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This small book addresses different kinds of datafiles, as commonly encountered in 
clinical research, and their data-analysis on SPSS Software. Some 15 years ago 
serious statistical analyses were conducted by specialist statisticians using main-
frame computers. Nowadays, there is ready access to statistical computing using 
personal computers or laptops, and this practice has changed boundaries between 
basic statistical methods that can be conveniently carried out on a pocket calculator 
and more advanced statistical methods that can only be executed on a computer. 
Clinical researchers currently perform basic statistics without professional help 
from a statistician, including t-tests and chi-square tests. With help of user-friendly 
software the step from such basic tests to more complex tests has become smaller, 
and more easy to take.

It is our experience as masters’ and doctorate class teachers of the European 
College of Pharmaceutical Medicine (EC Socrates Project Lyon France) that stu-
dents are eager to master adequate command of statistical software for that purpose. 
However, doing so, albeit easy, still takes 20–50 steps from logging in to the final 
result, and all of these steps have to be learned in order for the procedures to be 
successful.

The current book has been made intentionally small, avoiding theoretical discus-
sions and highlighting technical details. This means that this book is unable to 
explain how certain steps were made and why certain conclusions were drawn. For 
that purpose additional study is required, and we recommend that the textbook 
“Statistics Applied to Clinical Trials”, Springer 2009, Dordrecht Netherlands, by 
the same authors, be used for that purpose, because the current text is much com-
plementary to the text of the textbook.

We have to emphasize that automated data-analysis carries a major risk of falla-
cies. Computers cannot think, and can only execute commands as given. As an 
example, regression analysis usually applies independent and dependent variables, 
often interpreted as causal factors and outcome factors. For example, gender or age 
may determine type of operation or type of surgeon. The type of surgeon does not 
determine the age and gender. Yet a software program does not have difficulty to 
use nonsense determinants, and the investigator in charge of the analysis has to 
decide what is caused by what, because a computer cannot do things like that 
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although they are essential to the analysis. The same is basically true with any 
 statistical tests assessing the effects of causal factors on health outcomes.

At the completion of each test as described in this book, a brief clinical interpre-
tation of the main results is given in order to compensate for the abundance of 
technical information. The actual calculations made by the software are not always 
required for understanding the test, but some understanding may be helpful and can 
also be found in the above textbook. We hope that the current book is small enough 
for those not fond on statistics but fond on statistically proven hard data in order to 
start on SPSS, a software program with an excellent state of the art for clinical data 
analysis. Moreover, it is very satisfying to prove from your own data that your own 
prior hypothesis was true, and it is even more satisfying if you are able to produce 
the very proof yourself.

Lyon Ton J. Cleophas
December 2009 Aeilko H. Zwinderman
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This small book contains all statistical tests that are relevant for starters on SPSS. 
It begins with one sample tests, paired and unpaired basic tests for continuous data, 
both the parametric and non-parametric ones. Subsequently, paired and unpaired 
analysis of variance (ANOVA) are addressed, as well as the non-parametric alternatives 
for these purposes, the Friedman’s and Kruskall–Wallis’ tests. Then, regression 
methods are addressed: linear, logistic, and Cox regression. Finally, attention is 
given to paired/unpaired binary data and multiple paired binary data, trend tests, 
and diagnostic tests.

Each method of testing is explained

 1. Using a data example from clinical practice
 2. Including every step in SPSS (we used SPSS 18.0 available in many western 

hospitals and clinical research facilities)
 3. Including the main tables of results with an accompanying text with interpreta-

tions of the results and hints convenient for data reporting, i.e., scientific clinical 
articles and poster presentations

In order to facilitate the use of this cookbook a CD containing the datafiles of the 
examples given is made available by the editor.

For investigators who wish to perform their own data analyses from the very 
start the book can be used as a step-by-step guideline with help of the data-examples 
from the book. They can enter their separate data or enter their entire datafile, e.g., 
from Excel, simply by opening an Excel file in SPSS, or by the commands “cut and 
paste” just like with Windows Word Program, that everybody knows.

The cookbook will be used by the masters’ and doctorate classes of the European 
College of Pharmaceutical Medicine Lyon France (EC Socrates Project since 1999) 
as a base for their practical education in statistics, and will be offered together with 
a theoretical module entitled “Statistics applied to clinical trials”. SPSS statistical 
software is a user-friendly statistical software with many help and tutor pages. 
However, we as authors believe that for the novices on SPSS an even more basic 
approach is welcome. The book is meant for this very purpose, and can be used 
without the help of a teacher, but the authors are willing to be of assistance for those 
in search for further help.

Chapter 1
Introduction



2 1 Introduction

The authors are well-aware that this cookbook contains a minimal amount of 
text and maximal technical details, but we believe that this property will not refrain 
students from mastering the SPSS software systematics, and that, instead, it will 
even be a help to that aim. Yet, we recommend that, like with the students in Lyon, 
it will used together with the textbook “Statistics Applied to Clinical Trials” by 
Cleophas and Zwinderman (4th edition, 2009, Springer Dordrecht).

Finally, two last and important points.

 1. A datafile has rows and columns (vertical rows): the columns are the patient 
characteristics, otherwise called the variables, 1 row is 1 patient.

 2. SPSS software uses commas instead of dots to indicate digits smaller than 
1.000.
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One Sample of Continuous Data

Primary scientific question: is the observed reduction of mean blood pressure after 
treatment larger than zero reduction.

Variable

  3.00
   4.00
−1.00
   3.00
  2.00
−2.00
  4.00
   3.00
−1.00
   2.00

Var = decrease of mean blood pressure after treatment (mmHg) (Var = variable).

Analysis: One-Sample t-Test

Command:
Analyze – compare means – one sample t-test – test variable: enter Var 00001 – ok.

One-sample test

Test value = 0

t df Sig. (2-tailed) Mean difference

95% confidence interval  
of the difference

Lower Upper

VAR00001 2.429 9 0.038 1.70000 0.1165 3.2835

Chapter 2
One-Sample Continuous and Binary Data 
(t-Test, z-Test) (10 and 55 Patients)
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The above table shows that the t-value equals 2.429, which means that with 
(10–1) = 9 degrees of freedom a significant effect is obtained with p = 0.038. 
The reduction of mean blood pressure has an average value of 1.7 mmHg, and this 
average reduction is significantly larger than a reduction of 0 mmHg.

One Sample of Binary Data

Primary scientific question: is the mean of patients who respond significantly larger 
than a number of 0.

1 Variable

0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 1 1
0 1 1

0

Var 1 = responder to antihy-
pertensive drug or not (1 or 0) 
(Var = variable).

Analysis: z-Test

Command:
Analyze – descriptive statistics – descriptives – variable(s): enter Var 00001 – options: 
mark: mean, sum, Std. error mean – continue – ok.

Descriptive statistics

N Sum Mean

Statistic Statistic Statistic Std. error

Afdeling 55 20.00 0.3636 0.06546
Valid N (listwise) 55



5Analysis: z-Test

The z-value as obtained equals 0.3636/0.06546 = 5.5545. This z-value is 
much larger than 1.96, and, therefore, the null hypothesis of no difference from a 
proportion of 0 can be rejected with p < 0.001. This proportion of 20/55 is signifi-
cantly different from 0.
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Primary scientific question: is the sleeping pill more efficaceous than the placebo.

Variable

1 2 3 4 5 6

6.1 5.2 54 0 0 0
7 7.9 55 0 0 0
8.2 3.9 78 1 0 0
7.6 4.7 53 1 1 1
6.5 5.3 49 1 1 1
8.4 5.4 85 1 1 1
6.9 4.2 77 0 1 1
6.7 6.1 66 0 1 1
7.4 3.8 79 0 0 1
5.8 6.3 67 1 0 1

Var 1 = hours of sleep during the use of a sleeping pill (Var = variable).
Var 2 = hours of sleep during placebo.
Var 3 = age.
Var 4 = gender.
Var 5 = co-morbidity.
Var 6 = co-medication.

Chapter 3
Paired Continuous Data (Paired-t, Wilcoxon) 
(10 Patients)



8 3 Paired Continuous Data (Paired-t, Wilcoxon) (10 Patients)

We will start with a graph of the data.

effect treatment 2effect treatment 1

8,00

6,00

4,00

2,00

0,00

M
ea

n

Error bars: 95,00% CI

Fig. Command: graphs – legacy dialogs – bars – mark summary separate variables – define – bars 
represent – options – SE 2 – ok

The mean number of sleeping hours after sleeping pill seem to be larger than that 
after placebo. The whiskers represent the 95% confidence intervals of the mean 
hours of sleep. They do not overlap, indicating that the difference between the two 
means is significant. The paired t-test can analyze the level of significance.

Analysis: Paired t-Test

Command:
Analyze – compare means – paired samples t-test – current selections – var 1: 0, 
var 2: 1 – paired var – ok.

Paired samples test

Paired differences

t df
Sig. 
(2-tailed)Mean

Std. 
deviation

Std. error 
mean

95% confidence 
interval of the 
difference

Lower Upper

Pair  effect  
treatment 1-

1.78000 1.76811 0.55913 0.51517 3.04483 3.184 9 0.011

1    Effect  
treatment 2
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The sleeping pill performs significantly better than does placebo with a p-value of 
0.011, which is much smaller than 0.05. The difference is, thus, highly significant.

Alternative Analysis: Wilcoxon

If the data do not have a Gaussian distribution, this method will be required, but 
with Gaussian distributions it may be applied even so.

Command:
Analyze – nonparametric – 2 related samples – further as above (Wilcoxon has 
already been marked).

Test statisticsa

Effect treatment 2 – effect treatment 1

Z −2.346b

Asymp. Sig. (2-tailed)  0.019
aWilcoxon Signed Ranks Test
bBased on positive ranks

As demonstrated in the above table, also according to the non-parametric Wilcoxon’s 
test the sleeping pill works significantly better than the placebo. The p-value of differ-
ence here equals p = 0.019. This p-value is larger than the p-value of the paired t-test, 
but still a lot smaller than 0.05, and, so, the effect is still highly significant.
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Primary scientific question: is the sleeping pill more efficaceous than the placebo.

Variable

1 2 3 4 5

0 6 45 0 1
0 7.1 45 0 1
0 8.1 46 0 0
0 7.5 37 0 0
0 6.4 48 0 1
0 7.9 76 1 1
0 6.8 56 1 1
0 6.6 54 1 0
0 7.3 63 1 0
0 5.6 75 0 0
1 5.1 64 1 0
1 8 35 0 1
1 3.8 46 1 0
1 4.4 44 0 1
1 5.2 64 1 0
1 5.4 75 0 1
1 4.3 65 1 1
1 6 84 1 0
1 3.7 35 1 0
1 6.2 46 0 1

Var 1 = group 0 has placebo, group 1 has sleeping pill.
Var 2 = hours of sleep.
Var 3 = age.
Var 4 = gender.
Var 5 = co-morbidity.

Analysis: Unpaired t-Test

Command:
Analyze – compare means – independent samples t test – dialog box – grouping 
variable (grouping var 1, test var 2) – defining groups – continue – ok.

Chapter 4
Unpaired Continuous Data (Unpaired t-Tests, 
Mann–Whitney) (20 Patients)
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The unpaired t-test shows that a significant difference exists between the sleeping 
pill and the placebo with a p-value of 0.002 and 0.003. Generally, it is better to use 
the largest of the p-values given, because the smallest p-value makes assumptions 
that are not always warranted, like, for example, in the above table the presence of 
equal variances of the means of variables 1 and 2.

Alternative Analysis: Mann–Whitney Test

Just like with the Wilcoxon’s test instead of the t-test for paired data, this test is a 
non-parametric alternative for the unpaired t-test. If the data have a Gaussian 
distribution, then it is appropriate to use this test even so. More explanations about 
Gaussian or parametric distributions are given in the textbook “Statistics Applied 
to Clinical Trials”, 4th edition, 2009, Springer Dordrecht by the same authors.

Command:
Analyze – nonparametric – two independent samples – further idem unpaired 
t-test – mark Mann–Whitney (has already been marked) – ok.

Test statisticsa

Effect treament

Mann–Whitney U 12.500
Wilcoxon W 67.500
Z −2.836
Asymp. sig. (2-tailed) 0.005
 Exact sig. (2 * (1-tailed sig.)) 0.300b

aGrouping variable: group
bNot corrected for ties

The non-parametric Mann–Whitney test produces approximately the same result 
as the unpaired t-test. The p-value equals 0.005 corrected for multiple identical 
values and even 0.003 uncorrected. Which of the two is given in the final data 
report, does not make too much of a difference.
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Primary scientific question: is the sleeping pill more efficaceous than the placebo.

Variable

1 2 3 4 5

0.00 6.00 65.00 0.00 1.00
0.00 7.10 75.00 0.00 1.00
0.00 8.10 86.00 0.00 0.00
0.00 7.50 74.00 0.00 0.00
0.00 6.40 64.00 0.00 1.00
0.00 7.90 75.00 1.00 1.00
0.00 6.80 65.00 1.00 1.00
0.00 6.60 64.00 1.00 0.00
0.00 7.30 75.00 1.00 0.00
0.00 5.60 56.00 0.00 0.00
1.00 5.10 55.00 1.00 0.00
1.00 8.00 85.00 0.00 1.00
1.00 3.80 36.00 1.00 0.00
1.00 4.40 47.00 0.00 1.00
1.00 5.20 58.00 1.00 0.00
1.00 5.40 56.00 0.00 1.00

1.00 4.30 46.00 1.00 1.00
1.00 6.00 64.00 1.00 0.00
1.00 3.70 33.00 1.00 0.00
1.00 6.20 65.00 0.00 1.00

Var 1 = group 0 has placebo, group 1 has sleeping pill.
Var 2 = hours of sleep.
Var 3 = age.
Var 4 = gender.
Var 5 = co-morbidity.

Similarly to an unpaired t-test, linear regression can be used to test whether there 
is a significant difference between two treatment modalities. To see how it works pic-
ture a linear regression of cholesterol levels and diameters of coronary arteries. It may 
show that the higher the cholesterol, the narrower the coronary arteries. Cholesterol 
levels are drawn on the x-axis, coronary diameters on the y-axis, and the best fit 

Chapter 5
Linear Regression (20 Patients)
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regression line can be about the data can be calculated. Instead of a  continuous 
variable on the x-axis, a binary variable can be adequately used, e.g., two treatment 
modalities, a bad and a good treatment. With hours of sleep on the y-axis, a nice 
linear regression analysis can be performed: the better the sleeping treatment, the 
larger the numbers of sleeping hours. The treatment modality is called the x-vari-
able, or independent variable, or exposure variable, or predictor variable, the hours 
of sleep is called the y-variable, or dependent variable or outcome variable.

Simple Linear Regression

Command:
Analyze – regression – linear - dependent = treatment – independent = group – ok – 
three tables.

Model summary

Model R R square
Adjusted 
R square

Std. error of 
the estimate

1 0.643a 0.413 0.380 1.08089
aPredictors: (Constant), group

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 14.792  1 14.792 12.661 0.002b

Residual 21.030 18  1.168
Total 35.822 19

aDependent variable: effect treatment
bPredictors: (Constant), group

Coefficientsa

Model

Unstandardized  
coefficients

Standardized 
coefficients

t Sig.B Std. error Beta

1 (Constant)   6.930 0.342 20.274 0.000
Group −1.720 0.483 −0.643 −3.558 0.002

aDependent variable: effect treatment

The upper table shows the correlation coefficient (R = 0.643 = 64%). R-square = 
R2 = 0.413 = 41%, meaning that, if you know the treatment modality, you will be 
able to predict the treatment effect (hours of sleep) with 41% certainty. You will 
then be uncertain with 59% uncertainty.

The magnitude of the R-value is important for making predictions. However, 
the size of the study sample is also important: with a sample of say three  subjects 
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little prediction is possible). This is, particularly, assessed in the  middle table. 
It tests with analysis of  variance (ANOVA) whether there is a significant  correlation 
between the x and y-variables.

It does so by assessing whether the calculated R-square value is significantly 
 different from an R-square value of 0. The answer is yes. The p-value equals 0.002, 
and, so, the treatment modality is a significant predictor of the treatment modality.

The bottom table shows the calculated B-value (the regression coefficient). The 
B-value is obtained by counting/multiplying the individual data values, and it 
behaves in the regression model as a kind of mean result. Like many mean values 
from random data samples, this also means, that the B-value can be assumed to 
 follow a Gaussian distribution, and that it can, therefore, be assessed with a t-test. 
The calculated t-value from these data is smaller than −1.96, namely −3.558, and, 
therefore, the p-value is <0.05. The interpretation of this finding is, approximately, the 
same as the interpretation of the R-square value: a significant B-value means that 
B is significantly smaller (or larger) than 0, and, thus, that the x-variable is a 
significant predictor of the y-variable. If you square the t-value, and compare it with 
the F-value of the ANOVA table, then you will observe that the values are identical. 
The two tests are, indeed, largely similar. One of the two tests is somewhat 
redundant.

1,00,50,0−0,5−1,0
Regression Standardized Predicted Value

10,00

8,00

6,00

4,00

2,00

ef
fe

ct
 t

re
at

m
en

t

Scatterplot
Dependent Variable: effect treatment

R Sq Linear = 0,413

Fig. The numbers of hours of sleep during the sleeping pill are larger than during placebo. On the 
x-axis we have treatment modality, on the y-axis hours of sleep

The above figure shows that the sleeping scores after the placebo are generally 
smaller than after the sleeping pill. The significant correlation between the treatment 
modality and the numbers of sleeping hours can be interpreted as a significant 
difference in treatment efficacy of the two treatment modalities.

Not only treatment modality, but also patient characteristics like age, gender, and 
co-morbidity may be significant predictors of hours of sleep. The interesting thing 
about regression analysis is that, in addition to treatment modality, such characteris-
tics can be entered in the model as predictor variables.
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Multiple Linear Regression

Command:
Analyze – regression – linear – dependent = treatment – independent = group and 
age – ok – three tables.

Model summary

Model R R square
Adjusted 
R square

Std. error of the 
estimate

1 0.983a 0.966 0.962 0.26684
aPredictors: (Constant), age, group

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 34.612  2 17.306 243.045 0.000b

Residual  1.210 17  0.071
Total 35.822 19

aDependent variable: effect treatment
bPredictors: (Constant), age, group

Coefficientsa

Model

Unstandardized  
coefficients

Standardized 
coefficients

B Std. error Beta t Sig.

1 (Constant)   0.989 0.366  2.702 0.015
Group −0.411 0.143 −0.154 −2.878 0.010
Age   0.085 0.005   0.890 16.684 0.000

aDependent variable: effect treatment

In the above multiple regression two predictor variable have been entered: treatment 
modality and age. The tables resemble strongly the simple linear regression tables. 
The most important difference is the fact that now the effect of two x-variables is 
tested simultaneously. The R and the R-square values have gotten much larger, 
because two predictors, generally, given more information about the y-variable than 
a single one. R-square = R2 = 0.966 = 97%, meaning that, if you know the treatment 
modality and age of a subject from this sample, then you can predict the treatment 
effect (the numbers of sleeping hours) with 97% certainty, and that you are still 
uncertain at the amount of 3%.

The middle table takes into account the sample size, and tests whether this 
R-square value is significantly different from an R-square value of 0.0. The p-value 
equals 0.001, which means it is true. We can conclude that both variables together 
significantly predict the treatment effect.
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The bottom table now shows, instead of a single one, two calculated B-values 
(the regression coefficients of the two predictors). They behave like means, and can, 
therefore, be tested for their significance with two t-tests. Both of them are statisti-
cally very significant with p-values of 0.010 and 0.0001. This means that both 
B-values are significantly larger than 0, and that the corresponding predictors are 
independent determinants of the y-variable. The older you are, the better you will 
sleep, and the better the treatment, the better you will sleep.

We can now construct a regression equation for the purpose of making predictions 
for individual future patients.

= + +1 1 2 2y  a b x b x

Treatment effect = 0.99 − 0.41 * group + 0.085 * 

Age with the sign * indicating the sign of multiplication. Thus, a patient of 75 years 
old with the sleeping pill will sleep for approximately 6.995 h. This is what you can 
predict with 97% certainty.
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Variable

1 2 3 4 5

6.10 6.80 5.20 55.00 0.00
7.00 7.00 7.90 65.00 0.00
8.20 9.00 3.90 74.00 0.00
7.60 7.80 4.70 56.00 1.00
6.50 6.60 5.30 44.00 1.00
8.40 8.00 5.40 49.00 1.00
6.90 7.30 4.20 53.00 0.00
6.70 7.00 6.10 76.00 0.00
7.40 7.50 3.80 67.00 1.00
5.80 5.80 6.30 66.00 1.00

Var 1 = hours of sleep after pill 1.
Var 2 = hours of sleep after pill 2.
Var 3 = hours of sleep after pill 3.
Var 4 = age.
Var 5 = gender.

T.J. Cleophas and A.H. Zwinderman, SPSS for Starters, 
DOI 10.1007/978-90-481-9519-0_6, © Springer Science+Business Media B.V. 2010

Primary scientific question: do the three different pills produce significantly 
different magnitudes of the numbers sleeping hours.

Chapter 6
Repeated Measures ANOVA, Friedman  
(10 Patients)

Repeated Measurements ANOVA

Command:
Analyze – general linear model – repeated measurements – define factors – within-
subjects factor names: treat – number levels: 3 – add – define – enter treat 1, 2, 
and 3 in box: “Within-subjects Variables” – ok.
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Mauchly’s test of sphericitya

Measure: MEASURE 1

Within 
subjects 
effect Mauchly’s W

Aprox.  
chi-square df Sig.

Epsilonb

Greeenhouse-
Geisser

Huynh–
Feldt

Lower-
bound

Treat 0.096 18.759 2 0.000 0.525 0.535 0.500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 
dependent variables is proportional to an identity matrix.
aDesign: Intercept. Within Subjects Design: treat
bMay be used to adjust the degrees of freedom for the averaged tests of significance. Corrected 
tests are displayed in the Tests of within-subjects effects table

Tests of within-subjects effects

Measure: MEASURE 1

Source
Type III sum  
of squares df

Mean 
square F Sig.

Treat Sphericity 
assumed

24.056 2 12.028 10.639 0.001

Greenhouse-Geisser 24.056 1.050 22.903 10.639 0.009
Huynh–Feldt 24.056 1.070 22.489 10.639 0.008
Lower-bound 24.056 1.000 24.056 10.639 0.010

Error(treat) Sphericity assumed 20.351 18  1.131
Greenhouse-Geisser 20.351 9.453  2.153
Huynh–Feldt 20.351 9.627  2.114
Lower-bound 20.351 9.000  2.261

The repeated measures ANOVA tests whether a significant difference exists 
between three treatments. An important criterion for validity of the test is the 
presence of sphericity in the data, meaning that all data come from Gaussian 
distributions. It appears from the above upper table that this is not true, because 
based on this table we are unable to reject the null-hypothesis of non-sphericity. 
This means that an ANOVA test corrected for non-sphericity has to be performed. 
There are three possibilities: the Greenhouse, Huynh, and Lower-bound methods. 
All of them produce a much larger p-value than the uncorrected method, but the 
result is still statistically highly significant with p-values of 0.009, 0.008, and 
0.010. A significant difference between the treatments has, thus, been demon-
strated. However, we do not yet know whether the significant difference is 
located between the treatments 1 and 2, between the treatments 1 and 3, or 
between the treatments 2 and 3. In order to find out three separate paired t-tests 
have to be performed. Note, that with multiple t-tests it is better to reduce the 
cut-off level for statistical significance to approximately 0.01 (more information 
about the adjustments for multiple testing including the Bonferroni procedure is 
given in the textbook “Statistics Applied to Clinical Trials”, 4th edition, 2009, 
Springer Dordrecht by the same author).
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Alternative: Friedman Test (Better with Non-Gaussian 
Distributions)

Command:
Analyze – nonparametric – k-related samples – test variables: treat 1, treat 2, 
treat 3 – mark: Friedman – ok.

Test statisticsa

N 10
Chi-square  7.579
df  2
Asymp. sig.  0.023
aFriedman test

The result is significant but the p-value is markedly larger than the p-value of the 
ANOVA, i.e., 0.023. Just like with the above ANOVA we will have to perform 
additional tests to determine where the difference of the three treatments is 
located.

For that purpose three Wilcoxon’s tests could be performed (and adjustment for 
multiple testing can be done similarly to the above procedure: using either a p-value 
of 0.01 or a Bonferroni adjustment, see textbook “Statistics Applied to Clinical 
Trials”, 4th edition, 2009, Springer Dordrecht by the same author).
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Primary scientific question: is there a significant difference in efficacy of treatment 
0 and treatment 1 after adjustment for five repeated measurements.

Variable

1 2 3 4 1 2 3 4

Patient Week Outcome Treatment Patient Week Outcome Treatment

1.00 1.00 1.66 0.00 6.00 4.00 1.87 0.00
1.00 2.00 1.62 0.00 6.00 5.00 1.88 0.00
1.00 3.00 1.57 0.00 7.00 1.00 2.04 0.00
1.00 4.00 1.52 0.00 7.00 2.00 2.06 0.00
1.00 5.00 1.50 0.00 7.00 3.00 1.95 0.00
2.00 1.00 1.69 0.00 7.00 4.00 1.90 0.00
2.00 2.00 1.71 0.00 7.00 5.00 1.91 0.00
2.00 3.00 1.60 0.00 8.00 1.00 2.07 0.00
2.00 4.00 1.55 0.00 8.00 2.00 2.09 0.00
2.00 5.00 1.56 0.00 8.00 3.00 1.98 0.00
3.00 1.00 1.92 0.00 8.00 4.00 1.93 0.00
3.00 2.00 1.94 0.00 8.00 5.00 1.94 0.00
3.00 3.00 1.83 0.00 9.00 1.00 2.30 0.00
3.00 4.00 1.78 0.00 9.00 2.00 2.32 0.00
3.00 5.00 1.79 0.00 9.00 3.00 2.21 0.00
4.00 1.00 1.95 0.00 9.00 4.00 2.16 0.00
4.00 2.00 1.97 0.00 9.00 5.00 2.17 0.00
4.00 3.00 1.86 0.00 10.00 1.00 2.36 0.00
4.00 4.00 1.81 0.00 10.00 2.00 2.35 0.00
4.00 5.00 1.82 0.00 10.00 3.00 2.26 0.00
5.00 1.00 1.98 0.00 10.00 4.00 2.23 0.00
5.00 2.00 2.00 0.00 10.00 5.00 2.20 0.00
5.00 3.00 1.89 0.00 11.00 1.00 1.57 1.00
5.00 4.00 1.84 0.00 11.00 2.00 1.82 1.00
5.00 5.00 1.85 0.00 11.00 3.00 1.83 1.00
6.00 1.00 2.01 0.00 11.00 4.00 1.83 1.00
6.00 2.00 2.03 0.00 11.00 5.00 1.82 1.00
6.00 3.00 1.92 0.00 12.00 1.00 1.60 1.00

Chapter 7
Mixed Models (20 Patients)

T.J. Cleophas and A.H. Zwinderman, SPSS for Starters, 
DOI 10.1007/978-90-481-9519-0_7, © Springer Science+Business Media B.V. 2010

(continued)
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Variable (continued) Variable

1 2 3 4 1 2 3 4

Patient Week Outcome Treatment Patient Week Outcome Treatment

12.00 2.00 1.85 1.00 16.00 4.00 2.21 1.00
12.00 3.00 1.89 1.00 16.00 5.00 2.17 1.00
12.00 4.00 1.89 1.00 17.00 1.00 1.95 1.00
12.00 5.00 1.85 1.00 17.00 2.00 2.20 1.00
13.00 1.00 1.83 1.00 17.00 3.00 2.25 1.00
13.00 2.00 2.08 1.00 17.00 4.00 2.24 1.00
13.00 3.00 2.12 1.00 17.00 5.00 2.20 1.00
13.00 4.00 2.12 1.00 18.00 1.00 1.98 1.00
13.00 5.00 2.08 1.00 18.00 2.00 2.23 1.00
14.00 1.00 1.86 1.00 18.00 3.00 2.28 1.00
14.00 2.00 2.11 1.00 18.00 4.00 2.27 1.00
14.00 3.00 2.16 1.00 18.00 5.00 2.24 1.00
14.00 4.00 2.15 1.00 19.00 1.00 2.21 1.00
14.00 5.00 2.11 1.00 19.00 2.00 2.46 1.00
15.00 1.00 2.80 1.00 19.00 3.00 2.57 1.00
15.00 2.00 2.14 1.00 19.00 4.00 2.51 1.00
15.00 3.00 2.19 1.00 19.00 5.00 2.48 1.00
15.00 4.00 2.18 1.00 20.00 1.00 2.34 1.00
15.00 5.00 2.14 1.00 20.00 2.00 2.51 1.00
16.00 1.00 1.92 1.00 20.00 3.00 2.55 1.00
16.00 2.00 2.17 1.00 20.00 4.00 2.55 1.00
16.00 3.00 2.22 1.00 20.00 5.00 2.52 1.00

Var 00001 = patient number (Var = variable).
Var 00002 = week of treatment (1–5).
Var 00003 = outcome (HDL cholesterol).
Var 00004 = treatment modality (0 or 1).

It is appropriate, whenever possible, to use a summary estimate of repeated data. For 
example, the area under the curve of drug concentration–time curves is used in clinical 
pharmacology as an estimate of bioavailability of a drug. Also, maximal values, mean 
values, changes from baseline are applied for the same purpose. The disadvantage 
of this approach is that it does not use the data fully, because summary measures are 
used instead of the individual data, and, therefore, precision may be lost, but, otherwise, 
the approach is unbiased, and can be used perfectly well. As an alternative and more 
precise method a mixed-linear model, as reviewed below, can be used.

In the above table an example is given of a parallel-group study of the effect of two 
statins on HDL cholesterol. HDL cholesterol is measured every week for 5 weeks. 
The averages of the five repeated measures in one patient are calculated and an 
unpaired t-test was used to compare these averages in the two treatment groups. The 
overall average in group 0 was 1.925 (SEM 0.0025), in group 1 2.227 (SE 0.227). With 
18 degrees of freedom and a t-value of 1.99 the difference did not obtain statistical 
significance, 0.05 < p < 0.10. There seems to be, expectedly, a strong positive correla-
tion between the five repeated measurements in one patient. In order to take account 
of this strong positive correlation a random-effects mixed-linear model is used. 

Variable (continued)
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For this particular analysis all measurements have to be ordered in a single column, 
not in five columns side by side. In a second column the time of the separate measure-
ments have to be noted.

Mixed Effects Analysis

Command:
Analyze – mixed models – linear – specify subjects and repeated – continue – linear 
mixed model – dependent: var 00003 – factors: var 00001, var 00002, var 00004 – 
fixed – build nested term – var 00004 – add – var 000002 – add – var 00002 build 
term by* var 00004 – var 00004 * var 00002 – add – continue – ok.

Type III tests of fixed effectsa

Source Numerator df Denomination df F Sig.

Intercept 1 90 6988.626 .000
VAR00004 1 90 20.030 .000
VAR00002 4 90 .377 .825
VAR00002 * 

VAR00004
4 90 1.603 .181

aDependent variable: VAR00003

The above table shows that the treatment modality (var 00004) after adjustment 
for the repeated nature of the data is a significant predictor of HDL cholesterol 
levels (var 00003) with p < 0.0001. Treatment 1 performs significantly better than 
does treatment 0.
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Primary scientific question: do the two sleeping pills and the placebo produce 
 significantly different magnitudes of numbers of sleeping hours.

Variable

1 2 3 4 5

0.00 6.00 45.00 0.00 1.00
0.00 7.10 45.00 0.00 1.00
0.00 8.10 46.00 0.00 0.00
0.00 7.50 37.00 0.00 0.00
0.00 6.40 48.00 0.00 1.00
0.00 7.90 76.00 1.00 1.00
0.00 6.80 56.00 1.00 1.00
0.00 6.60 54.00 1.00 0.00
0.00 7.30 63.00 1.00 0.00
0.00 5.60 75.00 0.00 0.00
1.00 5.10 64.00 1.00 0.00
1.00 8.00 35.00 0.00 1.00
1.00 3.80 46.00 1.00 0.00
1.00 4.40 44.00 0.00 1.00
1.00 5.20 64.00 1.00 0.00
1.00 5.40 75.00 0.00 1.00
1.00 4.30 65.00 1.00 1.00
1.00 6.00 84.00 1.00 0.00
1.00 3.70 35.00 1.00 0.00
1.00 6.20 46.00 0.00 1.00
2.00 4.10 43.00 0.00 0.00
2.00 7.00 56.00 0.00 0.00
2.00 2.80 65.00 0.00 0.00
2.00 3.40 66.00 0.00 1.00
2.00 4.20 74.00 1.00 1.00
2.00 4.40 56.00 1.00 1.00
2.00 3.30 45.00 0.00 1.00
2.00 5.00 47.00 1.00 1.00
2.00 2.70 65.00 0.00 1.00
2.00 5.20 56.00 1.00 0.00

Chapter 8
One-Way-ANOVA, Kruskall–Wallis  
(30 Patients)
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Var 1 = group 0 has placebo, group 1 has sleeping pill 1, group 2 sleeping pill 2 (Var = variable).
Var 2 = hours of sleep.
Var 3 = age.
Var 4 = gender.
Var 5 = co-morbidity.

One-Way-ANOVA

Command:
Analyze – compare means – one-way anova – dependent lists: effect treat –  factor 
– group – ok.

ANOVA

Effect treatment Sum of squares df Mean square F Sig.

Between groups 37.856  2 18.928 14.110 0.000
Within groups 36.219 27  1.341
Total 74.075 29

A significant difference between the three treatments has been demonstrated with 
a p-value of 0.0001. Like with the paired data of the previous chapter the conclusion 
is drawn: a difference exists, but we don’t yet know whether the difference is between 
treatments 1 and 2, 2 and 3, or 1 and 3. Three subsequent unpaired t-tests are required 
to find out. Similarly to the tests of Chapter 5, a smaller p-value for rejecting the 
null-hypothesis is recommended, for example, 0.01 instead of 0.05. This is, because 
with multiple testing the chance of type 1 errors of finding a difference where there 
is none is enlarged, and this chance has to be adjusted.

Like the Friedman test can be applied for comparing three or more paired samples 
as a non-Gaussian alternative to the paired ANOVA test (see Chapter 6), the 
Kruskall–Wallis test can be used as a non-Gaussian alternative to the above 
unpaired ANOVA test. It is used for the analysis of the above data.

Alternative Test: Kruskall–Wallis Test  
(Better with Non-Gaussian Distributions)

Command:
Analyze – nonparametric – legacy dialogs – k independent samples – test variable 
list: effect treat – group variable: var 00001(??) – Define range – minimum: 0 – maxi-
mum: 2 – continue – mark: Kruskall–Wallis – ok.
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Test statisticsa,b

Effect treatment

Chi-square 15.171
df  2
Asymp. Sig.  0.001
a Kruskal–Wallis test
b Grouping variable: group

The Kruskall–Wallis test is significant with a p-value of no less than 0.001. 
This means that the three treatments are very significantly different from one 
another. We don’t know, just like with the above unpaired ANOVA, where the dif-
ference is. The advice is to perform three additional Mann–Whitney tests to find 
out whether the difference is between the treatments 1 and 2, 2 and 3, or 1 and 3. 
Again, a subsequent reduction of the p-value or a Bonferroni test is appropriate.
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Primary scientific question: do incremental treatment dosages cause incremental 
beneficial effect on blood pressure.

Variable

1 2

1.00 122.00
1.00 113.00
1.00 131.00
1.00 112.00
1.00 132.00
1.00 114.00
1.00 130.00
1.00 115.00
1.00 129.00
1.00 122.00
2.00 118.00
2.00 109.00
2.00 127.00
2.00 110.00

2.00 126.00
2.00 111.00
2.00 125.00
2.00 112.00
2.00 124.00
2.00 118.00
3.00 115.00
3.00 105.00
3.00 125.00
3.00 106.00
3.00 124.00
3.00 107.00
3.00 123.00
3.00 108.00
3.00 122.00
3.00 115.00

Var 1 = treatment dosage (Var = variable).
Var 2 =  treatment response (mean blood  

pressure after treatment).

Chapter 9
Trend Test for Continuous Data (30 Patients)

T.J. Cleophas and A.H. Zwinderman, SPSS for Starters, 
DOI 10.1007/978-90-481-9519-0_9, © Springer Science+Business Media B.V. 2010
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Trend Analysis for Continuous Data

We first perform a one-way ANOVA (see also Chapter 8) to see if there are any 
significant differences in the data. If not, we will perform a trend test using simple 
linear regression.

Command:
Analyze – compare means – One-way ANOVA – dependent list: mean blood 
 pressure after treatment – factor: treatment dosage – ok.

VAR00002 ANOVA

Model Sum of squares df Mean square F Sig.

Between groups  246.667  2 123.333 2.035 0.150
Within groups 1636.000 27  60.593
Total 1882.667 29

The above table shows that there is no significant difference in efficacy between 
the treatment dosages, and so, sadly, this is a negative study. However, a trend test 
having just 1 degree of freedom has more sensitivity than a usual one-way ANOVA, 
and it could, therefore, be statistically significant even so.

Command:
Analyze – regression – linear – dependent = mean blood pressure after treatment – 
independent = treatment dosage – ok.

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression  245.000  1 245.000 4.189 0.050b

Residual 1637.667 28  58.488
Total 1882.667 29

a Dependent variable: VAR00002
b Predictors: (Constant), VAR00001

Four tables are given, we will only use the third one as shown above. The table 
shows that treatment dosage is a significant predictor of treatment response wit a 
p-value of 0.050. There is, thus, a significantly incremental response with incre-
mental dosages.
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Primary scientific question: is there a significant difference between the risks of 
falling out of bed at the departments of surgery and internal medicine.

Fall out of bed

No Yes

Number of patient Department surgery 0 20 15
Internal department 1  5 15

The above consistency table of the data shows that at both departments the same 
numbers of patients fall out of bed. However, at the department of surgery many 
more patients do not fall out of bed than at the internal department.

Variable

1 2 3 4 5

0 1 50 0 1
0 1 76 0 1
0 1 57 1 1
0 1 65 0 1
0 1 46 1 1
0 1 36 1 1
0 1 98 0 0

0 1 56 1 0
0 1 44 0 0

0 1 76 1 1
0 1 75 1 1
0 1 74 1 1
0 1 87 0 0
0 1 45 0 0
0 1 46 1 0
0 0 47 0 0
0 0 48 1 0
0 0 87 0 0
0 0 65 0 0

Chapter 10
Unpaired Binary Data (Chi-Square, Crosstabs) 
(55 Patients)

(continued) 
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Variable

1 2 3 4 5

0 0 50 1 0
0 0 49 0 0
0 0 58 1 1
0 0 93 0 0
0 0 84 1 1
0 0 57 1 1
0 0 48 0 0
0 0 35 0 0
0 0 26 1 0
0 0 76 1 0
0 0 56 0 0
0 0 56 0 0
0 0 35 1 0
0 0 29 0 0
0 0 78 0 0
0 0 67 0 0
1 1 54 1 0
1 1 65 1 0
1 1 74 1 1
1 1 73 0 1
1 1 85 0 1
1 1 65 0 1
1 1 74 1 1
1 1 65 1 1
1 1 75 1 1
1 1 45 0 1
1 1 67 1 1
1 1 76 0 0
1 1 65 1 0
1 1 86 0 0
1 1 76 1 0
1 0 95 0 0
1 0 46 1 0
1 0 57 0 0
1 0 46 1 0
1 0 78 0 1

Var 1 = 0 = dept surgery, 1 = internal dept  
(Var = variable).
Var 2 = falling out of bed.
Var 3 = age.
Var 4 = gender.
Var 5 = letter of complaint, yes or no.

Variable (continued)
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Fig. Command: graphs – legacy dialogs – 3D charts – x-axis groups – z-axis groups –define – 
x-axis dept – z-axis falling out of bed – ok

At both departments approximately the same number of patients falls out of bed. 
However, at department-0 many more patients do not fall out of bed than at department-1.

Analysis: Chi-square Test

Command:
Analyze – descriptive statistics – crosstabs – rows var 1 – columns var 2 – statistics 
– chi-square – ok.

Chi-square tests

Value df

Asymp. 
sig. 
(2-sided)

Exact sig. 
(2-sided)

Exact sig. 
(1-sided)

Pearson chi-square  5.304b 1 0.021
Continuity correctiona  4.086 1 0.043
Likelihood ratio  5.494 1 0.019
Fisher’s exact test 0.027 0.021
Linear-by-linear association  5.207 1 0.022
No. of valid cases 55
aComputed only for a 2 × 2 table
b0 cells (.0%) have expected count less than 5. The minimum expected count is 9.09

The chi-square test (Pearson chi-square) shows that a significant difference 
between the surgical and internal departments exists in patterns of patients falling 
out of bed. The p-value equals 0.021, and this is much smaller than 0.05. Several 
contrast tests are given in the above results table. They produce approximately 
similar p-values. This supports the accuracy of the chi-square test for these data.
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Primary scientific question: Primary scientific question: is there a significant 
difference between the risks of falling out of bed at the departments of surgery and 
internal medicine.

Fall out of bed

No Yes

Number of patients Surgical department 0 20 15
Internal department 1  5 15

The above consistency table of the data shows that at both departments the same 
numbers of patients fall out of bed. However, at the department of surgery many 
more patients do not fall out of bed than at the internal department.

Variable

1 2 3 4 5

0 1 50 0 1
0 1 76 0 1
0 1 57 1 1
0 1 65 0 1
0 1 46 1 1
0 1 36 1 1
0 1 98 0 0
0 1 56 1 0
0 1 44 0 0

0 1 76 1 1
0 1 75 1 1
0 1 74 1 1
0 1 87 0 0
0 1 45 0 0
0 1 46 1 0
0 0 47 0 0
0 0 48 1 0

Chapter 11
Logistic Regression (55 Patients)

(continued)
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Variable

1 2 3 4 5

0 0 87 0 0
0 0 65 0 0
0 0 50 1 0
0 0 49 0 0
0 0 58 1 1
0 0 93 0 0
0 0 84 1 1
0 0 57 1 1
0 0 48 0 0
0 0 35 0 0
0 0 26 1 0
0 0 76 1 0
0 0 56 0 0
0 0 56 0 0
0 0 35 1 0
0 0 29 0 0
0 0 78 0 0
0 0 67 0 0
1 1 54 1 0
1 1 65 1 0
1 1 74 1 1
1 1 73 0 1
1 1 85 0 1
1 1 65 0 1
1 1 74 1 1
1 1 65 1 1
1 1 75 1 1
1 1 45 0 1
1 1 67 1 1
1 1 76 0 0
1 1 65 1 0
1 1 86 0 0
1 1 76 1 0
1 0 95 0 0
1 0 46 1 0
1 0 57 0 0
1 0 46 1 0
1 0 78 0 1

Var 1 = 0 =  surgical department,  
1 = internal department (Var = variable).
Var 2 = falling out of bed yes or no.
Var 3 = age.
Var 4 = gender.
Var 5 = letter of complaint yes or no

Variable (continued)
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Similarly to chi-square test, logistic regression can be used to test whether there 
is a significant difference between two treatment modalities. To see how it works 
review the linear regression example from Chapter 5. The linear regression model 
with treatment modality as independent variable (x-variable), and hours of sleep as 
dependent variable (y-variable = outcome variable) showed that the treatment 
modality was a significant predictor of the hours of sleep, and, thus, that there was 
a significant difference between the two treatments. In the current example we have 
a largely similar situation. The type department is assumed to predict the risk of 
falling out of bed, and is defined as a binary x-variable. The risk of falling out of 
bed is the y-variable, but, unlike hours of sleep like in Chapter 5, falling out of bed 
is not a continuous variable, but rather a binary variable: you either fall or you 
don’t. With binary y-variables linear regression is impossible, and logistic regres-
sion is required. Otherwise, the analysis and interpretation is similar to that of the 
linear regression.

Simple Logistic Regression

Command:
Analyze – regression – binary logistic – dependent = fall out of bed – covariate = 
hospital dept – ok – look at “variables in equation”.

Variables in the equation

B Std. Error Wald df Sig. Exp(B)

Step 1a VAR00001  1.386 0.619 5.013 1 0.025 4.000
Constant −0.288 0.342 0.709 1 0.400 0.750

aVariable(s) entered on step 1: VAR00001

The above results table of the logistic regression shows that B (the regression 
coefficient) for the variable 00001 (which is the hospital department) is a significant 
predictor of the chance of falling out of bed with a p-value of 0.025. This is a p-value 
largely similar to that of the chi-square test from Chapter 9. The meaning of this 
logistic regression is also largely the same as that of the chi-square test. A nice thing 
with logistic regression is that, unlike with chi-square tests, an odds ratio is given.

The odds ratio equals approximately 4 which can interpreted as follows: the 
chance of falling out of bed is about four times larger at the department of surgery 
than it is at the department of internal medicine.

The significant correlation between the type of department and the risk of falling out 
of bed can be interpreted as a significant difference in safety at the two departments.

Not only type of department, but also patient characteristics like age, gender, and 
co-morbidity may be significant predictors of falling out of bed. The interesting 
thing about regression analysis is that, in addition to treatment modality, such char-
acteristics can be entered in the model as predictor variables.



42 11 Logistic Regression (55 Patients)

Multiple Logistic Regression

First we will test whether age is a significant predictor of falling out of bed.

Command:
Analyze – regression – binary logistic – dependent = fall out of bed – covariate = 
age – ok – look at “variables in equation”.

Variables in the equation

B Std. Error Wald df Sig. Exp(B)

Step 1a VAR00003  0.106 0.027 15.363 1 0.000 1.112
Constant −6.442 1.718 14.068 1 0.000 0.002

a Variable(s) entered on step 1: VAR00003

The correct conclusion is, indeed, that this is true. Var 00003, age, is an independent 
determinant with a p-value of 0.0001. The odds ratio equals 1.112, which indicates that 
each year the chance of falling out of bed increases by 1.112. Subsequently, we will 
test whether something special is going on: one of the predictors might be a con-
founder of the other predictor, and, also, interaction between age and department could 
very well exist. Therefore, we perform a multiple logistic regression with both predic-
tors as x-variables and with an interaction-variable of the two as a third predictor.

Command:
Analyze – regression – binary logistic – dependent = fall out of bed – covariate = 
hospital dept , age, interaction variable (keep pressing CTRL – age and hospital 
dept turn blue – then press <a * b> – ok – look at “variables in equation”.

Variables in the equation

B Std. error Wald df Sig. Exp(B)

Step 1a VAR00001 by 
VAR00003

4.619 736.214 0.000 1 0.995 101.354

VAR00001 −279.342 44,876.713 0.000 1 0.995 0.000
VAR00003 0.072 0.025 8.176 1 0.004 1.075
Constant −4.577 1.584 8.355 1 0.004 0.010

a Variable(s) entered on step 1: VAR00001* VAR00003, VAR00001, VAR00003

The analysis shows that interaction is not observed, and that the significant 
effect of the department has disappeared, while age as single variable is a highly 
significant predictor of falling out of bed with a p-value of 0.004 and an odds ratio 
of 1.075 per year. The initial significant effect of the difference in department is not 
caused by a real difference, but rather by the fact that at one department many more 
elderly patients are admitted than at the other department. After adjustment for age 
the significant effect of the department has disappeared.
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Primary scientific question: do incremental dosages of an antihypertensive drug 
cause incremental numbers of patients to become normotensive.

Chapter 12
Trend Tests for Binary Data (106 Patients)

T.J. Cleophas and A.H. Zwinderman, SPSS for Starters, 
DOI 10.1007/978-90-481-9519-0_12, © Springer Science+Business Media B.V. 2010

Var 00001 = responder yes or no (1 or 0) (Var = variable).
Var 00002 = treatment dosage (1, 2 or 3).
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The underneath contingency table shows that with incremental dosages the odds 
of responding is growing from 0.67 to 1.80.

Dosage 1 Dosage 2 Dosage 3

Numbers responders 10 20 27
Numbers non-responders 15 19 15
Odds of responding  0.67 (10/15)  1.11 (20/19)  1.80 (27/15)

First, we try and summarize the data in a graph.

treatment
32

responder1

C
o

u
n

t

30

25

20

15

10

5

0
0

1

Fig. Command: graphs – 3D charts – x-axis treatment – z-axis responder – define – x-axis treatment 
– z-axis responder – ok

The incremental treatment dosages of an antihypertensive drug seem to cause 
incremental numbers of responders (patients becoming normotensive). However, the 
numbers of non-responders are the controls and their pattern is equally important.

We, first will perform a multiple groups chi-square test in order to find out 
whether there is any significant difference in the data.

Analysis: Multiple Groups Chi-square Test

Command:
Analyze – descriptive statistics – crosstabs – rows var 1 – columns var 2 – statistics 
– chi-square – ok.

Chi-square tests

Value df Asymp. sig. (2-sided)

Pearson chi-square 3.872a 2 0.144
Likelihood ratio 3.905 2 0.142
Linear-by-linear association 3.829 1 0.050
No. of valid cases 106
a 0 cells (.0%) have expected count less than 5. 
The Minimum expected count is 11.56
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The above table shows that, indeed, the Pearson chi-square value for multiple 
groups testing is not significant with a chi-square value of 3.872 and a p-value of 
0.144, and we have to conclude that there is, thus, no significant difference between 
the odds of responding to the three dosages.

Analysis: Chi-square Test for Trends

Subsequently, a chi-square test for trends can be executed, a test that essentially 
assesses whether the above odds of responding (number of responder/numbers of 
non-responders per treatment group) increase significantly. The “linear-by-linear 
association” from the same table is appropriate for the purpose. It has approxi-
mately the same chi-square value, but it has only 1 degree of freedom, and, there-
fore it reaches statistical significance with a p-value of 0.050. There is, thus, a 
significant incremental trend of responding with incremental dosages.

Chi-square tests

Value df Asymp. sig. (2-sided)

Pearson chi-square 3.872a 2 0.144
Likelihood ratio 3.905 2 0.142
Linear-by-linear 

association
3.829 1 0.050

No. of valid cases 106
a 0 cells (.0%) have expected count less than 5. 
The Minimum expected count is 11.56

The trend in this example can also be tested using logistic regression with 
responding as outcome variable and treatment as independent variable (enter the 
latter as covariate, not categorical variable).
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Primary scientific question: is there a significant difference between the numbers 
of practitioners who give life style treatment in the periods before and after 
education.

Numbers of practitioners giving life style treatment after education

No Yes

0 1

Life style treatment 
before education

No 0 65 28
Yes 1 12 34

The above table summarizes the numbers of practitioners giving life style treatment 
in the periods before and after education. Obviously, before education 65 + 28 = 93 
did not give life style, while after education this number fell to 77. It looks as 
though the education was somewhat successful.

Chapter 13
Paired Binary (McNemar Test)  
(139 General Practitioners)
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Var 1 = life style treatment before post-graduate education (yes or no) (Var = variable).
Var 2 = life style treatment after post-graduate education (yes or no).
Var 3 = age.
Var 4 = gender.
Var 5 = co-morbidity.

We will start with a graph of the data.



49Analysis: McNemar’s Test

Fig. Command: graphs – legacy dialogs – 3D charts – x-axis groups – z-axis groups – define – 
x-axis life style after education – z-axis life style before education – ok

The paired observations show that twice no life style treatment was given by 
65 practitioners, twice yes life style treatments by 34 practitioners. Furthermore, 
28 practitioners started to give life style treatment after postgraduate education, 
while, in contrast, 12 stopped giving life style treatment after the education pro-
gram. McNemar’s test is used to statistically test the differences.

Analysis: McNemar’s Test

Command:
Analyze – nonparametric – 2 samples related – current selection – var 1 = var 1 – 
var 2 = var 2 – test-pair list – McNemar – ok.

Test statisticsa

Lifestyle and lifestyle 
after 1 year

N 139
Chi-squareb 5.625
Asymp. sig. 0.018
aMcNemar test
bContinuity corrected

The above test is statistically significant with a p-value of 0.018, which is a lot 
smaller than 0.05. The conclusion is drawn that a real difference between the numbers 
of practitioners giving life style treatment after and before education is observed. 
The postgrade education has, obviously, been helpful.
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Scientific question: is there a significant difference between the numbers of 
responders who have been treated differently three times.

Variables

Chapter 14
Multiple Paired Binary Data (Cochran’s Q Test) 
(139 Patients)
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Var 1 = responder to treatment 1 (yes or no, 1 or 0) (Var = variable).
Var 2 = responder to treatment 2.
Var 3 = responder to treatment 3.

The above table shows three paired observations in one patient. The paired 
property of these observations has to be taken into account because of the, generally, 
positive correlation between paired observations. Cochran’s Q test is appropriate 
for that purpose.

Analysis: Cochran’s Q Test

Command:
Analyze – nonparametric tests – k related samples – mark: Cochran’s Q – test variables: 
treatment 1, treatment 2, treatment 3 – ok.

Test statistics

N 139
Cochran’s Q 10.133a

df 2
Asymp. sig. 0.006
a 0 is treated as a success

The test is highly significant with a p-value of 0.006. This means that there is a 
significant difference between the treatment responses. However, we do not know 
where: between treatments 1 and 2, 2 and 3, or between 1 and 3. For that purpose 
three separate McNemar’s tests have to be carried out.

Test statisticsa

Treatment 1 and treatment 2

N 139
Chi-squareb 4.379
Asymp. sig. 0.036
a McNemar test
b Continuity corrected

Test statisticsa

Treatment 1 and treatment 3

N 139
Chi-squareb 8.681
Asymp. sig. 0.003
a McNemar test
b Continuity corrected
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Test statisticsa

Treatment 2 and treatment 3

N 139
Chi-squareb 0.681
Asymp. sig. 0.409
a McNemar test
b Continuity corrected

The above three separate McNemar’s tests show that there is no difference 
between the treatments 2 and 3, but there are significant differences between 1 and 
2, and 1 and 3. If we adjust the data for multiple testing, for example, by using p = 0.01 
instead of p = 0.05 for rejecting the null-hypothesis, then the difference between 
1 and 2 loses its significance, but the difference between treatments 1 and 3 remains 
statistically significant.
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Chapter 15
Cox Regression (60 Patients)

Primary scientific question: is there a significant difference in survival between the 
group treated with one treatment versus the other.

Variable

1 2 3 4 5

1.00 1 0 65.00 0.00
1.00 1 0 66.00 0.00
2.00 1 0 73.00 0.00
2.00 1 0 54.00 0.00
2.00 1 0 46.00 0.00
2.00 1 0 37.00 0.00
2.00 1 0 54.00 0.00
2.00 1 0 66.00 0.00
2.00 1 0 44.00 0.00
3.00 0 0 62.00 0.00
4.00 1 0 57.00 0.00
5.00 1 0 43.00 0.00
6.00 1 0 85.00 0.00
6.00 1 0 46.00 0.00
7.00 1 0 76.00 0.00
9.00 1 0 76.00 0.00
9.00 1 0 65.00 0.00

11.00 1 0 54.00 0.00
12.00 1 0 34.00 0.00
14.00 1 0 45.00 0.00
16.00 1 0 56.00 1.00
17.00 1 0 67.00 1.00
18.00 1 0 86.00 1.00
30.00 1 0 75.00 1.00
30.00 1 0 65.00 1.00
30.00 1 0 54.00 1.00
30.00 1 0 46.00 1.00
30.00 1 0 54.00 1.00
30.00 1 0 75.00 1.00
30.00 1 0 56.00 1.00
30.00 1 1 56.00 1.00

(continued)
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30.00 1 1 53.00 1.00
30.00 1 1 34.00 1.00
30.00 1 1 35.00 1.00
30.00 1 1 37.00 1.00
30.00 1 1 65.00 1.00
30.00 1 1 45.00 1.00
30.00 1 1 66.00 1.00
30.00 1 1 55.00 1.00
30.00 1 1 88.00 1.00
29.00 1 1 67.00 1.00
29.00 1 1 56.00 1.00
29.00 1 1 54.00 1.00
28.00 0 1 57.00 1.00
28.00 1 1 57.00 1.00
28.00 1 1 76.00 1.00
27.00 1 1 67.00 1.00
26.00 1 1 66.00 1.00
24.00 1 1 56.00 1.00
23.00 1 1 66.00 1.00
22.00 1 1 84.00 1.00
22.00 0 1 56.00 1.00
21.00 1 1 46.00 1.00
20.00 1 1 45.00 1.00
19.00 1 1 76.00 1.00
19.00 1 1 65.00 1.00
18.00 1 1 45.00 1.00
17.00 1 1 76.00 1.00
16.00 1 1 56.00 1.00
16.00 1 1 45.00 1.00

Var 1 = months of follow-up (Var = variable).
Var 2 =  event (lost for follow up or completed 

the study = 0, death = event = 1).
Var 3 = treatment modality (0 of 1).
Var 4 = age.
Var 5 = gender.

Simple Cox Regression

Command:
Analyze – survival – Cox regression – time: follow months – status: var 2 – define 
event (1) – covariates – categorical: treat → categorical variables – continue – plots 
– survival → var 3 → separate lines – hazard – continue – ok.

Variables in the equation

B Std. Error Wald df Sig. Exp(B)

VAR00003 0.645 0.270 5.713 1 0.017 1.907

Variable (continued)

1 2 3 4 5
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The regression coefficient, the B-value, is significantly larger than 0. The 
 treatment modalities, treatments 1 and 2, have a significantly different effect on the 
chance of  survival with a p-value of 0.017. The hazard ratio equals 1.907, which 
means that the chance of survival of one treatment is almost twice as large as that 
of the other treatment.

Hazard Function for patterns 1-2

follow months

Fig. On the y-axis % of deaths, on the x-axis the time in months. The treatment 1 (indicated in 
the graph as 0) seems to cause more deaths than treatment 2 (indicated as 1)

Fig. On the y-axis % of survivors, on the x-axis the time (months). The treatment 1 (indicated in 
the graph as 0) seems to cause fewer survivors than does the treatment 2 (indicated in the graph as 1)

The interesting thing about Cox regression is that, just like with linear and logistic 
regression, we can use patient characteristics as additional predictors of better 
survival.

follow months

Survival Function for patterns 1-2
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Multiple Cox Regression

Before the multiple regression we first perform a simple Cox regression to find out 
whether gender is a significant predictor of survival.

Command:
Analyze – survival – Cox regression – time: follow months – status: var 2 – define 
event (1) – covariates – categorical: gendeer → 
categorical variables – continue – ok.

Variables in the equation

B Std. error Wald df Sig. Exp(B)

VAR00005 −7.168 3.155 5.161 1 0.023 0.001

The above table shows that, if a simple Cox regression is performed with gender 
as x-variable (male/female variable 0.00005), there is, just like with treatment 
modality, a significant effect on survival/deaths. Gender, obviously, is also a predic-
tor of survival. Males perform much better than females. We will now use both 
gender and treatment modality as predictors in order to find out whether both of 
them are independent determinants of the chance of surviving.

Command:
Like above, but enter both Var 00003 and Var 00005 as covariates.

Variables in the equation

B Std. Error Wald df Sig. Exp(B)

VAR00005 −13.446 63.033 0.046 1 0.831 0.000
VAR00003 −0.335  0.373 0.805 1 0.369 0.716

The above multiple Cox regression with gender (variable 0.00005) and treatment 
modality (variable 0.00003) as predictors, appear not to produce any significant 
effect. Both predictors assessed simultaneously appear not to be significant factors 
anymore. The conclusion should be that the beneficial effect of treatment is based 
on confounding: if you adjust for the difference in gender the significant effect 
 disappears. And so, the so called beneficial effect of the treatment modality is in fact 
caused by the fact that many more females are in one of the treatment groups.
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Chapter 16
Cox Regression with Time-dependent Variables 
(60 Patients)

Scientific question: is elevated LDL-cholesterol a significant predictor of survival.

Variable

1 2 3 4 5 6

 1.00 1 0 65.00 0.00 2.00
 1.00 1 0 66.00 0.00 2.00
 2.00 1 0 73.00 0.00 2.00
 2.00 1 0 54.00 0.00 2.00
 2.00 1 0 46.00 0.00 2.00
 2.00 1 0 37.00 0.00 2.00
 2.00 1 0 54.00 0.00 2.00
 2.00 1 0 66.00 0.00 2.00
 2.00 1 0 44.00 0.00 2.00
 3.00 0 0 62.00 0.00 2.00
 4.00 1 0 57.00 0.00 2.00
 5.00 1 0 43.00 0.00 2.00
 6.00 1 0 85.00 0.00 2.00
 6.00 1 0 46.00 0.00 2.00
 7.00 1 0 76.00 0.00 2.00
 9.00 1 0 76.00 0.00 2.00
 9.00 1 0 65.00 0.00 2.00
11.00 1 0 54.00 0.00 1.00
12.00 1 0 34.00 0.00 1.00
14.00 1 0 45.00 0.00 1.00
16.00 1 0 56.00 1.00 1.00
17.00 1 0 67.00 1.00 1.00
18.00 1 0 86.00 1.00 1.00
30.00 1 0 75.00 1.00 2.00
30.00 1 0 65.00 1.00 2.00
30.00 1 0 54.00 1.00 2.00
30.00 1 0 46.00 1.00 2.00
30.00 1 0 54.00 1.00 2.00
30.00 1 0 75.00 1.00 2.00
30.00 1 0 56.00 1.00 2.00
30.00 1 1 56.00 1.00 2.00

(continued)
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1 2 3 4 5 6

30.00 1 1 53.00 1.00 2.00
30.00 1 1 34.00 1.00 2.00
30.00 1 1 35.00 1.00 2.00
30.00 1 1 37.00 1.00 2.00
30.00 1 1 65.00 1.00 2.00
30.00 1 1 45.00 1.00 2.00
30.00 1 1 66.00 1.00 2.00
30.00 1 1 55.00 1.00 2.00
30.00 1 1 88.00 1.00 2.00
29.00 1 1 67.00 1.00 1.00
29.00 1 1 56.00 1.00 1.00
29.00 1 1 54.00 1.00 1.00
28.00 0 1 57.00 1.00 1.00
28.00 1 1 57.00 1.00 1.00
28.00 1 1 76.00 1.00 1.00
27.00 1 1 67.00 1.00 1.00
26.00 1 1 66.00 1.00 1.00
24.00 1 1 56.00 1.00 1.00
23.00 1 1 66.00 1.00 1.00
22.00 1 1 84.00 1.00 1.00
22.00 0 1 56.00 1.00 1.00
21.00 1 1 46.00 1.00 1.00
20.00 1 1 45.00 1.00 1.00
19.00 1 1 76.00 1.00 1.00
19.00 1 1 65.00 1.00 1.00
18.00 1 1 45.00 1.00 1.00
17.00 1 1 76.00 1.00 1.00
16.00 1 1 56.00 1.00 1.00
16.00 1 1 45.00 1.00 1.00

Var 00001 = follow-up period (months) (Var = variable).
Var 00002 = event (0 or 1, event or lost for follow-up = censored).
Var 00003 = treatment (0 or 1, treatment 1 or 2).
Var 00004 = age (years).
Var 00005 = gender (0 or 1, male or female).
Var 00006 = elevated LDL-cholesterol (0 or 1, no or yes).

Variable (continued)

LDL-cholesterol is a major risk factor for cardiovascular disease.
Just like with the examples in the Chapter 11 (logistic regression) and Chapter 15 

(Cox regression) a binary x-variable is used: the presence or absence of an  elevated 
LDL-cholesterol. We want to assess whether the presence of an elevated LDL-
cholesterol is a predictor of death. The hazard of death is used as the dependent 
variable.



61Cox Regression with Time-dependent Variables

Simple Cox Regression

Command:
Analyze – survival – Cox regression – time: follow years – status: var 2 – define 
event (1) – Covariates – categorical: elevated LDL-cholesterol (Var 00006) → 
 categorical variables – continue - plots – survival → hazard – continue – ok.

Variables in the equation

B Std. error Wald df Sig. Exp(B)

VAR00006 −0.482 0.307 2.462 1 0.117 0.618

Var 00006 is a binary variable for LDL-cholesterol. It is not a significant  predictor 
of survival with a p-value and a hazard ratio of only 0.054 and 0.524 respectively, as 
demonstrated above by a simple Cox regression with event as outcome variable and 
frailty as predictor. The investigators believe that the presence of LDL-cholesterol 
must be a determinant of survival. And if we look at the data, we will observe that 
something very special is going on: in the first decade virtually no one with ele-
vated LDL-cholesterol dies. In the second decade virtually everyone with an  
elevated LDL-cholesterol does: LDL-cholesterol seems to be particularly a killer in 
the second decade. Then, in the third decade other reasons for dying seem to have 
taken over. In order to assess whether elevated LDL-cholesterol adjusted for time 
has a significant effect on survival, a time-dependent Cox regression will be per-
formed. For that purpose the time–dependent covariate is defined as a function of 
both the variable time (called “T_” in SPSS) and the LDL-cholesterol variable, while 
using the product of the two. This product is applied as “time-dependent predictor 
of  survival, and a usual Cox model is, subsequently, performed (Cov = covariate).

Cox Regression with Time-dependent Variables

Command:
Analyze – survival – Cox w/time-dependent cov – compute time-dependent  cov – 
Time (T_) → in box expression for T_Cov – add the sign * – add the LDL-
cholesterol variable – model – time: follow months – status: var 00002 – ?: define 
event:1 – continue – T_Cov → in box covariates – ok.

Variables in the equation

B Std. error Wald df Sig. Exp(B)

T_COV_ −0.131 0.033 15.904 1 0.000 0.877

The above results table of the “Cox regression with time-dependent variables” 
shows that the presence of an elevated LDL-cholesterol adjusted for differences in 
time is a highly significant predictor of survival.
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Primary scientific question: is the underneath vascular lab score test accurate for 
demonstrating peripheral vascular disease. What cutoff score does provide the best 
sensitivity/specificity.

Chapter 17
Validating Qualitative Diagnostic Tests 
(575 Patients)

Var 00001 = score vascular lab (Var = variable) 
Var 00002 = patient with and without peripheral vascular disease
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First we try and make a graph of the data.
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Analyze – legacy dialogs – graphs – histogram – variable: score – rows: disease – ok.
The above histograms summarize the data. The upper graph shows the frequen-

cies of various scores of all patients with vascular disease as confirmed by angio-
grams, the lower graph of the patients without. The scores of the diseased patients 
are generally much larger, but there is also a considerable overlap. The overlap can 
be expressed by sensitivity (number of true positive/number of false and true posi-
tive patients) and specificity (number of true negative patients/number of false and 
true negative patients). The magnitude of the sensitivity and specificity depends on 
the cutoff level used for defining patients positive or negative. sensitivities and 
specificities continually change as we move the cutoff level along the x-axis. A 
Roc curve summarizes all sensitivities and specificities obtained by this action. 
With help of the Roc curve the best cutoff for optimal diagnostic accuracy of the 
test is found.

Validating the Qualitative Diagnostic Test

Command:
Graphs – ROC curve – test variable score – state variable: disease – value of state: 
variable 1 – mark: ROC curve – mark: with diagnostic reference line – mark: coor-
dinate points of ROC curve – ok.
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The best cutoff value of the sensitivity and 1-specificity is the place on the curve 
with the shortest distance to the top of y-axis where both sensitivity and 1-specificity 
equal 1 (100%). The place is found by adding up sensitivities and specificities as 
summarized in the following table.

Coordinates of the curve

Test result variable(s): score

Positive if greater than or equal toa Sensitivity 1-specificity

0.0000 1.000 1.000
1.5000 1.000 0.996
2.5000 1.000 0.989
3.5000 1.000 0.978
4.5000 1.000 0.959
5.5000 1.000 0.929
6.5000 1.000 0.884
7.5000 1.000 0.835
8.5000 1.000 0.768
9.5000 1.000 0.697

10.5000 1.000 0.622
11.5000 1.000 0.543
12.5000 1.000 0.464
13.5000 1.000 0.382
14.5000 1.000 0.307
15.5000 0.994 0.240
16.5000 0.984 0.172
17.5000 0.971 0.116
18.5000 0.951 0.071
19.5000 0.925 0.049
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Diagonal segments are produced by ties.

ROC Curve

(continued)
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20.5000 0.893 0.030
21.5000 0.847 0.019
22.5000 0.789 0.007
23.5000 0.724 0.000
24.5000 0.649 0.000
25.5000 0.578 0.000
26.5000 0.500 0.000
27.5000 0.429 0.000
28.5000 0.354 0.000
29.5000 0.282 0.000
30.5000 0.214 0.000
31.5000 0.153 0.000
32.5000 0.101 0.000
33.5000 0.062 0.000
34.5000 0.036 0.000
35.5000 0.019 0.000
36.5000 0.010 0.000
37.5000 0.003 0.000
39.0000 0.000 0.000

The test result variable(s): score has at least one tie between the 
positive actual state group and the negative actual state group
a The smallest cutoff value is the minimum observed test value 
minus 1, and the largest cutoff value is the maximum observed test 
value plus 1. All the other cutoff values are the averages of two 
consecutive ordered observed test values

The best cutoff value of the sensitivity and 1-specificity is the place on the curve 
with the shortest distance to the top of y-axis where both sensitivity and 1- specificity 
equal 1 (100%). The place is found by adding up sensitivities and specificities as 
summarized in the underneath table.

Sensitivity 1-specificity
sensitivity − (1-specificity)  
(= sensitivity + specificity-1)

0.971 0.116 0.855
0.951 0.071 0.880
0.925 0.049 0.876

At a sensitivity of 0.951 and a “1-specificity” (= false positives) of 0.071 the best 
add-up sum is found (1.880). Looking back at the first column of the table from the 
previous page the cutoff score >18.5 is the best cutoff, which means a score of 19 
produces the fewest false positive and fewest false negative tests.

Coordinates of the curve (continued)
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Primary scientific question: is angiographic volume an accurate method for dem-
onstrating the real cardiac volume.

Variable

1 2

494.00 512.00
395.00 430.00
516.00 520.00
434.00 428.00
476.00 500.00
557.00 600.00
413.00 364.00
442.00 380.00
650.00 658.00
433.00 445.00
417.00 432.00
656.00 626.00
267.00 260.00
478.00 477.00
178.00 259.00
423.00 350.00
427.00 451.00

Var 00001 = cast cardiac volume  
(liters) (Var = variable)
Var 00002 = angiographic cardiac  
volume (liters)

Validating Quantitative Diagnostic Test

Command:
Analyze – regression – linear – dependent = cast cardiac volume – independent = 
angiographic cardiac volume – ok.

Chapter 18
Validating Quantitative Diagnostic  
Tests (17 Patients)
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Coefficientsa

Model

Unstandardized 
coefficients

Standardized 
coefficients

t Sig.B Std. Error Beta

1 (Constant) 39.340 38.704  1.016 0.326
VAR00001  0.917  0.083 0.943 11.004 0.000

aDependent variable: VAR00002

Four tables are given, but we use the bottom table as shown above.

B = regression coefficient = 0.917 ± 0.083 (std. error).
A = intercept (otherwise called B

0
 or Constant) = 39.340 ± 38.704 (std. error).

 The 95% confidence intervals of A and B should not be different from respectively 
0.000 and 1.000. This can be confirmed, because they are respectively.

Between 0.917 ± 1.96 × 0.0813, and thus between 0.751 and 1.083.
Between 39.340 ± 1.96 × 38.704, and thus between −38.068 and 116.748.

This diagnostic test is thus, accurate.
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Primary scientific question: is the underneath qualitative diagnostic test adequately 
reproducible.

Variables
1 2

1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
0.00 1.00
0.00 1.00
0.00 1.00
0.00 1.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

Var 1 = reponder after first test  
(0 = non responder, 1 = responder)  
(Var = variable)
Var 2 = responder after second test

Chapter 19
Reliability Assessment of Qualitative  
Diagnostic Tests (17 Patients)

T.J. Cleophas and A.H. Zwinderman, SPSS for Starters, 
DOI 10.1007/978-90-481-9519-0_19, © Springer Science+Business Media B.V. 2010
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Analysis: Calculate Cohen’s Kappa

Command:
Analyze – descriptive statistics – crosstabs – variable 1 click into rows – variable 2 
click into columns – statistics – mark: kappa – continue – crosstabs: mark: cells – cell 
display: mark observed (under counts) and total (under percentages) – continue – ok.

Symmetric measures

Value
Asymp. 
std. error a Approx. T b Approx. sig.

Measure of agreement kappa 0.400 0.167 2.196 0.028
No. of valid cases 0.30

a Not assuming the null hypothesis
b Using the asymptomatic standard error assuming the null hypothesis

The above table shows that the kappa-value equals 0.400. A kappa-value of 
0 means poor reproducibility or agreement, a kappa-value of 1 means excellent. 
This result of 0.400 is moderate. This result is significantly different from an agreement 
of 0 at p = 0.028.
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Primary scientific question: is the underneath quantitative diagnostic test adequately 
reproducible.

Chapter 20
Reliability Assessment of Quantitative 
Diagnostic Tests (17 Patients)

T.J. Cleophas and A.H. Zwinderman, SPSS for Starters, 
DOI 10.1007/978-90-481-9519-0_20, © Springer Science+Business Media B.V. 2010

Variables

1 2

10.000 10.000
9.00 10.000
7.00 6.00
5.00 6.00
3.00 7.00
8.00 8.00
7.00 7.00
8.00 7.00
7.00 8.00
8.00 8.00
7.00 9.00

10.000 11.00

Var 1 = quality of life score at 
first assessment (Var = variable).
Var 2 = quality of life score art 
second assessment.

Intraclass Correlation for Reliability  
Assessment of Diagnostic Battery

Command:
Analyze – Scale – Reliability Analysis – Var 00001 and Var 00002 click into 
items box – Statistics – Mark:Intraclass correlation coefficient – Model: Two-way 
Mixed – Type: Consistency – Test value: 0 – Continue – ok.
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Intraclass correlation coefficient

95% confidence interval F test with true value 0

Intraclass 
correlationa Lower bound Upper bound Value df1 df2 Sig

Single measures 0.712b 0.263 0.908 5.952 11 11 0.003
Average measures 0.832c 0.416 0.952 5.952 11 11 0.003

Two-way mixed effects model where people effects are random and measures effects are fixed.
a Type C intraclass correlation coefficients using a consistency definition-the between-measure 
variance is excluded from the denominator variance
b The estimator is the same, whether the interaction effect is present or not
c This estimate is computed assuming the interaction effect is absent, because it is not estimable 
otherwise

The above table shows that the intraclass correlation (= SS between subjects/(SS 
between subjects + SS within subjects), SS = sum of squares) equals 0.832 (= 83%) 
if interaction is not taken into account, and 0.712 (=71%) if interaction is accounted. 
An intraclass correlation of 0 means that the reproducibility/agreement between the 
two assessments in the same subject is 0, 1 indicates 100% reproducibility/agreement. 
An agreement of 40% is moderate and of 80% is excellent. In the above example 
there is, thus, a very good agreement with a p-value much smaller than 0.05, namely 
0.003. The agreement is, thus, significantly better than an agreement of 0%.
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Note:

 1. Rank tests with ties: tie is rank number with multiple values.
 2. Continuity correction for c2 test: if discrete variables are approximated by the 

normal distribution (= continuous), then a better approximation is obtained by 
adding +1/2 (or subtracting) to the probabilities, for example: c2 = (0 − E)2/E 
replace with = (|0 − E| − 0.5)2/E.

 3. Unrequested alternative tests (contrast tests) are often included gratuitously in 
the analysis for example with the chisquare test).

 4. Logistic regression: a lot of tables prior to the actual testing is produced. This is 
predominantly meant for assessing the goodness of fit of the so-called loglinear 
model. Look for more information in the textbook “Statistics Applied to Clinical 
Trials, Springer Dordrecht, 2009, by the same authors. If the data do not 
adequately fit the model, then the final analysis is often not executed anymore. 
So, you do not have to worry too much about this issue.

 5. The four non-parametric tests are probably the most valuable tests for the analysis 
of data from clinical trials (Wilcoxon, Mann–Whitney, Friedman, Kruskall–
Wallis), and they are particularly safe for those who are not fond on statistics but 
rather on solid results.

Chapter 21
Final Remarks 
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A
Accuracy

of qualitative diagnostic tests, 64
of quantitative diagnostic tests, 37

Agreement, 70, 72
Analysis of variance (ANOVA), 1, 16–18, 

21–23, 29–31, 34

B
Binary data, 1, 3–5, 35–37, 43–45,  

51–53
Binary logistic regression, 41, 42
Bonferroni adjustment, 23
B-value, 17, 19, 57

C
Chi-square test, 37, 41, 44–45
Chi-square test for trends, 45
Cochran’s Q test 61, 51–53
Cohen, 70
Columns, 2, 27, 37, 44, 66, 70
Continuity correction, 37, 73
Continuous data, 1, 3, 7–9, 11–13,  

33–34
Contrast tests, 37, 73
Correlation coefficient, 16, 71, 72
Cox regression, 1, 55–61
Cox regression with time-dependent  

variables, 59–61
Crosstabs, 5–37, 44, 70
Cutoff value for diagnostic test,  

65, 66

D
Degrees of freedom, 4, 22, 26
Diagnostic tests, 1, 63–70

F
Friedman, 1, 21–23, 30, 73

G
Gaussian data, 9, 13, 17, 22
Greenhouse method, 22

H
Hazard function, 57
Hazard ratio, 57, 61
Histogram, 64
Huynh method, 22

I
Interaction variable, 42
Intercept, 22, 27, 68
Intraclass correlation, 71–72

K
Kappa, 70
Kruskall-Wallis, 1, 29–31, 73

L
Linear-by-linear association, 37, 44, 45
Linear regression, 15–19, 34, 41, 67
Logistic regression, 39–42, 45, 57, 60, 73
Loglinear model, 73
Lower-bound method, 22

M
Mann-Whitney, 11–13, 31, 73
Mauchly’s test, 22
McNemar’s chi-square test, 47–49, 52, 53

Index
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Measure of agreement, 70
Mixed model for repeated measures, 21–23, 26
Mixed models, 25–27
Multiple Cox regression, 58
Multiple linear regression, 18–19
Multiple logistic regression, 42
Multiple paired binary data, 1, 51–53
Multiple testing, 22, 23, 30, 53

N
Non-Gaussian data, 23, 30–31
Non-parametric tests, 73
Null-hypothesis, 22, 30, 53

O
Odds of responding, 44, 45
Odds ratio, 41, 42
One-sample t-test, 3–4
One-way-ANOVA, 29–31

P
Paired analysis of variance, 1
Paired binary data, 1, 51–53
Paired continuous data, 7–9
Paired t-test, 8–9, 22
Parametric tests, 1
Pearson chi-square, 37, 44, 45
Positive correlations, 26, 52
Proportions, 5, 22
p-values, 9, 13, 17, 19, 22, 23, 30, 31, 34, 37, 

41, 42, 45, 49, 52, 57, 61, 72

R
Rank tests with ties, 73
Regression coefficient, 17, 19, 41, 57, 68
Regression equation, 19
Reliability assessment

of qualitative test, 69–70
of quantitative test, 71–72

Repeated-measures-ANOVA, 21–23, 26
Reproducibility, 70, 72
ROC curves, 64, 65

Rows, 2, 37, 44, 64, 70
R-square value, 12, 17–19
R-value, 16

S
Sensitivity, 34, 63–66
Simple Cox regression, 56–58, 61
Simple linear regression, 16–18, 34, 41
Simple logistic regression, 41
Specificity, 63–66
SS between subjects, 72
SS within subjects, 72
Summary estimates, 26

T
Three dimensional charts, 37, 44, 49
Ties, 13, 65, 73
Time-dependent Cox regression, 61
Trend tests

of binary data, 43–45
of continuous data, 33–34

t-value, 4, 17, 26

U
“Unpaired” analysis of variance, 1
Unpaired binary data, 1, 35–37
Unpaired continuous data, 11–13
Unpaired t-test, 11–13, 15, 26

V
Validating qualitative diagnostic tests, 63–66
Validating quantitative diagnostic tests, 67–68

W
Wilcoxon, 7–9
Wilcoxon signed ranks test, 9

Z
z-test, 3–5
z-value, 5
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