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  Preface 

   Cracking the Melanoma Nut 

 For decades, melanoma has retained a reputation as one of the last major tumor 
types to lack any therapy shown to improve patient survival in the metastatic setting. 
The standard chemotherapeutic agent, dacarbazine, was approved in 1976, and the 
immunotherapeutic agent IL-2 was FDA approved in 1998. However, neither drug 
traversed the hurdle of a randomized phase III clinical trial. Dozens of chemothera-
peutic agents, and more recently signal transduction inhibitors, have been shown to 
have insignifi cant clinical activity in phase II clinical trials. Combination chemo-
therapy has been shown to be no better than single agent dacarbazine, and combined 
delivery of chemotherapy plus IL-2-based immunotherapy has been reported to 
offer no additional survival benefi t compared to chemotherapy alone. Melanoma 
also is known to be relatively resistant to standard regimens of ionizing radiation. 
Based on these facts, it is not diffi cult to suggest that the traditional empiric oncol-
ogy drug development paradigm has essentially failed when applied to the treatment 
of patients with melanoma. 

 Excitingly, this situation is in the midst of a tremendous change, and that change 
has been catalyzed by signifi cant advances in fundamental and translational science. 
Genomic technologies have enabled the identifi cation of driver oncogene mutations 
in specifi c kinases that are present in defi ned subsets of melanoma. These mutated 
kinases are now targetable with kinase inhibitors which are having potent clinical 
activity. In addition, tremendous advances in our understanding of immune regula-
tion, with insights derived from analysis of patient material in search for mecha-
nisms of tumor resistance to immune attack, have led to novel therapeutic approaches 
designed to overcome these barriers and tip the balance toward immune-mediated 
tumor destruction. While these are still early days, these new discoveries are likely 
to lead to the FDA approval of several new agents for the treatment of melanoma in 
2011 – on the heels of a dry spell of two approvals in 35 years! 

 This volume, Targeted Therapeutics of Melanoma, aims to present the state-of-the-
art information driving the clinical pursuit of agents that target either specifi c oncogenic 
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pathways that contribute directly to melanoma growth, or immunoregulatory processes 
that enable tumor escape from immune attack. It is fully anticipated that persever-
ance to understand additional molecular details of key events that drive melanoma 
growth will lead to continued development of novel targeted therapies to improve 
even further the clinical outcome of patients with this disease.     

Chicago, IL, USA Thomas F. Gajewski
Boston, MA, USA F. Stephen Hodi
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  Abstract   Oncology is entering a new era in which patients are being categorized 
not only by the tissue of origin of their cancer, but also by the molecular character-
istics of their tumor. Historically, melanomas have been classifi ed as cutaneous 
(including superfi cial spreading, nodular, lentigo maligna, and acral lentiginous 
subtypes), mucosal, or uveal. Recent molecular analyses have demonstrated that the 
majority of melanomas harbor one or more genetic alterations in components of key 
signaling networks. This information is now being integrated with the traditional 
clinicopathological criteria to develop a more refi ned system that has both diagnos-
tic and therapeutic implications.  

  Keywords   BRAF  •  NRAS  •  MEK  •  MAPK  •  KIT  •  PTEN  •  PI3K  •  AKT  •  GNAQ  
•  GNA11  •  Mutation  •  Amplifi cation  •  Comparative genome hybridization  •  Targeted 
therapy  •  Oncogene addiction  •  PLX4032  •  Imatinib  •  Acral lentiginous melanoma  
•  Mucosal melanoma  •  Uveal melanoma  •  Superfi cial spreading melanoma  •  Nodular 
melanoma  •  Nevi      

   Introduction 

 The treatment of cancer is entering a new era based on an improved understanding 
of the molecular causes and heterogeneity of this disease. Historically, systemic 
treatments for patients with advanced cancer have been selected based upon the 
organ from which the tumor originates (i.e., breast, colon lung). However, both 
preclinical studies and clinical trials have demonstrated that patients with the same 
tumor type can exhibit marked molecular differences and subsequently be sensitive 

    M.  A.   Davies ,  MD, PhD   (*)
     Departments of Melanoma Medical Oncology and Systems Biology , 
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    Chapter 1   
 Molecular Targets and Subtypes in Melanoma       

          Michael   A.   Davies        
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(or resistant) to different treatment strategies. For example, the use of antihormonal 
therapies is clearly benefi cial in breast cancer patients whose tumors express the 
estrogen or progesterone receptor, but they have no benefi t in tumors lacking these 
proteins  [  4,   36  ] . More recently, trastuzumab (Hercpetin ® ) has demonstrated remark-
able effi cacy in breast cancer patients with amplifi cation of the  HER2/neu  oncogene, 
but it does not improve outcomes in patients without this genetic event  [  35,   47  ] . 
Thus, the evaluation and treatment for every breast cancer patient critically depends 
upon the molecular classifi cation of their tumor. There is a clear impetus to identify 
molecular subtypes in other cancers, particularly based on therapeutic targets. 

 Melanoma is one of the most aggressive forms of skin cancer. Melanomas have 
generally been classifi ed on the basis of both clinical and pathologic features of the 
primary tumor. While melanocytes are present in a number of different tissues in the 
body, the majority of melanomas arise from melanocytes in the epidermal skin 
layer. This predominance likely refl ects the established causative role of exposure to 
ultraviolet light in this disease  [  38  ] . Cutaneous melanomas are classifi ed into four 
major subtypes based on clinical presentation and histologic (microscopic) features: 
superfi cial spreading, nodular, lentigo maligna, and acral lentiginous  [  40  ] . Superfi cial 
spreading melanoma represents approximately 70% of cutaneous melanomas, and 
they generally involve skin regions with intermittent sun exposure. Nodular mela-
nomas comprise 15–25% of melanomas, and they can be associated with a rapid 
clinical course. Lentigo maligna melanomas (5–10%) are associated with chronic 
sun exposure, and thus are often located on the head and neck regions. Acral lentigi-
nous melanomas occur on the palms or soles, or beneath the nail beds, and therefore 
are relatively protected from UV-exposure as compared to the other cutaneous 
lesions. Acral melanomas represent a small minority of the melanomas that are 
diagnosed in Caucasians, but they are much more prevalent among the melanomas 
diagnosed in patients of other ethnicities where sun exposure-related melanomas 
are comparatively rare. In addition to cutaneous surfaces, melanomas may arise 
from other sites where melanocytes are present, but where exposure to UV light is 
much less likely to explain tumorigenesis. Mucosal melanomas arise from mucosal 
surfaces in the head and neck, the gastrointestinal tract, and the genitourinary tract. 
Uveal melanomas, which are the most common primary tumors of the eye, arise 
from melanocytes in the uveal tract (iris, ciliary body, and choroid). While most 
melanomas are characterized by wide metastatic spread to a variety of organs, the 
uveal melanomas are distinguished clinically by a high prevalence of metastasis to, 
and often sole involvement of, the liver. 

 Patients with advanced melanoma have a very poor prognosis. Multiple trials 
with chemotherapies, immunotherapies, and combined biochemotherapy regimens 
have failed to signifi cantly improve outcomes in this disease  [  58  ] . Thus, there is a 
need for new therapeutic approaches for melanoma. One strategy that has proven 
successful in several other refractory tumors types is “targeted therapy.” Targeted 
therapy refers to the use of inhibitors against molecules and/or pathways that are 
activated specifi cally in cancer cells. Targeted therapies have proven successful, and 
are FDA-approved, in a number of cancer types, including chronic myelogenous 
leukemia (CML), breast cancer, renal cell carcinoma (RCC), and gastrointestinal 
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stromal tumors (GIST)  [  11  ] . In each of these diseases, the successful development 
of targeted therapy was contingent upon the identifi cation of genetic mutations and 
the affected pathways in the tumor cells to select rational inhibitors for testing. 

 It is now clear that the majority of melanomas have genetic mutations that acti-
vate kinase signaling pathways. Thus, there is tremendous enthusiasm for the devel-
opment of targeted therapy approaches for this disease. Interestingly, there is 
growing evidence that the prevalence of these mutations refl ects to some degree the 
subtypes of melanoma that have been defi ned based on clinical and pathologic fea-
tures. This chapter will review these discoveries, and discuss their implications for 
the development of new therapeutic approaches for this highly aggressive disease.  

   BRAF 

 Activation of the RAS-RAF-MEK-MAPK signaling pathway has been implicated 
in many cancer types  [  5,   18,   53  ] . Activation of this pathway in cancer often results 
from mutations in components of the pathway, or alternatively by stimulation of a 
variety of upstream mediators (i.e., growth factor receptors). RAS-family GTP-ases, 
a family of guanine-nucleotide binding proteins embedded in the inner surface of 
the cell membrane, represent the fi rst component of the pathway (Fig.  1.1 ). The 
RAS family includes three isoforms: NRAS, KRAS, and HRAS. Activating signals 
change the RAS proteins from a GDP-bound state to the active GTP-bound state. 
The GTP-bound RAS interacts with and activates the serine-threonine protein 
kinase RAF, which similarly has three isoforms: ARAF, BRAF, and CRAF (RAF1). 
The kinase cascade signal propagates when activated RAF phosphorylates the MEK 

  Fig. 1.1    Mutations in kinase signaling pathways in melanoma.  Lightning bolts  indicate genes 
affected by activating mutations or amplifi cations; size refl ects relative prevalence.  Circle  indicates 
loss of the PTEN phosphatase          
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protein kinases (MEK1 and MEK2), thereby activating their serine-threonine 
protein kinase activity. Activated MEK phosphorylates and activates the p44/42 
MAPK serine/threonine protein kinases (ERK1 and ERK2), which is generally 
referred to as MAPK. The activated MAPK phosphorylates a number of substrates 
that are the effectors of this pathway, including transcription factors, cytosolic pro-
teins, and other kinases, to promote cell growth and survival.  

 In 2002, investigators from the Sanger Institute screened a variety of cancer cell 
lines and tumors for mutations in the  BRAF  gene  [  10  ] . While mutations were identi-
fi ed in a small percentage of colon, lung, and ovarian cancers, strikingly over half of 
the tested melanoma tumors and cell lines had a mutation in the  BRAF  gene. The 
high prevalence of  BRAF  mutations in melanoma has subsequently been validated 
in multiple studies. A recent meta-analysis of sequencing results from over 200 
studies, including over 2,700 samples, identifi ed a mutation rate of 65% in mela-
noma cell lines and 42% in uncultured cutaneous melanomas  [  28  ] . Mutations in 
 BRAF  are the most common defi ned somatic mutation in melanoma. 

 Over 90% of the identifi ed mutations in  BRAF  affect the valine residue at posi-
tion 600, and most frequently result in the substitution of a glutamic acid (V600E). 
The V600E mutation markedly increases the catalytic activity of the BRAF protein, 
and results in constitutive phosphorylation/activation of MEK and MAPK  [  10  ] . The 
functional importance of the  BRAF V600E  mutation was demonstrated in several 
early studies, which showed that treatment of melanoma cell lines with this muta-
tion with BRAF siRNA or BRAF inhibitors reduced proliferation and induced cell 
death  [  26,   32  ] . While most studies of the role of  BRAF  mutations in melanoma have 
focused on the V600E substitution, >50 missense mutations in the gene have been 
detected in melanoma  [  28  ] . In vitro experiments with a spectrum of less common 
 BRAF  mutations showed that the majority increase the catalytic activity of the 
BRAF protein (5–700X). However, several of the reported mutations (i.e., G466E, 
G466V, G596R, D594V) decrease the catalytic activity of BRAF  [  64  ] . Interestingly, 
expression of these low-activity mutant forms still results in increased activation of 
MEK and MAPK. This pathway activation depends upon interaction of the low-
activity mutants with CRAF proteins, whereas the high-activity BRAF mutants acti-
vate the pathway independent of CRAF  [  24,   55  ] . 

 The initial characterization of the prevalence of  BRAF  mutations was largely 
conducted in cutaneous melanomas, as they are the most common clinical subtype. 
In 2005, Dr. Boris Bastian published a seminal paper comparing the molecular char-
acteristics of cutaneous and mucosal melanomas  [  7  ] . Based on the hypothesis that 
tumors arising in the setting of different levels of sun exposure will differ molecularly, 
the cutaneous tumors in the study were subdivided into three categories: cutaneous 
melanomas without chronic sun damage (Non-CSD), cutaneous melanomas with 
chronic sun damage (CSD), and acral lentiginous melanomas. Dr. Bastian’s group 
performed comparative genome hybridization (CGH) to identify regions of copy 
number gain and loss in these tumor types. Interestingly, the four categories of tumors 
showed signifi cant differences in the patterns of DNA gain and loss, such that CGH 
analysis alone was 70% accurate in classifying the tumors. Overall, the acral and 
mucosal tumors had more regions affected by gain or loss than the cutaneous tumors. 
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There were also several chromosomal regions that demonstrated signifi cant differences 
between the Non-CSD and the CSD cutaneous tumors. Having detected signifi cant 
differences in the copy number analysis, Dr. Bastian went on to sequence the tumors 
for common mutations.  BRAF  mutations were frequent in the Non-CSD cutaneous 
melanomas, occurring in 22/40 samples (59%). However,  BRAF  mutations were 
much less frequent in CSD cutaneous (11%), acral lentiginous (23%), and mucosal 
melanomas (11%). While this initial study examined a relatively small number of 
tumors, subsequent studies have generally recapitulated these fi ndings. The meta-
analysis of over 203 mutation studies identifi ed an overall  BRAF  mutation rate of 
42.5% in cutaneous, 5.6% in mucosal, and 0.8% in uveal melanomas. Among the 
cutaneous tumors,  BRAF  mutations were common in superfi cial spreading (53%), 
spitzoid (33%), and nodular (32%) melanomas, but were less common in acral len-
tiginous (18.1%) and lentigo maligna (9%) melanomas  [  28  ] . Thus, although  BRAF  
mutations are the most frequent somatic mutation in melanoma, their prevalence 
varies widely based on the clinical-pathologic type. 

 In addition to melanomas, there is evidence that  BRAF  mutations also occur with 
varying frequency in different types of nevi. Shortly after the initial report of  BRAF  
mutations in melanomas,  BRAF  mutations were identifi ed in ~82% of benign nevi 
 [  49  ] . Subsequent studies have demonstrated that common acquired nevi, which rep-
resent the majority of nevi and are associated with sun exposure, have a  BRAF  
mutation rate (65–87.5%) that is at least as high as that observed in melanoma  [  31, 
  50,   54  ] . A small proportion of nevi develop congenitally; these nevi appear to have 
a much lower prevalence of  BRAF  mutations (0/32 in one study)  [  3  ] . Sptiz nevi, 
which histologically show high similarity to melanoma, have been reported to have 
a  BRAF  mutation rate of 5% or less in multiple studies  [  31,   54  ] . Blue nevi, which 
arise in the intradermal layer of the skin, also appear to have a relatively low rate of 
 BRAF  mutations (12%)  [  54  ] . 

 The high prevalence of mutations in common acquired nevi, which have very 
low malignant potential, suggests that  BRAF  mutations alone cannot fully explain 
the aggressive nature of melanomas. This hypothesis is supported by functional data 
testing the transformative potential of the V600E mutant form of BRAF. Studies in 
human cell lines, zebrafi sh, and transgenic mice found that expression of the  BRAF 
V600E  mutation alone failed to fully transform melanocytes  [  9,   37,   46  ] . Thus, in 
addition to identifying critical genetic changes and pathways in melanoma subtypes 
with a low prevalence of  BRAF  mutations, there is also a need to understand the 
genetic events that complement  BRAF  mutations to manifest the aggressive behav-
ior of this disease.  

   NRAS 

 As described above, mutations in RAS family members are one of the most com-
mon activating events in cancer. While mutations in  KRAS  and  HRAS  do not appear 
to be signifi cant in melanoma, mutations in  NRAS  were identifi ed in melanoma in 
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1985, well before the discovery of  BRAF  mutations  [  45  ] . Similar to BRAF, mutant 
NRAS activates the RAF-MEK-MAPK signaling pathway. Overall,  NRAS  muta-
tions are present in 14% of human melanoma cell lines and 15–25% of melanoma 
clinical specimens  [  15,   28,   42,   59  ] . The prevalence of  NRAS  mutations varies 
between different clinical-pathologic types of melanoma, although not as dramati-
cally as observed with  BRAF  mutations. In Dr. Bastian’s study of the molecular 
characteristics of melanoma subtypes, the  NRAS  mutation rate was 22% in Non-
CSD cutaneous, 15% in CSD cutaneous, 5% in mucosal, and 10% in acral lentigi-
nous melanomas  [  7  ] . The meta-analysis of melanoma mutations studies reported 
 NRAS  mutations in 26% of cutaneous, 14% of mucosal, and 0.7% of uveal melano-
mas. Among the cutaneous melanomas,  NRAS  mutations are present in 22% super-
fi cial spreading melanoma and 28% nodular melanomas. Lower rates are reported 
in acral (4%), spitzoid (10%), and lentigo maligna (0/19 samples) melanomas. 
 NRAS  mutations are also detected in common acquired nevi (6–20%) at a similar 
rate as has been detected in melanomas  [  31,   50,   54  ] . In contrast to  BRAF , one study 
identifi ed a very high rate of  NRAS  mutations in congenital nevi  [  3  ] . Interestingly, 
mutational analyses of spitz nevi have reported relatively low rates of  NRAS  muta-
tions, but  HRAS  mutations were identifi ed in 12–29% in these lesions  [  2,   61  ] . 

 Similar to  BRAF , the mutations in  NRAS  are highly conserved. Over 80% of the 
reported mutations in  NRAS  affect the amino acids at position 12 (i.e., G12D) or 61 
(Q61K, Q61R). In melanomas, activating  BRAF  and  NRAS  mutations are almost 
universally mutually exclusive, although a very small number of tumor and nevi have 
been identifi ed with both  [  19,   20,   54  ] . However, there is more frequent overlap of 
 NRAS  mutations with low-catalytic activity  BRAF  mutations (i.e.,  BRAF D594V ) 
 [  24  ] . While the mutual exclusivity of  BRAF V600E  and  NRAS  mutations supports the 
hypothesis that both of these events activate MAPK signaling, there is evidence that 
the mutant NRAS protein activates the pathway in a CRAF-dependent manner  [  14  ] .  

   PI3K-AKT Pathway 

 In addition to activating MEK through a distinct mechanism, the mutant NRAS 
protein differs from mutant BRAF in its activation of other signaling pathways. One 
of the pathways critical to the activity of  RAS  is the PI3K-AKT pathway. The PI3K-
AKT pathway is one of the most important signaling networks in cancer  [  63  ] . PI3K 
is a lipid kinase that is activated by a variety of stimuli, including growth factor 
receptors, cell-cell contacts, and RAS family members (Fig.  1.1 ). Activation of 
PI3K results in the phosphorylation of phosphatidylinositols at the 3 ¢  position. 
These phospholipids interact with proteins that have a pleckstrin homology domain, 
and thereby recruit them to the cell membrane. One such protein is AKT, also known 
as protein kinase B (PKB). Upon recruitment to the cell membrane AKT, a serine-
threonine kinase that normally exists in an inactive state in the cytoplasm, is phospho-
rylated at two critical residues, Ser473 and Thr308, activating its catalytic activity. 
The activated AKT molecule translocates to the cytoplasm where it phosphorylates 
a variety of substrates, including FOXO, GSK3 a / b , BAD, TSC2, and MDM2. 
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Through these and other substrates, activation of AKT regulates a number of 
processes that contribute to the malignant phenotype, including proliferation, sur-
vival, invasion, and angiogenesis  [  25  ] . PTEN, a phosphatase that dephosphorylates 
the 3 ¢  position of phosphatidylinositols, is the major negative regulator of the path-
way. Loss of PTEN has been reported in many cancer types, and results in constitu-
tive activation of AKT  [  68  ] . 

 The identifi cation of  NRAS  mutations provided the initial evidence for activation 
of the PI3K-AKT pathway in melanoma. While loss of the  PTEN  gene appears to 
be frequent in melanoma cell lines, mutations and deletions appear to be much less 
frequent in patient specimens  [  21,   66  ] . However, total loss of PTEN protein expres-
sion in the absence of detectable gene deletions or mutations in the gene has also 
been observed in melanoma, similar to other cancers  [  39,   69  ] . Overall, loss of PTEN 
occurs in 10–30% of melanomas. Loss of PTEN, like  BRAF  mutations, is mutually 
exclusive with  NRAS  mutation. In contrast, the majority of melanoma tumors and 
cell lines with PTEN loss also have activating  BRAF  mutations  [  59  ] . Genetically, 
this suggests that the combined presence of mutant BRAF and PTEN loss may be 
equivalent to  NRAS  mutation. However, a quantitative analysis of AKT activation in 
melanoma tumors and cell lines demonstrated that loss of PTEN correlated with 
signifi cantly higher expression of phosphorylated AKT than  NRAS  mutation  [  12  ] . 
The functional signifi cance of PTEN loss in  BRAF- mutant melanomas is supported 
by preclinical models. Transgenic mice expressing the BRAF V600E protein 
develop melanocyte hyperplasia, but they fail to develop invasive lesions. When the 
 BRAF- mutant mice were crossed with a strain lacking PTEN, 100% of the mice 
developed invasive, spontaneously metastatic melanomas  [  9  ] . The high rate of 
 BRAF  mutations in tumors with PTEN loss suggests that activation of the PI3K-
AKT pathway most likely occurs with highest frequency in cutaneous melanomas, 
particularly those without CSD. Consistent with this hypothesis, loss of chromo-
some 10q, which includes the  PTEN  gene locus, has been detected more frequently 
in Non-CSD than in CSD cutaneous melanomas  [  7  ] . However, there is very little 
data specifi cally about PTEN loss, either at the gene or protein level, in other mela-
noma subtypes. One study has reported complete loss of PTEN protein in 16%, and 
low expression in 43%, of uveal melanomas  [  1  ] . 

 Activating mutations in other components of the PI3K-AKT pathway appear to 
be quite rare in melanoma. Activating mutations of the catalytic subunit of PI3K, 
which are detected in up to 20% of breast and colon cancers, have been detected in 
~3% of tested samples, and the detected mutations have not involved hotspots com-
monly involved in other tumor types  [  8,   41  ] . Activating mutations of  AKT  homolo-
gous to mutations reported in breast, ovarian, and colon cancer have been identifi ed 
in ~3% of melanomas  [  13  ] . Each mutation occurred in a melanoma with a concur-
rent  BRAF V600E  mutation. Several of the mutations were identifi ed in the AKT3 
isoform, which is virtually identical structurally to AKT1 and AKT2, but has a 
much more restricted pattern of expression in normal adult tissues and cancer. 
A number of previous studies have demonstrated that AKT3 is the predominant 
isoform expressed in many melanomas, and may specifi cally be the predominant 
isoform that is activated in melanoma metastases  [  52,   56  ] .  
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   c-KIT 

 While  BRAF  and  NRAS  mutations appear to be common and functionally signifi cant 
in cutaneous melanomas, their low prevalence in acral, mucosal, and uveal tumors 
has spurred investigations to identify other genetic events in these subtypes. In Dr. 
Bastian’s comparative analysis of DNA copy number changes, amplifi cation or 
copy number gain of the 4q12 region was detected in 18  BRAF/NRAS  wild-type 
CSD-cutaneous, acral, and mucosal melanomas, but in none of the non-CSD mela-
nomas  [  7  ] . This region includes several genes that have been implicated in cell 
growth and proliferation, including the v-kit Hardy Zuckerman 4 feline sarcoma 
viral oncogene homolog  KIT , the platelet-derived growth factor  a  receptor  PDGFRA , 
and the vascular endothelial growth factor receptor  KDR . Detailed analysis of the 
genes in the region identifi ed focal amplifi cation of the  KIT  gene  [  6  ] . Further analy-
sis demonstrated that several melanomas had somatic mutations in the  KIT  gene. 
Overall,  KIT  point mutations or copy number increases were identifi ed in 39% of 
mucosal, 36% of acral, 28% of CSD-cutaneous, and 0% of non-CSD cutaneous 
melanomas. Subsequent studies by other groups have validated the high prevalence 
of  KIT  mutations in acral and mucosal melanomas  [  65  ] . These studies have also 
confi rmed the near complete absence of  KIT  alterations in non-CSD cutaneous mel-
anomas, but lower rates have been reported in CSD-cutaneous tumors  [  22  ] . To date, 
no  KIT  mutations have been identifi ed in uveal melanoma  [  34,   44  ] . 

 KIT is a receptor tyrosine protein kinase. Upon ligand binding, the activated KIT 
receptor activates a variety of kinase signaling pathways, including the RAS-RAF-
MEK-MAPK and the PI3K-AKT pathways in various cellular settings. Somatic 
mutations of the  KIT  gene are present in ~80% of GIST  [  27  ] . The mutations in the 
 KIT  gene in GIST affect the regulatory and catalytic domains of the protein, and 
result in increased KIT activity and signaling. Both in vitro experiments and clinical 
trials have demonstrated that  KIT  mutations in GIST result in oncogenic addiction 
to KIT-mediated survival signals, and treatment with KIT inhibitors results in tumor 
shrinkage and improved survival in the overwhelming majority of patients  [  11  ] . 

 The  KIT  mutations detected in melanoma affect the same exons that are affected 
by mutations in GIST. The discovery of activating  KIT  mutations in melanoma was 
somewhat surprising, as a number of lines of evidence supported a role for the loss 
of KIT function in melanoma progression. Immunohistochemical studies have 
shown that loss of KIT protein expression correlates with melanoma progression 
 [  30  ] . In addition, enforced expression of KIT protein in cell lines inhibited the 
growth of human melanoma cell lines in vitro and in vivo  [  30  ] . Finally, three different 
phase II trials of the KIT inhibitor imatinib (Gleevec ® ) reported only a single clinical 
response among a total of 63 treated patients  [  33,   60,   67  ] . 

 The fi nding that  KIT  aberrations specifi cally occur in non-cutaneous melanomas 
suggests that the KIT protein may have a different functional role in acral, mucosal, 
and CSD-cutaneous melanomas. IHC studies have shown that KIT protein is fre-
quently expressed in acral and mucosal melanomas, particularly in those with  KIT  
mutations or amplifi cations  [  57  ] . In addition, several case reports have described 
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impressive clinical responses to various KIT inhibitors in melanoma patients with 
 KIT  mutations  [  29,   51  ] . The responsiveness of melanomas with amplifi cation of the 
wild-type  KIT  gene is less established, but is currently being investigated in clinical 
trials restricted to patients with  KIT  gene abnormalities  [  16  ] .  

   GNAQ 

 Less than 1% of uveal melanomas have activating mutations in  BRAF ,  NRAS , or 
 KIT . In 2003, two different groups reported the identifi cation of point mutations in 
the  GNAQ  gene  [  43,   62  ] .  GNAQ  encodes the  a -subunit of the G-protein-coupled 
receptor. In both studies,  GNAQ  point mutations involving the Q209 residue were 
identifi ed in ~50% of uveal melanomas. In contrast,  GNAQ  mutations were detected 
in only 1 of 42 cutaneous melanomas, and 0/15 acral melanomas  [  62  ] . The Q209 
residue that is the site of all of the  GNAQ  mutations reported to date is analogous to 
the Q61 residue of  NRAS  that is the most common site of mutations in that gene. 
Expression of the Q209L mutant form of the GNAQ protein resulted in increased 
activation of MAPK, enhanced anchorage-independent growth, and increased tum-
origenicity of melanocytes  [  62  ] . Recently, point mutations in another G-protein 
regulatory subunit,  GNA11 , have been identifi ed in 34% of primary uveal melano-
mas, and 59% of uveal melanoma metastases  [  16  ] . The  GNA11  and  GNAQ  muta-
tions are mutually exclusive. Thus, approximately 80% of uveal melanomas harbor 
a mutation in one of these subunits, similar to the cumulative frequency of  BRAF  
and  NRAS  mutations in cutaneous melanomas. Hopefully an improved understand-
ing of the consequences of these mutations will lead to new, more effective treat-
ments for uveal melanomas.  

   Conclusions 

 In the last 10 years, the classifi cation of melanoma has dramatically changed with 
the identifi cation of targetable mutations in this disease. This is primarily being 
driven by the selection of specifi c therapeutics based on the mutations present in a 
patient’s tumor. This strategy has proven to be critical in the use of the mutant-
specifi c BRAF inhibitor PLX4032. While PLX4032 treatment has produced signifi -
cant tumor shrinkage in the majority of  BRAF- mutant melanoma patients, no 
responses were seen in patients without a  BRAF  mutation  [  17  ] . Perhaps even more 
critically, experiments in preclinical models support that treatment of  BRAF- wild-
type tumors with BRAF inhibitors may actually accelerate tumor growth  [  23  ] . The 
clinical experience with PLX4032 emphasizes the need for careful consideration of 
the molecular characteristics of the tumors in the future development of targeted 
therapies in this disease. As chromosomal studies indicate that acral and mucosal 
tumors are characterized by distinct regions of copy number gain and loss, it will be 
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important to determine if  BRAF- mutant tumors arising from those sites respond 
differently to BRAF inhibitors relative to the  BRAF- mutant cutaneous melanomas. 
In addition to informing decisions about the choice of systemic therapies, it will be 
important to determine if the presence of the targetable mutations correlates with 
the risk of disease progression and/or recurrence in localized melanoma. Prognostic 
signifi cance of the mutations could then be used to guide the appropriate use of 
aggressive vs. conservative management of localized tumors. Such fi ndings would 
also emphasize the need to include mutational analysis as an integral part of the 
classifi cation of every melanoma. 

 While the discovery and characterization of  BRAF ,  NRAS ,  PTEN ,  KIT , and 
 GNAQ  mutations has clearly improved our understanding of melanoma, there 
remains a tremendous need to gather additional information about the molecular 
basis of these tumors. The prevalence of  BRAF  and  NRAS  mutations in nevi with 
low malignant potential indicates that additional molecules and/or pathways must 
contribute to the pathogenesis of invasive melanoma. The identifi cation of such fac-
tors would inform the clinical stratifi cation of premalignant or low-grade lesions. In 
addition to the need to identify events that complement the known mutations,  ³  30% 
of melanoma patients have no detectable mutation in any of the genes described 
here. The identifi cation and characterization of genetic aberrations in these patients 
may help illuminate whether the different mutations that occur in melanoma con-
verge on the same pathways and therapeutic targets (i.e., the MAPK pathway), or if 
they in fact are dependent upon completely distinct pathways and thus novel thera-
peutic strategies. Recently, the sequencing of the fi rst complete melanoma genome 
was reported  [  48  ] . This study identifi ed over 33,000 somatic changes in the mela-
noma genome, including 186 missense or truncating mutations in coding regions of 
DNA, as well as numerous chromosomal rearrangements. These initial fi ndings 
support the need for similar analyses of additional melanoma genomes to identify 
recurrent events to prioritize for functional testing. However, the existing data 
regarding genetic and functional differences in molecules and pathways between 
different clinical-pathologic melanoma subtypes (i.e.  KIT ) should serve as a 
reminder of the need to place such studies within the appropriate context.      
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  Abstract   Remarkably, 10 years have elapsed since the initial paper describing 
genomic profi les of melanoma (Nature 406:536–540, 2000). Since that initial pub-
lication, several additional studies have been published examining the potential util-
ity of gene expression profi ling of melanoma using a plethora of different 
technological platforms, data sets, and tissue collections. These studies have pro-
vided signifi cant new insights into several aspects of melanoma biology. These 
include the development of molecular diagnostics assays based on gene expression 
profi les that are nearing clinical application. As a result, the time is ripe to review 
the literature regarding gene expression profi ling of melanoma. This review will 
focus on the insights gained in the transcriptomic analysis of (1) distinct phases of 
melanoma progression; (2) primary melanoma; and (3) metastatic melanoma.  

  Keywords   Gene expression profi ling  •  Microarray analysis  •  Biomarkers      

   Gene Expression Profi ling of Distinct Phases 
of Melanoma Progression 

 Melanoma is an ideal clinical model to which genomic analyses can be applied to 
study tumor progression because of the readily defi ned clinical phases of melanoma 
progression that have histological correlates. The classical model of melanoma 
progression, defi ned by Clark et al.  [  2  ] , described these successive stages, and has 
represented an important framework for the identifi cation of novel melanoma 
progression genes. In this model, benign melanocytic proliferation yields a nevus, 
which can transform into primary melanoma, beginning in the radial growth phase, 
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with a capacity to progress to the vertical growth phase, and culminating in metastatic 
melanoma. While melanoma development is not absolutely dependent on the pro-
gression through each of these distinct phases (e.g., melanomas can develop without 
the presence of preexisting nevi), the vertical growth phase has been postulated to 
be required for metastatic competency. While this model of melanoma progression 
was described several years ago and is well understood, prior to the advent of 
microarray analysis, one would be hard pressed to identify genes whose differential 
expression corresponded to any of these phases of melanoma progression. In addi-
tion, it is important to note that, while BRAF mutations appear to represent an 
important event in melanoma progression  [  3  ]  and appear to represent an attractive 
target for melanoma therapy  [  4  ] , the high prevalence of BRAF mutations in nevi 
suggests that they are selected for early in melanoma development. As a result, 
BRAF mutations are unable to distinguish between the successive phases in mela-
noma progression as described by this classical model. 

 To date, several studies have examined the comparative gene expression profi les 
of melanoma progression. The fi rst published study by Haqq et al.  [  5  ]  assigned 
separate gene expression profi les to these distinct phases of melanoma progression 
using cDNA microarray analysis. Thus, statistical analysis of microarrays (SAM) 
was able to distinguish between nevi and primary melanomas, and primary and 
metastatic melanomas. Intriguingly, microarray analysis of radial vs. vertical growth 
phase melanoma demonstrated exclusive loss of gene expression in the vertical 
growth phase, and also showed that the gene expression profi le characteristic of 
radial growth phase melanoma was recapitulated in a subset of metastases. These 
studies suggested that the gene expression signature for metastasis was present in 
the radial growth phase, challenging the conventional dogma that radial growth 
phase melanomas are incapable of metastasis. 

 In addition, unsupervised hierarchical analysis was able to accurately discrimi-
nate between a small number of freshly acquired primary melanomas and nevi. This 
suggested that gene expression profi les could be useful as an adjunct to the patho-
logical diagnosis of melanoma, which has been shown to be discordant in a rela-
tively high percentage of cases  [  6  ] . Recently, fi ve markers derived from that 
microarray analysis were selected for further validation and incorporation into an 
immunohistochemical multi-marker assay for melanoma  [  7  ] . This multi-marker 
assay was shown to have a high degree of accuracy in the diagnosis of melanocytic 
neoplasms, with a specifi city of 95% and a sensitivity of 91% in a training set of 534 
nevi and primary melanomas, comprising the largest analysis of molecular markers 
in melanoma to date. Subsequently, the multi-marker assay was subjected to four 
validation sets with greater relevance to the differential diagnosis of nevus vs. mela-
noma, and found to accurately diagnose a high percentage of melanomas arising in 
a nevus, Spitz, and dysplastic nevi. Finally, the multi-marker assay was able to cor-
rectly diagnose 75% of misdiagnosed neoplasms, suggesting that these markers 
could help prevent or correct a high percentage of diagnostic errors using routine 
histopathology of melanocytic neoplasms. This is one of the fi rst demonstrations of 
the utility of genomic profi les to resolve a differential diagnosis in the realm of 
oncology, and one of the fi rst successful validations of gene expression profi les 
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using immunohistochemical techniques. Following further validation in distinct 
cohorts, it is anticipated that this assay will be available for clinical use. 

 Subsequently, additional studies investigating the differential gene expression 
signature of melanoma progression were reported. Three studies have examined the 
transition between nevus and melanoma. Talantov et al.  [  8  ]  analyzed 45 primary 
melanomas, 18 benign nevi, and 7 normal skin specimens analyzed using the 
Affymetrix platform. Hierarchical clustering was able to identify a unique signature 
for melanomas. Among the genes overexpressed in melanomas were SPP1 (osteo-
pontin), PLAB, SEMA3B, NES, MAP3K12, and DUSP4. Intriguingly, several 
genes were identifi ed that were previously shown to be differentially expressed in the 
Haqq et al. study  [  5  ] , including SPP1, PLAB, CDH3, KNSL5, CITED1, CSTB, and 
PSEN2. Separately, Nambiar et al.  [  9  ]  profi led 11 congenital nevi, 10 primary and 11 
metastatic melanomas using the Affymetrix platform. They also identifi ed gene sig-
natures that distinguished nevi from primary melanomas. Upregulated in melano-
mas were MAPK1, STAT3, ASK/Dbf4, CCNA1, CCNB1, CCNE2, CXCL1, and 
MCM4. Among the genes downregulated in melanomas were SPON1 and IL-18. 

 Finally, Koh et al.  [  10  ]  used a custom array containing 1,100 selected genes to 
search for differential gene signatures in a tissue set of 120 lesions. They observed 
higher expression of PHACTR1, HLA-A, HLA-B, PRAME, and STAT1 in melano-
mas, with higher expression of PTN, GPX3, FABP7, DLC1, and GSTM2 in nevi. 
The use of these gene signatures was shown to have concordance rates of 90% for 
melanoma and 86% for nevi. Thus, it is clear that distinct gene expression profi les 
exist for nevi vs. melanomas, and that these differential gene signatures can be used 
to assist in this potentially problematic differential diagnosis. A list of novel diag-
nostic markers for melanoma consistently appearing in several of these studies 
appears in Table  2.1 .  

 Additional work has focused on exploring the transition between primary and 
metastatic melanoma. Jaeger et al.  [  11  ]  profi led 19 primary and 22 metastatic mela-
nomas using Affymetrix oligonucleotide microarrays, and identifi ed 308 genes with 
differential expression between primary and metastatic lesions. The upregulated 
genes included SPP1, CDC6, CDK1, mitosin, and fi bronectin, whereas E-cadherin, 
FGFBP, desmocollins 1 and 3, and CCL27 were downregulated. The differential 

   Table 2.1    Selected validated differentially expressed genes between nevi and primary melanoma   

 Gene  Platform  Gene bank accession number  References 

 ARPC2  RNA, IHC  NM_005731   [  5,   6  ]  
 CDH3  RNA  NM_001793   [  6,   7  ]  
 FN1  RNA, IHC  NM_212482   [  5,   6  ]  
 KNSL5  RNA  NM_138555   [  6,   7  ]  
 PLAB  RNA  NM_004864   [  6,   7  ]  
 PRAME  RNA  NM_206954   [  6,   10  ]  
 RGS1  RNA, IHC  NM_002922   [  5,   6  ]  
 SPP1  RNA, IHC  NM_001040058   [  5–  7  ]  
 WNT2  RNA, IHC  NM_003391   [  5,   6  ]  

   IHC  immunohistochemistry  
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expression of selected genes in metastatic vs. primary melanomas was validated by 
immunohistochemical analysis. Using support vector machines, greater than 85% 
correct classifi cation was achieved between the two types of lesions. Intriguingly, 
characteristic gene expression profi les were identifi ed in superfi cial spreading vs. 
nodular melanomas, and in thin (<1.0 mm) vs. intermediate/thick tumors (>2.0 mm). 
This is similar to the results identifi ed by Riker et al.  [  12  ] , who identifi ed a transition 
point in global transcript profi les, in which melanomas greater than 2 mm in thick-
ness had a gene expression pattern similar to metastases.  

   Gene Expression Profi les of Primary Melanoma 

 Due to the paucity of freshly acquired primary melanoma specimens, only a few 
studies examining the genomic signatures of large numbers of primary melanoma 
have been performed. In the fi rst study in this category, Winnepenninckx et al.  [  13  ]  
profi led 58 primary melanomas with at least 4 years of follow-up or relapse/death 
using a pangenomic 44,000 60-mer oligonucleotide microarray. The investigators 
identifi ed 254 genes that were associated with distant metastasis-free survival, 
which included genes involved in activating DNA replication origins, e.g., minichro-
mosome maintenance genes and geminin. Twenty-three of these genes were exam-
ined at the protein level using immunohistochemical analysis, and found to be 
associated with overall survival in an independent set. These included MCM3, 
MCM4, MCM6, KPNA2, and geminin. In a multivariate analysis that included 
thickness, age, ulceration, and sex, MCM4 and MCM6 were still signifi cantly pre-
dictive of overall survival. 

 Subsequently, the same group of investigators examined whether a gene expres-
sion signature correlates with the presence of BRAF mutations in primary cutane-
ous melanoma  [  14  ] . Thus, a cohort of 69 primary melanomas on which global 
transcript profi les were available was tested for the presence of BRAF mutations. 
The expression data from these melanomas was analyzed according to BRAF muta-
tional status in 32 melanomas with a BRAF mutation (46%). Two-hundred and nine 
genes were identifi ed to be differentially expressed in melanomas harboring mutant 
BRAF, including genes that may be involved in immune responsiveness, such as 
CD63, MAGE-D2, S100A, and HSP70. In addition, additional genes previously 
implicated in melanoma progression were identifi ed, including SPP1, CTSB, 
SERPINE2, and IGFBP2, and in the MITF pathway, such as S100B and MIA-1. 

 In addition, Alonso et al.  [  15  ]  examined the gene expression profi les of 34 verti-
cal growth phase melanomas using cDNA microarrays. This tissue set included 21 
patients with nodal metastasis vs. 13 without. Supervised analysis of metastasizing 
melanomas vs. the non-metastasizing group identifi ed 243 differentially expressed 
genes, of which 206 were upregulated. These included genes involved in numerous 
cellular pathways, such as cell cycle and apoptosis regulation, epithelial-to-mesen-
chymal transition, nucleic acid binding, protein synthesis, and metabolism. The 
prognostic role of SPP1, CDH2, and SPARC on disease-free survival was demon-
strated by univariate analysis using immunohistochemical staining. 
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 More recently, Conway et al.  [  16  ]  performed a profi ling analysis of paraffi n-
embedded primary melanomas using the Illumina DASL array human cancer panel 
in two distinct cohorts. Intriguingly, SPP1 was identifi ed as the most differentially 
expressed gene in association with relapse-free survival (RFS) in the fi rst cohort. 
The association between SPP1 expression and RFS was validated in the second 
cohort. By multivariate analysis, SPP1 expression level was an independent predic-
tor of RFS when adjusted for age, sex, tumor site, and histological parameters. In 
addition, the expression of PBX1, BIRC5, and HLF was most strongly correlated 
with SPP1 expression. 

 Finally, the prognostic role of several genes identifi ed from the microarray analy-
sis of distinct phases of melanoma progression  [  5  ]  has been recently demonstrated. 
From this analysis, three markers (SPP1, NCOA3, and RGS1) were shown to indi-
vidually predict three outcome parameters for melanoma: sentinel lymph node 
(SLN) status, RFS, and disease-specifi c survival (DSS) using immunohistochemical 
analysis  [  17–  19  ] . Subsequently, a multi-marker assay incorporating the expression 
levels of these proteins was examined for its prognostic role in an initial U.S. cohort 
of 395 patients, and an independent cohort of 141 patients from a distinct popula-
tion (Germany)  [  20  ] . Multi-marker positivity was signifi cantly associated with SLN 
status and DSS by univariate analysis in the initial cohort. By multivariate analysis, 
the multi-marker assay remained independently predictive of SLN status and DSS 
when adjusted for tumor thickness, ulceration, mitotic rate, age, Clark level, gender, 
and tumor site. In the analysis of DSS, the multi-marker score was the most signifi -
cant factor predicting DSS, even when SLN status was included as a covariate in the 
multivariate model. The powerful and independent prognostic impact of the multi-
marker assay was separately confi rmed using a digital imaging analysis. In the vali-
dation cohort, multi-marker positivity was signifi cantly predictive of DSS, and 
again outperformed routine clinical and histological factors. This is the fi rst demon-
stration of the prognostic effi cacy of a multi-marker assay in melanoma, and the fi rst 
demonstration of the prognostic effi cacy of molecular markers for melanoma in a 
distinct patient cohort. 

 Taken together, these results demonstrate the utility of gene expression profi ling 
of primary melanomas, and have identifi ed several novel prognostic markers of 
melanoma outcome with various degrees of validation (Table  2.2 ). Intriguingly, 

   Table 2.2    Validated molecular prognostic markers for melanoma derived from transcriptomic 
profi les   

 Marker  Platform  Outcome parameter  References 

 RGS1  IHC  RFS, DSS, SLN status   [  19,   20  ]  
 NCOA3  IHC  RFS, DSS, SLN status   [  17,   20  ]  
 SPP1  IHC, RNA  RFS, DSS, SLN status   [  15,   16,   18,   20  ]  
 CDH2  IHC  RFS   [  15  ]  
 SPARC  IHC  RFS   [  15  ]  
 MCM4  IHC  OS   [  13  ]  
 MCM6  IHC  OS   [  13  ]  
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SPP1 has emerged as a common candidate prognostic marker from these profi ling 
studies, whose prognostic impact has now been validated in several distinct cohorts 
and using different expression platforms.   

   Gene Expression Profi ling of Metastatic Melanoma 

 Numerous studies of transcriptomic profi ling of metastatic melanoma have now 
been reported. In general, these studies have attempted to either examine various 
aspects of melanoma biology, or identify potential markers of immune respon-
siveness. Bittner et al.  [  1  ]  examined gene signatures of metastatic melanoma using 
what is now considered an early cDNA microarray platform containing 6,971 
unique genes. The authors identifi ed two subtypes of metastatic melanoma, 
including a dominant cluster, characterized by higher expression of MART-1, 
CD63, tropomyosin, and WNT5A and reduced expression of fi bronectin. This 
cluster of metastatic melanomas was found to be inversely correlated with uveal 
melanoma cell lines with increased invasiveness, and showed a trend toward 
improved survival. Subsequently, Haqq et al.  [  5  ]  also identifi ed two subtypes of 
metastatic melanoma, with some overlap in the gene set identifi ed by Bittner et al. 
The two subtypes were not distinguished by any clinical or histological character-
istics or BRAF mutation status, but did differ in that the dominant subgroup 
exhibited the gene expression signature of vertical growth phase primary mela-
noma, whereas the second subtype retained the gene signature identifi ed in radial 
growth phase melanoma. Again, the dominant cluster was associated with an 
improved prognosis, indicating that radial growth phase metastatic melanoma 
may be associated with a worse outlook. Together, these studies suggested the 
prognostic potential of gene expression profi les of metastatic melanoma in small 
subgroups of patients. 

 Subsequently, additional studies have extended a number of these observations 
in larger patient cohorts. John et al.  [  21  ]  examined genomic profi les of 29 cases of 
stage III and stage IV melanoma divided into good-prognosis and poor-prognosis 
subgroups based on time to progression using an oligo-array platform. A predictive 
score developed using these genes was found to correctly classify nine of ten patients 
in an independent tissue set, and 12 of 14 patients from a published database. 
Importantly, this gene signature was developed from a supervised analysis, with no 
prognostic impact shown for the gene expression profi les. 

 In addition, Bogunovic et al.  [  22  ]  examined the combination of gene expression 
profi les and other markers in the prognostic assessment of metastatic melanoma 
patients, and identifi ed a group of 266 genes associated with post-recurrence sur-
vival. They identifi ed several factors associated with prolonged survival, including 
mitotic rate of metastatic lesions, an immune response gene signature, and presence 
of TILs and CD3 +  cells. Thus gene signatures can be combined with other histological 
prognostic factors and/or biomarkers to refi ne the survival associated with metastatic 
melanoma. 
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 More recently, Jonsson et al.  [  23  ]  examined the gene expression profi les of 57 
patients with stage IV melanoma using the Illumina Beadarray system, and identi-
fi ed four subtypes of metastatic melanoma by unsupervised hierarchical analysis. 
These four subtypes were grouped as follows: (1) immune response group (charac-
terized by LCK, IFNGR1, HLA class I antigen, CXCL12, and IL1R1 expression); 
(2) pigmentation differentiation (characterized by high MITF, TYR, SILV, DCT, 
and low WNT5A levels); (3) proliferation (characterized by high E2F1, BUB1, and 
CCNA2 expression), and (4) normal-like (characterized by high KRT10 and 17, 
KIT, FGFR3, and EGFR levels). In addition, BRAF and NRAS mutational analysis 
and examination of deletions in the CDKN2A gene were performed. Intriguingly, 
the proliferative subtype was associated with poor survival, high frequency of 
CDKN2A deletions, and the absence of BRAF or NRAS wild-type samples. In 
addition, low expression of the gene set associated with immune response signaling 
was associated with a signifi cantly worse outcome. 

 Finally, a few studies have used microarray analysis of metastatic melanoma to 
identify potential signatures of immune responsiveness. Wang et al.  [  24  ]  analyzed 
63 subcutaneous melanoma metastases using a 6,018 cDNA chip in a cohort of 
patients undergoing various immunotherapies. Global transcript analysis failed to 
identify subsets of metastases that were predictive of immune responsiveness. 
However, 30 genes were associated with response to interleukin-2/vaccine-based 
therapy, including several in the interferon signaling pathway. In addition, Harlin 
et al.  [  25  ]  examined gene expression profi les of metastatic melanoma specimens 
from patients undergoing peptide-based immunotherapy, and identifi ed a major 
cluster of samples based on the presence or absence of T-cell associated transcripts. 
Specifi cally, six chemokines (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10) 
were confi rmed by protein array or qRT-PCR in tumors that contained T cells, with 
expression of the corresponding receptors observed on human CD8 +  effector T cells. 
Finally, functional analysis demonstrated that melanoma cell lines with high 
chemokine expression recruited human CD8 +  effector T cells more effectively in 
xenograft models. 

 Taken together, transcriptomic profi les of melanoma metastases have resulted in 
a number of tantalizing observations regarding melanoma biology that still require 
validation in larger cohorts. Specifi cally, it will be important to conclusively dem-
onstrate the prognostic impact of gene signatures of melanoma metastases, and to 
confi rm that this is an independent predictor of survival in metastatic melanoma. 
Since many of the studies have combined specimens from stage III and stage IV 
patients, the utility of gene expression profi ling in distinct subsets of metastatic 
melanoma patients will need to be demonstrated. It will be important to confi rm 
observations that have suggested divergent survival associated with (1) radial growth 
phase signature, (2) proliferative signature, and (3) immune responsiveness signa-
ture. The ultimate clinical utility of this approach in the setting of metastatic mela-
noma would require relevance to either (1) identifying high-risk patients for adjuvant 
therapy trials, (2) identifying patient subsets that may preferentially respond to vari-
ous systemic therapies, or (3) identifying novel targets for the therapy of metastatic 
melanoma.  
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   Conclusions 

 There has been a dramatic increase in the number of genomic analyses of melanoma 
with the advent of commercially available array platforms and software for bio-
statistical analysis. However, these studies are still hampered by the relative paucity 
of fresh tissue available for analysis, and the lack of coordinated programs for pro-
spective collection of high-quality tissue. While the use of customized array plat-
forms enables the validation of known progression genes, it is still suboptimal for 
the identifi cation of novel genes in an unbiased manner. 

 Importantly, however, gene expression profi ling efforts in melanoma have 
enabled novel insights into the biology of melanoma progression. They have resulted 
in the development of validated multi-marker diagnostic and prognostic markers for 
primary melanoma. In the setting of metastatic melanoma, further work will be 
required to conclusively demonstrate the utility of gene expression profi les. In the 
era of targeted therapy, transcriptomic efforts need to determine relevant gene sig-
natures in the context of the known mutational events in melanoma that can be tar-
geted therapeutically. This may result in the identifi cation of novel pathways for 
intervention and in the development of rational approaches for combination 
therapy.      
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  Abstract   It is becoming clear that multiple molecular subtypes of melanoma likely 
exist that not only defi ne distinct biologic entities, but also may be associated with 
clinical response to defi ned therapeutic modalities. For signal transduction inhibi-
tors, activating mutations in B-Raf and c-kit are associated with clinical response to 
the specifi c kinase inhibitors PLX4032 and imatinib, respectively. Several other 
signaling pathways have been found to be constitutively active or mutated in other 
subsets of melanoma tumors that are potentially targetable with new agents. For 
immunotherapies, gene expression profi ling has revealed a signature that is associ-
ated with clinical benefi t to melanoma vaccines, with preliminary observations sug-
gesting a correlation with response to other immunotherapy agents as well. Together, 
these emerging data suggest the evolution of a new paradigm in melanoma therapy 
in which molecular analysis of the tumor will be utilized to assign the most appro-
priate therapeutic modality for each individual patient. The anticipated result will be 
improved therapeutic success, as well as the tools to identify mechanisms of thera-
peutic resistance.  

  Keywords   Biomarker  •  B-Raf  •  c-kit  •  Immunotherapy  •  Gene expression profi ling  
•  Patient selection    

   Evidence for Existence of Biologic Subsets of Melanoma 

 Two FDA approved drugs are available to treat patients with metastatic mela-
noma, the chemotherapeutic agent dacarbazine (DTIC; approved in 1976) and the 
immunomodulatory cytokine interleukin-2 (IL-2; approved in 1998). Each of 
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these produces response rates of less than 15% in unselected patients. It has been 
known for almost 20 years that there is minimal cross-resistance between dacar-
bazine and IL-2  [  48  ]  – some patients who progress after treatment with dacarba-
zine clearly can respond to IL-2, and vice versa. In addition, combination regimens 
of chemotherapy and cytokines (biochemotherapy designs) appear to show addi-
tive but not synergistic activity, with increased response rates but no improvement 
in overall survival observed in randomized trials  [  2  ] . Together, these observations 
with established agents already suggest that there may be subsets of melanoma 
patients with biologic characteristics that render them susceptible to the therapeu-
tic effect of one modality (chemotherapy) vs. another (immunotherapy). Still, all 
histological subtypes of melanoma (superfi cial spreading, acral lentiginous, nod-
ular, lentigo maligna, and mucosal) have been clinically managed similarly, with-
out evidence for differences in clinical response to these agents based on 
histological criteria alone. 

 Molecular evidence pointing to    the existence of clinically meaningful subsets of 
melanoma took a great leap forward with the comparative genomic hybridization and 
systematic oncogene mutation analyses studies of Bastian and colleagues  [  10  ] . In 
those studies, melanomas arising in a context of sun-damaged skin, non-sun-damaged 
skin, acral surfaces, or mucosal regions were found to have distinct major molecular 
aberrations. Specifi cally, mutations in B-Raf were most frequently found in lesions 
from non-sun-damaged skin. Amplifi cations in CCND1 and CDK4 (downstream cell 
cycle regulators in the Ras pathway) were found in lesions that lacked upstream 
mutations in N-Ras or B-Raf. In addition, amplifi cations in the c-kit gene locus were 
found in a signifi cant proportion of acral and mucosal lesions. Thus, rather than clas-
sical histological subcategorization of melanoma lesions, these data began to suggest 
that molecular subtyping of melanoma may be possible, both to defi ne these subsets 
biologically, and to consider rational assignment of therapy based on molecular char-
acteristics. The latter is becoming possible as drugs that specifi cally target receptor 
tyrosine kinases, downstream kinases, and other signaling molecules are being devel-
oped and are undergoing clinical testing. In addition, early evidence is suggesting 
that a distinct set of molecular features of the tumor microenvironment may predict 
clinical benefi t from new immunotherapy approaches.  

   Kinase Mutations and Clinical Response to Kinase Inhibitors 

   B-Raf 

 The identifi cation of activating mutations in B-Raf as a common genetic alteration 
in melanoma  [  13  ]  rapidly led to the hypothesis that kinase inhibitors with activity 
against B-Raf might have therapeutic utility. Over 90% of B-Raf mutations in mel-
anoma involve a substitution of glutamate for valine at position 600, and over 50% 
of melanomas carry such a mutation. The fi rst agent with potential inhibitory activity 
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against Raf family kinases, sorafenib, was explored with much enthusiasm in mel-
anoma. It was surprising to many that there was lack of meaningful clinical activity 
among melanoma patients treated on the phase I/II studies of sorafenib as a single 
agent  [  15  ] . Despite this observation, an unusually high response rate to carboplatin 
and paclitaxel combined with sorafenib sustained interest in the drug for  [  18  ] . 
These observations led to two phase III trials of carboplatin and paclitaxel with or 
without sorafenib in patients with metastatic melanoma, either in the fi rst line or in 
the second line setting. Unfortunately, there were no signifi cant differences in clin-
ical outcome in either study  [  16,   17  ] . While these outcomes temporarily dampened 
enthusiasm for the concept of Raf blockade in this disease, it was also clear that 
sorafenib was not extremely potent at inhibiting Raf activity. The clinical activity 
of sorafenib in other cancers, such as renal cell carcinoma, is presumed to be medi-
ated through inhibition of other kinases, including the VEGF receptor tyrosine 
kinase. Other clinical trials aiming to block Ras pathway signaling at other levels, 
including farnesyltransferase inhibitors (aiming to target Ras proteins directly) and 
early MEK inhibitors (targeting the kinase downstream from Raf), also showed 
disappointing clinical activity in melanoma  [  22  ] . 

 However, other small molecule inhibitors with more potent activity against mutant 
B-Raf had continued in development. PLX4032 was reported to have eightfold 
greater activity against mutant B-Raf over wild-type Raf, showing inhibition in vitro 
at nanomolar concentrations. A phase I study with an expansion cohort in melanoma 
was conducted and recently reported  [  16,   17  ] . Of the 48 V600E B-Raf mutated mela-
noma patients treated at the recommended phase II dose, 34 partial and 3 complete 
responses were observed. In contrast, the fi ve patients with melanomas expressing 
wild-type B-Raf had no clinical response. These impressive results have provided the 
fi rst evidence that an agent targeting a commonly mutated signaling protein in mela-
noma can exert meaningful clinical activity. Together, these observations suggest that 
expression of a V600E mutation in B-Raf may be a predictive biomarker for response 
to PLX4032 in melanoma. Similar results have recently been observed with a second 
B-Raf inhibitor from Glaxo Smith Kline (GSK2118436).  

   c-kit 

 Along with the report by Bastian and colleagues that the c-kit gene is amplifi ed in a 
subset of melanomas, activating mutations in c-kit have been described. Interestingly, 
these have been seen in around 30% of tumors from mucosal and acral sites, as well 
as a minority of patients with melanomas arising out of sun-damaged skin  [  3,   53  ] . 
The spectrum of mutations identifi ed to date parallel those reported in gastrointesti-
nal stromal tumors, which are associated with clinical response to c-kit inhibitors 
such as imatinib  [  29  ] . Based on these observations, imatinib has been investigated 
clinically in melanoma patients bearing c-kit mutations, and studies with nilotinib 
and desatinib have recently been initiated. Several case reports have been published 
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 [  30,   35,   45,   52  ] , revealing at least 10 clinical responders in total. In contrast, clinical 
testing of imatinib in unselected melanoma patients revealed minimal clinical activity 
 [  32,   66  ] . Thus, it is very likely that a clinically relevant response rate will be observed 
in the subset of melanoma patients with tumors that have specifi c activating mutations 
in c-kit. This notion is currently being examined systematically in a series of pro-
spective phase II and phase III clinical trials. As such, activating mutations in c-kit 
will likely be validated as a predictive biomarker for the potential to respond to 
kinase inhibitors that block activity of c-kit.   

   New Pathways Showing Heterogeneity Among 
Individual Melanoma Patients 

 In addition to mutations that lead to activation of the Ras pathway, other parallel 
signaling pathways have been found to be constitutively activated in subsets of mela-
noma tumors and could lead to new therapeutic approaches in selected subgroups of 
patients. The Notch pathway has been reported to be activated in many melanomas, 
apparently via ligand and receptor overexpression rather than through mutation 
 [  36  ] . Notch signaling is mediated, in part, through proteolytic cleavage by an 
enzyme called gamma secretase, which liberates the intracellular domain of Notch 
to participate in transcriptional regulation. Gamma secretase inhibitors (GSIs) have 
been developed for clinical exploration as a strategy to inhibit Notch pathway sig-
naling in patients. Results of a phase I study of a GSI were presented at the ASCO 
2010 annual meeting, with two melanoma patients showing clinical responses  [  62  ] . 
Phase II studies of this agent in melanoma have been initiated. It will be critical to 
pursue tumor-based biomarker analysis in these studies to generate the tools with 
which to identify the potentially responsive patient subpopulation. 

 Activating mutations in PI3 kinase have been reported in a minor subset of mela-
nomas  [  11  ] , and the critical negative regulator of PI3 kinase activity, the lipid phos-
phatase PTEN, is mutated or epigenetically silenced in many melanomas  [  8,   69  ] . 
The recent development of PI3 kinase inhibitors for clinical testing makes it attrac-
tive to consider targeting this pathway in this disease. In addition, a total kinome 
sequencing study in melanoma has recently been published, which has suggested 
that activating mutations in ErbB4 might be present in a subset of melanomas  [  43  ] . 
As functional activity of ErbB4 can be inhibited by the already available kinase 
inhibitor lapatinib  [  4  ] , it is attractive to consider testing of lapatinib in melanoma 
patients bearing ErbB4 mutant tumors. Mutations in c-met also have been reported 
in a series of melanoma cell lines  [  44  ] , and the recent development of agents with 
inhibitory activity against c-met for clinical testing makes a similar hypothesis 
attractive for this molecule. However, there has been minimal analysis of primary 
tumor samples reported, so the fraction of patients with tumors harboring c-met 
mutations is not clear. 

 Several additional signaling pathways have been reported to be active in subsets 
of melanomas, and have been found to be functionally important for melanoma 
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biology, but without pharmacologic agents yet available for pathway inhibition in 
the clinic. Expression of stabilized  b -catenin has been observed in a major subset of 
melanomas, and  b -catenin has been shown to contribute to melanoma development 
in mouse models  [  33  ] . Constitutive phosphorylation of the transcription factor Stat3 
also has been identifi ed in a subset of melanomas  [  37  ] . In vitro, knockdown of Stat3 
has direct antitumor activity, but also induces expression of important immunoregu-
latory genes, including a subset of chemokines that might mediate lymphocyte traf-
fi cking  [  7  ] . Therefore, Stat3 inhibitors, if developed, might have two complementary 
mechanisms of action, and synergy of such agents with other immunotherapeutic 
agents might be anticipated. Developing novel strategies to inhibit the  b -catenin and 
Stat3 pathways in melanoma therefore should receive signifi cant attention. Once 
such agents enter clinical trial testing, those studies should incorporate careful 
tumor-based biomarker analysis to determine whether constitutive activation of the 
pathway is predictive of clinical response to therapy.  

   Gene Expression Profi ling and Clinical Response 
to Melanoma Vaccines 

 The best clinical responses of metastatic melanoma to immunotherapeutic agents 
such as IL-2, IFN- a 2b, and experimental cancer vaccines are around 10–15%. This 
response in a subset of patients makes it plausible to consider that there is a distinct 
biologic subset of tumors capable of responding to immunotherapeutic interven-
tions. This notion has been advanced farthest in the context of melanoma vaccines. 
In early trials, a potential correlation was extensively investigated between clini-
cal response and the magnitude of the specifi c T cell response induced by the 
vaccine as measured in the peripheral blood compartment. While such correla-
tions have been observed in some studies, clinical responses have clearly been 
seen in patients with frequencies of such T cells below the limit of detection using 
standard assays  [  9  ] , and conversely, complete lack of clinical benefi t has been 
seen in patients with very high T cell frequencies  [  50  ] . This apparent paradox has 
led several investigators to perform a systematic analysis of tumor biopsy material 
to probe for factors in the tumor microenvironment that may determine clinical 
outcome to melanoma vaccines. Using Affymetrix gene expression profi ling, clin-
ical benefi t was seen in a subset of patients who showed an “infl amed” tumor 
microenvironment at baseline (Gajewski et al.)     [  21  ] . Metastases of this type show 
expression of an array of chemokines predicted to be capable of recruiting acti-
vated T cells into the tumor site. Using an in vivo xenograft model, preferential 
recruitment of CD8 +  effector T cells into human melanomas producing high levels 
of chemokines was confi rmed  [  27  ] . These results suggest that one major deter-
mining factor for clinical response to melanoma vaccines is whether T cell traf-
fi cking into the tumor microenvironment can be supported, which is thought to be 
necessary to bring activated cytotoxic T cells into contact with tumor cells in 
order for the latter to be killed. 
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 Two additional independent melanoma vaccine trials have also revealed evidence 
for an “infl amed” tumor phenotype being associated with clinical benefi t from the 
vaccine. The fi rst is a dendriticcell-based vaccine led by Gerold Schuler’s group in 
Erlangen. They utilized a combination of class I and class II MHC-binding epitopes 
pulsed onto mature autologous dendritic cells. While strong immune responses 
were induced in the majority of patients, there was not a clear association between 
the magnitude of that immune response and clinical benefi t. A subset of patients had 
tumor material available for gene expression profi ling. When gene expression data 
were analyzed according to patient survival, the set of transcripts associated with 
favorable clinical outcome included a set of chemokines and T cell markers  [  24  ] . In 
a separate study of a MAGE3 protein-based vaccine carried out by GSK-Bio, 
patients with advanced melanoma were vaccinated and gene expression profi ling 
from pretreatment biopsies was similarly analyzed. Again, favorable clinical out-
come was associated with a set of chemokines and T cell transcripts present in the 
tumor  [  65  ] . Thus, although the sample size from each of these studies was relatively 
small, these results collectively support the notion that an “immune signature” pre-
existing in the melanoma microenvironment might be predictive of a positive clini-
cal outcome to melanoma vaccines  [  20  ] . This hypothesis is currently being tested in 
prospective clinical trials of the MAGE3 protein vaccine by GSK-Bio. 

 It may seem paradoxical that a subset of tumors shows evidence for spontaneous 
infl ammation that includes activated CD8 +  T cells, yet those tumors have nonethe-
less persisted in the face of an ongoing immune response. In a limited number of 
patients with suffi cient fresh tissue for analysis, peptide/HLA-A2 tetramer staining 
has confi rmed that a subset of these T cells in fact recognizes tumor antigens  [  1,   26, 
  38,   70  ] . The reason why these tumors are not rejected spontaneously probably lies 
at the level of immune suppressive pathways engaged within the tumor microenvi-
ronment. Direct ex vivo analysis of CD8 +  T cells from melanoma metastases has 
shown minimal expression of cytotoxic granule proteins and defective cytokine 
production in response to restimulation with specifi c antigen, consistent with this 
notion  [  1,   26,   38,   70  ] . As a potential mechanistic explanation, analysis of the 
infl amed tumor subset has revealed the highest level of expression of defi ned 
immune inhibitory factors  [  19  ] . These include the tryptophan-catabolizing enzyme 
indoleamine-2,3-dioxygenase (IDO), which has been implicated in maternal/fetal 
tolerance  [  40  ] ; the ligand PD-L1/B7-H1, which engages an inhibitory receptor 
on activated T cells called PD-1  [  14  ] ; and the presence of regulatory T cells 
expressing the CD4 + CD25 + FoxP3 +  phenotype, which have been shown to mediate 
extrinsic suppression of activated T cells in the tumor setting  [  42  ] . In addition to 
the presence of these three dominant inhibitory mechanisms, these tumors also 
lack meaningful levels of expression of the T cell costimulatory ligands B7-1 and 
B7-2. Absence of B7 ligands has been shown to lead to the T cell refractory state 
called T cell anergy  [  54,   67  ] , which also likely contributes to T cell hyporespon-
siveness in the tumor context. 

 The characterization of these defi ned immune inhibitory mechanisms has pointed 
toward new potential targets for therapeutic intervention. Blockade or reversal of 
these immune-suppressive pathways should be capable of restoring T cell function 



333 Predictive Biomarkers as a Guide to Future Therapy Selection in Melanoma

and promoting immune-mediated tumor regression in vivo. Indeed, preclinical studies 
have shown that blockade of IDO with small molecule inhibitors  [  39,   64  ] , interfer-
ence with PD-1/PD-L1 interactions with specifi c monoclonal antibodies or through 
the use of knockout mice  [  5,   68  ] , depletion of Tregs by targeting CD25  [  58  ] , and 
reversal of T cell anergy through forced homeostatic proliferation  [  6  ]  have shown 
evidence of antitumor activity in defi ned model systems. 

 Each of these approaches to block negative regulation is already being trans-
lated to the clinic. The IDO inhibitor 1-methyltryptophan is currently undergoing 
phase I clinical development, and a newer more potent IDO inhibitor has just 
entered clinical testing  [  34  ] . Impressive phase II results with an anti-PD-1 mAb 
were presented at the 2010 ASCO annual meeting, in which approximately 30% of 
patients with advanced melanoma, renal cell carcinoma, and non-small-cell lung 
cancer showed clinical responses  [  59  ] . Depletion of Tregs has been pursued with 
denileukin diftitox  [  12  ] , an IL-2-diptheria toxin fusion protein, and with dacli-
zumab, an anti-CD25 mAb  [  47  ] . Interestingly, clinical responses with Ontak as a 
single agent have been reported in melanoma  [  46  ] . Finally, homeostatic prolifera-
tion of T cells, driven by their transfer into lymphopenic hosts, has been found to 
markedly increase the clinical effi cacy of adoptively transferred autologous tumor-
infi ltrating lymphocytes in melanoma  [  49  ] . Together, these observations fi rmly 
support the continued study of the tumor microenvironment for clues to improve 
the effector phase of the antitumor T cell response toward improved tumor rejec-
tion in patients. 

 It seems likely that clinical responses to each of the above maneuvers to counter 
negative regulatory pathways might be preferentially observed in patients with 
tumors showing a high level of basal expression of the immune inhibitory mecha-
nism of interest. For example, preliminary biomarker studies in a subset of patients 
with available tissue have suggested that clinical response to anti-PD-1 mAb may be 
enriched in the patients with tumors showing high cell surface staining for PD-L1. 
Similar results might be expected for strategies targeting IDO and Tregs. Therefore, 
it is hoped that tumor tissue will be banked whenever possible as clinical develop-
ment of these agents continues, to determine whether a biologic feature of the tumor 
microenvironment can reproducibly enrich for the potentially responsive patient 
subpopulation. 

 While the observations and implications described above have been driven by 
analysis of the tumor microenvironment in the context of melanoma vaccines, it is 
critical to understand whether clinical benefi t from other immunotherapeutic 
approaches might also be associated with an “infl amed” melanoma tumor microen-
vironment phenotype. In fact, preliminary results presented at the ASCO 2009 
annual meeting suggest that this may be the case. Atkins and colleagues reported 
that tumors with expression of a set of chemokines and cytokines were more likely 
to respond after treatment with IL-2  [  57  ] . In addition, Hamid et al. reported that 
clinical responses to the anti-CTLA-4 mAb ipilimumab were more likely to occur 
in patients with tumors expressing several immunoregulatory molecules  [  25  ] . 
Together, these observations suggest that an ongoing dialogue between the tumor 
and the host immune response might be a prerequisite for clinical benefi t to several 
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specifi c immunotherapeutic interventions, a concept that should be evaluated in 
more detail through prospective biomarker-driven clinical trials.  

   Molecular Features Associated with Response to Chemotherapy 

 There is often excitement surrounding the scientifi c development of new drugs such 
as kinase inhibitors and novel mAbs, and biomarker studies can be more compelling 
to carry out with new agents. However, it may be just as important to identify pre-
dictive biomarkers for clinical activity of older therapies, such as chemotherapeutic 
agents. This is especially important to entertain given the low response rate to che-
motherapies such as dacarbazine, which implies that the majority of patients might 
receive the drug and never derive clinical benefi t. Sensitivity vs. resistance to alky-
lating agents such as dacarbazine or temozolomide might be predicted to be inversely 
correlated with expression of DNA repair enzymes, such as O 6 -methylguanine 
methyltransferase (MGMT). Indeed, methylation and presumed silencing of the 
MGMT gene has been shown to be associated with a favorable clinical response of 
glioblastoma to temozolomide plus radiation  [  28  ] . With this experience as a founda-
tion, Tawby et al. recently reported on a study of molecular profi ling in melanoma 
and association with outcome in 21 patients treated with dacarbazine. Using a com-
bination of gene expression profi ling and analysis of gene locus methylation status, 
they identifi ed a 9 gene predictor  [  61  ] . Interestingly, some of these genes encode 
signaling proteins (RasSF4) or immunoregulatory molecules (NKG7). It is note-
worthy that MGMT did not emerge as a candidate gene in this study. This is consis-
tent with the lack of added clinical benefi t with the addition of the MGMT inhibitor 
O 6 -benzylguanine in melanoma  [  23  ] , and suggests that alternative resistance mech-
anisms of melanoma to alkylating agents are likely dominant. Expression of anti-
apoptotic proteins such as Mcl-1 is interesting to consider. While still early in 
development, these initial observations support continued investigation of potential 
predictive biomarkers for clinical benefi t to standard chemotherapeutic agents in 
this disease.  

   Biomarkers as a Tool to Determine Mechanisms 
of Therapeutic Resistance 

 Once a mechanism-based predictive biomarker has been defi ned, identifi cation of 
resistance mechanisms that emerge following an initial response to therapy should, 
in principle, be facilitated. As a consequence, rapid development of next genera-
tion therapies that counter the acquired mechanism of resistance should be cata-
lyzed. This concept is perhaps best exemplifi ed by the studies of patients with 
chronic myelogenous leukemia (CML) treated with Gleevec, from whom new 
mutations in the Abl kinase domain were identifi ed rendering the kinase resistant 
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to inhibition by the drug  [  55,   60  ] . In melanoma, early results with B-Raf inhibitors 
have been generated. In contrast to the CML experience, preliminary data have 
suggested that patients with melanomas expressing B-Raf V600E do not appear to 
develop new mutations in the B-Raf molecule when resistant disease emerges. Yet, 
the Ras pathway appears to become reactivated as evidenced by elevated levels of 
phosphorylated ERK. Analysis of resistant melanoma cell lines and confi rmatory 
evaluations of biopsy material from a subset of treated patients has suggested that 
genetic alterations that activate the Ras pathway upstream from, or parallel to, 
B-Raf can occur. Changes described to date have included acquired mutations in 
N-Ras, and also acquired expression of the PDGFR b   [  41  ] . Understanding these 
new molecular changes has suggested candidate drugs that could be tested for syn-
ergy with B-Raf inhibitors, either to prevent emergence of resistance or to treat 
resistant disease. 

 A similar type of analysis is being carried out through longitudinal analysis of 
tumor biopsy material from patients being treated with immunotherapies. An inter-
esting case at the University of Chicago has been studied in detail in which a patient 
at baseline was found to display the “infl amed” melanoma gene expression profi le, 
and experienced a clinical response to a melanoma peptide vaccine. This response 
lasted around 3 years, at which time recurrent tumor was biopsied and reanalyzed 
by gene expression profi ling. The recurrent tumor was found to lack the infl amed 
signature, and also to lack tumor penetration of CD8 +  T cells (Gajewski et al., 
unpublished observation)   . This observation suggests that a more aggressive tumor 
microenvironment can emerge under immune selective pressure, and highlights the 
need to develop new therapeutic strategies to promote T cell recruitment into meta-
static tumor sites.  

   Predictive Biomarkers from Non-Tumor Tissue: 
Serum and Germline DNA 

 All of the analyses described above have been performed using tumor tissue as a 
source of material for biomarker study. However, it would be very desirable to 
develop less invasive means by which to determine the potential to respond to a 
given therapy. One approach being explored involves analysis of serum or plasma 
obtained prior to treatment, to identify patterns of circulating proteins that might 
indirectly refl ect the biology of the tumor site. An interesting pilot study has been 
published by Kaufman and colleagues in the context of clinical response to high-
dose IL-2, in which high levels of VEGF and fi bronectin were found to be inversely 
correlated with clinical benefi t  [  51  ] . A second approach is the evaluation of ger-
mline genetic polymorphisms, based on the hypothesis that, particularly with immu-
notherapies, the tumor-host interaction might be greatly infl uenced by specifi c 
differences in immunoregulatory genes. Again in the context of high-dose IL-2, 
polymorphisms in the gene encoding the chemokine receptor CCR5 have been asso-
ciated with clinical outcome  [  63  ] . It is hoped that the pursuit of these and other 
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blood-based predictive biomarkers will be prospectively evaluated as large phase II 
and phase III clinical trials of effective agents in melanoma are carried out.  

   The Evolving Future of Melanoma Therapy 

 Melanoma has recently earned the designation as “an unlikely poster child for 
personalized cancer therapy”  [  56  ] . It is not diffi cult to envision that within the next 
several years, melanoma tumors will be routinely screened for the presence of a 
panel of specifi c markers to determine assignment of individual patients to the most 
appropriate therapeutic approaches (Table  3.1 ). Indeed, analysis of these markers is 
now frequently used in academic centers for the majority of new patients presenting 
with metastatic disease and is on the verge of becoming standard practice. Mutations 
in B-Raf or c-kit will determine eligibility for treatment with the respective specifi c 
kinase inhibitors. The activation status of other signaling pathways may be used to 
predict benefi t to other new targeted agents. Expression of selected tumor antigens 
(e.g., MAGE-3 or NY-Eso-1) will be utilized to identify patients who are candidates 
for antigen-specifi c vaccines. The presence of an “infl amed” tumor microenviron-
ment, anticipated to be characterized using a small gene set analyzed by qRT-PCR 
much like the OncotypeDx in breast cancer  [  31  ] , might be utilized to consider 
patients for a range of immunotherapeutic interventions; and expression of PD-L1, 
IDO, or presence of intratumoral Tregs might be used to decide on administration 
of agents targeting those suppressive mechanisms. Having these predictive bio-
markers in hand will affect the care of melanoma patients in multiple ways. First, it 
should lead to a greater likelihood of clinical response with the fi rst therapeutic 
modality selected for a given patient. This should in turn lead to improved overall 
survival of this traditionally diffi cult to treat population. Second, as mentioned 
above, having a specifi c molecular pathway that is being targeted should enable 
identifi cation of escape mechanisms that, when studied, may lead to the more rapid 
identifi cation of new therapeutic interventions to prevent or overcome resistance. 

   Table 3.1    Emerging molecular markers that may facilitate patient-specifi c therapy 
in melanoma   

 Molecular biomarker  Therapeutic modality 
 Ongoing in development 

 B-Raf V600E  PLX4032, GSK2118436 
 Mutant c-kit  Imatinib, nilotinib 
 MAGE-3 +   MAGE-3 protein vaccine 
 “Infl amed” tumor microenvironment  Vaccines, other immunotherapeutics 

 Future potential 
 Active notch  Gamma secretase inhibitors (GSIs) 
 Mutant PI3K/PTEN loss  PI3K inhibitors, Akt inhibitors 
 Mutant c-met  c-met inhibitors 
 Mutant ErbB4  Lapatinib 
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Third, characterization of tumors that lack any of these potential predictive 
biomarkers (e.g., B-Raf and c-kit wild type, absence of infl ammatory signature) 
should proceed at an accelerated pace, to identify new pathways that might be ame-
nable to novel therapeutic approaches. Finally, in order to bring patient-specifi c 
therapy into the mainstream, an infrastructure will need to be developed for rapid 
evaluation of patients’ tumors for molecular markers, using validated quality-con-
trolled assays with a rapid turnaround time suitable for the pace of clinical decision 
making. This will likely involve a combination of molecular diagnostic laboratories 
at academic oncology centers and commercial laboratories with expertise in specifi c 
assay systems, as well as educational programs for updating community oncologists 
on the rapidly evolving standard practice.       
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  Abstract   We have embarked on an exciting era of targeted therapy in oncology, 
and in many ways a most exciting one for melanoma. Understanding the fundamen-
tal genetic changes that govern the development and growth of melanoma has pro-
pelled the fi eld forward. Genetic mutations in  KIT  have proven to be successful 
targets of several tyrosine kinase inhibitors with demonstrated clinical effi cacy in 
gastrointestinal stromal tumors (GIST). With the identifi cation of mutations and 
amplifi cations in  KIT  in melanomas that occur on acral and mucosal surfaces as 
well as on skin with chronic sun damage, initial reports of treatment with inhibitors 
in selected patients have suggested promising clinical activity. In this chapter, we 
review the biology of KIT and its role in melanoma as well report on the current 
experience with kinase inhibitors in selected melanoma patient populations. We will 
also outline the ongoing efforts that strive to answer critical questions on effi cacy, 
dosing, and tumor genomics that predict response and suggest mechanisms of 
resistance.  

  Keywords   KIT  •  CD117  •  Acral melanoma  •  Mucosal melanoma  •  Chronic 
 sun-damaged skin  •  Imatinib  •  Sunitinib  •  Nilotinib  •  Dasatinib  •  Masatinib      

   Introduction 

 The age of targeted therapy is upon us and strides are being made in categorizing 
melanomas on the basis of their driving oncogenic mutations, with the goal of pro-
viding patients with truly personalized medicine. Several mutations in melanoma 
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have been identifi ed with the hope to exploit these molecular aberrations as effective 
 drugable  targets (reviewed in Ibrahim and Haluska  [  42  ] ). The most common muta-
tion in melanoma is BRAF V600E , which occurs in up to 66% of melanomas  [  14  ] . Not 
long after the discovery of BRAF mutations in melanoma, activating mutations and 
amplifi cation in the  KIT  gene in melanomas originating from mucosal, acral, and 
skin with chronic sun damage (CSD) were reported with modest frequency  [  13  ] . 
More importantly, for translational relevance, many of the KIT mutations found in 
these melanomas involve the juxtamembrane position thus predicting sensitivity to 
inhibition with tyrosine kinase inhibitors (TKIs) such as imatinib. Several case reports 
have showcased the effi cacy of various TKIs in patients with metastatic melanoma 
with  KIT  mutation/amplifi cation. Clinical trials are underway for selected patients 
to test the effect of these agents and to better understand the molecular mechanisms 
associated with response and resistance to such targeted therapy.   

   KIT as a Proto-Oncogene 

 The proto-oncogene  KIT  plays a critical role in melanocyte proliferation, migration, 
and survival. KIT is a type III trans-membrane receptor tyrosine kinase (RTK) that 
contains fi ve immunoglobulin-like domains in its extracellular portion, a single 
transmembrane region, an inhibitory cytoplasmic/juxtamembrane domain, and a 
split cytoplasmic kinase domain separated by a kinase insert segment  [  84  ] . Binding 
of its ligand stem cell factor (SCF) to the extracellular domain results in receptor 
dimerization, activation of the intracellular tyrosine kinase domain, and fi nally recep-
tor activation  [  50  ] . The mitogen-activated protein kinase (MAPK), phosphatidylinositol-
3 ¢ -kinase (PI3K) as well as JAK/signal transducers and activators of transcription 
(JAK/STAT) are downstream effector pathways of KIT signaling (Fig.  4.1 ). Such 
KIT-driven intracellular signaling delineates its critical role in the development of 
various mammalian cells including melanocytes, hematopoietic progenitor cells, 
mast cells, primordial germ cells, and intestinal cells of Cajal  [  22,   29,   63  ] .  

 Although shown to be essential in melanocyte development, the exact mecha-
nisms for KIT signaling in melanocyte proliferation, migration, differentiation, and 
survival remain to be elucidated. Inactivating mutations in  KIT  which impair its 
kinase activity lead to developmental disorders that result in amelanotic congenital 
patches of white skin associated with human piebaldism and mouse dominant white 
spotting  [  26,   27  ] . Furthermore, KIT inactivation in melanocyte precursors prevents 
their dispersion and survival  [  78  ] . In murine models, mutations in  KIT  or SCF result 
in animals lacking melanocytes and functional mast cells along with defects in 
hematopoiesis and germ cell development  [  23,   24  ] . This phenotype closely resem-
bles that seen in humans with mutations in MITF (microphthalmia transcription 
factor), resulting in Waardenburg Syndrome type II  [  36  ] . This striking similarity led 
to the hypothesis that SCF, KIT, and MITF act in a common growth/differentiation 
pathway. Hemesath et al. demonstrated that the activated protein, c-KIT, phospho-
rylates MITF through activation of MAPK thereby altering the expression of genes 
mediating cell lineage commitment, development, and survival  [  37  ] .  
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  Fig. 4.1    Diagram of c KIT  signaling pathways. Ligand binding of SCF (stem cell factor) promotes 
KIT receptor dimerization leading to phosphorylation and activation of the tyrosine kinase 
domains. Once activated, KIT signals to downstream effector pathways: the RAS-FAR-MEK path-
way, the PI3K (phosphoinositol-3 kinase) pathway, and the JAK-STAT pathway. Activated KIT 
also signal through PLC and SRC leading to cellular proliferation, migration, and survival.  TM  
transmembrane;  TK  tyrosine kinase;  JMD  juxtamembrane domain (encoded by exon 11);  JAK  
Janus kinase;  STAT  signal transducers and activators of transcription;  Src  short for sarcoma, a 
tyrosine kinase;  PI3K  phosphoinositol-3 kinase;  PDK1  pyruvate dehydrogenase kinase, isozyme 1; 
 PLC  phospholipase C;  PKC  protein kinase C;  ERK  extracellular regulated kinase;  MEK  MAP 
kinase/ERK kinase kinase       
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   The Role of KIT in Cancer 

 Abnormal activation of KIT via autocrine secretion of SCF has been observed in 
various cancers such as breast, gynecological, colorectal, small cell lung cancer, and 
neuroblastoma  [  9  ] . The role of KIT in melanoma has been historically controver-
sial. Even though KIT has been shown to be critical for melanocyte development, its 
expression is frequently lost during progression of melanoma from early to advanced 
disease  [  48,   61,   62  ] . KIT also has antitumor properties as its expression in KIT-
negative human melanoma cell lines triggers apoptosis  [  41  ] . Alexeev et al. elo-
quently demonstrated that constitutive activation of the KIT receptor did not result 
in melanogenesis or proliferation, but promoted migration of melanocytes that was 
not associated with tumorigenic transformation  [  2  ] . This work illustrated the role of 
KIT in transmitting pro-migration signals, which may antagonize proliferation and 
tumorigenesis  [  2  ] . This may provide an explanation as to why melanocytes lose KIT 
expression during melanogenesis. KIT is responsible for not only melanocyte 
migration but also morphology, resulting in spindle-shaped bodies and decreased 
number of dendrites  [  2  ] . These fi ndings were consistent with prior work illustrating 
how KIT activation can promote melanocyte adhesion and migration on fi bronec-
tin, regulate integrin expression, as well as reorganize the cytoskeleton by inducing 
a rapid increase in actin stress fi ber formation  [  71  ] . Such observations led to earlier 
speculation that KIT may function as a tumor suppressor gene, as loss of KIT 
expression interfered with mobility and proliferative properties in transformed 
melanocytes. 

 Bastian et al. set out to identify genetic changes that occur in primary cutaneous 
melanoma using comparative genomic hybridization (CGH)  [  5  ] . In addition to 
losses and gains of several chromosomes in many of the samples, they observed a 
small amplifi cation on the proximal 4q region in a subungual melanoma that 
occurred on the fi nger  [  5  ] . Among potential gene candidates that map to 4q12-13 
are platelet-derived growth factor receptor (PDGFR) and KIT. However, the techni-
cal resolution at the time was not adequate to suffi ciently identify the affected gene. 
Following up on this initial observation, CGH analysis of chromosomal aberrations 
in 15 acral melanomas and 15 superfi cial spreading melanomas (SSM) that were 
matched for tumor thickness and patient age was performed  [  4  ] . Comparisons of 
gene amplifi cations in acral melanomas to SSM were made. The most frequently 
amplifi ed regions occurred at 11q13 (47%), 22q11-13 (40%), and 5p15 (20%) in 
acral melanomas. These amplifi cations were believed to occur early in tumorigen-
esis as supported by the fi nding of amplifi cations of 11q13 in 3 of 5 additional cases 
of acral melanoma in situ. Furthermore, isolated melanocytes with amplifi cations in 
the epidermis up to 3 mm beyond the histologically detectable boundary were iden-
tifi ed in 5 of 15 invasive acral melanomas. Additional analyses of skin adjacent to 
acral melanomas using CGH and fl uorescent in situ hybridization (FISH) detected 
melanocytic cells with genetic amplifi cations in the epidermis in 84% of cases  [  64  ] . 
Further genetic analysis of these cells, termed “fi eld cells,” indicated that they were 
in an early phase of disease preceding melanoma in situ. Tumor thickness was not 
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predictive of the extent of fi eld cells. This is important as it provides a possible 
explanation for local recurrence of melanoma following complete excision and may 
even help guide surgical management. This has implications, not only for KIT-
driven melanoma, but also potentially for all subtypes. Additional studies are needed 
to better understand the biology of these fi eld cells and explore the impact of wider 
surgical margins on recurrence in these patients. 

 It is now obvious that the role of KIT in melanoma development and propagation 
is more intricate than initially thought. Although BRAF V600E  is the most common 
mutation in cutaneous melanoma  [  14  ] , genetic characterization of acral, mucosal, 
and CSD melanomas revealed rare mutations in BRAF V600E   [  53  ] . A paradigm shift 
in categorizing melanomas based on their anatomic origin provided further oppor-
tunity to identify genomic aberrations in melanoma subtypes. A large study of 102 
primary melanomas (38 mucosal, 28 acral, 18 CSD skin, and 18 non-CSD skin) 
utilized CGH to detect DNA copy number aberrations  [  13  ] . A narrow amplifi cation 
on chromosome 4q12 was observed and offered  KIT  as a candidate gene. Mutational 
analysis of  KIT  in the samples with amplifi cations detected mutations in three of the 
seven tumors. Altogether, mutations and/or amplifi cation in  KIT  were discovered in 
39% of mucosal, 36% of acral, and 28% of melanomas arising in CSD skin as 
defi ned by the presence of pathologic solar elastosis. No aberrations in  KIT  were 
detected in melanomas occurring on non-CSD skin; these had a high frequency of 
BRAF V600E  mutations. Interestingly, mutations in NRAS or BRAF were almost virtu-
ally exclusive of amplifi cations in KIT, suggesting that certain subtypes of melano-
mas are dependent on specifi c genomic aberrations. A separate study of melanoma 
metastases found a subset to overexpress KIT  [  6  ] . Interestingly, and in comparison to 
other KIT-driven tumors such as gastrointestinal stromal tumors (GIST)  [  57  ]    , approx-
imately one-third of  KIT  mutations found in melanomas involve exon 11 (L576P) 
 [  6  ] . As these mutations occur in the juxtamembrane domain, they are predictive of 
sensitivity to TKIs, including imatinib, nilotinib, dasatinib, and sunitinib  [  25  ] . 

 To better understand the role activating KIT mutations play in melanocytes, 
Monsel et al. characterized the physiological responses of melanocytes expressing 
the most frequent KIT mutations in melanoma (K642E, L576P) along with a novel 
mutation (D576P) that was identifi ed in an acral melanoma  [  59  ] . They demonstrated 
that this activation of the KIT receptor in melanocytes primarily involves the PI3K/
Akt pathway rather than the Ras/Raf/Mek/Erk pathway. However, activation of the 
PI3K pathway alone in cells harboring  KIT  mutations was not suffi cient to promote 
uncontrolled melanocyte growth and melanomagenesis, suggesting that a tissue-
specifi c epigenetic environment is required in vivo. Cooperation with active HIF-1a 
(hypoxia inducible factor) led to transformation of the KIT mutant melanocytes 
further suggesting that a hypoxic tissue environment contributes to melanocyte 
transformation. Furthermore, proliferation of the transformed melanocytes was spe-
cifi cally inhibited by imatinib. The authors speculated that such a strict dependency 
of  KIT- mutated cells on the microenvironment might account for the very low fre-
quency (approximately 2%) of  KIT  mutations in cutaneous melanoma  [  6,   13  ] . Their 
work suggests a distinct molecular mechanism for melanocyte transformation as a 
consequence of a KIT-activating mutation.  
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   KIT Tyrosine Kinase Inhibitors 

 The identifi cation of  KIT  mutations in melanoma subtypes has direct therapeutic 
implications. The mutation spectrum of  KIT  in melanoma resembles that of GIST 
where most mutations occur in exon 11, which encodes the juxtamembrane domain 
 [  6  ] . The juxtamembrane domain of KIT provides a critical auto-inhibitory function 
that can be disrupted by mutations that change the amino-acid sequence  [  76  ] . These 
mutations lead to constitutive activation of KIT thereby initiating a series of signaling 
events that result in cellular proliferation  [  77  ]  and tumor progression. Mutations in the 
juxtamembrane region predict clinical responsiveness to TKIs  [  35  ] . Documented 
exon 11 mutations in melanoma include point mutations, in-frame deletions, and 
insertions that result in constitutive activation of the  KIT  receptor  [  25  ] . The most com-
mon  KIT  mutation in melanoma occurs in exon 11, L576P, with an approximate inci-
dence of 35% across all cases reported to date  [  25  ] . Importantly, GIST with exon 11 
mutations have been reported to respond well to treatment with imatinib  [  34  ] . 
Mutations in exons 13 (encoding the tyrosine kinase-1) and 17 (encoding the tyrosine 
kinase-2) are more frequent in melanoma than in GIST. The next most common muta-
tion is K642E in exon 13, with a rate of 16.3% in published melanoma cases  [  25  ] . 

 Importantly, the clinical experience with response to different TKIs relevant to 
the particular  KIT  mutation is not yet mature. Imatinib is a fi rst-generation TKI with 
activity targeting the Bcr-Abl fusion protein, c-abl, abl-related gene (ARG), PDGFR, 
and the  KIT  tyrosine kinase receptor  [  16,   65,   70  ] . Over 85% of GIST harbor an 
activating mutation in  KIT  and treatment with imatinib has signifi cantly improved 
survival in this disease  [  8,   54  ] . Clinical experience in patients with GIST indicates 
that the presence and location of specifi c mutations in  KIT  can predict sensitivity 
and resistance patterns to  KIT  inhibitors  [  34  ] . One of the fi rst reports testing the 
effi cacy of imatinib in melanoma was its use in patients with ocular melanoma 
whose tumors were found to express CD117 ( KIT ) by immunohistochemistry (IHC) 
 [  19  ]  (Table  4.1 ). Of the three patients with positive IHC, two had a partial response 
with a reduction of malignant ascites in one patient and a partial remission of neck 
lymphadenopathy in the other patient  [  19  ] . An additional study of 21 patients with 
metastatic uveal melanoma revealed strong expression of KIT in 55% of primary 
uveal melanomas and in 76% of metastases  [  40  ] . Twelve patients were subsequently 
treated with imatinib 600 mg daily. Three patients discontinued therapy early due to 
signifi cant and obvious disease progression. Of the nine patients who completed 
more than 8 weeks of treatment, none achieved an objective response. The best 
clinical outcome was one patient with stable disease for 52 weeks. Evaluation of 
 KIT  exons 11, 13, 17, and 18 did not reveal any mutations in the 21 cases. 

 Additional phase II trials of imatinib in unselected patients with metastatic mel-
anoma provided little evidence of clinical benefi t  [  45,   74,   82  ] . In the study by 
Ugurel et al., only 2 of 16 patients (one with an acral melanoma and the other with 
a mucosal melanoma) were representative of the study population that would be 
most likely to have a  KIT  mutation/amplifi cation  [  7,   74  ] . Concluding that  KIT  inhi-
bition was ineffective in melanoma might have been premature in this unselected 
patient population. 
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 To date, the clinical activity of imatinib in patients with  KIT -mutated melanomas 
has been described in a series of case reports (Table  4.1 ). In 2008, the fi rst two cases 
were independently reported by Hodi et al. and Lutzky et al. documenting signifi -
cant clinical responses to imatinib in metastatic mucosal melanoma  [  39,   52  ] . The 
former report was that of a 79-year-old female with a primary rectal melanoma that 
exhibited strong CD117 staining by IHC and upon sequencing, found to contain a 
7-codon duplication in exon 11 of  KIT   [  39  ] . Following 4 weeks of therapy with 
imatinib 400 mg daily, PET/CT revealed a marked response in the preexisting meta-
static disease with complete resolution of the FDG-avid right epicardial and adrenal 
masses. The latter report importantly suggested that the responsiveness and durabil-
ity of response to imatinib was dose-dependent (discussed further in Section 
“Overcoming Resistance to Tyrosine Kinase Inhibition”). Satzger et al. reported on 
a 79-year-old female with an anal melanoma with a  KIT -activating mutation, L576P, 
in exon 11 who achieved stable disease on 400 mg daily of imatinib  [  69  ] . Imatinib 
was also used to treat a 61-year-old male with a primary acral lentiginous melanoma 
of the thumb metastatic to the regional axillary lymph nodes and lungs  [  83  ] . He had 
regression of the nodal and lung metastases and a signifi cant decrease in the size of 
the primary melanoma. A mutation in  KIT  was detected in his primary tumor, 
K642E, which has also been reported to occur in GIST. 

 A recent report of four patients with mucosal melanomas containing mutations 
in  KIT  demonstrated systemic partial responses in all patients. However, it further 
showcased a potential limitation of therapy, as three of the four patients developed 
and succumbed to central nervous system (CNS) metastases  [  33  ] . Additionally, in 
this report one patient with a D820Y mutation in exon 17 of  KIT  received sorafenib 
as this mutation has been shown to be resistant to imatinib therapy in vitro  [  32  ] . This 
presents an important question that remains in targeting  KIT -mutant melanomas, as 
to whether specifi c  KIT  mutations in an individual patient’s tumor may have greater 
susceptibility for clinical responses to one particular  KIT  TKI vs. another. Moreover, 
it underscores the possibility that the CNS may serve as a sanctuary site for disease 
relapse and whether TKIs could be effective in treating CNS metastases. Carvajal 
et al. reported in abstract form fi ve patients with acral and mucosal melanomas 
containing mutations in either exon 11 or 13 (one patient had amplifi cation of exon 
11) who were treated with imatinib  [  11  ] . Of the fi ve patients, three achieved a par-
tial response and two had stable disease. Interestingly, heterogeneous mutational 
status of  KIT  has been reported in one patient with a metastatic melanoma  [  73  ] . The 
64-year-old woman with a primary acral melanoma of her left great toe had locore-
gional metastases to inguinal lymph nodes and a large mass obstructing the left 
main bronchus. She was treated with imatinib 400 mg daily. After 6 weeks of ther-
apy, imaging revealed regression of the pulmonary mass but marked progression of 
the left lymph node metastasis. Mutation analysis of  KIT  was subsequently per-
formed and revealed only wild-type sequences in the primary tumor and the lymph 
node. However, a mutation in exon 11, V559A, was detected in the responding lung 
mass. This case illustrates that genomic heterogeneity in metastatic tumors can 
exist; the mutational status of a corresponding tumor is highly predictive for treat-
ment outcome, and again echoes that the sole overexpression of  KIT  by IHC may 
not be suitable for patient selection  [  40  ] . 
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 Imatinib is currently being investigated in phase II trials in selected patients with 
metastatic melanoma occurring on mucosal, acral, or CSD skin that harbor a  KIT  
mutation and/or amplifi cation (NCT00881049; NCT00424515). One trial was 
designed to permit dose escalation from 400 mg daily to 800 mg daily upon disease 
progression (NCT00424515). The second trial initiated treatment at 800 mg/day 
and permitted dose reductions. As suggested by case report series, responses can 
be dramatic with early evidence of activity predicted by PET imaging and can be 
durable for many months. An example of such a response is depicted in Fig.  4.2 . 

  Fig. 4.2    Patient CT images showing response. Dramatic response to treatment with imatinib after 
1 month in a patient with an activating KIT mutation       
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PET imaging before and after imatinib reveals complete resolution of lung metastases 
and a dramatic decrease in the hepatic and pelvic metastases. We currently await the 
mature results of these phase II trials.  

 Following the appreciation of the importance of  KIT  in driving subsets of mela-
nomas and anecdotal reports of clinical benefi ts with imatinib, clinical investigation 
with other  KIT  inhibitors has been initiated in this patient population. These range 
from case reports with additional agents to the development of phase II trials. 
Sorafenib is a multi-kinase inhibitor of VEFGR, BRAF (wild-type and V600E 
mutant), PDGFR- b ,  KIT , and FLT-3  [  80  ] . Single agent activity in melanoma or in 
combination with chemotherapy has not yielded meaningful responses  [  3,   18,   20, 
  21,   55  ] . A complete response to sorafenib that lasted about 5 months in a patient 
with a mucosal melanoma with a V560A mutation in exon 11 was reported  [  67  ] . 
Dasatinib is a second-generation inhibitor of BCR-ABL that is 325 times more 
potent in vitro than imatinib  [  51  ]  and has been approved in patients with CML who 
are resistant or intolerant to imatinib  [  38  ] . A recent phase III trial comparing dasat-
inib to imatinib in fi rst-line treatment of chronic-phase CML demonstrated signifi -
cantly higher and faster rates of cytogenetic and molecular responses indicating that 
dasatinib may improve the long-term outcomes of these patients  [  43  ] . Dasatinib 
also inhibits EphA2, PDGFR,  KIT , and Src family kinases. Reports of activity in 
KIT-driven melanomas have been reported  [  46,   81  ] . Currently, an Eastern 
Cooperative Oncology Group (ECOG) trial is exploring the effi cacy of dasatinib in 
metastatic mucosal and acral melanomas (Table  4.2 ). Sunitinib is a PDGFR, 
VEGFR, FGF-2 (FGF- b ),  KIT , FLT-3, RET, and CSF1-R inhibitor that has shown 
clinical activity in GIST, renal cell carcinoma, neuroendocrine tumors, sarcoma, 
thyroid cancer, non-small cell lung cancer, and melanoma (reviewed in Chow and 
Eckhardt  [  12  ] ). Sunitinib has demonstrated activity in imatinib-resistant GIST har-
boring a variety of mutations  [  10,   66  ] . Zhu et al. reported a partial response of 70% 
in one patient with a mucosal melanoma containing a V559A mutation in exon 11 
 [  85  ] . An ongoing phase II trial is evaluating sunitinib in patients with metastatic 
mucosal or acral melanomas (NCT00577382). The trial is now enrolling its second 
cohort at a dose of 37.5 mg daily continuous dosing following completion of a 
cohort of patients treated at 50 mg daily 4 weeks on 2 weeks off. Minor et al. 
reported in abstract form the preliminary results of their ongoing phase II trial of 
sunitinib in patients with  KIT  aberrations (amplifi cation or mutation) and at this 
early point in the trial,  KIT  mutations seem to indicate sensitivity to sunitinib 
(NCT00631618)  [  58  ]  (Table  4.2 ). These trials offer the opportunity to shed insight 
into the remaining important questions of comparative effi cacy between TKIs, dif-
fering side effect profi les of various TKIs in this patient population, as well as the 
signifi cance of dose intensity.  

   Overcoming Resistance to Tyrosine Kinase Inhibition 

 It is evident even from the early anecdotal clinical reports that  KIT  mutational status 
is likely predictive of responses to TKIs in certain subtypes of melanoma. There is 
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also suggestion that these responses can be self-limited with subsequent evidence 
for progression with continued therapy. A common mechanism of resistance to 
TKIs in GIST and CML involves acquiring additional  KIT  exon mutations. The 
development of new mutations can be subsequently targeted with a different TKI. In 
addition, resistance to low-dose imatinib can be overcome by dose-escalation with 
achievement of a superior clinical response in CML and GIST  [  47  ] . As previously 
mentioned, Lutzky et al. reported a dose-dependent complete response to imatinib 
in a patient with metastatic anal melanoma that harbored a K642E mutation in exon 
13 as well as amplifi cation of  KIT   [  52  ] . This patient achieved a complete response 
on 400 mg daily of imatinib in less than 8 weeks but required a dose reduction due 
to hematologic side effects. The patient continued to receive 200 mg/day with dose 
escalation to 200 mg/day alternating with 300 mg/day but had progressive disease 8 
weeks later. Imatinib was subsequently increased to 600 mg/day and again a com-
plete response was achieved shortly thereafter. This case demonstrates the complex-
ity of the tumor biology and raises the question as to whether  KIT  amplifi cation in 
addition to mutational status offer predictive value for response to therapy and 
which is more infl uential in overcoming resistance to low-dose tyrosine-kinase inhi-
bition. Furthermore, it highlights the dose-dependent response to imatinib that has 
been reported in GIST where patients with a suboptimal response and progressive 
disease on 400–600 mg/day go on to achieve an improved response upon dose esca-
lation to 800 mg/day (reviewed in Gronchi et al.  [  30  ] ). Additionally, patients with 
exon 9 mutations had a longer progression-free survival when initially treated with 
imatinib 800 mg/day compared to patients with exon 11 or no mutations  [  30  ] . Again, 
this raises the question of specifi c genomic alterations having differing responses to 
a particular TKI. It can be speculated that tumors harboring  KIT  amplifi cations may 
be more prone to developing drug-resistance as they are selected for an escape 
mechanism to tyrosine-kinase inhibition. As a result, this dose-dependence effect 
may be refl ective of particular mutations and/or amplifi cations in  KIT , which is 
important to better defi ne with further clinical experience. 

 In order to overcome the mechanisms of resistance that develop following KIT 
TKI therapy, new generation TKIs have been developed. Nilotinib is a second-gen-
eration Bcr-Abl TKI that is effective in patients with imatinib-resistant or intolerant 
CML in chronic and accelerated phases as well as in imatinib-resistant GIST  [  44, 
  60  ] . It is also an ATP-competitive inhibitor of the protein tyrosine kinase associated 
with Bcr-Abl. Nilotinib binds to wild-type Bcr-Abl to inhibit the tyrosine kinase 
activity of the Abl domain with a potency greater than 30 times that of imatinib  [  44  ] . 
It selectively inhibits both wild-type and mutated  KIT  with activity in exon 11 muta-
tions (V560del, V560G), exon 13 mutations (K642E), and double mutants involv-
ing exons 11 and exons 13 or 17  [  32,   75,   79  ] . The drug lacks activity in exon 14 
mutations (T670I). In addition, nilotinib inhibits FIP1L1-PDGFR a  and SCF-
induced activation of KIT. Importantly, the side effect profi le for nilotinib tends to 
be less severe and more manageable than those of imatinib, dasatinib, and sunitinib 
by reports (Table  4.2 ). A phase II trial is currently underway investigating the effi -
cacy of nilotinib 400 mg twice daily in metastatic melanoma occurring on acral, 
mucosal, or CSD skin with  KIT  mutations who have developed resistance to or were 
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intolerant of treatment with another TKI (NCT00788775) (Table  4.2 ). This trial also 
includes a cohort of patients with CNS metastases with a documented  KIT  mutation. 
As experience in treating patients with metastatic melanoma with  KIT  inhibitors 
continues to grow, it is being observed that patients treated with imatinib tend to 
relapse within the CNS. Therefore, investigating the effi cacy of subsequent therapy 
with TKIs in patients with CNS metastases is paramount in understanding how to 
best manage these patients. An international, open-label phase III trial was recently 
launched to compare nilotinib vs. dacarbazine (DTIC) in patients with metastatic 
melanoma harboring mutations in exons 11, 13, or 17 of  KIT . The primary end-
point for this trial is progression-free survival (NCT01028222). Only patients with 
tumors bearing exon 17 mutations Y822D or Y823D will be accepted for this trial 
(Table  4.2 ). 

 Finally, masatinib is a novel TKI with activity against wild-type and activated 
forms of  KIT , PDGFR a , PDGFR b , Lyn, FGFR3, and focal adhesion kinase (FAK) 
 [  72  ] . Due to its superior selectivity for  KIT , masatinib may exhibit a better safety 
profi le than other kinase inhibitors and can therefore be effective in imatinib-resis-
tant tumors. A phase I study in solid malignancies demonstrated a favorable side 
effect profi le and effi cacy in imatinib-resistant patients and allowed for weight-
based dosing  [  72  ] . Additionally, in a phase II trial in imatinib-naive patients, masa-
tinib had promising clinical activity with tolerable toxicities  [  49  ] . Given masatinib’s 
selectivity, its activity in melanomas harboring  KIT  mutations/amplifi cations is cur-
rently being explored (Table  4.2 ). 

 As we await the maturity of the phase II clinical trials in  KIT -mutated melanoma, 
it is already clear that the next wave in clinical investigation for this melanoma sub-
type must focus on understanding mechanisms of resistance. Whether melanoma 
will share the resistance mechanisms seen in CML and GIST or acquire alternate 
mechanisms such as activation of additional signaling pathways, gene amplifi cation, 
drug metabolism, or regulation of specifi c microRNAs is yet to be determined.  

   Is KIT Amplifi cation or Mutation More Important? 

 It still remains to be delineated whether  KIT -activating mutations alone, vs. ampli-
fi cation alone, vs. mutation plus amplifi cation are suffi cient for a response to a TKI. 
While clinical reports thus far have focused on signifi cant responses in patients 
whose tumors harbor mutations, it will be crucial to understand further the potential 
for clinical benefi t for wild-type amplifi ed tumors as well as whether differences in 
mutated tumors are infl uenced by amplifi cation status. In addition, it will be critical 
to understand the biology that impacts not only response but also the durability of 
response. Current phase II trials are evaluating the correlation between agent, 
response, and the amplifi cation/mutational status of  KIT  (Table  4.2 ). The clinical 
reports thus far highlight the complexities of intracellular signaling in these mela-
noma subtypes and demonstrate that clinical effi cacy determinations go beyond the 
tumors’ amplifi cation and/or mutational status of  KIT.    
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   Conclusions 

 Evaluation of  KIT  mutational status in patients with specifi c subtypes of metastatic 
melanoma is an important step in the age of targeted therapeutics. Mutations in  KIT  
occur with modest frequencies in melanomas that originate on acral, mucosal, and 
CSD skin. Activation of  KIT  via either mutation or gene amplifi cation likely con-
tributes to the clinical course of these melanomas. Constitutive activation of mutated 
 KIT  and the presence of the majority of mutations in the juxtamembrane domain 
provide potential for therapeutic intervention. To date, there is evidence of clinical 
effectiveness in genetically selected patients with metastatic melanoma who are 
treated with  KIT  TKIs. The case reports have documented rapid response to treat-
ment or achievement of stable disease that can last for many months. The mature 
results of these phase II and III trials with the fi rst- and second-generation  KIT  
inhibitors in gnomically selected patients are eagerly awaited. Better understanding 
of the response to treatment, duration, and sites of disease relapse, as well as the 
mechanisms of acquired drug resistance will be invaluable in tailoring more effec-
tive regimens for patients with  KIT -mutated/amplifi ed metastatic melanoma. 
Correlative studies between  KIT  mutational status,  KIT  amplifi cation status, and 
clinical response will be valuable in this effort. More potent and selective  KIT  inhib-
itors are now available and their activity in these subtypes of melanomas is also 
being explored. If the phase II data remain promising, then considerations for adju-
vant therapy with  KIT  inhibition in patients with locally advanced disease who have 
undergone complete surgical resection and lymphadenectomy and found to harbor 
a  KIT  mutation/amplifi cation would need to be made. Will offering TKIs in the 
adjuvant setting impact the relapse-free survival in this genetically selected patient 
population as it has done in patients with GIST  [  15  ] ?  KIT -directed therapy in 
patients whose melanomas are dependent on  KIT  activation is in its early stages of 
development. The future is sure to bring important insights that will have direct 
impact on treatment in this subset of melanoma patients.      
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  Abstract   The hunt for mutated and activated kinases in cancer has proceeded at an 
accelerated pace since the successful treatment of chronic myelogenous leukemia with 
imatinib and with the development of new genomic sequencing technologies. The 
identifi cation of activating mutations in B-Raf in a major subset of melanomas was fi rst 
reported in 2002. Basic laboratory experiments confi rmed the ability of mutant B-Raf 
to function as a driver oncogene in vivo. Relatively rapidly, inhibitors that preferen-
tially target the mutated kinase were developed and tested clinically, and these studies 
revealed that the majority of patients bearing V600E B-Raf mutant melanomas showed 
a clinical response. Positive results of a randomized phase III clinical trial were released 
in early 2011. The current phase of this remarkable story is focused upon understand-
ing mechanisms of primary and secondary resistance to B-Raf inhibitors in the clinic.    

  Keywords   BRAF  •  MAPK  •  Vemurafenib •     MEK •     PLX4032      

   Introduction 

 The MAPK pathway (Fig.  5.1 ) is a key signaling pathway in melanoma. Under 
physiologic conditions, when activated by its ligand, a receptor tyrosine kinase 
(RTK) activates Ras of which there are three isoforms: NRAS, KRAS, and HRAS, 
although in melanoma, it appears that most of the signaling is through NRAS. This 
leads to phosphorylation of the RAF isoforms: ARAF, BRAF, and CRAF. The impor-
tance of the MAPK pathway in melanoma is indicated by observations that close to 
90% of human melanoma tumors have a mutually exclusive activating mutation in 
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BRAF, NRAS, or the RTK cKit. Presumably the remaining 10% of melanomas have 
activating mutations yet to be identifi ed.  

 This chapter will focus on BRAF mutations which are by far the most common 
activating mutation in melanoma. Overall, 50–60% of melanomas are found to have 
an activating mutation in BRAF, most commonly (90–95% of BRAF mutant cases) 
a glutamic acid substituted for a valine at position 600 (V600E). Alternatively, in a 
small percentage of cases, lysine, arginine, or aspartic acid is found to be substituted 
for the valine. While these alternative substitutions are presumed to be activating, 
much less work has been done on these rare mutations. Therefore, when we discuss 
BRAF mutations, we will be referring to the V600E mutation. 

 BRAF mutations appear to be an early event in the development of melanoma. 
A survey of nevi revealed that BRAF mutations were found at approximately the same 
frequency as in melanomas  [  1,   2  ] . This suggests that BRAF mutations are necessary 
but not suffi cient for transformation of melanocytes. This is supported by observations 
from transgenic mice. When the V600E BRAF mutation was inserted into the germline 
of mice under the tyrosinase promoter so that it was only expressed in melanocytic 
cells, mice developed melanocytic hyperplasia but did not develop melanoma  [  3  ] . 
These observations suggest that mutation in BRAF is an early event in the development 
of melanoma but not suffi cient to transform melanocytes fully. However, as discussed 
below, clinical experience indicates that melanomas remain addicted to the BRAF 
mutation and that inhibition of BRAF can lead to dramatic anti-melanoma effects. 

   The MAPK Pathway 

 The MAPK pathway is turning out to be far more complex than expected and much 
is still unknown. However, it appears that engagement of a RTK leads to activation 
of RAS, refl ected by an increase in RAS-GTP. Multiple investigators have shown 

  Fig. 5.1    BRAF in the MAP kinase pathway and relation to other genetically altered pathways in 
melanoma       
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that the presence of Ras-GTP leads to RAF homo- and heterodimerization  [  4–  6  ] . 
When ATP binds to the ATP-binding pocket of one member of dimer pair, it induces 
a conformational change that leads to activation. At the same time, this leads to 
transactivation of the other member of the dimer  [  7,   8  ] . 

 Activated RAF dimers then phosphorylate MEK1 and MEK2 which phosphory-
late and activate ERK. Once activated, ERK has a myriad of targets including tran-
scription factors (notably MITF), kinases, phosphatases, signaling proteins, 
structural proteins, and others (reviewed in  [  9  ] ). In addition, pERK induces negative 
feedback that serves to modulate the output of the MAPK pathway  [  10  ] . ERK can 
directly inhibit CRAF  [  11,   12  ]  and induces expression of negative regulators such 
as sprouty (SPRY) proteins  [  13  ]  and MAP kinase phosphatases (DUSPs)  [  14  ] . 
Sprouty proteins can act inhibit upstream at the level of RAS/RAF; DUSPs can 
inhibit ERK directly. In BRAF-mutated cells, this feedback suppression is partially 
disrupted in that Sprouty2 fails to inhibit mutated BRAF  [  12,   15  ] .  

   BRAF Mutations in Melanoma 

 Since the original discovery of BRAF mutations in human malignancies  [  16  ] , it has 
become clear that 40–60% of melanomas harbor a BRAF mutation. BRAF muta-
tions are most commonly seen in melanomas that arise at cutaneous sites exposed 
intermittently to sunlight  [  17  ]  such as the trunk or extremities. Melanomas arising 
in chronically sun-exposed skin  [  17,   18  ] , acral-lentiginous sites  [  17  ] , mucosal sites 
 [  17,   19  ] , harbor BRAF mutations less frequently. Uveal melanomas almost never 
harbor BRAF mutations  [  20  ]  although paradoxically, some uveal melanoma cell 
lines contain BRAF mutations. This may suggest that a small subset of uveal mela-
nomas harbor BRAF mutations and these are more likely to adapt to in vitro culture 
conditions. Indeed, BRAF-mutated melanomas seem to be generally easier to estab-
lish in tissue culture than BRAF wild-type melanoma. 

 There is some evidence that melanomas harboring BRAF mutations have a worse 
prognosis than BRAF wild-type melanomas  [  21,   22  ] , although this correlation has 
not been seen universally  [  23  ] . Larger analyses will be needed to establish whether 
this correlation can be established.   

   Preclinical Studies 

   RAF Inhibition of BRAF Wild-Type Cells Leads 
to Activation of the MAPK Pathway 

 Several investigators have reported that the effect of ATP-competitive inhibitors of 
RAF on normal cells is to  activate  the MAPK pathway  [  7,   8  ] . This apparent paradox 
may be explained by the fact that, in the setting of activated RAS, the RAF kinases 
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form homo- and heterodimers  [  5  ] . In one model by Poulikakos and colleagues (Fig.  5.2 ), 
binding of inhibitor to one RAF ATP-binding domain leads to a conformational change 
in the partner RAF molecule leading to activation (i.e., transactivation). In this model, 
the inhibitor is not specifi c for BRAF but rather binds to all RAF isoforms. This is 
consistent with the data for the RAF inhibitors described to date, although there is some 
disagreement in the fi eld  [  24  ] . In fact, the model predicts that a highly specifi c BRAF 
inhibitor would have similar effects on BRAF wild-type cells.   

   RAF Inhibition of BRAF-Mutated Melanoma 
Causes Melanoma Cell Death 

 In cells with BRAF mutations, the MAPK pathway is dysregulated. Although the 
precise details are still being worked out, it appears clear that mutated BRAF drives 
MEK and ERK phosphorylation. This probably leads to feedback inhibition resulting 

  Fig. 5.2    Model of the effects of RAF inhibitors in the presence of wild-type or mutant BRAF. 
In the presence of activated RAS, wild-type BRAF forms dimers leading to limited activation. 
When an ATP-competitive RAF inhibitor is added, it induces a conformational change to the active 
phosphorylated state that results in transactivation to the partner RAF molecule. This results in 
marked increase in MEK activation. If a suffi cient concentration of RAF inhibitor is present, both 
partners of the dimer will be blocked resulting in the inhibition of MEK phosphorylation. In cells 
with mutated BRAF, low RAS activity prevents dimerization and the inhibitor blocks activation of 
MEK. With permission, from Poulikakos et al.  [  8  ]        
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in low Ras-GTP and therefore little RAF dimerization. As a result, In this setting, 
the cell is being driven by mutated BRAF monomer and binding of a RAF inhibitor 
leads to decreases in phospho-MEK and phospho-ERK turning off the MAPK 
pathway in the cell. Other feedback mechanisms serve to further modulate output 
of the MAPK pathway, but the transcriptional output of the pathway is still 
increased  [  25  ] . 

 Shortly after the V600E BRAF mutation was described in melanoma, several inves-
tigators showed that depletion of BRAF using siRNA resulted in apoptosis of BRAF-
mutated melanoma but had little effect on cells with wild-type BRAF  [  26,   27  ] . This 
validated mutated BRAF as a target in melanoma and led the development of a variety 
of RAF inhibitors. None of these molecules are specifi c for mutated BRAF; they all 
have activity against other kinases. Even PLX4032 now known as vemurafenib, the 
RAF inhibitor that we discuss in more detail below and arguably one of the most specifi c 
inhibitors of mutated BRAF, also inhibits wild-type BRAF, CRAF, and ARAF  [  8  ] . 

 Despite the fact that PLX4032 inhibits all four RAF isoforms (three wild-type as 
well-mutated BRAF) in vitro, the inhibitory effect of PLX4032 (and other RAF 
inhibitors) at the cellular level is very specifi c for cells harboring a BRAF mutation 
 [  28  ] . Cells with wild-type BRAF are not inhibited. As discussed above, this appar-
ent paradox can be understood by the fact that in cells with a BRAF mutation, cells 
are being driven by monomeric-mutated BRAF rather through the usual signaling 
through the MAPK pathway that involves RAF homo- and hetero-dimers. Thus, in 
patients with BRAF-mutated tumor, the specifi city of inhibition is not so much due 
to the specifi city of the inhibitor for mutated BRAF over the wild-type isoforms but 
rather due to the fact that the tumor cell is being driven by BRAF monomer while 
all normal cells have an intact MAPK pathway. A suffi ciently potent RAF inhibitor 
would be expected to inhibit BRAF-mutated tumor cells at concentrations much 
lower than required to inhibit wild-type RAF dimers.   

   Clinical Studies with the RAF Inhibitor PLX4032 (RO5185426) 

 The fi rst clear evidence that BRAF could be effectively targeted in human melanoma 
came in the setting of the fi rst-in-human clinical trial of PLX4032. Based on the a 
priori knowledge of the prevalence of BRAF mutations in melanoma and the selec-
tive inhibition of tumor cells that harbor BRAF mutation, the clinical trial was 
enriched from the outset for patients with metastatic melanoma. As dose escalation 
proceeded in sequential cohorts, and drug concentrations increased to levels com-
mensurate with those associated with tumor regression in animal models, an increas-
ingly concerted effort was made to screen patients for the presence of a BRAF 
mutation in their tumor prior to enrollment. This made it possible for tumor responses 
to be observed at a very early point in the development of this agent (Flaherty 
et al., NEJM 363:809 2010). 

 Forty-nine of fi fty-fi ve patients enrolled in the dose escalation portion of the 
PLX4032 trial had metastatic melanoma, and the remaining six patients had metastatic 
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cancers that are also known to harbor BRAF mutations with some frequency (papillary 
thyroid, colorectal, and ovarian). At a dose of 240 mg twice daily (BID), which was 
associated with little, if any, toxicity, the fi rst objective response was observed in a 
patient with V600E BRAF melanoma. As preclinical models did not suggest a plateau 
in the dose-response relationship, dose escalation continued to a dose of 1,120 mg 
BID which proved to be intolerable due to severe fatigue, rash, and arthralgia. More 
manageable degrees of these same toxicities were observed at intermediate doses 
and responses were observed at each. While the molecular mechanism of these 
toxicities is not known, when given as a continuous, twice daily therapy, 960 mg 
BID is the maximum tolerated dose (MTD). 

 One adverse event that has emerged as a clear consequence of PLX4032 is the 
development of new nonpigmented lesions within the fi rst few months of therapy 
(median 2 months). These lesions have typically presented as single lesions, but 
individual patients have had multiple new lesions appear serially. In all cases, 
patients have had such lesions excised and PLX4032 treatment continued. Fifteen 
of patients treated in the dose escalation cohorts developed such lesions, though 
many of those patients received doses that, in retrospect, induce no other toxicity or 
evidence of antitumor effect. The fi rst such lesion appeared in a patient treated at 
480 mg twice daily for several months. Fifty of these lesions have been reviewed by 
a central pathologist: 27 were keratoacanthoma (KA), 14 were well-differentiated 
squamous cell carcinoma with features of KA, 2 were squamous cell carcinoma 
with some KA features, and 7 were classifi ed as other neoplasia. The natural history 
of spontaneous KAs, outside of the setting of PLX4032 therapy, suggests that these 
are entirely benign neoplasms that can spontaneously regress when not treated. It is 
unclear at this point if the KAs that arise in the setting of PLX4032 share those 
features, but evidence of invasive squamous cell carcinoma is currently lacking for 
any of the lesions analyzed to date. The molecular mechanism appears to inudue a 
pre-existing HRAS mutation in keratinogtes which, when treated with vemurafenib 
results in by Ref -proliferation. su et al. NEJM 2011 (in press). KAs are known to 
occur in immunocompromised populations, but no other evidence of immunosup-
pression has manifested in the PLX4032 trial population. The recently described 
activation of the MAP kinase pathway by RAF inhibitors, including agents structur-
ally similar to PLX4032, suggests the hypothesis that hyperactivation of the MAP 
kinase pathway in these lesions might account for their growth  [  8,   29  ] . However, 
more mechanistic studies are needed before concluding that this is the cause. 

 From 240 to 1120 mg of PLX4032, 16 patients with V600E BRAF were enrolled 
to the following fi ve dose levels: 240, 360, 480, 720, and 1,120 mg. Eleven of these 
patients experienced partial responses, and only two patients had tumor growth at 
the time of initial response assessment. Responses were seen at all sites (skin, 
lymph node, and visceral), but notably patients with brain metastases that progres-
sive or untreated within a three-month interval before study entry were excluded. 
The median duration of response was 9 months (range 3.5–20+). Thirty-two addi-
tional V600E BRAF melanoma patients were enrolled at the 960 mg BID level to 
confi rm the MTD and gain more insight into effi cacy. Seventy-eight percent had 
previously received therapy for metastatic melanoma; 50% had received two or more. 
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Seventy-fi ve percent of patients had M1c stage IV melanoma indicating that most 
patients had extensive disease. Twenty-six of thirty-two patients had an objective 
response; two complete (ORR 81%; 95% CI 67–95%). The median duration 
response has not been defi ned, but is currently estimated at greater than 7 months 
based on relatively immature follow-up of these patients. Survival outcomes are not 
yet available, as only a minority of patients have succumbed to their disease. 

 As part of this fi rst-in-human trial, correlative studies were undertaken to deter-
mine if treatment with PLX4032 suppressed the MAPK pathway. In selected 
patients, pretreatment and day 15 tumor biopsies were done and analyzed by immu-
nohistochemistry. Day 15 biopsies generally showed marked decrease in activated 
ERK as well as proliferation marker Ki67 (Fig.  5.3 )  [  30  ] . This indicates that this 
level of MAPK inhibition can be associated with meaningful tumor shrinkage.  

 A formal phase II trial was recently completed in melanoma patients with a 
V600E BRAF mutation; 132 patients were treated with 960 mg BID of RG7204. In 
an initial analysis, 3 CRs and 66 PRs were observed which resulted in a 52% 
response rate, by intention to treat analysis  [  1  ] . In this larger trial, responses were 
counted only if confi rmed durable for at least 1 month, which accounts for the lower 
response rate compared to the phase I trial. The median duration of response was 
6.8 months, similar to what was observed in the phase I extension cohort. 

 A phase III trial was recently completed in which previously untreated patients 
with a V600E BRAF mutation were randomized to vemurafenib (PLX4032) or dac-
arbazine. Ref At the fi rst planned interim analysis, chapman et al. NEJM 364 (20) 

  Fig. 5.3    Immunohis-
tochemistry staining of 
( a ) pERK and ( b ) Ki67 of 
pretreatment and day 15 
melanoma tumor samples 
from a patient treated with 
720 mg bid of PLX4032. 
pERK staining is shown 
at 10×; Ki67 staining is 
40× (Adapted from Puzanov 
et al.  [  30  ] )       
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:2507–2516,2011 both the overall survival and progression-free survival endpoints 
had met the prespecifi ed criteria for statistical signifi cance in favor of vemurafenib 
The hazard ratio for overall survival was 0.37 and for progression free survival was 
0.26, both in favour of vemurafenib.  

   Spectrum of BRAF Inhibitors in Clinical Trials 

 Since the identifi cation of BRAF mutations, the list of BRAF-targeted therapies has 
grown substantially in recent years. Sorafenib was the fi rst agent with BRAF among 
its target kinases to have been tested in a BRAF mutant cancer population, but it 
failed to show single-agent activity, or consistent effi cacy when combined with con-
ventional chemotherapy  [  31–  33  ] . Notably, sorafenib preferentially binds BRAF in 
the inactive conformation, unlike PLX4032, which has greater affi nity for BRAF in 
the active conformation. An investigation into sorafenib’s ability to inhibit the MAP 
kinase pathway in human tumors revealed a degree of inhibition far short of that 
achieved by PLX4032. Given that the dose-limiting toxicities of sorafenib are dis-
tinct from PLX4032, it is likely that the non-BRAF targets of sorafenib mediate 
toxicity and limit the amount of drug that can be delivered. As a consequence the 
degree of BRAF inhibition at the MTD is insuffi cient to inhibit BRAF well enough 
to induce tumor stasis or regression. 

 Agents with potency and greater selectivity for BRAF than sorafenib have been 
developed and are in clinical trials currently. This class of therapies share some of 
the broad-spectrum features of sorafenib, such as potency against CRAF and VEGF 
receptors. These include RAF-265, which has not yet emerged from phase I testing 
and XL-281, which has completed phase I and is being evaluated in BRAF mutant 
cancer populations among others currently. In phase I, few patients enrolled had the 
types of cancer histologies known to harbor BRAF mutations, and mutation testing 
was not conducted for those enrolled. With no objective responses observed, it is not 
clear if the effi cacy of this agent has yet been tested. The same properties that lim-
ited sorafenib’s ability to inhibit BRAF in vivo, remain a concern for these agents 
until they demonstrate clinical activity at or below their MTD. 

 At least one additional selective RAF inhibitor, other than PLX4032, has entered 
clinical trials. This agent, GSK2118436 (GlaxoSmithKline, Philadelphia, PA), was 
evaluated in a phase I trial that was enriched for melanoma patients and particularly 
those whose tumors harbored BRAF mutations  [  34  ] . Ninety-three patients were 
enrolled, 82% of whom had V600E BRAF melanoma. Doses ranged from 12 to 
200 mg twice daily, with drug concentrations above the preclinical threshold for 
effi cacy being achieved at doses above 70 mg daily. The most common toxicities 
partly overlapped with those observed with PLX4032, while others were unique. 
They consisted of dose limiting syncope and generally mild-to-moderate skin 
changes, headache, nausea, fatigue, vomiting, and low-grade cutaneous squamous 
cell carcinoma. Among the 15 patients with V600E-mutated melanoma treated at 
doses  ³ 150 mg twice daily, 9 experienced a partial response. Although follow-up 
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for this cohort is still immature, it appears that the clinical activity of GSK2118436 
may be comparable to PLX4032 reproducing and validating this class of drugs in 
melanoma tumors with BRAF mutations.  

   MEK Inhibition as a Strategy for Targeting 
BRAF Mutant Melanoma 

 Given that MEK is the only known substrate of BRAF, it is presumed that activating 
mutations in BRAF have MEK activation as the only direct downstream conse-
quence. Several potent and selective MEK inhibitors have been developed and some 
have been evaluated in cancer patients harboring V600E BRAF mutations. MEK 
has several isoforms, but all MEK inhibitors that have progressed beyond phase I 
trials are selective for MEK-1 and -2. Their selectivity for MEK, compared to other 
kinases stems partly from the fact that they are allosteric (non-ATP-competitive) 
inhibitors. These agents include AZD6244 and GSK1120212, for which the most 
extensive clinical experience exists  [  35,   36  ] . Similar MEK inhibitors show rela-
tively selective ability to inhibit the MAP kinase pathway and cell proliferation in 
cells that harbor activating BRAF mutations rather than RAS mutant cancers and 
cells that lack either RAS or BRAF mutations  [  37  ] . Once the MTD was defi ned 
based on dose -limiting rash and diarrhea  [  38  ] , AZD6244 was evaluated as a single-
agent in patients with metastatic melanoma, but without requirement for BRAF 
mutation at study entry. One hundred patients were enrolled to the AZD6244 arm of 
a randomized phase II trial, with the control group receiving temozolomide. There 
were six partial responses in the AZD6244 cohort. Five of these patients had their 
tumors analyzed for BRAF mutations and all were found to have a BRAF mutation; 
the sixth patient did not have BRAF mutation testing completed. Overall, 50% of 
the trial population had BRAF mutations, giving an estimated 12% response rate 
among the BRAF mutant patients treated with AZD6244. Notably there were no 
responses among the other patients whose tumors harbored NRAS mutation or 
lacked BRAF and NRAS mutations. 

 GSK1120212 has been less extensively evaluated in clinical trials, but appears to 
be a more active agent when evaluated in patients with BRAF mutant melanoma 
 [  36  ] . In dose escalation studies, rash, diarrhea, and central serous retinopathy were 
the dose-limiting toxicities. The half-life of GSK1120212 was roughly 4 ½ days, 
providing very stable exposure when dosed daily after steady-state was achieved. 
Tumor biopsy data showed reduction of pERK and Ki67 by greater than 90% near 
the MTD, achieving the desired molecular effect. Among 20 patients with BRAF 
mutant melanoma (17 with M1c stage), 2 patients had complete responses and 6 had 
partial response (ORR 40%; 95% CI 19–64%); 2 additional patients had lesser 
degrees of tumor regression. Response duration has yet to be defi ned, with all but 
one patient still responding at the time of the preliminary data presentation. 

 MEK inhibition is a validated point of intervention for BRAF mutant melanoma, 
but even GSK1120212 has not achieved the level of clinical activity observed with 
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the two selective RAF inhibitors. Therefore, the question that remains to be answered 
in the fi eld is to what extent MEK inhibition could complement BRAF inhibitors as 
they progress further in clinical development. Two rationales for this combination 
have been proposed. First, the residual activity of BRAF, and thereby the MAP 
kinase pathway, that persists despite dosing selective RAF inhibitors at their MTD 
could be targeted with a simultaneous MEK inhibition. There is a desire for pre-
clinical data to be generated, particularly in vivo, to determine if this strategy can 
further suppress output of the MAP kinase pathway without causing severe toxicity. 
Second, it is conceivable that mechanisms of resistance to selective RAF inhibition 
reactivate the MAP kinase pathway and that could be intercepted with MEK inhibi-
tion when applied following the emergence of clinical resistance. This hypothesis 
has been raised in one preclinical study in which resistance was engendered in vitro 
to a selective RAF inhibitor  [  39  ] .  

   Resistance Mechanisms Observed in Clinical Trials 

 In other cancers for which onco-protein targeted therapy has proven effective, the 
emergence of resistance in the target protein has been described as a common mech-
anism of resistance. In the cases of chronic myelogenous leukemia, in which Abl 
kinase is constitutively activated due to massive overexpression and in gastrointes-
tinal cancer in which activating mutations that are found in the intracellular kinase 
domain of the KIT receptor, the dominant mechanism of resistance to Abl or KIT 
kinase inhibitors are gatekeeper mutations that impair binding of the inhibitor and 
permit continued signaling. In non-small lung cancer harboring activation muta-
tions in the kinase domain of the EGF receptor, approximately 50% of tumors with 
acquired resistance to EGF receptor kinase inhibitors have a gatekeeper mutation. 
Thus, in BRAF mutant melanoma, resistance mutations in BRAF were the fi rst 
focus of molecular investigation in tumors biopsied or resected in patients whose 
tumors progressed following initial response to therapy. However, to date no gate-
keeper mutations have been found and V600E BRAF mutations persist  [  40,   41  ] . 
The observation that V600E BRAF mutations are still present also negates a hypoth-
esis that suggested that metastatic melanoma harbors admixtures of BRAF-mutated 
and wild-type melanoma cells. If this were true, then one would expect the emer-
gence of a BRAF wild-type clone given that selective RAF inhibitors demonstrate 
no ability to inhibit the proliferation of BRAF wild-type tumors and may even stim-
ulate their growth  [  8,   24  ] . 

 Several distinct mechanisms of acquired resistance have been described through 
the generation of BRAF inhibitor resistance melanoma cell lines and corroborated 
in a small number of human tumor samples harvested at the time of disease progres-
sion after initial response to PLX4032. One that is arguably, the most straightfor-
ward to understand, is the emergence of an activating NRAS mutation with 
persistence of V600E BRAF  [  40  ] . Extensive investigations to identify melanomas 
that harbor concomitant BRAF and NRAS mutation, in the absence of treatment, 
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have yielded only rare instances where this might be the case. Thus, the emergence 
of an NRAS mutation in the same tumor in which only a BRAF mutation could be 
detected from prior therapy suggests that this might be a true treatment-induced 
change, or that selective pressure from PLX4032 has favored the outgrowth of small 
subpopulation of melanomas that harbored concomitant BRAF and NRAS mutation 
at baseline   . Mutant NRAS can activate MEK and ERK through CRAF, thus bypass-
ing BRAF blockade  [  42  ] . 

 Another genetic alteration has been identifi ed in a single case, namely the dele-
tion of PTEN  [  41  ] . PTEN deletions are common in melanoma and are known to 
facilitate increased PI3K pathway signaling. Thus, it is plausible that the emergence 
of a PTEN mutation, which could not be identifi ed in the same patient’s tumor at 
baseline could permit upregulated PI3K pathway signaling to mediate resistance. 
Two separate investigations identifi ed upregulated PDGF receptor beta and insulin 
growth factor receptor signaling as putative bypass mechanisms through the PI3K 
pathway. In both cases, genetic alterations in the surface receptors could not be 
found, but rather increased protein expression (in the case of PDGF receptor) or 
receptor tyrosine kinase phosphorylation (in the case of IGF receptor). In both of 
these instances, it is possible that expression of these surface receptors regulated at 
an epigenetic level or that activation is driven by a autocrine or paracrine signaling 
loop, in which case, these resistance mechanisms might be predicted to be revers-
ible with removal of the BRAF inhibitor. This possibility has not been explored. 

 The other mechanism of resistance uncovered from an in vitro resistance model 
is signaling through COT/TPL2, also known as MAPK38, which has previously 
been described as a RAF-independent activator of MEK  [  43  ] . Upregulation of COT 
in tumor samples analyzed at the time of disease progression has been demonstrated 
in two of three cases interrogated. Like NRAS mutation, COT upregulation could 
restore MEK and ERK signaling in the face of continued BRAF inhibition and pro-
vide a bypass mechanism. Like PDGF receptor and IGF receptor, activating muta-
tions in COT have not been described. 

 It must be emphasized that, aside from NRAS mutations, the other putative 
mechanisms of resistance have not yet been confi rmed by other investigators. Thus, 
the mechanisms of resistance to BRAF inhibition remain to be defi ned.  

   Future Directions for BRAF Inhibitors 

 The experience with both RAF inhibitors – PLX4032 and GSK2118436 – provides 
proof of principle that in BRAF-addicted melanomas, inhibition of BRAF results in 
dramatic antitumor responses. Some of these responses are quite durable but in 
most patients, tumors will eventually become resistant to BRAF inhibition. In the 
future, several major questions will need to be answered: why are there so few com-
plete responses? What are the mechanisms of de novo and acquired resistance? 
What are the long-term effects of MAPK activation in the non-melanoma, BRAF 
wild-type cells exposed to RAF inhibitor? 
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 Understanding the mechanisms of resistance will point the way to combination 
regimens aimed at overcoming them. Residual MAP kinase pathway activity could 
potentially be targeted with MEK or ERK inhibitors, given in combination with 
RAF inhibitors. Secondary oncogenic pathways that maintain tumor cell survival in 
the face of effective RAF inhibition can be simultaneously antagonized, such as 
PI3K pathway inhibitors or CDK4 inhibitors. 

 As novel therapies emerge that target mediators of cancer phenotypes, such as 
escape from immune surveillance or angiogenesis, the combination of BRAF inhi-
bition with such approaches warrants consideration. In particular, novel inhibitors 
of immune checkpoints have shown the ability to improve survival in metastatic 
melanoma patients  [  44  ] . The ability of RAF inhibitors to increase melanocyte-spe-
cifi c antigen expression may provide a basis for these two types of therapy to com-
plement one another  [  45  ] . In addition, there is preliminary evidence that a 
VEGF-targeted monoclonal antibody may enhance the activity of melanoma-
directed cytotoxic therapy  [  46  ] , making this combination worthwhile to evaluate. 

 With clear evidence that BRAF inhibition represents a point of vulnerability in 
melanoma, there is hope that understanding the exact molecular consequences of 
BRAF inhibition and, thus, the basis for building upon these effects will result in 
more complete and durable responses.      
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  Abstract   While central driver mutations in molecules involved in the mitogen-
activated protein kinase (MAPK) pathway appear to be involved in the majority of 
melanomas, concurrent activation of various parallel pathways occurs essentially in 
all cases. Distinct subsets of melanomas show evidence of activation of a variety of 
additional signaling cascades; two of these, the Notch and  b -catenin pathways, are 
molecular events fi rst characterized for roles in developmental biology that clearly can 
participate in malignant transformation. Importantly, therapeutic agents that target 
these pathways are just entering clinical trial testing. It is anticipated that clinical 
investigation of these agents, combined with intensive biomarker analysis to identify 
predictors of response and resistance and also to establish biologically active doses 
of these agents, may generate new classes of therapeutics with the potential to ben-
efi t major subsets of melanoma patients. 

 Historically, cancer research has focused on the most rapidly dividing cells and 
the cellular pathways that dictate growth. Those efforts have yielded signifi cant 
insight into the molecular machinery that drives proliferation in transformed cells; 
however, it is becoming increasingly apparent that all cancer cells are not the same. 
Plasticity within the tumor is prevalent and likely contributes to the refractory nature 
of most cancers to chemotherapy. Thus, studying the molecular circuitry that may 
confer plasticity to tumor cells may help identify new targets for chemotherapeutic 
intervention in otherwise resistant cancers. 

 The Notch and  b -catenin signaling pathways are well recognized for their roles 
in developmental processes. Initial identifi cation and characterization of the bio-
logical function of Notch was performed in  Drosophila , when it was observed to 
dictate “notch” formation on wing blades.  b -catenin was originally described in 
colorectal tumors [ 1,   37 ] and subsequently demonstrated in a variety of stem cell-
related processes. The pleiotropic nature of Notch and  b -catenin signaling which regu-
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lates stem cell maintenance, development, and morphogenesis underscores the 
multiple phenotypes and resultant plasticity that these pathways control – properties 
that are equally inherent to advanced melanoma.  

  Keywords   Notch  •   b -catenin  •  Wnt  •  Plasticity  •  Melanoma  •  Therapeutics  
•  Gamma secretase inhibitors  •  RO4929097      

   Notch Signaling 

 The Notch signaling cascade is a highly conserved developmental pathway that has 
functions in an array of biological processes including cellular differentiation, tissue 
patterning and morphogenesis, and proliferation. There are four known isoforms of 
Notch (Notch1-4); each is translated as a precursor protein and subsequently cleaved 
in the golgi apparatus by furin-like convertases  [  2  ]  before reassembly into a single-
pass transmembrane receptor at the plasma membrane. Signaling through Notch is 
initiated through binding interactions with Notch ligands, namely Jagged and Delta, 
expressed on adjacent cells. Ligand-receptor interaction triggers dual sequential 
cleavage events in the Notch receptor to subsequently release intracellular Notch 
(N 

ic
 ) for nuclear translocation. First, the metalloprotease TACE (TNF- a  converting 

enzyme; also known as ADAM17) cleaves the extracellular S2 domain of Notch  [  3  ] , 
which primes Notch for a secondary cleavage event mediated by the  g -secretase 
multimer at the intracellular S3 domain. The  g -secretase multimer is composed of 
several peptides including nicastrin, presenilin1/2, Pen-2, and Aph-1  [  4,   5  ] . After 
release from the cell membrane, N 

ic
  translocates to the nucleus and binds to the 

transcriptional repressor, CSL (CBF1/RBP-J k ; Suppressor of Hairless; Lag1), 
thereby releasing the co-repressor complex. Upon binding to CSL, N 

ic
  recruits 

coactivators such as mastermind-like (MAML) and p300  [  6,   7  ]  to initiate expression 
of Notch target genes (Fig.  6.1a ).  

 The Notch transcriptome includes two primary classes: Hairy/Enhancer of Split 
(Hes) and Hairy/E (spl)-related (Hey) gene family members. Hes and Hey contain 
helix-loop-helix domains that determine the hetero- or homodimers that are formed 
when these family members bind; these dimers subsequently shut down gene 
expression through interactions with other repressor molecules or by precluding the 
binding of transcriptional activators to their respective promoters  [  8  ] . A number of 
alternative Notch target genes also include p21, GATA3, cyclin D1, NRARP, c-Myc, 
and Deltex1  [  9  ] .  
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   Notch and Cancer 

 The Notch signaling pathway was fi rst recognized for its roles in embryonic devel-
opment, a series of processes that involve rapid proliferation, differentiation, and 

  Fig. 6.1    Notch and  b -catenin Signaling Schematics. ( a ) Full-length, membrane-bound Notch 
binds to either Jagged or Delta on an adjacent cell to initiate dual cleavage events; fi rst, TACE 
(ADAM17) cleaves the extracellular portion of Notch, which is followed by cleavage of the intra-
cellular portion of Notch by the  g -secretase complex ( g -Sec) to release N 

ic
  for nuclear transloca-

tion. After entering the nuclear, intracellular Notch (N 
ic
 ) displaces corepressor molecules (CoR) 

from CSL and subsequently associates with coactivators MAML and p300 to upregulate gene 
expression. See text for more details. ( b )  Top : In the absence of Wnt,  b -catenin is constantly 
degraded. Casein kinase-1 (CK1) and glycogen synthase kinase-3 (GSK3 b ) phosphorylate 
 b -catenin, which is part of the destruction complex also containing adenomatous polyposis coli 
(APC) and Axin; phosphorylated  b -catenin is then ubiquitinated by the E3-ligase,  b -TrCP, for 
proteasomal degradation.  Bottom : Wnt binds to the frizzled (FZD) receptor, initiating phosphory-
lation of the LDL-related receptor protein-5/6 (LDL5/6) coreceptor by CK1 and GSK3 b . 
Disheveled (DVL) binds to FZD after phosphorylation of the LDL5/6 coreceptor and recruits Axin 
to the membrane, releasing it from the destruction complex.  b -catenin, now released from the 
destruction complex, is stabilized and binds to lymphoid enhancer factor (LEF) and/or T-cell factor 
(TCF) to regulate gene expression in the nuclear department       
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tissue morphogenesis. More recently, this signaling cascade has been strongly 
implicated in cancer initiation and progression. In 1991, a chromosomal translocation 
[t (7, 9)] that placed the Notch1 gene under transcriptional control of the T-cell 
receptor  b  locus was discovered in a T-cell acute lymphoblastic leukemia (T-ALL) 
cell line  [  10  ] . The role of Notch in T-ALL was further underscored after it was 
reported that over 50% of T-ALL patients harbor mutations in Notch1  [  11  ] . Despite 
a signifi cant role for Notch in T-ALL, there has been no correlation between Notch 
activity and acute myeloid leukemia (AML), suggesting that Notch activation in 
nonsolid tumors is not always required for malignant transformation. 

 Notch signaling is also associated with a variety of solid tumors. Insertional 
mutagenesis studies provided some of the fi rst evidence that Notch activity is 
involved in murine mammary cancers  [  12  ] , although a causal link between Notch 
signaling and human breast cancer has been less convincing; instead, it appears that 
Notch may participate with other signaling cascades, such as the Ras pathway, to 
transduce the signals required to maintain a malignant phenotype  [  13  ] . In colorectal 
tumors, the tumor microenvironment upregulates Notch ligands to enable activation 
of the pathway  [  14  ] ; accordingly, inhibition of Notch has been demonstrated to 
sensitize colon cancer cells to chemotherapies  [  15  ] . Similar observations have been 
made in pancreatic tumors, where Notch inhibition blocks the growth of early pan-
creatic adenocarcinoma cells and their progression into advanced pancreatic cancer 
 [  16  ] . In glioma, chemical-mediated abrogation of Notch activity renders glioma 
stem cells susceptible to radiation  [  17  ] , supporting a prosurvival role for this path-
way in yet another solid tumor type. 

 Interestingly, Notch signaling in the skin can induce either a tumor-suppressive 
or oncogenic phenotype. When Notch signaling is lost in keratinocytes, basal-cell 
carcinomas develop  [  18  ] , indicating that Notch acts as a tumor suppressor protein in 
this cell type. Conversely, Notch is a potent oncogene in melanocytes, promoting 
melanomagenesis and activating a number of pathways associated with advanced 
disease  [  19–  21  ] . In the lung, Notch signaling can either elicit proliferation  [  22  ]  or 
induce apoptosis if under hypoxic conditions  [  23  ] . Thus, there is substantial evi-
dence to suggest that cell type and contextual cues from the surrounding microenvi-
ronment largely control the phenotypic response to Notch activation. 

 In pigment-producing cells, Notch is rapidly becoming an interesting player in 
malignant transformation. The earliest report correlating Notch activity to mela-
noma came from the Halaban laboratory in 2004 where expression profi ling analy-
ses demonstrated that melanomas exhibited heightened levels of Notch pathway 
activation when compared with nontransformed melanocytes  [  24  ] . Supporting 
immunohistochemical evidence subsequently showed that Notch1 and Notch2, as 
well as Notch ligands are highly expressed in dysplastic nevi and melanomas  [  25  ] . 
Our own laboratory later investigated the relationship between Notch signaling and 
melanoma initiation and progression. We demonstrated that activation of Notch is 
suffi cient to transform primary melanocytes  [  21  ]  and that Notch promotes mela-
noma progression through distinct interactions with both the PI3K and  b -catenin 
signaling pathways  [  19,   20  ] . Other reports have also implicated Notch as an integral 
effector molecule in the Nodal and PI3K/Akt pathways  [  26,   27  ] . Furthermore, 
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chemical and peptide-mediated inhibition of Notch resulted in cell cycle arrest and 
induction of apoptosis in multiple melanoma cell lines  [  21,   28  ] . Collectively, the 
data describe a thematic role for Notch in the epidemiology of melanoma, whereby 
Notch activation supports both the initiation and progression of melanoma through 
a variety of cancer-related signaling pathways.  

   Targeting Notch in Melanoma 

 Pharmacological inhibition of Notch has been predominantly pursued through a 
class of compounds known as  g -secretase inhibitors (GSIs), largely recognized for 
their therapeutic potential in treating Parkinson’s Disease  [  29  ] . These compounds 
inhibit the secondary cleavage event that leads to the generation of intracellular, 
activated Notch (N 

ic
 ); consequently, Notch is not released from the membrane to 

initiate nuclear signaling. GSIs are fairly specifi c, having few off-target effects, 
although serious issues have been reported in several trials with gastrointestinal 
toxicities, likely due to the transformation of proliferative intestinal crypt cells into 
postmitotic goblet cells  [  30  ] . Multiple commercially available “tool compounds” 
exist for use in preclinical studies, although it is highly advisable that the end-inves-
tigator validate the mechanism(s) of action of each individual compound because 
some of these GSIs are toxic due to the inhibition of proteasomal activities (i.e., 
Z-Leu-Leu-Nle-CHO), rather than actual inhibition of Notch signaling  [  31  ] . 

 RO4929097 is a GS I  discovered as a part of the NCI-sponsored Cancer Therapy 
Evaluation Program (CTEP) that is currently being evaluated in Phase II clinical 
trials with Stage IV melanoma patients. Preclinical studies with this compound 
demonstrated reduced proliferative potential both in vitro and in vivo  [  32  ] . Phase I 
trials involving RO4929097 in melanoma patients demonstrated promising antitu-
mor activity (assessed by RECIST), including prolonged stable disease  [  33  ] . Related 
compounds (MK0752, Merck; PF03084014, Pfi zer; LY450139, Eli-Lilly; BMS-
708163, Bristol-Myers Squibb; GSI136, Wyeth) are all undergoing clinical evalua-
tion for a variety of conditions other than melanoma; it should be expected that 
successful candidates from those trials will be tested for antitumor effi cacy in mela-
noma in the near future.  

    b -catenin Signaling 

 Signaling through the  b -catenin pathway is extremely complex due to the exquisite 
regulation that governs signals being transduced through the pathway  [  34  ] .  b -catenin 
signaling is primarily mediated through a well-described pathway known as the 
canonical Wnt signaling pathway. In the canonical pathway,  b -catenin exists in the 
cytoplasm where it is constitutively degraded by the action of the Axin destruction 
complex composed of Axin, adenomatous polyposis coli (APC), casein kinase 1 
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(CK1), and glycogen synthase kinase 3 (GSK3 b ); here, CK1 and GSK3 b  sequen-
tially phosphorylate the N-terminal end of  b -catenin, which allows subsequent asso-
ciation with an E3 ubiquitin ligase,  b -Trcp, to promote proteasomal degradation. 
The constant degradation of  b -catenin by the destruction complex occurs in the 
absence of Wnt, a ligand responsible for initiating a series of signaling events that 
eventually stabilize  b -catenin. To facilitate  b -catenin stabilization, Wnt binds to the 
Frizzled receptor (FZD) and associates with the coreceptor, LDL-related receptor 
protein-5/6 (LDL-5/6), which is then phosphorylated by CK1 and GSK3 b . Upon 
phosphorylation of LDL-5/6, disheveled (DVL) is recruited to the membrane to 
bind FZD. This multimeric complex (Wnt/FZD/LDL-5/6/DVL) subsequently 
sequesters Axin from the cytosol, thereby releasing it from the destruction complex 
and stabilizing  b -catenin. Thereafter,  b -catenin translocates to the nucleus to form 
complexes with lymphoid enhancer factor (LEF) and/or T-cell factor (TCF) to 
upregulate appropriate transcriptional targets (Fig.  6.1b ). 

 Nuclear  b -catenin, when complexed with TCF/LEF displaces the transcriptional 
repressor, Groucho, and recruits other coactivators for gene expression. The TCF 
family of proteins is a high mobility group (HMG) class of proteins that bind to 
DNA consensus sequences known as Wnt-responsive elements (WRE); upon bind-
ing to DNA, these transcriptional factors alter the chromatin structure of the DNA 
to which they are bound. Other coactivators also exist including Bcl-9, Mediator, 
p300/CBP, MLL1/2 histone methyltransferases, Swi/Snf chromatin remodelers, and 
Paf1  [  35  ] . The gene expression profi les initiated through  b -catenin-mediated signal-
ing are diverse and can lead to any number of normal biological phenotypes or they 
may manifest as disease if not appropriately regulated (i.e., cancer).  

   Wnt/ b -catenin and Cancer 

 Early studies into the Wnt/ b -catenin signaling pathway focused on their collective 
roles in developmental processes. The fi rst connection between Wnt/ b -catenin sig-
naling and cancer came from studies in colorectal tumors that connected molecular 
interactions between the tumor suppressor protein, APC, and  b -catenin  [  36,   37  ] . In 
1998, however, the protooncogene c-Myc was identifi ed as a downstream transcrip-
tional target of the Wnt/ b -catenin pathway  [  38  ] . Subsequent reports identifi ed addi-
tional cancer-related transcriptional targets including Cyclin-D1  [  39  ]  and c-Jun 
 [  40  ] , among a multitude (>70) of others. 

 The mechanisms underlying Wnt/ b -catenin-mediated tumorigenesis in various 
tumor types are diverse and worthy of a thorough literature review  [  34  ] ; given the 
scope of this short summary, the focus will be directed toward the involvement of 
this pathway in melanoma. An early report demonstrated that ~25% of melanoma 
cell lines harbored high levels of stabilized  b -catenin through somatic mutations in 
 b -catenin and/or loss of the APC tumor suppressor gene  [  1  ] , although this confl icted 
with numerous follow-up analyses showing that mutations in  b -catenin are a rare 
event in melanoma  [  41  ] ; thus, it is believed that the pathway is activated by means 
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of other somatic mutations in  b -catenin. Accordingly, our laboratory reported that 
 b -catenin levels are elevated through cell adhesion interactions in N-cadherin-
expressing melanoma cells, resulting in increased migration and survival  [  42  ] ; rel-
evant studies suggested that paracrine growth factors, namely insulin-like growth 
factor-1 (IGF1), activate  b -catenin in early-stage melanoma cells to promote malig-
nant progression  [  43  ] . Murine-based studies showed that  b -catenin, when combined 
with N-Ras activation, leads to the transformation of melanocytes through silencing 
of the p14 INK4a  promoter  [  44  ] . 

  b -catenin-independent Wnt signaling, otherwise known as “non-canonical” Wnt 
signaling is also thought to play a signifi cant role in melanoma etiology. For exam-
ple, Wnt5a was discovered to be highly expressed in a population of melanomas 
recognized for their invasive phenotype; furthermore, the signaling mediated by 
Wnt5a was  b -catenin-independent and instead channeled through protein kinase C 
(PKC)  [  45  ] ; an additional target of Wnt5a was later identifi ed to be STAT3, a tran-
scriptional regulator of several melanoma-associated antigens  [  46  ] . Wnt5a was also 
demonstrated to correlate to poor patient outcome  [  47  ] . These data suggest that 
noncanonical (non- b -catenin) signaling may also represent a means by which mela-
noma cells may be therapeutically targeted. 

 It is worth noting that the involvement of  b -catenin signaling in melanoma is 
controversial. Despite the aforementioned studies, there are a number of other reports 
which suggest that  b -catenin signaling in pigmented cells leads to reduced growth 
potential in both mice and human patients  [  48  ] . Accordingly, immunohistochemical-
based studies argue that  b -catenin expression is actually diminished as melanoma 
progresses from nevus to metastatic disease  [  49  ] . Others have also argued that there 
is virtually no correlation between activation of  b -catenin and a specifi c cellular 
event in melanomas  [  50  ] . Thus, it will be instrumental to continue exploring the 
exact role(s) of this molecule in melanoma to avoid future clinical disappointments.  

   Targeting  b -catenin in Melanoma 

 Pharmacologically targeting  b -catenin is a dutiful task, given the diversity with 
which it is regulated and its vast number of binding partners. Despite this impedi-
ment, several inhibitors of the pathway have been discovered and tested in multiple 
systems for effi cacy. Benefi ts in colorectal cancer have been reported using non-
steroidal antiinfl ammatory drugs (NSAIDs); this class of compounds functions, in 
part, by negating TCF/ b -catenin signaling by inhibiting prostaglandin E2, an 
upstream activator of TCF/ b -catenin-dependent gene expression  [  51,   52  ] . Other 
small molecules that disrupt TCF/ b -catenin  [  53  ]  or the interaction with alternative 
coactivators of  b -catenin have also been described  [  54  ] . A chemical genetic screen 
later identifi ed a compound antagonist of  b -catenin signaling that functions through 
inhibition of tankyrase, a previously undescribed negative regulator of Axin  [  55  ] . 
Yet another study described the identifi cation of a class of compounds known as 
inhibitors of Wnt production (IWPs); their mechanism of action is founded upon the 
inhibition of Porc proteins that otherwise enable Wnt production. Within the same 
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report, the authors identifi ed inhibitors of Wnt response (IWR) compounds that, as 
described above, stabilize Axin to promote  b -catenin degradation  [  56  ] . 

 There are virtually no human clinical trials currently underway for modulators of 
the Wnt/ b -catenin pathway in melanoma. A Phase II study in patients with AML 
involving a GSK3 b  inhibitor (LY2090314; Eli Lilly) is now recruiting patients to 
assess its effi cacy in this population, where  b -catenin levels are a primary determi-
nant in response; such GSK3 b  inhibitors may also exhibit therapeutic promise in 
melanomas, based on preclinical data  [  57  ] .  

   Perspective 

 There is little doubt that the MAPK pathway is the preferred target in melanoma 
therapeutics today. However, there is a deluge of evidence emerging to suggest that 
inhibition of the MAPK pathway is not enough to elicit long-term, sustained 
responses in patients  [  58–  61  ] . Therefore, other pathways will need to be explored to 
kill the cells that escape MAPK therapeutics and/or are not affected by that class of 
drugs. These alternative pathways and their molecular intermediates represent the 
next wave of targeted therapeutics in melanoma. 

 The Notch and Wnt/ b -catenin pathways are renowned for their involvement in 
embryonic and developmental processes. The cellular plasticity associated with cel-
lular differentiation and tissue morphogenesis is a property that is not unique to 
embryonic development – cancer cells also share this phenotypic phenomenon. In 
fact, there are now several studies suggesting that melanomas retain plasticity due 
to minor subpopulations within the tumor milieu that possess stem cell characteris-
tics, including a slow proliferative index and ability to transdifferentiate into other 
cell types  [  62–  64  ] . The signaling pathways that facilitate this cellular plasticity are 
likely shared between early progenitor and cancer cells; thus, the pathways dis-
cussed here are putative culprits for next-generation therapeutics that may be com-
bined with current standards of care (i.e., ipilimumab and/or PLX4032) to achieve 
enhanced, sustained responses in the clinic.      
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  Abstract   Several tyrosine kinase signaling pathways play a critical role for melanoma 
development and progression. Signal Transducer and Activator of Transcription 
(STAT) family proteins function both as cytoplasmic signal-transducing molecules as 
well as nuclear transcription factors. A member of the STAT family proteins, STAT3, 
is a point of convergence for numerous tyrosine kinases frequently activated in human 
cancers. In melanoma tumor cells, Src tyrosine kinase has been shown to be involved 
in melanoma oncogenicity, in part by activating STAT3. Many other tyrosine kinases, 
such as Janus kinases (JAKs), epidermal growth factor receptor (EGFR), Her2/Neu, 
and basic fi broblast growth factor receptor (bFGFR), are also known markers of 
malignant melanoma and activators of STAT3. By virtue of its ability to regulate 
expression of numerous genes important for proliferation, survival, invasion, and 
immunosuppression, STAT3 has emerged as a key target for melanoma therapy. While 
direct STAT3 inhibitors for clinical use are still under development, several tyrosine 
kinase inhibitors available in the clinic may serve as effective therapeutics for mela-
noma, especially in conjunction with other promising therapeutic strategies.      
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   Introduction 

 The Signal Transducer and Activator of Transcription (STAT) family of proteins 
 function both as cytoplasmic signal-transducing molecules as well as nuclear tran-
scription factors  [  132  ] . Activation of STATs is mediated by either receptor-associated 
kinases, such as Janus kinases (JAKs), or nonreceptor oncogenic tyrosine kinases, 
including Src and BCR-ABL (Abelson leukemia protein). These activated kinases 
phosphorylate monomeric latent STAT proteins, which mediates cytosolic dimeriza-
tion and nuclear translocation, where they regulate target gene expression (Fig.  7.1 )   . 

 Like all the STAT family members, STAT3 is tightly controlled in normal cells. 
The mechanisms that regulate STAT3 activity include dephosphorylation of receptors 
and STAT dimers by protein tyrosine phosphatases (PTPases); interaction with one 
of the protein inhibitors of activated STAT (PIAS); and feedback inhibition of JAK/
STAT pathway by suppressor of cytokine signaling (SOCS) proteins  [  39,   66  ] . 
However, the dysregulation of autocrine or paracrine stimulation of cytokine and 
growth factor receptors, observed in the many cancers, results in constitutive and 
uncontrolled activation of STAT3. 

 The fi rst direct evidence that STAT3 signaling contributes to oncogenesis emerged 
in the mid-1990s, when STAT3 was found to be constitutively activate in Src-
transformed fi broblasts  [  131  ] . After this fi nding, several studies further confi rmed the 
interactions between Src and STAT3 in oncogenesis  [  6,   110  ] . STAT3 as an oncogene 
was also formally demonstrated using the constitutively active mutant STAT3C, which 
was capable of transforming fi broblasts  [  7  ] . The remainder of this chapter is further 
devoted to the important roles of STAT3 and Src in the malignant phenotype of mela-
noma and emphasize STAT3 and Src as attractive targets for melanoma therapy.  

   STAT3 and Src Signaling in Melanoma 

 The importance of STAT proteins, and in particular STAT3, in the development of 
melanoma has been well documented. STAT3 has been shown to be constitutively 
active in human melanoma cell lines and in primary tumor tissues compared with 
normal skin  [  85  ] . This overactivation may be partially explained by the association 
of Src kinases to STAT3 in melanoma cells  [  85  ] . Src-related kinase family members 
can be activated by both receptor-dependent and receptor-independent pathways 
 [  16,   44  ] . In the receptor-independent mechanism of Src activation, STAT activity 
may be regulated by a constitutively activated, cytoplasmic form of Src kinase, 
known as c-Src. In addition to c-Src, other members of the Src family have been 
implicated in tumorigenesis. RaLP, a novel member of the Src family, is involved in 
the migration of metastatic melanoma cells, although the cell signaling pathways it 
utilizes have yet to be unraveled  [  22  ] . Another member of the Src family, FYN, is 
found overexpressed in melanoma and other solid cancers, yet its precise role during 
cancer development remains to be clarifi ed  [  100  ] . 

 When interacting with signaling proteins such as focal adhesin kinase (FAK) and 
p130CAS, Src regulates melanoma cell adhesion, motility, and migration, which 
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can be mediated through STAT3 activation  [  5,   8,   79  ] . While the constitutively active 
form of Src is able to regulate STAT3 directly, the increase in expression or activation 
of growth factor receptors may also be responsible for both Src and STAT3 activation 
 [  51,   78  ] . Many upstream mediators of STAT3 activation and Src signaling, such as 
epidermal growth factor receptor (EGFR), Her2/Neu, and basic fi broblast growth 
factor receptor (bFGFR), are known markers of malignant melanoma  [  94,   99  ] , fur-
ther indicating an association between STAT3 and Src during melanoma pathogen-
esis. It is, however, important to note that growth factor and cytokine-mediated 
STAT3 activation in many cancers including melanoma may also work indepen-
dently of Src activation  [  132–  134  ] .  

 IL-6 and other IL-6-type cytokines, such as oncostatin M, are among the classi-
cal STAT3 mediators that use receptor-dependent mechanisms for STAT3 activation 
 [  39  ] . As with multiple myeloma and prostate cancer, IL-6 can also activate STAT3 
in melanoma  [  72  ] . Melanoma progression in the metastatic stages may be connected 
to possible loss of oncostatin M receptor beta  [  69  ]  or activation of RAS-RAF, 
MAPK-ERK kinase (MEK)-extracellular regulated kinase (ERK) 1/2 signaling 
pathways  [  17,   118  ] . It is well established that overactivation of STAT3 promotes 

  Fig. 7.1    Persistent STAT3 activation in melanoma tumor cells is mediated by both receptor and 
nonreceptor tyrosine kinases, such as Src and Janus kinases (JAKs) tyrosine kinases. Activated 
kinases phosphorylate monomeric latent STAT3 protein, leading to its cytosolic dimerization and 
nuclear translocation, and target gene expression. Src tyrosine kinase, by interacting with other 
signaling proteins such as Focal Adhesion Kinase (FAK), regulates melanoma cells adhesion, 
motility, and migration. STAT3-regulated factors contribute to creation of the tumor microenviron-
ment characterized by increased angiogenesis, metastasis, and suppression of antitumor immune 
responses. Targeting STAT3 directly or indirectly through tyrosine kinase inhibitors, therefore, 
holds promise for melanoma therapy       
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expression of many genes critical for melanoma tumor cell proliferation, survival, 
invasion, and metastasis  [  132–  134  ] . STAT3 may also contribute to melanoma 
tumorigenesis by regulating other transcription factors. It has been demonstrated 
that constitutively active STAT3 in human cancer cells, including melanoma, is 
essential for prolonged nuclear retention of NF-kB through RelA acetylation  [  73  ] . 
This STAT3-mediated prolonged nuclear retention of NF-kB may explain why 
overactivation of both STAT3 and NF-kB in tumor cells can regulate expression of 
overlapping prosurvival, proangiogenic, and immunomodulatory genes  [  34  ] . While 
additional studies are warranted to fully understand the NF-kB/STAT3 signaling 
pathway cross talk and their cooperative roles during melanoma progression, the 
connection between STAT3 activity and other major signaling pathways, such as 
NF-kB, further validates the importance of STAT3 in oncogenesis.  

   STAT3/Src Regulation of Tumor Cell Growth 

 The critical role of STAT3 signaling in the survival of tumor cells was fi rst shown in 
multiple myeloma. In multiple myeloma cells, constitutively activated STAT3 regu-
lates the expression of the antiapoptotic B-cell lymphoma/leukemia-2 (BCL2) fam-
ily gene BCL-XL  [  11  ] . Blocking STAT3 in multiple myeloma cells downregulates 
BCL-XL expression, leading to increased apoptosis. Furthermore, specifi c inhibi-
tion of STAT3 or Src kinase activity in head and neck squamous cell carcinoma 
inhibits BCL-XL expression and induces apoptosis  [  31,   51  ] . In melanoma cells, 
BCL-XL and another member of the BCL2 family, MCL-1, are both downregulated 
by inhibition of c-Src kinase or STAT3 transcriptional activity  [  85  ] . STAT3 also 
regulates survivin expression  [  2,   33  ]  and targeting survivin in melanoma cells results 
in growth arrest and increased apoptosis  [  35  ] . Moreover, BCL-XL and MCL-1 are 
associated with metastatic progression of melanoma, and their expression positively 
correlates with STAT3 activation  [  136  ] , thereby strengthening the link between 
STAT3 and melanoma progression. However, STAT3’s role in inhibiting apoptosis 
goes beyond promoting expression of antiapoptotic proteins. Activation of STAT3 
in melanoma also suppresses expression of proapoptotic proteins, such as TRAIL 
and p53, thereby adding to the regulation of apoptosis by STAT3  [  45,   46,   89  ] .  

   STAT3 and Src Activity Promote Angiogenesis 
and Metastasis in Melanoma 

 As with most solid tumors, angiogenesis is required for melanoma growth beyond 
2 mm, the limit of effi cient nutrient diffusion. In addition, the metastatic spread of 
melanoma cells requires tumor blood vasculature. As a result of the highly prolif-
erative nature of solid tumors, access to suffi cient oxygen and nutrients is often 
depleted, resulting in hypoxia. Tumor cells respond to reduced oxygen conditions 
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by upregulating factors that regulate the development and maintenance of tumor blood 
vasculature. In melanoma, hypoxic stress induces activation of numerous factors, in 
particular the  a  subunit of hypoxia inducible factor 1 (HIF-1 a )  [  103  ] . Regulation of 
HIF-1 a  occurs posttranslationally by modifi cation of its stability in the cytoplasm 
 [  103  ] . HIF-1 a  is also transcriptionally regulated, especially in the tumor microenvi-
ronment  [  86  ] . Both Src and STAT3 have been demonstrated to regulate the RNA 
and protein levels of HIF1 a   [  49,   88,   128  ] . In addition to regulating HIF1 a , STAT3 
can also directly regulate transcription of important genes involved in tumor angio-
genesis, including VEGF, bFGF, and MMP-2, many of which have been demon-
strated in melanoma cells  [  86,   88,   118,   123,   124  ] . Inhibition of STAT3 by siRNA or 
small-molecule inhibition in melanoma cells showed reduces expression of both 
HIF-1 a  and VEGF, induced by multiple oncogenic growth signaling pathways 
involving Src, EGFR, Her2/Neu, and IL-6R  [  126  ] . The existence of multifactor axes 
involving STAT3, Src, and HIF-1 a -mediated regulation of VEGF and tumor angio-
genesis has been also described in pancreatic and prostate cancers  [  32  ] . 

 STAT3 signaling also appears to be critical for tumor metastasis in melanoma. 
Multiple biological processes are responsible for tumor metastasis, including epi-
thelial–mesenchymal transition (EMT), migration of tumor cells, tumor cell extrava-
sation, seeding within the premetastatic niche, and subsequent survival and growth 
of tumors at the secondary site. EMT is one of the key steps involved in tumor 
metastasis. TGF b  and VEGF, known activators of STAT3 signaling, seem to play a 
major role in EMT  [  93,   130  ] . In AML-12 murine hepatocytes, TGF b 1 induces EMT 
and is associated with the activation of STAT3 through protein kinase A (PKA) 
 [  130  ] . In the L3.6pl human pancreatic cancer cell line, upregulation of VEGFR-1 
can alter the cellular phenotype towards metastasis, which is associated with an 
increase in the expression of transcription factors involved in EMT transition, 
namely Snail, Twist, and Slug  [  127  ] . Importantly, many of the factors involved in 
EMT are regulated by STAT3  [  3,   13,   121  ] . Other studies have demonstrated an 
important role for IL-6 in the induction of EMT in human breast carcinoma through 
inhibition of the epithelial marker E-cadherin and induction of mesenchymal mark-
ers including Vimentin, N-cadherin, Snail, and Twist  [  107  ] . Moreover, activation of 
STAT3 by IL-6, Src, or EGFR signaling in breast carcinoma induces Twist expres-
sion, which promotes metastasis and negatively regulates expression of E-cadherin 
 [  13,   75  ] . Moreover, constitutive expression of Twist in breast cancer cells causes 
production of IL-6 and potent autocrine activation of STAT3  [  107  ] . 

 STAT3 may also play an important role in EMT transition and metastasis of 
melanoma. STAT3 is known to regulate expression of WNT5A  [  52  ] , which is an 
important mediator of melanoma cell motility as well as EMT  [  19,   117  ] . Furthermore, 
Twist is one of the primary EMT regulators overexpressed in melanoma cell lines 
when compared to normal melanocytes  [  42  ] . Together, these observations, directly 
and indirectly, implicate STAT3 signaling during EMT in melanoma. 

 Tumor cells must possess high migratory potential to invade distant organs. 
Several factors have been demonstrated to increase migratory capacity of melanoma 
cells. Mda-9/Syntenin regulates cell motility and invasion through physical interac-
tion with c-Src in melanoma cells  [  5,   109  ] . Furthermore, tensin-3 phosphorylation 
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by Src signaling in advanced lung cancer, breast cancer, and melanoma contributes 
to cell migration  [  96  ] . Pharmacologic inhibition of Src family kinases with the dual 
Src/Abl kinase inhibitor dasatinib blocks migration and invasion of human melanoma 
cells in vitro  [  8  ] . Src has recently been found to contribute to resistance of migrating 
tumor cells to anoikis – apoptosis caused by detachment of cells from their extracel-
lular matrix (ECM)  [  101,   120  ] . Tumor cell adhesion to blood vessel endothelium 
and subsequent transendothelial migration within the circulation are critical compo-
nents of the metastasis cascade. Src was shown to be strongly involved in vascular 
permeability  [  15  ]  as well as in transendothelial migration of a human melanoma 
cell line  [  95  ] . Therefore, Src can play a vital role in extravasation during melanoma 
metastasis, which may act in concert with or independently of STAT3 activation.  

   STAT3 Signaling in Tumor-Associated Immune Cells: 
Their Role in Melanoma Development 

 The tumor microenvironment plays an important role in promoting tumor develop-
ment. Tumor-associated stromal cells consist of a diverse population of immune cells, 
fi broblasts, and endothelial cells. Aberrant STAT3 activation is seen not only in tumor 
cells but also in stromal cells, which may contribute to their tumor-promoting activity 
 [  134,   135  ] . There is growing evidence that tumor cells may alter antitumor immune 
cells to support tumor growth  [  134  ] , and that STAT3 is involved in cross talk between 
tumor cells and immune cells, thus augmenting tumor-induced immunosuppression 
 [  133  ] . STAT3 activity in tumors can negatively regulate expression of several Th-1 
immunostimulatory cytokines and chemokines that are important for immune-medi-
ated tumor growth inhibition, such as IL-12, TNF, IFN- g , IFN- b , CXCL10, and CCL5 
 [  40,   60,   62,   114  ] . By contrast, elevated STAT3 activity in tumor cells can upregulate 
expression of immunosuppressive factors, such as IL-10 and TGF b   [  53,   116  ] . 
Furthermore, known STAT3 activators such as IL-6, IL-10, and VEGF contribute to 
suppression of dendritic cell (DC) maturation, an event necessary for proper antigen 
presentation to T-cells  [  26,   114  ] . In human melanoma cells with mutated BRAF, 
STAT3 is required for production of IL-6, IL-10, and VEGF, which inhibits expres-
sion of immune-stimulating molecules such as IL-12 and TNF by DCs  [  108  ] . 
Involvement of IL-10 in immune evasion of melanoma patients has also been explored. 
Tumorigenic ABCB5 +  malignant melanoma initiating cells (MMICs), isolated directly 
from tumor tissues, can elicit IL-10 synthesis when cocultured with peripheral blood 
mononuclear cells (PBMCs), resulting in induction of CD4 + CD25 + FoxP3 +  regulatory 
T-cells  [  102  ] . Moreover, patients with metastatic melanoma have been found to have 
increased levels of the STAT3-mediated VEGF production. This tumor-driven VEGF 
secretion may be responsible for Th-2 infl ammation in patients characterized by ele-
vations of the Th-2-promoting cytokines IL-4, IL-5, IL-10, and IL-13  [  84  ] . 

 STAT3 activity in tumors also affects other members of innate immunity, namely, 
macrophages, neutrophils, and NK cells. In mouse melanoma models, STAT3 activa-
tion affects migration of neutrophils and macrophages as well as nitric oxide synthe-
sis by macrophages, thus blocking an antitumor immune response  [  9  ] . Moreover, 
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intrinsic STAT3 activity in both tumor-infi ltrating neutrophils and NK cells is inhibi-
tory of their antitumor cytotoxic activity  [  60  ] . STAT3 signaling in the tumor microen-
vironment also directly regulates the balance of two major immune factors produced 
by myeloid cells, IL-23 and IL-12  [  62  ] . These related yet opposing factors are impor-
tant in regulating pro- and antitumor innate and adaptive immune responses  [  71  ] . 

 Another group of important tumor-infi ltrating immune cells are myeloid-derived 
suppressor cells (MDSCs). MDSCs represent a heterogeneous population of myel-
oid cells at different stages of maturation found both in tumor-bearing mice and in 
cancer patients  [  27  ] . It has been recently shown that myeloid cells with immunosup-
pressive properties accumulate both in mononuclear and polymorphonuclear frac-
tions of circulating blood leukocytes of patients with melanoma and colon cancer 
 [  77  ] . One of the main functions of MDSCs in the tumor environment is suppression 
of antitumor T-cell-mediated immune response. This MDSC-mediated T-cell sup-
pression involves several mechanisms, including synthesis of reactive oxygen spe-
cies, arginase-mediated depletion of arginine, and inhibition of CD8 +  T-cell antigen 
recognition  [  82  ] . Accumulation of MDSCs in tumor-bearing animals can be con-
tributed by STAT3-induced upregulation of the myeloid-related protein S100A9 
 [  14  ] . Furthermore, STAT3 in the tumor microenvironment can mediate multidirec-
tional cross talk among tumor cells, myeloid cells, and endothelial cells in the tumor 
site, contributing to tumor angiogenesis  [  67  ] . MDSCs and macrophages isolated 
from mouse melanomas secreted angiogenic factors including VEGF and bFGF, 
and induce angiogenesis by activation of STAT3. 

 In addition to the suppressive effects of MDSCs, T-cell-mediated antitumor 
effects are suppressed by tumor cells and myeloid cells through induction of regula-
tory T-cells (Tregs)  [  137  ] . Infi ltration of Tregs is associated with progression of 
many human tumor types, including melanoma  [  28,   137  ] . In human melanoma, 
FOXP3 +  Tregs can be linked to immune tolerance early during melanoma develop-
ment, thus favoring melanoma growth  [  81  ] . While their accumulation in tumors as 
a prognostic factor needs further investigation  [  70  ] , targeting Tregs in melanoma 
patients to overcome immunosuppression and enhance antitumor immunotherapy is 
a desirable therapeutic strategy  [  54  ] . Recent evidence suggests an important role for 
STAT3 signaling in melanoma Tregs. A new STAT3 signaling pathway inhibitor has 
been shown to enhance T-cell-mediated cytotoxicity against melanoma cells through 
inhibition of Tregs  [  58  ] . Moreover, the same small-molecule inhibitor of STAT3 has 
antitumor effi cacy in a mouse intracerebral melanoma model, in part by inhibition 
of Tregs  [  56  ] . Tyrosine kinase inhibitors such as sunitinib (SU011248), which 
inhibits STAT3 at relatively high concentrations  [  125,   128  ] , can also reduce MDSCs 
and tumor-infi ltrating Tregs in patients with renal cell carcinoma  [  23,   55  ] , as well as 
in various mouse tumor models  [  90,   125  ] . Sunitinib can also drastically enhance the 
antitumor effects of adoptive T-cell therapy, which is associated with a reduction in 
tumor-infi ltrating Tregs in a mouse melanoma model  [  68  ] . 

 Another mechanism of tumor immune evasion involves decreasing the amount 
of tumor-associated antigens, thus preventing effi cient cytotoxic T-cell response. 
It has recently been shown that Wnt5A inhibits expression of melanoma antigens 
through STAT3 activation  [  18  ] . STAT3 activation reduced expression of PAX3 and 
subsequent MITF expression, which regulate melanosomal antigen expression.  
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   Treatment of Melanoma by STAT3-Targeted Therapy 

 One of the currently available therapies for the treatment of patients with melanoma 
is interferon-alpha-2b (IFN a 2b). One important aspect of IFN a 2b treatment is the 
role it plays in STAT3 regulation. STAT3 has been suggested as a biomarker for 
progression in atypical nevi of patients with melanoma, and the ratio of phospho-
STAT1 and phospho-STAT3 in melanoma appears to be an important predicator for 
IFN a 2b response  [  115,   117  ] . On the contrary, dysregulation of STAT3 may dimin-
ish the therapeutic effi cacy of IFN a 2b therapy. In fact, defects in the JAK/STAT 
pathway are found in some IFN a -resistant malignant melanomas  [  91  ] . In addition, 
IFN a 2b may cause hyper-activation of STAT3 and further push tumor progression 
in certain melanoma subtypes  [  43  ] . In cases such as these, IFNa2b treatment in 
conjunction with STAT3 inhibition may enhance antitumor effi cacy against brain 
metastatic melanoma  [  57  ] . 

 Immunotherapy has shown promise for melanoma therapy. One such approach is 
the use of CpG oligonucleotides or other agonists of Toll-like receptors (TLRs) to 
stimulate antitumor immune responses  [  65  ] . Although CpG oligonucleotides/TLR9 
agonists have been used in treating melanoma  [  92  ] , the effi cacy of such therapy 
needs further improvement. While CpG treatment may effectively mediate antitu-
mor immune response, the activation of STAT3 during this response may act as a 
negative regulator of the Th-1 antitumor response  [  59,   60  ] . As a proof of principle, 
injection of a single dose of CpG oligonucleotides into melanoma tumor-bearing 
mice lacking the  Stat3  gene in hematopoietic cells caused rapid eradication of large 
B16 melanoma tumors  [  59  ] . Recently, a novel siRNA delivery platform has been 
developed by physically linking the CpG oligonucleotide with STAT3 siRNA  [  61  ] . 
The CpG-STAT3 siRNA conjugate not only facilitates targeted delivery of siRNA 
into immune cells, but also stimulates immune activation while blocking a key 
immunosuppressive checkpoint  [  30,   61  ] . Activation of the immune system by 
administration of immunostimulatory CpG oligonucleotides in conjunction with 
STAT3 inhibition may be a viable approach for melanoma therapy. Nevertheless, as 
these studies have been performed using mouse-optimized CpG, the effi cacy of 
human-optimized CpG oligonucleotides in targeted siRNA delivery and gene silenc-
ing awaits further studies.  

   Inhibition of STAT3 Activation in Melanoma 
via Small-Molecule Inhibitors 

 Several small-molecule drugs that target Src and other STAT3-activating kinases 
may have implications for the treatment of melanoma. Indirubin and dasatinib dem-
onstrate the link of STAT3 and Src in various cancers. Derivatives of indirubin 
inhibited antiapoptotic proteins and reduced both Src and STAT3 tyrosine phospho-
rylation  [  83  ] . Dasatinib (known to target BCR-ABL, Src-Focal Kinases, PDGFR, 
and c-KIT) can reduce the invasive and tumorigenic properties in established human 



977 STAT3 and Src Signaling in Melanoma

melanoma cell lines in vitro  [  8  ] . Dasatinib may also target endothelial and myeloid 
populations, disrupting the tumor microenvironment that promotes tumor progres-
sion  [  74  ] . Src inhibitor saracatinib tested in Phase II study in patients with advanced 
melanoma had minimal clinical activity as a single agent in metastatic melanoma 
but combination therapies still might hold promise for treating melanoma  [  29  ] . 
Interestingly, while resveratrol is a well-known inhibitor of the mTOR pathway, it 
has been recently shown to target the Src-STAT3 signaling complex  [  63  ]  and induce 
TRAIL-mediated apoptosis by decreasing NF- k B and STAT3 activation  [  45  ] . 
Increased TRAIL expression by STAT3 inhibition in melanoma cells also has been 
shown  [  87  ] . Thus, the biological signifi cance of Src and STAT3 signaling during 
melanoma development has generated increased interest in the clinical evaluation of 
Src- and STAT3-directed therapies. 

 Since STAT3 may be activated by Src-independent pathways, STAT3 inhibition 
via targeting receptor-dependent kinases is also an important strategy for melanoma 
therapy. Imatinib mesylate is one such kinase inhibitor, which targets the STAT3 
activators PDGFR and BCR-ABL  [  122  ] . Like resveratrol, imatinib induces TRAIL-
mediated apoptosis in melanoma  [  37  ] , which could result from inhibition of STAT3 
activation  [  87  ] . However, the treatment of unselected melanoma patients in clinical 
trials using imatinib has not demonstrated signifi cant effi cacy  [  113,   122  ] . On the 
contrary, imatinib can target melanoma subpopulation that express a gain-of-function 
mutation for the protein KIT  [  41,   47,   76  ]  and therefore may be used in combination 
with other kinase inhibitors for effective therapy. In addition to imatinib, sunitinib is 
in clinical trials for various stages of melanoma  [  12,   97  ] . Sunitinib has been shown 
to reverse the immunosuppressive effects of tumor-associated immune cells in human 
renal cell carcinoma  [  23,   55,   80  ]  and mouse tumor models  [  125  ] . This inhibition, as 
shown in mouse renal cell carcinoma, is at least partially mediated by downregula-
tion of STAT3 activity  [  125  ] . In addition to the well-established studies in renal cell 
carcinoma, sunitinib is currently in Phase II clinical trials for the treatment of patients 
with Stage IV uveal melanoma  [  12  ] . Sorafenib has also been shown to inhibit STAT3 
in medulloblastoma  [  129  ] . Although sorafenib is originally used as a RAF inhibitor, 
it may also inhibit VEGFR, PDGFR- b , and c-KIT  [  21,   105,   119  ] . While sorafenib is 
already approved by the FDA for the treatment of renal cell carcinoma  [  50  ] , it was 
also used in clinical trials for the treatment of advanced melanoma  [  20  ] . Silibinin has 
also been shown to directly affect the constitutive activation of STAT3 in the prostate 
cancer cell line DU145  [  1  ]  and may have antitumor effects against melanoma  [  106  ] . 
Axitinib, a drug that is in Phase II clinical trials for renal cell carcinoma  [  98  ] , is also 
being tested in advanced stages of melanoma  [  25  ] . 

 Inhibitors of JAK kinases, well-known activators of STATs, may also be used to 
treat melanoma. For instance, JSI-124 (cucurbitacin I) inhibits highly metastatic 
murine melanoma tumor growth in vivo by blocking JAK-mediated STAT3 activa-
tion  [  4  ] . Furthermore, JAK inhibition by AG490 and PP2 decreases melanoma 
STAT3 activation and growth/viability  [  64  ] . WP1066, another small-molecule inhib-
itor of the JAK/STAT3 pathway, can also effectively initiate antitumor immunity in 
metastatic sites of melanoma in the brain using mouse models  [  56  ] . Other JAK inhib-
itors may also hold promise and have yet to be studied in melanoma. For instance, 
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JAK2 inhibitor AZD1480 has been shown to inhibit constitutive STAT3 activity in 
prostate, breast, and ovarian cancer cell lines and in SCID tumor models  [  38  ] . 

 One important aspect/drawback of targeting STAT3 through tyrosine kinase 
inhibitors, including Src inhibitors, is that prolonged inhibition of a particular 
tyrosine kinase(s) can lead to activation of alternative pathways  [  104  ] . As reported 
in several cases, inhibition of the tyrosine kinases can initially inhibit STAT3 activ-
ity, but eventually activates STAT3, promoting tumor growth  [  10,   48  ] . Blocking 
STAT3 and the tyrosine kinase(s) simultaneously can overcome such feedback loops 
and enhance antitumor effects. Owing to lack of its own enzymatic activities, tran-
scription factors, such as STAT3, are diffi cult to target  [  134  ] . Nevertheless, several 
promising direct STAT3 inhibitors have been developed over the years  [  24,   36,   111, 
  112,   135  ] . It is only a matter of time before clinically suitable small-molecule 
STAT3-specifi c inhibitors will be available.  

   Conclusions 

 As a signal transducer, STAT3 is a common point of convergence for numerous 
tyrosine kinases frequently activated in human cancers. One such oncogenic kinase is 
Src. In the case of melanoma, Src has been shown to activate STAT3 at least in some 
patient tumor samples and tumor cell lines. A major reason that STAT3 is critical for 
oncogenesis in diverse cancers, including melanoma, is because it is a transcription 
factor that regulates expression of many genes crucial for survival, proliferation, 
angiogenesis, invasion, and immunosuppression. However, as a target for cancer ther-
apy, STAT3 proves diffi cult to directly inhibit compared with tyrosine kinases such as 
Src. This is due to the lack of intrinsic enzymatic activity of transcription factors. 
Nevertheless, many tyrosine kinase inhibitors, including but not limited to Src inhibi-
tors, can reduce STAT3 activity in tumors. On the contrary, long-term inhibition of 
some tyrosine kinases has been shown to activate alternative oncogenic pathways, 
some of which in turn activate STAT3, leading to cancer-promoting activity. These 
observations suggest the importance of targeting STAT3 directly through either small-
molecule drugs or siRNA. The emergence of several selective STAT3 inhibitors that 
disrupt either STAT3 dimerization or DNA binding suggests that it is possible to 
directly target STAT3 for future cancer therapy. Because STAT3 is a critical check-
point for antitumor immune responses, targeting STAT3 has the unique potential to 
broadly alter the tumor microenvironment to benefi t immunotherapeutic approaches.      
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  Abstract   A comprehensive analysis of critical oncogenic signaling pathways in 
melanoma is leading to new therapeutic approaches for the treatment of this disease. 
The present chapter addresses the pathways that communicate signals from mem-
brane receptors and selected other intracellular processes that lead to the activation 
of the mammalian target of rapamycin (mTOR) and its downstream substrates. 
mTOR exists in two distinct, but related, molecular complexes that control a multi-
tude of cellular processes and intercellular interactions, the normal function of 
which is to regulate cell metabolism, growth and proliferation, apoptosis, and inter-
actions with the microenvironment. In malignancy, abnormal activation of these path-
ways either directly or indirectly through other oncogenic signals gives rise to 
increased proliferation and cell growth, resistance to cell death, and other metabolic 
and intercellular alterations that are characteristic of the transformed phenotype. 
Current understanding of mTOR activity, its control by other molecules, and its role 
in various aspects of malignancy, including preclinical and current clinical data regard-
ing its therapeutic targeting by pharmacologic agents, will be detailed in this chapter.      

  Keywords  •  mTor  •  AKT  •  PI 
3
 K  •  Molecular pathway     

   mTor Overview: Normal Functions and Genetic 
Alterations of Importance in Melanoma 

  mTOR-C1 : This serine-threonine kinase complex of proteins – mTOR, raptor, and 
LST8 – is aptly named for its prototypical pharmacologic inhibitor rapamycin, 
which binds the FKBP12 domain of mTOR  [  28  ]  mTOR-C1, stimulated by RHEB 
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(Ras homologue enriched in brain) (which in turn is controlled by inhibition by the 
complex of the tumor suppressors tuberous sclerosis complex1 and 2, TSC1 and 
TSC2) possesses pleiotropic activities linking the cellular micro-environment with 
a series of molecular pathways that control coordinated aspects of protein transla-
tion. In the normal balance between the extracellular milieu and cellular and nuclear 
events, cell membrane receptors responding to a wide variety of mediators in the 
micro-environment transmit signals that can protect the cell from conditions of lim-
ited oxygen or nutrient supply (e.g., controlling apoptosis, limiting energy con-
sumption, and limiting proliferation). Conversely, in the presence of nutrient-rich 
and oxygen-suffi cient conditions, mTOR-C1 activity phosphorylates specifi c ribo-
somal and translation factors that control the translation of specifi c mRNAs encod-
ing proteins involved in cell-cycle progression, cell proliferation, resistance to 
apoptosis, and glucose metabolism (see Fig.  8.1 ).  

  mTOR-C2 : A second mTOR complex, mTOR-C2, has a complementary role in 
“completing” the activation of AKT by phosphorylating it at Ser473  [  17,   33  ] . 
mTOR-C2 contains the identical multidomain mTOR molecule in association with 
RICTOR, LST8 and MAPKAP2  [  50  ] . Important feedback loops that regulate the 
balance of cellular functions controlled by AKT and mTOR through complex inter-
actions with TSC2 may explain the activation of AKT that results from pharmaco-
logic inhibition of mTOR, particularly by agents that are selective for mTOR-C1. 
These alterations of the feedback loops result in resistance to mTOR inhibition in 

  Fig. 8.1    Schematic of the major signaling pathways that interact with PI3K and mTOR. The term 
“rapalogs” refers to drugs which are functionally similar to rapamycin and inhibit mTOR       
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selected malignant cells and may also paradoxically increase survival of cancer 
cells by enhancing angiogenesis via the upregulation by PI3K/AKT signaling in 
response to vascular endothelial growth factor (VEGF)  [  17  ] . 

 Mutations in the mTOR gene have not been identifi ed in cancer, but genetic 
alterations of upstream elements including loss of function of phosphatase and 
tensin homolog deleted on chromosome 10 (PTEN) are common  [  35  ]  and result in 
downstream AKT overexpression and increased activity of the target translation-
controlling factors ribosomal S6K1 and 4EIF-BP/EIF4E. Other mutations, includ-
ing alterations of PI3K subunits and AKT isoforms, have been reported in occasional 
cell lines or patient samples  [  7,   11  ] , but may provide clues to the molecular patho-
genesis of specifi c oncogenic changes and inform the design of therapeutic agents.  

   Upstream Effectors of mTOR Activation: 
PTEN, PI3K, and AKT 

 PTEN is a protein phosphatase that can dephosphorylate focal adhesion kinase 
(FAK) and Src homology collagen (SHC) as well as members of the MAPK path-
way, resulting in its contribution to normal control of cell adhesion, spreading, and 
migration. PTEN also has lipid phosphatase activity that may predominate over its 
protein phosphatase activities, with negative control of PI3K and downstream AKT 
tightly regulating processes of cell growth, survival, and apoptosis  [  5,   29,   50  ] . 

 Loss of PTEN function occurs early in melanomagenesis and appears to contrib-
ute to a self-perpetuating process of serial genetic alterations that promote more 
aggressive cell phenotypes. It has been hypothesized that chromosome 10 deletion, 
resulting in loss of PTEN expression, causes increased activation of AKT3 (see 
below), which provides a survival and growth advantage in concert with other ele-
ments of the microenvironment that provide anti-apoptotic signals  [  30  ] . The details 
of these other pathways in melanomagenesis and their potential as therapeutic tar-
gets are detailed elsewhere in this volume, but will be addressed here with respect 
to their interactions with the PI3K/AKT/mTOR pathways. 

 Phosphatidyl inositol 3 kinase (PI3K) is the term used for a group of cellular lipid 
kinases that phosphorylate substrate phosphatidyl inositides at the 3 ¢  hydroxy position. 
The resulting phosphorylated second messenger lipid molecules recruit AKT to the cell 
membrane. The control of PI3Ks by signals from the microenvironment are mediated 
through activation by G-protein-coupled receptors and RAS and its effectors, the latter 
being activated either by mutation or by upstream signals that drive oncogenesis 
through activation of the AKT pathway as well as the MAP kinase pathway  [  48  ] . 

 AKT is a serine-threonine kinase that plays a pivotal role in the balance between 
cell survival and apoptosis  [  39  ] . Apart from its activation of mTOR via phosphoryla-
tion and thus inactivation of the negative mTOR regulator TSC2  [  35  ] , activated AKT 
also phosphorylates the pro-apoptotic molecules BAD and pro-caspase-9 to inhibit 
apoptosis and activates the transcription factor NF- k B, resulting in increased expres-
sion of anti-apoptotic and pro-survival genes. Phosphorylation of mdm2 leads to 
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inhibition of p53-mediated apoptosis and negative regulation of forkhead transcrip-
tion factors, resulting in reduced production of other cell-death-promoting proteins 
 [  5  ] . AKT activation leads to the phosphorylation and monoubiquitination of the 
checkpoint kinase Chk1, causing genomic instability and double-stranded DNA 
breaks that contribute to carcinogenesis  [  30  ] . In addition to its role in promoting cell 
growth, survival, and anti-apoptosis, AKT also stimulates pro-angiogenic pathways 
in endothelial cells, mediating another important element of the tumor microenviron-
ment that may provide a therapeutic target in melanoma and other malignancies.  

   mTOR Complexes and Downstream Events: 
Control of Transcription 

 The activation of mTOR-C1 complexes by AKT and PI3K occurs via the phospho-
rylation of TSC2, which leads to activation of RHEB and then mTOR-C1, the 
 complex that phosphorylates ribosomal S6 kinase and the inhibitor of eukaryotic 
initiation factor 4E-BP1. The resulting release from inhibition of eukaryotic 
 initiation factor eIF4E and the activity of ribosomal S6 protein leads to preferential 
translation of mRNA encoding proteins that support the transformed phenotype, 
including cell growth and proliferation, protection from apoptosis, and angiogene-
sis. Feedback inhibition of mTOR-C1 by TSC1-TSC2 complex and PRAS40 
 controls its activity in normal cell physiology  [  35  ] . 

 mTOR-C2 is a complex of mTOR, rictor, mLST8, mSIN1, and protor-1 that is acti-
vated by growth factors and itself phosphorylates PKC- a  and AKT in addition to regulat-
ing the cytoskeleton  [  44  ] . Tight forward and feedback control of these complex interactions 
is provided by phosphorylation of several proteins at different sites under different condi-
tions. mTOR-C2 function probably contributes to control of the cytoskeleton and cell 
migration  [  35  ] . There is also convergence of this pathway with the MAPK pathway, in 
which downstream ERK activates mTOR-C1 and inhibits BAD, further promoting the 
downstream consequences of mTOR pathway activation in cancer cells  [  14  ] . 

 The expression of phosphorylated 4E-BP1 is widespread in melanoma and was 
associated with unfavorable survival outcomes in multivariate analysis of 47 patients 
with advanced melanoma  [  41  ] . A recent study of mTOR signaling in 30 uveal and 
8 conjunctival melanoma specimens showed that conjunctival melanomas, similar 
to cutaneous primaries, usually had low levels of PTEN and correspondingly ele-
vated levels of phosphorylated downstream molecules of the mTOR pathway. Uveal 
primaries, in contrast, did not demonstrate mTOR pathway activation or BRAF or 
NRAS mutations but increased expression of MAPK signaling likely due to the 
frequent expression of one of 2 recently-reported RAS-like mutations (GNAQ and 
GNA11) that also activate the MAPK pathway  [  51  ] . 

 The strategies to date for targeting one or more of the PI3K family members 
upstream of mTOR have taken advantage of investigation into structure- function 
design principles  [  53  ] . Current drug development efforts directed toward agents 
that inhibit both PI3K and mTOR, based on structural similarities at the active 
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site of their catalytic subunits, are of interest because of the loss of activation of 
AKT by mTOR-C2 during inhibition of mTOR-C1. AKT inhibition has not yet 
been explored to the same extent as inhibition of PI3K and mTOR but may have 
promise in selected tumors. While the need to inhibit broadly either by multi-
target inhibition or using complementary or synergistic drug combinations is 
evident, success must be balanced against the loss of tumor specifi city associ-
ated with broadening of the therapeutic targets that can cause toxicities to nor-
mal organs and compromise of the favorable therapeutic index often characteristic 
of narrow-spectrum targeted inhibitors. In addition, drugs that target these 
enzymes may have unusual toxicities that are based on their molecular mecha-
nisms and target specifi cities. For example, the control of insulin signaling by 
PI3K subunits explains the resistance to insulin resulting from inhibition of 
PI3K, an important potential toxicity of drugs that interfere in these pathways 
 [  5  ] . This phenomenon has been shown in a rodent model to be due to the inhibi-
tion of the peripheral action of insulin causing diminished glucose uptake, 
increased gluconeogenesis, and hepatic glycogenolysis  [  6  ] .  

   Mutations and Gene Alterations that Lead 
to Activation of Signaling Via mTOR 

 mTOR is activated in the majority of melanomas, as evidenced by the mTOR-depen-
dent phosphorylation of S6K, and may represent activation by either the upstream 
PI3K/AKT system or via activation through elements of the MAPK pathway. For 
example, in a recent study of 107 human melanomas and six established melanoma 
cell lines, approximately 80% of tumors showed strongly positive immunohis-
tochemical staining for phospho-S6K, while cells isolated from benign nevi were 
either negative or only weakly positive. Rapamycin-inhibited phosphorylation of 
S6K in all cell lines as well as the proliferation of three cell lines tested in this study. 
Further, an inhibitor of farnesyl transferase, which blocks the activation of mTOR by 
RHEB, also inhibited the growth of melanoma cell lines with activated mTOR  [  21  ] . 

 mTOR is directly activated by RHEB in a farnesylation-dependent manner. NRAS 
mutations, occurring in 15% of melanomas  [  13  ] , can activate both pathways, while 
loss or attenuation of PTEN activity via chromosome 10 loss (particularly prevalent in 
melanoma), promoter methylation, or post-translational modifi cation can all remove 
the negative control exerted by normal PTEN on its downstream pathway starting 
with PI3K and AKT  [  30  ] . Mutations of AKT have recently been identifi ed in mela-
noma as well as several other solid tumor types and may account for tumorigenic 
activation of this pathway in the absence of other genetic mutations  [  10  ] . Activation 
of the PI3K/AKT/mTOR pathway more indirectly by other oncogenic signal trans-
duction through cell growth factor receptors (e.g., NRAS signaling and c-kit)  [  47  ]  
provides further evidence for the potential value of developing cancer therapies that 
interrupt one or more elements of the PI3K/AKT/mTOR pathway. The complexities 
and heterogeneities of these pathways and their molecular alterations in different 
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 malignancies raise the challenge that therapeutic strategies that have been highly 
effective in selected tumors may be of little value in others. 

 Loss of PTEN function is commonly seen in combination with BRAF mutation 
in cutaneous melanoma cells and is also characteristic of benign nevi  [  24  ] . The lat-
ter alone is not suffi cient to fully transform melanocytes to express the malignant 
phenotype, and in fact, the unchecked high activity of V600E BRAF alone pro-
motes the development of nevi, but the level of activity of the MAPK pathway may 
need to be lowered to support full progression to the malignant melanoma pheno-
type. Cooperation between AKT3 and mutant BRAF has been shown to promote 
this fi nal transformation to malignancy, and inhibition of either enzyme in cell lines 
from melanomas driven by these two pathways can reduce the malignant character-
istics of anchorage-independent growth and tumor development, with even greater 
inhibition when both pathways are inhibited  [  3  ] . Cells with mutated NRAS, by 
contrast, do not feature BRAF mutations because mutated NRAS alone is suffi cient 
to fully transform melanocytes by activating both the MAPK and the PI3K/AKT 
pathways. Studies in a large series of human melanoma cell lines demonstrated that 
cells with mutated BRAF, which usually have loss of PTEN function, demonstrate 
greater activation of AKT than cells with NRAS mutations that activate both path-
ways further upstream  [  11  ] . 

 Activated AKT expression has been evaluated in a clinicopathologic study of 
292 cases including normal and dysplastic nevi, and primary and metastatic mela-
nomas and shown to be present in increasing percentage across this spectrum. A 
multivariate analysis applied to the 170 cases of primary melanoma suggested that 
strong phospho-AKT expression correlated inversely with overall and disease-spe-
cifi c survival  [  8  ] . A fraction of melanomas arising in mucosal and acral sites have 
been shown to carry a mutation of the KIT oncogene that encodes a receptor respon-
sive to stem cell factor in normal physiology (hematopoiesis and other organogen-
esis). While a number of currently available kinase inhibitors target the KIT receptor 
in addition to other related signal transduction pathways (e.g., imatinib, dasatinib 
and others), their use in melanoma has been promising only in the fraction of 
patients bearing KIT mutations. Nevertheless, KIT signaling can also activate PI3K, 
promoting mTOR pathway signaling, so the development of combinations based on 
this molecular interplay may also have therapeutic potential  [  19  ] . Additional genetic 
alterations such as p53 and/or Rb via loss of the suppressor p16ink4a may be neces-
sary for melanomagenesis in different subgroups of melanoma  [  1  ] . 

 Successful targeting of mTOR in preclinical models and in the clinic for selected 
other malignancies suggested that this pathway is an important therapeutic target, 
particularly when PTEN loss of function is the source of pathway activation, but 
also when the pathway is activated by mutations of PI3K or AKT  [  35  ] . However, 
single-agent inhibition of mTOR using FKBP12-binding drugs like the rapalogs 
have had variable activity against tumors that are driven in part by mTOR activation. 
Normal feedback inhibition by mTOR of the expression of insulin receptor substrate 
(IRS-1) is lost when blocked by inhibitors of mTOR-C1 activity, leading to upregu-
lation of AKT and hyperactivation of the pathway, thus overcoming the block and 
abrogating the antitumor effects of mTOR blockade. When mTOR inhibition is 
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combined with inhibitors of the IGF-1 receptor, however, malignant cell prolifera-
tion can be more effectively blocked  [  40  ] . This approach, along with others more 
clinically developed, as detailed later in this chapter, may have promise for the treat-
ment of malignancies in which the activation of PI3K/AKT/mTOR is an important 
but not the sole pathway driving the tumor  [  2,   49  ] .  

   Therapeutic Targeting of PI3K, AKT and mTOR in Melanoma: 
Single Agent Therapy and Potential for Effective Combinations 

 While inhibitors of several enzymes have been developed and are currently in vari-
ous phases of clinical investigation, only the inhibitors of mTOR-C1 have com-
pleted clinical testing all the way through Phase III trials and become commercially 
available. The rapalogs temsirolimus and everolimus had suffi cient single-agent 
activity in renal cancer to meet the Food and Drug Administration’s criteria for 
approval, and temsirolimus has also been approved for mantle cell lymphoma  [  16  ] . 
Other promising data support further study of these agents in low-grade neuroendo-
crine cancers and possibly endometrial cancer  [  9  ] . Unfortunately, even in those 
tumors that have shown responsiveness to mTOR inhibition, the clinical impact has 
been modest, evidenced by cytostatic effects and prolonged disease stabilization 
without substantial objective responses except in mantle cell lymphoma and with 
the question of substantial survival benefi t remaining to be demonstrated. 
Combination of mTOR pathway inhibitors with cytotoxic agents may hold greater 
promise; in a recent preclinical investigation, blockade of signaling down the PI3K/
AKT/mTOR pathway using one of three different inhibitors added to either cispla-
tin or temozolomide markedly enhanced growth inhibition and induced apoptosis of 
several melanoma cell lines compared with most of the single agents  [  49  ] , and the 
data for such combinations in other malignancies are summarized elsewhere  [  9  ] . 

 For the treatment of advanced melanoma, temsirolimus was tested in a Phase II 
trial of 33 patients with a good performance status and normal organ function. In 
this study, completed by the California Cancer Consortium, 11 patients had received 
one prior cytotoxic regimen for advanced disease, and 14 had received one or more 
prior biological response modifi er regimen for adjuvant and or advanced disease. 
Only one patient experienced a transient partial response in soft tissue metastatic 
disease, and the pre-specifi ed primary objective of progression-free survival for a 
median of at least 4 months was not achieved  [  31  ] . In view of this negative study, 
enthusiasm for clinical testing of the promising preclinical data for combinations 
with chemotherapy (especially cisplatin, a nonmyelosuppressive drug with the 
favorable preclinical data detailed above and modest activity in melanoma) has been 
low. Considering the complex molecular controls of tumor cell sensitivity and resis-
tance to PI3K/AKT/mTOR pathway blockade, the design of optimal combinations 
of inhibitors plus cytotoxic agents will await more convincing proof of principle for 
target validation and achievement of the desired therapeutic endpoints (e.g., Phase 
0 studies). 
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 While the challenges to combining cytotoxic agents with inhibitors of the mTOR 
and related pathways remain to be overcome, the nature of preclinical and clinical 
investigation of targeted agents provided information about pathway interactions to 
justify the testing of carefully selected combinations. Most of these studies represent 
additive blockade of sequential steps in a linear molecular pathway (vertical block-
ade) or inhibition of a step in two parallel pathways (horizontal blockade) that is 
designed in similar fashion to the traditional principles of combination chemotherapy 
for hematologic malignancies and solid tumors. The same principles also apply to 
the choice of agents to minimize toxicities, which requires that the agents have mini-
mal overlap of toxicities that will allow them to be combined at doses close to their 
individual maximum tolerated doses. Alternative strategies include the design of 
combinations directed at overcoming resistance (such strategies may be identical in 
the case of the targeted agents, while in the case of chemotherapy they have been 
disappointing, due to the poor therapeutic index encountered when agents that pre-
vent or reverse resistance are combined with cytotoxic agents). Another question 
raised by the availability of growing numbers of targeted agents for clinical investi-
gation is whether drugs with broad target specifi city are superior or inferior to those 
with a more narrow target specifi city given as single agents or in combination. It is 
rare to discover a tumor that is uniquely driven by a single molecular alteration com-
mon to nearly all patients with the disease (e.g., chronic myelogenous leukemia and 
the product of the bcr-abl translocation or gastrointestinal stromal tumor driven by 
mutated c-kit, both of which achieve substantial and prolonged remissions with sin-
gle agent imatinib). Thus, it seems that the ideal targeted therapy for most malignan-
cies will consist of combinations of two or more drugs that allow each agent and its 
target to be independently manipulated to achieve the optimal therapeutic index. 

 In order to design optimal combinations or better single agents to effectively 
target the PI3K/AKT/mTOR pathway, it will be necessary to address the challenge 
posed by the interactions with other pathways that vary with the biology of the 
malignancy and, for melanoma, are directly related to the molecular oncogenesis of 
the multiple melanoma subtypes. While the presence of both BRAF V600E and 
PTEN mutations that markedly upregulate the MAPK and mTOR pathways, respec-
tively, characterizes the most common subtype of melanoma, several other varia-
tions exist with unique molecular characteristics that may feature varying degrees of 
direct or indirect mTOR activation and thus potential sensitivity to its inhibition. For 
example, a fraction of tumors arising in mucosal surfaces or acral sites have consti-
tutive activation of the KIT receptor for stem cell factor due to mutation or amplifi -
cation of its gene and may be sensitive to inhibition with imatinib and other drugs 
that block the active site of this molecule (detailed in Chap.   4    ). Another variant, 
uveal melanoma arising in one of the several pigmented tissues of the eyes, has 
recently been demonstrated to be dependent on mutations in one of two related 
G-proteins related to RAS that may activate MAPK but are not sensitive to the drugs 
that were developed to target the V600E-activating mutation of BRAF  [  51  ]  .

 Preclinical data were used in support of developing early combinations of tar-
geted inhibitors that included mTOR blockade with rapalogs. Sorafenib plus 
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rapamycin showed at least additive antitumor effects, accompanied by downregu-
lation of the anti-apoptotic proteins Bcl-2 and Mcl-1 when tested against six mela-
noma cell lines  [  26  ] , and in a separate report, the same drugs showed greater 
activity against melanoma cell lines carrying the BRAF V600E mutation than 
against wild type cells, while demonstrating inhibition of downstream targets 
(ERK for sorafenib, S6K1 and 4EBP1 for rapamycin)  [  36  ] . Additional drugs with 
similar mechanisms were studied in the more physiologic setting of cell line mono-
layers and regenerating human skin spiked with melanoma cells. These studies 
showed potent antitumor effects despite low and variable activity for any of the 
single agents  [  34  ]  and further justifi ed the design of clinical studies, (including the 
consideration of combinations of drugs with demonstrated low single-agent activ-
ity). In addition to the targeting of mTOR plus MAPK pathways, which is a logical 
approach in melanomas based on their common presence in the most common 
subtype of cutaneous melanoma, other targets were explored based on the exten-
sive network of interactions involving mTOR and its up- and downstream ele-
ments. For example, melanoma cells that produce VEGF have recently been shown 
to be partially inhibited by blockade of VEGFR2, presumably due to a co-depen-
dence on vascular proliferation in the microenvironment. However, an alternative 
explanation was provided by the results of recent studies that showed bevacizumab 
in combination with rapamycin had a more potent cytotoxic effect against mela-
noma cells expressing VEGF than against cells that did not express VEGF, sup-
porting the presence of an autocrine proliferation loop in melanoma cells that can 
be targeted effectively by this combination  [  37  ] . 

 Multi-kinase inhibitors that target more than one enzyme along the PI3K/AKT/
mTOR pathway – for example, the dual PI3K and mTOR inhibitors – have recently 
shown great promise in preclinical investigations and are now ready for testing in 
the clinic. The preclinical observations with these drugs against melanoma cell lines 
included direct inhibition of cell growth and cell cycle-promoting molecules with-
out the induction of signifi cant apoptosis. Controls included a pan-class I PI3K 
inhibitor and rapamycin, each of which resulted in minor reduction of cell prolifera-
tion. In a mouse melanoma tumor model, these inhibitors of both PI3K and mTOR 
effi ciently attenuated tumor growth at primary and lymph node metastatic sites with 
no obvious toxicity. The observation that neovascularization was also blocked, with 
resulting tumor necrosis, provided support for a dual cellular target effect of these 
drugs in vivo as both direct antitumor and indirect anti-angiogenesis agents  [  33  ] .  

   Clinical Results of Combinations Based on Inhibition 
of PI3K/AKT/mTOR Pathway 

 The clinical testing of combinations containing an mTOR pathway inhibitor (temsi-
rolimus) plus sorafenib, which at the time was believed to be a potent inhibitor of 
BRAF and the MAPK pathway, required careful attention to combined toxicities 
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that were assessed in Phase I trials using a range of doses for each agent, given on their 
standard schedules. It was initially expected that the relative lack of myelosuppression 
and their predominantly non-overlapping toxicities would permit the use of com-
bination doses at or near the Phase II recommended doses for each single agent. 
However, enhanced toxicities of combination therapy that did not appear to be due 
to pharmacokinetic interactions were reported in these Phase I trials, including 
mucocutaneous (skin rash, hand-foot syndrome, diarrhea), constitutional (fatigue), 
and metabolic (hyperlipidemia, hyperglycemia) toxicities. The initiation of a Phase 
II randomized design of two molecularly targeted combinations for advanced mela-
noma, solicited by the National Cancer Institute’s Cancer Therapy Evaluation 
Program and designed by the Southwest Oncology Group, had to await the comple-
tion of a Phase I trial of each combination – and these enhanced toxicities not only 
delayed the opening of the trial but demonstrated the need to reduce the doses used 
in combination to well below those used for single agent therapy. The fi rst Phase I 
trial was a broad-histology study that included only fi ve melanoma patients with no 
objective responses or prolonged stabilization of disease  [  43  ] .   The second trial 
included only melanoma patients, and 10 of 23 experienced prolonged stable dis-
eases between 2 and 8 months in duration  [  22  ] . 

 Patients in this Phase II trial were unselected for molecular type prior to protocol 
enrollment but had tissue available for later analysis. Treatment consisted of 
sorafenib 200 mg twice daily, the recommended Phase II dose from Phase I that is 
only 50% the single agent recommended dose, and temsirolimus 25 mg per week, 
the standard dose for the approved indications but tenfold lower than the dose previ-
ously tested as a single agent in melanoma  [  31  ] . Sixty-four patients with cutaneous 
melanoma who had not received any prior therapy for advanced disease were treated 
with this combination. Because it was expected to produce cytostatic effects rather 
than major tumor regressions, assessment of the activity of the combination was 
based on progression-free survival rather than partial and complete responses mea-
sured by traditional RECIST criteria used by the cooperative groups for cytotoxic 
agents.  [  32  ] . The results of this 2-arm study were disappointing but not surprising. 
Despite the exclusion of patients with the traditionally most unfavorable character-
istics – metastases from ocular and mucosal primary sites, patients exposed to any 
prior systemic therapy and those with a history of brain metastases – there were very 
few objective responses (three partial responses among 63 patients), and the median 
progression-free (4 months) and overall (median 7 months) survivals were compa-
rable to those of a large series of prior SWOG studies considered “negative” for 
benefi t  [  23  ] . 

 Because this study was performed in parallel with several other molecularly 
targeted combinations provided by CTEP for other malignancies, the possibility 
of further investigating target pathways in the tumors that were collected at a cen-
tral tissue bank as a part of this study will be addressed across multiple tumor 
types that will provide additional insight into differences and similarities across 
the spectrum of malignancies. Further, during the time required for completion of 
the Phase I studies and the subsequent completion of the Phase II SWOG trial, 
additional data regarding the drugs used in this combination provided additional 
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insight into the limited potential for these particular agents to provide effective 
antitumor activity in melanoma. In particular, it became clear that sorafenib is not 
a very good inhibitor of wild-type or mutated BRAF, but has a multiplicity of 
targets including cellular receptors for fi broblast growth factor, VEGF, and plate-
let-derived growth factor  [  20  ] . The implications of these targets may be widely 
differing with the molecular pathogenesis of different malignancies, and thus the 
potential for additive or synergistic combinations with other drugs is diffi cult to 
predict. Indeed, melanomas not driven by mutated BRAF are not only resistant to 
BRAF inhibitors but may experience growth promotion by these drugs  [  25  ] . Other 
limitations included the observation that temsirolimus is in most cells and experi-
mental conditions a more potent inhibitor of mTOR-C1 than of mTOR-C2, so its 
use in tumors that are driven by this pathway may lead to the mTOR-C2-mediated 
upregulation of AKT with resistance or escape from control by the inhibition of 
mTOR.  

   Unique Toxicity Spectrum of mTOR Inhibitors: Experience 
with the Rapalogs Temsirolimus and Everolimus 

 It has become abundantly clear that small molecule and even macromolecule inhibi-
tors of cellular signaling, such as growth factor and growth factor receptor antibod-
ies, are associated with a spectrum of toxicities distinct from those of traditional 
cytotoxic agents. In fact, some of the features of this group of drugs more closely 
resemble those occurring with chemotherapies that target metabolic pathways (e.g., 
pyrimidine or purine analogs like capecitabine and methotrexate) than those that 
directly target nucleic acid structure/function or the cell-division apparatus (such as 
alkylating agents, topoisomerase inhibitors, demethylating agents, vinca alkaloids 
or taxanes). Common to the kinase inhibitors are various mucocutaneous toxicities 
that include skin rash, irritation that often involves the palms and soles, stomatitis, 
and diarrhea. Hypothyroidism and myocardial suppression as well as fatigue are 
further evidence of the subtle but potentially dose- or “duration-limiting” toxicities 
of these drugs. In the case of the rapalogs temsirolimus and everolimus, the rela-
tively unique spectrum of toxicities may be attributable to the pleiotropic cellular 
and extracellular functions of the molecules in these pathways. The impact of 
mTOR-C1 inhibition on glycemic control was detailed earlier in this chapter and is 
a common clinical fi nding that may not be optimally managed according to standard 
diabetic therapy due in part to the distinct mechanisms of hyperglycemia caused by 
intervention in this pathway  [  6  ] . In an animal model, a combination of fasting and 
low carbohydrate diet was a more effective approach and may be considered in 
conjunction with other standard medical management in clinical practice. 
Dyslipidemias are also common with rapalogs, and management to date has been 
based on standard therapies used for common lipid disorders, like management of 
common dyslipidemias resulting from the use of rapamycin-based regimens for 
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immunosuppression of recipients of solid organ or hematopoietic cell transplants. 
Mild to moderate cytopenias are less common but sometimes require dose or sched-
ule adjustments. The precise mechanisms are unknown but again most likely repre-
sent additional off-target effects such as inhibition of molecular pathways required 
for normal hematopoiesis. 

 Clinical guidance regarding the long list of drug interactions that may further 
complicate the management of cancer patients receiving mTOR inhibitors has 
emerged from their use in the post-transplant setting where many patients are on 
other drugs that interact with the metabolism and clearance of the rapalogs. Even 
more unique to this class of agents and presumably resulting more directly from 
some of the specifi c molecular targets are the rare but life-threatening infl ammatory 
syndromes, particularly interstitial pneumonitis, that have been reported in variable 
numbers and percentages of patients and may be multifactorial, based on duration, 
dose, and underlying risk factors. The possibility has been raised that altered 
immune networks during rapalog therapy also contribute to an autoimmune compo-
nent of this syndrome. Since interstitial pneumonitis, which has variable clinical 
and radiographic features, may be asymptomatic, some of the studies suggesting 
higher incidence were based on CT fi ndings alone. The point at which intervention 
is required (reduction or discontinuation of therapy, or if symptomatic, treatment 
with glucocorticosteroids) remains to be further studied  [  12  ] . Acute infusion reac-
tions (urticaria, fever, bronchospasm, hypotension) also occur occasionally with 
Temsirolimus, possibly resulting from a disturbance of the interactions among 
infl ammatory cells and the cytokines that control their function, and it is recom-
mended that patients receiving Temsirolimus be premedicated with an H1 anti-his-
tamine  [  46  ] .  

   Pharmacodynamics and Biomarkers of Activity and Resistance 

 Most of the work on developing molecular markers of effective mTOR pathway 
inhibition or the study of intrinsic and acquired resistance has focused on the most 
downstream elements, such as ribosomal S6K1 and 4EBP1/EIF-4E. Target inhibi-
tion in tumors and in selected accessible normal tissue has been correlated in limited 
studies with exposure using different doses and schedules, while the clinical corre-
lation of target inhibition with outcomes has been more elusive due to the enormous 
complexity of pathways and molecular heterogeneity both within and across tumor 
types. More practical approaches include the application of functional imaging in 
assessing treatment with mTOR inhibitors. To date, the only data addressing this 
modality were reported from a study of 34 rapamycin-treated patients who had 
tumor assessable by  18 F-FDG-PET. The positive and negative predictive values of 
the PET scan were both very low, leading the authors to conclude that this modality 
does not provide valuable functional imaging for the early assessment of response 
or progression in cancer patients receiving mTOR inhibitors. However, close correlation 
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of PET positivity with tumors expressing activated AKT raised the possibility that 
this form of functional imaging could be used to look for tumors with persistent 
AKT activation during mTOR inhibitor therapy, which could have implications for 
treatment decisions and design of combination therapies  [  29  ] . At least as important 
as reliable pharmacodynamic parameters to assess ongoing therapy will be the iden-
tifi cation of predictive markers of benefi t that can be used to pre-select patients 
likely to benefi t from single agent or combination therapies and to avoid the toxici-
ties and delay associated with ineffective therapy in the case of those with predicted 
treatment resistance.     

   Long-Term Therapy Considerations and Potential 
Immunosuppression 

 The mTOR inhibitor rapamycin is currently used as part of the immunosuppressive 
regimen for recipients of solid organ transplants and for the treatment and preven-
tion of graft-versus-host disease in recipients of hematopoietic cell transplants. The 
quest to develop rapamycin analogs with antitumor activity but without immuno-
suppressive effects led to temsirolimus and then the oral agent everolimus, both 
rapalogs that preferentially block mTOR-C1 more than mTOR-C2 and are less 
immunosuppressive when used intermittently (as for cancer therapy) than continu-
ously. Lack of important immunosuppression by either of these agents was initially 
confi rmed in animal studies and has generally been corroborated by the data from 
clinical trials. Nevertheless, recent data suggest that although opportunistic infec-
tions are uncommon in patients receiving these drugs for the treatment of malig-
nancy, an increased incidence of bacterial infection has been reported, even in the 
absence of neutropenia.  [  16,   18,   36  ] . It is likely that with more effective agents and/
or combinations, additional insight into the mechanisms and incidence of infection 
risk will be elucidated and potentially avoided. Nevertheless, it will be important to 
continue surveillance for risks of immunosuppression as more potent PI3K/AKT/
mTOR pathway inhibitors are tested in the clinic, since better drugs are likely to be 
used over more prolonged intervals and thus reveal previously unknown cumulative 
toxicities. 

 These same principles will also require consideration for combination thera-
pies that include blockade of the PI3K/AKT/mTOR pathway and an immuno-
therapeutic element such as cytokine, vaccine, antibodies or lymphocyte-based 
therapy such as adoptive T cell clones or expanded tumor-infi ltrating lympho-
cytes. It is clear that combining modalities will require careful attention to sched-
uling, dosing, and sequencing details that may dramatically affect the immunologic 
and clinical outcomes. For example, a recent study in a murine melanoma model 
demonstrated that combined therapy with sorafenib and the dual PI3K/mTOR 
inhibitor PI-103 showed in vitro synergy against melanoma cell lines while pro-
ducing immunosuppression, tumor resistance to apoptosis, and enhanced in vivo 
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survival of experimental melanoma in immunocompetent mice  [  27  ] . However, a 
number of recent reports suggest that in some settings, blockade of the PI3K/
AKT/mTOR pathway can have favorable immunotherapeutic results. For exam-
ple, mTOR inhibition with rapamycin was shown to enhance Th1 polarization of 
helper T lymphocytes by its interactions with glycogen synthase kinase (GSK3) 
in the regulation of interleukin-12 expression in dendritic cells  [  42  ] . A favorable 
impact of mTOR inhibition on immunotherapy strategies is also supported by 
recent data showing that activated AKT signaling in melanoma cells confers 
“immunoresistance,” presumably due to its impact on anti-apoptotic molecules, 
and this resistance is reversed with rapamycin, rendering the cells sensitive to kill-
ing by antigen-specifi c cytotoxic T cells  [  15  ] . Finally, mTOR activity can also 
determine directly the fate of CD8 cytotoxic T cells by regulating the expression 
of specifi c transcription factors (enhancing T-bet for effector cells and suppress-
ing eomesodermin for memory cells). Reversal of this effect with rapamycin, 
leading to increased numbers of antigen-specifi c memory CD8 cells, showed 
promise in a murine model of ovarian cancer that may have immediate applicabil-
ity to melanoma  [  45  ] . A large and growing number of other observations on the 
effects of inhibiting this pathway on a wide variety of immunologic endpoints is 
provided in a recent review  [  50  ] .  

   Conclusions 

 The spectrum of opportunities for therapeutic intervention against one or more ele-
ments of the mTOR-related pathways is enormous and potentially growing as the 
complex regulation and interactions among molecular species in the pathogenesis 
of malignancy are elucidated. Co-dependence of angiogenesis, the immune envi-
ronment, and tumor biology as well as pharmacogenetic characteristics of the patient 
all contribute complexity to this quest for the ideal cancer therapy or component of 
a combination or combined-modality approach. Moving away from the constraints 
imposed by the currently-available rapalogs has led to the discovery of small mol-
ecule inhibitors of the active site of mTOR that, unlike the rapalogs, are not steri-
cally limited to the macromolecular structure of the mTOR complex and can 
therefore inhibit mTOR activity in both complexes 1 and 2  [  4  ] . While these agents, 
and others to follow, may prove more active alone or in combinations (see the 
Table  8.1  for current combinations under investigation), it will once again be neces-
sary to perform carefully-designed clinical trials directed at safety and effi cacy, 
including attention to the metabolic, immunologic and angiogenic aspects of their 
actions. Meanwhile, proof of the principle that inhibition of the mTOR pathway is 
a viable option worthy of further development is clearly provided in the case of 
renal cancer and mantle cell lymphoma, where the single agents are approved for 
clinical use, and for low-grade neuroendocrine, endometrial and sarcomas where 
promising activity has also been demonstrated  [  9  ] .       
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  Abstract   Impairment of cell death is a key property of cancer cells. It follows that 
irrespective of the target of new therapies cell survival mechanisms will need to be 
overcome for the treatment to be effective. Considerable information is now avail-
able about the mechanisms responsible for cancer cell survival. These center largely 
on the Bcl-2 protein family and the inhibitor of apoptosis proteins. They are regulated 
by complex pathways that are often initiated by the oncogenic process. A number of 
new treatments that target the anti- and proapoptotic proteins are at various stages 
of development and evaluation. In addition, there is an ever-increasing number of 
agents that target signal pathways involved in regulation of these protein families 
and which may have potent apoptosis-inducing activities. Complex feedback mech-
anisms initiated by these treatments as well as the inherent variability of melanoma 
cells are obstacles that remain to be overcome. Nevertheless, they would appear to 
be an essential component of future treatment strategies against melanoma.  

  Keywords   Melanoma  •  Apoptosis  •  Bcl-2 family  •  BH3 mimetics  •  Inhibitors of 
apoptosis proteins combination treatment      

   Introduction 

 Modern anticancer strategies are increasingly focused on rationally designed drugs 
which target pathways believed to be involved in tumorigenesis. Irrespective of whether 
anticancer strategies are based on nonspecifi c or targeted agents, their effectiveness 
depends on overcoming one of the basic properties of cancer cells, i.e., resistance to 
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induction of apoptosis  [  59  ] . The discovery that impairment of apoptosis was essential in 
tumorigenesis came from studies showing that a protein called B cell lymphoma 2 
(Bcl-2) was overexpressed in most human follicular lymphomas due to translocation of 
the gene on chromosome 18 to chromosome 14 at a site where it becomes driven by the 
promoter for immunoglobulin heavy chains  [  147  ] . Vaux et al.  [  154  ]  demonstrated that 
Bcl-2 was not involved in proliferation of tumor cells but prolonged their survival. 
Tumorigenesis was facilitated when the cell cycle was disrupted by expression of onco-
genes such as c-Myc (   Strasser et al.  [  137  ] ; reviewed in  [  2  ] ). Since these seminal studies, 
there has been a marked increase in knowledge about apoptosis and cell death pathways 
and their regulation in cancer cells to the extent that targeting resistance pathways in 
cancer cells is now a realistic aim in targeted therapy approaches. 

 There are two major pathways that can lead to apoptosis in mammalian cells. 
One is the “intrinsic” or mitochondrial cell death pathway that is regulated by mem-
bers of Bcl-2 protein family. Resistance to this pathway is believed to be the result 
of selection that has allowed the cancer cell to survive the stresses placed on the cell 
during neoplastic transformation such as dysregulated cell division, impaired energy 
production, and DNA damage. The other pathway is the extrinsic pathway that is 
activated when ligands of the tumor necrosis factor (TNF) family interact with death 
receptors (DR) of the TNF receptor family. This pathway is part of adaptive immu-
nity responses, and apoptosis is mediated by the formation of death-inducing sig-
naling complexes (DISC) on the cytosolic side of the receptors consisting of the 
DR, an adaptor protein, and proteases of the caspase family. The latter is usually 
caspase 8 (or 10), which when activated can directly activate the effector caspases 
3, 6, and 7 by proteolytic cleavage. More commonly, activation of caspase 8 in solid 
cancers results in activation of the mitochondrial pathway by caspase 8-mediated 
cleavage and activation of the proapoptotic Bid protein  [  181  ] . 

 Both pathways converge at the level of effector caspase activation where another 
level of regulation is mediated by members of the inhibitor of apoptosis protein 
(IAP) family. These proteins (particularly XIAP) are able to bind to and inhibit 
caspase 9, 3, and 7. This interaction can in turn be inhibited by antagonists released 
from the mitochondria such as Smac/DIABLO, which bind to XIAP. As reviewed 
below, other members of the IAP family may have functions upstream of mitochon-
dria at the level of death receptors. 

 In the sections below we update current information about the cell death resis-
tance pathways in melanoma and how these may be targeted by drugs in use or in 
development.  

   Bcl-2 Protein Family-Regulated Apoptosis 

 A number of excellent reviews have documented the members of the Bcl-2 family, 
their structure, and role in regulation of apoptosis  [  2,   19,   91,   172  ] . In brief, there are 
three classes of Bcl-2 proteins. One class inhibits apoptosis and includes Bcl-2, 
Bcl-XL, Mcl-1, Bcl-W, A1, and less commonly Bcl-13. They all share four Bcl-2 
homology (BH) domains (BH1–BH4) except Mcl-1 which contains only three BH 



1279 Targeting Apoptotic Pathways in Melanoma

domains. They all promote survival of cancer cells and are associated with resis-
tance to drugs. Bcl-2 is located in the endoplasmic reticulum, nuclear envelope, and 
outer mitochondrial membrane (OMM) by its hydrophobic C terminal domain. 
By contrast, Bcl-XL and Mcl-1 are predominantly cytosolic and translocate to 
mitochondria during apoptosis    (Fig.  9.1 ). Mcl-1 may be partially bound to mito-
chondria via Bak bound to mitochondria.  

 The second class of Bcl-2 proteins Bax, Bak, and Bok promotes apoptosis and has 
three BH3 domains, hence they are often referred to as multidomain proapoptotic 
proteins. They are essential for apoptosis due to their interaction with the OMM. This 
interaction is normally prevented by binding to the antiapoptotic proteins. The C ter-
minal end of Bax fi ts into a hydrophobic pocket formed by the three BH3 domains and 
as a consequence Bax is located predominantly in the cytosol. Bak is believed to be 
located predominantly on the OMM, where it is bound to Mcl-1 and Bcl-XL perhaps 
due to displacement of the C terminal end of Bak by Mcl-1 and Bcl-XL. Upon activa-
tion Bax (and Bok) translocates to mitochondria and the N terminus undergoes a 
conformational change which is believed to be responsible for oligomerization and 

  Fig. 9.1    Overview of current concepts in induction of apoptosis through the mitochondrial pathway. 
Apoptosis is initiated when the proapoptotic BH3 damage sensors increase in response to various 
signals. They then bind to the antiapoptotic Bcl-2 family proteins and displace the proapoptotic 
Bax and Bak, allowing them to bind to and permeabilize the outer mitochondrial membrane 
(OMM), so releasing aptogenic molecules. The role of caspase 2 in induction of apoptosis remains 
controversial and is omitted from discussion  [  87  ] . Similarly, the mechanism by which reactive 
oxygen species induce apoptosis is poorly defi ned and not discussed       
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insertion into the OMM. Bak is believed to undergo similar oligomerization and 
OMM insertion. These changes result in release of proapoptotic proteins from the 
intermembrane space in mitochondria such as cytochrome C, DIABLO, the protease 
Omi, apoptosis-inducing factor (AIF), and endonuclease G. Cytochrome C and 
DIABLO appear to be particularly important for activation of  caspases. 

 The third class of Bcl-2 proteins contains only BH3 domains and acts as sensors 
of cell damage. They have, with the exception of Bid, divergent structures compared 
to other members of the Bcl-2 family. There are eight members of the BH3 only 
family of proteins: Bid, Bim, Noxa, PUMA, DP5, Bik, Bad, and Bmf. They are 
believed to induce apoptosis predominantly by binding to the antiapoptotic Bcl-2 
proteins so releasing Bax, Bak (and Bok) and allowing them to bind to the OMM. 
This is referred to as the “neutralization model.” It is possible that some BH3-only 
proteins such as Bid, Bim, and PUMA may directly activate Bax and Bak but this 
remains a controversial area of research. It is possible that at low concentrations of 
BH3 proteins they are bound by antiapoptotic proteins and at high concentrations 
Bid or Bim may activate Bax and Bak directly (Activation model)  [  19,   58,   116  ] . 
Bim, Bid, and PUMA bind avidly to all the antiapoptotic proteins whereas Noxa 
binds only to Mcl-1 and A1, and Bad to Bcl-2, Bcl-XL, and Bcl-W. This variation 
in specifi city has important implications in selection of treatments for cancers where 
Mcl-1 appears the main antiapoptotic protein. 

 Most of the BH3-only proteins are believed to be located in the cytosol. The 
main exceptions are BimEL, which is located in microtubules where it is bound to 
the dynein complex, and Bik, which is predominantly localized in the endoplasmic 
reticulum (ER)  [  18  ] . Certain BH3 proteins are predominantly localized in certain 
tissues, e.g., DP5/Hrk is found mainly in neuronal tissues  [  21  ] .  

   Regulation of the Bcl-2 Antiapoptotic Family in Melanoma 

 In addition to variation in expression between tissues, it is evident that expression of 
the Bcl-2 family may also change during progression of tumors. This is illustrated 
particularly by studies on melanoma where Bcl-2 is overexpressed in melanocytes, 
nevi, and thin primary melanoma but expression decreased in thick primary and meta-
static melanoma  [  185  ] . This was particularly evident in lymph nodes, suggesting that 
signaling from environmental infl uences may play a role in its expression. In contrast 
to Bcl-2, as shown in Fig.  9.2a  and  b , the levels of Mcl-1 and Bcl-XL were relatively 
low in primary melanoma but increased with progression of the disease.  

 The factors regulating the antiapoptotic proteins are as yet incompletely under-
stood. The microphthalmia-associated transcription factor (MITF) is believed to be 
responsible for differentiation and survival of melanocytes  [  112  ]  and a key factor in 
regulation of Bcl-2. There was a positive correlation between MITF and Bcl-2 
expression in studies on sections from melanoma  [  185  ] . MITF is regulated through 
c-kit and c-kit is downregulated in most melanoma cells  [  74  ] . This may therefore 
play some role in the decreased levels of Bcl-2 via decreased activation of MITF. 
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 Another transcription factor regulating Bcl-2 (and c-kit) is AP-2  [  95  ] . This was 
previously shown to be lost in progression of melanoma, and loss of AP-2 was asso-
ciated with short OS and DFS  [  84  ] . Reports by others have suggested that transloca-
tion of AP-2 from the cytoplasm to the nucleus is disrupted during melanoma 
progression and is a crucial event in the development of melanoma  [  12  ] . 
Immunohistochemical studies showed a strong positive correlation between AP-2 
and Bcl-2 but a negative correlation with Mcl-1 and Bcl-XL  [  185  ] . A positive corre-
lation was shown in melanoma between pStat3 and Bcl-XL expression  [  185  ]  but it is 
highly likely that other transcription factors, such as NF- k B, are also involved in 
regulation of Bcl-XL  [  5  ] . 

 Mcl-1 expression in melanoma sections was weakly associated with activated Stat3 
 [  185  ]  but Stat3 was regarded as a critical transcriptional activator of Mcl-1, Bcl-XL, 

  Fig. 9.2    Loss of Bcl-2 expression with melanoma progression. ( a ) Serial sections of a melanoma 
metastasis in a regional lymph node showing strong staining of melanoma cells for Mcl-1 but no 
detectable Bcl-2. The lymphocytes stained strongly for Bcl-2  [  185  ] . ( b ) Bcl-2 is expressed at high 
levels in naevi and thin melanoma but decreases in thick primary melanoma and metastases       
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and survivin  [  81  ] . Although Bax, Bak, Bcl-2, and Bcl-XL are relatively stable with 
long half-lives, Mcl-1 is relatively labile. This is largely due to ubiquitination by the 
HECT E3 ligase MULE which targets the protein for degradation in proteasomes 
 [  184  ] . This process is increased by glycogen synthase kinase-mediated phosphoryla-
tion of serine 159 in Mcl-1  [  109  ] . It is stabilized by the deubiquitinating (DUB) 
enzyme USP9X which promotes tumor cell survival  [  131  ] . It was considered that 
drugs targeting USP9X may have a therapeutic role. In addition, Mcl-1 may be ubiq-
uitinated by the E3 ring cullin complex including the substrate-binding adaptor pro-
tein Fbw7 (SCF) which has been reported to be lost in certain cancers and to promote 
tumorigenesis. Upregulation of Mcl-1 is a major factor in protection of melanoma 
cells from apoptosis during ER stress and in allowing melanoma cells to adapt to ER 
stress conditions  [  63  ]. The transcription factor involved appears to be Ets-1  [  30 ] .  

   Regulation of the Bcl-2 Proapoptotic Family by the Two Key 
Tumor Suppressors, Retinoblastoma Protein (Rb) and p53 

 The pRB/E2F pathway is perturbed in the majority of melanomas, either by mutation 
or loss of CDKN2A/p16 which inhibits CDK4/6, mutation of CDK4 (R24C) or 
increased copy number of cyclin D1  [  11,   23  ] . This allows the E2F family of transcrip-
tion factors to induce proliferation of cells but may also induce proapoptotic BH3-
only proteins such as PUMA, Noxa, Bim, and Hrk/DP5  [  68,   125  ] . Feedback regulation 
of the transcription of these proteins may be mediated by methyltransferases, such 
as the EZH2 histone methylase, which antagonizes Bim expression  [  171  ] . Apoptosis 
signal regulating kinase (ASK1) is also a target of E2F and acts to inhibit Rb activity 
 [  140  ] . It may be responsible in part for histone deacetylase inhibitor-mediated 
upregulation of Bim and apoptosis reported by us and others  [  50,   178  ] . 

 p53 is one of the best characterized tumor suppressors and is encoded by the 
TP53 gene. Inactivating mutations in p53 occur in more than 50% of human can-
cers; however, they are uncommon in melanoma. Wild-type p53 was detected in 
tissue sections in approximately 20–50% of melanoma  [  37,   167  ] . p53 induces apop-
tosis primarily by transcription-dependent mechanisms  [  125  ] . In addition, it can 
induce apoptosis independently of its transcriptional activity by acting directly on 
pro- and antiapoptotic Bcl-2 family proteins and/or the OMM  [  60  ] . A number of 
proapoptotic proteins are transcriptionally upregulated by p53 and play important 
roles in p53-mediated apoptosis. These include the BH3-only protein PUMA, Noxa, 
Bid and Bad, the multidomain Bcl-2 family protein Bax, Apaf-1, the death receptor 
Fas, and TRAIL-R2 (Fig.  9.3 ).  

 Despite its apoptosis-inducing role being well established in normal and many 
types of cancer cells, induction of p53 or overexpression of wild-type p53 in mela-
noma cells that harbor endogenous wild-type p53 does not induce apoptosis. One 
possible explanation for this is that downstream proapoptotic targets of p53 are 
dysregulated. The expression of PUMA has been shown to decrease with melanoma 
progression, but activation of p53 by nutlin-3a, which is a small molecule antagonist 
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of MDM2, results in upregulation of PUMA along with Noxa and p53 without 
induction of apoptosis  [  146  ] . 

 In circumstances where p53 may be inactivated, E2F1 may have similar roles to 
p53 in induction of apoptosis via induction of p73 and so act as a backup to p53 
(reviewed in  [  125  ] ). E2F1 transcriptionally upregulates p73 which interacts with 
similar target genes to p53 (reviewed in  [  102,   175  ] ). In particular, as well as Bim, 
Noxa, DP5, and PUMA, the proapoptotic p53 co-factors apoptosis-stimulating p53 
proteins (ASPP1 and ASPP2) and tumor protein 53-induced nuclear protein 1 
(TP53INP1) are also upregulated by E2F1, so favoring apoptosis. 

 Extensive crosstalk between E2F and p53 has been identifi ed. E2F was reported 
to upregulate CDKN2A/ARF (p14) and thereby activate p53 by ARF-mediated 
inhibition of MDM2. ARF in turn can act as a feedback inhibitor of E2F1. p53 also 
downregulates CDKN2A/p14 in cells where it is not mutated or lost, so completing 
the feedback cycles  [  64  ] . The extent to which these feedback mechanisms inhibit 
apoptosis in melanoma remains to be investigated.  

   Additional Transcription Factors Regulating BH3-Only Proteins 

 Bim is known to be regulated by the FOXO3A transcription factor, which in turn is 
regulated by the P13K/Akt pathway. Inhibition of the latter results in dephosphory-
lation of FOXO3A, entry into the nucleus, and upregulation of Bim  [  47  ] . In certain 
cell types, ER stress may result in upregulation of Bim by induction of the transcrip-
tion factor CCAAT/enhancer-binding protein homologous protein (CHOP)  [  128  ] . 
Noxa may also be upregulated by c-Myc and HIF-1 a  ( [  119  ] ; see also  [  19  ] ).  

  Fig. 9.3    Regulation of apoptosis by the two key tumor suppressors, p53 and Rb (adapted from 
 [  125  ] ). P14, p53-induced gene, apoptosis-stimulating protein of p53 (ASPP)       

 



132 P. Hersey    and X.D. Zhang

   Targeting the Bcl-2 Antiapoptotic Proteins 

 Once it became evident that cancer cells depended on antiapoptotic proteins for 
survival, a number of strategies were developed to inhibit their activity. One of these 
was to use antisense oligonucleotides to knockdown expression of Bcl-2  [  10  ]  and 
other antiapoptotic proteins such as Mcl-1  [  141  ] . The most studied of these was the 
“Genasense” 18mer antisense oligonucleotide against Bcl-2 produced by Genta. 
A phase I/II study in 14 patients showed that 10 of 12 patients had a reduction in 
Bcl-2 in their melanoma by day 4, amounting to a median of 40% reduction  [  75  ] . 
In view of this result, a large randomized study was commenced in July 2001 and 
771 patients accrued over approximately a 2-year period. The overall survival (OS) 
of patients in each group (9.1 vs. 7.9 months) did not reach statistical signifi cance 
(Hazard ratio 0.89,  p  = 0.184). The secondary end points in the trial – progression 
free survival (PFS) (74 vs. 49 days) and overall response rate (ORR) (11.7% vs. 
6.8%) – were statistically signifi cant  [  10  ] . The difference in the PFS was not con-
sidered clinically signifi cant and the drug was not approved by the FDA. In view of 
this Genta (8/07) conducted a second randomized trial (AGENDA Trial) in a more 
favorable group of 315 patients with low LDH. This was because most of the benefi t 
seen in the fi rst trial was in patients with low LDH  [  10  ] . The initial results released 
in October 2009 did not show signifi cant differences in PFS or OS but a fi nal analy-
sis will be conducted after a longer follow-up (  http://www.clinicaltrials.gov/
NCT00518895    ). 

 An alternative approach (see Table  9.1 ) was to antagonize the function of the 
antiapoptotic proteins rather than reducing their levels. Screening of a number of 
natural compounds identifi ed Antimycin A  [  148  ]  and Gossypol as inhibitors of 
Bcl-XL and Bcl-2. Gossypol  [  9  ]  is found in cotton seeds. It has shown activity 
in vitro against a number of different cancers alone or in combination with other 
agents  [  88,   176  ] . Clinical studies with gossypol (AT-101) are being sponsored by 
Ascenta Therapeutics in patients with prostate cancer  [  105  ]  and small cell carci-
noma of the lung  [  66  ] . A synthetic derivative, apogossypol, was found to be less 
toxic than gossypol and to have better pharmacodynamics. A further derivative of 
apogossypol, B179D10, was chosen as a lead compound for further study  [  166  ] .  

 Antisense  Oblimersen (Genasense)   [  10  ]  

 Natural 
compounds 

 Antimycin A   [  148  ]  
 Gossypol   [  9  ]  
 Apogossypol   [  166  ]  

 Chemicals  HA14-1   [  134  ]  
    BH31-1   [  28  ]  
 SAHBs   [  49,   159  ]  

 BH3 mimetics  TW-37   [  155,   160,   163  ]  
 Obatoclax   [  107,   121  ]  
 ABT-737 (ABT-263)   [  120,   145  ]  

   Table 9.1    Targeting Bcl-2 
family proteins   
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 TW-37 is another gossypol derivative that was modeled on the structure of the 
Bim BH3 domain and shown to bind with high affi nity to Bcl-2, Bcl-XL, and Mcl-1 
 [  115,   155  ] . A chemical library screen of organic compounds identifi ed HA14-1 by its 
ability to bind to Bcl-2 or by its ability to disrupt Bcl-XL/Bak complexes (BH3I-1). 
Some question marks remain over the specifi city of these compounds as studies in 
Bax/Bak knockout cells suggested that apoptosis induction was largely due to off-
target effects  [  157  ] . 

 Another approach has been the synthesis of hydrocarbon-stapled BH3 helices 
which are BH3 peptides that are modifi ed to become cell permeable and protease 
resistant [stabilized  a  helix of Bcl-2 domains (SAHBs)]. A Bim SAHB was able to 
induce oligomerization of Bax  [  49  ] . Previous studies on a Bid SAHB showed direct 
activation of Bax and induction of cell death  [  159  ] . Whether inhibitory peptides 
against Mcl-1 are amenable to this approach is not known  [  94  ] . 

   BH3 Mimetics 

 A third strategy is based on providing drugs that mimic the BH3 proapoptotic 
proteins and so avoid the need to induce their expression in vivo. TW-37 mentioned 
above is one such compound. A second is Obatoclax, which was shown to release 
Bak from Mcl-1 and Bim from Bcl-2 and Mcl-1  [  90  ] . It was particularly effective in 
blocking the interaction between Bak and Mcl-1 in melanoma cells  [  118  ] . It also 
was reported to synergize with bortezomib  [  124  ]  and to activate Bax in 
Cholangiocarcinoma cells  [  136  ] . It was shown to overcome ER stress-induced 
apoptosis  [  79  ] , and has effects on cell cycle arrest that appear independent of effects 
on apoptosis  [  143  ] . This agent is under evaluation in hematological malignancies 
 [  130  ]  and solid cancers  [  121  ] . Toxicities have mainly been neurologic and similar 
to alcohol toxicity. 

 Arguably, the most promising BH3 mimetic to date is ABT-737 and its orally 
active form ABT-263  [  145  ]  developed by Abbott and described by Oltersdorf et al. 
 [  120  ] . It binds with high affi nity to Bcl-2, Bcl-XL, and Bcl-W but only weakly to 
Mcl-1 and A1. This specifi city is similar to that of Bad. ABT-737 mainly acts as a 
sensitizer to allow activator BH3-only proteins to trigger Bax- and Bak-mediated 
mitochondrial pathway-induced apoptosis  [  89,   120  ] . It has monotherapy activity 
against CLL, ALL, AML, and lymphoma  [  69,   157  ]  and enhances the response to 
chemotherapy in vivo  [  1  ] . 

 The main limitation of considering this drug in melanoma is its ineffectiveness 
against Mcl-1, which is the main antiapoptotic protein in melanoma  [  78,   185  ] . 
Nevertheless, if Mcl-1 is neutralized it may induce apoptosis in melanoma and other 
cancers where Mcl-1 is high  [  17,   149  ] . Drug combinations with ABT-737 that are 
effective against melanoma in vitro include proteasome inhibitors  [  114  ]  and the 
standard chemotherapy agents, dacarbazine and fotemustine. Killing by imiquimod 
was sensitized by ABT-737  [  164  ] . Cragg et al.  [  22  ]  reported that induction of apop-
tosis in melanoma by MEK inhibitors was potentiated by ABT-737. Taken together 
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these studies indicated that two conditions need to be met for ABT-737 to kill cells. 
First, BH3 activators of Bax and Bak such as Bid and Bim are needed. Second, 
Mcl-1 (and A1) needs to be at suffi ciently low levels to allow MOMP to occur  [  14, 
  20,   29  ] . Unexpected effects seen in clinical studies with ABT-263 include thrombo-
cytopenia  [  83,   177  ] .   

   Regulation of Apoptosis by the RAS/RAF/MEK/ERK Pathway 

 The RAS/RAF/MEK/ERK pathway is normally activated by external factors 
through a number of receptors including tyrosine kinase (TK) receptors for auto-
crine and hormonal growth factors, and G protein-coupled receptors such as mel-
anocortin receptors. In melanoma it is mainly activated constitutively by acquisition 
of activating mutations in BRAF in approximately 50% of cases  [  25  ]  or its upstream 
activator NRAS in approximately 20% of cases  [  57  ] . Other mutations that result in 
constitutive activation of the pathway are in the G protein  a  subunit GNAQ in 
uveal melanoma and blue naevi  [  150  ]  and in the KIT receptor TK gene  [  8  ] . 
Mutations in the ERBB4 receptor were reported in 19% of metastatic melanoma 
 [  126  ] . ETV1 on chromosome 7p was also reported to be a candidate oncogene 
downstream of BRAF  [  73  ] . 

 The most common mutation in BRAF is of valine at position 600 to glutamic acid 
(V600E). This substitution can transform immortalized melanocytes  [  168  ]  and mela-
noma cell proliferation and survival  [  56  ] . Transfection into melanocytes resulted pri-
marily in senescence  [  113  ]  and dysfunction of p53 was needed for transformation 
 [  173  ] . Similarly, studies in fi sh also showed that p53 defi ciency was needed for 
development of melanoma  [  123  ] . Studies in mice transgenic for V600E in melano-
cytes showed that BRAF V600E expression alone resulted primarily in naevi, and 
loss of CDKN2A was needed for development of melanoma  [  54  ] . Furthermore, inac-
tivation of PTEN was needed for progression to metastatic disease  [  24  ] . 

 Traditionally, the RAS/RAF/MEK/ERK pathway has been linked to cell cycle 
reentry but it is now clear that it has a central role in cell survival and inhibition of 
apoptosis, as summarized in Table  9.2 . One antiapoptotic mechanism involves 
phosphorylation of the proapoptotic BH3-only protein Bim  [  7  ] . The latter is pro-
duced as at least three splice variants referred to as Bim extra long (EL), long (L), 
and short (S). BimEL is phosphorylated at up to four sites (Serine 55, 65, 73 and 
Thr112) and this inhibits binding to the Bcl-2 antiapoptotic proteins as well as tar-
geting it for ubiquitination and proteasome degradation. BimL is also believed to 
have a phosphorylation and ubiquitination site. Ubiquitination may involve Elongin 
B/C-Cullin2 E3 ligase complex  [  3  ] . Both EL and L bind to dynein light chains 
(DLC) in microtubules and may be released by chemotherapy or by activation of 
Jun N terminal kinase (JNK), which phosphorylates the DLC binding site  [  97  ] . 
BimS is of particular interest in that it is believed to bind directly to mitochondria 
perhaps in association with Bax  [  165  ] . It is not phosphorylated by ERK but the latter 
pathway downregulates mRNA for the Bim gene. As discussed below, it may also 
have a crucial role in suppression of BimS splicing.  
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 Bad may also be phosphorylated on Ser112 by ribosomal protein S6 kinase 
(RSK), which in turn is activated by ERK1/2 and results in binding of Bad to the 
cytosolic protein 14-3-3  [  133  ] . Similarly, mRNA for the proapoptotic Bmf BH3 
protein is downregulated by activation of ERK. By contrast, ERK1/2 can upregulate 
Bcl-2, Bcl-XL, and Mcl-1  [  151  ] . This may in part be due to activation of CREB 
(cyclic AMP element binding) as the antiapoptotic proteins are known to have 
CREB-binding sites in their promoters. Mcl-1 degradation may also be inhibited by 
ERK1/2 phosphorylation of the PEST site in the N terminus of Mcl-1  [  7  ] . 

 In addition to these effects on the Bcl-2 family, activation of the ERK pathway 
may inhibit apoptosis by less direct pathways. One of these is by activation of the 
ER stress response, which results in upregulation of glucose-regulated protein 78 
(GRP78). The latter is a chaperone protein which binds caspase 4 in melanoma cells 
 [  67  ]  and possibly to Bik as described in breast carcinoma cells  [  46  ] . The second 
mechanism may involve suppression of the LKB1-AMPK signaling pathway, which 
is involved in upregulation of glucose intake and glycolysis and in blocking cell 
growth during low energy states  [  183  ] . Inhibitors of BRAF V600E were shown to 
upregulate the AMPK pathway and thereby inhibit mTOR and growth of melanoma 
cells. This was associated with increased sensitivity to apoptosis by as yet poorly 
understood mechanisms  [  38  ] .  

   Agents Targeting the RAS/RAF/MEK/ERK Pathway 

 Development of agents against proteins in this pathway has been of much interest 
and includes those against RAS, RAF, and MEK, as shown in Table  9.3 . Inhibition 
of RAS using farnesyltransferase (FT) inhibitors has so far not had therapeutic 
effects perhaps due to lack of specifi city for RAS  [  48  ] . Nevertheless, this class of 
drugs may be effective in combination with other agents, as shown for the combina-
tion of SCH66336 with cisplatin  [  135  ] .  

 In view of these results most attention has focused on inhibition of the RAF pro-
teins which exist in a complex of A, B, and CRAF on the inner aspect of the cell 
membrane  [  168  ] . Much work has shown that BRAF is frequently activated by muta-
tion in exon 15 which circumvents the need for RAS–GTP binding, frees it from 
negative regulation and its membrane location. The fi rst agent to be tested was 
sorafenib, which targets a number of kinases including BRAF albeit with low activity 

   Table 9.2    The ERK1/2 pathway blocks apoptosis at multiple sites   

 Inhibits BimEL by phosphorylation Ser69 and other sites  [  7,   13  ]  
 Phosphorylates Bad indirectly via RSK  [  7  ]  
 Repression of Bmf translocation  [  151  ]  
 Induces Mcl-1  [  7,   162  ]  
 Induces GRP78 (GRP78 binds Bik, caspase 4)  [  77,   78  ]  
 Induces IL-8 and upregulation of ICAM  [  98  ]  
 Increases    HIF-1 a  expression  [  99  ]  
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against the latter. It was found to have low single-agent activity against melanoma 
 [  41,   139  ]  and did not potentiate the effects of carboplatin/paclitaxel in randomized 
phase II  [  65  ]  or III (ECOG 2603) studies (  http://pharmaprojects.com/news/3004    ). 
Encouraging results from a randomized phase II study with dacarbazine are as yet 
untested in a randomized phase III trial  [  110  ] . 

 The development of BRAF inhibitors with high selectivity for the mutated pro-
tein  [  144  ]  has resulted in very favorable responses in phase I studies where partial 
responses were seen in approximately 70% of 38 patients treated at adequate doses 
with the PLX4032/NP22657 drug. By contrast, PLX4032 had no effects on patients 
with wild-type BRAF melanoma and was reported to activate ERK and enhance the 
proliferation of melanoma cells with wild-type BRAF  [  62  ] . A second drug with 
similar potency has been developed by GlaxoSmithKline (GSK2118436) and again 
has been associated with rapid induction of PRs in phase I studies in melanoma (unre-
ported data). The results of a phase II study with PLX4032/NP22657 on approxi-
mately 130 patients are awaited. Both agents have been associated with development 

   Table 9.3    RAS/RAF/MEK signal pathway inhibitors   

 Agent  Class of inhibitor  Target protein(s)  References 

 Sorafenib  Multikinase inhibitor  CRAF; BRAF; 
VEGF-2, -3; 
PDGF; Flt-3; c-kit 

  [  4,   40,   65,   111  ]  

 Tanespimycin 
(KOS-953, 
17-AGG) 

 Hsp90 inhibitor  Hsp90 (client 
proteins, BRAF, 
Akt, others) 

  [  85  ]  

 RAF-265  Multikinase inhibitor  Mutant BRAF, 
VEGFR-2 

  [  39  ]  

 XL281  All RAF Kinases  A, B, and CRAF      [  117  ]  
 PLX4032, 

PLX4720 
 Selective BRAF kinase 

inhibitor 
 Mutant BRAF   [  144  ]  

 GSK2118436  Selective BRAF kinase 
inhibitor 

 Mutant    BRAF    http://www.gsk-clinical-
studyregistrar.com     

 PD0325901  Non-ATP-competitive 
specifi c MEK inhibitor 

 MEK1, 2   [  39  ]  

 AZD6244 
(Selumetinib) 

 Non-ATP-competitive 
specifi c MEK inhibitor 

 MEK1, 2   [  32   ,    33  ]  

 ARRY-162  Non-ATP-competitive 
specifi c MEK inhibitor 

 MEK1, 2    http://Arraybiopharma.
com/productpipeline     

 XL518  Non-ATP-competitive 
specifi c MEK inhibitor 

 MEK1, 2   [  117  ]  

    GSK1120212  Non-ATP-competitive 
specifi c MEK inhibitor 

 MEK1, 2   [  52  ]    

 Tipifarnib 
(R115777) 

 Farnesyl transferase 
inhibitor 

 Prenylated proteins   [  42,   63  ]  

 SCH66336  Farnesyl transferase 
inhibitor 

 Prenylated proteins      [  135  ]  
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of squamous cell carcinoma (SCC)/keratoacanthomas in approximately 20% of 
patients. Whether these drugs may induce new melanoma has been considered but is 
unknown  [  106  ] . 

 RAF-265 (Novartis Pharmaceuticals) inhibits VEGF receptor 2 and melanoma 
cells with mutated BRAF or NRAS. Initial reports suggest it is not as effective as 
the selective inhibitors of mutated BRAF. XL281 (Exelixis, Inc.) is a potent inhibi-
tor of all three RAF kinases. Initial studies were disappointing in that there was 
considerable toxicity and induction of SCCs  [  117  ] . 

 Available evidence suggests that MEK is the only downstream target of BRAF 
so that inhibitors of MEK might be expected to have similar effi cacy to the selec-
tive BRAF inhibitors. PD0325901 is a potent inhibitor of MEK but clinical trials 
were stopped due to induction of retinal vein thrombosis. AZD6244 is also a 
potent inhibitor that remains under clinical evaluation. It was found to be equiva-
lent to Temozolomide in a phase II trial in patients with melanoma  [  32  ] . Other 
potent MEK inhibitors in clinical trials include ARRY-162, XL518, and 
GSK1120212. 

 Tanespimycin (KOS-953), an inhibitor of heat shock protein 90 (Hsp90), targets 
proteins protected (chaperoned) by Hsp90. This includes RAF, Akt, and other signal 
pathway proteins. The drug was tested in a phase II study in previously treated stage 
IV melanoma patients and administered twice weekly for 2 out of 3 weeks. Results 
from a treatment of 14 patients met the criteria for further evaluation in the second 
stage of the trial  [  85  ] .  

   Inhibitor of Apoptosis Proteins in Melanoma 

 The IAPs are an evolutionary conserved    family of proteins characterized by 
expression of one to three copies of baculovirus IAP repeat (BIR) domains. There 
are eight members of the family in humans; BIRC1, cIAP, cIAP2, XIAP, Survivin 
ML-IAP, Livin, ILP2, and Bruce. The structure and function of the IAPs have 
been well described in recent reviews  [  31,   92  ] . Practically, all the IAPs are able to 
bind to caspases but XIAP appears the most potent. Caspase 3 is inhibited by the 
linker region between BIR1 and BIR2 domains and Caspase 9 by binding to the 
BIR3 domains. Caspase 7 is inhibited by binding to BIR2 and the linker region 
between BIR1 and BIR2. IAP1 and IAP2 are able to bind caspases but are weak 
inhibitors. The BIR domains in cIAP and cIAP2 are considered possibly more 
important in interaction with TRAF1 and TRAF2 interactions at the TNF receptor 
(TNF-R). The IAP1, IAP2, and XIAP proteins have RING domains that mediate 
E3 ligase activity and which promote ubiquitination and degradation of Caspase 3 
and 7  [  92  ] . 

 IAP1 and IAP2 appear more important in regulating NF- k B activation in response 
to TNF- a  or DNA damage/viruses or alternative NF- k B activation as seen in lymphoid 
cells in response to CD40L. The cIAPs and TRAF proteins form a complex with the 
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TRAF proteins, acting as adaptors to activate NF- k B and the MAPK p38 and JNK 
pathways. They also appear to be associated with ubiquitination of the receptor-
interacting protein (RIP) and inhibition of apoptosis  [  92  ] . The cIAPs are powerful 
inhibitors of TNF- a -induced apoptosis by activation of NF- k B signaling as well as 
inhibition of RIP and MAPK apoptotic pathways. 

 Several studies have shown overexpression of IAPs in melanoma. This was 
particularly evident in melanoma cell lines  [  36,   181  ] . Emanuel et al.  [  36  ]  reported 
that XIAP was not detected in sections of naevi or in situ melanoma but was 
detectable in 24% of thin melanoma <1 mm in thickness and 73% of thick mela-
noma. Chen et al.  [  16  ]  also showed signifi cant upregulation of cIAP1, cIAP2, 
XIAP, survivin    and ML-IAP in melanoma compared to naevi. ML-IAP (livin) was 
preferentially expressed in melanoma lines and was distinguished by only having 
one BIR domain  [  158  ] . The IAPs are generally thought to be regulated by NF- k B. 
ML-IAP may however be principally regulated by MITF, as shown by siRNA 
knockdown studies  [  34  ] .  

   Negative Regulation of IAPs by Smac/DIABLO, 
Omi, and XAF1 

 Smac/DIABLO (second mitochondria-derived activator of caspases, direct IAP-
binding protein with low PI) is a 25-kDa mitochondrial protein that promotes apop-
tosis through its ability to antagonize IAP-mediated caspase inhibition once released 
into the cytoplasm. Smac can bind many different IAPs (i.e., XIAP, cIAP1, cIAP2, 
and survivin), and its cytosolic presence provides a substantial contribution to the 
apoptotic response. Smac is able to interact with IAPs by binding to BIR2 and BIR3 
domains, but not to BIR1; its amino terminal segment appears to be indispensable 
in this interaction with the various BIR domains, particularly for BIR3. 

 In addition to simply binding and inhibiting IAPs, Smac and its monovalent or 
bivalent mimetics may alter levels of certain IAPs. For example, IAP antagonists 
enhance auto-ubiquitination of cIAP1 and cIAP2 and result in proteasomal degrada-
tion of these two inhibitors of apoptosis. However, levels of other molecules such as 
XIAP remain unchanged until apoptosis is induced and caspases such as 3 and 8 are 
activated. Degradation of cIAP1 and cIAP2 requires the presence of BIR2 and BIR3 
domains for IAP antagonist binding, and also of the RING domain for ubiquitin E3 
ligase activity. 

 Somewhat surprisingly  [  153  ] , Smac and Smac mimetics activate NF- k B by 
recruiting RIPK1 to TNF-R1, resulting in phosphorylation and proteasomal degra-
dation of I k B, which would otherwise inhibit nuclear translocation of NF- k B. IAP 
antagonists also disinhibit NF- k B by preventing cIAP degradation of NIK. 
Increased levels of NIK activate NF- k B through the noncanonical pathway. Thus, 
NF- k B activation increases with IAP antagonists in a dose-dependent manner and 
results in increased TNF- a  production. The proapoptotic effects of IAP antagonists 
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depend specifi cally on functional TNF- a  death receptors, as opposed to other death 
receptors such as DR5 or Fas  [  15  ] . Apoptosis via this pathway involves FADD and 
activation of caspase 8. The various effects of the Smac mimetics are shown in 
Fig.  9.4 .   

   Smac Mimetics in Cancer Therapy 

 A number of peptide mimetics of Smac have been used in experimental in vitro and 
animal model studies, as reviewed elsewhere  [  15  ] . This included inhibition of ML-IAP 
with a single BIR domain  [  44  ] . Antisense strategies (AS) include clinical studies with 
a second generation AS against XIAP, AEG35156. Phase I studies showed clinical 
activity against lymphoma, melanoma, and breast carcinoma  [  27  ] . Similarly, AS 
against survivin (LY2181308) are in phase II studies sponsored by Eli Lilly. 

 As shown in Table  9.4 , small molecule Smac mimetics are in various stages of 
development by a number of pharmaceutical companies. These include Genentech 
(Compound C, Compound 8), Novartis (LCL161), Ascenta (AT-406) (  http://clini-
caltrials.gov    ), and Aegera (AEG40826). YM155 is a repressor of survivin transcrip-
tion and has been evaluated in phase I studies  [  96  ] . A further phase II study on 60 
patients with melanoma is planned in combination with Docetaxel. Further details 
of IAP targeted therapeutics are given in LaCasse et al.  [  92  ] . Common features of 
the drugs in vitro appear to be reduction primarily in cIAP1 and less so of cIAP2 
and XIAP. They commonly have no direct apoptosis-inducing ability but enhance 
apoptosis induced by other agents such as TRAIL and chemotherapeutic agents.   

  Fig. 9.4    Potential effects of Smac mimetics in melanoma. Smac mimetics may have multiple 
functions such as inhibition of IAPs and increasing their degradation and induction of the extrinsic 
pathway to apoptosis. By contrast, they may activate NF- k B and reduce apoptotic pathways       
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   Apoptosis Induction by TRAIL 

 As reviewed elsewhere  [  6,   142,   169  ] , a large number of clinical studies are in progress 
testing whether soluble TRAIL or agonistic antibodies against TRAIL receptors-R1 
or R2 have antitumor effects. Very few of these studies have included melanoma 
patients because previous immunohistological studies have shown that progression 
of melanoma is associated with downregulation of TRAIL-R1 and -R2 on mela-
noma  [  186  ] . The reason for the receptor downregulation is not clear but appears to 
be posttranscriptional as mRNA levels show little variation despite loss or marked 
reduction in protein levels for TRAIL-R1 and -R2  [  182  ] . 

 As reported elsewhere, TRAIL-R2 can be upregulated in vitro by ER stress 
inducers such as Tunicamycin  [  76  ]  and 2-Deoxyglucose (2DG)  [  101  ] . The tran-
scription factor CHOP (Gadd153) was involved in ER stress receptor upregulation 
(36 h) but other factor(s) were involved at earlier periods  [  77  ] . In particular, the 
ATF6/IRE1/XBP-1 axis was involved in 2DG-mediated upregulation of TRAIL-R2. 
Tunicamycin is considered too toxic for clinical use but several other agents that are 
in clinical use, such as Cox-2 inhibitors  [  86  ]  or Dipyridamole, may be useful for this 
purpose  [  53  ] . They and curcumin from curry powder appear to act on CHOP to 
upregulate TRAIL receptors  [  82  ] . 

 One of the peculiarities of the TRAIL system is the concurrent delivery of oppos-
ing death and survival signals from its receptor [Yin (negative) and Yang (positive)]. 
It has been known for some time that TRAIL receptors may associate with other 
adaptor proteins rather than or in addition to FADD and result in different outcomes 
rather than cell death. Principal among these is activation of NF- k B and JNK, most 
likely through the RIP and TNF receptor-associating factor 2 (TRAF2)  [  35  ] . We and 
others have shown that activation of NF- k B in melanoma by TRAIL is strongly 
antiapoptotic  [  43  ] . One of the consequences of activation of NF- k B and Akt  [  122  ]  
is upregulation of Flice inhibitory protein (cFLIP), which can bind to DED of FADD 
and caspase 8 and inhibit apoptosis. cFLIP may also bind to TRAF1, 2 and RIP, 
resulting in activation of NF- k B and ERK1/2  [  156,   174  ] . As discussed above, IAP1 
and 2 were shown to be important in the activation of NF- k B via ubiquitin domains 
 [  61  ]  by TNF- a   [  152  ] . Smac mimetics were shown to result in TNF-induced apop-
tosis by activation of caspase 8 either by inhibition of cFLIP production or forma-
tion of a RIP/FADD/caspase 8 complex  [  161  ] . 

 In addition, the MEK pathway may be strongly activated by TRAIL. This is 
rapid but relatively transient, peaking at 1 h after exposure to TRAIL  [  179  ] . 
Activation of MEK is dependent on activation of protein kinase C (PKC), particu-
larly PKC epsilon ( e ), and the sensitivity of melanoma cells to TRAIL is inversely 
related to the activation of PKC- e   [  51  ] . The activation of MEK by TRAIL occurs 
irrespective of whether BRAF is mutated or not  [  179  ] . 

 These results therefore imply that within a polyclonal population of melanoma 
cells there is a range of activation signals in response to TRAIL. Sensitive cells have 
predominant activation of the FADD/caspase 8 pathway whereas resistant cells have 
dominant activation of NF- k B and MEK pathways. These results clearly have impli-
cations for selecting treatment combinations. 



142 P. Hersey    and X.D. Zhang

 Table  9.5  summarizes some of the experimental studies on combinations with 
TRAIL that may increase apoptosis. In general, they can be viewed as agents which 
upregulate TRAIL death receptors or which downregulate antiapoptotic proteins. 
Bortezomib appears to mediate its effect by downregulation (directly or indirectly) 
of antiapoptotic proteins such as cFLIP, Mcl-1, and NF- k B and upregulation of 
Noxa  [  119  ] . Histone deacetylase inhibitors have had relatively little effects when 
used as single agents but may be most effective when used as sensitizing agents to 
induce apoptosis  [  104,   180  ] .   

   MicroRNAs and Apoptosis 

 MicroRNAs (miRs) are small (~22 nucleotide) noncoding RNAs that regulate gene 
expression in a sequence-specifi c, imperfect-pairing manner. This is primarily 
accomplished through binding to the 3 ¢  UTR of target mRNAs and either targeting 
the transcripts for degradation or blocking translation of the encoded protein. More 
than 70% of miR genes are located in either introns or exons of protein-coding 
genes and the remainder found to be present in intergenic regions. Like conven-
tional protein-coding mRNA, miRs are transcribed by RNA polymerase II, spliced 
and polyadenylated (pri-miR). The pri-miRs are subsequently processed by Drosha, 
an RNAse III enzyme to become a ~70 nucleotide long stem-loop structure called 
precursor miR (pre-miR). Pre-miRs are then exported to cytoplasm by exportin 5 

   Table 9.5    Treatment combinations with TRAIL or agonistic antibodies to TRAIL      

 Agent 
 TRAIL/A.
MAbs  Cancer 

 Mechanisms 
of action  References 

 Cox-2 inhibitors  TRAIL  Hepatocellular 
cancer 

 ↑TRAIL-R1, R2, 
↓Mcl-1 

  [  86  ]  

 Dipyridamole  TRAIL  Colon and 
prostate 
cancer 

 CHOP mediated 
↑TRAIL-R1, R2 

  [  53  ]  

 Curcumin  TRAIL  Renal cancer  ↑DR5   [  82  ]  
 Bortezomib  A.MAbs  NSCLC  ↓Mcl-1, ↓FLIP   [  103  ]  
 Quercetin  TRAIL  Colon cancer  TRAIL-R1, R2 

in lipid rafts 
  [  127  ]  

 Sodium arsenite  TRAIL  Melanoma  ↑TRAIL-R1, R2, 
↓cFLIP 

  [  71  ]  

 Resveratol  TRAIL  Melanoma  ↓NF- k B, ↓Stat3, 
cFLIP, Bcl-XL 

  [  72  ]  

 SBHA (HDAC)  TRAIL  Melanoma  ↑Bim, ↓Mcl-1   [  45  ]  
 Vorinostat 

(HDACi) 
 M.Ab MD5 

(murine) 
 Mouse breast 

cancer 
 ↓cFLIP   [  51  ]  

 Triterpenoid 
CDOO-Me 

 TRAIL  Human lung 
cancer 

 ↓cFLIP degradation   [  187  ]  
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and cleaved by the cytoplasmic RNase III Dicer into a ~22-nucleotide miR duplex: 
one strand (miR*) of the usually nonfunctional short-lived duplex is degraded, 
whereas the other strand serves as a mature miR. The miRs are incorporated into the 
RNA-induced silencing complexes (RISCs) and target sequence-specifi c mRNAs 
through the RNA  [  70  ]  interference pathway. 

 Many miRs have been found to play roles in regulating apoptosis by directly 
targeting putative apoptosis regulators. Some examples are listed in Table  9.6 . While 
miRs that target proapoptotic genes are considered antiapoptotic, those that target 
antiapoptotic genes are proapoptotic (apoptomirs). Moreover, as expression pat-
terns of miRs are highly tissue-specifi c, miRs that play roles in one tissue type may 
not have similar effects on regulating apoptosis in other tissues. In addition to direct 
regulation, many miRs may impinge on induction of apoptosis by indirectly acting 
on factors that regulate apoptosis-related proteins. For example, repression of 
FOXO3 by miR-182 may lead to downregulation of the BH3-only protein Bim that 
is known to be transcriptionally regulated by FOXO3. Given the increasing aware-
ness of the signifi cance of miRs in multiple biological processes, it is conceivable 
that the number of miRs that are involved, directly or indirectly, in regulation of 
apoptotic signaling will increase rapidly in the near future  [  170  ] .  

 Relatively little has been published in melanoma in relation to apoptosis other 
than the association of miR-137 and miR-182 with MITF and MITF/FOXO3 expres-
sion  [  132  ] . miR-149* may also be involved in regulation of Mcl-1  [  80  ] . It is evident 
from preclinical studies in leukemias that miR may be effective in treatment by either 
reintroduction of miRs lost in cancer or anti-miRs reduction in oncogenic miRs by 
anti-miRs, as reviewed elsewhere  [  70  ] . Delivery of siRNA via targeted nanoparticles 
appears a practical approach to such therapy  [  26  ] .  

   Conclusions 

 Over the last 2 decades, there has been a considerable increase in information about 
the apoptotic pathways induced by oncogenes, ER stress and abnormal signal path-
ways, and how melanoma cells may adapt to and evade these pathways. It is highly 

   Table 9.6    Examples of regulation of apoptosis-related genes by miRNAs   

 Proapoptotic  Antiapoptotic 

 miRNAs  Target genes  miRNAs  Target genes 

 Let-7 family  RAS, MYC  miR-17-92  E2F, Bim 
 miR-34a, b, c  Bcl-2, p53  miR-133  Caspase 9 
 miR-101  Mcl-1  miR-130  E2F1 
 miR-29a, b, c  E2F3, Mcl-1  miR-21  PTEN 
 miR-15/16  Bcl-2  miR-143  ERK5 

 miR-221, 222  TRAIL 
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likely that these adaptive antiapoptotic mechanisms are in large part responsible for 
resistance to treatment with chemotherapy, radiotherapy, and immunotherapy. As a 
result of this information, an impressive array of new drugs has been developed that 
may help to overcome tumor cell resistance to cell death due to the inherent apop-
tosis-inducing signal or in response to external agents such as chemotherapy. Several 
of these agents are being evaluated in early phase I/phase II trials as single agents 
and one (Genasense) has been the subject of a randomized trial in conjunction with 
chemotherapy. 

 Although some of the agents have activity as single agents, particularly in hema-
tologic malignancies, it seems most likely that a strong external apoptotic signal 
supplied by chemotherapy, radiotherapy, or immunotherapy will be needed to show 
therapeutic effects, particularly in solid malignancies. Combinations may rationally 
involve not only agents targeting Bcl-2 family proteins but also those against IAP 
proteins. It may even be appropriate to combine agents that directly target the Bcl-2 
and IAP families with signal pathway inhibitors. 

 Even with such combinations, it is likely that variation between different mela-
noma may limit responses and there is still a need to identify subgroups that may be 
more responsive than others. Studies in small cell lung carcinoma and leukemia/
lymphoma suggest that expression of Bcl-2 and Noxa identifi ed responders to ABT-
263 whereas Mcl-1 was higher in resistant cells. Global gene expression patterns 
also helped to identify responders  [  138  ] . Mutation and copy number analysis of 
melanoma may further assist in patient selection  [  100  ] . BH3 profi ling is another 
approach advocated to test whether cancer cells were dependent on particular anti-
apoptotic proteins and hence assist in selecting appropriate treatments  [  29  ] . The 
approach required viable cancer cells and was not considered robust enough for 
clinical studies.      
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  Abstract   Malignant melanoma is a highly vascular tumor that tends to grow rapidly 
and metastasize aggressively. The formation of new tumor vasculature (angiogene-
sis) and lymphatics (lymphangiogenesis) are important steps in the development of 
melanoma and have been reported to be associated with a poor prognostic signifi -
cance. Clinical studies of angiogenesis inhibitors suggest a role in the treatment of 
melanoma, while inhibitors of lymphangiogenesis have not yet been rigorously 
tested. Further studies of both of these classes of agents will be required to defi ne 
whether combinations with chemotherapy, immune modulators, signaling inhibitors 
or other therapies will provide optimal clinical benefi t. Together, angiogenesis and 
lymphangiogenesis are emerging as vital targets for the treatment of melanoma.    

  Keywords   Angiogenesis  •  Melanoma  •  Anti-Angiogenic therapy  •  Combination 
therapy  •  Bevacizumab  •  Sorafenib  •  Axitinib  •  Novel therapies  •  VEGF  •  Clinical 
trials    •  Immunotherapy    

   Melanoma Is a Highly Vascular Malignancy 

 Malignant melanoma is a highly vascular tumor that tends to grow rapidly and metas-
tasize aggressively. This vascular phenotype has been observed by both histologic and 
physiologic analysis  [  38,   121,   143,   157,   171,   172,   193  ] . In 1966, Warren and Shubik 
fi rst observed that human melanoma explants placed into the cheek pouches of ham-
sters actively induced the formation of new vasculature, including capillary sprouts 
 [  187  ] . These observations have since been extended  [  90,   174,   187  ]  and a tumor’s abil-
ity to recruit a supportive vasculature is now clearly recognized as a critical step in 

    D.  S.   Chen ,  MD, PhD   (*)
     Medical Oncology ,  Stanford University ,   Stanford ,  CA ,  USA  

   Oncology Clinical Development ,  Genentech Inc. ,   South San Francisco ,  CA ,  USA    
 e-mail: dschen5@stanford.edu 

    Chapter 10   
 Anti-Angiogenesis Therapy in Melanoma       

          Daniel   S.   Chen        



156 D.S. Chen

malignant transformation of tumors  [  76,   77  ] . Angiogenesis is the biologic process that 
leads to the formation of new blood vessels  [  77  ] , and is necessary for expanded growth 
of tumors beyond 100–200  m m  [  59  ] . As the distance between a given melanoma cell 
and the nearest blood vessel grows, diffusion of nutrients and oxygen to the tumor and 
removal of carbon dioxide and waste products away from the tumor is diminished and 
can become inadequate to support further tumor growth  [  58  ] . The formation of new 
tumor vasculature and lymphatics (lymphangiogenesis) may also be important steps in 
the development of melanoma metastases (Fig.  10.1 )  [  2,   4,   31  ] . Together, angiogenesis 
and lymphangiogenesis are emerging as vital targets for the treatment of melanoma.   

   Melanoma Angiogenesis During Disease Progression 

 Angiogenic factors can be released from melanoma cells, activated tumor stroma and 
tumor-infi ltrating cells (myeloid cells, T cells, Mast cells), fi broblasts that together 
orchestrate the formation of a highly perfused tumor vascular bed (Figs.  10.2  and 
 10.3 )  [  168  ] . The acquisition of the angiogenic phenotype  [  75  ]  can be considered as a 
distinct stage in the evolution of melanoma, generally occurring between the transi-
tion from horizontal to vertical growth  [  8,   48,   116,   158  ] . Similarly, an analysis of 
melanoma perfusion using Doppler ultrasound showed blood fl ow in most melano-
mas greater than 0.9 mm in thickness, but rarely in thinner melanomas  [  171  ] .   

 The vasculature that develops within malignant tumors tends to differ in ana-
tomic structure, organization and function compared to the vessels that perfuse nor-
mal tissue  [  94  ] . Tumor blood vessels frequently exhibit a disorganized, tortuous 

  Fig. 10.1    Melanoma angiogenesis and lymphangiogenesis. Melanoma tumors can trigger angio-
genesis and lymphangiogenesis. These processes can facilitate metastatic spread  [  2  ]        
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  Fig. 10.2    Tumor angiogenesis. Angiogenesis (and lymphangiogenesis) in melanoma results from 
a complex interplay between different cell types and soluble factors       

  Fig. 10.3    Tumor neo-vascularization. 1. Angiogenic factors and chemokines from tumor act on 
nearby existing quiescent vessels and circulating endothelial cells; 2. endothelial cells respond to 
factors by dividing and expressing integrins; 3. secretion of MMPs and MT-MMPs break down 
ECM and open path for endothelial invasion from existing vessel; 4. endothelial integrins bind to 
ECM, enabling EC motility and invasion; 5. vessel sprouting led by a tip cell followed by stalk cells 
extends from existing vessel. Reiteration leads to branching. The new vessels are immature and 
highly permeable; 6. ECM tract forms around the new blood vessels; 7. pericytes are recruited to 
line the new blood vessel, decreasing its permeability; 8. further maturation of new blood vessel 
increases its stability and renders it less dependent on the presence of angiogenic factors       
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appearance with numerous branch-points and lack the regular pericyte coverage of 
normal mature vasculature  [  6  ] . Functionally, they exhibit an increased permeability, 
as has been observed through vascular imaging, such as Diffusion Contrast Enhanced 
MRI (DCE-MRI), that can lead to high interstitial fl uid pressure  [  80  ] . These differ-
ences are likely driven by the dysregulated secretion of angiogenic factors in the 
tumor microenvironment. Additionally, some melanomas have been proposed to 
undergo vascular mimicry, where the malignant melanoma cells themselves form 
tubular structures that can carry blood without the presence of endothelial cells  [  84  ] . 
The similarity in these structures may be mediated by a common set of secreted and 
surface proteins found on both melanoma cells and endothelial cells, including Eph 
B4, N-cadherin, integrin  a v b 3 and vascular endothelial growth factor (VEGF) 
 [  83,   84,   180  ] .  

   Mediators of Angiogenesis 

 Angiogenesis is mediated by a complex array of secreted factors, cell surface 
receptors, extracellular matrix (ECM) components, and cell types. However, the 
predominant angiogenic factor produced by melanoma cells is vascular endothe-
lial growth factor (VEGF or VEGF-A) that along with its primary receptor, VEGF 
receptor-2 (VEGFR2 or KDR) serves as a potent pro-angiogenic and permeability 
factor. VEGF protein has several isoforms produced both by alternate splicing and 
post-translational processing. The major isoform is a soluble 45 kDa protein that 
induces endothelial cell proliferation, migration, permeability, and survival  [  54, 
  107  ] . It is expressed at high levels in human melanoma, as has been observed in 
all known melanoma lesions in nine patients studied by immunopet imaging using 
a radiolabelled anti-VEGF antibody tracer  [  130  ] , and is central to the angiogenic 
process  [  40,   43,   53,   98,   130  ,  176  ] . Immunohistochemical analysis has also shown 
increased levels of VEGF in primary melanomas during the transition from hori-
zontal to vertical growth phase  [  116  ] . These levels are further increased within 
metastases, as compared with primary tumors  [  158,   186  ] . VEGF family members 
bind and act through a family of related type III receptor tyrosine kinases (RTKs), 
VEGFR-1, VEGFR-2 and VEGFR-3, which are primarily expressed on blood and 
lymphatic endothelial cells (reviewed in  [  85,   101,   164  ] ). Additionally, VEGF 
family members can also bind to the Neuropilin family of cell surface receptors, 
NRP-1 and NRP-2, which may act as co-receptors, modulating vascular biology 
 [  3,   46,   85,   105,   114  ] . 

 Other soluble angiogenic factors likely to contribute to angiogenesis in human 
melanoma include VEGF-C, basic FGF (bFGF, FGF2), PDGFs, Ang2, IL-8, and 
uPA (Table  10.1   [  113,   136  ] ). VEGF-C can be secreted by melanoma cells, endothe-
lial cells, tumor-associated macrophages (TAMs), and lymphocytes and promotes 
both angiogenesis and lymphangiogenesis through binding to VEGFR3 and 
VEGFR2  [  16  ] . bFGF is associated with the ECM and basement membranes of mel-
anoma neo-vasculature and can stimulate endothelial cell proliferation  [  182  ] . IL-8 
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is expressed in malignant melanomas, but is not detectable in benign melanocytic 
lesions  [  135,   170  ]  and can induce both endothelial and melanoma cell migration as 
well as vascular permeability  [  7  ] . uPA also mediates endothelial migration and 
organization  [  150  ] . Additional angiogenic factors, such as Bv8, have been shown to 
be associated with ancillary angiogenic pathways that can mediate active angiogen-
esis despite VEGF inhibition in pre-clinical melanoma models  [  165,   166  ] .   

   The Prognostic Signifi cance of Angiogenesis 

 The prognostic signifi cance of angiogenesis in melanoma has remained controver-
sial. Srivastava initially reported a correlation between higher vascular area at the 
base of melanomas and locoregional and systemic metastases  [  172  ] . However, some 
other studies have not corroborated these fi ndings  [  21,   23  ] . One possibility is that 
tumor vascularity of primary melanoma may not be the strongest driver of metasta-
ses and disease-free survival in patients presenting with primary disease. In fact, the 
propensity for local and lymphatic spread of melanoma suggests that lymphangio-
genesis may be a more common driver of early disease spread and would reasonably 
be a stronger prognostic factor for development of disseminated disease and ulti-
mately survival. Indeed, recent reports have shown tumor lymphangiogenesis to be 
an important element of the metastatic process and a number of VEGF family mem-
bers are implicated as key mediators of lymphangiogenesis in tumor biology  [  111, 
 162 ,   173  ] . Once melanoma presents as metastatic disease, metastases exhibiting 
higher vascularity (or other markers of angiogenesis) may prove to be strongly 
prognostic for poor overall survival  [  186  ] . This association has been recently 
reported for VEGF levels in patients with Stage IV melanoma  [  79  ] .  

   Anti-Angiogenic Therapy in Melanoma 

 Anti-angiogenic therapy targets a genetically stable host compartment that is funda-
mental to cancer growth and survival. Its utility in treating cancer has been validated 
by the broad activity seen with the VEGF-targeted agents across many indications, 
either alone or in combination with other therapies. Clinical activity has been dem-
onstrated through increased overall survival, improvements in progression-free sur-
vival and tumor response rates  [  20,   60,   91,   110,   122,   126,   159  ] . Early trials evaluated 
the effects of more modest anti-angiogenic therapies in melanoma patients. The past 
decade, however, has brought forward a number of VEGF-targeted agents for evalu-
ation in patients with melanoma. These agents can be classifi ed into those that are 
highly specifi c inhibitors of VEGF (or its receptor), the small molecule VEGFR 
tyrosine kinase inhibitors (VEGFR TKIs) and the indirect inhibitors of VEGF secre-
tion. Additionally, therapies targeting other VEGF family members, angiogenic 
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 factors, and combinations with other therapies have also entered into clinical studies 
in patients with melanoma (Table  10.2 ).   

   Specifi c Inhibitors of the VEGF Ligand 

 Specifi c inhibitors of VEGF signaling include monoclonal antibodies targeting 
VEGF or its receptor, VEGFR2, and the soluble VEGFR “traps.” One example is 
bevacizumab, a fully humanized monoclonal IgG1 antibody that specifi cally neu-
tralizes all isoforms of VEGF  [  55,   148  ] . The clinical effi cacy of bevacizumab has 
been observed in multiple Phase III studies in metastatic colorectal cancer  [  91  ] , 
breast cancer  [  122  ] , lung cancer (Sandler et al. 2007), renal cell carcinoma  [  49, 
  153  ] , and ovarian cancer  [  20,   145,   181  ] , either in combination with chemotherapy 
or other biologic therapy. Published studies of bevacizumab in patients with meta-
static melanoma have ranged from small single agent anecdotal observations to 
combination studies with targeted therapy, biologic therapy, and chemotherapy. 
Single agent bevacizumab therapy has resulted in only a handful of reported 
observed responses  [  95,   183  ]  in melanoma patients. Larger studies of either single 
agent bevacizumab or combinations with interferon- a , erlotinib, and imatinib have 
also reported only a few responses, making the likelihood of clinical benefi t from 
such regimens unclear. The largest single-agent bevacizumab study is currently 
being conducted in the adjuvant setting and effi cacy results have not yet been 
reported  [  12  ] . In contrast, combinations of bevacizumab with various chemotherapy 
regimens have suggested potential clinical benefi t, with observations of increased 
RECIST responses, prolonged progression-free survival, and overall survival when 
compared with historical controls or control arms lacking bevacizumab. 
Combinations of bevacizumab with DTIC or temozolomide have reported response 
rates of approximately 16% and median PFS of 4–6 months  [  42,   185  ]  (Table  10.2 ). 
Combination with taxanes, such as paclitaxel or nanoparticle albumin-bound pacli-
taxel (nab-paclitaxel), has resulted in median PFS of 3–6 months, respectively  [  14, 
  68  ] . Bevacizumab combinations with carboplatin and paclitaxel have been tested in 
both a single arm multicenter Phase II study  [  144  ]  and a large randomized placebo-
controlled Phase II study (K.B. Kim, MD, unpublished data, 2011)     [  79  ] . This com-
bination may be of particular interest, given the surprising activity recently observed 
with carboplatin and paclitaxel in large Phase III metastatic melanoma studies  [  57, 
  78  ]  and the synergy observed between paclitaxel bevacizumab combinations in lung 
and breast cancer (Sandler et al. 2007)  [  122  ] . The single-arm multicenter treatment 
of 53 patients reported by Perez et al. showed a median overall survival of 12 
months, a median progression free-survival of 6 months and an overall response rate 
of 17%  [  144  ] . In a Phase II study of 41 patients with chemotherapy-naive, unresect-
able stage III or IV melanoma, treatment with nab-paclitaxel and bevacizumab was 
associated with a median progression-free survival of 5.8 months and an objective 
response rate of 29.7%  [  14  ] . Similarly, the large randomized (214 patient) multi-
center placebo-controlled Phase II study of carboplatin (AUC5) paclitaxel (175 mg/
kg) and bevacizumab (15 mg/kg) or placebo IV every 21 days showed a median 
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overall survival of 12.3 vs. 8.6 months (HR = 0.67,  p -value 0.03), progression-free 
survival of 5.6 vs. 4.2 months (HR = 0.78,  p -value 0.14), and an objective response 
rate of 25.5 vs. 16.4% ( p -value 0.15) favoring the bevacizumab-containing arm at 
the protocol-defi ned analysis (K.B. Kim, MD, unpublished data, 2011)  [  79  ] . 

 Interestingly, minimal benefi t was seen for any of the three above endpoints in 
the approximately one third of patients that progressed prior to week 16 on study, 
with the remaining approximately two thirds of patients enrolled showing an even 
larger magnitude of benefi t. Whether these observations refl ect upon a less angio-
genic-dependent mechanism for the rapidly progressing melanomas, or whether 
patients with tumors that are growing so quickly are poor candidates for a RECIST-
based clinical study is unclear. Overall, the benefi t for the addition of bevacizumab 
in this study was strongest in patients with Stage M1c disease or with an elevated 
LDH. While this might refl ect a statistical anomaly, it seems plausible that the com-
bination of a RECIST-based study and a combination with cytotoxic chemotherapy 
in melanoma may bias the observed benefi t to patients that can stay on treatment 
long enough to provide adequate exposure to the bevacizumab and chemotherapy. 
While clinical studies of angiogenesis inhibitors have not adopted modifi ed study 
approaches that tailor the study design to the expected activity of the therapy, this 
approach has been adopted by immune therapy modulators, such as anti-CTLA4, 
and the immune-related response criteria  [  112  ]  (Wolchok et al. 2009). Alternatively, 
the rapidly progressing patients may have melanomas that are driven by multiple 
angiogenic and infl ammatory factors, of which VEGF is only one component. The 
benefi t seen in patients with elevated LDH may also refl ect hypoxic conditions 
within the tumor, which may also be associated with VEGF up-regulation and tumor 
dependence on angiogenesis for further disease progression. Further validation of 
these fi ndings and potential biomarkers for identifying patients that will receive the 
optimal clinical benefi t will require a defi nitive Phase III study.  

   Small Molecule VEGFR TKIs 

 Small molecule tyrosine kinase inhibitors (TKIs) that inhibit VEGF receptor-medi-
ated signaling have shown clear activity in a number of highly VEGF-responsive 
diseases, including renal cell carcinoma, hepatocellular carcinoma, neuroendocrine 
tumors, and thyroid-carcinoma  [  27,   34,   50,   126,   132,   152,   154  ] . While no truly 
VEGFR2-selective TKIs have been identifi ed to date, the VEGFR2 TKIs currently in 
clinical development can be classifi ed into those that are more VEGFR-specifi c (e.g. 
axitinib, Tivozanib), those which inhibit a broader spectrum of angiogenic targets, 
including those in the PDGFR family (e.g. sorafenib, semaxanib, ABT869), and 
those with a very broad spectrum of kinase targets (sunitinib). In contrast to the 
VEGF-targeted biologics, VEGFR TKIs are orally available and exhibit a range of 
half-lives and exposures. However, their utility can be complicated by off-target 
(non-VEGF) toxicities and pharmacokinetic variability, and thus have had limited 
success in tolerably combining with standard of care chemotherapies, given the 
potential for overlapping toxicities. Such toxicities can lead to dose reductions and 
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sporadic VEGF inhibition, thereby limiting their therapeutic effects. Not surpris-
ingly, the activity of these agents appears to be most evident in single agent treatment 
settings, rather than in combination with chemotherapy. In contrast to bevacizumab, 
sorafenib has failed to demonstrate effi cacy in Phase III studies in combination with 
carboplatin and paclitaxel in lung cancer  [  64,   161  ]  and in both fi rst-line and second-
line studies of melanoma patients  [  57,   78  ] . However, promising single agent results 
in melanoma have been reported with a number of VEGFR TKIs, including axitinib 
and sunitinib, where response rates have ranged from 8.3 to 15.6%  [  35,   61  ] .  

   Agents with Indirect Effects on Angiogenesis 

 Agents that have an indirect effect on the angiogenic processes have been available for 
many years. These include thalidomide and its more potent derivative lenalidomide, as 
well as the cytokine interferon alpha (Interferon- a ). Treatment with interferon- a , for 
example, has been shown to decrease levels of the pro-angiogenic factors bFGF and 
IL8  [  137,   169,   184  ] . In clinical trials, thalidomide showed promising early results in 
combination with chemotherapy for the treatment of advanced melanoma  [  188  ] . More 
recently, however, Phase II clinical trials have shown that addition of thalidomide to 
dacarbazine  [  139  ]  or temozolomide  [  28  ]  was not associated with further benefi ts over 
chemotherapy alone. Lenalidomide monotherapy has been evaluated in patients with 
advanced refractory or relapsed melanoma, with limited evidence of effi cacy  [  45,   67  ] . 
Phase I and II studies of lenalidomide in combination with chemotherapy are ongoing. 
Interferon- a  has been evaluated in numerous studies in patients with melanoma, both 
as adjuvant therapy and for treatment of advanced disease. A recent meta-analysis of 
14 randomized, controlled studies of adjuvant interferon- a  found that treatment was 
associated with signifi cant improvements in disease-free and overall survival  [  125  ] . 
High-dose interferon- a  in patients with advanced melanoma has been evaluated in 
numerous studies, and appears to show benefi ts on disease-free progression without 
improving overall survival and with substantial toxicity  [  18  ] . However, it is unclear 
how much of the anti-melanoma activity of interferon is attributable to its modest anti-
angiogenic properties compared to its immunomodulatory effects.  

   Other Anti-Angiogenic Therapies 

 The tumor-associated vasculature present in melanomas include several compo-
nents that provide potential targets for emerging therapies. These components 
include (1) the small diameter, tortuous, immature blood vessels that are rapidly 
pruned by therapies that target VEGF, (2) larger, more mature (and less VEGF-
dependent) blood vessels, (3) ECM components to which endothelial cells attach, 
(4) pericyte and other stromal cells that support endothelial cells, (5) lymphatic 
endothelial cells (6) infi ltrating myeloid cells. The larger, less VEGF-dependent 
vessels are potentially a target of the class of vascular disrupting agents (VDAs) and 
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recent studies suggest they may have activities complementary to VEGF inhibitors 
 [  92  ] . A number of monoclonal antibodies designed to inhibit ECM-endothelial cell 
interactions and thus prevent further angiogenesis are currently in testing, including 
anti-integrin  a v b 3, anti-integrin  a 5 b 1 and anti-EGFL7  [  22,   39, 88,   156  ] . 

 The integrins, specifi cally vascular-enriched integrins, contribute to tumor angio-
genesis by supporting endothelial cell adhesion, migration, and modulation of 
growth factor signaling.  a v b 3 is an integrin that binds vitronectin. Expressed on the 
surface of many melanomas and proliferating endothelial cells, inhibition of  a v b 3 
binding to vitronectin may interfere with angiogenesis. However, blockade of  a v b 3 
integrin binding by the monoclonal antibody etaracizumab when combined with 
dacarbazine in a phase II trial ( n  = 112) has shown no signifi cant improvement over 
dacarbazine alone  [  82  ] . In addition, a phase II trial ( n  = 26) showed cilengitide, an 
antagonist of both  a v b 5 and  a v b 3 binding, to have minimal clinical effi cacy as 
monotherapy for melanoma  [  104  ] . Similarly,  a 5 b 1 is an integrin that binds fi bronec-
tin and is reported to support embryonic and tumor vascular growth. Volocizumab, 
an antibody directed against  a 5 b 1 showed only a 5.3% response rate as monother-
apy in a phase II study in melanoma. 

 EGFL7 is another ECM component that forms peri-vascular tracks along which 
blood vessels grow and provide both adhesive function and pro-survival signals to 
endothelial cells. Anti-angiogenic therapy that leads to pruning of tumor-associated 
blood vessels leave behind these EGFL7 “ghost” tracks. Cessation of therapy has been 
observed to result in rapid re-growth of the tumor blood vessels along the existing 
tracks  [  115  ] . Clinical trials examining monoclonal antibodies directed against each 
of these ECM components are currently on-going. However, the optimal approach 
to using such therapies may require further investigation. Pericyte biology can also 
be affected by inhibitors of PDGFR- b , endoglin, angiopoeitin-2 (Ang2) or neuropi-
lin-1 (NRP1)  [  46,   136  ] . This inhibition may prevent the further maturation of 
VEGF-dependent tumor blood vessels to a VEGF-independent state, and the clini-
cal impact of this inhibition is currently being investigated  [  141  ] . Inhibitors of 
lymphangiogenesis and tumor-infi ltrating infl ammatory myeloid cells have shown 
anti-tumor activity in pre-clinical models and represent further approaches to block-
ing tumor perfusion, spread and immune evasion  [  4,   97,   165  ] . 

 Several different subtypes of tumor-infi ltrating myeloid cells have been recently 
identifi ed. These include immature myeloid cells (which include myeloid-derived 
suppressor cells, or MDSCs), Tie2-expressing monocytes (TEMs) and M2 TAMs; 
collectively, their described functions support the interaction between angiogenesis 
and infl ammation. Each of these populations of myeloid cells can infi ltrate tumors, 
promote tumor angiogenesis through the secretion of pro-angiogenic factors, such 
as VEGF, IL-8 and Bv8, and play a role in the progression of tumors. Additionally, 
tumor-infi ltrating immature myeloid cells and MDSCs can increase in response to 
treatment, such as with chemotherapy  [  102,   138,   165,   191  ]  and suppress anti-tumor 
immune responses through numerous immune regulatory factors, including IL-10 
and arginase. Targeting these cells directly, or the factors that stimulate their increase 
in tumors, may result in blocking a potential tumor angiogenesis-escape pathway as 
well as improve anti-tumor immune responses. 
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 Inhibition of lymphangiogenesis has recently been shown to reduce the formation 
of lymph node and distant organ metastasis in a number of pre-clinical studies  [  25, 
  190  ] . The mediators of lymphangiogenesis are not yet comprehensively understood, 
but is rapidly increasing. The most compelling evidence comes from the VEGF-
C/D signaling axis, where overexpression in cell lines with limited metastatic capac-
ity or inhibition of endogenous or over-expressed factors have led to observations 
that include changes in metastatic spread to regional lymph nodes and distant 
organs. Further clinical studies that elucidate the impact of lymphangiogenic inhibi-
tion on adjuvant treatment of stage II or stage III melanoma, and perhaps specifi -
cally, in transit disease, will likely determine the potential value of targeting this 
pathway in the treatment of melanoma.  

   Anti-Angiogenic Combinations 

 Numerous studies are investigating the potential for combining anti-angiogenic 
agents with other biologic or cytotoxic agents (Table  10.3 ). Highly specifi c anti-
angiogenic inhibitors can be used in combination with many other therapeutic agents, 
due to non-overlapping adverse effects. The most common anti-VEGF class effects 
include hypertension and proteinuria, which are uncommon toxicities of other thera-
pies. More severe toxicities, such as gastrointestinal perforations, have occurred 
rarely with anti-angiogenic therapy in melanoma, despite initial concerns given fre-
quent metastasis to the intestinal tract. No new adverse events specifi c to melanoma 
treatment with anti-angiogenic agents have been observed in clinical studies. In addi-
tion to having a favorable toxicity profi le for combination treatment, synergy with 
other therapies has been best defi ned with chemotherapy combinations thus far. 
Theories for why chemotherapy may combine well with anti-angiogenesis agents 
include: (1) “vascular normalization,” where anti-angiogenic treatment leads to rapid 
pruning of the abnormal tumor vasculature, leading to decreased interstitial tumor 
pressure and increased delivery of chemotherapy to tumor cells, (2) synergistic anti-
angiogenic activity of chemotherapy agents and anti-angiogenic therapy, particularly 
in the setting of metronomic taxanes, and (3) blunting of post-chemotherapy re-
growth (such as increased VEGF production  [  100,   102,   144  ] ), (4) direct effects of 
chemotherapy on endothelial cells  [  5  ] . Regardless of the mechanism, the combina-
tion of chemotherapy and anti-angiogenesis inhibitors has proven highly successful 
in colon, breast, lung cancers, and thus far, the combination of carboplatin, pacli-
taxel, and bevacizumab also appears to be active in melanoma.  

 Beyond chemotherapy, anti-angiogenesis agents have been combined with a 
number of other targeted therapies. These combinations can be separated into 
combinations of multiple angiogenesis inhibitors vs. combinations with other 
non-angiogenesis targeted therapies. In renal cell carcinoma, high dose IL-2, 
Interferon and mTOR inhibitors have been combined with bevacizumab and vari-
ous VEGFR TKIs. In melanoma, small signal-seeking studies of bevacizumab 
and erlotinib (EGFRi) or imatinib (PDGF/cKITi) combinations have not shown 
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clearly appreciable activity. However, recent results from a study of bevacizumab 
with everolimus (mTOR inhibitor) suggest activity for the combination of two 
targeted therapies in melanoma without the addition of chemotherapy  [  74  ] . 
Combinations between anti-angiogenic therapies and B-RAF inhibitors have not 
been initiated, but may well be warranted, particularly if the possibility that anti-
angiogenic therapy might prevent or slow the development of resistance to 
B-RAF inhibition in melanoma. 

 There is strong interest in combinations of anti-angiogenic therapies and immune 
modulatory agents, such as CTLA-4 inhibitors. As reported by Gabrilovich et al., 
VEGF may affect monocyte maturation and activation and has been proposed to 
affect certain subsets of dendritic cells  [  62  ] . VEGF blockade can also decrease 
tumor interstitial fl uid pressure and tumor hypoxia and may improve lymphocyte-
vessel wall interactions, which could improve traffi cking and activity of tumor-infi l-
trating lymphocytes, NK or other hematopoietic cells  [  17,   99,   131  ] . Additionally, 
this inhibition may also decrease the infi ltration of pro-angiogenic myeloid cells as 
previously described. The combination of bevacizumab and interferon in 25 patients 
with Stage IV melanoma was recently reported by Grignol et al. and found to be 
tolerable and associated with a response rate of 24% and a median survival of 17 
months  [  71  ] . While the study was small, it clearly contrasts with the limited activity 
reported by the same group for a combination of bevacizumab and a low, non-
immunomodulatory dose of interferon  [  183  ] . A study of bevacizumab and ipili-
mumab (anti-CTLA4) is currently examining a more active immune-modulatory 
agent combined with anti-angiogenic therapy, and will hopefully provide results for 
both the tolerability and effi cacy of the combination soon  [  86  ] .  

   Conclusions 

 Malignant melanoma is a highly vascular tumor associated with limited treatment 
options and short survival. However, therapy for this disease is rapidly changing. 
Advances in our understanding of the molecular alterations that drive its behavior 
are leading to encouraging results from clinical studies. Therapies that target critical 
mutations that lead to uncontrolled growth and escape from immune surveillance 
are now well established for the treatment of metastatic melanoma. Completed clin-
ical studies already have demonstrated the potential benefi t of anti-angiogenic treat-
ment. Monoclonal antibodies targeting VEGF, in combination with chemotherapy 
have shown activity leading to improvements in response rates and survival in meta-
static melanoma, whereas small molecule TKIs that inhibit signaling through mul-
tiple angiogenic receptors have shown responses as monotherapy. Given the number 
of genetic alterations present in melanoma cells  [  52  ]  it is most likely that patients 
will benefi t most from combination therapies that inhibit multiple pathways in a 
highly selective manner. Anti-angiogenic and anti-lymphangiogenic therapy will 
likely represent one such approach, and benefi t    from targeting a genetically stable 
pathway associated with both melanoma disease progression and prognosis. Its lim-
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ited overlapping treatment toxicity with other therapies and synergistic potential, 
observed thus far with immunotherapy and cytotoxic therapy, make it an important 
approach to further investigate in on-going and future clinical studies. Increasing 
our understanding of these therapies in melanoma, whether they should be used in 
combination with other therapies or sequentially, and in which patient subsets 
should be key objectives in melanoma treatment for years to come   .      
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  Abstract   The antigenicity of melanomas is known better than that of all other 
human tumors. Melanoma antigens recognized by T lymphocytes fall into four 
groups. They can be encoded by genes that are mutated in the tumor cells, by the 
cancer-germline genes which are not expressed in non-tumor cells that bear HLA 
molecules, by melanocyte differentiation genes, and by genes that are overexpressed 
in tumor cells. Only the antigens of the fi rst two groups can be considered as mela-
noma-specifi c and therefore can be used safely in active or passive immunizations.  
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  Abbreviations  

  CTL    Cytolytic T lymphocyte      
  MLTC    Mixed lymphocyte-tumor cell cultures   
  TILs    Tumor-infi ltrating lymphocytes            

   Introduction 

 Most if not all human tumors bear antigens that can be recognized by T lympho-
cytes. These antigens are small peptides, derived mostly from endogenous proteins, 
and presented at the cell surface by HLA molecules. The antigenicity of melanoma 
is better known than that of all other human tumors, for several reasons. Firstly, 
from a historical perspective, melanomas have always been considered as privileged 
“immunogenic” tumors. There are histological and clinical suggestions that mela-
nomas, during their development and progression, are the target of immune reac-
tions mediated by T lymphocytes, and that these reactions infl uence the clinical 
course of the disease. About 10–20% of primary melanomas show signs of partial 
tumor regression, often associated with infi ltrates of infl ammatory cells including T 
lymphocytes. In 10% of new melanoma cases, the diagnosis is made on a metastatic 
lesion, without any detectable primary tumor, suggesting that the latter regressed 
spontaneously. Primary melanomas often contain tumor-infi ltrating lymphocytes 
(TILs), whose extent and pattern of infi ltration has a clear impact on metastatic 
spread and prognosis  [  1  ] . Clinical observations that a fraction of melanoma patients 
benefi t from various forms of immunotherapy, including BCG  [  2  ] , IL-2  [  3–  5  ] , IFN- a  
 [  6  ] , and adoptive transfer of blood or tumor-derived lymphocytes activated by IL-2 
 [  7,   8  ] , further drew the attention of immunologists to melanoma. The high rate of 
success of melanoma cell line establishment, about 40% from metastatic melanoma 
as compared to 1–10% for other tumors, provided researchers with a stable and 
renewable source of tumor antigens for the stimulation of autologous lymphocytes, 
which proved to be a key step toward the molecular identifi cation of these antigens. 

 This review deals with antigens recognized on human melanoma cells by T lym-
phocytes. Today more than 200 such antigens have been identifi ed, about two thirds 
of which are being presented by HLA class I molecules to CD8 +  cytolytic T cells 
(CTLs) and one third by HLA class II molecules to CD4 +  T cells. An updated list of 
T cell-recognized tumor antigens is available at  [  9  ] .  

   Antigen Discovery Process 

 The molecular identifi cation of melanoma antigens has followed three approaches. 
In the fi rst, the starting material is a population of tumor-specifi c T cells, and prefer-
ably a T cell clone. They can be derived from autologous mixed lymphocyte-tumor 
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cell cultures (MLTC), in which T lymphocytes from the patient’s blood or melanoma 
are restimulated in vitro with the autologous tumor cells. From the beginning of the 
identifi cation work, one knows that the examined antigen is naturally processed in 
the melanoma cells and expressed at their surface at a suffi cient level for recognition 
by T cells. The antigenic peptide itself can be identifi ed either by eluting HLA-
bound peptides from the tumor cells, fractionating and testing them for recognition 
by the T cells, or by cloning the gene encoding the peptide by transfecting a cDNA 
library derived from the autologous melanoma line  [  10  ] . 

 In the second approach, often referred to as “reverse immunology”  [  10  ] , one 
starts with the sequence of a gene of particular interest such as an oncogene fre-
quently mutated in melanoma, a gene selectively expressed or overexpressed in 
melanomas, or in the SEREX methodology the gene coding for a protein against 
which melanoma patients have mounted an antibody response  [  11  ] . The work then 
consists in fi nding a candidate antigenic peptide encoded by this gene, verify its 
binding to HLA molecules, use it to prime T cells in vitro, derive a T cell line or 
clone that specifi cally recognizes the peptide and, last but not least, verify that these 
lymphocytes do recognize melanoma cells that naturally express the gene of interest 
and the appropriate HLA. Compared to the MLTC approach, there is a fairly high 
dropout rate over this diffi cult course, mainly at the fi nal step of melanoma cell 
recognition. 

 Finally, a direct biochemical approach consists in immunoaffi nity purifi cation of 
detergent-solubilized MHC-peptide complexes from melanoma cells, followed by 
acid elution of peptides and their identifi cation with liquid chromatography and mass 
spectrometry  [  12  ] . The resulting “MHC-ligandome” contains mostly non-antigenic 
normal self peptides, and the tumor-specifi c antigenic peptides. 

 These methods have led to the identifi cation of four main categories of melanoma 
antigens, classifi ed according to the genetic mechanisms leading to their expression. 

   Melanoma Antigens Resulting from Mutations 

 These antigenic peptides are encoded by genes that bear somatic mutations in mela-
noma cells. About 25 antigenic peptides resulting from a mutation have been 
described in melanoma, 18 presented on HLA class I and 9 on HLA class II mole-
cules  [  9  ] . Without a doubt, there is a multitude of other such peptides. In most cases, 
the mutation changes one amino acid in the antigenic peptide recognized by the T 
cells. Either this change enables peptide binding to a presenting HLA molecule, to 
which the wild type peptide does not bind  [  13  ] , or both the wild type and mutated 
peptides bind to an HLA molecule but the mutation creates a new antigenic deter-
minant that is recognized by the T cell receptor  [  14  ] . In this case, the wild type 
peptide is not recognized because the specifi c T cells have been deleted or anergized 
during the establishment of natural tolerance. Sometimes the mutation is not in a 
codon of the antigenic peptide, but either creates a new start codon that opens an 
alternative open reading frame encoding the peptide  [  15  ] , or generates a frameshift 
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 [  16  ] , or is thought to modify the intracellular localization of the protein and its 
processing into antigenic peptides  [  17  ] . In all cases, the resulting antigens are 
strictly tumor-specifi c. 

 As expected, several point mutations resulting in antigenic peptides are onco-
genic such as in CDK4  [  18  ] , B-raf  [  19,   20  ] , N-ras  [  21  ] , or CDKN2A  [  16  ] . The cor-
responding peptides are attractive candidates for immunotherapy because the 
mutations are shared between several melanomas, and because antigen loss is 
unlikely since the mutated gene product drives the tumor. However, the prevalence 
of such antigens in melanoma is often low, as it equals the prevalence of the specifi c 
mutation in melanoma multiplied by the prevalence of the presenting HLA mole-
cule in the target population. 

 The vast majority of antigen-producing melanoma mutations could not be asso-
ciated with tumoral transformation, and were individual to single tumors. These 
results led to the inference that in any given tumor the number of “antigenic” muta-
tions could be high, with only a small proportion corresponding to common mutated 
oncogenes. Thus far, this notion seems to have been confi rmed. The fi rst complete 
catalogue of somatic mutations in a melanoma was recently obtained by comparing 
the full genome of a melanoma cell line with that of autologous EBV-transformed 
B cells and with a reference genome  [  22  ] . The melanoma cells contained about 
33,000 somatic base substitutions, of which approximately 300 were in protein-
coding sequences with around 200 that caused amino acid changes  [  22  ] . Assuming 
that about 40% of the protein-coding sequences are indeed expressed in the mela-
noma cells, we are left with 80 amino acid changes. Of these, less than 10 are esti-
mated to be “driver” mutations, i.e., causing the neoplastic process and probably 
selected for during tumorigenesis and metastasis, the remainder being “passenger” 
mutations that do not contribute to oncogenesis  [  23  ] . How many of these 80 amino 
acid changes produce an antigen is not known. It will depend on the amount of pro-
tein present, or on the amount of the so-called defective ribosomal products which 
seem to be a good source of antigenic peptides presented by HLA class I molecules 
 [  24  ] , on the capacity of the antigen processing pathways to generate the appropriate 
peptide, and on the ability of the latter to be presented by HLA molecules present in 
the melanoma cells. A conservative estimation of 10–15% leads to ±10 different 
mutated peptides available to T cell recognition at the surface of melanoma cells, 
always with a driver to passenger mutated peptides ratio of only 1:10. It is therefore 
not surprising that most of the mutated peptides identifi ed with anti-melanoma CTL 
clones did not derive from oncoproteins.  

   Shared Tumor-Specifi c Antigens on Melanoma 

 The other genetic mechanism responsible for the tumor specifi city of antigens is the 
expression in tumor cells of genes that are silent in normal cells. These antigens can 
be shared if encoded by genes that are expressed in many melanomas or in other tumors. 
Most of such tumor-specifi c shared antigens are encoded by the “cancer-germline” 
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genes  [  25  ]  that are expressed in various proportions of tumors of different histological 
types, and also in male germline cells. But male germline cells do not present anti-
genic peptides to T lymphocytes because they do not express HLA molecules  [  26, 
  27  ] . Thus, these tumor antigens recognized by T cells are not present in testis, and 
the widely used designation “cancer testis (CT) antigens” is not only unfortunate, 
but also misleading as it suggests that autoimmunity to testis is a concern. Some 
cancer-germline genes such as  MAGE-A3  and  -A4  are expressed in placenta  [  28  ] , 
with proteins detected in the cytotrophoblast, which does not express the classical 
polymorphic HLA molecules  [  29  ] . As with antigens encoded by mutated genes, the 
tumor specifi city of antigens encoded by cancer-germline genes and recognized by 
T cells appears to be strict. 

 The cancer-germline genes are categorized in gene families including  MAGE-A , 
 -B , and  -C   [  28,   30  ] ,  BAGE   [  31  ] ,  GAGE   [  32  ] ,  LAGE  with  LAGE-1  and  LAGE-2/
NY-ESO-1   [  33,   34  ] ,  SSX   [  35  ] , or  TAG   [  36  ] . In melanoma, expression of cancer-
germline genes is more frequent in metastases than in primary tumors (Table  11.1 , 
Fig.  11.1 ), suggesting that activation of these genes occurs during tumor progres-
sion. It is worth noting that contrary to cutaneous melanomas, most ocular melano-
mas do not express  MAGE  genes  [  37  ]  (Table  11.1 , Fig.  11.1 ). The reason for the 
expression of cancer-germline genes in tumors has been examined in detail for gene 
 MAGE-A1 . The triggering event is demethylation of its promoter, which has a high 
CpG content, while the transcription factors that activate the promoter are ubiqui-
tous  [  38,   39  ] . Accordingly,  MAGE-A1  expression can be induced in vitro in non-
tumoral dividing cells treated with the demethylating agent deoxy-azacytidine  [  38  ] . 
Similar results were obtained for  LAGE-1  and other cancer-germline genes  [  40  ] . In 
tumor cells, after an initial and transient demethylation of cancer-germline genes’ 
promoters, hypomethylation is locally maintained due to the presence of ubiquitous 
transcription factors  [  41,   42  ] . Melanoma samples often co-express several cancer-
germline genes, as shown in Fig.  11.1  for genes  MAGE-A1 ,  -A2 ,  -A3 ,  -A4 ,  -A6 , 
 -A10 , and  -A12 . About 50% of primary tumors and 70–75% of cutaneous or lymph 
node metastases express at least one of these seven genes (Fig.  11.1 ). When several 
melanoma metastases of the same patient are tested, one usually observes a con-
served pattern of cancer-germline genes expression across the different samples 
 [  43  ]  (Fig.  11.2 ).    

 Beside the members of the cancer-germline gene families reported above, other 
genes such as  TRAG-3   [  44  ] ,  HAGE   [  45  ] ,  KM-HN-1  ( CCDC110 )  [  46  ] , or the  CT45  
gene family  [  47  ] , are also expressed in testis and in some tumors, including mela-
nomas. So far only a few antigenic peptides encoded by these genes have been 
identifi ed. 

 A few transcripts that code for antigens recognized by T cells are expressed in a 
sizeable proportion of melanomas but are silent or expressed at very low levels in 
other tumors and in normal tissues including testis and melanocytes. In the gene 
coding for N-acetylglucosaminyltransferase V, a cryptic promoter active in most 
cutaneous and ocular melanomas controls transcript NA17, which encodes a poly-
peptide of 74 amino acids  [  48  ] . An antigenic peptide presented by HLA-A2 corre-
sponds to residues 1–9 of this polypeptide. A pseudogene very similar to gene 
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   Table 11.1    Expression of the main genes that encode tumor antigens, assessed by conventional 
RT-PCR, in a large panel of melanoma samples   

 Gene 

 Cutaneous melanomas  Ocular melanomas 

 Primary tumors  Metastases  Primary tumors  Metastases 

 %   n   %   n   %   n   %   n  

  MAGEA1   22   76   40   551   0   23   9   33  
  MAGEA2   46   68   68   364   0   12  
  MAGEA3   49   82   63   643   0   23   3   33  
  MAGEA4   19   70   32   429   17   12  
  MAGEA5   25   20  
  MAGEA6   46   68   67   359   0   12  
  MAGEA8   10   52  
  MAGEA9   12   50  
  MAGEA10   28   18   45   349  
  MAGEA11   54   56  
  MAGEA12   27   67   50   372   0   11  
  MAGEB1   18   33  
  MAGEB2   22   58  
  MAGEC1   33   33   39   38  
  MAGEC2   39   31   60   92  
  BAGE   14   28   38   128  
  GAGE-1,2,8   39   41   41   186  
  GAGE-3-7   36   59   46   197  
  CTAG1/LAGE-2   33   171   0   16  
  CTAG2/LAGE-1   29   171  
  SSX1   15   20  
  SSX2   30   33  
  SSX4    5   20  
  HAGE   16   19  
  SAGE    5   19  
  NXF2   11   19  
  PRAME   97   30   96   71  
  NA17   35   20   74   238   100   12   91   34  
  TYR   91   64   79   509   87   23   89   35  
  MLANA   95   64   80   496   91   23   100   35  
  SILV/gp100   75   52   65   399   86   21   94   33  

  The table shows, for each gene, the proportion of positive samples and the number of samples 
tested. Results obtained with less than 10 samples are not included. Quantity of the amplifi ed 
product was estimated visually on an ethidium bromide-stained agarose gel by comparing the 
intensity of the band to that resulting from RT-PCR performed on serial dilutions (1:1, 1:3, 1:9, 
1:27) of the RNA of reference melanoma cell lines. Samples were scored positive if the amount of 
the amplifi ed product was equal to or greater than that obtained with the 1:9 dilution of the refer-
ence RNA. Lower levels of expression were scored negative. All samples expressed gene  b - ACTIN  
at levels comparable to those of the reference lines  



  Fig. 11.1    Expression of selected  MAGE-A  genes, transcript  NA17 , and melanocyte differentiation 
genes, assessed by conventional RT-PCR, in unique tumor samples from melanoma patients. 
Assessment of the PCR product was performed visually on an ethidium bromide-stained agarose gel 
by comparing the intensity of the band to that resulting from RT-PCR performed on serial dilutions 
(1:1, 1:3, 1:9, 1:27) of the RNA reference melanoma cell line. Samples were scored  fi lled squares  or 
 gray boxes     if the amount of the amplifi ed product was equal to or greater than that obtained with the 
1:1 or 1:9 dilutions of the reference RNA, respectively. Lower levels of expression were scored  open 
squares . All samples expressed gene   b -ACTIN  at a level comparable to that of the positive control       
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  Fig. 11.2    Expression of selected  MAGE-A  genes, transcript NA17, and melanocyte differentiation 
genes in multiple melanoma samples from individual patients. Each group of 2–7 samples corre-
sponds to a single patient.  Asterisks  and  double asterisks  indicate metastases that were resected 
simultaneously. Gene expression levels are represented as in Fig.  11.1        
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 HPX42B  contains a very short open reading frame that codes for an antigenic peptide 
presented by HLA-A2  [  49  ] . This pseudogene is expressed in about 10% of melano-
mas. Finally, an endogenous retroviral sequence expressed in more than 80% of 
melanomas was found to code for an antigenic peptide recognized by CTL  [  50  ] . 

 Is there some level of natural tolerance to antigens encoded by cancer-germline 
genes, considering their strict tumor-specifi c expression? A degree of central toler-
ance is possible since human medullary thymic epithelial cells express several can-
cer-germline genes, albeit at low and varying levels  [  51  ] . The same is true in mice 
for cancer-germline gene  P1A   [  52  ] , which is expressed on the mastocytoma cells 
P815. In  P1A  −/−  mice, the tumor rejection responses obtained after inoculation of 
P815 cells are stronger than in wild type animals, while anti-P1A CTL responses 
obtained after immunization with peptide are only slightly increased  [  100  ] . These 
results are compatible with a partial T cell tolerance toward antigen P1A in DBA/2 
mice. The situation might be similar for human tumor antigens encoded by cancer-
germline genes. We have observed low functional avidity of all the anti-MAGE-3.
A1 (peptide MAGE-A3 

168–176
  presented by HLA-A1) CTL clones that we have ana-

lyzed  [  53–  56  ] . Thus, high-affi nity anti-MAGE-3.A1 CTL may be either deleted 
from the repertoire or anergized. However, the situation is different for several other 
MAGE-encoded antigens against which we obtained high-affi nity CTL clones from 
melanoma patients  [  54  ] .  

   Melanocyte Differentiation Antigens 

 A signifi cant proportion of the tumor-specifi c CTL clones derived from melanoma 
patients were found also to recognize normal melanocytes  [  57  ] . Their target anti-
gens are encoded by the melanocyte-specifi c genes  tyrosinase  ( TYR )  [  58  ] ,  Melan-A/
MART-1  ( MLANA )  [  59,   60  ] ,  Pmel17/gp100  ( SILV )  [  61,   62  ] ,  tyrosinase-related pro-
tein-1  ( TRP1 )  [  63  ] , and  dopachrome tautomerase  ( DCT or TRP2 )  [  9,   64  ] . These 
genes are expressed in normal melanocytes and in melanoma cells, and are silent in 
other cancerous and non-cancerous cells. The corresponding proteins participate 
either in melanin synthesis or in the biogenesis of melanosomes, the pigment-rich 
organelles that, in the epidermis, are transferred from melanocytes to adjacent kera-
tinocytes. Expression of these fi ve melanocyte differentiation genes is induced by 
MITF-M, the melanocyte-specifi c isoform of transcription factor MITF 
(MIcrophtalmia associated Transcription Factor)  [  65  ] . Beside the skin, melanocytes 
are also present in the uvea, the retina, the membranous labyrinth of the inner ear, 
and the leptomeninges. 

 To date, about 60 different associations of HLA and peptides encoded by these 
melanocyte differentiation genes have been identifi ed. Almost one third are anti-
gens presented by HLA class II molecules: either an HLA-DR allele, or HLA-DQ6. 
Among all these combinations, one deserves a comment: peptide Melan-A/MART-
1 

26–35
  presented by HLA-A2 molecules  [  66  ] . Initial results indicated that anti-mela-

noma CTL lines, and one CTL clone, recognized both the Melan-A/MART-1 
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nonamer AAGIGILTV and decamer EAAGIGILTV  [  66  ] . The decamer was shown 
to bind to HLA-A2 better than the nonamer, and the binding was even stronger for 
a modifi ed decamer with leucine instead of alanine in position 2  [  67  ] . In vitro, this 
ELAGIGILTV or Melan-A 

26–35(A27L)
  peptide stimulated CD8 +  T cells better than the 

natural peptides, and the responding cells recognized HLA-A2 +  melanoma cells 
 [  68  ] . On this basis, Melan-A 

26–35(A27L)
  has been used in many clinical studies of anti-

melanoma vaccination. Another reason for the attractiveness of this peptide was 
that, when injected into patients, it stimulated T cell responses that could be detected 
easily. CTL responses could even be found in non-vaccinated HLA-A2 +  melanoma 
patients. Part of the explanation lies in a remarkable property of this antigen: it is 
recognized by a frequency of naive T lymphocytes that is between 10 −4  and 10 −3  of 
the CD8 +  cells, considerably higher than the frequency of naive T cells to other 
HLA/peptide combinations, estimated to be between 10 −6  and 10 −7   [  53,   69  ] . Recently, 
the unmodifi ed decamer administered with CpG was found to stimulate T cells that 
recognized melanoma cells better than did T cells induced by vaccination with the 
modifi ed decamer  [  70  ] . The best can be the enemy of the good, and it is an interest-
ing illustration of what can be obtained with peptides modifi ed to increase their 
stability or binding to HLA: the fi ne specifi city of all or some of the responding T 
cells may be such that the natural tumor antigen is not effi ciently targeted. Other 
modifi ed peptides that are often used in vaccination studies include gp100 

209–217(T210M)
  

 [  71  ] , or LAGE-2/NY-ESO-1 
157–165(C165V or L or I)

 . 
 In addition to the fi ve genes mentioned above, two others were found to code for 

melanocyte differentiation antigens,  RAB38   [  72  ]  and  OA1/GPR143  (Ocular albi-
nism 1)  [  73  ] . Gene  OA1  is present on chromosome X and, interestingly, a male 
patient deleted for this gene produced anti-OA1 T cells that had a higher functional 
avidity than that of anti-OA1 T cells from normal controls, suggesting that there is 
some natural tolerance to melanocytic differentiation antigens  [  73  ] .  

   Overexpressed Antigens on Melanoma Cells 

 The last group of melanoma antigens contains those that are considered to be overex-
pressed in tumors. That a gene is overexpressed is an ambiguous statement. A gene 
can be expressed in tumor cells at much higher levels than in normal cells, leading to 
more antigenic peptides displayed on HLA at the surface of tumor cells than on that 
of normal cells, thus explaining tumor-specifi city of the T lymphocytes. Demonstration 
of this overexpression requires quantitative RT-PCR analysis of pure populations of 
each cell type tested. Overexpression may also mean that a gene is expressed at higher 
levels in tumor samples than in normal tissues because of higher proportions of cells 
expressing the gene, without real tumor specifi city. Moreover, overexpression is often 
claimed on the basis of immunohistochemical analyses, not easy to quantify. From a 
long list  [  9  ] , a few “overexpressed” melanoma antigens are described below. 

 Gene  PRAME  is expressed in almost all melanomas, and in many other tumors 
 [  74–  77  ] . Protein PRAME binds to retinoic acid receptor alpha, inhibiting its effects 
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on gene transcription  [  78  ] . Thus, PRAME could suppress the proliferation arrest 
and differentiation normally induced by retinoic acid  [  79  ] . Gene  PRAME  is 
expressed in some normal tissues such as testis, endometrium, adrenals or ovary, at 
levels that are about 100-fold lower than in melanomas  [  74  ] . So far, the distribution 
of PRAME-positive cells in these tissues is, however, unknown, and it is possible 
that a few normal cells express  PRAME  at levels comparable to those observed in 
tumors. Even though the presence of anti-PRAME T cells has been reported in can-
cer patients and in some normal individuals  [  74,   80,   81  ] , these lymphocytes are rare 
( £ 10 −5  of circulating T cells) and the consequences of anti-PRAME immunization 
remain uncertain. 

 Telomerase reverse transcriptase is often mentioned as an attractive source of tumor 
antigens. Antigenic peptides recognized by CTLs or CD4 +  T cells have been identifi ed 
 [  82–  84  ] . But telomerase is also expressed in stem cells and mature hematopoietic 
cells, probably at the same level as in tumors. In vitro experiments showed that 
hematopoietic cells were not lysed by anti-telomerase 

865–873
  CTL that lysed tumor 

cells, leaving open the possibility to use this epitope for vaccination  [  84  ] . 
  MELOE-1  is a gene product transcribed from an intron of the gene coding for 

histone deacetylase 4  [  85  ] . An antigenic peptide presented by HLA-A2 is encoded 
by one of several short open reading frames. T cells recognizing this peptide were 
found in TILs, and their presence was correlated with good prognosis after TIL 
adoptive transfer  [  85  ] .   

   About Tumor Specifi city 

 Every physician or laboratory scientist agrees with the obvious notion that vacci-
nation or adoptive transfer for cancer immunotherapy requires target antigens that 
are not present on normal cells, to avoid their destruction. Finding such antigens 
was the Holy Grail of many tumor immunologists. Today, many such antigens 
have been identifi ed. And it is interesting to observe the consequences of a drift 
from the tumor specifi city rule. The identifi cation of the melanocytic antigens, 
recognized by T cell clones derived from blood or TILs of melanoma patients, 
was a surprise and an indication, or rather a confi rmation, of incomplete toler-
ance. The absence of overt autoimmunity in the corresponding patients eroded the 
notion that tumor specifi city was required. With Pandora’s box opened, mislead-
ing terminology such as “tumor self antigens,” “tumor-associated antigens,” or 
“cancer-testis” antigens added to the confusion, and many antigens that were not 
at all tumor-specifi c were reported to be recognized by anti-tumor T cells. As a 
result, in many clinical studies, cancer patients receive immunotherapy with anti-
gens that are not truly tumor-specifi c. 

 Is this a problem? For active immunization, probably no, at least not with today’s 
techniques and adjuvants which are not yet very good at inducing high magnitude 
CTL responses. For the adoptive transfer of anti-tumor T cells, and its remarkable 
progresses over the last 10 years, obviously yes. Melanoma patients, who can 
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display vitiligo in the absence of immunotherapy  [  86  ] , also can develop vitiligo 
after administration of IL-2 and of T cells recognizing melanocytic differentiation 
antigens  [  87,   88  ] . In one such patient, the T cells infi ltrating the depigmented skin 
were identical to the infused anti-Melan-A CTL clones, confi rming that normal tis-
sues could be destroyed by anti-Melan-A T cells  [  87  ] . Anterior uveitis was reported 
in a few patients who received melanocyte-specifi c T cells and IL-2  [  87,   89  ] . In one 
patient, it was more severe  [  90  ] . Destruction of melanocytes in skin, eye, and inner 
ear were observed in up to 50% of patients after infusion of T cells transduced with 
high affi nity T cell receptors to Melan-A/MART-1 or gp100 peptides  [  90  ] . Beyond 
melanoma, liver toxicity was observed after transfer of T cells engineered to express 
a chimeric receptor targeting carbonic anhydrase IX, present on renal carcinoma 
cells but also on normal bile duct epithelial cells  [  91  ] . Lethal toxicity occurred after 
transfer of T cells carrying a chimeric anti-ERBB2 receptor, probably because the 
infused cells localized immediately to the lungs and recognized ERBB2 on epithe-
lial cells  [  92  ] . While these reports confi rm the effi ciency of the transferred cells, 
they also demonstrate the importance of a strict tumor specifi city of the targeted 
antigens. 

 In vaccination, we believe that if the use of non-specifi c tumor antigens has not 
been associated with overt autoimmunity, it is because the induced T cell responses 
have usually been weak. However, progress is being made toward more immuno-
genic vaccine modalities, and with non-specifi c tumor antigens, vaccination inocu-
ity may fade away as immunogenicity increases. Moreover, vaccination aims at 
inducing long-term T cell responses, even more so if there is a chronic stimulation 
by residual tumor cells. And if autoimmunity occurs, it might be considerably more 
diffi cult to control than after adoptive transfer.  

   Multiplicity of Antigens on Melanomas 

 It is obvious that melanoma cells carry multiple HLA/peptide associations that can 
be recognized by autologous T cells. Many of these antigens are immunogenic 
in vivo, i.e. induce spontaneous anti-tumor T cell responses. Figure  11.3  illustrates 
this point, with four melanoma lines and their sets of antigens recognized by autolo-
gous CTL clones. We believe that these sets correspond to antigens recognized by 
spontaneous anti-melanoma CTL responses of the patients because the CTL clones 
were obtained simply through stimulation of blood mononuclear cells with autolo-
gous melanoma cells and T cell growth factors, which in our hands is insuffi cient 
for de novo CTL priming. Thus, we think that all these melanoma-specifi c CTL 
were primed in vivo, and restimulated in vitro. Comparing the four melanomas, it 
appears that immunogenicity can result mostly from either mutated antigens (MZ7-
MEL  [  93  ]  or LB33-MEL), or antigens encoded by cancer-germline genes (MZ2-
MEL). It is perhaps not coincidental that only one of the 28 identifi ed antigens 
presented in Fig.  11.3  is coded by a gene ( PRAME ) that is expressed by normal 
cells other than male germline cells or melanocytes. Spontaneous T cell responses 
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  Fig. 11.3    Multiple antigens recognized by CTL on human melanomas. The indicated HLA/pep-
tide combinations were identifi ed with autologous CTL clones obtained from MLTC experiments. 
On LB33-MEL at least two different antigens were not identifi ed, they are indicated with question 
marks. MUT stands for various ubiquitously expressed, mutated genes       

against the “overexpressed” tumor antigens are probably prevented by natural 
immunological tolerance.  

 One interesting question is whether all the cells of a melanoma, or all the metas-
tases, bear the same set of antigens. When several metastases of a patient could be 
tested for the expression of genes coding for tumor antigens, the expression profi les 
were found to be similar  [  43  ] . We made similar observations, summarized in 
Fig.  11.2 . Many reports mention the intratumoral heterogeneity of staining with 
antibodies recognizing MAGE or LAGE-2/NY-ESO1  [  94,   95  ] . The reasons for this 
heterogeneity are not known. 

 The multiplicity of antigens recognized by T lymphocytes on melanoma cells is 
an important point for immunotherapy. Melanoma cells can escape recognition by 
CTL to a given antigen by losing expression of the presenting HLA molecule, which 
appears to be frequent  [  96  ] . But complete CTL evasion can only result from loss of 
 b 2-microglobulin or of a component of the antigen processing machinery, requiring 
invalidation of the two copies of the corresponding gene. Moreover, HLA-loss mel-
anoma cells would then have to select additional mechanisms to resist NK cell lysis. 
Another consequence of antigen multiplicity is antigen spreading, which we found 
to be important if not decisive in melanoma patients displaying tumor regression 
following vaccination with one or two tumor-specifi c antigens  [  97,   98  ] . Antigen 
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spreading is also observed after adoptive transfer  [  99  ] , and it is probably one of the 
major mechanisms behind the rare complete and durable melanoma regressions 
observed after immunotherapy. Another mechanism underlying success is likely the 
absence or minimal contribution of local immunosuppressive mechanisms.  

   Conclusions 

 The rules governing melanoma antigenicity toward autologous T cells are now well 
established. They apply to most other tumor types. It is likely that the important 
immunogenicity of melanomas, illustrated by the spontaneous anti-tumor T cell 
responses in melanoma patients, owes much to the melanocyte differentiation anti-
gens and to the low level of natural T cell tolerance to them. Published data on 
immunotherapy in melanoma patients do not yet allow to conclude that particular 
antigens will provide more clinical benefi t than others. However, there are already 
confi rmations that using not strictly tumor-specifi c antigens can lead to clinical 
autoimmunity.      
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  Abstract   Many vaccines have been very successful. They can protect from many 
different infectious diseases, and thus contribute enormously to public health. The 
majority of successful vaccines induce neutralizing antibodies, which are essential 
for protection from disease, by the inhibition of microbe invasion and spread through 
the body, via extracellular compartments, or by neutralization of toxins. In contrast 
to infectious diseases, the pathological process in cancer is primarily intracellular. 
Immunity to cancer depends mainly on T cells which are capable of identifying and 
eliminating abnormal cells, via recognition of peptide antigens presented by major 
histocompatibility complex molecules at the cell surface. In some instances, tumor-
specifi c antibodies can contribute to immune defense against cancer. Unfortunately, 
for many solid tumors (including melanoma), this mechanism is insuffi cient. 
Nevertheless, the search for cancer-neutralizing antibodies continues, similar to, 
e.g., HIV neutralizing antibodies. In this chapter, we focus on the development of T 
cell vaccines, a great challenge but also a promising approach as a new therapy for 
melanoma, other cancers, and intracellular pathogens.  
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   Introduction: Development of T Cell Vaccines 

 Synthetic vaccines are composed of at least two basic components: Antigen and 
adjuvant. A detailed discussion of specifi c antigens has been presented in Chap. 
  11    . There is a relatively large consensus that immune protection against malignant 
disease requires antigen-specifi c (adaptive) immune responses including T cells. 
Some experts argue that stimulation of the innate immune system alone may be 
suffi cient to generate tumor-specifi c immunity, since cancer tissue often produces 
tumor antigen allowing some activation of antigen-specifi c immune responses. 
Therefore, an increasing number of novel immune therapies are developed without 
taking advantage of (synthetic or recombinant) tumor antigens, essentially also 
because this approach simplifi es drug production and application. However, tumor 
cells often produce only low amounts of antigen, which often are not present at the 
optimal location and/or time. Therefore, immune responses triggered by naturally 
expressed antigen may not be suffi ciently timed, strong and/or anatomically 
focused to protect from tumor progression. In addition, immunotherapy without 
antigen often requires high and in part toxic drug doses in contrast to vaccines 
containing synthetic antigens that can have powerful effects already at low doses. 
For these reasons, we propose that synthetic cancer vaccines should include tumor 
antigens. 

 The second essential vaccine component is the so-called immunological “adju-
vant”. Adjuvants are immune stimulating agents which typically provide innate 
immune activation. They are important because immune responses remain poor 
when antigens are administered alone. For many years, adjuvants have been devel-
oped empirically, without signifi cant progress in the understanding of their molecu-
lar nature and mechanisms of action. The discovery of dendritic cells (DC), and of 
their central role to link innate with adaptive immune responses, was key for prog-
ress. Besides regulating central mechanisms of the innate immune system, DCs are 
the most effective antigen-presenting cells for enabling antigen-specifi c T and B 
cell responses. But how are they put into action? Only about 15 years ago it was 
discovered that DCs become activated due to triggering of their pathogen recogni-
tion receptors (PRR). These receptors typically enable the innate immune system to 
sense microbes, but host-derived “stress” ligands also can be recognized. The best-
characterized family of PRRs is the Toll-like receptors (TLRs) that bind microbial 
products  [  15,   48,   60,   144  ] . 

 Four major criteria that adjuvants may need to fulfi ll for optimal promotion of T 
cell responses are:

   To promote vaccine depot formation at the site of injection  • 
  To promote antigen uptake by DCs  • 
  To promote DC migration to lymph nodes  • 
  To induce DC activation, such that they upregulate major histocompatibility • 
complex (MHC) and present antigens, express costimulatory and adhesion mol-
ecules, and produce cytokines.    
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 Through these mechanisms, DCs produce Th1-type immune activators (e.g., 
IL-12 and type I IFNs), resulting in CD4 +  and CD8 +  T cell responses. 

 Based on these theoretical considerations, vaccine development is performed in 
preclinical studies, followed by clinical trials. Preclinical experiments include ani-
mal studies, because immune responses and tumor immune defense can only par-
tially be simulated in vitro. The complex nature of the whole organism can generate 
surprises; predictions based on preclinical studies remain imprecise. After careful 
consideration, novel vaccine components are introduced in the clinic, whereby 
fi rst-in-human applications are done in the context of clinical phase I trials. These 
trials have the purpose to evaluate toxicity and biological/immunological activity. 
The essential principles guiding the current and future development of T cell vac-
cination are summarized as follows:

   For enhanced effi cacy of immunological therapies against cancer and infectious • 
diseases, it is necessary to improve T cell vaccines, such that they activate T cells 
as profoundly as observed in natural immune responses against some viruses.  
  Results from basic research have identifi ed key molecules implied in T cell activa-• 
tion, which progressively become available and can be used as vaccine compo-
nents. However, the number of candidate molecules is rapidly increasing, 
emphasizing the need for selection of the most promising ones for clinical testing.  
  A suitable vaccine component is capable to promote human immune responses. • 
This can be tested in small-scale phase I/II clinical studies, involving small num-
bers of patients and reasonably low costs, providing results rapidly.  
  Clinical research and advanced laboratory techniques are required to precisely • 
determine biological responses to vaccines. Cellular and molecular features can 
be assessed quantitatively and qualitatively.  
  Results from such studies are used to eliminate useless approaches, and to select • 
optimal vaccine components for testing in large phase III clinical studies (with 
100s–1,000s of patients) assessing therapeutic effi cacy.    

 The goal of therapeutic vaccination aimed at inducing specifi c T cell mediated 
immunity is to induce high frequencies of T cells, mainly CD8 +  T cells, a good 
proportion of which should possess the ability to lyse tumor cells and to secrete at 
least IL-2, TNF- a , and IFN- g . In addition, vaccination should also induce a tissue 
homing program in specifi c effector T cells that leads to effi cient migration of T 
cells from the secondary lymphoid organs, where they were primed, to the tumor 
sites via the blood vessel network. Last, but not least, a defi nite proportion of vac-
cine induced T cells should possess memory qualities such as long-term persistence, 
poised to undergo expansion and proliferation upon reexposure to tumor antigen 
and a migratory program similar to that exhibited by naïve T cell precursors and the 
so-called central memory T cells. These ideal attributes of the response are some of 
the hallmarks of protective CD8 T cell responses in the case of intracellular patho-
gens, mainly viruses (Fig.  12.1 ). Clearly, while modern vaccines meet some of these 
criteria, much work remains to accomplish a detailed understanding of the molecu-
lar and cellular interactions required to mount such protective T cell immunity.   
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   Past and Present Melanoma Vaccine Development 

 The fi rst vaccines to be considered for melanoma were based on tumor cells. The 
rationale for these came from animal model experimentation showing that repeated 
vaccination with irradiated tumor cells could elicit solid protective immunity. Large 
phase III clinical trials were conducted over the last three decades, which involved 

  Fig. 12.1    Robust lymphocyte expansion and differentiation during a primary CD8 +  T cell response 
to an acute viral infection, a paradigm of a protective MHC-I-restricted T cell response. ( a ) Naive 
CD8 +  precursor cells exist in the peripheral mature immune system at very low frequencies. During 
priming, activated dendritic cells carry viral antigen to draining lymph nodes and interact with 
naïve antigen-specifi c CD8 +  T cell precursors. Upon a productive interaction, T cells are activated 
and undergo rapid expansion involving one to two cell divisions per day, during the fi rst week post 
infection. Coupled to cell division, CD8 +  T cells acquire effector functions including lytic granules 
fi lled with perforin and granzymes and the ability to secrete several effector cytokines. A large 
number of effector cells is thus rapidly generated. At some point, a relatively small fraction of 
responding CD8 +  T cells differentiate into memory cells. These processes are regulated by signal-
ing pathways such as mTOR and Wnt/TCF-1 downstream of TCR and costimulatory receptors and 
by several transcription factors and microRNAs (for review cfr  [  30  ] ). ( b ) Schematic representation 
of the kinetics of viral antigen load during an acute viral infection in a mouse model and the expan-
sion of viral antigen-specifi c CD8 T cells. Antigen increases as a result of rapid viral replication; 
in parallel, viral antigen-specifi c CD8 +  T cell numbers increase with a lag time of a few days. As 
the latter reach the peak expansion, viral antigen load decreases sharply. As viral infection subsides 
due to massive elimination of viral infected cells by specifi c CD8 effector T cells, the latter undergo 
massive attrition by activation induced cell death. A relatively small population of viral antigen-
specifi c CD8 +  T cells persists for long periods of time, which represents the memory pool. Please 
note that protective effector T cells typically secrete one or more cytokines, mainly IFN- g , TNF- a , 
and IL-2. Double and triple cytokine producers are deemed multifunctional T cells and their pres-
ence often correlates with protection (adapted from Yi et al.  [  166  ] )       
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several thousand metastatic melanoma patients worldwide. Subsequently, progress 
in the understanding of T cell recognition of antigen led to the design of a whole new 
generation of vaccines based on the use of defi ned antigens. Since then, the fi eld has 
focused on the testing of a large variety of antigen delivery systems for vaccination. 
Some lead candidates are today undergoing advanced phase clinical trial testing. 

   Cell Based Vaccines 

 An allogeneic cancer vaccine (Canvaxin™) developed from three melanoma cell 
lines, expressing at least 20 T cell defi ned tumor antigens, has been extensively 
tested in melanoma patients. In large trials involving 1,166 patients with stage III 
melanoma and 496 patients with resected stage IV melanoma, patients were ran-
domized to Canvaxin™ plus BCG or placebo plus BCG after surgery. Matched pair 
analyses on patients who had received this vaccine after melanoma metastasis resec-
tion suggested effi cacy and important survival benefi t  [  57  ] . However, the two trials 
were prematurely terminated after the interim analysis suggested lack of clinical 
benefi t  [  92  ] . Follow up in fact suggested a median survival in the vaccine arm shorter 
than in the placebo control group  [  38  ] . 

 Another allogeneic melanoma vaccine reached the phase III testing in adjuvant 
high risk for recurrence melanoma. The vaccine consists of cell lysates (Melacine ® ) 
of two cell lines derived from metastases from two different patients. It is coadmin-
istered with an immunologic adjuvant, DETOX composed of monophosphoryl lipid 
A and mycobacterial (BCG) cell wall skeleton in an oil-in-water emulsion. The pep-
tidoglycan in this adjuvant contains the NOD-2 agonist muramyl dipeptide. A phase 
II trial in 22 patients with metastatic melanoma suggested a 6% objective tumor 
response rate with some durable complete responses  [  90  ] . On the basis of these 
results, the Canadian authorities approved its use. Induction of tumor lysate specifi c 
cell mediated immunity was observed in a signifi cant proportion of patients that cor-
related with clinical effi cacy. Similar results were reported using autologous tumor 
cell lysates as vaccines in combination with the same DETOX adjuvant  [  42  ] . 

 Melacine ®  vaccination in conjunction with IFN- a  showed encouraging results 
which led to the initiation of a phase III trial to measure the clinical effi cacy of this 
combined immunotherapy. The adjuvant trial of the Melacine ®  vaccine in stage II 
patients showed no benefi t for the total study population  [  133  ] . Of interest, however, 
a signifi cant clinical benefi t was measured in the subset of patients expressing HLA-
A2 and/or Cw3  [  134  ] . These results remain to be confi rmed in prospective studies 
with appropriately selected patients.  

   Gangliosides 

 The ganglioside GM2 is a serologically defi ned melanoma antigen which possesses 
strong immunogenicity. Administration of GM2 in combination with BCG induced 
specifi c IgM antibodies in the majority of patients which reportedly were correlated 
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with improved recurrence-free survival and overall survival in stage III melanoma 
patients  [  82  ] . Multiple GM2 vaccine formulations were screened and a commercial 
preparation consisting of GM2 coupled to the multimeric protein keyhole limpet 
hemocyanin (KLH), a potent primary antigen, combined with QS-21 a saponin 
based adjuvant (GMK vaccine, Progenic Pharmaceuticals) was chosen for testing of 
clinical effi cacy. Such vaccine formulation induced GM2-specifi c antibody 
responses in the majority of patients, even of the IgG type  [  25  ] . A large phase III 
study in stage II melanoma was performed in Europe to determine the effi cacy of 
subcutaneous administration of GM2 conjugated to KLH compared to an observa-
tion group. Upon a median follow up of 1.8 years it was concluded that the adjuvant 
vaccination was ineffective and could even be detrimental in stage II melanoma 
patients  [  39  ] . Similar results were obtained in a trial including 880 patients with 
stage IIb-III melanoma randomized to high dose interferon therapy and the GM2-
KLH conjugate vaccine  [  66  ] . Indeed, the trial was closed after the interim analysis 
indicated inferiority of GMK compared to high dose IFN in terms of both relapse-
free survival and overall survival. Another phase III trial including 1,300 patients at 
immediate risk of recurrence randomized after surgery to vaccine or standard of 
care was also closed after the interim analysis revealed that the GMK vaccine failed 
to show effectiveness in terms of relapse-free survival over observation. Thus, the 
negative results impeded to measure in both of these large trials the impact of the 
vaccine on survival.  

   Peptide and Recombinant Protein Vaccines 

 Numerous vaccines based on synthetic peptides representing exact MHC class I 
molecule restricted epitopes have been tested in early phase clinical trials in patients 
with metastatic melanoma. Peptides have enormous advantages such as the possi-
bility to rigorously defi ne them as highly purifi ed compounds at relatively low cost 
and to perform in depth monitoring of the specifi c T cell response. However, signifi -
cant disadvantages are their intrinsic poor immunogenicity, the restricted popula-
tion of melanoma patients eligible for vaccination and the narrow targeting which 
may cause selection of tumor escape variants. Defi ned peptide vaccines tried in 
melanoma have been exhaustively reviewed in the recent past  [  118,   120  ] . In gen-
eral, peptides derived from both melanoma differentiation and cancer testis antigens 
have been extensively tested in conjunction with various defi ned adjuvants or loaded 
onto autologous dendritic cells. Peptide vaccine-specifi c T cell responses have been 
detected in most vaccinated patients albeit it generally required a step of short 
expansion in in vitro culture. A prominent exception is the response to the HLA-A2 
restricted Melan-A/MART-1 

26-35 A27L
  peptide analog when administered as an emul-

sion in mineral oil (Montanide ISA51)  [  79  ] . Remarkably, we could show that addi-
tion of a TLR-9 agonist to the emulsion containing the vaccinating peptide converted 
the vaccine into the most potent peptide vaccine formulation known to date  [  140  ] . 
Indeed, specifi c ex vivo detectable T cell responses were apparent in all vaccinated 
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patients after two or more immunizations. The mean frequency of HLA-A2/
Melan-A/MART-1 

26-35 A27L
  tetramer +  CD8 +  T cells was around 0.5% which progres-

sively differentiated to effector memory T cells with enhanced lytic capacity upon 
repeated vaccination. It was interesting to fi nd that the use of such potent adjuvant 
formulation conferred strong immunogenicity to the wild type Melan-A/MART-1 
peptide  [  138  ] . In this case, the frequencies of peptide specifi c CD8 +  T cells were 
two folds lower than those induced by the enhanced peptide analog. However, on a 
per cell basis, specifi c CD8 +  T cells induced by vaccination with the wild type pep-
tide were of a higher quality. They produced more IFN- g  in response to antigen and 
practically all cells recruited to the response had strong tumor reactivity and lytic 
activity. In contrast, close to 40% of those induced by enhanced peptide analog were 
poorly tumor reactive  [  138  ] . 

 Another extensively tested peptide in vaccination trials has been the gp100 
209-217 

210M
 . This is also an enhanced peptide analog. Large trials have used this peptide 

emulsifi ed in mineral oil based adjuvant ISA51. It has been found that repeated 
immunization can result in the induction of large specifi c T cell responses which 
nevertheless do not seem to translate into clinical benefi t  [  119  ] . As with the 
Melan-A/MART-1 peptide vaccination studies mentioned above, the cross-reactiv-
ity of peptide analog-induced CD8 T cells with the naturally processed and pre-
sented gp100 tumor antigen in tumor cells is limited and only a fraction of tetramer +  
cells are able to recognize and lyse gp100 +  HLA-A2 +  tumor cells. A randomized 
phase II trial showed that immunization with the peptide emulsion every 3 weeks 
induced frequencies of specifi c T cells that were no different from those induced on 
a biweekly vaccination schedule  [  132  ] . In this case, robust memory specifi c CD8 +  
T cell responses were recorded  [  153  ] . This peptide vaccine has also been tested for 
clinical effi cacy in large randomized phase III trials. In one case, it was part of the 
pivotal study testing the antihuman CTLA-4 mAb ipilimumab. It was shown that 
the vaccine arm alone conferred no overall survival benefi t while the anti-CTLA-4 
alone or in combination with the gp100 peptide vaccine did double the median 
overall survival time in metastatic melanoma  [  56  ] . On the basis of these results, 
anti-CTLA-4 (ipilimumab, Yervoy ® ) treatment was approved by the FDA on March 
25th 2011 for the indication of advanced metastatic melanoma. In the other case, 
statistically signifi cant extension of progression free survival and response rate 
were reported for the gp100 vaccine when combined with high dose IL-2 adminis-
tration following vaccination  [  125  ] . It is intriguing that high dose IL-2 but not 
CTLA-4 blockade appears to confer some measure of clinical effi cacy to the pep-
tide vaccine. Future studies will address the many issues raised by these 
observations. 

 A way to overcome the narrow target population imposed by MHC restriction 
would be to combine various peptides, derived from various tumor antigens and 
restricted by various MHC class I and class II alleles, in the same vaccine formula-
tion. This has been demonstrated to be feasible in multiple independent studies  [  28, 
  54,   112,   149  ] . In vivo competition for binding to the same MHC allelic product does 
not seem to be a limiting factor  [  9  ] , even when a relatively large number of peptides 
is put together in the same emulsion for subcutaneous injections  [  128  ] . 
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 Heat shock proteins (hsp), particularly the hsp gp96 one, may possess intrinsic 
immunogenicity and carry tumor petides even after the purifi cation procedure. The 
concept that these proteins may represent tumor vaccines has been tested in mela-
noma and the phase I/II clinical study could demonstrate elicitation of melanoma 
antigen-specifi c CD8 T cell responses in about half of immunized patients  [  10  ] . 
While there have been encouraging tumor responses, pursuing this approach is labor 
intensive and diffi cult to standardize as it involves the biochemical isolation of 
autologous tumor hsp gp96. 

 Two recombinant full-length proteins, MAGE-A3 and NY-ESO-1, have been 
successfully tested in the clinic. The recombinant MAGE-A3 protein is produced 
as a fusion with the lipoprotein D derived from  Haemophilus infl uenza  at its 
N-terminus and a polyhistidine tag on the C-terminus. The initial clinical study 
with this protein in patients with metastatic melanoma showed induction of spe-
cifi c immune responses in some patients and, importantly, encouraging clinical 
activity  [  73  ] . More recently, a randomized phase II clinical trial was performed to 
establish the relative effi cacy of the adjuvant in which the recombinant MAGE-A3 
fusion protein was formulated. Patients in one arm received an adjuvant containing 
the TLR-4 agonist monophosphoryl lipid A, the saponin QS21 and oil-in-water 
emulsion. Patients in the second arm received the same adjuvant components sup-
plemented with liposomes containing CpG-ODNs that are TLR-9 agonists. The 
latter adjuvant mixture proved to be more potent both in terms of elicited immune 
responses and of clinical benefi t  [  72  ] . A pivotal phase III trial is now underway 
(DERMA) sponsored by GlaxoSmithKline Bio to measure the clinical effi cacy of 
recombinant MAGE-A3 with the complex adjuvant formulation (AS15™). This 
trial is recruiting in parallel with another pivotal phase III trial in patients with 
locally advanced non-small cell lung carcinoma patients bearing tumors that 
express the targeted tumor antigen. It should possible to have these decisive results 
available by approximately 2013. 

 The second recombinant protein is NY-ESO-1 produced in bacteria and spon-
sored jointly by the Ludwig Institute for Cancer Research and the Cancer Research 
Institute. This is a 180 amino acid long polypeptide which has turned out to be one 
of the most immunogenic of all the tumor antigens characterized thus far, and cer-
tainly, of those in the category of cancer testis antigens  [  50  ] . Melanoma patients 
have been vaccinated with this protein in conjunction with various adjuvants includ-
ing adjuvanted nanoparticles (ISCOMatrix ®   [  34,   98  ] ), emulsifi ed in the mineral oil 
based adjuvant ISA51 together with CpG-ODNs  [  150  ] , covalently linked to choles-
teryl-pullulan  [  62,   148  ] , or injected intradermally at sites preconditioned by topical 
application of imiquimod  [  3  ] . 

 Full-length proteins have the potential to provide multiple epitopes for T cell 
recognition, thus alleviating the MHC restriction of antigen recognition. One draw-
back, however, is the bias towards MHC class II antigen presentation and, con-
versely, poor presentation of MHC class I restricted antigens, due to the default 
delivery of proteins to the endocytic compartment. In this regard, long synthetic 
peptides (LSPs) may offer a more balanced presentation of antigens for both CD8 
and CD4 T cells. Consensus is building that the optimal length of LSPs may be 
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around 25–30 amino acids. The approach to cancer vaccination with LSPs has 
been tested in the clinics in women with HPV-16 vulvar intraepithelial neoplasia. 
In this trial, a tumor response rate of 50% was observed that correlated with the 
elicitation of broad systemic peptide specifi c T cell immunity  [  65  ] . Immunization 
with a 14 amino acid long peptide from the NY-ESO-1 antigen, emulsifi ed in min-
eral oil, elicited both CD4 +  and CD8 +  T cell responses in the majority of ovarian 
carcinoma patients included in the study  [  102  ] . Similar studies are being conducted 
in patients with metastatic melanoma in the context of the Cancer Vaccine 
Collaborative consortium.  

   Dendritic Cell-Based Vaccines 

 Many of the concepts of therapeutic vaccines based on dendritic cells have been 
tested in patients with advanced metastatic melanoma. One of the fi rst trials to be 
published included 16 melanoma patients vaccinated with monocyte-derived den-
dritic cells loaded with peptides and KLH  [  96  ] . The reported clinical benefi t was 
encouraging and prompted a randomized phase III clinical study that compared this 
vaccine to chemotherapy with dacarbazine (DTIC) in a total of 108 melanoma 
patients. Despite the initial promise, the autologous peptide pulsed DC vaccination 
did not show superiority to the DTIC treatment  [  123  ] . 

 DC can be loaded ex vivo with either peptides  [  124  ] , as in these prototypic trials, 
recombinant proteins  [  44  ] , or transduced with recombinant viruses, such as adeno-
virus  [  21  ] , or even with mRNA by electroporation  [  17  ] . In one interesting phase I 
study, the Melan-A/MART-1 antigenic peptide was pulsed onto autologous periph-
eral blood mononuclear cells (PBMCs) and administered together with IL-12. 
Encouraging immunological and clinical results were reported  [  107  ] . It might be 
speculated that the low frequency circulating dendritic cells present in the PBLs 
were the active antigen presenting cells in the cell mixture. One of the parameters 
that are thought to be central to the success of DC-based vaccines is the type of DCs, 
as well as their state of differentiation  [  2  ] . In this regard, while CD34-derived DCs 
supplemented with IFN- a  and loaded with melanoma antigenic peptides were 
deemed to be superior to the monocyte-derived DCs, the results of a carefully ana-
lyzed phase I trial including 22 advanced melanoma patients led to the conclusion 
that more knowledge is required about the appropriate DC to be used in the clinic 
 [  8  ] . A more recent study compared the immunogenicity of peptide loaded mono-
cyte-derived DCs to that of Langerhans DC (LC), and again could not conclude on 
the superiority of either cell type  [  117  ] . 

 Other studies have compared the immunological effi cacy of monocyte-derived 
DCs (moDC) loaded with peptides to that of the same peptides administered in 
water-in-oil emulsions. The results showed that multiple peptides administered in 
the emulsion together with GM-CSF appeared superior to the same peptides loaded 
onto autologous moDCs  [  129  ] . A major issue when using DCs as vaccines is their 
relatively poor migration to the draining lymph nodes as well as their limited survival 
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at the injection sites  [  152  ] . A mechanistic study conducted in a mouse model casts 
doubt on the ability of ex vivo prepared DCs to directly present antigen when used 
as vaccine and indicates that transfer of antigen to an endogenous antigen presenting 
cell is required  [  165  ] . Thus, alternative approaches to ex vivo generation of DCs may 
be advantageous. One possibility that is gaining favor is the use of antibodies directed 
against molecules selectively expressed on the surface of DCs to target antigens 
directly in vivo  [  16,   143  ] .  

   Recombinant Vector-Based Vaccines 

 Numerous recombinant viral vectors have been tried in patients with advanced meta-
static melanoma. The antigens delivered have included single minigenes encoding 
exact MHC-I restricted T cell epitopes, strings of epitopes, or full-length tumor 
antigens. Induction of specifi c T cell immunity has been documented and even, in 
some cases, favorable clinical outcomes after vaccination with viral vectors such as 
modifi ed vaccinia Ankara (MVA), canary pox, fowl pox, and adenovirus  [  1,   59,   83, 
  109,   130,   135,   151  ] . 

 Generally, viral vectors, in contrast to proteins, are effi cient inducers of MHC-I 
restricted CD8 T cell immunity because they can infect cells and replicate to various 
extents depending upon the degree of attenuation. In this regard, such vectors are 
desired for the purpose of therapeutic vaccination against cancer. However, safety 
considerations usually require that vectors cannot be replicative or are highly atten-
uated. This is detrimental to their capacity to induce robust CD8 T cell immunity, 
although attenuation does not completely abrogate this property. Another, perhaps 
more important, drawback of most viral vectors is the immunodominance of viral 
antigens that may outcompete the recruitment and expansion of T cells specifi c for 
the insert encoding the tumor-associated antigen. This has been clearly shown to be 
the case of the STEP trial using recombinant adenovirus to induce anti-HIV thera-
peutic immunity and it has been clearly documented in the case of recombinant 
vaccinia carrying a string of MHC-I restricted melanoma associated epitopes  [  87, 
  131  ] . Thus, the choice of appropriate recombinant viral vector is a tradeoff between 
attenuation, intrinsic vector backbone immunogenicity, and antigen to be delivered. 
Moreover, prime and boost regimens with two different vectors may minimize neu-
tralization by specifi c antiviral antibodies and therefore contribute to effi cient anti-
tumor vaccination  [  59,   80,   105,   115  ] . 

 A few bacterial vectors are also at different stages of preclinical or even clinical 
development for the immunotherapy of cancer, particularly of melanoma.  Listeria 
monocytogenes  is one that has been extensively characterized as a vector capable 
of inducing strong antigen-specifi c CD8 T cell responses in mouse models and is 
under development for use in humans  [  163  ] . The type III secretion system in 
various gram negative bacteria such as  Salmonella   [  122,   169  ]  or  Pseudomonas 
aeruginosa   [  40  ]  are also being used successfully to deliver recombinant antigens 
to antigen presenting cells.  
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   Nucleic Acid-Based Vaccines 

 Naked DNA has been extensively used for vaccination. Major advantages are the 
possibility to isolate and produce relatively large quantities of cDNA in expression 
plasmids, the feasibility to produce this material in GMP grade and the good safety 
record in preclinical settings as well as in humans. However, the results obtained so 
far in many different vaccine contexts show that DNA vaccines are weakly immu-
nogenic. Repeated immunization with DNA plasmid leads to only weak specifi c 
antibody and T cell responses, although these can be effi ciently boosted by other 
antigen delivery systems. This has been the case for the DNA vaccines tested thus 
far in early phase clinical trials of patients with metastatic melanoma. They have 
included plasmids encoding melanoma associated antigens such as tyrosinase  [  161  ] , 
human gp100  [  24  ] , xenogeneic gp100  [  49  ] , or strings of DNA encoding defi ned 
epitopes recognized by tumor reactive CD8 T cells  [  32,   113  ] . 

 It is also interesting that mRNAs stabilized with protamine and encoding several 
melanoma associated antigens have been injected directly via the intradermal route 
to 21 metastatic melanoma patients. Induction of specifi c T cell responses and even 
some evidence of clinical effi cacy were reported for some of the patients included 
in that study  [  155  ] . Several other trials have tested the approach of ex vivo transduc-
tion of autologous monocyte-derived dendritic cells with either total tumor mRNA 
 [  75,   84  ]  or mRNAs encoding defi ned tumor antigens  [  51,   88  ] . In both approaches, 
mRNAs ensure transient expression of the desired antigens, approximately 2–4 
days. A great deal of effort has gone into their optimization for enhanced in vitro 
and in vivo stability as well as their ability to direct expression of antigen in the 
appropriate antigen processing and presentation compartments  [  71,   74  ] .   

   Immunological Tolerance 

 Some tumor antigens are derived from mutated genes. Antigen-specifi c T cells often 
respond effi ciently to such antigens, since these are neoantigens to which immuno-
logical tolerance is not readily established. However, these antigens are patient-
specifi c, meaning that vaccines would need to be produced individually for each 
patient, which is rarely possible. In contrast, tumors from different patients and dif-
ferent histotypes often share antigens. These antigens are usually “self,” with the 
consequence of some degree of immune tolerance. Thymic selection results in T 
cell repertoires that are partially defi cient of TCRs with high affi nity to self-molecules. 
Consequently, T cells to self-antigens are less reactive and relatively rare. Moreover, 
mechanisms of peripheral tolerance further compromise T cell function  [  43,   76, 
  101,   157,   159,   160  ] . There are profound defi cits in functions of tumor antigen-spe-
cifi c T cells in metastatic lesions  [  170  ] . The reasons for this are probably numerous, 
and are only briefl y mentioned here. We distinguish cell intrinsic and cell extrinsic 
mechanisms of T cell tolerance or anergy. T cell intrinsic anergy is due to various 
mechanisms, associated with expression of Egr-2, Egr-3, and Grail  [  157  ] , but the 
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regulation of T cell anergy still requires further elucidation. Multiple T cell extrinsic 
mechanisms are also involved. Most cells of the body, including tumor cells, are 
defi cient in costimulatory molecules, with the result of insuffi cient T cell stimula-
tion. In turn, ligands for inhibitory T cell receptors (TCRs) are frequently expressed 
in tumor tissue, with functional impact on T cell mediated immune defense  [  35,   37, 
  45,   108,   147  ] . Furthermore, the microenvironment of malignant tissue is immune 
suppressive, due to tumor-associated macrophages  [  94  ] , myeloid-derived suppres-
sor cells  [  19,   46,   103  ] , plasmacytoid DCs  [  85  ] , and immature myeloid-derived den-
dritic cells  [  11  ] . In animal models, it has been found that T cell function is reduced 
already early during disease development  [  142  ] . Thus, although self-tolerance and 
suppressive mechanisms are mostly evident in individuals with large tumor burden, 
they may be functional already much earlier. 

 Defi cient T cell function in malignant disease may have similarities to T cells in 
chronic infection. Therefore, animal models of infectious diseases are investigated 
to study T cell mediated immunity. Microbes causing acute infections are often 
eliminated by T cells. However, when viruses persist at high copy numbers and for 
several months, T cells are exhausted and eventually deleted. Thus, prolonged infec-
tion is associated with functional T cell defi cits. The underlying mechanisms have 
been carefully studied in the murine model of infection with lymphocytic chorio-
meningitis virus (LCMV). During prolonged infection, T cells progressively lose 
the capacity to produce IL-2, TNF- a , IFN- g , and fi nally cytotoxicity  [  156,   157  ] . 
Thus, T cells become progressively exhausted, and may eventually even undergo 
apoptosis. However, in malignant disease, T cell exhaustion is often not evident. 
Although it may occur in some instances  [  68  ] , circulating T cells in cancer patients 
are often functionally competent  [  141,   170  ] . Defi cits in cytokine production are 
observed among T cells from metastases, but the reasons remain poorly understood. 
Therefore, it is necessary to further elucidate whether cellular and molecular fea-
tures of T cell exhaustion are frequent in cancer, or whether low T cell activity in 
malignant disease is more prominently explained by mechanisms of T cell anergy 
and self-tolerance. 

 There exist several strategies to improve T cell function against cancer. One 
approach is to combine vaccination with agents that modulate T cell responses. The 
elucidation of questions on T cell exhaustion, anergy, and self-tolerance is impor-
tant, in order to fi nd the most promising molecular pathways that can be targeted for 
cancer therapy. Various approaches, such as CTLA-4 blockade or PD-1 blockade, 
neutralization of IL-10  [  20  ] , or of STAT3, are described elsewhere in this book.  

   Analysis of Cancer Specifi c T Cell Responses, 
and Correlates of T Cell Mediated Protection from Disease 

 T cells are highly “sensitive detectors” of immune stimulation. Upon natural infec-
tion with a virus, antigen-specifi c naïve T cells proliferate during the fi rst 1–2 
weeks to reach high T cell frequencies, with up to 10 5 -fold expansion  [  22,   93  ]  thus, 
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exceeding the proliferative potential of most other cells in the body. In contrast, 
ineffective T cell triggering leads to much lower numbers of T cells, which are less 
likely to protect from disease  [  104  ] . Besides these quantitative aspects, the quality 
of T cell responses is likely important. For example, recent data suggest that T cell 
responses should include both effector and memory T cells  [  111  ] . Therefore, novel 
immune therapies should elicit substantial numbers of T cells, and profoundly 
impact on T cell differentiation such that effector cells become capable of destroy-
ing tumor cells, and lead to memory cells to assure long-term maintenance of 
responses. 

 Despite considerable efforts to date, T cell vaccination is still in an early phase 
of development. Unfortunately, only little therapeutic effect has yet been achieved with 
the available vaccines. To provide more information on the effects of experimental 
vaccination in early phase clinical trials, these studies are progressively exploited to 
investigate human immune responses in great detail. One of the aims is to determine 
whether those mechanisms that were established in basic models are actually func-
tional in humans. This is much easier said than done. For example, dendritic cells 
(DCs) are diffi cult to assess, because they are infrequent, and it remains very diffi -
cult to trace activated DCs in vivo. Hopefully, future technologies will enable to 
identify DCs from individual patients, to characterize how they react to various 
stimuli, and how they subsequently impact on immune responses. By contrast, a 
fi eld where great progress has already been made is for investigation of T cell 
responses in patients. 

   Assessment of T Cell Responses 

 Antigen-specifi c T cells can be detected based on TCR mediated binding to pep-
tide–MHC (pMHC), or on cytokine production after short (4–6 h) triggering with 
antigen  [  6,   61,   63,   69  ] . For the former, the invention of fl uorescent pMHC mul-
timers  [  6  ]  (formerly called tetramers) has opened a wide array of opportunities, 
i.e., to quantify T cells, to characterize their function, and to molecularly dissect 
cellular features down to the single cell level, as discussed in more detail below. 
A major disadvantage of pMHC multimers is that one can only identify T cells 
specifi c for known epitopes. Short-term (4–6 h) triggering of T cells reveals pre-
viously primed but not naïve T cells that can be detected either by fl ow cytometry 
(upon intracellular cytokine staining) or by Elispot assay  [  31,   61  ] . These tech-
niques have the advantage that they detect T cells specifi c for known and unknown 
epitopes. However, one can only detect those T cells that have functional proper-
ties corresponding to the reagents used (e.g., anti-IFN- g , anti-TNF- a , or anti-
interleukin antibodies). Inhibitory T cells (e.g., Treg) or T cells producing other 
factors (e.g., inhibitory cytokines) are rarely detected. Inhibitory cells are more 
frequent among CD4 +  T cells. Unfortunately, the progress with pMHC multimers 
is much less advanced for the detection of CD4 +  T cells, a defi cit that one 
needs to overcome for more comprehensive identifi cation of activating and 
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inhibitory T cell functions, and qualitative characterization (polarization) of T 
cell responses. 

 T cells with many different specifi cities can be analyzed simultaneously. 
Innovative assays use ten or more multimers, each labeled with different color com-
binations  [  52,   97  ] . They take advantage of novel fl uorochromes and quantum dots, 
and multi-parameter fl ow cytometry. The approach can be further exploited by com-
bining with phenotypic and functional analysis, enabling more comprehensive 
quantitative and qualitative assessment of a spectrum of antigen-specifi c T cells. 
The large amount of data provided with multi-parameter assays may also be ana-
lyzed and interpreted by specialized statistical tools, including new unsupervised 
analyses comparable to approaches developed for gene microarray studies. 

 High assay quality becomes increasingly important given the complexity and 
high precision requirements of sophisticated assays. Assay development generally 
has at least two phases, i.e., optimization and validation. Careful optimization may 
lead to useful results. Subsequently, the optimized assays require validation, which 
consists of the assessment of (1) precision (reproducibility, coeffi cient of variation), 
(2) accuracy or comparison with reference methods, and (3) robustness, i.e., the 
study of variations introduced by, e.g., different (batches of) reagents, different cen-
ters, etc. In case validation is not satisfactory, one needs to go back to further opti-
mize the assay. 

 With the use of peptide MHC-I multimers, one can directly characterize pheno-
type and function of single antigen-specifi c T cells. The current limit of detection of 
specifi c cell populations using MHC-I multimers is approximately 0.01% of anti-
gen-specifi c T cells. Less frequent populations cannot be detected ex vivo. The 
strategy to analyze T cells directly ex vivo enables immediate quantifi cation of T 
cell numbers. Moreover, direct ex vivo analysis of phenotype and function allows 
concluding on T cell function in vivo. Finally, gene expression analysis can be done 
with T cells sorted directly ex vivo with pMHC multimers. With this approach, T 
cell responses can be dissected in great detail  [  7,   64,   110,   121,   136  ] . 

 Many strategies require to culture T cells in vitro for one or several weeks, which 
introduces artifacts. Unfortunately, results are often overinterpreted. Nevertheless, 
in vitro cultured cells usually enable to distinguish presence from absence of T cell 
responses. Quantitative assessment of antigen-specifi c T cell numbers, however, are 
only possible when calculations are based on so-called “limiting dilution” cultures 
 [  145  ] , which is rarely done. Analysis of limiting dilution cultures may be performed 
with multimers or by functional assays. 

 Particularly during acute disease phases, T cell function is highly dynamic. After 
priming or boosting, the fi rst few days are characterized by extraordinary strong T 
cell proliferation, which is often followed by a steep decline of immune responses. 
Such acute T cell responses are better understood as opposed to T cells in chronic 
disease and cancer, which is perhaps one reason why it is frequently argued that 
effector T cell responses are short-lived. Indeed, in case of pathogen elimination, 
most T cells die and only a small number of memory T cells can persist. They are 
long-lived and proliferate at very low rates. In contrast, in malignant disease or 
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chronic infl ammation, numbers of T cells are larger, and the majority of them is 
constantly active and proliferates at relatively high rates. 

 As suggested by some studies, advanced patient age may be associated with 
decreased immune competence. It has been argued that T cells become increasingly 
senescent and progressively loose proliferative capacity  [  23,   53,   77,   81,   89,   99, 
  106  ] . Yet, prevention and particularly treatment of intracellular infections or cancer 
requires continued T cell proliferation, emphasizing the need to determine if and 
how T cells are capable for this task at medium and long term. Novel data indicate 
that clonotypic effector T cell populations can actually persist over many years in 
cancer patients, and that these T cells may be frequently and successfully induced, 
boosted, and maintained at high numbers and high effector activity by repetitive 
vaccination  [  58,   137  ] . Even in absence of antigen, CD8 +  T cell clonotypes may not 
only persist as memory, but also as effector cells  [  41,   95,   146  ] . 

 The number of T cell antigens in malignant disease is usually large, with potentially 
hundreds of unknown epitopes. Although diffi cult to achieve, it is necessary to assess 
the complete spectrum of antitumor antigen-specifi c T cell responses. Measuring 
cytokine production allows the detection of such T cells, provided that they are trig-
gered with the relevant antigens. Autologous tumor cells are the most comprehen-
sive source of antigens, but they are often not available. Alternatively, whole tumor 
antigenic proteins, and/or large numbers of (overlapping) peptides can be used. 

 An alternative strategy to identify reactive T cells is by staining for early activa-
tion membrane markers, expressed upon challenge in vitro with the antigen, e.g., 
sets of overlapping peptides. It has been proposed that the expression of CD154 on 
CD4 +  T cells  [  26  ]  and of CD137 on CD8 +  T cells  [  154,   162  ]  reliably reveal the 
majority of specifi c T cells in short-term stimulation assays (6–20 h). Major advan-
tages of this assay format are the ability to simultaneously detect CD4 +  and CD8 +  T 
cell responses, the independence from previous knowledge of MHC restriction and/
or identity of the antigenic peptides and the ability to isolate responding viable cells 
by cell sorting.  

   Correlates of T Cell Mediated Protection from Disease 

 What are the most prominent biological features of T cells that correlate with 
protection? Many animal studies have allowed progress, but further knowledge is 
needed to fully characterize protective T cells, especially in humans. In infectious 
diseases, several T cell criteria have been established as correlates of protection. 
First, the capacity of T cells to effi ciently interact with cognate antigen  [  4,   12,   36, 
  47,   86,   126,   139,   164,   167  ] , a property which is often termed as “functional avidity” 
and which is controlled by TCRs and co-receptors. Functional avidity correlates 
with the capacity of T cells to recognize naturally expressed and processed tumor 
antigen  [  70  ] . High avidity CD4 +  T cells would also be critical in determining tumor 
rejection mediated by CD8+ T cells  [  18  ] . However, a survey of oligo- or monoclonal 



222 P. Romero and D.E. Speiser

CD8 +  T cell responses to MAGE-A3 vaccination in melanoma patients who had 
objective tumor regression failed to show high avidity of antigen recognition  [  29  ] . 
Second, a central role is played by the precursor frequency of specifi c T cells  [  91, 
  100  ]   [  116  ] . Finally, protection depends on the functional capacity of T cells, likely 
infl uenced by functional avidity and many more properties, such as effi cient prolif-
eration, T cell survival, homing, effector function, and generation of immunological 
memory  [  7,   67,   158  ] . Recent attempts have focused on direct ex vivo functional 
profi ling of T cells in order to identify multiple T cell functions  [  5,   14,   33,   78,   114  ] . 
Mouse models suggest that for tumor immunity, similar principles may apply as for 
infectious diseases. In the adoptive transfer setting, it is increasingly clear that T 
cells with the ability to persist for prolonged periods of time in vivo correlate with 
clinical effi cacy  [  13,   55,   127,   168  ] . Improvement of immunotherapy may depend on 
careful optimization toward the generation of T cells fulfi lling these criteria.   

   Outlook and Conclusions 

 Cancer vaccines are becoming a clinical reality. The fi rst cancer vaccine to be 
approved by the FDA in 2009 involves the immunization via i.v. with autologous 
PBMCs loaded with the recombinant fusion protein comprising GM-CSF and the 
prostate acid phosphatase as fusion partners. This appears to lead to monocyte dif-
ferentiation into dendritic cells, and has been explored in hormone refractory 
advanced prostate carcinoma patients  [  27  ] . Other promising cancer vaccine candi-
dates are at advanced stages of testing in pivotal phase III randomized and placebo 
controlled clinical trials. Notably, the recombinant MAGE-A3 protein is one of 
them and is in phase III trial in patients with MAGE-A3 +  metastatic melanoma. 

 A very substantial part of the preclinical and clinical work leading to the rapid 
development of cancer vaccines has benefi ted from the unique human “model” that 
cutaneous melanoma has come to be. The experience accumulated thus allows one 
to draw some general conclusions. First, the learning curve for defi ned vaccines 
aimed at inducing tumor antigen-specifi c T cell responses in cancer patients has 
risen continuously during the last 15 years. Today, the success rate in terms of induc-
tion of specifi c T cell immunity nears 80–100%. The success rate in terms of clini-
cal effi cacy is around 5–10% based on conventional clinical response criteria, but 
reach 30–40% if other favorable clinical outcomes, including stable disease, mixed 
responses, and prolonged recurrence-free intervals, are taken into account. This has 
been the case in the several trials in melanoma patients using several different vac-
cine formulations. 

 Despite these modest advances, cancer vaccines will benefi t from additional 
efforts in optimization. Antigen selection, dose, adjuvant composition, dose, route 
of injection, and vaccination schedule are the major parameters that are in need of 
systematic work to fi nd the appropriate conditions for attaining maximal clinical 
activity. Further basic research is needed to understand the mechanisms of optimal 
dendritic cell activation and T cell memory formation in vivo. 
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 A major set of hurdles that appear to limit the clinical effi cacy of vaccine-based 
therapies lie at the level of the suppressive tumor microenvironment. Thus, future 
cancer vaccines likely need to be administered in combination with immunomodula-
tors that can temporarily alleviate the counterregulatory mechanisms operating within 
tumor tissues. The recent demonstration of clinical benefi t and the regulatory approval 
of humanized monoclonal antibody to block the coinhibitory receptor CTLA-4  [  56  ]  is 
a major source of optimism and should provide much needed impetus in the search of 
combinatorial immunotherapies that may effectively curb tumor growth in patients.      
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  Abstract   Adoptive transfer of autologous tumor-reactive T cells as an immunother-
apy for melanoma patients has been evaluated in various forms over the past two 
decades. Major therapeutic successes have emerged recently as methods to improve T 
cell culture techniques, optimize host conditioning, and augment persistence of trans-
ferred T cells have been pursued. A major leap forward occurred when lymphodeplet-
ing regimens were introduced for host conditioning, which liberates availability of 
homeostatic cytokines and depletes regulatory cell populations. Clinical response 
rates of over 50% have been observed in patients eligible for this therapy. Newer 
approaches of transduction of antigen-specifi c TCR or chimeric receptor constructs, 
use of better functionally defi ned T cell clones, and artifi cial antigen-presenting cells 
to expand specifi c T cells from peripheral blood cells are all showing promise. The 
time may be ripe for organizing a multicenter trial to establish the effi cacy of this 
therapy and hopefully elevate it to a standard of care in specialized centers.      

Keywords Melanoma • Adoptive T-cell therapy • Tumor-infi ltrating lymphocyte 
• Interleukin-2 • Chimeric antigen receptor • T-cell receptor transduced 

   Introduction 

 Skin cancer is currently the most frequent type of cancer in the USA, and melanoma 
accounts for the most skin cancer-related deaths  [  1–  3  ] . Treating patients with mela-
noma is dependent upon three major factors: the age of the patient, the general 
health of the patient, and the stage of the disease  [  1–  3  ] . While surgery is the primary 
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treatment for early stages of melanoma, more advanced stages are treated with 
systemic therapies, either in the adjuvant or the metastatic settings  [  1–  3  ] . Dacarbazine 
has been traditionally used for the treatment of metastatic melanoma, and along 
with high-dose Interleukin-2 (IL-2), has represented the only FDA-approved thera-
pies for this disease – until the recent FDA approval of anti-CTLA-4 mAb (ipili-
mumab) and the mutant B-REF inhibitor, PLX4032 in 2011. Dacarbazine and other 
chemotherapy-based regimens have had no major impact in improving overall sur-
vival due to the highly resistant nature of melanoma cells to cytotoxic agents and 
radiation. 

 Owing to the refractoriness of metastatic melanoma to chemotherapy and other 
traditional therapies, immunotherapy using antigen-specifi c vaccines, cytokines, 
and expanded lymphocytes  [  4–  11, 17  ]  has been a major focus of research over the 
last 2 decades. In fact, the fi rst tumor-associated HLA-restricted T cell antigen (from 
MAGE-A1), discovered by Boon and colleagues in the early 1990s, was cloned 
from a melanoma  [  12  ] . 

 The fi rst major form of immunotherapy that was developed for melanoma was 
IL-2  [  11,   13–  15  ] . IL-2 therapy is given in high-dose bolus infusions (600,000–
720,000 IU/kg) intravenously every 8 h, with multiple cycles of these bolus infu-
sions given 3–5 weeks apart. Almost 20 years of clinical history with high-dose 
(HD) IL-2 has found that it induces clinical responses (according to RECIST) in 
10–15% of patients with one or more visceral lesions, while patients with solely 
cutaneous disease typically have a more impressive 50% objective response rate 
 [  16  ] . One remarkable feature, however, of HD IL-2 therapy is that a small number 
of treated patients with visceral metastasis (5–6%) undergo complete disease remis-
sion lasting for many years (>10 years)  [  15,   16  ] . These features have motivated 
continued use of this therapy in a number of oncology centers despite the toxicities 
associated with IL-2, such as capillary leak syndrome  [  11,   13–  15,   18,   19  ] . 

 The success of HD IL-2 therapy prompted researchers initially at the National 
Cancer Institute (NCI) in Bethesda, Maryland (the USA) to combine it with another 
form of therapy called adoptive T cell therapy (ACT)  [  8,   20–  22  ] . Adoptive cell 
therapy (in the context of solid tumor treatment) can simply be defi ned as a passive 
form of immunotherapy that takes autologous peripheral blood or tumor-derived 
lymphocytes from cancer patients and expands these cells ex vivo using a growth 
factor (outside the immunosuppressive host environment) and reinfuses these cells 
into the patient in large numbers. The infused lymphocytes can consist of T cells, 
NK cells, or combinations of T cells and NK cells. During the expansion process, 
methods to boost the frequency of tumor-specifi c cells are sometimes included, 
such as pulsing in tumor antigens during the expansion process, or adding in anti-
gen-presenting cells (APC) expressing a selected tumor antigen to stimulate an 
antigen-specifi c T cell subpopulation  [  4,   23–  25  ] . The most common form of ACT 
now in use for melanoma uses tumor-infi ltrating lymphocytes (TIL) expanded ex 
vivo from small fragments of excised metastatic lesions that are infused intrave-
nously followed by a course of HD IL-2 therapy. This form of ACT has now been 
fi ne-tuned over the years and now consistently leads to objective clinical responses 
in 50% or more of patients  [  7,   26–  28  ] . A number of clinical centers are now endeav-
oring to adopt this methodology with similar success. We are now at the point where 



23513 Adoptive Cell Therapy for the Treatment of Metastatic Melanoma

ACT using expanded TIL has proven itself to be a powerful therapy for metastatic 
melanoma in a number of Phase II clinical trials conducted at the NCI and other 
clinical centers around the World, including the Sheba Cancer Center (Jerusalem, 
Israel)  [  13, 27,   29–  31  ] , and unpublished work conducted at our center in Houston, 
Texas (USA)   .  

 The development of ACT using TIL has also sparked a new era in T cell therapy 
using gene therapy tools that allow activated T cells to be transduced via retroviral and 
lentiviral vectors with TCR genes encoding variable regions with high-affi nity for 
melanoma-associated antigens. T cell therapy using these “TCR-transduced” periph-
eral blood T cells expanded to high numbers has also entered the clinic recently with 
promising results. Together with TCR transduction, another promising technology 
involving combining antibody recognition of cell surface antigens on melanoma cells 
with T cell activating molecules in chimeric antigen receptors (CARs) has also entered 
on to the stage of cell therapy for melanoma. These CAR vectors combine antibody 
recognition domains against key melanoma antigens with endodomains of TCR acti-
vation chains as well as costimulatory molecules  [  32–  38  ] . Clinical testing of CAR-
transduced and expanded peripheral blood T cells is also beginning  [  34,   35,   39–  42  ] . 

   Table 13.1    Advantages and disadvantages of the different adoptive cell therapies for melanoma    

 Expansion of tumor-infi ltrating lymphocytes    (TIL) 
  Advantages  
 • Able to expand antigen specifi c or bulk TIL to billions 
 • Currently the most effi cient treatment for melanoma patients that have failed other fi rst and 

second line therapies 
  Disadvantages  
 • Antigen specifi city of most TIL unknown (many may be nonspecifi c) 
 • TIL cannot be isolated/expanded for all melanoma patients 
 • TIL may be too highly differentiated at time of infusion 
 • TIL persistence in vivo is limited 

 T-cell receptor transduced peripheral blood lymphocytes 
  Advantages  
 • Generation of TCR transduced PBL is relatively effi cient and practical 
 • High-affi nity or very high-avidity antigen-specifi c TCR can be selected or generated and used 

to engineer T cells 
  Disadvantages  
 • Targeting tumor associated antigens (TAA) using high-avidity TCRs can lead to damaging 

normal tissue that express the TAA 
 • Limited antigen recognition compared to TIL 

 Chimeric antigen receptor T lymphocytes 
  Advantages  
 • Expansion of melanoma antigen specifi c T lymphocytes 
 • CAR recognition is independent from MHC antigen presentation 
 • Fusion of costimulatory molecule endodomains (CD28, 4-1BB, OX40) 
  Disadvantages  
 • Expression of transgene for long periods in vivo is limited 
 • Too much costimulation – cytokine storm can occur? 
 • Cross-reactivity with self-antigens on normal tissue may occur 
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 In this chapter, we provide an overview of ACT. Table  13.1  reviews the advan-
tages and disadvantages of the different areas of Adoptive T-cell therapy used for 
melanoma treatment. We then detail the current state-of-the-art in ACT using ex 
vivo expanded TIL together with some of the outstanding technical and biological 
issues that still need to be resolved in the upcoming years. A description of some of 
the new TCR and CAR transduction technologies for ACT is also included. Finally, 
we make a case for why ACT using TIL for melanoma needs to begin to be seri-
ously considered as a mainstream therapy along with the newer and exciting thera-
pies such as monoclonal antibodies against CTLA-4 and targeted inhibitor drugs 
(B-RAF and MEK inhibitors) that have made a meaningful impact recently in the 
clinic  [  43–  50  ] . We suggest that ACT will represent a major therapeutic option, espe-
cially for relapsed patients, and that combination therapies along with ACT may 
provide an even more powerful treatment option. A roadmap is presented by which 
ACT for melanoma can be tested in pivotal Phase II/III clinical trials to establish 
this therapy as a standard treatment modality.  

   History of the Development of ACT for Melanoma 

 A fl owchart tracing the history of ACT development is shown in Fig.  13.1 . The 
origins of modern ACT trace back to 1926 when J.B. Murphy fi rst suggested that 
lymphoid cells had an essential role in rejecting solid tumors that were transplanted 
in animal models  [  51  ] . It was not until 1958, however, that Sir Peter Medawar 
defi ned the term “immunological competent cell” to describe a cell that is “fully 
qualifi ed to undertake an immunological response”  [  51,   52  ] . Before the advent of 
ACT in humans and knowledge of the T cell receptor and T cell and NK subtypes, 
many studies were done using the transfer of immune cells to treat rodent tumors 
 [  51–  53  ] . In the mid-1960s, administering a high number of lymphocytes from 
immunized syngeneic animals, Alexander and colleagues demonstrated that sarco-
mas in rats could be successfully treated  [  11,   53  ] . In 1969, Fefer and colleagues 
demonstrated that the intraperitoneal infusion of lymphocytes with chemotherapy, 
successfully treated mice containing intraperitoneal virus-induced lymphomas  [  11, 
  54  ] . It wasn’t until the mid-1970s that the opportunity to expand antitumor immune 
cells in vitro emerged starting with Eberlein and colleagues who demonstrated that 
immune cells grown with T cell growth factor (IL-2) and injected intravenously in 
mice could eradicate implanted tumors  [  11,   55–  58  ] .  

 In 1982, Grimm and colleagues reported on a new cytolytic cell type that was 
different from the conventional natural killer (NK) system  [  59–  61  ] . This cell, later 
described as the “lymphokine-activated killer” cell (LAK cell), was able to kill fresh 
human tumor cells resistant to NK cells in about 95% of patients  [  59–  61  ] . The LAK 
cells were generated from peripheral blood lymphocytes from cancer patients and 
normal donors by culture in medium with IL-2  [  59–  63  ] . Together with HD IL-2 
infusion, LAK cell infusion was able to induce the regression of melanoma metas-
tases in animal models  [  62–  64  ] . Later, Rosenberg and colleagues at the NCI in 1985 
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demonstrated that LAK cells together with IL-2 had a signifi cant impact on patients 
with advanced cancers in the fi rst serious ACT clinical trials  [  62–  64  ] . In 1987, a 
follow-up study was done that confi rmed that LAK cells plus IL-2 treatment was 
more effective in metastatic melanoma patients than IL-2 alone  [  62–  64  ] . During the 
fi rst NCI clinical trial, melanoma patients received HD IL-2 for 3–5 days, followed 
by the infusion of HD IL-2 together with autologous LAK cells that were previously 
grown ex vivo in IL-2 for 2–4 days  [  62–  64  ] . This treatment yielded about a 21% 
response rate (partial responses mostly according to RECIST) in the treated patients 
that was not much higher than HD IL-2 alone, however  [  62–  64  ] , but nonetheless 
generated interest in the approach. 

 The modest effi cacy observed with LAK cells led investigators to seek out alternative 
cell sources, such as TIL, that had been shown to mediate more effi cient antitumor 
effects than LAK cells  [  85  ] . In 1986, it was demonstrated that TIL from nonimmunized 
mice with melanoma could be productively grown with IL-2 in vitro and partially eradi-
cate established tumors after adoptive transfer  [  11,   26,   31  ] . In 1987, it was demonstrated 
that freshly isolated melanoma TIL could be expanded with IL-2 and display major 
HLA-restricted recognition of the autologous tumor cells  [  57,   65–  68  ] . In a phase II trial, 
metastatic melanoma patients treated with TIL and IL-2 had a response rate of 39%  [  8, 
  69–  71  ] . Then, in 2002, Dudley et al. performed a series of seminal Phase II clinical trials 
in humans combining a preparative lymphodepleting chemotherapy regimen using 
cyclophosphamide and fl udarabine in melanoma patients prior to infusing the TIL and 
HD IL-2  [  69,   72  ] . They showed that this regimen facilitated the clonal repopulation of 
the TIL in vivo and improved the clinical response rate to approximately 50% according 
to RECIST  [  8,   69,   70,   72–  74  ] . The TIL also demonstrated better persistence with lym-
phodepletion prior to infusion  [  8,   69,   70,   72–  74  ] . Since then, the lymphodepletion regi-
men prior to adoptive transfer of T cells has become an essential component of most 
ACT  protocols. It is thought that lymphodepleting regimens eliminate lymphocytes 

  Fig. 13.1    Historical timeline and milestones in the development of modern adoptive-T-cell therapy 
for melanoma          
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that would compete with the infused TIL for homeostatic cytokines, such as 
Interleukin-7 (IL-7) and Interleukin-15 (IL-15)  [  8,   69,   70,   73,   74  ] . Lymphodepletion 
also eliminates endogenous CD4 + Foxp3 +  T regulatory cells (Tregs) that can inhibit 
effector T cell function and the continued proliferation of infused TIL in vivo after adop-
tive transfer  [  75–  77  ] .  

   Current Methods of ACT for Melanoma 

 One major advantage of ACT is the opportunity to select in vitro for the desired 
T-cell functionality, avidity, phenotype, antigen specifi city, and expand the selected 
populations prior to infusion back into the patient  [  7,   9–  11    ] . Lymphodepletion has 
been found to be a critical component for most ACT protocols because, as mentioned 
earlier, it eliminates other cells in vivo that might compete with the infused TIL for 
critical cytokines, such as IL-7 and IL-15  [  7,   8,   10,   11,   69    ] . Lymphodepletion usually 
involves the use of chemotherapy drugs cyclophosphamide and fl udarabine  [  7,   8,   10, 
  11,   69,   74,   78  ] . There are also a number of protocols that involve the use of total body 
irradiation (TBI) in addition to cyclophosphamide and fl udarabine  [  7,   8,   10,   11,   69, 
  74,   78  ] . The major types of ACT for melanoma are shown in Fig.  13.2 . Below, we 
describe these major forms of melanoma ACT in more detail.  

   ACT Using Expanded, “Selected” TIL 

 As mentioned above, a group of seminal Phase II clinical trials at the NCI was the 
fi rst to demonstrate the power of TIL adoptive transfer therapy for metastatic mela-
noma in lymphodepleted patients  [  69,   72  ] . These clinical trials fi rst achieved a 
40–50% clinical response rate with a signifi cant number of patients (about 10%) 
achieving durable long-term complete remissions  [  69,   72  ] . The TIL expansion pro-
tocol used these studies has become known as the “selected” TIL protocol because 
it involved the initial expansion of TIL from melanoma tumors and the testing of 
these cells for antitumor reactivity followed by selection of the reactive TIL lines 
for further large-scale expansion for infusion  [  69,   72  ] . 

 The “selected” TIL protocol is the prototype procedure with which all current 
TIL expansion studies are based with some variations. The procedure has two major 
phases or parts. The initial phase begins with the extraction of the tumor from the 
patient  [  6,   7,   20,   79  ] . The tumor is then cut into 3–5 mm 2  fragments that are placed 
in multiple minicultures (e.g., in wells of a 24-well plate) in culture medium with 
added IL-2 (usually 1,000–6,000 IU/mL). TIL migrate out of these tumor fragments 
and divide for a period of 4–5 weeks with periodic feeding with culture medium and 
IL-2 and subculturing as the cells become confl uent  [  6,   7,   20,   79  ] . In the “selected” 
TIL ACT protocol that has been used mostly over the past decade, after the TIL 
have grown for 4–5 weeks, they are tested for autologous antitumor reactivity or 
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reactivity against HLA-A matched allogeneic melanoma cell lines using an IFN- g  
secretion assay  [  8,   10,   11  ] . TIL lines exhibiting adequate antitumor reactivity are 
then “selected” and subjected to a further large-scale accelerated growth phase that 
has been termed the “rapid expansion protocol” (REP), as originally devised by 
Riddell and colleagues  [  6,   7,   20,   79,   80  ] . This second phase of the TIL culture pro-
cess is a 2-week process in which the TIL are activated using an anti-CD3 monoclo-
nal antibody in the presence of a 200:1 ratio of  g -irradiated peripheral blood 
mononuclear cells that act as “feeders” to support the TIL and provide costimula-
tion  [  6,   7,   20,   79  ] . IL-2 (usually at 3,000–6,000 IU/mL) is added after a few days to 
stimulate the rapid cell division of the activated T cells. After the 2-week period, the 
TIL are harvested, washed, concentrated into one infusion bag, and transferred 
intravenously back into the patient, along with a cycle of HD IL-2 therapy starting 
the following day  [  6,   7,   20,   79  ]  (see Fig.  13.2 ). Prior to the TIL being infused, the 
patient is lymphodepleted  [  6,   7,   20,   79  ] .  

   Newer TIL Expansion Protocols Using More Minimally 
Cultured “Young” TIL for ACT 

 Most current protocols for expanding TIL for ACT used to treat metastatic mela-
noma involve the selection of tumor-reactive populations for each patient  [  7  ] . 
Although expanding TIL using the conventional protocol has shown to be success-
ful, there are many limitations to this current procedure  [  10,   81  ] . Generating the 
autologous TIL can be technically challenging, and the long periods of time needed 

  Fig. 13.2    Summary of different methods currently used to perform adoptive T cell therapy for 
metastatic melanoma       

 



240 J.A. Chacon et al.

(5 weeks for initial TIL outgrowth from tumor fragments and the 2-week REP) has 
led to many patients becoming ineligible for TIL infusion due to rapidly progressing 
disease and change in performance status. Moreover, it has led to a criticism of 
these adoptive T cell studies due to the possible selection bias toward patients who 
may not have as aggressive disease. Thus, limiting the period of time between the 
surgical removal of the tumor and the actual TIL infusion has become a new goal in 
ACT for melanoma. 

 A number of biological issues have also pushed toward limiting TIL culture 
times. It has been suggested that minimal time in culture for the TIL may lead to 
higher proliferative capacity, and a more undifferentiated phenotype  [  82,   83  ] . From 
the fi rst report of TIL ACT in 1994, it was observed that the duration of ex vivo TIL 
culture correlated with clinical response where TIL cultured for shorter time gener-
ated better clinical responses in patients  [  27, 29, 84  ] . In addition, studies at the NCI 
found that TIL with longer telomeres may persist longer in vivo after adoptive 
transfer into patients and correlate with improved clinical response  [  84  ] . TIL 
expansion in IL-2 (giving an increased number of cell divisions) also has been 
shown to drive CD8 +  T-cell differentiation toward a terminally differentiated phe-
notype with shorter telomeres  [  84  ] . Thus, another rationale for shortening TIL 
expansion time is that the less time the TIL spend in culture with IL-2 alone, the 
“younger” the T cells will be before transfer, yielding a more effective TIL prod-
uct. To speed up the process and limit the initial phase of culture, the “young” TIL 
approach uses enzymatic single cell digests of excised tumors rather than cultured 
tumor fragments. The single cell suspensions are cultured under the same condi-
tions with IL-2 as before, but then the nonadherent cells (T cells) are removed from 
adherent cells (tumor cells and stromal cells) within a few days. This approach has 
been found to generate the minimal numbers of TIL needed for the large-scale REP 
by 3 weeks, rather than the 5-week period needed for outgrowth from tumor frag-
ments  [  86–  89  ] . Another important difference with the minimally cultured, “young” 
TIL protocol is that the TIL are not tested or selected for antitumor reactivity. This 
decision was based on accumulating data indicating that that there was no signifi cant 
correlation between positive antitumor reactivity of TIL expanded from tumor frag-
ments and clinical response  [  82,   83  ] . 

 The “young” TIL are subjected to the REP as usual and infused into the patient 
after lymphodepletion  [  82,   83  ] . “Young” TIL have been found to contain a more 
polyclonal population of CD4 +  and CD8 +  cells than the traditional antigen-specifi c 
TIL  [  82,   83  ] . “Young” TIL also have been shown to have longer telomere lengths 
and a less differentiated phenotype  [  82,   83  ] . Another positive point to the “young” 
TIL approach using tumor digests is that the success of initial pre-REP TIL expan-
sion has been improved to over 80%, compared to the 55–60% rate achieved using 
the cultured tumor fragment method  [  82  ] . 

 In 2010 Besser et al. announced the results of the fi rst clinical trial using the 
“young” TIL protocol in conjunction with a cyclophosphamide and fl udarabine pre-
conditioning regimen in ACT for metastatic melanoma and reported 50% clinical 
response rate in a cohort of 20 patients (2 complete responses and 8 partial responses) 
 [  82,   88  ] . These results were very similar to previously reported clinical response for 
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TIL grown using traditional methods and confi rm that TIL derived using the “young” 
TIL protocol are equally effective. However, unexpectedly, the shorter ex vivo culture 
period did not translate into better clinical response rate over the ~50% response 
rates observed in the “selected” TIL clinical trials originally by Dudley et al. 
 [  69,   72, 78  ] . Moreover, clinical trials of minimally cultured, unselected TIL at the 
NCI combining a CD8 +  T-cell enrichment step, also did not reveal a higher clinical 
response rate  [  82,   86  ] . 

 While the “young” TIL protocol has aimed to reduce the number of cell divisions 
and generate less differentiated cells with shorter telomere length, this biology 
needs to be confi rmed by further careful phenotypic and functional studies. Although 
TIL in the “young” TIL protocol may be “younger” when placed into a REP situa-
tion, they may expand to a greater extent (more cell divisions) during the REP 
resulting ultimately in a spectrum of cells with similar biological properties for 
adoptive transfer as with current approaches using a longer “pre-REP” culture time. 
This may explain why the clinical response rates with the “young” TIL protocol 
have not improved. In the recently reported clinical trial by Besser et al.  [  82,   86  ]  
using the “young” TIL approach, it was found that clinical response was correlated 
with infusion of higher numbers of post-REP TIL (thus more extensively divided 
TIL). Despite this lack of apparent improvement in clinical response, from a practi-
cal standpoint, the decreased TIL product production time is an advantage. More 
studies will be needed to defi ne markers of effi cacy of the TIL product to tailor an 
expansion protocol preserving the desired characteristic.  

   ACT Using TCR-Transduced Peripheral Blood T Cells 

 Although using TIL for ACT to treat melanoma patients seems very promising, the 
major obstacle is that TIL cannot be expanded from resected tumors for every 
patient  [  7, 10  ] . Figure  13.3  highlights some of the major advantages and disadvan-
tages of the different types of ACT. Owing to the fact that TIL cannot be adequately 
expanded from every patient, a number of groups are now focusing on infusing 
TCR-transduced peripheral T cells as an alternative, particularly for HLA-A2 +  
patients  [  90,   91  ] .  

 This technique uses patient-derived peripheral blood lymphocytes that have been 
transduced with viral vectors expressing a TCR against a known melanoma antigen. 
So far, two antigens, MART-1 and gp100, have been targeted using this approach 
 [  90–  93  ] . The fi rst studies were done with T cells transduced to express an HLA-
A0201-restricted gp100 epitope-specifi c TCR  [  94–  96  ] . The TCR-transduced T 
lymphocytes were then infused into lymphodepleted melanoma patients, followed 
by IL-2 infusion  [  97–  99  ] . Although the engineered T cells did persist and no toxic-
ity was observed in the patient, the major setback of this pilot trial was that the cell-
surface levels of gp100-specifi c TCR was relatively low, which resulted in minimal 
effector function of the engineered T cells  [  97–  99  ] . More promising results have 
been obtained with a high-affi nity TCR clone isolated from a melanoma patient 
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against an HLA-A0201-restricted MART-1 epitope (AAGIGILTV). This TCR has 
been cloned and transduced using a newer retroviral system that prevents mispairing 
of the recombinant TCR  a  and  b  chains with host  a  and  b  TCR chains, thus increas-
ing the effi ciency of the recombinant TCR expression in the T cells. Using this vector, 
20–30% objective response rates have been achieved using expanded MART-1 
TCR-transduced peripheral blood T cells  [  35,   39,   90–  92  ] . 

 A complicating issue with TCR transduction is that both activated and dividing 
CD8 +  and CD4 +  are transduced; this may be benefi cial, as CD4 +  T cells can provide 
“help” for CD8 +  T cells. However, it may also pose a problem if the transduced 
CD4 +  T cells are skewed into differentiation pathways in vivo (e.g., Th2 or induced 
regulatory T cells) that may inhibit antitumor responses by the transduced CD8 +  T 
cells. Another issue at present is that TCR transduction can only address one anti-
gen and one type of HLA restriction at any one time. Although one can envision a 
cocktail of different antigen-specifi c TCRs in the future, the system is still limited 
by the need to clone these TCRs and their specifi c HLA restrictions. Thus, TIL use, 
with a broader specifi city of tumor antigen reactivity, still seems at present to be the 
optimal approach, at least for melanoma. However, for other solid tumors, such as 
epithelial cell-derived malignancies, where it has proven diffi cult to isolate and 
expand adequate number of TIL due to the nature of the tumor and the fact that 
surgical resection of metastases of the other tumor sites is not commonly practiced 
clinically, ACT using expanded T cells transduced with TCRs specifi c for overex-
pressed antigens is a feasible alternative. For example, cloned TCRs against CEA, 
MUC1, and HER2 are now being explored.  

  Fig. 13.3    Summary of important biological and technical issues under consideration for optimizing 
TIL expansion ex vivo and T cell persistence and anti-tumor function in vivo following adoptive 
transfer into patients       
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   Generation of Antigen-Specifi c CD8 +  T Cells 
from Peripheral Blood for ACT 

 CD8 +  cells are able to bind to the HLA/MHC class I-peptide complexes and 
become specialized to kill after differentiation into CTL  [  100–  101  ] . Using murine 
models, it has been demonstrated that a frequency of at least 1–10% of antigen-
specifi c T cells is required for tumor regression in ACT melanoma models  [  84,   89, 
  102–  106  ] . There have been a number of groups that have attempted to use anti-
gen-specifi c (peptide-specifi c) CD8 +  T cells in ACT clinical trials to treat meta-
static melanoma  [  84,   89,   103–  106  ] . One major approach has been the expansion 
of HLA-A0201-restricted CD8 +  T cells from peripheral blood lymphocytes recog-
nizing gp100, MART-1, or tyrosinase using peptide-pulsed autologous mature 
dendritic cells. 

 A phase I study in Stage IV metastatic melanoma patients was reported in which 
CD8 +  T cell clones expanded to 10 10 /m 2  that targeted melanoma antigens MART-1 
and gp100 were administered. These cells were shown to persist, traffi c to tumor 
sites, and mediate an antigen-specifi c immune response leading to meaningful clini-
cal responses, with about 30% of patients experiencing a CR, PR or disease stabili-
zation for up to 11 months  [  84,   89,   103–  106  ] . Mackensen et al   .  [  104, 204  ]  achieved 
favorable clinical responses in 3 of 10 melanoma patients after adoptive transfer of 
MART-1-specifi c T cells, which was associated with homing of the transferred T 
cells to tumor sites. Evidence for emergence of antigen-loss tumor variants was also 
found, suggesting that the infused MART-1-specifi c T cells mediated an antigen-
specifi c response in the tumor that could have selected for the preferential survival 
of variants originally lacking MART-1 or losing MART-1 expression  [  104, 204  ] . 
In another study, Mitchell et al.  [  107  ]  administered tyrosinase-specifi c CD8 +  T 
cells (up to 5 × 10 8  cells with a frequency of 10–30% tetramer +  cells) expanded 
using an antigen-specifi c activation system employing insect cells pulsed with 
tyrosinase peptide after transduction with HLA-A2 and CD80. Although only 
modest clinical responses were observed, this clinical trial found that IL-2 infu-
sion after adoptive transfer was essential to facilitate an enhanced persistence of 
the transferred T cells  [  107  ] . 

 A more recent study by Butler and colleagues at Harvard Medical School 
involved the use of MART-1-transduced K562 artifi cial antigen-presenting cells 
(aAPC) expressing HLA-A0201 together with CD80 and CD83 to expand MART-
1-specifi c CD8 +  T cells from melanoma patient PBMC, along with IL-15  [  108  ] . 
MART-1 peptide-specifi c tetramer +  CD8 +  T cell frequencies ranging between 1 and 
5% were achieved after expansion with these cells to >1,000-fold, with many retain-
ing an effector-memory (CD27 + CD62L − CD45RA − ) phenotype  [  108  ] . They also 
used these K562 cells to express other tumor antigens, such as NY-ESO-1, HER-2/
neu, and telomerase, to reproducibly expand antigen-specifi c CD8 +  T cells from 
PBMC ranging between 4 and 10% tetramer +  T cells after a number of rounds of 
stimulations  [  108  ] . The K562 aAPC system is emerging to be an ideal system as it 
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does not express endogenous HLA class I and class II and will elicit only minimal 
allogeneic T cell responses. As described in further detail below, these cells could 
be developed as an “off the shelf” APC to expand antigen-specifi c T cells of any 
desired HLA class I restriction, given the available of suitable expression vectors for 
gene transduction.  

   Use of Transferred Antigen-Specifi c CD4 +  T Cells 
for Melanoma ACT 

 The role of antigen-specifi c CD4 +  T cells used for ACT for metastatic melanoma 
patients has also been investigated. It has been shown that infusing tumor reactive 
CD4 +  Th17 cells results in the complete shrinkage of a B16 tumor in C57BL/6 
mice  [  109  ] . However, another type of CD4 +  T cells, Tregs, can overpower the 
therapeutic effect of CD8 +  transferred cells  [  77,   109  ] . There has been much con-
troversy as to whether the infusion of CD4 +  T cells correlates with tumor progres-
sion or shrinkage. Several studies suggest that the infusion of CD4 +  is correlated 
with poor clinical prognosis, whereas other groups believe that polyclonal popu-
lations of CD4 +  and CD8 +  T cells are critical for a better clinical response 
 [  110–  112  ] . 

 For melanoma patients, the infusion of a polyclonal population consisting of 
CD4 +  and CD8 +  appears to be critical in obtaining clinical responses  [  104,   111, 
  113  ] . Tyrosinase, NY-ESO-1, and MAGE-1 are a few examples of a number of 
antigens containing well-defi ned HLA class II-restricted epitopes  [  68, 107,   114, 
  115  ] . In a fi rst time trial using antigen-specifi c CD4 +  T cells for ACT to treat mela-
noma, tyrosinase or NY-ESO-1-specifi c Th1 CD4 +  T cell clones were used to treat 
nine metastatic melanoma patients at doses of up to 10 10  cells/m 2   [  107, 110,   114, 
115  ] . It was observed that 3% of the CD4 +  cells persisted for up to 2 months  [  107, 
110,   114, 115  ] . In this study, one patient achieved a complete durable response of 
>3 years and four patients exhibited a partial response or stabilization of their dis-
ease. Notably, induction of T cell responses against nontargeted tumor antigens (a 
phenomenon called “antigen spreading”) was observed in some patients that may 
have contributed to some of the clinical activity. Antigen spreading may circumvent 
the problem of selective outgrowth of antigen loss variants when targeting a single 
melanoma antigen. 

 Yee and colleagues also demonstrated the potential power of infusing cloned 
antigen-specifi c CD4 +  T cells to treat metastatic melanoma. They developed an 
in vitro method for isolating and expanding autologous CD4 +  T-cell clones with 
specifi city for the melanoma-associated antigen NY-ESO-1  [  196  ] . They infused 
these cells into a patient with refractory metastatic melanoma who had not under-
gone any previous conditioning or cytokine treatment and showed that the trans-
ferred CD4 +  T cells mediated a durable clinical remission and led to endogenous 
responses against melanoma antigens other than NY-ESO-1  [  196  ] .   
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   Current Biological and Technical Limitations 
of ACT for Melanoma 

 Currently, ACT using nonmyeloablative chemotherapy prior to infusing TIL has 
shown to have objective clinical responses in about 50% of melanoma patients 
 [  6,   10,   69  ] . Although expanding the T lymphocytes to large numbers prior to infu-
sion has been benefi cial, the functional characteristics, phenotype, and persistence 
in vivo have been found to be critical parameters, in addition to the infusion of 
adequate cell numbers, in determining clinical effi cacy. These parameters also 
largely depend on the conditions under which TIL or antigen-specifi c peripheral 
blood T cells are expanded in vitro. Figure  13.3  summarizes some of the main out-
standing biological and technical issues still facing TIL ACT that need to be 
addressed to improve not only the functionality of the transferred T cells but also to 
streamline the cell expansion technology to make it more technically feasible and 
easier to manage. It has been observed that there is a positive correlation between 
the long-term persistence of at least 1–2 major TCR clonotypes in the transferred 
TIL and objective clinical responses  [  116–  118  ] . One of the main issues for the 
transferred T cells is once they are in vivo, the persistence is relatively short in 
most cases  [  116–  118  ] . Persistence is critical in parallel to antitumor killing to 
ensure a long-term control of the melanoma  [  116–  120  ] . Once the TIL are infused 
back into the body, they encounter many factors that affect their proliferation, 
effector function, and survival that may ultimately put the TIL in an anergic state 
or lead to their death upon reencounter with their specifi c antigen  [  116–  120  ] . If the 
TIL are able to survive and persist for long periods in vivo, then the failures of 
ACT can be attributed to other aspects of the therapy, such as the actual character-
istics and phenotypes of the TIL or resistance mechanisms at the level of the tumor 
microenvironment. 

   Telomere Shortening and Cellular Senescence in TIL 

 A critical parameter that has emerged in TIL ACT clinical trials is the possible issue 
of cellular senescence in TIL due to telomere shortening during extensive expansion 
in vitro. In humans, telomeres are DNA–protein structures that are located at the 
ends of all chromosomes  [  121–  123  ] . During cell division, telomeres shorten. As T 
cells differentiate from the naïve to memory phase, they undergo extensive expan-
sion and undergo such telomere shortening  [  121–  123  ] . The enzyme telomerase, 
however, is able to synthesize terminal telomeric sequences and balance the telom-
ere shortening process  [  121–  123  ] . It has been shown that telomere length has been 
correlated with T cell survival and proliferation  [  8,   10,   83  ] . Therefore, many groups 
have further investigated whether the telomere length of TIL has any correlation 
with their persistence in vivo  [  8,   10,   83,   122  ] . It was found that after the extensive 
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in vitro expansion of the TIL, the TIL had a shortened telomere length and a decrease 
in telomerase activity  [  8,   10,   83,   122  ] . It has also been observed that there was a 
correlation between telomere length and clonal persistence of infused TIL  [  8,   10, 
  83,   122  ]  with TIL having longer telomere lengths reported to persist in vivo for 
longer periods of time, than those with shorter telomeres  [  8,   10,   83,   122  ] . Upon 
antigen stimulation, T cells show an increase in telomerase activity. However, with 
continued antigenic restimulation, telomerase activity may decrease, resulting in 
shorter telomeres  [  8,   10,   83,   122  ] . TIL with shorter telomere lengths may tend to 
enter a senescent state or undergo apoptosis  [  8,   10,   83,   122  ] . Telomere length has 
also been correlated with tumor regression, in addition to TIL persistence in vivo in 
melanoma patients  [  8,   10,   83,   122  ] . Thus, TIL expansion methods better able to 
preserve telomere length in the T cells should be explored.  

   Terminal Differentiation of CD8 +  T Cells During 
Extensive TIL Expansion 

 One of the key issues during T cell expansion in vitro and in vivo is the induction of 
differentiation during multiple cell divisions associated with the appearance of end-
stage effector cells and decreased proliferative potential due to extended culture 
with high-dose IL-2  [  120,   124, 125  ] . The effector cell phenotype of the transferred 
T lymphocytes used for ACT to treat melanoma has been shown to be essential for 
clinical response  [  120,   124, 125  ] . The phenotype of the cells can be detected using 
surface markers to examine whether the cells are of CD4 +  lineage or CD8 +  lineage. 
Also, functional phenotypes can be examined using tumor cell killing analysis or 
TCR affi nity experiments. Repeated antigenic stimulation of T cells has been shown 
to result in increased expression of different senescent markers, such as CD57 and 
killer cell lectin-like receptor G1 (KLRG1)  [  124–  125  ] . CD57 has been associated 
with T cell end-stage differentiation and a loss of proliferative capacity  [  124–  125  ] . 
However, CD8 + CD57 +  T cells also exhibit superior spontaneous antigen-specifi c 
cytolytic activity and proinfl ammatory cytokine secretion against virally infected 
cells and tumor cells  [  124–  125  ] . Thus, the presence of these cells in TIL popula-
tions during ACT may be benefi cial. However, we have found that a signifi cant 
fraction of CD8 +  T cells (up to 20%) in freshly isolated TIL from metastatic mela-
noma do express CD57, but upon long-term culture with IL-2 and following the 
REP, these CD57 +  largely disappear (Wu et al., unpublished observations)   . Further 
study of this population of CD8 +  TIL in our lab has found that it contains a high 
frequency of melanoma-specifi c CD8 +  T cells (Wu et al., unpublished observations). 
Thus, the loss of this CD8 + CD57 +  originally found in fresh TIL may be detrimental 
due to the loss of melanoma-specifi city in the fi nal TIL product. This will need to 
be investigated further. Interestingly, we and other have not found appreciable num-
bers of CD8 + CD56 +  CTL infi ltrating human melanomas. 

 Another biological issue in current TIL ACT protocols is the loss of critical 
costimulatory receptors during TIL expansion, such as CD28 and CD27, likely due 
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to long-term culture with high doses of IL-2  [    124–  127  ] . The expression of these 
markers also delineates effector-memory cells vs. more end-stage effector cells that 
are more short-lived  [    124–  128  ] . Infused TIL that persist for long periods in the 
peripheral blood have been associated with phenotypes expressing an effector-
memory CD27 +  and CD28 +  with associated IL-7R a  reexpression  [    124–  128  ] . The 
expression of CD28 has also been correlated with TIL having longer telomeres and 
better persistence in vivo  [  124–  128  ] . In a recent study on MART-1-specifi c CD8 +  
TIL, we found that only the CD8 +  T cells maintaining CD28 expression could 
respond to further antigenic stimulation following the REP  [  124  ] . This was not 
associated with decreased telomere length, however, but rather an overall change in 
the gene expression program in the CD8 + CD28 −  TIL toward overexpression of cell 
cycle inhibitory genes and a series of killer-inhibitory receptors (KIR)  [  124  ] . 
Interestingly, in this study we did not fi nd a role for sustained CD27 expression or 
signaling suggesting that maintenance of CD28 rather than CD27 in CD8 +  TIL may 
be more critical for better persistence  [  124  ] . Fortunately, there are ways to over-
come the loss of CD28 and CD27 expression in extensively expanded melanoma 
TIL through their ability to still acquire expression of TNF-R family “alternative” 
costimulatory molecules. This possibility will be discussed in further detail below.  

   Technical Issues in Current TIL Expansion Methods for ACT 

 Figure  13.3  shows some of the technical issues we still face with TIL expansion 
protocols for ACT and some of the possible solutions. One key issue is the “feeder 
problem.” At present, either autologous or allogeneic PBMC feeder cells are needed 
for the rapid expansion of TIL using anti-CD3 and IL-2 to prepare the fi nal TIL 
infusion product. A 200:1 irradiated PBMC feeder-to-TIL ratio has been found to 
be optimal in the REP  [  7  ] . One of the main problems with using PBMC feeders is 
the variability in TIL expansion-supporting capacity of different PBMC lots. This 
has required the pooling of 4–6 different PBMC donor lots, but even these pooled 
lots can have batch-to-batch variation in activity. In addition, in many cases the 
numbers of autologous feeders, requiring leukopheresis of the patient prior to ther-
apy, are diffi cult obtain, due to the immunosuppressed nature of many metastatic 
melanoma patients and the high numbers of myeloid-derived suppressor cells in the 
peripheral blood that cannot be separated by the apheresis machine. Many patients 
are also not healthy enough for a leukopheresis protocol to obtain at least 5–10 bil-
lion mononuclear cells needed for a typical large-scale clinical TIL REP. Allogeneic 
PBMC feeder cells are a reasonable alternative, but these are more diffi cult to obtain 
due to the need to recruit normal donors or the need to purchase expensive normal 
donor apheresis products from vendors. However, another alternative source of 
feeder cells is from normal donors using G-CSF-mobilized allogeneic stem cell 
products leftover because the intended recipients never received the product. These 
G-CSF-mobilized peripheral blood products can be successfully used to expand 
melanoma TIL (Radvanyi et al., unpublished observations). Nevertheless, it would 
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be optimal to develop a universal-type of feeder cell or APC that can be established 
as a master cell bank and available for all TIL expansion protocols. As described 
below, such a solution is under development. 

 Other major technical limitations shown in Fig.  13.3  relate to the culture technol-
ogy itself for T cell expansion (culture vessels and static vs. continuous fl uid motion) 
and the high culture volumes needed to support the growth of the billions of TIL 
needed for infusion. Currently, the TIL REP is initiated in large T-175 up-right cul-
ture fl asks (up to 50 fl asks in some protocols) followed by transfer of the proliferat-
ing T cells into static gas-permeable culture bags midway through the growth period 
(usually on day 7 of the REP). However, the static nature of this system and the 
suboptimal gas exchange limits the maximum cell density that can be supported 
without compromising cell viability. The result is that total culture volumes can 
become very high (as much as 60 L by the end of the 2-week REP period). This also 
uses a large amount of recombinant IL-2 which further increases the expense above 
the culture medium costs. These shortcomings of the current static culture bag 
approach has led to the investigation of alternative technologies for TIL expansion, 
such as continual motion (rocking) bioreactor systems to improve gas exchange that 
are also described briefl y in the section below.   

   Improvement of Current TIL Expansion Methods and ACT 

   Manipulating the Memory Phenotype of Adoptively Transferred 
T Cells to Improve Persistence and Effector Function 

 Recent studies have sought to augment the current methods for generating and 
infusing the lymphocytes that have been grown ex vivo. There are a number of 
ways to improve the durability of the transferred cells. For example, the role of 
alternative cytokines, such as IL-15 and IL-21, has been investigated. The conven-
tional way to expand the T lymphocytes used for ACT to treat melanoma has been 
with IL-2  [  13,   125,   126  ] . One key problem with IL-2 as a sole growth factor for T 
cell expansion (especially for TIL) is that it also can drive the terminal differentia-
tion of CD8 +  T cells into short-lived end-stage effector cells  [  124,   125,   127  ] . These 
effector cells (high spontaneous antitumor cytolytic and IFN- g -secreting activity) 
may be ideal for short-term tumor control or a rapid regression of large, rapidly 
growing tumors, but may be much less ideal for more long-term tumor control to 
maintain durable responses. In this regard, other members of the common  g  chain 
cytokine family, such as IL-15 and IL-21, can also be utilized to expand the T lym-
phocytes for ACT  [  124,   129,   130, 198  ] . IL-15 is crucial in the proliferation of 
CD8 +  memory T cells and has been shown to better maintain both an effector-
memory and in some cases a central memory phenotype of expanded T cells  [  124, 
129, 130  ] . IL-21 has been shown to expand hematopoietic progenitors and regulate 
CD8 +  T-cell proliferation  [  124, 129, 130  ] . Combining IL-21 with chemotherapy to 
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treat B16 mice resulted in augmented frequencies of tumor-specifi c T cells and 
accelerated tumor control  [  130  ] . 

 In combination, IL-15 and IL-21 can expand memory (CD44 high ) and naïve 
(CD44 low ) CD8 +  T cells and increase IFN- g  production in vitro  [  130–  133,   197  ] . An 
in vivo study demonstrated that IL-21 plus IL-15 can increase the percentage of 
antigen-specifi c CD8 +  cells and result in tumor regression of established B16 mela-
nomas  [  130–133  ] . It has been hypothesized that IL-15 and IL-21 may synergize 
through different receptors; with IL-15 playing a major role in cell division and 
inhibiting some loss if CD28, while IL-21 preserving CD28 expression and inhibit-
ing cell differentiation  [  124,   130–  133  ] . The combination of IL-15 and IL-21 has 
been shown to facilitate T-cell antitumor responses and increase cytokine produc-
tion  [  128,   129,   131,   132  ] . The use of IL-15 and IL-21 has not yet been thoroughly 
tested for human TIL expansion. However, our laboratory has performed some 
investigation of these cytokines  [  124  ]  in the TIL REP and found that IL-15 and 
IL-21 synergize in maintaining CD28 expression in CD8 +  TIL and improving post-
REP TIL responses to antigenic restimulation. IL-15 alone induced a similar level 
of TIL expansion with concomitant loss of CD28, while IL-21 highly preserved 
CD28 and TIL responsiveness, but was poor at expanding the T cells. Interestingly, 
the combination of IL-15 and IL-21 seemed to combine the best properties of both 
cytokines and yields a TIL product with a “younger” phenotype  [  124  ] .  

   Manipulation of T Cell Negative and Positive 
Costimulatory Pathways 

 ACT using TIL or TCR-transduced peripheral blood lymphocytes has the potential 
to eradicate large, established tumor burdens, but a number of factors in metastatic 
melanoma patients can impair the function of the transferred cells  [  134  ] . These 
include both local immunosuppressive factors in the tumor microenvironment as 
well as systemic T cell suppressive factors. Eradication of the tumor can be impaired 
by the expression of programmed death-ligand 1 (PD-L1/B7H1) expressed on tumor 
cells. High expression of PD-L1/B7H1 on tumors, including melanoma, has been 
correlated with poor clinical response. PD-L1/B7H1 interaction with its receptor 
programmed death-1 (PD-1) on CD8 +  T cells can lead to blunted T cell function and 
even apoptosis  [  134–  135  ] . Inhibition of TCR-induced cytokine production, cytolytic 
activity, and proliferation has been observed  [  135–  137  ] . In order to increase the 
function of tumor-reactive T lymphocytes, antibodies blocking the interaction 
between PD-1 and PD-L have been developed  [  134,   136–  139  ] . Blocking the PD-1-
PD-L1/B7H1 interaction may lead to improved TIL-mediated tumor control. It has 
been demonstrated that PD-1 expression is up regulated in melanoma NY-ESO-
specifi c CD8 +  T cells, in comparison with MART-1 specifi c CD8 +  T cells  [  140  ] . TIL 
that express PD-1 can exhibit a more exhausted phenotype and decreased effector 
function  [  134–137  ] . A recent Phase I/II clinical trial of a human blocking anti-PD-1 
in metastatic cancer patients (including melanoma) found that this agent was 
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 surprisingly nontoxic and, moreover, exhibited a signifi cant response rate that has 
prompted additional Phase II/III testing  [  137–138  ] . We have found that blocking 
PD-1 signaling in melanoma TIL restimulated using antigen using anti-PD-1 anti-
bodies could signifi cantly enhance antigen-specifi c CD8 +  TIL cell division in vitro 
(Radvanyi et al., unpublished observations). Although additional studies will need 
to be performed, these results together with the well-known negative effects of PD-1 
signaling on CD8 +  TIL function and the initial positive anti-PD-1 clinical trial 
results, suggest that blockade of PD-1 in vivo after TIL transfer into patients may be 
of therapeutic benefi t in enhancing clinical responses. 

 There are two potent signals that drive T cell activation. The fi rst signal is through 
the ligation of the TCR by MHC/peptide molecules located on APC  [  141–  142  ] . The 
second signal occurs through the engagement of CD28 by the B7 family members 
CD80/CD86 located on the APC  [  141–  142  ] . T cells also express other inhibitory 
members of the CD28/B7 family, such as Cytotoxic T-lymphocyte antigen-4 
(CTLA-4)  [  143–  145  ] . CTLA-4 is up-regulated following T cell activation and also 
binds to CD80/CD86 on APC  [  143–  145  ] . This binding leads to the inhibition of cell 
proliferation and inhibition of cytokine production  [  144–  145  ] . Blocking CTLA-4 
using monoclonal antibodies has resulted in objective tumor regressions. A clinical 
response in 10–20% has been shown in melanoma and renal cancer patients in clini-
cal trials  [    144–  146  ] . A recent randomized Phase III clinical trial in melanoma 
patients found that the anti-CTLA-4 mAb ipilimumab almost doubled the overall 
survival of metastatic melanoma patients  [  144–  146  ]  compared to vaccination with 
gp100 peptide. This result, combined with data showing improved survival in com-
parison with historical controls, led to FDA approval of ipilimumab for metastatic 
melanoma  [  147–148  ] . The licensing of anti-CTLA-4 for melanoma has now opened 
up the exciting possibility of combining it with TIL adoptive cell therapy, although 
toxicities with this regimen will need to be carefully monitored due to the Grade III/
IV events documented with anti-CTLA-4 therapy  [  143–  148  ] . 

 Another exciting area that can be exploited to improve TIL persistence and anti-
tumor activity in vivo is engaging the TNF-R costimulatory pathways, such as 
4-1BB and OX40. CD8 +  T cells are especially critical during adoptive cell therapy 
against melanoma to kill tumor cells and maintain a recirculating effector-memory 
pool for long-term durable tumor control  [  10,   11,     124,   149,   150  ] . The 4-1BB path-
way is emerging to be a potent “alternative” costimulatory pathway in TIL, espe-
cially if they have lost CD28 and CD27 expression during TIL expansion. 

 As mentioned earlier, a critical problem with current expansion protocols using 
TIL is that it yields highly differentiated effector cells that are susceptible to apop-
tosis and cannot persist well in vivo after the REP  [  124,   149  ] . In most cases, infused 
TIL (even in lymphodepleted patients) do not persist more than 2 weeks, with most 
TIL TCR clonotypes disappearing. We have found that post-REP TIL have 
enhanced CTL function, but this is associated with the downmodulation CD28 and 
CD27, making them highly susceptible to AICD when restimulated with antigen or 
anti-CD3  [  124,   149  ] . This conundrum may explain why tumor regression in most 
patients is transient with loss of most infused TIL after only 1–2 weeks. CD28 
costimulation has been shown to mediate antiapoptotic signaling in both naïve and 
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effector-memory T cells. Compensating for the loss of CD28 with engagement of 
4-1BB receptors on post-REP TIL may reverse this situation. In fact, we have 
found that 4-1BB is up-regulated on CD8 +  TIL during the REP and after restimula-
tion of post-REP CD8 +  TIL with melanoma antigen or anti-CD3 mAb and that 
ligation of 4-1BB with agonistic fully human anti-41BB monoclonal antibody 
(BMS-663513 from Bristol Myers Squibb) potently protected CD8 +  TIL from acti-
vation-induced apoptosis  [  149  ] . Moreover, 4-1BB costimulation also induced post-
REP TIL to further expand and increased the expression of CTL granule proteins 
and induced the expression of antiapoptotic molecules (bcl-2 and bcl-xL), while 
downmodulating bim expression  [  149  ] . All this has translated into a signifi cantly 
enhanced survival capacity and antitumor activity in vitro  [  149  ] . We have also 
found that addition of anti-4-1BB antibody (BMS-663513) during the REP can 
also improve the yield of CD8 +  T cells with memory markers (CD28 and CD27), 
increased CTL granule proteins, and higher bcl-2 levels (Chacon et al., unpub-
lished observations). Our results suggest that anti-4-1BB antibodies has the poten-
tial to signifi cantly improve the clinical activity of TIL therapy for melanoma either 
by infusing it in vivo after TIL adoptive transfer into patients, or by using it strictly 
in vitro as a way of signifi cantly improving the effector-memory phenotype and 
function of the infused CD8 +  T cells. 

 Although OX40    has not been formally tested for its costimulatory role in mela-
noma TIL, a signifi cant frequency of post-REP CD8 +  T cells, including melanoma 
antigen-specifi c cells, do indeed express OX40  [  149  ] . These cells may have unique 
properties and may respond to OX40 ligation in a similar or synergistic fashion with 
4-1BB. This pathway should also be tested in TIL therapy, as clinical-grade human 
anti-OX40 antibodies are now becoming available.  

   Vaccination with Tumor Antigens to Boost TIL Function 
and Persistence After Adoptive Transfer 

 In addition to the provision of costimulatory signals or blocking negative signaling 
molecules on T cells using agonistic monoclonal antibodies or blocking antibod-
ies, respectively, another avenue to improve upon the outcome TIL ACT for mela-
noma is by covaccinating patients with melanoma antigens recognized by the TIL 
population. One method being explored is using autologous antigen or peptide-
pulsed DC infusion at the time of T cell adoptive transfer. We are currently con-
ducting a randomized Phase II TIL ACT clinical trial testing the effects of an 
autologous MART-1 peptide-pulsed mature DC vaccine infused intravenously 4 h 
after TIL infusion (before the start of HD IL-2 therapy) and again 21 days after TIL 
infusion. This clinical trial is being conducted with HLA-A0201 +  patients with 
MART-1 peptide-reactive (tetramer + ) CD8 +  T cells above 0.1% of the TIL popula-
tion. The control arm is receiving TIL and IL-2 without DC. This study was based 
on preclinical data in a C57BL/6 mouse melanoma model using the transfer gp100 
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TCR transgenic CD8 +  T cells (pmel T cells) showing that covaccination with gp100 
peptide-pulsed mature DC increased the expansion of the gp100-specifi c T cells 
after adoptive transfer in vivo and greatly boosted their killing of established sub-
cutaneous B16 tumors  [  151  ] . So far, we have treated three patients with TIL plus 
MART-1 peptide-pulsed DC, with two of the patients experiencing rapid and dura-
ble near complete responses within 12 weeks of TIL transfer (Radvanyi et al., 
unpublished observations).  

   Addressing the Problem of TIL Migration into Tumors 

 One of the main problems plaguing the fi eld of TIL ACT is that most of the trans-
ferred T cells do not home to, and penetrate into, the metastatic lesions to manifest 
their antitumor killing and cytokine secretion function  [  152–  153  ] . There is no easy 
solution to this problem as many TIL accumulate in the lung and liver after intrave-
nous infusion  [  152–   153  ] . One possible solution is using intra-arterial delivery of 
TIL, but this is technically more challenging and may have increased risk. An alter-
native approach that we are currently investigating at the MD Anderson Cancer 
Center is transducing TIL with chemokine receptors that should facilitate intratu-
moral homing. Currently, we are targeting the CXCL1-CXCR2 interaction. CXCL1 
is a chemokine produced by most human melanomas that acts as an autocrine 
growth/survival factor and can stimulate angiogenesis. CXCR2 is one of the key 
receptors for CXCL1, but T cells do not naturally express this receptor. Activated 
gp100-specifi c pmel T cells engineered to express CXCR2 had signifi cantly 
increased homing ability into B16 melanomas expressing CXCL1 in an adoptive 
cell transfer model in C57BL/6 mice and mediated enhanced tumor control  [  153  ] . 
Based on these encouraging preclinical data, we are embarking on a Phase II ACT 
trial testing the effi cacy of TIL retrovirally transduced with CXCR2 vs. TIL trans-
duced with a control retroviral vector encoding a truncated nerve growth factor 
receptor (NGFR). Tracking of TIL in vivo both in the blood and in tumor biopsies 
can be easily accomplished by staining for either CXCR2 or the truncated NGFR, 
both expressed on the cell surface.  

   Targeting TGF- b  

 Transforming growth factor-beta 1 (TGF- b ) is a cytokine that regulates cell prolif-
eration, differentiation, and apoptosis  [  154–  156,  202   ] . Tumors secrete TGF- b  which 
can act to inhibit T cell proliferation and cytokine production  [  154–  156  ] . This effect 
of TGF- b  may have a negative impact on the transferred T cells used in immuno-
therapy for melanoma. TGF- b  has been demonstrated to be a pleiotropic cytokine 
depending on the concentration of TGF- b  used  [  155–  157  ] . At lower concentrations, 
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TGF- b  inhibits the cytokine secretion and proliferation of CD8 +  T cells  [  154–  156  ] . 
However, at higher concentrations of TGF- b , the cytokine can act to sustain the 
viability and proliferation of CD8 +  T lymphocytes when they are activated with 
costimulatory signals boosting T cell activation and proliferation  [  154–  156, 200  ] . In 
a recent study by Liu and colleagues, adding TGF- b  while expanding TIL used for 
melanoma ACT maintained the CD8 +  and antigen-specifi c population and prevented 
the overgrowth of CD4 +  T cells sometimes seen when rapidly expanding TIL from 
some patients  [  158  ] . 

 Nevertheless, in most situations in vivo, especially within the tumor microenvi-
ronment, TGF- b  has been found to detrimental to CD8 +  T cells by being a potent 
suppressor of CTL differentiation by downmodulating perforin and eomesodermin 
expression, and by inhibiting specifi c CD8 +  T cell proliferation in the draining 
lymph nodes  [  159–   160  ] . Moreover, TGF- b  is a key cytokine driving the differentia-
tion of induced or adaptive CD4 +  Tregs and is expressed on the surface of some 
suppressive Treg populations where it plays a role in inhibiting the proliferation of 
effector T cells  [  156–  157,  201   ] . Thus, ways of making adoptively transferred T 
cells and TIL resistant to the effects of TGF- b  is an interesting possibility to improve 
T-cell persistence and objective clinical responses during ACT. 

 One possible approach to inhibit TGF- b  signaling in ACT being actively pursued 
is the introduction of a dominant-negative TGF- b -receptor II (DNRII) in TIL during 
the REP  [  157,   161,   203  ] . The hypothesis behind this work is that this will safely 
augment the proliferation of TIL in melanoma patients and their cytolytic function 
in the tumor microenvironment. Recently, researchers at the Baylor College of 
Medicine (Houston, TX) have generated clinical grade retroviral vector encoding a 
dominant negative TGF- b  receptor (DNRII) and found that T cells expressing this 
receptor become resistant to the antiproliferative and anticytolytic effects induced 
by TGF- b  both in vitro and in vivo  [  157,   161  ]  and is now being explored in a clini-
cal trial for patients with relapsed lymphoma  [  157,   161  ] .  

   Newer Methods for the Clinical-Grade Expansion 
of Melanoma TIL for ACT 

 Technical as well as biological problems with the current TIL expansion technolo-
gies using IL-2 for extended periods of time and feeder cells to rapidly expand TIL 
to generate the fi nal infusion product have sparked an interest in using novel 
approaches to expand melanoma using aAPC and new culture technology using dif-
ferent types of bioreactors. 

 In addition to potentially poor persistence of transferred T cells and the limita-
tions of undefi ned feeder cells, a third major issue is that TIL do not grow from at 
least 35% of melanoma patients  [  8,   10,   162  ] . Therefore, we and others are begin-
ning to study new ways of expanding melanoma TIL for therapy using aAPC. 

 The use of aAPCs in generating T cells for adoptive therapy has come a long 
way. Initially, dendritic cells (DC) were the APC of choice to expand T cells used 
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for adoptive transfer  [  7,  10,   11,   150,    63  ] . However, DC are diffi cult expensive to 
generate in large numbers for most ACT applications. The fi rst generation of 
aAPC  consisted of antibodies linked to CD3 and CD28 bound to beads  [  164–  170  ] . 
Although these beads successfully generated CD4 +  T cells, they did not support 
the extended proliferation of CD8 + , leaving researchers to investigate alternative 
and potentially more effi cient methods. Moreover, we have found that TIL are 
highly susceptible to activation-induced apoptosis  [  149  ] , and the bead method is 
not conducive to the “fi ne tuning” of the strength of the TCR ligation needed; this 
has resulted in an initial “die off” of activated TIL after bead-based activation, 
followed by the expansion of the remaining live T cells. However, T cell numbers 
never recover to the levels found in the traditional REP with feeders and soluble 
anti-CD3 antibody. 

 The second generation of aAPC, based on the erythromyeloid cell line K562, 
has shown more promise and versatility for the expansion of clinical-grade T cells 
for adoptive therapy  [    166–  169  ] . K562 cells lack mostly all human HLA class I 
and class II molecules and therefore generate only minimal alloreactivity  [  166–
  169  ] . They can be uniformly propagated to high numbers very easily and are 
robust cells that survive large-scale culture very well. The current generation 
K562 aAPC have been induced to express CD64 (human high-affi nity FcgR1); 
this allows for loading of TCR-activating antibodies, such as anti-CD3, to stimu-
late TIL for rapid expansion  [  165, 166,    168,   171   ] . K562 cells can also be trans-
duced to stably express a number of cell surface or intracellular proteins (e.g., 
melanoma tumor antigens) and have largely retained their antigen processing and 
presentation machinery on HLA molecules and can present peptide epitopes from 
these melanoma antigens  [  165, 166, 168,   171  ] . Both lentivirus transduction and 
transduction with a new transposon-transposase expression system called the 
“Sleeping Beauty” system  [  172–  175  ]  can be used to effi ciently transducer K562 
cells for use as aAPC. Currently, a number of groups, including our own, have 
developed master cell banks of K562 cells meeting regulatory guidelines that can 
be used to establish clinical-grade TIL expansion protocols. These K562 aAPC 
have been engineered to express different combinations of costimulatory mole-
cules (e.g., CD86, 4-1BBL, OX40L and other TNF-R superfamily members such 
as LIGHT), and membrane-bound cytokines (e.g., IL-15, IL-21, IL-7, and IL-12) 
 [  175–  177  ] . The ability to engineer these cells in express active, membrane-bound 
version of these cytokines also solves the current problem of the lack of availabil-
ity of IL-15, IL-21, and IL-7 for clinical use and the high expense that would be 
incurred when contemplating their use in large-scale TIL expansion regimens. We 
have begun test different versions of K562 aAPC for use in large-scale TIL expan-
sion with promising results suggesting an improved maintenance of an effector-
memory phenotype with high CD28 expression using aAPC expressing IL-21 and 
IL-15 (Radvanyi et al., unpublished observations). Overall, the K562 aAPC prom-
ises to solve many of technical and biological issues with our current TIL expan-
sion processes. Phase II TIL therapy trials in melanoma patients using optimal 
blends of aAPC will be initiated in the near future. 
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 Although the phenotype and characteristics of the transferred T lymphocytes 
used for melanoma ACT are crucial, the culture vessel technology itself used for 
expanding the T cells should not be overlooked. Over the past 10 years, several 
companies launched disposable, gas-permeable bag technology in an effort to 
decrease the risk of cross-contamination when expanding cells for immunotherapy, 
transplantation, and cellular therapy  [  178–  183  ] . Recently, bioreactors with a prest-
erile cultivation bag are being utilized to handle animal and human cells  [  178–  183  ]  
such as the “WAVE™” bioreactor marketed by GE Technologies. This apparatus 
has a continuous slow back and forth rocking motion on a heated platform and a 
perfusion system for gas exchange and medium feeding. The rocking motion of the 
WAVE™ bioreactor allows the cells to obtain optimal nutrient distribution, and 
improved O 

2
  transfer and CO 

2
  removal  [  178–  183  ] . The continuous motion and 

improved gas and nutrient exchange can increase the cell densities of TIL cultures 
over static culture systems, while maintaining growth and viability  [  178–  183  ] . This 
can greatly decrease culture volumes reducing both culture medium and cytokine 
costs as well as processing time of the fi nal TIL product.  

   The Prospect of CD4 +  T-Helper 17 (Th17) Cells 

 Th17 cells have been shown to be important in autoimmune diseases and infl amma-
tion, but have hardly been studied in their role in immunotherapy. Th17 cells are 
elevated in melanoma TIL  [  184–  185  ] . It has been shown through mice models that 
using tumor-specifi c Th17 cells for melanoma ACT stopped tumor development 
and activated CD8 +  T cells  [  184–  185  ] . IFN- g  has been shown to contribute to the 
ability of transferred Th17-liked cells eradicate B16 melanoma tumors  [  184–  185  ] . 
The prospect of using expanded Th17 cells for melanoma ACT is an interesting new 
avenue for exploration. In murine models, transferred tumor antigen-specifi c Th17 
cells traffi cked into tumors and facilitated the migration of activated effector CD8 +  
T cells into the tumor  [  184–188  ] . One question with Th17 ACT in human cancer is 
whether antigen-specifi c (tumor-specifi c) Th17 cells would be required to home 
into tumor beds and establish a proinfl ammatory environment attracting other effec-
tor cells to the site. There are few HLA class II-presented antigens identifi ed and 
some of these can cross-react with Tregs. However, this issue may be bypassed by 
transducing activated peripheral blood CD4 +  T cells with tumor antigen-specifi c 
TCR genes or CARs. TCR and CAR transduction could be considered during the 
activation and expansion of CD4 +  T cells under Th17-polarizing conditions (IL-1 b , 
TGF- b , IL-6, and IL-23). It would be an exciting prospect to test this type of cell 
product for melanoma ACT due to the powerful antitumor-initiating characteristics 
of Th17 cells recently shown. One can also envision a synergistic scenario where 
TCR-transduced or chimeric antigen-receptor-transduced (see below) Th17 cells 
specifi c for melanoma antigen are infused together with expanded TIL or before 
TIL to home into the tumors and alter the tumor microenvironment to be conducive 
for effector CD8 +  T cell entry and function.  
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   Making Use of B-Cell Antigen Recognition to Drive T-Cell 
Antitumor Responses Using Chimeric Antigen Receptors (CARs) 

 Although using TIL for melanoma patients has been successful, there are still some 
patients from whom TIL cannot be expanded and cannot be treated using this type 
of therapy. Patients who have not been able to be treated using TIL can alternatively 
be treated using autologous peripheral blood T-cells transduced with high avidity 
HLA class I antigen-restricted TCR genes, as described earlier  [  189–  192  ] . One 
major hurdle using TCR transduced T cells is that each transduced TCR is restricted 
to a specifi c class I or class II HLA subtype and therefore are restricted to patients 
not only expressing these HLA subtypes, but also expressing the processed and 
HLA-presented peptide epitopes from the tumor antigen in question  [    189–  192, 195  ] . 
One clever way that has overcome this problem is the engineering of non-HLA-
restricted CARs [ 165 – 168  ] . CARs are hybrid receptors composed of an immuno-
globulin (Ig) variable region fused to the transmembrane and intracytoplasmic 
domains (endodomains) of either TCR signaling molecules, such as the  z  or  e  chain 
that can trigger T-cell activation or CTL activity once the Ig domain on the cell 
surface binds to a cell surface tumor antigen on tumor cells  [   189 –  192  ] . The antigen-
recognizing Ig variable domain can also be fused with signaling endodomains of 
costimulatory molecules, such as CD28, 4-1BB, and OX40  [  177,   189–  192  ] . An 
example of a melanoma-specifi c CAR construct under study currently is one recog-
nizing the high molecular weight melanoma-associated antigen (HMW-MAA) also 
known as melanoma-associated chondroitin sulfate proteoglycan-1 (MCSP-1) 
[ 189  ] . Introduction of the HMW-MAA-specifi c CARs into T cells has been shown 
to result in cytokine production, proliferation, and other antigen-specifi c effector 
functions  [  189,   192  ] . Another melanoma-specifi c CAR of interest recognizes the 
ganglioside GD2 overexpressed on 50–60% of human melanomas  [  191  ] .  

   Improvements in Lymphodepleting Preconditioning 
Regimens for ACT 

 Conditioning regimens also modulate the persistence of adoptively transferred CD8 +  
T cells and TIL in vivo. In one study, adoptively transferred CD8 +  CTL clones 
infused following a regimen of DTIC persisted for more than 30 days following 
infusion and produced a response rate of 43% in metastatic melanoma patients 
 [  116  ] . To better defi ne a well-tolerated conditioning regimen to improve T cell per-
sistence, Yee et al.     [  74, 81  ]  evaluated in sequential fashion, the infl uence of fl udara-
bine lymphodepletion, using the identical CD8 +  T cell clone administered fi rst 
without and then with fl udarabine conditioning. A threefold increase in persistence 
in vivo was observed among transferred clones following fl udarabine compared 
with no conditioning; this was associated with a rise in serum IL-15  [  74, 81  ] . 
However clinical responses were not substantially better over previous studies. This 
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may be attributed to the rapid increase in the proportion of Foxp3 +  regulatory T cells 
arising after lymphocyte reconstitution  [  74, 81  ] . 

 In another companion study, a nonmyeloablative regimen of high-dose cyclo-
phosphamide (4 g/m 2 ) as a single conditioning agent was explored, prior to the 
adoptive transfer of antigen-specifi c CD8 +  T cell clones then low-dose IL-2. This 
regimen was capable of achieving T cell frequencies of 1–3% more than 12 months 
after T-cell infusion. Four of six patients with refractory metastatic melanoma in 
this study exhibited an objective tumor regression, including one patient that had a 
durable complete response, and four experiencing partial or mixed responses 
 [  116  ] . 

 Overall, these studies further emphasize the importance of the type and duration 
of the preconditioning regimens used to transiently deplete lymphocytes and how 
they alter the “cytokine landscape” in the patient and the rate at which endogenous 
T cells reemerge (e.g., Tregs) in the host. All these can greatly affect the persis-
tence and function of the transferred T cells and will also need to be studied more 
carefully. 

 One more important question that has been addressed in melanoma ACT is 
whether the cyclophosphamide and fl udarabine preconditioning regimen is “strong” 
enough to create an optimal environment for TIL persistence and expansion in vivo 
after transfer. As mentioned above, de novo T-cell recovery, especially the reappear-
ance of Tregs after lymphodepletion may interfere with antitumor activity of the 
transferred TIL. One way this question has been addressed is by intensifying the 
preconditioning regimen to include TBI in addition to preparative chemotherapy. 
This is a myeloablative as well as lymphoablative preconditioning regimen. Two 
TBI plus chemo preparative regimens for TIL have been tested in the clinic at the 
NCI; one involving TBI of 2 Gy, and the other using a more intensive TBI of 12 Gy 
 [  8,   10,   11  ] . Patients were given stem cell support using an autologous CD34 +  pro-
genitor cell-mobilized product in addition to the TIL. The results have been very 
encouraging showing a signifi cant clinical response rate of 72% with the 12 Gy TBI 
regimen, including an impressive 40% rate of complete responses  [  8,   10,   11  ] .   

   Future of ACT for Melanoma 

 Many questions remain when considering how ACT might be optimized. It is not 
yet known what the optimal in vivo cytokines or synergistic immunomodulatory 
therapies (e.g., PD-1 blockade or stimulation of 4-1BB or OX40) are for patients 
receiving adoptively transferred T cells. The precise subpopulation of the effector T 
cells or effector-memory T cells that mediate tumor killing and promote objective 
clinical responses is still unclear. Identifi cation, isolation, expansion, and specifi c 
infusion of these most effective TIL subpopulations could lead to more personalized 
therapy having greater effi cacy, instead of a bulk population. Although ACT using 
expanded TIL has shown to mediate regression in around 50% of patients, there 
remain the other 50% of patients that do not respond to the therapy, and complete 
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durable responses with the nonmyeloablative lymphodepleting preparative regimen 
protocols is still at a modest 8–10%. Do nonresponding patients have systemic host-
related factors that make them resistant to the therapy, or are they within the tumor 
microenvironment? Are there still issues with the migration of TIL into the tumors 
based on earlier Indium labeling studies showing that most TIL still get “trapped” 
in the lungs after intravenous infusion  [  65,   193  ] ? What is the optimal TIL memory 
phenotype driving the clinical responses in the responding patients? These and other 
questions need to be addressed in future studies to make ACT a more successful 
therapy. 

 Another critical issue now facing ACT using expanded TIL for melanoma is the 
appearance of newer targeted therapies with tyrosine kinase inhibitors (TKIs) that 
are poised to take center stage in the therapy of metastatic melanoma diverting 
attention away adoptive T-cell therapy. However, there is an emerging strong argu-
ment to combine these targeted therapies with TIL adoptive cell therapy to further 
improve both the extent and especially the durability of responses. 

   Combination of ACT with Targeted Therapy Using TKIs 

 Mitogen-activated protein kinase (MAPK) pathways are key signal transduction 
pathways that regulate cell proliferation and apoptosis  [    194  ] . The major pathway 
involves the RAS-RAF-MEK-ERK cascade and plays a key role in cell differentia-
tion, proliferation, development, and survival  [    194  ] . Most melanoma cells seem to be 
“addicted” to enhanced or uncontrolled MAPK activation driving their proliferation 
and survival. In melanoma, the main activating mutation in the B-RAF gene (V600E) 
occurs in 60% of melanomas  [  50,   194,   205  ] . Drugs that inhibit B-RAF, such as 
PLX4032 (from Genentech), have undergone phase I, II, and III clinical trials  [  50,  
 194,   205  ] . PLX4032 has been shown to arrest melanoma cell cycle progression and 
can induce cause apoptosis in certain B-RAF-mutated melanoma cell lines. Recently, 
PLX4032 has been FDA- approved for the treatment of metastatic melanoma. More 
direct inhibition of the MEK 1/2 pathway is also being tested using MEK inhibitors, 
such as AZD6244. Overall, these drugs are showing great promise in arresting meta-
static melanoma growth with rapid clinical effects after initiation of treatment with 
up to 80–85% of patients exhibiting partial responses  [  50,   194,   205  ] . 

 Although B-RAF inhibitors have generated high percentages of clinical responses 
at a rapid rate, an unfortunate reality that is emerging is that in most cases the 
responses are transient in nature. In addition, at the time of disease progression, resis-
tant and more aggressive tumors develop rapidly, leaving few treatment options open. 
However, ACT using antigen-specifi c peripheral blood T cells or TIL is still an option 
in this circumstance. We predict that although these new targeted drugs are becoming 
the therapy of choice for eligible patients, ACT will still have an important place for 
the treatment of the high numbers of patients that will ultimately relapse. In addition, 
mouse studies in our group at MD Anderson Cancer Center are beginning to show 
that ACT can synergize with B-RAF inhibitor therapy to enhance tumor eradication 
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(Hwu et al., unpublished observations). In fact, data now coming in on tumor biop-
sies from B-RAF inhibitor-treated patients is showing brisk lymphocytic infi ltrates in 
these tumors that might be associated with higher and more durable response rates 
(David Fisher, Dana Farber Cancer Center, personal communication). Thus, it would 
be exciting to test a combination of B-RAF or MEK inhibitor therapy preceding or 
concomitant with TIL ACT for melanoma. Antigens released from dying melanoma 
cells following treatment with B-Raf inhibitors may also help further activate the 
transferred TIL. These clinical trials will surely be performed as soon as the fi rst 
generation of B-RAF inhibitors becomes FDA-approved.  

   Toward Regulatory Approval of TIL Adoptive Therapy: 
Prospects for a Pivotal Multicenter Clinical Trial 

 There have been over 20 years of clinical experience with adoptive cell therapy 
using ex vivo expanded TIL for metastatic melanoma. During this time, continual 
improvements in cell culture technology and standardization of TIL expansion pro-
tocols have been achieved. In addition, considerable gains in clinical effi cacy have 
been attained to the point that TIL therapy is perhaps emerging as the most powerful 
potential curative regimen for late stage melanoma. A number of published Phase II 
clinical trials at the NCI  [  10,   11,   27,   30  ]  and at other sites around the world  [  13,   82, 
  86,   88  ]  using TIL expanded from tumor fragments or with the “young” TIL protocol 
have consistently demonstrated about a 50% clinical response rate (RECIST) with 
about 10% of patients experiencing durable complete responses. New data emerg-
ing from the NCI also shows a signifi cant increase in long-term survival in patients 
receiving adoptive cell therapy with TIL. At MD Anderson Cancer Center, we have 
also recently concluded a Phase II clinical trial with 33 melanoma patients fi nding 
about a 50% clinical response rate (partial and complete responders) with these 
patients clearly surviving longer than historical controls. This rich clinical experi-
ence and evidence of effi cacy has resulted in a major push recently among the mela-
noma immunotherapy community to work toward achieving regulatory approval of 
this therapy. This would likely require greater clinical experience outside the NCI, 
a multicenter clinical trial design, and possibly a randomized phase III trial done on 
an intent-to-treat basis. 

 A number of possibilities could be considered for executing a multicenter clinical 
trial based on either single-arm Phase II or dual-arm randomized Phase III design 
 [  10,    11,   82,   86,   199,   206  ] . The nonrandomized Phase II approach could be consid-
ered for patients who are refractory to current treatment regimens, especially high-
dose IL-2, ipilimumab (anti-CTLA-4), and B-RAF and MEK inhibitors, with 
treatment consisting of expanded TIL infused after lymphodepletion. The aim would 
be to demonstrate a robust durable or response rate beyond a critical threshold to 
convince regulators of effi cacy in this late-stage patient population. Although this 
approach toward licensing of TIL therapy could be executed faster and with fewer 
patients than a randomized Phase III clinical trial, there are a number of risks. Firstly, 
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the high degree of refractoriness of the disease after failing multiple therapies (includ-
ing immunotherapies) is a concern since we do not have much experience, especially 
outside of the NCI, in treating these types of patients with TIL, especially the popula-
tion of up and coming B-Raf inhibitor failures. Secondly, the threshold for durable 
complete response for a nonrandomized trial needs to be fairly high, and it is unclear 
whether clinical centers outside of the NCI can easily attain such a high goal given 
the different nature of the patient populations at different sites. Thirdly, to ensure 
reaching the high complete response rates needed to convince the FDA, most likely 
the chemo plus TBI preconditioning approach will need to be adopted with stem cell 
support. Only very few clinical centers would attempt such a protocol for TIL at 
present and such a protocol is not readily translatable to many clinical centers if the 
specifi c TIL therapy protocol would indeed get licensed. 

 Perhaps a less risky and more defi nitive approach at determining the effi cacy of 
TIL therapy for melanoma would be the randomized Phase III approach  [  116  ] . 
A proposed scheme for a Phase III clinical trial is shown in Fig.  13.4 . In this schema, 
Stage IIIc–IV melanoma patients eligible for high-dose IL-2 therapy would have a 
tumor resected and TIL expanded from tumor digests using the “young” TIL proto-
col described earlier  [  86–88  ] . Patients that have successful initial (pre-REP) TIL 
expansion would be randomized to receive high-dose IL-2 therapy alone or high-
dose IL-2 plus TIL. In the latter situation, the TIL would be subjected to the large-
scale REP and infused following chemotherapy-induced lymphodepletion followed 
by the IL-2 therapy. The end point of the clinical trial would a statistically signifi -
cant increase in partial and complete response rates over IL-2 alone and increased 
relapse-free survival (RFS) as shown in Fig.  13.4 . The clinical trial should could 
have built-in a crossover option for patients failing IL-2 therapy alone to receive 
expanded TIL as they will also have had a successful initial pre-REP TIL outgrowth 
that would have been cryopreserved and ready for further expansion  [  86–  88  ] . In 
such a case, the overall survival (OS), however, could not be considered an end 
point of the clinical trial.  

 The other major issue that needs to be tackled when considering pivotal clinical 
trials aimed at licensing TIL therapy for melanoma is centered on logistics. Multiple 

  Fig. 13.4    Possible scheme for a pivotal randomized Phase III clinical trial demonstrated the supe-
riority of TIL therapy vs. high-dose IL-2 ( REP  rapid expansion protocol;  HD  high-dose;  PFS  
progression-free survival;  OS  overall survival)       
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issues need to be considered, including where and how the TIL culture and expansion 
will be done, which centers have the capability to perform clinical grade TIL expan-
sion, and which centers have the capability of doing TIL infusion and high-dose 
IL-2 therapy. There are two main possibilities for this consideration. In the fi rst 
scenario, different centers would each perform all aspects of the protocol using a 
unifi ed set of SOPs (TIL expansion, infusion, and high-dose IL-2 therapy) and 
together the data could be combined across sites and submitted for regulatory 
approval. In that case, each site would likely apply for a separate license to treat 
their melanoma patients with their autologous TIL products. In the second scenario, 
a centralized facility would be established that would receive tumor samples from 
multiple sites and perform all the TIL culture and expansion according to a single 
set of SOPs  [  116  ] . The fi nal expanded TIL product would be shipped by courier 
back to each respective treatment site for infusion. This latter approach may be 
more conducive for a randomized Phase III clinical trial and would also avoid site-
to-site variations in sample handling and TIL culture and fi nal TIL product process-
ing. A number of parameters might need to be tested in a smaller Phase II setting to 
develop an optimized set of methods for tumor harvest and shipping followed by 
TIL expansion and shipping of an intact and viable TIL product back to each treat-
ment site. 

 Many of the obstacles mentioned above have already been overcome (e.g., stan-
dardized methods to expand melanoma TIL) and shipping of tumors overnight 
maintaining sterility before processing and the capacity to successfully generate 
TIL for therapy has also been achieved (Mark Dudley, personal communication). 
There is also now considerable experience in overnight shipping of cell therapy 
products for infusion, for example for Dendreon’s Provenge™ cell therapy product 
that has been licensed by the FDA for hormone refractory prostate cancer  [  201–  208  ] . 
Thus, there are many reasons to be optimistic that a multicenter pivotal Phase III 
clinical trial can be achieved that, if positive, could ultimately lead to regulatory 
approval of TIL adoptive therapy as a standard-of-care for metastatic melanoma.   

   Conclusions 

 ACT used to treat melanoma has progressively advanced throughout the years, 
expanding from mice models to current clinical trials. Although melanoma ACT 
using transferred T lymphocytes appears to be promising in many respects, signifi -
cant work needs to be done to further optimize this approach and increase clinical 
effi cacy. One key setback is the lack of persistence of the transferred TIL and the 
loss of key costimulatory signals and telomere shortening in TIL that have been 
extensively expanded ex vivo. One approach that helped increased the viability and 
longevity of the transferred T cells is the lymphodepletion of the patients prior to 
infusion of the T cells. This allowed for “space” in the patient for the transferred 
T cells and the elimination of any suppressive cells or sinks that might compete 
with the transferred T cells for homeostatic cytokines, such as IL-7 and IL-15. 
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The in vitro expansion of the transferred T cells can also be optimized to improve 
persistence and increase effector function. Different cytokines such as IL-15 and 
IL-21 in combination have shown to be superior to IL-2 for cell growth, cytokine 
production, and effector function, and combining these cytokines with an optimal 
blend of T cell costimulatory ligands (e.g., through the TNF-R pathways) is showing 
great promise. New methods of expanding melanoma-specifi c T cells from periph-
eral blood using TCR transduction and transduction with CARs have now reached 
center stage and undoubtedly will have a major impact in the fi eld of melanoma ACT 
in the near future. Another major developing area in melanoma ACT is the use of 
genetically engineered aAPC that can express any blend of costimulatory molecule 
and membrane-bound cytokine for T cell expansion that promises an “off-the-shelf” 
powerful APC technology for TIL and peripheral blood T cell expansion. Overall, 
the future of ACT for melanoma patients is very bright and has accelerated in the 
past few years with now multiple sites demonstrating the clinical effi cacy of TIL 
adoptive therapy. This has spearheaded a movement to fi nally pursue regulatory 
approval for TIL therapy for metastatic melanoma that is gaining rapid momentum.      
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  Abstract   The discovery of checkpoint proteins which regulate T cell activation 
and proliferation through inhibitory or stimulatory receptors has led to a new class 
of anti-tumor therapies. The goal of modulating these checkpoints is to overcome 
pathologic inhibition of T-cell activity which develops during tumorigenesis. The 
monoclonal antibody mediated blockade of cytotoxic T-lymphocyte antigen-4 
(CTLA-4), a co-inhibitory molecule present on the surface of an activated T cell, 
has been a prototype for demonstration that augmentation of T cell activity can 
effectively treat malignant melanoma. In this review, we fi rst describe the proposed 
mechanism of action and preclinical data for CTLA-4 blockade which led to its 
clinical development. Subsequently, we review the pivotal clinical trials which led 
to the characterization of infl ammatory side effects and also the novel kinetics of 
anti-tumor response associated with CTLA-4 blockade. Finally, we discuss a panel 
of potential biomarkers for response to anti-CTLA-4 therapy. CTLA-4 monoclonal 
antibody blockade has demonstrated the ability to provide durable clinical benefi t. 
With increasing knowledge of how to effectively manipulate this and other T cell 
checkpoints, cancer immunotherapies are emerging as an attractive therapeutic 
option in the treatment of melanoma and other malignancies.      
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   Introduction 

 The incidence of melanoma continues to rise with almost 70,000 new cases in 2009 
 [  33  ] . The FDA approved treatments for melanoma have been limited to adjuvant use 
of high-dose interferon- a , and in the metastatic setting, high-dose IL-2 and dacar-
bazine. None of the FDA approved agents have demonstrated an improvement in 
overall survival in a randomized phase III trial for patients with measurable meta-
static disease. Consequently there has been signifi cant interest in pursuing novel 
treatment strategies. 

 Recent advances in immunology have led to a profound insight into the function 
of co-stimulatory and co-inhibitory receptors expressed on T lymphocytes and pro-
vide a novel approach to optimize tumor immunotherapies through immunomodu-
lation. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) has been the prototype 
co-inhibitory molecule present on T lymphocytes targeted in recent tumor immuno-
therapeutic strategies. The development of monoclonal antibodies to harness the 
immuno-stimulatory and immuno-inhibitory checkpoints has been revolutionary. 
For the fi rst time, targeting immunoregulatory pathways has resulted in the control 
of cancer in patients. The anti-CTLA-4 blocking antibody, ipilimumab, is the only 
anti-cancer therapy currently to have demonstrated increased overall survival in 
metastatic melanoma in a randomized phase III trial  [  28  ] . This pivotal result vali-
dates a new category of anti-neoplastic therapy aimed at “treating the patient” and 
not the tumor directly. This review will summarize the mechanism of action of anti-
CTLA-4 monoclonal antibodies, preclinical evaluation, and key clinical trials that 
focus on distinct patterns of immune-related response, immune-related adverse 
events (irAEs), and potential biomarkers associated with response to anti-CTLA-4 
therapy.  

   Mechanism of Immune Potentiation Through 
CTLA-4 Inhibition 

 The primary activation of a naïve T lymphocyte requires two signals. First, antigen 
specifi c recognition occurs through interactions between the T cell receptor (TCR) 
and a peptide-MHC complex. The second signal serves as an immunologic check-
point to maintain balance between activation and tolerance to antigens. This second 
signal provides co-stimulation through CD28 present on the T lymphocyte binding 
to B7-1 (CD80) or B7-2 (CD86) expressed on the antigen presenting cell  [  23  ] . One 
determinant of T cell activation is the number of TCRs activated. Ligation of the 
co-stimulatory molecule CD28 appears to lower this TCR activation threshold  [  66  ] . 
In fact, mouse models defi cient for CD28 (CD28 −/−  mice) demonstrated signifi cant 
reduction in the ability to maintain T cell activation  [  41,   58  ] . This critical role 
CD28-B7 binding in T lymphocytes was further validated by the demonstration of 
blunted T lymphocyte activation in B7-1 and B7-2 double knockout mice  [  6  ] . 
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 In addition to the initial signaling events driving T cell activation, other levels of 
regulation are required during normal immune homeostasis to prevent auto-
immunity. Co-inhibitory receptors serve as additional checkpoints to control T cell 
activation. One such co-inhibitory molecule is CTLA-4, identifi ed as a homolog of 
CD28, which is a major receptor that contributes to this negative regulation  [  63  ]  
(Fig.  14.1 ).   

   T Cell-Intrinsic Suppression 

 The critical role of CTLA-4 in inhibiting T cell activation was demonstrated through 
the generation of CTLA-4 −/−  mice, in which lymphoproliferation and tissue destruc-
tion were observed that resulted in death within 3–4 weeks of birth  [  61,   68  ] . There 
are currently multiple theories explaining CTLA-4 inhibition of T cell activation, 
which are not mutually exclusive. CTLA-4 has a 10–100 fold greater affi nity to 
both B7-1 and B7-2 compared to CD28  [  12  ] . One theory suggests that CTLA-4 

  Fig. 14.1    T cell activation requires two signals including binding of the T-cell receptor to antigen 
bound to major histocompatibility complex on an antigen-presenting cell. Subsequently, full 
activation required binding of costimulatory receptors CD80/CD86 on the antigen-presenting cell 
to the CD28 receptor on the T cell. Intracellular stores of CTLA-4 are translocated with this acti-
vation and compete for binding to CD80/CD86 which results in downregulation of T cell activa-
tion. Anti-CTLA-4 blocking antibodies prevent this T cell downregulation       
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out-competes CD28 for CD80/CD86 and thereby accounts for the inhibitory function 
of CTLA-4. Co-crystallization of CTLA-4 and B7-1 revealed a lattice-like structure 
which may exclude CD28 from binding to CD80/CD86  [  21,   59  ] . Support for the 
CD80/CD86 competition theory includes experiments where inhibitory function 
was largely preserved even with truncation of the CTLA-4 cytoplasmic tail  [  44  ] . 
Additional studies with a mutant non-signaling CTLA-4 revealed that competition 
was a dominant mode of T cell inhibitory function when CTLA-4 and B7 were 
highly expressed  [  8  ] . 

 CTLA-4 mediated negative signaling has been proposed as another mechanism 
underlying its inhibitory function. CTLA-4 does not have traditional immune 
tyrosine inhibitory motifs (ITIMs); however it does possess other tyrosine motifs 
which recruit phosphatases, including SHP-2, which can be involved in negative 
regulation of the TCR signaling cascade  [  4,   39  ] . Studies where B7-nonbinding 
CTLA-4 mutant T cells retained the ability to inhibit T cell proliferation, cytokine 
production, and TCR signaling support an important role for CTLA-4 negative sig-
naling in T cell regulation  [  11  ] . 

 Additional immunosuppressive effects of CTLA-4 may involve limiting antigen 
presenting cell (APC) function and/or T cell cytoskeletal events. Engagement of a T 
cell by an APC typically results in TCR signaling and also the delivery of a stop 
signal, causing decreased motility in lymph nodes. Antibody-mediated ligation of 
CTLA-4 reverses this stop signal and has been shown to inhibit the immune response 
of TCR transgenic T cells to antigen, resulting in decreased cytokine production and 
proliferation  [  57  ] . In fact, CTLA-4 has been shown to inhibit TCR lipid raft genera-
tion within the plasma membrane of T cells which may then serve to terminate T 
cell activation  [  43  ] .  

   T Cell-Extrinsic Suppression 

 In addition to cell-intrinsic CTLA-4-mediated suppression, additional cell-extrinsic 
mechanisms were supported by a series of elegant adoptive transfer studies. Transfer 
of CTLA-4 −/−  T cells into RAG1 −/−  mice resulted in lymphoproliferation and tissue 
damage which could then be reversed by administration of wildtype T cells  [  2,   62  ] . 
Further analysis revealed that this T cell-extrinsic CTLA-4 inhibitory function was 
in part mediated by regulatory T cells. CD4 + CD25 +  T cells, but not CD8 +  T cells nor 
NKT cells, were involved in mediating this CTLA-4-dependent immune suppres-
sion  [  19  ] . In a different model, conditional deletion of CTLA-4 specifi cally in the 
regulatory T cell population resulted in spontaneous T cell activation and autoim-
munity  [  72  ] . Additional immune suppressive effects of CTLA-4 function may be 
mediated through reverse signaling to dendritic cells. CTLA-4 binding to CD80/
CD86 on dendritic cells has been reported to induce indoleamine 2,3-dixogenase 
(IDO) activity, which degrades tryptophan. The reduced tryptophan then causes 
inhibition of T cell proliferation and apoptosis  [  17  ] . In summary, the mechanism 
of CTLA-4 mediated suppression is complex and likely related to both effector 
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T cell-intrinsic and -extrinsic mechanisms. Regardless of the mechanism, CTLA-4 
clearly plays a critical role in regulating lymphocyte activation and therefore offers 
a rational target for immune modulation as a cancer therapeutic.  

   Preclinical Studies of CTLA-4 Blocking Antibodies 

 The potential for effective tumor immunotherapy through application of CTLA-4 
blocking antibodies was fi rst demonstrated in transplantable models of colon carci-
noma and fi brosarcoma. Anti-CTLA-4 therapy not only caused tumor regression 
but protection against subsequent tumor challenge  [  38  ] . Additional studies using 
the poorly immunogenic B16 melanoma model required the combination of both 
anti-CTLA-4 antibody and a GM-CSF-expressing whole cell vaccine in order to 
successfully treat established tumors  [  64  ] . In this same model, the anti-tumor effects 
were found to be dependent on CD8 +  T cells as well as perforin and Fas/FasL inter-
actions  [  65  ] . Further analysis of tumor infi ltrating lymphocytes from mice receiving 
the combined anti-CTLA-4 antibody and a GM-CSF secreting vaccine revealed a 
direct correlation between tumor rejection and increase in the ratio of effector T 
cells to regulatory T cells within the tumor  [  49  ] . These encouraging preclinical 
results paved the groundwork for clinical trials.  

   Clinical Trial Testing of Anti-CTLA-4 Antibodies 

 Two fully human monoclonal CTLA-4 blocking antibodies have been developed for 
clinical use: ipilimumab (MDX-010) and tremelimumab (CP-675,206). Both anti-
bodies were developed from human immunoglobulin gene transgenic mice. 
Tremelimumab is an IgG2 antibody and ipilimumab is an IgG1 antibody  [  48,   51, 
  52,   69  ] . Given that both antibodies appear to have comparable spectra of clinical 
response and immune related adverse events (irAEs) their activity does not appear 
to be dependent on isotype.  

   Tremelimumab 

 In a phase I dose escalation trial (0.01–15 mg/kg), 34 melanoma patients were 
treated with tremelimumab with a 29% (8/28 patients with evaluable disease) objec-
tive response rate, with two complete responses (CRs), two partial responses (PRs), 
and four patients with stable disease (SD) observed. The duration of clinical 
responses was greater than 34+ months. Interestingly, one individual who obtained 
a CR had previously received ipilimumab, consistent with the effi cacy of re-induc-
tion therapy later shown in the ipilimumab phase III trial  [  28,   52  ] . Three additional 
phase I/II trials followed with treatment at either 10 mg/kg monthly or 15 mg/kg 
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every 3 months, in total there was a clinical benefi t rate of 22.9% (79/345). Decreased 
frequency of grade 3/4 adverse events was noted in patients receiving the 15 mg/kg 
every 3 months (13%) schedule compared with patients in the 10 mg/kg monthly 
cohort (27%)  [  7,   34,   50  ] . Therefore, the 15 mg/kg every 3 months schedule was 
selected phase III testing. At the ASCO 2008 Annual Meeting, the results of a phase 
III trial, in which tremelimumab was compared with DTIC or temozolomide in 665 
metastatic melanoma patients with a primary endpoint of overall survival, were pre-
sented. In the second interim analysis, tremelimumab failed to show improved over-
all survival compared to chemotherapy, with the median overall survival being 11.8 
and 10.7 months in the tremelimumab and chemotherapy arms, respectively. 
Consequently, the trial was halted  [  54  ] . In the fi nal effi cacy results published in 
abstract form in 2010, the median overall survival increased to 12.6 months in the 
tremelimumab arm, while the chemotherapy arm remained at 10.7 months; how-
ever, this difference was not statistically signifi cant  [  55  ] .  

   Ipilimumab Monotherapy 

 In an initial pilot study, ipilimumab monotherapy was administered to 17 patients 
with unresectable melanoma as a 3 mg/kg single dose administration. A 12% 
objective response rate was noted with two partial responses (PRs) and only mild 
reversible pruritus observed as an adverse event  [  60  ] . Following this, a phase I/II 
safety and pharmacokinetic trial of ipilimumab was performed in 88 patients with 
unresectable stage III or IV melanoma. Both dose escalation (2.8–20 mg/kg) and 
number of doses (1–4) were examined in separate arms of the trial. Responses 
were noted in all groups, with a clinical benefi t rate of 20% including one com-
plete response (CR) and three PRs. Fourteen additional patients experienced dura-
ble stabilization of disease. Unique characteristics of response were noted 
including a median time to response of 123 days, and long duration of response 
(greater than 638 days) in the objective responders  [  71  ] . A separate multi-institu-
tional dose escalation phase II trial of ipilimumab administered at 0.3, 3 or 10 mg/
kg every 3 weeks for four doses (induction) and if eligible, followed by ipili-
mumab administered every 12 weeks starting at week 24 (maintenance), estab-
lished the 10 mg/kg cohort as the group with the greatest response rate. In the 217 
unresectable stage III/IV melanoma patients treated with ipilimumab monother-
apy, the best overall response rate was 11.1% in the 10 mg/kg cohort and 4.2% in 
the 3 mg/kg cohort while no responses were noted in the 0.3 mg/kg cohort. The 
10 mg/kg vs. 3 mg/kg cohort had a 24 month median survival of 29.8 and 24.2% 
respectively, and a clinical benefi t rate of 29.2 and 26.4% respectively  [  74  ] . In a 
separate multicenter phase II trial, an additional 155 patients were treated with 
10 mg/kg ipilimumab every 3 weeks for four doses, and if eligible were followed 
by 10 mg/kg ipilimumab every 3 months starting at week 24. This study was con-
sistent with the dose escalation study with a clinical benefi t rate of 27.1% and best 
overall response rate of 5.8%  [  46  ] .  
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   Combination Trials: Peptide Vaccines 

 Given the preclinical support and immunological rationale for combining vaccination 
with immunomodulatory antibodies, a clinical trial combining treatment of ipili-
mumab at 3 mg/kg every 3 weeks and a gp100 peptide vaccine was conducted in 14 
patients with metastatic melanoma. Two complete responses and an additional par-
tial response were noted for an objective response rate of 21.4%  [  48  ] . As follow up 
to this trial, a larger series of patients (56) was treated with two dosing schedules of 
either 3 mg/kg ipilimumab every 3 weeks or an initial dose of 3 mg/kg ipilimumab 
with subsequent doses reduced to 1 mg/kg every 3 weeks, with both arms receiving 
concomitant gp100 vaccination. The objective response rate was 13% in this trial 
with two CRs, and fi ve PRs, with all responses being durable. There appeared to be 
no difference between the response rate and toxicity rate between the two dosing 
schedules  [  1  ] . Dosing schedules were further evaluated in an intra-patient dose esca-
lation study of ipilimumab with or without the addition gp100 vaccination based on 
HLA typing. Patients who did not develop objective tumor responses or dose limiting 
toxicity after one course of their starting dose had the ipilimumab dose increased on 
their next course of treatment. A 19% (16/85) objective response rate was noted, with 
no statistical difference in response rate between the combined gp100 peptide vac-
cine and ipilimumab arm vs. the ipilimumab alone arm  [  15  ] . 

 In addition to combination with vaccines, a phase I/II trial of 0.1–3 mg/kg of 
ipilimumab given every 3 weeks combined with IL-2 has also been conducted in 36 
metastatic melanoma patients. There was a reasonable object tumor response rate of 
22% with three CRs and fi ve PRs; however statistical analysis did not support a 
synergistic effect of the agents  [  42  ] .  

   Immune Related Adverse Events 

 The side effects associated with anti-CTLA-4 therapy represent a unique panel of 
mechanism-based, tissue-specifi c infl ammatory events that have been termed irAEs. 
They appear to be class-specifi c, occurring with both tremelimumab and ipilimumab 
administration  [  7,   74  ] . The most common irAEs in decreasing incidence include 
pruritus/rash, diarrhea, colitis, hepatitis, endocrinopathies and uveitis  [  3,   5,   56  ] . 
Early in clinical development, rare (2%) occurrences of colon perforations were 
noted; however the majority of irAEs appear to be reversible by systemic corticos-
teroids using well defi ned treatment algorithms  [  3  ] . 

 For those irAEs that are refractory to standard corticosteroid administration, 
anti-tumor necrosis factor antibody (infl iximab) or other immune suppressants have 
effectively reversed the irAEs  [  46  ] . Initial studies suggested a dose dependency for 
the development of irAEs, with 70% (50/71) of patients receiving 10 mg/kg ipili-
mumab vs. 26% (19/72) of patients receiving 0.3 mg/kg of ipilimumab develop-
ing irAEs  [  74  ] . However, the 10 mg/kg of ipilimumab has been safely tolerated 
with 47% of the irAEs being grade 1/2 in a multicenter phase II trial with 155 
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patients. The additional grade 3/4 irAEs observed included gastrointestinal (8.4%), 
hepatobiliary (7.1%), skin (3.2%) and endocrine (1.3%) toxicities  [  45  ] . 

 Prophylactic administration of budesonide, a non-absorbed oral corticosteroid, 
was studied in 115 stage IV melanoma patients in a randomized phase II trial of 
10 mg/kg of ipilimumab with or without budesonide. Similar response rates were 
noted in both the (12.1%) budesonide and (15.8%) placebo controlled arm, but there 
was no impact on the development of grade 2/3 diarrhea  [  70  ] . Budesonide is a non-
absorbed steroid and therefore less likely to impact immune functions. However, 
multiple studies have also demonstrated that systemic corticosteroids do not appear 
to impact effi cacy of ipilimumab, particularly when corticosteroid therapy is admin-
istered after initiation of ipilimumab treatment  [  3,   15  ] .  

   Immune Related Response Criteria 

 Given that CTLA-4 blocking antibodies are the prototype for a new class of thera-
peutics, there are many unique characteristics of responses that have been 
observed, that differ from traditional response criteria seen with cytotoxic thera-
pies. Response to anti-CTLA-4 therapy appears independent of traditional prog-
nostic indicators including prior systemic therapies, gender, and LDH  [  73  ] . In 
addition, the response durations with ipilimumab therapy have been more durable 
than those seen with conventional agents  [  36,   47  ] . As the radiographic patterns of 
response to anti-CTLA-4 therapy were recognized, there became a need to estab-
lish novel criteria to appropriately capture individuals that were benefi tting from 
ipilimumab therapy. 

 The traditional radiographic standards for evaluating anti-tumor responses in 
the cytotoxic chemotherapeutic era were either by Response Evaluation Criteria 
in Solid Tumors (RECIST) or the World Health Organization (WHO) criteria. 
Effective chemotherapy causes direct cytotoxic effects which results in rapid 
radiological decreases in tumor size. Therefore, radiographic images which show 
increases in tumor size are traditionally interpreted as progression of disease, 
especially when new lesions appear. However, anti-CTLA-4 therapy responses 
require activation of the immune system, which may occur in a few weeks or sev-
eral months after initiating therapy. As such, radiographic evidence of progression 
of disease may actually refl ect a mixture of progression in advance of response or 
infl ammation, edema, and lymphocytic infi ltration as opposed to true persistent 
tumor progression. Serial biopsies of regressing metastases in anti-CTLA-4-
treated patients demonstrated infi ltration with CD8 +  T cells associated with tumor 
necrosis  [  26  ] . 

 To avoid premature termination of effective therapy and to capture the novel 
radiographic response kinetics, a set of immune related response criteria (irRC) was 
proposed by the Cancer Vaccine Clinical Trial Working Group  [  29,   74  ] . The irRC 
utilizes bidimensional tumor measurements according to the WHO criteria, and 
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total tumor burden is then calculated by the summation of the individual sizes similar 
to the RECIST criteria. However, in the irRC, new transient lesions or increases in 
tumor size less than 25% are not considered progression of disease, which is dif-
ferent than that defi ned by the WHO criteria. The irRC were retrospectively vali-
dated utilizing phase II clinical trial data from 227 patients treated with ipilimumab 
in the 10 mg/kg ipilimumab phase II single-arm study CA184-008 and the dose-
ranging study Phase II trial CA184-022. Interestingly, 9.7% (22 of 227) patients 
characterized as having progressive disease (PD) by the WHO criteria had evi-
dence of clinical response to ipilimumab by the irRC. In fact, those individuals 
classifi ed as PD by the WHO criteria but with immune related partial response 
(irPR) or immune related stable disease (irSD) by the irRC had an overall survival 
that was similar to those showing clinical benefi t defi ned by the standard WHO 
criteria  [  74  ] . The irRC is being further prospectively validated in current anti-
CTLA-4 clinical trials.  

   Phase III Clinical Testing of Ipilimumab 

 A phase III trial with 676 enrolled HLA-A*0201 positive patients receiving ipili-
mumab in the refractory disease setting was recently reported. There were three 
arms: ipilimumab alone, gp100 peptide vaccine alone, or the combination of both 
ipilimumab and gp100 vaccine, randomized in a 1:1:3 ratio. Ipilimumab was 
administered at 3 mg/kg every 3 weeks for a total of four doses. The primary end-
point of the trial was changed from best overall response rate to overall survival 
prior to unblinding. A statistical improvement in overall survival was observed in 
patients receiving ipilimumab with or without gp100 peptide vaccine compared 
with the gp100 peptide vaccine alone. The median overall survival for the ipili-
mumab plus gp100 and ipilimumab alone groups was 10.0 months ( p  < 0.001) and 
10.1 months, respectively ( p  = 0.003) compared with 6.4 months in the patients 
receiving gp100 alone. There was no statistically signifi cant difference in overall 
survival between the gp100 peptide vaccine combined with ipilimumab vs. the 
ipilimumab alone group. Twelve month overall survival for both ipilimumab groups 
(±gp100) was 43.6–45.6 vs. 25.3% in the gp100 alone group, while the 24 month 
survival was 21.6–23.5% in the ipilimumab groups compared with 13.7% in the 
gp100 alone group. These results highlight the durability of clinical response in 
those patients who benefi ted from ipilimumab. The disease control rate was 20.1% 
and 28.5% in the ipilimumab plus gp100, and ipilimumab alone groups respec-
tively, compared with 11.0% in the gp100 alone group, which was consistent with 
results from multiple prior phase II clinical trials. It should be noted that the dis-
ease control rate may underestimate the actual benefi t as it utilized the modifi ed 
(WHO) criteria for tumor assessments, and did not account for patients that may 
have the appearance radiological tumor progression followed by ultimate clinical 
benefi t  [  28  ] .  
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   Ipilimumab Plus Chemotherapy 

 In addition to combinations with other immunotherapeutic agents, combining 
ipilimumab with standard cancer therapies, including chemotherapy, has been eval-
uated. Preclinical studies have suggested the potential for chemotherapy to enhance 
immune responses through direct tumor lysis and increased antigen presentation 
and additional modulation of the immune repertoire by depletion of regulatory T 
cells. A phase II trial compared 3 mg/kg of ipilimumab every 3 weeks for four doses 
with or without dacarbazine in the treatment of 72 chemotherapy-naïve, advanced 
stage melanoma patients. The clinical benefi t rate was 31.4 vs. 21.6%, favoring the 
combination arm  [  25  ] . Notably, the duration of response appeared to be enhanced 
by the addition of dacarbazine with a 23 vs. 10% 3-year survival rate in the combi-
nation vs. ipilimumab alone arm  [  24  ] . Other combinational trials are still accruing 
data, including a three arm clinical trial with 60 patients evaluating ipilimumab 
alone, combined with carboplatin and paclitaxel, or with dacarbazine. Finally, a 
phase III registration trial in treatment-naïve patients of 10 mg/kg of ipilimumab 
with maintenance ipilimumab combined with dacarbazine, vs. dacarbazine alone, 
has completed accrual. An estimated 500 patients have been enrolled in this trial 
with the primary endpoint being overall survival. We still await unblinding and 
analysis of these data.  

   Adjuvant Therapy 

 In adjuvant therapy setting, anti-CTLA-4 antibody therapy is aimed at augmenting 
the anti-tumor immune response in the setting of minimal tumor antigen available 
to prime immune responses against any remaining microscopic tumor. While in the 
metastatic setting, there is a high tumor burden and therefore greater tumor antigen 
available for presentation, but also increased tumor associated immune suppression. 
Therefore, the safety and effi cacy of ipilimumab has been investigated in the adju-
vant setting. A small clinical trial of ipilimumab in the adjuvant setting for resected 
stage III and IV melanoma patients with no evidence of disease has been completed. 
Three cohorts received escalating doses of ipilimumab at 0.3, 1 or 3 mg/kg every 4 
weeks combined with a vaccine consisting of gp100, MART-1, and tyrosinase pep-
tides. The goals of this adjuvant trial were to evaluate for toxicity and to determine 
a maximum tolerated dose. The fi ve patients in the highest cohort all had some 
degree of diarrhea with grade 3 toxicity noted in three of the fi ve patients, with all 
irAEs medically reversible. The secondary endpoints which evaluated relapse free 
survival in the nineteen patients demonstrated that 63% of the total treated patients 
relapsed, with 38% (3/8) of patients with evidence of irAEs relapsing while 82% 
(9/11) of patients without irAEs relapsing  [  56  ] . 

 An additional adjuvant clinical trial was subsequently performed with 25 resected 
stage III/IV melanoma patients receiving the same combination peptide vaccine 
plus ipilimumab at 3 mg/kg every 8 weeks. There were grade 2/3 irAEs noted in 
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48% (12/25) of patients, with 20% (5/25) being dose limiting, but all irAEs were 
successfully treated with systemic corticosteroids. These encouraging prelimi-
nary data have led to a large ongoing EORTC-sponsored phase III double-blind, 
placebo-controlled, adjuvant ipilimumab trial for high risk, completely resected 
stage III melanoma patients, with an estimated target enrollment of 950 patients. 
This phase III EORTC trial will hopefully provide a defi nitive statement regarding 
the benefi t of ipilimumab in adjuvant treatment of high risk stage III melanoma 
patients and additional insight into the association of clinical benefi t with the 
development of irAEs. Given that the risk:benefi t ratio of anti-CTLA-4 therapy is 
likely to be different for patients being treated in the adjuvant vs. in the metastatic 
setting, careful analysis of the clinical response and frequency and quality of toxici-
ties will be studied carefully. This will include a panel of investigational biomarkers 
for this study.  

   Biomarkers of Response 

 In parallel with defi ning the irRC, there have been additional efforts to establish 
biomarkers of response to ipilimumab. As described in the irRC, a delayed response 
pattern can be noted with anti-CTLA-4 antibody therapy; therefore it is even more 
important to identify biomarkers which rapidly detect individuals likely to benefi t in 
order to adjust therapy accordingly. 

 We and others have found detailed analysis of peripheral blood lymphocyte after 
two doses of ipilimumab to correlate with overall survival. Those patients with an 
absolute lymphocyte count (ALC) greater or equal to 1,000 cells/ m L had both an 
improved clinical benefi t rate (51 vs. 0%  p  = 0.01) and median OS (11.9 vs. 1.4 
months  p  < 0.001) compared with those patients with an ALC <1,000 cells/ m L  [  37  ] . 
Further subset analysis of the lymphocyte populations has suggested that increases 
in CD8 +  T cells may specifi cally correlate with clinical benefi t  [  75  ] . 

 Increases in peripheral blood antigen-specifi c T cells responses have also been 
shown, in preliminary analyses, to correlate with clinical benefi t. Fifteen mela-
noma patients treated with ipilimumab were evaluated for antigen specifi c T cell 
responses. Five of the eight clinical responders developed antibody, CD4 + , and 
CD8 +  T cell responses to NY-ESO-1, a cancer testis antigen. This was in contrast 
to one out of the seven non-responders developing any such immune response  [  76  ] . 
Detailed analysis of an ipilimumab-treated melanoma patient having a complete 
clinical response provided further evidence that increased antigen-specifi c T cells 
responses may correlate with clinical benefi t. As described by Klein et al., Melan-
A-specifi c CD8 +  T cells, both in the peripheral blood and in the tumor, were identi-
fi ed that exhibited potent in vitro killing activity of a Melan-A-expressing melanoma 
 [  35  ] . It is important to note that, peripheral blood T cell responses may not always 
refl ect intra-tumoral immune events. Three of 12 melanoma patients treated with 
tremelimumab experienced clinical benefi t and were monitored for reactivity to 
gp100, MART1, and tyrosinase antigens. Within the peripheral blood, there was no 
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signifi cant change in antigen-specifi c CD8 +  T cells or in regulatory T cell numbers 
 [  13  ] . In contrast, there did appear to be in an increase in intratumoral gp100 spe-
cifi c T cells in a responding lesion. The complexity in evaluating the relevance of 
intratumoral biomarkers include the paradoxical association of increased expres-
sion of FOXP3 and indoleamine 2,3-dioxygenase (IDO) in tumor infi ltrating lym-
phocytes from ipilimumab treated clinical responders. In addition, while marked 
CD8 +  T cell infi ltration was noted in intratumoral samples from responders to 
tremelimumab therapy, no signifi cant changes were noted in FOXP3 or IDO  [  22, 
  53  ] . 

 Detailed analysis of the cellular phenotype and polyfunctionality of the T cell 
populations may further identify biomarkers for clinical response to anti-CTLA-4 
therapy. Polyfunctional T cell subsets capable of generating multiple cytokines are 
a hallmark of a robust immune response. Polyfunctional T cells were initially found 
to correlate with clinical response in the infectious disease model including HIV 
and hepatitis  [  14,   16  ] . Polyfunctional NY-ESO-1 specifi c T cells producing IFN- g , 
MIP-1 b , and TNF- a , have recently been found in melanoma patients treated with 
ipilimumab who demonstrated clinical benefi t  [  76  ] . 

 Recently, inducible costimulator (ICOS) has also emerged as a potential bio-
marker of immune activation associated with anti-CTLA-4 therapy. ICOS, a T cell-
expressed surface protein structurally related to CD28 and CTLA-4, is commonly 
expressed on the cell surface after T cell activation  [  31  ] . An increased frequency of 
CD4 + ICOS hi  T cells that also produced IFN- g  was noted in six bladder cancer 
patients treated with neoadjuvant ipilimumab  [  40  ] . In a follow-up study, sustained 
increases in both CD4 + ICOS hi  and CD8 + ICOS hi  T cells in 14 ipilimumab-treated 
melanoma patients was found to correlate with greater clinical benefi t  [  9  ] . In a sepa-
rate study with tremelimumab-treated breast cancer patients, increases in both CD4 +  
and CD8 +  ICOS-expressing T cells were also noted, and there appeared to be a trend 
toward a greater percentage of ICOS hi  T cells in patients with stable disease com-
pared with those with progression of disease  [  67  ] . These results suggest that tran-
sient increase in CD4 + ICOS hi  T cells may refl ect anti-CTLA-4 antibody activation 
of the immune response while a sustained elevation of CD4 + or CD8 + ICOS hi  T cells 
may indicate clinical benefi t.  

   Antibody Responses 

 In addition to T cell responses, there has been specifi c focus on correlating 
NY-ESO-1 antibody responses with the clinical outcome of anti-CTLA-4-treated 
melanoma patients. Melanoma differentiation antigens and cancer testis antigens 
have been associated with antigen-specifi c humoral responses  [  10,   30  ] . In fact, 
spontaneous high titer antibodies have been observed in subsets of patients with 
advanced melanoma  [  32  ] . In a detailed analysis of 15 metastatic melanoma patients 
treated with ipilimumab, 62% (5/8) of the patients experiencing clinical benefi t were 
NY-ESO-1 seropositive compared with 0% (0/7) of the clinical non-responders. 
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Interestingly, the presence of NY-ESO-1 antibody responses in the clinical 
responders was also associated with NY-ESO-1-specifi c polyfunctional CD4 +  and 
CD8 +  T cells. This observation suggests that, in anti-CTLA-4-treated patients, both 
the humoral and cellular antigen-specifi c immune responses may be associated 
with clinical benefi t  [  76  ] . A separate report presented confl icting results, indicating 
no correlation between clinical response and immune responses against NY-ESO-1; 
however, different defi nitions of clinical benefi t, different treatment schedules, 
and different thresholds for defi nition of seropositivity may account for this dis-
crepancy  [  20  ] .  

   Conclusions 

 The success of CTLA-4-blocking antibodies in treating metastatic melanoma has 
established a promising new modality of anti-cancer therapy, through blockade of 
immune inhibitory pathways. Although most of the ipilimumab experience has been 
with melanoma, these immunomodulatory agents aim to enhance the patient’s own 
immune system and do not appear to be restricted to specifi c tumor types. Thus, this 
therapeutic strategy will likely be applicable to multiple other cancer histologies. 
With increasing clinical experience utilizing these immunomodulatory agents, 
investigators have recognized unique characteristics including the patterns of 
response, durability of response, and the associated irAEs. These novel aspects of 
this therapeutic modality are important to consider as additional immunomodula-
tory antibodies, including those targeting PD-1, PDL-1, GITR, and others, enter 
clinical testing. 

 Anti-CTLA-4 monotherapy clearly does not benefi t all melanoma patients. 
Therefore, CTLA-4 blocking antibodies will likely serve as solid foundation for 
additional complementary agents in order to improve overall effi cacy. There is pre-
clinical evidence supporting combinatorial strategies of anti-CTLA-4 therapy com-
bined with additional means to enhance the “immunogenicity” of the tumor, such as 
tumor vaccines, chemotherapy, or radiation therapy. Small molecule targeted agents 
may also become a natural treatment partner to anti-CTLA-4 therapy. Recently, 
there has been clinical success in treating melanoma utilizing small molecular 
inhibitors targeting mutant B-RAF and KIT  [  18,   27  ] . Unfortunately, the benefi t 
appears short-lived in many patients and thus provides incentive to pair them with 
immunological agents such as anti-CTLA-4 therapy in an attempt to attain a higher 
frequency of durable responses. Finally, there is clear need to defi ne biomarkers 
both of negative and positive predictive value. Not only will biomarkers potentially 
help select individuals most likely to benefi t from anti-CTLA-4 therapy, but also 
provide insight into the mechanisms of anti-CTLA-4 activity and methods to 
enhance its effi cacy.      
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  Abstract   Tumors can evade immune recognition by usurping regulatory pathways 
which, under normal circumstances, down-modulate immune activation and main-
tain tolerance to self. A key pathway operational in cancer-induced tolerance is 
composed of programmed death-1 (PD-1, CD279), a receptor expressed on acti-
vated T and B cells, and its ligands B7-H1/PD-L1 (hereafter B7-H1, CD274) and 
B7-DC/PD-L2 (hereafter B7-DC, CD273). PD-1 bears homology to CTLA-4 but 
transmits distinct inhibitory signals. B7-H1, which is homologous to other B7 fam-
ily members, is constitutively expressed by many human cancers and is thought to 
be the major inhibitory ligand for PD-1; it is also expressed on activated hematopoi-
etic cells, vascular endothelial cells, and cells inhabiting infl ammatory microenvi-
ronments. Based on animal models implicating the importance of the B7-H1/PD-1 
pathway in cancer-induced immunosuppression, and human studies correlating 
tumor expression of B7-H1 with unfavorable clinical outcomes, interest has recently 
focused on exploring B7-H1/PD-1 blockade as a new approach to cancer immuno-
therapy. Early results from clinical trials suggest that this may be an effective strat-
egy for treating patients with advanced metastatic melanoma as well as malignancies 
of epithelial origin.  
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   The B7-H1/PD-1 Pathway: Animal Models 

   Functionality Indicated by Phenotypes of B7-H1/PD-1 
Defi cient Mice 

 Studies in murine models have revealed important clues about the immune regulatory 
functions of the B7-H1/PD-1 pathway. The physiological functions of the B7-H1 
molecule were elucidated by generating B7-H1-defi cient mice with gene knockout 
technology. Although B7-H1-defi cient mice do not develop spontaneous autoim-
mune diseases, mild-to-moderate levels of lymphocyte accumulation are evident in 
the kidneys, liver, and lung. This accumulation appears to be selective for peripheral 
but not lymphoid organs, with a predominant CD3 + CD8 +  component exhibiting sig-
nifi cantly decreased apoptosis  [  20  ] . Although the mechanism underlying selective 
accumulation of CD8 +  T cells in B7-H1 knockout mice remains to be elucidated, 
these fi ndings implicate a role for B7-H1 in the maintenance of T and cell homeo-
stasis in peripheral organs. More recently, B7-H1 has been shown to interact not 
only with PD-1, but also with B7-1 at a distinct binding site  [  12  ] . This interaction 
appears to play an important role in inducing T cell tolerance in vivo, as shown 
using specifi c monoclonal antibodies (mAbs) to selectively block B7-H1/PD-1 or 
B7-H1/B7-1 ligation  [  49  ] . These new fi ndings expand our understanding of the 
mechanisms by which B7-H1 may exert immune tolerance. 

 In contrast to B7-H1-defi cient mice, PD-1-defi cient mice spontaneously develop 
phenotypes of lymphoproliferative/autoimmune diseases, accompanied by a marked 
accumulation of infl ammatory cells in affected organs, including CD4 +  and CD8 +  T 
cell subsets. These phenotypes have delayed onsets and are organ- and strain-spe-
cifi c. PD-1 −/−  mice on a C57BL/6 background develop a lupus-like arthritis  [  44  ] , 
while PD-1 defi ciency on a BALB/c background causes a cardiomyopathy second-
ary to the production of autoantibodies against cardiac troponin  [  45,   48  ] . Autoimmune 
manifestations in PD-1 −/−  mice are different from those observed in CTLA-4 −/−  mice, 
which die at 3–4 weeks of age from massive lymphocytic infi ltration and tissue 
destruction in multiple organs  [  66,   74  ] . Collectively, these fi ndings from murine 
models predict that autoimmune phenomena, if encountered in patients treated with 
B7-H1/PD-1 blockade, might be milder and less frequent than those observed fol-
lowing anti-CTLA-4 therapy. 

 B7-H1 appears to be the dominant ligand responsible for the suppressive func-
tion of PD-1 in vivo, as results obtained in PD-1 or B7-H1-defi cient mice are often 
similar to those obtained with blocking antibodies against PD-1 or B7-H1. However, 
in some models, blockade of B7-H1 has a more profound effect than PD-1 block-
ade, perhaps refl ecting the existence of other functional receptors for B7-H1, such 
as B7-1  [  24,   69  ] .  
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   Regulation of PD-1 Expression 

 PD-1 expression is up-regulated on T lymphocytes within hours of exposure to 
cognate antigen, and is controlled by common gamma chain cytokines including 
IL-2, IL-7, IL-15, and IL-21  [  37  ] . Upon antigen clearance, PD-1 expression wanes 
accordingly. However, persistent antigen exposure may prevent down-regulation of 
PD-1 and allow the delivery of suppressive signals, leading to loss of T cell function 
and a partially unresponsive state termed T cell exhaustion. These observations may 
be especially relevant to chronic maladies including infection, infl ammation, and 
even malignant transformation, because persistent PD-1 expression has been docu-
mented in these disorders. In mice chronically infected with lymphocytic chorio-
meningitis virus (LCMV), PD-1 is up-regulated upon activation of antigen-specifi c 
T cells, and high levels are found on exhausted CD8 +  T cells  [  5  ] . As a consequence, 
activated T cells become dysfunctional and fail to become memory T cells. In vivo 
administration of mAbs blocking the interaction of B7-H1 with PD-1 restores the 
ability of exhausted LCMV-specifi c CD8 +  T cells to proliferate, secrete cytokines, 
kill infected targets, and decrease viral load in chronically infected animals. 
Correlates for these effects have been observed in humans with chronic infectious 
diseases. PD-1 is expressed at high levels on nonfunctional T cells during human 
immunodefi ciency virus (HIV) infection, and anti-PD-1 or anti-B7-H1 mAbs can 
restore proliferative and effector T cell functions in vitro  [  17,   68  ] . Comparable fi nd-
ings have been observed in patients chronically infected with hepatitis B and C 
viruses  [  9,   52,   70  ] ,  Helicobacter pylori   [  16  ] , and  Mycobacterium tuberculosis   [  33  ] .  

   Functional Consequences of B7-H1/PD-1 Interactions 

 Murine models suggest a predominant role for B7-H1/PD-1 interactions in the 
establishment and/or maintenance of peripheral tolerance, including feto-maternal 
tolerance  [  25  ] , and in the suppression of induced or ongoing immune responses, 
including alloreactive responses  [  55  ] , graft-vs.-host disease  [  8  ] , and various autoim-
mune diseases such as experimental autoimmune encephalopathy (EAE), diabetes, 
and collagen-induced arthritis  [  3,   41,   54,   71  ] . 

 Our early observation that multiple murine and human tumor lines as well as 
freshly isolated malignant human tissues overexpress B7-H1 [  19,   26  ]  has prompted 
the investigation of the potential role of the B7-H1/PD-1 pathway in regulating 
antitumor immunity. Up-regulation of B7-H1 appears to be associated with local 
infl ammatory and immune responses often found at tumor sites, consistent with the 
observation that interferon (IFN) gamma is the most potent inducer of B7-H1 known 
 [  36  ] . In the murine P815 mastocytoma model, tumor cells transduced to express 
B7-H1 were signifi cantly more resistant to immunotherapy with adoptively trans-
ferred preactivated T cells  [  19  ]  or with anti-CD137 (a T cell agonist mAb), com-
pared to mock transduced tumor cells  [  28  ] . Blockade of B7-H1 with a specifi c mAb 
restored T cell responses in this model. In a different model, overexpression of 
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B7-H1 on the murine squamous cell cancer line SCCVII resulted in diminished 
immune-mediated control that was restored upon B7-H1 blockade  [  60  ] . Similarly, 
tumor growth of the naturally B7-H1-expressing J558L myeloma cell line was 
diminished in syngeneic PD-1 −/−  mice and in wild-type mice treated with anti-B7-H1 
mAb  [  31  ] . These studies demonstrate a critical role for the B7-H1/PD-1 pathway in 
resistance to antitumor immunity, and support a potential approach to enhancing 
immunity against human cancers by blocking this pathway. 

 In addition to T cell inhibition caused by direct interactions between B7-H1 on 
tumor cells and PD-1 on activated T cells, several other possible mechanisms con-
tributing to the suppressive function of the B7-H1/PD-1 pathway in tumor immu-
nity have been implicated in animal models. Preliminary results indicate that tumor 
cells expressing B7-H1 are intrinsically more resistant than B7-H1-negative cells to 
lysis by tumor-specifi c T lymphocytes. This resistance can be abrogated by blocking 
B7-H1 or PD-1, suggesting that B7-H1/PD-1 interaction activates a “molecular 
shield” through retrograde signaling into tumor cells, to prevent T cell lysis  [  4  ] . By 
transducing full-length or C-terminally truncated B7-H1 molecules into P815 tumor 
cells, it was shown that full-length B7-H1 can serve as receptor, delivering antiapop-
totic signals into tumor cells, while B7-H1 without an intracellular tail cannot  [  4  ] . 

 Tumor-associated antigen-presenting cells (APCs) can also utilize the B7-H1/
PD-1 pathway to suppress antitumor immunity. In a human ovarian cancer xeno-
graft model, anti-B7-H1 mAb augmented the effector functions of T cells stimu-
lated in the presence of autologous tumor myeloid dendritic cells (MDCs) expressing 
high levels of B7-H1, leading to improved control of tumor growth in non-obese 
diabetic (NOD)/severe combined immunodefi ciency (SCID) mice  [  15  ] . Furthermore, 
overexpression of B7-H1 on tumor stromal cells, including DCs, myeloid suppres-
sor cells, and fi broblasts, has been shown to potentially inhibit immune responses 
and may contribute to the suppressive cancer microenvironment. B7-H1-expressing 
DCs may also mediate immune suppression by activating regulatory T cells (Tregs). 
In mice inoculated with B16 melanoma, plasmacytoid dendritic cells in tumor-
draining lymph nodes expressed IDO, a potent activator of the suppressive activity 
of Tregs. Treg activation required cell contact with IDO-expressing DCs and was 
abrogated by B7-H1 blockade  [  57  ] . These results are consistent with recent fi ndings 
that B7-H1 is required for inducing Tregs in mouse models [  21  ]  and reveal a poten-
tial new mechanism for the suppressive function of the B7-H1/PD-1 pathway. The 
role of B7-H1/PD-1-induced Tregs in the evasion of tumor immunity, however, 
remains to be confi rmed in animal models. 

 Although information from animal models shows that the B7-H1/PD-1 pathway 
plays a critical role in the evasion of antitumor immunity, blockade of B7-H1 or 
PD-1 by individual mAbs is often not very effective in treating established trans-
planted tumors in murine models commonly used for immunotherapy studies. In 
several models using highly immunogenic murine tumors, only marginal-to-moderate 
therapeutic effects were observed with a “monotherapy” approach  [  28,   31,   32,   60, 
  75  ] . These fi ndings are not totally unanticipated, because blockade of B7-H1 or 
PD-1 is not expected to stimulate de novo immune responses but rather to enhance 
ongoing immune responses against tumor antigens. In the majority of transplantable 
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tumor models, rapid tumor growth in syngeneic mice might not allow time for the 
development of a signifi cant antitumor immune response, and T cells in these mod-
els are often ignorant of tumor antigens  [  14  ] . However, combining B7-H1/PD-1 
blockade with cancer vaccines  [  75  ] , adoptive transfer of preactivated T cells, or T 
cell stimulation with anti-CD137  [  28,   46,   60  ]  often provides dramatic synergistic 
antitumor effects, in some cases eradicating well-established tumors. These obser-
vations highlight the importance of mechanism-based design of combinatorial treat-
ment regimens with B7-H1/PD-1 blockade to maximize clinical effi cacy.   

   B7-H1/PD-1 Expression and Function in Normal 
Human Tissues and Cancers 

 B7-H1 demonstrates limited constitutive cell-surface expression in normal human 
tissues, yet is expressed by a number of malignant neoplasms where it primarily 
serves as an inhibitory molecule when interacting with PD-1  [  29  ] . While mRNA for 
B7-H1 has been detected in most human tissues, it is posttranscriptionally regulated 
such that constitutive protein expression is observed only in a proportion of cells 
from the activated monocyte/macrophage lineage, as well as by the endothelium in 
the placenta, thymus, and heart  [  11,   19,   40,   79  ] . Its expression can be induced in 
other normal cell types and in tumors by proinfl ammatory cytokines such as IFN-
gamma and IL-10  [  15,   19  ] . 

   B7-H1 Expression in Solid Human Tumors 

 When B7-H1 is expressed aberrantly by human tumors, it presumably provides a 
selection advantage by inhibiting tumor-specifi c recognition and elimination by T 
cells. Several mechanisms have been proposed for this, including induction of T cell 
apoptosis through PD-1 signaling  [  19  ] , and reverse transmission of B7-H1-mediated 
prosurvival signals  [  7,   18,   28  ] . Due to the fact that B7-H1 mRNA levels are not 
predictive of protein expression, most studies of B7-H1 expression employ immu-
nohistochemistry-based methods on fresh frozen or paraffi n-embedded tumor sec-
tions. In the majority of human studies conducted to date, tumors are considered 
“positive” for B7-H1 if cell surface (“membranous”) expression is observed in 
greater than 5–10% of cells. B7-H1 expression has not been well studied in prema-
lignant lesions, but has been identifi ed in a broad spectrum of established solid 
human cancers. In addition to melanoma  [  27  ] , other tumors expressing B7-H1 
include urothelial carcinoma  [  42  ] ; squamous cell carcinomas of the head and neck 
 [  60  ] , esophagus  [  47  ] , cervix  [  34  ] , and lung  [  38  ] ; adenocarcinomas of the breast 
 [  23  ] , pancreas  [  22,   72  ] , lung  [  38  ] , and stomach;   78  ]  clear cell renal cell carcinoma 
(RCC)  [  64  ] , Wilms tumor  [  53  ] , and glioblastoma  [  76  ] . Importantly, B7-H1 expression 
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in primary tumors is often associated with advanced clinicopathologic status 
 [  22,   23,   42,   53,   72,   78  ] . In some tumor types, including ovarian cancer  [  26  ] , renal 
cancer  [  64,   65  ] , pancreatic cancer  [  46  ] , breast cancer  [  23  ] , and bladder urothelial 
carcinoma  [  30,   42  ] , retrospective studies have shown that intratumoral B7-H1 
expression is an independent predictor of adverse patient outcomes  [  27,   47,   64,   78  ] . 
Interestingly, in ovarian cancer, the expression level of B7-H1 on tumor cells was 
found to correlate inversely with numbers of intraepithelial CD8 +  T cells, while 
increased T cell infi ltration was associated with improved clinical outcomes  [  26  ] . 
In melanoma, the correlation of B7-H1 expression with tumor progression and 
clinical outcomes is currently under study. 

 In addition to B7-H1 expression on tumor cells, primary human neoplasms often 
manifest B7-H1 on other cell types. Tumor infi ltrating lymphocytes (TILs) and 
associated tissue macrophages express B7-H1  [  18,   23,   27,   42,   64  ] . In some tumor 
types, high levels of B7-H1 expression by TILs have been shown to correlate with 
adverse patient outcomes  [  64  ] . Expression of B7-H1 by TILs in breast cancer was 
associated with larger tumor size and Her2/neu-positive status  [  23  ] . In renal cell 
cancer, overexpression of B7-H1 on both tumor cells and TILs correlated with 
aggressive tumor behavior and was associated with a 4.5-fold higher risk of cancer-
related death  [  64  ] . Beyond the primary tumor, tumor cells and TILs in metastatic 
deposits also demonstrate B7-H1 expression  [  63  ] . This fi nding has potential clinical 
import, since patients with advanced disease are most likely to receive novel anti-
B7-H1/PD-1 therapies. In such cases, the B7-H1 status of metastatic tumor cells and 
infi ltrating immune cells holds special interest as a potential biomarker predictive of 
patient response to B7-H1/PD-1 targeted therapies.  

   PD-1 Expression on Hematopoietic Cells 

 PD-1 is a receptor for B7-H1 and is thought to play a role in maintaining self-toler-
ance. In addition to its expression on activated T cells, B cells, thymocytes, and 
myeloid cells  [  1,   13,   40,   43  ] , PD-1 has been detected by immunohistochemistry on 
lymphocytes infi ltrating RCC, non-small cell lung carcinoma, and cervical carci-
noma  [  34,   38,   62  ] . In the cases of non-small cell lung carcinoma, a signifi cant 
decrease in both the total number of TILs and the percentage of TILs expressing 
PD-1 was observed in B7-H1-positive tumor regions when compared to B7-H1-
negative tumor regions  [  38  ] . In addition, PD-1 expression has been detected on 
TILs recovered from enzymatically digested metastatic melanoma lesions  [  2  ] . 
Similar to exhausted virus antigen-specifi c T cells observed in chronic viral infec-
tions, the majority of melanoma TILs express high levels of PD-1 compared with T 
cells from normal tissues and peripheral blood. One study showed that the majority 
of CD8 +  TILs specifi c for the melanoma antigen MART-1 expressed signifi cant lev-
els of PD-1, compared with lower expression on MART-specifi c T cells from the 
peripheral blood of the same patients. PD-1 expression by melanoma TILs correlated 
with an exhausted T cell phenotype and impaired effector function  [  2  ] . These results 
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suggest that the tumor microenvironment infl uences the phenotype of the surveying 
cells and potentially explain why tumor lesions may grow progressively despite the 
presence of tumor-reactive infi ltrating lymphocytes.  

   B7-H1 and PD-1 Signaling and Associated Markers 

 B7-H1/PD-1 engagement impairs the functionality and proliferation of activated T 
cells. The signaling mechanisms leading to B7-H1 expression by tumors have not 
been well established, but local proinfl ammatory cytokines including IFN-gamma 
(a major effector cytokine released by activated T cells) have been shown to induce 
B7-H1 expression  [  19,   76  ] . There is evidence to suggest that this expression occurs 
through an AKT-mediated pathway in some tumor types  [  51  ] . The subsequent inhi-
bition of T cell function triggered by B7-H1-mediated PD-1 ligation of tumor-infi l-
trating lymphocytes is better understood. PD-1 ligation causes immune paralysis of 
fully activated T cells by inhibiting T cell receptor-mediated proliferation and 
cytokine secretion. When the TCR and PD-1 are coligated, PD-1 delivers a negative 
signal through a tyrosine-based inhibitory motif contained in its cytoplasmic 
domain, leading to activation of Src homology region 2 domain-containing phos-
phatase-2 (SHP-2). Downstream effects include inhibition of the PI3-K/AKT and 
ERK/MAPK signaling pathways, which impair proliferation and IL-2 production 
 [  2,   50,   56,   58,   59  ] . 

 TILs themselves may therefore paradoxically trigger their own down-regulation, 
i.e .,  TILs secrete proinfl ammatory cytokines leading to B7-H1 expression by tumor 
cells, which in turn causes T cell dysfunction via PD-1 ligation. A deeper under-
standing of the mechanisms infl uencing B7-H1 expression by tumors may suggest 
rational combinations of cytokines or small molecule inhibitors with B7-H1/PD-1 
blockade to perturb these signaling pathways.   

   Application of B7-H1/PD-1 Blockade in Melanoma Therapy 

 Proof-of-principle for the important role of immunological checkpoint blockade in 
regulating antitumor immunity came from clinical experience with anti-CTLA-4 
(tremelimumab, Pfi zer; ipilimumab, Bristol-Myers Squibb). This set the stage for 
targeting other members of the CD28 superfamily, such as PD-1, or their ligands, 
such as B7-H1, in cancer immunotherapy. To date,  results from clinical trials of two 
blocking antibodies against PD-1 have been reported. CT-011, a humanized IgG1 
mAb, was raised by immunizing mice against human Daudi B cell lymphoma mem-
brane extracts (CureTech Ltd., Yavne, Israel). MDX-1106 (BMS-936558/Ono-
4358), a fully human IgG4 mAb, was generated in genetically modifi ed mice 
immunized against Chinese hamster ovary (CHO) cell PD-1 transfectants and a 
recombinant PD-1 fusion protein (Medarex/Bristol-Myers Squibb, Princeton, NJ, 
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USA). These anti-PD-1 mAbs have been tested in patients with a variety of advanced 
solid and liquid tumors, but at this time, only MDX-1106 has been reported in treat-
ing melanoma. Two new anti-PD-1 blocking agents, MK-3475 (anti-PD-1 mono-
clonal antibody, Merck) and AMP-224 (B7-DC/IgG fusion protein, Amplimmune) 
have recently entered phase I clinical testing. 

   Preclinical Considerations 

 As mentioned above, our understanding of the effects of B7-H1/PD-1 pathway 
blockade comes, in part, from infectious disease models. Similar to malignant 
tumors, infectious pathogens can evade immune attack by co-opting immunoreg-
ulatory pathways designed to protect normal tissues. Preclinical studies in mice 
chronically infected with LCMV demonstrated overexpression of PD-1 on 
exhausted virus-specifi c CD8 +  T cells, which regained proliferative and antiviral 
functions following B7-H1 antibody blockade  [  5  ] . Similarly, in vitro studies of 
immune cells from patients chronically infected with HIV have shown overex-
pression of PD-1 and B7-H1 on virus-specifi c T cells on APCs, respectively, and 
antivirus immune dysfunction can be reversed by blocking PD-1/B7-H1 interac-
tions  [  35  ] . 

 The immunology of cancer resembles chronic infection in that prolonged antigen 
exposure may activate immunosuppressive phenomena. Although melanoma is argu-
ably the most immunogenic human cancer, studies of anti-melanoma immunity, 
including co-regulatory immunological pathways such as B7-H1/PD-1, have revealed 
fi ndings which appear relevant to other forms of cancer. Antitumor T lymphocyte 
responses are readily demonstrated in the blood, lymph nodes, and tumors of most 
melanoma patients, and numbers of circulating melanoma-specifi c T cells can be 
boosted by peptide vaccines. CD8 +  T cells infi ltrating growing human melanomas 
have been shown to overexpress PD-1, compared to T cells in the blood or normal 
tissues  [  2  ] . While ineffective at controlling tumor growth in vivo, these cells neverthe-
less exhibit vigorous and specifi c antitumor activity (cytolysis, cytokine secretion, 
proliferation) when cultured in vitro  [  67  ] . These fi ndings suggest that in vitro culture 
conditions bypass immunosuppressive factors present in situ in the tumor microenvi-
ronment. Such factors might include B7-H1 expression on tumor cells and intratu-
moral APCs. Furthermore, vaccine-induced peripheral CD8 +  T cells specifi c for 
HLA-A2-restricted gp100 or MART-1/Melan-A peptides also express signifi cant lev-
els of PD-1. Wong and colleagues demonstrated enhanced proliferation and function 
of these cells following PD-1 blockade in vitro  [  77  ] . These investigators also demon-
strated that PD-1 blockade interfered with Treg-based inhibition of CD8 +  T cells, 
enhancing the generation of melanoma antigen-specifi c CD8 +  T cells in vitro  [  73  ] . 

 These in vitro laboratory fi ndings, combined with evidence from in vivo murine 
tumor models, as described in the preceding sections, have provided a rationale for 
exploring the effects of B7-H1/PD-1 blockade in humans with melanoma and other 
cancers.  



29915 Anti-PD-1 and Anti-B7-H1/PD-L1 Monoclonal Antibodies

   Early Clinical Experience 

 MDX-1106 is the only anti-PD-1 agent with reported clinical experience in mela-
noma. In a phase I, dose-escalation study conducted by Brahmer et al., 39 patients 
with treatment-refractory metastatic solid tumors, ten of whom had stage IV mela-
noma, received MDX-1106 therapy  [  10  ] . The objectives of this trial were to evalu-
ate the safety and toxicity profi le of MDX-1106, and to acquire preliminary 
information about antitumor activity. Eligible patients had good performance status, 
no active brain metastases, and no history of autoimmune disorders. MDX-1106 
was administered as a single intravenous infusion in escalating doses to several 
patient cohorts, with an expansion cohort at the highest tolerated dose. Patients with 
stable disease or evidence of tumor regression 3 months after one infusion were 
eligible for repeated therapy. 

 MDX-1106 administered in this fashion was generally well-tolerated, and a 
maximum tolerated dose (MTD) was not defi ned, up to the highest planned dose of 
10 mg/kg. The most common toxicities were decreased CD4 +  lymphocyte counts, 
lymphopenia, fatigue, and musculoskeletal complaints such as arthralgias, myal-
gias, or weakness. Immune-related adverse events included low-grade hypothyroid-
ism and polyarticular arthropathies. One serious adverse event, a grade 3 
infl ammatory colitis, occurred in a patient with metastatic ocular melanoma after 
receiving multiple doses of MDX-1106. This event resembled cases of colitis 
observed with anti-CTLA-4 therapy, and responded to steroids and infl iximab. 

 Among the 10 melanoma patients on this trial, one experienced a durable par-
tial response (PR) to anti-PD-1 therapy. This 51-year-old female had lymph node 
and liver metastases which had progressed following high-dose interleukin-2 
therapy and chemotherapy. A second melanoma patient experienced a signifi cant 
but transient “mixed” tumor regression, with some lesions regressing while others 
progressed. Notably, among the non-melanoma study participants, a durable com-
plete response in a patient with colorectal cancer and a PR in a patient with RCC 
were observed. Additionally, one patient with non-small cell lung cancer showed 
evidence of transient antitumor activity not meeting PR criteria. These fi ndings 
suggest that in addition to its effects on melanoma, PD-1 blockade may have 
activity against some epithelial cancers which are typically considered to be 
poorly immunogenic. Two of the three objective responders from the fi rst MDX-
1106 study remain in remission 2.5 and 3 years later, respectively, without further 
therapy. 

 The pharmacokinetics of MDX-1106 were found to be dose-dependent, with a 
serum half-life of 12–20 days. However, the pharmacodynamic properties of PD-1 
were unexpectedly discordant with pharmacokinetics. Despite decaying serum con-
centrations, circulating T cells displayed high levels of PD-1 receptor occupancy by 
MDX-1106, which were sustained for several weeks after a single dose. This effect 
was observed at all doses tested (0.3–10 mg/kg) and most likely refl ects the high 
affi nity of MDX-1106 for its target, suggesting a mechanism for prolonged drug 
activity which may be compatible with intermittent dosing. 
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 Tumor biopsies from patients treated with MDX-1106 were also revealing. 
In one melanoma patient, new posttreatment CD8 +  (but not CD4 + ) T cell infi ltrates 
were observed in a regressing metastatic lesion. Additionally, in nine patients with 
melanoma or other solid tumors, pretreatment tumor cell surface expression of 
B7-H1 appeared to correlate with the likelihood of response to therapy. These pre-
liminary results suggest that analysis of B7-H1 expression in tumor biopsies may 
provide a predictive biomarker of response to B7-H1/PD-1 blockade, and warrant 
further study in larger numbers of patients. 

 Anti-PD-1 therapy has also been tested in patients with advanced hematologic 
malignancies, using the mAb CT-011. Berger and colleagues administered CT-011 
as a single intravenous dose to 17 patients  [  6  ] . The drug was generally well-toler-
ated and the MTD was not reached within the planned dose range of 0.2–6 mg/kg. 
Investigators examined percentages of circulating CD4 + , CD8 + , and CD69 +  lympho-
cytes, as well as serum levels of tumor necrosis factor (TNF) alpha and IFN-gamma, 
as potential markers of immune system activation following CT-011 infusion. 
A signifi cant increase in the percentage of circulating CD4 +  T cells and decrease in 
CD8 +  T cells were observed in some dose cohorts. However, no signifi cant changes 
in CD69 +  T cells, TNF-alpha, or IFN-gamma were reported. Of interest, one previ-
ously untreated patient with follicular B cell lymphoma experienced a complete 
response to CT-011 therapy, and a minor response was reported in a patient with 
refractory acute myeloid leukemia. CT-011 is currently undergoing further testing 
in next-generation clinical trials designed for patients with advanced hematologic 
malignancies, as well as melanoma and various solid tumors.  

   Future Clinical Development 

 Results from fi rst-in-human clinical trials of two anti-PD-1 antibodies revealed 
early evidence of clinical activity and generally manageable toxicities in patients 
with melanoma and other cancers. These data, combined with information from 
preclinical studies, suggest considerable therapeutic potential for monotherapy and 
combinatorial therapy strategies incorporating B7-H1/PD-1 pathway blockade. 

 Current monotherapy studies include second generation trials with anti-PD-1 
antibodies. Different dosing regimens of MDX-1106 are under investigation in 
expanded numbers of patients with advanced melanoma or cancers of the kidney, 
lung, colon, or prostate. A preliminary report of a phase I/II trial of MDX-1106 
administered on a biweekly schedule appears to confi rm the antitumor activity and 
manageable toxicity profi le observed in the fi rst-in-human trial. Notably, approxi-
mately one-third of patients with treatment refractory metastatic melanoma have 
experienced durable objective tumor regressions (Fig.  15.1 )  [  61  ] . Signifi cant 
responses were also reported in patients with non-small cell lung cancer and kidney 
cancer in this study. In addition, a fi rst-in-human trial of anti-B7-H1 (MDX-1105, 
Medarex/Bristol-Myers Squibb) is underway and has already shown evidence of 
clinical activity in patients with melanoma and kidney cancer. It will be of interest 
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to compare the clinical effects of PD-1 vs. B7-H1 antibody blockade, since these 
agents are predicted to have overlapping as well as unique spectra of activity.  

 Preclinical models suggest that achieving the true clinical potential of B7-H1/
PD-1 blockade will depend on developing effective combinatorial therapies. Vaccine 
therapies designed to orient the immune response against specifi c tumor antigens, in 
combination with immunomodulatory antibodies, have yielded synergistic results 
in murine models. For example, in a study of B16 murine melanoma, Li et al. dem-
onstrated synergy of PD-1 blockade with a GM-CSF-transduced melanoma cell 
vaccine  [  39  ] . Another intriguing strategy involves combining immunological check-
point blockade with systemic tumoricidal therapies such as chemotherapy or tar-
geted kinase inhibitors. These therapies may acutely release tumor antigens which 
could be presented endogenously by professional APCs for immune recognition, 
essentially creating an “autologous vaccine”. Additional clinical strategies designed 
to liberate tumor antigens – especially in an infl ammatory context providing “dan-
ger” signals for APC activation – may include localized radiofrequency ablation, 
stereotactic radiosurgery, or cryoablation. Finally, combining two immunomodula-
tory antibodies may also provide synergistic antitumor effects. An ongoing clinical 
trial is testing the combination of anti-CTLA-4 (ipilimumab) and anti-PD-1 (MDX-
1106) in patients with advanced metastatic melanoma. These and other innovative 
and rational combinatorial treatment approaches, informed by preclinical models 
and a basic mechanistic understanding of the B7-H1/PD-1 pathway, are predicted to 
amplify the promising clinical results already observed with monotherapy approaches 
in melanoma and other cancers.       

  Fig. 15.1    Response of metastatic melanoma to PD-1 blockade (MDX-1106). This 50-year-old 
patient with stage IV treatment-refractory melanoma experienced regression of metastatic lesions 
in the lung and mediastinal lymph nodes ( arrows ) following biweekly anti-PD-1 therapy. 
( a ) Pretreatment CT scans. ( b ) Partial tumor regression after 6 months of continuous therapy       
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  Abstract   Immune therapy for melanoma is likely to be improved by better strategies 
to activate and expand tumor-specifi c T-cells, and to enhance their ability to infi l-
trate and function in the tumor microenvironment. In addition to or as an alternative 
to immunization with cancer antigens and administration of cytokines, antitumor 
T-cell responses can be positively modulated by activation of receptors that provide 
important dendritic cell (DC) maturation signals or T-cell costimulatory signals. At 
least three such stimulatory monoclonal antibodies, directed against OX40, CD137, 
and CD40, have been evaluated extensively in preclinical studies and have under-
gone at least preliminary evaluation in patients with metastatic melanoma. All three 
agents demonstrated limited but encouraging clinical antitumor activity in phase 1 
trials. Future rational development of these agents will require a better understand-
ing of the role of the receptors in evolving immune responses, the optimal timing 
and duration of administration in the context of the underlying host–tumor immune 
interactions, and the ability to combine the agents with each other and with other 
immunomodulators in appropriately selected patient populations.  
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   Introduction 

 Metastatic disease in a subset of patients with disseminated melanoma will regress 
following administration of immunomodulatory agents, including cancer vaccines 
and various cytokines such as interferon(IFN)- a  and interleukin-2. Responses can 
occur in patients with large tumor burdens, and can persist without relapse over 
many years, demonstrating the potential of an antitumor immune response to pro-
duce substantial clinical benefi t. Although diffi cult to prove in humans, studies in 
animal models provide compelling evidence that tumor antigen-specifi c T-cells play 
a critical, nonredundant role in the tumor responses observed after administration of 
most immunomodulatory agents. Therefore, immune therapy for melanoma is likely 
to be improved by better strategies to activate and expand tumor-specifi c T-cells, and 
to enhance their ability to infi ltrate and function in the tumor microenvironment. 

 Opportunities for development of novel immune therapy agents have come from 
a vast expansion of knowledge regarding signals controlling immune activation, 
expansion, and function of T-cells, prior and subsequent to T-cell receptor binding 
by the antigen-MHC complex. In addition to various cytokines produced by profes-
sional antigen-presenting cells (e.g., dendritic cells [DC]), stromal cells, and other 
immune cells, T-cells can be infl uenced by various ligand–receptor interactions 
between DC and T-cells, and between T-cells and their target cells. Among these 
ligand–receptor pairs, some have been found to provide positive costimulation to 
T-cells, while others were shown to transmit inhibitory signals. The ligand–receptor 
pairs between T-cells and DC or between T-cells and target cells can be blocked or 
activated by specifi c monoclonal antibodies. Several antibodies that provide activat-
ing or costimulating signals to DC or T-cells have been produced over the past 
several years, and have either entered clinical trials or are in preclinical develop-
ment. Although multiple costimulatory ligand–receptor pairs have been identifi ed 
and described in the literature, including CD80/CD86–CD28, CD137(4-1BB)-
CD137L, OX40(CD134)-OX40L, CD27-CD70, and LIGHT-HVEM, we review in 
detail two of these, OX40 and CD137, and the related CD40-CD40L interactions, 
which have undergone at least Phase 1 testing in cancer patients and have greatest 
immediate relevance for treatment of melanoma  [  1  ] .  

   General Principles 

 In manipulating immune responses for therapeutic purposes in cancer patients, sev-
eral factors should be taken into consideration. Most important is the recognition of 
the immense complexity underlying control of immune responses to any antigen. 
For example, the response of T-cells to a costimulatory signal may depend on the 
differentiation state of the T-cell and the environmental milieu (presence or absence 
of other signals and cytokines) in which the signal is delivered. Moreover, different 
types of T-cells may be involved in antitumor immune responses, and signals 
through the same receptor may produce different biological effects in the different 
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T-cell subsets. The T-cell surface molecule targeted by the intervention may be 
expressed only during brief periods of T-cell differentiation or activation, or may be 
downregulated and rendered inactive by continuous stimulation. 

 Clinical evaluation of immune modulating antibodies is often based on results 
from animal models in which a similar antibody that binds to the analogous murine 
receptor is evaluated. However, the pattern and kinetics of receptor expression, and 
outcome after stimulation, may differ substantially between mice and humans. In 
addition, mouse tumor models, including genetically modifi ed mice that develop 
spontaneous tumors, cannot fully reproduce the time-related interactions occurring 
between host and tumor in humans. For example, at the time of treatment, a human 
cancer has been present in its host for much longer than spontaneous or transplant-
able tumors in murine models. Thus, humans may have more extensive immune 
responses against their cancer, and more opportunities for development of mecha-
nisms employed by tumor to suppress or evade those responses. These inhibitory 
signals may dominate over any activating or costimulatory signal. 

 Another complicating factor for clinical development of immune stimulatory 
antibodies is the heterogeneity of tumor biology and immune-tumor interactions 
between individual patients, all of whom have the same diagnosis of metastatic 
melanoma. The extent to which tumor antigen presentation is ongoing, or immune 
responses to tumor have developed, or tolerance to tumor antigens has been induced, 
or one or more of multiple possible systemic or local immune suppressive mecha-
nisms are active is diffi cult to determine for any individual patient. Furthermore, 
there may be genetic variation between individuals that infl uences the effect, and 
magnitude of effect, for any specifi c immune intervention. Thus, for any targeted 
immune therapy, the underlying conditions necessary for generating a vigorous 
antitumor response may only be present in a small fraction of the population, and in 
most cases, this responsive subset cannot be prospectively identifi ed with current 
technology. It is also likely that for most patients, multiple distinct agonist signals 
may be necessary to generate vigorous antitumor immune responses, and tumors 
may still not respond optimally unless the dominant immune suppressive factors in 
the tumor microenvironment are also inhibited concurrently.  

   OX40 (CD134) 

   Biology and Preclinical Studies 

 The original OX40 monoclonal antibody (Ab) bound activated CD4 T-cells and 
augmented their proliferation during the later stages of in vitro stimulation  [  2  ] . 
More recently, OX40 expression has also been demonstrated on CD8 T-cells and on 
T regulatory cells  [  3,   4  ] . The costimulatory function of OX40 on CD8 T-cells is 
important for their proliferation and survival  [  5  ] , and a recent report suggests that 
anti-OX40 Abs can dampen Treg function in vivo  [  4  ] . When the biologic effects of 
anti-OX40 were originally described, the fi eld of costimulation was in its infancy. 
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CD28 was the fi rst costimulatory molecule described on T-cells; anti-CD28 was 
shown to augment T-cell stimulation when administered in combination with TCR 
signaling  [  6–  8  ] . B7.1 (CD80) and B7.2 (CD86), which are expressed on antigen-
presenting cells (APC), were identifi ed as the ligands for CD28 and both molecules 
can stimulate T-cells through CD28. The CD28/B7 interaction is essential to achieve 
optimal activation of naïve T-cells; if a signal is delivered through the TCR receptor 
in the absence of CD28 ligation, the T-cell becomes anergic or dies prior to becom-
ing a small resting T-cell  [  8  ] . There is another ligand for B7 on T-cells, termed 
CTLA-4, whose affi nity for B7 is 100-fold greater than CD28  [  9  ] . CTLA-4 is 
expressed on the T-cell surface after stimulation of naïve T-cells by antigen. 
Engagement of CTLA-4 puts the “brakes” on the initial wave of T-cell expansion 
 [  9  ] . T-cells stimulated through CD28 will proliferate for several divisions; however, 
the majority of cells will die prior to becoming small resting memory T-cells. OX40 
was originally shown to have costimulatory activity on an Ag-specifi c CD4 +  T-cell 
line in vitro comparable to that of CD28  [  10  ] . While interaction of B7/CD28 is 
required for the optimal stimulation of naïve T-cells  [  11  ] , OX40-specifi c costimula-
tion appears to be most important for the stimulation of effector T-cells  [  12,   13  ] . 
Since T-cells from OX40 knockout mice are more susceptible to apoptosis com-
pared to their wild-type counterparts, it has been hypothesized that signaling through 
OX40 may save effector T-cells from activation-induced cell death (AICD), thereby 
leading to the generation of greater numbers of memory T-cells, and this was later 
shown to be the case  [  14  ] . Thus, both CD28 and OX40 appear to play important but 
distinct roles in the stimulation of Ag-activated peripheral T-cells; both signals are 
required for the optimal generation of memory T-cells  [  15  ] . 

 Signaling through OX40 on T-cells occurs naturally through the OX40 ligand 
(OX40L), a TNF-family member that is a membrane-bound homotrimer expressed 
primarily on activated APC  [  16  ] . The OX40L trimer binds three OX40 molecules 
on the cell surface and the initial signaling process within T-cells occurs through the 
adapter proteins termed, TNF-associated factors (TRAFs). It was originally shown 
that TRAFs 2, 3, and 5 associated with the OX40 cytoplasmic tail  [  17  ] , forming 
TRAF trimers just proximal to the cytoplasmic membrane. TRAF2 and 3 have been 
characterized as adapter proteins that can lead to the activation of NF- k B signaling 
pathways  [  17  ] . The increased signaling through OX40 within effector T-cells leads 
to increased proliferation, increased effector function (increased cytokines and 
cytotoxicity) and an increase in antiapoptotic pathways. These signaling events can 
be mimicked by adding exogenous OX40 agonists (anti-OX40 Abs or OX40L:Ig 
fusion protein) to T-cells both in vitro and in vivo in the absence of naturally 
expressed OX40L. 

 OX40 expression on recently activated naïve CD4 T-cells peaks 24–48 h after 
TCR engagement and returns to baseline levels 120 h later  [  12  ] . Effector CD4 +  
T-cells upregulate OX40 expression more rapidly, expressing OX40 within 4 h of 
antigen stimulation  [  12  ] . The transient expression of OX40 is observed both in vitro 
and in vivo  [  12,   18  ] . OX40 +  T-cells are found preferentially at sites of infl ammation 
and not normally found in the peripheral blood. In animal models for both autoim-
munity and cancer, OX40 +  T-cells are enriched for the recently stimulated auto- or 
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tumor antigen-specifi c T-cells  [  19–  21  ] . Therefore, OX40 represents a convenient 
target by which the function in vivo stimulated T-cells can be modulated in various 
disease models, even without prior knowledge of the specifi c antigens involved 
 [  22  ] . In essence, manipulation of OX40 +  T-cells in vivo targets the ongoing “endog-
enous” immune responses, without affecting the remainder of the peripheral T-cell 
repertoire. OX40 +  T-cells have been detected at the infl ammatory site in several 
human autoimmune diseases and in the following human cancers: melanoma, breast, 
colon, head and neck, prostate cancer, bladder cancer, lung cancer, and sarcoma 
( [  22–  24  ]  and data not shown). Therefore, manipulation of OX40 +  cells in patients 
with a variety of diseases including melanoma could have a wide range of clinical 
benefi ts. 

 The control point for OX40-dependent stimulation of T-cells during an immune 
response appears to be at the level of OX40L expression. While OX40 is expressed 
on all CD4 +  and CD8 +  T-cells after TCR engagement, OX40L expression is more 
tightly regulated. When T-cell activation occurs in the absence of a strong adjuvant, 
which is the usual case for tumor-derived antigens, the local expression of OX40L 
is minimal. Therefore, in the absence of adjuvant, the antigen-stimulated T-cells 
will express OX40, but because OX40L expression on APC is limiting, the majority 
of OX40 +  T-cells will never engage their natural ligand. This may lead to apoptosis, 
decreased effector function, and limit the generation of memory T-cells. Evidence 
in support of this theory derives from two transgenic mouse models in which mice 
over express OX40L  [  25,   26  ] . In both models, the investigators noticed a large 
increase in the proportion of T-cells in the lymphoid compartments as the mice 
aged. The OX40L transgenic mice also showed a dramatic increase in memory 
T-cell generation and recall responses following immunization  [  26  ] . Therefore, it 
was hypothesized that the addition of OX40 agonists during immunization would 
greatly increase T-cell memory generation and effector T-cell responses in wild-
type mice. When an OX40 agonist was administered following soluble Ag immuni-
zation, wild-type mice showed a large increase in effector cytokine production and 
memory T-cell survival  [  27,   28  ] . This was true for both CD4 +  and CD8 +  T-cells, 
although was more pronounced in the CD4 +  T-cell compartment. 

 It was next tested whether the potent T-cell adjuvant properties of OX40 agonists 
would enhance antitumor immunity in cancer-bearing hosts leading to therapeutic 
effi cacy. The initial study treated sarcoma-bearing mice 3 and 7 days after tumor 
inoculation with 100  m g of OX40L:Ig, a control fusion protein DR3:Ig (another 
TNF-R family member that does not bind OX40), or saline. Saline-treated and 
DR3:Ig treated mice all showed progressive tumor growth. By contrast, OX40L:Ig-
treated mice experienced delayed tumor growth and 60% remained tumor free for 
>70 days. The OX40L:Ig treated mice that survived the initial tumor challenge 
rejected rechallenge with the MCA 303 tumor cells  [  21  ] , which suggested that 
OX40L:Ig had increased tumor-specifi c T-cell memory. This OX40-based treatment 
regimen also showed effi cacy in mice inoculated with the following tumors: mela-
noma (B16/F10), breast cancer (SM1, 4T1, EMT-6), colon cancer (CT26), glioma 
(GL261), sarcoma (MCA 203, 205, 207, 303), and lung cancer (Lewis lung carci-
noma)  [  21,   29–  33  ] . 



312 A. Weinberg et al.

 Several agents/techniques have been tested in combination with anti-OX40 to 
accentuate its antitumor activity. One study showed that anti-OX40 greatly enhanced 
adoptive immunotherapy, similar to and sometimes better than IL-2  [  31  ] . A recent 
report has shown that anti-OX40 administered just after surgical removal of 
tumors can greatly decrease the recurrence of tumor  [  156  ] .    This same manuscript 
also showed that combining focal radiation followed by anti-OX40 treatment had a 
synergistic therapeutic effect. There also been some success of combining tumor 
vaccines with OX40 agonist administration  [  22,   34–  38  ] . In particular, a whole cell 
tumor vaccine secreting GM-CSF showed potent synergy with anti-OX40 adminis-
tration in a breast cancer model where neither agent alone showed much effi cacy 
 [  38  ] . The effi cacy of tumor vaccines for melanoma and glioma was also enhanced 
by OX40 agonist stimulation in vivo  [  36,   39  ] . Anti-OX40 delivered in vivo has also 
been reported to upregulate the signaling subunit of the IL-12 receptor on antigen-
stimulated CD4 +  T-cells. This group subsequently combined anti-OX40 and IL-12 
into tumor-bearing mice and showed therapeutic synergy  [  40  ] . Hence, there are 
clear pathways forward for OX40-specifi c combinations in future clinical trials, 
some of which are in the planning stages. 

 B16 melanoma is typically one of the most diffi cult mouse tumor models to cure 
with immunologic agents  [  41  ] . Initial reports indicated that OX40 agonists injected 
3 days after B16/F10 tumor inoculation was able to cure 20% of mice. However, it 
has been reported more recently that a 75% cure rate of B16 melanoma occurred in 
mice with 6-day established tumors by injecting a single 250 mg/kg dose of cyclo-
phosphamide followed by one OX40 agonist injection  [  41  ] . These results were 
striking as neither agent alone showed any signifi cant tumor protection. This group 
compared the cyclophosphamide combination with other immune enhancing Abs 
(anti-CTLA-4 and anti-CD40) and found that the OX40 Ab was clearly superior in 
this combination format. This OX40/cyclophosphamide treatment combination was 
also effective in other poorly immunogenic models including lung cancer, breast 
cancer, and prostate cancer. This group found that this combination greatly increased 
tumor-specifi c T-cell responses when compared to either agent alone. They also 
found that this combination specifi cally induced regulatory T-cell depletion within 
the tumor microenvironment, which was accompanied by a large increase of CD8 +  
T-cells within the tumor. Thus, Treg depletion combined with OX40 agonists may 
be a particularly attractive approach to explore clinically.  

   OX40-Specifi c Nonhuman Primate Studies 

 The preclinical studies with OX40 agonists were so compelling that a group at 
Providence Portland Cancer Center (Oregon) decided to produce a GMP grade 
OX40 agonist antibody to deliver to cancer patients. Prior to performing a phase I 
study in cancer patients the mouse anti-human OX40 antibody was evaluated in 
nonhuman primates for toxicokinetics and immune stimulatory effects  [  42  ] . The 
initial study tested the OX40-specifi c immune adjuvant effects in monkeys immunized 
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with the Simian Immunodefi ciency Virus (SIV) protein, gp130. Anti-OX40 treatment 
(2 mg/kg) increased gp130 specifi c Ab titers and increased long-lived antigen-
specifi c T-cell responses compared to controls. Following the immunization study a 
full toxicology study was performed at 0.4, 2.0, and 10 mg/kg. No clinical toxicity 
was observed, but acute splenomegaly and enlarged gut-associated lymph nodes 
were observed in various monkeys at all dose levels treated. The enlarged lymphoid 
organs resolved to base line levels by day 28 after the initial infusion. Upon histo-
logic evaluation, there was an increase in lymphoblasts in both the spleen and the 
mesenteric lymph nodes 8 days after the initial OX40 infusion compared to con-
trols, and this feature resolved by day 28. It was also noted that the histology did not 
exhibit any malignant features and normal architecture was maintained even in the 
enlarged spleen and lymph nodes. These preclinical monkey studies were submitted 
to the Food and Drug Administration and the Phase I trial was approved and started 
accruing cancer patients in March 2006.  

   Clinical Experience with Anti-OX40 

 The group at the Providence Cancer Center has recently completed a phase I study 
with the mouse anti-human OX40 antibody (Weinberg et al., manuscript in prepara-
tion)   . In this study, three doses of anti-OX40 were administered on days 1, 3, and 5. 
The murine anti-OX40 antibody induced a human anti-mouse antibody (HAMA) 
response in all patients by week 2 after antibody exposure. Thus, repetitive dosing 
was not feasible with this particular antibody. Thirty patients with stage IV disease 
were treated with anti-OX40 at 0.1, 0.4, and 2 mg/kg (ten patients per dose level). 
Toxicities were generally mild with grade 1–2 fatigue and transient lymphopenia as 
the most commonly observed side effects. A maximum tolerated dose (MTD) was 
not achieved. No patient achieved a complete or partial regression of their cancer 
using RECIST criteria, but 4 out of 7 melanoma patients showed regression of at 
least one tumor nodule in sites including lung, lymph node, and subcutaneous tis-
sue. There was also evidence of increased tumor-specifi c responses within the mela-
noma patients after anti-OX40 treatment both in the T and B cell compartments. It 
was also found that anti-OX40 increased proliferation of T-cells within the periph-
eral blood as assessed by fl ow cytometry directly ex vivo, which generated a unique 
signature of T-cell activation after anti-OX40 treatment that could serve as a poten-
tial biomarker for activity. 

 These encouraging signs from a single treatment with the murine anti-OX40 
antibody in cancer patients has prompted the group at the Providence Cancer Center 
to produce two fully human OX40 agonists; (1) A human OX40 ligand:Ig fusion 
protein, and (2) A humanized OX40-specifi c monoclonal antibody. The human 
OX40 ligand:Ig fusion protein has been tested in monkeys and is a potent stimulator 
of T-cell proliferation. Currently, the mouse monoclonal antibody used for the phase 
I study is being humanized and this Ab should be available for preclinical evalua-
tion in 2011. During the time that the human OX40 agonists are being produced this 
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group will be pursuing addition clinical trials with the murine OX40 antibody. 
In particular, they will be combining anti-OX40 with chemotherapy (cyclophosph-
amide) and focal radiation in patients with prostate cancer and breast cancer. Since the 
majority of patients that responded with some tumor shrinkage had metastatic mela-
noma, there will also be an exploratory clinical and immunologic assessment with 
the murine OX40 antibody in melanoma patients that should commence in 2011.   

   Anti-CD137 (4-1BB) 

   Biology and Preclinical Studies 

 There are remarkable parallels in the biology and immune functions of CD137 and 
OX40 (CD134). CD137, located on chromosome 1p36, is a member of the TNF 
receptor superfamily  [  43  ] . It is expressed, most often transiently and after cell activa-
tion, on CD4 and CD8 lymphocytes, NK cells, NKT cells, T-regulatory lympho-
cytes, dendritic cells, neutrophils, eosinophils, mast cells, and some endothelial 
cells, including tumor vasculature  [  44–  52  ] . Expression of CD137 was also reported 
in basal epithelial cells of bronchial epithelium and in tumor cells including osteo-
sarcoma and lung cancer  [  53,   54  ] . The ligand for CD137 is expressed by B-cells, 
macrophages, and dendritic cells and can be shed into the circulation  [  55,   56  ] . 
CD137L expression was also found in various tumor cell lines  [  52  ] . 

 A large number of preclinical studies provide evidence for a role of CD137 and 
its ligand in regulation of immune responses, and for immune-enhancing effects of 
agonist anti-CD137 antibodies  [  57,   58  ] . During activation of naïve CD8 +  cells, 
CD137 expression is upregulated, and upon binding with its ligand, can provide a 
CD28-independent costimulatory signal  [  59,   60  ] . However, in several model sys-
tems, optimal activation of CD8 +  lymphocytes requires signals from both CD28 and 
CD137  [  61  ] . The CD137 signal enhances cell survival, and in some experimental 
systems also increases cytokine secretion and effector function  [  62,   63  ] . CD137 
signaling appears to have greater impact on T-cells recognizing nondominant or 
weak antigens  [  64,   65  ] . Agonist CD137 signals induce proliferation of memory 
CD8 +  cells in an antigen-independent manner, and enhance the recall response of 
CD8 +  T-cells to antigen challenge  [  66,   67  ] . CD137 signals also increase survival of 
CD4 +  T-cells late in a primary response, and promote the proliferation or survival of 
memory CD4 +  cells  [  67–  69  ] . Agonist CD137 antibodies can directly stimulate the 
cytokine production and the ability of dendritic cells to activate T-cells  [  70  ] . In addi-
tion, CD137L is expressed by DC, and reverse signaling through CD137L can 
induce the production of IL-12. CD137 engagement has also been shown to costim-
ulate NKT and NK cell activation  [  71–  73  ] , and to inhibit the suppressive function 
of CD4 + CD25 +  T-regulatory cells  [  49  ] . 

 Although many or most of the biologic effects of agonist CD137 signals promote 
tumor immunity, several studies have shown potential immunosuppressive effects, 
for example, reversal or reduction of autoimmune disease in animal models, and in 
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certain experimental systems, a detrimental effect on antitumor immune responses. 
Various mechanisms have been implicated, including B-cell depletion  [  74  ] ; induc-
tion of CD4 +  T-cell anergy during initial activation, and subsequent loss of T-cell-
dependent antibody production  [  75  ] ; expansion of a CD8 + CD11c +  population 
capable of suppressing CD4 +  T-cells, possibly by IFN-gamma-dependent induction 
of IDO in dendritic cells or by production of TGF-beta  [  76,   77  ] ; inhibition of Th2 
CD4 +  responses  [  78  ] ; enhancement of activation-induced cell death in T-cells; inhi-
bition of human NK cell activity  [  79  ] ; and increasing the CD11b-Gr-1 myeloid 
derived suppressor cell population capable of inhibiting both CD4 +  and CD8 +  T-cell 
function  [  80  ] . Enhancement vs. suppression of response may depend on timing of 
the agonist CD137 signal during T-cell activation; very early exposure may predis-
pose to activation-induced cell death for both CD4 +  and CD8 +  cells, while delay of 
the agonist signal may improve survival and function of the cells. Recent data sug-
gest that agonist CD137 signals concurrently in both T-cells and dendritic cells can 
result in activation-induced T-cell death through the induction of STAT3 in the den-
dritic cells  [  81  ] . In one model, an anti-human CD137 antibody that is capable of 
augmenting proliferation of lymphocytes in a mixed lymphocyte reaction (MLR) 
paradoxically inhibited the antitumor activity of adoptively transferred human lym-
phocytes against a xenograft in a SCID mouse  [  82  ] . Whether the suppression relates 
to timing of administration, the specifi c nature of the model, the unique characteris-
tics of the particular antibody, or differences between mouse and human in response 
of cells remains unclear. 

 Agonist anti-CD137 antibodies cause delays in tumor growth or tumor regres-
sion in several mouse tumor models, suggesting that immune enhancing effects 
predominate in vivo over immune suppressive effects  [  83–  86  ] . In some of the mod-
els, anti-CD137 causes regression of very large established tumors. Antitumor 
activity of the CD137 agonist antibodies requires the presence of CD8 +  cells, and 
depending on the mouse tumor model, also CD4 +  T-cells, NK cells, and dendritic 
cells  [  44,   83,   87  ] . Antitumor effects have been attributed in part to expansion of a 
CD8 + CD11c +  population capable of producing large amounts of IFN-gamma, 
although defi nitive depletion experiments have not been reported  [  88  ] . In some 
models, the antitumor effects are abrogated in hosts lacking the CD40 or IFN-
gamma genes, but not in mice lacking the IL-15 gene  [  85  ] . 

 As expected from its biological effects, many different combinations of agonist 
anti-CD137 antibodies with other anticancer agents have shown additive or synergis-
tic antitumor activity in murine models. The list includes 5-fl uorouracil  [  89  ] , cyclo-
phosphamide  [  90  ] , cisplatin  [  91  ] , focal radiation  [  92  ] , defi ned antigen vaccines 
including peptides in adjuvant and antigen-loaded dendritic cells  [  93,   94  ] , whole cell 
vaccines expressing the GM-CSF gene, agonist OX40 antibodies  [  35,   95–  97  ] , agonist 
CD40 antibodies  [  98  ] , depleting CD4 antibodies  [  99  ] , antagonist anti-CTLA4 anti-
bodies  [  100  ] , antagonist antibodies against PD1 or B7-H1 (PD-L1)  [  101  ] , intratu-
moral injection of IFN-alpha  [  102  ] , intratumoral injection of TLR agonists  [  103  ] , and 
adoptive transfer of antigen-specifi c CD8 +  T-cells  [  84  ] . In an orthotopic renal cancer 
model, combination therapy with anti-DR5, anti-CD40, anti-CD137, and interleu-
kin-2 was required for production of optimal antitumor immune responses  [  104  ] . 
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 Several of the potential combinations with agonist CD137 signals are noteworthy. 
The direct effects of chemotherapy or the process of T-cell homeostatic prolifera-
tion after lymphopenia may induce CD137 on lymphocytes. Administration of 
CD137 agonists concurrently or following chemotherapy has been shown to increase 
the speed and magnitude of lymphocyte recovery  [  90  ] . Cisplatin was shown to 
induce CD137 on kidney tubular epithelium, and combinations of cisplatin with 
agonist anti-CD137 reduced cisplatin nephrotoxicity in a mouse model  [  91  ] . The 
combination of agonist OX40 and CD137 antibodies resulted in a marked increase 
in antigen-specifi c CD8 +  T-cells after immunization, associated with increased 
CD8 +  expression of IL-7R a  and CD25  [  96,   97  ] . Combinations of agonist CD137 
and blocking anti-CTLA4 antibodies produced increased antitumor effect in some 
murine models that was CD8 +  T-cell-dependent. Interestingly, induction of autoim-
mune serologic responses by anti-CTLA4, and induction of liver infl ammatory infi l-
trates by anti-CD137, were both reduced by the combination, possibly by increasing 
the activity of Tregs  [  100  ] . Expression of B7-H1 (PD-L1) by tumor was shown to 
produce resistance to the antitumor effects of agonist anti-CD137, which could be 
reversed by combining anti-CD137 with blocking antibodies against either B7-H1 
or its ligand PD-1, the latter expressed by activated CD8 +  cytotoxic T-cells  [  101  ] . 
No studies of anti-CD137 combined with IDO inhibitors have been reported in the 
literature, although the preclinical data suggest that IDO inhibitors may abrogate 
part of the anti-CD137-induced immunosuppressive effects. 

 Various other uses have been found for the CD137-CD137L axis in development 
of antitumor immunotherapy. The intracellular signaling domain of CD137 has 
been included in the construction of chimeric antigen receptors for T-cells and 
imparts a powerful survival signal for the transfected cells  [  105–  107  ] . Agonist anti-
CD137 signals delivered by antibody or by antigen-presenting cells engineered to 
express CD137L, have been incorporated into the process for extracellular expan-
sion of antigen-specifi c T-cells intended for adoptive immunotherapy into tumor-
bearing hosts  [  108  ] . Introduction of CD137L into tumor cells or antigen-delivery 
vehicles can also enhance their immunogenicity and potential effectiveness as can-
cer vaccines  [  109,   110  ] . Finally, CD137-ligand has been attached to targeting moi-
eties for specifi c delivery to the tumor microenvironment in the hope of avoiding 
both the toxicity related to immune activation and the potentially deleterious immune 
suppressive effects  [  111–  113  ] .  

   Clinical Experience with Anti-CD137 

 A fully human IgG4 monoclonal antibody to CD137 was developed for clinical tri-
als by Bristol-Myers Squibb. The antibody did not block binding of the natural 
CD137-ligand and demonstrated costimulatory activity in vitro human lymphocyte 
cultures. Toxicology studies showed mild to moderate hepatic infl ammation and 
liver mononuclear cell infi ltrate that was IFN-gamma-dependent  [  114  ] . The initial 
phase 1 trial examined IV doses ranging from 0.3 to 15 mg/kg every 3 weeks  [  115  ] . 
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After the phase 1 dose escalation was completed, expansion cohorts of approximately 
30 patients in each of three disease types including melanoma were randomized to 
receive 1, 3, or 10 mg/kg. A MTD was not reached, and overall, the drug was well 
tolerated. The most common toxicities were fatigue (~23%), rash (~19%), pruritis 
(~12%), fever (~9%), and diarrhea (~9%). Of the latter, less than 5% percent of 
patients developed grade 3 toxicity, which was limited to fatigue and fever. Grade 
3–4 laboratory abnormalities included elevations of transaminases (12–15%), lym-
phocytopenia (8%), neutropenia (6%), and thrombocytopenia (4%). One patient 
treated at 6 mg/kg developed severe but eventually reversible liver toxicity manifest 
as grade 3 transaminases and grade 4 hyperbilirubinemia. Dose-limiting reversible 
grade 3–4 neutropenia was reported in one patient each treated at 0.3 and 15 mg/kg, 
respectively. 

 The half-life of the antibody was estimated at 8–12 days. Peak concentrations 
ranged from approximately 1–300  m g/mL; trough concentrations at the 0.3 mg/kg 
dose level were in the range of 0.3  m g/mL, and were greater than 3  m g/mL for all 
higher dose levels. The investigators reported increases in activated (HLA-DR + ) 
CD4 +  and CD8 +  lymphocytes at day 8 for patients at dose levels from 1 to 10 mg/
kg, increases in IFN-gamma-inducible genes in whole blood at day 8, and increases 
in serum neopterin at day 8 at all dose levels, but no increase in circulating IFN-
gamma, IL-6, or TNF a . 

 Twenty-three patients with metastatic melanoma were treated in the dose esca-
lation phase and 31 in the expansion cohorts. Twenty-two percent of the 54 total 
melanoma patients had noncutaneous primaries, 61% had stage M1C disease at 
study entry, and 80% had received one or more prior treatments. Three patients 
(6%) met partial response criteria, two of which had disease limited to lymph 
nodes. Response durations were 22 months, 10+ and 8+ months. Six other patients 
were progression-free for  ³ 6 months, including four patients with tumor regression 
ranging from 5 to 46%. 

 A four arm randomized phase 2 study in metastatic melanoma was initiated to 
determine the activity of 0.1, 1, and 5 mg/kg IV every 3 weeks and 1 mg/kg every 6 
weeks. The study is listed as completed but results have not been reported to date. 
No other active melanoma studies are listed as of October, 2010.   

   CD40 

   Biology and Preclinical Studies 

 The cell-surface molecule CD40 is a member of the tumor necrosis factor receptor 
(TNF) superfamily and is broadly expressed by immune and other normal cells, as 
well as certain tumor cells  [  116  ] . CD40 is best appreciated as a critical regulator of 
cellular and humoral immunity via its expression on B cells, dendritic cells (DC), 
and monocytes  [  117,   118  ] . CD40-ligand (CD40L), also known as CD154, is the 
chief ligand for CD40 and is expressed primarily by activated T-cells  [  118,   119  ] . 
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In addition, atherosclerosis, graft rejection, coagulation, infection control, and 
autoimmunity are all regulated by CD40-CD40L interactions  [  117,   118  ] . 

 The physiological consequences of CD40 signaling are multifaceted, and poten-
tially biologically opposed, depending on the type of cell expressing CD40 and the 
microenvironment in which the CD40 signal is provided  [  116  ] . Like some other 
members of the TNF receptor family, CD40 signaling is mediated by adapter mol-
ecules rather than by inherent signal-transduction activity of the CD40 cytoplasmic 
tail. Downstream kinases are activated when the receptor-assembled, multicompo-
nent signaling complex translocates from CD40 to the cytosol  [  120  ]  and a number 
of well-characterized signal transduction pathways are activated  [  121,   122  ] . These 
pathways, in turn, regulate alterations in gene expression that are themselves exten-
sive, dynamic, and variable. 

 Signaling via CD40 activates APC both in vitro and in vivo. Physiologically, this 
signal represents a molecular prototype for T-cell “help” and mediates in large part 
the capacity of helper T-cells to “license” APC  [  123  ] . Ligation of CD40 on DC, for 
example, induces increased surface expression of costimulatory and MHC mole-
cules, production of proinfl ammatory cytokines, and enhanced T-cell triggering 
 [  118,   124  ] . CD40 ligation on resting B cells increases antigen-presenting function 
and proliferation  [  118,   124,   125  ] . Patients with germ-line mutations in CD40 or 
CD40L are immunosuppressed, susceptible to infections, and have defi cient 
T-dependent immune reactions including IgG and germinal center formation, and 
memory B cell induction  [  126–  128  ] . 

 In three separate reports, agonist CD40 antibodies were shown to mimic the 
signal of CD40L and substitute for the function of CD4 +  helper T-cells in murine 
models of T-cell-mediated immunity  [  129–  131  ] . A key mechanism of this effect 
was felt to be CD40/CD40L-mediated activation of host APC, suggesting that CD40 
agonists rescue the function of APC in tumor-bearing hosts and restore effective 
immune responses against tumor-associated antigens. In 1999, three additional 
reports provided evidence for this hypothesis: agonist CD40 antibodies overcome 
T-cell tolerance in tumor-bearing mice, evoke effective cytotoxic T-cell responses, 
and enhance effi cacy of antitumor vaccines  [  132–  134  ] . 

 Data from multiple preclinical models demonstrate synergistic enhancement 
from combining CD40 agonists with chemotherapy, radiotherapy, tumor vaccines, 
toll-like receptor agonists, cytokines, and other TNF receptor family agonists 
 [  133–  138  ] . The rationale for these approaches is that combining strategies to 
induce tumor-cell apoptosis with T-cell activation results in greater antitumor 
responses. CD40-mediated tumor cell death appears at least additive and possibly 
synergic with chemotherapy both in vitro and in vivo  [  135,   139,   140  ] . In a mouse 
model of tumor implants, an anti-CD40 agonist antibody combined with gemcit-
abine cured most mice, which were resistant to tumor rechallenge  [  135  ] . This 
effect – dependent on CD8 T-cells and independent of CD4 T-cells – was only seen 
in vivo in the setting of tumor cell death and only when immunotherapy followed 
chemotherapy. Similar fi ndings have been reported with cisplatin  [  141  ] . These 
fi ndings fi t well with a growing body of evidence demonstrating that chemotherapy 
can enhance tumor immunogenicity by promoting cross-presentation of tumor 
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antigen  [  142–  144  ] , despite previous dogma that immunotherapy and chemotherapy 
are incompatible. 

 CD40 agonists have also been combined with agents that block negative immune 
checkpoints such as anti-CTLA4 mAb. CTLA-4 is a negative regulator of T-cell 
activation. Blockade of the CD80/86-CTLA-4 pathway with anti-CTLA-4 mAb 
enhances antitumor T-cell responses and leads to tumor rejection  [  145,   146  ] . In vivo 
animal studies have shown that the combination of anti-CD40 mAb and anti-
CTLA-4 mAb can function as potent and safe immunomodulators that can enhance 
induction of CTL to tumor vaccines and signifi cantly improve survival in a mouse 
tumor model  [  147  ] .  

   Clinical Experience with CD40 Agonists for Cancer Therapy 

 Several drug formulations that target the CD40 pathway have undergone phase 1 
clinical evaluation in advanced stage cancer patients, and initial results have been 
promising  [  116  ] . Most of these investigational drugs are designed as CD40 ago-
nists, with a twofold rationale. First, CD40 agonists can trigger immune stimulation 
by activating host APC which then drive T-cell responses directed against tumors to 
cause tumor cell death. Second, CD40 ligation can impart direct tumor cytotoxicity 
on tumors that express CD40. Synergy develops if tumor antigens that are shed fol-
lowing a direct cytotoxic hit can be taken up by APCs during the activation process, 
resulting in tumor specifi city to the T-cell response. 

 In the fi rst test of the hypothesis that CD40 activation may be useful for cancer 
therapy, CD40 activation was studied in cancer patients using recombinant human 
CD40-ligand (rhCD40L)  [  148  ] . In a study of 32 patients with advanced tumors who 
received rhCD40L subcutaneously, two patients had an objective partial response 
(including one long term CR). Clinical efforts to target CD40 accelerated with the 
advent of agonist anti-CD40 monoclonal antibodies (mAb). Among them, 
CP-870,893 (Pfi zer) is a fully human CD40 agonist mAb  [  149,   150  ] , an IgG2 immu-
noglobulin (in contrast to most approved mAb which are IgG1), and is unlikely to 
activate complement or bind Fc receptors effi ciently. Any potential biological effect 
is felt to be primarily related to CD40 signaling. Binding of CP-870,893 does not 
compete with ligation by CD154. In the fi rst-in-human study, 29 patients with 
advanced solid tumors were treated with single i.v. doses of CP-870,893  [  151  ] . 
Infusion was well tolerated and the MTD was estimated as 0.2 mg/kg  [  151  ] . The 
most common adverse event was transient, grade 1–2 cytokine release syndrome 
(CRS), associated with elevations in serum TNF-alpha and IL-6. Infusion of 
CP-870,893 was associated with dose-related, transient and clinically insignifi cant 
decreases in peripheral lymphocytes, monocytes, and platelets. Modest, transient 
elevations in serum  d -dimer were observed in most patients treated at the two high-
est dose levels, but there were no signs of DIC. 

 Four patients, each with metastatic melanoma, were found to have a partial 
response (PR) after a single infusion of CP-870,893. PR was evident by regression 
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of lesions in the liver, skin, lung, and muscle. Overall, 14% of all patients (and 27% 
of patients with melanoma) had objective responses. Seven patients (24%) had sta-
ble disease (SD), including one patient with melanoma at the 0.2 mg/kg dose level 
who had tumor regression that met criteria for SD but not PR. Seven patients with 
SD or PR were retreated with CP-870,893 without intervening anticancer therapy. 
One melanoma patient (0.2 mg/kg) had a sustained PR after the second dose and was 
subsequently treated with nine additional doses. Restaging after six doses showed a 
near complete resolution of metastatic disease on CT and complete resolution of 
abnormal FDG tracer activity without evidence for disease. Restaging after her tenth 
infusion showed complete resolution of preexisting disease on CT, but an isolated 
thigh lymph node recurrence was resected and CP-870,893 was discontinued. Since 
then, and without further therapy, the patient has been without evidence of disease, 
and an April 2010 PET/CT scan was negative (>4 years since the fi rst dose of 
CP-870,893). These fi ndings suggest potential utility of CP-870,893 in melanoma. 

 Single-dose pharmacodynamics of CP-870,893 was assessed by fl ow cytometry 
of peripheral blood. CP-870,893 infusion resulted in a rapid and dose-dependent 
decrease in the percentage and absolute count of CD19 +  B cells among peripheral 
blood lymphocytes, evident within 1 h of infusion and sustained for about 2 days. 
Moreover, there was a marked, rapid, and dose-related upregulation of CD86 on 
peripheral B cells after infusion. Both the percentage of CD86 +  cells among CD19 +  
B cells and the mean fl uorescence intensity (MFI) for CD86 among CD86 + CD19 +  B 
cells increased after infusion  [  151  ] . These data suggest that CP-870,893 is an 
immune activator in vivo, as had been shown in vitro  [  125,   152  ] . At the MTD, 
CP-870,893 was measurable in blood for only 8 h following dosing  [  151  ] , indicat-
ing a short serum half-life in humans (compared to a 3-week half-life of CP-870,893 
when injected in mice and suggesting a large in vivo sink of CP-870,893 target 
antigen). Human-anti-human antibodies were not detected in any patient receiving 
CP-870,893. 

 The HLA-A24 +  melanoma patient with a sustained PR after multiple doses of 
CP-870,893 was evaluated for the induction of melanoma-specifi c CD8 +  T-cells 
after treatment. HLA-A24-binding peptides derived from known melanoma tumor 
antigens (vs. control peptides from CMV and EBV) were used to stimulate T-cells 
obtained at baseline and after three infusions of CP-870,893. Cultures were evalu-
ated for production of IFN-gamma in response to 5 h stimulation with peptide-
loaded (vs. unloaded) autologous PHA blasts. IFN-gamma response was observed 
to melanoma peptides by CD8 +  T-cells obtained after but not before CP-870,893 
treatment (RHV, unpublished). Responses to CMV/EBV peptides were present but 
unchanged before and after infusion. Overall, this result indicates the induction of 
functional, melanoma-specifi c T-cells in this patient with a prolonged clinical 
response to CP-870,893. 

 Repeated dosing of CP-870,893 was then evaluated in a phase I study of patients 
with advanced solid tumor malignancies who received weekly intravenous infusion 
of CP-870,893 in four dose level cohorts  [  153  ] . Twenty-seven patients, including 11 
patients with metastatic melanoma, were treated. The most common adverse event 
was transient, infusion-related CRS, which again defi ned the MTD as 0.2 mg/kg. 
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Seven patients (26%) had SD as the best clinical response; no PR or CR were 
observed. Immunological analysis revealed rapid but transient depletion of CD19 +  
B cells with each dose of CP-870,893, with CD19 +  cell counts returning to baseline 
by the time of the next infusion. Each weekly infusion also upregulated expression 
of CD86 and CD54 on B cells, but importantly, expression of CD86 or CD54 did 
not reset to baseline by the time of subsequent infusions. At the time of the fourth 
infusion of CP-870,893 (Day 22), for example, the percentage of B cells expressing 
CD86 was threefold higher than on Day 1, despite that the absolute number of 
CD19 +  B cells was the same between Day 1 and 22. In mice, certain schedules of 
anti-CD40 monoclonal antibody administration, particularly frequent dosing, can 
result in deleterious effects on T-cells secondary to hyperstimulation  [  154,   155  ] . 
Subsets of peripheral blood T-cells before and after treatment were therefore studied 
in the CP-870,893 weekly trial and found that in up to 50% of patients, there were 
marked reductions of total CD3 +  T-cells, involving decreases in both the CD4 +  and 
CD8 +  T-cells (median CD4 +  decrease, 55%; median CD8 +  decrease, 49%). In the 
majority of patients, CD4 +  counts dropped below <200 cells/ m L. These studies sug-
gest that weekly CP-870,893 infusion is associated with chronic B cell activation 
and in some patients, T-cell depletion, suggesting that a longer dosing interval may 
be desirable for optimal immune pharmacodynamics. 

 CP-870,893 is also being tested in combination with chemotherapy. In one study, 
patients with advanced solid tumors, including metastatic melanoma, receive 
CP-870,893 either 2 or 7 days after carboplatin (AUC 6) and paclitaxel (175 mg/
m 2 ), with cycles of therapy repeated every 3 weeks in the absence of tumor progres-
sion or dose limiting toxicity. The rationale of the study is based on preclinical 
animal models demonstrating synergy of combining chemotherapy with CD40 ago-
nist monoclonal antibody, if chemotherapy is delivered fi rst to elicit release of tumor 
antigens following tumor cell death  [  135,   141  ] . 

 Two other anti-CD40 monoclonal antibodies have also been tested in the clinic, 
as recently reviewed  [  116,   156  ] . One, dacetuzumab (formerly SGN-40), is a human-
ized IgG1 immunoglobulin and a weak agonist of CD40 signaling in blood mono-
nuclear cells, including B cells  [  157  ] . Promising clinical results have been reported 
 [  158,   159  ] . A third monoclonal antibody, HCD 122 (formerly known as CHIR-
12.12) (Novarits/XOMA) is a fully human IgG1 mAb that mediates ADCC and 
blocks CD40-ligand-induced cell survival and proliferation of normal and malignant 
B cells  [  160,   161  ] . 

 Other clinical approaches targeting CD40 in cancer include gene therapy to 
achieve expression of CD40L in autologous tumor cells prior to reinfusion. Patients 
with chronic lymphocytic leukemia have been administered autologous leukemia 
cells transduced with adenovirus encoding recombinant CD40L without major tox-
icity  [  162,   163  ] . In another study, leukemic blasts administered with skin fi broblasts 
transduced with adenoviral vectors encoding human IL-2 and CD40L induced leu-
kemic-specifi c T-cells and antibodies following repeated injection  [  164  ] . 

 A clinical trial testing CP-870,893 in combination with the anti-CTLA-4 mAb 
tremelimumab for patients with metastatic melanoma is currently underway at the 
University of Pennsylvania.   
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      Is Systemic CD40 Activation Too Much of a “Good Thing?” 

 Some concerns have been raised regarding the use of systemic  CD40  activation in 
humans  [  154,   165,   166  ] . As illustrated in mouse models, these include the prospect 
of inducing systemic autoimmunity  [  167,   168  ] , accelerated tumor angiogenesis in 
light of  CD40  expression on endothelium  [  169  ] , and abolishment of long-term T-cell 
responses against tumor or viral antigens  [  154,   155,   170,   171  ] . One alternative 
approach to address these concerns is to apply the “licensing” effect of  CD40  activa-
tion on APC in a controlled, ex vivo environment without systemic exposure. In this 
setting, licensed APC could be loaded with antigen and subsequently used as a cell-
based vaccine. This approach conceivably would avoid toxic or undesirable effects 
of systemic in vivo administration of  CD40  monoclonal antibody such as CRS. Both 
 CD40 -activated, antigen-loaded DC and  CD40 -activated B cells have been studied, 
the latter of which represent alternative APCs that are able to both prime and boost 
T-cell responses and can be generated from small blood volumes  [  172  ] . For example, 
RNA as an antigenic payload can be introduced into  CD40 -activated B cells where it 
induces T-cell responses against tumor rejection antigens  [  173,   174  ] . A clinical trial 
is currently underway at the Veterinary School of the University of Pennsylvania to 
test the safety and effi cacy of tumor RNA loaded  CD40 -activated B cells as a vaccine 
for privately owned dogs who present with lymphoma  [  175  ] . Positive results in this 
veterinary clinical trial would fuel efforts to test similar strategies in humans.  

   Conclusions 

 Several promising agents that provide agonist costimulatory signals to T-cells and 
DC are in development. Even in early Phase1 trials, all of the agents have shown 
activity in patients with metastatic melanoma. While each individual agent may be 
effective in a small subset of patients, it seems likely that combinations of these 
agents with each other and with other cytokines, vaccines, chemotherapy, inhibitors 
of immune regulatory checkpoints, and/or inhibitors of tumor microenvironment 
immune suppressive factors will be necessary for optimal immune activation and 
antitumor effects. The careful dissection of the immunobiology of the ligand–recep-
tor pairs, including the kinetics of expression during activation from naïve to mem-
ory and effector cells, and the expression and function on different cell subsets, will 
hopefully provide a rational basis and approach to clinical development.      
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  Abstract   Modulation of the immune system using cytokines, most notably 
 interleukin-2 (IL-2) and interferon- a  (IFN- a ), has been the mainstay of immuno-
therapy of melanoma for more than a decade. High-dose IL-2 has been associated 
with durable complete responses (CR) in a subset of metastatic melanoma and renal 
cell carcinoma (RCC) patients, providing proof-of-concept for successful use of 
cytokine immunotherapy. IFN- a  as adjuvant therapy of high-risk melanoma is asso-
ciated with improved relapse-free survival and in some studies, a modest improve-
ment in overall survival. However, the therapeutic utility of IL-2 and IFN- a  is limited 
by low response rates, signifi cant treatment-associated toxicities and the paucity of 
biomarkers predictive of response to therapy. With the recent advances in our under-
standing of tumor immunology, it is apparent that the tumor immune microenvi-
ronment is extremely complex with several obstacles to the successful use of 
immunotherapeutic modalities. The use of novel cytokines with unique immuno-
modulatory properties, as well as the investigation of novel methods of cytokine 
delivery, has the potential to circumvent some of these obstacles. This chapter 
focuses on some of the novel cytokine-based immunotherapeutic approaches that 
appear promising for the treatment of melanoma.  
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   The Ideal Cytokine for Cancer Immunotherapy 

 The ideal cytokine for cancer immunotherapy should:

    1.    Possess potent immunostimulatory properties, so as to overcome the multiple 
mechanisms of immune-evasion by the tumors. These characteristics may lead 
not only to the stimulation of innate and adaptive immune responses against cancer, 
but also to the generation of memory responses for long-lasting immunity.  

    2.    Not induce a paradoxical suppression of the immune system (such as proliferation 
of regulatory T-cells or activation-induced cell death [AICD] attributed to IL-2).  

    3.    Have minimal acute as well as long-term toxicity, and should ideally be specifi c 
for cancer so as to avoid autoimmune toxicities.  

    4.    Combine well with other cancer therapies, including chemotherapy, antiangiogenic 
therapies, targeted agents as well as alternative immunotherapeutic approaches such 
as cancer vaccines, adoptive cell therapy, or immune checkpoint blockade drugs.     

 The emerging novel cytokine therapies that are discussed below possess one or 
more of the characteristics described above and may lead to improved patient outcomes 
in melanoma and other cancers. We focus mainly on Interleukin-12 and Interleukin-21, 
both of which have been tested in several clinical trials in melanoma and other tumor 
types. We also briefl y discuss other novel cytokines such as Interleukin-15 and cytokine-
delivery approaches that appear promising for immunotherapy of cancers.  

   Interleukin-12 

 Interleukin-12 (IL-12) is a 70-kDa heterodimeric, multifunctional protein consisting 
of two subunits, a 35-kDa light chain (known as p35 or IL-12 a ) and a 40 kDa heavy 
chain (known as p35 or IL-12 b ) linked by a disulfi de bond  [  40,   87  ] . It was fi rst 
discovered in 1989 as “Natural killer cell stimulatory factor” and independently by 
another group in 1990 as “Cytotoxic lymphocyte maturation factor”  [  40,   80  ] . Soon 
afterward, it was recognized as a master regulator of adaptive type 1 cell-mediated 
immunity, as IL-12 production by innate immune cells in response to microbial 
pathogens was shown to polarize the naïve CD4 +  T-cells toward the T-helper-1 (T 

H
 1) 

phenotype  [  33  ] . IL-12 was also found to induce the production of IFN- g  from, as 
well as increase the proliferation and cytotoxicity of, NK cells and T-cells  [  9  ] . 

   Biological Properties of IL-12 

 IL-12 is produced primarily by activated infl ammatory cells (monocytes, mac-
rophages, neutrophils, and dendritic cells)  [  15,   49  ] . Both genes encoding the two 
subunits of IL-12 need to be expressed together in the same cell to lead to the secre-
tion of the active heterodimeric form of IL-12. The mRNA of p35 is expressed 
widely, but the expression of p40 seems to be restricted to the phagocytic cells and 
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dendritic cells (DCs). Microbial products such as CpG-containing oligonucleotides, 
double-stranded RNA, and bacterial DNA are strong inducers of IL-12 production 
by phagocytes and DCs, likely through the engagement of Toll-like receptors (TLRs) 
on these cells. The production of IL-12 heterodimer seems to be amplifi ed by the 
presence of IFN- g  or other enhancing cytokines; this effect of IFN- g  on IL-12 pro-
duction is more pronounced in phagocytic cells than in DCs and leads to a positive 
feedback mechanism during infl ammatory and T 

H
 1 responses  [  48  ] . 

 The IL-12 receptor (IL-12R) is composed of two chains – IL-12R b 1 and 
IL-12R b 2; coexpression of both these chains is required for generation of high-
affi nity IL-12 binding sites  [  65  ] . The IL-12R b 2 subunit functions as the signal-
transducing component of the receptor complex; signal transduction occurs through 
the Janus kinase (JAK)–STAT (signal transducer and activator of transcription) 
pathways. Activation of STAT4 appears to be the dominant mechanism in relaying 
the specifi c cellular effects of IL-12  [  36,   83  ] . IL-12R is expressed mainly by acti-
vated T cells and NK cells, but is also present on other cell types, such as DCs and 
B cells  [  65  ] . Low level expression of IL-12R on resting NK cells explains the ability 
of these cells to respond rapidly to IL-12. Most resting T cells do not have detect-
able levels of IL-12R. Activation of T cells through the T cell receptor (TCR) upreg-
ulates the transcription and expression of both chains of IL-12R, and this upregulation, 
particularly that of the  b 2-chain, is enhanced by the presence of other cytokines 
such as IFN- a , IFN- g , tumor-necrosis factor (TNF), and IL-12 itself, and also by 
costimulation through CD28. In T cells, the expression of IL-12R b 2 is confi ned to 
T 

H
 1 cells, and its expression correlates with responsiveness to IL-12  [  70,   82  ] . 
 As would be expected from the IL-12R expression patterns, IL-12 does not 

induce the proliferation of resting T or NK cells, but has a direct proliferative effect 
on preactivated T cell and NK cells, and induces the production by these cells of 
IFN- g  and other cytokines  [  80  ] . It also enhances the cytolytic activity of cytotoxic 
T-lymphocytes (CTLs) and NK cells by inducing the transcription of genes that 
encode cytolytic effector molecules such as perforin and granzymes. IL-12 also 
appears to be a potent inducer of the T 

H
 1-type immune responses by facilitating the 

optimal differentiation of naïve CD4 +  T cells into the T 
H
 1 cells; these cells are irre-

versibly primed to produce high levels of IFN- g  upon restimulation  [  33  ] .  

   Antitumor Activity of IL-12 in Preclinical Models 

 The biological properties of IL-12 described above led to an extensive investiga-
tion of the antitumor effi cacy of IL-12 in many preclinical models, as well as in 
clinical trials. Many of the preclinical IL-12 studies for the treatment of cancer 
were conducted in poorly immunogenic and metastatic murine models such as the 
B16 melanoma model  [  1,   21,   32,   45,   46,   73  ] . Despite poor immunogenicity, lim-
ited regression of established, primary tumors and the prevention of new metasta-
ses were reported in these models  [  1,   74  ] . Tumor regression induced by IL-12 
therapy likely involves multiple mechanisms. A direct action of IL-12 on tumor 
cells is unlikely as in vitro studies involving coincubation of tumor cells with IL-12 



336 S. Bhatia and J.A. Thompson

did not result in tumor cell death  [  9  ] . Regression of tumors after IL-12 therapy 
appears dependent on CD8 +  T cells  [  9  ] . T cells have been implicated in other studies 
as the critical cell type for IL-12 induced tumor regression and memory responses 
 [  7,   23,   86  ] . In addition to the antigen specifi c effects of T cells, IL-12 immuno-
therapy results in the production of IFN- g . Induction of IFN- g  plays a critical role 
in tumor rejection, but injection of IFN- g  alone may not be as potent for regression 
 [  9  ] . Recent studies have shown that IL-12 also acts to upregulate the expression of 
HLA class I and II, as well as ICAM-1 on human cancer cells (melanoma), which 
may increase their immunogenicity  [  96  ] . IL-12 immunotherapy also results in the 
inhibition of angiogenesis via mechanisms not thoroughly elucidated, although 
both IFN- g  and NK cells have been implicated  [  25,   76,   95  ] . IL-12 immunotherapy 
also combined effectively with both peptide-based and cell-based antitumor vac-
cines leading to regression of established tumors in murine models suggesting a 
potential role for the use of IL-12 as an adjuvant in vaccination strategies  [  57,   66  ] . 

 Encouraged by these unique biological properties and the promising preclinical 
data mentioned above, recombinant IL-12 (rIL-12) was actively investigated in the 
treatment of advanced solid tumors and hematologic malignancies, both as a mono-
therapy and in combination with other therapies.  

   Clinical Investigation of IL-12 in Cancer Immunotherapy 

  Systemic administration of IL-12 : In the fi rst phase I dose escalation trial, a total of 40 
patients, including 20 with renal cancer and 12 with melanoma, were enrolled; the 
patients received, starting 2 weeks after a single test dose of rIL-12, a regimen of once 
daily intravenous rIL-12 injections for 5 days repeated every 3 weeks  [  2  ] . The maxi-
mum tolerated dose (MTD) was 500 ng/kg. Common clinical toxicities included fever/
chills, fatigue, nausea, vomiting, and headache; laboratory abnormalities included 
cytopenias, hypoalbuminemia, hyperglycemia, and hepatic function test abnormalities. 
Dose-limiting toxicities (DLTs) included oral stomatitis and hepatic dysfunction, 
mostly elevated transaminases. A transient complete response in a patient with mela-
noma and one partial response (PR) in a patient with renal cell cancer were docu-
mented. Biological effects included dose-dependent increases in circulating IFN- g  and 
neopterin levels and transient lymphopenia. IL-12-induced lymphopenia involved all 
of the major lymphocyte subsets, although NK cells seemed to be the most profoundly 
affected and CD4 +  T cells were relatively spared  [  67  ] . The kinetics of lymphocyte 
recovery was different from those seen with IL-2, with a slower recovery and lack of 
rebound lymphocytosis. The data also suggested that rIL-12 could reverse the defects 
in NK cell and T-cell functions that are usually seen with advanced cancer  [  67  ] . 

 In a subsequent phase II study, 17 RCC patients received the same daily IV dose 
of rIL-12 at the same schedule as the above trial, albeit without the test dose  [  14  ] . 
Shockingly, most patients had severe toxicities including treatment-related deaths in 
two patients; the toxicities affected multiple organ systems. These intriguing fi nd-
ings were confi rmed in mice and cynomologus monkeys: the animals did not develop 



33717 Novel Cytokines for Immunotherapy of Melanoma

severe toxicity if they were given a single dose of IL-12, a rest period, and then 
multiple doses; however, multiple high doses of IL-12 were highly toxic if they 
were given without an initial single dose  [  14  ] . The profound difference in toxicity 
associated with relatively minor variation in the schedule of administration of IL-12 
was thought to be due to down-modulation of the infl ammatory response with 
sequential doses of rIL-12. Indeed, in the phase I trial, the peak IFN- g  levels tended 
to diminish with repetitive 5-day multiple dose cycles of rIL-12  [  2  ] . 

 Two separate phase I dose-escalation clinical trials investigated the subcutaneous 
(SC) administration of rIL-12 on days 1, 8, and 15 of a 28-day cycle in patients with 
RCC and melanoma, respectively. The RCC trial used a fi xed-dose schedule ini-
tially and found the MTD to be 1  mcg /kg; DLTs included increase in transaminase 
concentration, pulmonary toxicity, and leukopenia. The toxicities were most pro-
nounced after the fi rst dose and attenuated rapidly with the subsequent cycles. Using 
an up-titration scheme, in which the doses were escalated weekly to the fi nal stable 
dose, the MTD was 1.5 mcg/kg. One patient had a CR, and 34 patients had stable 
disease (SD). The second study enrolled ten patients with MM who were all treated 
with a fi xed dose of 0.5 mcg/kg  [  3  ] . No partial or complete responses were docu-
mented, but tumor shrinkage involving subcutaneous metastases, superfi cial ade-
nopathy, and hepatic metastases was observed. Correlative immune monitoring in 
the peripheral blood of these patients indicated that rIL-12 administration induced a 
striking burst of HLA-restricted CTL precursors directed to autologous tumors and 
to an immunogenic tumor-associated antigen (Melan-A/Mart-126-35 peptide)  [  55  ] . 
Most interestingly, infi ltration of neoplastic tissue by CD8 +  T cells with a memory 
and cytolytic phenotype was identifi ed by immunohistochemistry in all available 
biopsies of the posttreatment metastatic lesions. 

 In another phase I study using a rIL-12 administration schedule based on twice-
weekly IV injections for 6 weeks, the blood levels of IFN- g , IL-15, and IL-18 were 
found to be elevated in treated patients  [  26  ] . Despite the immunological effects of 
rIL-12, the clinical effi cacy was disappointing with no objective responses seen in 
the eight patients with MM. Interestingly, whereas IFN- g  and IL-15 induction was 
attenuated during the fi rst cycle in patients with progressive disease (PD), those 
patients with tumor regression or stable disease (SD) showed sustained higher lev-
els of IFN- g , IL-15, and IL-18. This observation suggested the need for strategies to 
sustain the induction of IFN- g ; based on in vitro data, addition of IL-2 was proposed 
as one such strategy. In a subsequent study, 28 patients were treated with 6-week 
cycles of twice-weekly IV rIL-12 with the addition of SC IL-2 midway through 
cycle 1  [  27  ] . There was one PR and two pathologic responses, all of which occurred 
in patients with melanoma. When administered at the MTD, IL-2 signifi cantly aug-
mented IFN- g  production by rIL-12 and led to a threefold expansion of NK cells. 

 Systemic administration of rIL-12 has also been used in combination with other 
approaches such as peptide vaccination with mixed results  [  11,   42,   63  ] . In a trial of 
48 patients with resected stage III or IV melanoma who were immunized with pep-
tides derived from tyrosinase and gp100, with or without SC administration of 
rIL-12, rIL-12 augmented peptide-specifi c delayed-type hypersensitivity reactivity 
to the gp100 antigen in 34 of 40 patients  [  42  ] . Further, the gp100-specifi c and 
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tyrosinase-specifi c peripheral immune response, as measured by IFN- g  release were 
enhanced by the treatment in 37 of 42 patients. In another trial, 28 metastatic 
melanoma patients with Melan-A expressing tumors were enrolled to receive 
Melan-A 

26–35
  and infl uenza matrix 

58–66
  peptides intradermally in combination with 

various doses of rIL-12 SC or IV  [  11  ] . Clinical responses were mostly mixed, with 
only one CR in a patient with low volume subcutaneous disease and one PR in a 
patient with hepatic metastases. Tumor biopsies revealed infi ltration of CD4 +  and 
CD8 +  T cells capable of lysing a Melan-A/Mart-1 peptide-pulsed target in vitro. In 
a phase II trial of 20 pretreated patients with advanced melanoma received autolo-
gous peripheral blood mononuclear cells pulsed with tumor-antigen peptides 
(Melan-A/Mart-1) plus SC rIL-12  [  63  ] . Two patients with numerous metastases 
achieved a complete response and several other patients had minor or mixed 
responses or SD. A signifi cant association was observed between an increased num-
ber of Melan-A-specifi c T cells and clinical outcome. 

  Local administration of IL-12 : Systemic administration of rIL-12 in patients has 
been limited by considerable toxicity. In addition to the toxic side effects, high rIL-12 
dosage levels have been linked to temporary immune suppression, which would be 
unfavorable for effective immunotherapy  [  26,   58  ] . Studies in a colon carcinoma model 
and a fi brosarcoma tumor model have shown that the amount of IFN- g  generated at 
the tumor site is the key in effecting tumor regression  [  12,   30,   53,   99  ] . These observa-
tions led to clinical trials designed to deliver IL-12 directly to the tumor, in forms other 
than recombinant protein. Localized delivery of IL-12 cDNA to the tumor site has 
been achieved through local administration of IL-12 cDNA via direct injection of 
IL-12 plasmid, of viral vectors, or of modifi ed fi broblasts, autologous tumor cells, or 
dendritic cells that were engineered to secrete IL-12  [  21,   31,   35,   45,   46,   50,   52,   53,   81, 
  88  ] . A recent clinical trial attempting local delivery of IL-12 involved intratumoral 
injection of IL-12 plasmid DNA followed by in vivo electroporation to enhance the 
effi ciency of transfection  [  16  ] . Seven dose cohorts with a total of 24 patients were 
treated in this study at various doses of IL-12 plasmid (0.1–1.6 mg/mL) with treat-
ment administered on days 1, 5, and 8. The experimental regimen was found to be safe 
and well tolerated, with minimal systemic toxicity and no signifi cant IL-12 spillage 
into circulation. Most (76%) electroporated lesions demonstrated necrosis (>20%) at 
the time of follow-up biopsy or excision after the last injection. Four of 19 patients, 
who had distant disease, had evidence of distant responses including three CRs. All 
three CRs occurred in the setting of patients with disseminated progressive cutaneous 
lesions. An immune mechanism of action was suggested for these responses, which 
occurred over a span of 6–18 months and were associated with hypopigmentation and 
gradual regression of tumors at sites distinct from the electroporated sites. Six addi-
tional patients had stable disease lasting from 4–20 months at distant sites. A phase II 
trial is currently being developed in patients with melanoma. 

 In summary, IL-12 is a potent immunomodulatory cytokine with promising anti-
tumor effi cacy. The integration of IL-12 as a vaccine adjuvant has shown improved 
priming against tumor antigens. Local delivery of IL-12 in the vicinity of tumor 
cells may result in immune-stimulatory responses against tumor cells, while mini-
mizing systemic side-effects.   
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   Interleukin-21 

 Interleukin-21 (IL-21) is a type-I cytokine with close homology to IL-2, IL-4, and 
IL-15; the receptors of these cytokines (and other cytokines such as IL-7 and IL-9) 
share the common cytokine-receptor  g -chain ( g  

c
 ). The IL-21-receptor (IL-21R) and 

IL-21 system was discovered in 2000  [  59,   60  ] . Since its discovery, a broad range 
of actions have been ascribed to the IL-21 system with important implications for 
several human diseases, including cancer. The biological characteristics of IL-21 
and the data from clinical investigation of IL-21 for treatment of cancer are 
summarized below. 

   Biological Properties of IL-21 

 IL-21 is produced primarily by activated CD4 +  T cells  [  60  ] . IL-21 signals through 
the IL-21 receptor complex, which is a heterodimeric complex comprised of the 
IL-21R and the common  g  

c
  chain. IL-21R is expressed preferentially by NK cells, B 

cells and activated T cells, which explains the major actions of IL-21 on these cell 
types  [  59,   60  ] . The IL-21 system distinguishes itself from the other  g  

c
 -dependent 

cytokines by activating primarily STAT1 and STAT3 (and more weakly, STAT5A 
and STAT5B) for signal transduction; this is in contrast to the other  g  

c
  cytokines 

which signal primarily through other STAT molecules (for example, STAT5A and 
STAT5B by IL-2, IL-7, IL-9, and IL-15, and STAT 6 by IL-4)  [  43,   59,   60  ] . 

 IL-21 serves as a T-cell comitogen, augmenting the proliferation of T-cells in 
response to other primary signals  [  60  ] . IL-21 has a marked synergistic effect on the 
in vitro proliferation of CD8 +  T cells in combination with either IL-7 or IL-15; how-
ever, IL-21 alone had little effect  [  97  ] . This combination of cytokines also led to 
increases in the expression of granzyme B in CD8 +  T cells and in the number of 
IFN- g -producing CD8 +  T cells, illustrating the effects of IL-21 on clonal expansion 
and effector function of CD8 +  T cells. The synergistic effects of these cytokines 
occur for both naïve and memory phenotype CD8 +  T cells  [  97  ] . These fi ndings sug-
gest the possible role of IL-21 in activation, expansion, and prolonged survival of 
antigen-specifi c CD8-cytotoxic T lymphocytes. Unlike IL-2, however, IL-21 does 
not result in AICD of antigen-specifi c CD8 +  T cells  [  54  ] . Rather, these antigen-
specifi c CD8 +  T cells can survive long-term while maintaining effector activity, a 
property shared by IL-15. Hence, IL-21 likely has a unique role in initiation and 
maintenance of a CD8 +  T cell response that may be critical for achieving durable 
immunity. The functional effects of IL-21 on CD4 +  T cells are less well character-
ized and are probably more limited. Importantly, IL-21 (unlike IL-2) renders CD4 +  
T cells resistant to regulatory T cell suppression and does not enhance proliferation 
of regulatory T cells  [  62  ] . 

 IL-21 also appears to have important roles in the terminal differentiation and 
activation of natural killer cells  [  60,   61  ] . In combination with IL-7, IL-15, and other 
factors, IL-21 enhances the generation of NK cells from bone-marrow progenitors 
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in vitro  [  77  ] . IL-21 augments the acquisition of a fully functional cytotoxic state by 
NK cells, by inducing the expression of killer inhibitory receptors (KIRs) and the 
production of IFN- g  by NK cells  [  77  ] . Interestingly, higher doses of IL-21 can 
induce apoptosis of NK cells coincident with the enhanced effector function of the 
cells, which is inhibited by the addition of IL-15  [  8,   37  ] . Besides its effects on 
T-cells and NK-cells, IL-21 has also been associated with an enhancement of T cell-
dependent B cell proliferation, plasma cell differentiation and immunoglobulin 
production  [  60  ] . IL-21 has also been associated with angiostatic activity  [  10  ] .  

   Antitumor Activity of IL-21 in Preclinical Models 

 Potent antitumor effects of IL-21 have been reported in various preclinical cancer 
models  [  20,   54,   78,   92  ] . The antitumor activity of IL-21 may be mediated by its 
effects on either NK cells or CD8 +  T-cells or both. Treatment of tumor-bearing mice 
with IL-21 plasmid DNA with subsequent generation of high levels of circulating 
IL-21 resulted in signifi cant inhibition of growth of B16 melanoma or MCA205 
fi brosarcoma  [  92  ] . This antitumor activity was considerably reduced by in vivo 
depletion of NK cells, but not by depletion of CD4 +  or CD8 +  T cells; importantly, 
the toxicity of the high systemic levels of IL-21 was markedly reduced as compared 
to the toxicity usually seen with the high levels of IL-2 required to activate NK cells. 
In another murine model, B16F1 and MethA fi brosarcoma tumor cells that were 
engineered to express IL-21 were completely rejected in vivo  [  47  ] . In this model, 
antitumor activity was dependent on the presence of both CD8 +  T cells and NK 
cells. IL-21 supported the generation of IFN- g -secreting Ag-specifi c T cells along 
with augmentation of the CTL activity. These effects were independent of IFN- g  
and other cytokines, but required perforin, thus suggesting a critical role for perfo-
rin-mediated cytotoxicity. However, in another study using the IL-21 expressing 
murine mammary adenocarcinoma cells, the IL-21-mediated tumor rejection by 
CD8 +  T-cells was dependent on IFN- g , although, IFN- g -independent effects were 
also evident  [  20  ] . In a comparative evaluation of IL-2, IL-15, and IL-21 in a syn-
geneic thymoma model, the antitumor benefi t of IL-21 was completely lost with 
CD8 +  T-cell depletion  [  54  ] . Interestingly, the depletion of NK cells signifi cantly 
reduced the median survival time, but not the frequency of long-term survivors. 
This suggested that the innate immune responses may be more relevant in the ini-
tial stages of antitumor benefi t from IL-21, but that CD8 +  T-cells are indispensable 
for durable antitumor immunity. Similar to IL-2, IL-21 enhanced Ag-specifi c 
CD8 +  T-cell activation and clonal expansion. Unlike IL-2, IL-21 did not result in 
AICD, but rather these IL-21-enhanced activated CD8 +  T cells survived while 
maintaining effector activity  [  54  ] . Hence, IL-21 has a unique ability to behave in 
certain respects like both IL-2 and IL-15 and this special property could prove 
helpful in inducing durable immunity. This overlap in properties was also 
refl ected by a demonstration of synergistic effects of IL-21 and IL-15 in a murine 
melanoma model treated with adoptively transferred CD8 +  T cells  [  97  ] . In this 
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model, IL-21 and IL-15 monotherapy after adoptive transfer of T cells induced 
partial tumor regressions, but combination therapy led to complete regressions and 
prolonged survival. 

 The encouraging results from the various preclinical models and the above-men-
tioned unique biological properties of IL-21 have generated considerable interest in 
the clinical investigation of recombinant IL-21 (rIL-21) for the treatment of mela-
noma as well as for other advanced solid tumors and hematologic malignancies, 
either as monotherapy, or in combination with other therapies.  

   Clinical Investigation of IL-21 in Cancer Immunotherapy 

 Recombinant IL-21 (rIL-21) therapy has been investigated in several human clinical 
trials  [  18,   19,   84  ] . A phase I trial of intravenous rIL-21 monotherapy was conducted 
in patients with metastatic MM and RCC; 43 patients (24MM; 19RCC) were treated 
at various dose-levels of rIL-21 ranging from 3 to 100 mcg/kg/day  [  84  ] . rIL-21 was 
administered as two 5-day cycles on days 1 through 5 and 15 through 19 of a treat-
ment course by rapid daily IV infusion in an outpatient setting. Most clinical adverse 
events were mild during the dose-escalation phase of the study and DLTs primarily 
consisted of transient grade 3 laboratory abnormalities including hyponatremia, 
cytopenias, hyperbilirubinemia, and hypophosphatemia. The MTD was determined 
to be 30 mcg/kg/day; overall, a total of 34 patients were treated at this dose level. 
Common adverse events included transient and reversible fl u-like symptoms, pruri-
tus, and skin rash. No capillary leak syndrome was observed at any dose level. 
Common laboratory abnormalities were also mild and included cytopenias, eleva-
tion in hepatic transaminases, bilirubin, or triglycerides and decreases in albumin, 
calcium, magnesium, phosphorus, or sodium. Retreatment with rIL-21 was not 
associated with increased toxicity, with the exception of one patient who developed 
reversible toxic hepatonecrosis in the second treatment course. Pharmacodynamic 
effects of rIL-21 included dose-dependent increases in serum concentration of sol-
uble CD25 (sCD25 or IL-2R a ); since sCD25 is cleaved from T and NK cells on 
activation, this suggests possible IL-21-mediated activation of these cells in patients 
 [  34  ] . Treatment was associated with promising antitumor effects. Among the 24 
MM patients, the best responses were CR in 1 patient and SD in 11 patients. Among 
the 19 RCC patients, 17 patients had achieved SD or better on study (including 4 
patients with PR, 13 with SD). In some patients, repeat treatment with rIL-21 was 
associated with progressive shrinkage of tumors. Responses were seen across all 
tumor sites including visceral metastases, and in patients who had received prior 
high-dose IL-2. 

 Another phase I study investigated two different schedules of IV administration of 
rIL-21 in patients with metastatic MM  [  19  ] . One schedule, the 5 + 9 schedule, used 
daily dosing of rIL-21 for 5 days in weeks 1, 3, and 5 of an 8-week-long cycle (total 
of 15 doses in one cycle). The other schedule, the 3/week schedule, consisted of 
administration of rIL-21 three times each week for the fi rst 6 weeks of an 8-week-
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long cycle (total of 18 doses in a cycle). The fi rst dose was administered in the hos-
pital for safety evaluation, but the rest of the treatment was administered in the 
outpatient setting. The MTD for both schedules was determined to be 30 mcg/kg/day 
and was the recommended dose for future investigation, although some patients in 
the 5 + 9 schedule of administration were able to tolerate higher dose levels. The most 
common AEs were fatigue, fever, nausea, headaches, vomiting, rash, myalgias, and 
anorexia. There were no signifi cant differences in the pharmacokinetic parameters 
and the safety profi le of the two schedules. Pharmacodynamic assays revealed dose-
dependent increases in sCD25 levels, and an upregulation of perforin-1 and granzyme 
B mRNA levels in purifi ed peripheral blood CD8 +  T cells and NK cells. These fi nd-
ings suggested an activation of the cytolytic CD8 +  T-cells and NK cells. The clinical 
effi cacy was modest with SD as the best outcome in nine patients, although one 
patient had a CR that was ongoing at 32 months at the last report. 

 The promising effi cacy signals from phase I studies mentioned above have led to 
further investigation of rIL-21 monotherapy in melanoma. In a phase II trial, 24 
patients with metastatic melanoma and no prior systemic therapy for metastatic 
disease were treated with rIL-21 monotherapy at the 30 mcg/kg/day dose per the 
5 + 9 schedule mentioned above  [  18  ] . The objective response rate was a modest 8% 
including 1 CR and 1 PR, both of which lasted only a few weeks. Consistent with 
prior studies, serum sCD25 levels and mRNA expression levels of perforin, IFN- g , 
and granzyme B in purifi ed peripheral blood CD8 +  T cells and NK cells were 
increased suggesting activation of these cell types. The proportion of CD25 +  NK 
cells and CD25 + CD8 +  T cells also increased signifi cantly suggesting activation of 
these cells. In the CD4 +  T cell subpopulation, however, no increase in the percent-
age of CD25 +  cells was seen. Notably, the frequency of CD4 + CD25 bright  cells did not 
increase. This is consistent with the differential effects of rIL-21 on various lym-
phocytic subsets seen in preclinical studies. 

 Another phase II trial tested rIL-21 monotherapy in previously untreated patients 
with metastatic melanoma  [  64  ] . In this trial, patients with bulky disease (defi nes as 
 ³ 5 cm) or with brain metastases were excluded. The majority of the enrolled patients 
were treated at the 30 mcg/kg/day dose of rIL-21 according to the 5 + 9 schedule 
described above (daily dosing of rIL-21 for 5 days in weeks 1, 3, and 5 of an 8-week-
long cycle, i.e., a total of 15 doses in one cycle). Toxicities were similar to those 
seen in previous trials. The effi cacy was promising with 23% of evaluable patients 
achieving a PR and 40% with SD; the median progression-free survival was 4.3 
months and the median duration of response was 5 months. Based on these results, 
a randomized phase II study comparing rIL-21 with dacarbazine is currently under-
way in treatment-naïve patients with metastatic melanoma who do not have bulky 
disease and brain metastases. 

 In light of the tolerability of rIL-21 monotherapy and evidence of antitumor 
activity, several combinations of rIL-21 with other emerging therapies have been 
explored as well. Our group has been involved in the investigation of rIL-21 in com-
bination with sorafenib in patients with metastatic RCC. A total of 52 patients were 
treated in this phase 1/2 study  [  6  ] . Treatment was administered in the outpatient 
setting; rIL-21 was administered on days 1–5 and 15–19 of every 7-week cycle and 
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sorafenib was self-administered daily at the standard dose (starting at 800 mg/day). 
The MTD of rIL-21 in combination with sorafenib was 30 mcg/kg/day. The safety 
profi le of the combination was acceptable with majority of the AEs at the MTD of 
rIL-21 being grade 1 or 2. The toxicities were similar to those observed with either 
agent alone in previous trials. The antitumor effi cacy of this combination appears 
promising with ORR of 24%, DCR of 82% and PFS of 5.7 months in a previously 
treated patient population; the results compare favorably to that seen with sorafenib 
monotherapy in treatment-naïve or pretreated patient populations. Two patients 
have had durable partial responses (near CR with persistent small residual masses) 
that are ongoing at 34+ months and 25+ months after treatment initiation (unpub-
lished data). 

 Another clinical trial investigated the combination of rIL-21 and rituximab in 
subjects with relapsed, indolent CD20 +  B cell lymphomas who had received at least 
one prior course of systemic therapy  [  85  ] . The combination rIL-21 with rituximab 
was well tolerated and associated with an ORR of 33% in a heavily pretreated 
patient population. These data suggest the potential feasibility of combination of 
rIL-21 with some of the emerging targeted therapies for metastatic melanoma, 
including BRAF inhibitors. 

 In summary, IL-21 is a novel cytokine with unique immunomodulatory proper-
ties that make it an attractive candidate for immunotherapy of cancer. Recombinant 
IL-21 has been safely administered in the outpatient setting with an acceptable 
toxicity profi le. The preliminary investigations have revealed promising antitumor 
effi cacy in several tumor types, including melanoma. The combinations of rIL-21 
with other treatment modalities appear feasible and promising. Further investiga-
tion of this cytokine in cancer immunotherapy is ongoing and worth developing 
further.   

   Interleukin-15 (IL-15) 

 Interleukin-15 was independently discovered by two groups in 1994 as a 14–15 kDa 
cytokine, which interacted with the IL-2R b  chain and possessed an ability to stimu-
late T-cell and NK-cell proliferation, just like IL-2  [  4,   28  ] . Similar to IL-2, the 
receptor for IL-15 (IL-15R) is heterotrimeric; in fact, IL-2R and IL-15R share a 
common  b  chain (IL-2/15R b ) and the common cytokine-receptor  g -chain ( g  

c
 ). This 

sharing of receptor subunits explains the redundancy in the actions of these two 
cytokines. Indeed, both cytokines stimulate the proliferation of T cells and the gen-
eration of CTLs, the proliferation and activation of NK cells, and the proliferation 
of, and synthesis of immunoglobulins by, B cells  [  41,   90,   91,   98  ] . However, the 
high-affi nity receptors for IL-2 and IL-15 contain a unique third subunit for each 
cytokine: IL-2R a  and IL-15R a , respectively; this difference in  a  subunit also 
explains, at least partially, the unique properties and functional differences of IL-15 
as compared to IL-2. These differences have considerable implications for the optimal 
use of these cytokines in treatment of human diseases. 
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   Biological Properties of IL-15 

 IL-15 mRNA is constitutively expressed by a large variety of tissues; however, the 
detection of IL-15 protein appears to be most restricted to monocytes, epithelial 
cells, DCs, and fi broblasts. In contrast to IL-2, IL-15 is only secreted in small quan-
tities and is primarily membrane-bound. IL-15R a  is expressed primarily by acti-
vated monocytes and DCs (as compared to IL-2R a , which is expressed primarily by 
activated T-cells and B-cells); the IL-15 and IL-15R a  expressed by these monocytes 
and DCs then become associated on the cell surface and can result in persistence of 
membrane-bound IL-15R a  associated with IL-15. This IL-15 is presented by 
IL-15R a   in-trans  to cells that express IL-12/15R b  and  g  

c
  including NK cells and 

CD8 +  memory T-cells, hence explaining the important role of this cytokine in in vivo 
persistence of NK cells and mature CD8 +  memory T cells. This is an important 
distinction from IL-2 which inhibits the persistence of CD8 +  memory T cells  [  41  ] . 
IL-15 overexpressing mice have increased number of and activation of NK cells; 
since IL-15R a  is constitutively expressed in NK progenitor cells and IL-15R a  −/−  
mice are defi cient in mature NK cells, IL-15 appears to play a critical role in NK cell 
development  [  44  ] . Also, in sharp contrast to the pivotal role of IL-2 in elimination 
of self-reactive T cells through AICD, IL-15 opposes IL-2 induced AICD  [  51  ] . 
These various properties of IL-15, including proliferation and activation of T-cells 
and NK cells, inhibition of AICD and facilitation of persistence of CD8 +  memory T 
cells, are especially appealing for the treatment of cancer and for vaccination against 
infectious pathogens. 

 Indeed, IL-15 has been reported to have promising antitumor activity in several 
preclinical investigations; this antitumor activity seems to be mediated through NK 
cells, CD8 +  T-cells, and possibly other independent mechanisms  [  17,   22,   24,   39,   72, 
  89,   94  ] . This encouraging preclinical data has led to considerable interest in clinical 
investigation of IL-15-based immunotherapeutic approaches. At a 2007 NCI immu-
notherapy workshop, IL-15 was considered as having the highest potential for suc-
cessful use in cancer immunotherapy  [  13  ] . A phase-I dose-escalation trial of 
recombinant human IL-15 in patients with metastatic melanoma and RCC is ongo-
ing (  www.clinicaltrials.gov     identifi er # NCT01021059).   

   Other Promising Cytokines 

 Besides IL-12, IL-21, and IL-15, there is considerable interest in clinical investiga-
tion of several other cytokines for immunotherapy of cancer. Granulocyte-
macrophage colony stimulating factor (GM-CSF) and IFN- a  continue to be 
investigated extensively, either as monotherapy or as an adjuvant in vaccination and 
other approaches. Interleukin-7 (IL-7) has generated a lot of interest due to its 
unique roles in T cell development, and in survival and expansion of naive T cells 
in the periphery. IL-7 is particularly appealing as a vaccine adjuvant or as an immu-
norestorative T cell growth factor for naive T cells, especially in patients with prior 
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lymphodepleting chemotherapy or elderly patients  [  13  ] . In two separate phase I 
clinical trials, treatment with recombinant human IL-7 (rhIL-7) led to a marked 
expansion in the number of CD4 +  and CD8 +  T-cells in the periphery; contrary to 
IL-2, the CD4 +  T 

reg
  cells were relatively decreased  [  71,   79  ] . Studies of rhIL-7, as 

monotherapy or in combination with vaccines, are ongoing in patients with malig-
nancy and infectious diseases. Interleukin-18 (IL-18), a member of the interleukin-1 
superfamily of cytokines, is an immunostimulatory cytokine that regulates innate as 
well as both Th1- and Th2-driven adaptive immune responses  [  29,   56  ] . IL-18 
enhances IFN- g  production by, and augments the cytolytic activity of, T cells and 
NK cells, and promotes the differentiation of CD4 +  T cells into helper effector cells; 
it acts synergistically with IL-12. Two clinical trials testing rhIL-18 have reported 
safety and feasibility of its administration, and evidence of biological activity, 
although antitumor responses have been disappointing  [  68,   69  ] .  

   Novel Cytokine Delivery Approaches 

 In addition to exploration of new cytokines given systemically, there is also signifi -
cant interest in optimizing the delivery of cytokines to the tumor microenvironment 
(TME). As evident from the use of high-dose bolus IL-2 and intravenous rIL-12, 
systemic administration of cytokines in patients is associated with considerable tox-
icity. The DLTs associated with systemic delivery of cytokines may result in subop-
timal drug concentrations in the TME and may potentially compromise effi cacy. 
Further, these toxicities may limit the application of cytokine immunotherapy to 
relatively younger patients with minimal comorbidities. As discussed above with 
IL-12, several approaches have been tried to target the delivery of the cytokines to 
the TME, where immune-stimulation is most needed. Effective local delivery of 
cytokines to the TME may overcome the immune-evasion mechanisms by the tumor 
cells and tilt the balance of the immune battle in the favor of the host, avoiding sys-
temic toxicity at the same time. A recent murine study reported antitumor effi cacy 
of local intratumoral production of IL-12 by adoptively transferred genetically engi-
neered T cells; the therapeutic effect of IL-12 produced locally in the TME could 
not be mimicked with systemic administration of high doses of IL-12  [  38  ] . As wit-
nessed in the IL-12 plasmid electroporation trial that was described above, several 
patients with disseminated melanoma had complete regressions of distant nonelec-
troporated metastases demonstrating the potential of successful local immunostim-
ulation to translate into systemic immune responses  [  16  ] . Another example of a 
targeted delivery approach is ALT-801, an IL-2 recombinant fusion protein consist-
ing of the IL-2 fused to a humanized soluble TCR directed against an antigen derived 
from the tumor suppressor protein p53. The TCR moiety of IL-2 recombinant fusion 
protein ALT-801 binds to tumor cells displaying p53 epitope/MHC complexes; sub-
sequently, the tumor cell-localized IL-2 moiety may stimulate natural killer (NK) 
cell and T cell cytotoxic immune responses against p53-expressing tumor cells 
 [  5,   93  ] . A phase I clinical trial of ALT-801 in patients with metastatic melanoma has 
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been completed with encouraging safety and effi cacy results; another clinical trial 
of ALT-801 in combination with cisplatin in melanoma patients is ongoing (  www.
clinicaltrials.gov     identifi er # NCT01029873). Another promising example of local 
delivery of an immunomodulatory cytokine locally is JS1/34.5-/47-/GM-CSF 
(OncoVEX GM-CSF , BioVex, Woburn, MA); this is an immune-enhanced, oncolytic 
herpes simplex virus type 1 (HSV-1), which is engineered for tumor-selective repli-
cation and also contains the coding sequence for human GM-CSF to stimulate the 
maturation, proliferation, and differentiation of dendritic cells, with the expectation 
of amplifying the antitumor immune response generated by lysed tumor products. 
The phase II results in 50 patients with unresectable melanoma were encouraging 
with durable regressions in distant noninjected lesions, an overall response rate 
of 26% (CR-16%) and a 2-year survival rate of 52%  [  75  ] . A phase III trial, which 
is comparing this drug to subcutaneously administered GM-CSF in stages IIIb, 
IIIc, and IV melanoma, is now underway (  www.clinicaltrials.gov     identifi er # 
NCT00769704). 

 In summary, new cytokines continue to be discovered at a rapid pace; many of 
these novel cytokines possess unique properties that may overcome the limitations 
of current immunotherapies. Immunotherapy will likely play a major role in advanc-
ing outcomes of cancer patients over the next few years. Investigation of rational 
combinations of cytokines with other immunotherapeutic modalities and of novel 
methods to optimize the delivery of cytokines will be critical to the achievement of 
major advances in cancer immunotherapy. Identifi cation of predictive biomarkers 
will also be important, as it will enable selection of patients who are most likely to 
benefi t from cytokine therapy, hence avoiding unnecessary toxicity.      
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  Abstract   Melanomas arise in a complex microenvironment composed of tumor 
cells, cellular and soluble stroma, and immune cells. The dynamic interactions and 
crosstalk between these elements drive tumor initiation, progression, invasiveness, 
and immunity. Melanoma is considered the prototypical “immunogenic” tumor 
since the immune system can often recognize and occasionally reject established 
tumors. There is now evidence that the complex tumor microenvironment often 
establishes an immune suppressive state that blocks tumor eradication. In this chapter 
we describe the cellular and noncellular factors within the tumor microenvironment 
that modulate local antitumor immunity. The chapter also highlights several current 
therapeutic strategies in clinical development that target various elements of the 
tumor microenvironment to restore effective antitumor immunity.  

  Keywords   Tumor microenvironment  •  Stroma  •  Immune suppression  •  Tregs  
•  PD-L1  •  IDO  •  TGF-b  •  Costimulation   

    Introduction 

 Immunotherapy offers a highly specifi c and potentially durable means to treat malig-
nant melanoma. Melanoma is generally considered the “prototypical” immunogenic 
tumor and the likely molecular basis for melanoma susceptibility to immune-medi-
ated rejection has been identifi ed. A broad number of T cell specifi c and associated 
melanoma antigens have been characterized and spontaneous and vaccine-induced T 

    C.  E.   Ruby ,  PhD   
     Department of General Surgery ,  Rush University Medical Center ,   Chicago ,  IL ,  USA

        H.  L.   Kaufman ,  MD (*)  
     Rush Medical College ,  Rush University Cancer Center, Rush University Medical Center , 
  Chicago ,  IL ,  USA
e-mail: howard_kaufman@rush.edu    

    Chapter 18   
 Modulating the Tumor Microenvironment       

          Carl   E.   Ruby      and    Howard   L.   Kaufman        



354 C.E. Ruby and H.L. Kaufman

cell responses are frequently reported in the peripheral blood of melanoma patients. 
Tumor rejection, however, is an uncommon event following immunotherapy, and 
established tumors often escape immune-mediated rejection. A major obstacle to suc-
cessful immunotherapy has been suggested by the observation that when activated 
effector T cells encounter a highly suppressive tumor microenvironment their func-
tion is often blocked allowing tumor cells to escape immune detection and control. 

 Tumor cells exist in a complex milieu of cellular and noncellular components that 
develop as a result of altered homeostatic regulation mediated by host tumor cells. 
The tumor microenvironment consists of tumor cells, stroma (microvessels, support-
ing tissue, and soluble factors) and immune cells, which interact to mediate the bal-
ance between tumor growth and regression. The complex changes that occur in the 
local microenvironment have profound implications not only for tumor growth, but 
also for the effectiveness of therapeutic interventions that may be infl uenced by the 
molecular and cellular composition of the microenvironment. This is especially true 
for tumor immunotherapy in which effector immune cells must be activated, traffi c 
to sites of established tumors, and mediate antigen-specifi c cytotoxic functions. 

 The interactions between the tumor and immune system are clearly infl uenced by 
changes in the structure and components of the tumor microenvironment. While some 
tumors may be subject to immune-mediated regression, others have evolved to evade 
immunological detection and favor the emergence of a tumor better suited for sur-
vival. Thus, understanding the biology of the tumor microenvironment and how its 
components, the cells and noncellular factors that comprise the microenvironment, 
contribute to local immune suppression would provide the framework for designing 
complementary tumor microenvironment-targeted therapies for the treatment of 
malignant melanoma. This chapter will focus on the three primary components of the 
tumor microenvironment – the tumor cells, stroma, and immune cells – and describe 
how they can mediate immune suppression and also serve as potential targets for 
therapeutic intervention that promotes antitumor immunity.  

   Composition and Development of the Tumor Microenvironment 

   Tumor Cells 

 The development of the tumor microenvironment is ultimately dictated by changes 
in host tumor cells. A number of genetic and environmental changes have been 
reported to promote early changes in tumor morphology and growth. For example, 
chromosomal aberrations (gain or loss), changes in cell cycle protein expression 
(e.g., cyclin D1, Rb), and loss of E-cadherin expression, are needed to collectively 
change the early radial growth phase of melanoma to the more advanced vertical 
growth phase  [  35  ] . The loss of cell-to-cell adhesion control mediated by E-cadherin 
is a critical driver of tumor progression and emergence of an invasive phenotype. 
Additionally, the dysregulated growth of the melanoma cells upregulates the expres-
sion of vascular endothelial growth factor (VEGF) and its receptor, VEGF-R, to mediate 
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angiogenesis and neovascularization. In concert with enhanced VEGF-mediated 
vascularization, melanoma cells change their pattern of chemokine secretion, resulting 
in the recruitment of immune and stromal cells that continue to shape the microen-
vironment  [  56  ] . Although a number of altered tumor-specifi c molecular pathways 
govern VEGF and chemokine production, activated STAT3 may act as a potential 
“master switch” exerting control on both of these processes  [  73  ] . Thus, the altered 
molecular patterns that set in motion melanoma tumor progression and growth, 
also furnish the blueprint for the development of the tumor microenvironment to 
favor immune suppression. The immunosuppressive conditions further allow the 
primary tumor to resist immune recognition and escape immune control to grow 
and metastasize  [  17  ] .   

   Stroma 

 The stroma can be broadly defi ned by its cellular components and the soluble factors 
that permeate the developing microenvironment. Several key distinguishing morpho-
logic features of the stroma from melanocytic lesions include the following: 
microvessels (endothelial cells), fi broblasts, keratinocytes, and extracellular matrix 
(fi brin, collagen, and hyaluronan). Arrangement of these stromal elements, which is 
ultimately determined by the developing tumor vasculature, varies between tumors 
and gives rise to different architectural patterns among melanoma lesions  [  61  ] . 
These elements are essential in providing physical support to the tumor, transport of 
nutrients that foster tumor growth, and production of growth factors and cytokines. 

 The ability of the stoma to provide physical support relies on fi broblasts that 
shape the architecture of the microenvironment as structural cells and through the 
production of the extracellular matrix. During the development of the tumor 
microenvironment, one of the early and important events of stromatogenesis is the 
recruitment of fi broblasts, either resident and/or mesenchymal stem cells (pre-fi bro-
blast cells). Once recruited to the growing tumor microenvironment, the fi broblasts 
undergo multiple rounds of proliferation and become activated. The fi nal phase of 
stromatogenesis, the differentiation of the fi broblast, triggers the secretion of extra-
cellular matrix components to form the boundary of the tumor microenvironment 
with normal tissue  [  61  ] . In addition to fi broblast-associated “landscaping” the 
microenvironment, these cells are a rich source of growth factors, such as trans-
forming growth factor- b  (TGF- b ), that act in both paracrine and autocrine fashion 
to drive the growth of melanoma cells. In fact, fi broblasts isolated from human can-
cers are more effi cient than normal tissue fi broblasts to promote the growth of tumor 
cells, likely a result of augmented paracrine growth factor secretion  [  51  ] . 

 The other two primary cell types that make up the melanoma tumor environment 
are vascular endothelial cells and keratinocytes. Vascular endothelial cells are associ-
ated with microvessel formation and neovascularization, and can also produce 
chemokines and indoleamine-2,3-dioxygenase (IDO), a tryptophan-catabolizing 
enzyme, that shape the composition and activation of the immune compartment 
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within the developing microenvironment. Since T cells rely on tryptophan for their 
survival, the depletion of this amino acid in the tumor microenvironment may lead to 
functional tolerance even in the presence of antigen-specifi c T cells. Keratinocytes 
reside in normal skin in conjunction with melanocytes at ratio of 35:1 (keratinocytes 
to melanocytes). The interaction between keratinocytes and melanocytes is mediated 
by E-cadherin and the loss of these connections alters melanocyte gene expression 
patterns, leading to increased expression of melanoma-associated genes  [  65,   71  ] . 

 Soluble factors play a critical role in the development of the tumor microenviron-
ment through both a paracrine and autocrine network of signals established between 
the tumor, stroma, and immune cells. Early mediators of melanoma growth include 
basic fi broblast growth factor (bFGF), platelet derived growth factor (PDGF), and 
TGF- b . These factors activate fi broblasts, contribute to melanoma progression in an 
autocrine fashion, promote collagen production (ECM), and suppress adaptive T 
cell responses. Stromal cells in turn produce growth factors (e.g., TGF- b  and VEGF) 
that support continued tumor growth. VEGF, in particular, has a wide range of 
effects on the cells of the microenvironment. Produced largely by stromal cells in 
response to PDGF, TNF- b , IL-1 a , and hypoxia, VEGF infl uences tumor prolifera-
tion and invasiveness, increases microvessel growth, and suppresses T cell responses 
in part by downregulating dendritic cell maturation  [  23  ] . Melanoma tumor cells also 
produce chemokines (e.g., IL-8, MIP-1 a / b  RANTES, CCL2), stromal cell-derived 
factor-1 (SDF-1), and cytokines (e.g., IL-10) that recruit infl ammatory immune 
cells and skew the differentiation of T cells toward a Th2 response. Chemokines and 
SDF-1 often exhibit dual functions in recruiting immune cells and also promoting 
angiogenesis  [  42,   59  ] . The increased presence of infl ammatory immune cells within 
the microenvironment gives rise to a number of infl ammatory cytokines found 
within the microenvironment that include TNF- a , IL-1 b , IL-6, IL-10, and IL-12. 
The timing and local concentration of infl ammatory cytokines in the tumor can alter 
immune responses. In some cases this may promote tumor rejection, for example 
when IL-12 mediates Th1 (cell mediated/cytotoxic) T cell differentiation. In other 
cases, the cytokine profi le may promote tumor escape, as occurs when IL-6 and 
TNF- a  recruit and pathogenic macrophages. The balance in local soluble factors 
may result in a critical infl ection point within individual tumor microenvironments 
that changes the potential for effective antitumor immunity. 

   Immune Cells 

 Cells of the innate and adaptive immune system profoundly shape the tumor 
microenvironment via a paradoxical relationship between the growing tumor and 
infi ltrating immune cells. Indeed, the presence of immune cells in the tumor 
microenvironment would be predicted to result in the eradication of tumor cells; yet 
it is the chronic involvement of innate immune cells that has been observed to 
support tumor development and survival. Infl ammation appears to be a key feature 
in the immunological molding of the tumor microenvironment and levels of 
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inflammation appear to be dependent on the cell type, activation status, and 
composition of the immune cells found within a given tumor microenvironment. 

 Two subsets of immune cells, innate infl ammatory cells and T lymphocytes, are 
typically involved in development of the tumor microenvironment. Neutrophils, 
monocytes, and macrophages are the primary infl ammatory cells recruited to the 
tumor. Neutrophils are among the fi rst to infi ltrate the melanocytic lesion to control 
tumor growth through the secretion of cytotoxic reactive compounds (reactive oxy-
gen intermediates and hypochlorous acid); however they may inevitably initiate 
infl ammatory conditions due in part to oxidative cellular death. Tumor-associated 
macrophages, the result of monocyte differentiation, promote angiogenesis (via 
VEGF) and produce TGF- b  and IL-10, two potent immune suppressive factors  [  3  ] . 
More importantly, macrophages function to recruit additional immune cells to the 
microenvironment through the prodigious production of chemokines. In addition to 
infl ammatory cells, T cells, both CD4 +  and CD8 + , infi ltrate the microenvironment, but 
unlike infl ammatory cells, the role of adaptive cells in the development of the tumor 
microenvironment is not fully understood, as these cells appear to differentially mod-
ulate the microenvironment in an organ- and etiology-dependent manner  [  13  ] .   

   Mechanisms of Immune Escape: 
Role of the Tumor Microenvironment 

 The immune system can be highly effective and exquisitely capable of detecting and 
inducing regression of tumors. The induction of such a response against a tumor 
hinges on the ability of the immune system to produce a suffi cient number of tumor-
specifi c T cells that traffi c and infi ltrate the tumor, and also possess the machinery to 
generate cytotoxic mediators. In many instances these requisite criteria are often met. 
In fact, there is evidence that signifi cant numbers of tumor-specifi c T cells are often 
found infi ltrating regressing tumors and they exhibit an activated/cytotoxic phenotype 
 [  28,   77,   78  ] . Yet, infi ltrated tumors frequently escape from the control of the immune 
system. An explanation for this paradox could be attributed to the various mechanism 
of immune modulation mediated by the various components of the tumor microenvi-
ronment that renders the infi ltrating T cells ineffective or defective. A number of 
negative regulatory mechanisms have been identifi ed in human cancers and mouse 
tumor models, and several highly relevant candidate mechanisms have been associ-
ated with human melanoma. These mechanisms may be mediated by tumor cells, 
stromal components, or the immune system and will be considered individually. 

   Tumor Cell-Mediated Suppression 

 Melanoma cells within the tumor microenvironment may escape immune detection 
and destruction by changes in immune recognition cell surface molecule expres-
sion. These changes include the loss or defi ciency of antigen presentation via major 
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histocompatibility complex proteins (MHC), or decreased co-stimulatory B7 pro-
tein expression  [  14,   25  ] . The loss of MHC class I expression on tumors is a frequent 
event, in some cases 70–96% of the tumors have been identifi ed to be MHC class I 
defi cient, depending on the tumor type  [  25  ] . The striking loss of MHC class I in 
these tumors can be the result of defects in antigen processing and presentation and 
includes changes in  b 2-microglobulin and MHC heavy chain  [  25  ] . Malignant mela-
noma tumors can also be defi cient in the expression of B7.1 and B7.2  [  14  ] . 
Insuffi cient B7.1/2 co-stimulation through interactions with T cell-associated CD28 
has been shown to induce anergy, a state of T cell hyporesponsiveness, which 
in addition to loss of MHC allows tumors to evade early immune detection and 
rejection  [  19,   63  ] . 

 Tumors can also express the co-inhibitory ligand PD-L1, a member of the 
B7-family of molecules, and deactivate an established T cell-mediated antitumor 
response  [  16,   32  ] . Most melanomas express PD-L1 constitutively or in response to 
IFN- g  and upon interaction with the T cell surface protein PD-1 mediates a potent 
inhibitory signal and represents an effective mechanism of immune escape  [  43  ] . 
Expression of PD-1 on T cells can be the consequence of constant antigen exposure, 
as seen in chronic viral infections, which results in the functional decline and 
exhaustion of antigen-specifi c T cells  [  4  ] . Chronic antigen exposure within the 
tumor microenvironment might also be expected to induce T cell exhaustion and 
subsequent PD-1 expression, thus, contributing to immune suppression.  

   Stroma-Mediated Suppression 

 Expression of the tryptophan-catabolizing enzyme, IDO by various cells of the 
tumor microenvironment (tumors, dendritic cells, and endothelial cells) mediates 
local metabolic dysregulation, and results in local immunosuppressive conditions 
 [  70  ] . IDO catalyzes the degradation of the essential amino acid  l -tryptophan to 
N-formylkynurenine causing a depletion of tryptophan that has been implicated in 
immunologic tolerance, suppression of T cell proliferation, and T cell apoptosis 
 [  18,   49  ] . A second amino acid catabolizing enzyme, arginase, has also been impli-
cated in causing T cell anergy and loss of antitumor immunity  [  57,   58  ] . Together 
IDO- and arginase-catalyzed metabolic dysregulation within the tumor microenvi-
ronment represents another mechanism of negative immune regulation. 

 The tumor microenvironment also elaborates a host of immune regulatory solu-
ble growth factors and cytokines that permeate the tumor to facilitate immune 
escape. A key secreted factor, VEGF, previously described to direct angiogenesis 
and vascularization of the tumor, also has the ability to inhibit the maturation of 
dendritic cells, which results in defective antigen-presentation and T cell anergy 
 [  22–  24  ] . The regulatory cytokine IL-10, expressed by many tumors, achieves nega-
tive regulation of immune response by several different pathways. IL-10 downregu-
lates the expression of MHC and the intracellular adhesion molecules (ICAMs), 
diminishes antigen processing, alters dendritic cell maturation and function, and 



35918 Modulating the Tumor Microenvironment

induces T cell anergy  [  6,   53,   60  ] . In addition to IL-10, the potent immune modulator 
TGF- b  can also be found in abundance within some tumors. TGF- b  has profound 
effects on immune cells in the tumor setting, by altering differentiation and function 
of these infi ltrating cells  [  20  ] . TGF- b  alters dendritic cell traffi cking and downregu-
lates expression of MHC class II and co-stimulatory molecules producing an imma-
ture dendritic cell phenotype  [  44,   74  ] . Cytotoxic CD8 +  T cells can be inhibited 
through the TGF- b -mediated downregulation of critical cytolytic genes (e.g., gran-
zymes) and blockade of T cell receptor signaling and activation  [  15,   68  ] . Still the 
most important effect of TGF- b  appears to be on the differentiation of CD4 +  T cells. 
Tumor microenvironment-derived TGF- b  can drive the differentiation of CD4 +  T 
cells toward a regulatory bias, by promoting and enforcing expression of the tran-
scription factor FoxP3 to generate regulatory T cells (Tregs)  [  20  ] . Thus, by targeting 
three important immune populations (dendritic cells, CD8 +  and CD4 +  T cells) by 
soluble factors VEGF, IL-10, and TGF- b  the tumor microenvironment is able to 
uncouple the generation of productive antitumor immune responses.  

   Immune Cell-Mediated Suppression 

 Polarization of CD4 +  T helper responses (Th) that foster antibody/humoral responses 
(Th2) over cell-mediated/cytotoxic responses (Th1) has been considered to be a 
potential mechanism by which tumors evade immune destruction. Elevated levels of 
Th2 cytokines (IL-4, IL-10, and IL-13) are often found circulating in patients with 
advanced tumors and these levels correlate with poor prognosis  [  50  ] . The tumor 
microenvironment has been associated with Th2 polarization of T cells and subse-
quent overproduction of these Th2-related cytokines  [  48  ] , however, the levels of 
Th2 and Th1 cytokine mRNA within melanoma tumors has been observed to be 
equal, thus the mechanism of polarization within the microenvironment is not well 
defi ned  [  50  ] . An interesting observation is that the predominance of tumor-specifi c 
Th2 cells in melanoma cancer patients can shift to a Th1 bias after tumor clearance 
 [  67  ] . These data suggest the microenvironment may not directly drive Th2 bias over 
Th1 directly, but more likely the tumor microenvironment dampens Th1 responses 
and differentiation by factors such as TGF- b  and VEGF  [  20,   50  ] . In effect, it is the 
decrease in Th1 response that may be the basis for tumor immune escape, rather 
than the enhancement of a Th2 response. 

 Antitumor immune response can be suppressed in a “T cell-extrinsic fashion” 
by regulatory T cells (Tregs) that include CD4 + CD25 + FoxP3 +  Tregs, 
CD4 + CD122 + CD25 − FoxP3 −  Tregs, and a subpopulation of regulatory CD8 +  T cells 
 [  11,   21,   27  ] . The impact of regulatory T cells is evident in patients with melanoma 
and other advanced solid tumors. These patients have been reported to experience 
an increase in both circulating Treg numbers and Treg accumulation in the tumor 
microenvironment. In many cases, the increase in Treg frequency has been corre-
lated with decreased overall survival  [  10,   75  ] . As previously stated several different 
types of Tregs have been described, yet the CD4 + CD25 + FoxP3 +  Treg population is 
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the most abundant and studied type of regulatory T cell. This type of Treg forms a 
heterogeneous population containing two subsets, natural Tregs (nTregs) and induc-
ible Tregs (iTregs). Development of nTregs occurs in the thymus to maintain self-
tolerance and iTregs develop in the periphery in response to self or tumor antigen. 
Although absolute discrimination of these two subsets is diffi cult, it is thought that 
the increase in Tregs within tumors is in part the result of intratumoral iTreg devel-
opment. In this scenario, infi ltrating CD4 +  T cells encounter excess tumor antigen 
and elevated levels of TGF- b  in the tumor microenvironment to drive inhibitory 
Treg differentiation over antitumor Th1 differentiation  [  46,   72  ] . Tregs may also sup-
press activated T cells in an antigen-independent manner, which could further 
increase negative regulation and lead to more profound immunosuppression within 
the tumor microenvironment. Tregs possess a number of mechanisms to mediate 
immune suppression. These include the production of the cytokines, such as IL-10 
and TGF- b  and the enzyme IDO, all previously described to mediate negative regu-
lation and immune evasion and tumor escape. 

 Finally, emerging evidence suggests that intracellular signal transducers and 
activators of transcription-3 (STAT3) signaling in host tumor cells underlies sev-
eral of the negative regulatory mechanism present in the tumor microenvironment. 
The constitutive activation of the transcription factor STAT3 within melanoma 
tumor cells regulates the pattern of cytokine expression, resulting in the inhibition 
of pro-infl ammatory cytokines, such as IL-12. In addition to cytokine regulation, 
STAT3 activation has been associated with production of VEGF and other cytok-
ines  [  73  ] .   

   Targeting the Tumor Microenvironment for Immunotherapy 

 The involvement of multiple mechanisms of immune suppression mediated by the 
tumor microenvironment suggest that therapeutic intervention will be required to 
target one or more of these mechanisms with the goal of eliciting productive antitu-
mor immune responses. Strategies that target the various components of the microen-
vironment to promote the effector phase of an antitumor response have been 
developed and are being applied clinically to treat melanoma. These strategies 
include: (1) induction of a pro-infl ammatory response using cytokines, viruses and 
toll-like receptor (TLR) agonists, (2) blockade of immune suppressive factors via 
agents that neutralize local factors, cells or enzymes, and (3) enhancement of immune 
recognition and activation. These approaches are summarized in Fig.  18.1  and can be 
targeted to various components of the tumor microenvironment.  

   Targeting the Tumor 

 Several strategies have been tested for targeting tumor cells within the microenviron-
ment to enhance the effectiveness of tumor immunotherapy. These approaches 
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have sought to deliver local pro-infl ammatory signals, replace host tumor co-stimulatory 
molecule expression, block host tumor co-inhibitory molecule expression, and 
directly lyse tumor cells to promote local and systemic melanoma-specifi c antitumor 
immunity. Although there are many other examples in preclinical development, 
this section will focus on those strategies that have shown therapeutic potential in 
clinical trials. 

 The direct intratumoral injection of recombinant vaccinia viruses expressing T 
cell co-stimulatory molecules has been explored and demonstrated signifi cant 
tumor regression in patients with metastatic melanoma  [  37  ] . In a Phase I clinical 
trial, 12 patients with refractory metastatic melanoma were treated with three 
injections of a vaccinia virus expressing the human B7.1 co-stimulatory molecule 
 [  37  ] . There were minimal side effects reported, largely grade I injection site and 
constitutional symptoms. Two patients had stable disease and one patient demon-
strated regression of both injected and non-injected lesions, and went on to have 
a complete response on-going 6 years after completing the trial. Those patients 
with therapeutic responses also displayed an increase in circulating gp100- and 
MART-1-specifi c T cell responses in the peripheral blood for up to 6 months after 
vaccination suggesting the development of systemic anti-melanoma immunity. 
The complete responder also developed vitiligo, which has correlated with suc-
cessful tumor immunity in other trials. Serial sampling of injected tumor sites 
demonstrated a strong association between local interferon- g  expression and 
tumor regression. Similarly, local IL-10 expression was associated with progres-
sive tumor growth. 

 In subsequent studies vaccinia virus expressing three T cell co-stimulatory mol-
ecules (B7.1, ICAM-1, and LFA-3) was performed using a similar patient popula-
tion and study design  [  36  ] . In this trial, the toxicity profi le was similar to the 
vaccinia-B7.1 study but an objective response rate of 38% was reported in injected 
lesions and 15% in non-injected lesions; an additional injected lesion and two non-
injected lesions were stable. Thus, local injection of vaccinia viruses expressing T 

  Fig. 18.1    Schematic diagram showing specifi c therapeutic strategies in clinical development by 
targeting tumor cells ( left panel ), stroma ( center panel ), and immune cells ( right panel ) within the 
tumor microenvironment       
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cell co-stimulatory molecules appears to be safe, can induce therapeutic responses 
in some patients and is associated with the induction of local and systemic antitu-
mor immunity. 

 Melanoma tumor cell expression of PD-L1 is also being targeted since local expres-
sion may render tumor infi ltrating T cells dysfunctional. A PD-1-specifi c monoclonal 
antibody has been tested in a Phase I clinical trial for patients with solid tumors to 
neutralize PDL1-PD-1 signals. Thirty-nine patients were treated and one episode of 
autoimmune colitis in a melanoma patient was observed. There was one complete 
response in a colorectal cancer patient and two partial responses that included one 
patient with melanoma. In this trial, circulating T cells continued to show >70% PD-1 
expression but clinical responses did correlate with decreased levels of B7-H1 on 
tumor cells in the microenvironment  [  9  ] . This suggests that the predominant effect of 
the anti-PD-1 treatment may be on tumor cells within the microenvironment and not 
on peripheral T cells. A monoclonal antibody targeting CTLA-4 has also shown an 
improvement in overall survival in metastatic melanoma patients when used as a 
single agent and in combination with and HLA-A2-restricted gp100 peptide vaccine 
 [  30  ] . Although the mechanism of this effect is not clearly defi ned, the impact of 
CTLA-4 blockade could promote effector T cell activation, inhibit regulatory T 
cells, and alter the composition of T cells within the tumor microenvironment. 

 Another strategy that has shown particular promise is the use of an engineered 
oncolytic herpes simplex, type 1 virus encoding human GM-CSF (designated 
OncoVEX GMCSF ). The vector is injected directly into an established metastatic mela-
noma lesion and replicates selectively in melanoma cells. The local expression of 
GM-CSF and lytic death of tumor cells should promote a tumor-specifi c immune 
response. Early phase clinical trials confi rmed the safety of this agent and only minor 
grade I adverse events were seen, including fever and local injection site pain. In a 
Phase II clinical trial in which patients with refractory Stage IV or unresectable Stage 
III melanoma were treated to maximum response, an objective clinical response of 
28% was observed  [  64  ] . This included regression of injected and non-injected visceral 
disease. Further, evaluation of peripheral blood and tumor biopsy specimens sug-
gested that regressing tumors were associated with the appearance of MART-1-specifi c 
effector T cells, a decrease in CD4 + FoxP3 +  Tregs and myeloid-derived suppressor 
cells  [  38  ] . These data demonstrated the potential therapeutic potential of local onco-
lytic virus treatment and a confi rmatory Phase III clinical trial is in progress. 

 These studies highlight the potential benefi t of targeting tumor cells with pro-
infl ammatory reagents designed to stimulate local immunity and block local sup-
pressive mechanisms. These approaches need to be better evaluated but may also be 
combined with more potent adjuvants, additional therapeutic strategies, or with 
agents that target other elements of the tumor microenvironment.  

   Targeting the Stroma 

 Although several factors are expressed in the tumor microenvironment by stromal 
cells that might serve as targets for enhancing tumor immunotherapy, VEGF is an 
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especially attractive target since it is widely expressed in many tumors, promotes 
tumor growth through several mechanisms (e.g., angiogenesis and immune 
 suppression) and there are several available agents that target VEGF in clinical use. 
Limited data from clinical studies in ovarian cancer and adoptive T cell therapy in 
melanoma patients, suggest that blocking VEGF with anti-VEGF monoclonal anti-
bodies resulted in decreased CD4 + FoxP3 +  Tregs and increased effector CD8 +  T cell 
numbers and infi ltration into the tumor  [  7,   66  ] . In addition to effects on T cells, anti-
VEGF treatment was observed to induce an increase in circulating differentiated 
dendritic cells in the peripheral blood of treated patients  [  52  ] . In light of these favor-
able results, more studies are needed to determine the full effect of anti-VEGF treat-
ment on tumor immune responses. 

 The enzyme IDO can be targeted through the administration of 1-methyl-trypto-
phan. Preclinical models have shown that 1-methyl-tryptophan in combination with 
chemotherapy induced regression of established tumors  [  31  ] .    In addition to early 
phase I clinical trials using 1-methyl-tryptophan, an orally active hydroxyamidine 
small molecule inhibitor that has been proven to suppress IDO-catalyzed trypto-
phan metabolism in animals, is poised to start clinical trials  [  39  ] . 

 TGF- b  is found in abundance in the tumor microenvironment and local or sys-
temic depletion of this regulatory growth factor may facilitate the expansion of anti-
tumor immune responses. A number of TGF- b  inhibitors, from monoclonal 
antibodies to small molecule inhibitors, are in the early stages of clinical testing 
after demonstrating they could be well tolerated in animal models  [  76  ] . One of these 
inhibitor molecules, a TGF- b 2-specifi c antisense oligodeoxynucleotide (trabeder-
sen), has been administered intra-tumorally for the treatment of malignant gliomas, 
resulting in a 15% response rate at 14 months (traditional chemotherapy response 
rate at 14 months was 0%) and generating several long-lasting remissions  [  8,   29  ] . 
The seemingly late timing of the antisense reagent-mediated response rate was 
hypothesized to be due to the gradual development of a tumor-specifi c immune 
response, but conclusive immunologic data is still needed. A second reagent of note, 
a TGF- b  neutralizing antibody (fresolimumab (GC-1008)), has entered into clinical 
trial for the treatment of metastatic melanoma, but results from these studies are not 
complete  [  26  ] . Although TGF- b  is a potent immunosuppressant in the tumor set-
ting, it has other pleiotropic functions that could ultimately limit the application of 
these TGF- b  inhibitors.  

   Target the Local Immune System 

 There are several strategies for local treatment that target the immune system in a 
specifi c or nonspecifi c manner. The direct injection of recombinant IL-2 into tumors 
(oral squamous cell and melanoma metastases) resulted in response rates that 
reached up to 85% and were correlated with an enhanced immune response  [  54,   69  ] . 
The immunological changes seen included an increased ratio of CD4 +  T cells to 
CD8 +  T cells, dendritic cell migration into the stroma of the tumor and a reduction 
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in tumor-associated macrophages. These changes were accompanied by tumor cell 
apoptosis and eventual complete destruction of the tumor. 

 Another approach to inhibit extrinsic suppression of Tregs has been explored by 
using an IL-2 diphtheria toxin conjugate  [  12,   45,   55  ] . Administration of this agent 
(denileukin difl itox) was able to selectively eliminate CD25-expressing Tregs from 
the peripheral blood of cancer patients. The transient decrease in Tregs was associ-
ated with augmented T cell responses (as measured by T cell proliferation and cyto-
toxicity assays) after active immunization  [  12  ] . Early results from clinical trials in 
cancer patients, demonstrated an abrogation of the suppressive activity of Tregs 
in vivo and boosted tumor-specifi c T cell stimulation when used in combination 
with a dendritic cell vaccine  [  12  ] . Despite these data, further calibration of denileu-
kin difl itox is needed as other studies failed to obtain similar results, which may be 
due to the depletion of effector cells as well as Tregs at the doses used  [  2  ] . In addi-
tion, other strategies to deplete Tregs are being developed. Low doses of cyclophos-
phamide have been reported to deplete Tregs and this agent is often used for this 
purpose prior to an active immunization, although some have questioned the effec-
tiveness of cyclophosphamide for this purpose  [  47  ] . An anti-IL-2R monoclonal 
antibody (Daclizumab), originally developed to prevent organ transplant rejection, 
may also attenuate Treg immune suppression in melanoma patients and is being 
explored  [  33,   34  ] . 

 The application of TLR agonists, potent immune stimulants, has also been sug-
gested for the treatment of superfi cial cutaneous melanomas. The TLR family is a 
well-characterized group of innate cell receptors that recognize highly conserved 
molecular patterns from a diversity of pathogenic microorganisms. Ligation of 
TLRs by these pattern molecules induces a transcriptional cascade that activates 
antigen-presenting cells and initiates secretion of infl ammatory mediators  [  5  ] . These 
features led to the clinical development of TLR agonists, such as the TLR 7/8 ago-
nist imiquimod (Aldara) and the TLR9 agonist CpG (PF-3512676), for cancer ther-
apy. Early clinical reports have documented regression of locally treated lesions 
with these agents  [  41,   62  ] . Tumors exhibiting regression following TLR agonist 
treatment have been associated with a signifi cant immune response, as there is an 
upregulation of the pro-infl ammatory cytokine IL-12, and an increase in CD8 +  T 
cell infi ltration  [  41  ] . Imiquimod, which is formulated as a cream, has also been used 
in combination with tumor vaccines to elicit more potent systemic antitumor 
immune responses. In one study, imiquimod was applied topically, followed by vac-
cination with the tumor antigen NY-ESO-1 or melanoma peptides administered into 
the skin at the imiquimod-treated site. The endpoint of this study was induction of 
NY-ESO-1-specifi c T cell responses, which was observed in 44% of the treated 
patients  [  1  ] . 

 The future of therapeutic strategies to mitigate the regulatory immunologic 
milieu generated by the tumor microenvironment may require creating reagents that 
simultaneously target multiple elements and cellular components at once. For exam-
ple, a preclinical study combined agents that targeted both the tumor and the immune 
system through an engineered molecule containing a siRNA inhibitor of STAT3 
conjugated to CpG  [  40  ] . The reagent was able to effectively silence constitutive 
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activation of the transcription factor STAT3 within tumor cells, which likely underlies 
the negative regulation of pro-infl ammatory cytokine expression. In addition, TLR 
activation of local antigen-presenting cells was also noted and this included an 
increase in mature dendritic cells and pro-infl ammatory cytokine production. The 
sum of the effects of STAT3 inhibition and TLR activation in modulating the tumor 
microenvironment resulted in the increased infi ltration of T cells and tumor regres-
sion in an animal tumor model  [  40  ] .   

   Conclusions 

 Tumors are not homogeneous entities, but rather exist in a complex formation that 
includes tumor cells, immune, and stromal cells. These cells interact with each other 
and the host through a network of soluble factors that shape the local tumor microen-
vironment. The elaborate interplay between the components of the microenviron-
ment governs the ability of the tumor to acquire numerous immune regulatory 
mechanisms that protect the tumor from immune recognition and destruction, 
thereby allowing continued survival and growth. The success of targeted therapy, 
like tumor immunotherapy, will ultimately depend on a better understanding of the 
complex interplay of components within the tumor microenvironment. 

 The tumor cells, stromal elements, immune cells, and soluble factors all contrib-
ute to the growth of a tumor and produce cell surface and soluble factors that are 
designed to block effective antitumor immunity. The identifi cation of these factors 
has allowed a more directed manipulation of the tumor microenvironment through 
the use of agents that specifi cally target these factors to disrupt the immunosuppres-
sive framework and communication of the microenvironment. There are now numer-
ous clinical trials in development that have targeted the tumor cells, stromal factors, 
and immune cells to promote a more pro-infl ammatory and effector T cell environ-
ment while blocking various suppressor pathways operative within established 
tumors. These strategies are beginning to yield promising results although further 
work is needed to better understand how tumors co-opt their local environment to 
escape immune detection and how best to combine targeted therapeutics to over-
come the barriers found in the tumor microenvironment.      
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