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Preface

There is an axiom in the military: never volunteer. Nonetheless, many have, and
their lives have been altered because of this act. I was one of those who said “Yes
sir, I can do that,” and my future was changed forever.

This act occurred for me in early 1972. At that time, I was a Captain in the
United States Air Force, assigned to Headquarters, Air Force Logistics Com-
mand (AFLC). I was an operations research staff officer reporting to Colonel Fred
Gluck. Colonel Gluck and I had previously served on the faculty of the Air Force
Institute of Technology (AFIT), so we knew each other quite well. Because of
this prior relationship, Colonel Gluck gave me a great deal of latitude to select
projects on which to work. I chose to assist a pair of former AFIT advisee’s, Mr.
Thomas Harruff and Captain Michael Pearson, who were both assigned to the
propulsion directorate within the Material Management Deputate. This coopera-
tive effort of working on engine management problems with my former advisees
had begun while I was still an AFIT faculty member. The three of us were in-
terested in strategic, tactical and operational aspects of procuring, allocating and
repairing of the Air Force’s jet engines. I knew little about these problems, so
I interacted frequently with them while I was an AFIT faculty member to learn
more about the variety of problems that were encountered when managing these
expensive and important items . This interaction became a full time activity once
I was reassigned to the AFLC Headquarters. As I said, Colonel Gluck gave me
the go ahead to continue work on this project.

We began our studies largely because the Air Force was experiencing short-
ages for several types of engines. These shortages arose for a variety of reasons,
but one was obvious. The Department of Defense (DOD) methodology for com-
puting engine requirements ignored the operational environment into which en-
gines were placed. The question that I immediately asked was whether or not the
use of an alternative methodology for computing spares requirements for engines
would result in significantly different estimates of performance – engine availabil-
ity at operating bases – and therefore in the number of spare engines needed to
achieve desired levels of performance. This question directed me to study research
papers produced at the RAND Corporation, the unquestioned leader in develop-
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ing logistics models for the Air Force at that time. I was exposed to METRIC
(Multi-Echelon Technique for Recoverable Item Control) and related concepts
which were developed by Craig Sherbrooke and his colleagues at RAND. My col-
leagues and I constructed implementations of METRIC like optimization models
and corresponding simulation models to study a broad range of tactical and oper-
ational planning problems. The results of these preliminary studies indicated that
the DOD methodology needed to be changed.

Another event was occurring at that time. The F-15 weapon system was being
developed. The F-15 is a remarkable aircraft in many ways. Its design is focused
on maintainability, and, in particular, maintainability of its engines. The engines
were designed in a modular way by Pratt and Whitney. The basic idea behind
the maintenance concept was to remove a defective engine from an aircraft, and
replace it on the aircraft with a serviceable one. Once the defective engine is
removed from the aircraft, a defective module is identified and is removed and
replaced, thereby returning the engine to a serviceable condition. The goal was to
minimize an engine’s repair cycle time and thereby minimize the number of ser-
viceable engines and modules that were needed to keep the fleet flying. Keeping
the repair cycle time for engines low could be done only if adequate quantities
of serviceable spare modules were available at each base. Of course the defective
modules had to be repaired, too. Thus their repairs, which were often conducted
at the depot in San Antonio, TX, and their repair cycle times had a significant
affect on aircraft availability. This maintenance concept and the corresponding
engine design strategy were clearly great ideas. However, one question existed.
How many engines and modules should be purchased? Even supporters of the
simple DOD spare engine requirements methodology recognized that the DOD
method was inadequate to address this problem. The propulsion directorate had
the responsibility to establish these quantities for initial spares procurement and to
estimate future spares requirements for budgeting purposes. Obviously, the lead-
ers of this office were facing a problem which they did not know how to address.

Opportunities for an individual often come in the moment of organizational
crisis. By this I mean that large bureaucratic organizations are usually able to
embrace new ideas only when it is obvious that they are doomed if they do not.
Obviously, the DOD is a very large bureaucratic organization, and it was forced
to change because its standard operating procedure clearly would not work well.
At this juncture, I committed the ultimate sin. I violated axiom number one. I
volunteered to help create a solution to the engine and module mix problem, and
to develop it quickly. Colonel Gluck and his counterpart in the propulsion shop
never flinched. Colonel Gluck got the authority (from Brigadier General George
Rhodes, the head of the Material Management Deputate) to develop the method.

Based on Sherbrooke’s ideas, our team created the first tactical planning
model for multi-indentured repairable items that was implemented in a multi-
echelon environment. We called this model Modified-METRIC or simply MOD-
METRIC. This model was used by our team, which had been expanded by this
time to include Major Gene Perkins, Captain Jon Reynolds and MSgt Robert Kin-
sey, to compute requirements for all repairable spare parts for the F-15. In sub-



Preface xi

sequent years, MOD-METRIC, and its successor models, have been used by the
U.S. Air Force to compute spares requirements for other weapon systems as well.

As I reflect on this time, some 30 years later, I see that there were so many
events that occurred simultaneously that resulted in my having been given the
opportunity to volunteer. To have people be supportive of the creation and imple-
mentation of our ideas was truly remarkable.

Throughout my active duty years, I had the good fortune to work with many
exceptional people. One person was George Babbitt. I met George when he was
an AFIT student, where he became my advisee. As I worked with him that year, it
was clear to me that George was an extraordinary person. From that time onward,
we, and our families, interacted socially and professionally. George and I argued
endlessly about logistics system’s management. These discussions occurred pe-
riodically and with great passion over a thirty year time span. (Louise, his wife,
constantly called us two very boring people.) However, by challenging each other,
I developed a much clearer understanding of how to design and manage service
parts systems. I was not the only one to benefit from George’s wisdom. His abili-
ties were widely recognized by his superiors, and he eventually achieved the rank
of General and was the Commander of the Air Force Materiel Command (AFLC’s
successor organization) at the time of his retirement.

When developing our first METRIC based models for managing engines, I
also met Mr. Bernie Rosenman, who led the Army Inventory Research Office
in Philadelphia. Bernie was responsible, both through his office and personal in-
tellect, for the development of many of the inventory models which are found in
standard text books on operations management and inventory control. Some of the
models were developed under contract with MIT, where Herb Galliher worked.
Herb, in subsequent years, had a profound impact on my thinking about inven-
tory modelling. Specifically, he taught me to look carefully at data before making
modelling choices. Bernie’s team included Alan Kaplan and Karl Kruse, both of
whom, at one time or another, guided me in structuring spares procurement mod-
els. In fact, one of Karl’s papers on waiting times is the basis for a section in this
book.

As time went on and the efforts of our AFLC team expanded, we were also
very fortunate to interact with the great logistics thinkers of that period at the
RAND Corporation, Murray Geisler, Irv Cohen, Bob Paulson, Mort Berman,
John Lu, Hy Shulman, Steve Drezner, among others. Subsequently, the work of
others at RAND had profound impact on the Air Force and my thinking. These
included Lou Miller, Dick Hillestad, M.J. Carrillio, Jack Abell and Gordon Craw-
ford. Many of the interactions that I had with my RAND colleagues occurred
after my joining the Cornell faculty in 1974. I had the privilege of spending sev-
eral summers in Santa Monica learning from these highly skilled, dedicated and
genuinely good people. I am forever in their debt. As such, it is not surprising that
a large portion of this book is based directly and indirectly on ideas that originated
from work at the RAND Corporation and the interactions I had with the people
who worked there.
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My interest and work in spare parts inventory management continued upon
joining Cornell’s faculty. In addition to continuing my work at RAND, I also had
immediate opportunities to work with the US Navy, GE, and most importantly,
with XEROX. XEROX had a Management Sciences department in Rochester,
NY, which was one of the premier industrial management science organizations
in the world. Jack Chambers was its leader. XEROX had an enormous investment
in parts and its service infrastructure. Hence, it was not surprising that Jack’s
team was engaged in a number of studies in this area. One member of this team
was Ron Hudson, who contacted me to establish my interest in working with this
group on this class of problems. Ron was the key intellectual leader in the logis-
tics activities of the Management Science department. Of all the many technical
people I have worked with in industry, Ron stands out as one of the most com-
petent. His professionalism and uncompromising commitment to doing the best
possible analysis have had a major impact on me over the quarter of a century
that I worked with Ron. There, of course, were others at XEROX with whom I
interacted who shaped my views on the differences between military systems and
high tech service parts replenishment systems. Chuck Mitchell and Ron Nawrocki
exposed me, and a generation of Cornell students, to the complexities in strate-
gic, tactical and operational planning and execution in commercial service parts
environments. The Management Sciences department at XEROX, and at other
companies, was disbanded in the very early 1980s.

Another life changing event occurred in 1980 when I met Thomas P. Latimer,
the President, CEO and Chairman of the Chicago Pneumatic Tool Company. At
about the same time, I became keenly aware of the demise of the manufacturing
might of United States companies. Tom gave me the opportunity to work on sev-
eral very interesting problems relating to the manufacture and distribution of both
finished goods and spare parts. Although most of the activities I was engaged in
with Tom’s company were focused on evaluating various alternative manufactur-
ing strategies for fabricating components, I did work on one significant service
parts study throughout 1982. This study involved the stocking of parts in distribu-
tion centers in several European countries.

Although I was aware of the competition that existed throughout western Eu-
rope, I quickly learned about how governmental policy and interference impact
the flow of material and hence the distribution strategies taken and the costs in-
curred by companies doing business there. Regulations affected both the move-
ment of both physical product and information among company facilities located
in different countries. The social costs and restrictions of doing business that were
a consequence of government policy were in evidence everywhere. Observing
these hard economic and operational realities greatly affected my thinking about
global manufacturing and distribution. Other work I did in Europe later in the
1980s with Bell Atlantic reinforced these observations.

In the 1990s, two more significant opportunities arose related to service parts.
My colleague and very good friend, Dennis Severance, was responsible for both
of them. Dennis had been on the Cornell faculty in 1974. We and our families
became close friends on a personal level at that time. On a professional level,
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however, Dennis had, and continues to have a tremendous influence on my think-
ing and teaching. The importance of his presence in my life cannot be overstated,
as you will now see.

Late in the 1980s, Dennis introduced me to Howard Selland, who sub-
sequently became the president of the Aeroquip Corporation. After assisting
Howard on a manufacturing and distribution problem in the late 80’s, he asked
Dennis and me to assist him in restructuring Aeroquip’s manufacturing and dis-
tribution systems. Their operations were global in scope, although much of their
market was in the United States. Aeroquip was in the hydraulic hose and fittings
business. All fittings contain machined components as well as others. My ear-
lier studies of manufacturing practices, largely supported by Tom Latimer and
Chicago Pneumatic Tool Company, made it clear to me what Aeroquip should do.
About half of Aeroquip’s business was for spare parts. Hence, again the problems
were familiar. As was the case for Chicago Pneumatic Tool, Aeroquip’s demand
patterns for parts were highly erratic. Furthermore, there were many tens of thou-
sands of part numbers. The nature of the problem immediately suggested that the
traditional batch manufacturing and MRP based planning strategy used by Aero-
quip, and many other companies, was totally inappropriate. At this point, I be-
gan working with Mike Hoverman, whose professionalism, dedication, and sheer
doggedness, led to the design of an extraordinarily effective manufacturing and
distribution system. Mike deployed a software environment that permitted Aero-
quip to comprehend the idiosyncracies of various customer’s ordering patterns.
This analysis formed the basis for a production strategy for producing physical
products, for planning of production of the components and products, and for de-
veloping the underlying inventory policies. As part of this work, Mike was the
force behind the design of a new physical distribution center and all its opera-
tional rules, and software. This distribution center and the backbone manufactur-
ing strategy made the cost effective production of parts possible and dramatically
improved service to customers.

It is impossible to overstate the lessons that Dennis and I learned from
Howard, Mike and literally hundreds of other Aeroquip people. In aggregate, they
forced us to take general concepts and to work with them to create concrete pro-
posals for manufacturing and distribution system design and operations. Collab-
oratively, the group constructed a remarkable environment. They stimulated our
thinking and provided us with the opportunity to further develop our ideas and
concepts pertaining to the management of service parts.

While the efforts at Aeroquip were underway, Dennis also introduced me to
Stu Wagner, the director for strategic planning in General Motor’s Service Parts
Operations organization. This organization is responsible for the acquisition, pro-
cessing, storing, and distributing of hundreds of thousands of different types of
parts to many thousands of automotive dealers, wholesale distributors and mass
merchandisers. Through Stu, and his team, David Sergeant, Mary Shaw and oth-
ers, we have had the opportunity to learn about this fascinating business, a busi-
ness that is matched only in scale and complexity found in the US military. Over
the past decade we have been exposed to numerous issues relating to this system.
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Although he is now retired, Stu Wagner was a guiding force in this organiza-
tion. He was relentless in his quest for uncovering better ideas and communicating
them to others in General Motors. His quick mind and sharp tongue always forced
us to think more clearly and to articulate our thoughts more strongly. His no non-
sense approach to the analysis of problems and opportunities and reporting the
results of these analyses has affected our actions greatly. We deeply appreciate
his leadership and that of the many others we have worked with at GM.

Most recently, my colleagues Jim Rappold and Kathy Caggiano, both of the
University of Wisconsin, David Murray of the College of William and Mary, and
Peter Jackson and I have been exposed to even a broader range of interesting
problems facing high tech companies, aircraft manufacturers, and airlines. As of-
ten happens, the introduction to these problems has come from an earlier source
of stimulation. In this case, from Ron Hudson. Remember, a quarter of a cen-
tury earlier, Ron gave me my first experiences in commercial spare parts resupply
systems. In 2000, Ron was working for XELUS, a company that provides soft-
ware for planning various aspects of service parts acquisition and distribution.
Ron articulated clearly his dissatisfaction with available models. After exploring
his reasons for this dissatisfaction, he challenged us to think of new approaches
for modelling and solving various types of strategic, tactical and operational ser-
vice parts problems. And the journey, of course, has not ended. We continue to be
stimulated by the opportunities that XELUS provides to us. Although our friend
and respected colleague, Ron Hudson, died recently, his spirit of inquiry remains
in us, and we devote our energies to improving our modelling methodologies in
his memory.

During the past twenty years I have also had the distinct privilege of working
with my friend and colleague, Peter Jackson. Peter and I have worked on several
projects for GM and XELUS. But these are but two of the many ways that we
have collaborated. Peter and I have struggled with many research problems, often
related to service parts, during the past decades. We have also spent countless
hours preparing related teaching materials. Peter represents all that is best in a
teacher and colleague, and I am blessed to have had the privilege of working with
him.

I have provided just a glimpse of the events in my life that have led me to
examine service parts systems. This sequence of events began with a seemingly
harmless act. That I volunteered clearly changed the direction of my life com-
pletely. The wonderful people that I have met, and who have inspired me, have
made me a very happy and thankful person. Their friendships, in addition to their
professional guidance, have made my life a better one. My wish is that all have
such good experiences; but, my advice to you is to be careful when you volunteer,
since the consequences may be long lasting.

Jack Muckstadt
Cornell University

September 2004
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Introduction

When repairing equipment, there is often a requirement to replace defective com-
ponents or parts. These replacement parts are commonly called service parts.
Clearly, service parts play a critical role in the effective operation of commer-
cial and military systems, as well as in the personal lives of individuals. Without
adequate stocks of these parts, power plants cannot function, construction equip-
ment must be idled, airliners will be grounded, and computers cannot be repaired.
The list of such commercial environments requiring service parts is seemingly
unlimited. In other words, our technology-dependent world depends on the care-
ful creation and distribution of service parts. As individuals, we cannot repair our
appliances, our furnaces, or our cars, if parts are not readily available. Thus each
of our lives is critically dependent on the abundant availability of service parts
within short periods of time.

We clearly recognize that there are many different types of service parts and
that they perform many different functions. For example, to keep our cars op-
erational, we can buy inexpensive parts, such as filters, and also very expensive
parts, such as transmissions or engines. To ensure timely repair of our cars, exten-
sive supply chain systems have been developed by car manufacturers and other
companies, such as NAPA. But how should these resupply systems be designed
and operated? That is, how many warehouses should there be? Which warehouses
should resupply which other warehouses? How should car dealers be resupplied?
What parts should be stocked at dealers and at the many warehouses in the sys-
tem? Clearly, car parts differ in terms of their cost and demand rates. However,
they also differ in terms of criticality. We can wait for certain parts but not for
others: a car is often operable if it has a damaged interior trim part, but not if it
has a faulty transmission. Thus decisions concerning what parts to stock at what
locations is of central importance to the car-using public and to the providers of
the parts. If too few parts are available in the resupply system, customers will be
forced to wait to have use of their vehicles. If too many parts exist in the system,
the cost to operate the system – inventory investment, facilities, transportation,
and other operating costs – will be too great. Thus the best design of resupply
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networks and the optimal allocation of inventories within these networks is of
unquestionable importance to the economical maintenance of equipment.

The types of decisions that must be made relating to service parts can roughly
be divided into three planning categories: strategic planning, tactical planning,
and operational planning. Strategic planning is an on-going activity that has two
primary functions. First, an organization must determine what customer require-
ments are and will be over the next several years. In military environments, the
time horizon may be decades in length. Customer requirements in this context
refer to the range of service parts needed by customers as well as the timeliness
of these needs. For example, the permissible time to return an important medical
device in a hospital or the principle radar system in an air traffic control system
to serviceable condition is different than the permissible time to replace a knob
on the dashboard of a car. Thus, the location in which parts are stocked depends
on a customer’s needs. Even the same parts may have different time requirements
for different customers, as is evidenced by the service contracts that customers
purchase.

After establishing the need for various types of service by different categories
of customers, the second strategic planning activity is to determine how to allo-
cate resources to meet these requirements. This means a company must decide to
what extent it will directly provide service to customers, where it will locate parts
and in what quantities, how it should structure its operating systems, what its in-
formation systems requirements are, what its supply chain partners’ and its own
business processes should be, and how its proposed operating environment will be
executed on a moment-by-moment basis to meet its contractual obligations over
the planning horizon.

These strategic decisions must be made recognizing not only customer needs
but also the competitive forces present in the marketplace. Simply put, there is a
tremendous amount of uncertainty about the future environment. Therefore, the
strategic planning activity for different companies in different industries can result
in highly different outcomes. For example, all the major car companies in the
United States have chosen to create substantial infrastructures to provide parts to
their dealers. Parts systems for companies in the computer business, such as Dell,
are very different. You are very likely to be able to get a key part for a seven
year old Buick directly from General Motors; however, you will not likely get a
part for a seven year old computer directly from Dell. As a consequence of its
business strategy, General Motors has well over 10 million square feet of service
parts storage space in the United States in which many hundreds of thousands
of different part types are stocked. It continually struggles with determining the
proper range and depth of stock to locate at each facility in its network and with
providing guidance to dealers as to which parts they, in turn, should stock. Thus
General Motors must consider its supply chain partners – its individual car dealers
as well as its suppliers – when making strategic decisions about the nature of its
internal service parts supply chain.

Strategic decisions that affect parts acquisition and repair positioning is a key
requirement for military planners, too. Since the United States military maintains
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service (spare) parts inventories with a value exceeding $100 billion, it is impera-
tive that complex systems exist for their physical storage as well as the planning of
their disbursement throughout the world. Strategic planning encompasses estab-
lishing what the design characteristics of weapons should be, recognizing that the
life cycle costs are a consequence of a weapon’s design. Deployment of weapon
systems and the accompanying costs of maintaining them must be estimated as a
function of defense and foreign policy. Infrastructure is expensive to create and
maintain. It also takes significant amounts of time to build for political as well as
technical reasons. Thus with all the uncertainties that exist, a strategic plan must
be created that will provide the flexibility needed to meet a wide range of mission
scenarios, while also satisfying these uncertain requirements in a cost effective
manner.

While strategic planning is obviously of considerable importance to both com-
mercial and military organizations, we will not discuss this topic further in this
book. We assume that these decisions have been made and that operating environ-
ments exist.

The second category of planning is called tactical planning. From the per-
spective of service parts, tactical planning establishes what inventories will be
required to meet operational objectives at some future time, given the design and
operational characteristics of an existent resupply system infrastructure. Thus we
set stockage objectives for each part at each location consistent with procurement
and resupply times from location to location inherent in the system’s design, the
uncertain demands for various types of items at different locations, the strategies
for repairing certain parts, and the timeliness of service that is needed. In most
real world situations, tactical planning is associated with budget, procurement,
and repair decisions. That is, for some planning horizon, we determine how much
money should be allocated for investment in which service parts. The length of the
planning horizon differs by application. For example, in military applications, the
horizon’s length is dependent on the Federal budgeting cycle and procurement
lead times, and hence, can be years in duration. Procurement decisions involve
determining what aggregate inventory levels should be and how much should be
purchased in the relatively near future, say the next few months, in some en-
vironments. Thus a planner at American Airlines may place an order for some
quantity of turbine blades for an engine based on perceived future needs. Procure-
ment lead times are often lengthy for complex parts: it takes months to fabricate
many new chips and boards; it can take even longer to acquire them given the
business processes that exist in purchasing departments. Finally, repair capacity
must be planned to meet forecasted requirements for repair and refurbishment of
parts and systems. This capacity exists in many locations, and, in many instances,
may be performed by other organizations. For example, the person who repairs
your Dell computer is not an employee of Dell. Yet Dell must ensure that there is
enough capacity in each geographical region to meet its service commitments.

Much of this book is devoted to constructing mathematical models that can
be effectively used to carry out the tactical planning goal of determining system
stock levels. The models address this problem in a variety of service parts resupply
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networks for both repairable and consumable (nonrepairable) item types. As we
will see, these models are based on many assumptions, but the objective is always
the same. The goal is to answer the following questions: how much do I need of
each part type to meet my goals, given the nature of the resupply network?

The third, and final, category of planning models addresses the following sim-
ple question. Given the stocks I now have on hand, in serviceable or repairable
condition, at each location, what do I repair now and what do I ship now from one
location to another via what mode of transport? While tactical planning models
are, by nature, normally formulated assuming a stationary operating environment,
these real-time execution models are not. That is, they are formulated over short
planning horizons, and also contain more details on current operating limitations.
They may, for example, recognize that shipping from point A to B is not pos-
sible today, or that individuals or equipment are unavailable to conduct repairs
today. Basically, they are designed to make the best possible decisions consistent
with the current situation while ignoring the longer term potential consequences
of making these decisions.

We will devote only one chapter of this book to these real-time planning mod-
els. As we will see, these models differ substantially from the types of models
employed for making tactical decisions.

1.1 Taxonomy of Service Parts Inventory Systems

We now consider in greater detail the different elements that affect the amounts of
inventory found in various portions of a service parts inventory system. In general,
there are numerous reasons for choosing to stock inventory of an item type within
a system, often at multiple locations.

The underlying echelon or network resupply structure will have a substan-
tial impact on the amount of inventory needed. There are clearly many possible
structures. However, for each one, there is usually a well defined resupply plan.
Consider the system depicted in Figure 1.1. In this system, demands for service
parts arise due to the failure of some equipment operated by a customer. To repair
that equipment, a repair technician diagnoses the failure type, and, if necessary,
removes and replaces the defective unit with a serviceable one. The technician
obtains the serviceable parts from a stock room at the service center location that
is responsible for resupplying him. That location’s stock is subsequently resup-
plied from the appropriate regional warehouse, according to the ordering policy
followed at the service center location. The regional warehouse is in turn resup-
plied by its supporting central warehouse, as prescribed by the inventory policy
employed by the regional warehouse. The central warehouse likewise receives
replenishment stocks from the factories that manufacture the particular item. Typ-
ically, the parts managed in resupply systems of the type we have described are
not repaired. They are called consumable service parts.

There are many variations on this theme; some systems have many more ech-
elons, some have fewer. Nonetheless, they are similar in structure. Note, however,
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Fig. 1.1. A Typical Service Parts Resupply Network

that while the basic structure may be similar to the one represented in Figure 1.1,
the detailed characteristics of the actual operating environments can vary dramat-
ically, as we shall discuss shortly.

Let us now examine another system in which failed parts are repaired after
they are removed from an assembly. We illustrate such a system in Figure 1.2,
which corresponds to one often found in military environments. There are two
echelons in this system consisting of a set of bases supported by a depot. Flying
activity occurs at the lower echelon, which we call bases. When an item on an
aircraft becomes inoperable, it is removed from an aircraft. The failed part is then
either entered into the base’s repair facility, sent to the upper echelon, which we
call the depot, where repairs can also take place, or condemned. The part repair
location depends on the nature of the failure. To replenish condemned parts, new
ones are purchased from external suppliers. In any case, the aircraft is repaired by
removing a serviceable unit of the same type from base supply and placing it in
the aircraft. Base supply is resupplied either from the base’s repair shop or from
depot supply, depending on where the failed part was repaired. We shall study this
and related problems extensively in this book.

There are obvious differences in the significance of the items serviced by the
systems depicted in Figures 1.1 and 1.2. Different item characteristics create op-
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Fig. 1.2. Depot Base Resupply System

erational differences between systems, whether the systems are of the same type
or not.

1.1.1 The Items

Each service parts resupply system is designed to accommodate the items found
in it. The systems, and the items within them, can have varying characteristics.

First, systems differ in the number of items that are managed. In some envi-
ronments, there are just a few hundred or a few thousand items. In other cases,
there may by hundreds of thousands of items, or, as is the case for the Depart-
ment of Defense, there may be a few million items. Because of the differences
in the number of items, very different methods must be employed to manage the
system’s operation. In some cases, rudimentary reporting systems coupled with
decision support systems for ordering and shipping parts can easily be used to
manage the system using spreadsheet level software run on personal computers.
This is roughly the case for General Motor’s SATURN division. However, for the
remainder of General Motors, the management system is extraordinarily complex
because of the number of parts considered and the volumes of parts moved per
year.

Second, the demand rate among items can vary substantially. Demand rates
of items also differ dramatically by location within a resupply system, as well as
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between different resupply systems. Figure 1.3 illustrates this difference for one
system we have examined. As the graph in this figure shows, a high fraction of
total unit demand is concentrated in a small fraction of the items. Over 80% of
the demand is concentrated in about 8% of the items. Over 50% of the lowest
demand rate items constitute about 1% of the annual unit demand. In automotive

Fig. 1.3. Item Pareto Analysis for an Automotive Manufacturer’s Service Parts System

environments, it is the norm for the number of demands per dealer per year for
a given part type to be well less than one unit. Even for items with 20,000 units
demanded annually throughout the system, there is an overwhelming fraction of
the dealers that have less than one such unit demanded per year, on average.

Third, the unit shortage, holding and transportation costs differ dramatically
among the items as well. In automotive cases, unit costs can vary from pennies
per unit to thousands of dollars per unit. Engines stocked by the US Air Force cost
millions of dollars per engine. Thus there is a huge difference in holding and in-
vestment costs experienced in different systems. There is also a substantial differ-
ence in shortage costs when a system is out of stock. It is clear that having an air-
craft wait many hours to be repaired has a far greater cost than waiting for a hood
ornament on a car, although these costs are often difficult to estimate. Nonethe-
less, these backorder costs are estimated either directly or indirectly. For example,
in environments in which fill rate constraints are imposed, shortage costs are usu-
ally not stated explicitly. But these constraints imply a shortage cost. In some
models we will study, we will explicitly consider the costs of holding inventory
and backordered units. In others, we will focus on investment costs, while enforc-
ing minimum fill rate performance requirements. We also note that transportation



8 1 Introduction

costs can be a substantial component of operating a service parts resupply sys-
tem. In some instances the total cost of moving material can amount to hundreds
of millions of dollars per year. The size and weight of each item along with their
demand rates obviously determine the volume, weight, and quantity of material
that must be transported. But the mode of transport selected to move this material
is an important factor in determining the annual transportation costs.

Fourth, the procurement, transportation, and other components of lead times
associated with each item determine the amount of inventory carried in the system
in two ways. There is pipeline stock that exists because of the time it takes to re-
ceive orders after they are placed, that is, the resupply time. Based on Little’s Law,
this time results in an average number of units in the resupply system. Thus, the
choices of suppliers, transportation modes, and, as we will see, inventory poli-
cies, all affect the average resupply lead time and hence the average pipeline
stock. Furthermore, lead times are not always constant. For example, the length
of time it takes to ship material from a General Motors warehouse in Michigan
to another warehouse in Boston varies substantially from shipment to shipment.
Another factor that influences the resupply time is the inventory policy followed
by the supplying location. When orders are shipped immediately because stock
is on hand at the supplier, then resupply lead times are one value. If the supplier
does not have stock available to ship, then the resupply action is delayed for some
amount of time. This uncertainty in lead times is an important factor when set-
ting stock levels. We note that the average and uncertain length of resupply lead
times also affects the second type of stock that is required: safety stock. There
will be inherent variability in the demand processes for each item. The degree of
difference in this variation of demand can be substantial. The data displayed in
Figures 1.4 through 1.10 show demand for several items that we have observed
in one environment. Uncertain demand over uncertain replenishment lead times
yields a requirement for safety stock. In many real world situations, safety stock
is the predominant component of total stock for most items. All the models we
will consider are based on the premise that demand over replenishment lead times
is governed by a random process.

Fifth, as we mentioned earlier, some service parts are consumable and some
are repairable after they fail. We will consider both types of items in our analy-
ses; however, the majority of our discussions will focus on repairable items. This
focus is largely a result of both the economic importance of such items as well as
personal interest.

There are many other characteristics associated with items that are of impor-
tance when setting inventory levels. These include the physical characteristics of
the items (physical volume, weight, shape), the special temperature and humidity
storage requirements, the possibility of items becoming obsolete, and the sub-
stitutability of one item type for another. The models we will construct do not
consider these other factors.
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Fig. 1.4. Time Series of Demand for an Item

Fig. 1.5. Time Series of Demand for an Item

1.1.2 Inventory Policies

Many types of inventory policies are found in practice and are discussed in aca-
demic literature. These range from policies that are location specific, such as re-
order point/reorder quantity or (s,S) policies, to echelon-stock-based inventory
policies in which total system stock and system performance across all items at
all locations are considered. The inventory position at a location for an item is
equal to its on-hand plus on-order minus backordered inventory. Reorder points
are normally expressed in terms of inventory position. When following an (s,S)
policy, a location places an order when its inventory position falls to s or below
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Fig. 1.6. Time Series of Demand for an Item

Fig. 1.7. Time Series of Demand for an Item

and an order is placed to raise the inventory position to S. Echelon stock in a
resupply network refers to the inventory position at that location plus all the in-
ventory found in the resupply system for successor (downstream) locations in the
resupply network. In some environments, inventory levels are monitored continu-
ously while in others they are monitored only periodically. Policy implementation
obviously depends on whether reviews are continuous or periodic.

One important class of policies are called base stock, order-up-to, or (s–1,s)
policies. When employing these policies in a continuous review environment, an
order is placed every time a demand arises. The quantity ordered equals the quan-
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Fig. 1.8. Time Series of Demand for an Item

Fig. 1.9. Time Series of Demand for an Item

tity demanded. In periodic review situations, an order is placed in a period to raise
the inventory position to some specified level. In both cases, some target inventory
level, based on either echelon or installation inventory position, is used to trigger
an order. Thus, whenever the inventory position is below s when a review occurs,
an order is placed immediately to raise the inventory position for the location to s.
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Fig. 1.10. Time Series of Demand for an Item

1.2 An Overview of the Book

The environments that we will study in detail are a subset of those that we have
briefly discussed in the previous section. First, we will limit ourselves to con-
structing models for expensive items. We assume the costs of these items are high
enough so that all items are managed using either continuous review or periodic
review (s-1,s) policies. For the most part, we will assume that demand rates for
each item are low so that the stochastic processes generating the demands are
represented by discrete-valued random variables. Specifically, we assume that the
random variables representing the number of units demanded over lead times are
integer-valued.

Second, the resupply networks that we will examine are multi-echelon in
nature. In some cases, we will study two-echelon systems and in others three-
echelon systems.

Third, the items in certain cases are assumed to be consumable while in others
they are assumed to be repairable. The models are often constructed in two steps.
To begin, we develop probability distributions of the number of units on-order
or in repair at each location. Next, we usually construct economic models and
algorithms that can be used to calculate stock level values for each location in
the multi-echelon, multi-item systems. These economic models are based on the
probability model of the number of units on-order or in repair at all locations in
the resupply system.

Fourth, we will consider both periodic and continuous review situations.
These models are constructed to represent different operating environments and
to address different questions.

The contents of this book reflect some of our interests and experiences related
to the mathematical analysis of service parts systems. As such our goal is to syn-
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thesize only a portion of the literature on this topic. While our focus will be on
reviewing many important results, the book is in no sense encyclopedic. However,
to make the reader aware of a larger set of materials on this topic of service parts
inventories, we have provided an extensive bibliography on the subject.

Let us now summarize the contents of the remainder of the book.
Recall that we will restrict our attention to (s–1,s) policies for controlling

inventories. In the next chapter we will prove that such policies are optimal in sin-
gle location and serial type systems with both constant and random lead times.
Two alternative methods of proof are presented, which are due to Karlin and
Scarf [147] and Muharremoglu and Tsitsiklis [184].

Once we establish that the class of (s–1,s) policies is optimal for a broad
class of problems, we turn our attention in Chapter 3 to proving some key re-
sults used throughout the book. We establish mathematical properties associated
with important performance measures, develop rudimentary optimization models,
and demonstrate how alternative methods can be used to find system stock levels.
To demonstrate these properties and techniques we consider single location sys-
tems. The material found in Chapter 3 was originally published largely by Feeney
and Sherbrooke [89], Fox and Landi [92], and Everett [80].

We present an exact analysis of a two-echelon depot-base system for re-
pairable parts in Chapter 4. This analysis focuses on the development of the exact
distribution of the number of units on-order (in resupply) at each location in the
two-echelon system. We will see that while these exact distributions can be cal-
culated, the computational effort is too great to be of practical value. A work by
Simon [230] provides the basis for much of the material provided in this chapter.

In the fifth chapter, we consider a variety of tactical planning models for re-
pairable items. Most are based on the works of Sherbrooke [223], Graves [99],
and Muckstadt [174]. These models contain approximations to the exact distribu-
tions developed in the fourth chapter. We develop economic models and provide
algorithms for computing stock levels at each echelon and location for a collection
of items. These models are formulated to optimize a system performance measure
subject to constraints on investment in inventory. The solution methods we exam-
ine are of two types; one is a marginal analysis method, and the other employs a
Lagrangian relaxation technique. We also introduce models that consider multiple
indenture relationships for the repairable items. Multi-indentured repairable items
are ones that contain components that are themselves repairable. Both continuous
and periodic review models are discussed in this chapter.

A continuous-time model for the management of consumable items is the
topic considered in Chapter 6. In most of the models developed in earlier chapters,
the objective functions measure the expected number of backorders outstanding
at a random point in time subject to a single constraint on system investment.
Other models have as their objective the minimization of the average per period
cost of carrying inventory and shortages. The objective considered in this model
is the minimization of investment in system inventory subject to a collection of
constraints associated with time-based fill rate requirements for various contracts.
These contract constraints exist at each level of a three echelon system. In addi-
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tion, we present an algorithm for finding stock levels for each item at each location
in the three echelon system. This material is due to Caggiano, Muckstadt, Jackson
and Rappold [37].

Several models are presented in Chapter 7 that address the effectiveness of
pooling and lateral resupply in multi-echelon settings. The models developed in
previous chapters preclude the sharing of inventories among locations in the same
echelon. We now consider a few models that permit this sharing of stock among
locations. Two of these models are continuous review models and a third is a
periodic review model. These models are due to Axsäter [17], Lee [156], and
Caggiano, Jackson, Muckstadt, and Rappold [35]. We also show the effect on
inventory levels of having a three echelon rather than a two echelon resupply sys-
tem. A periodic review model, due to Eppen and Schrage [78], and a continuous
review model are presented to demonstrate the reasons for operating three echelon
systems.

All models developed to this point assume that repair capacity or production
capacity is unlimited. Resupply times for an order are assumed to be indepen-
dent of the resupply times for all other orders. In Chapter 8, we investigate the
impact of capacity on setting inventory levels. Both continuous-time and peri-
odic review models are developed. Some basic ideas are presented related to the
presence of capacity constrained systems. These ideas are given in Roundy and
Muckstadt [206].

The final two chapters address environments in which the demand and re-
supply processes are not necessarily stationary. A nonstationary generalization of
Palm’s theorem is discussed first in Chapter 9. A time dependent representation of
the probability distribution of the random variables measuring the number of units
in resupply at a depot and its bases is given. This model permits us to estimate, for
example, the effect on aircraft availability when both the demand and repair pro-
cesses are nonstationary. In Chapter 10, we present models that address real-time
decision-making rather than tactical planning, which is the focus of the models
in the first eight chapters. These real-time models are used to determine what to
repair in a period and what to allocate to bases from a depot. Furthermore, two
models consider both emergency and regular resupply of the bases by the depot.
The material in this chapter is due to Caggiano, Muckstadt, and Rappold [39].

Clearly there are many topics related to service parts management that are
not discussed in this book. As mentioned earlier, the topics covered are ones with
which we have had experiences and interest over the past several decades. For
additional summaries of other topics on this subject, we refer the reader to the
excellent review articles written by Nahmias [186] and Daniel, Guide and Srivas-
tava [67].
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Background: Analysis of (s–1, s) and
Order-Up-To Policies

Throughout our analyses, we limit our attention to (s–1,s) policies or order-up-to
policies in the continuous review and periodic review cases, respectively. Since
there are many types of policies that can be invoked, the obvious question is
why we confine our attention to only these types. While these policies are in-
tuitively appealing and hence are often applied in practice because of this appeal,
it is nonetheless important for us to know that they are optimal in many circum-
stances. In this chapter, we will show the optimality of these policies in several
environments via two different methods of proof.

We begin by considering a single location, single item system in which the
inventory is measured at the end of each period and an order is placed at that
time. In this environment, demand is assumed to be independent and identically
distributed from period to period, cost functions are the same in each period, and
the planning horizon is infinite. Fixed ordering costs are assumed to be negli-
gible compared to other costs. Resupply lead times are assumed to be constant
and known. We show the optimality of the order-up-to policy in this case us-
ing a classical dynamic programming approach following a proof by Karlin and
Scarf [147].

We next show the optimality of the (s–1,s) policy for managing a single item
in both single location and serial systems. Again, ordering decisions are made
periodically. Demand in each period is described by a discrete random variable
and is independent from period to period. Resupply lead times are assumed to be
random variables with the property that lead times of successive orders do not
cross. The method of proof is based on novel ideas presented by Muharremoglu
and Tsitsiklis [184].

The optimality of order-up-to policies in serial systems was first shown by
Clark and Scarf [49]. They introduced the notion of echelon stocks and proved
that each stage in the system makes its ordering decision based on its echelon
stock level. They employed a dynamic programming approach in their analysis,
which we will summarize subsequently.

Finally, we will study the optimality of the (s–1,s) policy when inventory lev-
els are monitored continuously. In this case, we will study in detail the situation
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where demand is described by a Poisson process. We also discuss the cases in
which demand is described by a compound Poisson process or a general renewal
process. We will carefully examine the case when resupply lead times are con-
stant; however, we also will comment on the cases where lead times are described
by random variables. The method of proof is new, although based on the observa-
tions of Muharremoglu and Tsitsiklis [184].

2.1 Optimality of Order-Up-To Policies in a Single Location,
Periodic Review, Backorder Environment

We examine a situation in which we periodically review the inventory level at a
single location and, based on this level, decide how much, if anything, should be
ordered. The time between making ordering decisions is fixed. Demand in each
period is characterized by a random variable that possesses a positive, continuous
density function, which we denote by g(x). While we can extend the ideas to
cases with arbitrary demand distributions, we limit the discussion to this case to
simplify notation and technical details. Demand is also independent from period
to period.

We assume the system operates as follows. At the beginning of each period,
inventory arrives that was ordered τ periods previously. An order is then placed,
if required. At the end of the period, demand occurs, and period costs are charged.
We assume there are three types of costs: ordering, holding and backorder costs.
Ordering costs are incurred proportional to the quantity ordered in a period. Hold-
ing and backorder costs are charged proportional to the number of units of stock
on-hand or backordered at the period’s end.

Let y represent the net inventory at the beginning of a period, after the arrival
of stock ordered τ periods in the past, q j the amount ordered previously and due
to arrive j periods in the future, c the unit purchase cost, h the per unit holding
cost, b the per unit backorder cost, τ the resupply lead time, and α the discount
rate with α < 1. The quantity q1 will arrive at the beginning of the next period,
q2 will arrive in the following period, and qτ−1 will arrive just after the beginning
of the (τ − 1)st period in the future. Let u be the amount ordered in the current
period. Finally, let f (y, q1, . . . , qτ−1) represent the minimum expected cost when
following an optimal policy given (y, q1, . . . , qτ−1), which completely describes
the state of the system.

In this environment, the dynamic programming functional equation is

f (y, q1, . . . , qτ−1) =
min
u≥0

{
c · u + L(y) + α

∫ ∞

0
f (y + q1 − x, q2, . . . , qτ−1, u)g(x)dx

}
(2.1)

where
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L(y) =

⎧⎪⎪⎨⎪⎪⎩
h
∫ y

0
(y − x)g(x)dx + b

∫ ∞

y
(x − y)g(x)dx, y > 0,

b
∫ ∞

0
(x − y)g(x)dx, y ≤ 0.

We noted that (y, q1, . . . , qτ−1) represents the system’s state at the period’s
beginning before an order of size u is placed. Hence u is a function of the sys-
tem’s state. An important question relates to how u depends on this state. This
relationship is made clear in the following theorem.

Theorem 1. The optimal policy for managing the system, u(y, q1, . . . , qτ−1), is a
function of the system’s inventory position, which is equal to y + q1 + · · ·+ qτ−1.

The theorem states that the optimal order policy depends only on the value of
the inventory position and not on the specific values of y and q j , j = 1, . . . , τ −1.
While this result may be obvious, it requires proof, which we now present.

Proof. Observe that

f (y, q1, . . . , qτ−1) = min
u≥0

{
c · u + L(y)

+ α

∫ ∞

0
f (y + q1 − x, q2, . . . , qτ−1, u)g(x)dx

}
= L(y) + min

u≥0

{
c · u

+ α

∫ ∞

0
f (y + q1 − x, q2, . . . , qτ−1, u)g(x)dx

}
. (2.2)

Clearly u∗, an optimal value for u, is a function of (y + q1, q2, . . . , qτ−1). Thus
f (y, q1, . . . , qτ−1) = l(y) + p(y + q1, q2, . . . , qτ−1), where l(y) = L(y). Ob-
serve that the optimal cost function depends on q1 only by knowing y + q1. Sub-
stituting this function into (2.2), we see that

f (y, q1, . . . , qτ−1) = l(y) + min
u≥0

[
c · u + α

∫ ∞

0

[
l(y + q1 − x) (2.3)

+ p(y + q1 + q2 − x, q3, . . . , qτ−1, u)
]
g(x)dx

= l(y) + l1(y + q1)

+ min
u≥0

[
c · u + α

∫ ∞

0
p(y + q1 + q2 − x, q3, . . . , qτ−1, u)g(x)dx

]
. (2.4)

Observe that this functional equation implies that u is a function of y + q1 +
q2, q3, . . . , qτ−1. Substituting the resulting function u of these values shows that

f (y, q1, . . . , qτ−1) = l(y) + l1(y + q1) + p1(y + q1 + q2, q3, . . . , qτ−1).

Obviously, this line of reasoning can be repeated and ultimately shows that

f (y, q1, . . . , qτ−1) = l(y) + l1(y + q1) + · · · + lτ−1(y + q1 + · · · + qτ−1)

and that u∗ is of the form u∗ = u∗(y + q1 + · · · + qτ−1). ��
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The function l j (y +q1 +· · ·+q j ) represents the expected holding and backo-
rder costs incurred in the j th period in the future, j < τ − 1. These costs depend
on the cumulative supply, y + q1 + · · · + q j , and the cumulative demand through
that period. Thus if cumulative supply exceeds cumulative demand, then inven-
tory will be on-hand and carrying costs will be incurred; otherwise, cumulative
demand exceeds cumulative supply and backorders will exist and backorder costs
incurred.

In summary, we have demonstrated that the optimal ordering policy has the
property that the order quantity that minimizes expected future discounted costs
is a function of the inventory position at the time the order is placed.

We now turn our attention to the exact structure of the optimal ordering policy.
The form of the policy is given in the following theorem.

Theorem 2. Given linear purchase, holding and backorder costs, the optimal pol-
icy is of the following form: there exists a value s∗ such that the order quantity u∗
is

u∗ = max

{
0, s∗ − (y +

τ−1∑
i=1

qi )

}
.

Proof. We prove this theorem in the manner presented by Karlin and Scarf [147].
To simplify notation, we assume τ = 1. It is straightforward to show that Theo-
rem 2 holds in 1- and 2-period problems; the proof is left to the reader. We begin
by assuming the planning horizon is n periods long, n ≥ 2, indexing the periods
from earliest to latest by n, n − 1, . . . , 1, respectively. We then show that the ear-
liest period’s optimal order quantity u∗

n is of the desired form, and then induct on
n. Later we let n → ∞. Since n is finite, we construct the recursion for fn(y),
the minimum expected discounted cost if the current inventory position is y given
that there are n periods remaining in the planning horizon. The recursion is

fn(y) = min
u≥0

{
c · u + L(y) + α

∫ ∞

0
fn−1(y + u − x)g(x)dx

}
.

Suppose u∗
n(y) is the optimal solution to this n period problem, n ≥ 2, and sup-

pose we have shown that this optimal policy is

u∗
n(y) =

{
s∗

n − y, if y < s∗
n ,

0, otherwise,
(2.5)

where the value of s∗
n (y) is the unique solution of

c + α

∫ ∞

0
f

′
n−1(s

∗
n − x)g(x)dx = 0. (2.6)

We also assume for some n ≥ 2 that we have shown that

(a) s∗
n ≥ s∗

n−1,
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(b) f
′
n(y) =

{
−c + L

′
(y), y < s∗

n ,

L
′
(y) + α

∫∞
0 f

′
n−1(y − x)g(x)dx, y ≥ s∗

n ,

(c) fn(y) is a convex function, with f
′′
n (y) existing everywhere except possibly at

y = s∗
n ; at s∗

n , both right and left hand derivatives exist,
(d) f

′
n(y) ≤ f

′
n−1(y).

Given that (a) through (d) hold, and that u∗
n(y) is given by the policy form stated in

(2.5) and satisfies equation (2.6), for j = 1, . . . , n, we now show that (a) through
(d) are also satisfied by the optimal policy for period n + 1. The recursion for the
n + 1 period horizon is

fn+1(y) = min
u≥0

{
c · u + L(y) + α

∫ ∞

0
fn(y + u − x)g(x)dx

}
.

The derivative of the minimand with respect to u is

c + α

∫ ∞

0
f

′
n(y + u − x)g(x)dx . (2.7)

Suppose w = y+u, the total supply available to meet the total demand for periods
n + 1 and n. Then we restate (2.7) as

Fn(w) = c + α

∫ ∞

0
f

′
n(w − x)g(x)dx . (2.8)

To make the problem interesting, we assume that b > 1−α
α

c ; i.e., the potential
backorder cost outweighs the discount obtained by deferring purchases.

Recall that fn(y) is a convex function. Hence Fn(w) is a nondecreasing func-
tion of w because f

′′
n (y) ≥ 0. When y ≤ 0, recall that

L(y) = b
∫ ∞

0
(x − y)g(x)dx and

L
′
(y) = −b

∫ ∞

0
g(x)dx = −b.

From property (b), observe that as w → −∞,

Fn(w) = c + α

∫ ∞

0
f

′
n(w − x)g(x)dx

= c + α

∫ ∞

0
[−c − b]g(x)dx = (1 − α)c − bα < 0.

Note that limw→∞ Fn(w) = limw→∞
{

c + α
∫∞

0 f
′
n(w − x)g(x)dx

}
.

By the dominated convergence theorem,

lim
w→∞

{
c + α

∫ ∞

0
f

′
n(w − x)g(x)dx

}
= c + α

∫ ∞

0
lim

w→∞ f
′
n(w − x)g(x)dx,
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because f
′
n(·) is bounded above and below by h/(1−α) and −(c+b), respectively.

Since limw→∞ f
′
n(w − x) > 0, limw→∞ Fn(w) > 0, too. Because Fn(w) is a

continuous function, Fn(w) must have at least one point w for which Fn(w) = 0.
We have assumed that g(x) > 0 and x > 0. Now Fn(w) is constant for an interval
beginning at −∞ and then strictly increases as w increases. Therefore, Fn(w) has
a unique value w for which Fn(w) = 0. This value is s∗

n+1.

Remember that f
′
n(y) ≤ f

′
n−1(y). Then

Fn(w) − Fn−1(w) = α

∫ ∞

0

[
f

′
n(w − x) − f

′
n−1(w − x)

]
g(x)dx

≤ 0

and thus Fn(w) ≤ Fn−1(w). This in turn implies that s∗
n+1 ≥ s∗

n .
Suppose y < s∗

n+1. Then the minimand of the following problem

min
u≥0

{
cu + L(y) + α

∫ ∞

0
fn(y + u − x)g(x)dx

}
occurs for u∗

n+1 = s∗
n+1 − y, where s∗

n+1 solves Fn(w) = 0.
We must now ensure that (a) through (d) hold for fn+1(·). We have already

shown that s∗
n+1 ≥ s∗

n .
Now we have

fn+1(y) =

⎧⎪⎨⎪⎩
c · [s∗

n+1 − y
]+ L(y)

+ α
∫∞

0 fn(s∗
n+1 − x)g(x)dx, y < s∗

n+1,

L(y) + α
∫∞

0 fn(y − x)g(x)dx, y ≥ s∗
n+1.

(2.9)

Hence

f
′
n+1(y) =

{
−c + L

′
(y), y < s∗

n+1,

L
′
(y) + α

∫∞
0 f

′
n(y − x)g(x)dx, y ≥ s∗

n+1,
(2.10)

which establishes property (b).
Next, let us show that property (d) holds. When y > s∗

n+1 ≥ s∗
n ,

f
′
n+1(y) = L

′
(y) + α

∫ ∞

0
f

′
n(y − x)g(x)dx

≤ L
′
(y) + α

∫ ∞

0
f

′
n−1(y − x)g(x)dx = f

′
n(y);

when y ≤ s∗
n ,

f
′
n+1(y) = −c + L

′
(y) = f

′
n(y);

finally, when s∗
n < y < s∗

n+1,
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f
′
n+1(y) = −c + L

′
(y).

But, −c < α
∫∞

0 f
′
n−1(y−x)g(x)dx in this range. Thus f

′
n+1(y) = −c+L

′
(y) <

L
′
(y) + α

∫∞
0 f

′
n−1(y − x)g(x)dx = f

′
n(y) when y > s∗

n . Hence, property (d) is
established for fn+1(y).

Given our assumptions, L(y) is a convex function of y. Observe also that
f

′
n(y) is a continuous function of y, since Fn−1(s∗

n ) = 0. Furthermore, f
′′
n+1(y)

exists everywhere except possibly at y = s∗
n+1 (at y = s∗

n+1 both right and left

hand derivatives exist), and f
′′
n+1(y) ≥ 0 because f

′′
n (y) ≥ 0. Hence fn+1(y) is

convex and possesses the properties expressed in (c).
Thus we conclude the induction step. To complete the proof, we need to

verify properties (a) through (d) hold for recursions f2(y) and f1(y), where
f1(y) = L(y). The verification of these properties follows using the same method
of analysis we have just completed; we leave this as an exercise. ��

To this point, we have assumed that n is finite. As n → ∞, we conjecture that
there exists a finite s∗ such that

u∗(y) =
{

s∗ − y, y < s∗,
0, otherwise,

where s∗ is the unique solution of

F(s∗) = c + α

∫ ∞

0
f

′
(s∗ − x)g(x)dx = 0

and f
′
n(y) → f

′
(y) as n → ∞. It is easy to see that s∗ is the unique solution of

(1 − α)c + α

∫ ∞

0
L

′
(s∗ − x)g(x)dx = 0.

We will not prove this conjecture, however.
The induction proof we presented for the case where τ = 1 can easily be

extended to the general resupply lead time case where τ is an integral number of
periods. In this case, we have the following theorem.

Theorem 3. Given our cost model with lead time τ , the optimal policy is

u∗ =
{

s∗ − (y +∑τ−1
j=1 q j ), y +∑τ−1

j=1 q j < s∗,
0, otherwise,

where s∗ solves

(1 − α)c + ατ

∫ ∞

0
L

′
τ−1(s

∗ − x)g(x)dx = 0,

and L j (y) = ∫∞
0 L j−1(y − x)g(x)dx, L0(y) = L(y).
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2.2 Optimality of Order-Up-To Policies in Serial Systems

In the previous section, we demonstrated how dynamic programming can be used
to prove the optimality of base-stock policies in single stage (single installation)
systems. In their seminal paper, Clark and Scarf [49] proved the optimality of
base-stock policies for uncapacitated, periodic review, finite horizon, serial sys-
tems using a dynamic programming approach to obtain their results. The system
they studied consists of M physical installations, in which installation j procures
inventory from j + 1, j = 1, 2, . . . , M . Installation M + 1 is assumed to have
an infinite supply of inventory. In any period, the amount procured by installation
j is limited to the inventory on hand at j + 1. External demand occurs only at
installation 1. The lead time between installations j + 1 and j is assumed to be
a known and constant number of periods. The cost model consists of the follow-
ing components: (i) linear purchasing and shipping costs for moving inventory
between successive stages, (ii) linear holding and shortage costs at installation
1, (iii) for the higher numbered installations, holding costs charged proportional
to the stock in each echelon, that is, echelon stock. Echelon stock at installation
j (2 ≤ j ≤ M) is defined to be inventory on hand at installation j plus inven-
tory in transit to installation j plus echelon stock for installation j − 1; echelon
stock at installation 1 is defined as the inventory position at installation 1. Thus
echelon j stock is the total inventory on hand plus on-order at installation j plus
all inventory downstream of j less any backorders at installation 1. We note that
linear purchase and shipping costs can be assumed to be zero under very general
assumptions, as shown by Janakiraman and Muckstadt [139]. A brief discussion
of Clark and Scarf’s proof follows.

The state variable in Clark and Scarf’s dynamic programming formulation for
determining the optimal inventory policy for this system consists of a vector that
specifies the amount of inventory in each stage of the system (including each stage
of the pipeline between two installations). They prove that the cost of operating
this system can be decomposed into a sum of costs, one corresponding to each
echelon. The cost at echelon j , j > 1, is a function of the echelon inventory posi-
tion at that installation. An additional term is included that measures the expected
cost impact on installation j −1 of not meeting the target inventory level. Further-
more, they showed that the cost function associated with each echelon has exactly
the same form as that of a single stage system. Consequently, the optimal policy
for each installation is an echelon base-stock policy. That is, there is a target level
s j corresponding to every installation j . An order is placed in every period to
raise the echelon j stock to its inventory position, s j , which is the echelon j stock
plus the inventory in transit to installation j , if possible. If the inventory on hand
at installation j + 1 is insufficient, installation j orders all the on-hand inventory
at installation j + 1.

This dynamic programming approach has been successfully used by several
authors in the last forty five years to establish the forms of the optimal policies for
several inventory systems. Another proof approach was introduced by Federgruen
and Zipkin [84] to prove the optimality of echelon base-stock policies in the in-
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finite horizon case when the performance measure is the infinite horizon average
cost per period. Subsequently, the same method was used by Chen and Song [44]
to prove the optimality of state dependent base-stock policies for these serial sys-
tems when demand is Markov modulated. The arguments are based on a lower
bound on cost, an interesting approach which is powerful and worth learning.

A third approach for establishing the forms of optimal policies in inventory
systems is the “single-item single-customer” approach introduced recently by
Muharremoglu and Tsitsiklis [184]. They proved that state dependent echelon
base-stock policies are optimal for uncapacitated multi-echelon serial systems
for both the finite and infinite horizon models when lead times and demands are
Markov modulated. We will now present and discuss their approach. For ease of
exposition, we will first restrict ourselves to analyzing a single stage system with
deterministic lead times and a finite planning horizon. We will then discuss how
to extend the ideas when the lead times are random and there are multiple stages.

2.2.1 The Single-Unit Single-Customer Approach: Single Location Case

As in Section 1, we will analyze a single location inventory system in which we
manage a single item. We assume that time is divided into periods of equal length.
We also assume the system operates as follows. At the beginning of each period,
an order is placed on an outside supplier and arrives exactly m − 1 periods in the
future. Subsequent to the time the order is placed, the order due in that period
is received from the supplier; customer demands are then observed. Demand in
each period is governed by an exogenous, stationary Markov Chain. All excess
demand is backordered. At the end of each period, both holding and backorder
costs are incurred.

2.2.1.1 Notation and Definitions

We begin our analysis by presenting the notation and key definitions. As stated,
we initially assume the planning horizon of the system consists of N periods,
numbered n = 1, 2, . . . , N , in that order. We assume that there is an exogenous
finite-state, ergodic Markov Chain sn that governs the demand process, where sn

is observed at the beginning of each period n. The transition probabilities for the
Markov Chain sn are assumed to be known. Furthermore, given sn , the probability
distribution of Dn , the demand in period n, is known.

We consider each unit of demand as an individual customer. Suppose at the be-
ginning of period 1 there are v0 customers waiting to have their demand satisfied.
We index these customers 1, 2, . . . , v0 in any order. All subsequent customers are
indexed v0 + 1, v0 + 2, . . . in the order of the period of their arrivals, arbitrarily
breaking ties among customers that arrive in the same period.

Next, we define the concept of the distance of a customer at the beginning of
any period. See Figure 2.1. Every customer who has been served is at distance
0; every customer who has arrived, placed an actual order, but who has not yet
received inventory, is at distance 1; all customers arriving in subsequent periods
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are said to be at distances 2, 3, . . . corresponding to the sequence in which they
will arrive. Distances are assigned to customers that arrive in the same period in
the same order as their indices. This ensures that customers with higher indices
are always at “higher” distances.

Next, we define the concept of a location for a unit. Again see Figure 2.1.
There are m + 2 possible locations at which a unit can exist. If the unit has been
used to satisfy a customer’s order, the location of this unit is 0. If it is part of the
inventory on hand, it is in location 1. If the unit has not been ordered from the
supplier, it is in location m + 1.

At the beginning of period 1, we assign an index to all units in a serial manner,
starting with units at location 1, then location 2, . . . , location m+1, and arbitrarily
assign an order to units present at the same location. We assume a countably
infinite number of units is available at the supplier, that is, location m + 1, at all
times.

We will use indices j and k to denote the indices of units as well as customers.
We define y jn to be the distance of customer j at the beginning of period n and
z jn to be the location of unit j at the beginning of period n.

Fig. 2.1. Locations of Units and Distances of Customers

We define the state of the system at the beginning of period n to be the vector
xn = (sn, (z1n, y1n), (z2n, y2n), . . . ).

Next, we explain the sequence of events in period n in detail.

1. sn is observed. (z jn, y jn) is known for all j , j = 0, 1, 2, . . . .
2. An order is placed, which we denote by qn , where qn is a nonnegative integer.

All units in locations j = 2, 3, . . . , m move to the next location prior to
placing the order, that is, location j − 1. The qn units move from location
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m + 1 to location m. If it has been ordered from the supplier � periods ago (1
≤ � < m), it is in location m − �.

3. Demand Dn is realized and these new customers arrive and are at distance 1.
That is, customers at distances 2, 3, . . . , 2 + Dn − 1 all arrive and are, by
definition, now at distance 1. All customers at distances 2 + Dn , 3 + Dn , . . .

at the beginning of the period move Dn steps towards distance 1.
4. Units on-hand and waiting customers are matched to the extent possible. That

is, as many waiting customers are satisfied as possible and as many units on
hand are consumed as possible.

5. h dollars are charged per unit of inventory remaining on hand (at location
1) and b dollars are charged per waiting customer (at distance 1). Clearly,
only one of these costs will be incurred in any period. We assume b > h.
This ensures that if the inventory position is negative in some period, then the
optimal policy will be to increase the inventory position to some nonnegative
level.

The performance measure under consideration in our initial discussion is the
expected sum (discounted or undiscounted) of costs over the N period planning
horizon.

Next, we define a policy. Let u jn ∈ {Release, Hold} denote the decision made
in period n for unit j . By Release, we mean that an order is placed for a unit and
that it enters the supplier’s production/distribution system. However, note that the
only units over which we have control are the units at the supplier, that is, at
location m + 1. The movement of all other units is governed by the lead time
and demand processes as defined previously. A policy is a function that maps
every possible realization of xn to a vector of Release/Hold actions for each unit
at location m + 1.

Observe, however, that when a decision is made to release q units from lo-
cation m + 1, it does not matter which q units are released. Consequently, we
can consider a class of policies that always releases the units with the smallest
indices from m + 1. We call such a policy a monotone policy. A class of policies
is said to be optimal if it contains at least one optimal policy. The class of mono-
tone policies is clearly optimal. A monotone policy releases unit j before or at
the same time as unit j + 1 but never in any period following the one in which
unit j + 1 is released. Similarly, we define a monotone state to be one where
lower indexed units are in the same or lower indexed locations. That is, zkn ≤ z jn

if k ≤ j . Since lead times are the same for all units and we started period 1 in a
monotone state, the system is always in a monotone state when a monotone policy
is followed. Furthermore, by definition, the customers also arrive in the order of
their indices. We define a policy as a committed policy if it ensures that the only
customer that the j th unit can satisfy is customer j’s demand and that the only
unit that customer j can receive is the j th unit. Assume that the units at location 1
that are picked to satisfy customers at distance 1, as well as the customers at dis-
tance 1 picked to consume units at location 1, are those with the lowest indices.
Hence, every monotone policy is also a committed policy. Consequently, the class
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of committed policies is also optimal. Since this is an important fact, we state this
as a lemma.

Lemma 1. The class of monotone policies is optimal. Furthermore, every mono-
tone policy is a committed policy and hence the class of committed policies is also
optimal.

In the next section, we develop a proof of the optimality of base-stock poli-
cies for periodic review, single stage uncapacitated systems of the type we have
described.

2.2.1.2 Optimality of Base-stock Policies

In this section, we first show that the system can be decomposed into a collection
of countably infinite subsystems, each having a single unit and a single customer.
Subsequently, we prove that each subsystem can be managed optimally by using
a policy we call a “critical distance” policy. We prove that when the same “critical
distance” policy is used to manage each subsystem, the system follows a base-
stock policy.

2.2.1.2.1 Decomposition of the System into Subsystems

Let us first outline the proof technique. First, we observe that the cost of the sys-
tem is the sum of the costs incurred for each unit-customer pair. Second, we show
that each of these pairs can be controlled independently and optimally and that the
resulting policy is optimal for the entire system. Third, we examine the individual
unit-customer problem and show that the optimal policy is a “critical distance”
policy: Release a unit if and only if the corresponding customer is closer than a
critical distance. Last, we observe that operating each unit-customer pair using
a critical distance policy produces an echelon base-stock policy in the original
system.

Let us now precisely define the concepts of the system, the subsystems, and
the sets of constraints that govern these systems and subsystems.

Definition 1. Let S refer to the entire system with all the units and all the cus-
tomers. Subsystem w, represented by Sw, 1 ≤ w, refers to the unit-customer pair
with index w.

Definition 2. Constraints on Monotone and Committed Policies in S:
Monotonicity: Unit j ( j = 1, 2, . . . ) can not be released before unit j − 1.
Commitment: Unit j ( j = 1, 2, . . . ) serves customer j .

Definition 3. Constraint on Committed Policies in Sw:
Commitment: Unit w serves customer w.
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We will now show that the optimal cost for the system S is equal to the sum of
the optimal costs for the subsystems Sw. We will prove this fact by demonstrating
that every monotone and committed policy for system S corresponds to a set of
monotone and committed policies for the subsystems, Sw, and that any set of
monotone and committed policies for the subsystems yields a feasible policy for
the system S. We will also show that when the individual subsystems are managed
“independently and optimally”, the resulting policy for the system S is optimal.

From now on, we will use S̃ to denote the group of all subsystems, that is, S̃
= (S1,S2, . . . ). When only monotone and committed policies are considered, the
constraints in definition 2 apply to S while the constraint in definition 3 applies
to S̃. When we say “the (optimal) expected cost for S̃”, we mean the sum of the
(optimal) expected subsystem costs.

We have assumed so far that xn is the state information available to us while
managing the entire system S or any subsystem Sw. However, observe that the
subsystems are “operationally independent” in the sense that each subsystem can
be managed independently without being affected by the policies used to manage
the other subsystems. Consequently, we can find an optimal policy for managing
Sw that uses only those parts of the state vector xn that pertain to unit w and
customer w. We define xw

n =de f (sn, zwn, ywn). Thus, xw
n is a sufficient state de-

scriptor for Sw. This means that an optimal policy for S̃ can be found by managing
the subsystems independently. A subtle point to be noted here is that the subsys-
tems, though operationally independent, are stochastically dependent through the
demand process.

We are now ready to state and prove the results relating the optimal costs and
policies for the system S and the subsystems Sw, w = 1, 2, . . . .

Theorem 4. For any starting state x1 in period 1, the optimal expected discounted
(undiscounted) cost in periods 1, 2, . . . , N for system S equals the optimal ex-
pected discounted (undiscounted) cost in periods 1, 2, . . . , N for the group of
subsystems S̃. Furthermore, when each subsystem w is managed independently
and optimally using the state vector xw

n in every period n, the resulting policy is
optimal for the entire system, S.

Proof. First, observe that the cost incurred by S is the sum of the costs incurred by
every unit and every customer, since the holding and backorder costs are linear.

Second, observe that every monotone and committed policy for S produces a
set of committed policies, one for each subsystem Sw. Consequently, the optimal
expected cost for S̃ is a lower bound on the optimal expected cost for S over any
number of periods, since a monotone and committed policy is optimal for S.

Third, observe that operating each subsystem independently using any com-
mitted policy is a feasible policy for S. Consequently, the optimal expected cost
for S is a lower bound on the optimal expected cost for S̃.

Combining the two lower-bound arguments above proves that the optimal ex-
pected costs for S and S̃ are equal. The earlier discussion about the “operational
independence” of the subsystems and this equality result show that when each
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subsystem w is managed independently and optimally using the state vector xw
n ,

the resulting policy for the entire system, S, is optimal. ��
Next, we show the existence of an optimal policy with a very special structure

for every subsystem.

2.2.1.2.2 Optimal Policy Structure for a Subsystem

Before examining an individual subsystem, we first observe that all subsystems
are identical in the sense that (i) they have identical cost structures and (ii) given a
state (xw

n ) and a fixed operating policy for a subsystem, the stochastic evolution of
the subsystem is independent of the index w. Consequently, the optimal policies
are identical across all subsystems.

We define R∗
n(sn, y) ⊆ {Release, Hold} to be the set of optimal decisions for

subsystem w at time n if the state of the exogenous Markov Chain is sn and if ywn

is y and if zwn is m + 1.
Next, we show that there is a “critical distance” policy that is optimal for a

subsystem. We need the following Lemma to prove this fact. The lemma states
that if it is uniquely optimal for subsystem w to release unit w (if it is at location
m + 1) in period n when the system is in the Markovian-state sn and customer w

is at a distance y + 1, then it would be optimal to release it if the customer were
any closer and the unit were at location m + 1.

Lemma 2. R∗
n(sn, y + 1) = {Release} implies that R∗

n(sn, y) ⊇ {Release}.
Proof. The proof is by contradiction. Assume the statement is not true. That is,
there exists n, sn and y such that R∗

n(sn, y + 1) = {Release} and R∗
n(sn, y) =

{Hold}. Another way of saying this is as follows: it is suboptimal for a subsystem
to hold unit w if customer w is at a distance y + 1 while it is suboptimal for a
subsystem to release unit w if customer w were at a distance y.

Consider some monotone and committed policy for S. Assume the exogenous
Markov Chain is at state sn in period n and that we can find subsystems w and
w + 1 such that ywn is y and y(w+1)n is y + 1. Monotonicity implies that this
policy would choose one of the following three pairs of actions for units w and
w + 1: (a) release both w and w + 1, (b) hold both w and w + 1 and (c) release w

and hold w + 1.
Cases (a) and (c) are suboptimal for subsystem w, while cases (b) and (c)

are suboptimal for subsystem w + 1 due to our initial assumption. This implies
that any monotone and committed policy for S is suboptimal for at least one of
subsystems w and w + 1. So, any monotone and committed policy for S has a
higher expected cost than the optimal cost for S̃ from period n onwards, which is
the same as the optimal cost for S. This implies that no monotone and committed
policy can be optimal for S, which contradicts our earlier assertion about the
optimality of some such policy. Therefore, our assumption about R∗

n(sn, y) and
R∗

n(sn, y + 1) is invalid. ��
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We use this Lemma to develop the notion of a “critical distance” policy. Let
us define

y∗(n, sn)
def= max{ y : R∗

n(sn, y) ⊇ {Release} } .

y∗(n, sn) is defined in such a way that it is optimal to release unit w if and
only if customer w is at a distance of y∗(n, sn) or closer. This distance y∗(n, sn)

is the “critical distance” in period n and Markovian state sn for every subsystem.
Consider the policy

Rn(sn, y) = {Release} if and only if y ≤ y∗(n, sn) .

Policy Rn is an optimal policy for every subsystem. The next observation we make
is that when policy Rn is used in period n for every subsystem, the resulting policy
for the original system S is an order-up-to policy. This can be shown either using
an algebraic proof or using a more intuitive argument, which we now provide.

Theorem 5. The optimal policy for S is to release as many units as necessary to
raise the inventory position to y∗(n, sn)−1 in period n when in Markovian state sn

and the planning horizon consists of N periods. That is, a state dependent order-
up-to or base-stock policy is optimal for the entire system when the planning
horizon is finite.

Proof. We know that policy Rn is optimal for every subsystem. It can be seen that
if R1, . . . , Rn−1 are the policies used on each of the subsystems in periods 1, . . . ,
n − 1, we will start period n in a state where the units that are in location m + 1
bear consecutive labels. Consequently, the corresponding customers who have not
arrived are in consecutive distances. Among these customers, those in locations
2, 3, . . . , y∗(n, sn) are all within the critical distance y∗(n, sn). All backordered
customers are also within the critical distance. The policy Rn dictated that we
should release the waiting unit in just the right number of subsystems in period n
so that all waiting customers and all future customers within the critical distance
can be satisfied with the units on-hand or on-order. That is equivalent to saying
we would raise the inventory position to y∗(n, sn) − 1. ��

This concludes the proof of the finite horizon, optimality result for uncapac-
itated single stage systems with constant lead times. Muharremoglu and Tsitsik-
lis [184] present the analysis of the infinite horizon problem. In the next two
sections, we will discuss how this approach can be extended to more general sit-
uations.

2.2.2 Stochastic Lead Times

So far, we have assumed that the lead time is exactly m − 1 periods. Let us now
relax this assumption by allowing stochastic lead times subject to the restriction
that orders can not cross, that is, the sequence in which orders are received from



30 2 Background: Analysis of (s–1, s) and Order-Up-To Policies

the supplier corresponds to the sequence in which orders were placed on the sup-
plier. We permit the lead time distribution to be governed by the Markov Chain
sn . This lead time model is described below.

The lead time process evolves as follows. There is a random variable ρn ,
whose distribution is determined completely by sn , that specifies the least “age”
of orders that will be delivered in period n to location 1. This means all outstand-
ing orders placed in period n − ρn or earlier are delivered in period n. We assume
that the sample space of the random variable ρn is {0, 1, 2, . . . , m − 1} and con-
sequently, the maximum lead time of an order is m − 1 periods.

The sequence of events in a period as described in Section 2.2.1.1 is now
modified slightly. Due to the possibility of more than one period’s orders arriving
at location 1 in a period, we include the following event just prior to observing
the demand in period n.

• ρn is realized; if ρn ≤ m − 2, all units in locations 2 through m − ρn arrive
from the supplier and are at location 1. If ρn = m − 1, then no units arrive at
location 1.

It is easy to verify that all the analysis and results that we presented for the
“deterministic lead time model” hold for the stochastic lead time model described
above. Therefore, state-dependent echelon base-stock policies are optimal for the
single stage system even when lead times are stochastic and noncrossing.

2.2.3 The Serial Systems Case

The next extension to our analysis is the case of serial systems. In the single ech-
elon case, the only location from which a unit could be released using a control
policy was location m + 1. In the multiple echelon case, there are more “physi-
cal locations” from which a unit can be released using the control policy. These
physical locations correspond to stages in the production/distribution system. In
addition, there are as many “artificial locations” between successive stages. The
number of these artificial locations corresponds to the maximum possible lead
time between these stages. We still assume that orders do not cross. The cost
model is the same as discussed in the beginning of Section 2.2. The optimality
of state dependent echelon base-stock policies can be verified by repeating the
following arguments, which we used in the analysis of the single stage system.

First, the cost for system S is still the sum of the costs for the subsystems
because of the linear cost structure. Second, monotone and committed policies
are still optimal. Third, each subsystem can be operated independently and opti-
mally, which results in an optimal policy for system S. Fourth, the optimal policy
for a subsystem should be such that if it is optimal to release a unit from a stage
or physical location when the corresponding customer is at a distance y, then it
would also be optimal to release the unit from that stage if the customer were
any closer. Consequently, an appropriately defined critical distance policy is op-
timal for every subsystem. Now there is a critical distance corresponding to each
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stage. When this policy is used for every subsystem, the resulting policy is a state-
dependent echelon base-stock policy for the system S. The proofs of all these re-
sults are identical to the proofs for the corresponding results for the single stage
system. Consequently, it is clear that state-dependent echelon base-stock policies
are optimal for serial systems with Markov modulated demands and noncrossing
lead times.

In the next section, we discuss how the single-unit, single-customer approach
can be used for continuous review systems.

2.2.4 Continuous Review Systems

We now examine single stage, continuous review systems and present some mod-
elling assumptions and arguments to extend the optimality results to these sys-
tems. Let us assume the planning horizon is infinite and the goal is to find the
policy that minimizes the average cost per unit time. The following discussion is
meant to be intuitive rather than technically rigorous.

The following are the main differences between continuous-time and periodic
review systems. First, the echelon holding costs at all echelons as well as the
backorder costs at stage 1 are now charged continuously. That is, the holding and
backorder cost parameters have the units of dollars/unit/year. Second, customers
and orders can arrive at any time and orders can be placed at any time, not just at
pre-specified points in time.

The concept of customer distance stays the same while the location of a unit
is now a continuously changing process. In fact, if L is the maximum lead time,
the location of unit j at time t is defined as (i) L + 1 if it is at the supplier, (ii)
(1 + L − (t − t j )) if it was released at time t j but has not arrived by time t , (iii) 0
if it has satisfied the demand of a customer and (iv) 1 if it is part of inventory on
hand.

This section has several purposes. The first purpose is to argue intuitively that
base-stock policies are optimal when the demands are modelled as a compound
Poisson process. More will be said about these processes in the next chapter. The
next purpose is to extend the argument to the more general case of compound
renewal demand processes. We conclude the section with a procedure to compute
the order-up-to level for the special case of Poisson demand processes.

2.2.4.1 The Optimality Proof for Compound Poisson Demand Processes

Let us now examine the case where demands are modelled as a compound Pois-
son process; i.e., the size of a customer order is a random variable with an arbi-
trary distribution; the arrival of customers follows a stationary Poisson process.
Lead times are assumed to be constant. It is intuitively clear that the following
propositions that we proved in the periodic review case hold for the continuous
review case as well, where the objective is to minimize the average cost per unit
time. First, monotone and committed policies are optimal. Second, managing each
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unit-customer pair independently and optimally produces an optimal policy for
the entire system.

Consider any unit-customer pair j at any time t such that the unit is at the sup-
plier. Intuitively, the only quantity that the optimal Release/Hold decision should
depend on is the amount of time left for customer j to arrive. This “time to ar-
rive” is a random variable, the distribution of which can be completely determined
using y jt , the distance of customer j at time t because of the memoryless prop-
erty of the Poisson process. Furthermore, the class of policies that is restricted to
Release item j only at customer arrival epochs is optimal because of the memo-
ryless property.

The system is now identical to a periodic review system except that the length
of a period is now the time between the arrival of two consecutive customer or-
ders. Recall, that the proof that a critical distance policy is optimal for a single-unit
single-customer subsystem, in the periodic review case, does not use the fact that
all periods are of equal length. Consequently, this proof holds for this continu-
ous review system as well. Similarly, the proof of the claim that using a critical
distance policy for every subsystem produces a base-stock policy for the origi-
nal system does not depend on the length of a period. Therefore, order-up-to or
base-stock policies are optimal for the continuous review system with compound
Poisson demands.

2.2.4.2 The Optimality Proof for Compound Renewal Demand Processes

Next, suppose that the time between the receipt of two consecutive customer ar-
rivals is a random variable. These inter-arrival times are independent and identi-
cally distributed; that is, the customer arrival process is a renewal process. The
number of units ordered by each customer is described by a discrete random vari-
able whose distribution function is arbitrary. The compound Poisson model is a
special case of this model. Lead times are assumed to be constant.

In the compound Poisson case, it was sufficient to restrict Release/Hold de-
cisions to customer arrival epochs because of the memoryless property of the
Poisson process. However, in this more general renewal process environment, it
might be optimal to release a unit from the supplier at a point in time between two
arrivals since the distribution of the time until the next arrival changes through
time continuously.

The arguments about a critical distance policy being optimal for the single-
unit single-customer problem and about using an optimal policy for each pair to
produce an optimal policy for the entire system are still valid. The only difference
between the compound Poisson case and the more general compound renewal
case is that the critical distance is now a function of the time since the time of
the arrival of the previous customer. Consequently, state dependent base-stock
policies are optimal for these systems, where the state includes the time since the
previous arrival.

In fact, the interarrival times, the demand size at each arrival epoch, and the
lead times could be dependent on a continuous-time Markov Chain {st }. The pre-
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ceding discussion holds for these generalities as well. Note, however, that our dis-
cussion pertains only to the proof of the optimality of state dependent base-stock
policies and not the computation of the optimal base-stock level, which could
be a computational challenge when a Markov modulated demand environment is
considered.

2.2.4.3 A Computational Procedure for Minimizing the Expected Steady
State Cost when Demands are Poisson

We now consider a single stage system that is reviewed continuously. The perfor-
mance measure of interest is the expected steady state cost per unit time. The de-
mand process is assumed to be a Poisson process with arrival rate λ. We will first
present a set of conjectures for this system, without presenting rigorous proofs.
Finally, we use these conjectures to develop a computational procedure to deter-
mine the optimal base-stock level for this system.

First, we present a conjecture about the expected long run inflow of units.

Conjecture 1. Let I N (t) be the expected number of units released into the system
by time t . Then, limt→∞ [I N (t)/t] = λ. That is, the expected long run rate of
inflow of units equals the expected long run demand rate, λ.

Next, we present a conjecture that relates the expected steady state cost per
unit time to the expected total cost incurred by every unit-customer pair.

Conjecture 2. Let C∗ be the optimal expected steady state cost per unit time for
S. Let µ∗ be the expected cost incurred by any unit-customer pair when it is man-
aged by the policy that minimizes the total expected cost incurred by this pair
during the time interval [0, ∞). Then, C∗ = λ · µ∗. Furthermore, each subsystem
(unit-customer pair) can be managed optimally with the expected total cost per-
formance measure and the resulting policy is optimal for S with the steady state
expected cost per unit time performance measure.

This conjecture implies that it is sufficient to find the policy that minimizes
the total expected cost associated with each unit-customer subsystem.

Next, we present a computational procedure to determine such a policy for
every subsystem. First, we develop some necessary notation.

Let µ(y) be the expected cost associated with a subsystem during the time
interval (t, ∞) if the distance of the customer at time t is y and the unit is just
released. Let t +t (y) be the arrival time of this customer. That is, t (y) is the length
of time for y − 1 arrivals to take place. Given that the arrival process is Poisson,
t (y) is gamma distributed with parameters (y − 1, 1/λ). Therefore, µ(y) can be
calculated as

µ(y) = Et (y)

(
h · (t (y) − L)+ + b · (L − t (y))+

)
.

Since monotone policies are optimal, it has to be true that if it is optimal to release
a unit when the corresponding customer is at a distance y, then it would be optimal
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to release the unit if the customer were at distance y − 1. In other words, µ(y) is
such that it first decreases in y and then increases in y with the minimum occurring
at the smallest value of y such that µ(y + 1) ≥ µ(y). This value of y, which we
denote by y∗, is that distance that triggers a release.

The optimal policy for the original system is therefore an order-up-to (y∗ −1)

policy.

2.3 Problem Set, Chapter 2

2.1. In Section 2.1, we proved the optimality of an order-up-to policy for a par-
ticular single location environment (Theorem 2). The proof was by induction. We
assumed that properties (a) through (d) held for recursions f2(y) and f1(y) as de-
fined in that section. Complete the proof of this theorem by verifying properties
(a) through (d) do hold when there are but two periods in the planning horizon.

2.1 Suppose there are three periods in the planning horizon and demand in each
period has an exponential distribution with a mean of 5 units. Suppose the lead
time is one period in length and there are currently 5 units on order. The unit cost
is $20, the holding cost is $1 per unit per period, the backorder cost is $10 per
unit per period. The discount factor, α, is equal to 1. Find the optimal policy for
the planning horizon.

2.2. Prove Theorem 3.

2.3. In Section 2.2.1, we proved the optimality of order-up-to policies for a single
location system by employing a “single-unit, single-customer” approach. We as-
sumed that an exogenous finite state, ergodic Markov Chain governs the demand
process. Suppose this chain is trivial, that is, it has only a single state s. Deter-
mine the states that the system attains in the first five periods given the following
information. The maximum lead time is 4 periods. At the beginning of period
1, there are 3 backorders and there is no inventory in the system. Furthermore,
q1 = 10, q2 = 7, q3 = 12, q4 = 3, q5 = 8; ρ1 = 0, ρ2 = 2, ρ3 = 2, ρ4 =
1, ρ5 = 0; d1 = 5, d2 = 8, d3 = 14, d4 = 5, d5 = 7.

2.4. Suppose the operating environment described in Section 2.1 and Section 2.2
of this chapter is modified slightly. Suppose all inventory left over at the end
of the planning horizon can be returned at the purchase cost c, and suppose all
backorders that exist at the end of the horizon can be cleared by purchasing an
equal amount of inventory. This purchased quantity arrives instantaneously and
at a cost of c per unit. In this modified environment, show that the costs (c, h, b)

can be transformed into a new set of costs (c̃, h̃, b̃) where c̃ is zero. Furthermore,
show that a myopic policy is optimal for the finite horizon and infinite horizon
cases where the cost model is either to minimize the expected discounted cost or
the average cost per period.
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2.5. Assume the system described in Section 2.1 and Section 2.2 is altered as
follows: demand in period n + τ is observed in period n. That is, advance demand
information is available for τ periods into the future. How do the results change
when (a) the order lead time is longer than τ , and (b) when the lead time is shorter
than τ?

2.6. Consider a single stage inventory system with the following characteristics:
(a) it is reviewed continuously, (b) ordering costs are linear, that is, there is no
fixed ordering cost, (c) there are linear holding and backorder costs, (d) the de-
mand process is Poisson, and (e) the order lead time is τ . For this system, con-
jecture the structure of the optimal ordering policy. Outline a proof based on the
single-unit decomposition approach discussed in Section 2.2. Can you extend this
to a stationary demand process with an arbitrary interarrival distribution and an
arbitrary distribution of order sizes?



3

Background Concepts: An Introduction to the
(s–1, s) Policy under Poisson and Compound Poisson
Demand

We will now discuss the implications of following a (s–1,s) inventory policy when
inventories are reviewed continuously in time. Recall that the stock level, s, mea-
sures the amount of inventory on-hand plus on-order minus backorders, that is,
the stock level represents the inventory position for a particular location. In cer-
tain situations, we will refer to the on-order quantity as the “in resupply” quantity.
This “in resupply” terminology is often used in military and aviation applications
in which items fail and are repaired or are procured from an external source. When
a (s–1,s) policy is followed, an order is placed immediately whenever a demand
occurs for one or more units of an item. The order quantity matches exactly the
size of the demand. Hence, the inventory position is constant in this case.

Our specific objective in this chapter is to show how to compute the station-
ary probability distribution of the quantity of units in resupply. The amount in
resupply at a random point in time is a key random variable in the study of the
behavior of systems managed using a (s–1,s) policy. Once its stationary distribu-
tion is known, we can easily determine the stationary distribution for on-hand and
backordered inventory. We will focus primarily on the case where backorders are
allowed, since the analysis is simpler. As a special case, however, we will also
analyze a situation where excess demand over supply is lost.

We first show how to compute the distribution for the quantity in resupply in
the backorder case when the replenishment lead times or equivalently the resupply
times are independent and identically distributed. We do this by first assuming the
demand process is a Poisson process, then generalize this result to the case where
the demand process is a compound Poisson process.

After we show how to calculate the stationary distributions, we show how
to determine key statistical measures of supply system performance. Lastly, we
present optimization models and algorithms for computing stock levels when
items are managed using an (s–1,s) policy.
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3.1 Steady State Distribution of the Number of Units in
Resupply

The construction of the steady state distribution of the number of units in resupply
in either the Poisson or compound Poisson demand cases follows from the prop-
erties of the underlying Poisson processes generating the orders. Let us begin by
reviewing some of these properties.

Let λ represent the demand rate of the underlying Poisson customer order
process. Now, first suppose exactly one order occurs during the time interval [0, t].
Given that this order has occurred, let us establish the distribution of the time at
which the order was placed. Intuitively, this distribution should be uniform since
a Poisson process has stationary and independent increments. Let T be the time
at which this event occurs, and let N (t) represent the number of customer orders
received in [0, t]. Then, for s < t ,

P[T < s|N (t) = 1] = P[T < s; N (t) = 1]
P[N (t) = 1]

= P[N (s) = 1; N (t − s) = 0]
P[N (t) = 1]

= P[N (s) = 1] · P[N (t − s) = 0]
P[N (t) = 1]

= λs e−λs e−λ(t−s)

λt e−λt

= s

t
.

Hence the time at which the customer arrival occurs is uniformly distributed over
the interval [0, t].

This result can be generalized as follows. Suppose X1, . . . , Xn are n in-
dependent and identically distributed random variables. The random variables
X(1), . . . , X(n) are order statistics corresponding to X1, . . . , Xn if X(k) corre-
sponds to the kth smallest value among the random variables, X1, . . . , Xn . Let
f (xi ) represent the common density function for the Xi . Then the joint density
function for the X(i ) is

fX(1),...,X(n)
(x1, . . . , xn) = n!�n

i=1 f (xi ), x1 < · · · < xn . (3.1)

The term n! appears because there are that many permutations of X1, . . . , Xn that
lead to the same order statistic.

Now suppose that N (t) = n and suppose X1, . . . , Xn are the arrival times
of the 1st, 2nd, . . . , nth customer orders, respectively. Then X1, . . . , Xn have
the same distribution as do the order statistics corresponding to n independent
random variables that have uniform distributions over the interval [0, t]. We can
prove this fact in the following manner.

Suppose we have times t1, . . . , tn , where 0 < t1 < t2 < · · · < tn < t , and �i

small enough in value so that
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ti + �i < ti+1 and tn + �n < t. (3.2)

Then

P[t1 ≤ X1 ≤ t1 + �1, . . . , tn ≤ Xn ≤ tn + �n|N (t) = n]
= P[1 cust order is placed in [ti ,ti +�i ],i=1,...,n, and no cust orders are placed elsewhere in [0,t]]

P[N (t)=n]

= (λ�1 e−λ�1) . . . (λ�n)e−λ�n · (e−λ(t−∑n
i=1 �i ))

e−λt (λt)n
n!

= n!
tn

�n
i=1�i ,

and therefore
P[t1 ≤ X1 ≤ t1 + �1, . . . , tn ≤ Xn ≤ tn + �n|N (t) = n]

�1 . . . �n
= n!

tn
.

Taking the limit of the left hand side as �i → 0 for all i , we obtain

fX1,...,Xn (t1, . . . , tn) = n!
tn

, 0 < t1 < t2 < · · · < tn < t, (3.3)

which is the desired result. Thus, we may conclude that if n customer orders
are placed in [0, t], then the times at which these orders are placed, considered
as unordered times, are independent and uniformly distributed over the interval
[0, t].

3.1.1 Backorder Case

We are now ready to establish a remarkable result, which is a restatement of a
theorem attributed to Palm [191].

Theorem 6. Suppose s is the stock level for an item whose demands are gener-
ated by a Poisson process with rate λ. Suppose further that the resupply time
random variables have density functions g(τ ) with mean τ , and have distribution
functions G(τ ). Suppose further that the resupply times are independent and iden-
tically distributed from customer order to customer order. Then the steady state
probability that x units are in resupply is given by

e−λτ (λτ)x

x ! . (3.4)

Proof. Suppose N (t) = n customer orders have been placed in [0, t]. We know
that

P[N (t) = n] = e−λt (λt)n

n! . (3.5)

Since a (s–1,s) policy is employed to manage the inventory, each customer
order generates a corresponding request on the resupply system. Next, let

qt (x |n) = P[x units are in resupply at time t |N (t) = n]. (3.6)
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Consider any one of the n orders. As we just demonstrated, the time of its place-
ment is uniformly distributed over the interval [0, t]. Suppose this order was
placed at time sε[0, t]. Then the probability that the corresponding unit remains
in the resupply system at time t is 1 − G(t − s).

Let p be the common probability that any unit that arrives during [0, t] re-
mains in the resupply system at time t . Since 1 − G(t − s) measures the con-
ditional probability that the unit entering the resupply system at time s remains
unsatisfied at time t , the unconditional probability is given by

p =
∫ t

0
[1 − G(t − s)] ds

t

= 1

t

∫ t

0
[1 − G(t − s)]ds

= −1

t

∫ 0

t
[1 − G(u)]du

= 1

t

∫ t

0
[1 − G(u)]du.

Since each arriving order in [0, t] has a probability p that its corresponding
resupply request is not satisfied by time t , the probability that x of the n arriving
units in the resupply system remain in it at time t is given by

qt (x |n) =
(

n
x

)
px (1 − p)(n−x). (3.7)

Now the unconditional probability that x units remain in the resupply system
at time t is

qt (x) =
∞∑

n=x

qt (x |n) · P[N (t) = n]

=
∞∑

n=x

(
n
x

)
px (1 − p)n−x e−λt (λt)n

n!

=
∞∑

n=x

n!
(n − x)!x ! px (1 − p)n−x e−λt (λt)n

n!

= e−λt (pλt)x

x !
∞∑

n=0

[λt (1 − p)]n

n!

= e−λt eλt−λtp(pλt)x

x !
= e−λtp (λtp)x

x ! .

But p = 1
t

∫ t
0 [1 − G(u)]du, so
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qt (x) = e−λ
∫ t

0 [1−G(u)]du [λ ∫ t
0 [1 − G(u)]du]x

x ! . (3.8)

Let

q(x) = lim
t→∞ qt (x). (3.9)

Recall that

lim
t→∞

∫ t

0
[1 − G(u)]du =

∫ ∞

0
[1 − G(u)]du = τ , (3.10)

and therefore

q(x) = e−λτ (λτ)x

x ! . (3.11)

Hence, the probability that there are n units in the resupply system is Poisson
distributed with mean λτ ; i.e., we do not need to know the density function for
the resupply time, but only the mean of the resupply time, τ . ��

Let us now turn to the case where the demand process is a compound Poisson
process. In this case, customer orders arrive according to a Poisson process, but
the order quantity is not necessarily for one unit. We assume the order quanti-
ties for arriving customers are independent and identically distributed where the
probability that an order is of size j is represented by u j .

There are two important and commonly used choices for the values of u j . One
is where the compounding distribution is a geometric distribution, that is, where

u j = (1 − p)p j−1, j ≥ 1, 0 ≤ p ≤ 1; (3.12)

the other is where the compounding distribution is a logarithmic distribution with

u j = − (1 − p) j

j
(ln p)−1, 0 < p < 1, j ≥ 1. (3.13)

We will discuss the implications of using each of these two distributions. But
first let us consider some general properties of compound Poisson distributions.

Let {Xk} be the set of mutually independent and identically distributed random
variables corresponding to customer order sizes. Then

P[Xk = j] = u j for all k. (3.14)

Furthermore, the generating function for Xk for all k is given by

G(v) =
∑

j

v j u j . (3.15)

We are interested in the distribution of the total number of units ordered by N
customers, that is, the distribution of SN , where
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SN = X1 + · · · + X N . (3.16)

The random variable N is independent of the random variables Xk . Suppose
we let

gn = P[N = n] = e−λt (λt)n

n! . (3.17)

Let wm be the probability that the total number of units ordered by the random
number of customers is equal to m. Then

wm =
∞∑

n=0

P[N = n] · P[X1 + · · · + Xn = m]. (3.18)

For a given value of n, the distribution of X1 + · · · + Xn is simply the n-
fold convolution of the distribution u j with itself. The generating function for this
convolution is [G(v)]n . Also, the generating function of the sum SN is

H(v) =
∑

m

vmwm

=
∑

m

vm
∞∑

n=0

P[N = n] · P[SN = m|N = n]

=
∞∑

n=0

[∑
m

vm P[SN = m|N = n]
]

· gn

=
∞∑

n=0

[G(v)]n · gn .

Since gn = e−λt (λt)n

n! ,

H(v) = e−λt+λtG(v) (3.19)

because the generating function f (y) for a Poisson distributed random variable is

f (y) = e−λt+λt y . (3.20)

Let us now return to the two example cases for the compounding distribu-
tions. When the order size distribution is a geometric distribution, the generating
function is given by

G(v) =
∑
j≥1

v j (1 − p)p j−1

=
∑
j≥1

(1 − p)v(pv) j−1

= (1 − p)v
∑
j≥0

(pv) j

= (1 − p)v

1 − pv
, when pv < 1.
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Therefore,

H(v) = e
−λt+λt ·

(
(1−p)v
1−pv

)
.

Also note that

[G(v)]n =
[
(1 − p)v

1 − pv

]n

, (3.21)

which is the generating function of a negative binomially distributed random vari-
able that is translated to the right. This random variable has mean n

1−p and vari-

ance np
(1−p)2 .

When the compounding distribution is geometric, the resulting compound
Poisson distribution is called a stuttering Poisson distribution.

Now suppose the compounding distribution has a logarithmic distribution.
Then

G(v) =
∞∑

n=1

vnun

= −
∞∑

n=1

vn (1 − p)n

n ln p

= − 1

ln p

∞∑
n=1

[(1 − p)v]n

n

= 1

ln p
ln[1 − (1 − p)v], when |(1 − p)v| < 1.

Suppose we let λ = − ln p. Then

H(v) = e−λt+λtG(v)

= (eln p)t (e− ln p 1
ln p ln[1−(1−p)v]

)t

=
[

p

1 − (1 − p)v

]t

.

But this is the generating function for a negative binomial distribution. Hence,
when the compounding distribution is logarithmic, the compound Poisson dis-
tribution describing total demand is a negative binomial distribution when λ =
− ln p.

Let us now state the generalization of Palm’s theorem for the case of a com-
pound Poisson process for the backorder case.

Theorem 7. Suppose demands occur according to a compound Poisson process
where λ is the customer order arrival rate. Suppose also that the resupply times
are independent and identically distributed with density g(τ ) with mean τ . As-
sume when a customer order is received, the resupply time for all units in the
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order is the same and is drawn from the resupply time distribution. The steady
state probability of x units in resupply is given by the compound Poisson distribu-
tion with mean λτu, where u is the average customer order size.

Proof. The proof of this theorem is straightforward. Again let X represent the
random variable describing the number of units in resupply in steady state. From
Palm’s theorem we know that the probability distribution for the number of cus-
tomer orders in resupply has a Poisson distribution with parameter λτ . If u( j)

n
represents the probability that j customers have a total demand of n units, then

P[X = n] =
∞∑
j=1

u( j)
n e−λτ (λτ) j

j ! , n ≥ 1, and (3.22)

P[X = 0] = 1 −
∑
n≥1

P[X = n] = e−λτ . (3.23)

Hence X has a compound Poisson distribution with mean λτu. ��

3.1.2 Lost Sales Case

To this point we have assumed that all customer orders in excess of the supply
s are back-ordered. Let us now assume that this is not the case; that is, when a
customer order is placed and there is no on-hand inventory, then the order is lost.
We will prove a version of Palm’s theorem for a special case of the lost order
situation. A general and complicated proof of the lost order case when demand
is compound Poisson distributed is given by Feeney and Sherbrooke [89] and
discussed by Baganha [23]. We will focus on a relatively simple situation where
the order lead times are exponentially distributed. Specifically, the theorem that
we will prove is as follows.

Theorem 8. Suppose customer orders arrive according to a Poisson process with
arrival rate λ. Furthermore, suppose the stock level is s. Assume resupply times
for accepted customer orders are independent and identically distributed with
common density g(τ ) = β e−βτ , with mean τ = 1/β. Then the steady state
probability that x units are in resupply in the lost order case is given by

e− λ
β (λ/β)x/x !∑s

n=0 e−λ/β(λ/β)n/n! = e−λτ (λτ)x/x !∑s
n=0 e−λτ (λτ)n/n! .

Proof. When g(τ ) = β e−βτ , we can derive the desired result based on an argu-
ment used when analyzing queuing systems. Let Pj (t) represent the probability
that j units are in resupply at time t . Note that if j < 0 or j > s, then Pj (t) = 0.

Since the order arrival process is a Poisson process and the resupply time
distribution is exponential, for 0 ≤ j ≤ s,
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Pj (t + �t) = [1 − (λ + jβ)�t]Pj (t) + λ�t · Pj−1(t)

+ ( j + 1)β�t · Pj+1(t) + o(�t). (3.24)

Then

P
′
j (t) = lim

�t→0

Pj (t + �t) − Pj (t)

�t
= −(λ + jβ)Pj (t) + λPj−1(t) + ( j + 1)β Pj+1(t).

Passing to the limit (t → ∞), P
′
j (t) → 0.

Let π j represent the steady state probability that j units are in the resupply
system. Then

0 = −(λ + jβ)π j + λπ j−1 + ( j + 1)βπ j+1. (3.25)

For j = 0, we have

λπ0 = βπ1 or (3.26)

π1 = λ

β
π0. (3.27)

For j = 1, we have

λπ0 + 2βπ2 = (λ + β)π1 (3.28)

or

2βπ2 = (λ + β)
λ

β
π0 − λπ0 (3.29)

π2 = λ2

2β2
π0, (3.30)

and, as is easily shown, for 0 < j < s,

π j = 1

j !
(λ

β

) j
π0. (3.31)

For the case where j = s,

sβπs = λπs−1 (3.32)

or

πs = λ

sβ

[ 1

(s − 1)!
(λ

β

)s−1]
π0

= 1

s!
(λ

β

)s
π0.
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Since
∑s

j=0 π j = 1,

π0

s∑
j=0

1

j !
(λ

β

) j = 1 or (3.33)

π0 =
[ s∑

j=0

1

j !
(λ

β

) j]−1

= e−λ/β∑s
j=0 e−λ/β (λ/β) j

j !

= e−λτ∑s
j=0 e−λτ (λτ) j

j !
.

Thus,

π j = e−λτ (λτ) j/j !∑s
i=0 e−λτ (λτ)i/ i ! . (3.34)

��
In the general case, that is, where g(τ ) is an arbitrary density with mean value

τ , the steady state probability that x units are in the resupply system is also given
by the above expressions.

3.1.3 Another Backorder Case: Delayed Customer Due Dates

Let us conclude this section by returning to the backorder case. Suppose that
when a customer order is received the system does not have to ship the required
quantity immediately but rather must meet the demand within a time of length T
after the order is received. Of course, if T = 0, we are back to the original case we
examined. When T is positive or equal to 0 we have the following modification
of Palm’s theorem.

Theorem 9. Suppose the demand process is a compound Poisson process with
customer order rate λ. Suppose further that the customer order resupply times
are independent and identically distributed with density function g(τ ) and with
mean resupply time τ . In the backorder case, the steady state probability of n
units in resupply, each of which has been in the resupply system for at least T
time units, is given by

P[X = n] = p(n|λτα) =
n∑

y=0

(λτα)y e−λτα

y! u(y)
n ,

where
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α = 1

τ

∫ ∞

T
[1 − G(t)]dt, (3.35)

G(t) =
∫ t

0
g(τ )dτ, and (3.36)

u(y)
n is the probability that y customers generate a total demand of n units. As

we did earlier, we assume the entire customer order quantity shares a common
resupply time.

We will prove this theorem for the case where the demand process is a Poisson
process.

Proof. Suppose there are y customer orders in the resupply system at time t + T
that were also in the resupply system at time t . Then one of the following must
have occurred: there were y orders in resupply at time t , none of which completed
resupply by time t + T ; there were y + 1 orders in resupply at time t and one
completed the resupply process by time t + T , and so on. Hence

P
{

y orders are in resupply at time t + T

each of which was in the resupply system at time t
}

= e−λτ (λτ)y

y!
(

y
0

)
αy(1 − α)0 + e−λτ (λτ)y+1

(y + 1)!
(

y + 1
1

)
αy(1 − α)

+ e−λτ (λτ)y+2

(y + 2)!
(

y + 2
2

)
αy(1 − α)2 + · · ·

= e−λτ (λτ)yαy

y!

[
1 + (λτ)(1 − α)

1! + (λτ)2(1 − α)2

2!

+ · · · + (λτ)n(1 − α)n

n! + · · ·
]

= e−λτ (λτα)y

y! eλτ(1−α)

= e−αλτ (αλτ)y

y! ��
The proof when the demand process is a compound Poisson process follows

due to our assumption that resupply times are the same for all units in a customer
order.

3.2 Performance Measures

To this point, we have developed the steady state probabilities for the number
of units that are in the resupply system at a random point in time when the de-
mand process is either a Poisson or compound Poisson process. Based on these
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probabilities, we can calculate different measures of system performance. These
measures relate to performance at a single location. In subsequent chapters, we
will see how steady state probabilities and performance measures are computed
in multi-echelon situations.

We will begin by considering several measures that are single-item measures,
confining our discussion to the backorder case. The first performance measure
we consider, the fill rate, is the most commonly used measure in practice, and is
defined as follows. Given a stock level of s, the fill rate, F(s), is the expected
fraction of demands that can be satisfied immediately from on-hand stock. As
is intuitively clear, as s increases the fill rate will increase. We will develop an
explicit expression for F(s) in this section and will discuss its properties in the
next section of this chapter.

A second performance measure is called the ready rate corresponding to stock
level s. The ready rate measures the probability that an item observed at a random
point in time has no backorders, that is, its net inventory is nonnegative. We de-
note the ready rate by R(s). This is an all or nothing measure. Either there are
backorders or there are no backorders at a random point in time.

Observe that when computing either a fill rate or ready rate we are not con-
cerned with the duration of backorders when they occur. Thus, for example, a fill
rate of say 95% implies that, on average, 95 of every 100 units that are ordered
have that request satisfied immediately. But we are not measuring how long it
takes to satisfy the other 5% of the units requested. Thus it is not always clear that
a firm that maintains a high fill rate is truly satisfying its customers needs. This
is particularly true when fill rates are calculated for a large number of item types.
In this case, the fill rate would measure the fraction of demands satisfied imme-
diately over all items. Thus some items could have nearly 100% of the demands
satisfied immediately while others could have a 0% fill rate.

Note also that the ready rate is always at least as high as the fill rate. For
example, when s = 0, F(s) = 0. But R(s) could approach 1 if the demand rate is
low and the lead time is very short. It is not unusual that the measures F(s) and
R(s) are confused in practice.

A third single-item performance criterion measures the expected number of
backorders outstanding at a random point in time, and is denoted by B(s). This
measure accounts for the length of time backorders exist. Hence, it is a response-
time focused measure. Observe that B(s) is equal to the demand rate times the
average “waiting time” of a demand. This is a consequence of Little’s law, L =
λW , where B(s) is L , λ the demand rate, and W the average waiting time. We
could also compute the conditional value of W , given that backorders exist.

Let us now see how these performance measures can be computed. Recall
that, in the backorder case when the demand is a compound Poisson process, the
steady state probability that x units are in resupply is given by
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P{X = x} = p(x |λτ) =
∞∑
j=1

e−λτ (λτ) j

j ! u( j)
x , x ≥ 1,

P{X = 0} = e−λτ

where λ is the demand rate, τ the average resupply time, and u( j)
x the probability

that j customer orders generate a total demand of x units.
The ready rate is the probability that there are no backorders existing at a

random point in time. This is the probability that the number of units in resupply
is s or less. That is,

R(s) =
s∑

x=0

p(x |λτ).

The computation of the fill rate is more difficult, but it is obtained from the
steady state probabilities, p(x |λτ). Suppose a customer order is received. There
will be one unit of the order satisfied if there are s − 1 or fewer units in resupply.
A second unit will be sent to the customer if the order is for two or more units and
there are s − 2 or fewer units in resupply. Remember that the timing and size of a
customer order are independent of all past orders and resupply times. Hence, the
expected number of units filled per customer order is given by

F1(s) =
∑

x≤s−1

p(x |λτ) + (1 − u1)
∑

x≤s−2

p(x |λτ)

+ (1 − u1 − u2)
∑

x≤s−3

p(x |λτ)

+ (1 −
∑

j≤s−1

u j )p(0|λτ), where, as before,

u j measures that probability that a customer order is for exactly j units. In the
case of a simple Poisson demand process (that is, when u1=1),

F(s) = F1(s) =
∑

x≤s−1

p(x |λτ). Hence, in this case,

F1(s) = F(s) = R(s) − p(s|λτ) and F(s) < R(s).

When the demand process is a compound Poisson process, λF1(s) measures
the expected number of units that can be shipped on time per day, when λ is the
expected daily rate at which customers place orders. Furthermore, λu measures
the expected number of units demanded per day, where u is the expected number
of units demanded per order. Thus

λF1(s)

λu
= F1(s)

u

measures the fraction of the units ordered that are sent to customers on time. We
let this quantity be defined as the fill rate, or
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F(s) = F1(s)

u
.

Next, we see that the expected number of units in a backorder status in steady
state is

B(s) =
∑
x>s

(x − s)p(x |λτ).

That is, there are x−s units backordered if and only if there are x units in resupply,
x > s.

Suppose there are n item types in a system rather than just a single item. Then
performance measures are computed somewhat differently.

First, the system fill rate is calculated by computing the conditional fill rate
for the item type, multiplying by the probability that a demand was for a specific
item type, and summing over item types. Let F(s) measure the system fill rate,
where s = (s1, . . . , sn) is a vector of item stock levels. If Fi (si ) measures the fill
rate for item type i , then

F(s) =
n∑

i=1

λi∑n
j=1 λ j

· Fi (si )

because λi∑n
j=1 λ j

is the probability that a customer demand is for item type i when

the customer order process is a Poisson process. This calculation is based on the
assumption that an order is for a single item type.

The expected number of backorders at a random point in time for n items is
simply

n∑
i=1

Bi (si ) =
n∑

i=1

∑
x>si

(x − si )p(x |λiτ i ).

When there is more than one item, the ready rate measure must be modified.
The new measure is called the operational rate. We assume a system is operational
if and only if all item types are operational. A particular item type will not be
available, and hence the system will not be operational, if the number of units
in resupply for that item exceeds its stock level. Assuming demand and resupply
times are independent from item type to item type, the operational rate is given
by

O R(s) = �n
i=1 Ri (si ).

Suppose there are many operating systems, say a fleet of aircraft. Furthermore,
suppose part shortages can be consolidated into as few aircraft as possible. This
process is often called “cannibalization” of the aircraft. Suppose there may be
more than one unit of a particular type on an aircraft, say qi units of type i . Then,
assuming independence and cannibalization,
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�n
i=1 Ri (si + qi ) = probability that all aircraft

or one less than all aircraft

are operational.

and �n
i=1 Ri (si + kqi ) = probability that k or

fewer aircraft are nonoperational.

Let Y be a random variable that measures the number of nonoperational air-
craft. Assuming cannibalization and independence,

P{Y = 0} = �n
i=1 Ri (s j )

P{Y ≤ 1} = �n
i=1 Ri (si + qi )

P{Y ≤ k} = �n
i=1 Ri (si + kqi ).

Hence, the expected number of nonoperational aircraft at a random point in
time given cannibalization and independence is

E[Y ] =
∑
k≥1

k · P{Y = k}

=
∑
k≥1

P{Y ≥ k}

=
∑
k≥1

(1 − P{Y ≤ k − 1})

=
∑
k≥0

(1 − P{Y ≤ k}).

Hence, if there are N aircraft, an approximation to the expected number of
operational aircraft is

N − E[Y ].
Since the demand process assumes an infinite population, this is a conservative
estimate.

Another approximation for the expected number of operational aircraft can be
developed as follows. Let us consider item type i . Recall that Bi (si ) measures the
expected number of backorders for item type i at a random point in time. Suppose
there is one unit of this item type per aircraft and there are N aircraft in the system.
The probability that a random aircraft at a random point in time is missing a unit
of item type i is Bi (si )

N , or 1 − Bi (si )/N is the probability that the aircraft is not
missing a unit of type i . Assuming independence, the probability that a random
aircraft is operational at a random point in time is

p = �n
i=1(1 − Bi (si )/N ).

The expected number of operational aircraft at a random point in time is given
by
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N p = N�n
i=1(1 − Bi (si )/N )

= N

(
1 −

n∑
i=1

Bi (si )/N +
∑
k �= j

B j (s j )Bk(sk)

N 2

−
∑

i �= j �=k

Bi (si )B j (s j )Bk(sk)

N 3
+ · · ·

)

∼= N −
n∑

i=1

Bi (si ),

when Bi (si )
N is small for all item types.

Thus there is a simple approximate correspondence between the expected
number of backorders outstanding at a random point in time and the expected
number of operational aircraft. The latter approximation of the expected num-
ber of operational aircraft is particularly useful from a computational viewpoint
because of the mathematical properties of the functions Bi (si ), as we will now
see.

3.3 Properties of the Performance Measures

Now that we have defined several key performance measures and have shown how
to compute them, let us examine them more closely. We begin by studying the fill
rate measure.

Let us assume, for simplicity, that the demand process is a simple Poisson
process with rate λ. Furthermore, assume that resupply times for each order are
independent and identically distributed with mean τ . As we have shown, the prob-
ability that x units are in the resupply system in steady state is given by

p(x |λτ) = e−λτ (λτ)x

x ! .

Since the demand process is a simple Poisson process, the fill rate, given a
stock level of s, is given by

F(s) = 1 −
∑
x≥s

p(x |λτ) =
∑
x<s

p(x |λτ).

Perhaps our goal might be to choose stock levels for many items so that the
average fill rate across items is maximized given some target investment level in
inventory. This type of optimization problem would be easy to solve if F(s) were
a discretely concave function. Unfortunately, as we will now observe, it is not.

We know that if F(s) were a discretely concave function in s, then its second
difference must be nonpositive for all s ≥ 0. Let us now define both the first and
second differences of F(s). The first difference, �F(s), is given by
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�F(s) = F(s + 1) − F(s),

and the second difference, �2 F(s), is given by

�2 F(s) = �F(s + 1) − �F(s).

Hence

�F(s) =
∑
x≤s

p(x |λτ) −
∑

x≤s−1

p(x |λτ)

= e−λτ (λτ)s

s!
and

�2 F(s) = e−λτ (λτ)s+1

(s + 1)! − e−λτ (λτ)s

s!
= e−λτ (λτ)s

s!
{

λτ

s + 1
− 1

}
.

When λτ > s + 1, then �2 F(s) > 0 and F(s) is not concave in that region.
In fact, when s < λτ − 1, F(s) is discretely convex. Hence F(s) is discretely
concave only when s ≥ �λτ�, when λτ is noninteger, and s ≥ λτ − 1, when λτ

is an integer.
Graphs of F(s) for two cases are given in Figures 3.1 and 3.2. In the first

case λτ = 3.2 and in the second case λτ = 3. The graphs illustrate what we have
proven. Tables 3.1 and 3.2 contain values for F(s), �F(s) and �2 F(s) for the two
cases. The table values show that the concavity property holds when �λτ� ≤ s.
Note that when �λτ� = λτ , that is, when λτ is an integer, �F(λτ) = �F(λτ−1).

Next, we observe immediately that the ready rate function, R(s), is also not a
concave function of s for all values of s.

Thus, neither F(s) nor R(s) possesses the mathematical property of concavity
that is desirable when formulating and solving an optimization problem whenever
we consider all values of s ≥ 0. Hence, in practical cases, s is constrained to
assume values that are greater than or equal to �λτ� to ensure that the fill rate or
ready rate functions are concave over the feasible region. Note that the operational
rate and the first approximation for the expected number of operational systems
are stated in terms of the ready rate. Hence, these performance measures are not
easy to work with in optimization models unless s ≥ �λτ�.

The backorder function B(s) does have very desirable mathematical proper-
ties, however. Recall that

B(s) =
∑
x>s

(x − s)p(x |λτ).

For B(s) to be strictly discretely convex and strictly decreasing requires that
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Fig. 3.1. Graph of Fill Rate vs Inventory (Case 1)

Fig. 3.2. Graph of Fill Rate vs Inventory (Case 2)
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Table 3.1. Fill Rate vs Inventory Tradeoff with Poisson Demand

Mean Demand 3.2
s F(s) = P(� < s) �F(s) = F(s + 1) − F(s) �2 F(s) = �F(s + 1) − �F(s)
0 0 0.040762204 0.089676849
1 0.040762004 0.130439053 0.078263432
2 0.171201257 0.208702484 0.013913499
3 0.379903741 0.222615983 −0.044523197
4 0.602519724 0.178092787 −0.064113403
5 0.780612511 0.113979383 −0.053190379
6 0.894591895 0.060789005 −0.032999745
7 0.955380899 0.027789259 −0.016673556
8 0.983170158 0.011115704 −0.007163453
9 0.994285862 0.00395225 −0.00268753
10 0.998238112 0.00126472 −0.000896801
11 0.999502832 0.000367919 −0.000269807
12 0.999870751 9.81116E−05 −7.39611E−05
13 0.999968862 2.41506E−05 −1.86304E−05
14 0.999993013 5.52013E−06 −4.3425E−06
15 0.999998533 1.17763E−06 −9.42102E−07
16 0.999999711 2.35525E−07 −1.91191E−07
17 0.999999946 4.43342E−08 −3.64526E−08
18 0.999999991 7.88163E−09 −6.5542E−09
19 0.999999998 1.32743E−09 −1.11504E−09

�B(s) = B(s + 1) − B(s) < 0

and

�2 B(s) = �B(s + 1) − �B(s) > 0.

We see that

�B(s) =
∑

x≥s+1

(x − (s + 1))p(x |λτ)

−
∑

x≥s+1

(x − s)p(x |λτ)

= −
∑

x≥s+1

p(x |λτ) = −
(

1 −
∑
x≤s

p(x |λτ)
)

and

�2 B(s) = −
∑

x≥s+2

p(x |λτ) +
∑

x≥s+1

p(x |λτ)

= p(s + 1|λτ) > 0

and hence B(s) is a strictly (discretely) convex function of s for all s ≥ 0.
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Table 3.2. Fill Rate vs Inventory Tradeoff with Poisson Demand

Mean Demand 3

s F(s) = P(� < s) �F(s) = F(s + 1) − F(s) �2 F(s) = �F(s + 1) − �F(s)
0 0 0.049787068 0.099574137
1 0.049787068 0.149361205 0.074680603
2 0.199148273 0.224041808 0
3 0.423190081 0.224041808 −0.056010452
4 0.647231889 0.168031356 −0.067212542
5 0.815263245 0.100818813 −0.050409407
6 0.916082058 0.050409407 −0.028805375
7 0.966491465 0.021604031 −0.01350252
8 0.988095496 0.008101512 −0.005401008
9 0.996197008 0.002700504 −0.001890353

10 0.998897512 0.000810151 −0.000589201
11 0.999707663 0.00022095 −0.000165713
12 0.999928613 5.52376E−05 −4.24904E−05
13 0.999983851 1.27471E−05 −1.00156E−05
14 0.999996598 2.73153E−06 −2.18522E−06
15 0.99999933 5.46306E−07 −4.43873E−07
16 0.999999876 1.02432E−07 −8.4356E−08
17 0.999999978 1.80763E−08 −1.50636E−08
18 0.999999996 3.01272E−09 −2.53702E−09
19 0.999999999 4.75692E−10 −4.04338E−10

3.4 Finding Stock Levels in (s–1, s) Policy Managed Systems:
Optimization Problem Formulations and Solution
Algorithms

Setting stock levels for items managed using an (s–1,s) policy will depend on
the objectives and constraints that are stipulated. For example, we could choose
to minimize the average number of outstanding backorders across n item types
subject to a constraint on investment in inventory. We could also select stock lev-
els that minimize investment cost subject to an average fill rate constraint across
items. Other optimization models could be formulated as well for complex re-
supply networks. We will study several such problems in later chapters. In this
chapter we will examine solution methods that will be employed subsequently for
more general problems. The problem that we will study now is concerned with
setting stock levels for many items at a single location.

One solution approach that we could use is to construct a Lagrangian relax-
ation of a particular optimization problem. We begin by solving the resulting re-
laxed problem for a given set of Lagrange multiplier values. We then adjust these
multiplier values, and re-solve the relaxed problem. We continue in this manner
until a stopping criterion of some sort is satisfied.
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Before we construct and solve an example problem using the Lagrangian re-
laxation technique, let us make some important observations.

3.4.1 Everett’s Theorem

Suppose we have a general optimization problem

min f (x)

subject to

g(x) ≤ b, (3.37)

xεS,

where x is a vector and S is a set of vectors that constrains the choice of an
optimal solution. The single constraint g(x) ≤ b is the one that will be relaxed.
We assume both f (x) and g(x) are convex functions. We call the above problem,
Problem 1. The following is a relaxation of Problem 1

min
xεS

[ f (x) + θ(g(x) − b)] (3.38)

for a given scalar θ ≥ 0. θ is called the Lagrange multiplier associated with
the constraint g(x) ≤ b. We call this relaxation, Problem 2. The question we
will address is: What is the relationship between the solutions to Problem 2 and
Problem 1?

The answer to this question is found in the following theorem, which is due
to Everett [80].

Theorem 10. Suppose x0(θ) is an optimal solution to Problem 2 with the La-
grange multiplier set to θ . Let b′ = g(x0(θ)). Then x0(θ) also solves

min
xεS

f (x)

g(x) ≤ b′, which we call Problem 3. (3.39)

Proof. To see why this is the case, we first observe that x0(θ) is a feasible solution
to Problem 3. Let x̂ be an optimal solution to Problem 3. Hence g(x̂) ≤ b′ and
f (x̂) ≤ f (x0(θ)). We also know that x̂εS, and hence x̂ is a feasible solution to
Problem 2. Thus

f (x0(θ)) + θ(g(x0(θ)) − b) ≤ f (x̂) + θ(g(x̂) − b)

or

f (x0(θ)) + θg(x0(θ)) ≤ f (x̂) + θg(x̂)

Since g(x0(θ)) = b′,

f (x̂) ≤ f (x0(θ)) ≤ f (x̂) + θ(g(x̂) − b′) ≤ f (x̂)

because g(x̂) ≤ b′. Therefore x0(θ) is an optimal solution to Problem 3. ��
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Thus, by varying the value of θ , we can find optimal solutions to problems of
the form of Problem 3. If b′ = b for some choice of the Lagrange multiplier θ ,
then we have also solved Problem 1.

For many of the problems we will study, we can construct graphs that show
how the minimum value of f (x) relates to the value of b. For example, suppose
f (x) measures the expected number of outstanding backorders at a random point
in time, g(x) measures the required investment corresponding to the vector of
stock levels, x , and b represents the budget limitation on the investment in in-
ventory. Then we may want to construct the relationship between the minimum
expected number of outstanding backorders at a random point in time and the
investment in inventory. Let h(b) = minxεS { f (x) : g(x) ≤ b}.

Thus we would want to construct the graph depicted in Figure 3.3. Often
times, we are not interested in solving Problem 1 for a single value of b but rather
for a range of values of b.

Fig. 3.3. The graph of h(b) versus b

Recall that every choice of θ determines an x0(θ) when solving Problem 2. In
turn, x0(θ) yields g(x0(θ)), which is a value of b. Thus for each choice of θ there
exists a corresponding value of b, as illustrated in Figure 3.4. We will use this fact
in our subsequent analysis. Let us now apply this idea to a specific problem.
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Fig. 3.4. The relationship of b as a function of θ

3.4.2 First Example: Minimize Expected Backorders Subject to an
Inventory Investment Constraint

Suppose a firm manages a group of item types at a single location. The inventory
policy followed for all items is an (s–1,s) policy. Thus a replenishment order is
placed on an external supplier whenever a unit is withdrawn from the firm’s stock
to satisfy a customer demand. The goal is to select the stock levels so that the
average number of outstanding backorders is minimized subject to a constraint
on the average investment in inventory. The demand process is assumed to be a
stationary compound Poisson process for each of the n item types being managed.
Order lead times on the supplier for replenishment stock are assumed to be inde-
pendent, identically distributed random variables for each item type and across
item types.

Let

b represent the budget limit on the average value of on-hand inventory;
ci is the unit cost for item type i ,
si is the stock level for item type i ,

λiτ i ui is the expected demand over a lead time for item type i , and
Bi (si ) is the expected number of backorders outstanding at a random point in

time for item type i .

From Palm’s theorem, we know that the steady state probability distribution
for the number of units on order with the supplier has a compound Poisson distri-
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bution for each item type. Let us denote the probability that x units of item type i
are on-order with the supplier by p(x |λiτ i ui ).

The inventory position when following an (s–1,s) policy is a constant, s. In
general, the inventory position is defined as

Inventory Position = On-Hand + On-Order - Backorders

In this case

s = E [Inventory Position] = E[On-Hand] + E [On-Order] - B(s).

The expected number of units on-order for item type i is λiτ i ui , from Little’s law.
Hence, for item type i ,

E[On-hand] = si − λiτ i ui + Bi (si ).

Let µi = λiτ i ui . Then the average investment in on-hand inventory for item i is
ci [si − µi + Bi (si )].

We are now in a position to state the optimization problem as

minimize
n∑

i=1

Bi (si )

subject to

n∑
i=1

ci [si − µi + Bi (si )] ≤ b, si = 0, 1, . . . . (3.40)

To solve this problem, which we will call Problem 4, we will use the La-
grangian relaxation method discussed earlier. Let θ represent the multiplier asso-
ciated with the budget constraint that links the item stock level decisions.

The relaxation is

min
n∑

i=1

Bi (si ) + θ
[ n∑

i=1

ci (si − µi + Bi (si )) − b
]

subject to si = 0, 1, . . .

= minsi =0,1,...

n∑
i=1

[
(1 + θci )Bi (si ) + θci si

]
−
[
θ

n∑
i=1

ciµi + θb
]

= −θ
[ n∑

i=1

ciµi + b
]

+
n∑

i=1

min
si =0,1,...

[(1 + θci )Bi (si ) + θci si ] .

Thus, given a value of θ , the resulting relaxed optimization problem is separable
by item type. The problem that must be solved for each item is of the same form
so we will temporarily drop the item subscript.
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Let f (s) = (1 + θc)B(s) + θcs. Since B(s) is discretely strictly convex in
s, f (s) is convex, too. Define

� f (s) = f (s + 1) − f (s)

= (1 + θc) {B(s + 1) − B(s)} + θc.

Since we previously showed that

B(s + 1) − B(s) = −
(

1 −
∑
x≤s

p(x |µ)
)
,

� f (s) = −(1 + θc)
(

1 −
∑
x≤s

p(x |µ)
)

+ θc.

Due to the convexity of f (s), the optimal stock level, given θ , is the smallest
nonnegative integer, s∗, for which

� f (s) ≥ 0,

that is, the smallest value for which

(1 + θc)
(

1 −
∑
x≤s

p(x |µ)
)

≤ θc

or ∑
x≤s

p(x |µ) ≥ 1

1 + θc
.

Clearly the value of s∗ depends on the value of θ . Observe that as θ increases,
s∗ is nonincreasing, and, similarly, as θ decreases, s∗ is nondecreasing. Let

C(θ) =
n∑

i=1

ci [si (θ) − µi + Bi (si (θ))] .

It is clear that C(θ) is also nonincreasing as θ increases and nondecreasing as
θ decreases. A graph of this relationship is shown in Figure 3.5. The goal is to
find a value of θ such that C(θ) is approximately equal to b. It is generally not
possible to find a value of θ that yields C(θ) = b, as illustrated in Figure 3.5.
Hence, the goal is to construct the graph of the minimum expected backorders
as a function of the average investment in on-hand inventory. Each value of θ

yields a set of stock levels, a corresponding inventory investment, and a minimum
number of average outstanding backorders. Thus it is obvious that by solving the
relaxation corresponding to a set of multiplier values, θ1 > θ2 > . . . > θM ,
we can construct a graph of minimum expected backorders as a function of θ , as
illustrated in Figure 3.6.
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Fig. 3.5. Graph of C(θ) as a function of θ

Fig. 3.6. Graph of Minimum Expected Backorders as a Function of θ
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Suppose we are given values θ1 > θ2 > . . . > θM , M Lagrange multiplier
values. As stated earlier, since 1

1+θ1c < 1
1+θ2c < · · · < 1

1+θM c , s∗(θ1) ≤ s∗(θ2) ≤
. . . ≤ s∗(θM ). To find s∗(θ) recall we find the smallest nonnegative integer value
of s for which ∑

x≤s

p(x |µ) ≥ 1

1 + θc
.

Thus to find s∗(θi ) we know that ∑
x≤s∗(θi−1)

p(x |µ)

is a starting point for our calculation. Since we have already computed this value
to determine s∗(θi−1), the amount of computational effort required to find s∗(θi )

may be reduced significantly.
Observe that there exists a θ > 0 such that

p(0|µi ) = 1

1 + θci
, or

θ = 1

ci

{
1

p(0|µi )
− 1

}
.

Let θmax = maxi
1
ci

{
1

p(0|µi )
− 1
}

. If θ = θmax, then s∗
i (θmax) = 0 for all i .

Let us now state an algorithm that can be used to solve the original problem
approximately using the Lagrangian method we have discussed.

Algorithm for Solving Problem 4

Step 0: Set θmin = 0; θmax = maxi
1
ci

{
1

p(0|µi )
− 1
}

and N = 0.

Step 1: Compute θ = θmin+θmax
2 ; N = N + 1.

Step 2: For each item i , find the smallest value of si such that∑
x≤si

p(x |µi ) ≥ 1

1 + θci
and call it s∗

i (θ).

Step 3: Calculate A =∑n
i=1 ci

[
s∗

i (θ) − µi + Bi (s∗
i (θ))

]
.

If |A − b| < ε, or if N > max iterations, stop; otherwise, if A > b, set
θmin = θ and if A < b, set θmax = θ . Return to Step 1.

Some of the ideas discussed in this section were described first in Fox and
Landi [92] and later reviewed in Muckstadt [177].
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3.4.3 Second Example: Maximize Expected System Average Fill Rate
Subject to an Inventory Investment Constraint

As in our first example, suppose a firm manages n item types at a single location.
We assume a (s–1,s) policy is used for each of these items. We assume requests
for these items are placed by customers on the firm. Each request that is made
corresponds to a failure of a single unit of a particular part type. The failed parts
are repaired at a repair facility. Repair times for an item type are independent and
identically distributed; repair times across item types are also independent. We
assume requests for serviceable parts for each item type i occur according to a
Poisson process with rate λi .

In this case our goal is to find the stock levels that maximize the average ex-
pected system fill rate subject to an investment constraint. Here, units do not leave
the system so that the investment corresponding to stock levels si is

∑n
i=1 ci si .

We use the same notation as in the preceding example where appropriate.
Fi (si ) measures the fill rate for item i given a stock level si .

In this situation, the probability that x units are in the repair process is given
by

p(x |λiτ i ) = e−λi τ i
(λiτ i )

x

x ! ,

by Palm’s theorem.
The optimization problem can be stated as

maximize
n∑

i=1

λi∑n
j=1 λ j

Fi (si ) (3.41)

subject to

n∑
i=1

ci si ≤ b,

si ≥ �λiτ i� ≥ 0 and integral, which we call Problem 5.

Recall from our earlier discussion that

Fi (si ) =
∑
x<si

e−λi τ i
(λiτ i )

x

x ! .

Recall also that Fi (si ) is concave in the region si ≥ �λiτ i�, and hence we have
placed this constraint on si in our formulation of the inventory stocking problem.

We could obtain an answer to Problem (5) using the Lagrangian relaxation
method described earlier. However, we will use a simpler approach, marginal
analysis. This greedy approach will produce an optimal solution for certain values
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of b and an approximately optimal solution for all other values of b, as we will
see.

Define

�i (si ) = λi∑n
j=1 λ j

{
Fi (si + 1) − Fi (si )

ci

}
,

which measures the increase in average expected system fill rate per incremental
dollar invested in item i given the current stock level is si .

Suppose we have stock levels si ≥ �λiτ i� and want to determine which item’s
stock level should be increased from si to si +1. Since �i (si ) measures the change
in performance per incremental dollar invested, we would choose to increment the
stock level of item i∗ if

i∗ = arg max
i

�i (si ).

Initially set si = �λiτ i�, and compute

n∑
i=1

λi∑n
j=1 λ j

· Fi (�λiτ i�) and
n∑

i=1

ci�λiτ i�.

Next, compute �i (�λiτ i�) for all i and increment the stock level for the item
having the maximum value of �i (si ), say i∗. The solution

si = �λiτ i� i �= i∗

si∗ = �λi∗τ i∗� + 1

is the optimal solution to Problem (5) when

b =
∑
i �=i∗

ci�λiτ i� + ci∗ {�λi∗τ i∗� + 1} .

Continuing in this manner it is clear how we would construct a graph of the
maximum average expected fill rate as a function of system investment in inven-
tory. Thus the proposed greedy algorithm will find the optimal solution for values
of b that would be generated sequentially as a consequence of constructing the
solution as outlined.

3.5 Problem Set, Chapter 3

3.1. Suppose that time is divided into periods of equal length. Demand in each
period is Poisson distributed with a mean of λ units. An order-up-to policy is
followed for managing inventories. Replenishment lead times are assumed to be
independent and identically distributed with a mean of D periods. Prove that the
number of units on order (in resupply) in steady state has a Poisson distribution
with mean λD. That is, prove that the discrete time analogue of Palm’s theorem.



66 3 Background Concepts: An Introduction to the (s–1, s) Policy

3.2. Plot the logarithmic distribution (3.13) for the following value of p : .05, .1,
.3, .5, .7, .9 and .95. What do you observe?

3.3. Find the expected value of a random variable having a logarithmic distribu-
tion, which we will denote by ū. Suppose the demand process is a compound
Poisson process in which λ = − ln(p), where p is the parameter of the logarith-
mic distribution. What is the mean and variance of this compound Poisson distri-
bution? What is the form of its probability distribution? Suppose we let λ̄ = λū
be the mean of a Poisson distribution. How well does a Poisson distribution with
this mean match the exact compound Poisson distribution? Make this comparison
when p = .1, .25, .5, .75, .9. What do you observe?

3.4. Plot the probabilities for a random variable that has a Negative Binomial
distribution where its mean assumes value 1, 5, 25. For each mean, construct these
plots when the variance-to-mean ratios are 1.01, 3, 10. How do these probabilities
compare with the corresponding probabilities for a Poisson distributed random
variable with the same means?

3.5. Prove the extension to Palm’s theorem when the arrival process is a com-
pound Poisson process and where every customer is willing to wait τ time units
for delivery of its order.

3.6. Suppose a single stage inventory system is managed using a (s–1,s) continu-
ous review policy. Suppose the lead time is known to be two weeks in length. All
demand in excess of supply is backordered. Demand occurs according to a Pois-
son process with arrival rate λ. Plot the fill rate for this system when λ = .5, 5,
and 10 units per week as a function of the stock level. Suppose next that the arrival
process is a compound Poisson process in which the average order size is 2 units.
Assume the distribution of demand in this case is a Negative Binomial distribu-
tion (the order size distribution is logarithmic with a mean of 2). Assuming the
customer order arrival rate is now either .25, 2.5 and 5.65 units per week, again
plot the fill rate as a function of the stock level s.

3.7. Plot the backorder, ready rate, and fill rate functions (B(s), R(s), F(s)) for a
single stage inventory system managed using a continuous review (s–1,s) policy.
Suppose the lead time demand is either Poisson distributed or Negative Binomi-
ally distributed with expected lead time demand being either 1, 5 or 10 units. In
the case where lead time demand follows a Negative Binomial distribution, con-
struct the plots for the variance-to-mean ratios of 1.01, 2 and 5. What do you
observe?

3.8. Suppose there are ten critical items on an aircraft. Compute the expected
number of nonoperational aircraft for several combinations of stock levels for
these items assuming the demand process is Poisson. Expected demands over the
lead time for these ten items are 10, 7, 2, 1, 0.7, 0.5, 0.3, 0.1, 0.04, 0.01, respec-
tively.
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3.9. Prove the Splitting Property of Poisson processes: Let N , Yn be independent
random variables, where the distribution of N is Poisson(λ) and P(Yn = j) =
p j for jε{1, 2, . . . , k} and all n. Set N j = ∑N

n=1 I (Yn = j), where I is the
indicator function. Then, N1, N2, . . . , Nk are independent random variables and
the distribution of N j is Poisson(λp j ) for all j . Prove the converse as well.

3.10. An owner of a fleet of aircraft wants to determine how many spares of each
of N components to buy. Aircraft failures, which occur according to a Poisson
process, are caused by the failure of a component. Each failure is due to the fail-
ure of a single component and the probability that it is due to component i is
λi/
∑

j λ j , where λi is the failure rate for component i . The average repair time
for component i is ti . The owner wants to set the spare parts’ stock levels such that
the average delay in completing the repair of an aircraft due to parts availability
is minimized. There is a constraint on total investment in spare parts of C dollars.
Assume each component of type i costs ci dollars. An (s–1,s) policy is used to
manage the system.

(a) Develop a mathematical formulation of this problem. Construct a Lagrangian-
based algorithm for finding the optimal stock levels.

(b) Use your algorithm to find the optimal solution when N = 2, C = 6,

c1 = 1 c2 = 2
t1 = 1/10 t2 = 1/7
λ1 = 5 λ2 = 7

.

Plot the total investment in spare parts as a function of the Lagrange multiplier
and use this plot to obtain a solution for the problem.

3.11. Suppose a firm manages n item types at a single location. Assume an (s–1,s)
policy is used for each of these items. Requests for these items are placed by
customers on the firm. Each request corresponds to a failure of a single unit of a
particular part type. The failed parts are repaired at a repair facility. Repair times
for an item type are independent and identically distributed; repair times across
item types are also independent. Assume requests for serviceable parts for each
item type i occur according to a Poisson process with rate λi . Construct a marginal
analysis algorithm to maximize the average expected system fill rate subject to an
investment constraint. Use this algorithm to determine the optimal stock levels for
the data given in the previous problem.
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An Exact Model for a Depot-Base Two Echelon
Inventory and Repair System

We will study a variety of multi-echelon service parts systems in subsequent chap-
ters. For the most part, the analyses that we will present in these chapters are based
on approximations of the probability distributions for key random variables. We
create these approximations so that we can construct and solve optimization mod-
els that will yield stock levels for each location in the system. However, before
we develop these approximations and these optimization models, we will develop
the exact representations of the probability distributions of the important random
variables that relate the interactions present in multi-echelon systems. We will see
that the exact calculation of the required probability distributions is too computa-
tionally burdensome to be of practical value for large scale systems. Let us now
develop the exact probability distributions for a specific two-echelon service parts
system.

4.1 Introduction

The two-echelon system we will analyze in detail, depicted in the following fig-
ure, consists of a depot, at which inventory is stocked and items are repaired, and
a set of n bases. We assume this system supports the flying operations of aircraft,
which occur at the bases. Inventories of parts are also maintained at the bases.
We will focus on a single item in this system since we also assume there are no
constraints among the various items.

We further assume that this item fails according to a Poisson process at base
j at the rate of λ j units per day. When a removal of a defective part occurs at a
base, three events occur simultaneously and instantaneously; first, a unit of stock
is withdrawn from base supply to repair the aircraft (if one is available); second,
the failed unit is shipped to the depot for repair; and third, the depot resupplies
the base (ships a replacement unit to the base) if there is a unit on hand at the
depot stocking location. When units are not available at either the base or depot,
a backorder occurs and lasts until a unit of stock is available to meet the request
for the item.
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Fig. 4.1. Depot-Base Two-Echelon System

4.2 Model Development

Our goal is to develop an exact probabilistic representation of this system’s op-
eration in steady state. That is, we will find the stationary distribution of certain
key random variables. The ideas presented in this section follow those given by
Simon[230].

We, of course, are assuming that each base follows an (s–1,s) policy and that
the depot does as well. We also assume that all failed items can be repaired. Fur-
thermore, we initially assume that the depot to base j transportation time, A j , is
a constant and the depot repair cycle time is the same for all failed items, and is
represented by the symbol D. The depot repair cycle time measures the total time
it takes to ship the failed unit to the depot from a base and to repair the unit at the
depot.

Let t be a random point in time. Furthermore, let

I j (t) = the net inventory random variable for base j at time t ,
Z0(ta, tb) = a random variable describing total base level demand during the in-

terval of time (ta, tb], where ta = t − A j − D and tb = t − A j ,
s j = the target base j stock level (inventory position),
s0 = the target depot stock level (inventory position), and

X j (t) = random variable for the number of units on-order (or in resupply)
from the depot at time t attributable to base j requests for replenish-
ment of its stock.

Observe that if I j (t) = k, then s j − k units must be on order from the depot.
Thus we see that I j (t) = k if and only if X j (t) = s j − k. Our objective is to find
limt→∞ P{I j (t) = k}.

Since we know that I j (t) = k if and only if X j (t) = s j − k,
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P{I j (t) = k} = P{X j (t) = s j − k}
=
∑
d0≥0

P{X j (t) = s j − k|Z0(ta, tb) = d0} · P{Z0(ta, tb) = d0}.

To calculate P{I j (t) = k}, we partition the above expression into two regions. In
the first region, d0 ≤ s0 and in the second region, d0 > s0. We will examine these
two cases separately.

When d0 ≤ s0, all orders placed on the depot prior to time tb by base j will
be satisfied by time t . Furthermore, any demand placed subsequent to time tb by
base j cannot be satisfied by time t . Thus when d0 ≤ s0∑

d0≤s0

P{X j (t) = s j − k|Z0(ta, tb) = d0} · P{Z0(ta, tb) = d0}

=
∑

d0≤s0

e−λ j A j
(λ j A j )

s j −k

(s j − k)! · e−λ0 D (λ0 D)d0

d0!

= e−λ j A j
(λ j A j )

s j −k

(s j − k)! ·
∑

d0≤s0

e−λ0 D (λ0 D)d0

d0! ,

where λ0 = ∑
j λ j . Thus in this case the probability that X j (t) = s j − k is the

probability that demand at base j during the interval (tb, t], whose length is A j ,
is equal to s j −k, weighted by the probability that this case will occur, that is, that
d0 ≤ s0.

Next, suppose d0 > s0. Since the total base demand during (ta, tb] exceeds
depot supply, s0, not all requests placed on the depot during that interval will
be satisfied by time tb. Hence, the number of units on order at time t at base j
consists of those orders placed during (ta, tb] that were not shipped to the base by
time tb plus all demands for the item that occurred during (tb, t].

Now, let

V1(t) = the random variable for the number of base j units on order at time t for
which an order was placed (item failure occurred) by base j on the depot
prior to time tb.

V2(t) = the random variable for the number of units that fail at base j (and are
ordered from the depot) during (tb, t].

Then

X j (t) = V1(t) + V2(t).

By assumption, the demand process at each base is a Poisson process. There-
fore, demands occurring before and after time tb are independent. Thus

P{X j (t) = s j − k|Z0(ta, tb) = d0}

=
s j −k∑
m=0

P{V1(t) = m|Z0(ta, tb) = d0} · P{V2(t) = s j − k − m}.
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We know that

P{V2(t) = s j − k − m} = e−λ j A j
(λ j A j )

s j −k−m

(s j − k − m)! .

Additionally,

P{V1(t) = m|Z0(ta, tb) = d0}

=
s0+m∑
d j =m

P{V1(t) = m|Z0(ta, tb) = d0, D j (ta, tb) = d j }

· P{D j (ta, tb) = d j |Z0(ta, tb) = d0},
where D j (ta, tb) represents the number of base j demands placed on the depot
during (ta, tb]. Note that

P{V1(t) = m|Z0(ta, tb) = d0, D j (ta, tb) = d j } = 0

when d j > d0 and when d0 < s0 + m. Observe when d j ≤ d0 and d0 ≥ s0 + m
that

P{V1(t) = m|Z0(ta, tb) = d0, D j (ta, tb) = d j }

=

(
d j

d j − m

)(
d0 − d j

s0 − (d j − m)

)
(

d0
s0

) ,

and that

P{D j (ta, tb) = d j |Z0(ta, tb) = d0} =
(

d0
d j

)(
1 − λ j

λ0

)d0−d j
(

λ j

λ0

)d j

.

Combining these above results we see in this second case that

P{X j (t) = s j − k|Z0(ta, tb) = d0}

=
s j −k∑
m=0

⎧⎪⎪⎨⎪⎪⎩
s0+m∑
d j =m

(
d j

d j − m

)(
d0 − d j

s0 − (d j − m)

)
(

d0
s0

)

·
(

d0
d j

)(
1 − λ j

λ0

)d0−d j
(

λ j

λ0

)d j

⎫⎪⎪⎬⎪⎪⎭
· e−λ j A j

(λ j A j )
s j −k−m

(s j − k − m)! .
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Thus

P{I j (t) = k} =
∑

d0≤s0

P{X j (t) = s j − k|Z0(ta, tb) = d0} · P{Z0(ta, tb) = d0}

+
∑

d0>s0

P{X j (t) = s j − k|Z0(ta, tb) = d0} · P{Z0(ta, tb) = d0}

= e−λ j A j
(λ j A j )

s j −k

(s j − k)! ·
∑

d0≤s0

e−λ0 D (λ0 D)d0

d0!

+
∑

d0>s0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min(s j −k,d0−s0)∑

m=0

⎧⎪⎪⎨⎪⎪⎩
s0+m∑
d j =m

(
d j

d j − m

)(
d0 − d j

s0 − (d j − m)

)
(

d0
s0

)

·
(

d0
d j

)(
1 − λ j

λ0

)d0−d j
(

λ j

λ0

)d j

⎫⎪⎪⎬⎪⎪⎭
· e−λ j A j

(λ j A j )
s j −k−m

(s j − k − m)!

⎫⎪⎪⎪⎬⎪⎪⎪⎭ · e−λ0 D (λ0 D)d0

d0! .

Observe that none of the terms depends on t . Thus this expression is also the
limiting probability that the net inventory random variable is equal to k. Also
observe that only under the condition that s0 is large enough so that

∑
d0≤s0

e−λ0 D (λ0 D)d0

d0! is very close to 1

does P{I j = k} or P{X j = x} have an approximately Poisson distribution.
Finally, we observe that this probability distribution is computationally intract-

able for the large scale problems found in practice. Hence approximations will be
developed for this distribution as we construct optimization models.

However, before we do so, let us examine some additional exact models.

4.3 Some Extensions

In the preceding analysis, we assumed that the depot to base j transportation time,
A j , and the depot repair cycle time, D, were constants. Let us observe that we can
relax these assumptions without affecting the analysis we have performed.

Let us now suppose that each failed item entering the depot repair process
has a repair cycle time drawn from a distribution having mean D and a density
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function ψ . Assume repair cycle times are independent from failed part to failed
part as well. Define the random variable Z0 to be the number of units remaining
in the depot repair cycle at a random point in time.

We know from Palm’s theorem that the random variable Z0 has a Poisson
distribution with mean λ0 D. The random variable V1(t) will now measure the
number of units back-ordered at the depot that are due to be shipped to base j ;
that is, V1(t) represents the number of base j backorders at the depot at a random
point in time.

Let N0 represent the number of depot backorders at a random point in time.
Then

P(V1(t) = m) =
∑

n0≥m

P{V1(t) = m|N0 = n0}P{N0 = n0}

But

P{V1(t) = m|N0 = n0} =
( n0

m

)(λ j

λ0

)m(
1 − λ j

λ0

)n0−m
,

P{N0 = n0} = e−λ0 D (λ0 D)s0+n0

(s0 + n0)! = P{Z0 = s0 + n0}, n0 > 0,

and

P{N0 = 0} =
s0∑

k=0

e−λ0 D (λ0 D)k

k! .

Also, as in our previous analysis,

P{V2(t) = k} = e−λ j A j
(λ j A j )

k

k! .

Since V1(t) and V2(t) are independent random variables,

P{I j (t) = k} = P{X j (t) = s j − k}

= e−λ j A j
(λ j A j )

s j −k

(s j − k)! · P{N0 = 0}

+
∑
n0>0

(
1 − λ j

λ0

)n0
e−λ0 D (λ0 D)n0+s0

(s0 + n0)! e−λ j A j
(λ j A j )

s j −k

(s j − k)!

+
s j −k∑
m=1

{∑
n0≥m

(n0
m

)(λ j

λ0

)m(
1 − λ j

λ0

)n0−m
e−λ0 D (λ0 D)n0+s0

(n0 + s0)!

}

· e−λ j A j
(λ j A j )

s j −k−m

(s j − k − m)! .
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Again this is the stationary distribution of the net inventory random variable
and the distribution of the number of units in resupply for a base. Furthermore,
when P{N0 = 0} ≈ 1, these distributions are approximately Poisson distribu-
tions. Specifically

P{X j = k} ≈ e−λ j A j
(λ j A j )

k

(k)! = P{V2 = k} when P{N0 = 0} ≈ 1.

Next, let us make a different assumption concerning the manner in which the
depot maintenance center operates. To this point, we have assumed repair times
are independent and identically distributed random variables. We now assume the
repairs can not cross. That is, a unit that enters the repair process can not complete
repair prior to one that enters the repair at an earlier time.

Suppose that we know the probability distribution for the length of the repair
cycle time for a unit when repair cycle times do not cross. Let ψ(·) be the density
function of this random variable.

Now consider a random point in time. Because we have assumed repairs of
items are completed in the order in which the failures occur, that is, the resupply
process satisfies our no crossing assumption, the number of items in the repair
cycle process at a random point in time is equal to the number of failures occurring
during a resupply time. That this is the case is due to Svoronos and Zipkin [241,
242].

Let

G(k) = P{Z0 = k},
where Z0 is a random variable that measures the number of demands (failures)
placed on the depot during the repair cycle of a randomly failed item. Then

G(k) =
∫

P{Z0 = k|t}ψ(t)dt

=
∫

e−λ0t (λ0t)k

k! ψ(t)dt.

As before, let us compute the probability distribution of V1, the number of
units back-ordered at the depot that correspond to base j orders. Again we let N0
be the random variable describing the number of depot backorders at a random
point in time. As we observed earlier,

P(V1 = m) =
∑

n0≥m

P(V1 = m|N0 = n0) · P(N0 = n0).

But in this case,

P(N0 = 0) =
∑
k≤s0

G(k) =
∑
k≤s0

∫
P(Z0 = k|t)ψ(t)dt

=
∑
k≤s0

∫
e−λ0t (λ0t)k

k! ψ(t)dt.
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and P(N0 = n0) = G(s0 + n0), n0 ≥ 1 and integer.
Given P(N0 = n0) and, for n0 ≥ m,

P(V1 = m|N0 = n0) =
(

n0
m

)(
λ j

λ0

)m (
1 − λ j

λ0

)n0−m

,

we can compute P(V1 = m).
Suppose ψ(t) is gamma distributed, that is,

ψ(t) = e−t/β tα−1

βα�(α)
, t ≥ 0.

Then the expected repair cycle time is E(t) = αβ and Var t = αβ2. Also

G(k) =
∫ ∞

0
e−λ0t (λ0t)k

k!
e−t/β tα−1

βα�(α)
dt

= λk
0

k!βα�(α)

∫ ∞

0
e− (βλ0+1)t

β tk+α−1 dt

= λk
0

k!βα�(α)
�(α + k)

βα+k

(βλ0 + 1)α+k

= �(α + k)

k!�(α)

[
βλ0

βλ0 + 1

]k [ 1

βλ0 + 1

]α

.

Thus G(k) has a negative binomial distribution with p = 1
βλ0+1 , and mean =

α
(1−p)

p and variance = α(1−p)

p2 when ψ(t), the lead time density, is a gamma
density.

Next, suppose the transportation times from the depot to base j do not cross.
Let the transportation lead time random variable have a density function denoted
by γ (t). Let V2 be the stationary distribution of the number of units of demand at
base j during a lead time. By employing the results of Svoronos and Zipkin[241,
242], we may compute P(V2 = k) as follows

P(V2 = k) =
∫

P(V2 = k|t)γ (t)dt

=
∫

e−λ j t (λ j t)t

k! γ (t)dt.

But V1 and V2 are independent since the demands contributing to their calcu-
lation occur in nonoverlapping intervals of time. Thus we use these distributions
to determine the probability distribution for the random variable X j , the number
of units in the resupply system for base j .
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P(X j = s j − k) = P(V2 = s j − k) · P[N0 = 0]
+
∑
n0>0

(
1 − λ j

λ0

)n0

· P[N0 = n0 + s0] · P(V2 = s j − k)

+
s j −k∑
m=1

{∑
n0≥m

(
n0
m

)(
λ j

λ0

)m (
1 − λ j

λ0

)n0−m

· P[N0 = n0 + s0]
}

· P(V2 = s j − k − m).

4.4 Problem Set, Chapter 4

4.1. Consider the following inventory control policy for managing a single item at
a single location. The inventory position is monitored continuously and an order
for Q units is placed whenever the inventory position hits the level r . This is
called an (r, Q) policy. Prove that the inventory position is uniformly distributed
over the set {r +1, r +2, . . . , r +Q} when an (r, Q) policy is used and the demand
process is Poisson. Suppose the demand process is a renewal process. What is the
distribution of the inventory position random variable in this case?

4.2. Suppose a single item is managed in a two-echelon system of the type de-
picted in the following figure.

Fig. 4.2. Depot-Base System

The item is a repairable item, that is, it normally can be repaired after it fails.
We assume all failures occur at the lower echelon - the base echelon. When an
item fails at base j it is either repaired there with probability r j or it is sent to the
depot to be repaired. Each failure generates a demand for a spare serviceable part
at the base at which the failure occurred. When the broken part is repaired at base
j , the part is returned to a serviceable condition B j time units later. When the part
is sent to the depot to be repaired, the depot is immediately informed and sends a
replacement part to the base as soon as possible. If the depot has a serviceable part
in stock, it is sent immediately to base j . The transportation time from the depot
to base j is A j time units. If the depot does not have a serviceable part on hand,
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a replacement part is sent as soon as one becomes available given that the depot
follows a first-come-first-serve policy for satisfying demands. Thus resupply of
a base’s serviceable inventory comes from the base’s maintenance organization
when the failed item is repaired there and from the depot otherwise. In either case
there is a one for one exchange of a broken part for a serviceable part. Thus the
base follows an (s–1,s) inventory policy.

If a unit is sent to the depot for repair, p is the probability that it cannot be
repaired but must be scrapped. Thus periodically the depot places an order with
an outside source to replenish system stock. The procurement lead time is E time
units.

We assume that the failure process at base j is a Poisson process with rate λ j ,
the failure processes are independent, the depot repair cycle time is a constant D
time units, there is no lateral resupply among the bases, all excess demand is back-
ordered, and the depot follows a continuous review (r, Q) policy for replenishing
scrapped units. We also assume that B j < A j < D < E .

Develop the exact probability distribution of the net inventory random variable
for base j .

4.3. In Section 4.2 we developed the probability distribution for net inventory
at each base in a continuous review two-echelon inventory system, where the
bases and the depot all followed an (s–1,s) policy. Recall that the depot to base
transportation time is a constant (A j days for base j) and the depot procurement
lead time is a constant D days. We also assumed that the demand for the product
is Poisson distributed with rate λ j at base j and that the demand processes are
independent among bases.

Assume now that the depot follows a (r, Q) policy. First, extend the results of
Section 4.2 to represent this change in the depot’s operating policy. Then, care-
fully develop an algorithm for finding the optimal (or possibly near optimal) val-
ues for Q, r , and s j , j = 1, . . . , n. The objective is to select these values so that
the average annual costs of holding, procuring, and backordering are minimized.
Backorder costs are charged proportional to the expected number of units in a
backorder status at any point in time.

4.4. For the environment presented in Section 4.2, let us assume that there are 10
bases. Demand at each base arises according to a Poisson distribution. For base
j , assume that λ j A j = .2. Furthermore, λ j/λ0 = .5 and λ0 D = 2. Let X j (t)
represent the random variable that measures the number of units in resupply for
base j . Plot P{X j = k}, k = 0, 1, . . . , for depot stock levels s0 = 2, 4 and 6. Let
B(s0) measure the expected backorders at the depot given the depot stock level is
s0, where B(s0) = ∑

x>s0
(x − s0)p(x |λ0d) and p(x |λ0d) = e−λ0 D(λ0 D)x/x !.

Then E[X j ] = λ j A j + B(s0)λ j/λ0.
Suppose we approximate the distribution of X j with a Poisson distribution

with mean E[X j ]. For the specified values of s0 given earlier, plot the approx-
imating distribution of X j . How do they compare with the corresponding exact
distributions?



5

Tactical Planning Models for Managing
Recoverable Items

In 1968, Sherbrooke [223] published a landmark paper in which he described a
mathematical model for the management of recoverable or repairable items called
METRIC (Multi-Echelon Technique for Recoverable Item Control). Since that
time, many extensions and modifications to his model have been proposed, some
of which are discussed in this and subsequent chapters. Recall that in the previ-
ous chapter we showed how to calculate the exact distribution of the number of
units in the resupply system at each base in a two-echelon depot base system. We
observed there that the exact expressions are too computationally burdensome to
be of practical use. The METRIC model is based on an approximation to this
distribution that is easy to compute, and hence has been widely used in many
applications.

In this chapter we summarize the key elements of Sherbrooke’s ideas and
important contributions and improvements to METRIC due to Graves [99] , Sher-
brooke [226] and O’Malley [189]. We will also show how METRIC was extended
to represent more complicated environments in which there are both repairable as-
semblies, which are termed LRUs, or line replaceable units, and subassemblies,
which are shop replaceable units, or SRUs. This model was originally developed
by Muckstadt [174]. Included in the discussion in this chapter is a waiting time
analysis that is due to Kruse [152].

5.1 The METRIC System

The system modelled by Sherbrooke [223] corresponds to one that was operated
by the US Air Force, which consists of a set of bases, at which flying activity
occurs, and a depot. Both the depot and bases stock inventory and repair defective
parts. The parts removed from the aircraft requiring repair are the LRUs, or Line
Replaceable Units. The system is assumed to operate as follows.

When an LRU fails at a base (removed from an aircraft), the following events
occur. First, an LRU is withdrawn from base stock and placed on the aircraft,
thereby returning the aircraft to an operational status. If serviceable stock is not
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available in base supply, then a backorder occurs. The failed unit is either repaired
at the base or the depot.

The decision as to where the repair occurs depends only on the nature of the
failure. Some types of LRU failures can only be diagnosed and repaired at the
depot. Others can be diagnosed and repaired at the base level. We assume that
whenever a failed unit can be repaired at a base, from a technical viewpoint, then
it will be repaired there. Thus the choice of the repair location does not depend
on the current on-hand stock at the base or the current workload in the base repair
shop.

When the unit is shipped to the depot for repair, a request is made to have
an LRU of the same type shipped to that base. If such a unit is on-hand, it will
be shipped immediately; otherwise, a backorder will occur at the depot. We as-
sume two things. First, the depot meets demands on a first-come, first-serve basis.
That is, no prioritization among bases occurs when making shipping decisions
even though such prioritization may often be desirable. Thus the tactical planning
model is conservative in that base level performance will be enhanced if proper
prioritization practices are put into operation. Second, bases are not resupplied by
other bases, that is, lateral resupply is not permitted in the model. Again this is a
conservative assumption since lateral resupply will enhance base performance if
executed appropriately. We discuss lateral resupply models in Chapter 7.

Because the cost of each unit of an LRU is normally high and demand rates
are usually low, the (s–1,s) inventory policy is followed in practice at both the
bases and the depot. We assume that all failed units can be repaired; however, if
there are condemnations, then orders will be placed on an external supplier. In
this case the orders may be for more than a single unit. In these cases, the (s–1,s)
policy is not followed and our subsequent discussion must be modified.

We will assume that failures of each LRU type occur according to a Poisson
process. This assumption is necessary for some analytic reasons as will become
apparent as we proceed. However, we will indicate subsequently how this assump-
tion is relaxed in practice.

5.1.1 System Operation and Definitions

As we discussed, the system operates as follows. Removals of LRU i at base j
occur according to a Poisson process with rate λi j . With probability ri j the unit
will be repaired at the base, and with probability (1 − ri j ) will be repaired at
the depot. Hence the arrival process to base maintenance for LRU i is a Poisson
process with rate ri jλi j . The arrival process to the depot maintenance activity for
LRU type i is also a Poisson process with rate λi0 = ∑

j (1 − ri j )λi j . That this
process is a Poisson process is a consequence of the fact that failures occur at
bases according to Poisson processes for LRU type i and that each such failure
has a probability of ri j of being repaired at the base and 1 − ri j of being repaired
at the depot. Furthermore, the superposition of the independent Poisson arrival
processes from the bases corresponding to failures requiring depot repair for LRU
type i is also a Poisson process.
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We assume the depot repair cycle time for LRU i is denoted by Di and is not
dependent on the base from which the LRU is sent. The repair cycle time includes
the packing, transportation, and actual repair times.

We let Bi j be the base repair cycle time for LRU i at base j and Ai j be the
order, shipping and receiving time of LRU i at base j for shipments of LRU i
received from the depot.

Let Ti j represent the average number of days that it takes to resupply base j’s
stock for LRU i once a unit enters the resupply system, that is, either depot or
base repair cycles.

We assume λi j is measured in units per day and Di , Bi j and Ai j are measured
in days. The flows of LRUs in this system are shown in Figure 5.1.

Fig. 5.1. The METRIC System

5.1.2 The Optimization Problem

Our goal is to develop a model that can be used to determine stock levels si j

for LRU i at location j and to show how to compute these stock levels. The
objective of the model is to minimize the total number of average outstanding
backorders at the bases at a random point in time for a given level of investment.
But why choose the backorder criterion as the performance measure of interest?
The goal should be to maximize the expected number of operational aircraft at
the bases. Recall that in Chapter 3, we showed, to a first order approximation, that
minimizing backorders at bases is equivalent to maximizing the expected number
of operational aircraft at the base level. Thus maximizing the average number of
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available aircraft is approximately equal to minimizing the average number of
outstanding base level LRU backorders at a random point in time.

As before,

si j = LRU i stock level at base j (or depot if j = 0).

Before we state the optimization problem, we first develop some additional
relationships.

The key equation that links the base and depot stock levels is the average
resupply time equation for LRU i at base j . Let

Ti j = average LRU i resupply time at base j

= ri j Bi j + (1 − ri j )(Ai j + depot delay (si0)).

Thus the average resupply time is Bi j when the repair occurs at base j for LRU
i and Ai j plus an expected waiting time (depot delay) due to the depot stock
level when resupply comes from the depot. These average times are weighted by
the probability that resupply occurs either from base maintenance or from depot
stock. But how do we measure this expected waiting time?

Let

δ(si0) = expected depot delay, or waiting time, given the depot

stock level is si0 for LRU type i.

From Little’s Law

δ(si0) = Average outstanding depot backorders (si0)

Depot demand rate (λi0)
,

as discussed in Chapter 3.
Let BD(si0) = expected outstanding depot backorders for LRU i given si0.
Hence

δ(si0) = BD(si0)

λi0
.

Let us explore how δ(si0) behaves. First, we note that δ(si0) → 0 quite
rapidly as si0 exceeds λi0 Di . To illustrate this observation, consider the cases
where λi0 Di is equal to 1, 5, 10, 50 and 100. We display the values of δ(si0) for
these cases in Table 5.1 through Table 5.5, where we assume Di = 1.

As can be seen from the data in these tables, the expected depot delay becomes
small quite quickly when Di = 1. When Ai j is several days in length, the depot
delay becomes a relatively inconsequential portion of the expected resupply time
as si0 exceeds λi0 Di .

As an example, suppose ri j = 0, Ai j = 5, λi j = 5 and λi0 = 50, with
Di = 1. Then the expected number of units in resupply for the base is 5 × 5 +
5 × δ(si0). If si0 = 50, then δ(si0) = .0563 and the expected number of units in
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Table 5.1. δ(si0) when λi0 = 1, Di = 1 Table 5.2. δ(si0) when λi0 = 5, Di = 1

si0 δi (si0)

0 1
1 .3679
2 .1036
3 .0233
4 .0043
5 .0007
6 .0001

si0 δi (si0)

4 .2874
5 .1755
6 .0987
7 .0511
8 .0244
9 .0108

10 .0044
11 .0017
12 .0006

Table 5.3. δ(si0) when λi0 = 10, Di = 1 Table 5.4. δ(si0) when λi0 = 50, Di = 1

si0 δ(si0)

9 .1793
10 .1251
11 .0834
12 .0531
13 .0322
14 .0187
15 .0103
16 .0055
17 .0028
18 .0013

si0 δ(si0)

49 .0667
50 .0563
51 .0471
52 .0389
53 .0318
54 .0258
55 .0206
56 .0163
57 .0127
58 .0098

Table 5.5. δ(si0) when λi0 = 100,
Di = 1

Table 5.6. δ(si0) when λi0 = 5
and Di = 10

si0 δ(si0)

100 .0398
101 .0351
102 .0308
103 .0268
104 .0233
105 .0200
106 .0172
107 .0146
108 .0124
109 .0104
110 .0087
115 .0032

si0 δ(si0)

49 .667
50 .563
51 .471
52 .389
53 .318
54 .258
55 .206
56 .163
57 .127
58 .098

the base’s resupply system is 25.2815 units of which only .2815 are attributable to
the depot delay in resupply of the base. In this example, we see that this minimal
contribution to the expected number of units in the base resupply system occurred
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when the depot carried no safety stock. Thus as the depot demand rate increases
and Ai j increases while ri j decreases, there is little to be gained by having much
depot safety stock.

Now let us consider another example. Suppose ri j = 0, Ai j = 5, λi j =
.5, λi0 = 5 but Di = 10. Thus λi0 Di = 50, as was the case in the previous
example. To find δ(si0) in this case we can again use the data in Table 5.4. The
data in that table must be multiplied by the value of Di to obtain the new values
of δ(si0), which are given in Table 5.6. As was the case in the first example, the
average resupply time is dominated by the value of Ai j . Hence if a small amount
of safety stock is carried at the depot, say 5 units so that si0 = 55, then the average
resupply time is 5.206 days. The expected number of units in resupply at the base
is now 2.6030 units of which .103 units are attributable to depot delay.

Observe that as λi0 Di remains constant but Di increases, then δ(si0) increases
proportionate to the increase in Di . For example, as Di increased from 1 to 10,
δ(si0) increased by a factor of 10. If λi j = .25, λi0 = 2.5 and Di = 20, then
δ(50) = 1.126 days and δ(55) = .412 days. Thus as Di increases, while λi0 Di

remains constant, we see that δ(si0) increases and can become a more significant
portion of the average resupply time. Hence safety stock at the depot will become
more important as Di becomes larger while λi0 Di remains constant.

In any case, the range of values that need to be evaluated explicitly in an opti-
mization procedure is limited since δ(si0) approaches small values quite quickly
as si0 > �λi Di�. The range can usually be limited to two standard deviations of
depot demand over the depot’s resupply time. That is, the optimal value that si0
assumes almost always is in the interval

[�λi Di�, �2 · (λi Di )
1/2� + �λi Di�

]
, as-

suming �λi Di� is the minimum depot stock level that is considered. Furthermore,
when solving practical problems, the search for the optimal value of si0 is limited
to a subset of these values. Consider the values in Table 5.5. Observe that suc-
cessive values do not differ by substantial amounts. Hence searches are limited to
perhaps every second value in the interval given earlier. Thus when λi Di = 100,
the search for the optimal value of si0 might be restricted to 100, 102, . . . , 120. As
a consequence of these observations, a maximum of 10 to 15 possible values for
si0 are often explicitly considered in practice when employing the optimization
methodology we will be discussing in subsequent sections.

5.1.2.1 Approximating the Stationary Probability Distribution for the
Number of LRUs in Resupply

To calculate the expected number of base j backorders for LRU i , we must de-
termine the stationary probability distribution for the number of units in resupply
for LRU i at base j .

Let Xi j = random variable for the number of units in resupply for LRU i at
base j in steady state. Clearly,

E[Xi j ] = λi j Ti j

= ri jλi j Bi j + (1 − ri j )λi j Ai j + (1 − ri j )
λi j

λi0
BD(si0).
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To compute the variance of Xi j requires some additional analysis. We drop
the LRU subscript in this analysis for ease of exposition.

Suppose there are ND backorders at the depot for some LRU. Let N j be the
number of base j units backordered at the depot. The probability that N j = n j

when ND = nD , where n j ≤ nD , is given by

P{N j = n j |ND = nD} =
(

nD

n j

)(
λ̂ j

λ0

)n j
(

1 − λ̂ j

λ0

)nD−n j

,

where λ̂ j = (1 − r j )λ j . Furthermore,

E[N j |s0] = E[N j ] = END

[
EN j [N j |ND]] = END

[
λ̂ j

λ0
ND

]
= λ̂ j

λ0
BD(s0).

Thus the expected number of LRUs in backorder status corresponding to demands
at base j is the fraction of total depot demand due to base j , on average, times the
expected number of depot backorders given s0.

The variance of N j also depends on the depot stock level. We know that

Var(N j |s0) = E[N 2
j |s0] − E[N j |s0]2.

We also know that E[N j |s0] = λ̂ j
λ0
BD(s0). Furthermore,

E[N 2
j |s0] = END

[
EN j [N 2

j |ND]
]

= END

[
Var(N j |ND) + E[N j |ND]2

]
= END

⎡⎣ND · λ̂ j

λ0
·
(

1 − λ̂ j

λ0

)
+
(

λ̂ j

λ0
ND

)2
⎤⎦

= λ̂ j

λ0

(
1 − λ̂ j

λ0

)
BD(s0) +

(
λ̂ j

λ0

)2

· END

(
N 2

D|s0

)

= λ̂ j

λ0

(
1 − λ̂ j

λ0

)
BD(s0) +

(
λ̂ j

λ0

)2 [
Var(ND|s0) + (END (ND|s0)

)2]

= λ̂ j

λ0

(
1 − λ̂ j

λ0

)
BD(s0) +

(
λ̂ j

λ0

)2 [
Var(ND|s0) + (BD(s0))

2
]
.

Thus, by combining the above observations, we see that

Var(N j |s0) = λ̂ j

λ0

(
1 − λ̂ j

λ0

)
BD(s0) +

(
λ̂ j

λ0

)2

Var(ND|s0).
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The Var(ND|s0) can be computed as follows. Since

Var(ND|s0) = E[N 2
D|s0] − (BD(s0))

2 ,

we need to determine a method for calculating E[N 2
D|s0]. Recall that ND mea-

sures the number of depot backorders at a random point in time. Hence if
ND = nD , then the number of units of the LRU in depot resupply must ex-
ceed the depot stock level by nD . Thus if x measures the number of units of the
LRU in depot resupply, there are nD depot backorders for the LRU if and only if
x − s0 = nD . Hence

E[N 2
D|s0] =

∑
x≥s0

(x − s0)
2 p(x |λ0 D),

where p(x |λ0 D) is the probability that x units are in depot resupply. From Palm’s
theorem, p(x |λ0 D) = e−λ0 D (λ0 D)x

x ! . Then

E[N 2
D|s0] =

∑
x≥s0

(x − (s0 − 1) − 1)2 p(x |λ0 D)

=
∑
x≥s0

(x − (s0 − 1))2 p(x |λ0 D)

−2
∑
x≥s0

(x − s0)p(x |λ0 D)

−
∑
x≥s0

p(x |λ0 D)

=
∑
x≥s0

(x − (s0 − 1))2 p(x |λ0 D)

−BD(s0) −
∑
x≥s0

(x − (s0 − 1)) p(x |λ0 D)

= E[N 2
D|s0 − 1] − BD(s0) − BD(s0 − 1).

We thus can determine E[N 2
D|s0] recursively, and therefore can determine

Var(ND|s0) recursively. Observe that

E[N 2
D|0] =

∑
x≥0

x2 p(x |λ0 D)

= Var [Number of units in Depot resupply]
+ [Expected number of units in depot resupply]2

= λ0 D + (λ0 D)2

when base demand is described by a Poisson process.
Now that we have computed the mean and variance of ND we are able to

compute the variance of Y j , where Y j is the random variable that represents the
demand over the order and ship time (A j ) plus the backordered demand due to the
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depot stock level s0 at a random point in time at base j . Since the demands that
cause depot backorders and those occurring during the transportation lead time to
base j take place in nonoverlapping intervals, and are therefore independent,

Var Y j = Var (Demand over A j )

+ Var (Backordered demand due to depot stock s0),

Var Y j = λ̂ j A j + λ̂ j

λ0

(
1 − λ̂ j

λ0

)
BD(s0) +

(
λ̂ j

λ0

)2

Var (ND|s0),

where as before λ̂ j = (1 − r j )λ j .
But to compute the expected number of backorders at base j for LRU i we

must know the probability distribution of the number of units in resupply, Xi j .
Rather than computing this distribution exactly, as we did in Chapter 4, we ap-
proximate it, as Sherbrooke [227] did, with a negative binomial distribution with
parameters

µi j = ri jλi j Bi j + (1 − ri j )λi j Ai j + (1 − ri j )
λi j

λi0
BD(si0)

σ 2
i j = ri jλi j Bi j + (1 − ri j )λi j Ai j

+ (1 − ri j )λi j

λi0

(
1 − (1 − ri j )λi j

λi0

)
BD(si0)

+
(
(1 − ri j )λi j

)2
λ2

i0

Var (ND|si0).

The appropriateness of the negative binomial approximation is discussed in
Chapter 6. The negative binomial distribution has two parameters, call them p
and r . These parameters must satisfy the two equations

µi j = r(1 − p)

p
and σ 2

i j = r(1 − p)

p2
.

Thus

1 >
µi j

σ 2
i j

= p and r = pµi j

1 − p
.

The probabilities can be computed recursively with

P{Xi j = 0} = pr and P{Xi j = x} = P{Xi j = x − 1} (r + x − 1)

x
q,

where q = 1 − p.
The choice of the negative binomial distribution as an approximation to the

probability distribution of Xi j was made for two key reasons. First, it is easily
computed, which is essential in large scale applications. Second, it is an accurate
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approximation. A substantial amount of testing has been conducted to verify the
validity of the approximation. In Chapter 6, we describe one such validation study.

Additionally, in the Air Force and other implementations of the model we have
just described, as well as the one presented in Section 5.3.1, a negative binomial
model was used for reasons other than those that have been discussed. A nega-
tive binomial model was used to represent the demand process as well in these
approximations. That is, the negative binomial probability model replaces the
Poisson model in all the demand probability model expressions found through-
out this chapter. The negative binomial model was chosen in these applications
to accommodate the high variance-to-mean ratios of the demand processes found
in practice. A complete discussion of the variance-to-mean ratio of the demand
process can be found in Crawford [65].

5.1.2.2 Finding Depot and Base LRU Stock Levels

We now turn to finding the best depot and base stock levels for each LRU, which
are the stock levels that minimize the expected number of “holes” in aircraft, that
is, that minimize the expected number of base LRU backorders at a random point
in time subject to a constraint on investment in inventory.

min
∑

i

m∑
j=1

Bi j (si j |si0)

s.t
∑

i

ci (si0 +
m∑

j=1

si j ) ≤ b, si j = 0, 1, . . . ,

(5.1)

where ci is the cost of one unit of LRU type i , b is the available budget to invest
in the LRUs, and m is the number of bases.

Unfortunately Problem (5.1) is neither separable nor convex. It is not sepa-
rable because the variables si j and si0 interact when computing Bi j (si j |si0) =∑

x≥si j
(x − si j )p(x |λi j Ti j (si0)), where p(x |λi j Ti j (si0)) is approximated by a

negative binomial distribution with mean µi j and variance σ 2
i j , as defined previ-

ously. Both µi j and σ 2
i j are functions of si0. We will discuss the convexity issue

shortly.
There are many different ways to solve (5.1). One way is to use a marginal

analysis approach and another is to employ a Lagrange multiplier method.

5.1.2.2.1 A Marginal Analysis Algorithm

We will first discuss the marginal analysis approach. Since the objective function
is separable by LRU type, we first focus on a single LRU type. As before, we
temporarily drop the LRU subscript to reduce the notation.

To determine a solution to (5.1) we analyze the relationships between total
system LRU inventory and the expected number of total base backorders. We will
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construct this function first and will observe that this function need not be convex.
Hence, we will construct its convex minorant and use this convex minorant as a
basis for making budget allocations among different types of LRUs.

Next, define

α(s, s0) = minimum total expected base backorders for

an LRU given that there are s units of the

LRU in the system and the depot stock is s0.

Let S represent the set of values of s0 that will be explicitly considered in the
optimization process.

Let s0εS. Then, given s0, we can compute µ j and σ 2
j as well as P{X j =

x |s0} ≡ p j (x |s0). Recall that

B j (s j |s0) =
∑
x>s j

(x − s j )p j (x |s0).

Also recall that B j (s j |s0) is a convex function, given s0, and satisfies

B j (s j |s0) = B j (s j − 1|s0) − (1 −
∑
x<s j

p j (x |s0)).

Thus the reduction in backorders by adding one unit to the inventory at base j is(
1 −∑x<s j

p j (x |s0)
)

. Note also that B j (0|s0) = µ j .

Now suppose that s = s0 + 1. The question we must answer is to which base
should this (s0 + 1)st unit of stock be allocated. To begin the process, set s j = 0
for all j . We want to place the unit at the base that has the largest reduction in ex-
pected base backorders resulting from the allocation; that is, assign the unit to the
base having the largest value of

(
1 − p j (0|s0)

)
. Since the functions B j (s j |s0) are

convex given s0 and are strictly decreasing as s j increases, we can use a marginal
analysis method to compute the best allocation of a stock of s − s0 = a units
knowing the best allocation of s − s0 = a − 1 units.

If s̃ j (a − 1) represents the optimal stock level for base j given a − 1 units are
available for allocation to the bases (given the value of s0), then the base that is
allocated the next unit of stock is the one that has the maximum value of(

1 −
∑

x<s̃ j (a−1)+1

p j (x |s0)

)
.

Observe that to calculate the marginal reduction in backorders for base j by
adding an additional unit of stock to that base we need to determine∑

x<s̃ j (a−1)+1

p j (x |s0) =
∑

x<s̃ j (a−1)

p j (x |s0) + p j (s̃ j (a − 1) + 1).

But
∑

x<s̃ j (a−1) p j (x |s0) is known so that only p j (s̃ j (a − 1) + 1|s0) must be
computed. As observed earlier,
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p j (s̃ j (a − 1) + 1|s0) = p(s̃ j (a − 1)|s0)

(
r + (s̃ j (a − 1) + 1) − 1

)
s̃ j (a − 1) + 1

q.

Hence the function α(s, s0) can be computed very quickly for a large range of s
values. For example, we could choose to limit s by setting a minimum value for
α(s, s0). That is, when α(s, s0) < ε, then terminate the calculations.

The functions α(s, s0) must be calculated for all s0εS.
Next, define

α̂(s) = min
s0

α(s, s0).

α̂(s) is a strictly decreasing function of s; however, it need not be convex. As a
consequence, we construct α̂c(s), where α̂c(s) is a piecewise linear convex mi-
norant to the function α̂(s). Let Ŝc be the values of s at which the slope of α̂c(s)
changes.

For example, suppose m = 10 bases, each of which has a daily expected
demand rate of .195 units. Further, assume the depot resupply time is 10 days
and the depot to base transit time is 1 day for all bases. Figure 5.2 contains the
graph of α̂(s). Table 5.7 shows the values of α̂(s) and s∗

0 , the latter being the
optimal depot stock levels corresponding to the various values of total system
stock s. Note that the optimal depot stock level is not monotone nondecreas-
ing as the total system stock increases. This illustrates why this type of opti-
mization problem is not easily solved. Note also that α̂(s) is not convex. Thus
we construct its convex minorant, which is shown in Figure 5.3. In this case,
Ŝc = {35, 36, 41, 42, 43, 44, 45, 46, 48, 54, 55}.

Fig. 5.2. Graph of α̂(s)

Suppose we construct functions α̂c
i (si ) for all LRU types i , where si is the

total system stock for item type i . Rather than solving (5.1) for a specific target
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s α̂(s) s∗
0 s α̂(s) s∗

0
35 .25798 25 46 .01867 26
36 .22889 26 47 .01565 27
37 .20787 26 48 .01234 28
38 .18685 26 49 .01117 28
39 .16421 25 50 .01000 28
40 .12383 20 51 .00882 28
41 .08727 21 52 .00765 28
42 .06120 22 53 .00465 23
43 .04324 23 54 .00285 24
44 .03128 24 55 .00183 25
45 .02355 25

Table 5.7. α̂(s) and s∗
0

Fig. 5.3. Graph of α̂c(s)

budget value b, we will construct a tradeoff curve of total base backorders over
all LRU types as a function of the total investment in all LRUs. This function is
constructed using another marginal analysis algorithm.

Let s1
i , . . . , sKi

i be the elements of Ŝi
c, the set of total stock levels that will

be considered for LRU type i based on the construction of the convex piecewise
linear function α̂c

i (si ). That is, the values sk
i are the stock levels at which the slope

of the total base backorder function α̂c
i (si ) changes.
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To begin the construction process, compute α̂c
i (s

1
i ) for all items i . Let β(1) =∑

i α̂c
i (s

1
i ), and let C(1) =∑ s1

i ci . Next, set ki = 1 for all i and � = 1.
At the beginning of iteration � ≥ 1, we have C(�) and β(�). For all i , compute

�i (s
ki
i ) = α̂c

i (s
ki
i ) − α̂c

i (s
ki +1
i )

ci (s
ki +1
i − ski

i )
,

the reduction in total expected base backorders by incrementing the stock level
from ski

i to ski +1
i per dollar invested in LRU i .

Select i∗ such that

�i∗(s
ki∗
i∗ ) = max

i
�i (s

ki
i ).

Set

C(� + 1) = C(�) + ci∗(s
ki∗+1
i∗ − s

ki∗
i∗ ) and

β(� + 1) = β(�) − (α̂c
i∗(s

ki∗
i∗ ) − α̂c

i∗(s
ki∗+1
i∗ )).

Increment ki∗ = ki∗ + 1 and � = � + 1, and recompute the value of �i∗(s
ki∗
i∗ ).

The �i (·) values remain the same for all other values of i .
Repeat this process until there are no remaining values of ki to consider, that

is, ki = Ki for all i .
The process we have outlined can be used to compute the total expected base

backorder function for a finite set of the investment levels in LRU system inven-
tory, as depicted in Figure 5.4.

Fig. 5.4. Total Expected Base Backorders for Various Budget Levels Generated by the
Algorithm

5.1.2.2.2 A Lagrangian Method for Computing Depot and Base Stock Levels

Let us now describe an alternative method for computing the depot and base stock
levels, that is, another method for solving Problem (5.1). Roughly the algorithm
works as follows. First construct a Lagrangian relaxation to Problem (5.1) and
then decompose it into a collection of single item problems, which are solved one
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at a time. The constraint that is relaxed is the investment constraint. Thus there
is only one Lagrangian multiplier in the relaxed formulation of our problem. For
each item, given the multiplier value, determine the best depot and base stock lev-
els using an enumeration method. This process is repeated over various multiplier
values to determine the solution to Problem (5.1).

This Lagrangian relaxation algorithm is based on an observation made in
Chapter 3. That is, the optimal solution to a relaxed problem yields an optimal
solution to Problem (5.1) for a certain value of b. By investigating an appropriate
range of values for the Lagrangian multiplier we can provide good, if not neces-
sarily optimal, solutions for Problem (5.1).

Let us begin by constructing the Lagrangian relaxation:

min
si j

n∑
i=1

m∑
j=1

Bi j (si j , si0) + θ

n∑
i=1

ci

m∑
j=0

si j − θb (5.2)

subject to si j = 0, 1, . . . , where we continue to use the same notation as employed
in the previous section. θ represents the multiplier corresponding to the constraint

n∑
i=1

ci

m∑
j=0

si j ≤ b.

For this formulation, θ > 0.
The Lagrangian relaxation may also be expressed as

n∑
i=1

{
min

∑m
j=1 Bi j (si j , si0) + θci

∑m
j=0 si j

}
− θb

subject to si j = 0, 1, . . . .

Hence the Lagrangian relaxation is separable by item, that is, we can solve

min
m∑

j=1

Bi j (si j , si0) + θci

m∑
j=0

si j (5.3)

si j = 0, 1, . . . ,

for each item i independently of all other items.
In Chapter 3 we showed the expected backorder functions Bi j (si j , si0) are

convex functions of si j for a given value of si0. However, the function is not
necessarily jointly convex in si j and si0, as we observed earlier. Thus to find an
optimal solution to (5.1), given θ , we use an exhaustive search on the candidate
depot stock levels.

Suppose θ assumes some value, say θ�, and si0 is equal to ρ. Then we want to
find the base stock levels that solve

W i
ρ� = min

si j =0,1,...

[ m∑
j=1

(Bi j (si j , ρ) + θ�ci si j
) ]+ θ�ciρ. (5.4)
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Notice that

min
si j =0,1,...

[
m∑

j=1

(Bi j (si j , ρ) + θ�ci si j
)]

=
m∑

j=1

min
(Bi j (si j , ρ) + θ�ci si j

)
, (5.5)

that is, the relaxed optimization problem is also separable by base for each item,
given θ� and ρ.

The solution to

minBi j (si j , ρ) + θ�ci si j (5.6)

si j = 0, 1, . . .

can be found quite easily. The objective function to Problem (5.6) is discretely
convex in si j . Hence we can easily show, using a first difference argument, that
the optimal value for si j is the smallest nonnegative integer for which∑

x≥si j +1

p(x |ρ) ≤ θ�ci or
∑
x≤si j

p(x |ρ) ≥ 1 − θ�ci ,

where p(x |ρ) is the probability that there are x units in resupply at base j for item
i given si0 = ρ. These probabilities are computed as described in Section 5.1.2.1.

Observe that whenever θ� ≥ 1
ci

, the optimal value for si j is 0. Thus a necessary

condition for si j > 0, for all i , is θ� < mini
1
ci

= 1
maxi ci

.
We have shown how to find the optimal values of the base stock levels given

θ� and ρ. To find an optimal set of depot and base stock levels for a given value
of θ�, find the value of si0 = ρ for which

si0 = arg min
ρ

W i
ρ� (5.7)

and the corresponding base stock level values, si j . As we have discussed earlier,
the range of depot stock levels that need to be examined explicitly is limited be-
cause Bi0(si0)

λi0
→ 0 rapidly as si0 surpasses λi0 D, the expected depot demand over

the depot resupply time. In practical applications �λi0 D� is often a floor on si0.
Knowing the stock levels for the depot and bases, we also have the corre-

sponding investment level for item i ,

ci (θ�) = ci

m∑
j=0

si j . (5.8)

The total investment level over all items, given θ = θ�, is

n∑
i=1

ci (θ�). (5.9)
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Hence for every choice of θ there corresponds a required investment level in sys-
tem stock.

For practical problems there are bounds on the value of θ , too. Recall that for
si j to be positive, θ must be less than 1

ci
. Hence a search for the optimal value is

normally confined to the range 0 < θ < 1
max ci

.
There are two very different ways that a Lagrangian based algorithm can be

employed in practice. In one approach a bisection method is used to find the opti-
mal value of θ . Since a range of budget versus expected base level backorder val-
ues is often desired, a second approach is sometimes implemented. In this second
approach, a set of M values for θ are prespecified, 0 < θ1 < · · · < θM < 1

max ci
.

These values are set based on experience in solving past problems. We now de-
scribe both approaches.

Algorithm 1

Step 1. Determine θmin and θmax, the minimum and maximum values considered
for θ . Set θ1 = θmin+θmax

2 and � = 1
Step 2. Set θ = θ�. For each item i , find the depot and base stock levels that yield

minρ{W i
ρ�}.

Step 3. Calculate C(θ) = ∑n
i=1 ci

∑m
j=0 si j (θ). If |C(θ) − b| < ε, stop; oth-

erwise, if C(θ) > b, set θmin = θ�; otherwise set θmax = θ�. Set
θ� = θmax+θmin

2 , � = � + 1, and return to Step 2.

The number of iterations required to find a good solution clearly depends on
the initial choices for θmin and θmax and ε. In real problems, when there is ex-
perience in choosing the initial range of θ values and ε is set to be 1/2% of the
budget, the number of iterations required normally does not exceed 10. Nonethe-
less, a very large number of calculations must be made repeatedly. The second
algorithm requires fewer calculations, as we will see. The second algorithm is as
follows.

Algorithm 2

Step 1. Select a set of M multiplier values

0 < θ1 < θ2 < · · · < θM <
1

max ci

Step 2. For each item i , for each θ�, solve

min
ρ

W i
ρ�

and obtain stock levels si j (θ�) and
∑m

j=1 Bi j (si j (θ�), si0(θ�)).
Step 3. Compute C(θ�). Select the solution that has a budget closest to b.
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As mentioned, it may appear that the two approaches require the same compu-
tational effort since the same calculations are performed in Step 2 in both cases.
They are not as similar as one might initially believe because of the manner in
which the second algorithm is implemented.

For the second algorithm, let us examine how we compute W i
ρ�. Recall that

for a given value of depot stock for item i , si0 = ρ, we find the optimal base stock
levels by determining the smallest values of si j for which∑

x≤si j

p(x |ρ) ≥ 1 − θ�c.

Observe that when �1 > �2,

si j (θ�1) ≤ si j (θ�2).

Thus, when we implement Algorithm 2, for a given ρ = si0, we make a single
pass through the base calculations and determine the optimal base stock levels
for each value of θ . Observe that we do not need to repeat the calculations made
when finding si j (θM ) when we are finding si j (θM−1), since si j (θM ) ≤ si j (θM−1),
given that ρ = si0. In practice, fewer calculations are required to implement the
second algorithm. The second algorithm is particularly useful when the goal is
to understand the tradeoffs between investment in system stock versus expected
base level backorders.

5.2 Waiting Time Analysis

The optimization problem we have formulated has as its objective the minimiza-
tion of the total average number of outstanding LRU backorders at base level at a
random point in time. While the average number may be low for a particular LRU
at a base and the average waiting time may be low as well, there is a need to know
how long a delay could be experienced in responding to a request for resupply.
In other words, what is the probability distribution for the LRU resupply waiting
time at either a base or the depot. At base level, this time corresponds to the time
until an aircraft is again operational; at the depot, this time measures the time a
resupply request is delayed prior to shipping a unit to the requesting base.

We will now derive the distribution of waiting times assuming demands for re-
supply occur according to a simple Poisson process and assuming resupply times
are independent and identically distributed random variables with density ψ(·)
with mean T . Our goal is to compute the probability distribution that a failed
LRU will wait longer than a time u given that a demand for resupply occurred at
time t . We also assume a first-come, first-serve queue discipline is followed.

Let us begin by defining some notation. Let

W (t) be the waiting time random variable for satisfying an LRU demand oc-
curring at time t ,
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I (t) be the net inventory random variable of the LRU just before time t ,
X (t) be the random variable for the number of LRU units in the resupply pro-

cess just before time t , which does not include the demand occurring at
time t ,

V1(t, u) be a random variable measuring the number of LRUs completing repair
in the interval (t, t + u] that were in the resupply system at time t (i.e.
failed during (0, t) but were not repaired by time t),

V2(t, u) be a random variable measuring the number of LRUs completing repair
in (t, t + u] that entered the repair cycle during (t, t + u],

V (t, u) = V1(t, u) + V2(t, u), and
F(x) = ∫ x

0 ψ(y)dy, which is the probability that a LRU repair is completed in
x or fewer time units.

The LRU resupply request at time t will remain unfilled for a period of time
greater than u if and only if the number of units in resupply at the point in time t
at which the resupply request is made is s units or greater (s is the stock level) and
the number of units completing repair during (t, t + u] is insufficient to satisfy
that request by time t + u. Thus

W (t) > u if and only if I (t) + V (t, u) + r(u) ≤ 0,

where r(u) = 1 if the repair cycle time of the unit that failed at time t is less than
or equal to u and is 0, otherwise.

Since s = I (t) + X (t) for all t ,

I (t) + V (t, u) + r(u) ≤ 0 implies s − X (t) + V (t, u) + r(u) ≤ 0,

or s ≤ X (t) − V (t, u) − r(u) = X1(t + u) − V2(t, u) − r(u), where X1(t + u) =
X (t) − V1(t, u), that is, the number of LRUs in the resupply system at time t + u
that failed during (0, t). Therefore

P {W (t) > u} = P {X1(t + u) − V2(t, u) − r(u) ≥ s} .

Observe that the random variables X1(t + u), V2(t, u), and r(u) are indepen-
dent since LRUs requiring repair that arrive prior to t in no way influence arrivals
requiring repair subsequent to time t in terms of timing, quantity or repair times.
The repair time of the failed LRU occurring at time t is also unaffected by those
arrival times and the repair times of LRUs failing both prior to and subsequent to
time t .

Let p1(t) be the probability that an arrival in (0, t) remains in the resupply
system at time t + u, that is,

p1(t) = 1

t

∫ t

0
(1 − F(t + u − v))dv

= 1

t

∫ t+u

u
(1 − F(v))dv,



98 5 Tactical Planning Models for Managing Recoverable Items

and p0 be the probability that a LRU that failed during the interval (t, t + u]
completes its repair by time t + u, that is,

p0 = 1

u

∫ u

0
F(u − v)dv.

Then, following the reasoning presented in Chapter 3,

P {X1(t + u) = k} = e−λtp1(t) (λtp1(t))k

k!
= e−λ

∫ t+u
u (1−F(v))dv

(λ
∫ t+u

u (1 − F(v))dv)k

k!
and

P {V2(t, u) = k} = e−λup0
(λup0)

k

k!
= e−λ

∫ u
0 F(u−v)dv

(λ
∫ u

0 F(u − v)dv)k

k! .

To determine the probability that W (t) > u we consider two cases. In the first
case, X1(t+u) = s+k, k ≥ 1, and V2(t, u) < k. That is, the number of LRU units
remaining in the resupply system at time t + u that correspond to LRU failures
that occurred prior to time t is s + k, and additionally, less than k LRUs complete
repair in (t, t + u] of the units that failed in (t, t + u]. Since we assume demands
are satisfied on a first-come, first-served basis, the LRU demand that occurred at
time t can not be satisfied by time t + u.

In the second case, s + k, k ≥ 0, LRUs are in resupply at time t + u that
correspond to resupply requests that were placed prior to t . Furthermore, exactly
k units completed repair during (t, t + u] that corresponded to LRUs entering the
repair cycle during (t, t +u]. Thus, in this second case, the resupply request made
at time t will remain unfilled if and only if the repair cycle time of the requesting
unit exceeds u.

Combining these observations we see that

P {W (t) > u} =
∞∑

k=1

[
P {X1(t + u) = s + k}

k−1∑
y=0

P {V2(t, u) = y}
]

+
∞∑

k=0

P {X1(t + u) = s + k} {1 − F(u)} P {V2(t, u) = k} .

Suppose F(0) = 0. Then the probability that the waiting time is 0 is given by

P {W (t) = 0} =
s−1∑
k=0

P {X (t) = k} = P {I (t) > 0} .

Observe that P{X1(t + u) = k} depends on t and u but P{V2(t, u) = k} is a
function of u alone. Let
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P {X1(u) = k} = lim
t→∞ P {X1(t + u) = k}

= e−λ
∫∞

u (1−F(v))dv

[
λ
∫∞

u (1 − F(v))dv
]k

k! ,

which represents the steady state probability that k LRUs that were in the resupply
system at the time a LRU fails remain in the resupply system u time units later.
Let W be a random variable that measures the steady state waiting time to satisfy
a request for resupply. Then

P {W > u} =
∞∑

k=1

[
P {X1(u) = s + k}

k−1∑
y=0

P {V2(u) = y}
]

+
∞∑

k=0

P {X1(u) = s + k} {1 − F(u)} · P {V2(u) = k} ,

where V2(u) is the random variable measuring the number of LRUs that both
arrive for repair and complete repair in a period of length u following the failure
of a LRU.

This waiting time distribution could be used to establish minimum depot LRU
stock levels. If there is a desire to ensure that replenishment of base inventories
is not delayed by more than u days due to the lack of depot stock with proba-
bility α, then the minimum depot stock level can be set accordingly. Note that
P {W (t) > u} requires an explicit statement of the repair cycle time distribution
F(·). Thus F(·) will have to be estimated to make the required calculations.

5.3 A Multi-Indenture System

To reduce the cost of their maintenance, systems are increasingly being designed
in a more modular manner. The expensive systems, often valued at many mil-
lions of dollars, contain many repairable assemblies, which we have called LRUs.
The objective of the maintenance concept that underlies the product design is to
remove defective LRUs from the system quickly so that the system is rapidly re-
turned to a serviceable status. The LRUs are also often very expensive, some val-
ued at as much as several million dollars. Hence keeping them in the repair system
for an extended period of time is also costly, since more LRUs are required to keep
the systems operational. The system design concept is to avoid lengthy assembly
or LRU repair cycles as well as to minimize the length of the system’s repair time.
This is accomplished by making it possible to detect a faulty subassembly quite
quickly and to remove and replace that faulty subassembly rapidly as well. The
subassemblies are often expensive, too, and are often subject to repair when they
fail. We call these repairable subassemblies shop replaceable units (SRUs). They
are called SRUs to reflect the fact that they are removed from their parent assem-
bly in a repair shop and not directly from the system. Thus keeping systems in
a serviceable status depends critically on having both LRUs and SRUs available.
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Determining the best mix of LRUs and SRUs for given investment in these items
is the subject of this section.

5.3.1 A Two-Echelon, Two-Indenture Resupply System

An environment that contains LRUs that are assemblies that are removed from
and replaced into systems when system failures occur and SRUs that are removed
from and replaced into LRUs when they fail are called two-indenture level re-
supply systems. We will examine in detail a specific two-echelon, two-indenture
resupply environment, as depicted in Figure 5.5, consisting of a depot and a set of
bases supported by the depot.

Fig. 5.5. A Two-Indenture, Two-Echelon Resupply System

We use the terminology of the U.S. Air Force system for which the model was
originally created. Thus the systems are aircraft. The LRUs could be engines or
so-called black boxes that make up the avionics subsystem of an aircraft. SRUs
could be engine modules or could be boards that go into computers that are the
LRUs in an avionics system. The issue then is to determine the depot and base
LRU and SRU stock levels that minimize the expected number of base level back-
orders for LRUs. By doing so, we determine stock levels that will approximately
maximize the number of operational aircraft for a range of total investments in
LRUs and SRUs.
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The optimization methodology is similar to the one we outlined for the two-
echelon single indenture level problem discussed in Section 5.1.2.2.1 of this chap-
ter. We first concentrate on constructing the key probability distributions that are
the essential building blocks for the optimization models. Thus we will show how
to compute the number of units in resupply for an LRU and each of its subordinate
SRUs. We then outline a procedure for computing base and depot stock levels for
both LRUs and SRUs.

5.3.2 Calculating the Stationary Probability Distribution of the Number of
Units in Resupply

We begin by outlining the approach for constructing the probability distributions
for the number of units in resupply for each LRU and SRU at each base.

A key assumption underlying our analysis is that each LRU failure (or removal
from an aircraft) is the result of no more than one type of SRU failure. Further-
more, we assume that each SRU type is found in only one LRU type, which is a
reasonable assumption in practice.

We will concentrate on developing the stationary probability distribution for
a single LRU type, since the analysis is the same for all LRU types.

We now introduce some notation.
Let i denote the item type. i = 0 is the LRU and i = 1, . . . , I denotes the

SRU types. As before, j denotes the location with j = 0 representing the depot
and j = 1, . . . , m representing the bases.

Let

λi j = daily demand rate for item type i at location j ,
Bi j = average repair cycle time for item type i at base j ,
Di0 = average depot repair cycle time for an SRU of type i ,
D00 = average depot LRU repair cycle time,
ri j = probability that a removal of SRU i from an LRU at base j results in that

SRU being repaired at base j ,
r0 j = probability that a failure of a LRU at base j will be repaired there,
Ai j = order and ship time from the depot to base j for item type i ,
αi j = probability that an LRU being repaired at base j requires SRU i to com-

plete its repair, and
αi0 = probability that an LRU being repaired at the depot requires SRU i to

complete its repair.

Then the daily demand rate for SRU i at base j is λi j = r0 jλ0 jαi j and the daily
demand rate for the LRU at the depot is λ00 =∑ j (1−r0 j )λ0 j . The depot demand
rate for SRU type i results from base and depot requirements and is expressed as

λi0 =
∑

j

λi j (1 − ri j ) + λ00αi0, i > 0.

Let us focus on the LRU and compute the mean and variance of the number
of LRU units in the depot resupply process.
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Let

βi0 = λ00αi0

λi0
= probability that demand on

depot SRU i stock is due to

depot LRU repairs.

Then, if X00 represents the random variable for the number of LRUs in the
depot resupply process,

E[X00] = λ00 D00 +
∑

i

βi0Bi0(si0|λi0 Di0) and

Var(X00) = λ00 D00 +
∑

i

βi0(1 − βi0)Bi0(si0|λi0 Di0)

+
∑

i

β2
i0Var of SRU i depot backorders (si0|λi0 Di0),

where the Var(si0|λi0 Di0) is computed in the manner described in the discussion
of the METRIC model, that is, in Section 5.1.2.1 of this chapter.

The mean and variance of the number of SRUs in resupply at a base can be
computed in a similar manner. Let

βi j = probability that a unit of demand for SRU i at the depot

is attributable to a requirement at base j

= λi j (1 − ri j )

λi0
.

If Xi j is the random variable for the number of units in resupply at base j for
SRU type i , then

E[Xi j ] = λi j (1 − ri j )Ai j + ri jλi j Bi j

+βi jBi0(si0|λi0 Di0),

and

Var(Xi j ) = ri jλi j Bi j + (1 − ri j )λi j Ai j

+ βi j (1 − βi j )Bi0(si0|λi0 Di0)

+ β2
i j Var of depot SRU i backorders (si0|λi0 Di0).

Finally, let us compute the mean and variance of the number of LRUs that are
in the base’s resupply process. Following our notation,

β0 j = probability that an LRU being repaired

at the depot corresponds to a demand at base j.

Then we have
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β0 j = λ0 j (1 − r0 j )

λ00
.

Letting X0 j be the random variable describing the number of LRUs in resup-
ply at base j , we see that

E[X0 j ] = λ0 j (1 − r0 j )A0 j + r0 jλ0 j B0 j

+β0 jB(s00|E(X00), VarX00)

+
∑

i

B(si j |E[Xi j ], VarXi j )

and VarX0 j = r0 jλ0 j B0 j + (1 − r0 j )λ0 j A0

+β0 j (1 − β0 j )B(s00|E(X00), VarX00)

+
∑

i

Var of base j SRU i backorder (si j |E(Xi j ), VarXi j )

+β2
0 j Var of depot LRU backorder (s00|E[X00], VarX00).

These means and variances are used to calculate the probability distributions
required to determine the respective backorder functions. In each case, we assume
the probability distribution is accurately approximated by a negative binomial
distribution with the given means and variances.

5.3.3 Computing Depot and Base Stock Levels for Each LRU and SRU

Now that we have shown how to construct the approximating probability distribu-
tions for the number of units in resupply for each LRU and SRU at each location,
we are in a position to develop an optimization model and an algorithm for com-
puting these LRU and SRU stock levels.

Some additional nomenclature is required. Let � denote a LRU type, s�
i0 and

s�
i j denote the stock levels for the depot and base j , respectively, for SRU i found

in LRU � and s�
00 and s�

0 j the depot and base j stock levels for LRU �, respectively.

Our goal is to select the stock levels s�
i0 and s�

i j for each LRU family � - an
LRU and its subordinate SRUs - so as to minimize total base level LRU backo-
rders. Assume the unit cost of LRU � is c�

0 and the unit cost of SRU i in LRU � is
c�

i . Further assume that b represents an investment target. In practical applications
we would desire to construct an exchange curve in which minimum total base
level backorders is established as a function of various investment budgets, b. The
algorithm that we will discuss will be used to construct such a trade-off curve.

The optimization problem can be stated as follows for computing the SRU
and LRU stock levels
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min
∑

�

∑
j �=0

B�
0 j (s

�
0 j |s�

00, s�
i0, s�

i j )

∑
�

{
c�

0

(∑
j

s�
0 j + s�

00

)
+

∑
i �= 0

(SRUs)

c�
i

{∑
j

s�
i j + s�

i0

}}
≤ b

s�
0 j , s�

i j are integer and nonnegative.

As we discussed earlier, this problem is neither convex nor separable and therefore
is not trivial to solve. The solution approach that we describe is similar to the
one we presented earlier in Section 5.1.2.2. This method is not guaranteed to
find an optimal solution to the original problem since it is a marginal analysis
based method. However, it does generate optimal solutions for specific budget
levels, as we will see. When we say optimal levels, we mean optimal given the
approximations we have made for the stationary probability distributions for the
number of units in resupply, as discussed earlier.

We now outline an algorithm for finding the LRU and SRU stock levels. Since
the notation required to state the algorithm is cumbersome, we will provide only
a nonmathematical description. It will be obvious how the method works once
the ideas presented in Section 5.1.2.2. are fully understood. The algorithm con-
structs a sequence of convex trade-off curves, one for each LRU family, and then
combines these curves to generate an exchange curve for the entire system. The
outline of the algorithm for each LRU family is as follows.

For Each LRU Family

Step 1. Construct the trade-off curve for subordinate SRUs

(A) For each SRU in the family
(i) For each SRU depot stock level, construct a trade-off curve for in-

vestment in base stock for the SRU being examined. (This is accom-
plished using a marginal analysis method.) The goal is to select base
SRU stock levels that minimize the expected LRU waiting time for
repairs at the bases.

(ii) Using the results of Step (i), construct a trade-off curve of total ex-
pected LRU wait time at the bases and at the depot for LRUs repaired
at the depot versus the total system stock. This resulting trade-off
curve may not be convex.

(iii) Delete nonconvex points so that the remaining trade-off curve is dis-
cretely convex.

(B) Merge trade-off curves for all SRUs in the LRU family
(i) Using the data obtained from constructing the convex minorant of

the individual SRU performance versus investment curves in Step
1.A.iii, construct the trade-off curve that relates total expected LRU
base and depot waiting times, or delays in average LRU repair cycle
times, to specific levels of total investment in the SRUs, within the
LRU family. This construction is performed using marginal analysis
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and results in a convex trade-off curve. For each of the budget levels
generated in the construction of the trade-off curve there is a corre-
sponding minimum total expected LRU waiting time for the bases
and depot.

Step 2. For each total SRU budget level generated in Step 1.B.i., (which have
corresponding base and depot SRU stock levels)
(A) For all depot LRU stock levels

(i) Compute the mean and variance of the number of LRUs in resupply
for each location using the relationships derived in Section 5.3.2. Us-
ing these values, approximate the distribution of the number of LRU
units in resupply for each location.

(ii) Construct the trade-off curve of total base level LRU expected back-
orders versus total investment. Select the base to which the next unit
of LRU stock should be added using the marginal analysis concept.
Given the values of the SRU and depot LRU stock levels, the re-
sulting total base level LRU expected backorder curve is a convex
function and will be found using this marginal analysis approach.

(iii) The construction in Step (ii) yields a set of total budget versus total
base level LRU expected backorders given the depot LRU stock and
the total SRU budget level.

(B) For the given SRU budget level, construct a convex trade-off curve of
total investment versus expected LRU base level backorders
(i) Using the budget/performance pairs generated in Step 2.A.iii., con-

struct a combined trade-off curve considering all depot stock levels.
The resulting total expected base LRU backorders versus the budget
relationship need not be convex.

(ii) Delete pairs so that the resulting trade-off curve is discretely convex.
This yields a set of total budget versus total base level LRU expected
backorders, given the total SRU budget level.

Step 3. Construct the trade-off curve of total investment versus expected LRU
base level backorders.

(i) Using the budget/performance pairs generated in Step 2.B (ii), construct
a combined trade-off curve considering all SRU budget levels. The result-
ing total expected base LRU backorders versus total budget relationship
need not be convex.

(ii) Delete pairs so that the resulting trade-off curve is discretely convex.

The preceding greedy algorithm produces a trade-off curve for a single LRU
family. That is, the resulting discretely convex curve indicates the total expected
base level backorders that correspond to particular total investment levels in the
LRU and its subordinate SRUs. Once these convex functions are constructed for
each LRU family, we then combine them to generate a solution to the original
problem. This final trade-off curve can be found using the individual trade-off
curves using a simple greedy algorithm since each LRU family trade-off curve
is convex. Thus, for each budget level that results from applying the marginal
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analysis based greedy algorithm we obtain the minimum achievable expected total
base level backorders. We also obtain the base and depot LRU and SRU stock
levels that correspond to each budget.

5.4 Problem Set, Chapter 5

5.1. Suppose we have a two-echelon base-depot system as discussed in Sec-
tion 5.1.1. The demand process at each of 10 bases is a Poisson process, where
each base has a demand rate of .5 units per day. Suppose the average depot to base
order and ship time is either 1, 5 or 10 days. Further assume the average depot re-
supply time is either 15 or 30 days. All failed parts at the bases are repaired at the
depot.

(a) Plot δ(si0) for each base.
(b) Compute the average base resupply time as a function of si0 for each depot to

base order and ship time and each average depot resupply time combination.
How important a factor is the depot stock level in each case?

(c) Suppose the demand at each base is described by a Negative Binomial dis-
tribution with an average of .5 units per day at each base. Suppose that the
variance to mean ratio is identical at all bases, and is equal to either 1.01, 2, 5
or 10. Assuming demands are independent among the bases, what is the dis-
tribution of depot demand? Repeat the tasks indicated in (a) and (b) for these
cases. How do the values compare with those computed initially?

5.2. Suppose we are managing the two-echelon system discussed in Section 5.1.1.
Demands at each of 10 bases for an item occur according to a Poisson process with
a rate of .5 units per day. The average depot to base resupply time, Ai j , for the
item is 5 days for all 10 bases, and the average depot resupply time, D, is 30 days.
Suppose the fraction of the failures that arise at each of the bases that are repaired
at the bases is either .25, .5 or .75. Further assume the average base repair time
for the item is 2 days.

Compute the mean and variance of the number of units in resupply for a base
for each case for a range of values of the depot stock level. How does the variance
to mean ratio change as the fraction of units repaired at the depot increases when
the depot stock is equal to �λ0 D�, where λ0 is the average depot daily demand
rate?

5.3. In Section 5.1.2.1 we derived expressions for the mean and variance for the
number of units in resupply for a LRU at a base. The analysis was based on the
assumption that the demand process is a Poisson process. Suppose that the de-
mand process is Negative Binomially distributed rather than Poisson distributed.
Construct new equations for the mean and variance of the number of units in re-
supply for LRU at a base. Carefully state your assumptions as you develop these
expressions.
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Fig. 5.6. Depot/Base Repair Part Flow

5.4. Assume there are three items whose stock levels need to be determined in the
two-echelon system depicted in the figure below.

Removals of item i at base j occur according to a Poisson process at rate λi j

units per day. When a removal occurs at a base, three events take place simulta-
neously and instantaneously. First, a unit of stock is withdrawn from base stock
(if a unit is available); second, the failed unit is sent to the depot where it will be
repaired; and third, the depot resupplies the base (if a unit is on-hand). When units
of stock are not available, backorders occur. If there is a backorder at a base, then
an aircraft is grounded. If a backorder occurs at the depot, then there is a delay in
resupplying the requesting base.

The depot repair cycle time for all bases for part type i is denoted by Di ,
measured in days. The order and shipping time from the depot to each base is
Ai days for item i . There are 10 bases in the system, numbered 1 through 10.
The flying activity at bases 1 through 5 is the same and hence λi1 = . . . = λi5
for all i . Bases 6 through 8 have identical removal rates for all items, that is,
λi6 = λi7 = λi8. Finally, bases 9 and 10 have identical removal rates for each of
the three items, λi9 = λi10. The data in the following table indicate the removal
rates, depot repair cycle times and unit costs for the three items. The value of Ai

is two days for all three items for all bases.

Item Base Removal Rate Unit Costs Depot Repair
Base 1–5 Base 6–8 Base 9–10 (1000s of $) Cycle Times

1 1 0.5 0.25 3 10
2 1.5 0.75 0.375 4 8
3 0.5 0.25 0.125 5 10

Construct the convex function representing the relationship between minimum
total expected base backorders and total system stock for the three items, that is,
construct the functions α̂c

i (si ).
Once these three functions have been created, construct the convex function

that represents the relationships between minimum total base backorders (across
items) and investment in stock for these three items.

What would the impact be if the values of Di and Ai were reduced or in-
creased by a factor of 50%?
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5.5. Resolve Problem 4 using a Lagrangian relaxation algorithm.

5.6. In Section 5.3 we discussed a multi-indenture system consisting of LRUs
and subordinate SRUs. In the analysis we defined X0 j to be the random variable
describing the number of LRUs in resupply at base j . Verify the expressions given
in Section 5.3.2 for the E[X0 j ] and the Var[X0 j ].
5.7. We outlined an algorithm for computing both depot and base stock levels
for an LRU and SRU in Section 5.3.3. State this algorithm precisely by using
mathematical notation.

5.8. The algorithm described in Section 5.3.3 that can be employed to find depot
and base stock levels for each LRU and SRU is a marginal analysis method. For
the same environment, develop a Lagrangian based algorithm for computing these
stock levels.



6

A Continuous Time, Multi-Echelon, Multi-Item
System with Time-Based Service Level Constraints

We now examine a different environment that exists in practice for a wide variety
of products. In these situations, suppliers and customers often establish service
agreements that apply to a product (or group of products) that the customer has
purchased from the supplier. These agreements extend over a period of months
or years and normally specify the type of service that will be provided, as well
as the timing with which the service will take place. The details of these service
agreements vary in nature, often involving specific time-based guarantees, and
often covering multiple pieces of equipment across multiple customer locations.
The increasing complexity of these agreements has led to a new set of challenges
with which managers must contend. Specifically, setting system stock levels and
positioning individual item types to satisfy these service guarantees at minimum
investment is exceptionally difficult.

Suppliers must recognize that the customer’s concern is the maintenance of
the product, not the maintenance of the individual component items. By under-
standing the customer’s service level requirements in terms of the product, as
well as the timing with which the customer is willing to receive service, suppli-
ers of service parts can achieve considerable savings in inventory investment and
operational overhead.

In this chapter we consider a multi-item, multi-echelon distribution system in
which general service level requirements have been established between the sup-
plier and its customers. We assume that locations at the lowest level, or echelon,
of the distribution network experience demand for parts on a continual basis. As
in the other situations we have studied, the topology of the system is such that
each location on a particular level is replenished from a unique location at the
next-higher level over a constant transport lead time. The location at the top level
is replenished via a process that has a known and constant lead time. Demands
that cannot be fulfilled immediately are backordered. The objective is to construct
a tactical planning model to establish target inventory levels for each item type at
each location so that all service level requirements stipulated by the agreements
are satisfied while minimizing the total system inventory investment.
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The model we present captures a rich and realistic class of service level con-
straints that allow target service levels to be specified across multiple item types
and multiple locations, in any combination. The models we have discussed and
most of the models presented in the literature have equated “service level” with
“item fill rate.” However, single item fill rates or backorder rates may not reflect
the service levels with which the customer is concerned. The model presented in
this chapter views service agreements from the customer’s perspective, and not
the supplier’s.

The time-based service level constraints reflect the contractual agreements
made by the supplier for various items and locations. For instance, for a criti-
cal item at a particular customer location, we can specify the desired fill rate to
be 90% instantaneously, 95% within 8 hours, and 98% within 2 days. In keep-
ing with practice, our model represents time-based service levels in which the
required service times coincide with the transportation times from replenishment
sites within the distribution network.

To model these time-based fill rates, we provide an exact characterization of
what we call channel fill rates. In our distribution network, each demand is re-
plenished via a unique path from the top level location in the network. For each
intermediate location along the replenishment path from the top location to the
base, we define the associated channel fill rate to be the probability that an arriv-
ing order for the item at the base can be fulfilled within the transportation time
along the replenishment path from that location to the base. By allowing for these
time-based service level constraints in our framework, we capture response time
requirements that are an integral part of many real customer service agreements.

We develop an optimization procedure to minimize overall system inventory
investment while meeting all service level requirements. Note that the general na-
ture of the service level constraints makes this system-wide optimization problem
considerably more difficult than the ones we have discussed in earlier chapters, as
this problem may not be separable by item or by location.

The remainder of this chapter is organized as follows. We begin by describing
our modeling framework in detail and formulate the optimization problem. We
then derive exact expressions for the channel fill rates that are key to analyzing
overall service level fulfillment. Finally, we describe an iterative approximation
scheme for solving a common class of problems.

The contents of this chapter follow Caggiano, Muckstadt, Jackson and Rap-
pold [37].

6.1 The Model

Here, we state the assumptions upon which our model is based and illustrate the
types of service level requirements that can be represented within the modeling
framework. We also define the notation and present a mathematical programming
formulation of the problem.
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Fig. 6.1. Example item distribution network

6.1.1 Modeling Assumptions

For our purposes, the multi-item, multi-echelon distribution system has the fol-
lowing properties:

1. The distribution system is the composition of its item distribution networks.
Each item distribution network has a tree-like structure, where each location
in the network is replenished from a unique parent location at the next-higher
level. The sole location at the top level of an item network is replenished via
a process that has a known and constant lead time. See Figure 6.1.

2. Demand for a particular item occurs only at the lowest echelon of its item
network. We refer to locations in the lowest echelon as bases. We assume this
without loss of generality, since dummy locations and arcs with negligible
lead times can be added to achieve this structure. In the same manner, we
assume that all bases are on the same level in the item distribution network.

3. The demand processes for all items at all bases are mutually independent
Poisson processes with known demand rates. Thus, demands arise for one
unit of an item at a time.

4. All items are replenished on a one-for-one basis at all locations.
5. Transportation times for each item between adjacent network locations are

known and constant.
6. Orders that cannot be fulfilled immediately are backordered.
7. Orders are filled at all locations on a first-come, first-serve basis.
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For notational convenience only, we assume that all items share a common
distribution network, which will alleviate the need to define a separate network
structure for each item.

6.1.2 Service Level Requirements

We will illustrate the types of service level requirements that may be represented
in our modelling framework with an example.

Suppose a regional supplier of office equipment has as its main business the
leasing of photocopiers. Included in each lease is a service agreement that stip-
ulates the timing with which equipment breakdowns will be addressed by the
supplier. As part of the lease agreements, the supplier owns and is responsible for
providing any service parts that are needed to repair malfunctioning equipment.

As it happens, most photocopier breakdowns are caused by worn or overused
parts. Many of these parts, such as toner cartridges, document feed rollers, xero-
graphic modules, and staples, can be swapped-out quickly and easily, without the
aid of a trained technician. When a breakdown occurs and the needed parts are
stocked and available at the customer location, then repair can commence imme-
diately. If the needed parts are not available at the customer location, they must
be obtained from a regional warehouse. Parts can be transported from the ware-
house to any customer location within 24 hours. Hence, as long as the needed
parts are available either at the customer location or at the warehouse (or are
en-route) at the time a breakdown occurs, the repair can be completed within a
24-hour time window. Accordingly, the standard service agreement offered by the
supplier is based upon a 24-hour window. Specifically, the agreement stipulates
that all copier breakdowns will be investigated by a service technician within 24
hours, and that 95% of all copier breakdowns will be fixed within the same period.

Many customers find that the standard service agreement is sufficient to meet
their needs. Some customers, however, depend heavily on the photocopiers and
cannot afford to have their operations disrupted for up to 24 hours on a regular
basis. For this type of customer, the supplier typically agrees to stock some parts at
the customer site so that a portion of the customer’s breakdowns can be remedied
immediately. Recall that the supplier, not the customer, owns and is responsible
for providing the service parts. Each time a customer uses a part from their on-
site supply to fix a breakdown, a replacement order is placed immediately with
the warehouse. Once the order is filled at the warehouse, the replacement part will
be delivered to the customer site within 24 hours.

There are clearly tradeoffs for the supplier in agreeing to accommodate the
second type of customer. On one hand, stocking parts on-site for a customer will
keep the customer satisfied and will result in fewer service calls that require a tech-
nician to be dispatched to that customer site. Also, if the majority of breakdowns
require only inexpensive items for repair, notable improvements in customer ser-
vice may be achieved with relatively little investment. On the other hand, parts
that are stocked at the customer site are not available to service other customer
demands. Depending on the demand patterns and costs of items and the extent to
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which customers require instantaneous service, this could mean a huge investment
in service parts inventory in order to honor all service commitments.

Suppose we have two offices, a and b, that lease photocopiers from the sup-
plier. These offices receive service parts from the supplier’s regional warehouse,
denoted by r . In office a, the leased copier is lightly used, and breakdowns are
infrequent. Furthermore, when the copier does break down, alternative means of
photocopying are readily available on a temporary basis. Hence, while office a
certainly has no objection to having parts stocked on-site, the 24-hour service
agreement stipulated in the lease is sufficient to meet its needs. When stock is not
on-hand at a, then inventory stocked at r is used to achieve the desired service
level stipulated in the contract.

In office b, however, the leased copier is heavily used, and breakdowns are
more frequent. While a potential 24-hour delay is tolerable once in a great while,
frequent delays of this length would be too disruptive to the operation of the of-
fice. Thus, in addition to the 24-hour service agreement stipulated in the lease, the
supplier has agreed to place enough stock at office b so that 90% of office b’s pho-
tocopier breakdowns can be repaired immediately. Note that this is very different
from agreeing to stock the office so that each photocopier part is immediately
available for 90% of all breakdowns in which the item is required.

For purposes of describing the service level constraints associated with the
two offices, we will use the following notation: Let

I denote the set of photocopier component items, indexed by i .

λa denote the rate at which office a experiences copier breakdowns, and let λia

denote the rate at which office a experiences copier breakdowns that require
item i for repair. The ratio λia

λa
then represents the fraction of breakdowns at

office a that require item i for repair. Define λb and λib similarly.

sia and sib denote the stock levels for item i at locations a and b, respectively.
Let sir denote the stock level for item i at the regional warehouse r .

f 2
ia denote the probability that a breakdown at location a requiring item i can

be fixed immediately. That is, f 2
ia is the probability that item i is available

on-site at location a when it is needed. The superscript “2” refers to the level
of the (two-level) network with which the fill rate is associated. Define f 2

ib
similarly.

f 1
ia denote the probability that a breakdown at location a requiring item i can

be filled within 24 hours. That is, f 1
ia is the probability that item i is either

available on-site at location a, or it is available at the regional warehouse, or
it is en route from the warehouse to location a when it is needed. Define f 1

ib
similarly.

The probabilities f 2
ia and f 1

ia are called channel fill rates for item i at location
a, and are used as building blocks in constructing service level constraints. Both
of these fill rates are functions of the stock levels sia and sir , although the impact
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of sir on the instantaneous fill rate f 2
ia is very different from its impact on the

24-hour fill rate f 1
ia . We will explain this difference shortly.

To demonstrate the different types of service level constraints that may arise
under different operating conditions, we present three scenarios.

6.1.2.1 Scenario 1

In Scenario 1, offices a and b each have their own lease and service agreement
with the supplier, and the stock placed on-site at either of the office locations
cannot be shared by the other. Thus, from a distribution viewpoint, offices a and
b are distinct stocking locations. The service level requirements for offices a and
b under Scenario 1 are depicted in Figure 6.2, and the corresponding constraints
are given in 6.1- 6.3.

Fig. 6.2. Service Level Requirements for Scenario 1

Constraints 6.1 and 6.2 represent the 24-hour service level guarantees stipulated in
the service agreements for offices a and b, respectively. Constraint 6.3 represents
the instantaneous service level requirement of office b.∑

i∈I

λia

λa
f 1
ia(sia, sir ) ≥ .95 (6.1)

∑
i∈I

λib

λb
f 1
ib(sib, sir ) ≥ .95 (6.2)

∑
i∈I

λib

λb
f 2
ib(sib, sir ) ≥ .90 (6.3)

Note that increasing the stock level sia contributes only to the satisfaction of
constraint 6.1, and that increasing sib contributes to the satisfaction of 6.2 and 6.3,
but not 6.1. This agrees with our intuition, since any stock placed at one of the
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office locations cannot be used to service the other, and hence raising the stock
level at one office site should not have any impact on the other office’s service.

By contrast, an increase in sir , the replenishment stock level at the warehouse,
contributes to the satisfaction of all three constraints since the fill rates f 1

ia , f 1
ib,

and f 2
ib all depend upon sir . The dependency, however, is different for f 2

ib than it
is for f 1

ia and f 1
ib. f 2

ib depends in part on the timeliness with which replenishment
orders placed by b (to the regional warehouse) are filled, and this timeliness is
fundamentally a function of sir . Also, sir only affects f 2

ib through its impact on
the replenishment lead time. Hence, while it is possible (if sib > 0) to increase
the instantaneous fill rate f 2

ib by raising the warehouse stock level sir , there is a
limit to the increase that can be achieved by this method. Beyond this limit, the
only way to increase f 2

ib is to increase the local stock level sib. For the 24-hour fill
rates f 1

ia and f 1
ib, there is no such limitation. That is, for any ε > 0, it is always

possible to achieve f 1
ia ≥ 1 − ε (and/or f 1

ib ≥ 1 − ε) by raising the stock level sir

high enough.

6.1.2.2 Scenario 2

In Scenario 2, offices a and b each have their own lease and service agreement
with the supplier, but stock placed on-site at either office location can be shared.
That is, from a distribution viewpoint, there is a single stocking location from
which offices a and b draw needed parts. The service level requirements for of-
fices a and b under Scenario 2 are depicted in Figure 6.3. In the corresponding
constraints 6.4–6.6, ab is used to denote the common stocking location for offices
a and b.

Fig. 6.3. Service Level Requirements for Scenario 2



116 6 A Continuous Time, Multi-Echelon, Multi-Item System∑
i∈I

λia

λa
f 1
iab

(siab, sir ) ≥ .95 (6.4)

∑
i∈I

λib

λb
f 1
iab

(siab, sir ) ≥ .95 (6.5)

∑
i∈I

λib

λb
f 2
iab

(siab, sir ) ≥ .90 (6.6)

Note that the fill rates and stock levels are indexed by item and stocking loca-
tion, not item and customer location. In this case, increasing the stock level siab
contributes to the satisfaction of all three constraints, as we would expect. At first
glance, one might think that the common stocking location makes the constraints
in this scenario a relaxed version of the constraints in Scenario 1. That is, one
might suppose that any stock levels that satisfy 6.1-6.3 would also satisfy 6.4-6.6
if we make the substitution siab = sia + sib. In fact, this is not the case for any of
the constraints. This is most easily seen for constraint 6.6.

In Scenario 2, office a will draw stock from location ab to fix its breakdowns
(provided the stock is available), even though it has no instantaneous service level
requirement. The presence of the common stocking location makes the instanta-
neous fill rate f 2

iab
a function of both λia and λib. As a consequence, the satisfac-

tion of constraint 6.6 depends upon the item demand rates at office a, even though
the instantaneous service level requirement exists at office b only. To satisfy 6.6,
enough stock must be held at location ab to make the fill rates f 2

iab
, i ∈ I , suf-

ficiently high. A high demand rate λia (relative to λib) means that siab may have
to be significantly higher than Scenario 1’s sib in order for the fill rate f 2

iab
to be

as high as Scenario 1’s f 2
ib. We are assuming, of course, that a demand is always

satisfied if there is stock on-hand when it arises. In practice, it is possible to with-
hold stock from a when the stock on-hand at location ab is too low; however, we
assume that this type of rationing does not occur.

This scenario highlights the fact that strategic decisions, such as the place-
ment of stocking locations and rationing rules, can greatly affect the types of ser-
vice agreements that can be satisfied by a supplier in a cost-effective manner. We
have just seen that promising a high level of service to a low-demand customer
that draws stock from a high-demand stocking location can be costly. Since sup-
pliers cannot always avoid such situations, it is important to establish operating
policies that are designed to help achieve the promised customer service levels.
For instance, careful prioritization of customer orders and replenishment orders,
as opposed to a simple first-come-first-served scheme, can improve system per-
formance. As stated, we do not address these issues here.

6.1.2.3 Scenario 3

In Scenario 3, offices a and b share a common lease and service agreement with
the supplier, so the 95% service level applies to the two offices together, not sep-
arately. However, stock placed on-site at either of the office locations cannot be
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shared. (One may imagine two offices that are not physically close to one another,
but are owned and managed jointly.) The service level requirements for offices
a and b under Scenario 3 are depicted in Figure 6.4, and the corresponding con-
straints are given by 6.7 and 6.8.

Fig. 6.4. Service Level Requirements for Scenario 3

∑
i∈I

( λia

(λa + λb)
f 1
ia(sia, sir ) + λib

(λa + λb)
f 1
ib(sib, sir )

)
≥ .95 (6.7)

∑
i∈I

λib

λb
f 2
ib(sib, sir ) ≥ .90 (6.8)

Unlike Scenario 2, the constraints of Scenario 3 truly are a relaxed version
of the constraints in Scenario 1. Upon inspection, it is easy to see that any stock
levels that satisfy 6.1-6.3 will also satisfy 6.7 and 6.8. The common service agree-
ment provides the supplier more flexibility than Scenario 1 in fulfilling the service
level requirements.

The preceding scenarios illustrate the types of time-based constraints that
may be considered within the modeling framework presented subsequently in this
chapter.

6.1.3 Notation and Problem Statement

For the remainder of this chapter, we will use the following notation:
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Distribution Network Parameters

I the set of items, indexed by i .
J the set of locations, indexed by j .

J v the set of locations at level v, v = 1, 2, . . . , N .
⋃N

v=1 J v = J , and
J v1
⋂

J v2 = ∅, v1 �= v2.
Pj the set of locations in the unique path from base j ∈ J N to the top level

location in the distribution network, inclusive. This is called the channel
associated with location j .

Pj (v) the unique location in the channel Pj at level v.
p( j) the parent location of location j in the distribution network, j /∈ J 1.

Ai j the transportation time for item i from location p( j) to location j .
Ti j the expected replenishment lead time for item i from location p( j) to lo-

cation j . Ti j ≥ Ai j .
ci the unit investment cost of item i .

Service Level Requirement and Demand Parameters

K the set of service level constraints, indexed by k.
Fk the established service level of service level constraint k. For all k ∈ K ,

Fk ≤ 1.
λi j the rate at which orders for item i arrive at location j .

λi jk the rate at which orders for item i that are associated with service level con-
straint k arrive at location j .

λk the total rate at which orders for service parts associated with service level
constraint k are placed. That is, λk =∑i∈I, j∈J N λi jk .

wi jk the fraction of orders for service parts associated with service level constraint
k that are for item i at location j . wi jk = λi jk/λk .

vi jk the level of the distribution network with which service level constraint k is
concerned for item i at location j ∈ J N . vi jk ∈ {1, 2, . . . , N }.

wv
i jk the relative weight of channel fill rate f v

i j in service level constraint k. That
is, wv

i jk = wi jk for v = vi jk , and wv
i jk = 0 otherwise.

Stock Levels and Fill Rates

si j the stock level of item i at location j .
sv the vector of stock levels of all items i ∈ I at all network locations

j ∈ J v .
si the vector of stock levels of item i at all network locations.
sv

i the vector of stock levels of item i at all network locations j ∈ J v .
siPj the vector of stock levels of item i at the locations in the channel Pj .

f v
i j (siPj) the probability that an incoming order for item i at location j ∈ J N can

be filled within the transportation time from location Pj (v).

Given the defined notation, we state the Service Level Satisfaction problem, or
(SLS) as:
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(SLS) minimize
∑
i∈I

∑
j∈J

ci si j (6.9)

subject to
N∑

v=1

∑
i∈I

∑
j∈J N

wv
i jk f v

i j (siPj) ≥ Fk ∀k ∈ K , (6.10)

si j ≥ 0 and integer ∀i ∈ I, j ∈ J. (6.11)

There are two sources of complexity in these service level constraints. The
first is that each fill rate function f v

i j may appear in multiple service level con-
straints in combination with other fill rate functions, so the constraint set may
not be separable by item or by location. Most practical problem instances, how-
ever, will have constraint sets that are separable by network level. That is, most
instances will be such that each constraint k ∈ K is concerned with channel fill
rates f v

i j at one and only one network level v (i.e., vi jk is the same for all items i
and all bases j with which constraint k is concerned). For such instances, we can
rewrite constraints (6.10) as:∑

i∈I

∑
j∈J N

wi jk f v
i j (siPj) ≥ Fk ∀k ∈ K v, v = 1, . . . , N , (6.12)

where the sets K v, v = 1, . . . , N , partition the constraint set K by network level.
The second source of complexity is the fill rate functions themselves. For a

given item i and a given base j ∈ J N , each channel fill rate f v
i j , v = 1, . . . , N ,

depends in a highly nonlinear way on the N stock levels in the channel Pj , as was
the case in earlier chapters.

6.2 Channel Fill Rate Functions

For ease of exposition, we focus on deriving channel fill rates in a three-level sys-
tem, although the analysis extends easily to systems with more than three levels.

Consider a particular item i in the channel composed of locations 1, 2, and 3
in the distribution network, as shown in Figure 6.5. Location 3 is the demand lo-
cation, or base, for which we explicitly derive the probability expressions for the
channel fill rates. Let location a represent all locations that are replenished by lo-
cation 1 except for location 2, and let location b represent all locations replenished
by location 2 except for location 3.

For notational clarity, we will suppress the item subscript i on all variables and
parameters. The following variable definitions will be helpful in our discussion:

Y j the number of units on order at location j , j = 1, 2, 3, a, b.
N j the number of units backordered at location j , that is, N j = [Y j − s j ]+,

j = 1, 2, 3, a, b.
E j the number of units en route from location p( j) to location j , j = 2, 3, a, b.
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Fig. 6.5. Item distribution network

Z j the number of units on order at location j that are still backordered at location
p( j), that is, Z j = (Y j − E j ), j = 2, 3, a, b. This also represents the number
of units currently on order at location j that will not arrive at location j within
A j units of time.

Our primary goal in this section is to derive exact expressions for the channel
fill rates at location 3 in terms of the probability distributions of Y1, Y2, and Y3.
Although the distributions of Y2 and Y3 are difficult to characterize exactly, for
given stock levels (s1, s2, s3) and transportation times (A1, A2, A3), the means
and variances of these two distributions can be easily approximated using ideas
from Chapter 5. In Section 6.2.5, we review our method for approximating these
distributions, and we validate our approximations by comparing our analytically-
computed fill rates based on these distributions with those obtained from simula-
tion experiments. Together, the channel fill rate expressions and the distribution
approximation method yield a mechanism for evaluating the service level con-
straints (6.12) presented in the previous section.

6.2.1 The Channel Fill Rate f 3
3 (s3, s2, s1)

We begin with f 3
3 (s3, s2, s1), since this is the simplest case. In the context of our

network, f 3
3 (s3, s2, s1) is the probability that an incoming order (for item i) at

location 3 can be filled immediately. An instantaneous fill can occur if and only
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if there is stock on-hand at location 3 when the order arrives. Since a one-for-
one replenishment policy is followed in the network, this is equivalent to having
strictly less than s3 units on order at location 3 at the time the new order arrives.
Hence,

f 3
3 (s3, s2, s1) = Pr[Y3 < s3]. (6.13)

When s3 = 0, the instantaneous fill rate is also 0, as we would expect.
Although we have not made any explicit statements yet about the distribution

of Y3, we can easily derive an upper bound for f 3
3 . Note that the distribution of

Y3 depends only on the demand process at location 3 and the order replenishment
lead time at location 3. That is, Y3 is a function of s2, and s1, but not s3. For
finite values of s2, it is clear that the distribution function of Y3 is monotonically
increasing in s2. When s2 = ∞, the replenishment lead time for location 3 is
exactly the transportation time A3. In this case, Y3 is a Poisson distributed random
variable with mean λ3 A3. Hence, for any values of s2 and s1, we have that

Pr[Y3 < s3] ≤
s3−1∑
x=0

(λ3 A3)
x e−λ3 A3

x ! . (6.14)

Hence, there is a limit to the impact that increasing s2 can have on f 3
3 . Indeed,

increasing s2 will tend to drive the distribution of Y3 towards a Poisson distribution
with mean λ3 A3, but this is the extent of its impact on f 3

3 . In general, Y3 will have

a distribution with mean λ3T3 = λ3 A3 + λ3
λ2

E[N2], where T3 = A3 + E[N2]
λ2

denotes the expected replenishment lead time, as we discussed in Chapter 5.

6.2.2 The Channel Fill Rate f 2
3 (s3, s2, s1)

Next, let us determine the probability that an incoming order at location 3 can be
filled within time A3, the transportation time from location 2 to location 3. We
will consider two cases: s3 = 0 and s3 > 0.

When s3 = 0, all orders arriving at location 3 effectively are filled from stock
at location 2. That is, each order that arrives at location 3 waits at least A3 units
of time until it is filled, since there is never any stock on-hand at location 3, and
any units en-route from location 2 to location 3 at the time an order arrives are
already claimed by existing backorders at location 3. Hence, a new order arriving
at location 3 will be filled within A3 units of time if and only if there is stock
on-hand at location 2 when the order arrives. That is,

f 2
3 (s3, s2, s1) = Pr[Y2 < s2], if s3 = 0. (6.15)

Observe that this fill rate will be 0 when s2 = s3 = 0.
Now consider the case where s3 > 0. Recall that Z3 represents the number of

units currently on order at location 3 that will not arrive at location 3 within A3
units of time. Hence, a newly arriving order to location 3 will be filled within A3
units of time if and only if Z3 < s3. That is,
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f 2
3 (s3, s2, s1) = Pr[Z3 < s3] , if s3 > 0. (6.16)

The above expression is not in a usable form, however, since Z3 is a function
of Y3 and E3. In order to complete the analysis, we will consider N2, the number
of units backordered at location 2. Each of the N2 backordered units is owed to
either location 3 or location b. Since location 2 is the unique supplier to locations
3 and b, and since no other locations place orders with location 2, we have that

N2 = (Y3 − E3) + (Yb − Eb) = Z3 + Zb. (6.17)

Rewriting equation (6.16) and conditioning on N2, we have that when s3 > 0,

f 2
3 (s3, s2, s1) =

s3−1∑
x=0

Pr[Z3 = x]

=
s3−1∑
x=0

∞∑
y=x

Pr[Z3 = x |N2 = y] Pr[N2 = y]. (6.18)

The lower limit on y in the second summation follows from the fact that N2 and
Z3 are both nonnegative random variables, and N2 ≥ Z3. Indeed, Z3 is the portion
of N2 that is owed to location 3.

As we discussed in earlier chapters, since orders arriving at location 2 are
filled on a first-come-first-serve basis, and since the arrival process to location 2
is a Poisson process with arrival rate λ2 = λ3 + λb, the conditional probability
Pr[Z3 = x |N2] follows a binomial distribution with parameters n = N2 and
p = λ3

λ2
. That is,

Pr[Z3 = x |N2 = y] =
(

y

x

) (
λ3

λ2

)x (
1 − λ3

λ2

)y−x

. (6.19)

Also, note that

Pr[N2 = y] =
{

Pr[Y2 ≤ s2], if y = 0.

Pr[Y2 = s2 + y], if y > 0.
(6.20)

Combining and simplifying, we have that

f 2
3 (s3, s2, s1) =

⎧⎪⎨⎪⎩
Pr[Y2 < s2], if s3 = 0.

Pr[Y2 < s2 + s3] +
s3−1∑
x=0

h2(s3, x), if s3 > 0,
(6.21)

where

h2(u, x) =
∞∑

z=u

(
z

x

) (
λ3

λ2

)x (
1 − λ3

λ2

)z−x

Pr[Y2 = s2 + z] (6.22)

denotes the probability that there are at least u backorders at location 2 and ex-
actly x of these are owed to location 3.
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6.2.3 The Channel Fill Rate f 1
3 (s3, s2, s1)

Finally, we derive the probability that an incoming order at location 3 can be filled
within time A2 + A3, the transportation time from location 1 to location 3. We
will consider three cases: s3 = s2 = 0; s3 = 0 and s2 > 0; and s3 > 0.

When s3 = s2 = 0, all orders arriving at location 3 effectively are filled
from stock at location 1. Since each order that arrives at location 3 waits at least
A2 + A3 units of time until it is filled, a new order arriving at location 3 will be
filled within A2 + A3 units of time if and only if there is stock on-hand at location
1 when the order arrives. Hence,

f 1
3 (s3, s2, s1) = Pr[Y1 < s1], if s3 = s2 = 0. (6.23)

Recall that a new order arriving at location 3 instantly triggers corresponding
orders to be placed to locations 2 and 1. If s3 = 0 and s2 > 0, then a new order
arriving at location 3 will be filled within A2 + A3 units of time if and only if the
corresponding order that location 3 places on location 2 is filled by location 2 (i.e.,
sent out to location 3) within A2 units of time after the order is placed. Hence, we
need to derive the probability that a newly arriving order to location 2 can be
filled at location 2 within A2 units of time after the order is placed. Consider the
previous sentence. If we simply replace the “2”s with “3”s, this is precisely the
probability we derived for the fill rate f 2

3 (s3, s2, s1) (for the case s3 > 0). Thus,
by a completely parallel argument, we have that f 1

3 (s3, s2, s1) = Pr[Z2 < s2]
when s3 = 0 and s2 > 0, or:

f 1
3 (s3, s2, s1) = Pr[Y1 < s1 + s2] +

s2−1∑
x=0

h1(s2, x), if s3 = 0, s2 > 0, (6.24)

where

h1(u, x) =
∞∑

z=u

(
z

x

) (
λ2

λ1

)x (
1 − λ2

λ1

)z−x

Pr[Y1 = s1 + z] (6.25)

denotes the probability that there are at least u backorders at location 1 and ex-
actly x of these are owed to location 2.

For the last case, s3 > 0, we define two more variables:

N12 – [Z2 − s2]+, the number of units backordered at location 2 that are still
backordered at location 1. This also represents the number of units
currently backordered at location 2 that will not arrive at location 2
within A2 units of time.

W j – the number of units on order at location j that are still backordered at
location 2 and at location 1, j = 3, b (i.e., the portion of N12 that is owed
to location j). This also represents the number of units currently on order
at location j that will not arrive at location j within A2 + A j units of time.
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Given these definitions, it is clear that N12 = W3 +Wb. Also, a new order arriving
at location 3 will be filled within A2 + A3 units of time if and only if W3 < s3.
Hence,

f 1
3 (s3, s2, s1) = Pr[W3 < s3]

= 1 − Pr[W3 ≥ s3] , if s3 > 0. (6.26)

We will analyze this expression by expanding Pr[W3 ≥ s3], which is slightly eas-
ier to characterize when s3 > 0. Note that W3 ≥ s3 > 0 implies that N12 > 0,
which implies that N12 = Z2 − s2 > 0. Rewriting equation (6.26) and condition-
ing on N12, we have that when s3 > 0,

f 1
3 (s3, s2, s1) = 1 −

∞∑
x=s3

Pr[W3 = x]

= 1 −
∞∑

x=s3

∞∑
y=x

Pr[W3 = x |N12 = y] Pr[N12 = y]

= 1 −
∞∑

x=s3

∞∑
y=x

Pr[W3 = x |N12 = y] Pr[Z2 = y + s2].(6.27)

Following the same line of reasoning that we did for f 2
3 (s3, s2, s1), the condi-

tional probability Pr[W3 = x |N12] follows a binomial distribution with parame-
ters n = N12 and p = λ3

λ2
. Also, since N1 = Z2 + Za , we can expand the term

Pr[Z2 = y + s2] by conditioning on N1. As before, the conditional probability
Pr[Z2 = y + s2|N1] follows a binomial distribution with parameters n = N1 and
p = λ2

λ1
. The conditioning will also result in expressions of the form Pr[N1 = z]

for values of z ≥ y + s2. However, for z > 0, Pr[N1 = z] = Pr[Y1 = s1 + z]. We
are left with:

f 1
3 (s3, s2, s1)

= 1 −
[ ∞∑

x=s3

∞∑
y=x

(
y

x

) (
λ3

λ2

)x (
1 − λ3

λ2

)y−x

h1(s2 + y, s2 + y)

]
, (6.28)

if s3 > 0.
Summarizing the three cases, the exact fill rate expressions are:

f 1
3 (s3, s2, s1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr[Y1 < s1], if s3 = s2 = 0,

Pr[Y1 < s1 + s2] +
s2−1∑
x=0

h1(s2, x), if s3 = 0, s2 > 0,

1 −
[ ∞∑

x=s3

∞∑
y=x

(
y
x

)(
λ3

λ2

)x (
1 − λ3

λ2

)y−x

h1(s2 + y, s2 + y)

]
,

if s3 > 0,

(6.29)
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where

h1(u, x) =
∞∑

z=u

(
z

x

) (
λ2

λ1

)x (
1 − λ2

λ1

)z−x

Pr[Y1 = s1 + z].

6.2.4 The Channel Fill Rate f v
n (sn, sn−1, . . . , s1)

Following the same type of argument employed in the previous section, we can
show that in an n-level channel where the locations in the channel are labelled
from 1 to n, with location n representing the demand location, the channel fill
rates at all levels v = 1, . . . , n are given by:

f v
n (sn, . . . , s1) =

1 −
[ ∞∑

xv=Sv

xv−sv∑
xv+1=Sv+1

· · ·
xn−1−sn−1∑

xn=Sn

B(xv − sv)B(xv+1 − sv+1)

· · · B(xn−1 − sn−1) Pr[Yv = xv]
]

(6.30)

where

Sl =
n∑

j=l

s j

is the total installation stock at and below network level l in the channel Pn , and

B(xl − sl) =
(

xl − sl

xl+1

) (
λl+1

λl

)xl+1
(

1 − λl+1

λl

)(xl−sl )−xl+1

is the binomial probability that exactly xl+1 of the (xl − sl) backorders at location
l are owed to location l + 1.

6.2.5 The Distributions of Y1, Y2, Y3, and Fill Rate Accuracy

Under the assumptions of our problem, it is clear that Y1 has a Poisson distribution
with mean λ1 A1. Hence, the fill rate f 1

3 can be computed exactly using (6.29) or
(6.30). The distributions of Y2 and Y3, however, are difficult to characterize in
general and must be approximated by some means. (The approximation method,
in turn, will impact the accuracy of the fill rate calculations for f 2

3 and f 3
3 . We will

come back to this point shortly.) As we saw in Chapter 5, it is possible to calculate
the mean and variance of Y2 for a given stock level, s1, and fixed transportation
times, A1 and A2. Specifically:

E[Y2] = λ2 A2 + λ2

λ1
E[N1], and (6.31)

Var[Y2] = λ2 A2 + λ2

λ1

(
1 − λ2

λ1

)
E[N1] +

(
λ2

λ1

)2

Var[N1]. (6.32)
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Using these moments, we approximate the distribution of Y2 with a negative bi-
nomial (since this distribution also has a variance-to-mean ratio that is greater
than 1). Under this assumption, we compute E[N2] and Var[N2], and then, us-
ing the same relationships given in (6.31) and (6.32), we recursively compute
moments for Y3. While the moment calculations for Y2 are exact, those for Y3
are only approximate because of the negative binomial assumption for Y2. For
implementation purposes, we also assume that the distribution of Y3 is negative
binomial.

The validation of the use of negative binomial distributions for Y2 and Y3 in
making fill rate calculations is required. A continuous-time, discrete-event sim-
ulator of the three-echelon system shown in Figure 6.6 was used to estimate the
channel fill rates achieved at location 3. We will compare the simulated channel
fill rates at location 3 with those that were analytically computed using (6.30) with
negative binomial distributions assumed for Y2 and Y3.

Fig. 6.6. Overview of the three-echelon simulated supply chain.

For our purposes, a system scenario is defined by a specific set of location
demand rates, λa , λb, λ3, and a set of location stock levels, s1, s2, and s3. Our test
scenarios capture different absolute and relative mean demand rates at location 3
over the transit lead time, as well as different safety stock placement strategies
within the channel. The values of k1, k2, and k3 correspond to the amounts of
safety stock carried at each of the echelons (in this case, the number of standard
deviations of lead time demand). The transit lead times between the echelons,
A1, A2, and A3, are fixed to values of 5, 2, and 1, respectively. A full factorial
experiment was run using the parameter values shown in Figure 6.6, for a total
of 324 different system scenarios. The computed immediate fill rates (other than
0%) ranged from 22.49% to 99.53%; the computed fill rates within A3 ranged
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from 25.40% to 100.00%; and the computed fill rates within A2 + A3 ranged
from 82.62% to 100.00%. For each scenario, fifty independent replications, plus
their antithetic streams, were simulated for time durations equivalent to 20,000
demand events at location 3. This was done in order to equate the number of
demand observations across the different scenarios for the fill rate estimates.

Table 6.1. The overall average and standard deviation of channel fill rate errors.

Channel Fill Rate Average Error (± Standard Deviation)
Fill Rate within A2 + A3 −0.004% (± 0.043%)

Fill Rate within A3 −0.026% (± 0.227%)
Immediate Fill Rate −0.044% (± 0.274%)

The average absolute error for each channel fill rate across all scenarios is
listed in Table 6.1, along with its standard deviation. Since the computed chan-
nel fill rate at the highest echelon is exact (i.e., the fill rate within A2 + A3), we
expect to see extremely low deviations here. The magnitude of the average er-
ror increases at the second echelon and is highest at the third echelon (i.e., for
the immediate fill rate), supporting the conjecture that the estimation error result-
ing from using negative binomial approximations compounds as the number of
echelons increases; however, the approximations are still very accurate.

We note that there were several test scenarios in which no stock was held at
location 3 (i.e, s3 = 0), resulting in computed and simulated immediate fill rates
of 0% for these scenarios, with 0% error. These scenarios are included in the aver-
age error statistic for the immediate fill rate shown in Table 6.1. When we exclude
these scenarios and consider only those in which s3 ≥ 1, the immediate fill rate
error averaged −0.057% and ranged between −1.073% and 0.558%. There were
no test scenarios in which s2 = 0 or s1 = 0.

For each scenario, the average absolute errors for the immediate fill rate and
the fill rate within A3 are shown in Table 6.2. The largest errors were observed
for scenarios in which there was little or no safety stock at locations 1 and 2. This
makes sense, since decreasing the amount of safety stock at location 1 raises the
variance of Y2, and decreasing the amount of safety stock at location 2 raises the
variance of Y3.

From a practical standpoint, the errors we observed in this simulation study
were extremely small. We conclude that the negative binomial approximation
method described is appropriate for our model, as it is not likely to materially
affect the quality or the feasibility of a solution resulting from an optimization
routine using it.

We close this section by making two important observations. First, from
(6.13), (6.21), and (6.29), it is clear that in a 3-level system, all of the channel
fill rates ( f 3

3 , f 2
3 , and f 1

3 ) can be made arbitrarily close to 100% by raising the
base stock level s3, regardless of the stock levels s2 and s1. The implication for
problem SLS is that a feasible solution can always be found by adjusting the stock
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Table 6.2. Average absolute error between the computed and simulated fill rates

level vector s3, regardless of the vectors s2 and s1. Generalizing this concept to
an n-level network where the constraint set K is separable by level, the channel
fill rates f v

n , f v−1
n , . . . , f 1

n , can be made arbitrarily close to 100% by raising the
stock level sv . Thus, we can always find a solution to SLS that satisfies the service
level constraints K 1 ∪ K 2 ∪ · · · ∪ K v by adjusting the stock level vector sv, re-
gardless of the vectors sv−1, . . . , s1. (When v = n, this means that all constraints
will be satisfied.)

Second, recall that when the stock levels s1 and s2 are fixed to values that are
at least �λ1 A1� and �λ2T2�, respectively, the channel fill rates given by (6.13),
(6.21), and (6.29) are concave functions in s3 for s3 ≥ �λ3T3�. (Note that T2 is a
function of s1, and T3 is a function of s1 and s2, so the stock level combinations
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must be chosen carefully in order for this concavity property to hold.) Our solution
approach, which we describe next, makes use of both of these facts.

6.3 Solution Approach

Now that we have defined the channel fill rate functions, let us turn our attention
to solving the optimization problem SLS. It is clear that SLS cannot be solved
to optimality easily for realistically-sized problem instances due to the fact that
the fill rate functions are not jointly concave in their arguments. Even if we had a
very restricted set of candidate stock levels for each item at each location in the
network, exhaustive enumeration would be virtually impossible, even in a modest-
sized network. Hence, we focus our attention on developing a practical heuristic
approach. The algorithm we describe here is a column generation procedure that
finds stock level vectors for each item type that collectively give a near-optimal
solution to SLS.

We give an overview of the column generation procedure in Section 6.3.1 and
define additional notation that will be useful in our explication. In Section 6.3.2,
we define the master problem that will be augmented and re-solved in each itera-
tion of the procedure. In Section 6.3.3, we describe three potential column gener-
ation techniques, any one of which can be used to generate a new set of columns
within an iteration of the procedure. Next, we discuss methods for generating an
initial set of columns to seed the procedure.

6.3.1 Procedure Overview

The idea behind column generation is to repeatedly solve a master problem, a
restricted version of the overall problem that is relatively easy to solve. The master
problem is restricted in the sense that it only considers a subset of the feasible
solution space (i.e, the subset spanned by its columns). Adding columns to the
master problem is equivalent to expanding the subset of the solution space that is
considered. If the optimal solution to the overall problem lies within the space of
solutions covered by the master problem, then solving the master problem solves
the overall problem. A typical column generation procedure begins with an initial
set of columns, solves the master problem associated with this set of columns,
and then uses this solution to generate one or more new columns. The process
is repeated until the master problem produces a satisfactory solution, or until the
solution to the master problem does not change (i.e., the most-recently added
columns are of no benefit). The latter may indicate that an optimal solution has
been found, depending on the formulation of the master problem and the column
generation technique employed. Specifically, the algorithm will terminate with
an optimal solution if the column generation technique, by its construction, is
guaranteed to find an improving column if one exists.

The fundamental elements of our column generation procedure are a collec-
tion of stock level vectors �i for each item i ∈ I , where each vector γi ∈ �i
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contains a candidate stock level entry si j for each location j ∈ J . Associated with
each stock level vector γi is a cost element, cγi , and a contribution column, βγi .
The term cγi represents the total cost associated with the vector γi ; that is, the
unit cost ci multiplied by the sum of the stock level entries in the vector γi . The
column βγi has entries representing the contribution that γi makes to the fulfill-
ment of each service level constraint k ∈ K . Specifically, the entry of βγi that
corresponds to service constraint k, denoted by [βγi ]k is given by:

[βγi ]k =
N∑

v=1

∑
j∈J N

wv
i jk f v

i j (siPj),

where the channel stock level vectors siPj are determined by γi . Bi will be used to
denote the set of all contribution columns βγi for item i .

In our procedure, the master problem is a linear programming approximation
to SLS. The formulation is based on the existing stock level vector sets �i , i ∈ I ,
the corresponding costs cγi , γi ∈ �i , i ∈ I , and the corresponding contribution
column sets Bi , i ∈ I . We use the solution to the master problem to generate |I |
new stock level vectors γi , one for each item i ∈ I (each having an associated cost
cγi and a contribution column βγi ). The procedure terminates when the master
problem’s solution does not change from the previous iteration. However, because
our master problem is a linearized approximation to SLS, and because the column
generation techniques we employ are not guaranteed to find improving columns
if they exist, we cannot claim that the resulting solution is optimal. Empirical
evidence suggests, however, that these techniques work very well in practice.

The new notation is summarized below, along with other notation that will be
used in describing the various column generation techniques we employ:

�i the set of candidate stock level vectors for item i , indexed by γi .
Bi the set of contribution columns associated with candidate stock level vectors

for item i , indexed by βγi .
cγi the total cost associated with the stock level vector γi ∈ �i .
α∗ a (possibly fractional) solution vector for the master problem, whose elements

are indexed by γi .
θ∗

k with respect to the master problem solution vector α∗, the dual variable corre-
sponding to service level constraint k ∈ K .

6.3.2 Master Problem for SLS

Given stock level vector sets �i , i ∈ I , the corresponding costs cγi , γi ∈ �i , i ∈ I
and the corresponding contribution column sets Bi , i ∈ I , we define the Service
Level Satisfaction Master Problem, or SLSMP as:
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(SLSMP) minimize
∑
i∈I

∑
γi ∈�i

cγi αγi (6.33)

subject to∑
i∈I

∑
γi ∈�i

[βγi ]kαγi ≥ Fk ∀k ∈ K , (6.34)∑
γi ∈�i

αγi = 1 ∀i ∈ I, (6.35)

0 ≤ αγi ≤ 1 ∀γi ∈ �i , i ∈ I. (6.36)

Observe that the columns of the constraints (6.34) of the above linear program
correspond to the elements of the vector sets Bi , i ∈ I . Hence, the optimal solu-
tion α∗ to SLSMP corresponds to the following (possibly fractional) solution to
SLS:

si =
∑
γi ∈�i

α∗
γi

γi , i ∈ I. (6.37)

Note that, even if we round up the fractional elements of the vectors (6.37) to their
integer ceilings, the resulting solution will not necessarily be feasible for SLS
since the channel fill rate functions are not jointly concave in their arguments.

Most of the column generation techniques we employ require the master prob-
lem solution to be integral (though not feasible and integral) in order to use it to
generate new columns. For these purposes, simply rounding the fractional solu-
tion given by (6.37) suffices. When the column generation procedure terminates,
however, we do need to convert the fractional solution into a feasible, integral
solution. To accomplish this, take the integer ceiling of the fractional elements of
the vectors given by (6.37), and then use a greedy heuristic to increment stock
levels until all constraints are satisfied. This greedy heuristic works as follows:

Construct-Feasible-Solution

Input: An instance of problem SLS;
s, an integral solution to SLS that is not necessarily feasible.

Output: s̃, a feasible integral solution to SLS.

1. s̃i j ← si j for all i ∈ I , j ∈ J .
2. Update K̄ ⊆ K , the set of all unsatisfied service level constraints with respect

to the current stock level vector s̃.
3. For all i ∈ I, j ∈ J N (i.e., all bases), compute:

�i j =
∑
k∈K̄

(
min {Fk,

N∑
v=1

wv
i jk f v

i j (s̃i j + 1, s̃iPj\s̃i j )} −
N∑

v=1

wv
i jk f v

i j (s̃iPj)
)
.

4. For all i ∈ I, j ∈ J v, v < N (i.e., all nonbase locations), compute:
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�i j =
∑
k∈K̄

∑
j ′∈J N : j∈Pj ′

(
min

{
Fk,

N∑
v=1

wv
i j ′k f v

i j ′(s̃i j + 1, s̃iP′
j
\s̃i j )

}

−
N∑

v=1

wv
i j ′k f v

i j ′(s̃iP′
j
)

)
. (6.38)

5. Find the pair (i, j)∗ such that:

(i, j)∗ = arg max
(i, j)

�i j

ci
.

6. s̃i j∗ ← s̃i j∗ + 1.
7. If all service level constraints k ∈ K are satisfied, then STOP and return s̃.

Otherwise, go to step 2.

Note that the solution returned by Construct-Feasible-Solution may over-
state some of the stock levels needed to satisfy the service level constraints. This
overstatement may be due to the starting solution used, the greedy order in which
the stock levels were incremented, or a combination of the two. Although we do
not give the details here, a second-pass greedy heuristic may be used to improve
the current solution by reducing stock levels while maintaining feasibility.

6.3.3 Column Generation

Given a solution α∗ to the master problem, there are a multitude of ways in which
new columns can be generated for SLSMP. We discuss three possibilities here.

6.3.3.1 Technique 1 (Simple Rounding)

The most obvious approach is to parse the master problem solution given by α∗
into a new set of stock level vectors by item type, employing some rounding
technique to ensure that each stock level vector is integral. That is, for each item
type i , define a new stock level vector:

γ̃i = R(
∑
γi ∈�i

α∗
γi

γi ), (6.39)

where the rounding function R(·) is user-defined (e.g., take the floor, the ceiling,
or the nearest integer value of each fractional element). Different definitions of
R(·) can be used to give rise to multiple new stock level vectors γ̃i for each item
type i . For each new vector γ̃i that is generated, we can now compute its asso-
ciated cost cγ̃i and its contribution column βγ̃i , which we can add to the master
problem.

It is important to note that in generating new columns this way, we are not
adding redundant columns to the master problem, even if no rounding is required.
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This is due to the fact that, even though each new stock level vector γ̃i is a (pos-
sibly rounded) convex combination of existing stock level vectors, its associated
contribution column βγ̃i is not a convex combination of the corresponding con-
tribution columns. In fact, the contribution elements of the column βγ̃i will in
general be higher, due to the concavity of the fill rate functions.

Although the above technique is an extremely useful way to generate new
columns quickly, it is limited by the fact that the individual stock level elements
of an existing γi vector will always be given the same relative weight α∗

γi
when

it comes to generating new columns. For instance, suppose our initial vector set
for some item contains one stock level vector where every element has the value
5, and a second stock level vector where every element has the value 1. Taking
convex combinations of these vectors, it is possible to generate a new integral
vector having all 2’s, another having all 3’s, and yet another having all 4’s. How-
ever, we cannot generate new vectors where the individual elements differ from
one another. Hence, for this technique to be effective, we need to make sure that
the initial sets of vectors that we generate, �i , i ∈ I , contain combinations of
stock levels that are very different from one another. Alternatively, we can em-
ploy column generation techniques, such as the ones described next, that provide
mechanisms for making relative increases and decreases among the elements of a
stock level vector.

6.3.3.2 Technique 2 (Fix Stock Values Level-by-Level)

Recall that sv is defined to be a vector of stock levels for all items i ∈ I at the
network locations at level v. That is, sv = (si j : i ∈ I, j ∈ J v).

This technique assumes that the constraint set K of the problem instance in
question is separable by network level (i.e., vi jk is the same for all items i and
all bases j with which constraint k is concerned). Thus, we can partition the con-
straint set K into N subsets, K v, v = 1, . . . , N .

Consider an integral vector of stock levels s∗ that has been derived (via a
chosen rounding scheme) from the solution α∗ to the master problem. That is, for
each item i ∈ I :

s∗
i = R(

∑
γi ∈�i

α∗
γi

γi ). (6.40)

Beginning with stock levels si j = s∗
i j for every item i ∈ I and every location

j ∈ J , the idea behind this technique is to devise a new solution, s̃, to the problem
by solving a sequence of N subproblems, one for each network level v, beginning
with level v = 1. Each subproblem works as follows: Keep all stock levels si j

fixed at their current values except for those stock levels at level-v network loca-
tions. For all items i ∈ I at level-v network locations, set si j = �λi j Ti j�, where
Ti j is a function of the fixed stock levels for item i at locations in the channel Pj

that are above location j in the network. (This will ensure that the channel fill rate
functions are concave in sv.) Next, use a greedy heuristic to increment the level-v
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stock levels until the service level constraints k ∈ (K 1 ∪ K 2 ∪ · · · ∪ K v) are sat-
isfied. That is, in the vth subproblem, the only constraints that are considered are
those associated with levels 1 through v.

The greedy heuristic is essentially just a version of Construct-Feasible-
Solution that is restricted to level-v locations and service level constraints k ∈
K 1 ∪· · ·∪ K v . For each item at each level-v location, compute the total incremen-
tal contribution made to all unsatisfied service level constraints k ∈ K 1 ∪· · ·∪ K v

and divide this incremental contribution by the item’s unit cost. Select the high-
est ratio, and increment the corresponding stock level. Once all constraints k ∈
K 1 ∪ · · · ∪ K v are satisfied, a second phase may be performed to adjust level-v
stock levels downward and reduce investment while maintaining constraint satis-
faction.

The result is a new feasible solution vector s̃ that may be parsed into |I | stock
level vectors, γ̃i , i ∈ I , which in turn may be added to the master problem.

6.3.3.3 Technique 3 (Decomposition by Item)

Suppose we have a set of dual variables, {θ∗
k , k ∈ K }, that correspond to a partic-

ular primal solution, α∗, to the master problem. In this method, we use these mul-
tiplier values to dualize the service level constraints and construct a Lagrangian
relaxation of SLS. As we will show, the relaxed problem, denoted SLS-LR, may
be decomposed by item type, so that we are left with a set of |I | independent item
subproblems to solve, one for each i ∈ I . The solution to each item subproblem
yields a new column γ̃i that may be added to the master problem.

We will discuss a method for solving the item subproblems shortly. First, we
detail the decomposition of SLS by constructing the following Lagrangian relax-
ation:

(SLS-LR)

min
si j ≥0,integer

(∑
i∈I

∑
j∈J

ci si j +
∑
k∈K

θ∗
k

(
Fk −

N∑
v=1

∑
i∈I

∑
j∈J N

wv
i jk f v

i j (siPj)
))

. (6.41)

Since the terms θ∗
k Fk are constant, we may ignore them without affecting the

optimal solution to SLS-LR. Letting

wv
i j =

∑
k∈K

θ∗
k wv

i jk, (6.42)

and leaving off the constant terms, (6.41) becomes

min
si j ≥0,integer

(∑
i∈I

∑
j∈J

ci si j −
∑
i∈I

N∑
v=1

∑
j∈J N

wv
i j f v

i j (siPj)

)

= min
si j ≥0,integer

∑
i∈I

(∑
v<N

∑
j∈J v

ci si j +
∑
j∈J N

(
ci si j −

N∑
v=1

wv
i j f v

i j (siPj)
))

.

(6.43)
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Since each weight wv
i j and each channel fill rate f v

i j (siPj) corresponds to a sin-
gle item, the minimization problem is separable by item. Thus, we are left with
solving

(SLS-LR-SI)

min
si j ≥0,integer

(∑
v<N

∑
j∈J v

ci si j +
∑
j∈J N

(ci si j −
N∑

v=1

wv
i j f v

i j (siPj))

)
. (6.44)

for each item type i independently.
We are now ready to describe a procedure for solving SLS-LR-SI for a partic-

ular item type i . The algorithm involves repeatedly fixing the stock levels si j at all
locations j ∈ J v, v < N , to predetermined values (i.e., all nondemand locations).
When we do this, the first term in (6.44) becomes a constant, and the second term
becomes a convex function that is separable by location (provided that we restrict
si j ≥ �λi jτi j�, for all j ∈ J N ). That is, letting γ̂i denote a specified vector of
stock levels at all nondemand locations, the problem becomes:

Gi (γ̂i , θ
∗) = min

si j ≥0,integer

(∑
v<N

∑
j∈J v

ci si j +
∑
j∈J N

(ci si j −
N∑

v=1

wv
i j f v

i j (si j , γ̂i ))

)

= cγ̂i + min
si j ≥0,integer

( ∑
j∈J N

(ci si j −
N∑

v=1

wv
i j f v

i j (si j , γ̂i ))

)

= cγ̂i +
∑
j∈J N

min
si j ≥0,integer

(ci si j −
N∑

v=1

wv
i j f v

i j (si j , γ̂i ))

= cγ̂i +
∑
j∈J N

min
si j ≥0,integer

gi ( j, γ̂i , θ
∗), (6.45)

where cγ̂i =
∑

v<N
∑

j∈J v ci γ̂i j , and gi ( j, γ̂i , θ
∗)=(ci si j −∑N

v=1 wv
i j f v

i j (si j , γ̂i )
)

is discretely convex in si j ≥ �λi jτi j (γ̂i )�. Hence, by restricting our search to
si j ≥ �λi jτi j (γ̂i )� for j ∈ J N , the stock levels minimizing gi ( j, γ̂i , θ

∗), j ∈ J N ,
can be found quickly and easily using marginal analysis. That is, beginning with
si j = �λi jτi j (γ̂i )�, simply increase si j until ci >

∑N
v=1 wv

i j

(
f v
i j (si j + 1, γ̂i ) −

f v
i j (si j , γ̂i )

)
. Thus, given a candidate set of stock level vectors for item i at all

nondemand locations, �̂i , the following rudimentary algorithm can be used to
find a solution for SLS-LR-SI.

Construct-Single-Item-Solution

Input: An instance of problem SLS;
An item type i ;
Lagrange multipliers {θ∗

k : k ∈ K };
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A set of stock level vectors �̂i , where each γ̂i ∈ �̂i represents a vector
of fixed stock levels for item i at all nondemand locations;

Output: A feasible solution to SLS-LR-SI for item i , γ̃i .

1. U ← ∞.
2. For each γ̂i ∈ �̂i :

a) For each location j ∈ J N , find the stock level si j that minimizes
gi ( j, γ̂i , θ

∗) using marginal analysis.
b) Using the computed stock level values si j for all j ∈ J N , compute:

Gi (γ̂i , θ
∗) = cγ̂i +

∑
j∈J N

min
si j ≥0,integer

gi ( j, γ̂i , θ
∗).

c) If Gi (γ̂i , θ
∗) < U , then U ← Gi (γ̂i , θ

∗), and γ̃i ← (γ̂i ; si j , j ∈ J N ).
3. Return U and γ̃i .

The resulting solution γ̃i may be added to the master problem.
There are many ways to construct the vector set �̂i for a particular i ∈ I . The

most obvious way is simply to use the existing vector set �i as a basis, leaving off
the entries that correspond to the demand locations j ∈ J N .

Another way is to partially enumerate all candidate stock levels at the upper
echelons of the distribution network. For a 3-level network, this involves gener-
ating combinations of stock levels at all level-1 and level-2 network locations.
While this may sound computationally intractable if there are many level-2 lo-
cations, it is actually doable for problem instances in which the constraint set is
decomposable by subsystem, where a subsystem is defined to be the level-1 loca-
tion, a level-2 location, and all level-3 locations that are children of the specified
level-2 location. That is, as long as each service level constraint is confined to
locations in a single subsystem, then for a given stock level at the level-1 location,
each subsystem may be considered independently. This substantially reduces the
computational effort required to solve SLS-LR-SI to optimality.

Why would we want to solve SLS-LR-SI to optimality? Certainly the vector
γ̃i resulting from Construct-Single-Item-Solution does not need to be an optimal
solution to SLS-LR-SI to continue the column generation procedure. In fact, γ̃i

will not be optimal for SLS-LR-SI unless one of the vectors, γ̂i , in our candidate
set happens to partially describe an optimal solution. The reason for wanting the
optimal solution to all SLS-LR-SI item subproblems for a given set of multipli-
ers is that the collection of these optimal item vectors, together, yield an objective
function value that is guaranteed to be a lower bound for the original SLS prob-
lem. Thus, for many practical problem instances, this technique can be used to
provide an optimality gap for the problem.

6.3.4 Constructing the Initial Vector Sets �i

To get started, the column generation procedure requires an initial set of stock
levels vectors, �i , for each item i ∈ I . The initial number of vectors in each �i
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need not be big; however, it is desirable to have a relatively diverse set of columns
so that a larger portion of the solution space is collectively spanned in the master
problem.

Here are some ways in which initial vector sets can be generated:

Beginning with level v = 1 up to N , do the following: For i ∈ I, j ∈ J v ,
set si j = �λi j Ai j�. These vectors represent lower bound stock levels at every
location. One could also use si j = �λi j Ti j�, where Ti j is a function of the fixed
stock levels for item i at locations in the channel Pj that are above location j
in the network.

For level v = 1, set si j = ∞ for i ∈ I . (This guarantees that level-2 locations
will have no delay in replenishment.) Beginning with level v = 2 up to N , set
si j = �λi j Ti j�, where Ti j is a function of the fixed stock levels for item i at
locations in the channel Pj that are above location j in the network.

Using the lower bound stock level vectors as a starting solution, execute Tech-
nique 2 to create a new set of vectors.

Using the lower bound stock level vectors as a starting solution, execute Con-
struct-Feasible-Solution to create a new set of vectors. (Since this may be
computationally intensive, it can be partially executed.)

At this time we have no knowledge of which of these methods, or others that
can easily be constructed, will work best for different problem instances. Fur-
thermore, other heuristics may be developed for generating good solutions for
the SLS problem. Heuristics may be effectively used to generate not only initial
vectors of stock levels, that is, initial sets �i , but also good starting estimates of
multiplier values, θk . The Lagrangian relaxation approach (Technique 3) requires
values for each θk . Obviously, SLS-LR is computationally demanding to solve
and hence should be solved as few times as possible. Thus having good initial
estimates of the θ∗

k will greatly reduce the total computation time needed to solve
the SLS problem.

6.4 Problem Set, Chapter 6

Problem 1. In Section 6.3.2,a first-pass greedy heuristic was described for con-
verting a fractional solution found when solving the master problem into a feasi-
ble, integral solution to the original problem. This method may overstate the stock
levels needed to satisfy some of the constraints, as mentioned in that section. For-
mally state a second-pass greedy heuristic that improves upon the solution ob-
tained when employing the first-pass greedy heuristic. Ensure that feasibility is
maintained.

Problem 2. The general Service Level Satisfaction (SLS) problem was stated in
Section 6.1.3. Let us now consider a specific instance of the problem. Suppose the
network consists of but two echelons. Echelon 1 locations are called bases and the
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top echelon is called the depot. At each base there is only a single fill rate con-
straint, which measures the aggregate fill rate across all items. Furthermore, for
each item i there is a channel fill rate constraint at the depot specifying that item’s
fill rate requirement for base j within the transportation lead time, Ai j . The other
assumptions underlying the model developed in Section 6.1.3 remain. Construct a
method for solving this special instance of the SLS problem. Construct heuristics
that could be used to find good solutions for this specific problem.

Problem 3. Verify the channel fill rate expressions given in Section 6.2.4.



7

Lateral Resupply and Pooling
in Multi-Echelon Systems

The tactical planning models presented in previous chapters were constructed
based on the assumption that each location in the multi-echelon resupply network
had a sole source of resupply. Furthermore, the replenishment lead times were not
sensitive to the amount of on-hand stock, in-transit stock, or backorders existing
at a receiving location. This sole source assumption has a very significant effect
on the total amount of inventory required to meet customer service objectives or
to contain expected backorder costs. However, in many, if not in most of the ex-
isting real world multi-echelon resupply systems, the sole source assumption is
violated.

There are numerous examples of sharing inventories among locations in in-
dustrial, retail and military settings. For example, automotive dealers share parts
on a daily basis so that they can complete the repairs of their customer’s vehicles
quickly. The parts distribution centers operated by each of the car companies rou-
tinely provide stocks from one center to satisfy demands placed on another center
when the latter center is out of stock. In another setting, service technicians for
computer and photocopier equipment share inventories in emergency situations.
Lateral resupply of parts among military bases within a geographic region occurs
on a regular basis as well.

The improvements in information technology coupled with the substantial re-
duction in the cost of processing, storing, and analyzing data have made sharing
of inventories more attractive. Furthermore, logistics companies, such as UPS and
Federal Express, have made the rapid movement of parts from one place to an-
other possible and more affordable.

While we find firms commonly engaging in lateral resupply activities, the un-
derlying question that must be addressed is: what is the impact of lateral resupply
on inventory levels and operations, and is it worth the inherent cost?

A number of authors have addressed this issue. First, there have been simula-
tion studies that have demonstrated the effects of lateral resupply in multi-echelon
systems [81, 82, 198, 219]. While the environments that were examined by these
authors did differ, their results showed that in a wide variety of circumstances, lat-
eral resupply among locations is a very effective way to improve customer service
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and to lower inventory investments. In the case of repairable items, Pyke [198],
Sherbrooke [219], Scudder and Hausman [215], Scudder [214], and others have
also shown that priority scheduling of repairs and priority allocation of stock to
bases can improve system performance, as would be expected. For example, in
some situations the effect of using rules other than the first-come, first-serve rule
for allocating stock to bases proved to be highly beneficial.

Second, authors have presented and tested many analytic models that explic-
itly consider the possibility of supplying locations through lateral shipments. For
example, see Archibald et al. [12]; Lee [156]; Lee and Billington [157]; Alfreds-
son and Verrijdt [6]; Axsäter [17]; Cohen, Kleindorfer, Lee [57]; Dada [66];
Das [69]; Gross [101]; Tagaras [243, 244]; Tagaras and Cohen [245]; Bow-
man [29]; Hoadley and Heyman [130]; Sherbrooke [219]; Yanagi and Sasaki
[254]. These models differ in many ways. Some are stationary, continuous-time
models while others are periodic review, both infinite and finite horizon. Essen-
tially, though, all these analytic models are tactical planning models. They are
either economic models that suggest what quantities of material to buy or they are
models used to determine the probabilities of various events occurring. We say
that these models are tactical models because, for the most part, they do not con-
sider the possibility of using all state-of-the-world information when representing
the operational environment. For example, first-come first-serve inventory alloca-
tion rules are often assumed as the basis for shipping parts from a central location
(depot) to field stocking locations (bases). Real-time execution systems would
take more information into account. The Hoadley and Heyman model is a single
period planning model that does take many operational details into account. How-
ever, lead times are assumed to be zero. Such real-time models are discussed in
Chapter 10.

Rather than describing all the approaches for incorporating lateral resupply
into models, we will focus on just a few in this chapter. We begin by developing
two stationary, continuous-time models. The first is a queuing like model based
on the assumption that the underlying system is governed by a continuous-time
Markov process. The second model is an extension of the ones developed earlier
in Chapter 5. Both are approximations. In the first model we focus on computing
probabilities of system performance resulting from given stock levels. In the sec-
ond model, we also construct probability distributions for key random variables;
but, we also construct an economic model that can be used to set stock levels in a
two-echelon system. The models pertain to repairable items.

We ultimately develop a periodic review model that can be used to establish
stock levels for repairable items in a three echelon environment. But to begin the
section on periodic review models, we will first establish why a multi-echelon
operating environment may be desirable. To do this, we construct a particular
environment that demonstrates analytically why an intermediate stocking location
could be cost effective to create. While the environment we will examine is simple
in nature, it does suggest why it may be advantageous to create a multi-echelon
inventory system.
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7.1 Continuous Time Models for Lateral Resupply

As stated, we will discuss two continuous-time models. The system analyzed in
both cases contains two-echelons, and, as in earlier chapters, we call the upper
echelon location the depot and the lower echelon locations the bases. We assume
there are n bases in the system and that the items can be managed independently.
Thus we focus on a single part type. Demands for this part type arise only at
the bases and occur according to a Poisson process with rate λ j at base j, j =
1, . . . , n.

Each demand at a base immediately triggers a replenishment order for a part
from the depot. Each demand occurs because a part has failed. All failed parts are
sent to the depot for repair.

Up to this point, our discussion is the same as given in earlier chapters. Where
things differ is the manner in which bases interact. We assume, as shown in Fig-
ure 7.1, that the n bases are divided into pools. In practice, a set of bases that
are in the same geographic region might form a pool. Suppose there are P such
pools. We assume that a base is a member of exactly one such pool. Hence the
collection of P pools partitions the bases into mutually exclusive and exhaustive
sets, as implied in Figure 7.1.

Fig. 7.1. A Depot-Base Two-Echelon System with Pools

Furthermore, inventory within each pool can be shared among the bases in
the pool as follows. If a demand arises at a base in a pool and that base has no
stock on hand, then the demand can be satisfied from stock on-hand at some other
base in the pool. Thus when stock is required at a base and none is available
there, a lateral resupply event will take place assuming, of course, that some other
base in the pool has stock on-hand. Obviously, there are many mechanisms for
choosing the base that should laterally resupply the base in need. In practice, it
might be the nearest base with stock on-hand or it might be the base that has the
maximum number of days of stock on-hand. In the models that we will discuss in
this section, we assume that the base providing the lateral resupply is randomly
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chosen from the set of bases with a positive amount of stock on-hand. In the case
where a demand arises at a base and no stock is on-hand at any base in the pool,
we assume the depot is used to satisfy the demand.

We are now ready to present the details of each model. The first is based on
Axsäter [17] and the second on Lee [156].

7.1.1 Model 1

Suppose we are given stock levels for the depot, s0, and for the bases, s j . Our goal
in this section is to show how to estimate the fraction of demand arising at a base
that is satisfied from the stock on-hand at that base, the fraction met from a lateral
resupply event, and finally, the fraction backordered, that is, awaiting arrival of
inventory from the depot.

Let us define notation used in this section. We let

P = number of pools
ni = number of bases in pool i ,
λ j = demand rate at base j ,
λ0 =∑ λ j , the depot demand rate,
A = average order and ship time from the depot to a base,
D = average depot repair cycle time (the average transportation time to the

depot from a base plus the average depot repair time), and
B(s0) = average number of outstanding depot backorders given the depot stock

level is s0.

Other definitions will be presented as we proceed.
Since we are assuming that demands at the bases are independent Poisson

processes, the depot demand process is also a Poisson process. Correspondingly,
the units entering the depot’s repair process are also governed by the same Poisson
process. Let us assume that the repair cycle times are independent and identically
distributed. Since we are following an (s–1,s) replenishment policy, the number
of units in repair at a random point in time has a Poisson distribution with mean
λ0 D, from Palm’s theorem.

In Chapter 5 we developed the probability distribution for the number of units
in depot resupply for a base. This same idea holds for a pool of bases. Thus we
can compute the mean resupply time for a base as

T = A + B(s0)/λ0.

Let us now focus on a single pool. Let N be a random variable describing the
number of units in depot resupply for this pool. Then the E[N ] = (

∑
jεP λ j ) · T ,

where P is the set of bases in the pool. The variance of N can be found using
the procedure developed in Section 5.1.2.1. Furthermore, we may approximate
the probability distribution for N by a negative binomial distribution having these
means and variances as shown in Section 5.1.2.1.
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Let s = (
∑

jεP s j ) be the total stock for the pool of interest. Then

P[N = s − k] also measures the probability that the total on-hand stock in
that pool is k units at a random point in time, k > 0.

In problems of interest, T is usually many days in length whereas the lateral
resupply time among bases in a pool may be measured in hours or perhaps a day.
Because T is normally at least an order of magnitude greater than the lateral re-
supply time, we will assume that this lateral resupply time is of length zero. The
implication of this assumption is that there can never be a base with a backorder
when there is another base in the pool with positive stock. Suppose a demand
arises at a base in the pool and there is no stock on-hand at any base in the pool.
Then a backorder occurs at that base. Subsequently, a unit arrives from the de-
pot to a base at which there are no backorders. In this case, that newly arriving
unit would be laterally resupplied immediately to fill the outstanding backorder.
Hence we assume that whenever pool net inventory is nonnegative there are no
backorders at any base in the pool.

Next, we want to compute

β j , the probability that a demand at base j is satisfied from stock on-hand at that
base,

α j , the probability that the demand at base j is satisfied by a lateral resupply
action from another base in the same pool, and

� j , the probability that a demand at base j in the pool is backordered.

Since a demand must be satisfied either from its on-hand stock or lateral resupply
or must be backordered, α j + β j + � j = 1. Obviously if s j = 0, then β j = 0.

To illustrate our modelling concepts, we assume all the bases in the pool are
identical. Hence we assume that all bases have the same demand rate, λ j , and
stock levels, and that � j , α j and β j are the same for all bases, and, consequently,
we drop the base subscript. Additionally, we assume that the depot to base resup-
ply time for all bases in the group are independent and identically exponentially
distributed random variables with mean T .

Recall that we assume that each base has a probability β that a demand will be
met from on-hand inventory at that base. β also measures the fraction of time that
the base stock is positive. Hence the fraction of time the base stock is negative or
zero is 1 − β = α + �.

Suppose the base stock is positive. During these periods of time, the base
satisfies its local demands, which arrive at a rate of λ. But it also may receive
lateral resupply requests from other bases in the pool. Since all bases in the pool
are identical and lateral resupply requests are met in a random manner, αλ is the
expected long term rate at which lateral resupply requests are satisfied by each
base in the pool. But lateral resupply requests are satisfied only when there is
positive stock on hand at a base. Clearly no lateral resupply occurs from a base
when its on-hand stock is zero. For the average lateral resupply rate to be αλ, the
average lateral resupply rate must be αλ/β when there is stock on hand. When
there is no stock on hand at the base, the demand rate is λ. But a portion of that
demand is satisfied from lateral resupply. Since the bases are identical, the long
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term average rate of material that this base receives via lateral resupply is αλ.
Thus during the period of time when the base is out of stock, the incoming lateral
resupply rate must be αλ/(1 − β).

Axsäter makes the assumption that the demand and resupply processes at each
base are continuous-time Markov processes. Based on this assumption, we can
represent the environment as a queuing system, where the arrival rate is a function
of whether or not there is on hand stock at the base. When the inventory on hand
is positive, let the demand rate be given by

g = λ + αλ/β = λ(1 + α/β); (7.1)

when the on-hand inventory is zero, the demand rate is

h = λ − αλ/(1 − β) = λ(1 − α/(1 − β))

= λ(1 − β − α)/(1 − β)

= λ�/(1 − β). (7.2)

It is clearly possible to describe the system more accurately by representing
it using a state space that captures the inventory levels at each location and the
transitions that can occur from state to state. This more exact representation is far
more complex. We note that although (7.1) and (7.2) are correct on average, they
are approximations of the system’s operation at any point in time. We leave the
more exact development for a special case as an exercise.

We are now ready to construct the simple queuing model for a base. The
following graph displayed in Figure 7.2 describes the transition in the system. Let
πk represent the stationary probability that net inventory for this queuing system
is equal to k.

Fig. 7.2. State Transition Diagram

Then we can easily see that

πs · g = πs−1 · 1

T
,

πs−k · (g + k

T
) = πs−k+1 · g + πs−k−1 · k + 1

T
, for k = 1, . . . , s − 1,

π0 · (h + s

T
) = π1 · g + π−1 · s + 1

T
, and

πs−k(h + k

T
) = πs−k+1 · h + πs−k−1 · (k + 1)

T
, for k > s.
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The solution to this set of equations is

πs−k = π0
s!
k!

1

(gT )s−k
, k = 0, 1, . . . , s − 1, (7.3)

and

πs−k = π0
s!
k! (hT )k−s, k ≥ s. (7.4)

Since
∑

πk = 1,

π0 = 1∑s−1
k=0

s!
k! · 1

(gT )s−k +∑∞
k=s

s!
k! · (hT )k−s

, (7.5)

we have the means to compute the stationary distribution of the base level proba-
bilities. Note, however, that both g and h depend on � and β.

Recall that � measures the probability that an arriving demand can not be
satisfied from the pool’s collective inventory. But this can happen only if all the
pool’s stock is on order from the depot. That is, the probability that an arriving
demand will be backordered is the probability that s or more units are on order
from the depot by the bases in the pool. Thus

� = P[N ≥ s].
We also know that

β =
s∑

k=1

πk (7.6)

represents an approximation to the probability that a base can satisfy its demand
from on-hand stock. Unfortunately, to solve for β we must have the values of the
πk , which, in turn, can only be obtained knowing β. Let us now see how to find β

approximately.
We know the value of � and know that g increases as β decreases (and vice

versa) and that h increases as β increases (and vice versa). For systems in which
we desire to satisfy most of the demand from on-hand base stock, the values of
s will be set so that β is large compared with �. β > .7 would be likely with
� < .1. Since β increases, the value of g decreases and h increases, and therefore
the overall effect would be to increase the value of

∑s
k=1 πk , or β. Thus, if we

start with an initial value of β and compute g and h, we can determine a set of
values for the πk . Using these values, we can use (7.6) to determine a new value
of β. We will then use this value to recompute g and h. This process results in
a bounded monotone sequence of values for β, which means that the sequence
will converge. Axsäter [17] reports that this process converges in relatively few
iterations and is therefore easy and effective to implement.
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7.1.2 Model 2

Lee [156] proposed another way to represent the problem analyzed in the previ-
ous section. His method differs substantially from the previous one even though
most of the assumptions underlying the development of the two models are the
same. This alternative modeling approach is very similar to the one used in earlier
chapters.

Let us begin by summarizing the main assumptions. We assume the system’s
design and operation are the same as the ones discussed in the development of
Model 1. We continue to assume that there are P pooling groups and that the
bases in the same pool are identical. That is, the stock levels are the same for
all bases within a pool and the demand processes are Poisson processes with a
common rate λi . Since there are ni bases in pool i , the aggregate demand process
for pool i is a Poisson process with rate niλi . Furthermore, the aggregate depot
demand process for serviceable parts, and the corresponding arrival process into
the depot repair center, are Poisson processes with rate λ0 = ∑

i niλi since we
are employing (s–1,s) policies at each base. The depot to base order and ship time
is A. However, we now assume that A is a constant. We again assume first-come,
first-serve policies are used to satisfy demands at both the depot and the bases.
Furthermore, we assume that the average depot repair cycle time is D, and these
repair cycle times are independent and identically distributed. Thus we continue to
assume that the depot has an infinite number of servers. (This assumption permits
us to invoke Palm’s theorem.)

Finally, we assume that the lateral resupply time is zero for all bases within
a pool. While this is not true in reality, as we observed earlier, these times are
normally very short. Furthermore, since demand rates for most parts are quite
low, the likelihood of a demand occurring over a short lateral resupply time is
also very low. Hence we continue to make this assumption.

The remainder of our discussion pertaining to this model is divided into two
parts. First, we will construct probability distributions of key random variables
that are used to calculate α, β, and �, as defined previously. Second, using these
probability distributions, we will construct an optimization model that can be used
to determine the stock levels for both the bases and the depot. We also will discuss
an approach for finding these values.

7.1.2.1 Determining α, β and �

Our immediate goal is to establish a method for calculating (1) β = βi , the frac-
tion of demands arriving at a base in pool i that are satisfied from on-hand base
stock, (2) α = αi , the proportion of demands arising at a base in pool i that are
satisfied by lateral resupply from another base in the pool, and (3) � = �i , the
proportion of demands that are backordered in pool i .

We begin our analysis by determining the steady state distribution of the num-
ber of units on-order from the depot by a base in a pool at a random point in time.
Let N j represent the random variable for this quantity at base j . Furthermore, let
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N and ND represent the random variables for the number of units in resupply for
the pool we are examining and the depot, respectively.

We now employ the logic used in Chapter 5 to find the distribution of N .
Suppose that ND = nD . Since the arrival process to the depot is the sum of the
independent base Poisson demand processes, the probability that any of the nD

units is attributable to pool i is ni λi
λ0

. Thus

P[N = k|ND = nD] =
( nD

k

)(niλi

λ0

)k(
1 − niλi

λ0

)nD−k

and hence

P[N = k] =
∞∑

nD=k

( nD

k

)(niλi

λ0

)k(
1 − niλi

λ0

)nD−k · P[ND = nD]. (7.7)

By invoking Palm’s theorem, we know that

P[ND = nD] = e−λ0 D (λ0 D)nD

nD! .

Therefore we have established the distribution for N .
Next let us consider a specific base within the pool, say base j . Applying the

same argument, we may approximate the steady state probability that base j has
k units in a backorder status at the depot as

P[N j = k] =
∞∑

n=k

(n
k

)( λi

niλi

)k(
1 − λi

niλi

)n−k
P[N = n]

=
∞∑

n=k

(n
k

)( 1

ni

)k(
1 − 1

ni

)n−k
P[N = n]. (7.8)

This expression is based on the assumption that it is equally likely that a back-
ordered demand comes from any base in the pool. This may not be the case since
the demands at bases, including lateral resupply shipments are clearly not in-
dependent and hence the number of units a base has on-order depends on the
demands at it and the other bases in its pool, and the lateral resupply priority
rules that are employed. We leave an analysis of the accuracy of this approxima-
tion to the reader as an exercise. Observe that we obtain the same expression for
P[N j = k] when there is no pooling of inventory.

We are now ready to estimate the value of β for each base in the pool. Given
the approximating values for P[N j = k] and the values of P[N = n], as com-
puted in (7.7) and (7.8), respectively, we see that β is approximated by

β =
si −1∑
k=0

P[N j = k] =
si −1∑
k=0

∞∑
n=k

(n
k

)( 1

ni

)k(
1 − 1

ni

)n−k
P[N = n]

since s j = si for all bases in pool i .
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As we did in earlier chapters, we approximate the distributions of the prob-
ability distributions of the random variables N and N j with negative binomial
distributions for computational reasons. This requires computing both the mean
and variance of these random variables and using these values to estimate the
parameter values of the corresponding negative binomial distributions.

The probability that an arriving demand to a pool can not be satisfied from
pool stock is the probability that the aggregate number of units on order for the
pool is greater than or equal to the aggregate pool stock. But, this probability is
P[N ≥ ni si ]. Therefore � = P[N ≥ ni si ], since we assume that lateral resupply
between bases within a pool is instantaneous and occurs whenever needed.

Since we have shown how � and β can be estimated, we are also able to
estimate α for a particular pool, that is, α = 1 − (β + �). Thus the expected
number of lateral resupply shipments corresponding to a base per unit time is λiα

and niλiα for the entire pool.
Lee [156] conducted experiments showing that the approximations are accu-

rate when service levels are high. Axsäter [17] developed the alternative model,
Model 1, for estimating α, β, �. The two models fundamentally differ in only a
couple of ways. The most important difference is as follows. In Lee’s model the
base demand rate is implicitly independent of whether or not there is stock on
hand at the base. Recalling the definitions of g and h in Section 7.1.1 of this chap-
ter, Lee’s model, that is Model 2, is based on the assumption that λi = g = h.
The other difference between the models arises because Axsäter [17] represents
the entire operating environment as a continuous-time Markov process. In cer-
tain situations, Model 1 gives better estimates of α and β. See Axsäter [17] for a
detailed discussion of the numerical tests and comparisons.

Unfortunately, while more accurate, Model 1 is not easily employed to find
optimal stock levels. In Lee’s model, however, a negative binomial distribution
is used to approximate the required probability distributions and thus a computa-
tionally tractable method exists for finding the stock levels, as we now show.

7.1.2.2 Finding the Optimal Stock Levels

There are many different optimization models that may be stated for finding the
values of s0 and the si . Clearly both backorder and lateral resupply costs must be
considered. Holding costs might be included as well. (They would be required to
extend the model to consider multiple items.) If they are included in the single
item case, then fill rate constraints are often included in the model’s statement.
If they are not included, then an investment budget constraint is present in the
model’s formulation.

We now state one possible economic model for finding the values of s0 and
the base stock levels for each base in each pool, si , for pool i . Let
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si = ni si ,

b = backorder cost rate incurred per unit time per unit backordered at a base,

ai = cost of lateral resupply shipments within pool i (per unit shipped),

B = investment limitation,

c = unit cost,

s�
i = lower bound on the stock level for bases in pool i,

s�
0 = lower bound on the depot stock level,

βi = probability that a base in pool i satisfies its demands from the base’s

stock on hand,

�i = probability that a base in pool i backorders its demands.

Ai = depot to pool i transportation time.

D = depot resupply time.

The objective in this model is to find stock levels that minimize the expected
costs per unit time subject to an investment constraint, while recognizing mini-
mum stocking constraints at the bases and the depot. The corresponding model
is

min C = b
P∑

i=1

∑
k>si

(k − si )P[N i = k]

+
P∑

i=1

ai niλi (1 − �i − βi )

subject to

si ≥ s�
i (or si ≥ ni s�

i ),

s0 ≥ s�
0,

cs0 +∑i csi ≤ B (or s0 +∑ si ≤ �B/c�),

and s0, si are nonnegative integers, where N i is the number of units in pool i that
are on order (in resupply) at a random point in time.

We assume the lower bounds on the stock levels are set so that si ≥ �niλi Ai +
ni λi
λ0

BD(s�
0)� and s0 ≥ �λ0 D�. Obviously, �B/c� must be at least as large as∑

i ni s�
i + s�

0 for a feasible solution to exist.
This problem can be solved using a marginal analysis algorithm similar to the

one described in earlier chapters. We now outline such an algorithm.
For each depot stock level s0ε[s�

0, �B/c�−∑i s�
i ni ] and integer, we can solve

C(s0) = min
∑

i

Ci (si |s0)

subject to
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P∑
i=1

si ≤ �B/c� − s0,

si ≥ s�
i ≥ 0 and integer,

where

Ci (si |s0) = b
∑
k>si

(k − si )P[N i = k|s0]

+ai niλi (1 − �i − βi ).

Recall that we approximated βi as
∑si −1

k=0 P[N j = k], and that we further approx-
imated P[N j = k] by assuming this distribution for N j has a negative binomial
distribution. Similarly, we assumed that P[N = n] could be approximated by a
negative binomial distribution. Thus �i can be approximated, too.

The reason for stipulating the specific values for lower bounds on si and si

was to ensure that the functions

Ci (si |s0)

are convex. We leave the convexity proof as an exercise.
Since the objective function C(s0) is the sum of convex functions, it is convex

in the values of the si . Thus given s0, we can find the best allocation among
the pools using a straight-forward marginal analysis approach. That is, at each
step, add the incremental stock to the base and pool that reduces the cost by the
greatest amount. The process begins with si = s�

i for all bases. Continue until
all the stock is allocated at which time we have also computed C(s0). Repeat
this process for all values of s0. The optimal solution is the s∗

0 = arg mins0 C(s0)

and the corresponding values si (s∗
0 ). Ties can be broken arbitrarily throughout the

implementation of this algorithm.

7.2 Risk Pooling

As we have stated, the design of logistics resupply systems for service parts has
a substantial impact on operating costs, investment costs in facilities and inven-
tories, and, of course on customer service. Conventional wisdom suggests that as
the number of echelons increases, operating and investment costs increase, and,
in particular, investment in inventory grows. Nonetheless, in practice we see that
many service parts resupply systems often have many echelons. There are obvi-
ous reasons for having two echelon systems. But real systems often contain more
than two echelons. Is there a reason, from an inventory investment perspective, to
have more than two echelons? Conventional wisdom says that there will be more
inventory in systems with more echelons. Is this conventional wisdom correct?

We have two purposes in this section. First, we will address these questions
directly. As we will see, there may be reasons for constructing systems containing
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several echelons so that system inventory levels are actually lowered. To demon-
strate this fact, we will analyze a system consisting of a supplier, depots, and
warehouses. In this system material flows from the supplier’s warehouse to a set
of depots and then to the warehouses that are supplied by the particular depot.
Thus this resupply system is an arborescence. Demand occurs only at the ware-
house echelon in this system. The environment is one in which these demands
occur in each period of an infinite horizon. The analysis we present is based on
that given by Eppen and Schrage [78].

Our second purpose is to analyze a three echelon system consisting of a depot,
several intermediate stocking locations, and a set of bases that are resupplied by
the intermediate stocking locations. This system is again an arborescence. How-
ever, the items in this system are repairable. Demands, which occur at the bases,
correspond to failures and require repairs. Demands also correspond to the imme-
diate need for serviceable stock. This environment is a three echelon extension of
the continuous review environment we analyzed in detail in Chapter 5. A model
similar to the one we will present was used by the US Air Force to determine the
effect of consolidating repairs while stocking inventories in three echelons (see
Muckstadt [178]).

7.2.1 A Periodic Review Pooling Environment

The fundamental question we address in this section is whether or not we will
increase system inventories by adding echelons into a system. To address this
question, we will study a system in which orders are placed on the external sup-
plier in each period of an infinite horizon by every depot. These depot orders are
placed in response to demands that have arisen in the previous period at the ware-
houses that are supplied by that depot. We assume that after D periods, which
is the supplier to depot lead time, the entire quantity that was ordered by each
depot is delivered to it by the supplier. By making this assumption, every depot
subsystem is, in effect, independent of every other depot subsystem. Hence, we
will concentrate our analysis on a single depot and warehouse subsystem.

The depot in this subsystem resupplies m warehouses. We assume that items
are also managed independently so that we may analyze them one item at a time.
We will further assume that the demand for an item at warehouse j in period t is
denoted by the random variable d jt . We assume the random variables d jt are inde-
pendent and identically distributed and normally distributed random variables in
each period of the infinite planning horizon. Furthermore, demands are assumed
to be independent across warehouses. We let the parameters of the per period
distributions be µ j = E[d jt ] and σ 2

j = Var [d jt ] at warehouse j .
We assume that each warehouse places an order on the depot in every period.

The transportation lead time from the depot to each warehouse is denoted by A,
which is measured in periods.

The design of real world resupply networks of the type we have described
would exist when D is much greater than A. That is, the procurement lead time is
much greater than the distribution lead time, which is certainly the case for most
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service parts. We assume D � A, and that A is not trivial in length. A may be
several days or a week where D may be many weeks or months.

We assume that the holding cost for a unit is the same at the warehouses and
the depot. The holding cost at either location type is denoted by h dollars per unit
per period. If, at the end of a period, the net inventory at a warehouse is negative,
backorders will exist. We let b represent the backorder cost per unit per period at
each warehouse.

Let I j t be the inventory position for warehouse j in time period t just after
the depot to warehouse allocations have been made.

7.2.1.1 Imbalance Assumption

We make one additional important assumption concerning the system’s dynamic
operation, which we call the Imbalance Assumption. By this we imply that in each
period there is enough inventory at the depot so that following allocation of this
inventory to the warehouses, all warehouses will have an equal fractional value of
its distribution of demand over the A period lead time. Since we have assumed that
the demands are independent and identically distributed normal random variables
and that b and h are the backorder and holding costs, respectively, for all locations,

the imbalance assumption implies that �

(
I j t −Aµ j√

Aσ j

)
is the same for all j and t ,

where �(·) is the standard normal distribution function. Thus we assume that the
probability of a stockout occurring in period t + A is the same at all warehouses.

Based on the imbalance assumption and the equal holding cost assumption
at all locations, we can easily prove that all units available at the depot at the
beginning of a period should be sent to the warehouses. That is, it is always best
to hold no stock at the depot in this system.

Let us now establish how likely it is to achieve a balanced allocation. Remem-
ber that in each period the depot orders the total demand incurred in the previous
period at the warehouses. This quantity arrives D periods later, at which time we
have assumed that the amount on hand at the depot is sufficient to ensure an equal
fractile allocation. Suppose we placed an order in period t . The order would be of
size

∑m
j=1 d j,t−1. Further assume that the system was in balance at the beginning

of period t + D − 1. Demands then arise in period t + D − 1 at each warehouse.
To remain in balance, the amount received at the depot at the beginning of period
t + D, namely

∑m
j=1 d j,t−1, must be large enough to compensate for the demands

arising at the warehouses during period t + D −1. Let us now prove the following
result.

Lemma 3. Suppose the system is in balance at the beginning of period t + D − 1.
Then it will be in balance following the depot allocation to the warehouses in
period t + D if

m∑
j=1

d j,t−1 ≥ max
i=1,...,m

{∑
j �=i

d j,t+D−1 + di,t+D−1

(
1 −

∑
σ j

σi

)}
.
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Proof. Since the system is in balance at the beginning of period t + D − 1, and
demand is normally distributed at each warehouse, there exists a value k such that

I j,t+D−1 = Aµ j + k
√

Aσ j , j = 1, . . . , m.

Then demands occur at each warehouse in period t +D−1. Next, the order placed
by the depot in period t , for

∑m
j=1 d j,t−1 units, arrives at the depot and is available

to be allocated to the warehouses. Since the depot does not keep stock on hand,
all
∑m

j=1 d j,t−1 units are allocated to the warehouses. Furthermore, these are the
only units that are available for distribution.

Suppose x j units are allocated to warehouse j in period t + D. Then the
inventory position for warehouse j is

I j,t+D = I j,t+D−1 + x j − d j,t+D−1

= Aµ j + k
√

Aσ j + x j − d j,t+D−1.

Hence the system will remain in balance following the allocation only if there
exist x j ≥ 0 such that ∑

j

x j =
∑

j

d j,t−1

and there exists k′ for which

I j,t+D = Aµ j + k′√Aσ j .

Since

I j,t+D = Aµ j + k′√Aσ j

= Aµ j + k
√

Aσ j + x j − d j,t+D−1,

we have

x j = (k′ − k)
√

Aσ j + d j,t+D−1,

for j = 1, . . . , m. Furthermore, we know that∑
j

x j =
∑

j

d j,t−1 =
∑

j

{
(k′ − k)

√
Aσ j + d j,t+D−1

}
= (k′ − k)

√
A
∑

j

σ j +
∑

j

d j,t+D−1.

Hence

k′ − k =
(∑

j d j,t−1 −∑ j d j,t+D−1

)
√

A
∑

j σ j
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and

x j =
(∑

i di,t−1 −∑i di,t+D−1
)

√
A
∑

i σi

√
Aσ j + d j,t+D−1

=
(∑

i di,t−1 −∑i di,t+D−1
)∑

i σi
σ j + d j,t+D−1.

For x j to be nonnegative, we see that the right hand side must be nonnegative as
well. Thus ∑

i

di,t−1 ≥
(∑

i

di,t+D−1

)
− d j,t+D−1 ·

{∑
i σi

σ j

}
.

Therefore x j ≥ 0 for all j if

∑
i

di,t−1 ≥ max
j

{∑
i �= j

di,t+D−1 + d j,t+D−1

{
1 −

∑
i σi

σ j

}}

or ∑
i

di,t−1 ≥
∑

i

di,t+D−1 + max
j

[
−d j,t+D−1

{∑
σi

σ j

}]
.

This concludes the proof. ��
This lemma provides us with a means for estimating the probability that the

imbalance assumption is satisfied. Note that the lemma is based on the hypothesis
that the system was not in a state of imbalance when a period began.

Let us now compute a bound on the following probabilities

P

[{∑
i

di,t−1 −
∑
i �= j

di,t+D−1 − d j,t+D−1

[
1 −

∑
i σi

σ j

]}
≥ 0

]

for all warehouses j . Note that the random variable

X j ≡
∑

i

di,t−1 −
∑
i �= j

di,t+D−1 − d j,t+D−1

[
1 −

∑
i σi

σ j

]
is the sum of independent, normally distributed random variables and therefore

also has a normal distribution with expectation µ j

∑
i σi
σ j

and variance 2
∑

i �= j σ 2
i +

σ 2
j

(
1 + (1 −

∑
i σi
σ j

)2). From Bonferroni’s inequality,

P
{

X j ≥ 0(for all j)
} ≥ 1 −

m∑
j=1

P
{

X j < 0
}
.
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Suppose we consider the case where the warehouse demand distributions are
identical. Thus µ j = µ and σ j = σ . Then the E[X j ] = mµ and Var[X j ] =
m2σ 2, for all j . Thus

P
{

X j < 0
} = P

{
X j − µ

σ
≤ −µ

σ

}
= �

(
−µ

σ

)
,

where �(·) is the distribution function of a standard normal distribution. Suppose
µ = 100 and σ = 10, yielding a coefficient of variation of .1. Also suppose that
m = 10. Note this would correspond to the situation where we are approximating
a demand process that is a Poisson process with a mean of 100 units per period
for each of the 10 warehouses. In this case,

1 −
m∑

j=1

P
{

X j < 0
} = 1 − 10 · �(−10) ≈ 1.

As µ
σ

decreases the quality of the approximation will decrease as well. Thus as
long as µ/σ is large the imbalance assumption is quite reasonable to make.

7.2.1.2 System Analysis

In this section we establish methods for computing the desired system stock level,
s, and determining how stock arriving at the depot should be allocated among the
various warehouses. Let us assume the system operates in the following manner.

At the beginning of each period, as we stated, the depot places an order for
the total amount ordered by warehouse customers on the previous day. Next, the
orders placed previously (a lead time ago) arrive at the depot. The depot then
allocates this inventory to the regional warehouses. Then demands occur at each
warehouse and are satisfied to the maximum extent possible. Finally, holding and
backorder costs are incurred at the warehouses.

Let us define two random variables. First, let Y0 represent the total system
demand over a depot lead time, that is

Y0 =
D∑

t=1

m∑
j=1

d jt .

Second, let Y j represent the demand at warehouse j over the replenishment lead
time of length A plus one period, that is,

Y j =
D+A+1∑
t=D+1

d jt .

We will now see why the upper limit is D + A + 1.
Assume the system’s inventory position is s units following the placement

of a depot order in period 1. Then the net system inventory in period D + 1
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prior to allocating depot stock is s − Y0 units. Furthermore, the net inventory at
warehouse j at the end of period D + A + 1, given an allocation of x j units in
period D + 1, has an expected value of x j − (A + 1)µ j units and a standard
deviation of

√
A + 1σ j units. This is the case because when units are shipped

from the depot to a warehouse in period t , they arrive at that warehouse at the
beginning of period t + A. Suppose A is three periods. An allocation from the
depot in period t arrives at warehouse j at the beginning of period t +3. Demands
occurring in periods t, t + 1, t + 2, and t + 3 reduce the on hand stock level.
The warehouse’s allocated level, x j , at the beginning of period t results in a net
inventory level of x j − d j,t − d j,t+1 − d j,t+2 − d j,t+3 at the beginning of period
t + 4 or at the end of period t + 3. Therefore the ending inventory at warehouse j
is reduced by the demand in A + 1 periods.

We have assumed that an imbalance of inventory among the warehouses will
not occur. Hence the s −Y0 units can be allocated in a manner that yields the same
probability of running out of stock a lead time in the future at all the warehouses.
This assumption implies that there exists a k such that

m∑
j=1

x j =
∑

j

{
(A + 1)µ j + k

√
A + 1σ j

}
= s − Y0

with x j ≥ 0. Then

x j = (A + 1)µ j + (s − Y0 − (A + 1)

m∑
i=1

µi )σ j/

m∑
i=1

σi .

The random variable z j = x j − Y j measures the net inventory at j at the end of a
period.

Observe that

z j = (A + 1)µ j + (s − (A + 1)

m∑
i=1

µi )
σ j∑m
i=1 σi

−
(

Y j + Y0 · σ j∑
i σi

)
.

Hence z j has a normal distribution with mean

E[z j ] = (A + 1)µ j + (s − (A + 1)

m∑
i=1

µi )
σ j∑
i σi

−((A + 1)µ j + D
m∑

i=1

µi · σ j∑
i σi

)

= (s − (D + A + 1)

m∑
i=1

µi ) ·
{

σ j∑m
i=1 σi

}
and variance
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Var [z j ] = Var [Y j ] +
[

σ j∑
i σi

]2

Var [Y0],

since Y j and Y0 are independent random variables. But Var [Y j ] = (A +1)σ 2
j and

Var [Y0] = D
∑m

i=1 σ 2
i . Consequently

Var [z j ] = (A + 1)σ 2
j +

[
σ j∑m
i=1 σi

]2

· D ·
m∑

i=1

σ 2
i .

Let Fz j (·) be the distribution function for the random variable z j . Then the
expected per period cost at warehouse j is given by

h
∫ ∞

0
zd Fz j (z) + b

∫ 0

−∞
zd Fz j (z).

But z j is a function of s and hence the expected cost per period is a function of s.
Note that the Var [z j ] is independent of s, however.

We can write

z j = s · σ j∑m
i=1 σi

+ c j − z j , where

c j = (A + 1)µ j − (A + 1)

m∑
i=1

µi · σ j∑m
i=1 σi

, a constant,

and

z j = Y j + Y0 · σ j∑
i σi

. E[z j ] = (A + 1)µ j + σ j∑
i σi

· D ·
m∑

i=1

µi

and

Var [z j ] = Var [z j ] = (A + 1)σ 2
j +

[
σ j∑m
i=1 σi

]2

· D ·
m∑

i=1

σ 2
i .

Furthermore, let Fz j (·) be the distribution function for the random variable z j .
The expected cost per period at warehouse j is then expressed as

h
∫ s·σ j /

∑m
i=1 σi +c j

−∞

(
s · σ j∑m

i=1 σi
+ c j − z

)
d Fz j (z)

+ b
∫ ∞

s· σ j∑m
i=1 σi

+c j

(
z −

(
s · σ j∑m

i=1 σi
+ c j

))
d Fz j (z).

This is a news-vendor function which has its minimum occurring at

Fz j

(
s

σ j∑
i σi

+ c j

)
= b

b + h
.
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Since z j has a normal distribution,

Fz j

(
s

σ j∑
i σi

+ c j

)
= �(z)

where

z =
s

σ j∑
i σi

+ c j − E(z j )

σz j

=
(

σ j∑m
i=1 σi

) [
s − (D + A + 1)

∑m
i=1 µi

]
σ j

[
(A + 1) + D ·

∑m
i=1 σ 2

i

(
∑m

i=1 σi)
2

]1/2

= s − (D + A + 1)
∑m

i=1 µi[
(A + 1)

(∑m
i=1 σi

)2 + D ·∑m
i=1 σ 2

i

]1/2
.

Observe that z is independent of the warehouse j and the optimal value for z, and
hence s, can be found by setting �(z) = b

b+h .
We conclude this section by comparing the inventory position for three dif-

ferent resupply systems. The first is the one that we just analyzed. The second is
a system in which there is only one warehouse that satisfies all the demand. The
third system is a collection of m independent systems. There is no depot in the
third system.

Let us now consider the second system. In this case we assume the material
still moves through the depot to the single warehouse. Hence the total warehouse
demand per period is the sum of the individual warehouse demands as experienced
in the first system we studied. In this depot/single warehouse system, expected
holding and backorder costs are incurred D + A + 1 periods after a depot order
is placed. The demand over this period of time is normally distributed with mean
(D + A + 1)

∑m
i=1 µi and variance (D + A + 1)

∑m
i=1 σ 2

i . The lowest expected
per period cost is found by determining the value of z that satisfies �(z) = b

b+h ,
where, in this second case,

z = s − (D + A + 1)
∑m

i=1 µi[
(D + A + 1)

∑m
i=1 σ 2

i

]1/2
.

In the third system, each warehouse j places its own orders and has its own
order up to level s j . To make a comparison, we assume the lead time for each
warehouse is D + A periods. Then the optimal value for z j satisfies

z j = s j − (D + A + 1)µ j

(D + A + 1)1/2σ j
.

Since b
b+h is the same for all warehouses, z j = z for all j .
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Let us now compare the values of s for these three systems. For the first sys-
tem, which we examined in detail,

s = (D + A + 1)

m∑
j=1

µ j + z
{

D
m∑

j=1

σ 2
j + (A + 1)

( m∑
j=1

σ j

)2}1/2
.

For the second system, in which demand is concentrated at a single location,

s = (D + A + 1)

m∑
j=1

µ j + z
{
(D + A + 1)

m∑
j=1

σ 2
j

}1/2
.

For the third, and completely decentralized system,

s =
m∑

j=1

s j =
m∑

j=1

[
(D + A + 1)µ j + z(D + A + 1)1/2σ j

]
= (D + A + 1)

m∑
j=1

µ j + z · (D + A + 1)1/2
m∑

j=1

σ j .

We see that the order-up-to level, or inventory position, and hence the safety
stock requirements are dependent on the resupply system’s structure. The safety
stock requirements are clearly greatest for the decentralized system and lowest
for the completely centralized system, that is the single warehouse system. The
depot and multiple warehouse system requires more safety stock than the single
warehouse system and less than the totally decentralized system. The degree of
these differences will depend on the system parameters and particularly on the
values of D and A. When D is significantly greater than A, the effect of complete
and partial centralization or pooling is the greatest. Let us consider two examples.

First, suppose m = 10, σ j = σ = 4 and D = 10 and A = 5. Further suppose
z = 1.25. Then

safety stock for the totally centralized system = 1.25 · [16 · 10 · 16]1/2 =
63.25,

safety stock for the depot/warehouse system = 1.25
[
10·10·16+ 6[10·4]2

]1/2

= 105.83,

safety stock for the total decentralized system = 1.25[16]1/2 · 10 · 4 = 200.

Clearly the cost of decentralization, in terms of safety stock, is substantial. Ob-
serve that the depot/warehouse structure requires about 167% of the safety stock
level needed in a completely centralized system.

Second, suppose D = 45 and A = 1 and all other parameters are the same as
in the first case. Then

safety stock for the totally centralized system = 1.25[47·10·16]1/2 = 108.40,
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safety stock for the depot/warehouse system = 1.25
[
45 ·10 ·16+2[10 ·4]2

]1/2

= 127.48,

safety stock for the decentralized system = 1.25[47]1/2 · 10 · 4 = 342.78.

Again we observe that pooling has a very beneficial effect. We also see that when
D is much greater than A, the depot/warehouse safety stock requirements are
closer to those needed in the totally centralized system. In this example, the depot
warehouse system requires about 17.6% more safety stock than does the com-
pletely centralized system. Both of the systems in which pooling exists require
roughly a third of the safety stock required when operating a completely decen-
tralized system.

The reduction in safety stock that results from pooling and operating multi-
echelon systems can be substantial. These inventory reductions justify the fixed
and operating costs incurred when running depot/warehouse systems. Transporta-
tion costs are often reduced when operating depot/warehouse systems, too, since
larger shipments over long distances normally result in lower per unit shipping
costs.

7.2.2 A Continuous Review Three Echelon Pooling Environment

We now study a three echelon system that consists of a set of locations at which
demands for parts occur, which we call bases, a set of locations that resupply
groups of them, which we call intermediate stocking locations, and a depot that
is responsible for resupplying the intermediate stocking locations as needed. This
system is an extension of the one discussed in depth in Chapter 5. In the ensuing
discussion we will assume that the items are called LRUs to match our earlier
discussions, and that demands at bases correspond to removals of failed LRUs
from an aircraft. Furthermore, failed LRUs are sent directly to the intermediate
stocking facility that is responsible for resupplying the base. That facility is re-
quired to send a serviceable unit to the requesting base as soon as one is available.
Once the failed unit arrives at the intermediate stocking location, a determination
is made as to whether or not it is capable of being repaired there. If it is, the unit
is repaired there; otherwise, it is sent to the depot for repair. In the latter case, the
depot sends a serviceable LRU to the intermediate stocking location as soon as
one is available.

The decision as to where the repair will take place is assumed to depend only
on the nature of the failure, that is, the failure mode. Thus we are assuming that
the location at which repairs are made depends only on the technical attributes of
the failure and not on the workload at a location at the particular moment when
the repair is required.

In all cases, shipments of LRUs from the depot to intermediate stocking loca-
tions and from intermediate stocking locations to bases are made on a first-come,
first-served basis. No prioritization of shipments based on perceived immediate
need of the intermediate stocking locations or bases is considered when making
allocation decisions.
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We also assume that lateral resupply among bases and among intermediate
stock locations is not permitted.

While neither the first-come, first-serve nor the lateral resupply assumptions
are likely to hold in practice, we will make these assumptions. In fact, if lateral re-
supply among several bases is the norm, then the collection of these bases should
be considered to be a single base in the model. Later in this chapter we will di-
rectly address the lateral resupply possibilities.

We observe that these assumptions should provide a conservative solution.
That is, actual performance should be at least as good as the model predicts given
proper prioritization practices are undertaken when allocating inventories at ei-
ther the depot or intermediate stocking locations. Performance should also be
enhanced if lateral resupply is performed in practice.

Finally, we assume that failures of LRUs at the base level occur according to
independent Poisson processes. That is, failures of all LRU types are independent
among LRU types and among locations.

7.2.2.1 System Operation and Definitions

The structure of the system we are examining is given in Figure 7.3. We assume
items are managed independently so we will focus on a single LRU type.

Fig. 7.3. A Three-Echelon Resupply System

Removals at base j , which are resupplied by intermediate stocking location i ,
occur at a rate of λi j units per day. As mentioned, the removal, or failure, process
is a Poisson process. Each failed unit is sent to the appropriate intermediate stock-
ing location immediately when the failure occurs (no batching of failed units is
allowed). Thus the arrival process of failed LRUs at intermediate stocking loca-
tion i is a Poisson process with rate

∑
jε Ii

λi j , where Ii is the set of bases supplied
by intermediate stocking location i . The probability that a failed unit arriving at
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intermediate stocking location i is repaired there is denoted by ri . Hence the ar-
rival process to the repair facility at intermediate stocking location i is a Poisson
process with rate ri

∑
jε Ii

λi j . Similarly, the arrival process of units requiring re-
pair at the depot is a Poisson process with rate

∑
i (1 − ri )

∑
jε Ii

λi j units per
day.

The average depot repair cycle time for units ultimately requiring depot repair
is denoted by D. This time includes the time required to transport defective LRUs
to the depot plus the average time it takes to repair the LRU once the unit is entered
into the repair process. Repair times at the depot are assumed to be independent
and identically distributed. D is measured in days.

Next, let Bi be the average LRU repair cycle time given the unit is repaired
at intermediate stocking point i . Bi includes the time to detect a LRU failure
at a base, pack, transport it to location i , and perform the repair operations at
intermediate stocking location i . Bi is measured in days.

We let Ai be the average order and ship time for a unit from the depot to
intermediate stocking location i (not counting any waiting time for the availability
of an LRU at the depot). Ai j is the average order and ship time to base j from
intermediate stocking location i given stock is available at intermediate stocking
location i . Both Ai j and Ai are measured in days.

Finally, we let Ti j represent the average resupply time for an LRU at base j in
the group of bases supplied by intermediate stocking location i .

The structure we have discussed is of practical importance in cases where Ai j

is much smaller than Ai . As we discussed in the previous section, if they are of
roughly comparable values, there is less advantage from an inventory viewpoint
to having a three rather than a two echelon resupply system. In fact, the three
echelon system could require significantly more inventory.

As we mentioned in the previous section, three echelon systems often exist
when Ai j is a day or so, Ai is a week or more, and repair resources are expensive
and relatively scarce. Although the model we will propose is a stationary model,
three echelon systems are also of practical importance when it is uncertain as to
which base or bases may have higher activity levels (and failures) for short periods
of time. Thus the intermediate stocking point, and its associated repair facility,
provides the flexibility needed to respond to highly dynamic requirements.

Although we have described the system assuming repair occurs following the
removal of a defective LRU from an aircraft, the model could also represent sit-
uations in which there is no repair and all replenishment comes from an outside
source. In this case D represents the average procurement lead time, Ai and Ai j

the average transportation and handling times, and ri = 0.

7.2.2.2 Optimization Problem

The model we construct establishes stock levels for each location so that the av-
erage total number of outstanding LRU backorders across all bases and all LRUs
is minimized subject to an investment constraint on LRUs. While this backorder
objective is only a first order approximation to maximizing aircraft availability, it
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is an accurate approximation and is highly mathematically tractable, as we have
already discussed.

We will now develop the mathematical model.
Let si j represent the LRU stock level at base j , jε Ii , where i supplies j .
Let si represent the LRU stock level at intermediate stocking location i , and

s0 represent the depot LRU stock level.
As in the two echelon model, we must construct the average resupply time

equation which, for example, we use to express the effect of stocking inventory
at the intermediate stocking location and the depot on the average base resupply
time.

Let

Ti j = average LRU resupply time for base j, jε Ii

= Ai j + expected delay due to shortages at i.

But, this expected delay, which we denote by δ(si ), is expressed as

δ(si )=average number of outstanding intermediate stocking location i backorders

intermediate stocking location demand rate
.

If Bi (si ) represents the average number of backorders outstanding at intermediate
stocking location i at a random point in time, then

δ(si ) = Bi (si )∑
jε Ii

λi j
= Bi (si )

λi
, where λi =

∑
jε Ii

λi j .

Our goal is to compute the average number of base j backorders outstanding
at a random point in time. To do this, we must establish the probability distribution
for the number of units in the resupply system. We let Xi j be this random variable
for base j , jε Ii .

Then

E[Xi j ] = λi j Ti j

= λi j

(
Ai j + Bi (si )

λi

)
.

Furthermore, we compute the variance of the number of units of the LRU in re-
supply at base j , jε Ii , as follows.

Suppose Ni represents the number of backorders existing at the intermediate
supply point i at some point in time. Then, based on our assumptions, the proba-
bility that Ni j of them correspond to failures (and orders) at base j , jε Ii , is given
by

P
{

Ni j = ni j |Ni = ni
} =

(
ni

ni j

)(
λi j

λi

)ni j
(

1 − λi j

λi

)ni −ni j

.

The expected value of Ni j , given si , is
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E[Ni j |si ] = ENi

[
E[Ni j |Ni ]

] = λi j

λi
ENi [Ni ]

= λi j

λi
Bi (si ).

The variance of Ni j , given si , is

Var (Ni j |si ) = E
[

N 2
i j |si

]
− [E [Ni j |si

]]2
= E

[
N 2

i j |si

]
− [Bi (si )]

2 ·
[
λi j

λi

]2

.

To determine the variance of Ni j given si we compute

E[N 2
i j |si ] = ENi

[
ENi j

[
N 2

i j |Ni

]]
= ENi

[
Var Ni j

(
Ni j |Ni

)+ (ENi j

[
Ni j |Ni

])2]
= ENi

[
Ni

(
λi j

λi

)(
1 − λi j

λi

)
+
(

λi j

λi

)2

N 2
i

]

= λi j

λi

(
1 − λi j

λi

)
Bi (si ) +

(
λi j

λi

)2

E
[

N 2
i

]
= λi j

λi

(
1 − λi j

λi

)
Bi (si ) +

(
λi j

λi

)2 [
Var (Ni |si ) + Bi (si )

2
]
,

as we did earlier in Chapter 5. Hence

Variance (Ni j |si ) = λi j

λi

(
1 − λi j

λi

)
Bi (si ) +

(
λi j

λi

)2

Var (Ni |si ).

However, Bi (si ) depends on the depot stock level, since

Ti = ri Bi + (1 − ri )(Ai + depot delay (s0)).

Then δi (s0) = expected depot delay given depot stock s0 = B0(s0)
λ0

, where B0(s0)

represents the average number of outstanding depot backorders at a random point
in time and λ0 =∑i (1 − ri )

∑
jε Ii

λi j . Therefore

Ti =
[

Ai + B0(s0)

λ0

]
(1 − ri ) + ri Bi

and

λi Ti = riλi Bi + λi (1 − ri )Ai + (1 − ri )
λi

λ0
B0(s0).

As we just computed for each base, we need to compute the first two moments of
the probability distribution for the number of units in resupply for the intermediate
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stocking location. This calculation is made in exactly the same manner as was
done for the random variable Ni j . The details can be found in the discussion of
the two-echelon case.

Hence we have the machinery in place to estimate the first two moments of the
probability distributions for the number of units in resupply for both the base and
intermediate stocking location. The probability distribution of the number of units
in resupply is approximated by a negative binomial distribution with parameters
estimated using the computed moments.

The optimization problem we will solve for a single LRU type is as follows:

f (b) = minimize
∑

i

∑
jε Ii

Bi j (si j )

s.t.
∑

i

{∑
jε Ii

si j + si

}
+ s0 = b

si j , si , s0 nonnegative integers,

(7.9)

where b represents the total available stock of the LRU. In fact, rather than solving
Problem (7.9) for a single value of b, we would solve it for a broad range of values
of b so that the function f (b) can be constructed, as we did in Chapter 5.

Suppose we restrict s0εS0, siεSi , where S0 and Si represent the sets of values
that would be considered for the respective variables. In principle, we would have
to look at all possible combinations of stock levels in these sets to obtain an opti-
mal solution to Problem (7.9). This is the case since, as we have seen, Bi j (si j ) is
a function of si j , si and s0 and hence the objective function is not separable. Fur-
thermore, it is not necessarily convex either. Hence an exhaustive search would
seem to be necessary.

However, this is not the way we would propose to solve this problem. Suppose
we set a = ∑

i si + s0 and
∑

i
∑

jε Ii
si j = b − a for some values of a and b.

The question is how should we select the values of the si and s0 variables so
that

∑
i si + s0 = a. We propose the following method for obtaining the desired

partition of the available stock a among the intermediate stocking locations and
the depot.

Select the values of the variables si and s0 so that the expected delay in re-
sponding to base level resupply requests is minimized. That is, solve

min
∑

i

∑
jε Ii

λi j Ti j =
∑

i

∑
jε Ii

λi j

(
Ai j + Bi (si |s0)

λi

)
=
∑

i

∑
jε Ii

λi j Ai j

+
∑

i

[∑
jε Ii

λi j

λi

]
Bi (si |s0)

= constant +
∑

i

Bi (si |s0)
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subject to
∑

i si + s0 = a, where s0εS0, siεSi . Then for all s0εS0, we obtain

g(s0, a) = min
∑

i

B(si |s0)∑
i

si = a − s0

siεSi .

Since B(si |s0) is convex in si given s0, a marginal analysis method can be used to
obtain the optimal allocation of the available stock, a−s0, among the intermediate
stocking locations.

Once the values of g(s0, a) have been obtained for all s0εS0 and for a range
of values a. We can determine

g̃(a) = min
s0

g(s0, a). (7.10)

The function g̃(a) may not be a convex function of a.
The solution to problem (7.9) is found using knowledge of the optimal values

of s0 and si for each value of a, that is, those values that yield g̃(a). Observe that
problem (7.9) can be written as

f (b) = min
cs0,si

s0εS0,si εSi

{
min
si j

∑
i j

Bi j (si j ) :
∑

i

∑
jε Ii

si j = b − (
∑

i si + s0)

si j =0,1,...

}
.

We find an approximate solution to this problem by solving the following set of
problems. For each a = ∑

si + s0 in an appropriate range, use the allocation
found when solving problem (7.10) to compute Ti j , and hence Bi j (·). Then solve

h(a) = min
si j

{∑
i

∑
jε Ii

Bi j (si j ) :
∑

i

∑
jε Ii

si j = b − a
}
. (7.11)

The solution to problem (7.11) can be found using a marginal analysis algorithm
since the objective function is the sum of convex functions, Bi j (si j ).

The function h(a) will likely not be a convex function. Hence we would con-
struct the greatest convex minorant of this function, call it ĥ(a). These functions
would then be used to solve the multi-LRU problem using another marginal anal-
ysis algorithm, which is similar to the one employed in finding the solution to the
two-echelon, multi-LRU problem that we discussed in detail in Chapter 5.

7.3 A Multi-Echelon Periodic Review Pooling Environment

We continue our investigation of lateral resupply and pooling by analyzing a peri-
odic review tactical planning problem for a three-echelon, repairable-parts service
network characterized by an uncapacitated repair facility and local opportunities
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for inventory pooling. As was the case for all of the tactical planning environ-
ments examined previously, the central planning problem is to determine the opti-
mal level of total system stock for each part. Once the stock has been acquired, its
location in the system, and the resulting service performance of the system, will
be managed by employing a real-time execution system such as one of the types
discussed in Chapter 10. The more effective this execution system is at manag-
ing repair and distribution, the less total stock will be required. Consequently, it
is important to capture the possibilities for dynamic optimization when planning
total stock levels. Furthermore, because of the large number of parts in such sys-
tems, computational efficiency in performing any inventory planning function is
a critical concern. Specifically, there is always a balance between computational
requirements and modeling complexity. The method we present in this section is
a balance between the two concerns. The model we will discuss can be solved
in time that is n log(n), where n is the number of part number-location combina-
tions. In Chapter 8, we extend the ideas presented here to the situation where the
depot repair capacity is limited.

7.3.1 Multi-Echelon Repairable Parts System with Central Repair

The three-echelon distribution and repair system for repairable parts that we will
study in detail is depicted in Figure 7.4. The system consists of a set of inventory
pools, each of which contains a number of stocking locations called bases; a set of
intermediate stocking facilities, each of which resupplies a set of inventory pools;
a depot, which resupplies the intermediate stocking facilities; an uncapacitated
depot repair facility, at which defective parts are repaired and, once repaired, are
sent to the depot stocking location; an external supplier, which provides inven-
tory to replace parts that have been condemned; and third party emergency supply
sources. As before, we refer to the recovery, identification, repair, and replace-
ment processes as the resupply system. The bases, pools, intermediate stocking
facilities, and the depot are referred to as the distribution system. The third party
emergency supply sources are viewed as a separate system.

The central planning decision to be made is the number of units of each item
type to have in the system. We assume that the repair capacity is such that the re-
pair cycle times are independent and identically distributed for all parts of a given
item type, and independent across item types. The model developed in this sec-
tion addresses only the optimal stock level for a single item type for a given repair
cycle time distribution, since there will be no constraints in which items interact
in our model. We focus on the finite repair capacity case in which interactions do
exist and propose methods to allocate this capacity in a multi-item-type environ-
ment in Chapter 8. Although the model will set target base stocking levels at each
location, that is of secondary concern. Our goal is primarily to establish a desired
level of system stock for an item given the possibilities of pooling. Real-time
allocation of inventory is the subject of our analysis in Chapter 10.

We begin by assuming that the arborescent resupply network is predetermined
and that the cost of a customer shortage is known at each location. We assume that
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Fig. 7.4. Multi-Echelon Distribution Network with Repair and Pooling

the system operates in the following manner in each period. Demand for parts
arises randomly at bases and is satisfied out of that base’s stock, from another
base’s stock within the same pool, from a pool within the same subsystem, or
from the base’s intermediate stocking location, depending on which location has
stock on hand. If none do have stock on hand, then stock is obtained immediately
from an external emergency supplier at a cost. While bases within the same pool
share inventory to satisfy demand, they do so at some cost. The inventory pools are
a collection of bases that are within close proximity of each other (e.g., less than
two hours travel time from each other). Associated with each demand for a part is
a failed unit that enters a recovery process, which includes defect-identification,
transport, and a decision of whether to repair or condemn the unit. If the decision
is to repair the unit, then the unit enters the depot’s repair cycle. Replacement
orders for condemned units are placed with an outside supplier.

Once the system is operating, the units that have been acquired are either in
the distribution system or in the resupply system; that is, they will either be in a
serviceable or reparable status. Optimizing the total system stock requires model-
ing the operating characteristics of both the distribution system and the resupply
system. Our model treats these operational problems as dynamic optimization
sub-problems. We assume that transportation times within the distribution system
are very short relative to the purchase and repair cycle times experienced in the
resupply system. For many high-cost, low-cubic-volume items such as electronic
components, air freight is economical and distribution transportation times from
an intermediate stocking facility to a base are measured in hours. On the other
hand, lead times for repair or re-manufacturing processes are often measured in
weeks or months. Consequently, the distribution system can react to changes on
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a time scale that is much shorter than the repair and procurement system. For
simplicity, we assume, as we said earlier, that all emergency transport in the dis-
tribution system happens instantaneously at the end of a review period. However,
the review period is not assumed to be so short as to negate any concern for po-
sitioning stock close to the customer. We also assume that reallocation of stock
within a region (i.e. an intermediate stocking facility and its associated inventory
pools) occurs instantaneously at the beginning of a review period and occurs at no
cost. This assumption is equivalent to the imbalance assumption we made earlier
in this chapter. More will be said about this point as we proceed.

In setting total system stock levels, we further assume that the distribution
system is managed dynamically to balance the distribution of available stock for
best effect. That is, rather than using simple first-come, first-serve allocation poli-
cies, the real-time management system allocates available stock to optimize the
tradeoff between inventory holding costs and customer shortfalls over the course
of a planning horizon. Such a high degree of management attention on the oper-
ation of both the distribution and resupply systems can be justified for high-cost,
low-demand-rate items as studies by Scudder [214], Scudder and Hausman [215],
Pyke [198], Evers [81, 82] and others have demonstrated. This approach requires
an integrated implementation of both planning and execution models. In this sec-
tion we describe the first step of the optimization-based planning and execution
process. The second step is discussed in Chapter 10.

7.3.2 Linking Resupply and Distribution

Our approach is to develop a cost model based on the steady state probability
distribution of the number of units in resupply for a single item. Resupply consists
of three processes: recovery and transport, replacement, and repair. Assume that
the repair/replace decision is made prior to the unit entering the repair cycle, as
illustrated in Figure 7.4. Let VB denote the number of units in the depot repair
cycle system in steady state; and let VU denote the steady-state number of units
of this item on order for replacement from the supplier. We assume that demands
occur at bases according to independent Poisson processes. Hence, VB and VU are
independent random variables. Let V denote the total number of units in resupply
in steady state:

V = VB + VU . (7.12)

The stationary probability distribution of V is thus a convolution of two station-
ary distributions. Since we assume a Poisson demand process and independently
distributed repair cycle and procurement lead times, the steady state distribution
of VB + VU is also a Poisson process. Let λ denote the system demand rate for
units of the part at the bases and let r denote the probability that a unit will be
repaired and (1 − r) the probability that the unit will be condemned. Let T be the
average depot repair cycle time and let U denote the average supplier lead time
for replacement orders. Then the stationary distribution of VB + VU is a Poisson
distribution with rate rλT + (1 − r)λU.
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Let s > 0 denote the total planned inventory in the system, both service-
able units and units in resupply. The tactical planning model focuses on deter-
mining the optimal value of this static decision variable. Let R denote the to-
tal distributable physical inventory in the system, that is, R = (s − V )+ . Let
X = (V − s)+ be the number of units in resupply in excess of planned inventory.
The steady state distributions of R and X can be derived from the value of s and
the stationary distribution of V . We will develop a cost model based on R and X
that can be optimized through the appropriate choice of s.

The remainder of this section is organized as follows. We first develop a model
for the optimal allocation of available stock in a two-echelon distribution system
with local opportunities for inventory pooling and external emergency resupply.
This analysis yields a cost function which is then used to construct a model for the
optimal allocation of stock in a three-echelon distribution system. This analysis,
in turn, yields a cost function to describe a model for determining the optimal level
of system inventory. We show how to disaggregate the optimal system inventory
level into target stock levels (inventory positions) at all locations. We observe
that the cost function can be computed in time that is n log(n) in the number of
locations.

7.3.3 Optimal Stock Allocation for a Two-Echelon System
with Inventory Pools

Let W denote the set of two-echelon subsystems within the overall distribution
system. Each subsystem consists of an intermediate stocking facility and a collec-
tion of inventory pools supported by this facility. Let w ∈ W index the individ-
ual subsystems. We temporarily focus on a single subsystem and hence suppress
the index w from all variables. We will now develop a single-item, single-period
model for optimally allocating the physical inventory among this subsystem’s
stocking locations.

7.3.3.1 Subsystem Structure, the Pooling Assumption,
and Penalty Costs

Let P be the set of inventory pools served by a subsystem’s intermediate stocking
facility and let Bp be the set of bases within pool p, p ∈ P . The subsystem is
supported by a real-time parts location information system from which knowledge
of on-hand stock at each base is available.

The order of events in a review period within this subsystem is as follows. At
the beginning of the period, the total subsystem stock available for distribution
is known and a decision is made to redistribute this stock among the different
facilities in the subsystem. The redistribution of stock takes place before demand
is realized. Demand for stock is then realized at the various bases, and lateral
resupply or other emergency resupply actions and costs are incurred to satisfy
these demands. All demands are assumed to be satisfied by the end of the review
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period. Three types of emergency shipments are possible, each with different cost
consequences:

1. Allocate in-pool base stock to the needy base: let the cost of a transfer be-
tween bases within the same pool be denoted by bp.

2. Allocate out-of-pool base stock to the needy base: let the incremental cost of
transfer between pools, within the same subsystem, be denoted by bw. This
is also the cost of transferring a unit from the intermediate stocking facility
to the pool. When a within subsystem transfer of this type is initiated, the
penalty cost of bw is incurred and is added to the in-pool cost bp of getting
the part to the needy base.

3. Out-of-subsystem allocation to the needy base: sometimes the required part
is not in stock anywhere within the subsystem and an emergency resupply
is required from an external supplier in the region. Let the incremental cost
of an emergency shipment of this type to this subsystem be denoted by be.

When this type of transaction is initiated, the per unit cost be is incurred and
is added to the emergency cost to get the part to the pool and base; that it, it
is added to bw + bp. Note that be is also incremental to the regular transport
cost to provide a unit to the base from the intermediate stocking facility.

Each of the three identified costs, bp, bw, and be, is assumed to include not only
the incremental transportation cost but also an imputed penalty for the incremen-
tal customer waiting time (for the use of a more remote source of supply). The
value of bw also accounts for the reduction in holding costs incurred at another
base as a consequence of the lateral resupply transaction. Similarly, be reflects the
adjustment to the holding costs.

7.3.3.2 Stock Allocation Decisions

Let R p
j be the stock allocation to base j, j ∈ Bp, and let R p = ∑

j∈Bp
R p

j ,

the stock allocation to pool p. Let R (that is, Rw with the subsystem superscript
suppressed) denote the total physical stock level available for allocation in the
subsystem at the beginning of a review period. Given R, we must choose stock
level allocations consistent with this total:∑

p∈P

R p ≤ R; and∑
j∈Bp

R p
j = R p, ∀p ∈ P.

The difference between R and
∑

p∈P R p is stock that is retained at the subsys-
tem’s intermediate stocking facility. As mentioned earlier, redistribution during
the review period resulting from these allocation decisions is assumed to take
place before demand is realized.
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7.3.3.3 The Backorder and Inventory Imbalance Assumptions

Denote the net inventory at base j at the beginning of the review period by I p
j , for

j ∈ Bp, and let I p = ∑
j∈Bp

I p
j , the net inventory of pool p. Since we assume

lead times are so short within the subsystem, we assume that no stock is in-transit
to a base at the beginning of a review period. Recall that we assume that there
are no backorders: I p

j ≥ 0, for all p ∈ P and j ∈ Bp. The cost of eliminating
backorders through emergency replenishments is captured in the cost function.

A feasible allocation is one satisfying R p
j ≥ I p

j , ∀ j ∈ Bp; otherwise, the al-
location will imply costly transshipments to redress imbalances. In an execution
model, that is, one that is used for real-time allocation of system stock, we cannot
ignore these constraints. However, in a planning model used to set base stock pol-
icy parameters and target system inventory levels we do ignore these constraints
when review periods are short. As we stated previously, this imbalance assump-
tion is the same assumption that we made earlier in this chapter. Henceforth in this
planning model, we ignore the current state of net inventory within and among the
pools and assume that material is balanced across locations for a given amount of
subsystem inventory. The state of the system is therefore the total distributable
inventory of the subsystem, R.

7.3.3.4 The Allocation Optimization Problem

Assume holding costs do not differ by base. Consequently, how R p is allocated
to the bases does not affect the total holding cost; however, the allocation will
affect internal shortage costs. Let D p

j denote the demand for service parts at base

j ∈ Bp for one review period. Let C p
j (R p

j ) denote the expected base-to-base

lateral resupply cost for base j ∈ Bp, given an initial allocation of R p
j to base j :

C p
j (R p

j ) ≡ bp E

[(
D p

j − R p
j

)+]
. (7.13)

Let h p denote the incremental holding cost of storing one unit for one review
period in pool p, over the cost of holding that unit in the subsystem’s intermediate
stocking facility. We charge holding costs on inventory balances at the end of the
review period. Let D p denote the aggregate demand in pool p for one review
period. Let C p(R p) be the minimum total expected pool cost for pool p for one
review period:

C p(R p) ≡ h p E
[(

R p − D p)+]+ bw E
[(

D p − R p)+] (7.14)

+ min
s.t.
∑

j∈Bp R p
j =R p

R p
j ≥0, integer, ∀ j∈Bp

{ ∑
j∈Bp

C p
j (R p

j )

}
.

Two additional costs need to be considered: the cost of emergency shipments
from outside the subsystem and the cost of holding inventory held at the interme-
diate stocking facility. Let Dw denote the random variable for aggregate demand
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in the subsystem for one review period. Let hw denote the incremental cost of
holding one unit of inventory in the subsystem for one review period, over the
cost of holding it in inventory at the depot for one period. It does not include
the incremental cost of holding inventory in the individual pools, which are cap-
tured by the h p parameters. Let Cw(Rw) denote the expected cost over one review
period for subsystem w assuming we begin the review period with Rw units of
distributable inventory in the subsystem and this inventory is allocated optimally.
That is:

Cw(Rw) ≡ hw E
[(

Rw − Dw
)+]+ be E

[(
Dw − Rw

)+] (7.15)

+ min
s.t.
∑

p∈Pw R p≤Rw

R p≥0, integer p∈Pw

{ ∑
p∈Pw

C p(R p)

}
.

Remember, we assume that the shipments required to achieve the optimal dis-
tribution of inventory within the subsystem are performed instantaneously at the
beginning of the review period. The expected cost of transporting regular replen-
ishments to a base, which does not depend on the stocking policy, can therefore be
ignored. Recall that the cost of lateral resupply to address imbalances at a period’s
beginning are also ignored in our tactical planning model.

Observe that Cw(Rw) involves a nested optimization of convex newsvendor-
style cost functions, which are not difficult to calculate. We use this function to
approximate the cost of operating a subsystem rather than using a much more
complex model to represent the dynamic behavior of an optimization-based in-
ventory management execution system.

7.3.4 Optimal System Inventory

In this section, we consider the set, W , of all two-echelon subsystems.

7.3.4.1 The Relevant Cost of Subsystem Inventory

Let R
w

denote the physical inventory in subsystem w at the beginning of a review
period. This includes inventory at each location within the subsystem plus any
inventory in transit to the intermediate stocking facility plus any stock that is being
allocated for shipment into this subsystem from the depot in the current period.
Let Aw denote the lead time to ship units from the depot to the intermediate
stocking facility w, and let Dw

Aw
denote the random demand that occurs over this

lead time. Thus,
(

R
w − Dw

Aw

)+
is the physical inventory available to subsystem

w at the beginning of the period that follows the transport lead time, including the
current allocation. The relevant cost for the allocation decision is:

Cw
Aw

(
R

w
)

≡ E

[
Cw

((
R

w − Dw
Aw

)+)]
, (7.16)
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the expected one-review period cost for subsystem w based on the distributable
inventory that will be in the subsystem after Aw periods. This expression is correct
because we assume that any inventory that is obtained from an external supplier
to meet an emergency demand in this subsystem during the lead time Aw is with-
drawn from the new allocation, R

w
, and sent to the external supplier that provided

the emergency stock.

7.3.4.2 The Distributable System Allocation Problem

The variable R0 denotes the total distributable inventory of the system: it equals
the sum of the inventory levels in each subsystem,

∑
w∈W R

w
, after allocation,

plus inventory that is retained at the depot. As in the lower echelon models, we
continue to assume that this allocation can be made without regard to the possibil-
ity of inventory imbalance in the different subsystems, including units in transit
to the subsystems.

Let h0 denote the base cost of having one unit of inventory in the distribution
system for one review period, and D0 denote the total system demand that occurs
over the next review period, a random variable. Furthermore, let C0

(
R0
)

denote
the expected distribution system cost over one review period of beginning a review
period with R0 units of total distributable inventory, assuming this inventory can
be allocated optimally among the subsystems and depot. That is:

C0(R0) ≡ h0 E

[(
R0 − D0

)+]
(7.17)

+ min
s.t.
∑

w∈W R
w≤R0

R
w≥0, integer w∈W

{ ∑
w∈W

Cw
Aw

(
R

w
)}

.

7.3.4.3 The Single-Period System-Wide Cost Function

We have assumed that backorders at bases are satisfied immediately from an out-
side source. We further assumed that these units are on loan and are repaid with
units that complete the resupply process. This assumption ensures that total dis-
tributable physical inventory equals planned inventory in excess of units in resup-
ply; that is, R0 = (s − V )+ . Hence, X ≡ (V − s)+ represents the number of
units in the resupply system in excess of system stock. The event that X > 0 will
be rare due to the shortage costs. Nonetheless, we must account for this event in
our cost model.

Each unit-loan was charged a cost when it was first incurred, as captured in
(7.15). Let b denote the per-review-period loan cost, charged for each review-
period that the unit-loan is outstanding. Then the single-review-period, system-
wide cost is given by C0(R0) + b X. We ignore the inventory holding cost of
units in repair, replacement, and transit in this model. Since the inventory policy
cannot affect the resupply process, this holding cost is irrelevant to determining
the economically optimal value of s.
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Let G(s) denote the expected steady state one-review period system-wide cost
given a total system stock level, s. Then, using the probability distribution of V,

we can compute this function as:

G(s) ≡ E
[
C0 ((s − V )+

)+ b (V − s)+
]
. (7.18)

The cost function G(s) is the objective function for the central tactical planning
model. It is a single-period, convex, newsvendor-style objective that captures
tradeoffs among inventory holding costs, lateral resupply costs, and emergency
acquisition costs in a dynamically-optimized, three-echelon distribution system
with pooling. Furthermore, through the stationary distribution of V , this function
is sensitive to the design and management parameters of the resupply system.

We are now in a position to describe the optimal system inventory. Let s∗
denote the total system inventory level that minimizes this cost. That is:

s∗ ≡ arg min
s≥0

G(s).

It should be obvious that V is stochastically decreasing as T and/or U decrease.
Thus, system stocks will be nonincreasing as resupply lead times decrease.

7.3.4.4 Disaggregating System Inventory Targets

The model developed to this point provides an approach for determining optimal
system-wide inventory, s∗, for a single part. In practice, it will be desirable to
specify target stock levels for each location in the system. This is easily done using
the allocation tools already developed. For example, denote the target base stock
level (i.e. target inventory position) for subsystem w by R

w∗
and let

(
R

w∗)
w∈W

solve

min
s.t.
∑

w∈W R
w≤s∗

R
w≥0,integer, w∈W

∑
w∈W

Cw
Aw

(
R

w)
.

The residual, s∗ − ∑
w∈W R

w∗
, is the target inventory to be held in reserve at

the depot. Similarly, for each subsystem w, set R∗=R
w∗ − E

[
Dw

A
w+1

]
and let the

target stock levels for the pools,
(
R p∗)

p∈Pw , solve

min
s.t.
∑

p∈P R p≤R∗
R p≥0, integer, p∈P

{∑
p∈P

C p(R p)

}
.

Finally, let the target stock levels for the bases,
(
R p∗

j

)
j∈Bp

, solve

min
s.t.
∑

j∈Bp R p
j =R p∗

R p
j ≥0, integer, ∀ j∈Bp

{ ∑
j∈Bp

C p
j (R p

j )

}
.

Observe that each of these problems has a convex objective function and hence
can be solved using a marginal analysis algorithm.
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7.3.4.5 Computational Complexity

In this section, we establish a bound on the computational complexity of finding
the value of s∗, the optimal total system stock.

The algorithmic approach is to develop piecewise linear approximations to
each cost function. Let C̃ p

j (·) , C̃ p (·) , C̃w (·) , C̃w
Aw

(·) , C̃0 (·) , and G̃(·) denote

the piecewise linear approximations to C p
j (·) , C p (·) , Cw (·), Cw

Aw
(·) , C0 (·),

and G(·), respectively, for j ∈ Bp, p ∈ Pw, and w ∈ W. Let

r p
j =

{
r p

j0, r p
j1, . . . , r p

jn(p, j)

}
denote the grid for the breakpoints of C̃ p

j (·) , where n(p, j) denotes the number

of points, less one, in the grid. We require r p
j0 = 0 and r p

jn > r p
jn−1 for n =

1, 2, . . . , n(p, j). Let

cp
j =

{
cp

j0, cp
j1, . . . , cp

jn(p, j)

}
denote the breakpoints of C̃ p

j (·): i.e., cp
jn = C̃ p

j

(
r p

jn

)
for n = 1, 2, . . . , n(p, j).

Similarly, define pairs of vectors (r p, cp) , (rw, cw) ,
(

rw
Aw

, cw
Aw

)
,
(
r0, c0

)
, and

(r, c) to denote the grids and breakpoints of C̃ p (·) , C̃w (·) , C̃w
Aw

(·) , C̃0 (·) , and

G̃(·), respectively. Let nw(p), nw(0), n A(w), n A(0), n(0), respectively, denote
the number of points in each respective grid, less the origin. Let n denote an upper
bound on the number of grid points in any of these approximations.

The piecewise linear approximations are computed by solving equations
(7.13), (7.14), (7.15), (7.16), (7.17), and (7.18) using previously computed piece-
wise linear approximations to cost functions on the right hand side of these equa-
tions wherever appropriate. We assume constant time algorithms exist to compute
the probability distributions and expectations required in each equation. Let M B

denote an upper bound on the number of locations that must be considered in any
of the pooling allocation optimizations (7.14):

M B = max
w∈W

max
p∈Pw

∣∣Bp
∣∣ .

Similarly, let M P denote an upper bound on the number of locations that must be
considered in any of the subsystem allocation optimizations (7.15):

MW = max
w∈W

|Pw| .

Let M P = |W |, the number of subsystems that must be considered in the system-
wide optimization (7.17). Let M denote an upper bound on the number of loca-
tions that must be considered in any of the optimizations:

M ≡ max
{

M B, M P , MW
}
.
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Let N denote the total number of locations to consider:

N = 1 + |W | +
∑
w∈W

|Pw| +
∑
w∈W

∑
p∈Pw

∣∣Bp
∣∣ .

Proposition 1. Assuming constant time algorithms exist for computing the proba-
bility distributions required, the number of calculations required to compute G̃(·)
is O

((
1 + 3

4 log2(M)
)
Nn
)
.

Proof. O
(
Nn
)

is a simple bound on the number of calculations to evaluate all the
gridpoints, excluding optimizations. By Proposition 2 in the appendix, the number
of calculations to perform the optimization in (7.17) is O

(
(1+log2 (MW )) MW n

)
.

Similarly, the number of calculations to perform each optimization of the form
(7.15) is at most O

(
(1 + log2(M P ))M P n

)
. There are MW optimizations of that

form. Likewise, the number of calculations to perform each optimization of the
form (7.14) is at most

O
((

1 + log2
(
M B
))

M Bn
)

and there are at most MW M P optimizations of that form. Assembling these facts,
we have that the number of calculations required to compute G̃(·) is:

O

(
Nn + (1 + log2

(
MW

))
MW n + MW

(
1 + log2

(
M P
))

M P n

+ MW M P
(
1 + log2

(
M B
))

M Bn

)

≤ O
(
Nn + 3MW M P M B

(
1 + log2

(
M
))

n
)
.

Noting that MW M P M B is of the same order of magnitude as N , the result fol-
lows. ��
Remark 1. Under the further assumption that M = MW = M P = M B and that

M � N
1/3

, then the bound on the number of calculations is

O
((

1 + 1
4 log2(N )

)
Nn
)
.

This is the source of our claim that the optimization of total system inventory can
be performed in time that is n log(n) in the number of locations.

7.4 Appendix: The Allocation Optimization

We are given a set M = {
1, 2, . . . , M

}
of locations and an augmented set M0 =

{0} ∪ M that includes one location at a higher level. For each location m ∈ M0,

we are given a set of integer gridpoints rm =
{

rm
0 , rm

1 , . . . , rm
n(m)

}
indexed by a

set Nm = {0, 1, . . . , n(m)} , satisfying rm
0 = 0 and rm

n > rm
n−1, for all n > 0. At

each gridpoint, rm
n , for m ∈ M and n ∈ Nm,we are given a function evaluation,
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cm
n , of a convex function. We define a piecewise linear approximation to each

original convex function as follows. For each gridpoint, we compute a slope, ĉ n
m,

according to the following rule:

ĉ m
n =

⎧⎪⎨⎪⎩
cm

n+1−cm
n

rm
n+1−rm

n
, n < n(m);

cm
n −cm

n−1
rm

n −rm
n−1

, n = n(m).

(7.19)

By convexity of the original function, we have ĉ m
n ≥ ĉ m

n−1 for all n > 0. The
piecewise linear approximation function for location m ∈ M is given by C̃m(r) :

C̃m(r) ≡ cm
0 +

n(m)−1∑
n=0

{
1{r≥rm

n }
(
r ∧ rm

n+1 − rm
n

)
ĉ m

n

}
(7.20)

+ 1{
r≥rm

n(m)

} (r − rm
n(m)

)
ĉ m

n(m). (7.21)

In addition, we are given a convex function f (·) defined on R+. The allocation
optimization is to find function evaluations, c0

n, for all n ∈ N0, satisfying

c0
n = f (r0

n ) + min
rm≥0,

rm integer, ∀m∈M;∑
m∈M rm=r0

n

∑
m∈M

C̃m(rm). (7.22)

The following marginal analysis algorithm can be used to solve the allocation
optimization:

Definition 4 (Algorithm AllocOpt).

1. For each m ∈ M, and each n ∈ Nm, compute ĉ m
n using (7.19).

2. For each m ∈ M, set n∗(m) ← 0 and r∗(m) = 0.

3. Set m∗ = arg minm∈M
{̂
c m

0

}
.

4. Set z ←∑
m∈M cm

0 .

5. Set c0
0 ← z.

6. Set n ← 1.

7. While n ≤ n(0), do:
a) Set u ← r0

n − r0
n−1.

b) While u > 0, do:
i. If n∗(m∗) = n(m∗) then set x ← u; else set

x ← u ∧ (rm∗
n∗(m∗)+1 − r∗(m∗)

)
.

ii. Set z ← z + x · ĉ m
n∗(m∗).

iii. Set r∗(m∗) ← r∗(m∗) + x .

iv. If n∗(m∗) < n(m∗) and r∗(m∗) = rm∗
n∗(m∗)+1, then set n∗(m∗) ←

n∗(m∗) + 1.
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v. Set m∗ = arg minm∈M
{̂
c m

n∗(m)

}
.

vi. Set u ← u − x .
c) Set c0

n ← z.
d) Set n ← n + 1.

8. For n = 0, 1, . . . , n(0), set c0
n ← c0

n + f (r0
n ).

Proposition 2. Algorithm AllocOpt terminates with a set c0 = (
c0

n

)
n∈N0

satisfy-
ing (7.22) for each n ∈ N0. Assuming a constant time algorithm exists to compute
f (r) for any r ∈ R+, algorithm AllocOpt requires

O
( (

1 + log2
(
M
)) ∑

m∈M0

n(m)
)

calculations.

Proof. Observe that u, n, and r∗(m), for all m, are integers throughout the algo-
rithm. Convexity of the piecewise linear functions (7.20) ensures that a marginal
analysis algorithm of the form AllocOpt can be used to solve (7.22). The outer
loop, step 7, is performed at most n(0) times. The inner loop, (7b), is performed
at most

∑
m∈M0

n(m) times. This follows because on each loop either n∗(m) is
incremented by one for some m, or u is set to zero and the loop is terminated.
The maximum number of times n∗(m) can be incremented for any m is n(m).

The main optimization step, step 7(b)v, requires at most log2
(
M
)

comparisons,

provided the vector ĉ =
(̂

c m
n∗(m)

)
m∈M

is maintained as a heap. The number of

other calculations, as in steps (1) and (8), is proportional to
∑

m∈M0
n(m). ��

Remark 2. Equation (7.22) requires a minimization subject to the constraint∑
m∈M rm = r0

n . It is trivial to extend algorithm AllocOpt to constraints of
the form

∑
m∈M rm ≤ r0

n . One simply modifies the inner loop, step 7b, to read:
“While u > 0 and ĉ m

n∗(m∗) ≤ 0, do . . . ”

7.5 Problem Set, Chapter 7

7.1. Verify that the equations for the stationary state transitions and the solution
to this set of equations, as given in equations (7.3-7.5), are correct.

7.2. Extend the analysis provided in Section 7.1.1 in the following ways. First,
suppose the system consists of a depot and 3 bases, where the demand rates are
unequal. When a demand arises at a base that is out of stock, the base that is
selected to resupply it is chosen randomly. All other assumptions made in Section
7.1.1 remain. Develop the lateral resupply model in this case.

Second, again assume the system consists of a depot and 3 bases, where de-
mand rates are unequal. Now assume when a lateral resupply request occurs, the
base having the maximum number of days of supply on-hand provides the stock
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to satisfy this request. Thus the inventory level at each base must be taken into ac-
count when constructing the steady state transition rates and equations. Develop
these equations.

7.3. When developing the probability distributions in Section 7.1.2.1, we assumed
that equation (7.8) provided an accurate approximation of the steady state proba-
bility that a base has a specified number of units in a backorder status at the depot.
Suppose there is a single pool in the system consisting of 5 identical bases. Ex-
plore the accuracy of this approximation. Accomplish this task by constructing a
simulation model, and then conducting an experiment to test the validity of the
approximation for a range of values of λ and A.

7.4. The objective function in the optimization model described in Section 7.1.2.2
contains backorder and lateral resupply costs. The constraints limit inventory
investment and ensure that minimum stock levels are maintained. Suppose the
model is altered as follows. Suppose the objective is to minimize the sum of hold-
ing and lateral resupply costs subject to fill rate constraints at each base and within
each pool. Construct a model for this problem and provide an algorithm for find-
ing the base and depot stock levels.

7.5. Extend the single-item model presented in Section 7.1.2.2 to a multi-item
model. Replace the budget constraint in the single item model with a constraint
that limits total investment for all items at all locations. Provide an algorithm that
could be used to obtain the desired stock levels at minimum total cost.

7.6. Show that the function Ci (si |s0) discussed in Section 7.1.2.2 is convex.

7.7. An algorithm for finding depot and base stock levels is outlined in the fi-
nal paragraph of Section 7.1.2.2. Provide a formal statement of this algorithm.
Implement your algorithm using the following data: P = 2, c = 100, b =
1, a1 = .2, a2 = .1, sl

i = 0 for i = 1, 2, sl
0 = 2, B = 1000, Ai = 2 for

i = 1, 2, D = 3, n1 = 2, n2 = 3, λ1 = .1, λ2 = .2.

7.8. The analysis presented in Section 7.2.1 is based on the “no imbalance” as-
sumption. Is this assumption a reasonable one to make when the demand process
is a Poisson process and the demand rates are low? What impact does making
this assumption have on expected costs? Answer these questions by constructing
a simulation and conducting an experiment.

7.9. The pooling environment described in Section 7.2.1 is based on the assump-
tion that demands are independent from period to period. As in Section 7.2.1, let
d jt be a random variable describing demand at warehouse j in period t . However,
let

d jt = µ j Lt + e jt

where µ j is the expected long term average demand rate at warehouse j , Lt is an
index random variable for period t that is normally distributed with E[Lt ] = 1
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and Var [Lt ] = σ 2
L , and e jt is the forecast error random variable for warehouse j

in period t , which has a normal distribution and E[e jt ] = 0 and Var [e jt ] = σ 2
j .

Suppose the demand correlation that exists among the warehouses and periods
is the following autoregressive process of order one:

Lt = σL Vt + 1

where

Vt = aVt−1 + eVt

and the error terms eVt are independent and identically distributed normal random
variables with E[eVt ] = 0 and Var [eVt ] = 1 − a2. What is the interpretation of
σ 2

L?
Demonstrate that Vt is normally distributed with E[Vt ] = 0 and Var [Vt ] = 1.

Thus show that Lt also has a normal distribution with E[Lt ] = 1 and Var [Lt ] =
σ 2

L .
Suppose dt =∑ j d j t = (

∑m
j=1 µ j )Lt +∑m

j=1 e jt . Then show that E[dt ] =∑m
j=1 µ j , and Var [dt ] = (

∑m
j=1 µ j )

2σ 2
L +∑m

j=1 σ 2
j .

Show next that the random variables d jt are not independent by showing that
Var [∑m

j=1 d jt ] �=∑m
j=1 Var [d jt ].

Next, recall that D is the depot lead time. As earlier in Section 7.2.1.2, let Y0 =∑D
t=1 dt . Show that Y0 has a normal distribution, with E[Y0] = ∑D

t=1
∑m

j=1 µ j ,

and Var [Y0] =∑D
t=1 Var [dt ] + 2

∑∑
t>u

Cov(dt , du).

Remember when t > u,

Cov(dt , du) = E
(( m∑

j=1

µ j )Lt +
m∑

j=1

e jt
)( m∑

j=1

µ j )Lu +
m∑

j=1

e ju
))− ( m∑

j=1

µ j
)2

= ( m∑
j=1

µ j
)2

E[Lt Lu] − ( m∑
j=1

µ j
)2

.

Show that E[Lt Lu] = σ 2
L E[Vt Vu] + 1. But E[Vt Vu] = at−u . Using these

results, show that

Var [Y0] =
D∑

t=1

(( m∑
j=1

µ j
)2

σ 2
L +

m∑
j=1

σ 2
j

)
+ 2σ 2

L

∑∑
t>u

( m∑
j=1

µ j
)2

at−u .

Recall that in Section 7.2.1.2 we defined Y j = ∑D+A+1
t=D+1 d jt . Thus E[Y j ] =∑D+A+1

t=D+1 E[µ j Lt + e jt ] =∑D+A+1
t=D+1 µ j = (A + 1)µ j . Show that

Var [Y j ] =
D+A+1∑
t=D+1

(
µ2

jσ
2
L + σ 2

j

)+ 2σ 2
L

∑∑
t>u

t=D+1,...,D+A+1
u=D+1,...,D+A

µ2
j a

t−u .
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Suppose the coefficient of variation of the demand processes is the same at

each warehouse. Let c be this common value, that is, c =
√

µ2
jσ

2
L + σ 2

j

/
µ j which

in turn implies that σ 2
j = bµ j for some b > 0. Thus

c =
√

σ 2
L + b or b = c2 − σ 2

L .

Using these observations, derive results similar to those found in Section 7.2.1.2.
These results were shown in Erkip, Hausman and Nahmias [79].

7.10. The model developed in Section 7.2.2 was based on the assumption that all
depot stock was allocated to the warehouses in each period. Prove that when the
holding costs are the same at the depot and warehouses and that the imbalance
assumption holds, it is optimal to allocate all the depot stock to the warehouses in
each period.

7.11. Provide an outline of how the three echelon model and algorithm presented
in Section 7.2.2 can be extended to an N echelon environment.

7.12. Suppose we have a two-echelon, reparable parts service network. The upper
echelon, called the depot, resupplies the lower echelon locations, which we call
bases. Each demand arises at a base and is the result of a part failure. Part failures
at bases arise according to a Poisson process with rate λi j for part type i at base
j . Once a failure occurs, it is sent to the depot for repair, and the depot provides
inventory to replenish the stock. All failed units arriving at the depot are repaired
there within an uncapacitated repair facility. Furthermore, bases are grouped into
pools. If a demand arises at a base within a pool, and that base does not have
stock on hand, the unit will be laterally resupplied to the needy base. If no stock
is on hand at any base in the pool, then a third party will “loan” the needy base
inventory to meet its current demand. When the depot provides the replenishment
stock corresponding to a demand at a base, that unit of replenishment stock goes
to the base at which the failure occurred if the unit needed to satisfy the demand
came from that base’s inventory; otherwise, it goes either to the base that laterally
resupplied the base, or to the external source that loaned the base a unit of the
item.

Construct a periodic review tactical planning model for this situation. Use the
notation found in Section 7.3. State any assumptions that you make. Also, provide
an algorithm for obtaining the target stock level for each item at each location.
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Capacity-limited Systems

The analyses presented in the preceding chapters were based on the premise that
the resupply systems either had a reliable source of material (constant lead times)
or that repair cycle times were independent and identically distributed. Palm’s
theorem and its extensions were applied repeatedly to develop required probabil-
ity distributions. These distributions provided the basis for the tactical planning
models that were employed for finding the optimal system stock levels.

We will continue to construct tactical level planning models in this chapter.
However, these models will be based on the assumption that resupply is limited
by a capacitated resource. The presence of capacity alters the method of analysis
substantially.

Many models related to the tactical planning problem can be and have been
constructed when capacities exist. One type of model is based on a continuous-
time view. These models are often queuing-like models. These types of models
have a long history and are described in Buzacott and Shanthikumar [34], a series
of papers by Gross and various colleagues [104, 105, 108, 107, 110, 113], and
Nahmias [186]. Another type of tactical planning model is a variation of the peri-
odic review model presented in Chapter 7. These periodic review models are often
based on ideas presented by Prabhu [195, 196], Glasserman [95] , Glasserman and
Tayur [96, 97, 98], Tayur [247], and Roundy and Muckstadt [182, 206].

In the remainder of this chapter we will examine both queuing and periodic
review based tactical planning models. We will first focus on the periodic review
model. However, we begin by presenting some key results that provide the foun-
dation for the periodic review planning models. Specifically, we will develop the
concept of a shortfall random variable and will discuss how its probability distri-
bution can be constructed both in an exact and in an approximate manner.

8.1 The Shortfall Distribution

Let us introduce several important ideas by examining a simple capacity limited
production facility. Production decisions are made in each period of an infinite
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planning horizon. There is only one item being produced and demands for this
item are independent and identically distributed from period to period.

Assume that the system operates in the following manner. At the start of a
period we observe the demand for the single item. Based on that period’s demand
and the item’s current net inventory level, a production quantity is determined.
Production then takes place. The production quantity is limited to a maximum
of c units, the facility’s per period production capacity. Whenever the demand ex-
ceeds c plus the on-hand stock, we assume the unsatisfied demand is backordered.
On the other hand, if the demand is less than c plus the on-hand stock, then all
customer demands are satisfied. After this production occurs, shipments are made
to customers. The final act in a period is to charge holding and backorder costs of
h and b dollars per unit held or backordered, respectively.

The optimal policy for managing this system is a modified version of the
(s–1,s) policy. Suppose s is our target inventory level. The modified (s–1,s) policy
states that we should produce to have s units on-hand after satisfying demand if
capacity permits; otherwise, produce c units, the system’s production capacity. As
long as there is positive probability that demand in a period can exceed c units,
then there is a positive probability that the production capacity in a period is not
sufficient to raise the period ending inventory to s. The amount by which s ex-
ceeds the actual period ending inventory level is called the shortfall. The shortfall
is a random variable. Our goal is to show how to compute its distribution.

The proof that the modified (s–1,s) policy is optimal can be found in Janaki-
raman and Muckstadt [140] and elsewhere. There are a number of authors who
have addressed problems relating to the system we have described and its multi-
echelon generalizations (e.g. see Glasserman and Tayur [96, 98]). We will first
show some general properties of this shortfall random variable and then focus on
the case where demand is described by a discrete demand distribution. We will
then examine the case in which per period demand is approximated by a con-
tinuous random variable. In the latter case, we will show how an approximate
probability distribution for the shortfall random variable can be computed.

8.1.1 General Properties

Let Vn represent the random variable for the shortfall in period n. We assume that
the expected per period demand is strictly less than c. If this is not the case, then
the backorder quantity will grow without bound as n → ∞ with probability 1.
Suppose Dn measures the demand in period n. Since E[Dn] < c for all n, and
the random variables Dn are independent and identically distributed, a stationary
distribution exists for the shortfall process. Let V represent this random variable.
Thus, in steady state, V = s − I , where I is the period ending net inventory level.

Recall the sequence of events that occur in period n. The initial net inventory
In is equal to s − Vn−1. Demand is observed, that is, Dn is observed. A produc-
tion quantity is then determined which equals min {c, Vn−1 + Dn}. Note that if
Vn−1 > s, then (Vn−1 − s) backorders exist at the beginning of period n. At the
end of period n, the net inventory is s−Vn . If this quantity is positive, then there is
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stock on hand and is charged a holding cost of h dollars per unit; if negative, then
there are backorders which are charged at a cost of b dollars per unit backordered.
Figure 8.1 illustrates the evolution of the net inventory random variable.

Fig. 8.1. System Evolution of Net Inventory

Observe that

Vn = [Vn−1 + Dn − c
]+

. (8.1)

That is, if the capacity is large enough to satisfy both the entering shortfall plus
the current period’s demand, then Vn = 0; otherwise Vn equals the difference
between the total requirement (Vn−1 + Dn) and the production capacity (c).

We observe that Vn is independent of the target stock level s. Equation (8.1)
describes the period-to-period dynamic behavior of the shortfall random variable.
This behavior of Vn is illustrated in Figure 8.2.

8.1.2 Discrete Demand Case

Assume V0 = 0. Observe from Equation (8.1) that Vn depends only on Vn−1
and Dn . That is, it does not depend on V0, . . . , Vn−2. Hence we can model the
transitions of the shortfall process as a Markov chain. Specifically the transition
probabilities for this chain are as follows:

pi j ≡ P {Vn = j |Vn−1 = i} =
⎧⎨⎩

P {D ≤ c − i} , j = 0 and i ≤ c
P {D = c + ( j − i)} , j > 0, i ≤ c + j
0, otherwise
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Fig. 8.2. Inventory Shortfall

Let P = [pi j ] be the matrix of transition probabilities. Since we assume that
E[D] < c, a steady state distribution exists for the random variable, V , since the
chain is ergodic. Let the stationary distribution that V = i be denoted by πi , and
π the vector whose i th component is πi . Then π solves

πP = π∑
πi = 1

πi ≥ 0.

For practical situations, the matrix P and the corresponding vector π can be trun-
cated to yield a finite system of equations. Some testing needs to be done to insure
that accuracy is not sacrificed. The truncation process will depend on the differ-
ence between c and E(D) and the variance of the demand process.

Suppose c varies from period-to-period. Specifically, suppose c is a random
variable that is independent and identically distributed from period to period. We
assume that E[D] < E[c]. In this case, we can again represent the transitions
of the shortfall process as a Markov chain. The process remains ergodic so that
a stationary distribution will exist. In this case, the transition probabilities are
given by

pi j ≡ P {Vn = j |Vn−1 = i} =⎧⎨⎩
∑

a≥i P {D ≤ a − i} · P {c = a} ; j = 0, i ≤ c∑
a≥i− j P {D = a + ( j − i)} P {c = a} ; j > 0, i ≤ c + j

0; otherwise.

In many cases the capacity is a random variable. If capacity can vary significantly
from period to period, then the target stock level can increase substantially.

Let us now illustrate how the steady state shortfall distribution of V behaves
for different levels of demand variation and available capacity. We assume that
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the expected demand per period is 100 units in all cases. We further assume the
capacity c does not vary from period to period. Table 8.1 shows how both the
expected value of V and standard deviation of V change for 20 combinations of
the per period variance of demand and the amount of available per period capacity.
These data show how sensitive the mean and standard deviations of V are to
changes in these values, and hence how inventory requirements will also depend
on these values.

Table 8.1. Expected Shortfall and Standard Deviation of Shortfall for Various Combina-
tions of Capacity Utilization and Demand Variation

Additionally, Figures 8.3-8.8 provide the probability distributions for V for
certain cases. Figures 8.3-8.5 contain plots of the distribution of V when the vari-
ance of the demand is set to 101 and when the capacity utilization rate assumes
three different values; .833, .952, and .99. Similarly, Figures 8.6-8.8 show the
probability distributions for V when the variance of demand per period is 2000,
again for the same three different amounts of available capacity. Note how the
shapes of the distributions are affected by the variance of the demand process and
the utilization rate. Furthermore note how the tail of the distributions behave.
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Fig. 8.3. Steady State Shortfall Distribution: Exact

Fig. 8.4. Steady State Shortfall Distribution: Exact

8.1.3 Continuous Demand Case

When the demand per period is sufficiently large the calculation of the stationary
probabilities for V using the Markov chain approach is impractical. That is, the
time required to compute the probabilities is substantial in this case. Furthermore,
if the demand process is represented by a continuous distribution, then V will
also be a continuous random variable. Thus it is of interest to calculate the dis-
tribution of V using a continuous approximation to the demand process. We will
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Fig. 8.5. Steady State Shortfall Distribution: Exact

Fig. 8.6. Steady State Shortfall Distribution: Exact

also approximate the distribution of V . We will see that the computation of this
approximate distribution can be made quite easily. Let us now see how this can
be done.

Let v > 0. Then
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Fig. 8.7. Steady State Shortfall Distribution: Exact

Fig. 8.8. Steady State Shortfall Distribution: Exact

P {Vn > v} = P
{[Vn−1 + Dn − c]+ > v

}
= P {Vn−1 + Dn − c > v}
= P {Dn > v + c} (8.2)

+ED
[
1(d ≤ v + c) · P

[
Vn−1 > v + c − d|Dn = d

]]
,

where 1(A) = 1 if true and 0 otherwise. Furthermore, let FV (·) and F V (·) denote
the cumulative and complementary cumulative distribution functions for the ran-
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dom variable V , and let fD(·), F D(·) represent the density and complementary
cumulative distribution functions for D. If P[D = 0] = q, then equation (8.2)
can be written as

F Vn (v) = F Dn (v + c) + q F Vn−1(v + c)

+
∫ v+c

0
F Vn−1(v + c − x) fD(x)dx .

The random variable V is sometimes assumed to have a mass exponential
distribution. The probability that V = 0 is positive and the remainder of the
distribution is exponential in this case. One reason this approximation is made is
due to a theorem proven by Glasserman [95]. Roughly speaking, he shows that the
tail of the shortfall distribution behaves like an exponential function. Specifically,
his theorem is as follows.

Theorem 11. Assume that E[eαD] < ∞ for all α < δ, δ > 0 and that
P[D > c] > 0. Then there exist β and α such that P{V >v}

β e−αv → 1 as v → ∞.

Also, α is the unique, strictly positive solution to E[e−α(c−D)] = 1. When D is

normally distributed, Glasserman states that β ≈ e−2(.583)
(c−E(D))

σ .

Let us use a mass exponential distribution to approximate the distribution of
V . We will discuss the quality of this approximation subsequently. Additional
discussion can be found in Roundy and Muckstadt [182, 206].

Let p0 approximate P {V = 0}, the probability that there is no shortfall, and
p0 = 1 − p0. Assuming V has a mass exponential distribution.

F V (v) =
{

p0 e−γ v, v ≥ 0
0, otherwise

. (8.3)

The parameters p0 and γ depend on A = c − E(D) and the distribution of de-
mand.

First, substitute (8.3) into (8.2) to obtain

p0 e−γ V = F D(v + c) + E[1(D ≤ v + c) · p0 e−γ (v+c−D)]
Multiplying both sides by eγ v yields

p0 = eγ v F D(v + c) + p0 e−γ c E[1(D ≤ v + c)eγ D]. (8.4)

Letting v → ∞ results in

p0 = p0 e−γ c lim
v→∞ E[1(D ≤ v + c)eγ D]

= p0 e−γ c E[eγ D]
since, for a stable solution to exist, limv→∞ eγ V F D(v + c) = 0. Hence the pa-
rameter γ must solve



192 8 Capacity-limited Systems

eγ c = E[eγ D].
Now when v = 0 we see from (8.4) that

p0 = F D(c) + p0 e−γ c E(1(D ≤ c)eγ D)

or

p0 = F D(c)

1 − e−γ c E(1(D ≤ c)eγ D)

and

p0 = 1 − F D(c)

1 − e−γ c E(1(D ≤ c)eγ D)
.

An important special case occurs when demand is normally distributed, which
is a reasonable approximation when the demand process is a Poisson process with
a large mean. In this case

p0 = F D(c)

1 − F D(c)

and

γ = 2(c − E(D))

σ 2
,

where σ 2 is the variance of the per period demand.
Let us now turn to evaluating a key performance measure that depends on

the system’s shortfall distribution, the fill rate. As before Vn and Vn−1 represent
the shortfall random variables at the end of periods n and n − 1, respectively.
Suppose the stock level for the system is denoted by s. Observe that the number of
backorders that remain at the end of period n corresponding to demands occurring
in periods n − 1 and earlier is given by[

Vn−1 − s − c
]+

.

Then the number of demands arising in period n that are backlogged at the end of
period n is given by

[Vn − s]+ − [Vn−1 − s − c
]+

.

Therefore, in steady state,

η(s) = E
[
(V − s)+ − (V − s − c)+

]
represents the expected number of units that are demanded in a period that are
backordered at the period’s end. The fill rate is given by
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a = FR(s) = 1 − η(s)

E(D)
.

We observe that

η(s) ≈ p0

γ
e−γ s(1 − e−γ c)

and that

s ≈
[
− 1

γ
�n

{
η(s) · γ

p0(1 − e−γ c)

}]+
=
[
− 1

γ
�n

{
(1 − a)γ E(D)

p0(1 − e−γ c)

}]+

as discussed in Roundy and Muckstadt [182, 206].
An interesting question arises as to how well the mass exponential approx-

imation matches the actual distribution function for V . To illustrate how well
the approximation represents the distribution for V , consider again the example
environment presented in the previous section. Figure 8.9 through Figure 8.14
contain graphs of both the exact and approximate distributions. As can be seen,
the quality of the approximation varies from case to case. Roundy and Muck-
stadt [182, 206] performed an extensive analysis of the accuracy of the mass ex-
ponential approximation. They showed in many cases that this approximation is
poor and that using it to set stock levels can result in excessive amounts of in-
ventory. Nonetheless, the approximation is appealing because of its simplicity.
Roundy and Muckstadt [182, 206] provide an extensive discussion of the mass
exponential for various demand distributions.

Fig. 8.9. Steady State Shortfall Distribution: A Comparison of Exact and Approximate
Distributions
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Fig. 8.10. Steady State Shortfall Distribution: A Comparison of Exact and Approximate
Distributions

Fig. 8.11. Steady State Shortfall Distribution: A Comparison of Exact and Approximate
Distributions
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Fig. 8.12. Steady State Shortfall Distribution: A Comparison of Exact and Approximate
Distributions

Fig. 8.13. Steady State Shortfall Distribution: A Comparison of Exact and Approximate
Distributions
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Fig. 8.14. Steady State Shortfall Distribution: A Comparison of Exact and Approximate
Distributions

Because the approximation is often inaccurate, Roundy and Muckstadt [182,
206] proposed and tested another approximation, which is also based on equation
(8.2). We will next briefly describe the alternative approximation.

Suppose we alter equation (8.3) slightly and define

F
0
V (v) =

{
p1 e−γ v, v ≥ 0
0, otherwise.

We will define the parameter p1 subsequently. The new approximation is

F
1
V (v) = F D(v + c) + ED

[
1(D ≤ v + c) · F

0
V (v + c − d|D = d)

]
= F D(v + c) + ED

[
1(D ≤ v + c) · p1 e−γ (v+c−d)|D = d

]
= F D(v + c) + p1

∫ v+c

−∞
e−γ (v+c−x) fD(x)dx

= F D(v + c) + p1 e−γ (v+c)
∫ v+c

−∞
eγ x fD(x)dx

Our goal is to improve upon our estimate of the probability of the shortfall being

positive, that is, p1. Suppose we substitute the above expression for F
1
V (v) for

F
0
V (v) and set v = 0. Then we have
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F
1
V (0) = F D(c) +

∫ c

−∞
F

1
V (c − x) fD(x)dx

= F D(c) +
∫ c

−∞

[
F D(2c − x) + p1 e−γ (2c−x)

∫ 2c−x

−∞
eγ y fD(y)dy

]
fD(x)dx

= F D(c) +
∫ c

−∞
F D(2c − x) fD(x)dx

+ p1

∫ c

−∞
e−γ (2c−x)

[ ∫ 2c−x

−∞
eγ y fD(y)dy

]
fD(x)dx .

Also, from above, we know that

F
1
V (0) = F D(c) + p1 e−γ c

∫ c

−∞
eγ x fD(x)dx .

Combining the above we obtain

p1 =
∫ c
−∞ F D(2c − x) fD(x)dx

e−γ c
∫ c
−∞ eγ x fD(x)dx − ∫ c

−∞ e−γ (2c−x)
[∫ 2c−x

−∞ eγ y fD(y)dy
]

fD(x)dx
.

The process could be continued to compute F
2
V (v) in which we would use

F
1
V (v) as we did F

0
V (v) above.

Roundy and Muckstadt [182, 206] show that this new approximation is quite
accurate for a wide range of standard continuous probability models. Unfortu-
nately, the computations do require numerical integration.

8.2 Capacity-limited Multi-Echelon Repair System

In Chapter 7 we studied a three echelon resupply system for reparable parts. That
system consisted of a lowest echelon in which there were a set of inventory pools,
each of which contained a set of bases; a set of intermediate stocking facilities,
each of which resupplied a collection of inventory pools; a depot, which resup-
plied intermediate stocking facilities (the depot consists of a depot repair facility
and a depot stocking facility); an external supplier, which supplies parts that have
been condemned; and a set of third-party emergency supply sources. In Chapter 7
we assumed that the repair cycle times for all parts entering the depot repair pro-
cess were independent and identically distributed. In this section we will revisit
this same problem, but will now assume that the depot has a capacity on the num-
ber of units that can be repaired per period. We begin by assuming that we have
only one part type in the system. We will then extend our analysis to the case
where there are multiple part types.
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8.2.1 Single Item System

The tactical planning problem we will study has as its goal the determination of
the target stock level for the system.

Recall that the system that we are studying operates in the following manner.
In each period, demand for units arises at each base. If the base has stock on
hand, the demand is satisfied from that base’s stock. If a unit of demand can not be
satisfied from that base’s stock, then a request is placed for a unit of stock on other
members of the pool. If one of them has a unit available, then a lateral resupply
transaction occurs. If no such stock is available, then a request is made on the
remainder of the subsystem of which the base is a member. That is, the other pools
within the collection of pools supported by the same intermediate stocking facility
and the intermediate stocking facility are requested to satisfy the demand. If there
is no stock anywhere in that subsystem, we assume an external supplier provides
the needed unit. In this case, this external supplier will be compensated and will
receive a replacement for the “borrowed” part in a subsequent time period. Costs
are incurred each period for lateral and emergency resupply transaction.

Each part that is demanded must be resupplied to the system either through a
repair process or from an external supplier (e.g. the manufacturer). When a unit
fails, there is a probability r that it will enter the depot repair resupply process
and 1 − r that it will be resupplied from the external supplier. If it is repaired, we
assume the unit is shipped from the base to the depot, which takes D periods. The
unit then enters the depot repair queue where it remains until it enters the repair
process. The repair process is completed in one period. When the failed unit is
condemned, a replacement unit is ordered from the supplier.

Corresponding to each demand at the bases, which occur according to inde-
pendent Poisson processes, there is a resupply request placed on the depot. The
depot sends replenishment stock to the appropriate intermediate stocking facility,
which, in turn, resupplies the base or external emergency supply location that pro-
vided the unit of stock needed to satisfy a demand. Allocation of stock is always
made based on a greatest need basis rather than a first-come-first-serve basis, as
discussed in Chapter 7.

Figure 8.15 shows the structure of this system.
Recall that in Chapter 7 we developed a tactical planning model based on this

system’s operation and also on an assumption which we called the imbalance as-
sumption. A key component of that model was the development of the probability
distribution of the number of units in resupply, which we denoted by the random
variable V . We now see how to construct this distribution when there is limited
repair capacity each period. Once this distribution is determined, we would em-
ploy exactly the same method as described in Chapter 7 to find the target system
stock level.

When repair capacity is limited, there are three separate segments to the re-
supply system. First, there is the transport process associated with the movement
of reparable units to the depot. Second, there are units in the repair queue and
repair process. Third, there are units on order from the external supplier.
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Fig. 8.15. Structure of the Resupply System

Recall that we assume the demand process at each base is an independent
and identically distributed Poisson process from period to period. Furthermore,
demands at one base are independent from those occurring at other bases.

Let V T be the random variable describing the number of units on the way to
the depot from the bases that require repair, which is measured at the end of a
period. Let V R be the random variable describing the number of units awaiting
repair at the end of a period. Finally, let V U denote the random variable repre-
senting the number of units on order from the external supplier at the end of a
period.

Then V = V R + V T + V U . Based on our assumptions, these three random
variables are independent. Consequently, the distribution of V is the convolution
of the three distributions. As was the case in Chapter 7, V T and V U have Poisson
distributions. Hence V T +V U is Poisson distributed. Thus it remains for us to find
the distribution for V R . This distribution is easily determined using the methods
described in the previous section, as we will now see.

The units arrive to the repair queue as a consequence of the failures of units
each period at the bases. The number of arrivals per period is described by a
Poisson distribution with rate r · ∑ j λ j , where λ j is the demand rate at base
j . The number of units remaining in the queue awaiting repair depends on this
arrival process as well as the per period repair capacity, which we continue to
denote by c.

The number of units in the repair queue at the end of period n we denote by
V R

n . As we saw earlier,

V R
n =

[
V R

n−1 + Dn − c
]+

,
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where now Dn measures the number of units arriving to the depot repair facility
in period n. We assume that

E[Dn] = r ·
∑

j

λ j < c

so that a stationary distribution for V R will exist. As we discussed in the last
section, the period to period number of units awaiting repair at the end of a period
can be represented by a Markov chain. The transition probabilities are those given
in Section 8.1.2 of this chapter.

Assume that there is a maximum queue size that is permitted at the end of
a period. This maximum can be assured by running overtime to eliminate any
excess. In this situation, the Markov chain will have a finite number of states.
This chain is clearly ergodic so a stationary distribution will exist for V R . The
random variable V R is analogous to the shortfall random variable. If the stock
level is zero, then the shortfall and the number of units in the repair queue are
identical.

Thus we can now compute the distribution for V since we have shown how
the distributions of the three independent random variables can be determined.

Now that we know the probability distribution for V , we can employ exactly
the same method of analysis presented in section 7.3 to compute the optimal total
system stock for the items.

8.2.2 Multiple Item System

Suppose the system we discussed in the previous section exists for many items
rather than just a single item. Suppose further that demands at the bases are inde-
pendent among items in addition to the other assumptions we have made concern-
ing the demand process. Finally, suppose that the only way in which they interact
is through the depot repair system. That is, these items share repair capacity. We
assume the repair capacity required to repair any item type is the same.

The shortfall distribution V R that we just derived pertains to the total number
of units in the repair queue when the repair capacity is shared. Suppose we com-
pute V using this distribution, where V now measures the total number of units in
the resupply system. That is, V =∑i (V T

i + V U
i ) + V R , where V T

i and V U
i are,

respectively, the number of units in the transport system to the depot for item i
and on order with the supplier for item i . Since all random variables are assumed
to be independent with Poisson distributions,

∑
i (V T

i + V U
i ) also has a Poisson

distribution. V R has a distribution computed as discussed in the last section. Thus
we can compute the distribution of the random variable V . We now show how we
can use this distribution to obtain stock levels for each item.

Suppose there are n item types in the resupply system that share a common
repair resource. Furthermore, suppose the total system stock level for item i is si

units. Then the total system stock over all items is s = ∑
i si . Now V measures

the total number of units of all item types that are in the resupply system just after
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all repairs in the period have been completed and all shipments from the suppliers
have been received.

Suppose we let Vi be a random variable representing the number of units of
item i that are in the resupply system in the steady state. Additionally, let V R

i be a
random variable that measures the number of units of item i that are in the depot
repair queue at the end of a period. Suppose λi = ri

∑
j λi j , where λi j is the per

period demand rate for item i at base j , and λ =∑i λi .
Suppose there is no prioritization of repair at the depot. That is, units enter the

repair process on a first come, first served basis. Then

P{V R
i = vi | V R = v} =

(
v

vi

)[
λi

λ

]vi

(1 − λi

λ
)v−vi

and

P{V R
i = vi } =

∑
v≥vi

P{V R
i = vi | V R = v}P{V R = v}.

In the previous section we discussed how to determine the probability distri-
bution for the random variable V R . Thus we may readily compute P{V R

i = vi }.
Recall that the random variables V T

i and V U
i each have Poisson distributions.

Furthermore, note that V T
i , V U

i , and V R
i are independent. Hence the random vari-

able Vi = V T
i +V U

i +V R
i can be calculated as the convolution of the three known

distributions.
Now that we have established the distribution of Vi , we can find the values

for si , and hence s. Recall in Section 7.3 we showed how to find the optimal total
system stock level for an item. By replacing the random variable V in that section
with Vi , we can use the methodology presented in Section 7.3 to find the opti-
mal values of si , given the imbalance assumptions that were invoked. Hence the
multiple item problem decomposes into solving a series of single item problems.

8.3 A Continuous-Time Capacity-limited System

Let us now consider a continuous-time tactical planning model of a simple system
consisting of a single location, which we call the depot, at which repairs are con-
ducted and stock is held for n item types. We assume material flows in the system
as shown in Figure 8.3.

Reparable units of the n items arrive to the system according to a Poisson pro-
cess with rate λi , i = 1, . . . , n, measured in units per hour. Once the reparable
units arrive, they are immediately entered into the repair queue. The repair ac-
tions are conducted on a first-come, first-serve basis. Each arriving reparable unit
triggers a replenishment order for a unit of the same type. If one is on hand, it is
shipped immediately; otherwise, the replenishment request is backordered.
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Fig. 8.16. Resupply System

We assume that once a unit of any item type enters the bottleneck repair work
center, its repair time is exponentially distributed with an expected repair time of
1/µ hours. Repair times are assumed to be independent of each other as well.
However, the repair system works on only one unit at a time. We also assume that
there are no changeover or set up times so that batching of repair is not an issue.

The goal is to find stock levels for each of the items, which we denote by si ,
so as to minimize the expected holding and backorder costs incurred per unit of
time, in this case, per hour. We charge holding costs proportional to the expected
on hand serviceable stock. Let hi be the holding cost rate for item i . We also incur
backorder costs for item i at a rate of bi .

Let us now introduce notation that we will use as we proceed. Recall that
λi is the demand rate for replenishment stock for item i . Let λ = ∑

λi be the
total system demand rate, which is the arrival rate to the bottleneck repair facility.
Furthermore, let

pi = λi

λ
, qi = 1 − pi ,

p = λ

µ
, the system utilization rate,

Ni = steady state number of units of item type i in the repair system, and

N =
n∑

i=1

Ni .

8.3.1 Basic Repair System Model

We first examine a queueing model, for which we will be able to derive exact ana-
lytic results. Specifically, since we have assumed that the arrival process for orders
is a Poisson process and that production times are exponentially distributed, the
system is a M/M/1 queueing system. As such, we know that N , the number of
units in the production system is geometrically distributed. (This result can be
derived using the standard birth-death equations.)
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Furthermore, it is also true that Ni is geometrically distributed, that is

P[Ni = j] = (1 − ηi )η
j
i , where ηi = λi

µ − λ + λi
,

which we now prove.
Recall that the generating function for a geometrically distributed random

variable is

E[s N ] =
∞∑
j=0

s j P[N = j]

=
∞∑
j=0

s j (1 − ρ)ρ j

= (1 − ρ)

∞∑
j=0

(sρ) j

= (1 − ρ)

1 − ρs
, for sufficiently small s,

where ρ also is the probability that one or more units are in the queueing system.
Let’s construct the generating function for Ni

E[s Ni ] =
∞∑
j=0

E[s Ni |N = j]P[N = j]

=
∞∑
j=0

E[s Ni |N = j](1 − ρ)ρ j .

But

E[s Ni |N = j] =
j∑

k=0

sk P[Ni = k|N = j]

and, as we discussed in Chapter 3, we know that

P[Ni = k|N = j] =
(

j
k

)(
λi

λ

)k (
1 − λi

λ

) j−k

, j ≥ k.

Therefore
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E[s Ni ] =
∞∑
j=0

j∑
k=0

sk
(

j
k

)(
λi

λ

)k (
1 − λi

λ

) j−k

(1 − ρ)ρ j

=
∞∑
j=0

[
(1 − ρ)(ρqi )

j
j∑

k=0

(
j
k

)(
spi

qi

)k
]

,

(
pi = λi

λ
; qi = 1 − pi

)
,

=
∞∑
j=0

(1 − ρ)(ρqi )
j
(

1 + spi

qi

) j

=
∞∑
j=0

(1 − ρ)(ρqi + ρspi )
j

= (1 − ρ)
1

1 − (qiρ + piρs)
.

Since

1 − ρ = 1 − (1 − pi + pi )ρ = 1 − qiρ − piρ,

E[s Ni ] = 1 − qiρ − piρ

1 − (qiρ + piρs)

= 1 − pi ρ
1−qi ρ

1 − pi ρs
1−qi ρ

= 1 − ηi

1 − ηi s
,

where

ηi = piρ

1 − qiρ

=
λi
λ

· λ
µ

1 − (1 − λi
λ

) λ
µ

= λi

µ − λ + λi
.

Hence Ni is geometrically distributed, that is

P[Ni = j] ≡ pi ( j) = (1 − ηi )η
j
i .

Thus the random variable measuring the number of units of item type i in the
repair system at a random point in time is geometrically distributed. If si is the
stock level for item i , the on-hand serviceable stock is [si − j]+ when j units are
in the repair system.

We next show how to find the stock levels si such that we minimize the ex-
pected holding and backorder costs for the n products. Our objective is to find the
values of si ≥ 0 and integer that
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min
n∑

i=1

[
hi

si∑
j=0

(si − j)pi ( j) + b
∞∑

j=si

( j − si )pi ( j)

]
.

Note this problem can be rewritten as

n∑
i=1

{
min

si =0,1,...
hi

si∑
j=0

(si − j)pi ( j) + b
∞∑

j=si +1

( j − si )pi ( j)

}
,

since there are no constraints among the items. The single product optimization
problems have the form of the classic newsvendor problem. Therefore, the optimal
si is the smallest integer (nonnegative) for which

∞∑
j=si +1

pi ( j) ≤ hi

hi + b
.

But in this case

∞∑
j=si +1

pi ( j) =
∞∑

j=si +1

(1 − ηi )η
j
i

= (1 − ηi )η
si +1
i

∞∑
j=si +1

η
j−(si +1)
i

= 1 − ηi

1 − ηi
η

si +1
i = η

si +1
i ≤ hi

hi + b
.

Clearly si depends on µ. But how does si change as a function of the production
rate, µ? The optimality condition we established for the stock level for item i is
to find the smallest nonnegative integer si for which

η
si +1
i ≤ hi

hi + b
.

Hence

(si + 1)�nηi ≤ �nhi − �n(hi + b)

or

si ≥ �nhi − �n(hi + b)

�nηi
− 1.

Let

f (µ) = �nhi − �n(hi + b)

�n λi
µ−λ+λi

= �nhi − �n(hi + b)

�nλi − �n(µ − λ + λi )
.

Then
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f
′
(µ) = �nhi − �n(hi + b)

[�nλi − �n(µ − λ + λi )]2
· 1

µ − λ + λi

= �n

(
hi

hi + b

){
1

(�nλi − �n(µ − λ + λi ))2
· 1

µ − λ + λi

}
< 0,

since

�n

[
hi

(hi + b)

]
< 0.

Thus si is a nonincreasing function of µ, as would be expected.
Let us consider the following example. Suppose n = 5 and

λ = 950/wk

µ = 1000/wk

λ1 = 450/wk

h1 = $1/wk

b = $10.

Then

η1 = 450/(1000 − 950 + 450) = .9

si =
⌈

�n1 − �n11

�n.9
− 1

⌉+

= �21.7�+ = 22 units

Observe that, in general,

E(on − hand) =
si∑

j=0

(si − j)(1 − ηi )η
j
i

= si (1 − ηi )

si∑
j=0

η
j
i −

si∑
j=0

j (1 − ηi )η
j
i

= si (1 − ηi )
1 − η

si +1
i

1 − ηi
− ηi

si∑
j=0

j (1 − ηi )η
j−1
i

= si (1 − η
si +1
i ) − ηi (1 − ηi )

si∑
j=1

jη j−1
i

= si (1 − η
si +1
i ) − ηi (1 − ηi )

1 − η
si
i − si (1 − ηi )η

si
i

(1 − ηi )2

= si (1 − η
si +1
i )(1 − ηi ) − ηi [1 − η

si
i ] + siηi (1 − ηi )η

si

(1 − ηi )

= si − ηi
1 − η

si
i

1 − ηi
.
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In this case,

E(on − hand) = 22 − .9

[
1 − (.9)22

1 − .09

]
= 13.89 units.

We can also show that

E(Backorder) = η
si +1
i

1 − ηi
= .8863 in this case, and the

E(in repair) = λi

µ − λ
= ηi

1 − ηi
= 9 in this case.

8.3.2 Compound Poisson Arrival Process (GI/M/1)

We now assume that repair orders for a single item type arrive to the repair system
according to a Poisson process with rate λ; but, the number of units requested per
arrival is a random variable. That is, the demand process is a compound Poisson
process. Let us consider a specific example where the order quantity is geomet-
rically distributed. Let X be the random variable describing the order size, that
is,

P {X = k} =
{

(1 − α)α(k−1); k ≥ 1
0; otherwise

and

E[X ] = 1

1 − α

(
or α = 1 − 1

E(X)

)
.

Although we will not develop the details of the analysis, one can show that the
probability distribution of the number of units in the repair system, which we
denote by N , is

P{N = n} =
{

1 − ρ; n = 0
(1 − ρ)(1 − α)ργ n−1; n > 0

where γ = α + (1 − α)ρ and ρ = λ·E[X ]
µ

.
As before, let us assume that the holding and backorder cost rates are h and b,

respectively. Then the model is

min f (s) = min
s=0,1,...

(h
s∑

j=0

(s − j)p( j) + b
∞∑

j=s+1

( j − s)p( j)).

Since f (s) is convex in s, we use a first difference approach to find s∗. Due to this
convexity, the goal is to find the smallest s for which

f (s) − f (s + 1) ≤ 0, or
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h

(
s∑

j=0

(s − j)p( j) −
s∑

j=0

(s + 1 − j)p( j)

)

+ b

( ∞∑
j=s+1

( j − s)p( j) −
∞∑

j=s+1

( j − (s + 1))p( j)

)

= −h
s∑

j=0

p( j) + b
∞∑

j=s+1

p( j)

= −h(1 −
∞∑

j=s+1

p( j)) + b
∞∑

j=s+1

p( j)

= (b + h)

∞∑
j=s+1

p( j) − h ≤ 0

or
∞∑

j=s+1

p( j) ≤ h

b + h
.

Since

p( j) = ρ(1 − ρ)(1 − α)γ j−1, j > 0,

(1 − α)ρ(1 − ρ)

∞∑
j=s+1

γ j−1 = (1 − α)ρ(1 − ρ)γ s
∞∑
j=0

γ j

= (1 − α)ρ(1 − ρ)γ s

1 − (α + (1 − α)ρ)

= (1 − α)ρ(1 − ρ)γ s

(1 − α) − (1 − α)ρ
= (1 − α)ρ(1 − ρ)γ s

(1 − α)(1 − ρ)

= ργ s .

Thus, the goal is to find the smallest s for which

γ s ≤ h

ρ(b + h)

or

s∗ =
⌈

�nh − �nρ − �n(b + h)

�nγ

⌉+
.

We also have

E(on − hand) = s + ργ s

1 − γ
− ρ

(1 − γ )

and

E[backorders] = ργ s

1 − γ
.
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For example, suppose

h = $/wk

b = $10

λ = 450/wk

E[X ] = 2 units

µ = 1000/wk

Then we have

ρ = λE[X ]
µ

= .9

α = 1 − 1

2
= 1

2

γ = 1

2
+ 1

2
(.9) = .95.

Consequently

s∗ =
⌈

�n1 − �n(.9) − �n11

�n(.95)

⌉+
= �44.7�+ = 45 units,

E(on − hand) = 28.79,

E(backorders) = 1.79,

and f (s∗) = 1 · (28.79) + 10(1.79) = 46.69/wk.

Now compare this with the alternative system in which

λ = 900 and E[X ] = 1, and

we have an M/M/1 environment. How do the stock levels compare? In this case
α = 0, γ = ρ and, as we saw earlier, s∗ is the largest integer for which

ρs+1 ≤ h

h + b
.

(ρ = η in the earlier model) or

s∗ =
⌈

�nh − �n(n + b) − �nρ

�nρ

⌉+
.

When ρ = .9, h = 1, and b = 10,

s∗ =
⌈

�n1 − �n11 − �n(.9)

�n(.9)

⌉+
= �21.7�+ = 22.

Thus as the coefficient of variation of the demand process increases, we see that
the optimal stock level goes up, and up by a factor of 2 in this case. Furthermore,
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f (s∗) = $22.75/wk.

If the order size distribution changes, the stock level requirement would also
change. The more lumpy the demand, the greater the inventory requirement will
be. Hence it is desirable to keep the relative variation in the demand process as
low as possible to keep inventory levels as low as possible.

8.3.3 A Budget Constrained System

Suppose that rather than charging inventory carrying costs, we impose a constraint
on the amount of inventory held. For example, suppose we limit the amount of
floor space that is available to hold inventory, call it C . Let ai be the amount of
space required to hold one unit of item i . Furthermore, assume that our goal is to
maximize the expected fill rate subject to this floor space constraint. The demand
process for item i is again assumed to be a Poisson process with rate λi .

Then the problem can be stated as

max
n∑

i=1

λi

λ

si −1∑
j=0

(1 − ηi )η
j
i

subject to
n∑

i=1

ai si ≤ C, si = 0, 1, . . . .

(8.5)

We could solve this knapsack like problem using a variety of methods. Rather than
considering this general problem, we will more closely examine the case where
ai = 1 for all i . Consequently, this problem can be solved to optimality using a
greedy marginal analysis algorithm.

Let

fi (si ) = λi

λ

si −1∑
j=0

(1 − ηi )η
j
i .

The effect on the fill rate of increasing the stock level of item i from si to si + 1 is

fi (si + 1) − fi (si ) = λi

λ
(1 − ηi )η

si
i . (8.6)

Observe that

λi

λ
(1 − ηi ) =

λi
λ

(µ − λ)

µ − λ + λi
= ηi

µ − λ

λ

so that

fi (si + 1) − fi (si ) = µ − λ

λ
η

si +1
i .

Thus to solve the problem with ai = 1, we can use the following algorithm. Set
I = 0, si = 0, for all i .
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WHILE I < C
Find i∗ such that η

si∗+1
i∗ = maxi η

si +1
i

si∗ ← si∗ + 1
I ← I + 1
CONTINUE

Rather than maximizing the expected fill rate, suppose we want to minimize
the expected number of outstanding backorders. Again assuming ai = 1, for all i ,
we can state the problem as

min
n∑

i=1

∞∑
j=si

( j − si )(1 − ηi )η
j
i

n∑
i=1

si ≤ C (8.7)

si = 0, 1, . . .

Now let gi (si ) =∑∞
j=si

( j − si )(1 −ηi )η
j
i . The reduction in expected backorders

by increasing the stock level from si to si + 1 is given by

gi (si + 1) − gi (si ) = −η
si +1
i .

Thus if you add stock to the item that decreases expected backorders most, you
add stock to the product for which η

si +1
i is largest. It is easy to see that the optimal

solution to problems (8.5) and (8.7) must be the same, since the greedy algorithm
used to solve each problem always selects the same product at each step as the
one whose stock level should be incremented.

8.3.4 A Further Extension

To this point we have assumed that the order arrival process to our system is gov-
erned by a Poisson process. Furthermore, we assumed that the processing times
are governed by an exponential distribution. Let’s suppose that the arrival process
of a single item to the single bottleneck repair center is a general process (finite
expected time between arrivals) and independent interarrival times and service
times come from a general distribution. Thus we assume that the repair system is
analogous to a G I/G/1 queueing system. Let

ca = coefficient of variation of the interarrival time distribution

cs = coefficient of variation of the service time distribution.

Several approximations exist for calculating the expected number of units in
the system (Buzacott and Shanthikumar [34]). When c2

a ≤ 2 and ρ is high (> .9)

the following approximation is quite accurate.
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E[N ] ∼=
{

ρ2(1 + c2
s )

1 + ρ2c2
s

}
c2

a + ρ2c2
s

2(1 − ρ)
+ ρ. (8.8)

Next, let’s approximate the steady-state probability distribution of the number
of units in the production system, that is, P{N = j}. Recall that the probability
that the production system is idle is 1 − ρ. Hence P{N = 0} = p(0) = 1 − ρ.
Next let us assume that the remaining probabilities have a geometric form, that is,
P{N = j} = p( j) = aη j , j = 1, 2, . . . . This assumption is similar to the one
we made earlier in this chapter. There we assumed a mass exponential distribution
would accurately represent the shortfall distribution. Since

∑∞
j=0 p( j) = 1,

1 − ρ + aη

∞∑
j=1

η j−1 = 1 or

1 − ρ + a
η

1 − η
= 1

and a = ρ · (1 − η)

η
.

Then

E[N ] =
∞∑
j=1

jρ
1 − η

η
η j = ρ

η

∞∑
j=1

j (1 − η)η j = ρ

η

η

1 − η
= ρ

1 − η
.

Now suppose we approximate E[N ] using equation (8.8). Call this approximation
N̂ . Then

1 − η = ρ

N̂
or η = 1 − ρ

N̂
.

This approximation has proven to be accurate, and hence quite useful in practice.
We can then approximate the distribution of the number of units awaiting

repair for an item in the multi-item case. Assuming that P{Ni = k|N = j}
is binomially distributed, we can again construct the distribution for the number
awaiting repair for item i . We can also find “optimal” stock levels using the same
type of models described earlier.

We also observe that we can extend the preceding ideas to cases where more
than one repair line is in the bottleneck station of the repair system. Again using
queueing ideas we could construct the mathematical expression for pi ( j). How-
ever, the analysis results in expressions that are not as simple as the ones we have
found for the single workcenter cases we have examined in some detail.

8.4 Problem Set, Chapter 8

8.1. Show that the expression for P[N = n] as given in Section 8.3.2 is correct.
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8.2. In Section 8.3, we assumed repair times were exponentially distributed. In-
stead of this assumption, suppose repair times are distributed by an Erlang dis-
tribution. In this case the system is equivalent to an M/Ek/1 queueing system,
where k is the parameter of the Erlang distribution. In this case, find the prob-
ability distribution of the number of units in the system. Furthermore, find the
steady state distribution of the number of units of item type i in the repair system.
How do inventory requirements change to minimize expected costs for the model
presented in Section 8.3 as the parameter k increases?

8.3. Suppose demands over an infinite horizon are independent and identically
distributed from period to period. Furthermore, assume a production system op-
erates in the manner described in Section 8.1. Assume the production capacity in
a period is 3 units and the probability distribution of demand in each period is as
follows: P{demand = k} = 1/4 for k = 1, 2, 3, 4, and 0 for other values of k.
Compute the shortfall probability distribution for this situation.

8.4. Suppose that demand in each period is either exponentially or mass expo-
nentially distributed, and that demands are independent from period to period. In
these cases, prove that the shortfall random variable, V , has a mass exponential
distribution. That is, show that the approximation given in equation (8.3) is exact
in these cases.

8.5. Examine a variety of cases in which the following conditions hold. In each
period of an infinite horizon, demand for a single product at a single location has a
Negative Binomial distribution. Demands are independent from period to period.
In each case, the expected demand per period remains unchanged; however, the
variance of demand per period changes in different cases. Furthermore, the distri-
bution of the per period demand changes from case to case. Capacity values are
independent and identically distributed from period to period. The goal is to set
the desired target stock level in each case so as to achieve a 98% fill rate.

The environment in which demands arise operates as follows. At the begin-
ning of each period, demands occur at a location, which must be satisfied by
the period’s end. Next, production occurs. The amount produced in a period is
available for shipment within that period. Production in a period is set to reach a
desired target inventory level, if possible. If however, there is not enough available
capacity to achieve the target level, then the amount produced equals the available
capacity.

In all cases the expected demand per period is 50 units. However the variance
to mean ratio of demand is either 1.01, 3 or 10. Additionally, the available capac-
ity per period varies as follows. You will examine cases in which there are three
different average per period capacity levels, and, for each capacity level, there are
three possible probability distributions for the per period capacity. The three ex-
pected capacity levels are 58 units (normal capacity case), 55 (low capacity case),
and 63 (high capacity case). The data in the following table are the probability
distributions of capacity for each average capacity value.
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Normal Capacity Low Capacity High Capacity
(58 units per period) (55 units per period) (63 units per period)
Capacity Probability Capacity Probability Capacity Probability
Normal Mean Zero Variance
58 1 55 1 63 1
Normal Mean Medium Variance
50 0.2 47 0.2 55 0.2
54 0.2 51 0.2 59 0.2
58 0.2 55 0.2 63 0.2
62 0.2 59 0.2 67 0.2
66 0.2 63 0.2 71 0.2
Normal Mean High Variance
46 0.2 43 0.2 51 0.2
50 0.2 47 0.2 55 0.2
58 0.2 55 0.2 63 0.2
66 0.2 63 0.2 71 0.2
70 0.2 67 0.2 75 0.2

Your goal is to compute the target inventory level to achieve a 98% fill rate for
each combination of variance to mean ratio, average per period capacity level, and
the variance of capacity corresponding to each average capacity level. In total 27
cases must be examined. Observe how difficult it is to establish exactly what the
target inventory levels should be as the variances of demand and capacity increase.
How does production vary from period to period in these different cases? What
does your observation imply about the use of order-up-to policies in practice?

8.6. In Section 8.1.3 we discussed how a mass exponential approximation could
be constructed for the distribution of the shortfall random variable, V . Suppose
demand in each period is normally distributed and is independent from period to
period. Prove that

p̄0 = F̄D(c)

1 − F̄D(c)
, and γ = 2(c − E(D))

σ 2

in this case, where all nomenclature are defined in Section 8.1.3.



9

Extension of Palm’s Theorem to Nonstationary
Demand Processes

Earlier, we constructed mathematical models based on two key assumptions. First,
we assumed that demand was described by a stationary Poisson or compound
process; second, we assumed resupply times are independent and identically dis-
tributed for all units that are resupplied. However, in many circumstances both the
arrival and resupply processes are time dependent. Thus the applicability of the
stationarity assumption is limited in certain dynamic environments. This is partic-
ularly true in military applications when flying activity and resupply of operating
organizations are highly dynamic over relatively short periods of time. Time de-
pendencies also occur in many commercial situations in which resupply times are
so short that the two assumptions can substantially affect the accuracy of perfor-
mance measure forecasts. For example, the demand process experienced at parts
distribution centers differ substantially by day of the week for one automotive
company we have studied.

Our goal in this chapter is to extend the results stated in Chapter 3. Specifi-
cally we will first extend Palm’s Theorem when demands are nonstationary Pois-
son or compound processes and the resupply time distributions are time depen-
dent. These extensions were first developed by Crawford [64] and Hillestad and
Carrillo [129] and later summarized by Carrillo [42]. We will then demonstrate
how to compute the probability distributions representing the number of units in
resupply at each location in a two-echelon logistics system at any point in time.

9.1 The Nonstationary Poisson Demand Case
at a Single Location

We will now extend Palm’s theorem to the environment in which the demand
process at a single location is a nonstationary Poisson process, and the resupply
times for that location are independent from unit to unit but are time dependent.

Suppose N (t) measures the number of arrivals (demands) that occur through
time t . Assume that N (0) = 0; however, this is not a critical assumption. Also the
rate at which the part is demanded at time t is denoted by λ(t) ≥ 0, where λ(t)
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is an integrable function, and the expected number of demands through time t is
expressed as

m(t) = E(N (t)) =
∫ t

0
λ(s)ds.

Suppose a demand for a unit occurs at time t . We define G(t, t +w) ≡ Gt (w)

to be the probability that the resupply time for that unit is less than or equal to w,
that is, the unit is resupplied by time t + w. The resupply times are assumed to
be independent from unit to unit and are assumed to have finite, time dependent
expectations.

To prove the extension of Palm’s theorem, we will employ the following the-
orem.

Theorem 12. Suppose demands occur according to a nonstationary Poisson pro-
cess with the time dependent arrival rate given by λ(t). Also, assume the resupply
times are independent and time dependent and have distribution function Gt (w),
for all t ≥ 0. Suppose N (t) = n. The arrival times of these demands have the
same distribution as the order statistics for n independent random variables each
of which has a distribution function

F(x) =
{ m(x)

m(t) , 0 ≤ x < t
1, x ≥ t .

The proof of this theorem is similar to the one given in Chapter 3 for the case
when all random variables are stationary. We are now ready to state and prove the
following theorem.

Theorem 13. Suppose demands and resupply times for a particular item are as
stated in the hypothesis of the preceding theorem. Then the number of units in
the resupply process at time t, which we denote by the random variable X (t), is
Poisson distributed with mean

α(t) =
∫ t

0
(1 − Gs(t − s))λ(s)ds.

The proof of this theorem is essentially the same as the one presented for the
stationary case in Chapter 3; however, it is given for the sake of completeness.

Proof. Now suppose N (t) = n. We will first determine P{X (t) = k|N (t) = n}.
The probability that an arbitrary unit of demand occurring during [0, t) remains
in resupply at time t is given by

p =
∫ t

0
(1 − Gs(t − s))

λ(s)

m(t)
ds

as a consequence of Theorem 12. Since this is the probability that each of the n
demanded units remains in the resupply system at time t ,
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P{X (t) = k|N (t) = n} =
(

n
k

)
pk(1 − p)n−k .

The unconditional probability that X (t) = k is given by

P{X (t) = k} =
∑
n≥k

P{X (t) = k|N (t) = n}P{N (t) = n}

=
∑
n≥k

(
n
k

)
pk(1 − p)n−k e−m(t) m(t)n

n!

=
∑
n≥k

n!
(n − k)!k! (p · m(t))k [(1 − p) · m(t)]n−k e−m(t)

n!

= (p · m(t))k e−m(t)

k!
∑
n≥k

[(1 − p) · m(t)]n−k

(n − k)!

= (p · m(t))k e−m(t)

k!
∞∑
j=0

[(1 − p) · m(t)] j

j !

= (p · m(t))k e−m(t)

k! · e(1−p)m(t)

= (p · m(t))k

k! e−p·m(t).

Since

p · m(t) =
∫ t

0
(1 − Gs(t − s))λ(s)ds = α(t),

P{X (t) = k} = e−α(t) (α(t))k

k! . ��

9.2 The Nonstationary Compound Poisson Process Case
at a Single Location

The theorem presented in the last section stated that the probability distribution
for the number of demands or orders that are in the resupply system at time t is
Poisson distributed with mean α(t). Suppose that each demand, or order, is for
j ≥ 1 units. Suppose that u j measures the probability that the order is for j units.
Furthermore, assume that this distribution does not change with time, that is, the
order size distribution is stationary.

If Y (t) is a random variable that measures the number of units demanded
through time t , then it is clear, from our discussion in Chapter 3, that Y (t) has a
compound Poisson distribution. That is,

P [Y (t) = k] =
∞∑

n=1

u(n)
k e−m(t) (m(t))n

n! ,
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where u(n)
k is the probability that n orders result in a demand for k units. Since

the demands are independent, u(n)
k is the n-fold convolution of the compounding

order size distribution uk with itself. It is easy to see that

E[Y (t)] = m(t) · E[Q]
and

Var[Y (t)] = E [Var(Y (t)|N (t))] + Var [E[Y (t)|N (t)]]
= E

[
N (t) · (E(Q2) − E(Q)2)

]
+ Var [N (t) · E(Q)]

= m(t)[E(Q2) − E(Q)2] + E[Q]2 · m(t)

= m(t)E[Q2], since VarN (t) = m(t),

where Q is the random variable for the order size distribution.
Let us now extend the time dependent version of Palm’s theorem to the case

where the demand process is a compound Poisson process.

Theorem 14. Assume the demand process is given by Y (t) and that the resupply
time for all units corresponding to an order arriving at time t is given by Gt (w).
Then the probability distribution of the number of units in the resupply system at
time t is the compound Poisson distribution

P[X (t) = k] =
∑
n≥1

u(n)
k e−α(t) (α(t))n

n! .

Proof. Since the number of orders in resupply at time t has a Poisson distribution,
the distribution of the number of units in resupply at time t has a compound Pois-
son distribution. ��

9.3 A Two-Echelon Model when Demand is Described by a
Nonstationary Poisson Process

The extension to Palm’s theorem developed in the previous section provides the
basis for developing a time dependent model for the probability distribution of the
number of units in resupply in a two-echelon, depot and base system. This system
is the same as the one studied earlier in Chapter 5. Figure 9.1 shows the flow
of material in this system. Recall that demands (orders) for units occur at each
operating base. In this case, we assume that the demand process is a nonstationary
Poisson process for each part type at each base. Each demand corresponds to a
failure that requires repair. Repairs occur at either the base or at the depot. The
place at which repairs occur depends only on the nature of the failure. Hence
there is a probability that a failed unit will be repaired at the base and 1 minus
that probability that the unit will be repaired at the depot. Base stock levels are
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assumed to be known at each point in time. When a failure occurs at a base, a unit
is withdrawn from base stock to satisfy the demand. This withdrawal will occur
immediately if there is stock on-hand; otherwise, the demand will be satisfied
whenever the base inventory is replenished.

Fig. 9.1. Part Resupply Cycle

When a unit fails and is repaired at the base, the base’s repair center is respon-
sible for resupplying base stock. If the unit is sent to the depot, then the depot is
responsible for satisfying the base’s resupply request. If the depot has stock on-
hand when the failure occurs, then a serviceable unit is sent to the base and the
defective unit is sent to the depot for repair. If the depot does not have stock on-
hand when the resupply request is made by the base, then that resupply request is
satisfied on a first-come, first-serve basis by the depot. Again, refer to Figure 9.1
for a summary of resupply flows and flow times.

9.3.1 Notation

Let us now introduce notation that will be used to establish the probability distri-
bution for the number of units in resupply for each base. Although we may have
many item types for which we will construct these distributions, we will focus on
only a single item type in our analysis to simplify the notation.

Let

λi (t) represent the demand rate for the item at base i at time t . Assume that
this function is integrable.

Ei (t) represents the base i repair cycle time at time t , a constant. Furthermore,
assume that Ei (t) + t ≥ Ei (s) + s, s < t .

Ai (t) represents the order and ship time from the depot for a failure occurring
at base i at time t , and is known and deterministic. Assume Ai (t)+ t ≥
Ai (s) + s, s < t .
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D(t) represents the depot repair cycle time for a failure occurring at a base
at time t , a constant. Assume that D(t) + t ≥ D(s) + s, s < t .

ri is the probability that a failure occurring at base i is repaired there and
(1 − ri ) is the probability that it will be repaired at the depot.

Ti (t) is the average resupply time for a part that fails at base i at time t .
λ0(t) =∑n

i=1(1 − ri )λi (t) is the depot demand rate at time t .
si (t) is the stock level at base i at time t .
s0(t) is the depot stock level at time t .

B0(s0(t)) is the expected backorders at the depot at time t .
Bi (si (t)) is the expected backorders at base i at time t .

X0(t) is the random variable describing the number of units in resupply at the
depot at time t .

Xi (t) is the random variable describing the number of units in resupply at
base i that are backordered at the depot at time t .

Observe that we are assuming that the depot repair cycle time at time t , as
well as the base repair cycle time and the depot to base order and ship times,
are constant, but time dependent. While the assumption of deterministic repair
cycle times and order and ship times is restrictive, we note that it is of significant
value to have these times be time dependent. By allowing these times to be time
varying, we can, for example, represent segments of times during when there
is no repair capability, no ability to send failed units to the depot, or to receive
serviceable units from the depot. Note also that the assumptions that Ai (t) + t ≥
Ai (s) + s, Ei (t) + t ≥ Ei (s) + s, and D(t) + t ≥ D(s) + s, s < t , imply that
there is no crossing of resupply times, that is, a unit entering either depot or base
resupply at time s, s < t , completes its resupply cycle no later than a unit entering
either of the corresponding resupply cycles at a later time t .

9.3.2 Depot Analysis

When the demand for an item at base i is characterized by a nonstationary Poisson
process and the probability that the failed unit is repaired at that base is ri , then
the demand process seen by the depot is a nonstationary Poisson process with
rate λ0(t) = ∑n

i=1 λi (t)(1 − ri ). Our objective in this section is to compute the
probability distribution of the random variable that measures the number of units
in the resupply process at the depot at some time t that correspond to resupply
requests made by base i .

Let t be an arbitrary point in time. Furthermore, let t̃ = inf{u : D(u)+u > t}.
Then all demands for depot resupply made by bases prior to time t̃ will have
been satisfied (i.e. shipped from the depot) by time t . Additionally, all entries into
the depot resupply system occurring subsequent to time t̃ remain in the depot
resupply (repair) system at time t , since, by assumption, if ū > u ≥ t̃ , then
D(ū) + ū ≥ D(u) + u. Thus the probability distribution for the number of units
in the depot resupply system at time t , denoted by X0(t), is equal to k is
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P{X0(t) = k} = e−m0(t̃,t) m0(t̃, t)k

k! , where

m0(t̃, t) =
∫ t

t̃

∑
i

λi (u)(1 − ri )du.

When k > s0(t), then backorders exist at the depot at time t . The expected number
of backorders at the depot at time t is

B0(s0(t)) =
∑

x>s0(t)

(x − s0(t))P[X0(t) = x].

As stated, our goal is to determine the probability distribution for the number
of these backorders that correspond to resupply requests from base i .

Recall that the random variable Xi (t) measures the number of units of stock
that are backordered at the depot that result from resupply requests made by base
i . Suppose Xi (t) = k, k > 0. For this to occur, there exists a uε(t̃, t) such that
the depot demand in the interval (t̃, u), is equal to s0(t) − 1, there is a demand
placed on the depot at time u, and there are k demands for depot resupply from
base i occurring during the interval (u, t]. All s0(t) demands for depot resupply
that occurred in (t̃, u] will have been shipped from the depot by time t , assum-
ing a first-come, first-serve policy is followed. Furthermore, all resupply requests
placed on the depot subsequent to time uε(t̃, t] will remain unsatisfied at time t .
Hence, for k > 0,

P{Xi (t) = k} =
∫ t

t̃
e−m0(t̃,u) m0(t̃, u)s0(t−1)

(s0(t) − 1)!
· λ0(u) · e−mi (u,t) mi (u, t)k

k! du (9.1)

where mi (u, t) = ∫ t
u (1 − ri )λi (v)dv.

There are two ways that k can equal zero. First X0(t) ≤ s0(t) and, second, de-
pot demand in (t̃, u] is s0(t)−1, a depot demand for resupply occurs at u, uε(t̃, t),
and there are no base i demands in (u, t]. Thus

P{Xi (t) = 0} = P{X0(t) ≤ s0(t)}
+
∫ t

t̃
e−m0(t̃,u) m0(t̃, u)s0(t)−1

(s0(t) − 1)! · λ0(u) · e−mi (u,t) du. (9.2)

9.3.3 Base Analysis

Suppose X̄i (t) is a random variable that represents the number of units in the

resupply system at base i at time t . Let t̄ = inf{u : Ai (u)+ u > t} and
=
t = inf{u :

Ei (u) + u > t}. Next, suppose Xb
i (t) is a random variable that corresponds to the

base i demands occurring in (
=
t , t] that require base repair. Also, suppose Xd

i (t)
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is a random variable that measures the number of units that require depot repair
that fail during the interval (t̄, t] at base i . Then

X̄i (t) = Xb
i (t) + Xd

i (t) + Xi (t̄).

Since these random variables are independent, X̄i (t) is simply the convolution of
these three random variables. The independent random variables Xb

i (t) and Xd
i (t)

each has a nonstationary Poisson distribution, where

E[Xb
i (t)] =

∫ t

=
t

riλi (u)du

and

E[Xd
i (t)] =

∫ t

t̄
(1 − ri )λi (u)du.

The distribution of Xb
i (t) + Xd

i (t) is a nonstationary Poisson distribution. Let

m̃i (t) =
∫ t

t̄
(1 − ri )λi (v)dv +

∫ t

=
t

riλi (v)dv,

Then

P[Xb
i (t) + Xd

i (t) = k] = e−m̃i (t) m̃i (t)k

k! ,

and

P[X̄i (t) = k] =
k∑

j=0

P
[

Xb
i (t) + Xd

i (t) = j
]

· P
[
Xi (t̄) = k − j

]
=

k∑
j=0

e−m̃i (t) m̃i (t) j

j ! · P
[
Xi (t̄) = k − j

]
,

where P[Xi (t̄) = k − j] is calculated using equations (9.1) and (9.2). Thus we
may compute time dependent performance measures since we have shown how to
compute P[X̄i (t) = x]. For example, the expected number of backorders at base
i at time t is

Bi (si (t)) =
∑

x>si (t)

(x − si (t))P[X̄i (t) = x].

The fill rate at time t is P[X̄i (t) < si (t)] when the demand process is a
nonstationary Poisson process.



9.4 Problem Set, Chapter 9 223

9.4 Problem Set, Chapter 9

9.1. Prove Theorem 12.

9.2. Let the random variable Y measure the number of units demanded over a
fixed length of time. Let N be the random variable for the number of orders placed
during the same period of time. Show that

Var[Y ] = E[Var[Y |N ]] + Var[E[Y |N ]].
9.3. In Section 9.1 we assumed that N (0) = 0. Suppose that over the interval
(−∞, 0] the demand process was a simple stationary Poisson process with rate λ.
Modify Theorem 13 to account for this change and establish the new distribution
for X (t), t > 0. Prove your result.

9.4. The analysis presented in Section 9.3 was based on the assumption that time
was continuous. Suppose that time is divided into periods. Let λi t represent the
expected demand at base i in period t . Demand in each period is independent
of demands in other periods and has a Poisson distribution with mean λi t . For
this discrete time case, develop the analysis required to compute the probability
distributions for X0t , the random variable for the number of units in the depot’s re-
supply system at the end of period t , and Xit , the random variable for the number
of units in resupply for base i at the end of period t .
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Real-time Execution Systems

Real-time decision-making focuses on answering the question, “What do I do
now?” The “what” activities differ by application, of course; however, every ser-
vice parts resupply system faces this type of question. Let us begin this chapter
by examining briefly the types of questions that arise in a few different settings.
We will then explore one application in substantial depth.

The first example comes from the high technology sector. In one environment,
machines such as photocopiers and printers are located at customer sites. Ma-
chines are installed and removed daily from these sites by field service engineers
(FSE). Furthermore, a FSE also conducts repairs on these machines at customer
locations. The following is a list of questions that must be addressed daily in such
a system:

1. What should be done with a machine that is removed from a customer site?
Should it be refurbished, torn down for critical parts, or scrapped?

2. As the population of installed machines changes over time, how should stocks
of service parts be reallocated within the supply network? Is it cost effective
to transship these parts from one location to another? Should the parts be
scrapped?

3. When many types of parts are awaiting repair, which ones should be entered
into the repair process now?

4. When many types of machines are available for refurbishing, which ones
should be entered into the repair process today?

5. As parts and machines become available through the procurement and repair
processes, where should they be stocked?

6. Given the level of stocks on hand, on order, in repair, and in the pipelines,
what parts should be ordered today? Should new machines be purchased and
torn down for parts?

A second example arises in the environment we described in Chapter 6. There
we examined a situation in which service contracts were written for each cus-
tomer, for specified groups of machines (or parts), and for each customer site.
The tactical planning models we developed in Chapter 6 produced a set of target
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stock levels based on long run expected behavior of the system. But contracts per-
tain to short run behavior, and insuring that contractual obligations are met is of
critical importance to long term customer satisfaction.

With that said, suppose a machine requires repair, and a particular part is
known to be needed to complete the repair. Suppose further that the FSE has
access to the required part. Should the FSE use the part to complete the repair?
This question seems to have an obvious answer, but upon some reflection, it is not
clear what action should be taken.

For instance, suppose there are only two active customer contracts that could
require a particular part. The first contract stipulates that over the contract period
of one year, 80% of the machine repair calls must be satisfied within 48 hours. The
second contract stipulates that over the same contract period of one year, 98% of
the machine repair calls must be satisfied within 8 hours. Suppose that over the
first 9 months of these contracts, 92% of the service calls under the first type of
contract have been satisfied within 48 hours, but only 93% of the service calls
under the second type of contract have been satisfied within 8 hours.

A call now comes that falls under the first contract type, and there is only one
unit in stock of the part type that is required to complete the service. Furthermore,
it is likely that this part will be needed to repair a machine under the second con-
tract type before another unit becomes available. What action should be taken? A
complex model is likely required to assist decision makers that manage contracts
in this environment. Most static decision rules need not perform well. Obviously
there are significant information system and business process implications asso-
ciated with implementing various types of decision support mechanisms in these
situations. The question remains as to what the relationship is between the cost of
creating the infrastructure required to capture and act on the data, and the value
derived (in terms of customer satisfaction and retention) from the use of a com-
plex modelling environment. This question must be asked in all situations.

A third example is found in automotive service parts environments. Decisions
must be made daily as to: (1) what parts should be stocked at each location in a
multi-echelon resupply network, (2) what part types should be ordered each day at
each location, (3) what mode of transport should be employed to ship parts from
one location to another, given the current state of the system, (4) what location
should provide a part to a location that needs it, and (5) where should parts be
stocked in warehouses as they arrive from a supplying location? Clearly there are
many other types of decisions that must be made in this environment. Since such
systems often contain many hundreds of thousands of part types stocked at many
thousands of dealers/retailers and tens of stocking locations within an automotive
company, the need for effective real-time decision support models is evident.

Considerable evidence exists showing that service and costs can be improved
by constructing and implementing real-time operations models and information
infrastructures in many settings. Several authors, including [214], [215], [126],
[198], [128], [129], and Abell et al. [1], have shown how real-time approaches
and models to managing repairs and parts in aviation settings can improve perfor-
mance substantially. In the remainder of this chapter, we will develop a series of
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real-time models for managing expensive service parts in the aviation sector. We
will also demonstrate the effectiveness of employing these models.

10.1 Real-time Capacity and Inventory Allocations for
Reparable Items: Introduction

The real-time operational planning process we examine in this section focuses
on day-to-day decision-making in an aviation service parts repair and distribution
system. Each day, planners determine the best way to allocate available repair ca-
pacity among different items and the best way to allocate available inventories to
a set of bases. These allocation decisions, which must be made in highly dynamic
environments, are largely driven by the information available about the current
state of the system, as well as the information available about the demands that
are likely to occur in the time periods that the decisions will affect. Since the level
and reliability of such information is limited, the operational planning horizon for
such a system is finite. The usual goal of the operational planning activity is to
satisfy operational requirements at minimum expected cost over the time periods
impacted by the current decisions.

Our objective in the remainder of this chapter is to formulate this operational
planning problem in several ways. Each of the models measures the economic
consequences of the current operating decisions; however, the models differ in
their complexity. We will examine three different systems in detail, and will
demonstrate the value of employing integrated decision models over using de-
centralized allocation rules in a range of commonly encountered operating envi-
ronments.

10.1.1 System Description

The system consists of a depot repair facility, a depot warehouse, and a set of
bases. Figure 10.1 shows the cyclic flow of materials in this system. When a part
on an aircraft fails, the defective unit is removed, and a replacement part of the
same type is dispatched from the base’s stock. The defective unit is shipped back
to the depot, where it joins a queue of parts awaiting repair. After the part is
repaired, it is sent to the depot’s warehouse, where it is then available for rede-
ployment to any base. If a required part is not on-hand at the base, a backorder
occurs. The backordered part will be subsequently supplied to the base from the
depot warehouse. Parts may be shipped from the depot warehouse to the bases via
a regular or an expedited shipment mode.

At any given point in time, there are inventories of each part type in various
places in the system. Specifically, a part may be:

1. In-transit from a base to the depot repair facility;
2. Awaiting repair at the depot repair facility;
3. In-repair at the depot repair facility;
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Fig. 10.1. The System Under Study

4. In-transit from the depot repair facility to the depot warehouse;
5. On-hand at the depot warehouse;
6. In-transit from the depot warehouse to a base; or
7. On-hand at a base.

Segments 1–4 constitute the repair subsystem, and segments 5–7 constitute the
distribution subsystem. Given the quantities of each part type in each segment
of the system, along with the knowledge of when parts in-transit will arrive at
their destinations, decisions must be made in each period regarding what parts
to repair and what parts to ship from the depot warehouse to the bases via each
transportation mode.

We begin by constructing a dynamic programming model for making repair
and allocation decisions for this system. Decisions are to be made each period
regarding how many units of each item type to enter into the depot repair cycle,
and how many units of each item type to ship from the depot warehouse to each
base. The number of units entering the repair process each period is limited by
the number of units available to be repaired, as well as by the maximum capacity
of the repair process (which is described as a maximum number of units). The
demand process at each base is described by a random variable whose distribution
may vary from period to period. We will make some simplifying assumptions
regarding lead times that will permit a relatively straightforward statement of the
problem. Nonetheless, we will observe that the resulting dynamic program can
not be solved for practical problems due to the size of the state space.
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Since this multi-period dynamic programming based formulation of the prob-
lem is computationally intractable, we will concentrate on developing alternative
formulations that are approximations, but are computationally tractable. Specif-
ically, we will present discrete-time, periodic-review models for making alloca-
tion decisions in increasingly complex operating environments. The first model,
although rather basic in its assumptions, provides both the framework and the
insight for dealing with the second and third models, in which an additional ship-
ment option and control over repair decisions, respectively, are captured in the
formulation. It is the third model for which we are ultimately interested in devel-
oping practical solution algorithms.

Each approximating model is in essence a multi-period newsvendor problem,
where the effects of the decisions made in one period are captured in subsequent
periods over the effective horizon. Thus, when solving the problem, the model
simultaneously makes decisions at the beginning of the current period for all pe-
riods in the planning horizon, implicitly assuming that these decisions will be
implemented and that there is no opportunity to alter the plan once more infor-
mation about the demand process is obtained. In practice, however, the models
would be employed on a rolling horizon basis, so that new allocation decisions
would be made every period based on new information about the system.

In describing each operational model, the difference between the planning
horizon of the model and the effective horizon of the model must be noted. The
planning horizon of a model encompasses the time periods in which allocation
decisions will be made. The effective horizon of a model encompasses the time
periods in which the effects of the allocation decisions will be measured. We now
describe the dynamic programming model and each of the approximating models
in greater detail.

In constructing the dynamic programming formulation of the decision prob-
lem, assume, for notational clarity, that there is only one mode of shipment avail-
able from the depot warehouse to the bases, that the shipment time is the same
for all items and bases, and that the repair lead time plus the time to transport
a repaired item to the depot warehouse is the same for all item types. (All three
of these assumptions will be relaxed when we describe the approximate models.)
We also assume that the decision-maker has visibility of all parts in the distribu-
tion subsystem as well as the repair subsystem, with the exception of parts that
are in-transit to the repair facility (i.e., segment 1). It will be obvious how to ex-
tend the model when this assumption is relaxed; however, given this assumption,
the length of the planning horizon is taken to be the repair lead time plus the
transportation time from the repair facility to the depot warehouse. Thus, repair
decisions in the dynamic programming model will be made in the first period only,
and these decisions will affect the availability of parts at the depot warehouse in
the last period of the planning horizon. Allocation decisions will be made over
the entire planning horizon.

The first approximate model, which we call the stock allocation model, or
SAM, addresses only the inventory allocation problem and, as in the dynamic
programming model, allows only one mode of shipment from the depot ware-
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house to the bases (i.e, the regular shipment mode). The SAM determines how
many parts to ship from the depot warehouse to each base in each period of the
planning horizon. This model assumes that the decision-maker has complete vis-
ibility of parts in the distribution subsystem as well as those that are currently in
the repair process and en route to the depot warehouse, but has no knowledge of or
control over parts that are in the repair queue or en route to the repair facility (i.e.,
segments 1 and 2). Accordingly, the length of the planning horizon for the SAM
(i.e., the number of periods for which allocation decisions will be made) is the
repair lead time plus the transportation time from the repair facility to the depot
warehouse. Since the current contents of this pipeline are visible to the decision-
maker, this is the horizon over which the supply to the depot warehouse is known
with certainty.

The extended stock allocation model, or ESAM, also addresses only the inven-
tory allocation problem; however, in this model the decision-maker has the option
of using an expedited shipment mode to transport parts from the depot warehouse
to the bases. In making allocation decisions, the incremental benefit gained by
having parts arrive at a base earlier than they would have using the regular ship-
ment mode must be weighed against the incremental cost of expedited shipment.
The visibility of the decision-maker and the length of the planning horizon for the
ESAM are the same as for the SAM.

In the extended stock allocation model with repair, or ESAMR, capacitated
repair decisions as well as inventory allocation decisions must be made. The repair
decisions to be made are which parts (of those awaiting repair) should have their
repair commenced in the first period of the planning horizon. Like the dynamic
programming model, the ESAMR assumes that the decision-maker has visibility
of all parts in the distribution subsystem as well as the repair subsystem, with the
exception of parts that are in-transit to the repair facility (i.e., segment 1). The
reason for this final restriction is that in practice, the decision-maker may have
limited control over the timing and methods used by bases to return defective
parts for repair. The length of the planning horizon for the ESAMR is the same
as for the SAM and the ESAM; however, the repair decisions to be made in this
model affect the availability of parts at the depot warehouse in the last period
of the planning horizon, and hence, are integrated with the inventory allocation
decisions.

The objective of all three approximate models is to minimize the relevant
total expected system cost over the effective horizon, assuming that the current
allocation decisions for future periods will be executed without change over the
course of the planning horizon. For the SAM, this cost includes the incremental
expected cost of holding parts at the bases (instead of holding them at the depot
warehouse) and the expected backorder costs at the bases. For the ESAM, we
also consider the incremental cost of shipping parts to bases via the expedited
mode (instead of the regular shipment mode). For the ESAMR, in addition to
the incremental shipping costs, we also allow for an incremental cost of holding
parts at the depot warehouse (instead of holding them at the depot repair facility).
Repair costs, depot repair facility holding costs, and regular shipment costs are
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not captured in these models since they are not relevant. That is, assuming that
all demand placed on the system is to be satisfied eventually, these costs will be
incurred regardless of the current capacity and inventory allocation decisions. The
only relevant costs in the operating models are those associated with the timing
with which the parts are made to flow through the system from the depot repair
facility to the depot warehouse to the various bases.

As observed earlier, these approximate models would be implemented in a
rolling horizon manner. That is, given the system’s status at the beginning of a
period, the model’s recommendations would be followed for the current period
only, recognizing that the solution considers the consequences of the current pe-
riod decisions on future period decisions and costs.

The environment described in this section along with the models and algo-
rithms presented in the following sections are based on [39].

10.2 Notation and Assumptions

In this section notation for the first two approximating models, SAM and ESAM,
is defined as well as notation for the dynamic programming formulation . Addi-
tional notation will be defined as required.

The key to all of the model formulations lies in appropriately constraining
the inventory allocation decisions by the part availability at the depot warehouse,
as well as accurately capturing the relevant cost consequences of the inventory
allocation decisions. Namely, for each part type, we must capture:

the current stock level at the depot warehouse and the quantities due to arrive
at the depot warehouse over the planning horizon;

the current stock levels at the bases and the quantities due to arrive at the bases
as a consequence of the inventory allocation decisions; and

the costs incurred each period as a consequence of the inventory allocation
decisions; namely, the incremental expedited shipment costs to the bases, the
incremental expected holding costs at the bases, and expected backorder costs
at the bases.

Remember that repair costs, depot warehouse holding costs, and regular shipment
costs are not relevant to the SAM or the ESAM since these costs will be incurred
regardless of the current inventory allocation decisions. Since the flow of parts
from the depot repair facility to the depot warehouse is predetermined in these
models, the only relevant costs are those associated with the timing with which
the parts are made to flow from the depot warehouse to the bases.

The following notation is used throughout this chapter:

Network Parameters
I the set of items, indexed by i .
J the set of bases, indexed by j .
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Time Parameters (All are assumed to be an integer number of periods.)
Ti0 the repair lead time for item i , including transport to the depot warehouse

from the repair facility. (The index 0 denotes the depot warehouse.)
T r

i j the regular transportation lead time for item i to base j
from the depot warehouse.

T e
i j the expedited transportation lead time for item i to base j

from the depot warehouse. We assume that 1 ≤ T e
i j < T r

i j .

Decision Variables
yr

i j t the number of units of item i to ship via regular transport from the
depot warehouse to base j in time period t , t = 0, . . . , Ti0.

ye
i j t the number of units of item i to ship via expedited transport from the

depot warehouse to base j in time period t , t = 0, . . . , Ti0.
vi the number of units of item i to enter into repair in time period 0.

Supply and Demand Parameters
S̃i0t the known cumulative supply of item i available at the depot warehouse

through period t (i.e., inventory on-hand at the beginning of the planning
horizon plus stock arriving through period t). These parameters define the
pipeline stock profile coming into the depot warehouse at the beginning
of the planning horizon and are unaffected by current allocation decisions.
They are defined for periods t = 0, . . . , Ti0.

S̃i j t the known cumulative supply of item i available at base j through
period t (i.e., net inventory at the beginning of the planning horizon
plus stock arriving through period t). These parameters define the pipeline
stock profile coming into base j from the depot warehouse at the
beginning of the planning horizon and are unaffected by current allocation
decisions. They are defined for periods t = 0, . . . , T r

i j + Ti0. Note, however,

that S̃i j t = S̃i j (T r
i j −1) for all t = T r

i j , . . . , T r
i j + Ti0.

Si j t the cumulative supply of item i available at base j through period t .
These parameters are affected by current depot warehouse allocation
decisions, and are defined for periods t = T e

i j , . . . , T r
i j + Ti0.

Xi jt the cumulative demand of item i at base j through period t ,
a random variable, defined for periods t = 0, . . . , T r

i j + Ti0.
Ri the number of units of item i available for repair in time period 0.
Cmax the maximum number of units (over all item types) that can be entered

into repair in time period 0 (i.e., the repair facility capacity).
Cmin the minimum number of units (over all item types) that must be entered

into repair in time period 0, where Cmin ≤∑i∈I Ri by assumption. In many
practical applications, this parameter would likely be set to
min(

∑
i∈I Ri , Cmax) so that as many units as possible are repaired.

Ci min(Ri , Cmax), the maximum number of units of item i that can enter
the repair process in time period 0.
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Cost Parameters and Functions
hi j the incremental cost per period associated with holding a unit of item i

at base j instead of at the depot warehouse.
bi j the unit shortage cost per period for item i at base j .
ei j the incremental cost of shipping a unit of item i via expedited mode

from the depot warehouse to base j . This cost is assumed to
include any incremental holding costs while in transit.

Gi jt (·) the function describing the expected incremental holding costs and
backorder costs incurred in period t for item i at base j ,
defined for periods t = T e

i j , . . . , T r
i j + Ti0. The function argument is Si j t ,

the cumulative supply of item i at base j through period t . That is,
Gi jt (Si j t ) = hi j E[Si j t − Xi jt ]+ + bi j E[Xi jt − Si j t ]+.

Qi j (·) the function describing the expected incremental holding costs incurred
beyond the end of the effective horizon for item i at base j .
The function argument is Si j (T r

i j +Ti0), the cumulative supply of item i at

base j at the end of the effective horizon. That is,
Qi j (Si j (T r

i j +Ti0)) = hi j
∑∞

t=T r
i j +Ti0+1 E[Si j (T r

i j +Ti0) − Xi jt ]+.

Some explanation should be given for the item-specific time periods over
which the parameters and variables are defined. As mentioned earlier, the goal
is to capture all of the incremental expected costs that are a direct consequence
of the allocation decisions made during the planning horizon (i.e., in periods
t = 0, . . . , Ti0 for item i). Note that since different items may have different
repair lead times, the number of periods for which supply information exists (i.e.,
Ti0, the pipeline length) may differ from item to item. Also, since the shipment
lead times T r

i j and T e
i j to the various bases may differ across items and locations,

the consequences of the allocation decisions made at the depot warehouse may
be realized within time windows that vary by item and by base. Specifically, for a
given item i and a given base j :

Incremental expected holding costs are realized in periods t = T e
i j , . . . , T r

i j +
Ti0.

Expected backorder costs are realized in periods t = T e
i j , . . . , T r

i j + Ti0.

Incremental costs for expedited shipments from the depot warehouse are real-
ized in periods t = 0, . . . , Ti0.

In addition, the models capture the end-of-horizon implications of carrying
inventory at each base for each item. Note that although the supply may make
it possible to send extra inventory from the depot warehouse to bases, carrying
inventory at a base at the end of the effective horizon is appropriate only if the ex-
pected future demand at that base warrants it. To address this, the model includes
a cost term that reflects the expected incremental holding costs that would be in-
curred in periods following the end of the effective horizon. This cost function,
first introduced in [43], measures the expected number of future periods worth
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of inventory that are on-hand at the end of the effective horizon and multiplies
this figure by the item’s incremental holding cost per period. That is, the expected
future holding cost associated with having [Si j (T r

i j +Ti0) − Xi j (T r
i j +Ti0)]+ units of

item i on-hand at base j at the end of the effective planning horizon is expressed
as:

Qi j (Si j (T r
i j +Ti0)) = hi j

∞∑
t=T r

i j +Ti0+1

E[Si j (T r
i j +Ti0) − Xi jt ]+. (10.1)

It is easily shown that Qi j is a convex function of its argument.

10.3 The Dynamic Programming Model

We now formulate the repair and inventory allocation problem as a dynamic pro-
gram. Recall that there is only one mode of transportation from the depot ware-
house to the bases in this model, and the repair and transportation times are the
same for all items and bases. Thus, Ti0 = T0 for all i ∈ I , and T r

i j = T r for all
i ∈ I, j ∈ J . The planning horizon is T0 for all items, with the effective horizon
being T0 + T r , since the economic consequences of the decisions made in periods
0 through T0 will be incurred through period T0 + T r . The incremental holding
and backorder costs incurred at the bases through period T r − 1 are beyond our
control.

Given the notation of the previous section, the following constraints must be
met as the optimization is carried out:

S̃i0t ≥
∑
j∈J

t∑
t ′=0

yr
i j t ′ , ∀i ∈ I, t = 0, . . . , T0, (10.2)

S̃i0(T0) = S̃i0(T0−1) + vi , ∀i ∈ I, (10.3)

Si j t = S̃i j (T r −1) +
t−T r∑
t ′=0

yr
i j t ′ , (10.4)

∀i ∈ I, j ∈ J, t = T r , . . . , T r + T0,

Cmin ≤
∑
i∈I

vi ≤ Cmax, (10.5)

0 ≤ vi ≤ Ci and integer ∀i ∈ I, (10.6)

yr
i j t ≥ 0 and integer ∀i ∈ I, j ∈ J, t = 0, . . . , T0. (10.7)

Let S̄t−T r be a vector whose components are the values of the Si j t quantities.
Thus, S̄t−T r measures the cumulative amount allocated to each base location and
available for allocation by the depot through period t given the initial conditions
and subsequent repair and allocation decisions. Also, let X̄t−T r be a vector of
cumulative demands for each (i, j) pair through period t . Define the state of the
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system at time t to be (S̄t−T r , X̄t−T r −1). Furthermore, let Ȳt−T r be the vector of
allocation decisions in period t − T r , whose components are yi j (t−T r ) for each
(i, j) pair.

Given these definitions, one dynamic programming formulation of the simpli-
fied repair and allocation problem is as follows. The recursion is:

fT r +T0+1(S̄T0; X̄T0−1) =
∑
i∈I

∑
j∈J

Qi j (Si j (T r
i j +Ti0); X̄T0−1) (10.8)

and

fT r +t (S̄t ; X̄t−1) =
min

Ȳt

∑
i∈I

∑
j∈J

Gi j (T r +t)(S̄t ; X̄t−1) +
∑

x̄t

fT r +t+1(S̄t + Ȳt ; X̄t )P[X̄t |X̄t−1],

(10.9)

where Qi j (·; X̄T0−1) and Gi j (T r +t)(·; X̄t−1) are conditioned on the vectors X̄T0−1
and X̄t−1, respectively. X̄0 is the null vector. Decisions in period t are subject to
the constraints (10.2)-(10.7).

It should be obvious that the number of states that would exist for any
reasonably-sized problem encountered in practice would be extraordinarily large.
Hence, the dynamic programming model is not a practical one for generating
repair and allocation decisions. We now turn our attention to alternative approx-
imation models that allow computationally tractable methods for making repair
and allocation decisions.

10.4 The Stock Allocation Model

In this section, the first approximation model is formulated, which we call the
stock allocation model, or SAM. This model is a convex program, and we show
that it is separable by item. We then propose two approaches for solving the item
subproblems. In the first approach, we derive bounds on the optimal values of the
decision variables and use these bounds to formulate and solve the subproblems
as linear programs. Although the LPs can be quite large, this method is exact, and
it provides a benchmark against which we can measure the performance of faster,
greedy heuristics. Two such greedy algorithms are presented here.

10.4.1 Model Definition

Recall that the SAM addresses only the inventory allocation problem and allows
only one mode of shipment (i.e., regular shipment) from the depot warehouse to
the bases. Given the notation of the previous section, we can describe the SAM
as follows:
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(SAM) minimize
∑
i∈I

∑
j∈J

⎧⎨⎩
T r

i j +Ti0∑
t=T r

i j

Gi j t (Si j t ) + Qi j (Si j (T r
i j +Ti0))

⎫⎬⎭(10.10)

subject to

S̃i0t ≥
∑
j∈J

t∑
t ′=0

yr
i j t ′ , ∀i ∈ I, t = 0, . . . , Ti0, (10.11)

Si j t = S̃i j (T r
i j −1) +

t−T r
i j∑

t ′=0

yr
i j t ′ , (10.12)

∀i ∈ I, j ∈ J, t = T r
i j , . . . , T r

i j + Ti0,

yr
i j t ≥ 0 and integer ∀i ∈ I, j ∈ J, t = 0, . . . , Ti0. (10.13)

Constraints (10.11) ensure that stock is available at the depot warehouse before it
is allocated, and constraints (10.12) relate the quantities received at the bases with
the corresponding quantities shipped from the depot warehouse.

Observe that no more than one item type occurs in any one constraint in this
formulation. Hence, the problem is separable by item. Letting Z∗ denote the op-
timal objective function value to SAM, this means that we can write:

Z∗ =
∑
i∈I

Z∗
i ,

where Z∗
i denotes the optimal objective function of the subproblem SAMi , given

by:

(SAMi ) minimize
∑
j∈J

⎧⎨⎩
T r

i j +Ti0∑
t=T r

i j

Gi j t (Si j t ) + Qi j (Si j (T r
i j +Ti0))

⎫⎬⎭ (10.14)

subject to

S̃i0t ≥
∑
j∈J

t∑
t ′=0

yr
i j t ′ , ∀t = 0, . . . , Ti0, (10.15)

Si j t = S̃i j (T r
i j −1) +

t−T r
i j∑

t ′=0

yr
i j t ′ , (10.16)

∀ j ∈ J, t = T r
i j , . . . , T r

i j + Ti0,

yr
i j t ≥ 0 and integer ∀ j ∈ J, t = 0, . . . , Ti0. (10.17)

The problem of solving SAM thus reduces to solving SAMi for each i ∈ I .

10.4.2 LP Formulation of SAMi

The objective function of SAMi given in (10.14) has two types of terms, those in-
volving single-period expected costs, and those involving end-of-horizon
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expected holding costs. For a given base j and a given time period
t ∈ [T r

i j , . . . , (T r
i j + Ti0)], let us focus on the single-period cost function Gi jt .

Since Gi jt is convex in its argument, it is a simple matter to find the solution to
the constrained newsvendor problem CNi j t :

(CNi j t ) minimize Gi jt (Si j t ) (10.18)

subject to Si j t ≥ S̃i j t and integer.

Let Ŝi j t denote the largest optimal solution to this problem, so that

Ŝi j t = max(S̃i j t , arg min
S∈S

(Gi jt (S))), (10.19)

where S = {�F−1
Xi jt

(
bi j

bi j + hi j
)�, �F−1

Xi jt
(

bi j

bi j + hi j
)�}.

Recall that S̃i j t = S̃i j (T r
i j −1) for all t ∈ [T r

i j , . . . , T r
i j + Ti0]. Thus, in order for the

solutions Ŝi j t , t ∈ [T r
i j , . . . , (T r

i j + Ti0)] to be nondecreasing in t , it suffices for
the corresponding distribution functions FXi jt (x) to be nonincreasing in t for all
values x . Since Xi jt denotes the cumulative demand of item i at base j through
period t , this condition must hold. Hence,

Ŝi j (t−1) ≤ Ŝi j t ∀ j ∈ J, t ∈ [T r
i j , . . . , (T r

i j + Ti0)], (10.20)

and we have the following theorem to bound the optimal cumulative stock levels:

Theorem 15. For all bases j ∈ J and all time periods

t ∈ [T r
i j , . . . , (T r

i j + Ti0)],
let Ŝi j t denote the largest optimal solution to CNi j t , and let S∗

i j t denote the corre-
sponding term within an optimal solution to SAMi . Then:

S̃i j (T r
i j −1) ≤ S∗

i j t ≤ Ŝi j t ∀ j ∈ J, t ∈ [T r
i j , . . . , (T r

i j + Ti0)]. (10.21)

Proof. The first inequality must hold for any feasible solution. Only the second
inequality requires proof. Suppose it does not hold for some base j , and let k be
the smallest index (i.e., the earliest time period) for which the base violates this
condition. That is, S∗

i jk > Ŝi jk , and S∗
i j t ≤ Ŝi j t for all t ∈ [T r

i j , . . . , (k − 1)].
(If k = T r

i j , this means that S∗
i j (k−1) = S∗

i j (T r
i j −1)

= S̃i j (T r
i j −1) ≤ Ŝi j (T r

i j −1).) By

(10.20), we have that Ŝi j (k−1) ≤ Ŝi jk . Thus, S∗
i jk > Ŝi jk ≥ Ŝi j (k−1) ≥ S∗

i j (k−1),

which implies that S∗
i jk − S∗

i j (k−1) > 0. Recall, however, that S̃i jk − S̃i j (k−1) =
S̃i j (T r

i j −1) − S̃i j (T r
i j −1) = 0. Thus, the optimal solution must allocate at least one

unit of item i that arrives at base j in time period k. That is, yr∗
i j (k−T r

i j )
> 0.

Consider the following minor changes to the optimal solution to SAMi :

yr
i j (k−T r

i j )
← yr∗

i j (k−T r
i j )

− 1 and

yr
i j (k−T r

i j +1) ← yr∗
i j (k−T r

i j +1) + 1.
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The resulting solution is feasible. The shipment of one unit from the depot ware-
house to base j is delayed by one period, so that one less unit arrives in period k
and one more unit arrives in period k + 1. Moreover, this modified solution will
have Si jk = S∗

i jk − 1, but for all t �= k, Si j t = S∗
i j t . If k �= T r

i j + Ti0, then the
only change to the objective function is that Gi jk(Si jk) replaces Gi jk(S∗

i jk). Since

Gi jk is convex in its argument and Ŝi jk is the largest optimal solution to CNi j t ,
Gi jk(Ŝi jk) ≤ Gi jk(Si jk) = Gi jk(S∗

i jk −1) < Gi jk(S∗
i jk). If k = T r

i j +Ti0, then the
second term in the objective function will also change; but, since Qi j is a strictly
increasing function of its argument, Qi j (Si j (T r

i j +Ti0)) = Qi j (S∗
i j (T r

i j +Ti0)
− 1) <

Qi j (S∗
i j (T r

i j +Ti0)
). In either case, the modified solution will have an objective func-

tion value that is strictly less than the value achieved by the original solution.
Hence, the original solution cannot be optimal, and in any optimal solution we
must have S∗

i j t ≤ Ŝi j t for all t = T r
i j , . . . , (T r

i j + Ti0). ��
Theorem 15 provides upper and lower bounds on the cumulative stock levels

in any optimal solution to SAMi . This result is used to construct a linear program-
ming formulation of SAMi . Letting

δi j tk =
{

1 if Si j t = k,

0 otherwise,
(10.22)

we can reformulate SAMi as follows:

minimize
∑
j∈J

{ T r
i j +Ti0∑
t=T r

i j

Ŝi j t∑
k=S̃i j (T r

i j −1)

δi j tk Gi j t (k)

+
Ŝi j (T r

i j +Ti0)∑
k=S̃i j (T r

i j −1)

δi j (T r
i j +Ti0)k Qi j (k)

}
(10.23)

subject to

S̃i0t ≥
∑
j∈J

t∑
t ′=0

yr
i j t ′ , ∀t = 0, . . . , Ti0, (10.24)

Ŝi j t∑
k=S̃i j (T r

i j −1)

δi j tk · k = S̃i j (T r
i j −1) +

t−T r
i j∑

t ′=0

yr
i j t ′ , (10.25)

∀ j ∈ J, t = T r
i j , . . . , T r

i j + Ti0,

Ŝi j t∑
k=S̃i j (T r

i j −1)

δi j tk = 1 ∀ j ∈ J, t = T r
i j , . . . , T r

i j + Ti0, (10.26)
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δi j tk ∈ {0, 1} (10.27)

∀ j ∈ J, t = T r
i j , . . . , T r

i j + Ti0, k = S̃i j (T r
i j −1), . . . , Ŝi j t ,

yr
i j t ≥ 0 and integer ∀ j ∈ J, t = 0, . . . , Ti0. (10.28)

Since the cost functions Gi jt and Qi j are convex in their arguments, and since
the cumulative stock levels Si j t and the parameters S̃i0t and S̃i j t assume only
integer values, the integer restrictions on δi j tk and yr

i j t are unnecessary. That is,
solving the LP relaxation of the preceding ILP will result in an integer optimal
solution. Hence, the integer restrictions on δi j tk and yr

i j t in (10.27) and (10.28),
respectively, can be dropped, and the solution to the resulting linear program will
be an optimal solution to SAMi . Details can be found in [68].

The major drawback to solving SAMi using the above LP formulation is that
the number of variables can be very large. For practical purposes, it is possible to
reduce the number of variables by limiting the number of values each yr

i j t can as-
sume (e.g., multiples of 5, instead of 1). By making such restrictions, the LP will
yield a solution that is only approximately optimal, but for large problems, this
type of rescaling can be a very useful technique. Furthermore, since the second
derivatives of the G functions are not large in the neighborhood of their minimiz-
ers, the expected cost of the optimal solution to a scaled problem will, in most
realistic instances, be very close to the expected cost of the optimal solution to
the unscaled problem.

10.4.3 Greedy Algorithms for SAMi

Instead of solving SAMi as a linear program, let us consider two alternative
greedy algorithms that myopically exploit the convexity of the objective func-
tion. Solutions resulting from these algorithms may be used in two ways. They
may be used directly, or, since these algorithms provide basic feasible solutions
for the preceding LP, they can be used to seed the LP with a near-optimal solution.

Before describing these algorithms, we define the following terms to capture
incremental changes in the objective function. For all t = T r

i j , . . . , T r
i j + Ti0, let:

�Gi jt (Si j t ) = Gi jt (Si j t + 1) − Gi jt (Si j t ) (10.29)

be the incremental change in the expected holding and backorder costs realized
in period t when the allocation of item i to base j increases by one unit prior to
period t or in period t (i.e., when one more unit of item i arrives at base j prior
to period t or in period t). Next, define

�Ci jt =
T r

i j +Ti0∑
k=t

�Gi jk(Si jk) (10.30)

to be the incremental change in the expected holding and backorder costs over the
entire effective horizon when the allocation of item i to base j increases by one
unit in period t . Finally, let
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�Qi j = Qi j (Si j (T r
i j +Ti0) + 1) − Qi j (Si j (T r

i j +Ti0)) (10.31)

be the incremental change in the end-of-horizon expected holding costs when the
allocation of item i to base j increases by one unit over the planning horizon.

Given these definitions, if in period t an additional unit of item i is sent from
the depot warehouse to base j , the total incremental change in the objective func-
tion is as follows:

�Zi ( j, t) = �Ci j (t+T r
i j )

+ �Qi j when yr
i j t ← yr

i j t + 1. (10.32)

Each of the algorithms begins with yr
i j t equal to zero for all t ∈ [0, . . . , Ti0]

and iteratively assigns available stock at the depot warehouse to bases according
to a greedy rule. For all t ∈ [0, . . . , Ti0], let Ai0t measure the total number of
units of item i that have been allocated in periods [0, . . . , t] (i.e., sent to bases
from the depot warehouse).

In the first algorithm, GA, the greedy rule is simple: Over all periods t in
which stock is available for allocation, find the ( j, t) combination that produces
the largest objective function reduction �Zi ( j, t), and assign a unit of stock to be
sent to base j in time period t . We now formally state this heuristic:

(GA) A Greedy Algorithm for SAMi :

Step 0: Set yr
i j t ← 0 for all j ∈ J, t ∈ [0, . . . , Ti0]. (Note that this implicitly

sets Si j t ← S̃i j t for all t ∈ [T r
i j , . . . , T r

i j + Ti0].) Set Ai0t ← 0 for all
t ∈ [0, . . . , Ti0].
Step 1: If Ai0Ti0 = S̃i0Ti0 , then STOP – no more allocations can be made.
Otherwise, determine t∗ = min{t : ∀t ′ ≥ t, Ai0t ′ < S̃i0t ′ }, the earliest period
in which a unit of stock is still available for allocation.
Step 2: For all j ∈ J , k ∈ [t∗, . . . , Ti0], compute �Zi ( j, k), and determine
( j∗, k∗) = arg min( j,k)(�Zi ( j, k)).
Step 3: If �Zi ( j∗, k∗) ≥ 0, then STOP – no further objective function
reductions are possible. Otherwise, set yr

i j∗k∗ ← yr
i j∗k∗ + 1 (so that im-

plicitly Si j∗(T r
i j +t) ← Si j∗(T r

i j +t) + 1 for all t ∈ [k∗, . . . , Ti0]). For all
t ∈ [k∗, . . . , Ti0], set Ai0t ← Ai0t + 1. Go to Step 1.

The primary benefit of GA is that it only requires O( j) computations at each
iteration. This is because in Step 2, it can be shown that for each j ∈ J , the
largest reduction �Zi ( j, k) will be achieved in the first period k ≥ t∗ such
that Si j (k+T r

i j )
< Ŝi j (k+T r

i j )
. Hence, not all periods k ∈ [t∗, . . . , Ti0] need to be

checked. The total time required for the algorithm is O( jTi0 + j S̃i0Ti0).
GA will not necessarily find the optimal solution to SAMi . The reason is

that the availability of the depot warehouse pipeline stock is spread out over time
periods 0, . . . , Ti0, but the algorithm allocates each unit of stock as if it were the
very last unit available. That is, GA does not consider the fact that stock that will
be available next period may be able to provide almost as much benefit to a base j
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as stock that is available now, but for another base j ′ waiting until next period may
reduce the benefit significantly. Under certain conditions, however, GA will find
the optimal solution to SAMi . Namely, if for some integer N we have S̃i0t = N
for all t ∈ [0, . . . , Ti0], or if for some period k ∈ [0, . . . , Ti0] we have S̃i0t = 0
for all t ∈ [0, . . . , (k − 1)] and S̃i0t = N for all t ∈ [k, . . . , Ti0], then GA will
find the optimal solution to SAMi .

The second algorithm, LGA, is similar to the first, except that a look-ahead
step is performed before an allocation decision is made. That is, the algorithm
checks to see what the objective function reduction would be if the next two units
of available stock were the last two units available.

(LGA) A Look-Ahead Greedy Algorithm for SAMi

Step 0: Set yr
i j t ← 0 for all j ∈ J, t ∈ [0, . . . , Ti0]. (Note that this implicitly

sets Si j t ← S̃i j t for all t ∈ [T r
i j , . . . , T r

i j + Ti0].) Set Ai0t ← 0 for all
t ∈ [0, . . . , Ti0].

Step 1: If Ai0Ti0 = S̃i0Ti0 , then STOP – no more allocations can be made. Oth-
erwise, determine t∗1 = min{t : ∀t ′ ≥ t, Ai0t ′ < S̃i0t ′ }, the earli-
est period in which a unit of stock is still available for allocation, and
t∗2 = inf{t ≥ t∗1 : ∀t ′ ≥ t, S̃i0t ′ − Ai0t ′ ≥ 2}, the earliest period in which
a second unit of stock is available for allocation. (Note that it is possible
to have t∗2 = ∞ if t∗1 is the last period in which stock is available for
allocation and only one unit remains.)

Step 2: For all j ∈ J , k ∈ [t∗1 , . . . , Ti0], compute �Zi ( j, k). If min( j,k) �Zi ( j, k)

≥ 0, then STOP – no further objective function reductions are possible.
Otherwise, go to step 3.

Step 3: If t∗2 = ∞, then for each j ∈ J , determine k j
1 = arg mink∈[t∗1 ,...,Ti0]

(�Zi ( j, k)), the locally best period in which to send another unit to
base j , and set Change( j) = �Zi ( j, k j

1 ). Otherwise, for each j ∈
J , determine k j

1 = arg mink∈[t∗1 ,...,Ti0](�Zi ( j, k)) and ( j2, k2) = arg

min( j,k∈[t∗2 ,...,Ti0]) (�Zi (( j, k j
1 ), ( j2, k2))), where �Zi (( j, k j

1 ), ( j2, k2))

represents the change in the objective function �Zi ( j2, k2) after setting
yr

i j (k j
1 )

← yr
i j (k j

1 )
+ 1 (this is only a look-ahead check – we are not actu-

ally augmenting yr
i j (k j

1 )
in this step); then set Change( j) = �Zi ( j, k j

1 ) +
min(0, �Zi (( j, k j

1 ), ( j2, k2))).
Step 4: Determine j∗ = arg min j∈J (Change( j)). Set yr

i j∗k j∗
1

← yr
i j∗k j∗

1

+ 1 (so

that implicitly Si j∗(T r
i j +t) ← Si j∗(T r

i j +t) + 1 for all t ∈ [k j∗
1 , . . . , Ti0]). For

all k ∈ [k j∗
1 , . . . , Ti0], set Ai0k ← Ai0k + 1. Go to Step 1.

LGA requires O( j2) computation time for each iteration, and the total time re-
quired for the algorithm is O( jTi0 + j2 S̃i0Ti0). Clearly, LGA can be generalized
to be an n-step look-ahead algorithm for any n, but since the computation time for
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each iteration is O( j (n+1)), such an algorithm is likely to be very computationally
intensive for n ≥ 3. Note, however, that such an n-step look-ahead algorithm will
find the optimal solution to SAMi if S̃i0Ti0 ≤ (n + 1).

10.5 The Extended Stock Allocation Model

The extended stock allocation model, or ESAM, is a modification of the SAM in
which the decision-maker has the option of using an expedited shipment mode to
transport parts from the depot warehouse to the bases, in addition to the regular
shipment mode. In this section, the formulation of the SAM is extended to allow
for an expedited mode of shipment. The solution methods presented in the previ-
ous section to accommodate this extension are also modified. Unfortunately, The-
orem 15 does not apply to the subproblems of the ESAM. Hence, new bounds are
derived on the optimal values of the decision variables. Using these new bounds,
the subproblems can still be formulated and solved as linear programs. Modifica-
tions of the two greedy algorithms presented in the previous section are presented
for finding solutions to the ESAM.

10.5.1 Model Definition

Given the previously defined notation, we formulate the ESAM as follows:

(ESAM)

minimize
∑
i∈I

∑
j∈J

⎧⎨⎩
T r

i j +Ti0∑
t=T e

i j

Gi j t (Si j t ) + Qi j (Si j (T r
i j +Ti0)) +

Ti0∑
t=0

ei j ye
i j t

⎫⎬⎭(10.33)

subject to

S̃i0t ≥
∑
j∈J

t∑
t ′=0

(yr
i j t ′ + ye

i j t ′), ∀i ∈ I, t = 0, . . . , Ti0, (10.34)

Si j t = S̃i j t +
min(t−T e

i j ,Ti0)∑
t ′=0

ye
i j t ′ , ∀i ∈ I, j ∈ J, t = T e

i j , . . . , T r
i j − 1, (10.35)

Si j t = S̃i j (T r
i j −1) +

min(t−T e
i j ,Ti0)∑

t ′=0

ye
i j t ′ +

t−T r
i j∑

t ′=0

yr
i j t ′ , (10.36)

∀i ∈ I, j ∈ J, t = T r
i j , . . . , T r

i j + Ti0,

ye
i j t , yr

i j t ≥ 0 and integer ∀i ∈ I, j ∈ J, t = 0, . . . , Ti0. (10.37)

Note that the objective function (10.33) contains a new term to capture the cost of
an expedited shipment. Also, note that two sets of constraints, (10.35) and (10.36),
are used to relate the quantities received at the bases with the corresponding quan-
tities shipped from the depot warehouse. When there was only a regular shipment
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mode, t = T r
i j was the earliest time period in which the allocation decisions could

affect the cumulative stock level Si j t of item i at base j received through period
t . However, with the option of using an expedited shipment, it is possible to affect
Si j t for time periods t = T e

i j , . . . , T r
i j − 1 as well.

As with SAM, ESAM is separable by item, and the problem reduces to solv-
ing ESAMi , for each i ∈ I , given by:

(ESAMi )

minimize
∑
j∈J

⎧⎨⎩
T r

i j +Ti0∑
t=T e

i j

Gi j t (Si j t ) + Qi j (Si j (T r
i j +Ti0)) +

Ti0∑
t=0

ei j ye
i j t

⎫⎬⎭ (10.38)

subject to

S̃i0t ≥
∑
j∈J

t∑
t ′=0

(yr
i j t ′ + ye

i j t ′), ∀t = 0, . . . , Ti0, (10.39)

Si j t = S̃i j t +
min(t−T e

i j ,Ti0)∑
t ′=0

ye
i j t ′ , (10.40)

∀ j ∈ J, t = T e
i j , . . . , T r

i j − 1,

Si j t = S̃i j (T r
i j −1) +

t−T r
i j∑

t ′=0

yr
i j t ′ +

min(t−T e
i j ,Ti0)∑

t ′=0

ye
i j t ′ , (10.41)

∀ j ∈ J, t = T r
i j , . . . , T r

i j + Ti0,

ye
i j t , yr

i j t ≥ 0 and integer ∀ j ∈ J, t = 0, . . . , Ti0. (10.42)

10.5.2 LP Formulation of ESAMi

As mentioned earlier, Theorem 15 does not hold for ESAMi , and hence new
bounds must be established in order to construct a meaningful linear program.
The reason that Theorem 15 does not hold for ESAMi is that while the cumulative
stock levels Si j t for t ∈ [T e

i j , . . . , T r
i j − 1] can be affected by sending expedited

shipments in periods 0 through (T r
i j − 1) − T e

i j , we cannot completely control the
cumulative stock pattern in these time periods. That is, the cumulative stock levels
Si j t for t ∈ [T e

i j , . . . , T r
i j − 1] have lower bounds of S̃i j t because of what is in the

pipeline at time 0, and while the ability to augment the pipeline with extra stock
exists, stock that is already in the pipeline cannot be removed. This means that in
addition to Si j t ≥ S̃i j t for every t ∈ [T e

i j , . . . , T r
i j − 1], every feasible solution

also must have Si j (t+1) − Si j t ≥ S̃i j (t+1) − S̃i j t . Because of this constraint, it is
possible that S∗

i j t is not less than or equal to Ŝi j t .
In order to derive new bounds for the decision variables of ESAMi , once

again focus on the single-period expected cost function Gi jt and the constrained
newsvendor problem CNi j t given in (10.18). For each j ∈ J and each t ∈
[T e

i j , . . . , T r
i j + Ti0], let Ŝi j t denote the largest optimal solution to CNi j t , and
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define:

M jt = max
k∈[T e

i j ,...,t]
{Ŝi jk − S̃i jk}. (10.43)

We then have the following theorem:

Theorem 16. For all bases j ∈ J and all time periods t ∈ [T e
i j , . . . , (T r

i j +
Ti0)], let Ŝi j t denote the largest optimal solution to CNi j t , and let S∗

i j t denote
the corresponding term within an optimal solution to ESAMi , and let M jt =
maxk∈[T e

i j ,...,t]{Ŝi jk − S̃i jk}. Then:

S̃i j t ≤ S∗
i j t ≤ S̃i j t + M jt ∀ j ∈ J, t ∈ [T e

i j , . . . , (T r
i j + Ti0)]. (10.44)

Proof. The first inequality must hold for any feasible solution. The second in-
equality requires proof. Suppose it does not hold for some base j , and let k be the
smallest index (i.e., the earliest time period) for which the base violates this condi-
tion. That is, S∗

i jk > S̃i jk+M jk , and S∗
i j t ≤ S̃i j t +M jt for all t ∈ [T e

i j , . . . , (k−1)].
(If k = T e

i j , then note that S∗
i j (k−1) = S∗

i j (T e
i j −1)

= S̃i j (T e
i j −1) ≤ S̃i j (T e

i j −1).) Then

S∗
i jk − S∗

i j (k−1) > (S̃i jk + M jk) − S∗
i j (k−1)

≥ (S̃i jk + M jk) − (S̃i j (k−1) + M j (k−1))

≥ (S̃i jk + M jk) − (S̃i j (k−1) + M jk))

= S̃i jk − S̃i j (k−1).

Since the S̃i j t are nondecreasing, the optimal solution must allocate at least one
unit of item i that arrives at base j in time period k. That is, we must have
ye∗

i j (k−T e
i j )

> 0 or yr∗
i j (k−T r

i j )
> 0. Without loss of generality, assume the latter,

and consider the following minor changes to the optimal solution to ESAMi :

yr
i j (k−T r

i j )
← yr∗

i j (k−T r
i j )

− 1 and

yr
i j (k−T r

i j +1) ← yr∗
i j (k−T r

i j +1) + 1.

The resulting solution is feasible. The shipment of one unit from the depot ware-
house to base j is delayed by one period, so that one less unit arrives in period k
and one more unit arrives in period k + 1. Moreover, this modified solution will
have Si jk = S∗

i jk − 1, but for all t �= k, Si j t = S∗
i j t . If k �= T r

i j + Ti0, then
the only change to the objective function is that Gi jk(Si jk) replaces Gi jk(S∗

i jk).

But since Gi jk is convex in its argument and Ŝi jk is the largest optimal solu-
tion to CNi j t , we have that Gi jk(Ŝi jk) ≤ Gi jk(S̃i jk + M jk) ≤ Gi jk(Si jk) =
Gi jk(S∗

i jk − 1) < Gi jk(S∗
i jk). If k = T r

i j + Ti0, then the second term in the objec-
tive function will also change; but, since Qi j is a strictly increasing function of its
argument, Qi j (Si j (T r

i j +Ti0)) = Qi j (S∗
i j (T r

i j +Ti0)
− 1) < Qi j (S∗

i j (T r
i j +Ti0)

). In either
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case, the modified solution will have an objective function value that is strictly
less than the value achieved by the original solution. Hence, the original solution
cannot be optimal, and in any optimal solution we must have S∗

i j t ≤ S̃i j t + M jt

for all t = T e
i j , . . . , (T r

i j + Ti0). ��
Theorem 16 provides upper and lower bounds on the cumulative stock lev-

els in any optimal solution to ESAMi . As before, we can use these bounds to
construct a linear programming formulation of ESAMi . Letting

δi j tk =
{

1 if Si j t = k,

0 otherwise,
(10.45)

we can reformulate ESAMi as follows:

minimize
∑
j∈J

{ T r
i j +Ti0∑
t=T e

i j

S̃i j t +M jt∑
k=S̃i j t

δi j tk Gi j t (k)

+
S̃i j (T r

i j +Ti0)+M j (T r
i j +Ti0)∑

k=S̃i j (T r
i j −1)

δi j (T r
i j +Ti0)k Qi j (k) +

Ti0∑
t=0

ei j ye
i j t

}
(10.46)

subject to

S̃i0t ≥
∑
j∈J

t∑
t ′=0

(yr
i j t ′ + ye

i j t ′), ∀t = 0, . . . , Ti0, (10.47)

S̃i j t +M jt∑
k=S̃i j t

δi j tk · k = S̃i j t +
min(t−T e

i j ,Ti0)∑
t ′=0

ye
i j t ′ , (10.48)

∀ j ∈ J, t = T e
i j , . . . , (T r

i j − 1),

S̃i j t +M jt∑
k=S̃i j (T r

i j −1)

δi j tk · k = S̃i j (T r
i j −1) +

t−T r
i j∑

t ′=0

yr
i j t ′ +

min(t−T e
i j ,Ti0)∑

t ′=0

ye
i j t ′ , (10.49)

∀ j ∈ J, t = T r
i j , . . . , T r

i j + Ti0,

S̃i j t +M jt∑
k=S̃i j t

δi j tk = 1 ∀ j ∈ J, t = T e
i j , . . . , T r

i j + Ti0, (10.50)

δi j tk ∈ {0, 1} (10.51)

∀ j ∈ J, t = T e
i j , . . . , T r

i j + Ti0, k = S̃i j t , . . . , S̃i j t + M jt ,

ye
i j t , yr

i j t ≥ 0 and integer ∀ j ∈ J, t = 0, . . . , Ti0. (10.52)

As with the SAMi , solving the LP relaxation of the preceding ILP will result in
an integer optimal solution. Hence, the integer restrictions in (10.51) and (10.52)



246 10 Real-time Execution Systems

can be dropped, and the solution to the resulting linear program will be an optimal
solution to ESAMi .

10.5.3 Greedy Algorithms for ESAMi

Both of the greedy algorithms presented in Section 10.4.3 are easily modified to
accommodate the ESAMi . The incremental changes in costs �Gi jt (Si j t ), �Ci jt ,
and �Qi j are defined as before, but now, to capture the total change in the ob-
jective function, the mode of shipment used in the allocation must be taken into
account. That is, we now define:

�Zi ( j, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�Zr

i ( j, t) = �Ci j (t+T r
i j )

+ �Qi j when yr
i j t ← yr

i j t + 1,

�Ze
i ( j, t) = �Ci j (t+T e

i j )

+ �Qi j + ei j when ye
i j t ← ye

i j t + 1.

(10.53)

The modified version of GA, called EGA, is given below. Similar changes
are required to tailor the look-ahead algorithm LGA for the ESAMi , although
the details of ELGA are omitted. As with the original algorithms, the solutions
resulting from the modified greedy algorithms EGA and ELGA may be used
directly, or they can be used to seed the ESAMi LP with a near-optimal solution.

(EGA) A Greedy Algorithm for ESAMi :

Step 0: Set ym
i j t ← 0 for all j ∈ J, t ∈ [0, . . . , Ti0], m ∈ [r, e]. (Note that this

implicitly sets Si j t ← S̃i j t for all t ∈ [T e
i j , . . . , T r

i j + Ti0].) Set Ai0t ← 0
for all t ∈ [0, . . . , Ti0].

Step 1: If Ai0Ti0 = S̃i0Ti0 , then STOP – no more allocations can be made. Other-
wise, set t∗ = min{t : ∀t ′ ≥ t, Ai0t ′ < S̃i0t ′ }, the earliest period in which
a unit of stock is still available for allocation.

Step 2: For all j ∈ J , k ∈ [t∗, . . . , Ti0], compute �Zr
i ( j, k) and �Ze

i ( j, k), and
determine ( j∗, k∗, m∗) = arg min( j,k,m)(�Zm

i ( j, k)).
Step 3: If �Zm∗

i ( j∗, k∗) ≥ 0, then STOP – no further objective function re-
ductions are possible. Otherwise, set ym∗

i j∗k∗ ← ym∗
i j∗k∗ + 1 (so that im-

plicitly Si j∗(T m∗
i j +t) ← Si j∗(T m∗

i j +t) + 1 for all t ∈ [k∗, . . . , Ti0]). For all

k ∈ [k∗, .., Ti0], set Ai0k ← Ai0k + 1. Go to Step 1.

We now turn our attention to an operating environment in which repair deci-
sions as well as inventory allocation decisions must be made.

10.6 The Extended Stock Allocation Model with Repair

The premise for the extended stock allocation model with repair, or ESAMR,
is that a repair process, shared by all items, is the supply source for the depot
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warehouse. The repair allocation decisions made determine what items should be
entered into repair in period t = 0.

Each item type i is assumed to have a fixed repair time from the time the repair
commences. Units of item type i that are selected to enter repair in period 0 reach
the depot warehouse in time period Ti0, the last period of the planning horizon for
item i ; hence, this supply will affect the costs realized over the effective horizon
for item i .

When a decision is made to repair a part, there is a risk that the repaired
part may subsequently sit in the depot warehouse for some time if the projected
demand at the bases for the item is small. In such a case, it may have been better to
wait to repair the part until the projected demand at the bases made its need more
likely, since it is typically more costly to hold a serviceable part in storage than to
hold a damaged part in the repair queue. Thus, since the ESAMR includes repair
decisions, one of the additional economic considerations that is captured in this
model is the incremental cost per period associated with holding serviceable units
at the depot warehouse instead of at the repair facility. The following notation is
used to model this consideration:

hi0 the incremental cost per period associated with holding a unit of item i at
the depot warehouse instead of at the repair facility.

Qi0(·) the function approximating the expected incremental holding costs in-
curred beyond the end of the planning horizon for item i at the depot ware-
house. The function argument is S̃i0Ti0 , the cumulative supply of item i at
the depot warehouse at the end of the planning horizon. (See below.)

The end-of-horizon expected incremental holding cost function in ESAMR is
given by:

Qi0(S̃i0Ti0) = hi0

∞∑
t=Ti0+1

E
[(∑

j∈J

S̃i j (T r
i j −1) + S̃i0Ti0

)
−
∑
j∈J

Xi j t

]+
. (10.54)

As with Qi j , Qi0 is a convex function of its argument. By incorporating Qi0 into
the objective function of ESAMR, a mechanism is provided for determining the
most cost-effective use of repair capacity. That is, items will be prioritized for
repair. The ones likely to be needed in the near future will be repaired instead of
items that may not be needed for some time. Note that for each period beyond
the end of the planning horizon, the expression (10.54) charges an incremental
holding cost on the expected excess of the cumulative total supply (in the subsys-
tem rooted at the depot warehouse) over the cumulative total demand. As such,
it is only an approximation of the true expected incremental holding costs since
it implicitly assumes that the cumulative total supply is fungible in satisfying the
cumulative total demand.

Having defined these additional parameters, the extended stock allocation
model with repair, or (ESAMR), is:
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(ESAMR)

minimize
∑
i∈I

[∑
j∈J

{ T r
i j +Ti0∑
t=T e

i j

Gi j t (Si j t ) + Qi j (Si j (T r
i j +Ti0))

+
Ti0∑
t=0

ei j ye
i j t

}
+ Qi0(S̃i0Ti0)

]
(10.55)

subject to

S̃i0t ≥
∑
j∈J

t∑
t ′=0

(yr
i j t ′ + ye

i j t ′), ∀i ∈ I, t = 0, . . . , Ti0, (10.56)

Si j t = S̃i j t +
min(t−T e

i j ,Ti0)∑
t ′=0

ye
i j t ′ , (10.57)

∀i ∈ I, j ∈ J, t = T e
i j , . . . , T r

i j − 1,

Si j t = S̃i j (T r
i j −1) +

t−T r
i j∑

t ′=0

yr
i j t ′ +

min(t−T e
i j ,Ti0)∑

t ′=0

ye
i j t ′ , (10.58)

∀i ∈ I, j ∈ J, t = T r
i j , . . . , T r

i j + Ti0,

S̃i0(Ti0) = S̃i0(Ti0−1) + vi , ∀i ∈ I, (10.59)

Cmin ≤
∑
i∈I

vi ≤ Cmax, (10.60)

0 ≤ vi ≤ Ci and integer ∀i ∈ I, (10.61)

ye
i j t , yr

i j t ≥ 0 and integer ∀i ∈ I, j ∈ J, t = 0, . . . , Ti0. (10.62)

Since Qi0 is a convex function of its argument, the objective function remains
convex in each Si j t . Constraints (10.59), (10.60), and (10.61) are new. Constraints
(10.59) replace the previously deterministic values S̃i0(Ti0) with S̃i0(Ti0−1) plus
whatever gets entered into repair in period 0. Constraint (10.60) ensures that the
minimum repair requirements are met without exceeding repair capacity, and con-
straints (10.61) ensure that only units available for repair may be repaired. Unlike
the SAM and ESAM, ESAMR is not separable by item due to the capacity con-
straint (10.60). However, with a little more work ESAMR can be represented in
a form that is easily solvable.

Given an instance of ESAMR, let Z∗
i (s) denote the optimal objective function

value of the subproblem ESAMi , subject to the condition that S̃i0Ti0 = s. Suppose
Z∗

i (s) is computed for each i ∈ I and for each s ∈ {S̃i0(Ti0−1), . . . , S̃i0(Ti0−1) +
Ci }. Letting

δik =
{

1 if vi = k,

0 otherwise,
(10.63)
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we can write ESAMR as follows:

minimize
∑
i∈I

[ Ci∑
k=0

Z∗
i (S̃i0(Ti0−1) + k) + Qi0(S̃i0(Ti0−1) + k)

]
δik (10.64)

subject to
Ci∑

k=0

δik = 1, ∀i ∈ I, (10.65)

Cmin ≤
∑
i∈I

Ci∑
k=0

kδik ≤ Cmax, (10.66)

δik ∈ {0, 1}, ∀i ∈ I, k = 0, . . . , Ci . (10.67)

It is not hard to show that for each item i , the optimal ESAMi value
Z∗

i (S̃i0(Ti0−1) + k) is nonincreasing and (discretely) convex in k. (This convex-
ity depends critically on the fact that the k additional units of available inventory
all arrive at the depot warehouse in the same planning horizon period Ti0. If the
inventory were to arrive in different periods, then convexity could not be guar-
anteed.) Moreover, Qi0(S̃i0(Ti0−1) + k) is increasing and convex in k. Hence, the
objective function (10.64) captures the tradeoff, among item types, of using re-
pair capacity to make more inventory available for use at the depot warehouse
and potentially incurring incremental holding costs on this additional inventory.
Because of the convexity of (10.64), the following greedy marginal analysis al-
gorithm, EGAR, can be used to solve ESAMR to optimality, provided that the
optimal Z∗

i values are used.

(EGAR) A Greedy Algorithm for ESAMR:

Step 0: For all i ∈ I , k = 0, . . . , Ci , determine

Wi (k) = Z∗
i (S̃i0(Ti0−1) + k) + Qi0(S̃i0(Ti0−1) + k).

Set vi ← 0 for all i ∈ I . Set A ← 0.
Step 1: If A = Cmax, then STOP – no more repair capacity is available. Other-

wise, for all i ∈ I with vi < Ci , compute

�Wi (vi ) = Wi (vi + 1) − Wi (vi )

and determine i∗ = arg mini∈I (�Wi (vi )).
Step 2: If �Wi∗(vi∗) ≥ 0 and A ≥ Cmin, then STOP – no further objective

function reductions are possible. Otherwise, set vi∗ ← vi∗ + 1, and A ←
A + 1. Go to Step 1.

Even if the greedy algorithm EGA is used to solve the ESAMi subproblems,
so that the resulting values Z∗

i (S̃i0(Ti0−1) + k) for k = 0, . . . , Ci are only approx-
imate, it can be shown that these values will remain nonincreasing and convex
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in k. Hence, EGAR can be used to make real-time repair and inventory alloca-
tion decisions using an exact or an approximate method for solving the ESAMi

subproblems. Note also that since this approach is largely separable by item, the
computational effort required to perform a sensitivity analysis is minimal.

In the next section, we compare the solution quality and computational ef-
ficiency of the approximate method to the exact LP solution under a variety of
supply system configurations and operating system states.

10.7 Numerical Study

Two primary reasons exist for conducting numerical experiments. First, the qual-
ity of the solution resulting from the heuristic allocation techniques is compared
with the optimal solution to the ESAMR under a variety of different operating
conditions.

Second, and more important, the conjecture that integrated real-time decision
models are of significant operational value in dynamic environments where in-
ventory imbalances exist should be tested, as is often the case in actual service
parts supply chains. As noted earlier, inventory levels found in service parts sup-
ply chains are often too high or too low for the current operating situation. This
can occur because an item’s inventory position often must be decided far in ad-
vance of its availability. When demands eventually arise for the item, the available
quantity may not be appropriate for the current demand processes. See [199] for a
detailed description and example of this phenomenon for the C-5 Galaxy aircraft.

To address the first objective, the EGAR algorithm outlined in Section 10.6
is implemented, where the item subproblems are solved approximately using the
EGA heuristic from Section 10.5. The solution from this approach is compared
with the optimal solution to the ESAMR, which is obtained by solving a linear
programming version of the ESAMR formulation given in (10.55)-(10.62). A
simulator randomly generates problem instances for this comparison. Details are
given in Section 10.7.2.

To address the second objective, the continuous operation of a service parts
supply chain is simulated using two different methods for making allocation de-
cisions. The long-run performance of these methods is then compared. The first
method uses the EGAR algorithm (with the EGA heuristic embedded) to jointly
make repair and inventory allocation decisions in a rolling-horizon manner. The
second method employs a decentralized approach in which the EGAR algorithm
is used for making inventory allocation decisions, but a first-come, first-served
rule is used to manage the repair queue. Details of the experiment are given in
Section 10.7.3.

10.7.1 Testing Environment

To facilitate the numerical study, a large-scale periodic-review service parts sup-
ply chain simulator was used to create operating system states for different supply
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system configurations. A supply system configuration is defined by the following
factors:

the number of items and bases;

the lead times for repair, regular transport, and expedited transport for each
item and base;

the mean and variance of demand each period for each item and base;

the incremental holding, backorder, and transportation costs for each item and
base;

the maximum repair capacity each period; and

the total system inventory level of each item.

In the numerical experiments for testing the value of the integrated approach,
the following factors are held constant. There are 12 items demanded at 5 bases.
Repair, expedited transport, and regular transport lead times are 3, 1, and 2 peri-
ods, respectively. The return transportation lead time for failed items to the depot
repair facility is 5 periods. The incremental holding costs at the depot warehouse
range between $0.14 and $0.27 per unit per period across the items. The incre-
mental holding costs at the bases are twice that of the depot warehouse and range
between $0.28 and $0.54 per unit per period across the items. The backorder cost
is 9 times the holding cost rate for each item at each base. The incremental unit
cost of expedited transport was $0.80. The factors that are varied include the re-
pair capacity utilization (80%, 90% and 95%) and the demand process variance-
to-mean ratios (1 and 10).

In the numerical experiments for testing the quality of the EGAR heuristic
approach, the same factor values just described are used, except that two values of
the regular transportation time are tested (2 and 5), and two backorder-to-holding-
cost ratios are tested (9 and 20).

Table 10.1. An example of the item demand rates and system inventory levels.

For both experiments, the demand processes for each item at each base are
taken to be stationary and independent over time and location. While the method-
ology can handle more complicated nonstationary demand processes, the experi-
ments are designed to demonstrate the value of making integrated decisions even



252 10 Real-time Execution Systems

with relatively stable demand processes. Two types of demand distributions were
used, Poisson (to simulate a variance-to-mean ratio of 1) and negative binomial
(to simulate a variance-to-mean ratio of 10).

The demand rates for the 12 items are set as follows. For the first 6 items,
a mixture of high, medium, and low demand rates represent a composite set of
items, as is typically found in practice. The demand rates for the second 6 items
are identical to those of the first 6 items. The demand rates for each item are
identical across the bases.

The system inventory levels for the first 6 items are set to values that are
slightly above those required to minimize their steady-state expected holding and
backorder costs. This case represents items that are in long supply. For the sec-
ond 6 items, the system inventory levels are set to approximately one-half of the
inventory levels of the first 6 items, representing items that are in short supply.
An example is given in Table 10.1. (The inventory levels shown in Table 10.1
correspond to an instance in which the demand processes are Poisson processes.)
Thus, the testing environment contains a mixture of high, medium, and low de-
mand rate items, some of which have ample inventory and others of which do not
have sufficient inventory in the supply chain.

10.7.2 Exact Approach vs EGAR Heuristic

For this comparison, we examine supply system configurations that exhibit condi-
tions under which the performance of the methods is likely to differ. Twenty-four
different configurations are tested in all. For each configuration, one thousand
operating system states were randomly generated, using the simulator, to create
problem instances. The EGAR algorithm and the exact approach are applied to
each instance. The simulator created instances instead of creating them manually
to avoid potentially biasing the experimental results with statistically unlikely sys-
tem states.

Table 10.2. Average deviations of the EGAR cost above the ESAMR optimal cost.

Table 10.2 contains the results for each of the twenty-four configurations ex-
amined. The numbers in the table represent the average percentage deviation of
the expected effective horizon cost incurred by employing the EGAR heuristic
from the expected effective horizon cost incurred by using the optimal ESAMR
solution.
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There are several questions of interest to discuss:

1. How frequently did the decisions resulting from the two approaches match?
Matches in every single allocation decision were observed for many of the prob-
lem instances (i.e., operating states) tested; however, complete matches were not
a usual or frequent occurrence. Due to the combinatorial nature of the problem,
small differences in repair decisions, shipment timing, and quantity were com-
mon, and hence makes it difficult to devise a meaningful measure of the “close-
ness” of two solutions directly. It is clear from Table 10.2, however, that these
small differences did not greatly affect the resulting expected costs.

2. How close are the expected costs over the effective horizon resulting from the
two approaches? As Table 10.2 shows, the average relative difference between the
expected costs of the EGAR heuristic and the exact approach are very small over
all supply system configurations tested. The largest overall cost differences occur
when the demand process variance-to-mean ratios were high, and repair capacity
utilization was high. This combination caused large and frequent shortages to oc-
cur for long periods of time, which, in turn, magnified the small deviations from
the optimal inventory allocation that were made by the myopic EGAR heuristic.
However, at the item level, the most significant factor in determining the quality
of the EGAR solution relative to the exact solution was the choice of the system
inventory level. The simple explanation for this is that the constrained newsvendor
cost functions are relatively flat in the area of their minima. When there is suffi-
cient inventory of an item to meet most demand requirements, small deviations
(in terms of quantity shipped and shipment timing) from the optimal operating
allocation will have relatively little impact on the overall system cost incurred for
this item. In such cases, the performance of most reasonable allocation policies is
likely to be good. Since the EGAR heuristic attempts to minimize expected costs,
albeit myopically, it performs well when the system, as a whole, has enough stock.
When the system inventory level for an item is far too low, small deviations from
the optimal solution will produce much larger relative cost differences than when
the system has sufficient inventory. It is in these cases that the logic and robust-
ness of the allocation rule becomes extremely important. Our experiments show
that the EGAR heuristic performs well even when there are significant inventory
imbalances in the system.

3. What is the magnitude of the computational advantage of using the EGAR
heuristic (with EGA embedded) over the exact method? On average, the ex-
act method’s solution time was approximately five times longer than that of the
EGAR heuristic. The EGAR heuristic is much faster than the exact method be-
cause the necessary expected cost computations are done on an as-needed basis.
The majority of the processing time for the exact method is devoted to computing
all of the necessary cost coefficients found in the ESAMR model.
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10.7.3 First-Come, First-Served vs Integrated Repair Allocations

As stated earlier, to test the value of an integrated approach over a decentralized
one, two different methods for making allocation decisions are implemented. The
first method uses the EGAR algorithm (with the EGA heuristic embedded) to
jointly make repair and inventory allocation decisions. The second method em-
ploys a decentralized approach in which the EGAR algorithm makes inventory
allocation decisions, but a first-come, first-served rule (FCFS) is used to manage
the repair queue. That is, the repair decisions were made with no knowledge of
downstream requirements and were based solely on the order in which items are
returned for repair. It is not necessary to examine a FCFS rule for both inventory
allocation and repair since such an approach will perform less well than FCFS for
repair decisions and EGAR for inventory allocation decisions.

For each supply system configuration, a simulation was run for one thousand
time periods, after a warmup phase. Five separate random seeds are employed,
along with their antithetic random number streams, for a total of ten simulations
runs for each configuration. The outcomes for different levels of repair capacity
utilization and demand uncertainty are summarized in Table 10.3. The data in
the table indicate the average per period cost observed across the ten runs and the
standard deviation of these average per period cost values. These results show that
by considering repair and inventory allocation decisions jointly, costs are reduced
by 13.3% on average, with the reductions ranging between 9.2% and 16.0%.

Table 10.3. Simulation results for FCFS vs ESAMR.

Note that these results are based on fairly benign stationary demand processes.
Real demand data are typically nonstationary and exhibit attributes for which the
integrated approach will likely outperform simple and/or decentralized allocation
rules by a wider margin. Furthermore, these experiments reveal that by allowing
lateral transshipments in the integrated model, costs are lowered by an additional
10.1%, on average. This demonstrates that there is potential for significant eco-
nomic value in using an integrated repair and stock allocation decision process.
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10.8 Problem Set, Chapter 10

10.1. Llenroc Industries provides service parts and repairs for a variety of types
of computers. Demands for these parts arise in two distinct ways. First, there are
requests for these parts from companies that provide on-site repair of computers.
These companies order parts on a daily basis and expect that these parts will be
shipped to them on the same day. Second, Llenroc also repairs and refurbishes
computers as well as repairs certain component parts. Hence Llenroc also con-
sumes parts to complete its repair and refurbishing activities.

There are four ways that Llenroc obtains serviceable parts. First, for many
item types, Llenroc can purchase parts directly from the Original Equipment Man-
ufacturer (OEM), such as IBM. Second, Llenroc can buy new machines from
these OEMs and remove parts from these machines. This is called “stripping” the
machines. Third, Llenroc can buy used machines on the open market. Once on
hand, critical parts are removed from these machines and tested. If they pass the
test, they are placed into serviceable inventory. Otherwise, they are either repaired
or scrapped. Not all components are repairable, for example, transistors. Even
items that are designed to be repairable are not always repairable. Certain failure
modes result in parts that can not be repaired. Thus only a fraction of the units
of repairable type items can be repaired. Fourth, certain defective parts removed
from computers, which have entered into Llenroc’s repair or refurbishment pro-
cesses, are repaired by Llenroc. As mentioned, not all item types are repairable.
Obviously, Llenroc is capable of repairing only a subset of the item types that are
found to be defective in the computers that it is repairing or refurbishing.

At a given moment there is a certain amount of stock on hand in Llenroc’s
parts warehouse. Furthermore, there are new machines on order from OEMs with
known due dates. There are also various amounts of individual item types on order
with appropriate OEMs that are expected to be in Llenroc’s warehouses at known
times in the future. There are also used machines that are on-hand that have yet
to be stripped down and to have their parts tested. There are also parts of various
item types that are awaiting repair in Llenroc’s repair facility.

There are costs associated with each of the four possible ways that Llenroc
can obtain serviceable parts. There are current market prices for new and used
machines. There are also current market prices for each new item type that could
be purchased. There are also costs for stripping down both new and used ma-
chines, and these costs differ by machine type and whether the machine is new
or used. Needed parts removed from used machines require testing, which has an
associated cost, and these parts may fail the test. Finally, there is a cost incurred
to repair individual parts.

Additionally, there are lead times associated with the purchase of new and
used machines, and for the acquisition of new parts. There is also a time required
to test parts removed from the used machines. There is also capacity required to
repair defective parts. Certain types of parts require the same type of capacity.
Thus items are grouped by the type of capacity required to complete their repair.
Each item type is repaired in a single type of capacitated work center.
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Every type of computer entered into the repair and refurbishment process has
a probability of needing each part type to complete its service. Demand for parts
occur for two reasons, as stated earlier. First, demands occur from external cus-
tomers for each item type according to a time dependent Poisson process, with
rate λi (t) for item i on day t in the future.

Second, a computer repair and refurbishment schedule dictates the require-
ments for parts. This schedule indicates what type and quantity of that type of
computer will be worked on during the next T days. This plan is fixed for T days
on a rolling T day horizon basis. That is, each day planners determine what com-
puter types should be repaired and refurbished on the T th day in the future. For
service parts planning purposes they look beyond this horizon so that they can
plan external purchases of new and used machines and new parts from OEMs.

OEMs can always provide parts on a one day basis either from their stocks or
through parts brokers. But, this cost is very high and is avoided if possible.

Your task is to develop a real-time parts acquisition model. That is, develop a
model that minimizes the total cost of acquiring and repairing parts over the plan-
ning horizon. Consider acquisition costs, repair costs, lead times, and capacities
in your model. Also indicate how you would compute your purchase and repair
quantities.

10.2. At the beginning of this chapter, a situation was discussed in which service
contracts are written for customers and for groups of machines at the customer’s
operating locations. These contracts are for service guarantees over a fixed period
of time. Obviously, meeting these contractual obligations is of importance since
future business with each customer is related to the service provided currently.

From the service provider’s perspective, resource allocation decisions are
made every day that affect service provided to these customers. A conjecture was
made that the following situation can occur. Suppose there is stock on hand for a
part type and a demand arises for that part type at a customer site. Given the level
of service already provided to that customer at that site, and the service provided
to other customers to that point in time, it may not always be best to satisfy that
demand immediately. An illustration of such conditions was given in the begin-
ning of this chapter.

Your assignment is to construct a model that could be used to determine
whether or not a part should be dispatched to meet a demand arising at a given
time. Among the factors you should consider in the model are the current level
of satisfaction of contracts that could require the use of this particular part, the
length of time until inventory replenishment will occur for that part at the stock-
ing location, and the likelihood of requiring that part by other customers over the
time until future replenishments will occur.

10.3. Consider the two echelon system depicted in the following figure, consisting
of a depot and n bases.

The depot orders units of a given part type from an external supplier. If the
depot desires, it can also return stock to the supplier. Activity with external cus-
tomers arises only at the bases. Demands for the item arise at a base and returns
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Fig. 10.2. System Structure

from customers also occur at bases. Hence net demand at a base in a period may
be negative.

Assume that both regular and expedited shipments are permitted between any
two bases or the depot in a period. Expedited shipments are assumed to be less
expensive between bases than from the depot to a base. Although returns from
customers may occur in a period at a base, only the depot may return stock to the
external supplier.

Suppose we have a planning horizon of but one period in length for a single
item. The following decisions must be made for that item.

(1) How much should the depot purchase from the external supplier or return to
the external supplier.

(2) How much should the depot allocate to each base and how much should be
shipped from a base back to the depot.

(3) How much stock of the item should be transshipped between bases (regular
and expedited modes of transport).

Assume that events arise and costs are incurred in the period as follows. At
the beginning of the period, we see how much stock is on hand at each base and
the depot. At that point, we decide:

(1) the amount to purchase or return to the supplier by the depot,
(2) the quantity to ship back to the depot from each base,
(3) the amount allocated by the depot from its stock to each base (assume what is

purchased from the supplier by the depot in the period is available for alloca-
tion), and

(4) the transshipment quantities between the bases.

Assume that the cost associated with each action is proportional to the quantity
purchased, returned, or shipped. That is, there are no fixed costs. Also assume that
all these transactions occur immediately.

Once the allocations of stock have been made, the net demand at each base is
observed. Remember, the net demand could be negative. When demand at a base
exceeds the stock on-hand at that base, an expedited or emergency resupply will
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occur, if possible, from another base. If no base has on-hand stock, an emergency
shipment will be requested from the depot. (The emergency resupply cost from the
depot is greater than that from another base.) A system shortage cost is charged
on a per unit basis when there is no stock on hand anywhere in the system and
backorders are incurred. Holding costs are charged at the end of the period. The
holding costs are the same at all bases, but are lower at the depot.

Your goal is to construct a model and to present a method for finding purchase,
return and transshipment quantities that minimize expected costs for the item in
the period. Carefully state all assumptions.

10.4. Extend the model developed in Section 10.4.1 to consider transshipments
among bases. Assume bases are located so that transshipments can be made only
among certain groups of bases. Assume these transshipment times are shorter
than T e

i j .
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