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Introduction

F. Mezzadri and N. C. Snaith

This volume of proceedings stems from a school that was part of the programme
Random Matrix Approaches in Number Theory, which ran at the Isaac Newton
Institute for Mathematical Sciences, Cambridge, from 26 January until 16 July
2004. The purpose of these proceedings is twofold. Firstly, the impressive
recent progress in analytic number theory brought about by the introduction
of random matrix techniques has created a rapidly developing area of research.
As a consequence there is not as yet a textbook on the subject. This volume
is intended to fill this gap. There are, of course, well-established texts in
both random matrix theory and analytic number theory, but very few of them
treat in any length or detail these new applications of random matrix theory.
Secondly, this new branch of mathematics is intrinsically multidisciplinary;
teaching young researchers in random matrix theory, mathematical physics
and number theory mathematical techniques that are not a natural part of
their education is essential to introduce a new generation of scientists to this
important and rapidly developing field. In writing their contributions to the
proceedings, the lecturers kept in mind the diverse backgrounds of the audience
to whom this volume is addressed.

The material in the volume includes the basic techniques of random matrix
theory and number theory needed to understand the most important achieve-
ments in the subject; it also gives a comprehensive survey of recent results
where random matrix theory has played a major role in advancing our under-
standing of open problems in number theory. We hope that the choice of topics
will be useful to both the advanced graduate student and to the established
researcher.

These proceedings contain a set of introductory lectures to analytic number
theory and random matrix theory, written by Roger Heath-Brown and Yan Fy-
odorov respectively. The former includes a survey of elementary prime number
theory and an introduction to the theory of the Riemann zeta function and
other L-functions, while Fyodorov’s lectures provide the reader with one of the
main tools used in the theory of random matrices: the theory of orthogonal
polynomials. This ubiquitous technique is then applied to the computation
of the spectral correlation functions of eigenvalues of the Hermitian matrices
which form the Gaussian Unitary Ensemble (GUE), as well as to comput-
ing the averages of moments and ratios of characteristic polynomials of these
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Hermitian matrices. In contrast, fundamental techniques for calculating vari-
ous eigenvalue statistics on ensembles of unitary matrices can be found in the
“Notes on eigenvalue distributions for the classical compact groups” by Brian
Conrey. These are the groups of matrices that are used in connection with L-
functions, for example in the lectures of Hughes and Keating. The articles of
Peter Forrester and Estelle Basor discuss more specific topics in random matrix
theory. Forrester reviews in detail the theory of spacing distributions for var-
ious ensembles of matrices and emphasizes its connections with the theory of
Painlevé equations and of Fredholm determinants; Basor’s lectures introduce
the reader to the theory of Toeplitz determinants, their asymptotic evaluations
for both smooth and singular symbols and their connection to random matrix
theory.

Dan Goldston reviews how random matrix theory and number theory came
together unexpectedly when Montgomery, assuming the Riemann hypothesis,
conjectured the two-point correlation function of the Riemann zeros, which
Dyson recognized it as the two-point correlation function for eigenvalues of the
random matrices in the CUE (or, equivalently, the GUE) ensemble. Looking
toward applications to physics, Oriol Bohigas’s article gives an historical survey
of how random matrix theory was instrumental in the understanding of the
statistical properties of spectra of complex nuclei and of individual quantum
mechanical systems whose classical limit exhibits chaotic behaviour. After
Montgomory’s discovery overwhelming numerical evidence, largely produced
by Andrew Odlyzko in the late 1980s, supported the hypothesis that the non-
trivial zeros of the Riemann zeta function are locally correlated like eigenvalues
of random matrices in the GUE ensemble. Later Hejhal (1994), and then
Rudnick and Sarnak (1994,1996) proved similar results for the three and higher
point correlations.

Several lectures are devoted to specific and more advanced topics in number
theory. David Farmer introduces the reader to techniques in analytic number
theory, discussing various ways to manipulate Dirichlet series, while Steve
Gonek extends this to discuss mean-value theorems and their applications.
Philippe Michel discusses the construction of many examples of L-functions,
including those associated to elliptic curves and modular forms.

The remaining lectures highlight the connection between L-functions and
random matrix theory. Brian Conrey’s lectures “Families of L-functions and
1-level densities” concern the statistics of zeros of families of L-functions near
the point where the line on which their Riemann hypothesis places their zeros
crosses the real axis. Based on the example of the function field zeta functions,
these statistics were proposed by Katz and Sarnak (1999) to be those of the
eigenvalues of one of the classical compact groups, namely U(N), USp(2N) and
O(N). The lectures of Jon Keating reveal how the local statistical properties
of the Riemann zeta function and other L-functions are inherently determined
by the distribution of their zeros, thus high up the critical line ζ(s) can be
modelled by the characteristic polynomial of random matrices belonging to
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U(N). As a consequence of this property, techniques well developed in ran-
dom matrix theory can lead to conjectures for quantities like moments and
distributions of the values of L-functions, which have been open problems for
almost eighty years. Chris Hughes discusses how the first few moments of
the smooth counting functions of the eigenvalues of random matrices and of
the zeros of L-functions are Gaussian while their distributions are not. Since
much of the predictive power of random matrix theory is based on conjectures,
numerical experiments play an important role in the theory; Michael Rubin-
stein’s article introduces the reader to the most important techniques used in
computational number theory and to conjectures and numerical experiments
connecting number theory with random matrix theory.

We are particularly grateful to David Farmer and Brian Conrey for care-
fully reading many of the articles and to the staff of the Newton Institute
for their invaluable assistance in making the school such a successful event.
We also thankfully acknowledge financial contributions from the EU Network
‘Mathematical Aspects of Quantum Chaos’, the Institute of Physics Publish-
ing, the Isaac Newton Institute for the Mathematical Sciences and the US
National Science Foundation.

Francesco Mezzadri and Nina C. Snaith

July 2004

School of Mathematics,
University of Bristol,
Bristol BS8 1TW, UK





Prime Number Theory and the
Riemann Zeta-Function

D.R. Heath-Brown

1 Primes

An integer p ∈ N is said to be “prime” if p �= 1 and there is no integer n
dividing p with 1 < n < p. (This is not the algebraist’s definition, but in our
situation the two definitions are equivalent.)

The primes are multiplicative building blocks for N, as the following crucial
result describes.

Theorem 1. (The Fundamental Theorem of Arithmetic.) Every n ∈ N
can be written in exactly one way in the form

n = pe1
1 pe2

2 . . . pek
k ,

with k ≥ 0, e1, . . . , ek ≥ 1 and primes p1 < p2 < . . . < pk.

For a proof, see Hardy and Wright [5, Theorem 2], for example. The
situation for N contrasts with that for arithmetic in the set

{m + n
√
−5 : m,n ∈ Z},

where one has, for example,

6 = 2 × 3 = (1 +
√
−5) × (1 −

√
−5),
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with 2, 3, 1 +
√
−5 and 1−

√
−5 all being “primes”.

A second fundamental result appears in the works of Euclid.

Theorem 2. There are infinitely many primes.

This is proved by contradiction. Assume there are only finitely many
primes, p1, p2, . . . , pn, say. Consider the integer N = 1 + p1p2 . . . pn. Then
N ≥ 2, so that N must have at least one prime factor p, say. But our list of
primes was supposedly complete, so that p must be one of the primes pi, say.
Then pi divides N − 1, by construction, while p = pi divides N by assump-
tion. It follows that p divides N − (N − 1) = 1, which is impossible. This
contradiction shows that there can be no finite list containing all the primes.

There have been many tables of primes produced over the years. They
show that the detailed distribution is quite erratic, but if we define

π(x) = #{p ≤ x : p prime},

then we find that π(x) grows fairly steadily. Gauss conjectured that

π(x) ∼ Li(x),

where

Li(x) =

∫ x

2

dt

log t
,

that is to say that

lim
x→∞

π(x)

Li(x)
= 1.

The following figures bear this out.

π(108) = 5,776,455 π(x)
Li(x) = 0.999869147. . . ,

π(1012) = 37,607,912,018 π(x)
Li(x) = 0.999989825. . . ,

π(1016) = 279,238,341,033,925 π(x)
Li(x) = 0.999999989. . . .

It is not hard to show that in fact

Li(x) ∼ x

log x
,

but it turns out that Li(x) gives a better approximation to π(x) than x/ log x
does. Gauss’ conjecture was finally proved in 1896, by Hadamard and de la
Vallée Poussin, working independently.

Theorem 3. (The Prime Number Theorem.) We have

π(x) ∼ x

log x

as x →∞.
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One interesting interpretation of the Prime Number Theorem is that for a
number n in the vicinity of x the “probability” that n is prime is asymptotically
1/ log x, or equivalently, that the “probability” that n is prime is asymptot-
ically 1/ log n. Of course the event “n is prime” is deterministic — that is
to say, the probability is 1 if n is prime, and 0 otherwise. None the less the
probabilistic interpretation leads to a number of plausible heuristic arguments.
As an example of this, consider, for a given large integer n, the probability
that n + 1, n + 2, . . . , n + k are all composite. If k is at most n, say, then the
probability that any one of these is composite is about 1−1/ log n. Thus if the
events were all independent, which they are not, the overall probability would
be about (

1 − 1

log n

)k

.

Taking k = µ(log n)2 and approximating(
1 − 1

log n

)log n

by e−1, we would have that the probability that n + 1, n + 2, . . . , n + k are all
composite, is around n−µ.

If En is the event that n + 1, n + 2, . . . , n + k are all composite, then the
events En and En+1 are clearly not independent. However we may hope that
En and En+k are independent. If the events En were genuinely independent
for different values of n then an application of the Borel-Cantelli lemma would
tell us that En should happen infinitely often when µ < 1, and finitely often
for µ ≥ 1. With more care one can make this plausible even though En and
En′ are correlated for nearby values n and n′. We are thus led to the following
conjecture.

Conjecture 1. If p′ denotes the next prime after p then

lim sup
p→∞

p′ − p

(log p)2 = 1.

Numerical evidence for this is hard to produce, but what there is seems to
be consistent with the conjecture.

In the reverse direction, our simple probabilistic interpretation of the Prime
Number Theorem might suggest that the probability of having both n and n+1
prime should be around (log n)−2. This is clearly wrong, since one of n and
n+1 is always even. However, a due allowance for such arithmetic effects leads
one to the following.

Conjecture 2. If

c = 2
∏
p>2

(
1 − 1

(p − 1)2

)
= 1.3202 . . . ,
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the product being over primes, then

#{n ≤ x : n, n + 2 both prime} � c

∫ x

2

dt

(log t)2 . (1.1)

The numerical evidence for this is extremely convincing.
Thus the straightforward probabilistic interpretation of the Prime Number

Theorem leads to a number of conjectures, which fit very well with the available
numerical evidence. This probabilistic model is known as “Cramér’s Model”
and has been widely used for predicting the behaviour of primes.

One further example of this line of reasoning shows us however that the
primes are more subtle than one might think. Consider the size of

π(N + H) − π(N) = #{p : N < p ≤ N + H},

when H is small compared with N . The Prime Number Theorem leads one to
expect that

π(N + H) − π(N) �
∫ N+H

N

dt

log t
∼ H

log N
.

However the Prime Number Theorem only says that

π(x) =

∫ x

2

dt

log t
+ o(

x

log x
),

or equivalently that

π(x) =

∫ x

2

dt

log t
+ f(x),

where
f(x)

x/ log x
→ 0

as x → ∞. Hence

π(N + H) − π(N) =

∫ N+H

N

dt

log t
+ f(N + H) − f(N).

In order to assert that
f(N + H) − f(N)

H/ log N
→ 0

as N → ∞ we need cN ≤ H ≤ N for some constant c > 0. None the less,
considerably more subtle arguments show that

π(N + H) − π(N) ∼ H

log N

even when H is distinctly smaller than N .
A careful application of the Cramér Model suggests the following conjec-

ture.
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Conjecture 3. Let κ > 2 be any constant. Then if H = (log N)κ we should
have

π(N + H) − π(N) ∼ H

log N

as N → ∞.

This is supported by the following result due to Selberg in 1943 [15].

Theorem 4. Let f(N) be any increasing function for which f(N) → ∞ as
N → ∞. Assume the Riemann Hypothesis. Then there is a subset E of the
integers N, with

#{n ∈ E : n ≤ N} = o(N)

as N → ∞, such that

π(n + f(n) log2 n) − π(n) ∼ f(n) log n

for all n �∈ E.

Conjecture 3 would say that one can take E = ∅ if f(N) is a positive power
of log N .

Since Cramér’s Model leads inexorably to Conjecture 3, it came as quite a
shock to prime number theorists when the conjecture was disproved by Maier
[9] in 1985. Maier established the following result.

Theorem 5. For any κ > 1 there is a constant δκ > 0 such that

lim sup
N→∞

π(N + (log N)κ) − π(N)

(log N)κ−1 ≥ 1 + δκ

and

lim inf
N→∞

π(N + (log N)κ) − π(N)

(log N)κ−1 ≤ 1 − δκ.

The values of N produced by Maier, where π(N + (log N)κ) − π(N) is
abnormally large, (or abnormally small), are very rare. None the less their
existence shows that the Cramér Model breaks down. Broadly speaking one
could summarize the reason for this failure by saying that arithmetic effects
play a bigger rôle than previously supposed. As yet we have no good alternative
to the Cramér model.

2 Open Questions About Primes,

and Important Results

Here are a few of the well-known unsolved problems about the primes.

(1) Are there infinitely many “prime twins” n, n+2 both of which are prime?
(Conjecture 2 gives a prediction for the rate at which the number of such
pairs grows.)
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(2) Is every even integer n ≥ 4 the sum of two primes? (Goldbach’s Conjec-
ture.)

(3) Are there infinitely many primes of the form p = n2 + 1?

(4) Are there infinitely many “Mersenne primes” of the form p = 2n − 1?

(5) Are there arbitrarily long arithmetic progressions, all of whose terms are
prime?

(6) Is there always a prime between any two successive squares?

However there have been some significant results proved too. Here are a
selection.

(1) There are infinitely many primes of the form a2 + b4. (Friedlander and
Iwaniec [4], 1998.)

(2) There are infinitely many primes p for which p + 2 is either prime or a
product of two primes. (Chen [2], 1966.)

(3) There is a number n0 such that any even number n ≥ n0 can be written
as n = p+p′ with p prime and p′ either prime or a product of two primes.
(Chen [2], 1966.)

(4) There are infinitely many integers n such that n2 + 1 is either prime or
a product of two primes. (Iwaniec [8], 1978.)

(5) For any constant c < 243
205 = 1.185 . . ., there are infinitely many integers

n such that [nc] is prime. Here [x] denotes the integral part of x, that is
to say the largest integer N satisfying N ≤ x. (Rivat and Wu [14], 2001,
after Piatetski-Shapiro, [11], 1953.)

(6) Apart from a finite number of exceptions, there is always a prime between
any two consecutive cubes. (Ingham [6], 1937.)

(7) There is a number n0 such that for every n ≥ n0 there is at least one
prime in the interval [n , n + n0.525]. (Baker, Harman and Pintz, [1],
2001.)

(8) There are infinitely many consecutive primes p,′ p such that p′ − p ≤
(log p)/4. (Maier [10], 1988.)

(9) There is a positive constant c such that there are infinitely many consec-
utive primes p,′ p such that

p′ − p ≥ c log p
(log log p)(log log log log p)

(log log log p)2 .

(Rankin [13], 1938.)
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(10) For any positive integer q and any integer a in the range 0 ≤ a < q,
which is coprime to q, there are arbitrarily long strings of consecutive
primes, all of which leave remainder a on division by q. (Shiu [16], 2000.)

By way of explanation we should say the following. The result (1) demon-
strates that even though we cannot yet handle primes of the form n2 + 1, we
can say something about the relatively sparse polynomial sequence a2 + b4.
The result in (5) can be viewed in the same context. One can think of [nc] as
being a “polynomial of degree c” with c > 1. Numbers (2), (3) and (4) are
approximations to, respectively, the prime twins problem, Goldbach’s prob-
lem, and the problem of primes of the shape n2 + 1. The theorems in (6)
and (7) are approximations to the conjecture that there should be a prime
between consecutive squares. Of these (7) is stronger, if less elegant. Maier’s
result (8) shows that the difference between consecutive primes is sometimes
smaller than average by a factor 1/4, the average spacing being log p by the
Prime Number Theorem. (Of course the twin prime conjecture would be a
much stronger result, with differences between consecutive primes sometimes
being as small as 2.) Similarly, Rankin’s result (9) demonstrates that the
gaps between consecutive primes can sometimes be larger than average, by a
factor which is almost log log p. Again this is some way from what we expect,
since Conjecture 1 predict gaps as large as (log p)2. Finally, Shiu’s result (10)
is best understood by taking q = 107 and a = 7, 777, 777, say. Thus a prime
leaves remainder a when divided by q, precisely when its decimal expansion
ends in 7 consecutive 7’s. Then (10) tells us that a table of primes will some-
where contain a million consecutive entries, each of which ends in the digits
7,777,777.

3 The Riemann Zeta-Function

In the theory of the zeta-function it is customary to use the variable s =
σ + it ∈ C. One then defines the complex exponential

n−s := exp(−s log n), with log n ∈ R.

The Riemann Zeta-function is then

ζ(s) :=
∞∑

n=1

n−s, σ > 1. (3.1)

The sum is absolutely convergent for σ > 1, and for fixed δ > 0 it is uniformly
convergent for σ ≥ 1 + δ. It follows that ζ(s) is holomorphic for σ > 1. The
function is connected to the primes as follows.

Theorem 6. (The Euler Product.) If σ > 1 then we have

ζ(s) =
∏

p

(1 − p−s)−1,

where p runs over all primes, and the product is absolutely convergent.
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This result is, philosophically, at the heart of the theory. It relates a sum
over all positive integers to a product over primes. Thus it relates the additive
structure, in which successive positive integers are generated by adding 1,
to the multiplicative structure. Moreover we shall see in the proof that the
fact that the sum and the product are equal is exactly an expression of the
Fundamental Theorem of Arithmetic.

To prove the result consider the finite product∏
p≤X

(1 − p−s)−1.

Since σ > 1 we have |p−s| < p−1 < 1, whence we can expand (1 − p−s)−1 as
an absolutely convergent series 1 + p−s + p−2s + p−3s + . . .. We may multiply
together a finite number of such series, and rearrange them, since we have
absolute convergence. This yields∏

p≤X

(1 − p−s)−1 =
∞∑

n=1

aX (n)

ns
,

where the coefficient aX (n) is the number of ways of writing n in the form

n = pe1
1 pe2

2 . . . per
r with p1 < p2 < . . . < pr ≤ X.

By the Fundamental Theorem of Arithmetic we have aX (n) = 0 or 1, and if
n ≤ X we will have aX (n) = 1. It follows that

|
∞∑

n=1

n−s −
∞∑

n=1

aX (n)

ns
| ≤
∑
n>X

| 1

ns
| =
∑
n>X

1

nσ
.

As X →∞ this final sum must tend to zero, since the infinite sum
∑∞

n=1 n−σ

converges. We therefore deduce that if σ > 1, then

lim
X→∞

∏
p≤X

(1 − p−s)−1 =
∞∑

n=1

1

ns
,

as required. Of course the product is absolutely convergent, as one may see
by taking s = σ.

One important deduction from the Euler product identity comes from tak-
ing logarithms and differentiating termwise. This can be justified by the local
uniform convergence of the resulting series.

Corollary 1. We have

−ζ ′

ζ
(s) =

∞∑
n=2

Λ(n)

ns
, (σ > 1), (3.2)

where

Λ(n) =

{
log p, n = pe,

0, otherwise.

The function Λ(n) is known as the von Mangoldt function.
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4 The Analytic Continuation and Functional

Equation of ζ(s)

Our definition only gives a meaning to ζ(s) when σ > 1. We now seek to
extend the definition to all s ∈ C. The key tool is the Poisson Summation
Formula .

Theorem 7. (The Poisson Summation Formula.) Suppose that f : R →
R is twice differentiable and that f, f ′ and f ′′ are all integrable over R. Define
the Fourier transform by

f̂(t) :=

∫ ∞

−∞
f(x)e−2πitxdx.

Then ∞∑
−∞

f(n) =
∞∑
−∞

f̂(n),

both sides converging absolutely.

There are weaker conditions under which this holds, but the above more
than suffices for our application. The reader should note that there are a
number of conventions in use for defining the Fourier transform, but the one
used here is the most appropriate for number theoretic purposes.

The proof (see Rademacher [12, page 71], for example) uses harmonic anal-
ysis on R+. Thus it depends only on the additive structure and not on the
multiplicative structure.

If we apply the theorem to f(x) = exp{−x2πv}, which certainly fulfils the
conditions, we have

f̂(n) =

∫ ∞

−∞
e−x2 πve−2πinxdx

=

∫ ∞

−∞
e−πv(x+in/v)2

e−πn2 /vdx

= e−πn2/v

∫ ∞

−∞
e−πvy2

dy

=
1√
v

e−πn2 /v ,

providing that v is real and positive. Thus if we define

θ(v) :=
∞∑
−∞

exp(−πn2v),

then the Poisson Summation Formula leads to the transformation formula

θ(v) =
1√
v

θ(1/v).
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The function θ(v) is a theta-function, and is an example of a modular form. It
is the fact that θ(v) not only satisfies the above transformation formula when
v goes to 1/v but is also periodic, that makes θ(v) a modular form.

The “Langlands Philosophy” says that all reasonable generalizations of the
Riemann Zeta-function are related to modular forms, in a suitably generalized
sense.

We are now ready to consider ζ(s), but first we introduce the function

ψ(v) =
∞∑

n=1

e−n2 πv , (4.1)

so that ψ(v) = (θ(v) − 1)/2 and

2ψ(v) + 1 =
1√
v
{2ψ(

1

v
) + 1}. (4.2)

We proceed to compute that, if σ > 1, then∫ ∞

0
xs/2−1ψ(x)dx =

∞∑
n=1

∫ ∞

0
xs/2−1e−n2 πxdx

=
∞∑

n=1

1

(n2π)s/2

∫ ∞

0
ys/2−1e−ydy

=
∞∑

n=1

1

(n2π)s/2 Γ(
s

2
)

= ζ(s)π−s/2Γ(
s

2
),

on substituting y = n2πx. The interchange of summation and integration is
justified by the absolute convergence of the resulting sum.

We now split the range of integration in the original integral, and apply
the transformation formula (4.2). For σ > 1 we obtain the expression

ζ(s)π−s/2Γ(
s

2
) =

∫ ∞

1
xs/2−1ψ(x)dx +

∫ 1

0
xs/2−1ψ(x)dx

=

∫ ∞

1
xs/2−1ψ(x)dx +

∫ 1

0
xs/2−1{ 1√

x
ψ(

1

x
) +

1

2
√

x
− 1

2
}dx

=

∫ ∞

1
xs/2−1ψ(x)dx +

∫ 1

0
xs/2−3/2ψ(

1

x
)dx +

1

s− 1
− 1

s

=

∫ ∞

1
xs/2−1ψ(x)dx +

∫ ∞

1
y(1−s)/2−1ψ(y)dy − 1

s(1 − s)
,

where we have substituted y for 1/x in the final integral.
We therefore conclude that

ζ(s)π−s/2Γ(
s

2
) =

∫ ∞

1
{xs/2−1 + x(1−s)/2−1}ψ(x)dx− 1

s(1 − s)
, (4.3)
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whenever σ > 1. However the right-hand side is meaningful for all values
s ∈ C− {0, 1}, since the integral converges by virtue of the exponential decay
of ψ(x). We may therefore use the above expression to define ζ(s) for all
s ∈ C − {0, 1}, on noting that the factor π−s/2Γ(s/2) never vanishes. Indeed,
since Γ(s/2)−1 has a zero at s = 0 we see that the resulting expression for
ζ(s) is regular at s = 0. Finally we observe that the right-hand side of (4.3) is
invariant on substituting s for 1− s. We are therefore led to the the following
conclusion.

Theorem 8. (Analytic Continuation and Functional Equation.) The
function ζ(s) has an analytic continuation to C, and is regular apart from a
simple pole at s = 1, with residue 1. Moreover

π−s/2Γ(
s

2
)ζ(s) = π−(1−s)/2Γ(

1 − s

2
)ζ(1 − s).

Furthermore, if a ≤ σ ≤ b and |t| ≥ 1, then π−s/2Γ( s
2 )ζ(s) is bounded in terms

of a and b.

To prove the last statement in the theorem we merely observe that

|π−s/2Γ(
s

2
)ζ(s)| ≤ 1 +

∫ ∞

1
(xb/2−1 + x(1−a)/2−1)ψ(x)dx.

5 Zeros of ζ(s)

It is convenient to define

ξ(s) =
1

2
s(s − 1)π−s/2Γ(

s

2
)ζ(s) = (s− 1)π−s/2Γ(1 +

s

2
)ζ(s), (5.1)

so that ξ(s) is entire. The functional equation then takes the form ξ(s) =
ξ(1− s). It is clear from (3.2) that ζ(s) can have no zeros for σ > 1, since the
series converges. Since 1/Γ(z) is entire, the function Γ(s/2) is non-vanishing,
so that ξ(s) also has no zeros in σ > 1. Thus, by the functional equation, the
zeros of ξ(s) are confined to the “critical strip” 0 ≤ σ ≤ 1. Moreover any zero
of ζ(s) must either be a zero of ξ(s), or a pole of Γ(s/2). We then see that the
zeros of ζ(s) lie in the critical strip, with the exception of the “trivial zeros”
at s = −2,−4,−6, . . . corresponding to poles of Γ(s/2).

We may also observe that if ρ is a zero of ξ(s) then, by the functional
equation, so is 1− ρ. Moreover, since ξ(s) = ξ(s), we deduce that ρ and 1− ρ
are also zeros. Thus the zeros are symmetrically arranged about the real axis,
and also about the “critical line” given by σ = 1/2. With this picture in mind
we mention the following important conjectures.

Conjecture 4. (The Riemann Hypothesis.) We have σ = 1/2 for all
zeros of ξ(s).

Conjecture 5. All zeros of ξ(s) are simple.

In the absence of a proof of Conjecture 5 we adopt the convention that in
any sum or product over zeros, we shall count them according to multiplicity.
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6 The Product Formula

There is a useful product formula for ξ(s), due to Hadamard. In general we
have the following result, for which see Davenport [3, Chapter 11] for example.

Theorem 9. Let f(z) be an entire function with f(0) �= 0, and suppose that
there are constants A > 0 and θ < 2 such that f(z) = O(exp(A|z|θ)) for all
complex z. Then there are constants α and β such that

f(z) = eα+βz

∞∏
n=1

{(1 − z

zn

)ez/zn },

where zn runs over the zeros of f(z) counted with multiplicity. The infinite sum∑∞
n=1 |zn|−2 converges, so that the product above is absolutely and uniformly

convergent in any compact set which includes none of the zeros.

We can apply this to ξ(s), since it is apparent from Theorem 8, together
with the definition (5.1) that

ξ(0) = ξ(1) =
1

2
π−1/2Γ(

1

2
)Res{ζ(s); s = 1} =

1

2
.

For σ ≥ 2 one has ζ(s) = O(1) directly from the series (3.1), while Stir-
ling’s approximation yields Γ(s/2) = O(exp(|s| log |s|)). It follows that ξ(s) =
O(exp(|s| log |s|)) whenever σ ≥ 2. Moreover, when 1

2 ≤ σ ≤ 2 one sees from
Theorem 8 that ξ(s) is bounded. Thus, using the functional equation, we can
deduce that ξ(s) = O(exp(|s| log |s|)) for all s with |s| ≥ 2.

We may therefore deduce from Theorem 9 that

ξ(s) = eα+βs
∏

ρ

{(1 − s

ρ
)es/ρ},

where ρ runs over the zeros of ξ(s). Thus, with appropriate branches of the
logarithms, we have

log ξ(s) = α + βs +
∑

ρ

{log(1 − s

ρ
) +

s

ρ
}.

We can then differentiate termwise to deduce that
ξ′

ξ
(s) = β +

∑
ρ

{ 1

s− ρ
+

1

ρ
},

the termwise differentiation being justified by the local uniform convergence
of the resulting sum. We therefore deduce that

ζ ′

ζ
(s) = β − 1

s− 1
+

1

2
log π − 1

2

Γ′

Γ
(
s

2
+ 1) +

∑
ρ

{ 1

s− ρ
+

1

ρ
}, (6.1)

where, as ever, ρ runs over the zeros of ξ counted according to multiplicity. In
fact, on taking s → 1, one can show that

β = −1

2
γ − 1 − 1

2
log 4π,

where γ is Euler’s constant. However we shall make no use of this fact.
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7 The Functions N(T ) and S(T )

We shall now investigate the frequency of the zeros ρ. We define

N(T ) = #{ρ = β + iγ : 0 ≤ β ≤ 1, 0 ≤ γ ≤ T}.

The notation β = 
(ρ), γ = �(ρ) is standard. In fact one can easily show
that ψ(x) < (2

√
x)−1, whence (4.3) suffices to prove that ζ(s) < 0 for real

s ∈ (0, 1). Thus we have γ > 0 for any zero counted by N(T ).
The first result we shall prove is the following.

Theorem 10. If T is not the ordinate of a zero, then

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+ S(T ) + O(1/T ),

where

S(T ) =
1

π
arg ζ(

1

2
+ iT ),

is defined by continuous variation along the line segments from 2 to 2 + iT to
1
2 + iT .

We shall evaluate N(T ) using the Principle of the Argument, which shows
that

N(T ) =
1

2π
∆R arg ξ(s),

providing that T is not the ordinate of any zero. Here R is the rectangular
path joining 2, 2 + iT , −1 + iT , and −1. To calculate ∆R arg ξ(s) one starts
with any branch of arg ξ(s) and allows it to vary continuously around the path.
Then ∆R arg ξ(s) is the increase in arg ξ(s) along the path. Our assumption
about T ensures that ξ(s) does not vanish on R.

Now ξ(s) = ξ(1 − s) and ξ(1 − s) = ξ(1 − s), whence ξ( 1
2 + a + ib) is

conjugate to ξ( 1
2 − a + ib). (In particular this shows that ξ(1

2 + it) is always
real.) It follows that

∆Rξ(s) = 2∆P ξ(s),

where P is the path 1
2 → 2 → 2 + iT → 1

2 + iT . On the first line segment ξ(s)
is real and strictly positive, so that the contribution to ∆P ξ(s) is zero. Let L
be the remaining path 2 → 2 + iT → 1

2 + iT . Then

∆Lξ(s) = ∆L{arg(s− 1)π−s/2Γ(
s

2
+ 1)} + ∆L arg ζ(s).

Now on L the function s − 1 goes from 1 to −1
2 + iT , whence

∆L arg(s − 1) = arg(−1

2
+ iT ) =

π

2
+ O(T−1).

We also have
arg π−s/2 = � log π−s/2 = �(−s

2
log π),
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so that arg π−s/2 goes from 0 to −(T log π)/2 and

∆L arg π−s/2 = −T

2
log π.

Finally, Stirling’s formula yields

log Γ(z) = (z− 1

2
) log z− z +

1

2
log(2π)+O(|z|−1), (| arg(z)| ≤ π− δ), (7.1)

whence

∆L arg Γ(
s

2
+ 1) = � log Γ(

1
2 + iT

2
+ 1)

= �{(3
4

+ i
T

2
) log(

5

4
+ i

T

2
) − (

5

4
+ i

T

2
) +

1

2
log(2π)}

+O(1/T )

=
T

2
log

T

2
− T

2
+

3π

8
+ O(1/T ),

since

log(
5

4
+ i

T

2
) = log

T

2
+ i

π

2
+ O(1/T ).

These results suffice for Theorem 10
We now need to know about S(T ). Here we show the following.

Theorem 11. We have S(T ) = O(log T ).

Corollary 2. (The Riemann – von Mangoldt Formula). We have

N(T ) =
T

2π
log

T

2π
− T

2π
+ O(log T ).

We start the proof by taking s = 2 + iT in (3.2) and noting that

|ζ
′

ζ
(s)| ≤

∞∑
n=2

Λ(n)

n2 = O(1).

Thus the partial fraction decomposition (6.1) yields∑
ρ

{ 1

2 + iT − ρ
+

1

ρ
} =

1

2

Γ′

Γ
(2 +

iT

2
) + O(1).

We may differentiate (7.1), using Cauchy’s formula for the first derivative, to
produce

Γ′

Γ
(z) = log z + O(1), (| arg(z)| ≤ π − δ), (7.2)

and then deduce that∑
ρ

{ 1

2 + iT − ρ
+

1

ρ
} = O(log(2 + T )). (7.3)
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We have only assumed here that T ≥ 0, not that T ≥ 2. In order to get the
correct order estimate when 0 ≤ T ≤ 2 we have therefore written O(log(2+T )),
which is O(1) for 0 ≤ T ≤ 2.

Setting ρ = β + iγ we now have


 1

2 + iT − ρ
=

2 − β

(2 − β)2 + (T − γ)2 ≥ 1

4 + (T − γ)2

and


1

ρ
=

β

β2 + γ2 ≥ 0,

since 0 ≤ β ≤ 1. We therefore produce the useful estimate∑
ρ

1

4 + (T − γ)2 = O(log(2 + T )), (7.4)

which implies in particular that

#{ρ : T − 1 ≤ γ ≤ T + 1} = O(log(2 + T )). (7.5)

We now apply (6.1) with s = σ + iT and 0 ≤ σ ≤ 2, and subtract (7.3)
from it to produce

ζ ′

ζ
(σ + iT ) = − 1

σ + iT − 1
+
∑

ρ

{ 1

σ + iT − ρ
− 1

2 + iT − ρ
} + O(log(2 + T )).

Terms with |γ − T | > 1 have

| 1

σ + iT − ρ
− 1

2 + iT − ρ
| = | 2 − σ

(σ + iT − ρ)(2 + iT − ρ)
|

≤ 2

|γ − T |.|γ − T |

≤ 2
1
5{4 + (T − γ)2} .

Thus (7.4) implies that∑
ρ: |γ−T |>1

{ 1

σ + iT − ρ
− 1

2 + iT − ρ
} = O(log(2 + T )),

and hence that

ζ ′

ζ
(σ + iT ) = − 1

σ + iT − 1
+

∑
ρ: |γ−T |≤1

{ 1

σ + iT − ρ
− 1

2 + iT − ρ
}

+O(log(2 + T )).
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However we also have

| 1

2 + iT − ρ
| ≤ 1

2 − β
≤ 1,

whence (7.5) produces∑
ρ: |γ−T |≤1

1

2 + iT − ρ
= O(log(2 + T )).

We therefore deduce the following estimate.

Lemma 1. For 0 ≤ σ ≤ 2 and T ≥ 0 we have

ζ ′

ζ
(σ + iT ) = − 1

σ + iT − 1
+

∑
ρ: |γ−T |≤1

1

σ + iT − ρ
+ O(log(2 + T )).

We are now ready to complete our estimation of S(T ). Taking T ≥ 2, we
have

arg ζ(
1

2
+ iT ) = � log ζ(

1

2
+ iT ) = �

∫ 1/2+iT

2

ζ ′

ζ
(s)ds,

the path of integration consisting of the line segments from 2 to 2 + iT and
from 2 + iT to 1/2 + iT . Along the first of these we use the formula (3.2),
which yields ∫ 2+iT

2

ζ ′

ζ
(s)ds =

[ ∞∑
n=2

Λ(n)

ns log n

]2+iT

2

= O(1).

For the remaining range we use Lemma 1, which produces

�
∫ 1/2+iT

2+iT

ζ ′

ζ
(s)ds =

∑
ρ: |γ−T |≤1

�
∫ 1/2+iT

2+iT

ds

s− ρ
+ O(log T )

=
∑

ρ: |γ−T |≤1

�{log(
1

2
+ iT − ρ) − log(2 + iT − ρ)}

+O(log T )

=
∑

ρ: |γ−T |≤1

{arg(
1

2
+ iT − ρ) − arg(2 + iT − ρ)}

+O(log T )

=
∑

ρ: |γ−T |≤1

O(1) + O(log T )

= O(log T ),

by (7.5). This suffices for the proof of Theorem 11.
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8 The Non-Vanishing of ζ(s) on σ = 1

So far we know only that the non-trivial zeros of ζ(s) lie in the critical strip
0 ≤ σ ≤ 1. Qualitatively the only further information we have is that there
are no zeros on the boundary of this strip.

Theorem 12. (Hadamard and de la Vallée Poussin, independently, 1896.)
We have ζ(1 + it) �= 0, for all real t.

This result was the key to the proof of the Prime Number Theorem. Quan-
titatively one can say a little more.

Theorem 13. (De la Vallée Poussin.) There is a positive absolute constant c
such that for any T ≥ 2 there are no zeros of ζ(s) in the region

σ ≥ 1 − c

log T
, |t| ≤ T.

In fact, with much more work, one can replace the function c/ log T by one
that tends to zero slightly more slowly, but that will not concern us here. The
proof of Theorem 13 uses the following simple fact.

Lemma 2. For any real θ we have

3 + 4 cos θ + cos 2θ ≥ 0.

This is obvious, since

3 + 4 cos θ + cos 2θ = 2{1 + cos θ}2.

We now use the identity (3.2) to show that

−3
ζ ′

ζ
(σ) − 4
ζ ′

ζ
(σ + it) −
ζ ′

ζ
(σ + 2it)

=
∞∑

n=2

Λ(n)

nσ
{3 + 4 cos(t log n) + cos(2t log n)}

≥ 0,

for σ > 1. When 1 < σ ≤ 2 we have

−ζ ′

ζ
(σ) =

1

σ − 1
+ O(1),

from the Laurent expansion around the pole at s = 1. For the remaining two
terms we use Lemma 1, to deduce that

3

σ − 1
+ O(1) − 4


∑
ρ: |γ−t|≤1

1

σ + it− ρ
−


∑
ρ: |γ−2t|≤1

1

σ + 2it− ρ
+ O(log T )
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≥ 0

for 1 < σ ≤ 2, T ≥ 2, and |t| ≤ T . Suppose we have a zero ρ0 = β0 + iγ0, say,
with 0 ≤ γ0 ≤ T . Set t = γ0. We then observe that for any zero we have


 1

σ + it− ρ
=

σ − β

(σ − β)2 + (t− γ)2 ≥ 0,

since σ > 1 ≥ β, and similarly


 1

σ + 2it− ρ
≥ 0.

We can therefore drop all terms from the two sums above, with the exception
of the term corresponding to ρ = ρ0, to deduce that

4

σ − β0
≤ 3

σ − 1
+ O(log T ).

Suppose that the constant implied by the O(. . .) notation is c0. This is just a
numerical value that one could calculate with a little effort. Then

4

σ − β0
≤ 3

σ − 1
+ c0 log T

whenever 1 < σ ≤ 2. If β0 = 1 we get an immediate contradiction by choosing
σ = 1 + (2c0 log T )−1. If β0 < 3/4 the result of Theorem 13 is immediate. For
the remaining range of β0 we choose σ = 1 + 4(1− β0), which will show that

4

5(1 − β0)
≤ 3

4(1 − β0)
+ c0 log T.

Thus
1

20(1 − β0)
≤ c0 log T,

and hence

1 − β0 ≥
1

20c0 log T
.

This completes the proof of Theorem 13.

The reader should observe that the key feature of the inequality given in
Lemma 2 is that the coefficients are non-negative, and that the coefficient of
cos θ is strictly greater than the constant term. In particular, the inequality

1 + cos θ ≥ 0

just fails to work.

Theorem 13 has a useful corollary.
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Corollary 3. Let c be as in Theorem 13, and let T ≥ 2. Then if

1 − c

2 log T
≤ σ ≤ 2

and |t| ≤ T , we have

ζ ′

ζ
(σ + it) = − 1

σ + it− 1
+ O(log2 T ).

For the proof we use Lemma 1. The sum over zeros has O(log T ) terms,
by (7.5), and each term is O(log T ), since

σ − β ≥ c

2 log T
,

by Theorem 13.

9 Proof of the Prime Number Theorem

Since our argument is based on the formula (3.2), it is natural to work with
Λ(n). We define

ψ(x) =
∑
n≤x

Λ(n) =
∑
pk≤x

log p. (9.1)

This is not the same function as that defined in (4.1)! Our sum ψ(x) is related
to π(x) in the following lemma.

Lemma 3. For x ≥ 2 we have

π(x) =
ψ(x)

log x
+

∫ x

2

ψ(t)

t log2 t
dt + O(x1/2).

For the proof we begin by setting

θ(x) =
∑
p≤x

log p.

Then ∫ x

2

θ(t)

t log2 t
dt =

∫ x

2

∑
p≤t

log p

t log2 t
dt

=
∑
p≤x

∫ x

p

log p

t log2 t
dt

=
∑
p≤x

[
− log p

log t

]x

p

= π(x) − θ(x)

log x
,
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so that

π(x) =
θ(x)

log x
+

∫ x

2

θ(t)

t log2 t
dt. (9.2)

However it is clear that terms in (9.1) with k ≥ 2 have p ≤ x1/2, and there are
at most x1/2 such p. Moreover k ≤ log x/ log p, whence the total contribution
from terms with k ≥ 2 is O(x1/2 log x). Thus

ψ(x) = θ(x) + O(x1/2 log x).

If we substitute this into (9.2) the required result follows.
We will use contour integration to relate ψ(x) to ζ ′(s)/ζ(s). This will be

done via the following result.

Lemma 4. Let y > 0, c > 1 and T ≥ 1. Define

I(y, T ) =
1

2πi

∫ c+iT

c−iT

ys

s
ds.

Then

I(y, T ) =

{
0, 0 < y < 1
1, y > 1

}
+ O(

yc

T | log y|).

When 0 < y < 1 we replace the path of integration by the line segments
c − iT → N − iT → N + iT → c + iT , and let N →∞. Then∫ N+iT

N−iT

ys

s
ds → 0,

while ∫ N−iT

c−iT

ys

s
ds = O(

∫ N

c

yσ

T
dσ) = O(

yc

T | log y|),

and similarly for the integral from N + iT to c + iT . It follows that

I(y, T ) = O(
yc

T | log y|)

for 0 < y < 1. The case y > 1 can be treated analogously, using the path
c− iT → −N − iT → −N + iT → c + iT . However in this case we pass a pole
at s = 0, with residue 1, and this produces the corresponding main term for
I(y, T ).

We can now give our formula for ψ(x).

Theorem 14. For x − 1
2 ∈ N, α = 1 + 1/ log x and T ≥ 1 we have

ψ(x) =
1

2πi

∫ α+iT

α−iT

{−ζ ′

ζ
(s)}xs

s
ds + O(

x log2 x

T
).
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For the proof we integrate termwise to get

1

2πi

∫ α+iT

α−iT

{−ζ ′

ζ
(s)}xs

s
ds =

∞∑
n=2

Λ(n)I(
x

n
, T )

=
∑
n≤x

Λ(n) + O(
∞∑

n=2

Λ(n)(
x

n
)α 1

T | log x/n|).

Since we are taking x − 1
2 ∈ N the case x/n = 1 does not occur. In the error

sum those terms with n ≤ x/2 or n ≥ 2x have | log x/n| ≥ log 2. Such terms
therefore contribute

O(
∞∑

n=2

Λ(n)
xα

Tnα
) = O(

xα

T
|ζ

′

ζ
(α)|)

= O(
x1+1/ log x

T

1

α − 1
)

= O(
x log x

T
).

When x/2 < n < 2x we have

| log x/n| ≥ 1

2

|x − n|
x

and
Λ(n)(

x

n
)α = O(log x).

These terms therefore contribute∑
x/2<n<2x

O(
x log x

T |x− n|) = O(
x log2 x

T
)

on bearing in mind that x − 1
2 ∈ N. The theorem now follows.

We are now ready to prove the following major result.

Theorem 15. There is a positive constant c0 such that

ψ(x) = x + O(x exp{−c0

√
log x}) (9.3)

for all x ≥ 2. Moreover we have

π(x) = Li(x) + O(x exp{−c0

√
log x})

for all x ≥ 2.

The error terms here can be improved slightly, but with considerably more
work.
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It clearly suffices to consider the case in which x − 1
2 ∈ N. To prove the

result we set
µ = 1 − c

2 log T
, T ≥ 2,

as in Lemma 3, and replace the line of integration in Theorem 14 by the path
α− iT → µ− iT → µ + iT → α + iT . The integrand has a pole at s = 1 with
residue x, arising from the pole of ζ(s), but no other singularities, by virtue of
Theorem 13. On the new path of integration Lemma 3 shows that

ζ ′

ζ
(s) = O(log2 T ).

We therefore deduce that

ψ(x) = x + O(
x log2 x

T
) + O(

∫ α

µ

log2 T

T
xσdσ) + O(

∫ T

−T

log2 T

|µ + it|x
µdt),

where the first error integral corresponds to the line segments α− iT → µ− iT
and µ + iT → α + iT , and the second error integral to the segment µ− iT →
µ + iT . These integrals are readily estimated to yield

ψ(x) = x + O(
x log2 x

T
) + O(

log2 T

T
xα) + O(xµ log3 T ).

Of course xα = O(x) here. Thus if T ≤ x we merely get

ψ(x) = x + O(x log3 x{ 1

T
+ xµ−1}).

We now choose
T = exp{

√
log x},

whence
ψ(x) = x + O(x(log x)3 exp{−min(1,

c

2
)
√

log x}).
We may therefore choose any positive constant c0 < min(1, c

2 ) in Theorem 15.
This establishes (9.3). To prove the remaining assertion, it suffices to insert
(9.3) into Lemma 3.

Finally we should stress that the success of this argument depends on being
able to take µ < 1, since there is an error term which is essentially of order
xµ. Thus it is crucial that we should at least know that ζ(1 + it) �= 0.

If we assume the Riemann Hypothesis, then we may take any µ > 1
2 in the

above analysis. This leads to the following estimates.

Theorem 16. On the Riemann Hypothesis we have

ψ(x) = x + O(xθ)

and
π(x) = Li(x) + O(xθ)

for any θ > 1
2 and all x ≥ 2.

One cannot reduce the exponent below 1/2, since there is a genuine con-
tribution to π(x) arising from the zeros of ζ(s).
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10 Explicit Formulae

In this section we shall argue somewhat informally, and present results without
proof.

If f : (0,∞) → C we define the Mellin transform of f to be the function

F (s) :=

∫ ∞

0
f(x)xs−1dx.

By a suitable change of variables one sees that this is essentially a form of
Fourier transform. Indeed all the properties of Mellin transforms can readily
be translated from standard results about Fourier transforms. In particular,
under suitable conditions one has an inversion formula

f(x) =
1

2πi

∫ σ+i∞

σ−i∞
F (s)x−sds.

Arguing purely formally one then has

∞∑
n=2

Λ(n)f(n) =
∞∑

n=2

Λ(n)
1

2πi

∫ 2+i∞

2−i∞
F (s)n−sds

=
1

2πi

∫ 2+i∞

2−i∞
{−ζ ′

ζ
(s)}F (s)ds.

If one now moves the line of integration to 
(s) = −N one passes poles at
s = 1 and at s = ρ for every non-trivial zero ρ, as well as at the trivial zeros
−2n. Under suitable conditions the integral along 
(s) = −N will tend to 0
as N →∞. This argument leads to the following result.

Theorem 17. Suppose that f ∈ C2(0,∞) and that supp(f) ⊆ [1, X] for some
X. Then ∞∑

n=2

Λ(n)f(n) = F (1) −
∑

ρ

F (ρ) −
∞∑

n=1

F (−2n).

One can prove such results subject to weaker conditions on f . If x is given,
and

f(t) =

{
1, t ≤ x
0, t > x,

then the conditions above are certainly not satisfied, but we have the following
related result.

Theorem 18. (The Explicit Formula.) Let x ≥ T ≥ 2. Then

ψ(x) = x −
∑

ρ: |γ|≤T

xρ

ρ
+ O(

x log2 x

T
).
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For a proof of this see Davenport [3, Chapter 17], for example. There are
variants of this result containing a sum over all zeros, and with no error term,
but the above is usually more useful.

The explicit formula shows exactly how the zeros influence the behaviour
of ψ(x), and hence of π(x). The connection between zeros and primes is even
more clearly shown by the following result of Landau.

Theorem 19. For fixed positive real x define Λ(x) = 0 if x �∈ N and Λ(x) =
Λ(n) if x = n ∈ N. Then

Λ(x) = −2π

T

∑
ρ: 0<γ≤T

xρ + Ox(
log T

T
),

where Ox(. . .) indicates that the implied constant may depend on x.

This result shows that the zeros precisely determine the primes. Thus, for
example, one can reformulate the conjecture (1.1) as a statement about the
zeros of the zeta-function. All the unevenness of the primes, for example the
behaviour described by Theorem 5, is encoded in the zeros of the zeta-function.
It therefore seems reasonable to expect that the zeros themselves should have
corresponding unevenness.

11 Dirichlet Characters

We now turn to the simplest type of generalization of the Riemann Zeta-
function, namely the Dirichlet L-functions. In the remainder of these notes we
shall omit most of the proofs, being content merely to describe what can be
proved.

A straightforward example of a Dirichlet L-function is provided by the
infinite series

1 − 1

3s
+

1

5s
− 1

7s
+

1

9s
− 1

11s
+ . . . . (11.1)

We first need to describe the coefficients which arise.

Definition . Let q ∈ N. A “(Dirichlet) character χ to modulus q” is a function
χ : Z → C such that

(i) χ(mn) = χ(m)χ(n) for all m,n ∈ Z;

(ii) χ(n) has period q;

(iii) χ(n) = 0 whenever (n, q) �= 1; and

(iv) χ(1) = 1.
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Part (iv) of the definition is necessary merely to rule out the possibility
that χ is identically zero.

As an example we can take the function

χ(n) =

⎧⎨⎩
1, n ≡ 1 (mod 4),
−1, n ≡ 3 (mod 4),
0, n ≡ 0 (mod 2).

(11.2)

This is a character modulo 4, and is the one generating the series (11.1). A
second example is the function

χ0(n) :=

{
1, (n, q) = 1,
0, (n, q) �= 1.

This produces a character for every modulus q, known as the principal char-
acter modulo q.

A number of key facts are gathered together in the following theorem.

Theorem 20. (i) We have |χ(n)| = 1 for every n coprime to q.

(ii) If χ1 and χ2 are two characters to modulus q, then so is χ1χ2, where we
define χ1χ2(n) = χ1(n)χ2(n).

(iii) There are exactly ϕ(q) different characters to modulus q.

(iv) If n �≡ 1(mod q) then there is at least one character χ modulo q for which
χ(n) �= 1.

In part (iii) the function ϕ(q) is the number of positive integers n ≤ q for
which n and q are coprime.

To prove part (i) we note that the sequence nk (mod q) must eventually
repeat when k runs through N. Thus there exist k < j with χ(nk) = χ(nj),
and hence χ(n)k = χ(n)j . Since n is coprime to q we have χ(n) �= 0, so that
χ(n)j−k = 1.

Part (ii) of the theorem is obvious, but parts (iii) and (iv) are harder, and
we refer the reader to Davenport [3, Chapter 4] for the details. As an example
of (iii) we note that ϕ(4) = 2, and we have already found two characters
modulo 4. There are no others.

One further fact may elucidate the situation. Consider a general finite
abelian group G. In our case we will have G = (Z/qZ)×. Thus G will consist
of those residue classes n mod q for which (n, q) = 1, with the multiplica-

tion operation. Define Ĝ to be the group of homomorphisms θ : G → C×,
where the group action is given by (θ1θ2)(g) := θ1(g)θ2(g). In our case these

homomorphisms are, in effect, the characters. Then the groups G and Ĝ are
isomorphic, and part (iii) above is an immediate consequence. The details can
be found in Ireland and Rosen [7, pages 253 and 254], for example. Indeed
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there is a duality between G and Ĝ. The isomorphism between them is not
“natural”, but there is a natural isomorphism

G � ̂̂G.

There are two orthogonality relations satisfied by the characters to a given
modulus q. The first of these is the following.

Theorem 21. If a and q are coprime then

S :=
∑

χ(mod q)

χ(n)χ(a) =

{
ϕ(q), n ≡ a (mod q),

0, n �≡ a (mod q).

When n ≡ a(mod q) this is immediate since then χ(n)χ(a) = 1 for all χ.
In the remaining case, choose an element b with ab ≡ 1 (mod q). By (iv) of
Theorem 20 there exists a character χ1 such that χ1(nb) �= 1. Then

χ1(nb)S =
∑

χ(mod q)

χ1(n)χ(n)χ1(b)χ(a).

However
χ1(b)χ1(a) = χ1(ab) = χ1(1) = 1,

whence χ1(b) = χ1(a). We therefore deduce that

χ1(nb)S =
∑

χ(mod q)

χ1(n)χ(n)χ1(a)χ(a)

=
∑

χ(mod q)

χ1χ(n)χ1χ(a).

As χ runs over the complete set of characters to modulus q the product χ1χ
does as well, since χ1χ = χ1χ

′ implies χ = χ′. Thus∑
χ(mod q)

χ1χ(n)χ1χ(a) = S

and hence χ1(nb)S = S. Since χ1(nb) �= 1 we deduce that S = 0, as required.
The second orthogonality relation is the following.

Theorem 22. If χ �= χ0 then
∑q

n=1 χ(n) = 0.

The proof is analogous to the previous result, and is based on the obvious
fact that if χ �= χ0 then there is some integer n coprime to q such that χ(n) �= 1.
The details are left as an exercise for the reader.

If q has a factor r and χ is a character modulo r we can define the character
ψ modulo q which is “induced by” χ. This is done by setting

ψ(n) =

{
χ(n), (n, q) = 1,

0, (n, q) �= 1.
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For example, we may take χ to be the character modulo 4 given by (11.2).
Then if q = 12 we induce a character ψ modulo 12, as in the following table.

1 2 3 4 5 6 7 8 9 10 11 12
χ 1 0 -1 0 1 0 -1 0 1 0 -1 0
ψ 1 0 0 0 1 0 -1 0 0 0 -1 0

A character χ(mod q) which cannot be produced this way from some divisor
r < q is said to be “primitive”. The principal character is induced by the
character χ0(mod 1), that is to say by the character which is identically 1.
If q is prime, then all the characters except for the principal character are
primitive. In general there will be both primitive and imprimitive characters
to each modulus. Imprimitive characters are a real nuisance!!

12 Dirichlet L-functions

For any character χ to modulus q we will define the corresponding Dirichlet
L-function by setting

L(s, χ) =
∞∑

n=1

χ(n)

ns
, (σ > 1).

We content ourselves here with describing the key features of these func-
tions, and refer the reader to Davenport [3], for example, for details.

The sum is absolutely convergent for σ > 1 and is locally uniformly con-
vergent, so that L(s, χ) is holomorphic in this region. If χ is the principal
character modulo q then the series fails to converge when σ ≤ 1. However
for non-principal χ the series is conditionally convergent when σ > 0, and the
series defines a holomorphic function in this larger region.

There is an Euler product identity

L(s, χ) =
∏

p

(1 − χ(p)p−s)−1, (σ > 1).

This can be proved in the same way as for ζ(s) using the multiplicativity of
the function χ.

Suppose that χ is primitive, and that χ(−1) = 1. If we apply the Poisson
summation formula to

f(x) = e−(a+qx)2πv/q ,

multiply the result by χ(a), and sum for 1 ≤ a ≤ q, we find that

θ(v, χ) =
τ(χ)√

q

1√
v

θ(
1

v
, χ),

where

θ(v, χ) :=
∞∑

n=−∞
χ(n)e−n2 πv/q
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is a generalisation of the theta-function, and

τ(χ) :=

q∑
a=1

χ(a)e2πia/q

is the Gauss sum.
When χ is primitive and χ(−1) = −1 the function θ(v, χ) vanishes identi-

cally. Instead we use

θ1(v, χ) :=
∞∑

n=−∞
nχ(n)e−n2 πv/q ,

for which one finds the analogous transformation formula

θ1(v, χ) =
iτ(χ)√

q

1

v3/2 θ1(
1

v
, χ).

These two transformation formulae then lead to the analytic continuation
and functional equation for L(s, χ). The conclusion is that, if χ is primitive
then L(s, χ) has an analytic continuation to the whole complex plane, and
is regular everywhere, except when χ is identically 1, (in which case L(s, χ)
is just the Riemann Zeta-function ζ(s)). Moreover, still assuming that χ is
primitive, with modulus q, we set

ξ(s, χ) = (
q

π
)(s+a)/2Γ(

s + a

2
)L(s, χ),

where

a = a(χ) :=

{
0, χ(−1) = 1,
1, χ(−1) = −1.

Then

ξ(1 − s, χ) =
iaq1/2

τ(χ)
ξ(s, χ).

Notice in particular that, unless the values taken by χ are all real, this func-
tional equation relates L(s, χ) not to the same function at 1 − s but to the
conjugate L-function, with character χ.

It follows from the Euler product and the functional equation that there are
no zeros of ξ(s, χ) outside the critical strip. The zeros will be symmetrically
distributed about the critical line σ = 1/2, but unless χ is real they will not
necessarily be symmetric about the real line. Hence in general it is appropriate
to define

N(T, χ) := #{ρ : ξ(ρ, χ) = 0 |γ| ≤ T},
counting zeros both above and below the real axis. We then have

1

2
N(T, χ) =

T

2π
log

qT

2π
− T

2π
+ O(log qT )
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for T ≥ 2, which can be seen as an analogue of the Riemann – von Mangoldt
formula. This shows in particular that the interval [T, T + 1] contains around

1

2π
log

qT

2π

zeros, on average.
The work on regions without zeros can be generalized, but there are serious

problems with possible zeros on the real axis. Thus one can show that there
is a constant c > 0, which is independent of q, such that if T ≥ 2 then L(s, χ)
has no zeros in the region

σ ≥ 1 − c

log qT
, 0 < |t| ≤ T.

If χ is not a real-valued character then we can extend this result to the case
t = 0, but is a significant open problem to deal with the case in which χ is real.
However in many other important aspects techniques used for the Riemann
Zeta-function can be successfully generalized to handle Dirichlet L-functions.
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Introduction to the Random Matrix
Theory: Gaussian Unitary Ensemble

and Beyond

Yan V. Fyodorov

Abstract

These lectures provide an informal introduction into the notions and
tools used to analyze statistical properties of eigenvalues of large ran-
dom Hermitian matrices. After developing the general machinery of
orthogonal polynomial method, we study in most detail Gaussian Uni-
tary Ensemble (GUE) as a paradigmatic example. In particular, we
discuss Plancherel-Rotach asymptotics of Hermite polynomials in vari-
ous regimes and employ it in spectral analysis of the GUE. In the last
part of the course we discuss general relations between orthogonal poly-
nomials and characteristic polynomials of random matrices which is an
active area of current research.

1 Preface

Gaussian Ensembles of random Hermitian or real symmetric matrices always
played a prominent role in the development and applications of Random Ma-
trix Theory. Gaussian Ensembles are uniquely singled out by the fact that
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they belong both to the family of invariant ensembles, and to the family of
ensembles with independent, identically distributed (i.i.d) entries. In general,
mathematical methods used to treat those two families are very different.

In fact, all random matrix techniques and ideas can be most clearly and
consistently introduced using Gaussian case as a paradigmatic example. In the
present set of lectures we mainly concentrate on consequences of the invari-
ance of the corresponding probability density function, leaving aside methods
of exploiting statistical independence of matrix entries. Under these circum-
stances the method of orthogonal polynomials is the most adequate one, and
for the Gaussian case the relevant polynomials are Hermite polynomials. Being
mostly interested in the limit of large matrix sizes we will spend a considerable
amount of time investigating various asymptotic regimes of Hermite polyno-
mials, since the latter are main building blocks of various correlation functions
of interest. In the last part of our lecture course we will discuss why statistics
of characteristic polynomials of random Hermitian matrices turns out to be
interesting and informative to investigate, and will make a contact with recent
results in the domain.

The presentation is quite informal in the sense that I will not try to prove
various statements in full rigor or generality. I rather attempt outlining the
main concepts, ideas and techniques preferring a good illuminating example
to a general proof. A much more rigorous and detailed exposition can be
found in the cited literature. I will also frequently employ the symbol ∝. In
the present set of lectures it always means that the expression following ∝
contains a multiplicative constant which is of secondary importance for our
goals and can be restored when necessary.

2 Introduction

In these lectures we use the symbol T to denote matrix or vector transposition
and the asterisk ∗ to denote Hermitian conjugation. In the present section the
bar z denotes complex conjugation.

Let us start with a square complex matrix Ẑ of dimensions N × N , with
complex entries zij = xij + iyij , 1 ≤ i, j ≤ N . Every such matrix can be
conveniently looked at as a point in a 2N 2-dimensional Euclidean space with
real Cartesian coordinates xij , yij , and the length element in this space is
defined in a standard way as:

(ds)2 = Tr
(
dẐdẐ∗

)
=
∑
ij

dzijdzij =
∑
ij

[
(dx)2

ij + (dy)2
ij

]
. (2.1)

As is well-known (see e.g.[1]) any surface embedded in an Euclidean space
inherits a natural Riemannian metric from the underlying Euclidean struc-
ture. Namely, let the coordinates in a n−dimensional Euclidean space be
(x1, . . . , xn), and let a k−dimensional surface embedded in this space be param-
eterized in terms of coordinates (q1, . . . , qk), k ≤ n as xi = xi(q1, . . . , qk), i =
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1, . . . n. Then the Riemannian metric gml = glm on the surface is defined from
the Euclidean length element according to

(ds)2 =
n∑

i=1

(dxi)
2 =

n∑
i=1

(
k∑

m=1

∂xi

∂qm

dqm

)2

=
k∑

m,l=1

gmndqmdql. (2.2)

Moreover, such a Riemannian metric induces the corresponding integration
measure on the surface, with the volume element given by

dµ =
√
|g|dq1 . . . dqk, g = det (gml)

k
l,m=1. (2.3)

For k = n these are just the familiar formulae for the lengths and volume
associated with change of coordinates in an Euclidean space. For example,
for n = 2 we can pass from Cartesian coordinates −∞ < x, y < ∞ to polar
coordinates r > 0, 0 ≤ θ < 2π by x = r cos θ, y = r sin θ, so that dx =
dr cos θ − r sin θdθ, dy = dr sin θ + r cos θdθ, and the Riemannian metric is
defined by (ds)2 = (dx)2 +(dy)2 = (dr)2 +r2(dθ)2. We find that g11 = 1, g12 =
g21 = 0, g22 = r2, and the volume element of the integration measure in the
new coordinates is dµ = rdrdθ; as it should be. As the simplest example of
a “surface” with k < n = 2 embedded in such a two-dimensional space we
consider a circle r = R = const. We immediately see that the length element
(ds)2 restricted to this “surface” is (ds)2 = R2(dθ)2, so that g11 = R2, and the
integration measure induced on the surface is correspondingly dµ = Rdθ. The
“surface” integration then gives the total “volume” of the embedded surface
(i.e. circle length 2πR).

z

y

x

θ

φ

Figure 1: The spherical coordinates for a two dimensional sphere in the three-
dimensional Euclidean space.

Similarly, we can consider a two-dimensional (k = 2) sphere R2 = x2 +y2 +
z2 embedded in a three-dimensional Euclidean space (n = 3) with coordinates
x, y, z and length element (ds)2 = (dx)2 + (dy)2 + (dz)2. A natural param-
eterization of the points on the sphere is possible in terms of the spherical
coordinates φ, θ (see Fig. 1)

x = R sin θ cos φ, y = R sin θ sin φ, z = R cos θ; 0 ≤ θ ≤ π, 0 ≤ φ < 2π,



34 Yan V. Fyodorov

which results in (ds)2 = R2(dθ)2 + R2 sin2 θ(dφ)2. Hence the matrix elements
of the metric are g11 = R2, g12 = g21 = 0, g22 = R2 sin2 θ, and the cor-
responding “volume element” on the sphere is the familiar elementary area
dµ = R2 sin θdθdφ.

As a less trivial example to be used later on consider a 2−dimensional
manifold formed by 2 × 2 unitary matrices Û embedded in the 8 dimensional
Euclidean space of Gl(2; C) matrices. Every such matrix can be represented
as the product of a matrix Ûc from the coset space U(2)/U(1)× U(1) param-
eterized by k = 2 real coordinates 0 ≤ φ < 2π, 0 ≤ θ ≤ π/2, and a diagonal
unitary matrix Ud, that is Û = ÛdÛc, where

Ûc =

(
cos θ − sin θe−iφ

sin θeiφ cos θ

)
, Ûd =

(
e−iφ1 0

0 eiφ2

)
. (2.4)

Then the differential dÛ of the matrix Û = ÛdÛc has the following form:

d̂U =
(

−[dθ sin θ + i cos θdφ1 ]e−iφ 1 e−i(φ 1 +φ ) [−dθ cos θ + i(dφ1 + dφ) sin θ]
ei(φ+φ 2 ) [dθ cos θ + i(dφ + dφ2 ) sin θ] [−dθ sin θ + idφ2 cos θ]eiφ 2

)
, (2.5)

which yields the length element and the induced Riemannian metric:

(ds)2 = Tr
(
dÛdÛ∗

)
(2.6)

= 2(dθ)2 + (dφ1)
2 + (dφ2)

2 + 2 sin2 θ(dφ)2

+2 sin2 θ(dφ dφ1 + dφ dφ2).

We see that the nonzero entries of the Riemannian metric tensor gmn in this
case are g11 = 2, g22 = g33 = 1, g44 = 2 sin2 θ, g24 = g42 = g34 = g43 =
sin2 θ, so that the determinant det [gmn] = 4 sin2 θ cos2 θ. Finally, the induced
integration measure on the group U(2) is given by

dµ(Û) = 2 sin θ cos θ dθ dφ dφ1 dφ2. (2.7)

It is immediately clear that the above expression is invariant, by construction,
with respect to multiplications Û → V̂ Û , for any fixed unitary matrix V from
the same group. Therefore, Eq.(2.7) is just the Haar measure on the group.

We will make use of these ideas several times in our lectures. Let us now
concentrate on the N 2−dimensional subspace of Hermitian matrices in the
2N 2− dimensional space of all complex matrices of a given size N . The Her-

miticity condition Ĥ = Ĥ∗ ≡ ĤT amounts to imposing the following restric-
tions on the coordinates: xij = xji, yij = −yji. Such a restriction from the
space of general complex matrices results in the length and volume element on
the subspace of Hermitian matrices:

(ds)2 = Tr
(
dĤdĤ∗

)
=
∑

i

(dxii)
2 + 2

∑
i<j

[
(dxij)

2 + (dyij)
2] (2.8)

dµ(Ĥ) = 2
N (N −1)

2

∏
i

dxii

∏
i<j

dxijdyij . (2.9)
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Obviously, the length element (ds)2 = TrdĤdĤ∗ is invariant with respect to
an automorphism (a mapping of the space of Hermitian matrices to itself) by a
similarity transformation Ĥ → U−1ĤÛ , where Û ∈ U(N) is any given unitary
N × N matrix: Û∗ = Û−1. Therefore the corresponding integration measure
dµ(Ĥ) is also invariant with respect to all such “rotations of the basis”.

The above-given measure dµ(Ĥ) written in the coordinates xii, xi<j , yi<j is
frequently referred to as the “flat measure”. Let us discuss now another, very
important coordinate system in the space of Hermitian matrices which will be
in the heart of all subsequent discussions. As is well-known, every Hermitian
matrix Ĥ can be represented as

Ĥ = Û Λ̂Û−1, Λ̂ = diag(λ1, . . . , λN ), Û∗Û = Î , (2.10)

where real −∞ < λk < ∞, k = 1, . . . , N are eigenvalues of the Hermitian
matrix, and rows of the unitary matrix Û are corresponding eigenvectors.
Generically, we can consider all eigenvalues to be simple (non-degenerate).
More precisely, the set of matrices Ĥ with non-degenerate eigenvalues is dense
and open in the N 2-dimensional space of all Hermitian matrices, and has
full measure (see [3], p.94 for a formal proof). The correspondence Ĥ →(
Û ∈ U(N), Λ̂

)
is, however, not one-to-one, namely Û1Λ̂Û−1

1 = Û2Λ̂Û−1
2 if

Û−1
1 Û2 = diag

(
eiφ1 , . . . , eiφN

)
for any choice of the phases φ1, . . . , φN . To

make the correspondence one-to-one we therefore have to restrict the unitary
matrices to the coset space U(N)/U(1) ⊗ . . . ⊗ U(1), and also to order the
eigenvalues, e.g. requiring λ1 < λ2 < . . . < λN . Our next task is to write
the integration measure dµ(Ĥ) in terms of eigenvalues Λ̂ and matrices Û . To
this end, we differentiate the spectral decomposition Ĥ = Û Λ̂Û∗, and further

exploit: d
(
Û∗Û

)
= dÛ∗Û + Û∗dÛ = 0. This leads to

dĤ = Û
[
dΛ̂ + Û∗dÛ Λ̂ − Λ̂Û∗dÛ

]
Û∗. (2.11)

Substituting this expression into the length element (ds)2, see Eq.(2.8), and us-
ing the short-hand notation δÛ for the matrix Û∗dÛ satisfying anti-Hermiticity
condition δÛ∗ = −δÛ , we arrive at:

(ds)2 = Tr

[(
dΛ̂
)2

+ 2dΛ̂
(
δÛ Λ̂ − Λ̂δÛ

)
(2.12)

+
(
δÛ Λ̂

)2
+
(
Λ̂δÛ

)2
− 2δÛ Λ̂2δÛ

]
.

Taking into account that Λ̂ is purely diagonal, and therefore the diagonal

entries of the commutator
(
δÛ Λ̂ − Λ̂δÛ

)
are zero, we see that the second

term in Eq.(2.12) vanishes. On the other hand, the third and subsequent
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terms when added up are equal to

2Tr
[
δÛ Λ̂δÛ Λ̂ − δÛ 2Λ̂2

]
= 2

∑
ij

[
δUijλjδUjiλi − λ2

i δUijδUji

]
= −

∑
ij

(λi − λj)
2 δUjiδUij

which together with the first term yields the final expression for the length
element in the “spectral” coordinates

(ds)2 =
∑

i

(dλi)
2 +
∑
i<j

(λi − λj)
2 δUijδUij (2.13)

where we exploited the anti-Hermiticity condition −δUji = δUij . Introducing
the real and imaginary parts δUij = δpij + iδqij as independent coordinates we

can calculate the corresponding integration measure dµ(Ĥ) according to the
rule in Eq.(2.3), to see that it is given by

dµ(Ĥ) =
∏
i<j

(λi − λj)
2
∏

i

dλi × dM(Û) . (2.14)

The last factor dM(U) stands for the part of the measure depending only on
the U−variables. A more detailed consideration shows that, in fact, dM(Û) ≡
dµ(Û), which means that it is given (up to a constant factor) by the invariant
Haar measure on the unitary group U(N). This fact is however of secondary
importance for the goals of the present lecture.

Having an integration measure at our disposal, we can introduce a probabil-
ity density function (p.d.f.) P(Ĥ) on the space of Hermitian matrices, so that
P(Ĥ)dµ(Ĥ) is the probability that a matrix Ĥ belongs to the volume element
dµ(Ĥ). Then it seems natural to require for such a probability to be invariant

with respect to all the above automorphisms, i.e. P(Ĥ) = P
(
Û ∗ĤÛ

)
. It

is easy to understand that this “postulate of invariance” results in P being a
function of N first traces TrĤn, n = 1, . . . , N (the knowledge of first N traces
fixes the coefficients of the characteristic polynomial of Ĥ uniquely, and hence
the eigenvalues. Therefore traces of higher order can always be expressed in
terms of the lower ones). Of particular interest is the case

P(Ĥ) = C exp−Tr Q(Ĥ), Q(x) = a2jx
2j + . . . + a0, (2.15)

where 2j ≤ N , the parameters a2l and C are real constants, and a2j > 0.
Observe that if we take

Q(x) = ax2 + bx + c, (2.16)

then e−T r Q(Ĥ ) takes the form of the product

e−a[
∑

i x2
ii+2

∑
i< j (x2

ij +y2
ij )]e−b

∑
i xii e−cN (2.17)

= e−cN

N∏
i=1

(
e−ax2

ii−bxii

)∏
i<j

e−2ax2
ij

∏
i<j

e−2ay2
ij .
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We therefore see that the probability distribution of the matrix Ĥ can be rep-
resented as a product of factors, each factor being a suitable Gaussian distribu-
tion depending only on one variable in the set of all coordinates xii, xi<j , yi<j .

Since the same factorization is valid also for the integration measure dµ(Ĥ), see
Eq.(2.9), we conclude that all these N 2 variables are statistically independent
and Gaussian-distributed.

A much less obvious statement is that if we impose simultaneously two
requirements:

• The probability density function P(Ĥ) is invariant with respect to all
conjugations Ĥ → Ĥ ′ = U−1ĤÛ by unitary matrices Û , that is P(Ĥ ′) =
P(Ĥ); and

• the N 2 variables xii, xi<j , yi<j are statistically independent, i.e.

P(Ĥ) =
N∏

i=1

fi(xii)
N∏

i<j

f
(1)
ij (xij)f

(2)
ij (yij), (2.18)

then the function P(Ĥ) is necessarily of the form P(Ĥ) = Ce−(aTrĤ 2 +bTrĤ+cN),
for some constants a > 0, b, c. The proof for any N can be found in [2], and
here we just illustrate its main ideas for the simplest, yet nontrivial case N = 2.
We require invariance of the distribution with respect to the conjugation of
Ĥ by Û ∈ U(2), and first consider a particular choice of the unitary matrix

Û =

(
1 −θ
θ 1

)
corresponding to φ = φ1 = φ2 = 0, and small values θ � 1

in Eq.(2.4). In this approximation the condition Ĥ ′ = U−1ĤÛ amounts to(
x′

11 x′
12 + iy′

12
x′

12 − iy′
12 x′

22

)
(2.19)

=

(
x11 + 2θx12 x12 + iy12 + θ (x22 − x11)

x12 − iy12 + θ (x22 − x11) x22 − 2θx12

)
,

where we kept only terms linear in θ. With the same precision we expand the
factors in Eq.(2.18):

f1(x
′
1) = f1(x1)

[
1 + 2θx12

1

f1

df1

dx11

]
, f2(x

′
22) = f2(x22)

[
1 − 2θx12

1

f2

df2

dx22

]

f
(1)
12 (x′

12) = f
(1)
12 (x12)

[
1 + θ(x22 − x11)

1

f
(1)
12

df
(1)
12

dx12

]
, f

(2)
12 (y′

21) = f
(2)
12 (y12).

The requirements of statistical independence and invariance amount to the
product of the left-hand sides of the above expressions to be equal to the
product of the right-hand sides, for any θ. This is possible only if:

2x12

[
d ln f1

dx11
− d ln f2

dx22

]
+ (x22 − x11)

d ln f
(1)
12

dx12
= 0, (2.20)
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which can be further rewritten as

1

(x22 − x11)

[
d ln f1

dx11
− d ln f2

dx22

]
= const =

1

2x12

d ln f
(1)
12

dx12
, (2.21)

where we used that the two sides in the equation above depend on essentially
different sets of variables. Denoting const1 = −2a, we see immediately that

f
(1)
12 (x12) ∝ e−2ax2

12 ,

and further notice that

d ln f1

dx11
+ 2ax11 = const2 =

d ln f2

dx22
+ 2ax22

by the same reasoning. Denoting const2 = −b, we find:

f1(x11) ∝ e−ax2
11−bx11 , f2(x22) ∝ e−ax2

22−bx22 , (2.22)

and thus we are able to reproduce the first two factors in Eq.(2.17). To repro-
duce the remaining factors we consider the conjugation by the unitary matrix

Ûd =

(
1 − iα 0

0 1 + iα

)
, which corresponds to the choice θ = 0, φ1 = φ2 =

−α = in Eq.(2.4), and again we keep only terms linear in the small parameter
α � 1. Within such a precision the transformation leaves the diagonal entries
x11, x22 unchanged, whereas the real and imaginary parts of the off-diagonal
entries are transformed as

x′
12 = x12 − 2αy12, y′

12 = y12 + 2αx12.

In this case the invariance of the p.d.f. P(Ĥ) together with the statistical
independence of the entries amount, after straightforward manipulations, to
the condition

1

x12

d ln f
(1)
12

dx12
=

1

y12

d ln f
(2)
12

dy12

which together with the previously found f
(1)
12 (x12) yields

f
(2)
12 (y12) ∝ e−2ay2

12 ,

completing the proof of Eq.(2.17).
The Gaussian form of the probability density function, Eq.(2.17), can also

be found as a result of rather different lines of thought. For example, one
may invoke an information theory approach a la Shanon-Khinchin and define
the amount of information I[P(Ĥ)] associated with any probability density
function P(Ĥ) by

I[P(Ĥ)] = −
∫

dµ(Ĥ)P(Ĥ) lnP(Ĥ) (2.23)
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This is a natural extension of the corresponding definition I[p1, . . . , pm ] =
−∑m

l=1 pm ln pm for discrete events 1, ...,m.

Now one can argue that in order to have matrices Ĥ as random as possible
one has to find the p.d.f. minimizing the information associated with it for
a certain class of P(H) satisfying some conditions. The conditions usually
have a form of constraints ensuring that the probability density function has
desirable properties. Let us, for example, impose the only requirement that
the ensemble average for the two lowest traces TrĤ, TrĤ2 must be equal to

certain prescribed values, say E
[
TrĤ

]
= b and E

[
TrĤ2

]
= a > 0, where

the E [. . .] stand for the expectation value with respect to the p.d.f. P(H).
Incorporating these constraints into the minimization procedure in a form of
Lagrange multipliers ν1, ν2, we seek to minimize the functional

I[P(Ĥ)] = −
∫

dµ(Ĥ)P(Ĥ)
{

lnP(Ĥ) − ν1TrĤ − ν2TrĤ2
}

. (2.24)

The variation of such a functional with respect to δP(H) results in

δI[P(Ĥ)] = −
∫

dµ(Ĥ) δP(Ĥ)
{

1 + lnP(Ĥ) − ν1TrĤ − ν2TrĤ2
}

= 0

(2.25)
possible only if

P(Ĥ) ∝ exp{ν1TrĤ + ν2TrĤ2}
again giving the Gaussian form of the p.d.f. The values of the Lagrange mul-
tipliers are then uniquely fixed by constants a, b, and the normalization con-
dition on the probability density function. For more detailed discussion, and
for further reference see [2], p.68.

Finally, let us discuss yet another construction allowing one to arrive at
the Gaussian Ensembles exploiting the idea of Brownian motion. To start
with, consider a system whose state at time t is described by one real vari-
able x, evolving in time according to the simplest linear differential equation
d
dt

x = −x describing a simple exponential relaxation x(t) = x0e
−t towards

the stable equilibrium x = 0. Suppose now that the system is subject to a
random additive Gaussian white noise ξ(t) function of intensity D 1, so that
the corresponding equation acquires the form

d

dt
x = −x + ξ(t), Eξ [ξ(t1)ξ(t1)] = Dδ(t1 − t2), (2.26)

1The following informal but instructive definition of the white noise process may be
helpful for those not very familiar with theory of stochastic processes. For any 0 < t < 2π
and integer k ≥ 1 define the random function ξk (t) =

√
2/π
∑k

n=0 an cos nt, where real
coefficients an are all independent, Gaussian distributed with zero mean E[an ] = 0 and
variances E[a2

0 ] = D/2 and E[a2
n ] = D for 1 ≤ n ≤ k. Then one can, in a certain sense,

consider white noise as the limit of ξk (t) for k → ∞. In particular, the Dirac δ(t − t′) is
approximated by the limiting value of sin [(k+1/2)(t−t′)]

2π sin (t−t′)/2
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where Eξ [. . .] stands for the expectation value with respect to the random
noise. The main characteristic property of a Gaussian white noise process is
the following identity:

Eξ

[
exp

{∫ b

a

ξ(t)v(t)dt

}]
= exp

{
D

2

∫ b

a

v2(t)dt

}
(2.27)

valid for any (smooth enough) test function v(t). This is just a direct general-
ization of the standard Gaussian integral identity:∫ ∞

−∞

dq√
2πa

e−
1

2a
q2 +qb = e

a b2
2 , (2.28)

valid for Re a > 0, and any (also complex) parameter b.
For any given realization of the Gaussian random process ξ(t) the solution

of the stochastic differential equation Eq.(2.26) is obviously given by

x(t) = e−t

[
x0 +

∫ t

0
eτ ξ(τ)dτ

]
. (2.29)

This is a random function, and our main goal is to find the probability density
function P(t, x) for the variable x(t) to take value x at any given moment in
time t, if we know surely that x(0) = x0. This p.d.f. can be easily found from
the characteristic function

F(t, q) = Eξ

[
e−iqx(t)] = exp

{
−iqx0e

−t − Dq2

4
(1 − e−2t)

}
(2.30)

obtained by using Eqs. (2.27) and (2.29). The p.d.f. is immediately recovered
by employing the inverse Fourier transform:

P(t, x) =

∫ ∞

−∞

dq

2π
eiqxEξ

[
e−iqx(t)] (2.31)

=
1√

πD(1 − e−2t)
exp

{
−(x− x0e

−t)
2

D(1 − e−2t)

}
.

The formula Eq.(2.31) is called the Ornstein-Uhlenbeck (OU) probability
density function, and the function x(t) satisfying the equation Eq.(2.26) is
known as the O-U process. In fact, such a process describes an interplay
between the random “kicks” forcing the system to perform a kind of Brownian
motion and the relaxation towards x = 0. It is easy to see that when time
grows the OU p.d.f. “forgets” about the initial state and tends to a stationary
(i.e. time-independent) universal Gaussian distribution:

P(t → ∞, x) =
1√
πD

exp

{
−x2

D

}
. (2.32)



Introduction to the random matrix theory: Gaussian Unitary
Ensemble and beyond

41

Coming back to our main topic, let us consider N 2 independent OU pro-
cesses: N of them denoted as

d

dt
xi = −xi + ξi(t), 1 ≤ i ≤ N (2.33)

and the rest N(N − 1) given by

d

dt
xij = −xij + ξ

(1)
ij (t),

d

dt
yij = −yij + ξ

(2)
ij (t), (2.34)

where the indices satisfy 1 ≤ i < j ≤ N . Stochastic processes ξ(t) in
the above equations are taken to be all mutually independent Gaussian white
noises characterized by the correlation functions:

Eξ [ξi1 (t1)ξi2 (t2)] = 2Dδi1 ,i2 δ(t1 − t2), Eξ

[
ξσ1
ij (t1)ξ

σ2
kl (t2)

]
(2.35)

= Dδσ1 ,σ2 δi,kδj,lδ(t1 − t2).

As initial values xi(0), xij(0), yij(0) for each OU process we choose diagonal and

off-diagonal entries H
(0)
ii , i = 1, . . . , N and ReH

(0)
i<j , ImH

(0)
i<j of a fixed N × N

Hermitian matrix Ĥ(0). Let us now consider the Hermitian matrix Ĥ(t) whose
entries are Hii(t) = xi(t), Hi<j(t) = xi<j(t) + iyi<j(t) for any t ≥ 0. It is

immediately clear that the joint p.d.f. P
(
t, Ĥ
)

of the entries of such a matrix

Ĥ(t) will be given for any t ≥ 0 by the OU-type formula:

P(t, Ĥ) ∝ Const× 1√
(1 − e−2t)N 2

exp

{
− 1

D(1 − e−2t)
Tr
(
Ĥ − Ĥ0e

−t
)2
}

.

(2.36)
In the limit t → ∞ this p.d.f. converges to a stationary, t−independent ex-
pression

P(t, Ĥ) ∝ C e−
1
D
TrĤ 2

(2.37)

independent of the initial matrix Ĥ0. We see therefore that the familiar Gaus-
sian ensemble in the space of Hermitian matrices arises as the result of the
stochastic relaxation from any initial condition, in particular, from any di-
agonal matrix with uncorrelated entries. In the next step one may try to
deduce the stochastic dynamics of the eigenvalues of the corresponding ma-
trices. Those eigenvalues obviously evolve from completely uncorrelated to
highly correlated patterns. This very interesting set of question goes beyond
our present goals and we refer to [2] for an introduction into the problem.

After specifying the probability density function P(H) the main question
of interest is to characterize the statistical properties of the sequence of eigen-
values λ1, . . . , λN of Ĥ. A convenient way of doing this is to start with the
joint p.d.f. of all these eigenvalues. Because of the “rotational invariance”
assumption the function P(Ĥ) depends in fact only on the eigenvalues, for

example for the “symmetric” Gaussian case b = 0 we have P(Ĥ) ∝ e−a
∑N

i=1 λ2
i .



42 Yan V. Fyodorov

Moreover, we have seen that the integration measure dµ(Ĥ) when expressed
in terms of eigenvalues and eigenvectors effectively factorizes, see Eq.(2.14).
Collecting all these facts we arrive at the conclusion, that the relevant joint
p.d.f of all eigenvalues can be always written, up to a normalization constant,
as

P(λ1, . . . , λN ) dλ1 . . . dλN ∝ e−
∑N

i=1 Q(λi )
∏
i<j

(λi − λj)
2 dλ1 . . . dλN (2.38)

for a general, non-gaussian weight e−TrQ(Ĥ ). We immediately see that the
presence of the “Jacobian factor”

∏
i<j (λi − λj)

2 is responsible of the fact that
the eigenvalues are correlated in a non-trivial way. In what follows we are going
to disregard the fact that eigenvalues λi were initially put in increasing order.
More precisely, for any symmetric function f of N real variables λ1, . . . , λN

the expected value will be calculated as∫
RN

f(λ1, . . . , λN )P(λ1, . . . , λN )dλ1 . . . dλN .

Indeed, with p.d.f. being symmetric with respect to permutations of the eigen-
value set, disregarding the ordering amounts to a simple multiplicative combi-
natorial factor n! in the normalization constant.

Our main goal is to extract the information about these eigenvalue corre-
lations in the limit of large size N . From this point of view it is pertinent to
discuss a few quantitative measures frequently used to characterize correlations
in sequences of real numbers.

3 Characterization of Spectral Sequences

Let −∞ < λ1, λ2, . . . , λN < ∞ be the positions of N points on the real axis,
characterized by the joint probability density function (JPDF)

P(λ1, λ2, . . . , λN ) dλ1 . . . dλN

of having, regardless of labelling, one point in the interval [λ1, λ1+dλ1], another
in the interval [λ2, λ2 +dλ2],..., another in [λN , λN +dλN ]. Since in this section
we deal exclusively with real variables, the bar will stand for the expectation
value with respect to such a JPDF.

The statistical properties of the sequence {λi} are conveniently character-
ized by the set of n−point correlation functions, defined as

Rn(λ1, λ2, . . . , λn) =
N !

(N − n)!

∫
P(λ1, λ2, . . . , λN ) dλn+1 . . . dλN . (3.1)

It is obvious from this definition that the lower correlation functions can be
obtained from the higher-order ones:

Rn(λ1, λ2, . . . , λn) =
1

(N − n)

∫
Rn+1(λ1, λ2, . . . , λn+1) dλn+1. (3.2)



Introduction to the random matrix theory: Gaussian Unitary
Ensemble and beyond

43

To provide a more clear interpretation of these correlation functions we
relate them to the statistics of the number NB of points of the sequence {λi}
within any set B of the real axis (e.g an interval [a, b]). Let χB(x) be the
characteristic function of the set B, equal to unity if x ∈ B and zero otherwise.
Introduce the exact density function ρN (λ) of the points {λi} around the point
λ on the real axis. It can be conveniently written using the Dirac’s δ−function
as ρN (λ) =

∑N
i=1 δ(λ− λi). Then NB =

∫
χB(λ)ρN (λ)dλ.

On the other hand, consider∫
B

R1(λ1)dλ1 =

∫
χB(λ1)R1(λ1)dλ1 (3.3)

= N

∫
χB(λ1)P(λ1, λ2, . . . , λN ) dλ1 . . . dλN

=

∫ N∑
i=1

χB(λi)P(λ1, λ2, . . . , λN ) dλ1 . . . dλN

and therefore∫
B

R1(λ1)dλ1 = NB = expectation of the number of points in B. (3.4)

Similarly, consider∫
χB(λ1)χB(λ2)R2(λ1, λ2)dλ1dλ2 (3.5)

= N(N − 1)

∫
χB(λ1)χB(λ2)P(λ1, λ2, . . . , λN ) dλ1 . . . dλN

=

∫ N∑
i �=j

χB(λi)χB(λj)P(λ1, λ2, . . . , λN ) dλ1 . . . dλN ,

which can be interpreted as∫
B×B

R2(λ1, λ2)dλ1dλ2 = expectation of the number of pairs of points in B (3.6)

where if, say, λ1 and λ2 are in B, then the pair {1, 2} and {2, 1} are both
counted.

To relate the two-point correlation function to the variance of NB we notice
that in view of Eq.(3.4) the one-point correlation function R1(λ) coincides with
the mean density ρN (λ) of the points {λi} around the point λ on the real axis.

Similarly, write the mean square N 2
B

N 2
B =

∫
χB(λ)χB(λ′)ρN (λ)ρN (λ′) dλdλ′ (3.7)
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and notice that

ρN (λ)ρN (λ′) =
∑
ij

δ(λ− λi)δ(λ′ − λj) (3.8)

= δ(λ− λ′)
∑

i

δ(λ− λi) +
∑
i �=j

δ(λ− λi)δ(λ′ − λj)

= δ(λ− λ′)R1(λ) + R2(λ, λ′).

In this way we arrive at the relation:

N 2
B = NB +

∫
B×B

R2(λ, λ′) dλdλ′. (3.9)

In fact, it is natural to introduce the so-called “number variance” statistics

Σ2(B) = N 2
B −
[
NB

]2
describing the variance of the number of points of the

sequence inside the set B. Obviously,

Σ2(B) = NB +

∫
B×B

[R2(λ, λ′) −R1(λ)R1(λ
′)] dλdλ′ (3.10)

≡ NB −
∫

B×B

Y2(λ, λ′) dλdλ′

where we introduced the so-called cluster function Y2(λ, λ′) = R1(λ)R1(λ
′) −

R2(λ, λ′) frequently used in applications.
Finally, in principle the knowledge of all n−point correlation functions

provides one with the possibility of calculating an important characteristic of
the spectrum known as the “hole probability” A(L). This quantity is defined
as the probability for a random matrix to have no eigenvalues in the interval
(−L/2, L/2) 2. Define χL(λ) to be the characteristic function of this interval.
Obviously,

A(L) =

∫
. . .

∫
P(λ1, . . . , λN )

N∏
k=1

(1 − χL(λk)) dλ1 . . . dλN (3.11)

=
N∑

j=0

(−1)j

∫
. . .

∫
P(λ1, . . . , λN )hj {χL(λ1), . . . , χL(λN )} dλ1 . . . dλN ,

where hj{x1, . . . , xN} is the j − th symmetric function:

h0{x1, . . . , xN} = 1, h1{x1, . . . , xN} =
N∑

i=1

xi ,

h2{x1, . . . , xN} =
N∑

i<j

xixj , . . . , hN{x1, . . . , xN} = x1x2 . . . xN .

2Sometimes one uses instead the interval [−L,L] to define A(L), see e.g. [3].
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Now, for 1 ≤ j ≤ N∫
. . .

∫ j∏
k=1

χL(λk) P(λ1, . . . , λN )dλ1 . . . dλN

=
(N − j)!

N !

∫
. . .

∫ j∏
k=1

χL(λk)Rj(λ1, . . . , λj) dλ1 . . . dλj

=
(N − j)!

N !

∫
|x1 |<L/2

. . .

∫
|xj |<L/2

Rj(λ1, . . . , λj) dλ1 . . . dλj . (3.12)

As hj contains

(
N
j

)
terms and as Rj(λ1, . . . , λj) is invariant under permu-

tations of the arguments, it follows that∫
. . .

∫
P(λ1, . . . , λN )hj {χL(λ1) . . . χL(λN )} dλ1 . . . dλj

=
(N − j)!

N !

(
N
j

)∫
|x1 |<L/2

. . .

∫
|xj |<L/2

Rj(λ1, . . . , λj) dλ1 . . . dλj

=
1

j!

∫
|x1 |<L/2

. . .

∫
|xj |<L/2

Rj(λ1, . . . , λj) dλ1 . . . dλj . (3.13)

Thus, we arrive at the following relation between the hole probability and the
n−point correlation functions:

A(L) =
N∑

j=0

(−1)j

j!

∫ L/2

−L/2
. . .

∫ L/2

−L/2
Rj(λ1, . . . , λj) dλ1 . . . dλj . (3.14)

One of the main goals of this set of lectures is to develop a method allowing
to evaluate all the n−point correlation functions of the eigenvalues for any
JPDF corresponding to unitary invariant ensembles of the form Eq.(2.15).
After that we will concentrate on a particular case of Gaussian weight and will
investigate the limiting behaviour of the kernel function Kn(λ, λ′) as N → ∞.
But even before doing this it is useful to keep in mind for reference purposes the
results corresponding to completely uncorrelated (a.k.a. Poissonian) spectra.
Those are described by a sequence of real points λ1, . . . , λN , characterized by
the fully factorized JPDF:

P(λ1, λ2, . . . , λN ) = p(λ1) . . . p(λN ). (3.15)

The normalization condition requires
∫∞
−∞ p(λ) dλ = 1, and we further assume

p(λ) to be a smooth enough integrable function. Obviously, for this case

Rn(λ1, λ2, . . . , λn) =
N !

(N − n)!
p(λ1) . . . p(λn). (3.16)

In particular, Rn(λ) = Np(λ) which is just the mean density ρ(λ) of points
{λi} around the point λ on the real axis, and Rn(λ1, λ2) = N(N−1)p(λ1)p(λ2),
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etc.. From this we easily find for the number of levels in the domain B and
for its mean square:

NB = N

∫
B

p(λ) dλ, N 2
B = NB(N − 1)/N +

[
NB

]2
(3.17)

and for the hole probability

A(L) =
N∑

j=0

(−1)j

j!

N !

(N − j)!

[∫ L/2

−L/2
p(λ) dλ

]j

(3.18)

=

[
1 −
∫ L/2

−L/2
p(λ) dλ

]N

.

Finally, let us specify B to be the interval [−L/2, L/2] around the origin, and
being interested mainly in large N � 1 consider the length L comparable with
the mean spacing between neighbouring points in the sequence {λi} close to

the origin, given by ∆ ≡
[
ρ(0)
]−1

= 1/[Np(0)]. In other words s = L/∆ =

LNp(0) stays finite when N → ∞. On the other hand, for large enough N the
function p(λ) can be considered practically constant through the interval of the
length L = O(1/N), and therefore the mean number of points of the sequence
{λi} inside the interval [−L/2, L/2] will be asymptotically given by N(s) ≈
N Lp(0) = s. Similarly, using Eq.(3.17) one can easily calculate the “number

variance” Σ2(s) = N 2
[−L

2 , L
2 ]
−
[
N[−L

2 , L
2 ]

]2
= (N − 1)

∫ L/2
−L/2 p(λ) dλ ≈ s. In the

same approximation the hole probability, Eq.(3.18), tends asymptotically to
A(s) ≈ e−s. Later on we shall compare these results with the corresponding
behaviour emerging from the random matrix calculations.

4 The method of orthogonal polynomials

In the heart of the method developed mainly by Dyson, Mehta and Gaudin
lies an “integrating-out” Lemma [2]. In presenting this material I follow very
closely [3], pp.103-105.

• Let Jn = Jn(x) = (Jij)1≤i,j≤n be an n × n matrix whose entries depend
on a real vector x = (x1, x2, . . . , xn) and have the form Jij = f(xi, xj),
where f is some (in general, complex-valued) function satisfying for some
measure dµ(x) the “reproducing kernel” property:∫

f(x, y)f(y, z) dµ(y) = f(x, z). (4.1)

Then ∫
det Jn(x) dµ(xn) = [q − (n − 1)]det Jn−1 (4.2)

where q =
∫

f(x, x) dµ(x), and the matrix Jn−1 = (Jij)1≤i,j≤n−1 have the
same functional form as Jn with x replaced by (x1, x2, . . . , xn−1).
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Before giving the idea of the proof for an arbitrary n it is instructive to
have a look on the simplest case n = 2, when

J2 =

(
f(x1, x1) f(x1, x2)
f(x2, x1) f(x2, x2)

)
,

hence det Jn = f(x1, x1)f(x2, x2) − f(x1, x2)f(x2, x1).

Integrating the latter expression over x2, and using the “reproducing kernel”
property, we immediately see that the result is indeed just (q − 1)f(x, x) =
(q − 1) det J1 in full agreement with the statement of the Lemma.

For general n one should follow essentially the same strategy and expand
the determinant as a sum over n! permutations Pn(σ) = (σ1, . . . σn) of the
index set 1, . . . , n as∫

det Jn(x) dµ(xn) =
∑
Pn

(−1)Pn

∫
f(x1, xσ1 ) . . . f(xn, xσn ) dµ(xn), (4.3)

where (−1)Pn stands for the sign of permutations. Now, we classify the terms
in the sum according to the actual value of the index σn = k, k = 1, 2, . . . , n.
Consider first the case σn = n, when effectively only the last factor f(xn, xn)
in the product is integrated yielding d upon the integration. Summing up over
the remaining (n − 1)! permutations Pn−1(σ) of the index set (1, 2, ..., n − 1)
we see that: ∑

Pn−1

(−1)Pn

∫
f(x1, xσ1 ) . . . f(xn, xn) dµ(xn)

= q
∑
Pn−1

(−1)Pn−1 f(x1, xσ1 ) . . . f(xn−1, xσn−1 ),

which is evidently equal to q det Jn−1. Now consider (n− 1)! terms with σn =
k < n, when we have σj = n for some j < n. For every such term we have by
the “reproducing property”∫

f(x1, xσ1 ) . . . f(xj , xn) . . . f(xn, xk) dµ(xn)

= f(x1, xσ1 ) . . . f(xj , xk) . . . f(xn−1, xσn−1 ).

Therefore∫
det Jn(x) dµ(xn) = (4.4)

q det Jn−1 +
n−1∑
k=1

∑
Pn :σn =k)

(−1)Pn f(x1, xσ1 ) . . . f(xj , xk) . . . f(xn−1, xσn−1 ).

It is evident that the structure and the number of terms is as required, and
the remaining task is to show that the summation over all possible (n − 1)!
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permutation of the index set for fixed k yields always − det Jn−1, see [3]. Then
the whole expression is indeed equal to [q − (n − 1)] det Jn−1 as required.

Our next step is to apply this Lemma to calculating the n−point correlation
functions of the eigenvalues λ1, . . . , λn starting from the JPDF, Eq.(2.38).

For this we notice that

N∏
i<j

(λi−λj) = (−1)
N (N −1)

2 det

⎛⎜⎜⎜⎜⎜⎝
1 . . . 1
λ1 . . . λN

. . .

. . .

. . .

λN−1
1 . . . λN−1

N

⎞⎟⎟⎟⎟⎟⎠ ≡ ∆N (λ1, . . . , λN ), (4.5)

where the determinant in the right-hand side is the famous van der Monde
determinant. Since the determinant cannot change upon linearly combining
its rows, the entries λk

i in (k+1)−th row of the van der Monde determinant can
be replaced, up to a constant factor a0a1...aN−1, by a polynomial of degree k
of the form: πk(λi) = akλ

k
i + any polynomial in λi of degree less than k, with

any choice of the coefficients al, l = 0, . . . , k. Therefore:

N∏
i<j

(λi − λj) =
(−1)

N (N −1)
2

a0a1...aN−1
det

⎛⎜⎜⎜⎜⎜⎜⎝
π0(λ1) . . . π0(λN )
π1(λ1) . . . π1(λN )

. . .

. . .

. . .
πN−1(λ1) . . . πN−1(λ1)

⎞⎟⎟⎟⎟⎟⎟⎠
≡ (−1)

N (N −1)
2

a0a1...aN−1
det (πi−1(λj))1≤i,j≤N . (4.6)

Multiplying every entry in jth column in the above determinant with the factor
e−

1
2 Q(λj ) we see that the JPDF can be conveniently written, up to a multiplica-

tive constant, as

P(λ1, . . . , λN ) ∝
[
det
(
e−

1
2 Q(λj )πi−1(λj)

)
1≤i,j≤N

]2

. (4.7)

If we let Â be the matrix with the entries Aij = (φi−1(xj))1≤i,j≤N , then

[det A]2 = det ÂT Â = det

(
n∑

j=1

AjiAjk

)
. (4.8)

This implies the following form of the JPDF:

P(λ1, . . . , λN ) ∝ det

(
N∑

j=1

φj−1(λi)φj−1(λk)

)
1≤i,k≤N

≡ det (KN (λi, λk))1≤i,k≤N (4.9)
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where we introduced the notation:

KN (λ, λ′) =
N−1∑
j=0

φj(λ)φj(λ
′) (4.10)

usually called “kernel” in the literature. In our particular case

φi−1(λ) = e−
1
2 Q(λ)πi−1(λ) (4.11)

so that the kernel is given explicitly by

KN (λ, λ′) = e−
1
2 (Q(λ)+Q(λ′))

N−1∑
j=0

πj(λ)πj(λ
′). (4.12)

Now it is easy to see that if we take the polynomials πi(x) such that they form
an orthonormal system with respect to the weight e−Q(x), the corresponding
kernel will be a “reproducing” one with respect to the measure dµ(x) ≡ dx, in
the sense of the “integrating-out” Lemma. Indeed, suppose that πi(x) satisfy
the orthonormality conditions:∫

e−Q(x)πi(x)πj(x) dx = δij , (4.13)

for any indices i ≥ 1, j ≥ 1. Then we obviously have∫
KN (x, y)KN (y, z)dy

=
N−1∑
j=0

N−1∑
k=0

e−
1
2 (Q(x)+Q(z))πj(x)πk(z)

∫
πj(y)πk(y)e−Q(y)dy

=
N−1∑
j=0

e−
1
2 (Q(x)+Q(z))πj(x)πj(z) = KN (x, z) (4.14)

exactly as required by the reproducing property. Moreover, in this case obvi-
ously

qN =

∫
KN (x, x)dx =

N−1∑
j=0

∫
e−Q(x)πj(x)πj(x) dx = N,

and therefore the relation (4.2) amounts to∫
det (KN (xi, xj))1≤i,j≤N dxN = det (KN (xi, xj))1≤i,j≤N−1 . (4.15)

Continuing this process one step further we see∫ ∫
det (KN (xi, xj))1≤i, j≤N dxN−1dxN

=

∫
det (KN (xi, xj))1≤i, j≤N−1 dxN−1

= [N − (N − 2)]det (KN (xi, xj))1≤i, j≤N−2 (4.16)
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and continuing by induction

∫
. . .

∫
det (KN (xi, xj))1≤i, j≤N dxk+1 . . . dxN

= (N − k)! det (KN (xi, xj))1≤i, j≤k (4.17)

for k = 1, 2, . . ., and the result is N ! for k = 0. Remembering the expres-
sion of the JPDF, Eq.(4.9), in terms of the kernel KN (xi, xj) we see that, in
fact, the theory developed provided simultaneously the explicit formulae for
all n−point correlation functions of the eigenvalues Rn(λ1, . . . , λn), introduced
by us earlier, Eq.(3.3):

Rn(λ1, . . . , λn) = det (KN (λi, λj))1≤i,j≤n (4.18)

expressed, in view of the relations Eq.(4.12) effectively in terms of the orthog-
onal polynomials πk(λ). In particular, remembering the relation between the
mean eigenvalue density and the one-point function derived by us earlier, we
have:

ρN (λ) = KN (λ, λ) =
N−1∑
j=1

e−Q(λ)πj−1(λ)πj−1(λ). (4.19)

The latter result allows to represent the “connected” (or “cluster”) part of the
two-point correlation function introduced by us in Eq.(3.10) in the form:

Y2(λ1, λ2) = ρN (λ1) ρN (λ2) −R2(λ1, λ2) = [KN (λ1, λ2)]
2 . (4.20)

Finally, combining the relation Eq.(3.14) between the hole probability A(L)
and the n-point correlation functions, and on the other hand the expression of
the latter in terms of the kernel KN (λ, λ′), see Eq.(4.18), we arrive at

A(L) = (4.21)

N∑
j=0

(−1)j

j!

∫ L/2

−L/2
. . .

∫ L/2

−L/2
det

⎛⎜⎜⎜⎜⎝
KN (λ1, λ1) . . . KN (λ1, λj)

. . .

. . .

. . .
KN (λj , λ1) . . . KN (λj , λj)

⎞⎟⎟⎟⎟⎠ dλ1 . . . dλj .

In fact, the last expression can be written in a very compact form by noticing
that it is just a Fredholm determinant det (I − KN ), where KN is a (finite
rank) integral operator with the kernel KN (λ, λ′) =

∑N−1
i=0 φi(λ)φi(λ

′) acting
on square-integrable functions on the interval λ ∈ (−L/2, L/2).
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5 Properties of Hermite polynomials

5.1 Orthogonality, Recurrence Relations and Integral
Representation

Consider the set of polynomials hk(x) defined as 3

hk(x) = (−1)keN x2
2

dk

dxk

(
e−N x2

2

)
= N kxk + · · · , (5.1)

and consider, for k ≥ l∫ ∞

−∞
e−N x2

2 hl(x)hk(x)dx = (−1)k

∫ ∞

−∞
dx hl(x)

dk

dxk

(
e−N x2

2

)
(5.2)

= (−1)k+1
∫ ∞

−∞
dx h′

l(x)
dk−1

dxk−1

(
e−N x2

2

)
= . . .

= (−1)2k

∫ ∞

−∞
dx e−N x2

2
dk

dxk
hl(x).

Obviously, for k > l we have dk

dxk hl(x) = 0, whereas for k = l we have
dk

dxk hk(x) = k!N k. In this way we verified the orthogonality relations and
the normalization conditions∫ ∞

−∞
e−N x2

2 h̃l(x)h̃k(x)dx = δkl (5.3)

for normalized polynomials

h̃k(x) =:
1[

k!N k

√
2π
N

]1/2 hk(x). (5.4)

In the theory of orthogonal polynomials an important role is played by recur-
rence relations:

hk+1(x) = (−1)k+1eN x2
2

dk

dxk

(
d

dx
e−N x2

2

)
(5.5)

= (−1)k+2NeN x2
2

dk

dxk

(
xe−N x2

2

)
= (−1)k+2NeN x2

2

[(
0
k

)
x

dk

dxk

(
e−N x2

2

)
+

(
1
k

)
dk−1

dxk−1

(
e−N x2

2

)]
= N [xhk(x) − k hk−1(x)] ,

3The standard reference to the Hermite polynomials uses the definition

Hk (x) = (−1)k ex2 dk

dxk

(
e−x2

)
= 2kxk + · · · ,

Such a choice ensures Hk (x) to be orthogonal with respect to the weight e−x2
. Our choice

is motivated by random matrix applications, and is related to the standard one as hk (x) =

Hk

(√
N
2 x
)
.
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where we exploited the Leibniz formula for the k−th derivative of a product.
After normalization we therefore have[

k + 1

N

]1/2

h̃k+1(x) = x h̃k(x) −
[

k

N

]1/2

h̃k−1(x). (5.6)

Let us multiply this relation with h̃k(y), and then replace x by y. In this way
we arrive at two relations:[

k + 1

N

]1/2

h̃k+1(x)h̃k(y) = x h̃k(x)h̃k(y) −
[

k

N

]1/2

h̃k−1(x)h̃k(y), (5.7)[
k + 1

N

]1/2

h̃k+1(y)h̃k(x) = y h̃k(x)h̃k(y) −
[

k

N

]1/2

h̃k−1(y)h̃k(x). (5.8)

The difference between the upper and the lower line can be written for any
k = 1, 2, . . . as

(x− y)h̃k(x)h̃k(y) = Ak+1 − Ak

, Ak =

[
k

N

]1/2

{h̃k−1(y)h̃k(x) − h̃k−1(x)h̃k(y)}.

Summing up these expressions over k:

(x − y)
n−1∑
k=1

h̃k(x)h̃k(y) = (A2 + . . . + An) − (A1 + . . . + An−1) = An − A1

and remembering that A1 =
√

N
2π

(x − y) = (x − y)h̃0(x)h̃0(y) we arrive at a

very important relation:

n−1∑
k=0

h̃k(x)h̃k(y) =

√
n

N

h̃n−1(y)h̃n(x) − h̃n−1(x)h̃n(y)

x − y
, (5.9)

or, for the original (not-normalized) polynomials:

n−1∑
k=0

1

k!N k
hk(x)hk(y) =

1

(n − 1)!Nn

hn−1(y)hn(x) − hn−1(x)hn(y)

x − y
, (5.10)

which are known as the Christoffel-Darboux formulae. Finally, taking the limit
x → y in the above expression we see that

n−1∑
k=0

1

k!N k
h2

k(x) =
1

(n − 1)!Nn

[
hn−1(x)h′

n(x) − h′
n−1(x)hn(x)

]
. (5.11)

Most of the properties and relations discussed above for Hermite polynomi-
als have their analogues for general class of orthogonal polynomials. Now we
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are going to discuss another very useful property which is however shared only
by few families of classical orthogonal polynomials: Hermite, Laguerre, Leg-
endre, Gegenbauer and Jacoby. All these polynomials have one of few integral
representations which are frequently exploited when analyzing their proper-
ties. For the case of Hermite polynomials we can most easily arrive to the
corresponding representation by using the familiar Gaussian integral identity,
cf. Eq.(2.28):

e−N x2
2 =

√
N

2π

∫ ∞

−∞
dq e−

N
2 q2 +ixqN . (5.12)

Substituting such an identity to the original definition, Eq.(5.1), we immedi-
ately see that

hk(x) = (−iN)k

√
N

2π
eN x2

2

∫ ∞

−∞
dq qk e−

N
2 q2 +ixqN , (5.13)

which is the required integral representation, to be mainly used later on when
addressing the large-N asymptotics of the Hermite polynomials. Meanwhile,
let us note that differentiating the above formula with respect to x one arrives
at the useful relation d

dx
hk(x) = Nxhk(x) − hk+1(x) = Nk hk−1(x). This can

be further used to simplify the formula Eq.(5.11) bringing it to the form

n−1∑
k=0

1

k!N k
h2

k(x) =
1

(n − 2)!Nn−1

[
h2

n(x) − hn−1(x)hn+1(x)
]
. (5.14)

5.2 Saddle-point method and Plancherel-Rotach asymp-
totics of Hermite polynomials

In our definition, the Hermite polynomials hk(x) depend on two parameters:
explicitly on the order index k = 0, 1, . . . and implicitly on the parameter N

due to the fact that the weight function e−N x2
2 contains this parameter. In-

voking the random matrix background for the use of orthogonal polynomials,
we associate the parameter N with the size of the underlying random matrix.
From this point of view, the limit N � 1 arises naturally as we are interested
in investigating the spectral characteristics of large matrices. A more detailed
consideration reveals that, from the random matrix point of view, the most
interesting task is to extract the asymptotic behaviour of the Hermite polyno-
mials with index k large and comparable with N , i.e. k = N + n, where the
parameter n is considered to be of the order of unity. Such behaviour is known
as Plancherel-Rotach asymptotics.

To understand this fact it is enough to invoke the relation (4.19) expressing
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the mean eigenvalue density in terms of the set of orthogonal polynomials:

ρN (λ) = KN (λ, λ) = e−
N
2 λ2

N−1∑
j=0

h̃2
j (λ), (5.15)

= e−
N
2 λ2 1

(N − 2)!NN−1

[
h2

N (λ) − hN−1(λ)hN+1(λ)
]
, (5.16)

where we used the expressions pertinent to the Gaussian weight: Q(λ) ≡
N
2 λ2 , πk(λ) ≡ h̃k(λ), and further exploited the variant of the Christoffel-
Darboux formula, Eq.(5.14). It is therefore evident that the limiting shape of
the mean eigenvalue density for large random matrices taken from the Gaussian
Unitary Ensemble is indeed controlled by the Plancherel-Rotach asymptotics of
the Hermite polynomials. In fact, similar considerations exploiting the original
Christoffel-Darboux formula, Eq.(5.9), show that our main object of interest
-the kernel KN (λ, λ′) - can be expressed as

KN (λ, λ′) = e−
N
4 (λ2 +λ′2 ) h̃N−1(λ)h̃N (λ′) − h̃N−1(λ)h̃N (λ′)

λ− λ′ (5.17)

and therefore all the higher correlation functions are controlled by the Plancherel-
Rotach asymptotics as well.

For extracting the required asymptotics we are going to use the integral
representation for the Hermite polynomials. We start with rewriting the ex-
pression Eq.(5.13) as

hN+n(x) = (−iN)N+n

√
N

2π

∫ ∞

−∞
dq qN+n e−

N
2 (q−ix)2

= (−iN)N+n

√
N

2π

[
IN+n(x) + (−1)N+nIN+n(−x)

]
, (5.18)

where

IN+n(x) =

∫ ∞

0
dq qn eNf (q), f(q) = ln q − 1

2
(q − ix)2 . (5.19)

The latter form is suggestive of exploiting the so-called saddle-point method
(also known as the method of steepest descent or method of stationary phase)
of asymptotic evaluation of integrals of the form∫

Γ
φ(z)eNF (z)dz, (5.20)

where the integration goes along a contour Γ in the complex plane, F (z) is an
analytic function of z in some domain containing the contour of integration,
and N is a large parameter. The main idea of the method can be informally
outlined as follows. Suppose that the contour Γ is such that: (i) the value
of ReF has its maximum at a point z0 ∈ Γ, and decreases fast enough when
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Z0

Figure 2: Schematic structure of a harmonic function in the vicinity of a
stationary point z0.

we go along Γ away from z0, and (ii) the value of ImF stays constant along
Γ (to avoid fast oscillations of the integrand). Then we can expect the main
contribution for N � 1 to come from a small vicinity of z0 = x0 + iy0.

Since the function ReF is a harmonic function of x = Rez, y = Imz, it can
have only saddle points (see Fig. 2) found from the condition of stationarity
F ′(z0) = 0. Let us suppose that there exists only one such saddle point z = z0,
close to which we can expand F (z) ≈ F (z0) + C(z− z0)

2, where C = 1
2F

′′(z0).
Consider the level curves [ReF ](x, y) = [ReF ](x0, y0), which are known either
to go to infinity, or end up at a boundary of the domain of analyticity. In
the vicinity of the chosen saddle-point the equation for the level curves is
Re[F (z) − F (z0)] = 0, hence

Re[|C|eiθ(z − z0)
2] =

[
(x− x0)

2(y − y0)
2] cos θ − 2 (x− x0)(y − y0) sin (θ) = 0,

which describes two orthogonal straight lines passing through the saddle-point

y = y0 + tan

(
π

4
− θ

2

)
(x− x0), y = y0 − tan

(
π

4
+

θ

2

)
(x− x0)

partitioning the x, y plane into four sectors: two “positive” ones: ReF (z) >

y

+
+

-

-

x

(π/4–θ/2)

-(π/4–θ/2)

z0

(π–θ)/2

┌

Figure 3: Partitioning of the x−y plane in a vicinity of the stationary point z0

into four sectors by “level curves” (solid lines). Dashed line shows the bi-sector
of the negative sectors: the direction of the steepest descent contour.

ReF (z0), and two “negative” ones ReF (z) < ReF (z0), see Fig. 3. If the “edge
points” of the integration contour Γ (denoted z1 and z2) both belong to the
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same sector, and ReF (z1) �= ReF (z2), one always can deform the contour in
such a way that ReF (z) is monotonically increasing along the contour. Then
obviously the main contribution to the integral comes from the vicinity of
the endpoint (of the largest value of ReF (z)). Essentially the same situation
happens when z1 belongs to a negative (positive) sector, and z2 is in a positive
(resp., negative) sector. And only if the two endpoints belong to two different
negative sectors, we can deform the contour in such a way, that ReF (z) has
its maximum along the contour at z = z0, and decays away from this point.
Moreover, it is easy to understand that the fastest decay away from z0 will
occur along the bi-sector of the negative sectors, i.e. along the line y − y0 =
tan π−θ

2 (x − x0). Approximating the integration contour in the vicinity of z0

as this bi-sector, i.e. by z = z0 + (x − x0)
e−i π−θ

2

sin (θ/2) , we get the leading term
of the large-N asymptotics for the original integral by extending the limits of
integration in the variable x̃ = x − x0 from −∞ to ∞:∫

Γ
φ(z)eNF (z)dz ≈ φ(z0)e

NF (z0 ) e−i π−θ
2

sin (θ/2)

∫ ∞

−∞
dx̃e−N |C |x̃2

sin2 θ/2

= φ(z0)

√
2π

N |F ′′(z0)|
exp {NF (z0) +

i

2
(π − Arg[F ′′(z0)/2)])}. (5.21)

It is not difficult to make our informal consideration rigorous, and to calculate
systematic corrections to the leading-order result, as well as to consider the
case of several isolated saddle-points, the case of a saddle-point coinciding with
an end of the contour, etc., see [7] for more detail.

After this long exposition of the method we proceed by applying it to our
integral, Eq.(5.19). The saddle-point equation and its solution in that case
amount to:

F ′(q) =
1

q
− q + ix = 0, q = q± =

1

2

(
ix ±

√
4 − x2

)
.

It is immediately clear that we have essentially three different cases: a) |x| < 2
(b) |x| > 2 and (c) |x| = 2.

1. |x| < 2. In this case we can introduce x = 2 cos φ, 0 < φ < π, so that
q± = i cos φ ± sin φ, or q+ = e−i(φ−π/2), q− = ei(φ+π/2). It is easy to
understand that we are interested only in q+ (see Fig.4) and to calculate
that Ref(q+) = 1

2 cos (2φ). On the other hand Ref(q) → −∞ when
either q → ∞ or q → 0, so that both endpoints belong to negative
sectors. To understand whether they belong to the same or different
sectors, we consider the values of Ref(q) = ln R − 1

2 (R
2 − x2) along the

real axis, q = R-real. As a function of the variable R this expression has
its maximal value Ref(q = 1) = − 1

2 + 2 cos2 φ at q = R = 1.

Noting that Ref(q = 1) − Ref(q+) = cos2 φ > 0, we conclude that the
point q = 1 belongs to a positive sector, and therefore the existence of
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q- q+

Re q

Im q

s.d. contour

Figure 4: Structure of the saddle-points q± and the relevant steepest descent
contour for |x| < 2.

this positive sector makes the endpoints q = 0 and q = ∞ belonging to
two different negative sectors, as required by the saddle-point method.
Calculating

f ′′(q+) = −
(

1 +
1

q2
+

)
= 2i sin φeiφ

we see that |C| = sin φ, θ = φ + π/2, and further

f ′′(q+) =
1

2
cos (2φ) + i

[
1

2
sin (2φ) − φ + π/2

]
.

Now we have all the ingredients to enter in Eq.(5.21), and can find
the leading order contribution to IN+n(x). Further using IN+n(−x) =
IN+n(x), valid for real x, we obtain the required Plancherel-Rotach asymp-
totics of the Hermite polynomial:

hN+n(x) ≈ NN+n

√
2

sin φ
e

N
2 cos 2φ (5.22)

× cos

{
(n + 1/2)φ− π/4 + N

(
φ− 1

2
sin 2φ

)}
,

where x = 2 cos φ, 0 < φ < π, n � N .

Now we consider the opposite case:

2. |x| > 2. It is enough to consider explicitly the case x > 2 and param-
eterize x = 2 cosh φ, 0 < φ < ∞. The saddle points in this case are
purely imaginary:

q± =
i

2
(2 cosh φ± 2 sinh φ) = ie±φ. (5.23)

One possible contour of the constant phase passing through both points
is just the imaginary axis q = iy, where Imf(q) = π/2 and Ref(q) =
ln y + 1

2 (y − x)2. Simple consideration gives that y− = e−φ corresponds
to the maximum, and y+ = eφ to the minimum of Ref(q) along such a
contour. It is also clear that for q = iy+ the expression Ref(q) has a
local maximum along the path going through this point in the direction
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q-

q+

Re q

Im q

-1 1

Figure 5: The saddle-points q±, the corresponding positive sectors (shaded),
and the relevant steepest descent contour (bold) for |x| > 2.

transverse to the imaginary axis. The “topography” of Ref(q) in the
vicinity of the two saddle-points is sketched in Fig. 5

This discussion suggests a possibility to deform the path of integration
Γ to be a contour of constant phase Imf(q) consisting of two pieces -
Γ1 = {q = iy, 0 ≤ y ≤ y+} and Γ2 starting from q = iy+ perpendicular
to the imaginary axis and then going towards q = ∞. Correspondingly,

IN+n(x > 2) =

∫ ∞

0
dq qn eNf (q) =

∫ iy+

0
dq qn eNf (q) +

∫
Γ2

dq qn eNf (q).

(5.24)
The second integral is dominated by the vicinity of the saddle-point
q = iy+, and its evaluation by the saddle-point technique gives:∫

Γ2

dq qn eNf (q) ≈ 1

2

√
πeφ

N sinh φ
in+N enφ+N(φ+ 1

2 e−2φ ),

where the factor 1
2 arises due to the saddle-point being simultaneously

the end-point of the contour. As to the first integral, it is dominated
by the vicinity of iy−, and can also be evaluated by the saddle-point
method. However, it is easy to verify that when calculating hN+n(x) ∝[
IN+n(x) + (−1)N+nIN+n(−x)

]
the corresponding contribution is can-

celled out. As a result, we recover the asymptotic behaviour of Hermite
polynomials for x > 2 to be given by:

hN+n(x = 2 cosh (2φ) > 2) =
Nn+N e−

N
2

√
sinh φ

e(n+ 1
2 )φ−N

2 (sinh (2φ)−2φ). (5.25)

Now we come to the only remaining possibility,

3. |x| = 2. It is again enough to consider only the case x = 2 explicitly.
In fact, this is quite a special case, since for x → 2 two saddle-points
q± degenerate into one: q+ → q− → i. Under such exceptional cir-
cumstances the standard saddle-point method obviously fails. Indeed,
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the method assumed that different saddle-points do not interfere, which
means the distance |q+−q−| =

√
|4 − x2| is much larger than the typical

widths W ∼ 1√
N |f ′′(q±)| of the regions around individual saddle-points

which yield the main contribution to the integrand. Simple calculation
gives |f ′′(q±)| = |1 + q−2

± | =
√
|4 − x2|, and the criterion of two separate

saddle-points amounts to |x − 2| � N−2/3. We therefore see that in the
vicinity of x = 2 such that |x − 2| ∼ N−2/3 additional care must be
taken when extracting the leading order behaviour of the corresponding
integral IN+n(x = 2) as N →∞.

To perform the corresponding calculation, we introduce a new scaling
variable ξ = N 2/3(2 − x), and consider ξ to be fixed and finite when
N → ∞. We also envisage from the discussion above that the main
contribution to the integral comes from the domain around the saddle-
point qsp = i of the widths |q − i| ∼

√
|2 − x| ∼ N−1/3. The integral we

are interested in is given by

JN (ξ) =

∫ ∞

−∞
dq qN+n e−

N
2 (q−ix)2

(5.26)

= N−1/3
∫ ∞

−∞
dt

(
i +

t

N 1/3

)n

e
N

[
ln (i+ t

N 1/3 )− 1
2

{
i+ t

N 1/3 −i
(
2− ξ

N 2/3

)}2
]

where we shifted the contour of integration from the real axis to the
line q = i + t

N 1/3 ,−∞ < t < ∞ to ensure that it passes through the
expected saddle-point qsp = i, and also scaled the integration variable
appropriately. Now we can consider ξ, t-finite when N � 1, and expand
the integrand accordingly. A simple computation yields:

JN�1(ξ) ≈ N−1/3iN+n eN/2−N 1/3 ξ

∫ ∞

−∞
dt e−iξ t+i t3

3 . (5.27)

Up to a constant factor the integral appearing in this expression is, in
fact, a representation of a special function known as Airy function Ai(ξ):

Ai(ξ) =
1

π

∫ ∞

0
dt cos

(
ξ t +

t3

3

)
(5.28)

which is a solution of the second-order linear differential equation d2

dξ2 F (ξ)−
ξ F (ξ) = 0. A typical behaviour of such a solution is shown in Fig. 6.

All this results in the asymptotic behaviour of the Hermite polynomials
in the so-called “scaling vicinity” of the point x = 2:

hN+n

(
x = 2 − ξ

N 2/3

)
≈ N 1/6

√
2π

NN+n eN/2−N 1/3 ξ Ai(−ξ). (5.29)

Such scaling vicinity of x = 2 is what gives room for a transitional
regime between the oscillating asymptotics of the Hermite polynomials
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Figure 6: The Airy function Ai(ξ).

for |x| < 2, see Eq.(5.22), and the exponential decay typical for |x| > 2
as described in Eq.(5.25). Formula (5.29) indeed matches Eq.(5.22) as
ξ →∞ and Eq.(5.25) as ξ → −∞. This statement is most easily verified
by invoking the known asymptotics of the Airy function:

Ai(−ξ) ≈
{

ξ−1/4π−1/2 cos
(
− 2

3ξ
3/2 + π

4

)
, ξ → ∞

1
π1/2 |ξ|1/4 e−

2
3 |ξ|3/2

, ξ → −∞ (5.30)

and identifying φ = |ξ|1/2N−1/3 � 1 in the corresponding expressions.

Now we are going to apply the derived formulae for extracting the large-
N behaviour of the mean eigenvalue density and the kernel as described in
Eqs.(5.15) and(5.17), respectively. In fact, it is more conventional in the ran-
dom matrix literature to use the mean density to be normalized to unity, rather
than to N . Such a density will have a well-defined large-N limit which we will
denote as ρ∞(λ).

6 Scaling regimes for GUE

6.1 Bulk scaling: Wigner semicircle and Dyson kernel.

The first case to be considered is the spectral parameter |λ| < 2 when we
can parameterize λ = 2 cos φ, and exploit the Plancherel-Rotach expression
(5.22) for the Hermite polynomials. Furthermore, denoting α = 1

2φ − π
4 +

N
(
φ− 1

2 sin 2φ
)
, and using the identity cos2 α − cos (α + φ) cos (α − φ) =

sin2 φ we find that h2
N (λ) − hN−1(λ)hN+1(λ) ≈ 2N 2N sin φeN cos (2φ). Further-

more, using for large N the Stirling formula: (N − 1)! ≈
√

2π
N

NN e−N and

remembering that sinφ = 1
2

√
4 − λ2 we arrive, after collecting all factors, to

the famous Wigner semicircular law for the mean (normalized) spectral den-
sity:

lim
N→∞

[
1

N
ρ(λ)

]
= ρ∞(λ) =

1

2π

√
4 − λ2, |λ| < 2. (6.1)
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We see that in the limit of large N all N eigenvalues of GUE matrices are con-
centrated in the interval [−2, 2], and the typical separation of two neighbouring
eigenvalues close to an “internal” point λ ∈ (−2, 2) is ∆ = 1

Nρ∞(λ) = O(N−1),

see Fig. 7. That is why the case λ ∈ (−2, 2) is frequently referred to as the
”bulk of the spectrum” regime.

-2 0 2

2πρ
∞
( λ)

λ
λi λi+1

}

∆

Figure 7: Wigner semicircular density. Sketch shows a typical spacing between
neighbouring levels in the bulk of the spectrum.

Let us now follow the same strategy for obtaining, under the same condi-
tions, the limiting expression for the kernel K(λ, λ′) using for this goal formula
(5.17). We have:

hN (λ)hN−1(λ
′) − hN (λ′)hN−1(λ) (6.2)

≈ 2N 2N 1√
sin φ sin φ′ e

N
2 (cos (2φ)+cos (2φ′)) [cos α+

1 cos α−
2 − cos α−

1 cos α+
2

]
where α±

1 = ±1
2φ− π

4 + N
(
φ− 1

2 sin 2φ
)
, α±

2 = ±1
2φ

′− π
4 + N

(
φ′ − 1

2 sin 2φ′).
The next step is to introduce ψ = (φ + φ′)/2 and Ω = (φ − φ′)/2, and to
consider the parameter Ω to be of the order of O(N−1) when taking the limit.
This choice ensures that the distance λ − λ′ = 2[cos φ − cos φ′] ≈ 4Ω sin ψ ≈
4Ωπρ∞(λ) is of the order of the mean eigenvalue separation ∆ - the typical
scale for the correlations between the eigenvalues in the bulk of the spectrum-
and thus must be reflected in the structure of the kernel. To this end we denote
Ω = ω/N , and keep in the expressions for α±

1,2 terms up to the order O(1), i.e.

writing α±
1,2 = Nβ +

[
±1

2ψ − π
4 ± 2ω sin2 ψ

]
, where β =

(
ψ − 1

2 sin 2ψ
)
. With

the same precision:

cos α+
1 cos α−

2 − cos α−
1 cos α+

2 ≈ sin ψ sin
(
4ω sin2 ψ

)
≈ sin ψ sin [πρ∞(λ)N(λ1 − λ2)]

and cos 2φ1 + cos 2φ2 ≈ 2
(

λ2

2 − 1
)

substituting all these factors back into

Eq.(6.2), we get

hN (λ)hN−1(λ
′) − hN (λ′)hN−1(λ) ≈ 2N 2N e

2N
(

λ 2
2 −1

)
sin [πρ∞(λ)N(λ− λ′)].(6.3)



62 Yan V. Fyodorov

Now, taking into account the normalization factors in h̃N (λ) and h̃N−1(λ), see
Eq.(5.4), using again the Stirling formula and invoking Eq.(4.19) we arrive at
the following asymptotic expression for the kernel, Eq.(5.17):

lim
N→∞

[
KN (λ, λ′)
KN (λ, λ)

]
= K∞ [Nρ∞(λ)(λ− λ′)] , K∞(r) =

sin πr

πr
(6.4)

where K∞(r) is the famous Dyson scaling form for the kernel. The formula
is valid as long as both λ and λ′ are within the range (−2, 2), and λ − λ′ =
O(N−1). Such choice of the parameters is frequently referred to as the “bulk
scaling” limit.

Having at our disposal the limiting form of both mean eigenvalue density
and the two-point kernel we can analyse such important statistical charac-
teristics of the spectra as e.g. the “number variance”, see Eq.(3.10), for an
interval of the length L comparable with the mean spacing close to the origin
∆ = [Nρ∞(0)]−1. Under such a condition we can legitimately employ the scal-
ing form Eq.(6.4) of the kernel when substituting it into formula (4.20) for the
cluster function Y2(λ, λ′). In this way we arrive at

Σ2(L) = N

∫ L/2

−L/2
ρ∞(λ)dλ−N 2

∫ L/2

−L/2
dλ

∫ L/2

−L/2
dλ′ρ∞(λ)ρ∞(λ′)

×K2
∞ [Nρ∞(λ)(λ− λ′)]

= s−
∫ s/2

−s/2
du

∫ s/2

−s/2
du′K2

∞ [(u− u′)] . (6.5)

Here we used the fact that with the same precision we can put ρ∞(λ) ≈
ρ∞(λ′) ≈ ρ∞(0) in the above expression, and introduced the natural scaling
variables: u = λ/∆, u = λ′/∆ as well as the scaled length of the interval
s = L/∆ (cf. a similar procedure for Poissonian sequences after Eq.(3.14)).
To simplify this expression further we introduce u+ = (u + u′)/2, r = u − u′

as integration variables, and use that, in fact K∞(r) ≡ K∞(|r|). The number
variance takes the final form:

Σ2(s) = s−
∫ s

−s

dr

∫ s
2 −

|r |
2

− s
2 + |r |

2

du+K2
∞(|r|) = s−2

∫ s

0
dr (s−r)

[
sin πr

πr

]2

. (6.6)

In fact, we are mainly interested in the large-s behaviour of this expression.

To extract it, we use the identity: 2
∫∞

0 dr
[

sin πr
πr

]2
= 2

π

∫∞
0 dx

[
sin x

x

]2
= 1,

and rewrite the above expression as

Σ2(s) =
2s

π

∫ ∞

πs

dx
sin2 x

x2 +
1

π2

∫ 2πs

0

1 − cos x

x
dx. (6.7)

The second integral obviously grows logarithmically with s and dominates at
large s. A more accurate evaluation gives the asymptotic formula:

Σ2(s � 1) =
1

π2 [ln 2πs + γ + 1] + O(1/s). (6.8)
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where γ = 0.5772... is Euler’s constant. This is much slower than the linear
growth Σ2(s � 1) = s typical for uncorrelated (Poissonian) sequence, see
Fig. 8. The explanation of the slow growth is that the sequence of eigenvalues
is, in fact, quite ordered, with quite regular spacings of the order of ∆, and
therefore the number of points in the interval does not fluctuate as much as it
does for uncorrelated sequence.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25

Poisson

GUE

Σ(s) 

Figure 8: The logarithmic growth of the number variance Σ(s) for large GUE
matrices versus linear growth for uncorrelated (Poissonian) spectrum.

As to another important and frequently used statistical characteristic of
spectral sequences - the “hole probability”- its calculation amounts to investi-
gating the asymptotics of the Fredholm determinant of the kernel KN→∞, see
Eq.(4.21). This is a very difficult mathematical problem, and the most elegant
solution uses an advanced mathematical technique known as the Riemann-
Hilbert method[3]. Let us just quote the result:

A(s � 1) ∝ 1

s1/4 e−
π 2
8 s2

. (6.9)

This Gaussian decay should be again contrasted with a much slower exponen-
tial decay typical for uncorrelated sequences as indeed in full correspondence
with a “quasiregular” structure of the random matrix spectrum.

6.2 Edge scaling regime and Airy kernel

As we already know, in the vicinity of the “spectral edge” x = 2 (and its
counterpart x = −2) the Plancherel-Rotach asymptotics of the Hermite poly-
nomials changes, and is basically given by the Airy function, see Eq.(5.29).
This certainly results in essential modifications of the large−N behaviour of the
mean eigenvalue density and of the two-point kernel as long as |λ−2| ∼ N−2/3.
To extract the explicit formulae for this so-called “edge scaling” limit one may
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try the same strategy as in the bulk. However, one immediately discovers
that simple substitution of Eq.(5.29) into formula (5.16) for the mean density
yields zero. A possible way out may be to calculate the next-to-leading order
corrections to the asymptotics of hN (x), but we will rather follow a slightly
different (and more direct) route and consider the integral representation for
the main combination of interest:

DN (λ) = h2
N (λ) − hN−1(λ)hN+1(λ) (6.10)

=
(−1)N

2π
N 2N

∫ ∞

−∞
dq1

∫ ∞

−∞
dq2

q1 − q2

q1
eN [f (q1 )+f (q2 )]

where we exploited Eq.(5.18,5.19), and defined, as before, f(q) = ln q −
1
2 (q − iλ)2. To evaluate this integral in the edge scaling limit, we follow a famil-
iar procedure: introduce the scaling variable ξ = N 2/3(λ−2), shift the contours
of integration from the real axis to the lines q1,2 = i + t1 ,2

N 1/3 ,−∞ < t1,2 < ∞,
consider ξ, t1,2 to be fixed and finite when N → ∞, and expand the integrand
accordingly around the saddle-points t1,2 = 0. Simple calculation yields, in
complete analogy with Eq.(5.27), the expression:

DN (ξ) ≈ N 2N

2π
N−1/3 eN+2N 1/3 ξ (6.11)

×
{∫

Γ
dt1 eiξ t1 +i

t31
3

∫
Γ

dt2 t22 eiξ t2 +i
t32
3 −
∫

Γ
dt1 t1 eiξ t1 +i

t31
3

∫
Γ

dt2 t2 eiξ t2 +i
t32
3

}
.

Im t

Re t

π/6π/6

┌

Figure 9: The contour of integration Γ in the definition of the Airy function.

The only essential difference from Eq.(5.27) which deserves mentioning is
the choice of the integration contour Γ which ensures the existence of all the
integrals involved. Obviously, one can not simply take Γ = (−∞,∞), but
a more detailed investigation shows that the correct contour must be chosen
in such a way as to be asymptotically tangent to the line Arg(t) = 5π/6 for
Re t → −∞, and asymptotically tangent to Arg(t) = π/6 for Re t → ∞, see
Fig.9. It is then evident, that

Ai(ξ) =
1

π

∫
Γ

dt eiξ t+i t3
3 , −iAi′(ξ) =

1

π

∫
Γ

dt t eiξ t+i t3
3 , −Ai′′(ξ)

=
1

π

∫
Γ

dt t2 eiξ t+i t3
3
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and collecting all factors we find the expression of the mean eigenvalue density
close to the “spectral edge”:

ρ(λ = 2 + ξ N−2/3) ∝ ρe(ξ) = Ai′(ξ)2 − Ai′′(ξ)Ai(ξ). (6.12)

-7.5 -5 -2.5 2.5 5 7.5

0.2

0.4

0.6

0.8

ξ

ρe (ξ)

Figure 10: Behaviour of the spectral density close to the spectral edge.

For ξ < 0 the function shows noticeable oscillations , see Fig.10, with neigh-
bouring maxima separated by distance of the order of λi − λi−1 ∝ ∆edge =∼
N−1/3 and reflecting typical positions of individual eigenvalues close to the
“spectral edge”. In contrast, for ξ > 0 the mean density decays extremely
fast, reflecting the typical absence of the eigenvalues beyond the spectral edge.

A very similar calculation shows that under the same conditions the kernel
KN (λ, λ′) assumes the form:

K(ξ1, ξ2) =
Ai(ξ1)Ai′(ξ2) − Ai(ξ2)Ai′(ξ1)

ξ1 − ξ2
(6.13)

known as the Airy kernel, see [8].

7 Orthogonal polynomials versus characteris-

tic polynomials

Our efforts in studying Hermite polynomials in detail were amply rewarded by
the provided possibility to arrive at the bulk and edge scaling forms for the
matrix kernel in the corresponding large-N limits. It is those forms which turn
out to be universal, which means independent of the particular detail of the
random matrix probability distribution, provided size of the corresponding
matrices is large enough. This is why one can hope that the Dyson kernel
would be relevant to many applications, including properties of the Riemann
ζ-function. An important issue for many years was to prove the universality
for unitary-invariant ensembles which was finally achieved, first in [10].

In fact, quite a few basic properties of the Hermite polynomials are shared
also by any other set of orthogonal polynomials πk(x). Among those worth of
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particular mentioning is the Christoffel-Darboux formula for the combination
entering the two-point kernel Eq.(4.12), (cf. Eq.(5.10)):

n−1∑
k=0

πk(x)πk(y) = bn
πn−1(y)πn(x) − πn−1(x)πn(y)

x − y
, (7.1)

where bn are some constants. So the problem of the universality of the kernel
(and hence, of the n-point correlation functions) amounts to finding the appro-
priate large-N scaling limit for the right-hand side of Eq.(7.1) (in the “bulk”
of the spectrum, or close to the spectral “edge”).

The main dissatisfaction is that explicit formulas for orthogonal polynomi-
als (most important, an integral representation similar to Eq.(5.13)) are not
available for general weight functions dw(λ) = e−Q(λ)dλ. For this reason we
have to devise alternative tools of constructing the orthogonal polynomials and
extracting their asymptotics. Any detailed discussion of the relevant technique
goes far beyond the modest goals of the present set of lectures. Nevertheless,
some hints towards the essence of the powerful methods employed for that goal
will be given after a digression.

Namely, I find it instructive to discuss first a question which seems to be
quite unrelated,- the statistical properties of the characteristic polynomials

ZN (µ) = det
(
µ1N − Ĥ

)
=

N∏
i=1

(µ− λi) (7.2)

for any Hermitian matrix ensemble with invariant JPDF P(Ĥ) ∝
exp{−NTrQ(Ĥ)}. Such objects are very interesting on their own for many
reasons. Moments of characteristic polynomials for various types of random
matrices were much studied recently, in particular due to an attractive possi-
bility to use them, in a very natural way, for characterizing “universal” features
of the Riemann ζ-function along the critical line, see the pioneering paper[11]
and the lectures by Jon Keating in this volume. The same moments also have
various interesting combinatorial interpretations, see e.g. [12, 13], and are
important in applications to physics, as I will elucidate later on.

On the other hand, addressing those moments will allow us to arrive at
the most natural way of constructing polynomials orthogonal with respect to
an arbitrary weight dw(λ) = e−Q(λ)dλ. To understand this, we start with
considering the lowest moment, which is just the expectation value of the
characteristic polynomial:

E [ZN (µ)] =

∫ ∞

−∞
dw(λ1) . . .

∫ ∞

−∞
dw(λN )

N∏
i<j

(λi − λj)
2

N∏
i=1

(µ− λi) (7.3)
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We first notice that

N∏
i<j

(λi − λj)
N∏

i=1

(µ− λi) ∝ det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 1 1
λ1 . . . λN µ
. . . .
. . . .
. . . .

λN−1
1 . . . λN−1

N µN−1

λN
1 . . . λN

N µN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.4)

Indeed, the right-hand side is obviously a polynomial of degree N in the vari-
able µ, with roots at µ = µ1, µ2, . . . , µN . Therefore it must be of the form
C×∏N

i=1(µ−λi), with prefactor C being a function of λ1, ..., λN . The value of
such a prefactor can be easily established by comparing both sides as µ → ∞:
the left-hand side behaves as C µN , whereas expanding the determinant with
respect to the last column and using the expression for the van der Monde de-
terminant, Eq.(4.5), we see that the right-hand side grows as µN

∏N
i<j(λi−λj).

Exploiting Eq.(7.4) allows us to rewrite the expectation value for the char-
acteristic polynomial as

E [ZN (µ)] ∝
∫ ∞

−∞

N∏
i=1

dw(λi) (7.5)

× det

⎛⎜⎜⎜⎜⎜⎜⎝
1 . . . 1
λ1 . . . λN

. . .

. . .

. . .
λN−1

1 . . . λN−1
N

⎞⎟⎟⎟⎟⎟⎟⎠ det

⎛⎜⎜⎜⎜⎜⎜⎝
1 . . . 1 1
λ1 . . . λN µ
. . . .
. . . .
. . . .

λN
1 . . . λN

N µN

⎞⎟⎟⎟⎟⎟⎟⎠,

which can be further written down as the standard sum over all permutations
Pσ = (σ1, . . . , σN ) of the index set (1, 2, ..., N):

E [ZN (µ)] ∝
∑
Pσ

(−1)|Pσ |
∫ ∞

−∞

N∏
i=1

dw(λi)λ
0
σ1

. . . λN−1
σN

(7.6)

× det

⎛⎜⎜⎜⎜⎜⎜⎝
1 . . . 1 1
λ1 . . . λN µ
. . . .
. . . .
. . . .

λN
1 . . . λN µN

⎞⎟⎟⎟⎟⎟⎟⎠,

where |Pσ | = 0(1) for even(odd) permutations. The symmetry of the remaining
determinant with respect to permutation of its columns ensures that every
term in the sum above yields exactly the same contribution, and it is enough to
consider only the first term with Pσ = (1, 2, ..., N), and multiply the result with
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N !. For such a choice, the product of factors λ0
1 . . . λN−1

N can be “absorbed” in
the determinant by multiplying the j−th column of the latter with the factor
λj−1

j , for all j = 1, . . . , N . This gives

E [ZN (µ)] ∝
∫ ∞

−∞

N∏
i=1

dw(λi) det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 λ2 . . . λN−1
N 1

λ1 λ2
2 . . . λN

N µ
. . . .
. . . .
. . . .

λN−1
1 λN

2 . . . λ2N−2
N µN−1

λN
1 λN+1

2 . . . λ2N−1
N µN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7.7)

The integral in the right-hand side is obviously a polynomial of degree N in
µ, which we denote DN (µ) and write in the final form as

DN (µ) = det

⎛⎜⎜⎜⎜⎝
∫∞
−∞ dw(λ)

∫∞
−∞ dw(λ)λ . . .

∫∞
−∞ dw(λ)λN −1 1∫∞

−∞ dw(λ)λ
∫∞
−∞ dw(λ)λ2 . . .

∫∞
−∞ dw(λ)λN µ

. . . .

. . . .

. . . .∫∞
−∞ dw(λ)λN −1 ∫∞

−∞ dw(λ)λN . . .
∫∞
−∞ dw(λ)λ2N −2 µN −1∫∞

−∞ dw(λ)λN
∫∞
−∞ dw(λ)λN +1 . . .

∫∞
−∞ dw(λ)λ2N −1 µN

⎞⎟⎟⎟⎟⎠.

(7.8)
The last form makes evident the following property. Multiply the right-

hand side with dw(µ)µp and integrate over µ. By linearity, the factor and
the integration can be “absorbed” in the last column of the determinant. For
p = 0, 1, . . . , N − 1 this last column will be identical to one of preceding
columns, making the whole determinant vanishing, so that∫ ∞

−∞
dw(µ)µpDN (µ) = 0, p = 0, 1, . . . , N − 1. (7.9)

Moreover, it is easy to satisfy oneself that the polynomial DN (µ) can be
written as DN (µ) = DN−1µ

N + . . ., where the leading coefficient DN−1 =

det
(∫∞

−∞ dw(λ)λi+j
)N

i,j=0
is necessarily positive: Dn−1 > 0. The last fact

immediately follows from the positivity of the quadratic form:

G(x1, . . . , xN ) =

∫ ∞

−∞
dw(λ)

(
N∑

i=1

xiλ
i

)2

=
N∑
i,j

xixj

∫ ∞

−∞
dw(λ)λi+j

Finally, notice that∫ ∞

−∞
dw(µ)D2

N (µ) =

∫ ∞

−∞
dw(µ)DN (µ)

[
DN−1µ

N + lower powers
]

(7.10)

= DN−1

∫ ∞

−∞
dw(µ)DN (µ)µN = DN−1DN
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where we first exploited Eq.(7.9) and at the last stage Eq.(7.8). Combin-
ing all these facts together we thus proved that the polynomials πN (λ) =

1√
DN −1DN

D(λ) form the orthogonal (and normalized to unity) set with respect

to the given measure dw(λ). Moreover, our discussion makes it immediately
clear that the expectation value of the characteristic polynomial ZN (µ) for
any given random matrix ensemble is nothing else, but just the corresponding
monic orthogonal polynomial:

E [ZN (µ)] = π
(m)
N (µ), (7.11)

whose leading coefficient is unity. Leaving aside the modern random matrix
interpretation the combination of the right hand sides of the formulas Eq.(7.11)
and Eq.(7.3) goes back, according to [6], to Heine-Borel work of 1878, and as
such is completely classical.

The random matrix interpretation is however quite instructive, since it
suggests to consider also higher moments of the characteristic polynomials,
and even more general objects like the correlation functions

Ck(µ1, µ2, . . . , µk) = E [ZN (µ1)ZN (µ2) . . . ZN (µk)] . (7.12)

Let us start with considering

C2(µ1, µ2) =

∫ ∞

−∞
dw(λ1) . . .

∫ ∞

−∞
dw(λN )

N∏
i<j

(λi−λj)
2

N∏
i=1

(µ1 −λi)
N∏

i=1

(µ2 −λi).

(7.13)
Using the notation ∆N (λ1, . . . , λN ) for the van der Monde determinant, see
Eq.(4.5), we further notice that

∆N+2(λ1, . . . , λN , µ1, µ2) = ∆N (λ1, . . . , λN )×(µ1−µ2)
N∏

i=1

(µ1−λi)
N∏

i=1

(µ2−λi),

which allows us to rewrite the correlation function as

C2(µ1, µ2) =
1

(µ1 − µ2)

∫ ∞

−∞

N∏
i=1

dw(λi) ∆N (λ1, . . . , λN )∆N+2(λ1, . . . , λN , µ1, µ2).

Now we replace each entry λj
i in both van der Monde determinant factors with

the orthogonal polynomial πj(λi) (cf. eq.(4.6)), and further expand the first
factor as a sum over permutations: ∆N (λ1, . . . , λN ) ∝

∑
P (−1)|P |π0(λσ1 ) . . .

πN−1(λσN
). Further using permutational symmetry of the second determinant,

we again see that every term yields after integration the same contribution.
Up to a proportionality factor we can therefore rewrite the correlation function
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as

C2(µ1, µ2) =
1

(µ1 − µ2)

∫ ∞

−∞

N∏
i=1

dw(λi) π0(λ1) . . . πN−1(λN ) (7.14)

× det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

π0(λ1) π0(λ2) . . . π0(µ1) π0(µ2)
π1(λ1) π1(λ2) . . . π1(µ1) π1(µ2)

. . . .

. . . .

. . . .
πN (λ1) πN (λ2) . . . πN (µ1) πN (µ2)

πN+1(λ1) πN+1(λ2) . . . πN+1(µ1) πN+1(µ2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

At the next step we absorb the factors π0(λ1), . . . , πN−1(λN ) inside the deter-
minant by multiplying the first column with π0(λ1),..., the N− th column with
πN−1(λN ), and leaving the last two columns intact. By linearity, we can also
absorb the product of the integrals inside the determinant by integrating the
first column over λ1,..., and N − th column over λN . Due to the orthogonality,
the first N columns of the resulting determinant after integration contain zero
components off-diagonal, whereas the entries on the main diagonal are equal
to the normalization constants ck =

∫∞
−∞ dw(λ) π2

k(λ), k = 0, . . . , N . There-
fore, the resulting determinant is easy to calculate and, up to a multiplicative
constant we arrive to the following simple formula:

C2(µ1, µ2) ∝
1

(µ1 − µ2)
det

(
πN (µ1) πN (µ2)

πN+1(µ1) πN+1(µ2)

)
. (7.15)

In particular, for the second moment of the characteristic polynomial we have
the expression

E[Z2(µ)] = lim
µ1→µ2 =µ

C2(µ1, µ2) ∝ det

(
πN (µ) π′

N (µ)
πN+1(µ) π′

N+1(µ)

)
. (7.16)

This procedure can be very straightforwardly extended to higher order
correlation functions[14, 16], and higher order moments[15] of the characteristic
polynomials. The general structure is always the same, and is given in the form
of a determinant whose entries are orthogonal polynomials of increasing order.

One more observation deserving mentioning here is that the structure of
the two-point correlation function of characteristic polynomials is identical
to that of the Christoffel-Darboux, which is the main building block of the
kernel function, Eq.(4.12). Moreover, comparing the above formula (7.16) for
the gaussian case with expressions (5.15,5.14), one notices a great degree in
similarity between the structure of mean eigenvalue density and that for the
second moment of the characteristic polynomial. All these similarities are
not accidental, and there exists a general relation between the two types of
quantities as I proceed to demonstrate on the simplest example. For this we
recall that the mean eigenvalue density ρN (λ) is just the one-point correlation
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function, see Eq.(3.4), and according to Eq.(3.1) and Eq.(2.38) can be written
as

R1(λ) = N

∫
P(λ, λ2, . . . , λN ) dλ2 . . . λN (7.17)

∝ e−Q(λ)
∫

dλ2 . . . λN e−
∑N

i=2 Q(λi )
N∏

i=2

(λ− λi)
2
∏

2≤i<j≤N

(λi − λj)
2 .

It is immediately evident after simple renumbering (λ2, . . . , λN ) →
(λ1, . . . , λN−1) that the integral in the second line allows a clear interpreta-
tion as the second moment of the characteristic polynomial E[Z2

N−1(λ)] of a
random matrix HN−1 distributed according to the same joint probability den-
sity function P (HN−1) dĤN−1, but of reduced size N − 1, see Eq.(7.3) for
comparison. We therefore have a general relation between the mean eigen-
value density and the second moment of the characteristic polynomial of the
reduced-size matrix:

ρN (λ) ∝ e−Q(λ)
[
det
(
λ1N − ĤN−1

)]2
(7.18)

which explains the observed similarity. This type of relations, and their natural
generalizations to higher-order correlation functions hold for general invariant
ensembles and were found helpful in several applications; e.g. for the so-
called “chiral” ensembles (notion of such ensembles is shortly discussed in the
very end of these notes) in [18], for non-Hermitian matrices with complex
eigenvalues see examples and further references in [19]); for real symmetric
matrices see the recent paper[20].

Now let us discuss another important class of correlation functions involving
characteristic polynomials, - namely one combining both positive and negative
moments, the simplest example being the expectation value of the ratio:

KN (µ, ν) = E

[
ZN (µ)

ZN (ν)

]
. (7.19)

For such an object to be well-defined it is necessary to regularize the character-

istic polynomial in the denominator ZN (ν) = det
(
ν1N − Ĥ

)
by considering

the complex-valued spectral parameter ν such that Imν �= 0. Further general-
izations include more than one polynomial in numerator and/or denominator.

Such objects turned out to be indispensable tools in applications of random
matrices to physical problems. In fact, in all applications a very fundamental
role is played by the resolvent matrix (µ1N − Ĥ)−1, and statistics of its entries
is of great interest. In particular, the familiar eigenvalue density ρ(ν) can be
extracted from the trace of the resolvent as

ρ(ν) =
1

π
lim

Imµ→0−
ImTr

1

µ1N − Ĥ
. (7.20)
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It is easy to understand that one can get access to such an object, and
more general correlation functions of the traces of the resolvent by using the
identity:

Tr
1

µ1N − Ĥ
= − ∂

∂ν

ZN (µ)

ZN (ν)
|µ=ν . (7.21)

We conclude that the products of ratios of characteristic polynomials can be
used to extract the multipoint correlation function of spectral densities (see an
example below). Moreover, distributions of some other interesting quantities
as, e.g. individual entries of the resolvent, or statistics of eigenvalues as func-
tions of some parameter can be characterized in terms of general correlation
functions of ratios, see [21] for more details and examples. Thus, that type of
the correlation function is even more informative than one containing products
of only positive moments of the characteristic polynomials.

In fact, it turns out that there exists a general relation between the two
types of the correlation functions, which is discussed in full generality in recent
papers [17, 22, 23, 24]. Here we would like to illustrate such a relation on the
simplest example, Eq.(7.19). To this end let us use the following identity:

[ZN (ν)]−1 =
1∏N

i=1 (ν − λi)
=

N∑
k=1

1

ν − λk

N∏
i �=k

1

λi − λk

(7.22)

and integrate the ratio of the two characteristic polynomials over the joint
probability density of all the eigenvalues. When performing integrations, each
of N terms in the sum in Eq.(7.22) produces identical contributions, so that
we can take one term with k = 1 and multiply the result by N . Represent-
ing ∆2(λ1, . . . , λN ) =

∏
2≤i(λ1 − λi)

2∏
2≤i<j(λi − λj)

2, and observing some
cancellations, we have

KN (µ, ν) ∝
∫

dw(λ1)
µ− λ1

ν − λ1

∫
dw(λ2) ... dw(λN ) (7.23)

×
N∏

2≤i<j

(λi − λj)
2

N∏
i=2

(λ1 − λi)(µ− λi)

∝
∫

dw(λ1)
µ− λ1

ν − λ1
× det

(
λ1 − ĤN−1

)
det
(
µ− ĤN−1

)
.

The average value of the products of two characteristic polynomials found by
us in Eq.(7.15) can now be inserted into the integral entering Eq.(7.24), and
the resulting expression can be again written in the form of a 2×2 determinant:

KN (µ, ν) ∝ det

(
πN−1 (µ) fN−1(ν)
πN (µ) fN (ν)

)
(7.24)

where fN (ν) stands for the so-called Cauchy transform of the orthogonal poly-
nomial

fN (ν) =
1

2πi

∫ ∞

−∞

dw(λ)

ν − λ
πN (λ) (7.25)
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The emerged functions fN (ν) is a rather new feature in Random Matrix
Theory. It is instructive to have a closer look at their properties for the sim-
plest case of the Gaussian Ensemble, Q(λ) = Nλ2/2. It turns out that for
such a case the functions fN (ν) are, in fact, related to the so-called gener-
alized Hermite functions HN which are second -non-polynomial- solutions of
the same differential equation which is satisfied by Hermite polynomials them-
selves. The functions also have a convenient integral representations, which
can be obtained in the most straightforward way by substituting the identity

1

ν − λ
∝
∫ ∞

0
dteitsgn[Imν](ν−λ)

into the definition (7.25), replacing the Hermite polynomial with its integral
representation, Eq.(5.13), exchanging the order of integrations and performing
the λ−integral explicitly. Such a procedure results in

fN+n(ν) ∝
∫ ∞

0
dttN+ne

−N
(

t2
2 −itsgn[Imν]ν

)
.

Note, that this is precisely the integral (5.19) whose large-N asymptotics for
real ν we studied in the course of our saddle-point analysis. The results can
be immediately extended to complex ν, and in the “bulk scaling” limit we
arrive to the following asymptotics of the correlation function (7.24) close to
the origin

lim
N→∞

KN (µ, ν) = K∞ [Nρ∞(0)(µ− ν)] , (7.26)

K∞(r) ∝
{

e−iπr if Im(ν) > 0
eiπr if Im(ν) > 0

.

In a similar, although more elaborate way one can calculate an arbitrary
correlation function containing ratios and products of characteristic polyno-
mials [17, 23, 24]. The detailed analysis shows that the kernel S(µ, ν) =

K(µ, ν)/(µ− ν) and its scaling form S∞(r) ∝ K∞(r)
r

play the role of a building
block for more general correlation functions involving ratios, in the same way
as the Dyson kernel (6.4) plays similar role for the n-point correlation functions
of eigenvalue densities. This is a new type of “kernel function” with structure
different from the standard random matrix kernel Eq.(4.10). The third type
of such kernels - made from functions fN (ν) alone - arises when considering
only negative moments of the characteristic polynomials.

To give an instructive example of the form emerging consider

KN (µ1, µ2, ν1, ν2) = E

[
ZN (µ1)

ZN (ν1)

ZN (µ2)

ZN (ν2)

]
(7.27)

=
(µ1 − ν1)(µ1 − ν2)(µ2 − ν1)(µ2 − ν2)

(µ1 − µ2)(ν1 − ν2)
det

(
S (µ1, ν1) S (µ1, ν2)
S (µ2, ν1) S (µ2, ν2)

)
.
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Assuming Im ν1 > 0, Im ν2 < 0, both infinitesimal, we find in the bulk
scaling limit such that both Nρ(0)µ1,2 = ζ1,2 and Nρ(0)ν1,2 = κ1,2 are finite
the following expression (see e.g. [22], or [21])

lim
N→∞

KN (µ1, µ2, ν1, ν2) = K∞(ζ1, ζ2, κ1, κ2) (7.28)

=
eiπ(ζ1−ζ2 )

ζ1 − ζ2

[
eiπ(κ1−κ2 ) (κ1 − ζ1)(κ2 − ζ2)

κ1 − κ2
− e−iπ(κ1−κ2 ) (κ1 − ζ2)(κ2 − ζ1)

κ1 − κ2

]
.

This formula can be further utilized for many goals. For example, it is
a useful exercise to understand how the scaling limit of the two-point clus-
ter function (4.20) can be extracted from such an expression (hint: the clus-
ter function is related to the correlation function of eigenvalue densities by
Eq.(3.7); exploit the relations (7.20),(7.21)).

All these developments, important and interesting on their own, indirectly
prepared the ground for discussing the mathematical framework for a proof of
universality in the large-N limit. As was already mentioned, the main obstacle
was the absence of any sensible integral representation for general orthogonal
polynomials and their Cauchy transforms. The method which circumvents this
obstacle in the most elegant fashion is based on the possibility to define both
orthogonal polynomials and their Cauchy transforms in a way proposed by
Fokas, Its and Kitaev, see references in [3], as elements of a (matrix valued)
solution of the following (Riemann-Hilbert) problem. The latter can be intro-
duced as follows. Let the contour Σ be the real axis orientated from the left to
the right. The upper half of the complex plane with respect to the contour will
be called the positive one and the lower half - the negative one. Fix an integer
n ≥ 0 and the measure w(z) = e−Q(z) and define the Riemann-Hilbert problem
as that of finding a 2 × 2 matrix valued function Y = Y (n)(z) satisfying the
following conditions:

• Y (n)(z) − analytic in C \ Σ

• Y
(n)
+ (z) = Y

(n)
− (z)

(
1 w(z)
0 1

)
, z ∈ Σ

• Y (n)(z) �→ (I + O(z−1))

(
zn 0
0 z−n

)
as z �→ ∞

Here Y
(n)
± (z) denotes the limit of Y (n)(z′) as z′ �→ z ∈ Σ from the posi-

tive/negative side of the complex plane. It may be proved (see [3]) that the
solution of such a problem is unique and is given by

Y (n)(z) =

(
πn(z) fn(z)

γn−1πn−1(z) γn−1fn−1(z)

)
, Im z �= 0 (7.29)

where the constants γn are simply related to the normalization of the corre-
sponding polynomials: γn = −2πi[

∫∞
−∞ dwπ2

n]−1.
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On comparing formulae (7.24) and (7.29) we observe that the structure
of the correlation function KN (µ, ν) is very intimately related to the above
Riemann-Hilbert problem. In fact, for µ = ν = z the matrices involved are
identical (even the constant γn−1 in Eq.(7.24) emerges when we replace ∝ with
exact equality sign). Actually, all three types of kernels can be expressed in
terms of the solution of the Riemann-Hilbert problem. The original works
[3, 25] dealt only with the standard kernel built from polynomials alone. From
that point of view the presence of Cauchy transforms in the Riemann-Hilbert
problem might seem to be quite mysterious, and even superfluous. Now, after
revealing the role and the meaning of more general kernels the picture can be
considered complete, and the presence of the Cauchy transforms has its logical
justification.

The relation to the Riemann-Hilbert problem is the starting point for a very
efficient method of extracting the large−N asymptotics for essentially any po-
tential function Q(x) entering the probability distribution measure. The corre-
sponding machinery is known as the variant of the steepest descent/stationary
phase method introduced for Riemann-Hilbert problems by Deift and Zhou.
It is discussed at length in the book by Deift[3] which can be recommended
to the interested reader for further details. In this way the universality was
verified for all three types of kernels pertinent to the random matrix theory
not only for bulk of the spectrum[22], but also for the spectral edges . In our
considerations of the Gaussian Unitary Ensemble we already encountered the
edge scaling regime where the spectral properties were parameterized by the
Airy functions Ai(x). Dealing with ratios of characteristic polynomials in such
a regime requires second solution of the Airy equation denoted by Bi(x), see
[28].

We finish our exposition by claiming that there exist other interesting
classes of matrix ensembles which attracted a considerable attention recently,
see the paper[26] for more detail on the classification of random matrices by
underlying symmetries. In the present framework we only mention one of them
- the so-called chiral GUE. The corresponding 2N × 2N matrices are of the

form Ĥch =

(
0N Ĵ

Ĵ† 0N

)
, where Ĵ of a general complex matrix. They were

introduced to provide a background for calculating the universal part of the
microscopic level density for the Euclidian QCD Dirac operator, see [27] and
references therein, and also have relevance for applications to condensed matter
physics. The eigenvalues of such matrices appear in pairs ±λk , k = 1, ..., N .
It is easy to understand that the origin λ = 0 plays a specific role in such
matrices, and close to this point eigenvalue correlations are rather different
from those of the GUE, and described by the so-called Bessel kernels[29]. An
alternative way of looking essentially at the same problem is to consider the
random matrices of Wishart type Ŵ = Ĵ†Ĵ , where the role of the special
point is again played by the origin (in such context the origin is frequently
referred to as the “hard spectral edge”, since no eigenvalues are possible be-
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yond that point. This should be contrasted with the Airy regime close to the
semicircle edge, the latter being sometimes referred to as the “soft edge” of
the spectrum.). The corresponding problems for products and ratios of char-
acteristic polynomials were treated in full rigor by Riemann-Hilbert technique
by Vanlessen[30], and in a less formal way in [28].
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Notes on Pair Correlation of Zeros and
Prime Numbers

D. A. Goldston ∗

These notes are based on my four lectures given at the Newton Institute in April 2004
during the Recent Perspectives in Random Matrix Theory and Number Theory Workshop.
Their purpose is to introduce the reader to the analytic number theory necessary to under-
stand Montgomery’s work on the pair correlation of the zeros of the Riemann zeta-function
and subsequent work on how this relates to prime numbers. A very brief introduction to
Selberg’s work on the moments of S(T ) is also given.

1 Introduction and Some Personal History

In 1973 Montgomery’s paper [28], “The Pair Correlation of Zeros of the Zeta
Function,” appeared in the AMS series of Proceedings of Symposia in Pure
Mathematics, and a new field of study was born — slowly. I first came across
this paper in 1977, and was probably the only person at Berkeley to read it.
Most zeta-function people (as some of us refer to ourselves) recognized the im-
portance of this work and the new phenomena discovered, but it was not clear
what to do next. At first, the main interest was in using Montgomery’s conjec-
tures to refine the classical results on primes obtained assuming the Riemann
Hypothesis. Gallagher and Mueller [12] wrote an important paper on this in

∗The author was supported by an NSF FRG grant
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1978, followed by further results from Heath-Brown [21]. In 1981 I wrote my
Ph.D. thesis on this topic. A few years later Montgomery and I [18] obtained
an equivalence between the pair correlation conjecture and primes. However,
this work attracted little attention — probably because the results were ob-
tained using Montgomery’s conjectures. Then, in the early 1980’s everything
changed: Odlyzko [31] computed statistics on the zeros and convinced even
the most skeptical that after almost a century of intensive study a totally new,
unsuspected, and fundamental property of the zeta-function had been discov-
ered. The field has since had a flood of activity, with the generalization of
Montgomery’s work to higher correlations by Hejhal [23] and Rudnick-Sarnak
[32], the interpretation of these results in terms of mathematical physics by
Berry and Bogomolny-Keating [1, 2], the function field case of Katz-Sarnak
[26], the random matrix model for moments of the zeta-function of Keating
and Snaith culminating in [4], and a profusion of new work.

In these notes, I will discuss Montgomery’s results and their relations to
primes. As a unifying tool, I will use Montgomery’s explicit formula [28] to
prove a number of later results that were originally obtained by other methods.
This approach was first made use of in part of my Ph.D. thesis, and was based
on a suggestion of Montgomery in a letter. At that time Heath-Brown had
just finished his paper which covered the same ground, and I saw no need to
publish this material beyond the summary that appeared in [15]. My goal, in
line with the emphasis of the workshop on reaching out to beginners in the
field, is to provide some of the main ideas used without technicalities and at the
same time supply simple details which would be accepted without comment by
experts. I have intentionally left out many things to keep these notes focused.
The last section on Selberg’s theory of S(T ) and log ζ(s) is somewhat different
from the previous ones, and I have decided to state only the main results and
present a few of the ideas that are used.

I would like to thank Andrew Ledoan for the many improvements he sug-
gested for these notes.

2 Basic Facts and Notation

Following Riemann, we use the complex variable s = σ + it. The Riemann
zeta-function ζ(s) is defined, for σ > 1, by either the Dirichlet series or the
Euler product

ζ(s) =
∞∑

n=1

1

ns
=
∏

p

(
1 − 1

ps

)−1

. (2.1)

Here p will always denote a prime, so the product is over all the prime numbers.
To extract information about primes from the Euler product, we compute
the logarithmic derivative of the zeta-function and use the power series for
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− log(1 − z), to obtain, for σ > 1,

ζ ′

ζ
(s) :=

ζ ′(s)
ζ(s)

=
d

ds
log ζ(s) =

d

ds

( ∞∑
m=1

∑
p

1

mpms

)
= −

∞∑
n=1

Λ(n)

ns
, (2.2)

where the von Mangoldt function Λ(n) is given by

Λ(n) =

{
log p, if n = pm , p prime, m ≥ 1,
0, otherwise.

(2.3)

The Chebyshev function ψ(x) is the counting function for Λ(n) given by

ψ(x) =
∑
n≤x

Λ(n). (2.4)

Because of the simple relationship with the zeta-function, it is preferable to
use Λ(n) in place of the indicator function for the primes, and ψ(x) in place of
the counting function π(x) for the number of primes up to x. If needed, one
can usually recover π(x) from ψ(x) by simple arguments. The Prime Number
Theorem (PNT) states that as x →∞

ψ(x) ∼ x, or π(x) ∼ x

log x
. (2.5)

The PNT with the error term obtained by de la Vallée Poussin in 1899 is, for
a small constant c,

ψ(x) = x + O
(
xe−c

√
log x
)

, (2.6)

which on returning to π(x) gives (c may differ from equation to equation)

π(x) = li(x) + O
(
xe−c

√
log x
)

, (2.7)

where the logarithmic integral

li(x) =

∫ x

2

du

log u

is the actual main term in the theorem. For the error term above, we have for
any constant A > 0

e−c
√

log x � 1

(log x)A
. (2.8)

Here, the Vinogradov notation1 � is equivalent to “big oh” of the right-hand
side. This estimate is freely used when the PNT is invoked.

1Editors’ comment: See the Appendix of the lectures of D.W. Farmer, page 185, for a
discussion of the � notation.
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We frequently need the Dirichlet series for ζ(s)−1, which from the Euler
product is

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
(2.9)

for σ > 1, where the Möbius function is defined by µ(1) = 1 and

µ(n) =

{
(−1)m , if n = p1p2 · · · pm , pi’s distinct,
0, if p2|n, some p.

(2.10)

The zeta-function has a simple pole with residue 1 at s = 1, trivial zeros
at s = −2n, n = 1, 2, 3, . . . . and complex zeros

ρ = β + iγ, 0 < β < 1. (2.11)

The inequality β < 1 is the key result needed in the analytic proofs of the
PNT. The zeros are positioned symmetrically with the real line and the “1

2 -
line” 1

2 +it, so that ρ, ρ̄, 1−ρ, and 1− ρ̄ are all zeros. The Riemann Hypothesis
(RH) is the conjecture that β = 1

2 , and thus ρ = 1
2 + iγ. For example, the first

6 zeros in the upper half of the critical strip are

1

2
+ i14.13472 . . . ,

1

2
+ i21.02203 . . . ,

1

2
+ i25.01085 . . . ,

1

2
+ i30.42487 . . . ,

1

2
+ i32.93506 . . . ,

1

2
+ i37.58617 . . . .

(2.12)

To count the number of complex zeros in a given region, we define

n(T ) = |{γ : 0 < γ ≤ T}| , N(T ) =
n(T + 0) + n(T − 0)

2
, (2.13)

where |A| denotes the number of elements of the set A. Note that N(T )
counts any zeros γ = T with weight one-half, which arises naturally in the
theory; therefore we always use N(T ) in preference to n(T ). The Riemann-
von Mangoldt formula for N(T ), obtained by applying the argument principle
to ζ and using the functional equation (see [8], [25], [39]), is

N(T ) =
T

2π
log

T

2πe
+

7

8
+ R(T ) + S(T ), (2.14)

where

R(T ) � 1

T
(2.15)

and

S(T ) =
1

π
arg ζ

(
1

2
+ iT

)
� log T. (2.16)

In fact, R(T ) is continuous, differentiable, and can be expanded into a series in
inverse powers of T . We see that (2.14) provides a remarkably precise formula
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for the number of zeros up to height T , with the finer details of the vertical
distribution of zeros wrapped up in the study of S(T ). In particular, we have

N(T ) ∼ T

2π
log T. (2.17)

Another consequence of (2.14) – (2.16) which we make frequent use of is the
sharp estimate

N(T + 1) −N(T ) =
∑

T <γ≤T +1

1 � log T. (2.18)

3 Explicit Formulas

To study the relationship between the zeros of the zeta-function and primes
you need to be able to work with explicit formulas. There are many such
formulas but the best known is the Riemann-von Mangoldt explicit formula,
which states that, for x > 1,

ψ0(x) = x−
∑

ρ

xρ

ρ
− log 2π − 1

2
log

(
1 − 1

x2

)
, (3.1)

where ψ0(x) = 1
2 (ψ(x + 0) + ψ(x − 0)). By (2.14), the sum is not absolutely

convergent and the terms are added with ρ and ρ̄ grouped together. The
explicit formula also contains this information, since on taking x → 1+ and
letting x = eu we see that∑

ρ

eρu

ρ
=

1

2
log

1

u
+ O(1) as u → 0+. (3.2)

For applications we usually use the truncated version of (3.1),

ψ(x) = x−
∑
|γ|≤T

xρ

ρ
+ O

( x

T
(log xT )2

)
+ O

(
(log x) min

(
1,

x

T ||x||
))

, (3.3)

where ||x|| denotes the distance of x to the closest integer, and the last term
reflects the jumps of ψ(x) at the primes and prime powers. As an example of
an application of (3.3), assuming RH we have

xρ

ρ
� x

1
2

|γ| ,

and so by (2.12) and (2.18), with [x] denoting the integer part of x,

∑
|γ|≤T

1

|γ| = 2
∑

1<γ≤T

1

γ
≤

[T ]+1∑
n=1

1

n

∑
n<γ≤n+1

1 �
∑
n≤2T

log 2n

n
� (log T )2.
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Thus, taking T = x in (3.3) we have

ψ(x) = x + O
(
x

1
2 (log x)2

)
. (3.4)

It can also be proved that this estimate implies RH, and therefore is equivalent
to the RH.2 Equation (3.4) is due to von Koch in 1901 and has never been
improved.

We next apply (3.4) to the problem of large gaps between primes. Let pn

denote the n-th prime number. The highest power of a prime ≤ x is the largest
k for which 2k ≤ x, so k = [log2 x]. By the PNT,

ψ(x) =
∑
p≤x

log p +
∑

2≤m≤log2 x

∑
pm ≤x

log p

=
∑
p≤x

log p +
∑

p≤√
x

log p + O
(
π
(
x

1
3

)
(log x)2

)
=
∑
p≤x

log p + O
(
x

1
2

)
.

Thus (3.4) continues to hold when we only sum over primes. For 1 ≤ h ≤ x,
we have by (3.4) and differencing that∑

x<p≤x+h

log p = h + O
(
x

1
2 (log x)2

)
.

On taking h = Cx
1
2 (log x)2, with the constant C being larger than the implicit

absolute constant in the error term, we conclude that the sum on the left is
positive and � h, and thus the interval (x, x+h] must contain � h

log x
primes.

If pn is the first prime in (x, x + h), then

pn+1 − pn < h � pn

1
2 (log pn)2. (3.5)

An explicit formula that also exhibits the close connection between zeros
and primes is the Landau formula, which states that (for x fixed) as T → ∞∑

0<γ≤T

xρ = −TΛ(x)

2π
+ O(log T ). (3.6)

Here we define Λ(x) to be zero for real non-integer x. Formally this is obtained
by differentiating (3.1) with respect to x. The exponential sum over the zeros
encodes the information on which integers are primes or prime powers. Equa-
tion (3.6) is not particularly useful, but Fujii [10] and independently Gonek
[19] have developed uniform versions which can be used in applications.

2Even the seemingly weaker estimate ψ(x) = x + O
(
x

1
2 +ε
)

for any ε > 0 is equivalent

to RH.
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An explicit formula of at least historic interest is the Cramér explicit for-
mula, which states that for Im(z) > 0∑

γ>0

eρz =
ez

2πi

∞∑
n=2

Λ(n)

n

(
1

z − log n
+

1

log n

)

+
1

2πi

∞∑
n=2

Λ(n)

n

(
1

z + log n
− 1

log n

)
+

(
1

4
+

γ + log 2π

2πi

)(
1 +

1

z

)
+

1

2πi

Γ′

Γ

( z

2πi

)
+

1

2
ez

− z

2πi

∫ 1

0
esz log |ζ(z)| ds− 1

2πiz

∫ ∞

0

t

et − 1

dt

t + z
.

(3.7)

On taking z = − log τ + iy, 0 < y ≤ 1, and letting τ → ∞ Cramér [7] proved
that

−2πRe
∑
γ>0

eρ(− log τ+iy) =
∞∑

n=2

Λ(n)

n

(
y(

log τ
n

)2
+ y2

)
− π + O

(
1

log τ

)
. (3.8)

He used (3.8) and related formulas in a series of papers starting in 1920 to
prove results on primes. One such result is that on RH

pn+1 − pn � pn

1
2 log pn. (3.9)

This only saves a logarithm over the trivial use of (3.4) in (3.5) but is the
best result known on RH. We will later assume a much stronger hypothesis
and only improve (3.9) by a half-power of a logarithm. On the other hand,
Cramér conjectured [7] that the gaps between consecutive primes are always
much smaller than this size. Recent work indicates that Cramér’s original
conjecture may be slightly too strong, but all evidence still suggests

pn+1 − pn � (log pn)2. (3.10)

At one time I had a fondness for Cramér’s formula and made use of it in my
thesis, but I later decided that nothing was to be gained by its use except
complicated arguments. The proof of (3.9), for instance, can now be done
from a smoothed version of (3.1) in just a few lines. However, there have been
a number of recent papers on the structure of Cramér’s formula (see [24]).

Most of these explicit formulas are based on evaluating the contour integral

I =
1

2πi

∫ c+i∞

c−i∞
−ζ ′

ζ
(s)Kz(s) ds, (3.11)

where the kernel Kz(s) is a meromorphic function. Frequently Kz(s) = K(s+
z) or Kz(s) = K(zs). If c > 1 the Dirichlet series for ζ ′

ζ
(s) converges absolutely

and

I =
∞∑

n=2

Λ(n)K̂z(n), K̂z(n) =
1

2πi

∫ c+i∞

c−i∞
Kz(s)n

−s ds. (3.12)
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One then obtains an explicit formula by moving the contour to the left, thus
encountering poles at s = 1 and at the zeros of ζ(s), as well as any poles of
Kz(s).

Another explicit formula frequently used is the Weil explicit formula, which
contains a general weight function and has the advantage of allowing the rela-
tionships between terms to be explicitly exhibited. Our approach here, how-
ever, is to use explicit formulas only as tools for studying zeros and primes.
Therefore we will take the opposite path and stay specific. The formula we
will base our work on is due to Montgomery [28].

Proposition 1. Assume the Riemann Hypothesis. For x ≥ 1,

2x
1
2 −it
∑

γ

xiγ

1 + (t− γ)2 = −
∞∑

n=1

Λ(n)an(x)

nit
+

2x1−it(
1
2 + it

) (
3
2 − it

)
+ x− 1

2 (log(|t| + 2) + O(1)) + O

(
x−2

|t| + 2

)
,

(3.13)

where

an(x) = min

((n

x

) 1
2
,
(x

n

) 3
2

)
. (3.14)

Proof. This proposition is proved by using an explicit formula from Landau’s
1909 Handbuch [27], which states that (unconditionally) for x > 1, x �= pm ,∑

n≤x

Λ(n)

ns
= −ζ ′

ζ
(s) +

x1−s

1 − s
−
∑

ρ

xρ−s

ρ− s
+

∞∑
n=1

x−2n−s

2n + s
(3.15)

provided s �= 1, s �= ρ, s �= −2n.3 Rewriting (3.15), we have∑
ρ

xρ

ρ− s
= −xs

(ζ ′

ζ
(s) +

∑
n≤x

Λ(n)

ns

)
+

x

1 − s
+

∞∑
n=1

x−2n

2n + s
. (3.16)

This equation holds independently of RH, but assuming RH we have ρ = 1
2 +iγ.

Letting s = 3
2 + it and using (2.2), the above equation simplifies to read

−x
1
2

∑
γ

xiγ

1 + i(t− γ)
= xit

∑
n>x

Λ(n)an(x)

nit
+

x

−1
2 − it

+
∞∑

n=1

x−2n

2n + 3
2 + it

.

On the other hand, if s = − 1
2 + it in (3.16) we have

x
1
2

∑
γ

xiγ

1 − i(t− γ)
= −xit

∑
n≤x

Λ(n)an(x)

nit
− x− 1

2 +it ζ
′

ζ

(
−1

2
+ it

)

+
x

3
2 − it

+
∞∑

n=1

x−2n

2n − 1
2 + it

.

3If s = 0 we get (3.1). Landau used (3.15) to prove Riemann’s original explicit formula
for π(x).
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Subtracting the latter from the former and using

ζ ′

ζ

(
−1

2
+ it

)
= − log(|t|+ 2) + O(1),

which follows easily from the functional equation, we obtain the proposition.
By continuity the values x = 1, pm no longer need to be excluded.

The role of RH in Proposition 1 is notational. Recently, a new notation
has emerged which is very convenient. We write the complex zeros of the zeta
function as ρ = 1

2 + iγ, γ ∈ C, so that γ is complex when that zero is off the
1
2 -line. Thus, the RH becomes the statement that γ is real. With this notation
we see that the proof is unchanged, and Proposition 1 holds unconditionally.
We will not make any further use of this notation since the size of the terms
in our sums over zeros become important and the RH is often needed.

4 Montgomery’s theorem

We first examine Montgomery’s explicit formula heuristically and see what
each term means. The weight in the sum over zeros concentrates the sum to
zeros in a short bounded interval around t, and therefore behaves similarly to∑

t<γ≤t+1

xiγ .

By (2.18), if this sum is substantially smaller than log t then we will have
detected cancelation from xiγ . If x = 1 or is close to 1 no cancelation can
occur, and this is reflected by the term x−1/2 log(|t| + 2) in (3.13). The sum
over primes is concentrated around x, and therefore behaves similarly to∑

1
2 x<n≤2x

Λ(n)

nit
.

The expected value of the original sum over primes is obtained by the PNT
and equals the remaining term

2x1−it(
1
2 + it

) (
3
2 − it

) .
How does one extract information from (3.13)? Montgomery was interested

in studying the distribution of the differences of pairs of zeros, and for this it
is clear one needs to square the absolute value of the sum over zeros. It would
be nice to be able to obtain this distribution in an interval of length one
around t, but the pointwise dependence on t in the Dirichlet sum over primes
is intractable. To circumvent this problem, we also integrate with respect to t
to obtain our distribution in a longer range. To this end we consider∫ T

0

∣∣∣∣∑
γ

xiγ

1 + (t− γ)2

∣∣∣∣2dt.
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Since the weight in the sum will be small when |t − γ| is large, which is the
case over most of the integration range unless 0 < γ ≤ T , we may restrict the
sum to this range with a small error. With the sum restricted to the zeros
0 < γ ≤ T , we may extend the integration range to (−∞,∞) with a small
error. Using (2.18), Montgomery showed∫ T

0

∣∣∣∣∑
γ

xiγ

1 + (t− γ)2

∣∣∣∣2dt =

∫ ∞

−∞

∣∣∣∣ ∑
0<γ≤T

xiγ

1 + (t− γ)2

∣∣∣∣2dt + O
(
(log T )3) .

Multiplying out the integral on the right-hand side, we find∫ ∞

−∞

∣∣∣∣ ∑
0<γ≤T

xiγ

1 + (t− γ)2

∣∣∣∣2dt =
π

2

∑
0<γ,γ ′≤T

xi(γ−γ ′)w(γ − γ′),

where the weight

w(u) =
4

4 + u2 (4.1)

is obtained on evaluating the integral either by residues, convolution, or oth-
erwise. We thus define for x > 0

F (x, T ) =
∑

0<γ,γ ′≤T

xi(γ−γ ′)w(γ − γ′) =
2

π

∫ ∞

−∞

∣∣∣∣ ∑
0<γ≤T

xiγ

1 + (t− γ)2

∣∣∣∣2dt. (4.2)

Then

F (x, T ) ≥ 0, F (x, T ) = F

(
1

x
, T

)
, (4.3)

and

F (x, T ) =
2

π

∫ T

0

∣∣∣∣∑
γ

xiγ

1 + (t− γ)2

∣∣∣∣2dt + O
(
(log T )3) . (4.4)

The next step is to use Proposition 1 to evaluate F (x, T ). Denoting (3.13) by

L(x, t) = R(x, t),

we have just shown that∫ T

0

∣∣L(x, t)
∣∣2 dt = 2πxF (x, T ) + O(x(log T )3). (4.5)

For R(x, T ), we compute the mean-square of each term. For the Dirichlet
series, we use a standard mean value theorem of Montgomery and Vaughan
[29], which states that∫ T

0

∣∣∣∣ ∞∑
n=1

an

nit

∣∣∣∣2 dt =
∞∑

n=1

|an|2
(
T + O(n)

)
. (4.6)
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Hence ∫ T

0

∣∣∣∣ ∞∑
n=1

Λ(n)an(x)

nit

∣∣∣∣2 dt =
∞∑

n=1

∣∣Λ(n)an(x)
∣∣2(T + O(n))

= xT (log x + O(1)) + O
(
x2 log x

)
,

by Stieltjes integration and the PNT (with remainder). The remaining terms
are elementary: ∫ T

0

∣∣∣∣ 2x1−it

( 1
2 + it)(3

2 − it)

∣∣∣∣2 dt � x2,∫ T

0

∣∣∣x− 1
2 (log(|t| + 2) + O(1))

∣∣∣2 dt =
T

x

(
(log T )2 + O(log T )

)
,

and ∫ T

0

∣∣∣∣ x−2

|t| + 2

∣∣∣∣2 dt � x−4.

We thus have two main terms, the Dirichlet series term for (log T )3/2 ≤ x ≤
o(T ) and the term log(|t| + 2) which dominates for 1 ≤ x ≤ (log T )3/4. In the
intermediate range all terms are o(xT log T ). By the Cauchy-Schwarz inequal-
ity, the largest term among these provides the main term in an asymptotic
formula. Therefore,∫ T

0
|R(x, t)|2 dt = xT (log x + o(log T )) + O(x2 log x) +

T

x
(log T )2(1 + o(1)),

and we conclude that

F (x, T ) =
T

2π
log x + o(T log T ) + O(x log x) +

T

2πx2 (log T )2(1 + o(1)). (4.7)

Following Montgomery, we set
x = T α (4.8)

and normalize by defining

F (α) = F (α, T ) =

(
T

2π
log T

)−1 ∑
0<γ,γ ′≤T

T iα(γ−γ ′)w(γ − γ′). (4.9)

Thus we have arrived at Montgomery’s theorem.

Theorem 1. Assume the Riemann Hypothesis. Then F (α) is real, even, and
non-negative. Further, uniformly for 0 ≤ α ≤ 1 − ε, we have

F (α) = α + o(1) + (1 + o(1))T−2α log T. (4.10)

The error term O(x log x) in (4.7) can be improved to O(x) by using a sieve
bound for prime twins [18], which shows the theorem holds for

0 ≤ α ≤ 1. (4.11)

A detailed analysis of the above proof has recently been done by Tsz Ho Chan,
with all second order terms obtained.



90 D.A. Goldston

5 Application to simple zeros and small gaps

between zeros

The function F (α) is useful for evaluating sums over differences of zeros. Let
r(u) ∈ L1, and define the Fourier transform by

r̂(α) =

∫ ∞

−∞
r(u)e(αu) du, e(u) = e2πiu. (5.1)

If r̂(α) ∈ L1, we have almost everywhere

r(u) =

∫ ∞

−∞
r̂(α)e(−uα) dα. (5.2)

On multiplying (4.9) by r̂(α) and integrating, we obtain∑
0<γ,γ ′≤T

r

(
(γ − γ′)

log T

2π

)
w(γ − γ′) =

T

2π
log T

∫ ∞

−∞
r̂(α)F (α) dα. (5.3)

Using Theorem 1, we can evaluate the right-hand side provided r̂(α) has sup-
port in [−1, 1]. Thus, we can evaluate sums over differences of zeros on the
class of functions whose Fourier transforms are supported in [−1, 1]. Using the
Fourier pair

k(u) =

(
sin πλu

πλu

)2

, k̂(α) =
1

λ
max

(
1 − |α|

λ
, 0

)
(λ > 0) (5.4)

we have for 0 < λ ≤ 1

∑
0<γ,γ ′≤T

(
sin(λ

2 (γ − γ ′) log T )
λ
2 (γ − γ′) log T

)2

w(γ − γ′)

=

(
1

λ

∫ λ

−λ

(
1 − |α|

λ

)
F (α) dα

)
T

2π
log T

∼
(

2

λ

∫ λ

0

(
1 − α

λ

)(
α + T−2α log T

)
dα

)
T

2π
log T

∼
(

1

λ
+

λ

3

)
T

2π
log T.

(5.5)

This result has an important application to simple zeros of ζ(s).

Theorem 2. Assume the Riemann Hypothesis. At least two thirds of the zeros
of the Riemann zeta-function are simple in the sense that as T →∞

Ns(T ) :=
∑

0<γ≤T
ρ simple

1 ≥
(

2

3
− o(1)

)
N(T ). (5.6)
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Proof. The sum in (5.5) over pairs of zeros counts distinct zeros weighted
by their multiplicity. Thus a double zero gets counted 4 times, a triple zero 9
times, etc. Denoting the multiplicity of ρ by mρ, we have∑

0<γ≤T

mρ =
∑

0<γ,γ ′≤T
γ=γ ′

1

≤
∑

0<γ,γ ′≤T

(
sin
(

λ
2 (γ − γ ′) log T )

λ
2 (γ − γ′) log T

)2

w(γ − γ′)

≤ (1 + o(1))

(
1

λ
+

λ

3

)
T

2π
log T.

Choosing λ = 1, we have∑
0<γ≤T

mρ ≤
(

4

3
+ ε

)
T

2π
log T. (5.7)

But ∑
0<γ≤T
ρ simple

1 ≥
∑

0<γ≤T

(2 −mρ),

and applying (2.17) completes the proof.
It is possible to make very small improvements in the value 2

3 in Theorem
2. It would be a major advance to be able to prove that almost all the zeros
are simple, even on RH. Conrey, Ghosh, and Gonek [6] have proved using a
different method that assuming RH and the Generalized Lindelöf Hypothesis,

Ns(T ) ≥
(

19

27
− ε

)
N(T ).

Montgomery also proved that there are gaps between zeros closer than the
average. He used the transform pair (5.4) with their roles reversed to obtain

lim inf
n→∞

(γn+1 − γn)
log γn

2π
≤ 0.669 . . . .

Consider the Fourier pair

h(u) =

(
sin πu

πu

)2 (
1

1 − u2

)
, (5.8)

ĥ(α) = max

(
1 − |u| + sin 2π|u|

2π
, 0

)
,

where h(u) is the Selberg minorant of the characteristic function of the interval
[−1, 1] in the class of functions with Fourier transforms with support in [−1, 1].
We prove
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Theorem 3. Assume the Riemann Hypothesis. We have

lim inf
n→∞

(γn+1 − γn)
log γn

2π
≤ 0.6072 . . . . (5.9)

Proof. Take r(u) = h
(

u
λ

)
. Then r(u) is a minorant of the characteristic

function of the interval [−λ, λ]. Thus

∑
0<γ≤T

mρ + 2
∑

0<γ−γ ′≤ 2π λ
log T

1 ≥
∑

0<γ,γ ′≤T

h

(
(γ − γ′)

log T

2πλ

)
w(γ − γ′)

=

(
T

2π
log T

)∫ 1
λ

− 1
λ

λĥ(λα)F (α) dα.

Assume λ < 1. Since the integrand is positive we obtain a lower bound by
decreasing the integration range to [−1, 1]. We can assume∑

0<γ≤T

mρ ∼
T

2π
log T,

since otherwise we would have infinitely many multiple zeros and the theorem
holds for this reason. Thus∑

0<γ−γ ′≤ 2π λ
log T

1 ≥
(

1

2
− ε

)
T

2π
log T

(
λ− 1 + 2λ

∫ 1

0
αh(λα) dα

)
.

By an easy numerical calculation, we find that the right-hand side is positive
for λ > 0.6072 . . ., which proves the result.

By a different method (on RH), Montgomery and Odlyzko [30] improved on
this result and obtained the upper bound 0.5179. Conrey, Ghosh, and Gonek
[5] later replaced this by 0.5172.

6 Montgomery’s Conjectures

What if α > 1? It is not difficult to see from the proof of Montgomery’s
theorem that for x ≥ T

F (x, T ) =
1

2πx

∫ T

0

∣∣∣ ∞∑
n=1

Λ(n)an(x)

nit
− 2x1−it(

1
2 + it

) (
3
2 − it

)∣∣∣2 dt+o(T log T ). (6.1)

We saw that the diagonal terms in the sum contribute T
2π

log x, while the
expected value term contributes cx. On the other hand, we have the trivial
bound

F (x, T ) ≤ F (0, T ) ∼ T

2π
log2 T, (6.2)
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where the last relation follows from Theorem 1 (or unconditionally from (2.14)).
Thus F (x, T ) never gets as large as x for x � T (log T )2, and therefore the
off-diagonal terms in the sum over primes must almost perfectly cancel the
expected value term.

Montgomery proceeded by multiplying out the integrand in (6.1) and in-
tegrating term by term. For the off-diagonal terms, one needs to assume the
Hardy-Littlewood k-tuple conjecture [20] for 2-tuples (or prime pairs) with a
strong error term. This conjecture states that for 0 < k ≤ N∑

n≤N

Λ(n)Λ(n + k) = S(k)N + O
(
N

1
2 +ε
)

, (6.3)

where

S(k) =

⎧⎪⎪⎨⎪⎪⎩
2C2

∏
p|k
p>2

(
p− 1

p− 2

)
, if k is even, n �= 0;

0, if k is odd;

(6.4)

and

C2 =
∏
p>2

(
1 − 1

(p − 1)2

)
. (6.5)

Montgomery stated that this conjecture “would allow us to carry out our
program” for x ≤ T ≤ x2−ε and obtain

F (x, T ) ∼ T

2π
log T.

Further, there is no reason to expect any change in behavior for bounded
α ≥ 2. On this basis Montgomery made the following conjecture.

Strong Pair Correlation Conjecture (SPC). For any fixed bounded M 4,

F (α) = 1 + o(1), for 1 ≤ α ≤ M. (6.6)

A question left unanswered by (6.6) is the rate at which the function M =
M(T ) tends to infinity.

With regard to Montgomery’s heuristics for making SPC, the argument
that (6.3) implies SPC in the range 1 ≤ α ≤ 2 − ε was carried out by Bolanz
in a 1987 Diplomarbeit (in 131 pages).5 At the cost of slightly weaker but
acceptable error terms, one can greatly simplify Bolanz’s proof by smoothing
(6.1) (see [16]). In section 9, we will see that one can go further by never
multiplying out the integrand in (6.1).

4Editors’ comment: The form factor, F (α), is also discussed in Section 8 of the lectures
of S.M. Gonek, page 201.

5This thesis only proves the result in the range x ≤ T ≤ x
3
2 −ε , but Bolanz extended the

result to the wider range (written communication).
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With SPC and Theorem 1 we can now evaluate almost any sum over dif-
ferences of zeros. In particular, Montgomery was lead to make the following
now famous conjecture.6

Pair Correlation Conjecture (PCC). For any fixed β > 0,

N(T, β) :=

(
T

2π
log T

)−1 ∑
0<γ,γ ′≤T

0<γ ′−γ≤ 2π β
log T

1 ∼
∫ β

0
1 −
(

sin πu

πu

)2

du. (6.7)

The density here for the number of pairs of zeros within β of the average
spacing between zeros is where the connection with random matrix theory
first occurred. 7

One can now replace Theorems 2 and 3 with completely satisfactory results.
From the PCC we immediately see that the following conjecture is true.

Small Gaps Conjecture (SGC). We have

lim inf
n→∞

(γn+1 − γn)
log γn

2π
= 0. (6.8)

We also have

Simple Zeros Conjecture (SZC). We have

N ∗(T ) :=

(
T

2π
log T

)−1 ∑
0<γ≤T

mρ ∼ 1. (6.9)

Technically this is a conjecture on the average multiplicity which implies almost
all the zeros are simple, but there is no need to make this distinction here.
Another related conjecture that follows immediately from the PCC is that

N(T, β) = o(1), as β → 0+; (6.10)

this conjecture and SZC together are sometimes refereed to as the Essential
Simplicity Conjecture (ESC). Of course, the PCC itself implies a stronger
repulsion between zeros: as β → 0+,

N(T, β) � β3. (6.11)

We now prove the following result.

Theorem 4. Assume the Riemann Hypothesis. SPC implies PCC and SZC.

6The SPC conjecture doesn’t explicitly say anything about pair correlation, and was often
not distinguished from the PCC. It is also sometimes called Montgomery’s F (α) conjecture.

7Editors’ comment: Note that the integrand in (6.7) is the two-point correlation function
from random matrix theory as described by Y.V. Fyodorov (page 31) in equations (3.1),
(4.18) and (6.4). See also the discussion of pair correlation of random matrix eigenvalues in
the lectures by J.B. Conrey, page 111, Section 8.1.
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First, we need a simple consequence of Theorem 1 to handle the range
when α ≥ M .

Lemma 1. Assume the Riemann Hypothesis. We have uniformly for any B,
possibly depending on T , ∫ B+1

B

F (α) dα ≤ 3. (6.12)

Proof. With B = C − 1
2 , we have∫ C+ 1

2

C− 1
2

F (α) dα ≤ 2

∫ C+1

C−1

(
1 − |α − C|

)
F (α) dα

=
2

T
2π

log T

∑
0<γ,γ ′≤T

T iC(γ−γ ′)

(
sin
(

1
2 (γ − γ ′) log T

)
1
2 (γ − γ′) log T

)2

w(γ − γ′)

≤ 2
T
2π

log T

∑
0<γ,γ ′≤T

(
sin
(

1
2 (γ − γ ′) log T

)
1
2 (γ − γ′) log T

)2

w(γ − γ′)

≤ 8

3
+ ε,

by (5.5).
Proof of Theorem 4. For SZC, we repeat the calculation in (5.5) but now

assume λ ≥ 1 and use SPC for that range to find

∑
0<γ,γ ′≤T

(
sin
(

λ
2 (γ − γ ′) log T

)
λ
2 (γ − γ′) log T

)2

w(γ − γ′) ∼
(

1 +
1

3λ2

)
T

2π
log T. (6.13)

The result now follows on letting λ →∞.
To prove the PCC, we use the Fejer kernel from (5.4) and apply (5.3) to

get∫ ∞

−∞
F (α)

(
sin(πβα)

πβα

)2

dα

=

(
T

2π
log T

)−1 ∑
0<γ,γ ′≤T

|γ ′−γ|≤ 2π β
log T

1

β

(
1 −
∣∣∣∣(γ − γ′) log T

2πβ

∣∣∣∣)w(γ − γ′)

=
1

β
N∗(T ) +

2

β2

∫ β

0
N(T, u) du + O

(
β(1 + β)

(log T )2

)
,

(6.14)

where the error term comes from removing the factor w(γ − γ′). By SZC,
N∗(T ) ∼ 1. We now evaluate the left-hand side using Theorem 1 in the range
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|α| ≤ 1, SPC in 1 < |α| ≤ M , and Lemma 1 in |α| > M . On letting M →∞,
we have ∫ β

0
N(T, u) du ∼ β2

2
+

∫ β

0
(u − β)

(
sin πu

πu

)2

du. (6.15)

Since
1

h

∫ β

β−h

N(T, u) du ≤ N(T, β) ≤ 1

h

∫ β+h

β

N(T, u) du,

we obtain the PCC on differencing (6.15).

7 Gallagher and Mueller’s Work on Pair Cor-

relation

A few years after Montgomery’s work, Gallagher and Mueller [12] proved a
number of interesting results on pair correlation. Their starting point is the
counting function N(T, β) in (6.7), but rather than assuming it satisfies the
PCC they assumed

N(T, β) ∼
∫ β

0
1 − µ(α) dα, (7.1)

uniformly for 0 ≤ β0 ≤ β ≤ β1 < ∞, as T → ∞, where µ is a real, even,
continuous, L1 function. Thus they assumed an asymptotic density function
for pair correlation, where µ(α) measures the deviation from a uniform dis-
tribution corresponding to a totally random distribution of zeros. They then
proved the following result.

Theorem 5. With N∗(T ) given in (6.9), we have∫ ∞

−∞
µ(α) dα ∼ N∗(T ). (7.2)

In particular, PCC implies SZC.

From this we see that ∫ ∞

−∞
µ(α) dα ≥ 1,

which shows that if the zeros of the zeta-function have an asymptotic pair
correlation density, then the zeros must repulse each other somewhat. Further
evidence of this was later obtained by Gallagher [11].

That the PCC implies SZC follows from∫ ∞

−∞

(
sin πα

πα

)2

dα = 1.

The notable feature here is that this result holds unconditionally. One can
obtain this result on RH by first using Theorem 1 to prove (5.5), and then
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evaluating the off-diagonal terms in the sum over zeros by partial summation
with N(T, β) to determine the diagonal terms N ∗(T ). Gallagher and Mueller
replaced Theorem 1 by a result of Fujii [9] (also obtained by Selberg) on the
function S(T ) from (2.16) . Let

R(T, h) =

∫ T

0
(S(t + h) − S(t))2 dt. (7.3)

Fujii proved that

R(T, h) � T log(2 + h log T ) if
1

log T
� h � 1, (7.4)

and

R(T, h) ∼ T

π2 log(h log T ) if h log T →∞, h � 1. (7.5)

Proof of Theorem 5. We have∫ T

0
(N(t + h)−N(t))2dt =

∫ T

0

( ∑
t<γ≤t+h

1
)2

dt

∼
(

hN∗(T ) +
4π

log T

∫ h log T
2π

0
N(T, u) du

)(
T

2π
log T

)
.

(This is (6.14) from a different perspective.) By (2.14), the left-hand side is
also

∼ T

(
h

log T

2π

)2

+ R(T, h).

On substituting N(T, u) from (7.1) and letting h log T → ∞ and h → 0 so
that (7.5) applies, the theorem follows.

Gallagher and Mueller proved that for h = 2πβ
log T

R(T, h) ∼ T

∫ ∞

−∞
min(|α|, β)µ(α) dα, (7.6)

a result essentially equivalent to PCC.
Gallagher and Mueller also studied some consequences of (7.1) for primes.

In particular they proved that the error in the PNT can be improved on as-
suming (7.1) and RH to

ψ(x) = x + o
(
x

1
2 (log x)2

)
, (7.7)

and obtained an asymptotic formula for a weighted second moment for primes
in short intervals first studied by Selberg [34]. Their proof is quite complicated,
since the approach in using (7.1) requires partial summation to evaluate sums
over differences of zeros, introducing many complications to handle the “edges”
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of the summation. An interesting consequence is a form of Theorem 1 obtained
for µ(α). Assuming RH and also SZC, Gallagher and Mueller proved

µ̂(α) = 1 − |α|, |α| ≤ 1. (7.8)

The PCC density agrees with this, and has µ̂(α) = 0 elsewhere.
Related to this, there is an alternative form of the PCC which has been

found useful when generalizing to higher correlations. Starting from (5.3), and
supposing r̂(α) has support in [−1, 1], we have by Theorem 1 on RH that∫ ∞

−∞
r̂(α)F (α) dα = r(0) +

∫ ∞

−∞
r̂(α) (F (α) − 1) dα

∼ r(0) + r̂(0) −
∫ 1

−1
(1 − |α|)r̂(α) dα

= r(0) +

∫ ∞

−∞
r(α)

(
1 −
(sin πα

πα

)2
)

dα,

(7.9)

by Plancherel’s formula. The second line is still true if F (α) ∼ 1 for |α| ≥ 1
even if r̂(α) does not have support in [−1, 1]. It is no accident that the PCC
density occurs in the integrand. The conclusion is that assuming RH, Theorem
1 implies that∑
0<γ,γ ′≤T

r
(
(γ − γ′)

log T

2π

)
w(γ − γ′) ∼ r(0) +

∫ ∞

−∞
r(α)

(
1 −
(sin πα

πα

)2
)

dα,

(7.10)
for all r with r̂ having support in [−1, 1]. Moreover, PCC is equivalent to the
conjecture that (7.10) holds for all test functions r in some dense subset of L1.
Here, the factor w(γ − γ′) may be removed, if desired.

8 Heath-Brown’s Results on Primes

In [21] Heath-Brown proved a number of results on primes using Montgomery’s
F (α) function. By (6.2), the trivial bound for F (α) is

F (α) ≤ (1 + o(1)) log T. (8.1)

Heath-Brown showed that any improvement in the order of magnitude of this
bound would have important implications for primes. First, he proved that
the improvement in the error in the PNT (7.7) also holds if one assumes RH
and F (α) = o(log T ) uniformly for 1 ≤ α ≤ M , for any bounded M . It should
be pointed out that further improvements in the error depend not only on the
size of F (α) but also on the growth of M(T ).

Heath-Brown next proved a number of results on gaps between primes,
which take their strongest form if we assume

F (α) � 1, (8.2)



Notes on pair correlation of zeros and prime numbers 99

for various ranges of α. With regard to Cramér’s bound (3.9), assuming RH
and that (8.2) holds for α in any small interval around α = 2, he proved that

pn+1 − pn �
√

pn log pn. (8.3)

Assuming F (α) ∼ 1 in this range one can improve (8.3) on RH to little oh
[22]8. (This also follows from a result in the next section.) Next, assuming
(8.2) for 1 ≤ α ≤ 2 + ε and RH,∑

pn ≤x
pn +1−pn ≥H

(pn+1 − pn) � x log x

H
. (8.4)

This becomes non-trivial as soon as H
log x

→ ∞. On integrating with respect
to H, we obtain ∑

pn ≤x

(pn+1 − pn)2 � x(log x)2. (8.5)

Previously Selberg [34], improving on earlier work of Cramér [7], obtained these
results on RH alone with an extra log x in each bound. Finally, Heath-Brown
proved, assuming RH and that F (α) ∼ 1 in any small interval around α = 1,

lim inf
n→∞

(
pn+1 − pn

log pn

)
= 0, (8.6)

so that there exist primes much closer together than the average spacing be-
tween primes. This result can be made to depend on the size of the error term
in the asymptotic formula for F (α) for α in a neighborhood of 1. If the error
term is a logarithm smaller than the main term, then one actually gets that
there are infinitely often primes a bounded distance apart.

In the next section, we shall prove these results by following a method
that is structurally different but fundamentally the same as Heath-Brown’s
arguments. A very useful idea of Heath-Brown is the following bound for the
sum over zeros (3.6).

Theorem 6. For T ≥ 2,∣∣∣∣ ∑
0≤γ≤T

xiγ

∣∣∣∣�√T max
t≤T

F (x, t). (8.7)

Note that this becomes non-trivial as soon as our bound for F is non-trivial.
Proof. We have

F (x, T ) =

∫ ∞

−∞

∣∣∣∣ ∑
0<γ≤T

xiγeiγu

∣∣∣∣2e−2|u| du. (8.8)

8The unusual order of the listed authors was due to a typo in the manuscript.
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This is related to (4.2) by Plancherel’s theorem but may be verified directly.
By Gallagher’s inequality [8],

|f(0)| �
∫ 1

−1
|f(u)| du +

∫ 1

−1
|f ′(u)| du

for f ∈ C1. Then with

f(u) =

∣∣∣∣ ∑
0<γ≤T

xiγeiγu

∣∣∣∣2,
we obtain∣∣∣∣ ∑

0≤γ≤T

xiγ

∣∣∣∣2 � ∫ 1

−1

∣∣∣∣ ∑
0<γ≤T

xiγeiγu

∣∣∣∣2 du

+

∫ 1

−1

∣∣∣∣ ∑
0<γ≤T

xiγeiγu

∣∣∣∣∣∣∣∣ ∂

∂u

∑
0<γ≤T

xiγeiγu

∣∣∣∣ du.

In the first integral on the right we insert the weight e−2|u| and extend the limits
of integration to (−∞,∞) to see that, by (8.8), this is bounded by F (x, T ).
To complete the proof, the second integral is handled similarly following an
application of the Cauchy-Schwarz inequality and partial summation.

9 Equivalence between SPC and Primes

In [18] Montgomery and I proved the following equivalence between the SPC
and the second moment for primes in short intervals.

Theorem 7. Assume the Riemann Hypothesis. If 0 < B1 ≤ B2 ≤ 1, then

I(x, δ) :=

∫ X

1
(ψ ((1 + δ)x) − ψ(x) − δx)2 dx ∼ 1

2
δX2 log

1

δ
(9.1)

holds uniformly for X−B2 ≤ δ ≤ X−B1 provided

F (x, T ) ∼ T

2π
log T (9.2)

holds for
XB1 (log x)−3 ≤ T ≤ XB2 (log x)3.

Conversely, if 1 ≤ A1 ≤ A2 < ∞, then (9.2) holds uniformly for TA1 ≤ X ≤
TA2 provided that (9.1) holds uniformly for

X
− 1

A 1 (log x)−3 ≤ δ ≤ X
− 1

A 2 (log x)3.
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In particular, one can prove on RH that SPC is equivalent to∫ X

1
(ψ(x + h) − ψ(x) − h)2 dx ∼ hX log

X

h
(9.3)

for 1 ≤ h ≤ X1−ε,9 where an argument of Saffari and Vaughan [33] is used
to move from primes in the interval (x, x + δx] to the fixed interval (x, x +
h]. Results (8.3) – (8.6) are consequences of Theorem 7. Further, it is a
straightforward exercise to show that the twin prime conjecture in the form
(6.3) implies (9.1) and (9.3) in the ranges X−1 ≤ δ ≤ X− 1

2 −ε and 1 ≤ h ≤ X
1
2 −ε

respectively, and consequently we again obtain that (6.3) implies SPC in the
range 1 ≤ α ≤ 2 − ε. Of course, the second moment for primes in short
intervals (9.1) or (9.3) is a considerably weaker hypothesis and gives the full
range for SPC.

Proof of Theorem 7. We follow initially the analysis in [15]. Let us consider
again Montgomery’s explicit formula (3.13) but now aim towards obtaining a
sum over primes in a short interval. This is usually done by differencing values
of x but Montgomery showed me the following elegant approach. Let κ, δ, and
T be related by

eκ = 1 + δ = 1 +
1

T
(9.4)

so that δ = 1
T
, and define

Gκ(t) =

(
sin κ

2 t
κ
2 t

)( ∞∑
n=1

Λ(n)an(x)

nit
− 2x1−it(

1
2 + it

) (
3
2 − it

)) . (9.5)

The Fourier transform of Gκ(t) is

Ĝκ(y) =
2π

κ

∑
|y+ log n

2π |< δ
4π

Λ(n)an(x) − 2πx

δ

∫ xeκ/2

xe−κ/2
av

(
e−2πy

) dv

v

which has the desired (but weighted) sum over primes in a short interval. By
Parseval’s identity, we have∫ ∞

−∞

∣∣∣Gκ(t)
∣∣∣2 dt =

∫ ∞

−∞

∣∣∣Ĝκ(y)
∣∣∣2 dy. (9.6)

Using (3.13) to express Gκ(t) in terms of a sum over zeros with the remaining
terms estimated as error terms and simplifying we find, assuming RH,∫ ∞

0

( ∑
y<n≤y+ y

T

Λ(n)an(x) − x

∫ x

xe−κ

av(y)
dv

v

)2
dy

y

=
4xκ2

π

∫ ∞

0

(
sin κ

2 t
κ
2 t

)2 ∣∣∣∣∑
γ

xiγ

1 + (t− γ)2

∣∣∣∣2 dt + O

(
(log T )2

T

)
.

(9.7)

9If (9.3) holds for this range of h it implies RH.
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We abbreviate this equation as

L(x, T ) = R(x, T ). (9.8)

To prove Heath-Brown’s results (8.3) and (8.4) from the last section, it is
easy to see that, taking T = 3x

H
,

L(x, T ) � x

T 2

∑
x
2 <pn ≤x

pn +1−pn ≥H

(pn+1 − pn)

and, assuming (8.2),

R(x, T ) � x

T
log T.

Equation (8.4) follows from this, and (8.3) follows by taking only the last term
in (8.4).

For the proof of Theorem 7 we would like to remove the weight an(x)
in L(x, T ) and thus obtain an expression involving I(X, δ). In view of (4.4),
since κ ∼ 1

T
, R(x, T ) can be related to F (x, T ) through Abelian and Tauberian

theorems. If one assumes an asymptotic formula for I(X, δ) one then obtains
an asymptotic formula for L(x, δ) which gives an asymptotic formula for R(x, δ)
and then a Tauberian theorem gives an asymptotic formula for F (x, T ). The
converse direction works similarly using an Abelian theorem. All the details
may be found in [18] except how L(x, T ) is related to I(X, δ), since the proof
there proceeds from (2.14) rather than Proposition 1. It took me a long time to
figure out how to remove the weight an(y) even though it is actually obvious.
If y

T
is small, then for y < n ≤ y + y

T
it is reasonable to replace n by y and

thus replace an(x) with ay(x) in (9.7) with a small error. Thus the weight is
removed, and one finds that

L(x, T ) = 4x3
∫ ∞

x

I(y, δ)
dy

y5 + O

(
x2(log T )2

T 3

)
. (9.9)

Since the integrand is non-negative, if we have an asymptotic formula for
L(x, T ) then a simple differencing argument will give an asymptotic formula
for I(x, δ). The converse is immediate. Here the error term is smaller than the
main term when T ≤ x ≤ T 2−ε. To obtain the full range, rather than replacing
an(x) by ay(x), we use Stieltjes integration and the PNT with the RH error
(3.4) to evaluate the sum over primes, and together with the Cauchy Schwarz
inequality we find that the error term in (9.9) can be replaced by

O

(
x(log x)4

T
3
2

)
.

This suffices for the full range.
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10 Selberg’s theory of S(T )

For more than 50 years, Selberg has been working on the distribution of values
of log ζ(s) and related functions. In the early 1940’s and he made major
contributions on S(T ) [35, 36]. Further results for Dirichlet L-functions were
obtained in [37]. Selberg has continued to work on these problems, and while
he has lectured on his results, his next published paper on this subject [38]
only appeared in 1992. In this already famous paper Selberg introduced the
properties of a general class of Dirichlet series, now referred to as the “Selberg
class”. Selberg showed that his theory, originally devised for the Riemann
zeta-function, carries over to the Selberg class with remarkably few changes.
To learn more about this subject, I recommend first reading Selberg’s 1992
paper. Second, Kai-man Tsang (Selberg’s only Ph.D. student) wrote a thesis
[40] in 1984 which contains full details of the proofs for some of Selberg’s more
recent work on log ζ(s). Also, the two papers of A. Ghosh [13, 14] refine some
of Selberg’s work from the 1940’s.

As examples, we state two of Selberg’s results proved in Tsang’s thesis.
Selberg has developed methods for evaluating∫ T

0
F (log ζ(σ + it)) dt,

for functions F (z) such as sgn(Re(z)), sgn(Im(z)), |Re(z)|, and |Im(z)|. Let
χα,β(u) be 1 if α ≤ u ≤ β and zero otherwise. Then for α < β∫ T

0
χα,β

(√
π

log log T
S(t)

)
dt = T

∫ β

α

e−πu2
du + O

(
T log log log T√

log log T

)
.

(10.1)
We have similar results for the real and imaginary parts of log ζ(σ + it).

For the second result, let Z(T ) denote the number of sign changes of S(t)

in [0, T ]. Selberg proved Z(T ) � T (log T )
1
3 −ε on RH in [35], and uncondition-

ally (and with an improvement on the ε) in [36]. Ghosh [13] improved this
to Z(T ) � T (log T )1−ε.10 Tsang’s thesis contains the following remarkable
improvements on these results. For some c > 0,

Z(T ) � T log Te−c(log log log T )2
(10.2)

and

Z(T ) � T log T
log log log T√

log log T
. (10.3)

If the analysis of an error term could be improved then one would obtain

Z(T ) ∼ T
log T√

π log log T
. (10.4)

10Also obtained earlier but unpublished by Selberg
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I will now describe some key ideas that went into Selberg’s work on S(t).
The very remarkable result that Selberg proved in 1946 is that all the even
moments of S(t) can be computed unconditionally [36]. He proved this on
intervals (T, T + H], where T a ≤ H ≤ T and a > 1

2 , but for simplicity we will
consider the interval [0, T ].

Theorem 8. For k ≥ 1, we have∫ T

0

∣∣∣∣S(t) +
1

π

∑
p≤T

1
k

sin(t log p)√
p

∣∣∣∣2k

dt � k T (10.5)

and ∫ T

0
|S(t)|2k dt =

(2k)!

k!(2π)2k
T (log log T )k + Ok

(
T (log log T )k− 1

2

)
. (10.6)

This last relation is the 2kth moment of a Gaussian. Earlier Selberg [35]
proved (10.5) assuming the RH, and also (10.6) on RH but with an error term
Ok(T (log log T )k−1). These results were a great advance over previous work,
which had failed to even obtain an asymptotic formula for the second moment.
From (10.5) we see that S(t) can be approximated well in L2k norm by the
imaginary part of a short Dirichlet series. This series is short enough so that
its L2k norm is determined by diagonal terms, and has the Gaussian property
in (10.6). Thus S(t) has this property too.

The proof of (10.5) and (10.6) is based on an approximate formula for S(t),
which has its origin in Selberg’s earlier paper [34] on primes in short intervals.
There, he proved on RH that for σ = 1

2 + β
log T

and β � 1,∫ T

0

∣∣∣∣ζ ′

ζ
(σ + it)

∣∣∣∣2 dt � β T (log T )2. (10.7)

Selberg’s work was ahead of its time, since we now know that replacing the
bound in (10.7) by an asymptotic formula is equivalent to the PCC [17].

Selberg first found an approximate formula for ζ ′
ζ
(s). This is not straight-

forward. For σ > 1, we have the Dirichlet series representation (2.2) for ζ ′
ζ
(s).

As we bring s into the critical strip the Dirichlet series fails to converge. It is
a familiar fact that an appropriate partial sum of a Dirichlet series will still
provide a good approximation for the analytic continuation of the series. How-
ever, on or near the critical line we expect the poles from the zeros ζ(s) to
dominate, as reflected in the partial-fraction formula, for s �= ρ, t ≥ 2,

ζ ′

ζ
(s) =

∑
ρ

(
1

s− ρ
+

1

ρ

)
+ O(log t). (10.8)

Since

S(t) =
1

π
arg ζ

(
1

2
+ it

)
= − 1

π

∫ ∞

1
2

Im

(
ζ ′

ζ
(σ + it)

)
dt, (10.9)



Notes on pair correlation of zeros and prime numbers 105

it is (maybe) plausible that the Dirichlet series part of S(t) will usually domi-
nate. A candidate for an approximate formula is (3.15) which we can rewrite
as, for x > 1, s �= 1, s �= ρ, s �= −2k,

ζ ′

ζ
(s) = −

∑
n≤x

Λ(n)

ns
+

x1−s

1 − s
−
∑

ρ

xρ−s

ρ− s
+

∞∑
n=1

x−2n−s

2n + s
. (10.10)

In hindsight (10.10) looks even better, because

− 1

π

∫ ∞

1
2

Im

(∑
n≤x

Λ(n)

nσ+it

)
dσ = − 1

π

∑
n≤x

Λ(n) sin(t log n)√
n log n

which gives exactly the approximation in (10.5) from the terms where n is
prime. (The prime powers will contribute an error term.) The problem here is
that the sum over zeros does not converge absolutely, and consequently (10.10)
has never been used successfully for this problem. Earlier work had smoothed
this formula (or rather over-smoothed it), so that the correct approximation
was lost. Selberg had the innovative idea that one only needs to smooth slightly
in order to obtain absolute convergence in the sum over zeros.

Let

Λx(n) =

{
Λ(n), for 1 ≤ n ≤ x,

Λ(n)
log x2

n

log n
, for x ≤ n ≤ x2.

(10.11)

Then, for x > 1, s �= 1, s �= ρ, s �= −2k,

ζ ′

ζ
(s) = −

∑
n≤x2

Λx(n)

ns
+

x2(1−s) − x1−s

(1 − s)2 log x
+

1

log x

∑
ρ

xρ−s − x2(ρ−s)

(ρ− s)2

+
1

log x

∞∑
n=1

x−2n−s − x−2(2n+s)

(2n + s)2 .

(10.12)

This formula is much easier to prove than (10.10). Selberg next argues as
follows. Assume RH, and suppose 4 ≤ x ≤ t2. Let

σ1 =
1

2
+

1

log x
, (10.13)

which is at the transition from the region where the Dirichlet series dominates
to the region where the zeros dominate. From (10.12), we see that for σ ≥ σ1

and some complex number ω with |ω| ≤ 1

ζ ′

ζ
(σ + it) = −

∑
n≤x2

Λx(n)

nσ+it
+ O

(
x

1
2 −σ
)

(10.14)

+2ωx
1
2 −σ
∑

γ

σ1 − 1
2(

σ1 − 1
2

)2
+ (t− γ)2

.
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We also have, on taking the real part of (10.8),

Re
ζ ′

ζ
(σ + it) =

∑
γ

σ − 1
2(

σ − 1
2

)2
+ (t− γ)2

+ O(log t),

Thus, taking the real part of (10.14) with σ = σ1 gives for some −1 ≤ ω′ ≤ 1,∑
γ

σ1 − 1
2(

σ1 − 1
2

)2
+ (t− γ)2

+ O(log t) = −Re
∑
n≤x2

Λx(n)

nσ1 +it

+ O(1) +
2ω′

e

∑
γ

σ1 − 1
2(

σ1 − 1
2

)2
+ (t − γ)2

.

Since 1 − 2ω′
e

> 1 − 2
e

> 1
4 , we conclude that

∑
γ

σ1 − 1
2(

σ1 − 1
2

)2
+ (t− γ)2

= O

⎛⎝∣∣∣∣ ∑
n≤x2

Λx(n)

nσ1 +it

∣∣∣∣
⎞⎠+ O(log t).

Substituting this back into (10.14), we obtain

ζ ′

ζ
(σ+it) = −

∑
n≤x2

Λx(n)

nσ+it
+O

⎛⎝x
1
2 −σ

∣∣∣∣ ∑
n≤x2

Λx(n)

nσ1+it

∣∣∣∣
⎞⎠+O

(
x

1
2 −σ log t

)
. (10.15)

Selberg next substitutes (10.15) into (10.9) for the integration range σ1 ≤
σ < ∞. For 1

2 < σ ≤ σ1, he uses (10.8) and (10.15) to show this range only
contributes to the error terms. The conclusion is the following theorem, which
is the primary tool for obtaining Theorem 8 assuming the RH.

Theorem 9. Assume the Riemann Hypothesis. For t ≥ 2, 4 ≤ x ≤ t2, and σ1

given in (10.13), we have

S(t) = −
∑
n<x2

Λx(n)

nσ1

sin(t log n)

log n
+ O

⎛⎝ 1

log x

∣∣∣∣ ∑
n≤x2

Λx(n)

nσ1 +it

∣∣∣∣
⎞⎠+ O

(
log t

log x

)
.

(10.16)

How do you remove the RH from the above analysis? I think it takes great
insight to even suspect that this can be done. Selberg makes a much more
subtle choice for σ1. He defines

σx,t =
1

2
+ 2 max

ρ∈A

(
β − 1

2
,

2

log x

)
, (10.17)

where

A =

{
ρ : |t− γ| ≤ x3|β− 1

2 |
log x

}
. (10.18)
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Thus, we move towards or away from the critical line depending on how far off
the line nearby zeros lie. There is also an issue of convergence, and the explicit
formula (10.12) needs to be replaced by a similar formula where the sum over
zeros has a factor of (s− ρ)3 in the denominator. Ultimately the contribution
from zeros off the 1

2 -line is bounded by a density estimate proved in [36].
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5 Andréief’s identity 123
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1 Some notation

Before we get started we record some notation that will be used in these notes.
This section is merely to serve as a convenient reference; the notions are defined
at the appropriate places in the notes.

• The sine ratios are:

S(x) =
sin πx

πx

SN (x) =
sin Nx/2

sin x/2
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S∗
N (x) =

1

2π
SN (x)

Note: We are using the Katz and Sarnak [KaSa] definition (5.4.2) of SN ;
Mehta’s SN (see 11.1.6 of [Meh]) is our S∗

N . It is useful to have both
functions available.

• G(N) stands for one of the groups U(N), USp(2N), SO(2N), SO(2N+1)
and G by itself stands for one of the symmetry types U (unitary), Sp
(symplectic), O (orthogonal) even, O (orthogonal) odd

• The kernel functions are

KU (N )(x, y) = S∗
N (y − x)

KSO(2N )(x, y) = S∗
2N−1(y − x) + S∗

2N−1(y + x)

KUSp(2N )(x, y) = S∗
2N+1(y − x) − S∗

2N+1(y + x)

KSO(2N+1)(x, y) = S∗
2N (y − x) − S∗

2N (y + x).

• The scaled limit of these kernel functions are

KU (x, y) = S(y − x)

KSp(x, y) = S(y − x) − S(y + x)

KO,even(x, y) = S(y − x) + S(y + x)

KO,odd(x, y) = S(y − x) − S(y + x).

This means that limN→∞ 2π
N

KU (N )
(

2π
N

x, 2π
N

y
)

= KU (x, y) and also that
limN→∞ π

N
KG(N )

(
π
N

x, π
N

y
)

= KG(x, y) when G is one of the other groups.

• For an interval J , the integral operator KJ,G(N ) is defined by

(KJ,G(N )f)(x) =

∫
J

KG(N )(x, y)f(y) dy

for functions f integrable on J , and similarly the operator KJ,G is defined
by

(KJ,Gf)(x) =

∫
J

KG(x, y)f(y) dy

These operators have eigenvalues denoted by λj,G(N )(J) (j = 1, 2, . . . , N)
and λj,G(J), (j = 1, 2, 3, . . . ) respectively.
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• The Chebyshev polynomials are Tn(x), Un(x), and Vn(x) where

Tn(cos θ) = cos nθ

Un(cos θ) =
sin(n + 1)θ

sin θ
.

Vn(cos θ) = U2n

(
cos

θ

2

)
=

sin(n + 1
2 )θ

sin 1
2θ

.

• We let µG(N ),j(s) be the density function for the jth nearest neighbor
spacing for eigenangles of G(N) and µG,j(s) is the large–N–scaled–limit
of this density function. Similarly, νG(N ),j(s) is the density of the jth
lowest eigenangle for G(N) and νG,j(s) is its scaled limit.

• We let EG(N )(J, n) be the measure of the set of matrices X ∈ G(N)
which have precisely n eigenangles in the set J .

2 Introduction

In 1972 the fortuitous introduction of Montgomery and Dyson served also as
an introduction of the worlds of analytic number theory and random matrix
theory. The symbiosis between these two subjects developed slowly for the
next 25 years with the principal developments being the numerical work of
Odlyzko (see [O1] and [O2]) and the calculations of the third and higher cor-
relations of the Riemann zeta-function (and other L-functions) by Hejhal [H],
and Rudnick-Sarnak [RS].

Around 1998, there were two very important developments that have stim-
ulated a great deal of subsequent work. One was the theory of symmetry types
associated to families of L-functions by Katz and Sarnak [KaSa]. The other
was the relationship between moments of characteristic polynomials and mo-
ments of the Riemann zeta-function and of families of L-functions found by
Keating and Snaith [KS].

While we still do not understand why there is such a strong connnection
between random matrix theory and families of L-functions, we do realize that
random matrix theory provides models for a wide range of statistical behavior
of these families. Consequently, we can now confidently predict the answer to
any number of difficult questions about L-functions which 10 years ago seemed
hopelessly impossible.

The purpose of these notes is to provide an introduction to the random
matrix aspects of the book [KaSa] by Katz and Sarnak on symmetry types
associated with families of L-functions. In particular, we will develop here some
of the basic tools needed to understand the beginnings of computing statistics
of eigenvalues of unitary, orthogonal, and symplectic groups of matrices. The
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four statistics we are interested in computing are n-correlation, n–level density,
jth nearest neighbor, and jth lowest eigenvalue.

The main goals of these notes are (a) to show how to rewrite the basic
Weyl integration formula for each of our groups G(N) as a determinant of
a “kernel” function KG(N ) (derived in sections 2 – 5, equations (4.8), (4.16),
(4.17), and (4.18)); (b) to use Gaudin’s lemma to compute level densities and
correlations (derived in sections 6 – 8, equations (7.3), (7.4), and (7.5)); (c)
to use the combinatorial identity (9.3) to deduce the mth nearest neighbor
statistic from the correlations (derived in section 9.1, equation (9.4)); and (d)
to use Gram’s identity to write the neighbor and lowest eigenvalue statistics
in terms of derivatives of infinite products of eigenvalues of simple operators
(derived in sections 9.2 – 9.5, equations (9.16) and (9.19)).

3 Definitions and Haar measures

3.1 Unitary

If X is an N × N matrix with complex entries X = (xjk), we let X∗ be its
conjugate transpose, i.e. X∗ = (x∗

jk) where x∗
jk = xkj . X is said to be unitary

if XX∗ = I. We let U(N) denote the group of all N × N unitary matrices.
This is a compact Lie group and has a Haar measure which allows us to do
analysis.

All of the eigenvalues of X ∈ U(N) have absolute value 1; we write them
as

eiθ1 , eiθ2 , . . . , eiθN

with

0 ≤ θj < 2π. (3.1)

The eigenvalues of X∗ are e−iθ1 , . . . , e−iθN . Clearly, the determinant, detX =∏N
n=1 eiθn of a unitary matrix is a complex number with absolute value equal

to 1.

For any sequence of N points on the unit circle there are matrices in U(N)
with these points as eigenvalues. The collection of all matrices with the same
set of eigenvalues constitutes a conjugacy class in U(N). Thus, the set of
conjugacy classes can be identified with the collection of sets of N points on
the unit circle.

We are interested in computing various statistics about these eigenvalues.
Consequently, we identify all matrices in U(N) that have the same set of eigen-
values. Weyl’s integration formula gives a simple way to perform averages over
U(N) for functions f that are constant on conjugacy classes. Such functions
are called ‘class functions’. Note that f being constant on conjugacy classes
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entails that f(θ1, . . . , θN ) is necessarily symmetric in its N variables. Weyl’s
formula asserts that for such an f ,∫

U (N )
f(X) dX =

∫
[0,2π]N

f(θ1, . . . , θN )
∏

1≤j<k≤N

∣∣eiθk − eiθj
∣∣2 dθ1 . . . dθN

N !(2π)N
.

Notice that we have used X to represent a variable element of U(N) and dX
to denote the Haar measure. If we want to emphasize the group U(N) we will
designate the Haar measure by dXU (N ).

3.2 Orthogonal and Symplectic

A unitary matrix X is said to be orthogonal if XX t = I, where X t denotes the
transpose of X. Orthogonality for a unitary matrix implies that X t = X∗ or
X = X. In other words any real unitary matrix is orthogonal. We let SO(N)
denote the subgroup of U(N) consisting of N × N orthogonal matrices with
determinant 1.

We want to distinguish these two cases. Thus, we consider SO(2N) (even
orthogonal) and SO(2N + 1) (odd orthogonal).

For any complex eigenvalue of an orthogonal matrix, its complex conjugate
is also an eigenvalue. The eigenvalues of X ∈ SO(2N) can be written as

e±iθ1 , . . . , e±iθN

with

0 ≤ θj ≤ π.

The Weyl integration formula for integrating a symmetric function f(X) =
f(θ1, . . . , θN ) over SO(2N) is∫

SO(2N )
f(X) dX =

2(N−1)2

πN N !

∫
[0,π]N

f(θ1, . . . , θN )

×
∏

1≤j<k≤N

(cos θk − cos θj)
2dθ1 . . . dθN .

The eigenvalues of X ∈ SO(2N + 1) can be written as

1, e±iθ1 , . . . , e±iθN

with

0 ≤ θj ≤ π.
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The Weyl integration formula for integrating a symmetric function f(X) =
f(θ1, . . . , θN ) over the space SO(2N + 1) is∫

SO(2N+1)
f(X) dX =

2N 2

πN N !

∫
[0,π]N

f(θ1, . . . , θN )
∏

1≤j<k≤N

(cos θk − cos θj)
2

×
N∏

h=1

sin2 θh

2
dθ1 . . . dθN .

A unitary matrix X is said to be symplectic if XZX t = Z where

Z =

(
0 IN

−IN 0

)
.

A symplectic matrix necessarily has determinant equal to 1. The symplec-
tic group USp(2N) is the subgroup of 2N × 2N symplectic matrices. The
eigenvalues of a symplectic matrix are

e±iθ1 , . . . , e±iθN

with
0 ≤ θj ≤ π.

The Weyl integration formula for integrating a symmetric function f(X) =
f(θ1, . . . , θN ) over USp(2N) is∫

USp(2N )
f(X) dX =

2N 2

πN N !

∫
[0,π]N

f(θ1, . . . , θN )
∏

1≤j<k≤N

(cos θk − cos θj)
2

N∏
h=1

sin2 θh dθ1 . . . dθN .

4 Vandermonde determinants and orthogonal

polynomials

We use the notation (f(j, k))1≤j,k≤N to denote the N × N matrix whose j, k
entry is f(j, k). If the notation is otherwise clear, we will often drop the
subscript 1 ≤ j, k ≤ N .

We recall the basic fact about Vandermonde determinants. For any N -tuple
of complex numbers (x1, . . . , xN ) let

∆(x1, . . . , xN ) = det
N×N

(
xj−1

k

)
j,k

. (4.1)

Then
∆(x1, . . . , xN ) =

∏
1≤j<k≤N

(xk − xj). (4.2)
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To prove this, one observes that both sides are homogeneous polynomials of
total degree N(N − 1)/2 which vanish whenever xj = xk. This fact identifies
the two sides up to a constant factor. That the coefficient of xN−1

N xN−2
N−1 . . . x2

is 1 in both expressions completes the proof.

Observe that ∏
1≤j<k≤N

|eiθk − eiθj |2 = |∆(eiθ1 , . . . , eiθN )|2 (4.3)

and ∏
1≤j<k≤N

(cos θk − cos θj)
2 = ∆(cos θ1, . . . , cos θN )2. (4.4)

Useful in our calculations will be the

Lemma 1 (Transposing Lemma). We have

det
N×N

(φj−1(xk)) det
N×N

(ψj−1(xk)) = det
N×N

( N∑
n=1

φn−1(xj)ψn−1(xk)
)
. (4.5)

This identity just follows by using the fact that the determinant of a matrix
and its transpose are the same, and matrix multiplication. Specifically,

det
N×N

(φj−1(xk)) det
N×N

(ψj−1(xk)) = det
N×N

(φn−1(xj))j,n det
N×N

(ψn−1(xk))n,k

= det
N×N

( N∑
n=1

φn−1(xj)ψn−1(xk)
)

j,k
.

4.1 An alternate formula for the Haar measure on U(N)

In order to compute the statistics we desire, we require an alternate formula
for the Haar measure. The Transposing Lemma implies the identity∏

1≤j<k≤N

|eiθk − eiθj |2 = det
N×N

(
SN (θk − θj)

)
(4.6)

where

SN (θ) =
sin Nθ

2

sin θ
2

. (4.7)

From this identity we have

dXUN
=

dθ1 . . . dθN

N !
det

N×N

(
S∗

N (θk − θj)
)

(4.8)

where S∗
N (x) = 1

2π
SN (x). To prove this we apply the Transposing Lemma with

φj(xk) = eijθk and ψj(xk) = e−ijθk and use the fact that

N∑
n=1

ei(n−1)θ =
eiNθ − 1

eiθ − 1
=

eiNθ/2

eiθ/2

eiNθ/2 − e−iNθ/2

eiθ/2 − e−iθ/2 = ei(N−1)θ/2SN (θ)
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from which

| det(ei(j−1)θk )|2 = det
( N∑

n=1

ei(n−1)(θj−θk ))
j,k

= det
(
eiN (θj−θk )/2SN (θj − θk)

)
= det

(
SN (θj − θk)

)
;

the last line holds by factoring out eiNθj /2 from the jth row and e−iNθk /2 from
the kth column and observing that the product of all of these factors is 1.

For future reference we introduce the notation

S(x) =
sin πx

πx
. (4.9)

4.2 Alternate formulas for orthogonal and symplectic
Haar measures

Now we give alternate formulas for our other measures. To accomplish this,
it is helpful to first recall the basic properties of the Tchebychev polynomials.
Let Tn(x) be the (Chebyshev) polynomial of degree n for which

Tn(cos θ) = cos nθ (4.10)

and Un(x) is the polynomial of degree n for which

Un(cos θ) =
sin(n + 1)θ

sin θ
. (4.11)

Thus, T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x and so on and
U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, U3(x) = 8x3 − 4x, and so on. From
cos(n+1)θ = cos nθ cos θ−sin nθ sin θ and sin(n+1)θ = sin nθ cos θ+cos nθ sin θ
it is easy to see that

Tn+1(x) = xTn(x) − (1 − x2)Un−1(x)

and
Un(x) = xUn−1(x) + Tn(x).

Thus,

Tn+2(x) = xTn+1(x) − (1 − x2)Un(x)

= xTn+1(x) − (1 − x2)(xUn−1(x) + Tn(x))

= xTn+1(x) − (1 − x2)Tn(x) + x(Tn+1(x) − xTn(x))

= 2xTn+1(x) − Tn(x).
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Similarly, Un+2(x) = 2xUn+1(x)−Un(x). Notice that the leading coefficient in
Tn(x) is 2n−1 and in Un(x) it is 2n.

Finally, we let Vn(x) be the polynomial of degree n for which

Vn(cos θ) = U2n

(
cos

θ

2

)
=

sin(n + 1
2 )θ

sin 1
2θ

. (4.12)

It can be shown that Vn(x) = 2nxn + . . . has leading coefficient 2n.

Now
∏

1≤j<k≤N (cos θk − cos θj) = ∆(cos θ1, . . . , cos θN ). Let xj = cos θj for
convenience. Then, by elementary row operations, ∆(x1, . . . , xN )

= det

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
x1 x2 . . . xN
...

...
...

...
xN−2

1 xN−2
2 . . . xN−2

N

xN−1
1 xN−1

2 . . . xN−1
N

⎞⎟⎟⎟⎟⎟⎠

=
1

2N−2 det

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
x1 x2 . . . xN
...

...
...

...
xN−2

1 xN−2
2 . . . xN−2

N

2N−2xN−1
1 2N−2xN−1

2 . . . 2N−2xN−1
N

⎞⎟⎟⎟⎟⎟⎠

=
1

2N−2 det

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
x1 x2 . . . xN
...

...
...

...
xN−2

1 xN−2
2 . . . xN−2

N

TN−1(x1) TN−1(x2) . . . TN−1(xN )

⎞⎟⎟⎟⎟⎟⎠
by adding appropriate multiples of the first N − 1 rows to the last row. Now
we do the same thing to all of the rows, except the first which we leave alone,
working our way from the bottom to the top. In this way, we find that

∆(cos θ1, . . . , cos θN ) = 2−(N−1)(N−2)/2 det
N×N

(Tj−1(cos θk)). (4.13)

For the Haar measure on SO(2N), we have

dXSO(2N ) =
2(N−1)2

πN N !
∆(cos θ1, . . . , cos θN )2dθ1 . . . dθN

=
2N−1

πN N !
det

N×N

(
Tj−1(cos θk)

)2
dθ1 . . . dθN .

If we multiply each row except the first by
√

2 we find that

∆(cos θ1, . . . , cos θN ) = 2−(N−1)2 /2 det
N×N

(T ∗
j−1(cos θk))
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where we let T ∗
j =

√
2Tj for j ≥ 1 and T ∗

0 = T0 = 1. Then,

dXSO(2N ) =
1

πN N !
det

N×N

(
T ∗

j−1(cos θk)
)2

dθ1 . . . dθN . (4.14)

By the Transposing Lemma,

∆(cos θ1, . . . , cos θN )2 = 2−(N−1)2
det

N×N

(
1 + 2

N−1∑
n=1

cos nθj cos nθk

)
(4.15)

Recall that SN (θ) =
sin Nθ

2
sin θ

2
and S(x) = sin πx

πx
. Now

N∑
n=−N

cos nx = 

N∑

n=−N

einx = 
ei(N+1)x − e−iNx

eix − 1

= 
ei(N+1/2)x − e−i(N+1/2)x

eix/2 − e−ix/2 =
sin(N + 1/2)x

sin x/2
= S2N+1(x).

Consequently,
N∑

n=1

cos nx =
S2N+1(x) − 1

2

so that

1 + 2
N−1∑
n=1

cos nx cos ny = 1 +
N−1∑
n=1

(
cos n(x − y) + cos n(x + y)

)
=

S2N−1(x− y) + S2N−1(x + y)

2
.

Consequently, a basic identity is

2(N−1)2 ∏
1≤j<k≤N

(cos θk − cos θj)
2 = det

N×N

(S2N−1(θk − θj) + S2N−1(θk + θj)

2

)
from which we deduce by (4.14) that

dXSO(2N ) =
1

N !
det

N×N

(
S∗

2N−1(θk − θj) + S∗
2N−1(θk + θj)

)
dθ1 . . . dθN

=
1

N !
det

N×N

(
KSO(2N )(θj , θk)

)
dθ1 . . . dθN , (4.16)

where we define

KSO(2N )(x, y) = S∗
2N−1(y − x) + S∗

2N−1(y + x)

and, for use in a moment,

KUSp(2N )(x, y) = S∗
2N+1(y − x) − S∗

2N+1(y + x)
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and

KSO(2N+1)(x, y) = S∗
2N (y − x) − S∗

2N (y + x).

Now we do the same for the Haar measure of the symplectic group. Again,
by elementary row operations on the determinant ∆(x1, . . . , xN ), we find that
(recall that the leading term of the Chebyshev polynomial UN (x) is (2x)N ),

∆(x1, . . . , xN ) = 2−N (N−1)/2 det
N×N

(Uj−1(xk)).

Then dXUSp(2N ), the Haar measure on USp(2N), satisfies

dXUSp(2N ) =
2N 2

πN N !
∆(cos θ1, . . . , cos θN )2

N∏
n=1

sin2 θndθ1 . . . dθN

=
2N

πN N !
det

N×N

(
Uj−1(cos θk)

)2 N∏
n=1

sin2 θndθ1 . . . dθN .

Now, by the Transposing Lemma

∏
1≤j<k≤N

(cos θk − cos θj)
2

N∏
n=1

sin2 θn = 2−N (N−1) det
N×N

( N∑
n=1

sin nθj sin nθk

)
= 2−N (N−1) det

N×N

(
S2N+1(θk − θj) − S2N+1(θk + θj)

2

)
since

2
N∑

n=1

sin nx sin ny =
N∑

n=1

(
cos n(x − y) − cos n(x + y)

)
=

S2N+1(x− y) − S2N+1(x + y)

2
.

Therefore,

dXUSp(2N ) =
1

πNN !
det

N×N

(S2N+1(θk − θj) − S2N+1(θk + θj)

2

)
dθ1 . . . dθN

=
1

N !
det

N×N

(
KUSp(2N )(θk, θj)

)
dθ1 . . . dθN . (4.17)

Finally, dXSO(2N+1), the Haar measure on SO(2N + 1), satisfies

dXSO(2N+1) =
2N 2

πN N !
∆(cos θ1, . . . , cos θN )2

N∏
n=1

sin2 θn

2
dθ1 . . . dθN

=
2N

πN N !
det

N×N

(
Vj−1(cos θk)

)2 N∏
n=1

sin2 θn

2
dθ1 . . . dθN .
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By the Transposing Lemma,

dXSO(2N+1) =
2N

πN N !
det

N×N

( N∑
n=1

sin(n − 1
2 )θj sin(n − 1

2 )θk

)
dθ1 . . . dθN

=
1

πN N !
det

N×N

(S2N (θk − θj) − S2N (θk + θj)

2

)
dθ1 . . . dθN

=
1

N !
det

N×N

(
S∗

2N (θk − θj) − S∗
2N (θk + θj)

)
dθ1 . . . dθN .

Therefore,

dXSO(2N+1) =
1

N !
det

N×N

(
KSO(2N+1)(θk, θj)

)
dθ1 . . . dθN . (4.18)

5 Andréief’s identity

As a consistency check, we now deduce that our measures have total mass one.
To do this we use a formula of Andréief:

Lemma 2 (Andréief’s identity). For any interval J and integrable functions φj

and ψj :

1

N !

∫
JN

det
N×N

(φj(θk)) det
N×N

(ψj(θk)) dθ1 . . . dθN = det
N×N

( ∫
J

φj(θ)ψk(θ) dθ
)
. (5.1)

5.1 Proof of Andréief’s identity

We use the definition of determinant for a matrix X = (xjk):

det X =
∑
σ∈πN

sgn(σ)
N∏

j=1

xj,σj

where πN denotes the collection of the N ! permutations of [1, N ] := {1, 2, . . . , N},
and where we have written σj in place of σ(j) to make the notation easier.
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Thus, ∫
JN

det
N×N

(
φj(θk)

)
det

N×N

(
ψj(θk)

)
dθ1 . . . dθN

=

∫
JN

∑
σ

sgn(σ)
N∏

j=1

φj(θσj)
∑

τ

sgn(τ)
N∏

k=1

ψk(θτ k)
N∏

i=1

dθi

=

τ → στ

∫
JN

∑
σ,τ

sgn(τ)
N∏

j=1

φj(θσj)
N∏

k=1

ψk(θστk)
N∏

i=1

dθi

=

k → τ−1k

∫
JN

∑
σ,τ

sgn(τ)
N∏

j=1

φj(θσj)
N∏

k=1

ψτ−1k(θσk)
N∏

i=1

dθi

=

∫
JN

∑
σ,τ

sgn(τ)
N∏

j=1

φj(θσj)ψτ−1 j(θσj)
N∏

i=1

dθi.

Letting τ → τ−1, we see that the above is

=

∫
JN

∑
σ,τ

sgn(τ)
N∏

j=1

φj(θσj)ψτ j(θσj)
N∏

i=1

dθi

=
∑
σ,τ

sgn(τ)
N∏

j=1

∫
J

φj(θ)ψτ j(θ) dθ

= N !
∑

τ

sgn(τ)
N∏

j=1

∫
J

φj(θ)ψτ j(θ) dθ

= det
N×N

( ∫
J

φj(θ)ψk(θ) dθ
)
.

Note that virtually the same proof leads to the slightly more general result

1

N !

∫
JN

N∏
i=1

f(θi) det
N×N

(φj(θk)) det
N×N

(ψj(θk)) dθ1 . . . dθN

= det
N×N

( ∫
J

f(θ)φj(θ)ψk(θ) dθ
)
.

5.2 Verification that the Haar measures have total mass
1

Using

φj(θ) = ei(j−1)θ
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we see that∫
[0,2π]N

dXU (N ) =

∫
[0,2π]N

| det
N×N

(ei(j−1)θk )|2 dθ1 . . . dθN

N !(2π)N

=
1

(2π)N
det

N×N

( ∫ 2π

0
ei(j−1)θe−i(k−1)θ dθ

)
=

1

(2π)N
det

N×N

(
2πI) = 1.

This shows that the total mass of the Haar measure of U(N) is 1.

We observe further that (4.14) and Andréief’s identity together imply that∫
[0,π]N

dXSO(2N ) =
2N−1

πN
det

N×N

(∫ π

0
Tj−1(cos θ)Tk−1(cos θ) dθ

)
= 1,

since∫ π

0
Tj−1(cos θ)Tk−1(cos θ) dθ =

∫ π

0
cos(j − 1)θ cos(k − 1)θ dθ

=
1

2

∫ π

0

(
cos(j + k − 2)θ + cos(j − k)θ

)
dθ

=
π

2
δj,k(1 + δ1,j)

because the integral is 0 unless j = k in which case it is π if j > 1 and 2π if

j = 1. Also,∫
USp(2N )

dX =
2N

πN
det

N×N

(∫ π

0
sin2 θ Uj−1(cos θ) Uk−1(cos θ) dθ

)
=

2N

πN
det

N×N

(∫ π

0
sin jθ sin kθ dθ

)
=

2N

πN
det

N×N

(
1

2

∫ π

0

(
cos(j − k)θ − cos(j + k)θ

)
dθ

)
.

Since the integral is π when j = k and 0 otherwise, this confirms that the total
measure of USp(2N) is 1.

Similarly, we can calculate that the total mass of SO(2N + 1) is 1.

6 Gaudin’s Lemma

The following Lemma is the key to begin computing the statistics of interest.1

1Editors’ comment: This lemma is also applied in the lectures of Y.V. Fyodorov, page
31, Section 4.
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Lemma 3 (Gaudin’s Lemma). Suppose that we have a function f and a mea-
surable set J such that∫

J

f(x, θ)f(θ, y) dθ = Cf(x, y) (6.1)

for all x and y where C = C(J, f) is a constant. Suppose also that∫
J

f(x, x) dx = D, (6.2)

where D = D(J, f) is constant. Then∫
J

det
M×M

(
f(θj , θk)

)
dθM = (D − (M − 1)C) det

M−1

(
f(θj , θk)

)
. (6.3)

This Lemma allows us to “integrate out” variables not under consideration
when computing some statistic. We apply Gaudin’s Lemma with f(x, y) =
S∗

N (x − y) and J = [0, 2π], so that D = S∗
N (0) = N . Reëxpressing SN as a

geometric series and integrating term-by-term, we find that∫ 2π

0
S∗

N (θj − θ)S∗
N (θ − θk) dθ = S∗

N (θk − θj),

so that C = 1. Thus, for example,∫
[0,2π]

det
N×N

(
S∗

N (θk − θj)
)

dθN = det
(N−1)×(N−1)

(
S∗

N (θk − θj)
)
.

Applying the Lemma repeatedly gives∫
[0,2π]N −n

det
N×N

(
S∗

N (θk − θj)
)

dθn+1 . . . dθN

= (N − n)! det
n×n

(
S∗

N (θk − θj)
)
.

In particular, by integrating out all but n variables, we have∫
U (N )

∑
J ⊂{1 , . . . ,N }

J ={j1 , . . . ,jn }

f(θj1 , . . . , θjn )dXU (N )

=
1

n!

∫
[0,2π]n

f(θ1, . . . , θn) det
n×n

S∗
N (θk − θj) dθ1 . . . dθn. (6.4)

Proof of Gaudin’s Lemma. Let πM be the symmetric group on {1, . . . , M}.
Then,

det
M×M

(
f(θj , θk)

)
=
∑

σ∈πM

sgn(σ)
M∏

j=1

f(θj , θσj).
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If σM �= M , then∫
J

M∏
j=1

f(θj , θσj)dθM =
M−1∏
j=1

σ j �=M

f(θj , θσj)

∫
J

f(θσ−1M , θM )f(θM , θσM ) dθM

= Cf(θσ−1M , θσM )
M−1∏
j=1

σ j �=M

f(θj , θσj). (6.5)

For a permutation σ ∈ πM with σM �= M define a permutation σ′ ∈ πM−1 by

σ′j =

{
σj if σj �= M

σM if σj = M
.

Then (6.5) may be reëxpressed as∫
J

M∏
j=1

f(θj , θσj)dθM = C
M−1∏
j=1

f(θj , θσ′j).

Clearly, each permutation σ′ arises from (M − 1) different σ. Note also that
sgn(σ′) = −sgn(σ). Thus, we have∫

J

∑
σ∈πM
σ M �=M

sgn(σ)
M∏

j=1

f(θj , θσj)dθM = −(M − 1)C
∑

σ′∈πM −1

sgn(σ′)
M−1∏
j=1

f(θj , θσ′j)

= −(M − 1)C det
M−1

(
f(θj , θk)

)
.

Now consider the σ for which σM = M ; let σ′ be defined by σ′j = σj for
j ≤ M − 1. Then, for these σ, we have∫

J

M∏
j=1

f(θj , θσj)dθM =
M−1∏
j=1

f(θj , θσj)

∫
J

f(θM , θM ) dθM

= D

M−1∏
j=1

f(θj , θσ′j).

These σ′ have the same sign as the σ they came from. Therefore,∫
J

∑
σ∈πM
σ M =M

sgn(σ)
M∏

j=1

f(θj , θσj)dθM = D
∑

σ′∈πM −1

sgn(σ′)
M−1∏
j=1

f(θj , θσ′j)

= D det
M−1

(
f(θk, θj)

)
.

Combining the two cases we obtain the Lemma.
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6.1 Calculation for orthogonal and symplectic cases

Recall that

πKSO(2N )(x, y) =
S2N−1(x− y) + S2N−1(x + y)

2
= 1 + 2

N−1∑
n=1

cos nx cos ny

and

πKUSp(2N )(x, y) =
S2N+1(x− y) − S2N+1(x + y)

2
= 2

N∑
n=1

sin nx sin ny.

Then, Gaudin’s Lemma for these groups is expressed as∫
[0,π]N −n

det
N×N

(
KG(N )(θj , θk)

)
dθn+1 . . . dθN = (N − n)! det

n×n

(
KG(N )(θj , θk)

)
where G(N) can stand for USp(2N), SO(2N), or SO(2N + 1). This allows us
to “integrate out” variables in the orthogonal and symplectic settings.

Note, for future reference, that

lim
N→∞

1

2N
S2N+1(πx/N) = lim

N→∞
sin (N+1/2)πx

N

2N sin πx
2N

=
sin πx

πx
= S(x)

so that

KG(x, y) := lim
N→∞

πKG(N )(πx/N, πy/N)

N
= S(y − x) ± S(y + x).

To prove Gaudin’s Lemma in this situation, it again suffices to prove the
n = N −1 case, since the general case follows by a repeated application of this
case: ∫

[0,π]
det

N×N

(
KG(N )(θj , θk)

)
dθN = det

(N−1)×(N−1)

(
KG(N )(θj , θk)

)
.

The key formulae are∫ π

0
KG(N )(θj , θ)KG(N )(θ, θk) dθ = KG(N )(θj , θk)

and ∫ π

0
KG(N )(θ, θ) dθ = N.
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Knowing these, the rest of the proof is the same; so we now verify these
formulae. We calculate∫ π

0
KUSp(2N )(x, θ)KUSp(2N )(θ, y) dθ

=
1

π2

∫ π

0

N∑
m=1

2 sin mx sin mθ

N∑
n=1

2 sin nθ sin ny dθ

=
4

π2

N∑
m,n=1

sin mx sin ny

∫ π

0
sin mθ sin nθ dθ

=
2

π2

N∑
m,n=1

sin mx sin ny

∫ π

0
(cos(m− n)θ − cos(m + n)θ) dθ

=
2

π

N∑
n=1

sin nx sin ny = KUSp(2N )(x, y).

Similarly,∫ π

0
KSO(2N )(x, θ)KSO(2N )(θ, y) dθ

=
1

π2

∫ π

0
(1 + 2

N−1∑
m=1

cos mx cos mθ)(1 + 2
N−1∑
n=1

cos nθ cos ny) dθ

=
1

π
+

4

π2

N−1∑
m,n=1

cos mx cos ny

∫ π

0
cos mθ cos nθ dθ

=
1

π
+

2

π2

N−1∑
m,n=1

cos mx cos ny

∫ π

0
(cos(m − n)θ + cos(m + n)θ) dθ

=
1

π
+

2

π

N−1∑
n=1

cos nx cos ny = KSO(2N )(x, y).

Similarly for KSO(2N+1).

7 n-level density

7.1 Unitary

We can use Gaudin’s Lemma to compute an integral of the sort∫
U (N )

N∑
j=1

f(θj)dX,
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or ∫
U (N )

∑
1≤j,k≤N

j �= k

f(θj , θk)dX,

or ∫
U (N )

∑
1≤j1 , . . . ,jn ≤N

jh �= ji

f(θj1 , . . . , θjn )dX.

These are precisely the definitions of the 1-, 2-, and n-level densities. By
Gaudin’s Lemma, these integrals are, respectively,

N

2π

∫ 2π

0
f(θ) dθ,∫

[0,2π]2
f(θ1, θ2) det

2×2
S∗

N (θk − θj) dθ1 dθ2,

and 2 ∫
[0,2π]n

f(θ1, . . . , θn) det
n×n

S∗
N (θk − θj) dθ1 . . . dθn. (7.1)

7.2 Normalized eigenangles and large N limits

For a matrix X ∈ U(N) with eigenvalues

eiθ1 , . . . , eiθN

we let

θ̃j = θ
N

2π
(7.2)

be the normalized eigenangles. They satisfy

0 ≤ θ̃j < N.

If arranged in increasing order, the sequence of θ̃ have mean spacing 1 and so
give a way to compare statistics for different N . Thus, for the n-level density,
we have (for a rapidly decaying smooth f)

lim
N→∞

∫
U (N )

∑
1≤j1 , . . . ,jn ≤N

jh �= ji

f(θ̃j1 , . . . , θ̃jn )dX

= lim
N→∞

∫
[0,2π]n

f(θ̃1, . . . , θ̃n) det
n×n

S∗
N (θk − θj) dθ1 . . . dθn

= lim
N→∞

∫
[0,N ]n

f(x1, . . . , xn) det
n×n

1

N
SN

(2π(xk − xj)

N

)
dx1 . . . dxn

=

∫
Rn

+

f(x1, . . . , xn) det
n×n

S(xk − xj) dx1 . . . dxn. (7.3)

2Editors’ comment: Up to a constant factor f(θ1 , . . . , θn ) is being integrated against
the quantity defined in the lectures of Y.V. Fyodorov, page 31, Section 3, as the n-point
correlation function.
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We say that detn×n S(xk − xj) is the n-level density function for U .

7.3 Orthogonal and symplectic

We can use Gaudin’s Lemma to compute∫
SO(2N )

∑
1≤j1 , . . . ,jn ≤N

jh �= ji

f(θj1 , . . . , θjn )dX

and ∫
USp(2N )

∑
1≤j1 , . . . ,jn ≤N

jh �= ji

f(θj1 , . . . , θjn )dX.

By Weyl’s integration formula and Gaudin’s Lemma, these integrals are∫
[0,π]n

f(θ1, . . . , θn) det
n×n

(
KSO(2N )(θk, θj)

)
dθ1 . . . dθn

and ∫
[0,π]n

f(θ1, . . . , θn) det
n×n

(
KUSp(2N )(θk, θj)) dθ1 . . . dθn

respectively.

For eigenangles of matrices in SO(2N) and USp(2N) we let

θ̃j =
θjN

π

be the normalized eigenangles. Thus, for the n-level density, we have (for a
rapidly decaying smooth f)

lim
N→∞

∫
SO(2N )

∑
1≤j1 , . . . ,jn ≤N

jh �= ji

f(θ̃j1 , . . . , θ̃jn )dX

= lim
N→∞

∫
[0,π]n

f(θ̃1, . . . , θ̃n) det
n×n

(
KSO(2N )(θk, θj)

)
dθ1 . . . dθn

=

∫
Rn

+

f(θ1, . . . , θn) det
n×n

(
KSO(θk, θj)

)
dθ1 . . . dθn (7.4)

for the n-level density for SO even and

lim
N→∞

∫
USp(2N )

∑
1≤j1 , . . . ,jn ≤N

jh �= ji

f(θ̃j1 , . . . , θ̃jn )dX

= lim
N→∞

∫
[0,π]n

f(θ̃1, . . . , θ̃n) det
n×n

(
KUSp(2N )(θk, θj)

)
dθ1 . . . dθn

=

∫
Rn

+

f(θ1, . . . , θn) det
n×n

(
KUSp(θk, θj)

)
dθ1 . . . dθn (7.5)



132 Brian Conrey

for the n-level density for USp. The n-level density for SO(2N + 1) is slightly
complicated by the fact that the matrices in this ensemble always have an
eigenangle equal to 0. This fact leads to the presence of a δ-function in the
formulation of the n-level density function.

8 Correlations

8.1 Pair correlation for U(N)

Let f be a suitable test function and consider

QN (f) :=

∫
U (N )

∑
j �=k

f(θ̃j − θ̃k)dX.

Applying Gaudin’s Lemma we find that

QN (f) =

∫
[0,2π]2

f(θ̃1 − θ̃2) det

(
N SN (θ1 − θ2)

SN (θ1 − θ2) N

)
dθ1 dθ2

(2π)2 .

After a change of variables, this is

=

∫
[0,N ]2

f(θ1 − θ2) det
2×2

1

N
SN

(2π(θk − θj)

N

)
dθ1 dθ2.

After expanding the determinant and performing another change of variables,
we have

QN (f) =

∫
[−N,N ]

f(v)

(
1 −
(

SN (2πv/N)

N

)2 )
(N − |v|) dv.

Now

lim
N→∞

1

N
SN

(2πv

N

)
= lim

N→∞
1

N

sin πv

sin πv
N

=
sin πv

πv
= S(v).

Now it follows, with a little bit of analysis, that

lim
N→∞

1

N
QN (f) =

∫ ∞

−∞
f(v)

(
1 −
(sin πv

πv

)2)
dv.

This is the same as the pair correlation for zeros of ζ(s) found by Montgomery3.
This important fact was fortuitously discovered at tea at the Institute for Ad-
vanced Study one afternoon in 1971 when Chowla introduced Hugh Mont-
gomery and Freeman Dyson to each other.

3Editors’ comment: See lectures by D.A. Goldston, page 79, equation 6.7.
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8.2 n-correlation for U(N)

Let f(θ1, . . . , θn) be a test-function which is translation invariant i.e.f(θ1 +
t, . . . , θn+t) = f(θ1, . . . , θn). Let’s suppose, for convenience, that f(0, θ2, . . . , θn)
is compactly supported, say on [−A,A]. We seek to evaluate

QN (f) =

∫
U (N )

∑
1≤j1 ,j2 , . . . ,jn ≤N

jh �= ji

f(θ̃j1 , . . . , θ̃jn )dX.

By Gaudin’s Lemma and a change of variables, this is

=

∫
[0,N ]n

f(θ1, . . . , θn) det
n×n

1

N
SN (2π(θj − θk)/N)dθ1 . . . dθn.

We make the change of variable x1 = θ1, x2 = θ2 − θ1, ... xn = θn − θ1 and the
integral becomes∫ N

0

∫
[−x1 ,N−x1 ]n−1

g(x1, x2 + x1, . . . , xn + x1)dx2 . . . dxn dx1

where g(x1, . . . , xn) = f(x1, . . . , xn) det(
SN (2π(xk−xj )/N )

N
). Since g is translation

invariant and g(0, x2, . . . , xn) is compactly supported, for sufficiently large N
this is

=

∫ N

0

∫
[−x1 ,N−x1 ]n−1

g(0, x2, . . . , xn)dx2 . . . dxn dx1

=

∫
[−A,A]n−1

g(0, x2, . . . , xn)

(∫ min{N−xj }

max{−xj }
dx1

)
dx2 . . . dxn.

Thus,

lim
N→∞

QN (f)

N
= (8.1)∫

Rn−1
f(x1, x2, . . . , xn) det

n×n
S(xj − xk)

∣∣
x1 =0dx2 . . . dxn.

We note that if f is symmetric in all of its variables, then we also have

lim
N→∞

QN (f)

N
= (8.2)

n

∫
R+

n−1
f(x1, x2, . . . , xn) det

n×n
S(xj − xk)

∣∣
x1 =0dx2 . . . dxn.
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8.3 n-correlation for orthogonal and symplectic

Let f(θ1, . . . , θn) be a test-function as in the last section. We seek to evaluate

QN (f) =

∫
USp(N )

∑
1≤j1 ,j2 , . . . ,jn ≤N

jh �= ji

f(θ̃j1 , . . . , θ̃jn )dX.

By Gaudin’s Lemma and a change of variables, this is

=

∫
[0,N ]n

f(θ1, . . . , θn) det
n×n

1

2N

(
S2N−1(π(θk − θj)/N)

+S2N−1(π(θk + θj)/N)

)
dθ1 . . . dθn.

We make the change of variable x1 = θ1, x2 = θ2 − θ1, ... xn = θn − θ1 and
the integral becomes, for sufficiently large N ,∫

[−A,A]n−1
f(0, x2, . . . , xn)

∫ min{N−xj }

max{−xj }
det
n×n

1

2N

(
S2N−1(π(xk − xj)/N)

∣∣
x1 =0

+S2N−1(π(x∗
k + x∗

j + 2x1)/N)

)
dx1 dx2 . . . dxn

where x∗
j = xj if j �= 1 whereas x∗

1 = 0. Now we claim that

lim
N→∞

1

N

∫ min{N−xj }

max{−xj }
det
n×n

1

2N

(
S2N−1(π(xk − xj)/N)

∣∣
x1 =0

+S2N−1(π(x∗
k + x∗

j + 2x1)/N)
)
dx1

= det
n×n

S(xk − xj)
∣∣
x1 =0.

To see this claim, note that in the expansion of the determinant there are
n! terms each of which is a product of n factors 1

2N
S2N−1(π(xk − xj))|x1 =0 +

1
2N

S2N−1(π(x∗
k +x∗

j +2x1)). If we multiply out each term, there are 2n terms, all
but one of which will contain at least one factor with 1

2N
S2N−1(π(xk+xj+2x1)).

Any of the terms with at least one factor like this will tend to 0 after integrating
with respect to x1 and dividing by N ; for letting

c(a, b,N)(x) =
sin(ax + b)

N sin(ax/N + b/N)
,

it is not difficult to see that c(a, b,N)(x) ≤ 2
π

sin(ax+b)
ax+b

provided that ax+b < πN
2 ,

and |c(a, b,N)(x)| ≤ 1 for all x and integer N . Therefore, using the fact that∫ B

0

(
sin x

x

)j
dx is uniformly bounded in B for each fixed j, we see that

1

N

∫ N−B

0

J∏
j=1

c(aj , bj , N)(x) dx → 0
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as N → ∞ through integers. This leaves only the term with all 1
2N

S2N−1(π(xk−
xj)) factors which tend to S(xk − xj) as N → ∞.

Thus, just as in the case of U(N), we find that

lim
N→∞

QN (f)

N
=∫

Rn−1
f(x1, x2, . . . , xn) det

n×n
S(xj − xk)

∣∣
x1 =0dx2 . . . dxn.

In particular, the scaled limit of the n-correlation functions are the same
for all of unitary, orthogonal, and symplectic groups.

9 Neighbor spacings

9.1 Nearest neighbor for U(N)

We derive the combinatorial relation between nearest neighbor spacings and
n-correlations (see [KS], Lemma 2.3.8). Let Y = (θ1, . . . , θN ) be an N -tuple
with non-decreasing entries: θ1 ≤ θ2 ≤ · · · ≤ θN . Let

Sn(s, Y ) := #{j : θj+n − θj ≤ s},

and let

Cm(s, Y ) := #{B ⊂ {1, . . . , N} : |B| = m, max
j,k∈B

|θj − θk| ≤ s}.

These are related to the Sep and Clump functions used in Katz-Sarnak.

Lemma 4 (Combinatorial Lemma). For any Y ,

Cm+2(s, Y ) =
∑
n≥m

(
n

m

)
Sn+1(s, Y ). (9.1)

Proof. Take an m+2-tuple of indices i0 < i1 < · · · < im+1 whose endpoints
satisfy θim +1 − θi0 ≤ s. Let n = im+1 − i0 so that the pair of endpoints is
counted in Sn(s, Y ). Then there are

(
n−1
m

)
sets of points of size m between

these endpoints, which, taken with the endpoints can be counted in Cm+2(s, Y ).
Therefore, Cm+2 =

∑(n−1
m

)
Sn. Adjusting the index n by one gives the result.

In general, the relation am =
∑

n≥m

(
n
m

)
bn can be inverted to give

bm =
∑
n≥m

(−1)n−m

(
n

m

)
an.
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This follows from the identity for binomial coefficients

n∑
�=m

(−1)�

(
�

m

)(
n

�

)
=

{
(−1)m if m = n

0 if m �= n
.

Thus, with am = Cm+2 and bn = Sn+1 we have

Corollary 1.

Sm+1(s, Y ) =
∑
n≥m

(−1)n−m

(
n

m

)
Cn+2(s, Y ) (9.2)

or, after adjusting the indices,

Sm(s, Y ) =
∑

n≥m+1

(−1)n−m−1
(

n − 2

m− 1

)
Cn(s, Y ). (9.3)

For a unitary matrix X let ỸX be the N -tuple of normalized eigenangles of
X arranged in increasing order. We want to compute∫ s

0
µ1(x) dx : = Prob {Neighboring eigenangles are < s apart}

= lim
N→∞

1

N

∫
U (N )

S1(s, ỸX )dX

and more generally∫ s

0
µm(x) dx : = Prob {mth neighboring eigenangles are < s apart}

= lim
N→∞

1

N

∫
U (N )

Sm(s, ỸX )dX.

We apply the combinatorial identity just derived and so are led to calculate
the n-correlation function associated with the translation invariant function

f(θ1, . . . , θn) =
∏

1≤j<k≤n

χ[0,s](|θj − θk|).

Note that f is symmetric in all of its variables. Using the calculations from
the last chapter, we have

lim
N→∞

1

N

∫
U (N )

Cn(s, ỸX )dX = lim
N→∞

1

N

∫
U (N )

∑
B ⊂{1 , . . . ,N }

|B |=n

f(θB)dX

=
1

(n − 1)!

∫
[0,s]n−1

det
n×n

S(xj − xk)
∣∣
x1=0dx2 . . . dxn.
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Thus, by (9.2)∫ s

0
µm(x) dx =

∞∑
n=m+1

(−1)n−m−1

(n− 1)!

(
n − 2

m − 1

)
×
∫

[0,s]n−1
det
n×n

S(xj − xk)
∣∣
x1 =0dx2 . . . dxn.

In particular, for the nearest neighbor spacing, we have

µ1(s) =
d

ds

∞∑
n=2

(−1)n

(n− 1)!

∫
[0,s]n−1

det
n×n

S(xj − xk)
∣∣
x1 =0dx2 . . . dxn.

Now, for any symmetric, even, translation invariant function g,

d

ds

∫
[0,s]m

g(x1, . . . , xm)dx1 . . . dxm = m

∫
[0,s]m −1

g(s, x2, . . . , xm)dx2 . . . dxm .

Therefore,

µ1(s) =
d2

ds2

∞∑
n=2

(−1)n

n!

∫
[0,s]n

det
n×n

S(xj − xk) dx1dx2 . . . dxn

=
d2

ds2

∞∑
n=0

(−1)n

n!

∫
[0,s]n

det
n×n

S(xj − xk) dx1dx2 . . . dxn.

Also, temporarily letting

F (z) =
∞∑

n=0

zn

n!

∫
[0,s]n

det
n×n

S(xj − xk) dx1dx2 . . . dxn,

we have

µm(s) =
d2

ds2

dm−1

dzm−1

(
F (z) − 1 − z

∫ s

0 det1×1 S dθ

z2

)∣∣∣∣
z=−1

=
d2

ds2

dm−1

dzm−1

F (z)

z2

∣∣∣∣
z=−1

. (9.4)

In the next few sections we will work toward relating the right side of this
formula to another simple function.

9.2 Gram’s identity

An identity of Gram is helpful for our further considerations.
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Lemma 5 (Gram’s Identity). For an interval J and integrable functions φj and
ψj ,

det
N×N

(I + z

∫
J

φj(x)ψk(x) dx) =
N∑

n=0

zn

n!

∫
Jn

(
det
n×n

N∑
h=1

φh(xj)ψh(xk)
)

dx1 . . . dxn.

(9.5)

Proof . The left-hand-side of (9.5) is

det
N×N

(I + z

∫
J

φj(x)ψk(x) dx)

=
∑
σ∈πN

sgn(σ)
N∏

j=1

(
δj,σj + z

∫
J

φj(x)ψσj(x) dx
)

=
∑
σ∈πN

sgn(σ)
∑
A⊂N

∏
j /∈A

δj,σj

∏
j∈A

z

∫
J

φj(x)ψσj(x) dx

=
∑
A⊂N

z|A| ∑
σ∈πA

sgn(σ)
∏
j∈A

∫
J

φj(x)ψσj(x) dx

=
N∑

n=0

zn
∑
A⊂N
|A |=n

det
A

∫
J

φj(x)ψk(x) dx

and the right-hand-side is

=
N∑

n=0

zn

n!

∫
Jn

∑
σ∈πn

sgn(σ)
n∏

j=1

N∑
h=1

φh(xj)ψh(xσj) dx1 . . . dxn

=
N∑

n=0

zn

n!

∫
Jn

∑
σ∈πn

sgn(σ)
∑

λ:[1,n]→[1,N ]

n∏
j=1

φλj(xj)ψλj(xσj) dx1 . . . dxn

=
N∑

n=0

zn

n!

∑
σ∈πn

sgn(σ)
∑

λ:[1,n]→[1,N ]

n∏
j=1

∫
J

φλj(x)ψλσ−1 j(x) dx

=
N∑

n=0

zn

n!

∑
λ:[1,n]→[1,N ]

∑
σ∈πn

sgn(σ)
n∏

j=1

∫
J

φλj(x)ψλσ−1 j(x) dx

=
N∑

n=0

zn

n!

∑
λ:[1,n]→[1,N ]

det
( ∫

J

φλj(x)ψλk(x) dx
)
.

If λ is not one-to-one, then the inner determinant is 0. If λ is one-to-one, call
the image A. Each such set A appears n! times and we get the left-hand-side.
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Remark. This proof is reminiscent of the proof that that the determinant
of a product is the product of the determinants. Thus,

det
N×N

(AB) = det(ajh)(bhk) = det(
N∑

h=1

ajhbhk)

=
∑
σ∈πN

sgn(σ)
N∏

j=1

N∑
h=1

ajhbh,σj

=
∑
σ∈πN

sgn(σ)
∑

λ:[1,N ]→[1,N ]

N∏
j=1

aj,λjbλj,σj

where the sum over λ is over all of the NN functions from [1, N ] to itself. Now,
we claim that for each fixed λ the sum∑

σ∈πN

sgn(σ)
N∏

j=1

aj,λjbλj,σj

is 0 unless λ is actually a permutation. For suppose that λu = λv for some
u �= v ∈ [1, N ]. Then, for each σ let σ′ be the permutation defined by σ′j = σj
if j is not equal to u or v, whereas

σ′j =

{
σu if j = v

σv if j = u
.

In this way πN splits up into pairs (σ, σ′) of permutations. Note that sgn(σ) =
−sgn(σ′). Then

N∏
j=1

aj,λjbλj,σj = au,λubλu,σuav,λvbλv,σv

∏
j �=u,v

aj,λjbλj,σj

= au,λubλv,σ′vav,λvbλu,σ′u

∏
j �=u,v

aj,λjbλj,σ′j

.

Thus, the contribution from σ cancels that from σ′ in the case that λu = λv.
Therefore,

det(AB) =
∑

σ,τ∈πN

sgn(σ)
N∏

j=1

aj,τ jbτ j,σj

=
∑

σ,τ∈πN

sgn(σ)
N∏

j=1

aj,τ j

N∏
k=1

bτ k,σk

=
σ→στ

∑
σ,τ∈πN

sgn(στ)
N∏

j=1

aj,τ j

N∏
k=1

bτ k,στ k

=
k→τ−1k

∑
σ,τ∈πN

sgn(σ)sgn(τ)
N∏

j=1

aj,τ j

N∏
k=1

bk,σk

= det A det B.



140 Brian Conrey

9.3 Intervals with precisely n eigenvalues

Let EG(N )(n, J) be the measure of the set of matrices A ∈ G(N) which have
precisely n eigenvalues in the interval J . Here G(N) can be U(N), SO(2N),
SO(2N + 1), or USp(2N); we denote the Haar measure by dX. Then we
have a series of identities related to EG(N )(n, J) which will provide a basis for
obtaining tractable expressions for our functions µm , and later for νj (to be
introduced in the near future). Let χJ be the characteristic function of the
interval J . First of all,

N∑
n=0

(1 + z)nEG(N )(n, J) =

∫
G(N )

N∏
j=1

(1 + zχJ (θj))dX (9.6)

since for any X ∈ G(N) which has precisely n eigenvalues in J , the integrand
is (1 + z)n. Expanding out the product on the right side gives∫

G(N )

N∏
j=1

(1 + zχJ (θj))dX =
N∑

n=0

zn

(
N

n

)∫
G(N )

n∏
j=1

χJ (θj)dX. (9.7)

Next by Gaudin’s Lemma, (6.4)(
N

n

)∫
G(N )

n∏
j=1

χJ (θj)dX =
1

n!

∫
Jn

det
n×n

KG(N )(θj , θk) dθ1 . . . dθn

where KG(N )(x, y) is the appropriate kernel for the group G(N). Thus,

N∑
n=0

zn

(
N

n

)∫
G(N )

n∏
j=1

χJ (θj)dX =
N∑

n=0

zn

n!

∫
Jn

det
n×n

KG(N )(θj , θk) dθ1 . . . dθn.

(9.8)
Now, for each G(N) we can express

KG(N )(x, y) =
N∑

h=1

φh,G(x)ψh,G(y) (9.9)

for appropriate φ and ψ. Therefore, by Gram’s identity

N∑
n=0

zn

n!

∫
Jn

det
n×n

KG(N )(θj , θk) dθ1 . . . dθn (9.10)

= det
N×N

(
I + z

∫
J

φj,G(θ)ψk,G(θ) dθ

)
.

Let MJ,G(N ) denote the N ×N matrix with entries

mj,k =

∫
J

φj,G(θ)ψk,G(θ) dθ. (9.11)
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Then

det
N×N

(
I + z

∫
J

φj,G(θ)ψk,G(θ) dθ

)
=

N∏
j=1

(
1 + zλj,G(N )(J)

)
(9.12)

where the λj,G(N )(J) are the eigenvalues of MJ,G(N ).

We claim that if the kernel is symmetric (i.e. KG(N )(x, y) = KG(N )(y, x)),
then the eigenvalues of MJ,G(N ) are also the eigenvalues of the integral operator
KJ,G(N ) defined by

(KJ,G(N )f)(θ) =

∫
J

KG(N )(θ, µ)f(µ) dµ (9.13)

acting on the N -dimensional space generated by {ψj(x) : 1 ≤ j ≤ N}.
Proof. Suppose that λ is an eigenvalue of MJ,G(N ) corresponding to an

eigenvector �v = (b1, . . . , bN )′ where the prime indicates transpose. Then, for
each j,

λbj =
N∑

k=1

mjkbk =
N∑

k=1

bk

∫
J

φj(θ)ψk(θ) dθ.

Multiplying both sides by ψj(µ) and summing over j, we obtain

λ
N∑

j=1

bjψj(µ) =

∫
J

( N∑
j=1

φj(θ)ψj(µ)
)( N∑

k=1

bkψk(θ)
)

dθ

=

∫
J

KG(N )(θ, µ)
( N∑

k=0

bkψk(θ)
)

dθ

=

∫
J

KG(N )(µ, θ)
( N∑

k=1

bkψk(θ)
)

dθ = KJ,G(N )

N∑
k=1

bkψk(µ)

so that λ is an eigenvalue of KJ,G(N ) corresponding to the eigenfunction f(µ) =∑N
k=1 bkψk(µ).

Recapitulating, we have found that

N∑
n=0

(1 + z)nEG(N )(n, J) =
N∑

n=0

zn

n!

∫
Jn

det
n×n

KG(N )(θj , θk) dθ1 . . . dθn

=
N∏

j=1

(
1 + zλj,G(N )(J)

)
(9.14)

where the λj,G(N )(J) are the eigenvalues of the integral operator KJ,G(N ) defined
by

(KJ,G(N )f)(θ) =

∫
J

KG(N )(θ, µ)f(µ) dµ.
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It can be shown that this equation scales appropriately for each G so that
the large N limit can be taken. This results in (with an obvious notation EG)

∞∑
n=0

(1 + z)nEG(n, J) =
∞∑

n=0

zn

n!

∫
Jn

det
n×n

KG(θj , θk) dθ1 . . . dθn (9.15)

=
∞∏

j=1

(
1 + zλj,G(J)

)
where the λj,G(J) are the eigenvalues of the integral operator KJ,G defined by

(KJ,Gf)(θ) =

∫
J

KG(θ, µ)f(µ) dµ.

The function F (z) of (9.4) is equal to each of the above with G=U. Thus,
we find for µm(s) that

µm(s) =
d2

ds2

dm−1

dzm−1

(
z−2

∞∏
j=1

(1 + zλj,U ([0, s]))

)∣∣∣∣
z=−1

. (9.16)

9.4 jth lowest eigenvalue

Let
νG(N )(j, s)

be the density function for the jth lowest eigenvalue so that

meas{A ∈ G(N) : the jth eigenvalue θj is smaller than s} (9.17)

=

∫ s

0
νG(N )(j, x) dx.

Then the set of A ∈ G(N) with θj > s is the disjoint union over n = 0, 1, . . . , j−
1 of the set of A with exactly n eigenangles in [0, s]. Thus,∫ ∞

s

νG(N )(j, x)dx =

j−1∑
n=0

EG(N )(n, [0, s]).

Therefore, by (9.14), we have

νG(N )(j, s) = − d

ds

j−1∑
n=0

dn

dzn

N∏
n=1

(1 + zλG(N ),n([0, s]))
∣∣
z=−1. (9.18)

In the large N limit, this becomes

νG(j, s) = − d

ds

j−1∑
n=0

dn

dzn

∞∏
n=1

(1 + zλG,n([0, s]))
∣∣
z=−1. (9.19)

For example,

νG(1, s) = − d

ds

∞∏
n=1

(1 − λG,n([0, s]). (9.20)
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9.5 Relations between the eigenvalues

In this section, we develop a relationship between the eigenvalues λU and the
eigenvalues λO and λS . (9.11). In the case that J = [−s, s], note that if
ψ(θ) is an eigenfunction of M[−s,s],U (N ) with eigenvalue λ then ψ(−θ) is also
an eigenfunction with eigenvalue λ, since

λψ(θ) =

∫ s

−s

SN (θ − µ)ψ(µ) dµ

implies that

λψ(−θ) =

∫ s

−s

SN (−θ − µ)ψ(µ) dµ

=

∫ s

−s

SN (θ + µ)ψ(µ) dµ

=

∫ s

−s

SN (θ − µ)ψ(−µ) dµ.

Therefore, if ψ(θ)+ψ(−θ) �= 0, then it is also an eigenfunction with eigenvalue
λ. A similar comment holds for ψ(θ) − ψ(−θ). Consequently, each eigen-
function can be taken to be even or odd. The even eigenfunctions are also
eigenfunctions of the integral equation with kernel

SN (µ− θ) + SN (µ + θ)

2

and the odd eigenfunctions are also eigenfunctions of the integral equation
with kernel

SN (µ− θ) − SN (µ + θ)

2
.

In general, if a matrix b is a “checkerboard” matrix, then the determinant
of b factors. Specifically, if bj,k = 0 whenever i + j is odd, then

det
N×N

(bj,k) = det
[(N+1)/2]

(b2i−1,2j−1) det
[N/2]×[N/2]

(b2i,2j)

where [x] is the greatest integer less than or equal to x.

We have such a factorization for det(I −M[−s,s],U (N )). Using the fact that∑
h

(δjh − cos(jθ) cos(hθ))(δhk − sin(hθ) sin(kθ)) = δjk − cos(k − j)θ

we deduce from (9.11) (see also Mehta (10.2.6)) that

det(I −M[−s,s],U (N )) = det(I −M[−s,s],SO(2N )) det(I −M[−s,s],USp(2N )).
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This gives a factorization

2N∏
n=1

(1 − λn,U (2N )(s)) =
N∏

n=1

(1 − λn,SO(2N )(s))(1 − λn,USp(2N )(s)) (9.21)

into even and odd eigenvalues. In particular, in the limit we have

∞∏
n=1

(1 − λn,U (s)) =
∞∏

n=1

(1 − λn,Sp(s))(1 − λn,SO,even(s)). (9.22)

Alternatively, we have

∞∏
n=1

(1 − λn,Sp(s)) =
∞∏

n=1

(1 − λ2n,U (s)) (9.23)

and

∞∏
n=1

(1 − λn,SO,even(s)) =
∞∏

n=1

(1 − λ2n−1,U (s)) (9.24)

provided that the λn,U (s) are indexed so that an even index n corresponds to
an even eigenfunction and an odd index n is for an odd eigenfunction of the
integral operator (9.13) with kernel KU (x, y) = S(x− y). These formulae can
be used to give expressions for νG(j, s) in terms of the eigenvalues λn,U (s).

10 Conclusion

These notes have introduced four of the basic eigenvalue statistics for the
groups of particular interest to number theorists and have shown the prelim-
inary steps needed to make these statistics somewhat tractable. There are
many directions to go after this basic introduction. Topics such as Painlevé
equations, Toeplitz operators, the Szego limit theorems, and averages of char-
acteristic polynomials are among the many developments that are essential for
a more full introduction to random matrix theory. Many of these are covered
elsewhere in this volume.
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Compound Nucleus Resonances,
Random Matrices, Quantum Chaos

Oriol Bohigas

It is important for him who wants to discover
not to confine himself to one chapter of science,

but to keep in touch with various others.
Jacques Hadamard ( [Had45], quoted in [Dy72] )

1 Introduction

The field ‘Random Matrix Theories and Number Theory’, the core of a Newton
Institute Workshop, is a meeting area for some mathematicians and theoretical
physicists. The purpose of this contribution, based on a talk given at the
Institute and which was followed by another also of historical character by
Michael Berry, is to give, particularly to the mathematicians, a flavour of the
initial motivations which lead some physicists to introduce and study ensembles
of random matrices. I was asked by the organizers to emphasize developments,
to which I partly contributed, which lead to the merging of two at first sight
seemingly disconnected fields, namely random matrix theories (RMT) and
quantum chaos (QC), the study of quantum systems whose classical analogue
is chaotic. Mention of directly related number theoretic problems will also be



148 Oriol Bohigas

made, as well as, towards the end, of some more recent developments. To make
this contribution more coherent, in section 5 I have touched aspects which were
developed by Berry in his talk.

This general introductory overview is admittedly biased and incomplete,
partly because it reflects my personal scientific itinerary, partly because it ex-
cludes important developments not directly related to spectral fluctuations of
(quasi) bound systems, the bottom line adopted here. In this respect, the
absence of the Novosibirsk-Milano-Atlanta activity on quantum suppression
of chaos and localization deserves a special mention. Since the mid 70’s Boris
Chirikov, Joseph Ford, Giulio Casati and some of their associates played an es-
sential role in the birth and development of what QC would become. Remark-
ably, this soviet-american-italian intense cooperation was started vigorously
by these authors at a time when the cold war was not a nightmare of the past,
but still a rather efficiently operating reality. Important questions of current
interest concerning wave functions, scattering and more generally problems
dealing with open systems, though closely related to the ones discussed here,
will also be ignored.

There are books and monographs which cover the different aspects of the
material touched here. Concerning RMT and their applications let me men-
tion [Po65], which contains an introduction as well as reprints of the important
papers in RMT prior to 1963, the classical book of Mehta [Me90], the forth-
coming book [Fo], the monographs [BFFMP81] and [GMW98]. Concerning QC
(as well as in most cases connections with RMT) one can consult the books
[Oz88], [Gu90], [Ha91], [CC95], [St99], [Cv], as well as the Proceedings of the
Les Houches Lectures [GVZ91]. A condensed matter physics perspective of
several of the problems discussed here can be found in various contributions to
[AMPZ95] and in [Ef97], [Ri00]. With few exceptions and because of the non-
technical character of the present article, no effort has been made in quoting
original material (nonetheless, references from paragraphs or figures literally
reproduced are given). It can be found in the books and monographs referred
to at the end. Occasionally, subjective statements are made and metaphoric
language used, departing from the sober and auster prose in common use in
academic journals.

Nobody better than Freeman Dyson can be chosen to exemplify the ideas
and problems, the general landscape described here. This contribution is ded-
icated to him at least for three reasons: (i) he has played a prominent role in
the setting and development of RMT with a series of classical and seminal pa-
pers [Po65]; (ii) he has provided inspiration, making connections and remarks
which have substantially contributed to enlarge this general field (fortunately
he has never completely recovered from the ‘random matrix disease’ he con-
tracted in the early 60’s); (iii) on a personal basis, some of his comments or
remarks have been invaluable for me.

Dyson is sometimes qualified as a ‘theoretical physicist’, or as a ‘mathe-
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matician’, or as an ‘applied mathematician’. In the physics community he is
known to everyone, not because of RMT but because of Quantum Electrody-
namics (QED). QED is the most precise physical theory ever invented by the
human mind. Presently some of its predictions are discussed, in connection
with experiment, at the level of 10−11 precision! And Dyson has been one
of the four men (with Feynman, Schwinger and Tomonaga) who constructed
QED in the late 40’s and beginning of the 50’s [Sc94].

Some number theorists know Dyson’s name as well. Is he a physicist, a
mathematician, is he both? In the foreword of [Hav03] he writes: ‘I fell in love
with mathematics at school and have been a professional mathematician ever
since’. However in [Dy96]:‘I am half mathematician and half physicist’. And
in [Dy72]: ‘I happen to be a physicist who started life as a mathematician’. In
[Dy96] he gives a more detailed account:

‘... Davenport was the first mathematician I met who had a group of young
research students around him and regularly supplied them with problems... I
told him my ideas about the Siegel conjecture and he encouraged me to continue
my efforts. At that time I had tentatively decided to switch my activities from
mathematics to physics... I thought that it would be more exciting to solve
one of the basic mysteries of nature than to continue proving theorems that
were of interest only to a small coterie of number theorists. But Davenport’s
friendliness tempted me to stay with mathematics. I decided to launch an all-
out attack on the Siegel conjecture and to let the result determine my future.
If I succeeded in proving it, I would be a mathematician. If I failed, I would be
a physicist. After three months of intensive work, I admitted failure. I would
after all be a physicist...

... It was easy for me to switch from mathematics to physics, because both
number theory and physics are branches of applied mathematics. I define a
pure mathematician to be somebody who creates mathematical ideas, and I de-
fine an applied mathematician to be somebody who uses existing mathematical
ideas to solve problems. According to this definition, I was always an ap-
plied mathematician, whether I was solving problems in number theory or in
physics... The main difference between number theory and physics is that in
number theory the experimental data are more accurately known. In recent
years the increasing use of computers has made number theory more than ever
an experimental science...’

In Table 1, partly following Dyson’s scheme, some of the landmarks of the
present ‘guided tour’ extending till the mid 80’s are given. The itinerary will
not necessarily be straight but will comprise zigzags and chronological back
and forths. It starts here, in Cambridge, at the Cavendish, with the discovery
of the neutron by Chadwick, an event often considered as the beginning of
nuclear physics. In Figure 1 is displayed the apparatus, of rustic appearence,
which led him to this far reaching discovery.
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Table 1: Scheme of the ‘guided tour’ provided in this article.
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Figure 1: Chadwick’s neutron chamber (The Cavendish Laboratory, University
of Cambridge).

The tour continues with the advent of the compound nucleus hypothesis
by Niels Bohr [Bo36]. With charged particles a nuclear reaction is partly pre-
vented by mutual electric repulsion. Such a mechanism does not operate for
the neutron (a neutral particle) and in reactions with neutrons much larger
probabilities (cross sections) are found. By studying neutron capture, Bohr
was led to the hypothesis that a long lived compound system was formed,
whose disintegration had no immediate connection with the first stage of the
collision. Long lived means here 10−16s, much longer than a typical nuclear
time interval (10−21s) derived from the known dimension of the nucleus. The
compound nucleus resonances (long-lived quasi-bound states) can be seen, for
instance, in the transmission measurements of neutrons through a nuclear tar-
get containing, say, A nucleons. Their energy appears as thin well located
peaks (resonances) of the cross-section as a function of the neutron incident
energy. The sequence of resonance peaks, which starts at the neutron threshold
(typically 6-7 MeV above the ground state for a heavy nucleus corresponding
to, say, the 106th level of the compound nucleus containing (A + 1) nucleons),
depends on the target nucleus chosen. An example of such a cross section is
displayed on Figure 2.

The next stop will be to signal the discovery of nuclear fission by Hahn
and Strassmann. This occurred at the border of the period when the world, as
well as the nucleus, would split, leading to some of the most ferocious events
of contemporary history: among them, the manufacturing and dropping of
atomic bombs. Both the discovery of fission and the perspective of atomic
(nuclear) energy would have enormous consequences. D. Wilkinson has given



152 Oriol Bohigas

Figure 2: Total cross section for the reaction n + 232Th as a function of the
neutron energy (from the compilation ‘Neutron Cross Sections’, 1964)

succinctly an awe-striking view [Wil68]: ‘Fission is a process of deadly fasci-
nation: had nature chosen her constants just a little differently, we should have
been deprived of its potential for social good and spared its power for social evil.
Despite the former and despite the indeniable fact that the latter is responsible
for nuclear and particle physics being decades in advance of what would other-
wise have been their time, I know what my own choice of the constants would
have been.’

2 Random Matrix Theories (RMT): their ori-

gin and developments

After the end of the war, military as well as civilian purposes lead to an impres-
sive effort in connection with nuclear fission. It was important, for instance
for nuclear reactor purposes, to understand the properties of the compound
nucleus resonances (see Figure 3). It is in this general context that RMT
were introduced by Eugene Wigner. On Figures 4 and 5 are reproduced parts
of Wigner’s contributions to two conferences on neutron spectroscopy held in
the mid 50’s. On the former he gives a guess of the nearest neighbor spacing
distribution p(s),
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Figure 3: From Wigner’s review in [Wi67].

p(s) =
π

2
s exp

(
− π

2
s2), (2.1)

(what we call Wigner’s surmise) which happens to be close to the asymptotic
(large N ×N matrix) result. He gives a (primitive) comparison with data. He
writes (for what we call β = 1, real symmetric matrices, Gaussian Orthogonal
Ensemble-GOE, Wishart distribution) the joint distribution of eigenvalues

P (E1, . . . , EN ) = CNβ exp

(
−
∑

i

E2
i

)∏
i<j

|Ei − Ej |β (2.2)

( β = 2 (4) for hermitean (quaternion real) matrices - Gaussian Unitary
(Symplectic) Ensemble; GUE (GSE)). In the latter, after (surprisingly to me)
stating that the spacing of levels is not terribly important, he again refers to
(2.1), and to his work with Von Neumann [VW29] on variation of eigenvalues
and eigenfunctions in quantum mechanics under continuous changes of one or
several parameters, as probably forgotten (which it is not, at least presently).
He states that something like (2.1) is probably a universal function (indepen-
dent on the details of the model) and finally he gives the eigenvalue distribution
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Figure 4: Part of Wigner’s contribution to Gatlinburg Conference [Wi56].
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Figure 5: Part of Wigner’s contribution to Columbia University Conference
[Wi57].
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corresponding to (2.1), namely what we call Wigner’s semi-circle law:

ρ(E) =

⎧⎨⎩
1
2π

(N − E2)1/2 for |E| <
√

N

0 otherwise.
(2.3)

The basis of RMT can probably not be stated more succinctly and emphatically
than in the quotation from Wigner

‘...the Hamiltonian which governs the behavior of a complicated
system is a random symmetric matrix with no particular properties
except for its symmetric nature.’ [Wi61]

The three main ingredients specifying the Wigner-Dyson ensembles are: i)
space-time symmetries, ii) isotropy in Hilbert space, iii) statistical indepen-
dence of the matrix elements. i) and ii) are physical requirements, iii) is an
(unessential) requirement of mathematical simplicity.

One major task that RMT theorists faced was to derive, from (2.2), the
n-point correlation functions, spacing distribution etc. This has been the

achievement of Gaudin, Mehta, Dyson and some others (see reprints in [Po65]
) (we have heard about Gaudin’s method several times in this workshop).
Dyson intensively worked on it for more than one decade, starting from the
early 60’s. He gave important generalizations and interpretations. In par-
ticular, he introduced the circular ensembles (ensembles of unitary matrices
asymptotically equivalent to the Gaussian ones), the Coulomb gas, the brown-
ian motion ensembles. (In the physics literature the circular unitary ensemble,
CUE, is the group U(N) which appears in many of the number theoretical
problems discussed in this workshop).

The beauty and depth of RMT were recognised and appreciated almost
since their birth: ‘... it is the one-dimensional theory par excellence! Not only
does it have immediate usefulness and validity for real physical systems but,
from the mathematical point of view, it has given rise to profound results and
makes use of the deepest theorems of analysis. One might almost say that it
is also a new branch of mathematics itself.’ [LM66]. Though a mature theory
already in the mid 70’s, RMT have known further and partly unexpected devel-
opments since. To discuss them goes beyond the aim of this contribution, but
let us mention some of them. For systems depending on external parameters
it has been shown that parametric correlations are universal. This extends sig-
nificantly the universalities previously found and gives to the general physical
picture a much broader view. From a more mathematical standpoint, Brézin
and Zee, in the early 90’s, found new results concerning universalities with
respect to the confining potential, thereby starting new lines of research. In
the early 80’s, physicists from the Kyoto school, followed by Tracy, Widom,
Mehta, Forrester and others, found new connections with Painlevé equations.
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Two major developments have taken place more recently: the Riemann-Hilbert
approach to random matrices [De98] and a general setting of measures of clas-
sical groups and spectral properties, with emphasis on applications to number
theory [KS99]. Ref. [BI01] based on talks and lectures delivered at the MSRI
Berkeley semester ‘Random Matrix Models and Their Applications’ in Spring
1999 includes contributions of physicists and mathematicians, with emphasis
on recent developments.

As explained above, RMT were introduced in order to understand empir-
ical facts. How far did the comparison with data go? Since the 60’s a group
lead by J. Rainwater including Havens and joined by Camarda and others,
engaged, at the Nevis Laboratory of Columbia University, in a long term and
systematic study of compound nucleus resonances by neutron time of flight
detection. One main motivation strongly supported by Dyson was to test the
RMT predictions. The task was difficult because what was ideally needed
were long and pure sequences of consecutive resonances (no missing levels, no
spurious levels) having the same exact quantum numbers. This patient and
laborious enterprise lasted for many years. Among other things it provided for
say 40 nucleides, the parameters of presumably pure and complete sequences
of consecutive resonances each containing of the order of 100 levels (additional
information coming from high resolution proton resonance data on medium
nuclei were also obtained). These efforts did not momentarily change radically
the rather disappointing conclusion reached some years before by Dyson and
Mehta: ‘We would be very happy if we could report that our theoretical model
had been strikingly confirmed by the statistical analysis of neutron capture lev-
els. We would be even happier if we could report that our theoretical model
had been decisively contradicted... Unfortunately, our model is as yet neither
proved nor disproved.’ [DM63]

Though RMT were born in a nuclear physics context, Gorkov and Eliash-
berg, in a seminal work well ahead of their time, applied them in describing
the electromagnetic properties of weakly disordered small metallic grains. The
dimension of the system is so small that the discrete character of the excita-
tion spectrum, as well as its nature (presence or absence of level repulsion,
for instance), must be taken into account. However it took more than ten
years before this problem was fully understood theoretically, through Efetov’s
supersymmetric nonlinear sigma-model formulation of the problem [Ef97].

Let me now trace an itinerary, in several aspects remarkably parallel to the
physics itinerary briefly depicted above, concerning this time some number
theoretical problems related to the Riemann zeta function. I shall start with
A. Turing’s contribution (see Table 1). Turing was a distinguished British
mathematician educated here in Cambridge, known worldwide for his concept
developed in the 30’s of universal machine (Turing machine). During World
War II he greatly contributed in breaking the code used by the German Navy.
As a consequence the North Atlantic traffic was safely controlled by the Allies
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during a long period of time.

Towards the end of his short, dense and exceptionally fruitful life [Ho00],
Turing engaged himself in one of the first systematic efforts to devise and
use software in an electronic computer for mathematical purposes, a highly
unconventional activity at that time. It took place at the prototype Manchester
computer (see Figure 6). In his last published mathematical paper ‘Some
calculations of the Riemann zeta-function’, [Tu53] Turing writes: ‘... The

Figure 6: The prototype Manchester computer (Department of Computer Sci-
ence, University of Manchester).

calculations were done in an optimistic hope that a zero would be found off
the critical line, and the calculations were directed more towards finding such
zeros than proving that none existed... If it had not been for the fact that the
computer remained in serviceable condition for an unusually long period from
3 p.m. one afternoon to 8 a.m. the following morning it is probable that the
calculation would never have been done at all... The general reliability of the
machine was checked from time to time by repeating small sections... The
interval 1414 < t < 1608 was investigated and checked, but unfortunately at
this point the machine broke down and no further work was done. Furthermore
this interval was subsequently found to have been run with a wrong error value,
and the most that can consequently be asserted with certainty is that the zeros
lie on the critical line up to t = 1540, a negligible advance, Titchmarsh having
investigated as far as 1468...’ . A sort of uncertain heroic atmosphere emanates
from this description. Despite the sad conclusion after several calamitous
events, this work was one of the first announcing a new chapter in which
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experimental mathematics performed with computers would play an important
role.

The comparison of Figures 1 and 6 provides a striking view of evolution
in opposite directions. The ancestors of the modern gigantic particle physics
accelerators and detectors needed for new discoveries on the constitution of
matter (the CMS detector being presently assembled at CERN to operate at
the Large Hadron Collider (LHC) in 2007 weighs more than 10.000 tonnes!)
were relatively small primitive detector devices (Figure 1). In contrast the
ancestors of the compact, ever more fast and powerful modern computers were
the kind of comparatively dinosaur-looking apparatus reproduced in Figure 6.

The first contact between RMT and Riemann’s zeta function has its ori-
gin in the well known encounter of Hugh Montgomery and Freeman Dyson.
Montgomery has given a vivid description of the scene [Mo04]:

‘ Because of possible applications to class numbers of imaginary quadratic
fields, I was interested in showing that the Riemann zeta function has pairs of
zeros that are close together. I worked on this in late 1971 and early 1972, in
Cambridge, where I was a graduate student at the time. In March, 1972 I at-
tended a conference on analytic number theory at Washington University in St.
Louis, and spoke on my results. On my way back to Cambridge I made a stop
in Princeton, in order to talk with Selberg and show him my results. I talked
with Selberg in the morning, in his office. That afternoon, at tea, by chance
I was talking with Chowla. S. Chowla was a number theorist at Penn State
University, but he made frequent visits to the Institute for Advanced Study.
Back in the 1930s, Chowla had worked with such people as Mordell, Daven-
port, Mahler, and Erdos. At that time I had known him personally for two
or three years. Chowla noticed that Freeman Dyson was standing across the
room. I knew Freeman by sight, as I had been a visitor at IAS the year before
(i.e., the academic year 1970-1971). A number of times I had encountered
Freeman, and we would smile and nod to each other. We had never spoken,
and I doubt that he knew who I was, but I was familiar with his work in num-
ber theory dating from the 1940s, and I knew that he was an old friend of my
supervisor Harold Davenport, who had died in June, 1969. On the day in ques-
tion, Chowla noticed that Freeman was across the room, and suggested that he
should introduce me to him. I demurred, as I saw no reason for bothering the
great man. Chowla insisted, and I demurred again. This went back and forth
for some time, until eventually Chowla won. We walked over to Freeman, and
Chowla introduced me, explaining that I was a student of Davenport. Freeman
was very nice and charming, and asked me what I was working on. I responded
that it looks like the differences between zeros of the zeta function have a distri-
bution with a density 1− ( sin πr

πr
)2. Freeman immediately responded that this is

the pair correlation density of random matrices. I don’t remember much about
the rest of the conversation, it didn’t last too much longer.
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The next day, Selberg gave me a handwritten note from Freeman that read
“Atle, tell Montgomery to look at p. 76 of Mehta’s book on random matrix
theory. Freeman.”. This quote may not be 100% accurate, but it’s pretty
close...

In my talk in St. Louis, I did not use the term “pair correlation”, because
I did not know it at the time. When I prepared my paper for the conference
proceedings [Mo73], I introduced terminology that I learned from Mehta’s book.
The mathematics didn’t change, only the names and notation.

When I first found the results, I found them a little puzzling. I felt that
there was a message in what I had found, but didn’t know what that message
was. This was resolved by my conversation with Dyson, because I learned then
that it’s simply a matter that the zeros look like eigenvalues.’

Montgomery’s result is at the origin of much of the subsequent work con-
cerning statistical properties of Riemann’s zeros and RMT. Odlyzko, one of
the main actors, puts it as follows (short answers to questions I asked him
recently [Od04]): ‘ I had been interested in the RH ever since my college days.
(My informal advisor, who supervised my senior thesis, was Tom Apostol, and
my Ph. D. thesis supervisor was Harold Stark, both students of D.H. Lehmer,
who had done some of the early computations of zeros, and both had lectured
on the zeta function in the classes I took from them.) Furthermore, my Ph.
D. thesis work on discriminants of number fields depended heavily on zeros of
Dedekind zeta functions, in particular on their vertical distribution, so I had
plenty of reasons to be interested in Montgomery’s work.

A major spur to my involvement in this project was the acquisition by Bell
Labs of a Cray-1, which was the top supercomputer in the world at the time.
As I recall, we were the first private company to get one. That was around
1979 or so.

Since the Cray-1 got its speed advantage largely from vectorization, which
was a new technique at that time, it took a while for users to port their programs
from other machines. Hence there was spare capacity, and so the Bell Labs
Computer Center offered to give out 5-hour chunks of time for worthwhile
scientific purposes. (There was internal accounting with charges for computer
time, and this was for free, on a temporary basis.) I applied and got that 5
hours, and afterwards a few more. I asked for it to do the zeta computations,
which I had been interested in doing ever since hearing Montgomery talk about
his work at the Institute for Advance Study in Princeton a couple of years ago
and verifying that the other people who had worked on zeros (Brent, te Riele,
Schoenfeld) had not computed zeros, only verified they were on the critical line.’

Odlyzko has been intermittently digging deeper and deeper (climbing higher
and higher on the critical line) in the Riemann ore ever since. This is because
the asymptotic limit is often approached slowly when dealing with the zeta
function. He has made calculations of various stretches of say 1010 consecu-
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tive zeros up to say the 1023th zero (remember that stretches of consecutive
compound nucleus resonances contain typically only of the order of hundred
levels!). Once extracted, he has made the precious metal available to the users
worldwide at his website [Od]. The work has been extended partly to other L-
functions (see, for instance, Rubinstein’s contribution to this workshop). And
it has led, among other things, to what is referred to as the Montgomery-
Odlyzko conjecture: Asymptotically Riemann’s zeros behave locally as GUE
(or CUE) eigenvalues.

3 My first two encounters with RMT:

An (unanswered) question, an answer

I started my activity in theoretical physics working on the nuclear many-body
problem, specifically in nuclear spectroscopy and nuclear structure problems.
One of the more successful models in this field is the nuclear shell model. One
chooses a finite Hilbert space generated by distributing say n valence nucleons
(fermions) in a set of Ω single particle states, and one solves the Schrödinger
equation in this subspace. The Hamiltonian is a (supposedly) known operator
which describes the pairwise interaction among the nucleons. It is specified by
the two-body matrix elements, namely the Hamiltonian matrix elements in the
basis of the two-nucleon system (which has dimension

(Ω
2

)
). When dealing

with more (n > 2) valence nucleons, the Hamiltonian matrix has a rapidly
increasing dimensionality (=

(Ω
n

)
), and its matrix elements can be expressed

as linear combinations of the two-body matrix elements. A shell-model cal-
culation consists then in building and diagonalizing the Hamiltonian matrix.
The model is considered successful when the low-lying part of the spectrum
does reproduce with some accuracy the observed spectrum. Because of the ex-
ploding dimensionalities, this programme can be completed only for relatively
light nuclei. Typical numbers corresponding to, say, silicium isotopes, are 10
valence nucleons, 50 two-body matrix elements, dimensionalities of the order
of a few thousands, ‘interesting’ eigenvalues being at most the 100 smallest
ones. One starts therefore from 50 numbers, one computes of the order of
one million numbers (most of them zeros), and finally one pays attention to
say 100 eigenvalues. This does not seem to be a very efficient procedure. Is
it not possible to attack the problem differently? It is one of the important
contributions of Bruce French to have addressed this type of question from a
new and fresh point of view.

However, let me first tell something concerning French’s scientific back-
ground. Like other promising theoreticians of his age, he started working in
the not yet well formulated (see previous section) QED. Under the supervision
of Weisskopf, he started a relativistic calculation of the at that time not yet
measured hydrogen Lamb shift (the detailed description of the spectrum of
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the hydrogen atom, a bound proton and electron system, the simplest system
one can imagine). Eventually, after complicated unconventional calculations,
French produced a final result. Two other physicists, already famous at that
time, Schwinger and Feynman, addressed the same question and produced an-
other result, in some respects by different methods. Their result agreed among
themselves and disagreed with the one obtained by French. It turned out at
the end that the result obtained by French was the correct one (see [Sc94], for
a detailed account).

After this brilliant start, French moved to problems of nuclear physics, were
he made important contributions. Since the 60’s, he was engaged in problems
of developing and understanding shell model calculations. He put forward the
idea of ‘statistical spectroscopy’, namely to examine shell model results not by
observing individual levels but rather by studying them from a statistical point
of view. It turned out that the spectral density of shell model calculations was
showing a distribution close to a Gaussian (normal) distribution. This was in
striking contrast with Wigner’s semi-circle law obtained in RMT. On the other
hand, the spectral fluctuations of shell-model spectra seemed to be consistent
with RMT predictions. In order to try to identify this, and maybe other,
qualitative similarities and differences, French and Wong, on the one side, and
Flores and myself on the other, introduced independently and simultaneously
in the early 70’s what we called Two-Body Random Ensembles (TBRE): the
two-body matrix elements were taken as independent random variables and
from them the n-body matrix elements were computed. By construction, for
n = 2, the ensemble coincided with the Wigner-Dyson ensemble and for n > 2
it differed. Indeed the Pauli principle as well as correlations among matrix
elements, two important physical ingredients, were now explicitly taken into
account. We performed numerical simulations and we reached the conclusion
that the spectral density, with increasing n, tended to a Gaussian distribution
and, tentatively and after some controversy and hesitations (see [Ga72]), that
the spectral fluctuations were the same as for the GOE. This work had some
impact in the random matrix community and Dyson wrote to Mehta [Dy71]:
‘Dear Madan Lal... You have certainly thought about the recent work of Bo-
higas and Flores, French and Wong. This I find very good and interesting.
But everything is numerical, nothing understood theoretically. So you have an
obvious and important problem to work on – calculate rigorously the one and
two-level distribution functions for the Bohigas-Flores ensemble in the limit of
large numbers of levels. Au revoir – Yours. Freeman...’ As far as I know,
Mehta never dealt with the problem. Mon and French, few years later, suc-
ceeded to a large extent in understanding analytically the one level distribution
and the transition from semi-circle to Gaussian distribution. Despite several
attempts, no further decisive progress has been made and the two and higher
point correlations of the TBRE have resisted an analytical treatment. After
more than 30 years, the problem is still waiting for a solution (see for instance
[BFFMP81] or Benet and Weidenmüller in [FSV03]).
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My second encounter with RMT came ten years after. We decided, with
Rizwan Ul Haq and Akhilesh Pandey, to reconsider the analyses of the nuclear
resonances. We introduced mainly two new ingredients: i) instead of making
a comparison of individual nuclei, one by one, with theoretical predictions, we
adopted the natural point of view that each resonance sequence of a given nu-
cleus should be considered a realization and that the set of resonance sequences
constitutes a sample of the ensemble which we called the Nuclear Data Ensem-
ble (NDE); ii) we focused on partially new spectrally averaged measures. Both
ingredients would greatly improve the statistical significance when comparing
to theory. On Figure 7 are reproduced some of the results. In [HPB82] ( ‘Fluc-

Figure 7: Left: nearest neighbour spacing histogram for the nuclear data en-
semble (NDE) [BHP83]. Right: Dyson-Mehta spectral rigidity ∆3 for NDE
[HPB82]. GOE and Poisson predictions are plotted for the sake of compari-
son.

tuation Properties of Energy Levels: Do Theory and Experiment Agree?’) we
concluded: ‘We have thus established an astonishingly good agreement between
a parameter-free theory (GOE) and the data. We emphasize that, apart from
rotation and time-reversal invariance resulting in the real symmetric nature of
the matrices, the GOE takes no account of the specific properties of the nu-
clear Hamiltonian... The good agreement with experiment, coupled with the
theoretical understanding which is slowly emerging, reinforces the belief that
the GOE fluctuations are to be found in nature under very general conditions.’
Of course, I sent a preprint to Dyson. He replied [Dy81]: ‘Thank you for your
beautiful paper on the energy-level statistics... I am amazed by the exact agree-
ment between theory and experiment. I think you succeeded, after everybody
else had failed, for two reasons. One, you put all the data together. Two, you
calculated the ∆3 only for short stretches of levels instead of trying to cover
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long stretches. The second innovation was decisive in making the results in-
sensitive to an occasional mistake in the data... your analysis is so perfect that
I do not know how to improve it.’ Could we have expected a more rewarding
answer? Not only we were receiving the ‘nihil obstat’ but a benediction from
one of the highest authorities! I must say however that sometimes I felt as
having behaved as a predator: after beautiful non-trivial developments, the
theory was there, after painful long term work, the data were there; we had
merely to assemble some pieces with due care in order to conclude and to take
part in the final banquet.

4 Searching for a basis for RMT fluctuations:

Chaotic Dynamics

Once the ability of RMT to predict fluctuation properties exhibited by the data
was established, it still remained to understand in physical terms their origin,
their domain of validity and their limitations. Wigner qualified a system to
which RMT could be applied as a ‘complicated system’ (see quotation after
equation (2.3)). Does this mean a many-particle system with many degrees
of freedom, like the atomic nucleus, or could it also mean something else? It
may be useful at this point to recall two major achievements, one related to
classical mechanics, the other to quantum mechanics.

A new field of physics (and mathematics) has known impressive develop-
ments since the 50’s, namely the study of dynamical systems which, though
deterministic, are unpredictable due to the presence of instabilities. Henri
Poincaré may be considered as its founder. Here we will only refer to Hamil-
tonian conservative systems. When parameters of the Hamiltonian are varied,
the system may undergo very complicated changes, reflected in the geometrical
properties of phase space. For instance, by changing a parameter, the system
may undergo a transition from regular to chaotic motion, the regular situation
being characterized by the presence of invariant tori in phase space, the fully
chaotic by their absence. The effect of a small perturbation on an integrable
system is the content of the Kolmogorov-Arnold-Moser (KAM) theorem, a
landmark in the field (see Table 1). The problem of two bodies attracted by
the gravitational force (the Kepler problem of the Sun-Earth system, the clas-
sical analogue of the hydrogen atom mentioned above) is one of the simplest
and more famous examples of regular systems. For the present discussion an
important outcome in the study of dynamical systems must be mentioned:
the motion may be very complicated, in fact fully chaotic, even if only few de-
grees of freedom are present. Specifically, two degrees of freedom are sufficient
for conservative Hamiltonian systems to exhibit hard chaos. On Figure 8 are
displayed two examples, one of regular motion, the other of chaotic motion:
a free particle inside a two-dimensional box (billiard) moves on straight line
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Figure 8: A typical trajectory in a billiard. Left: circular billiard (regular).
Right: Bunimovich’s stadium (chaotic).

segments and when hitting the boundary it bounces elastically undergoing a
specular reflection. Generically, systems show mixed phase spaces: part of the
phase space is occupied by invariant tori which are surrounded by chaotic seas.
In summary, the study of conservative systems indicates a route which leads
from integrable (regular) motion to chaotic (irregular, complicated) motion.

Let us now turn to quantum mechanics and to its relation with classical
mechanics. A quantum description is necessary when dealing with processes
involving atomic or smaller scales. On the other hand, macroscopic objects are
well described by classical mechanics. Do quantum and classical descriptions
conflict, does one contain the other? Bohr’s correspondence principle addresses
these questions. A. Pais, a particle theoretical physicist who, in his late years,
has worked on the history of contemporary physics, writes [Pa91]: ‘The corre-
spondence principle is, I think, Bohr’s greatest contribution to physics after his
derivation of the Balmer formula (hydrogen atom). It is the first manifestation
of what would remain the leading theme in his work: classical physics, though
limited in scope, is indispensable for the understanding of quantum physics. In
his own words: “Every description of natural processes must be based on ideas
which have been introduced and defined by the classical theory.”’ Sometimes the
correspondence principle is stated as telling that in the classical limit, when
interference effects can be neglected, the predictions of quantum and classi-
cal mechanics must agree. One further step is taken when asserting, as some
physicists do, that anything classical mechanics can do, quantum mechanics
can do better. Some cosmologists, Hawkings, for instance, don’t even hesitate
to consider the wave function of the universe. Dyson summarizes this wide
span of views as follows [Dy04]: ‘... The broad school says that quantum me-
chanics applies to all physical processes equally, while the strict school says
that quantum mechanics covers only a small part of physics, namely the part
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dealing with events on a local or limited scale... The historic exponent of the
strict view of quantum mechanics was Niels Bohr, who maintained that quan-
tum mechanics can only describe processes occurring within a larger framework
that must be defined classically.’

Irrespective of different interpretations and philosophical preconceptions,
the correspondence principle has been a powerful source of inspiration. Based
on it and in the light of the developments in chaotic dynamics described above,
Percival addressed questions concerning what we may call ‘fingerprints’ of
chaos in quantum systems. For instance, in a short article suggestively en-
titled ‘Regular and irregular spectra’ [Pe73], he put forward, based on the
correspondence principle and semiclassical reasoning, the notion that in the
quantum discrete spectrum of a bound system to each level could be associ-
ated the character of being either regular or irregular, and he specified the
properties characterizing regular and irregular states.

It was therefore natural to investigate the characteristics of the quantum
spectra of systems known to be fully chaotic like appropriately chosen billiards
(Sinai’s, consisting in a square with a central circular disk, Bunimovich sta-
dium, etc). One had to (numerically) compute the spectrum of the Laplacian
on a flat region of the plane with the corresponding boundary, the wavefunc-
tion vanishing, say, on it. Some results of the first attempts in this direction
are reproduced on Figure 9. Their authors concentrated on the nearest neigh-
bour spacing distribution and, to a large extent, on its behaviour at the origin.

Figure 9: Nearest-neighbour spacing distribution of quantum billiards. (a)
Bunimovich’s stadium [MK79]; (b) same [CVG80]; (c) Sinai’s billiard [Be81].
The GOE prediction has been superimposed for the sake of comparison.

Was it linear, as in RMT, or with a power different from one, as Zaslavski
was suggesting? The numerical results, though highly suggestive, were not
quite conclusive. Inspired by these works and equipped with some experience
in RMT we decided, with M.-J. Giannoni and C. Schmit, to examine further
the problem. We felt that only the tip of the iceberg was being considered,
because RMT had much more in it than just, say, the linear level repulsion.
What, for instance, about spacing correlations, spectral rigidity and other
RMT predictions which we had previously considered when analyzing nuclear



Compound nucleus resonances, random matrices, quantum chaos 167

resonance data? Some of the results obtained, corresponding to Sinai’s bil-
liard (we also investigated Bunimovich’s stadium) are reproduced in Figure
10. Though with present numerical capabilities and some developments in nu-

Figure 10: Spectral fluctuations of Sinai’s billiard [BGS84a]. (a) nearest-
neighbour spacing distribution; (b) Dyson-Mehta spectral rigidity. Poisson
and GOE predictions for the sake of comparison.

merical methods they appear as primitive, we could make significant progress.
In Ref [BGS84], entitled ‘Characterization of Chaotic Quantum Spectra and
Universality of Level Fluctuation Laws’ we concluded: ‘All fluctuation prop-
erties of Sinai’s billiard investigated so far are fully consistent with GOE pre-
dictions... The present work should have further developments (for instance,
when time-reversal invariance does not hold, the adequate model in RMT is the
Gaussian unitary ensemble (GUE) and one should look for “simple” chaotic
systems having GUE fluctuations). It is an attempt to put in close contact two
areas – random matrix physics and the study of chaotic motion – that have
remained disconnected so far. It indicates that the methods developed in RMT
to study fluctuations provide the adequate tools to characterize chaotic spec-
tra and that, conversely, the generality of GOE fluctuations is to be found in
properties of chaotic systems. In summary, the question at issue is to prove or
disprove the following conjecture: Spectra of time-reversal-invariant systems
whose classical analogs are K systems show the same fluctuation properties
as predicted by GOE (alternative stronger conjectures that cannot be excluded
would apply to less chaotic systems, provided that they are ergodic). If the con-
jecture happens to be true, it will then have been established the universality
of the laws of level fluctuations in quantal spectra already found in nuclei and
to a lesser extent in atoms. Then, they should also be found in other quantal



168 Oriol Bohigas

systems, such as molecules, hadrons, etc.’ This conjecture, or elaborate ver-
sions of it, is often referred to in the literature as the random-matrix or BGS
conjecture (see Table 1).

Once again, I sent a preprint to Dyson, and once again he sent back an
encouraging reply [Dy83a]: ‘This is a beautiful piece of work. It is extraordi-
nary that such a simple model shows the GOE behavior so perfectly. I agree
completely with your conclusions. I would say the result is not quite surprising
but certainly unexpected... I once suggested to a student at Haverford that he
build a microwave cavity of irregular shape and observe the resonances to see
whether they follow the GOE distribution. So far as I know, the experiment
was never done... I always thought the cavity would have to be a compli-
cated shape with many angles. I did not imagine that something as simple
as the Sinai region would work...’. It should be realized that there is a com-
plete equivalence between the stationary Schrödinger equation for a particle
in a 2-dimensional box (spectrum of the Laplacian) and the eigenmodes of
an appropriately shaped microwave cavity (also equivalent to the Helmholtz
equation governing the membrane vibrations of a drum). Some years later,
in the early 90’s, Stöckmann at Marburg, Sridhar at Boston and Richter at
Darmstadt started experimental programmes with microwave cavities on these
lines (see for instance, their contributions in [BA01], or [St99]) and many re-
sults were analysed on the light of RMT. This type of studies have been later
extended to investigate acoustic waves in metallic blocks, quartz crystals, etc.
Though the elastic wave equation is no longer equivalent to the Schrödinger
equation but more complicated, still many properties seem to be well described
by RMT (see, for instance, contribution of Ellegaard in [BA01] or [St99]). I
find it remarkable that Porter clearly forsaw these possibilities almost thirty
years in advance [Po65]: ‘That matrix ensembles will most likely be relevant
to the fields of acoustics and elasticity is rather evident. Some work in room
acoustics has already pointed out in this direction... there is clearly further
room in the context of this volume for at least some additional careful thought
with respect to the utility of these ideas in other problems in which the system
being considered is complex enough that many normal modes are present.’

5 Towards a dynamical theory of quantum

spectral fluctuations

To understand the progress made since the 70’s in the description of quan-
tum spectral fluctuations, it may be convenient to recall some basic facts
related to the development of quantum mechanics since its early days. Be-
fore its modern formulation in the mid 20’s with the revolutionary works of
Schrödinger, Heisenberg and some others, there existed the ‘old quantum me-
chanics’. One of the major achievements of the incipient quantum theory
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was the successful description of the spectrum of the hydrogen atom, the pro-
ton (nucleus)-electron system referred to above (Balmer formula, for instance).
This was accomplished by applying a far from systematic quantization scheme,
the Bohr-Sommerfeld quantization, later improved. It relied heavily on prop-
erties of the trajectories of the classical system. After this remarkable success,
the next step was obvious, namely to generalize the treatment to the helium
atom (the nucleus plus two electrons). But this lead to disasters. In [Pa91]
this period is described as ‘spring of hope, winter of despair’. Max Born, in
1925, would write: ‘The systematic application of the principles of the quantum
theory... gives results in agreement with experiment only on those cases were
the motion of a single electron is considered; it fails even in the treatment of
the motion of two electrons in the helium atom’. Soon after, the quantum rev-
olution took place with Schrödinger’s wave equation and Heisenberg’s matrix
mechanics and ever since most of the approaches to determine the quantum
spectrum of a bound system, for instance, take as starting point the time in-
dependent Schrödinger equation. The task consists then in devising analytic
and/or numerical approximations to solve it, the interest in the ‘old quantum
mechanics’ being left to the inquiry of science historians.

However, the understanding of the origin of the failure of the old quantum
theory is at the origin of some of the most interesting developments related
to our subject. The problems encountered in the quantization à la Bohr-
Sommerfeld of systems with several degrees of freedom were clearly identified
by Einstein. In a paper published in 1917 and practically unnoticed during
forty years [Ei17], he realized that the application of the known quantization
scheme was restricted to systems whose phase space exhibited only, using mod-
ern terminology, invariant tori (regular systems). Most of the systems, namely
with mixed or fully chaotic phase space, were therefore excluded. Among
them the famous three-body problem, and a particular case of it, the Sun-
Earth-Moon problem, investigated intensively since Newton, passing through
Poincaré, in which chaos is already lurking. The helium atom, a quantum
three-body problem (nucleus and two electrons), can therefore not be treated
in the frame of torus quantization, thereby explaining the failure referred to
above of the old quantum mechanics.

Starting from the late 60’s, due to a large extent to the solitary effort
of Martin Gutzwiller, this situation changed dramatically (see Table 1). His
method can be derived by starting from Feynman’s path integral (exact) for-
mulation of quantum mechanics and by using the stationary phase approxima-
tion [Gu90]. Gutzwiller succeeded in devising an approximate and systematic
quantization scheme which applies to chaotic systems and which, like for regu-
lar systems, requires only the knowledge of the properties of the periodic orbits
of the corresponding classical system. This approach is often referred to as the
periodic orbit theory (POT). Work on closely related lines was performed in-
dependently and almost simultaneously by Balian and Bloch [BDVM75]. The
physical motivations and emphasis were however different: Gutzwiller was
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mainly interested in the quantization of chaotic systems, Balian and Bloch
on shell effects, namely strong departures from uniformity of the quantum
spectrum, bunching of levels, effects which are mainly connected to regular
motion.

For further discussion, it is convenient to recall that the quantum level
density ρ can be separated in a smooth part ρ and a fluctuating, or more
appropriately denoted oscillating part ρosc

ρ(E) = ρ̄(E) + ρosc(E) (5.1)

For a billiard, for instance, ρ is determined by global geometric properties
(surface, perimeter,...). The oscillating part ρosc is given by

ρosc(E) = 2
∑

p

∞∑
r=1

Ap,r(E) cos [rSp(E)/� + µp,r] (5.2)

The summation is over primitive periodic orbits, labelled by p, r are the rep-
etitions, � is Planck’s constant, Sp is the action of the corresponding periodic
orbit and µp,r its Maslov index related to the number of conjugate points.
The amplitudes Ap,r have different properties depending on the system being
considered, regular or chaotic. Here and in what follows (crucial) questions of
convergence will be ignored.

For regular systems the number of periodic orbits increases with energy
as a power law and periodic orbits appear in continuous families. This has
far reaching physical consequences. Shell effects in nuclei responsible for the
existence of the so called magic numbers (nuclei having particular numbers
of protons or neutrons have exceptional properties), the dynamics of nuclear
fission, for which shell effects are essential, the cosmic relative abundances of
elements, the possible existence of super-heavy elements, the existence of shells
(and supershells) in metallic clusters, are examples of phenomena to which the
POT is applicable. Often it gives, in its almost simplest formulation, a clear
physical insight and a semi-quantitative description [BB97] (for an excellent
introduction to shell effects in nuclei from a modern perspective, in which
chaotic features are also discussed, see [Le04]). In the 70’s, Strutinsky and
collaborators applied the ideas of POT thoroughly to several nuclear physics
phenomena, from a qualitative as well as a quantitative point of view. Berry,
who was working on semiclassical mechanics, realized since the beginning the
relevance of Gutzwiller’s and Balian-Bloch’s works [Be97]. Based on them
he studied, among many other things (see above and below), the regime of
regular dynamics, with Tabor. Concerning spectral fluctuations of regular
systems they demonstrated that, on a local scale, they behave as those of an
uncorrelated (Poissonian) sequence, in strong contrast with RMT predictions.

The structure of the periodic orbit sum in (5.2) is very different for fully
chaotic systems. In particular the periodic orbits don’t appear in families but
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are isolated, their number proliferates with energy exponentially and not as a
power law. Gutzwiller showed that the amplitude in (5.2) is given by

Ap,r(E) =
τp

2π�| det(M r
p − I)| 1

2
; (5.3)

in (5.3) τp is the period of the orbit and Mp the monodromy matrix, which
contains information about its instability. One possible point of view is that
the ultimate goal of POT is to determine individual highly excited states of a
chaotic system. This goal has not been fully attained so far. On the other hand
it may have limited practical interest because, unless one invents new methods,
it is probably more difficult to determine the properties of an enormous number
of periodic orbits than to solve the Schrödinger equation itself. A different
point of view may be adopted, namely that POT provides a solid theoretical
ground on which physical insight can be gained; however less ‘microscopic’
questions should be asked. It is with this strategy that Berry, who had a
deep understanding of POT , addressed the question of spectral fluctuations
in chaotic systems.

Before I proceed further let me make a short step back. In the previous
section I reproduced part of a very supportive letter Dyson sent concerning our
work on spectral universalities. A couple of months later I received another
one, this time with warnings and remarks [Dy83b]:‘...After I had written to you
in August [Dy83a] I began to read the paper of M.V. Berry [Be81] and realized
that things are not so simple as you say in your preprint... This oscillation
(in the counting function N(E)) comes from the effect in the quantum regime
of the classical closed orbits. It implies that the long-range level-correlations
should not agree precisely with the random-matrix model... perhaps you never
had L large enough to show the Berry oscillations... It should still be true that
(the logarithmic increase of ∆3(L)) holds for each fixed L as n (level number)
goes to infinity (semiclassical limit). Can you prove it?’ In fact Dyson was
anticipating basic properties of the theory that Berry was working out [Be85].

Berry started from the Gutzwiller periodic orbit sum which, to be more
specific and for later comparison, takes for billiards the following form

ρosc(k) =
1

2π

∑
p

∞∑
r=1

lp
sinh rαp

2

cos
[
r(klp −

µpπ

2
)
]
; (5.4)

for convenience, the wave number k(= E1/2) instead of the energy E is used. lp
is the length of the primitive periodic orbit and αp its instability exponent. To
study the two-point correlation function, the same object encountered when
referring to Montgomery’s work, one has to work out the behaviour of the
average of the product ρ(E) · ρ(E + ε) or its Fourier transform with respect
to ε, called the spectral form factor K(τ). It contains a double sum over
periodic orbits p and p′. Schematically, one can summarize Berry’s work as
follows. Use the diagonal approximation (only terms p = p′) and the (classical)
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Hannay-Ozorio sum-rule, which is based on the fact that in chaotic systems
the phase-space distribution of the very long orbits is uniform on the energy
surface, irrespective of the system considered. In this way one can not only
recover in the semiclassical limit some of the basic results of RMT (linear
behaviour of K(τ) at the origin, for instance), but also obtain departures from
it, in particular due to the presence of short periodic orbits. The universality
of RMT spectral fluctuations reflect the universality properties of long periodic
orbits. However, short periodic orbits, which differ from system to system, give
rise to long range oscillations in the fluctuations and have characteristic effects
in several of the statistical measures considered previously, number variance
or spectral rigidity, for instance. These effects are not contained in RMT, a
one-parameter theory, parameter which fixes the scale (mean level spacing).
For instance, by extending the range of L in Figure 10b, departures from GOE
behaviour are predicted and found. And Dyson was right in his warnings and
remarks.

In searching for a chaotic system for which all spectral correlations could be
derived, free motion on constant negative curvature surfaces comes naturally
to mind. One should restrict the motion to a compact surface and consider the
spectrum of the Laplace-Beltrami operator. It is known that in this case the
(approximate) Gutzwiller formula becomes the exact Selberg trace formula
(same as equation (5.4) except that now E = k2 + 1/4 and the sum p is
over conjugacy classes of the primitive elements p). Numerical computations
performed by Charles Schmit, for triangles with angles π/n, n integer, gave
unexpected results. Sometimes the spectral fluctuations were found to be
close to GOE predictions, as expected, sometimes far from them and close to
Poissonian fluctuations. This ‘anomaly’ was understood when it was realized
that, by accident, some of the triangles showing the anomaly were members
of a set of 85 triangles possessing a special property, an arithmetic symmetry
(arithmetic groups), known from mathematicians. Exploiting this arithmetic
symmetry, the ‘anomalous’ spectral fluctuations could be derived analytically
[BGGS97]. These studies have been continued and extended by Steiner and
collaborators in Ulm.

For non-arithmetic polygons the question remains open. Sarnak gave rather
recently a list of thirteen conjectures, chosen according to criteria of ‘elegance,
simplicity, concreteness and the problem be a central one’ [Sa99]. He included,
now phrased in elaborate mathematical language, Conjecture XIII [BGS84b]:
Fix r ≥ 2 and let Rr(X) denote the space of all Riemannian metrics on X
in the Cr topology. For the generic (in the sense of measure as defined in
[HSY92] for example) g ∈ Rr(X) of negative curvature, the local spacing dis-
tributions between the eigenvalues of ∆g in the large λ limit, follow the laws
of the eigenvalue spacings of random matrices from the Gaussian Orthogonal
Ensemble (see [Me90] for a description of the latter).

Much effort has been devoted, since the seminal work of Berry, to go beyond
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the diagonal approximation in the computation of the form factor K(τ) using
POT . The work of Sieber and Richter (see their contribution in [BA01]) and
considerable extensions of it [MHBHA04] represent recent major advances.

Though not discussed here, let us mention the field theoretic supersym-
metric non-linear σ-model derived in the context of studies of disordered con-
ductors [Ef97]. Among many other things, it provides in several respects an
alternative method to POT . In particular, it was shown by Efetov that the
two-point correlation function of a disordered metal particle coincides with the
corresponding function in RMT, thereby suggesting strong links between prob-
lems of disorder and problems of QC (Andreev, Agam, Simons, Altshuler). In
fact, progress in one approach (field theoretic) has often stimulated progress
in the other (POT) and vice-versa. Of particular interest has been the study
of parametric correlation functions, for instance correlations at two energies
corresponding to two different values of the parameter appearing in the Hamil-
tonian (see, for instance, Smolyarenko and Simons, in [FSV03]).

Before we leave quantum physics, let us revisit the hydrogen and helium
atoms in the light of the previous discussion. The spectrum of hydrogen rep-
resented the success of torus quantization. However, when a magnetic field is
applied, the classical mechanics changes (diamagnetic Kepler problem): there
are tori which are destroyed and by increasing the magnetic field they even-
tually disappear, giving rise to a fully chaotic motion. Correspondingly, in
the quantum regime, we can observe the transition from Poissonian to RMT
spectral fluctuations. This physical system, studied theoretically (Wintgen,
Delande,...) and experimentally (Rydberg atoms) provides the best example
where many aspects of POT , RMT and their relationship have been thor-
oughly tested. Concerning the spectrum of helium, semiclassical quantization
has taken its revenge. The failure of Pauli and Heisenberg reflected to some ex-
tent their lack of understanding of some subtleties of classical mechanics (role
of conjugate points along classical trajectories) but mainly their complete igno-
rance of the importance of periodic orbits. Finally, Wintgen and collaborators,
in 1991, successfully dealt with the spectrum of the helium atom in the frame
of POT and semiclassical quantization.

Let us now go back to Riemann’s zeta function in the light of RMT and
POT , a subject which has known developments in contact with physicists,
notoriously with Berry. Berry tells that he learned from me and Gutzwiller
about the possible relevance to QC of Riemann’s zeta [Be97]. I don’t remem-
ber precisely in which circumstances. What I neatly remember is that, when I
was working on compound nucleus resonances and billiards, I did some compu-
tations of cumulants of the number statistics for zeros on the critical line. The
third and fourth cumulant tended rapidly to zero, with some small oscillations,
as for eigenvalues of GUE matrices and consistent with the known GUE be-
haviour of the spacing distribution of Riemann’s zeros. However the variance
(second cumulant) increased logarithmically like in RMT only over a small
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range of L, and then showed a slower increase. There was a message in that
discrepancy which I missed, discrepancy that I attributed to some unknown
obvious reason (!). At that time, I was unprepared to realize that deviations
from RMT and from asymptotic universalities were interesting.

Berry’s approach to these problems, not surprisingly, was POT-based. In-
deed, if one considers the density ρ of the imaginary part of the non-trivial
zeros (ζn = 1/2 + iEn), one has

ρ(E) =
1

2π
log

E

2π
+ O(E−2) − 1

π

∑
p

∞∑
r=1

log p

pr/2 cos(Er log p), (5.5)

in complete analogy with (5.1) and (5.2). The ‘quantum’ spectrum (the se-
quence of En’s) is related to the ‘classical’ dynamics (prime numbers). Periodic
orbits are labelled by primes, their periods given by log p, etc. (for a review,
see [BK99]). Notice however that (5.2), (5.3), (5.4) are approximate, whereas
(5.5) is exact. Some of the methods already used in QC and POT were further
developed since the mid 80’s by Berry, later joined by Keating, and a wealth of
new and unexpected results concerning the statistical properties of Riemann’s
zeros followed.

Let me finally mention a beautiful illustration of the classical-quantum du-
ality translated now in Riemann’s zeta territory. In order to have RMT spectral
fluctuations, subtle correlations among classical actions of periodic orbits must
be present (see (5.2)). For the Riemann case, extending some of Montgomery’s
results, Bogomolny and Keating have shown that if the Hardy-Littlewood con-
jecture about prime correlations holds (‘classical action correlations’), then the
Montgomery-Odlyzko conjecture follows (‘quantum spectral correlations’).

6 Epilogue

At the end of the journey, after this long guided tour, let us take an image of
some of the main figures encountered: Bohr, Riemann and his zeta function,
Wigner, Poincaré, Dyson.

On Figure 11 is reproduced the illustration given by Bohr of the idea of the
compound nucleus, at the origin of Wigner’s RMT. Remarkably, Bohr used a
billiard system that later played some role in studying chaotic systems.

Riemann’s zeta function, with its zeros and its associated Riemann Hy-
pothesis (RH), is behind many of the contributions at the workshop. Recall
that there exists the Hilbert-Polya conjecture, which predicts that the RH is
true because zeros of the zeta function correspond to eigenvalues of a her-
mitean operator. Polya, asked by Odlyzko almost 70 years later, made the
following recollection [Pol82]: ‘I spent two years in Göttingen ending around
the begin of 1914. I tried to learn analytic number theory from Landau. He
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Figure 11: Illustration of the compound nucleus idea in a neutron-nucleus
collision. The constituent nucleons are viewed as billiard balls and the nuclear
binding as a shallow basin (after N. Bohr [Bo36]).

asked me one day: “You know some physics. Do you know a physical reason
that the Riemann hypothesis should be true?” This would be the case, I an-
swered, if the nontrivial zeros of the Xi-function were so connected with the
physical problem that the Riemann hypothesis would be equivalent to the fact
that all the eigenvalues of the physical problem are real. I never published this
remark, but somehow it became known and it is still remembered.’ But there
is no indication of what operator would be involved.

The developments, concerning relations of zeta and RMT as well as the dy-
namical interpretations via POT , reinforce the indications on which many re-
searchers base their belief that the Hilbert-Polya conjecture is the most promis-
ing approach to prove RH. The results by Keating and Snaith [KS00] deserve
a special mention because they show that, in some cases, RMT is able to gen-
erate new and (presumably) exact mathematical results concerning the zeta
and other L-functions. The precision attained by POT-based approaches to
describe, beyond leading asymptotics, the pair correlation function R2(ε) and
the spacing distribution p(s), two objects encountered many times, is illus-
trated on Figure 12. (observe the scale on the lower part of the figure). Let us
also recall that Riemann’s zeta is but one of the L-functions, that they are not
connected by a continuous parameter, and that zeros of different L-functions
are statistically independent, like eigenvalues of a quantum system possessing
discrete symmetries [BL94]. This suggests that what may be the object to be
found is an operator possessing discrete symmetries corresponding to different
L-functions.
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Figure 12: Statistical behaviour of Riemann’s zeros. Data from [Od], around
the 1023th zero. Upper part: left, two-point correlation function R2(ε); right,
spacing distribution p(s); continuous curves, asymptotic CUE distributions.
Lower part: difference between Riemann’s zeros values and asymptotic CUE
distributions; continuous curves, theory [Bog03], [BBLM04].
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One of my purposes in writing this contribution has been to show that,
often, the paths followed by scientific ideas are interwoven and unpredictable,
like trajectories of unstable orbits. I will consider my purpose attained if some
mathematicians share the idea that what they are doing now takes partly its
source in what some physicists and engineers were doing when studying the
compound nucleus and designing nuclear reactors.

I could conclude with Wigner’s statement ‘The unreasonable effectiveness
of mathematics in the natural sciences’ [Wi60] or its reverse ‘The unreasonable
effectiveness of the natural sciences in mathematics’. Or with Poincaré: ‘La
physique ne nous donne pas seulement l’occasion de résoudre des problèmes...,
elle nous fait pressentir la solution’. But I will conclude with Dyson, to whom
this contribution is dedicated, with his characteristic style, always witty and
sometimes controversial [Sc94]: ‘Elegance comes first; if the problem that is
solved is physically interesting or important, that’s a bonus’.
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Basic analytic number theory

David W Farmer ∗

Abstract

We give an informal introduction to the most basic techniques used
to evaluate moments on the critical line of the Riemann zeta-function
and to find asymptotics for sums of arithmetic functions.

1 Introduction

The simplest way to compute a moment of the zeta-function is to approximate
the zeta-function by Dirichlet polynomials and then compute the moment of
the polynomials. In this paper we describe the most rudimentary techniques in
this area. Along the way we discuss the basic methods for finding asymptotics
of sums of arithmetic functions, and we also compute the arithmetic factor
in the standard conjectures for moments of the zeta-function. The methods
described here are completely standard: our intention is to give a brief in-
troduction to those who are new to the subject. The standard reference is
Titchmarsh [T] and we cite the specific sections where one can look for more
details.

∗Work supported by the American Institute of Mathematics and by the Focused Research
Group grant (0244660) from the NSF.
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We assume a knowledge of the calculus of one complex variable. Readers
unfamiliar with the big-O, little-o, and � notation (and physicists, who may
use the � notation differently), should consult the Appendix.

2 The “first moment”

The simplest approximation to the zeta-function1 is

ζ(s) =
∑

1≤n≤T

1

ns
− T 1−s

1 − s
+ O(T−σ), (2.1)

where s = σ + it and the equation is valid for |t| ≤ T . See [T], Section 4.11.
Specializing to s = 1

2 + it, we have

ζ(1
2 + it) =

∑
1≤n≤T

1

n
1
2 +it

+ O

(
T

1
2

1 + |t|

)
. (2.2)

Now we can find the average value of the zeta-function on the critical line.
The justification of the steps follows the calculation.∫ T

0
ζ(1

2 + it) dt =
∑

1≤n≤T

1√
n

∫ T

0
n−itdt + O

(
T

1
2

∫ T

0

1

1 + |t| dt

)
= T +

∑
2≤n≤T

1√
n

1 − n−iT

log n
+ O

(
T

1
2 log T

)
= T + O

(
T

1
2 log T

)
. (2.3)

In the first step we switched the sum and the integral, which is justified because
both are finite. The sum on the second line was estimated by

∑
2≤n≤T

1√
n

1 − n−iT

log n
�
∑

2≤n≤T

1√
n log n

�
∫ T

2

1√
x log x

dx � T
1
2

log T
, (2.4)

which is smaller than the other error term.

Thus, the zeta-function on the critical line is 1 on average. This is not a
particularly useful piece of information, for it is the magnitude of the zeta-
function which is of interest. So we consider the moments of |ζ( 1

2 + it)|.

1Editors’ comment: The Riemann zeta function is defined in the lectures by D.R. Heath-
Brown starting on page 1, Section 3, equation (3.1).
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3 The 2nd moment

The simple fact that |z|2 = zz means that |ζ( 1
2 + it)|K is much more amenable

to methods of complex analysis when K = 2k is an even integer. The easiest
case is the 2nd moment, which we compute in this section.

For later use it will be helpful to first consider the 2nd moment of a general
Dirichlet polynomial. Suppose

P (s) =
∑

1≤n≤N

an

ns
. (3.1)

We have ∫ T

0
|P (it)|2 dt =

∫ T

0

∣∣∣∣∣ ∑
1≤n≤N

an

nit

∣∣∣∣∣
2

dt

=

∫ T

0

∑
n

an

nit

∑
m

am

m−it
dt

=
∑
n,m

anam

∫ T

0

(m

n

)it

dt

= T
∑

n

|an|2 +
∑
n �=m

anam

((
m
n

)iT − 1
)

log(m/n)

= T M(N) + E(N, T ), (3.2)

say. We think of T M(N) as the main term and E(N, T ) as an error term,
so we want to understand when E(N, T ) will be smaller in magnitude than
T M(N).

Setting m = n + h we can rewrite the error term as

E(N, T ) =
∑

n

∑
h �=0

anan+h

((
1 + h

n

)iT − 1
)

log(1 + h/n)
. (3.3)

Now consider only the h = 1 term from the above sum:∑
1≤n≤N

anan+1 · n · (something bounded). (3.4)

Without any information on an, the above sum, which is just one part of
E(N, T ), could be about the same size as N M(N). Thus, in general one should
only expect E(N, T ) to be smaller than T M(N) if N < T . And if N > T then
one may need some detailed information about the coefficients an in order to
extract something meaningful from E(N, T ). Goldston and Gonek [GG] have
given a clear discussion of these issues.
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One can carry through the above calculation to obtain a useful general mean
value theorem for Dirichlet polynomials. See Titchmarsh [T], Section 7.20.
However, a stronger result is provided by the mean value theorem of Mont-
gomery and Vaughan [MV]:

∫ T

0

∣∣∣∣∣ ∑
1≤n≤N

an

nit

∣∣∣∣∣
2

dt =
∑

1≤n≤N

|an|2 (T + O(n)) . (3.5)

This result is best possible for general sequences an. Note that if N = o(T )
then the error term is smaller than the main term.

To use the mean value theorem to compute the second moment of the
zeta-function, first write (2.2) as ζ = S + E. That is,

S =
∑

1≤n≤T

1

n
1
2 +it

and E = O

(
T

1
2

1 + |t|

)
. (3.6)

Using

|ζ|2 = |S + E|2 = (S + E)(S + E) = |S|2 + 2ReSE + |E|2, (3.7)

we have∫ T

0

∣∣ζ(1
2 + it)

∣∣2 dt =

∫ T

0
|S|2 dt + 2Re

∫ T

0
SE dt +

∫ T

0
|E|2 dt. (3.8)

We want to evaluate the |S|2 integral as our main term and estimate the |E|2
integral as our error term, but what to do about the cross term? By the
Cauchy-Schwartz inequality,

2Re

∫ T

0
SE dt �

∫ T

0
|S||E| dt �

(∫ T

0
|S|2dt

) 1
2
(∫ T

0
|E|2dt

) 1
2

. (3.9)

If
∫ T

0 |E|2dt is smaller than
∫ T

0 |S|2dt, then so is the right side of the inequality
above. We have the general principle that if the “main error term” is smaller
than the main term, then so are the cross terms. It remains only to evaluate∫ T

0 |S|2dt and estimate
∫ T

0 |E|2dt.

For the main term use (3.5) with an = n− 1
2 :∫ T

0
|S|2dt =

∑
1≤n≤T

1

n
(T + O(n))

= T (log T + O(1)) +
∑

1≤n≤T

O(1)

= T log T + O(T ). (3.10)
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For the error term we have∫ T

0
|E|2dt � T

∫ T

0

1

(1 + |t|)2 dt � T, (3.11)

which is smaller than the main term. We have just proven the mean value
result ∫ T

0
|ζ(1

2 + it)|2dt = T log T + O(T log
1
2 T ). (3.12)

Note that we do not obtain an error term of O(T ) in (3.12) by these methods.
However, a much better error term can be obtained. The first step toward this
is given in the next section.

Exercise. Approximate the sum by an integral to show that if A > 1 then∑
n>T

1

nA
=

T 1−A

A− 1
+ O(T−A). (3.13)

Conclude that if A > 1 then∑
n≤T

1

nA
= ζ(A) − T 1−A

A− 1
+ O(T−A). (3.14)

Exercise. Show that if 1
2 < σ < 1 then∫ T

0
|ζ(σ + it)|2dt = T

(
ζ(2σ) − T 1−2σ

2σ − 1

)
+ O

(
T

3
2 −σ

1 − σ
log

1
2 T

)
, (3.15)

where the implied constant in the big-O term is independent of σ.

Since the error term in (3.15) is uniform in sigma, we can let σ → 1
2

+
to

recover (3.12). This makes use of the fact that ζ(s) has a simple pole with
residue 1 at s = 1.

Note that if σ > 1
2 is independent of T then the right side of (3.15) is of size

≈ T . On the other hand, the second moment on the 1
2 -line is of size T log T .

Thus there is an abrupt change in the behavior of the zeta-function when one
moves onto the critical line. Equation (3.15) illustrates that the transition
occurs on the scale of 1/ log T from the 1

2 -line.

4 Better 2nd moment

The methods of the previous section are not sufficient to evaluate the main
term of the 2nd moment with an error term O(TA) for A < 1, nor are those
methods sufficient to evaluate the 4th moment of the zeta-function. Evaluating
the 4th moment by squaring (2.2) gives a Dirichlet polynomial of length T 2,
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which cannot be handled by the Montgomery-Vaughan mean value theorem.
So one needs either a shorter approximation to ζ(s), or an approximation to
ζ2(s) of length ≤ T , or a way to handle longer polynomials. In preparation for
the 4th moment, we first evaluate the 2nd moment with a better error term.

The “approximate functional equation” of Hardy and Littlewood expresses
the ζ-function as a sum of two short Dirichlet polynomials:

ζ(s) =
∑

1≤n≤x

1

ns
+ χ(s)

∑
1≤n≤y

1

n1−s
+ O

(
x−σ + |t| 1

2 −σyσ−1
)

, (4.1)

where xy = t/2π and χ(s) is the usual factor in the functional equation2

ζ(s) = χ(s)ζ(1−s). The name “approximate functional equation” comes from
the fact that the right side looks like ζ(s) when x is large and like χ(s)ζ(1− s)
when y is large. On the 1

2 -line we have

ζ(s) =
∑

1≤n≤N

1

n
1
2 +it

+ χ(s)
∑

1≤n≤N

1

n
1
2 −it

+ O
(
N− 1

2

)
, (4.2)

where we set x = y = N =
√

t/2π.

Hardy and Littlewood used the approximate functional equation to eval-
uate the second moment of the zeta-function with a better error term. We
will not carry out the calculation, but just give the flavor. See Titchmarsh [T]
Section 7.4 for details. Writing (4.2) as ζ = S + χ(s)S + E, we have∫ T

0
|ζ(1

2 + it)|2dt = 2

∫ T

0
|S|2dt + 2Re

∫ T

0
χ( 1

2 − it)S2dt + error term. (4.3)

In that calculation we used the fact that |χ(1
2 + it)| = 1. Below we will use

the more precise information

χ(s) =

(
t

2π

) 1
2 −s

eit+πi/4 (1 + O(t−1)
)
. (4.4)

The main difficulty is evaluating the χ( 1
2 − it)S2 term, which equals

∑
n,m

1√
nm

∫ T

0
χ( 1

2 − it)(nm)−itdt. (4.5)

By (4.4), up to a negligible error that integral is of the form
∫

eif (t)dt. If f(t)
has a stationary point in the range of integration then we can extract a main
term, otherwise it will become an error term. In particular, that integral can
be handled by the method of stationary phase. See Titchmarsh [T] Section 7.4

2Editors’ comment: For more on the functional equation see the contribution of D.R.
Heath-Brown, page 1, Theorem 8.
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for details. Our point here is that by virtue of (4.4), integrals involving χ( 1
2 +it)

and Dirichlet polynomials can be handled. The result that can be obtained by
the above argument is∫ T

0
|ζ(1

2 + it)|2dt = T log T + (2γ − 1)T + O(T
1
2 +ε). (4.6)

The error term can be improved by more sophisticated methods.

There are many applications of mean values of the zeta-function multiplied
by a Dirichlet polynomial. Suppose

M(s) =
∑

1≤n<T θ

bn

ns
(4.7)

with bn � nε. By the approximate functional equation, ζ(s)M(s) can be

approximated by Dirichlet polynomials of length T
1
2 +θ. So by the above meth-

ods, if θ < 1
2 then one should be able to find an asymptotic formula for∫ T

0 |ζM( 1
2 + it)|2dt. Evaluating such an integral, with θ = 1

2 − ε, was key
to Levinson’s proof that more than one-third of the zeros of the zeta-function
are on the critical line. Conrey made use of very deep and technical results to
evaluate such an integral with θ = 4

7 − ε, leading to the result that more than
two-fifths of the zeros are on the critical line.

5 The 4th moment

To evaluate the 4th moment of the zeta-function by the methods described
above, one requires an approximation to ζ(s)2 of length less than T . This is
provided by the following approximate functional equation:

ζ(s)2 =
∑

1≤n≤x

d(n)

ns
+ χ(s)2

∑
1≤n≤y

d(n)

n1−s
+ O(x

1
2 −σ log t), (5.1)

where xy = (t/2π)2 and d(n) is the number of divisors of n. More generally
one should expect an approximate functional equation of the form

ζ(s)k =
∑

1≤n≤x

dk(n)

ns
+ χ(s)k

∑
1≤n≤y

dk(n)

n1−s
+ error term (5.2)

where xy ≈ tk and dk(n) is the k-fold divisor function

dk(n) =
∑

n1 ···nk =n

1, (5.3)

which has generating function

ζ(s)k =
∞∑

n=1

dk(n)

ns
, σ > 1. (5.4)
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Plugging (5.1) into the Montgomery-Vaughan mean value theorem leads to∫ T

0
|ζ(1

2 + it)|4dt =
1

2π2 T log4 T + error term. (5.5)

If you actually do the calculation, you will find that in order to determine the
main term you need to evaluate sums like

∑
1≤n≤X

d(n)2

n
. (5.6)

There is a standard technique for finding the leading-order asymptotics of such
sums, which is given in the next section.

5.1 Comments on approximate functional equations

The error term in (5.1) is rather large and leads to an error term of size

O(T log2 T ) in the 4th moment
∫ T

0 |ζ(1
2 + it)|4dt. The large size of the error

term is due to the fact that our sums have a sharp cut-off. The error term can
be much reduced by having a smooth weight in the sums. That is,

ζ(s)k =
∑

n

dk(n)

ns
ϕ(n, t) + χ(s)k

∑
n

dk(n)

n1−s
ϕ∗(n, t) + small error term, (5.7)

where ϕ and ϕ∗ are particular functions that are approximately 1 for n < t
k
2

and decay for n > t
k
2 . As our previous discussion should suggest, it is the

length of the sums, and not the size of the error term, which provides the true
difficulty when k > 2.

6 Perron’s formula

Here is the problem: you have an arithmetical function an and you want to
find the asymptotics of

S(X) =
∑

1≤n≤X

an. (6.1)

This problem can often be solved by the most basic methods of analytic number
theory.

First note that for integers N ≥ 1,

1

2πi

∫ 1+iY

1−iY

As ds

sN
=

{
logN −1 A
(N−1)! + error term if A > 1

0 + error term if A < 1
(6.2)
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To see this, consider the integral

1

2πi

∫
C1

As ds

sN
(6.3)

where the integration is over the closed rectangular path connecting the points

C1 =

{
[1 − iY, 1 + iY,−B + iY,−B − iY ], if A > 1

[1 − iY, 1 + iY, B + iY, B − iY ], if A < 1,
(6.4)

where B is a large positive number. In both cases the main term comes from
the residue of the pole at 0, which is or is not inside the path of integration.

Exercise. Bound the error term in (6.2) by estimating the integral along the
three segments of C1 other than [1− iY, 1+ iY ]. You should find that if N ≥ 2,
then you can let Y → ∞ and the error vanishes. See Section 3.12 of [T] if you
aren’t sure how to begin.

To evaluate (6.1), let

F (s) =
∞∑

n=1

an

ns
, (6.5)

and suppose that the sum converges absolutely for σ > σ0. Using (6.2) and
supposing σ > σ0, we have

1

2πi

∫ σ+iY

σ−iY

F (s)Xs ds

s
=

∞∑
n=1

an
1

2πi

∫ σ+iY

σ−iY

(
X

n

)s
ds

s

=
∞∑

n=1

an

{
1 + error term if X > n

0 + error term if X < n

= S(X) + error term. (6.6)

This is known as Perron’s formula. If we can learn enough about the function
F (s) so that the integral in (6.6) can be evaluated in another way, then we
will have a formula for S(X).

Suppose (as is frequently the case) that F (s) has a pole at σ0 and no other
poles in the half-plane σ > σ1 for some σ1 < σ0. Then consider

1

2πi

∫
C2 (ε)

F (s)Xs ds

s
, (6.7)

where for ε > 0 the integration is over the rectangular path with vertices

C2(ε) = [σ − iY, σ + iY, σ1 + ε + iY, σ1 + ε − iY ]. (6.8)

We can evaluate (6.7) by finding the residue at the pole s = σ0 and at s = 0 (if
0 is inside the path of integration. And in the same way as you estimated the
error term in (6.2), we find that (6.7) equals the integral in Perron’s formula
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plus an error term. The final step of bounding the integral on the 3 other
segments requires the additional ingredient of a bound for F (σ+ it) as t →∞,
uniformly for σ > σ1.

For example, at the end of the previous section we wanted to evaluate the
sum of d(n)2/n.

Exercise. Check that ∑
n

d(n)2

ns
=

ζ4(s)

ζ(2s)
. (6.9)

Hint: both sides have an Euler product. The factors on the right can be
found from the Euler product for the zeta-function. Those on the left require
summing

∑∞
j=0 d(pj)2p−js.

Thus, we apply Perron’s formula (6.6) with

F (s) =
ζ4(s + 1)

ζ(2s + 2)
. (6.10)

To determine the analytic properties of F (s), use the fact that ζ(s) is entire
except for a simple pole at s = 1, where we have the Laurent expansion

ζ(s) =
1

s− 1
+ γ + · · · . (6.11)

Also ζ(s) has no zeros in σ > 1, and no zeros in σ > 1
2 assuming the Riemann

Hypothesis. In these calculations one frequently needs that ζ(2) = π2/6 and

ζ(s) = −1
2 − 1

2 log(2π)s + · · · (6.12)

for s near 0.

To estimate the error terms, one can use the convexity estimate

ζ(σ + it) �

⎧⎪⎨⎪⎩
1 σ > 1

|t| 1
2 − 1

2 σ 0 < σ < 1

|t| 1
2 −σ σ < 0,

(6.13)

along with ζ(s) � 1 for σ > 1. Also, assuming RH we have t−ε � ζ(σ+it) � tε

for σ > 1
2 . All of these estimates are for fixed σ as t → ∞.

Assembling the pieces we find∑
1≤n≤X

d(n)2

n
∼ log4 X

4π2 . (6.14)

Exercise. Argue that (6.14) is of the form XP4(log X) + O(XB) where P4 is a
polynomial of degree 4 and B < 1. Find the next-to-leading coefficient of P4,
and estimate B both with and without assuming the Riemann Hypothesis.
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Exercise. Deduce the following asymptotics:∑
1≤n≤X

dk(n) ∼ 1

k!
X logk X∑

1≤n≤X

ϕ(n) ∼ 3

π2 X2, (6.15)

where ϕ(n) is the Euler totient function.3 In addition to the generating func-
tion (5.4), you should use (and prove):∑

n

ϕ(n)

ns
=

ζ(s− 1)

ζ(s)
. (6.16)

Exercise. Find the next-to-leading order terms in the previous exercise. Also
determine the shape of the main terms and estimate the size of the error terms,
both with and without the Riemann Hypothesis.

Note that there are interesting and important cases where the above anal-
ysis is inadequate. For example, in the proof of the prime number theorem
an = Λ(n), the von Mangoldt function.4 Then F (s) has a pole at s = 1 as well
as poles at the zeros of the ζ-function and one must use a more complicated
path of integration as well as nontrivial estimates for ζ(s) in the critical strip.

7 The conjecture for moments of the

zeta-function

Much recent work on the relationship between L-functions and Random Matrix
Theory was motivated by the problem of finding conjectures for the 2kth mo-
ment of the Riemann zeta-function on the critical line. Conrey and Ghosh [CG]
formulated it as follows: for each integer k ≥ 0 there exists an integer gk such
that ∫ T

0
|ζ(1

2 + it)|2kdt ∼ gk
ak

k2!
T logk2

T, (7.1)

where

ak =
∏

p

(
1 − 1

p

)k2 ∞∑
m=0

(
k + m − 1

m

)2

p−m . (7.2)

In this conjecture the only missing ingredient is the integer gk. Keating and
Snaith [KS] computed the moments of characteristic polynomials of unitary

3Editors’ comment: ϕ(n) is defined in the contribution by D.R. Heath-Brown, page 1
after Theorem 20.

4Editors’ comment: The von Mangoldt function is defined in the lectures by D.R. Heath-
Brown, page 1, Corollary 1.
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matrices and used the result to conjecture

gk = k2!
k−1∏
j=0

j!

(k + j)!
. (7.3)

It is not trivial to show that this gk is actually an integer [CF].

Our last topic in this paper is to show how the factor ak arises naturally.
From the approximate functional equation (5.2) it is reasonable to consider

∫ T

0

∣∣∣∣∣∑
n<T

dk(n)

n
1
2 +it

∣∣∣∣∣
2

dt. (7.4)

Note that the sum has length T . This is good because we can use the mean
value theorem. But it is bad because the polynomial is not long enough to
fully approximate ζ(1

2 + it)k. We cannot expect this mean value to equal the
2kth moment of the zeta-function, but how far will it be off? It would be nice
if it were off by some simple factor, so one possible interpretation of gk is “the
number of length T polynomials needed to capture the 2kth moment of the
ζ-function.” We do not claim that this was the original reasoning of Conrey
and Ghosh.

By the Montgomery-Vaughan mean value theorem the above integral has
main term ∑

n<T

dk(n)2

n
. (7.5)

By Perron’s formula, to evaluate this we need to find the leading pole of

F (s) =
∑
n<T

dk(n)2

ns
. (7.6)

If k > 2 then F (s) is not a simple expression involving known functions, but
fortunately we do not require complete information about F (s).

First note that

ζ(s) =
∏

p

(
1 +

1

ps
+ · · ·

)
=

1

s− 1
+ · · · , (7.7)

so

ζ(s)N =
∏

p

(
1 +

N

ps
+ · · ·

)
=

1

(s− 1)N
+ · · · . (7.8)
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Thus, if the coefficients of p−js in an Euler product are integers that only
depend on j, then the coefficient of p−s tells you the order of the pole at s = 1.
Since

dk(p) =
∑

n1 ···nk =p

1

= k, (7.9)

we see that F (s) has a pole of order k2 at s = 1, that is, F (s) = ak(s−1)−k2
+

· · · , where we will show that ak is as given above. To see that F (s) has no
other poles in σ > 1

2 , note that

ζ−k2
(s)F (s) =

∏
p

(
1 +

β2

p2s
+

β3

p3s
+ · · ·

)
, (7.10)

where the βj are certain integers that do not grow too fast. In particular, the
above Euler product converges absolutely for σ > 1

2 so it represents a regular
function that is bounded in σ > 1

2 + ε. We have all of the pieces to apply the
methods of the previous section, giving∫ T

0

∣∣∣∣∣∑
n<T

dk(n)

n
1
2 +it

∣∣∣∣∣
2

dt ∼ ak

k2!
T logk2

T, (7.11)

where

ak = lim
s→1

(s− 1)k2
F (s)

= lim
s→1

ζ(s)−k2
F (s)

=
∏

p

(
1 − 1

p

)k2 ∞∑
m=0

dk(p
m)2p−m . (7.12)

Note that the product converges because dk(p) = k and dk(n) � nε.

Finally, dk(p
m) =

(
k+m−1

m

)
, as can be seen by the following argument. Since

dk(p
m) is the number of ways of writing e1 + · · ·+ ek = m, we can select the ej

by writing down m+k−1 circles ◦ and filling in k−1 of them to make a dot •.
Then the ej are the number of circles between the dots, including the circles
before the first and after the last dot. For example, here is one configuration
that arises from d5(p

3):

• ◦ ◦ • ◦ • •
p3 = 1 p2 p 1 1 (7.13)

8 The Estermann phenomenon

The idea behind formula (7.10) can be generalized to show that if c(n) is a
multiplicative function such that c(n) � nε and c(pj) is an integer that is
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independent of the prime p, then

F (s) =

∞∑
n=1

c(n)

ns

= ZJ (s)
∏
j<J

ζ(js)C(j), (8.1)

where the C(j) are integers and Z(s) is regular and bounded in σ > 1/J . Thus
F (s), which is originally defined for σ > 1, has a meromorphic continuation
to σ > 0.

Note that F (s) cannot be continued past σ = 0 unless C(j) = 0 for almost
all j. This is because the zeros of the zeta-function lead to zeros or poles of
F (s) that accumulate along the σ = 0 line, giving a natural boundary. This is
known as “the Estermann phenomenon”.

9 Appendix

9.1 Big-O and � notation

The statement
f(x) = O(g(x)) as x →∞ (9.1)

is pronounced “f(x) is big oh of g(x).” It is equivalent to

f(x) � g(x) as x →∞, (9.2)

which is pronounced “f(x) is less than less than g(x).” The symbol � is typed
as \ll in TEX. Both of the above statements mean the following: there exists
a constant C > 0 such that if x is sufficiently large then |f(x)| ≤ C g(x). The
number C is called “the implied constant.”

Note:

• g(x) must be positive if x is sufficiently large.

• f(x) � g(x) does not mean that f(x) is much smaller than g(x). It is
more accurate to say that f(x) does not grow faster than g(x).

• the above statements have the condition “as x → ∞”. It is also common
to use the big-O and � notation to describe the behavior of a function
as x → 0. Then the definition is modified to “if x is sufficiently small”.
Usually context makes it clear which behavior is being considered.

• Both notations are useful: the � does not require parentheses, and the
big-O can be used as one term in a formula.
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Here are some examples. Below, A and ε are arbitrary fixed positive num-
bers.

Examples assuming x →∞:

x3 � x4

log(x) = O(x)
log(x) � xε

xA = O(ex)
sin(x) � 1

(x + 2)10 � x10

(x + 2)10 = x10 + O(x9).

Examples assuming x → 0:

x4 � x3

log(1 + x) = O(x)
log(1 + x) = x + O(x2)

sin(x) � x
(x + 2)10 = 1024 + O(x).

9.2 Little-o notation

The statement
f(x) = o(g(x)) as x → ∞ (9.3)

is pronounced “f(x) is little oh of g(x).” It means

lim
x→∞

f(x)

g(x)
= 0. (9.4)

Equivalently, for all C > 0, if x is sufficiently large then |f(x)| ≤ Cg(x). It is
like big-O where the implied constant can be made arbitrarily small.

Note that f(x) ∼ g(x), “f(x) is asymptotic to g(x)” is equivalent to f(x) =
(1 + o(1))g(x).
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Applications of Mean Value Theorems
to the Theory of the Riemann Zeta

Function

S.M. Gonek ∗†

Abstract

In the first half of these lectures we discuss mean value theorems for
functions representable by Dirichlet series and sketch several applica-
tions to the distribution of zeros of the Riemann zeta function. These
include the clustering of zeros about the critical line, Levinson’s result
that a third of the zeros are on the critical line, and a conditional result
on the number of simple zeros. The second half focuses on mean values
of Dirichlet polynomials, particularly “long” ones. We then show how
these can be used to investigate the pair correlation of the zeros of the
zeta function and to conjecture the sixth and eighth power moments of
the zeta function on the critical line.

∗This work was supported by NSF grant DMS 0201457 and by an NSF Focused Research
Group grant. The paper was written during the author’s visit to the Isaac Newton Institute.

†The first six sections of this paper closely follow the author’s lectures at a conference
at Chonbuk National University in South Korea in 2002. The author is grateful to the
organizers of that conference for their kind permission to use that material here.
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1 What is a Mean Value Theorem?

By a mean value theorem we mean an estimate for the average of a function.
When F (s) has a convergent Dirichlet series expansion in some half–plane
Re s > σ0 of the complex plane, we typically take the average over a vertical
segment: ∫ T

0
|F (σ + it)|2 dt or

∫ T

0
F (σ + it) dt .

The path of integration here need not lie in this half–plane. For example, we
would like to know the size of the integrals

Ik(σ, T ) =

∫ T

0
|ζ(σ + it)|2k dt ,

for σ ≥ 1/2 and k a positive integer. Here F (s) = ζ(s)k and its Dirichlet series
converges only for σ > 1.

There are many variations. For example, one can consider a discrete mean
value

R∑
r=1

|F (σr + itr)|2 ,

where the points σr + itr lie in C. Or, one can estimate the mean value of a
Dirichlet polynomial

F (s) = FN (s) =
N∑

n=1

ann
−s

of “length” N .

2 Mean Values and Zeros

Mean value estimates are very useful for studying the zeros of the zeta function;
this is one of the reasons so much effort has been expended on them. One
link between means and zeros can be seen in Jensen’s Formula from classical
function theory.

Theorem 2.1. (Jensen’s Formula) Let f(z) be analytic for |z| ≤ R and
suppose that f(0) �= 0. If r1, r2, . . . , rn are the moduli of all the zeros of f(z)
inside |z| ≤ R, then

log(
|f(0)|Rn

r1r2 · · · rn

) =
1

2π

∫ 2π

0
log |f(Reiθ)| dθ .

Here we see that the mean value of log |f(z)| around a circle is related to
the distribution of the zeros of f(z) inside that circle. There is an analogous
result for rectangles, which is often more useful when working with Dirichlet
series, namely,
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Theorem 2.2. (Littlewood’s Lemma) Let f(s) be analytic and nonzero on
the rectangle C with vertices σ0, σ1, σ1 + iT , and σ0 + iT , where σ0 < σ1. Then

2π
∑
ρ∈C

Dist(ρ) =

∫ T

0
log |f(σ0 + it)| dt−

∫ T

0
log |f(σ1 + it)| dt

+

∫ σ1

σ0

arg f(σ + iT ) dσ −
∫ σ1

σ0

arg f(σ) dσ ,

where the sum runs over the zeros ρ of f(s) in C and “Dist(ρ)” is the distance
from ρ to the left edge of the rectangle.

When we use Littlewood’s Lemma below, only the first term on the right–
hand side will be significant. In order not to be too technical, we will always
use the result in the form

2π
∑
ρ∈C

Dist(ρ) =

∫ T

0
log |f(σ0 + it)| dt + E ,

where E is an error term that can be ignored and might be different on different
occassions. The integral of the logarithm usually cannot be dealt with directly,
so we often use the following trick:

1

T

∫ T

0
log |f(σ + it)| dt =

1

2T

∫ T

0
log(|f(σ + it)|2) dt

≤ 1

2
log
( 1

T

∫ T

0
|f(σ + it)|2 dt

)
,

where the inequality follows from the arithmetic–geometric mean inequality.
In this way we see a direct connection between the location of the zeros within
a rectangle and the type of mean values we have been considering.

3 A Sample of Important Estimates

Let

Ik(σ, T ) =

∫ T

0
|ζ(σ + it)|2k dt .

When k = 1 we know that for each fixed σ > 1/2

I1(σ, T ) ∼ c(σ) T ,

as T → ∞, where c(σ) is a know function of σ. In 1918 Hardy and Little-
wood [HL] proved that when σ = 1/2,

I1(1/2, T ) ∼ T log T .
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What can such estimates tell us about the zeta function? Comparing the result
for σ greater than 1/2 with that for σ = 1/2, we see that the zeta function
tends to assume, on average, much larger values on the critical line than to the
right of it. Since it also has many zeros on the critical line, we should expect
the zeta function to behave rather erratically there.

The next higher moment was determined in 1926 by Ingham [I], who proved
that

I2(1/2, T ) ∼ T

2π2 log4 T .

Unfortunately, no asymptotic estimate has been proved for any k greater than
2. It is known that for positive rational k1,

Ik(1/2, T ) � T logk2
T

(see Ramachandra [R] and Heath–Brown [H-B]). This is also known to hold
for all positive k if the Riemann Hypothesis is true (see Ramachandra [R]).
We expect that

Ik(1/2, T ) ∼ ckT logk2
T ,

but a proof seems a long way off. J. B. Conrey and A. Ghosh (unpublished)
suggested that

ck =
akgk

Γ(k2 + 1)
,

where

ak =
∏

p

((
1 − 1

p

)k2 ∞∑
r=0

d2
k(p

r)

pr

)
and gk is an integer. Only recently has anyone put forth a plausible value
for gk. J. B. Conrey and A. Ghosh [CG] conjectured that g3 = 42, and J. B.
Conrey and the author [CGO] conjecured that g4 = 24024. Then J. Keating
and N. Snaith [KS], using random matrix theory, conjectured a value for gk

for every complex number k with Re k > −1/2. For integer values of k, their
conjecture takes the form gk = (k2!)

∏k−1
j=0 j!/(j + k)! .

Another type of mean value important for applications is∫ T

0
|ζ(j)(σ + it)MN (σ + it)|2 dt , (3.1)

where2

MN (s) =
∑

1≤n≤N

µ(n)

ns
P (

log n

log N
)

1Editors’ comment: See the Appendix of the lecture by D.W. Farmer, page 185, for a
discussion of the � notation.

2Editors’ comment: The Möbius function, µ(n), is defined in the lectures of D.A. Gold-
ston, page 79, equation 2.10.
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and P (x) is a polynomial. Since

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
(Re s > 1) ,

we can view MN (s) as an approximation to the reciprocal of ζ(s) in Re s > 1.
We might then expect the approximation to hold (in some sense) inside the
critical strip as well. If that is the case, multiplying the zeta function by
MN (s) should dampen (or mollify) the large values of zeta. Below we will
see two applications of this idea. The most general estimates known for such
integrals are due to Conrey, Ghosh, and the author [CGG2], who obtained
asymptotic estimates for them when the length of the Dirichlet polynomial
MN (s) is N = T θ with θ < 1/2. Later, Conrey [C] used Kloosterman sum
techniques to show that these formulas also hold when θ < 4/7.

We conclude this section by mentioning a few discrete mean value results.
The author [G] proved asymptotic estimates for the sums∑

0≤γ≤T

|ζ(j)(ρ)|2,

assuming the Riemann Hypothesis is true. Here γ runs over the ordinates of
the zeros ρ = 1/2 + iγ of ζ(s). Conrey, Ghosh, and Gonek [CGG2] proved
discrete versions of the mollified mean values (3.1), namely∑

0<γ<T

|ζ ′
(ρ)MN (ρ)|2 ,

under the assumption of the Riemann Hypothesis and the Generalized Lindelöf
Hypothesis.

4 Application: A Simple Zero–Density Esti-

mate

We want to show that there are relatively few zeros of the zeta function in the
right half of the critical strip. Let 1/2 < σ0 < 1 be a fixed real number and
let C be the rectangle in the complex plane with vertices at 2, 2 + iT , σ0 + iT ,
σ0. Applying our (simplified) version of Littlewood’s Lemma, we see that

∑
ρ∈C

Dist(ρ) =
1

2π

∫ T

0
log(|ζ(σ0 + it)|) dt + E ,

Where Dist(ρ) is the distance of the zero ρ = β + iγ of the zeta function from
the line Re s = σ0. Now let σ be a fixed real number with σ0 < σ < 1 and
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write N(σ, T ) for the number of zeros with σ < β ≤ 2 and 0 < γ < T . On the
one hand, we have∑

ρ∈C
Dist(ρ) ≥

∑
ρ∈C
σ≤β

Dist(ρ) ≥ (σ − σ0)N(σ, T ).

On the other hand,

1

2π

∫ T

0
log(|ζ(σ0 + it)|) dt =

1

4π

∫ T

0
log(|ζ(σ0 + it)|2) dt

≤ T

4π
log(

1

T

∫ T

0
|ζ(σ0 + it)|2) dt

by the arithmetic–geometric mean inequality, as before. The integral on the
last line is Ik(σ0, T ), which we have seen is ∼ c(σ0)T , where c(σ0) is positive
and independent of T . Thus, the last expression is O(T ) . It follows that

N(σ, T ) � T .

Since N(T ) ∼ T
2π

log T , we may interpret this as saying that the proportion of
zeros to the right of any line Re s = σ > 1/2 is infinitesimal.

This, the first zero–density estimate, was proved by H. Bohr and E. Lan-
dau [BL] in 1914. Since then there have been much stronger results, typically
of the form

N(σ, T ) � T λ(σ) ,

where λ(σ) < 1 for σ > 1/2. Nevertheless, the underlying idea in the proof of
many of these results already appears here.

5 Application: Levinson’s Method

Zero–density theorems tell us there are (relatively) few zeros to the right of
the critical line. Our goal here is to sketch the method of Levinson [L], which
shows that there are many zeros on it.

Recall that3

N(T ) = #{ρ = β + iγ | ζ(ρ) = 0, 0 < γ < T} ∼ T

2π
log T

and let
N0(T ) = # {ρ = 1/2 + iγ | ζ(ρ) = 0, 0 < γ < T}

denote the number of zeros on the critical line up to height T . The important
estimations of N0(T ) were:

3Editors’ comment: See Section 7 of the lectures by D.R. Heath-Brown starting on page
1.
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N0(T ) →∞ G. H. Hardy (1914)
N0(T ) > cT G. H. Hardy-J. E. Littlewood (1921)
N0(T ) > c′N(T ) A. Selberg (1942)
N0(T ) > 1

3N(T ) N. Levinson (1974)
N0(T ) > 2

5N(T ) J. B. Conrey (1989)

Levinson’s method begins with the following fact first proved by Speiser [Sp].

Theorem 5.1. (Speiser) The Riemann Hypothesis is equivalent to the asser-
tion that ζ ′(s) does not vanish in the left half of the critical strip.

In the early seventies, N. Levinson and H. L. Montgomery [LM] proved a
quantitative version of this. Let

N ′
−(T ) = # {ρ′ = β′ + iγ′ | ζ ′(ρ′) = 0, −1 < β′ < 1/2, 0 < γ′ < T}

and

N−(T ) = # {ρ = β + iγ | ζ(ρ) = 0, −1 < β < 1/2, 0 < γ < T} .

Theorem 5.2. (Levinson-Montgomery) We have N−(T ) = N ′
−(T )+O(log T )

.

The idea behind the proof is as follows. Let 0 < a < 1/2 and let C denote
the positively oriented rectangle with vertices a + iT/2, a + iT , −1 + iT , and
−1 + iT/2 . It is not difficult to show that

∆ arg
ζ ′

ζ
(s)

∣∣∣∣
C

= O(log T ),

independently of a. Given this, we see that

2π(# zeros of ζ ′(s) in C − # zeros of ζ(s) in C) = O(log T ).

The theorem now follows on observing that a was arbitrary, and by “adding”
rectangles with top and bottom edges, respectively, at T and T/2, T/2 and
T/4, . . . .

We now sketch Levinson’s method. We have just seen that N−(T ) =
N ′

−(T ) + O(log T ). Now, the nontrivial zeros of ζ(s) are symmetric about
the critical line. Hence, the number of them lying to the right of the critical
line up to height T is also N−(T ). Therefore

N(T ) = N0(T ) + 2N−(T )

= N0(T ) + 2N ′
−(T ) + O(log T ),

or
N0(T ) = N(T ) − 2N ′

−(T ) + O(log T ).



208 S.M. Gonek

The size of the first term on the right–hand side of the last line is known,
namely, (1 + o(1)) T

2π
log T . Hence, if we can determine a sufficiently small

upper bound for N ′
−(T ), we can deduce a lower bound for N0(T ).

To find such an upper bound it is convenient to first note that the zeros
of ζ ′(s) in the region −1 < σ < 1/2, 0 < t < T , are identical to the zeros
of ζ ′(1 − s) in the reflected region 1/2 < σ < 2, 0 < t < T . One can
also show, by the functional equation for the zeta function, that ζ ′(1− s) and
G(s) = ζ(s) + ζ ′(s)/L(s) have the same zeros in 1/2 < σ < 2, 0 < t < T ,
where L(s) is essentially 1

2π
log T . It turns out to be technically advantageous

to count the zeros of G(s) rather than those of ζ ′(1 − s).

To bound the number of zeros of G(s) in this region, we apply Littlewood’s
Lemma. Let a = 1/2 − δ/ log T , with δ a small positive number, and let Ra

denote the rectangle whose vertices are at a, 2, 2+ iT , and a+ iT . It would be
natural to apply our abbreviated form of the lemma to obtain

∑
ρ∗∈Ra

Dist(ρ∗) =
1

2π

∫ T

0
log |G(a + it)|dt + E ,

where ρ∗ denotes a zero of G(s) and Dist(ρ∗) is its distance to the left edge of
Ra. However, in the next step, when we apply the arithmetic–geometric mean
inequality to the integral, we would lose too much. To avoid this loss, we first
mollify G(s) and then apply Littlewood’s Lemma in the form

∑
ρ∗∗∈Ra

GM (ρ∗∗)=0

Dist(ρ∗∗) =
1

2π

∫ T

0
log |G(a + it)M(a + it)|dt + E .

Here M(s) =
∑

n≤T θ an/n
s, with an = µ(n)na−1/2

(
1 − log n

log T θ

)
and θ > 0,

approximates 1/ζ(s) . Note that among the zeros of G(s)M(s) in Ra are all
the zeros of G(s) in Ra. Therefore we have

∑
ρ∗∗∈Ra

GM (ρ∗∗)=0

Dist(ρ∗∗) ≥
∑

ρ∗∈Ra

G(ρ∗)=0

Dist(ρ∗)

≥
∑

ρ∗∈Ra ,Reρ∗>1/2
G(ρ∗)=0

Dist(ρ∗)

≥(1/2 − a)N ′
−(T ) .
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We now see that

(1/2 − a)N ′(T ) ≤ 1

2π

∫ T

0
log |GM(a + it)|dt + E

=
1

4π

∫ T

0
log |GM(a + it)|2dt + E

≤ T

4π
log

(
1

T

∫ T

0
|GM(a + it)|2dt

)
+ E .

Thus, we require an estimate for∫ T

0
|GM(a + it)|2dt .

This is similar to a mean value we saw in Section 3. Levinson was able prove
an asymptotic estimate for this integral when θ = 1/2 − ε with ε arbitrarily
small. The resulting upper bound for N ′

−(T ) then led to the lower bound

N0(T ) > (1/3 + o(1))N(T ).

Conrey later proved an asymptotic estimate for the integral when θ = 4/7− ε.
This led to

N0(T ) > (2/5 + o(1))N(T ).

The form of the asymptotic estimate in both cases is the same as a function
of θ, and D. Farmer [F] has given heuristic arguments to suggest that this
remains the case even when θ is arbitrarily large. From Farmer’s conjecture it
follows that

N0(T ) ∼ N(T ) .

Before concluding this section, we remark that had we introduced a mollifier
into our proof of the Bohr–Landau result in the previous section, we would
have obtained a much stronger zero–density estimate of the form we alluded
to previously, namely N(σ, T ) � T λ(σ), with λ(σ) < 1.

6 Application: The Number of Simple Zeros

Our third application demonstrates the use of discrete mean value theorems.

Let

Ns(T ) = #{ρ = β + iγ | ζ(ρ) = 0, ζ ′(ρ) �= 0, 0 < γ < T}

denote the number of simple zeros of the zeta function in the critical strip with
ordinates between 0 and T . It is believed that all the nontrivial zeros are on
the critical line and simple, in other words, that N(T ) = N0(T ) = Ns(T ) for
every T > 0. Unconditionally, it is known that at least 2/5 of the zeros are
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simple (see Conrey [C]). In 1973, H. Montgomery [M], used his pair correlation
method to show that if the Riemann Hypothesis is true, then more than 2/3
of the zeros are simple. In other words,

Ns(T ) > 2/3N(T )

provided that T is sufficiently large. We will outline his argument in section 8.
Here we briefly describe a different method of Conrey, Ghosh, and Gonek
[CGG1], which shows that on the stronger hypotheses of RH and the Gener-
alized Lindelöf Hypothesis, one can replace the 2/3 above by 19/27 = .703 . . ..

By the Cauchy–Schwarz inequality, we have∣∣∣ ∑
0<γ<T

ζ
′
(1/2+iγ)MN (1/2+iγ)

∣∣∣2 ≤ ( ∑
0<γ≤T

1/2+iγ is simple

1
)( ∑

0<γ<T

|ζ ′
(ρ)MN (ρ)|2

)
,

where MN (s) is a Dirichlet polynomial of length N with coefficients similar, but
not identical, to those of M(s) in the last section. Its purpose is also similar: to
mollify ζ

′
(1/2+ iγ) so as to minimize the loss in applyng the Cauchy–Schwarz

inequality. If one assumes RH, the sum on the left–hand side is easy to compute
and turns out to be ∼ 19/24N(T ) log T . The sum on the right–hand side is
much more difficult to treat, but one can show that if RH and GLH are true,
then it is ∼ 57/64N(T )log2T . Inserting these estimates into the inequality
above and solving for Ns(T ), we obtain the stated result. An elaboration of
the method leads to the conclusion that, on the same hypotheses, over 95.5%
of the zeros of ζ(s) are either simple or double.

7 Mean Values of Dirichlet Polynomials

From now on we will focus on mean values of Dirichlet polynomials. Let

A(s) = AN (s) =
N∑

n=1

ann
−s

be a Dirichlet polynomial of length N and let s = σ + it. The Classical Mean
Value Therorem for Dirichlet polynomials is

Theorem 7.1. (Classical Mean Value Theorem)

∫ T

0
|

N∑
n=1

ann
−s|2dt =

(
T + O(N log N)

) N∑
n=1

|an|2 n−2σ .

A more precise version due to H. L. Montgomery and R. C. Vaughan is
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Theorem 7.2. (Montgomery–Vaughan)

∫ T

0
|

N∑
n=1

ann
−s|2dt =

N∑
n=1

|an|2 n−2σ

(
T + O(n)

)
.

From this we see that if N = o(T ), then

∫ T

0
|

N∑
n=1

ann
−σ−it|2dt ∼ T

N∑
n=1

|an|2n−2σ .

On the other hand, if N � T the O–term dominates and we have only∫ T

0
|

N∑
n=1

ann
−σ−it|2dt � N

N∑
n=1

|an|2n−2σ .

It is natural to ask whether this is the actual size of the mean when N is
larger than T . The following example answers this question.

Example. Let each an = 1 and take σ = 1/2. Montgomery and Vaughan’s
mean value formula gives∫ T

0
|

N∑
n=1

n− 1
2 −it|2dt =

N∑
n=1

1

n

(
T + O(n)

)
=T (log N + O(1)) + O(N)

=

{
(1 + o(1))T log N if N = O(T ) ,

O(N) if N > T α (α > 1) .

We can also evaluate this using a crude form of the approximate functional
equation for the zeta function (see Titchmarsh [T], p.77), namely

ζ(s) =
∑

1≤n≤N

n−s +
N 1−s

s− 1
+ O(N−σ) .

Taking σ = 1/2, we obtain

∫ T

0

∣∣∣∣ N∑
n=1

n−1/2−it

∣∣∣∣2dt =

∫ T

0

∣∣∣∣ζ(1/2 + it) +
N 1/2−it

1/2 − it
+ O(N−1/2)

∣∣∣∣2dt .

Now, we know (see Titchmarsh [T]) that∫ T

0

∣∣ζ(1/2 + it)
∣∣2dt ∼ T log T .
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Furthermore, it is easy to see that∫ T

0

∣∣∣∣ N 1/2−it

1/2 − it

∣∣∣∣2dt = N

∫ T

0

1

1/4 + t2
dt ∼ πN and

∫ T

0
N−1dt = T/N .

Hence, we find that ∫ T

0

∣∣ N∑
n=1

n−1/2−it
∣∣2dt ∼ πN

if N � T α and α > 1. Therefore, the O– term cannot be reduced in this
case and, in fact, we can extract a new main term. So it makes sense to ask
whether there is a useful general asymptotic formula for∫ T

0
|

N∑
n=1

ann
−s|2dt

when N = T α , α > 1. In order to answer this, let us consider the proof of
the Classical Mean Value Theorem. Squaring out and integrating, we obtain∫ T

0

∣∣ N∑
n=1

ann
−σ−it

∣∣2dt =
N∑

n=1

N∑
m=1

anam

(nm)σ

∫ T

0
(m/n)it dt

=T
N∑

n=1

|an|2
n2σ

+
∑

1≤m,n≤N
m �=n

anam

(nm)σ

(
eiT log(m/n) − 1

i log(m/n)

)
.

The second sum consists of “off–diagonal” terms and is

�
∑

1≤m,n≤N
m �=n

|anam|
(nm)σ | log(m/n)| ≤

1

2

∑
1≤m,n≤N

m �=n

( |an|2
n2σ

+
|am|2
m2σ

)
1

| log(m/n)|

=
∑

1≤m,n≤N
m �=n

|an|2
n2σ | log(m/n)| =

∑
1≤n≤N

|an|2
n2σ

( ∑
1≤m≤N

m �=n

1

| log(m/n)|

)
.

The inner sum is

�
( ∑

m≤N
|m−n|≤n/2

+
∑
m≤N

n/2<|m−n|

)
1

| log(m/n)|

�
∑

1≤h≤n/2

1

| log((n ± h)/n)| +
∑

m<n/2 or
3n/2<m≤N

1

| log(m/n)|

�
∑

1≤h≤N

n

h
+

∑
1≤m≤N

1 � N log N + N � N log N .
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Hence, the off–diagonal terms are

� N log N
∑

1≤n≤N

|an|2
n2σ

.

We therefore find that∫ T

0

∣∣ N∑
n=1

ann
−σ−it

∣∣2dt =
(
T + O(N log N)

) N∑
n=1

|an|2
n2σ

.

From this it is clear that if we want a precise formula when N is much
larger than T , we need to estimate the off–diagonal terms more carefully.

Returning to our initial expression for these terms, we see that∑
1≤m,n≤N

m �=n

anam

(nm)σ

(
eiT log(m/n) − 1

i log(m/n)

)

= 2Re
∑

1≤n<m≤N

anam

(nm)σ

(
eiT log(m/n) − 1

i log(m/n)

)

= 2Re
∑

1≤n<N

∑
1≤h≤N−n

anan+h

(n(n + h))σ

(
eiT log((n+h)/n) − 1

i log((n + h)/n)

)

= 2Re
∑

1≤h<N

∑
1≤n≤N−h

anan+h

n2σ
(1 + h/n)−σ

(
eiT log(1+h/n) − 1

i log(1 + h/n)

)
.

For the sake of simplicity, consider only the terms with h/n < 1/2. In these
log(1 + h/n) is approximately h/n and (1 + h/n)σ is approximately 1. These
terms therefore contribute about

2Re
∑

1≤h<N

∑
2h<n≤N−h

anan+h

n2σ−1

(
eiT h/n − 1

ih

)
.

To simplify further, we restrict our attention to the terms with Th < n/2. In
these (eiT h/n − 1)/ih is approximately T/n, so their contribution is about

2T Re
∑
h �=0

∑
n

anan+hn
−2σ .

We can clearly estimate this if we have good estimates for the sums

N∑
n=1

an an+h .

In fact, this would be sufficient to estimate the terms we ignored as well. To
state the final result obtained, we assume the an satisfy the following conditions
(see Goldston and Gonek [GG] for the details):
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1. (Normalization)

an � nε.

2. There is a function M(x) and a real number θ with 0 < θ < 1 such that

∑
n≤x

an = M(x) + O(xθ) ,

M ′(x) � xε, and M ′′(x) � x−1+ε.

3. There is a function M(x, h), real numbers φ and η with 0 < φ, η < 1,
such that ∑

n≤x

anan+h = M(x, h) + O(xφ)

uniformly for h ≤ xη , and M ′(x, h) � (hx)ε.

In applications it is often more convenient to estimate

∫ T

0

∣∣ N∑
n=1

ann
−s −

∫ N

1
M ′(x)x−sdx

∣∣2dt

rather than ∫ T

0

∣∣ N∑
n=1

ann
−s
∣∣2dt .

Here the integral involving M ′(x) may be thought of as an expected value.
Also, it is much easier to work with a weighted mean

∫ ∞

−∞
ΨU (

t

T
)
∣∣ N∑

n=1

ann
−s −

∫ N

1
M ′(x)x−sdx

∣∣2dt ,

where ΨU (x) is nonnegative, has support in [1−U−1, 1+U−1] with U = logA T ,

and satisfies Ψ
(j)
U (x) � logj T and ΨU (x) = 1 in [1 + U−1, 1− U−1]. It follows

that the Fourier transform Ψ̂U (v) is approximately 1 for |v| ≤ 1 and drops
off rapidly as |v| increases. Thus ΨU (t/T ) is a smooth approximation to the
characteristic function of the interval [0, T ]. Our result is

Theorem 7.3. (Goldston–Gonek) Let ε > 0 be arbitraily small, σ < 1, and
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θ, φ, η as above. Then for T � N � T (1−ε)/(1−η) we have∫ ∞

−∞
Ψ(

t

T
)

∣∣∣∣ N∑
n=1

ann
−s −

∫ N

1
M ′(x)x−sdx

∣∣∣∣2dt

= Ψ̂(0)T
∑
n≤N

|an|2n−2σ

+ 4π(
T

2π
)2−2σRe

∫ ∞

T/2πN

( ∑
1≤h≤2πNv/T

M ′(
hT

2πv
, h)h1−2σ

)
Ψ̂(v)

v2−2σ
dv

− 4π(
T

2π
)2−2σRe

∫ ∞

T ε /2πN

(∫ 2πNv/T

0

∣∣M ′(
uT

2πv
)
∣∣2u1−2σdu

)
Ψ̂(v)

v2−2σ
dv

+ O(N 1−2σ+max(θ,φ)+5ε) + O(N 2−2σ+5εT−1) + O(N 2ε) .

A similar formula can be proved for the tails of Dirichlet series minus their
expected value, that is, for

∑
n>N ann

−s −
∫∞

N
M ′(x)x−sdx . One can also

estimate the “mixed” means∫ ∞

−∞
Ψ(

t

T
)

( N∑
n=1

ann
−s−
∫ N

1
M ′

a(x)x−sdx

)( N∑
n=1

bnn−s −
∫ N

1
M ′

b(x)x−sdx

)
dt ,

where M ′
a(x) and M ′

b(x) have an obvious meaning. Finally, one can show that
the integrals of “crossed” expressions consisting of a Dirichlet polynomial times
the complex conjugate of the tail of a Dirichlet series (minus their expected
values in both cases) are generally of smaller order than means involving a
polynomial times a polynomial or a tail times a tail.

We now turn to applications of long mean value theorems.

8 Application: A Lower Bound for F (α)

H. L. Montgomery [M] studied the function4

F (α) = (
T

2π
log T )−1

∑
0<γ,γ ′≤T

T iα(γ−γ ′) 4

4 + (γ − γ′)2 .

It is known that F (α) is even and nonnegative, and Montgomery showed that
if the Riemann Hypothesis is true, then

F (α) = (1 + o(1))T−2α log T + α + o(1) (8.1)

for |α| ≤ 1. He also conjectured that

F (α) = (1 + o(1)) (8.2)

4Editors’ comment: The form factor, F (α), is also discussed in Sections 4 and 6 of the
lectures of D.A. Goldston, page 79.
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when 1 ≤ |α| ≤ A with A arbitrarily large. The only known nontrivial lower
bound for F (α) when |α| ≥ 1 is given by

Theorem 8.1. (Goldston–Gonek–Ozluk–Snyder) Assume the Generalized
Riemann Hypothesis. Then

F (α) ≥ 3/2 − |α| − ε

uniformly for 1 ≤ |α| ≤ 3/2 − 2ε and T ≥ T0(ε) .

See [GGOS].

Sketch of the proof. First we sketch the derivation of Montgomery’s results
(8.1) and (8.2).

We begin with the explicit formula

−2
∑

0<γ≤T

xi(γ−t) 1

1 + (t− γ)2 =x−1
(∑

n≤x

Λ(n)n1/2−it −
∫ x

1
u1/2−itdu

)
+ x

(∑
n>x

Λ(n)n−3/2−it −
∫ ∞

x

u−3/2−itdu

)
+ E ,

where E , as usual, denotes an ignorable error term. Integrating the modulus
squared of both sides (see Montgomery [M] for details), we see that the left–
hand side is∫ T

0

∣∣∣∣2 ∑
0<γ≤T

xi(γ−t) 1

1 + (t− γ)2

∣∣∣∣2dt = 2π
∑

0<γ,γ ′≤T

xi(γ−γ ′) 4

4 + (γ − γ′)2 + E

= 2π F (x, T ) + E ,

where we write

F (x, T ) =
∑

0<γ,γ ′≤T

xi(γ−γ ′) 4

4 + (γ − γ′)2 .

Note that

F (α) = (
T

2π
log T )−1F (T α, T ) .

Equating this with the mean squared modulus of the right–hand side, we find
that

2π F (x, T ) =

∫ T

0

∣∣∣∣x−1
(∑

n≤x

Λ(n)n
1
2 −it −

∫ x

1
u

1
2 −itdu

)

+ x

(∑
n>x

Λ(n)n− 3
2 −it −

∫ ∞

x

u− 3
2 −itdu

)∣∣∣∣2 dt + E .

(8.3)
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Case 1. x = T α , α < 1. Applying the Montgomery–Vaughan mean value
theorem in a straightforward way, we obtain (8.1).

Case 2. x = T α , 1 ≤ α < A. Applying Theorem 7.3 and a strong form of the
Twin Prime Conjecture, we obtain the conjecture 8.2. More precisely, if we
assume that ∑

n≤y

Λ(n)Λ(n + h)) = c(h)x + O(x1/2+ε) ,

where c(h) is defined in Theorem 8.2 below, we obtain 8.2 with A = 2. If we
also assume there is significant cancellation among the O–terms when averaged
over h, we obtain (8.2) with A arbitrarily large.

Theorem 8.1 is proved as follows. We have no proof of the Twin Prime
Conjecture, but we have its analogue for the functions

λQ(n) =
∑
q≤Q

µ2(q)

φ(q)

∑
d|q
d|n

dµ(d) ,

which approximate the Λ(n)’s. Let us rewrite (8.3) as

2π F (x, T ) =

∫ T

0

∣∣A(x, t) + A∗(x, t)
∣∣2dt + E .

Also, let AQ(x, t) and A∗
Q(x, t) be the same as A(x, t) and A∗(x, t), respectively,

but with the Λ(n)’s replaced by λQ(n)’s. Clearly we have

0 ≤
∫ ∞

−∞
ΨU (

t

T
)

∣∣∣∣(A(x, t) + A∗(x, t)
)
−
(
AQ(x, t) + A∗

Q(x, t)
)∣∣∣∣2dt .

It follows that

2Re

∫ ∞

−∞
ΨU (

t

T
)

(
AAQ + A∗A∗

Q + AA∗
Q + A∗AQ − AQA∗

Q

)
dt

−
∫ ∞

−∞
ΨU (

t

T
)
(
AQAQ + A∗

QA∗
Q

)
dt

≤
∫ ∞

−∞
ΨU (

t

T
)
∣∣(A(x, t) + A∗(x, t)

)∣∣2dt

= 2π F (x, T ) .

The coefficient correlation sums needed to estimate the long mean values here
are ∑

n≤y

Λ(n)λQ(n + h) for AAQ and A∗A∗
Q

and ∑
n≤y

λQ(n)λQ(n + h) for AQAQ and A∗
QA∗

Q .

These are available from
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Theorem 8.2. (J. Friedlander–D. Goldston) Assume the Generalized Rie-
mann Hypothesis. Let Q = yδ with 1/4 ≤ δ ≤ 1/2. Then∑

n≤y

Λ(n)λQ(n + h) and
∑
n≤y

λQ(n)λQ(n + h)

are both = c(h)y + O(y
1
2 +δ+ε) uniformly for 1 ≤ h ≤ y1−ε, where

c(h) =

⎧⎨⎩2
∏

p>2

(
1 − 1

(p−1)2

)∏
p>2
p|h

(
p−1
p−2

)
if h is even ,

0 if h is odd .

Applying this to our terms, taking X = T α, and choosing δ optimally as a
function of α leads to

F (α, T ) ≥ 3

2
− |α| − ε

for 1 ≤ α ≤ 3/2 − 2ε.

9 Application: The 6th and 8th Power Mo-

ments of the Zeta Function

In Section 3 we defined

Ik(1/2, T ) =

∫ T

0
|ζ(1/2 + it)|2k dt

for positive values of k. Recall that Hardy and Littlewood showed that∫ T

0
|ζ(1/2 + it)|2 dt ∼ T log T ,

Ingham showed that ∫ T

0
|ζ(1/2 + it)|4 dt ∼ 1

2π2 T log4 T ,

and no other asymptotic formula has ever been proved. In the mid 1990’s J.
B. Conrey and A. Ghosh [CG] made the following

Conjecture 1. (Conrey–Ghosh) As T → ∞,∫ T

0
|ζ(1/2 + it)|6 dt ∼ 42

9!

∏
p

( ∞∑
r=0

d3(p
r)2

pr

)
T log9 T ,

where d3(n) denotes the number of ways to write n as a product of three
positive integers.
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J. B. Conrey and I [CGO] followed this a few years later with

Conjecture 2. (Conrey–Gonek) As T →∞,

∫ T

0
|ζ(1/2 + it)|8 dt ∼ 24024

16!

∏
p

( ∞∑
r=0

d4(p
r)2

pr

)
T log16 T ,

where d4(n) is the four–fold divisor function.

All these results and conjectures relied on estimating mean values of Dirich-
let polynomial approximations to powers of the zeta function. It should be
mentioned that the Keating–Snaith [KS] conjecture previously refered to used
an entirely different method, namely, they modeled the zeta function by char-
acteristic polynomials of random unitary matrices.

Here we sketch our method for the 6th and 8th moment conjectures. It
gives the 2nd and 4th moment asymptotics as well. We begin with a discussion
of the approximate functional equation.

For s = σ + it and σ > 1, ζk(s) has the Dirichlet series expansion

ζk(s) =
∏

p

(
1 − p−s

)−k
=
∏

p

(
1 +

dk(p)

ps
+

dk(p
2)

p2s
+ · · ·

)
=

∞∑
n=1

dk(n)

ns
,

where dk(p
j) = (−1)j

(−k
j

)
is the kth divisor function. The series does not

converge when σ ≤ 1, but we can approximate ζk(s) in this region by an
expression of the form

ζ(s)k =
N∑

n=1

dk(n)

ns
+ χ(s)k

M∑
n=1

dk(n)

n1−s
+ Ek(s) ,

where Ek(s) denotes an error term. This is an approximate functional equation.
We write it as

ζ(s)k = Dk,N (s) + χ(s)kDk,M (1 − s) + Ek(s) ,

where

Dk,N (s) =
N∑

n=1

dk(n)

ns
,

MN =
(

t
2π

)k
, and χ(s) = πs−1/2Γ(1−s

2 )/Γ( s
2 ) is the factor from the functional

equation for the zeta function, ζ(s) = χ(s)ζ(1 − s) . Taking s = 1/2 + it, we
find that

ζ(1/2 + it)k = Dk,N (1/2 + it) + χ(1/2 + it)kDk,M (1/2 − it) + Ek(1/2 + it) .
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Assuming the error term is negligible, we obtain∫ 2T

T

|ζ(1/2 + it)|2k dt ∼
∫ 2T

T

|Dk,N (1/2 + it)|2 dt +

∫ 2T

T

|Dk,M (1/2 + it)|2 dt

+ 2Re

∫ 2T

T

χ(1/2 − it)kDk,N (1/2 + it)Dk,M (1/2 + it) dt .

There is reason to believe that the cross term is smaller than the main term
and that MN = (t/2π)k may be replaced by MN = (T/2π)k. Thus, we expect
that∫ 2T

T

|ζ(1/2 + it)|2k dt ∼
∫ 2T

T

|Dk,N (1/2 + it)|2 dt +

∫ 2T

T

|Dk,M (1/2 + it)|2 dt.

(9.1)
where MN = (T/2π)k and M,N ≥ 1. We can prove this when k = 1 or k = 2,
provided that M and N are both � T . When k ≥ 3, the known bounds for
Ek(s) are too large and it is difficult to show that the cross term really is small.
(However, it might be possible to overcome these problems by appealing to a
more complicated form of the approximate functional equation developed by
A. Good [GD].) Our problem now is to determine an asymptotic estimate for
the mean square of the Dirichlet polynomials Dk,N (1/2+it) and Dk,M (1/2+it).

Montgomery and Vaughan’s mean value theorem, Theorem 7.2, gives∫ 2T

T

∣∣Dk,N (1/2 + it)
∣∣2 dt =

∑
n≤N

dk(n)2

n
(T + O(n)) .

By standard techniques one can show that∑
n≤N

dk(n)2 ∼ ak

Γ(k2)
N logk2−1 N

and that ∑
n≤N

dk(n)2

n
∼ ak

Γ(k2 + 1)
logk2

N ,

where

ak =
∏

p

((
1 − 1

p

)k2 ∞∑
r=0

dk(p
r)2

pr

)
.

Thus, for N � T , we deduce that∫ 2T

T

|Dk,N (1/2 + it)|2 dt ∼ ak

Γ(k2 + 1)
T logk2

N .

Using this with M,N � T and MN = (T/2π)k, we obtain the classical
estimates for I1(T ) and I2(T ).
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If k ≥ 3, the condition MN = (T/2π)k forces at least one of M or N to be
� T , so we need Theorem 7.3, the mean value for long Dirichlet polynomials.
This requires good uniform estimates for the additive divisor sums

Dk(x, h) =
∑
n≤x

dk(n)dk(n + h) .

No such formula has been proved when k > 2, but a precise formula for the
main term of Dk(x, h) can be conjectured by a heuristic application of the
circle method. This leads us to guess that

Dk(x, h) = mk(x, h) + O(x1/2+ε)

uniformly for 1 ≤ h ≤ x1/2, where mk(x, h) is a certain smooth function of x.
Using this in Theorem 7.3, we obtain the

Conjecture 1. Let N = (T/2π)1+η with 0 ≤ η ≤ 1. Then∫ 2T

T

|Dk,N (1/2 + it)|2 dt ∼ wk(η)
ak

Γ(k2 + 1)
TLk2

,

where ak is the product over primes defined previously and

wk(η) = (1 + η)k2

(
1 −

k2−1∑
n=0

(
k2

n + 1

)
γk(n)

(
1 − (1 + η)−(n+1))) ,

with

γk(n) = (−1)n

k∑
i=0

k∑
j=0

(
k

i

)(
k

j

)(
n− 1

i− 1, j − 1, n − i− j + 1

)
when n ≥ 1 andγk(0) = k.

The conjecture restricts us to N � T 2 . Thus, M and N in (9.1) must
satisfy

M � T 2, N � T 2, and MN = (T/2π)k .

Writing N = (T/2π)1+η and M = (T/2π)k−1−η , we find that∫ 2T

T

|ζ(1/2 + it)|2k dt ∼
∫ 2T

T

|Dk,(T/2π)1+ η (1/2 + it)|2 dt

+

∫ 2T

T

|Dk,(T/2π)k−1−η (1/2 + it)|2 dt ,

with 0 ≤ η ≤ 1. Hence,∫ 2T

T

|ζ(1/2 + it)|2k dt ∼
(
wk(η) + wk(k − 2 − η)

) ak

Γ(k2 + 1)
TLk2
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Example:The 6th moment. Take k = 3. Then∫ 2T

T

|ζ(1/2 + it)|6 dt ∼
(
w3(η) + w3(1 − η)

) a3

Γ(10)
TL9

for 0 ≤ η ≤ 1. We find from the conjecture that

w3(η) = 1 + 9η + 36η2 + 84η3 + 126η4 − 630η5 + 588η6 + 180η7 − 9η8 + 2η9 ,

and one can verify that

w3(η) + w3(1 − η) = 42

for 0 ≤ η ≤ 1. Therefore∫ 2T

T

|ζ(1/2 + it)|6 dt ∼ 42
a3

9!
TL9 .

Example:The 8th moment. Take k = 4. Then∫ 2T

T

|ζ(1/2 + it)|8 dt ∼
(
w4(η) + w4(2 − η)

) a4

Γ(17)
TL16 ,

where η and 2 − η must be in [0, 1]. This forces η = 1. Now

w4(1) = 12012 .

Hence ∫ 2T

T

|ζ(1/2 + it)|8 dt ∼ 24024
a4

16!
TL16 .

Originally we thought we would be able to take N > T 2 in our formulas.
In other words, we expected the error terms in

Dk(x, h) = mk(x, h) + Oh(x
1/2+ε) ,

when used in conjunction with the long mean value theorem and averaged
over h up to x1−ε, would cancel. We were surprised to find, however, that they
accumulate once h exceeds x1/2−ε and contribute to the main term. It would
be very interesting to understand this behavior better.
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Families of L-functions and 1-level
densities

Brian Conrey ∗

Abstract

In these notes we will describe some of the families of L-functions
with (conjectured) symmetry types unitary, orthogonal, and symplec-
tic. Then we will indicate a general method to compute the 1-level
density functions and compare the results for our families with the 1-
level density functions that can be computed for the scaled limits of
U(N), USp(2N), SO(2N), and SO(2N + 1).

1 The Selberg Class of L-functions

All of the L-functions in the families we will discuss belong to the Selberg
class (at least conjecturally; see [S], [CG], or [KP] for more details about this
section) whose definition we now give. For detailed information about the
L-functions in these families see [IK].

∗This paper was written at the Isaac Newton Institute and was partially supported by
an FRG grant from the NSF
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Let s = σ + it with σ and t real. An L-function is a Dirichlet series

L(s) =
∞∑

n=1

λn

ns
,

satisfying the Ramanujan bound1 λn �ε nε for every ε > 0, which has three
additional properties.

• Analytic continuation: L(s) continues to a meromorphic function of
finite order, with at most finitely many poles, and all poles are located
on the σ = 1 line.

• Functional equation: There is a number ε with |ε| = 1, and a function
γL(s) of the form

γL(s) = P (s)Qs

k∏
j=1

Γ(wjs + µj)

where P is a polynomial whose only zeros in σ > 0 are at the poles of
L(s), Q > 0, wj > 0, and Reµj ≥ 0, such that

ξL(s) := γL(s)L(s)

is entire, and
ξL(s) = εξL(1 − s),

where ξL(s) = ξL(s).

ε is often called the “sign” of the functional equation (especially when
it is ±1) or the root number. It is sometimes convenient to write the
functional equation in asymmetric form:

L(s) = εXL(s)L(1 − s),

where XL(s) =
γL(1 − s)

γL(s)
.

• Euler product: For σ > 1 we have

L(s) =
∏

p

Lp(1/p
s),

where the product is over the primes p, and

Lp(1/p
s) =

∞∑
k=0

λpk

pks
= exp

( ∞∑
k=1

bpk

pks

)
,

where bn � nθ with θ < 1
2 .

1See the Appendix of the lectures of D.W. Farmer, page 185, for a discussion of the �
notation.
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Note that L(s) ≡ 1 is the only constant L-function, the set of L-functions
is closed under products, and if L(s) is an L-function then so is L(s + iy)
for any real y. An L-function is called primitive if it cannot be written as
a nontrivial product of L-functions, and it can be shown, assuming Selberg’s
orthonormality conjectures, that any L-function has a unique representation
as a product of primitive L-functions.

The degree of the L-function is the sum of the wj . In all known examples,
one may take wj = 1/2 for all j; this may require using the duplication formula
for the Gamma-function. This is a useful thing to do, because then γL(s)
is uniquely determined. Also, in all known examples the Euler product is
expressible as the reciprocal of a polynomial whose degree is equal to d for
all primes that do not divide the level q which (in the formulation with all
wj = 1/2) is given by q = πdQ2; for the primes dividing q it is the case in
all known examples that the Euler factor is the reciprocal of a polynomial of
degree at most d.

For each L-function we define its log-conductor c(L, t) at the point 1/2+ it
by

c(L, t) =
X ′

L

XL

(1/2 + it). (1.1)

The density of zeros near the point 1/2 + it is given by

2π

c(L, t)
.

2 Degree 1 L-functions

2.1 The Riemann zeta-function

The Riemann zeta-function is given by

ζ(s) := 1 +
1

2s
+

1

3s
+ · · · =

∞∑
n=1

1

ns
.

The series converges in the half-plane where the real part of s is larger than
1. Riemann proved that ζ(s) has an analytic continuation to the whole plane
apart from a simple pole at s = 1. Moreover, he proved that ζ(s) satisfies a
functional equation which in its symmetric form is given by

ξ(s) := 1
2s(s− 1)π− s

2 Γ
(s

2

)
ζ(s) = ξ(1 − s)
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where Γ(s) is the usual Gamma-function. Euler had earlier proved that

ζ(s) =

(
1 +

1

2s
+

1

4s
+

1

8s
+ . . .

)(
1 +

1

3s
+

1

9s
+ . . .

)(
1 +

1

5s
+ . . .

)
. . .

=
∏

p

(
1 − 1

ps

)−1

where the infinite product (called the Euler product) is over all the prime
numbers. The product converges when the real part of s is greater than 1.
The Euler product implies that there are no zeros of ζ(s) with real part greater
than 1; the functional equation implies that there are no zeros with real parts
less than 0, apart from the trivial zeros at s = −2,−4,−6, . . . . Thus, all of the
complex zeros are in the critical strip 0 ≤ Res ≤ 1. The functional equation
shows that the complex zeros are symmetric with respect to the line Res = 1

2 .
Riemann calculated the first few complex zeros 1

2 + i14.134 . . . , 1
2 + i21.022 . . .

and proved that the number N(T ) of zeros with imaginary parts between 0
and T is

N(T ) =
T

2π
log

T

2πe
+

7

8
+ S(T ) + O(1/T )

where S(T ) = 1
π

arg ζ(1/2 + iT ) is computed by continuous variation start-
ing from arg ζ(2) = 0 and proceeding along straight lines, first up to 2 + iT
and then to 1/2 + iT . Riemann also proved that S(T ) = O(log T ). Note for
future reference that at a height T the average gap between zero heights is
∼ 2π/ log T . Riemann suggested that the number N0(T ) of zeros of ζ(1/2+ it)
with 0 < t ≤ T seemed to be about

T

2π
log T ;

and then made his conjecture that all of the zeros of ζ(s) in fact lie on the
1/2-line; this is the Riemann Hypothesis.

The family {ζ(1/2 + it) : t ∈ R} parametrized by t is a unitary family.

2.2 Dirichlet L-functions

The simplest L-function after the ζ-function is the Dirichlet L-function for the
non-trivial character of conductor 3:

L(s, χ−3) = 1− 1

2s
+

1

4s
− 1

5s
+

1

7s
− 1

8s
+ − . . . .

This can be written as an Euler product

L(s, χ−3) =
∏

p≡1 mod 3

(1 − p−s)−1
∏

p≡2 mod 3

(1 + p−s)−1,
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satisfies the functional equation

ξ(s, χ−3) :=
(

π
3

)− s
2 Γ( s+1

2 )L(s, χ3) = ξ(1 − s, χ−3),

and is expected to have all of its non-trivial zeros on the 1/2-line. In general, a
Dirichlet character is a completely multiplicative periodic function χ : N → C;
i.e. χ(mn) = χ(m)χ(n) for all m,n and χ(m + q) = χ(m) for some integer
q. It is the primitive characters which lead to the L-functions in the Selberg
class . For each q ≥ 1 there are precisely

ψ(q) =
∑
d|q

µ(d)ϕ(q/d) (2.1)

primitive characters to the modulus q.2 If q has the factorization q = pe1
1 . . . per

r ,
then any primitive character χ mod q has a unique representation as a product
χ = χ1 . . . χr where χj is a primitive character modulo p

ej

j . We now describe
how to construct the primitive characters modulo pe. If p is odd, then the
number of integers less than or equal to pe and relatively prime to pe is given
by ϕ(pe) = pe − pe−1. These reduced residues modulo pe form a multiplicative
group which is cyclic; let g be a generator of this group (i.e. a primitive root of
pe.) We can specify any character χ modulo pe by saying what the value of χ(g)
is (clearly this value must be a ϕ(pe) root of unity). The primitive characters
are those for which χ(g) = exp(2πia/ϕ(pe)) where (a, ϕ(pe)) = 1. For p = 2,
the reduced residues modulo 2e do not form a cyclic group unless e = 1 or
2. If e ≥ 3 then the reduced residues are given by ±5j with j = 0, 1, . . . 2e−2.
The primitive characters χ modulo 2e are determined by the value of χ(5) =
exp(2πia/2e−2) with 1 ≤ a ≤ 2e−2 odd and by the value of χ(−1) = ±1. This
describes all primitive characters.

For each primitive character χ mod q the Gauss sum is given by

τ(χ) =

q∑
n=1

χ(n)e(n/q). (2.2)

where e(x) = exp(2πix). It satisfies |τ(χ)| =
√

q; we write τ(χ) = εχ
√

q. The
Dirichlet L-function is given by

L(s, χ) =
∞∑

n=1

χ(n)

ns
=
∏

p

(
1 − χ(p)

ps

)−1

for σ > 1. Odd characters are those for which χ(−1) = −1; even characters
have χ(−1) = 1. The functional equation for an even character is

ξ(s, χ) := (π/
√

q)−s/2Γ(s/2)L(s, χ) = εχξ(1 − s, χ). (2.3)

2Editors’ comment: Here ϕ is Euler’s phi-function, defined in the lectures by D.R. Heath-
Brown (page 1) after Theorem 20. µ is defined by D.A. Goldston (page 79) in equation 2.10
and is called the Möbius function.
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For an odd character, the functional equation is

ξ(s, χ) := (π/
√

q)−s/2Γ((s + 1)/2)L(s, χ) = εχξ(1 − s, χ). (2.4)

We have described the primitive characters above. Imprimitive characters
arise in two ways. First, the principal character χ0 modulo p defined by χ0(n)
= 0 if p | n and = +1 if p � n is an imprimitive character. Second, a primitive
character modulo pe regarded as a character modulo pf where f > e is an
imprimitive character. Finally, the product of a primitive character with an
imprimitive character is an imprimitive character. Any character χ (primitive
or imprimitive) which satisfies χ(m + q) = χ(m) is called a character modulo
q. There are ϕ(q) characters modulo q.

2.2.1 Orthogonality relations

The basic orthogonality relation is expressed by: if (mn, q) = 1, then

∑
χ mod q

χ(m)χ(n) =

{
ϕ(q) if m = n mod q

0 if m �= n mod q
(2.5)

For primitive characters, this takes the shape: if (mn, q) = 1, then∑*

χ mod q

χ(m)χ(n) =
∑

d|(q,m−n)

ϕ(d)µ(q/d). (2.6)

The Polya-Vinogradov inequality asserts that

|
N∑

n=1

χ(n)| � q1/2 log q (2.7)

for any non-principal character χ mod q.

The family {L(1/2, χq) : q is primitive} is also a unitary family.

2.3 Real primitive characters

A special role is played by the real or quadratic Dirichlet characters. These
we denote by χd where d is a fundamental discriminant: d can be positive
or negative, is either odd, squarefree, and congruent to 1 modulo 4, or is 4
times a squarefree integer congruent to 2 or 3 modulo 4. Thus, the sequence of
positive fundamental discriminants begins d = 1, 5, 8, 12, 13, 17, 21, 24, 28, . . .
and the sequence of negative fundamental discriminants begins d=−3, −4, −7,
−8, −11, −15, −19, −20, −23, −24, . . . . The character χd only takes on the
values +1, 0,−1; it is primitive with the modulus |d|. If d > 0, then χd is an
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even character and if d < 0 it is an odd character. The character χd is the
character associated with the quadratic field Q(

√
d). In particular, the prime

p splits or factors in this field if χd(p) = +1; it remains prime if χd(p) = −1;
and it ramifies (has a square factor) if χd(p) = 0. The real characters χd can
be decomposed into a product of characters χ−4, χ8, χ−8, χp (p ≡ 1 mod 4),

and χ−p, (p ≡ 3 mod 4) for odd primes p where χ±p(n) =
(

n
p

)
is the Legendre

symbol (= 1 if n is a non-zero square modulo p, and = −1 if n is a non-zero
non-square modulo p, = 0 if p | n). The character χ−4(n) is 0 for even n, is +1
for n congruent to 1 modulo 4, and is −1 for n congruent to 3 modulo 4. The
character χ8(n) is 0 for even n, is +1 for n congruent to ±1 modulo 8, and is
−1 for n congruent to ±3 modulo 8. Finally, χ−8(n) is 0 for even n, is +1 for
n congruent to 1 or 3 modulo 8, and is −1 for n congruent to 5 or 7 modulo 8.

2.3.1 Orthogonality

First of all, the number N+
q (x) of fundamental discriminants d with 0 < d ≤ x

and (d, q) = 1 satisfies N+
q (x) ∼ 3

π2
ϕ(q)

q
x and similarly the number N−

q (x) of

negative fundamental discriminants d with 0 < −d < x and (d, q) = 1 satisfies

N−
q (x) ∼ 3

π2
ϕ(q)

q
x.

By the Generalized Riemann Hypothesis,

∑
0<d≤x

χd(n) =

{
N+

n (x) if n is a square

O(x1/2(nx)ε) if n is not a square.
(2.8)

Elliott, Jutila and Heath-Brown have proven unconditional estimates for
averages of real characters. In particular, Heath-Brown [H-B] has shown that

∑
m

∣∣∣∣∑
n

an

( n

m

)∣∣∣∣2 � (MN)ε(M + N)
∑

n

|an|2,

where n and m are restricted to odd square-free numbers in the intervals [1,M ]
and [1, N ], respectively, and the an are any complex numbers.

The family {L(1/2, χd) : d is a fundamental discriminant } is a symplectic
family.
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3 Degree two L-functions

3.1 Modular L-functions

A first example of a degree 2 L-function arises from Ramanujan’s tau-function,
defined implicitly by

x
∞∏

n=1

(1 − xn)24 =
∞∑

n=1

τ(n)xn.

The Fourier series

∆(z) :=
∞∑

n=1

τ(n)e(nz),

where e(z) = exp(2πiz), satisfies

∆

(
az + b

cz + d

)
= (cz + d)12∆(z)

for all integers a, b, c, d with ad− bc = 1. A function satisfying these equations
is called a modular form of weight 12. The associated L-function is

L∆(s) :=
∞∑

n=1

τ(n)/n11/2

ns
=
∏

p

(
1 − τ(p)/p11/2

ps
+

1

p2s

)−1

;

it satisfies the functional equation

ξ∆(s) := (2π)−sΓ(s + 11/2)L∆(s) = ξ∆(1 − s).

Note that, by the duplication formula, this can be written in the form

ξ∆(s) = π−sΓ
(s
2

+
11

4

)
Γ
(s
2

+
13

4

)
L∆(s).

It is expected that all of the complex zeros of L∆(s) are on the 1/2-line. In
general a cusp form of weight k for the full modular group is a holomorphic
function f on the upper half-plane which satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all integers a, b, c, d with ad − bc = 1 and also has the property that
limy→∞ f(iy) = 0. Cusp forms for the whole modular group exist only for even
integers k = 12 and k ≥ 16. The cusp forms of a given weight k of this form
make a complex vector space Sk of dimension [k/12] if k �= 2 mod 12 and of
dimension [k/12]−1 if k = 2 mod 12. Each such vector space has a special ba-
sis Hk of Hecke eigenforms which consist of functions f(z) =

∑∞
n=1 af (n)e(nz)

for which
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af (m)af (n) =
∑

d|(m,n)

dk−1af (mn/d2). (3.1)

The Fourier coefficients af (n) are real algebraic integers of degree at most the
dimension #Hk of the vector space. Thus, when k = 12, 16, 18, 20, 22, 26 the
spaces are one dimensional and the coefficients are ordinary integers. We can
express these explicitly in terms of the Eisenstein series

E4(z) = 1 + 240
∞∑

n=1

σ3(n)e(nz)

and

E6(z) = 1 − 504
∞∑

n=1

σ5(n)e(nz)

where σr(n) is the sum of the rth powers of the positive divisors of n:

σr(n) =
∑
d|n

dr.

Then, ∆(z)E4(z) gives the unique Hecke form of weight 16; ∆(z)E6(z) gives
the unique Hecke form of weight 18; ∆(z)E4(z)2 is the Hecke form of weight
20; ∆(z)E4(z)E6(z) is the Hecke form of weight 22; and ∆(z)E4(z)2E6(z) is
the Hecke form of weight 26. The two Hecke forms of weight 24 are given by

∆(z)E4(z)3 + x∆(z)2

where x = −156 ± 12
√

144169. To define the L-function, we scale the coeffi-
cients and write

λf (n) =
af (n)

n(k−1)/2 .

Then the L-function associated with a Hecke form f of weight k is given by

Lf (s) =
∞∑

n=1

λf (n)ns =
∏

p

(
1 − λf (p)

ps
+

1

p2s

)−1

. (3.2)

By Deligne’s theorem λf (p) = 2 cos θf (p) for a real θf (p). It is conjectured
(Sato-Tate) that for each f the {θf (p) : p prime} is uniformly distributed on
[0, π) with respect to the measure 2

π
sin2 θ dθ. We write 2 cos θf (p) = αf (p) +

αf (p) where αf (p) = eiθf (p); then

Lf (s) =
∏

p

(
1 − αf (p)

ps

)−1
(

1 − αf (p)

ps

)−1

. (3.3)

The functional equation satisfied by Lf (s) is

ξf (s) = (2π)−sΓ(s + (k − 1)/2)Lf (s) = (−1)k/2ξf (1 − s). (3.4)

Note that the sign (−1)k/2 of the functional equation is +1 when k ≡ 0 mod 4
and is −1 when k ≡ 2 mod 4.
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3.1.1 Orthogonality relations

The Petersson inner product on the space Sk is defined by

〈f, g〉 =

∫∫
D

f(z)g(z)yk dxdy

y2 . (3.5)

Here the integration is over the fundamental domain

D := {(x, y) : −1/2 ≤ x ≤ 1/2, y ≥
√

1 − x2}.

Let F be an orthogonal basis of Sk with respect to this inner product. The
Petersson formula tells us that

Γ(k − 1)

(4π
√

mn)k−1

∑
f∈F

af (m)af (n)

〈f, f〉 = δm,n + 2πi−k

∞∑
c=1

S(m,n, c)

c
Jk−1

(
4π
√

mn

c

)
(3.6)

where Jk−1 is the Bessel function of index k − 1 and S(m,n, c) is the Kloost-
erman sum

S(m,n, c) =
∑

(x,c)=1

e((mx + nx)/c) (3.7)

where the sum is over a set of reduced residue classes modulo c and where x
satisfies xx ≡ 1 mod c. By a theorem of Weil, |S(m,n, c)| ≤ (m,n, c)1/2d(c)

√
c

where d(c) is the number of positive divisors of c.

The family {Lf (1/2) : f is a primitive form of weight k} is an orthogonal
family. If we restrict to k ≡ 0 mod 4 then it is an even orthogonal family and
if we restrict to k ≡ 2 mod 4 then it is an odd orthogonal family.

3.2 Higher level modular forms

An example of a higher level modular form is the modular form
∑∞

n=1 a(n)e(nz)
associated to an elliptic curve E : y2 = x3 + Ax + B where A,B are integers.
The associated L-function, called the Hasse-Weil L-function, is

LE(s) =
∞∑

n=1

a(n)/n1/2

ns
=
∏
p�q

(
1 − a(p)/p1/2

ps
+

1

p2s

)−1∏
p|q

(
1 − a(p)/p1/2

ps

)−1

where q is the conductor of the curve. The coefficients a(n) are constructed
easily from a(p) for prime p; in turn the a(p) are given by a(p) = p−Np where
Np is the number of solutions of E when considered modulo p. The work
of Wiles and others proved that these L-functions are associated to modular
forms of weight 2. This modularity implies the functional equation

ξE(s) := (2π/
√

q)−sΓ(s + 1/2)LE(s) = wEξE(1 − s) (3.8)

where wE = ±1 is the sign of the functional equation. It is believed that all
of the complex zeros of LE(s) are on the 1/2-line.
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3.2.1 Level q cusp forms

We let Γ0(q) denote the group of matrices

(
a b
c d

)
with integers a, b, c, d sat-

isfying ad− bc = 1 and q | c. This group is called the Hecke congruence group
of level q. A function f holomorphic on the upper half plane satisfying

f

(
az + b

cz + d

)
= (cz + d)kf(z) (3.9)

for all matrices in Γ0(q) and limy→0 f(a
q
+ iy) = 0 for all rational numbers a/q

is called a cusp form for Γ0(q); the space of these is a finite dimensional vector
space Sk(q). The space Sk above is the same as Sk(1). Again, these spaces are
empty unless k is an even integer. If k is an even integer, then

dim Sk(q) =
(k − 1)

12
ν(q) +

([
k

4

]
− k − 1

4

)
ν2(q)

+

([
k

3

]
− k − 1

3

)
ν3(q) −

ν∞(q)

2

where ν(q) is the index of the subgroup Γ0(q) in the full modular group Γ0(1):

ν(q) = q
∏
p|q

(
1 +

1

p

)
;

ν∞(q) is the number of cusps of Γ0(q):

ν∞(q) =
∑
d|q

ϕ((d, q/d));

ν2(q) is the number of inequivalent elliptic points of order 2:

ν2(q) =

{
0 if 4 | q∏

p|q(1 + χ−4(p)) otherwise

and ν3(q) is the number of inequivalent elliptic points of order 3:

ν3(q) =

{
0 if 9 | q∏

p|q(1 + χ−3(p)) otherwise
.

It is clear from this formula that the dimension of Sk(q) grows approximately
linearly with q and k. For the spaces Sk(q) the issue of primitive forms and
imprimitive forms arise, much as the situation with characters. In fact, one
should think of the Fourier coefficients of cusp forms as being a generalization
of characters. They are not periodic, but they act as harmonic detectors, much
as characters do, through their orthogonality relations (below). Imprimitive
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cusp forms arise in two ways. Firstly , if f(z) ∈ Sk(q), then f(z) ∈ Sk(dq) for
any integer d > 1. Secondly, if f(z) ∈ Sk(q), then f(dz) ∈ Sk(Γ0(dq)) for any
d > 1. The dimension of the space Snew

k (q) generated by primitive forms is
given by

dim Snew
k (q) =

∑
d|q

µ2(d) dim Sk(q/d)

where µ2(n) is the multiplicative function defined for prime powers by µ2(p
e) =

−2 if e = 1, = 1 if e = 2 , and = 0 if e > 2. The set of primitive forms (or
Hecke forms) which generate this space is denoted Hk(q). The elements f of
this set have a Fourier series

f(z) =
∞∑

n=1

af (n)e(nz)

where the af (n) = λf (n)n(k−1)/2 have the property that the associated L-
function has an Euler product

Lf (s) =
∞∑

n=1

λf (n)

ns

=
∏
p�q

(
1 − λf (p)

ps
+

1

p2s

)−1∏
p|q

(
1 − λf (p)

ps

)−1

.

We can express this as

Lf (s) =
∏

p

(
1 − αf (p)

ps

)−1 (
1 −

α′
f (p)

ps

)−1

where if p � q then α′
f (p) = αf (p) whereas if p | q then α′

f (p) = 0. The Hecke
relations, equivalent to the Euler product, are given by

λf (m)λf (n) =
∑

d |(m ,n )
(d ,q )=1

λf (mn/d2).

The functional equation of the L-function is

ξf (s) := (2π/
√

q)−sΓ(s + (k − 1)/2)Lf (s) = ±ξf (1 − s).

Now the ± depends on more than the weight k.

The family {Lf (1/2) : f is a primitive form of weight 2 and level q} is an
orthogonal family. If we restrict to those f with a plus in the functional
equation, then it is an even orthogonal family and if we restrict to those f
with a minus in the functional equation then it is an odd orthogonal family.
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3.3 Twists of modular L-functions by real characters

If Lf (s) =
∑

λf (n)n−s is an L-function associated with a primitive form f ,
then we can form the twisted L-function

Lf (s, χ) =
∞∑

n=1

λf (n)χ(n)

ns

where χ(n) is a primitive character with modulus q. In general, if Lf has level
N and (N, q) = 1, then Lf (s, χ) will have level Nq2. If the functional equation
of Lf is

ξf (s) =

(√
N

2π

)s

Γ(s + (k − 1)/2)Lf (s) = wf ξf (1 − s)

then the functional equation of the twist by a real quadratic character Lf (s, χd)
is

ξf (s, χd) =

(√
N |d|
2π

)s

Γ(s + (k − 1)/2)Lf (s, χd) = wfχd(−N)ξf (1 − s, χd).

(3.10)

3.4 Maass forms

There is another kind of cusp form associated with the group Γ0(q). This is
a function f(z) which is real analytic on the upper half-plane. It transforms
like a weight 0 cusp form and is an eigenfunction of the Laplace operator:

∆ := y2
(

∂2

∂x2 +
∂2

∂y2

)
.

It has a Fourier expansion as a linear combination of terms e(nx) in which the
dependence on y is expressed through K-Bessel functions. The prototype for
these is given by the Eisenstein series (for the full modular group)

E(z, s) =
∑

γ∈Γ∞\Γ0 (1)

y(γz)s =
∑

(c,d)=1

ys

|cz + d|2s

where y(z) denotes the imaginary part of z and where Γ∞ is the group which

fixes ∞, i.e. the group of matrices

(
1 b
0 1

)
for integer b. This is not a cusp form

(because it doesn’t vanish at iy as y →∞.) However, its Fourier expansion is
similar to that of the Maass cusp forms for which no explicit construction is
known (apart from some forms with eigenvalue 1/4). Let

θ(s) := π−sΓ(s)ζ(2s) = θ(1 − s).
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Then θ(s)E(z, s) =

θ(s)ys + θ(1 − s)y1−s + 4y1/2
∞∑

n=1

∑
ab=n

(a/b)s−1/2Ks−1/2(2πny) cos(2πnx).

Since θ(s),
∑

ab=n(a/b)s−1/2 and Ks−1/2(2πny) are all invariant under s → 1−s,
we see that θ(s)E(z, s) = θ(1 − s)E(z, 1 − s).

A Maass form f with eigenvalue λ = 1/4 + κ2 satisfies (∆ + λ)f = 0 and
has Fourier expansion

f(z) = y1/2
∞∑

n=1

λf (n)Kiκ(2πny) cos(2πnx)

for an even Maass form and

f(z) = y1/2
∞∑

n=1

λf (n)Kiκ(2πny) sin(2πnx)

for an odd Maass form.

The L-function Lf (s) =
∑∞

n=1 λf (n)N−s associated with a Maass form is
entire, has an Euler product, and satisfies the functional equation

ξf (s) := π−sΓ((s + iκ)/2)Γ((s− iκ)/2)Lf (s) = ξf (1 − s)

for even Maass forms and

ξf (s) := π−sΓ((s + 1 + iκ)/2)Γ((s + 1 − iκ)/2)Lf (s) = ξf (1 − s)

for odd Maass forms.

Selberg’s trace formula provides us with a kind of Weyl law for the number
of Maass forms with eigenvalue less than a given quantity.

Ramanujan’s conjecture for Maass forms is that |λf (p)| ≤ 2. However, this
has not yet been proven. The best result is λf (p) � p1/9. Thus, we don’t
know for sure that the Maass-form L-functions are in the Selberg class.

4 Higher degree L-functions

4.1 Symmetric square L-functions

Recall that the Euler product for a level q modular form has the shape

Lf (s) =
∏

p

(
1 − αf (p)

ps

)−1 (
1 −

α′
f (p)

ps

)−1

.
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We can form the symmetric square L-function associated to f as

Lf (sym2, s) =
∏

p

(
1 −

α2
f (p)

ps

)−1 (
1 −

αf (p)α′
f (p)

ps

)−1 (
1 −

α′
f (p)2

ps

)−1

.

Note that this L-function has a degree three Euler product associated with it.
Shimura proved that this is an entire function which satisfies the functional
equation

ξf (sym2, s) : = π−3s/2qsΓ((s + 1)/2)Γ((s + k − 1)/2)Γ((s + k)/2)Lf (sym2, s)

= ξf (sym2, 1 − s). (4.1)

The family {Lf (sym2, 1/2) : f is a primitive form of weight k} is a sym-
plectic family. Similarly for {Lf (sym2, 1/2) : f is a primitive form of weight 2
and level q}.

More generally, for an L-function with Euler product

L(s) =
∏

p

d∏
j=1

(
1 − αj(p)

ps

)−1

one can form its symmetric square L-function

L(sym2, s) =
∏

p

∏
1≤i≤j≤d

(
1 − αi(p)αj(p)

ps

)−1

;

this is expected to be a degree k(k+1)/2 L-function in the Selberg class which
may or may not be primitive. One can also form the exterior square L-function

L(ext2, s) =
∏

p

∏
1≤i<j≤d

(
1 − αi(p)αj(p)

ps

)−1

;

this is expected to be an L-function in the Selberg class of degree k(k − 1)/2,
which is not necessarily primitive. See the nice survey of Bump [B] for more
information about these L-functions.

4.2 Convolution L-functions

Given two L-functions

Lf (s) =
∏

p

(
1 − αf (p)

ps

)−1 (
1 −

α′
f (p)

ps

)−1

where f ∈ Hk(q1) and

Lg(s) =
∏

p

(
1 − βg(p)

ps

)−1 (
1 −

β′
g(p)

ps

)−1
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where g ∈ H�(q2) with (q1, q2) = 1 we form the convolution L-function

Lf×g(s) =
∏

p

(
1 − αf (p)βg(p)

ps

)−1 (
1 −

αf (p)β′
g(p)

ps

)−1

×

(
1 −

α′
f (p)βg(p)

ps

)−1 (
1 −

α′
f (p)β′

g(p)

ps

)−1

.

If f �= g, then this L-function is entire – an Euler product of degree 4 –
and satisfies the functional equation

ξf×g(s) : = (2π)−2s(q1q2)
sΓ(s + (|k − �|)/2)Γ(s− 1 + (k + �− 1)/2)Lf×g(s)

= ±ξf×g(1 − s).

One can form a convolution between any two L-functions

L1(s) =
∏

p

d1∏
i=1

(
1 − αi(p)

ps

)−1

and

L2(s) =
∏

p

d2∏
j=1

(
1 − βj(p)

ps

)−1

;

it is given by

L(s) =
∏

p

d1∏
i=1

d2∏
j=1

(
1 − αi(p)βj(p)

ps

)−1

.

In general, this convolution L-function is expected to be an L-function in the
Selberg class of degree d1d2.

5 One-level densities

Now we indicate how to compute the one level density functions for these
families. Since one-level densities have to do with low-lying zeros, we will
focus attention on zeros near the point 1/2. Suppose that we have a family F
ordered by log-conductor c(L) = c(L, 0). We assume the Riemann Hypothesis
for L for convenience, and let γL denote a generic ordinate of a zero of L. We
want to consider

D(f,F , Y ) :=
∑
L∈F

c (L )≤log Y

∑
γL

f(c(L)γL). (5.1)

The density conjecture is that

lim
Y →∞

D(f,F , Y )∑
L∈F

c (L )≤log Y
1

=

∫ ∞

−∞
f(x)WF(x) dx
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where WF(x) = WG(x) is the one-level density function for the (scaled) limit
of U(N),O(N), USp(2N), SO(2N), or SO(2N + 1).

Recall that

WU (x) = 1,

WSO+ (x) = 1 +
sin 2πx

2πx
,

WSO−(x) = δ0(x) + 1 − sin 2πx

2πx
,

WO(x) = 1 +
1

2
δ0(x),

WUSp(x) = 1 − sin 2πx

2πx
.

By Plancherel’s formula (and because f is even),∫ ∞

−∞
f(x)WG(x) dx =

∫ ∞

−∞
f̂(x)ŴG(x) dx.

So, it is useful to record that

ŴU (x) = δ0(x),

ŴSO+ (x) = δ0(x) +
1

2
χ[−1,1](x),

ŴSO−(x) = δ0(x) − 1

2
χ[−1,1](x) + 1,

ŴO(x) = δ0(x) +
1

2
,

ŴUSp(x) = δ0(x) − 1

2
χ[−1,1](x).

The fundamental tool for beginning any calculations is the explicit formula.

5.1 Explicit formulae

We describe an explicit formula of the type initially found by Riemann, and
later studied especially by by Guinand and Weil. We suppose that L is entire
and in the Selberg class. Let ΛL(n) be defined as the Dirichlet series coefficients
of −L′/L:

L′

L
(s) = −

∞∑
n=1

ΛL(n)

ns
. (5.2)

We further assume that the function φ(t) is even and decays rapidly and that
the Fourier transform

φ̂(x) =

∫ ∞

−∞
φ(t)e−2πixt dt
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has compact support. Then∑
γL

φ(γL) = − 1

2π

∫ ∞

−∞

X ′
L

XL

(1/2 + it)φ(t) dt−
∞∑

n=1

ΛL(n)√
n

φ̂

(
log n

2π

)
(5.3)

Idea of proof. If we pretend that F (s) is a holomorphic function with
F (1/2 + it) = φ(t) then we can easily see the terms of the explicit formula
emerging. We consider the integral

1

2πi

∫ 2+i∞

2−i∞

L′

L
(s)F (s) ds.

Expanding L′/L into its Dirichlet series and integrating term-by term we find
one-half of the sum over n on the right side of the explicit formula. Moving the
path of integration to Res = 1/4, we obtain the sum over the γL on the left-
side from the residues of the poles of L′/L at its zeros. Then, change variables
s → 1 − s and use the functional equation L′/L(1 − s) = X ′/X(s) − L′/L(s)
and consider these terms separately. The integral-term in the explicit formula
follows by moving the path of integration in the X ′/X term to Res = 1/2.
For the other term, we move the path back into a region where the Dirichlet
series converges absolutely and then integrate term-by-term. Because of the
evenness of φ̂ we obtain the other half of the sum over n on the right side of
the explicit formula.

5.2 The X ′/X term

We now want to substitute the explicit formula (5.3) into the D formula (5.1).
To scale things we let

φ(t) = f

(
t log Y

2π

)
;

then

φ̂(t) =
2π

log Y
f̂

(
2πt

log Y

)
.

The explicit formula then becomes∑
γL

f

(
γ log Y

2π

)
= − 1

2π

∫ ∞

−∞

X ′
L

XL

(1/2 + it)f
(t log Y

2π

)
dt

− 4π

log Y

∞∑
n=1

ΛL(n)√
n

f̂

(
log n

log Y

)

If we assume that all of the wj = 1/2, then we have

XL(s) =
Q1−s

∏d
j=1 Γ

(
1−s
2 + µj

)
Qs
∏d

j=1 Γ
(

s
2 + µj

)
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and

−X ′
L

XL

(1/2 + it) = 2 log Q + Re
d∑

j=1

Γ′

Γ

(1
4

+
it

2
+ µj

)
Therefore, in the situation that |µj | � 1, so that Q is the main parameter,

− 1

2π

∫ ∞

−∞

X ′
L

XL

(1/2 + it)f
(t log Y

2π

)
dt =

2 log Q

log Y
f̂(0) + O

( log log Y

log Y

)
=

log q

log Y
f̂(0) + O

( log log Y

log Y

)
.

In the family of L-functions associated with primitive forms of level 1 and large
weight k, the parameter k appears in the shifts µj in the gamma factors of the
functional equation. In this case

− 1

2π

∫ ∞

−∞

X ′
L

XL

(1/2 + it)f
(t log Y

2π

)
dt =

log k

log Y
f̂(0) + O

( log log Y

log Y

)
.

A similar phenomenon happens with Maass forms in which case the µj are
complex numbers with large imaginary part. Also, if we wanted to consider
the one level density of zeros of ζ(s + iT ) with a large T then we would have
a log T term in place of 2 log Q.

To handle the sum with the ΛL(n) we assume that the support of f̂ is
contained in the interval [−a, a]. Then our sum over n is truncated at n = Y a.
The idea is to have a as large as possible.

The ΛL(n) are 0 unless n is a power of a prime. The terms with n = pk for
some k ≥ 3 clearly converge. Thus,

∞∑
n=1

ΛL(n)√
n

f̂

(
log n

log Y

)
=
∑
p≤Y a

ΛL(p)√
p

f̂

(
log p

log Y

)
+
∑

p≤Y a/2

ΛL(p2)

p
f̂

(
2 log p

log Y

)
+ O(1).

Let’s obtain a formula for ΛL(pk). Suppose that

L(s) =
∏

p

Lp(1/p
s) =

∏
p

d∏
j=1

(
1 − αj(p)

ps

)−1

.

and suppose also (for convenience and as is generally believed) that |αj(p)| = 1
or 0. Then a brief calculation using the power series expansion for log(1 − x)
yields the formula

ΛL(pk) = log p

k∑
j=1

αj,L(p)k.
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On the other hand, we have

Lp(x) = 1 + λ(p)x + λ(p2)x2 + · · · =
d∏

j=1

(1 + αj(p)x + αj(p)2x2 + . . . )

so that

d∑
j=1

αj(p) = λ(p)

and

d∑
j=1

αj(p)2 = λ(p2) −
∑

1≤i<j≤d

αi(p)αj(p)

In a typical situation there will be a number δ such that

d∑
j=1

αj(p)2 − δ

is small on average; the value of δ depends on the behavior of

∏
p

(1 +
1

ps

d∑
j=1

αj(p)2)

near s = 1; if it is analytic, then δ = 0; if it has a simple pole, then δ = 1, and
if it has a simple zero, then δ = −1. It should be the case that δ is constant
throughout L ∈ F . Then it is not hard to show that

∑
p≤Y a/2

ΛL(p2)

p
f̂

(
2 log p

log Y

)
∼ δ

∑
p≤Y a/2

log p

p
f̂

(
2 log p

log Y

)

∼ δ

∫ Y a/2

1
f̂(2(log u)/ log Y )

du

u

=
δ

2

∫ a

−a

f̂(v) dv.

This should be valid for any bounded a. Thus, we arrive at

∑
γL

f

(
γ log Y

2π

)
=

log q

log Y
f̂(0) − δ

2

∫ a

−a

f̂(v) dv

− 4π

log Y

∑
p≤Y a

ap,L log p√
p

f̂

(
log p

log Y

)
+ o(1)
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This leads to

D(f,F , Y )∑
L∈F

c (L )≤log Y
1

= f̂(0) − δ

2

∫ a

−a

f̂(v) dv

− 4π

log Y

∑
L∈F

c (L )≤log Y

∑
p≤Y a/2

aL (p) log p√
p

f̂

(
log p
log Y

)
∑

L∈F
c (L )≤log Y

1
+ o(1)

=

∫ a

−a

f̂(x)(−δ

2
+ δ0(x)) dx

− 4π

log Y

∑
L∈F

c (L )≤log Y

∑
p≤Y a/2

aL (p) log p√
p

f̂

(
log p
log Y

)
∑

L∈F
c (L )≤log Y

1
+ o(1).

What remains is to calculate the contribution from the primes. This is the
subtle part. From comparing the formula above with what is predicted we see
that in the unitary case, we expect δ = 0 and the sum over primes should
never contribute to the main term for any a. In the symplectic case, we expect
δ = 1 and that the sum over primes is small when a < 1 but for a ≥ 1 the sum
over primes should contribute ∫ a

1
f̂(x) dx.

For the case of symmetry type SO+, we expect δ = −1 and that the sum over
primes contributes −

∫ a

1 f̂(x) dx when a > 1. For the case of SO− we expect

δ = −1 and that the sum over primes should give
∫ a

1 f̂(x) dx for a > 1. Finally,
in the case of symmetry type O, we expect δ = −1 and that the primes never
contribute to the main term.

5.3 Sample calculations

5.3.1 Zeta.

The simplest example is one level density of zeros of {ζ(1/2+it) : T ≤ t ≤ 2T}.
(Our explicit formula assumed that our L-function was entire, and so needs
to be modified for ζ(s); the following is intended to capture the spirit of the
calculation.) In this case, we have that ΛL(p) = log p p−it and the “sum” over

L is an integral with respect to t over [T, 2T ]. Since
∫ 2T

T
p−it dt � 1/ log p, we

have

1

T

∫ 2T

T

∑
p≤T a

log p

p1/2+it
� 1

T

∑
p≤T a

p−1/2 � T a/2−1/ log T = o(1)
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as long as a ≤ 2. Moreover, ΛL(p2) = log p p−2it so

1

T

∫ 2T

T

∑
p≤T a/2

log p

p1+2it
� a(log T )/T = o(1)

for any fixed a. Thus, we obtain the one-level density for ζ(s + it) for support
of f̂ in [−2, 2], and we see that it agrees with the predicted one-level density
for a unitary symmetry type.

Being more careful in this analysis, we note that the Riemann Hypothesis
implies that ∑

p≤T a

p−2iT

p1/2 �ε T aε

so that in fact we obtain the one level density for this family for any finite
range [−a, a].

5.3.2 All Dirichlet L-functions L(s, χ).

A similar argument can be carried out for the unitary family of all Dirichlet
characters modulo q; Hughes and Rudnick [HR] have obtained one-level density
for this family for any test function whose Fourier transform has support in
[−a, a] = [−2, 2].

To extend this range, it seems that one would need a result of the sort

∑
n≡1 m od q

n≤X

Λ(n)√
n

=
X

ϕ(q)
+ Oε

(
X1/2+ε

qθ

)

for some positive θ. Such error terms for primes in arithmetic progressions
(with θ as large as 1/2) have been conjectured by various people, including
Montgomery.

5.3.3 Dirichlet L-functions with real character L(s, χd).

For the family of real quadratic characters we see, by the Polya-Vinogradov
inequality, that

1

X∗
∑
d≤X

∑
p≤Xa

log p χd(p)√
p

� X−1
∑

p≤Xa

log2 p � Xa−1 log X = o(1)
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provided that a < 1; here X∗ denotes
∑

d≤X 1. The term involving squares of
primes is

1

X∗
∑
d≤X

∑
p≤Xa/2

log p χd(p
2)

p
f̂

(
2 log p

log d

)
∼

∑
p≤Xa/2

log p

p
f̂

(
2 log p

log X

)

∼
∫ Xa/2

1
f̂(2(log u)/ log X)

du

u

=
1

2

∫ a

−a

f̂(v) dv.

This is in agreement with the prediction for one-level density for a symplectic
family.

Ozluk and Snyder [OS], assuming GRH, have proven one-level density for
the family of real Dirichlet L-functions L(s, χd) for f̂ supported in [−2, 2].
To detect the contributions from the prime sum when a > 1, they use a
transformation property of sums∑

d

χd(p)g(d)

for smooth g, where the point is that χd(p) =
(

d
p

)
(the Legendre symbol for

p) is periodic in the d variable with period p. This transformation is just an
application of the Poisson summation formula (

∑
d g(d) =

∑
d ĝ(d)) to each

residue class modulo p separately; if one thinks of the above sum as being over
all d (and not just fundamental discriminants d), then then one has∑

d

(
d

p

)
g(d) =

1√
p

∑
d

(
d

p

)
ĝ(d/p).

Now we bring in the sum over p and get a contribution from the d which are
squares (for which

(
d
p

)
= 1). This techniques allows them to take a = 2.

6 Statements of further results

Iwaniec, Luo, and Sarnak [ILS] have obtained one-level density theorems for
the orthogonal families of L-functions of newforms of level 1 and large weight
k, when f̂ has support in [−2, 2]; similarly for L-functions of newforms of
weight 2 and large (prime) level q and also for the symmetric squares of these
families, all for f̂ supported in [−2, 2]. The first examples can be separated
into even orthogonal and odd orthogonal or combined to have orthogonal.
The symmetric square examples have a symplectic symmetry type. With an
additional hypothesis about the behavior of a certain exponential sum over
primes, they can obtain the larger support [−7/3, 7/3]. The extra main terms
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from their prime sums arise from extracting main terms out of the Kloosterman
sums that arise in the Petersson formula (3.6).

Matthew Young [Y] has looked at families of elliptic curve L-functions. Let

F1 = {LE(s) where E : y2 = x3 + ax + b2}

be a family of rank (at least) one elliptic curves. Young can do one-level density
for this family for f̂ supported in [−7/9, 7/9]. Let

F2 = {LE(s) where E : y2 = x3 + ax + b}

be the family of all elliptic curves. Young can do one-level density for f̂
supported in [−23/48, 23/48]. Note, that in this case, it is expected that,
ŴF2 (x) = 1 + 3

2δ0(x) (see [Sn]).

Royer[Ro] has proven one-level density results for families of L-functions
associated with (fixed) weight k and (large) level N newforms where the space
is restricted to N with a fixed number � of prime divisors and such that the
newforms have prescribed behavior under the Atkin -Lehner operators. These
results are for test functions with support of f̂ in [−2, 2].

Finally, we mention the interesting work of Fouvry and Iwaniec [FI] on low
lying zeros of dihedral L-functions. These are L-functions of characters of the
class group of Q(

√
d) for a fundamental discriminant d. The L-functions are

associated with modular forms of weight 1 but instead of having an orthogonal
symmetry type, it is expected that they have a symplectic symmetry type,
because the symmetric square L-functions have a pole at s = 1. The authors
obtain the one-level density for f̂ supported in [−1, 1].
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Gruyter, Berlin, 1999.

[KS] Katz, Nicholas M.; Sarnak, Peter: Random matrices, Frobenius eigen-
values, and monodromy. American Mathematical Society Colloquium
Publications, 45. American Mathematical Society, Providence, RI
(1999).
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L-functions and the Characteristic
Polynomials of Random Matrices

J. P. Keating

1 Introduction

My purpose in these lecture notes is to review and explain the basic ideas
underlying the connection between random matrix theory and the moments of
L-functions. Both of these subjects are introduced separately, and at length,
in other lectures. I will focus on their intersection – specifically on the way in
which random matrix theory can be used to predict values of the moments and
on some applications of the resulting conjectures to other important problems
in number theory.

The ideas I shall be reviewing were introduced in [17], [18] and [3], and the
applications in [8] and [9]. More recent results and developments, such as those
related to calculating complete asymptotic expansions of the moments [4, 5],
are described in other lecture notes.
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2 The Circular Unitary Ensemble (CUE) of

Random Matrices

According to the Katz-Sarnak philosophy [14, 15], the connections between
random matrix theory and the statistical properties of L-functions within
families take their simplest and most general form when they are expressed
in terms of random matrices drawn from the classical compact groups. The
simplest example is the unitary group U(N) when the probability measure is
taken to be Haar measure. In the random matrix literature, this is called the
circular unitary ensemble (CUE) of random matrices. In this section, as an
introductory example, I will describe the calculation of the two-point corre-
lation function of the eigenvalues of matrices in the CUE, originally due to
Dyson [10].

Let A be an N × N unitary matrix, so that A(AT )∗ = AA† = I. The
eigenvalues of A lie on the unit circle; that is, they may be expressed in the
form eiθn , θn ∈ R.

Definition 2.1. f(A) = f(θ1, θ2, . . . , θN ) is called a class function if f is sym-
metric in all of its variables.

Weyl [27] gave an explicit formula for averaging class functions over the
CUE: ∫

U (N )
f(A)dµHaar(A) =

1

(2π)N N !

∫ 2π

0
· · ·
∫ 2π

0
f(θ1, . . . , θN )

×
∏

1≤j<k≤N

|eiθj − eiθk |2dθ1 · · · dθN . (2.1)

One way to understand this formula is to note that, by definition, dµHaar(A)
is invariant under A → ŨAŨ † where Ũ is any N ×N unitary matrix, and that
A can always be diagonalized by a unitary transformation; that is, it can be
written as

A = U

⎛⎜⎝ eiθ1 · · · 0
...

. . .
...

0 · · · eiθN

⎞⎟⎠U †, (2.2)

where U is an N × N unitary matrix. Therefore the integral over A can be
written as an integral over the matrix elements of U and the eigenphases θn.
Because the measure is invariant under unitary transformations, the integral
over the matrix elements of U can be evaluated straightforwardly, leaving the
integral over the eigenphases (2.1).

Henceforth, to simplify the notation, I shall drop the subscript on the
measure dµ(A) – in all integrals over compact groups the measure may be
taken to be the Haar measure on the group.
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3 Two-Point Correlations

As an example of a calculation involving an average over the CUE I will now
describe Dyson’s evaluation of the two-point correlation function of the eigen-
phases θn.

The first step is to scale the eigenphases so that they have unit mean
spacing:

φn = θn
N

2π
. (3.1)

The two-point correlation function for a given matrix A is then defined as

R2(A; x) =
1

N

N∑
n=1

N∑
m=1

∞∑
k=−∞

δ(x + kN − φn + φm), (3.2)

so that
1

N

∑
n,m

f(φn − φm) =

∫ N

0
R2(A; x)f(x)dx. (3.3)

R2(A; x) is clearly periodic in x, so it can be expressed as a Fourier series:

R2(A; x) =
1

N 2

∞∑
k=−∞

|TrAk|2e2πikx/N . (3.4)

The goal is to calculate the average of R2(A; x) with respect to the CUE
of N ×N unitary matrices. It follows from (3.4) that this can be achieved by
computing the corresponding average of the Fourier coefficients |TrAk|2. This
was done by Dyson:

Theorem 3.1. (Dyson 1963 [10])

∫
U (N )

|TrAk|2dµ(A) =

⎧⎨⎩ N 2 k = 0
|k| |k| ≤ N
N |k| > N

(3.5)

To prove this we use the following lemma, due originally to Heine.

Lemma 3.2. For f a class function∫
U (N )

f(θ1, . . . , θN )dµ(A) (3.6)

=
1

(2π)N

∫ 2π

0
· · ·
∫ 2π

0
f(θ1, . . . , θN ) det(eiθn (n−m))dθ1 · · · dθN .
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This lemma may be proved by using the Weyl integration formula (2.1) to
write∫

U (N )
f(θ1, . . . , θN )dµ(A) =

1

(2π)N N !

∫ 2π

0
· · ·
∫ 2π

0
f(θ1, . . . , θN )

×
∏

1≤j<k≤N

|eiθj − eiθk |2dθ1 · · · dθN ,

and then by noting that∏
1≤j<k≤N

|eiθj − eiθk |2

= det

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

1 1 · · ·
eiθ1 eiθ2 · · ·
...

. . . · · ·
ei(N−1)θ1 ei(N−1)θ2 · · ·

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 e−iθ1 e−2iθ1 · · ·
1 e−iθ2 e−2iθ2 · · ·
...

...
. . . · · ·

1 e−iθN e−2iθN
. . .

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

= det[

N∑
�=1

eiθ� (n−m)]. (3.7)

Hence∫
U (N )

f(θ1, . . . , θN )dµ(A) =
1

(2π)N N !

∫ 2π

0
· · ·
∫ 2π

0
f(θ1, . . . , θN )

×

∣∣∣∣∣∣∣∣∣

∑N
�=1 1

∑N
�=1 e−iθ� · · · ∑N

�=1 e−(N−1)iθ�∑N
�=1 eiθ�

∑N
�=1 1 · · · ∑N

�=1 e−i(N−2)θ�

...
...

. . . · · ·∑N
�=1 ei(N−1)θ�

∑N
�=1 ei(N−2)θ� · · · ∑N

�=1 1

∣∣∣∣∣∣∣∣∣ dθ1 · · · dθN (3.8)

and so, using the fact that f is assumed to be symmetric in its arguments,∫
U (N )

f(θ1, . . . , θN )dµ(A) =
N

(2π)N N !

∫ 2π

0
· · ·
∫ 2π

0
f(θ1, . . . , θN )

×

∣∣∣∣∣∣∣∣∣
1 e−iθ1 · · · e−(N−1)iθ1∑N

�=1 eiθ�
∑N

�=1 1 · · · ∑N
�=1 e−i(N−2)θ�

...
...

. . . · · ·∑N
�=1 ei(N−1)θ�

∑N
�=1 ei(N−2)θ� · · · ∑N

�=1 1

∣∣∣∣∣∣∣∣∣ dθ1 · · · dθN . (3.9)

Subtracting eiθ1 times the first row from the second row then gives∫
U (N )

f(θ1, . . . , θN )dµ(A) =
N

(2π)N N !

∫ 2π

0
· · ·
∫ 2π

0
f(θ1, . . . , θN )

×

∣∣∣∣∣∣∣∣∣
1 e−iθ1 · · · e−(N−1)iθ1∑N

�=2 eiθ�
∑N

�=2 1 · · ·
∑N

�=2 e−i(N−2)θ�

...
...

. . . · · ·∑N
�=2 ei(N−1)θ�

∑N
�=2 ei(N−2)θ� · · ·

∑N
�=2 1

∣∣∣∣∣∣∣∣∣ dθ1 · · · dθN . (3.10)
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This process may be continued, reducing the second row to eiθ2 , 1, e−iθ2 , . . . ,
e−(N−2)iθ2 and so pulling out a factor of N − 1, then doing the same to the
third row and so on. The factor of N ! resulting from these row manipulations
cancels the N ! in the normalization constant of Weyl’s formula. This proves
the lemma.

We now return to∫
U (N )

|TrAk|2dµ(A) =
1

(2π)N

∫ 2π

0
· · ·
∫ 2π

0

∑
m

∑
n

eik(θm −θn ) (3.11)

×

∣∣∣∣∣∣∣∣∣
1 e−iθ1 e−2iθ1 · · · e−i(N−1)θ1

eiθ2 1 e−iθ2 · · · e−i(N−2)θ2

...
...

...
. . . · · ·

ei(N−1)θN ei(N−2)θN ei(N−3)θN · · · 1

∣∣∣∣∣∣∣∣∣ dθ1 · · · dθN .

The net contribution from the diagonal (m = n) terms is N , because the
measure is normalized and there are N diagonal terms. Using the fact that

1

2π

∫ 2π

0
einθdθ =

{
1 n = 0
0 n �= 0

, (3.12)

if k ≥ N then the integral of the off-diagonal terms is zero, because, for
example, when the determinant is expanded out and multiplied by the pref-
actor there is no possibility of θ1 cancelling in the exponent. If k = N − j,
j = 1, . . . , N−1, then the off-diagonal terms contribute −j; for example, when
j = 1 only one non-zero term survives when the determinant is expanded out,
multiplied by the prefactor, and integrated term-by-term – this is the term
coming from multiplying the bottom-left entry by the top-right entry and all
of the diagonal entries on the other rows. Thus the combined diagonal and
off-diagonal terms add up to give the expression in Theorem 3.1, bearing in
mind that when k = 0 the total is just N 2, the number of terms in the sum
over m and n.

We thus have that∫
U (N )

R2(A; x)dµ(A) =
1

N 2

∞∑
k=−∞

e2πikx/N

⎧⎨⎩
N 2 k = 0
|k| |k| < N
N |k| ≥ N

(3.13)

=
∞∑

j=−∞
δ(x− jN) + 1 − sin2(πx)

N 2 sin2(πx
N

)
. (3.14)

Hence, for test functions f such that f(x) → 0 as |x| → ∞,

lim
N→∞

∫
U (N )

∫ ∞

−∞
f(x)R2(A; x)dxdµ(A)

=

∫ ∞

−∞
f(x)(δ(x) + 1 − sin2(πx)

π2x2 )dx. (3.15)
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For example,

lim
N→∞

∫
U (N )

1

N
#{φn, φm : α ≤ φn − φm ≤ β}dµ(A)

=

∫ β

α

(δ(x) + 1 − sin2(πx)

π2x2 )dx. (3.16)

The key point for us is that this is exactly the two-point correlation function
conjectured by Montgomery [21] for the complex zeros of the Riemann zeta
function ζ(s)1. Let us denote the nth nontrivial zero of the Riemann zeta
function by 1/2 + itn. For convenience, we shall assume the truth of the
Riemann Hypothesis, that tn ∈ R ∀n. Then defining

wn = tn
1

2π
log

tn
2π

(3.17)

(so that the wns have unit mean density) Montgomery’s conjecture asserts that

lim
W→∞

1

W
#{wn, wm ∈ [0,W ] : α ≤ wn−wm < β} =

∫ β

α

(δ(x)+1− sin2(πx)

π2x2 )dx,

(3.18)
or, more generally, that

lim
N→∞

1

N

∑
n,m≤N

f(wn − wm) =

∫ ∞

−∞
f(x)(δ(x) + 1 − sin2(πx)

π2x2 )dx. (3.19)

There is considerable computational and theoretical support for this con-
jecture and for its generalizations to correlations between n-tuples of zeros [22,
24, 1, 2].

4 Value distribution of ζ(1
2 + it) and log ζ(1

2 + it)

Rather than pursuing further the question of how the nontrivial zeros of the
zeta function are distributed, I turn now to the distributional properties of
ζ(1/2 + it) and log ζ(1/2 + it).

log ζ(1/2 + it) satisfies the following central limit theorem.

Theorem 4.1. (Selberg) For any rectangle B in the complex plane,

lim
T→∞

1

T
meas.{T ≤ t ≤ 2T :

log ζ( 1
2 + it)√

1
2 log log t

2π

∈ B}

=

∫ ∫
B

e−
1
2 (x2 +y2 )dxdy. (4.1)

1Editors’ comment: The result in equation (3.16) is also derived, by a different method,
in the lectures of J.B. Conrey, page 111, Section 8.1. See also equation (6.7) in the lectures
of D.A. Goldston, page 79, for the pair correlation of the Riemann zeros
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Odlyzko has investigated the value distribution of log ζ(1/2 + it) numeri-
cally for values of t around the height of the 1020th zero of the zeta function.
Surprisingly, he found a distribution that differs markedly from the limiting
Gaussian. His data are plotted in Figures 1 and 2. The CUE curve will be
discussed later.

-6 -4 -2 2 4

0.1

0.2

0.3

0.4

CUE

Riemann Zeta

Gaussian

Figure 1: Odlyzko’s data for the value distribution of Re log ζ(1/2+it) near the
1020th zero (taken from [22]), the value distribution of Re log Z with respect
to matrices taken from U(42), and the standard Gaussian, all scaled to have
unit variance. (Taken from [17].)

In order to quantify the discrepancy illustrated in Figures 1 and 2, I list
in Table 1 the moments of Re log ζ(1/2 + it), normalized so that the second
moment is equal to one, calculated numerically by Odlyzko in [22]. The data
in the second and third columns relate to two different ranges near the height
of the 1020th zero. The difference between them is therefore a measure of the
fluctuations associated with computing over a finite range near this height.
The data labelled U(42) will be explained later.

Next let us turn to the value distribution of ζ(1/2 + it) itself. Its moments
satisfy the following long-standing and important conjecture.
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-6 -4 -2 2 4

5

10

15

CUE

Zeta

Gaussian

Figure 2: The logarithm of the inverse of the value distribution plotted in
Figure 1. (Taken from [17].)

Moment ζ a) ζ b) U(42) Normal
1 0.0 0.0 0.0 0
2 1.0 1.0 1.0 1
3 -0.53625 -0.55069 -0.56544 0
4 3.9233 3.9647 3.89354 3
5 -7.6238 -7.8839 -7.76965 0
6 38.434 39.393 38.0233 15
7 -144.78 -148.77 -145.043 0
8 758.57 765.54 758.036 105
9 -4002.5 -3934.7 -4086.92 0
10 24060.5 22722.9 25347.77 945

Table 1: Moments of Re log ζ(1/2+ it), calculated by Odlyzko over two ranges
(labelled a and b) near the 1020th zero (t � 1.520 × 1019) (taken from [22]),
compared with the moments of Re log Z for U(42) and the Gaussian (normal)
moments, all scaled to have unit variance.
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Conjecture 4.2.

lim
T→∞

1

(log T
2π

)λ2

1

T

∫ T

0
|ζ(1

2 + it|2λdt

= fζ(λ)
∏

p

[
(1 − 1

p
)λ2

∞∑
m=0

(
Γ(λ + m)

m!Γ(λ)

)2

p−m

]
(4.2)

This can be viewed in the following way. It asserts that the moments
grow like (log T

2π
)λ2

as T → ∞. Treating the primes as being statistically
independent of each other gives the right hand side with fζ(λ) = 1. fζ(λ) thus
quantifies deviations from this simple-minded ansatz.

The conjecture is known to be correct in only two non-trivial cases, when
λ = 1 and λ = 2. It was shown by Hardy and Littlewood in 1918 that
fζ(1) = 1 [11] and by Ingham in 1926 that fζ(2) = 1

12 [12]. On number-
theoretical grounds, Conrey and Ghosh have conjectured that fζ(3) = 42

9! [6]
and Conrey and Gonek that fζ(4) = 24024

16! [7].

We shall now look to random matrix theory to see what light, if any, it can
shed on these issues.

5 Characteristic polynomials of random uni-

tary matrices

Our goal is to understand the value distribution of ζ(1/2 + it). Recalling that
the zeros of this function are believed to be correlated like the eigenvalues
of random unitary matrices, we take as our model the functions whose zeros
are these eigenvalues, namely the characteristic polynomials of the matrices in
question.

Let us define the characteristic polynomial of a matrix A by

Z(A, θ) = det(I − Ae−iθ)

=
∏
n

(1 − ei(θn −θ)). (5.1)

Consider first the function

PN (s, t) =

∫
U (N )

|Z(A, θ)|teisIm log Z(A,θ)dµ(A). (5.2)

This is the moment generating function of log Z: the joint moments of Re log Z
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and Im log Z are obtained from derivatives of P at s = 0 and t = 0 and∫
U (N )

δ(x − Re log Z)δ(y − Im log Z)dµ(A) (5.3)

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−itx−isyP (s, it)dsdt. (5.4)

Written in terms of the eigenvalues,

PN (s, t) =

∫
U (N )

N∏
n=1

|1 − ei(θn −θ)|te−is
∑∞

m =1
sin [(θn −θ )m ]

m dµ(A). (5.5)

Since the integrand is a class function, we can use Weyl’s integration formula
(2.1) to write

PN (s, t) =
1

(2π)N N !

∫ 2π

0
· · ·
∫ 2π

0

N∏
n=1

|1 − ei(θn −θ)|te−is
∑∞

m =1
sin [(θn −θ )m ]

m

×
∏

1≤j<k≤N

|eiθj − eiθk |2dθ1 · · · dθN . (5.6)

This integral can then be evaluated using a form of Selberg’s integral described
in [20], giving

Theorem 5.1. Keating & Snaith [17]

PN (s, t) =
N∏

j=1

Γ(j)Γ(t + j)

Γ(j + t
2 + s

2 )Γ(j + t
2 − s

2 )
(5.7)

Note that the result is independent of θ. This is because the average over
U(N) includes rotations of the spectrum and is itself therefore rotationally
invariant.

5.1 Value distribution of log Z

Consider first the Taylor expansion

PN (s, t) = eα00 +α10 t+α01 s+α20 t2 /2+α11 ts+α02 s2 /2+···. (5.8)

The αm0 are the cumulants of Re log Z and the α0n are in times the cumulants
of Im log Z. Expanding (5.7) gives:

α10 = α01 = α11 = 0; (5.9)

α20 = −α02 = 1
2 log N + 1

2 (γ + 1) + O( 1
N 2 ); (5.10)

αmn = O(1) for m + n ≥ 3; (5.11)

and more specifically,

αm0 = (−1)m(1 − 1
2m −1 )Γ(m)ζ(m− 1) + O( 1

N m −2 ), for m ≥ 3. (5.12)

This leads to
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Theorem 5.2. (Keating & Snaith [17]) For any rectangle B in the complex
plane

lim
N→∞

meas.

⎧⎨⎩A ∈ U(N) :
log Z(A, θ)√

1
2 log N

∈ B

⎫⎬⎭
=

1

2π

∫ ∫
B

e−
1
2 (x2 +y2 )dxdy. (5.13)

We see that log ζ(1/2 + it) and log Z both satisfy a central limit theorem
when, respectively, t → ∞ and N → ∞. Note that the scalings in theorems
4.1 and 5.2, corresponding to the asymptotic variances, are the same if we
make the identification

N = log t
2π

. (5.14)

This is the same as identifying the mean eigenvalue density with the mean zero
density; c.f. the unfolding factors in (3.1) and (3.17).

The identification (5.14) provides a connection between matrix sizes and
heights up the critical line. The central limit theorems imply that when both
of these quantities tend to infinity log ζ(1/2 + it) and log Z have the same
limit distribution. This supports the choice of Z as a model for the value
distribution of ζ(1/2 + it) when t → ∞. It is natural then to ask if it also
constitutes a useful model when t is large but finite; that is, whether it can
explain the deviations from the limiting Gaussian seen in Odlyzko’s data.

The value of t corresponding to the height of the 1020th zero should be
associated, via (5.14), to a matrix size of about N = 42. The moments and
value distribution of log Z for any size of matrix can be obtained directly from
the formula for the moment generating function (5.7). The value distribution
when N = 42 is the CUE curve plotted in Figures 1 and 2. Values of the
moments are listed in Table 1. The obvious agreement between the results
for random 42 × 42 unitary matrices and Odlyzko’s data provides significant
further support for the model. It suggests that random matrix theory models
not just the limit distribution of log ζ(1/2 + it), but the rate of approach to
the limit as t → ∞.

5.2 Moments of |Z|

We now turn to the more important problem of the moments of |ζ(1/2 + it)|.
It is natural to expect these moments to be related to those of the modulus
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of the characteristic polynomial Z, which are defined as∫
U (N )

|Z(A, θ)|2λdµ(A) = P (0, 2λ)

=
N∏

j=1

Γ(j)Γ(j + 2λ)

(Γ(j + λ))2 (5.15)

= e
∑∞

m =0 αm 0 (2λ)n /n!. (5.16)

Therefore

lim
N→∞

1

Nλ2

∫
U (N )

|Z(A, θ)|2λdµ(A) = eλ2 (γ+1)+
∑∞

m =3 (−2λ)m 2m −1−1
2m −1

ζ (m −1)
m , (5.17)

for |λ| < 1
2 . Note that since we are identifying Z with ζ(1/2 + it) and N with

log t
2π

, the expression on the left-hand side of (5.17) corresponds precisely to
that in Conjecture 4.2.

We now recall some properties of the Barnes’ G-function. This is an entire
function of order 2 defined by

G(1 + z) = (2π)z/2e−[(1+γ)z2 +z]/2
∞∏

n=1

[
(1 + z/n)ne−z+z2 /(2n)

]
. (5.18)

It satisfies
G(1) = 1, (5.19)

G(z + 1) = Γ(z)G(z) (5.20)

and

log G(1 + z) = (log 2π − 1)
z

2
− (1 + γ)

z2

2
+

∞∑
n=3

(−1)n−1ζ(n − 1)
zn

n
. (5.21)

Thus we have that

lim
N→∞

1

Nλ2

∫
U (N )

|Z(A, θ)|2λdµ(A) = fU (λ), (5.22)

with

fU (λ) =
G2(1 + λ)

G(1 + 2λ)
. (5.23)

Using (5.20) we further have that for positive integers k

fU (k) =
k−1∏
j=0

j!

(j + k)!
. (5.24)

In particular, fU (1) = 1, fU (2) = 1
12 , fU (3) = 42

9! and fU (4) = 24024
16! , which

match the values of fζ listed after Conjecture 4.2. This then motivates the
following conjecture.

Conjecture 5.3. (Keating & Snaith [17]) For Reλ > − 1
2

fζ(λ) = fU (λ) (5.25)



L-functions and the characteristic polynomials of random matrices 263

5.3 Value distribution of |Z|

Let us now define the value distribution of |Z(A, 0)| by∫
U (N )

δ(|Z(A, 0)| − w)dµ(A) = ρU (w,N). (5.26)

Obviously, ∫
U (N )

|Z|tdµ(A) =

∫ ∞

0
ρU (w,N)wtdw; (5.27)

that is, the moments of |Z| are given by the Mellin transform of the value
distribution we seek to evaluate. Therefore, using (5.15),

ρU (w,N) =
1

2πi

∫ c+i∞

c−i∞

N∏
j=1

Γ(j)Γ(j + t)

(Γ(j + t
2 ))

2

1

wt+1 dt, (5.28)

where c > 0. As N → ∞ this can be approximated using the method of
stationary phase. In the limit as w → 0 an expansion in increasing powers of
w can be formed by considering the residues from the poles at the negative
integers. The rightmost pole is at t = −1, and so ρU (w,N) → constant as
w → 0.

Values of ρU (w,N) when N = 12 are plotted and compared with the value
distribution of |ζ( 1

2 + it)| when t = 106 in Figure 3.

6 Other Compact Groups

We have seen so far that the characteristic polynomials of random unitary
matrices may be used to model the moments and value distribution of the
Riemann zeta function on its critical line. Katz and Sarnak [14, 15] have shown
that the distribution of the zeros within families of L-functions is related to
averages over the various classical compact groups, the particular group in
question being determined by symmetries of the family. This suggests that
the moments and value distribution of L-functions within a family may be
understood by extending the calculations for the unitary group described above
to the other classical compact groups.

Consider a matrix A ∈ USp(2N) or A ∈ O(N). In both cases there is
a symmetry in the spectrum not present for general unitary matrices: the
complex eigenvalues come in complex conjugate pairs, e±iθn . For example, in
the case of USp(2N) and O(2N) the characteristic polynomial is

Z(A, θ) =
N∏

n=1

(1 − ei(θn −θ))(1 − ei(−θn −θ)). (6.1)
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Figure 3: The CUE value distribution of |Z| corresponding to N = 12 (that is,
U(12)) (dashed), with numerical data for the value distribution of |ζ(1/2+ it)|
(solid) near t = 106.

Our goal now is to determine the moments and value distribution of the
characteristic polynomials with respect to averages over these groups. Like for
U(N), averages are understood to be computed with respect to the relevant
Haar measure. Unlike for U(N), in both cases the symmetry in the spectrum
means that the results depend on θ. We will focus on the symmetry point
θ = 0, as this is where the differences are greatest.

6.1 Moments

To calculate the moments of the characteristic polynomials with respect to
averages over O(N) or USp(2N) we need the two key ingredients used in the
calculation for U(N): the Weyl integration formula for these groups [27] and
appropriate forms of the Selberg integral (c.f. [20], chapter 17). Following the
steps detailed above we then find for the symplectic group that

∫
USp(2N )

Z(A, 0)sdµ(A) = 22Ns

N∏
j=1

Γ(1 + N + j)Γ(1
2 + s + j)

Γ(1
2 + j)Γ(1 + s + N + j)

≡ MSp(s; N). (6.2)
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It follows that log Z again satisfies a central limit theorem and that

lim
N→∞

1

N s(s+1)/2

∫
USp(2N )

Z(A, 0)sdµ(A) (6.3)

= 2s2 /2 G(1 + s)
√

Γ(1 + s)√
G(1 + 2s)Γ(1 + 2s)

≡ fSp(s). (6.4)

For positive integers n

fSp(n) =
1∏n

j=1(2j − 1)!!
=

1

(2n − 1)(2n− 3)2(2n− 5)3 · · · . (6.5)

The distribution of values of Z(A, 0) for A ∈ USp(2N) is given by∫
USp(2N )

δ(Z(A, 0) − w)dµ(A) =
1

2πi

∫ c+i∞

c−i∞
MSp(s)

ds

ws+1 . (6.6)

By way of illustration, this distribution is plotted in Figure 4 when N = 6 and
N = 42. As w → 0 it vanishes like w1/2, because, from (6.2), the rightmost
pole of MSp(s; N) is at s = −3/2.
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Figure 4: Value distribution of Z(U, 0) for matrices in USp(2N) (6.6), when
a)N = 6, b) N = 42.

As a second example we take the orthogonal group SO(2N). In this case∫
SO(2N )

Z(A, 0)sdµ(A) = 22Ns

N∏
j=1

Γ(N + j − 1)Γ(s + j − 1/2)

Γ(j − 1/2)Γ(s + j + N − 1)

≡ MO(s; N), (6.7)

log Z again satisfies a central limit theorem, and

lim
N→∞

1

N s(s−1)/2

∫
SO(2N )

Z(A, 0)sdµ(A) (6.8)

= 2s2 /2 G(1 + s)
√

Γ(1 + 2s)√
G(1 + 2s)Γ(1 + s)

≡ fO(s). (6.9)
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For positive integers n we have

fO(n) = 2nfSp(n − 1). (6.10)

(I note in passing the following relationship between the leading order mo-
ment coefficients for the three compact groups discussed:

fO(s)fSp(s) = 2s2
fU (s).) (6.11)

The value distribution of the characteristic polynomials is again given by∫
SO(2N )

δ(Z(A, 0) − w)dµ(A) =
1

2πi

∫ c+i∞

c−i∞
MO(s; N)

1

ws+1 ds. (6.12)

In this case it diverges like w−1/2 as w → 0. The distribution is illustrated in
Figure 5.
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Figure 5: Value distribution of Z(U, 0) for matrices in SO(2N) (6.12), when
a)N = 6, b) N = 42.

7 Families of L-functions and Symmetry

I now describe how the results listed above may be applied to L-functions
within families. The main ideas will be illustrated by focusing on two repre-
sentative examples.

7.1 Example 1: Dirichlet L-functions

Let

χd(p) =

(
d

p

)
=

⎧⎨⎩
+1 if p � d and x2 ≡ d (mod p) solvable

0 if p|d
−1 if p � d and x2 ≡ d (mod p) not solvable;

(7.1)
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denote the Legendre symbol. That is, χd(p) is a real quadratic Dirichlet char-
acter. Then define

LD(s, χd) =
∏

p

(1 − χd(p)

ps
)−1

=
∞∑

n=1

χd(n)

ns
, (7.2)

where the product is over the prime numbers. These functions form a family
of L-functions parameterized by the integer index d.

7.2 Example 2: L-functions associated with elliptic curves

Consider the function

f(z) = e2πiz

∞∏
n=1

(1 − e2πinz)2(1 − e22πinz)2

=
∞∑

n=1

ane
2πinz , (7.3)

where the integers an are the Fourier coefficients of f . This function may be
shown to satisfy

f(
az + b

cz + d
) = (cz + d)2f(z) (7.4)

for every

(
a b
c d

)
∈ SL2(Z) with 11|c. That is, f(z) is a cusp form of weight

2 for Γ0(11). It is important to note that the weight is an integer.

Now consider the elliptic curve

E11 : y2 = 4x3 − 4x2 − 40x − 79. (7.5)

Let
Np = #{(x, y) ∈ F2

p : y2 = 4x3 − 4x2 − 40x − 79}. (7.6)

Then
ap = p −Np; (7.7)

that is, the Fourier coefficients of f determine the number of solutions of E11.
One can construct a zeta function

ζE11 (s) =
∞∑

n=1

an

ns
(7.8)

and then a family of L-functions by twisting with the Dirichlet characters
defined in (7.1):

LE11 ,d(s) =
∞∑

n=1

anχd(n)

ns
. (7.9)
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This family is again parameterized by the integer index d. The L-functions
satisfy the following functional equation:

ΦE11 ,d(s) ≡
(

2π√
11|d|

)−s

Γ(s)LE11 ,d(s)

= χd(−11)ΦE11 ,d(2 − s). (7.10)

We will here focus on those L-functions associated with characters satisfying

χd(−11) = +1, (7.11)

i.e. those that do not vanish trivially at s = 1.

In both of the above examples the L-functions satisfy a Riemann Hypoth-
esis. In the first example, this places their complex zeros on the (critical)
line Res = 1/2; in the second, it places them on the line Res = 1 (this is
merely a matter of conventional normalization rather than a significant differ-
ence). In each case the zeros high up on the critical line are believed to be
distributed like the eigenvalues of random unitary matrices [24], and so the
results obtained for the Riemann zeta function extend, conjecturally, to every
individual (principal) L-function.

Rather than fixing the L-function and averaging along the critical line, we
can instead fix a height on the critical line and average through the family;
that is, average with respect to d. In this way one can therefore examine the
distribution of the zeros nearest the critical point, s = 1/2 or s = 1, within
these families.

It was conjectured by Katz and Sarnak [14, 15] that the zero statistics
around the critical point are related to the eigenvalue statistics of one of the
compact groups described above near to a spectral symmetry point (if one
exists). The particular group in question is determined by symmetries of the
family. There is now extensive numerical and theoretical evidence in support
of this [23].

The first example of a family of L-functions given above (the Dirichlet L-
functions) is conjectured to have symplectic symmetry and so the zeros behave
like the eigenvalues of matrices from USp(2N). The family of elliptic curve L-
functions in the second example is conjectured to have orthogonal symmetry.
Their zeros behave like the eigenvalues of SO(2N) matrices.

Following the Katz-Sarnak philosophy, it is natural to believe that random
matrix theory can predict the moments of L-functions in families like those
described here.

Conjecture 7.1. (Conrey & Farmer [3], Keating & Snaith [18])

The moments
1

X∗

∗∑
0<d<X

(LD( 1
2 , χd))

s
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(where the sum is over fundamental discriminants d, and X∗ is the number of
terms in the sum) are modelled by∫

USp(2N )
(Z(A, 0))sdA,

whereas the moments
1

X∗

∗∑
0< d< X

χ−d (−11)=+1

(LE11 ,d(1))s

are modelled by ∫
SO(2N )

(Z(A, 0))sdA.

For example, the factors corresponding to fζ in the moments of the L-
functions are conjectured to be given by fSp(s) and fO(s). This agrees with all
previous results and conjectures for the integer moments (see, for example, [3,
18]). (These factors must be multiplied by arithmetical contributions to give
the moments.) Furthermore, the value distributions of the L-functions with
respect to varying d are expected to be related to the value distributions of the
associated characteristic polynomials. Numerical evidence in support of this
is illustrated in Figure 6 for the two families we are here focusing on.
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Figure 6: The first picture depicts the value distribution of LE11 ,d(1), for prime
|d|, −788299808 < d < 0, even functional equation, compared to equation
(6.12), with N = 20. In the second picture we depict the value distribution
of LD(1/2, χd) (Dirichlet L-functions) for all fundamental 800000 < |d| <
1000000. Here, the Katz-Sarnak philosophy predicts a Unitary Symplectic
family, and so we compare the data with equation (6.6), N = 5. In these
pictures the L-function values have been normalized so that they have the
same means as the random matrix value distributions. (From [8].)

The key question is obviously: what use can be made of the random ma-
trix model for the value distribution of L-functions? I will now outline some
applications that are currently being explored for the L-functions associated
with elliptic curves. These exploit certain explicit formulae for the values at
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the central point s = 1. The approach is general, but for simplicity I shall
describe it in the specific context of the family defined in example 2.

The formula for LE11 ,d(1) that we shall exploit is an example of a general
class of formulae developed by Shimura [25], Waldspurger [26] and Kohnen-
Zagier [19]. For d < 0 and χd(−11) = +1 it asserts that

LE11 ,d(1) =
κc2

|d|√
|d|

, (7.12)

where

κ = constant (= 2.91763 . . .)

and

g(z) =
∞∑

n=1

cne
2πinz (7.13)

satisfies

g

(
az + b

cz + d

)
= ε(a, b, c, d)(cz + d)3/2g(z) (7.14)

for every

(
a b
c d

)
∈ SL2(Z) such that 44|c; that is the numbers cn are

the Fourier coefficients of a three-halves-weight form for Γ0(44). Note that
the L-functions were originally defined using the Fourier coefficients an of an
integer-weight form (weight-two in our example), but that at the central point
their values are related to the Fourier coefficient of a half-integer weight form.
One important point to notice is that

cn ∈ Z.

I will now describe two conjectural implications that follow from combining
this formula with the random-matrix model.

7.3 Generalization of the Sato-Tate law to half-integer
weight modular forms

The Sato-Tate law describes the value distribution of the Fourier coefficients
ap defined in (7.3). According to the theorems of Hasse and Deligne these
satisfy |ap| ≤ 2

√
p and so may be written

ap√
p

= 2 cos θp, 0 ≤ θ ≤ π.

The question then is: how are the angles θp distributed as the prime p
varies? This is the subject of the Sato-Tate law.
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Conjecture 7.2. Sato-Tate

lim
x→∞

1

π(x)
#{p < x : α < θp ≤ β} =

2

π

∫ β

α

sin2 θdθ, (7.15)

where π(x) = #{p < x}.

Given that the Fourier coefficients of integer-weight forms satisfy a simple
limit distribution law, it is natural to ask whether the Fourier coefficients of
half-integer-weight forms do as well.

Combining (7.12) with the random matrix model for the value distribution
of LE11 ,d(1) provides a conjectural answer to this question [9]. For example, it
follows from the central limit theorem for the logarithm of the characteristic
polynomial that

Conjecture 7.3. (Conrey, Keating, Rubinstein & Snaith [9])

lim
D→∞

1

D∗#{2 < d ≤ D : χ−d(−11) = 1,

2 log |c|d|| − 1
2 log d + 1

2 log log d√
log log d

∈ (α, β)}

=
1√
2π

∫ β

α

e−x2/2dx, (7.16)

where
D∗ = #{2 < d ≤ D : χ−d(−11) = 1}

Furthermore, the value distribution of c|d| should be related to that illus-
trated in Figure 5.

7.4 Frequency of vanishing of L-functions

I now turn to the question of the frequency of vanishing of L-functions at the
central point. In the light of the Birch & Swinnerton-Dyer conjecture, this is
an issue of considerable importance.

The formula (7.12) for LE11 ,d(1) implies a discretization (or quantization)
of its values. So if LE11 ,d(1) < κ√

|d| then in fact LE11 ,d(1) = 0. Pushing the

random matrix model to the very limits of the range where it can be justified
(and hopefully not beyond), the probability that LE11 ,d(1) < κ√

|d| may be

estimated by integrating the probability density (6.12) from 0 to κ√
|d| . Using

the fact that the probability density has a square-root singularity at the origin
then motivates the following two conjectures.

Conjecture 7.4. (Conrey, Farmer, Keating, Rubinstein & Snaith [8])

#{p ≤ D : χ−p(−11) = 1, LE11 ,−p(1) = 0} � D3/4

(log D)5/8 . (7.17)
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Conjecture 7.5. (Conrey, Farmer, Keating, Rubinstein & Snaith [8]) Let

Rp(D) =
#{d < D : χ−d(−11) = 1, χ−d(p) = 1, LE11 ,d(1) = 0}

#{d < D : χ−d(−11) = 1, χ−d(p) = −1, LE11 ,d(1) = 0} . (7.18)

Then

Rp = lim
D→∞

Rp(D) =

√
p + 1 − ap

p + 1 + ap

. (7.19)

Data relating to the first conjecture are plotted in Figure 7. These would
appear to support the dependence on D3/4, but do not cover a large enough
range to determine the power of log D.
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"E_11, twists with d prime, d<0"

Figure 7: Figure in support of Conjecture 7.4. This depicts the l.h.s. of
(7.17) divided by D3/4(log D)−5/8. The calculations include only twists with
d < 0, d prime, and cases with even functional equation. While the picture is
reasonably flat, log(D) is almost constant for most of the interval in question.
The flatness observed therefore reflects the main dependence on D3/4. (From
[8].)

Data in support of the second conjecture are listed in Table 2 and are
plotted in Figure 8. In this case the agreement with the conjecture is striking.

7.5 Extension to other compact Lie groups

It is interesting that the ideas reviewed above concerning connections between
the value distribution of L-functions and averages over the classical compact
groups extend to other Lie groups, such as the exceptional Lie groups [16].
For example, consider G2. This is a 14-dimensional group of rank 2 (it is
the automorphism group of the octonions), with an embedding into SO(7).
In the 7-dimensional representation, the characteristic polynomial associated
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p conjectured data conjectured data conjectured data
Rp for E11 for E11 Rp for E19 for E19 Rp for E32 for E32

3 1.2909944 1.2774873 1.7320508 1.7018241 1 0.99925886
5 0.84515425 0.84938811 0.57735027 0.57825622 1.4142136 1.4113424
7 1.2909944 1.288618 1.1338934 1.134852 1 1.0003445

11 0 0.77459667 0.76491219 1 1.0001457
13 0.74535599 0.73266305 1.3416408 1.3632977 0.63245553 0.61626177
17 1.118034 1.1282072 1.183216 1.196637 0.89442719 0.88962298
19 1 1.000864 0 1 1.0006726
23 1.0425721 1.0470095 1 0.99857962 1 1.0000812
29 1 0.99769402 0.81649658 0.80174375 1.4142136 1.4615854
31 0.80064077 0.78332934 1.1338934 1.143379 1 1.0008405
37 0.92393644 0.91867671 0.9486833 0.94311279 1.0540926 1.0603105
41 1.2126781 1.2400086 1.1547005 1.1683113 0.78446454 0.76494748
43 1.1470787 1.1642671 1.0229915 1.0229106 1 1.0006774
47 0.84515425 0.82819492 1.0645813 1.0708874 1 0.99951502
53 1.118034 1.1332312 0.79772404 0.77715638 0.76696499 0.74137107
59 0.91986621 0.91329134 1.1055416 1.1196252 1 0.99969828
61 0.82199494 0.79865031 1.0162612 1.0199932 1.1766968 1.1996892
67 1.1088319 1.1216776 1.0606602 1.0705574 1 1.0002831
71 1.0425721 1.0497774 0.91986621 0.90939741 1 0.99992715
73 0.94733093 0.94345043 1.099525 1.1110782 1.0846523 1.0950853
79 1.1338934 1.1562237 0.90453403 0.8922209 1 0.99882039
83 1.0741723 1.0854551 0.8660254 0.84732408 1 0.99979996
89 0.84515425 0.82410673 0.87447463 0.85750248 0.89442719 0.88154899
97 1.0741723 1.0877289 0.92144268 0.90867892 0.8304548 0.80811684

101 0.98058068 0.97846254 0.94280904 0.93032086 1.0198039 1.0229108
103 1.1677484 1.1976448 0.87333376 0.855721 1 1.0004009
107 0.84515425 0.82186438 1.183216 1.2153554 1 1.0009282
109 0.91287093 0.89933354 1.1577675 1.1844329 0.94686415 0.94015124
113 0.92393644 0.9146531 0.9486833 0.93966595 1.1313708 1.1534106
127 0.93933644 0.93052596 0.98449518 0.98005032 1 0.99904006
131 1.1470787 1.171545 1.1208971 1.1413931 1 0.99916309
137 1.052079 1.0603352 1.0219806 1.0285831 1.1744404 1.2066518
139 0.93094934 0.91532106 1.0975994 1.1176423 1 1.0000469
149 1.069045 1.0833831 0.86855395 0.84844439 0.91064169 0.89706709

Table 2: A table in support of Conjecture 7.5, comparing Rp v.s. Rp(D)
for three elliptic curves E11, E19, E32 (D equal to 333605031, 263273979,
930584451 respectively). More of this data, for p < 2000, is depicted in the
Figure 8. The 0 entries for p = 11 and p = 19 are explained by the fact that
we are restricting ourselves to twists with even functional equation. Hence for
E11 and E19, we are only looking at twists with χd(11) = χd(19) = −1. (From
[8].)
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Figure 8: Pictures depicting Rp/Rp(D), for p < 2000, D as in Table 2. (From
[8].)

with the corresponding unitary matrix U factorizes as

Z(U, θ) = det(I − Ue−iθ) = (1 − e−iθ)Z̃(U, θ). (7.20)

The moments of Z̃(U, θ) with respect to an average over the group can be
calculated as for the classical compact groups using the corresponding Weyl
integration formula and one of MacDonald’s constant term identities (which
plays the role of the Selberg integral). The result is that [16]

∫
G2

|Z̃(U, 0)|sdµ(U) =
Γ(3s + 7)Γ(2s + 3)

Γ(2s + 6)Γ(s + 4)Γ(s + 3)Γ(s + 2)
. (7.21)

We note in this context that Katz [13] has found a one-parameter family of
L-functions over a finite field whose value distribution in the limit as the size
of the field grows is related to G2. Thus the random matrix moments (7.21)
determine the value distribution of these L-functions.

The random matrix calculations extend straightforwardly to all of the ex-
ceptional Lie groups. It would be very interesting to know whether the others
also describe families of L-functions over finite fields.
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Spacing Distributions in Random

Matrix Ensembles

Peter J. Forrester

1 Introduction

1.1 Motivation and definitions

The topic of spacing distributions in random matrix ensembles is almost as old

as the introduction of random matrix theory into nuclear physics. Both events

can be traced back to Wigner in the mid 1950’s [37, 38]. Thus Wigner intro-

duced the model of a large real symmetric random matrix, in which the upper

triangular elements are independently distributed with zero mean and constant

variance, for purposes of reproducing the statistical properties of the highly

excited energy levels of heavy nuclei. This was motivated by the gathering of

experimental data on the spectrum of isotopes such as 238U at energy levels

beyond neutron threshold. Wigner hypothesized that the statistical proper-

ties of the highly excited states of complex nuclei would be the same as those
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of the eigenvalues of large random real symmetric matrices. For the random

matrix model to be of use at a quantitative level, it was necessary to deduce

analytic forms of statistics of the eigenvalues which could be compared against

statistics determined from experimental data.

What are natural statistics for a sequence of energy levels, and can these

statistics be computed for the random matrix model? Regarding the first

question, let us think of the sequence as a point process on the line, and suppose

for simplicity that the density of points is uniform and has been normalized

to unity. For any point process in one dimension a fundamental quantity is

the probability density function for the event that given there is a point at

the origin, there is a point in the interval [s, s + ds], and further there are n

points somewhere in between these points and thus in the interval (0, s). Let

us denote the probability density function by p(n; s). In the language of energy

levels, this is the spacing distribution between levels n apart.

Another fundamental statistical quantity is the k-point distribution func-

tion ρ(k)(x1, . . . , xk). This can be defined recursively, starting with ρ(1)(x), by

the requirement that

ρ(k)(x1, . . . , xk)/ρ(k−1)(x1, . . . , xk−1) (1.1)

is equal to the density of points at xk, given there are points at x1, . . . , xk−1.

One sees from the definitions that

ρ(2)(0, s)

ρ(1)(0)
=

∞∑
n=0

p(n; s). (1.2)

From empirical data of a long energy level sequence, the quantity p(n; s) for

small values of n at least is readily estimated (the statistical uncertainty gets

worse as n increases). Use of (1.2) then allows for an estimation of ρ(2)(0; s).

We thus seek the theoretical determination of p(n; s) for matrix ensembles.

1.2 Spacing between primes

Before taking up the problem of determining p(n; s) for matrix ensembles,

which is the theme of these lectures, let us digress a little and follow the line

of introduction to spacing distributions given by Porter in the review he wrote

as part of the book [31], which collected together the major papers written in

the field up to 1965. Porter’s introduction is particularly relevant to the theme
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of the present school because it uses the prime numbers as an example of a

deterministic sequence which, like energy levels of heavy nuclei, nevertheless

exhibit pronounced stochastic features.

It turns out the spacing distributions between primes relate to perhaps the

simplest example of a point process. This is when the probability that there is

a point in the interval [s, s + ds] is equal to ds, independent of the location of

the other points. This generates the so called Poisson process with unit density,

or in the language of statistical mechanics, a perfect gas. By definition of the

process the ratio (1.1) is unity for all k and thus

ρ(k)(x1, . . . , xk) = 1. (1.3)

To compute p(n; s), we think of the Poisson process as the N → ∞ limit of

a process in which each unit interval on the line is broken up into N equal

sub-intervals, with the probability of there being a particle in any one of the

subintervals equal to 1/N . Thus

p(s; n) = lim
N→∞

(1 − 1

N
)sN−nN−n

(sN

n

)
=

sn

n!
e−s. (1.4)

In the first equality of (1.4), the first factor is the probability that sN − n

subintervals do not contain a particle, the second factor is the probability that

n subintervals do contain a particle, while the final factor is the number of

ways of choosing n occupied sites amongst sN sites in total. The probability

density in the final equality of (1.4) is the Poisson distribution. Substituting

(1.4) in (1.2) gives ρ(2)(0, x) = 1, as required by (1.3).

The distribution (1.4) ties in with prime numbers through Cramér’s model.1

In this approximation, statistically the primes are regarded as forming a Pois-

son process on the positive integer lattice. The probability of occupation of

the Nth site is taken to equal 1/ log N , so as to be consistent with the prime

number theorem. Cramér’s model predicts that as an approximation

p(N )(n; s) =
sn

n!
e−s, s = t/ log N (1.5)

where p(N )(n; s) refers to the probability that for primes p in the neighbourhood

of a prime N , there is a prime at p + t, and furthermore there are exactly n

primes between p and p + t.

To compare the prediction (1.5) against empirical data, we choose a value

of N , say 109, and for the subsequent M primes (say M = 2, 000) record the

1Editor’s comment: See the lectures by D.R. Heath-Brown, page 1, after Conjecture 2.
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Figure 1: Distribution of the spacing t between primes (leftmost graph) and

the spacing t between every second prime for 2, 000 consecutive primes starting

with N = 109 + 7. The distributions are given in units of s = t/ log N . The

smooth curves are the Poisson distributions p(0; s) = e−s and p(1; s) = se−s.

distance to the following prime (in relation to p(N )(0; s)) and the distance to the

second biggest prime after that (in relation to p(N )(s; 1)). We form a histogram,

with the scale on the horizontal axis measured in units of s = t/ log N , where

t is the actual spacing. The natural units for t are multiples of 2, and this

provides a width for the bars of the histogram. We see from Figure 1 that

the general trend of the histograms do indeed follow the respective Poisson

distributions.

1.3 Empirical determination of spacing distributions for

matrix ensembles

Wigner’s interest was in the statistical properties of the eigenvalues of large

real symmetric random matrices. More particularly, he sought the statistical

properties of the eigenvalues in what may be termed the bulk of the spectrum

(as opposed to the edge of the spectrum [9]). The eigenvalues in this region are

characterized by having a uniform density, which after rescaling (referred to as

‘unfolding’) may be taken as unity (at the edge of the spectrum, which is the

neighbourhood of the largest or smallest eigenvalue, the density does not have

this property, as there is no scale for which the eigenvalues are evenly spaced).

In distinction to the situation with the sequence of primes, for random matrices

it is not necessary to study the statistical properties of a large sequence of
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(unfolded) eigenvalues from a single matrix. Rather the spacing distributions

with respect to the middle eigenvalue (this is the eigenvalue most in the bulk

) in multiple samples from the class of random matrices in question can be

listed, and then this list used to create a histogram. Moreover, to approximate

large matrix size behaviour, it is only necessary to consider quite small matrix

sizes, say 13 × 13.

In Figure 2 we have plotted the empirical determination of p(0; s) and p(1; s)

obtained from lists of eigenvalue spacings for realizations of the so called GOE

(Gaussian orthogonal ensemble) eigenvalue distribution. The GOE consists of

real symmetric random matrices, with each diagonal element chosen from the

normal distribution N[0, 1], and each (strictly) upper triangular element chosen

from the normal distribution N[0, 1/
√

2]. For such matrices, it is well known

that to leading order in the matrix rank N , the eigenvalue density is given by

the Wigner semi-circle law

ρ(1)(x) =

√
2N

π

√
1 − x2

2N
.

Multiplying the eigenvalues at point x by this factor allows us to unfold the

sequence giving a mean eigenvalue spacing of unity.

A less well known, and much more recent result relating to GOE matrices is

that their spectrum can be realized without having to diagonalize a matrix [4]

(see also [13]). Thus one has that the roots of the random polynomial PN (λ),

defined recursively by the stochastic three term recurrence

Pk(λ) = (λ− ak)Pk−1(λ) − b2
k−1Pk−2(λ) (1.6)

where

ak ∼ N[0, 1], b2
k ∼ Gamma[k/2, 1],

have the same distribution as the eigenvalues of GOE matrices (the nota-

tion Gamma[s, σ] denotes the gamma distribution with density proportional

to xs−1e−x/σ). Generating such polynomials and finding their zeros then pro-

vides us with a sequence distributed as for GOE eigenvalues, from which we

have determined p(0; s) and p(1; s).
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Figure 2: Plot of the distribution of the unfolded spacing between the 6th

and 7th, and 7th and 8th eigenvalues (pooled together) for 2,000 samples from

the 13 × 13 GUE eigenvalue distribution. The smooth curve is the Wigner

surmise (2.12). The rightmost graph is the distribution between the 6th and

8th eigenvalues in the same setting, while in the smooth curve in this case is

(1/2)p4(0; s/2) with p4 given by (2.13).

2 Eigenvalue product formulas for gap proba-

bilities

2.1 Theory relating to p(n; s)

Consider a point process consisting of a total of N points. Let the joint prob-

ability density function of the N points be denoted p(x1, . . . , xN ). A quantity

closely related to the spacing distribution p(0; s) is the gap probability

Ebulk(0; s) := lim
N→∞

aN
N

∫
Ī

dx1 · · ·
∫

Ī

dxN p(aN x1, . . . , aN xN ) (2.1)

where Ī = (−∞,∞) − (−s/2, s/2) and aN is the leading large N form of the

local density at the origin (and thus the unfolding factor). Thus it is easy to

see that

p(0; s) =
d2

ds2 Ebulk(0; s). (2.2)

More generally we can define

Ebulk(n; s) := (2.3)

lim
N→∞

(N

n

)
aN

N

∫ s/2

−s/2
dx1 · · ·

∫ s/2

−s/2
dxn

∫
Ī

dxn+1 · · ·
∫

Ī

dxN p(aN x1, . . . , aN xN ).
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These quantities can be calculated from the generating function

Ebulk(s; ξ) := (2.4)

lim
N→∞

aN
N

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxN

N∏
l=1

(1 − ξχ
(l)
(−s/2,s/2))p(aN x1, . . . , aN xN ),

where χ
(l)
J = 1 for x(l) ∈ J and χ

(l)
J = 0 otherwise, according to the formula

Ebulk(n; s) =
(−1)n

n!

∂n

∂ξn
Ebulk(s; ξ)

∣∣∣
ξ=1

. (2.5)

It follows from the definitions that

p(n; s) =
d2

ds2 Ebulk(n; s) + 2p(n− 1; s) − p(n− 2; s), (2.6)

or equivalently

p(n; s) =
d2

ds2

n∑
j=0

(n − j + 1)Ebulk(j; s). (2.7)

Hence knowledge of {Ebulk(j; s)}j=0,...,n is sufficient for the calculation of p(n; s).

It is possible to relate (2.4) to the k-point distribution functions.2 In the

finite system the latter are given by

ρ
(N )
(k) (x1, . . . , xk) =

N !

(N − k)!

∫ ∞

−∞
dxk+1 · · ·

∫ ∞

−∞
dxN p(x1, . . . , xN ). (2.8)

With

ρbulk
(k) (x1, . . . , xk) := lim

N→∞
ak

N ρ
(N )
(k) (aN x1, . . . , aN xk),

by expanding (2.4) in a power series in ξ and making use of (2.8) we see that

Ebulk(s; ξ) = 1 +
∞∑

k=1

(−ξ)k

k!

∫ s/2

−s/2
dx1 · · ·

∫ s/2

−s/2
dxk ρbulk

(k) (x1, . . . , xk). (2.9)

For the limiting process to be rigorously justified, because [−s/2, s/2] is a

compact interval, it is sufficient that ρbulk
(k) (x1, . . . , xk) be bounded by M k for

some M > 0.

With these basic formulas established, we will now proceed to survey some

of the main results relating to spacing distributions in the bulk of the various

matrix ensembles (orthogonal, unitary and symplectic symmetry classes).

2Editors’ comment: These are also called k-point correlation functions and are discussed
in Sections 3 and 4 of the lectures of Y.V. Fyodorov, page 31.
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2.2 Wigner surmise

For the Poisson process we have seen that p(0; s) = e−s. Thus in this case

the spacing distribution is actually maximum at zero separation between the

points. The opposite feature is expected for p(0; s) in relation to the eigenvalues

of random real symmetric matrices, as can be seen by examining the 2×2 case

of matrices of the form

A =

[
a b

b c

]
.

This matrix is diagonalized by the decomposition A = Rdiag[λ+, λ−]RT where

R =

[
cos θ − sin θ

sin θ cos θ

]
.

Expressing a, b, c in terms of λ+, λ−, θ it is simple to show

dadbdc = |λ+ − λ−|dλ+dλ−dθ. (2.10)

Thus for small separation s := |λ+ − λ−| the probability density function

vanishes linearly.

Let µ(s) denote the small s behaviour of p(0; s). We have seen that for

the Poisson process µ(s) = 1, while for the bulk eigenvalues of real symmetric

matrices µ(s) ∝ s. Wigner hypothesized [38] that as with the Poisson process,

p(0; s) for the bulk eigenvalues of random real symmetric matrices could be

deduced from the ansatz

p(0; s) = c1µ(s) exp
(
− c2

∫ s

0
µ(t) dt

)
(2.11)

where the constants c1 and c2 are determined by the normalization require-

ments ∫ ∞

0
p(0; s) ds = 1,

∫ ∞

0
sp(0; s) ds = 1

(the second of these says that the mean spacing is unity). Thus one arrives at

the so called Wigner surmise

p(0; s) =
π

2
se−πs2 /4 (2.12)

for the spacing distribution of the bulk eigenvalues of random real symmetric

matrices.

The ansatz (2.11) does not apply if instead of real symmetric matrices

one considers complex Hermitian matrices, or Hermitian matrices with real
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quaternion elements. Examining the 2 × 2 case (see the introductory article

by Porter in [31]) one sees that in the analogue of (2.10), the factor |λ+ − λ−|
should be replaced by |λ+−λ−|β with β = 2 (complex elements) or β = 4 (real

quaternion elements). Choosing the elements to be appropriate Gaussians, one

can reclaim (2.12) and furthermore obtain

p2(0; s) =
32s2

π2 e−4s2 /π , p4(0; s) =
218s4

36π3 e−64s2 /9π (2.13)

as approximations to the spacing distributions in the cases β = 2 and β = 4

respectively.

2.3 Fredholm determinant evaluations

A unitary invariant matrix ensemble of N × N random complex Hermitian

matrices has as its eigenvalue probability density function

1

C

N∏
l=1

w2(xl)
∏

1≤j<k≤N

(xk − xj)
2, (2.14)

which we will denote by UEN (g). We know3 that the k-point distribution func-

tion can be expressed in terms of the monic orthogonal polynomials {pk(x)}k=0,1,...

associated with the weight function w2(x),∫ ∞

−∞
w2(x)pj(x)pk(x) dx = hjδj,k.

Thus with

KN (x, y) = (w2(x)w2(y))1/2
N−1∑
k=0

pk(x)pk(y)

hk

= (w2(x)w2(y))1/2 pN (x)pN−1(y) − pN (y)pN−1(x)

x− y
(2.15)

we have

ρ
(N )
(k) (x1, . . . , xk) = det

[
KN (xj , xl)

]
j,l=1,...,k

. (2.16)

This structure is significant for the evaluation of the generating function

EN,2(J ; ξ; w2) :=
〈 N∏

l=1

(1 − ξχ
(l)
J )
〉

UEN (g)
(2.17)

3Editors’ comment: See the discussion of k-point correlation functions in the lectures of
Y.V. Fyodorov, page 31, and in particular Section 4.
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(the subscript 2 on EN,2 indicates the exponent in (2.14)). Expanding (2.17)

in a power series analogous to (2.9) we obtain

EN,2(J ; ξ; w2) = 1 +
N∑

k=1

(−ξ)k

k!

∫
J

dx1 · · ·
∫

J

dxk det
[
KN (xj , xl)

]
j,l=1,...,k

,

(2.18)

where use has been made of (2.16). The sum in (2.18) occurs in the theory of

Fredholm integral equations [36], and is in fact an expansion of the determinant

of an integral operator,

EN,2(J ; ξ; w2) = det(1− ξKJ ) (2.19)

where KJ is the integral operator on the interval J with kernel KN (x, y),

KN [f ](x) =

∫
J

KN (x, y)f(y) dy.

It is well known that in the bulk scaling limit, independent of the precise

functional form of w2(x),

lim
N→∞

aN KN (aN x, aN y) =
sin π(x− y)

π(x − y)
=: Kbulk(x, y) (2.20)

for a suitable scale factor aN . Thus we have

Ebulk
2 (J ; ξ) = det(1 − ξKbulk

J ) (2.21)

where Kbulk
J is the integral operator on the interval J with kernel (2.20) (the

so called sine kernel ). This is a practical formula for the computation of Ebulk
2

if we can compute the eigenvalues {µj}j=0,1,... of Kbulk
J , since we have

Ebulk
2 (J ; ξ) =

∞∏
j=0

(1 − ξµj). (2.22)

In fact for J = (−s, s) the eigenvalues can be computed [18] by relating Kbulk
(−s,s)

to a differential operator which has the prolate spheroidal functions as its

eigenfunctions, and using previously computed properties of this eigensystem.

Wigner’s interest was not in complex Hermitian random matrices, but

rather real symmetric random matrices. Orthogonally invariant ensembles

of the latter have an eigenvalue probability density function of the form

1

C

N∏
l=1

w1(xl)
∏

1≤j<k≤N

|xk − xj |, (2.23)
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to be denoted OEN (w1). For such matrix ensembles, the k-point distribution

function can be written as a quaternion determinant (or equivalently Pfaffian

) with an underlying 2 × 2 matrix kernel (see e.g. [8, Ch. 5]). From this it is

possible to show that (
Ebulk

1 (J ; ξ)
)2

= det(1− ξKbulk
1,J ) (2.24)

where Kbulk
1,J is the integral operator on J with matrix kernel

Kbulk
1 (x, y) =

⎡⎢⎢⎣
sin π(x − y)

π(x − y)

1

π

∫ π(x−y)

0

sin t

t
dt− 1

2
sgn(x− y)

∂

∂x

sin π(x− y)

π(x− y)

sin π(x− y)

π(x− y)

⎤⎥⎥⎦ . (2.25)

However, unlike the result (2.21), this form has not been put to any practical

use.

Instead, as discovered by Mehta [26], a tractable formula results from the

scaling limit of an inter-relationship between the generating function of an

orthogonal symmetry gap probability and a unitary symmetry gap probability.

The inter-relationship states

E2N,1((−t, t); ξ; e−x2 /2)
∣∣∣
ξ=1

= EN,2((0, t
2); ξ; y−1/2e−yχy>0)

∣∣∣
ξ=1

, (2.26)

and in the scaling limit leads to the result

Ebulk
1 ((−s, s); ξ)

∣∣∣
ξ=1

= det(1−Kbulk+
(−s,s)) (2.27)

where Kbulk+
(−s,s) is the integral operator on (−s, s) with kernel

1

2

(sin π(x− y)

π(x− y)
+

sin π(x + y)

π(x + y)

)
, (2.28)

which we recognize as the even part of the sine kernel (2.20). (For future

reference we define Kbulk−
(−s,s) analogously, except that the kernel consists of the

difference of the two terms in (2.28), or equivalently the odd part of the sine

kernel (2.20).) Because the eigenvalues µ2j of the integral operator on (−s, s)

with kernel (2.20) correspond to even eigenfunctions, while the eigenvalues

µ2j+1 correspond to odd eigenfunctions, we have that

Ebulk
1 ((−s, s); ξ)

∣∣∣
ξ=1

=
∞∏
l=0

(1 − µ2l). (2.29)
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Gaudin [18] used this formula, together with (2.2), to tabulate pbulk
1 (0; s) and

so test the accuracy of the Wigner surmise (2.12). In fact this confirmed the

remarkable precision of the latter, with the discrepancy between it and the

exact value no worse than a few percent.

The case of Hermitian matrices with real quaternion elements and having

a symplectic symmetry remains. The eigenvalue p.d.f. of the independent

eigenvalues (the spectrum is doubly degenerate) is then

1

C

N∏
l=1

w4(xl)
∏

1≤j<k≤N

(xk − xj)
4, (2.30)

which we denote by SEN (w4). The computation of the corresponding bulk gap

probability relies on further inter-relationships between matrix ensembles with

different underlying symmetries. These apply to the eigenvalue probability

density function for Dyson’s circular ensembles,

1

C

∏
1≤j<k≤N

|eiθk − eiθj |β ,

where β = 1, 2 or 4 according to the underlying symmetry being orthogonal,

unitary or symplectic respectively. The corresponding matrix ensembles are

referred to as the COEN , CUEN and CSEN in order. In the N → ∞ scaling

limit these ensembles correspond with the bulk of the ensembles OEN (w1),

UEN (w2) and SEN (w4) respectively. (We repeat again that here the orthogo-

nal, unitary or symplectic label refers to invariance properties of the ensembles.

Apart from the CUEN , which is equivalent to U(N), the circular ensembles

are not the same as the classical compact groups discussed in the lectures of

J.B. Conrey, page 111.)

The first of the required inter-relationships was formulated by Dyson [5]

and proved by Gunson [19]. It states that

alt(COEN ∪ COEN ) = CUEN (2.31)

where the operation COEN ∪ COEN refers to the superposition of two inde-

pendent realizations of the COEN and alt refers to the operation of observing

only every second member of the sequence. The second of the required inter-

relationships is due to Dyson and Mehta [7]. It states that

alt COE2N = CSEN . (2.32)
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(For generalizations of (2.31) and (2.32) to the ensembles OEN (w1), UEN (w2)

and SEN (w4) with particular w1, w2 and w4 see [12].) Using (2.31) and (2.32)

together one can deduce that in the scaled limit

Ebulk
4 (0; (−s/2, s/2)) =

1

2

(
Ebulk

1 (0; (−s, s)) +
Ebulk

2 (0; (−s, s))

Ebulk
1 (0; (−s, s))

)
, (2.33)

which upon using (2.22) and (2.29) reads

Ebulk
4 (0; (−s/2, s/2)) =

1

2

( ∞∏
l=0

(1 − λ2l) +
∞∏
l=0

(1 − λ2l+1)
)
. (2.34)

Another consequence of (2.32) is that

p4(0; s) = 2p1(1; 2s). (2.35)

It is this relationship, used together with the approximation for p4(0; s) in

(2.13), which is used to approximate p(1; s) as a smooth curve in Figure 2.

In summary, as a consequence of the pioneering work of Mehta, Gaudin and

Dyson, computable formula in terms of the eigenvalues of the integral operator

on (−s, s) with the sine kernel (2.20) were obtained for

Ebulk
2 ((−s, s); ξ), Ebulk

1 (0; (−s, s)), Ebulk
4 (0; (−s/2, s/2)).

3 Painlevé transcendent evaluations

3.1 The results of Jimbo et al.

An explicit connection between the multiple interval gap probability

Ebulk
2

(
∪p

j=1 (a2j−1, a2j); ξ
)

and integrable systems theory — specifically the theory of isomondromic defor-

mations of linear differential equations — was made by Jimbo, Miwa, Môri and

Sato in 1980. Here the endpoints a1, . . . , a2p of the gap free intervals become

dynamical time like variables, inducing flows which turn out to be integrable.

As part of this study the quantity

Ebulk
2 ((−s, s); ξ) = det(1− ξKbulk

(−s,s)) =
∞∏

j=0

(1 − ξµj) (3.1)
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was expressed in terms of the solution of a nonlinear equation. In fact knowl-

edge of (3.1) is sufficient to calculate the products appearing in (2.29) and

(2.34). Thus with

D+(s; ξ) :=
∞∏

j=0

(1 − ξµ2j), D−(s; ξ) :=
∞∏

j=0

(1 − ξµ2j+1)

Gaudin (see [28]) has shown

log D±(s; ξ) =
1

2
log Ebulk

2 ((−s, s); ξ) ± 1

2

∫ s

0

√
− d2

dx2 log Ebulk
2 ((−x, x); ξ) dx.

(3.2)

The result of [23] is that

Ebulk
2 ((−s, s); ξ) = exp

∫ πs

0

σ(u; ξ)

u
du (3.3)

where σ(u; ξ) satisfies the nonlinear differential equation

(uσ′′)2 + 4(uσ′ − σ)(uσ′ − σ + (σ′)2) = 0 (3.4)

subject to the boundary condition

σ(u; ξ) ∼
u→0+

−ξu

π
.

In fact the equation (3.4) is an example of the so called σ-form of a Painlevé

V equation. In view of this it is appropriate to give some background into the

Painlevé theory, following [21]. First we remark that the Painlevé differential

equations are second order nonlinear equations isolated as part of the study

of Painlevé and his students into the moveable singularities of the solution of

such equations. Earlier Fuchs and Poincaré had studied first order differential

equations of the form

P (y′, y, t) = 0 (3.5)

where P is a polynomial in y′, y with coefficients meromorphic in t. In contrast

to linear differential equations, nonlinear equations have the property that the

position of the singularities of the solution will depend in general on the initial

condition. The singularities are then said to be moveable. For example

dy

dt
= y2 (3.6)

has the general solution y = 1/(c− t), where c determines the initial condition,

and so exhibits a moveable first order pole. The nonlinear equation

y
dy

dt
=

1

2
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has the general solution y = (t− c)1/2, which exhibits a moveable branch point

(essential singularity). Fuchs and Poincaré sought to classify all equations of

the form (3.5) which are free of moveable essential singularities. They were

able to show that up to an analytic change of variables, or fractional linear

transformation, the only such equations with this property were the differential

equation of the Weierstrass P-function,(dy

dt

)2
= 4y3 − g2y − g3, (3.7)

or the Riccati equation

dy

dt
= a(t)y2 + b(t)y + c(t) (3.8)

where a, b, c are analytic in t (note that (3.6) is of the latter form).

Painlevé then took up the same problem as that addressed by Fuchs and

Poincaré, but now with respect to second order differential equations of the

form

y′′ = R(y′, y, t)

where R is a rational function in all arguments. It was found that the only

equations of this form and with no moveable essential singularities were either

reducible to (3.7) or (3.8), reducible to a linear differential equation, or were

one of six new nonlinear differential equations, now known as the Painlevé

equations. As an explicit example of the latter, we note the Painlevé V equa-

tion reads

y′′ =
( 1

2y
+

1

1 − y

)
(y′)2 − 1

x
y′ +

(y − 1)2

x2

(
αy +

β

y

)
+

γy

x
+

δy(y + 1)

y − 1
(3.9)

where α, β, γ are parameters.

An immediate question is to how (3.9) relates to (3.4). For this one must

develop a Hamiltonian theory of the Painlevé equations. The idea is to present

a Hamiltonian H = H(p, q, t;�v), where the components of �v are parameters,

such that after eliminating p in the Hamilton equations

q′ =
∂H

∂p
, p′ = −∂H

∂q
, (3.10)

q′ and p′ denoting derivatives with respect to t, the equation in q is the ap-

propriate Painlevé equation. Malmquist [25] was the first to present such

Hamiltonians, although his motivation was not to further the development of
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the Painlevé theory itself. This was left to Okamoto in a later era, and it is

aspects of his theory we will briefly present here.

The Hamiltonian for the PV equation as presented by Okamoto [29] is

tHV = q(q − 1)2p2 − {(v1 − v2)(q − 1)2 − 2(v1 + v2)q(q − 1) + tq}p
+(v3 − v2)(v4 − v2)(q − 1), (3.11)

where the parameters are constrained by v1 + v2 + v3 + v4 = 0 and are further

related to those in (3.9) according to

α =
1

2
(v3 − v4)

2, β = −1

2
(v1 − v2)

2, γ = v1 + 2v2 − 1, δ = −1

2
.

It turns out that, as a consequence of the Hamilton equations (3.10), tHV

itself satisfies a nonlinear differential equation. It is this differential equation

which relates to (3.4). Okamoto made use of this equation for the symmetry

it exhibits in the parameters v1, . . . , v4.

The equation in question, which is fairly straightforward to derive, is pre-

sented for the so called auxilary Hamiltonian

hV (t) = tHV + (v3 − v2)(v4 − v2) − v2t − 2v2
2 .

Okamoto showed

(th′′
V )2 − (hV − th′

V + 2(h′
V )2)2 + 4

4∏
k=1

(h′
V + vk) = 0.

Setting

σV (t) = hV (t) + v2t + 2v2
2 , νj−1 = vj − v2 (j = 1, . . . , 4)

in this one obtains the so called Jimbo-Miwa-Okamoto σ-form of the Painlevé

V equation

(tσ′′
V )2 −

(
σV − tσ′

V + 2(σ′
V )2 + (ν0 + ν1 + ν2 + ν3)σ

′
V

)2

+4(ν0 + σ′
V )(ν1 + σ′

V )(ν2 + σ′
V )(ν3 + σ′

V ) = 0 (3.12)

(Jimbo and Miwa [22] arrived at (3.12) in their study of isomonodromic defor-

mations of linear differential equations). We note that (3.4) is an example of

this equation with

ν0 = ν1 = ν2 = ν3 = 0, t �→ −2iu.
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3.2 Unveiling more structure

The result of Jimbo et al. relates to the Fredholm determinant of the integral

operator with the sine kernel. What is special about the sine kernel that

relates it to integrable systems theory? This question was answered by Its,

Izergin, Korepin and Slanov [20] who exhibited integrability features of all

kernels of the Christoffel-Darboux type (recall (2.15) in relation to the latter

terminology)

ξK(x, y) =
φ(x)ψ(y)− φ(y)ψ(x)

x− y
, (3.13)

the sine kernel begin the special case

φ(x) =
√

ξ sin x, ψ(y) =
√

ξ cos y. (3.14)

One of their key results related to the form of the kernel R(x, y) for the so

called resolvent operator

RJ := ξKJ (1 − ξKJ )−1.

With

Q(x) := (1− ξKJ )−1φ, P (x) := (1 − ξKJ )−1ψ (3.15)

they showed

R(x, y) =
Q(x)P (y) − P (x)Q(y)

x− y
. (3.16)

The significance of the resolvent kernel is evident from the general formula

∂

∂aj

log det(1 − ξK(a1 ,a2 )) = (−1)j−1R(aj , aj) (j = 1, 2). (3.17)

To derive this formula, one notes that

log det(1 − ξK(a1 ,a2 )) = Tr log(1− ξK(a1 ,a2 ))

=

∫ ∞

−∞
log(1 − ξK(x, x)χ

(x)
(a1 ,a2 )) dx.

Thus

∂

∂aj

log det(1 − ξK(a1 ,a2 )) = (−1)j−1(1 − ξK(aj , aj))
−1ξK(aj , aj)

as required.

According to (3.16)

R(aj , aj) = −Q(x)P ′(x) + P (x)Q′(x)
∣∣∣
x=aj

, (3.18)
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so we see from (3.17) that the Fredholm determinant is determined by the

quantities (3.15) and their derivatives evaluated at the endpoints of the inter-

val. Indeed a close examination of the workings of [23], undertaken by Mehta

[27], Dyson [6] and Tracy and Widom [32], revealed that the former study in-

deed proceeds via the equations (3.17) and (3.18), and in fact σ(t) in (3.3) is re-

lated to the resolvent kernel evaluated at an endpoint by σ(t) = −tR(t/2, t/2).

Moreover it was realized that like (3.16) there are other equations contained

in the working of [23] which apply to all kernels of the form (3.13). However

it was also clear that other equations used in [23] were specific to the form of

φ and ψ in (3.14).

Tracy and Widom were able to identify these latter properties, which are

that φ and ψ are related by the coupled first order differential equations

m(x)φ′(x) = A(x)φ(x) + B(x)ψ(x)

m(x)ψ′(x) = −C(x)φ(x) − A(x)ψ(x) (3.19)

where m,A,B,C are polynomials. This structure allows the so called universal

equations (independent of the specific form of (3.13)) such as (3.18) to be

supplemented by a number of case specific equations. For some choices of φ

and ψ in addition to that corresponding to sine kernel, the resulting system of

equations closes. Examples relevant to spacing distributions at the soft and

hard edge of matrix ensembles with unitary symmetry are

φ(x) =
√

ξAi(x), ψ(x) = φ′(x), φ(x) =
√

ξJa(
√

x), ψ(x) = xφ′(x).

The soft edge refers to the neighbourhood of the largest eigenvalue (it is re-

ferred to as soft because the corresponding eigenvalue density is non-zero for

all x values, even those greater than the mean value of the largest eigenvalue).

The hard edge is the neighbourhood of the smallest eigenvalue for matrices

with non-negative eigenvalues (it is referred to as hard because the eigenvalue

density is strictly zero for x < 0). In both these cases it was possible to obtain

an evaluation of the generating function for the corresponding gap probability

in a form analogous to (3.3) [33, 34].

We will make note of the hard edge result because it, by virtue of Mehta’s

inter-relationship (2.26), relates to the gap probability in the bulk in the case

of an underlying orthogonal symmetry. First, we define the hard edge gap

probability in the case of an underlying unitary symmetry as the scaled limit

of the ensemble (2.14) with w2(x) = xae−xχx>0. Explicitly

Ehard
2 ((0, s); ξ) = lim

N→∞
E2

(
(0,

s

4N
); ξ; xae−xχx>0

)
. (3.20)
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It was shown in [9] that

Ehard
2 ((0, s); ξ) = det(1 − ξKhard

(0,s) ) (3.21)

where Khard
(0,s) is the integral operator on (0, s) with kernel

Khard(x, y) =
Ja(x

1/2)y1/2J ′
a(y

1/2) − x1/2J ′
a(x

1/2)Ja(y
1/2)

2(x − y)
.

As part of the study [34] the Fredholm determinant (3.21) was given the eval-

uation

Ehard
2 ((0, s); ξ) = exp

∫ s

0
u(t; a; ξ)

dt

t
(3.22)

where u satisfies the differential equation

(tu′′)2 − a2(u′)2 − u′(4u′ + 1)(u − tu′) = 0 (3.23)

subject to the boundary condition

u(t; a; ξ) ∼
t→0+

−ξtKhard(t, t).

The equation (3.23) is a special case of the σ-form of the Painlevé III′ system

[30].

It follows from (2.26), (3.20) and (3.22) that [10]

Ebulk
1 (0; (−s, s)) = Ehard

2 (0; (0, π2s2))
∣∣∣
a=−1/2

= exp

∫ (πs)2

0
u(t; a; ξ)

dt

t

∣∣∣
a=−1/2

ξ=1

. (3.24)

This is an alternative Painlevé transcendent evaluation to that implied by

(2.28), (3.2) and (3.3). Similarly, by noting that

2
√

xyKhard(x2, y2)
∣∣∣
a=1/2

=
1

2

(sin(x − y)

x − y
− sin(x + y)

x + y

)
we see from (2.34), (3.21) and (3.22) that [10]

Ebulk
4 (0; (−s/2, s/2)) = (3.25)

1

2

(
exp

∫ (πs)2

0
u(t; a; ξ)

dt

t

∣∣∣
a=−1/2

ξ=1

+ exp

∫ (πs)2

0
u(t; a; ξ)

dt

t

∣∣∣
a=1/2
ξ=1

)
.

In summary, the Fredholm determinants in the expressions for the bulk gap

probabilities can each be written in terms of Painlevé transcendents. From
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a practical viewpoint these expressions are particularly well suited for gen-

erating power series expansions, and also allow for a numerical tabulation

of each of Ebulk
2 (0; (−s, s)), Ebulk

1 (0; (−s, s)) and Ebulk
4 (0; (−s, s)), as well as

Ebulk
2 (n; (−s, s)) for n ≥ 1. For the latter quantity, according to (2.5) we must

differentiate Ebulk
2 ((−s, s); ξ) with respect to ξ then set ξ = 1. Doing this

in (3.4) gives a coupled system of differential equations for ∂jσ(u; ξ)/∂ξj |ξ=1

(j = 0, . . . , n) which is only numerically stable for small values of n.

3.3 Distribution of bulk right or left nearest neighbour

spacings

The spacing distribution refers to the distribution of the distance between

consecutive points as we move along the line left to right. Another simple

to measure statistic of this type is the distribution of the smallest of the left

neighbour spacing and right neighbour spacing for each point. Let us denote

this by pn.n.
β (s) (the superscript n.n. stands for nearest neighbour, while the

subscript β indicates the symmetry class). Let En.n.
β (0; (−s, s)) denote the

probability that about a fixed eigenvalue at the origin, there is no eigenvalue

at distance s either side. Analogous to (2.2) it is easy to see that

pn.n.
β (s) = − d

ds
En.n.

β (0; (−s, s)). (3.26)

In the case β = 2 (unitary symmetry) the generating function En.n.
β ((−s, s); ξ)

can be expressed as a Fredholm determinant

En.n.
β ((−s, s); ξ) = det(1− ξKn.n.

(−s,s)) (3.27)

where Kn.n.
(−s,s) is the integral operator on (−s, s) with kernel

Kn.n.(x, y) := (πx)1/2(πy)1/2

(
Ja+1/2(πx)Ja−1/2(πy) − Ja+1/2(πy)Ja−1/2(πx)

)
2(x − y)

(3.28)

evaluated at a = 1. Following the strategy which leds to (3.22), the Fredholm

determinant (3.27) for general a ∈ Z≥0 can be characterized as the solution of

a nonlinear equation. Explicitly [11]

En.n.
β ((−s, s); ξ) = exp

(∫ 2πs

0

σa(t; ξ)

t
dt
)

(3.29)
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where σa satisfies the nonlinear equation

(sσ′′
a)

2 + 4(−a2 + sσ′
a − σa)

(
(σ′

a)
2 − {a− (a2 − sσ′

a + σa)
1/2}2

)
= 0 (3.30)

subject to the boundary condition

σa(s; ξ) ∼
s→0+

−ξ
2(s/4)2a+1

Γ(1/2 + a)Γ(3/2 + a)
.

In the case a = 0, (3.28) reduces to the sine kernel and the differential equation

(3.30) reduces to (3.4). For general a the differential equation (3.30) is satisfied

by an auxilary Hamiltonian for PIII (as distinct from PIII′) [39].

Substituting (3.29) in (3.26) gives

pn.n.
2 (s) = −σa(2πs; ξ)

2πs
exp

∫ 2πs

0

σa(t; ξ)

t
dt
∣∣∣
a=ξ=1

. (3.31)

An application of this result can be made to the study of the zeros of the

Riemann zeta function on the critical line (Riemann zeros). We recall that

the Montgomery-Odlyzko law states that the statistics of the large Riemann

zeros coincide with the statistics of bulk eigenvalues of an ensemble of random

matrices with unitary symmetry, where both the zeros and eigenvalues are as-

sumed to be unfolded so as to have mean spacing unity. As a test of this law,

in [11] the empirical determination of pn.n.
2 (s) for large sequences of Riemann

zeros, starting at different positions along the critical line, was compared with

(3.31). The results, which are consistent with the Montgomery-Odlyzko law,

are reproduced in Figure 3. A significant feature is that the empirical deter-

mination of pn.n
2 (s) for the Riemann zeros is so accurate that it is not possible

to compare against an approximate form of pn.n.
2 (s) for the random matrices.

Thus the exact, readily computable, Painlevé evaluation (3.31) is of a practical

importance.

4 Gap probabilities from the Okamoto

τ-function theory

4.1 Other strategies

The method of Tracy and Widom may be described as being based on function

theoretic properties of Fredholm determinants. Alternative methods which
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Figure 3: Comparison of nn(t) := pn.n.
2 (s) for the matrix ensembles with uni-

tary symmetry in the bulk (continuous curve) and for 106 consecutive Riemann

zeros, starting near zero number 1 (open circles), 106 (asterisks) and 1020 (filled

circles).

also lead to the characterization of gap probabilities in terms of the solution of

nonlinear equations have been given by a number of authors. One alternative

method is due to Adler and van Moerbeke [35], who base their strategy on

the fact that for suitable underlying weight w2, gap probabilities in the case of

a unitary symmetry satisfy the KP hierarchy of partial differential equations

known from soliton theory. The first member of this hierachy is then used in

conjunction with a set of equations referred to as Virasoro constraints, satisfied

by the gap probabilities as a function of the endpoints of the gap free regions,

to arrive at third order equations for some single interval gap probabilities.

These third order equations are reduced to the σ-form of the Painlevé theory,

making use of results of Cosgrove [3, 2]. Borodin and Deift [1] have given

a method based on the Riemann-Hilbert formulation of the resolvent kernel

(3.16) [24]. This makes direct contact with the Schlesinger equations from the

theory of the isomonodromic deformation of linear differential equations, and

is thus closely related to the work of Jimbo et al. [23]. The other approach

to be mentioned is due to Forrester and Witte [14]. It is based on Okamoto’s

development of the Hamiltonian approach to Painlevé systems, and proceeds

by inductively constructing sequences of multi-dimensional integral solutions
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of the σ-form of the Painlevé equations, and identifying these solutions with

gap probabilities for certain random matrix ensembles with unitary symmetry.

For detailed accounts of all these methods, see [8, Ch. 6&7]. In the re-

mainder of these lectures we will restrict ourselves to results from the work of

Forrester and Witte which relate directly to gap probabilities in the bulk.

4.2 Direct calculation of spacing distributions

We have taken as our objective the exact evaluation of the bulk spacing dis-

tributions for the three symmetry classes of random matrices. So far exact

evaluations have been presented not for the spacing distribution itself, but

rather the corresponding gap probability, which is related to the spacing dis-

tribution by (2.2). It was realized by Forrester and Witte [15] that in all three

cases one of the derivatives could be performed analytically by using theory

relating to the σ-form of the Painlevé transcendents.

As an explicit example, consider the result (3.24). It was shown in [15] that

d

ds
exp

∫ (πs)2

0
u(t; a; ξ)

dt

t

∣∣∣
a=−1/2

ξ=1

= − exp
(
−
∫ (πs)2

0
ũ(t)

dt

t

)
(4.1)

where ũ satisfies the nonlinear equation

s2(ũ′′)2 = (4(ũ′)2 − ũ′)(sũ′ − ũ) +
9

4
(ũ′)2 − 3

2
ũ′ +

1

4

subject to the boundary condition

ũ(s) ∼
s→0+

s

3
− s2

45
+

8s5/2

135π
.

Recalling now (2.2) we see that

pbulk
1 (0; s) =

2ũ((πs/2)2)

s
exp
(
−
∫ (πs/2)2

0

ũ(t)

t
dt
)

(4.2)

(cf. (2.12)).

The identity (4.1) can be understood from the approach to gap probabilities

of Forrester and Witte. The key advance from earlier studies is that the

generating function (2.4), with p given by (2.14), can be generalized to the

quantity

Ebulk(s; µ; ξ) := lim
N→∞

aN
N

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxN

N∏
l=1

(1 − ξχ
(l)
(−s/2,s/2))

×|s/2 − aN xl|µp(aN x1, . . . , aN xN ) (4.3)
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and still be characterized as the solution of a nonlinear equation. This is

also true at the hard and soft edges, and in the neighbourhood of a spectrum

singularity (before the generalization the latter is controlled by the kernel

(3.28)).

It is the generalization in the case of the hard edge which leads to (4.1).

The quantity of interest is defined by

Ehard
2 ((0, s); µ; ξ) = lim

N→∞
IN (a)

IN (a + µ)
E2

(
(0,

s

4N
); ξ; (x − s

4N
)µxae−xχx>0

)
(4.4)

where

IN (a) :=

∫ ∞

0
dx1 · · ·

∫ ∞

0
dxN

N∏
l=1

e−xl xa
l

∏
1≤j<k≤N

(xk − xj)
2

(the factor IN (a)/IN (a + µ), which is readily evaluated in terms of gamma

functions, is chosen so that when s = 0, (4.4) is equal to unity). By using

theory from the Okamoto τ function approach to the Painlevé systems PV

and PIII′ it is shown in [16] that

Ẽhard
2 ((0, s); µ; ξ) = exp

∫ s

0
uh(t; a, µ; ξ)

dt

t
,

where uh satisfies the differential equation

(tu′′)2 − (µ + a)2(u′)2 − u′(4u′ + 1)(u− tu′) − µ(µ + a)

2
u′ − µ2

42 = 0. (4.5)

Thus we have

−1

ξ

d

ds
exp
(∫ s

0
uh(t; a, µ; ξ)|µ=0

dt

t

)
(4.6)

=
sa

22a+2Γ(a + 1)Γ(a + 2)
exp
(∫ s

0
uh(t; a, µ; ξ)|µ=2

dt

t

)
,

which in the case a = −1/2 reduces to (4.1).

We also read off from (4.6) that

d

ds
exp

∫ (πs)2

0
u(t; a; ξ)

dt

t

∣∣∣
a=1/2
ξ=1

= −2

3
(πs)2 exp

(
−
∫ (πs)2

0
ṽ(t)

dt

t

)
(4.7)

where ṽ(t) = −uh(t; a, µ; ξ)|a=1/2,µ=2,ξ=1 and thus satisfies (4.5) appropriately

specialized. The boundary condition consistent with (4.7) is

ṽ(t) ∼
t→0+

t

5
(1 + O(t)) +

8t7/2

33 · 53 · 7π (1 + O(t)). (4.8)
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Hence, according to (2.34) and (2.2),

pbulk
4 (0; s) = 2pbulk

1 (0; 2s) +
2π2s

3

(
ṽ((πs)2) − 1

)
exp
(
−
∫ (πs)2

0
ṽ(t)

dt

t

)
. (4.9)

The Okamoto τ -function theory of PVI and PV allows (4.3) to be computed

for general µ, and also its generalization in which there is a further factor

|−s/2−aN xl|a in the product over l in the integrand [17]. These results allow

not only the first derivative with respect to s of (3.3) to be computed by an

identity analogous to (4.1), but also the second derivative. In particular, it is

found that

pbulk
2 (0; s) =

π2

3
s2 exp

∫ 2πs

0
v(t)

dt

t
(4.10)

where v satisfies the nonlinear equation (which can be identified in terms of

the σ-form of the PIII′ equation)

(sv′′)2 + (v − sv′){v − sv′ + 4 − 4(v′)2} − 16(v′)2 = 0

subject to the boundary condition

v(s) ∼
s→0

− 1

15
s2.

The exact evaluations (4.2), (4.9) and (4.10) are perhaps the most compact

Painlevé evaluations possible for the bulk spacing distributions. A striking fea-

ture of (4.2) and (4.10) is that they are of the functional form

a(s) exp(−
∫ s

0 b(t) dt) and thus extend the Wigner surmise (2.12) and its β = 2

analogue in (2.13) to exact results.
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PV . Japan J. Math., 13:47–76, 1987.

[30] K. Okamoto. Studies of the Painlevé equations. IV. Third Painlevé equa-
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Toeplitz Determinants, Fisher-Hartwig

Symbols, and Random Matrices

Estelle L. Basor∗

1 Introduction

These notes consist of three topics, the asymptotics of Toeplitz determinants

for both smooth and singular symbols, the connection of the asymptotics to

ensembles of random matrices, in particular the Circular Unitary Ensemble,

and finally generalizations to other classes of ensembles and Fredholm deter-

minants. We begin by describing finite Toeplitz matrices.

Consider a sequence of complex numbers {ai}∞i=−∞ and the associated ma-

trix

Tn = (ai−j)
n−1
i,j=0.

∗Supported in part by NSF Grant 0200167 and the Isaac Newton Institute.
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The matrix Tn is constant along its diagonals and has the following structure:⎛⎜⎜⎜⎜⎜⎜⎝
a0 a−1 a−2 · · · a−n+1

a1 a0 a−1 · · · a−n+2

a2 a1 a0 · · · a−n+3
...

...
...

...

an−1 an−2 an−3 · · · a0

⎞⎟⎟⎟⎟⎟⎟⎠
The matrix is called a finite Toeplitz matrix and the basic problem is to de-

termine what happens to Dn = det Tn as n → ∞.

The finite matrix also looks like a “truncation” of the infinite one⎛⎜⎜⎜⎜⎜⎝
a0 a−1 a−2

a1 a0 a−1
. . .

a2 a1 a0
. . .

. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ (1.1)

and since our finite matrix is growing in size it makes sense to ask if we can

somehow get information about determinants from the infinite array. In order

to do this, we will try to view the infinite array as an operator on a Hilbert

space. We do this because the theory of Fredholm determinants defined for

operators on Hilbert spaces is fairly well understood. If we imagine that we

are multiplying the infinite matrix on the right by a column vector it is quite

natural to choose the Hilbert space as an extension of n-dimensional complex

space. We use the Hilbert space of unilateral sequences (usually denoted by l2){
{fk}∞k=0 |

∞∑
k=0

|fk|2 < ∞
}

,

which we identify with the Hardy space

H2 = {f ∈ L2(S1) | fk = 0, k < 0},

where

fk =
1

2π

∫ π

−π

f(eiθ)e−ikθdθ.

For this association we think of fk as the kth Fourier coefficient of the function

f defined on the circle. In other words, in the L2 sense,

f(eiθ) =
∞∑

k=0

fke
ikθ.
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We remind the reader that H2 is a closed subspace of L2, and that the inner

product of two functions is given by

〈f, g〉 =
1

2π

∫ π

−π

f(eiθ)g(eiθ)dθ.

The two-norm of f , denoted by ‖f‖2, is given by 〈f, f〉1/2 and also known to

be equal to ( ∞∑
k=0

|fk|2
)1/2

.

We denote the orthogonal projection of L2 onto H2 by P. The operator P

simply takes the Fourier series for f and removes terms with negative index

and satisfies P 2 = P ∗ = P. There is one more fact about H2 that will be

useful in what follows. Every function in H2 has an analytic extension into

the interior of the unit circle given by

f(z) =
∞∑

k=0

fkz
k.

When we work with Toeplitz determinants it is often convenient to mix up

all these ideas. In other words, sometimes we think of an infinite sequence,

sometimes a function on the circle and sometimes the analytic function in the

interior of the circle. There is a large body of literature devoted to these topics.

For additional information, we refer the reader to [12, 19, 20, 22].

Now let φ ∈ L∞(S1)and define the operator

T (φ) : H2 → H2

by

T (φ)f = P (φf).

The operator T (φ) is called a Toeplitz operator with symbol φ. Let ek = eikθ.

The functions {ek}∞k=0 form a Hilbert space basis for H2. To find the matrix

representation of the operator T (φ) we compute

〈T (φ)ek, ej〉 = 〈P (φek), ej〉 = 〈φek, P (ej)〉

= 〈φek, ej〉 =
1

2π

∫ π

−π

φ(eiθ)eikθe−ijθdθ = φj−k.

This shows that this operator has exactly the matrix representation of the

infinite array given in (1.1).



312 Estelle L. Basor

It turns out that when we compose Toeplitz operators, as we will soon do,

another operator will appear. It is the Hankel operator with symbol φ

H(φ) : H2 → H2

defined by

H(φ)f = P (φJ(f))

where

J(f)(eiθ) = e−iθf(e−iθ).

The matrix representation of this operator has a different structure than that

of a Toeplitz operator. It is found by computing

〈H(φ)ek, ej〉 = 〈P (φJ(ek)), ej〉 = 〈φe−k−1, P (ej)〉

= 〈φe−k−1, ej〉 =
1

2π

∫ π

−π

φ(eiθ)e−i(k+j+1)θdθ = φj+k+1.

Thus the matrix representation has constants running down the “opposite”

diagonals and has the form ⎛⎜⎜⎜⎜⎝
φ1 φ2 φ3 · · ·
φ2 φ3

φ3
...

⎞⎟⎟⎟⎟⎠ (1.2)

Much is known about the invertibility of Toeplitz operators and their structure.

However, we only need to recall a few things about Toeplitz operators before

we begin to connect the infinite operators to the finite determinants. Here is

a list of them.

Theorem 1.1.

(a) T (φ) is a bounded operator

(b) If ψ+ ∈ L∞⋂H2, then T (φψ+) = T (φ)T (ψ+)

(c) T (φ)∗ = T (φ̄)

(d) If ψ− ∈ L∞⋂H2, then T (ψ−φ) = T (ψ−)T (φ)

(e) T (φψ) = T (φ)T (ψ) + H(φ)H(ψ̃), where ψ̃(eiθ) = ψ(e−iθ).
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To prove (a) notice that

‖T (φ)f‖2 = ‖P (φf)‖2 ≤ ‖φf‖2 ≤ ‖φ‖∞‖f‖2.

It is actually the case that the norm of T (φ) is equal to ‖φ‖∞, although this

fact is not essential for our purposes. To prove (b) consider

T (φψ+)f = P (φ(ψ+f)) = P (φP (ψ+f)) = T (φ)T (ψ+)f.

The middle inequality holds since both ψ and f are already in H2. (Another

way to say this is the product of two functions with only non-negative Fourier

coefficients has only non-negative Fourier coefficients.) The proof of (c) follows

straight from the definition and then using (b) and (c) property (d) holds as

well. The proof of property (e) requires a little more work, but is reduced to

algebra once we note that the kth Fourier coefficient of φψ is given by

∞∑
l=−∞

φlψk−l.

Notice that these properties say that Toeplitz operators with symbols that

have only non-negative coefficients can be factored on the right and Toeplitz

operators with symbols having only non-positive coefficients can be factored

on the left. These factorizations are used frequently.

Next, define Pn : H2 → H2 by

Pn(f0, f1, f2, · · · ) = (f0, f1, f2, · · · , fn−1, 0, 0, · · · ).

This last definition allows us to identify Tn(φ), the finite Toeplitz matrix gener-

ated by the Fourier coefficients of φ as the truncation of T (φ) or as PnT (φ)Pn.

Now we have the framework to think of a finite matrix as a truncation of an

infinite one, and so it seems reasonable to ask if we can also get information

about finite determinants from an infinite determinant. To get a notion of how

to define a determinant for an infinite array, recall that if M is a finite matrix

then det M is the product
∏n

i=1 βi where the βi are the eigenvalues of M. If we

extend this to an infinite product
∏∞

i=1 βi then we are guaranteed the product

will converge if βi = 1 + λi with

∞∑
i=1

|λi| < ∞.

Hence we look for operators of the form I + K where K has a discrete set of

eigenvalues λi which satisfy
∑∞

i=1 |λi| < ∞. A class of operators with exactly
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this property is the set of trace class operators. We say that K is trace class

if

‖K‖1 =
∞∑

n=1

〈(KK∗)1/2en, en〉 < ∞ (1.3)

for any set of orthonormal basis vectors {en} for our Hilbert space. (We are

assuming here that our space is separable.) It can be shown that if the above

sum is finite with respect to some basis it is finite and independent for any

choice of basis. It is not always convenient to check whether or not an operator

is trace class from the definition. However, it is fairly straight forward to check

if an operator is Hilbert-Schmidt and it is well known that a product of two

Hilbert-Schmidt operators is trace class. The definition of the Hilbert-Schmidt

class of operators is the set of K such that the sum∑
i,j

|〈Kei, ej〉|2 < ∞

is finite for some choice of orthonormal basis. If it is, then the above sum is

independent of the choice of basis and its square root is called the Hilbert-

Schmidt norm of the operator. The basic facts about trace class and Hilbert-

Schmidt operators are contained in the following theorem. We state this theo-

rem without proof, but refer the reader to [12] or [22] for general results. The

last part of this theorem first appeared in [24] which is really the first paper

where the idea of trace class operators was used to make the results about

Toeplitz operators seem natural. The reader is strongly advised to look at this

paper.

Theorem 1.2.

(a) Trace class operators form an ideal in the set of all bounded operators

and are closed in the topology defined by the trace norm defined in (1.3).

(b) Hilbert-Schmidt operators form an ideal in the set of all bounded op-

erators with respect to the Hilbert-Schmidt norm and are closed in the

topology defined by the Hilbert-Schmidt norm.

(c) The product of two Hilbert-Schmidt operators is trace class.

(d) If K is trace class, then det Pn(I + K)Pn → det(I + K) as n → ∞. Here

Pn is the orthogonal projection on the linear span of the basis elements

{e0, e1, . . . , en−1}. (For the first determinant we think of Pn(I + K)Pn as

the finite rank operator defined on the image of Pn.)
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(e) If An → A,B∗
n → B∗ strongly (pointwise in the Hilbert space) and if K

is trace class, then AnKBn → AKB in the trace norm.

(f) The functions defined by trK and det(I + K) are continuous on the set

of trace class operators with respect to the trace norm.

(g) If K1K2 and K2K1 are trace class then tr (K1K2) = tr (K2K1) and

det(I + K1K2) = det(I + K2K1).

Now that we have a way to define an infinite determinant for an operator

of the form I + K when K is trace class, the question still remains as to how

one can compute the determinant in some concrete way. This will be crucial

for our applications to random matrices. There are two basic formulas (among

many others) that we will consider. The first is that if

I + K = eA

where A is trace class, then

det(I + K) = det eA = etr A.

The second is that if operators K1 and K2 satisfy the condition that

K1K2 −K2K1

is trace class (note that neither K1 or K2 need be) then

det(eK1 eK2 e−K1 e−K2 ) = etr (K1 K2−K2 K1 ).

The first formula follows from the definition of the exponential and properties

(a), (d) and (e) above and the fact that the formula is true for finite matrices.

To see this compare the expressions (ePn APn ) and (eA). The second we shall

not prove but remark that it follows by using the Baker-Campbell-Hausdorf

formula to expand products of exponentials on non-commuting operators. This

is shown in [24].

At this point the reader may wonder if T (φ) is I plus trace class. If it were,

then limits of finite Toeplitz matrices would be very easy to compute. This is

not the case unless φ(eiθ) ≡ 1, (just think about the diagonal) but something

very close to this statement is true. If we recall Theorem 1.1 part (e) we see

that if φ−1 is a bounded function, then

T (φ)T (φ−1) = I −H(φ)H(φ̃−1),
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so the operator T (φ)T (φ−1) will be I+ trace class if both H(φ) and H(φ̃−1)

are Hilbert-Schmidt. From the matrix representation of H(φ) it is very easy

to see that H(φ) will be Hilbert-Schmidt if

∞∑
k=1

|k||φk|2 < ∞.

Putting this all together we have the following lemma.

Lemma 1.3. Suppose that φ and φ−1 are bounded functions satisfying

∞∑
k=1

|k||φk|2 < ∞ and
∞∑

k=1

|k||(φ−1)−k|2 < ∞.

Then the operator T (φ)(Tφ−1) is I + K where K is trace class.

How does knowing the above help us with the determinant of PnT (φ)Pn?

Let us proceed informally for awhile. It is certainly the case that if T (φ)

is upper or lower triangular, the determinants are easy to compute. This is

precisely when φ or φ̄ belong to L∞⋂H2. Of course, this is a special case, but

it is known that for a fairly large class of functions φ there exist functions φ+

and φ− such that both φ+, φ̄− ∈ L∞⋂H2, and φ = φ−φ+. Thus we have

PnT (φ)Pn = PnT (φ−)T (φ+)Pn.

Here we have used Theorem 1.1, parts (b) and (d). It would be nice if we

could move the Pn into the middle because then we would have the product

of upper and lower triangular matrices. Unfortunately we cannot do this, but

notice we could if the factors were reversed. This is because

PnT (φ+) = PnT (φ+)Pn

and

PnT (φ−)Pn = T (φ−)Pn.

Using this motivation, we write

Pn T (φ) Pn = Pn T (φ+) T (φ−1
+ ) T (φ) T (φ−1

− ) T (φ−) Pn

= Pn T (φ+) Pn T (φ−1
+ ) T (φ) T (φ−1

− ) Pn T (φ−) Pn.

Now the upper-left blocks of Pn T (φ±) Pn are Tn(φ±), which are triangu-

lar matrices with diagonal entries (φ±)0. Therefore they have determinant

((φ−)0)
n((φ+)0)

n, so

Dn(φ) = det Tn(φ)
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equals this product times the determinant of the upper-left block of

Pn T (φ−1
+ ) T (φ) T (φ−1

− ) Pn.

To find the limit of this determinant, we notice by using Lemma 1.3 that if

φ−1 and φ satisfy the conditions of the lemma then

T (φ)T (φ−1) = I −H(φ)H(φ̃−1)

and the product of the Hankels is trace class. If we multiply on the left of this

equation by T (φ−1
+ ) and on the right by T (φ+) then we have

T (φ−1
+ ) T (φ)T (φ−1) T (φ+) = I + K

where K is trace class. This is immediate since trace class operators form an

ideal. For the expression on the right side of this equality, we have by Thoerem

1.2 (b)

T (φ−1
+ ) T (φ)T (φ−1) T (φ+) = T (φ−1

+ ) T (φ)T (φ−1
− φ−1

+ ) T (φ+)

= T (φ−1
+ ) T (φ) T (φ−1

− )

and thus

T (φ−1
+ ) T (φ) T (φ−1

− ) = I + K.

Therefore using Theorem 1.2 (d) we have that

lim
n→∞

det Tn(φ)/((φ−)0)
n((φ+)0)

n = lim
n→∞

det Pn T (φ−1
+ ) T (φ) T (φ−1

− ) Pn

= det(T (φ−1
+ ) T (φ) T (φ−1

− )) = det(T (φ)T (φ−1
− )T (φ−1

+ )) = det(T (φ)T (φ−1)).

This last limit statement is almost the classical form of the Strong Szegö Limit

Theorem. It will be in exactly that form once we rewrite the constants. To

become completely rigorous we assume that the function φ = φ−φ+ has a

logarithm log φ that is bounded such that

log φ = log φ− + log φ+

where log φ− and log φ+ are in L∞⋂H2, satisfy

∞∑
k=1

|k| |(log φ−)−k|2 < ∞

and ∞∑
k=1

|k| |(log φ+)k|2 < ∞.
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Conveniently the bounded functions f satisfying
∑∞

k=−∞ |k‖fk|2 < ∞ form a

Banach algebra under a natural norm and for any such f the Hankel matrix

(fi+j+1) is the matrix of a Hilbert-Schmidt operator. If log φ± belong to this

algebra so do φ−, φ+, (φ+)−1, (φ−)−1, φ and φ−1, and it follows that all

associated Hankel operators are Hilbert-Schmidt. With these assumptions, we

consider

det(T (φ−1
+ ) T (φ) T (φ−1

− )) = det(T (φ−1
+ ) T (φ−) T (φ+)T (φ−1

− )).

Now we know that (T (log φ±))n = T ((log φ±)n) by Theorem 1. (b) and (d),

and thus we can write the above determinant as

det eK1 eK2 e−K1 e−K2

where

K1 = −T (log φ+), K2 = T (log φ+).

Then using

det(eK1 eK2 e−K1 e−K2 ) = etr (K1 K2−K2 K1 )

yields

det(T (φ−1
+ ) T (φ−) T (φ+)T (φ−1

− ) = exp(tr (K1K2 −K2K1).

The operator

K1K2 −K2K1 = −T (log φ+)T (log φ−) + T (log φ−)T (log φ+)

is equal to

−T (log φ+)T (log φ−) + T ((log φ−)(log φ+))

by Theorem 1.2 (b) and is equal to

H(log φ+)H(l̃ogφ−)

by Theorem 1.2 (e). The trace of this product is easily seen to be

∞∑
k=1

ksks−k,

where

sk = (log φ)k.

(Note (log φ)k = ((log φ)+)k for k positive and ((log φ)−)k for k negative.)

Finally, the term

((φ−)0(φ+)0)
n



Toeplitz determinants, Fisher-Hartwig symbols, and random matrices 319

is the same as

G(φ) = exp(s0)

since

(φ±)0 = exp(log(φ±))0

and

log φ = log φ− + log φ+.

The constant G(φ) is called the geometric mean of φ. We collect the above

results in this theorem.

Theorem 1.4. (Strong Szegö Limit Theorem) Suppose the functions log φ±
belong to the algebra of bounded functions f satisfying

∑∞
k=−∞ |k‖fk|2 < ∞,

and in addition suppose log φ−, log φ+ ∈ H2. Let φ = φ−φ+. Then

lim
n→∞

Dn(φ)/G(φ)n = exp

( ∞∑
k=1

ksks−k

)

where G(φ) and sk are as previously defined.

We end this section with an identity for Toeplitz determinants that actu-

ally implies the Strong Szegö Limit Theorem. The identity has an interesting

history and useful consequences since it is not an asymptotic result, but an

actual identity. It is called the Geronimo-Case-Borodin-Okounkov identity. It

was first proved by Geronimo and Case in 1979 [18] but unfortunately unno-

ticed by most specialists in the area. It was independently rediscovered in 1999

by Borodin and Okounkov [11]. Our proof of the identity is an easy adaptation

of the proof just presented [8].

Theorem 1.5. Suppose φ satisfies the conditions of the previous theorem. Then

Dn(φ) = G(φ)n exp

( ∞∑
k=1

ksks−k

)
det(I −Kn)

where

Kn = QnH(φ−/φ+)H(φ̃+/φ−)Qn

and Qn = I − Pn.

To prove this let us return to the point in the previous proof where we have

the equality

Dn(φ)/((φ−)0)
n((φ+)0)

n = det Pn T (φ−1
+ ) T (φ) T (φ−1

− ) Pn
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or

Dn(φ) = G(φ)n det Pn T (φ−1
+ ) T (φ) T (φ−1

− ) Pn.

Let

A = T (φ−1
+ ) T (φ) T (φ−1

− ).

An identity for finite matrices due to Jacobi works equally well for any operator

A = I + K with K trace class. It says that

det PnAPn = det A det QnA
−1Qn.

The proof is completed by noting that, as we have already seen,

det A = exp

( ∞∑
k=1

ksks−k

)

and that

A−1 = T (φ−) (T (φ))−1 T (φ+), T (φ)−1 = T (φ−1
+ )T (φ−1

− ).

This shows that

A−1 = T (φ−/φ+)T (φ+/φ−)

which equals

I −H(φ−/φ+)H(φ̃+/φ−).

The final step in the proof is to notice that

det(Qn(I −H(φ−/φ+)H(φ̃+/φ−))Qn)

is the same as

det(Pn + Qn(I −H(φ−/φ+)H(φ̃+/φ−)Qn))

or

det(I −Kn).

Notice that since Qn tends to zero strongly (pointwise), the identity together

with Theorem 1.2 (e), yields Szegö’s theorem as a corollary.
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2 Fisher-Hartwig Symbols

If the conditions of the Strong Szegö Limit Theorem (Theorem 1.3) are not

met, then the theorem may not hold and indeed the formula may not even

make sense. In 1968, Fisher and Hartwig [21] considered a class of symbols of

the form

Ψ(eiθ) = φ(eiθ)
R∏

j=1

φαj ,βj
(ei(θ−θj )) (2.1)

where

φα,β(eiθ) = (2− 2 cos θ)αeiβ(θ−π), 0 < θ < 2π

and Reα > −1
2 . The function φ is assumed to be sufficiently smooth, contin-

uous, non-zero, and have winding number zero. The factor

(2 − 2 cos θ)α

may have a zero, be unbounded, or have a singularity of oscillatory type. The

factor

eiβ(θ−π)

has a jump if β �∈ Z. Note that for this last factor the Fourier coefficients of

the logarithm have order O(1/k) and hence the constant in Szegö’s Theorem

does not converge. However, Fisher and Hartwig conjectured that

Dn(ψ) ∼ G(φ)nnΩE∗ (2.2)

where

Ω =
R∑

j=1

(α2
j − β2

j )

and E∗ is some constant whose value they did not identify. The conjecture is

now confirmed in many cases and the constant is given by

E∗(ψ) = E(φ)
R∏

j=1

φ+(eiθj )−αj +βj φ−(eiθj )−αj−βj

×
∏

1≤s �=r≤R

(1 − ei(θs−θr ))−(αs +βs )(αr−βr )
R∏

j=1

G(1 + αj + βj)G(1 + αj − βj)

G(1 + 2αj)
,

where G(z) is the Barnes G-function satisfying

G(1 + z) = Γ(z)G(z)
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and defined by

G(1 + z) = (2π)z/2e−(z+1)z/2−γz2 /2
∞∏

k=1

(1 +
z

k
)ke−z+ z 2

2k .

The factors need an explanation. We first normalize φ so that the geometric

mean is 1. Then we may assume that the factors φ+, φ− (φ−φ+ = φ) are one

at zero and infinity respectively and this defines the logarithms for the first

product. (Note here we are thinking of the analytic extension of these factors.)

The E(φ) term is the constant in Szegö’s Theorem, and the argument of a term

of the form (1 − ei(θs−θr )) is taken between −π/2 and π/2. This conjecture is

now known to be true in every case where it “should be true.” We intend to

make this last statement clearer by the end of this section. What we will do

is sketch how to prove it in the cases where αj = 0. This will give the reader

an indication of how it is proved in general, since the ideas are more or less

the same, but due to technicalities the proof is more complicated. For more

information about the general proof see [12, 13, 15, 16]. While not attempting

to give a history of the conjecture we will mention that there is a nearly forty

year history of the conjecture. Many authors have contributed to its proof

including P. Bleher, A. Böttcher, T. Ehrhardt, B. Silbermann, H. Widom

and the author. The most recent complete results are by Ehrhardt and are

described in [16].

Before we start to give a proof of the conjecture, let us note that for the

symbol φ0,β the corresponding Toeplitz matrix is Cauchy and its determinant

can be computed. This case was actually confirmed by Fisher and Hartwig

in their orginal paper. We of course know what happens when there are no

singularities, so it seems plausible to piece together answers by considering

what happens to
Dn(φψ)

Dn(φ)Dn(ψ)

when φ and ψ have no common singularities. Recall that

T (φψ) = T (φ)T (ψ) + H(φ)H(ψ̃).

An analogue for finite matrices was noticed first by Widom [24],

Tn(φψ) = Tn(φ)Tn(ψ) + PnH(φ)H(ψ̃)Pn + WnH(φ̃)H(ψ)Wn, (2.3)

where

Wn(a0, a1, . . . , an−1, an, . . . ) = (an−1, an−2, . . . , a1, a0, 0, 0, . . . ).
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The operator Wn has the property that

〈Wnej , ek〉 = δn−1−j,k = 0

if n is large enough. From this it follows that Wn → 0 weakly or more precisely,

that

〈Wnf, g〉 → 0

for all f, g in H2. Also, note that W 2
n = Pn, W ∗

n = Wn and WnT (φ)Wn =

W (φ̃). Let us now suppose that our finite matrices are invertible. From the

identity (2.3) we have

Tn(φψ)Tn(ψ)−1Tn(φ)−1 = In + Kn + Ln

where

Kn = PnH(φ)H(ψ̃)PnTn(ψ)−1Tn(φ)−1

Ln = WnH(φ̃)H(ψ)WnTn(ψ)−1Tn(φ)−1.

The idea is now to see if

Kn + Ln

converges to something in the trace norm. If this were the case, we would

indeed have a nice limit for
Dn(φψ)

Dn(φ)Dn(ψ)
.

Once again this is not quite true. A modification is necessary but, fortunately,

everything in the end works out. Let us begin by investigating the term Kn.

It is not immediate that the middle term of this operator

H(φ)H(ψ̃)

is trace class as it was before. To see that this Hankel product is indeed trace

class for disjoint singularities, we prove the following lemma.

Lemma 2.1. Suppose φ, ψ ∈ L∞ and there exists a smooth partition of unity

f, g such that φf, ψg satisfy the condition that H(φf), H(ψ̃g) are both trace

class operators. Then H(φ)H(ψ̃) is trace class.

To prove this, notice that since f + g = 1,

H(φ)H(ψ̃) = T (φψ) − T (φ)T (ψ) = T (φ(f + g)ψ)− T (φ)T (f + g)T (ψ)

= T (φfψ) + T (φgψ) − T (φ)T (f)T (ψ)− T (φ)T (g)T (ψ)
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= T (φf)T (ψ) + H(φf)H(ψ̃) + T (φ)T (gψ) + H(φ)H(g̃ψ)

−T (φf)T (ψ) + H(φ)H(f̃)T (ψ) − T (φ)T (gψ) + T (φ)H(g)H(ψ̃)

= H(φf)H(ψ̃) + H(φ)H(g̃ψ) + H(φ)H(f̃)T (ψ) + T (φ)H(g)H(ψ̃).

By assumption

H(φf), H(g̃ψ)

are trace class, and since trace class operators form an ideal, the products

H(φf)H(ψ̃) and H(φ)H(g̃ψ)

are also trace class. For the remaining two terms notice that if h is any function

with Fourier coefficients of order O(k−2) then H(h) = AB where

Ajk = hj+k+1(k + 1)3/4, Bjk = δjk(k + 1)−3/4.

Both of these are Hilbert-Schmidt and hence H(h) is trace class. This shows

that if our partition of unity functions f and g are smooth then both

H(f̃) and H(g)

are trace class and the proof of the lemma is complete. It also shows that in

the case of isolated singularities, if φ and ψ are smooth enough away from their

singularities, then the conditions of the lemma are easily satisfied. In partic-

ular, this is the case for singularities in the products of the Fisher-Hartwig

symbols. Let us return to the term

Kn = PnH(φ)H(ψ̃)PnTn(ψ)−1Tn(φ)−1.

Now that we know that the operator H(φ)H(ψ̃) is trace class we would like

to conclude that Kn converges to something in the trace norm. It is certainly

true that Pn converges to the identity strongly. To be able to employ Theorem

1.2 (e) we need to know something about the convergence of

Tn(φ)−1.

Fortunately it is the case that if a piecewise continuous function φ has the

property that the corresponding Toeplitz operator T (φ) is invertible, then for

sufficiently large n the matrices Tn(φ) are invertible and converge strongly to

T (φ)−1. The spectra of Toeplitz operators with piecewise symbols are also well

understood. It turns out that for Fisher-Hartwig symbols given in (2.1), if

|Reβj | < 1
2 then the corresponding Toeplitz operators are invertible. (Recall
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if αj = 0 the symbols have only jump discontinuities.) The same is true for

the adjoints of these operators since they correspond to the conjugates of the

symbols. Results along these lines can be found in [12] and [13]. Putting this

all together, we have that

Kn = PnH(φ)H(ψ̃)PnTn(ψ)−1Tn(φ)−1

converges to

H(φ)H(ψ̃)T (ψ)−1T (φ)−1

in the trace norm. But what about our other term

Ln = WnH(φ̃)H(ψ)WnTn(ψ)−1Tn(φ)−1?

We have shown that Wn converges to zero only weakly, hence we cannot repeat

the argument above. However, what we can do is to consider

In + Kn + Ln + KnLn −KnLn.

Since Wn converges to zero weakly and H(φ̃)H(ψ) is trace class and hence

compact, the term Ln converges to zero strongly. We can conclude that KnLn

converges to zero in the trace norm. In addition,

In + Kn + Ln + KnLn = (In + Kn)(In + Ln).

The operators In +Kn are invertible for sufficiently large n and have uniformly

bounded inverses with respect to the operator norm. (See [12] or [24] Prop.

2.1, Prop. 2.2.) For the term In + Ln we note that

In + Ln = In + WnH(φ̃)H(ψ)WnTn(ψ)−1Tn(φ)−1

= W 2
n + WnH(φ̃)H(ψ)WnTn(ψ)−1Tn(φ)−1

= Wn(In + H(φ̃)H(ψ)WnTn(ψ)−1Tn(φ)−1Wn)Wn

= Wn(In + H(φ̃)H(ψ)Tn(ψ̃)−1Tn(φ̃)−1)Wn

Hence the inverses of In+Ln are also uniformly bounded. We have now reduced

the asymptotic computation of

Dn(φψ)

Dn(φ)Dn(ψ)

to

det(In + Kn)(In + Ln).
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We have

det(In + Kn) = det(In + PnH(φ)H(ψ̃)PnTn(ψ)−1Tn(φ)−1)

converges to

det(I + H(φ)H(ψ̃)T (ψ)−1T (φ)−1)

= det(I + (T (φψ)− T (φ)Tψ))T (ψ)−1T (φ)−1)

= det T (φψ)T (φ)−1T (ψ)−1.

Also,

det(In + Ln) = det(In + WnH(φ̃)H(ψ)WnTn(ψ)−1Tn(φ)−1)

= det(In + PnH(φ̃)H(ψ)WnTn(ψ)−1Tn(φ)−1Wn)

= det(In + PnH(φ̃)H(ψ)WnTn(ψ)−1W 2
nTn(φ)−1Wn)

= det(In + PnH(φ̃)H(ψ)Tn(ψ̃)−1Tn(φ̃)−1)

converges to

det(I + H(φ̃)H(ψ)T (ψ̃)−1T (φ̃)−1)

= det(I + (T (φ̃ψ̃) − T (φ̃)T (ψ̃))T (ψ̃)−1T (φ̃)−1) = det T (φ̃ψ̃)T (φ̃)−1T (ψ̃)−1.

We summarize the above in the following theorem.

Theorem 2.2. Suppose φ and ψ are Fisher-Hartwig symbols with disjoint sin-

gularities such that αj = 0, |Reβj | < 1/2. Then

lim
n→∞

Dn(φψ)

Dn(φ)Dn(ψ)
= det T (φψ)T (φ)−1T (ψ)−1 det T (φ̃ψ̃)T (φ̃)−1T (ψ̃)−1.

This theorem can be extended to the case where |Reαj | < 1/2, but since

the corresponding symbols or their inverses may not be bounded, the Banach

algebra approach that was used above must be modified. The reader is referred

to [12, 13, 16] for details in the general case.

It may not be clear how this theorem yields the constant in the Fisher-

Hartwig conjecture. Suppose we start with a function with one singularity

φα,β . While this matrix is not Cauchy, it has a similar form and a direct com-

putation can be made to compute the determinant asymptotically [8]. These

asymptotics are of the form

Dn(φα,β) ∼ nα2−β2 G(1 + α + β)G(1 + α + β)

G(1 + 2α)
.
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Now if we translate the singularity the determinants do not change, since

this amounts to changing the Fourier coefficients by ei(k−j)θr , which shows the

corresponding Toeplitz matrix is unitarily equivalent to one with symbol φα,β .

If we add one new factor to the product we get products of G-function terms,

powers of n and the interaction terms from the previous theorem. It turns

out these can be written as determinants of multiplicative commutators and

the resulting evaluations yield the middle terms of the constant E∗. We add

all the factors with singularities that are needed and then finally the smooth

part. The resulting constants from this part are in the first product of E∗.

We end this section with some additional results about the Fisher-Hartwig

conjecture. The following simple example shows that it is not always true! Let

ψ(eiθ) =

{
−1 −π < θ < 0

1 0 < θ < π

The corresponding Toeplitz matrix is skew-symmetric and hence if n is odd

the determinant is zero. If n is even, using some elementary row and column

operations it is possible to put the matrix in block form and reduce the problem

to one of computing determinants of Cauchy matrices. From this one can show

Dn(ψ) ∼ (i)nn− 1
2 2

1
2 G(1/2)2G(3/2)2

as n → ∞ for n even. Thus the Fisher-Hartwig conjecture cannot possibly

hold. Notice for this example,

ψ(eiθ) = φ0,1/2(e
iθ)φ0,−1/2(e

i(θ−π))

= φ0,−1/2(e
iθ)φ0,1/2(e

i(θ−π)).

This representation tells us that the conjecture does not even make sense since

there is more than one way to describe ψ using the standard Fisher-Hartwig

factors. In general, if we let

φα,β(ei(θ−γ)) = φα,β,γ

then if

ψ = φ

R∏
j=1

φαj ,βj ,θj
,

it is also the case that

ψ = φ∗
R∏

j=1

φαj ,βj +nj ,θj
,
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where
R∑

j=1

nj = 0, and φ∗ = φ
R∏

j=1

(−eiθj )nj .

In the example, above β1 = 1/2, β2 = −1/2, θ1 = 0, θ2 = π, n1 = −1, n2 = 1.

If we look at the result for our counterexample, combined with what is known

for the case of integer values of α and β, one is led to the following generalized

conjecture. Suppose

ψ(eiθ) = φk

R∏
j=1

φαk
j ,βk

j ,θj
,

for some set of indices k. Define Q(k) =
∑R

j=1(α
k
j )

2 − (βk
j )2. Let Q =

maxk ReQ(k) and

K = {k |ReQ(k) = Q}.

The generalized conjecture says that

Dn(ψ) =
∑
k∈K

G(ψk)nQ(k)Ek + o(|G(φ)|nnQ).

If may turn out that there is only one element in K and for these symbols

there is a unique representation that yields the highest power in the exponent

of the asymptotic expansion. These are the symbols for which the original

Fisher-Hartwig conjecture should be true. It is now confirmed in these cases.

For a full report of the status of the conjecture, please see [15].

3 Connections to Random Matrix Theory

In this section we present the connections of the two main results of the pre-

vious sections to random matrix theory. We begin by recalling two formulas.

The first is a well-known Fourier transform identity. It reads

1

σ
√

2π

∫ ∞

−∞
e−

(t−µ )2

2σ 2 eixt dt = eixµe−x2σ2
. (3.1)

Notice this says that for a Gaussian distribution, the mean and the variance

can be easily identified from the Fourier transform. The second formula, first

proved by Andréief in 1883 [1], says

1

N !

∫
· · ·
∫

det(fj(xk)) det(gj(xk))dx1 · · · dxN

= det

(∫
fj(x)gk(x)dx

)
j,k=1,···N

.
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The last formula provides a very direct connection between the Circular Uni-

tary Ensemble (CUE) (see the lectures of J.B. Conrey, page 111) in Random

Matirx Theory (RMT) and Toeplitz determinants. By CUE we mean the

group of N × N unitary matrices with probability measure being normalized

Haar measure. The Haar measure induces a probability distribution on the

space of eigenangles (θ1, . . . , θN ) whose density is given by

1

N !

∏
j<k

|eiθj − eiθk |2.

Now suppose we have a random variable of the form

N∑
j=1

f(eiθj )

with f real-valued. This kind of random variable is called a linear statistic

and has been studied extensively for different ensembles of random matrices.

From probability theory we know that the Fourier transfom of the distribution

function of the random variable is given by

g(λ) =
1

N !

∫ π

−π

. . .

∫ π

−π

eiλ
∑N

j=1 f (eiθj )
∏
j<k

|eiθj − eiθk |2dθ1 . . . dθN ,

or

g(λ) =
1

N !

∫ π

−π

. . .

∫ π

−π

N∏
j=1

eiλf (eiθj )
∏
j<k

|eiθj − eiθk |2dθ1 . . . dθN .

Now consider ∏
j<k

|eiθj − eiθk |2 =
∏
j<k

(eiθj − eiθk )(e−iθj − e−iθk )

=
∏
j<k

(eiθj − eiθk )
∏
j<k

(e−iθj − e−iθk ).

The product ∏
j<k

(eiθj − eiθk )

is a Vandermonde determinant

det((eiθk )j−1)N
j,k=1

as is ∏
j<k

(e−iθj − e−iθk ) = det((e−iθk )j−1)N
j,k=1.
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Thus our formula for g(λ) becomes

g(λ) =
1

N !

∫ π

−π

. . .

∫ π

−π

N∏
j=1

eiλf (eiθj ) det((eiθk )j−1)N
j,k=1

× det((e−iθk )j−1)N
j,k=1dθ1 . . . dθN .

We can incorporate a factor of the form eiλf (eiθj ) into a column of either deter-

minant in the last integral and apply Andréief’s formula1 to find

g(λ) = det

(∫ π

−π

eiλf (θ)eikθe−ijθdθ

)N−1

j,k=0
.

This is exactly the formula for a finite Toeplitz determinant DN (φ) with symbol

φ = eiλf (θ). In other words, the Fourier transform (or characteristic function)

of the distribution function of a linear statistic for CUE is a Toeplitz deter-

minant! To obtain asymptotic information about the linear statistic we apply

the Strong Szegö Limit Theorem. This shows

g(λ) ∼ G(φ)N exp

( ∞∑
i

ksks−k

)
where

G(φ)N = exp

(
iλ

N

2π

∫ π

−π

f(eiθ)dθ

)
and

exp

( ∞∑
i

ksks−k

)
= exp

(
−λ2

∞∑
i

kfkf−k

)
.

Now if we return to formula (3.1) we see that we can interpret the last formula

as saying that asymptotically for a smooth function f the linear statistic

N∑
j=1

f(eiθj )

has a Gaussian distribution with mean

µ =
N

2π

∫ π

−π

f(eiθ)dθ

and variance given by

σ2 =
∞∑
1

kfkf−k =
∞∑
1

k|fk|2.

1Editors’ comment: See Section 5 of the lectures of J.B. Conrey, page 111, for a discussion
and proof of Andréief’s identity.
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(The last equality holds since f is real-valued.)

For functions f that are discontinuous, we generally are not able to apply

the Strong Szegö Limit Theorem. However, there are some interesting linear

statistics that are important in RMT that correspond to singular symbols. For

example, consider

f(eiθ) = χI(e
iθ) =

{
1 if eiθ ∈ I

0 otherwise

This random variable counts the number of eigenvalues in an arc I on the

circle. The corresponding symbol for the Toeplitz determinant representing

the Fourier transform of the distribution function of the linear statistic is

φ(eiθ) = eiλχI . This is a Fisher-Hartwig symbol. To compute the correct

α, β parameters, we note this function only has two jump discontinuities so

αj = 0, j = 1, 2. To compute the β parameters notice that for our standard

factor φ0,β

β =
1

2πi
log

(
φ(1−)

φ(1+)

)
.

For

φ(eiθ) = eiλχI

with I equal to the arc from e−iγ to eiγ we have two jumps with

β1 =
1

2πi
log

(
1

eiλ

)
= −λ/2π

and the point e−iγ and

β2 =
1

2πi
log
(
eiλ
)

= λ/2π

at the point eiγ . It is straightforward to check that

φ(eiθ) = eiλχI = eiλγ/πφ0,λ/2π,γ φ0,−λ/2π,−γ .

If we apply the Fisher-Hartwig results directly, we have that

DN (φ) ∼ eiλNγ/πN− λ 2

2π 2 (2 − 2 cos 2γ)
λ 2

4π 2 G

(
1 − λ

2π

)
G

(
1 +

λ

2π

)
This does not have the nice Gaussian form as before. Notice, though that the

term

N− λ 2

2π 2 = e−
λ 2

2π 2 log N
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so that σ2 is on the order of (1/2π2) log N. Thus if we “re-scale” our random

variable in a fairly natural way to be of the form

1√
log N
2π2

N∑
j=1

(χI(e
iθj ) − γ/π)

then g(λ) to tends to e−λ2
. This is only valid however, if there is sufficient

uniformity in the estimates from Section 2 used to prove the Fisher-Hartwig

conjecture in the case of jump discontinuities. This is true in a certain range

of λ, for |λ/
√

log N
2π2 | ≤ c < 1/2. This can be checked by a careful analysis of

the estimates and convergence tools used in proving the conjecture.

It is also the case that the statistics of a characteristic polynomial of a ran-

dom unitary matrix from CUE can be described using Toeplitz determinants

with Fisher-Hartwig symbols. We will not give these results here, but refer the

reader to [23].

We end this section with results about other classes of operators that are

important in RMT and which have asymptotic expansions that yield informa-

tion about the corresponding linear statistics. We will not give proofs, but

just state results. To understand how these results are analogous to what we

have described so far, think of the finite Toeplitz matrix as the operator

PnT −1MφT Pn

where Mφ is multiplication by the function φ and T is the discrete Fourier

transform, associating the Fourier coefficients to the corresponding function in

H2.

It turns out for the Gaussian Unitary Ensemble (see the lectures of Y.V.

Fyodorov, page 31), for the study of linear statistics it is necessary to consider

a finite Wiener-Hopf operator, Wα(φ), defined on L2(0, α) by

PαF−1MφFPα

where Pα is multiplication by the characteristic function of (0, α), and F is the

Fourier transform. For linear statistics the important quantity is

det(I + Wα(φ))

where φ = eiλf −1. (The above determinant is well-defined for sufficiently nice

φ.) The analogue of the Strong Szegö Limit Theorem says that if φ = eb − 1
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then as α →∞

det(I + Wα(φ)) ∼ exp

(
α

2π

∫ ∞

−∞
b(x)dx +

∫ ∞

0
xb̂(x)b̂(−x)dx

)
,

where b̂(x) is the Fourier transform of b. This formula again implies that

for smooth f the linear statistics are asymptotically Gaussian. Analogues of

this theorem have also recently been proved for Fisher-Hartwig type symbols

[10, 13].

In RMT Laguerre ensembles are defined on the space of positive Hermitian

matrices and for these ensembles, the study of linear statistics lead to the study

of Bessel operators Bα(φ) defined on L2(0, α) by

PαHνMφHνPα

where Hν is the Hankel transform of order ν given by

Hν(f)(x) =

∫ ∞

0

√
tx Jν(tx)f(t) dt,

and Jν is the Bessel function of order ν. If φ = eb − 1, then

det(I + Bα(φ)) ∼ exp

(
α

2π

∫ ∞

−∞
b(x)dx − ν

2
+

1

2

∫ ∞

0
x(b̂(x))2dx

)
.

Some results are known in this case for singular symbols as well, but only in

the case of ν = ±1
2 . For results about these ensembles and a proof of the above

result see [3, 4, 7].

If we scale in GUE ensemble on the edge of the spectrum, linear statistics

problems reduce to the study of the Airy operators, integral operators on

L2(0, α) with kernel

Aα(f)(x, y) = f(x/α)

∫ ∞

0
A(x + z)A(z + y)dz

where A(x) is the Airy function. (This operator also has an equivalent defini-

tion in terms of multiplication and a “Airy” transform, see [9].) The asymptotic

formula reads

det(I + Aα(f)) ∼ exp
(
c1α

3/2 + c2
)

where

c1 =
1

π

∫ ∞

0

√
x log(1 + f(−x)) dx
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and

c2 =
1

2

∫ ∞

0
xG(x)2dx

G(x) =
1

2π

∫ ∞

−∞
eixy log(1 + f(−y2))dy.

Results for discontinuous symbols are not yet known in the Airy case.

In all of the above cases, CUE, GUE, Laguerre, and Airy there is always a

Szegö type limit theorem for a particular class of operators which implies that

after scaling, linear statistics have a Gaussian or normal distribution in the

limit, at least for smooth symbols. Hence there seems to exist a universality

or central limit theorem for such quantities.

We end these notes with one last example. There are also Fisher-Hartwig

analogues for finite Toeplitz plus Hankel matrices

Mn(φ) = Tn(φ) + Hn(φ)

= (φi−j + φi+j+1)
N−1
i,j=0.

The asymptotic formula is similar to what was given before

det Mn(φ) ∼ G(φ)nnΩE∗∗(φ)

where Ω and E∗∗ are certain constants which we will not describe here. We

remark here that the constant Ω is not the same as given in the Fisher-Hartwig

conjecture, but depends on the location of the singularities. For applications

of these asymptotics to RMT see [17] and for proofs and a survey of known

results see [4, 5].
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[13] A. Böttcher, B. Silbermann. Analysis of Toeplitz Operators, Akademie-

Verlag, Berlin, 1990.
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Mock-Gaussian Behaviour

C.P. Hughes

Abstract

We show that the moments of the smooth counting function of a
set of points encodes the same information as the n-level density of
these points. If the points are the eigenvalues of matrices taken from
the classical compact groups with Haar measure, then we show that
the first few moments of the smooth counting function are Gaussian,
while the distribution is not. The same phenomenon occurs for smooth
counting functions of the zeros of L–functions, and we give examples
relating to each classical compact group. The advantage of calculating
moments of the counting function is that combinatorially, they are far
easier to handle than the n-level densities.

One of the connections between random matrix theory and number theory

is that the correlations and densities between eigenangles of matrices chosen at

random from the classical compact groups appear to be the same as correlations

and densities between zeros of L–functions taken from certain families. This
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connection was first suggested by Katz and Sarnak [7], and is discussed in

more detail in the article by J. B. Conrey on page 225.

Rather than study densities of zeros, the purpose of this note is to argue that

the same results can be obtained more easily by calculating the moments of

smooth counting functions. The mock-Gaussian behaviour of the title refers

to the fact that in all the cases examined here, the first few moments are

Gaussian, while the overall distribution is not.

In the first section we will explicitly demonstrate the connections between

the moments of smooth counting functions and the n-level densities. In the

middle section we will sketch the proofs of mock-Gaussian behaviour for the

classical compact groups. At the end of the paper we will give examples from

number theory where mock-Gaussian behaviour holds, and therefore re-prove,

in a manner that does not require a lot of combinatorial sieving, that the n-

level densities of these examples agree with what one obtains from random

matrix theory.

1 General connections between moments and

n-level densities

Let (x1, . . . , xN ) be chosen from some probability distribution on RN . The

n-level density function for this distribution is

Dn(g1, . . . , gn) = E

[ ∑′

1≤j1 ,...,jn ≤N

g1(xj1 ) . . . gn(xjn )

]
. (1.1)

Here
∑′

denotes the sum over distinct indices, that is ji �= jl for i �= l, and

E denotes expectation with respect to the density function.

Remark. Sometimes the numbers xj have a symmetry condition. An example

would be if for each j there exists an j′ such that xj = −xj′ . In that case

sometimes the n-level density is defined with the further condition that ji �= jl′

imposed, as well as the current distinctness condition that ji �= jl. We assume

the xj are desymmetrized.

Another statistic is the moments of the smooth counting function,

Mn(f) = E

[(
N∑

j=1

f(xj)

)n]
= E

[ ∑
1≤j1 ,...,jn ≤N

f(xj1 ) · · · f(xjn )

]
(1.2)
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which is also just the nth moment of the one level density.

We will show that the two statistics provide the same information. This

might seem a little surprising since the n-level density appears to have a more

general test function, being a product of n different functions.

1.1 The n-level density implies the moments of the count-

ing function

Note that the sums in (1.2) range unrestrictedly over all variables (they include

both diagonal and off-diagonal terms), whereas the sum in (1.1) is over distinct

variables (off-diagonals). This problem can be overcome by summing over the

diagonals separately.

Definition 1. We say σ is a set partition of n elements into r non-empty blocks

if

σ : {1, . . . , n} −→ {1, . . . , r} (1.3)

satisfies

1. For every q ∈ {1, . . . , r} there exists at least one j such that σ(j) = q

(this is the non-emptiness of the blocks).

2. For all j, either σ(j) = 1 or there exists a k < j such that σ(j) = σ(k)+1.

The collection of all set partitions of n elements into r blocks is denoted P (n, r).

Roughly speaking, if we think of {1, . . . , r} as denoting ordered pigeonholes,

then σ(j) either goes into a non-empty pigeonhole, or into the next empty hole.

Remark. The number of σ ∈ P (n, r) is equal to S(n, r), a Stirling number of

the second kind. The number of set partitions of n elements into any number

of non-empty blocks is
∑n

r=1 S(n, r) = Bn, a Bell number.

Therefore,

∑
1≤j1 ,...,jn ≤N

g1(xj1 ) . . . gn(xjn ) =
n∑

r=1

∑
σ∈P (n,r)

∑′

1≤i1 ,...,ir≤N
ij all distinct

g1(xiσ (1) ) . . . gn(xiσ (n ) )

(1.4)

(think of this as summing over the diagonals separately).
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From this we may conclude that

Mn(f) = E

[ ∑
1≤j1 ,...,jn ≤N

f(xj1 ) . . . f(xjn )

]
=

n∑
r=1

∑
σ∈P (n,r)

Dr(f
λ1 , . . . , fλr )

(1.5)

where λq = #{j : 1 ≤ j ≤ n , σ(j) = q}.

Therefore, from knowing the r-level densities for 1 ≤ r ≤ n, one can imme-

diately deduce the moments of the smooth counting function.

1.2 The moments of the counting function imply the

n-level densities

Let us create an inductive hypothesis that for all 1 ≤ r < n, Dr(g1, . . . , gr)

can be written in terms of Mm(f) for various f with 1 ≤ m ≤ r.

An inclusion / exclusion type formula gives

∑
S⊆{1,...,n}

(−1)n−|S |
(∑

i∈S

ai

)n

= n!a1 . . . an (1.6)

where the sum is over all subsets of {1, . . . , n}, and so removing the subset

{1, . . . , n} we get

Mn(g1 + · · · + gn) = E

[(
N∑

j=1

g1(xj) + · · · +
N∑

j=1

gn(xj)

)n]

= n! E

[(
N∑

j=1

g1(xj)

)
. . .

(
N∑

j=1

gn(xj)

)]
−

∑
S�{1,...,n}

(−1)n−|S |Mn

(∑
i∈S

gi

)
(1.7)

where the sum is over all proper subsets of {1, . . . , n}.

By (1.4) the term

n! E

[(
N∑

j=1

g1(xj)

)
. . .

(
N∑

j=1

gn(xj)

)]
(1.8)

equals n!Dn(g1, . . . , gn) plus terms involving Dr for r < n. By the inductive

hypothesis those terms can be written in terms of the moments of the counting

function, and we are done.
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This is more easily seen in terms of an example. Consider the 2-level density.

We have

M2(g1 + g2) = E

⎡⎣( N∑
j=1

g1(xj) +
N∑

j=1

g2(xj)

)2
⎤⎦ (1.9)

= 2 E

[(
N∑

j=1

g1(xj)

)(
N∑

j=1

g2(xj)

)]
(1.10)

+ E

⎡⎣( N∑
j=1

g1(xj)

)2
⎤⎦+ E

⎡⎣( N∑
j=1

g2(xj)

)2
⎤⎦ (1.11)

= 2 E

[(
N∑

j=1

g1(xj)

)(
N∑

j=1

g2(xj)

)]
+ M2(g1) + M2(g2). (1.12)

Now,

E

[(
N∑

j=1

g1(xj)

)(
N∑

j=1

g2(xj)

)]
(1.13)

= E

[ ∑′

1≤j1 ,j2≤N

g1(xj1 )g2(xj2 )

]
+ E

[
N∑

j=1

g1(xj)g2(xj)

]
(1.14)

= D2(g1, g2) + M1(g1g2) (1.15)

and so we see that from knowing M2(f) and M1(f), we have recovered D2(g1, g2),

since

D2(g1, g2) = 1
2M2(g1 + g2) − M1(g1g2) − 1

2M2(g1) − 1
2M2(g2). (1.16)

1.3 Restricted range

Often in number theory, it is only possible to prove the n-level density or the

moments of the counting function for test functions whose Fourier transforms

are supported in a restricted range. However, the above arguments go through

without change, and if we know Mm(f) for all f with supp f̂ ∈ [−α/m,α/m],

for all 1 ≤ m ≤ n, then we know Dn(g1, . . . , gn) for all gi with supp ĝi ∈
[−α/n, α/n]. We should remark that this is a little bit weaker than what is

often proved within number theory, where the support restriction is frequently

of the form
∑n

j=1 αi = α, where supp ĝi ∈ [−αi, αi]. Clearly the result above,

where αi = α/n, fits this.
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2 Mock-Gaussian behaviour in the classical

compact groups

The classical compact groups are:

• U(N), the group of all N ×N unitary matrices.

• SO(2N), the subgroup of U(2N) containing the even orthogonal matrices

with determinant one. If eiθ is an eigenvalue, then so is e−iθ.

• SO(2N + 1), the subgroup of U(2N + 1) containing the odd orthogonal

matrices with determinant one. If eiθ is an eigenvalue, then so is e−iθ,

and there is an additional eigenvalue at 1.

• USp(2N), the subgroup of U(2N) containing the symplectic unitary ma-

trices. That is, UU † = I2N and U tJU = J where J =

(
0 IN

−IN 0

)
.

Again, if eiθ is an eigenvalue then e−iθ is also an eigenvalue.

Averages with respect to Haar measure over all of these compact classical

groups can be written in the form

EG(N )

[
N∏

n=1

f(θn)

]
=

1

N !

∫
TN

det
N×N

{QG(N )(xi, xj)}
N∏

n=1

f(xn) dxn (2.1)

where G(N) denotes one of U(N), SO(2N), SO(2N + 1) or USp(2N), (N

being the number of independent eigenvalues). We call QG(N ) the kernel of the

group, and T the range. Let

SN (z) =
1

2π

sin(Nz/2)

sin(z/2)
. (2.2)

then, the kernels and ranges are given by

Group G(N) Kernel QG(N )(x, y) Range T

U(N) SN (x− y) (−π, π]

SO(2N) S2N−1(x− y) + S2N−1(x + y) [0, π]

SO(2N + 1) S2N (x − y) − S2N (x + y) [0, π]

USp(2N) S2N+1(x − y) − S2N+1(x + y) [0, π]
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Choose a function φ from the set of all real functions whose Fourier trans-

form,

φ̂(u) :=

∫ ∞

−∞
φ(x)e−2πixu dx, (2.3)

is smooth and compactly supported. Note that for any A > 1, this means1

φ(x) � (1 + |x|)−A for all x ∈ R. From such a φ we create a 2π-periodic

function

FM (θ) :=
∞∑

n=−∞
φ

(
M

2π
(θ + 2πn)

)
. (2.4)

Given an M×M unitary matrix U with eigenangles θn, the smooth counting

function, or one-level density, or linear statistic, of the eigenangles of the matrix

U is

Zφ(U) := Tr FM (U) :=
M∑

n=1

FM (θn). (2.5)

Remark. Note that the matrix is chosen to be size M × M , and it has N

independent eigenangles. The counting function sums over all M of the eige-

nangles, but Haar measure integrates only over the N independent terms.

Note that due to the rapid decay on φ, Zφ(U) has the largest contribution

from the eigenvalues of U close to 1. We will study moments of Zφ(U) when

U is averaged over one of the classical compact groups, and show that the first

few moments are Gaussian, but the higher ones are not.

Theorem 1 (Hughes and Rudnick [5, 6]). If φ is chosen so that φ̂ is smooth

and has compact support, then:

i) If supp φ̂ ⊆ [−2/m, 2/m] then the first m moments of Zφ(U) over the

unitary group U(N) converge as N → ∞ to the moments of a Gaussian

random variable with mean

µU
φ =

∫ ∞

−∞
φ(x) dx (2.6)

and variance

(σU
φ )2 =

∫ 1

−1
|u||φ̂(u)|2 du. (2.7)

1Editors’ comment: See the Appendix of the lectures of D.W. Farmer, page 185, for a
discussion of the � notation.
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ii) If φ is even, and supp φ̂ ⊆ [−1/m, 1/m], then the first m moments of

Zφ(U) when averaged over the symplectic group USp(2N) converge to

the moments of a Gaussian with mean

µUSp
φ =

∫ ∞

−∞
φ(x) dx−

∫ 1

0
φ̂(u) du (2.8)

and variance

(σUSp
φ )2 = 2

∫ 1/2

−1/2
|u|φ̂(u)2 du. (2.9)

iii) If φ is even, and supp φ̂ ⊆ [−1/m, 1/m], then the first m moments of

Zφ(U) when averaged over either SO(2N) or SO(2N +1) converge to the

moments of a Gaussian with mean

µSO
φ =

∫ ∞

−∞
φ(x) dx +

∫ 1

0
φ̂(u) du (2.10)

and variance

(σSO
φ )2 = 2

∫ 1/2

−1/2
|u|φ̂(u)2 du. (2.11)

To re-phrase this theorem, part (i) says that if supp φ̂ ⊆ [− 2
m

, 2
m

], then

lim
N→∞

EU(N )
[(

Zφ(U) − µU
φ

)m]
=

⎧⎨⎩
(2k)!
2k k! (σ

U
φ )2k if m = 2k is even

0 otherwise
(2.12)

Remark. This theorem is sharp, in the sense that if the support of φ̂ was

increased beyond [−1/m, 1/m] (or [−2/m, 2/m] in the unitary case), then the

mth moment ceases to be Gaussian for m ≥ 3.

This theorem can be proven via a study of the cumulants (though in [6]

a different approach is taken), since if one knows the first � cumulants then

one knows the first � moments. If θ1, . . . , θN are the independent eigenangles

of a matrix U ∈ G(N), then for a 2π-periodic function g, the cumulants of∑N
n=1 g(θn) are defined as

log EG(N )

[
exp

(
t

N∑
n=1

g(θn)

)]
=

∞∑
�=1

t�

�!
C

G(N )
� (g) (2.13)

and for the classical compact groups they can be written in terms of the kernel

as follows (this is non-obvious: See, for example, [9])

C
G(N )
� (g) =

�∑
m=1

∑
σ∈P (�,m)

(−1)m+1(m− 1)!

∫
Tm

m∏
j=1

gλj (xj)Q
G(N )(xj , xj+1) dxj

(2.14)
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where we identify xm+1 with x1. Here P (�,m) is the set of all partitions of �

objects into m non-empty blocks, as in Definition 1, where the jth block has

λj = λj(σ) elements.

Put

Ceven
�,N (g) =

1

2

�∑
m=1

∑
σ∈P (�,m)

(−1)m+1(m− 1)!

∫
[−π,π]m

m∏
j=1

gλj (xj)SN (xj − xj+1) dxj

(2.15)

and

Codd
�,N (g) =

1

2

�∑
m=1

∑
σ∈P (�,m)

(−1)m+1(m−1)!

∫
[−π,π]m

m∏
j=1

gλj (xj)SN (xj−εjxj+1) dxj

(2.16)

where εj = +1 for j = 1, . . . ,m − 1 and εm = −1, and where SN (z) is defined

in (2.2).

Expanding out the kernels QG(N )(x, y) for the various groups, we find

C
U (N )
� (g) = 2Ceven

�,N (g), (2.17)

C
USp(2N )
� (g) = Ceven

�,2N+1(g) − Codd
�,2N+1(g), (2.18)

C
SO(2N )
� (g) = Ceven

�,2N−1(g) + Codd
�,2N−1(g), (2.19)

C
SO(2N+1)
� (g) = Ceven

�,2N (g) − Codd
�,2N (g). (2.20)

Extending the combinatorics introduced by Soshnikov [9], we deduced in

[5] that if � ≥ 2, ∣∣Codd
�,L (g)

∣∣ ≤ const�

∑
k∈Z�

|k1 |+···+|k� |>L

|gk1 | . . . |gk�
| (2.21)

and if � ≥ 3 ∣∣Ceven
�,L (g)

∣∣ ≤ const�

∑
k1 +···+k�=0

|k1 |+···+|k� |>2L

|gk1 | . . . |gk�
| (2.22)

where gk is the kth Fourier coefficient of g, so g(θ) =
∑∞

k=−∞ gke
iθ.

In order to prove Theorem 1 we must show that for � ≥ 3, the �th cumulant

of

Zφ(U) :=
M∑

n=1

FM (θn) (2.23)
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tends to zero when averaged over the unitary group if supp φ̂ ⊆ [−2/�, 2/�],

and tends to zero when averaged over the symplectic or orthogonal groups if

supp φ̂ ⊆ [−1/�, 1/�]. Recall that M is the total number of eigenangles of the

matrix U , while N is the number of independent ones. Therefore, we choose

g as follows:

• If G(N) = U(N), we choose g(θ) = FN (θ).

• If G(N) = USp(2N), φ must be even, and we choose g(θ) = 2F2N (θ).

• If G(N) = SO(2N), φ must be even, and we choose g(θ) = 2F2N (θ).

• If G(N) = SO(2N+1), φ must be even, and we choose g(θ) = 2F2N+1(θ)+

F2N+1(0).

Note that from the definition of FM (θ), (2.4), the Fourier coefficients of g

can be computed, since

1

2π

∫ π

−π

FM (θ)eikθ dθ =
1

2π

∫ π

−π

∞∑
j=−∞

φ

(
M

2π
(θ − 2πj)

)
dθ (2.24)

=
1

M
φ̂

(
k

M

)
. (2.25)

Therefore part (i) of Theorem 1 follows from (2.17) and (2.22), since if

supp φ̂ ∈ (−2/�, 2/�) the �th cumulant of Zφ(U) is zero (for � ≥ 3). The mean

and variance of Zφ(U) equals C
U(N )
1 (g) and C

U(N )
2 (g) can be calculated from

(2.15).

Similarly, from (2.19)–(2.18) and (2.21)–(2.22), we have that if supp φ̂ ∈
[−1/�, 1/�] the first � cumulants of Zφ(U) are Gaussian for USp(2N), SO(2N),

and SO(2N + 1), and this proves parts (ii) and (iii) of Theorem 1.

2.1 Connections to moments of traces of matrices

From the cumulants one can obtain moments of traces of powers of U , first

investigated by Diaconis and Shahshahani [1].
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Expanding Zφ(U) out as a Fourier series, we obtain

EG(N ) {(Zφ)m}

=
1

Nm

∞∑
n1 =−∞

· · ·
∞∑

nm −∞
φ̂
(n1

N

)
. . . φ̂

(nm

N

)
EG(N ) {Tr Un1 . . . Tr Unm } . (2.26)

Writing the moments in terms of cumulants, using (2.21) and (2.22), and

comparing Fourier coefficients, we find that

Corollary 1.1. Let Zj be independent standard normal random variables, and

let

ηj =

⎧⎨⎩1 if j is even

0 if j is odd
(2.27)

Let aj ∈ {0, 1, 2, . . . } for j = 1, 2, . . . .

• If
∑

jaj ≤ M − 1, then

ESO(M )

{∏
(Tr U j)aj

}
= E

{∏
(
√

jZj + ηj)
aj

}
. (2.28)

• If
∑

jaj ≤ M + 1, where M is even, then

EUSp(M )

{∏
(Tr U j)aj

}
= E

{∏
(
√

jZj − ηj)
aj

}
. (2.29)

These results were found by Diaconis and Shahshahani [1], though only for

half the range of the parameters (and they dealt with the full orthogonal group,

not the special orthogonal group). Recently Michael Stolz [10] has provided a

further proof of this theorem, for the full range, using invariant theory (though

again, he does not deal with the special orthogonal group).

Analogously, for the unitary group, one obtains

Corollary 1.2. For aj , bj ∈ {0, 1, 2, . . . }, if

max

(∑
j≥1

jaj ,
∑
j≥1

jbj

)
≤ N (2.30)

then

EU(N )

{∏
j≥1

(
Tr U j

)aj
(
Tr U−j

)bj

}
= δa,b

∏
j≥1

jaj aj ! (2.31)

where δa,b = 1 if aj = bj for all j, and zero otherwise.

This is exactly the result of Diaconis and Shahshahani, [1]. Indeed, in [6]

the mock-Gaussian result for the unitary case was proved via this result, rather

than evaluating the cumulants, as this was a more direct approach.
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3 Number theory examples

3.1 The Riemann zeta function: A unitary example

Consider the non-trivial zeros of the Riemann zeta function, 1
2 + iγ. The

Riemann Hypothesis (which we do not assume) is the statement that γ ∈ R

for all γ.

The counting function of Riemann zeros is2

N(T ) = #{γ : 0 ≤ Re(γ) ≤ T} (3.1)

= N(T ) + S(T ), (3.2)

where

N(T ) = 1 +
1

π
Im log

(
π−iT/2Γ(1

4 + 1
2 iT )
)

(3.3)

=
T

2π
log

T

2πe
+

7

8
+ O(

1

T
), (3.4)

and the error term is

S(T ) =
1

π
Im log ζ( 1

2 + iT ) (3.5)

= O(log T ). (3.6)

To motivate the study of the smooth counting function, we ask the question:

What is the distribution of the number of zeros lying in an interval of size h

around height T? That is: What is the distribution of N(t+h)−N(t) averaged

over T ≤ t ≤ 2T?

Clearly, the mean is

1

T

∫ 2T

T

N(t + h) −N(t) dt ∼ h

2π
log T (3.7)

and Fujii [2] (among others) has shown that the centered moments are

1

T

∫ 2T

T

(
S(t + h) − S(t)

σ

)2k

dt =
(2k)!

2kk!
+ O(

1

σ
), (3.8)

where

σ2 =

⎧⎨⎩ 1
π2

∫ h log T

0
1−cos t

t
dt 0 < h � 1

1
π2 (log log T − log |ζ(1 + ih)|) 1 � h � T

(3.9)

2Editors’ comment: See also Section 7 of the contribution by D.R. Heath-Brown starting
on page 1.
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Thus if h log T →∞, the moments converge to the Gaussian moments, and

so the distribution is normal.

However, when h log T = O(1), the main term, (2k)!
2k k! , is of the same order

as the error term O(1/σ). Therefore, we cannot conclude from (3.8) that the

distribution is normal. In fact, the distribution is not normal, as it is discrete.

This motivates the study of the smooth counting function when the zeros

are critically scaled,

Nφ(t) =
∑

γ

φ

(
log T

2π
(γ − t)

)
. (3.10)

In [4] the moments of Nφ(t) were calculated, and the first few were found to

be Gaussian.

For technical reasons we change the average. Instead of integrating over

t ∈ [T, 2T ] we define the average to be

〈Nφ〉T =

∫ ∞

−∞
Nφ(t)ω(

t− T

T
)
dt

T
(3.11)

where
∫∞
−∞ ω(x) dx = 1 and ω̂ is compactly supported. The previous average

would come from setting ω to be the indicator function of the interval [0, 1],

but this is not allowed.

Theorem 2 (Hughes and Rudnick [4]). If supp φ̂ ⊂ (−2/m, 2/m) then the first

m moments of Nφ converge as T →∞ to those of a Gaussian random variable

with mean ∫ ∞

−∞
φ(x) dx (3.12)

and variance

σ2
φ =

∫ ∞

−∞
min(|u|, 1)φ̂(u)2 du. (3.13)

Sketch of proof. From a smooth version of Riemann’s explicit formula we have

that Nφ(τ) = Nφ(τ) + Sφ(τ), where

Nφ(τ) =
1

2π

∫ ∞

−∞
φ

(
log T

2π
(r − τ)

)
Ω(r)dr

+ φ

(
log T

2π
(
i

2
− τ)

)
+ φ

(
log T

2π
(− i

2
− τ)

)
, (3.14)

with

Ω(r) =
1

2
Ψ(

1

4
+

1

2
ir) +

1

2
Ψ(

1

4
− 1

2
ir) − log π, (3.15)
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and where

Sφ(τ) = − 1

log T

∑
n≥2

Λ(n)√
n

φ̂(
log n

log T
)2 cos(τ log n). (3.16)

(For examples of explicit formulae, see the contribution of D.R. Heath-Brown

(page 1) Section 10, and that of D.A. Goldston (page 79) Section 3)

Asymptotic analysis gives that if φ̂ ∈ C∞
c (R), then the mean value of Nφ is

given by

〈Nφ〉T =
〈
Nφ

〉
T

(3.17)

=

∫ ∞

−∞
φ(x)dx + O(

1

log T
), T →∞ . (3.18)

Since

lim
T→∞

〈(
Nφ − 〈Nφ〉T

)m〉
T

= lim
T→∞

〈(Sφ)m〉T (3.19)

it is therefore sufficient to show that the mth moment of Sφ is the same as

that of a centered normal random variable with variance σ2
φ.

Multiplying out and integrating

〈(Sφ)m〉T = (
−1

log T
)m

∑
ε1 ,...,εm =±1

∑
n1 ,...,nm

m∏
j=1

Λ(nj)√
nj

φ̂(
log nj

log T
)

× ŵ(
T

2π

m∑
j=1

εj log nj)e
−iT

∑m
j=1 εj log nj . (3.20)

Note nj ≤ T 2/m−ε since supp φ̂ ∈ (−2/m, 2/m).

Since ŵ has compact support, in order to get a nonzero contribution we

need

|
m∑

j=1

εj log nj | �
1

T
(3.21)

and thus
∑

εj log nj = 0.

Thus for T � 1, we find (using ŵ(0) =
∫∞
−∞ w(x)dx = 1)

〈(Sφ)m〉T = (
−1

log T
)m

∑
n1 ,...,nm ≥2
ε1 ,...,εm =±1∑m
j=1 εj log nj =0

m∏
j=1

Λ(nj)√
nj

φ̂(
log nj

log T
). (3.22)

The only terms which do not vanish as T → ∞ are those where m = 2k is

even, and there is a partition {1, . . . , 2k} = S ∪ S ′ into disjoint subsets and a
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bijection σ : S → S ′ such that nj = nσ(j) and εj = −εσ(j). There are k!
(2k

k

)
such terms, and so

〈
(Sφ)2k

〉
T
→ (2k)!

k!

(
1

log2 T

∑
n

Λ(n)2

n
φ̂(

log n

log T
)2

)k

(3.23)

→ (2k)!

k!

(∫ ∞

0
uφ̂(u)2du

)k

(3.24)

by the Prime Number Theorem (see Theorem 3 of the contribution of D.R.

Heath-Brown (starting on page 1)).

This theorem compares perfectly with part (i) of Theorem 1.

3.2 Real Dirichlet L–functions : A symplectic family

Consider the zeros of quadratic L-functions, that is of L-functions of the form

L(s, χd) =
∞∑

n=1

χd(n)

ns
(3.25)

where χd(n) =
(

d
n

)
is the Kronecker symbol. These real Dirichlet characters

are discussed in more depth in the lectures of J.B. Conrey, page 225, Section

2.3.

Rather than averaging over t, we will average the low-lying zeros of the L-

function over characters, that is over d ∈ D(X) := {d : |d| ≤ X , χd primitive}.

From an explicit formula we can show that the smooth counting function

equals

Nφ(χd) :=
∑
γd

φ

(
log X

2π
γd

)
(3.26)

=

∫ ∞

−∞
φ(x) dx−

∫ ∞

0
φ̂(u) du− 2

log X

∞∑
n=1
n �=�

Λ(n)

n1/2 χd(n)φ̂

(
log n

log X

)
.

(3.27)

The mean of Nφ(χd) is µUSp
φ :=

∫∞
−∞ φ(x) dx −

∫ 1
0 φ̂(u) du, and so the
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centered moments are

1

|D(X)|
∑

d∈D(X )

(
Nφ(χd) − µUSp

φ

)m

=
1

|D(X)|
∑

d∈D(X )

⎛⎜⎝− 2

log X

∞∑
n=1
n �=�

Λ(n)

n1/2 χd(n)φ̂

(
log n

log X

)⎞⎟⎠
m

. (3.28)

Expanding out the bracket, one can show that if supp φ̂ ∈ (−1/m, 1/m), then

the only contribution comes from the terms where n1 . . . nm = � (in which

case χd(n1 . . . nm) = 1 for all d). That is, we have the following theorem:

Theorem 3. Let D(X) be the set of primitive quadratic characters χd with

|d| ≤ X. If supp φ̂ ∈ [−1/m, 1/m] then

1

|D(X)|
∑

d∈D(X )

(
Nφ(χd) − µUSp

φ

)m

→

⎧⎨⎩
(2k)!
2k k!

(
4
∫ 1/2

0 uφ̂(u)2 du
)k

if m = 2k is even

0 if m is odd
(3.29)

where

µUSp
φ =

∫ ∞

−∞
φ(x) dx−

∫ 1

0
φ̂(u) du. (3.30)

This theorem agrees perfectly with part (ii) of Theorem 1. By the work in

Section 1, this theorem implies the n-level densities of the zeros L(s, χd) are

the same as the n-level densities of the symplectic group (within a restricted

range), a result first derived by Mike Rubinstein [8], though this approach

avoids the combinatorial sieving necessary there. Indeed, also by the work in

Section 1, one can derive this theorem immediately from Rubinstein’s result.

3.3 L–functions arising from cuspidal newforms: An or-

thogonal example

Let H�
k (N) be the set of all holomorphic cusp forms which are newforms of

weight k and level N .

Let the Fourier coefficients of an f ∈ H�
k (N) be af (n), and let λf (n) =

af (n)n−(k−1)/2. The L-function associated with f is

L(s, f) =
∞∑

n=1

λf (n)n−s. (3.31)
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It satisfies the functional equation mapping s −→ 1 − s, and the sign in the

functional equation is εf = ±1.

Therefore H�
k (N) splits into two disjoint subsets, H+

k (N) = {f ∈ H�
k (N) :

εf = +1} and H−
k (N) = {f ∈ H�

k (N) : εf = −1}.

For φ̂ ∈ C∞
c (R), define the smooth counting function

Nφ(f) =
∑
γf

φ

(
log(k2N)

2π
γf

)
. (3.32)

Here, γf runs through the non-trivial zeros of L(s, f). We rescale the zeros by

log(k2N) as this is the order of the number of zeros with imaginary part less

than a large absolute constant.

We define the average over either H+
k (N) or H−

k (N) by

〈Nφ(f)〉± :=
1

|H±
k (N)|

∑
f∈H±

k (N )

Nφ(f). (3.33)

We let N → ∞ through the primes, with k held fixed.

Theorem 4 (Hughes and Miller [3]). If supp φ̂ ⊆ (− 1
m

, 1
m

) then the mth mo-

ment of Nφ(f), when averaged over the elements of either H+
k (N) or H−

k (N),

converges to the mth moment of a normal distribution with mean

µ = φ̂(0) +
1

2

∫ 1

−1
φ̂(y) dy (3.34)

and variance

σ2 = 2

∫ 1/2

−1/2
|u|φ̂(y) dy. (3.35)

This result is in complete agreement with part (iii) of Theorem 1, and

also shows that the n-level densities do, as expected, agree with the n-level

densities for the special orthogonal group. However, in this case we are able

to go beyond the diagonal, and show that Gaussian behaviour ceases at the

point predicted by random matrix theory.

Theorem 5 (Hughes and Miller [3]). Let µ± = 〈Nφ(f)〉±, and let S(x) = sin πx
πx

.

For n ≥ 2, let supp(φ̂) ⊂ (− 2
2n−1 ,

2
2n−1 ). Then as N →∞ through the primes,

if n = 2m is an even integer,

lim
N→∞

〈
(Nφ(f) − µ±)2m〉

± =

(2m)!

2mm!

(
2

∫ 1

−1
φ̂(x)2|x| dx

)m

∓ 22m−1
[∫ ∞

−∞
φ(x)2mS(2x) dx − 1

2
φ(0)2m

]
,

(3.36)
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and if n = 2m + 1 is an odd integer, then

lim
N→∞

〈
(Nφ(f) − µ±)2m+1〉

± (3.37)

= ±22m

[∫ ∞

−∞
φ(x)2m+1S(2x)dx − 1

2
φ(0)2m+1

]
.

In particular, as the Fourier Transform of S(2x) is 1
211{|x|≤1}, the third cen-

tered moment is zero if supp φ̂ ⊂ (1/3, 1/3), but non-zero if the support exceeds

this interval. These non-Gaussian results still agree with the random matrix

results for Zφ(U).
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1 Introduction

These notes are an expanded version of a series of lectures given at the Isaac

Newton Institute for Mathematical Sciences, Cambridge, on the occasion of the

Spring School “Recent Perspectives in Random Matrix Theory and Number

Theory” in April 2004. The main aim of these lectures was to give a general

overview of L-functions to a mixed audience of participants working in various

branches of mathematics and theoretical physics.

In particular, these lectures, which are addressed to non-specialists in num-

ber theory, do not explain the many methods and techniques that are involved

in the study of the analytical properties of L-functions and of their zeros. In-

stead our objective is to present in some detail the basic theoretical material

for the construction of several specimens of L-functions. Note that our pre-

sentation is slightly unusual as we have to chosen to present things from the

perspective of Artin L-functions (that is L-functions associated to – possibly �-

adic, rather than complex – representations of some Galois group): our choice

had been dictated by our belief that an important part of the connections be-

tween Random Matrices and L-function is rooted into the so-called Sato/Tate

laws and that such laws are more easily motivated in the framework of Galois

representations. Such belief is strongly supported by the work of Katz/Sarnak

relating unconditionally Random Matrices to zeros of L-functions over function

fields.

The lectures are organized as follows: the first lecture is a presentation of

some of the most basic, yet important, analytic properties that are to be ex-

pected from a generic L-function. There we “only” reach the level of the Gener-

alised Riemann Hypothesis and do not touch with the most precise conjectures

available today; in particular we never discuss the many existing conjectures

which predict the equality between limits of several natural statistics formed

out of L-functions with their counterparts coming from Random Matrix the-

ory (say, the pair or higher correlation conjecture for zeros, the conjectures on

moments of critical values etc...). In the next lecture, we describe the con-

struction of Artin L-functions (constructed out of a Galois representation).

In particular, we give some rough algebraic number theoretic background and

explain the structure of the proof of the Chebotareff density theorem which is

one of the simplest instances of a Sato/Tate law. The third lecture is devoted

to the presentation of the L-function associated to an elliptic curve (defined
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over Q). After presenting again some general material, we explain that the

associated L-function, L(E, s), is in fact the Artin L-function of some Galois

(�-adic) representation; on this occasion we have tried to make accessible to

non-specialists the notion of Tate module and of its associated Galois represen-

tation. This connection with Artin L-functions is illustrated by an important

application (due to Serre) of the Chebotareff density theorem to bound the fre-

quency of vanishing for the p-th coefficient of the L(E, s): in this application,

the Sato/Tate laws for complex Galois representations (that is Chebotareff’s

theorem) are used to establish unconditionally a consequence of the Sato/Tate

conjecture for elliptic curves. The last chapter is concerned with the function

field case where, thanks to the works of Deligne and Katz, several instances

of Sato/Tate laws for �-adic Galois representations can be obtained (through

Deligne’s equidistribution theorem). The material presented in these lectures

is necessarily sketchy but the interested reader will find at the end of each

lecture some more detailed references.

As said above, these lectures are directed essentially towards people work-

ing in domains like mathematical physic or probability theory; in particular,

number theorists will learn little by reading these notes. My hope is that

these lectures will help people become more familiar with several objects and

concepts which are quite familiar in number theory (like the frobenius, elliptic

curves, �-adic representations and their associated L-functions) so that they

can effectively combine them with methods imported from their own field of

research. I would like to conclude this introduction by addressing my biggest

thanks to the organizers of the school for their kind invitation, to the lively

audience for its attention and to Nina Snaith and the referee for their careful

reading of earlier versions of this text.

2 Preamble: first contact with L-functions

2.1 What to expect from an L-function ?

In this short section we give a presentation of what a “generic” L-function

should be and which standard analytical properties are expected from it.

L-functions form an important class of analytic invariants which can be

associated to many arithmetical objects. These invariants are Dirichlet series
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of a complex variable s, say

L(s) =
∑
n�1

λπ(n)

ns
,

and, moreover, they are built as products of local factors over the primes

(this is this crucial feature which qualifies them for the term of L-function).

More precisely, given π an adequate arithmetical object, one associates to π a

collection of local objects indexed by the prime numbers

{πp}p∈P

(note that these local data are often sufficient to characterize π completely).

There is also an integer d � 1 such that to each local object πp, one can

associate a d-uple of complex numbers

{(απ,1(p), . . . , απ,d(p))}

(the local numerical parameters of π at p) and a local Euler factor

L(πp, s) =
d∏

i=1

(1 − απ,i(p)

ps
)−1.

The global L-function of π is then the Euler product

L(π, s) =
∏

p

L(πp, s),

and d is the degree of the L-function . Expanding formally the above Euler

product and using the fundamental theorem of arithmetic one obtains the

formal expression of L(π, s) as a Dirichlet series

L(π, s) =
∏

p

L(πp, s) =
∑
n�1

λπ(n)

ns
, (2.1)

where n → λπ(n) is a multiplicative function (ie. λπ(mn) = λπ(m)λπ(n)

whenever (m,n) = 1) such that for p a prime

λπ(p) = απ,1(p) + · · · + απ,d(p).

In all cases I know of, the numerical parameters are bounded polynomially in

p so that both the Euler product and the Dirichlet series (2.1) converge abso-

lutely in some right half-plane Res � A where it defines an analytic function.
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This definition is essentially formal and so far represents only a convenient way

to “pack” together the collection of local numerical data attached to π.

The reason why L-functions are interesting comes from the fact that they

have (or are expected to have) nice extra analytic properties from which one

can deduce, amongst other things, important information about the average

value of the Dirichlet coefficients λπ(n) as n ranges over the full set of integers

or over the set of prime numbers (if n = p is a prime,

λπ(p) =
d∑

i=1

απ,i(p)

represents the “trace” of the local data at p). These extra analytic properties,

which we are about to describe, arise from the fact that the sequence of the

d-uples

{(απ,1(p), . . . , απ,d(p))}p∈P

is not just a set of random data, but comes from a global object. In these

lectures we will not discuss how such properties are established but we refer

to the bibliography given the end of this Chapter.

The first manifestation of this principle is that L-functions have an exten-

sion beyond their trivial region of analyticity: in order to perform analytic

continuation it is first necessary to complete the collection of local factors at

the various primes p ∈ P by a local factor “at infinity” L(π∞, s) given by a

product of Gamma functions

L(π∞, s) =
d∏

i=1

ΓR(s + µπ,i(∞)), with ΓR(s) = π−s/2Γ(
s

2
).

With this complementary local factor, one expects the following:

Meromorphic continuation and Functional equation (FCT). The L-

function L(π, s) has meromorphic continuation to the whole complex plane and

satisfies a functional equation of the following form: there exists some integer

w = wπ � 0, some complex number ωπ of modulus one and some integer

Qπ � 1 such that, setting

Λ(π, s) = Q
s
2
π L∞(π, s)L(π, s)

one has

Λ(π, s) = ωπΛ(π, 1 + wπ − s).
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Moreover, the poles of Λ(π, s) are finite in number (� 2d) and are all located

on the two lines

Res =
1 + wπ ± 1

2
,

and away from such poles Λ(π, s) is of order 1.

Definition. The integer wπ is called the weight of π, ωπ the root number and

Qπ the conductor of π. Following Iwaniec/Sarnak, the analytic conductor of

L(π, s) is the function of R given as the product

Q(π, t) = Qπ

∏
i=1...d

(1 + |µπ,i(∞) + it|).

Remark 1. The weight wπ has the following natural interpretation: in general

one expects (and one can prove on some occasions) that the απ,i(p) satisfy the

bound

|απ,i(p)| � pwπ /2. (2.2)

Such a bound is called a Ramanujan/Petersson type bound ; moreover this is

expected to be optimal, in the sense that for almost all p the inequality above

is an equality. However, it is more often the case that, instead of the pointwise

bound above, an averaged version is available unconditionally: for any ε > 0

one has1

(Q(π, 0)X)−εX1+wπ �ε,d

∑
n�X

|λπ(n)|2 �ε,d (Q(π, 0)X)εX1+wπ .

In any case this implies that 1 + wπ

2 is the abscissa of absolute convergence of

the Dirichlet series L(π, s).

Remark 2. At that level imposing the weight to be an integer seems pretty

arbitrary, for if L(π, s) is an L-function as above then for any w ∈ R, the

shifted L-function L(π, s + w/2) =: L(πw,s) is an L-function with genuine

functional equation and weight wπ −w. In fact it is quite common in analytic

number theory to normalize L-functions using such a shift as to have weight

0. On the other hand, in arithmetic geometry, L-functions often arise with an

integral weight; this weight is natural in that the coefficients λπ(p) satisfy nice

integrality properties which of course do not persist after a shift.

To get some feeling on how delicate FCT should be in general, consider the

following example: given q � 1 a prime, let χ : (Z/qZ)× → {1,−1} be the

1See the Appendix of the lectures of D.W. Farmer, page 185, for a discussion of the �
notation.
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unique non-trivial (Legendre) character of order 2; the L-function associated

to χ

L(χ, s) =
∏
p�q

(1 − χ(p)

ps
)−1.

Then FCT is known in that case (see below): L(χ, s) has holomorphic contin-

uation to C and satisfies a functional equation of the above shape with weight

0 and conductor q. On the other hand, consider a sequence of independent

random variables, one for each prime p � q,

Xp : Ω → {1,−1},

each taking value +1 with probability 1/2; then, the probability that the

random Euler product

L(ω, s) =
∏
p�q

(1 − Xp(ω)

ps
)−1

admits analytic continuation to C or satisfies a functional equation of the

above shape, is zero.

The next very important properties expected from such L-functions is a

precise location of their zeros: in many occasions (but not always) one is

capable of proving that (at least on average) the λπ(p) are bounded in absolute

value by dpwπ /2 which immediately implies that L(π, s) does not vanish in the

half-plane Res > 1 + wπ

2 . Likewise, by FCT, this implies the non-vanishing of

Λ(π, s) in the union of the half-planes Res > 1 + wπ

2 and Res < wπ

2 . Hence

the zeros of Λ(π, s) are all located in the critical strip

wπ

2
� Res � 1 +

wπ

2
.

One can also often prove that Λ(π, s) is a function of order one: it follows that

Λ(π, s) has infinitely many zeros and that one has the Hadamard factorization

formula

Λ(π, s) = A(π)eB(π)s
∏
ρ′

(s− ρ′)−1
∏

ρ

(1 − s

ρ
)es/ρ,

where ρ (resp. ρ′) ranges over the zeros (resp. the poles) of Λ(π, s) counted

with multiplicity. Taking the logarithmic derivative on both sides gives the

identity

−L′

L
(π, s) =

∑
ρ′

1

s− ρ′ −
∑

ρ

( 1

s− ρ
+

1

ρ

)
+

L′

L
(π∞, s) +

1

2
log Qπ −B(π).
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One the other hand for s in the zone of absolute convergence of L(π, s) (usually

for Res > 1 + wπ

2 ) one can use the expression of L(π, s) as an Euler product

(2.1) to obtain

− L′

L
(π, s) =

∑
p

λπ(p) log(p)

ps
+
∑
k�2

∑
p

Λπ(pk)

pks

=
∑
ρ′

1

s− ρ′ −
∑

ρ

( 1

s− ρ
+

1

ρ

)
+

L′

L
(π∞, s) +

1

2
log Qπ −B(π), (2.3)

where

Λπ(pk) = (
∑

i=1...d

απ,i(p)k) log p

is the Von-Mangolt type function. One can give a sense to this formula even

for s in the critical strip as an identity between two distributions: the outcome

is the so-called Weil explicit formulae. Note that the Ramanujan/Petersson

bound (2.2) (or a weaker version of it) implies that the
∑

k�2-sum is very well

controlled, so that (2.3) provides a direct link between

1. The distribution of the coefficients λπ(p) as p ranges over the primes,

2. The localization of the zeros of L(π, s) within the critical strip.

Concerning point 2. the highest expectation is the Generalised Riemann

Hypothesis

Generalised Riemann Hypothesis (GRH). The zeros of Λ(π, s) are all

located on the critical line Res = 1+wπ

2 .

Consequently one has∑
p�X

λπ(p) log p =
∑
ρ′

Xρ′ + Oπ(log2(X)X
1+w π

2 )

where ρ′ ranges over the (finite, possibly empty) set of poles of Λ(π, s) located

on the line Res = 1 + wπ

2 and counted with multiplicity.

One is probably very far from proving GRH anytime soon, but fortunately,

at least some non-trivial zero free region is available unconditionally: in many

cases one is capable of proving the

Generalised Prime Number Theorem (GPNT). L(π, s) does not vanish

on the line Res = 1 + wπ

2 , and consequently, one has for X → +∞∑
p�X

λπ(p) log p =
∑
ρ′

Xρ′ + oπ(X1+ w π
2 )
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where ρ ranges over the (finite in number) poles of Λ(π, s) located on Res =

1 + wπ

2 and counted with multiplicity.

In most known instances of the GPNT, a larger zero-free region is available.2

Hadamard/de la Vallée-Poussin zero free region (HdVP). There is a

positive constant cd depending on d only, such that for t ∈ R, L(π, s) does not

vanish for s on the segment

Ims = t, Res ∈ [1 +
wπ

2
− cd

log Q(π, t)
, 1 +

wπ

2
].

Besides the above expected analytical properties of a typical L-function,

some extra information of a more arithmetical nature is often expected from

the local behavior of L(π, s) in the neighborhood of some special3 points (such

points usually depend on the parity of wπ and on the numerical parameters

at ∞): indeed the order of vanishing or the (regularized) values of L(π, s) at

such point is expected to be related to deep global arithmetic invariants of π.

Typical examples are given by the Dirichlet class number formula or by the

Birch/Swinnerton-Dyer conjecture which are now to be understood as special

cases of wider conjectures of Beilinson.

In view of these connections, it becomes useful to have good quantitative

information about the behavior of such L-values, in particular upper (and

whenever possible) lower bounds. In many interesting situations the special

point is located precisely in the critical strip and even on the critical line and

the localization of zeros have an influence on the size of such an L-value. In

particular one can often show the GRH implies the following

Generalised Lindelöf Hypothesis (GLH). For Res = 1+wπ

2 and any ε > 0,

one has the bound

L(π, s) �d,ε Q(π, Ims)ε.

If only FCT is available, one can often prove the following weaker statement

Convexity Bound (CB). For Res = 1+wπ

2 and any ε > 0,

L(π, s) �d,ε Q(π, Ims)1/4+ε

2Here we have deliberately ignored the issue regarding a possible Landau/Siegel zero.
3The usual terminology is “critical points” but in the present context this might be

misleading as such points may well be on the border or even out of the critical strip.
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and formulate the following problem which is some cases can be proven

without recourse to GRH

Subconvexity Problem (ScP). Find δ > 0 such that for Res = 1+wπ

2 and

any ε > 0,

L(π, s) �d,ε Q(π, Ims)1/4−δ+ε.

2.2 L-functions of modular forms

All the examples L-functions I know, for which some of the expected analytical

properties described above are known, are in one way or another connected

with L-functions of automorphic forms. Automorphic forms are functions

living on some symmetric spaces which satisfy some invariance properties with

respect to the action of a discrete group of isometries (periodic functions of

period one on R are a prototypical example). The associated L-functions are

related to automorphic forms via some integral transform and in particular

their analytical properties (like FCT) are obtained via harmonic analysis and

by exploiting the invariance properties of the form. For the rest of this lecture,

we describe a few cases of L-functions obtained along this principle.

2.2.1 Theta-series

Riemann’s zeta function

ζ(s) =
∑
n�1

1

ns

does not make exception to this rule, indeed in order to establish FCT for ζ(s),

Riemann introduced the theta-series

θ(z) =
∑
n∈Z

e(n2z), e(z) = exp(2πiz)

which is holomorphic in the upper-half plane

H = {z ∈ C, Imz > 0}.

Indeed, one has

ΓR(s)ζ(s) =

∫ ∞

0

1

2
(θ(iy/2) − 1)ys/2 dy

y
.
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It follows from the Poisson summation formula that θ satisfies a functional

equation

θ(−1/2iy) = y1/2θ(iy/2). (2.4)

Splitting the y-integral into two ranges [0, 1] and [1,∞], and using (2.4) on the

first portion and making the change of variable y → 1/y yields the analytic

continuation of

ξ(s) :=
s(s − 1)

2
ΓR(s)ζ(s)

to C; moreover one has the functional equation

ξ(s) = ξ(1 − s).

The same kind of result holds for Dirichlet character L-functions: for χ :

(Z/qZ)× → C× a primitive character of modulus q > 1, which we extend to a

multiplicative function on Z, periodic of period q, by setting

χ(n) =

⎧⎨⎩χ(n(modq)) for (n, q) = 1

0 else,

the L-function associated with χ is the L-series

L(χ, s) :=
∏

p

(1 − χ(p)

ps
)−1 =

∑
n�1

χ(n)

ns
.

This time one considers the theta series

θχ(z) =
∑
n∈Z

χ(n)nνe(nz)

with ν = (1 − χ(−1))/2. Let G(χ) =
∑

x(modq) χ(x)e(x/q) denote the Gauss

sum. Then for χ a primitive character, one has for any n

χ(n) =
1

G(χ)

∑
x(q)

χ(x)e(nx/q).

Using this formula and the Poisson summation formula, one can infer, for

y > 0, the functional equation

θχ(−1/2qiy) = i−ν G(χ)√
q

y1/2+νθχ(iy/2q),

which by analytic continuation extends to z ∈ H

θχ(−1/2qz) = i−ν G(χ)√
q

(−iz)1/2+νθχ(z/2q).
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Using this functional equation and the identity

ΓR(s + ν)L(χ, s) =
1

2

∫ ∞

0
θχ(iy/2q)(

y

q
)s/2 dy

y

one infers the analytic continuation of L(χ, s) to the complex plane and the

FCT:

qs/2ΓR(s + ν)L(χ, s) = i−ν G(χ)√
q

q(1−s)/2ΓR(1 − s + ν)L(χ, 1 − s).

2.2.2 Modular forms and Hecke L-functions

The theta series presented above are special cases of modular forms on the

upper half-plane: let us recall that the group SL(2,R) acts on H by fractional

linear transformations

γ.z =
az + b

cz + d
, γ =

(
a b

c d

)
∈ GL(2,R), det γ > 0

and this action induces various actions for various discrete subgroups Γ of

SL(2,R) on the spaces of functions on H. A class of subgroups important in

arithmetic, are the Hecke congruence subgroups of SL(2,Z) of level q

Γ0(q) = {
(

a b

c d

)
∈ SL(2,Z), c ≡ 0(q)}.

For instance the theta-series θχ can be shown to satisfy the automorphy rela-

tions: for any γ =

(
a b

c d

)
∈ Γ0(4q

2)

θχ(γz) = χ(d)εd

( c
d

)
(cz + d)1/2θχ(z),

where
(

c
d

)
denote the (extended) Legendre-Jacobi symbol and (as d is odd)

εd = 1 or i according whether d ≡ 1 or 3 mod4. These are examples of modular

forms of weight 1/2 + ν and level 4q2.

Another important class of modular forms (which are not unrelated to the

previous ones) are modular forms of integral weight k: for k � 1, q � 1 and

χ a Dirichlet character of modulus q, a modular form of weight k, level q

and nebentypus χ is an holomorphic function f(z) on H which satisfies the

following automorphy relations: for any γ =

(
a b

c d

)
∈ Γ0(q)

f(γz) = χ(d)(cz + d)kf(z),
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and which satisfies some growth condition as z approaches the rationals. The

space of such forms is denoted by Mk(q, χ) is finite dimensional and contains

the space of cusp forms Sk(q, χ) which are the square integrable modular forms

with respect to the Petersson inner product

〈f, g〉 =

∫
Γ0 (q)\H

f(z)g(z)yk dxdy

y2 , (with z = x + iy).

For f a cusp form, using the periodicity relation f(z +1) = f(z), one sees that

f admits a Fourier expansion

f(z) =
∑
n�1

an(f)e(nz).

The Dirichlet series associated to f is

L(f, s) =
∑
n�1

an(f)

ns
.

It is absolutely convergent in some right half-plane and is related to f(z) via

the formula

Λ(f, s) := (2π)−sΓ(s)L(f, s) =

∫ ∞

0
f(iy)ys dy

y
.

The analytic continuation of Λ(f, s) and its functional equation follow from

the properties of f and of the group action. Indeed the matrix wq :=

(
0 −1

q 0

)
normalizes Γ0(q) and this implies that the function g(z) given by

g(z) = qk/2(qz)−kf(wqz)

belongs to Sk(q, χ). This implies that Λ(f, s) has analytic continuation to C

and satisfies

Λ(f, s) = ikΛ(g, k − s).

This however does not qualify L(f, s) as an L-function for there is so far no

Euler product. This can be accomplished but only for a very special subset

of cusp forms, namely the primitive forms; note that the restriction to such

forms is not an essential issue since in an appropriate sense, primitive forms

generate the whole space of cusp forms. The key fact for the existence of Euler

products is the existence of a rich (and explicit) commutative algebra (the

Hecke algebra) of linear operators (the Hecke operators) acting on Sk(q, χ),

T = {Tn, n � 1}.
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These operators satisfy a muliplicativity relation, and the Hecke operators of

prime power index satisfy a two term recurrence relation:

Tmn = TmTn for (m,n) = 1, Tpn +1 = TpTpn − χ(p)pk−1Tpn−1 ;

in particular one has the formal identity∑
n�1

Tn

ns
=
∏

p

(1 − Tp

ps
+

χ(p)pk−1

p2s
)−1. (2.5)

Primitive forms are eigenforms of all Hecke operators and given such a form

f , if we denote by λf (n) the corresponding eigenvalue for the Hecke operator

one has the relation

an(f) = λf (n)a1(f),

and in particular

L(f, s) = a1(f)
∏

p

(1 − λf (p)

ps
+

χ(p)pk−1

p2s
)−1.

2.2.3 Automorphic forms

The notion of modular form can be widely generalized by considering func-

tions living on an hermitian symmetric space which are eigenforms under some

action of a discrete subgroup of isometries and which are eigenforms of a com-

mutative ring of elliptic differential operators which commute with the group

action (this condition comes in replacement of the holomorphicity condition).

For instance, on H, Maass was the first to replace the condition of being holo-

morphic by the (weaker) condition of being an eigenform of the hyperbolic

Laplacian

∆ = −y2(
∂2

∂2x
+

∂2

∂2y
),

and this gave rise to the notion of Maass forms. For many of these generalized

modular forms, it is possible to associate one or several Dirichlet series, but the

construction would involve many non-canonical choices and more importantly

would be very unlikely to have an Euler product.

On the other hand, if the subgroup of isometries is arithmetic in some appro-

priate sense, Hecke operators exist and they may be used to “select” the analog

of primitive forms from which one can construct a genuine L-function. Quite

remarkably, by using harmonic analysis on these higher rank spaces and the
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Euler product structure, it is then possible to establish, for these L-functions,

many of the analytic properties mentioned above: FCT, GPNT, HdVP, CB.

So a whole supply of new L-functions of any degree become available to play

with. More importantly, it is believed that all “reasonable” L-functions should

be automorphic (that is, should arise in that way). An example of this is the

L-functions presented in the next lectures, which carry a strong arithmetical

content.
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3 Artin L-functions

Let Q ⊂ K ⊂ C be a finite algebraic extension of Q contained in C of degree

n say: K is a subfield of the field of complex numbers which are roots of a

rational polynomial, and moreover as a Q vector space dimQ K = n. The

Galois group of K over Q, Gal(K/Q) say, is by definition the group of (Q-

linear) field-homomorphisms of K into itself. The Galois group is a subset of

HomQ(K,C), the set of (Q-linear) field homomorphisms of K into C which

has n elements and one says that K is Galois if the inclusion is an equality.

Given K a Galois extension and ρ : Gal(K/Q) → GL(V ) a(n irreducible)

representation of Gal(K/Q) on a finite dimensional complex vector space V ,

one associates an Artin L-function L(ρ,K/Q, s). In this lecture, we present

the construction of this L-function and its basic analytic properties.
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3.1 Algebraic number theory background

We consider K a finite (not necessarily Galois) algebraic extension of Q of

dimension n. A fundamental tool in the study of the algebraic and arithmetic

properties of K is the action of K onto itself by multiplication. For any x in

K one defines the endomorphism (of Q-vector space) of multiplication by [x]:

[x] :
K → K

y → xy
.

Obviously x → [x] defines an injection of K× into AutQ(K); then the trace,

trK/Q(x), and the norm, NK/Q(x), of x are defined, respectively, as the trace

and the determinant of [x] and it is obvious from the definition that these

functions are Q valued. In particular for x ∈ Q, trK/Q(x) = nx and NK/Q(x) =

xn.

3.1.1 The ring of integers

The ring of integers of K, OK ⊂ K, is the set of elements which are annihilated

by a monic polynomial with integral coefficients

OK = {x ∈ K, ∃P ∈ Z[X], monic , s.t. P (x) = 0}.

That this set forms a ring is a nice exercise in elementary linear algebra using

the endomorphism [x]. Moreover one can show that (as an abelian group under

addition) OK is a free Z-module of rank n (ie. is isomorphic to Zn). This latter

property comes from the fact that the bilinear form

〈x, y〉 = trK/Q(xy)

is non-degenerate. In particular, the discriminant of K is the determinant of

the n × n matrix

∆K = det(〈xi, xj〉i,j) �= 0.

where {x1, . . . , xn} is any Z-basis of OK .

3.1.2 Ideals

Let us denote by Id(OK ), the set of all non zero ideals of OK (the OK -

submodules of OK ). Any non-zero ideal, I, is a free Z-module of rank n. In
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particular OK/I is finite and the norm of I, NK/Q(I), is by definition |OK/I|.
In particular, for x ∈ O×

K and I = x.OK the ideal generated by x, one has

NK/Q(I) = |NK/Q(OK )|.

The set Id(OK ) forms a monoid (with OK as the identity element) under

the product of ideals

a.b := Ideal generated by the products a.b, a ∈ a, b ∈ b,

and the norm is multiplicative with respect to this product:

NK/Q(a.b) = NK/Q(a)NK/Q(b).

Recall that a non-zero ideal p ∈ Id(OK ) is prime iff. OK/p is integral: this is

equivalent to p being maximal since OK/p is finite and a finite integral domain

is a field.

We are now in a position to state the following fundamental result of

Dedekind which is the analog for rings of integers of the fundamental theo-

rem of arithmetic for Z:

Theorem. (Dedekind) Id(OK ) is freely generated by the set of all prime ideals,

or in other words every a ∈ Id(OK ) admits a factorization of the form

a =
∏

p prime

pvp(a)

where the vp(a) are, almost always zero, integers; moreover the above decom-

position is unique up to permutation.

In particular, the notion of a divisibility relation is available (a|b iff. vp(a) �
vp(b) for all p) which turns out to be equivalent to inclusion (a|b iff. b ⊂ a).

3.1.3 Decomposition of primes

The above theorem reduces much of the study of integral ideals to that of the

primes: one basic question is then “where to find the prime ideals ?”.

If p is a prime ideal then, as noted before, the quotient ring OK/p is a

finite field with N(p) elements; this field is called the residue field at p and

will be noted by kp. In particular if p is the characteristic of the field kp, then

p = 0 in kp = OK/p hence p ⊂ OK , which means that (p) = p.OK (the ideal
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generated by p) is divisible by p. So the prime ideals of OK are exactly the

primes appearing in the decomposition

p.OK =
∏

p prime

pvp(pOK )

when p ranges over the prime of Z.

To each prime are attached two important invariants to describe how a

prime ideal occurs in the decomposition of a prime number: the ramification

index and the residual degree.

If vp(pOK ) is non zero, one says that p divides p or lies above p, and vp(pOK )

is called the ramification index of p and will be noted ep. Note that each prime

ideal in OK lies above exactly one prime of Z so there is no ambiguity in not

specifying p in ep. By definition a prime p is ramified iff. ep > 1. One can

show that p is ramified iff. p divides the discriminant ∆K , hence there are only

finitely many ramified primes.

If p|p then one has a natural injection Z/pZ → OK/p given by the inclusion

Z ⊂ OK and pZ ⊂ p. In particular kp is a finite extension of the finite field Fp

and the degree of this extension is called the residual degree and is noted fp.

One has then the following mass formula:

n =
∑
p|p

epfp.

3.2 Galois representations

Given that K is a Galois extension of Q with Galois group Gal(K/Q) = G,

many problems in arithmetic boil down to understanding the action of G on

various arithmetically interesting sets. When the set, S say, is finite, one can

linearize the problem by considering CS the complex |S|-dimensional vector

space with basis indexed by the elements of S; G then acts linearly on CS by

permutations on the basis.

More generally, a complex Galois representation (of G) is an homomorphism

ρ : G → AutC(V )

of G into the group of automorphisms of a finite dimensional complex vector

space V . Of course this is simply a complex representation of the finite group

G, a classical topic (see [5] for instance), but what one really wants is to
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understand this representation in terms of the Galois data (rather than in

terms of the abstract group G). As we shall see below the Galois structure

can be captured in a large part via an action of special elements of G (in fact

conjugacy classes in G): the frobenius .

3.2.1 The frobenius

There is a natural action of G (by automorphisms) on the set of ideals Id(OK )

simply given by

σ.a = {σ(x), x ∈ a}
which of course preserves the primes. Given p a prime, one can show that G

acts transitively on the set of primes in OK dividing p. This implies (since

σ(p) � p) that the ramification indices and the residual degrees for each of

these primes are equal so we denote their common values by ep, fp; in particular

ep = 1 iff. p|∆K and one then says that p is ramified .

Taking any p dividing p, the decomposition subgroup at p is the stabilizer

of p under the G-action

Dp := {σ ∈ G, σ.p = p}

and there is a canonical map rp : Dp → Gal(kp/Fp) which to σ ∈ Dp associates

the Galois automorphism

rp(σ) : xp = x (mod p) → σ(xp) = σ(x)p = σ(x)(mod p).

The map rp turns out to be surjective and its kernel, Ip, is called the inertia

subgroup at p: one has

1 → Ip → Dp → Gal(kp/Fp) → 1.

One can show that Ip is trivial (rp is injective) iff. p is unramified.

We recall that the Galois group of a finite extension k of the finite field Fp

is cyclic and has a canonical generator, the frobenius, given by Frobp(x) = xp

for x ∈ k. Returning to our situation, and assuming that p is unramified, the

frobenius at p, σp, is by definition the inverse image under rp of the frobenius

Frobp of the extension kp/Fp. Let p′ be another prime above p, and let σ ∈ G

such that p′ = σ.p, then one computes that

σp′ = σσpσ
−1.

Hence one defines
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Definition. Let p be unramified, then the frobenius at p, σp, is the conjugacy

class in G generated by any σp for p|p.

3.2.2 A relative version of the frobenius

Let Q ⊂ K ⊂ L ⊂ C be a tower of finite algebraic extension such that K ⊂ L

is Galois of degree n (i.e. L is a K vector space of degree n and every K

linear automorphism of L into C is an automorphism of L) of Galois group

Gal(L/K). Then the results described above essentially carry over to the case

of the extension K ⊂ L. The (relative) discriminant of L/K, ∆L/K , is the

ideal of OK generated by the elements

{(trL/K (xixj))i,j , for (x1, x2, . . . , xn) ranging over the n-uples in OK}.

Then if p � ∆L/K , (p is unramified in OK ) and P|p, the frobenius at P is

the inverse image under the natural map DP → Gal(kP/kp) of the frobenius

element Frobp : x → xN (p). Finally the frobenius at p is the conjugacy class in

Gal(L/K) generated by the σP, P|p; to emphasize the relative nature of the

construction, the frobenius is denoted by [p, L/K].

3.2.3 Example: cyclotomic fields

An important example of the above is the case of cyclotomic extension: for

q � 3 let ξq be a primitive q-th root of unity, that is ξq
q = 1 and ξd

q �= 1 for

any d dividing q (for example take ξq = exp(2πi
q

)) or in other words ξq is a

generator of the cyclic group µq of q-th roots of 1. Let Kq = Q(ξq) be the

extension generated by ξq . Then Kq is called the q-th cyclotomic extension,

and it is Galois of degree ϕ(q) = |(Z/qZ)×|. Moreover the Galois group G

is isomorphic (non-canonically) to the multiplicative group (Z/qZ)× via the

isomorphism (which depends on a choice of ξq)

(Z/qZ)× → G

a = a (mod q) → σa : ξq → ξa
q .

One can further show that OK = Z[ξq ] and that the ramified primes are

precisely the prime divisors of q; moreover for p � q, the frobenius σp (which is

reduced to a single element since G is commutative) is the map which sends

ξq to ξp
q , or in other words σp = p (mod q).



Some specimens of L-functions 379

3.2.4 Extending a representation over the absolute Galois group

So far we have considered only finite Galois extensions of Q, their associated

(finite) Galois group and the action of it on some sets. However in several

situations, one needs to work simultaneously with many Galois extensions, for

example with an infinite increasing tower of Galois extensions, each Galois

group acting in a “compatible” manner on an increasing sequence of sets. A

convenient way to achieve this is to consider extending the action of some

Galois group Gal(K/Q) to the absolute Galois group over Q. Let Q ⊂ C

be the (algebraically closed) field of algebraic complex numbers; we denote by

Gal(Q/Q) the group of Q-linear automorphisms of Q. Then by Galois theory,

the Galois group of a finite extension Gal(K/Q) is a finite index quotient of

Gal(Q/Q): more precisely one has

1 → Gal(Q/Q)K → Gal(Q/Q) → Gal(K/Q) → 1,

where Gal(Q/Q)K denotes the subgroup of the absolute Galois group fixing

all the elements of K. Suppose we are given Gal(K/Q) with an action on

some set S, then the projection above extends this to an action of Gal(Q/Q)

on S. Moreover to each prime p, one can associate a frobenius conjugacy class

Frobp ⊂ Gal(Q/Q). This reformulation allows us to consider more general

actions (or representations) of the absolute Galois group Gal(Q/Q) (at the

associated frobenius) which do not necessarily factor through a finite quotient.

Remark 3. Note however that a (continuous- for the natural Krull topology-)

finite dimensional complex representation of Gal(Q/Q) does necessarily factor

through a finite quotient: that is, is given as a representation of a finite Galois

group Gal(K/Q).

3.3 Chebotareff density theorem

We return to the situation of a finite Galois extension K/Q and denote it by

G = Gal(K/Q).

As we have seen above, as p ranges over the unramified primes, one obtains

a collection of conjugacy classes in G ( G� say) and one may ask whether this

collection of conjugacy classes fills entirely the (finite) set G�. That is indeed

the case (and in a very strong form indeed) is the content of Chebotareff’s

density theorem:
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Theorem. (Chebotareff) Given K a finite Galois extension of the rationals,

then the Frobenius map from the set of unramified primes to G� which asso-

ciates to each p the frobenius σp is surjective. More precisely, for any C ∈ G�,

and X � 2 set

π(X; K) = |{p � X, unramified}|,
π(X; K,C) = |{p � X, unramified, s.t. σp = C}|.

Then as X → +∞ one has

π(X; K,C) =
|C|
|G|π(X; K)(1 + o(1)) =

|C|
|G|

X

log X
(1 + o(1)).

In other words not only is the frobenius map surjective on G� but the pro-

portion of primes such that the frobenius falls in a given conjugacy class C

is proportional to the size of G. Here is a fancy (complicated) way of restat-

ing this simple statement (which is more apt to the generalization explained

below):

For G any compact group, there is on G a unique left-(and right-)translation

invariant probability measure, namely the Haar measure µHaar. Let G� be the

space of conjugacy classes of G and π : G → G� be the canonical projection;

by definition the Sato/Tate measure µST on G� is the direct image under π of

µHaar.

In the present case, G being equipped with the discrete topology, the Haar

measure is simply the uniform probability measure: for any C ⊂ G

µHaar(C) =
|C|
|G| ,

and the Sato/Tate measure on G� is given for any set of conjugacy classes

E ⊂ G� by

µST (E) =
∑
C∈E

µHaar(C) =
∑
C∈E

|C|
|G| .

The Chebotareff’s density theorem states that for any function f on G�, one

has
1

π(X; K)

∑
p∈π(X ;K )

f(σp) →
∫

G�

f(g�)µST (g�) (3.1)

or in fancy words that the sequence of averaged Dirac measures

1

π(X; K)

∑
p∈π(X ;K )

δσp
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weak-* converges to the Sato/Tate measure µST as X → +∞ (one also says

that the set of conjugacy classes {σp, p � X, unramified} becomes equidis-

tributed w.r.t. µST as X → +∞).

Example. Consider again the case of the q-th cyclotomic extension. Then by

the discussion above, G = G� � (Z/qZ)× and σp is in the conjugacy class given

by a = a + qZ iff. p ≡ a(mod q). Thus in this case Chebotareff’s theorem is

equivalent to (a stronger form of) Dirichlet’s theorem for primes in arithmetic

progressions: let a be coprime with q and π(X; q, a) be the number of primes

less than X congruent to a modulo q then

π(X; q, a) =
1

ϕ(q)
π(X)(1 + o(1)) =

1

ϕ(q)

X

log X
(1 + o(1)).

3.3.1 Sketch of the proof of Chebotareff density theorem

For the proof we consider the alternative formulation (3.1), and remark that it

is sufficient to test this equality for f ranging over a set of functions generating

C|G� | the space of (continuous) functions on G�: this is the so-called Weyl

equidistribution criterion. It is well know from representation theory (see [5]

for example) that C|G� | is generated by the characters of G, that is the function

g → trρ(g) where ρ ranges over the irreducible representations of G. When

ρ is the trivial representation then (3.1) is trivially true, so it is sufficient to

prove that for ρ a non-trivial irreducible representation of G, one has

1

π(X; K)

∑
p∈π(X ;K )

trρ(σp) → 0 (3.2)

since when ρ is irreducible and non-trivial∫
G�

trρ(g�)µST (g�) =
1

|G|
∑
g∈G

trρ(g) = 0.

It is via the introduction of L-functions (first done by Dirichlet) that (3.2) is

proved.

This will be continued in section 3.4.1.

3.4 Artin L-functions

Let K be a Galois extension of Q with Galois group G and let ρ : G → Aut(V )

be an irreducible representation of G on some complex (finite dimensional)
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vector space V . For any prime p unramified, one defines the local factor at p

Lp(ρ, s) = det(Id− 1

ps
ρ(σp))

−1

where p denotes any ideal above p: note that this definition does not depend

on the choice of p since all the frobenius are conjugate with each other. When

p is ramified, the definition is slightly more complicated: indeed the map rp is

not injective anymore but induces an isomorphism Dp/Ip � Gal(kp/Fp) thus

one can still lift the frobenius of Gal(kp/Fp) to some element σp ∈ Dp but the

latter is only well defined modulo the inertia subgroup Ip, and consequently

the local L-factor is defined by

Lp(ρ, s) = det(Id− 1

ps
ρ(σp)|V Ip )−1,

where the determinant is taken relative to the subspace space of the Ip-invariants

of V . This is well defined and does not depend on the choice of p above p.

Definition. The Artin L-function of ρ is the Euler product

L(ρ, s) =
∏

p

Lp(ρ, s) =
∏

p

det(Id− 1

ps
ρ(σp)|V Ip )−1.

Since G is finite, the eigenvalues of any ρ(σp) have modulus 1, hence L(ρ, s)

is absolutely convergent and non-vanishing in the half-plane Res > 1. When

ρ is the trivial representation, L(1, s) = ζ(s) is Riemann’s zeta and hence has

analytic continuation to C−{1} with a simple pole at s = 1. The famous Artin

conjecture predicts that for ρ irreducible and non-trivial, L(ρ, s) has analytic

continuation to the whole complex plane: in fact one has the more precise

Conjecture. (Artin) Let G = Gal(K/Q) and ρ an irreducible non-trivial

representation of G, then L(ρ, s) has analytic continuation to C and satisfies

a functional equation of the form:

Λ(ρ, s) = ε(ρ)Λ(ρ, 1 − s),

where |ε(ρ)| = 1 and

Λ(ρ, s) = qs/2
ρ L∞(ρ, s)L(ρ, s), with L∞(ρ, s) = ΓR(s)n+ ΓR(s + 1)n− ;

here qρ is an explicit integer (the Artin conductor) and n+ (resp n−) denote

the multiplicity of the eigenvalue +1 (resp. −1) of the restriction to K of the

complex conjugation automorphism.
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Example. For Kq the q-th cyclotomic field, the irreducible representations of

G � (Z/qZ)× correspond to the (Dirichlet) characters of (Z/qZ)×. For such

a character χ : (Z/qZ)× → C×, one defines χ(n) = χ(n(mod q)) if (n, q) = 1

and 0 otherwise. Then qχ = q (unless χ is trivial), n+ = (1 + χ(−1))/2 and

L(χ, s) =
∏

p

(1 − 1

ps
χ(p))−1 =

∑
n�1

χ(n)

ns
,

in particular (cf. the first lecture) Artin’s conjecture is true for cyclotomic

fields.

3.4.1 Continuation of the proof of Chebotareff’s theorem

For ρ irreducible, recall that one has to establish (3.2). Such an estimate is

closely related to the analytic properties of the converging series (for res > 1)

∑
p

trρ(σp)

ps
.

The latter equals

−L′

L
(ρ, s) =

∑
k�1

∑
p

trρ(σk
p )

pks

up to a function holomorphic in the half-plane Res > 1/2 and one can show

that (3.2) follows from the

Theorem 1. (Artin+Brauer+Hecke) For ρ irreducible, L(ρ, s) admit mero-

morphic continuation to C and is holomorphic and non-vanishing for Res � 1.

3.4.2 Properties of Artin L-functions

In this last section we discuss briefly the proof of Theorem 1. First of all we

note that an Artin L-function can be defined for a Galois extension L of a

general number field K. Namely, if ρ is a representation of Gal(L/K), the

associated Artin L-function is given by

LK (ρ, s) =
∏

p

det(Id− 1

NK/Q(p)s
ρ([p, L/K]))−1.

Artin L-functions have the following formal properties:
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1. For ρ the trivial representation of the Galois group of some number field

K,

LK (ρ, s) =
∏

p

(1 − 1

NK/Q(p)s
)−1 =

∑
a⊂OK

1

NK/Q(a)s

is the Dedekind zeta function .

2. (Additivity) LK (ρ1 ⊕ ρ2, s) = LK (ρ1, s)LK (ρ2, s)

3. (Invariance under induction) For H ⊂ G a subgroup, set K ′ = LH (then

H = Gal(L/K ′)). For ρ′ a representation of H, let ρ = IndG
Hρ′ be the

induced representation to G, then

LK ′(ρ′, s) = LK (ρ, s).

The Artin/Brauer/Hecke theorem is proven by a conjunction of three main

ingredients.

– The first ingredient is due to Hecke; generalizing work of Dedekind on

zeta functions of number fields, he established that L-functions associated

to characters (ie. one dimensional continuous representations) of a locally

compact group naturally associated to a given general number field (the Idèle

group4 IK ), have analytic continuation to the whole complex plane and satisfy

a functional equation. Due to lack of space, we will merely state Hecke’s

theorem without defining the terms and use it as a black box in the sequel.

Theorem. (Hecke) Let K be a number field and χ : IK/K× → S1 := {z ∈
C, |z| = 1} be a continuous unitary representation of the idèle group of K,

trivial on K× (ie. a Hecke character). Then χ has an associated L-function

L(χ, s) (this is an Euler product of degree [K : Q]) which has analytic continu-

ation – with possibly at most one (well identified) pole – to C. Moreover when

χ is primitive, L(χ, s) satisfies a functional equation on the (usual) form

Λ(χ, s) = ε(χ)Λ(χ, 1 − s)

where |ε(χ)| = 1, χ denotes the complex conjugate of χ and

Λ(χ, s) = qs/2
χ L∞(χ, s)L(χ, s),

with q an integer and L∞(χ, s) a product of Gamma factors. Moreover, L(χ, s)

does not vanish on the line Res = 1.

4In fact Hecke did not formulate his result in terms of idèles but rather in terms of ideals
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We shall not enter into the definition of what is an Hecke character or its

L-function but simply note that Hecke characters are automorphic in nature

and can be handled by methods of harmonic analysis over number fields.

– The second key fact is of a more arithmetic nature, and is due to Artin: it

has as a consequence that Artin’s conjecture is true for one dimensional Galois

representation of number fields:

Theorem. (Artin) Let K ⊂ L be a Galois extension of number fields and ρ a

non-trivial one dimensional representation of Gal(L/K). Then there exists a

Hecke character χ of IK such that

L(ρ, s) = L(χ, s).

Consequently L(ρ, s) has analytic continuation of C, satisfies a functional

equation and does not vanish on the line Res = 1.

– The last ingredient is purely group theoretic and due to Brauer,

Theorem. (Brauer) Let G be a finite group and ρ be an irreducible represen-

tation of G, then there exists a finite set of finite subgroups of G, {Gi}i, one

dimensional representations of Gi, χi and integers ni ∈ Z such that one has

ρ =
∑

i

niIndG
Gi

χi

as an identity of virtual representation.

In particular by additivity and by invariance under induction one has for

ρ : G = Gal(L/K) → Aut(V ) a general complex irreducible representation,

one has

LK (ρ, s) =
∏

i

LK (IndG
Gi

χi, s)
ni =

∏
i

LKi
(χi, s)

ni ,

and the proof follows from Artin’s and Hecke’s theorems above and the obser-

vation that the {χi} does not contain the trivial representation.

In fact we want to stress that, for all the few cases where the analytic

continuation of Artin L-functions (or more generally of L-functions attached

to Galois representations) has been proved, it has always been by identifying

the Artin L-function with an L-function associated to an automorphic form,

for which analytic continuation is easier to establish. In the case of L-functions

of degree 1, the identification is provided by Class Field Theory [3].
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4 L-functions of elliptic curves

4.1 Background on elliptic curves

4.1.1 Elliptic curves as algebraic curves

Let k be a field. An (affine plane) elliptic curve, Ea (say), over k is the algebraic

curve given by an equation of the following form: let a1, a2, a3, a4, a6 ∈ k be

given, and denote by (E) the equation

(E) = (Ea1 ,a2 ,a3 ,a4 ,a6 ) : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6;

for K a field containing k (or more generally for K a k-algebra) the set of

solutions

Ea(K) := {(x, y) ∈ K2 s.t. y2 + a1xy + a3y = x3 + a2x + a4x + a6}

is called the set of K-rational points of E.

4.1.2 The discriminant

However in order to properly qualify for the name of elliptic curve, one requires

Ea to be non-singular: setting

fE(x, y) := y2 + a1xy + a3y − (x3 + a2x
2 + a4x + a6),
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non-singular means that the the system of equations

fE(x, y) =
∂

∂x
fE(x, y) =

∂

∂y
fE(x, y) = 0

has no solutions in an(y) algebraic closure of k (k say). It can be checked that

the latter is equivalent to the non-vanishing of some

∆E = ∆(a1, a2, a3, a4, a6)

where ∆ is some universal polynomial in five variables with coefficients in

Z. For example, if a1 = a3 = 0 then ∆E is (up to a power of 2 factor) the

discriminant of the polynomial P (x) = x3 + a2x
2 + a4x+ a6. The quantity ∆E

is called the discriminant of E. A curve E as above with zero discriminant is

called a degenerate (or singular) elliptic curve. From now on, an elliptic curve

will always be non-singular.

An elliptic curve is defined over some field k if it is given by a non-singular

equation as above with coefficients a1, a2, a3, a4, a6 in k.

4.1.3 Projective elliptic curves

It is both fundamental and natural for the theory, to “compactify” the affine

curve Ea by adding to it “a point at infinity”. For this one consider the

projective plane P2
k which is the algebraic variety defined over k, whose set of

K rational points (P2
k(K) say) is the set of all K-rational directions of lines in

the affine 3-dimensional space

A3
k(K) = {(x, y, z) ∈ K3};

in other words P2
k(K) is the quotient set

P2
k(K) = {(x, y, z) ∈ K3 − {(0, 0, 0)}}/ ∼

where ∼ stand for the equivalence relation induced by the diagonal action of

K× on K3 − {(0, 0, 0)}: two points (x, y, z), (x′, y′, z′) ∈ K3 − {(0, 0, 0)} are

identified iff. (x′, y′, z′) = (λx, λy, λz) for some λ ∈ K×. In particular the

projective plane P2
k(K) contains the affine plane A2

k(K) = K2 as the set of

classes of triples of the form (x, y, 1), (x, y) ∈ K2, the complementary subset

being a “projective line at infinity” P1
∞,k(K) consisting the set of classes of

points of the form {(x, y, 0), x, y ∈ K}/ ∼ and the latter line decomposes as
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an affine line {(x, 1, 0), x ∈ K} � A1
k(K) and a point which we denote by ∞

corresponding to the class of (0, 1, 0). In particular Ea(K) embeds into P 2
k (K),

via (x, y) → (x, y, 1).

The compactified elliptic curve E corresponding to equation (E) is defined

as the set of solutions, in P 2
k , of the homogeneous version of equation (E):

zy2 + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3. (4.1)

In other words, for k ⊂ K a field, the K-rational points of E are given by

E(K) =

{
(x, y, z) ∈ P2

k(K) s.t. zy2+a1xyz+a3yz2 = x3+a2x
2z+a4xz2+a6z

3
}

,

indeed the above equation is homogeneous (of degree 3) so if (x, y, z) ∈ K3

satisfies (E) then (λx, λy, λz) satisfies (E) for any λ ∈ K×. As noted before,

E(K) contains the affine points Ea(K) as the set of points with third coordi-

nate z equal to 1. The set of points on E at infinity (ie. the points contained

in P1
∞,k or in other words, the point for which the third coordinate is z = 0)

consists of the single point ∞ = (0, 1, 0). It is called the point at infinity of E

and is denoted OE .

4.1.4 The group law on an elliptic curve

A fundamental fact in the theory of elliptic curves is the existence of the

structure of a group on the set of its points. In this section, we recall the

definition of the group law.

Let E be a (non-singular) elliptic curve. As we have seen above, E always

contains a k-rational point, namely the point at infinity (0, 1, 0): we choose

this point as the neutral element for the group law and denote it by OE .

Given P1, P2 ∈ E(K), we consider the (projective) line LP1 P2 passing through

both points (the point on such line are the solutions of a homogeneous equation

of degree 1

ax + by + cz = 0

and if P1 = P2, LP1 P1 is the tangent line to E passing through P1) then LP1 P2

intersects E at a third point P3 and then P1+P2 is defined to be the intersection

of E with the line joining P3 and OE . One can verify that this process defines

a commutative group law on E, with OE as the neutral element and such that

P3 = −(P1 + P2). Moreover one can show that the coordinates of P1 + P2 are



Some specimens of L-functions 389

given by rational functions in the coordinates of P1 and P2 with coefficients in

k (one says that the group law is k-rational): in other words this law defines

a group law on each set of K-rational points E(K).

Example. Given an elliptic curve, many formal computational systems allows

for the computation of the group law of an elliptic curve, for example the

PARI-GP system. Consider the curve E over Q given by the equation

y2 + y = x3 − x ⇐⇒ y(y + 1) = x(x − 1)(x + 1).

this curve has a discriminant 37 and E(Q) contains 7 trivial Q-rational points,

namely OE = ∞ and the affine points with (x, y) coordinates (and z = 1)

(0, 0), (1, 0), (−1, 0), (0,−1), (1,−1), (−1,−1).

set P = (0, 0) then

−P = (0,−1), −2P = (1,−1), 2P = (1, 0), −3P = (−1, 0), 3P = (−1,−1),

which exhaust all the trivial points of E(Q) but there are many more

4P = (2,−3), 5P = (
1

4
,−5

8
), 6P = (6,−14),

7P = (−5

9
,− 8

27
), 8P = (

21

25
,− 69

125
), 9P = (−20

49
,−435

343
),

10P = (
161

16
,−2065

64
), 12P = (

1357

841
,
28888

24389
).

In fact, one can show (see below) that the group E(Q) = 〈P 〉 is the infinite

cyclic group generated by P .

4.1.5 Isogenies

By definition, the function field of E, k(E), is the field of fractions of the

integral domain k[x, y]/(fE(x, y)). An isogeny between two elliptic curves E,E ′

defined over k is a non-constant k-rational morphism ϕ : E → E ′ (that is a

k-homomorphism k(E ′) ↪→ k(E)) such that ϕ(OE) = OE ′ . We recall that a

non-constant morphism between curves is separable if the extension of fields

over the algebraic closure of k, k say, k(E ′) ↪→ k(E) is. One denotes by deg ϕ

the degree of this extension. In the case of isogenies, one can also show that

ϕ is automatically a group morphism:

ϕ(P1 +E P2) = ϕ(P1) +E ′ ϕ(P2);
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In particular, ϕ−1(OE ′) = ker ϕ is a subgroup of E defined over k and moreover

if ϕ is separable, then | ker ϕ(k)| = deg ϕ.

We denote by Hom(E,E ′) the set of isogenies from E onto E ′ which is

viewed as a Z-module under addition. We denote by End(E) the set of iso-

genies of E onto itself. This is a (non-necessarily commutative) ring under

addition and composition: the endomorphism ring of E.

Example. An example of isogeny is given for n ∈ Z by [n]E ∈ End(E) the

multiplication by n in E; one can show that deg[n]E = n2 and that if n is

coprime with the characteristic of k, [n]E is separable. The kernel of this

isogeny ker[n]E is also denoted E(k)[n]: this is the set of n-torsion points on

E(k). If n is coprime with the characteristic of k, one has

E(k)[n] � (Z/nZ) × (Z/nZ).

Note that the map n → [n]E gives an embedding of Z into End(E); in many

cases this embedding is also surjective and in general one has the following

structural result

Theorem. Given E an elliptic curve defined over k, then the endomorphism

ring of E is either

End(E) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z or

an order of an imaginary quadratic field or

a maximal order in a quaternion algebra

and Aut(E) = End(E)× is either one of Z/2Z or Z/4Z or Z/6Z.

If End(E) �= Z, one says that E has complex multiplication (or E is CM)

and if moreover End(E) is isomorphic to maximal order in a quaternion al-

gebra, one says that E has quaternionic multiplication.

If k has characteristic zero, quaternionic multiplication never occur.

If k has positive characteristic, then E has always complex multiplication

(quaternionic or not); if E has quaternionic multiplication one also says that

E is supersingular.

To conclude our presentation of isogenies, we mention that to every isogeny

ϕ : E → E ′ is associated a dual isogeny ϕ̂ : E ′ → E satisfying

ˆ̂ϕ = ϕ, ϕ̂ +E ϕ′ = ϕ̂ +E ′ ϕ̂′,
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ϕ̂ ◦ ϕ′ = ϕ̂ ◦ ϕ̂′, [̂n]E = [n]E , ϕ̂ ◦ ϕ = [deg ϕ]E , ϕ ◦ ϕ̂ = [deg ϕ̂]E ′ = [deg ϕ]E ′ .

Thus the passage to dual is an involution on End(E) which plays a key role

in the determination of the structure of End(E).

4.1.6 Elliptic curves over the complex numbers

In this section we recall several facts concerning the structure of elliptic curves

over the complex numbers by using the complex uniformization of an elliptic

curve provided by the Weierstrass P-function.

A lattice Λ ⊂ C is a free subgroup of rank 2 of C which generates C as a

real vector space: Λ = Zω1 + Zω2 with ω1/ω2 �∈ R. The Weierstrass function

associated to Λ is the series of a complex variable

PΛ(s) =
1

s2 +
∑

λ∈Λ−{0}

1

(s− λ)2 −
1

λ2 .

PΛ(s) defines a meromorphic function on C, periodic of period Λ (ie. PΛ(s +

λ) = PΛ(s) for any λ ∈ Λ) , is holomorphic on C− Λ and has a pole of order

2 at every point of Λ. Moreover one can show that it satisfies the differential

equation

(P′
Λ)2(s) = 4P3

Λ(s) − g2(Λ)PΛ(s) − g3(Λ),

with

g2(Λ) = 60
∑

λ∈Λ−{0}

1

λ4 , g3(Λ) = 140
∑

λ∈Λ−{0}

1

λ6 ,

and also that

∆(Λ) = g3
2(Λ)− 27g2

3(Λ) �= 0. (4.2)

The differential equation above gives a map

(C− Λ)/Λ → Ea
Λ : y2 = 4x3 − g2(Λ)x− g3(Λ)

s → (PΛ(s),P′
Λ(s)),

from the torus C/Λ minus the origin in the affine elliptic curve with equation

y2 = 4x3 − g2(Λ)x − g3(Λ) (we note that this curve is non-singular because

of (4.2)). This map can be extended to a map from the complete torus C/Λ

to the corresponding projective elliptic curve EΛ, by sending the origin of

the torus to the point at infinity OEΛ , noting in particular that as s → 0,

PΛ(s) � s−2, P′
Λ(s) � −2s−3. One can then show that this map is bijective
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and in fact is a group isomorphism from the commutative torus (C/Λ, +) to

the elliptic curve EΛ(C) endowed with its group law.

There is a converse to this result: firstly (because we are in characteristic

�= 2, 3) the equation defining an elliptic curve over C can always be rewritten

up to linear change of variables (completing squares and cubes) in the form

y2 = 4x3 − g2x− g3.

One can then show that there exists a lattice Λ ⊂ C such that g2(Λ) = g2,

g3(Λ) = g3. In particular the map

Λ → C/Λ → EΛ

induces a one to one correspondence between the set of isomorphism classes of

elliptic curves over C and the set of lattices of C up to homothety (two lattices

Λ, Λ′ are homothetic iff. there exists α ∈ C× such that α.Λ = Λ′).

From this description one can recover several results concerning isogenies

between elliptic curves over C. For instance, one has

Hom(EΛ, EΛ′) � {α ∈ C, s.t. α.Λ ⊂ Λ′}

and in particular

End(EΛ) � {α ∈ C, s.t. α.Λ ⊂ Λ}.

From this one shows that End(EΛ) = Z unless ω1/ω2 generates an imaginary

quadratic field K in which case End(EΛ) is an order of K (and one says that

E has CM by K).

In the same vein, the multiplication by n-isogeny, [n]E , is simply the map

on C/Λ induced by multiplication by n: in particular its kernel is given by

E(C)[n] � 1

n
.Λ/Λ = (Zω1/n + Zω2/n)/(Zω1 + Zω2) � (Z/nZ)2. (4.3)

This statement is a result of transcendence type but can be used in a more

arithmetic context: namely when E is defined over Q (or more generally over

any number field). Indeed since the multiplication by n map, [n], is given by

polynomials with coefficients in Q evaluated at the coordinate of the points, it

turn out that the n-torsion points have coordinates in Q, hence we have from

(4.3)

E(Q)[n] = E(C)[n] � (Z/nZ)2. (4.4)
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4.1.7 Elliptic curves over finite fields

We suppose now that k = Fq is a finite field (a finite extension of some field

Fp � Z/pZ for some prime p; then q = pn where n is the degree of the

extension). If E is an elliptic curve defined over k then End(E) is always

strictly bigger than Z. Indeed, one has the frobenius morphism Frobq on P 2
k

which is induced by the polynomial map

Frobq : (x, y, z) → (xq , yq , zq).

Indeed one verifies that for any k-extension K the frobenius maps the set of

K-rational points of E to itself: namely for (x, y, z) ∈ K3 satisfying

zy2 + a1xyz + a3yz2 − (x3 + a2x
2z + a4xz2 + a6z

3) = 0

one has

zq(yq)2 + a1x
qyqzq + a3y

q(zq)2 − ((xq)3 + a2(x
q)2zq + a4x

q(zq)2 + a6(z
q)3)

= zq(yq)2 + (a1)
qxqyqzq + (a3)

qyq(zq)2

−((xq)3 + (a2)
q(xq)2zq + (a4)

qxq(zq)2 + (a6)
q(zq)3)

since aq = a for any a ∈ k. Since elevating to the q-th power is a k-linear field

homomorphism, this equals

(zy2 + a1xyz + a3yz2 − (x3 + a2x
2z + a4xz2 + a6z

3))q = 0.

It is also easily checked that Frobq(OE) = OE thus Frobq defines an isogeny of

E. Moreover one can show that that deg Frobq = q.

The frobenius map is of fundamental importance in the study of algebraic

varieties over fields of finite characteristic. In particular it helps counting

points on such varieties; in the case of elliptic curves one has the following

Theorem. (Hasse) Given E/k an elliptic curve defined over the finite field

k = Fq, the number of its k-rational points satisfies

|E(k)| = q − aq(E) + 1,

where aq(E) satisfies the (Hasse) bound

|aq(E)| � 2
√

q. (4.5)
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Remark 4. Hasse’s theorem states that when the cardinality, q, of k is large,

the number of k-rational points of an elliptic curve defined over k is asymptotic

to q (which is also asymptotic to the number of points (= q + 1) on the

projective line P1
k(k)). A. Weil generalized Hasse’s bound to any non-singular

projective algebraic curve defined over a finite field: for C defined over Fq∣∣|C(Fq)| − q − 1
∣∣ � 2gC

√
q

(gC is the genus of C).

4.1.8 Hasse’s bound and character sums

Before displaying the proof of Hasse’s bound, we would like to interpret it

as a non-trivial cancellation property for some character sums. Suppose (for

simplicity) that k = Fp and that the equation defining E is of the form

y2 = x3 + ax + b

and that the discriminant ∆ = −4a3 + 27b2 �= 0 so that the curve is non-

singular. Then the number of points in the affine curve Ea(Fp), which by

definition is p − ap(E), equals the sum over all x in Fp of the number of

solutions of the equation of degree 2, y2 = x3 + ax + b. To detect analytically

this number we introduce the following function on F×
p (the Legendre symbol)

(
x

p
) =

⎧⎨⎩1 if x ∈ (F×
p )2 (ie. is a square),

−1 if x �∈ (F×
p )2 (ie. is not a square),

and it is easy to see that x → (x
p
) ∈ {±1} is a character of the group F×

p , since

(xy
p

) = (x
p
)( y

p
). If p > 2 this is the unique real character of F×

p . We extend

this function to Fp by setting ( 0
p
) = 0 and with this definition one has for any

x ∈ Fp

The number of solutions of the equation y2 = x is equal to 1 + (
x

p
).

In particular

|Ea(Fp)| =
∑
x∈Fp

1 + (
x3 + ax + b

p
)

and in particular

ap(E) = −
∑
x∈Fp

(
x3 + ax + b

p
).
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Observe now that since |(x3 +ax+b
p

)| � 1, one has the trivial bound

|
∑
x∈Fp

(
x3 + ax + b

p
)| � p

while the Hasse bound yields

|
∑
x∈Fp

(
x3 + ax + b

p
)| � 2

√
p.

In particular, when p is large Hasse’s bound shows that there is considerable

cancellation in the sum due to the sign changes of the function x → (x3 +ax+b
p

).

4.1.9 Proof of Hasse’s Theorem

The proof of this theorem makes crucial use of the frobenius endomorphism

Frobq ∈ End(E): namely one remarks that

E(k) = ker(IdE − Frobq)

(that is, a point on E has all its coordinates in k iff. it is fixed under the

frobenius map – this is easily verified). It follows from the fact that Frobq is

purely inseparable, that IdE − Frobq is separable, hence one has

|E(k)| = | ker(IdE−Frobq)| = deg(IdE−Frobq) = (IdE−Frobq). ̂(IdE − Frobq).

Expanding this last expression we obtain the following identity in the ring

End(E)

|E(k)| = 1 − (Frobq + F̂robq) + deg Frobq = 1 − (Frobq + F̂robq) + q,

hence in End(E) one has

aq(E) = Frobq + F̂robq .

Now for any m,n ∈ Z, one has

0 � deg(m + n.Frobq) = (m + n.Frobq). ̂(m + n.Frobq) = m2 + mnaq(E) + n2q

hence the quadratic form m2 + mnaq(E) + n2q is positive which implies that

its discriminant aq(E)2 − 4q is negative.

Q.E.D.
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Remark 5. From the proof above, we see that Frobq is annihilated by the

polynomial with integral coefficients X2 − aq(E)X + q. In particular if q is an

odd power of a prime, this polynomial has no roots since its discriminant is

non-positive and the polynomial cannot be a square. In that case, we see that

End(E) contains the imaginary quadratic order Z[Frobq ].

This kind of method can be used to prove other interesting statements: for

instance

Theorem 2. Given E,E ′ two elliptic curves defined over some finite field k.

If Hom(E,E ′) �= ∅, then aq(E) = aq(E
′). In other words two isogenous elliptic

curves defined over a finite field have the same number of points in that field.

Indeed, let ϕ : E → E ′ be an isogeny, then, denoting by Frobq,E (resp.

Frobq,E ′) the frobenius isogeny on E (resp. E ′), one has

deg ϕ × |E(k)| = deg ϕ × deg(Id − Frobq)

= deg(ϕ.(Id − Frobq)) = deg(ϕ − ϕFrobq);

now one can check from the definition of Frobq that it commutes with any

isogeny defined over k (since an isogeny is defined by polynomials with coeffi-

cients in k)

ϕ.Frobq,E = Frobq,E ′ .ϕ

and one has

deg ϕ× |E(k)| = deg(ϕ− Frobq,E ′ϕ) = deg(1− Frobq,E ′) deg ϕ = |E ′(k)| deg ϕ

and the proof follows since deg ϕ � 1 �= 0.

4.1.10 Elliptic curves over the rationals

Let E be an elliptic curve defined over the field of rationals Q. One of the main

goals of the theory (which maybe goes back to Diophantus) is to have a good

understanding of the group E(Q) of its Q-rational points. A fundamental step

in this direction is the finiteness theorem of Mordell

Theorem. (Mordell) The abelian group E(Q) is finitely generated: i.e.

E(Q) � Zr × E(Q)tors

where r � 0 is an integer (the rank of E(Q)) and E(Q)tors is a finite group:

the torsion subgroup of E(Q) (the group of rational P ∈ E(Q) such that

nP .P = OE for some integer nP �= 0).
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Remark 6. The same result is valid when Q is replaced by an arbitrary

number field (due to A. Weil).

Remark 7. Mordell’s theorem has the following geometric interpretation.

Consider the following elementary operation on an elliptic curve over Q: given

two points P1, P2 ∈ E(Q), form P3 from the intersection of E with the line

joining P1, P2 (possibly the tangent to E at P1 if P1 = P2). Then Mordell’s

theorem says that there exists a finite set of points on E(Q) (containing OE)

such that any point of E(Q) can be obtained from the original set of point by

performing a finite number of times the above elementary operation.

Thus Mordell’s (or the Mordell/Weil) theorem reduces the study of E(Q)

(or of E(K) for K a number field) to the determination of its rank and of a

basis of the corresponding free group, and of its torsion subgroup E(Q)tors.

the torsion subgroup of an elliptic curve a is rather well understood and can be

computed in any explicit example (Nagell/Lutz); moreover its general structure

is known

Theorem. (Mazur)

E(Q)tors =

⎧⎨⎩Z/nZ for n = 1, 2, . . . , 10 or 12 or

(Z/2Z) × (Z/2nZ) for n = 1, 2, 3 or 4.

For a general number field the precise structure of the torsion point is not

so well known but at least one has the following

Theorem. (Merel) Let K be a number field. Then there exists a constant CK

(depending only on K) such that for any elliptic curve, E, defined over K one

has

|E(K)tors| � CK .

Concerning the rank, unfortunately, much less is known: for example it

is not known yet if there exist elliptic curves defined over Q with arbitrarily

large rank.5 A possibility to study this kind of question may be the use of the

Birch/Swinnerton-Dyer conjecture (see below), in order to relate the rank of

E to the analytic properties of the L-function attached to E.

5If one replaces Q by a function field over a finite field, for example K = Fp(T ), the field
of fractions in one variable with coefficients in Fp , then one can construct elliptic curves
over K with arbitrarily large rank [14].
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4.2 The L-function of an elliptic curve

In this section we describe the L-functions attached to elliptic curves.

4.2.1 L-functions of elliptic curves over finite fields

For simplicity we suppose that E is defined over k = Fp. The L-function of E

is by definition the formal series

L(E, s) = exp
(∑

n�1

|E(Fpn )|
n

p−ns
)
,

(remember that |E(Fpn )| is the number of points on E with coordinates in

Fpn ). By Hasse’s theorem this series is convergent for Res > 1

Remark 8. It is not a priori clear why this is a natural definition: some

motivation for this definition is to be found in the last lecture.

Theorem 3. One has the identity (valid for Res > 1)

L(E, s) =
(1 − ap(E)p−s + p1−2s)

(1 − p−s)(1 − p1−s)
.

Remark 9. Observe that this identity provides a meromorphic continuation

of Lp(E, s) to the complex plane, with the functional equation

L(E, s) = L(E, 1 − s)

and with (infinitely many) poles on Res = 0, 1 and zeros (by Hasse’s theorem)

on the line Res = 1/2. Thus Hasse’s theorem can be considered as an analog

of Riemann’s Hypothesis for (L-functions of) elliptic curves over finite fields.

We prove now Theorem 3: by the proof of Hasse’s theorem, one has for any

n � 1

|E(Fpn )| = deg(1 − Frobpn ) = deg(1 − Frobn
p )

= (1 − F̂robp

n
).(1 − Frobn

p ) = 1 − (F̂robp

n
+ Frobp

n) + pn

since deg Frobn
p = (deg Frobp)

n = pn. Hence we have (as formal power series

with coefficients in End(E))

exp
(∑

n�1

|E(Fpn )|
n

T n
)

= exp
(∑

n�1

1 − (F̂robp

n
+ Frobp

n) + pn

n
T n
)

=
(1 − F̂robpT )(1 − FrobpT )

(1 − T )(1 − pT )
=

(1 − ap(E)T + pT 2)

(1 − T )(1 − pT )
.
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4.2.2 L-functions of elliptic curves over the rationals

We consider an elliptic curve E defined over Q. For simplicity we assume that

its equation is given by

E : y2 = x3 + ax + b

where a, b are integers and ∆E = −16(4a3 + 27b2) �= 0.

4.2.3 Reduction of an elliptic curve

If p is any prime, we can consider the above equation modulo p: setting a, b

to be a(modp), b(modp) respectively, the equation

Ep : y2 = x3 + ax + b

then defines an elliptic curve over Fp granted that p � ∆E . Thus in this sit-

uation, given E as above, we have attached to each prime not dividing ∆E

an elliptic curve Ep defined over Fp. The curve Ep is called the reduction of

E modulo p. For a general prime p (possibly dividing ∆E), a more general

notion of reduction of E modulo p is available (and matches the above one)

but defining it requires more sophisticated tools (in particular the concept of

minimal model which we will not describe in detail here); in any case, one can

associate to each prime p, the reduction modulo p of E, Ep say, which most of

the time is an elliptic curve but which may also be a conic or even a singular

curve. In the former case, we say that E has good reduction at p and bad

reduction at p in the latter. In particular, the primes not dividing ∆E are all

primes of good reduction.

To each prime p, one associates a local L-factor at p, Lp(E, s) which is given

by

Lp(E, s) = (1− ap(Ep)

ps
+

p

p2s
)−1

if E has good reduction at p (this is the inverse of the numerator of the L-

function of Ep, L(Ep, s)) and

Lp(E, s) = (1 − ap(Ep)

ps
)−1

with ap(Ep) ∈ {1,−1} if E has bad reduction; then the global L-function

attached to E is

L(E, s) =
∏

p

Lp(E, s).
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By Hasse’s bound, L(E, s) is analytic and non-vanishing in the half-plane

Res > 3/2; what is more remarkable is that in fact L(E, s) has analytic

continuation to the whole complex plane and satisfies a functional equation.

This was proved by Deuring for CM elliptic curves,

Theorem. Let E/Q be an elliptic curve with complex multiplication with un-

derlying imaginary quadratic field K. Then there exists a Hecke character χE

of IK such that

L(E, s) = L(χE , s);

consequently L(E, s) has analytic continuation to C and satisfies the functional

equation given below.

In the non-CM case this is a former conjecture of Shimura/Tanyama and

a major recent achievement of Wiles, Taylor/Wiles and Breuil/Conrad/ Dia-

mond/Taylor ([15, 13, 1])

Theorem 4. (Wiles, Taylor/Wiles, Breuil/Conrad/Diamond/Taylor) Given

E an elliptic curve defined over Q, its associated L-function has analytic con-

tinuation to C and satisfies the functional equation

Λ(E, s) = ε(E)Λ(E, 2 − s)

where ε(E) = ±1 and

Λ(E, s) = N
s/2
E L∞(E, s)L(E, s)

with NE (the conductor of E) is an integer (> 1) dividing ∆E and

L∞(E, s) = ΓR(s)ΓR(s + 1).

Remark 10. As we have said before the fact that this L-function admits

analytic continuation to the complex plane is a strong indication that the

reductions of E at the various primes are not uncorrelated, but rather conspire

together to create harmony. But we will see later that these reductions however

show nevertheless some random behavior.

Remark 11. In fact the proof of the theorem above gives more, namely that

L(E, s) is the L-function associated to a modular form of weight 2 (see Lecture

2); in particular, the GNPT and even HdVP are known for L(E, s).
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Beyond analytic continuation there is another striking conjecture of Birch/

Swinnerton-Dyer which shows that this L-function, even if it is built out of

local data attached to the curve (ie. the curves the Ep), can nevertheless

“capture” some of the global arithmetical structure of it:

Conjecture. (Birch/Swinnerton-Dyer ) The order of vanishing of L(E, s) at

s = 1 equals the rank of E.

This conjecture is now known when ords=1 L(E, s) � 1, as a combination

of the works of Gross/Zagier and Kolyvagin. In fact, Birch/Swinnerton-Dyer’s

conjecture is more precise as it predicts the exact value of the regularized value

of L(E, s) at s = 1, lims→1 L(E, s)/(s− 1)rank(E) in term of other arithmetical

and transcendental invariants of the curve.

4.3 The Galois representation attached to an elliptic

curve

Given E/k an elliptic curve defined over some field k, we have seen already in

the case of function fields, that in order to get information about the k-rational

points of E, E(k), it may be useful to consider more generally the set E(k)

of k-rational points of E over k some algebraic closure of the original field

k: indeed the absolute Galois group Gal(k/k) has a natural action on the set

E(k) (given by acting on the coordinate of the point) and by Galois theory the

k-rational points E(k) are exactly the set of fixed points under this action.

This rather simple principle, is one of the main motivations for trying to

attach to E a finite dimensional representation of the absolute Galois group

Gal(k/k). We shall present this when k = Q. Before doing so we will ex-

plain a simple but fundamental example of this type in the simpler setting of

cyclotomy.

4.3.1 The Tate module attached to the roots of unity

For � a prime number, and n � 1 an integer, we have seen in the first lecture

that the Galois group G�n of the cyclotomic extension Q(ξ�n ) acts on the set µ�n

of �n-th roots of unity. By Galois theory, this finite group is a quotient (of finite

index) of the full Galois group G := Gal(Q/Q) of Q-linear automorphisms of
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the field of algebraic numbers Q ⊂ C:

1 → Gal(Q/K�n ) → Gal(Q/Q) → Gal(K�n /Q) → 1.

Hence the projection map defines an action of Gal(Q/Q) on µ�n . Hence we

have a natural action of G on the sequence of �-th power roots of unity

{1} ⊂ µ� ⊂ µ�2 ⊂ · · · ⊂ µ�n ⊂ . . .

and it is convenient to transfer this action on an infinite sequence of spaces

into an action on a single space. One forms the projective limit of the {µ�n }n�0,

which is denoted by lim←−µ�n ; the latter is associated with the following descend-

ing sequence of maps

{1} ← µ� ← µ�2 ← · · · ← µ�n ← . . .

where each arrow is the �-power map

[�] :
µ�n +1 → µ�n

ξ → ξ�

and is defined as the set of sequences

(ξ1, ξ2, . . . , ξn, . . . ) satisfying for any n � 1, ξn ∈ µ�n and ξ�
n+1 = ξn.

This space is a subset of the product of finite sets
∏

n�1 µ�n and, by Ty-

chonoff, has a structure of a topological compact space. For reasons which will

be clear later we denote this space by T�(Gm) and call it the Tate module of

the multiplicative group Gm

This space is also endowed with two natural actions.

4.3.2 Action of the �-adic integers

The first action is given as follows: for each n, there is a natural action of the

additive group Z/�nZ on µ�n via the power map

Z/�nZ × µ�n → µ�n

(a(mod�n) , ξn) → a.ξn = ξa
n,

and one can see easily that the various Z/�nZ are compatible, in the following

sense: for ξn+1 ∈ µ�n +1 , and a(mod�n+1) ∈ Z/�n+1Z one has, setting ξn :=

[�]xn+1 = x�
n+1,

[�](a.ξn+1) = (a�).ξn+1 = a(mod�n).ξn.
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As a consequence, one can combine the various Z/�nZ actions altogether by

forming the following projective limit lim←−Z/�nZ associated to the descending

sequence of maps

{0} ← Z/�Z ← Z/�2Z ← · · · ← Z/�nZ ← . . .

where each map Z/�nZ ← Z/�n+1Z is the reduction modulo �n-map. The

projective limit lim←−Z/�nZ is noted Z�, this is a topologically compact totally

disconnected integral domain which contains Z as a dense subring (via the

diagonal embedding

a ∈ Z → (a(mod�), a(mod�2), . . . , a(mod�n), . . . )

and is called the ring of �-adic integers; an alternate definition for Z� is the

completion of Z with respect to the �-adic distance |a − b|� = �−v� (a−b), where

v�(a) = max{β, �β |a} is the �-adic valuation. We will also denote Q� = Q⊗Z�

its field of fractions ie. this is the field of �-adic numbers.

The above Z/�nZ-action on each µ�n then induces a natural continuous

action of the ring Z� on lim←−µ�n given by componentwise action:

(a1, a2, . . . , an, . . . ).(ξ1, ξ2, . . . , ξn, . . . ) = (ξa1
1 , ξa2

2 , . . . , ξan
n , . . . ).

Moreover, let ξ = (ξ1, ξ2, . . . , ξn, . . . ) ∈ lim←−µ�n be chosen such that each ξn is

a primitive �n-th root of unity (ie. is of order �n exactly). Then one can show

that

Z�.ξ = lim←−µ�n = T�(Gm),

making of T�(Gm) a free Z�-module of rank one.

4.3.3 Action of the Galois group

Since the Galois action of G commutes with the �-power map, the G-action on

each µ�n defines an action of G on lim←−µ�n by componentwise action:

σ.(ξ1, ξ2, . . . , ξn, . . . ) = (σ(ξ1), σ(ξ2), . . . , σ(ξn), . . . );

we recall that G is equipped with a natural (Krull) topology (for which G is

compact) and one can check that the action on the compact space lim←−µ�n is

continuous, and commutes with the Z�-action. Thus we have defined a Z�-

linear representation of G on the rank one Z�-module T�(Gm): χcyc : G →
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AutZ�
(T�(Gm)). For this we can form the tensor product of T�(Gm) with Q�

(endowed with the trivial G-action),

T�(Gm) ⊗Z�
Q� := V�(Gm),

so as to obtain a genuine (non-trivial) representation of G on a 1-dimensional

Q�-vector space

χcyc : Gal(Q/Q) → AutQ�
(V�(Gm)).

This representation is our first example of an �-adic Galois representation:

this is the cyclotomic character. For each prime p �= �, one has a well defined

Frobenius conjugacy class Frobp ⊂ G and by Section 3.2.3 of the second lecture

one has

χcyc(Frobp) = p. (4.6)

Remark 12. It is not difficult to show that a continuous representation of

G on a complex vector space, always factors through a finite quotient and in

particular has finite image. This is definitely not the case for the cyclotomic

character as well as for “most” �-adic representations: for example one can

show (use (4.6)) that

χcyc(G) = Q×
� .

4.3.4 The Tate module of an elliptic curve

Let E/Q be an elliptic curve defined over Q. In this section, we define a

natural �-adic Galois representation attached to E. Let � be a fixed prime

at which E has good reduction; for each n � 1, we consider the subgroup

of �n-torsion points on E, E(Q)[�n] ⊂ E(Q), which by (4.4) is isomorphic as

a group to (Z/�nZ)2. As in the case of �-power roots of unity it will prove

natural to form the projective limit

T�(E) := lim←−E(Q)[�n]

formed out of the decreasing sequence of maps

{OE} ← E(Q)[�] ← E(Q)[�2] ← · · · ← E(Q)[�n] ← . . .

where each arrow is the �-multiplication map

[�] :
E(Q)[�n+1] → E(Q)[�n]

Pn+1 → Pn = �.Pn+1
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which is defined as the set of sequences

(P1, P2, . . . , Pn, . . . ) satisfying for any n � 1, Pn ∈ E(Q)[�n] and �.Pn+1 = Pn;

this is the Tate module of E at �.

For each n, Z/�nZ acts on E(Q)[�n] by multiplication and this defines an

action of Z� on T�(E) and one can show using (4.4) that T�(E) � Z� × Z� is

a free Z�-module of rank 2.

4.3.5 The Galois action

The absolute Galois group Gal(Q/Q) acts on E(Q) and this induces an action

on E(Q)[�n]: indeed the coordinates of the �n-torsion points are the roots of

polynomials with rational coefficients. Since the roots of these polynomials are

permuted by the action of Gal(Q/Q), the �n-torsion points are also permuted.

Moreover, one can see that the various actions of Gal(Q/Q) on the E(Q)[�n]

are compatible (ie. commute with the multiplication by � map) so that one

has in fact a Z�-linear representation of Gal(Q/Q) on the Z�-module of rank

2 T�(E). Tensoring with Q�, we form V�(E) := T�(E) ⊗Z�
Q� and obtain a

two dimensional �-adic representation

ρ�,E : Gal(Q/Q) → AutQ�
(V�(E)) � GL2(Q�).

Again, this representation does not factor through a finite quotient.

4.3.6 The Weil pairing

The theory of the Weil pairing on elliptic curves gives for each n � 1, the

existence of a non-degenerate Z/�nZ-bilinear alternating map

〈 , 〉�n : E(Q)[�n] × E(Q)[�n] → µ�n ,

hence passing to the inverse limit and tensoring with Q�, we obtain a non-

degenerate Q�-bilinear alternating map

〈 , 〉� : V�(E) ×V�(E) → V�(Gm).

Since this pairing is compatible with the Galois action, one deduce that

det ρ�,E = χcyc. (4.7)



406 Philippe Michel

4.3.7 Comparison with the Tate module associated to roots of unity

In this section we justify the choice of the notation T�(Gm) for the Tate module

lim←−µ�n . Namely, for k a field, let Gm be the affine plane curve defined over k

by the equation

(Gm) xy = 1.

Then for any field extension K of k, the set of K-rational points, Gm(K), is

identified with the multiplicative group K× via the map

x ∈ K× → (x, 1/x) ∈ Gm(K) ⊂ K2,

and in particular Gm(K) has the structure of a commutative group given by

Gm(K) ×Gm(K) → Gm(K)

(x, y), (x′, y′) → (xx′, yy′).

In particular for any m one has the “multiplication by m” map:

[m] : (x, y) → [m].(x, y) = (xm , ym),

so under this identification µ�n corresponds to the set Gm(Q)[�n] of �n-torsion

points in Gm(Q). Thus the Tate module associated to the roots of unity is in

fact the Tate module associated to the sets of �n torsion points on the curve

Gm .

4.3.8 L-function of an elliptic curve as an Artin L-function

Let p �= � be a prime. One can associate to it a decomposition subgroup and

an inertia subgroup Ip ⊂ Dp ⊂ Gal(Q/Q) which are defined up to conjugacy

and such that one has the following exact sequence

1 → Ip → Dp → Gal(Fp/Fp) = 〈Frobp〉 → 1.

In particular, one can lift to Dp the frobenius automorphism of Gal(Fp/Fp),

which is well defined modulo Ip. In particular, one has a well defined action of

the frobenius ρ�,E(Frobp) on the ρ�,E(Ip)-invariant subspace V�(E)Ip and one

can then form the local Artin L-factor at p:

LArtin
p (E, s) = Lp(ρ�,E , s) = det(Id− 1

ps
ρ�,E(Frobp)|V�(E)Ip )−1,

which is well defined and only depends on p and not on the choice of the de-

composition subgroup Dp. The next theorem shows that in fact the previously

defined local L-factor matches the Artin L-factor.
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Theorem 5. Let � be a prime of good reduction for E, then for any p � � one

has the equality

Lp(E, s) = LArtin
p (E, s).

We write out several simple but important consequences of this result:

• From the original definition of the local factors, one knows that Lp(E, s)−1

is a polynomial of degree 2 in p−s iff. E has good reduction at p. Hence

for � �= p, E has good reduction at p iff. V�(E)Ip = {0} (ie. the inertia

subgroup acts trivially on the Tate module), that is iff. ρ�,E is unramified

at p: this is the Neron/Ogg/Shafarevitch criterion.

• For p a prime of good reduction (for example not dividing ∆E), one has

tr(ρ�,E(Frobp)) = ap(E) = p + 1 − |Ep(Fp)|,
det(ρ�,E(Frobp)) = p = χcyc(Frobp).

• For p �= �, the Artin local factor does not depend on the choice of the

auxiliary prime �, thus justifying the notation LArtin
p (E, s). This enables

us to define the Artin local factor at � by

LArtin
� (E, s) = L�(ρ�′,E , s)

for any �′ �= �.

• The global L-function L(E, s) is an Artin type L-function: for any pairs

of primes � �= �′,

L(E, s) =
∏

p

LArtin(E, s) = L�(ρ�′,E , s)
∏
p �=�

Lp(ρ�,E , s)

We cannot discuss in great detail the proof of the important Theorem 5

4.4 The Sato-Tate conjecture and a Theorem of Serre

Given E an elliptic curve, by Hasse’s bound (4.5), one can write by any prime

p

ap(E) = 2
√

p cos(θE,p), θE,p ∈ [0, π];

the Sato/Tate conjecture predicts the distribution law of the angles θE,p as p

ranges through the primes:
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Sato/Tate Conjecture. Let E be a non-CM elliptic curve defined over Q.

Then the angles {θE,p, p ∈ P} are equidistributed on [0, π] relatively to the

Sato/Tate measure dµST = 2
π

sin2 θdθ or in other words for any 0 � α < β � π

lim
X→+∞

1

π(X)

∑
p�X

1[α,β](θE,p) =

∫ β

α

2

π
sin2 θdθ =

∫
[0,π]

1[α,β](θ)dµST (θ). (4.8)

The case of CM-elliptic curve is different and settled by the works of Deuring

and Hecke:

Theorem. Let E be a CM-elliptic curve. Then the angles {θE,p, p ∈ P} are

equidistributed on [0, π] relatively to the measure 1
2δπ/2 + 1

2π
dθ or in other words

for any 0 � α < β � π

lim
X→+∞

1

π(X)

∑
p�X

1[α,β](θE,p) =
1

2
δπ/2∈[α,β] +

β − α

2π
.

The Sato/Tate conjecture (in the non-CM case) can be given the more con-

ceptual interpretation: by Hasse’s bound, the normalized coefficient 2 cos(θE,p)

= ap(E)/
√

p is interpreted as the trace of the matrix of determinant one(
eθE ,p 0

0 e−θE ,p

)
,

or more precisely as the trace of any element of the conjugacy class in SU(2,C)

defined by the matrix above (this is certainly something natural as a Frobenius

is defined only up to conjugacy). It is well known that the map (let � denote

the passage to the conjugacy class)

T :=

R/πZ → SU(2,C)�

θ →
(

eθ 0

0 e−θ

)�

from R(modπZ) to the space of conjugacy classes of the compact subgroup

SU(2,C) is an homeomorphism. Recall that in the first chapter, any compact

group G is endowed with its Haar measure and that the space of conjugacy

classes of G is endowed with its Sato/Tate measure. In the present case, G =

SU(2,C), the inverse image under T of the Sato/Tate measure on SU(2,C)�

is precisely the Sato/Tate measure µST (θ) (this is a special case of Weyl’s

integration formula). Hence the Sato/Tate conjecture is naturally interpreted

by saying that the ap(E)/
√

p define via the map T a set of conjugacy classes
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in SU(2C), which fill uniformly SU(2,C)� w.r.t. µST . One should note the

strong parallel between this conjecture and the Chebotareff density theorem

and in fact the current strategy for proof follows the same lines.

One first notes that it is sufficient to replace in (4.8) the characteristic func-

tion of any interval by any continuous function on G�. Next by the Peter/Weyl

theorem, the space of continuous functions on G� is densely generated (for the

L∞-norm) by the characters of the irreducible representations of G ( and the

irreducible characters form an orthonormal basis of L2(G�, µST,G� )). Thus in

order to prove the Sato/Tate conjecture it is sufficient (Weyl’s equidistribution

criterion) to prove that for any irreducible non-trivial representation ρ of G

lim
X→+∞

1

π(X)

∑
p�X

tr(ρ(T (θE,p))) =

∫
G�

tr(ρ(g�))dµST (g�) = 0.

For G = SU(2,C) the non-trivial irreducible representations are the k-th

symmetric powers ( for k � 1) of the standard (2-dimensional) representation.

Recall that the k-th symmetric power representation, Symk say, is defined as

follows: the associated complex vector space is C[X,Y ]k , the space of homo-

geneous polynomials in two variables of degree k, and with SU(2,C) acting

on P (X,Y ) ∈ C[X,Y ]k by

Symk

(
a b

c d

)
P (X,Y ) = P (aX + cY, bX + cZ).

This representation is irreductible and for D =

(
α1 0

0 α2

)
diagonal, one has

tr(SymkD) = αk
1 + αk−1

1 α2 + · · · + α1αk−1 + αk
2 ;

in particular one has for any k � 1

tr(Symk(T (θ))) =
sin((k + 1)θ)

sin(θ)
=: symk(θ),

say. Hence, the Sato/Tate conjecture would follow from estimates for sums

over the primes: for any k � 1

lim
X→+∞

1

π(X)

∑
p�X

symk(θE,p) = 0. (4.9)

Such sums are naturally associated to L-functions. For k � 1, let Symk :

GL(2) → GL(k + 1) denote the k-th symmetric power of the standard rep-

resentation and for � � 2, let Symk
�,E denote the �-adic Galois representation
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obtained by composition of ρ�,E with the k-th symmetric power:

Symk
�,E : Gal(Q/Q) → Aut(T�(E)) � GL(2,Q�) → GL(k + 1,Q�).

L(Symk
�,E , s) is its associated Artin L-function. By construction, one has for

p � �∆E

λSymk E(p) = tr(Frobp|Symk
�,E) = pk/2symk(θE,p),

hence the Sato/Tate conjecture would follow from the following (weak form of

a) conjecture of Langlands

Conjecture. (Langlands) For any k � 1, the completed (by an explicit local

factor at infinity) L-function, Λ(Symk
E,�, s) is automorphic; in particular, it

satisfies FCT (and is holomorphic over C) and GPNT.

The case k = 1 of this conjecture is just Theorem 4 above. The case k = 2

follows from Theorem 4 – more precisely the fact that L(E, s) is modular cf.

Remark 11 – and earlier work of Gelbart/Jacquet [3]. The cases k = 3, 4 are

due to Kim/Shahidi and Kim [4, 5, 6] and by the Rankin/Selberg theory of

Jacquet/Piatetsky-Shapiro/Shalika, their results also imply that (4.9) is valid

for for k = 5, 6, 7, 8 so that by now (4.9) holds unconditionally for k � 8.

We will now describe an application of Chebotareff’s theorem to the

Sato/Tate conjecture, due to Serre [10]. It concerns the proportion of primes

for which ap(E) = 0; note that the condition ap(E) = 0 implies that Ep is a

supersingular elliptic curve. As explained above if E is CM, the proportion

of primes such that ap(E) = 0 (θE,p = π/2) is 1/2. On the other hand, when

E has no CM, the Sato/Tate conjecture predicts that the proportion of such

primes is 0.

Theorem. (Serre) Let E be a non-CM elliptic curve, then for X → +∞

|{p � X, ap(E) = 0}| = o(π(X)).

For � a prime, one considers the Galois representation of Gal(Q/Q) acting

on the set of �-torsion points of E, E(Q)[�] � (Z/�Z) × (Z/�Z) = F2
� . During

the proof of Theorem 5 one obtains the following congruence relation: for

p � �∆E one has

tr(Frobp|E(Q)[�]) = ap(E) (mod�), det(Frobp|E(Q)[�]) = p (mod�).

on the other hand, Serre proved the deep and remarkable fact that the image

of this representation in Aut(E(Q)[�]) � GL(2,F�) is most of the time as big

as possible [9].
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Theorem. (Serre) Let E be a non-CM elliptic curve, for all but finitely many

� the image of Gal(Q/Q) in Aut(E(Q)[�]) � GL(2,F�) is GL(2,F�).

Picking � as above, by the Chebotareff density theorem, one sees that for

X → +∞
1

π(X)
|{p � X, tr(Frobp|E(Q)[�]) = 0(mod�)}|

→ |{g ∈ GL(2,F�), tr(g) = 0}|
|GL(2,F�)|

� �3

�4 � 1

�
;

hence by the congruence relation above we obtain that for any � large enough

lim sup
X→+∞

1

π(X)
|{p � X, ap(E) = 0}|

� lim
X→+∞

1

π(X)
|{p � X, ap(E) ≡ 0 (mod�)}| � 1

�
.
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5 L-functions over function fields

In this last lecture, we consider some analog in positive characteristic of the

Artin L-functions considered before. For this we need to introduce some analog

of the rationals or of number fields. this analog is to be found amongst the

field of functions of a non-singular curve defined over a finite field.
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5.1 Function fields

Let k = Fq be a finite field (q is a prime power) and k be an algebraic closure;

an algebraic affine plane curve Ca is given by an equation

F (x, y) = 0 (5.1)

where F (x, y) ∈ k[x, y] is a polynomial in two variables with coefficients in

k which is irreducible as a polynomial in k. In particular, the elliptic curves

encountered in the previous lectures form a special class of curves. We will

require the curve to be non-singular by which we mean that the system of

equations

F (x, y) =
∂

∂x
F (x, y) =

∂

∂y
F (x, y) = 0

has no solutions in k
2
. If K is any field extension of k, we denote by Ca(K)

the set of K-rational points of Ca, that is the set of solutions in K2 of the

equation (5.1):

Ca(K) = {(x, y) ∈ K2, F (x, y) = 0}.

Note that for a finite extension k ⊂ k′ ⊂ k, the Galois group Gal(k/k) acts

on the set of k′-rational point by acting on the coordinates: for σ ∈ Gal(k/k)

and P = (x, y) ∈ Ca(K), σ.P = P ′ = (σ(x), σ(y)) ∈ Ca(K). The ring of

(algebraic) functions on Ca is by definition the quotient of the ring k[x, y] by

the ideal generated by F (x, y)

OCa := k[x, y]/(F (x, y)).

This is an integral domain and the function field of Ca is the field of fractions

of OCa :

k(C) := Frac(OCa ).

As in the case of number fields, the ideals of OCa factor uniquely as a product

of prime ideals. For p a prime ideal, the quotient ring

kp = OCa /p.OCa

is a finite extension of k and is called the residue field. Its degree is by definition

the degree of p and is written deg p; the norm of p, N(p), is the cardinality

of kp. A prime ideal of Ca is also called a closed point: the reason is that

there is a one-to-one correspondence between the prime ideals of OCa and the

set of Gal(k/k)-orbits of geometric (ie. k-rational) points P ∈ Ca(k). This
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correspondence preserves the degree in the sense that if p corresponds to the

orbit, Gal(k/k).P := {P σ , σ ∈ Gal(k/k)}, of P = (xP , yP ) then kp = k(xP , yP )

is the field generated by the coordinates of P and |Gal(k/k).P | = deg p.

Example. The most typical example is that of the affine line A1
k defined by

the equation Y = 0. In that case OCa = k[X] is a principal domain and the

prime ideals are generated by the irreducible monic polynomials in k[X]. Given

an irreducible polynomial p(X) and p = p.k[X] ⊂ k[X], one has deg p = deg p

and the orbit of kp-rational points corresponding to p is just the set of roots

of p(X) in k.

The L-function attached to the affine curve Ca is given by the product

L(Ca, s) :=
∏

p

(1 − 1

N(p)s
)−1 =

∑
a

1

N(a)s
.

Here a ranges over the ideals of OCa .

Lemma 1. One has the following alternative expression

L(Ca, s) = exp(
∑
n�1

|Ca(Fqn )|
n

q−ns).

Proof. The proof is obtained by decomposing each Ca(Fqn ) into a disjoint

union of Gal(k/k)-orbits:

|Ca(Fqn )| =
∑
d|n

d|{Gal(k/k)−orbits of length d}| =
∑
d|n

d|{p, deg p = d}|;

then setting T = q−s, one has∑
n�1

|Ca(Fqn )|
n

q−ns =
∑
n�1

T n

n

∑
d|n

d|{p, deg p = d}| =
∑

p

deg p
∑
n�1

n≡0(deg p)

T n

n

=
∑

p

∑
n�1

T dn

n
=
∑

p

log(1 − T deg p)−1

It is not difficult to see that L(Ca, s) converges absolutely for Res > 1;

moreover it was proven by A. Weil that L(Ca, s) has meromorphic continuation

to C and has all its zeros satisfying Res � 1/2 (this is the Riemann hypothesis

for curves over finite fields). However the L-function of Ca, as it is defined,
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does not satisfy a nice functional equation and does not have all its zeros on the

critical line Res = 1/2 in general: the reason it that (much as in the case of the

standard L-function) it has to be completed with local factors corresponding to

“points at infinity”. To see this consider the two simple examples of Ca = A1
k

the affine line or Ca = Ea is a affine elliptic curve. In the first case, A1
k needs

to be embedded into the projective line P1
k and one needs to add an extra

k-rational point at infinity so that

L(A1
k, s) =

1

(1 − q1−s)
, L(P1

k, s) =
1

(1 − q−s)(1 − q1−s)
,

L(P1
k, 1 − s) = q1−2sL(P1

k, s).

In the second case, again the point at infinity OE was missing and (recall that

|aq(E)| � 2
√

q)

L(Ea, s) =
1 − aq(E)q−s + q1−2s

(1 − q1−s)
,

L(E, s) =
1 − aq(E)q−s + q1−2s

(1 − q−s)(1 − q1−s)
= L(E, 1 − s).

In both cases, one see that the completed L-function satisfies a functional

equation.

5.2 Elliptic curves over function fields

We have seen that there is a strong analogy between number fields and function

fields of curves. One may then consider elliptic curves defined over a function

field k(C). From now on the function field considered will be the simplest one:

the field associated to the affine line A1
k, k(A1

k) = k(T ). An elliptic curve over

K is the curve defined by the equation

ET : y2 = x3 + a(T )x + b(T ) (5.2)

with a(T ), b(T ) ∈ k[T ] two polynomials in the indeterminate T such that

∆(a, b) = ∆(T ) = 4a3(T ) + 27b2(T ) �= 0. Moreover, we will assume that

(a(T ), b(T )) = 1.

Let p ⊂ k[T ] be the prime ideal generated by some monic irreducible poly-

nomial p(T ) ∈ k[T ]. One can then consider the equation (5.2) and reduce its

coefficients modulo p, this gives

Ep : y2 = x3 + a(T )x + b(T ),
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(with a(T ), b(T ) the reductions of a(T ), b(T ) modulo p) and we obtain an

elliptic curve over kp = k[T ]/(p) � Fqdeg p ; note moreover that Ep is non-

singular if p(T ) � ∆(T ).

Remark 13. If p(T ) has degree 1, p(T ) = T − t with t ∈ k, then reducing

modulo p(T ) amounts to replacing the indeterminate T in (5.2) by the scalar

t, thus one obtain an elliptic curve over k. In that way, one sees ET as a one

parameter family of elliptic curves (defined over finite fields) indexed by the

affine line.

For each prime p such that p � ∆(T ), one can define as usual ap(E) by

|Ep(kp)| = N(p) + 1 − ap(E)

and by Hasse’s bound

|ap(E)| � 2
√

N(p) = 2qdeg p/2.

One can then form the global (incomplete) L-function

L(∆)(E, s) =
∏

p�∆(T )

(1 − ap(E)

N(p)s
+

N(p)

N(p)2s
)−1.

This series is absolutely convergent for Res > 3/2 and it is a consequence of

deep results of Grothendieck, Deligne and others that

1. L(∆)(E, s) admits analytic continuation to C (in fact L(∆)(E, s) is a poly-

nomial in q−s with coefficients in Q),

2. The zeros of L(∆)(E, s) satisfy Res � 1 (this is the analog of GRH).

In fact the analog of the Sato/Tate conjecture hold in this case

Theorem 6. (Deligne) Let E be an elliptic curve over k(T ) defined by the

equation (5.2) and with a(T ), b(T ) coprime; for p � ∆(T ) define θE,p ∈ [0, π] by

cos(θE,p) = ap(E)/2
√

N(p),

then as d → +∞, the set {θE,p} p
deg p=d

becomes equidistributed on [0, π] rela-

tively to the Sato/Tate measure dµST = 2
π

sin2 θdθ. In other words, for any

0 � α < β � π, one has, for d → +∞,

1

|{p, deg p = d}|
∑

deg p=d

1[α,β](θE,p) →
∫ β

α

2

π
sin2 θdθ.

In the next section, we will explain the structure of the proof of that theo-

rem.
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5.3 �-adic sheaves and their L-functions

Let K = k(T ). We denote by k an algebraic closure of k, by K an algebraic clo-

sure of K and GK = Gal(K/K) its Galois group. We also denote by Ksep ⊂ K

the separable closure of K (ie. the set of elements of K whose minimal polyno-

mial –over K– has no multiple root). The Galois group of Ksep over K will be

called the arithmetic Galois group and will be noted Garith
K := Gal(Ksep/K).

In contrast with the number field case Ksep has another important subfield

namely k.K = k(T ), whose Galois group Gal(Ksep/k.K) is called the geomet-

ric Galois group and will be noted Ggeom
K . Hence we have the exact sequence

1 → Ggeom
K → Garith

K → Gal(k.K/K) → 1 (5.3)

with Gal(k.K/K) � Gal(k/k) = 〈Frobq〉; the isomorphism is obtained by

restriction to k.

To p a prime ideal of k[T ], one can associate a decomposition subgroup

Dp ⊂ Garith
K well defined up to conjugacy, together with a surjective reduction

map

Dp �→ Gal(k/kp),

whose kernel is by definition the inertia subgroup at p and is denoted Ip:

1 → Ip → Dp → Gal(k/kp) = 〈Frobp〉 → 1.

Here and for the rest of this lecture, we make the convention that Frobp is not

the usual frobenius (which sends x to xq) but its inverse: the latter is called

the geometric frobenius .

Let � � q be a prime invertible in k, and let Q� be the field of �-adic numbers.

We suppose there has been chosen once and for all an algebraic closure Q�

contained in C.

Definition. Let S = {p} be a finite set of places and let � � q be a prime. An

Q�-sheaf on A1
k, F = (ρF , VF) say, lisse outside S, is a continuous represen-

tation of Garith
K on a finite dimensional Q�-vector space VF

ρF : Garith
K → AutQ�

(VF),

such that for any p �∈ S and for some choice of a decomposition subgroup Dp,

the inertia subgroup Ip acts trivially on VF (this implies that the action of the

inertia of any decomposition subgroup at p is trivial).
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• By definition, the rank of F is the dimension of VF and will be noted rF .

• By definition, one has, choosing a basis for VF , the inclusions

ρF(Ggeom
K ) ⊂ ρF(Garith

K ) ⊂ Aut(VF) � GL(rF ,Q�) ⊂ GL(rF ,C).

The Zariski closure of ρF(Ggeom
K ) (resp. ρF(Garith

K )) inside GL(rF ,C) is

called the geometric (resp. arithmetic) monodromy group and is noted

Ggeom
F (resp. Garith

F ).

• If Garith
K (resp Ggeom

K ) acts irreducibly on VF the sheaf F is called arith-

metically (resp. geometrically) irreducible.

Remark 14. Since Ggeom
K ⊂ Garith

K , Ggeom
F ⊂ Garith

F and geometrical irreducibil-

ity is stronger than arithmetical irreducibility.

Remark 15. There is another, more geometrical description of a �-adic sheaf

as a local system over the base curve A1
k . Such a description is useful in the

proof the two main theorems given below.

Because of (5.3) one can associate to any p �∈ S a well defined Frobenius

conjugacy class in Aut(V ) which we denote by ρF(Frobp) or Frobp|F .

Definition. For w an integer, the sheaf F is pure (resp. mixed) of weight

w if for any p �∈ S, and any eigenvalue α of Frobp|F (viewed as a complex

number via the embedding chosen above), one has |α| = N(p)w/2. (resp. |α| �
N(p)w/2).

By a fundamental result of Deligne, the geometric monodromy group of a

pure sheaf of some weight is reductive and even semi-simple.

The (incomplete) L-function associated to an �-adic sheaf F is the Euler

product

L(F , s) =
∏
p�∈S

det(Id− 1

N(p)s
Frobp|F)−1.

If F is mixed of weight w, then L(F , s) is absolutely convergent for Res >

1 + w/2.

A fundamental fact due to Grothendieck is that L(F , s) admits meromor-

phic continuation to C: this is the content of the
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Theorem. (Grothendieck/Lefshetz trace formula) Let F be an Q�-sheaf lisse

on U = A1
k−S and pure of some weight w. There exist three finite dimensional

Q�-vector spaces, H0
c (U,F), H1

c (U,F), H2
c (U,F) say, on which Gal(k/k) acts

and such that for any n � 1 one has

∑
deg p|n
p�∈S

deg p.tr(Frobn/ deg p
p |F) =

2∑
i=0

(−1)itr(Frobn
q |H i

c(U,F)). (5.4)

In particular (by using (5.4) and a computation similar to the proof of Lemma

1), one has the identity

L(F , s) =
det(Id − q−sFrobq |H1

c (U,F))

det(Id− q−sFrobq |H0
c (U,F)) det(Id− q−sFrobq |H2

c (U,F))

which shows the meromorphic continuation of L(F , s) to the whole complex

plane.

Moreover (as U is affine) H0
c (U,F) is always {0} and, if F is geometrically

irreducible,

H2
c (U,F) = {0},

so that in that case, L(F , s) extends to an holomorphic function over C. In

general, dim H2
c (U,F) equals the dimension of the coinvariants of V under the

action of Ggeom
K .

The next fundamental result, due to Deligne [2], is a sharp bound for the

eigenvalues of Frobq acting on the H i
c(U,F) in terms of the weight of F ; this

is the exact analog to GRH:

Theorem. (Deligne) For F an �-adic sheaf pure of weight w as above, for

i = 0, 1, 2, the eigenvalues of Frobq acting on H i
c(U,F) satisfy |α| � q(i+w)/2.

In particular, the poles of L(F , s) are located in the half plane Res � 1 + w
2

(and there are no such poles if F is geometrically irreducible) and the zeros of

L(F , s) are located in the half plane Res � 1+w
2 .

Armed with these two powerful black boxes, we can at least describe the

proof of the Sato/Tate conjectures in the function field case. By Weyl’s equidis-

tribution criterion, it is sufficient to prove that for any k � 1 (see Lecture 4)

lim
d→+∞

1

|{p, deg p = d}|
∑

p, deg p=d

symk(θE,p) = 0.
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The fundamental theoretical point is to realize the symk(θE,p) as traces of

frobenius of an �-adic sheaf. It turn out that such a sheaf exists: more precisely

(see [2])

Theorem 7. Let ET be the elliptic curve over K defined by the equation (5.2)

with ∆(T ) �= 0. There exists a Q�-sheaf E, of rank 2, lisse on A1
k − S, where

S = {p, p|∆(T )}, and of weight 1 such that

• For p �∈ S, tr(Frobp|E) = ap(E), det(Frobp|E) = N(p).

• The rank one sheaf det(E) is geometrically trivial (ie. the representation

det(ρE) restricted to Ggeom
K is trivial); in particular Ggeom

E ⊂ SL(2,C).

• When a(T ), b(T ) are coprimes, the geometric monodromy group is s big

as possible:

Ggeom
E = SL(2,C). (5.5)

In rough terms, the sheaf E is obtained as the local system formed by the

family of �-adic Tate modules V�(Et) for t varying over A1
k(k), but there exists

a more formal and conceptual construction.

The key geometrical ingredient is the fact that for (a(T ), b(T )) = 1 the geo-

metric monodromy group is big: the coprimality condition is a simple criterion

to insure that the family ET is not geometrically constant. One can see this

maximality statement as the analog in the function field case of the Theorem

of Serre (see Lecture 4) asserting that for a non-CM elliptic curve E the image

of the Galois representation on the �-torsion points of E is almost always as

big as possible.

Since ρE(Garith
K ) ⊂ AutQ�

(V ) � GL(2,Q�) one can compose this represen-

tation with any representation ρ of GL(2). Considering for k � 1 the k-th

symmetric power of the standard representation of GL(2), one obtains a new

�-adic sheaf of rank k + 1

SymkE : Garith
K → AutQ�

(V ) → AutQ�
(SymkV ) � GL(k + 1,Q�).

For p �∈ S, let {α1,p(E), α2,p(E)} be the eigenvalues of Frobp|F

α1,p(E) + α2,p(E) = ap(E) = 2
√

N(p) cos(θE,p), α1,p(E)α2,p(E) = N(p).

Then the eigenvalues of the frobenius at p of SymkE are given by

{αk
1,p(E), αk−1

1,p (E)α1
2,p(E) . . . , αk

2,p(E)}.
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Hence

tr(Frobp|SymkE) = αk
1,p(E) + αk−1

1,p (E)α1
2,p(E) + · · · + αk

2,p(E)

= N(p)k/2symk(θE,p).

It follows that SymkE is pure of weight k. Moreover since the representa-

tion Symk, k � 1, exhausts all the irreducible representations of SL(2,Q�),

it follows from (5.5) that SymkE is geometrically irreducible. Hence by the

Grothendieck/Lefshetz trace formula (using that H2
c (. . . ) = 0) and by Deligne’s

theorem on the weight, one has for d � 1,∑
d′|d

d′qd′k/2
∑

p�∆(T )
deg p=d′

symk(θE,p) = O(dim H1
c (U, SymkE)qd k+1

2 ), (5.6)

where the constant implied in O(. . . ) is at most 1. We decompose the left-hand

side as follows:∑
p�∆(T )
deg p=d

dqdk/2symk(θE,p) +
∑

d′|d, d′<d

d′qd′k/2
∑

p�∆(T )
deg p=d′

symk(θE,p). (5.7)

Using Möbius inversion on the identity

qn =
∑
d|n

d|{p, deg p = d}|,

we obtain that

d|{p, deg p = d}| =
∑
d′|d

µ(d′)qd/d′ = qd +
∑
d′|d
d′�2

µ(d′)qd/d′ .

Hence

|{p, deg p = d}| =
qd

d
+ O(qd/2), (5.8)

where the constant implied is absolute (this is a function field version of the

PNT). We use (5.8) and a trivial estimate on the right-hand side of (5.7) (if

d′|d, d′ < d then d′ � d/2) and after dividing by qdk/2 we obtain

d
∑

p�∆(T )
deg p=d

symk(θE,p) � (dim H1
c (U, SymkE) + (k + 1))q

d
2 .

Hence
1

|{p � ∆(T ), deg p = d}|
∑

p�∆(T )
deg p=d

symk(θE,p) �k,ET
q−d/2.

This concludes the proof of the Sato/Tate law for the function field case.
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5.4 Sato/Tate laws and Random Matrices

5.4.1 Deligne’s equidistribution Theorem

The above situation can be generalised as follows: suppose we are given an

�-adic sheaf F of rank r � 1, lisse on A1
k − S which is

1. pure of weight 0,

2. Geometrically irreducible,

3. the arithmetic and geometric monodromy groups coincide : Garith
F =

Ggeom
F := G ⊂ GL(r,C). Recall that Ggeom

F is semisimple.

Let K be a fixed maximal compact subgroup of G. For p �∈ S, using that

the eigenvalues of the frobenius Frobp|F have absolute value 1 and that all

maximal compact subgroups are conjugate, one can show that Frobp|F gives

rise to a well defined K-conjugacy class in K� which we still denote by Frobp|F .

The Sato/Tate law explained above is a special case of the general

Theorem. (Deligne equidistribution theorem) Under the above assumptions,

the set of conjugacy classes

{(Frobp|F)} p�∈S
deg p=d

⊂ K�

becomes equidistributed as d → +∞ w.r.t. the Sato/Tate measure µST,K� on

K�. Hence for any continuous function f on K�, one has for d → +∞
1

|{p �∈ S, deg p = d}|
∑

p�∈S, deg p=d

f(Frobp|F) →
∫

K�

f(g�)dµST,K (g�).

The proof of Theorem 6 is a specialization of Deligne’s equidistribution

theorem and the general proof is similar.

5.4.2 Connection with RMT

Suppose we are given a random matrix ensemble {K(r)}r�1 made of com-

pact linear groups of rank increasing with r, each one equipped with its Haar

measure. In very rough terms, Random Matrix Theory is concerned with the

various statistics associated to the eigenvalues or the characteristic polyno-

mial of typical elements g of K(r) (for instance: for k fixed, the k-th power of
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the characteristic polynomial of such g evaluated at 1 or the pair correlation

distribution) and aims at determining the possible limit as r → +∞ of the

expectation or the variance of such statistics. In many occasions, RMT show

that the limit exists and can be computed rather explicitly.

Note that these statistics depend solely on the eigenvalues and (at least

all the ones I know) can be expressed in terms of central functions on K(r) –

possibly with value in a space of distributions. Thus after some reductions, the

evaluation of these statistics via RMT amounts to evaluate the expectation of

some function, f say, on K(r)�.

Now suppose that for each r one has a corresponding ensemble of �-adic

sheaves {Fr}r�1 such that for each r, Fr satisfy the hypotheses of Deligne’s

equidistribution theorem and such that the geometric monodromy group Ggeom
Fr

contains K(r) as a maximal compact subgroup. Then the frobenius conjugacy

classes {Frobp|Fr}p give rise to well defined conjugacy classes in K(r) and

Deligne’s equidistribution theorem says precisely that the expectation∫
K (r)�

f(g�)dµST,K (r)(g
�)

can be computed as the limiting averaged value of f evaluated over the frobe-

nius conjugacy classes of large degree d: for d → +∞,

1

|{p �∈ S, deg p = d}|
∑

p�∈S, deg p=d

f(Frobp|F) →
∫

K (r)�

f(g�)dµST,K (r)(g
�).

Combining these two ingredients one usually deduces, that in the large r limit

the eigenvalues of a typical frobenius conjugacy class Frobp|Fr of degree d

sufficiently large (d � d(r)) follow approximately the statistics of a typical

random matrix of K(r). As the large r-limits of such statistics can be computed

explicitly via RMT, one obtains quite precise (unconditional) information on

the limiting behavior of typical frobenius eigenvalues or sheaves of large rank.

This concludes our short description of the possible links between random

matrices and L-functions over function fields. For those interested in digging

further in this direction as well as for a more complete description of the �-adic

methods presented, I recommend the reading the seminal book of Katz/Sarnak

[7] as well as other books of Katz devoted more specifically to the �-adic meth-

ods sketched here [3, 4, 5]. In particular [5] contains some striking applications

(of diophantine and arithmetic nature) of the interactions between RMT and

L-functions over function fields.
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Computational methods and

experiments in analytic number theory

Michael Rubinstein

1 Introduction

We cover some useful techniques in computational aspects of analytic num-

ber theory, with specific emphasis on ideas relevant to the evaluation of L-

functions. These techniques overlap considerably with basic methods from

analytic number theory. On the elementary side, summation by parts, Euler-

Maclaurin summation, and Möbius inversion play a prominent role. In the

slightly less elementary sphere, we find tools from analysis, such as Poisson

summation, generating function methods, Cauchy’s residue theorem, asymp-

totic methods, and the fast Fourier transform. We then describe conjectures

and experiments that connect number theory and random matrix theory.
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2 Basic methods

2.1 Summation by parts

Summation by parts can be viewed as a discrete form of integration by parts.

Let f be a function from Z+ to R or C, and g a real or complex valued function

of a real variable. Then∑
1�n�x

f(n)g(n) =

( ∑
1�n�x

f(n)

)
g(x) −

∫ x

1

( ∑
1�n�t

f(n)

)
g′(t)dt. (2.1)

Here we are assuming that g′ exists and is continous on [1, x]. One verifies this

identity by writing the integral as
∫ 2

1 +
∫ 3

2 + . . . +
∫ x

�x�, noticing that the sum

in each integral is constant on each open interval, integrating, and telescoping.

Although our integral begins at t = 1, it is sometimes convenient to start

earlier, for example at t = 0. This doesn’t change the value of the integral,

the sum in the integrand being empty if t < 1. Formula (2.1) can also be

interpreted in terms of the Stieltjes integral.

A slightly more general form of partial summation is over a set {λ1, λ2, . . .}
of increasing real numbers:∑

λn �x

f(n)g(λn) =

(∑
λn �x

f(n)

)
g(x) −

∫ x

λ1

(∑
λn �t

f(n)

)
g′(t)dt.

As an application, let

π(x) =
∑
p�x

1

denote the number of primes less than or equal to x, and

θ(x) =
∑
p�x

log p

denote the number primes up to x with each prime weighted by its logarithm.

The famous equivalence between π(x) ∼ x/ log x and θ(x) ∼ x can be verified

using partial summation. Write

π(x) =
∑
p�x

log p
1

log p
= θ(x)

1

log x
+

∫ x

2
θ(t)

dt

t(log t)2 ,

from which it follows that if θ(x) ∼ x then π(x) ∼ x/ log x. The converse

follows from

θ(x) =
∑
p�x

1 · log p = π(x) log x−
∫ x

2
π(t)

dt

t
.
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2.2 Euler-Maclaurin summation

A powerful application of partial summation occurs when the function f(n)

is identically equal to 1 and the function g(t) is many times differentiable.

In that case, summation by parts specializes to the Euler Maclaurin formula

which involves one summation by parts with f(n) = 1 followed by repeated

integration by parts. For a, b ∈ Z,a < b, partial summation gives∑
a<n�b

g(n) = (b− a)g(b) −
∫ b

a

(%t& − a)g′(t)dt = bg(b) − ag(a) −
∫ b

a

%t&g′(t)dt.

Here, we have chosen to start the integral at t = a, rather than at t = a + 1.

Writing %t& = t− {t}, with {t} the fractional of t we get∑
a<n�b

g(n) =

∫ b

a

g(t)dt +

∫ b

a

{t}g′(t)dt.

The second term on the r.h.s. should be viewed as the necessary correction

that arises from replacing the sum on the left with an integral.

The next step is to write {t} = 1/2 + ({t} − 1/2), the latter term having

nicer properties than {t}, for example being odd and also having zero constant

term in its Fourier expansion. So∑
a<n�b

g(n) =

∫ b

a

g(t)dt +
1

2
(g(b) − g(a)) +

∫ b

a

({t} − 1/2)g′(t)dt. (2.2)

Integrating the second integral repeatedly by parts leads naturally to the in-

troduction of Bernoulli polynomials, named after Jacob Bernoulli (1654-1705),

who discovered them in connection to the problem of studying sums of positive

integer powers of consecutive integers. During the 1730’s Euler (1707-1783),

who studied mathematics from Jacob’s brother Johann (1667-1748), devel-

oped the summation formula being described in connection with computing

reciprocals of powers and Euler’s constant.

2.2.1 Bernoulli Polynomials

The Bernoulli polynomials are defined recursively by the following relations

B0(t) = 1

B′
k(t) = kBk−1(t), k � 1∫ 1

0
Bk(t)dt = 0, k � 1.
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The second equation determines Bk(t) recursively up to the constant term,

and the third equation fixes the constant. The first few Bernoulli polynomials

are listed in Table 1.

k Bk(t)

0 1

1 t− 1/2

2 t2 − t + 1/6

3 t3 − 3/2t2 + 1/2t

4 t4 − 2t3 + t2 − 1/30

5 t5 − 5/2t4 + 5/3t3 − 1/6t

Table 1: The first few Bernoulli polynomials

Let Bk = Bk(0) denote the constant term of Bk(t). Bk is called the k-th

Bernoulli number. We state basic properties of the Bernoulli polynomials.

Expansion in terms of Bernoulli numbers:

Bk(t) =
k∑
0

(
k

m

)
Bk−mtm , k � 0

Generating function:

zezt

ez − 1
=

∞∑
0

Bk(t)z
k/k!, |z| < 2π

Fourier series:

B1({t}) = − 1

π

∞∑
1

sin(2πmt)

m
, t �∈ Z (2.3)

Bk({t}) = −k!
∑
m �=0

e2πimt

(2πim)k
, k � 2. (2.4)

Functional equation:

Bk(t) = (−1)kBk(1 − t), k � 0

Difference equation:

Bk+1(t + 1) −Bk+1(t)

k + 1
= tk, k � 0 (2.5)
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Special values:

Bk(1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)kBk(0), k � 0

0, k odd, k � 3

1/2, k = 1

i.e.

Bk(1) = Bk(0), unless k = 1 (2.6)

Recursion:
k−1∑
m=0

(
k

m

)
Bm = 0, k � 2

Equation (2.3) can be obtained directly. The other formulae can be verified

using the defining relations and induction.

Property (2.4) can be used to obtain a formula for ζ(2m). Let

ζ(s) =
∞∑
1

n−s, Res > 1.

Taking t = 0, k = 2m, even, in the Fourier expansion of Bk({t}) gives

B2m =
(−1)m+1(2m)!

(2π)2m
2ζ(2m)

so that

ζ(2m) =
(−1)m+1(2π)2m

2(2m)!
B2m ,

a formula discovered by Euler. Because ζ(2m) → 1 as m →∞, we have

B2m ∼ (−1)m+12(2m)!

(2π)2m

as m → ∞.

2.2.2 Euler-Maclaurin continued

Returning to (2.2), we write∫ b

a

({t} − 1/2)g′(t)dt =

∫ b

a

B1({t})g′(t)dt.

Breaking up the integral
∫ b

a
=
∫ a+1

a
+
∫ a+2

a+1 + . . .
∫ b

b−1, integrating by parts, and

noting that B2(1) = B2(0), we get, assuming that g(2) exists and is continous

on [a, b],
B2

2
(g′(b) − g′(a)) −

∫ b

a

B2({t})
2

g(2)(t)dt.
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Repeating, using Bk(1) = Bk(0) if k � 2, leads to the Euler-Maclaurin sum-

mation formula. Let K be a positive integer. Assume that g(K ) exists and is

continous on [a, b]. Then

∑
a<n�b

g(n) =

∫ b

a

g(t)dt +
K∑

k=1

(−1)kBk

k!
(g(k−1)(b) − g(k−1)(a))

+
(−1)K+1

K!

∫ b

a

BK ({t})g(K )(t)dt.

2.2.3 Application: Sums of consecutive powers

We apply Euler-Macluarin summation to obtain Bernoulli’s formula for sums

of powers of consecutive integers. Let r � 0 be an integer. Then

N∑
n=1

nr =
Br+1(N + 1) −Br+1(1)

r + 1
.

We can verify this directly using property (2.5), substituting n = 1, 2, . . . , N ,

and telescoping. However, it is instructive to apply the Euler-Maclaurin for-

mula, which, once begun, carries through in an automatic fashion. In this

example, we have g(t) = tr. Notice that g(r+1)(t) = 0, and that

g(m)(N) − g(m)(0) =

⎧⎨⎩r(r − 1) . . . (r −m + 1)N r−m , m � r − 1

0, m � r.

If m = 0 we set r(r − 1) . . . (r −m + 1) = 1. Then

N∑
n=1

nr =

∫ N

0
trdt +

r∑
k=1

(−1)kBk

k!
r(r − 1) . . . (r − k + 2)N r−k+1

=

∫ N

0
trdt +

r∑
k=1

(−1)kBk

r − k + 1

(
r

k

)
N r−k+1

=

∫ N

0

r∑
k=0

(−1)kBk

(
r

k

)
tr−kdt

=

∫ N

0
(−1)rBr(−t)dt =

∫ N

0
Br(t + 1)dt

= (Br+1(N + 1) −Br+1(1))/(r + 1).

If r � 1, the last line simplifies according to (2.6) and equals

Br+1(N + 1) −Br+1

r + 1
.
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2.2.4 Application: ζ(s)

The Euler-Maclaurin formula can be used to obtain the analytic continuation of

ζ(s) and also provides a useful expansion for its numeric evaluation. Consider

N∑
1

n−s = 1 +
N∑
2

n−s

with Res > 1. We have started the sum at n = 2 rather than n = 1 to

avoid difficulties near t = 0 below. Applying Euler-Maclaurin summation,

with g(t) = t−s, g(m)(t) = (−1)ms(s + 1) . . . (s + m − 1)t−s−m , we get

N∑
1

n−s = 1 +

∫ N

1
t−sdt −

K∑
k=1

Bk

k

(
s + k − 2

k − 1

)
(N−s−k+1 − 1)

−
(

s + K − 1

K

)∫ N

1
BK ({t})t−s−Kdt.

Evaluating the first integral, taking the limit as N → ∞, with Res > 1, we

get

ζ(s) =
1

s− 1
+

1

2
+

K∑
2

(
s + k − 2

k − 1

)
Bk

k
−
(

s + K − 1

K

)∫ ∞

1
BK ({t})t−s−Kdt.

(2.7)

While we started with Res > 1, the r.h.s. is meromorphic for Res > −K + 1,

so gives the meromorphic continuation of ζ(s) in this region, with the only

pole being the simple pole at s = 1.

Taking s = 2 −K, K � 2,

ζ(2 −K) = 1 − 1

K − 1

K−1∑
k=0

(−1)k

(
K − 1

k

)
Bk =

(−1)KBK−1

K − 1
.

Thus,

ζ(1 − 2m) = −B2m/(2m), m = 1, 2, 3, . . .

ζ(−2m) = 0, m = 1, 2, 3, . . .

ζ(0) = −1/2.

Applying the functional equation for ζ,1

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1 − s)/2)ζ(1 − s)

1Editors’ comment: See for example D.R. Heath-Brown’s lectures, page 1, Theorem 8.
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and

Γ(1/2) = π1/2 =
−1

2

−3

2

−5

2
· · · −(2m − 1)

2
Γ(1/2 −m)

gives another proof of Euler’s identity

ζ(2m) =
(−1)m+1(2π)2m

2(2m)!
B2m , m � 1.

2.2.5 Computing ζ(s) using Euler-Maclaurin summation

Next we describe how to adapt the above to obtain a practical method for

numerically evaluating ζ(s). From a computational perspective, the following

works better than using (2.7). Let N be a large positive integer, proportional

in size to |s|. We will make this more explicit shortly. For Res > 1, write

ζ(s) =
∞∑
1

n−s =
N∑
1

n−s +
∞∑

N+1

n−s. (2.8)

The first sum on the r.h.s. is evaluated term by term, while the second sum is

evaluated using Euler-Maclaurin summation

∞∑
N+1

n−s =
N 1−s

s− 1
+

K∑
1

(
s + k − 2

k − 1

)
Bk

k
N−s−k+1 (2.9)

−
(

s + K − 1

K

)∫ ∞

N

BK ({t})t−s−Kdt.

As before, the r.h.s. above gives the meromorphic continuation of the l.h.s. to

Res > −K + 1. Breaking up the sum over n in this fashion allows us to throw

away the integral on the r.h.s., and obtain sharp estimates for its neglected

contribution. First, from property (2.4),

|BK ({t})| � K!

(2π)K
2ζ(K).

It is convenient to take K = 2K0, even, in which case we have from (2.8)

|B2K0 ({t})| � B2K0 .
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Therefore, for s = σ + iτ, σ > −2K0 + 1,∣∣∣∣(s + 2K0 − 1

2K0

)∫ ∞

N

B2K0 ({t})t−s−2K0 dt

∣∣∣∣
�
∣∣∣∣(s + 2K0 − 1

2K0

)
B2K0

∣∣∣∣ N−σ−2K0 +1

σ + 2K0 − 1

=
|s + 2K0 − 1|
σ + 2K0 − 1

∣∣∣∣(s + 2K0 − 2

2K0 − 1

)
B2K0

2K0

∣∣∣∣N−σ−2K0+1

=
|s + 2K0 − 1|
σ + 2K0 − 1

|last term taken|.

A more precise estimate follows by comparison of B2K0 with ζ(2K0), and we

have that the remainder is

� ζ(2K0)

πNσ

|s + 2K0 − 1|
σ + 2K0 − 1

2K0−2∏
j=0

|s + j|
2πN

.

We start to win when 2πN is bigger than |s|, |s + 1|, . . . , |s + 2K0 − 2|. There

are two parameters which we need to choose: K0 and N , and we also need

to specify the number of digits accuracy, Digits, we desire. For example, with

σ � 1/2, taking

2πN � 10|s + 2K0 − 2|

with

2K0 − 1 > Digits +
1

2
log10(|s + 2K0 − 1|)

achieves the desired accuracy. The main work involves the computation of the

sum
∑N

1 n−s consisting of O(|s|) terms. Later we will examine the Riemann-

Siegel formula and its smoothed variants which, for ζ(s), involves a main sum of

O(|s|1/2) terms. However, for high precision evaluation of ζ(s), especially with

s closer to the real axis, the Euler-Maclaurin formula remains an ideal method

allowing for sharp and rigorous error estimates and reasonable efficiency.

In fact, we can turn the above scheme into a computation involving O(|s|1/2)

operations but requiring O((Digits+log |s|) log |s|) precision due to cancellation

that occurs. In (2.8) choose N ∼ |10s/(2π)|1/2, and assume that Res � 1/2.

Expand BK ({t}) into its Fourier series (2.4). We only need M = O(|s|1/2)

terms of the Fourier expansion to assure a contribution from the neglected

terms smaller than the desired precision. Each term contributes

K!

(
s + K − 1

K

)
1

(2πim)K

∫ ∞

N

e2πimtt−s−Kdt, (2.10)
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so the neglected terms contribute altogether less than

1

Nσ

|s + K − 1|
σ + K − 1

(
K−2∏
j=0

|s + j|
2πN

)( ∞∑
M+1

2

mK

)
.

Here we have combined the ±m terms together. Comparing to an integral, the

sum above is < 2/((K − 1)MK−1) and so the neglected terms contribute less

than

2

(K − 1)Nσ

|s + K − 1|
σ + K − 1

K−2∏
j=0

|s + j|
2πMN

.

We start to win when 2πMN exceeds |s|, . . . , |s+K − 2|. For σ � 1/2, choose

K > Digits + log10(|s + K − 1|) + 1 and M = N with

2πMN � 10|s + K − 2|.

Asymptotically, we can improve the above choices so as to achieve M = N ∼
|s|1/2/(2π), the same as in the Riemann-Siegel formula. The only drawback

is that extra precision as described above is needed. The individual terms

summed in (2.9) are somewhat large in comparison to the final result, this

coming form the binomial coefficients which have numerator (s+k−2) . . . (s+

1)s, and this leads to cancellation.

Finally to compute the contribution to the Fourier expansion from the terms

with |m| � M , we assume that 4|K so that the terms ±m together involve in

(2.10) the integral∫ ∞

N

cos(2πmt)t−s−Kdt = (2πm)s+K−1
∫ ∞

2πmN

cos(u)u−s−Kdu.

This can be expressed in terms of the incomplete Γ function∫ ∞

w

cos(u)uz−1du =
1

2

(
e−πiz/2Γ(z, iw) + eπiz/2Γ(z,−iw)

)
.

See Section 3 which describes properties of the incomplete Γ function and

methods for its evaluation.

The Euler-Maclaurin formula can also be used to evaluate Dirichlet L-

functions. It works in that case due to the periodic nature of the corresponding

Dirichlet coefficients. For general L-functions, there are smoothed Riemann-

Siegel type formulae. These are described later.
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2.3 Möbius inversion with an application to sums and

products over primes

Computations in analytic number theory often involve evaluating sums or

products over primes. For example, let π2(x) denote the number of twin primes

(p, p+2), with p and p+2 both prime and less than or equal to x. The famous

conjecture of Hardy and Littlewood predicts that

π2(x) ∼ 2
∏
p>2

p(p − 2)

(p − 1)2

x

(log x)2 .

Generally, it is easier to deal with a sum rather than a product, so we turn

this product over primes into a sum by expressing it as

exp

(∑
p>2

log(1 − 2/p) − 2 log(1− 1/p)

)
.

Letting f(p) = log(1− 2/p) − 2 log(1− 1/p), we have

f(p) = −
∞∑

m=1

2m − 2

mpm

hence ∑
p>2

f(p) = −
∞∑

m=1

2m − 2

m
(h(m) − 1/2m) (2.11)

with

h(s) =
∑

p

p−s, Res > 1.

We therefore need an efficient method for computing h(m). This will be dealt

with below. Notice that h(m)−1/2m ∼ 1/3m so the sum on the r.h.s. of (2.11)

converges exponentially fast. We can achieve faster convergence by writing∑
p>2

f(p) =
∑

2<p�P

f(p) +
∑
p>P

f(p),

summing the terms in the first sum, and expressing the second sum as

−
∞∑

m=1

2m − 2

m
(h(m) − 1/2m − . . . − 1/Pm).

A second example involves the computation of constants that arise in con-

jectures for moments of ζ(s). The Keating-Snaith conjecture [KeS] asserts

that

Mk(T ) :=
1

T

∫ T

o

|ζ(1/2 + it)|2kdt ∼ akgk

k2!
(log T )k2

(2.12)
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ak =
∏

p

(
1 − 1

p

)k2 ∞∑
m=0

(
m + k − 1

m

)2

p−m (2.13)

=
∏

p

(
1 − 1

p

)(k−1)2 k−1∑
j=0

(
k − 1

j

)2

p−j

and

gk = k2!
k−1∏
j=0

j!

(k + j)!
.

The placement of k2! is to ensure that gk is an integer [CF]. Keating and Snaith

also provide a conjecture for complex values, Rek > −1/2, of which the above

is a special case. Keating and Snaith used random matrix theory to identify

the factor gk. The form of (2.12), without identifying gk, was conjectured by

Conrey and Ghosh [CG].

The above conjecture gives the leading term for the asymptotics for the mo-

ments of |ζ(1/2+it)|. In [CFKRS] a conjecture is given for the full asymptotics

of Mk(T ):

Mk(T ) ∼
k2∑

r=0

cr(k)(log T )k2−r

where c0(k) = akgk/k
2! coincides with the Keating-Snaith leading term and

where the degree k2 polynomial is given implicitly as an elaborate multiple

residue. Explicit expressions for cr(k) are worked out in [CFKRS3] and are

given as c0(k) times complicated rational functions in k, generalized Euler con-

stants, and sums over primes involving log(p), 2F1(k, k, 1; p−1) and its deriva-

tives. One method for computing the cr(k)’s involves as part of a single step

the computation of sums of the form∑
p

(log p)r

pm
, m = 2, 3, 4, . . . r = 0, 1, 2, . . . . (2.14)

We now describe how to efficiently compute h(s) =
∑

p p−s and the sums

in (2.14). Take the logarithm of

ζ(s) =
∏

p

(1 − p−s)−1, Res > 1

and apply the Taylor series for log(1− x) to get

log ζ(s) =
∞∑

m=1

1

m
h(ms), Res > 1. (2.15)
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Let µ(n), the Möbius µ function, denote the Dirichlet coefficients of 1/ζ(s):

1/ζ(s) =
∏

p

(1 − p−s) =
∞∑
1

µ(n)n−s.

We have

µ(n) =

⎧⎨⎩0 if n is divisible by the square of an integer > 1

(−1)number of prime factors of n if n is squarefree

and ∑
n|r

µ(n) =

⎧⎨⎩1 if r = 1

0 otherwise.

The last property can be proven by writing the sum of the left as
∏

p|r(1− 1),

and it allows us to invert equation (2.15)

∞∑
m=1

µ(m)

m
log ζ(ms) =

∞∑
m=1

µ(m)

m

∞∑
n=1

h(mns)

n

=
∞∑

r=1

h(rs)

r

∑
m|r

µ(m) = h(s),

i.e. ∑
p

p−s =
∞∑

m=1

µ(m)

m
log ζ(ms). (2.16)

This is an example of Möbius inversion, and expresses h(s) as a sum involving

ζ. Möbius inversion can be interpreted as a form of the sieve of Eratosthenes.

Notice that ζ(ms) = 1 + 2−ms + 3−ms + . . . tends to 1, and hence log ζ(ms)

tends to 0, exponentially fast as m → ∞. Therefore, the number of terms

needed on the r.h.s. of (2.16) is proportional to the desired precision.

To compute the series appearing in (2.14) we can differentiate h(s) r times,

obtaining ∑
p

(log p)r

ps
= (−1)r

∞∑
m=1

µ(m)

m
(log ζ(ms))(r). (2.17)

In both (2.16) and (2.17), we can use Euler-Maclaurin summation to com-

pute ζ and its derivatives. The paper of Henri Cohen [C] is a good reference

for computations involving sums or products of primes.
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2.4 Poisson summation as a tool for numerical integra-

tion

Let f ∈ L1(R) and let

f̂(y) =

∫ ∞

−∞
f(t)e−2πiytdt.

denote its Fourier transform. The Poisson summation formula asserts, for

f, f̂ ∈ L1(R) and of bounded variation, that

∞∑
n=−∞

f(n) =
∞∑

n=−∞
f̂(n).

We often encounter the Poisson summation formula as a potent theoretical

tool in analytic number theory. For example, the functional equations of the

Riemann ζ function and of the Dedekind η function can be derived by exploit-

ing Poisson summation. However, Poisson summation is often overlooked in

the setting of numerical integration where it provides justification for carrying

out certain numerical integrals in a very naive way.

Let ∆ > 0. By a change of variable

∆
∞∑

n=−∞
f(n∆) =

∞∑
n=−∞

f̂(n/∆) = f̂(0) +
∑
n �=0

f̂(n/∆)

so that ∫ ∞

−∞
f(t)dt− ∆

∞∑
n=−∞

f(n∆) = −
∑
n �=0

f̂(n/∆)

tells us how closely the Riemann sum ∆
∑∞

n=−∞ f(n∆) approximates the in-

tegral
∫∞
−∞ f(t)dt.

The main point is that if f̂ is rapidly decreasing then we get enormous

accuracy from the Riemann sum, even with ∆ not too small. For example, with

∆ = 1/10, the first contribution comes from f̂(±10) which can be extremely

small if f̂ decreases sufficiently fast.

As a simple application, let f(t) = exp(−t2/2). Then

f̂(y) =
√

2π exp(−2π2y2), and so∑
n �=0

f̂(n/∆) = O(exp(−2π2/∆2)).
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Therefore∫ ∞

−∞
exp(−t2/2)dt− ∆

∞∑
n=−∞

exp(−(n∆)2/2) = O(exp(−2π2/∆2)).

As everyone knows, the integral on the l.h.s. equals
√

2π. Taking ∆ = 1/10,

we therefore get

∆
∞∑

n=−∞
exp(−(n∆)2/2) =

√
2π + ε

with ε ≈ 10−857. We can truncate the sum over n roughly when

(n∆)2

2
>

2π2

∆2 ,

i.e. when n > 2π/∆2. So only 628 terms (combine ±n) are needed to evaluate√
2π to about 857 decimal place accuracy!

This method can be applied to the problem of computing certain probability

distributions that arise in random matrix theory. Let U be an N ×N unitary

matrix, with eigenvalues exp(iθ1), . . . exp(iθN ), and characteristic polynomial

Z(U, θ) =
N∏
1

(exp(iθ) − exp(iθn))

evaluated on the unit circle at the point exp(iθ). In making their conjecture

for the moments of |ζ(1/2 + it)|, Keating and Snaith [KeS] studied the anal-

ogous random matrix theory problem of evaluating the moments of |Z(U, θ)|,
averaged according to Haar measure on U(N). The characteristic polynomial

of a matrix is a class function that only depends on the eigenvalues of the

matrix. For class functions, the Weyl integration formula gives Haar measure

in terms of the eigenangles, the invariant probability measure on U(N) being

1

(2π)N N !

∏
1�j<m�N

|eiθj − eiθm |2dθ1 . . . dθN .

Therefore, MN (r), the rth moment of |Z(U, θ)|, is given by

MN (r) =
1

(2π)NN !

∫ 2π

0
. . .

∫ 2π

0

∏
1�j<m�N

|eiθj − eiθm |2|Z(U, θ)|rdθ1 . . . dθN ,

for Rer > −1. This integral happens to be a special case of Selberg’s integral,

and Keating and Snaith consequently determined that

MN (r) =
N∏

j=1

Γ(j)Γ(j + r)

Γ(j + r/2)2 .
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Notice that this does not depend on θ.

Say we are interested in computing the probability distribution of |Z(U, θ)|.
One can recover the probability density function from the moments as follows.

We can express the moments of |Z(U, θ)| in terms of its probability density

function. Let

prob(0 � a � |Z(U, θ)| � b) =

∫ b

a

pN (t)dt.

Then

MN (r) =

∫ ∞

0
pN (t)trdt (2.18)

is a Mellin transform, and taking the inverse Mellin transform we get

pN (t) =
1

2πit

∫ ν+i∞

ν−i∞

N∏
j=1

Γ(j)Γ(j + r)

Γ(j + r/2)2 t−rdr (2.19)

with ν to the right of the poles of MN (r), ν > −1. There is an extra 1/t in

front of the integral since the Mellin transform (2.18) is evaluated at r rather

than at r − 1.

To compute pN (t) we could shift the line integral to the left picking up

residues at the poles of MN (r), but as N grows this becomes burdensome. In-

stead, we can compute the inverse Mellin transform (2.19) as a simple Riemann

sum.

Changing variables we have

pN (t) =
1

2πt

∫ ∞

−∞

N∏
j=1

Γ(j)Γ(j + ν + iy)

Γ(j + (ν + iy)/2)2 t−ν−iydy.

Let

ft(y) =
1

2π

N∏
j=1

Γ(j)Γ(j + ν + iy)

Γ(j + (ν + iy)/2)2 t−ν−1−iy .

This function also depends on ν and N , but we do not include them explicitly

on the l.h.s. so as to simplify our notation. The above integral equals

pN (t) =

∫ ∞

−∞
ft(y)dy. (2.20)

To estimate the error in computing this integral as a Riemann sum using

increments of size ∆, we need bounds on the Fourier transform

f̂t(u) =

∫ ∞

−∞
ft(y)e−2πiuydy. (2.21)



Computational methods and experiments in analytic number theory 441

However,

ft(y)e−2πiuy = fte2π u (y)e2πu(ν+1)

and so

f̂t(u) = e2πu(ν+1)pN (te2πu).

Now, pN (t) is supported in [0, 2N ], because 0 � |Z(U, θ)| � 2N . Hence if

u > (N log 2− log t)/(2π) then f̂t(u) = 0. Thus, for 0 < t < 2N , if we evaluate

(2.20) as a Riemann sum with step size ∆ < 2π/(N log 2 − log t) the error is∑
n �=0

f̂t(n/∆) =
∑
n<0

f̂t(n/∆)

since the terms with n > 0 are all zero. On the other hand, with n < 0 we get

f̂t(−|n|/∆) = e−2π(ν+1)|n|/∆pN (te−2π|n|/∆) � e−2π(ν+1)|n|/∆pmax

where pmax denotes the maximum of pN (t) (an upper bound for pN (t) can be

obtained from (2.19)).

Therefore, choosing

∆ =
2π

Digits log 10 + N log 2 − log t

and setting ν = 0 we have

f̂t(−|n|/∆) < (10−Digits2−N t)|n|pmax

Summing over n = −1,−2,−3, . . . we get an overall bound of

10−Digitspmax/(1 − 10−Digits) ≈ 10−Digitspmax.

We could choose ν to be larger, i.e. shift our line integral (2.19) to the right,

and thus achieve more rapid decay of f̂t(u) as u → −∞. However, this leads

to precision issues. As ν increases, the integrand in (2.19) increases in size,

yet pN (t) remains constant for given N and t. Therefore cancellation must

occur when we evaluate the Riemann sum and higher precision is needed to

capture this cancellation. We leave it as an excercise to determine the amount

of precision needed for a given value of ν.

Another application appears in [RS] where Poisson summation is used to

compute, on a logarithmic scale, the probability that π(x), the number of

primes up to x, exceeds Li(x) =
∫∞

2 dt/ log(t). The answer turns out to be

.00000026 . . .

Later in this paper, we apply this method to computing certain complicated

integrals that arise in the theory of general L-functions.
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3 Analytic aspects of L-function computations

3.1 Riemann-Siegel formula

The Riemann Siegel formula expresses the Riemann ζ function as a main

sum involving a truncated Dirichlet series and correction terms. The formula

is often presented with Res = 1/2, but can be given for s off the critical

line. See [OS] for a nice presentation of the formula for 1/2 � Res � 2 and

references. Here we stick to Res = 1/2.

Let

Z(t) = eiθ(t)ζ(1/2 + it)

eiθ(t) =

(
Γ(1/4 + it/2)

Γ(1/4 − it/2)

)1/2

π−it/2. (3.1)

The rotation factor eiθ(t) is chosen so that Z(t) is real.

For t > 2π, let a = (t/(2π))1/2, N = %a&, ρ = {a} = a − %a& the fractional

part of a. Then

Z(t) = 2
N∑

n=1

n−1/2 cos(t log(n) − θ(t)) + R(t)

where

R(t) =
(−1)N+1

a1/2

m∑
r=0

Cr(ρ)

ar
+ Rm(t)

with

C0(ρ) = ψ(ρ) := cos(2π(ρ2 − ρ − 1/16))/ cos(2πρ)

C1(ρ) = − 1

96π2 ψ(3)(ρ)

C2(ρ) =
1

18432π4 ψ(6)(ρ) +
1

64π2 ψ(2)(ρ).

In general [E], Cj(ρ) can be expressed as a linear combination of the derivatives

of ψ. We also have

Rm(t) = O(t−(2m+3)/4).

Gabcke [G] showed that

|R1(t)| � .053t−5/4, t � 200.

The bulk of computational time in evaluating ζ(s) using the Riemann-Siegel

formula is spent on the main sum
∑N

n=1 n−1/2 cos(t log(n) − θ(t)). Odlyzko
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and Schönhage [OS] [O] developed an algorithm to compute the main sum

for T � t � T + T 1/2 in O(tε) operations providing that a precomputation

involving O(T 1/2+ε) operations and bits of storage are carried out beforehand.

This algorithm lies behind Odlyzko’s monumental ζ computations [O] [O2].

An earlier implementation proceeded by using the fast Fourier transform to

compute the main sum and its derivatives at equally spaced grid points to

then compute the main sum in between using Taylor series. This was then

improved [O, 4.4] to using just the values of the main sum at equally spaced

points and an interpolation formula from the theory of band-limited functions.

Riemann used the saddle point method to obtain Cj , for j � 5. The

reason that a nice formula works using a sharp cutoff, truncating the sum

over n at N , is that all the Dirichlet coefficients are equal to one. Riemann

starts with an expression for ζ(s) which involves the geometric series identity

1/(1 − x) =
∑

xn, the Taylor coefficients on the right being the Dirichlet

coefficients of ζ(s). For general L-functions smoothing works better.

3.2 Smoothed approximate functional equations

Let

L(s) =
∞∑

n=1

b(n)

ns

be a Dirichlet series that converges absolutely in a half plane, Re(s) > σ1, and

hence uniformly convergent in any half plane Re(s) � σ2 > σ1 by comparison

with the series for L(σ2).

Let

Λ(s) = Qs

(
a∏

j=1

Γ(κjs + λj)

)
L(s), (3.2)

with Q, κj ∈ R+, Reλj � 0, and assume that:

1. Λ(s) has a meromorphic continuation to all of C with simple poles at

s1, . . . , s� and corresponding residues r1, . . . , r�.

2. (functional equation) Λ(s) = ωΛ(1− s) for some ω ∈ C, ω �= 0.

3. For any α � β, L(σ + it) = O(exp tA) for some A > 0, as |t| → ∞,

α � σ � β, with A and the constant in the ‘Oh’ notation depending on

α and β.
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Remarks . a) The 3rd condition, L(σ + it) = O(exp tA), is very mild. Using

the fact that L(s) is bounded in Res � σ2 > σ1, the functional equation and

the estimate (3.8), and the Phragmén-Lindelöf Theorem [Rud] we can show

that in any vertical strip α � σ � β,

L(s) = O(tb), for some b > 0

where both b and the constant in the ‘Oh’ notation depend on α and β.

b) If b(n), λj ∈ R, then the second assumption reads Λ(s) = ωΛ(1− s).

c) In all known examples the κj ’s can be taken to equal 1/2. It is useful to

know the Legendre duplication formula

Γ(s) = (2π)−1/22s−1/2Γ(s/2)Γ((s + 1)/2). (3.3)

However, it is sometimes more convenient to work with (3.2), and we avoid

specializing prematurely to κj = 1/2.

d) The assumption that L(s) has at most simple poles is not crucial and is

only made to simplify the presentation.

e) From the point of view of computing Λ(s) given the Dirichlet coefficients

and functional equation, we do not need to assume an Euler product for L(s).

Without an Euler product, however, it is unlikely that L(s) will satisfy a

Riemann Hypothesis.

To obtain a smoothed approximate functional equation with desirable prop-

erties we introduce an auxiliary function. Let g : C → C be an entire function

that, for fixed s, satisfies

∣∣Λ(z + s)g(z + s)z−1
∣∣→ 0

as |Imz| → ∞, in vertical strips, −α � Rez � α. The smoothed approximate

functional equation has the following form.

Theorem 1. For s /∈ {s1, . . . , s�}, and L(s), g(s) as above,

Λ(s)g(s) =
�∑

k=1

rkg(sk)

s− sk

+ Qs

∞∑
n=1

b(n)

ns
f1(s, n)

+ωQ1−s

∞∑
n=1

b(n)

n1−s
f2(1 − s, n) (3.4)
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where

f1(s, n) =
1

2πi

∫ ν+i∞

ν−i∞

a∏
j=1

Γ(κj(z + s) + λj)z
−1g(s + z)(Q/n)zdz

f2(1 − s, n) =
1

2πi

∫ ν+i∞

ν−i∞

a∏
j=1

Γ(κj(z + 1 − s) + λj)z
−1g(s− z)(Q/n)zdz

(3.5)

with ν > max {0,−Re(λ1/κ1 + s), . . . ,−Re(λa/κa + s)}.

Proof. Let C be the rectangle with verticies (−α,−iT ), (α,−iT ), (α, iT ),

(−α, iT ), let s ∈ C − {s1, . . . , s�}, and consider

1

2πi

∫
C

Λ(z + s)g(z + s)z−1dz. (3.6)

(integrated counter-clockwise). α and T are chosen big enough so that all the

poles of the integrand are contained within the rectangle. We will also require,

soon, that α > σ1 − Res. On the one hand (3.6) equals

Λ(s)g(s) +
�∑

k=1

rkg(sk)

sk − s
(3.7)

since the poles of the integrand are included in the set {0, s1 − s, . . . , s� − s},
and are all simple. Typically, the set of poles will coincide with this set.

However, if Λ(s)g(s) = 0, then z = 0 is no longer a pole of the integrand.

But then Λ(s)g(s) contributes nothing to (3.7) and the equality remains valid.

And if g(sk) = 0, then there is no pole at z = sk − s but also no contribution

from rkg(sk)/(sk − s).

On the other hand, we may break the integral over C into four integrals:∫
C

=

∫ α+iT

α−iT

+

∫ −α+iT

α+iT

+

∫ −α−iT

−α+iT

+

∫ α−iT

−α−iT

=

∫
C1

+

∫
C2

+

∫
C3

+

∫
C4

.

The integral over C1, assuming that α is big enough to write L(s+ z) in terms

of its Dirichlet series i.e. α > σ1 − Res, is

Qs

∞∑
n=1

b(n)

ns

1

2πi

∫ α+iT

α−iT

a∏
j=1

Γ(κj(z + s) + λj)z
−1g(s + z)(Q/n)zdz.
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We are justified in rearranging summation and integration since the series for

L(z + s) converges uniformly on C1. Further, by the functional equation, the

integral over C3 equals

ω

2πi

∫ −α−iT

−α+iT

Λ(1− z + s)g(z + s)z−1dz

= ωQ1−s

∞∑
n=1

b(n)

n1−s

1

2πi

∫ −α−iT

−α+iT

a∏
j=1

Γ(κj(1 − s− z) + λj)z
−1g(s + z)(Q/n)−zdz

= ωQ1−s

∞∑
n=1

b(n)

n1−s

1

2πi

∫ α+iT

α−iT

a∏
j=1

Γ(κj(1 − s + z) + λj)z
−1g(s− z)(Q/n)zdz.

Letting T →∞, the integrals over C2 and C4 tend to zero by our assumption

on the rate of growth of g(s), and we obtain (3.4). The integrals in (3.5)

are, by Cauchy’s Theorem, independent of the choice of ν, so long as ν >

max {0,−Re(λ1/κ1 + s), . . . ,−Re(λa/κa + s)}.

3.3 Choice of g(z)

Formulae of the form (3.4) are well known [L] [Fr]. Usually, one finds it in

the literature with g(s) = 1. For example, for the Riemann zeta function this

leads to Riemann’s formula [R, pg 179] [Ti, pg 22]

π−s/2Γ(s/2)ζ(s) = −1

s
− 1

1 − s
+ π−s/2

∞∑
n=1

1

ns
Γ(s/2, πn2)

+π(s−1)/2
∞∑

n=1

1

n1−s
Γ((1 − s)/2, πn2)

where Γ(s, w) is the incomplete gamma function (see Section 3.4).

However, the choice g(s) = 1 is not well suited for computing Λ(s) as |Im(s)|
grows. By Stirling’s formula [Ol, pg 294]

|Γ(s)| ∼ (2π)1/2|s|σ−1/2e−|t|π/2, s = σ + it (3.8)

as |t| → ∞, and so decreases very quickly as |t| increases. Hence, with g(s) = 1,

the l.h.s. of (3.4) is extremely small for large |t| and fixed σ. On the other hand,

we can show that the terms on the r.h.s., though decreasing as n → ∞, start

off relatively large compared to the l.h.s.. Hence a tremendous amount of

cancellation must occur on the r.h.s. and and we would need an unreasonable
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amount of precision. This problem is analogous to what happens if we try to

sum exp(−x) =
∑

(−x)n/n! in a naive way. If x is positive and large, the l.h.s.

is exponentially small, yet the terms on the r.h.s. are large before they become

small and high precision is needed to capture the ensuing cancellation.

One way to control this cancellation is to choose g(s) equal to δ−s with |δ| =

1 and chosen to cancel out most of the exponentially small size of the Γ factors.

This idea appears in the work of Lavrik [L], and was also suggested by Lagarias

and Odlyzko [LO] who did not implement it since it led to complications

regarding the computation of (3.5). This method was successfully applied in

the author’s PhD thesis [Ru] to compute Dirichlet L-functions and L-functions

associated to cusp forms and is used extensively in the author’s L-function

package [Ru3] More recently, this approach was used in the computation of

Akiyama and Tanigawa [AT] to compute several elliptic curve L-functions.

In fact when there are multiple Γ factors it is better to choose a different δ

for each Γ and multiply these together. For a given s let

tj = Im(κjs + λj)

θj =

⎧⎨⎩π/2, if |tj | � 2c/(aπ)

c/(a|tj |), if |tj | > 2c/(aπ)

δj = exp(i sgn(tj)(π/2 − θj)). (3.9)

Here c > 0 is a free parameter. Larger c means faster convergence of the sums

in (3.4), but also more cancellation and loss of precision.

Next, we set

g(z) :=
a∏

j=1

δ
−κj z−Imλj

j = βδ−z . (3.10)

Because δj depends on s, the constants δ and β depends on s. We can either

use a fresh δ for each new s value, or else modify the above choice of tj so as

to use the same tj for other nearby s’s. The latter is prefered if we wish to

carry out precomputations that can be recycled as we vary s. For simplicity,

here we assume that a fresh δ is chosen as above for each new s.

The choice of g controls the exponentially small size of the Γ factors. Notice

that the constant factor β =
∏a

j=1 δ
−Imλj

j in (3.10) appears in every term

in (3.4), and hence can be dropped from g(z) without any effect on cancellation

or the needed precision. However, to analyze the size of the the l.h.s. of (3.4)

and the terms on the r.h.s. this factor is helpful and we leave it in for now,

but with the understanding that it can be omitted.
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To see the effect of the function g(z) on the l.h.s of (3.4) we have, by (3.8)

and (3.9)

|Λ(s0)g(s0)| ∼ ∗ · |L(s0)|
∏

|tj |�2c/π

exp (− |tj | π/2)
∏

|tj |>2c/π

exp (−c/a)

� ∗ · |L(s0)| exp(−c)

where

∗ = Qσ0 (2π)a/2
a∏

j=1

|κjs0 + λj |κj σ0 +Reλj−1/2 .

We have thus managed to control the exponentially small size of Λ(s) up to a

factor of exp(−c) which we can regulate via the choice of c. We can also show

that this choice of g(z) leads to well balanced terms on the r.h.s. of (3.4).

3.4 Approximate functional equation in the case of one

Γ-factor

We first treat the case a = 1 separately because it is the simplest, the greatest

number of tools have been developed to handle this case, and many popular

L-functions have a = 1.

Here we are assuming that

Λ(s) = QsΓ(γs + λ)L(s).

According to (3.10) we should set

g(s) = δ−s

(we omit the factor β as described following (3.10)) with

δ = δ1
γ

and

t1 = Im(γs + λ)

θ1 =

⎧⎨⎩π/2, if |t1| � 2c/π

c/|t1|, if |t1| > 2c/π

δ1 = exp(i sgn(t1)(π/2 − θ1)).
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In that case, the function f1(s, n) that appears in Theorem 1 equals

f1(s, n) =
δ−s

2πi

∫ ν+i∞

ν−i∞
Γ(γ(z + s) + λ)z−1 (Q/(nδ))z dz

=
δ−s

2πi

∫ γν+i∞

γν−i∞
Γ(u + γs + λ)u−1 (Q/(nδ))u/γ du.

Now

Γ(v + u)u−1 =

∫ ∞

0
Γ(v, t)tu−1dt, Reu > 0, Re(v + u) > 0 (3.11)

where

Γ(z, w) =

∫ ∞

w

e−xxz−1dx | arg w| < π

= wz

∫ ∞

1
e−wxxz−1dx, Re(w) > 0.

Γ(z, w) is known as the incomplete gamma function. By Mellin inversion

f1(s, n) = δ−sΓ
(
γs + λ, (nδ/Q)1/γ

)
.

Similarly

f2(1 − s, n) = δ−sΓ
(
γ(1 − s) + λ, (n/(δQ))1/γ

)
.

We may thus express, when a = 1 and g(s) = δ−s, (3.4) as

QsΓ(γs + λ)L(s)δ−s =
�∑

k=1

rkδ
−sk

s− sk

+ (δ/Q)λ/γ
∞∑

n=1

b(n)nλ/γG
(
γs + λ, (nδ/Q)1/γ

)
+

ω

δ
(Qδ)−λ/γ

∞∑
n=1

b(n)nλ/γG
(
γ(1 − s) + λ, (n/(δQ))1/γ

)
(3.12)

where

G(z, w) = w−zΓ(z, w) =

∫ ∞

1
e−wxxz−1dx, Re(w) > 0. (3.13)

Note, from (3.10) with a = 1, we have Reδ1/γ > 0, so both (nδ/Q)1/γ and

(n/(δQ))1/γ have positive Re part.
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3.4.1 Examples

1) Riemann zeta function2, ζ(s): the necessary background can be found

in [Ti]. Formula (3.12), for ζ(s), is

π−s/2Γ(s/2)ζ(s)δ−s = −1

s
− δ−1

1 − s
+

∞∑
n=1

G
(
s/2, πn2δ2)

+δ−1
∞∑

n=1

G
(
(1 − s)/2, πn2/δ2) (3.14)

2) Dirichlet L-functions3, L(s, χ): (see [D, chapter 9]). When χ is primitive

and even, χ(−1) = 1, we get

( q

π

)s/2
Γ(s/2)L(s, χ)δ−s =

∞∑
n=1

χ(n)G
(
s/2, πn2δ2/q

)
+

τ(χ)

δq1/2

∞∑
n=1

χ(n)G
(
(1 − s)/2, πn2/(δ2q)

)
and when χ is primitive and odd, χ(−1) = −1, we get

( q

π

)s/2
Γ(s/2 + 1/2)L(s, χ)δ−s = δ

(
π

q

)1/2 ∞∑
n=1

χ(n)nG
(
s/2 + 1/2, πn2δ2/q

)
+

τ(χ)π1/2

iqδ2

∞∑
n=1

χ(n)nG
(
(1 − s)/2 + 1/2, πn2/(δ2q)

)
Here, τ(χ) is the Gauss sum

τ(χ) =

q∑
m=1

χ(m)e2πim/q .

3) Cusp form L-functions4: (see [Og]). Let f(z) be a cusp form of weight k

for SL2(Z), k a positive even integer:

1. f(z) is entire on H, the upper half plane.

2Editors’ comment: See also the lectures of D.R. Heath-Brown, page 1, Section 3, for
more on the Riemann zeta function.

3Editors’ comment: See also the lectures of D.R. Heath-Brown, page 1, Section 12, for
more on these L-functions.

4Editors’ comment: See also the lectures of J.B. Conrey (page 225, Section 3) and P.
Michel (page 357, Section 2.2.2) for more on these L-functions.
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2. f(σz) = (cz + d)kf(z), σ =

(
a b

c d

)
∈ SL2(Z), z ∈ H.

3. limt→∞ f(it) = 0.

Assume further that f is a Hecke eigenform, i.e. an eigenfunction of the Hecke

operators. We may expand f in a Fourier series

f(z) =
∞∑

n=1

ane
2πinz , Im(z) > 0

and associate to f(z) the Dirichlet series

Lf (s) :=
∞∑
1

an

n(k−1)/2 n−s.

We normalize f so that a1 = 1. This series converges absolutely when Re(s) >

1 because, as proven by Deligne [Del],

|an| � σ0(n)n(k−1)/2,

where σ0(n) :=
∑

d|n 1 = O(nε) for any ε > 0.

Lf (s) admits an analytic continuation to all of C and satisfies the functional

equation

Λf (s) := (2π)−sΓ(s + (k − 1)/2)Lf (s) = (−1)k/2Λf (1 − s).

With our normalization, a1 = 1, the an’s are real since they are eigenvalues of

self adjoint operators, the Hecke operators with respect to the Petersson inner

product (see [Og, III-12]). Furthermore, the required rate of growth on Lf (s),

condition 3 on page 443, follows from the modularity of f .

Hence, in this example, formula (3.12) is

(2π)−sΓ(s + (k − 1)/2)Lf (s)δ
−s = (δ2π)(k−1)/2

∞∑
n=1

anG (s + (k − 1)/2, 2πnδ)

+
(−1)k/2

δ

(
2π

δ

)(k−1)/2 ∞∑
n=1

anG (1 − s + (k − 1)/2, 2πn/δ)

4) Twists of cusp forms5: Lf (s, χ), χ primitive, f(z) as in the previous

example. Lf (s, χ) is given by the Dirichlet series

5Editors’ comment: See also the lectures of J.B. Conrey, page 225, Section 3.3.
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Lf (s, χ) =
∞∑
1

anχ(n)

n(k−1)/2 n−s.

Lf (s, χ) extends to an entire function and satisfies the functional equation

Λf (s, χ) :=
( q

2π

)s

Γ(s + (k − 1)/2)Lf (s, χ)

= (−1)k/2χ(−1)
τ(χ)

τ(χ)
Λf (1 − s, χ).

In this example, formula (3.12) is( q

2π

)s

Γ(s + (k − 1)/2)Lf (s, χ)δ−s =(
2πδ

q

)(k−1)/2 ∞∑
n=1

anχ(n)G (s + (k − 1)/2, 2πnδ/q)

+
(−1)k/2

δ
χ(−1)

τ(χ)

τ(χ)

(
2π

qδ

)(k−1)/2

×
∞∑

n=1

anχ(n)G (1 − s + (k − 1)/2, 2πn/(δq)) .

5) Elliptic curve L-functions6: (see [Kn, especially chapters X,XII]). Let E be

an elliptic curve over Q, which we write in global minimal Weierstrass form

y2 + c1xy + c3y = x3 + c2x
2 + c4x + c6

where the cj ’s are integers and the discriminant ∆ is minimal.

To the elliptic curve E we may associate an Euler product

LE(s) :=
∏
p|∆

(1 − app
−1/2−s)−1

∏
p�∆

(1 − app
−1/2−s + p−2s)−1 (3.15)

where, for p � ∆, ap = p + 1 − #Ep(Zp), with #Ep(Zp) being the number of

points (x, y) in Zp × Zp on the curve E considered modulo p, together with

the point at infinity. When p|∆, ap is either 1, −1, or 0. If p � ∆, a theorem

of Hasse states that |ap| < 2p1/2. Hence, (3.15) converges when Re(s) > 1,

and for these values of s we may expand LE(s) in an absolutely convergent

Dirichlet series

LE(s) =
∞∑
1

an

n1/2 n−s. (3.16)

6Editors’ comment: See also the lectures of P. Michel, page 357, Section 4.
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The Hasse-Weil conjecture asserts that LE(s) extends to an entire function

and has the functional equation

ΛE(s) :=

(
N 1/2

2π

)s

Γ(s + 1/2)LE(s) = −εΛE(1 − s).

where N is the conductor of E, and ε, which depends on E, is either ±1. The

Hasse-Weil conjecture and also the required rate of growth on LE(s) follows

from the Shimura-Taniyama-Weil conjecture, which has been proven by Wiles

and Taylor [TW] [Wi] for elliptic curves with square free conductor and has

been extended, by Breuil, Conrad, Diamond and Taylor to all elliptic curves

over Q [BCDT].

Hence we have(
N 1/2

2π

)s

Γ(s + 1/2)LE(s)δ−s =

(
2πδ

N 1/2

)1/2 ∞∑
n=1

anG
(
s + 1/2, 2πnδ/N 1/2)

−ε

δ

(
2π

N 1/2δ

)1/2 ∞∑
n=1

anG
(
1 − s + 1/2, 2πn/(δN 1/2)

)
.

6) Twists of elliptic curve L-functions: LE(s, χ), χ a primitive character of

conductor q, (q,N) = 1. Here LE(s, χ) is given by the Dirichlet series

LE(s, χ) =
∞∑
1

an

n1/2 χ(n)n−s.

The Weil conjecture asserts, here, that LE(s) extends to an entire function

and satisfies

ΛE(s, χ) :=

(
qN 1/2

2π

)s

Γ(s + 1/2)LE(s, χ) = −εχ(−N)
τ(χ)

τ(χ)
ΛE(1 − s, χ).

Here N and ε are the same as for E. In this example the conjectured formula

is (
qN 1/2

2π

)s

Γ(s + 1/2)LE(s)δ−s

=

(
2πδ

qN 1/2

)1/2 ∞∑
n=1

anχ(n)G
(
s + 1/2, 2πnδ/(qN 1/2)

)
− ε

δ
χ(−N)

τ(χ)

τ(χ)

(
2π

qN 1/2δ

)1/2 ∞∑
n=1

anχ(n)G
(
1 − s + 1/2, 2πn/(δqN 1/2)

)
.
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We have reduced in the case a = 1 the computation of Λ(s) to one of

evaluating two sums of incomplete gamma functions. The Γ(γs + λ)δ−s factor

on the left of (3.12) and elsewhere is easily evaluated using several terms of

Stirling’s asymptotic formula and also the recurrence Γ(z +1) = zΓ(z) applied

a few times. The second step is needed for small z. Some care needs to be

taken to absorb the e−π|Im(γs+λ)|/2 factor of Γ(γs + λ) into the eπ|Im(γs+λ)|/2

factor of δ−s. Otherwise our effort to control the size of Γ(γs + λ) will have

been in vain, and lack of precision will wreak havoc.

To see how many terms in (3.12) are needed we can use the rough bound

|G(z, w)| < e−Re(w)
∫ ∞

0
e−(Re(w)−Re(z)+1)tdt =

e−Re(w)

Re(w) − Re(z) + 1
,

valid for Re(w) > Re(z) − 1 > 0. We have put t = x − 1 in (3.13) and have

used t + 1 � et. Also, for Re(w) > 0 and Re(z) � 1,

|G(z, w)| <
e−Re(w)

Re(w)
.

These inequalities tells us that the terms in (3.12) decrease exponentially fast

once n is sufficiently large.

For example, in equation (3.14) for ζ(s) we get exponential drop off roughly

when

Reπn2δ2 >> 1.

But

Reπn2δ2 = πn2Reδ2 ∼ 2πn2c/t

so the number of terms needed is roughly

>> (t/c)1/2.

3.4.2 Computing Γ(z, w)

Recall the definitions

Γ(z, w) =

∫ ∞

w

e−ttz−1dt, | arg w| < π

G(z, w) = w−zΓ(z, w).
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Let

γ(z, w) := Γ(z) − Γ(z, w) =

∫ w

0
e−xxz−1dx, Rez > 0, |arg w| < π

be the complimentary incomplete gamma function, and set

g(z, w) = w−zγ(z, w) =

∫ 1

0
e−wttz−1dt (3.17)

so that G(z, w) + g(z, w) = w−zΓ(z). The function g(z, w)/Γ(z) is entire in z

and w.

The incomplete Γ function undergoes a transition when |w| is close to |z|.
This will be described using Temme’s uniform asymptotics for Γ(z, w). The

transition explains the difficulty in computing Γ(z, w) without resorting to

several different expressions or using uniform asymptotics.

A combination of series, asymptotics, and continued fractions are useful

when |z| is somewhat bigger than or smaller than |w|. When the two param-

eters are close in size to one another, we can employ Temme’s more involved

uniform asymptotics. We can also apply the Poisson summation method de-

scribed in Section 2, or an expansion due to Nielsen. Below we look at a few

useful approaches.

Integrating by parts we get

g(z, w) = e−w

∞∑
j=0

wj

(z)j+1

where

(z)j =

⎧⎨⎩z(z + 1) . . . (z + j − 1) if j > 0;

1 if j = 0.

(The case j = 0 occurs below in an expression for G(z, w)). While this series

converges for z �= 0,−1,−2, . . . and all w, it is well suited, say if Rez > 0 and

|w| < α|z| with 0 < α < 1. Otherwise, not only does the series take too long

to converge, but precision issues arise.
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The following continued fraction converges for Rez > 0

g(z, w) =
e−w

z −
zw

z + 1 +
w

z + 2 −
(z + 1)w

z + 3 +
2w

z + 4 −
(z + 2)w

z + 5 + · · ·
The paper of Akiyama and Tanigawa [AT] contains an analysis of the trunca-

tion error for this continued fraction, as well as the continued fraction in (3.18)

below, and show that the above is most useful when |w| < |z|, with poorer

performance as |w| approaches |z|.

Another series, useful when |w| << 1, is

g(z, w) =
∞∑

j=0

(−1)j

j!

wj

z + j
.

This is obtained from (3.17) by expanding e−wt in a Taylor series and integrat-

ing termwise. As |w| grows, cancellation and precision become an issue in the

same way it does for the sum e−w =
∑

(−w)j/j!.

Next, integrate G(z, w) by parts to obtain the asymptotic series

G(z, w) =
e−w

w

M−1∑
j=0

(1 − z)j

(−w)j
+ εM (z, w)

with

εM (z, w) =
(1 − z)M

(−w)M
G(z − M,w).

This asymptotic expansion works well if |w| > β|z| with β > 1 and |z| large.

In that region the following continued fraction also works well

G(z, w) =
e−w

w +
1 − z

1 +
1

w +
2 − z

1 +
2

w +
3 − z

1 +
3

w + · · ·

(3.18)
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Temme’s uniform asymptotics for Γ(z, w) provide a powerful tool for com-

puting the function in its transition zone and elsewhere. Following the notation

in [T], let

Q(z, w) = Γ(z, w)/Γ(z)

λ = w/z

η2/2 = λ− 1 − log λ

where the sign of η is chosen to be positive for λ > 1. Then

Q(z, w) =
1

2
erfc(η(z/2)1/2) + Rz(η)

where

erfc =
2

π1/2

∫ ∞

z

e−t2 dt,

and Rz is given by the asymptotic series, as z →∞,

Rz(η) =
e−zη2 /2

(2πz)1/2

∞∑
n=0

cn(η)

zn
. (3.19)

Here

c0(η) =
1

λ− 1
− 1

η

c1(η) =
1

η3 −
1

(λ− 1)3 −
1

(λ− 1)2 −
1

12(λ− 1)

ηcn(η) =
d

dη
cn−1(η) +

η

λ− 1
γn, n � 1

with

Γ∗(z) =
∞∑
0

(−1)nγn

zn

being the asymptotic expansion of

Γ∗(z) = (z/(2π))1/2(e/z)zΓ(z).

The first few terms are γ0 = 1, γ1 = −1/12, γ2 = 1/288, γ3 = 139/51840.

The singularities at η = 0, i.e. λ = 1, z = w, are removable. Unfortunately,

explicit estimates for the remainder in truncating (3.19) when the parameters

are complex have not been worked out, but in practice the expansion seems to

work very well.
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To handle the intermediate region |z| ≈ |w| we could also use the following

expansion of Nielsen to step through the troublesome region

γ(z, w+d) = γ(z, w)+wz−1e−w

∞∑
j=0

(1 − z)j

(−w)j
(1−e−dej(d)), |d| < |w| (3.20)

where

ej(d) =

j∑
m=0

dm

m!
.

A proof can be found in [EMOT]. This expansion is very well suited, for

example, for L-functions associated to modular forms, since in that case we

increment w in equal steps from term to term in (3.12) and precomputations

can be arranged to recycle data. Numerically, this expansion is unstable if |d| is
big. This can be overcome by taking many smaller steps, but this then makes

Nielsen’s expansion an inefficient choice for ζ(s) or Dirichlet L-functions.

In computing (3.20) some care needs to be taken to avoid numerical pit-

falls. One pitfall is that, as j grows, e−dej(d) → 1. So once
∣∣1 − e−dej(d)

∣∣ <

10−Digits, the error in computation of 1− e−dej(d) is bigger than its value, and

this gets magnified when we multiply by (1 − z)j/(−w)j . So in computing

((1 − z)j/(−w)j) (1− e−dej(d)) one must avoid the temptation to view this as

a product of (1− z)j/(−w)j and 1 − e−dej(d). Instead, we let

aj(z, w, d) =
(1 − z)j

(−w)j
(1 − e−dej(d)).

Now, 1 − e−dej(d) = e−d(ed − ej(d)), and we get

aj+1(z, w, d) = aj(z, w, d)
z − (j + 1)

w

( ∞∑
j+2

dm/m!

)/( ∞∑
j+1

dm/m!

)

= aj(z, w, d)
z − (j + 1)

w
(1 − 1/βj(d)) , j = 1, 2, 3, . . .

where

βj(d) =
∞∑

m=0

dm/(j + 2)m .

Furthermore

βj(d) − 1 ∼ d/(j + 2), as |d| /j → 0.

Hence, for |w| ≈ |z|, we approximately have (as |d| /j → 0)∣∣∣∣z − (j + 1)

w
(1 − 1/βj(d))

∣∣∣∣ � (1 +
j + 1

|w|

) |d|
j + 2

� |d|
j + 2

+
|d|
|w| .
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Thus, because |d/w| < 1, we have, for j big enough, that the above is < 1, and

so the sum in (3.20) converges geometrically fast, and hence only a handful of

terms are required.

One might be tempted to compute the βj(d)’s using the recursion

βj+1(d) = (βj(d) − 1)(j + 2)/d

but this leads to numerical instability. The βj(d)’s are all equal to 1+Od(1/(j+

2)) and are thus all roughly of comparable size. Hence, a small error due to

roundoff in βj(d) is turned into a much larger error in βj+1(d), (j+2)/ |d| times

larger, and this quickly destroys the numerics.

There seems to be some potential in an asymptotic expression due to Ra-

manujan [B, pg 193, entry 6]

G(z, w) ∼ w−zΓ(z)/2 + e−w

M∑
k=0

pk(w − z + 1)/wk+1, as |z| → ∞,

for |w − z| relatively small, where pk(v) is a polynomial in v of degree 2k + 1,

though this potential has not been investigated substantially.

We list the first few pk(v)’s here:

p0(v) = − v + 2/3

p1(v) = − v3

3
+

v2

3
− 4

135

p2(v) = − v5

15
+

v3

9
− 2 v2

135
− 4 v

135
+

8

2835

p3(v) = − v7

105
− v6

45
+

v5

45
+

7 v4

135
− 8 v3

405
− 16 v2

567
+

16 v

2835
+

16

8505

p4(v) = − v9

945
− 2 v8

315
− 2 v7

315
+

8 v6

405
+

11 v5

405
− 62 v4

2835
− 32 v3

1215
+

16 v2

1701

+
16 v

2835
− 8992

12629925

p5(v) = − v11

10395
− v10

945
− 2 v9

567
− 2 v8

2835
+

43 v7

2835
+

41 v6

2835
− 968 v5

42525
− 68 v4

2835

+
368 v3

25515
+

138064 v2

12629925
− 35968 v

12629925
− 334144

492567075

It is worth noting that when many evaluations of Λ(s) are required, we can

reduce through precomputations the bulk of the work to that of computing a

main sum. This comes from the identity

G(z, w) = w−zΓ(z) − g(z, w).
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The above discussion indicates that, in (3.12), we should use g(z, w) and this

identity to compute G(z, w) roughly when |w| is smaller than |z|. For example,

with ζ(1/2 + it), the region |w| < |z| corresponds in (3.14) to |πn2δ2| <

|1/4 + it/2| and |πn2/δ2| < |1/4 − it/2|. Because |δ| = 1 this leads to a

main sum consisting of approximately |t/(2π)|1/2 terms, the same as in the

Riemann-Siegel formula.

3.5 The approximate functional equation when there is

more than one Γ-factor, and κj = 1/2

In this case, the function f1(s, n) that appears in Theorem 1 is

f1(s, n) =
δ−s

2πi

∫ ν+i∞

ν−i∞

a∏
j=1

Γ((z + s)/2 + λj)z
−1 (Q/(δn))z dz. (3.21)

This is a special case of the Meijer G function and we develop some of its

properties.

Let M (φ(t); z) denote the Mellin transform of φ

M (φ(t); z) =

∫ ∞

0
φ(t)tz−1.

We will express
∏a

j=1 Γ((z + s)/2 + λj)z
−1 as a Mellin transform analogous

to (3.11).

Letting φ1 ∗ φ2 denote the convolution of two functions

(φ1 ∗ φ2)(v) =

∫ ∞

0
φ1(v/t)φ2(t)

dt

t

we have (under certain conditions on φ1, φ2)

M (φ1 ∗ φ2; z) = M (φ1; z) · M (φ2; z) .

Thus
a∏

j=1

M (φj ; z) =

∫ ∞

0
(φ1 ∗ · · · ∗ φa)(t)t

z−1dt, (3.22)

with

(φ1 ∗ · · · ∗ φa)(v) =

∫ ∞

0
. . .

∫ ∞

0
φ1(v/t1)φ2(t1/t2) . . .

. . . φa−1(ta−2/ta−1)φa(ta−1)
dt1
t1

. . .
dta−1

ta−1
.
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Now

a∏
j=1

Γ((z + s)/2 + λj)z
−1 =

(
a−1∏
j=1

Γ((z + s)/2 + λj)

)(
Γ((z + s)/2 + λa)z

−1) .
But

Γ((z + s)/2 + λ) = M
(
2e−t2 t2λ+s; z

)
,

and (3.11) gives

Γ((z + s)/2 + λ)z−1 = M
(
Γ(s/2 + λ, t2); z

)
.

So letting

φj(t) =

⎧⎨⎩2e−t2 t2λj +s j = 1, . . . a − 1;

Γ(s/2 + λa, t
2) j = a,

and applying Mellin inversion, we find that (3.21) equals

f1(s, n) = δ−s(φ1 ∗ · · · ∗ φa)(nδ/Q), (3.23)

where

(φ1 ∗ · · · ∗ φa)(v) = v2λ1 +s

∫ ∞

0
. . .

∫ ∞

0
2a−1

a−1∏
j=1

t
2(λj+1−λj )
j e

−
(

v 2

t21
+

t21
t22

+···+ t2a−2
t2a−1

)

×
(∫ ∞

1
e−t2a−1xxs/2+λa−1dx

)
dt1
t1

. . .
dta−1

ta−1
.

Substituting uj = (v2 x)j /a

v2 t2j and rearranging order of integration this becomes

v2µ+s

∫ ∞

1
Eλ

(
xv2) xs/2+µ−1dx,

where

µ =
1

a

a∑
l=1

λj , (3.24)

Eλ (w) =

∫ ∞

0
. . .

∫ ∞

0

a−1∏
j=1

u
λj+1−λj

j e
−w1/a

(
1

u 1
+ u 1

u 2
+···+ u a−2

u a−1
+ua−1

)
du1

u1
. . .

dua−1

ua−1
.

(3.25)

So, returning to (3.23), we find that

f1(s, n) = (nδ/Q)2µ (n/Q)s

∫ ∞

1
Eλ

(
x (nδ/Q)2) xs/2+µ−1dx.

Note that because (3.21) is symmetric in the λj ’s, so is Eλ.
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Similarly

f2(1 − s, n) = δ−1 (n/(δQ))2µ (n/Q)1−s

∫ ∞

1
Eλ

(
x (n/(δQ))2) x(1−s)/2+µ−1dx.

Hence,

Qs

a∏
j=1

Γ(s/2 + λj)L(s)δ−s =
�∑

k=1

rkδ
−sk

s− sk

+ (δ/Q)2µ
∞∑

n=1

b(n)n2µGλ

(
s/2 + µ, (nδ/Q)2)

+
ω

δ
(δQ)−2µ

∞∑
n=1

b(n)n2µGλ

(
(1 − s)/2 + µ, (n/(δQ))2)

(3.26)

with

Gλ (z, w) =

∫ ∞

1
Eλ (xw) xz−1dx

(µ and Eλ are given by (3.24), (3.25)).

3.5.1 Examples

When a = 2

Eλ (xw) =

∫ ∞

0
tλ2−λ1 e−(wx)1/2 (1/t+t) dt

t

= 2Kλ2−λ1

(
2(wx)1/2) = 2Kλ1−λ2

(
2(wx)1/2) , (3.27)

K being the K-Bessel function, so that Gλ is an incomplete integral of the

K-Bessel function.

Note further that if λ1 = λ/2, λ2 = (λ + 1)/2 then (3.27) is

2K1/2
(
2(wx)1/2) =

(
π1/2/(wx)1/4) e−2(wx)1/2

(see [EMOT]), so G(λ/2,(λ+1)/2)(z, w) = 2(2π)1/2(4w)−zΓ(2z − 1/2, 2w1/2), i.e.

the incomplete gamma function. This is what we expect since, using (3.3), we

can write the gamma factor Γ((s + λ)/2)Γ((s + λ + 1)/2) in terms of Γ(s + λ),

for which the a = 1 expansion, (3.12), applies.

Maass cusp form L-functions7: (background material can be found in [Bu]).

Let f be a Maass cusp form with eigenvalue λ = 1/4 − v2, i.e. ∆f = λf ,

where ∆ = −y2(∂/∂x2 + ∂/∂y2), and Fourier expansion

7Editors’ comment: See also the lectures of J.B. Conrey, page 225, Section 3.4.
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f(z) =
∑
n �=0

any
1/2Kv(2π |n| y)e2πinx,

with a−n = an for all n, or a−n = −an for all n. Let

Lf (s) =
∞∑

n=1

an

ns
, Res > 1

(absolute convergence in this half plane can be proven via the Rankin-Selberg

method), and let ε = 0 or 1 according to whether a−n = an or a−n = −an. We

have that

Λf (s) := π−sΓ((s + ε + v)/2)Γ((s + ε− v)/2)Lf (s)

extends to an entire function and satisfies

Λf (s) = (−1)εΛf (1 − s).

Hence, formula (3.26), for Lf (s), is

π−sΓ((s + ε + v)/2)Γ((s + ε− v)/2)Lf (s)δ
−s =

(δπ)ε
∞∑

n=1

ann
εG((ε+v)/2,(ε−v)/2)

(
s/2 + ε/2, (nδπ)2)

+
(−1)ε

δ
(π/δ)ε

∞∑
n=1

ann
εG((ε+v)/2,(ε−v)/2)

(
(1 − s)/2 + ε/2, (nπ/δ)2)

where, by (3.27),

G((ε+v)/2,(ε−v)/2)
(
s/2 + ε/2, (nδπ)2) = 4

∫ ∞

1
Kv(2nδπt)ts+ε−1dt

G((ε+v)/2,(ε−v)/2)
(
(1 − s)/2 + ε/2, (nπ/δ)2) = 4

∫ ∞

1
Kv(2nπt/δ)t−s+εdt.

Next, let

Γλ (z, w) = wzGλ (z, w) =

∫ ∞

w

Eλ (t) tz−1dt,

Γλ (z) =

∫ ∞

0
Eλ (t) tz−1dt, (3.28)

γλ (z, w) =

∫ w

0
Eλ (t) tz−1dt,

with Eλ given by (3.25).
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Lemma 1.

Γλ (z) =
a∏

j=1

Γ(z − µ + λj)

where µ = 1
a

∑a
j=1 λj .

Proof. Let ψj(t) = e−ttλj , j = 1, . . . , a, and consider

(ψ1 ∗ · · · ∗ ψa)(v)

= vλ1

∫ ∞

0
. . .

∫ ∞

0

a−1∏
j=1

t
λj+1−λj

j e
−
(

v
t1

+ t1
t2

+···+ ta−2
ta−1

+ta−1

)
dt1
t1

. . .
dta−1

ta−1

= vµ

∫ ∞

0
. . .

∫ ∞

0

a−1∏
j=1

x
λj+1−λj

j e
−v1/a

(
1

x1
+ x1

x2
+···+ xa−2

xa−1
+xa−1

)
dx1

x1
. . .

dxa−1

xa−1
.

(we have put tj = v1−j/axj). Thus, from (3.25)

Eλ (v) = v−µ(ψ1 ∗ · · · ∗ ψa)(v),

and hence (3.28) equals ∫ ∞

0
(ψ1 ∗ · · · ∗ ψa)(t)t

z−µ−1dt

which, by (3.22) is
∏a

j=1 Γ(z − µ + λj).

Inverting, we get

Eλ (t) =
1

2πi

∫ ν+i∞

ν−i∞
Γλ (z) t−zdz

with ν to the right of the poles of Γλ (z). Shifting the line integral to the

left, we can express Eλ (t) as a sum of residues, and hence obtain through

termwise integration a series expansion for γλ (z, w). An algorithm for doing

so is detailed in [Do], though with different notation. Such an expansion is

useful for |w| << 1. That paper also describes how to obtain an asymptotic

expansion for Eλ (t) and hence, by termwise integration, for Γλ (z, w), useful

for |w| large in comparison to |z|. The paper has, implictly, g(z) = 1 and does

not control for cancellation. Consequently, it does not provide a means to

compute L-functions away from the real axis other than increasing precision.

If one wishes to use the methods of this paper to control for cancellation,

then one will have w varying over a wide range of values for which the series
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expansion in [Do] is not adequate. We thus need an alternative method to

compute Gλ (z, w) especially in the transition zone |z| ≈ |w|. It would be

useful to have Temme’s uniform asymptotics generalized to handle Gλ (z, w).

Alternatively, we can apply the naive but powerful Riemann sum technique

described in section 2.

3.6 The functions f1(s, n), f2(1 − s, n) as Riemann sums

Substituting z = v + iu into (3.5) we have

f1(s, n) =
1

2π

∫ ∞

−∞

a∏
j=1

Γ(κj(s + v + iu) + λj)
g(s + v + iu)

v + iu
(Q/n)v+iudu.

Let

h(u) =
1

2π

a∏
j=1

Γ(κj(s + v + iu) + λj)
g(s + v + iu)

v + iu
(Q/n)v+iu.

With the choice of g(z) as in (3.10), an analysis similar to that following (2.21)

shows that ĥ(y) decays exponentially fast as y → −∞, and doubly exponen-

tially fast as y →∞. Hence, we can successfully evaluate f1(s, n), and similarly

f2(1 − s, n) as simple Riemann sums, with step size inversely proportional to

the number of digits of precision required.

The Riemann sum approach gives us tremendous flexibility. We are no

longer bound in our choice of g(z) to functions for which (3.5) has nice series

or asymptotic expansions. For example, we can, with A > 0, set

g(z) = exp(A(z − s)2)
a∏

j=1

δ
−κj z
j .

The extra factor exp(A(z − s)2) is chosen so as to cut down on the domain of

integration. Recall that in f1(s, n) and f2(1−s, n), g appears as g(s±(v+iu)),

hence exp(A(z − s)2) decays in the integral like exp(−Au2). Ideally, we would

like to have A large. However, this would cause the Fourier transform ĥ(y)

to decay too slowly. The Fourier transform of a product is a convolution of

Fourier transforms, and the Fourier transform of exp(A(v + iu)2) equals

(π/A)1/2 exp(πy(2Av − πy)/A).

A large value of A leads to to a small 1/A and this results in poor performance

of ĥ(y). We also need to specify v, for the line of integration. Larger v means
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more rapid decay of ĥ(y) but more cancellation in the Riemann sum and hence

loss of precision.

Another advantage to the Riemann sum approach is that we can rearrange

sums, putting the Riemann sum on the outside and the sum over n on the

inside. Both sums are finite since we truncate them once the tails are within

the desired precision. This then expresses, to within an error that we can

control by our choice of stepsize and truncation, Λ(s) as a sum of finite Dirichlet

series evaluated at equally spaced points and hence gives a sort of interpolation

formula for Λ(s). Details related to this approach will appear in a future paper.

3.7 Looking for zeros

To look for zeros of an L-function, we can rotate it so that it is real on the

critical line, for example working with Z(t), see (3.1), rather than ζ(1/2 + it).

We can then advance in small steps, say one quarter the average gap size

between consecutive zeros, looking for sign changes of this real valued func-

tion, zooming in each time a sign change occurs. Along the way, we need to

determine if any zeros have been missed, and, if so, go back and look for them,

using more refined step sizes. We can also use more sophisticated interpolation

techniques to make the search for zeros more efficient [O]. If this search fails

to turn up the missing zeros, then presumably a bug has crept into one’s code,

or else one should look for zeros of the L-function nearby but off the critical

line in violation of the Riemann hypothesis.

To check for missing zeros, we could use the argument principle and numer-

ically integrate the logarithmic derivative of the L-function along a rectangle,

rounding to the closest integer. However, this is inefficient and difficult to

make numerically rigorous.

It is better to use a test devised by Alan Turing [Tu] for ζ(s) but which

seems to work well in general. Let N(T ) denote the number of zeros of ζ(s)

in the critical strip above the real axis and up to height T :

N(T ) = |{ρ = β + iγ|ζ(ρ) = 0, 0 � β � 1, 0 < γ � T}| .
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A theorem of von Mangoldt states8 that

N(T ) =
T

2π
log(T/(2π)) − T

2π
+

7

8
+ S(T ) + O(T−1) (3.29)

with

S(T ) = O(log T ).

However, a stronger inequality due to Littlewood and with explicit constants

due to Turing [Tu] [Le] is given by∣∣∣∣∫ t2

t1

S(t)dt

∣∣∣∣ � 2.3 + .128 log(t2/π) (3.30)

for all t2 > t1 > 168π, i.e. S(T ) is 0 on average. Therefore, if we miss one sign

change (at least two zeros), we’ll quickly detect the fact. To illustrate this,

Table 2 contains a list of the imaginary parts of the zeros of ζ(s) found naively

by searching for sign changes of Z(t) taking step sizes equal to two. We notice

that near the ninth zero on our list a missing pair is detected, and similarly

near the twenty fifth zero. A more refined search reveals the pairs of zeros with

imaginary parts equal to 48.0051508812, 49.7738324777, and 94.6513440405,

95.8706342282 respectively.

It would be useful to have a general form of the explicit inequality (3.30)

worked out for any L-function. The papers of Rumely [Rum] and Tollis [To]

generalize this inequality to Dirichlet L-functions and Dedekind zeta functions

respectively.

The main term, analogous to (3.29), for a general L-function is easy to de-

rive. Let L(s) be an L-function with functional equation as described in (3.2).

Let NL(T ) denote the number of zeros of L(s) lying within the rectangle

|Ims| � T , 0 < Res < 1. Notice here we are considering zeros lying both

above and below the real axis since the zeros of L(s) will not be located sym-

metrically about the real axis if its Dirichlet coefficients b(n) are non-real.

Assume for simplicity that L(s) is entire. The arguement principle and the

functional equation for L(s) suggests a main term for NL(T ) equal to

NL(T ) ∼ 2T

π
log(Q) +

1

π

a∑
j=1

Im

(
log

(
Γ((1/2 + iT )κj + λj)

Γ((1/2 − iT )κj + λj)

))
.

8Editors’ comment: For the proof see the lectures of D.R. Heath-Brown, starting on page
1, Theorem 10.
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If we assume further that the λj ’s are all real, then the above is, by Stirling’s

formula, asymptotically equal to

NL(T ) ∼ 2T

π
log(Q) +

a∑
j=1

(
2Tκj

π
log(Tκj/e) + (κj/2 + λj − 1/2)

)
.

A slight modification of the above is needed if L(s) has poles, as in the case of

ζ(s). See Davenport [D, chapters 15,16] where rigorous proofs are presented

for ζ(s) and Dirichlet L-functions (the original proof is due to von Mangoldt).

4 Experiments involving L-functions

Here we describe some of the experiments that reflect the random matrix

theory philosophy, namely that the zeros and values of L-functions behave like

the zeros and values of characteristic polynomials from the classical compact

groups [KS2]. Consequently, we are interested in questions concerning the

distribution of zeros, horizontal and vertical, and the value distribution of

L-functions.

4.1 Horizontal distribution of the zeros

Riemann himself computed the first few zeros of ζ(s), and detailed numerical

studies were initiated almost as soon as computers were invented. See Ed-

wards [E] for a historical survey of these computations. To date, the most

impressive computations for ζ(s) have been those of Odlyzko [O] [O2] and

Wedeniwski [W]. The latter adapted code of van de Lune, te Riele, and Win-

ter [LRW] for grid computing over the internet. Several thousand computers

have been used to verify that the first 8.5 · 1011 nontrivial zeros of ζ(s) fall on

the critical line. Odlyzko’s computations have been more concerned with ex-

amining the distribution of the spacings between neighbouring zeros, although

the Riemann Hypothesis has also been checked for the intervals examined.

In [O], Odlyzko computed 175 million consecutive zeros of ζ(s) lying near the

1020th zero, and more recently, billions of zeros in a higher region [O2]. The

Riemann-Siegel formula has been at the heart of these computations. Odlyzko

also uses FFT and interpolation algorithms to allow for many evaluations of

ζ(s) at almost the same cost of a single evaluation.
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j tj Ñ((tj + tj−1)/2) − j + 1

1 14.1347251417 -0.11752

2 21.0220396388 -0.04445

3 25.0108575801 -0.03216

4 30.4248761259 0.01102

5 32.9350615877 -0.01000

6 37.5861781588 -0.05699

7 40.9187190121 0.07354

8 43.3270732809 -0.07314

9 52.9703214777 0.81717

10 56.4462476971 2.01126

11 59.3470440026 2.12394

12 60.8317785246 1.90550

13 65.1125440481 1.95229

14 67.0798105295 2.11039

15 69.5464017112 1.94654

16 72.0671576745 1.90075

17 75.7046906991 2.09822

18 77.1448400689 2.10097

19 79.3373750202 1.82662

20 82.9103808541 1.99205

21 84.7354929805 2.09800

22 87.4252746131 2.03363

23 88.8091112076 1.88592

24 92.4918992706 1.95640

25 98.8311942182 3.10677

26 101.3178510057 4.03517

27 103.7255380405 4.11799

Table 2: Checking for missing zeros. The second column lists the imaginary

parts of the zeros of ζ(s) found by looking for sign changes of Z(t), advancing in

step sizes equal to two. The third column compares the number of zeros found

to the main term of N(T ), namely to Ñ(T ) := (T/(2π)) log(T/(2πe)) + 7/8,

evaluated at the midpoint between consecutive zeros, with t0 taken to be 0.

This detects a pair of missing zeros near the ninth and twenty fifth zeros on

our list.
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Dirichlet L-functions were not computed on machines until 1961 when

Davies and Haselgrove [DH] looked at several L(s, χ) with conductor � 163.

Rumely [Rum], using summation by parts, computed the first several thousand

zeros for many Dirichlet L-functions with small moduli. He both verified RH

and looked at statistics of neighbouring zeros.

Yoshida [Y] [Y2] has also used summation by parts, though in a different

manner, to compute the first few zeros of certain higher degree, with two or

more Γ-factors in the functional equation, L-functions.

Lagarias and Odlyzko [LO] have computed the low lying zeros of several

Artin L-functions using expansions involving the incomplete gamma function.

They noted that one could compute higher up in the critical strip by intro-

ducing the parameter δ, as explained in section 3.3, but did not implement it

since it led to difficulties concerning the computation of G(z, w) with both z

and w complex.

Other computations of L-functions include those of Berry and Keating [BK]

and Paris [P] (ζ(s)), Tollis [To] (Dedekind zeta functions), Keiper [Ke] and

Spira [Sp] (Ramanujan τ L-function), Fermigier [F] and Akiyama-

Tanigawa [AT] (elliptic curve L-functions), Strombergsson [St] and Farmer-

Kranec-Lemurell [FKL] ( Maass waveform L-functions), and Dokchister [Do]

(general L-functions near the critical line).

The author has verified the Riemann hypothesis for various L-functions.

These computations use the methods described in section 3 and are not rigor-

ous in the sense that no attempt is made to obtain explicit bounds for trunca-

tion errors on some of the asymptotic expansions and continued fractions used,

and no interval arithmetic to bound round off errors is carried out. Tables of

the zeros mentioned may be obtained from the author’s homepage [Ru4]. These

include the first tens of millions zeros of all L(s, χ) with the conductor of χ

less than 20, the first 300000 zeros of Lτ (s), the Ramanujan τ L-function, the

first 100000 zeros of the L-functions associated to elliptic curves of conductors

11, 14, 15, 17, 19, the first 1000 zeros for elliptic curves of conductors less than

1000, the first 100 zeros of elliptic curves with conductor less than 8000, and

hundreds/millions of zeros of many other L-functions.

In all these computations, no violations of the Riemann hypothesis have

been found.
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4.2 Vertical distribution: correlations and spacings dis-

tributions

The random matrix philosophy predicts that various statistics of the zeros of

L-functions will mimic the same statistics for the eigenvalues of matrices in

the classical compact groups.

Montgomery [Mo] achieved the first result connecting zeros of ζ(s) with

eigenvalues of unitary matrices. Write a typical non-trivial zero of ζ as

1/2 + iγ.

Assume the Riemann Hypothesis, so that the γ’s are real. Because the zeros

of ζ(s) come in conjugate pairs, we can restrict our attention to those lying

above the real axis and order them

0 < γ1 � γ2 � γ3 . . .

We can then ask how the spacings between consecutive zeros, γi+1 − γi, are

distributed, but first, we need to ‘unfold’ the zeros to compensate for the fact

that the zeros on average become closer as one goes higher in the critical strip.

We set

γ̃i = γi
log(γi/(2πe))

2π
(4.1)

and investigate questions involving the γ̃’s. This normalization is chosen so

that the mean spacing between consecutive γ̃’s equals one. Summing the

consecutive differences, we get a telescoping sum

∑
γi�T

(γ̃i+1 − γ̃i) = γ̃(T ) + O(1) = γ(T )
log(γ(T )/(2πe))

2π
+ O(1)

where γ(T ) is the largest γ less than or equal to T . By (3.29), the r.h.s above

equals

N(γ(T )) + O(log(γ(T ))) = N(T ) + O(log(T )),

hence γ̃i+1 − γ̃i has mean spacing equal to one.

From a theoretical point of view, studying the consecutive spacings distri-

bution is difficult since this assumes the ability to sort the zeros. The tool that

is used for studying spacings questions about the zeros, namely the explicit

formula, involves a sum over all zeros of ζ(s), and it is easier to consider the
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pair correlation, a statistic incorporating differences between all pairs of zeros.9

Montgomery conjectured that for 0 � α < β and M →∞,

M−1|{1 � i < j � M : γ̃j − γ̃i ∈ [α, β)}|

∼
∫ β

α

(
1 −
(

sin πt

πt

)2
)

dt. (4.2)

Notice that M−1, and not, say,
(

M
2

)−1
, is the correct normalization. For any j

there, are just a handful of i’s with γ̃j − γ̃i ∈ [α, β).

Montgomery was able to prove that

M−1
∑

1�i<j�M

f(γ̃j − γ̃i) →
∫ ∞

0
f(t)

(
1 −
(

sin πt

πt

)2
)

dt. (4.3)

as M → ∞, for test functions f satisfying the stringent restriction that f̂ be

supported in (−1, 1).

An equivalent way to state the conjecture as M → ∞, and one which

Odlyzko uses in his numerical experiments, is to let

δi = (γi+1 − γi)
log(γi/(2π))

2π
. (4.4)

and replace the condition γ̃j − γ̃i ∈ [α, β) with the condition δi + δi+1 + · · · +
δi+k ∈ [α, β) for 1 � i � M,k � 0. The main difference is the absence of the

1/e in the logarithm. This is done so as to maintain a mean spacing tightly

asymptotic to one. Set

C(T ) =
∑
γi�T

(γi+1 − γi),

and sum by parts

∑
γi�T

δi = C(T )
log(T/(2π))

2π
− 1

2π

∫ T

γ1

C(t)
dt

t
.

Now, C(t) telescopes, and von Mangoldt’s formula (3.29) implies that C(t) =

t+O(1), so that the r.h.s above equals N(T )+O(log(T )), and δi is on average

equal to one. In carrying out numerical experiments with zeros one can either

9Editors’ comment: The corresponding statistic for random matrix eigenvalues, often
called the 2-point correlation function, is described in the lectures by Y.V. Fyodorov, page
31, Section 3.
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use the normalization given in (4.1) or (4.4). For the theoretical purpose

of examining leadings asymptotics of, say, the pair correlation, the factors

appearing in these normalizations in the logarithm, 1/(2πe) or 1/(2π), are not

important as they only affect lower order terms. However, for the purpose

of comparing numerical data to theoretical predictions it is crucial to include

them.

On a visit by Montgomery to the the Institute for Advanced Study, Freeman

Dyson pointed out that large unitary matrices have the same pair correlation.

Let

eiθ1 , eiθ2 , . . . , eiθN

be the eigenvalues of a matrix in U(N), sorted so that

0 � θ1 � θ2 � . . . � θN < 2π.

Normalize the eigenangles

θ̃i = θiN/(2π) (4.5)

so that θ̃i+1− θ̃i equals one on average. Then, a classic result in random matrix

theory [M] asserts that

N−1|{1 � i < j � N, θ̃j − θ̃i ∈ [α, β)}|

equals, when averaged according to Haar measure over U(N) and letting N →
∞, ∫ β

α

(
1 −
(

sin πt

πt

)2
)

dt.

Odlyzko [O] [O2] has carried out numerics to verify Montgomery’s conjec-

ture (4.2). His most extensive data to date involves billions of zeros near the

1023rd zero of ζ(s). With kind permission we reproduce [O4] Odlyzko’s pair

correlation picture in figure 1.

This picture compares the l.h.s. of (4.2) for many bins [a, b) of size b−a = .01

to the curve

1 −
(

sin πt

πt

)2

.

Odlyzko’s histogram fits the theoretical prediction beautifully. Bogomolny and

Keating [K] [BoK], using conjectures of Hardy and Littlewood, have explained

the role played by secondary terms in the pair correlation of the zeros of ζ(s)

and these terms are related to ζ(s) on the one line. A nice description of these

results are contained in [BK2]. Recently, Conrey and Snaith [CS] obtained the
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Figure 1: The first graph depicts Odlyzko’s pair correlation picture for 2× 108

zeros of ζ(s) near the 1023rd zero. The second graph shows the difference

between the histogram in the first graph and 1−((sin πt)/(πt))2. In the interval

displayed, the two agree to within about .002.

main and lower terms of the pair correlation using a conjecture for the full

asymptotics of the average value of a ratio of four zeta functions rather than

the Hardy-Littlewood conjectures.

Montgomery’s pair correlation theorem (4.3) has been generalized by Rud-

nick and Sarnak [RudS] to any primitive L-function, i.e. one which does not

factor as a product of other L-functions, as well as to higher correlations which

are defined in a way similar to the pair correlation. Again, there are severe

restrictions on the Fourier transform of the allowable test functions, and fur-

ther, for L-functions of degree greater than three, Rudnick and Sarnak assume

a weak form of the the Ramanujan conjectures. Bogomolny and Keating pro-

vide a heuristic derivation of the higher correlations of the zeros of ζ(s) using

the Hardy-Littlewood conjectures [BoK2].

The author has tested the pair correlation conjecture for a number of L-

functions. Figure 2 depicts the same experiment as in Odlyzko’s figure, but

for various Dirichlet L-functions and L-functions associated to cusp forms.

Altogether there are eighteen graphs.

The first twelve graphs depict the pair correlation for all primitive Dirichlet

L-functions, L(s, χ) for conductors q = 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16,

17. Each graph shows the average pair correlation for each q, i.e. the pair

correlation was computed individually for each L(s, χ), and then averaged
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over χmodq.

In the case of q = 3, 4 there is only one primitive L-function for either q, and

approximately five million zeros were used for each (4, 772, 120 and 5, 003, 411

zeros respectively to be precise). In the case of q = 5, 7, 8, 9, 11, 12, 13, 15, 16, 17

there are 3, 5, 2, 4, 9, 1, 11, 3, 4, 15 primitive L-functions respectively. For q =

5, 7, 8, 9, 11, 12 either 2, 000, 000 zeros or 1, 000, 000 zeros were computed for

each L(s, χ), depending on whether χ was real or complex. In the case of

q = 16, 17 half as many zeros were computed.

The last six graphs are for L-functions associated to cusp forms. The first of

these six shows the pair correlation of the first 284, 410 zeros of the Ramanujan

τ L-function, corresponding to the cusp form of level one and weight twelve.

The next five depict the pair correlation of the first 100, 000 zeros of the L-

functions associated to the elliptic curves of conductors 11, 14, 15, 17, 19. These

last six graphs use larger bins since data in these cases is more limited.

The quality of the fit is comparable to what one finds with zeros of ζ(s)

up to the same height. See, for example, figures 1 and 3 in [O3]. It would be

possible to extend the L(s, χ) computations and obtain data near the 1020th or

higher zero, at least for reasonably sized q. Using the methods of section 3 the

time required to compute L(1/2+ it, χ) is O(|qt|1/2), compared to O(|t|1/2) for

ζ(1/2+ it). Adapting the Odlyzko-Schönhage algorithm would allow for many

evaluations of these L-functions at essentially the cost of a single evaluation.

While such a computation might be manageable for Dirichlet L-functions, it

is hopeless for cusp form L-functions where the time and also the number of

Dirichlet coefficients required is O(|N 1/2t|), i.e. linear in t. Here N is the

conductor of the L-function. Using present algorithms and hardware, it might

be possible to extend these cusp form computations to t = 108 or 109.

Slight care is needed to normalize these zeros correctly as the formula for

the number of zeros of L(s) depends on the degree of the L-function and on

its conductor. For Dirichlet L-functions L(s, χ), χmodq, we should normalize

its zeros 1/2 + iγ as follows:

γ̃ = γ
log(|γ|q/(2πe))

2π

For a cusp form L-function of conductor N , we should take the following

normalization:

γ̃ = γ
log(|γ|N 1/2/(2πe))

π
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Figure 2: Pair correlation for zeros of all primitive L(s, χ), 3 � q � 17, the

Ramanujan τ L-function, and five elliptic curve L-functions
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From a graphical point of view, it is hard to display information concerning

higher order correlations. Instead one can look at a statistic that involves

knowing [KS] all the n-level correlations for zeros of characteristic polynomials,

namely the nearest neighbour spacings distribution.

In Figure 3 we display Odlyzko’s picture for the distribution of the normal-

ized spacings δj for 2×108 zeros of ζ(s) near the 1023rd zero. This is computed

by breaking up the x-axis into small bins and counting how many δj ’s fall into

each bin, and then comparing this against the nearest neighbour spacings dis-

tribution of the normalized eigenangles of matrices in U(N), as N → ∞, again

averaged according to Haar measure on U(N). The density function for this

distribution is given [M] as

d2

dt2

∏
n

(1 − λn(t))

where λn(t) are the eigenfunctions of the integral operator

λ(t)f(x) =

∫ 1

−1

sin(πt(x− y))

π(x− y)
f(y)dy, (4.6)

sorted according to 1 � λ0(t) � λ1(t) � . . . � 0. See [O3] for a description of

how the density function can be computed.
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Figure 3: The first graph shows Odlyzko’s nearest neighbour spacings distri-

bution for 2× 108 zeros of ζ(s) near the 1023rd zero. The second graph shows

the difference he computed between the histogram and the predicted density

function. Recently, Bogomolny, Bohigas, Leboeuf and Monastra [BBLM] have

explained the role of secondary terms in shaping the difference displayed.
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In Figure 4 we display the nearest neighbour spacings distribution for the

sets of zeros described above, namely millions of zeros of primitive L(s, χ),

with conductors 3 � q � 17, and hundreds of thousands of zeros of six cusp

form L-functions. We also depict the nearest neighbour spacings for the first

500, 000 zeros of each of the 16 primitive L(s, χ) with χmod19 complex, and

1, 000, 000 zeros for the one primitive real χmod19.

Eight graphs are displayed. The first is for the 4, 772, 120 zeros of L(s, χ),

χmod3. The second one depicts the average spacings distribution for all 76

primitive L(s, χ), χmodq with 3 � q � 19, i.e. the spacings distribution

was computed individually for each of these L-functions and then averaged.

The next six graphs show the spacings distribution for the Ramanujan τ L-

function, and the L-functions associated to the elliptic curves of conductors

11, 14, 15, 17, 19. Again, the fit is comparable to the fit one gets with the same

number of zeros of ζ(s).

4.3 Density of zeros

Rather than look at statistics of a single L-function, we can form statistics

involving a collection of L-functions. This has the advantage of allowing us

to study the behaviour of our collection near the critical point where specific

information about the collection may be revealed. This idea was formulated

by Katz and Sarnak [KS] [KS2] who studied function field zeta functions and

conjectured that the various classical compact groups should be relevant to

questions about L-functions.

While the eigenvalues of matrices in all the classical compact groups share,

on average, the same limiting correlations and spacings distributions, their

characteristic polynomials do exhibit distinct behaviour near the point z = 1.

Using the idea that the unit circle for characteristic polynomials in the classical

compact groups correponds to the critical line, with the point z = 1 on the

unit circle corresponding to the critical point, Katz and Sarnak were led to

formulate conjectures regarding the density of zeros near the critical point for

various collections of L-functions. This is detailed in section 4.3.1 below.

The fact that different families of L-functions exhibit distinct behaviour

near the critical point is illustrated in figure 5. This plot depicts the imaginary

parts of the zeros of many L(s, χ) with χ a generic non-real primitive Dirichlet

character for the modulus q, with 5 � q � 10000. Other than the fact that, at
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Figure 4: Nearest neighbour spacings distribution for several Dirichlet and

cusp form L-functions. The first is for L(s, χ), q = 3. The second is the

average nearest neighbour spacing for all primitive L(s, χ), 3 � q � 19. The

last six are for the Ramanujan τ L-function, and five L-functions associated

to elliptic curves.
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a fixed height, the zeros become more dense proportionally to log q, the zeros

appear to be uniformly dense.

This contrasts sharply with the plot in figure 6 which depicts the zeros of

L(s, χd) where χd is a real primitive character (the Kronecker symbol), and d

ranges over fundamental discriminants with −20000 < d < 20000. Here we

see the density of zeros fluctuating as one moves away from the real axis.

Other features can be seen in the plot. First, from the white band near

the x-axis we notice that the lowest zero for each L(s, χd) tends to stay away

from the critical point. We can also see the effect of secondary terms on this

repulsion. The lowest zero for d > 0 tends to be higher than the lowest zero

for d < 0. This turns out to be related to the fact that the Γ-factor in the

functional equation for L(s, χd) is Γ(s/2) if d > 0, but is Γ((s + 1)/2) when

d < 0.

We can also see slightly darker regions appearing in horizontal strips. The

first one occurs roughly at height 7., half the height of the first zero of ζ(s).

These horizontal strips are due to secondary terms in the density of zeros for

this collection of L-functions which include [Ru3] [CS] a term that is propor-

tional to

Re
ζ ′(1 + 2it)

ζ(1 + 2it)
.

This is large when ζ(1 + 2it) is small. Surprisingly, ζ(1 + iy) and ζ(1/2 + iy)

track each other very closely, see figure 7, and the minima of |ζ(1+ iy)| appear

close to the zeros of ζ(1/2 + iy). This is similar to a phenomenon that occurs

when we look at secondary terms in the pair correlation of the zero of ζ(s)

which also involves ζ(s) on the one line [BoK] [BK2].

4.3.1 n-level density

The n-level density is used to measure the average density of the zeros of a

family of L-functions or matrices. It is arranged to be sensitive to the low

lying zeros in the family, i.e. those near the critical point if we are dealing

with L-functions, and those near the point z = 1 on the unit circle if we are

dealing with characteristic polynomials from the classical compact groups.

Let A be an N ×N matrix in on of the classical compact groups. Write the

eigenvalues of A as λj = eiθj with

0 � θ1 � . . . � θN < 2π.
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Figure 5: Zeros of L(s, χ) with χ a generic non-real primitive Dirichlet char-

acter for the modulus q, with 5 � q � 10000. The horizontal axis is q and, for

each L(s, χ), the imaginary parts of its zeros up to height 15 are listed.

Let

H (n)(A, f) =
∑

1�j1 , . . . ,jn �N
distinct

f (θj1 N/(2π), . . . , θjn N/(2π))

with f : Rn → R, bounded, Borel measurable, and compactly supported. Be-

cause of the normalization by N/(2π), and the assumption that f has compact

support, H (n)(A, f) only depends on the small θj ’s.

Katz and Sarnak [KS] proved the following family dependent result:

lim
N→∞

∫
G(N )

H (n)(A, f)dA =

∫ ∞

0
. . .

∫ ∞

0
W

(n)
G (x)f(x)dx (4.7)

for the following families:

G W
(n)
G

U(N),Uκ(N) det (K0(xj , xk)) 1�j�n
1�k�n

USp(N) det (K−1(xj , xk)) 1�j�n
1�k�n

SO(2N) det (K1(xj , xk)) 1�j�n
1�k�n

SO(2N + 1) det (K−1(xj , xk)) 1�j�n
1�k�n

+
∑n

ν=1 δ(xν) det (K−1(xj , xk)) 1�j �= ν �n
1�k �= ν �n

with

Kε(x, y) =
sin(π(x − y))

π(x − y)
+ ε

sin(π(x + y))

π(x + y)
.
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Figure 6: Zeros of L(s, χd) with χd(n) =
(

d
n

)
, the Kronecker symbol. We

restrict d to fundamental discriminants −20000 < d < 20000. The horizontal

axis is d and, for each L(s, χd), the imaginary parts of its zeros up to height

30 are listed.
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Figure 7: A graph illustrating that, at least initially, the minima of |ζ(1 + iy)|
occur very close the zeros of |ζ(1/2 + iy)|. The dashed line is the graph of the

former while the solid line is the graph of the the latter.

Here

Uκ(N) = {A ∈ U(N) : det(A)κ = 1}.

The delta functions in the SO(2N +1) case are accounted for by the eigenvalue

at 1. Removing this zero from (4.7) yields the same W
(n)
G as for USp.

Let

D(X) = {d a fundamental discriminant : |d| � X}

and let χd(n) =
(

d
n

)
be Kronecker’s symbol. Write the non-trivial zeros of

L(s, χd) as

1/2 + iγ
(d)
j , j = ±1,±2, . . .

sorted by increasing imaginary part, and

γ
(d)
−j = −γ

(d)
j .

The author proved [Ru2] that

lim
X→∞

1

|D(X)|
∑

d∈D(X )

∑
ji �1

distinct

f
(
ldγ

(d)
j1

, ldγ
(d)
j2

, . . . , ldγ
(d)
jn

)
=

∫ ∞

0
. . .

∫ ∞

0
f(x)W

(n)
USp(x)dx, (4.8)
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where

ld =
log(|d|/π)

2π
.

Here, f is assumed to be smooth, and rapidly decreasing with f̂(u1, . . . , un)

supported in
∑n

i=1 |ui| < 1. This generalized the n = 1 case that had been

achieved earlier [OzS, KS2]. Assuming the Riemann Hypothesis for all L(s, χd),

the n = 1 case has been extended to f̂ supported in (−2, 2) [OzS2] [KS3].

Chris Hughes has an alternate derivation of (4.8) appearing Theorem 3 of his

lectures, which start on page 337.

This result confirms the connection between zeros of L(s, χd) and eigenval-

ues of unitary symplectic matrices and explains the repulsion away from the

critical point and the fluctuations seen in figure 6, at least near the real axis,

because, when n = 1, the density of zeros is described by the function W
(1)
USp(x)

which equals

1 − sin(2πx)

2πx
.

At height x, we therefore also expect, as we average over larger and larger |d|,
for the fluctuations to diminish proportional to 1/x. However, if we allow x to

grow with d then the fluctuations actually persist due to secondary fluctuating

terms that can be large if x is allowed to grow with d [Ru3] [CS].

The above suggests that the distribution of the lowest zero, i.e. the one with

smallest imaginary part, in this family of L-functions ought to be modeled

by the distribution of the smallest eigenangle of characteristic polynomials

in USp(N), with N → ∞. Similary we expect that the distribution, say,

of the second lowest zero ought to fit the distribution of the second smallest

eigenangle.

The probability densities describing the distribution of the smallest and

second smallest eigenangles, normalized by N/(2π), for characteristic polyno-

mials in USp(N), with N even and tending to ∞ are given [KS] respectively

by

ν1(USp)(t) = − d

dt
E−,0(t)

and

ν2(USp)(t) = − d

dt
(E−,0(t) + E−,1(t)),
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where

E−,0(t) =
∞∏

j=0

(1 − λ2j+1(2t))

E−,1(t) =
∞∑

k=1

λ2k+1(2t)
∞∏

j=0
j �= k

(1 − λ2j+1(2t)).

Here, the λj(t)’s are the eigenvalues of the integral equation in (4.6).

This also suggests that the means of the the first and second lowest zeros

are given by

lim
X→∞

1

|D(X)|
∑

d∈D(X )

γ
(d)
1 ld =

∫ ∞

0
tν1(USp)(t)dt = .78 . . .

lim
X→∞

1

|D(X)|
∑

d∈D(X )

γ
(d)
2 ld =

∫ ∞

0
tν2(USp)(t)dt = 1.76 . . .

However, the convergence to the predicted means is logarithmically slow due to

secondary terms of size O(1/ log(X)). Consequently, when comparing against

the random matrix theory predictions, one gets a better fit by making sure the

lowest zero has the correct mean. This can be achieved by rescaling the data,

further multiplying, for a set D of fundamental discriminants, γ
(d)
1 ld by

.78

(
1

|D|
∑
d∈D

γ
(d)
1 ld

)−1

(4.9)

and γ
(d)
2 ld by

1.76

(
1

|D|
∑
d∈D

γ
(d)
2 ld

)−1

(4.10)

In figures 8 and 9, we use the normalization described above. For our data set,

the denominator in (4.9) equals .83, and, in (4.10) equals 1.84.

In figure 8 we depict the 1-level density of the zeros of L(s, χd) for 7243 prime

|d| lying in the interval (1012, 1012 + 200000). These zeros were computed in

1996 as part of the authors PhD thesis [Ru]. Here we divide the x-axis into

small bins, count how many normalized zeros of L(s, χd) lie in each bin, divide

that count by the number of d, namely 7243, and compare that to the graph

of 1 − sin(2πx)/(2πx).

In figure 9 we depict the distribution of the lowest and second lowest nor-

malized zero for the set of zeros just described. These are compared against ν1
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Figure 8: Density of zeros of L(s, χd) for 7243 prime values of |d| lying in the

interval (1012, 1012 + 200000). Compared against the random matrix theory

prediction, 1 − sin(2πx)/(2πx).
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Figure 9: Distribution of the lowest and second lowest zero of L(s, χd) for

7243 prime values of |d| lying in the interval (1012, 1012 + 200000). Compared

against the random matrix theory predictions.
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and ν2 which were computed using the same program, obtained from Andrew

Odlyzko, that was used in [O3].

In figure 10 we depict the 1-level density and distribution of the lowest zeros

for quadratic twists of the Ramanujan τ L-function, Lτ (s, χd), d > 0. For this

family of L-functions, one can prove [Ru2] a result similar to (4.8) but with

WUSp replaced with WSO(even), and the support of f̂ reduced to
∑n

i=1 |ui| < 1/2.

The 1-level density is therefore given by 1+sin(2πx)/(2πx) and the probability

density for the distribution of the smallest eigenangle, normalized by 2N/(2π),

for matrices in SO(2N), with N → ∞, is given [KS] by

ν1(SO(even))(t) = − d

dt

∞∏
j=0

(1 − λ2j(2t)),

whose mean is .32. The figure uses 11464 prime values of |d| lying in

(350000, 650000), and the zeros were normalized by 2ld, and then rescaled

so as to have mean .32 rather than .29. The choice of using 2ld for normalizing

the zeros is the correct one up to leading term, but is slightly adhoc and by

now a better understanding of a tighter normalization up to lower terms has

emerged [CFKRS] [Ru3].
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Figure 10: One-level density and distribution of the lowest zero of even

quadratic twists of the Ramanujan τ L-function, Lτ (s, χd), for 11464 prime

values of d > 0 lying in the interval (350000, 650000).
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4.4 Value distribution of L-functions

Keating and Snaith initiated the use of random matrix theory to study the

value distribution of L-functions with their important paper [KeS] where they

consider moments of characteristic polynomials of unitary matrices and conjec-

ture the leading-order asymptotics for the moments of ζ(s) on the critical line.

This was followed by a second paper [KeS2] along with a paper by Conrey and

Farmer [CF] which provide conjectures for the leading-order asymptotics of

moments of various families of L-functions by examining analogous questions

for characteristic polynomials of the various classical compact groups.

Keating and Snaith’s technically impressive work also represents a philo-

sophical breakthrough. Until their paper appeared, one would compare, say,

statistics involving zeros of ζ(s) to similar statistics for eigenvalues of N × N

unitary matrices, with N → ∞. However, their work compares the average

value of ζ(1/2 + it) to the average value of N ×N unitary characteristic poly-

nomials evaluated on the unit circle, with N ∼ log(t/(2π)). This choice of N

is motivated by comparing local spacings of zeros, for example (4.4) v.s. (4.5).

A slightly different approach to this choice of N proceeds by comparing func-

tional equations of L-functions to functional equations of characteristic poly-

nomials [CFKRS].

At first sight, it seems strange to compare the Riemann zeta function which

has infinitely many zeros to characteristic polynomials of finite size matrices.

However, this suggests that a given height t, the Riemann zeta function can

be modeled locally by just a small number of zeros, as well as by more global

information that incorporates the role played by primes. Recently, Gonek,

Hughes, and Keating have developed such a model [GHK].

Below we describe three specific examples where random matrix theory has

led to important advances in our understanding of the value distribution of

L-functions. These concern the families:

1. ζ(1/2 + it), where we average over t.

2. L(1/2, χd), where we average over fundamental discriminants d.

3. LE(1/2, χd), quadratic twists of the L-function associated to an elliptic

curve E over Q, where we average over fundamental discriminants d.

These three are examples of unitary, unitary unitary symplectic, and even
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orthogonal families respectively [KS2] [CFKRS]. Note that in the last example,

we normalize the Dirichlet coefficient of the L-function as in (3.16) so that the

functional equation of LE(1/2, χd) brings s into 1 − s with the critical point

being s = 1/2.

We first illustrate that these three examples exhibit distinct behaviour by

contrasting their value distributions. The first-order asymptotics for the mo-

ments of |ζ(1/2+ it)| are conjectured by Keating and Snaith [KeS] to be given

by

1

T

∫ T

0
|ζ(1/2 + it)|rdt ∼ ar/2

N∏
j=1

Γ(j)Γ(j + r)

Γ(j + r/2)2 , Rer > −1, (4.11)

with N ∼ log(T ) and ar/2 defined by (2.13).

For quadratic Dirichlet L-functions Keating and Snaith [KeS2] conjecture

that

1

|D(X)|
∑

d∈D(X )

L(1/2, χd)
r (4.12)

∼ br2
2Nr

N∏
j=1

Γ(N + j + 1)Γ(j + 1
2 + r)

Γ(N + j + 1 + r)Γ(j + 1
2 )

, Rer > −3/2,

with N ∼ log(X)/2, where the sum runs over fundamental discriminants |d| �
X, and, as suggested by Conrey and Farmer [CF],

br =
∏

p

(1 − 1
p
)

r (r+1)
2

1 + 1
p

(
(1 − 1√

p
)−r + (1 + 1√

p
)−r

2
+

1

p

)
.

Next, let q be the conductor of the elliptic curve E. Averaging over funda-

mental discriminants and restricting to discriminants for which LE(s, χd) has

an even functional equation, the conjecture asserts [CF] [KeS2] that

1

|D(X)|
∑

d∈D (X )
(d ,q )=1

even funct eqn

LE(1/2, χd)
r (4.13)

∼ cr2
2Nr

N∏
j=1

Γ(N + j − 1)Γ(j − 1
2 + r)

Γ(N + j − 1 + r)Γ(j − 1
2 )

, Rer > −1/2,

with N ∼ log(X) and

cr =
∏

p

(
1 − 1

p

)k(k−1)/2

Rr,p
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where, for p � q,

Rk,p =

(
1 +

1

p

)−1
(

1

p
+

1

2

((
1 − ap

p
+

1

p

)−k

+

(
1 +

ap

p
+

1

p

)−k
))

.

In the above equation, ap stands for the pth coefficient of the Dirichlet series

of LE .

In the case of the Riemann zeta function we take absolute values, |ζ(1/2 +

it)|, otherwise the moments would be zero. In the other two cases, the L-values

are conjectured to be non-negative real numbers, hence we directly take their

moments.

We should also observe that, while statistics such as the pair correlation

or density of zeros involving zeros of L-functions have arithmetic information

appearing in the secondary terms, moments already reveal such behaviour at

the level of the main term. This reflects the global nature of the moment

statistic as compared to the local nature of statistics of zeros that have been

discussed.

Using the above conjectured asymptotics we can naively plot value distri-

butions. Figure 11 compares numerical value distributions for data in these

three examples against the counterpart densities from random matrix theory.

Notice that these three graphs behave distinctly near the origin. The solid

curves are computed by taking inverse Mellin transforms, as in (2.19), of the

right hand sides of equations (4.11), (4.12), and (4.13), but without the arith-

metic factors ak, bk, ck. Shifting the inverse Mellin transform line integral to

the left, the location of the first pole in each integrand dictates the behaviour

of the corresponding density functions near the origin. The locations of these

three poles are at r = −1,−3/2, and −1/2 respectively. Taking t to be the

horizontal axis, near the origin the first density is proportional to a constant,

the second to t1/2, and the third to t−1/2. In forming these graphs one takes

N as described above, so that the proportionality constants do depend on N .

As N grows, these graphs tend to get flatter.

The first graph is reproduced from [KeS]. In the second and third graphs

displayed, a slight cheat was used to get a better fit. The histograms were

rescaled linearly along both axis until the histogram matched up nicely with

the solid curves. We must ignore the arithmetic factors when taking inverse

Mellin transforms since these factors are known [CGo] to be functions of order

two and cause the inverse Mellin transforms to diverge. To properly plot the
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correct value distributions we would need to use more than just the leading-

order asymptotics. Presently, our knowledge of the moments of various families

of L-functions extends beyond the first-order asymptotics, but only for positive

integer values of r (even integer in the case of |ζ(1/2 + it)|r), however, one

would need to apply full asymptotics for complex values of r. The paper

by Conrey, Farmer, Keating, the author, and Snaith [CFKRS] conjectures

the full asymptotics, for example, of the three moment problems above, but

for integer r, with corresponding theorems in random matrix theory given

in [CFKRS2]. The paper of Conrey, Farmer and Zirnbauer goes even beyond

this stating conjectures for the full asymptotics of moments of ratios of L-

functions, and, using methods from supersymmetry, proving corresponding

theorems in random matrix theory [CFZ1, CFZ2]. Another paper, by Conrey,

Forrester, and Snaith, uses orthogonal polynomials to obtain alternative proofs

of the random matrix theory theorems for ratios [CFS].

4.4.1 Moments of |ζ(1/2 + it)|

Next we describe the full moment conjecture from [CFKRS] for |ζ(1/2 + it)|.
In that paper, the conjecture is derived heuristically by looking at products

of zetas shifted slightly away from the critical line and then setting the shifts

equal to zero.

The formula is written in terms of contour integrals and involves the Van-

dermonde determinant:

∆(z1, . . . , zm) =
∏

1≤i<j≤m

(zj − zi).

Suppose g(t) = f(t/T ) with f : R+ → R non-negative, bounded, and

integrable. The conjecture of [CFKRS] states that, as T →∞,∫ ∞

0
|ζ(1/2 + it)|2kg(t) dt ∼

∫ ∞

0
Pk (log(t/(2π))) g(t) dt,

where Pk is the polynomial of degree k2 given by the 2k-fold residue

Pk(x) =
(−1)k

k!2
1

(2πi)2k

∮
· · ·
∮

G(z1, . . . , z2k)∆
2(z1, . . . , z2k)

2k∏
j=1

z2k
j

×e
x
2
∑k

j=1 zj−zk+ j dz1 . . . dz2k,
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Figure 11: Value distribution of L-functions compared to the random matrix

theory counterparts. The first picture, depicts the value distribution of |ζ(1/2+

it)|, with t near 106, the second of L(1/2, χd) with 800000 < |d| < 106, and

the third of LE11 (1/2, χd), with −85000000 < d < 0, d = 2, 6, 7, 8, 10mod11.
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where one integrates over small circles about zi = 0, with

G(z1, . . . , z2k) = Ak(z1, . . . , z2k)
k∏

i=1

k∏
j=1

ζ(1 + zi − zk+j),

and Ak is the Euler product

Ak(z) =
∏

p

k∏
i=1

k∏
j=1

(
1 − 1

p1+zi−zk+ j

)∫ 1

0

k∏
j=1

(
1 − e2πiθ

p
1
2 +zj

)−1

×
(

1 − e−2πiθ

p
1
2 −zk+ j

)−1

dθ

=
∏

p

k∑
m=1

∏
i �=m

k∏
j=1

(
1 − 1

p1+zj−zk+ i

)
1 − pzk+ i−zk+m

.

When k = 1 or 2, this conjecture agrees with theorems for the full asymp-

totics as worked out by Ingham [I] and Heath-Brown respectively [H]. In the

first case A1(z) = 1 and in the second case A2(z) = ζ(2 + z1 + z2 − z3 − z4)
−1,

and one can write down the coefficients of the polynomials Pk(x) in terms of

known constants. When k = 3 the product over primes becomes rather com-

plicated. However, one can numerically evaluate [CFKRS3] the coefficients of

P3(x) and the polynomial is given by:

P3(x) = 0.000005708527034652788398376841445252313x9

+0.00040502133088411440331215332025984x8

+0.011072455215246998350410400826667x7

+0.14840073080150272680851401518774x6

+1.0459251779054883439385323798059x5

+3.984385094823534724747964073429x4

+8.60731914578120675614834763629x3

+10.274330830703446134183009522x2

+6.59391302064975810465713392x

+0.9165155076378930590178543.

In the k = 3 case the moments of |ζ(1/2 + it)| have not been proven, and it

makes sense to test the moment conjecture numerically. Table 3, reproduced

from [CFKRS], depicts ∫ D

C

|ζ(1/2 + it)|6dt (4.14)
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as compared to ∫ D

C

P3(log(t/2π))dt, (4.15)

along with their ratio, for various blocks [C,D] of length 50000, as well as a

larger block of length 2,350,000.

4.4.2 Moments of L(1/2, χd)

Another conjecture listed in [CFKRS] concerns the full asymptotics for the

moments of L(1/2, χd). We quote the conjecture here:

Suppose g(t) = f(t/T ) with f : R+ → R non-negative, bounded, and

integrable. Let Xd(s) = |d| 1
2 −sX(s, a) where a = 0 if d > 0 and a = 1 if d < 0,

and

X(s, a) = πs− 1
2 Γ

(
1 + a − s

2

)
/Γ

(
s + a

2

)
.

That is, Xd(s) is the factor in the functional equation L(s, χd) = Xd(s)L(1 −
s, χd). Summing over negative fundamental discriminants d we have, as T →
∞, ∑

d<0

L(1/2, χd)
kg(|d|) ∼

∑
d<0

Qk(log |d|)g(|d|)

where Qk is the polynomial of degree k(k + 1)/2 given by the k-fold residue

Qk(x) =
(−1)k(k−1)/22k

k!

1

(2πi)k

∮
· · ·
∮

G(z1, . . . , zk)∆(z2
1 , . . . , z

2
k)

2

k∏
j=1

z2k−1
j

×e
x
2
∑k

j=1 zj dz1 . . . dzk,

where

G(z1, . . . , zk) = Bk(z1, . . . , zk)
k∏

j=1

X(1/2 + zj , 1)−
1
2

∏
1≤i≤j≤k

ζ(1 + zi + zj),

and Bk is the Euler product, absolutely convergent for |Rezj | < 1
2 , defined by

Bk(z1, . . . , zk) =
∏

p

∏
1≤i≤j≤k

(
1 − 1

p1+zi+zj

)

×
(

1

2

(
k∏

j=1

(
1 − 1

p
1
2 +zj

)−1

+
k∏

j=1

(
1 +

1

p
1
2 +zj

)−1
)

+
1

p

)(
1 +

1

p

)−1

.
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[C,D] conjecture (4.15) reality (4.14) ratio

[0,50000] 7236872972.7 7231005642.3 .999189

[50000,100000] 15696470555.3 15723919113.6 1.001749

[100000,150000] 21568672884.1 21536840937.9 .998524

[150000,200000] 26381397608.2 26246250354.1 .994877

[200000,250000] 30556177136.5 30692229217.8 1.004453

[250000,300000] 34290291841.0 34414329738.9 1.003617

[300000,350000] 37695829854.3 37683495193.0 .999673

[350000,400000] 40843941365.7 40566252008.5 .993201

[400000,450000] 43783216365.2 43907511751.1 1.002839

[450000,500000] 46548617846.7 46531247056.9 .999627

[500000,550000] 49166313161.9 49136264678.2 .999389

[550000,600000] 51656498739.2 51744796875.0 1.001709

[600000,650000] 54035153255.1 53962410634.2 .998654

[650000,700000] 56315178564.8 56541799179.3 1.004024

[700000,750000] 58507171421.6 58365383245.2 .997577

[750000,800000] 60619962488.2 60870809317.1 1.004138

[800000,850000] 62661003164.6 62765220708.6 1.001663

[850000,900000] 64636649728.0 64227164326.1 .993665

[900000,950000] 66552376294.2 65994874052.2 .991623

[950000,1000000] 68412937271.4 68961125079.8 1.008013

[1000000,1050000] 70222493232.7 70233393177.0 1.000155

[1050000,1100000] 71984709805.4 72919426905.7 1.012985

[1100000,1150000] 73702836332.4 72567024812.4 .984589

[1150000,1200000] 75379769148.4 76267763314.7 1.011780

[1200000,1250000] 77018102997.5 76750297112.6 .996523

[1250000,1300000] 78620173202.6 78315210623.9 .996121

[1300000,1350000] 80188090542.5 80320710380.9 1.001654

[1350000,1400000] 81723770322.2 80767881132.6 .988303

[1400000,1450000] 83228956776.3 83782957374.3 1.006656

[0,2350000] 3317437762612.4 3317496016044.9 1.000017

Table 3: Sixth moment of ζ versus the conjecture. The ‘reality’ column, i.e.

integrals involving ζ, were computed using Mathematica.

We can also sum over d > 0 but then need to replace X(1/2 + zj , 1) with

X(1/2 + zj , 0).
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This conjecture agrees with theorems in the case of k = 1, 2, 3 [J] [S] (only

the leading term has been checked in the case of k = 3, but in principle the

lower terms could be verified).

Figure 12, reproduced from [CFKRS], depicts, for k = 1, . . . , 8 and X =

10000, 20000, . . . , 107, ∑
0<d�X

L(1/2, χd)
k

divided by ∑
0<d�X

Qk(log d).

4.4.3 Vanishing of LE(1/2, χd)

In [CKRS], Conrey, Keating, the author, and Snaith apply the moment con-

jecture (4.13) to the problem of predicting asymptotically the number of van-

ishings of LE(1/2, χd). Using the fact that these L-values are discretized,

for example via the Birch and Swinnerton-Dyer conjecture or the theorem of

Kohnen-Zagier [KZ], and by studying, up to leading term and for small values,

the density function predicted by (4.13) they conjectured that

∑
d∈D (X )
(d ,q )=1

even funct eqn
LE (1/2 ,χd )=0

1 ∼ αEX3/4 log(X)βE .

The power on the logarithm depends on the underlying curve E because, in the

Birch and Swinnerton-Dyer conjecture, the Tamagawa factors can contribute

powers of 2 depending on the prime factors of d and on E and this affects

the discretization. The constant αE depends on c−1/2 and the real period

of E, but also on some extra subtle arithmetic information that seems to be

related to Delaunay’s heuristics for Tate-Shafarevich groups [De] and is not yet

fully understood. Numerical evidence in favour of this conjecture is presented

in [CKRS2]. One can skirt these delicate issues, the power on the logarithm

and the constant αE , as follows.

Let p � q be prime. Sort the d’s for which LE(1/2, χd) = 0 by residue classes
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Figure 12: Horizontal axis in each graph is X. These graphs depict the first

eight moments, sharp cutoff, of L(1/2, χd), 0 < d � X divided by the con-

jectured value, sampled at X = 10000, 20000, . . . , 107. We see the graphs

fluctuating above and below one. Notice that the vertical scale varies from

graph to graph
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mod p, according to whether χd(p) = 1 or −1, and consider the ratio

Rp(X) =

∑
d∈D (X )
(d ,q )=1

even funct eqn
LE (1/2 ,χd )=0

χd (p )=1

1

∑
d∈D (X )
(d ,q )=1

even funct eqn
LE (1/2 ,χd )=0

χd (p )=−1

1
.

One can formulate [CKRS2] [CFKRS] conjectures for the moments in these

two subfamilies and the moments agree except for a factor that depends on

p. By considering this ratio, the powers of X, of log X, and the constant αE

should all cancel out, except for a single factor that depends on p. This leads

to a conjecture [CKRS] for Rp(X):

Rp = lim
X→∞

Rp(X) =

√
p + 1 − ap

p + 1 + ap

,

where ap denotes the pth coefficient of the Dirichlet series for LE . The square

root in this conjecture is a consequence of the moments having a pole at

r = −1/2.

We end this paper with a plot that substantiates this conjecture. Figure 13

compares, for one hundred elliptic curves E, the predicted value of Rp to the

actual value Rp(X), with X = 108 and the set of d’s restricted to certain

residue classes depending on E as described in [CKRS2]. The L-values were

computed in this special case by exploiting their connection to the coefficients

of certain weight three halves modular forms and using a table of Rodriguez-

Villegas and Tornaria [RT].

The horizontal axis is p. For each p, and each of the one hundred elliptic

curves E we plot Rp(X) − Rp. We see the values fluctuating about zero,

most of the time agreeing to within about two percent. The convergence in X

is predicted from secondary terms to be logarithmically slow and one gets a

better fit by including more terms [CKRS2].
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KAM Theorem, 164
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Keating-Snaith conjecture, 262, 435
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GUE, 61
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Kronecker’s symbol, 351, 480, 482, 483

L-function, 161, 175, 226, 268, 468
analytic continuation, 226, 363
analytic properties, 361
Artin, 360, 361, 373, 381, 383, 385, 406,

410, 412
computation, 442, 447, 470
computing zeros, 466
conductor, 475
convolution, 239
cusp form, 352, 447, 450, 474, 475, 478,
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degree, 227, 362, 475
density of zeros, 227
Dirichlet, 268, 434, 450, 458, 467, 474–
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Dirichlet series, 226
elliptic curve, 234, 248, 267, 268, 360,

452, 470, 475, 476, 478, 479, 489,
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Euler product, 226
exterior square, 239
families, 225, 263, 267, 268, 480, 484,
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G2 symmetry, 274

functional equation, 226, 443
log-conductor, 227
Maass form, 238, 462
meromorphic continuation, 443
modular form, 368, 458
of elliptic curves, 386, 398
of elliptic curves over finite fields, 398

functional equation, 398
of elliptic curves over the rationals, 399
primitive, 227, 475
real Dirichlet L-function, 351
Selberg class, 225, 229
symmetric square, 239
twists of cusp forms, 451
twists of elliptic curve L-functions, 267,

453, 488
vanishing at the central point, 271
zero statistics, 471
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Landau formula, 84
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Legendre duplication formula, 444
Legendre symbol, 267
level density, 170
Levinson’s method, 206, 207
Levinson-Montgomery Theorem, 207
Lie group, 115
Lindelöf Hypothesis

Generalised, 367
linear statistic, 329–333, 343
Littlewood’s Lemma, 203, 205, 208
log-conductor, 240

of an L-function, 227
logarithmic derivative

of the Riemann zeta function, 80

Maass form, 237, 238, 243, 372, 462, 470
MacDonald constant term identities, 274
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matrix

orthogonal, 116
symplectic, 117
unitary, 115
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mean eigenvalue density, 60
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Classical Mean Value Theorem, 210, 212
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discrete, 202, 205
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Montgomery-Vaughan Mean Value The-

orem, 210, 211, 217, 220
mean value theorem, 201, 202, 222
mean value theorem for Dirichlet polynomi-
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mean value theorem of Montgomery and Vaughan,
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Mellin inversion, 449, 461
Mellin transform, 23, 263, 440, 460
meromorphic continuation, 363

of an L-function, 443
of the Riemann zeta function, 431

Mersenne primes, 6
microwave cavity, 168
Möbius function, 82, 204, 229, 437
Möbius inversion, 425, 435, 437
mock-Gaussian, 338
modular form, 10, 232, 370
modular group, 232

mollified mean values, 205
mollify, 205, 208
moment generating function, 261

for the logarithm of characteristic poyno-
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moments, 491, 498
for primes in short intervals, 100
of characteristic polynomials, 66, 69–71,
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U(N), 261
USp(2N), 264

of Dirichlet L-functions, 494
of Dirichlet polynomials, 187
of L-functions, 251, 269
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nomials
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of the logarithm of the Riemann zeta
function, 257

of the Riemann zeta function, 185, 201,
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monodromy group, 418
Montgomery’s conjecture, 92, 256, 473
Montgomery’s explicit formula, 87
Montgomery’s Theorem, 87, 89
Montgomery-Odlyzko law, 161, 174, 299
Montgomery-Vaughan Mean Value Theorem,

210, 211, 217, 220
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n-correlation, 135, 136
for U(N), 133
USp(2N), 134

n-level densities, 337, 480
large matrix limit, 130
SO(2N), 131
SO(2N + 1), 132
U(N), 130
USp(2N), 132

n-point correlation function, 42, 44, 45, 48,
50, 73, 156

nearest neighbour spacing distribution, 152,
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of eigenvalues, 298, 477
of Riemann zeros, 477
of zeros of L-functions, 478

newforms, 352
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one-point correlation function, 70
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orthogonal projection, 314
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Pair Correlation Conjecture, 94
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Poisson Summation Formula, 9
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proof, 19
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theta-series, 368
Toeplitz determinant, 309, 311, 329–331
Toeplitz matrix, 309, 310, 313, 322, 327, 332,

334
Toeplitz operator, 311–314, 324
torsion subgroup, 396
torus quantization, 173
trace class, 314–317, 323, 325
trace norm, 314, 315, 323, 325
transposing lemma, 118, 121–123
trivial zeros

of the Riemann zeta function, 11, 228
Twin Prime Conjecture, 217
twin primes, 5, 101
twists of cusp form L-functions

computation, 451
twists of elliptic curve L-functions

computation, 453
two-body random ensemble, 162
two-norm, 311
two-point correlation function, 43, 50, 171,

173, 253
of eigenvalues from the CUE (U(N)),

252
of the Riemann zeros, 256

U(N), 115, 156, 225, 252, 342
unfold, 283
unilateral sequence, 310
unitary group, 252, 342
unitary symmetry, 225, 348, 488
unitary symplectic group, 342
unitry matrix, 115
USp(2N), 117, 225, 263, 268, 342

value distribution, 489, 490, 492
of characteristic polynomials

O(N), 264
SO(2N), 266
U(N), 263, 264
USp(2N), 264, 265

of Dirichlet L-functions, 269
of elliptic curve L-functions, 269, 271
of L-functions, 488
of the logarithm of characteristic poly-

nomials
U(N), 260, 261

of the logarithm of the Riemann zeta
function, 256, 257

of the Riemann zeta function, 256, 264
Vandermonde determinant, 48, 67, 69, 117,

329

Virasoro constraints, 300
von Mangoldt, 366
von Mangoldt function, Λ(n), 8, 81, 195

Weierstrass P-function, 293
Weierstrass form, 452
weight, 364
Weil explicit formula, 366
Weil pairing, 405
Weyl equidistribution criterion, 381
Weyl integration formula, 131, 252, 254, 260,

264, 274, 439
SO(2N), 116
SO(2N + 1), 117
U(N), 115
USp(2N), 117

white noise
Gaussian, 39, 41

Wiener-Hopf operator, 332
Wigner semi-circle law, 60, 61, 156, 162, 283
Wigner surmise, 153, 284, 286, 290, 303

zero-density estimate, 205, 206
zero-free region, 367
zeros

near the critical point, 478
of L-functions

computation, 466
of the Riemann zeta function, 207
simple, 209, 210
spacing between zeros of the Riemann

zeta function, 471
ζ(s)−1 , 82, 205
ζ(s), 80, 227


