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Preface 

This book is the result of over ten (10) years of research and development in 
flexible robots and structures at Sandia National Laboratories. The authors de­
cided to collect this wealth of knowledge into a set of viewgraphs in order to teach a 
graduate class in Flexible Robot Dynamics and Controls within the Mechanical En­
gineering Department at the University of New Mexico (UNM). These viewgraphs, 
encouragement from several students, and many late nights have produced a book 
that should provide an upper-level undergraduate and graduate textbook and a 
reference for experienced professionals. 

The content of this book spans several disciplines including structural dynam­
ics, system identification, optimization, and linear, digital, and nonlinear control 
theory which are developed from several points of view including electrical, me­
chanical, and aerospace engineering as well as engineering mechanics. As a result, 
the authors believe that this book demonstrates the value of solid applied theory 
when developing hardware solutions to real world problems. The reader will find 
many real world applications in this book and will be shown the applicability of 
these techniques beyond flexible structures which, in turn, shows the value of mul­
tidisciplinary education and teaming. 

The authors have placed a strong emphasis on real world applications and hands­
on hardware solutions. As a result, this book steps through a systematic procedure 
for applying theory to practice while leaving the rigorous theorem development to a 
rich collection of references. Also, the authors realize that most educational institu­
tions do not have ready access to hardware platforms, so the authors have chosen an 
analytical example problem to be utilized throughout the book. By analytical, one 
means the example problem model is solvable in closed form and it has been veri­
fied against experimental results. The analytical example problem is the overhead 
gantry crane robot that supports a spherical pendulum payload. Gantry robots are 
found throughout the robot user community and provide a straight forward, real 
world application. 

The authors want to thank Dr. Ray Harrigan for his continued support and 
encouragement of this research work from the beginning in the mid 1980's to the 
present. This book would not have been possible without Ray's commitment. The 
authors appreciate the initial theory and hardware development work performed 
by Professor Gregory P. Starr of UNM and Ben Petterson as well as the software 
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development work performed by Jill Fahrenholtz and Charlene Lennox. The authors 
wish to thank Dr. Keith Miller for teaming with Ray to fund the first flexible robot 
LDRD project, and Dr. David Martinez for his continuing support of adaptive and 
smart structures. The authors wish to acknowledge the theoretical development of 
the quadratic modes by Dr. Dan Segalman. 

A homework solution manual that contains solutions to the homework problems 
as well as additional details and explanations will be marketed by WAYA Research, 
Inc. (ahwaya@aol.com,) and S. Enterprises (stokenterprises@aol.com). Both of 
these companies can provide experimental hardware and software, and design and 
outfit a college, university, or scientific institution (a flexible robot or control system 
laboratory) based on the material presented in this book. Additionally, both of these 
companies are available for course development consultation. 

This book was typeset with the ~1EX 2c; and edited in Tacoma, Washington by 
Dennis Stokes of S. Enterprises, P.O. Box 42251, Tacoma, WA 98442, stokenter­
prises@aol.com. 

Book Nomenclature 
The nomenclature used for scalars, vectors, and matrices throughout the book 

are defined as 

• Scalars are represented as non-bold letters, e.g., A, a, 0, and r. 

• Vectors are represented as bold lowercase letters, e.g., x, y, and {3. Nec­
essary exceptions are explained. Vectors with subscripts are non-bold, e.g., 
Xi, and Yi. 

• Matrices are 2-D arrays of scalars and are represented as boldface uppercase 
letters, e.g., A, W, and r. Necessary exceptions are explained. Matrices with 
subscripts are non-bold, e.g., Aij . 

A capital superscript T means a transpose of a vector or matrix, e.g., (AT), and 
a superscript negative one means the inverse of a matrix, e.g., (A -1). A dot or dots 
above a variable define differentiation with respect to time, e.g., W, and w. A prime 
or primes on a variable represent differentiation with respect to a spatial variable, 
e.g., Y' (x) = dy(x)/dx. Necessary exceptions are explained. A hat or tilde above 
a variable, e.g., x, ii, define a variable estimation or approximation. Necessary 
exceptions are expl~ned. For example, a hat above a variable also represents a 
unit vector, e.g., i,j. A bar above a variable represents a mean or average, e.g., 
x. Necessary exceptions are explained. The mathematical symbols used include 
3 (there exist), == (is identically equal to, defined as), !R (real set), V (for all), E 
(belongs to), ~ (finite difference, or increment), iff (if and only if), II II (vector 
magnitude), I I (absolute value), and the end of proof symbol as D. All other 
special variables and symbols are defined and explained as needed. 
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Chapter 1 

Introduction 

1.1. Sandia National Laboratories 

Sandia National Laboratories (Sandia) began in 1945 on Sandia Base in Albu­
querque, New Mexico, as Z Division, part of what's now Los Alamos National Lab 
(LANL). Both laboratories were born out of America's World War II atomic bomb 
development effort-the Manhattan Project. Sandia came into being as an ordi­
nance design, testing, and assembly facility, and was located on Sandia Base to be 
close to an airfield and work closely with the military. 

Sandia is a national security laboratory operated for the U.S. Department of 
Energy (DOE) by the Sandia Corporation, a Lockheed Martin Company. Sandia 
designs all non-nuclear components for the nation's nuclear weapons, perform a 
wide variety of energy research and development projects, and work on assignments 
that respond to national security threats-both military and economic. Sandia 
encourages and seeks partnerships with appropriate U.S. industry and government 
groups to collaborate on emerging technologies that support Sandia's mission. 

The laboratories original mission-providing engineering design for all non­
nuclear components of the nation's nuclear weapons-continues today, but Sandia 
now also performs a wide variety of national security R&D work. 

Sandia's broadly stated mission today: 

As a Department of Energy national laboratory, Sandia works in part­
nership with universities and industry to enhance the security, prosper­
ity, and well-being of the nation. We provide scientific and engineering 
solutions to meet national needs in nuclear weapons and related defense 
systems, energy security, and environmental integrity, and to address 
emerging national challenges for both government and industry. 

On Oct. 1, 1993, the Department of Energy awarded the Sandia management 
contract to the Martin Marietta Corp., now Lockheed Martin. Today, Sandia has 
two primary facilities, a large laboratory and headquarters in Albuquerque (more 
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2 CHAPTER 1 INTRODUCTION 

than 6,600 employees) and a smaller laboratory in Livermore, California (about 850 
employees). Sandia is a government-owned/contractor-operated (GOCO) facility. 

Sandia's special mix of core competencies, talented staff, and unique facili­
ties for DOE missions increasingly doubles as a technology resource for other na­
tional challenges. Sandia's integrated capabilities-advanced manufacturing tech­
nology, electronics technology, advanced information technology, and pulsed power 
technology-are strategically required for DOE's defense, energy, and environmen­
tal missions. In concert with DOE's evolving mission to provide technological sup­
port to other federal agencies, Sandia will continue to serve as a resource to those 
agencies needing objective technical analyses, rapid prototyping of new concepts, 
or access to Sandia's special capabilities. 

Over the past several years, Sandia has become a valuable resource for U.S. 
industry. By partnering with industry, both one-on-one and in consortia, Sandia 
accelerates the advancement of technology from research through development to 
commercialization. In return, collaborative exchanges strengthen Sandia by exercis­
ing its core competencies and providing opportunities for direct interaction with the 
nation's industrial R&D base. A strategy of great importance to Sandia involves 
joining forces with the complementary skills of university research laboratories. 
Adoption of this strategy is driven by our desire to participate in the formation and 
mobilization of a fully integrated technological resource for the nation. Partnerships 
with industry and universities increase the technological leverage Sandia hopes to 
gain over problems facing the nation, thereby increasing Sandia's ability to render 
exceptional service in the national interest l . 

1.2. Flexible Robotics Research Historical Back­
ground 

In the early 1980's Sandia became interested in robotics and automation activ­
ities to support several DOE missions. Over the first few years, several projects 
and customers were being supported and within the first decade the robotics group 
grew rapidly into a center. To accommodate the center's unique needs for robotics 
and intelligent systems research, Sandia and the DOE mutually developed a 73,000 
square-foot Robotics Manufacturing Science and Engineering Laboratory (RMSEL) 
facility. Today the Intelligent Systems & Robotics Center (ISRC) employs over 150 
scientists, engineers, and technicians. The ISRC's diversified departments range 
from 

1. Intelligent Systems Sensors & Controls, 

2. Intelligent Systems Principles, 

3. Engineering & Manufacturing Software Development, 

4. Mobile Robotics, to 
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5. Applied Systems. 

The results of one of the initial robotics projects successfully demonstrated swing­
free techniques using robot technology2 while handling and transporting U.S. Army 
munitions. From this initial project, many other basic R&D breakthroughs that 
utilized input shaping and control techniques were achieved for flexible robotics 
systems and payloads. These techniques were documented through publications 
and several U.S. patents. 

1.2.1. Milestones To Present Flexible Robotics Research 

1985 • Starr, G. P., "Swing-free transport of suspended objects with a path-controlled 
robot manipulator," ASME Journal of Dynamic Systems, Measurement, and 
Control, March 1985. 

1987 • Jones, J. F., Petterson, B. J., and Werner, J. C., "Swing damped movement 
of suspended objects," SAND87-2189. 

1989 • Werner, J. C., Robinett, R. D., III, and Petterson, B. J., "Swing-free movement 
of simply suspended objects employing parameter estimation," SAND89-2511. 

• Petterson, B. J., Robinett, R. D., III, and Werner, J.C., 
"Parameter-scheduled trajectory planning for suppression of coupled horizontal 
and vertical vibrations in a flexible rod," SAND89-2522C. 

• Eisler, G. R., Segalman, D. J., and Robinett, R. D., III, "Approximate mini­
mum-time trajectories for two-link flexible manipulators," SAND89-1997C. 

• Filed. Jones, J. F., Petterson, B. J., Strip, D. R., Methods of and system 
for swing damping movement of suspended objects, US Patent No.4, 997, 095, 
March 5, 1991. A payload suspended from a gantry is swing damped in accor­
dance with a control algorithm based on the periodic motion of the suspended 
mass or by servoing on the forces induced by the suspended mass. 

1990 • Segalman, D. J. and Dohrmann, C. R., "Dynamics of rotating flexible struc-
tures by a method of quadratic modes," SAND90-2737. 

• Feddema, J. T., "Integration of model-based and sensor-based control for a 
two-link flexible robotic arm," SAND90-1292C. 

• Schoenwald, D. A., Feddema, J. T., Eisler, G. R., Segalman, D. J., "Minimum­
time trajectory control of a two-link flexible robotic manipulator," SAND90-
2472C. 

1991 • Eisler, G. R., Segalman, D. J., Robinett, R. D., III, Feddema, J. T., "Ap-

1992 

1994 

proximate optimal trajectories for flexible-link manipulator slewing," SAND91-
2858J. 

• Petterson, B. J., Robinett, R. D., III, Werner, J. C., "Lag-stabilized force 
feedback damping," SAND91-0194. 

• Feddema, J. T., "Digital filter control of remotely operated flexible robotic 
structures," SAND92-1630C. 

• Parker, G. G., Eisler, G. R., Phelan, J., and Robinett, R. D., III, "Input 
shaping for vibration-damped slewing of a flexible beam using a heavy-lift 
hydraulic robot," SAND94-1702C. 

• Segalman, D. J., Parker, G. G., Robinett, R. D., III, and Inman, D. J., "De­
centralized sliding mode control of nonlinear flexible robots," SAND94-0337C. 
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1995 

1996 

1997 
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• Segalman, D. J., Parker, G. G., Robinett, R D., III, and Inman, D. J., "Sliding 
mode control of nonlinear flexible structural systems," SAND94-0174J. 

• Dohrmann, C. R and Robinett, R. D., III, "Robot trajectory planning via 
dynamic programming," SAND94-0623C. 

• Parker, G. G. and Robinett, R D., III, "Output feedback sliding mode control 
with application to flexible multibody systems," SAND95-2573J. 

• Feddema, J. T., Robinett, R D., III, Eisler, G. R, Parker, G. G., "Opti­
mal trajectories for flexible-link manipulator slewing using recursive quadratic 
programming: experimental verification," SAND95-2473J. 

• Dohrmann, C. R and Robinett, R D., III, "Efficient sequential quadratic 
programming implementations for equality-constrained discrete-time optimal 
control," SAND95-2574J. 

• Parker, G. G., Petterson, B. J., Dohrmann, C. R, Robinett, R. D., III, "Vi­
bration suppression of fixed-jib crane maneuvers," SAND95-0139C. 

• Parker, G. G., Petterson, B. J., Dohrmann, C. R., Robinett, R. D., III, "Com­
mand shaping for residual vibration free crane maneuvers," SAND95-1l95C. 

• Parker, G. G., Robinett, R D., III, Driessen, B. J., and Dohrmann, C. R, 
"Operator in-the-loop control of rotary cranes," SAND96-0373C. 

• Wilson, D. G., Stokes, D., Starr, G. P., Robinett, R D., III, "Optimized input 
shaping for a single flexible robot link," SAND96-0699C. 

• Feddema, J. T., Baty, R. S., Dykhuizen, R C., Dohrmann, C. R, Parker, G. 
G., Robinett, R. D., III, Romero, V. J., and Schmitt, D. J., "Modeling, system 
identification, and control for slosh-free motion of an open container of fluid," 
SAND96-0995. 

• Filed. Feddema, J. T., Petterson, B. J., and Robinett, R D., III, Opero­
tor control systems and methods for swing-free gantry-style crones, US Patent 
No.5, 785,191, July 28, 1998. A system and method for eliminating swing 
motions in gantry-style cranes while subject to operator control is presented. 
The present invention includes an infinite impulse response (IRR) filter and a 
proportional-integral (PI) feedback controller to eliminate oscillations by ad­
justing acceleration and deceleration input profiles. In addition, this invention 
also compensates for variable-length cable motions from multiple cables at­
tached to a suspended payload. 

• Wilson, D. G., Parker, G. G., Starr, G. P., Robinett, 'R. D., III, "Modeling 
and robust control of a flexible manipulator," SAND97-0057C. 

• Dohrmann, C. R and Robinett, R. D., III, "A dynamic programming method 
for constrained discrete-time optimal control," SAND97-1066J. 

• Filed. Robinett, R. D., III, Parker, G. G., Feddema, J. T., Dohrmann, C. R, 
and Petterson, B. J., Sway control method and system for rotary crones, US 
Patent No.5, 908,122, June I, 1999. Methods and apparatuses for reducing 
the oscillatory motion of rotary crane payloads during operator-commanded or 
computer-controlled manuevers. An input-shaping filter receives input signals 
from multiple operator input devices and converts them into output signals 
readable by the crane controller to dampen the payload tangential and radial 
sway associated with rotation of the jib. 

One of the R&D highlights was the real world hardware input shaping technology 
validation3•4 • Most industrial cranes do not automatically compensate for payload 
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sway at the end of the motion. The operator relies on past experience to bring the 
payload to a swing-free stop. Of those cranes that have automatic compensation, 
they typically only work for pre-planned motions where the desired end position 
of the payload, in crane coordinates, is well specified. Unfortunately, cranes are 
most often used in unstructured environments where the end position, in crane 
coordinates, is not well specified, such as ship yards and factory floors. Consider 
the challenge of defining the desired position of a container on a ship as that ship 
oscillates with the waves. Because most cranes are guided to their final destination 
through an operator's joystick, a clever and unique solution was proposed. The 
Swing-free Operator Control (SOC) system uses the joystick input and modifies it 
in such a fashion that the resulting motion of the payload is swing-free. 

The SOC features input shaping technology based on an Infinite Impulse Re­
sponse Filter (IIR) design (see Chapter 5). The IIR filter transforms the operator's 
joystick input into a signal that prevents end-point swinging. Utilizing measure­
ments from a hoist cable length encoder the IIR filter parameters are updated 
real-time. The IIR filter algorithm is programmed into a standalone embedded 
computer. The SOC is integrated between the operator's joystick and existing 
crane controller (see Figure 1.1). 

IIR 
Input Shaping 

Filter 

Hoist 
'----------1 Cable Length 

Encoder 

Output 

Figure 1.1. SOC IIR filter integration with crane control system 

The SOC system successfully demonstrated input shaping technology on an 
overhead shipyard crane in Gulfport, Mississippi (see Figure 1.2). Numerous large 
containers were simultaneously moved from side-to-side, raised and lowered while 
the SOC system minimized container sway and reduced operation times. 

In the next section, the content of each chapter is previewed. 

1.3. Outline of the Book 

This book is a compilation of over 10 years worth of research and development 
at Sandia in flexible robot dynamics and controls. The R&D began approximately 
16 years ago with a munitions transportation project for the U.S. Army where 
Sandia enlisted Professor Greg Starr of The University of New Mexico (UNM) 
to solve the input shaping problem2 . Since that initial project, the concept of 
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Figure 1.2. Overhead shipyard crane loader/unloader in Gulfport, Mississippi 

input shaping has been expanded to include trajectory optimization, optimal path 
planning, optimal control, nonlinear programming, and dynamic programming as 
well as being integrated into linear and nonlinear feedback control techniques. 

The main goal of this book is to demonstrate the value of solid applied mathe­
matical theory when applied to real world hardware problems. This concept is con­
tinually emphasized by investigating and solving the overhead gantry robot problem 
within each subsequent chapter. As a result, this book provides a basic development 
of the required mathematics with many examples of real world hardware problems 
as well as many useful references for the interested reader. The basic development 
assumes that the reader is an upper level undergraduate or a graduate engineering 
student, or a practicing engineer. 

Chapter 2 provides the basic mathematical techniques used throughout the rest 
of the book for modeling, simulation, control design, input shaping, and optimiza­
tion. The experienced reader can skip this chapter and begin with Chapter 3. 
Chapter 3 is unique because it develops the method of quadratic modes for mod­
eling flexible link robots. The quadratic modes approach accounts for the classic 
problem of link foreshortening that is often incorrectly modeled in many multi body 
simulation codes. 

Chapter 4 and Chapter 5 develop the techniques of system identification and 
input shaping for path planning. System identification is a fundamental step in 
model verification for creating input shaping strategies. As you will see, the critical 
parameter for input shaping on the overhead gantry robot is the pendulum frequency 
of the load line. The input shaping techniques that are presented were mainly 
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developed at Sandia, but the authors believed that the work performed at MIT 
within Professor Warren Seering's research group deserved special attention. 

Chapter 6 is a discussion of linear feedback control with a couple of special topics. 
The first topic is a technique that relies on delay or latency in the feedback loop 
for stability. Lag-stabilized feedback control goes against the conventional wisdom 
that feedback delay is a destabilizing effect. The second topic is non-collocation of 
sensors and actuators, commonly referred to as non-minimum phase. This situation 
is often encountered when designing a control system for a flexible link robot. 

Chapter 7 and Chapter 8 present robot nonlinear control techniques. Chapter 7 
provides the mathematical background while Chapter 8 extends the discussion to 
nonlinear adaptive control. This adaptive control discussion is based upon some of 
Sandia's most recent flexible robot research. 

To further motivate the reader, the following problems, which were used as 
midterm and final projects during a class taught at UNM, were solved with the 
techniques discussed in this book. 
Midterm Project 

The midterm project will consist of designing an input shaped, open-loop control 
for a jib crane (see Figure 1.3). 

Figure 1.3. Jib crane schematic diagram 

Task 1 Derive the equations of motion for a fixed length jib crane (the results of 
one of your homework problems). 

Task 2 Develop a numerical simulation of the linearized jib crane. 

Task 3 Design an input shaped command for the jib crane to produce a rest­
to-rest, residual vibration-free, 90° maneuver (see Figure 1.4). One must 
formulate a trajectory optimization problem and solve it with the Recursive 
Quadratic Programming (RQP) algorithm in the MATLAB® Optimization 
Toolbox. The torque limit is approximately 3 rad/sec/sec and is based on the 
acceleration profile. 
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.. 
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Figure 1.4. Analytical acceleration profile 

Task 4 The results of the prior tasks must be formally documented in a midterm 
report including the derivations, descriptive figures, plots, and software code 
listings. 

Task 5 A ten minute oral presentation will be performed by a designated team 
member. 

Task 6 The input shaped command will be tested on the Sandia hardware and the 
results will be included in the final report. 

Final Project 
The final project will consist of designing an input shaped, open-loop control 

for a single flexible robot arm (see Figure 1.5). 

T Tip Mass r 
(J) = 9 Beam (x,l) 

Hub 

Figure 1.5. Flexible robot arm schematic diagram 

Task 1 Derive the equations of motion for a single, flexible robot arm including 
the first two modes and the actuator dynamics. 
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Task 2 Develop a numerical simulation of the flexible robot arm. 

Task 3 Perform system identification on the hardware to refine your model. Input­
output data will be provided. 

Task 4 Design an input shaped command for the flexible robot arm to produce 
a rest-to-rest, residual vibration-free 90° maneuver that is insensitive to a 
variation in tip mass. You must determine the torque limits and the motion 
limits of the hardware. In addition, you should minimize the control effort 
and perform the maneuver in less than 2 seconds. 

Task 5 The results of the prior tasks must be formally documented in a final report 
including the derivations, descriptive figures, plots, and software code listings. 

Task 6 A ten minute oral presentation will be performed by a designated team 
member. 

Task 7 The input shaped command will be tested on the UNM hardware, and the 
results will be included in the final report. 

Extra Credit Tasks 

Task A Design a linear, closed-loop, tracking controller for the flexible arm. 

Task B Design an input shaping filter for the flexible arm. 

Task C Design a nonlinear, closed-loop, tracking controller for the flexible arm. 

Further Reading 
Reference books that closely address some of the topics in more detail are sug­

gested for further reading. Several industry standard texts on robot dynamics and 
controls have been written by Craig,5 Paul,6 and Spong and Vidyasagar7. In the 
area of flexible multibody dynamics both Shabana,8 and Amirouche9 provide de­
tailed model developments. Several books written by Junkins and Kim,lO Kelar and 
Joshi,ll and Canudas de Wit, Siciliano, and Bastin12 most closely relate to the flex­
ible robot material covered in this book. For more specific topics, such as optimal 
control, optimization, dynamic programming, input-shaping, etc., the reader is di­
rected to each chapter's reference list. At the end of each chapter is a detailed list of 
references. These references serve as a foundation for the progressive development 
of each chapter. For the interested reader, they provide a ready resource of fur­
ther details and developments. For the latest research and development in flexible 
robot dynamics and controls, some archival journals are a rich environment. The 
professional engineering societies such as IEEE,13-15 AIAA,16 ASME,17 and several 
journal publishers18- 20 provide special emphasis in many aspects of dynamics and 
controls. 
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1.4. Chapter 1 Summary 

This chapter introduced the history of flexible robot dynamics and controls at 
Sandia National Laboratories. Included was a list of flexible robotics research mile­
stones. Many of the SAND reports resulted in published conference proceedings, 
journal articles, and some became U.S. patents. One particular application reports 
the successful implementation of an IIR input shaping filter to reduce residual os­
cillation for an overhead shipyard crane control system. Two projects (that were 
successfully used in the classroom environment) are presented with prescriptive 
tasks and objectives. Each project applied the analytical concepts (introduced in 
this book) and concluded with experimental validation. In the next chapter, math­
ematical fundamentals are introduced that apply throughout the remainder of the 
book. Chapter 3 presents the unique development of dynamic models for flexible 
robot dynamics. In Chapter 4, system identification techniques are presented that 
lead to calibrated mathematical models for implementation of open-loop control 
(see Chapter 5), linear closed-loop control (see Chapter 6) and advanced nonlinear 
control (see Chapters 7 and 8) design techniques. 

The main emphasis of this book is applied research with an instruction basis, 
and real world hardware implementation. 

1.5. Chapter 1 References 

1. "About Sandia" [online]. Available from: http://www.sandia.gov/About.htm 
[Accessed March 26, 2001]. 

2. G. P. Starr, "Swing-free transport of suspended objects with a path-controlled robot 
manipulator," ASME Journal of Dynamic Systems, Measurement, and Control, March, 
1985. 

3. J. T. Feddema, "Digital filter control ofremotely operated flexible structures," Proceed­
ings of the American Control Conference, pp. 2710-2715, San Francisco, CA, June, 
1993. 

4. J. T. Feddema, B. J. Petterson, and R. D. Robinett, Operator Control Systems and 
Methods for Swing-Free Gantry Style Cranes, U.S. Patent 5,785,191, July 28, 1998. 

5. J. J. Craig, Introduction to Robotics Mechanics and Control, Addison-Wesley Publish­
ing Co., Inc., 1989. 

6. R. Paul, Robot Manipulators: Mathematics, Programming, and Control, MIT Press, 
Cambridge, MA, 1982. 

7. M. W. Spong, and M. Vidyasagar, Robot Dynamics and Control, John Wiley & Sons, 
New York, NY, 1989. 

8. A. A. Shabana, Dynamics of Multibody Systems, John Wiley & Sons, New York, 
NY, 1989. 

9. F. M. L. Amirouche, Computational Methods for Multibody Dynamics, Prentice-Hall, 
1992. 

10. J. L. Junkins and Y. Kim, Introduction to Dynamics and Control of Flexible Struc-



1.6. CHAPTER 1 PROBLEMS 11 

tures, AIAA, Inc., Washington, D.C., 1993. 
11. A. Kelar, and S. Joshi, Control of Nonlinear Multibody Flexible Structures, Springer­

Verlag, New York, NY, 1996. 
12. C. Canudas de Wit, B. Siciliano, and G. Bastin, Theory of Robot Control, Springer-

Verlag, Inc., New York, N.Y., 1997. 
13. IEEE 7hmsactions on Robotics and Automation. 
14. IEEE 7ransactions on System, Man, and Cybernetics. 
15. IEEE 7ransactions on Automatic Control. 
16. AIAA Journal of Guidance, Control, and Dynamics. 
17. ASME Journal of Dynamic Systems, Measurement and Control. 
18. Journal of Robotic Systems. 
19. International Journal of Robotics e; Automation, lASTED. 
20. Mechanism and Machine Theory. 

1.6. Chapter 1 Problems 

Homework 1.1. A research project. 
Research the current literature and locate major applications associated with flexi­
ble robots, gantry robots with flexible payloads, and other controlled systems with 
structural flexibility. Are there any reoccurring problems from year to year? What 
are the new controls and dynamic modeling contributions and how did they relate 
to the particular problem being solved. Are there any problems that are considered 
unique? For the unique problems, construct formal problem definitions and propose 
feasible research approaches that may lead to potential solutions. 



Chapter 2 

Mathematical Preliminaries 

2.1. Introduction 

An understanding of a broad range of mathematical topics is required to analyze, 
simulate, and control flexible robotics systems. By no means does this chapter 
provide a complete coverage of all of the mathematical tools that can be used by an 
engineer, but this chapter does provide a brief review of the most pertinent concepts. 
For those readers who are familiar with the topics discussed in this chapter, this 
review is meant to jog one's memory and one can always choose to skip this chapter 
and go directly to Chapter 3 and/or (without any loss of continuity) review the 
references given at the end of the chapter. On the other hand, this chapter provides 
an unconventional review of variational calculus and methods for those who are 
interested in a different point of view. For those readers who are unfamiliar with 
any of these topics, one should refer to the appropriate references for a more detailed 
treatment of the material before proceeding to subsequent chapters. 

2.2. Linear Algebra 

Linear algebra is a fundamental tool that is used in flexible body modeling and 
system identification. The eigenvalues and eigenvectors of flexible body models are 
the natural frequencies and mode shapes of a flexible robot arm and will be used 
repeatedly in Chapters 3, 4, 5, and 6 to analyze experimental systems. Matrices 
and vectors enable one to perform system identification in a systematic way and 
will be applied to several hardware platforms. 

It is assumed that the reader has at least an introductory understanding of linear 
algebra. If not, the reader should refer to one of the references for a more detailed 
treatment as one proceeds through this sectionl - 5 . This review shall highlight 
concepts and definitions needed for subsequent chapters as the building blocks for 
more advanced flexible robotics concepts. 
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2.2.1. Linear Independence of Constant Vectors 

Definition 2.1. A set of vectors {X1,X2, ... X n } is linearly independent iff 3 
scalars {01, 02, ... On} that are all zero such that 

2.2.2. Rank and Null Space of a Matrix 

Definition 2.2. The rank of a matrix A is the maximum number of linearly 
independent rows or columns of A and is denoted by p(A). The rank of a matrix 
can be computed in two steps. First, apply a series of elementary row operations to 
convert the matrix to row echelon form. Second, count the number of nonzero rows 
to obtain the rank. 

Definition 2.3. The null space of A, N (A) is spanned by the basis 

Ax=O. (2.1) 

The dimension of N (A) is called the nullity of A and is denoted by 

v(A). 

Theorem 2.1. Let A E Rnxn, then 

p(A) + v(A) = n. 

Theorem 2.1 provides a powerful tool for determining if 3 a solution to Eq. (2.1). 
Specifically, if A is square (A E Rnxn), then there are two possibilities for its rank. 

Case 2.1. p(A) = n. 

This implies that v(A) = O. The only solution to Ax = 0 is the trivial solution 
x=O. 

Case 2.2. p(A) < n. 

This implies that v(A) > O. Therefore, 3 a nontrivial solution to Ax = O. 
This test is useful when determining eigenvalues as will be necessary in subsequent 
sections and chapters. 

An interesting property of square matrices is that their rank is invariant with 
respect to pre or post multiplication by nonsingular square matrices. That is, if 
A E Rnxn, then p(A) = p(AB) = p(BA). Although the rank of B is n (since it is 
nonsingular), the rank of A can be less than B. 

Nonsquare matrices also have some useful properties. Consider an n x m matrix 
that has rank equal to one of its dimensions. A new matrix can then be formed 
that is square and nonsingular. Specifically, if A E cmxn and p(A) = n, then the 
n x n matrix B = A· A has rank n. Alternatively, if p(A) = m, then the m x m 
matrix D = AA· has rank m. 
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Note 2.1. The inverses of B and D are examples of pseudoinverses that will be 
used in system identification (see Chapter 4). 

The reverse is also true, that is, if the matrix B = A' A has rank n, then 
p(A) = n. 

2.2.3. Eigenvalues and Eigenvectors 

Associated with any square, complex valued n x n matrix A are n scalar, vector 
pairs satisfying the equations 

Ax(r) = ArX(r) (r = 1, ... ,n). (2.2) 

The scalar denoted as Ar , in general, contains n distinct roots referred to as char­
acteristic values or eigenvalues. The vectors x(r) are the characteristic vectors or 
eigenvectors associated with each eigenvalue. 

It should be noted that the eigenvalues may be real or complex even if the matrix 
has all real values. Eigenvalues can also be zero. The number of zero eigenvalues of 
A is equal to the nullity of A. Alternatively, the rank of A tells us the number of 
nonzero eigenvalues. 

Note 2.2. Zero eigenvalues are equivalent to rigid body modes and nonzero eigen­
values are equivalent to flexible body modes (see Chapter 3). 

Theorem 2.1 provides a convenient method for computing eigenvalues and their 
corresponding eigenvectors. After rewriting Eq. (2.2) in the form 

observe (from Theorem 2.1) that a nontrivial solution exists if and only if 

det(A - !Ar ) = O. 

If the characteristic polynomial of A is defined as 

~(A) == det(A - 1>..), 

then the roots of the characteristic polynomial are the eigenvalues of A. The eigen­
vectors corresponding to each Ar are found by solving Eq. (2.2) for x(r). 

Example 2.1. Find the eigenvalues and eigenvectors for the matrix A 

-5 
-23 
20 

-3] -18 . 
16 
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Solution 

The characteristic polynomial is 

[
>. - 3 

~(>') = det -18 
16 

5 
>. + 23 
-20 

= >.(>.2 + 4>. + 13). 

3 ] 18 
>. - 16 

The eigenvalues of A are the roots of ~(>'), that is 

>'1 = ° 
>'2 = -2 + 3j 

>'3 = -2 - 3j. 

To illustrate eigenvector computation, the first step is to substitute the >'r's into 
Eq. (2.2) and solve for their corresponding eigenvectors x(r). Starting with >'1 = ° 
gives 

or written explicitly 

3] {x(l)} {OJ 
-=-18 xt1) = 0 , 
16 X(l) 0 

3 

3xi1) - 5X~1) - 3X~1) = 0 

18xP) - 23x~1) - 18x~1) = 0 

-16xP) + 20X~1) + 16x~1) = o. 
Solving for the solution gives 

Of course, any multiple of this vector is also an eigenvector X(l). Sometimes 
a normalization is introduced to ensure the uniqueness of the eigenvectors. For 
example, eigenvectors are sometimes normalized to have a magnitude of 1. For this 
example, the x(1) eigenvector would be 
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The complete solution set of eigenvalue, eigenvector pairs are 

where the columns of Q are composed of the eigenvectors Q = [x(l) x(2) X(3)] , 

respectively. 

Given a matrix A its eigenvalues will either all be unique, or some will be 
repeated. If the eigenvalues are unique, one is guaranteed that a matrix Q exists 
that can transform A into a diagonal matrix where the eigenvalues are on the 
diagonal. 

Note 2.3. By diagonalizing the A matrix, one can decouple the degrees-of-freedom 
and simplify the input shaping and feedback control designs (see Chapters 5, 6, 7, 
and 8). 

If the eigenvalues are repeated, it is possible to obtain Q, but it is not guaranteed. 

Distinct Eigenvalues 
If A has n distinct eigenvalues, then the eigenvectors x(l), X(2) , .•. ,x(n) form 

a linearly independent set. If the nonsingular matrix Q == [x(l) X(2) x(n)], 

then a diagonal matrix A is obtained by the similarity transformation A = Q-l AQ 
where the diagonal elements are the eigenvalues of A. 

Repeated Eigenvalues 
If A has repeated eigenvalues, there may exist a set of n linearly independent 

eigenvectors. If so, matrix Q can be formed as above. For each distinct Ar , there is 
an integer mr associated with it called its multiplicity that represents the number 
of occurrences of Ar . An eigenvalue with mr > 1 is, by definition, repeated. Each 
repeated eigenvalue must have mr independent eigenvectors in order to form Qr. 
In general, the eigenvectors of a repeated eigenvalue are not independent. 

There is a test to determine if there exists mr independent eigenvectors for any 
repeated eigenvalue. Specifically, if p(A - ArI) = n - m r , then the eigenvalue Ar 
has mr independent eigenvectors. 

2.3. Linear Control Systems 

Linear control theory is the basic building block where one begins the develop­
ment of flexible robot control. It enables the control designer to discuss controller 
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bandwidth, sampling rates, actuator performance, and sensor sensitivity. In addi­
tion, linear control theory is used to assess the linear stability of a system near its 
equilibrium points and provides a starting point for a nonlinear stability assessment 
(see Chapter 7). 

This section covers a wide range of concepts concerning linear control systems. 
Initially, the systems considered are time-varying. Later, some features of the spe­
cific case of linear time-invariant systems will be addressed2,3,6,7. Once again, this 
section only provides a brief review of concepts and definitions that will be used as 
building blocks for more advanced concepts. So, the unfamiliar reader is encouraged 
to consult one or more of the references2 . 

2.3.1. Discontinuous Functions 

The unit step, pulse, unit impulse, and doublet functions make up a set of 
discontinous functions useful for describing a wide range of inputs. These functions 
will be used in Chapter 3 to model applied forces and torques. 

Definition 2.4. The unit step function is defined as 

( _ {O, t < h 
u t - td = 1 t > t . , _ 1 

Definition 2.5. The pulse function is defined as 

This is shown graphically in Figure 2.1. 

t < tl 
tl ~ t < tl + ~ 
t :::: tl + ~ 

Definition 2.6. The impulse function (Dirac delta function}is defined as the 
limit of the pulse function as ~ goes to zero, or 

Two important integral properties of the Dirac delta function are 

and 

i: f(t)8(t - tddt = f(td· 
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Figure 2.1. Pulse function description 

Definition 2.7. The doublet function is defined as 

where "1{t - tl} has been defined within an integration. An alternative definition of 
the doublet function (for the special case f{t) = 1) is 

Note, at t = tl the Dirac delta function is undefined, hence so is the doublet function. 

2.3.2. Impulse Response Function 

With the impulse response function of a linear system given, one can determine 
the response of the system to any input by solving an integral equation. Consider 
a general linear operator H[u{t}] on the piecewise continuous input vector u{t}. 
Assume that an output relation exists such that 

y{t} = H[u{t}]. 

The input vector u{t} can be written as 

u{t} = L u{t;}8~{t - t;}A. 
i 

Use the linearity of H to obtain 

y{t} = L H[8~{t - td]u{t;}A. 
i 
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Taking the limit as Ll go to 0 yields 

y(t) = i: H[o(t - T))U(T)dT. 

Definition 2.8. The impulse response function of the linear function H is de­
fined as 

g(t, T) = H[o(t - T)). 

It is the output of the relaxed system at time t due to an impulse input at time T. 
The output y(t) can be written in terms of the impulse response as 

y(t) = i: g(t, T)U(T)dT. (2.3) 

Summary 
The impulse response function g(t, T) is calculated by applying an impulsive input 
at time T and measuring the response over time t. Once this function is known for 
a system, the output y(t) can be calculated for the specific input U(T) by solving 
the integral in Eq. (2.3). The Laplace transform of g(t, T) will be used in Chapter 5 
to design IIR input shaping filters. 

2.3.3. Laplace Thansform 

The Laplace transform is one of many linear transformations used in linear 
system analysis that allows for algebraic manipulation of differential equations. 
This is especially helpful in linear control system design as well as input shaping 
design. 

Definition 2.9. An integral transform is an operation that transforms a func­
tion f(t) to the function F(s) by means of an integral. The general form is 

F(s) = i f3 K(s, t)f(t)dt. 

Definition 2.10. The Laplace transform is an integral transform defined by 

L[J(t)) == F(s) == roo e- st f(t)dt = lim {f3 e- st f(t)dt. Jo f3-+00 Jo 
One application of the Laplace transform is to convert ordinary differential equa­

tions into algebraic equations. After algebraic manipulations of the Laplace domain 
equation, it may be transformed back to the physical domain to obtain its solution. 

The inverse Laplace transform is formally found by performing a complex con­
tour integral. In practice, use a table2 • 
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Laplace Transform Properties 

1. It is a linear transformation between the t and 8 domains, so 

2. The Laplace transform of the derivative of a function is 

[ 
d" ] (n-1) 

L dtn I(t) = sn F(s) - 8 n - 1 1(0) - 8 n - 2 j(O) - ... - 1 (0) 

(n-1) 
where 1 = dn- 1 l(t)/dtn - 1 • 

3. The Laplace transform of the integral of a function is 

[ t, rto tn ] F(s) 
L 10 10 '" 10 l(r)drdt1 ... dtn -1 = 7' 

4. The Laplace transform of a function delayed in time by T seconds is 

L(f(t - T)u(t - T)) = e-T8 F(s) 

where u(t) is the unit step function. 

5. The initial value of I(t) is 

lim I(t) = lim sF(s). 
t-+O 8-+00 

This can be applied as long as the limit exists. 

6. The final value of I(t) is 

lim I(t) = lim sF(s). 
t-+oo 8-+0 

This can be applied as long as the roots of the denominator of sF(s) all have 
negative real parts. 

7. The Laplace transform of a time-scaled function is 

L [I (D] = aF(as) 

where F(s) = L[/(t)). 

8. The inverse Laplace transform of a frequency scaled function is 

L- 1 [F (DJ = al(at) 

where L-1[F(s)) = I(t). 
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9. The Laplace transform of a function of the form e-at J(t) is 

L[e-at J(t)] = F(s + a) 

where F(s) = L[J(t)]. 

10. The Laplace transform of the convolution of two time functions is the product 
of the Laplace transforms of the time functions, so 

Example 2.2. Find the solution to the differential equation x + 6x + 5x = u(t) 
where u(t) is the unit step function, and the initial conditions are x(O) = x(O) = O. 

Solution 
Taking the Laplace transform of both sides of the differential equation gives 

S2 Xes) - sx(O) - x(O) + 6sX(s) - 6x(0) + 5X(s) = U(s). 

Applying the given initial conditions permits the simplification, 

(S2 + 6s + 5)X(s) = U(s). 

Replacing the input with the Laplace transform for a unit step results in 

1 
X (s) = -s (:-:s2:-+-6-s-+-5-:-) 

Rewriting the left side as a partial fraction expansion gives 

Xes) = 1/5 _ 1/4 + 1/20. 
s s+l s+5 

From a table of inverse Laplace transforms, the solution is 

x(t) = - - -e + -e u(t). [ 1 1 -t 1 -5t] 
5 4 20 

The transfer function is the Laplace domain analog of the impulse response 
function presented earlier. For Example 2.2, one can solve the original system for 
an impulse input. The Laplace transform of an impulse is unity, making the job 
easy, thus 

Xes) _ Xes) _ H s _ 1 
U(s) - 1 - () - s2 + 6s + 5 

1/4 1/4 -----
s+l s+5 
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Using a table to look up the inverse Laplace transforms gives the impulse response 
as 

From the discussion on the impulse response, it is now known that the solution 
to any input can now be found by using Eq. (2.3). So, for the unit step response of 
the example 

x(t) = [g(r)dr 

( 1 1 -t 1 -5t) = - - -e + -e u(t). 
5 4 20 

2.3.4. State-space Realization 

In this section, the notation for state-space descriptions of linear systems is 
presented. Multiple Input Multiple Output (MIMO) systems are the motivation 
for state-space techniques. Some basic concepts are presented including the fun­
damental matrix, the state transition matrix, the solution to the state equation, 
controllability, and observability. 

The impulse response matrix and the transfer function matrix are MIMO analogs 
of the impulse response function and transfer function discussed previously. 

Notation 
The representation of the equations of motion for linear time-varying systems is 

:ic(t) = A(t)x(t) + B(t)u(t) 

y(t) = C(t)x(t) + D(t)u(t) 

A E ~nxn x E ~nxl 

B E ~nxp u E ~pXl 

C E ~qxn y E ~qxl 

D E ~qxp. 

The Fundamental and State Transition Matrices 
First, consider the zero-input state equation :ic(t) = A(t)x(t). 

Definition 2.11. The n x n matrix function >It(t) is the fundamental matrix of 
:ic(t) = A(t)x(t) iff the n columns of >It(t) are linearly independent solutions of the 
zero-input state equation. 

Note 2.4. The linearly independent solutions of the zero-input state equation may 
be found by taking linear combinations of its solutions. 

Note 2.5. The fundamental matrix is not unique. 
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Example 2.3. Find a fundamental matrix for the system given by 

. [-1 0] [ 2 ] x = 0 -2 x + -1 u 

y = [5 3] x + [0 2] u. 

Solution 

1. Solve the zero-input equations 

Xl = -Xl 

X2 = -2X2 

Xl + Xl = 0 

X2 + 2X2 = 0 

Xl = Cle- t 

X2 = C2e-2t 

2. Form the columns of a fundamental matrix \I1(t) as linear combinations of 
Xl (t), and X2(t). The constants Cl, and C2 can be selected arbitrarily as long 
as they result in linearly independent sets of solutions. Therefore, 

Definition 2.12. If wet) is a fundamental matrix of the zero-input system x = 
A(t)x(t), then 

'V t, to E (-00,00) 

is the state transition matrix of the zero-input system. Note, 

• +(t, to) is unique. 

• +(t, t) = I. 
• +-l(t, to) = +(to, t). 

• +(t2, to) = +(t2, tl)+(tl, to). 

The state transition matrix maps any initial state x(to) to the state x(t) when the 
input u(t) is zero. Note, +(t, to) satisfies the differential equation 

a 
at +(t, to) = A(t)+(t, to) with +(to, to) = I. 
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Example 2.4. Find the state tran.;ition matrix of the system of Example 2.3. 

Solution 

1. Find w-1(to) (see Eq. 2.8) 

2. Apply Definition 2.12, 

[ 
-t 

~(t, to) = 5:-2t 

When the dynamical system is time varying, a closed form of ~(t, to) may not exist. 
However, some special cases can be found. 

1. A(t) is triangular. 

The uncoupled equation (formed by the last row of A(t)) can be solved. Its 
solution is then back-substituted to solve the rest. 

2. IT A(t) satisfies 

A(t) ([: A(T)dT) = ([: A(T)dT) A(t) Vet, to), 

then the state transition matrix is 

Example 2.5. Find the state transition matrix for the zero-input system 

. [-1 e2t ] x = 0 -1 x (2.4) 

Solution 

1. Solve the decoupled equation resulting from the last row of Eq. (2.4) 

By inspection the solution is 

(2.5) 
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2. Solve the coupled equation using the back-substituted solution for X2(t). The 
differential equation from the first row of Eq. (2.4) is 

(2.6) 

Initially, solve for the homogeneous solution by setting the right-hand side of 
Eq. (2.6) to zero and obtain 

Next, solve for the particular solution by replacing X2(t) in Eq. (2.6) with the 
solution from Eq. (2.5) 

(2.7) 

The particular solution has the form 

Taking the first derivative and substituting both into Eq. (2.7) yields 

or 

Therefore, 

Combining both the homogeneous and particular solutions gives the general 
solution as 

3. Using linear combinations of the solutions for Xl(t) and X2(t) form a funda­
mental matrix w(t). The first column comes from setting Cl = C2 = 1, and 
the second column comes from setting Cl = 1 and C2 = o. 

[ 
-t + 1 t -t] 

w(t) = e e_t'i e eO w-1(t)= [ 0 o eto 
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4. Apply Definition 2.12 to forlI' the state transition matrix +(t, to) to obtain 

[ 
e-(t-to) 

+(t, to) = 0 
~ (e(t+to) _ e-(t-3to») ] 

e-(t-to) . 

Solution of the State Equation 

Theorem 2.2. The solution to the state equation 

x(t) = A(t)x + B(t)u(t); x(to) = Xu 
is 

x(t) = +(t, to)xo + it +(t, r)B(r)u(r)dr 
to 

= +(t, to)xo + it +(t, to)+(to, r)B(r)u(r)dr 
to 

= +(t, to) [Xu + 1: +(to, r)B(r)U(r)dr] . 

Proof 2.1. Consists of two parts. 

1. The solution satisfies the state equation. 

2. The solution satisfies the initial condition. 

Part 1 
Given 

d () () it -d x(t) = -;;-+(t, to)xo + -;;- +(t, r)B(r)u(r)dr. 
t vt vt to 

Recall, Liebnitz Rule and apply 

! l f(t, t*)dt* = l :/(t, t*)dt* + f(t, t). 

Direct application to the partial derivative of the integral gives 

dd x(t) = A(t)+(t, to)xo + t A(t)+(t, r)B(r)u(r)dr + +(t, t)B(t)u(t) 
t J~ 

Note, +(t, t) = I therefore the expression above simplifies to 

d it -d x(t) = A(t)+(t, to)xo + A(t) +(t, r)B(r)u(r)dr + B(t)u(t) 
t ~ 

= A(t) [+(t, to)xo + 1: +(t, r)B(r)U(r)dr] + B(t)u(t) 

= A(t)x(t) + B(t)u(t). 
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Part 2 
Given 
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x(to) = Xo + it C)(to, r)B(r)u(r)dr = Xo. 
to 

The solution to the state equation is commonly divided into two parts, 
Zero Input Response (u = 0) 

C)(t; (to, xo, 0)) = c)(t, to)xo, 

and Zero State Response (xo = 0) 

C)(t; (to, 0, u)) = it C)(t, r)B(r)u(r)dr. 
to 

By substituting the solution of the state equation into its definition, the output so­
lution may be written as 

y(t) = it [C(t)C)(t, r)B(r) + D(t)6(t - r)] u(r)dr. 
to 

The impulse response matrix is easily seen to be 

G(t, r) = C(t)c)(t, r)B(r) + D(t)6(t - r). 

Using this notation, reveals the output response as 

y(t) = it G(t, r)u(r)dr. 0 
to 

2.3.5. Time Invariant Linear Systems 

All of the previous discussions for time-varying systems applies to the more spe­
cific case of time-invariant systems. However, time-invariant systems afford many 
simplifications, some of which are addressed in this section. 

The linear time-invariant dynamical equations are 

x = Ax+Bu 
y = Cx+Du. 

Before proceeding, consider the Taylor series expansion of the function 

At 1 A 1 A2t2 e = + t+2" .... 

This can be generalized to the matrix exponential as 
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The time derivative of eAt is 

!!.. eAt = f: __ 1_ tk-1Ak = A rf:..!.. tk Ak] = AeAt = eAtA 
dt k=l (k - I)! ~=o k! . 

Since eAt satisfies 

!!..eAt = AeAt 
dt ' 

29 

eAt is a fundamental matrix of the dynamical equation. This gives a method for 
finding the state transition matrix. Namely, 

(2.8) 

This can be used in writing the solution to the dynamical equation where the ini­
tial time to has been assigned to zero (this is a mathematical convenience exploited 
for time-invariant systems). The dynamical equations are 

x(t) = eAtXo + 1t eA(t-T) Bu(r)dr (2.9) 

y(t) = CeAtXo + CeAt l e-ATBu(r)dr + Du(t). (2.10) 

The impulse response matrix is easily seen to be 

G(t, r) = CeA(t-T)B + D6(t - r), 

or 

G(t) = CeAtB + D6(t). 

The dynamical equations (see Eq. 2.9 and Eq. 2.10) can also be analyzed in the 
Laplace domain. Taking the Laplace transform of the solution to the dynamical 
equations results in 

X(s) = (sI - A)-l Xo + (sI - A)-l BU(s) 

Y(s) = C (sI - A)-l Xo + C (sI - A)-l BU(s) + DU(s). 

The direct analogy of the time-domain impulse response matrix to the Laplace 
domain is called the transfer function matrix. From the solution to the dynamical 
equation, this is easily seen to be 

G(s) = C (sI - A)-l B + D 

where the Laplace transform of eAt has been used 

L [eAt] = (sI _ A)-I. (2.11) 
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2.3.6. Controllability 

It is important to know whether a system is completely controllable or if one 
needs to add more actuators. This concept will be discussed in detail in Chapter 7 
with respect to augmented and output feedback sliding mode controllers. 

Definition 2.13. The system x = A(t)x + B(t)x is controllable at time to if 3 
at time tl such that 'V initial state xo, and 'V final states Xl 3 an input u that will 
transfer the state from the initial state to the final state at time tl' 

Note 2.6. For the time-invariant case, the controllability of the system is not de­
pendent on time. 

Theorem 2.3. The n-dimensional system above is controllable iff any of the 
following conditions are satisfied: 

1. All rows of e-AtB (or eAt B) are linearly independent over the field of complex 
numbers C. 

2. All rows of (sl - A)-l B are linearly independent over C. 

3. The n x np controllability matrix [B AB A2B ... An-IB] has rank n. 

If one knows that a linear system is controllable, then it is known that an input 
exists that can move the states from any initial position to any final position. Other 
methods do exist to obtain the same information2 • 

2.3.7. Observability 

It is important to know whether a system is completely observable or if one 
needs to add more sensors and/or a Kalman filter. This concept will be discussed 
in detail in Chapter 7. 

Definition 2.14. The system 

x = Ax+Bu 

y = Cx+Du, 

is observable at to if 3, at time tl such that knowledge of the input u and the output 
y over the time interval [to, til is sufficient to determine the initial state Xo· 

Theorem 2.4. The n-dimensional system above is observable iff any of the 
following conditions are satisfied: 

1. All columns of CeAt are linearly independent over C. 

2. All columns of C (sl - A)-l are linearly independent over C. 

3. The nq x n observability matrix [C CA CA2 ... CAn-I] T has rank n. 

If one knows that a linear system is observable, then it is known that the state 
history can be calculated based on knowledge of the past inputs and outputs. 
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2.4. Digital Systems 

Any control system that one designs for a flexible robot will be implemented on 
an embedded computer. As a result, the control system must be directly written in 
digital form and/or transformed from continuous time to discrete time. 

In this section, a few topics regarding sampled data systems are covered. Specif­
ically, digital integration methods for simulating linear and nonlinear systems. To 
this end, the Z-transform and the unit impulse response function (the discrete ana­
log of the impulse response function) are introduced. Finally, the discrete form of 
the state equations is discussed2,6,7,8. 

2.4.1. Introduction to Integration Algorithms 

Special notation is needed to describe sampled data systems. Namely, 

n = An integer sample number 
h = The time interval between samples 
Xn = The value of x at time t = nh 
Xn+l The value of x at time t = hen + 1). 

Consider a simple dynamical system represented as 

x(t) = f(t). (2.12) 

Integrating both sides of this equation from t = nh to t = hen + 1) gives 

lh (n+l) 

Xn+l = Xn + f(t)dt, 
nh 

(2.13) 

and is represented graphically in Figure 2.2. However, the area under the f(t) curve 
must be approximated because f(t) is only known at the sample points t = nh and 
t = hen + 1). One approximation known as Euler integration is shown graphically 
in Figure 2.3. The integral of Eq. (2.13) is approximated as 

lh(n+l) 

f(t)dt ~ hfn 
nh 

(2.14) 

and when Eq. (2.14) is substituted into Eq. (2.13) one obtains 

If the area under the f(t) curve is approximated using a trapezoid (instead of a 
rectangle), then the approximation for the state Xn+l becomes 
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f(t) 

nh h(n+l) 

Figure 2.2: Graphical represen­
tation of numerical integration 

f(t) 

nh h(n+l) 

Figure 2.3: Graphical represen­
tation of Euler integration 

This requires knowledge of the function evaluated at t = h(n + 1). If f is also a 
function of x, then the evaluation of fn+! requires knowledge of Xn+l. If f is a 
linear function of x, then the approximation of Xn+l can be solved. However, if f 
is a nonlinear function of x and Xn+l cannot be solved for, then this trapezoidal 
method becomes implicit and not appropriate for real-time simulation. 

These concepts can be generalized to dynamical systems represented by 

x = f(x, u, t) 

where u is the system input and t appears when there is an explicit time dependency. 
First, define fn as the evaluation of f(x, u, t) at t = nh, that is 

Again, the approximations of states at time h(n + 1) for Euler and Trapezoidal 
integration are 

Xn+l = Xn + hfn 
h 

Xn+l = Xn + 2(fn + fn+!). 

Several of the common integration algorithms, along with error information, 
used for solving dynamical system equations are given on the following pages. Sev­
eral measures of error are used when evaluating an integration method. The one 
presented in Eq. (2.15) indicates how well the time constant of the simulated first­
order linear system rx + x = u match those of the true linear system. 

r* - r 
er =-­

r 

where r* is the approximate time constant and r is the exact value. 

(2.15) 
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2.4.2. Explicit (Single Pass) 

These methods allow the next value x to be computed using previous values of f 
and x. Because of this feature, they are called explicit and are suitable for real-time, 
operator-in-the-Ioop simulations. These algorithms are listed without derivations 
for the ease of reference. 

Euler 

Xn+l = Xn + hfn 
h 

eT = '20 

AB-2 (Adams-Bashforth) 

h 
Xn+l = Xn + '2(3fn - fn-d 

5 2 
eT = 12h . 

AB-3 

AB-4 

h 
Xn+l = Xn + 24 (55fn - 59fn- 1 + 37fn- 2 - 9fn- 3 ) 

251 4 
eT = 720 h . 

AB-5 

(2.16) 

h 
Xn+l = Xn + 720 (1901fn - 2774fn_1 + 2616fn- 2 - 1274fn_3 + 25lfn- 4) 

eT ~ h5
0 

2.4.3. Implicit (Single Pass) 

These methods compute the next value of x using, in general, Xn+lo If f depends 
on x nonlinearly, then these methods are not suitable for real-time applications. 
These algorithms are listed without derivations for the ease of reference. 
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Trapezoidal 

3rd-Order 

4th-Order 

h 
Xn+l = Xn + 24 (9fn + 19fn_1 - 5fn - 2 + fn - 3) 

19 4 
er = -720 h . 

Next, several Runge-Kutta methods will be presented with a brief discussion 
regarding real-time compatibility. In short, an integration method is real-time com­
patible if the algorithm does not require Un+l to calculate Xn+J' This is important 
for simulating real-time systems where the input is the result of a closed-loop control 
law. Typically, the control law is a function of the current state and physically is 
not available until the new state information has been calculated. Note, the number 
of passes determines the order of the routing. 

2.4.4. Second-order Runge-Kutta 

First Pass 

Second Pass 

fn = f(xn, un) 

X~+J = Xn + hfn. 

f~+J = f (X~+l' un+d 

Xn+J = Xn + ~ (fn + f~+l) 
1 2 

er = "6 h . 

Note, this is not r dl-time compatible. 

Euler 

Trapezaidal 



2.4. DIGITAL SYSTEMS 

2.4.5. Real-Time, Second-Order Runge-Kutta 

First Pass 

Second Pass 

f~+! = f (x~+!' u n +!) 

X n +l = Xn + hf*+ 1 n '1 

1 
e - _h2 

T - 6 . 

Note, this is real-time compatible. 

2.4.6. Third-order Runge-Kutta 

First Pass 

Second Pass 

Third Pass 

f~+ i = f ( x~+ i ' U n+ i ) 

f~~ l = ~ (fn + f~+! ) 
Xn+l = Xn + ~ (f~~k + f~+i) 

1 3 
eT = 24h . 

Note, this method is real-time compatible. 

Euler 

Euler 

Euler 

Euler 

1st Average 

2nd Average 

35 



36 CHAPTER 2 MATHEMATICAL PRELIMINARIES 

2.4.7. Fourth-order Runge-Kutta (RK-4) 

First Pass 

fn = f(xn' un) 

x~+! = Xn + ~hfn. 

Second Pass 

Third Pass 

f~~! = f ( X~~ ! ' Un+! ) 

X~+l = Xn + hf~~!. 

Fourth Pass 

f~+! = f (x~+!, un+!) 

n, n, n 2 n, h [fn + f*+ 1 f*+ 1 + f*+* 1 f*+* 1 + f~+! ] 
Xn+l = Xn + 3" ---=-2--'-"'- + 2 + -~-::-2--

= Xn + ~ (fn + 2f~+! + 2f~~! + f~+l) 
1 4 

er = 120h . 

Note, this method is not real-time compatible. 

2.4.8. Stability 

Euler 

Euler 

Euler 

Stability is conveniently discussed in relation to simulating a stable first-order 
system with eigenvalue).. All of the methods presented will be stable if the quantity 
)'h is small enough. By stable, it is meant that the solution to the dynamical system 
will be stable. Errors in the solution may still exist. However, small enough is a 
relative term and is different for each method. If the eigenvalues are known, one 
can calculate the bound on stability exactly. In general, certain statements can be 
made regarding the algorithms presented. 
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• Trapezoidal integration is always stable. 

• For single pass methods, the stability boundary shrinks with increasing accu­
racy. 

• For Runge-Kutta methods, the stability boundary expands with increasing 
accuracy. 

• Runge-Kutta methods have larger stability boundaries than single pass meth­
ods (approximately 2 to 5 times larger). 

• All methods may stabilize an unstable system, that is a system with A < 0 
(especially AB-3, RK-4). 

2.4.9. Z-transform 

Any control law implemented on a digital computer must be formed as a differ­
ence equation. One approach is to design the controller in the discrete time domain 
using, perhaps, discrete time equivalents of the root-locus or Bode plots. Alterna­
tively, the continuous domain (or Laplace) version of a controller can be converted 
to a difference equation. In either case, the Z-transform is introduced and its use in 
converting transfer functions to difference equations is presented. It will be assumed 
that the system is being sampled at a fixed interval. 

This section is presented with the following considerations: 

• Restricted to linear sampled-data systems. 

• Requires equally spaced time steps between samples. 

Definition 2.15. The Z-transform of the data sequence Un} is 

00 

ZUn} = F*(z) = L fn z - n 

n=O 

where z is a complex variable and Un} = Uo, II, /Z, ... }. 

For data sequences of exponential functions, its Z-transform can be expressed 
in closed form. Consider the exponential function f(t) = eut . The corresponding 
data sequence is 

where A = euh . Using the definition of the Z -transform results in the series 

(2.17) 
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This can be shown by applying the binomial theorem to the right side of Eq. (2.17) 

(1 - Az-l)-l = zO + Az-l + A2z-2 + .... 

Now, whenever a Z-transform of a data sequence has the term of the form 

F* = ZUn} = _z_, 
z-A 

the corresponding time sequence is exponential of the form Un} = {eunh } where 
0- = (1/ h) . In(A). 

Example 2.6. Consider the system :i; = AX + u(t). 

Solution 
Simulate this system using Euler integration to get 

Xn+l = Xn + hln 

where In = AXn + Un· 
The resulting difference equation is 

Next, take the Z-transform of this system. Considering the left side first gives 

Z{xn+d = Xl + Z- l X2 + z-2 X3 + .. . 
= z(xo + Z-lXl + Z-2 X2 + ... ) - zXo 

= zX*(z) - ZXo. 

The Z-transformed system with initial conditions becomes 

zX*(z) - ZXo = (1 + Ah)X*(z) + hU*(z}. 

Solving for X*(z} gives 

X*(z) = z _ ~x~ Ah + z _ Ih_ Ah U*(z}. (2.18) 

Note 2.7. The first term is dependent on Xo and is the discrete analog of the zero­
input solution for continuous time systems. The second term is the discrete analog 
of the zero-state solution for continuous time systems. 

Now, focus on the zero-input portion. Recall, the zero-state portion written as 
a discrete-time transfer function 

X*(z) = ZXo . 
z - 1 - Ah 
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The term on the right has the familiar form of z/(z - A) where A = 1 + >'h. 
Therefore, the resulting time sequence is an exponential sequence of 

where 

1 
U = hln(l + >'h). 

Expanding In(l + >'h) in a Taylor series about >'h = ° gives 

U = ~ (>'h - ~>.2h2 + ... ) 

I:::: >. - ~>.2h. 

The error in the approximate eigenvalue u is 

which was stated previously for Euler integration. (see the error expression for 
Eq.2.16). 

Thus, the transient solution of the Euler integration based simulation, of the 
original linear system, contains a transient portion (the zero-input response) that 
behaves as a decaying exponential. However, the time constant of that exponential 
(the eigenvalue) is different from the true system by e~. For stability reasons, this 
is the case for >'h « 1. The comforting feature of this analysis is that as the time 
step is made smaller the simulated eigenvalue approaches the true eigenvalue. 

2.4.10. Unit data-point integrator 

It is time to focus on the zero-state portion of Eq. (2.18) 

X*(z) h 
U*(z) = z - 1 - >.h· 

First, the unit data point input is defined as 

'Uo = 1, 'Ul = 0, 'U2 = 0, .... 

Its Z-tran". ' is simply 

U*(z) = 1. 
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The zero-state, unit data-point response of a system will be denoted as H*(z) 
and it is the discrete analog of the impulse response for continuous time systems. 
For this system, 

Now, the unit data-point integrator response Hj(z) can be discussed in detail. 
Each integration method discussed earlier has a unique Hj(z) determined by con­
sidering the simple linear system 

x = u(t). 

For Euler integration, the difference equation for this system is 

Xn+l = Xn + hUn. 

Taking the Z-transform gives 

X*(z) = H*(z) = _h_. 
U*(z) [ z - 1 

For another example, consider Trapezoidal integration 

1 
Xn+l = Xn + "2 h (un + un+d· 

Taking the Z-transform gives 

1 
zX*(z) = X*(z) + "2h (U*(z) + zU*(z)), 

or 

X*(z) = H*(z) = z + h . 
U*(z) [ 2(z - 1) 

This can be used to implement digital filters and control laws using digital 
computers. Consider the closed loop system in Figure 2.4 where the plant is denoted 
by G(s) and some linear compensator is denoted by H(s). If the plant is real (Le., 
this is an experiment, not a simulation), one needs to implement the compensator 
digitally based on current inputs e(t), and outputs u(t). If the plant is not real (Le., 
for the simulation case), typically, one would simulate the plant using a sample rate 
sufficiently fast to capture the relevant dynamics. However, the compensator would 
use a different sample rate (typically slower) consistent with the hardware that may 
eventually be used to test the system. In either case, a discrete time representation 
of the compensator is created. 

For zero-state analysis, the Laplace operator can be treated as a differential 
operator. Thus, the operator s is replaced with the inverse of the unit data-point 
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R(s) + 

Figure 2.4. Closed loop system 

response for the chosen integration method. The result is a digital implementation 
of the compensator. 

For example, consider the compensator 

U(s) w~ 
E(s) = s2 + 2(wns + w~' 

For the sake of computation speed, Euler integration is chosen. Its unit data-point 
response is 

Hj(z) = _h_. 
z-l 

To obtain the discrete implementation of the compensator, replace all occurrences 
of s with the inverse of the unit data-point response, or 

z-l 
s becomes -h-' 

The result is 

Taking the inverse Z-transform gives 

un+2 + (2(wnh - 2)Un+l + (w~h2 - 2(wnh + l)un = w~h2en, 
which is easily implemented digitally. 

2.4.11. State-space methods 

Consider the system 

i = Ax+Bu 
y=Cx. 
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The solution to this system has been previously developed in Section 2.3.5. as 

X(t} = eAtXo + lot eA(t-r)Bu(r}dr 

y(t} = Cx(t}. 

Now, consider the input u(t} sampled by zero-order hold such that 

u(t} = Un nh $ t < h(n + 1}. 

The solution to this system is 

rh(n+l) 
xn+l = eA(n+l)hxo + 10 eA(nh+h-r)Bu(r}dr 

i nh lh(n+l) = eAh [eAnhXo + eA(nh-r)Bu(r}dr] + eA(nh+h-r)Bu(r}dr. 
o nh 

(2.19) 

The term in brackets (see Eq. 2.19) is Xn and the input u(r} is constant. This 
results in 

xn+l = eAhxn + [Ioh 
eAOdr] BUn. 

This can be written in the same form as the original dynamical equation 

Xn+l = AXn + BUn 

Yn = CXn 

where 

B = [Ioh 
eAOdr] B 

C=C. 

The resulting data sequence is exact for a zero-order hold input. This technique 
is powerful for both implementing compensators, and the simulation of the plant 
(if the plant is linear). 

2.5. Calculus of Variations 

Many fields of applied mathematics and engineering rely on calculus of varia­
tions. These fields include optimization and approximation theories in which system 
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identification (see Chapter 4) is used to verify system models relative to experimen­
tal data. These system models include finite element models that are derived from 
a so-cailed weak variational form 10 • Presented in this chapter are the basics of 
calculus of variations and the development of equations of motion for mechanical 
and dynamical system models utilizing integral/energy methods. Since calculus of 
variations is the generalization of calculus of variables, the discussion will begin 
with calculus of variables. 

2.5.1. Calculus of Several Variables 

Because most realistic calculus of variations problems are transformed into cal­
culus of several variables problems to be solved numerically, the calculus of several 
variables is useful and practical. This procedure is called parameter optimization 
and is referred to as a suboptimal solution because the space of possible solutions is 
constrained by the choice of approximation functions (for example finite elements). 
The goal of parameter optimization is to pick a scalar performance function to min­
imize and thus, determine the optimal parameter values. First, a scalar function of 
two independent variables is presented. Consider, 

J=F(Xl,X2) 

where F has continuous first and second derivatives. The extrema of J are deter­
mined by taking the first partial derivatives and equating them to zero, or 

8J 
-=F"'l =0 
8Xl 
8J 
- =F"'2 =0. 8X 2 

The result is a set of simultaneous equations that must be solved for the parameters 
(Xl. X2). H these equations are nonlinear, then a Newton root solver is needed 11 • 

Therefore, for the benefit of the reader, a short description of Newton's method is 
presented. 

Newton's Method 

Solve the equation (or system of n-equations) f(x) = 0 for x (n-unknowns). 
Expand f(x) = 0 in a Taylor's series to first-order and fashion an interative scheme 

f(x) = f(xo) + fxo(Xo)[x - xo] + H.O.T. = O. 

H one neglects the higher-order terms (R.O.T.), one makes the assumption that 
the function(s) one is (are) trying to solve is (are) locally linear and that one can 
solve for a new x that is closer to the actual solution of f(x) = O. Specifically, the 
mathematical formulation of this iterative scheme is 

f(XH1) = f(Xi) + fx; (Xi) [XHl - Xi] ~ 0 

Xi+l = Xi - f~/ (xi)f(Xi), 
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which is presented graphically in Figure 2.5 for several iterations. Newton's methods 

f(x) 

Figure 2.5. Newton's method iterations 

works best on monotonically increasing or decreasing functions. Additionally, the 
iteration will converge to the correct x if the function does not experience changes 
in curvature. 

Now, a set of linear equations are solved directly. Consider 

Ax=b, 

or 

x = A-lb. 

Once these equations are solved, the type of extrema can be determined. One is 
typically only interested if the extrema is a minimum. A minimum exist if 

F Z1Z1 > 0 

FZ1Z1Fz2Z2 - F;IZ2 > O. 

(2.20) 

(2.21) 

The generalization of this procedure to many variables is via matrix and vector 
analysis. The scalar performance function is written as 

J = F(x); 

and the extrema vector function is 

{)J 
- =Fx =0' 
{)x ' 

x is a (n x 1) vector 

F x is a (n x 1) vector. 

The generalized minimum check is 

{)2J 
{)x2 = H > 0; H is a (n x n) positive definite matrix 

where H is referred to as the Hessian matrix. The check for a positive definite 
matrix is performed by determining if 
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1. All eigenvalues are positive. 

2. All leading minors are positive (referred to as Sylvester's Criterion as given 
in Eq. (2.20) and Eq. (2.21) for two variables). 

Example 2.7. Linear Least Squares (LLS) 

• Function 

where 

J = (z - zm)TW(z - zm) 

z=Ax 

Zm = measurements, (M x 1) vector, M > n. 

W = positive definite, symmetric weighting matrix. 

A = (M x n)matrix. 

x = states, (n x 1)vector. 

• Extrema (Referred to as normal equations with a psuedoinverse) 

8J T T 
8x = 2A WAx - 2A WZm = O. 

Therefore, 

( T )-1 T x= A WA A Wzm. 

• Check for a minimum 

Example 2.8. Check for positive definiteness 

1. Positive Eigenvalues 

H = [! !] 
(AI - H) = [(A ~3 3) (A -} 4)] 

det(AI - H) = A2 - 7A + 3 

Al,2 > O. 
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2. Positive Leading Minors 

H = [~ !] 
Mll = 131 > 0 

M22 = I~ :1 
= 3 > o. 

As a side note, a local minimum check can be performed on each extremum by 
evaluating J = F(x) in a region near the extremum, or 

J(XE) < J(XE + ~x) 
J(XE) < J(XE - ~x). 

This check is useful for complicated nonlinear problems where the Hessian matrix 
is not readily available. This is the case for most real world applications. 

2.5.2. Lagrange Multipliers 

When not all of the variables are independent, Lagrange multipliers provide a 
straightforward method to solve for extrema. For example, it may be difficult or 
impossible to eliminate the dependent variables, or the system is easier to model 
with the dependent variables. The idea is to include additional unknown vari­
ables and additional independent equations that are the constraint equations to the 
minimization problem. Swokowski9 presents a good basic explanation of Lagrange 
multipliers. The calculus of many variables with several constraint equations is a 
straight forward problem. Begin with a function 

J = F(x); where x is a (n x 1) vector, 

with contraints 

g(X) = 0; where g is a (m x 1) vector and m < n. 

Define the Lagrange multipliers as 

oX is a (m x 1) vector. 

Create an augmented function 

J' = F(x) + oXT g(x), 
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and the Extrema become 

oj' - = 0 = Fx + gxT.x ox 
oj' 
o.x = 0 = g(X). 

The minimum check is 

02J' 
8x2 > O. 

An illustrative example is borrowed from Swokowski9. 

47 

Example 2.9. If lex, y, z) = 4x2 + y2 + 5z2, find the point on the plane 2x + 3y + 
4z = 12 at which !(x,y,z) has its least value. 

Solution 
Find the minimum value of lex, y, z) subject to the constraint g(x, y, z) = 2x + 

3y + 4z - 12 = O. From 

W = lex, y, z) + )..g(x, y, z), 

let 

W = 4x2 + y2 + 5z2 + )"(2x + 3y + 4z - 12) 

then 

w.,=O, wll=O, wz=O, w>.=g(x,y,z)=O. 

Thus, 

w.,=8x+2)" =0 

WII = 2y + 3)" = 0 

W z = lOz + 4)" = 0 

w>. = 2x + 3y + 4z - 12 = O. (2.22) 

The first three equations give 

2 5 
)..=-4x=--y=--z. 

3 2 

Consequently, for a local extremum 

8 
y = 6x and z = 5x. 
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Substitute into Eq. (2.22) (w.x) to obtain 

or 

Hence, 

and 

32 
2x + 18x + 5x - 12 = 0, 

5 
x-­- 11· 

30 
11' 

z = (D C51) = 181. 

It follows that the minimum value occurs at the point 

( 5308) 
ll'l1'll . 

2.5.3. Relationship Between Calculus of Variables and Cal­
culus of Variations 

In the previous sections, were developed a general minimization procedure for 
parameter optimization that was used to produce the LLS solution. Next, the 
goal is to generalize this procedure, of minimization for several variables, to the 
minimization of functionals. A functional is a scalar performance index or cost 
value that relates a real value to a function of time by integrating the function over 
time. The question arises, How does the first derivative relate and generalize to the 
first variation? 

First, a function J(x) assigns a real number to each point x in the one-dimen­
sional real space, whereas a functional J(y) assigns a real number to each function 
y belonging to some class of functions, such as the polynomials. Second, the first 
derivative of the function J(x) produces an algebraic equation (possibly nonlinear) 
in x. Whereas, the first variation of the functional J(y) produces a differential 
equation for y(t). Third, one simple way to relate these two concepts is via the 
virtual displacement. 

A virtual displacement is an imagined infinitesimal change in either a point x, or 
a function y(t) that is arbitrary other than it must he consistent with the constraints 
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of the system. The variation of J(x) with respect to a virtual displacement of x 
defined as 8x is 

that can be extended to Lagrange multipliers as 

f (x) = J(x) + AT g(x) 

8J I (x) = 8J(x) + AT 8g(x) 

= raj + agT A] 8x ax ax 
where g(x) = 0 is a holonomic constraint 13 . 

The first variation of the functional J(y) can be defined with respect to the 
virtual displacement presented in Figure 2.6 and several conditions. First, the 

yet) 

/ly(t) 

o 

Figure 2.6. Virtual displacement 

functional of interest is 

J(y) = lb F[t,y(t),y(t)]dt 

where y(t) is a continuously differentiable function, and F[t, y(t), y(t)] is typically 
continuously differentiable up to second-orderlO • Second, this functional is an in­
tegral, therefore the first variation gives rise to a weak extremum by way of a 
differential equation for y(t). A weak extremum means that only small virtual dis­
placements are considered and multiple extrema may exist. For example, the short­
est distance between the north and south poles (referred to as conjugate points) is 
the Great Circle Arc, which has an infinite number of equivalent paths. Third, the 
first variation is often derived by a Taylor's series expansion up to the first-order, 
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but this a.pproach will be derived directly with the varia.tiona.l derivative tha.t is 
ba.sed upon the virtua.l displa.cement. 

One sta.rts the deriva.tion with the virtua.l displa.cement 

~y(t) = y(t) - y(t)j where y(t) is the a.ctua.l pa.th, 

a.nd the functiona.l 

J(y) = lb F(t,y,y)dt, 

with the a.ppropria.te boundary conditions 

y(a) = A 

y(b) = B. 

Note, y(t) is the solution to this problem tha.t is a.ssumed to be known before one 
solves the problem. Although this seems ba.ckwards, it provides a. wa.y to take the 
first derivative of J(y) with respect to y(t) by perturbing y(t) or taking a differential 
of y ( t). Define the varia.tion a.s 

fb [8F 8F] fb 
OJ = 10 8y ~y + 8y ~y dt = 10 [FII~y + F;~y] dt = o. 

Integra.te by pa.rts (~y depends upon ~y) 

fb b t d 
10 F;~ydt=F;~y(t)L- 10 dt(FiI)~ydt. 

Impose bounda.ry conditions 

6y(a) = ~y(b) = O. 

Therefore, 

FiI~y(t)l: = 0 

OJ = lb [FII - ! (FiI )] ~ydt = O. 

Since ~y(t) over the interva.l [a, b] is a.rbitrary (Fundamental Lemma of the ca.lculus 
of varia.tions) 

d 
FII - -(F;) = o. 

dt 
(2.23) 
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Equation (2.23) is the Euler-Lagrange Differential Equation. This is a differen­
tial equation for y(t) and the extremal is a function of time. To demonstrate the 
first variation of a functional and the usefulness of the Euler-Lagrange differential 
equation, several examples problems are solved. 

Example 2.10. 

J(y) == 11 (!y2 - y)dt with y(O) == 1 and y(l) == 1. 
o 2 

Solution 
Apply Euler-Lagrange differential equation. 

thus 

Example 2.11. 

Solution 

Fy == y-1 

Fy =0 
d 
dt (Fy) == 0 

d 
Fy - dt (Fit) = y - 1 == 0, 

y=1. 

J(y) == 11 iJ2dt with y(O) == 1 and y(l) == 1. 

Apply the Euler-Lagrange differential equation. 

Fy == 0 

Fy == 2iJ 

:t (Fy) == 2ji 

Fy - :t (Fy) == 2ji == 0 

2ji == 0 

2iJ = C1 

2y = C1t + C2 
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Example 2.12. 

CHAPTER 2 MATHEMATICAL PRELIMINARIES 

t=O 
y(O) = 0 

C2 =0 

t=1 
y(1) = 1 

C1 = 2 

y = t. 

J(y) = 11 [y - tj2 dt with y(O) = 0 and y(1) = l. 
Solution 

Apply the Euler-Lagrange differential equation. 

FIJ =0 
Fy = 2 (y - t) 

! (Fy) = 2(fi - 1) 

FIJ - !!.. (Fy) = 2 (fi - 1) = 0 
dt 

2 (fi -1) = 0 

2 (y - t) = C1 

2y = t2 +C1t+C2 

t=O 
y(O) = 0 

C2 =0 

t=1 
y(1) = 1 

C1 = 1 
1 

y = "2 (t2 + t) . 

2.6. Hamilton's Principle & Lagrange's Equations 

Typically, the derivation of equations of motion for a system proceeds down one 
of two paths. The first path uses Newton's equations of motion, which is referred 
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to as a mechanics-based approach. The second path utilizes calculus of variations 
by defining a functional, which is based on the system energy and is termed an 
integral/energy method. The second path is presented along with the advantages of 
integral/energy methods. 

The advantages of integral/ energy methods include the ability to handle complex 
systems, rigid and flexible bodies simultaneously, and nonmechanical systems (i.e., 
fields) in the form of classical mechanics. One example of these complex system 
solvers is finite elements, which arises as a weak extremum from a properly formed 
functional. Additional advantages include the fact that the functional/integral is 
invariant to the choice of generalized coordinates. This enables the analyst to 
choose the best degrees-of-freedom for interpretation (i.e., control design). In fact, 
this invariance leads to the development of general recipes for mathematical system 
model development, such as Kane's equations 14 . Our discussion will begin with 
Hamilton's principle, continue with the so-called extended Hamilton's principle, 
and finish with Lagrange's equations and applicable examples. 

2.6.1. Hamilton's Principle 

Hamilton's principle is the application of calculus of variations to dynamical sys­
tems to derive equations of motion. Hamilton's principle is often referred to as the 
Principle of Least/Stationary Action lO because the functional is related to system 
energy. The initial goal was to find the minimum energy state (i.e. least action), 
but later it was determined that only a stationary point was required to determine 
the equations of motion. The requirements for a weak and strong extremum (i.e., 
minimum energy state) are beyond the scope of this discussion, but the interested 
reader is referred to Gelfand and Fomin1o for an understandable discussion. 

Hamilton's principle is typically stated as12 

lt2 
J = Ldt 

t, 

where L = T - V has a stationary value for the correct path of the motion; and T 
is the kinetic energy, V is the potential energy, J is the action or action integral, 
and L is the Lagrangian. 

The variation is 

[
t2 [t2 

6J = t5 Ldt = t5Ldt 
t, t, 

where 

t5L = t5T-W. 
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The choice of L, as the integrand, will be explained in the next section and is 
only applicable to conservative systems (Le., all applied forces can be modeled as 
potential fields). The extended Hamilton's principle will eliminate this limitation 
and include damping forces. At this point, it is instructive to develop Langrange's 
equations for conservative systems from the application of the Euler-Lagrange dif­
ferential equations. 

The first variation of the action integral is equivalent to applying the Euler­
Lagrange differential equation to each independent variable to produce Lagrange's 
equations 

! (~~) -~~ = 0 i = 1,2, ... ,n 

where 

L=T-V 

qi = ithgeneralized coordinate. 

2.6.2. Extended Hamilton's Principle 

As eluded to earlier, the extended Hamilton's principle is applicable to both 
conservative and nonconservative systems. The part of the integrand that is limited 
to conservative systems is the potential energy, which after the first variation is 
taken, can be replaced by the equivalent virtual work. To be more specific13 , 

[
t. 

fJJ = [6T + 6Wldt 
tl 

where 

6W = 6Wc + 6WNC 

6W C = conservative virtual work 

6W NC = nonconservative virtual work. 

Hamilton's principle is a subset when 

6Wc = -6V 

6WNC =0. 

Since the integrand is the sum of kinetic energy and virtual work of the exter­
nal forces, this formulation shows why these techniques are called integral/energy 
methods. 

It is useful to discuss several specific cases of virtual work for damping and 
nonconservative external forces, as well as dependent generalized coordinates via 
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Lagrange multipliers. One way to account for viscous proportional damping is by 
adding a so-called Rayleigh's dissipation function 

1 n 

R= - LCicj~ 
2 i=1 

that modifies Lagrange's equations to include viscous damping, or 

!! (8L) _ 8L + 8R = 0 i = 1,2, ... ,n. 
dt 8cji 8qi 8cji 

This approach can be generalized by writing the nonconservative work in terms of 
the generalized forces Qi as 

n 

8W NC = L Qi8qi, 
i=1 

which leads to the definition of the Rayleigh's dissipation function generalized force 

8R 
Qi = --;:;-:-, 

uqi 

and the more general form of Lagrange's equations that includes nonconservative 
forces 

!! (8L) _ 8L = Q.' 
dt 8cji 8qi 

i = 1,2, ... ,no 

An example of a nonconservative external force is the joint torque applied at the 
hub of a single-link robot. The virtual work is 

where T is the hub torque and cp is the rigid body angle between the reference 
orientation and the robot link (see Figure 2.7). 

Figure 2.7. Single-link robot 
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If it is easier to model a system with several dependent generalized coordinates, 
then Lagrange's equations can be modified through the generalized forces by ap­
plying Lagrange multipliers. Given m holonomic constraints among n generalized 
coordinates 

which can be rewritten as 

n ali 
L~6qi =0. 
i=1 q, 

The Lagrange multipliers can be applied in order to augment the Lagrange's equa­
tions 

n af 
L Aj ~6qi = 0, 
i=1 q, 

which can be summed over all j's to obtain 

and 

These generalized forces can be used to account for the additional dependent gen­
eralized coordinates in Lagrange's equations. Now, Newton's equations of motion 
and the overhead gantry robot model can be derived with Lagrange's equations. 

2.6.3. Newton's Equations of Motion 

One way to show the general utility of the action integral and calculus of 
variations is to derive Newton's equations of motion. In addition, this exercise 
will demonstrate that the integral/energy techniques are equivalent to the force/ 
momentum techniques. Begin with a point mass that is moving within a potential 
field. The kinetic energy of the particle is defined as 

T 1 ( ·2 ·2 .2) = 2m XI + X2 + X3 

where x = (XI, X2, X3) T is the position vector. The potential energy of the particle 
is 
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where the applied force on the particle due to the potential field is 

av 
Xi = -.,,- = Fi = Force. 

UXi 

The final step is to apply Lagrange's equations (L = T - V), 

so, 

accordingly 

aL 
-a. = mXi 

Xi 

d ({)L) .. 
dt aXi = mXi, 

aL __ av _ X 
aXi - {)Xi - " 

which results in Newton's equations of motion 

Xi = mXi or Fi = maio 

2.6.4. Gantry Robot Model 

57 

It is time to finish this chapter section on integral/energy methods with the 
derivation of the overhead gantry model, which will be used throughout the book. 
For presentation simplicity, this model is restricted to a two-dimensional plane. 
Note, a three-dimensional spherical model can be reduced to two orthogonal planar 
models for swing angles less than 10°. The derivation begins with the rigid body 
diagram presented in Figure 2.8 where 0 is the swing angle, l is the cable length, 
and m is the payload mass. The kinetic energy is defined as 

and the potential energy is 

V = mgl(l - cosO). 

Now, apply Lagrange's equation (L = T - V) to obtain 

O··+g·O 1 .. 0 Y sm = -yXCOS . 
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This is a nonlinear equation that can be linearized in several ways, such as the 
perturbation technique used by Feddema15 , et al .. One way is to simply linearize 
the equation about the equilibrium point (J = 0 (Hanging straight down). 

.. 9 1 .. 
(J + -(J = --x. 

I I 

This is a robust choice (Le., can tolerate (J up to 10°) and this linearized model 
will be used in later chapters to design swing-free input shaping maneuvers (see 
Chapter 5) and adaptive estimators (see Chapter 4). 

A A 

r ~ (x + Isin 9li + 1(1 - cos 9lj 

m 

x 

Figure 2.8. Gantry robot kinematic definition 

2.7. Analytical Optimization 

This section follows the structure of Section 2.5., but it is specifically applied 
to optimization. The use of the term optimization connotes either minimization or 
maximization of some useful metric. For robot motion, it can be the judicious use 
of joint controls to minimize time or energy for a given maneuver, or configuring 
the robot to maximize its workspace. In order to drive a robot to follow a desired 
trajectory within hardware constraints (i.e., maximum slew rates, maximum joint 
angles, etc.), optimization techniques will be used to compute open-loop controls. 
A dynamical model of the robot derived in some fashion (e.g., Lagrange, or Newton 
formulations) will define a given output for a given input. Optimization in conjunc­
tion with the model will be used to reverse the process-for a given desired output, 
provide the inputs (open-loop controls) that will accomplish it. 

It would be nice to be able to solve a system model to get closed-form solutions 
for the joint controls as functions of time and known system states. IT the math­
ematics are not too involved, this can be shown to be possible. However, useful 
flexible robot configurations may result in dynamical systems that may not lend 
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themselves to closed-form answers. As such, one must resort to numerical proce­
dures tha~ manifest themselves as techniques that iteratively converge to a solution. 
Essentially, a set of numerical values of the joint controls (such as torque values as 
a function of time) is initially guessed and an iteration scheme is devised to update 
these values to approximately follow a prescribed trajectory and satisfy any system 
constraints. 

This discussion of optimization techniques will begin with a review of some 
mathematical background, progress to methods lor and problems amenable to an­
alytical solutions, and finally arrive at the general approach to complex dynamical 
systems-numerical optimization 16-19. 

2.7.1. Preliminaries 

Because the systems may require numerous states to describe the dynamical 
variables (i.e., accelerations, and velocities) at different locations on the robot, vec­
tor and matrix counterparts to familiar scalar concepts are required. 

Differentiation of a scalar I with respect to vector x is 

dl = fxdx 

where 

fx = [1:"1 -+ IznJ 
dx = [dXl -+ dxnJT . 

Differentiation of a column vector f with respect to a vector x is 

df = Fxdx 

where 

Differentiation of a row vector f with respect to a vector x is 

2.7.2. Positive Definite Matrices 

A positive definite matrix, as described in Section 2.5.1., is a recurring construct 
in optimization because of its linkage to quadratic (concave up) surfaces that have 
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minimums. Its counterpart, the negative definite matrix, is used to represent a 
concave down surface (containing a maximum). 

Positive definite matrix A is positive definite if for any vector x :/; 0, xT Ax > O. 
The criterion for positive definiteness are as follows: 

1. Nonsingular 

2. All eigenvalues are positive 

3. All principle minors have positive determinants 

4. A-I is positive definite 

Positive semi-definite matrix A is positive semi-definite if for any vector x :/; 0, 
xTAx ~ O. 

2.7.3. Simple Parameter Minimization 

For a scalar function </J, which is a function of a vector x of n-parameters, the 
conditions for a minimum as described in Section 2.5.1. are 

d</Ji </Jx=- =0 
dx X=XTnin 

rP</J 
</Jxx = dx2 > O. 

Figure 2.9 presents a graphical illustration of a concave up scalar function. These 
same conditions can also be used to produce a maximum, whereby one would be 
minimizing -</Jx. 

x 

Xmin 

Figure 2.9. Graphic illustration of concave up minimum of c/J(x) 

For minimization of a scalar function </J(x) subject to a vector of m-constraints 
w(x) = 0, an augmented scalar function G(x) = </J(x) + vTw(x) is formed in an 
analogous way to Section 2.5.2. where v is a vector of constant Lagrange multipliers. 
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Conditions for a minimum are 

Gxlx=xm;n = I/Jx + VT~x = 0 
~(x) = 0 

G xx > O. 
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(2.24) 

(2.25) 

(2.26) 

Equations (2.24) and (2.25) generate n + m necessary conditions to solve for 
the vector components of x and v. The final condition Eq. (2.26) stipulates the 
sufficient condition of positive definiteness at the minimum. Figure 2.10 presents a 
graphical interpretation of the constrained minimum of I/J(x). 

'I' (x) = 0 

Figure 2.10. Constrained minimum of ¢(x) 

2.7.4. Variational Conditions for Unconstrained Scalar Min­
imization 

Now, it is time to start the process of extending parameter optimization to 
functional optimization in a manner that is analogous to the virtual displacement. 
Assume that one wishes to test that a scalar x minimizes a scalar unconstrained 
function I/J(x) (see Figure 2.11). One can expand I/J in a Taylor series about this test 
minimum to describe an admissible comparison point x + &x. 

A.(~ &) = A.(~) oi/Ji [~ & _~] o2I/J1 [x + &x - xF 
'f' x + X 'f' X + ox _ x + x x + ox2 _ 2! 

x x 

o3I/J I [x + &x - xj3 
+ ox3 _ 3! + H.O.T. 

x 

If x is indeed the minimum, then the difference f::1I/J = I/J(x + &x) - I/J(x) must be 
positive for an arbitrary &x. Examining the first term in 

[&x]2 [&X]3 
f::1I/J = I/Jxlx&x + I/Jxxlx2! + I/Jxxxlx3! + H.O.T. (2.27) 
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x 

Figure 2.11. Minimization test for an unconstrained scalar function 

reveals 1/>., Izox can switch sign depending on which direction one proceeds. Thus, 
for an arbitrary Ox, 1/>., Iz must be zero at a minimum to ensure that 1/>($) cannot 
be decreased any further. This is the first variation condition for a minimum 
(extremal). 

Once the first variation I/>.,Iz = 0 has been stipulated, what's left? Rewrite 
Eq. (2.27) as 

[OX] 2 [OX] 3 

Ill/> = I/>.,.,IZT! + 1/>.,.,.,lz""""3! + H.O.T., 

and upon further examination the first remaining term 1/>.,., Iz [ox]2 /2! will be positive 
(or at least not allow a decrease in Ill/» if I/>.,.,Iz ~ O. This is the second variation 
condition. One can go on to develop other variations (think of the functions I/>(x) = 
x3, x4), but usually only the first two are important. 

2.7.5. A Multivariable View of the Variational Conditions 
for Unconstrained Scalar Minimization 

Now, it is time to minimize a scalar function I/> as a function of a vector of 
independent variables x. The change in I/> about a test minimum x is 

I/>(X + ox) - I/>(x) = [1/>." 1/>"2··· I/>"N ]Ix [ ~:: 1 
OXN 

1 [ 1/>."." I/>"'''N 1 [OXl 1 + 2! [OXl ... OXN]: : : + 
I/>.,~." I/>"~"N x O;N 

H.O.T.. (2.28) 

Examining the first terI~ on the right hand side of Eq. (2.28) for an arbitrary vector 
of variations Ox reveals the respective 1/>.,. must be zero at a minimum to ensure 
that no additional decrease in Ill/> results. 
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The first variation necessary conditions are 1/>"" Ix = 0 for i = 1, ... ,N. What's 
left? Rewriting Eq. (2.28) as 

H.O.T. 

provides the second variation sufficient condition [I/>",,"']Ix :::: 0 (positive semi­
definite). 

Example 2.13. Minimize the following function and show necessary and sufficient 
conditions: 

Solution 

1/>", = 2x - 2(1 - x + 2y) 
1/>" = 2y + 4(1 - x + 2y) 

1/>",,,, =4 

1/>"" = 10 
1/>",,,=1/>,,,,,= -4 

Solving for 1/>", = 1/>" = 0 gives 

x - y = 0.5 

y - Oo4x = -004 

so, 

Thus, the eigenvalues are 

1 
x=-

6 
1 

y= -3· 

[I/>.,.,J = 14 ± "'142 - 4 x 24 = 12,2 
2 

Figure 2.12 graphically shows the analysis is correct. 
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Figure 2.12. Example 2.13 results 

2.7.6. Variational Approach to Constrained Parameter Min­
imization 

For an augmented performance index G(XI,X2) = <P(XI,X2)+"Tq,(XI,X2) where 
the n length vector x is composed of the n - m independent variables Xl and m 
dependent variables X2 subject to the m constraints q,(XI, X2) = O. The variation 
of this is 

<lG(X) = <lGI + <lG2 + H.O.T. 

where 

and" = vector of constant constraint multipliers, and 

(2.29) 

For an extremal, the first variation <lGI must vanish. Because of the constraints, 
the variations <lX2 are not free to vary. Therefore, one can choose the m Lagrange 
multipliers to make the variation <PX2 + "Tq,x2 = O. 

Since <lXI is free to vary, the only way to make the first variation vanish is to set 
<Px, + "Tq,x, = O. To make sure the extremal is indeed a minimum, the remaining 
variation <lG(x) = <lG2 2: O. To do this, solve for <lX2 in terms of <lXI and substitute 
into <lG2. 

Since q,(Xt,X2) = 0, <lq, = q,x,<lXI + q,X2 <lx2 = 0, thus <lX2 = -q,;;q,x,<lXI' 
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Substituting this into Eq. (2.29) gives the quadratic expression for oG2 as 

(if>XIXl + VTWXIX2 - 2 (if>Xlx2 + VTWXIX2) (W;-;WXl) 

+ (if>X2x2 + vTWX2X2) (W~2IWXl)2)OX~ ;::: 0, 

or 

(if>XIXl + vTWXIX2 - 2 (if>Xlx2 + VTWXIX2) (W~2IWxJ 

+ (if>x.x. + vTWX2X2) (W~2IWXl)2) ;::: o. (2.30) 

It is assumed that in Eq. (2.30) the number of constraints assures dimensional 
compatibility of all terms and the nonsingularity of 'II X2. 

Example 2.14. Minimize if> = Xl + X2 subject to x~ + XIX2 + x~ = 1 (n = 2, m = 

1) by using a/ax (Xl + X2 + V (x~ + XIX2 + x~ - 1)) = if>x + vTwx = [ ~ ] (see 

Figure 2.13). 
Solution 

So, 

o = 1 + V(2XI + X2) 

0= 1 + V(XI + 2X2). 

1 
X2 = -2XI - -

v 
1 

Xl = - 3v = X2 

1 
v = ± y'3. 

Because decisions are needed, one must test both solutions to find a minimum. 

1 1 2 
for v = y'3 Xl = X2 = - y'3 , if>=-y'3 

for 
1 1 2 

v=- y'3 Xl = X2 = y'3' if> = y'3. 

The first solution is the best. Therefore, one checks the second-order condition 
oG2 ;::: o. After eliminating the dependent variation, 

if>XIXl + VTWXIX2 - 2 (if>xlx2 + VTWXIX2) (W~.IWXl) 

+ (if>X.X2 + v T WX2X,) (W~;'.[tXl)2 ~ O. 
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After substitution, this can be reduced to 

If the argument xi + x~ = r2, then xi + Xl X2 + x~ = r2 (1 + cos 8 sin 8) ::::: 0 is 
applied for any arbitrary r, 8, then 8G2 ::::: 0, if /I ::::: O. Since, /I = 1/.../3, this solution 
is indeed a minimum. 

Figure 2.13. Graphical representation of Example 2.14 

Some Observations on Example 2.14. 
This example demonstrates constrained parameter optimization on a simple 

problem of low-order (two parameters). The functions were explicit in the pa­
rameters and differentiation is straightforward. Note, both parameters have the 
same order-of-magnitude therefore no scaling in the performance index is required. 
The multi-valued Lagrange multiplier /I is indicative of the decision nature of op­
timization problems. Among the constraint lines shown in Figure 2.13, the active 
constraint (/I) line is tangent to the performance index (4)) contour value ellipse. /I 

has units that make the constraint equation value consistent with those of 4>. 

2.7.7. Optimal Control Problem 

The rest of this section presents the application of calculus of variations to 
optimal control. The goal of optimal control is to derive open-loop and closed-loop, 
closed-form control laws u(x, t) that do something useful. The painful reality is that 
few problems will yield nice closed-form solutions. A good place to start is with the 
fixed final time problem. 
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Minimize 

Subject to 

x = f(x,u,t} 

\f!(Xj, tj} = OJ to, tj, x(to} given 

where x is the n vector of dynamic states, u is the r vector of controls (u(x, t)), 
t is time, and f is a n vector of first-order O.D.E.'s that describe the dynamical 
systems. 

In this case, the optimal control u will be of class C1 (continuous in its first 
derivatives) and the state x will be C2 • 

Example 2.15. Single-link slewing in the horizontal plane is a typical dynamic 
model of interest and an optimal control problem (see Figure 2.14). 

Figure 2.14. Kinematic definition for a single-link slewing in the horizontal plane 

With 

choose 

u=r, 
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then the state-space equations are 

Xl == X2 

. 3u 
X2 == m[2' 

A typical performance index is minimum control effort, or 

One last detail-the concept of admissible comparison paths-must be discussed 
before one derives the variational equations. Basically, the concept of admissi­
ble comparison paths is equivalent to the virtual displacements discussed in Sec­
tion 2.5.3 .. 

Optimal paths x(t) (or extremals if one has not applied the second variation 
conditions) are defined with respect to admissible comparison paths. An admis­
sible comparison path is any function x.(t) that lies in the neighborhood of the 
extremal path, satisfies f(x, u, t) - x == 0 and the prescribed boundary conditions. 
A dynamical system is said to be controllable if the entire region surrounding the 
extremal can be filled with admissible comparison paths. Admissible comparison 
paths (see Figure 2.15) can either be generated by small (weak variation) changes in 
the state c5x and the control c5u, or by small changes in the state and large changes 
in the control (strong variations). In the next derivations, only weak variations are 

admissible comparison paths, 

~
t) ".(t), satisfying constraints 

minimum 
I path 

I 

lIl(.¥tp=o 

X(t) 
- ,!.(t) weak variation 

r 
,!(t) 

".(t) strong variation 

r 
t t 

Figure 2.15. Various shapes for the variation of x.(t) 

considered. 

2.7.8. Derivation of the First Variation Conditions 

The first step is to form the augmented scalar performance index J' by at­
taching the dynamic constraints f(x, u, t) - x(t) = 0 and the end point constraints 
'\lI(x/, t/) = 0, with separate vectors of Lagrange multipliers ~ that are time varying 
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and " that are constants, or 

where 

G (X"t""T) = f/J(X"t,) + "Tq,(Xf,t,) 

H(x, u, t,~) = L(x, u, t) + ~T(t)r(X, u, t). 
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(2.31) 

(2.32) 

H(x, u, t,~) is called the Hamiltonian and plays a key role in optimal control theory. 
Next, take the first variation of J' and set it equal to zero, or 

[
t/ 

OJ' = Gx,OXf + [HxOx + Huou + H~o~ - ~T o:x - O~T x] dt = 0 
to 

Ox = x. - x, 

Ox = x. - x, 

Me = :t ox, and 

d(ox) = oxdt 

where x denotes the extremal path and x. denotes an admissible comparison path. 
Integrating the Ox term by parts yields 

[ tl -~Toxdt = [tl _~T d(ox) = _~Toxltl + [t/ d~Tox 
~ ~ ~ ~ 

[ tl d~Tox=[tl d~T~tox=[tl j..Toxdt. 
~ ~ t ~ 

Substituting into oj' and using H~ = rT(x, u,t), O~T x = xTO~ (scalar), and 
ox(to) = 0 gives 

oj' = GxrOXf - ~T(t,)OXf 

+ [tl (Hxox + Huou + rT (x, u, t)o~ + j..T oX - xT o~) dt = O. 
to 

Grouping like terms gives 

OJ' = (Gxr - ~ T (t , ) ) OXf 

+ [tl (( Hx + j..T) OX + Huou + [rT(x, u,t) - xT] o~) dt = O. 
to 
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Choose the A'S to drive the ox and OX( variations to zero. Assume that the 
control variables (ou' s) are independent, then the only way for oj' to vanish is 
for Hu = O. The results are known as the Euler-Lagrange differential equations 
(equivalent to Eq. 2.23) that consist of 

x = £(x, u, t) 

j. = -Hx(x, u, A, t) 

0= Hu(x, u, A, t) 

n - state equations 

n - costate (multiplier) equations 

r - control equations 

(2.33) 

The constants of integration are determined from the boundary conditions (B.C.'s) 
at to given n-prescribed B.C. 's, to given 
attf G",=/x(¢(Xf,tf)+lIT W(X(,tf)1 t =AT(tf) n-naturalB.C.'s 

XI· I 

w(x(, tf) = 0 p-prescribed B.C.'s, tf given. 
This structure is referred to as the two-point-boundary-value-problem (TPBVP), in 
that boundary conditions are specified at both to and t f. 

2.7.9. First Integral and a Second Variation Condition 

A first integral of the TPBVP exists if L = L(x, u) and £ = £(x, u) (Le., are not 
explicit functions of time). Differentiating this Hamiltonian form H(x, u, A) with 
respect to t gives 

. . T (. T) H=Hxx+Huu+A HA=Huu+ Hx+A £=0, 

on the extremaL This implies that H(x, u, A) is a constant on the extremal. 
As was the case in parameter optimization, second variations must be checked 

to ascertain the type of extremal derived from solving the TPBVP. Derivation of 
the second variation is lengthy and a single condition is stated herel6 . 

Note 2.8. If the extremal controls u are assumed to be independent, the Legendre 
condition for a weak minimum states that the matrix Huu ::> 0 (Le., is positive 
definite). 

Example 2.16. Minimize the effort to slew a single-link horizontally (see Fig­
ure 2.14) to a given angle in a rest-to-rest maneuver, or minimize 

subject to 

Xl = X2 

. 31.1 
X2 = m[2 
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where 

and with B.C.'s 

XI, X2, U = 8,8, T, respectively 

to, t, given 

x(to) = X2(tO) = 0 

XI(t,) = Xld .. '.ed' X2(t,) = o. 
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Form the Hamiltonian H(x, u,t,~) and the end condition function G (xr,t"vT). 

T 2 3u 
H = L + ~ f = u + 'xIX2 +'x2 ml2 

G = vT'lt = VI (Xl (t,) - Xld .. '.ed) + V2 X2(t,). 

Derive the Euler-Lagrange equations 

~=-H: 

0= 2u + CI'x2 

Gx , = ~T(t,) 

~l = -(0) 
3 

where CI = mt2 

VI = 'xl (t,) 

From the costate equations 

'xl = const, 

'x2 = -'xl (t - to) + 'x2(to). 

From the extremal condition 

From the end conditions 

'xl(t,) = VI, 

A2(t,) = V2 = 'x2(tO) - 'xIT 

where 

T=t,-to. 

note Huu = 2 > 0 
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A2(tO) = V2 + vlT 

A2 = (V2 + vIT) - VI(t - to). 

Integrate XI,X2 and apply B.C.'s to get algebraic equations in terms of VI, and V2 

which yields 

Use the open-loop control law (and a lot of algebra) to solve for the state trajectories 

= 8(t) 

= 8(t). 

Some observations on Example 2.16 

• The dynamical system was small-only two states! 

• The dynamical system was linear-a major advantage. 

• Derivatives could be analytically computed. 

• Linearity allowed the system to be completely integrable. 

• The integral solutions were polynomial functions of t. 

• The solution forms allowed easy comparisons. 

Reality tends to be vastly different from this example. 
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Figure 2.16. Optimal torque and state variable time histories 

2.7.10. Free Final Time Problems 

The preceding formulation can be extended to the free final time t / (or inde­
pendent variable) problem. By taking differentials of J using Liebnitz's rule for 
differentiation of an integral and using the relationship 

dXf + 6xf = xdtf 

to relate total differentials dx / to variations, a transversality condition to be satisfied 
for arbitrary changes in final time dt f arises. This condition is given by 

6G 
r- +H(t/) = 0 
utf 

where G and H are defined in Eqs.(2.31) and (2.32). Bryson & H016 present a 
rigorous derivation of this condition. 

Example 2.17. Determine the free final time to slew a single-link horizontally to 
a given angle in a rest-to-rest maneuver. 

For an example of free final time, one can use the previous problem structure and 
change the performance index from one of minimum effort for fixed final time to 
one of minimum time J = Jt~ dt for a bounded control effort lui = Ub, whose rami­
fications will be discussed shortly. Using the same initial and final state boundary 
conditions, allows the Hamiltonian and end function to become 

H=L+)?r 

(2.34) 
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and 

G = VTq, 

= IIl(Xl(t,) - Xl,) + 112X2(t,). 

Since the emphasis here is on final time, the costate equations are rewritten as 

),l(t) = ),1 = constant 

),2(t) = ),l(t, - t) + ),2. 

(since the differential equations remained the same). 
However, the extremal condition Hu = 0 = 3)'2/mI2 is now devoid of the control 

since H was linear in u. For such problems, no solution will exist unless bounds 
are placed on the controls or states. If one were to consider minimizing time for an 
unbounded control scenario, one could envision an infinite amount of control used 
to achieve a designated slew position in no time at all as a possible solution! To 
handle the finite final time case, one must apply Pontryagin's Minimum principle20 

(whose derivation is outside the scope of this work). It states that the control must 
minimize the Hamiltonian. Since the third term in the Hamiltonian (see Eq. 2.34) 
contains u, this sets up the relations 

and 

for the equi-sided bounded controls. 
To accomplish the rest-to-rest maneuver torque must be exerted to start the 

device moving and reversed to slow it down. If positive, torque is exerted to start 
the motion, then a negative torque is required to slow it and attain both the final 
position Xl" and zero final velocity. To satisfy the Minimum principle, the controls 
would be constrained to the bounds ±Ub (to provide the most minimum values for 
H) and would alternate between bounds according to the number of switches (or 
changes in the sign of ),2) in what's known as bang-bang fashion. Since ),2(t) changes 
linearly there is at most one switch from positive to negative. Using the same state 
variables as before and ordering the torques, yields two sets of equations to solve: 

For to $ t $ t. where t. is the lone switch time 

U = Ub 

),2 < 0 

Xl = X2 

X2 = CUb 
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where c = 3/ml2, thus 

thus 

U = -Ub 

A2 > 0 

Xl = X2 

X2 = -CUb, 

X2 = CUb(t - to), 

Xl = CUb (t - to)2 
2 
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Equating positions and velocities at ts yields t. = (tf + to)/2 for the equi-sided 
bounds. Using this result (and assuming to = 0), reveals that the switch location 
Xl. = cubt}/8 and final time can be solved for as tf = 2JXI//CUb. By using the 
following numerical values: m = 0.5, l = 1.0, and Of = 7r /2, with Ub = 1, a result of 
tf = 1.023 seconds is achieved. Using the transversality condition (AIX2 + A2cu)f = 
-1, solve for the multipliers as 

A _ -sign(uf) 
2/ - CUb 

Al = sign(Uf). 
t.CUb 

Time histories are shown in Figure 2.17. 

2.8. Numerical Optimization 

Since analytical optimization is out of the question, one must resort to numerical 
means. In general, numerical optimization methods are typically divided into two 
categories, direct and indirect. The direct methods21 ,22, also referred to as nonlin­
ear programming methods, fall into this category because cost functional gradient 
information is employed to find the optimum solution. The indirect methods23 - 25 

solve the Euler-Lagrange equations to obtain an optimum solution and can be recog­
nized as Pontryagin methods. As inferred by the list of references, many numerical 
schemes exist for the solution of optimal control problems. These schemes solve 
either the Euler-Lagrange equations, or the suboptimal control formulation (i.e., 
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Figure 2.17: Minimum time torque and state variable time histories from Example 2.17 

direct method). The Euler-Lagrange methods include quasilinearization23 , method 
of particular solutions24, other shooting methods26 , and perturbation methods25 
that solve the true optimal control problem. True implies that the optimal con­
trol functions are not parameterized nor restricted to a particular class of functions 
(other than being piecewise continuous). Even though this method seems intuitively 
appealing, it is often misleading because many of these methods are sensitive to the 
initial guess (costates at the initial time26 ) or provide only an approximate solution 
due to implementation or convergence issues25 . As a result, the control functions 
are either directly or indirectly restricted to a particular class of functions so that 
a solution can be found that is consistent with the physical system under consider­
ation. 

The suboptimal control formulation is described as suboptimal because it re­
stricts the class of control functions directly by parameterizing the control 
history26,27. The parameterization of the history enables the analyst to convert 
the functional optimization problem into a parameter optimization problem. Of 
particular importance, the parameters themselves have physical significance so ab­
surd solutions can be immediately identified and discarded. This formulation is 
quite desirable because the parameter optimization algorithms are typically less 
sensitive to the initial guess (control parameters)21,26,28. In this section, a non­
linear programming method, called Recursive Quadratic Programming (RQP)21 is 
used to solve the optimization problems. 

2.8.1. Parameter Optimization - Themes 

As mentioned in Section 2.7., most problems are too complex to render closed­
form solutions. Parameter optimization methods allow one to find approximate 
open-loop control solutions for highly nonlinear dynamical systems16- 19 . 

What are parameters? The actual time-varying control u(t) is recast as a func-
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tion of a vector of constants ~ or parameters. Although there may be differential 
equations involved, the parameters are invariant to any integration, or algebraic 
method that may compute performance measures G(t) (such as final time). Only the 
optimization solution method or wrapper around the dynamical model has the abil­
ity to change the parameters. For a time-varying problem, the problem is changed 
from dependence on t to ~ and performance measures are recast likewise to G(~) 
for ~ = ~j, j = 1, ... ,n. 

What is the advantage of doing this? The advantage of this approach is that 
one can handle virtually any numerical performance index or constraint statement 
that can be computed via a mathematical model (certainly a powerful incentive!). 

What is the disadvantage of doing this? One is now relegated to finding approx­
imate, suboptimal solutions that typically depend on the following: 

1. Numerical concerns of the dynamical model (e.g., stability, scaling, etc.). 

2. The selection of built-in tuning constants provided by the optimization 
method. 

3. The skill of the analyst in managing items 1 and 2. 

What do approximate solution forms look like? Typically, approximate forms 
are iterative schemes that update the parameter vectors based on gradients of the 
performance measure as 

where a is a user-specified constant, f is some function of the performance measure 
gradients, i is the current iteration, and i + 1 is the update. 

2.8.2. Development of a First-Order Method-Unconstrained 
Functions 

The first step is to develop a gradient-based iterative scheme (i.e., a repetitive 
generation of new ~;'s) that will attempt to minimize an unconstrained function 
G(~). 

Assume G(~i) is the result of some arbitrary nonlinear function (e.g., analytical 
or numerical integration of a set of O.D.E. 's). Using a Taylor series expansion gives 

G(~i+l) = G(~i) + G{, [~i+l - ~i] + H.O.T. 

G(~i+l) - G(~i) = b.G = Ge, [~i+l - ~i] 

In order for b.G to be negative (i.e., G decreasing) for function minimization, choose 
[~i+l - ~i] = -aG[, therefore b.G = -aGe,G[ :s 0 for positive scalar constant 
a. The gradient rule update is ~i+l = ~i - aG[. 

There is the need to be able to compute G e" which is the search direction and 
have a way to choose a. For a computer code, you would need routines to evaluate 
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G, and G~,. a is usually chosen to be a small positive constant < 0.1, but may 
need to be several orders of magnitude less for numerical stability. One would like 
to update the eo's with as large an a as possible. 

2.8.3. Gradient Search - Stepping along the Search Direction 

Given the gradient rule parameter update eHl = eo - aG[. One needs to be 
able to move along the gradient vector G~i an arbitrary distance depending on how 
close the iteration is to the minimum. This is the art of picking a, or executing the 

~I 

Figure 2.18. Minimizing surface for two parameters 

one-dimensional search. A simple-minded approach is as follows: 

1. Evaluate the arbitrary function G and the gradient G~i analytically or by 
some other means. 

2. Start with a small value of a (say 0.001). 

3. Update the parameters via the gradient rule. 

4. Evaluate a new G with the new parameters. 

5. If it is less than the previous G, double a and take a bigger step in the G~, 
direction. 

6. Do this until G increases, then compute the true eHl and update with the 
last good value of a. 

The Rosenbrock's problem is given as 

G = 100 (€; - 6)2 + (1 - 6)2 . 

This problem will strain a gradient scheme because of the elongated contours (more 
sensitive to changes in parameter 6 versus €2). The gradient scheme will tend to 
chatter on this one. In order to get to the minimum, one must be careful in selecting 
a (see Figure 2.19). In addition, the gradient method can easily become unstable 
for poor choices of a. As you might imagine, one could easily send it searching into 
outer space. This problem is explored in more detail in Homework 2.7, #1. 
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~l 

Figure 2.19. Gradient search solution progression for Rosenbrock's problem 

2.8.4. A Second-Order Method 

This method uses more derivative information to advance to the minimum faster 
by using curvature information (Le., the Hessian matrix). Expand G(e) in a Taylor 
series as 

After differentiating both sides with respect to the vector ei+l - ei and setting the 
result to 0 (corresponding to an extremal), one gets the Newton-Rhapson search 
direction, or 

and therefore 

ei+l - ei = -Gi,t G[, 

which can be fashioned into an update procedure as ei+l = ei - aGi,t G[ for a 
positive constant a. Note, G(,(, must be nonsingular to use this method. Checking 
G(,(, for positive definiteness gives one the assurance that each iteration is moving 
on a minimum surface (concave up). 

2.8.5. Finite Differences 

What if one does not have analytical derivatives? One can use approximations 
based on Taylor series. For example, a first-order derivative for a function f can be 
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obtained by the following: 

or 

f(€ + AO = 1(0 + f~ (€ + A€ - 0 + ~ (€ + A€ - OT f~~ (€ + A€ - €) 

+H.O.T., 

where A indicates a small difference and all derivatives are evaluated about the 
current parameter vector. This fon.vard-difference approximation of f~ is accurate 
to first-order in A€, which is satisfactory if A€ is small. Only a single additional 
set of function evaluations f(€ + A€) is necessary to approximate h. 

2.8.6. Second-Order Finite Differences 

For more accurate approximations, one can difference the following Taylor series 
and divide through by 2A€ for a second-order accurate f~: 

1 2 1 ]3 
f(€ + A€) = f(€) + f~ [€ + A€ - €] + 2i.h~ [€ + A€ - €] + 3[fm [€ + A€ - € 

+H.o.T. 

1 2 1 ]3 
f(€ - A€) = f(€) + f~ [€ - A€ - €] + 2i.h~ [€ - A€ - €] + 3[fm [€ - A€ - € 

+H.O.T. 

f(€ + A€) - f(€ - A€) _ I .!.. I [AC]2 H.o.T. 
2A€ - J~ + 3!J~~~ ." + 2A€ . 

However, now two function evaluations f(€ + A€) and f(€ - A€) are necessary. 
Typical perturbations for second-order accurate derivatives are 0(10-4 ). IT one 
instead adds the above Taylor series, subtracts 2f(€) from each side, and divides 
through by Ae, the result is 

f(€ + A€) - 2f(€) + f(€ - AO _ I !f [AC]2 H.O.T. 
Ae - J~~ + 4! ~~~~ ." + Ae ' 

and a second-order accurate approximation to h~ results. Again, this accuracy 
requires two additional function evaluations (in addition to the nominal f(€)). 
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2.8.7. Penalty Functions 

The goal is to reveal a way to attach constraints wee) = O. In Section 2.7.8., 
Lagrange multipliers were used to attach equality constraints and enable analytic 
closed-form optimal solutions. An analog for parameter optimization is to attach 
the constraint vector wee) to a scalar performance index t/I(e) to produce the scalar 
form 

where W is a positive-definite diagonal matrix of user-specified weights. The 
quadratic penalty term will be positive and therefore increase the value of G(e) 
that does not satisfy wee) = 0 (i.e., lie on the constraints). Since one is operating 
in a minimization framework, the best that can be hoped for, from the penalty 
term, is to drive it to zero at which point G(e) is satisfied. This is a soft constraint 
formulation in that the constraints are lumped in with the performance measure t/I 
and their derivatives are not treated explicitly. Successful implementation of gradi­
ent update schemes to treat penalty functions is heavily dependent on the selection 
of the weight matrix. If the components of W are too small, the minimization 
favors t/I(e) at the expense of satisfying the equality constraints. For large weights, 
the converse is true. 

Solution Form 
A gradient-based iterative scheme (the repetitive generation of new e/s) at­

tempts to minimize a function of the form G (ei) = t/I (ei) + 'liT (ei) Ww (ei) for a 
matrix of user-selected weights W. The iterative scheme will have converged to an 
approximate answer as follows: 

1. GEi goes to O. 

2. ei+l differs little from ei. 

3. w(ei+!) is a vector of small residuals. 

4. Some combination of 1-3. 

2.8.8. Parameterized Controls - the use of tabular functions 
u*(e) 

Often, the desired parameter solutions are the actual control values (i.e., torques) 
applied by the flexible robot jOint motor(s) as a function(s) of time. In the ana­
lytical solution of Example 2.16, the single-link torque time history was solved as 
a continuous function of time u(t) for 0 ::; t ::; tfinal. In the parameterized control 
scenario, the approximate solution for u(t) takes the form u.(e) = [6,6,··· ,en), 
which occurs at fixed nodal times t. = [tl' t2, . .. , tn ) where subscripts 1 and n 
correspond to the initial and final times. Although it is often the case, these nodal 
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times do not need to be selected as constant increments. In the limit, the nodal 
times would become infinitesimally close together resulting in an infinite number of 
parameters to solve in order to span the continuous time of the problem. This is 
not practical, therefore a smaller number of parameters are selected. 

When performing numerical integration of the dynamical model the approxi­
mate control u. would reside in a lookup table of parameterized control values 
corresponding to specific discrete values of time t •. An interpolation routine is em­
ployed to determine other off-node values of u that correspond to a higher resolution 
of time generated by the integration scheme. Each time the update scheme varies a 
component ~j of the control vector by some amount ~~ the parameterized history 
will change. Interpolation gives rise to slightly different motion histories for the 
states (e.g., acceleration, velocity, or displacement). The parameter optimization 
process may produce a final e that is quite different from your initial guess. 

To introduce some of the concepts that are required to set-up the parameterized 
controls problem, consider Example 2.16, Figure 2.20, and Table 2.1. To solve this 
same problem using numerical optimization, the control variable u is parameterized 
in time and compared conceptually with its analytical counterpart in Figure 2.20. 
Note, the parameterized controls are now discretized at various nodal times. The 
relevant continuous expressions along with their corresponding converted parame­
terized control expressions are given in Table 2.1. This example is solved completely 
in Chapter 5 (see Example 5.1). 

u(t) 

Figure 2.20. Discretizing control effort u(t) 

Before leaving this section, it is instructive to discuss a general parameter opti­
mization solution procedure. One way to numerically solve the general parameter 
optimization problem is to follow the methodology of Section 2.7. while replacing 
the analytical computations with numerical procedures. To be more specific, the 
original formulation of minimize 

l tf 

J = L(x, e, t}dt, 
to 
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subject to 

and 

where 

Table 2.1. Parameterized control problem 

analytical approximate 

x(t), u(t) x({), u.({) 

<t>({) ~ J/: u~({)dt 

x = f(x,{,t), 

x = state vector (n xl) 

{ = parameter vector (a x 1 constants) 

'II = constraint vector (b x 1) 

is replaced by a four step conversion process. 
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First, the state-space equations are augmented by the integral equation as de­
fined by 

J' = X n+l (x(t,),{, t,) 
x=f 

Xn +l = L. 

(2.35) 

(2.36) 

Second, the state-space equations are numerically integrated with respect to the 
time to obtain 

x(t,)=x({) 

j' = X n+l ({) 

'II ~ 0, 

(2.37) 

(2.38) 
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and Eq. (2.37) and (2.38) are numerically differentiated with respect to the param­
eter vector to provide 

(2.39) 

(2.40) 

Third, the values of Eq. (2.37)-(2.40) are substituted into the RQP program 
to find the optimum correction to the solution (feasible search direction) at the ith 

iteration. Finally, the process is iterated at the second step until the RQP program 
converges to the overall optimum solution. 

Ideally, the conversion process works wonderfully, but in practice pitfalls do exist 
in every application. These pitfalls include numerical instabilities, local minima, and 
reachability of feasible solutions. These issues are discussed further in Chapters 4 
and 5. 

Now, how does one convert the optimal control problem into a parameter op­
timization problem? The original formulation of the optimal control problem is 
structured to minimize 

i tl 

J = L(x, u, t)dt, 
to 

subject to 

x = f(x, u, t) 

where x( t f), to, and t f) are prescribed a priori. An alternative formulation is devel­
oped wherein the unknown function u(t) is eliminated in favor of a set of unknown 
parameters through the following six steps. First, the state-space equations are aug­
mented by the integral equation and a Mayer form final time29 problem is formed 
(see Eqs. 2.35, and 2.36). Second, the time is normalized to simplify the control 
history description and to accommodate free final time problems. 

T= -
tf 

dt = tfdT 

x' = tff 
X~+l = tfL. 

While this use of normalized time allows one to use the same stopping condition 
(T = 1), it does not free one from the necessity to determine or to prescribe the 
actual tf. 

Third, the control history is parameterized by one of two methods. One method 
subdivides the normalized time interval into an integer number of subintervals that 
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are bounded by equally spaced (in time) node points and piecewise linear inter­
polation is used to approximate the intermediate control history26,28,3o. Note, the 
weights ofthe function are defined as the optimization parameters (see Figure 2.21). 

u 

e = (~1'~2'''' ,~m)T 
1 

t:1r = --. 
m-1 

o o 0 

Figure 2.21. Control parameterization 

The other method assumes a linear combination of functions (e.g., Fourier se­
ries, splines, orthogonal polynomials, etc.) to describe the control history27. The 
multiplicative constants become the optimization parameters 

i=l 

e = (6'~2'''' '~m)T 
Ji = ith approximation function. 

Fourth, the state equations are numerically integrated with respect to the nor­
malized time to obtain 

x(r = 1) = x(e) 

J' = Xn+l (e), (2.41) 

and Eq. (2.41) in numerically differentiated with respect to the parameter vector to 
produce 

(2.42) 
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Fifth, the values of Eq. (2.41) and (2.42) are substituted into the RQP program 
to find the optimal solution at the ith iteration. FinaJIy, the process is iterated 
at the fourth step until the RQP program converges to a local optimum solution. 
IT the iteration is initiated within the domain of attraction of the globally opti­
mum solution, this locally optimum solution will of course be the globally optimum 
solution. 

2.9. Chapter 2 Summary 

This chapter reviewed many preliminary mathematical fundamentals that are 
found throughout the remainder of the book. The goal was to present enough 
applied material to help the reader independently follow subsequent developments 
(dynamic modeling, system identification techniques, and control system designs). 
Fundamental developments were reviewed for linear algebra, linear control systems, 
digital systems, and calculus of variations. Methods used in the development of dy­
namic equations of motion were also reviewed (Newton's equations of motion, energy 
methods based on Hamilton's principle, and Lagrange's equations). These energy 
based methods become fundamental concepts for the Chapter 3 developments. The 
concept of analytical optimization was introduced for finding open-loop optimal 
control profiles. In addition, for an applied emphasis, numerical optimization fun­
damentals were introduced. This methodology is useful for dynamic systems that do 
not have readily available analytical solutions. This methodology's usefulness will 
be demonstrated for both system identification (see Chapter 4) and parameterized 
controls (see Chapter 5) applications. In Chapter 3, the dynamical equations of mo­
tion for flexible manipulators are introduced and the control system fundamentals 
presented in this chapter will become the starting point for further development in 
Chapters 4, 6, 7, and 8. 
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2.11. Chapter 2 Problems 

Homework 2.1. From Sections 2.2.-2.4.11. 

1. Find the eigenvalues of the following matrices: 

A, ~ [l ~ y] A, = [~ ~ ~]. 
2. Consider the system given by 

'X- + 6.5x + 12.5x + 7x = u. 

a. Find the transfer function for this system. 

h. Find the impulse response function for this system. 

c. Find the response of this system by using the impulse response for the 
inputs given below where all initial conditions are zero. 

i. u = unit step 

ii. u = sin2 t 

3. Consider the system given by 

Xl + 3Xl + 2Xl - 0.lx2 = 3u 

X2 + X2 + 3Xl = u, 

with initial conditions 

Assuming the input u is zero, find the state at time t = 3.0 seconds. Hint: 
Use the state transition matrix. 

4. Find the state transition matrix of 

A= [ -1 
o 

sin t] 
-1 

by using Definition 2.12 where the initial time to is zero. Examine the series 
solution numerically by comparing the exact solution to a one term, two term, 
and three term Taylor series expansion at time t = 1.0 seconds. 

5. For the system of Problem 3, write the solution to a step input using the 
solution to the state equation. 

6. For the system of Problem 3, find the impulse response matrix, and the trans­
fer function matrix. 
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7. Determine the controllability of the system of Problem 3. 

8. Use Euler and AB-3 with a step size of 0.05 seconds to integrate the system 
of Problem 3, from 0.0 to 10.0 seconds where the input is 

u(t) = sin t. 

Show the output in tabular form (using 1 second increments) (see Table 2.2). 
Discuss the differences between the methods used. 

Table 2.2. Output table for Homework 2.1, #8 

I T~r I E=t I E"I& I AB0

31 

9. Find the difference equations for the compensator 

Y s+3 = ..,.--..,-..,.---:-
X (s + l)(s + 2) 

by using Euler and the state-matrix methods. Use an update of 0.1 seconds. 
Tabulate the results for 2 seconds of execution. Assume the initial conditions 
of the compensator are zero. Discuss the relative differences of these two 
methods for implementing this compensator. 

Homework 2.2. From Section 2.5. 

1. Find a local minimum of 
a. J = t(xi + x~) + (Xl + X2)' 

b. J = 2"(xi + xD + (Xl + X2),X2 = -Xl' (use Lagrange multipliers) 

2. Find a local minimum of J = xi - 4XIX2 + x~ + 4X2. 

3. Prove tb;, matrix" p",iti"" dclinite H ~ [~ ~ ~ l 
4. Determine the modified normal equations for 

J = (z - zmfW(z - zm) 
Z= Ax 

g(x) = o. 
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5. Find a weak extremal for 

/
2 v"I"'+Y 

J(y) = -- dt for y(l) = 0 and y(2) = 1. 
1 t 

6. Find a weak extremal for 

J(y) = 101 (t - y)2dt for y(O) = 0 and 11(1) = 1. 

7. Find a weak extremal for 

/ 2v"I"'+Y 
J(y) = Ill=. dt for y(1) = 1 and y(2) = 2. 

1 v&.gy 

Hint: This is the functional that describes the brachistochrone problem. 

Homework 2.3. From Section 2.6. 

1. Derive the equations of motion for a simple pendulum as follows: 
a) Use the angle as in Figure 2.8. 
b) Use x, y coordinates with Lagrange multipliers. 

2. Derive the equations of motion for a two-link, rigid planar robot with springs, 
dampers, and torques at the two joints. 

3. Derive the equations of motion for a jib crane (see Figure 1.3) and linearize 
the nonlinear equations of motion. 

Homework 2.4. From Section 2.7.6. 

1. Minimize the distance to parabola G = ! (x2 + (x2" + a) ). Specify the mini­
mum for a = 1,0,-1. 

2. A tin can manufacturer wants to find the dimensions of a cylindrical can 
(closed top and bottom) such that for a given amount of tin, the volume of 
the can is a maximum. If the thickness of the tin stock is constant, a given 
amount of tin implies a given surface area of the can. Use the height and the 
radius as variables. 

Homework 2.5. From Section 2.7.8. 

1. Find the extremal control for the performance index 

J = ex, + Jt~ (~2) dt where c is a positive constant 

dynamical system :i: = u boundary conditions to, t I, Xo given. 
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2. Prove that the Hamiltonian H(x, u, A) in Example 2.16 (for the horizontal 
slewing link) is a constant. 

3. Find the minimum energy control to slew a single-link in a rest-to-rest ma­
neuver to a given angle in the vertical plane. The system equation is 

ml2.. mgl. 
l' = -B+ --smB 

3 2 

where g is the gravitational acceleration. 

Work this problem analytically as far as you can and state your observations. 

Homework 2.6. From Section 2.5.1. 

1. Solve eX = tan(x). Try starting with Xi = 1,2. Plot /(x) for X = [-4,2]. 

2. Solve xf - X2 = 0 xi + x~ = 1. Try starting with Xi = -1,1 for both XI,X2. 

Homework 2.7. From Section 2.8.8. (Software will be provided for 1 and 3-see 
Appendix A, or B) 

1. Solve Rosenbrock's problem by using both a gradient method and a second­
order scheme. Compare the number of iterations for convergence. 

2. Derive a finite difference approximation to the mixed derivative /XII where 
x, y are scalar variables. Hint: Use the Taylor series expansion form in two 
variables for the perturbations: ~x, -~x, ~y, and - ~y. 

3. Solve the single-link vertical slew problem given earlier (see Homework 2.5, 
#3) by using the gradient scheme, finite differences, and the following: 

(a) Choose constraint weights, WI, W2 = 10. 

(b) Choose constraint weights = 100. 

(c) Remove ft~ u;(ei)dt from the G function and solve. 



Chapter 3 

Flexible Robot Dynamic Modeling 

3.1. Introduction 

Several of the control strategies for flexible link robots described in the remain­
der of the book rely on an accurate dynamic model of the system. Creating a 
dynamic model that accounts for link flexibility adds additional challenges beyond 
the standard rigid link robot dynamics. The most apparent complexity arises due 
to the additional degrees-of-freedom associated with link deformations. Although 
in theory this adds an infinite number of degrees-of-freedom, in practice only a fi­
nite number are used to generate a model that is sufficiently accurate for predictive 
simulation and control design. Another complexity (and perhaps a less obvious 
one) is the appearance of first-order (not negligible) dynamic effects due to second­
order kinematic and force effects that at first glance appear to be negligible. For 
simple robot configurations, these effects can be handled in several intuitive ways. 
However, for complicated geometries, a systematic approach is needed to ensure 
that coupling effects are not inadvertently lost. Much of this chapter is devoted to 
describing such an approach, called the method of quadratic modes. 

This chapter focuses on the presentation of two methods for generating dynamic 
models for flexible link robots. The first approach is the method of quadratic modes 
and it is applicable to general robot configurations. The second approach is a finite­
element-like method that is applicable to planar robots. Before proceeding into 
the details of these methods, some preliminary mathematical concepts and their 
relationship to beam analysis are reviewed. A separate section on robot actuator 
dynamics is also included at the end of this chapter. 

3.2. Flexible Link Modeling Preliminaries 

In this section, several techniques for obtaining mode shapes are reviewed. This 
review is demonstrated by utilizing an analysis of Euler-Bernoulli structures. Beams 
and beam-like structures are the fundamental building block for investigating flexi-
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ble link dynamic effects. Later in the chapter link deformations will be decomposed 
into a series of basis functions, called mode shape functions. How one chooses these 
mode shapes dramatically impacts the accuracy of the dynamic model and some 
critical aspects of its form. For example, if the mode shapes are orthogonal, then 
the dynamic equations are partially decoupled. This form can be advantageous 
during control system design. 

First, several preliminary concepts are developed. Orthogonality is defined and 
a classical method for generating orthogonal functions is reviewed. Therefore, the 
concept of linear independence of functions is first introduced. Next, the analysis of 
beam dynamics is introduced. Periodically, several methods are discussed that lead 
to the selection of mode shapes used in flexible link analysis. Finally, the rotational 
kinematics are defined. 

3.2.1. Linear Independence of Functions 

The set of functions <PI (X), <P2(X), .. . ,<Pn(X) are linearly independent over the 
range Xl ;::: X ;::: X2 if they satisfy 

and the constants aI, a2, ... ,an must all be zero. Although this definition gives 
insight into the meaning of linear independence, it does not directly help one in 
determining if a given set of functions are linearly independent. To assess linear in­
dependence of vector functions C) = [<pdx) , <P2(X), ... ,<Pn(X)]T, the scalar equation 

(3.1) 

must be satisfied. 

3.2.2. Orthogonality of Functions 

Similar to linear independence, the concept of orthogonal functions is dependent 
on the range of interest. That is, when discussing the orthogonality of a set of 
functions one must also specify the range over which the functions are orthogonal. 

Two functions !/It (X) and t/J2 (X) are orthogonal over the interval [Xl, X2] if they 
satisfy 

(3.2) 

A set offunctions t/Jl (X), t/J2(X), ... ,t/Jn(X) are orthogonal if Eq. (3.2) is satisfied for 
all t/Ji (X)t/Jj (X) pairs with i t- j. 

A given set of linear independent functions <PI (X), <1>2 (X), ... ,<Pn (X) can be made 
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orthogonal by using the Gram-Schmidt orthogonalization process, or 

. . 
'-' 

Example 3.1. Show that the two functions 

q,l(X) = X 

q,2(X) = sin(x) 

915 

(3.3) 

are linear independent over the interval [0,11'), and use them to create two orthogo­
nal functions tPl (X) and tP2(X). 

Solution 
According to Eq. (3.1) to check the linear independence of q,1(X) and t/>2(X) the 

determinant of 

P = fan [X~:X ~i:~:] dX 

must be nonzero. Taking the determinant of P gives 

det P = !11'6 - !11'2 
9 2 

which is nonzero, thus indicating that q,1 (X), and t/>2(X) are linearly independent 
over [0,11'). 

Using the Gram-Schmidt orthogonalization process and starting with q,1 (X) gives 

tPl(X) = X 

. J; xsinx 
tP2(x)=smx- fn 2 X 

Jo X 
. 3 = smx- 1I'2 X, 

Note, the orthogonalization process is unique up to a multiplicative constant. 
That is, if tPdx), and tP2(X) are orthogonal, then so are ()1 tPl (X), and ()2tP2(X) 
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where 01, and 02 are constants. This additional freedom allows one to impose 
other constraints that result in unique orthogonal functions. One such constraint, 
called normalization, requires 

and produces orthonormal functions 1/Jl through 1/Jn. More formally, 

Example 3.2. By using the orthogonal functions derived in Example 3.1 create an 
orthonormal set and plot them over the region [0,11"]. 

Solution 

1 ( . 3) 1/J2=~ smX-2"X 
,,2-6 11" 
27r 

The orthonormal set is plotted in Figure 3.1. 

-I 

-I.50L---I~--2~--3~---'4 

Distance along the link - x 

Figure 3.1. Orthonormal functions of Example 3.2 

3.2.3. Beam Dynamic Analysis - Analytical Solution 

The equations of motion for transverse vibrations of Euler-Bernoulli beams is 
well known1 ,2. The boundary-value problem for a beam in flexure is defined by a 
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fourth-order partial differential equation with two boundary conditions at each end. 
A brief review of dynamic beam analysis is provided to introduce key concepts, such 
as boundary conditions, natural frequencies, and mode shapes. 

The two-point boundary value problem is 

~ [EI( ) 82y(x, t)] () 82 y(x, t) = 0 
8x2 x 8x2 + P x 8t2 (3.4) 

where boundary conditions are specified at x = 0, and x = L. The cantilever 
beam is a popular component to represent flexible links. The definitions for a beam 
with cantilever boundary conditions is illustrated in Figure 3.2. At x = 0, both the 
displacement and slope are zero. At the free end x = L, both the moment and shear 
are zero. By applying the boundary conditions to Eq. (3.4) the natural frequency 

L -4,t) 
• x 

Figure 3.2. Cantilevered beam free vibration 

relationship2 is given as 

_ A; (EI)! 
w, - L2 P , 

and the mode shapes as 

Yi(x) = Ai [(sin .BiL - sinh .Bi)(sin .Bix - sinh .BiX) 

- (coS.BiL + COSh.BiL)(cOS.BiX - cosh.Bix)] (3.5) 

where Ai is the normalization coefficient. The frequencies come from solving a 
transendental equation, called the characteristic equation. Numerical values2 for 
the first three cantilever mode shapes are as follows: Ai = .BiL = 1.8751,4.694, and 
7.855. 

3.2.4. Mode Shapes from Static Loading Conditions 

Mode shapes can be approximated by investigating different loading conditions3 . 

These loading conditions may consist of point forces, moments, distributed loads, 
or various combinations. From Euler-Bernoulli beam theory the bending moment 
is related to the curvature as 

(3.6) 
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For a given moment (and starting with Eq. (3.6)), several integrations result in a 
deflection curve. By performing a static beam analysis the transverse displacement 
or linear mode shape can be approximated (see Example 3.3). 

Example 3.3. Consider a concentrated transverse load M = P(L - x) applied at 
the tip of a cantilevered beam (see Figure 3.3). Find an expression for the linear 
mode. 

Solution 

L 

• x 

M=P(L-x) 

Figure 3.3. Cantilever beam with transverse tip force 

Substituting the concentrated transverse load into Eq. (3.6) and integrating 
yields 

d,'2y P[L - xl = --'----'-
dx2 El 
dy P [ 2] 
dx = 2El 2Lx - x 

P [ 2 3] y(x) = 6El 3Lx - x . 

The expression for y (x) represents the transverse displacement linear response to 
the concentrated load. Thus, for the linear mode, one may choose 

(3.7) 

or equivalently 

y(x, t) = [3Lx2 - x3 ] q(t). (3.8) 

3.2.5. Assumed Modes Method 

Exact (closed-form) solutions to most vibration problems cannot be found. 
Complicating factors include boundary conditions, irregular geometries, nonuniform 
mass or stiffness distribution, and material or geometric nonlinearities. Instead of 
deriving and solving for the general solution of w(X, t) where both X and t are free 
to vary during the application of Hamilton's principle, an approximate approach, 
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called the assumed modes method4 can be used. Let the solution take the form 
n 

w(X, t) = L t/>i(x)qi(t) (3.9) 
;=1 

where the basis functions tPi(X) are specified in advance. Therefore, only the gen­
eralized coordinates qi(t) are time varying. The basis functions must satisfy the 
kinematic boundary conditions of the system, form a linearly independent set, and 
resemble the actual mode shapes. In addition, if the tPi(X) are orthogonal or satisfy 
the natural boundary conditions, additional benefits may arise. 

The approximation of this solution arises from two features of the approach. 
First, the mode shapes or basis functions are (in general) not the true analytical 
mode shapes that one would obtain from solving the partial differential equation 
associated with the system. Second, only a finite number of mode shapes are con­
sidered, thereby truncating the solution. Many approximate methods for solving 
boundary value problems of engineering interest use this approach (Le., finite ele­
ment analysis). A simple example that demonstrates the steps used to generate an 
assumed modes solution is given next. 

Example 3.4. Consider the free vibrations of a cantilevered beam (see Figure 3.2). 

Solve the free vibration problem by using the assumed modes approach in con­
junction with Lagrange's equations. Compare your results with the exact solution. 

Solution 

1. Select admissible function(s) for the cantilevered beam. For the sake of sim­
plicity, one can use a single assumed-mode (n = 1). Furthermore, one can 
use the mode shape previous developed (see Eqs. 3.7 and 3.8) and associated 
with a transverse force at the beam tip, or 

y(x,t) = x2 (3L - x)q(t). 

2. Form expressions for the kinetic and strain energies of the beam, or 

T =! [L p(x) (8y(x,t))2 dx 
210 8t 

= ! (33PL7il) 
2 35 

U = ~ LL EI(x) (82~;; t)) 2 dx 

= ~(12EIL3q2). 

(3.10) 

(3.11) 
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3. Form equations of motion by using Lagrange's equations, or 

.. [140EI] 
q + llpL4 q = 0 

W = [140EI]! = {1.8888)2 [EI]! 
I1pL4 L2 p 

The exact solution for a uniform beam is 

{1.8751)2 [EpI]! 
We = L2 

The assumed modes method underlines the framework behind the method of 
quadratic modes architecture. 

3.2.6. The Finite Element Method 

Discretization methods, such as the finite element method are popular in com­
mercial disciplines (e.g., automotive, aerospace, factory automation, etc.). Many 
times analytical solutions do not exist for real problems that are normally complex 
structural systems. Approximate solutions are often used to solve these problems. 
The finite element method l is a powerful numerical solution technique that is used 
to solve vibration problems with complicating factors. Many of these factors are the 
result of complex geometries, nonuniform mass or stiffness distributions, and mate­
rial or geometric nonlinearities. The finite element mathematical model is composed 
of a finite number of elements n. Upon global assembly, the linear second-order sys­
tem becomes 

Mx+Kx=F 

where M is the global mass matrix, K is the global stiffness matrix, and F is the 
external force vector. By performing an eigenvalue analysis, the equations of motion 
become decoupled. The resulting modal equations of motion are 

where W contains distinctive eigenvalues or frequencies of the system. The matrix 
c.t> contains the system mode shapes. 

Existing mode shapes for complex structures (from finite element modeling) 
can be recast to support quadratic modes development. For example, cubic spline 
functions can be employed to map the linear mode shapes into quadratic modes. 

Example 3.5. Consider the cantilevered beam shown in Figure 3.2. For the fol­
lowing numerical values: L = 10, EI = 1.4e4, and p = 1.2 a 4-element model was 
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generated to approximate the cantilever beam. Cubic splines composed of piecewise 
cubic polynomials were defined as 

over the interval Xi ::; X ::; Xi+l. A cubic polynomial was mapped between mode 
shape nodes (depending on the number and type of elements, a coarser mapping 
may be adopted). For comparison purposes, the analytical mode shapes were also 
generated from Eq. (3.5). The results for the first cantilever mode are shown in 
Figure 3.4. These include both the translational deflection ¢J(x) and rotational 
deflection ¢Jz(x), respectively that are generated by mapping the finite element mode 
shapes with polynomial functions (such as cubic splines). In later developments, 
quadratic modes can be created with Eq. (3.30). Other curve fitting methods (e.g., 
higher-order polynomials or numerical integration techniques) can also be utilized. 
Although this mapping is shown for a simple beam, the same procedure would be 
used for more complex structures that do not have analytical solutions. 
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Figure 3.4. First cantilever beam mode shape data fitting comparisons 

3.2.7. Mode Shape Discussion 

As stated earlier, there is no unique method for selecting the basis functions 
¢Ji. Any set that satisfies the kinematic boundary conditions and are linearly in­
dependent are acceptable. However, the quality of the approximate solution varies 
greatly with the choice of basis functions. Furthermore, if the mode shapes are 
orthogonal, then by definition the mass and stiffness matrices will be diagonal and 
the system equations will be decoupled. This feature may be beneficial for control 
system design. 

One of the most important features of a mode shape (beyond the required con­
ditions) is how well it approximates the true mode shapes of the analytical solution. 
For academic examples (e.g., free vibration), this can be demonstrated by showing 
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the degradation of the solution by assumed modes that deviate from the analyti­
cal solutions. For more complicated systems, it may be difficult to assess whether 
the chosen mode shape resembles the true ones since the true mode shapes are not 
known analytically. At this point, engineering judgment is required in the analysis. 
One approach is to use the true mode shapes associated with the closest analyt­
ically solvable system. Alternatively, the static deflection shapes for a variety of 
force basis functions could be used. Finally, if additional terms can be added to 
the mode shapes such that they satisfy not only the kinematic, but also the natural 
boundary conditions, then often the solution will be of higher fidelity since it meets 
more of the system constraints. One feature of the assumed modes approximation 
is that the approximate natural frequencies will always be greater than the true 
natural frequencies. As more basis functions are added, all the natural frequency 
approximations get closer to the true values. This can be exploited to assess the 
quality of the mode shapes used by iterating on the solution with additional mode 
shapes. 

3.2.8. Rotational Fundamentals 

Lagrange's equations are an attractive method for obtaining the equations of 
motion for a rigid body with three translational degrees-of-freedom and three rota­
tional degrees-of-freedom. Of course, this requires one to obtain an expression for 
the energy of the system. Several methods exist to express the rotational degrees­
of-freedom. One popular method, called Euler angles is often used to express the 
rotational portion of the kinetic energy expression. 

Why not use the Cartesian components of the angular velocity to write the 
expression of rotational kinetic energy, or 

This is a fine way to write the rotational kinetic energy. However, there are no 
generalized coordinates that have Wi as their derivatives. Therefore, the Cartesian 
components of angular velocity are not well suited for use in Lagrange's equations. 

Euler angles are suitable for use in Lagrange's equations because they are gen­
eralized coordinates for describing the orientation of a rigid body and their time 
derivatives can be used in representing the rotational kinetic energy of the system. 
Euler angles can be visualized as the orientation of the body-fixed xyz system rel­
ative to the fixed XY Z system. One assumes that the two coordinate systems are 
initially coincident. A series of rotations about the body axes, in a specified se­
quence, will permit the xyz system to reach any final orientation. This is shown 
graphically in Figure 3.5. Euler angles are used in the following sections to represent 
various combinations of rigid-body rotational degrees-of-freedom. 
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Figure 3.5: Rotate IP about the Z-axis; Rotate 8 about the XU -axis; Rotate'" about 
the z' -axis 

3.3. The Method of Quadratic Modes 

Until now, the discussion on modeling distributed parameter systems has been 
focused on systems that have no rigid body motion (e.g., a cantilever beam) . When 
a flexible body undergoes general rigid body motion, interesting coupling can oc­
cur that may be difficult to capture by using traditional assumed modes methods. 
For example, higher-order deformation terms not captured by the assumed modes 
expansion can couple with rigid body motion to form first-order, non-negligible, 
dynamic effects. The method of quadratic modes uses a systematic procedure to 
capture these effects in both the kinetic energy terms, and in the externally ap­
plied loads and gravity terms. The heart of the approach is an expansion of the 
deformation as 

n n n 

w(X, t) = 2: 4>i(X)qi(t) + 2: 2: 9ij(X)Qi(t)qj(t) (3.12) 
i=1 i=1 j=l 

where 4>i(X)Qi(t) are the same terms encountered from the assumed modes approach 
(see Eq. 3.9). The second term 9ij(X)Qi(t)Qj(t) is called the quadratic mode expan­
sion where the quadratic mode shapes 9ij (X) are derived from the linear mode 
shapes 4>i(X). n is the number of mode shapes included in the expansion. 

3.3.1. An Introductory Example 

Before going into the details of the quadratic modes procedure, a one degree-of­
freedom example of a rigid system is presented that highlights the main features of 
retaining higher-order components during the kinetic energy formulation. 
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Example 3.6. Free vibrations of a simple one degree-of-freedom rotating flexible 
system. A massless rod of length L is attached by a torsional spring with a spring 
constant k to a disk of radius r. Attached at the other end of the rod is a point mass 
m. The flexible system kinematic configuration is shown in Figure 3.6. The body 
and inertial coordinate frames are defined as bi and Oi, respectively for i = 1,2,3. 
The disk undergoes a prescribed rotation 8 about the 03 axis. By using the method 
of quadratic modes derive the differential equations of motion for the mass. Assume 
the deflections of the torsional spring are small q « 1. The hub is allowed to move 
through large rigid body rotations defined by the angle 8. Contrast your results 
with the traditional assumed modes method. 

Figure 3.6. Simple I-degree-of-freedom rotating flexible system 

Solution 

To illustrate the method of quadratic modes, higher-order kinematics are in­
cluded in the formulation in order to capture the centrifugal stiffening effect. The 
motion of m is composed of an undeformed rigid body motion p(O) and a flexible 
body motion u(q). The flexible body motion will be linearized up to second-order 
in the generalized coordinates q. By using this representation, form the Lagrangian 
and develop the dynamic equations for this system. 

The absolute position vector is 

p(q) = p(O) + u(q) 

= (r + Lcosq)b1 + L sin qb2 . (3.13) 

Solving for the flexible body motion yields 

u(q) = p(q) - p(O) 

= L(cosq - l)b1 + LSinqb2 • (3.14) 
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Next, define Taylor series expansions for the trigonometric terms as 

1 2 1 4 COS(q) = 1 - -q + -q - ... 
2! 4! 

sin(q) = q - '!'q3 + .!.l 
3! 5! 

and retain terms up to second-order and substitute into Eq. (3.14) to obtain 

u(q) ~ (Lh2) q+ (-2Lh1 ) q2 

~ <Plq + glll. 
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(3.15) 

These equations (see Eq. 3.15) reflect the main idea of quadratic modes-that of 
forming the flexible body motion u(q) in terms of Eq. (3.12). It is observed that 
the linear and quadratic modes are 

<Pl = Lb2 
-L~ 

gll = 2b1. 

With <Pl as the magnitude of <Pl and 911 as the magnitude of gll, or 

<Pl == L 
-L 

911 = 2' 
then the absolute position vector (see Eq. 3.13) becomes 

2 ~ ~ 

p(q) = (r + L + 911q )b1 + <Plqb2. 

(3.16) 

(3.17) 

(3.18) 

To evaluate the absolute velocity of the tip mass in the fixed-frame, the required 
body-frame coordinate kinematics are 

hl = cos 8nl + sin 8n2 
h2 = - sin 8nl + cos 8n2. 

The time derivatives become b1 = wh2 and b2 = -Whl where w = 8. Taking the 
derivative of Eq. (3.18) gives 

p(q) = (2911qq - 8<Plq) hl + (<PIQ + O(r + L + 911q2)) h2. (3.19) 

The kinetic energy T is expressed as 

(3.20) 
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The strain energy U is expressed as 

(3.21) 

Substitution of Eq. (3.20) and Eq. (3.21) into the Lagrangian L = T - U gives 

L = ~m (2911qq - iJ¢lqf + ~m (¢lq + iJ(r + L + 911q2)f - ~kq2. 
Applying Lagrange's equation and linearizing with respect to q gives 

m¢~ij + [k - (m¢~ + 2m911(r + L)w2)] q = -m¢l(r + L)w. 

Next, substitute Eq. (3.16) into Eq. (3.23) and normalize, or 

ij + [w~ - w2 - 2w2 (I + 1) (9~1 ) ] q = -w (I + 1) 
where 

2 k 
Wn = mL2· 

The substitution of Eq. (3.17) into Eq. (3.24) produces 

ij + [w~ + w2 I] q = -w (I + 1) . 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

If only linear kinematics are considered, then 911 is zero in Eq. (3.24). The result is 

ij + [w~ - w2 ] q = -w (I + 1) . (3.26) 

Discussion 
It is evident from the comparison of Eq. (3.25) and Eq. (3.26) that the two 

approaches (quadratic modes and traditional assumed modes) result in different 
linearized equations of motion. The centrifugal stiffening of the system is predicted 
correctly when the quadratic kinematics are included in the derivation. This situ­
ation is in contrast to the equations of motion based on linear kinematics, which 
indicate softening or buckling of the system. The differences between the two ap­
proaches becomes significant when the absolute value of the spin rate is of the same 
order-of-magnitude as Wn . Specifically, if the quadratic modes are ignored (gll ~ 0), 
then the dynamic equations predict that the beam softens as the rotational speed 
is increased. Of course, this is not correct. 

Example 3.6 illustrates that a traditional assumed modes approach based on 
linear kinematics may lead to spurious equations of motion unless some corrective 
measure is taken. The corrective measure taken in the references5,6 was to include 
geometric stiffness matrices in the analysis. The present approach does not require 
the use of such matrices, as geometric stiffening is accounted for implicitly by the 
quadratic modes. 
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3.3.2. Computing Quadratic Mode Shapes 

The method of quadratic modes is an assumed modes approach where the ap­
proximated kinetic and potential energy functions are formed by using kinematic 
relationships that are accurate up to second-order. For a beam in bending, this 
means the displacement of any point along the beam must capture both the axial 
and transverse components. In the traditional assumed modes approach, the energy 
functions would only capture the first-order transverse motion. Note, the quadratic 
mode shapes gij are not independent of the linear mode shapes <p. Once the linear 
mode shapes have been agreed upon, the quadratic mode shapes must be computed 
as a function of all the 2-tuple combinations of <p. Determining the functional rela­
tionship between gij and <p depends on the structure being considered and may not 
have an easily obtained analytical solution. For illustration purposes, the analytical 
equations for the quadratic modes of various beam configurations will be described 
as a series of examples. 

A practical approach developed by Segalman and Dohrmann7 ,8 works for general 
structures. First, the structure is modeled by using a finite element code with 
nonlinear deformation capability. Next, a set of independent loading configurations 
is used to generate a corresponding set of static deflection functions. The first­
order deflections of these deformations are used as the linear mode shapes. The 
second-order deformations become the gij mode shapes. The gij (i::j:. j) are found 
by forming all possible combinations of force basis functions and extracting the 
second-order deformations. This method has been applied to general structures8 • 

To illustrate how to compute quadratic modes, two separate methods are pre­
sented. Both methods exploit the following assumptions used in the derivations: 

1. The beam is constrained to be inextensible in the axial direction. 

2. Motion of a material point due to deformation in the lateral direction is much 
greater than in the longitudinal direction. 

Method 1 
Consider an undeformed beam segment oflength dx whose endpoints have Carte­

sian coordinates PI = (x,O) and P2 == (x + dx,O). Next, compare the location of 
the endpoints for the same segment when the beam is in a slightly deformed con­
figuration (points pi and P2)' The geometry definitions are shown in Figure 3.7. 
The second-order longitudinal displacement is defined as U z . The first-order lateral 
displacement is defined as y. Both of these displacements vary over the length of the 
beam. By assumption 1, the segment lengths in both the deformed and undeformed 
configuration must be the same, or 

The results is 
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undeformed element 

PI P2 
(x, 0) (x + dx, 0) 

Figure 3.7. Undeformed and deformed small segment of a beam 

Dividing by dx2 yields 

1=1+2du", + [dU",] 2 + [dy ]2 
dx dx dx 

By assumption 2, this reduces to 

1 = 1 + 2 du", + [dY ] 2 
dx dx 

Solving for u'" gives the quadratic modes definition 

1 {X [dy ]2 
U'" = - 2 10 dx dx. (3.27) 

Method 2 
Since the beam is inextensible (assumption 1), the axial strain must be zero, or 

c",,,, = II ~: 11- 1 = 0 (3.28) 

where w is the deformation expanded as in Eq. (3.12). First, define the motion of 
a particle originally located at X as 

w(X) = (X + g;jq;qj if + 4>;qJ. 

Take the partial derivative for w 

&w I ~ I ~ aX = (1 + g;jq;qj)1 + 4>;qiJ, 
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This leads to a magnitude, or 

The quantity on the right has the form v'I+X and can be expanded in a binomial 
series as 

Therefore, 

(3.29) 

Substitute Eq. (3.29) into the axial strain constraint equation (see Eq. 3.28) and 
solve for gij to obtain 

liX 
I I 

gij = - 2 0 <Pi <Pj df" (3.30) 

which is analogous to the result obtained by Method 1. In the following example, 
the method of quadratic modes is applied to a rotating flexible beam. 

Example 3.7. Consider the free vibrations of a beam cantilevered to a rotating 
hub. The thin extensible beam of length L, mass per unit length m, modulus of 
elasticity E, and area moment of inertia I is free to bend in only the y-direction. The 
beam is cantilevered to a hub, that is allowed to rotate under a prescribed rotation 
8. The geometry is defined in Figure 3.8. The body and inertial coordinate frames 
are defined as hi and iii, respectively for i = 1, 2,3. Generate the dynamic equations 
of motion for the system by using the method of quadratic modes. 

Figure 3.8. Flexible beam attached to a rotating hub 
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Solution 

Use Lagrange's equations where the kinetic and potential energy contain both 
linear and second-order deformation kinematics. The position vector from the origin 
of the inertial frame to any point along the beam is 

p(X, t) = [r + xlbl + u(X, t) 

where the flexible body motion is 

The linear mode shape is approximated as 

</J(X) = [3LX2 - X3] b2 , (3.31) 

or equivalently 

(3.32) 

from a static loading condition derived in Section 3.2.4 .. The quadratic component 
U x is determined by using Eq. (3.27), or 

ux(X,t) = -~ [~X5 - 9LX4 + 12L2x3] l. 

In summary, 

~ 2~ 

u(X, t) = ¢>(X)qh2 + 911 (X)q hI (3.33) 

where Eq. (3.33) takes a form analogous to Eq. (3.12). The linear and quadratic 
modes are 

¢>(x) = 3LX2 - X3 (3.34) 

911(X) = -~ [~X5 - 9LX4 + 12L2x3] . (3.35) 

The velocity of each material point along the beam's length is given by 

p(X, t) = ~: I[r + xlbl + u(X, t)] 

= ~: [r + X + 911 (x)q2lbl + ¢>(X)qb2 ] 

= [2911 (X)qq - w¢>(X)qlb l + [¢>(X)q + w(r + X + 911 (X)q2)] b2 • 

The kinetic energy is 

T = ~ lL p(X)p(X, t) . p(X, t)dX· (3.36) 
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The strain energy U is 

u = ! lL EI(X) (EJ2y(x, t») 2 dX 
2 0 8x2 

= ~LL EI[q,II(X)]2dXq2. (3.37) 

Substituting Eq. (3.36) and Eq. (3.37), respectively into Lagrange's equation and 
linearizing the result leads to (after a lot of algebra!) 

(LL P[q,(X)]2dX)q + ( EI LL [q,II(X)]2dX 

-(LL p([q,(X)]2+2[r+X]9U(X)]dX)W2)q= 

-(LL p[r + X]q,(X)dX)W. (3.38) 

Substituting Eq. (3.34) and Eq. (3.35) (for q,(X) and 9u (X), respectively) gives 

.. (140EI 1 [r ] 2) W (35r 7 ) 
q + llpL4 + 22 35I + 5 w q = - L2 44L + 12 . (3.39) 

In contrast, the equation obtained without the quadratic mode is 

.. (140EI 2) W (35r 7) 
q + llpL4 - W q = - L2 44L + 12 . (3.40) 

Example 3.8. This example demonstrates the centrifugal stiffening effects both 
with (Eq. 3.39) and without (Eq. 3.40) the quadratic mode. Use the following 
numerical values: L = 10, r = 0, EI = 1.4e4, p = 1.2, 0 = 6, and T = 15. 
Simulate the free vibrations of a beam cantilevered to a rotating hub. Use the 
dynamic equations (see Eq. 3.39 and Eq. 3.40) developed in Example 3.7. The 
prescribed rigid body motion is defined as 

w(t) = ~ [t - (~) sin C;t)] 
w(t) = ~ [1- cos C;t)] 

for 0 :5 t :5 T and for t > T, w(t) = 0 and w(t) = O. 
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Figure 3.9. Rotating cantilever beam numerical results for Example 3.8 

Solution 

The numerical results are shown in Figure 3.9. The prescribed motion for the 
rotating hub include angular rotation rate and acceleration profiles (see upper plots 
in Figure 3.9). The bottom two plots in Figure 3.9 show the axial and tip displace­
ment responses. These responses include both traditional assumed modes Eq. (3.40) 
and quadratic modes Eq. (3.39). The traditional assumed modes approach predicts 
premature softening/buckling of the beam. 

3.3.3. Formal Quadratic Modes Equations 

For the purposes of developing Lagrange's equations, the quadratic mode de­
velopment has proceeded strictly from the idea of expanding the kinematics up 
to second-order in the deformation. In the original published development of the 
method of quadratic modes 7,8, more general equations were developed from a gen­
eral evaluation of Lagrange's equations. The advantage of this formulation is that 
the complexity of forming the energy quantities, which are sometimes quite involved, 
is not required. In the remainder of this section, two versions of these equations 
will be presented followed by two examples. 
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Inertial Reference Frame Equations 

The quadratic mode equations are given below where the inertial frame is the 
reference frame used to describe the motion of the body. 

'franslational 

Rotational 

Deformational 

i{x, t) = 
p{t) = 
Fezt = 
R = 
~ = 
X = 
qi{t) = 
(Pi(X) = 
~ij{X) = 
F. = 

acceleration of a particle in the inertial frame 
translation of the reference configuration in inertial frame 
external force in inertial frame 
rotation matrix of the reference configuration in inertial frame 
vector of virtual rotations 
reference location of some particle 
ith generalized coordinate for the ith assumed mode shape 
ith deformation mode shape 
ith, jth quadratic mode shape 
static reaction force for a beam 

Body Reference Frame Equations 

The quadratic mode equations are given below where a body fixed frame is the 
reference frame used to describe the motion of the body. 

'franslational 

"0/ / / / (-pi + F e.,t) dV = O. (3.44) 

Rotational 

"0/ / / / [X + qicPilT A (-pi + F e.,t) dV = O. (3.45) 
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Deformational 

(3.46) 

A is determined from the relationship 6R = ATR . 

Example 3.9. Consider the dynamics of the unidirectional rotating beam in grav­
ity. Shown in Figure 3.10 is the rotating flexible link. A single revolute joint 
o rotates in a vertical plane. Gravity acts in the negative Y -direction. Develop 
both the rotational and deformational equations of motion by using the method of 
quadratic modes. 

1\ ! gr y 

" 1\ 

Y X 

• au " x 

Figure 3.10. Kinematics for a unidirectional rotating beam in gravity 

Solution 
The position vector to any point along the beam is 

Define the relevant quadratic modes terms as 

x = ( -XiP - qitPi8 - 2tii#1) i + (x8 - tPiqiP + tPiqi) j 

tPi = tPJ 
F. = ElqitP:"j 
gij = 9ij i 

F ezt = - P9r cos oj - P9r sin ei + T1/(X)j, 

(3.47) 

(3.48) 
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and inserting into the Eq. (3.46) (Deformational) gives 

After performing the indicated computations, the results are 

piji foL tPitPjdX + pij foL XtPidX + Elqi foL tP~'tP'JdX 

- qi82 [2P foL X9ijdX + P foL tPitPidX] 

+ 2P9rcosf}lL tPidX + P9rqi Sin f}l
L 

9iidX=Tdd (tPi) I . (3.49) 
o 0 X x=O 

Equation (3.45) (Rotational) becomes 

foL [X + qitPilT A( -pi + F ezt)dX = o. 

The matrix of virtual rotations A is defined by 

6R=AT R. 

For this example, the rotation matrix R is 

[ 
cosf} sin (} 

R = - sinf} cosf} 
o 0 

(3.50) 

Treating the virtual operator 6 the same as the partial differential operator gives 

[
-6f} sin f} 6f} cos f} 0] 

6R = -6f} ;os f} -6f} ;in f} ~ . 

From this, A is 

[0 -6f} 0] 
A=6f} 0 O. 

o 0 0 

The external force (actually a torque) due to the hub motor is 

F motor = T'1(X)j. 
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Here, the doublet function is used to represent two equal in magnitude, but opposite 
direction impulses occurring at the hub in the rotating J-direction (see Figure 3.11). 
Equation (3.50) becomes 

Figure 3.11. Two opposing direction impulses to represent hub torque 

t [+]T. [~ -fJ(J 0] 
o 0 (-px+FezddX=O. 
o 0 

(3.51) 

Substituting Eq. (3.47) and Eq. (3.48) into Eq. (3.51) gives 

Performing the indicated inner product and integration gives 

~pL38 + pqi 1L X4>idX - P9rqiSin91L 4>;dx + ~pgrL2cOS9 = T. (3.52) 

Equations Eq. (3.49) and Eq. (3.52) describe the dynamics for a rotating beam in 
a vertical plane subject to a gravitational field. For a beam rotating in a horizontal 
plane, gravity is zero. In addition, the effect of a tip mass can be included. This 
modified model is used in Chapter 8, Example 8.2 (gravity neglected), and (with a 
slight modification to the kinematics) also used in Chapter 5, Section 5.4.11 .. 

Example 3.10. Consider the dynamics of a bidirectional, spherically rotating 
beam in gravity. The rod is free to vibrate in two transverse directions. It is 
connected to a motor by using a U-joint. Motors at the U-joint allow torques to be 
applied to the connection point causing rigid body rotation. Compute the form of 
the dynamic equations of motion. Assume that the motion occurs in a gravitational 
field that effects deformation. 
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Solution 

Two Euler angles are used to describe the orientation of the undeformed beam 
due to the U-joint rotations at the hub. It is assumed that two independent torques 
can be applied in the direction of the two Euler angles. The Euler angle descriptions 
are shown in Figure 3.12. The rotation sequence is as follows: 

x 

Figure 3.12. Euler angles used to describe spherical rotation 

1. Rotate the XY Z system through f} about the positive Z-axis to obtain the 
x'y'z'system. 

2. Rotate the x'y'z' system through 'I/J about the positive y'-axis to obtain the 
xyz system. 

The total rotation matrix R is the transformation matrix from the XY Z system to 
the xyz system, or 

The total rotation matrix R can be expressed as the product of two simpler rota­
tional matrices corresponding to the two Euler angles, i.e., R = R2Rl, or 

[
COS'I/J 0 

R= 0 1 
sin'I/J 0 

- sin 'I/J] [COS f} sin f} 0] o - sinf} cosf} 0 . 
cos'I/J 0 0 1 

The quantities necessary to evaluate the rotational and deformational equations of 
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motion are 

[ 
0 -8 1/J~.] 

0= 8. 0 
-1/J 0 

tPi = ,pfj + q//k 
x=xi 

x = (0 + (2)(X + qitPi) + 20tiitPi + iiitPi 

where only terms up to first-order in qi have been retained. Making the appropriate 
substitutions gives 

[
COS1/JSin 9] 

= -P9r cos 9 . 
sin 1/J sin 9 

There will be two sets of deformation equations-one for the vertical a and one for 
the horizontal P directions of deformation, respectively. Inserting into Eq. (3.46) 
(Deformational) for a gives 

L [2q'j 9ij] [ -pXz + Fezt• ] 
(oqf) 10 ,pi . -P~II + Fezt• - F8 • dX = o. 

o -pXz + Fezt• - F •• 
(3.53) 

After performing the indicated computations, the results are 
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To determine the deformational equations of motion for {3, computations similar 
to Eq. (3.53) can be performed. Note, the 4Jf component would be inserted in the 
z-location. Finally, the rotational equations of motion can be derived by using 
Eq. (3.45). The production of these final equations are left as an exercise for the 
reader. 

3.3.4. Multibody Quadratic Modes 

This method uses Hamilton's principle for each link rather than for the com­
plete multibody system. This requires resolving away the constraint forces. The 
advantage of this method is that the form of the equations for each link is identical 
and need only be performed once. The recursive substitution of constraint forces 
can be automated by using symbolic mathematics software packages. 

The multibody system consists of n-links and n-revolute joints. The first joint 
(the hub) is in general not fixed in an inertial reference frame. The first link is 
of arbitrary geometry and is connected to the hub on its inboard side and to the 
second joint on its outboard side. The multibody system of joints and links is 
terminated by the nth-link. Each joint has one rotational degree-of-freedom and a 
torque producing actuator. The solution procedure9 is described by a sequence of 
steps. To manually obtain the equations of motion for even a two-link planar flexible 
robot is difficult. Symbolic equation solvers, such as Mathematic~ or Maple® are 
recommended. 

The coordinate systems, torques, and reaction forces for each flexible link/joint 
subsystem are defined in Figure 3.13. Note, the small rotation at joint k + 1 due 
to the deformation of link k is denoted by Ok. The multi body quadratic mode 
procedure9 is described next. 

Step 1. Evaluate the equations of motion for translation, rotation, and deformation 
of the kth-link. This is identical to the Examples 3.7 and 3.9, but with the external 
force Fext consisting of gravity, torques, and reaction forces at both the inboard and 
outboard links. These reaction forces are denoted by FR. and FR.+l' respectively. 

Step 2. Resolve out the unknown reaction forces FR. recursively. Start by solving 
the translational equation of motion for the nth reaction force FR .. (function of Pn). 
Inboard reaction forces can be evaluated successively inward up to the hub. If the 
hub is fixed, then Frl is not required since it is a workless constraint force. These 
reaction forces will be expressed in terms of the joint translational accelerations 
(Pi). These accelerations can be written as functions of the angular velocity vectors 
and angular acceleration vectors of each joint, and the generalized velocities and 
generalized accelerations of the deformation for each link. This step eliminates 
the translational equations of motion by eliminating the reaction force terms and 
leaving only the rotational and deformational equations. 

The interested reader is encouraged to consult reference9 for further details. 
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Figure 3.13. The eh joint and link of a flexible multibody system 

3.4. Planar Flexible Robot Dynamics 

The second method for modeling flexible planar robots is based on material 
taken from reference 10 . The key points of the method are as follows: 

• Links are modeled by using specially formulated beam elements. 

• Generalized coordinates are nodal rotations of the beam elements. 

• Equations of motion are obtained by using Lagrange's equations. 

The assumed form of the kinematics is given by 

x(s, t) = Xi(t) + 18 
cos8(r, t)dr 

y(s, t) Yi(t) + 18 
sin8(r, t)dr 

where the meaning of x, Y, and 8 are shown in Figure 3.14. 

(3.54) 

(3.55) 

The integrals in Eq. (3.54) and Eq. (3.55) are evaluated by assuming each inte­
grand is constant and equal to the average of its values at the endpoints. Thus, 

X(s, t) liS Xi(t) + - (cos 8j (t) + cos 8j+l (t))dr 
2 0 

(3.56) 

y(s, t) liS Xi(t) + - (sin8 j (t) +sin8j+l(t))dr. 
2 0 

(3.57) 

The approximation used in Eq. (3.56) and Eq. (3.57) is justified as long as (8j+l -
8j ) « 1. Carrying out the integrations in Eq. (3.56) and Eq. (3.57) yields 

X(s,t) Xi +s(cos8j +cos8j+d/2 

y(s, t) = Yi + s(sin 8j + sin 8j+d/2. 

(3.58) 

(3.59) 
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i'th element 
y 

Note: j = j(i) ~+l 

~dy 
dx 

x 

Figure 3.14. Kinematic definitions for the ilk element 

Differentiating Eq. (3.58) and Eq. (3.59) with respect time gives 

X(s, t} 

y(s, t} 

= Xi - s(8j sin8j + 8j +1 sin8i+d/2 

Yi + s(8j cos8j + 8i+l cos8i+d/2. 

Setting s = Li in Eq. (3.60) and Eq. (3.61) yields 

Xi+l = Xi - Li(8j sin 8j + 8i+l sin 8i+d/2 

Yi+l = Yi + Li(8j cos8j + 8i+l COS8i+l}/2. 

Combining Eqs. (3.60}-(3.63) leads to 

x(s, t} = (1 - s/ Li}Xi + (s/ Li}Xi+l 

y(s, t) = (1 - s/ Li}Yi + (s/ Li}Yi+l. 

The kinetic energy of the i'th element is given by 
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(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

where Pi(S) is the mass density per unit length of the element. Substituting 
Eq. (3.64) and Eq. (3.65) into Eq. (3.66) and performing the integrations yields 

Ti = ~([Xi Xi+11Hi[xi xi+11T + [Yi Yi+dHi[Yi Yi+dT ) (3.67) 

where 
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It proves useful to define 

{PTi 
m~. - -- (3.69) - 8ilr{JiJ.· 

Substituting Eq. (3.67) into Eq. (3.69) yields 

i_I 82 
([. • ]H [. . ]T [ . . ]H [. . ]T) 

mrs - 2 8iJr80. Xi Xi+l i Xi Xi+1 + Yi Yi+l i Yi Yi+l 

=!- ([8~i 8Xi.+1] H.[x. X. ]T + [8~i 8i1i.+1] H.[·.·. ]T) 
88r 88. 88. ...+1 88. 88. • Y. Yo+1 

= [8~i 8xi.+1] Hi [8~i 8xi.+1] T + [~i 8iJi.+1] Hi [8~i 8iJi.+1] T (3.70) 
88. 88. 88r 88r 88. 88. 88r 88r 

The kinetic energy of the entire system is the sum of the kinetic energies of each 
element and any rotational inertias. Thus, 

(3.71) 

where Jj is the rotational inertia associated with 8j . It is straightforward to show 
that 

(3.72) 

Taking the partial derivative of both sides of Eq. (3.72) with respect to Or and O. 
gives 

where 

= 
N. 82T.o' N4 

Eq. __ (3.71) " "J 1: £ L.J -.-. + L.J jUj.Ujr 
i=1 88r 88. j=1 

Eq. ~.69) 
N. N4 

E m~. + E JjOj.Ojr 

i=1 j=1 

{ I ifj=s 
OJ. = 0 if j :/; s . 

The general strain energy of the itA-element is given by 

Ui = fL. (EI)i (88 . 88) ds 
10 8s 8s 

(3.73) 

(3.74) 

(3.75) 
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where (EI}i is the flexural rigidity of the ith-element. The strain energy is simplified 
by a finite difference equation approximation, or 

00 = OJ+1 - OJ 
as Li 

(3.76) 

Substitute Eq. (3.76) into Eq. (3.75) to obtain 

. 1 2 
U· = "2(EIMOj+1 - OJ) /L i • (3.77) 

The strain energy of the entire system is the sum of the strain energies of each 
element, thus 

1 N. 

U ="2 L(EIMOj+1 - OY/Li . 

i=1 

(3.78) 

Lagrange's equations are expressed as 

d (aT) aT au oR 
dt ail" - 00" + 00" + ail" = Q" 

(3.79) 

where R is the Rayleigh dissipation function and Q" is the kth generalized force. 
Starting with Eq. (3.72) obtain 

and 

aT 
ail" 

! (!,.) 

N m 

= Lm"rilr 
r=1 

Nm 

= L ( m"rilr + m"r8r) 
r=1 

W7' 1 Nm N m a 
_UJ. = _ "" "" mr'il il . 
00 2 ~~ 00" r. 

" r=1.=1 

Substituting Eq. (3.80) and Eq. (3.81) into Eq. (3.79) reveals 

(3.80) 

(3.81) 

~ .. ~~ (am"r lamr.).. au oR () 
~ m"rOr + ~ ~ 00. -"2 00" OrO, + 00" + ail" = Q". 3.82 

One can show from Eq. (3.62), Eq. (3.63), Eq. (3.70), and Eq. (3.73) that the m r • 

terms can be expressed as 

mr• = mr • cos (Or - 0.) (3.83) 
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where each mrs term is a constant (this point will become evident in the example 
problem). Substitution of Eq. (3.83) into Eq. (3.82) leads to the simplification 

or equivalently in matrix notation 

where 

[M(O)] (j + [C(O)] il = F 

Mk,r(B) = mkr COS(Bk - Br) 

Ck,r(B) = mkr sin(Bk - Br) 
au aR 

Fk=Qk----· . aBk aBk 

(3.84) 

In this derivation, the strain energy is approximated by using Eq. (3.76). How­
ever, by retaining the general form of the strain energy expressed in Eq. (3.75), the 
following model is defined1o : 

The dynamic equations for a planar two-link flexible robot can be expressed as 

[M(O)] (j + [C(O)] Ii + [K(O)] 11 = T 

where 

Mm,n(B) = Mm,n cos(Bm - On) 

Cm,n(B) = Mm,n sin(Bm - On) 
L masses inertias 

Mm,n = fo p(S)qm(S)qn(s)ds + ~ Mkqm(Sk)qn(Sk) + {; IIPm (St}Pn (Sl) 

Km,n(B) = -Km,n sin(Bm - Bn) 

Km,n = foL EI(s)p~(s)p~(s)ds 

qm(S) = foB Pm(s)ds 

T = (-Tl,T},O,O,O,O,-T2,T2,O,O,O,O) 

11 = column of ones. 

This model includes both point masses Mk and interias II. The shape functions 
Pm(s) are nonzero over intervals that are small relative to the anticipated radii of 
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curvature. The shape functions are the traditional tent-shaped basis functions and 
assure compliance with the condition of nonextensioniO. An example of Pm{s) is 
shown as part of the integrand of components of Hi in Eq. (3.68). 

This is the dynamic model used in Chapter 5 for optimization studies and in 
Chapter 6 for control system studies. 

3.4.1. Summary 

The equations of motion for the system can be derived as follows: 

1. Obtain expressions for (X2,'" ,xN.+d and (V2,'.' ,VN.H) by recursively us­
ing Eq. (3.62) and Eq. (3.63) starting with Xl = 0 and VI = O. 

2. Obtain expressions for the partial derivatives 8Xi/8iJr (i = 2, ... ,Ne + 1; r = 
1, ... ,Na) by differentiating the results of Step 1. 

3. Calculate the integrals appearing in Eq. (3.68) for all the elements. 

4. Obtain expressions for the m~a terms for all the elements by substituting the 
results of Steps 2 and 3 into Eq. (3.70). 

5. Obtain expressions for the elements of the mass matrix mra by substituting 
the results of Step 4 into Eq. (3.73). Identify the mrs terms by inspection. 

6. Obtain an expression for the strain energy U by using Eq. (3.78). 

7. Determine the generalized forces Qk and specify the Rayleigh dissipation func­
tion R. 

8. Assemble the equations of motion per Eq. (3.84). 

Comments 
The eight steps presented above account for the effects of centrifugal stiffening. 

Correctly modeling these effects is critical whenever joint rotation rates are of the 
same order-of-magnitude as the first natural frequency of any of the robot's links. 

The equations of motion given by Eq. (3.84) are nonlinear as such they must be 
integrated numerically for simulation purposes. IT an explicit numerical integration 
scheme is used (e.g., Runge-Kutta), care must be taken when modeling stiff members 
(e.g., the mounting brackets in the Sandia two-link manipulator). Stiff members 
are better modeled as rigid elements rather than as flexible elements with high 
stiffnesses. Otherwise the stable time step of the numerical integration scheme may 
become prohibitively small. Modeling a part as a rigid element is accomplished by 
appending to Eq. (3.84) a constraint equation for the rotations at the two ends of 
the element. 



126 CHAPTER 3 FLEXIBLE ROBOT DYNAMIC MODELING 

Example 3.11. Determine the mass components of the dynamic equations for a 
two-link flexible robot. Perform Steps 1-4 of this procedure. Model each link by 
using a single element for each link. Both links have torsional rigidities EI and 
uniform mass densities of p. Other parameters defining the problem are shown in 
Figure 3.15. 

y 

x 

Link I Link 2 

Figure 3.15. Two-link planar flexible robot element definitions 

Solution 

Step 1. 

· -Ll(ih sin 01 + il2 sin 02) 
X2 = 2 

· Ll (ill cos 01 + il2 cos O2) 
Y2 = 2 

· -Ll (ill sin 01 + il2 sin 02) L2(il3 sin 03 + il4 sin 04) 
X3 = 2 - 2 

· Ll(ill cos 01 + il2 cos O2) L2(il3 cos 03 + il4 cos 04) 
Y3= 2 + 2 . 
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Step 2. 

8X2 -L1 sin(h 8X2 -L1 sin O2 8~2 = 0 8~2 = 0 
8ih = 2 -. = 

802 2 803 804 
8Y2 L1 cos 01 8Y2 L1 cos O2 8~2 = 0 8~2 = 0 
8ih = 2 8ih = 2 803 804 
8X3 -L1 sin 01 8X3 -L1 sin O2 8X3 -L2 sin 03 8X3 -L2sin04 
8ih = 2 8ih = 2 

-. = 
803 2 

-. = 
804 2 

8Y3 L1 cos 01 8Y3 L1 cos O2 8Y3 L2 cos 03 8Y3 L2 cos 04 
881 = 2 882 = 883 = -. = 

2 2 2 804 

Step 3. As an example, look at (hd22 

(hd22 Eq·0·68) loLl p(s/ L1)2ds 

ps3 /(3LDI~1 + m2 

pLd3+m2' 

Following a similar procedure for the other elements of HI and H2 gives 

Step 4. As an example, look at mi2 

m~2 Eq·0·70) [ 8~2 8~3] H2 [8~2 8~3]T + [8~2 8~3] Hi [8~2 8~3]T 
882 882 881 801 882 802 801 801 

= L2 /4 [sin 8 sin 8 ] [ pL2/3 + m3 pL2/6 ] [ s~n 01 ] + 
1 2 2 pL2/6 pL2/3 + m4 sm 01 

L2/4[cosO COSO][PL2/3+m3 pL2/6 ][COS01 ] 
1 2 2 pL2/6 pL2/3 + m4 cos 01 

[L~(pL2 + m3 + m4)/4] cos(81 - ( 2), 

All the values of m~. can be calculated in a similar manner for s 2: r. Note, by 
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definition m~8 = m!r. Only nonzero values are reported for 

The elements of the mass matrix are obtained by substituting the results of the 
previous step into Eq. (3.73). It is clear from the results of Step 4 that one can 
express the elements of the mass matrix in the simple form mrs = mrs cos(8r - 8.) 
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where mrs are constants (see Eq. 3.83). The values of mrs are given below for s ~ r. 

- J L2 (PL 1 pL2 (m2 +m3 +m4 )) mu = 1 + 1 -1-2 + -4- + -'---=---4-=----= 

- L2 (PL 1 pL2 (m2 + m3 + m4)) 
m12 = 1 -1-2 + -4- + 4 

m13 = LIL2 e~2 + ~4) 

m14 = LIL2 (P~2 + ~4) 
- J L2 (PLI pL2 (m2 + m3 + m 4)) 

m22 = 2 + 1 -1-2 + -4- + 4 

Note, mrs = m sr . The remaining Steps 5-8 are completed in Homework 3.7. 

3.5. Actuator Dynamics 

The details of actuator dynamics were not included in the previous equation of 
motion developments. The inputs were torques. Unfortunately, there is no ideal 
method for generating a desired torque. That is, a particular actuator must be 
chosen (e.g., D.C. motor, hydraulics, pneumatics, etc.) for developing the torques. 
No matter which actuator is chosen it will certainly have some dynamics to be 
considered. 

One can consider creating the torques by using a D.C. motor. Assume the motor 
has armature inertia Ja, armature damping Ba, armature resistance Ra, a torque 
constant K t , and a gear-head with gear ratio Ng • The relationship between the 
motor's armature speed 8a, the armature voltage Va, and the output torque r is 

_ N g K t K t 2 2 . 2 .. 
T - ~ Va - (If; + Ba) Ng 8a - Ja N g 8a· (3.85) 

Replacing the T in the rotational equations of motion with Eq. (3.85) changes the 
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effective mass of the system and adds damping. The consequences of these changes 
are further discussed in the rest of the book with respect to system identification, 
input shaping, and control system design. 

3.6. Chapter 3 Summary 

In this chapter the foundation was developed for subsequent flexible robot con­
trol system design and analysis. FUndamental concepts for modeling flexible links 
were presented that included both linear independence and orthogonality of func­
tions. Several methods were reviewed for obtaining approximate mode shapes for 
beams and beam-like structures. The method of quadratic modes was developed. 
Several examples reinforced the need to include higher-order kinematics in the ki­
netic energy term in order to correctly and systematically capture the effects of 
centrifugal stiffening. A short explanation was given for the extension of quadratic 
modes to multi body applications. A second method presented a unique finite ele­
ment based modeling technique for planar flexible robot dynamics. This method also 
captures the higher-order kinematic terms. Both methods develop dynamic models 
that were incorporated into simulation and experimental validation of input shaping 
techniques (see Chapter 5) and control system designs (Chapters 6, 7, and 8). This 
chapter concluded with a brief introduction of actuator dynamic effects. 
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3.8. Chapter 3 Problems 

Homework 3.1. From Section 3.2. 
Determine orthogonal modes .,p1 (X) and .,p2 (X) by using the Gram-Schmidt orthogo­
nalization process. The first mode shape determined by applying a distributed load 
to a cantilevered beam of 1 N/m and computing the static deflection is 

The second mode shape is developed by approximating the exact cantilever beam 
mode shape by a seventhth-order polynomial, or 

Homework 3.2. From Section 3.3. 
Derive the equation of motion for a beam cantilevered to a rotating hub with a 
point mass m at its tip. Hint: This problem won't be too difficult if you start with 
Eq. (3.38). Perform a simulation for the maneuver considered in the example and 
plot the beam tip deflection versus time. Use the same parameter values given in 
Example 3.8 and set m = 2. 

Homework 3.3. From Section 3.3. 
Given the following quadratic definitions: 

_ ( + " "" JJ!3 !3)";-+ "A."";-+ !3A.!3k~ x - X qi qj 9ij + ([i % 9ij I qi '+'i J qi '+'i 

.. _ 2 (.ocr "" ."." " ..,/3_!3!3 :.fJ:.fJ !3)";- ""A."";- ..,/3 18k x - qi % 9ij + qi qj 9ij + qi qj 9ij + ([i IIj 9ij I + qi '+'i J + ([i CjJi 

cPi = 4>fJ + qJfk 
F. = (EI)"qf(4>f) ivJ + (EI)!3//(4>f) ivk' 
gij = (9lj + 9~ ii, 

determine the dynamic equations for both 



132 CHAPTER 3 FLEXIBLE ROBOT DYNAMIC MODELING 

a. an unidirectional, and 

h. a bidirectional nonrotating beam. 

For the unidirectional case, set all (3 terms to zero. Hint: Do not include terms 
higher than second-order in your final solutions. 

Homework 3.4. From Section 3.3. 

1. Given the location of a particle as x(X, t) = RT(tHx + qi(t)cPi(X)], find the 
expression for x(X, t). 

2. Previously, the time derivative of the rotation matrix is written as R(t) = 
OTR. Prove that if the total rotation matrix is the product of two matrices 
R = R 1R 2 , then the total spin matrix is the SUM of the two spin matrices, 
i.e., 0 = 0 1 + O2 . 

Homework 3.5. From Section 3.3. 
Consider the thin extensible beam of length 10 meters, mass per unit length m, 
modulus of elasticity E, and area moment of inertia I that is free to bend in only 
the y-direction. It is attached to a joint undergoing a prescribed rotation 8 about 
the z axis (see Figure 3.8). Generate the dynamic equations of motion for the system 
by using the method of quadratic modes. Hint: Use the mode shapes determined 
from first homework. 

Homework 3.6. From Section 3.3. 
By using the method of quadratic modes, derive the equations of motion for a planar 
flexible two-link robotic armll . Consider the hubs as point masses. 

Homework 3.7. From Section 3.4. 
Given a Rayleigh dissipation function of the form 

and joint torques 

Tl = kl (81d - 81) - kih 
T2 = k3(83d - 83 ) - k4(83 - ( 2 ), 

derive the equations of motion for the robot model by carrying out Steps 5 through 
8 of the procedure given in Section 3.4.1.. You may express your results in terms 
of the mrs terms for simplicity. Explain how you would go about simulating the 
motion of the robot given specific values for the parameters defining the prohlem. 



Chapter 4 

System Identification 

4.1. Introduction 

System Identification (System ID) plays a key role in control system design 
and input shapingl ,2. The first thing that a controls engineer learns in the real 
world is that the transfer function is not written on the outside of the hardware 
container. So, how does one obtain the transfer function? System ID is used 
to obtain the transfer function and the critical parameters of simplified systems 
models that are required for input shaping designs. System models are usually an 
approximation and need to be refined by comparing to experimental data. On the 
other hand, empirical models can be developed directly from experimental data 
when no reasonable theoretical models exist for a system. In any case, System 
ID provides a systematic way to develop and/or refine the system model. This 
chapter describes the basic concepts of System ID including linear and nonlinear 
least squares, as well as, the more advanced concept of homotopy to increase the 
robustness of the System ID tools. The last section demonstrates the backward 
propagation technique for multiple-link robots and actuator System ID. 

4.2. Linear Least Squares (LSS) 

The first step in System ID is to develop a system model. The system model 
can be developed from first principles and/or empirically from experimental data. 
The goal of this chapter is to refine the models developed in Chapters 2 and 3 by 
determining the critical parameters that need to be identified in order to develop 
input shaping algorithms and feedback controllers. 

Before complicating the situation with dynamical models, it is illustrative to 
begin the discussion of Linear Least Squares (LLS) with some simple general ap­
proximations of a given function. Some common approximation functions include 
polynomials, orthogonal functions, and Fourier series that are combined as a linear 
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sum. The goal is to approximate a given nonlinear function evaluated at M times 

with 

N 

y(t) = LPiti = Po + PIt + 1J2t2 + ... + PNtN , 
i=l 

or 

tf"] {Po} tf ~l 
tz, PN 

where p is a set of linear gains and A is an M x N matrix. IT M < N, then a 
minimum norm problem results, whereas if M = N, then a unique solution exists 
if the matrix is full rank3 . 

A least squares solution occurs when M > N and can be derived from the 
following optimization problem: 

J(p) = [y - Ap]TW[y - Ap] 
8J 
8p = -2AT Wy + 2ATWAp = 0 

p = (ATWA)-l A TWy. (4.1) 

Equation (4.1) is referred to as the normal equations4 . Note, W is a positive 
definite weight matrix that must be picked by the analyst. It is customary to start 
with the identity matrix, but the measurement covariance matrix is typically used 
with experimental data4 . Also, ATWA will be diagonal if W is diagonal and one 
uses orthogonal functions. An example problem would be helpful at this point. 

Example 4.1. Approximate a unit step with fJ. quadratic function. 

y(t) = unit step = 0 for t < 0 and 

=1 for t~O 

and approximated for -1 ::; t ::; 1 with a second-order polynomial 
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Solution 

With 

Then, 

Therefore, 

and 

Therefore, 

and finally, 

y(-I)=O 
1 

y(--)=O 
2 

y(O) = 1 

y(l) = 1. 

y = (0,0,1, I)T 

W=I 

A- [: 

-1 

~] 1 
-2 

- 1 0 
1 1 

1 [4.625 0.75 -5] 
(ATWA)-l = 6.875 0~755 3.1875 -0.625 . 

-0.625 8.75 

p = (ATWA)-l ATWy 

{ 
0.727 } 

= 0.591 , 
-0.273 

y(-I) = -0.137 
1 

Y(-2) = 0.363 

y(O) = 0.727 

y(l) = 1.045. 
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The approximation can be made better by picking more points to match and/or 
pick more appropriate approximation functions, such as a Fourier series. 

It is common to have numerical difficulties when performing a LLS System ID. 
In particular, the pseudoinverse can be ill-conditioned4, so one should use an LU 
decomposition or a singular value decomposition. (These algorithms are available 
in Numerical Redpes5 ). 

4.3. Nonlinear Least Squares 

The LLS algorithm development in the previous section forms the basis of a 
powerful System ID tool, called nonlinear least squares (NLS). The NLS algorithm 
extends the LLS by linearizing the nonlinear system to be identified about an appro­
priate operating point and applying the LLS algorithm iteratively. This procedure 
is a generalization of Newton's root solving method6 (see Section 2.5.1.) that is typ­
ically used to determine the roots of a characteristic equation, such as the root locus 
of a linear controller 7 . The NLS algorithm is better known as Gauss's least square 
differential correction algorithm and is defined as follows: Assume the analyst has 
developed a model of the system of interest y = F(p) and has an idea which system 
parameters p are critical. 

Assume there are M measurements of the system 

y = (YI, Y2, ... ,Y M ? 
Assume the measurements are approximated by a set of nonlinear functions of a 
parameter vector p 

y = F(p). 

Optimize 

J(p) = [y - F(pWW[y - F(p)] 

subject to the linearized propagation 

p = PCurrent + ~p = Pc + ~p, 

and the prediction 

F(p) s:: F(pc) + A~p 

where 
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Therefore, 

where 

6y = y - F(pc). 

Therefore, 

(4.2) 

This algorithm can be converted to an eight step procedure that can be directly 
implemented on a computer. 

4.3.1. Gauss's Least Square Differential Correction 
Algorithm 

1. Input measurements and weights 

y = (Yl, Y2, ... , YM)T 

W = [Wij] . 

2. Input parameter starting guesses 

Pc = (P1c,P2c,'" ,PNc)T. 

3. Compute current values of approximation functions 

Yc = F(pc). 

4. Compute matrix of first partial derivatives 

5. Form measured minus computed values 

6y=y-F(pc) 

and their current weighted sum square 

J = [6YfW[6y], 

then go to Step (8) upon convergence. 
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6. Determine the correction vector ~P that minimizes the predicted residual 
sum squares 

7. Apply the corrections for Step (6), by replacing previous current parameter 
estimates according to 

Pc = Pc + ~P 

and return to Step (3). 

8. Set P = Pc on the final (if converged) iteration. 

Note 4.1. Steps (3) through (7) are iterated until the process converges (Le., J 
changes negligibly on successive iterations and/or the correction vector ~P has 
negligibly small elements). 

Numerical convergence difficulties will often occur and usually can be traced 
to two problems. First, the initial guesses of the parameters are too far away 
from the actual parameter values. This problem can be solved by the homotopy 
techniques discussed later in this chapter, or by determining better initial guesses 
from reviewing the model. Second, the pseudoinverse matrix is ill-conditioned, but 
can be solved by using the singular value decomposition mentioned in Section 4.2 .. 

4.3.2. Overhead Gantry Robot Example 

Now, that the basic mathematical development is complete it is time to solve 
the overhead gantry robot example. As will be discussed in the next chapter, there 
are many ways to produce a swing-free move of a simply suspended object (see 
Figure 4.1). One of the most general methods is described by Jones and Petterson8 

where a double pulse train is employed. The basic ingredient necessary for every 
approach to developing swing-free trajectories is knowledge of the frequency of os­
cillation for the suspended object (Le., a critical parameter). Consequently, the 
period of oscillation must be measured each time a different object is moved in 
order to produce a swing-free move. In this section, a batch nonlinear least square 
estimator enables the computer to automatically calculate (Le., adaptively control) 
the period of oscillation of the suspended object from force sensor measurements 
(see Figure 4.2) and produce swing-free trajectories. 

The nonlinear least square estimator is based on the Gauss's least square dif­
ferential correction (GLSDC) algorithm described in Section 4.3.1.. The GLSDC 
algorithm is chosen because it is easy to implement and highly fiexible9,lo. The 
estimator formulation is applied to a force sensor located on the arm of the gantry 
robot (see Figure 4.2) that provides the measurement data to estimate the mass, 
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frequency, and two initial conditions of a planar pendulum. The actual measure­
ments are M vertical force (F", in Figure 4.2) measurements. The measurement 
model for these M data points is given by 

where 

T = mg cos 8 + mliP 

F", = Tcos8 = mgcos2 8 + ml82 cos 8 

8 8 80 . = ocoswt+-smwt 
w 

m = mass of pendulum 

l = length of pendulum 

80 ,80 = initial conditions of pendulum 

9 = gravity 

T = cable tension 

w = frequency = If. 
Thus, the nonlinear measurement model is 

where 

(4.3) 
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Figure 4.2. Gantry robot with force sensor 

. T 
P = (Oo,Oo,m,w) . 

Using only one channel of force data F., simplifies the development of the es­
timator algorithm. Although forces Fy and Fz are also available from the force 
sensor, this algorithm may be applied on equipment where the force from only one 
direction is available. 

The weight matrix W in Eq. (4.2) is a diagonal, positive definite, constant 
matrix and the Jacobian matrix is analytically developed from Eq. (4.3) by taking 
the first partial derivatives with respect to 80 ,80 , m, and w. 

8y; _ 8y; 80i + 8y; 88; 
800 - 80i 800 88; 800 

= m[-gSin20; coswt; + lcosOi (2w20o sin2 wti - w8sin2wt;) (4.5) 

-18;2 coswti SinO;] 

(4.6) 
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BYi BYi aBi aYi ao; -=--+--
aOO BBi aOO aOi BOo 

= m ( - ~ sin 2Bi sin wti + I cos Oi [ -wOo sin 2wti + 200 cos2 wti] (4.7) 

I '2 ) - -:;}i sinOi sinwti 

aYi _ aYi BOi ay; aOi _ 2 ('2 ) 
-a - ao· -a + -. -a - gcos 0; + I 0i COS Oi m ,m ao; m 

(4.8) 

Equations Eq. (4.3) and Eq. (4.4), the weight matrix, and the force sensor 
measurements are the required elements of the G LSDC algorithm needed to generate 
an estimate of the frequency (period of oscillation) for the swing-free trajectory 
planner. 

The adaptive, swing-free trajectory planner was implemented at Sandia National 
Laboratories on a CIMCORP XR6100 robot. A simply suspended object is held by 
the robot gripper and a force-moment sensor (manufactured by JR3 Corporation) 
capable of transducing the forces in the three principal axes and the corresponding 
moments is used to monitor the oscillations of the payload. Four different suspended 
objects are used to test the adaptive, swing-free planner: a 22.7 kg (50 pound) 
weight suspended from a 1.93 m (76 inch) cable, a 45.4 kg (100 pound) weight 
suspended first from a 1.83 m (72 inch) cable and then from a 0.74 m (29 inch) 
cable, and a 1/5 scale (0.99 m (39 inches) tall) 11.4 kg (25 pound) model of a fuel 
rod assembly on a pivot joint (see Figure 4.3). The readings from the force sensor 
are stored on a Digital Equipment Corporation LSI11/73 executing the RT-ll real 
time operating system, which is also used to implement swing-free moves of the 
suspended objects. Finally, the batch estimation program was run on a SUN-3 
computer that was networked with the LSI-II. 

While the pendulum is swinging, the first step in executing the adaptive, swing­
free trajectory planner is to gather force data. The suspended object is picked 
up, displaced, and allowed to swing freely. A set of 60 force readings (sufficient to 
assure a full period of oscillation for any of our payloads) is taken as the payload 
swings with each reading at an interval of 47 milliseconds, which is the update rate 
of the robot controller. Synchronizing readings with the controller updates ensures 
a sufficient length of time between readings. Once a set of force data has been 
recorded, a force servo damping program that uses a technique described by Jones, 
Petterson, and Wernerll is used to damp-out the swinging motion of the suspended 
object. 

The batch estimator runs while the robot damps the payload's oscillation. The 
constants necessary for the computations are a convergence criteria, the weighting 
matrix W, gravity, a maximum number of iterations, the number of force readings 
(M), and the sampling period. The values needed to initialize the program variables 
are the initial guesses of the calculated parameters and a set of force readings y. 
The calculated parameters p are the initial angle and initial angular velocity of 
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Figure 4.3. Suspended objects used in experiments 

the suspended object, its mass, and its frequency. In each iteration, the batch 
estimator calculates the matrices ATWA and ATW fly ofEq. (4.2) (using Eqs. 4.4) 
to calculate the Jacobian matrix A, solves this linear system of equations by using 
LU decomposition3 for the change in the desired parameters p, and adjusts the 
values of the desired parameters by adding in this change. The iterations conclude 
when there is negligible change in the values of the desired parameters (Le., flp = 0), 
or when the performance function gets smaller than the convergence criteria. The 
object's frequency is then converted into its period and passed into the swing-free 
trajectory program on the LSI-ll. 

The trajectory is computed by using the acceleration profile tailoring described 
by Jones and Petterson8 and is sent to the robot controller as a series of displace­
ment commands. The communication between the robot controller and the LSI-ll 
control computer is synchronized by the robot controller through the Realtime Path 
Modification (RPM) board. The RPM board sends a synchronizing pulse to the 
control computer every 47 milliseconds. When the swing-free trajectory program 
senses the synchronization pulse, it transmits a position update over a serial com­
munication line to the RPM board that commands the robot to move. This process 
continues until the desired trajectory is complete. 

Tests of the adaptive, swing-free trajectory planner were done by using the 
four different suspended objects. Each object's period was measured by timing its 
oscillations and also calculated by using the estimator. A comparison of these two 
periods and the reSUlting residual oscillations after a swing-free move can be seen in 
Table 4.1. As shown in that table, the calculated periods are within two percent of 
the measured values. Although the resulting residual oscillations for the calculated 
periods are about double the value of those with the measured periods, both are 



4.3. NONLINEAR LEAST SQUARES 143 

over 95% smaller than the oscillation that occurs with an uncontrolled move (last 
entry in Table 4.1). 

Table 4.1. Test results 

Average Residual Residual 
Measured Calculated Oscillation Oscillation 

Test Object Length Period Period w/measured w / calculated 
Period Period 

(m) (sec) (sec) (degrees) (sec) 
22.7kg payload 1.93 2.79 2.80 0.05 0.09 
45.4kg payload 1.83 2.71 2.77 0.05 0.10 
45.4kg payload 0.74 1.75 1.76 0.15 0.31 
11. 4kg Fuel rod 0.99 1.64 1.66 0.14 0.27 
45.4kg payload,no damp. 1.93 6.8 

Using the batch estimator to determine the necessary parameters for oscillation 
damped moves was successful. However, a few precautions must be taken to ensure 
success with this method. The initial guess for the angle must be larger than the 
initial guess for the angular velocity. Nonnegative values were used for both. An 
error in the initial guesses of up to 15% of the mass and up to 20% of the length of 
the swinging object can be tolerated. The force sensor's coordinate frame must be 
aligned with gravity. 

The batch estimator is based on a model that expects input data, which is 
symmetrical about the weight of the suspended object and it cannot calculate the 
desired parameters accurately if the input force data is skewed. Also, the force data 
is expected to be reasonably continuous. The algorithm checked to see if each force 
data point read was similar to the previous reading in order to eliminate a large 
noise spike. If the force reading was unacceptable, another reading was taken. If 
a number of sampling periods passed between acceptable readings, the estimator 
would not converge as closely as usual (Le., the performance function value was 
higher at the end of the final iteration) and the value for the period was a few 
percent further away from the expected value. Another effect to note is that noise 
in the force readings will be more significant with a lighter object where the range 
of force readings is smaller, than for a heavier object. In these experiments, a force 
sensor with a range of 500 pounds and a resolution of 0.24 pounds was used. Thus, 
noise can have a larger effect with small ranges of force data. A noise error of just 
one least significant bit (0.24 lb) is a significant percentage (2%) of the range of 
the data for a typical test of the lightest test object. However, even with these 
potential errors the batch, NLS estimator determined the model parameters that 
were sufficient to formulate 95% oscillation damped trajectories. 

For real hardware applications the following steps should be followed: 

1. Develop a model. 

2. 'nine the estimator with simulated noisy data. 
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3. Retune with experimental data (pick initial estimates and weights). 

4. Implement on hardware. 

4.3.3. Frequency Domain NLS 

An alternative to NLS in the time domain is NLS in the frequency domain. In 
some situations, it may be easier to identify a system model in the frequency domain 
(see Section 5.3.3.), such as the mode shapes and frequencies of a large flexible 
structure. The Fast Fourier Transform (FFT) is the cornerstone of this approach. 
The FFT is applied to the system inputs and outputs to determine transfer functions 
(Le., Bode plots) in order to identify the critical parameters. Here is an example of 
adaptive input shaping with near real-time parameter identification using the FFT 
and NLS in the frequency domain (see Figure 4.4). 

Figure 4.4. NLS in frequency domain 

The steps are as follows: 

1. Model (second-order transfer function) of flexible robot 

A 
H(s) = S2 + 2(wn s + w~ 

2. Frequency domain form 

h(t) = ~e-'wnt sinwdt 
Wd 

Wd=Wn~. 

H( . ) A 
]W = 

(w~ - w2) + j2(wnw 
. A 

IH(]w)1 = ,. 
[w4 + 2w~(2(2 - 1)w2 + w~12 
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3. Estimation/System ID problem 

Yi = IH(jw)1 = A 1 

[wt + 2w~(2(2 - l)w~ + w!P 

p = (A,(,wn)T. 

4. Linearized matrix/NLS formulation 

A = [OYi 0Yi OYi] 
oA' 0(' OWn 

o Yi 1 
oA = [wt + 2w~(2(2 - l)w~ + w!l! 

0Yi -4A(w~Wi 

o( = [wt + 2w~(2(2 - l)w~ + w!l~ 
0Yi -2Awn[(2(2 -1)w~ + w~l 
--= I" 

OWn [wt + 2w~(2(2 - l)w~ + w!12 

4.4. Homotopy Methods 

The origin of modern homotopy, or continuation algorithms can be traced back 
to Davidenko12 in 1953, when large scale digital computation was just a dream. 
Since then, the computer has become an integral part of scientific research and 
homotopy methods have been applied in a variety of studies13,14. The homotopy 
methods are actually based upon the one and two parameter families of functional 
variations of mathematical analysis. For example, Bliss15 used these methods to 
prove early versions of the maximum principle. These methods are often found in 
existence and uniqueness proofs in solution of algebraic and differential equations. 

Typically homotopy methods are used to unique your way to a solution for root 
solving, estimation, System ID, and optimization by increasing the convergence 
region. In other words, the nonlinear solver, such as the NLS algorithm will be 
insensitive to the initial guess of the parameters at a cost of increased run time. 

4.4.1. Root Solving 

A good example to demonstrate the concept is the imbedding process for root 
solving. Given a nonlinear vector function to solve 

F(x) = o. 
Break it up into linear and nonlinear vector equations 

(Ax + c) + FN(X) = 0, 
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or add a linear part 

(x - c) + F(x) = O. 

Next, rewrite the equations with an imbedded homotopy parameter (J as 

(Ax + c) + (JFN(X) = 0, 

or 

(1 - (J)(x - c) + (JF(x) = O. 

The last step is to iteratively solve these modified equations with Newton's method 
from (J = 0 to (J = 1. This is equivalent to solving the linear problem to obtain 
an initial guess and then propagating it into the nonlinear solution. In order to 
illustrate the process, a simple numerical example is provided. 

Example 4.2. Solve x2 + 2x + 1 = 0 

Solution 

For (J = 0, 

For (J = ~, 

So, 

For (J = ~, 

So, 

(Jx2 + 2x + 1 = O. 

-1 
x-­- 2 . 

x2 + 8x +4 = O. 

-1.07 -14.93 
Xl,2 = -2-' --2-' 

x 2 + 4x + 2 = O. 

-1.17 -6.83 
Xl,2 = -2-' -2-' 
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For (3 = i, 

So, 

For (3 = 1, 

So, 

3x2 + 8x + 4 = O. 

-2 
Xl.2 = 3,2 

x 2 +2x + 1 = O. 

Xl.2 = -1. 

The results are shown graphically in Figure 4.5 . 

-0.6 
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.. -:.fJ.7 

g 
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Figure 4.5. Homotopy map 
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A method to generate a continuous homotopy mapping is to employ Davidenko's 
method. Davidenko's method solves an initial value problem that is developed from 
the imbedding process. 

Given the same nonlinear vector function to solve 

F(x) = 0, 
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an imbedded equation is created and a homotopy map (z = z(.8)) is defined to 
produce 

H(z,.8) = (1 - .8)(z - c) + .8F(z) = o. 

Davidenko's equation is generated by differentiating with respect to .8 

d~ [H(z, .8)] = [(1 - .8)1 +.8 [~!]] (:;) - (z - c) + F(z), (4.9) 

with initial conditions of .8 = 0 and z(O) = c. 
The homotopy problem is solved by integrating Eq. (4.9) from.8 = O(z(O) = c) 

to.8 = l(z(l) = x) to obtain the homotopy map (z = z(.8)). 

4.4.2. Increase the Convergence Region 

Another application of interest for the homotopy method is to increase the 
convergence region of optimal control problems. In particular, a modified version of 
the differential equation imbedding and continuation method14 is utilized to enhance 
the convergence of the Recursive Quadratic Programming (RQP) routine discussed 
in Chapter 5 (see Section 5.4.10.). 

The differential equation imbedding and continuation method is most often em­
ployed when a set of differential equations can be separated into linear and nonlinear 
parts. The linear part is solved first and that solution is continuously deformed into 
the solution of the actual nonlinear problem. For example, 

J = it/ L(x, u, t)dt 
to 

x = Ax + Bu + .8(nonlinear terms) 

x(to), x(tf), to, tf prescribed 

u(t) unknown. 

The continuous iteration is effected by imbedding a homotopy parameter (.8) that 
is swept from zero (linear problem) to one (actual nonlinear problem), therefore 
continuously mapping the linear solution into the nonlinear solution. 

Akin to this separation process is the augmentation of a similar, simpler set of 
differential equations to the set of interest. The similar set of differential equations 
is usually a simplification of the original problem, thereby creating a one parameter 
(.8) family, for which, the solution at .8 = 0 is easy to solve, or 

i t/ 

J = L(x, u, t)dt 
to 

x = (1 - .8)f.(x, u, t) + .8fA(X, u, t). 
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The solution of the simplified problem is used to initialize the continuation process 
(at f3 = 0), and the subsequent solutions (for f3 > 0) can be initiated with an 
arbitrarily close neighboring solution16 . This technique is used in the input shaping 
optimization process for flexible link robots in Chapter 5 and has been applied to 
a reentry vehicle trajectory optimization problem 16. 

4.5. Robot and Actuator System ID 

When developing simplified system models, the linearization of nonlinear models 
may not be valid for fast robotics maneuvers. In these situations, the full nonlinear 
equations of motion must be used for successful input shaping, trajectory planning, 
and control. In this section, a nonlinear system identification technique is described 
for determining the unknown parameters of a nonlinear robot model. This technique 
is called the Backward Propagation Technique (BPT). The BPT approach begins 
with the outermost joint and works inboard (or backwards) a joint at a time until 
the robot is completely identified. To illustrate this process, a three joint model of 
a robot (representing the last three joints of the Fanuc 8-800) is identified with the 
BPT. Figure 4.6 shows the kinematic and dynamic structure of the three degree-of­
freedom robot model. The equations of motion as derived with Lagrange's equations 

Figure 4.6. Three degree-of-freedom model 
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are 

where 
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M13] ~ .. ] [cu o a + 0 
M 33 ·· 0 

o 

M33 = 1",3 

M3l = M13 = 1",3 cos a 

M22 = 1,12 + 1,13 + 0.25m2L~ + m3(L2 + 0.5L3)2 

Mu = 10;1 + (1",2 + M33)(cosa)2 + M22 (sina)2 

Dl = 1",2 + M33 - M22 . 

The first step in the BPT process is to analyze the equations of motion and 
identify the appropriate robot configurations that are necessary to isolate each joint 
and associated model parameters. The typical second-order system parameters are 
identified by performing Single-Input-Single-Output (SISO) maneuvers (typically, 
a step command and/or a sine sweep) with two different known payloads on each 
joint with the other joints held at zero degrees. The SISO maneuver on the third 
(outer most) joint provides the values of M 33 , C33, and k33 . The SISO maneuver on 
the second joint provides the values of M22 , C22, and k22 . Next, the second joint is 
configured at a = 0 and a = 7r /2 in order to generate two sets of SISO maneuvers 
on the first joint to obtain 10;1, 1",2, cu, and ku. As a result Mu,M13,M3t. and 
Dl are calculated from the previously identified parameters and a fully coupled, 
nonlinear model is created from a series of SISO system identification procedures. 

Whether performing linear system identification, or the nonlinear BPT of 
Eq. (4.10), various transfer functions must be fit to experimental data relating input 
joint angle commands to the joint angle response. In brief, the method employed 
for obtaining transfer functions may be stated by the following four step procedure: 

1. Obtain experimental joint response data for a known input joint angle com­
mand profile. 

2. Postulate a transfer function relating input joint angle commands to output 
joint angle response where the transfer function is parameterized by using 
several unknown quantities. 
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3. Define a cost function reflecting the amount of error between the experimental 
joint angle response data and the output of the transfer function for a known 
input. 

4. Using a numerical optimization code find values for the initially unknown 
parameters of the transfer function that minimize the cost function. 

Several types of input joint angle commands are examined in an effort to de­
termine the best type of input/output data sets for generating accurate joint angle 
transfer functions. The results indicated that a simple step input yields the most 
reliable estimation of input/output transfer functions. 

The postulated transfer function was based on the form of Eq. (4.11) which 
has a Proportional-Derivative (PD) controller connected in series. A block diagram 
representing the postulated system is shown in Figure 4.7 where Bin is the input 
joint angle command, (}out is the joint angle response, (}e is joint angle error, Kp and 
Kd are the proportional and derivative gains, respectively of the PD controller, K 
and Do are parameters of the joint angle dynamics, and s is the Laplace transform 
variable. 

90111 

Figure 4.7: Block diagram of postulated input/output system for determining the in­
put/output transfer function 

The unknown parameters being estimated include K p, K d, K, and Do. The net 
transfer function relating joint angle input commands to joint angle response is 

Bout K{KdS + Kp) 
Bin = S2 + {Do + KKd)S + KKp' 

(4.11) 

The cost function used for the optimization procedure is the integrated weighted 
squared error between the measured joint angle response and the predicted joint 
angle response based on the transfer function of Eq. (4.11) for several sets of data. 
The cost function is given by 

(4.12) 

where n is the number of data sets used, Wi are weighting constants, to is the start 
time of the maneuver, t f is the final time of the maneuver, Bm is the experimentally 
measured joint angle response, and Ba is the analytically determined joint angle 
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response. The primary feature of this cost function is that as the predicted angle 
response approaches the measured angle response, the cost function tends to zero. 

The optimization code is taken directly from MATLAB® 's Optimization Tool­
box via the constr function (see Appendix B). This code implements a quadratic 
programming technique for finding the values of K p, Kd, K, and Do that minimize 
the cost function of Eq. (4.12). 

This procedure was used to estimate the linear transfer function of joint 1 of the 
Fanuc S-800 robot. A similar analysis was performed on joints 2 through 6. The 
next step would have been to perform the nonlinear BPT procedure and use these 
results to modify the robot's motion profiles to account for robot dynamic effects 
at higher speeds. Because of time and funding constraints, this task was not done. 
Nevertheless, the following discussion gives a glimpse of how the identification was 
performed. 

Three step response data sets are used to obtain a transfer function for joint 
1 of the Fanuc S-800. The step responses are for input angle commands of 1°,5°, 
and 10°. A significant nonlinear effect was observed in the angle response data 
for large angle rate commands. These effects are of sufficient magnitude for the 
maneuver that modeling of the nonlinearity is required. Several nonlinear elements 
were examined to predict the observed behavior of the experimental data. The best 
match was obtained when a saturation-like element was inserted between the PD 
controller and the plant for the analytical model. The block diagram of Figure 4.7 
is modified to reflect this change as shown in Figure 4.8. 

Saturation Plant 

9 .... 

+ 

Figure 4.8: Block diagram of postulated input/output system for determining the in­
put/output transfer function, with saturation 

Since the exact form of the saturation function is unknown, like the system 
dynamics it too is parameterized with several unknown quantities. The optimization 
procedure is carried out to find not only the values of Kp,Kd,K, and Do, but also 
the form of the saturation function. The resulting saturation function is shown in 
Figure 4.9 and the estimated model parameters are given in Table 4.2. 

Table 4.2. Estimated parameters for joint 1 

Kp Kd K Do 
400 7.5 0.5 27.6 
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Figure 4.9. Saturation function profile 

Plots of measured joint angle responses along with responses using the estimated 
analytical model are shown in Figure 4.10 for the three step response data sets (1°, 
5°, and 10°) considered. The evident agreement between analytical and measured 
data is indicative of the accurate estimation achieved. 

Example 4.3. System ID via numerical optimization (see Figure 8.7). 

An analytical time-domain model is calibrated with respect to an actual single­
axis servo system. The hub model was identified by creating a time-domain nu­
merical simulation model within MATLAB®. Initially, three uncertain parameters 
the hub inertia [hub, viscous friction constant Evl' and the Coulomb friction con­
stant Cd! were singled-out for System ID. These parameters are associated with the 
slewing flexible link rigid hub and the servo system defined as 

(4.13) 

A series of experiments were run without the flexible link attached to the rigid hub 
(see Figure 3.8). A simple PD control system was used to slew the hub 

T = Kp (9REF - 9) + Kd (8REF - 8) (4.14) 

where the control gains are fixed constants and listed in Table 4.3. 
The steps used to perform a System ID / optimization procedure are as follows: 

1. Select arbitrary controller gains. 

2. Use a general input trajectory, or simple step responses. 
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Figure 4.10: Comparison of measured and analytical joint angle responses to 1°, 5°, 
and 10° joint angle step commands, respectively 

3. Run experiments that generate torque, angle, and angle rate responses. 

4. Use same input trajectories to generate simulation responses. 

5. Define a cost function that minimizes the error between experimental and 
simulation responses. 

6. Set-up the optimizer such that the pammeters are inequality constraints. 

7. Allow the numerical optimization algorithm to minimize the error by adjusting 
the simulation model pammeters. 

8. Once the optimizer has converged to a minimum, the parameters are identified 
and the mathematical model is matched. 

9. Validate the mathematical model response with a new data set. 

10. H Step 9 is successful, then the mathematical model is calibrated. 

The System ID problem was recast as a constrained optimization problem. It 
was implemented with the MATLAB® Optimization Toolbox and the constr func­
tion. The cost index per iteration used was 

i t' 
J = (8model - 8ezperimenta,) . (8mode/ - 8ezperimenta,) dt 

to 

where to and t / are the initial and final times of interest. The cost index was subject 
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to the following constraints: 

( [hUb) . :5 [hub :5 ([hUb) 
min maz 

(BOil) . :5 BOil :5 (BOil) 
min maz 

(Cd!) . :5 Cd! :5 (Cd!) 
mln rnaz 

The parameters were allowed to vary between their respective minimum and maxi­
mum values. 

The servo hub assembly was slewed with two trajectories. A cubic spline trajec­
tory generated 8REF and 8REF servo inputs. Two cases ( 45° and 90°) were used to 
identify the parameters. In Case 1, the hub assembly was slewed from 0° to 90° in 
0.15 seconds. The torque input angle and angle-rate responses were recorded and 
employed by the optimizer to identify the parameters in Eq. (4.13). In Case 2, the 
hub assembly was slewed from 0° to 45° in 0.15 seconds. By servoing as a new input 
to the model, Case 2 was used to verify the calibrated model. The results from the 
optimizer for the servo model parameters are given in Table 4.3. The hub angle 
responses for both cases along with their corresponding torque inputs are shown in 
Figure 4.11. The hub angle rate responses for both cases are shown respectively in 
the pair of plots in Figure 4.12. Reference angles and angle rate trajectories are 
also shown respectively in Figure 4.11 and Figure 4.12. The reference trajectories 
were intentionally set to aggressive levels in order to ensure sufficient excitation of 
the system so that the optimizer could consistently identify the dynamics of the 
system. 

Table 4.3. System identification, physical and control system parameters 

ParaDleter Symbol Value Unit 

Proportional Gain K" 2.0 N -m/rad 
Derivative Gain Kd 0.1 N - m - sec/rad 
Hub Inertia [hub 0.01328165 kg-m2 

Viscous Friction BOil 0.00121639 kg·m2 /s 
Coulomb Friction Cd! 0.2102728 N'm 

4.6. Chapter 4 Summary 

In this chapter the need for acquiring the transfer function and/or the time 
domain model of dynamic systems was introduced. In order to design successful 
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Figure 4.11. System identification hub angle responses and torque inputs 
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Figure 4.12. System identification hub angle rate responses 

control systems, accurate models of the plant being controlled become a prerequisite. 
Several methods including linear least squares, nonlinear least squares, and the 
backward propagation technique were introduced. Several examples were reviewed 
that illustrate these methods for robot components, such as actuator and servo 
systems. Homotopy methods, which are nonlinear solvers, with applications for root 
solving solutions, estimation, and optimization were introduced. These methods 
help to increase the convergence region. An example used homotopy to help find a 
solution to a nonlinear function by starting with the linear system and evolving it 
to the nonlinear one. This method is useful in numerical optimization techniques 
as will be demonstrated in Chapters 5 and 6. In addition, the results of a System 
ID involving a real servo system is incorporated into a control system design in 
Chapter 8. 
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4.8. Chapter 4 Problems 

Homework 4.1. From Section 4.2. 

1. Approximate y(t) = sin(21rt) for 0 :5 t :5 1/4 with a third-order polynomial 
and use five and nine equally spaced points 

y(t) = Po + Pit + 112t2 + Pat3. 

2. Approximate y(t) = t for 0 :5 t :5 1 with 

y(t) = Po + Pi sin(21rt) + 112 cos(21rt) 
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and use the same spacing as # 1. 

Homework 4.2. From Section 4.3.1. 

1. Approximate 

yet) = sin(7l"t) cos(7l"t) + 4sin(27l"t) cos(27l"t) 

for 0 ~ t ~ 2 with 

yet) = Po + Pl sinCP2t + P3) + P4 cos(pst + P6) 

and use 11 and 21 equally spaced points. 

Homework 4.3. From Section 4.3.2. 

1. Derive the first partial derivative for oyi/ ow in the example section. 

2. Estimate the period of the gantry robot by using the force sensor data in the 
y-direction. Try the estimation routine with and without added noise to the 
simulated force sensor data. 

Homework 4.4. From Section 4.3.3. 

Develop a nonlinear least squares frequency domain estimator for Homework 
problem 4.3, #2 described above. Perform simulations and initial tuning. 

Homework 4.5. From Section 4.4. 

1. Solve the following nonlinear equation: 

x 3 + 2X2 + X + 1 = O. 

a) Use a homotopy imbedding process and Newton's method. 

b) Use Davidenko's method. 

Hint: Verify with the eRe Math Tables. 

2. Solve the following nonlinear vector function: 

x~ + 2xI + X2 + X3 + 1 = 0 

x~ + 2Xl + X3 + 2 = 0 

x; + 3Xl + 2X2 + X3 + 1 = O. 

a) Use a homotopy imbedding process and Newton's method. 

b) Use Davidenko's method. 

Homework 4.6. From Section 4.5. 
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1. Perform System ID on the single joint model in Figure 4.7. 

a) Utilize the method developed in Homework problem 4.4. 

b) Convert Eq. (4.11) to state-space form and use the method discussed in 
Section 4.3 .. 

c) Try different sets of K", Kd, K, and Do that are perturbations of the 
values in Table 4.2. 



Chapter 5 

Input Shaping for Path Planning 

5.1. Introduction 

Input shaping is an effective way to optimize the performance of robots, flexible 
structures, spacecraft, telescopes, and other systems that have vibration, control 
authority, tracking, and/or pointing constraints. These constraints along with the 
dynamics and kinematics of the system under consideration can be included in a 
trajectory optimization/path planning procedure to ensure that the system meets 
the desired performance. Input shaping is particularly useful when the closed­
loop controller cannot be modified or tuned. For example, many pedestal-based 
robots have closed architecture control systems that restrict access to the servo­
loop controls. This chapter begins with the overhead gantry robot and a vibration 
constraint referred to as swing-free input shaping. 

5.2. Analytic Solutions for Input Shaping 

Analytical solutions are useful in developing intuition and rules-of-thumb as well 
as check cases for complicated simulations. One can derive analytical input shaping 
solutions from any set of differential equations that are closed form solvable. The 
gantry robot model that was derived in Section 2.6. is one such example. 

The linearized equations of motion for that model are 

where 

.• 2 1 
(J + w (J = --x 

I 

w2 = !t 
I 
211" 

r=-, 
w 
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(5.1) 

R. D. Robinett III et al., Flexible Robot Dynamics and Controls
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with a typical set of initial conditions 

8 (0) = ti (0) = 0 

x (0) = x (0) = O. 

The input shaping problem of interest is referred to as swing-free, which implies 
that the gantry robot is moved from a starting position without the pendulum 
swinging to an arbitrary final position without the pendulum swinging. This swing­
free constraint is defined mathematically as 

A 

.. 
x 

-A 

8 (0) = 8 (0) = 0 

x (0) = x (0) = 0 

8(t,)=8(t,)=0 

x(t,)=O 

x(t,) = x,. 

Figure 5.1. Input shaping acceleration profile (bang-coast-bang) 

The input shaping variable is the gantry robot acceleration profile (Le., x(t) 
time history). A straight forward way to determine the desired acceleration profile 
is to assume the form presented in Figure 5.1 and recognize that the swing-free 
constraint can be rewritten as 

8(tA) = -8(tA + te) 

8 (tA) = 8 (tA + te). 

(5.2) 

(5.3) 

Equation (5.1) can be integrated over the assumed acceleration profile to determine 
the values of A, tA, and te, which are referred to as constant acceleration, accelera­
tion time, and coast time, respectively. The first integration is over the acceleration 
time 0 :::; t :::; tA, which results in 

.. 1 
8 +W2(J = --A, 

l 
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with 

Therefore, 

w2 = ~ 
I 

8 (0) = iJ (0) = 0 

x (0) = x (0) = o. 

A 
8 (t) = - [coswt - 1] 

9 
. -Aw 

8 (t) = -- sinwt. 
9 

(5.4) 

(5.5) 

The second integration is over the coast time tA $ t $ tA + te, which results in 

Therefore, 

8 (t) = 8 (tA) cosw (t - tA) + iJ (tA) sinw (t - tA) (5.6) 
w 

iJ (t) = -w8 (tA) sinw (t - tA) + iJ (tA) cosw (t - tA)' (5.7) 

At this point, a simplifying assumption is made and verified at the end of the 
derivation. Namely, tA +te = T = 21r/w. Equation (5.6) and Eq. (5.7) are compared 
to Eq. (5.4) and Eq. (5.5), which meet the swing-free constraint of Eq. (5.2) and 
Eq. (5.3), or 

iJ(tA) . = 8 (tA) coswtA - -- smwtA 
w 

A [ ] 1 (AW) . . t = - coswtA - 1 coswtA + - - smwtA smw A 
9 w 9 
A = - [1 - coswtA] 
9 

= -8(tA)' 
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iJ (tA + tc) = -wO (tA) sinw (T - tA) + iJ (tA) cosw (T - tA) 

= wO (tA) sinwtA + iJ (tA) COSWtA 
wA Aw = - [coswtA - l]sinwtA - - sinwtA coswtA 
9 9 
Aw = --sinwtA 
9 

= iJ (tA), 

or rewritten as 

for 

o (tA) = -0 (T) 

B(tA)=B(T), 

T = tA + te. 

This result is general, in that, it produces swing-free maneuvers as well as meet­
ing other constraints, such as bang-bang and swing-free coast (Le., T = tA and te is 
arbitrary with no swinging). Note, the constraint of the final position X(tf) = Xf 
can be met by selecting the value of the constant acceleration A. Homework prob­
lem 5.1 is a further generalization where the impulses are replaced with a sinusoid. 
The sinusoid is band-limited, thus more robust to uncertainty in the vibrational 
frequency. Also note, a sine wave is the first term in a more general input shaping 
form of the Fourier series approximation to the bang-bang and bang-coast-bang 
profiles. 

5.3. Input Shaping Filters 

The control of flexible structures becomes important as the ratio of the struc­
ture's length to it's cross sectional area increases. This will certainly become an 
issue for the remediation of the Department of Energy's underground waste stor­
age tanks where a robotic arm must enter a 12 inch diameter access hole and span 
tanks that are 80 feet in diameter and 35 feet deep. Initial plans suggested that an 
operator would remotely guide the robot through the tank during the characteri­
zation and remediation phases. If the arm is controlled by using only PD control 
schemes, this process will be painfully slow and expensive. Controller gains will 
have to be significantly reduced so that large overshoots do not occur in the robot 
end-effector's position. 

Another application for the control of flexible structures is the precise place­
ment of heavy payloads attached to the end of a gantry crane. Substantial time 
is needed for an experienced operator to move the payload through often cluttered 
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environments. While most operators are experienced in these matters, an appro­
priately designed controller would allow even an inexperienced operator to perform 
swing-free motions while using a button box or joystick. 

In recent years, many researchers have worked on the control of flexible struc­
tures, especially robotic devices. To date a general solution to the controls problem 
has yet to be found. One important reason is that computationally efficient mathe­
matical methods (Le. , real-time) do not exist for solving the extremely complex sets 
of partial differential equations and incorporating the associated boundary condi­
tions that most accurately model flexible structures. While general solutions do not 
exist, some interesting solutions do exist for simplified problemsl - 6 . 

This section addresses the control of flexible structures by simplifing the dynam­
ics to a set of ordinary differential equations. Both finite impulse response (FIR) 
and infinite impulse response (IIR) filtering techniques for reducing structural vibra­
tion in remotely operated robotic systems are discussed. These techniques utilize a 
discrete filter between the operator's joystick and the robot controller to alter the in­
puts of the system so that residual vibration and swing are reduced (see Figure 5.2) . 

Input 
Device 

Vr Input 
Shaping 

Filter 

Assumed linear 
ti~invatiaot system. willl 
known natural frequency 
and damping ratio of modes. 

Figure 5.2. Input shaping for robotics systems 

5.3.1. Finite Impulse Response Filter 

Singer l was the first to apply a simple input shaping filter to linear time invariant 
(LTI) systems that modifies the reference input so that the residual vibrations are 
eliminated. This method involves convolving the input with a train of impulses that 
are calculated based on perfect knowledge of the plant's flexible mode parameters 
(see Figure 5.3). When these impulses are convolved with an arbitrary input, the 
plant follows the input without vibration and with a time delay approximately 
equal to the length of the impulse train (typically equal to the period of vibration). 
This simplification provides reasonable response when applied to a three degree­
of-freedom flexible robot arm2 . Murphy4 later extended Singer's work by applying 
digital theory to the design of the shaping filter. 
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Figure 5.3: (a) Response to a LTI system to two separate impulses (b) Combined system 
response if the two responses in (a) are added together 

Singer used a time domain approach to determine a filter that eliminates oscil­
lations in linear systems, Consider the impulse response of a second-order under­
damped system 

y(t) = Aw e-(w(t-to) sin (wv'1=(2(t - to») 
JI=(2 

where w is the natural frequency, 0 < ( < 1 is the damping factor, to is the time of 
the initial impulse, and A is the amplitude, 

By superposition, the system's response to the multiple impulses is 

N 

y(t) = L B;e-(wt sin(o:t + q,;) 
;=1 

where 

For two impulses, the system ill 

By combining terms, the system response can be written as 

y(t) = Be-(wt sin(o:t + q,) 
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where 

B = V(B1 cos <PI + B2 cos </>2)2 + (Bl sin <PI + B2 sin <P2)2 

<P = tan-1 ( (Bl sin <PI + B2 sin <P2) ). 
(Bl cos <PI + B2 cos </>2) 

To eliminate vibration at the time of the second impulse, it is desirable for 

Bl cos <PI + B2 COS<P2 = 0 

BI sin <PI + B2 sin </>2 = O. 

161 

If the amplitude of the first pulse is one (AI = 1) and the time is zero (tl = 0), 
then 

Solving for the amplitude of the second pulse A2 and time t2 gives 

Finally, it is desirable to normalize the two pulses so that the overall gain of the 
filter is unity. The resulting FIR filter is shown in Figure 5.4 

K=eP 

. rK 

K 

l+K 7r 

1 
t:.T=~ 

l-~ 

• 
0 t:.T 

time 

Figure 5.4. Two-impulse input shaping filter 

When this filter is applied to an arbitrary reference velocity trajectory, as shown 
in Figure 5.2, it will alter the commanded trajectory sent to the LTI system. 

For example, consider a filter for an undampened second-order system (i.e. (= 
0). If the input to the filter is a trapezoidal profile, the output of the filter is shown 
in Figure 5.5. 
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V,(t) /: ~ 
0 t. 1,>0.5T 

I(t) 0.51 0.51 

L 
0 0.5T 

Vc(t) sl(t)· V,(t) 1 

or-( h 
0 0.5T " t,+ 0.5T 

Figure 5.5: Resulting velocity trajectory after being convolved with a two-impulse input 
shaping filter 

In general, for N impulses one must satisfy the constraints 

N 

Vi = LBicoSl/Ji = 0 
i=i 
N 

V2 = LBisinl/Ji = O. 
i=I 

Satisfying these equations eliminates residual oscillation if w and ( are known ex­
actly! 

To add robustness to the system for errors in the estimate of wand (, the partial 
derivatives of the above equations are set to zero 

o 
-Vi =0 ow 
o 
-V2 =0 ow 
o 
o( VI = 0 

o 
o( V2 = O. 

This simplifies to the following additional constraints: 

N 

LBiticOSl/Ji = 0 
i=I 

N 

L Biti sin I/Ji = O. 
i=i 

(5.8) 

(5.9) 

To increase robustness, filters with more pulses can be formed by using these 
additional constraints (see Eq. 5.8 and 5.9). The more pulses there are the more 



5.3. INPUT SHAPING FILTERS 169 

robust the filter is to modeling errors. For example, a three-impulse shaping filter 
is shown in Figure 5.6. The derivation of this filter is a homework problem (see 
Homework problem 5.2, #1). 

2K 
1+2K+K2 

AT= __ lr_ 

~ 

o AT 2AT time 

Figure 5.6. Three-impulse input shaping filter 

Unfortunately, the more pulses there are the longer the delay in actuation. Fig­
ure 5.7 shows the step response of a three-impulse shaping filter. Notice, the filter 
delay for w = 211" rad/s and ( = 0.2 is 1.02 seconds. 

5.3.2. Infinite Impulse Response Filter Formulation 

Singer /Seeringl used a time domain approach to formulate the impulse shaping 
filters. In this section, a transfer function approach is used to formulate an Infinite 
Impulse Response (lIR) filter, which also eliminates oscillation. Both the design 
by emulation and direct z-domain methods for deriving IIR filters are investigated. 
The goal of this work is to reduce the time delay effect of the input shaping filters. 
For example, when applying Singer's three-impulse input shaping filter to a gantry 
crane with a suspended payload, the delay of the system was 2.75 seconds (equal 
to the period of oscillation). This length of delay is unacceptable when trying 
to position a payload. For this reason, the problem was first analyzed by using 
continuous time control methods and then with discrete time control methods. 

Consider the block diagram in Figure 5.8. The desired transfer function is 
Gd(Z) = F(z)G(z). Next, the continuous time version of the IIR input shaping 
method is described. 

Design by Emulation 

Assume the measured transfer function of the system is the second-order under­
damped system 

Kw 2 K(a2 + (32) 
G(s) = 82 + 2(ws + w2 = (s + a)2 + (32 

where a = (w, (3 = wv'1=(2, K is the overall system gain, w is the natural 
frequency, and ( is the damping factor. If it is desired that the response of the 
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Figure 5.7: (a) LTI plant responses before input shaping (b) Step response of three-pulse 
input shaping filter (c) Desired response of LTI plant after input shaping 

system be a critically damped second-order system, then 

(5.10) 

where u is the desired second-order time constant. To cancel the poles of the original 
system and insert the poles of the desired system, the transfer function of the filter 
is 

F( ) = Gd(s) 
S G(s) 

= (u2 ) S2 + 2(ws + w2 

w2 (S+U)2 
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Figure 5.B. Block diagram of filter and plant 

The continuous time domain filter is 

The zero-order hold discrete equivalent is 

F(z) = (1- Z-l)Z (F~S)). 

Using partial fraction expansion yields 

F(s) ((1)2 [A B C] 
-s-=:; -;+s+(1+(s+(1)2 

where 

Using Z-transform Tables gives 

F(z) = (~)2 (z - 1) [~+ B(z -1) + CTe-uT(z - 1)] 
w z z - 1 (z - e-uT ) (z - e-uT )2 

where T is the sample period. Combining terms and dividing by Z2 yields 
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where 

al = _2e-l1T 

a2 = e-211T 

bo = (:f 
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b1 = (:f [-B+(-2A-B+CT)e- l1T] 

b2 = (:f [(B - CT)e- l1T + Ae-211T] . 

Discrete transfer functions of this form can be written as the following difference 
equation: 

(5.11) 

where y(k) and u(k) are the filter's output and input, respectively. If the natural 
frequency w and the dampening ratio ( of the system are known, the coefficients ai 

and bi can be pre-computed by using Eq. (5.11). Because of the recursive terms (Le., 
the poles), this equation is called an Infinite Impulse Response (IIR) filter. Whereas 
a filter with no recursive terms is an FIR filter. Specifically, the recursive terms 
create feedback and are used to weight the importance of past output data versus 
the input data. This equation is easy to implement on an embedded computer. 

Figure 5.9 shows the step response to the above input shaping filter. By a 
judicious choice of a, the designer can specify the settling time of the system. The 
disadvantage of this method is that the designer must be careful not to choose 
a such that the torque limits of the motors are exceeded. A third pole in the 
denominator of Gd(s) may be used to reduce the height of the initial spike in the 
filter. Experimentally, it was found that performance degrades considerably when 
the a is chosen such that the settling time is less than 33% of the period of oscillation. 
Since the sensitivity of the control to parameter identification errors increases as 
the desired settling time reduces, this is expected. 

Direct Z Domain Design 

When designing the discrete version of this filter, the design by emulation 
methodS worked well when the sampling rate was relatively high (2 ms for the 
flexible two-link arm). A direct Z-domain design method was used when the sam­
pling rate was low (48 ms for the gantry robot). In this latter case, the plant 
model is first discretized and then the filter design is performed in the z-plane. The 
zero-order hold discrete time equivalent of the plant model is given by 

G(z) =(1- Z-l)Z (G~s)) 
K(Az + B) 

(Z2 - 2e-<>T cos(j1T)z + e-2<>T) 
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Figure 5.9: (a) LTI plant response before IIR input shaping (b) Desired response of LTI 
plant after IIR input shaping (c) Step response of IIR input shaping filter 

where 

A = 1 - e-aT cos(fjT) - ~e-aT sin(fjT) 

B = e-2aT + ~e-aT sin (fjT) - e-aT cos(fjT) . 
fj 

Suppose one would like the desired response of the system to be a critically 
damped third-order system. Third-order is necessary to eliminate the impulse seen 
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in the previous filter (see Figure 5.9). Consider 

Ku3 

Gd(8) = (8 + 0-)3' 

The zero-order hold, discrete time equivalent of the desired plant is 

where 

C = 1 - e- ITT (1 + uT + O.5u2T2) 

D = e-ITT (-2 + aT + O.5a2T2) + e-21TT (2 + aT - O.5a2T2) 

E = e-21TT (1- aT + O.5a2T2) _ e-3ITT . 

The transfer function of the filter is 

F(z) = Gd(Z) = (z2C + zD + E) (Z2 - 2e-oT cos (fJT) z + e-2oT) 
G(z) (Az + B) (z _ e-ITT )3 

The pole placement resulting from this filter is shown in Figure 5.10. 
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Figure 5.10. Pole placement in direct Z-domain design 

Notice the pole at BIA on the unit circle at -1 if A = B. This means that one 
of the filter's output modes changes sign every sample. The residual of this mode 
happens to be small if the sampling period is small. However, as the sampling 
period increases this effect becomes noticeable (see Figure 5.11 and Figure 5.12, 
respectively) . 
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Figure 5.11: Input shaping ffiters step response when sampling period = 0.001 seconds 
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Figure 5.12: Input shaping ffiters step response when sampling period = 0.047 seconds 

To eliminate this oscillation in the control input, this pole was moved to zero 
and the gain of the filter was constrained to provide unity steady state gain, i.e., 
-al - a2 - a3 + bo + b1 + b2 + b3 + b4 = 1. 

The resulting transfer function can be written as 

F(z) = bo + b1z-1 + b2z-2 + b3z-3 + b4Z - 4 , 
1 + alz 1 + a2z 2 + a3z 3 

which can then be converted to the difference equation 

y(k) = -aly(k - 1) - a2y(k - 2) - a3y(k - 3) + bou(k) 

+ b1u(k -1) + ~u(k - 2) + bau(k - 3) + b4u(k - 4) 
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where 
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al = _3e-O'T 

a2 = 3e-20'T 

a3 = _e-30'T 

B 
M=­

A 
b _ C 
0- A(l + M) 

bl = (l:M) (~ -2~e-aTCOS«(3T)) 
J.._ _ 1 (E D -aT (RT) C -2aT) 
"2 - (1 + M) 'A - 2 A e cos fJ + 'A e 

b3 = 1 (_2~e-aT cos«(3T) + D e-2aT) 
(1 + M) A A 

b4 = (1: M) (~e-2aT) 
where y(k) and u(k) are the filter's output and input, respectively. 

Figure 5.13 shows the step response to this filter. Note, the initial impulse as 
shown in Figure 5.9 has been removed by using a third-order desired response. Also 
note, for u < 2w, the filter output is greater than one for a short time. In order to 
shorten the filters time delay, the filter must drive the LTI system harder initially. 
Again, the sensitivity of the control to parameter identification errors increases as 
the desired settling time decreases. 

5.3.3. Flexible Two-Link Manipulator Example 

The IIR filter technique (see Section 5.3.2.) was successfully applied to the San­
dia flexible two-link manipulator (see Figure 5.24). Figure 5.14 shows the change 
in strain gauge measurements on the second link of the manipulator before and 
after input shaping. Notice how quickly the residual vibrations are dampened out. 
Similar results have been demonstrated with a suspended payload on the gantry 
crane. 

As shown above, one can completely remove residual vibrations if the natural 
frequency w and the dampening ratio ( are known a priori. For unknown system 
dynamics and changing payloads, this information will not be readily available. 
To illustrate this condition, some simple on-line system identification experiments 
were performed on the flexible manipulator. One strain gauge on each link of 
the manipulator was used to measure the link's curvature as a function of time. 
These two measurements are used to determine the dominant mode of vibration 
on each link. The desired velocity of the joints, as commanded by the joystick, 
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Figure 5.13: (a) LTI plant response before IIR input shaping (b) Desired response of 
LTI plant after IIR input shaping (c) Step response IIR input shaping filter 

are used as the input to the system. By taking the FFT (Fast Fourier Transform) 
of both the output (strain gauge measurements) and the input (commanded joint 
velocities) and dividing, the system's transfer function can be determined (refer to 
Section 4.3.3.). The FFT of each transfer function is fit to an underdamped second­
order model by using the Levenberg-Marquardt method9 • The natural frequency 
and damping ratio determined from this nonlinear fit are then used to adjust the 
system's control. Experimentally, the above procedure was performed in a near 
real-time mode that was transparent to the user (see Figure 5.14). The procedure 
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follows. During periods of excitation, input and output data are collected, the 
FFTs are computed, the nonlinear fit is made, and the parameters of the IIR filter 
are adjusted. The input and output data are transferred via a VME-to-VME bus 
adapter from a 68030 board performing the control to an i860 board performing the 
FFTs and nonlinear fit. The i860 board is capable of performing a 1024 point FFT 
in one millisecond. After the nonlinear fit is performed, the natural frequency and 
the damping ratio are transferred back to the control CPU. Tests showed that one 
should be able to continually perform the system identification and update the filter 
at better than a 10 Hz rate. This would allow the control parameters to be adjusted 
during periods of excitation caused by payload variations, kinematic changes, and 
external disturbances. 
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Figure 5.14: Results of system identification experiments with a flexible two-link ma­
nipulator 
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5.3.4. Gantry Robot Example 

The IIR filter technique (see Section 5.3.2.) was successfully applied to a gantry 
robot with a suspended payload (see Figure 5.15). The application of Lagrange's 

Figure 5.15. Gantry robot with suspended payload model 

equation, the linearization of the nonlinear terms, and taking the Laplace transform 
produce the following linearized dynamic model: 

9( s ) = -=-_-,1,--1_---.". 
s2X(s) s2+2(ws+w2 

where w = ..fi7l is the natural frequency and ( is the damping factor. Therefore, 
the resulting impulse response to the acceleration in x is 

9(t) = -1 e-<wt sin (wv'1=(2) . 
lw~ 

Note, the sinusoidal response to acceleration input. The impulse response with 
respect to velocity is 

9(t) = -1 e-(wt sin (wyl'1-(2 + t/J) 
lwJI=(2 

where 

Also note, the sinusoidal response to the velocity input. 
Now apply the IIR filter 

sX(s) = (0'3) S2+2(WS+W2. 
V(s) w2 (s + 0')3 
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The resulting transfer function and impulse response is 

9(s) (U3) (=f )s 
V(S) = W 2 (S + u)3· 

The impulse response to a shaped velocity input is 

-u3 
9(t) = lw2 (t - 0.5ut2 )e-ut . 

Figure 5.16 shows the resulting damped response. Note, this is not critically 
damped. However, a step input in velocity would result in a critically damped 
third-order response. 

o I 1 3 4 5 6 7 I 9 10 

Figure 5.16. Angle response of suspended payload with IIR input filtering 

5.4. Constrained Optimization with RQP 

Optimization goals for aerospace problems at Sandia have ranged from max­
imizing re-entry vehicle impact velocity at a ground target to multi-stage rocket 
performance for atmospheric sounding, and payload insertion to support ballistic 
missile development efforts. Since the initial use of numerical optimization for 
aerospace problems at Sandia, other areas have benefited from these methods. As 
discussed earlier, work in the area of flexible robotics stemmed from nuclear waste 
site cleanup requirements. Long boom links are envisioned to evacuate contents 
of holding tanks built in the late 50's whose structures are steadily deteriorating. 
Since these links have high aspect ratios and restrict the use of typical beefy de­
sign structures found in traditional applications, lighter and inherently more flexible 
structures have to be considered. The control system design for these problems is an 
example of control time history parameterization (see Section 2.8.8.). These robot 
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models consist of finite element beam approximations and require irregular time 
spacings between open-loop control values to capture the motor torque variation 
for vibration-damped motion. This section will explore numerical (i.e., iterative) 
methods to generate open-loop parameterized control histories (or input shaping 
profiles) for flexible-link robot motion by using optimization techniques. These op­
timization techniques are used when the robot models are nonlinear and/or the 
control designer needs to develop some intuition and a feasible solution. 

5.4.1. Quadratic Surfaces 

The basis of flexible robot optimization is to formulate a meaningful cost function 
or performance index that demonstrates extremal behavior as a function of suitable 
parameters. A quadratic surface is a desirable multivariable performance index in 
x = [Xl,' .. ,xnV that contains an extremal (maximum or minimum) and is given 
by 

G(x) = c + b(x - xo) + (x - xof A(x - xo). 

For example, a minimum quadratic surface for n = 2 variables with the following 
coefficients: 

c=1 b=[O 0] A=[~ ~] 

is shown in Figure 5.17 where a grid of coordinate pairs spanned by the individual 
ranges -2 ~ Xi ~ 2 was used to generate the scalar G(x) values. 

G 

·2 

2 ·2 · 1 
1 X 2 

I 

Figure 5.17. Example of a quadratic surface 
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5.4.2. Quadratic Approximation 

The first step in a numerical optimization procedure is to develop a quadratic 
approximation. The general scalar, multivariable function G(() is expanded about 
a known point (0 = [elo' ... ,enol by the following Taylor series (TS) expansion: 

G(() = G((o) + GE lEo (( - (0) + [( - (of GEE, lEo (( - (0) + H.O.T .. 
2. 

Keeping terms up to second-order produces a quadratic approximation to G(() 
where the coefficients of the TS have the obvious relation to those in the quadratic 
surface expression (see Figure 5.18), or 

G(() ~ c + b (( - (0) + (( - (o{ A (( - (0)· 

G 

approximate with 
.... uarodll 

------~ minimum of this s;r;; 

\-

---- .. -0-

qqldlalic 
RJtnimum 

~I 

real minimum 

Figure 5.1S. Quadratic approximation to G«() 

5.4.3. A Second-Order Iterative Method- for Unconstrained 
Minimization 

Now, it is time to develop a second-order iterative method to numerically solve 
unconstrained minimization problems. 

Reiterating from Section 2.8.4., to provide a second-order Newton-type method 
to advance to the optimum, expand G(() about a current known point (0 in a TS 
as follows: 

G((Hl) = G((i) + GE, [(i+l - (i] + ~ [(HI - (if GE,E, [(i+l - (i] + H.O.T. 

t::.G = GE; [(HI - (i] + ~ [(HI - (if GE,E, [(HI - (i] + H.o.T .. 

IT one differentiates both sides with respect to the vector (i+l - (i and sets the 
result to 0 (corresponding to an extermal) one gets the Newton-Rhapson search 
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direction, or 

Therefore, 

which can be fashioned into an update procedure as 

ei+l = ei - QG(i~i G[ 

for a positive constant Q that is determined by computing the step length lO . Note, 
Geiei must be nonsingular to use this method. Checking Geiei for positive defi­
niteness gives you assurance that you're moving on a minimum surface (concave 
up). 

5.4.4. Recursive Quadratic Programming - a method to han­
dle constraints explicitly 

In Section 2.8.7., penalty functions were added to a scalar performance measure 
to handle equality constraints. However, neither the performance measure nor the 
equality constraints were handled explicitly, so this section provides an alternative 
method. 

The goal is to minimize a scalar function ¢>(e) subject to a vector of equality 
constraints w(e) = [WI (e), ... ,wm(e)] = 0, but the numerical method minimizes 
the quadratic approximation to the scalar function (about known or updated points) 
in the hope of deriving an update scheme to march to the solution of the true 
problem. The quadratic approximation to the minimum is constrained via a linear 
approximation to the actual constraint w(e) = 0 (about known points ei ) as follows: 

subject to 

The matrix B is an approximation of ¢>ee Ie. and is computed and updated by 
the variable metric method 10, which requires only first derivatives. This method is 
used because, for the problems of interest in this book, the analytical expressions 
for ¢>ee Ie. are most likely not obtainable in analytic form, and second-order accurate 
finite difference approximations would require 2n function evaluations of ¢>(e) for 
n variables. This is possibly an unacceptable time expenditure if the function 
evaluation is lengthy. 
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Substituting for the search direction ei+l - eo with ej and augmenting the 
quadratic function approximation with the linearized constraint via constant La­
grange multipliers v = [Ill, ... ,11m) yields 

eTBe· 
G(ej,v) = f/J( 1(, ei + ~ + v T [w(ej) + w( 1(, ei] 

where v is a vector of constant Lagrange multipliers. 
The next step is to solve for ej, v by using first variation conditions. 

Note 5.1. The performance index uses derivatives of both f/J and'll directly while 
the penalty function method adds soft constraints. 

5.4.5. RQP Equality Constraints - solving for the unknowns 

Taking the first variation gives 

8G 8G 
6G(e;, v) = -8 6ei + -8 6v = 0 

ei v 
8G T T 
8e; = f/J( 1(, +ej B + v w( 1(,= 0 

8G 
8v = w(ei) + w( 1(, ei = 0 

and performing matrix algebra with the knowledge that 'II ( 1(, is not necessarily 
square yields the following solution: 

V(ei) = [w(B-1Wirl [W(ei) - W(B- l 4>r] 
ei(ei) = _B-1 [wi [w(B-1Wirl [W(ei) - W(B- l 4>r] + 4>i] . 

Since ei(ei) = ei+1 - ei' one can fashion an update scheme ei+l = ei + aei(ei) for 
scalar 0 < a < 1. The largest value of a for which the scheme remains stable would 
be used. 

Note 5.2. If the number of parameters e is less than the number of constraints'll 

the matrix [W(B-lWr] will be singular. This leads to the general rule-of-thumb 

number of parameters::::: number of constraints +1. 

5.4.6. Formalized solution methods for implementing RQP 

The previous section derives both the Lagrange multipliers and the parameter 
update vector for a RQP problem with equality constraints. To enable this solu­
tion, one still has to provide an approximation to the Hessian matrix G",,,, denoted 
as B in the RQP update equations. There are library and vendor codes that pro­
vide complete solution environments for RQP. Two that will be discussed here are 
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the VF02AD (VF13AD is currently available) FORTRAN routine from the Har­
weillibraryll and the fmincon routine from Mathwork's MATLAB® Optimization 
Toolbox12 . Both of these methods draw heavily from Powell13 . 

These general nonlinear optimization solvers address a problem of the following 
form to find the minimum of a constrained nonlinear multi variable function: 

min 4>(e) subject to, q,(1)(e) = 0 (equality contraints) 

q,(2) (e) $ o. (inequality contraints) 

fmincon also allows linear constraint specifications as well as bounds specifications 
on e as follows: 

A*e $ b 

elower $ e $ eupper· 

As the computation ~rogresses, the constraint equations will continue to gen­
erate residuals, either q, 1) (e) i= 0 for non-satisfaction of the equality constraints, 
or q,(2) (e) > 0 in the case of the inequality constraints. The inequality constraints 
will need to be fashioned such that the code will continue to operate on them until 
they meet the desired forms above. For example, one may be integrating a set of 
state differential dynamic equations of motion x(e, t) to arrive at some final value 
that one wishes to constrain, say, Xl (e, t,) ~ 10. The inequality constraint will need 

to be expressed as ll1i2) = 10 - Xl(e,t,). If ll1i2) (e) > 0, the RQP algorithm will 
continue to operate on it until either it conforms to the problem statement above or 
computation ceases due to a user-specified convergence criteria for the approximate 
solution. 

Note 5.3. Depending on what version of the algorithms one uses, the inequality 
signs on the problem statement constraints above may be reversed, in which case 
you would have to reverse the order of terms in the sample constraint statements. 

The solution methods act in conjunction with the following computer code to 
form the computation environment: 

1. A driver routine to do initialization, handle I/O, and call the optimization 
solver. Initialization provides a guess for eo and specifies to what accuracy 
you wish to compute and to what tolerances you want the solver to achieve, 
as indicative of an approximate solution (Le., 4>(e), q,(e) changing by tiny 
amounts). I/O encompasses user-specified reads and writes. 

2. Function routines to compute the scalar metric 4>(e), the constraint residu­
als q,l(e) i= 0, and q,2(e) > o. This may entail sub-levels of functions to 
provide the numerical information to compute the residual violations, such 
as numerical integration routines (see Section 2.4.1.) to compute final state 
values. 
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3. Function routines to provide derivatives <Pe({) (vector), and [we({)](matrix). 
As mentioned in Section 2.8., this can be done in simple cases via analytical 
expressions, but for the bulk of the cases it will come from finite difference 
computations. An alternative is the ADIFOR and ADIC codes that provide 
analytical derivatives based on chain-rule differentiation 1 4 • Note, only first­
order derivatives are needed for Hessian update methods. 

In general, the code developed using VF02AD will be more extensive, since 
one will need to develop all of the aforementioned routines. However, it will run 
faster than the MATLAB® equivalents since it will execute as a compiled entity. 
The routines developed for item 2 will be embedded in the finite difference deriva­
tive approximation routines for this method. On the other hand, the MATLAB® 
environment (by using jmincon, for example) provides a higher level language, an 
interpreted (versus compiled) environment, derivative approximations, and a stan­
dardized setup to integrate with a variety of optimization routines. These niceties 
are paid for with longer run times. Further details are included for both VF02AD 
and MATLAB® optimization in Appendices A and B, respectively. 

5.4.7. Parameterized Controls - how to handle a changing 
final time 

In Homework problem 5.4, #3 (single-link vertical slew), a parameterized control 
is developed for a fixed final time problem. Specific fixed times are chosen over 
the fixed final time period and corresponding parameter variations are assigned to 
these fixed times only. However, in many problems the final time varies. In the 
Homework problem 5.4, #1, the final time is a combination of two acceleration 
periods separated by a coast period. The acceleration and coast times are two of 
the three parameters computed via the optimization procedure. 

In problems where final time is to be determined, the final time becomes an ad­
ditional parameter and is passed to integration routines and interpolation routines 
(see Section 2.4.1.). If the controls are parameterized with respect to discrete times, 
then those times must expand or contract as does the current final time solution. If 
you do not allow for this, you would either have a huge gap between a newly com­
puted final time from the optimization method and your next smallest time, or you 
would be overrunning the new time span with your hard-fixed discrete times. Typ­
ically, one can provide the adjustments to the discrete times by assigning them as 
fractions of the current final time. For example, t; = O.Otj, O.1tj, O.2tj, ... , 1.0tj 
where parameter tj is the latest value of the final time or some other variation that 
would allow appropriate expansion and contraction over a changing time span. tj 
is passed to both the integration and control interpolation routines. 

Note 5.4. A nonuniform spacing could be employed if knowledge of the problem 
dictates that time granularity of the control parameterization needs to vary at 
different points in the timeline. 
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5.4.8. Parameterized Controls - treating fixed bounds on the 
controls 

Physical joint motors have bounded outputs, both positive and negative (Tlower 

$ T $ Tupper). Thus far, the problems discussed have not considered this. The 
open loop torque controls u{t) were allowed to vary (via the computed parameters) 
to whatever is needed to minimize 4>{e) and make the constraint violation residuals 
wee) small. How can the fact that there are physical bounds get communicated 
to the problem formulation? (As mentioned earlier, the MATLAB® Optimization 
Toolbox routines12 do this for you automatically as a feature). 

By using the typical constraint inequality formulation for the wee) $ 0 conven­
tion, one can formulate the two-sided bounds as single-sided ones. For example, if 
the goal is to bound a single parameter ~i to vary its magnitude no greater than 10 
(Le., equi-sided bounds), the following constraint forms can be devised: 

Wl{e) = ~i - 10 

W2{e) = -1O-~i, 

which would be needed for every parameter ~i that was bounded. Since it was 
stated earlier that the number of parameters must at least equal the number of 
constraints plus 1, this approach is not acceptable (if at the very least, from the 
burdensomeness of carrying all those constraints). 

An alternative is to convert the two-sided inequality constraint to an equality 
constraint by minimizing an integral over the time span of the form 

[
t/ 

Wi(e) = max(lu(t)l- 1O,O)dt 
to 

where u(t) would be found by interpolation within the table of control parameters 
and their associated discrete times and max is a simple maximum comparison at 
every time that the integrand is evaluated. As this constraint is based on calculating 

U(I) 

~~IBII~ ____________ _ 
want to climinatc the 
crosshatched areas 

Figure 5.19. Integrated violation of the control constraint 

an integral, an additional state (to those needed for the n-physical dynamics states) 
can be created via a differential equation Xn+l = max(lu(t)I-1O,O). Xn+l(t,) will 
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then be the constraint violation Wi (e) > o. The optimization process will attempt 
to make the overshoot areas small (xn+l(tf) ~ 0) resulting in some ripple of the 
controls about the boundary lu(t)1 = 10. 

The previous approach creates another constraint to handle the two-sided bound. 
For most cases, this isn't an issue, but in the event that you're short on parameters 
with which to work, a second method embeds the bounds in the definition of the 
controls. Define a new control form to be u(t) = Uboundsin(O(t)). From this form, 
it is obvious that u(t) cannot lie outside of the equi-sided bounds ±Ubound. Instead 
of parameterizing u(t) or torque directly one would parameterize O(ti) at discrete 
times. Parameter units then switch from torque to angles. A variation on this 
theme allows unequal or (same sign) two-sided bounds with the form 

Drawbacks to this formulation are the parameters (i = o(t;) can take on large values 
since the angle values are unconstrained, and there may be some convergence issues 
because of the non-uniqueness of sin(o(t)) about o(t) = [2n + 1J7r/2 for n = 
0,1,2, .... 

5.4.9. Examples with Parameterized Controls 

In this section several examples that demonstrate how to solve parameterized 
controls optimization problems are presented. The first example covers the hori­
zontallink introduced in Chapter 2 and shown in Figure 2.14. The second example 
considers a planar two-link rigid manipulator. The goal is to minimize a cost func­
tion subject to several constraints. 

Example 5.1. Find the minimum effort control for a single-link, fixed-time, rest­
to-rest maneuver for a given angle in the horizontal plane. 

Solution 
This problem is cast as a constrained nonlinear optimization problem. One 

wishes to find the control vector function u(t) for to $ t $ tf to minimize the 
following cost function: 

subject to the constraints 

with the initial conditions 

Wl(e) = O(tf) - Odesired = 0 

W2(e) = 8(tf) = 0, 

O(to) = 8(to) = 0, 
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and the following plant dynamics: 

where Xl = (), x2 = iJ, and u = T. In addition, the link length is I and it's mass is 
m. For this example, let ()de8ired = 7r /2, m = 0.5 kg, and I = 1.0 m. The fixed final 
time is 1.0 second. The problem is solved by using the MATLAB® Optimization 
Toolbox function fmincon. The control values are parameterized along the time axis 
u(tj) = ~j, j = 1, ... ,nmax . The optimizer is configured to minimize the control 
effort subject to satisfying the constraints. Further details on how to setup the 
problem and the corresponding MATLAB® code can be found in Appendix B. 

The results are shown in the left plot of Figure 5.20. Note, the similarities to 
the analytical solution given in Chapter 2 (see Figure 2.16). This solution shows a 
linear torque profile with both the initial and final velocity being zero. The desired 
position is achieved. 

Suppose that in addition to minimizing the control effort, bounds are placed on 
the control profile 

Ul ower ::; U ::; Uupper. 

For this example, the bounds were set to ±1.2 N-m. With fmincon this problem 
is taken care of automatically by using built-in upper and lower bounds on each ~j 
(see Appendix B). The results are shown in the right plot of Figure 5.20. Now, the 
control torque is limited at the beginning and end of the trajectory. The velocity 
has increased during the middle of the maneuver such that the link can meet the 
desired end position while meeting all the original constraints. 
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Figure 5.20. Minimum control effort for the horizontal slewing link of Example 5.1 



190 CHAPTER 5 INPUT SHAPING FOR PATH PLANNING 

In the final variation of the horizontal slewing link, utilize the final time is the 
cost function to minimize along with bounded controls. This is stated formally as 
follows: find the minimum time for a single-link, rest-to-rest maneuver to a given 
angle in the horizontal plane. In the optimization formulation, the final time is 
allowed to vary along with the bounded, discretized control parameters u(tj} = 
~j, j = 1, ... ,n, tlinal = ~n+l. 

The results are shown in Figure 5.21. The minimum time parameter was com­
puted as t I = 0.9368 seconds. The numerical optimization results are similar to 
the analytical minimum time solution (see Figure 2.17). The exceptions are the 
control torque has to confine itself to linear interpolation among the discretely cho­
sen times and the associated computed torque values while the analytical solution 
would be strictly bang-bang with a discountinous jump between upper and lower 
bounds at mid-trajectory. In addition, the analytic velocity comes to a sharp peak 
at mid-trajectory. The MATLAB® code is listed in Appendix B. 

4r-----r-----~----~----~--__. 

-20~--~~--~----~----~----~ 
0.2 0.4 0.6 0.8 

Time (sec) 

Figure 5.21: Minimum time optimization solution for the horizontal slewing link of 
Example 5.1 

In the second example, a slewing two degree-of-freedom planar manipulator is 
examined. 

Example 5.2. The goal is to find the minimum effort controls for a planar two-link 
arrangement executing a fixed-time, rest-to-rest maneuver between given angles in 
the horizontal plane. 

Solution 
This problem is cast as a constrained nonlinear optimization problem. One 

wishes to find the parameterized control vector Ul,2(t}, for to :$; t :$; tl to minimize 
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the following cost function: 

subject to the constraints 

Wl(e) = 8dt,) - 8ld .. 'red = 0 
W2(e) = 82 (t,) - 82d .. 'red = 0 

W3(e) = ih(t,) = 0 

W4(e) = iJ2(t,) = 0, 

with the initial conditions 

8l (to) = 810 

82 (to) = 820 

iJl(to) = iJ2(to) = 0, 

and the following plant dynamics: 

{~l}=[O -1 I ]{Xl}+{ ~l}U X2 0 -H [Cdamp + Ccorioli.] X2 H 
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T .. T T where Xl = [81 82] , X2 = [81 82] , and U = [Tl T2] . The planar manipulator 
dynamic model matrices are given as 

and 

where the details of the coefficients hii and c~;) are given as the result of Home­
work problem 2.3, #2. In addition, the link lengths, masses, inertias, and other 
physical parameters used are those found in Homework problem 5.5, #4 (with the 
spring coefficients set to zero). The problem is solved by using the MATLAB® Op­
timization Toolbox function fmincon. The control values are parameterized for each 
degree-of-freedom motor input along the time axis Tl (ti) = 6i' j = 1, ... ,nmaz 
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and T2 (tj) = {2j, j = 1, ... ,mmaz, respectively. The optimizer is configured to 
minimize the control effort subject to meeting the constraints. 

For the minimum effort unbounded controls problem, the initial link positions 
were set to [910 920 ] = [-20° 10°] and commanded to slew to the final link positions 
[91d •• i •• d 92d .. i •• d ] = [-30° 20°] with a fixed final time of t/ = 1.0 second. The 
results from the optimization process are shown in Figure 5.22. The angles and 
rates are shown in the left plot while the required motor torques are shown in 
the right plot. The final positions are achieved while the angle rates meet the 
given constraint criteria (rest-to-rest). The bounds on the motor torques are set to 
71 = ±5 N-m and 72 = ±1.5 N-m, respectively. For this problem, the motor torques 
stayed within the given bounds. 

In the next variation, the problem is changed to a minimum effort with bounded 
controls problem. Again, the /mincon function automatically takes into account the 
upper and lower control bounds. By increasing the final positions for each link to 
[91d .. i •• d 92d .. i •• d ] = [-40° 62.5°], more control effort is required, which saturates 
the motor torques (see right plot in Figure 5.23). The optimizer simulation results 
are shown in Figure 5.23. Note, even though bounds on the controls are in effect, 
the constraint conditions are still met (Le., zero initial and final link velocities). The 
final variation of this example would be to solve a minimum time bounded control 
problem. This is left to the reader as a homework exercise (see Homework problem 
5.5, #4) . 
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Figure 5.22. Minimum control effort for the planar manipulator of Example 5.2 

Note, in both of these examples, which involve minimum effort control scenarios, 
the final torques are non-zero (see Figure 5.20, left plot and Figure 5.22, right 
plot, respectively). The non-zero torques occur because the final acceleration was 
not constrained. The interested reader is encouraged to add this constraint and 
rerun the optimization to generate a new solution. For the planar manipulator, the 
constraint would be stated as 81,2 (t /) = o. 
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Figure 5.23: Minimum control effort with bounds for the planar manipulator of Exam­
ple 5.2 

5.4.10. Optimal Trajectories for Flexible Link Manipulators 

This section is based on the work developed by Eisler, Robinett, Segalman, and 
Feddema15 . Several performance indices were minimized to compare, in simula­
tion, which resulting open-loop control provided the most satisfactory rest-to-rest, 
minimum-vibration motion. The ensuing discussion describes the structural dynam­
ics model of the manipulator, the optimal control problem and parameterization of 
the controls, and the numerical simulation results. 

The manipulator structure modeled in this study is the Sandia two-link flex­
ible manipulator (see Figure 5.24), which has a two-link, cantilever arrangement 
constrained to slew in the horizontal plane. Tall , thin links are used to minimize 
vertical plane droop. The hub or joint-l actuator, slews both links, an elbow motor, 
and a tip payload. The elbow or joint-2, actuator is located at the end of link-l 
and slews the second link and the tip payload. The complete manipulator is about 
0.5 meters (m) tall, and 1.2 m long. 

F'igure 5.24: Sandia flexible 
two-link manipulator 

Elbow DIOIDr joint 

x 

Fivnr .. " 25: Finite element de­
scnptlOn 
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The dynamic equations of motion are developed by using an efficient finite ele­
ment scheme for a multi-link, multi-joint system with bending only in the horizontal­
plane. Following the techniques outlined in Section 3.4., the general manipulator 
structural dynamics model, which is based on the finite element arc length, are 
expressed as 

.. ·2 
[M(9))9 + [C(9))9 + [K(9))I1 = T. (5.12) 

The Sandia manipulator brackets and links are constructed of aluminum. The 
brackets were modeled with 1 element and considered rigid (EI = 105 ), and links 
were modeled with 3 elements for a total of 9 elements (see Figure 5.25). The elbow 
joint is modeled by collocating two nodes. For the brackets, point moments of iner­
tia were used to define mass distribution. No payload was used in this comparison. 
The joints were assumed to have no compliance (which means that the motors do 
not have any dynamics or they have a unity transfer function). Joint viscous damp­
ing was estimated from modal testing to be 0.5 and 0.05 newton-meter/(rad/sec), 
respectively for the hub and elbow16 . Link structural damping was considered neg­
ligible. The finite element structural model parameters are given in Table 5.1. 

Table 5.1. Finite element structural model parameters 

Part Length Mass EI FE elem 
m kg N-m2 

hub bracket 0.635 0.545 105 1 
link-l 0.504 0.640 102 3 

elbow bracket/motor 0.107 5.415 105 1 
2nd elbow bracket 0.104 0.830 105 1 

link-2 0.489 0.313 2 3 

The method of RQP coupled with a homotopy method was used to generate 
approximate minimum-time and minimum tracking-error tip trajectories for the 
two-link flexible manipulator movements in the horizontal plane. Constraints on 
these trajectories are completing a rest-to-rest maneuver, tracking a specified path 
(x(t), y(t))up, slewing between specified endpoints,[(x(to)' y(to)), (x(tf), y(tf )))tip, 
and not exceeding actuator torque limits [71, 72)max' Driving a flexible structure 
to rest at the final time t f necessitates end constraints on both velocities and ac­
celerations of the joints, and the final torque values. The chosen path is a straight 
line and the actuator torque limits are constants. Torque limits can be integrated 
naturally into the controls as discussed in Section 5.4.8. via 
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where 01,2(t) is a free variable. This form assumes that the two-sided limits on 
Tl,2(t) are of the same magnitude. Unequal magnitude limits can be applied with the 
form T(t) = O.5[(Tmaz + Tmin) + (Tmaz - Tmin) sino(t)]. Assuming the configuration 
initially starts at rest, restate the optimization problems as minimizing final time 
or tracking error as 

subject to 

1. The finite element model (see Eq. 5.12) 

2. The input actuator torques T1,2(t) 

3. The known initial conditions, and 

4. Constrained by 

Xtip(t,) - xspecified 
Ytip(t,) - Yspecified 

91,2(t, ) 
81,2(t, ) 

tf - tdesired 
or' 

ft~[Ytip(Xtip(t)) - Yline(Xtip(t))]dt 
T1,2(tf) 

=0 (5.13) 

where Ytip(Xtip(t)) is dependent upon Xtip(t) at time t because the second-link 
tip is tracking a straight line. (Note, * = depending on the choice of J) 

The tip-tracking criteria includes an integral constraint for following the line and a 
point constraint for acquiring the end condition while the constraints needed to bring 
the structure to rest are simply point constraints. These items' affect the allowable 
behaviors of the structure during slewing maneuvers in characteristic fashions. 

No constraint was placed on link vibration during slew maneuvers and the struc­
ture is allowed to ring during the trajectories. The integral constraint on tracking 
can allow pronounced, but brief excursions from tracking the path. The final torque 
values Tl,2(tf) could also have been assigned to zero and removed as formal con­
straints. Next, a discussion of parameterization and initialization of the controls is 
presented. 

To approximate optimum system performance (Le., solve the suboptimal prob­
lem) from the aforementioned structural model (see Eq. 5.12), a suitable parame­
terization of the controls Tl,2(t) via 01,2 is necessary. For this study, the simplest 
case, using tabular values for 01,2, was chosen. These values were specified for both 
joint torques at nondimensional-time node points ~i = t i / t, as 

oIC~i)' 02(~i)' j = 1, ... np 0 ~ ~i ~ 1 



196 CHAPTER 5 INPUT SHAPING FOR PATH PLANNING 

where tj is the actual time corresponding to the lh time-node point, n" is the 
number of points for each motor, and t J is the current value of the final time. This 
formulation is a variant of the ideas presented in Section 5.4.7. and also allows 
the torque histories to stretch naturally over the current trajectory length as t J is 
varying continuously (Le., the minimum time case) until convergence is achieved. 
Linear interpolation is used to compute Ol.2(e) between the time-node values and 
was found to be superior to spline interpolation from the standpoint of achieving 
high-frequency content in the torque results. This parameterization requires t J 
to be a parameter and results in 2n" + 1 parameters to be optimized. For the 
minimum-tracking error case, normalization of the time could have been removed 
since trajectory integration occurs over a fixed time. 

Numerical derivatives for the performance indices and the constraints w(tJ) pro­
vided to VF02AD are central finite-difference approximations. In computing these 
approximations, complete trajectories (or integrations of Eq. 5.12) are computed by 
using the current (or fixed) nominal tJ to produce perturbed J and w(tJ) values. 
As parameter optimization solutions can be very initial-condition sensitive, it was 
decided to use a continuation (homotopy) approach to acquire the solution17•18 • 

Performance optimization for a complex model fc(x, 0, t) can be accomplished by 
using the solution of a simpler model f.(x, 0, t) and parameterizing the dynamics 
x with a single parameter f3 such that the new dynamics model is 

x = (1 - f3)f.(x, 0, t) + f3fc(x, 0, t). 

At f3 = 1, the model of interest is realized. In this study, f. are the dynamics of 
a two-link rigid manipulator while for the actual problem, fc is the two-link flexible 
manipulator. The approximate optimal solution for the rigid manipulator is used to 
initialize the continuation process for the flexible manipulator. Since the solutions 
of the two problems are very similar, it only took one step (f3 = 0 --+ 1). Results of 
the optimization study are discussed next. 

Trajectory comparisons demonstrate the impact of torque input smoothness on 
structural mode excitation. Applied torques retain much of the qualitative character 
of rigid-body slewing motion with alterations for energy dissipation. The Ol.2(e) 
histories for each joint were composed of 27 tabular values where ~{ was varied 
from .025 in the midpoint and end-time regions to .05 elsewhere. Torque bounds 
were chosen as ±6, ±1.5 (n-m) for the hub (joint 1) and elbow (joint 2), respectively. 
The path tracked for this study was a straight line. 

The four trajectory simulations shown in this work are differentiated by the final 
time requirement and include (with plot legend names) 

1. A minimum time/minimum-integral-tracking error trajectory for a rigid link 
structure of identical mass properties and joint characteristics to tho'le de­
scribed previously. (min time-rigid) 

2. A minimum time/minimum-integral-tracking-error trajectory for the flexible 
link system. (min time-flexible) 
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3. A fixed final time (tf=2.5s)/minimum-integral-tracking-error trajectory for 
the flexible link system. (tf=2.5/min track error) 

4. A fixed final time (tf=3.0s)/minimum-integral-tracking-error trajectory for 
the flexible link system. (tf=3.0/min track error) 

All position, velocity, acceleration, and torque constraints at t f as stated in 
Eq. (5.13) are the same. 

The results of the simulations are presented in Figures 5.26-5.28. The min time 
trajectories finished in essentially identical times of just over 2 seconds. 

,1 
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Figure 5.26. Hub and elbow joint torque histories 
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Figure 5.27. Hub and elbow joint velocity histories 

From the torque profiles (see Figure. 5.26), it is obvious that the single homotopy 
step is sufficient to obtain a minimum-time flexible-link solution. The general char­
acteristics of the min time trajectories (Le., switching times, torque magnitudes, 
etc.) are almost identical. In particular, the approximate minimum-time flexible 
manipulator is identical to the rigid one up to the first 80% of the trajectory. Note, 
the min time curves for the hub torque initially jump to the boundary while the 
min track error curves, with the relaxed time constraints, start close to zero. 
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min time - rigid 
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Figure 5.28. Strain energy and tracking error histories 

The final 20% of this trajectory is unique because it demonstrates the combined 
optimization of the hub/elbow torque-switching necessary for a rigid two-link sys­
tem to complete the minimum-time maneuver with the need to arrest the flexible 
body dynamics. Note, for rigid-link systems, additional switches appear in regions 
of nearly singular control where the stronger hub motor needs to wait for the el­
bow to catch up19. The fact that the additional switches after tit, = 0.8 are not 
fully bang-bang for the minimum-time case would suggest energy dissipation con­
siderations for the flexible-link system. The min tmck en-or trajectories also show 
this behavior, but only to a limited extent since the t, constraint is not as severe. 
(The finer nodal grid 6~ = .025 was necessary to get sufficient definition of these 
additional switches.) Note, the final switch for the hub torque (rd is nearly aligned 
in dimensionless time for all trajectories, but only truly bang-bang for the rigid 
system. 

Although the min time flexible-link torque profiles are interesting in a compara­
tive sense, they are probably not conducive to implementation on real actuators. A 
Fourier analysis of the torque data in Figure. 5.26 showed that power was concen­
trated in the 0.5-20 Hz range and the upper end of which may be difficult to achieve. 
The ringing of the structure is particularly evident in the joint velocities (see Fig­
ure. 5.27), and the strain energy (see Figure 5.28). As an alternative, one could 
use near minimum-time slewing to smooth the torque profiles2o . This is essentially 
another approach to the fixed final-time/minimum tracking error problem. 

The second-link tip trajectory tracking error (Ytil' (Xtil') - Yline (Xtil')) in millime­
ters is presented in Figure. 5.28. Note, due to the suboptimal formulation proposed 
here none of the trajectories, including the rigid manipulator, produces a continu­
ously zero error. However, because the model has reasonable fidelity, the tracking 
performance is sufficient for minimizing feedback control authority, which is a pri­
mary goal in open-loop trajectory design. The min tmck error trajectories show 
essentially zero error up to tit, = 0.85, thus demonstrating that the tracking error 
resides primarily in unfolding the links to complete the maneuver while accommo­
dating the rest state. The use of the finer 6~ grid near the end not only resulted 
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in the additional torque switches being more clearly defined, but also reduced the 
maximum path deviation (after tit, = 0.9) by an order of magnitude. It is clear 
that additional parameterization of the torque profiles can produce better results. 

Since this is an open loop technique for generating control histories, it is expected 
that a certain lack of robustness will be present from model parameter and initial 
condition differences in the translation to hardware. In Chapter 6, these issues are 
addressed for the Sandia flexible two-link manipulator. 

In conclusion, employing parameter optimization successfully generated actua­
tor torque histories for approximate, minimum-time and minimum tracking-error 
tip slewing maneuvers containing continuous and point control and trajectory con­
straints for a two -link flexible manipulator. It was demonstrated that final velocity, 
acceleration, and torque constraints do not preclude vibrations during the slew and 
that true minimum-time motions will have to endure them. Overall, the minimum­
tracking error trajectories were better behaved. 

5.4.11. Open Loop Input Shaping for a Slewing Flexible Rod 

In this section, open loop input shaping control techniques are investigated for 
slewing long flexible boom links21 . The robot configuration includes single links with 
low first natural frequencies ("" 1 Hz) typical for heavy hydraulic lift operations. 
The goals of the open loop control are as follows: 

1. To develop simplified input acceleration profiles to slew, in the vertical plane, 
a 1 Hz rod in a symmetric rest-to-rest maneuver. 

2. In the trajectory design, to properly account for the hydraulic servo dynamics. 

For this particular problem, general steps are discussed to achieve open loop control 
design by using RQP optimization. 

The research hardware configuration consists of a thin aluminum rod with a 
tip mass driven by a hydraulically-powered universal joint, a hydraulic pump, a 
motor, and drive circuitry (see Figure 5.29). The system geometry is also defined 
in Figure 5.30. The rigid link is cylindrical with a rigid mounting bracket located a 
distance d above the hydraulic joint. The flexible aluminum rod has length L, radius 
R, mass density Po, and modulus E. The flexible rod is attached to the mounting 
bracket a distance r from the center of the cylindrical rigid link. In order to measure 
in-plane and out-of-plane tip acceleration, the tip mass mT fixed to the end of the 
flexible rod is instrumented with accelerometers. The physical parameters are listed 
in Table 5.2. 

The rotating rod's equations of motion are derived by using the method of 
quadratic modes, which was introduced in Chapter 3. For the maneuvers, all flexible 
body motion u = u(¢>(x),q(t)) occurs in-the-plane. Therefore, the out-of-plane 
flexible body equations of motion are not required. Following the procedure outlined 
in Chapter 3, the equations of motion are of the form 

Mq + [K + iP [2N - M]- 2G2 SinO] q - G 1 cosO = -cii (5.14) 
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Figure 5.29: Hydraulic robot 
hardware 
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Figure 5.30: Relevant physical pa­
rameters 

Table 5.2. Rod physical parameters 

Parameter Unit Value 
r m 0.2286 
d m 0.6096 

mT kg 0.9070 
L m 0.7112 
Po kg/m3 2768.0 
R mm 3.175 
E N/m2 6.895x101O 

where the matrices definitions can be determined by closely examining each term 
in Eq. (3.49) and is left as an exercise for the reader. 

For the hydraulic-drive robot, the analytical input shaping scheme discussed 
in Section 5.2. of this chapter is modified. It is desirable to derive an open loop 
control input based on the acceleration profile shown in Figure 5.31. For this open 
loop control to work, it is required that the actuator dynamics are included. A 
PD servo controller is used. Although nonlinear, the input/output relationship of 
the servo actuator dynamics are approximated (for nominal maneuvers) by using a 
third-order transfer function of the form 

no (5.15) 

where 8a is the actual joint angle and 8e is the commanded joint angle. As will be 
explained later, the coefficients of the transfer function, no,do,d1 , and d2 , depend 
on the type of commanded maneuver. Conceptually, one could reverse filter the 
desired pulse output 8a through the transfer function (see Eq. 5.15). That is, solve 
for 8e to get the desired pulse acceleration jj corresponding to 8a . However, for 
a pulse waveform, this would result in impulses. For implementation on the real 
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hardware, this is not desirable. Therefore, a modified control input based on the 
verisine function is introduced 

(j '" A [1 - cos O[t - tOll 
where A is the amplitude, 0 is the natural frequency, t is time, and to locates the 
first half-cycle and is shown in Figure 5.32. The verisine acceleration profile allows 
a reverse-filtering result that is achievable by a physical actuator. The methodology 
is described next. 
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Figure 5.31: Conventional ac­
celeration profiles 

Figure 5.32: Smoothed acceler­
ation profiles 

The general steps required to establish an open-loop control trajectory for the 
slewing flexible rod with an hydraulic actuator are as follows: 

1. Calibrate the actuator dynamics transfer function by using optimization as in 
Section 4.5 .. Minimize the following integrated square error: 

rO
, [9(t)mea.ured - 9(t)modeled]2 dt, Joo 

as a function of the parameters no, do, d1, and d2 in Eq. (5.15). The an­
gles are defined in Eq. (5.15) as 9modeled = 9,. and 9input = ge , respectively. 
8(t)mea.ured is the measured data from the angle encoders. The measured data 
is initially collected by exciting the system with step inputs. Once the cost 
function is minimized, the transfer function model is fitted to the measured 
data. 

2. Introduce a cost function that minimizes residual oscillation (post maneuver) 
by optimizing the versine acceleration parameters A,O, and te , to form, ac­
cording to the quadratic modes dynamics model, a symmetric ±9desired rest­
to-rest maneuver. The final time t/ is fixed and is one cycle. The following 
constrained nonlinear optimization problem is suggested: 

Minimize 
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subject to the constraints 

WI = O(tJ) - Ode.ired, = 0 

W2 =iJ(tJ) =0 

W3 = 9(tJ) = 0, 

with the initial conditions 

O(to) = Ode.iredo 

iJ(tO) = 0, 

and the dynamic model given by Eq. (5.14). Since 9 is prescribed, then iJ and 
o are known. Only the flexible motion degrees-of-freedom qi(t) are treated as 
variables. By using the optimized parameters, a smoothed acceleration profile 
that minimizes residual oscillations is achieved. 

3. By integrating 9(t) computed in Step 2 twice, the angle O(t)modeled coming 
out of the hydraulic joint is determined. The angle O(t)input going into the 
joint is determined by reverse filtering through the transfer function computed 
in Step 1. Reverse filtering is accomplished by transforming the s-domain 
Laplace transform result from Step 1 into a discrete or digital form, and using 
past and present values of O(t)modeled (determined from Step 2) to get the 
necessary O(t)input history). 

Next, the symmetric maneuver for ±Ode.ired = ±16° is examined. By utilizing 
the identified actuator dynamics, the inputs to the hydraulic joint servo actuator 
are obtained via computer simulation and reverse filtering. For the flexible rod, the 
experimental results of this input history exhibited small residual oscillations. The 
acceleration profile parameters were adjusted to give better residual vibration per­
formance. The adjustments were made to accommodate the unsimulated influence 
of the accelerometer cabling, use of an average tip mass center of gravity, and the 
use of a single clamped-free mode shape for modeling the flexible body behavior. It 
is time to step through the specifics of generating the ±OdeBired = ±16° maneuver. 

The computer simulation developed to integrate the equations of motion was 
parameterized by A, te , and tAo A RQP optimization code was wrapped around this 
simulation for the purpose of choosing the acceleration profile parameters that will 
minimize the rod vibration at the end of the maneuver. In theory, the resulting 
acceleration profile can be reverse filtered by using the servo actuator dynamics of 
Eq. (5.15) to obtain the input needed to drive the hydraulic actuator. However, as 
stated earlier, the third-order form of the actuator dynamics results in impulses if 
a pulse acceleration profile is used. So that the necessary derivatives of the accel­
eration profile are smooth and to avoid this implementation problem, the pulses of 
the acceleration profile are replaced with (1 - cos nt) terms. In order to achieve 
the maneuver for this type of acceleration profile, the RQP simulation now uses 
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the amplitude A, the frequency n, and the coast time tc as control variables. The 
optimized acceleration profile for the ±16° maneuver is shown in Figure 5.32 and 
the corresponding optimal acceleration profile parameters are given in Table 5.3. 
As mentioned earlier, for a given trajectory, the linearized representation of the 

Table 5.3. Optimized acceleration profile parameters 

Parameter 

A 
n 
tc 

Resid. Osc. 

Unit 

rad/s2 

rad/s 
sec 
cm 

Theoretical Value 

0.5486 
7.278 

0.3161 
8.0 

Experimental Value 

0.6038 
7.640 

0.3000 
< 1.0 

nonlinear actuator servo dynamics must be tuned (or linearized). This tuning is 
performed again by using an RQP technique. Once the desired trajectory is ob­
tained by reverse filtering through the nominal actuator dynamics, the hardware is 
run with this trajectory and the encoder data is obtained that describes the actual 
joint angle time history. Since this is typically not the case, the RQP code is used 
to minimize the integrated squared error between the experimental encoder output 
and the actuator dynamics filtered command input. The control variables for this 
optimization problem are the actuator transfer function coefficients no,do,d1 , and 
d2 • The optimized actuator transfer function coefficients are shown in Table 5.4. 
The curves in Figure 5.33 show the results of tuning the actuator model to match 
the experimental data for the ±16° maneuver. The predicted joint angle (dashed 
line) corresponds well with the experimental data (solid line). The reverse filtered 
input command is also shown (dotted line). A joint servo input is created based on 

Table 5.4. Optimized filter coefficients 

Filter Coefficients Value 

no 4373.7 
d1 3975.1 
d2 1213.9 
d3 84.2 

the optimal parameters of Table 5.3 and the optimal filter coefficients of Table 5.4. 
Maneuvering the robot by using these commands results in residual vibratory oscil­
lations with a peak-to-peak amplitude of 8 cm. The acceleration profile parameters 
are adjusted to achieve residual oscillations with a peak-to-peak amplitude of less 
than 1 cm. The filtered in-plane tip mass accelerometer results are shown in Fig­
ure 5.34. 
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Procedures for calculating input command histories to perform residual oscilla­
tion free symmetric maneuvers of a flexible rod by using a hydraulically actuated 
heavy-lift robot were developed and experimentally verified. The main features of 
these procedures are the use of a smoothed joint acceleration profile, an optimiza­
tion calculation for obtaining the acceleration profile parameters, and an optimal 
hydraulic joint actuator System ID calculation. 
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Dynamic programming is a powerful mathematical tool used to solve problems 
in a variety of different areas. One such area is optimal control. Input shaping 
problems in robotics can often be expressed as an optimal control problem. Ac­
cordingly, dynamic programming is useful for input shaping. Details of a dynamic 
programming algorithm for input shaping are presented in this section for linear 
problems. Constraints are dealt with approximately by using a simple penalty ap­
proach. Dynamic programming algorithms for unconstrained nonlinear problems22, 
nonlinear problems with equality constraints23 , and problems with a combination 
of equality and inequality constraints24 are also available. 

The contents of this section are as follows: 

• Introduction to Dynamic Programming. 

• Application of Dynamic Programming to a data smoothing problem. 

• Application of Dynamic Programming to a class of discrete·time, linear, op­
timal control problems. 

• Application of Dynamic Programming to optimal control in robotics. 
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5.5.1. The Principle of Optimality 

Dynamic programming is founded on the principle of optimality25-27. An opti­
mal sequence of decisions in a multistage decision process problem has the property 
that whatever the initial stage, state, and decision, the remaining decisions must 
constitute an optimal sequence of decisions for the remaining problem, with the 
stage and state resulting from the first decision considered as initial conditions. 

As an example, consider a problem dealing with the discrete-time optimal control 
of a rigid-link robot (see Figure 5.35). In this example, stage refers to a discrete 

B 

Figure 5.35. Discrete-time optimal control of a rigid link 

point in time. For example, the ith stage refers to time ti, the (i + 1)th stage to 
time ti+l' etc. State refers to the configuration of the system at a particular point 
in time. In this example, the state at the ith stage consists of the joint angles and 
joint angular rates at the time, ti. Decisions are the actions taken at a given stage 
which transform the system from one state to another. In this example, the decision 
at the ith stage consists of the torques applied to the robot's joints at time ti. 

5.5.2. Simple Application of Dynamic Programming 

Consider the problem of traveling from point A to point B in Figure 5.36. 
Movement is only allowed from left to right and the cost of traveling from one point 
on the grid to another is given by the number at the edge connecting the two points. 
The goal is to find the path from A to B that minimizes the total cost. 

The number by each point in the grid in Figure 5.37 is the cost of the lowest­
cost path from that point to B. These numbers are obtained recursively by moving 
backwards from B to A and applying the principle of optimality. The arrows in 
the Figure 5.37 indicate the direction to be taken from each point to minimize the 
total cost of getting to B. The best path from A to B is seen to have a cost of 13. 
The path moves udduud where u denotes up to the right and d denotes down to the 
right28 . 
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A B B 
o 7 

Figure 5.36: Simple example il­
lustrating dynamic programming con­
cepts 

Figure 5.37: Dynamic program­
ming solution to the problem in Fig­
ure 5.36 

5.5.3. Application of Dynamic Programming to Data 
Smoothing 

This section considers with the minimization of the objective function 

N 

J(Xk,Uk) = ~ L (Xk - dk )2 + AUn, 
k=l 

subject to 

(k = 1, ... , N - 1). 

(5.16) 

(5.17) 

In the Eqs. (5.16) and (5.17), Xk is the value of the approximating function (a 
linear spline) evaluated at time tk' dk is the value of the data point at time tk' A ~ 0 
is a smoothing parameter. Uk is the input at time tk and hk = tk+l - tk' The input 
Uk can be interpreted as the first derivative of the linear spline for tk ~ t < tk+1 

(see Figure 5.38). The number of stages equals N. The state and decision at the kth 

stage are given by Xk and Uk, respectively. Define the optimal value function as 

(5.18) 

That is, h(Xi) is the value of Eq. (5.18) for an optimal sequence of decisions (inputs) 
in terms of the initial state Xi. Here, the number of stages is equal to N - i + 1. 
The solution strategy will be to obtain h(Xi) from !Hl (xi+d by using dynamic 
programming. In other words, the solution to the N - k + 1 stage problem will 
be obtained from that for the N - k stage problem. This is where the idea of 
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Figure 5.38. Linear spline curve fit 
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an imbedded solution is made manifest. In mathematical form, the principle 01 
optimality states that 

min [(Xi - di )2 + Au; ] 
h(Xi) = Ui 2 + IHi (Xi + hiui) . 

One postulates that the optimal value function can be expressed as 

X2 
I(xi) = (i + ViXi + Wit· 

Substituting Eq. (5.20) into Eq. (5.19) yields 

WiX; min [(Xi - di )2 + Au; () 
(i + ViXi + -2- = Ui 2 + (Hi + VHi Xi + hiui 

WHi(Xi + hiUi)2] 
+ 2 . 

(5.19) 

(5.20) 

(5.21) 

The value of Ui that minimizes Eq. (5.21) is readily obtained by differentiating 
the right hand side of Eq. (5.21) with respect to Ui and equating the result to zero. 
This leads to 

-hi(VHi + Wi+iXi) 
Ui = 

A + h;WHi 
(5.22) 

Substituting Eq. (5.22) into Eq. (5.21) and equating terms of equal degree in Xi 

yields the recursive equations 

(5.23) 

(5.24) 

(5.25) 



208 CHAPTER 5 INPUT SHAPING FOR PATH PLANNING 

Given, the values for (N, v N, and W N, one can recursively work backwards by 
using Eq. (5.23)-(5.25) to obtain 

(5.26) 

Examination of Eq. (5.18) reveals, that Eq. (5.26) provides the minimum value of 
the objective function given by Eq. (5.16) in terms of the initial state Xi. Minimizing 
1; with respect to the initial state yields 

(5.27) 

This is, the value for the initial state that minimizes Eq. (5.16). 
To determine (N,vN,and WN, Eq. (5.18) and Eq. (5.20) are combined giving 

( xJ. _ min [(XN - dN)2 + >,uJ.] 
N +VNXN +wNT - Ui 2 . (5.28) 

The right hand side of Eq. (5.28) is minimized for UN = O. Substituting UN = 0 
into Eq. (5.28) and equating terms of equal degree in XN yields 

(N = dJr 
2 

VN = -dN 

WN = 1. 

Summary 

• Calculate and store VN and WN by using Eq. (5.30) and Eq. (5.31). 

(5.29) 

(5.30) 

(5.31) 

• Calculate and store Vi and Wi for i = N - 1, ... ,1 by using Eq. (5.24) and 
Eq. (5.25). 

• Calculate the initial state Xl by using Eq. (5.27). 

• Calculate Ui and Xi+l for i = 1, ... , N - 1 by using Eq. (5.22) and Eq. (5.17). 

Example 5.3. Given, N = 501, tk = (k -1)/500, >. = 0.001, and dk = sin(21l"tk) + 
ek where ek is a uniformly distributed random variable between -0.2 and 0.2. What 
happens as >. goes to 0 and >. goes to oo? 

Solution 
The results of this example are shown in Figure 5.39 (see Homework problem 

5.8 for more details). The dynamic programming algorithm is applied to the noisy 
sinusoidal data shown along with the data smoothed results in Figure 5.39. As the 
parameter >. goes to 0, the smoothed data fit will approach the noisy sinusoidal 
data. >. going to 00 will cause Ui to go to 0 (see Eq. 5.22), which results in a least 
squares fit to the data. 
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Figure 5.39: Dynamic programming for data smoothing application results for Exam­
ple 5.3 

5.5.4. Application of Dynamic Programming to 
Discrete-Time Optimal Control Problems 

Consider the initial value problem 

x(t) = f(x(t), u(t), t) x(td = Xl 

where X E Rn is the state, u E R m is the input, and the dot denotes differentiation 
with respect to time t. The input is assumed to be discretized temporally as 

u(t) = Uk 

for k = 1, ... , N - 1. Provided the existence and uniqueness of the solution to the 
initial value problem, adjacent states in time can be related as 

(5.32) 

where Xk = X(tk). 
The discrete-time optimal control problem is stated as follows: Given the initial 

state Xl find the inputs Uk that minimize the objective function 

N 

r(Xk, Uk) = E rk(Xk, Uk), (5.33) 
k=l 

subject to Eq. (5.32). 
Consider a subset of discrete-time optimal control problems in which the dy­

namics are linear and the objective function is quadratic in the inputs and states. 
That is, 

Xk+l = AkXk + BkUk (5.34) 

r( ) ;.. T T [XfQkXk + 2xfR kUk + UfSkUk] 
Xk,Uk = ~1Jk+xkYk+UkZk+ 2 (5.35) 

k=l 
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As was done previously for the data smoothing problem, one defines the optimal 
value function as 

A ( ) ( min ) ~ T T [x[Q"x" + 2x[R"u" + u[S"u,,] 
i Xi = Ui",·,UN L..-J1/"+x"y"+u,,z,,+ 2 

"=1 
(5.36) 

Application of the principle of optimality yields 

A ( ) - min{ T T [XrQiXi + 2xrRoui + UrSiUi] 
i Xi - Ui 1/i + Xi Yi + Ui Zi + 2 

+ AH1 [Aixi + BiUi] }. (5.37) 

Consistent with the use of a quadratic objective function one expresses the optimal 
value function as 

Substituting Eq. (5.38) into Eq. (5.37) one obtains 

T XrWiXi min { T 
<i + Xi Vi + 2 = Ui 1/i + (i+1 + Xi h 4i 

where 

T [xTHliXi + 2xTH2iUi + UrH 3iUi] } 
+ ui hSi + 2 

Hli = Qi + ArWH1 Ai 

H2O = Ri + ATwH1B i 

H3i = Si + BTwi+1Bi 

~i = Yi + AT VH1 

hSi = Zi + BT Vi+!· 

(5.38) 

(5.39) 

Differentiating the right hand side of Eq. (5.39) with respect to Ui and setting 
the result equal to zero yields 

Ui = -Hi/ [H~Xi + hSi] . (5.40) 
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Finally, substitution of Eq. (5.40) for Ui into Eq. (5.39) and equating terms of 
equal degree in Xi results in the following recursive equations: 

;; hg:Ha/hsi 
.,i = .,HI + 71i - 2 

Vi = h4i - H2iHa/hsi 

Wi = Hli - H2iHa/HIi' 

The initial values for the recursive equations above are given by 

(N = 71N 

VN =YN 

WN=QN. 

If the initial state Xi is unspecified, minimization of Eq. (5.33) yields 

Summary 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

The procedure for solving the discrete-time optimal control problem under consid­
eration is summarized as follows: 

1. Calculate VN and W N by using Eq. (5.43) and Eq. (5.44). 

2. Calculate Vi and Wi recursively for i = N - 1 to i = 1 by using Eq. (5.41) 
and Eq. (5.42) and store the matrices H3/' HIi' and Ha/hsi in the process. 

3. If the initial conditions are unspecified, calculate Xl by using Eq. (5.45). 

4. Calculate Ui and Xi+l recursively for i = 1 to i = N - 1 by using Eq. (5.40) 
and Eq. (5.34), respectively. 

The computational features of dynamic programming algorithm are as follow: 

1. Order Nn3 operations are required to solve a problem. 

2. Order Nnm storage is required to solve a problem. 

3. Constraints can be accommodated by using penalty functions. 

5.5.5. Practical Issues 

Issue 1: Determination of state transition matrices appearing in 
Eq. (5.34). 
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Consider a linear, time-invariant system written in first-order form as 

x = Ex+Fu. (5.46) 

Recall, the solution to Eq. (5.46) can be written in terms of the matrix exponential29 

as 

x{t) == ¢(t; to, xo, u) = eE(t-to)xo + 1t eE(t-T)Fu{r)dr 
to 

where Xo is the state at time to. Setting 

to = tk 

t = tk+l 

h = tk+l - tk, 

one obtains 

Xk+i = eEhxk + lh eE(h-T)drFuk. 

Comparison of Eq. (5.34) and Eq. (5.47) implies 

Ak = eEh 

Bk = [l h 
eE(h-T)drF] . 

Example 5.4. Find the state transition matrices for a cubic spline 

The matrices E, and F for the continuous-time system are 

E~ [H [1 

F~ m 
Solution 

[1 t fl eEt = o 1 
o 0 

{Joh eE(h-T)drF] = m 

(5.47) 

(5.48) 

(5.49) 
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Thus, 

Comments 

• The MATLAB® function c2d of the Control System Toolbox can be used to 
convert state-space models from continuous-time to discrete-time for linear, 
time-invariant models. That is, c2d can be used to calculate the transition 
matrices A" and B" (see Eqs. 5.48 and 5.49) based on the continuous-time 
state-space model (see Eq. 5.46). 

• The transition matrices A" and B" can also be calculated directly from c1osed­
form solutions. This point is illustrated in Example 5.5. 

• Calculation of the transition matrices for time-varying or nonlinear systems 
may require the use of a numerical integration scheme. 

Example 5.5. Find the state transition matrices for a single-link rigid robot 

The equation of motion for this system is given by 

Jjj = M. 

Solution 
For t" :::; t < t"+1, 

where h = t"+1 - t". 

(5.50) 

(5.51) 

(5.52) 

(5.53) 
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Issue 2: Enforcement of constraints with penalty functions 
Consider the problem of minimizing the function 

subject to the constraint 

WI = x + y - 1 = O. 

One can propose to solve the constrained minimization problem by solving a 
related unconstrained problem, which includes the constraint equation in the ob­
jective function. 

Define the augmented function as 

G= G+pWI 

= X2 + y2 + p(X + Y _ 1)2. 

Minimization of G leads to the solution 

p 
x=y=--. 

2p+ 1 

Comment 
Penalty functions provide a convenient means for converting constrained optimiza­
tion problems to unconstrained problems. The major drawback of penalty functions 
is that their use may lead to numerical difficulties (ill-conditioning) as the penalty 
parameter takes on large values. 

Example 5.6. Discrete-time optimal control of a single-link rigid robot 

Minimize 

subject to 

8(0) = 0 

8(0) = 0 

8(T) = OF 

8(T) = O. 
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Solution 
Defining h = T/(N - 1) and t" = (k - l)h, one can use the state transition 

matrices given in Eq. (5.52) and Eq. (5.53). In order to enforce the constraints on 
the final states, consider the problem of minimizing 

(5.54) 

where 

(5.55) 

Examination of Eq. (5.54), and Eq. (5.55) reveals that the only non-zero terms to 
be used in the dynamic programming algorithm are 

S" = 1. 
O} 

"IN =PT 
YN = -PXF 

for k = 1, .. . ,N 

Wn = P [~ ~]. 
For this example, consider the problem where J = 1.5, T = 1.2, N = 201, OF = 1r /2, 
and P = 1 X 106 • The input (torque) and states Uoint angle and joint angle rates) 
are plotted as functions of time (see Figure 5.40 and 5.41, respectively). Note, the 
constraints on the states at the final time are met satisfactorily by using the penalty 
function. 

-6 

-8 

.tOoL -....,0.2~--:0~.4--0~.6--0~.8-~_.C>t.2 
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Figure 5.40: Torque time history for 
Example 5.6 
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t.6 

0.2 0.4 0.6 
Time 

Figure 5.41: Joint angles and joint 
angle rates for Example 5.6 
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Example 5.7. Discrete-time optimal control of a single-link rigid robot with a 
modified objective function 

Minimize 

subject to 

Solution 

8(0) = 0 

8(0) = 0 

M(O) = 0 

8(T) = 8F 

8(T) = 0 

M(T) = O. 

This problem is solved in the same manner as Example 5.6 with the following 
differences: 

[
1 h 

Ak = 0 1 
o 0 

[t] 

h
2 1 T 

m 
WN=P[~ ~ ~l· 

001 

XF = 

The results for this example (plotted in Figure 5.42 and Figure 5.43) were obtained 
by using a value of P = 1 X 108 for the penalty parameter. Note, the torque time 
history is smoother than the one for Example 5.6. 
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Figure 5.42: Torque time history for 
Example 5.7 
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Figure 5.43: Joint angles and joint 
angle rates for Example 5.7 

5.5.6. What Drove us to Dynamic Programming? 

The motivation to utilize dynamic programming30 was the need for a trajectory 
optimizer or path planner that could generate arbitrarily smooth input profiles with 
no initial guess (i.e., zero values) for the input parameters. The last three examples 
(see Examples 5.8, 5.9, and 5.10) of this chapter demonstrate the ability of dynamic 
programming to meet these needs. 

Traditional rigid robot trajectory planning approaches are typically based on 
inverse kinematics techniques31 . Use of these techniques is appropriate in many 
situations, but there are important instances when it is not. Such instances arise 
whenever robot flexibility or dynamics are of importance. For example, inverse kine­
matics schemes cannot accommodate structural flexibility in high payload-to-robot 
weight ratios15 . Another feature of inverse kinematics solutions is that trajecto­
ries are not unique for redundant robots. The purpose of this section is to present 
an alternative approach for trajectory planning based on the method of dynamic 
programming that is applicable to rigid, flexible, and redundant robots. 

The optimal trajectory planning problem for rigid robots is posed as a linear 
time-invariant system for both non-redundant and redundant configurations. Ex­
amples 5.8 and 5.9 demonstrate this approach by generating a pair of trajectories for 
end-effector tracking of a straight line with rest-to-rest motions of planar two-link 
and three-link rigid robots. The generality of the dynamic programming method 
is presented in Example 5.10. A single-link manipulator with a flexible payload is 
optimally slewed through a set of rest-to-rest maneuvers. The problem is posed 
as a nonlinear system with state variable equality constaints and input inequality 
constaints. The simulation results of the single-link manipulator display interesting 
symmetries characteristic of such motions. 

Examples 5.8 and 5.9 deal with straight line tracking, rest-to-rest maneuvers of 
rigid two-link and three-link robots moving in a plane (see Figure 5.44). The goals 
are to move the tip of the terminal link from point A to point B while tracking a 
straight line connecting the two points and bringing the robot to rest in time T. 
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Figure 5.44. Sketch of planar robots considered in Examples 5.8 and 5.9 

Joint trajectories for such maneuvers are not unique, that is there are an infi­
nite number of joint time histories that meet the above stated goal. The optimal 
trajectory is defined as the one that minimizes the function C, or 

N N j 

C = LL(u{)2 
k=1 j=1 

where N is the number of time steps, Nj is the number of joints, u{ = iij , and 
Tk = (k - l)t/T. Note, differentiation is with respect to T = tiT. The function 
C can be thought of as a measure of the smoothness of the trajectory and the tip 
position is defined as x = x / L1 and ji = y / L1. 

Example 5.8. Consider a two-link robot with 91A = 1r/4, 92A = 1rjI2, XB = 
1.8, jiB = -0.2, L2/ L1 = 1, and N = 201. The states for this problem are the 
joint angles and the joint velocities, and the inputs are the joint accelerations. 

Solution 

The state vector is Xk = [91(tk),92(tk),81(tk),82(tk)f for a massless two-link 

robot that is linear since one is integrating the input vector, Uk = [ii1 (tk), ii2 (tk) f· 
The constraints are defined via the forward kinematics, which gives the tip motion 
that is suppose to track a straight line. Plots of the states and inputs as functions 
of T are shown in Figure 5.45. Also shown in the Figure 5.45 is the path followed 
by the tip of the second link. Note, the straight line path is tracked and the robot 
is at rest at the conclusion of the maneuver. It is worth mentioning again that the 
trajectory shown in Figure 5.45 is one of many that can accomplish the goal of the 
stated maneuver. 

Example 5.9. Consider a three-link robot with 91A = 1r/4, 92A = 1r/12, 93A = 
1r /6, XB = 2.6, jiB = -0.4, L2/ L1 = 1, L3/ L1 = 1, and N = 201. 
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Figure 5.45: Straight line tracking rest-to-rest motion of two-link robot considered in 
Example 5.8 

Solution 

Plots of the states ,inputs , and tip path are shown in Figure 5.46. Note again, 
the straight line path is tracked and the robot comes to rest at the endpoint. 

It is worthwhile mentioning that there is not a one-to-one correspondence be­
tween the joint angles for straight line tracking in the case of the three-link robot. 
This is in contrast to the situation for the two-link robot in which there is only a 
single value of 82 for each value of 81 • The redundant degree-of-freedom introduced 
by the additional link in this example poses no computational difficulties since the 
minimization of C leads to a unique solution. 

Example 5.10. Single-link robot with a flexible payload. 

This example is concerned with rest-to-rest maneuvers of a single-link robot 
with a flexible payload. A sketch of the model showing the relevant parameters is 
given in Figure 5.47. The equations of motion in dimensionless form are given by 
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Figure 5.46: Straight line tracking rest-to-rest motion of three-link robot considered in 
Example 5.9 

[
Cl + (1 + qI)2 + q~ 

-q2 
1 + ql 

[
C2U -: 2 [(1 + qI)q~: q2q2] 9] 
2q2(J + (1 + qI)((J) - C3ql 

-2q19 + q2(9)2 - C3q2 
(5.56) 

where C1 = I/(mL2),c2 = AT2/(mL2),c3 = (k/m)T2, and U = M/A is the input 
subject to the constraints -1 ::; U ::; 1. For this example, the optimal rest-to-rest 
trajectory is defined as one that minimizes the function D defined as 
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q L = radial displacement of payload .-" + 
\ relative to link ./ 

q L = tangential displacement of 
2 payload relative to link 

T = time for maneuver 
m = payload mass 

k = spring constant 

I = link inertia about 0 

M = input moment on link 

-A.s;M.s;A 

Figure 5.47: Sketch of single-link manipulator with a flexible payload considered in 
Example 5.10 

Solution 
Since closed-form solutions of Eq. (5.56) are generally not available, the dynamic 

programming algorithm made use of a numerical integration scheme to determine 
the 9k'S and their first two derivatives (see Eq. 5.32). In this example, a fixed-step, 
fourth-order Runge-Kutta numerical integration scheme with N = 201 was used. 

Results presented in Figure 5.48 show the states and inputs as functions of T 

for a maneuver with 8(0) = 0, 8(1) = 1/2 radian, Cl = 1, C2 = 5, and C3 = (871")2. 
The symmetries of the inputs and states about T = 1/2 are evident in Figure 5.48. 
Similar symmetries have been observed by for the control of a flexible rod32 and for 
planar, time-optimal, rest-to-rest maneuvers of undamped flexible satellites33 • 

The effect of varying payload stiffness on the optimal torque profile is also shown 
in Figure 5.48. Results are presented for the two values of C3 indicated in Figure 5.48. 
As C3 is increased, the torque profile approaches the one for a rigid payload (Le., 
single-link rigid robot). As C3 decreases, a critical value is reached below which the 
rest-to-rest maneuver is not possible. This lower bound is an important constraint 
to consider for the control of flexible payloads where the final angle and final time 
are specified (Le., may not be attainable). 
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Figure 5.48: Slewing results for the single link robot with a flexible payload in Exam­
ple 5.10 

5.6. Chapter 5 Summary 

This chapter reviewed several input shaping techniques. Input shaping tech­
niques are a cost-effective way to minimize residual vibrations of flexible systems. 
Initially, an analytical solution was developed for a bang-coast-bang profile. The so­
lution provided fundamental insight into open-loop slewing techniques. Next, both 
the FIR and IIR input shaping filter designs were introduced. Both of these methods 
were consolidated into prescriptive steps that could be used during the design of an 
input shaping profile for flexible systems. Further developments were included for 
the IIR filter that involved both continuous and discrete time-domains. Constrained 
optimization techniques that were used to develop parameterized open-loop control 
profiles were introduced. These profiles are considered suboptimal with respect to 
their defined performance index. Several optimization problem definitions were dis­
cussed that considered minimum effort, minimum effort with bounded control, and 
minimum time configurations. Examples were solved to demonstrate their effec­
tiveness. Finally, dynamic programming techniques were developed as an efficient 
alternative for numerical optimization. Both optimal control and input shaping 
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problems were investigated. Because many real world applications that use open 
loop techniques often do not account for unmodeled effects, in Chapters 6-8 feed­
back control techniques are developed to address this problem. 
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5.8. Chapter 5 Problems 

Homework 5.1. From Section 5.2. 

1. Find the constraints on amplitude and frequency of a sinusoidal input profile 
for a swing-free, gantry robot maneuver (see Figure 5.49). 

] 0.5 

~ e 
< 
'\l 0 
.ti 

1 z-O.5 

-'0 0.2 0.4 0.6 
Normalized Time 

Figure 5.49. Input shaping profile with a sine wave 

x = AsinOt. 

0= 27r. 
T 

Homework 5.2. From Section 5.3.1. 

1. Derive the FIR filter presented in Figure 5.6. 

(5.57) 

(5.58) 

2. Derive a four-impulse shaping filter that compensates for a linear oscillatory 
system with two modes (WI and W2) and no dampening. Assume the plant's 
impulse response is given by 

wi. w~. 
y(t) = (2 2) WI sm(wl t) + (2 2) W2 sm(w2t). 

W2 - WI WI - WI 

Show the output of the filter and the response of the oscillatory system to 
a step input. Assume the modes are at 1 Hz and 10 Hz, and the sampling 
period is 1 millisecond. 
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Homework 5.3. From Section 5.3.2. 

Design an IIR filter that compensates for the oscillatory system described in 
problem 1 by cascading two IIR filters. Use the design by emulation approach 
and the desired transfer function 

Gd(8) = PIP2P3 
(8 + pd(8 + P2)(8 + P3) 

where PI, P2 and P3 are negative real numbers (Pi i= Pi)' Show the output of 
the filter and the response of the oscillatory system to a step input. Assume 
the modes are at 1 Hz and 10 Hz, and the sampling period is 1 millisecond. 
Choose PI, P2, and P3 to your satisfaction. 

Homework 5.4. From Section 5.4.3. 

Solve Rosenbrock's problem by using Newton's optimization method. Com­
pare iterations to converge to the gradient scheme used previously (see Home­
work 2.7 problem, #1). State your observations to the differences. 

Homework 5.5. From Section 5.4.6. 

1. Solve the gantry robot problem in Section 5.2. with a RQP method. Assume 
the problem has four (4) states {}, x, 0, and x (pendulum angle, linear 
distance, and their respective velocities), and three (3) parameters tA, te, and 
A (acceleration and coast times, and amplitude of linear acceleration). There 
are five (5) active constraints (}(tj) = 0, O(tf) = 0, x(tf) = Xdesired, x(tf) = 
0, and final time, t f = tdesired( = 2tA + te). Since there are only 3 parameters 
and 5 constraints, solve the problem as a penalty function scalar performance 
index with a single equality constraint 

r/>(I;) = W I {}(tf)2 + W 20(tf)2 + W3 X(tj)3 + W 4 (tf - tde.ired)2 

+(1;) = (x(t f) - Xde.ired) 

where WI - 4 are user specified weights (for example, set to inverse of maximum 
values). 

Hint: Use a fixed-final time integration scheme and provide a method to test 
your initial parameter guesses to see that you are in the ballpark of a solution. 

2. Solve the gantry problem for the input acceleration form x = Asin(!1t) where 
!1 = 2-rr/T and tf = tde.ired = T. This is now only a two (2) parameter 
problem. 

3. Minimize the control effort for a single rigid link oriented in the vertical plane 
to execute a rest-to-rest maneuver to a given angle in a given final time. 
This is an example of a parameterized control history (refer to Section 5.4.8.). 
Minimize 
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subject to 

Torque 

ml2(j mgl sin 8 
-3- + 2 = T = u 

8(to) = OCto) = 0 

III = 8(t,) - 8d = 0 

1lI2 = OCt,) = O. 

! 
gravity 

Figure 5.50. Problem definition with parameterized control template 
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Hints: Space the discrete times over the desired time interval of the slew 
and associate one (1) parameter with each discrete time ti. Use a linear 
interpolation scheme to interpolate the control effort u(t) for non-discrete 
time values during the integration of the state equations (see Section 2.4.1.). 
In addition to state equations x for 8 and 0, a third state equation of the 
form 3:3 = u2 will be appended to the differential equations to compute q'>(el 

4. Find the minimum time for a two-link robot to complete a rest-to-rest ma­
neuver to a new orientation in the horizontal plane. 

Parameters ~ = [6,6, t f J where 6,6 are sets of torque values at discrete 
times (not necessarily the same times, except for the initial and final) for two 
joint motors, and t, is the problem final time (see Figure 5.51). 

Minimize q'>(e) = t, 
Initial conditions 81 (to),82(tO), given 01(tO) = 02(tO) = O. 

[
81 (t,) - 81d"ired 1 
82 (t,) - 82 . ) 

Constraints wee) = ~1 (t f ) ... red = 0, 

82(t1) 
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physical properties 

m1,m2 = 2,1 kg 

11 ,12 = 1,0.5 meters (m) 

It, 12 = 1,0.5 kg-m2 

C1, C2 = 1.0, 1.0 N-m-sec Uoint damping) 

boundary conditions 

torque limits 

91 (to), 92 (tO) = -20,10 deg 

lh(tf),92 (tf) = -30, 20 deg 

and equi-sided bounded torque controls T1, T2. 

Hints: Use Lagrange's method to develop the state equations for the two-link 
system as shown in Figure 5.51. For this problem, since tf is both a parameter 
and the performance index, the derivatives are 

C \,'t \ 

__ ~---r--------~~--

C 2 ,'2 

Figure 5.51. Two-link rigid robot 
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Homework 5.6. From Section 5.4.6. 

Add a cubic spring to the basic single-link robot model and perform an input 
shaping design (i.e., swing-free) (see Figure 5.52). 

'@.'-,K-2-----''---
Figure 5.52. Slewing single-link with a nonlinear spring 

a. Utilize an imbedded homotopy parameter. 

b. Utilize Davidenko's method. 

Hints: 

i. The equation of motion is 

(5.59) 

ii. One homotopy approach is 

(5.60) 

iii. Pick I = 1, Kl = 2, K2 = 1/2. 

Homework 5.1. From Section 5.5.2. 

Determine the minimum cost to go from point A to point B (see Figure 5.53). 
Show the path that corresponds to your solution. Is this path unique? 
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A B 

Figure 5.53. Dynamic programming combinatorial model for Homework 5.7 

Homework 5.8. From Section 5.5.3. 

Program the dynamic programming solution to the data smoothing problem in 
MATLAB® or some other programming language. Generate a noisy data set 
and test your algorithm on it. Plot your results as was done in Example 5.3. 
If your data set consists of an array of values that are all equal, what should 
your solution be? Explain. 

Homework 5.9. From Section 5.5.5. 

Solve this same problem (see Example 5.6) by using the Euler-Lagrange equa­
tions with constraints (these are the state/costate equations in Section 2.7.8.) 
and compare the results. 

Homework 5.10. From Section 5.5.5. 

The equation of motion for a beam cantilevered to a rotating hub was derived 
in Section 3.3.2. (see Eq. 3.39) and is given by 

.. (140EI 1 [35r ] 2) W (35r 7 ) 
q + 11pL 4 + 22 L + 5 w q = - L2 44L + 12 . (5.61) 

For rotation rates w «: V140EI/llpL4 Eq. (5.61) is approximated as 

.. (140EI) W (35r 7) 
q + IIp£4 q = - L2 44L + 12 . (5.62) 
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The parameters defining the system for this problem are L = 10, r = 0, El = 
1.4e6, and p = 1.2. 
Part 1 Defining the state and input as 

x(t) = [q(t) cj(t) 9(t) w(t)JT u(t) = w(t) (5.63) 

determine 

a. The state transition matrices Ak and Bk in terms of the parameters defining 
the system and the fixed time step h = tk+l - tk. 

h. The angular acceleration time history w(t) that minimizes the objective function 

subject to 

and 

1 N 

f = 2 LU~' 

q(O) = 0 

q(O) = 0 

9(0) = 0 

w(O) = 0 

9(T) = ~ 
q(T) = 0 

q(T) = 0 

w(T) = 0 

k=l 

(5.64) 

where T = 2, N = 201, h = TIN -I, and tk = (k - I)h. Plot q, cj, 9, w, 
and w as functions of time. 

Part 2 Defining the state and input as 

x(t) = [q(t) q(t) 9(t) w(t) wf u(t) = w(t) (5.65) 

determine 

a. The state transition matrices Ak and Bk in terms of the parameters defining 
the system and the fixed time step h = tk+l - tk. 

h. The input time history w(t) that minimizes the objective function 

1 N 
f= 2 LU~ 

k=l 

(5.66) 
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subject to 

and 
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q(O) = 0 

q(O) = 0 

0(0) = 0 

w(O) = 0 

O(T) = i 
q(T) = 0 

q(T) = 0 

w(T) = 0 

(5.67) 

(5.68) 

(5.69) 

(5.70) 

where T = 2, N = 201, h = TIN -1, and tk = (k -1)h. Plot q, q, O,W, and 
w as functions of time. 

Part 3 By using the inputs obtained from Parts 1 and 2, plot q and q versus time 
for a system identical to the one specified with the exception that EI = 1.38e6. 
Comment on the behavior of q(t) for t > T. Which of the two approaches (Part 1 
or Part 2) would you consider more robust to modeling errors? 



Chapter 6 

Linear Feedback Control 

6.1. Introduction 

This chapter describes several linear feedback control techniques that can be 
used to robustly control flexible dynamic systems. As with any dynamic system, 
it is often difficult to accurately model the system with enough fidelity that open 
loop control performs as intended. Because modeling errors are often unavoidable, 
linear feedback is often used to compensate for these modeling uncertainty. Even 
though many of the flexible dynamic systems are nonlinear, their models can be 
adequately linearized about operating points and standard linear feedback control 
techniques can be applied with satisfactory results. 

As in the other chapters, this chapter presents many of the techniques used to 
control flexible systems in the form of examples. The first section describes a simple 
Proportional-Derivative (PD) control law that stabilizes the pendulum problem de­
scribed in the previous chapters. In the next section, Lag-stabilization is presented 
as a method of reducing the oscillation of a flexible system. This is followed by a 
non-collocated control example of a simple flexible system. Finally, Proportional­
Integral-Derivative (PID) and Linear Quadratic Gaussian (LQG) control techniques 
are presented for the planar two-link flexible robot arm. 

6.2. PD Control of a Gantry Robot 

It is most instructive to begin with a well-known example. In this section, a 
PD controller for the gantry robot with suspended payload as described in the 
previous chapters is developed. Figure 6.1 shows the parameters of the gantry. The 
payload mass is denoted by m, the length of the pendulum is I, the direction of 
motion is along x, and the angle of the pendulum with respect to vertical is (). 
From Lagrange's equation, one can derive the nonlinear equation of motion, which 
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provides the linearized dynamic model in the s-domain 

O(s) /1 
S2X(S) = S2+W2 

where the natural frequency is w = .Jiii and g is gravity. The resulting impulse 
response to acceleration in x is 

-1 
O(t) = lw sin(wt). 

Note, this response is marginally stable with no damping. Therefore, if the pen-

Figure 6.1. Diagram of a payload suspended from a gantry robot 

dulum is disturbed in x, it will oscillate forever. How can feedback control be used 
to dampen the response? 

Consider the PD feedback controller for disturbance rejection shown in Fig­
ure 6.2. The placement of the disturbance can be derived from Lagrange's equation. 

Figure 6.2. PD controller for disturbance rejection 

Remember, 

Fe = !!:.- (OL) _ oL = 0 if no external forces 
dt 00 00 

d (OL) oL. . Fe = dt 00 - 00 = fe(t) If external force such as a dIsturbance. 
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After some mathematics, one finds that the Lagrange's equation for a disturbance 
in 8 is fe(t) ~ ml2(9+g/l8)+mlx for small 8. This can be written in the s-domain 
as 

8(8) = 2 /1 2 [82 X(8) _ Fe(l8)] . 
8 +w m 

(6.1) 

From Figure 6.2, one can see that 8 2 X(8) = -(Kp + 8KD)8(8) where Kp is the 
proportional gain and KD is the derivative gain. Substituting into Eq. (6.1) gives 
the closed-loop transfer function for a disturbance as 

8(8) 
Fe(8) 

1 
m[2 

82 _ ~ D 8 + (w2 _ ~p ) . 

From the denominator of this equation, one see that the closed-loop poles are at 

81,2 = 0.5 ~D ± 0.5V ( ~D ) 2 _ 4 (w2 _ ~p). (6.2) 

First, one should consider when KD = 0 and Kp < lw2 (Le., no damping). Note, 
the system is unstable for K p > lw2 • Figure 6.3 shows the location of the poles. 

Im{s} 

Figure 6.3. Pole locations for KD = 0 and Kp < lw 2 . 

Increasing Kp decreases the natural frequency w, but does not stop the oscillation. 
Now, consider KD < O. Figure 6.4 shows that the new locations ofthe poles have 

moved into the left half plane. Decreasing KD makes the exponential term decay 
faster, but also decreases the natural frequency (which implies a longer rise time). 
In general, there is a trade-off between the rise time and settling time. Increasing 
the proportional gain will shorten the rise time, but lengthen the settling time. 
Increasing the magnitude of the derivative gain will shorten the settling time, but 
lengthen the rise time. In practice, the proportional and derivative gains terms are 
often tuned by hand. First, adjusting the proportional gain to get a fast response 
and then adjusting the derivative gain to make the response critically damped. 



236 CHAPTER 6 LINEAR FEEDBACK CONTROL 

Im{s} 

---1----- Re{s} 

_~ . 2 !i.e. (&)2 X 
S2 - 2l -) Q) - t - 2t 

Figure 6.4. Pole locations for KD < 0 and Kp < Iw2 • 

Now, it is time to consider a more formal method of determining these two gains. 
The proportional and derivative gains will be chosen for a fast critically damped 
response. IT the system is critically damped, then the damping factor is one and 
the expression inside the square root of Eq. (6.2) is zero. Choosing only KD < 0 
gives 

KD J Kp -l- = ±2 w2 - -1-' 

IT KD = -21Jw2 - Kp/l, then 

8(s) 
Fe(s) 

1 
m12 

If fe(t) = 8(t), then w reaches a maximum when t. = 1/Jw2 - Kp/l. This maxi­
mum value is 

9(t.)~ h'~'. Kp 
m12 w2 --

1 

IT one wants the system to stabilize within 5% of this maximum value in a settling 
time t., then 

8(t ) = _l_t -to .jwL ¥ _ 0.05 1 e-1 
• m12·e m12 J Kp 

w2 --
1 

This nonlinear equation can be solved for Kp by using a solver, such as fsolve in 
MATLAB®. For example, if w = (27r/2.75) rad/sec, 1 = 1.8792 meters, m = 20 kg, 
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and t. = 2 seconds, then 

Kp = -5.134 

KD = -10.589 

8(s) 0.014193 0.014193 
Fe(s) = S2 + 5.6415s + 7.9565 = (s + 2.8207)2' 

Therefore, the impulse response is 

8(t) = 0.014193te-2.8207t when h(t) = 8(t) . 

The resulting control in acceleration is 

2 X( ) = -(K K )8() = 0.15028s + 0.072865 
SSp + DS S 82 + 7.44s + 13.84 . 
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Figures 6.5-6.7 show the disturbance impulse response and the resulting control in 
acceleration and in velocity, respectively. 

%~----~----~2-=~=-3----~4· 
Time (sec) 

Figure 6.5: Angular response to an impulse disturbance for Kp = -5.134 and KD = 
-10.589 

Note, the PD control correctly controls 8, but it leaves the gantry moving at a 
constant velocity. Therefore, add a position feedback loop as shown in Figure 6.8. 
The open loop transfer function is 

By using the same values of Kp and KD gives the root locus as shown in Figure 6.9. 
Note, the poles move into the right hand plane and the system becomes unstable 
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0.2,------------~ 

10.IS 

§ L:ll 
1! 0 _--------1 
-< 

2 
TIme (sec) 

Figure 6.6: Resulting linear 
acceleration caused by PD feed­
back loop 

X,(S) = 0 

0.025,------------~ 

_ 0.02 

~ 
~.OIS 
~ 
.~ 0.01 
g 

~ 0.005 

%~------72--~--~4 
TIme (sec) 

Figure 6.7: Resulting linear 
velocity caused by PD feedback 
loop 

Figure 6.8: Position feedback loop added to stop motion caused by disturbance rejection 
feedback loop 

when K Px becomes too large. The closed loop transfer functions in position and 
angle are 

1 2 
8(s) _ mPS 

Fe(s) - 4 KD (2 Kp) 2 KPxKD KPxKp 
s--,-+ W--l- S+ l S+ l 

1 
X(s) _ -ffii2(KDs + Kp) 

Fe(s) - 4 KD (2 K p ) 2 KPxKD KPxKp' 
s--,-+ w--,- S+ l S+ l 

The impulse time responses are shown in Figures 6.10 and 6.11. Note, the position 
feedback introduces more oscillation into the system and the settling time is no 
longer 2 seconds. 

In some situations, it is impossible to add an angle measuring sensor, such as 
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+ is when: Kpx ~ -1-0686 

~ 
1 0 f------------ -------------........ . 

-2 

-< 

.. 
-< -3 ·2 -1 
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Figure 6.9. Root locus with additional position feedback loop 
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20 

Figure 6.10: Angular response to im­
pulse disturbance with additional posi­
tion feedback loop 

Figure 6.11: Position response to im­
pulse disturbance with additional posi­
tion feedback loop 

an encoder for feedback. One alternative is to add a force sensor at the top of the 
cable l . As shown in Figure 6.12, the forces parallel and perpendicular to the mass 
motion are 

FII = mgsin9 = ml9 
.2 

FJ. = T - mgcos9 = ml9 . 
.2 

For small 9, the tension on the cable is T = mg cos 9 + mle ~ mg. Therefore, the 
forces felt by a force sensor are 

Fx = Tsin9 ~ mg9 

F" = -Tcos9 ~ -mg. 

(6.3) 

(6.4) 
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F 

~'. 
,­

mUlinO I" , mgcosa 
mg 

Figure 6.12. Notation for force sensing 

Since the force sensor reading in the x-direction is proportional to the angle, it can 
be used to estimate the angle in the previously derived equations (see Eq. 6.3 and 
6.4). 

6.3. Lag-Stabilized Feedback Control 

Most typical texts on control system theory2,4 discuss the destabilizing effects 
of delay or lag in a system. In particular, controllers are often designed without 
regard to the lag in the system and then later tuned to accommodate this unmodeled 
behavior. In this section, a controller that relies on lag in the system for stability 
is described3 . The lag generates rate feedback from position and/or acceleration 
measurements. 

To illustrate the negative effects of lag, a simple spring-mass-damper system 
shown in Figure 6.13 (that could be used as a simple approximation for the first 
mode of a flexible arm) is stabilized by a PD controller. The dynamical model of 
the system is 

mx + b:i; + kx := u 

where x is the position to be controlled, m is the mass, b is the damping term, k is the 
stiffness constant, and u is the control input. By using the Laplace transformation, 

~~ u 
m __ 

k 

Figure 6.13. Single d.o.f. spring-mass-damper system 
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the s-domain representation is 

(ms2 + bs + k)x(s) = u(s). 

A conventional PD control system can be defined as 

u(s) = (Kp + KDS)(Xr(S) - x(s)) 

where Kp is the proportional control gain, KD is the derivative control gain, and 
Xr is the reference position. The closed-loop transfer function then becomes 

x(s) Kp + KDS 
xr(s) = ms2 + (b + KD)S + (k + Kp)· 

This closed-loop system is stable for all Kp > 0 and KD > o. 
Now, suppose there is a delay T represented in the feedback path as e-Ts (see 

Figure 6.14). By using a Taylor's series expansion the delay can be represented as 

Figure 6.14. PD controller with delay in the feedback loop 

(-ST)2 (-ST)3 
e-Ts = 1- sT+ --,- + --,- + .... 

2. 3. 

By using only the first two terms, the closed loop transfer function becomes 

x(s) Kp + KDS 
xr(s) = (m-KDT)s2+(b+KD-KpT)s+(k+Kp)" 

By using Routh-Hurwitz stability criterion, one can show that the system is stable 
if 

Kp > -k and - b + KpT < KD < miT. 

Note, the delay puts a limit on the derivative gain, above which the system becomes 
unstable. Earlier K D could be selected as any positive value. Because of this, delay 
is typically thought of as undesirable. However, it can now be shown that delay can 
be stabilizing for oscillatory systems. 

Once again, consider the pendulum problem, or 

8(s) = /1 
S2 X(s) S2 + w~ 
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where Wn = /ill, I is the length of the pendulum, 9 is the gravitational constant, 
and Wn is the natural frequency of the system. By using a proportional controller 
with an intentional delay the modified control block diagram is shown in Figure 6.15. 

Figure 6.15. Lag stabilized controller with an input disturbance 

The closed loop transfer function between the disturbance and the angle is 

1 
8(8) n1l2 

Fe (8) = --(-;--.!!.!!<...,K=-=-P------) . 
8 2 + W~ - Te-TB 

(6.5) 

To obtain design equations for T and Kp, one substitutes 8 = u + jw into the 
characteristic equation derived from Eq. (6.5), or 

(u + jW)2 + (w! - ~P e-uT e- jWT ) = O. (6.6) 

By making the substitution e- jwT = cos(wT)-j sin(wT) , the characteristic Eq. (6.6) 
becomes 

(u2 - w2 + w! - ~P e-uT COS(WT)) + j (2UW + ~P e-uT Sin(WT)) = O. 

Setting the real and imaginary parts, respectively, to zero and reassembling results 
in 

Kp _ T 2 2 2 Kp - T . ) -l-e u cos(wT) = u - w + Wn and -,-e" sm(wT = -2uw. (6.7) 

Dividing the imaginary part by the real part and taking the arc tangent defines the 
period as 

= -tan T 1 -1 ( 2uw ) 
w w2 -w~ - u 2 • 

(6.8) 
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Substituting T back into the real part of Eq. (6.7) and solving for the proportional 
gain yields 

_ -l(w2 - w~ - (12) 
Kp- T . r" cos(wT) 

Changing the period T and the proportional gain K p will move the poles of 
the original system as indicated in Figure 6.16. The stability and performance of 

Im{s} 

G+ jro x _ jro. 

_-------+---_ Re{s} 

G- jro 
x _ -jro. 

Figure 6.16. Root locus for the lag stabilized controller 

the system can be evaluated for the disturbance frequencies w's close to the natural 
frequency of the system wn . Approximate the lag termS with 

e-O.5• T 1 - 0.5sT 
e -.T - "'" ,,---;:'~= 

- e+O.5•T "'" 1 + 0.5sT' 
(6.9) 

and substitute Eq. (6.9) into the characteristic equation derived from Eq. (6.5) to 
produce a rational function approximation, as 

(1 + 0.5sT)S2 + (1 + 0.5sT)w~ - ~p (1 - 0.5sT) = 0, 

or 

3 2 2 (2 Kp) 2 (2 Kp) 0 s + 'fs + Wn + -l- S + 'f Wn - -1- = . 

By using Routh-Hurwitz Criterion, the system is stable if 0 < Kp < lw~. 
For the pendulum system, the approximate transfer function becomes 
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One further simplification in determining u is setting u = -(w where ( is 
the desired damping factor. In most fundamental control system designs, second­
order systems with natural frequencies and damping factors are usually well un­
derstood and have familiar characteristics. For this example, the controller design 
and physical parameters are given in Table 6.1 for both a marginally stable and 
stable control design. Each design's time domain simulations are shown in Fig­
ure 6.17. Substituting the parameters into the Routh-Hurwitz Stability Criterion 
results in 0 < Kp < 9.81. Note, this is positive position feedback! The approximate 
numerical transfer function for the stable control design in Table 6.1 is 

0(8) (14.192 x 10-3 )(8 + 3.7126) = ~~----~--~~------~ 
FO(8) 83 +3.71:lti82 +8.50178+7.2053 

(14.192 x 10-3 )(8 + 3.7126) = ~--~~~~----------~~~--~~----~~ 
(8 + 1.3586)(8 + 1.1770 + j1.9794) (8 + 1.1770 - j1.9794)· 

Table 6.1. Lag stabilized design example parameters 
Case W Wn ( U T Kp m 

Marginal Stable 
Stable 

0.01 

j 0.005 

1 
~ 

.{l.005 

.{l.ot 

2.286 
2.286 

2.286 
2.286 

0.0 
0.707 

0.0 
-1.616 

0.0 
0.538 

6.162 
6.162 

20.0 
20.0 

1.88 
1.88 

.{l.015,:---;-:-~~~~-c-~~~~,---J 
o M 1 U 2 ~ 3 ~ • U 5 

Tunc (ICC) 

.1 0 0.5 1 1.5 2 2.5 3 3.5 • '.5 5 

Tunc(acc) 

Figure 6.17. Impulse response, lag controller marginal stable and stable cases 

The system stability and performance are tunable by determining the desired 
values of W and (. Note, w must be kept close to Wn in order to obtain highly 
damped performance and maintain stability. The control scheme is based on phase 
shifting or differentiating sinusoidal signals (system responses) with respect to time, 
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with time delay to obtain rate feedback (Le., no time delay = no damping). Again, 
this implies the desired frequency must be kept close to the natural frequency in 
order to time shift the correct signal and generate a rate signal that damps the 
system. 

Typically, feedback delay in control systems is minimized as much as possible in 
order to achieve favorable stability margins. An atypical controller was presented 
that derives its stability from the lag in the feedback loop. A design example was 
completed for the gantry robot modeled as a simple pendulum model. Sandia has 
successfully applied this technique by using a force feedback controller to damp 
initial and residual oscillations of a slewing flexible link. The controller implements 
rate feedback for damping the oscillation by utilizing force sensor measurements 
that are delayed in time. This time delay created a lag-stabilized control system. 
The lag-stabilizing effects are discussed in detail and demonstrated on a commer­
cial Cincinnati Milacron T3-786 robot6 . In particular, vibration suppression is 
accomplished by feeding back force sensor measurements that are delayed in time 
and proportional to the displacement, or acceleration of the flexible link sinusoids. 
Nyquist stability criterion theoretical developments were added for stabilizing os­
cillatory systems with positive delayed feedback7 . 

6.4. Non-collocated Controls 

Traditionally, robotic manipulators are independently joint controlled, with each 
joint having collocated sensors and actuators. This results in good control stability 
characteristics. Normally, many of the tasks associated with manipulation involve 
end point control. For a rigid link manipulator this is achieved by using forward 
kinematics to process end point information. If the calibration is poor, the accu­
racy may not be acceptable, thus mandating additional end-effector sensing and 
non-collocated control. For flexible link manipulators, the dynamics due to the 
flexibility of the links introduce additional difficulties with non-collocated control, 
which take the form of non-minimum phase characteristics. To maintain end-effector 
performance, a better understanding of the dynamics and how to maintain stable 
control requires additional analysis techniques. The effects of non-collocated con­
trol and non-minimum phase can be visualized with an example. Consider a single 
slewing horizontal link with a collocated sensor/actuator pair at the joint. By mov­
ing the link from some initial location to a final location, the tip of the link will 
follow and be accurately positioned. By replacing the link with a flexible member 
and performing the same slew, one will observe that the tip of the flexible member 
will initially move in the opposite direction to the joint motion. To maintain tip 
position accuracy, further information about the dynamics is needed. 

By processing sensor information about the tip with the actuator still located 
at the joint, the system becomes non-collocated. In addition, it becomes difficult 
to achieve satisfactory performance while maintaining stability with conventional 
low-order compensation. This problem is more challenging for the control engineer 
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and requires the use of advanced controller design techniques. The structural res­
onances found in many different systems, such as flexible space structures, flexible 
mechanisms, flexible manipulators, etc. fall into this category. The goal of this 
section is to help identify non-collocated control characteristics. 

As an example, the structural resonances inherent in lightweight manipulator 
components can be investigated with a simple model. Each component is made-up 
of rigid and flexible portions. As an initial approach consider the following model 
constructed by using two-discrete components with a mass-spring-damper modeled 
at the node (see Figure 6.18). The system has one input u = T at the joint and two 
outputs. The first output is the joint angle (h. The second is the angular displace­
ment ()2, which represents the relative motion of the second discrete component to 
the first. For the purposes of this analysis, the input/output relationship between 
u and ()1 is collocated, but between u and ()2/ = ()1 + ()2 is non-collocated. ()2/ is 
defined as the inertial angle. The effects of collocated and non-collocated control 
are explored in the following control system design and synthesis. 

x 

Figure 6.18. Simple two discrete component dynamic model 

Applying Lagrange's equations from Chapter 2 gives the following nonlinear 
dynamic equations of motion result: 

T = [(M + m)L2 + ml2 + 2mLlcos()2] 81 + [m12 + mLlcos()2] 82 

- mLI(2iltfJ2 + 9~) sin()2 

0= [m12 + mLlcos()2] 81 + ml282 + mLI9~sin()2 + k82 + ciJ2. 

Next, the equations of motion are linearized about an operating point 81 = 82 = 0 
where the approximations sin 8 ~ 8 and cos 8 ~ 1 are employed. All nonlinear terms 
are set to zero. The linearized equations of motion become 

u = hu 81 + h1282 

o = h1281 + h2282 + ciJ2 + k82 

(6.10) 

(6.11) 
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where 

hu = (M + m)L2 + ml2 + 2mLI 

h12 = ml2 + mLI 

h22 = m12. 

Taking the Laplace transform of Eq. (6.10) and Eq. (6.11) yields 

u(s) = huS281 (s) + hI2S282(s) 

0= h12S281(s) + h22 S282(s) + es82(s) + k82(s). 

247 

Solving for the transfer functions of interest yields the collocated transfer function 
as 

81 (s ) h22 s2 + es + k 
u(s) = S2 [(huh22 - hI2)S2 + hues + huk)' 

(6.12) 

the relative angle transfer function as 

82(S) -h12S2 
u(s) = S2 [(hUh22 - hf2)S2 + hues + hllk) , 

and the non-collocated transfer function as 

82 ] (s) (-hI2 + h22 ) S2 + es + k 
u(s) = S2 [(hUh22 - hi2)S2 + hues + huk)' 

(6.13) 

The compensator investigated is based on a PD control system and is represented 
in the s-domain as 

u(s) = kpe(s) + kvse(s), 

or 

u(s) 
Gc(s} = e(s) = kv(s + a) 

where a = kp/kv is a selected control system parameter. The error is defined as 
e = r - 8/ where 1= 1 or 2/. From Eq. (6.12), the plant transfer function for the 
collocated system is defined as 

G (s) = 81(s) 
Pi u(s) 

where the combined control/plant block diagram is shown in Figure 6.19. From 
Eq. (6.13), the non-collocated system is defined as 

G (s) = 82 ](s) 
P2] u(s) 
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r(s) 

+ 

Figure 6.19: System block diagram 
using collocated feedback 

Figure 6.20: System block diagram 
using non-collocated feedback 

where the sum of both transfer functions becomes the feedback signal. The new 
control/plant block diagram is shown in Figure 6.20. 

In the first design only the collocated plant is considered. The control system 
performance requirements are a critically damped response with minimum overshoot 
and a settling time of t. ~ 1.0 second. The physical parameters are M = 20, m = 
1, L = l = 0.25, k = 10, and c = 0.25. A root locus design (see Figure 6.21) was 
performed by using the PD compensator with the controller zero set to a = 0.05 and 
a gain of kv = 7.8521 was selected from the plot. The closed-loop response to a 1 
rad step input is shown in Figure 6.22 (left plot). For this case, the non-collocated 
signal is not considered in the design. The tip response is shown in Figure 6.22 
(right plot). If the design required the tip response to be controlled to certain 
specifications, then structural resonance could become a problem. 

15 

10 

5 .. 
~ 0 

1 + is where k = 7.8521 -5 v 

-10 

-c:::;-<' 
-15 

-4 -3 -2 -1 0 2 
Real Axis 

Figure 6.21. Root locus plot using collocated transfer function 

In the second design, the non-collocated transfer function is considered in the 
control system design. The same controller zero (a = 0.05) is retained. The root 
locus plot of the non-collocated system is shown in Figure 6.23. Note, the zero 
in the right-half plane is characteristic of non-minimum phase systems. A control 
gain of kv = 1. 7733 is selected with the corresponding step response shown in 
Figure 6.24 (left plot). The settling time has increased substantially to t. = 5.0 
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Figure 6.22. Step responses for collocated designed and non-collocated observed 

seconds. Naturally, to improve the performance, the gain must be increased. When 
a gain of kv = 3.55 (to the right of the jw axis - see Figure 6.23) is selected, the step 
response is shown in Figure 6.24 (right plot). The response has become oscillatory 
and unstable, thus destabilizing the structural mode. For the non-collocated case, 
using PD compensation to stabilize the system becomes much more difficult. This 
type of system would require higher-order compensation to improve performance, 
resulting in more complexity during implementation (increase in analog components 
or discrete number of computations). 

10 

• is where k. - 3.SS 

+ is where k. = 1.7733 

.\0 

·20 .L.IO~--~O --10---2~0 ---3~0-~40::-' 

Real Axis 

Figure 6.23. Root locus plot using non-collocated transfer function 

Several successful designs have been described in the literature. Initial investi­
gations demonstrated experimental end-point control of a slewing flexible link8 . For 
a planar flexible two-link manipulator, end-point control by using a real-time cam­
era as a tip position feedback sensor was demonstrated9 • End-point control design 
by using convex optimization techniques has been demonstrated 10. An alterna­
tive non-collocated measurement, called the virtual angle of rotations that resulted 
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Figure 6.24. Step responses for non-collocated kv = 1.7733 and kv = 3.55 

in several useful properties was introducedll . Several significant contributions of 
other researchers involving non-collocated non-minimum phase control were also 
identified. In a more recent study, J.L synthesis techniques for flexible manipula­
tors taking into consideration combinations of both collocated and non-collocated 
sensor/actuator locations was suggested12 . The resulting controllers were shown 
to be robust to high frequency dynamics, actuator uncertainty, noise, and mode 
variations. 

In this section several aspects of collocated and non-collocated control were 
demonstrated. The complexities involved in using non-collocated control were iden­
tified. The non-minimum phase characteristic present in a simple model is repre­
sentative of flexibility effects found in non-rigid link manipulators. 

6.5. Feedforward Control 

In this section, a feedforward control scheme13 is discussed that uses the torque 
profile created by the optimization technique of Section 5.4.10. and the finite element 
model in Section 3.4.. The optimization algorithm generated the motor torque 
profiles shown in Figure 6.25. The resulting tip trajectory is shown in Figure 6.26 
as the curve labeled model. Note, at the (x,y) position (0.95m,0.15m), the tip 
trajectory is not monotonic along the line and actually doubles back at the point 
where there is a large spike in the joint 2's torque. Since the tip still lies close 
to the straight line during the spike, this does not violate any of the optimization 
constraints. The large spike in joint 2's torque is to eliminate any residual oscillation 
at the final position. In the future, it may be desirable to pose the optimization 
constraints so that this doubling back does not occur. 

The first experiment tested was an open loop torque controller (see Figure 6.27). 
Because of slight modeling errors, the joint positions and velocities did not follow 
the desired trajectories (see Figure 6.28). As shown in Figure 6.26, this resulted in 
a poor tip trajectory and the tip never reached the final desired position. While the 
model was not accurate enough for open loop control, a comparison of the strain 
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"\ \------

Figure 6.25. Modeled joint torque as specified by the minimum time optimization 
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Figure 6.26: Tip position of the two-link arm for open loop torque profiles, closed loop 
PD joint control, and feedforward control. Rigid link kinematics used to generate tip 
position from joint angles 

Torque Profile 

Joint angles 
and velocities 
not used. 

Figure 6.27. Open loop control 

gauge readings to the estimated link curvatures (see Figure 6.29) shows that the 
model was not far from the actual system. In fact, Fourier transforms of these 
plots prove to be almost identical. The largest discrepancy is that the first modal 
frequency according to the model is about 10 Hz compared with about 8 Hz in the 
experiment. These are good results considering that nominal values were used to 
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Figure 6.28: Joint positions for open loop torque profiles, closed loop PD joint control, 
and the feedforward control. 

compute the system parameters, i.e. link inertias, stiffness, densities, etc.. The 
parameters of the model could be further refined by using a least squares parameter 
identification scheme. Repeating the optimization with these refined parameters 
would improve the open loop response. 

The second experiment used a PD joint controller (see Figure 6.30). Here, 
the desired joint positions and velocities were those specified by the optimization. 
Although the joint positions and velocities do eventually converge on the desired 
values (convergence occurred after the 3 seconds as shown in Figure 6.28), this 
control approach will not produce a minimum time motion. Since the errors in 
joint positions and velocities start out small, the resulting torque at the start of the 
motion will be much smaller than the step torque input specified by the optimization 
(see Figure 6.31). The gain constants Kp and Kv were found experimentally. The 
torque's oscillation shown in Figure 6.31 is the result of the difference between 
the joints' desired velocity according to the optimization and the actual velocity 
according to the tachometers. Vibration in the links reflects back to the joints and 
is observed in the tachometer feedback. It was impossible to critically dampen the 
system because of this effect and increasing Kv resulted in instability. As shown 
in Figure 6.26 the tip position oscillated about the desired trajectory. The tip 
position did converge on the final position, but after the 3 seconds as is also shown 
in Figure 6.26. 

In the final experiment a feedforward controller was used (see Figure 6.32). 
Compared to the previous two methods this method provided the best attributes. 
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Figure 6.29: Link curvatures according to the model and during the open loop control 
experiment 

Figure 6.30. Closed loop joint control 

First, the feedforward torque term provided the torque necessary for a minimum 
time motion. Second, the error in joint position and velocity were used to correct any 
modeling errors. A proportional error term in curvature was also used to dampen 
vibration transients. The desired curvature was specified from the optimization 
and the measured curvature was derived from strain gauges along the links. Strain 
gauges were located at positions on the link that corresponded to nodal positions of 
the finite element modeL This curvature feedback is especially effective in damping 
out residual vibrations at the end of the trajectory when the desired curvature is 
zero. Accelerometer feedback was not used in these experiments since the waveforms 
were almost identical to the strain gauge waveforms. In addition, the strain gauge 
signals were less noisy than the accelerometers. The resulting joint torques of the 
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Figure 6.31: Comparison between modeled torque specified by optimization and torque 
generated from cIQSed loop PD joint control. 

Figure 6.32. Feedforward control 

feedforward controller are shown in Figure 6.33. 

As shown in Figures 6.26 and 6.28, the performance of the feedforward ap­
proach is superior to the open-loop and PD joint control schemes. Although the tip 
positions in Figure 6.26 were computed with the rigid link kinematics, a rough com­
parison of the control schemes is achieved. More importantly, the measured joint 
angles, joint accelerations, and link curvatures were driven close to the modeled 
values with the feedforward control, thus indicating that the straight line trajectory 
determined by the model was performed. 
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Figure 6.33: Comparison of modeled torque specified by optimization and torque gen­
erated from the feedforward control. 

6.6. Linear Quadratic Regulator 

To compliment the off-line optimization, one would like to develop an optimal 
controller that accommodates perturbations from the optimal path. From Fig­
ure 6.34, one would like to solve for the time varying control matrix C(t). The 
following subsections provide a brief overview of the theoretical background re­
quired to determine this optimal control gain. Further details can be found in any 
optimal control book14- 2o . 

Figure 6.34. Linear quadratic regulator feedback 
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6.6.1. Necessary Conditions for Optimality 

In Section 2.7.8., the following optimization problem was considered: Given the 
nonlinear, time-varying model 

:ic(t) = f[x(t), u(t), t). 

The goal is to minimize the augmented cost function 

1t/ 

J = ¢>[x(t,), t,) + (L[x(t), u(t), t] + AT (t){ f[x(t), u(t), t] - :ic(t)} )dt 

where 

to 

x(t) = state vector 

u(t) = control vector 

f[x, u, t] = nonlinear system dynamics 

¢>[ x ( t , ), t,] = final cost function 

L[x(t), u(t), t] = integrand cost function 

AT (t) = Lagrange multiplier-also called the adjoint vector because it 

adjoins the dynamic constraint to the cost integrand. 

The Hamiltonian is defined as 

H[x(t), u(t), A(t),t] = L[x(t), u(t), t] + AT(t)f[x(t), u(t), t). 

One wishes to choose the adjoint vector time history A(t) such that the system is 
stationary with respect to infinitesimal control variations. Setting the first variation 
of J to zero yields the following necessary conditions when the final time is fixed: 

1. :ic(t) = f[x(t), u(t), t] with x(to) given 

T IT 2 . .x = _ {aH[X(t), u(t), A(t), t]} for A(t,) = a¢>[x(t) , t] 
ax ax 

t=t/ 

3 { aH[x(t), u(t), A(t), t]}T = . au 0 .. 

Once again, these are called the Euler-Lagrange equations. They form a two-point 
boundary value problem where there is a constraint on x(t) at the beginning and on 
A(t) at the end. Solving the above equations simultaneously (given the boundary 
conditions) is difficult, and this solution provides the open loop control or input 
shaping command. Instead, one would like to find a feedback solution that is 
independent of x(t) and u(t). 
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6.6.2. Neighboring-Optimal Solutions 

As seen in Section 6.5., the robot did not follow the optimal path exactly when 
using an open loop torque profile. The feedforward control scheme showed that one 
needs to modify the control input based on the perturbed states. Let 

~x(t) = x(t) - x*(t) 
~u(t) = u(t) - u*(t) 
~~(t) = ~(t) - ~*(t) 

where the optimal solution (i.e., the input shaped command) that is generated 
off-line will be denoted with a * superscript. 

The linearized state equation about the off-line computed optimal path is 

~x(t) = F(t)~x(t) + G(t)~u(t), ~x(to) is given and 

where 

ar ar 
F(t) = ax and G(t) = au' 

The cost function can now be written as 

J[x*(t) + ~x(t), u*(t) + ~u(t)] ~ J[x*(t), u*(t)] 

+ ~J[~x(t), ~u(t)] + ~2 JL[~x(t), ~u(t)]. 

It has already been shown that the first variation is zero. The second variation can 
be expressed as 

where cPxx is the second partial derivative of ¢ with respect to x(t), Lxx is the second 
partial derivative of L with respect to x(t), Lux = Lxu is the partial derivative of 
L with respect to x(t) and u(t), and Luu is the second partial derivative of L with 
respect to u(t). 

Ignoring the coupling terms between x(t) and u(t) and denoting the diagonal 
terms Lxx and Luu as Q(t) and R(t), write the Hamiltonian as 

1 
H(t) = 2[~xT(t)Q(t)~x(t) + ~uT(t)R(t)~u(t)] 

+ ~~T(t)[F(t)~x(t) + G(t)~u(t)]. 

The matrices Q ( t), R( t ), and P ( t f) = cPxx (t f) are weighting matrices that are 
specified by the control system designer. The matrix R(t) must be positive definite 
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and the matrix Q(t) must be positive semi-definite. Increasing the matrix Q(t), 
increases the emphasis on following the desired states during the transient response. 
Increasing matrix R(t), decreases the control effort used to follow the desired states. 
Increasing the matrix P(t,), increases the emphasis on achieving the desired final 
position at time t,. 

The resulting Euler-Lagrange equations for Eq. (6.14) are 

where 

.6.x(t) = F(t).6.x(t) + G(t).6.u(t), .6.x(to) is given 

.6.'\ = - { ar:X} T} = -Q(t}.6.x(t) - FT(t}.6.A(t) 

{ aH }T 
a(.6.u} = R(t}.6.u(t) + GT(t).6.A(t) = O. 

A(t,) = {a(!x) [~.6.xT (t)P(t).6.x(t)] } It=t/ 

= P(t,).6.x(t,) 

P(t,) = 4Jxx(t,) 

Equation (6.16) implies .6.u(t) = _R-l(t)GT(t).6.A(t). 

(6.15) 

(6.16) 

(6.17) 

If one assumes that .6.A(t) = P(t).6.x(t) for all t where pet) is not yet known, 
then the control can be written as 

.6.u(t) = -R -1 (t)GT (t)P(t).6.x(t). 

R(t), and G(t) are known, but what is pet) for all t? From the Euler-Lagrange 
equations (see Eq. 6.15) 

.6.'\(t) = -Q(t).6.x(t) - FT(t)p(t).6.x(t) 

= :t {P(t).6.x(t)} 

= P(t).6.x(t) + P(t).6.x(t) 

= P(t).6.x(t) + P(t)[F(t).6.x(t} + G(t).6.u(t)] 

= [pet) + P(t)F(t) - P(t)G(t)R-1(t)GT (t)P(t)] .6.x(t). 

The resulting matrix Riccati equation is 

pet) = -Q(t) - FT (t)P(t) - P(t)F(t) + P(t)G(t)R -1 (t)GT (t)P(t) 

where P(t,) is the known boundary condition. 
Note, pet) is independent of .6.x(t) and .6.u(t). Therefore, variations in .6.x(to) 

have no effect on the optimal feedback control law gains, or 
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6.u*(t) = _R-1(t)GT(t)P(t)6.X(t) 
= -C(t)6.X(t). 
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The control gain C(t) can be computed off-line by using the linearized dynamic 
system about the optimal trajectory x*(t). Unfortunately, the computation of the 
integral in the Riccati equation is often difficult. Therefore, it is common practice 
to compute the steady state solution where P(t) = o. This is referred to as the 
algebraic Riccati equation, or 

o = FT (t)P(t) + P(t)F(t) - P(t)G(t)R -1 (t)GT (t)P(t) + Q(t), 

and there are several software packages, such as MATLAB® that can solve this 
equation. 

6.7. Linear Optimal Estimation 

The linear optimal regulator discussed in the previous section assumed that all 
states could be measured and controlled. However, often the state measurements 
are corrupted by noise. In these cases, a Kalman-Bucy filter is used to estimate the 
true state values. In this section, the derivation of the Kalman-Bucy filter closely 
follows that of Anderson-Moore21 . There are other ways of deriving the filter22- 24 . 

Before introducing the Kalman-Bucy filter, one must review a few basic defini­
tions. The mean of a random variable X is 

x = E{X} = I: xpx(x)dx 

where px(x) is the probability density function. The covariance of X is 

Exx = E{[X - x][X - xf} = I: [x - x][x - xf px(x)dx, 

and is a symmetric positive definite matrix. The most used probability density func­
tion px(x) is the Normal (also called Gaussian) probability function. Its statistics 
are uniquely defined by two parameters (mean and covariance). The probability 
density function for a Normal distribution is 

where n is the dimension of x. 
Again one will consider the state-space model in the LQR section, except this 

time suppose that the measurement of the state vector is not perfect and that state 
noise w(t) is introduced, or 

6.:ic(t) = F(t)6.x(t) + G(t)6.u(t) + w(t). (6.18) 
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Also assume that one cannot directly measure all the states and the observation 
vector is 

~z(t) = H(t)~x(t) + v(t) (6.19) 

where v(t) is observation noise. Assume both the state and observation noise are 
white, zero-mean Gaussian random sequences that are uncorrelated with each other. 
In other words, 

where 

E{w(t)} = 0 

E{v(t)} = 0 

E{w(t)w(rf} = W(t)6(t - r) 

E{v(t)v(rf} = V(t)6(t - r) 

{ 1 t = r 
6(t - r) = 0 t i= r 

E{v(t)w(r)T} = 0 for all t and r. 

The covariance matrix V(t) is positive definite, and the covariance matrix W(t) 
is positive semi-definite. Also assume that the initial state mean value and its 
covariance are known and given by 

E{~x(to)} = ~x(to) (6.20) 

E{(~x(to) - ~x(to))(~x(to) - ~x(to))T} = E(to) 

The optimal linear estimate minimizes the error variance 

J = E{[~x(td - ~x(tdf[~x(td - ~x(td]}· (6.21) 

The solution to this minimization subject to the dynamics in Eqs. (6.18)-(6.20) is 
given by integrating 

~i(t) = F(t)~x(t) + G(t)~u(t) + K(t) [~z(t) - H(t)~x(t)l (6.22) 

where the Kalman filter gain is 

(6.23) 

The covariance matrix is determined by integrating the Ricatti equation 

:E(t) = F(t)E(t) + E(t)FT(t) + W(t) - K(t)V(t)KT(t) ,6.24) 

starting with the initial condition E(to). As with the linear quadratic regulator, 
it is difficult to numerically solve the Ricatti equation. Therefore, it is common 
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practice to solve the algebraic Ricatti equation for the steady state solution of E(t), 
or 

o = F(t)~(t) + ~(t)FT(t) + W(t) - K(t)V(t)KT(t). 

Note, the form of the optimal estimation solution is nearly identical to the solu­
tion of the linear quadratic regulator. In fact, the optimal estimation problem given 
in Eq. (6.21) can be transformed into the optimal regulator problem by defining a 
set of dual equations. The dual dynamic system is given by 

X(t; tt) = _FT(t)X(t; td + HT(t; tt)M(t), X(tl; tt) = I (6.25) 

where X(t;tt) (costate) is a transition matrix (Le. X-1(t;tt) = X(tl;t)) of the 
same dimensions as the state ~x(t), and I is the identity matrix. The matrix M(t) 
is also a transition matrix and will be explained shortly. Notice that the boundary 
condition is at the final time tl and one is interested in the solutions for t ~ tr. 
Also note, this equation is similar to the state equation except that F(t) has become 
_FT(t) and G(t) has become HT(t). 

Differentiating the product of the costate and state gives 

! [XT(t; tl)~X(t)] = XT(t; tl)~X(t) + XT (t; tt)~x(t) 
= _XT (t; tt)F(t)~x(t) + MT (t; tr)H(t)~x(t) 

+ XT (t; tt)F(t)~x(t) + XT (t; tt)w(t) 

= MT(t; td~z(t) - MT(t; tl)V(t) + XT(t; tr)w(t) 

assuming that ~u(t) = O. Integrating from to to tl and applying the boundary 
condition on X(t; tt) at time tl gives 

The second term on the left hand side is the optimal state estimate of Eq. (6.21), 
or 

(6.27) 

where the transition matrix function M(t; tr) can be thought of as an impulse 
response matrix to the observation ~z(t). 

Combining Eq. (6.26) with Eq. (6.21) yields 

E{[~x(tt) - ~X(tl)][~X(tr) - ~X(tlW} = XT(to;tr)E(to)XT(to;tt) 

+ ltl tXT (t; tl )W(t)X(t; tr) + MT (t; tr)V(t)M(t; tr)]dt. 
to 
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Taking the trace of both sides gives 

(6.28) 

Now, the problem is in the same form as the LQR problem with Q(t) and R(t) 
replaced by W(t) and V(t). As described in Section 6.6.2., the solution to Eq. (6.28) 
subject to Eq. (6.25) is 

M*(t;td == -V-1(t)H(t)E(t)X(t;h), (6.29) 

and 

t(t) == W(t) + F(t)E(t) + E(t)FT(t) - E(t)HT(t)V-1(t)H(t)E(t) (6.30) 

where E(to) is the known initial condition. These are the Kalman gain and Ricatti 
matrix equations given in Eqs. (6.23) and (6.24). From Eq. (6.27) and (6.29), the 
optimal state estimate is 

Differentiating this expression yields 

From Eq. (6.25) and (6.29), it can be shown that 

dd XT(t;td == [F(td - E(tdHT(tdV-1(tdH(tdJXT(t;td. 
tl 

By combining these last two equations, one arrives at the solution given in 
Eq. (6.22). 

6.8. Linear Quadratic Gaussian (LQG) Control 

With this background theory on LQR control (deterministic control) and 
Kalman filtering (stochastic state estimation), one can solve the stochastic con­
trol problem. The derivation of the LQG controller will not be presented in this 
section, but the separation property and the certainty equivalence property will be 
used to state the control law. The separation property says that if a first-degree 
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expansion is adequate to describe perturbation dynamics and if the corresponding 
variational cost function is adequately modeled by a quadratic function of the state 
and control, then the control and estimation logic can be derived separately and 
the stochastic optimal control profile can be expressed as 

~u(to,t) = T{~x(to,t)}. 

The certainty-equivalence property says that T { .} will be the same control 
function as the deterministic optimal control function (e.g. LQR). 

The objective of a continuous-time LQG controller is to minimize the cost func­
tion 

~ T (t)] [Q 0] [~X(t)]} 
u 0 R ~u(t) , 

subject to the linear dynamic constraint 

~x(t) = F(t)~x(t) + G(t)~u(t) + wet) 

and the observation equation 

~z(t) = H(t)~x(t) + vet). 

Assume both state and observation noise are white, zero-mean Gaussian random 
sequences that are uncorrelated with each other, so 

where 

E{w(t)} = 0 

E{v(t)} = 0 

E{W(t)W(Tf} = W(t)o(t - T) 

E{V(t)V(Tf} = V(t)o(t - T) 

{ It = T 
oCt - T) = 0 t -I r 

E{v(t)w(rf} = 0 for all t and T. 

Also, assume that the initial state mean value and its covariance are known and 
given by 

E{~x(to)} = ~x(to) 
E{(~x(to) - ~x(to))(~x(to) - ~x(to))T} = E(to)· 

The optimal stochastic control is given by the LQR equations 
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~u·(t) = -C(t)~x(t) 
where 

and 

P(t) = -Q(t) - FT(t)P(t) - P(t)F(t) + P(t)G(t)R-l(t)GT(t)P(t). 

The control gain C(t) and Ricatti matrix P(t) should be computed off-line, by 
working backwards starting with the known P(t f). Computing off-line is fine if the 
system remains close to the optimal solution. If it does not, one should compute 
them on-line by using the dynamic programming approach. Unfortunately, this is 
not always an easy task to perform in real-time! 

The state estimate is given by the Kalman-Bucy filter equations 

~*(t) = F(t)~x(t) + G(t)~u(t) + K(t) [~z(t) - H(t)~x(t)l 

where 

and 

:E(t) = F(t)I:(t) + I:(t)FT(t) + W(t) - K(t)V(t)KT(t) 

With enough computing power, these equations could to be computed on-line 
since the initial condition on the covariance I: is at to. Instead of integrating the 
above equation, the discrete time version of the Kalman filter is typically used25 . A 
block diagram of the continuous time LQG controller is shown below in Figure 6.35. 

Figure 6.35. Continuous-time linear quadratic gaussian (LQG) controller 
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6.8.1. Experimental Results 

This section describes the experimental results of the LQG control scheme ap­
plied to a two-link flexible robot25 . An off-line optimization routine determined a 
minimum-time, straight-line tip trajectory that stays within the torque constraints 
of the motors and ends with no vibrational transients (see Section 5.4.10.). An 
efficient finite element model is used in the optimization to approximate the flexible 
arm dynamics (see Section 3.4.). The control strategy described in the previous 
section is used to determine the feedback gains for the position, velocity, and strain 
gauge signals from a quadratic cost criterion based on the finite element model 
linearized about the straight-line tip trajectory. These feedback signals are added 
to the modeled torque values obtained from the optimization routine and used to 
control the robot arm actuators. The results indicate that this combination of 
model-based and error-driven control strategies achieves a closer tracking of the 
desired trajectory and a better handling of modeling errors than either strategy 
alone. 

A finite element model26 (see Section 3.4.) is used to obtain a set of nonlinear 
ordinary differential equations. In the finite element model of the two-link flexible 
arm, the structure was divided into 9 elements and 2 hinge joints. Recall, Figure 5.24 
shows the two-link manipulator and Figure 6.36 illustrates the geometry of the 
structure. The first node corresponds to the first joint or hub of the manipulator. 

2 3 4 

Figure 6.36. Finite element model geometry of the arm 

The second node corresponds to the outer edge of the first bracket. The next 
three elements represent the first link divided into three equal segments with each 
segment having its own strain gauge. The next three nodes correspond to the second 
bracket, second joint, and third bracket. Finally, the last three elements are the 
second link divided into three equal segments, again with each segment having its 
own strain gauge. The brackets are modeled as very stiff links with large stiffness 
terms EI (Young's modulus times the area moment of inertia). The motion of the 
manipulator is assumed to take place entirely within the horizontal plane. 

The dynamic equations of the finite element model can be compactly written in 
the following form: 

M(9)8 + C(9)92 + K(9)Il = Bu (6.31) 
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where 9 is a column vector containing the angular positions of the 11 finite element 
nodes, and u = h 72]T is the external torque vector where 71 and 72 are the 

applied torques at the joints. The term 82 is an 11x1 vector where each element 
is the square of 8;. The mass matrix is M(9) = [M;,j cos(O; - OJ)], i = 1, ... ,11, 
j = 1, ... ,11, the centrifugal matrix is C(9) = [M;,j sin(O; - OJ)], i = 1, ... ,11, 
j = 1, ... ,11, and the stiffness matrix is K(9) = [-K;,j sin(O; - OJ)], i = 1, ... ,11, 
j = 1, ... ,11. The M;,j and Ki,j in these equations are the mass and stiffness 
constants that are derived from the finite element model26 and remain unchanged 
for a given structure (Le., these elements do not depend on joint angles and link 
curvatures). The symbol 11 refers to a column vector of 11 ones. The matrix B 
is an 11x2 matrix whose purpose is to transform the 2x1 control vector u into the 
11x1 angular acceleration space. It is defined as 

B = [1 0 0 0 0 0 0 0 0 0 O]T 
o 0 0 0 0 -1 1 0 0 0 0 

The reader should note that the Oi are absolute angles in the inertial coordinate 
system. Because of this absolute referencing, Eq. (6.31) does not contain Coriolis 
terms (8i Oj , i #= j). 

This model is efficient from a computational point of view since it only requires 
one evaluation of the mass and stiffness elements M;,j and Ki,j' respectively. It 
also has proven to be quite accurate in modeling the behavior of the actual manip­
ulator. Experimental results13 show that the fundamental modal frequencies of the 
finite element model closely approximate those of the experimental apparatus (ap­
prox. 20 Hz and 8 Hz for the first and second links respectively). In addition, the 
torque, angular velocity, and joint position profiles obtained by the model closely 
approximate those of the experimental structure for corresponding maneuvers. 

In order to apply LQG regulator theory, the dynamics in Eq. (6.31) must be put 
into state-space form and then linearized about the desired trajectory. The state 
variables are chosen to be the 11 nodal positions and the 11 nodal velocities 

Xi = 0; , i = 1, ... ,11, Xi+11 = 8; , i = 1, ... ,11 

where Xi are the new state variables. Rewriting Eq. (6.31) in state-space form gives 

Xl X12 0 0 

XU X22 0 0 
+ u, 

X12 

M(X)-lS(X) M(X)-lB 

X22 

or more compactly as 

x = f(x) + g(x)u. (6.32) 
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The matrix M(x) is simply the matrix M(8) with the (Ji'S replaced with the ap­
propriately numbered states Xi. The control vector u is as described earlier (see 

Eq. ~.31), and the matrix 8(x) is the matrix 8(8,9) = -C(8)92 - K(8)Il with 8 
and () replaced by the state vector x. 

The state-space formulation described in Eq. (6.32) is a 22nd-order nonlinear 
ordinary differential equation. To perform the linearization about a reference tra­
jectory, let ~x represent the perturbation in the state x about the operating point 
x*, and ~u represent the perturbation in the control input u about the operating 
point u*, or 

x=x·+~x and u=u*+~u. 

These operating points x* and u· are those from the off-line optimization presented 
in Figures 6.25, 6.28 ,and 6.29. Truncating second and higher-order terms gives the 
following linearized model: 

Llx= (:Ix=x. + ::Ix=x.u*) Llx+g(x*)Llu 

= FLlx+ G~u (6.33) 

where ~x represents deviations from the desired trajectory which one wants to 
drive to zero. 

Next, the states are transformed into a more measurable form. In this system, 
joint encoders and tachometers are used to measure the angular position and veloc­
ity of each joint node with respect to the previous node. Also strain gauges on the 
links are used to measure the angular position of a node with respect to the previous 
node. Since all position and velocity measurements of one node are relative to the 
previous node, it is desirable to transform the state vector by a 22x22 matrix T 
such that 

Llx = T~x 
where 

{
I ifi=j 

Ti,j= -1 jfi=j-1=2,3, ... ,1l,13,14, ... ,22 
o otherwise 

Using ~x as the new state variable changes Eq. (6.33) to 

Lli = TFT- 1 ~x + TGLlu = F ~x + G~u. (6.34) 

As discussed earlier, the linear quadratic regulator portion of this problem is to 
minimize a quadratic cost criterion 
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with respect to the control vector ~u and subject to the system's dynamics in 
Eq. (6.34). The choice of weighting matrices Q and R are up to the system designer. 
The solution to this problem involves solving an algebraic Rlccati equation27 for a 
matrix P 

which results in the feedback equation 

(6.35) 

Thus, the optimal full state feedback gain matrix is C = -R -lGTp. 
Since one is unable to measure all of the states, a linear quadratic estimator 

design is used to determine an estimator gain matrix K that produces a linear 
quadratic Gaussian optimal estimate of ~x from the measurements ~z. The prob­
lem is formally stated as follows: Given a continuous-time system with state and 
measurement equations 

~i = F~x+ G~u+w 
~z = H~x+v, 

and process and measurement noise means and covariances 

E[w] = E[v] = 0, E[wwT ] = W, E[vvT ] = V, 

the optimal state estimate ~x is found by integrating 

~i = F~x + G~u + K[~z - H~x], ~x(O) = 0 

where 

and E satisfies the algebraic Rlccati equation 

(6.36) 

(6.37) 

Similar to the linear quadratic gain in Eq. (6.35), the gain in Eq. (6.37) can be 
determined off-line and the gains scheduled for on-line control. However, at present 
there is insufficient on-line computing power in this system to solve the integration 
in Eq. (6.36) in real-time-even the discrete version is computationally intensive. If 
the integration in Eq. (6.36) is approximated in discrete time14 as 

~Xk ~ ~Xk-l + [F~Xk-l + G~uk-d~t + Kd~Zk - H[~Xk-l 

+ (F~Xk-l + G~uk-d~t]), (6.38) 
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one can reduce Eq. (6.38) to 

(6.39) 

when the sampling time ilt is small and the previous estimated state ilXk-l reaches 
the desired state ilXk-l = O. Combining Equations (6.35) and (6.39) yields the 
approximate feedback gain at time k as CkKk. 

MATLAB® was used to determine the approximate Kalman filter gain matrices 
Kk and the optimal feedback gain matrices C k for one hundred set points along 
the optimal trajectory. At some points along the trajectory, the gains varied con­
siderably (see Figure 6.37). When the set of gains was used to control the system, 
the results were less than satisfactory. Although the arm did reach the desired end 
point, there was considerable error in the tip position along the way. It appeared 
that some of the larger scheduled gains produced unwanted effects. Again, one must 
remember that these gains are computed from a model of the system, so the gains 
are only as good as the model itself. In an attempt to reduce the sensitivity of the 
feedback gains to modeling errors, a single gain matrix equal to the average of the 
time sequence of matrices was used. Figure 6.38 shows the resulting tip trajectory. 
The averaging process removed the abrupt changes in gains along the path. Al­
though further testing is necessary, it is believed that an even better solution would 
be to use a set of three or four gains that would be scheduled to become active 
when major changes in the states occurred, e.g., when the applied torque on joint 
1 changed from -6 N-m to +6 N-m. 

-2 

.. 
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Figure 6.37: Feedback gain K1•1 (contribution of joint 1 position error on joint 1 motor). 

In the LQG design, the lOx22 observation matrix H, was 

if (i,j) = (1,1), (5, 7) Uoint angles) 
if i = j - 1 = 2,3,4 (strain gauges) 
if i = j - 3 = 6,7,8 (strain gauges) 
if (i, j) = (9,12), (10, 18) Uoint velocities) 
otherwise 
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Figure 6.38. Specified, open loop, and LQG tip positions. 

where i denotes the observation vector index and j denotes state vector index. The 
state and input weighting matrices were 

and 

if i = j = 1,7 (joint angles) 
if i = j = 12,18 (joint velocities) , 
otherwise 

R=[1000 0] o 1000 

The state and measurement noise matrices were 

and 

V= 

w . _ {0.01 if i = j 
t,] - 0 otherwise ' 

[ 

0.1 
1000 

~ x 106 

if i = j = 1,5 (joint angles) 
if i = j = 2,3,4,6,7,8 (strain gauges) 
if i = j = 9,10 (joint velocities) 
otherwise 

In this experiment, Q and V were chosen so that the majority of the feedback 
came from the joint encoders and tachometers. This was done for two reasons. 
First, the strain gauges are slightly noisier than the joint encoders and tachome­
ters. Second, for the specified straight-line slew, the tip position of the arm was 
dependent more on the joint positions than on the curvature of the links. It was 
found that penalizing the link curvature states often resulted in instability because 
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the controller put too much emphasis on the errors between the measured and mod­
eled link curvatures. It is believed that the main problem was that the linearized 
model was not accurate enough to properly drive the link curvature measurements 
to those values determined by the model. With improved parameter estimation, it 
is likely that one would be able to put more emphasis on these curvature states. 

Based on the experimental results, a promising strategy is to obtain an initial set 
of gains via the LQG method that is optimal for the given model and then improve 
on these gains by hand-tuning them on the physical structure. This combination 
strategy will converge to a desired performance level quicker than either the LQG 
method or hand-tuning by itself. 

This method of control would be best applied to manipulators performing repet­
itive motion, such as assembly robots or high bandwidth micro-manipulators (e.g., 
disk drive positioning arms). While the optimization is time consuming, it would 
be cost effective if the motion was to be repeated hundreds of times. 

6.9. Chapter 6 Summary 

This chapter reviewed a general class of linear control design approaches for 
flexible dynamic systems. This class of linear control systems included both clas­
sical and modern control algorithms. The classical PD control system design was 
demonstrated for gantry robot problems. Next, an atypical control algorithm based 
on lag stabilization was introduced that demonstrated reduction in oscillations for 
a flexible system. In addition, a non-collocated control problem was reviewed. 
This problem showed non-minimum phase characteristics associated with flexible 
robotics systems. The modern control techniques included the development of LQR, 
linear optimal estimation, and LQG algorithms. Both feedforward and LQG con­
trol techniques were validated experimentally for a planar flexible robot arm. In the 
remaining chapters (see Chapters 7 and 8) advanced nonlinear control techniques 
are introduced in order to handle systems that cannot be effectively linearized. 
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6.11. Chapter 6 Problems 

Homework 6.1. From Section 6.2. 
Validate the PD controller design discussed in Section 6.2. for the gantry robot 
by performing a numerical simulation. Plot the disturbance impulse response and 
resulting control in acceleration and in velocity responses. 

Homework 6.2. From Section 6.2. 
Add a position feedback loop as shown in Figure 6.8 to the previously designed PD 
controller of Homework 6.1. By using the same values for Kp and KD perform a 
root locus design. Select a K p• that results in critically damped responses for both 
8(t) and X(t), respectively. Plot the time domain responses. For what value of K p• 

does the response become unstable? 

Homework 6.3. From Section 6.3. 
Validate the lag-stabilized design discussed in Section 6.3. for the gantry robot prob­
lem by performing a numerical simulation. Use the parameter values presented in 
Table 6.1. Plot the angular position for both marginally stable and stable critically 
damped responses. For what value of w, varying from Wn does the assumption that 
W needs to be close to Wn become invalid? 

Homework 6.4. From Section 6.4. 
Given the equations of motion for a slewing flexible link model that includes only 
a single flexible mode, one can obtain the following dynamic model: 

loB + hii + co = T, 

and 

a. Following the procedures given in Section 6.4., derive all the necessary transfer 
functions. 

b. Perform a root-locus design by using the PD control transfer function and 
only the collocated transfer function for 8. In addition, plot the tip deflection 
response. 

c. Perform a root-locus design as in b., but use the non-collocated transfer 
function for 8 + ¢(L)q. What do you observe? Is using conventional PD control 
(low-order compensation) sufficient to control the tip? 

Homework 6.5. From Section 6.5. 
As seen in Section 2.7.10., the time-optimal control for a rigid single link arm is the 
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bang-bang control input 

where Ub is the maximum torque input, the final time is t/ = 2Jmz2xI,/3ub' m 
is the link mass, l is the link length, and Xl, is the desired final angular position 
of the link. Assume that this time-optimal control was designed with m = 0.5, l = 
1, \~d Xl, = 1r/2; however, in the experiments the true link mass is m = 0.6. 

a. Applying the time-optimal control to the actual link, simulate the open loop 
response of the system where 

b. Add a proportional-derivative feedback loop to control the position of the rigid 
link. Try to achieve a 5% settling time of 1.25 seconds. Note, the control input 
will go beyond the maximum torque requirements, therefore the Ub chosen in 
the initial design should be well within the true maximum torque limits. 

c. Remove the time-optimal feedforward path and use only the PD feedback loop 
designed in b. Is a settling time of 1.25 seconds still achieved? 

Homework 6.6. From Section 6.8. 
The equations of motion for a single assumed mode of a slewing flexible link is given 
by 

M8 + mii + cil = T 

m8 + m2ii + cq + kq = 0 

where 8 is the joint angle, and q is the perturbation of the flexible link. The 
parameters M, m, C, m2, c, and k are constants that depend of the moment of 
inertia of the hub, density of the link, damping of the joint, modulus of elasticity 
of the link, dampening of the link, and the length of the link. 

a. Write these equations in state-space form where the state vector is 
x = [8 q il q]. Assume that you are only able to measure the joint angle 
8. 

b. Design a Kalman filter for estimating the joint angle 8, its velocity il, flexible 
perturbation q, and its velocity q. Because it is a linear system, the algebraic 
Ricatti equation can be used to find a constant Kalman filter gain. Use 

:e~'::t~no:' :::5:~ : ~,m[oii :f. k o~ 1O! j:;: ::O:d 
o 0 0 0.1 
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c. Design a Linear Quadratic Gaussian Regulator for controlling the system. 

::n~::::~:::~~:::~~:i:~~OQ~d ["1fT fIll 
o 0 0 1 

and R = [1000]. 

d. Simulate the performance of the LQG design. For the continuous time case, 
this can be accomplished by combining the Kalman filter equations with the 
LQR equations to give 

The first equation is the equation of motion of the system with control input 
u = Cx and the state vector is estimated in the second equation by using the 
Kalman filter. The Kalman filter gain is K = ~HTV-l where the steady state 
covariance matrix ~ is determined by solving the algebraic Ricatti equation 

The control gain is given by the LQR design as C = _RTGTp where the 
matrix P satisfies the algebraic Ricatti equation 



Chapter 7 

Nonlinear Systems and Sliding Mode 
Control 

7.1. Introd uction 

Many systems of practical interest are nonlinear, but sometimes it is possible 
to consider small motions about an operating and/or equilibrium point. In this 
case, a linear set of dynamic equations can be formulated, thus facilitating the use 
of linear analysis and design techniques. When it is inappropriate to linearize the 
system, the linear design tools cannot be applied and instead nonlinear analysis is 
required1,2. Two of the more important analyses that are often needed are stability 
determination and controller design. Several examples are presented to illustrate 
these situations. 

Example 1.1. Simple pendulum 
Consider a particle of mass m connected by a massless rod of length l to a 

frictionless joint at O. A motor at 0 can apply a torque T to the rod. The angle 
between the rod and the vertical is denoted by (J as shown in Figure 7.1. Derive the 

m 

Figure 1.1. Simple pendulum with an applied torque 

nonlinear dynamic equations of motion for the system and compare the linearized 
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and nonlinear equations. 

Solution 
To this end, a free body diagram of the system is shown in Figure 7.2. The 

Ry 

m 

L. 
Figure 7.2. Free body diagram of simple pendulum 

dynamic equation can be found by summing the external moments about the fixed 
point O. Using D'Alembert's Principle gives 

I::Mo = (I sin ei - 1 cos 8j) x (-mgj) - ml2ijk + Tk = O. 

Applying the cross product and simplifying gives 

.. g. 1 
8 + y sm8 = ml2 T. (7.1) 

Case 7.1. Small 8 
H the motion of the particle is small (e.g., -20° < 8 < 20°), then Eq. (7.1) can 

be linearized about 80 = 0 resulting in 

.. 9 1 
8 + y8 = ml2 T. (7.2) 

Since Eq. (7.2) is linear in 8 and ii, the Laplace transform can be applied and its 
transfer function found as 

8(s) ~ 
T(S) = S2 + f (7.3) 

Equation (7.3) can form the basis for assessing stability and controller design by 
using linear methods. 
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Case 7.2. Large 8 
Since the angular motion is large, (e.g., 181max > 20°), Eq. (7.1) must be used. 

Unfortunately, the Laplace transform does not apply because of the nonlinear term 
sin 8 and a transfer function is inappropriate. Nevertheless, methods for assessing 
stability and designing controllers are needed. 

In the remainder of this chapter definitions are introduced leading to a discussion 
of nonlinear system stability. Sliding Mode Control (SMC) will be presented as one 
example of a systematic nonlinear controller design technique. 

7.2. State-Space Representation of a Dynamic Sys­
tem 

The development of a system's dynamic equations often results in one or more 
higher-order ordinary differential equations. An equivalent representation can be 
created consisting of a set of first-order differential equations. This is known as the 
state-space representation of the system and the n first-order equations are called 
the state equations. The independent variables (functions of time) are called the 
state variables. 

Example 7.2. For a nonlinear pendulum find the state variables and the state 
equations. 

Solution 
From the previous example (see Example 7.1), a single second-order dynamic 

equation was developed as 

.. g. 1 
8+ [sm8 = m12T. 

Together with the initial conditions 8(tj) = 8j and 8(tj) = 8j, and the torque history 
the solution could be obtained. To convert this to state-space form, first define two 
independent state variables 

xdt) = 8(t) 

X2(t) = 8(t). 
(7.4) 

The state equations are then formed by taking the time derivative of Eq. (7.4) and 
expressing the resulting equations in terms of the states Xl (t) and X2(t) 

Xl (t) = X2(t) 

X2(t) = -f sin[xdt)] + ~L2 T(t}. 
(7.5) 

Now, there are two first-order equations instead of one second-order equation. The 
initial conditions for Eq. (7.5) would similarly become Xl(tj) = 8j and x2(h} = 8j • 
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One distinguishing feature,of a dynamic system is its order. For a system repre­
sented in state-space form, the order is simply the number of first-order differential 
equations. 

Later, in this chapter to assess stability, it will be necessary to consider state­
space trajectories. That is, a plot of the state variable values during the evolution 
of the state equations to general forcing functions and initial conditions. This is 
easy to visualize for second-order systems, since the trajectory is planar as shown 
by the example in Figure 7.3. For higher-order systems the concept is valid, but 
difficult to visualize. 

Figure 7.3. State-space trajectory 

7.2.1. State Nonlinearities 

A differential equation is linear if the state variables and their derivatives ap­
pear only to the first power, are not multiplied by other state variables, and do not 
appear as arguments of trigonometric functions. Some examples of state variables 
are 

RCL Circuit Xl = - RleXl - bX 2 LINEAR 
X2 = t Xl 

Large Motion Pendulum Xl = X2 NONLINEAR 
X2 = -~ sin(xd + r 

Van der Pol Oscillator Xl = X2 NONLINEAR. 
X2 = -Xl - X?X2 + ILX2 
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7.2.2. Equilibrium Points 

An equilibrium point is a point in state-space where the state derivatives are all 
zero when the input is zero. If a system has its initial condition at an equilibrium 
point, then it will not move from that point unless the input is changed from zero. 

Example 7.3. For a large motion pendulum and the system's state equations 

xdt) = X2(t) 

X2(t) = -f sin[xdt)] + ~t2 r(t), 

find the equilibrium points. 

Solution 
First, set the input, r(t) to zero. Next, set Xl (t) and X2(t) to zero and solve for 

XI(t) and X2(t) as 

XI(t) = X2(t) = 0 

X2(t) = -f sin[xI(t)] = O. 

From Eq. (7.6) we see that there are an infinite number of solutions, 

Xl (t) = 7r • n 

X2(t) = o. 

However, physically, there are just two 

n=0,±1,±2, ... 

Xl = X2 = 0, and 

shown graphically in Figure 7.4. 

TI 
Figure 7.4. Pendulum equilibrium points 

11 

(7.6) 

(7.7) 

For definition purposes, equilibrium points are typically used as operating points 
when designing linear and nonlinear control systems. Also, equilibrium points are 
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used as the beginning and ending points of input shaping profiles. Equilibrium 
points wjll be considered to occur at t = to and will be denoted as Xo, that is 

7.3. Stability 

The stability of a dynamic system is typically defined within the context of its 
equilibrium points. If a system has two equilibrium points, it may be that one 
equilibrium point is stable and the other equilibrium point is unstable. 

By definition, the equilibrium point Xo is stable if for all specified regions Rl 
about Xo there exists a corresponding region R2 about Xo such that if the initial 
condition state is within R2 , then the resulting state motion stays within Rl (see 
Figure 7.5). This type of stability, called stability in the sense of Lyapunov, is the 
basis of Lyapunov's direct method. Figure 7.6 graphically presents several types of 
stability. 

State 
T"'jectory 

--t--t--t-i*'----li-- x, 

Figure 7.5: Equilibrium point sta­
bility 

• 

Figure 7.6: Several stability ex­
amples 

7.3.1. Stability Determination - Lyapunov's Direct Method 

Before stating the mathematical aspects of this approach, two simple examples 
are presented. 

Example 7.4. Consider the parallel RLC circuit shown in Figure 7.7 with a state­
space representation 
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R 
v 

Figure 1.1. Parallel RLC circuit 

Is this system stable? 

Solution 
The first step towards assessing the stability of the circuit is to form the scalar, 

total energy function. It seems reasonable that if one can show that the total energy 
is always decreasing (when there is no input), then the system will approach a state 
of no motion (an equilibrium state) and is therefore stable. 

The total energy of the parallel RLC circuit is 

1 2 1 2 
E = 2CXt + 2Lx2' 

To determine if E is always decreasing, take its derivative with respect to time and 
substitute the state equations as needed. 

E = CXtXt + LX2X2 

= CXt ( - ;CXt - bX2) + LX2 (iXt) 

1 2 = -RXt 

(7.8) 

From Eq. (7.8) it is observed that E will always be negative as long as the resistance 
is positive, which it will be. Therefore, the system is expected to be stable. 

Example 1.5. Consider the nonlinear pendulum of Example 7.2. Its total energy 
is 

E = ~m1292 + mgl(l - cosB). (7.9) 
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Is this system stable? 

Solution 
Again, its time derivative is examined (assuming the input T is zero) as 

E = ml2 jj + mgl sin (} = O. 

Since the total energy is not decreasing, it is not clear whether either of the equi­
librium points are stable. 

7.3.2. Formal Statement of Lyapunov Stability 

Although the basis of Lyapunov's direct method for determining stability came 
from an energy argument, it was generalized to other functions (not just total en­
ergy). Before stating Lyapunov's stability conditions, a few definitions are required. 

Definition 7.1. A scalar function V(x) is globally positive definite if and only 
if V(xo) = 0, and 

V(x) > 0 Vx::j:. Xo. (7.10) 

This was certainly the case for the total energy function E derived for the parallel 
RLC circuit example considered earlier. A less restrictive definition is provided 
next by considering the requirement of Eq. (7.10) in some local region around an 
equilibrium point Xo. 

Definition 7.2. A scalar function V(x) is locally positive definite if and only if 
V(xo) = 0 and there exists a ball of radius ro about Xo (denoted as Bro) such that 
for any x E B ro , and 

V(x) > 0 Vx::j:. Xo. 

Of course, any function V(x) that is globally positive definite is also locally 
positive definite at all of its equilibrium points. It is important to note, so far 
the function V(x) can only be zero at the equilibrium points Xo. The next two 
definitions are similar to the previous two except the function V(x) will be allowed 
to be zero at points other than the equilibrium points Xo. 

Definition 7.3. A scalar function V(x) is globally positive semidefinite if and 
only if V(xo) = 0, and 

V(x) ~ 0 Vx::j:. Xo. 

Again, a less restrictive definition results when only a region around the equi­
librium points is considered. 
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Definition 7.4. A scalar function V(x) is locally positive semidefinite if and 
only if V(xo) = 0, and there exists a ball of radius TO about xo (denoted as Bra) 
such that for any x E Bra' and 

V(x) 2: 0 v x =I: xo· 

With these definitions in place, it is time to consider various types of Lyapunov 
stability conditions. 

7.3.3. Local Stability 

The equilibrium point Xo is stable if there exists a locally positive definite func­
tion V such that - V is locally positive semidefinite. 

7.3.4. Global Stability 

The equilibrium point Xo is globally stable if there exists a globally positive 
definite function V such that - V is globally positive semidefinite. 

7.3.5. Global Asymptotic Stability 

The equilibrium point Xo is globally asymptotically stable if there exists a glob­
ally positive definite function V such that - V is globally positive definite. 

Example 7.6. Describe the spring-mass system's stability. 

Solution 
The kinetic energy T, and potential energy V of the spring-mass system are 

T = ~mx2 
2 

1 )2 V = -mgx + 2k(~ + x 

9 
~=mk' 

which can be used with Lagrange's equations to derive the following equation of 
motion: 

mx + kx = u 

and transformed to the state variable equations gives 

Xl = X2 

. k 
X2 = --Xl +U, 

m 
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with the following equilibrium point: 

Xl = 0 

X2 = o. 

Pick the total energy as the Lyapunov function candidate, or 

v = ~mx2 + ~k(~ + x)2 - mgx 

1 .2 1 2 1 2 
= 2mx + 2k(~) + 2k(x) , 

and the time derivative of the Lyapunov function candidate is 

V = mxx + kxx 

= mx ( - ! x) + kxx 

=0. 

This system is therefore globally stable. 

Example 7.7. Describe the mass-spring-damper system's stability. 

Solution 

The equation of motion of the mass-spring-damper system is 

mx + eX + kx = O. 

Choose a Lyapunov function candidate with the equilibrium point Xo = Xo = 0 as 

Taking the time derivative gives 

V· ... k. =xx+ -xx 
m 

.(C. k) k. = x - -x - -x + -xx 
m m m 

= _':"'x2 < O. 
m 

Therefore, this system is globally, asymptotically stable. 
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7.3.6. Comments 

Two important comments regarding these stability conditions are worth noting. 
First, there is no universal method of selecting a Lyapunov function candidate V(x). 
Using a system's total energy is a good starting point, but this approach may not 
always work. Second, if the conditions above are not satisfied for the V(x) selected, 
it does not mean that the system is unstable. It only means that one still does not 
know because the Lyapunov criteria is only a sufficient condition for stability, not 
a necessary condition. There are, of course, two possibilities. One, the system is 
unstable or two your selection of V(x) was poor. The nonlinear pendulum example 
with two Lyapunov function candidates should help solidify these concepts. 

Example 7.S. Consider once again the large angle pendulum (see Eq. 7.5) with 
the equilibrium points of Eq. (7.7). Describe the system's stability. 

Solution 
Revisit the total energy function of Eq. (7.9) and obtain 

1 
V(x) = 2ml2x~ + mgl(l- cosxd. (7.11) 

It is clear that this choice of V(x) satisfies the conditions for being globally positive 
definite about the equilibrium point Xl = X2 = O. Note, it is not positive definite 
for the equilibrium point Xl = 1f. Next, construct the time derivative as 

that satisfies the condition for global stability (-V(x) is globally semidefinite). 
Therefore, the equilibrium point at Xl = X2 = 0 is globally stable. Physically, 
it means that one can find a range of initial conditions from which the system's 
motion, when it is released, will stay within a previously specified bound. 

To analyze the other equilibrium point (Xl = 1f), try a V(x) different from 
Eq. (7.11). For example, 

1 
V(x) = 2m12x~ + mgl(l + cosxd, (7.12) 

which is also globally positive definite about the new equilibrium point. Taking the 
time derivative gives 

V(x) = -2mglx2sinxl, 

but it does not satisfy any of the stability conditions. So, nothing is known about 
the stability of this eqUilibrium point except that the Lyapunov function candidate 
of Eq. (7.12) is not a good one to use. It turns out that the equilibrium point Xl = 1f 

is indeed unstable. 
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Summary of Lyapunov's direct method (a five step process): 

1. Derive the equations of motion. 

2. Transform to state-space representation. 

3. Choose a Lyapunov function candidate (start with the total energy). 

4. Analyze the Lyapunov function candidate. 

5. If stability conditions are indeterminate, return to Step 3, or give up. 

Having developed some nonlinear system stability analysis tools, it is time to 
consider nonlinear system controller design. 

7.4. Sliding Mode Control 

Although the control design methods for nonlinear systems are not as numerous 
as for linear systems, some useful techniques do exist. Sliding Mode Control (SMC) 
is one such example that provides a systematic way to choose a Lyapunov function 
candidate and the nonlinear system performance. In this section, SMC is developed 
and initially applied to second-order nonlinear systems3,4. Afterwards, it will be 
generalized to higher-order systems and tracking control. More detailed descrip­
tions, along with other nonlinear control approaches can be found in the references 
cited at the end of this chapter. 

SMC starts with the definition of a stable sliding surface in the system's n­
dimensional state-space and terminates at the equilibrium point of interest. Using 
Lyapunov's direct method will yield a control law that drives any initial state to 
the sliding surface. Once on the sliding surface, the control law drives the state 
trajectory to the equilibrium point (see Figure 7.8). Note, the equilibrium point 
can also be a reference trajectory or a series of equilibrium points. 

1--+--
Initial 
State Sliding 

Surface 

Figure 1.8. SMC graphical interpretation 
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7.4.1. SMC for Second-Order Systems 

Consider the nonlinear system 

ij = /(0,0) + u (7.13) 

where the function /(0,0) is continuous and nonlinear and the input is u. A stable 
sliding surface can be defined as 

s=O+wO 

where w is assumed to be a positive controller gain. The control law for tracking 
the sliding surface to the equilibrium point is found by enforcing the condition that 
the time rate of change of s is zero, or 

(7.14) 

Next, Eq. (7.13) can be substituted into Eq. (7.14), which allows one to solve for 
the input as 

u = - / - wO. 

Finally, a sign function is appended to the control law to accomplish the goal of 
moving the state trajectory to the sliding surface, or 

u = - / - wO - asgn(s). 

This controller is known as a regulator since the reference input is zero. 

Note 7.1. SMC is a way to use feedback linearization to convert the nonlinear 
control problem to an equivalent linear PD controller. 

7.4.2. Stability Assessment 

To determine the stability of the closed-loop system, one chooses a V(x) as 

(7.15) 

which is positive definite. Next, one takes the time derivative of Eq. (7.15), or 

v = ss = -s[asgn(s)] = -alsl 

which clearly satisfies the condition for global asymptotic stability as long as the 
controller design parameter a is positive. Note, ssgn(s) = lsi is defined as the 
absolute value of s. 
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Example 7.9. For DC motor driven, large angle pendulum, find the SMC control 
law. 

Solution 
Combine the differential equations for the two separate systems 

DC motor 

pendulum 

MO+KsinO=T 

(where M = ml2 and K = mig) to obtain a single, nonlinear differential equation 
relating motor voltage input E to pendulum rotation 0, or 

JmO + emO = BmE - (MO + K sinO) 

(Jm + M)O + emO + K sinO = BmE 

0+ CO + K sinO = BE. 

Control Law and Results 

Using the sliding mode control technique gives the control law as 

1 ( . ~ ) E = -B" [W - elo - KsinO - Asgn(s) 

where 

The details are left to the reader. 
The test case consists of an initial angular displacement 570 from the equilibrium 

point (vertically down, see Figure 7.9). The purpose of the controller is to bring 
the pendulum to the equilibrium point. Figures 7.10 and 7.11 show the simulation 
results for this case. 

7.4.3. Sliding Mode Control for Tracking Control 

In this section, the SMC approach is extended to multiple degree-of-freedom 
systems and to tracking control. 
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DC Motor 
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Figure 7.9. Simple pendulum controller with a DC motor 
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Figure 7.10: Uncontrolled simu­
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Figure 7.11: Controlled simula­
tion results 

x = F(x,x) + Bu 

5 =e+ We (7.16) 

where x is a m-dimensional vector of physical degrees-of-freedom, F is a m-dimen­
sional vector of nonlinear functions, B is a m x m-dimensional input weighting 
matrix, and u is a m-dimensional vector of inputs. The sliding surface 5 is also a 
m-dimensional vector, but is now described in terms of the error vector e = r - x. 
The m x m-dimensional matrix W is positive definite and r is am-dimensional 
reference input vector. 

The sliding phase control law is found as before, that is, by forming the time 
derivative of 5, and solving for u, or 
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Again, the sign function is appended to the control law to form 

u = B-1 [We - F + r + Asgn(s)) 

where 

sgn(s) = [sgn(sdsgn(s2) ... sgn(SmW 

and the m x m matrix A is diagonal and positive. 
To assess the closed stability, the Lyapunov function candidate is selected as 

and its time derivative is 

1 v= -sTs 
2 

v = _sT Asgn(s). 

Equation (7.17) can be expanded as 

v = -slAllsgn(sl - S2A22sgn(S2) - ... - smAmmsgn(sm) 

= -Allls11- A22Is21- ... - Ammlsml < 0 

(7.17) 

where Is;1 = sisgn(Si) and it is clear that the closed-loop system is asymptotically 
stable (Le., meets the Lyapunov conditions) which enables the controller to track 
the reference trajectory r(t). 

7.4.4. Sliding Mode Control for Systems with Parameter U n­
certainty 

Often there is some uncertainty in the parameters of a system dynamic model. 
H one knows the uncertainty bounds, then one can establish conditions on the 
controller design parameter A that will still guarantee global asymptotic stability. 
For ease of understanding, the following simple linear example demonstrates the 
approach. 

Example 7.10. Consider the general, second-order linear system 

•. . 2 2 
9 + 2(wn 9 + wn 9 = WnT (7.18) 

where the damping ratio ( is thought to be (0 with an error of A(, that is, 

and the goal of the controller is to track the reference input 9r • Establish conditions 
on the controller design parameter A. 
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Solution 
Similar to Section 7.4.3. the control law for T is 

(7.19) 

where (0 has been used instead of the actual (, and W and A are the controller design 
parameters. In the process of assessing stability, a condition on A will arise that 
guarantees closed loop stability in the presence of the (uncertainty. Specifically, 
one uses the Lyapunov candidate function 

1 V == _s2 
2 

and takes its time derivative, or 

11 == S8 == s(Br - B + We), (7.20) 

which upon substitution of Eq. (7.18) into Eq. (7.20) and using the actual value of 
the damping ratio produces 

and substituting the control law Eq. (7.19) gives 

== s[2wn(}~( - Asgn(s)]. (7.21) 

Expanding the right side of Eq. (7.21) gives a new expression for 11 as 

which produces the desired inequality condition. Next, one solves for the control 
design parameter A 

A > 2~(wn(}sgn(s), 

with the worst case being 

This approach can be applied equally well to nonlinear systems with uncertain 
parameters, but the conditions for stability on A may be more complicated. 

7.4.5. Augmented Sliding Mode Control 

Now, it is time to extend the SMC method5 •6 to handle flexible systems where 
the number of modes to be controlled may be greater than the number of available 
actuators. In the case of a flexible system with rigid body actuators only, the 
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controller can be shown to be globally, asymptotically stable in the rigid body 
motion while adding damping to the measured flexible body modes. This technique 
is useful for harmonic drives and large gear ratios where the flexible body modes 
cannot be measured by the encoders and tachometers. 

The primary motivation for this technique is its application to flexible manipula­
tors. Typically, rigid manipulators have as many actuators as modes. SMC has been 
shown to work well for the rigid manipulator case. In theory it will work equally 
well for flexible systems if there exist as many actuators as modes to be controlled. 
The goal is to increase the damping of the flexible modes without adding additional 
actuators, but additional sensors (i.e., strain gauges) are required to measure the 
flexible modes. 

For a single flexible link robot modeled by m flexible modes, the nonlinear 
equations of motion are given by 

x = F(x,x) + BU (7.22) 

where the control U is a scalar and the input weighting coefficient B is a (m+ 1) x 1 
vector. The (m + 1) x 1 vector of nonlinear functions F is arranged such that Nl is 
the nonlinear rigid body equation of motion and N2 through Nm+l are the nonlinear 
flexible body equations of motion. The vector x contains the quantities 

where B is the hub rotation and qk is the kth generalized flexible body coordinate. 
The rotational equation of motion is extracted from Eq. (7.22) as 

The sliding surface is chosen as 

s = W (Be + wT qe) + (Oe + wT cIe) = 0 

Be = B - Bre! 

qe = q - qre! 

(7.23) 

(7.24) 

where Wand w are weighting coefficients (W being positive), q is the m x 1 vector 
of deformation generalized coordinates. 

The objective of augmented SMC is to force the motion to follow that of the 
sliding surface. For this reason, the equilibrium point at the origin of s must be 
shown to be stable. This is done by using Lyapunov's direct method. A Lyapunov 
function candidate is 

(7.25) 
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The time derivative of the sliding surface is 

S = W (8e + wT <Ie) + (Oe + wTqe) = O. 

Solving for the acceleration and substituting them into V of Eq. (7.25) gives 

. (. -T' )T(. -T.) V = - W Be + W qe Be + W qe . (7.26) 

Since Eq. (7.26) is negative, the equilibrium point at the origin of Eq. (7.24) is 
globally asymptotically stable. 

The sliding phase control is found by enforcing a condition of no motion off the 
sliding surface, or 

s = W (Oe + wT <Ie) + (Oe + wTqe) = O. (7.27) 

Substituting Eq. (7.23) into Eq. (7.27) gives the sliding phase control law as 

B 1U = -W (8e + wT <Ie) - N1 + Ore! - wTqe. 

Treating the weighted sum of generalized accelerations as a disturbance yields 
in the new control law as 

(7.28) 

where A is a positive constant. Including the modal velocities in the sliding surface 
ofEq. (7.24) gives a control that reacts against this velocity, thus producing damping 
in the included modes. Substituting Eq. (7.28) into Eq. (7.23) gives the closed loop 
equation of motion for Be as 

Oe = -W (Oe + wT <Ie) - Asgn(s}. 

This also has an equilibrium point at the origin. To check the validity of this 
control for the reaching phase, i.e., to check the stability of the equilibrium point a 
positive definite Lyapunov function candidate is 

The reaching phase control law must satisfy 

V = s (W (Oe + wT <Ie) + N1 + B1 U - Ore! + wT qe) < O. (7.29) 

Substituting Eq. (7.28) into Eq. (7.29) results in 

V = S [WTqe - Asgn(s}] . 
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This results in a constraint on A to ensure stability, or 

A I-T" I > w qe . 

Next, this method's robustness to model uncertainty, unmodeled dynamics, and 
input disturbances is examined. 

Let the true model of the system be 

F =F+AF 

where AF is a vector function describing differences between the true system and 
its model. These include parameter uncertainty and effects on the truncated system 
due to unmodeled dynamics. 

The true system is assumed to satisfy the equation of motion given by 

x=F+BU+D 

where D is a vector of input disturbances. 
For the sliding surface of Eq. (7.24) and the control law of Eq. (7.28), A must 

satisfy 

A> m(l=!; IANI + D + wTqel 
x,x,x 

for stability. This shows that the bound on the weighted sum of generalized acceler­
ations, unmodeled dynamics, and input disturbances is required to ensure stability. 

The preceding discussion was concerned with the criteria for ensuring stability 
of the closed-loop system with no regard to performance. The control engineer 
can be defined system performance by a nonlinear cost function J. The controller 
parameters are then chosen to minimize J while satisfying the inequality constraints 
described above. The formal statement of this optimal control problem follows. 

For the system given by Eq. (7.22), find the parameters W, w, and A of the 
control law of Eq. (7.28) and Eq. (7.24) subject to the inequality constraints 

W>O 

A> m(l=!; IANI + D +wTq.l, 
x,x,x 

which minimize the given cost function J. 
This procedure enables the control designer to define the optimal system perfor­

mance that meets the nonlinear stability requirements. The preceding discussions 
on numerical optimization (see Chapter 5) including homotopy (see Chapter 4) can 
be directly applied to this problem. 

7.4.6. Output Feedback SMC 

The SMC method can be extended further7 to handle flexible robots with direct­
drive actuators. In this case, the encoders and tachometers see or measure both the 



7.4. SLIDING MODE CONTROL 297 

rigid and flexible degrees-of-freedom. These types of systems can be described by 

x = F(x, x) + B(x)U 
y=Cx (7.30) 

where x is a n x 1 vector of degrees-of-freedom, F(x, x) is a n x 1 vector of nonlinear 
functions of the x and x, B(x) is a n x m matrix of control weighting coefficients 
that in general may be functions of x, U is a m x 1 vector of system inputs, y is a 
r x 1 vector of measurable outputs, and C is a r x n matrix relating state variables 
to measurable outputs. 

The sliding surfaces are designed in the output space, thus implying that sensor 
output regulation or tracking will yield the desired system motion. The sliding 
surface may be chosen as 

(7.31) 

where Y r is the desired sensor output time history and W is a positive definite 
matrix with real valued elements. 

The equivalent control is found by enforcing a condition of stationarity on the 
sliding surface, or 

s = W(y - Yr) + (y - Yr) = O. (7.32) 

Substituting Eq. (7.30) into Eq. (7.32) produces 

CB(x)U = -CF(x,:ic) + Yr - W(y - Yr)' (7.33) 

The control weighting matrix B(x), and the vector of nonlinear terms F(x,:ic) are 
approximated by B(x) and F(x, i) ,respectively where 

x= C·y 

CT(CCT)-l 

C· = C-1 

(CTC)-lCT 

Eq. (7.33) may now be written as 

n>r 

n=r 

n<r 

CB(x)U = -CF(x,i) + Yr - W(y - Yr) - Asgn(s) 

(7.34) 

where A is a r x r constant matrix. The Asgn(s) terms is added to drive the output 
to the stable sliding surface of Eq. (7.31). The control U is (for r = m) 

U = [CB(xW1[-CF(x,i) + Yr - W(y - Yr) - Asgn(s)J. (7.35) 

Stability is examined by using Lyapunov's direct method with a Lyapunov function 
candidate as 
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The requirement for stability is 

ST {W(y - Yr) + CF(x,x) - Yr - CB(x)[CB(x)tlCF(x,i) + 

CB(x)[CB(x)tlYr - CB(x)[CB(x)tlW(y - Yr) -

CB(x)[CB(x)tl Asgn(s) } < O. (7.36) 

Establishing stability of the closed-loop system based on Eq. (7.36) when the input 
weighting matrix is a function of all the degrees-of-freedom is a formidable task. 
Fortunately, many real systems have special forms of B(x) that do facilitate a proof 
of stability. To this end, the input weighting matrix is written as a combination of 
the three matrices 

B(x) = Bo + B,,(y) + Bres(x) 

where Bo is a constant matrix, B,,(y) is a matrix whose elements are only a function 
of the measurable outputs y, and Bres(x) is a matrix whose elements are only a 
function of the degrees-of-freedom different from y. Clearly, if Bres(x) is zero or 
negligible, then there is no approximation in B(x) and Eq. (7.36) simplifies to 

sT[-Asgn(s) + C{F(x,x) - F(x,i)}] < 0, 

which is valid for A diagonal with elements satisfying 

Aii > IIC{F(x,x) - F(x,i)}11· (7.37) 

Again, the vector F(x, x) may be composed of a constant part, a y only part, and 
a part dependent only on the degrees-of-freedom different from y. Exploiting these 
relationships during control law implementation may result in the trivial stability 
constraint of A being strictly negative. 

Example 7.11. Position regulation of two masses 
This example presents the basic design procedure by using a system that exhibits 
both rigid body and flexible body motions. The system under consideration consists 
of two masses connected by a nonlinear hardening spring, and a linear damper. A 
force acting on the first mass is the sole input to the system. The system is shown 
in Figure 7.12 where Zl and Z2 are the displacements of the individual masses ml 

and m2. 
The nonlinear hardening spring obeys the following relationship: 

Fspring = K1(Zl - Z2) + Knl(Zl - Z2? 

where KI and Knl are the linear and nonlinear spring constants, respectively. The 
damping coefficient is denoted by C and the force input to the system by F. The 
particular values used for this example are given in Table 7.1. 
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Figure 7.12. Two mass system connected by a nonlinear spring and a linear damper 

Table 7.1. Physical parameters used for the two mass system of Example 7.11 

Symbol Units Value 
ml kg 1.0 
m2 kg 0.1 
C kg/s 0.2 
K/ kg/sis 8.0 
Kn/ kg/(m2s2) 50.0 

The control objective is to move the center of mass of the system 

1 
Xl = 2(Zl + Z2) 

to a specified location while suppressing the reciprocating motion of the entire 
system 

X2 = (Zl - Z2) 

where the only measurable quantities are the position and velocity of the system 
center of mass, Xl and Xl. 

Solution 
By using the rigid body and flexible body coordinates Xl and X2, the equations 

of motion may be written in the form of Eq. (7.30) where 

[_! ~~m2 - mlj (K/X2 + Kn/x~ + CX2)j] F(x,x) = mlm2 
1 m2 + ml ( 3 C·) -2" K/X2 + Kn/X2 + X2 

mlm2 

B= 2~1 m 
C = [1 0]. 

The output feedback sliding mode control (OFSMC) law is given by Eq. (7.31) 
and Eq. (7.35) with the stability constraint of Eq. (7.37). Since n = 2 and r = 1, 
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the vector F(x, x) must be approximated based on the measurable output y and y 
by using the pseudoinverse of Eq. (7.34) as 

x==[~]y 

x == [~] y. 

In this special case, the terms F(X2' X2) are not dependent on the measured quantity 
Xl, therefore the approximation of F (X2' X2) is exactly zero. 

The output feedback sliding mode controller is compared to a simple PD com­
pensator 

where Kp and Kd are the proportional and derivative error gains, respectively. The 
PD controller gains and the OFSMC gains Wand A were chosen to limit the peak 
overshoot to 5.5%. These gains are given in Table 7.2. 

Table 7.2: Controller parameters for OFSMC and PD compensation of the two 
mass system of Example 7.11 

Symbol Units Value 
A l/sec 0.4 
W l/sec 1.9 
Kp kg/s/s 5.0 
Kd kg/s 7.0 

Although both control schemes gave similar performance in tracking a reference 
command, the OFSMC exhibited enhanced disturbance accommodation character­
istics. This is shown by the closed-loop performance of the system in response to 
an initial velocity applied to the second mass. The motion of the system center of 
mass Xl and the measure of flexible body motion X2 are shown in Figure 7.13 and 
Figure 7.14, respectively. 

7.4.7. Control-Structure-Actuator Interaction 

It is time to become specific about the applications of output feedback and 
augmented SMC methods8 ,9. Standard servo systems typically provide actuator 
position and velocity feedback. An ideal control design would use only servo sensors 
to achieve accurate position control while attenuating any residual vibrations. If 
structural sensors were also included, a structural sensor failure would still result in 
adequate performance. If the vibration of the structure can be sensed at the slewing 



7.4. SLIDING MODE CONTROL 

o.oll r, --~--

10 
Time (sec) 

~.i'MC I 

Il 20 

Figure 7.13: Closed-loop response of 
system cg to a.n initial velocity distur­
ba.nce on mass 2 

301 

10.0r---------- ~ 
,.----- , 

~6SMC I I 

.IO.OO!:----,- 10 
Time(stC) 

1 

IS 

Figure 7.14: Closed-loop response of 
relative motion of the masses to a.n ini­
tial velocity disturba.nce on mass 2 

axis, then both the rigid and flexible displacements will interact. This interaction 
occurs since vibration in the structure would cause rotation of the slewing axis. 
By taking advantage of the interaction between the actuator and the structure, 
vibration attentuation of the flexible modes can be achieved by using only the 
angular position and velocity sensors. The sliding surface for conventional SMC 
can be expressed as 

(7.38) 

where the variables have been previously defined (see Eq. 7.16). For flexible systems, 
such as, a slewing flexible link, the error would be redefined as 

e = ()REF _ (() + 8y~; t)) (7.39) 

where ()REF is the reference trajectory, () is the servo slewing angle, and the last term 
is the angular deflection of the flexible link evaluated at the root of the hub. The 
angular deflection represents the interaction between the actuator and the flexible 
link. When designing a SMC system (following the procedures of Section 7.4.6.) 
the goal is to suppress the filtered errors represented by sliding surfaces. Embedded 
within the definition are the flexible link deflections, which is equivalent to output 
feedback. The conventional SMC would not only provide robust tracking, but would 
automatically include the vibration suppression due to the inherent interaction. 
Typically, this is the case for direct-drive servo systems. 

For gear-driven servo systems the effects of dead band on the flexible structure 
must be considered. If one considers a system with a harmonic drive or other 
gearbox, then these gear trains amplify the torque available from the motor and 
reduce the effect of the structure on the motor. Additionally, such devices are not 
ideal and they require a certain amount of torque simply to move the gearing. Fast 
slewing systems are often geared and have an inherent amount of dead band. In many 
cases, the gear-train dead band reduces the interaction between the servo actuator 
and the structure. This condition suggests an ideal solution using augmented SMC. 
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In the case of the slewing flexible link, the flexible link deflections would not 
interact with the hub servo system. The error would simply be 

e = 8REF -8. 

Using conventional SMC (with hub sensors only) results in robust tracking, but 
does not guarantee any suppression of the flexible link deflections. For a given servo 
tracking scenario, the hub may follow the trajectory perfectly while the flexible link 
may result in large deflections and residual oscillations. The use of structural sensors 
along with hub sensors would suppress the deflections by choosing an augmented 
sliding surface such as 

s = W (e + WT e", ) + (e + WT e'", ) (7.40) 

where W is an additional gain and e", is a strain gauge strategically placed along 
the flexible link. For a flexible link in bending, the longitudinal centroidal axis 
becomes an elastic curve. In this case, the strain of the fibers are proportional to 
the product of the distance from the neutral surface and the curvature. This is 
defined mathematically as 

where Zag is the distance from the neutral axis to the strain gauge. Note, this 
structural sensor summarizes information about the many vibrational modes of 
the flexible link. By minimizing the sliding surface given by Eq. (7.40) with an 
augmented SMC architecture, one would provide both robust tracking and vibration 
suppression of the flexible link deflections. For these classes of flexible systems with 
gear-driven servo systems, augmented SMC offers an advantage over conventional 
control systems. 

One last topic needs to be discussed when implementing SMC on flexible robots. 
The control term -Asgn(s) compromises the SMC controller's robustness with 
respect to unmodeled, high frequency dynamics. Specifically, the high frequency 
content of this term could generate spill-over into the unmodeled flexible modes 
and create chattering. One way to eliminate this problem is to replace this term 
with -A[atan(s)], which smooths the switching behavior and eliminates the high 
frequency content. 

7.5. Chapter 7 Summary 

This chapter introduced control techniques to deal with nonlinear systems. 
State-space representations were reviewed and stability concepts based on Lya­
punov's direct method were introduced. A systematic method based on SMC was 
developed for nonlinear systems. This method was developed for both regulator 
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and tracking control of multiple degree-of-freedom systems. How SMC accom­
modates parameter uncertainty was also shown. Two important variations that 
specifically address flexible systems were developed. The first introduced the con­
cept of augmented SMC in which the sliding surface is designed to suppress the 
additional degrees-of-freedom introduced by flexible systems. Control of harmonic 
drive or high gear ratio systems benefit from this technique. The second variation 
introduced output feedback SMC, which facilitates the design of the sliding mode 
controller based exclusively on output feedback variables and is used to control 
direct-drive systems. Stability was proven for both methods by using Lyapunov's 
direct method. The last section discussed the use of output feedback SMC and aug­
mented SMC for both direct-drive and gear-driven servo systems with flexible links 
as aides in addressing control-structure-actuator interaction. In the final chapter 
(see Chapter 8) the SMC architecture is extended to adaptive control. 
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7.7. Chapter 7 Problems 

Homework 7.1. From Sections 7.2., and 7.3. 
Find the equilibrium points and determine stability for the three dynamic systems. 
Determine whether each system is asymptotically stable, global asymptotically sta-
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ble, or? 

a. :i; = -lOx3 + sin2 x 

b. x=sinx+5x2 

c. x + 3:i;5 + 4x3 = x 2 cos2 3x 

Homework 7.2. From Section 7.4. 
Validate the sliding mode control design of Example 7.9 for the DC motor driven, 
large angle pendulum system. Develop a numerical simulation and implement the 
dynamic equations of motion, sliding surface, sliding mode control law , and stability. 
Plot the angular position, angular rate, and motor voltage requirement. 

Homework 7.3. From Section 7.4. 
Design and simulate a sliding mode control for a slewing horizontal link. Base your 
dynamic model on Example 3.7. Retain only a single mode. Use L = 10, EI = 
1.4e4, and p = 1.2. Select controller gains for a critically damped response. Plot 
angular position, tip deflections and torque. 

Homework 7.4. From Section 7.4.3. 
Given the following 2nd order system transfer function: 

8 w2 

= 8e S2 + 2(ws + w2 

with 

design a sliding mode controller such that the system output 8(t) will track the 
reference input angle history 8ref(t). The controller should have the form 

Homework 7.5. From Section 7.4.4. 
For the transfer function presented in Homework 7.4, introduce the following un­
certainty in (: 

(= (0 +~(. 

Derive the sliding mode control law based on the model. What additional closed­
loop stability condition is required? Hint: use the Lyapunov stability criterion. 



Chapter 8 

Adaptive Sliding Mode Control 

8.1. Introduction 

Traditionally, adaptive control is applied to dynamic systems that have constant 
or slowly-varying, uncertain or unknown parameters, such as, manipulator payloads. 
In the presence of changing plant dynamics, adaptive control design inherently 
adjusts control system parameters. Adaptive SMC is a specialized form of adaptive 
control algorithms that falls into the category of robust adaptive control design. 
A term is included in the control law development that ensures stability in the 
presence of disturbances, unmodeled dynamics, and modeling inaccuracies. 

Sources of model imprecision l come from actual uncertainty or unknown plant 
parameters, and intentional simplification of system dynamics, such as, modeling 
nonlinear phenomena (like friction) as linear, or neglecting structural modes in a 
predominately rigid mechanical system. Modeling inaccuracies can be categorized 
into two types as follows: 

1. Structured or parametric uncertainties including modeling inaccuracies. 

2. Unstructured uncertainties, or unmodeled dynamics (underestimation of sys­
tem order). 

Two approaches dealing with modeling inaccuracies are robust control, such as, 
SMC and adaptive control. In the following adaptive control developmentl - 4 , these 
two methods are merged. 

Adaptive control development and application spans many decades and remains 
a major interest of the controls engineer. The concept of adapting to unknown 
environments is an attraction due to its improved performance over a larger oper­
ating regime. Several improvements to earlier shortcomings (persistent excitation 
and slowly varying parameters) make adaptive control a serious contender over 
traditional and other nonlinear control techniques. A correctly designed adaptive 
controller may provide faster transient decay while using the same control effort as 
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conventional control systems (e.g., PD, and PID). One example involving an adap­
tive vibration isolation system for flexible structures5 reported a 30% reduction in 
control effort over PID control with essentially the same performance. 

In this chapter, an adaptive control architecture based on an extension of the 
SMC approach is developed. The intent is to provide a natural enhancement to the 
material presented in Chapter 7 and provide adaptive control algorithm examples. 
Adaptive control is one alternative to achieve explicit compensation of large param­
eter variations in the control law development. A priori knowledge of the structure 
of the dynamic system equations of motion is required. This is normally the case 
for both rigid and flexible manipulator systems. The development is limited to a 
specific adaptive control architecture that falls within the robust adaptive control 
family of controllers. There are many adaptive control schemes found in the lit­
erature that provide broader developments for dynamical systems. One resource3 

contains an excellent review (of many) of the most popular adaptive control algo­
rithms. Most recently, another resource6 introduced (from the theoretical aspect of 
adaptive control) a novel methodology that systematically constructs both feedback 
control laws and their corresponding Lyapunov functions. These authors introduce 
a recursive methodology, called backstepping. This methodology systematically 
constructs both feedback control laws and their corresponding Lyapunov functions. 
Global stability and tracking are automatically built into the nonlinear system. 
Other conventional adaptive control techniques rely on linearization methods that 
may cancel some of the useful properties associated with the nonlinearities. The 
interested reader is encouraged to explore the literature6 - 15 for the latest develop­
ments in adaptive control algorithms and their applications to flexible manipulator 
systems. 

8.2. Adaptive Sliding Mode Control 

The class of systems considered have the form 

Mi + N(x,x) = Bu (8.1) 

where M is a n x n constant matrix, x is a n x 1 state vector, N(x,x) is a n xl 
vector, u is a n x 1 vector of inputs, and B is a n x n weighting matrix. These 
dynamic equations possess the linear in the parameters property2. Since some or 
all of the parameters may be unknown, this is important. Thus, the dynamics are 
linear in the unknown terms. This property is expressed as 

Mi + N(x, x) = Y(x, x, i)<p (8.2) 

where <p is the parameter vector of unknown terms, and Y(x, x, i) is a known matrix 
of robot functions that depend on joint variables, velocities, and accelerations. Solve 
Eq. (8.1) for the accelerations as 

i = M-1 [Bu - N(x, x)]. (8.3) 
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Define the tracking sliding surface as 

s = ir - i + W(Xr - x) (8.4) 

where W is an n x n positive definite constant matrix. Take the derivative of 
Eq. (8.4) and equate to zero, or 

S = xr - X + Weir - i) = o. (8.5) 

Substitute Eq. (8.3) for the acceleration to obtain 

-M-1Bu + M-1N + xr + Weir - i) = o. 

Solve for the equivalent control as 

Bu = M(xr + Weir - i)) + N. i.6) 

Add the term Asgn(s), or 

Bu = Bu + Asgn(s). 

Later, it will be shown that this term ensures stability. Expand Eq. (8.6) as 

Bu = M(xr + Weir - i)) + N + Asgn(s). (8.7) 

Substitute Eq. (8.7) (the control law) into Eq. (8.3) to obtain 

x = M-1 [M(Xr + Weir - i)) - M(xr + Weir - i)) 

+ M(xr + Weir - i)) + N + Asgn(s) - N] 

where the actual mass matrix is multiplied by the command acceleration, and added 
or subtracted to create a mass matrix parameter error term15 as 

x = M-1 [(M - M)(xr + Weir - i)) + (N - N) + Asgn(s)] 

+ (xr + Weir - i)). (8.8) 

For stability investigations and to determine the adaptation update equations, 
the following Lyapunov function candidate is suggested1 ,2; 

(8.9) 

where!p = cp - rp and r- 1 is a n x n positive definite, symmetric, constant matrix. 
Since V ::; 0 for stability, take the derivative of Eq. (8.9) to obtain 

(8.10) 
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Substitute Eq. (8.8) into Eq. (8.5) and the result into Eq. (8.10) as 

v = sTM{ xr + W(xr-x)-M-1 [(M-M)(Xr + W(xr-x))+(N -N)+Asgn(s)] 

- (xr + W(xr - x)) } + iPTr-1iP. (8.11) 

Simplifying gives 

V='< sT [(M - M)(xr + W(xr - x)) + (N - N) - Asgn(s)] + iPTr-1iP. (8.12) 

Use the linear in parameter~ property of Eq. (8.2) to introduce the following varia­
tion: 

Substituting Eq. (8.13) into Eq. (8.12) gives 

V = sT [Y(x, x, x r , xr , xr)iP - Asgn(s)] + iPTr-1iP, 

and regrouping yields 

(8.14) 

Take the transpose of the middle term in Eq. (8.14) and condense as 

(8.15) 

For an A selected as positive definite, the first term in Eq. (8.15) is negative definite. 
Determine the adaptation terms and guarantee stability by setting the term inside 
the bracket of Eq. (8.15) to zero, or 

(8.16) 

Solve Eq. (8.16) for the adaptive update equations as 

(8.17) 

where iP = cp - rp, and cp = constant. 

8.3. Examples 

Two examples are developed to show the adaptive SMC algorithm implementa­
tion and performance. 
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Example 8.1. DC motor driven, large angle pendulum system 

This discussion applies adaptive SMC to Example 7.9. The combined equations 
of motion for the dynamic system are 

where Mtot = Jrn + M. The ern8 is neglected because it did not substantially 
contribute to the performance of the adaptive controller. Solve for the angular 
acceleration as 

(8.18) 

The stable tracking sliding surface is defined as 

s = 8r - 8 + W (Or - 0) (8.19) 

where W is a positive definite controller gain. Solve for the control law by taking 
the derivative of Eq. (8.19) and equating to zero, or 

(8.20) 

Substitute Eq. (8.18) into Eq. (8.20) to obtain 

Brn E KsinO 0" W(O' 0')-0 ---+--+ r+ r- -. 
Mtot Mtot 

Solve for the approximate control law as 

(8.21) 

A robustifying term is added to satisfy the sliding condition, or 

BrnE = BrnE + Asgn(s). (8.22) 

Substitute Eq. (8.21) into Eq. (8.22) 

BrnE = R sinO + Mtot (Or + W(8r - 8)) + Asgn(s). (8.23) 

Update Eq. (8.18) by substituting Eq. (8.22) (the control law), and add/subtract 
the mass times the effective control acceleration term to obtain 

0= Mt-;,i [Mtot(Or + W(8r - 8)) - Mtot(Or + W(8r - 8)) + Mtot(Or + W(8r - 8)) 

+ R sin 0 + Asgn(s) - K sin 0]. 
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To verify stability and determine the adaptive control laws, the following Lyapunov 
function candidate is proposed: 

Take the derivative, or 

V I TM 1_Tr-1-= 2s totS + 21P IP· 

Make substitutions and group terms as 

v = sT Mtot { (9r + W(8r - 8)) - Mt-;;i[ (Mtot - Mtot ) (9r + W(8r - 8)) 

+ (R - K) sin 8 + Asgn(s) + Mtot (9r + W(8r - 8)))} + iPTr-1~. 

Simplify and obtain 

. T -.. .. ~. T -T -1"-
V = s {(Mtot-Mtot)(8r+W(8r-8))+(K -K)sm8}-s Asgn(s)+1P r IP· 

Introduce the parameterization partitions and expand the last term as 

V = sTY1<p1 + sTY2<p2 - sT Asgn(s) + <pr 1i1<p1 + <pr 1:;1<p2 

Grouping like parameterization terms yields 

where 

V· TA () -T[VT -1'-] -T[VT -1'-] = -s sgn s + 1P1 II S + 11 'PI + 'P2 I2 S + 12 'P2 

Yi<P1 = (9r + W(8r - 8)) (Mtot - Mtot ) 

Y2<P2 = sin 8 (K - R). 

(8.24) 

Note, <PI = (Mtot - Mtot ) and <P2 = (K - R) are the parameter vector compo­
nents. 

The goal is to achieve Lyapunov stability or V $ O. For A > 0, the first term of 
Eq. (8.24) meets these conditions. Setting the remaining bracketed terms to zero 
will determine the adaptation update equations and meet the Lyapunov stability 
condition. For the bracketed terms the result is 

M tot = 11(9r + W(8r - 8))s 

R = 12 sin8s 

where 11,12 are positive adaptive control gains. 

(8.25) 

(8.26) 
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In summary the sliding surface is given as 

s = iJr - iJ + W(8r - 8). 

The adaptive SMC law is 

where the adaptive control parameter update equations are Eq. (8.25) and 
Eq. (8.26). 

Control laws that satisfy the sliding condition lead to perfect tracking in the 
presence of model uncertainty. The control laws are discontinuous across the surface 
s(t) leading, in practice, to control chattering l . Chattering is highly undesirable as 
it leads to extremely high control actuation that may cause the excitation of the 
high-frequency dynamics that were neglected in the modeling step. The switching 
control law must change to eliminate chattering . 

Note, any vector function satisfying sUn(s) = sun [f(s)] when added to the con­
trollaw will result in asymptotically stable reaching motion3. The high-frequency 
content of the SUn(s) function could excite unmodeled dynamics. The sgn function 
can be smoothed to alleviate that phenomenon. By proper selection of the smoothed 
function the controller could be made asymptotically stable. In this example and 
Example 8.2, the sgn(s) function is replaced with the hyperbolic tangent function 
tanh((3s). The steepness ofthe slope is adjusted with the coefficient (3. 

A numerical simulation study was performed with the physical parameters given 
in Table 8.1. Both adaptive sliding mode control (ASMC) and SMC are compared 
to show performance benefits. 

Table 8.1. Example 8.1 physical parameters 

M tot 

0.0529 

K 
N m 

rad 

0.75 

N m 
Volt 

0.2026 

Several test cases were investigated. In the first case, a SMC with low gains 
is used. In the second case, ASMC is used. In the third case, the sliding mode 
controller gains are increased. The controller gains for each case are shown in 
Table 8.2. For all cases the parameters are assumed to be poorly known (within 
only 10% of their actual values). For all three cases, the angular positions and 
velocities are shown in Figure 8.1. The voltage requirements are shown in Figure 8.2 
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Table 8.2. Controller simulation gains 

CASE Legend W A f3 71 72 73 
1 Low Gain SMC 2 0.1 10 0 0 0 
2 ASMC 2 0.1 10 0.1 0.1 0.1 
3 High Gain SMC 2 2 10 0 0 0 

(left plot). The parameter estimates for the ASMC are shown for mass and stiffness 
estimates in Figure 8.2 (right plot). 

Note, in terms of reducing the position response to zero while minimizing peak 
control voltage, the ASMC showed the best performance. For SMC, the A gain must 
be greater than the difference in parametric uncertainties. Thus, there is a potential 
for noise to creep into the system as this error grows with increasing A. A large 
A is not required with the ASMC as the adaptive portion cancels the parametric 
uncertainties. Consequently, reasonably less control authority is required to achieve 
the same or better performance (see the voltage responses in Figure 8.2). 

Furthermore, the ASMC is not susceptible to the SMC requirements of high 
controller gains. However, more complexity during implementation is required for 
the ASMC. Theoretically, it has been shown2 that the tracking error is asymp­
totically stable and the parameter estimates are bounded. Figure 8.2 (right plot) 
reveals that the parameter adaptation law does not require convergence to the 
actual parameters 1 • The adaptation algorithm converges to values that help to 
asmptotically drive the tracking error to zero. 
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6 ." 0 '''; 

--~~ --
.e 
:; " ;; 
21'-0.5 " < 

-10 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 
TIme (sec) TIme (sec) 

Figure 8.1. Adaptive SMC and SMC angular position and rate responses 

Example 8.2. Slewing flexible link4 

For the planar rotating beam of this example, the dynamic equations of mo­
tion were developed by using the methods of quadratic modes. The mathematical 
model was created by applying the methodology outlined in Chapter 3, the flexible 
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Figure 8.2. Motor voltage requirements and adaptive estimate responses 

robot dynamic modeling chapter. A numerical simulation model was constructed 
by utilizing the MATLAB® simulation environment. By incorporating the numer­
ical optimization techniques developed in Chapter 2 and Chapter 5, the simulation 
model was calibrated with actual hardware. From the calibrated model, numerical 
predictions were generated. The predictions were experimentally validated. 

From the Section 3.3. developments, the rotation equation of motion was deter­
mined as 

where all the rigid inertial contributions are defined as, 

Mrr = hUb + ~mL3 + mrL2 + mr2 L + Mtip(r + L)2 

inl = ml + Mtipc5{x - L) 

(8.27) 

and where ml is the mass per unit length, and 150 is the Dirac delta function. 
Without any loss of generality, the effects of friction F(O,iJ) were added into 

Eq. (8.27). A simple model that includes both viscous, and dry or Coulomb friction 
is defined as 

where Cd! is the Coulomb friction constant and Bul is the viscous friction constant. 
Based on Eq. (8.27) (the structural rotation expression) an adaptive sliding 

mode controller was designed. Only the linear friction term is retained to obtain 
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One can treat the flexible degree-of-freedom inertial acceleration effect as a torque 
disturbance, or 

T = MrrD + Bvil + Td. 

Solve for the angular acceleration to obtain 

.. 1[ .] 1[ .] 8 = M;" T - B v/8 - Td = M;" Bv. - B v/8 - Td • (8.28) 

Define the stable tracking sliding surface as 

s = 8r - 8 + W(8r - 8) (8.29) 

where W is a positive definite controller gain. Take the derivative and enforce a 
condition of stationarity as 

(8.30) 

Substituting Eq. (8.28) into Eq. (8.30) and ignoring the torque disturbance Td gives 
.. -1 -1' .. 
8r - Mrr Bv. + Mrr B v /8 + W(8r - 8) = O. (8.31) 

Solve for the best approximate control law as 

Bv. = T = Mrr (Dr + W(8r - 8)) + Bv/8. 

To satisfy the sliding condition and compensate for external disturbances as well as 
uncertainty in the dynamics, a robust term is added, or 

T = T + Asgn(s), 

= Mrr (Dr + W(8r - 8)) + Bv/8 + Asgn(s). (8.32) 

By substituting Eq. (8.32) into Eq. (8.28) and following the steps outlined in Sec­
tion 8.2. gives 

D = M;,.1 [(Mrr - Mrr)(Dr + W(8r - 8)) + (Bv/ - Bv/)8 + Asgn(s) - Td] 

+ (Dr + W(8r - 8)). (8.33) 

Verify stability and determine the parameter adaptive control laws by choosing 
a Lyapunov function candidate as 

V-!M 2 !-Tr-1-- 2 rrS + 2 II' II' 

where cp = II' - ~. Take the first derivative of Eq. (8.34) to obtain 

V = Mrrss + cpTr-1rp :5 o. 

(8.34) 

(8.35) 
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Substitute Eq. (8.33) into Eq. (8.30), substitute that result into Eq. (8.35), and 
group terms to obtain 

v = sT Mrr [Br + W(9r - 9) - M;"I [(Mrr - Mrr}{Br + W(9r - 9)) 

+ (BvJ - BVJ)9 + Asgn(s) - Td] - (Br + W(9r - 9))] + ~Tr-l;P. 

Simplify as 

v = sT [(Mrr - Mrr}{Br + W(9r - 9)) + (BvJ - BVJ)8 - Asgn(s) + Td] 

+ ~Tr-l;P. (8.36) 

Introducing the linear in parameters property 

and substituting into Eq. (8.36) gives 

V = sT [y~ - Asgn(s) + TdJ + ~Tr-l;P. 

Regroup terms as 

Take the transpose of the second term in Eq. (8.37) and regroup terms as 

V = _sT [Asgn(s) _ TdJ + ~T [yT S + r- 1;p] . 

(8.37) 

(8.38) 

To achieve Lyapunov stability (V $ 0), the following conditions must be satisfied: 

1. For disturbance rejection to be guaranteed, 

where A is a positive-definite gain term. 

2. The second term of Eq. (8.38) is set to zero to determine the adaptive param­
eter update equations as 

(8.39) 

Substitute all of the parameter estimates for the flexible link into Eq. (8.39) to 
obtain 
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where s is defined by Eq. (8.29). 
Perform the multiplications to obtain the adaptive control laws 

Mrr = 'Yl (Or + W(Or - 0») s 

BVI = 'Y20S. 

Stability is checked by using Lyapunov's direct method. It can be shown that 
the tracking error e is asymptotically stable while the velocity tracking error e, 
aM the parameter estimates cp are bounded2 . This step is left to the reader as an 
exercise. 

Summarizing the adaptive control law gives 

T = Btl 

= Mrr (Or + W(Or - 0») + BvlO + Atanh(fjs). 

As recommended in the Example 8.1, use sgn(s) ~ tanh(fjs). 
The update equations are given as 

tirr = 'Yl (Or + W(Or - 0») (Or - 0 + W(9r - 9») 
BVI = 'Y20 (Or - 0 + W(9r - 9») . 

Numerical simulation predictions 

A MATLAB® simulation model was constructed for the ASMC system by incor­
porating the calibrated mathematical model's physical parameters. System iden­
tification was performed by using the numerical optimization techniques and the 
results explained in Example 4.3. The three parameters of interest were the hub in­
ertia ihub , the viscous friction constant Bvl' and the Coulomb friction constant Cd/. 
Controller gains were selected based on the previously developed stability criteria 
and are listed in Table 8.3. 

Reference inputs (based on a cubic spline trajectory) were used to slew the 
flexible link from 0° to 45° in 0.2 seconds. The simulation results are shown in Fig­
ures 8.3-8.6. Figure 8.3 contains plots of the hub angle and hub velocity responses. 
There was a small amount of overshoot and a fast decay. Figure 8.4 contains the 
flexible link root strain and root strain rate responses. After the initial ring between 
±700jl. strain, a small amount of residual (±50jl. strain) persists. Figure 8.5 con­
tains the tip acceleration response and torque input. The tip acceleration response 
showed similar characteristics to the root strain response, but with an additional 
amount of overlay chatter. Because a simple Coloumb friction model (consisting 
of a hard nonlinearity that in reality would not be present-see the experimental 
validation section) was used, the overlay chatter was present. Figure 8.6 shows the 
adaptive estimates for mass and viscous damping, respectively. 
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Based on the assumed model the simulation demonstrated stable and acceptable 
tracking performances. Initially, the residual vibrations would be a cause for alarm, 
but the cantilever mode shape does not take into account the interaction between 
the flexible link and the servo hub assembly. Further refinements to the model are 
needed to capture the inherent damping present in the actual hardware setup (see 
the experimental validation section). The adaptive sliding mode controller's added 
benefits are presented next. 
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Table 8.3. Adaptive sliding mode controller gains 

Controller W A (3 1'1 1'2 
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Figure 8.3. Simulation hub angle and angle rate responses 

Experimental validation 

The ASMC algorithm was tested on a slewing flexible link. The controller 
gains were empirically selected based on previously developed stability criteria. 
Figure 8.7 shows the direct-drive slewing structure experimental apparatus. A 
MATLAB®/dSPACE® control/data acquisition architecture provided a rapid pro­
totyping environment. The hub angle was measured with a standard angular en­
coder. The strain measurement was recorded with a half-bridge strain gauge set-up. 
An accelerometer was attached at the tip to monitor vibrations. The link properties 
are given in Table 8.4. 

The slewing flexible link was subjected to a cubic spline trajectory reference 
input from 0° to 45° in 0.2 seconds. To test the robustness of the adaptive control 
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Figure 8.5. Simulation tip acceleration response and required torque input 
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Figure 8.6: Simulation adaptation mass estimate and viscous damping estimate re­
sponses 

algorithm, a large tip mass was added. Figure 8.8 contains plots of the hub an­
gles with and without payload and the desired response is shown in the left set of 
plots. Although the adaptive control algorithm showed signs of deteriorating perf or-
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Figure 8.7. Adaptive SMC direct-drive slewing beam experimental set-up 

mance, Le., settling time increased from 0.22 seconds to 0.4 seconds, the algorithm 
still maintained stability with minimum overshoot. Figure 8.8 contains the tracking 
errors in the right set of plots. Note, the tracking errors increased from 110 to a 
peak of 250 • Also, the increased payload case showed a steady-state offset of approx­
imately 10. The root strain and tip acceleration responses are shown in Figure 8.9. 
Although the tip mass increased the peak strain (600/-,8 to 1000/-,8), the peak tip 
acceleration showed a reduction (8.0G to 3.5G). For all link sensor responses, the 
settling times remain relatively constant. Figure 8.10 contains the torque input 
profiles for both cases, with and w~hout paxload, respectively. Figure 8.11 shows 
the adaptive parameter estimates Mrr and Bv/ responses, respectively. 

With the addition of a payload, both the mass and the damping estimates show 
an increase. These results demonstrate the robustness of the adaptive controller 
to parameter variations. The main focus of the adaptive controller is slewing the 
flexible link, that is, the rigid motion. Because of the robust term that was added 
in Eq. (8.32) and the passive damping in the hub, the link flexibility remained 
stable during the slew. Additionally, the adaptive controller did not excite any 
high-frequency modes because sgn(s) ~ tanh(f3s). 
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Table 8.4. Adaptive SMC direct-drive flexible link properties 

Link Parameters Symbol Value Unit 

Length L 
Width w 
Thickness t 
Hub Radius r 
Mass Density Pm 
Tip Mass M t 
Beam Stiffness EI 
Hub Inertia hUb 
Viscous Damping b", 
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Figure 8.10. Command hub torque input 
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Figure 8.11. Adaptation parameter estimate responses 

8.4. Chapter 8 Summary 

In this final chapter an adaptive control technique that utilizes passivity con­
cepts and incorporates SMC developments was introduced. By combining both 
the robust term (from the SMC development) with adaptation, both unmodeled 
dynamics/external disturbances and parameter variations are addressed. Again, 
Lyapunov's direct method was employed to prove stability and determine tracking 
criteria. Two examples were developed that illustrate this methodology. The final 
example included both a numerical simulation and an experimental validation dis­
cussion involving a slewing flexible link. For further developments in both nonlinear 
and adaptive control systems, as they are applied to flexible robotic systems, the 
interested reader is encouraged to consult the literature. 
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8.6. Chapter 8 Problems 

Homework 8.1. From Section 8.3. 
Validate the adaptive SMC design in Example 8.1 for the DC motor driven, large 
angle pendulum system. Develop a numerical simulation and implement the dy­
namic equations of motion, sliding surface, adaptive SMC law, and the adaptive 
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control parameter update equations. Use the same relevant numerical values pre­
sented in Tables 8.1 and 8.2, respectively. Plot the angular position, angular rate, 
motor voltage requirement, mass estimate, and stiffness estimate responses. 

Homework 8.2. From Section 8.3. 
Design and simulate an adaptive SMC design for a slewing horizontal link whose 
dynamic equations of motion are given as 

T = Ii} + Td 

where T is the torque input, I is the moment of inertia about the hub, i} is the angular 
acceleration, and Td is the torque disturbance. Perform the design by following the 
steps given in Section 8.1. Select numerical values for I and Td, and perform a 
numerical simulation. Select controller gains for a critically damped response. Plot 
the angular position, velocity, torque, and inertial estimate. How well does the 
ASMC perform if Td becomes time varying? Hint: Should the controller gain A be 
adjusted? If Td represents the flexible coupling term identified in Example 8.2, then 
what problem was just solved? 

Homework 8.3. From Section 8.3. 
Consider a similar class of problems of the form 

M(x)x + Nm(x, :ic):ic = Bu (8.40) 

where M(x) is now an implicit function of time rather than a constant, and the 
nonlinear dynamic matrix N m is related to the original N vector (from Eq. 8.40) 
by the expression 

N(x,:ic) = Nm(x,:ic):ic 

such that the matrix lid - 2N m is skew-symmetric. This property2,14 is useful 
during the stability analysis. Verify that the same adaptation update equations 
(see Eq. 8.17) result. Show all of your steps. 

The Lyapunov function candidate suggested by Slotine and Lil becomes 

V = ~sTM(X)S + ~ipTr-lip. 

Taking the derivative with respect to time yields 

(8.41) 

Show that by determining M(x)s by rearranging Eq. (8.40) and constructing 

M(x)s = YOrp - Bu - Nm(x,:ic)s 

where 

Y(·)rp = M(x) (xr + W(:icr - x» + Nm(x, x) (xr + W(xr - x», 
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and substituting into Eq. (8.41) gives 

Note, by applying the skew-symmetric property to the second term, it becomes 
zero. 

Next, select the control law as 

Bu = Y(-)~ + Asgn(s). 

By substituting into Eq. (8.42) verifies that A must be positive definite and gives 
the same adaptive update equations (see Eq. 8.17). 



Appendix A: VF02AD Optimization 

The VF02AD Fortran optimization programs are part of the Harwell Subroutine 
Library and are downloadable from http://hsl.rl.ae.ukjarchive/hslarchive.html. 

The VF02AD program was written to calculate the least value of a function of 
several variables subject to general constraints on the values of the variables. An 
iterative method is used. Each iteration minimizes a quadratic approximation to 
the Lagrangian function subject to linear approximations to the constraints. The 
second derivative matrix of the Lagrangian function is estimated automatically. In 
order to force convergence, when the initial values of the variables are far from the 
solution set, a line-search procedure is used. 

VF02AD is a set of FORTRAN subroutines for minimizing an arbitrary perfor­
mance index I/>(e) as a function of a vector of parameter constants e. The perfor­
mance index is subject to equality constraints of the form '1'(1) (e) = 0, and will 
also handle inequality constraints of the form '1'(2)(e) 2:: O. For example, if one 
were given an inequality constraint of the form Xl (e, t/) ~ 10, then in VF02AD it 
would be expressed as 1}I~2)(e) = 10 - Xl (e, t/). If 1}I~2) (e) < 0, then VF02AD would 
continue to operate on it until the inequality is obeyed. 

The VF02AD subroutine requires a driver routine written by the user to do 
several tasks such as initialization, handle I/O, and call VF02AD. A first guess of 
your parameter vector eo is also needed in the driver. Embedded inside the driver 
is the optimization loop that performs the following: 

1. Call a subroutine to compute the scalar I/>(e) and the vector 
'1'(e) = ['1'(1) (e) '1'(2)(e)]. 

2. Call a subroutine to compute derivatives I/>e(~d, '1'e(~i) (typically finite differ­
ences). 

3. Call VF02AD(n, m, meq, ~(= ~o), 1/>, I/>{, iJ!, iJ![, len, maxfun, ace, iprint, in!, 
w,lw). 
(Implicitly VF02AD will check to see if input errors exist, too many function 
evaluations, Le., I/>'s and iJ!'s have been computed, or if the solution has been 
reached to a given tolerance). Once the given tolerance is met the optimization 
loop is completed successfully. 
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The final task of the driver is to perform output operations such as screen print­
outs and saving time domain results. 

The formal call to VF02AD is 

CALL VF02AD(n, m, meq, parms, phi, phiz, psi, psizT, len, max fun, ace, iprint, 
in!, w, lw) where the following arguments are defined as: 

• n - the number of parameters 

• m - the length of W (number of equality plus inequality constraints) 

• meq - the length of w{l) (number of equality constraints) 

• params,phi,phiz,psi,psizT - variable names e, I/J, I/J~, w, wi (all previously ex­
plained) Note, wi is specified for in the FORTRAN compiler specifications 
psiT(i,j), the i index would correspond to the parameter {i, and j would 
correspond to the constraint III j (e) 

• len - set to at least n + 1 

• maxfun - maximum number of function evaluations (Le., I/J and w computa­
tions) 

• ace - convergence tolerance on gradient norm (typically set to ~ 10-3 ) 

• iprint - output interval for intermediate information from VF02ADj when 
== -#: no outputj == 0: prints diagnostics only, and when == +#: prints 
diagnostics and I/J, w, and e every # iteration 

• in! - status variable, set to -1 initially outside of optimization loop 

• w - vector work array and must be dimensioned 5n2 + 19n + 14 + 4m + 
max(m,3n + 3) 

• lw - length of work array 5n2 + 19n + 14 + 4m + max(m, 3n + 3) 

The VF02AD software has been used to solve most of the optimization home­
work problems found throughout this book. VF02AD is normally considered more 
efficient with higher accuracy, less overhead and quicker running code than its 
MATLAB® Optimization Toolbox counterpart. The advantage of the MATLAB® 
Optimization code is ease of implementation. 
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The MATLAB® Optimization Toolbox consists of both the constr, and 1110re 
recently, the fmincon constrained nonlinear optimization functions. Both of these 
functions are used in this book. In the MATLAB® software environment, many 
support routines are readily available. For example, the ode45 variable step inte­
gration routine requires a derivative subroutine to be written and dynamic equations 
of motion represented as differential equations are easily integrated. Another ex­
ample is the interpl interpolation function that allows linear interpolation tables 
to be implemented. The discussion will be limited to the fmincon function. It will 
include a general description, with several implementation issues, and the inclusion 
of MATLAB® code, which solves several of the parameterized controls optimization 
examples presented in Chapter 5. Further details can be found in the Optimization 
Toolbox documentation. The majority of this general discussion comes directly 
from this Toolbox documentation. 

The Optimization Toolbox is a collection of functions that extend the capability 
of the MATLAB® numeric computing environment. Routines for many types of 
optimization are included in the toolbox. Some of these features related to our 
book topics include: 

• Unconstrained nonlinear minimization. 

• Constrained nonlinear minimization. 

• Quadratic and linear programming. 

• Nonlinear least squares and curve-fitting. 

• Constrained linear least squares. 

For this discussion, constrained nonlinear minimization optimization problems 
are the focus. Optimization techniques involve the minimization or maximization 
of functions. The objective function to be minimized is contained in aM-file, 
which is required in the optimization routines. Optimization options passed to the 
routines change optimization parameters. The default optimization parameters are 
used extensively, but ca.n be changed through an options structure. Gradients are 
calculated by using an adaptive finite-difference method unless they are supplied in 
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a function. The constrained nonlinear minimization function /mincon can be stated 
as 

Minimize 

I(x) 

subject to 

c(x) ::; 0 

ceq (x) = 0 

Ax::;b 

Aeqx = beq 

for 

lb::; x::; ub 

where x, b, beq, lb, and ub are vectors, A and Aeq are matrices, c(x) and ceq(x) 
are functions that return vectors, and I(x) is a function that returns a scalar. 
I(x), c(x), and ceq(x) can be nonlinear functions. 

The syntax function calls used for most of this problems are 
x = /mincon(fun,xO,A,b,Aeq,beq,lb,ub,nonlcon) 
x = /mincon(fun,xO,A,b,Aeq,beq,lb,ub,nonlcon,options) . 

The input arguments are defined as; 

• fun - the function to be minimized. fun is a function that accepts a scalar x 
and returns a scalar I where the objective function is evaluated at x. 

• xO - initial guess (scalar, vector, matrix) 

• A,b - the matrix A and vector b are coefficients of linear inequality constraints 
Ax::; b. 

• Aeq,beq - the matrix Aeq and vector beq are coefficients of linear equality 
constraints Aeqx = beq. 

• lb, ub - are lower and upper bound vectors. The arguments are normally the 
same size as x. 

• nonlcon - the function that computes the nonlinear inequality and equality 
constraints. 

• options - an optimization options parameter structure that defines parameters 
used by the optimization functions. 
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The output argument x is defined as the solution found by the optimization function. 
The goal of /mincon is to find the constrained minimum of a scalar function of 

several variables starting at an initial estimate. This is referred to as constrained 
nonlinear optimization or nonlinear programming. 

For x = /mincon(fun,xO,A,b,Aeq,beq,lb,ub,nonlcon} subjects the minimization to 
the nonlinear inequalities c(x) or the equalities ceq(x) defined in nonlcon. The 
optimization is performed such that c(x) ~ 0 and ceq(x) = O. To customize some 
of the optimization procedure parameters, the options structure can be specified by 
using the Call x = /mincon(fun,xO,A,b,Aeq,beq,lb,ub,nonlcon,options}. 

Further details of the user supplied fnnctions fun and nonlcon are reviewed. 
fun is the function to be minimized. It accepts a scalar x, returns a scalar f and 
the objective function is evaluated at x. fun is subject to the nonlinear inequality 
ceq ~ 0 and the equality ceq = 0 constraints implemented in the nonlcon function. 
The vector c contains the nonlinear inequalities and ceq contains the nonlinear 
equalities. Both are evaluated at x. The functions fun and nonlcon are specified as 
a function handle 
x = /mincon(@myfun,xO,A,b,Aeq,beq,lb,ub,@mycon} where both my fun and mycon 
are MATLAB® functions, such as, 

function f = myfun(x} ... %Compute function, value at x, 

and 

function fc,ceq} = mycon(x} ... %Computes c and ceq at x. 

These function handles are best realized with practical examples. Included below are 
the program listings that solve the minimum effort horizontal slewing link examples 
of Chapter 5. 

The reader is encouraged to reproduce the results by studying the examples and 
corresponding MATLAB® code, and use the MATLAB® software and toolboxes. 
The optimization iterations are initiated, from the MATLAB® command line, by 
running oneLinkDriver, or oneLinkDriver 1. 

MATLAB® code for the minimum effort slewing horizontal link (see Example 5.1): 

% one link driver routine oneLinkDriver.m 
global cl;global tarray;global xo;global xdesired;global tfinal; 
mass=0.5;link=1.0;cl=3!(mass*link*link);tfinal=1.0;deltat=.1; 
tarray=[O:deltat:tfinal];xo=[O 00]; % thetaO, thetadotO u A 2 
xdesired=[pi!2 O];pvalue=.l;paramsO=pvalue*ones(l,length(tarray)); 
A=[] ;b=[] ;Aeq=[] ;beq=[]; 
%lowerBndValue=-5. % use for unbounded control problem 
%upperBndValue=5. % use for unbounded control problem 
lowerBndValue=-1.2 % use for bounded control problem 
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upperBndValue=1.2 Yo use for bounded control problem 
lowerBnds=lowerBndValue*ones(l,length(tarray»; 
upperBnds=upperBndValue*ones(l,length(tarray»; 
Yoparams=fmincon(OperfIndex,paramsO,A,b,Aeq,beq,lowerBnds,upperBnds, 
YoOconstraints) 
params=fmincon('perfIndex',paramsO,A,b,Aeq,beq,lowerBnds,upperBnds, 
'constraints') 

Yo fun function handle: Performance Index matlab M-file -
YoperfIndex.m 
function f = perf Index (params) global xo;global p;global 
tfinal;p=params; 
Yo[t,x]=ode45(Gxprime,[O:tfinal],xo(:»; 
[t,x]=ode45('xprime',[O:tfinal],xo(:»; 
[rows,cols]=size(x);f=x(rows,3);return; 

Yo nonlcon function handle: constraint matlab M-file - constraints.m 
function [c,coneq,GC,GCeq]=constraints(params) global xo;global 
xdesired;global p;global tfinal;p=params; 
Yo [t,x] =ode45 (Gxprime, [O:tfinal],xo(:»; 
[t,x]=ode45('xprime',[O:tfinal],xo(:»; 
[rows,cols]=size(x);coneq(l)=x(rows,l)-xdesired(l); 
coneq(2)=x(rows,2);c=[];GC=[];GCeq=[];coneq return; 

Yo first order odes for horizontal link: matlab file xprime.m 
function xdot=xprime(t,x) global c1;global p;global tarray; 
xdot(1)=x(2);u=interp1(tarray,p,t); 
xdot(2)=c1*u;xdot(3)=u*u;xdot=xdot(:); return; 

Yo This file generates plot for horizontal link - postplt.m 
[to,xO]=ode45('xprime',[O:tfinal],xo(:»; 
tarO=tarray; parO=params; save hslewO to xO tarO parO 
plot(tO,xO(:,1),'-',tO,xO(:,2),'--',tarO,parO,'-.'),grid 
legend('-','Angle','--','Angle Rate','-.','Torque') xlabel('Time 
(sec)') ylabel('Minimum Effort Trajectories') title('Horizontal 
Link Slew') 

MATLAB® code for the minimum time slewing horizontal link (see Example 5.1): 

Yo one link driver routine - minimum time, bounded controls -
YooneLinkDriver1.m 
global c1;global xo;global xdesired;global tfinal; global 
num_of_tvalues; 
mass=.5;link=1;c1=3!(mass*link*link);tfinal=1;num_of_tvalues=17; 
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xo=[O 0]; % thetaO, thetadotO xdesired=[pi/2 0];pvalue=.5; 
paramsO=[pvalue*ones(l,num_of_tvalues) tfinal]; 
A=[];b=[];Aeq=[];beq=[]; lowerBndValue=-1.2upperBndValue=1.2 
lowerBnds=[lowerBndValue*ones(l,num_of_tvalues) .01]; 
upperBnds=[upperBndValue*ones(l,num_of_tvalues) 10]; 
%params=fmincon(GperfIndex1,paramsO,A,b,Aeq,beq,lowerBnds,upperBnds, 
%Gconstraintsl) 
params=fmincon('perfIndexl',paramsO,A,b,Aeq,beq,lowerBnds,upperBnds, 
'constraints1') 

%fun function handle: Performance Index matlab M-file -
YoperfIndex1.m 
function f = perf Index 1 (params) global xo;global p;global tfinal; 
lenparams=length(params);p=params(1:lenparams-1); 
tfinal=params(lenparams); 
Yo[t,x]=ode45(Gxprimel,[0 tfinal],xo(:»; 
Yo tf= params(length(params» 
[t,x]=ode45('xprime1',[0 tfinal],xo(:»; 

Yo tf= params(length(params» 
[rows,cols]=size(x);f=tfinal; Yo final time is last parameter 
return; 

% nonlcon function handle: constraint matlab M-file -
Yoconstraints1.m 
function [c,coneq,GC,GCeq]=constraints(params) global xo;global 
xdesired;global p;global tfinal; 
lenparams=length(params);p=params(1:lenparams-1); 
tfinal=params(lenparams); 
Yo[t,x]=ode45(Gxprime1,[0 tfinal],xo(:»; 
[t,x]=ode45('xprimel',[0 tfinal],xo(:»; 
[rows,cols]=size(x);coneq(l)=x(rows,l)-xdesired(l); 
coneq(2)=x(rows,2);c=[];GC=[];GCeq=[];coneq return; 

Yo first order odes for horizontal link min time: matlab file 
Yoxprimel.m 
function xdot=xprimel(t,x) global cl;global p; global 
tfinal;global num_of_tvalues;global tarray 
xdot(1)=x(2);deltat=tfinal/(num_of_tvalues-l); 
tarray=[O:deltat:tfinal]; 
u=interpl(tarray,p,t);xdot(2)=cl*u;xdot=xdot(:); return; 

% This file generates plot for horizontal link min time - postpltl.m 
[tl,xl]=ode45('xprime',[0:tfinal],xo(:»; 
tar1=tarray;parl=params;save hslewl tl xl tarl parl 
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plot(tl,xl(:,1),'-',tl,xl(:,2),'--',tarl,parl,'-.'),grid 
legend('-','Angle','--','Angle Rate','-.','Torque') xlabel('Time 
(sec)')' ylabel('Minimum Effort Trajectories') title( 'Horizontal 
Link Slew with Bounded Control') 



Appendix C: Hardware & Software 
Support 

Flexible Manipulator Hardware Platforms 

WAYA Research, Inc. and S. Enterprises can provide experimental hardware 
and software to support the material developed in this book. 

For example, a multi-link modular planar flexible two-link manipulator was de­
signed, manufactured and delivered to Sandia for flexible robot dynamic and control 
system studies. A key feature of the testbed is the encoder/DC motor/harmonic 
drive actuator assembly. The actuator is nonbackdrivable, therefore any resid­
ual vibrations are managed by flexible robot control techniques. The harmonic 
drive actuator is popular in many robotic applications where accurate position­
ing is required. For lightweight high-speed applications, link vibrations become 
significant and must be addressed. An external encoder is mounted on the link 
side. This encoder is used for both flexible robot control and actuator transmis­
sion characterization studies. The hub shaft is machined with a slot that facilitates 
the easy interchange of different types of flexible links. Currently shown (see Fig­
ure 1) are thin lightweight graphite/epoxy composite links. An accelerometer is 
mounted at the tip to monitor tip vibrations. A MATLAB®/Simulin~/Real time 
workshop®/dSPACE® control/data acquisition architecture is used to provide a 
rapid prototyping environment. This environment accommodates efficient control 
algorithm implementation and validation. 

WAYA Research, Inc. and S. Enterprises can provide custom software configu­
rations compatible with similar hardware. The control system architecture and the 
planar two-link hardware are shown in Figure l. 

Shown in Figure 2 are additional flexible single-link configurations. The single­
link configuration for the above described modular manipulator is shown on the 
left. Shown on the right is a flexible single-link direct-drive testbed. The direct­
drive hardware was used for the final project of the UNM ME 562 course where 
the material presented in this book was first formally presented. The final project 
required the design and testing of input shaping open-loop control strategies. All 
of the control system software was programmed by using the C-language and im­
plemented on a VME/VxWorks® platform. Other hardware platforms are possible. 
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Figure 1: WAYA Research, Inc. designed, manufactured, and delivered flexible two-link 
robot for Sandia By permission of WA YA Research, Inc. ©1995 

Figure 2: WAYA Research, Inc. single flexible link geared- (harmonic) drive (left) and 
direct-drive (right) testbed systems By permission of WAYA Research, Inc . ©1995 

Control System Hardware/Software Architecture 

The control system is based upon a Pentium® personal computer running the 
Windows® operating system. The MATLAB®, Simulink®, Real-Time WorkshoP®, 
and dSPACE®-like environment is employed to realize the flexible robot control law 
implementation (see Figure 1) . The flexible robot control law is written in the C­
language as a Simulink® S-function. The Simulink® S-function protocol is based 
on a general nonlinear state-space template. The control law accepts reference in-
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puts either internally generated, such as, cubic spline, polynomial, or near-minimum 
time trajectories, or externally, such as, from a joystick user input. Feedback signals 
are provided through analog-to-digital (A/D) converters and encoder input ports. 
Control signals are calculated and sent out the digital-to-analog (D/ A) port. A new 
control law model is created by the user in the Simulink® environment by using 
a component block diagram interface. The control law is compiled as a MEX® 
function and easily integrated into the remaining control architecture components. 
Other block components can be added to provide signal conditioning and scaling. 
Once the new model is completed, the entire Simulink® model is converted to a 
real-time executable code by using the Real-Time Workshop® module. This code 
also employs a dSPACE®-like module that provides the device drivers and real­
time windows interrupt service routines. Once this step is complete, the controller 
software does not need to be rebuilt each time. The executable code is used for 
operating/commanding the flexible manipulator. The user interfaces with the con­
troller software through the Simulink® environment running in external mode. This 
allows the user to tune parameters, such as, control system gains, select reference 
trajectories, start and stop locations, etc., through a COCKPIT®-like port. The 
user can also visualize signals in real-time by using a TRACE®-like port. This al­
lows signal viewing by using the Simulink® oscilloscope outputs. Data acquisition 
is provided by using a TRACE®-like port. This allows the user to save the signals 
after a maneuver. The data is stored in a MATLAB® compatible format for later 
post-processing analysis. Included in this data are all of the time-domain variables 
available from the Simulink® model. The flexible manipulator interfaces with the 
Pentium® computer through a custom controller/data acquisition interface board. 
This board contains 8 channels of D / A, A/D, and encoder input. In addition, 32-bit 
digital I/O is provided. Each unique type of signal data is interfaced with the high­
level controller software through device drivers. These device drivers are custom 
S-functions that initialize read/write to the boards D / A, A/D and encoder chips. 
These operations are transparent to the user. Figure 1 provides an overview of the 
control system hardware and software interaction. 
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Euler 
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Lagrange multipliers 
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state transition, 24, 29 
transfer function, 29 

Mayer form final time problem, 84 
Minimum principle, 74 
Mode shapes, see Eigenvectors, 94 

Natural frequencies, see Eigenvalues 
Nonconservative, 54 
Nonlinear least squares, 145 

definition, 136 
Normal equations 

definition, 134 
Normal probability function, 259 
Normalization 

definition, 96 

Observability, 30 
Optimization 

definition, 58 
numerical 

direct methods, 75 

SUBJECT INDEX 

indirect methods, 75 

Parameter optimization, 43, 76 
goal of, 43 

Parameter vector, 310 
Pontryagin methods 

definition, 75 
Pontryagin's minimum principle, 74 
Principle of Least/Stationary Action, see 

Hamilton's Principle 

Quadratic modes 
main idea of, 105 

Quadratic modes method 
definition, 103 

Rayleigh's dissipation function 
definition, 55 

Rayleigh's dissipation function general­
ized force 

definition, 55 
Recursive Quadratic Programming, 148 
Runge-Kutta 

fourth-order, 36 
second-order, 34 

real-time, 35 
third-order, 35 

Scalar performance function, 43 
Scalar performance index 

definition, see Functional 
Stability 

of numerical integration, 36 
State equation, 27 
Suboptimal control 

definition, 76 
Suboptimal solution 

definition, 43 
Swing-free 

definition, 162 
Sylvester's Criterion, 45 
System 

controllability, 30 
observability, 30 

System identification 
definition, 133 

Systems 
time-invariant, 28 
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time-varying, 28 

Transversality condition, 73 
Trapezoidal 

integration, 32 
Two-point-boundary-value problem 

definition, 70 

Unit data-point response, 40-41 

Vector 
set of 

linearly independent, 14 
Virtual displacement 

definition, 48 
Virtual work 

definition, 54 

Weak extremum 
definition, 49 

Z-transform, 37 
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