,0(xA) = 0;
ξ0,2(xA) + ξ2,0(xA) = 0;
ξ0,3(xA) + ξ3,0(xA) = 0;

ξ0,5(xA)x5 + ξ0(xA) + ξ5,0(xA)x5 = 0;
2ξ1,1(xA)x5

0 ± ξ5(xA) = 0;
ξ1,2(xA) + ξ2,1(xA) = 0;
ξ1,3(xA) + ξ3,1(xA) = 0;

ξ1,5(xA)x5 + ξ1(xA) + ξ5,1(xA)x5 = 0;
ξ2,2(xA)x5

0 ± ξ5(xA) = 0;
ξ2,3(xA) + ξ3,2(xA) = 0;

ξ2,5(xA)x5 + ξ2(xA) + ξ5,2(xA)x5 = 0;
∓2ξ3,3(xA)

(

x5
0

)3 +
(

x5
)2
ξ5(xA) = 0;

ξ3,5(xA)x5 − ξ3(xA) + ξ5,3(xA)x5 = 0;
ξ5,5(xA)x5 + ξ5(xA) = 0.

(A.98)

Solving this system yields the covariant Killing vector

ξ0(x
1, x2, x5) = η1

x1

x5
+ η2

x2

x5
+ τ0

1
x5

; (A.99)

ξ1(x
0, x2, x5) = −η1

x0

x5
+Θ3

x2

x5
− τ1

1
x5

; (A.100)

ξ2(x
0, x1, x5) = −η2

x0

x5
−Θ3

x1

x5
− τ2

1
x5

; (A.101)
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ξ3 = 0; (A.102)

ξ5 = 0 (A.103)

with ηk(k = 1, 2), Θ3, τν (ν = 0, 1, 2) ∈ R. The dimensions of the trans-
formation parameters are

[τν ] = l2 , [ ηk] = [Θ3] = l . (A.104)

In this case the Killing group is the group of rototranslations of the

pseudoeuclidean space M3 with metric gµν = diag
(

x5

x5
0

)−1

(1,−1,−1)

((µ, ν) ∈ {0, 1, 2}2):

SO(2, 1)STD.M3 ⊗s Tr.(2, 1)STD.M3 . (A.105)

In all five cases discussed, the 5D contravariant Killing vectors ξA(x, x5)
are obtained by means of the contravariant deformed metric tensor
gAB
DR5(x

5) as
ξA(x, x5) = gAB

DR55(x
5)ξB(x, x5). (A.106)

For instance, in case 4, the contravariant metric tensor is

gAB
DR5,4(x

5) = diag

(

1,−1,−1,−
(

x5

x5
0

)−p

,±
(

x5

x5
0

)−p+2
)

(A.107)

and therefore the contravariant components of the Killing vector read

ξ0(x1, x2) = ζ1x
1 + ζ2x

2 + T0; (A.108)

ξ1(x0, x2) = ζ1x
0 −Θ3x

2 + T1; (A.109)

ξ2(x0, x1) = ζ2x
0 +Θ3x

1 + T2; (A.110)

ξ3(x3, x5; p)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

“ + ” :

−
(

x5
0

)p−1
[

A cosh
(

p

2
x3

x5
0

)

+B sinh
(

p

2
x3

x5
0

)]

(

x5
)−p/2 + α

(

x5
0

)p ;

“ − ” :

−
(

x5
0

)p−1
[

C cos
(

p

2
x3

x5
0

)

−D sin
(

p

2
x3

x5
0

)]

(

x5
)−p/2 + α

(

x5
0

)p ;

(A.111)

ξ5(x3, x5; p)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

“ + ” :
(

x5
0

)p−2
[

A sinh
(

p

2
x3

x5
0

)

+B cosh
(

p

2
x3

x5
0

)]

(

x5
)−(p/2)+1 ;

“ − ” :

−
(

x5
0

)p−2
[

C sin
(

p

2
x3

x5
0

)

+D cos
(

p

2
x3

x5
0

)]

(

x5
)−(p/2)+1

.

(A.112)

A.2  Solution of the 5D Killing Equations for Totally Violated Υ -Hypothesis



Appendix B
Gravitational Killing
Symmetries for Special Forms
of b2

1(x
5) and b2

2(x
5)

In this appendix, we shall investigate the integrability of the Killing system
for the gravitational interaction in different cases by assuming special forms
for the spatial metric coefficients b21(x

5) and b22(x
5). For each case, we will

consider the two energy ranges 0 < x5 � x5
0 (subcase a)) and x5 > x5

0

(subcase b)).

B.1 Form I

The phenomenological metric 5D is assumed to be

gAB,DR5,grav.(x5)

= diag

⎛

⎝1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦ ,−c1,−c2,

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,±f(x5)

⎞

⎠ ,

c1, c2 ∈ R+
0 , (in gen.: c1 
= 1, c2 
= 1, c1 
= c2).

(B.1)
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B.1.1 (Ia)

Metric (B.1) becomes:

gAB,DR5(x5) = diag
(

1,−c1,−c2,−1,±f(x5)
)

= diag
(

gµν,M4
(x5),±f(x5)

)

,

(B.2)
where M4 is a standard 4D Minkowskian space with the following coordi-
nate rescaling:

x1 −→ √
c1x

1 ⇒
(in gen.)

�

dx1 −→ √
c1dx1;

x2 −→ √
c2x

2 ⇒
(in gen.)

�

dx2 −→ √
c2dx2. (B.3)

This case is therefore the same of the e.m. and weak interactions in the
energy range x5 � x5

0 (Sect. 22.1.1) and of the strong interaction in the
range 0 < x5 � x5

0 (Sect. 22.2.1). Thus, the Υ -hypothesis of functional
independence is violated for any µ ∈ {0, 1, 2, 3}, and the contravariant
Killing five-vector ξA(x, x5) is given by (22.5)–(22.10).

The Killing group of the sections at dx5 = 0 of �5 is therefore the
standard Poincaré group, suitably rescaled:

[P (1, 3)STD. = SO(1, 3)STD. ⊗s Tr.(1, 3)STD.]|x1−→√
c1x1,x2−→√

c2x2 .

(B.4)

B.1.2 (Ib)

The metric takes the form

gAB,DR5(x5)

= diag

⎛

⎝

1
4

(

1 +
x5

x5
0,grav.

)2

,−c1,−c2,−
1
4

(

1 +
x5

x5
0,grav.

)2

,±f(x5)

⎞

⎠

(B.5)

and from (21.22)–(21.23) it follows:

A0(x5) = −A3(x5)

= 1
8

(

1 +
x5

x5
0

)

x5

(x5
0)

2

(

f(x5)
)−1/2

[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]

;

A1(x5) = A2(x5) = 0;
(B.6)

B0(x5) = B3(x5) =
1
2

(

1 +
x5

0

x5

)

(

f(x5)
)1/2

;

1√
c1
B1(x5) =

1√
c2
B2(x5) =

(

f(x5)
)1/2

, (B.7)
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whence

±A0(x5)
B0(x5)

=
∓A3(x5)
B3(x5)

= ±1
4

1
f(x5)

x5

(x5
0)

2

[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]

.

(B.8)
Therefore, the Υ -hypothesis is satisfied only for µ = 0, 3 under condition

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)


= c
f(x5)
x5

, c ∈ R. (B.9)

Then, on the basis of the results of Sect. 21.3, the components of the con-
travariant Killing vector ξA(x, x5) in this case are given by (21.41)–(21.45),
in which (some of) the real parameters are constrained by the following sys-
tem (cf. (21.46)):
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(01)
1
4

(

1 +
x5

x5
0,grav.

)2
[

d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)

]

+c1
[

h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)

]

= 0;

(02)
1
4

(

1 +
x5

x5
0,grav.

)2
(

d8x
1x3 + d7x

1 + d4x
3 + d3

)

+c2
[

l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)

]

= 0;

(03)
1
4

(

1 +
x5

x5
0,grav.

)2
(

d8x
1x2 + d6x

1 + d4x
2 + d2

)

+
1
4

(

1 +
x5

x5
0,grav.

)2
[

m8x
1x2 +m7x

1 +m6x
2 + (m5 + g2)

]

= 0;

(12) c1
(

h2x
0x3 + h1x

0 + h4x
3 + h3

)

+c2
(

l2x
0x3 + l1x

0 + l4x
3 + l3

)

= 0;
(13) c1

(

h2x
0x2 + h8x

0 + h4x
2 + h6

)

+
1
4

(

1 +
x5

x5
0,grav.

)2
(

m8x
0x2 +m7x

0 +m4x
2 +m3

)

= 0;

(23) c2
(

l2x
0x1 + l6x

0 + l4x
1 + l8

)

+
1
4

(

1 +
x5

x5
0,grav.

)2
(

m8x
0x1 +m6x

0 +m4x
1 +m2

)

= 0.

(B.10)
Solving system (B.10) one finally gets for ξA(x, x5):

ξ0(x3) = ˜F0(x3) = d2x
3 + (a1 + d1 +K0); (B.11)

ξ1(x2) = −˜F1(x2) =
c2
c1
l3x

2 − (K1 + h5 + e1) ; (B.12)

ξ2(x1) = −˜F2(x1) = −l3x1 − (l7 +K2 + e3); (B.13)
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ξ3(x0) = −˜F3(x0) = d2x
0 − (m1 + g1 + c); (B.14)

ξ5 = 0. (B.15)

It follows from the earlier equations that the 5D Killing group in the
range considered is

(

SO(2)
STD.,Π(x1,x2−→

√

c2
c1

x2)
⊗Bx3,STD.

)

⊗s Tr.(1, 3)STD., (B.16)

where SO(2)
STD.,Π(x1,x2−→

√

c2
c1

x2)
= SO(2)STD.,Π(x1−→√

c1x1,x2−→√
c2x2) is

the one-parameter group (generated by S3
SR

∣

∣

x2−→
√

c2
c1

x2) of the 2D rota-

tions in the planeΠ(x1, x2) characterized by the scale transformation (B.3),
Bx3,STD. is the usual one-parameter group (generated by K3

SR) of the stan-
dard Lorentzian boosts along ̂x3 and Tr.(1, 3)STD. is the usual space–time
translation group.

Notice that, by introducing the right distribution ̂ΘR(x5
0 − x5), putting

B1

c1
≡ ζ1,

B2

c2
≡ ζ2, B3 ≡ ζ3,

Θ1

c2
≡ θ1,

Θ2

c1
≡ θ2,

Θ3

c2
≡ θ3,

Ξ0 ≡ ζ5,
Ξ1

c1
≡ Ξ1′,

Ξ2

c2
≡ Ξ2′,

T 1

c1
≡ T 1′,

T 2

c2
≡ T 2′,

(B.17)

and making the identifications

(a1 + d1 +K0) = T 0;

− (K1 + h5 + e1) =
1
c1
T 1;

−(l7 +K2 + e3) =
1
c2
T 2;

−(m1 + g1 + c) = T 3;

l3 =
1
c2
Θ3;

d2 = −B3,

(B.18)

it is possible to express the contravariant five-vector ξA(x, x5) for the grav-
itational interaction in case (I) in the following form, valid in the whole
energy range (x5 ∈ R+

0 ):

ξ0(x1, x2, x3, x5) = ̂ΘR(x5
0−x5)

[

−c1ζ1x1 − c2ζ
2x2 + ζ5F (x5)

]

−ζ3x3+T 0;
(B.19)

ξ1(x0, x2, x3, x5) = ̂ΘR(x5
0−x5)

[

−ζ1x0 − θ2x3 −Ξ1F (x5)
]

+
c2
c1
θ3x2 +T 1;

(B.20)
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ξ2(x0, x1, x3, x5) = ̂ΘR(x5
0 − x5)

[

−ζ2x0 + θ1x3 −Ξ2F (x5)
]

− θ3x1 + T 2;
(B.21)

ξ3(x0, x1, x2, x5) = ̂ΘR(x5
0 −x5)

[

c1θ
2x1 − c2θ

1x2 −Ξ3F (x5)
]

− ζ3x0 +T 3;
(B.22)

ξ5(x, x5)

= ̂ΘR(x5
0 − x5)

{

∓
(

f(x5)
)−1/2 [

ζ5x0 + c1Ξ
1x1 + c2Ξ

2x2 +Ξ3x3 − T 5
]

}

.

(B.23)

B.2 Form II

gAB,DR5,grav.(x5)

= diag

⎛

⎝1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦ ,

−
{

c1 +Θ(x5 − x5
0,grav.)

[

β2
1(x

5) − c1
]}

,

−
{

c2 +Θ(x5 − x5
0,grav.)

[

β2
2(x

5) − c2
]}

,

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,±f(x5)

⎞

⎠ ; (B.24)

c1, c2 ∈ R+
0 , (in gen.: c1 
= 1, c2 
= 1, c1 
= c2),

where the functions β2
1(x

5) and β2
2(x

5) have the properties:

β2
1(x

5), β2
2(x

5) ∈ R+
0 , ∀x5 ∈

(

[x5
0,∞)

)

⊂ R+
0 ;

β2
1(x

5) 
= β2
2(x

5);
β2

1(x
5
0) = c1, β2

2(x
5
0) = c2;

β2
1(x5) 
= 1

4

(

1 +
x5

x5
0,grav.

)2

, β2
2(x5) 
= 1

4

(

1 +
x5

x5
0,grav.

)2

.

(B.25)

B.2.1 (IIa)

In the energy range 0 < x5 � x5
0, the 5D metric has the same form (B.2) of

case I a), and therefore the same results of that case hold true. In particular
the Υ -hypothesis is not satisfied by any value of µ, and the contravariant
vector ξA(x, x5) is still given by (22.5)–(22.10).
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B.2.2 (IIb)

In this case the 5D gravitational metric reads

gAB,DR5(x5)

= diag

⎛

⎝

1
4

(

1 +
x5

x5
0,grav.

)2

,−β2
1(x

5),

−β2
2(x

5),−1
4

(

1 +
x5

x5
0,grav.

)2

,±f(x5)

⎞

⎠ (B.26)

The fake vectors (21.22), (21.23) become (ESC off):

A0(x5) = −A3(x5)

=
1
8

(

1 +
x5

x5
0

)

x5

(x5
0)

2

(

f(x5)
)−1/2

×
[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]

; (B.27)

Ai(x5) ≡ βi(x
5)(f(x5))−1/2

×
[

−
(

β′
i(x

5)
)2

+ βi(x
5)β′′

i (x5)− 1
2
βi(x

5)β′
i(x

5)f ′(x5)(f(x5))−1

]

, i = 1, 2;

(B.28)

B0(x5) = B3(x5) =
1
2

(

1 +
x5

0

x5

)

(

f(x5)
)1/2

; (B.29)

Bi(x5) ≡ βi(x
5)(f(x5))1/2, i = 1, 2, (B.30)

whence

±A0(x5)
B0(x5)

=
∓A3(x5)
B3(x5)

= ±1
4

1
f(x5)

x5

(x5
0)

2

[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]

,

(B.31)

±Ai(x5)
Bi(x5)

= ±(f(x5))−1

×
[

−
(

β′
i(x

5)
)2

+ βi(x
5)β′′

i (x5) − 1
2
βi(x

5)β′
i(x

5)f ′(x5)(f(x5))−1

]

,

i = 1, 2. (B.32)
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Then, the Υ -hypothesis is satisfied for µ = 0, 3 under constraint (B.9), and
for µ = 1 and/or 2 under the conditions
[

−
(

β′
i(x

5)
)2 + βi(x5)β′′

i (x5) − 1
2βi(x5)β′

i(x
5)f ′(x5)(f(x5))−1

]


= 0;

(f(x5))−1
[

−
(

β′
i(x

5)
)2 + βi(x5)β′′

i (x5)

− 1
2βi(x5)β′

i(x
5)f ′(x5)(f(x5))−1

]


= c,

c ∈ R0,

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

⇔
{

−
(

β′
i(x5)

)2 + βi(x5)β′′
i (x5)− 1

2βi(x5)β′
i(x5)f ′(x5)(f(x5))−1 
= cf(x5),

c ∈ R, i = 1 and/or 2.

(B.33)

By exploiting the results of Sect. 21.3, the components of the contravariant
Killing vector ξA(x, x5) corresponding to form II) of the 5D gravitational
metric over threshold are given by (21.41)–(21.45), in which (some of) the
real parameters are constrained by the following system:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(01)
1
4

(

1 +
x5

x5
0,grav.

)2
[

d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)

]

+β2
1(x5)

[

h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)

]

= 0;

(02)
1
4

(

1 +
x5

x5
0,grav.

)2
(

d8x
1x3 + d7x

1 + d4x
3 + d3

)

+β2
2(x

5)
[

l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)

]

= 0;

(03)
1
4

(

1 +
x5

x5
0,grav.

)2
[

d8x
1x2 + d6x

1 + d4x
2 + d2

+m8x
1x2 +m7x

1 +m6x
2 + (m5 + g2)

]

= 0;
(12) β2

1(x
5)
(

h2x
0x3 + h1x

0 + h4x
3 + h3

)

+β2
2(x

5)
(

l2x
0x3 + l1x

0 + l4x
3 + l3

)

= 0;

(13)
1
4

(

1 +
x5

x5
0,grav.

)2
(

m8x
0x2 +m7x

0 +m4x
2 +m3

)

+β2
1(x5)

(

h2x
0x2 + h8x

0 + h4x
2 + h6

)

= 0;

(23)
1
4

(

1 +
x5

x5
0,grav.

)2
(

m8x
0x1 +m6x

0 +m4x
1 +m2

)

+β2
2(x

5)
(

l2x
0x1 + l6x

0 + l4x
1 + l8

)

= 0.

(B.34)

Solving system (B.34) yields for ξA(x, x5) in this case

ξ0(x3) = ˜F0(x3) = d2x
3 + (a1 + d1 +K0); (B.35)

ξ1 = −˜F1 = − (K1 + h5 + e1) ; (B.36)

ξ2 = −˜F2 = −(l7 +K2 + e3); (B.37)
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ξ3(x0) = −˜F3(x0) = d2x
0 − (m1 + g1 + c); (B.38)

ξ5 = 0. (B.39)

The Killing group in this range is

Bx3,STD. ⊗s Tr.(1, 3)STD.. (B.40)

By means of the distribution ̂ΘR(x5
0−x5), by the redenominations (B.17)

of case (I) and putting

(a1 + d1 +K0) = T 0;

− (K1 + h5 + e1) =
1
c1
T 1;

−(l7 +K2 + e3) =
1
c2
T 2;

−(m1 + g1 + c) = T 3;
d2 = −B3,

(B.41)

one gets the following expression of the contravariant vector for the form
II of the gravitational metric in the whole energy range:

ξ0(x1, x2, x3, x5) = ̂ΘR(x5
0−x5)

[

−c1ζ1x1 − c2ζ
2x2 + ζ5F (x5)

]

−ζ3x3+T 0;
(B.42)

ξ1(x0, x2, x3, x5) = ̂ΘR(x5
0−x5)

[

−ζ1x0 +
c2
c1
θ3x2 − θ2x3 −Ξ1F (x5)

]

+T 1;

(B.43)

ξ2(x0, x1, x3, x5) = ̂ΘR(x5
0 − x5)

[

−ζ2x0 − θ3x1 + θ1x3 −Ξ2F (x5)
]

+ T 2;
(B.44)

ξ3(x0, x1, x2, x5) = ̂ΘR(x5
0 −x5)

[

c1θ
2x1 − c2θ

1x2 −Ξ3F (x5)
]

− ζ3x0 +T 3;
(B.45)

ξ5(x, x5)

= ̂ΘR(x5
0 − x5)

{

∓
(

f(x5)
)− 1

2 [ζ5x0 + c1Ξ
1x1 + c2Ξ

2x2 +Ξ3x3 − T 5]
}

.

(B.46)
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B.3 Form III

gAB,DR5,grav.(x5)

= diag

⎛

⎝1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦ ,

−β2
1(x

5),−β2
2(x

5),

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,±f(x5)

⎞

⎠ , (B.47)

where the functions β2
1(x5) and β2

2(x5) have in general the properties:

β2
1(x

5), β2
2(x

5) ∈ R+
0 , ∀x5 ∈ R+

0 ;
β2

1(x
5) 
= β2

2(x
5);

β2
1(x5) 
= 1

4

(

1 +
x5

x5
0,grav.

)2

, β2
2(x5) 
= 1

4

(

1 +
x5

x5
0,grav.

)2

.

(B.48)

Therefore, the present case (III) differs from the previous case II) for the
nature strictly functional (and not composite, namely expressible in terms
of one or more Heaviside functions) of β2

1(x
5) and β2

2(x
5).

B.3.1 (IIIa)

The 5D metric reads

gAB,DR5(x5) = diag
(

1,−β2
1(x

5),−β2
2(x

5),−1,±f(x5)
)

. (B.49)

Then, from definitions (21.22) and (21.23), there follow (B.28),(B.30) and

A0(x5) = A3(x5) = 0;

B0(x5) = B3(x5) =
(

f(x5)
)1/2

. (B.50)

Therefore, the Υ -hypothesis is satisfied only for µ = 1 and/or 2 under
condition (22.105). From Sect. 21.3, the contravariant five-vector ξA(x, x5)
corresponding to form (III) of the 5D gravitational metric below threshold
is given by (21.41)–(21.45), in which (some of) the real parameters are
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constrained by the system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(01)
[

d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)

]

+β2
1(x5)

[

h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)

]

= 0;
(02)

(

d8x
1x3 + d7x

1 + d4x
3 + d3

)

+β2
2(x

5)
[

l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)

]

= 0;
(03)

(

d8x
1x2 + d6x

1 + d4x
2 + d2

)

+
[

m8x
1x2 +m7x

1 +m6x
2 + (m5 + g2)

]

= 0;
(12) β2

1(x
5)
(

h2x
0x3 + h1x

0 + h4x
3 + h3

)

+β2
2(x5)

(

l2x
0x3 + l1x

0 + l4x
3 + l3

)

= 0;
(13) β2

1(x5)
(

h2x
0x2 + h8x

0 + h4x
2 + h6

)

+
(

m8x
0x2 +m7x

0 +m4x
2 +m3

)

= 0;
(23) β2

2(x
5)
(

l2x
0x1 + l6x

0 + l4x
1 + l8

)

+
(

m8x
0x1 +m6x

0 +m4x
1 +m2

)

= 0.

(B.51)

Then, from the solutions of the above system, one finds:

ξ0(x3) = ˜F0(x3) = d2x
3 + (a1 + d1 +K0); (B.52)

ξ1 = −˜F1 = − (K1 + h5 + e1) ; (B.53)

ξ2 = −˜F2 = −(l7 +K2 + e3); (B.54)

ξ3(x0) = −˜F3(x0) = d2x
0 − (m1 + g1 + c); (B.55)

ξ5 = 0. (B.56)

Let us notice that the result obtained for ξA(x, x5) coincides with that of
case (IIb), (B.35)–(B.39).

B.3.2 (IIIb)

The form of the 5D metric is identical to that of case (IIb):

gAB,DR5(x5)

= diag

⎛

⎝

1
4

(

1 +
x5

x5
0,grav.

)2

,−β2
1(x

5),

−β2
2(x

5),−1
4

(

1 +
x5

x5
0,grav.

)2

,±f(x5)

⎞

⎠ . (B.57)

Therefore, the same results of Sect. B.2.2 hold. Moreover, we have just
noted that case (IIIa) yields the same results of case (IIb), and thus of case
(IIIb) too. Consequently, for the form III of the gravitational metric, the
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contravariant Killing vector of the gravitational metric is independent of
the energetic range considered. In conclusion, putting

(a1 + d1 +K0) ≡ T 0;
− (K1 + h5 + e1) ≡ T 1;
−(l7 +K2 + e3) ≡ T 2;
−(m1 + g1 + c) = T 3;
d2 = −ζ3,

(B.58)

one gets the following general form for ξA(x, x5) for form III of the gravi-
tational metric (∀x5 ∈ R+

0 ):

ξ0(x3) = −ζ3x3 + T 0; (B.59)

ξ1 = +T 1; (B.60)

ξ2 = +T 2; (B.61)

ξ3(x0) = −ζ3x0 + T 3; (B.62)

ξ5 = 0. (B.63)

Moreover, ∀x5 ∈ R+
0 the 5D Killing group is

Bx3,STD. ⊗s Tr.(1, 3)STD.. (B.64)

B.4 Form IV

gAB,DR5,grav.(x5)

= diag

⎛

⎝1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦ ,

−
{

c+Θ(x5 − x5
0,grav.)

[

β2(x5) − c
]}

,

−
{

c+Θ(x5 − x5
0,grav.)

[

β2(x5) − c
]}

,

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,±f(x5)

⎞

⎠ (B.65)

(c ∈ R+
0 , c 
= 1), where the function β2(x5) has the following properties:

β2(x5) ∈ R+
0 ,∀x5 ∈

(

[x5
0,∞)

)

⊂ R+
0 ;

β2(x5
0) = c;

β2(x5) 
= 1
4

(

1 +
x5

x5
0,grav.

)2

.

(B.66)

Therefore this case is a special case of case (II) with β2
1(x

5) = β2
2(x

5).
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B.4.1 (IVa)

The 5D metric in this case coincides with that of case (Ia) with c1 = c2 = c:

gAB,DR5(x5) = diag
(

1,−c,−c,−1,±f(x5)
)

. (B.67)

and therefore all the results of Sect. B.1.1 still hold with c1 = c2 = c.

B.4.2 (IVb)

The 5D metric is

gAB,DR5(x5)

=

⎛

⎝diag
1
4

(

1 +
x5

x5
0,grav.

)2

,−β2(x5),−β2(x5),

−1
4

(

1 +
x5

x5
0,grav.

)2

,±f(x5)

⎞

⎠ . (B.68)

The results are the same of case II b) with β2
1(x

5) = β2
2(x

5) and c1 = c2 = c.

B.5 Form V

gAB,DR5,grav.(x5)

= diag

⎛

⎝1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦ ,

−β2(x5),−β2(x5),

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,±f(x5)

⎞

⎠ , (B.69)

where the function β2(x5) has the following properties:

β2(x5) ∈ R+
0 ,∀x5 ∈ R+

0 ;

β2(x5) 
= 1
4

(

1 +
x5

x5
0,grav.

)2

.
(B.70)

Therefore this case is a special case of case (III) with β2
1(x

5) = β2
2(x

5).
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B.5.1 (Va)

In the energy range considered the 5D metric (B.69) becomes

gAB,DR5(x5) = diag
(

1,−β2(x5),−β2(x5),−1,±f(x5)
)

. (B.71)

Then, from definitions (21.22) and (21.23), one gets (B.28), (B.30) and

A0(x5) = A3(x5) = 0;

B0(x5) = B3(x5) =
(

f(x5)
)1/2

. (B.72)

Therefore, the Υ -hypothesis is satisfied only for µ = 1,2 under condition
(22.105). From Sect. 21.3, the contravariant Killing five-vector ξA(x, x5)
corresponding to form V) of the 5D gravitational metric below threshold
is given by (21.41)–(21.45), in which (some of) the real parameters are
constrained by the system:

(01) d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)

+β2(x5)
[

h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)

]

= 0;
(02) d8x

1x3 + d7x
1 + d4x

3 + d3

+β2(x5)
[

l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)

]

= 0;
(03) d8x

1x2 + d6x
1 + d4x

2 + d2

+m8x
1x2 +m7x

1 +m6x
2 + (m5 + g2) = 0;

(12) β2(x5)
(

h2x
0x3 + h1x

0 + h4x
3 + h3

)

+β2(x5)
(

l2x
0x3 + l1x

0 + l4x
3 + l3

)

= 0;
(13) β2(x5)

(

h2x
0x2 + h8x

0 + h4x
2 + h6

)

+m8x
0x2 +m7x

0 +m4x
2 +m3 = 0;

(23) β2(x5)
(

l2x
0x1 + l6x

0 + l4x
1 + l8

)

+m8x
0x1 +m6x

0 +m4x
1 +m2 = 0.

(B.73)

The solution of system (B.73) yields therefore, for ξA(x, x5):

ξ0(x3) = ˜F0(x3) = d2x
3 + (a1 + d1 +K0); (B.74)

ξ1(x2) = −˜F1(x2) = l3x
2 − (K1 + h5 + e1) ; (B.75)

ξ2(x1) = −˜F2(x1) = −l3x1 − (l7 +K2 + e3); (B.76)

ξ3(x0) = −˜F3(x0) = d2x
0 − (m1 + g1 + c); (B.77)

ξ5 = 0. (B.78)

B.5.2 (Vb)

The 5D metric has the same form of case (IVb), (B.68). Consequently, all
the results of Sect. B.4.2 hold. Moreover, the Killing vector has the same
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expression of case (Va), and it is therefore independent of the energy range.
By the following redenomination of the parameters:

(a1 + d1 +K0) ≡ T 0;
− (K1 + h5 + e1) ≡ T 1;
−(l7 +K2 + e3) ≡ T 2;
−(m1 + g1 + c) = T 3;
d2 = −ζ3;
l3 = −θ3,

(B.79)

the contravariant Killing vector ξA(x, x5) of the gravitational metric (B.68)
can be written in the form (valid ∀x5 ∈ R+

0 ):

ξ0(x3) = −ζ3x3 + T 0; (B.80)

ξ1(x2) = θ3x2 + T 1; (B.81)

ξ2(x1) = −θ3x1 + T 2; (B.82)

ξ3(x0) = −ζ3x0 + T 3; (B.83)

ξ5 = 0. (B.84)

Then, ∀x5 ∈ R+
0 , the 5D Killing group is

(

SO(2)STD.,Π(x1,x2) ⊗Bx3,STD.

)

⊗s Tr.(1, 3)STD.. (B.85)

B.6 Form VI

gAB,DR5,grav.(x5)

= diag

⎛

⎝1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦ ,

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,

−
{

c+Θ(x5 − x5
0,grav.)

[

β2(x5) − c
]}

,

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,±f(x5)

⎞

⎠ ,

(B.86)
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(c ∈ R+
0 , c 
= 1) where the function β2(x5) has in general the properties

β2(x5) ∈ R+
0 ,∀x5 ∈

(

[x5
0,∞)

)

⊂ R+
0 ;

β2(x5
0) = c;

β2(x5) 
= 1
4

(

1 +
x5

x5
0,grav.

)2

.

(B.87)

B.6.1 (VIa)

The form of the 5D metric is

gAB,DR5(x5) = diag
(

1,−1,−c,−1,±f(x5)
)

. (B.88)

This is exactly case (Ia) with c1 = 1, c2 = c, and therefore all the results
of Sect. B.1.1 hold.

B.6.2 (VIb)

The 5D metric is

gAB,DR5(x5)

= diag

⎛

⎝

1
4

(

1 +
x5

x5
0,grav.

)2

,−1
4

(

1 +
x5

x5
0,grav.

)2

,

−β2(x5),−1
4

(

1 +
x5

x5
0,grav.

)2

,±f(x5)

⎞

⎠ (B.89)

and from definitions (21.22), (21.23) it follows:

A0(x5) = −A1(x5) = −A3(x5)

=
1
8

(

1 +
x5

x5
0

)

x5

(x5
0)

2

(

f(x5)
)−1/2

[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]

;

B0(x5) = B1(x5) = B3(x5) =
1
2

(

1 +
x5

x5
0

)

(

f(x5)
)1/2 ;

(B.90)

±A0(x5)
B0(x5)

=
∓A1(x5)
B1(x5)

=
∓A3(x5)
B3(x5)

= ±1
4

1
f(x5)

x5

(x5
0)

2

[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]

; (B.91)
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A2(x5) ≡ β(x5)(f(x5))−1/2

×
[

−
(

β′(x5)
)2

+ β(x5)β′′(x5) − 1
2
β(x5)β′(x5)f ′(x5)(f(x5))−1

]

; (B.92)

B2(x5) ≡ β(x5)(f(x5))1/2; (B.93)

±A2(x5)
B2(x5)

= ±(f(x5))−1

[

−
(

β′(x5)
)2

+β(x5)β′′(x5)− 1
2
β(x5)β′(x5)f ′(x5)(f(x5))−1

]

.

(B.94)

Then, the Υ -hypothesis is satisfied for µ = 0, 1, 3 under condition (B.9),
and for µ = 2 under condition:

−
(

β′(x5)
)2

+β(x5)β′′(x5)−1
2
β(x5)β′(x5)f ′(x5)(f(x5))−1 
=λf(x5), λ∈R.

(B.95)
So, under at least one of the conditions (B.9), (B.94), the contravariant
Killing five-vector ξA(x, x5) of the gravitational metric in case (VIb) is given
by (21.41)–(21.45), with (some of) the real parameters being constrained
by the system:

(01) d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)

+h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2) = 0;

(02)
1
4

(

1 +
x5

x5
0,grav.

)2
(

d8x
1x3 + d7x

1 + d4x
3 + d3

)

+β2(x5)
[

l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)

]

= 0;
(03) d8x

1x2 + d6x
1 + d4x

2 + d2

+m8x
1x2 +m7x

1 +m6x
2 + (m5 + g2) = 0;

(12)
1
4

(

1 +
x5

x5
0,grav.

)2
(

h2x
0x3 + h1x

0 + h4x
3 + h3

)

+β2(x5)
(

l2x
0x3 + l1x

0 + l4x
3 + l3

)

= 0;
(13) h2x

0x2 + h8x
0 + h4x

2 + h6

+m8x
0x2 +m7x

0 +m4x
2 +m3 = 0;

(23) β2(x5)
(

l2x
0x1 + l6x

0 + l4x
1 + l8

)

+
1
4

(

1 +
x5

x5
0,grav.

)2
(

m8x
0x1 +m6x

0 +m4x
1 +m2

)

= 0.

(B.96)

Its solution yields the following explicit form of ξA(x, x5):

ξ0(x1, x3) = ˜F0(x1, x3) = − (h7 + e2)x1 − (m5 + g2)x3 + (a1 + d1 +K0);
(B.97)
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ξ1(x0, x3) = −˜F1(x0, x3) = − (h7 + e2)x0−h6x
3−(K1 + h5 + e1) ; (B.98)

ξ2 = −˜F2 = −(l7 +K2 + e3); (B.99)

ξ3(x0, x1) = −˜F3(x0, x1) = − (m5 + g2)x0 +h6x
1−(m1 +g1 +c); (B.100)

ξ5 = 0. (B.101)

Then, it is easily seen that the 5D Killing group in this subcase is

SO(2, 1)STD.M3 ⊗s Tr.(1, 3)STD.. (B.102)

Here, SO(2, 1)STD.M3 is the 3-parameter, homogeneous Lorentz group (gen-
erated by S2

SR, K
1
SR, K

3
SR) of the 3D space M3 endowed with the metric

interval

ds2M3
=

⎛

⎝

1
4

(

1 +
x5

x5
0,grav.

)2
⎞

⎠

(

(

dx0
)2 −

(

dx1
)2 −

(

dx3
)2
)

(B.103)

and Tr.(1, 3)STD. is the usual space–time translation group. Equa-
tion (B.101) can be rewritten as

P (1, 2)STD.M3 ⊗s Tr.STD.,x2 (B.104)

where P (1, 2)STD.M3 = SO(1, 2)STD.M3 ⊗s Tr.(1)STD.M3 is the Poincaré
group of M3 and Tr.(1)STD.,x2 is the one-parameter group (generated by
Υ 2

SR) of the translations along ̂x2.
In case VI, too, it is possible to write the Killing vector ξA(x, x5) of the

gravitational metric (B.86) in a form valid on the whole energy range by
means of the (right) Heaviside distribution ̂ΘR(x5

0 − x5), by putting

B1 ≡ ζ1,
B2

c
≡ ζ2, B3 ≡ ζ3;

Θ1

c
≡ θ1, Θ2 ≡ θ2,

Θ3

c
≡ θ3;

Ξ0 ≡ ζ5,
Ξ2

c
≡ Ξ2′;

T 2

c
≡ T 2′

(B.105)

and identifying
(a1 + d1 +K0) = T 0;
− (K1 + h5 + e1) = T 1;

−(l7 +K2 + e3) =
1
c
T 2;

−(m1 + g1 + c) = T 3;
m5 + g2 = B3;
h6 = Θ2;
h7 + e2 = B1.

(B.106)
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One gets

ξ0(x1, x2, x3, x5) = ̂ΘR(x5
0 − x5)

[

−cζ2x2 + ζ5F (x5)
]

− ζ1x1 − ζ3x3 + T 0;
(B.107)

ξ1(x0, x2, x3, x5) = ̂ΘR(x5
0 − x5)

[

cθ3x2 −Ξ1F (x5)
]

− ζ1x0 − θ2x3 + T 1;
(B.108)

ξ2(x0, x1, x3, x5) = ̂ΘR(x5
0 − x5)

[

−ζ2x0 + θ1x3 − θ3x1 −Ξ2F (x5)
]

+ T 2;
(B.109)

ξ3(x0, x1, x2, x5) = ̂ΘR(x5
0 − x5)

[

−cθ1x2 −Ξ3F (x5)
]

− ζ3x0 + θ2x1 + T 3;
(B.110)

ξ5(x, x5)

= ̂ΘR(x5
0 − x5)

{

∓
(

f(x5)
)− 1

2 [ζ5x0 +Ξ1x1 + cΞ2x2 +Ξ3x3 − T 5]
}

.

(B.111)

B.7 Form VII

gAB,DR5,grav.(x5)

= diag

⎛

⎝1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦ ,

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

, β2(x5),

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,±f(x5)

⎞

⎠ (B.112)

with the function β2(x5) having in general the properties

β2(x5) ∈ R+
0 ,∀x5 ∈ R+

0 ;

β2(x5) 
= 1
4

(

1 +
x5

x5
0,grav.

)2

.
(B.113)

B.7.1 (VIIa)

The 5D metric (B.112) reads

gAB,DR5(x5) = diag
(

1,−1,−β2(x5),−1,±f(x5)
)

. (B.114)
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Definitions (21.22) and (21.23) yield:

A0(x5) = A1(x5) = A3(x5) = 0;

A2(x5) ≡ β(x5)(f(x5))−1/2·

·
[

−
(

β′(x5)
)2

+ β(x5)β′′(x5) − 1
2
β(x5)β′(x5)f ′(x5)(f(x5))−1

]

; (B.115)

B0(x5) = B1(x5) = B3(x5) =
(

f(x5)
)1/2

;

B2(x5) ≡ β(x5)(f(x5))1/2; (B.116)

±A2(x5)
B2(x5)

= ±(f(x5))−1

[

−
(

β′(x5)
)2

+ β(x5)β′′(x5)− 1
2
β(x5)β′(x5)f ′(x5)(f(x5))−1

]

.

(B.117)

So, the Υ -hypothesis is satisfied only for µ = 2 under condition (B.94).
The contravariant Killing vector ξA(x, x5) for the gravitational metric in
this subcase is still given by (21.41)–(21.45), in which (some of) the real
parameters satisfy the following constraint system:

(01) d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)

+h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2) = 0;

(02) d8x
1x3 + d7x

1 + d4x
3 + d3

+β2(x5)
[

l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)

]

= 0;
(03) d8x

1x2 + d6x
1 + d4x

2 + d2

+m8x
1x2 +m7x

1 +m6x
2 + (m5 + g2) = 0;

(12) h2x
0x3 + h1x

0 + h4x
3 + h3

+β2(x5)
(

l2x
0x3 + l1x

0 + l4x
3 + l3

)

= 0;
(13) h2x

0x2 + h8x
0 + h4x

2 + h6

+m8x
0x2 +m7x

0 +m4x
2 +m3 = 0;

(23) β2(x5)
(

l2x
0x1 + l6x

0 + l4x
1 + l8

)

+m8x
0x1 +m6x

0 +m4x
1 +m2 = 0,

(B.118)

whose solution can be shown to coincide with that of subcase (VIb). One
gets therefore

ξ0(x1, x3) = ˜F0(x1, x3) = − (h7 + e2)x1 − (m5 + g2)x3 + (a1 + d1 +K0);
(B.119)

ξ1(x0, x3) = −˜F1(x0, x3) = − (h7 + e2)x0 − h6x
3 − (K1 + h5 + e1) ;

(B.120)
ξ2 = −˜F2 = −(l7 +K2 + e3); (B.121)

ξ3(x0, x1) = −˜F3(x0, x1) = − (m5 + g2)x0 +h6x
1−(m1 +g1 +c); (B.122)

ξ5 = 0. (B.123)
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B.7.2 (VIIb)

In the energy range x5 > x5
0 the form of the metric coincides with that of

the case VI in the same range, (B.89), and therefore all results of Sect. B.6.2
still hold.

By putting
(a1 + d1 +K0) = T 0;
− (K1 + h5 + e1) = T 1;
−(l7 +K2 + e3) = T 2;
−(m1 + g1 + c) = T 3;
m5 + g2 = ζ3;
h7 + e2 = ζ1,

(B.124)

one finds that the general form of ξA(x, x5) for the gravitational metric
in form VII is independent of the energy range and coincides with that
obtained in case VI in the range x5 > x5

0. It reads explicitly (cf. (B.107)–
(B.111))

ξ0(x1, x3) = −ζ1x1 − ζ3x3 + T 0; (B.125)

ξ1(x0x3) = −ζ1x0 − θ2x3 + T 1; (B.126)

ξ2 = +T 2; (B.127)

ξ3(x0, x1) = −ζ3x0 + θ2x1 + T 3; (B.128)

ξ5(x, x5) = 0. (B.129)

Consequently, the 5D Killing group is, ∀x5 ∈ R+
0 (see case VI):

SO(1, 2)STD.M3 ⊗s Tr.(1, 3)STD. = P (1, 2)STD.M3 ⊗s Tr.(1)STD.,x2 . (B.130)

B.8 Form VIII

gAB,DR5,grav.(x5)

= diag

⎛

⎝1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦ ,

−
{

c+Θ(x5 − x5
0,grav.)

[

β2(x5) − c
]}

,

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,±f(x5)

⎞

⎠ (B.131)
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(c ∈ R+
0 , c 
= 1) with

β2(x5) ∈ R+
0 ,∀x5 ∈

(

[x5
0,∞)

)

⊂ R+
0 ;

β2(x5
0) = c;

β2(x5) 
= 1
4

(

1 +
x5

x5
0,grav.

)2

.

(B.132)

B.8.1 (VIIIa)

In this subcase metric (B.131) becomes

gAB,DR5(x5) = diag
(

1,−c,−1,−1,±f(x5)
)

, (B.133)

the same as case (Ia) with c1 = c, c2 = 1 (see (B.2)). Then, the results of
Sect. B.1.1 are valid.

B.8.2 (VIIIb)

The metric (B.131) reads

gAB,DR5(x5)

= diag

⎛

⎝

1
4

(

1 +
x5

x5
0,grav.

)2

,−β2(x5),−1
4

(

1 +
x5

x5
0,grav.

)2

,

−1
4

(

1 +
x5

x5
0,grav.

)2

,±f(x5)

⎞

⎠ (B.134)

and coincides with metric (B.89) of case (VIb) except for the exchange
of the space axes 1 
 2. By the usual procedure it is found that the Υ -
hypothesis is satisfied for µ = 0, 2, 3 under condition (B.9) and for µ = 1
under condition (B.94). Therefore, under at least one of these two condi-
tions, the contravariant Killing vector ξA(x, x5) of the gravitational metric
in subcase VIII b) are given by (21.41)–(21.45), in which (at least some of)
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the real parameters are constrained by the following system:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(01)
1
4

(

1 +
x5

x5
0,grav.

)2
[

d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)

]

+β2(x5)
[

h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)

]

= 0;
(02) d8x

1x3 + d7x
1 + d4x

3 + d3

+l2x1x3 + l1x
1 + l6x

3 + (l5 + e4) = 0;
(03) d8x

1x2 + d6x
1 + d4x

2 + d2

+m8x
1x2 +m7x

1 +m6x
2 + (m5 + g2) = 0;

(12) β2(x5)
(

h2x
0x3 + h1x

0 + h4x
3 + h3

)

+
1
4

(

1 +
x5

x5
0,grav.

)2
(

l2x
0x3 + l1x

0 + l4x
3 + l3

)

= 0;

(13) β2(x5)
(

h2x
0x2 + h8x

0 + h4x
2 + h6

)

+
1
4

(

1 +
x5

x5
0,grav.

)2
(

m8x
0x2 +m7x

0 +m4x
2 +m3

)

= 0;

(23) l2x
0x1 + l6x

0 + l4x
1 + l8

+m8x
0x1 +m6x

0 +m4x
1 +m2 = 0.

(B.135)

Then, ξA(x, x5) is given by

ξ0(x2, x3) = ˜F0(x2, x3) = − (l5 + e4)x2 − (m5 + g2)x3 + (a1 + d1 +K0);
(B.136)

ξ1 = −˜F1 = − (K1 + h5 + e1) ; (B.137)

ξ2(x0, x3) = −˜F2(x0, x3) = − (l5 + e4)x0 − l8x
3 − (l7 +K2 + e3); (B.138)

ξ3(x0, x2) = −˜F3(x0, x2) = − (m5 + g2)x0 + l8x
2 − (m1 +g1 + c); (B.139)

ξ5 = 0. (B.140)

It follows that the 5D Killing group is:

SO(1, 2)STD.M3
⊗s Tr.(1, 3)STD. (B.141)

Here SO(1, 2)STD.M3
is the 3-parameter Lorentz group (generated by S1

SR,
K2

SR , K3
SR) of the 3D manifold M3 with metric interval

ds2
M3

=

⎛

⎝

1
4

(

1 +
x5

x5
0,grav.

)2
⎞

⎠ (
(

dx0
)2 −

(

dx2
)2 −

(

dx3
)2

) (B.142)

and Tr.(1, 3)STD. is the usual space–time translation group. Equation
(B.141) can be rewritten in the form

P (1, 2)STD.M3
⊗s Tr.(1)STD.,x1 , (B.143)
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where we introduced the six-parameter Poincaré group of M3,
P (1, 2)STD.M3

= SO(1, 2)STD.M3
⊗s Tr.(1)STD.M3

, and Tr.(1)STD.,x1 is the

one-parameter translation group along ̂x1 (generated by Υ 1
SR).

Moreover, it is easy to see that the compact form of the contravariant
Killing vector for the gravitational metric in case VIII, valid ∀x5 ∈ R+

0 , is
still given by (B.107)–(B.111), with the exchange 1 
 2.

B.9 Form IX

gAB,DR5,grav.(x5)

= diag

⎛

⎝1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦ ,

−β2(x5),−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,±f(x5)

⎞

⎠ (B.144)

where

β2(x5) ∈ R+
0 ∀x5 ∈ R+

0 ;

β2(x5) 
= 1
4

(

1 +
x5

x5
0,grav.

)2

.
(B.145)

B.9.1 (IXa)

In the range 0 < x5 � x5
0 metric (B.144) becomes

gAB,DR5(x5) = diag
(

1,−β2(x5),−1,−1,±f(x5)
)

, (B.146)

namely the same of case (VIIa) with the exchange 2 → 1. Therefore,
performing such an exchange in (B.113)–(B.116), one finds that the hypoth-
esis Υ of functional independence is satisfied only for µ = 1 under condi-
tion (B.94). Under such a condition, the contravariant Killing five-vector
ξA(x, x5) of the gravitational metric in the subcase IX a) is given by
(21.41)–(21.45), with (some of) the real parameters being constrained
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by the system:

(01)
[

d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)

]

+β2(x5)
[

h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)

]

= 0;
(02) d8x

1x3 + d7x
1 + d4x

3 + d3

+l2x1x3 + l1x
1 + l6x

3 + (l5 + e4) = 0;
(03) d8x

1x2 + d6x
1 + d4x

2 + d2

+m8x
1x2 +m7x

1 +m6x
2 +m5 + g2 = 0;

(12) β2(x5)
(

h2x
0x3 + h1x

0 + h4x
3 + h3

)

+l2x0x3 + l1x
0 + l4x

3 + l3 = 0;
(13) β2(x5)

(

h2x
0x2 + h8x

0 + h4x
2 + h6

)

+m8x
0x2 +m7x

0 +m4x
2 +m3 = 0;

(23) l2x
0x1 + l6x

0 + l4x
1 + l8

+m8x
0x1 +m6x

0 +m4x
1 +m2 = 0.

(B.147)

The solution of the above system is the same obtained in subcase (VIIIb).
So, the explicit form of ξA(x, x5) for the gravitational metric in form IX
under threshold coincides with that of case VIII over threshold, (B.136)–
(B.140).

B.9.2 (IXb)

In the energy range x5 > x5
0 the form of the metric coincides with that of

case VIII in the same range:

gAB,DR5(x5)

= diag

⎛

⎝

1
4

(

1 +
x5

x5
0,grav.

)2

,−β2(x5),

−1
4

(

1 +
x5

x5
0,grav.

)2

,−1
4

(

1 +
x5

x5
0,grav.

)2

,±f(x5)

⎞

⎠ , (B.148)

so all the results of Sect. B.8.2 hold. The contravariant Killing vector
ξA(x, x5) is therefore independent of the energy range, and (on account
of the discussion of Sect. B.8.2) its expression is obtained from (B.124)–
(B.129) by the exchange 1 � 2.

As to the 5D Killing group, it is therefore, ∀x5 ∈ R+
0 (cf. case (VIIIb))

SO(1, 2)STD.M3
⊗s Tr.(1, 3)STD. = P (1, 2)STD.M3

⊗s Tr.(1)STD.,x2 . (B.149)
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B.10 Form X

gAB,DR5,grav.(x5)

= diag

⎛

⎝1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦ ,

−

⎧

⎨

⎩

c1 +Θ(x5 − x5
0,grav.)

⎡

⎣

c1
4

(

1 +
x5

x5
0,grav.

)2

− c1

⎤

⎦

⎫

⎬

⎭

−

⎧

⎨

⎩

c2 +Θ(x5 − x5
0,grav.)

⎡

⎣

c2
4

(

1 +
x5

x5
0,grav.

)2

− c2

⎤

⎦

⎫

⎬

⎭

,

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,±f(x5)

⎞

⎠

(B.150)

(c1, c2 ∈ R+
0 , in gen.: c1 
= 1, c2 
= 1, c1 
= c2).

B.10.1 (Xa)

In the energy range 0 < x5 � x5
0 the form of the 5D metric is iden-

tical to that of cases (I) and (II) in the same range, (B.2). All the
results of Sects. B.1.1 and B.2.1 are valid. The Υ -hypothesis is violated
∀µ ∈ {0, 1, 2, 3}. The Killing equations, and therefore the Killing vec-
tor, coincide with those corresponding to the e.m. and weak metrics
above threshold (Sect. 22.1.1) and to the strong metric below threshold
(Sect. 22.2.1). Therefore the contravariant Killing five-vector ξA(x, x5) is
given by (22.5)–(22.10), and the Killing group of the sections at dx5 = 0
of �5 is of course the rescaled Poincaré group (B.4).

B.10.2 (Xb)

The 5D metric becomes

gAB,DR5(x5)

= diag

⎛

⎝

1
4

(

1 +
x5

x5
0,grav.

)2

,−c1
4

(

1 +
x5

x5
0,grav.

)2

,

−c2
4

(

1 +
x5

x5
0,grav.

)2

,−1
4

(

1 +
x5

x5
0,grav.

)2

,±f(x5)

⎞

⎠ . (B.151)
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Therefore

A0(x5) = −A3(x5) =

=
1
8

(

1 +
x5

x5
0

)

x5

(x5
0)

2

(

f(x5)
)−1/2

[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]

;

B0(x5) = B3(x5) =
1
2

(

1 +
x5

x5
0

)

(

f(x5)
)1/2 ;

(B.152)
±A0(x5)
B0(x5)

=
∓A3(x5)
B3(x5)

= ±1
4

1
f(x5)

x5

(x5
0)

2

[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]

;

(B.153)
Ai(x5)

= − (ci)
3/2

8

(

1 +
x5

x5
0

)

x5

(x5
0)

2

(

f(x5)
)−1/2

[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]

;

Bi(x5) =
(ci)

1/2

2

(

1 +
x5

0

x5

)

(

f(x5)
)1/2

, i = 1, 2;

(B.154)
±Ai(x5)
Bi(x5)

= ∓ci
4

1
f(x5)

x5

(x5
0)

2

[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]

, i = 1, 2.

(B.155)
It follows that the Υ -hypothesis is satisfied by any µ = 0, 1, 2, 3 under con-
dition (B.9). Then, under such condition, the contravariant Killing vector
ξA(x, x5) for the gravitational metric in this subcase is given by (21.41)–
(21.45), in which (some of) the real parameters satisfy the constraint sys-
tem:

(01) d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)

+c1
[

h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)

]

= 0;
(02) d8x

1x3 + d7x
1 + d4x

3 + d3

+c2
[

l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)

]

= 0;
(03) d8x

1x2 + d6x
1 + d4x

2 + d2

+m8x
1x2 +m7x

1 +m6x
2 + (m5 + g2) = 0;

(12) c1
(

h2x
0x3 + h1x

0 + h4x
3 + h3

)

+c2
(

l2x
0x3 + l1x

0 + l4x
3 + l3

)

= 0;
(13) c1

(

h2x
0x2 + h8x

0 + h4x
2 + h6

)

+m8x
0x2 +m7x

0 +m4x
2 +m3 = 0;

(23) c2
(

l2x
0x1 + l6x

0 + l4x
1 + l8

)

+m8x
0x1 +m6x

0 +m4x
1 +m2 = 0.

(B.156)

Then, ξA(x, x5) explicitly reads, in this subcase:

ξ0(x1, x2, x3) = ˜F0(x1, x2, x3)

= −c1(h7 + e2)x1 − c2 (l5 + e4)x2 − (m5 + g2)x3 + (a1 + d1 +K0);
(B.157)
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ξ1(x0, x2, x3) = −˜F1(x0, x2, x3)

= −(h7 + e2)x0 − h3x
2 − h6x

3 − (K1 + h5 + e1) ; (B.158)

ξ2(x0, x1, x3) = −˜F2(x0, x1, x3)

= − (l5 + e4)x0 +
c1
c2
h3x

1 − l8x
3 − (l7 +K2 + e3); (B.159)

ξ3(x0, x1, x2) = −˜F3(x0, x1, x2)

= − (m5 + g2)x0 + c1h6x
1 + c2l8x

2 − (m1 + g1 + c); (B.160)

ξ5 = 0. (B.161)

By introducing as usual the distribution ̂ΘR(x5
0 − x5), putting

B1

c1
≡ ζ1,

B2

c2
≡ ζ2, B3 ≡ ζ3;

Θ1

c2
≡ θ1,

Θ2

c1
≡ θ2,

Θ3

c2
≡ θ3;

Ξ0 ≡ ζ5,
Ξ1

c1
≡ Ξ1′,

Ξ2

c2
≡ Ξ2′;

T 1

c1
≡ T 1′,

T 2

c2
≡ T 2′

(B.162)

and identifying

(a1 + d1 +K0) = T 0;

− (K1 + h5 + e1) =
1
c1
T 1;

−(l7 +K2 + e3) =
1
c2
T 2;

−(m1 + g1 + c) = T 3;

h7 + e2 =
B1

c1
; l5 + e4 =

B2

c2
; m5 + g2 = B3;

l8 = −Θ1

c2
; h6 =

Θ2

c1
; h3 = −Θ3

c1
,

(B.163)

one gets the following general form of the Killing vector in case X, valid
∀x5 ∈ R+

0 :

ξ0(x1, x2, x3, x5) = ̂ΘR(x5
0 − x5)

[

ζ5F (x5)
]

− c1ζ
1x1 − c2ζ

2x2 − ζ3x3 + T 0;
(B.164)

ξ1(x0, x2, x3, x5) = ̂ΘR(x5
0 − x5)

[

−Ξ1F (x5)
]

− ζ1x0 +
c2
c1
θ3x2 − θ2x3 +T 1;

(B.165)
ξ2(x0, x1, x3, x5) = ̂ΘR(x5

0 − x5)
[

−Ξ2F (x5)
]

− ζ2x0 − θ3x1 + θ1x3 + T 2;
(B.166)
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ξ3(x0, x1, x2, x5) = ̂ΘR(x5
0−x5)

[

−Ξ3F (x5)
]

−ζ3x0 +c1θ
2x1−c2θ

1x2 +T 3;
(B.167)

ξ5(x, x5)

= ̂ΘR(x5
0 − x5)

{

∓
(

f(x5)
)−1/2

[ζ5x0 + c1Ξ
1x1 + c2Ξ

2x2 +Ξ3x3 − T 5]
}

.

(B.168)

The 5D Killing group in this range is the Poincaré one, suitably rescaled

[P (1, 3)STD. = SO(1, 3)STD. ⊗s Tr.(1, 3)STD.]|x1−→√
c1x1,x2−→√

c2x2

(B.169)
as in the energy range 0 < x5 � x5

0.

B.11 Form XI

gAB,DR5,grav.(x5)

= diag

⎛

⎝1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦ ,

−c1
4

(

1 +
x5

x5
0,grav.

)2

,−c2
4

(

1 +
x5

x5
0,grav.

)2

,

−

⎧

⎨

⎩

1 +Θ(x5 − x5
0,grav.)

⎡

⎣

1
4

(

1 +
x5

x5
0,grav.

)2

− 1

⎤

⎦

⎫

⎬

⎭

,±f(x5)

⎞

⎠ (B.170)

(c1, c2 ∈ R+
0 . In gen.: c1 
= 1, c2 
= 1, c1 
= c2).

B.11.1 (XIa)

Metric (B.170) reads

gAB,DR5(x5)

= diag

⎛

⎝1,−c1
4

(

1 +
x5

x5
0,grav.

)2

,−c2
4

(

1 +
x5

x5
0,grav.

)2

,−1,±f(x5)

⎞

⎠ .

(B.171)

Therefore

A0(x5) = A3(x5) = 0; (B.172)

B0(x5) = B3(x5) =
(

f(x5)
)1/2

;
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Ai(x5) =

− (ci)
3/2

8

(

1 +
x5

x5
0

)

x5

(x5
0)

2

(

f(x5)
)−1/2

[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]

;

Bi(x5) =
(ci)

1/2

2

(

1 +
x5

0

x5

)

(

f(x5)
)1/2

, i = 1, 2;

(B.173)
±Ai(x5)
Bi(x5)

= ∓ci
4

1
f(x5)

x5

(x5
0)

2

[

1
x5

+
1
2
f ′(x5)
f(x5)

+
1
2
x5

0

x5

f ′(x5)
f(x5)

]

, i = 1, 2.

(B.174)
So the Υ -hypothesis is satisfied for µ = 1, 2 under condition (B.9), which
ensures that the contravariant Killing vector ξA(x, x5) for the gravitational
metric in this subcase is given by (21.41)–(21.45), where (some of) the real
parameters are constrained by the system

(01) d8x
2x3 + d7x

2 + d6x
3 + (d5 + a2)

+
c1
4

(

1 +
x5

x5
0,grav.

)2
[

h2x
2x3 + h1x

2 + h8x
3 + (h7 + e2)

]

= 0;

(02)
(

d8x
1x3 + d7x

1 + d4x
3 + d3

)

+
c2
4

(

1 +
x5

x5
0,grav.

)2
[

l2x
1x3 + l1x

1 + l6x
3 + (l5 + e4)

]

= 0;

(03)
(

d8x
1x2 + d6x

1 + d4x
2 + d2

)

+
[

m8x
1x2 +m7x

1 +m6x
2 + (m5 + g2)

]

= 0;
(12) c1

(

h2x
0x3 + h1x

0 + h4x
3 + h3

)

+c2
(

l2x
0x3 + l1x

0 + l4x
3 + l3

)

= 0;

(13)
c1
4

(

1 +
x5

x5
0,grav.

)2
(

h2x
0x2 + h8x

0 + h4x
2 + h6

)

+
(

m8x
0x2 +m7x

0 +m4x
2 +m3

)

= 0;

(23)
c2
4

(

1 +
x5

x5
0,grav.

)2
(

l2x
0x1 + l6x

0 + l4x
1 + l8

)

+
(

m8x
0x1 +m6x

0 +m4x
1 +m2

)

= 0.

From the solution of this system one gets the explicit form of the Killing
five-vector

ξ0(x3) = ˜F0(x3) = − (m5 + g2)x3 + (a1 + d1 +K0); (B.175)

ξ1(x2) = −˜F1(x2) = −h3x
2 − (K1 + h5 + e1) ; (B.176)

ξ2(x1) = −˜F2(x1) =
c1
c2
h3x

1 − (l7 +K2 + e3); (B.177)

ξ3(x0) = −˜F3(x0) = − (m5 + g2)x0 − (m1 + g1 + c); (B.178)

ξ5 = 0. (B.179)
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The metric (B.170) can be rewritten as

gAB,DR5,grav.(x5) = diag

⎛

⎝

1
4

(

1 +
x5

x5
0,grav.

)2

gµν,M4
(x5),±f(x5)

⎞

⎠

(B.180)
where M4 is the standard 4D Minkowski space with the coordinate scale
transformation (B.3) introduced in Sect. B.1.1. Therefore, in the energy
range 0 < x5 � x5

0 the 5D Killing group is the rescaled Poincaré group

[P (1, 3)STD. = SO(1, 3)STD. ⊗s Tr.(1, 3)STD.]|x1−→√
c1x1,x2−→√

c2x2 .

(B.181)

B.11.2 (XIb)

In the energy range x5 > x5
0 the metric (B.170) coincides with that of case

(X) in the same range, (B.151). Therefore, the results for this case coincide
with those obtained in Sect. B.10.2. In particular, solution (B.157)–(B.161)
holds for the contravariant Killing vector ξA(x, x5).

The 5D Killing group in this range is

(

SO(2)STD.(x1−→√
c1x1,x2−→√

c2x2) ⊗Bx3,STD.

)

⊗s Tr.(1, 3)STD., (B.182)

where SO(2)STD.(x1−→√
c1x1,x2−→√

c2x2) = SO(2)
STD.,Π(x1−→

√

c1
c2

x1)
is the

one-parameter group (generated by S3
SR) of the 2D rotations in the plane

Π(x1, x2) characterized by the scale transformations (B.3), Bx3,STD. is the
usual one-parameter group (generated by K3

SR) of the Lorentz boosts along
̂x3 and Tr.(1, 3)STD. is the group of standard space–time translations.

Since

(

SO(2)STD.(x1−→√
c1x1,x2−→√

c2x2) ⊗Bx3,STD.

)

⊗s Tr.(1, 3)STD. �

� [P (1, 3)STD. = SO(1, 3)STD. ⊗s Tr.(1, 3)STD.]|x1−→√
c1x1,x2−→√

c2x2

we can state that the present case XI is the only one – in the framework
of the Ansatz of solution of Killing equations for the 5D phenomenological
metric of gravitational interaction – in which the 5D Killing group in the
range 0 < x5 � x5

0 is a proper (non-abelian) subgroup of the Killing group
in the range x5 > x5

0.
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By introducing the left distribution ̂ΘL(x5 − x5
0) (see (20.38))1 and

putting

(a1 + d1 +K0) ≡ T 0;
− (K1 + h5 + e1) ≡ T 1;
−(l7 +K2 + e3) ≡ T 2;
−(m1 + g1 + c) ≡ T 3;
m5 + g2 ≡ ζ3; l5 + e4 ≡ ζ2; h7 + e2 ≡ ζ1;
l8 ≡ −θ1; h6 ≡ θ2; h3 ≡ −c2

c1
θ3,

(B.183)

the contravariant Killing vector ξA(x, x5) of the gravitational metric in case
XI can be written in the following form (valid ∀x5 ∈ R+

0 ):

ξ0(x1, x2, x3, x5) = ̂ΘL(x5 − x5
0)
[

−c1ζ1x1 − c2ζ
2x2
]

− ζ3x3 + T 0; (B.184)

ξ1(x0, x2, x3, x5) = ̂ΘL(x5 − x5
0)
[

−ζ1x0 − θ2x3
]

+
c2
c1
θ3x2 + T 1; (B.185)

ξ2(x0, x1, x3, x5) = ̂ΘL(x5 − x5
0)
[

−ζ2x0 + θ1x3
]

− θ3x1 + T 2; (B.186)

ξ3(x0, x1, x2, x5) = ̂ΘL(x5 − x5
0)
[

c1θ
2x1 − c2θ

1x2
]

− ζ3x0 + T 3; (B.187)

ξ5 = 0. (B.188)

Notice that in this case the dependence of (B.184)–(B.188) on x5 is
fictitious, because actually ξµ depends on x5 through the distribution
̂ΘL(x5 − x5

0) only.

1The use of the left distribution ̂ΘL(x5 − x5
0) (instead of the right one ̂ΘR(x5

0 − x5)
used in all the other cases) is due to the fact already stressed that in the present case
the 5D Killing group in the range 0 < x5 � x5

0 is a proper (non-abelian) subgroup of
the Killing group in the range x5 > x5

0 . Indeed, let us recall the complementary nature
of the two distributions, expressed by (20.40).



Appendix C
Explicit and Implicit Forms of
Geodesics for the 12 Classes of
Solutions of Einstein’s
Equations in Vacuum in the
Power Ansatz

We shall give in the following the (explicit or implicit) solutions of the
geodesic equations corresponding to the 12 classes of metrics, solutions of
the 5D Einstein equations in vacuum in the Power Ansatz. The reader is
referred to [127] for calculation details.

C.1 Class (I)

q̃I =
(

n,−n
(

2p+ n

2n+ p

)

, n, p,
p2 − 2p+ 2np− 4n+ 3n2

2n+ p

)

.

The geodesic generating function F±,I(ζ;n, p,A2) (24.7) is given by

F±,I(ζ;n, p,A2)

=
[

±(x5
0)

−(2np+n2)/(2n+p)C2
12ζ

−(p2−2p−4n+2n2)/(2n+p)

±(x5
0)

n(C2
22 − C2

02)ζ
−(p2−2p+3np−4n+5n2)/(2n+p)

±(x5
0)

pC2
32ζ

−(2p2−2p+4np−4n+3n2)(2n+p)

+A2(x5
0)

−(p2−2p+2np−4n+3n2)/(2n+p)ζ−(p2−2p+2np−4n+3n2)/(2n+p)
]−1/2

.

(C.1)
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Therefore, the integral (24.8) can be put in the form (2n+ p 
= 0):

4n+ p

3n2 + 4np+ 2p2

∫

dy
√

c0yα(n,p) + c1yβ(n,p) + c3yγ(n,p) + c2
(C.2)

with
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

α(n, p) =
2p2 + 2n2 + 8np
3n2 + 4np+ 2p2

;

β(n, p) =
2p2 − 4n2 + 2np
3n2 + 4np+ 2p2

;

γ(n, p) =
2p2 + 4np

3n2 + 4np+ 2p2
;

y = (x5(τ))3n2/(4n+2p)+p, x5(τ) > 0;

(C.3)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c0 = ±(x5
0)

−(2np+n2)/(2n+p)C2
12;

c1 = ±(x5
0)

n(C2
22 − C2

02);
c2 = ±(x5

0)
pC2

32;
c3 = A2(x5

0)
−(p2−2p+2np−4n+3n2)/(2n+p),

(C.4)

and cannot be evaluated for arbitrary values of the parameters. Therefore,
the solution for Class (I) can only be given in implicit form by replacing
(C.3)–(C.5) in the general solution (24.13)–(24.14).

C.2 Class (II)

q̃II = (0,m, 0, 0,m− 2) .

The function F±(ζ; q,A2) reads, in this case

F±,II(ζ;m,A2)

=
{

±
[

C2
22 + C2

32 − C2
02 ±A2(x5

0)
−m+2

]

ζ−m+2 ± (x5
0)

mC2
12ζ

−2m+2
}−1/2

.
(C.5)

The Riemann indefinite integrals of the generating functions F±,i(ζ; q̃, A2)
(i=II,IV,VI,IX) for the classes (II), (IV), (VI), and (IX) can be put in the
following form (ESC off):

∫

dζF±,i(ζ; q̃, A2) =
∫

dζ
[

aiζ
−ki+2 + biζ

−2ki+2
]−1/2

,

kII = m, kIV = p, kVI = q, kIX = n, (C.6)



C.2 Class (II) 447

where ai = ai(C2
02, C

2
12, C

2
22, C

2
32, q̃, A2, x

5
0), bi = bi(C2

02, C
2
12, C

2
22, C

2
32,

q̃, A2, x
5
0). They can be evaluated as follows (y = xk):

∫

dx√
ax−k+2 + bx−2k+2

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2
√
b

ka

√

a

b
y + 1, a 
= 0, b 
= 0;

1√
b

xk

k
, a = 0, b 
= 0;

2√
a

xk/2

k
, a 
= 0, b = 0;

1√
a+ b

ln |x| , k = 0.

(C.7)

The solution therefore reads:

xµ(τ) = Cµ1 + Cµ2τ , µ = 0, 2, 3; (C.8)

x1(τ) = C11 + C12

∫

dτ
(

x5(τ)
)−m

; (C.9)

As to x5(τ), we have the following cases:

(1) m 
= 0:

(1.1) C2
22 + C2

32 − C2
02 ±A2(x5

0)
−m+2 
= 0, C12 
= 0:

x5(τ) =
{

(x5
0)

mC2
12

[C2
22 + C2

32 − C2
02 ±A2(x5

0)−m+2]

×
[

m2
(

C2
22 + C2

32 − C2
02 ±A2(x5

0)
−m+2

)2

4(x5
0)2C

2
12

(τ +A1)
2 − 1

]}1/m

;

(C.10)

(1.2) C2
22 + C2

32 − C2
02 ±A2(x5

0)
−m+2 = 0, C12 
= 0:

x5(τ) =
[

±m
√

±(x5
0)mC2

12(x
5
0)

m−2
2 (τ +A1)

]1/m

; (C.11)

(1.3) C2
22 + C2

32 − C2
02 ±A2(x5

0)
−m+2 
= 0, C12 = 0:

x
5
(τ)

=

⎡

⎣±m

√

±
[

C2
22 + C2

32 − C2
02 ± A2(x5

0)
−m+2

]

2
(x

5
0)

(m−2)/2
(τ + A1)

⎤

⎦

2/m

.

(C.12)
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(2) m = 0:

x
5
(τ)

= exp

{

±
√

±
[

C2
22 + C2

32 − C2
02 ± A2(x5

0)−m+2 + (x5
0)mC2

12

]

(x
5
0)

(m−2)/2
(τ + A1)

}

.

(C.13)

C.3 Class (III)

q̃III = (n,−n, n, n,−2(1 − n)) .

One gets

F±,III(ζ;n,A2) =
{

±[C2
22 + C2

32 − C2
02](x

5
0)

nζ−3n+2+

±A2(x5
0)

−2n+2ζ−2n+2 ± (x5
0)

−nC2
12ζ

−n+2
}−1/2

. (C.14)

The integral of F±,III(ζ;n,A2) is then of the kind
∫

dx√
ax2−n + bx2−2n + cx2−3n

, (C.15)

which admits an explicit solution at least for some values of the parameters.
The geodesic solution therefore reads:

xµ(τ) = Cµ1 + Cµ2

∫

dτ
(

x5(τ)
)−n

, µ = 0, 2, 3; (C.16)

x1(τ) = C11 + C12

∫

dτ
(

x5(τ)
)n

; (C.17)

where x5(τ) is given (explicitly or implicitly) by:

(1) n 
= 0:

(1.1) C2
22 + C2

32 − C2
02 = 0:

(1.1.1) C12 
= 0, A2 
= 0:

x5(τ) =

{

±
A2(x5

0)−n+2

C12

[

±(x5
0)

2n−4 n2

4

C4
12

A2
(τ + A1)2 − 1

]}1/n

;

(C.18)

(1.1.2) C12 = 0, A2 
= 0:

x5(τ) =
[

±n
√

A2 (τ +A1)
]1/n

; (C.19)
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(1.1.3) C12 
= 0, A2 = 0:

x5(τ) =
[

±nC12

√
±1

2
(x5

0)
n/2−1 (τ +A1) − 1

]2/n

. (C.20)

(1.2) A2 = 0:

(1.2.1) C12 
= 0, C2
22 + C2

32 − C2
02 
= 0, C2

12 
=
(

C2
22 + C2

32 − C2
02

)

(x5
0)

2n:
(1.2.1a)

(

C2
22 + C2

32 − C2
02

)

< 0 :

(τ +A1) = ± (x5
0)

−(n/2)+1

nC12

√
∓1

×
{

̂Θ

(

(x5
0)

n

√

C2
02 − C2

22 − C2
32

C2
12

−
(

x5(τ)
)n
)

̂Θ
(

(

x5(τ)
)n
)

×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√
2(x5

0)n/2 4

√

C2
02 − C2

22 − C2
32

C2
12

∫

√

2
(

x5
0

x5(τ)

)n
√

C2
02

−C2
22

−C2
32

C2
12

−1

0

dt

√

1 − t2

√

1 −
t2

2

−2

√

√

√

√

√

√

√

(

x5(τ)
)n

√

C2
02 − C2

22 − C2
32

C2
12

−
(

x5(τ)
)n

√

C2
02 − C2

22 − C2
32

C2
12

+
(

x5(τ)
)n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

or

√
2(x5

0)n/2 4

√

C2
02 − C2

22 − C2
32

C2
12

∫

√

1−

√

C2
02

−C2
22

−C2
32

C2
12

(

x5(τ)
x5
0

)n

0

dt

√

1 − t2

√

1 −
t2

2

∓ îΘ

(

(

x5(τ)
)n − (x5

0)
n

√

C2
02 − C2

22 − C2
32

C2
12

)

×

⎡

⎢

⎢

⎢

⎣

−
√

2(x5
0)

n
2 4

√

C2
02 − C2

22 − C2
32

C2
12

∫

√

1−

√

C2
02

−C2
22

−C2
32

C2
12

(

x5(τ)
x5
0

)n

0

dt

√
1 − t2

√

1 − t2

2

+2

√

(x5(τ))n − C2
02 − C2

22 − C2
32

C2
12

(

x5
0

x5(τ)

)n

(x5
0)

n

]}

. (C.21)
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(1.2.1b)
(

C2
22 + C2

32 − C2
02

)

> 0 :
In this case, the integral
∫ x5(τ) dx

√

±(x5
0)−nC2

12x
2−n ± (C2

22 + C2
32 − C2

02) (x5
0)nx2−3n

(C.22)
is unknown, and therefore no solution can be given even in
implicit form.

(1.2.2) C12 
= 0, C2
22 + C2

32 − C2
02 
= 0, C2

12 =
(

C2
22 + C2

32 − C2
02

)

(x5
0)

2n:
(

x5(τ)
)n ∓ n2C2

12(x
5
0)

n−2 (τ +A1)
2 +
(

x5(τ)
)−n

= 0. (C.23)

(1.2.3) C12 
= 0, C2
22 + C2

32 − C2
02 = 0:

x5(τ) =
[

±
√
±1

n

2
C12(x5

0)
n
2 −1 (τ +A1)

]2/n

. (C.24)

(1.2.4) C12 = 0, C2
22 + C2

32 − C2
02 
= 0:

x5(τ) =
[

±3n
2

√

± (C2
22 + C2

32 − C2
02)(x

5
0)

(3n/2)−1 (τ +A1)
]2/3n

.

(C.25)

(1.3) C12 = 0:

(1.3.1) A2 
= 0, C2
22 + C2

32 − C2
02 
= 0:

τ +A1 = ±(x5
0)

1−n

{

(C2
22+C2

32−C2
02)(x5

0)
4n−3

nA
3/2
2

̂Θ
(

∓ A2
C2

22+C2
32−C2

02

)

× ̂Θ
(

∓ A2(x
5
0)

2−2n

C2
22+C2

32−C2
02

(

x5(τ)
x5
0

)n

− 1
)

A2(x
5
0)

2−2n

C2
22+C2

32−C2
02

(

x5(τ)
x5
0

)n

× 2F1

(

1
2
,−1; 0;∓

(

x5
0

x5(τ)

)n
C2

22 + C2
32 − C2

02

A2
(x5

0)
2n−2

)

+ ̂Θ
(

± A2(x
5
0)

2−2n

C2
22+C2

32−C2
02

(

x5(τ)
x5
0

)n

+ 1
)

̂Θ
(

∓ A2
C2

22+C2
32−C2

02

)

×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2
3
A2(x5

0)
2−(3/2)n

C2
22 + C2

32 − C2
02

(

x5(τ)
x5

0

)(3/2)n

× 2F1

(

1
2
,
3
2
;
5
2
;∓
(

x5(τ)
x5

0

)n
A2(x5

0)
2−2n

C2
22 + C2

32 − C2
02

)

or

A2(x5
0)

2−(3/2)n

C2
22 + C2

32 − C2
02

(

x5(τ)
x5

0

)n

× 2F1

(

1
2
,−1; 0;∓

(

x5
0

x5(τ)

)n
C2

22 + C2
32 − C2

02

A2
(x5

0)
2−2n

)



C.3 Class (III) 451

± (C2
22+C2

32−C2
02)(x5

0)
4n−3

nA
3/2
2

̂Θ
(

± A2
C2

22+C2
32−C2

02

)

×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎣

±2
3
A2(x5

0)
2−(3/2)n

C2
22 + C2

32 − C2
02

(

x5(τ)
x5

0

)(3/2)n

× 2F1

(

1
2
,
3
2
;
5
2
;∓
(

x5(τ)
x5

0

)n
A2(x5

0)
2−2n

C2
22 + C2

32 − C2
02

)

⎤

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

or
⎡

⎢

⎢

⎣

± A2(x5
0)

2−2n

C2
22 + C2

32 − C2
02

(

x5(τ)
x5

0

)n

× 2F1

(

1
2 ,−1; 0;∓

(

x5
0

x5(τ)

)n
C2

22 + C2
32 − C2

02

A2
(x5

0)
2n−2

)

⎤

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

or
[
√

± A2(x5
0)

2−2n

C2
22+C2

32−C2
02

(

x5(τ)
x5
0

)n [

± A2(x5
0)

2−2n

C2
22+C2

32−C2
02

(

x5(τ)
x5
0

)n

+ 1
]

− ln

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√

± A2(x5
0)

2−2n

C2
22 + C2

32 − C2
02

(

x5(τ)
x5

0

)n

+

√

± A2(x5
0)

2−2n

C2
22 + C2

32 − C2
02

(

x5(τ)
x5

0

)n

+ 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

⎤

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

.

(C.26)

Here, 2F1 is the generalized hypergeometric function of class
(2,1), defined by

2F1(α, β; γ; z) ≡
∞
∑

k=0

(α)k (β)k

(γ)k

zk

k!
(C.27)

with (α)k being the Pochhammer symbols

(α)k ≡ Γ (α+ k)
Γ (α)

(C.28)

and

Γ (z) ≡
∫ ∞

0

e−ttz−1dt (Re(z) > 0) (C.29)

denotes the Euler gamma function (or Euler integral of second
kind).

(1.3.2) A2 
= 0, C2
22 + C2

32 − C2
02 = 0:

x5(τ) =
[

±n
√

A2 (τ +A1)
]1/n

. (C.30)
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(1.3.3) A2 = 0, C2
22 + C2

32 − C2
02 
= 0:

x5(τ) =
[

±3n
2

√

± (C2
22 + C2

32 − C2
02)(x

5
0)

3n
2 −1 (τ +A1)

]2/3n

.

(C.31)

(1.4) C12, A2, C2
22 + C2

32 − C2
02 
= 0:

(1.4.1) C2
12 
=

(

C2
22 + C2

32 − C2
02

)

(x5
0)

2n:

(1.4.1.a)
(

C2
22 + C2

32 − C2
02

)

< 0:

(τ +A1) = ±(x5
0)

1−n
{

̂Θ
(

± A2
C2

22+C2
32−C2

02

)

[

∓ 1
n

√
A2

C2
12

x5
0

× ̂Θ

⎛

⎜

⎜

⎝

− A2
2(x

5
0)

4−4n

2C2
12(C2

22+C2
32−C2

02)

(

1 +

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n

)

∓ A2
2(x

5
0)

2−2n

C2
22+C2

32−C2
02

(

x5(τ)
x5
0

)n

⎞

⎟

⎟

⎠

×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 4

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n E (A,B)

−
−1 +

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n

4

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n

F (A,B)

−2
√

∓ A2
2(x

5
0)

2−2n

C2
22+C2

32−C2
02

(

x5(τ)
x5
0

)n

×

(

x5(τ)
)n ± A2

2(x
5
0)

2−n

2C2
12

[

1 +

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n

]

(x5(τ))n ± A2
2(x

5
0)

2−n

2C2
12

[

1 −
√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

or

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2 4

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n E (C,B)

+
−1 +

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n

4

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n

F (C,B)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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i

n

√
A2

C2
12

x5
0
̂Θ

×

⎛

⎜

⎜

⎜

⎝

A2
2(x

5
0)

4−4n

2C2
12 (C2

22 + C2
32 − C2

02)

(

1 +

√

1 − 4
C2

12

(

C2
22 + C2

32 − C2
02

)

A2
2(x

5
0)4−4n

)

± A2
2(x

5
0)

2−2n

C2
22 + C2

32 − C2
02

(

x5(τ)
x5

0

)n

⎞

⎟

⎟

⎟

⎠

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 4

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n E (D,G)

+
−1 +

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n

4

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n

F (D,G)

−2

√

√

√

√

√

√

√

√

−
C2

12(x
5
0)

3n−2

A2

(

x5(τ)
x5

0

)2n

−
A2(x5

0)
2−2n

C2
22 + C2

32 − C2
02

(

x5(τ)
x5

0

)n

∓1

A2(x5
0)

2−2n

C2
22 + C2

32 − C2
02

(

x5(τ)
x5

0

)n

⎤

⎥

⎥

⎥

⎥

⎦

+ ̂Θ
(

∓ A2

C2
22 + C2

32 − C2
02

)

×
{[

− i
n

√
A2

C2
12
x5

0
̂Θ

(

A2
2(x

5
0)

4−4n

2C2
12(C2

22+C2
32−C2

02)

(

−1 +

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n

)

∓ A2
2(x

5
0)

2−2n

C2
22+C2

32−C2
02

(

x5(τ)
x5
0

)n )]

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 +

√

1 − 4
C2

12

(

C2
22 + C2

32 − C2
02

)

A2
2(x

5
0)4−4n

4

√

1 − 4
C2

12

(

C2
22 + C2

32 − C2
02

)

A2
2(x

5
0)4−4n

F (H,B)

−2 4

√

1 − 4
C2

12

(

C2
22 + C2
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02

)

A2
2(x

5
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+2

√

√

√

√

√

√

√

√
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12(x

5
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(
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± 1
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⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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+
i

n
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⎜
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√
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⎠

×
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⎪
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⎪
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⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪

⎪
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⎪

⎪
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⎪
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⎪
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⎪

⎪
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⎢
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⎢

⎣
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√
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(
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5
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−
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√
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(

C2
22 + C2

32 − C2
02
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5
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√
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(
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)
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2(x

5
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⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

or

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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⎢

⎣
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4

√
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(

C2
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02
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5
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√
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12

(

C2
22 + C2

32 − C2
02
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5
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4

√

1 − 4
C2

12

(

C2
22 + C2

32 − C2
02
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5
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+2

√

√

√

√

√

√

√

√

√

±
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5
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(
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+
1

2
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√
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(
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)
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5
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5
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(
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0

x5(τ)

)n

[
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√

1 − 4
C2
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(

C2
22 + C2

32 − C2
02

)
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2(x

5
0)

4−4n

]

,

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(C.32)

where F (z, k) and E(z, k) are the elliptic integrals of first and second kind,
respectively, in the normal Legendre form

F (z, k) ≡
∫ z

0

dx
√

1 − k2 sin2 x
=
∫ sin z

0

dt√
1 − t2

√
1 − k2t2

, z, k ∈ C;

(C.33)

E(z, k) ≡
∫ z

0

dx
√

1 − k2 sin2 x =
∫ sin z

0

dt
√

1 − k2t2√
1 − t2

, z, k ∈ C, (C.34)

and we put
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A = arcsin

{[

±4 C2
12

A2(x5
0)

2n−2

(

x5(τ)
x5
0

)n
√

1 − 4
C2

12(C2
22+C2

32−C2
02)
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5
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]

×
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1 −
√
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5
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4−4n

]−1

×
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√
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5
0)
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(
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0
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⎫

⎬

⎭
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; (C.35)

B =

√

√

√

√

√

√

√

1 +

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n

2

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n

; (C.36)

C = arcsin

√

√

√

√

√

√

√

1 +

√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n ± 2 C2
12
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(
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√
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5
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; (C.37)

D = arcsin

√

√

√

√

√

√

1 +

√
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C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)
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(
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(
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)n ; (C.38)

G =

√

√

√

√

√

√

√

−1 +

√

1 − 4
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12(C2
22+C2
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02)
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5
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2

√
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5
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; (C.39)

H = arcsin

√

√

√

√

√

√

√

[
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√
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12(C2
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32−C2
02)
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5
0)
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(
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0
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(C.40)

L = arcsin

√

√

√

√

√

√

√

√

[

1 −
√

1 − 4
C2

12(C2
22+C2

32−C2
02)

A2
2(x

5
0)

4−4n ± 2 (x5
0)

2n−2C2
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A2

(

x5(τ)
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0
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]

1 −
√

1 − 4
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12(C2
22+C2

32−C2
02)

A2
2(x

5
0)
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;

(C.41)
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M = arcsin

{[

±4C2
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5
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(

x5(τ)
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0

)n
√

1 − 4
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12(C2
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02)
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]

×
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√
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5
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×
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5
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5
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. (C.42)

(1.4.1.b)
(

C2
22 + C2

32 − C2
02

)

> 0:

In this case, the Riemann integral
∫ x5(τ)

dx
√

±(x5
0)

−nC2
12x

2−n + A2(x5
0)

2−2nx2−2n ± (C2
22 + C2

32 − C2
02) (x5

0)
nx2−3n

(C.43)

is unknown, and therefore no solution can be obtained for x5(τ).
(1.4.2) C2

12 =
(

C2
22 + C2

32 − C2
02

)

(x5
0)

2n:

(

x5(τ)
)n∓C2

12(x
5
0)

n−2 (τ +A1)
2+
(

x5(τ)
)−n±A2(x5

0)
2n−2

C2
12

= 0.

(C.44)

(2) n = 0:

x5(τ) = exp
{

±
√

± (C2
22 + C2

32 − C2
02) (x5

0)
3n−2 ± C2

12(x
5
0)

n−2 + A2 (τ + A1)
}

.

(C.45)

C.4 Class (IV)

q̃IV = (0, 0, 0, p, p− 2)
One gets:

F±,IV (ζ; p,A2)

=
{

±[C2
12 + C2

22 − C2
02 ±A2(x5

0)
2−p]ζ2−p ± (x5

0)
pC2

32ζ
2−2p

}−1/2
. (C.46)

From the results obtained for Class II, we can write the geodesic solution
for Class IV as

xµ(τ) = Cµ1 + Cµ2τ , µ = 0, 1, 2; (C.47)

x3(τ) = C31 + C32

∫

dτ
(

x5(τ)
)−p

(C.48)

with x5(τ) given by:
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(1) p 
= 0:

(1.1) C2
12 + C2

22 − C2
02 ±A2(x5

0)
2−p 
= 0, C32 
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x5(τ) =
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(C.49)

(1.2) C2
12 + C2

22 − C2
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x5(τ) =
[

±p
√
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5
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p−2
2 (τ +A1)
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; (C.50)

(1.3) C2
12 + C2

22 − C2
02 ±A2(x5
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= 0, C32 = 0:

x5(τ) =
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(C.51)

(2) p = 0:

x5(τ) = exp
[

±p(x5
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(p−2)/2 (τ +A1)

×
√
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0)pC2

32]
]

. (C.52)

C.5 Class (V)

q̃V = (−p,−p,−p, p,−(1 + p)
One has

F±,V (ζ; p,A2)

=
{

±(x5
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22 − C2
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1+2p +A2(x5
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(C.53)

The solution writes

xµ(τ) = Cµ1 + Cµ2

∫

dτ
(

x5(τ)
)p
, µ = 0, 1, 2; (C.54)

x3(τ) = C31 + C32

∫

dτ
(

x5(τ)
)−p

(C.55)

with x5(τ) given by:
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x5
0

)p]1/2p

2F1

(

1
2
, 1

2p
; 1

2p
+ 1;∓A2(x5

0)1+p

C2
32

(

x5(τ)

x5
0

)p)

or
⎧

⎪

⎨

⎪

⎩

̂Θ
(

1
2p

− 1
2

)

2p
1−p

[

±A2(x5
0)1+p

C2
32

(

x5(τ)

x5
0

)p](1/2p)−(1/2)

× 2F1

(

1
2
,−
(

1
2p

− 1
2

)

;−
(

1
2p

− 3
2

)

;
(

∓A2(x5
0)1+p

C2
32

(

x5(τ)

x5
0

)p)−1
)

or

+Θ̂

(

±
A2

C2
32

)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2p

[

±
A2(x

5
0)

1+p

C2
32

(

x5(τ)

x5
0

)p]1/2p

× 2F1

(

1
2 , 1

2p ; 1
2p + 1;∓

A2(x5
0)1+p

C2
32

(

x5(τ)
x5
0

)p)

or
⎧

⎨

⎩

Θ̂

(

1

2p
−

1

2

)

2p

1 − p

[

±
A2(x

5
0)

1+p

C2
32

(

x5(τ)

x5
0

)p](1/2p)−(1/2)

× 2F1

(

1
2 ,−
(

1
2p − 1

2

)

;−
(

1
2p − 3

2

)

;

(

∓
A2(x5

0)1+p

C2
32

(

x5(τ)
x5
0

)p)−1)

∓2i ̂ΘR

(

±A2(x5
0)

1+p

C2
32

(

x5(τ)
x5

0

)p

+ 1
)

δ
(

1
2p − 1

2

)

× arcsin

[

−
√

±A2(x5
0)

1+p

C2
32

(

x5(τ)
x5

0

)p

+ 1

]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

;

or

+2δ
(

1
2p

− 1
)

√

±A2(x5
0)

1+p

C2
32

(

x5(τ)
x5

0

)p

+ 1

⎫

⎬

⎭

;



460 Appendix C. Explicit and Implicit Forms of Geodesics

or

∓i ̂ΘR

(

±A2(x5
0)

1+p

C2
32

(

x5(τ)
x5

0

)p

+ 1
)

δ

(

1
2p

− 3
2

)

×

⎧

⎨

⎩

√

∓A2(x5
0)

1+p

C2
32

(

x5(τ)
x5

0

)p[

±A2(x5
0)

1+p

C2
32

(

x5(τ)
x5

0

)p

+ 1
]

+ arcsin

⎡

⎣−

√

±A2(x5
0)

1+p

C2
32

(

x5(τ)
x5

0

)p

+ 1

⎤

⎦

⎫

⎬

⎭

⎫

⎬

⎭

;

or

±2i ̂ΘR

(

±A2(x5
0)

1+p

C2
32

(

x5(τ)
x5

0

)p

+ 1
)

δ

(

1
2p

−m− 3
2

)

×

√

∓A2(x5
0)

1+p

C2
32

(

x5(τ)
x5

0

)p [

±A2(x5
0)

1+p

C2
32

(

x5(τ)
x5

0

)p

+ 1
]

2(m+ 1)

×
{

[

∓A2(x5
0)

1+p

C2
32

(

x5(τ)
x5

0

)p]m

+
m−1
∑

k=1

(2m+1)(2m−1)···(2m−2k+1)
2k+1m(m−1)(m−2)···(m−k)

(

∓A2(x
5
0)

1+p

C2
32

(

x5(τ)
x5
0

)p)m−k−1
}

− (2m+1)!!
2m+1(m+1)! arcsin

[

−
√

±A2(x
5
0)

1+p

C2
32

(

x5(τ)
x5
0

)p

+ 1

]}

;

or

±2(−1)(1/2p)−1
̂ΘR

(

±A2(x5
0)

1+p

C2
32

(

x5(τ)
x5

0

)p

+ 1
)

δ

(

1
2p

−m− 1
)

×
1
2p−1
∑

k=0

( 1
2p − 1
k

)

(−1)k

[

±A2(x5
0)

1+p

C2
32

(

x5(τ)
x5

0

)p

+ 1
](2k+1)/2

2k + 1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

;

(C.57)

(1.1.2) C32 = 0, A2 
= 0:

(1.1.2.1) p 
= 1:

x5(τ) =
[

± 2
1 − p

√

A2 (τ +A1)
](1−p)/2

; (C.58)
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(1.1.2.2) p = 1:

x5(τ) = exp
[

±
√

A2 (τ +A1)
]

; (C.59)

(1.1.3) C32 
= 0, A2 = 0:

x5(τ) = ±1
4
C2

32

x5
0

(τ +A1) .

(1.2) A2 = 0:

(1.2.1) C32 
= 0, C2
12 + C2

22 − C2
02 
= 0:

0 = τ + A1 ∓
(

x5
0

)(1+p)/2
{

̂Θ (p)

×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

−̂Θ
(

− 1
2p

+ 1
) (x5(τ))(1/2)−p(x5

0)
p/2

p

√

±(C2
12+C2

22−C2
02)

Γ
(

− 1
2p

+1
)

Γ
(

− 1
2p

)

]

[

̂Θ
(

C2
12 + C2

22 − C2
02

)

+̂Θ
(

C2
02 − C2

12 − C2
22

)

̂Θ

(

(

x5(τ)
)p −

(

x5
0

)p

√

C2
32

C2
02−C2

12−C2
22

)]

× 3F2

(

1
2
,− 1

4p
+ 1

2
,− 1

4p
+ 1;− 1

4p
+ 1,− 1

4p
+ 3

2
;

C2
32

C2
02−C2

12−C2
22

(

x5(τ)

x5
0

)2p
)

or

×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̂Θ
(

C2
12 + C2

22 − C2
02

)

√
x5(τ)(x5

0)
−p/2

pC32
√
±1

B

(

1
2p
, 1
)

× 3F2

(

1
2 ,

1
4p ,

1
4p + 1

2 ; 1
4p + 1

2 ,
1
4p + 1; C2

02−C2
12−C2

22
C2

32

(

x5(τ)
x5
0

)2p
)

×δ
(

1
2p

− 1
)

(

x5
0

)(p/2)

p
√

± (C2
12 + C2

22 − C2
02)

×

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

̂Θ
(

C2
12 + C2

22 − C2
02

)

arcsinh
[√

C2
12+C2

22−C2
02

C2
32

(

x5(τ)
x5
0

)p
]

+ ̂Θ
(

C2
02 − C2

12 − C2
22

)

× ln

{

(

x5(τ)
)p

[

1 +

√

1 + C2
32

C2
12+C2

22−C2
02

(

x5
0

x5(τ)

)2p
]}

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

or
×δ
(

1
2p

−m− 1
)

×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

×

√

(x5(τ))2p + (x5
0)

2p
C2

32

C2
12+C2

22−C2
02

p

√

± (x5
0)

−p (C2
12 + C2

22 − C2
02)

×Q
(

x5(τ);C02, C12, C22, C32, p, x
5
0

)

+
κ(x5

0)
p/2

p
√

±(C2
12+C2

22−C2
02)

×

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

̂Θ
(

C2
12 + C2

22 − C2
02

)

arcsinh
[√

C2
12+C2

22−C2
02

C2
32

(

x5(τ)
x5
0

)p
]

+ ̂Θ
(

C2
02 − C2

12 − C2
22

)

× ln

{

(

x5(τ)
)p

[

1 +

√

1 + C2
32

C2
12+C2

22−C2
02

(

x5
0

x5(τ)

)2p
]}

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭
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+
{

2 ̂Θ
(

C2
12 + C2

22 − C2
02

)

+ ̂Θ
(

C2
02 − C2

12 − C2
22

)

̂Θ

(

(

x5(τ)
)p −

(

x5
0

)p

√

C2
32

C2
02 − C2

12 − C2
22

)}

×
(

x5(τ)
)(1/2)−p (

x5
0

)p/2

2p2
√

± (C2
12 + C2

22 − C2
02)

× 3F2

(

1
2 ,−

1
4p + 1

2 ,−
1
4p + 1;− 1

4p + 1,− 1
4p + 3

2 ; C2
32

C2
02−C2

12−C2
22

(

x5(τ)
x5
0

)2p
)

,

or

+δ
(

1
2p

+m

)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−

√

C2
32

C2
12 + C2

22 − C2
02

(

x5
0

x5(τ)

)2p

− 1

p

√

± (x5
0)

−p (C2
12 + C2

22 − C2
02)

× ˜Q
(

x5(τ);C02, C12, C22, C32, p, x
5
0

)

− λ(x5
0)

p/2

p
√

±(C2
12+C2

22−C2
02)

×
[

̂Θ
(

C2
12 + C2

22 − C2
02

) (

x5
0

)−p/2

√

C2
12 + C2

22 − C2
02

C2
32

×arcsinh

(
√

C2
32

C2
12 + C2

22 − C2
02

(

x5
0

x5(τ)

)2p
)

−
̂Θ
(

C2
02 − C2

12 − C2
22

)

√

C2
02−C2

12−C2
22

C2
32

× arcsin
(√

C2
32

C2
02−C2

12−C2
22

(

x5
0

x5(τ)

)2p
)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

(C.60)

where 3F2 is the generalized hypergeometric function of class (3,2)

3F2(α, β, γ; δ, ε; z) ≡
∞
∑

k=0

(α)k (β)k (γ)k

(δ)k (ε)k

zk

k!
, (C.61)

B(x, y) is the Euler beta function (or Euler integral of first kind), defined by

B(x, y) ≡
∫ 1

0

tx−1 (1 − t)y−1 dt, Re(x) > 0 , Re(y) > 0

(C.62)
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and we put
˜Q
(

x5(τ);C02, C12, C22, C32, p, x
5
0

)

≡

≡ q− 1
2p−1

(

x5(τ)
)(1/2)+p

+
− 1

2p−1
∑

n=2

q− 1
2p−−n−1

(

x5(τ)
)(1/2)+(n+1)p

;

q− 1
2p−1 ≡ −

2p
(

C2
12 + C2

22 − C2
02

)

(x5
0)

2p
C2

32

;

q− 1
2p−n−1 ≡ −

(

C2
12 + C2

22 − C2
02

)

(

1
2p

+ n+ 1
)

(x5
0)

2p
C2

32

(

1
2p

+ n

) q− 1
2p−n+1,

n = 2, . . . ,− 1
2p

− 1;

λ = −q1. (C.63)

(1.2.2) C32 
= 0, C2
12 + C2

22 − C2
02 = 0:

x5(τ) = ±1
4
C2

32

x5
0

(τ +A1) . (C.64)

(1.2.3) C32 = 0, C2
12 + C2

22 − C2
02 
= 0:

(1.2.3.1) p 
= 1
2
:

x5(τ) =
[

±
(

−p +
1

2

)

√

± (C2
12 + C2

22 − C2
02)
(

x5
0

)−(1+2p)/2
(τ + A1)

]2/(1−2p)

.

(C.65)

(1.2.3.2) p =
1
2
:

x5(τ) = exp
[

±
√

± (C2
12 + C2

22 − C2
02)
(

x5
0

)−(1+2p)/2
(τ +A1)

]

. (C.66)

(1.3) C32 = 0:

(1.3.1) A2 
= 0, C2
12 + C2

22 − C2
02 
= 0:

0 = τ + A1 ∓
(

x5
0

)(1+p)/2

⎧

⎨

⎩

(

x5
0

)−(1+p)/2

p
√

A2

(

A2

(

x5
0

)1+2p

±
(

C2
12 + C2

22 − C2
02

)

)(1/2p)−(1/2)

×

{

2 (−1)((1/2p)−(3/2)) δ

(

1

2p
+ m − 1

2

)

̂ΘR

[

±
(

C2
12 + C2

22 − C2
02

)

(

x5
0

)1+p
A2

(

x5(τ)

x5
0

)p

+ 1

]
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×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

±
(

C2
12 + C2

22 − C2
02

)

(

x5
0

)1+p
A2

(

x5(τ)

x5
0

)p

+ 1

2

∣

∣

∣

1

2p
− 3

2

∣

∣

∣
− 1

×

∣

∣
1
2p

− 3
2

∣

∣−1
∑

k=1

(

2
∣

∣
1
2p

−3
2

∣

∣−1
)(

2
∣

∣
1
2p

−3
2

∣

∣−3
)(

2
∣

∣
1
2p

−3
2

∣

∣−5
)

···
(

2
∣

∣
1
2p

−3
2

∣

∣−2k+1
)

2k
(∣

∣
1
2p

−3
2

∣

∣−1
)(∣

∣
1
2p

−3
2

∣

∣−2
)

···
(∣

∣
1
2p

−3
2

∣

∣−k
)

[

∓(C2
12

+C2
22

−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p]|(1/2p)−(3/2)|−k

+

(

2
∣

∣
1
2p

− 3
2

∣

∣−3
)

!!

2

∣

∣
1
2p

− 3
2

∣

∣(
∣

∣
1
2p

− 3
2

∣

∣−1
)

!

ln

∣

∣

∣

∣

∣

∣

∣

∣

1+

√

±(C2
12

+C2
22

−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p

+1

1−

√

±(C2
12

+C2
22

−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p

+1

∣

∣

∣

∣

∣

∣

∣

∣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

or

×̂Θ
(

1 −
√

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)

x5
0

)p

+ 1

)

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

±
(

C2
12 + C2

22 − C2
02

)

(

x5
0

)1+p
A2

(

x5(τ)

x5
0

)p

+ 1

2

∣

∣

∣

1

2p
− 3

2

∣

∣

∣
− 1

×

∣

∣
1
2p

− 3
2

∣

∣−1
∑

k=1

(

2

∣

∣
1
2p

−3
2

∣

∣−1
)(

2

∣

∣
1
2p

−3
2

∣

∣−3
)(

2

∣

∣
1
2p

−3
2

∣

∣−5
)

···
(

2

∣

∣
1
2p

−3
2

∣

∣−2k+1
)

2k
(∣

∣
1
2p

−3
2

∣

∣−1
)(∣

∣
1
2p

−3
2

∣

∣−2
)

···
(∣

∣
1
2p

−3
2

∣

∣−k
)

[

∓(C2
12

+C2
22

−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p]|(1/2p)−(3/2)|−k

+

(

2
∣

∣
1
2p

− 3
2

∣

∣−3
)

!!

2|(1/2p)−(3/2)|−1
(∣

∣
1
2p

− 3
2

∣

∣−1
)

!
arctgh

[√

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)

x5
0

)p

+ 1

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

±2iδ
(

1
2p

+m

)

̂ΘR

[

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+ 1

]

×

√

±(C2
12

+C2
22

−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p

+1

(2m−1)

[

∓(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p
]−m+(1/2)

×
{

1 +
m−1
∑

k=1

2k(m−1)(m−2)···(m−k)
(2m−3)(2m−5)···(2m−2k−1)

[

∓(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p
]k
}

−2δ

(

1

2p
− 1

2

)

̂ΘR

(

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)

x5
0

)p

+ 1

)

×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
2

ln

∣

∣

∣

∣

∣

∣

∣

∣

1+

√

±(C2
12

+C2
22

−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p

+1

1−

√

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p

+1

∣

∣

∣

∣

∣

∣

∣

∣

or

̂Θ

(

1 −
√

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)

x5
0

)p

+ 1

)

×arctgh

[√

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)

x5
0

)p

+ 1

]

+δ

(

1

2p
− 1

2

)
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

̂Θ

(

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p

− 1
)

̂Θ
(

1
2p − 1

)

×

[

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p
](1/2p)−1

( 1
2p−1)

× 2F1

(

1
2 ,−

1
2p + 1;− 1

2p + 2;
(

∓(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p
)−1

)

+ ̂Θ
(

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p

+ 1
)

̂Θ

(

∓(C2
12+C2

22−C2
02)

A2

)

×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p
](1/2p)−(1/2)

( 1
2p− 1

2 )

× 2F1

(

1
2 ,

1
2p − 1

2 ; 1
2p + 1

2 ;
∓(C2

12+C2
22−C2

02)
(x5

0)
1+p

A2

(

x5(τ)
x5
0

)p
)

or

̂Θ

(

1
2p

− 1
)

[

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p
](1/2p)−1

(

1
2p − 1

)

× 2F1

(

1
2 ,−

1
2p + 1;− 1

2p + 2;
(

∓(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p
)−1

)

+ ̂Θ
(

±(C2
12+C2

22−C2
02)

A2

)

×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p
](1/2p)−(1/2)

(

1
2p − 1

2

)

× 2F1

(

1
2 ,

1
2p − 1

2 ; 1
2p + 1

2 ;
∓(C2

12+C2
22−C2

02)
(x5

0)
1+p

A2

(

x5(τ)
x5
0

)p
)

or

̂Θ

(

1
2p

− 1
)

[

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p
](1/2p)−1

(

1
2p − 1

)

× 2F1

(

1
2 ,−

1
2p + 1;− 1

2p + 2;
(

∓(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p
)−1

)

∓2δ
(

1
2p

− 1
)

̂ΘR

(

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+ 1

)

×2i arcsin

[

−
√

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+ 1

]}
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∓2δ
(

1
2p

− 1
)

̂ΘR

(

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+ 1

)

×2i arcsin

[

−
√

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+ 1

]}

∓2δ
(

1
2p

− 1
)

̂ΘR

(

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+ 1

)

×2i arcsin

[

−
√

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+ 1

]}

∓2δ
(

1
2p

− 1
)

̂ΘR

(

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+ 1

)

×2i arcsin

[

−
√

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+ 1

]}

∓2δ
(

1
2p

− 1
)

̂ΘR

(

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+ 1

)

×2i arcsin

[

−
√

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+ 1

]}

;

or

±2δ
(

1
2p

− 3
2

)

√

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+ 1

}

;

or

∓iδ
(

1
2p

− 2
)

̂ΘR

(

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+ 1

)

×
{
√

∓(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p
[

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p

+ 1
]

+ arcsin

[

−
√

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p

+1

]}}

;
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or

±2iδ
(

1
2p

−m− 2
)

̂ΘR

(

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p

+ 1
)

×

√

∓(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p
[

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p

+1

]

(2m+1)

×
{[

±
(

C2
12 + C2

22 − C2
02

)

(x5
0)

1+p
A2

(

x5(τ)
x5

0

)p
]m

+

+
m−1
∑

k=0

(2m+1)(2m−1)···(2m−2k+1)
2k+1m(m−1)(m−2)···(m−k)

[

∓(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p
]m−k−1

}

− (2m+1)!!
2m+1(m+1)! arcsin

[

−
√

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p

+ 1
]}

;

or

+2 (−1)((1/2p)−(3/2))
δ

(

1
2p

−m− 3
2

)

̂ΘR

(

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p

+ 1
)

×
1
2p− 3

2
∑

k=0

( 1
2p − 3

2

k

)

(−1)k

[

±(C2
12+C2

22−C2
02)

(x5
0)

1+p
A2

(

x5(τ)
x5
0

)p

+1

](2k+1)/2

(2k+1)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

(C.67)

(1.3.2) A2 
= 0, C2
12 + C2

22 − C2
02 = 0:

(1.3.2.1) p 
= 1:

x5(τ) =
[

±1 − p

2

√

A2 (τ +A1)
]2/(1−p)

. (C.68)

(1.3.2.2) p = 1:

x5(τ) = exp
[

±
√

A2 (τ +A1)
]

. (C.69)

(1.3.3) A2 = 0, C2
12 + C2

22 − C2
02 
= 0:

(1.3.3.1) p 
= 1
2 :

x5(τ)=
[

±
(

−p+ 1
2

)

√

±(C2
12 + C2

22 − C2
02)
(

x5
0

)−(1+2p)/2
(τ +A1)

]2/(1−2p)

.

(C.70)
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(1.3.3.2) p = 1
2 :

x5(τ) = exp
[

±
√

± (C2
12 + C2

22 − C2
02)
(

x5
0

)−(1+2p)/2
(τ +A1)

]

.

(C.71)

(1.4) C32, A2, C2
12 + C2

22 − C2
02 
= 0:

(1.4.1)
(

1
2p

− 1
)

∈ N ⇐⇒ p =
1

2(m+ 1)
, m ∈ N :

0 = τ +A1 ∓
(

x5
0

)(1+p)/2

×
{
√

c

b
(x5(τ))2p +

b

a
(x5(τ))p + 1Q(x5(τ); a, b, c, p)

+λ
[

̂Θ
(ac

b2

)

̂Θ

(

1
4
− ac

b2

)

b√
ac

× ln

∣

∣

∣

∣

∣

2

√

(

ac2

b2
(x5(τ))2p+

c

b
(x5(τ))p +

ac

b2

)

+ 2
c

b

(

x5(τ)
)p

+ 1

∣

∣

∣

∣

∣

+δ
(

ac

b2
− 1

4

)

2 ln
∣

∣

∣

∣

b

2a
(

x5(τ)
)p

+ 1
∣

∣

∣

∣

+ ̂Θ
(

ac

b2
− 1

4

)

b√
ac

arcsinh

⎛

⎜

⎜

⎝

2
c

b

(

x5(τ)
)p + 1

√

4
ac

b2
− 1

⎞

⎟

⎟

⎠

− ̂Θ
(

−ac

b2

) b√
−ac arcsin

⎛

⎜

⎜

⎝

2
c

b

(

x5(τ)
)p + 1

√

−4
ac

b2
− 1

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (C.72)

where

Q(x5(τ); a, b, c, p)

≡ q 1
2p−2

(

b

a

)((1/2p)−2)
(

x5(τ)
)((1/2)−2p)

+q 1
2p−3

(

b

a

)((1/2p)−3)
(

x5(τ)
)((1/2)−3p)
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+

1
2p−2
∑

n=2

q 1
2p−n−2

(

b

a

)

( 1
2p

−n−2) (
x5(τ)

)( 1
2−(n+2)p) ;

q 1
2p−2 =

b2

ac

(

1
2p

− 1
) ;

q 1
2p−3 = −

b4
(

1
2p

− 3
2

)

ac

(

1
2p

− 1
)(

1
2p

− 2
) ;

q 1
2p−n−2 = −

b2
(

1
2p

− n− 1
2

)

q 1
2p−n−1 +

(

1
2p

− n

)

q 1
2p−n

ac

(

1
2p

− 1 − n

) ,

n = 2, . . . ,
1
2p

− 2;

λ = −q0
2

− q1 (C.73)

with

a ≡ ±
(

x5
0

)p
C2

32;

b ≡ A2

(

x5
0

)1+p
;

c = ±
(

x5
0

)−p (
C2

12 + C2
22 − C2

02

)

. (C.74)

(1.4.2) p =
1
2
:

0 = τ +A1 ∓
(

x5
0

)(1+p)/2

×
[

̂Θ
(ac

b2

)

̂Θ

(

1
4
− ac

b2

)

b√
ac

× ln
∣

∣

∣

∣

2
√

c

b

(ac

b
(x5(τ))2p + (x5(τ))p +

a

b

)

+ 2
c

b

(

x5(τ)
)p

+1
∣

∣

∣

∣

+δ
(

ac

b2
− 1

4

)

2 ln
∣

∣

∣

∣

b

2a
(

x5(τ)
)p

+ 1
∣

∣

∣

∣
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+ ̂Θ
(

ac

b2
− 1

4

)

b√
ac

arcsinh

⎛

⎜

⎜

⎝

2
c

b

(

x5(τ)
)p + 1

√

4
ac

b2
− 1

⎞

⎟

⎟

⎠

− ̂Θ
(

−ac

b2

) b√
−ac arcsin

⎛

⎜

⎜

⎝

2
c

b

(

x5(τ)
)p + 1

√

−4
ac

b2
− 1

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

(C.75)

with a, b, c given by (C.70).

(1.4.3)
1
2p

− 1 = −2,−3, . . . ⇐⇒ p = − 1
2m

, m ∈ N :

0 = τ +A1 ∓
(

x5
0

)(1+p)/2

×
{

−
√

a

b

[

(x5(τ))−2p + (x5(τ))−p +
c

b

]

˜Q(x5(τ); a, b, c, p)

−κ

⎡

⎢

⎢

⎣

̂Θ

(

ac

b2
− 1

4

)

arcsinh

⎛

⎜

⎜

⎝

2
a

b

(

x5(τ)
)−p + 1

√

4
ac

b2
− 1

⎞

⎟

⎟

⎠

+δ
(

ac

b2
− 1

4

)

ln
∣

∣

∣

∣

2a
b

(

x5(τ)
)−p

+ 1
∣

∣

∣

∣

(C.76)

+ ̂Θ

(

1
4
− ac

b2

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ln

∣

∣

∣

∣

∣

∣

2
√

a
b

(

(x5(τ))−2p + (x5(τ))−p + c
b

)

+2a
b

(

x5(τ)
)−p + 1

∣

∣

∣

∣

∣

∣

= arctgh

⎛

⎝

2+
b
a (x5(τ))p

2

√

c
b (x5(τ))2p+

b
a (x5(τ))p+1

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

where

˜Q(x5(τ); a, b, c, p)

≡ q− 1
2p−1

(

b

a

)((1/2p)+1)
(

x5(τ)
)((1/2)+p)

+q− 1
2p−2

(

b

a

)((1/2p)+2)
(

x5(τ)
)((1/2)+2p)
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+
− 1

2p−1
∑

n=2

q− 1
2p−n−1

(

b

a

)

( 1
2p

+n+1) (
x5(τ)

)((1/2)+(n+1)p)
;

q− 1
2p−1 = −2p;

q− 1
2p−2 =

2p(1 + p)
(1 + 2p)

;

q− 1
2p−n−1 =

(

− 1
2p−n+

1
2

)

q− 1
2p

−n
+

ac
b2 (− 1

2p−n−1)q− 1
2p

−n+1

1
2p +n

,

n = 2, . . . ,− 1
2p

− 1;

κ = −1
2
q0 −

ac

b2
q1, (C.77)

and a, b, c are given by (C.70).

(2) p = 0:

x5(τ) =
(τ +A1)

2 [
A2x

5
0 ±
(

C2
32 + C2

12 + C2
22 − C2

02

)]

4x5
0

. (C.78)

C.6 Class (VI)

q̃VI = (q, 0, 0, 0, q − 2)

One has

F±,VI(ζ; q,A2)

=
{

±[C2
12 + C2

22 + C2
32 ±A2(x5

0)
2−q]ζ2−q ∓ (x5

0)
qC2

02ζ
2−2q

}−1/2
. (C.79)

The solution writes

x0(τ) = C01 + C02

∫

dτ
(

x5(τ)
)−q

; (C.80)

xi(τ) = Ci1 + Ci2τ , i = 1, 2, 3, (C.81)

with x5(τ) given by:

(1) q 
= 0:
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(1.1) C2
12 + C2

22 + C2
32 ±A2(x5

0)
2−q 
= 0, C02 
= 0:

x5(τ) =

{

−
(

x5
0

)q
C2

02

C2
12 + C2

22 + C2
32 ±A2(x5

0)2−q

×
[

−
q2
(

C2
12 + C2

22 + C2
32 ±A2(x5

0)
2−q
)2

4 (x5
0)

2
C2

02

(τ +A1)
2 − 1

]}1/q

;

(C.82)

(1.2) C2
12 + C2

22 + C2
32 ±A2(x5

0)
2−q = 0, C02 
= 0:

x5(τ) =
[

±q
√

∓ (x5
0)

q
C2

02

(

x5
0

)(q−2)/2
(τ +A1)

](1/q)

; (C.83)

(1.3) C2
12 + C2

22 + C2
32 ±A2(x5

0)
2−q 
= 0, C02 = 0:

x5(τ) =
[

±q
√

±(C2
12+C2

22+C2
32±A2(x5

0)
2−q)

2

(

x5
0

)(q−2)/2
(τ +A1)

](2/q)

;

(C.84)

(2) q = 0:

x5(τ)

= exp
[

±
√

±
(

C2
12+C2

22+C2
32±A2(x5

0)2−q−(x5
0)

q
C2

02

) (

x5
0

)(q−2)/2
(τ +A1)

]

.

(C.85)

C.7 Class (VII)

q̃VII = (q,−q,−q,−q,−q − 2) .

One has

F±,VII(ζ; q,A2)

=
{

±(x5
0)

−q[C2
12 + C2

22 + C2
32]ζ

2+2q ∓ (x5
0)

qC2
02ζ

2 +A2(x5
0)

2+q
}−1/2

.
(C.86)

The solution reads:

x0(τ) = C01 + C02

∫

dτ
(

x5(τ)
)−q

; (C.87)

xi(τ) = Ci1 + Ci2

∫

dτ
(

x5(τ)
)q
, i = 1, 2, 3 (C.88)

with x5(τ) given by
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(1) q 
= 0:

(1.1) C2
12 + C2

22 + C2
32 = 0:

(1.1.1) C02 
= 0, A2 
= 0:

2 + 2

√

∓A2(x5
0)2+q

C2
02

(

x5(τ)
x5

0

)q

+ 1+

∓
{

1 + exp
[

∓ (τ +A1)
qC02

√
±1

x5
0

]}

A2(x5
0)

2+q

C2
02

(

x5(τ)
x5

0

)q

= 0;

(C.89)

or

x5(τ) = q

√

∓ C2
02

A2(x5
0)2

{

tgh2

[

∓ (τ +A1)
qC02

√
±1

x5
0

− 1
]}

;

(C.90)
(1.1.2) C02 = 0, A2 
= 0:

x5(τ) =
[

∓q

2

√

A2 (τ +A1)
]−2/q

; (C.91)

(1.1.3) C02 
= 0, A2 = 0:

x5(τ) = exp
[

±
√
∓1

C02

x5
0

(τ +A1)
]

; (C.92)

(1.2) A2 = 0:

(1.2.1) C02 
= 0, C2
12 + C2

22 + C2
32 
= 0:

x5(τ) =
[

∓q
√

± (C2
12 + C2

22 + C2
32)(x

5
0)

−1−q (τ +A1)
]−1/q

;

(C.93)

(1.3) C02 = 0:

(1.3.1) A2 
= 0, C2
12 + C2

22 + C2
32 
= 0:

x5(τ) =

[

A2(x5
0)

2+2q

q2A2
2

4 (x5
0)2+2q (τ +A1)

2 ∓ (C2
12 + C2

22 + C2
32)

]1/q

;

(C.94)
(1.3.2) A2 
= 0, C2

12 + C2
22 + C2

32 = 0:

x5(τ) =
[

∓q

2

√

A2 (τ +A1)
]−2/q

; (C.95)
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(1.3.3) A2 = 0, C2
12 + C2

22 + C2
32 = 0:

x5(τ) =
[

∓q
√

± (C2
12 + C2

22 + C2
32)(x

5
0)

−1−q (τ +A1)
]−1/q

;

(C.96)

(1.4) C02, A2, C2
12 + C2

22 + C2
32 
= 0:

0 = τ +A1 ∓ (x5
0)

2+q
2

{

− 1
q
√
a
̂Θ

(

ac

b2
− 1

4

)

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

arcsinh
2 +

b

a

(

x5(τ)
)q

b

a
(x5(τ))q

√

4
ac

b2
− 1

=

= ln

∣

∣

∣

∣

∣

∣

∣

∣

2
2 +

b

a

(

x5(τ)
)q

b

a
(x5(τ))q

√

4
ac

b2
− 1

∣

∣

∣

∣

∣

∣

∣

∣

= − ln

∣

∣

∣

∣

∣

∣

∣

∣

b

a

(

x5(τ)
)q
√

4
ac

b2
− 1

2 +
b

a
(x5(τ))q + 2

√

c
a (x5(τ))2q +

b

a
(x5(τ))q + 1

∣

∣

∣

∣

∣

∣

∣

∣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+
1

q
√
a
δ

(

ac

b2
− 1

4

)

×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ln

∣

∣

∣

∣

∣

∣

∣

b

a

(

x5(τ)
)q

2 +
b

a
(x5(τ))q

∣

∣

∣

∣

∣

∣

∣

or

− ̂Θ
(

b

a

(

x5(τ)
)q
)

̂Θ

(

−2 − b

a

(

x5(τ)
)q
)

×2 arccotgh
(

b

a

(

x5(τ)
)q + 1

)

− 1
q
√
a
̂Θ

(

ac

b2
− 1

4

)

× ln

∣

∣

∣

∣

∣

∣

∣

∣

2 +
b

a

(

x5(τ)
)q + 2

√

c

a
(x5(τ))2q +

b

a
(x5(τ))q + 1

b

a
(x5(τ))q

∣

∣

∣

∣

∣

∣

∣

∣

,
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or
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

̂Θ

(

1 − 2+ b
a (x5(τ))q

2
√

c
a (x5(τ))2q+ b

a (x5(τ))q+1

)

× ̂Θ
(

1 +
2+ b

a (x5(τ))q

2
√

c
a (x5(τ))2q+ b

a (x5(τ))q+1

)

×
[

arctgh

(

2+ b
a (x5(τ))q

2
√

c
a (x5(τ))2q+ b

a (x5(τ))q+1

)

+
1
2

ln
∣

∣

∣

∣

4ac
b2

− 1
∣

∣

∣

∣

]

= ̂Θ

(

1 − 2+ b
a (x5(τ))q

2
√

c
a (x5(τ))2q+ b

a (x5(τ))q+1

)

× ̂Θ
(

1 +
2+ b

a (x5(τ))q

2
√

c
a (x5(τ))2q+ b

a (x5(τ))q+1

)

×
[

1
2

ln
∣

∣

∣

∣

2+ b
a (x5(τ))q

+2
√

c
a (x5(τ))2q+ b

a (x5(τ))q+1

−(2+ b
a (x5(τ))q)+2

√
c
a (x5(τ))2q+ b

a (x5(τ))q+1

∣

∣

∣

∣

+
1
2

ln
∣

∣

∣

∣

4ac
b2

− 1
∣

∣

∣

∣

]

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

(C.97)

where

a ≡ ∓
(

x5
0

)q
C2

02;

b ≡ A2

(

x5
0

)2+q
;

c = ±
(

x5
0

)−q (
C2

12 + C2
22 + C2

32

)

; (C.98)

(2) q = 0:

x5(τ)

exp
[

±
√

±(x5
0)
−q (C2

12+C2
22+C2

32)+A2(x5
0)2+q∓(x5

0)
q
C2

02

(

x5
0

)(2+q)/2
(τ+A1)

]

.

(C.99)

C.8 Class (VIII)

q̃VIII = (0, 0, 0, 0, r) .

One has

F±,VIII(ζ;A2) =
{

±
[

C2
12 + C2

22 + C2
32 − C2

02 ±A2(x5
0)

−r
]}−1/2

ζr/2.
(C.100)

The solution writes

xµ(τ) = Cµ1 + Cµ2

(

τ + χµ

)

= ˜Cµ1 + Cµ2τ , µ = 0, 1, 2, 3, (C.101)
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where the χµ’s are integration constant, and ˜Cµ1 = Cµ1 + Cµ2χµ, x5(τ)
being given by

x5(τ)

=
[

±(r + 2)
√

± [C2
12+C2

22+C2
32−C2

02±A2(x5
0)−r]

(

x5
0

)r/2
(τ +A1)

]2/(r+2)

.

(C.102)

C.9 Class (IX)

It is specified by the set

q̃IX = (0, 0, n, 0, n− 2) . (C.103)

One gets

F±,IX(ζ;n,A2)

=
{

±
[

C2
12 + C2

32 − C2
02 ±A2(x5

0)
2−n
]

ζ2−n ± (x5
0)

nC2
22ζ

2−2n
}−1/2

.
(C.104)

The solution writes

xµ(τ) = Cµ1 + Cµ2τ , µ = 0, 1, 3, (C.105)

x2(τ) = C21 + C22

∫

dτ
(

x5(τ)
)−n

(C.106)

with x5(τ) given by

(1) n 
= 0:

(1.1) C2
12 + C2

32 − C2
02 ±A2(x5

0)
2−n 
= 0, C22 
= 0:

x5(τ)

=
{

(x5
0)

nC2
22

C2
12+C2

32−C2
02±A2(x5

0)
2−n

[

n2(C2
12+C2

32−C2
02±A2(x

5
0)

2−n)
4(x5

0)
2C2

22
(τ +A1)

2 − 1
]}1/n

;

(C.107)

(1.2) C2
12 + C2

32 − C2
02 ±A2(x5

0)
2−n = 0, C22 
= 0:

x5(τ) =
[

±nC22

√
±1(x5

0)
n−1 (τ +A1)

]1/n
; (C.108)
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(1.3) C2
12 + C2

32 − C2
02 ±A2(x5

0)
2−n 
= 0, C22 = 0:

x5(τ)=
[

±n

2

√

± (C2
12 + C2

32 − C2
02 ±A2(x5

0)2−n)(x5
0)

(n−2)/2 (τ +A1)
]2/n

;

(C.109)

(2) n = 0:

x5(τ)

= exp
[

±
√

± (C2
12 + C2

32 − C2
02 ±A2(x5

0)2−n + (x5
0)nC2

22)(x
5
0)

n−2
2 (τ +A1)

]

.

(C.110)

C.10 Class (X)

q̃X =

(

q0 =q, q1 =−pq+np+nq
n+p+q , q2 = n, q3 = p,

r= (n+p+q)(n+p+q−2)−(pq+np+nq)
n+p+q =(n+ p+ q − 2)+q1

)

(n+p+q 
= 0).

One gets

F±,X(ζ;n, p, q, A2)

=ζr/2
{

∓
[

(x5
0)

q0C2
02−(x5

0)
q1C2

12ζ
−q1−(x5

0)
q2C2

22−(x5
0)

q3C2
32

]

+A2(x5
0)

−r
}−1/2

.
(C.111)

The solution reads

xµ(τ) = Cµ1 + Cµ2

∫

dτ
(

x5(τ)
)−qµ , µ = 0, 1, 2, 3 (ESC off) (C.112)

with x5(τ) given by

τ +A1

= ±(x5
0)

−r 2(n+p+q)
2p(n+p+q)+nq+n2+q2

∫

dy
√

∑

K=0,1,2,3,5

cKyαK (n,p,q)
, (C.113)

where y =
(

x5(τ)
)(2p2+2pq+2np+nq+n2+q2)/2(n+p+q) and

c0 ≡ ∓(x5
0)

qC2
02,

ci ≡ ±(x5
0)

qiC2
i2, i = 1, 2, 3,

c5 ≡ A1(x5
0)

r, (C.114)



478 Appendix C. Explicit and Implicit Forms of Geodesics

α0(n, p, q) =
2p2 + 2np− 2nq − 2q2

2p (n+ p+ q) + nq + n2 + q2
,

α1(n, p, q) =
2p2 + +4pq + 4np+ 2nq

2p (n+ p+ q) + nq + n2 + q2
,

α2(n, p, q) =
2p2 + 2pq − 2nq − 2n2

2p (n+ p+ q) + nq + n2 + q2
,

α3 = 0,

α5(n, p, q) =
2p2 + 2np+ 2pq

2p (n+ p+ q) + nq + n2 + q2
. (C.115)

The Riemann integral in (C.113) is unknown, and therefore not even an
implicit solution can be obtained for x5(τ).

C.11 Class (XI)

q̃XI =

⎛

⎜

⎜

⎝

q0 = q, q1 = −n(2q + n)
2n+ q

, q2 = n, q3 = n,

r =
3n2 − 4n+ 2nq − 2q + q2

2n+ q

⎞

⎟

⎟

⎠

(2n+ q 
= 0).

The generating function is

F±,XI(ζ;n, q,A2) =

ζr/2
{

∓
[

(x5
0)

qC2
02−(x5

0)
q1C2

12ζ
−q1−(x5

0)
n
(

C2
22+C

2
32

)

ζ−n
]

+A2(x5
0)

−r
}−1/2

.

(C.116)

The solution reads:

xµ(τ) = Cµ1 + Cµ2

∫

dτ
(

x5(τ)
)−qµ , µ = 0, 1, 2, 3 (ESC off) (C.117)

with x5(τ) given by

0 = τ +A1 ∓ (x5
0)

−r 2(2n+ q)
5n2 + 3nq + q2

∫

dy
√

∑

K=0,1,2,3,5

cKyαK(n,q)
, (C.118)

where y =
(

x5(τ)
)(5n2+3nq+q2)(2n+q), and

c0 ≡ ∓(x5
0)

qC2
02,

ci ≡ ±(x5
0)

qiC2
i2, i = 1, 2, 3,

c5 ≡ A1(x5
0)

−r, (C.119)
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α0(n, q) =
4n2 − 2nq − 2q2

5n2 + 3nq + q2
,

α1(n, q) =
6n2 + 6nq

5n2 + 3nq + q2
,

α2(n, q) = α3(n, q) = 0,

α5 =
4n2 + 2nq

5n2 + 3nq + q2
. (C.120)

The Riemann integral in (C.118) is unknown, and therefore not even an
implicit solution can be obtained for x5(τ).

C.12 Class (XII)

It is specified by the coefficient set (n+ p+ q 
= 0):

q̃XI =

⎛

⎜

⎜

⎝

q0 = q, q1 = n, q2 = n, q3 = −n(2q + n)
2n+ q

,

r =
p2 + pq − 2p+ np− 2n+ nq + n2 − 2q + q2

n+ p+ q

⎞

⎟

⎟

⎠

. (C.121)

One gets

F±,XII(ζ;n, p, q, A2)

= ζr/2
{

∓
[

(x5
0)

qC2
02 − (x5

0)
n(C2

12 + C2
22)ζ

n − (x5
0)

q3C2
32

]

+A2(x5
0)

−r
}−(1/2)

.
(C.122)

The solution reads:

xµ(τ) = Cµ1 + Cµ2

∫

dτ
(

x5(τ)
)−qµ , µ = 0, 1, 2, 3 (ESC off) (C.123)

with x5(τ) given by

0 = τ +A1 ∓ (x5
0)

−r 2(n+p+q)
p2+pq+2np+2nq+2n2+q2

∫

dy
√

∑

K=0,1,2,3

cKyαK(n,p,q)
,

(C.124)

where y =
(

x5(τ)
)(p2+pq+2np+2nq+2n2+q2)/2(n+p+q), and

c0 ≡ ∓(x5
0)

qC2
02,

ci ≡ ±(x5
0)

qiC2
i2, i = 1, 2, 3,

c5 ≡ A1(x5
0)

−r, (C.125)
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α0(n, q) =
−2pq + 2np+ 2n2 − 2q2

p2 + pq + 2np+ 2nq + 2n2 + q2
,

α1(n, q) = α2(n, q) = 0, (C.126)

α3(n, q) =
2np+ 6nq + 4n2

p2 + pq + 2np+ 2nq + 2n2 + q2
,

α5 =
2np+ 2nq + 2n2

p2 + pq + 2np+ 2nq + 2n2 + q2
. (C.127)

The Riemann integral in (C.124) is unknown, and therefore not even an
implicit solution can be obtained for x5(τ).
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[106] B.P. Barber, C.C. Wu, R. Löfstedt, P.H. Roberts and S.J. Putterman:
Phys. Rev. Lett. 72, 1380 (1994).

[107] W.C. Moss, D.B. Clark, J.W. White and D.A. Young: Phys. Fluids
6, 2979 (1994).

[108] T. Horigouchi, H. Koura and J. Katakura, eds.: Chart of Nuclides
2000 (Jap. Nucl. Data Com., JNDC); Nucl. Data Evaluation Lab.
Korea Atomic Energy Res. Inst. 2000–2002 BNL, USA version.

[109] F. Cardone and R. Mignani: Int. J. Modern Phys. E 15, 911 (2006).

[110] See e.g., Fusion Dynamics at the Extremes, Yu. Ts. Oganessian and
V.I. Zagrebaev eds. (World Scientific, Singapore, 2000), and refer-
ences therein.

[111] Th. Kaluza: Preuss. Akad. Wiss. Phys. Math. K1, 966 (1921).

[112] O. Klein: Zeitschr. Phys. 37, 875 (1926).

[113] G. Nordström: Zeitschr. Phys. 15, 504 (1914).

[114] P. Jordan: Zeitschr. Phys. 157, 112 (1959), and references quoted
therein.

[115] Y.R. Thiry: C.R. Acad. Sci. (Paris) 226, 216 (1948).

[116] For the early attempts to geometrical unified theories based on
higher dimensions, see e.g., M.A. Tonnelat: Les Théories Unitaires
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and Poincaré algebra, 161
noncompactified, 276

finite, 276
infinite, 276

observational signatures of,
277

warped, 277

field deformation, 51
Finsler

metric, 190
space, 173

Finsler
geometry, 10

Finsler geometry, 10
Finzi principle, 3, 5, 7, 9, 14, 15,

64, 389
Florence experiment, 53, 196,

200, 201, 205
frame

absolute, 39, 216
and internal vector, 189

Hubble, 39
Lorentz, 11
preferred, 39
topical inertial, 19, 24

Fukui, T., 276

generalized energy-momentum
dispersion law, 45, 280

Generalized Lagrange Space, 16,
171, 173, 211, 285, 357,
392

and over-Minkowskian
metrics, 179

covariant derivatives of, 174
internal gauge fields of, 180
metrical connection of, 174

geodesic
generating function, 362

geodesics
5D, 358

Glashow, S.L., 36, 190, 192
Glashow–Weinberg–Salam

model, 55
Goldstone mechanism, 38
Goldstone theorem, 191
Gravitational

force, 222
gravitational

constant, 62, 282, 390
in five dimensions, 290

speed, 221, 223, 231
waves, 221

Greisen–Zatsepin–Kuz’min
cutoff, 191

hadronic clock, 57
Hartmann–Fletcher effect, 49
Heaviside function, 54, 353, 421

left specification of, 295, 387
right specification of, 295,

317, 387, 429
Hilbert–Einstein action

in five dimensions, 290
hollow wave, 206

as space–time deformation,
207, 210, 211, 377

Hughes–Drever experiments,
191, 192, 217

Hulse, R.A., 222



494 Index

Hypothesis of functional
independence, 307–314,
318, 320, 326, 329–331,
334, 342, 344, 395–402,
404–406

Ingraham, R.L., 275, 280
interaction

electromagnetic, 38
and Minkowski space, 16

geometrization of, 15
gravitational

geometrization of, 5, 7, 15
local, 4
metric description of, 10,

14, 18
nonlocal, 5
nonpotential, 5
pattern, 61
potential, 4
speed, 36
weak, 38

Jackiw, R., 191
Jordan, P., 275

Kaluza, J., 275
Kaluza–Klein theory, 181, 275,

276, 280, 284, 358, 377
noncompactified, 284, 393

Kaluza–Klein towers, 277
Killing

algebra, 336, 340, 343, 347,
352, 353

equations, 76, 304, 395
electromagnetic and

weak, 314
gravitational, 329

five-vector, 308, 309
group, 73, 88, 320, 325, 327,

408, 409, 411, 414, 416,
420, 423

electromagnetic and
weak, 318

maximal, 76, 78, 80, 123,
163, 354

isometries
strong, 323
infinitesimal, 335

manifold, 336
symmetries, 303, 336, 353,

354, 388, 392
gravitational, 413

vector, 78, 411, 416, 417,
420, 421, 425

gravitational, 423
vectors, 335, 348

Klein, O., 275, 276
Kostelecky, V.A., 191, 192, 211
Kostro constant, 61, 282

Lee, T.D., 280
Lie

algebra, 70
generators, 81

derivative, 303
group

generators, 74
manifold, 71
orthogonal, 132
representation, 71

theorems, 83
Lie

group, 70
theorems, 70

locality
Einstein–Bell, 4

Lorentz
algebra

deformed, 95, 139, 141
group

deformed, 100
symmetry, 279
transformations

deformed, 24
generalized, 24, 32
isotopic, 26

Lorentz invariance
breakdown, 59, 190

and preferred frame, 39
parameter, 191



Index 495

deformed, 33, 59, 187
local, 185
local (LLI), 38
recovered in DSR, 34

Lorentzian
boost, 325, 416
effects, 40
frame, 185, 287
interference, 201, 203

and electrodynamics
violation, 208

wave, 48

magnetic monopole, 5
mass

relative nature of, 38
metric

5D
degenerate, 284

deformed, 14
and Hamiltonian, 17

description of interactions,
14

energy-dependent
5D, 281

over-Minkowskian
for gravitational

interaction, 58
for strong interaction, 56

parameters, 36
Riemannian, 69, 310
sub-Minkowskian

for electromagnetic and
weak interactions, 55

tensor
3D deformed, 12
deformed, 14, 31
effective, 48
Euclidean, 12
Riemannian, 282

metrics
asymptotic, 62, 63
energy-dependent, 15
over-Minkowskian

of second class, 63

recursive, 61
sub-Minkowskian

of first class, 62
Meucci, R., 204
Michelson, A.A., 39
Michelson–Morley experiments,

191, 192, 217
Miller, A.I., 39
Minkowski

metric, 9
deformed, 10

space
deformed, 11, 15, 27, 36,

46–48, 279, 280
generalized, 75
isotopic, 10

Mordell conjecture, 393
Morley, E.W., 39

nonlocality, 4
Nordström, G., 275

Oganessian, Yu.Ts., 245, 247

parameters
deformed

effective, 122
translation

effective, 169
Penrose, R., 7
Phillips, P.R., 189
photon mass, 63
photons

deformed, 38
piezonuclear reactions, 236, 281

and broken Lorentz
invariance, 250

and strong deformed
space–time, 250

classical model of, 243
in non-Minkowskian

conditions, 257, 267
pilot wave, 206



496 Index

Planck
force, 61, 282
length, 190, 276

Planck
length, 185

Podolanski, J., 275
Poincaré
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