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Preface

Pardon me for writing such a long letter; I had not the time to write a short
one.

—Lord Chesterfield

Nonsmooth analysis refers to differential analysis in the absence of differ-
entiability. It can be regarded as a subfield of that vast subject known as
nonlinear analysis. While nonsmooth analysis has classical roots (we claim
to have traced its lineage back to Dini), it is only in the last decades that
the subject has grown rapidly. To the point, in fact, that further devel-
opment has sometimes appeared in danger of being stymied, due to the
plethora of definitions and unclearly related theories.

One reason for the growth of the subject has been, without a doubt, the
recognition that nondifferentiable phenomena are more widespread, and
play a more important role, than had been thought. Philosophically at
least, this is in keeping with the coming to the fore of several other types
of irregular and nonlinear behavior: catastrophes, fractals, and chaos.

In recent years, nonsmooth analysis has come to play a role in functional
analysis, optimization, optimal design, mechanics and plasticity, differen-
tial equations (as in the theory of viscosity solutions), control theory, and,
increasingly, in analysis generally (critical point theory, inequalities, fixed
point theory, variational methods ...). In the long run, we expect its meth-
ods and basic constructs to be viewed as a natural part of differential
analysis.



viii Preface

We have found that it would be relatively easy to write a very long book
on nonsmooth analysis and its applications; several times, we did. We have
now managed not to do so, and in fact our principal claim for this work is
that it presents the essentials of the subject clearly and succinctly, together
with some of its applications and a generous supply of interesting exercises.
We have also incorporated in the text a number of new results which clarify
the relationships between the different schools of thought in the subject.
We hope that this will help make nonsmooth analysis accessible to a wider
audience. In this spirit, the book is written so as to be used by anyone who
has taken a course in functional analysis.

We now proceed to discuss the contents. Chapter 0 is an Introduction in
which we allow ourselves a certain amount of hand-waving. The intent is
to give the reader an avant-goût of what is to come, and to indicate at an
early stage why the subject is of interest.

There are many exercises in Chapters 1 to 4, and we recommend (to the
active reader) that they be done. Our experience in teaching this material
has had a great influence on the writing of this book, and indicates that
comprehension is proportional to the exercises done. The end-of-chapter
problems also offer scope for deeper understanding. We feel no guilt in
calling upon the results of exercises later as needed.

Chapter 1, on proximal analysis, should be done carefully by every reader
of this book. We have chosen to work here in a Hilbert space, although the
greater generality of certain Banach spaces having smooth norms would be
another suitable context. We believe the Hilbert space setting makes for
a more accessible theory on first exposure, while being quite adequate for
later applications.

Chapter 2 is devoted to the theory of generalized gradients, which consti-
tutes the other main approach (other than proximal) to developing non-
smooth analysis. The natural habitat of this theory is Banach space, which
is the choice made. The relationship between these two principal approaches
is now well understood, and is clearly delineated here. As for the preceding
chapter, the treatment is not encyclopedic, but covers the important ideas.

In Chapter 3 we develop certain special topics, the first of which is value
function analysis for constrained optimization. This topic is previewed in
Chapter 0, and §3.1 is helpful, though not essential, in understanding cer-
tain proofs in the latter part of Chapter 4. The next topic, mean value
inequalities, offers a glimpse of more advanced calculus. It also serves as
a basis for the solvability results of the next section, which features the
Graves–Lyusternik Theorem and the Lipschitz Inverse Function Theorem.
Section 3.4 is a brief look at a third route to nonsmooth calculus, one that
bases itself upon directional subderivates. It is shown that the salient points
of this theory can be derived from the earlier results. We also present here
a self-contained proof of Rademacher’s Theorem. In §3.5 we develop some



Preface ix

machinery that is used in the following chapter, notably measurable selec-
tion. We take a quick look at variational functionals, but by-and-large, the
calculus of variations has been omitted. The final section of the chapter
examines in more detail some questions related to tangency.

Chapter 4, as its title implies, is a self-contained introduction to the theory
of control of ordinary differential equations. This is a biased introduction,
since one of its avowed goals is to demonstrate virtually all of the preceding
theory in action. It makes no attempt to address issues of modeling or
of implementation. Nonetheless, most of the central issues in control are
studied, and we believe that any serious student of mathematical control
theory will find it essential to have a grasp of the tools that are developed
here via nonsmooth analysis: invariance, viability, trajectory monotonicity,
viscosity solutions, discontinuous feedback, and Hamiltonian inclusions. We
believe that the unified and geometrically motivated approach presented
here for the first time has merits that will continue to make themselves felt
in the subject.

We now make some suggestions for the reader who does not have the time
to cover all of the material in this book. If control theory is of less interest,
then Chapters 1 and 2, together with as much of Chapter 3 as time al-
lows, constitutes a good introduction to nonsmooth analysis. At the other
extreme is the reader who wishes to do Chapter 4 virtually in its entirety.
In that case, a jump to Chapter 4 directly after Chapter 1 is feasible; only
occasional references to material in Chapters 2 and 3 is made, up to §4.8,
and in such a way that the reader can refer back without difficulty. The
two final sections of Chapter 4 have a greater dependence on Chapter 2,
but can still be covered if the reader will admit the proofs of the theorems.

A word on numbering. All items are numbered in sequence within a section;
thus Exercise 7.2 precedes Theorem 7.3, which is followed by Corollary 7.4.
For references between two chapters, an extra initial digit refers to the
chapter number. Thus a result that would be referred to as Theorem 7.3
within Chapter 1 would be invoked as Theorem 1.7.3 from within Chap-
ter 4. All equation numbers are simple, as in (3), and start again at (1) at
the beginning of each section (thus their effect is only local). A reference
to §3 is to the third section of the current chapter, while §2.3 refers to the
third section of Chapter 2.

A summary of our notational conventions is given in §0.5, and a Symbol
Glossary appears in the Notes and Comments at the end of the book.

We would like to express our gratitude to the personnel of the Centre
de Recherches Mathématiques (CRM) of l’Université de Montréal, and in
particular to Louise Letendre, for their invaluable help in producing this
book.
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Finally, we learned as the book was going to press, of the death of our
friend and colleague Andrei Subbotin. We wish to express our sadness at
his passing, and our appreciation of his many contributions to our subject.

Francis Clarke, Lyon
Yuri Ledyaev, Moscow

Ron Stern, Montréal
Peter Wolenski, Baton Rouge

May 1997
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0
Introduction

Experts are not supposed to read this book at all.

—R.P. Boas, A Primer of Real Functions

We begin with a motivational essay that previews a few issues and several
techniques that will arise later in this book.

1 Analysis Without Linearization

Among the issues that routinely arise in mathematical analysis are the
following three:

• to minimize a function f(x);

• to solve an equation F (x) = y for x as a function of y; and

• to derive the stability of an equilibrium point x∗ of a differential
equation ẋ = ϕ(x).

None of these issues imposes by its nature that the function involved (f ,
F , or ϕ) be smooth (differentiable); for example, we can reasonably aim to
minimize a function which is merely continuous, if growth or compactness
is postulated.

Nonetheless, the role of derivatives in questions such as these has been
central, due to the classical technique of linearization. This term refers to
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the construction of a linear local approximation of a function by means of its
derivative at a point. Of course, this approach requires that the derivative
exists. When applied to the three scenarios listed above, linearization gives
rise to familiar and useful criteria:

• at a minimum x, we have f ′(x) = 0 (Fermat’s Rule);

• if the n × n Jacobian matrix F ′(x) is nonsingular, then F (x) = y is
locally invertible (the Inverse Function Theorem); and

• if the eigenvalues of ϕ′(x∗) have negative real parts, the equilibrium
is locally stable.

The main purpose of this book is to introduce and motivate a set of tools
and methods that can be used to address these types of issues, as well as
others in analysis, optimization, and control, when the underlying data are
not (necessarily) smooth.

In order to illustrate in a simple setting how this might be accomplished,
and in order to make contact with what could be viewed as the first the-
orem in what has become known as nonsmooth analysis, let us consider
the following question: to characterize in differential, thus local terms, the
global property that a given continuous function f : R → R is decreasing
(i.e., x ≤ y =⇒ f(y) ≤ f(x)).

If the function f admits a continuous derivative f ′, then the integration
formula

f(y) = f(x) +
∫ y

x

f ′(t) dt

leads to a sufficient condition for f to be decreasing: that f ′(t) be nonposi-
tive for each t. It is easy to see that this is necessary as well, so a satisfying
characterization via f ′ is obtained.

If we go beyond the class of continuously differentiable functions, the sit-
uation becomes much more complex. It is known, for example, that there
exists a strictly decreasing continuous f for which we have f ′(t) = 0 almost
everywhere. For such a function, the derivative appears to fail us, insofar
as characterizing decrease is concerned.

In 1878, Ulysse Dini introduced certain constructs, one of which is the
following (lower, right) derivate:

Df(x) := lim inf
t↓0

f(x + t) − f(x)
t

.

Note that Df(x) can equal +∞ or −∞. It turns out that Df will serve
our purpose, as we now see.
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1.1. Theorem. The continuous function f : R → R is decreasing iff

Df(x) ≤ 0 ∀x ∈ R.

Although this result is well known, and in any case greatly generalized in
a later chapter, let us indicate a nonstandard proof of it now, in order
to bring out two themes that are central to this book: optimization and
nonsmooth calculus.

Note first that Df(x) ≤ 0 is an evident necessary condition for f to be
decreasing, so it is the sufficiency of this property that we must prove.

Let x, y be any two numbers with x < y. We will prove that for any δ > 0,
we have

min
{
f(t) : y ≤ t ≤ y + δ

} ≤ f(x). (1)

This implies f(y) ≤ f(x), as required.

As a first step in the proof of (1), let g be a function defined on (x−δ, y+δ)
with the following properties:

(a) g is continuously differentiable, g(t) ≥ 0, g(t) = 0 iff t = y;

(b) g′(t) < 0 for t ∈ (x − δ, y) and g′(t) ≥ 0 for t ∈ [y, y + δ); and

(c) g(t) → ∞ as t ↓ x − δ, and also as t ↑ y + δ.

It is easy enough to give an explicit formula for such a function; we will
not do so.

Now consider the minimization over (x − δ, y + δ) of the function f + g; by
continuity and growth, the minimum is attained at a point z. A necessary
condition for a local minimum of a function is that its Dini derivate be
nonnegative there, as is easily seen. This gives

D(f + g)(z) ≥ 0.

Because g is smooth, we have the following fact (in nonsmooth calculus!):

D(f + g)(z) = Df(z) + g′(z).

Since Df(z) ≤ 0 by assumption, we derive g′(z) ≥ 0, which implies that
z lies in the interval [y, y + δ). We can now estimate the left side of (1) as
follows:

min
{
f(t) : y ≤ t ≤ y + δ

} ≤ f(z)
≤ f(z) + g(z) (since g ≥ 0)
≤ f(x) + g(x) (since z minimizes f + g).
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We now observe that the entire argument to this point will hold if g is
replaced by εg, for any positive number ε (since εg continues to satisfy
the listed properties for g). This observation implies (1) and completes the
proof.

We remark that the proof of Theorem 1.1 will work just as well if f , instead
of being continuous, is assumed to be lower semicontinuous, which is the
underlying hypothesis made on the functions that appear in Chapter 1.

An evident corollary of Theorem 1.1 is that a continuous everywhere dif-
ferentiable function f is decreasing iff its derivative f ′(x) is always nonpos-
itive, since when f ′(x) exists it coincides with Df(x). This could also be
proved directly from the Mean Value Theorem, which asserts that when f
is differentiable we have

f(y) − f(x) = f ′(z)(y − x)

for some z between x and y.

Proximal Subgradients

We will now consider monotonicity for functions of several variables. When
x, y are points in R

n, the inequality x ≤ y will be understood in the
component-wise sense: xi ≤ yi for i = 1, 2, . . . , n. We say that a given
function f : R

n → R is decreasing provided that f(y) ≤ f(x) whenever
x ≤ y.

Experience indicates that the best way to extend Dini’s derivates to func-
tions of several variables is as follows: for a given direction v in R

n we
define

Df(x; v) := lim inf
t↓0

w→v

f(x + tw) − f(x)
t

.

We call Df(x; v) a directional subderivate. Let R
n
+ denote the positive or-

thant in R
n:

R
n
+ := {x ∈ R

n : x ≥ 0}.

We omit the proof of the following extension of Theorem 1.1, which can be
given along the lines of that of Theorem 1.1.

1.2. Theorem. The continuous function f : R
n → R is decreasing iff

Df(x; v) ≤ 0 ∀x in R
n, ∀v ∈ R

n
+.

When f is continuously differentiable, it is the case that Df(x; v) agrees
with

〈∇f(x), v
〉
, an observation that leads to the following consequence of

the theorem:

1.3. Corollary. A continuously differentiable function f : R
n → R is de-

creasing iff ∇f(x) ≤ 0 ∀x ∈ R
n.
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Since it is easier in principle to examine one gradient vector than an infinite
number of directional subderivates, we are led to seek an object that could
replace ∇f(x) in a result such as Corollary 1.3, when f is nondifferentiable.

A concept that turns out to be a powerful tool in characterizing a variety
of functional properties is that of the proximal subgradient. A vector ζ in
R

n is said to be a proximal subgradient of f at x provided that there exist
a neighborhood U of x and a number σ > 0 such that

f(y) ≥ f(x) + 〈ζ, y − x〉 − σ‖y − x‖2 ∀y ∈ U.

The set of such ζ, if any, is denoted ∂P f(x) and is referred to as the proximal
subdifferential. The existence of a proximal subgradient ζ at x corresponds
to the possibility of approximating f from below (thus in a one-sided man-
ner) by a function whose graph is a parabola. The point

(
x, f(x)

)
is a

contact point between the graph of f and the parabola, and ζ is the slope
of the parabola at that point. Compare this with the usual derivative, in
which the graph of f is approximated by an affine function.

Among the many properties of ∂P f developed later will be a Mean Value
Theorem asserting that for given points x and y, for any ε > 0, we have

f(y) − f(x) ≤ 〈ζ, y − x〉 + ε,

where ζ belongs to ∂P f(z) for some point z which lies within ε of the
line segment joining x and y. This theorem requires of f merely lower
semicontinuity. A consequence of this is the following.

1.4. Theorem. A lower semicontinuous function f : R
n → R is decreasing

iff ζ ≤ 0 ∀ζ in ∂P f(x), ∀x in R
n.

We remark that Theorem 1.4 subsumes Theorem 1.2, as a consequence of
the following implication, which the reader may readily confirm:

ζ ∈ ∂P f(x) =⇒ Df(x; v) ≥ 〈ζ, v〉 ∀v.

While characterizations such as the one given by Theorem 1.4 are of in-
trinsic interest, it is reassuring to know that they can be and have been of
actual use in practice. For example, in developing an existence theory in
the calculus of variations, one approach leads to the following function f :

f(t) := max
{∫ 1

0
L
(
s, x(s), ẋ(s)

)
ds : ‖ẋ‖2 ≤ t

}
,

where the maximum is taken over a certain class of functions x : [0, 1] → R
n,

and where the function L is given. In the presence of the constraint ‖ẋ‖2 ≤
t, the maximum is attained, but the object is to show that the maximum is
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attained even in the absence of that constraint. The approach hinges upon
showing that for t sufficiently large, the function f becomes constant. Since
f is increasing by definition, this amounts to showing that f is (eventually)
decreasing, a task that is accomplished in part by Theorem 1.4, since there
is no a priori reason for f to be smooth.

This example illustrates how nonsmooth analysis can play a partial but
useful role as a tool in the analysis of apparently unrelated issues; detailed
examples will be given later in connection with control theory.

It is a fact that ∂P f(x) can in general be empty almost everywhere (a.e.),
even when f is a continuously differentiable function on the real line.
Nonetheless, as illustrated by Theorem 1.4, and as we will see in much
more complex settings, the proximal subdifferential determines the pres-
ence or otherwise of certain basic functional properties. As in the case of
the derivative, the utility of ∂P f is based upon the existence of a calculus
allowing us to obtain estimates (as in the proximal version of the Mean
Value Theorem cited above), or to express the subdifferentials of compli-
cated functionals in terms of the simpler components used to build them.
Proximal calculus (among other things) is developed in Chapters 1 and 3,
in a Hilbert space setting.

Generalized Gradients

We continue to explore the decrease properties of a given function f : R
n →

R, but now we introduce, for the first time, an element of volition: we wish
to find a direction in which f decreases.

If f is smooth, linearization provides an answer: Provided that ∇f(x) �= 0,
the direction v := −∇f(x) will do, in the sense that

f(x + tv) < f(x) for t > 0 sufficiently small. (2)

What if f is nondifferentiable? In that case, the proximal subdifferential
∂P f(x) may not be of any help, as when it is empty, for example.

If f is locally Lipschitz continuous, there is another nonsmooth calculus
available, that which is based upon the generalized gradient ∂f(x). A locally
Lipschitz function is differentiable almost everywhere; this is Rademacher’s
Theorem, which is proved in Chapter 3. Its derivative f ′ generates ∂f(x)
as follows (“co” means “convex hull”):

∂f(x) = co
{

lim
i→∞

∇f(xi) : xi → x, f ′(xi) exists
}

.

Then we have the following result on decrease directions:

1.5. Theorem. The generalized gradient ∂f(x) is a nonempty compact
convex set. If 0 �∈ ∂f(x), and if ζ is the element of ∂f(x) having minimal
norm, then v := −ζ satisfies (2).
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The calculus of generalized gradients (Chapter 2) will be developed in an
arbitrary Banach space, in contrast to proximal calculus.

Lest our discussion of decrease become too monotonous, we turn now to
another topic, one which will allow us to preview certain geometric concepts
that lie at the heart of future developments. For we have learned, since
Dini’s time, that a better theory results if functions and sets are put on an
equal footing.

2 Flow-Invariant Sets

Let S be a given closed subset of R
n and let ϕ : R

n → R
n be locally

Lipschitz. The question that concerns us here is whether the trajectories
x(t) of the differential equation with initial condition

ẋ(t) = ϕ
(
x(t)
)
, x(0) = x0, (1)

leave S invariant, in the sense that if x0 lies in S, then x(t) also belongs to S
for t > 0. If this is the case, we say that the system (S, ϕ) is flow-invariant.

As in the previous section (but now for a set rather than a function),
linearization provides an answer when the set S lends itself to it; that is, it
is sufficiently smooth. Suppose that S is a smooth manifold, which means
that locally it admits a representation of the form

S =
{
x ∈ R

n : h(x) = 0
}
,

where h : R
n → R

m is a continuously differentiable function with a nonva-
nishing derivative on S. Then if the trajectories of (1) remain in S, we have
h
(
x(t)
)

= 0 for t ≥ 0. Differentiating this for t > 0 gives h′(x(t)
)
ẋ(t) = 0.

Substituting ẋ(t) = ϕ
(
x(t)
)
, and letting t decrease to 0, leads to

〈∇hi(x0), ϕ(x0)
〉

= 0 (i = 1, 2, . . . , m).

The tangent space to the manifold S at x0 is by definition the set
{
v ∈ R

n :
〈∇hi(x0), v

〉
= 0, i = 1, 2, . . . , m

}
,

so we have proven the necessity part of the following:

2.1. Theorem. Let S be a smooth manifold. For (S, ϕ) to be flow-invariant,
it is necessary and sufficient that, for every x ∈ S, ϕ(x) belong to the tan-
gent space to S at x.

There are situations in which we are interested in the flow invariance of a set
which is not a smooth manifold, for example, S = R

n
+, which corresponds

to x(t) ≥ 0. It will turn out that it is just as simple to prove the sufficiency
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part of the above theorem in a nonsmooth setting, once we have decided
upon how to define the notion of tangency when S is an arbitrary closed
set. To this end, consider the distance function dS associated with S:

dS(x) := min
{‖x − s‖ : s ∈ S

}
,

a globally Lipschitz, nondifferentiable function that turns out to be very
useful. Then, if x(·) is a solution of (1), where x0 ∈ S, we have f(0) = 0,
f(t) ≥ 0 for t ≥ 0, where f is the function defined by

f(t) := dS

(
x(t)
)
.

What property would ensure that f(t) = 0 for t ≥ 0; that is, that x(t) ∈ S?
Clearly, that f be decreasing: monotonicity comes again to the fore! In the
light of Theorem 1.1, f is decreasing iff Df(t) ≤ 0, a condition which at
t = 0 says

lim inf
t↓0

dS(x(t))
t

≤ 0.

Since dS is Lipschitz, and since we have

x(t) = x0 + tϕ(x0) + o(t),

the lower limit in question is equal to

lim inf
t↓0

dS(x0 + tϕ(x0))
t

.

This observation suggests the following definition and essentially proves the
ensuing theorem, which extends Theorem 2.1 to arbitrary closed sets.

2.2. Definition. A vector v is tangent to a closed set S at a point x if

lim inf
t↓0

dS(x + tv)
t

= 0.

The set of such vectors is a cone, and is referred to as the Bouligand tangent
cone to S at x, denoted TB

S (x). It coincides with the tangent space when
S is a smooth manifold.

2.3. Theorem. Let S be a closed set. Then (S, ϕ) is flow-invariant iff

ϕ(x) ∈ TB
S (x) ∀x ∈ S.

When S is a smooth manifold, its normal space at x is defined as the space
orthogonal to its tangent space, namely

span
{∇hi(x) : i = 1, 2, . . . , m

}
,
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and a restatement of Theorem 2.1 in terms of normality goes as follows:
(S, ϕ) is flow-invariant iff

〈
ζ, ϕ(x)

〉 ≤ 0 whenever x ∈ S and ζ is a normal
vector to S at x.

We now consider how to develop in the nonsmooth setting the concept
of an outward normal to an arbitrary closed subset S of R

n. The key is
projection: Given a point u not in S, and let x be a point in S that is closest
to u; we say that x lies in the projection of u onto S. Then the vector u−x
(and all its nonnegative multiples) defines a proximal normal direction to
S at x. The set of all vectors constructed this way (for fixed x, by varying
u) is called the proximal normal cone to S at x, and denoted NP

S (x). It
coincides with the normal space when S is a smooth manifold.

It is possible to characterize flow-invariance in terms of proximal normals
as follows:

2.4. Theorem. Let S be a closed set. Then (S, ϕ) is flow-invariant iff〈
ζ, ϕ(x)

〉 ≤ 0 ∀ζ ∈ NP
S (x), ∀x ∈ S.

We can observe a certain duality between Theorems 2.3 and 2.4. The former
characterizes flow-invariance in terms internal to the set S, via tangency,
while the latter speaks of normals generated by looking outside the set.
In the case of a smooth manifold, the duality is exact: the tangential and
normal conditions are restatements of one another. In the general non-
smooth case, this is no longer true (pointwise, the sets TB

S and NP
S are not

obtainable one from the other).

While the word “duality” may have to be interpreted somewhat loosely,
this element is an important one in our overall approach to developing non-
smooth analysis. The dual objects often work well in tandem. For example,
while tangents are often convenient to verify flow-invariance, proximal nor-
mals lie at the heart of the “proximal aiming method” used in Chapter 4
to define stabilizing feedbacks.

Another type of duality that we seek involves coherence between the various
analytical and geometrical constructs that we define. To illustrate this,
consider yet another approach to studying the flow-invariance of (S, ϕ), that
which seeks to characterize the property (cited above) that the function
f(t) = dS

(
x(t)
)

be decreasing in terms of the proximal subdifferential of f
(rather than subderivates). If an appropriate “chain rule” is available, then
we could hope to use it in conjunction with Theorem 1.4 in order to reduce
the question to an inequality:〈

∂P dS(x), ϕ(x)
〉 ≤ 0 ∀x ∈ S.

Modulo some technicalities that will interest us later, this is feasible. In the
light of Theorem 2.4, we are led to suspect (or hope for) the following fact:

NP
S (x) = the cone generated by ∂P dS(x).
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This type of formula illustrates what we mean by coherence between con-
structs, in this case between the proximal normal cone to a set and the
proximal subdifferential of its distance function.

3 Optimization

As a first illustration of how nonsmoothness arises in the subject of opti-
mization, we consider minimax problems. Let a smooth function f depend
on two variables x and u, where the first is thought of as being a choice
variable, while the second cannot be specified; it is known only that u varies
in a set M . We seek to minimize f .

Corresponding to a choice of x, the worst possibility over the values of u
that may occur corresponds to the following value of f : maxu∈M f(x, u).
Accordingly, we consider the problem

minimize
x

g(x), where g(x) := max
u∈M

f(x, u).

The function g so defined will not generally be smooth, even if f is a nice
function and the maximum defining g is attained. To see this in a simple
setting, consider the upper envelope g of two smooth functions f1, f2. (We
suggest that the reader make a sketch at this point.) Then g will have a
corner at a point x where f1(x) = f2(x), provided that

f ′
1(x) �= f ′

2(x).

Returning to the general case, we remark that under mild hypotheses, the
generalized gradient ∂g(x) can be calculated; we find

∂g(x) = co
{
f ′

x(x, u) : u ∈ M(x)
}
,

where
M(x) :=

{
u ∈ M : f(x, u) = g(x)

}
.

This characterization can then serve as the initial step in approaching the
problem, either analytically or numerically. There may then be explicit
constraints on x to consider.

A problem having a very specific structure, and one which is of considerable
importance in engineering and optimal design, is the following eigenvalue
problem. Let the n × n symmetric matrix A depend on a parameter x
in some way, so that we write A(x). A familiar criterion in designing the
underlying system which is represented by A(x) is that the maximal eigen-
value Λ of A(x) be made as small as possible. This could correspond to a
question of stability, for example.
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It turns out that this problem is of minimax type, for by Rayleigh’s formula
for the maximal eigenvalue we have

Λ(x) = max
{〈u,A(x)u〉 : ‖u‖ = 1

}
.

The function Λ(·) will generally be nonsmooth, even if the dependence
x �→ A(x) is itself smooth. For example, the reader may verify that the
maximal eigenvalue Λ(x, y) of the matrix

A(x, y) :=
[
1 + x y

y 1 − x

]

is given by 1 +
∥∥(x, y)

∥∥. Note that the minimum of this function occurs at
(0, 0), precisely its point of nondifferentiability. This is not a coincidence,
and it is now understood that nondifferentiability is to be expected as
an intrinsic feature of design problems generally, in problems as varied as
designing an optimal control or finding the shape of the strongest column.

Another class of problems in which nondifferentiability plays a role is that of
L1-optimization. In its discrete version, the problem consists of minimizing
a function f of the form

f(x) :=
p∑

i=1

mi‖x − si‖. (1)

Such problems arise, for example, in approximation and statistics, where
L1-approximation possesses certain features that can make it preferable to
the more familiar (and smooth) L2-approximation.

Let us examine such a problem in the context of a simple physical system.

Torricelli’s Table

A table has holes in it at points whose coordinates are s1, s2, . . . , sp. Strings
are attached to masses m1, m2, . . . , mp, passed through the corresponding
hole, and then are all tied to a point mass m whose position is denoted
x (see Figure 0.1). If friction and the weight of the strings are negligible,
the equilibrium position x of the nexus is precisely the one that minimizes
the function f given by (1), since f(x) can be recognized as the potential
energy of the system.

The proximal subdifferential of the function x �→ ‖x − s‖ is the closed unit
ball if x = s, and otherwise is the singleton set consisting of its derivative,
the point (x − s)

/‖x − s‖. Using this fact, and some further calculus, we
can derive the following necessary condition for a point x to minimize f ;

0 ∈
p∑

i=1

mi∂P ‖(·) − si‖(x). (2)
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FIGURE 0.1. Torricelli’s table.

Of course, (2) is simply Fermat’s rule in subdifferential terms, interpreted
for the particular function f that we are dealing with.

There is not necessarily a unique point x that satisfies relation (2), but
it is the case that any point satisfying (2) globally minimizes f . This is
because f is convex, another functional class that plays an important role
in the subject. A consequence of convexity is that there are no purely local
minima in this problem.

When p = 3, each mi = 1, and the three points are the vertices of a
triangle, the problem becomes that of finding a point such that the sum
of its distances from the vertices is minimal. The solution is called the
Torricelli point, after the seventeenth-century mathematician.

The fact that (2) is necessary and sufficient for a minimum allows us to
recover easily certain classical conclusions regarding this problem. As an
example, the reader is invited to establish that the Torricelli point coincides
with a vertex of the triangle iff the angle at that vertex is 120◦ or more.

Returning now to the general case of our table, it is possible to make
the system far more complex by the addition of one more string and one
more mass m0, if we allow that mass to hang over the outside edge of the
table. Then the extra string will automatically trace a line segment from
x to a point s(x) on the edge of the table that is closest to x (locally at
least, in the sense that s(x) is the closest point to x on the edge, relative
to a neighborhood of s(x).) If S is the set defined as the closure of the
complement of the table, the potential energy (up to a constant) of the
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FIGURE 0.2. Discontinuity of the local projection.

system is now, at its lowest level,

f̃(x) := m0dS(x) +
p∑

i=1

mi‖x − si‖.

The function f̃ is not only nonsmooth, as was f , but also nonconvex,
and will admit local minima at different energy levels. The points s on
the boundary of S which are feasible as points through which would pass
the over-the-table string (at equilibrium) are precisely those for which the
proximal normal cone NP

S (s) is nonzero. Such points can be rather sparse,
though they are always dense in the boundary of S. For a rectangular table,
there are exactly four points at which NP

S is {0}.

If x(t) represents a displacement undergone by the nexus over time, New-
ton’s Law implies

Mẍ =
p∑

i=1

mi
(si − x)
‖si − x‖ + m0

s(x) − x

‖s(x) − x‖ (3)

on any time interval during which x �= si, x �= s(x), where M is the total
mass of the system, namely m+m0 +

∑
mi. The local projection x �→ s(x)

will be discontinuous in general, so in solving (3), there arises the issue of
a differential equation incorporating a discontinuous function of the state.

Figure 0.2 illustrates the discontinuity of s(x) in a particular case. As x
traces the line segment from u toward v, the corresponding s(x) traces the
segment joining A and B. When x goes beyond v, s(x) abruptly moves to
the vicinity of the point C. (The figure omits all the strings acting upon
x.)

We will treat the issue of discontinuous differential equations in Chapter 4,
where it arises in connection with feedback control design.
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Constrained Optimization

In minimizing a function f(x), it is often necessary to take account of ex-
plicit constraints on the point x, for example, that x lie in a given set S.
There are two methods for dealing with such problems that figure promi-
nently in this book.

The first of these, called exact penalization, seeks to replace the constrained
optimization problem

minimize f(x) subject to x ∈ S

by the unconstrained problem

minimize f(x) + KdS(x),

where dS is the distance function introduced in §2. Under mild conditions,
this constraint-removal technique is justified, for K sufficiently large.

Since the distance function is never differentiable at all boundary points of
S, however, and since that is precisely where the solutions of the new prob-
lem are likely to lie, we are subsequently obliged to deal with a nonsmooth
minimization problem, even if the original problem has smooth data f , S.

The second general technique for dealing with constrained optimization,
called value function analysis, is applied when the constraint set S has
an explicit functional representation, notably in terms of equalities and
inequalities. A simple case to illustrate: we seek to minimize f(x) sub-
ject to h(x) = 0. Let us embed the problem in a family of similar ones,
parametrized by a perturbation term in the equality constraint. Specifi-
cally, the problem P (α) is the following:

P (α) : minimize f(x) over x subject to h(x) + α = 0.

Let V (α), the associated value function of this perturbation scheme, des-
ignate the minimum value of the problem P (α).

Our original problem is simply P (0). If x0 is a solution of P (0), then of
course h(x0) = 0 (since x0 must be feasible for P (0)), and we have V (0) =
f(x0). This last observation implies that

f(x0) − V
(−h(x0)

)
= 0,

whereas it follows from the very definition of V that, for any x whatsoever,
we have

f(x) − V
(−h(x)

) ≥ 0.

(We ask our readers to convince themselves of this.) Put another way, these
observations amount to saying that the function

x �→ f(x) − V
(−h(x)

)
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attains a minimum at x = x0, whence

f ′(x0) + V ′(0)h′(x0) = 0,

a conclusion that we recognize as the Lagrange Multiplier Rule (with, as a
bonus, a sensitivity interpretation of the multiplier, V ′(0)).

If our readers are dubious about this simple proof of the Multiplier Rule,
they are justified in being so. Still, the only fallacy involved is the implicit
assumption that V is differentiable. Nonsmooth analysis will allow us to
develop a rigorous argument along the lines of the above, in Chapter 3.

4 Control Theory

In the control theory of ordinary differential equations, the standard model
revolves around the system

ẋ(t) = f
(
x(t), u(t)

)
a.e., 0 ≤ t ≤ T, (1)

where the (measurable) control function u(·) is chosen subject to the con-
straint

u(t) ∈ U a.e., (2)

and where the ensuing state x(·) is subject to an initial condition x(0) = x0
and perhaps other constraints. This indirect control of x(·) via the choice of
u(·) is to be exercised for a purpose, of which there are two principal sorts:
positional (x(t) is to remain in a given set in R

n, or approach that set) and
optimal (x(·), together with u(·), is to minimize a given functional).

As is the case in optimization, certain problems arise in which the underly-
ing data are nonsmooth; minimax criteria are an example. In this section,
however, we wish to convey to the reader how considerations of nondiffer-
entiability arise from the very way in which we might hope to solve the
problem. Our illustrative example will be one that combines positional and
optimal considerations, namely the minimal time problem.

It consists of finding the least T ≥ 0 together with a control function u(·)
on [0, T ] having the property that the resulting state x satisfies x(T ) = 0.
Informally, it is required to steer the initial state x0 to the origin in least
time.

Let us introduce the following set-valued mapping F :

F (x) := f(x, U).

A trajectory of F on an interval [0, T ] is an absolutely continuous function
x(·) on [0, T ] which satisfies

ẋ(t) ∈ F
(
x(t)
)

a.e., 0 ≤ t ≤ T. (3)
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Under mild hypotheses, it is a fact that x(·) is a trajectory (i.e., satisfies
(3)) iff there is a control function u(·) (i.e., a measurable function u(·)
satisfying (2)) for which the differential equation (1) linking x and u holds.
(See Chapter 3 for this; here, we are not even going to state hypotheses at
all.)

In terms of trajectories, then, the problem is to find one which is optimal
from x0; that is, one which reaches the origin as quickly as possible. Let us
undertake the quest.

We begin by introducing the minimal time function T (·), defined on R
n as

follows:

T (α) := min
{
T ≥ 0: some trajectory x(·) satisfies x(0) = α, x(T ) = 0.

}

An issue of controllability arises here: Is it always possible to steer α to 0
in finite time? We will study this question in Chapter 4; for now, let us
assume that such is the case.

The principle of optimality is the dual observation that if x(·) is any tra-
jectory, the function

t �→ T
(
x(t)
)

+ t

is increasing, and that if x is optimal, then the same function is constant.
In other terms, if x(·) is an optimal trajectory joining α to 0, then

T
(
x(t)
)

= T (α) − t for 0 ≤ t ≤ T (α),

since an optimal trajectory from the point x(t) is furnished by the trun-
cation of x(·) to the interval

[
t, T (α)

]
. If x(·) is any trajectory, then the

inequality
T
(
x(t)
) ≥ T (α) − t

is a reflection of the fact that in going to the point x(t) from α (in time t),
we may have acted optimally (in which case equality holds) or not (then
inequality holds).

Since t �→ T
(
x(t)
)

+ t is increasing, we expect to have
〈∇T

(
x(t)
)
, ẋ(t)

〉
+ 1 ≥ 0, (4)

with equality when x(·) is an optimal trajectory. The possible values of ẋ(t)
for a trajectory being precisely the elements of the set F

(
x(t)
)
, we arrive

at
min

v∈F (x)

{〈∇T (x), v
〉}

+ 1 = 0.

We define the (lower) Hamiltonian function h as follows:

h(x, p) := min
v∈F (x)

〈p, v〉.
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In terms of h, the partial differential equation obtained above reads

h
(
x,∇T (x)

)
+ 1 = 0, (5)

a special case of the Hamilton–Jacobi equation.

Here is the first step in our quest: use the Hamilton–Jacobi equation (5),
together with the boundary condition T (0) = 0, to find T (·). How will this
help us find the optimal trajectory?

To answer this question, we recall that an optimal trajectory is such that
equality holds in (4). This suggests the following procedure: for each x, let
v̂(x) be a point in F (x) satisfying

min
v∈F (x)

〈∇T (x), v
〉

=
〈∇T (x), v̂(x)

〉
= −1. (6)

Then, if we construct x(·) via the initial-value problem

ẋ(t) = v̂
(
x(t)
)
, x(0) = α, (7)

we will have a trajectory that is optimal (from α)!

Here is why: Let x(·) satisfy (7); then x(·) is a trajectory, since v̂(x) belongs
to F (x). Furthermore,

d

dt
T
(
x(t)
)

=
〈∇T

(
x(t)
)
, ẋ(t)

〉
=
〈∇T

(
x(t)
)
, v̂
(
x(t)
)〉

= −1.

In consequence, we find

T
(
x(t)
)

= T (α) − t,

which implies that at t = T (α), we must have x = 0. Therefore x(·) is an
optimal trajectory.

Let us stress the important point that v̂(·) generates the optimal trajectory
from any initial value α (via (7)), and so constitutes what can be considered
the Holy Grail for this problem: an optimal feedback synthesis. There can
be no more satisfying answer to the problem: If you find yourself at x, just
choose ẋ = v̂(x) to approach the origin as fast as possible.

Unfortunately, there are serious obstacles to following the route that we
have just outlined, beginning with the fact that T is nondifferentiable, as
simple examples show. (T is a value function, analogous to the one we met
in §3.)

We will therefore have to examine anew the argument that led to the
Hamilton–Jacobi equation (5), which in any case, will have to be recast
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in some way to accommodate nonsmooth solutions. Having done so, will
the generalized Hamilton–Jacobi equation admit T as the unique solution?

The next step (after characterizing T ) offers fresh difficulties of its own.
Even if T were smooth, there would be in general no continuous function
v̂(·) satisfying (6) for each x. The meaning and existence of a trajectory
x(·) generated by v̂(·) via (7) is therefore problematic in itself.

The intrinsic difficulties of the “dynamic programming” approach to the
minimal-time problem, which is what we have outlined above, have been
an historical focal point of activity in differential equations and control,
and it is only recently that fully satisfying answers to all the questions
raised above have been found. We will present them in Chapter 4, together
with results bearing on other basic topics in mathematical control theory:
invariance, equilibria, stability, and necessary and sufficient conditions for
optimality.

Let us begin now to be more precise.

5 Notation

We expect our readers to have taken a course in functional analysis, and
we hope that the following notation appears natural to them.

X is a real Hilbert space or Banach space with norm ‖ · ‖. The open ball in
X (of radius 1, centered at 0) is denoted by B, its closure by B. We also
write BX if X is to be distinguished from other spaces.

The inner product of ζ and x is denoted 〈ζ, x〉, a notation which is also
employed when X is a Banach space for the evaluation, at x ∈ X, of the
linear functional ζ ∈ X∗ (the space of continuous linear functionals defined
on X).

The open unit ball in X∗ is written B∗. The notation

x = w-lim
i→∞

xi

means that the sequence {xi} converges weakly to x. Similarly, w∗ refers to
the weak∗ topology on the space X∗. Lp

n[a, b] refers to the set of p-integrable
functions from [a, b] to R

n.

For the two subsets S1 and S2 of X, the set S1 + S2 is given by

{s = s1 + s2 : s1 ∈ S1, s2 ∈ S2}.

The open ball of radius r > 0, centered at x, is denoted by either B(x; r)
or x+ rB, where (strictly speaking) the latter should be written {x}+ rB.
The closure of B(x; r) is written as either B(x; r) or x + rB.
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We confess to writing “iff” for “if and only if.” The symbol := means “equal
by definition.”

We lean toward mnemonic notation in general. For a given set S, the ex-
pressions

intS, cl S, bdry S, co S, co S,

signify the interior, closure, boundary, convex hull, and closed convex hull
of S, respectively.

A list of the principal notational constructs used in the book is given in the
Notes and Comments at the end. A reference such as Theorem 1.2.3 refers
to Theorem 2.3 of Chapter 1, which will be found in §2.3. From within
Chapter 1, it is referred to simply as Theorem 2.3.
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1
Proximal Calculus in Hilbert Space

Shall we begin with a few Latin terms?

—Dangerous Liaisons, the Film.

We introduce in this chapter two basic constructs of nonsmooth analy-
sis: proximal normals (to a set) and proximal subgradients (of a function).
Proximal normals are direction vectors pointing outward from a set, gen-
erated by projecting a point onto the set. Proximal subgradients have a
certain local support property to the epigraph of a function. It is a familiar
device to view a function as a set (through its graph), but we develop the
duality between functions and sets to a much greater extent, extending it
to include the calculus of these normals and subgradients. The very ex-
istence of a proximal subgradient often says something of interest about
a function at a point; the Density Theorem of §3 is a deep result affirm-
ing existence on a substantial set. From it we deduce two minimization
principles. These are theorems bearing upon situations where a minimum
is “almost attained,” and which assert that a small perturbation leads to
actual attainment. We will meet some useful classes of functions along the
way: convex, Lipschitz, indicator, and distance functions. Finally, we will
see some elements of proximal calculus, notably the sum and chain rules.

1 Closest Points and Proximal Normals

Let X be a real Hilbert space, and let S be a nonempty subset of X.
Suppose that x is a point not lying in S. Suppose further that there exists
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FIGURE 1.1. A set S and some of its boundary points.

a point s in S whose distance to x is minimal. Then s is called a closest
point or a projection of x onto S. The set of all such closest points is denoted
by projS(x). It is clear that s ∈ projS(x) iff {s} ⊂ S ∩ B

(
x; ‖x − s‖) and

S ∩ B
(
x; ‖x − s‖) = ∅. See Figure 1.1.

The vector x − s determines what we will call a proximal normal direction
to S at s; any nonnegative multiple ζ = t(x − s), t ≥ 0, of such a vector
will be called a proximal normal (or a P -normal) to S at s. The set of
all ζ obtainable in this manner is termed the proximal normal cone to S
at s, and is denoted by NP

S (s); it is clear that NP
S (s) is in fact a cone;

i.e., a set closed under forming nonnegative scalar multiples. Intuitively, a
proximal normal vector at a given point defines a direction of perpendicular
departure from the set.

Suppose s ∈ S is such that s /∈ projS(x) for all x not in S (which is
certainly the case if s lies in intS). Then we set NP

S (s) = {0}. When s /∈ S,
then NP

S (s) remains undefined. In Figure 1.1, the points s3 and s5 have
P -normal cones equal to {0}, and the points s1, s2, s7, and s8 have at least
two independent vectors in their P -normal cones. The remaining boundary
points of S have their P -normal cone generated by a single nonzero vector.

Notice that we have not asserted above that the point x must admit a
closest point s in S. In finite dimensions, there is little difficulty in assuring
that projections exist, for it suffices that S be closed. We will in fact only
focus on closed sets S, but nonetheless, the issue of the existence of closest
points in infinite dimensions is far more subtle, and will be an important
point later.
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1.1. Exercise. Let X admit a countable orthonormal basis {ei}∞
i=1,

and set

S :=
{

i + 1
i

ei : i ≥ 1
}

.

Prove that S is closed, and that projS(0) = ∅.

The above concepts can be described in terms of the distance function
dS : X → R, which is given by

dS(x) := inf
{‖x − s‖ : s ∈ S

}
.

Occasionally it is more convenient to write d(x;S) for dS(x). The set
projS(x) consists of those points (if any) at which the infimum defining
dS(x) is attained. We also have the formula

NP
S (s) =

{
ζ : ∃t > 0 so that dS(s + tζ) = t‖ζ‖}.

Some further basic properties of dS are listed in the following exercise:

1.2. Exercise.

(a) Show that x belongs to cl S iff dS(x) = 0.

(b) Suppose that S and S′ are two subsets of X. Show that dS =
dS′ iff cl S = cl S′.

(c) Show that dS satisfies
∣∣dS(x) − dS(y)

∣∣ ≤ ‖x − y‖ ∀x, y ∈ X,

which says that dS is Lipschitz of rank 1, on X.

(d) If S is a closed subset of R
n, show that projS(x) �= ∅ for all x,

and that the set
{
s ∈ projS(x) : x ∈ R

n\S
}

is dense in bdry S.
(Hint. Let s ∈ bdry S, and let {xi} be a sequence not in S
that converges to s. Show that any sequence {si} chosen with
si ∈ proj xi, converges to s.)

Suppose now that s ∈ projS(x). This is equivalent to the condition

‖x − s′‖ ≥ ‖x − s‖ ∀s′ ∈ S.

If we square both sides of this inequality and expand in terms of the inner
product, we thus obtain the conclusion that s ∈ projS(x) iff

〈x − s, s′ − s〉 ≤ 1
2‖s′ − s‖2 ∀s′ ∈ S.

This in turn is clearly equivalent to
〈
[s + t(x − s)] − s, s′ − s

〉 ≤ 1
2‖s′ − s‖2 ∀t ∈ [0, 1], ∀s′ ∈ S,
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FIGURE 1.2. A point x1 and its five projections.

which (by the preceding characterization) holds iff for all t ∈ [0, 1], we have
s ∈ projS

(
s + t(x − s)

)
. These remarks are summarized in the following:

1.3. Proposition. Let S be a nonempty subset of X, and let x ∈ X, s ∈ S.
The following are equivalent :

(a) s ∈ projS(x);

(b) s ∈ projS
(
s + t(x − s)

) ∀t ∈ [0, 1];

(c) dS

(
s + t(x − s)

)
= t‖x − s‖ ∀t ∈ [0, 1]; and

(d) 〈x − s, s′ − s〉 ≤ 1
2‖s′ − s‖2 ∀s′ ∈ S.

1.4. Exercise. For 0 < t < 1 in Proposition 1.3(b), we have

projS
(
s + t(x − s)

)
= {s};

that is, if x has a closest point s in S, then s + t(x − s) has a unique
closest point in S. (See Figure 1.2, taking x = x1, s = s3, and
s + t(x − s) = x2.)

The first part of the following result follows readily from the cone property
of NP

S (s) and the characterization (d) of Proposition 1.3; the second part
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demonstrates that P -normality is essentially a local property: the proximal
normal cones NP

S1
(s) and NP

S2
(s) are the same if the two sets S1 and S2

are the same in a neighborhood of s. The inequality in Proposition 1.5(a)
is called the proximal normal inequality.

1.5. Proposition.

(a) A vector ζ belongs to NP
S (s) iff there exists σ = σ(ζ, s) ≥ 0 such that

〈ζ, s′ − s〉 ≤ σ‖s′ − s‖2 ∀s′ ∈ S.

(b) Furthermore, for any given δ > 0, we have ζ ∈ NP
S (s) iff there exists

σ = σ(ζ, s) ≥ 0 such that

〈ζ, s′ − s〉 ≤ σ‖s′ − s‖2 ∀s′ ∈ S ∩ B(s; δ).

The only item requiring proof is the following:

1.6. Exercise. Prove that if the inequality of (b) holds for some σ
and δ, then that of (a) holds for some possibly larger σ.

The previous proposition makes it evident that NP
S (s) is convex; however,

it need be neither open nor closed. That NP
S (s) can be trivial (i.e., reduce

to {0}) even when S is a closed subset of R
n and s lies in bdry S, can easily

be seen by considering the set

S :=
{
(x, y) ∈ R

2 : y ≥ −|x|}.
There are no points outside S whose closest point in S is (0, 0) (to put
this another way: no ball whose interior fails to intersect S can have (0, 0)
on its boundary). Thus NP

S (0, 0) = {0}. A slightly more complicated but
smoother example is the following:

1.7. Exercise. Consider S defined as

S :=
{
(x, y) ∈ R

2 : y ≥ −|x|3/2}.
Show that for (x, y) ∈ bdry S, NP

S (x, y) = (0, 0) iff (x, y) = (0, 0).

1.8. Exercise. Let X = X1 ⊕ X2 be an orthogonal decomposition,
and suppose S ⊆ X is closed, s ∈ S, and ζ ∈ NP

S (s). Write s =
(s1, s2) and ζ = (ζ1, ζ2) according to the given decomposition, and
define S1 =

{
s′
1 : (s′

1, s2) ∈ S
}
, and similarly define S2. Show that

ζi ∈ NP
Si

(si), i = 1, 2.
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The next two propositions illustrate that the concept of a proximal normal
generalizes two classical definitions, that of a normal direction to a C2

manifold as defined in differential geometry, and that of a normal vector in
the context of convex analysis.

Consider a closed subset S of R
n that admits a representation of the form

S =
{
x ∈ R

n : hi(x) = 0, i = 1, 2, . . . , k
}
, (1)

where each hi : R
n → R is C1. If the vectors

{∇hi(s)
}

(i = 1, 2, . . . , k) are
linearly independent at each s ∈ S, then S is a C1 manifold of dimension
n − k.

1.9. Proposition. Let s ∈ S, where S is given by (1), and assume that
the vectors

{∇hi(s)
}

(i = 1, 2, . . . , k) are linearly independent. Then:

(a) NP
S (s) ⊆ span

{∇hi(s)
}

(i = 1, 2, . . . , k).

(b) If in addition each hi is C2, then equality holds in (a).

Proof. Let ζ belong to NP
S (s). By Proposition 1.5, there exists a constant

σ > 0 so that
〈ζ, s′ − s〉 ≤ σ‖s′ − s‖2,

whenever s′ belongs to S. Put another way, this is equivalent to saying
that the point s minimizes the function s′ �→ 〈−ζ, s′〉 + σ‖s′ − s‖2 over all
points s′ satisfying hi(s′) = 0 (i = 1, 2, . . . , k). The Lagrange multiplier
rule of classical calculus provides a set of scalars {µi}k

i=1 such that ζ =∑
i µi∇hi(s), which establishes (a).

Now let ζ have the form
∑

i µi∇hi(s), where each hi is C2. Consider the
C2 function

g(x) := 〈−ζ, x〉 +
∑

i

µihi(x) + σ‖x − s‖2,

where σ > 0. Then g′(s) = 0, and for σ sufficiently large we have g′′(s) > 0
(positive definite), from which it follows that g admits a local minimum at
s. Consequently, if s′ is near enough to s and satisfies hi(s′) = 0 for each
i, we have

g(s′) = 〈−ζ, s′〉 + σ‖s′ − s‖2 ≥ g(s) = 〈−ζ, s〉.
This confirms the proximal normal inequality and completes the proof.

The special case in which S is convex is an important one.

1.10. Proposition. Let S be closed and convex. Then

(a) ζ ∈ NP
S (s) iff

〈ζ, s′ − s〉 ≤ 0 ∀s′ ∈ S.
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(b) If X is finite-dimensional and s ∈ bdry(S), then NP
S (s) �= {0}.

Proof. The inequality in (a) holds iff the proximal normal inequality holds
with σ = 0. Hence the “if” statement is immediate from Proposition 1.5(a).
To see the converse, let ζ ∈ NP

S (s) and σ > 0 be chosen as in the proximal
normal inequality. Let s′ be any point in S. Since S is convex, the point
s̃ := s + t(s′ − s) = ts′ + (1 − t)s also belongs to S for each t ∈ (0, 1). The
proximal normal inequality applied to s̃ gives

〈
ζ, t(s′ − s)

〉 ≤ σt2|s′ − s|2.
Dividing across by t and letting t ↓ 0 yields the desired inequality.

To prove (b), let {si} be a sequence in S converging to s so that NP
S (si) �=

{0} for all i. Such a sequence exists by Exercise 1.2(d). Let ζi ∈ NP
S (si)

satisfy ‖ζi‖ = 1, and passing to a subsequence if necessary, assume that
ζi → ζ as i → ∞, and note that ‖ζ‖ = 1. By part (a), we have

〈ζi, s
′ − si〉 ≤ 0 ∀s′ ∈ S.

Letting i → ∞ yields
〈ζ, s′ − s〉 ≤ 0 ∀s′ ∈ S,

which, again by part (a), says that ζ ∈ NP
S (s).

Let 0 �= ζ ∈ X and r ∈ R. A hyperplane (with associated normal vector
ζ) is any set of the form

{
x ∈ X : 〈ζ, x〉 = r

}
, and a half-space is a set of

the form
{
x ∈ X : 〈ζ, x〉 ≤ r

}
. Proposition 1.10(b) is a separation theorem,

for it says that each point in the boundary of a convex set lies in some
hyperplane, with the set itself lying in one of the associated half-spaces.
An example given in the end-of-chapter problems shows that this fact fails
in general when X is infinite dimensional, although separation does hold
under additional hypotheses.

We now turn our attention from sets to functions.

2 Proximal Subgradients

We begin by establishing some notation and recalling some facts about
functions.

A quite useful convention prevalent in the theories of integration and op-
timization, which we will also adopt, is to allow for functions f : X →
(−∞, +∞]; that is, functions which are extended real-valued. As we will
see, there are many advantages in allowing f to actually attain the value
+∞ at a given point. To single out those points at which f is not +∞, we
define the (effective) domain as the set

dom f :=
{
x ∈ X : f(x) < ∞}.
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The graph and epigraph of f are given, respectively, by

gr f :=
{(

x, f(x)
)
: x ∈ dom f

}
,

epi f :=
{
(x, r) ∈ dom f × R : r ≥ f(x)

}
.

Just as sets are customarily assumed to be closed, the usual background
assumption on f is that of lower semicontinuity. A function f : X →
(−∞, +∞] is lower semicontinuous at x provided that

lim inf
x′→x

f(x′) ≥ f(x).

This condition is clearly equivalent to saying that for all ε > 0, there exists
δ > 0 so that y ∈ B(x; δ) implies f(y) ≥ f(x) − ε, where as usual, ∞ − r
is interpreted as ∞ when r ∈ R.

Complementary to lower semicontinuity is upper semicontinuity : f is upper
semicontinuous at x if −f is lower semicontinuous at x. Lower semicontin-
uous functions are featured prominently in our development, but of course
our results have upper semicontinuous analogues, although we will rarely
state them. This preference for lower semicontinuity explains why +∞ is
allowed as a function value and not −∞.

As is customary, we say that a function f is continuous at x ∈ X provided
it is finite-valued near x and for all ε > 0, there exists δ > 0 so that
y ∈ B(x; δ) implies

∣∣f(x)− f(y)
∣∣ ≤ ε. For finite-valued f , this is equivalent

to saying that f is both lower and upper semicontinuous at x. If f is
lower semicontinuous (respectively, upper semicontinuous, continuous) at
each point x in an open set U ⊂ X, then f is called lower semicontinuous
(respectively, upper semicontinuous, continuous) on U .

To restrict certain pathological functions from entering the discussion, we
designate by F(U), where U ⊆ X is open, the class of all functions f : X →
(−∞,∞] which are lower semicontinuous on U and such that dom f∩U �= ∅.
If U = X, then we simply write F for F(X).

Let S be a subset of X. The indicator function of S, denoted either by
IS(·) or I(·; S), is the extended-valued function defined by

IS(x) :=

{
0 if x ∈ S,

+∞ otherwise.

Let U ⊂ X be an open convex set. A function f : X → (−∞,∞] is said to
be convex on U provided

f
(
tx + (1 − t)y

) ≤ tf(x) + (1 − t)f(y) ∀x, y ∈ U, 0 < t < 1.

A function f which is convex on X is simply said to be convex. Note that
dom f is necessarily a convex set if f is convex.
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The following exercise contains some elementary properties of lower semi-
continuous and convex functions. Parts (a) and (b) in particular help to
demonstrate why the epigraph, rather than the graph, of a function plays
the fundamental role in the analysis of lower semicontinuous functions.
Note that X × R, the space in which epi f lives, is always viewed as a
Hilbert space with inner product

〈
(x, r), (x′, r′)

〉
:= 〈x, x′〉 + rr′.

2.1. Exercise. Suppose f : X → (−∞, +∞].

(a) Show that f is lower semicontinuous on X iff epi f is closed
in X × R, and this is true iff each r-level set

{
x : f(x) ≤ r

}
is closed, r ∈ R. Note that gr f need not be closed when f is
lower semicontinuous.

(b) Show that f is convex on X iff epi f is a convex subset of X×R.
(c) When f is an indicator function, f = IS , then f ∈ F(X) iff S

is nonempty and closed, and f is convex iff S is convex.
(d) Suppose that (ζ, −λ) ∈ X × R belongs to NP

epi f (x, r) for some
(x, r) ∈ epi f , where f ∈ F . Prove that λ ≥ 0, that r = f(x) if
λ > 0, and that λ = 0 if r > f(x). In this last case, show that
(ζ, 0) ∈ NP

epi f

(
x, f(x)

)
.

(e) Give an example of a continuous f ∈ F(R) such that at some
point x we have (1, 0) ∈ NP

epi f

(
x, f(x)

)
.

(f) If S = epi f , where f ∈ F , prove that for all x, dS(x, r) is
nonincreasing as a function of r.

A vector ζ ∈ X is called a proximal subgradient (or P -subgradient) of a
lower semicontinuous function f at x ∈ dom f provided that

(ζ,−1) ∈ NP
epi f

(
x, f(x)

)
.

The set of all such ζ is denoted ∂P f(x), and is referred to as the proximal
subdifferential, or P -subdifferential. Note that because a cone is involved,
if α > 0 and (ζ,−α) ∈ NP

epi f

(
x, f(x)

)
, then ζ/α ∈ ∂P f(x). It also follows

immediately from our study of the proximal normal cone that ∂P f(x) is
convex, however it is not necessarily open, closed, or nonempty. The func-
tion f : R → R defined by f(x) = −|x| is a simple example of a continuous
function having ∂P f(0) = ∅.

Figure 1.3 illustrates the epigraph of a function f together with some vec-
tors of the form (ζ,−1), ζ ∈ ∂P f(x). There exists a single P -subgradient
at x1, as well as at all the unlabeled points. At x2, there are no P -
subgradients, and there are multiple P -subgradients at the three remaining
labeled points. At x4, the proximal subdifferential is an unbounded set; the
(horizontal) dashed arrow here is not associated with a P -subgradient, al-
though it does represent a P -normal to epi f .

The indicator function is one of several ways in which we pass between sets
and functions. It is also useful in optimization: note that minimizing f over
a set S is equivalent to minimizing the function f + IS globally.
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FIGURE 1.3. The epigraph of a function.

2.2. Exercise. Let f = IS . Prove that for x ∈ S we have

∂P f(x) = ∂P IS(x) = NP
S (x).

The main theme of this chapter is to develop the calculus rules governing
the proximal subgradient. We will see that to a surprising degree, many
of the usual properties enjoyed by the classical derivative carry over to
the proximal subgradient ∂P f(x). As a first illustration of this, we give an
exercise which echos the vanishing of the derivative at a local minimum.
A point x ∈ X is said to attain the minimum of f on S provided x ∈
S ∩ dom f and

f(x) ≤ f(y) ∀y ∈ S.

If there exists an open neighborhood U of x ∈ X on which x attains the
minimum of f , then x is said to be a local minimum of f . If x is a minimum
of f on U = X, then x is called a global minimum.

2.3. Exercise. Suppose f ∈ F .

(a) Show that if f attains a local minimum at x, then 0 ∈ ∂P f(x).

(b) Suppose S ⊂ X is compact and satisfies S ∩ dom f �= ∅. Show
that f is bounded below on S, and attains its minimum over
S.

Classical Derivatives

Before developing further properties of P -subgradients, we need to recall
some facts about classical derivatives. We will do so rather quickly. The
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directional derivative of f at x ∈ dom f in the direction v ∈ X is defined
as

f ′(x; v) := lim
t↓0

f(x + tv) − f(x)
t

, (1)

when the limit exists. We say that f is Gâteaux differentiable at x provided
the limit in (2.1) exists for all v ∈ X, and there exists a (necessarily unique)
element f ′

G(x) ∈ X (called the Gâteaux derivative) that satisfies

f ′(x; v) =
〈
f ′

G(x), v
〉 ∀v ∈ X. (2)

A function may possess a directional derivative at x in every direction and
yet fail to possess a Gâteaux derivative, as is evidenced by f(x) = ‖x‖ at
x = 0. In this case, we have f ′(0; v) = ‖v‖. Also, a lower semicontinuous
function may have a Gâteaux derivative at a point x but not be continuous
there.

Suppose that (2) holds at a point x, and in addition that the convergence in
(1) is uniform with respect to v in bounded subsets of X. We then say that
f is Fréchet differentiable at x, and in this case write f ′(x) (the Fréchet
derivative) in place of f ′

G(x). Equivalently this means that for all r > 0
and ε > 0, there exists δ > 0 so that

∣∣∣∣f(x + tv) − f(x)
t

− 〈f ′(x), v
〉∣∣∣∣ < ε

holds for all |t| < δ and ‖v‖ ≤ r.

The two notions of differentiability are not equivalent, even in finite di-
mensions. We can easily show that Fréchet differentiability at x implies
continuity at x, which is not the case for Gâteaux differentiability.

Many of the elementary properties of the derivative encountered in the
multivariate calculus (i.e., when X = R

n) have exact analogues using either
Fréchet or Gâteaux derivatives, where f ′ or f ′

G take the place of the usual
gradient ∇f . To illustrate in some detail, suppose f, g : X → R have Fréchet
derivatives at x ∈ X. Then f ± g, fg, and f/g (with g(x) �= 0) all have
Fréchet derivatives at x obeying the classical rules:

(f ± g)′(x) = f ′(x) ± g′(x),
(fg)′(x) = f ′(x)g(x) + f(x)g′(x),(
f

g

)′
(x) =

(
f ′(x)g(x) − f(x)g′(x)

g2(x)

)
.

The proofs of these facts are the same as in the classical case.

The Mean Value Theorem can be stated as follows: suppose f ∈ F(X)
is Gâteaux differentiable on an open neighborhood that contains the line
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segment [x, y] :=
{
tx + (1 − t)y : 0 ≤ t ≤ 1

}
, where x, y ∈ X. That is,

there exists an open set U containing the line segment [x, y] such that f is
differentiable at every point of U . Then there exists a point z := tx+(1−t)y,
0 < t < 1, so that

f(y) − f(x) =
〈
f ′

G(z), y − x
〉
.

A proof of the Mean Value Theorem can be given by applying the classical
one-dimensional mean value theorem to the function g : [0, 1] → R defined
by g(t) = f

(
x + t(y − x)

)
.

Another useful result is the Chain Rule. In order to state it, we first need to
extend the above notions of differentiability to maps between two Hilbert
spaces. Suppose X1 and X2 are Hilbert spaces with norms ‖ · ‖1 and ‖ · ‖2,
respectively, and suppose F : X1 → X2 is a mapping between these spaces.
We write L(X1, X2) for the space of bounded linear transformations from
X1 to X2 endowed with the usual operator norm. The scalar case X2 = R

was discussed above, in which case L(X1, R) was identified with X1 in the
usual way.

Let x ∈ X1. The Gâteaux derivative, should it exist, of F at x is an element
F ′

G(x) ∈ L(X1, X2) that satisfies

lim
t↓0

∥∥∥∥F (x + tv) − F (x)
t

− F ′
G(x)(v)

∥∥∥∥
2

= 0,

for all v ∈ X1. Should in addition the above limit hold uniformly over v in
bounded sets of X1, then F is Fréchet differentiable and we write F ′(x) in
place of F ′

G(x).

As in the scalar case, the derivative of the sum of two functions mapping
X1 to X2 is the sum of the derivatives. Let us now consider the Chain
Rule. Suppose X1, X2, and X3 are all Hilbert spaces, and F : X1 → X2,
G : X2 → X3. Assume that F is Fréchet differentiable at x ∈ X1, and G is
Fréchet differentiable at F (x) ∈ X2. Then the composition G◦F : X1 → X3
is Fréchet differentiable at x and

(G ◦ F )′(x) = G′(F (x)
)
F ′(x),

where G′(F (x)
)
F ′(x) ∈ L(X1, X3) signifies the composition of F ′(x) with

G′(F (x)
)
.

Suppose U ⊆ X is open and f : U → R is Fréchet differentiable on U . If
f ′(·) : U → X is continuous on U , then we say that f is C1 on U , and
write f ∈ C1(U). It turns out that if f is Gâteaux differentiable on U
with a continuous derivative there, then f ∈ C1(U). Now suppose further
that the map f ′(·) : U → X is itself Fréchet differentiable on U with its
derivative at x ∈ U denoted by f ′′(x) ∈ L(X,X) (in the multivariate
calculus, f ′′(x) is the Hessian). For each x ∈ U , f then admits a local
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second-order Taylor expansion with remainder, which means there exists a
neighborhood B(x; η) of x so that for every y ∈ B(x; η) we have

f(y) = f(x) +
〈
f ′(x), y − x

〉
+ 1

2

〈
f ′′(z)(y − x), y − x

〉
,

where z is some element on the line segment connecting x and y. We note
that if the norms of f ′′(y) are bounded over y ∈ B(x; η) by the constant
2σ > 0, then this implies

f(y) ≥ f(x) +
〈
f ′(x), y − x

〉− σ‖y − x‖2 (3)

for all y ∈ B(x; η).

If it should also happen that f ′′ : X → L(X,X) is continuous on U , then f
is said to be twice continuously differentiable on U , and we write f ∈ C2(U),
or simply f ∈ C2 if U = X. We note that if f ∈ C2(U), then for each x ∈ U
there exists a neighborhood B(x; η) and a constant σ so that (3) holds, since
the continuity of f ′′ at x implies that the norms of f ′′ are bounded in a
neighborhood of x.

2.4. Exercise.

(a) Let x ∈ X and define f : X → R by f(y) = ‖y−x‖2. Show that
f ∈ C2, and that for each y ∈ X, we have f ′(y) = 2(y −x) and
f ′′(y) = 2I, where I ∈ L(X, X) is the identity transformation.

(b) Suppose c > 0 is a constant, and x and ζ are fixed elements in
X. Define g : X → R by

g(y) =
[
c2 + 2c〈ζ, y − x〉 − ‖y − x‖2]1/2

.

Show that g ∈ C2(U) for some neighborhood U of x, and that
g′(x) = ζ.

(c) Let f(x) = ‖x‖. Then f ′(x) exists for x �= 0, and equals x/‖x‖.

We now return to developing properties of the proximal subgradient. The
following characterization is the most widely used description of the prox-
imal subgradient, and we give it a name: by the proximal subgradient in-
equality, we mean the inequality appearing in the following result:

2.5. Theorem. Let f ∈ F and let x ∈ dom(f). Then ζ ∈ ∂P f(x) if and
only if there exist positive numbers σ and η such that

f(y) ≥ f(x) + 〈ζ, y − x〉 − σ‖y − x‖2 ∀y ∈ B(x; η). (4)

Proof. Let us first prove the “if” part of the theorem’s statement. The
inequality (4) implies that

α − f(x) + σ
[‖y − x‖2 +

(
α − f(x)

)2] ≥ 〈ζ, y − x〉
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for all y ∈ B(x; η) and for all α ≥ f(y). This in turn implies

〈
(ζ,−1),

[
(y, α) − (x, f(x)

)]〉 ≤ σ
∥∥(y, α) − (x, f(x)

)∥∥2

for all points (y, α) ∈ epi(f) near
(
x, f(x)

)
. In view of Proposition 1.5, this

implies that (ζ,−1) ∈ NP
epi f

(
x, f(x)

)
.

Let us now turn to the “only if” part. To this end, suppose that (ζ,−1) ∈
NP

epi f

(
x, f(x)

)
. Then by Proposition 1.3 there exists δ > 0 such that

(
x, f(x)

) ∈ projepi f

((
x, f(x)

)
+ δ(ζ,−1)

)
.

This evidently implies

∥∥δ(ζ,−1)
∥∥2 ≤ ∥∥[(x, f(x)

)
+ δ(ζ,−1)

]− (y, α)
∥∥2

for all (y, α) ∈ epi f ; see Figure 1.4. Upon taking α = f(y), the last in-
equality yields

δ2‖ζ‖2 + δ2 ≤ ‖x − y + δζ‖2 +
(
f(x) − f(y) − δ

)2
,

which can be rewritten as
(
f(y) − f(x) + δ

)2 ≥ δ2 + 2δ〈ζ, y − x〉 − ‖x − y‖2. (5)

It is clear that the right-hand side of (5) is positive for all y sufficiently
near x, say for y ∈ B(x; η). By shrinking η > 0 if necessary, we can also
ensure (by the lower semicontinuity of f) that y ∈ B(x; η) implies

f(y) − f(x) + δ > 0.

Hence taking square roots of (5) gives us that

f(y) ≥ g(y) := f(x) − δ +
{
δ2 + 2δ〈ζ, y − x〉 − ‖x − y‖2}1/2 (6)

for all y ∈ B(x; η). Direct calculations show that g′(x) = ζ and that g′′ ex-
ists and is bounded, say by 2σ > 0, on a neighborhood of x (Exercise 2.4).
Again if η is shrunk further if necessary, we have (as noted above in con-
nection with the inequality (3))

g(y) ≥ g(x) + 〈ζ, y − x〉 − σ‖y − x‖2 ∀y ∈ B(x; η).

But then by (6), and since f(x) = g(x), we see that

f(y) ≥ f(x) + 〈ζ, y − x〉 − σ‖y − x‖2 ∀y ∈ B(x; η),

which is (4) as required.
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FIGURE 1.4. ζ belongs to ∂P f(x).

The definition of proximal subgradients via proximal normals to an epi-
graph is a geometric approach, and the characterization in Theorem 2.5
can also be interpreted geometrically. The proximal subgradient inequality
(4) asserts that near x, f(·) majorizes the quadratic function

h(y) := f(x) + 〈ζ, y − x〉 − σ‖y − x‖2,

with equality at y = x (since obviously h(x) = f(x)). It is worth noting that
this is equivalent to saying that y �→ f(y) − h(y) has a local minimum at
y = x with min value equal to 0. Put into purely heuristic terms, the content
of Theorem 2.5 is that the existence of such a parabola h which “locally
fits under” the epigraph of f at

(
x, f(x)

)
is equivalent to the existence of

a ball in X × R touching the epigraph nonhorizontally at that point; this
is, in essence, what the proof of the theorem shows. See Figure 1.4.

The description of proximal subgradients contained in Theorem 2.5 is gen-
erally more useful in analyzing lower semicontinuous functions than is a
direct appeal to the definition. The first corollary below illustrates this,
and relates ∂P f to classical differentiability. It also states that for convex
functions, the inequality (4) holds globally in an even simpler form; this
is the functional analogue of the simplified proximal normal inequality for
convex sets (Proposition 1.10).

2.6. Corollary. Let f ∈ F and U ⊂ X be open.

(a) Assume that f is Gâteaux differentiable at x ∈ U . Then

∂P f(x) ⊆ {f ′
G(x)

}
.
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(b) If f ∈ C2(U), then
∂P f(x) =

{
f ′(x)

}
for all x ∈ U .

(c) If f is convex, then ζ ∈ ∂P f(x) iff

f(y) ≥ f(x) + 〈ζ, y − x〉 ∀y ∈ X. (7)

Proof.

(a) Suppose f has a Gâteaux derivative at x and that ζ ∈ ∂P f(x). For
any v ∈ X, if we write y = x+tv, the proximal subgradient inequality
(4) implies that there exists σ > 0 such that

f(x + tv) − f(x)
t

− 〈ζ, v〉 ≥ −tσ‖v‖2

for all sufficiently small positive t. Upon letting t ↓ 0 we obtain
〈
f ′

G(x) − ζ, v
〉 ≥ 0.

Since v was arbitrary, the conclusion ζ = f ′
G(x) follows.

(b) If f ∈ C2(U) and x ∈ U , then we have f ′(x) ∈ ∂P f(x) by Theo-
rem 2.5, since (3) implies (4) if ζ is set equal to f ′(x). That ∂P f(x)
contains only f ′(x) follows from part (a).

(c) Obviously if ζ satisfies (7), then (4) holds with σ = 0 and any η > 0,
so that ζ ∈ ∂P f(x). Conversely, suppose ζ ∈ ∂P f(x), and σ and η
are chosen as in (4). Let y ∈ X. Then for any t in (0, 1) sufficiently
small so that (1 − t)x + ty ∈ B(x; η), we have by the convexity of f
and (4) (where we substitute (1 − t)x + ty for y) that

(1 − t)f(x) + tf(y) ≥ f
(
(1 − t)x + ty

)
≥ f(x) + t〈ζ, y − x〉 − t2σ‖y − x‖2.

Simplifying and dividing by t, we conclude

f(y) ≥ f(x) + 〈ζ, y − x〉 − tσ‖y − x‖2.

Letting t ↓ 0 yields (7).

The containment in Corollary 2.6(a) is the best possible conclusion under
the stated assumptions, since even when X = R and f is continuously
differentiable, the nonemptiness of the proximal subdifferential is not as-
sured. The already familiar C1 function f(x) = −|x|3/2 admits no proximal
subgradient at x = 0 (see Exercise 1.7).
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The first part of the following corollary has already been observed (Exer-
cise 2.3). Despite its simplicity, it is the fundamental fact that generates
proximal subgradients on many occasions. The second part says that the
“first-order” necessary condition for a minimum is also sufficient in the case
of convex functions, which is a principal reason for their importance.

2.7. Corollary. Suppose f ∈ F .

(a) If f has a local minimum at x, then 0 ∈ ∂P f(x).

(b) Conversely, if f is convex and 0 ∈ ∂P f(x), then x is a global minimum
of f .

Proof.

(a) The definition of a local minimum says there exists η > 0 so that

f(y) ≥ f(x) ∀y ∈ B(x; η),

which is the proximal subgradient inequality with ζ = 0 and σ = 0.
Thus Theorem 2.5 implies that 0 ∈ ∂P f(x).

(b) Under these hypotheses, (7) holds with ζ = 0. Thus f(y) ≥ f(x) for
all y ∈ X, which says that x is a global minimum of f .

The proximal subdifferential is a “one-sided” object suitable to the anal-
ysis of lower semicontinuous functions. For a theory applicable to upper
semicontinuous functions f , the proximal superdifferential ∂P f(x) is the
appropriate object, and can be defined simply as −∂P (−f)(x). In the sub-
sequent development, analogues for upper semicontinuous functions will
usually not be stated because they require only evident modifications, such
as replacing “sub” by “super,” “≤ ” by “≥,” “minimum” by “maximum,”
and “convex” by “concave.” Nonetheless, we will have occasional use for
supergradients.

2.8. Exercise.

(a) Suppose −f ∈ F and x ∈ dom(−f). Show that ζ ∈ ∂P f(x) iff
there exist positive numbers σ and η so that

f(y) − 〈ζ, y − x〉 − σ‖y − x‖2 ≤ f(x) ∀y ∈ B(x; η).

(b) Suppose U ⊂ X is open, x ∈ U , f : U → R is continuous on U ,
and that both ∂P f(x) and ∂P f(x) are nonempty. Prove that
f is Fréchet differentiable at x, and that we have ∂P f(x) ={
f ′(x)

}
= ∂P f(x).

(c) Suppose f ∈ F is convex and continuous at x ∈ int dom f . Show
that ∂P f(x) �= ∅. (Hint. Apply the Separation Theorem (see,
e.g., Rudin (1973)) to

(
x, f(x)

) ∈ bdry epi f). Deduce further
that if ∂P f(x) �= ∅, then f is Fréchet differentiable at x.
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There is a natural way to define partial proximal subgradients. Suppose
X is decomposed into orthogonal subspaces X = X1 ⊕ X2, and f ∈ F .
Let x ∈ X, and write x = (x1, x2) according to the direct sum decom-
position. The notation ∂P f(·, x2)(x1) denotes the proximal subdifferential
evaluated at x1 of the function x′

1 �→ f(x′
1, x2) defined on X1. (This is the

partial proximal subdifferential taken with respect to the first coordinate.)
Similar considerations apply to ∂P f(x1, ·)(x2). The functional analogue to
Exercise 1.8 is the following:

2.9. Exercise. Using the notation of the previous paragraph, sup-
pose there exists ζ ∈ ∂P f(x), and write ζ = (ζ1, ζ2) according to
the direct sum decomposition. Show that ζ1 ∈ ∂P f(·, x2)(x1) and
ζ2 ∈ ∂P f(x1, ·)(x2). Give an example where the converse fails.

We will develop proximal calculus in some detail later, but let us note right
away that we cannot expect a calculus Sum Rule of the form

∂P f(x) + ∂P g(x) = ∂P (f + g)(x) (8)

to hold in much generality. One inclusion between these sets can be estab-
lished easily, but unfortunately, this inclusion is seldom the one we need.

2.10. Exercise.

(a) Show that ∂P f(x) + ∂P g(x) ⊆ ∂P (f + g)(x).

(b) Give an example for which ∂P (f + g)(x) is nonempty but for
which one of ∂P f(x) or ∂P g(x) is empty.

(c) Show that for all c > 0, we have ∂P (cf)(x) = c∂P f(x).

The following proposition is a proximal Sum Rule, and says in essence that
the Sum Rule (8) does hold whenever one of the functions is C2.

2.11. Proposition. Suppose that f ∈ F , and let x ∈ X. Suppose further
that g is C2 in a neighborhood of x. Then

ζ ∈ ∂P (f + g)(x) implies ζ − g′(x) ∈ ∂P f(x).

Proof. The inequality (3) applied to −g implies the existence of a constant
σ′ > 0 such that

−g(y) + g(x) + σ′‖y − x‖2 ≥ 〈−g′(x), y − x
〉

for all y near x. Since ζ ∈ ∂P (f + g)(x), we have

f(y) + g(y) − f(x) − g(x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉
for some σ > 0 and all y near x. Upon adding these inequalities, we arrive
at

f(y) − f(x) + (σ′ + σ)‖y − x‖2 ≥ 〈ζ − g′(x), y − x
〉
,

which holds for all y near x, and says via Theorem 2.5 that ζ − g′(x) ∈
∂P f(x).
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2.12. Exercise. Let f ∈ C2, and suppose that f attains a minimum
over S at x. Prove that −f ′(x) ∈ NP

S (x). (Hint. Consider f + IS .)

A function f : X → (−∞,∞] is said to satisfy a Lipschitz condition of rank
K on a given set S provided that f is finite on S and satisfies

∣∣f(x) − f(y)
∣∣ ≤ K‖x − y‖ ∀x, y ∈ S.

2.13. Exercise. Let f satisfy a Lipschitz condition of rank K on
some neighborhood of a given point x0. Show that any ζ ∈ ∂P f(x0)
satisfies ‖ζ‖ ≤ K.

The question of a statement converse to that of this exercise is a deeper
one that we will address in §7. A function f is said to be Lipschitz near x
if it satisfies the Lipschitz condition (of some rank) on a neighborhood of
x. A function f is said to be locally Lipschitz on S if f is Lipschitz near x
for every x ∈ S.

2.14. Exercise. Let f ∈ C1(U), U open. Prove that f is locally
Lipschitz on U . (Hint. Mean Value Theorem.) If S is a compact
convex subset of U , show that f is Lipschitz on S with rank K :=
max
{‖f ′(x)‖ : x ∈ S

}
.

3 The Density Theorem

We now establish an important fact: the set dom(∂P f) of points in dom f
at which at least one proximal subgradient exists is dense in dom f .

3.1. Theorem. Suppose f ∈ F . Let x0 ∈ dom f , and let ε > 0 be given.
Then there exists a point y ∈ x0+εB satisfying ∂P f(y) �= ∅ and f(x0)−ε ≤
f(y) ≤ f(x0). In particular, dom(∂P f) is dense in dom f .

Proof. By lower semicontinuity, there exists δ with 0 < δ < ε so that

x ∈ x0 + δB =⇒ f(x) ≥ f(x0) − ε. (1)

We first give a simple motivational proof in the case X = R
n. We define

g(x) :=

{[
δ2 − ‖x − x0‖2

]−1 if ‖x − x0‖ < δ,

+∞ otherwise.

Note that g belongs to C2(x0 + δB), and that g(x) → ∞ as x approaches
the boundary of B(x0; δ). Now consider the function (f + g) ∈ F which
is bounded below on x0 + δB. It follows that f + g attains a minimum y
over x0 + δB. Obviously y ∈ x0 + δB, and f + g has a local minimum at
y, thus by Exercise 2.3 we have that 0 ∈ ∂P (f + g)(y). It now follows from
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Proposition 2.11 that −g′(y) ∈ ∂P f(y), and in particular that ∂P f(y) �= ∅.
Since δ can be made arbitrarily small, it follows that dom(∂P f) is dense in
dom f .

In view of (1), we are left only with showing that f(y) ≤ f(x0). We deduce
this by noting that y is a minimum of f + g and g(x0) ≤ g(y), and hence

f(y) ≤ f(x0) +
(
g(x0) − g(y)

) ≤ f(x0).

The proof is thus complete if X is finite dimensional.

The proof in the general case is more complicated, due to the possible non-
existence of minimizers. An iterative procedure will lead to an appropriate
minimum’s existence, however.

We begin again by choosing δ so that (1) holds, and we take σ > 2ε/δ2. We
will show that there exists a point z ∈ x0 + δB so that the function x �→
f(x)+σ‖x−z‖2 has a minimum over x0+δB at some point y ∈ x0+δB that
satisfies f(y) ≤ f(x0). Once the existence of such y and z are established,
the proof is easily completed as follows. Since y is a minimum, we have
0 ∈ ∂P

(
f +‖(·)−z‖2

)
(y), which by Proposition 2.11 and Exercise 2.4 gives

the inclusion −2σ(y − z) ∈ ∂P f(y). Also, f(x0) − ε ≤ f(y) ≤ f(x0) is then
immediate in view of (1).

We proceed to demonstrate the existence of points y and z having the
properties described above. We define

S0 :=
{

x ∈ x0 + δB : f(x) +
σ

2
‖x − x0‖2 ≤ f(x0)

}
.

We claim that S0 is closed and that

x0 ∈ S0 ⊂ x0 + δB. (2)

Indeed, if x ∈ S0, then by (1) and the choice of σ, we have

‖x − x0‖2 ≤ 2
σ

[
f(x0) − f(x)

]
< δ2

which gives (2). The closedness of S0 follows from the lower semicontinuity
of f (see Exercise 2.1(a)). If S0 contains only a single point y, then y = x0
and the proof is completed, since then x0 is a minimum of

x �→ f(x) + σ‖x − x0‖2

over x ∈ x0+δB. Since this is generally not the case, we employ an iterative
procedure producing successively smaller sets that will shrink to a point y.

Let x1 ∈ S0 be chosen so that

f(x1) +
σ

2
‖x1 − x0‖2 ≤ inf

x∈S0

{
f(x) +

σ

2
‖x − x0‖2

}
+

σ

4
,
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and define another closed set by

S1 :=
{

x ∈ S0 : f(x) + σ

[‖x − x0‖2

2
+

‖x − x1‖2

4

]

≤ f(x1) +
σ

2
‖x1 − x0‖2

}
.

Note that x1 ∈ S1, so that S1 is nonempty. Again, if x1 were the only point
in S1 the proof would be complete (why?).

Inductively, if xj and Sj are chosen for j ≥ 0, we choose xj+1 ∈ Sj so that

f(xj+1) +
σ

2

j∑
i=0

‖xj+1 − xi‖2

2i

≤ inf
s∈Sj

{
f(x) +

σ

2

j∑
i=0

‖x − xi‖2

2i

}
+

σ

4j+1 , (3)

and we define

Sj+1 :=
{

x ∈ Sj : f(x) +
σ

2

j+1∑
i=0

‖x − xi‖2

2i

≤ f(xj+1) +
σ

2

j∑
i=0

‖xj+1 − xi‖2

2i

}
. (4)

We obviously have xj+1 ∈ Sj+1 ⊂ Sj for each j ≥ 0, and thus {Sj}
is a nested sequence of nonempty closed sets. We need only show that
sup
{‖x − x′‖ : x, x′ ∈ Sj

}
=: diam(Sj) → 0 as j → ∞ to conclude that

the sequence {Sj} shrinks to a single point. (This is a fact about complete
metric spaces known as Cantor’s Theorem.) Toward this end, let x ∈ Sj+1.
Then for each j ≥ 0, we have by (4) and (3) that

σ

2
‖x − xj+1‖2

2j+1 ≤ f(xj+1) +
σ

2

j∑
i=0

‖xj+1 − xi‖2

2i

−
{

f(x) +
σ

2

j∑
i=0

‖x − xi‖2

2i

}
≤ σ

4j+1 .

It follows that
sup

x∈Sj+1

‖x − xj+1‖ ≤ 2−j/2,

and thus limj→∞ diam(Sj) = 0. Consequently, since the Hilbert space X is
complete, there is a point y such that

⋂∞
j=1 Sj = {y}. Of course, y lies in

S0, whence ‖y − x0‖ < δ < ε (in view of (2)) and

f(y) ≤ f(y) + σ
2 ‖y − x0‖2 ≤ f(x0)
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(by the definition of S0).

Let z be the point (1/2)
∑∞

j=0 xj/2j (the sum is uniformly convergent),
and observe that the identity

‖x − z‖2 =
1
2

( ∞∑
i=0

‖x − xi‖2

2i

)
− c (5)

holds for any x, where c := (1/2)
(∑∞

i=0 ‖xi‖2/2i
)− ‖z‖2.

We now show that y minimizes x �→ f(x) + σ‖x − z‖2 over x0 + δB. Note
first that since xj+1 ∈ Sj for all j, it follows that

{
f(xj) +

σ

2

j−1∑
i=0

‖xj − xi‖2

2i

}
is nonincreasing (6)

as j increases. Now let x ∈ x0 + δB be different from y, and let k ≥ 0 be
the least integer such that x /∈ Sk. Let j be any index larger than k − 1.
Since y ∈ Sj+1, the definition (4) of Sj+1 and (6) imply

f(y) +
σ

2

j+1∑
i=0

‖y − xi‖2

2i
≤
{

f(xj+1) +
σ

2

j∑
i=0

‖xj+1 − xi‖2

2i

}

≤
{

f(xk) +
σ

2

k−1∑
i=0

‖xk − xi‖2

2i

}
. (7)

Now k has been chosen so that x ∈ Sk−1\Sk (if k = 0, this should be
interpreted with S−1 := x0 + δB), and hence the definition of Sk yields
that

f(xk) +
σ

2

k−1∑
i=0

‖xk − xi‖2

2i
< f(x) +

σ

2

k∑
i=0

‖x − xi‖2

2i

≤ f(x) +
σ

2

∞∑
i=0

‖x − xi‖2

2i
. (8)

We now combine (8) with (7) and let j → ∞ to deduce that

f(y) +
σ

2

∞∑
i=0

‖y − xi‖2

2i
≤ f(x) +

σ

2

∞∑
i=0

‖x − xi‖2

2i
.

We now can simply add −σc to both sides of this inequality and use the
representation (5) to conclude that

f(y) + σ‖y − z‖2 ≤ f(x) + σ‖x − z‖2.

Since x was any point in x0 + δB, we deduce that y is a minimum of
x �→ f(x) + ‖x − z‖2 over x0 + δB, as required.
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4 Minimization Principles

As was pointed out at the time, a simple and direct proof of the Density
Theorem 3.1 is possible in finite dimensions. The proof fails in infinite di-
mensions for a reason that is a persistent and thorny issue in analysis: the
possible nonexistence of a minimizer. Specifically, a lower semicontinuous
function on a closed bounded set may not attain a minimum, or even be
bounded below. An important type of result affirms that in certain sit-
uations an arbitrarily small perturbation of the function in question will
attain a minimum. Here is an example, known as Stegall’s minimization
principle.

4.1. Theorem. Let f ∈ F , and suppose that f is bounded below on the
bounded closed set S ⊂ X, with S ∩ dom f �= ∅. Then there exists a dense
set of points x in X having the property that the function y �→ f(y)−〈x, y〉
attains a unique minimum over S.

The main use of this theorem involves taking x close to 0, so that a small
linear perturbation of f attains a minimum. The next minimization prin-
ciple we present is due to Borwein and Preiss, and is more complicated to
state. It features a quadratic perturbation and two parameters, and can
be used in such a way that the conclusion is strongly related to a pregiven
point x0 of interest.

4.2. Theorem. Let f ∈ F be bounded below, and let ε > 0. Suppose that
x0 is a point satisfying f(x0) < infx∈X f(x)+ ε. Then, for any λ > 0 there
exist points y and z with

‖z − x0‖ < λ, ‖y − z‖ < λ, f(y) ≤ f(x0),

and having the property that the function

x �→ f(x) +
ε

λ2 ‖x − z‖2

has a unique minimum at x = y.

The proofs of both these minimization principles appear in the next sec-
tion, for they are simple consequences of the proximal analysis of “inf-
convolutions” (together with the Density Theorem). The following exercise
is helpful in understanding the content of Theorem 4.2.

4.3. Exercise. Let f , x0, and ε be as in the statement of Theo-
rem 4.2, where in addition f is Fréchet differentiable. Prove that
there is a point y in x0 + 2

√
εB such that

∥∥f ′(y)‖ ≤ 2
√

ε and
f(y) ≤ f(x0). Proceed to deduce the existence of a minimizing se-
quence {yi} for f (i.e., one that satisfies limi→∞ f(yi) = infx∈X f(x))
such that limi→∞

∥∥f ′(yi)
∥∥ = 0.
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5 Quadratic Inf-Convolutions

The inf-convolution of two functions f , g is another function h defined as
follows:

h(x) := inf
y∈X

{
f(y) + g(x − y)

}
.

The term “convolution” is suggested by the visual resemblance of this for-
mula to the classical integral convolution formula. Our interest here in-
volves only such inf-convolutions formed between a function f ∈ F and
the quadratic function x �→ α‖x‖2, where α > 0. Such functions have
surprisingly far-reaching properties.

Given f ∈ F that is bounded below and α > 0, we define fα : X → R by

fα(x) := inf
y∈X

{
f(y) + α‖x − y‖2}. (1)

We recall some terminology: {xi} is said to be a minimizing sequence for
an infimum of the type infx∈S g(x) provided that the points xi all lie in S
and satisfy limi→∞ g(xi) = infx∈S g(x).

5.1. Theorem. Suppose that f ∈ F is bounded below by some constant
c, and fα is defined as above with α > 0. Then fα is bounded below by c,
and is Lipschitz on each bounded subset of X (and in particular is finite-
valued). Furthermore, suppose x ∈ X is such that ∂P fα(x) is nonempty.
Then there exists a point ȳ ∈ X satisfying the following :

(a) If {yi} ⊂ X is a minimizing sequence for the infimum in (1), then
limi→∞ yi = ȳ.

(b) The infimum in (1) is attained uniquely at ȳ.

(c) The Fréchet derivative f ′
a(x) exists and equals 2α(x − ȳ). Thus the

proximal subgradient ∂P fα(x) is the singleton
{
2α(x − ȳ)

}
.

(d) 2α(x − ȳ) ∈ ∂P f(ȳ).

Proof. Suppose we are given f and α > 0 as above. It is clear from the
definition that fα is bounded below by c. We now show that fα is Lipschitz
on any bounded set S ⊂ X.

For any fixed x0 ∈ dom f �= ∅, note that fα(x) ≤ f(x0)+α‖x−x0‖2 for all
x ∈ X, and thus in particular m := sup

{
fα(x) : x ∈ S

}
< ∞. Since α > 0,

and f is bounded below, we have that for any ε > 0 the set

C :=
{
z : ∃y ∈ S so that f(z) + α‖y − z‖2 ≤ m + ε

}

is bounded in X.
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Now let x and y belong to S and ε > 0. Since fα(·) is given as an infimum,
there exists z ∈ C so that

fα(y) ≥ f(z) + α‖y − z‖2 − ε.

Thus we have

fα(x) − fα(y) ≤ fα(x) − f(z) − α‖y − z‖2 + ε

≤ f(z) + α‖x − z‖2 − f(z) − α‖y − z‖2 + ε

= α‖x − y‖2 − 2α〈x − y, z − y〉 + ε

≤ λ‖x − y‖ + ε,

where λ := α sup
{‖s′ − s‖ + 2‖z − s‖ : s′, s ∈ S, z ∈ C

}
< ∞. Reversing

the roles of x and y, and then letting ε ↓ 0, the above shows that fα is
Lipschitz of rank λ on S.

We now consider the other assertions in the theorem. Suppose x ∈ X is such
that there exists at least one ζ ∈ ∂P fα(x). By the proximal subgradient
inequality, there exist positive constants σ and η so that

〈ζ, y − x〉 ≤ fα(y) − fα(x) + σ‖y − x‖2 (2)

for all y ∈ B(x; η). Now suppose {yi} is any minimizing sequence of (1)
and thus there exists εi with εi ↓ 0 as i → ∞ such that

fα(x) ≤ f(yi) + α‖yi − x‖2 = fα(x) + ε2
i . (3)

We observe that

fα(y) ≤ f(yi) + α‖yi − y‖2, (4)

since fα is defined as an infimum over X. Inserting the inequalities (3) and
(4) into (2) yields for each y ∈ B(x; η) the conclusion

〈ζ, y − x〉 ≤ α‖yi − y‖2 − α‖yi − x‖2 + ε2
i + σ‖y − x‖2

= −2α〈yi, y − x〉 + α‖y‖2 − α‖x‖2 + ε2
i + σ‖y − x‖2

= 2α〈x − yi, y − x〉 + ε2
i + (α + σ)‖y − x‖2,

which rewritten says that
〈
ζ − 2α(x − yi), y − x

〉 ≤ ε2
i + (α + σ)‖y − x‖2 (5)

for all y ∈ B(x; η). Now let v ∈ B. Note that y := x + εiv ∈ B(x; η) for
large i since εi ↓ 0 as i → ∞. Hence for all large i, we can insert this value
of y into (5) to deduce

〈
ζ − 2α(x − yi), v

〉 ≤ εi(1 + α + σ).
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Since v ∈ B is arbitrary, it follows that
∥∥ζ − 2α(x − yi)

∥∥ ≤ εi(1 + α + σ). (6)

We now define ȳ ∈ X by

ȳ := x − ζ

2α
,

and observe that (a) immediately follows from letting i → ∞ in (6).

To see that ȳ achieves the infimum in (1), it suffices to observe from (a)
and the lower semicontinuity of f that

fα(x) ≤ f(ȳ) + α‖ȳ − x‖2 ≤ lim inf
i→∞

[
f(yi) + α‖yi − x‖2] = fα(x),

where the last equality comes from (3). It is also clear that ȳ is unique,
since if ŷ is another minimizer of (1), the constant sequence yi := ŷ is
minimizing, and therefore must converge to ȳ by (a). Hence (b) holds.

The following observation about a supergradient will be useful in proving
the Fréchet differentiability assertion:

2α(x − ȳ) ∈ ∂P fα(x). (7)

To see this, let y ∈ X and observe that

fα(y) ≤ f(ȳ) + α‖y − ȳ‖2,

with equality holding if y = x. Then we see that

fα(x) − fα(y) ≥ f(ȳ) + α‖x − ȳ‖2 − f(ȳ) − α‖y − ȳ‖2

=
〈
2α(x − ȳ), y − x

〉− α‖x − y‖2.

This confirms (7) (see Exercise 2.8(a)).

Part (c) of the theorem now follows from (7) combined with Exercise 2.8(b).
As for part (d), observe that the function x′ �→ f(x′) + α‖x′ − x‖2 attains
a minimum at x′ = ȳ, so that its proximal subdifferential there contains
0. With the help of Proposition 2.11 and Exercise 2.4(a), this translates to
precisely statement (d).

Two immediate consequences of Theorem 5.1 are the minimization princi-
ples presented in §4, as we now see.

5.2. Corollary. Theorem 4.1 holds.

Proof. Suppose S ⊂ X is nonempty, closed, and bounded, and f ∈ F is
bounded below on S with dom f ∩ S �= ∅. Define

g(x) := inf
y∈X

{
f(y) + IS(y) − 1

2‖y‖2 + 1
2‖x − y‖2

}
, (8)
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which is easily seen to be a function of the form fα as in (1) (where f =
f + IS − (1/2)‖ · ‖2 and α = 1/2). Furthermore, expression (8) for g(x) can
be simplified to

g(x) = inf
y∈S

{
f(y) − 〈x, y〉}+ 1

2‖x‖2. (9)

It is clear that for fixed x ∈ X, the sets of y attaining the infima in (8),
(9), and in

ḡ(x) := inf
y∈S

{
f(y) − 〈x, y〉} (10)

all coincide. The Density Theorem 3.1 says that dom ∂P g is dense in dom g =
X, and Theorem 5.1(b) says that for each x ∈ dom ∂P g, the infimum in (8)
is uniquely attained. Hence for a dense set of x ∈ X, the infimum in (10)
is attained at a unique y ∈ S, which is the assertion of the theorem.

5.3. Corollary. Theorem 4.2 holds.

Proof. Let f , x0, and ε be as in the statement of Theorem 4.2, and let
λ > 0. Consider the function fα as given in (1) with α = ε/λ2:

fα(x) := inf
y′∈X

{
f(y′) +

ε

λ2 ‖y′ − x‖2
}

.

By the Density Theorem 3.1, there exists z ∈ x0 + λB satisfying fα(z) ≤
fα(x0) ≤ f(x0) and with ∂P fα(z) �= ∅. By Theorem 5.1(b), there is a unique
point y at which the infimum defining fα(z) is attained. All the assertions
of the theorem are now immediate, except for the inequality ‖y − z‖ < λ,
which we proceed to confirm.

We have

f(y) +
ε

λ2 ‖y − z‖2 = fα(z) ≤ f(x0) < inf
X

(f) + ε,

and so
ε

λ2 ‖y − z‖2 < inf
X

(f) − f(y) + ε ≤ ε,

which implies the inequality we seek.

5.4. Remark. The proof of Theorem 4.2 shows that we may in fact take
z arbitrarily near x0 (and not merely within distance λ of x0).

6 The Distance Function

In this section we examine the proximal subgradients of the distance func-
tion dS associated to a nonempty closed subset S of X. The results of the
analysis will allow us to deduce geometric analogues of the minimization
principles of §4.



48 1. Proximal Calculus in Hilbert Space

6.1. Theorem. Suppose x �∈ S and ζ ∈ ∂P dS(x). Then there exists a point
s̄ ∈ S so that the following holds:

(a) Every minimizing sequence {si} ⊂ S of infs∈S ‖s−x‖ converges to s̄.

(b) The set of closest points projS(x) in S to x is the singleton {s̄}.
(c) The Fréchet derivative d′

S(x) exists, and

{ζ} = ∂P dS(x) =
{
d′

S(x)
}

=
{

x − s̄

‖x − s̄‖
}

.

(d) ζ ∈ NP
S (s̄).

Proof. Suppose x �∈ S and ζ ∈ ∂P dS(x). There exists σ > 0 and η > 0 so
that

dS(y) − dS(x) ≥ 〈ζ, y − x〉 − σ‖y − x‖2 ∀y ∈ B(x; η). (1)

Note that for all y ∈ X we have

d2
S(y) = inf

z∈X

{
IS(z) + ‖z − y‖2}. (2)

Hence for the choices α = 1 and f = IS , we see that d2
S(·) is a quadratic

inf-convolution function. The assertions of the present theorem will be de-
rived as consequences of Theorem 5.1, but in order to do so, we must first
establish that subgradients of dS lead to subgradients of d2

S . In particular,
we show that ζ ∈ ∂P dS(x) implies 2dS(x)ζ ∈ ∂d2

S(x), which can be viewed
as a special case of the Chain Rule.

Observe that the elementary identity

d2
S(y) − d2

S(x) = 2dS(x)
(
dS(y) − dS(x)

)
+
(
dS(y) − dS(x)

)2

holds for any y ∈ X. Using it and (1) we see for each y ∈ B(x; η) that

d2
S(y) − d2

S(x) ≥ 2dS(x)
(
dS(y) − dS(x)

)
≥ 〈2dS(x)ζ, y − x

〉− 2dS(x)σ‖y − x‖2,

which implies 2dS(x)ζ ∈ ∂P d2
S(x), as claimed.

Hence parts (a) and (b) of the present theorem follow from parts (a) and
(b) of Theorem 5.1, respectively, since minimizing sequences and minima
of (2) are precisely those for the infimum defining dS(x). We also have from
Theorem 5.1(c) that ∂P dS(x) = {ζ} and

ζ =
x − s̄

dS(x)
=

x − s̄

‖x − s̄‖ .
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We turn now to differentiability. Theorem 5.1 implies that d2
S(·) is Fréchet

differentiable at x, whence for any v ∈ X, the limit as t ↓ 0 of

d2
S(x + tv) − d2

S(x)
t

=
[
dS(x + tv) − dS(x)

t

][
dS(x + tv) + dS(x)

]

exists, with the convergence being uniform for v in bounded sets. We also
know that the limit is 2dS(x)〈ζ, v〉. Since dS(x + tv) + dS(x) evidently
converges to 2dS(x) > 0 uniformly for v in bounded sets as t ↓ 0 (as a
consequence of the fact that dS is globally Lipschitz), it follows that the
difference quotient

dS(x + tv) − dS(x)
t

converges to 〈ζ, v〉 uniformly on bounded sets as t ↓ 0; i.e., d′
S(x) = ζ.

Finally, we have that s̄ minimizes the function s �→ ‖s − x‖2 over s ∈
S. It follows from Exercise 2.12 that 2(x − s̄) ∈ NP

S (s̄), which implies
ζ = (x − s̄)/‖x − s̄‖ ∈ NP

S (s̄), since this set is a cone. The theorem is
proved.

The following corollary asserts that the points that admit unique closest
points to a given closed set are dense (cf. Exercise 1.2(d)).

6.2. Corollary. Suppose S ⊂ X is closed.

(a) There is a dense set of points in X\S which admit unique closest
points in S.

(b) The set of points s ∈ bdry S for which NP
S (s) �= {0} is dense in

bdry S.

Proof. By the Density Theorem 3.1, dom ∂P dS(·) is dense in X, and by
Theorem 6.1 each point x with ∂P dS(x) �= ∅ has a unique closest point in
S. This proves (a). To see that (b) holds, let s ∈ bdry S and ε > 0. By
(a), there exists x �∈ S with ‖x − s‖ < ε and so that projS(x) = {s̄}. Then
NP

S (s̄) contains x − s̄ �= 0. Since we have

‖s̄ − s‖ ≤ ‖x − s̄‖ + ‖x − s‖ ≤ 2‖x − s‖ ≤ 2ε,

assertion (b) follows.

The next proposition illustrates a mechanism for using the distance func-
tion as a tool in solving constrained optimization problems. Such a problem
is of the form

inf f(s) subject to s ∈ S, (3)

where f ∈ F and S ⊂ X is closed. We will study constrained optimization
problems in detail in Chapter 3. The technique introduced below is called
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exact penalization, since it adds a penalty to the function to be minimized
so as to obtain an equivalence between the original constrained problem
and the new penalized and unconstrained problem. Exact penalization has
many theoretical and numerical applications in optimization.

6.3. Proposition. Suppose S is a closed subset of X, and that f is Lip-
schitz of rank K on an open set U that contains S. Assume that s ∈ S
solves (3). Then the function x �→ f(x) + KdS(x) attains its minimum
over U at x = s. Conversely, if K ′ > K and x �→ f(x) + K ′dS(x) attains
its minimum over U at x = s, then s belongs to S and solves (3).

Proof. Suppose x ∈ U and ε > 0. Let s′ ∈ S be such that ‖x − s′‖ ≤
dS(x)+ε. Since f is minimized over S at s, and using the Lipschitz property,
we have

f(s) ≤ f(s′)
≤ f(x) + K‖s′ − x‖
≤ f(x) + KdS(x) + εK.

Letting ε ↓ 0 shows that f + KdS attains its minimum over U at x = s.

To prove the converse, suppose K ′ > K and that a point s �∈ S minimizes
f + K ′dS over U . Pick s′ ∈ S so that ‖s′ − s‖ < (K ′/K)dS(s). Since f is
Lipschitz of rank K, we have

f(s′) ≤ f(s) + K‖s′ − s‖.

We are assuming that s minimizes x �→ f(x) + K ′dS(x) over U , and since
s′ ∈ S ⊂ U , we conclude that

f(s) + K ′dS(s) ≤ f(s′) ≤ f(s) + K‖s′ − s‖ < f(s) + K ′dS(s),

which is a contradiction. Thus s ∈ S. That s solves (3) is then immediate.

The next result forges another link between the geometric and functional
points of view.

6.4. Theorem. Suppose S is closed and s ∈ S. Then

NP
S (s) =

{
tζ : t ≥ 0, ζ ∈ ∂P dS(s)

}
.

Proof. Suppose ζ ∈ NP
S (s). By the proximal normal inequality, there exists

σ > 0 so that

〈ζ, s′ − s〉 ≤ σ‖s′ − s‖2 (4)

for all s′ ∈ S. It immediately follows that the C2 function x �→ −〈ζ, x〉 +
σ‖x − s‖2 has a minimum over S at x = s. Since this function is locally



Lipschitz, we conclude from Proposition 6.3 that for some constant K, the
function

x �→ −〈ζ, x〉 + σ‖x − s‖2 + KdS(x)

has a local minimum at x = s. It follows that ζ/K ∈ ∂P dS(s), which proves
one of the desired inclusions.
To prove the reverse inclusion, suppose ζ ∈ ∂P dS(s). The proximal subgra-
dient inequality provides a constant σ so that

dS(x) − 〈ζ, x − s〉 + σ‖x − s‖2 ≥ dS(s) = 0

for all x near s. In particular, there exists δ > 0 so that (4) holds for all
s′ ∈ S ∩ {s + δB}, which is equivalent to ζ ∈ NP

S (s) by Proposition 1.5(b).
Since NP

S (s) is a cone, the proof is now complete.

7 Lipschitz Functions

Among the functions that have the Lipschitz property are the distance
function dS , the quadratic inf-convolution functions of §5, C1 functions
and, as we now see, all finite (nonpathological) convex functions. A function
f is said to be bounded above near x if there exists η > 0 and r ∈ R such
that

f(y) ≤ r ∀y ∈ B(x; η).

7.1. Proposition. Let U ⊂ X be open and convex, and let f : U → R

be convex and finite on U . Suppose that f is bounded above at some point
x̄ ∈ U . Then f is locally Lipschitz on U .

Proof. Let x ∈ U , and let us suppose for the moment that f is bounded
on a neighborhood of x. Choose η > 0 and r ∈ R so that y ∈ B(x; 2η) ⊂ U
implies that

∣∣f(y)
∣∣ ≤ r. Let y1, y2 be distinct points in B(x; η), and set

δ = ‖y1 − y2‖. Let y3 = y2 + (η/δ)(y2 − y1) ∈ B(x; 2η) and note then that

y2 =
η

η + δ
y1 +

δ

η + δ
y3.

By convexity, we have that

f(y2) ≤ η

η + δ
f(y1) +

δ

η + δ
f(y3),

which can be rearranged to

f(y2) − f(y1) ≤ δ

η + δ

[
f(y3) − f(y1)

] ≤ δ

η

∣∣f(y3) − f(y1)
∣∣.
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Since
∣∣f(y)

∣∣ ≤ r on B(x; 2η) and δ = ‖y1 − y2‖, we conclude that

f(y2) − f(y1) ≤ 2r

η
‖y1 − y2‖.

Switching the roles of y1 and y2 yields that f is Lipschitz on B(x; η).

We now show f is locally bounded near any x ∈ U . Without loss of gener-
ality, we assume x̄ = 0. Suppose that f(y) ≤ r for all y satisfying ‖y‖ < η,
where B(0; η) ⊂ U ; let x ∈ U . There exists t ∈ (0, 1) so that z := x/t ∈ U ,
and we claim that f is bounded above on B

(
x; (1 − t)η

)
. Indeed, let

v ∈ B
(
x; (1−t)η

)
, and choose y ∈ ηB so that v = x+(1−t)y = tz+(1−t)y.

By convexity, we have

f(v) ≤ tf(z) + (1 − t)f(y) ≤ tf(z) + r,

which shows that f is bounded above on B
(
x; (1 − t)η

)
. We complete the

proof by showing that f is bounded below on the same ball. Let r̄ be an
upper bound for f on B

(
x; (1−t)η

)
, and pick any point u in this set. Choose

u′ ∈ B
(
x; (1 − t)η

)
so that (u + u′)/2 = x. Then f(x) ≤ (f(u) + f(u′)

)
/2

implies f(u) ≥ 2f(x) − f(u′) ≥ 2f(x) − r̄, establishing the required lower
bound.

7.2. Exercise. Show that the boundedness hypothesis of Proposi-
tion 7.1 is automatically satisfied if X = R

n. (Hint. There exist
finitely many points pi such that x ∈ int co{pi} ⊂ U .)

The class of Lipschitz functions constitutes an extremely interesting one in
its own right. We now show in the general setting that the Lipschitz prop-
erty can be characterized in proximal terms. It is interesting to compare
the nature of this proof to the very different proofs in the smooth case,
which use integration or the Mean Value Theorem. Here, optimization is
the principal tool, and the criterion need only hold at certain points (where
∂P f(x) is nonempty).

7.3. Theorem. Let U ⊂ X be open and convex, and let f ∈ F(U). Then
f is Lipschitz on U of rank K ≥ 0 iff

‖ζ‖ ≤ K ∀ζ ∈ ∂P f(x), ∀x ∈ U. (1)

Proof. If f has the stated Lipschitz property, then (1) follows, as already
noted in Exercise 2.13. So let us now posit (1) and prove that the Lipschitz
property holds. We claim that it suffices to prove the following local prop-
erty: for each x0 ∈ U there is an open ball centered at x0 on which f is
Lipschitz of rank K. For suppose this local condition holds, and let x and
y be any two points in U . Each point z of the line segment [x, y] admits a
ball B(z; r) on which the Lipschitz condition holds. Since [x, y] is compact,
a finite number of balls B(zj ; rj) covers [x, y]. This allows us to find points
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x + ti(y − x) in [x, y] (i = 0, 1 . . . , N), with 0 = t0 < t1 < · · · < tN = 1,
such that successive points always lie in one of the sets B(zj ; rj). Then

f(y) − f(x) =
N−1∑
i=0

[
f
(
x + ti+1(y − x)

)− f
(
x + ti(y − x)

)]

≤
N−1∑
i=0

K(ti+1 − ti)‖y − x‖ = K‖y − x‖,

which confirms the global Lipschitz condition on U .

We turn now to verifying the local property. The first step will consist of
showing that each point x0 ∈ cl(domU f) ∩ U admits a neighborhood in
which f is finite and Lipschitz of rank K. Here, domU f means the set of
those points in U at which f is finite, a set which is nonempty by definition
of F(U).

Let ε > 0 be such that f is bounded below on B(x0; 4ε) ⊂ U ; pick any
K ′ > K. We denote by ϕ a function mapping the interval [0, 3ε) in R

to [0, ∞) and having the following properties: ϕ(·) is strictly increasing,
ϕ(t) = K ′t for 0 ≤ t ≤ 2ε, ϕ′(t) ≥ K ′ for t ≥ 2ε, ϕ(·) is C2 on (0, 3ε),
ϕ(t) → ∞ as t → 3ε. (A sketch will show the reader what is involved.)

Now fix any two points y, z ∈ B(x0; ε). The function

x �→ f(y + x) + ϕ
(‖x‖)

is not identically +∞ on B(0; 3ε), since x0 ∈ cl(domU f). It is lower semi-
continuous and bounded below on B(0; 3ε), and is equal to +∞ on the
boundary of that closed ball. We invoke the minimization principle embod-
ied in Theorem 4.1 to deduce that for some β ∈ X with ‖β‖ < K ′ −K, the
function g defined as

g(x) := f(y + x) + ϕ
(‖x‖)− 〈β, x〉

attains a minimum over B(0; 3ε) at a point u. Necessarily we have ‖u‖ < 3ε,
so that 0 ∈ ∂P g(u).

If u �= 0, then the function x �→ ϕ
(‖x‖) is C2 in a neighborhood of u, and

so Proposition 2.11 applies to give

β − ϕ′(‖u‖)u/‖u‖ ∈ ∂P f(y + u).

But
∥∥β − ϕ′(‖u‖)u/‖u‖∥∥ ≥ ϕ′(‖u‖)− ‖β‖

> K ′ − (K ′ − K) = K,
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and y +u is a point in B(x0; 4ε) ⊂ U . This contradicts the given bound on
∂P f and implies that u = 0 necessarily.

Since u = 0 minimizes g over B(0; 3ε), we deduce that f(y) < ∞, and

f(y) = g(0) ≤ g(z − y)

= f(z) + ϕ
(‖z − y‖)− 〈β, z − y〉

≤ f(z) + K ′‖z − y‖ + (K ′ − K)‖z − y‖,

where we have used the fact that ‖z−y‖ < 2ε and the fact that ϕ(t) = K ′t
for t ∈ [0, 2ε]. Since y and z are arbitrary points in B(x0; ε) and K ′ > K
is arbitrary too, we have shown that f is Lipschitz of rank K on B(x0; ε).
There remains to deal with the restriction that x0 belongs to cl(domU f).
But the argument just given evidently implies that any such x0 belongs
to int(domU f), so that cl(domU f) is seen to be open (as well as closed)
relative to U ; consequently cl(domU f) ∩ U = domU f = U . Therefore the
local property holds at every point of U and the proof is complete.

7.4. Corollary. Let U ⊂ X be open and convex, and let f ∈ F(U). Then
f is constant on U iff

∂P f(x) ⊂ {0} ∀x ∈ U.

7.5. Exercise.

(a) Show that Corollary 7.4 is false if the hypothesis that U be
convex is deleted.

(b) Show that if U is open (not necessarily convex), then f ∈ F(U)
is locally Lipschitz on U iff ∂P f is locally bounded on U .

(c) Prove that a function f is locally Lipschitz on a compact set S
iff f is globally Lipschitz on S.

8 The Sum Rule

Suppose that the sum of two functions f1 + f2 is minimized at a point x0:

f1(x) + f2(x) ≥ f1(x0) + f2(x0) ∀x ∈ X.

Then of course we have 0 ∈ ∂P (f1+f2)(x0). Do we also have the “separated
conclusion” 0 ∈ ∂P f1(x0) + ∂P f2(x0)? That the answer in general is “no”
is easy to see: take, for example, f1(x) := |x| and f2(x) := −|x| on X = R,
with x0 = 0. Then ∂P f2(x0) = ∅, so that the separated conclusion cannot
hold. More generally, an exact Sum Rule of the form ∂P (f1 + f2)(x) =
∂P f1(x) + ∂P f2(x) is not available.

On the other hand, if f1 and f2 are functions of two different unrelated ar-
guments, that is, if we have f1(x)+f2(y), then at a minimizing pair (x0, y0)
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of f1(x) + f2(y) we evidently have the separate conclusions 0 ∈ ∂P f1(x0)
and 0 ∈ ∂P f2(y0). There is a technique, sometimes called “decoupling,” to
approximate the first (coupled) situation above by the second (uncoupled)
one. To apply this technique, we penalize the pairs (x, y) with x �= y by
adding a large positive multiple of ‖x−y‖2; that is, we consider minimizing

f1(x) + f2(y) + r‖x − y‖2

over the pairs (x, y) in X × X. To make the decoupling technique work,
we need to know that the minimum approaches that of the coupled case
as r → ∞. We will give a precise result of this type, whose relevance
to the Sum Rule will be apparent shortly. Supplementary hypotheses are
required, and we identify two alternatives, one of which involves weak lower
semicontinuity. We say that a function f is weakly lower semicontinuous
at x provided that

lim inf
i→∞

f(xi) ≥ f(x)

whenever the sequence xi converges weakly to x. (Note the sequential na-
ture of this condition.)

8.1. Exercise.

(a) Let f ∈ F be convex. Prove that f is weakly lower semicontin-
uous at every point x. (Hint. Recall that a convex subset of a
Hilbert space is closed iff it is weakly closed iff it is sequentially
weakly closed.)

(b) Let S be a weakly closed subset of X. Then its indicator func-
tion IS is weakly lower semicontinuous.

8.2. Proposition. Let f1 and f2 belong to F(X), and let C be a closed
convex bounded subset of X with C ∩ dom f1 ∩ dom f2 �= ∅. Suppose that
either :

(i) f1 and f2 are weakly lower semicontinuous on C (automatically the
case if X is finite dimensional); or

(ii) one of the functions is Lipschitz on C and the other is bounded below
on C.

Then, for any positive sequence {rn} with limn→∞ rn = +∞, we have

lim
n→∞ inf

x,y∈C

{
f1(x) + f2(y) + rn‖x − y‖2} = inf

x∈C

{
f1(x) + f2(x)

}
. (1)

Proof. The left side of (1) is no greater than the right, so only the opposite
inequality need be proved. We address first the case in which hypothesis (i)
holds. In that case, since C is weakly compact and since (x, y) �→ ‖x − y‖2

is convex on X ×X (and hence, weakly lower semicontinuous), the function



56 1. Proximal Calculus in Hilbert Space

(x, y) → f1(x) + f2(y) + rn‖x − y‖2 admits a minimum over C × C, at a
point we will label (xn, yn). Let us extract a weakly convergent subsequence
from

{
(xn, yn)

}
, without relabeling.

If x0 is any point in C ∩ dom f1 ∩ dom f2, then we have

f1(xn) + f2(yn) + rn‖xn − yn‖2 ≤ f1(x0) + f2(x0),

which yields an a priori bound: rn‖xn − yn‖2 ≤ m. It follows that ‖xn −
yn‖ → 0 as n → ∞, from which we deduce that the weakly convergent
sequences {xn} and {yn} have the same weak limit x̄ ∈ C. Invoking weak
lower semicontinuity now leads to

f1(x̄) + f2(x̄) ≤ lim inf
n→∞

{
f1(xn) + f2(yn) + rn‖xn − yn‖2},

which implies that the right side of (1) does not exceed the left.

We turn now to the case of hypothesis (ii), letting K be a Lipschitz constant
for one of the functions on C, let us say f1. For each n, let (xn, yn) ∈ C ×C
satisfy

f1(xn) + f2(yn) + rn‖xn − yn‖2 ≤ inf
x,y∈C

{
f1(x) + f2(y) + rn‖x − y‖2}+

1
n

.

It follows essentially as in the first case above that ‖xn−yn‖ → 0 as n → ∞,
since f1 and f2 are bounded below on C.

We argue now as follows:

inf
x,y∈C

{
f1(x) + f2(y) + rn‖x − y‖2}

≥ f1(xn) + f2(yn) + rn‖xn − yn‖2 − 1
n

≥ f1(yn) − K‖yn − xn‖ + f2(yn) + rn‖xn − yn‖2 − 1
n

≥ inf
x∈C

{
f1(x) + f2(x)

}− K‖yn − xn‖ − 1
n

.

Passing to the limit as n → ∞ yields the result.

We are now ready to prove a result known as the “fuzzy Sum Rule.”

8.3. Theorem. Let x0 ∈ dom f1 ∩ dom f2, and let ζ belong to ∂P (f1 +
f2)(x0). Suppose that either :

(i) f1 and f2 are weakly lower semicontinuous (automatically the case if
X is finite dimensional); or

(ii) one of the functions is Lipschitz near x0.
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Then, for any ε > 0, there exist (for i = 1, 2) points xi ∈ B(x0; ε) with∣∣fi(x0) − fi(xi)
∣∣ < ε such that

ζ ∈ ∂P f1(x1) + ∂P f2(x2) + εB.

Proof. Since ζ belongs to ∂P (f1 + f2)(x0), there exists a closed ball C :=
B(x0; η) of positive radius η centered at x0 and σ ≥ 0 such that the function

x �→ f1(x) + f2(x) + σ‖x − x0‖2 − 〈ζ, x − x0〉
attains a minimum over B(x0; η) at x = x0. We can take η small enough
so that both f1 and f2 are bounded below on C and so that in case (ii),
one of the functions is Lipschitz on that set. Now consider the problem of
minimizing over X × X the function

ϕn(x, y) := f1(x)+f2(y)+σ‖y−x0‖2−〈ζ, x−x0〉+IC(x)+IC(y)+rn‖x−y‖2,

where rn is a positive sequence tending to +∞ as n → ∞. Applying Propo-
sition 8.2 (with the role of f2(y) played here by

f2(y) + σ‖y − x0‖2 − 〈ζ, x − x0〉)
yields the conclusion that the nonnegative quantity

qn := f1(x0) + f2(x0) − inf
X×X

ϕn

tends to zero as n → ∞. Put another way, we conclude that for n large,
the point (x0, x0) “almost minimizes” ϕn.

We will invoke the Minimization Principle Theorem 4.2 with data f := ϕn,
ε := qn + 1/n, λ :=

√
ε. We derive the existence of points (xn

1 , xn
2 ) (= y)

and (zn
1 , zn

2 ) (= z) in X × X such that

∥∥(xn
1 , xn

2 )−(zn
1 , zn

2 )
∥∥ <

(
qn+

1
n

)1/2

,
∥∥(zn

1 , zn
2 )−(x0, x0)

∥∥ <

(
qn+

1
n

)1/2

,

and such that the function

ϕn(x, y) + ‖x − zn
1 ‖2 + ‖y − zn

2 ‖2

is minimized over X ×X at (x, y) = (xn
1 , xn

2 ). For n sufficiently large (since
qn → 0), both xn

1 and xn
2 must lie in the interior of C = B(x0; η), so that

the fact of this minimization implies the separate necessary conditions

−2rn(xn
1 − xn

2 ) − 2(xn
1 − zn

1 ) ∈ ∂P f1(xn
1 ) (minimum in x),

2rn(xn
1 − xn

2 ) − 2σ(xn
2 − x0) − 2(xn

2 − zn
2 ) ∈ ∂P f2(xn

2 ) (minimum in y).

We derive from this

ζ ∈ ∂P f1(xn
1 ) + ∂P f2(xn

2 ) + γnB,
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where
γn := 2

(‖xn
1 − zn

1 ‖ + ‖xn
2 − zn

2 ‖ + σ‖xn
2 − x0‖

)
.

For all n large enough, the points xn
1 and xn

2 will lie within the pregiven
ε of x0, and γn will be less than ε too. So all that remains to check is the
closeness of each of the function values fi(xn

i ) to fi(x0) (i = 1, 2), for n
sufficiently large. This will follow from the further assertion of Theorem 4.2
that we have

ϕn(xn
1 , xn

2 ) ≤ ϕn(x0, x0),

which implies that for all n large the following holds:

f1(xn
1 ) + f2(xn

2 ) ≤ f1(x0) + f2(x0) + ‖ζ‖ ‖xn
1 − x0‖.

We derive from this

lim inf
n→∞

{
f1(xn

1 ) + f2(xn
2 )
} ≤ f1(x0) + f2(x0).

In view of the lower semicontinuity of f1 and f2, this yields the fact that
for i = 1, 2 the sequence fi(xn

i ) converges to fi(x0) as n → ∞ (why?),
completing the proof of the theorem.

8.4. Exercise.

(a) Let C1 and C2 be weakly closed subsets of X, and let ζ ∈
NP

C1∩C2(x). Then for any ε > 0 there exist

x1 ∈ C1, x2 ∈ C2, ζ1 ∈ NP
C1(x1), ζ2 ∈ NP

C2(x2),

such that

‖x1 − x‖ + ‖x2 − x‖ < ε, ‖ζ − ζ1 − ζ2‖ < ε.

(b) Suppose that x minimizes the locally Lipschitz function f over
the set C. Then for any ε > 0 there exist x1 and x2 in the
ε-neighborhood of x such that

0 ∈ ∂P f(x1) + NP
C (x2) + εB.

9 The Chain Rule

Suppose now that the function f is given as the composition g ◦ F of two
functions g : Y → (−∞,∞] and F : X → Y , where Y is another Hilbert
space. Note that if g belongs to F(Y ) and F is continuous (in particular,
if F is locally Lipschitz, as we will assume), then it follows readily that
f = g ◦ F belongs to F(X). In the classical smooth setting the Chain Rule
asserts f ′(x) = g′(F (x)

)◦F ′(x). In extending this to the nonsmooth setting,
one of the apparent difficulties is that we have not defined a replacement
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for the derivative F ′(x) of a nondifferentiable vector-valued mapping such
as F . We will get around this by a device which, in the smooth case,
amounts to viewing f ′(x) as the derivative of the scalar-valued function
u → g′(F (x)

) ◦ F (u). Also notable about our approach is that it reveals
the composition of functions to be reducible to the case of the sum of two
functions.

9.1. Theorem. Let g ∈ F(Y ), and let F : X → Y be locally Lipschitz. Set
f(x) := g

(
F (x)

)
, and let ζ ∈ ∂P f(x0). We assume that either :

(i) g is weakly lower semicontinuous and F is linear; or

(ii) g is Lipschitz near F (x0).

Then for all ε > 0 there exist x̃ in x0 + εBX , ỹ in F (x0) + εBY , and
γ ∈ ∂P g(ỹ) such that

∥∥F (x̃) − F (x0)
∥∥ < ε and

ζ ∈ ∂P

{〈
γ, F (·)〉}(x̃) + εBX .

Proof. Since ζ belongs to ∂P f(x0), there exist σ, η > 0 such that

f(x) − 〈ζ, x〉 + σ‖x − x0‖2 ≥ f(x0) − 〈ζ, x0〉
for all x ∈ B(x0; η). Let S denote the graph of F in the space X ×Y . Then
another way of writing the preceding proximal subgradient inequality is
the following:

g(y) − 〈ζ, x〉 + IS(x, y) + σ‖x − x0‖2 ≥ g
(
F (x0)

)− 〈ζ, x0〉,
which implies that the left side, as a function of (x, y), attains a local
minimum at (x, y) =

(
x0, F (x0)

)
. We deduce

0 ∈ ∂P

{
g(y) − 〈ζ, x〉 + IS(x, y) + σ‖x − x0‖2}(x0, F (x0)

)
.

In each of cases (i) and (ii) of the theorem, we are justified in applying the
fuzzy Sum Rule, Theorem 8.3. We obtain, for any δ > 0, the existence of
points (x1, y1) and (x2, y2), both δ-near

(
x0, F (x0)

)
, such that, for some

γ ∈ ∂P g(y1) we have
(
ζ − 2σ(x1 − x0),−γ

) ∈ ∂P IS(x2, y2) + δBX×Y .

But ∂P IS(x2, y2) = NP
S (x2, y2) and it follows that y2 = F (x2) and, from

Exercise 9.2 below, that for some u, v with ‖u‖ < δ, ‖v‖ < δ, we have

ζ − 2σ(x1 − x0) + u ∈ ∂P

{〈
γ + v, F (·)〉}(x2).

Now let us apply the fuzzy Sum Rule again to the functions
〈
γ, F (·)〉 and〈

v, F (·)〉, which are locally Lipschitz. We deduce the existence of points x3
and x4 in the δ-neighborhood of x2 such that

ζ − 2σ(x1 − x0) + u ∈ ∂P

{〈
γ, F (·)〉}(x3) + ∂P

{〈
v, F (·)〉}(x4) + δBX .
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If K is a local Lipschitz constant for F , then the function
〈
v, F (·)〉 is locally

Lipschitz of rank K‖v‖ < Kδ, whence any element of ∂P

{〈
v, F (·)〉}(x4) is

of norm less than Kδ. We have now arrived at

ζ − 2σ(x1 − x0) + u ∈ ∂P

{〈
γ, F (·)〉}(x3) + δ(K + 1)BX .

It suffices now to take δ small enough to get the required result, with
ỹ = y1 and x̃ = x3. The closeness of F (x̃) = F (x3) to F (x0) follows from
the continuity of F .

Here is the result needed in the proof above:

9.2. Exercise. Let F : X → Y be locally Lipschitz, and suppose
that

(α, −γ) ∈ NP
S

(
x, F (x)

)
,

where S is the graph of F . Prove that

α ∈ ∂P

{〈
γ, F (·)〉}(x).

The two following exercises illustrate the use of the Chain Rule, and will
be used later.

9.3. Exercise. Let g ∈ F(Y ) be weakly lower semicontinuous and
let A : X → Y be a continuous linear operator. Suppose that ζ be-
longs to ∂P

{
g(Ax)

}
(x0). Prove the existence, for any ε > 0, of ỹ

within ε of Ax0 such that

ζ ∈ A∗∂P g(ỹ) + εBX and
∣∣g(ỹ) − g(Ax0)

∣∣ < ε.

(Here A∗ : Y → X denotes the adjoint of A : 〈A∗u, v〉 = 〈u, Av〉 for
all u ∈ Y , v ∈ X.)

9.4. Exercise. Let g ∈ F(Rn) be locally Lipschitz, and define f as
follows:

f : L2
n[a, b] → R, f(v) := g

(∫ b

a

v(s) ds

)
.

Let ζ ∈ L2 belong to ∂P f(v). Prove that for any ε > 0 there exist x
and θ with θ ∈ ∂P g(x) such that

∥∥∥∥x −
∫ b

a

v(s) ds

∥∥∥∥ < ε,
∥∥ζ(t) − θ

∥∥
2 < ε.

Armed with the Chain Rule above and the Sum Rule of the preceding
section, we can easily derive other basic results of “proximal fuzzy calculus.”
But we turn instead to the issue of passing to the limit in results such as
the above.
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10 Limiting Calculus

Consider once again the issue of a proximal Sum Rule. We have noted the
easy fact

∂P f1(x) + ∂P f2(x) ⊆ ∂P (f1 + f2)(x) (1)

and we have proved an approximate form of the reverse inclusion: if ζ ∈
∂P (f1 + f2)(x), then for any ε > 0 we have

ζ ∈ ∂P f1(x1) + ∂P f2(x2) + εB, (2)

where x1 and x2 are ε-close to x, and where fi(xi) and fi(x) are close as
well (i = 1, 2). It is natural to consider passing to the limit in (2) as ε → 0.
In doing so, the outcome cannot necessarily be phrased in terms of ∂P f1(x)
and ∂P f2(x) (which may be empty, for example). A construction that natu-
rally recommends itself, and that we call the limiting subdifferential ∂Lf(x)
(or L-subdifferential), is the following:

∂Lf(x) :=
{
w-lim ζi : ζi ∈ ∂P f(xi), xi

f→ x
}
. (3)

That is, we consider the set of all vectors ζ that can be expressed as the
weak limit (which is what “w-lim” signifies) of some sequence {ζi}, where
ζi ∈ ∂P f(xi) for each i, and where xi → x, f(xi) → f(x). (Note: The
notation

xi
f→ x

encapsulates both of these convergences.)

Let us return now to the Sum Rule, but in limiting terms: let ζ ∈ ∂L(f1 +
f2)(x). By definition, we have ζ = w-lim ζi, where ζi ∈ ∂P (f1 + f2)(xi)
and where xi → x, (f1 + f2)(xi) → (f1 + f2)(x). If the fuzzy Sum Rule
(Theorem 8.2) can be applied, for example if one of f1, f2 is Lipschitz
locally, then we can write

ζi = θi + ξi + εiui, (4)

where θi ∈ ∂P f1(x′
i), ξi ∈ ∂P f2(x′′

i ), ui ∈ B, where x′
i and x′′

i lie in an
εi-ball around xi, and where εi ↓ 0 as i → ∞. We also have that f1(x′

i) and
f2(x′′

i ) are εi-close to f1(xi) and f2(xi), respectively.

We now wish to pass to the limit in (4); How can this be carried out?
Again, assuming that one of the functions (let us say f1) is Lipschitz locally
would do the trick. For in that case ∂P f1(·) is bounded locally (by the
Lipschitz rank) so that the sequence {θi} is bounded. But {ζi} is bounded
too, since this sequence converges weakly (to ζ). It follows from (4) that {ξi}
is bounded. Extracting subsequences so that all these sequences converge
weakly (to θ, ζ, ξ, respectively) gives ζ = θ+ξ. We also have that

{
f1(x′

i)
}

and
{
f2(x′′

i )
}

converge to f1(x) and f2(x), respectively (why?), so that
θ ∈ ∂Lf1(x), ξ ∈ ∂Lf2(x) by definition. The discussion has proved
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10.1. Proposition. If one of f1, f2 is Lipschitz near x, then

∂L(f1 + f2)(x) ⊆ ∂Lf1(x) + ∂Lf2(x).

This is an appealing (nonfuzzy) Sum Rule. In view of the inclusion (1), we
might be led to believe (briefly) that ∂Lf1(x) + ∂Lf2(x) ⊆ ∂L(f1 + f2)(x),
and hence that equality actually holds in Proposition 10.1. But alas, the
limiting form of (1) fails to hold, as shown in the next exercise. (We will find
supplementary hypotheses in Chapter 2 under which equality does hold.)

10.2. Exercise. Set X = R, f1(x) := |x|, f2(x) := −|x|. Show that
∂Lf1(0) = [−1, 1], ∂Lf2(0) = {−1, 1}. Verify that the conclusion of
Proposition 10.1 holds, but not with equality.

Let us consider now the limiting issue in geometric terms. The natural
closure operation to apply to NP

S (·) gives rise to NL
S (x), the limiting normal

(or L-normal) cone to S at x ∈ S:

NL
S (x) :=

{
w-lim ζi : ζi ∈ NP

S (xi), xi
S→ x
}
.

Here, xi
S→ x signifies that xi → x and that xi ∈ S ∀i. One motivation

for defining a limiting normal cone is that NP
S (x) is potentially trivial (i.e.,

= {0}) for “many” x; in pointwise considerations it is NL
S (x) that may

incorporate normality information. The following exercise vindicates this
hope in R

n, confirms a certain coherence between the functional and geo-
metric closure operations, and derives some basic properties of the limiting
constructs.

10.3. Exercise. Let S be closed and f ∈ F .

(a) (ζ, −1) ∈ NL
epi f

(
x, f(x)

)
iff ζ ∈ ∂Lf(x), and ∂LIS(x) = NL

S (x).

(b) NL
S (x) = NP

S (x) when S is convex.

(c) When X = R
n, both NL

S (x) and ∂Lf(x) are closed sets; if
x ∈ bdry S, then NL

S (x) �= {0}, and if f is Lipschitz near x,
then ∂Lf(x) �= ∅.

Although a type of closure operation was used in defining NL
S (x), it is a fact

that this set may fail to be closed when X is infinite dimensional; similarly,
∂Lf(x) may not be closed if f fails to be Lipschitz. These facts make the
limiting calculus most appealing in the presence of Lipschitz hypotheses,
or in finite dimensions. Here is a limiting form of the Chain Rule in such a
context, one whose use will be illustrated in the end-of-chapter problems.

10.4. Theorem. Let F : X → R
n be Lipschitz near x, and let g : R

n → R

be Lipschitz near F (x). Then

∂L(g ◦ F )(x) ⊆ {∂L

〈
γ, F (·)〉(x) : γ ∈ ∂Lg

(
F (x)

)}
.
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11 Problems on Chapter 1

11.1. Give examples of each the following:

(a) A set S in R
2 and a point s ∈ S such that NP

S (s) is neither open nor
closed, and a function f : R → R with a point x ∈ dom f such that
∂P f(x) is neither open nor closed.

(b) A function f ∈ F that is not bounded below on B.

(c) A function f ∈ F that is bounded below on B but does not attain
its minimum there.

11.2. Suppose that {ei}∞
i=1 is an orthonormal basis for X, and set S :=

co{±ei/i : i ≥ 1}. Prove that NP
S (0) = {0}.

11.3. Suppose S ⊂ X is such that ∀x ∈ S, ∀ζ ∈ NP
S (x), we have

〈ζ, x′ − x〉 ≤ 0 ∀x′ ∈ S.

Prove that S is convex. (This provides a converse to Proposition 1.10(a).)

11.4. Let S be bounded, closed, and nonempty. Prove that
⋃

x∈S NP
S (x) is

dense in X.

11.5. Let s belong to a closed set S, and suppose that dS is differentiable
at s. Show that d′

S(s) = 0 necessarily. Prove that if NP
S (s) �= {0}, then dS

cannot be differentiable at s.

11.6. Let S ⊆ X be nonempty (but not necessarily closed), and suppose
f ∈ F satisfies f(x) ≥ −c‖x‖ for some c > 0.

(a) Let K > c, and define the function g : X → R by

g(x) := inf
s∈S

{
f(s) + K‖s − x‖}.

Show that g is Lipschitz on X of rank K.

(b) Suppose in addition that f is Lipschitz of rank K on S. Prove that g
agrees with f on S, and deduce that Lipschitz functions defined on
any subset of X can be extended to a Lipschitz function on all of X
without increasing the Lipschitz rank.

11.7. Let f ∈ F and let M ∈ R. Set

fM (x) := min
{
f(x), M

}
.

(a) Show that fM ∈ F .
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(b) If ζ ∈ ∂P fM (x), prove that ζ ∈ ∂P f(x) if f(x) ≤ M , and that ζ = 0
otherwise.

11.8. Suppose that L : R
n → (−∞, ∞] is lower semicontinuous, not iden-

tically +∞, and bounded below. For any v(·) ∈ X := L2
n[0, 1], define

f : X → (−∞,∞] by

f
(
v(·)) :=

∫ 1

0
L
(
v(t)
)
dt.

Prove that f is lower semicontinuous, and that for any α > 0, the function

F
(
u(·)) :=

∫ 1

0

{
L
(
u(t)
)

+ α
∥∥v(t) − u(t)

∥∥2} dt

attains a unique minimum over X for a dense set of v(·) ∈ X.

11.9. Suppose f ∈ F is bounded below, α > 0, and fα is defined as in §5.

(a) Let x ∈ dom f . Prove that for each α > 0 there exists rα > 0 so that
each minimizer ȳ in the infimum defining fα(x) satisfies ȳ ∈ B(x; rα),
and rα → 0 as α → ∞.

(b) Prove that fα ↑ f(x) as α ↑ ∞ for each x ∈ X, and that for x ∈ dom f ,

lim inf
y→x,α→∞ fa(y) ≥ f(x).

(Thus fα is a locally Lipschitz lower approximation to f , one that improves
as α → ∞; it is called the Moreau–Yosida approximation.)

11.10. Suppose f ∈ F is bounded below. Show that there exist sequences
{yi} and {ζi} so that ζi ∈ ∂P f(yi) for each i, and satisfying f(yi) →
infx∈X f(x) and ‖ζi‖ → 0 as i → ∞.

11.11. Let f ∈ F and x0 ∈ dom f . Suppose that for some ε > 0, for all
x ∈ x0 + εB satisfying

∣∣f(x) − f(x0)
∣∣ < ε, for all ζ ∈ ∂P f(x), we have

‖ζ‖ ≤ K. Prove that f is Lipschitz of rank K on a neighborhood of x0.
(Hint. Consider f̃(x) := min

{
f(x), f(x0) + ε/2} in light of Problem 11.7.)

11.12. With X = R, calculate ∂P f(0) and ∂Lf(0) when f(x) := x2 sin(1/x).

11.13.

(a) Prove the following Proximal Mean Value Theorem:

Theorem. Let f ∈ F(X) be locally Lipschitz on a neighborhood of
the line segment [x, y]. Then ∀ε > 0 there exists a point z in the
ε-neighborhood of [x, y] and ζ ∈ ∂P f(z) such that

f(y) − f(x) ≤ 〈ζ, y − x〉 + ε.
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(b) Show that the conclusion is false in the form
∣∣f(y) − f(x) − 〈ζ, y − x〉∣∣ < ε.

(c) Obtain a limiting form of the theorem in terms of ∂Lf when ε → 0.
(Hint. Minimize ϕ(t, u) := f(x + u) − tf(y) − (1 − t)f(x) over the set
of (t, u) satisfying u = t(y − x), 0 ≤ t < 1.)

11.14. Let f : R
n → R be defined by

f(x) = f(x1, x2, . . . , xn) = max
1≤i≤n

xi.

Let M(x) be the set of those indices i at which this maximum is attained.
Prove that ∂P f(x) consists of all those vectors (ζ1, ζ2, . . . , ζn) such that
ζi ≥ 0,

∑n
i=1 ζi = 1, ζi = 0 if i /∈ M(x). (Hint. f is convex.)

11.15. (Monotonicity.) Let C be a cone in X, and let f ∈ F(X). We say
that f is C-decreasing if y − x ∈ C implies f(y) ≤ f(x). Prove that if f is
locally Lipschitz, then f is C-decreasing iff ζ ∈ C◦ ∀ζ ∈ ∂P f(x), ∀x ∈ X,
where the polar C◦ of C is defined as

C◦ :=
{
z ∈ X : 〈z, c〉 ≤ 0 ∀c ∈ C

}
.

11.16. Prove the Limiting Chain Rule, Theorem 10.4.

11.17. (Upper envelopes.) Let fi ∈ F(X) be locally Lipschitz, i = 1, 2, . . . , n,
and set f(x) := max1≤i≤n fi(x). We denote by M(x) the set of those indices
i at which the maximum defining f(x) is attained.

(a) Prove that f is locally Lipschitz, and that

co
⋃

i∈M(x)

∂P fi(x) ⊂ ∂P f(x).

(b) If ζ ∈ ∂Lf(x), then there exist γi ≥ 0 (i = 1, 2, . . . , n) with
∑n

i=1 γi =
1 and γi = 0 for i /∈ M(x) such that ζ ∈ ∂L(

∑n
i=1 γifi)(x).

11.18. (The Lagrange Multiplier Rule for inequality constraints.) Let x0
solve the problem of minimizing g0(x) subject to gi(x) ≤ 0 (i = 1, 2, . . . , n),
where all the functions involved are locally Lipschitz.

(a) Show that x0 minimizes (subject to no constraints) the function

x �→ max
{
g0(x) − g0(x0), g1(x), . . . , gn(x)

}
.

(b) Deduce the existence of γi ≥ 0 (i = 0, 1, . . . , n) with
∑n

i=0 γi = 1 and
γigi(x0) = 0 for i ≥ 1, such that 0 ∈ ∂L(

∑n
i=0 γigi)(x0).
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11.19. (Partial subgradients.) Let f be locally Lipschitz on X1×X2, and let
ζ̄1 ∈ ∂P f(·, x̄2)(x̄1) (i.e., ζ̄1 is a proximal subgradient at x̄1 of the function
x1 �→ f(x1, x̄2)). Then for any ε > 0 there exist (x̃1, x̃2) in (x̄1, x̄2)+εB and
(ζ̃1, ζ̃2) in ∂P f(x̃1, x̃2) such that ‖ζ̃1 − ζ̄1‖ < ε. (Hint. Take F (x) := (x, x̄2)
in Theorem 9.1.)

11.20. This exercise is devoted to some relationships between Fréchet and
Gâteaux differentiability.

(a) Suppose f : X → R is Fréchet differentiable at x. Show that f is
continuous at x.

(b) Suppose f : X → R is Gâteaux differentiable at x. Show that for each
v ∈ X, the function g(t) := f(x + tv) defined for small values of |t| is
continuous at t = 0.

(c) Consider the following functions:

f1(x, y) =




y2

x
if x �= 0,

0 if x = 0,
f2(x, y) =




xy

x2 + y2 if (x, y) �= (0, 0),

0 if (x, y) = (0, 0).

Show that f1 has a Gâteaux derivative at the origin, but that f1 is not
continuous there (and therefore not Fréchet differentiable). Show that
the partial derivatives of f2 exist at (0, 0), but the Gâteaux derivative
f ′
2(0, 0) does not.

(d) Suppose that f : R
n → R is Lipschitz near x. Then at x, Gâteaux dif-

ferentiability implies Fréchet differentiability (this is false in general
in infinite dimensional spaces).

(e) With X a Hilbert space, show that f ′(x) exists iff we have, for some
ζ ∈ X,

lim
i→∞

f(x + tivi) − f(x)
ti

= 〈ζ, v〉 ∀x,

whenever ti decreases to 0 and vi converges weakly to v (and then
f ′(x) = ζ).

(f) Suppose f has a Gâteaux derivative at each point near x ∈ F , and
y �→ f ′(y) is continuous at x. Show that f is Fréchet differentiable at
x.

11.21. Let X be separable, and let f ∈ F(X) be Lipschitz near a point x̄, let
{xi} be a sequence converging to x̄, and let {ζi} be a sequence converging
weakly to ζ, where ζi ∈ ∂Lf(xi) for each i. Prove that ζ ∈ ∂Lf(x̄). (Hint.
Recall that the weak topology restricted to a closed bounded subset of X
is equivalent to a metric one.)
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11.22. Let X admit an orthonormal basis {ei}∞
i=1, and let f ∈ F(X) be

such that at every x ∈ dom f we have, for every index i, the conditions

lim inf
t↓0

f(x + tei) − f(x)
t

≤ 0, lim inf
t↓0

f(x − tei) − f(x)
t

≤ 0.

Prove that f is a constant function.

11.23. (Horizontal Approximation Theorem.) This problem (needed in Chap-
ter 4) will prove that horizontal proximal normals to epigraphs can be ap-
proximated by nonhorizontal ones (which then correspond to subgradients).
Formally:

Theorem. Let f ∈ F(Rn), and let (θ, 0) ∈ NP
epi f

(
x, f(x)

)
. Then for every

ε > 0 there exist x′ ∈ x + εB and (ζ,−λ) ∈ NP
epi f

(
x′, f(x′)

)
such that

λ > 0,
∣∣f(x′) − f(x)

∣∣ < ε,
∥∥(θ, 0) − (ζ,−λ)

∥∥ < ε.

(a) Show how the case θ = 0 is an immediate consequence of the Density
Theorem 3.1.

We assume henceforth that x = 0, f(0) = 0, θ �= 0, and that the point
(θ, 0) admits unique closest point (0, 0) in epi f =: S. (Why does this not
constitute a loss of generality?)

(b) We have dS(θ, t) > dS(θ, 0) = ‖θ‖ ∀t < 0.

(c) The function t �→ dS(θ, t) has strictly negative proximal subgradients
at points t < 0 arbitrarily near 0.

(d) There exist points (x, t) arbitrarily near (θ, 0) with t < 0 such that
an (in fact, the only) element of ∂P dS(x, t) has strictly negative final
component. (Hint. Problem 11.19.)

(e) As the points (x, t) of part (d) converge to (θ, 0), the corresponding
element of ∂P dS(x, t) converges to (θ, 0), completing the proof.

11.24. Let f : X → R be continuous and convex. Prove that f is Fréchet
differentiable at a dense set of points. (Hint. Recall Exercise 2.8.)

11.25. Let f be locally Lipschitz on X.

(a) Prove that ∂Lf(x) reducing to a singleton is a sufficient but not a
necessary condition for f ′(x) to exist.

(b) When X is finite dimensional, prove that f is C1 on an open set U
iff ∂Lf(x) reduces to a singleton for every x ∈ U .

11.26. Let f ∈ F(X), and set S := {x ∈ X : f(x) ≤ 0}. Let x̄ satisfy
f(x̄) = 0. Then
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(a)
⋃

λ≥0 λ∂P f(x̄) ⊂ NP
S (x̄).

(b) If f is Lipschitz near x̄ and 0 �∈ ∂Lf(x̄), then we have

NL
S (x̄) ⊂

⋃
λ≥0

λ∂Lf(x̄).

(Hint. One approach uses Problems 11.18 and 11.25.)

(c) If f is C2 near x̄ and f ′(x̄) �= 0, then

NP
S (x̄) = NL

S (x̄) =
{
λf ′(x̄) : λ ≥ 0

}
.

11.27. Let S be a nonempty closed subset of X, x̄ ∈ S. We will prove the
formula

NL
S (x̄) =

⋃
λ≥0

λ∂LdS(x̄).

(a) Prove that if ζ ∈ NP
S (x), then for any ε > 0 we have ζ/

(‖ζ‖ + ε
) ∈

∂P dS(x). (Hint. Use exact penalization.)

(b) Deduce that NL
S (x̄) ⊂ ⋃λ≥0 λ∂LdS(x̄).

(c) Complete the proof by confirming the opposite inclusion.

11.28. Let f : R
n → R be locally Lipschitz. Prove that ∂Lf is countably

generated, in the following sense. There exists a countable set Ω in R
n ×R

n

such that for every x, we have

∂Lf(x) =
{

lim
i→∞

ζi : (xi, ζi) ∈ Ω ∀i, lim
i→∞

xi = x
}

.

(Hint. Consider a countable dense subset of gr ∂P f .)

11.29. (Proximal Gronwall Inequality.) Let f : [0, T ] → R be locally Lip-
schitz, where T > 0, and suppose there exists a constant M ≥ 0 such
that

ζ ≤ Mf(t) ∀ζ ∈ ∂P f(t), ∀t ∈ (0, T ).

Then
f(t) ≤ eMtf(0) ∀t ∈ [0, T ].

11.30. Let f ∈ F and U ⊂ X be open. Show that f is C1 on U iff for all
x ∈ U and ε > 0 there exists δ > 0 such that

‖xi − x‖ < δ, ζi ∈ ∂P f(xi) (i = 1, 2)

implies that ‖ζ1 − ζ2‖ < ε.



2
Generalized Gradients in
Banach Space

I drew up the state of my affairs in writing; not so much to leave them to any
that were to come after me, for I was like to have but few heirs, as to deliver my
thoughts from daily poring upon them, and afflicting my mind.

—Daniel Defoe, Robinson Crusoe

The calculus of generalized gradients is the best-known and most frequently
invoked part of nonsmooth analysis. Unlike proximal calculus, it can be
developed in an arbitrary Banach space X. In this chapter we make a
fresh start in such a setting, but this time, in contrast to Chapter 1, we
begin with functions and not sets. We present the basic results for the
class of locally Lipschitz functions. Then the associated geometric concepts
are introduced, including for the first time a look at tangency. In fact, we
examine two notions of tangency; sets for which they coincide are termed
regular and enjoy useful properties. We proceed to relate the generalized
gradient to the constructs of the preceding chapter when X is a Hilbert
space. Finally, we derive a useful limiting-gradient characterization when
the underlying space is finite dimensional.

1 Definition and Basic Properties

Throughout this chapter, X is a real Banach space. Let f : X → R be
Lipschitz of rank K near a given point x ∈ X; that is, for some ε > 0, we
have ∣∣f(y) − f(z)

∣∣ ≤ K‖y − z‖ ∀y, z ∈ B(x; ε).
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The generalized directional derivative of f at x in the direction v, denoted
f◦(x; v), is defined as follows:

f◦(x; v) := lim sup
y→x
t↓0

f(y + tv) − f(y)
t

,

where of course y is a vector in X and t is a positive scalar. Note that this
definition does not presuppose the existence of any limit (since it involves
an upper limit only), that it involves only the behavior of f arbitrarily
near x, and that it differs from the traditional definition of the directional
derivative in that the base point (y) of the difference quotient varies. The
utility of f◦ stems from the following basic properties. (A function g is
positively homogeneous if g(λv) = λg(v) for λ ≥ 0, and subadditive if
g(v + w) ≤ g(v) + g(w).)

1.1. Proposition. Let f be Lipschitz of rank K near x. Then:

(a) The function v �→ f◦(x; v) is finite, positively homogeneous, and sub-
additive on X, and satisfies

∣∣f◦(x; v)
∣∣ ≤ K‖v‖.

(b) f◦(x; v) is upper semicontinuous as a function of (x, v) and, as a
function of v alone, is Lipschitz of rank K on X.

(c) f◦(x;−v) = (−f)◦(x; v).

Proof. In view of the Lipschitz condition, the absolute value of the differ-
ence quotient in the definition of f◦(x; v) is bounded by K‖v‖ when y is
sufficiently near x and t sufficiently near 0. It follows that

∣∣f◦(x; v)
∣∣ admits

the same upper bound. The fact that f◦(x; λv) = λf◦(x; v) for any λ ≥ 0
is immediate, so let us turn now to the subadditivity. With all the upper
limits below understood to be taken as y → x and t ↓ 0, we calculate:

f◦(x; v + w) = lim sup
f(y + tv + tw) − f(y)

t

≤ lim sup
f(y + tv + tw) − f(y + tw)

t
+ lim sup

f(y + tw) − f(y)
t

(since the upper limit of a sum is bounded above by the sum of the upper
limits). The first upper limit in this last expression is f◦(x; v), since the
term y + tw represents in essence just a dummy variable converging to x.
We conclude

f◦(x; v + w) ≤ f◦(x; v) + f◦(x; w).

which establishes (a).
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Now let {xi} and {vi} be arbitrary sequences converging to x and v, re-
spectively. For each i, by definition of the upper limit, there exist yi in X
and ti > 0 such that

‖yi − xi‖ + ti <
1
i
,

f◦(xi; vi) − 1
i

≤ f(yi + tivi) − f(yi)
ti

=
f(yi + tiv) − f(yi)

ti
+

f(yi + tivi) − f(yi + tiv)
ti

.

Note that the last term is bounded in magnitude by K‖vi − v‖ (in view of
the Lipschitz condition). Upon taking upper limits (as i → ∞), we derive

lim sup
i→∞

f◦(xi; vi) ≤ f◦(x; v),

which establishes the upper semicontinuity.

Finally, let any v and w in X be given. We have

f(y + tv) − f(y) ≤ f(y + tw) − f(y) + K‖v − w‖t

for y near x, t near 0. Dividing by t and taking upper limits as y → x,
t ↓ 0, gives

f◦(x; v) ≤ f◦(x; w) + K‖v − w‖.

Since this also holds with v and w switched, (b) follows. To prove (c), we
calculate:

f◦(x;−v) := lim sup
x′→x
t↓0

f(x′ − tv) − f(x′)
t

= lim sup
u→x
t↓0

(−f)(u + tv) − (−f)(u)
t

, where u := x′ − tv

= (−f)◦(x; v),

as stated.

1.2. Exercise. Let f and g be Lipschitz near x. Prove that for any
v ∈ X,

(f + g)◦(x; v) ≤ f◦(x; v) + g◦(x; v).

A function such as v �→ f◦(x; v) which is positively homogeneous and
subadditive on X is the support function of a uniquely determined closed
convex set in X∗ (the dual space of continuous linear functionals on X).

Some terminology is in order. Given a nonempty subset Σ of X∗, its support
function is the function HΣ : X → (−∞,∞] defined as follows:

HΣ(v) := sup
{〈ζ, v〉 : ζ ∈ Σ

}
,
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where we have used the familiar convention of denoting the value of the
linear functional ζ at v by 〈ζ, v〉. We gather some useful facts about support
functions in the next result.

1.3. Proposition.

(a) Let Σ be a nonempty subset of X∗. Then HΣ is positively homoge-
neous, subadditive, and lower semicontinuous.

(b) If Σ is convex and w∗-closed, then a point ζ in X∗ belongs to Σ iff
we have HΣ(v) ≥ 〈ζ, v〉 for all v in X.

(c) More generally, if Σ and Λ are two nonempty, convex, and w∗-closed
subsets of X∗, then Σ ⊃ Λ iff HΣ(v) ≥ HΛ(v) for all v in X.

(d) If p : X → R is positively homogeneous and subadditive and bounded
on the unit ball, then there is a uniquely defined nonempty, convex,
and w∗-compact subset Σ of X∗ such that p = HΣ.

Proof. That HΣ is positively homogeneous and subadditive follows imme-
diately from its definition. As the upper envelope of continuous functions,
HΣ is automatically lower semicontinuous, whence (a). We turn now to (b),
which is easily seen to amount to the following assertion: if ζ �∈ Σ, then
for some v ∈ X we have HΣ(v) < 〈ζ, v〉. This is proven by applying the
Hahn–Banach Separation Theorem (see e.g., Rudin (1973)) to the topo-
logical vector space consisting of X∗ with its weak∗-topology, bearing in
mind that the dual of that space is identified with X. The proof of (c) is
immediate in light of (b); there remains (d).

Given p, we set

Σ :=
{
ζ ∈ X∗ : p(v) ≥ 〈ζ, v〉 ∀v ∈ X

}
.

Then Σ is seen to be convex as a consequence of the properties of p, and
w∗-closed as the intersection of a family of w∗-closed subsets. If K is a
bound for p on B(0; 1), then we have 〈ζ, v〉 ≤ K for all v ∈ B(0; 1), for
any element ζ of Σ. It follows that Σ is bounded, and hence w∗-compact
by Alaoglu’s Theorem. Clearly we have p ≥ HΣ; let us prove equality. Let
v ∈ X be given. Then, by a standard form of the Hahn–Banach Theorem
(Rudin (1973, Theorem 3.2)), there exists ζ ∈ X∗ such that 〈ζ, w〉 ≤ p(w)
∀w ∈ X, with 〈ζ, v〉 = p(v). Then ζ ∈ Σ, so that HΣ(v) = p(v) as required.
Finally, the uniqueness of Σ follows from (c).

Returning now to our function f , and taking for the function p of the
proposition the function f◦(x; ·), we define the generalized gradient of f at
x, denoted ∂f(x), to be the (nonempty) w∗-compact subset of X∗ whose
support function is f◦(x; ·). Thus ζ ∈ ∂f(x) iff f◦(x; v) ≥ 〈ζ, v〉 for all v
in X. Since f◦(x; ·) does not depend on which one of two equivalent norms
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on X is chosen, it follows that ∂f(x) too is independent of the particular
norm on X.

Some immediate intuition about ∂f is available from the following exer-
cise, where we see that the relationship between f◦ and ∂f generalizes the
classical formula f ′(x; v) =

〈
f ′(x), v

〉
for the directional derivative f ′(x; v).

1.4. Exercise.

(a) Let f : R
n → R be C1. Prove that f◦(x; v) =

〈
f ′(x), v

〉
and

that ∂f(x) =
{
f ′(x)

}
.

(b) Let f : R → R be given by f(x) = max{0, x}. Prove that
f◦(x; v) = max{0, v}. What is ∂f(0)?

(c) Find f◦(0; ·) and ∂f(0) when f : R
n → R is given by f(x) =

‖x‖.

(d) If f has a local minimum or maximum at x, then 0 ∈ ∂f(x).

We proceed now to derive some of the basic properties of the generalized
gradient. A multivalued function F is said to be upper semicontinuous at
x if for all ε > 0 there exists δ > 0 such that

‖x − y‖ < δ =⇒ F (y) ⊂ F (x) + εB.

We denote by ‖ζ‖∗ the norm in X∗:

‖ζ‖∗ := sup
{〈ζ, v〉 : v ∈ X, ‖v‖ = 1

}
,

and B∗ denotes the open unit ball in X∗.

1.5. Proposition. Let f be Lipschitz of rank K near x. Then:

(a) ∂f(x) is a nonempty, convex, weak∗-compact subset of X∗, and
‖ζ‖∗ ≤ K for every ζ ∈ ∂f(x).

(b) For every v in X we have

f◦(x; v) = max
{〈ζ, v〉 : ζ ∈ ∂f(x)

}
.

(c) ζ ∈ ∂f(x) iff f◦(x; v) ≥ 〈ζ, v〉 ∀v ∈ X.

(d) If {xi} and {ζi} are sequences in X and X∗ such that ζi ∈ ∂f(xi)
for each i, and if xi converges to x and ζ is a weak∗ cluster point of
the sequence {ζi}, then we have ζ ∈ ∂f(x).

(e) If X is finite dimensional, then ∂f is upper semicontinuous at x.
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Proof. We have already noted that ∂f(x) is nonempty and w∗-compact.
Each ζ ∈ ∂f(x) satisfies 〈ζ, v〉 ≤ f◦(x; v) ≤ K‖v‖ for all v in X, whence
‖ζ‖∗ ≤ K. The assertions (b), (c) merely reiterate that f◦(x; ·) is the
support function of ∂f(x).

Let us prove the closure property (d). Fix v ∈ X. For each i, we have
f◦(xi; v) ≥ 〈ζi, v〉 (in view of (c)). The sequence

{〈ζi, v〉} is bounded in
R, and contains terms that are arbitrarily near 〈ζ, v〉. Let us extract a
subsequence of {ζi} (without relabeling) such that 〈ζi, v〉 → 〈ζ, v〉. Then
passing to the limit in the preceding inequality gives f◦(x; v) ≥ 〈ζ, v〉, since
f◦ is upper semicontinuous in x (Proposition 1.1). Since v is arbitrary, it
follows (from (c) again) that ζ ∈ ∂f(x).

We turn now to (e). Let ε > 0 be given; then we wish to show that for all
y sufficiently near x, we have

∂f(y) ⊂ ∂f(x) + εB.

If this is not the case, then there is a sequence yi converging to x and points
ζi ∈ ∂f(yi) such that ζi /∈ ∂f(x) + εB. We can therefore separate ζi from
the compact convex set in question: for some vi �= 0 we have

〈ζi, vi〉 ≥ max
{〈ζ, vi〉 : ζ ∈ ∂f(x) + εB

}
= f◦(x; vi) + ε‖vi‖.

Because of positive homogeneity, we can take ‖vi‖ = 1. Note that the
sequence {ζi} is bounded. Since we are in finite dimensions, we can extract
convergent subsequences from {ζi} and {vi} (we do not relabel): ζi → ζ,
vi → v, where ‖v‖ = 1. The inequality above gives in the limit 〈ζ, v〉 ≥
f◦(x; v) + ε, while invoking part (d) yields ζ ∈ ∂f(x). But then (c) is
contradicted. This completes the proof.

1.6. Exercise.

(a) Verify the upper semicontinuity of ∂f at 0 for each of the func-
tions in Exercise 1.4(b,c).

(b) Let ζi ∈ ∂f(xi) + εiB∗, where xi → x and εi ↓ 0. Let ζ be a
weak∗-cluster point of {ζi}. Prove that ζ ∈ ∂f(x).

2 Basic Calculus

We will derive an assortment of formulas that facilitate the calculation of
∂f when f is synthesized from simpler functionals through linear combina-
tions, maximization, composition, and so on. We always assume that the
given functions are Lipschitz near the point of interest; as we will see, this
property has the useful feature of being preserved under the operations in
question.
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2.1. Proposition. For any scalar λ, we have ∂(λf)(x) = λ∂f(x).

Proof. Note that λf is Lipschitz near x, of rank |λ|K. When λ is nonneg-
ative, (λf)◦ = λf◦, and the result follows immediately. To complete the
proof, it suffices to consider now the case λ = −1. An element ζ of X∗ be-
longs to ∂(−f)(x) iff (−f)◦(x; v) ≥ 〈ζ, v〉 for all v. By Proposition 1.1(c),
this is equivalent to: f◦(x;−v) ≥ 〈ζ, v〉 for all v, which is equivalent to −ζ
belonging to ∂f(x) (by Proposition 1.3(c).)

We now examine the generalized gradient of the sum of two functions f
and g, each of which is Lipschitz near x. It is easy to see that f + g is also
Lipschitz near x, and we would like to relate ∂(f + g)(x) to ∂f(x) + ∂g(x).
We will now do so, and introduce a technique that will be used many
times: that of proving an inclusion between closed convex sets by proving
an equivalent inequality between support functions.

The support function of ∂(f + g)(x), evaluated at v, is (f + g)◦(x; v) (by
definition!), while that of ∂f(x) + ∂g(x) is f◦(x; v) + g◦(x; v) (the support
function of a sum of sets is the sum of the support functions). Since the
sum of two w∗-compact sets is w∗-compact (addition is w∗-continuous on
X∗ × X∗), it follows that the general inequality

(f + g)◦(x; v) ≤ f◦(x; v) + g◦(x; v)

noted in Exercise 1.2 is equivalent to the inclusion

∂(f + g)(x) ⊂ ∂f(x) + ∂g(x),

as observed in Proposition 1.3(c).

The extension of this inclusion (a sum rule) to finite linear combinations is
immediate.

2.2. Proposition. Let fi (i = 1, 2, . . . , n), be Lipschitz near x, and let λi

(i = 1, 2, . . . , n) be scalars. Then f :=
∑n

i=1 λifi is Lipschitz near x, and
we have

∂

( n∑
i=1

λifi

)
(x) ⊂

n∑
i=1

λi∂fi(x).

2.3. Exercise. Prove Proposition 2.2, and give an example with
X = R and n = 2 for which the inclusion is strict.

2.4. Theorem (Lebourg’s Mean Value Theorem). Let x and y be-
long to X, and suppose that f is Lipschitz on an open set containing the
line segment [x, y]. Then there exists a point u in (x, y) such that

f(y) − f(x) ∈ 〈∂f(u), y − x
〉
.
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Proof. We will need the following special chain rule for the proof. We denote
by xt the point x + t(y − x).

Lemma. The function g : [0, 1] → R defined by g(t) = f(xt) is Lipschitz
on (0, 1), and we have

∂g(t) ⊂ 〈∂f(xt), y − x
〉
.

Proof of the Lemma. The fact that g is Lipschitz is plain. The two closed
convex sets appearing in the equation are in fact intervals in R, so it suffices
to prove that for v = ±1, we have

max
{
∂g(t)v

} ≤ max
{〈∂f(xt), y − x〉v}.

Now the left-hand side is just g◦(t; v); that is,

lim sup
s→t
λ↓0

g(s + λv) − g(s)
λ

= lim sup
s→t
λ↓0

f(x + [s + λv](y − x)) − f(x + s(y − x))
λ

≤ lim sup
y′→xt
λ↓0

f(y′ + λv(y − x)) − f(y′)
λ

= f◦(xt; v(y − x)
)

= max
〈
∂f(xt), v(y − x)

〉
,

which completes the proof of the lemma.

Now to the proof of the theorem. Consider the function θ on [0, 1] defined
by

θ(t) = f(xt) + t
[
f(x) − f(y)

]
.

Note that θ(0) = θ(1) = f(x), so that there is a point t in (0, 1) at which θ
attains a local minimum or maximum (by continuity). By Exercise 1.4(d)
we have 0 ∈ ∂θ(t). We may calculate ∂θ(t) by appealing to Propositions 2.1
and 2.2, and the lemma. We deduce

0 ∈ f(x) − f(y) +
〈
∂f(xt), y − x

〉
,

which is the assertion of the theorem (take u = xt).

2.5. Theorem (The Chain Rule). Let F : X → R
n be Lipschitz near

x, and let g : R
n → R be Lipschitz near F (x). Then the function f(x′) :=

g
(
F (x′)

)
is Lipschitz near x, and we have

∂f(x) ⊂ co∗{∂〈γ, F (·)〉(x) : γ ∈ ∂g
(
F (x)

)}
,

where co∗ signifies the w∗-closed convex hull.
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Proof. The fact that f is Lipschitz is left to the reader to show. Again it is
an inclusion between two convex weak∗-compact sets that is at issue; the
corresponding support function inequality amounts to the statement that
for given v, there exists γ in ∂g

(
F (x)

)
, and ζ in the generalized gradient

at x of the function x′ �→ 〈
γ, F (x′)

〉
, such that f◦(x; v) ≤ 〈ζ, v〉. We will

prove the theorem by producing such a pair γ and ζ.

To begin, we give ourselves sequences yi → x and ti ↓ 0 realizing the lim sup
in the definition of f◦(x; v); i.e., such that

lim
i→∞

f(yi + tiv) − f(yi)
ti

= f◦(x; v).

Applying the Mean Value Theorem 2.4 gives, for each i, an element γi ∈
∂g(zi) such that

f(yi + tiv) − f(yi)
ti

=
g(F (yi + tiv)) − g(F (yi))

ti

=
〈

γi,
F (yi + tiv) − F (yi)

ti

〉
,

where zi lies on the line segment joining F (yi) and F (yi+tiv). It follows that
zi → F (x), and that for a suitable subsequence we have γi → γ ∈ ∂g

(
F (x)

)
(we eschew relabeling). This is the required γ; we turn now to exhibiting
ζ.

By the Mean Value Theorem again, there exists ζi ∈ ∂
〈
γ, F (·)〉(wi) such

that 〈
γ,

F (yi + tiv) − F (yi)
ti

〉
= 〈ζi, v〉,

where wi is on the line segment joining yi and yi + tiv. It follows that wi →
x, that the sequence {ζi} is bounded in X∗, and that

{〈ζi, v〉} is bounded
in R. We may pass again to a subsequence to arrange for 〈ζi, v〉 to converge
to some limit; having done so, let ζ be a weak∗-cluster point of {ζi}. Then
〈ζi, v〉 → 〈ζ, v〉 necessarily, and ζ ∈ ∂

〈
γ, F (·)〉(x) (Proposition 1.5(d)).

Combining the above, we arrive at

f(yi + tiv) − f(yi)
ti

=
〈

(γi − γ) + γ,
F (yi + tiv) − F (yi)

ti

〉

=
〈

γi − γ,
F (yi + tiv) − F (yi)

ti

〉
+ 〈ζi, v〉.

Now the term
[
F (yi + tiv) − F (yi)

]/
ti is bounded because F is Lipschitz,

and we know γi → γ. Therefore passing to the limit yields

f◦(x; v) = lim
i→∞

f(yi + tiv) − f(yi)
ti

= 〈ζ, v〉,

which confirms that ζ has the required properties.
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The following exercise illustrates the use of the Chain Rule in a special
case; invoke Theorem 2.5 to deduce it.

2.6. Exercise. Let f and g be Lipschitz near x. Then the product
function fg is Lipschitz near x and we have

∂(fg)(x) ⊂ ∂
(
f(x)g(·) + g(x)f(·))(x) ⊂ f(x)∂g(x) + g(x)∂f(x).

3 Relation to Derivatives

We remind the reader that some basic definitions and facts about classical
differentiability were recalled in Chapter 1, §2. (These carry over to the
present Banach space setting when the 〈·, ·〉 is given the duality pairing
interpretation.)

3.1. Proposition. Let f be Lipschitz near x.

(a) If f admits a Gâteaux derivative f ′
G(x) at x, then f ′

G(x) ∈ ∂f(x).

(b) If f is continuously differentiable at x, then ∂f(x) =
{
f ′(x)

}
.

Proof. By definition we have the following relation between f ′
G(x) and the

one-sided directional derivatives:

f ′(x; v) =
〈
f ′

G(x), v
〉 ∀v ∈ R

n.

But clearly, f ′(x; v) ≤ f◦(x; v). That f ′
G(x) belongs to ∂f(x) now follows

from Proposition 1.5(c).

Now suppose that f is C1 in a neighborhood of x, and fix v ∈ X. For y
near x and t > 0 near 0, we have

f(y + tv) − f(y)
t

=
〈
f ′(z), v

〉

for some z ∈ (y, y+tv), by the classical Mean Value Theorem. As y → x and
t ↓ 0, the point z converges to x, and because f ′(·) is continuous (as a map
between the Banach spaces X and X∗), we derive f◦(x; v) ≤ 〈f ′(x), v

〉
.

It follows now from Proposition 1.5(c) that 〈ζ, v〉 ≤ 〈f ′(x), v
〉

whenever
ζ ∈ ∂f(x). Since v is arbitrary, we conclude that ∂f(x) is the singleton{
f ′(x)

}
.

Remark. In the end-of-chapter problems we will see that ∂f(x) reduces
to a singleton precisely when f is “strictly differentiable” at x, a notion
intermediate between Gâteaux and continuous differentiability.
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3.2. Theorem. Let F : X → Y be continuously differentiable near x, with
Y a Banach space, and let g : Y → R be Lipschitz near F (x). Then f :=
g ◦ F is Lipschitz near x, and we have

∂f(x) ⊂ (F ′(x)
)∗

∂g
(
F (x)

)
,

where ∗ denotes the adjoint. If F ′(x) : X → Y is onto, then equality holds.

Proof. The fact that f is Lipschitz near x is straightforward. In terms of
support functions, we must prove that given any v, then we have some
element ζ of ∂g

(
F (x)

)
such that

f◦(x; v) ≤ 〈v, F ′(x)∗ζ
〉

=
〈
ζ, F ′(x)v

〉
.

For any yi near x and ti > 0 near 0, the difference quotient
[
f(yi + tiv) −

f(yi)
]/

ti can be expressed in the form
〈

ζi,
F (yi + tiv) − F (yi)

ti

〉

for some ζi ∈ ∂g(zi), where zi lies in the segment
[
F (yi), F (yi + tiv)

]
(we

have invoked the Mean Value Theorem 2.4, of course). Much as in the
proof of Theorem 2.5, we extract a subsequence from {ζi} such that 〈ζi, v〉
converges, and then let ζ be a cluster point of ζi. The required inequality
follows from the fact that

[
F (yi + tiv) − F (yi)

]/
ti converges (strongly) to

F ′(x)v.

Now suppose that F ′(x) is onto. It follows that F maps every neighborhood
of x to a neighborhood of F (x), by a classical theorem due to Graves (we
will prove this and other such surjectivity results in Chapter 3). This fact
justifies the second equality below:

g◦(F (x);F ′(x)v
)

= lim sup
y→F (x)

t↓0

g(y + tF ′(x)v) − g(y)
t

= lim sup
x′→x
t↓0

g(F (x′) + tF ′(x)v) − g(F (x′))
t

= lim sup
x′→x
t↓0

g(F (x′ + tv)) − g(F (x′))
t

(since [F (x′ + tv) − F (x′) − tF ′(x)v]/t goes to zero as x′ → x and t ↓ 0,
and since g is Lipschitz locally)

= f◦(x; v).

Since v is arbitrary, this implies equality between the two sets figuring in
the statement of the theorem, as asserted.
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The fact that equality can hold in the estimate of Theorem 3.2 under a
supplementary hypothesis raises as a more general question the possibil-
ity of being able to assert equalities in other results too, for example in
Proposition 2.2 and Theorem 2.5, or perhaps in Theorem 3.2, but with a
supplementary hypothesis on g rather than F . Of course if the data are
all smooth then equality holds in all these results, for then they simply
reduce to classical differentiation formulas. The interest would lie in iden-
tifying a class of functions, not necessarily smooth, giving rise to equalities
even when nonsingleton sets are involved. We address this issue in the next
section.

4 Convex and Regular Functions

A real-valued function f defined on an open convex subset U of X is termed
convex provided that for any two points x, y ∈ U we have

f
(
tx + (1 − t)y

) ≤ tf(x) + (1 − t)f(y) ∀t ∈ [0, 1].

The proof of Proposition 1.7.1 goes through without change in a Banach
space to give:

4.1. Proposition. If f is a convex function on U that is bounded above
on a neighborhood of some point in U , then for any x in U , f is Lipschitz
near x.

4.2. Exercise. Let f : X → R be convex, and let θ : R → R be
convex and nondecreasing. Prove that x �→ θ

(
f(x)
)

is convex.

4.3. Proposition. Let f be convex on U and Lipschitz near x ∈ U . Then
the directional derivatives f ′(x; v) exist, and we have f ′(x; v) = f◦(x; v). A
vector ζ belongs to ∂f(x) iff

f(y) − f(x) ≥ 〈ζ, y − x〉 ∀y ∈ U.

Proof. It follows directly from the definition of convex function that for
small t > 0, the function

t �→ f(x′ + tv) − f(x′)
t

is nondecreasing. This fact, together with the Lipschitz hypothesis, implies
the existence and finiteness of the directional derivative for all x′ near x,
for all v:

f ′(x′; v) = inf
t>0

f(x′ + tv) − f(x′)
t

.
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Now fix δ > 0, and observe that f◦(x; v) can be written as

f◦(x; v) = lim
ε↓0

sup
‖x′−x‖≤εδ

sup
0<t<ε

f(x′ + tv) − f(x′)
t

.

The preceding remarks show that an alternative expression for f◦(x; v) is

lim
ε↓0

sup
‖x′−x‖≤εδ

f(x′ + εv) − f(x′)
ε

.

If K is a Lipschitz constant for f near x, then for all x′ in B(x; εδB), for
all ε sufficiently small, we have

∣∣∣∣f(x′ + εv) − f(x′)
ε

− f(x + εv) − f(x)
ε

∣∣∣∣ ≤ 2δK,

so that

f◦(x; v) ≤ lim
ε↓0

{
f(x + εv) − f(x)

ε
+ 2δK

}
= f ′(x; v) + 2δK.

Since δ is arbitrary we deduce f◦(x; v) ≤ f ′(x; v), and hence equality, since
f◦ ≥ f ′ inherently. Finally, we observe

ζ ∈ ∂f(x) ⇐⇒ f◦(x; v) ≥ 〈ζ, v〉 ∀v,

⇐⇒ f ′(x; v) ≥ 〈ζ, v〉 ∀v,

⇐⇒ inf
t>0

f(x + tv) − f(x)
t

≥ 〈ζ, v〉 ∀v,

⇐⇒ f(y) − f(x) ≥ 〈ζ, y − x〉 ∀y ∈ U.

It turns out that the property of having directional derivatives f ′(x; v) that
coincide with f◦(x; v) is precisely what is required to make our calculus
rules “more exact.” We give this property a name: the function f is regular
at x provided that f is Lipschitz near x and admits directional derivatives
f ′(x; v) at x for all v, with f ′(x; v) = f◦(x; v). Evidently, functions which
are continuously differentiable at x are regular at x, since then f ′(x; v) =〈
f ′(x), v

〉
= f◦(x; v). Also, convex functions which are Lipschitz near x are

regular there, by the preceding proposition.

4.4. Exercise. Give an example of a function which is neither C1

nor convex near x, but which is regular at x.

Let us now illustrate how regularity sharpens certain calculus rules, such
as that for the sum of two functions. If f and g are Lipschitz near x, we
know (Proposition 2.2) that

∂(f + g)(x) ⊂ ∂f(x) + ∂g(x).
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Suppose now that f and g are regular at x. Then we can argue as follows
to get the opposite inclusion: for any v,

max
{〈ζ + ξ, v〉 : ζ ∈ ∂f(x), ξ ∈ ∂g(x)

}
= f◦(x; v) + g◦(x; v)
= f ′(x; v) + g′(x; v)
= (f + g)′(x; v) ≤ (f + g)◦(x; v)

= max
{〈ζ, v〉 : ζ ∈ ∂(f + g)(x)

}
.

This inequality between support functions is equivalent to the inclusion

∂f(x) + ∂g(x) ⊂ ∂(f + g)(x),

so that equality actually holds. A bonus consequence of this argument is
the fact that (f + g)′(x; ·) and (f + g)◦(x; ·) coincide, so that f + g inherits
regularity from f and g. In fact, it is clear that any (finite) nonnegative
linear combination of regular functions is regular.

The following theorem subsumes the case of a finite sum just discussed,
and in its regularity conclusions is related to Exercise 4.2. The setting is
that of the Chain Rule 2.5, of which this is a refinement.

4.5. Theorem. Let F : X → R
n be such that each component function

fi of F is regular at x. Let g : R
n → R be regular at F (x), and suppose

that each γ ∈ ∂g
(
F (x)

)
has nonnegative components. Then the function

f(x′) := g
(
F (x′)

)
is regular at x, and we have

∂f(x) = co∗{∂〈γ, F (·)〉(x) : γ ∈ ∂g
(
F (x)

)}
.

Proof. We ask the reader to check as a first step that f admits directional
derivatives at x:

f ′(x; v) = g′(F (x);F ′(x; v)
)
,

where F ′(x; v) signifies the vector in R
n whose ith component is f ′

i(x; v).
Now consider, for given v ∈ X, the maximum of the inner product of v
taken with elements from the right side of the equality asserted by the
theorem. That maximum equals

max
{〈

γ, F (·)〉◦(x; v) : γ ∈ ∂g
(
F (x)

)}
= max

{〈
γ, F (·)〉′(x; v) : γ ∈ ∂g

(
F (x)

)}
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(for
〈
γ, F (·)〉 is regular at x, as a nonnegative linear combination of func-

tions regular at x, since γ is nonnegative)

= max
{〈

γ, F ′(x; v)
〉
: γ ∈ ∂g

(
F (x)

)}
= g◦(F (x);F ′(x; v)

)
= g′(F (x);F ′(x; v)

)
(since g is regular at F (x))

= f ′(x; v) (as noted above)
≤ f◦(x; v).

But this last term is the support function of the left side, evaluated at v,
implying the opposite inclusion to the one furnished by Theorem 2.5. It
follows that the two sets coincide, and that f◦(x; v) and f ′(x; v) agree.

4.6. Exercise.

(a) Let g : R
n → R be nondecreasing in its first component, and

let ζ = (ζ1, ζ2, . . . , ζn) ∈ ∂g(x). Prove that ζ1 ≥ 0.

(b) Find conditions on f and g and their values at x under which
equality holds in the estimate of Exercise 2.6.

(c) Let fi (i = 1, 2, . . . , n) be Lipschitz near x, and set f(x) :=
max1≤i≤n fi(x). Prove that f is Lipschitz near x, with

∂f(x) ⊂ co
{ ⋃

i∈M(x)

∂fi(x)
}

,

where M(x) =
{
i ∈ {1, 2, . . . , n} : fi(x) = f(x)

}
. Note that

we must show that the set appearing on the right is w∗-closed.
If each fi is regular at x, prove that equality holds. (Hint.
Problem 1.11.14.) Develop the analogous formula when max is
replaced by min.

(d) Let f : R
2 → R be given by f(x, y) := max

{|x − y|, y − x2}.
Find ∂f(0, 0).

5 Tangents and Normals

Let S be a nonempty closed subset of X. There is a globally Lipschitz
function associated with S that completely characterizes it: its distance
function dS(·) is given by

dS(x) := inf
{‖x − s‖ : s ∈ S

}
.

We can apply our Lipschitz calculus to dS(·) in order to define geometric
constructs for S. In this light, a rather natural way to define a direction
v tangent to S at x ∈ S is as follows: we require d◦

S(x; v) ≤ 0. (That is,
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dS should not increase in the v direction, as measured by the generalized
directional derivative.) We remark that since d◦

S(x; v) ≥ 0 for all v (show),
it is equivalent to require d◦

S(x; v) = 0. We proceed to adopt this definition:
the tangent cone to S at x, denoted TS(x), is the set of all those v ∈ X
satisfying d◦(x; v) ≤ 0.

5.1. Exercise. Show that 0 ∈ TS(x), and that TS(x) is a cone.
Prove that TS(x) is closed and convex.

It is occasionally useful to have the following alternate, direct, character-
ization of TS(x) on hand, and reassuring to know that tangency does not
depend on the choice of equivalent norms for X (as dS does):

5.2. Proposition. An element v of X is tangent to S at x iff, for every
sequence xi in S converging to x and sequence ti in (0, ∞) decreasing to 0,
there exists a sequence vi in X converging to v such that xi + tivi ∈ S for
all i.

Proof. Suppose first that v ∈ TS(x), and that sequences xi → x (with
xi ∈ S), ti ↓ 0 are given. We must produce the sequence vi alluded to in
the statement of the theorem. Since d◦

S(x; v) = 0 by assumption, we have

lim
i→∞

dS(xi + tiv) − dS(xi)
ti

= lim
i→∞

dS(xi + tiv)
ti

= 0.

Let si be a point in S which satisfies

‖xi + tiv − si‖ ≤ dS(xi + tiv) +
ti
i

and let us set

vi =
si − xi

ti
.

Then ‖v −vi‖ → 0; that is, vi converges to v. Furthermore, xi + tivi = si ∈
S, as required.

Now for the converse. Let v have the stated property concerning sequences,
and choose a sequence yi converging to x and ti decreasing to 0 such that

lim
i→∞

dS(yi + tiv) − dS(yi)
ti

= d◦
S(x; v).

Our purpose is to prove this quantity nonpositive, for then v ∈ TS(x) by
definition. Let si in S satisfy

‖si − yi‖ ≤ dS(yi) +
ti
i
.
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It follows that si converges to x. Thus there is a sequence vi converging to
v such that si + tivi ∈ S. But then, since dS is Lipschitz of rank 1,

dS(yi + tiv) ≤ dS(si + tivi) + ‖yi − si‖ + ti‖v − vi‖

≤ dS(yi) + ti

(
‖v − vi‖ +

1
i

)
.

We deduce that the limit above is nonpositive, which completes the proof.

5.3. Exercise. Let X = X1 ×X2, where X1, X2 are Banach spaces,
and let x = (x1, x2) ∈ S1 × S2, where S1, S2 are subsets of X1, X2,
respectively. Then

TS1×S2(x) = TS1(x1) × TS2(x2).

The Normal Cone

In the case of classical manifolds in R
n, the tangent space and the normal

space are orthogonal to one another. When convex cones are involved, it
is polarity that serves to obtain one from the other. We define the normal
cone to S at x, denoted NS(x), as follows:

NS(x) := TS(x)◦ :=
{
ζ ∈ X∗ : 〈ζ, v〉 ≤ 0 ∀v ∈ TS(x)

}
.

5.4. Proposition.

(a) NS(x) is a w∗-closed convex cone.

(b) NS(x) = cl∗
{⋃

λ≥0 λ∂dS(x)
}
.

(c) TS(x) is in turn the polar of NS(x); that is,

TS(x) = NS(x)◦ =
{
v ∈ X : 〈ζ, v〉 ≤ 0 ∀ζ ∈ NS(x)

}
.

Proof. Property (a) is immediate. Let ζ ∈ ∂dS(x), and suppose that v ∈
TS(x). Since d◦

S(x; v) ≤ 0 by definition of TS(x), and since d◦
S(x; ·) is the

support function of ∂dS(x), we deduce 〈ζ, v〉 ≤ 0. This shows that ∂dS(x)
lies in NS(x), which implies that the set Σ appearing on the right in (b)
is contained in NS(x). To complete the proof of (b), let ζ be a point in
the complement of Σ. By the Separation Theorem, there exists v ∈ X such
that

HΣ(v) < 〈ζ, v〉.
It follows that 〈ζ, v〉 > 0 and HΣ(v) ≤ 0, since Σ is a cone. Therefore
〈v, θ〉 ≤ 0 ∀θ ∈ ∂dS(x), whence d◦

S(x; v) ≤ 0. We conclude that v ∈ TS(x).
Since 〈ζ, v〉 > 0, it follows that ζ �∈ NS(x); (b) is proven.

We turn now to the proof of (c). Let v ∈ TS(x). Then 〈ζ, v〉 ≤ 0 ∀ζ ∈
∂dS(x), which implies 〈ζ, v〉 ≤ 0 ∀ζ ∈ NS(x) in view of (b). Thus v ∈
NS(x)◦. Conversely, let v ∈ NS(x)◦. Then 〈ζ, v〉 ≤ 0 ∀ζ ∈ ∂dS(x), because
of (b). But then d◦

S(x; v) ≤ 0 and v ∈ TS(x).
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We postpone to later the proof of the fact that TS and NS coincide with the
classical tangent and normal spaces when S is a smooth manifold. Another
special case of interest is the convex one, which we now examine.

5.5. Proposition. Let S be convex. Then

TS(x) = cl
{
λ(s − x) : λ ≥ 0, s ∈ S

}

and
NS(x) =

{
ζ ∈ X∗ : 〈ζ, x′ − x〉 ≤ 0 ∀x′ ∈ S

}
.

Proof. The convexity of the set S readily implies that of the function dS(·).
It follows then from Proposition 4.3 that d′

S(x; v) exists and coincides with
d◦

S(x; v). Consequently, TS(x) consists of those v ∈ X for which

lim
t↓0

dS(x + tv)
t

= 0.

This in turn is equivalent to the existence of s(t) ∈ S such that

‖x + tv − s(t)‖
t

→ 0 as t ↓ 0.

Setting u(t) :=
(
x + tv − s(t)

)/
t, this can be expressed in the form

v =
(

1
t

)(
s(t) − x

)
+ u(t),

where u(t) → 0 as t ↓ 0. This is equivalent to the characterization of TS(x)
given in the statement of the proposition. The expression for NS(x) then
follows immediately from this characterization, together with the fact that
NS(x) is the polar of TS(x).

5.6. Exercise. Determine the tangent and normal cones at the ori-
gin for each of the following subsets of R

2:

(a) S1 :=
{
(x, y) : xy = 0

}
,

(b) S2 :=
{
(x, y) : y ≥ 2|x|},

(c) S3 := the closure of the complement of the set S2,

(d) S4 :=
{
(x, y) : y ≤√|x|},

(e) S5 :=
{
(x, y) : y = −√|x|},

(f) S6 :=
{
(x, y) : y ≤ −√|x|}, and

(g) S7 := S2 ∪ {(0, y) : y ∈ R
}
.

When S is the epigraph of a function, we would expect some relationship
to exist between its tangent and normal cones on the one hand, and the
generalized gradient of the function on the other. In fact, a complete duality
exists, as we now see.
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5.7. Theorem. Let f be Lipschitz near x. Then:

(a) Tepi f

(
x, f(x)

)
= epi f◦(x; ·); and

(b) ζ ∈ ∂f(x) ⇐⇒ (ζ,−1) ∈ Nepi f

(
x, f(x)

)
.

Proof. Suppose first that (v, r) lies in Tepi f

(
x, f(x)

)
. Choose sequences

yi → x, ti ↓ 0, such that

lim
i→∞

f(yi + tiv) − f(yi)
ti

= f◦(x; v).

Note that
(
yi, f(yi)

)
is a sequence in epi f converging to

(
x, f(x)

)
. Accord-

ingly, by Proposition 5.2, there exists a sequence (vi, ri) converging to (v, r)
such that

(
yi, f(yi)

)
+ ti(vi, ri) ∈ epi f . Thus

f(yi) + tiri ≥ f(yi + tivi).

We rewrite this as
f(yi + tivi) − f(yi)

ti
≤ ri.

Taking limits, we obtain f◦(x; v) ≤ r as desired.

We now show that for any v, for any δ ≥ 0, the point
(
v, f◦(x; v) + δ

)
lies

in Tepi f

(
x, f(x)

)
; this will complete the proof of (a). Let (xi, ri) be any

sequence in epi f converging to
(
x, f(x)

)
, and let ti ↓ 0. We must produce

a sequence (vi, si) converging to
(
v, f◦(x; v) + δ

)
with the property that

(xi, ri) + ti(vi, si) lies in epi f for each i; that is, such that ri + tisi ≥
f(xi + tivi).

Let us define vi = v and

si := max
{

f◦(x; v) + δ,
f(xi + tiv) − f(xi)

ti

}
.

Observe first that si → f◦(x; v) + δ, since

lim sup
i→∞

f(xi + tiv) − f(xi)
ti

≤ f◦(x; v).

We have
ri + tisi ≥ ri +

[
f(xi + tiv) − f(xi)

]
and ri ≥ f(xi) (since (xi, ri) ∈ epi f), which together give

ri + tisi ≥ f(xi + tiv)

showing that (xi + tiv, ri + tisi) belongs to epi f , as required.
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We turn now to (b). We know that ζ ∈ ∂f(x) iff f◦(x; v) ≥ 〈ζ, v〉 ∀v; that
is, precisely when for any v and any r ≥ f◦(x; v) we have

〈
(ζ,−1), (v, r)

〉 ≤ 0.

By (a), this last inequality holds for all the (v, r) in question iff it holds for
all (v, r) ∈ Tepi f

(
x, f(x)

)
; that is, precisely when (ζ,−1) lies in the polar

of Tepi f

(
x, f(x)

)
, namely Nepi f

(
x, f(x)

)
.

Remark. One of the principal advantages of the theory of generalized
gradients is the complete duality that it induces between tangency and
normality, and between functions and sets (via the epigraph, or via the
distance function). Note that in developing the theory, we chose the gener-
alized directional derivative as primitive notion, and used it to define the
generalized gradient, the tangent cone (via dS) and then, by polarity, the
normal cone. Alternatively, we could choose tangency as a starting point,
using the characterization of Proposition 5.2 as a definition, and proceed
from there (how?). We do not know in general how to make normality (or
generalized gradients, or subdifferentials) the true starting point of the the-
ory, unless the Banach space X has additional properties, such as in the
Hilbert space case considered in Chapter 1. There, normals were the start-
ing point. It is now time to connect the proximal theory of that chapter to
the present one.

6 Relationship to Proximal Analysis

We now suppose that X is a Hilbert space, so that ‖x‖ = 〈x, x〉1/2 for an
inner product 〈·, ·〉. In this case, ∂f(x) and NS(x) are generated by weak
limits of their proximal counterparts, and are identified with subsets of X
itself:

6.1. Theorem. Let X be a Hilbert space.

(a) If f is Lipschitz near x, then

∂f(x) = co
{

w-lim
i→∞

ζi : ζi ∈ ∂P f(xi), xi → x
}

.

(b) If S is a closed subset of X containing x, then

NS(x) = co
{

w-lim
i→∞

ζi : ζi ∈ NP
S (xi), xi → x

}
.

Proof. Assertion (a) is an equality between closed convex sets; we will show
that the set on the left is contained in the one on the right by verifying
the corresponding inequality between support functions. More precisely
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then, we will show that given any v, there exists a sequence xi converging
to x, a sequence ζi ∈ ∂P f(xi) converging weakly to a limit ζ, such that
f◦(x; v) ≤ 〈ζ, v〉.
Let the sequences {yi}, {ti} realize f◦(x; v); i.e., be such that yi → x, ti ↓ 0,
and

lim
i→∞

f(yi + tiv) − f(yi)
ti

= f◦(x; v).

For each i sufficiently large, f is Lipschitz on a neighborhood of the line
segment [yi, yi + tiv], and by the Proximal Mean Value Theorem (Prob-
lem 1.11.13) there exists xi ∈ (yi, yi + tiv) and ζi ∈ ∂P f(xi) such that

f(yi + tiv) − f(yi) < 〈ζi, tiv〉 +
1
i
.

Since f is Lipschitz near x, the sequence {ζi} is bounded, and we may
extract a subsequence (without relabeling) that converges weakly to a limit
ζ. It follows that f◦(x; v) ≤ 〈ζ, v〉, as desired.

To prove the opposite inclusion and obtain the result (a), it suffices to
prove that any point ζ of the form w-limi→∞ ζi, where ζi ∈ ∂P f(xi) and
xi → x, belongs to ∂f(x) (since ∂f(x) is itself closed and convex). To see
this, observe first that ∂P f(xi) ⊂ ∂f(xi) (why?); then it suffices to invoke
Proposition 1.5(d). Thus (a) is proved.

We turn to (b). To show that NS(x) is contained in the set on the right side
of the formula asserted there, it suffices to show that ∂dS(x) is contained
in the right side, in view of Proposition 5.4. In turn, in light of (a), this
would follow from proving that any ζ of the form w-lim ζi, where ζi ∈
∂P dS(xi) and xi → x, belongs to the right side. But this is evident from
Theorem 1.6.4.

To complete the proof of the theorem, it suffices now to prove that any
point ζ of the form w-lim ζi, where ζi ∈ NP

S (xi) and xi → x, belongs to
NS(x). We may suppose ‖ζ‖ = 1 without loss of generality, and (by passing
to a subsequence) that ‖ζi‖ → λ > 0.

Since ζi ∈ NP
S (xi), there exists σi ≥ 0 such that

〈ζi, x
′ − xi〉 ≤ σi‖x′ − xi‖2 ∀x′ ∈ S.

Thus the function x′ �→ 〈−ζi, x
′〉+σi‖x′−xi‖2 attains a minimum over S at

x′ = xi. Note that for x′ in a neighborhood of xi, the function in question
has Lipschitz rank ‖ζi‖ + 1/i. We invoke Proposition 1.6.3 to deduce that
locally, xi minimizes the function

x′ �→ 〈−ζi, x
′〉 + σi‖x′ − xi‖2 +

(
‖ζi‖ +

1
i

)
dS(x′).
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We now deduce

ζi ∈
(

‖ζi‖ +
1
i

)
∂P dS(xi) ⊂

(
‖ζi‖ +

1
i

)
∂dS(xi),

or ζi

/(‖ζi‖+1/i
) ∈ ∂dS(xi). But ζi

/(‖ζi‖+1/i
)

converges weakly to ζ/λ, so
by Proposition 1.5(d) we obtain ζ ∈ λ∂dS(x) ⊂ NS(x) (by Proposition 5.4).

6.2. Remark. In terms of the limiting subdifferential ∂Lf and the lim-
iting normal cones NL

S defined in §1.10, the theorem asserts that in a
Hilbert space we have NS(x) = co NL

S (x), and, when f is Lipschitz near
x, ∂f(x) = co∂Lf(x). We will establish in Chapter 3 that when X = R

n,
a function f which is regular at x satisfies ∂Lf(x) = ∂f(x). In view of
the closed convex hulls that appear in Theorem 6.1, we sometimes adopt
the alternative notations ∂Cf , NC

S , and TC
S for the generalized gradient,

normal cone, and tangent cone, particularly when other constructs such as
∂P and ∂L are present simultaneously. We remark as well that ∂Cf and
TC

S are often referred to as Clarke’s generalized gradient and tangent cone,
respectively.

Theorem 6.1 gives us access in the Hilbert space setting to the results of
Chapter 1. It follows, for example (from Exercise 1.10.3(a) and the theorem)
that NS(x) �= {0} if x lies on the boundary of S and X is finite dimensional.
Another illustration is the following:

6.3. Exercise. Let S ∈ R
n have the form

S :=
{
x ∈ R

n : fi(x) = 0, i = 1, 2, . . . , k
}
,

where each fi : R
n → R is C2. Let x ∈ S, and suppose that the set{

f ′
i(x) : i = 1, 2, . . . , k

}
is linearly independent. Prove that

NC
S (x) = span

{
f ′

i(x) : i = 1, 2 . . . , k
}

= NP
S (x),

T C
S (x) =

{
v ∈ R

n :
〈
f ′

i(x), v
〉

= 0, i = 1, 2, . . . , k
}
.

(Hint. Proposition 1.1.9.)

6.4. Exercise. Confirm the formula of Theorem 6.1(b) in each case
of Exercise 5.6. (Note that the formula offers a simpler approach to
finding NC

S in some cases.)

7 The Bouligand Tangent Cone and Regular Sets

Let S be a closed subset of the Banach space X, x ∈ S. The Bouligand (or
contingent) tangent cone to S at x, denoted TB

S (x), is defined as follows:

TB
S (x) :=

{
lim

i→∞
xi − x

ti
: xi

S→ x, ti ↓ 0
}

.
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(Recall that xi
S→ x means that xi ∈ S ∀i = 1, 2, . . . , and that limi→∞ xi =

x.) This very natural concept of tangency can be characterized by means
of the distance function, as can the tangent cone TS(x) of §5.

7.1. Exercise.

(a) Prove that v ∈ T B
S (x) iff

lim inf
t↓0

dS(x + tv)
t

= 0.

(b) Deduce that T C
S (x) ⊂ T B

S (x).

(c) Calculate T B
S (0) for each of the sets S of Exercise 5.6. Note

that in contrast to T C
S (x), T B

S (x) may not be convex.

(d) When X is a Hilbert space, show that

T B
S (x) ⊂ (NP

S (x)
)◦

.

It is natural to inquire into the possible coincidence of TB
S (x) and TC

S (x).
This turns out to be an interesting question meriting a definition. We will
say that a set S is regular at x ∈ S provided that TB

S (x) = TC
S (x).

7.2. Exercise. Show that a convex set S is regular at each of its
points. (Hint. dS(·) is convex.)

We have used the term “regular” both for functions (§4) and now for sets;
here is why the use of the same term is appropriate:

7.3. Proposition. Let f be Lipschitz near x. Then f is regular at x iff
epi f is regular at

(
x, f(x)

)
.

Proof. Let us suppose first that f is regular at x. We wish to show that
TB

epi f

(
x, f(x)

)
and TC

epi f

(
x, f(x)

)
agree; equivalently, that an element (v, r)

of TB
epi f

(
x, f(x)

)
must lie in TC

epi f

(
x, f(x)

)
= epi f◦(x; ·) (by Theorem 5.7),

which is to say that we have f◦(x; v) ≤ r. Since f ′(x; v) = f◦(x; v), it
suffices to produce a sequence ti ↓ 0 such that

lim inf
i→∞

f(x + tiv) − f(x)
ti

≤ r.

Now by Exercise 7.1(a), we have

lim inf
t↓0

depi f ((x, f(x)) + t(v, r))
t

≤ 0.

That this condition implies the existence of the stated sequence ti is easy
to establish.
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For the converse, suppose now that epi f is regular at
(
x, f(x)

)
. To establish

that f is regular at x, we will show that for any v ∈ X, we have

lim inf
t↓0

f(x + tv) − f(x)
t

≥ f◦(x; v)

(why does this imply that f is regular at x?). In turn, this follows if we
show that for any sequence ti ↓ 0, we have

λ := lim
i→∞

f(x + tiv) − f(x)
ti

≥ f◦(x; v)

whenever this limit λ exists. But we have

(v, λ) = lim
i→∞

(x + tiv, f(x + tiv)) − (x, f(x))
ti

,

which shows that (v, λ) ∈ TB
epi f

(
x, f(x)

)
= TC

epi f

(
x, f(x)

)
(since epi f

is regular at (x, f(x))) = epi f◦(x; ·) (by Theorem 5.7). It follows that
f◦(x; v) ≤ λ, as required.

The principal role of set regularity is to provide “more exact” estimates
in formulas for tangent and normal cones, just as functional regularity
led to sharper results for generalized gradients. We illustrate this in the
following result, which will be extended to the case of mixed equalities and
inequalities in Chapter 3.

7.4. Proposition. Let S be a subset of R
n given as follows:

S :=
{
x ∈ R

n : fj(x) = 0, j = 1, 2, . . . , k
}
,

where each fj : R
n → R is locally Lipschitz and admits one-sided directional

derivatives f ′
j(x; v) for each v. Then

TB
S (x) ⊂ {v ∈ R

n : f ′
j(x; v) = 0, j = 1, 2, . . . , k

}
.

If in addition each fj is C1 near x and the vectors
{
f ′

j(x)
}k

j=1 are linearly
independent, then

{
v : 〈f ′

j(x), v〉 = 0, j = 1, 2, . . . , k
} ⊂ TC

S (x);

in this latter case, equality holds in both estimates, and the set S is regular
at x.

Proof. Any v ∈ TB
S (x) is of the form limi→∞(xi − x)/(ti), where xi

S→ x
and ti ↓ 0. Then fj(xi) = 0 (j = 1, 2, . . . , k), and we deduce

f ′
j(x; v) = lim

i→∞
fj(x + tiv) − fj(x)

ti
= lim

i→∞
fj(x + tiv)

ti

= lim
i→∞

fj(xi)
ti

= 0,
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since
∣∣fj(x + tiv) − fj(xi)

∣∣/ti ≤ K‖x + tiv − xi‖/ti → 0, where K is a
Lipschitz constant for fj . This gives the stated estimate for TB

S (x).

Now let us posit the additional hypotheses on the fj . Then Proposition 1.9(a)
applies, for all x′ sufficiently near x, and yields

NP
S (x′) ⊂ span

{
f ′

j(x
′)
}k

j=1.

We can now appeal to Theorem 6.1(b) to obtain

NC
S (x) ⊂ span

{
f ′

j(x)
}k

j=1.

Polarity transforms this estimate for NC
S (x) to precisely the one for TC

S (x)
that is claimed. Since TC

S (x) ⊂ TB
S (x) is always true, equality holds in both

estimates of the proposition, and so S is regular at x.

8 The Gradient Formula in Finite Dimensions

The celebrated theorem of Rademacher asserts that if a function f : R
n →

R is Lipschitz on an open set U , then it is differentiable almost everywhere
(a.e.) on U (in the sense of Lebesgue measure); we prove this theorem in
Chapter 3. It turns out that the derivative of f can be used to generate
its generalized gradient, as depicted in the following formula, one of the
most useful computational tools in nonsmooth analysis. It shows that in
R

n, ∂f(x) can be generated by the values of ∇f(x′) at nearby points x′

at which f ′(x′) exists, and furthermore that points x′ belonging to any
prescribed set of measure zero can be ignored in the construction without
changing the result. This latter aspect of ∂f(x) is referred to as being “blind
to sets of measure zero.”

8.1. Theorem (Generalized Gradient Formula). Let x ∈ R
n, and let

f : R
n → R be Lipschitz near x. Let Ω be any subset of zero measure in R

n,
and let Ωf be the set of points in R

n at which f fails to be differentiable.
Then

∂f(x) := co
{
lim ∇f(xi) : xi → x, xi /∈ Ω, xi /∈ Ωf

}
.

Proof. The meaning of the formula is the following: consider any sequence
{xi} converging to x while avoiding both Ω and points at which f is not
differentiable, and such that the sequence

{∇f(xi)
}

converges; then the
convex hull of all such limits is ∂f(x). As usual in a Hilbert space setting,
we identify ∂f(x) with a subset of R

n, the space itself.

Let us note to begin with that there are “plenty” of sequences xi which
converge to x and avoid Ω∪Ωf , since the latter has measure 0 near x. Fur-
ther, because ∂f is locally bounded near x (Proposition 1.5) and ∇f(xi)
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belongs to ∂f(xi) for each i (Proposition 3.1) the sequence
{∇f(xi)

}
ad-

mits a convergent subsequence by the Bolzano–Weierstrass Theorem. The
limit of any such sequence must belong to ∂f(x) by the closure property
of ∂f proved in Proposition 1.5. It follows that the set

{
lim ∇f(xi) : xi → x, xi /∈ Ω ∪ Ωf

}

is contained in ∂f(x) and is nonempty and bounded, and in fact compact,
since it is rather obviously closed. Since ∂f(x) is convex, we deduce that
the left-hand side of the formula asserted by the theorem contains the right.
Now, the convex hull of a compact set in Rn is compact, so to complete
the proof we need only show that the support function of the left-hand side
(i.e., f◦(x; ·)) never exceeds that of the right. This is what the following
lemma does:

Lemma. For any v �= 0 in Rn, for any ε > 0, we have

f◦(x; v) − ε ≤ lim sup
{∇f(y) · v : y → x, y /∈ Ω ∪ Ωf

}
.

To prove this, let the right-hand side be α. Then by definition, there is a
δ > 0 such that the conditions

y ∈ x + δB, y /∈ Ω ∪ Ωf ,

imply ∇f(y) · v ≤ α + ε. We also choose δ small enough so that f is
Lipschitz on B(x; δ) and Ω∪Ωf has measure 0 in x+δB. Now consider the
line segments Ly =

{
y + tv : 0 < t < δ/(2|v|)}. Since Ω ∪ Ωf has measure

0 in x + δB, it follows from Fubini’s Theorem that for almost every y in
x+(δ/2)B, the line segment Ly meets Ω∪Ωf in a set of 0 one-dimensional
measure. Let y be any point in x + (δ/2)B having this property, and let t
lie in

(
0, δ/(2|v|)). Then

f(y + tv) − f(y) =
∫ t

0
∇f(y + sv) · v ds,

since f ′ exists a.e. on Ly. Since we have ‖y + sv − x‖ < δ for 0 < s < t, it
follows that ∇f(y + sv) · v ≤ α + ε, whence

f(y + tv) − f(y) ≤ t(α + ε).

Since this is true for all y within δ/2 of x except those in a set of measure
0, and for all t in

(
0, δ/(2|v|)), and since f is continuous, it is in fact true

for all such y and t. We deduce

f◦(x; v) ≤ α + ε,

which completes the proof.
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8.2. Corollary.

f◦(x; v) = lim sup
y→x

{∇f(y) · v : y /∈ Ω ∪ Ωf

}
.

8.3. Exercise. Use the theorem to calculate ∂f(0, 0) where f on R2

is given by
f(x, y) = max

{
min[x, −y], y − x

}
,

as follows. Define

C1 =
{
(x, y) : y ≤ 2x and y ≤ −x

}
,

C2 =
{
(x, y) : y ≤ x/2 and y ≥ −x

}
,

C3 =
{
(x, y) : y ≥ 2x or y ≥ x/2

}
.

Then C1 ∪ C2 ∪ C3 = R2, and we have

f(x, y) =




x for (x, y) ∈ C1,

− y for (x, y) ∈ C2,

y − x for (x, y) ∈ C3.

Note that the boundaries of these three sets form a set Ω of measure
0, and that if (x, y) does not lie in Ω, then f is differentiable and
∇f(x, y) is one of the points (1, 0), (0, −1), or (−1, 1). Then ∂f(0, 0)
is the triangle obtained as the convex hull of these three points.

The derivative of the distance function dS(·) of a closed set S in R
n ad-

mits an interpretation along the lines of its proximal subgradients (Theo-
rem 1.6.1).

8.4. Proposition. Let d′
S(x) exist and be different from 0. Then x /∈ S,

projS(x) is a singleton {s}, and ∇dS(x) = (x − s)/‖x − s‖.
Proof. If x lies in S, then d′

S(x) = 0 since dS has a minimum at x; thus x /∈
S. Let s ∈ projS(x). We will show that ∇dS(x) = (x − s)/‖x − s‖, thereby
establishing also that projS(x) contains no other points. For t ∈ (0, 1), the
closest point in S to x + t(s − x) is s (see Proposition 1.1.3), whence

dS

(
x + t(s − x)

)
= (1 − t)‖x − s‖.

Subtracting dS(x) = ‖x − s‖ from both sides, dividing by t, and letting
t ↓ 0 produces

d′
S(x; s − x) =

〈∇dS(x), s − x
〉

= −‖s − x‖.

Now
∥∥∇dS(x)

∥∥ ≤ 1, since dS is Lipschitz of rank 1, so the last equation
implies ∇dS(x) = (x − s)/‖x − s‖.
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8.5. Exercise.

(a) Let x ∈ bdry(S). Use Theorem 8.1, Exercise 5.4, and Proposi-
tion 8.4 to deduce the following formula for NS(x) when S is a
closed subset of R

n and Ω is any set of measure 0:

NS(x) = co
{

lim
i→∞

λi(xi − si) : λi ≥ 0, xi /∈ Ω ∪ S,

xi → x, projS(xi) = {si}
}

.

It follows that NS(x) contains nonzero elements.

(b) Use this characterization to calculate the normal cones of Ex-
ercise 5.6.

9 Problems on Chapter 2

9.1. A function f : X → R is said to be strictly (Hadamard) differentiable
at x if there exists an element ζ ∈ X∗ such that for each v in X we have

lim
x′→x
t↓0

f(x′ + tv) − f(x′)
t

= 〈ζ, v〉,

and provided the convergence is uniform for v in compact sets.

(a) f is strictly differentiable at x iff f is Lipschitz near x and ∂f(x) is
a singleton.

(b) If f is regular at x and f ′(x) exists, then f is strictly differentiable
at x.

(c) If f is regular at x and f ′(x) exists, and if g is Lipschitz near x, then

∂(f + g)(x) =
{
f ′(x)

}
+ ∂g(x).

(d) If X is finite dimensional and U is an open subset of X, then f ∈
C1(U) iff f is locally Lipschitz on U and ∂f(x) is a singleton for each
x ∈ U .

9.2. Let ϕ : [0, 1] → R belong to L∞[0, 1] and define a (Lipschitz) func-
tion f : [0, 1] → R via f(x) :=

∫ x

0 ϕ(t) dt. Prove that ∂f(x) is the interval[
ϕ−(x), ϕ+(x)

]
, where ϕ−(x) and ϕ+(x) are the essential infimum and es-

sential supremum, respectively, of ϕ at x; thus, for instance,

ϕ+(x) := inf
{
M : ∃ε > 0 � ϕ(x′) ≤ M a.e. for x′ ∈ [x − ε, x + ε]

}
.
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9.3. For f as in Problem 9.2, show that there is a point z ∈ (0, 1) such that
for any δ > 0, there exist x and y within δ of z such that

ϕ(x) − δ ≤
∫ 1

0
ϕ(t) dt ≤ ϕ(y) + δ.

(When ϕ is continuous this holds for δ = 0: the Intermediate Value Theo-
rem.)

9.4. Let X = X1 × X2, where X1 and X2 are Banach spaces, and let
f(x1, x2) on X be Lipschitz near (x1, x2). We denote by ∂1f(x1, x2) the
(partial) generalized gradient of f(·, x2) at x1, and similarly for ∂2f .

(a) Let π1∂f(x1, x2) be the set
{
ζ1 ∈ X∗

1 : for some ζ2 ∈ X∗
2 , (ζ1, ζ2) ∈ ∂f(x1, x2)

}
.

Prove that ∂1f(x1, x2) ⊂ π1∂f(x1, x2), with equality when f is regu-
lar at (x1, x2). (Hint. Consider Theorem 3.2 and F (x) = (x, x2).)

(b) Calculate ∂1f(0, 0), ∂2f(0, 0) for the function f of Exercise 8.3. Note
that

∂1f(0, 0) × ∂2f(0, 0) �⊂ ∂f(0, 0) �⊂ ∂1f(0, 0) × ∂2f(0, 0).

9.5. Let X be a Banach space, and let f : X → R be Lipschitz near x.
Suppose that x minimizes f over a closed set S. Then 0 ∈ ∂f(x) + NS(x).
(Hint. Use exact penalization as in Proposition 1.6.3.)

9.6. Let f : X → R be Lipschitz near x, where X is a Hilbert space, and
suppose 0 /∈ ∂f(x). Let ζ be the element of least norm in ∂f(x). Prove that
−ζ is a “direction of descent” in the following sense: for all t > 0 sufficiently
small we have

f(x − tζ) ≤ f(x) − t
‖ζ‖2

2
.

9.7. Show by an example in one dimension that unlike ∂f , ∂Lf is not “blind
to sets of measure 0”; that is, we cannot neglect an arbitrary set of measure
0 in the formula

∂Lf(x) =
{

lim
i→∞

ζi : ζi ∈ ∂P f(xi), xi
f→ x
}

,

even when f is Lipschitz.

9.8. For f : R
n → R locally Lipschitz, let

Df(x; v) := lim inf
t↓0

f(x + tv) − f(x)
t
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denote the Dini subderivate. Prove that

f◦(x; v) = lim sup
y→x

Df(y; v).

9.9. (Analysis of a Line-Fitting Problem.) We wish to minimize over R
2 the

function

f(α, β) := |αN + β| +
N−1∑
i=0

|αi + β − i|,

where N is a given positive integer. (We interpret this as finding the best
line to fit the given data points (1, 1), (2, 2), . . . , (N −1, N −1), and (N, 0).)

(a) Let g(α, β) := |αc + β − k| for given c and k. Prove that

∂g(α, β) =




{
(c, 1)

}
if αc + β − k > 0,{

(−c,−1)
}

if αc + β − k < 0,{
λ(c, 1) : |λ| ≤ 1

}
if αc + β − k = 0.

(b) Use (a) to interpret the necessary condition 0 ∈ ∂f(α, β) in the form

0 = λN (N, 1) +
N−1∑
i=0

λi(i, 1)

for certain constants λi (i = 0, 1, . . . , N) with values depending on
(α, β).

(c) For N ≥ 3, invoke the convexity of f to deduce that α = 1, β = 0
minimizes f .

(d) If N > 4, no other (α, β) satisfy the necessary condition of (b). (Thus
the anomalous point (N, 0) is ignored by the nonsmooth criterion,
which is not the case in the usual least squares fit.)

9.10. Let S in R
n be of the form

{
x : f(x) ≤ 0

}
, where f : R

n → R is locally
Lipschitz. Suppose that x ∈ S, and 0 /∈ ∂f(x). Prove that intTS(x) �= ∅,
and that

TS(x) ⊃ {v ∈ R
n : f◦(x; v) ≤ 0

}
.

Show that equality holds if f is regular at x, in which case S is regular
at x. (Remark. Sets which admit tangent cones having nonempty interior
have useful properties; they will be studied in Chapter 3.)

9.11. We will prove a formula for the tangent and normal cones of the inter-
section of two closed subsets S1 and S2 of R

n. (We remind the reader that
the limiting normal cone NL

S was introduced in §1.10, and the alternative
notation NC

S and TC
S for NS and TS in Remark 6.2.)
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(a) Prove that TB
C (x) ⊂ TB

S (x) if C ⊂ S. (Show that this monotonicity
property fails for TC .) Deduce that

TB
S1∩S2

(x) ⊂ TB
S1

(x) ∩ TB
S2

(x).

(b) Note that TB
S (x)◦ ⊂ NC

S (x) generally, and deduce

NC
S1∩S2

(x) ⊃ TB
S1

(x)◦ + TB
S2

(x)◦.

(c) Suppose henceforth that NL
S1

(x) ∩ (−NL
S2

(x)
)

= {0} (a condition
called transversality). Prove that NL

S1∩S2
(x) ⊂ NL

S1
(x) + NL

S2
(x).

(Hint. See the argument that proved Proposition 1.10.1.) Give a coun-
terexample to this conclusion when transversality fails.

(d) Theorem. If transversality holds at x, then

NC
S1∩S2

(x) ⊂ NC
S1

(x) + NC
S2

(x), TC
S1∩S2

(x) ⊃ TC
S1

(x) ∩ TC
S2

(x),

and equality holds if both S1 and S2 are regular at x, in which case
S1 ∩ S2 is also regular at x.

9.12. Let f : R
n → R be Lipschitz near x.

(a) f ′(x) exists iff TB
gr f

(
x, f(x)

)
is a hyperplane.

(b) f is strictly differentiable at x iff TC
gr f

(
x, f(x)

)
is a hyperplane.

(c) f is strictly differentiable at x iff TC
epi f

(
x, f(x)

)
is a half-space. (Hint.

Theorem 5.7.)

(d) The fact that TB
epi f

(
x, f(x)

)
is a half-space does not imply that f ′(x)

exists.

9.13. (Danskin’s Theorem.) Let a continuous function g : R
n × M → R be

given, where M is a compact metric space. We suppose that for a neigh-
borhood Ω of a given point x ∈ R

n, the derivative gx(x′, u) exists and is
continuous (jointly) for (x′, u) ∈ Ω × M . We set

f(x′) := max
u∈M

g(x′, u).

Then f is Lipschitz and regular near x, and we have

∂Cf(x) = co
{
gx(x, u) : u ∈ M(x)

}
,

where M(x) :=
{
u ∈ M : g(x, u) = f(x)

}
. Deduce Danskin’s formula

f ′(x; v) = max
{〈gx(x, u), v〉 : u ∈ M(x)

}
.
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9.14. Let X be a Banach space, and set f(x) := ‖x‖. If ζ ∈ ∂Cf(x) for
some x �= 0, then ‖ζ‖∗ = 1.

9.15. Let f : R
m × R

n → R be locally Lipschitz, and such that for each
x ∈ R

m, the function y �→ f(x, y) is convex. Then if (θ, ζ) ∈ ∂Cf(x, y),
it follows that ζ ∈ ∂Cf(x, ·)(y). (Problem 9.4 shows that this is false in
general if the partial convexity hypothesis is deleted.)

9.16. We define a continuous function f : [−1, 1] → R as follows:

(i) f(x) = 0 when x = ±2−n, n = 0, 1, 2, . . . .

(ii) f(x) = x when x = ±3/22n, n = 0, 1, 2, 3, . . . .

(iii) f(x) = −x when x = ±3/22n+1, n = 1, 2, 3, . . . .

(iv) Between any two successive values of x cited above, f is affine.

(a) Prove that f is Lipschitz, and that the directional derivatives f ′(0; 1)
and f ′(0;−1) fail to exist.

(b) Show that the subderivate Df(0; 1) (see Problem 9.8) equals −1.

(c) Show that ∂P f(0) = ∅ and ∂Lf(0) = ∂Cf(0) = [−3, 3].

9.17. Let A, C, D be convex w∗-closed bounded subsets of X∗ such that
A + C ⊂ D + C. Prove that A ⊂ D.

9.18. Let F : X → R
n be locally Lipschitz, let A ⊂ R

n be compact. We set

θ(x) := max
α∈A

〈
α, F (x)

〉
.

(a) Show that θ is locally Lipschitz.

(b) If the maximum defining θ(x) is attained at a single α ∈ A, prove
that

∂θ(x) ⊂ ∂
〈
α, F (·)〉(x).

9.19. Let f , gi, hj be locally Lipschitz functions on a Hilbert space X,
i ∈ I := {1, 2, . . . , m}, j ∈ J := {1, 2, . . . , n}, and let C be a closed subset
of X. We assume that x̄ is a local solution of the following optimization
problem:

minimize
{
f(x) : gi(x) ≤ 0 (i ∈ I), hj(x) = 0 (j ∈ J), x ∈ C

}
.

We will prove the Fritz John necessary conditions, namely the following
multiplier rule: There exist λ0 ∈ R, γ ∈ R

m, λ ∈ R
n with

λ0 = 0 or 1, (λ0, γ, λ) �= 0, γ ≥ 0,
〈
γ, g(x̄)

〉
= 0,

such that
0 ∈ ∂C

{
λ0f + 〈γ, g〉 + 〈λ, h〉}(x̄) + NL

C (x̄).



9 Problems on Chapter 2 101

(a) We may assume that C is bounded, that f is globally Lipschitz and
bounded below, and that x̄ is a global solution. We set

A :=
{
(λ0, γ, λ) =: α ∈ R×R

m×R
n : λ0 ≥ 0, γ ≥ 0,

∥∥(λ0, γ, λ)
}∥∥ = 1

}
.

For ε > 0 fixed, we define

Fε(x) :=
(
f(x) − f(x̄) + ε, g(x), h(x)

)
, θε(x) := max

α∈A

〈
α, Fε(x)

〉
.

Then θε > 0 on C, and θε(x̄) = ε.

(b) There exists xε ∈ C ∩ B(x̄;
√

ε) and a constant K such that

0 ∈ ∂Lθε(xε) + K ∂LdC(xε) + 4
√

εB.

(Hint. Invoke the Minimization Principle Theorem 1.4.2.)

(c) There exists αε ∈ A such that

0 ∈ ∂C

〈
αε, Fε(·)

〉
(xε) + K ∂LdC(xε) + 4

√
εB.

(Hint. See the previous problem.)

(d) Pass to the limit as ε ↓ 0.

9.20. Let X and Y be Banach spaces and A : X → Y a continuous linear
operator. Let Ω and Z be closed convex subsets of X and Y , respectively,
and consider for each y in Y the problem:

minimize f(x) : x ∈ Ω, Ax ∈ Z + y,

where f : X → R is given. Let V (y) denote the value of this problem for a
given y.

Now suppose that there exists a bounded subset K of X such that f is
Lipschitz on K, and such that for all y sufficiently near 0, we have

x ∈ Ω, Ax ∈ Z + y =⇒ x ∈ K.

(a) If the condition 0 ∈ int{AΩ − Z} is satisfied, then V (·) is Lipschitz
near 0.

(b) If in addition x̄ is a solution of the problem obtained when y = 0,
then there exist ζ ∈ ∂f(x̄) and θ ∈ ∂V (0) such that

−ζ + A∗θ ∈ NΩ(x̄) and θ ∈ −NZ(Ax̄).

(Hint. For any x in Ω and z in Z, we have

V (Ax − z) ≤ f(x).)
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3
Special Topics

Evidemment, évidemment
On danse encore
Sur les accords
Qu’on aimait tant....
Mais pas comme avant.

—Michel Berger et France Gall, Evidemment

In this chapter we study a number of different issues, each of interest in
its own right. All the results obtained here build upon, and in some cases
complement, those of the preceding chapters, and several of them address
problems discussed in the Introduction. This is the case, for example, of
the first section on constrained optimization. Some of the results of §§5 and
6 will be called upon in Chapter 4.

1 Constrained Optimization and Value Functions

Consider the problem of minimizing f(x) over those points x satisfying
h(x) = 0, where f : R

n → R and h : R
n → R

m are given (let us say smooth)
functions. As we did in Chapter 0, let us associate with this single problem
in constrained optimization a family of related problems P (α) parametrized
by α ∈ R

m:

Problem P (α) : minimize f(x) subject to h(x) + α = 0.
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The value function V (·) associated with this scheme is the function whose
value at α is the minimum (or infimum) in the problem P (α):

V (α) := inf
{
f(x) : h(x) + α = 0}.

In general, V will take values in [−∞, ∞], the value +∞ corresponding to
cases in which the feasible set for P (α), i.e., the set

Φ(α) :=
{
x ∈ R

n : h(x) + α = 0
}
,

is empty.

As we pointed out in Chapter 0, the very definition of V implies that for any
x ∈ R

n we have f(x) ≥ V
(−h(x)

)
. If Σ(α) denotes the (possibly empty)

set of solutions to P (α) (i.e., those x ∈ Φ(α) such that V (α) = f(x)), then
equality holds in the preceding for any x0 ∈ Σ(0). Thus, if V ′(0) exists, we
derive the conclusion

f ′(x0) + ∇V (0)∗h′(x0) = 0,

that is to say, the Lagrange Multiplier Rule. (Our convention is to identify
h′(x0) with the m×n Jacobian matrix; the gradient of V , ∇V , is an m×1
column vector, as an element of R

m; ∗ denotes transpose.) As we have
said, V may not be differentiable at 0, so that this line of reasoning, while
attractive, is problematic. A key to a more realistic approach is to observe
that the argument above can be salvaged if we possess a vector ζ belonging
to the proximal subdifferential of V at 0, ∂P V (0). Let us see why.

The proximal subgradient inequality (Theorem 1.2.5) asserts that for some
σ ≥ 0, for all α sufficiently near 0, we have

V (α) − V (0) + σ‖α‖2 ≥ 〈ζ, α〉.
Our given point x0 ∈ Σ(0) satisfies f(x0) = V (0). If x is sufficiently near x0,
then h(x) is close to h(x0) = 0, and so the choice α = −h(x) is legitimate
in the preceding inequality. Finally, observe again that f(x) ≥ V

(−h(x)
)
.

Substituting into the proximal subgradient inequality and rearranging leads
to

f(x) +
〈
ζ, h(x)

〉
+ σ
∥∥h(x)

∥∥2 ≥ f(x0),

an inequality which holds for all x near x0. This amounts to saying that
the function

x �→ f(x) +
〈
ζ, h(x)

〉
+ σ
∥∥h(x)

∥∥2
admits a local minimum at x = x0, whence

f ′(x0) + ζ∗h′(x0) = 0.

We recover the Multiplier Rule in terms similar to the above, but, with
V ′(0) replaced by any element ζ of ∂P V (0).
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An important objection persists, however, for there is no guarantee that
∂P V (0) is nonempty. The theorem below deals with this contingency by
invoking the Proximal Density Theorem to find points αi near 0 at which
∂P V (αi) �= ∅, and passing to the limit as αi → 0. This approach requires
only that V (·) be lower semicontinuous, which (unlike differentiability!) is
easy to guarantee a priori. For this purpose we introduce the following
growth hypothesis:

1.1. Growth Hypothesis. For every r, s ∈ R, the following set is
bounded : {

x ∈ R
n : f(x) ≤ r,

∥∥h(x)
∥∥ ≤ s

}
.

1.2. Exercise. Under Growth Hypothesis 1.1, prove the following
facts:

(a) V (α) < ∞ precisely when Φ(α) �= ∅, and in that case Σ(α) is
nonempty.

(b) V : R
m → (−∞, ∞] is lower semicontinuous, and so V ∈ F(Rm)

if V is somewhere finite.

We will see presently how the following theorem is the generator of neces-
sary conditions and solvability results.

1.3. Theorem. Let f and h be C1, let Growth Hypothesis 1.1 hold, and
suppose V (0) < +∞. Then there exists a sequence {αi} converging to 0,
with V (αi) → V (0), and points ζi ∈ ∂P V (αi), xi ∈ Σ(αi), such that

f ′(xi) + ζ∗
i h′(xi) = 0, i = 1, 2, . . . .

Proof. We use Theorem 1.3.1 to deduce the existence of a sequence {αi}
such that αi → 0, V (αi) → V (0), and such that ∂P V (αi) �= ∅. Pick ζi ∈
∂P V (αi) and xi ∈ Σ(αi) (this set is nonempty by Exercise 1.2). Then, as
in the argument presented above, the proximal subgradient inequality for
V at αi translates to the condition

f(x) +
〈
ζi, h(x)

〉
+ σi

∥∥h(x) − h(xi)
∥∥2 ≥ f(xi) + 〈ζi, αi〉

for all x near xi. Setting the derivative equal to 0 gives the final conclusion
of the theorem.

The question now becomes that of passing to the limit in the context of
the sequences provided by the theorem. How we proceed will be condi-
tioned by the specific goal we have in mind. Suppose to begin with that
we require information on the sensitivity of the problem P (0) with respect
to perturbations of the equality constraint. This might arise, for example,
from a numerical algorithm which, applied to P (0), can be shown to yield a
solution not to P (0) itself, but to a perturbed problem P (α). The question
then is: How different is V (α) from V (0)? Differential information about
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V at 0 becomes relevant. To state a result along these lines, we introduce
the multiplier set M(x) corresponding to x:

M(x) :=
{
ζ ∈ R

m : f ′(x) + ζ∗h′(x) = 0
}
.

The hypotheses of Theorem 1.3 remain in force.

1.4. Corollary. Suppose that for every x ∈ Σ(0), the Jacobian h′(x) is of
maximal rank. Then V (·) is Lipschitz near 0, and we have

∅ �= ∂LV (0) ⊂
⋃

x∈Σ(0)

M(x).

Proof. We consider the sequences provided by the theorem, and deduce
from the conditions f(xi) → V (0), h(xi) = αi → 0 that, in light of Growth
Hypothesis 1.1, the sequence {xi} is bounded. We extract a subsequence
converging to a limit x0, without relabeling. It follows from the continuity
of f and h that f(x0) = V (0), h(x0) = 0, whence x0 ∈ Σ(0). Now extract
a further subsequence to arrange either ‖ζi‖ → ∞ or else ζi → ζ0 ∈ R

m.
Let us immediately dispose of the first possibility: Divide across by ‖ζi‖ in
the equation

f ′(xi) + ζ∗
i h′(xi) = 0,

take a further subsequence to arrange to have ζi/‖ζi‖ converge to a (nec-
essarily nonzero) limit λ ∈ R

m, and arrive at λ∗h′(x0) = 0, contradicting
the maximal rank hypothesis. Thus {ζi} is necessarily bounded; the arbi-
trariness of this sequence of proximal subgradients (having V (αi) → V (0))
implies that for some ε > 0, for some K, for all α ∈ B(0, ε) for which∣∣V (α) − V (0)

∣∣ < ε and for all ζ ∈ ∂P V (α), we have ‖ζ‖ ≤ K. This is a
proximal criterion guaranteeing that V is Lipschitz on a neighborhood of
0 (Problem 1.11.11), as stated. To conclude the proof, observe that any
ζ0 ∈ ∂LV (0) is the limit of a sequence ζi as above, and that we have, along
the sequence,

f ′(xi) + ζ∗
i h′(xi) = 0.

It suffices to pass to the limit to see that ζ0 ∈ M(x0).

Remark. We should not expect an exact formula for ∂LV in terms of
multipliers, since there is in general a real distinction between actual mini-
mization (as measured by V ) and stationarity conditions (provided by mul-
tipliers). In the “fully convex” case of the problem the distinction vanishes,
and the formula becomes exact; see the end-of-chapter problems.

Given a particular solution x0 to P (0), it is not clear at first glance that
Corollary 1.4 will imply the Multiplier Rule, namely that M(x0) �= ∅. Yet
it does, as we now see.
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1.5. Exercise.

(a) Let x0 solve P (0), where h′(x0) has maximal rank. Prove that
M(x0) �= ∅. (Hint. Modify the problem by adding ‖x − x0‖2

to f , so that x0 becomes the unique solution to P (0); How is
M(x0) modified?)

(b) Show that the rank hypothesis cannot be deleted by considering
n = m = 1, f(x) = x, h(x) = x2.

Another issue that comes to mind is that of relaxing the smoothness hy-
pothesis on f and h. An analysis of the argument used to prove Corol-
lary 1.4 shows that an extension to nonsmooth data would hinge upon
being able to pass to the limit in the relation

0 ∈ ∂P

{
f(·) +

〈
ζi, h(·)〉}(xi).

Here is the required fact.

1.6. Exercise. Let θ : R
n → R

k be locally Lipschitz, and let {λi}
in R

k and {xi} in R
n be sequences converging to λ and x, respec-

tively. Suppose that 0 ∈ ∂L

{〈λi, θ〉(·)}(xi) for each i. Prove that
0 ∈ ∂L

{〈λ, θ〉(·)〉(x). (Hint. Proposition 1.10.1.)

We now redefine the multiplier set M(x) for nonsmooth data as the set
of those ζ ∈ R

m for which 0 ∈ ∂L

{
f(·) +

〈
ζ, h(·)〉}(x). We say that x is

normal provided that 0 ∈ ∂L

〈
ζ, h(·)〉(x) implies ζ = 0 (note that this is

equivalent to the rank of h′(x) being maximal if h is C1). Otherwise we call
x abnormal. Then, upon noting that Exercise 1.2 requires only continuity
of f and h, and calling upon Exercise 1.6 at a certain point, our sequential
argument yields the following analogue of Corollary 1.4, whose detailed
proof is left as an exercise.

1.7. Theorem. Let f and h be locally Lipschitz, and let Growth Hypoth-
esis 1.1 hold. Suppose that V (0) < ∞, and that every x ∈ Σ(0) is normal.
Then V (·) is Lipschitz near 0, and

∅ �= ∂LV (0) ⊂
⋃

x∈Σ(0)

M(x).

This can be used just as in the smooth case (i.e., in Exercise 1.5(a)) to
deduce the multiplier rule for a given solution x0 in the case of locally
Lipschitz data. The result is often stated in an equivalent form without
the normality hypothesis, but with a conclusion that holds in one of two
alternative forms, abnormal or normal, as in the following:

1.8. Exercise. Let x0 solve P (0), where f and h are locally Lips-
chitz and Growth Hypothesis 1.1 holds. Then there exists (λ0, ζ) ∈
R × R

m with (λ0, ζ) �= (0, 0) and λ0 = 0 or 1, such that

0 ∈ ∂L

{
λ0f(·) +

〈
ζ, h(·)〉}(x0).
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A result such as Theorem 1.7 incorporates solvability information: Since
V (·) is Lipschitz near 0, therefore V (α) is finite for α near 0, and so the
feasible set Φ(α) is nonempty for α near 0. That is to say, for α near 0
the equation h(x) = −α admits at least one solution. The next theorem
improves on this somewhat. Notice that optimization plays no role in its
formulation; however, the proof is in essence an appeal to Theorem 1.7.

1.9. Theorem. Let f and h be locally Lipschitz. Suppose that x0 is a
normal point satisfying h(x0) = 0. Then for some K, for all α suffi-
ciently near 0, the equation h(x) + α = 0 admits a solution xα satisfying
‖xα − x0‖ ≤ K‖α‖.

Proof. Consider the problem P (α) of minimizing ‖x−x0‖ subject to h(x)+
α = 0. Clearly x0 is the unique solution of P (0), and Growth Hypothesis 1.1
is satisfied. Apply Theorem 1.7, and let K be a Lipschitz constant for V (·)
in a neighborhood of 0, say B(0; ε). Then, if ‖α‖ < ε and if xα is a solution
to P (α), we have h(xα) + α = 0 and

‖xα − x0‖ = V (α) ≤ V (0) + K‖α‖ = K‖α‖

as required.

Some remarks on this result are in order. First, note than when h is smooth,
it reduces to a classical corollary of the Implicit Function Theorem: If the
Jacobian matrix h′(x0) is of maximal rank, then h(x) + α = 0 is locally
solvable. We will address the issue of constructing implicit and inverse
functions in §3, in a more general context, as well as how to quantify pre-
cisely the parameters of such a result. Next, observe that even when h is
smooth, the proof of the theorem involves the nonsmooth cost function
f(x) = ‖x − x0‖. A smooth choice such as ‖x − x0‖2 would give only a
weaker (Hölder) bound ‖xα − x0‖ ≤ K‖α‖1/2. Finally, we remark that §3
will give a criterion in terms of the generalized Jacobian of h by which the
normality assumption can be verified more directly.

Inequality Constraints

Besides equality constraints, many optimization problems feature inequal-
ity constraints. Let us consider now the problem of minimizing f(x) subject
to g(x) ≤ 0, where g : R

n → R is given and is locally Lipschitz, along with
f . Much as before, we define P (β) to be the perturbed problem having
constraint g(x) + β ≤ 0, and associate to P (β) the feasible set Φ(β), the
solution set Σ(β), and the value function V (β). The appropriate Growth
Hypothesis is that the set

{
x : f(x) ≤ r, g(x) ≤ s

}
be bounded for each r

and s ∈ R.

The first real difference with the equality case arises when we analyze the
proximal subgradient inequality for V . Let γ ∈ ∂P V (0), for example, and
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let x0 ∈ Σ(0). Then, as before,

V (β) − V (0) + σ|β|2 ≥ 〈γ, β〉 = γβ

for all β near 0. Note that V (β) ≤ V (0) for β ≤ 0 (the function V is
nondecreasing by its very nature), so that 〈γ, β〉 ≤ σ|β|2 for all small β ≤ 0.
This implies that γ ≥ 0. Suppose now that g(x0) is strictly less than 0. It
follows that V (β) = V (0) for any β ∈ [g(x0), 0

]
(why?), and the proximal

subgradient inequality yields 〈γ, β〉 ≤ σ|β|2 for all β near 0, so that γ = 0.

To summarize thus far, we have proved that at least one of γ or g(x0) must
be zero, a conclusion which can also be stated in the form γg(x0) = 0.

If g(x0) < 0, then x0 is a local minimum for f , and 0 ∈ ∂Lf(x0). Other-
wise, we proceed to substitute β = −g(x) into the proximal subgradient
inequality, for x near x0. We deduce

f(x) + σ
∣∣g(x)

∣∣2 + γg(x) ≥ f(x0),

with equality when x = x0. This implies 0 ∈ ∂L

{
f(·) + γg(·)}(x0), a con-

dition that actually holds in either of the two cases, since in the first case
we have γ = 0.

These observations lead us to define the new multiplier set M(x) for the
present context as those scalars γ ≥ 0 for which γg(x) = 0 and 0 ∈
∂L

{
f(·) + γg(·)}(x). A point x satisfying g(x) ≤ 0 is now called normal if

γ ≥ 0, γg(x) = 0, 0 ∈ ∂L

{
γg(·)}(x) =⇒ γ = 0.

With these modified definitions, the following result is visually identical to
Theorem 1.7.

1.10. Exercise. With f , g as above, suppose that V (0) < ∞, and
that every x ∈ Σ(0) is normal. Then V (·) is Lipschitz near 0, and

∅ �= ∂LV (0) ⊂
⋃

x∈Σ(0)

M(x).

Here are the counterparts of the necessary conditions (Exercise 1.8) and
the solvability consequences (Theorem 1.9) for the inequality case being
considered.

1.11. Exercise. Let x0 solve P (0), where f and g are locally Lips-
chitz and the (modified) Growth Hypothesis holds. Then there exist
(λ0, γ) not both 0, with λ0 = 0 or 1 and γ ≥ 0, such that

γg(x0) = 0 and 0 ∈ ∂L

{
λ0f(·) + γg(·)}(x0).
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1.12. Exercise. Let f and g be locally Lipschitz. Suppose that x0

is a normal point satisfying g(x0) ≤ 0. Then for some K, for all β
sufficiently near 0, the inequality g(x) + β ≤ 0 admits a solution xβ

satisfying ‖xβ − x0‖ ≤ K max{0, β}.

1.13. Exercise. Show that for n = 1, x0 = 0, the function h(x) :=
−|x| is not normal in the sense of the word that prevails in The-
orem 1.9, but that the same function g(x) := −|x| is normal as
the term is employed in Exercise 1.12. Note that the conclusion of
Exercise 1.12 holds while that of Theorem 1.9 fails.

The general case of mixed equality and inequality constraints is that of
minimizing f(x) over the points x ∈ R

n satisfying h(x) = 0, g(x) ≤ 0,
where h : R

n → R
m and g : R

n → R
p are given functions and where a

vector inequality such as g(x) ≤ 0 is understood component-wise. We will
assume that all these functions are locally Lipschitz, and that the set

{
x ∈ R

n : f(x) ≤ r, g(x) ≤ s,
∥∥h(x)

∥∥ ≤ t
}

is bounded for each r, t in R, and s in R
p. Let P (α, β) denote the problem

of minimizing f(x) subject to h(x) + α = 0, g(x) + β ≤ 0, and let V (α, β)
be the corresponding value function.

The Lagrangian of the problem is the function L : R
n × R

p × R
m → R

defined by
L(x, γ, ζ) := f(x) +

〈
γ, g(x)

〉
+
〈
ζ, h(x)

〉
.

For any point x feasible for P (0, 0), the set M(x) of multipliers for x consists
of those (γ, ζ) ∈ R

p × R
m satisfying

γ ≥ 0,
〈
γ, g(x)

〉
= 0, 0 ∈ ∂LL(·, γ, ζ)(x).

The point x is now called normal if

γ ≥ 0,
〈
γ, g(x)

〉
= 0,

0 ∈ ∂L

{〈
γ, g(·)〉+

〈
ζ, h(·)〉}(x) =⇒ γ = 0, ζ = 0,

and otherwise is called abnormal. We suppose that V (0, 0) < ∞. In light
of the preceding, the genesis of the following theorem should be clear. Its
detailed proof is a substantial exercise.

1.14. Theorem.

(a) If every x ∈ Σ(0, 0) is normal, then V is Lipschitz near (0, 0) and we
have

∅ �= ∂LV (0, 0) ⊂
⋃

x∈Σ(0,0)

M(x).

(b) If x is any solution to P (0, 0), then either x is abnormal or else
M(x) �= ∅.
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1.15. Corollary. Let x0 be a point satisfying h(x0) = 0, g(x0) ≤ 0, and
suppose that x0 is normal. Then for some K > 0, for all α and β near 0,
there exists a point xα,β such that

h(xα,β) = 0, g(xα,β) ≤ 0, ‖xα,β − x0‖ ≤ K

(
‖α‖ +

p∑
i=1

max{0, βi}
)

.

We remark that the value function approach illustrated above has proven
to be a robust and effective line of attack for many other more complex
optimization problems than the finite-dimensional ones considered here,
including a variety of problems in control theory.

2 The Mean Value Inequality

In this section we will prove a “multidirectional” Mean Value Theorem, a
result that is novel even in the context of smooth multivariable calculus, and
one that is a cornerstone of nonsmooth analysis. It is instructive to begin
by recalling the statement of the classical Mean Value Theorem, which
plays a fundamental role in analysis by relating the values of a function to
its derivative at an intermediate point. For the purpose of comparisons to
come, it is also worth noting the optimization-based proof of this familiar
result. Recall that given two points x and y ∈ X, the open line segment
connecting them is denoted (x, y):

(x, y) :=
{
tx + (1 − t)y : 0 < t < 1

}
.

If t = 0 and t = 1 are allowed, we obtain the closed line segment [x, y].
Throughout this section, X is a Hilbert space.

2.1. Proposition. Suppose x, y ∈ X and that f ∈ F is Gâteaux differen-
tiable on a neighborhood of [x, y]. Then there exists z ∈ (x, y) such that

f(y) − f(x) =
〈
f ′

G(z), y − x
〉
. (1)

Proof. Define ġ : [0, 1] → R by

g(t) := f
(
ty + (1 − t)x

)− tf(y) − (1 − t)f(x).

Then g is continuous on [0, 1], differentiable on (0, 1), and satisfies g(0) =
g(1) = 0. It follows that there exists a point t̄ ∈ (0, 1) that is either a
maximum or a minimum of g on [0, 1], and thus satisfies g′(t̄) = 0. We cal-
culate g′(t̄) by referring directly to the definition of the Gâteaux derivative
at z := t̄y + (1 − t̄)x = x + t̄(y − x), and conclude that

0 = g′(t̄) =
〈
f ′

G(z), (y − x)
〉− (f(y) − f(x)

)
.

Hence (1) holds.
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A typical application of the Mean Value Theorem is to deduce monotonic-
ity. For example: suppose that

〈
f ′

G(z), y −x
〉 ≤ 0 for all z ∈ (x, y). Then it

follows immediately that f(y) ≤ f(x). In this, and in fact in most applica-
tions, it suffices to invoke the Mean Value Theorem in its inequality form;
i.e., the form in which (1) is replaced by

f(y) − f(x) ≤ 〈f ′
G(z), y − x

〉
.

When f is nondifferentiable, the inequality form provides the appropriate
model for generalization. To illustrate, consider the function f(x) := −|x|
on R. There exists z ∈ (−1, 1) and ζ ∈ ∂P f(z) such that

0 = f(1) − f(−1) ≤ 〈ζ, 1 − (−1)
〉

= 2ζ,

but equality (i.e., ζ = 0) never holds. In a nonsmooth setting, it turns out
as well that some tolerance must be present in the resulting inequality. For
example, if f(x1, x2) := −|x2|, then f(−1, 0) = f(1, 0), but the difference
(0) between these two values of f cannot be estimated by ∂P f(z) for any
z on the line segment between (−1, 0) and (1, 0), since ∂P f(z) is empty for
all such z. We will need to allow z to stray a bit from the line segment.

Besides nondifferentiability, the Mean Value Inequality that we will present
possesses a novel, perhaps surprising feature: multidirectionality ; i.e., an es-
timate that is maintained uniformly over many directions. This new aspect
greatly enhances the range of applications of the result, even in a smooth
setting. Let us describe it in a particular two-dimensional case, in which we
seek to compare the value of a Gâteaux differentiable continuous function
f at (0, 0) to the set of its values on the line segment

Y :=
{
(1, t) : 0 ≤ t ≤ 1

}
.

For each t ∈ [0, 1], the usual Mean Value Theorem applied to the two points
(0, 0) and yt := (1, t) asserts the existence of a point zt lying in the open
segment connecting (0, 0) and yt such that

f(yt) − f(0) ≤ 〈f ′
G(zt), yt

〉
.

We deduce

min
y∈Y

(
f(y) − f(0)

) ≤ 〈f ′
G(zt), yt

〉
. (2)

The new Mean Value Inequality asserts that for some z in the triangle
which is the convex hull of {0} ∪ Y , we have

min
y∈Y

(
f(y) − f(0)

) ≤ 〈f ′
G(z), yt

〉 ∀t ∈ [0, 1]. (3)

While these conclusions appear quite similar, there is an important differ-
ence: (3) holds for the same given z, uniformly for all yt, in contrast to (2),
where zt depended on yt.
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To further underline the difference, consider now the case in which Y is the
closed unit ball B in X. For a continuous Gâteaux differentiable function
f , the new Mean Value Inequality asserts that for some z ∈ B, we have

inf
B

f − f(0) ≤ 〈f ′
G(z), y

〉 ∀y ∈ B.

Assume now that ‖f ′
G‖ ≥ 1 on B. Then, taking y = −f ′

G(z)/‖f ′
G(z)‖ in

the inequality leads to
inf
B

f − f(0) ≤ −1

(this is where we exploit the uniformity of the conclusion). Applied to −f ,
the same reasoning yields

sup
B

f − f(0) ≥ 1,

whence
sup
B

f − inf
B

f ≥ 2.

The reader is invited to ponder how the usual Mean Value Theorem is
inadequate to yield this conclusion. Further, let us note that the failure of
f ′ to exist even at a single point can make a difference and will need to be
taken account of: Witness f(x) := ‖x‖, for which we have

sup
B

f − inf
B

f = 1,

in contrast to the above, even though
∥∥f ′(x)

∥∥ = 1 for all x �= 0.

A Smooth Finite-Dimensional Version

The general theorem that we will present features nonsmoothness, infinite
dimensions, and multidirectionality. The structure of its proof can be con-
veyed much more easily in the absence of the first two factors. Accordingly,
we will begin by proving a version of the theorem for a differentiable func-
tion on R

n. A preliminary result we will require is the following.

2.2. Proposition. Suppose Y ⊂ X is closed and convex, that f ∈ F at-
tains its minimum over Y at ȳ, and that f has directional derivatives in
all directions at ȳ. Then

f ′(ȳ; y − ȳ) ≥ 0 ∀y ∈ Y. (4)

In particular, if f is Gâteaux differentiable at ȳ, then
〈
f ′

G(ȳ); y − ȳ
〉 ≥ 0 ∀y ∈ Y.
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Proof. Let y ∈ Y , and define g : [0, 1] → R by g(t) = f
(
ȳ + t(y − ȳ)

)
. Note

that ȳ + t(y − ȳ) = ty + (1 − t)ȳ belongs to Y for each t ∈ [0, 1], since Y
is convex. Since ȳ minimizes f over Y , we have g(0) ≤ g(t) for all t. Thus
by letting t ↓ 0 and using the assumption that the directional derivative
f ′(ȳ, y − ȳ) exists, we conclude

0 ≤ lim
t↓0

g(t) − g(0)
t

= f ′(ȳ; y − ȳ).

Therefore (4) holds, since y ∈ Y is arbitrary.

For Y ⊂ X and x ∈ X, we denote by [x, Y ] the convex hull of {x} ∪ Y :

[x, Y ] :=
{
tx + (1 − t)y : t ∈ [0, 1], y ∈ Y

}
. (5)

In particular, if Y = {y}, then [x, Y ] is simply the closed line segment
connecting x and y. Note that below we admit the possibility that x ∈ Y .

2.3. Theorem. Suppose Y ⊂ R
n is closed, bounded, and convex. Let x ∈

R
n, and let f ∈ F be Gâteaux differentiable on a neighborhood of [x, Y ].

Then there exists z ∈ [x, Y ] such that

min
y′∈Y

f(y′) − f(x) ≤ 〈f ′(z), y − x
〉 ∀y ∈ Y. (6)

Proof. Set

r := min
y′∈Y

f(y′) − f(x), (7)

and let U be an open neighborhood of [x, Y ] on which f is Gâteaux differ-
entiable. Define g : [0, 1] × U → R by

g(t, y) = f
(
x + t(y − x)

)− rt. (8)

Since g is lower semicontinuous and [x, Y ] is compact, we have r �= −∞
and there exists (t̄, ȳ) ∈ [0, 1] × Y at which g attains its minimum over
[0, 1] × Y . We will show that (6) holds with z given by

z := x + t̄(ȳ − x) ∈ [x, Y ], (9)

unless t̄ = 1, in which case we set z = x. The multidirectional inequality (6)
will be deduced from necessary conditions for the attainment of a minimum.

Let us first assume that t̄ ∈ (0, 1). Then the function

t �→ g(t, ȳ),

attains its minimum over t ∈ [0, 1] at t = t̄, and thus has a vanishing
derivative there. We calculate this derivative using (8) and (9) to conclude

0 =
∂

∂t

∣∣∣∣
t=t̄

g(t, ȳ) =
〈
f ′(z), ȳ − x

〉− r. (10)
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On the other hand, the function

y �→ g(t̄, y),

attains its minimum over y ∈ Y at ȳ. The necessary conditions in Propo-
sition 2.2 state that

〈
∂

∂y

∣∣∣∣
y=ȳ

g(t̄, y), y − ȳ

〉
≥ 0 ∀y ∈ Y. (11)

It is easily calculated using (8) and (9) again that

∂

∂y

∣∣∣∣
y=ȳ

g(t̄, y) = t̄f ′(z).

Substituting this value into (11) and dividing by t̄ > 0 gives us that
〈
f ′(z), y − ȳ

〉 ≥ 0 ∀y ∈ Y. (12)

We now combine (10) and (12) to conclude that

r ≤ 〈f ′(z), ȳ − x
〉

+
〈
f ′(z), y − ȳ

〉
=
〈
f ′(z), y − x

〉
,

which holds for all y ∈ Y . This statement is precisely (6) and finishes the
proof of the theorem in this instance.

The case t̄ = 0 is handled more simply than above. For each (t, y) ∈
(0, 1] × Y , we note from (8) and the definition of a minimum that

f(x) = g(0, ȳ) ≤ g(t, y) = f
(
x + t(y − x)

)− rt. (13)

After dividing (13) by t and rearranging terms, we have for all y ∈ Y that

r ≤ lim
t↓0

1
t

(
f
(
x + t(y − x)

)− f(x)
)

=
〈
f ′(z), y − x

〉
,

since z = x, and this is the same as (6).

Finally we consider the case in which t̄ = 1. We claim g(1, ȳ) = f(x).
Indeed, g(1, ȳ) ≤ g(0, ȳ) = f(x), while on the other hand,

g(1, ȳ) = f(ȳ) − r = f(ȳ) − min
y∈Y

f(y) + f(x) ≥ f(x).

It now follows that f(x) is the minimum value of g on [0, 1] × Y . But
f(x) = g(0, y) for any y ∈ Y , and thus (0, y) is also a minimizer of g. Thus
if t̄ = 1, then we equally could have chosen the minimizer with t̄ = 0, and
we finish by deferring to that case, treated above.
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2.4. Exercise.

(a) Prove that the point z in Theorem 2.3 also satisfies

f(z) ≤ min
w∈[x,Y ]

f(w) + |r|,

where r is given by (7).

(b) Consider the special case of Theorem 2.3 in which n = 2, x =
(0, 0), and

Y =
{
(1, t) : − 1 ≤ t ≤ 1

}
.

Suppose that f(0, 0) = 0 and that f(1, t) = 1 ∀t ∈ [−1, 1].
Prove that some point (u, v) in the triangle [0, Y ] satisfies

fx(u, v) ≥ 1 +
∣∣fy(u, v)

∣∣.
(c) With x and Y as in part (b), and with f(x, y) := x − y + xy,

find all the points z that satisfy the conclusion of Theorem 2.3.

The General Case of the Mean Value Inequality

We now wish to extend the theorem to the case in which Y is a closed,
bounded, convex subset of the Hilbert space X, and f is merely lower
semicontinuous.

The first technical difficulty in proving the theorem in this greater general-
ity is the same as that previously encountered in the proof of the Density
Theorem. Namely, a lower semicontinuous function that is bounded below
may not attain its minimum over a closed bounded set. We may note that
the proof of Theorem 2.3 above is valid in infinite dimensions without mod-
ification if in addition Y is assumed to be compact, or f is assumed to be
weakly lower semicontinuous. This is because these hypotheses imply the
existence of the minimizer (t̄, ȳ). But the additional assumptions are not
actually required to prove the theorem in infinite dimensions, as we will
see. The idea is to follow the above proof but to obtain the minimizer via
a minimization principle (Theorem 1.4.1). However, there is a price to pay
for this device to work effectively: The statement of the result itself needs a
slight modification, a certain slackening of the inequality in the conclusion.
The result is not true without this modification, and it is essentially re-
quired in the proof to avoid the possibility that t̄ = 1. (We may check that
if t̄ = 1, no relevant information is obtained from the necessary conditions.)
In the above proof, the case t̄ = 1 was handled by deferring to the case
t̄ = 0, but after adding the perturbation term, this is no longer possible.

The second technical difficulty arises in replacing derivatives by proximal
subgradients. When f is nondifferentiable, Proposition 2.2 is no longer
available to us, and in the minimization process we have recourse instead
to a smooth penalty term to replace the constraint that z lie in [x, Y ].
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This will now allow the minimizer z to fail to lie in [x, Y ], although it
can be brought arbitrarily near to that set (an example will show that
this tolerance is necessary). Further, the quantity r defined by (7) must be
replaced by one that is more stable under such approximations, namely

r̂ := lim
δ↓0

inf
w∈Y +δB

{
f(w) − f(x)

}
. (14)

2.5. Exercise. If X is finite dimensional, show that the r̂ defined
by (14) reduces to the r defined by (7). (Examples can be adduced
to show that this may fail in infinite dimensions.)

2.6. Theorem (Mean Value Inequality). Let Y be a closed, convex,
bounded subset of X, and let x ∈ dom f , where f ∈ F . Suppose that r̂
defined above is not −∞, and let any r̄ < r̂ and ε > 0 be given. Then there
exist z ∈ [x, Y ] + εB and ζ ∈ ∂P f(z) such that

r̄ < 〈ζ, y − x〉 ∀y ∈ Y.

Further, we can choose z to satisfy

f(z) < inf
[x,Y ]

f + |r̄| + ε.

We remark that the case r̂ = ∞ is not excluded; it can only arise if Y ∩
dom f = ∅.

Proof of the Mean Value Inequality

Proof. Without loss of generality, we assume that x = 0 and f(x) = 0.
Suppose r̄ < r̂ and ε > 0. We will first fix some constants that will be
featured in the estimates to come. The hypotheses of the theorem justify the
existence of such choices. We write ‖Y ‖ for the quantity sup

{‖y‖ : y ∈ Y
}
.

Let r ∈ R and positive constants δ, M , k be chosen so that

r̄ < r < r̂, |r| < |r̄| + ε, (15)
δ ≤ ε and y ∈ Y + δB =⇒ f(y) ≥ r + δ, (16)

z′ ∈ [0, Y ] + δB =⇒ f(z′) ≥ −M, (17)

k >
1
δ2

{
M + |r| + 1 + 2‖Y ‖ + δ

}
. (18)

Now we define g : [0, 1] × X × X −→ (−∞,∞] by

g(t, y, z) := f(z) + k‖ty − z‖2 − tr.

To simplify the notation somewhat, let us set

S := Y × {[0, Y ] + δB
}
,
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and write s = (y, z) for elements in S. We can easily verify that

t �→ inf
s∈S

g(t, s), (19)

is continuous on [0, 1], and thus attains its infimum at some point t̄ ∈ [0, 1].
The choice of a large k value forces t̄ away from 1, which is the assertion
of the first claim.

Claim 1. t̄ < 1.

Proof. Let s = (y, z) ∈ S, and note that if ‖y − z‖ ≤ δ, then f(z) ≥ r + δ
by (16). A lower bound for g(1, s) can be obtained as follows:

g(1, s) = f(z) + k‖y − z‖2 − r

≥
{

f(z) + k‖y − z‖2 − r if ‖y − z‖ ≤ δ,

f(z) + kδ2 − r if ‖y − z‖ > δ,

≥ min
{
r + δ − r, −M +

(
M + |r| + 1

)− r
}

> 0.

On the other hand, we have an upper bound of the function in (19) by
setting t = 0 and noting that

inf
s∈S

g(0, s) ≤ g(0, y, 0) = f(0) + k‖0‖2 = 0. (20)

Thus the infimum of t �→ infs∈S g(t, s) taken over t ∈ [0, 1] cannot occur at
t = 1, and we have t̄ < 1.

We now address the difficulty that the minimum of s �→ g(t̄, s) taken over
s ∈ S may not be attained at any point in S. We resort to a minimization
principle to obtain a minimum of g(t̄, ·) perturbed by a linear function.

Note that g(t̄, ·) ∈ F and is bounded below on the closed bounded set S.
By Theorem 1.4.1, for each small η > 0, there exists ξ := (ξy, ξz) ∈ X × X
and s̄ := (ȳ, z̄) ∈ S so that ‖ξ‖ < η and the function

s �→ g(t̄, s) + 〈ξ, s〉, (21)

attains its minimum over s ∈ S at s̄. Of course ξ and s̄ depend on η, as
does the choice of ζ appearing in the conclusions of the theorem, the latter
being defined as

ζ := 2k(t̄ȳ − z̄) − ξz.

We will see that the conclusions of the theorem hold for these choices of ζ
and z̄, provided that η is chosen sufficiently small.

Claim 2. If η is small enough, we have z̄ ∈ [0, Y ] + δB.
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Proof. Suppose on the contrary that d[0,Y ](z̄) ≥ δ. Observe first that
∣∣〈ξ, s〉∣∣ ≤ η

(
2‖Y ‖ + δ) ∀s ∈ S. (22)

Then since t̄ȳ ∈ [0, Y ], we have by (22) and (17) that

g(t̄, s̄) + 〈ξ, s̄〉 = f(z̄) + k‖t̄ȳ − z̄‖2 − rt̄ + 〈ξ, s̄〉
≥ −M + kδ2 − |r| − η

(
2‖Y ‖ + δ

)
,

which by the choice of k in (18) can be made greater than 1 if η is sufficiently
small. On the other hand, recall that s̄ achieves the infimum in the function
(21). Therefore if η ≤ (2‖Y ‖ + δ)−1/2, we have by (20) and (22)

g(t̄, s̄) + 〈ξ, s̄〉 ≤ g(0, ȳ, 0) + 〈ξ, s̄〉
≤ η
(
2‖ȳ‖ + δ

)
≤ 1/2.

Thus we conclude z̄ ∈ [0, Y ] + δB as claimed.

Claim 3. ζ ∈ ∂P f(z̄).

Proof. Since z �→ f(z)+k‖t̄ȳ−z‖2+〈ξz, z〉 has a minimum over [0, Y ]+δB
at z = z̄, and z̄ is a point in the interior of this set (Claim 2), we have that

ζ = −(k∥∥t̄ȳ − (·)∥∥2 +
〈
ξz, (·)

〉)′(z̄) ∈ ∂P f(z̄).

We next turn to proving the upper bound on f(z̄).

Claim 4. The estimate f(z̄) ≤ infz∈[0,Y ] f(z) + |r| + ε holds, provided η is
small enough.

Proof. Using (22), we calculate

f(z̄) − t̄r ≤ f(z̄) + k‖t̄ȳ − z̄‖2 − t̄r +
〈
ξ, (ȳ, z̄)

〉
+ η
(
2‖Y ‖ + δ

)
= inf

s∈S

{
g(t̄, s) + 〈ξ, s〉}+ η

(
2‖Y ‖ + δ

)

≤ inf
(y,z)∈S

{
f(z) + k‖ty − z‖2 − tr +

〈
ξ, (y, z)

〉}
+ η
(
2‖Y ‖ + δ

)

≤ inf
z∈[0,Y ]

f(z) + max{0,−r} + 2η
(
2‖Y ‖ + δ

)
.

The final inequality is justified since the last infimum is only over z ∈ [0, Y ],
and included in the next to last infimum is the case when ty = z ∈ [0, Y ],
making it therefore an infimum over a larger set. Hence

f(z̄) ≤ inf
z∈[0,Y ]

f(z) + max{t̄, 1 − t̄}|r| + 2η
(
2‖Y ‖ + δ

)

≤ inf
z∈[0,Y ]

f(z) + |r̄| + ε,

provided η is sufficiently small, where the second relation in (15) has been
used.
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Claim 5. Suppose t̄ = 0, and 0 < η <
[
(r − r̄)/6(2‖Y ‖ + δ)

]2. Then
r̄ < 〈ζ, y〉 for all y ∈ Y .

Proof. In the present case with t̄ = 0, the definition of ζ reduces to ζ =
−2kz̄ − ξz. Let us note (using (22)) that

inf
s∈S

g(0, s) ≥ inf
s∈S

{
g(0, s) + 〈ξ, s〉}− η

(
2‖Y ‖ + δ

)

= f(z̄) + k‖z̄‖2 +
〈
ξ, (ȳ, z̄)

〉− η
(
2‖Y ‖ + δ

)
≥ f(z̄) + k‖z̄‖2 − 2η

(
2‖Y ‖ + δ

)
.

(23)

Now we let t := min
{√

η, (r− r̄)/3k(‖Y ‖2+δ)
}

> 0. We have for any y ∈ Y
that

inf
s∈S

g(t, s) ≤ f(z̄) + k‖ty − z̄‖2 − tr. (24)

Since t̄ = 0 by definition provides a minimum of (19), it follows from (23)
and (24) that for all y ∈ Y

0 ≤ inf
s∈S

g(t, s) − inf
s∈S

g(0, s)

≤ k‖ty − z̄‖2 − tr − k‖z̄‖2 + 2η
(
2‖Y ‖ + δ

)
= t
[〈−2kz̄, y

〉− r
]
+ t2k‖y‖2 + 2η

(
2‖Y ‖ + δ

)
= t
[〈

ζ, y
〉− r

]
+ t2k‖y‖2 + t〈ξz, y〉 + 2η

(
2‖Y ‖ + δ

)
≤ t
[〈

ζ, y
〉− r

]
+ t2k‖Y ‖2 + tη‖Y ‖ + 2η

(
2‖Y ‖ + δ

)
.

Dividing through by t and using our choices of t and η, we obtain

〈ζ, y〉 ≥ r − tk‖Y ‖2 − η‖Y ‖ − 2η

t

(
2‖Y ‖ + δ

)
> r̄,

which concludes the proof of this claim.

To handle the situation where t̄ > 0, we first prove an estimate regarding
ȳ.

Claim 6. If η is sufficiently small, then 〈ζ, ȳ〉 > (r + r̄)/2.

Proof. In a manner similar to the beginning of the proof of Claim 5, we
have

inf
s∈S

g(t̄, s) ≥ f(z̄) + k‖t̄ȳ − z̄‖2 − 2η
(
2‖Y ‖ + δ

)
, (25)

and

inf
s∈S

g(1, s) ≤ f(z̄) + k‖(1 − t̄)ȳ + (t̄ȳ − z̄)
∥∥2 − r. (26)
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Recall that t̄ provides an infimum of the function in (21). By subtracting
(25) from (26), we obtain

0 ≤ inf
s∈S

g(1, s) − inf
s∈S

g(t̄, s)

≤ k
∥∥(1 − t̄)ȳ + (t̄ȳ − z̄)

∥∥2 − r − k‖t̄ȳ − z̄‖2 + 2η
(
2‖Y ‖ + δ

)
= (1 − t̄)

[〈
2k(t̄ȳ − z̄), ȳ

〉− r
]
+ 2η

(
2‖Y ‖ + δ

)
.

This in turn implies

〈
2k(t̄ȳ − z̄), ȳ

〉 ≥ r − 2η

1 − t̄

(
2‖Y ‖ + δ

)
.

Consequently we have

〈ζ, ȳ〉 =
〈
2k(t̄ȳ − z̄) − ξz, ȳ

〉
≥ 〈2k(t̄ȳ − z̄), ȳ

〉− η‖Y ‖

≥ r − η

[
2

1 − t̄

(
2‖Y ‖ + δ

)
+ ‖Y ‖

]
.

Hence 〈ζ, ȳ〉 > (r + r̄)/2 if η is chosen small enough.

The proof of the theorem will ensue from the next claim.

Claim 7. If in addition to the requirements on η in all of the earlier claims,
we also have η < t̄(r − r̄)/

(
8‖Y ‖), then

r̄ < 〈ζ, y〉 ∀y ∈ Y.

Proof. We have that the function

y �→ k‖t̄y − z̄‖2 + 〈ξy, y〉,

achieves its infimum over y ∈ Y at y = ȳ. Since Y is convex, we have by
Proposition 2.2 that for all y ∈ Y ,

〈
ζy

t̄
, y − ȳ

〉
≥ −2

η

t̄
‖Y ‖.

Therefore

〈ζ, y − ȳ〉 =
〈
2k(t̄ȳ − z̄) − ξz, y − ȳ

〉
≥ −2

η

t̄
‖Y ‖ − 2η‖Y ‖

≥ −4
η

t̄
‖Y ‖ ≥ r̄ − r

2
.
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Finally, from this and Claim 6 we conclude that for any y ∈ Y that

〈ζ, y〉 ≥ 〈ζ, ȳ〉 − r − r̄

2

>
r + r̄

2
− r − r̄

2
= r̄,

which completes the proof of the theorem.

2.7. Exercise.

(a) Show that if x ∈ Y , then the point z in Theorem 2.6 satisfies
f(z) < f(x) + ε.

(b) Deduce from Theorem 2.6 the (unidirectional) Proximal Mean
Value Theorem: If f ∈ F and x, y ∈ dom f are given, then
for any ε > 0 there exists z ∈ [x, y] + εB such that, for some
ζ ∈ ∂P f(z) we have

f(y) − f(x) < 〈ζ, y − x〉 + ε.

(c) If now the point y in part (b) is not in dom f , deduce that
there are points z arbitrarily near [x, y] admitting proximal
subgradients ζ ∈ ∂P f(z) for which 〈ζ, y − x〉 (and hence ‖ζ‖)
is arbitrarily large.

(d) Let f be Lipschitz on a neighborhood of [x, y]. Prove the exis-
tence of z ∈ [x, y] and ζ ∈ ∂Lf(z) such that

f(y) − f(x) ≤ 〈ζ, y − x〉.

The Decrease Principle

As the first of several applications of the Mean Value Inequality we derive
a result which plays an important role in the next section. To motivate it,
consider a differentiable function f whose derivative at x0 is nonvanishing:
f ′(x0) �= 0. Since x0 cannot therefore be a local minimum of f , we conclude
that for any open ball x0 + ρB around x0, we must have

inf
x∈x0+ρB

f(x) < f(x0).

This fact can be extended locally and quantified, as follows:

2.8. Theorem. Let f ∈ F . Suppose that for some δ > 0 and ρ > 0 we
have the following condition:

z ∈ x0 + ρB, ζ ∈ ∂P f(z) =⇒ ‖ζ‖ ≥ δ.

Then
inf

x∈x0+ρB
f(x) ≤ f(x0) − ρδ.
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Proof. We may suppose that x0 ∈ dom f . We will show that for any s ∈
(0, ρ), for all ε > 0 arbitrarily small, we have

inf
x0+ρB

f ≤ f(x0) − sδ + ε, (27)

a fact which implies the estimate of the theorem. Clearly there is no loss of
generality in assuming that the left side of (27) is finite, since otherwise the
conclusion of the theorem is immediate. Given s ∈ (0, ρ), set Y := x0 +sB,
and observe that the corresponding quantity r̂ defined via (14) satisfies (for
x := x0)

∞ > r̂ ≥ inf
x0+ρB

f − f(x0).

Choose ε ∈ (0, ρ − s), and set r̄ := r̂ − ε. Applying Theorem 2.6 gives

inf
x0+ρB

f − f(x0) ≤ inf
x0+sB

f − f(x0)

≤ r̂ = r̄ + ε

< 〈ζ, su〉 + ε ∀u ∈ B,

where ζ ∈ ∂P f(z) and z ∈ Y +εB = x0+sB+εB ⊂ x0+ρB. By hypothesis,
we have ‖ζ‖ ≥ δ > 0. Choosing u = −ζ/‖ζ‖ in the preceding inequality
therefore gives precisely (27).

Theorem 2.8 implies a hybrid form of Theorems 1.4.1 and 1.4.2, the two
minimization principles proved in Chapter 1.

2.9. Corollary. Let f ∈ F be bounded below, and let x ∈ X, ε > 0 be such
that

f(x) < inf
X

f + ε.

Then for any λ > 0 there exists z ∈ x + λB with f(z) < infX f + ε and
ζ ∈ ∂P f(z) such that ‖ζ‖ < ε/λ.

2.10. Exercise. Prove the corollary. Deduce also that for some σ ≥
0, the function

x′ �→ f(x′) − 〈ζ, x′〉 + σ‖x′ − z‖2

attains a local minimum at x′ = z. Compare this conclusion to those
of Theorems 1.4.1 and 1.4.2. Note also that if f is differentiable
then we get

∥∥f ′(z)
∥∥ ≤ √

ε by taking λ =
√

ε, which improves upon
Exercise 1.4.3.

Strong Versus Weak Monotonicity

Let C be a nonempty compact convex subset of X. A function f is said to
be strongly decreasing relative to C if

∀t > 0, ∀y ∈ x + tC, we have f(y) ≤ f(x).
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We say that f is weakly decreasing relative to C if

∀t > 0 ∃y ∈ x + tC such that f(y) ≤ f(x).

The lower and upper support functions of C, hC(·), and HC(·), respectively,
are defined as follows:

hC(ζ) := min
{〈ζ, c〉 : c ∈ C

}
, HC(ζ) := max

{〈ζ, c〉 : c ∈ C
}
.

The following characterizations of weak and strong decrease foreshadow
certain corresponding properties of control trajectories that figure promi-
nently in Chapter 4.

2.11. Theorem. Let f ∈ F . Then f is strongly decreasing relative to C
iff

HC(ζ) ≤ 0 ∀ζ ∈ ∂P f(x), ∀x ∈ X;

f is weakly decreasing relative to C iff

hC(ζ) ≤ 0 ∀ζ ∈ ∂P f(x), ∀x ∈ X.

Proof. The condition involving HC can be expressed more compactly in
the form

HC

(
∂P f(x)

) ≤ 0 ∀x.

Suppose that this holds, and let y ∈ x+tC for t > 0. We wish to prove that
f(y) ≤ f(x); there is no loss of generality in assuming x ∈ dom f . If y ∈
dom f too, then by the Proximal Mean Value Theorem (Exercise 2.7(b)),
for any ε > 0 we can estimate f(y)−f(x) from above by a term of the form
〈ζ, y − x〉 + ε, ζ ∈ ∂P f(z). But y − x ∈ tC, so that 〈ζ, y − x〉 ≤ HC(ζ) ≤ 0
by assumption. It follows that f(y) ≤ f(x). There remains the possibility
that f(y) = +∞. But then 〈ζ, y − x〉 can be made arbitrarily large by
Exercise 2.7(c), which contradicts HC(ζ) ≤ 0.

For the converse, let f be strongly decreasing and let ζ ∈ ∂P f(x). For any
c ∈ C and t > 0 we then have f(x+tc) ≤ f(x). Combined with the proximal
subgradient inequality for ζ, this implies 〈ζ, c〉 ≤ 0. Thus HC

(
∂P f(x)

) ≤ 0.

We now suppose that hC

(
∂P f(x)

) ≤ 0 ∀x. Let t > 0 be given, and apply
Theorem 2.6 with Y := x + tC (compact) and ε > 0. We obtain

min
x+tC

f − f(x) ≤ 〈ζ, tc〉 + ε ∀c ∈ C.

Now take the minimum over c ∈ C on the right side of this inequality. The
result is

min
x+tC

f − f(x) ≤ thC(ζ) + ε.

Since hC(ζ) ≤ 0 by assumption, and since ε is arbitrary, we deduce the
existence of y ∈ x + tC such that f(y) ≤ f(x); i.e., f is weakly decreasing.
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Now suppose that f is weakly decreasing, and let ζ ∈ ∂P f(x). For each
t > 0 there exists c ∈ C for which f(x + tc) ≤ f(x). Let ti ↓ 0 and extract
a subsequence of the corresponding points ci (without relabeling) so that
they converge to c ∈ C. For all i sufficiently large, the proximal subgradient
inequality gives

0 ≥ f(x + tici) − f(x) ≥ 〈ζ, tici〉 − σ‖tici‖2.

Dividing by ti and passing to the limit yields 〈ζ, c〉 ≤ 0, whence hC(ζ) ≤
0.

2.12. Exercise.

(a) Show that the characterization of weak decrease continues to
hold for a set C which is closed, bounded, and convex (not
necessarily compact) if the function f is assumed to be weakly
lower semicontinuous.

(b) Let X = R
2, and let C =

{
(t, 1 − t) : 0 ≤ t ≤ 1

}
. Under

what condition on f ′(x) is a C1 function f : R
2 → R weakly

decreasing relative to C?

3 Solving Equations

Consider an equation

f(x, α) = 0, (1)

where f is a given function of two variables. It is a familiar consideration
in mathematics to seek to solve this equation for x, while viewing α as a
parameter. Typically this is done in a neighborhood of a given point (x0, α0)
for which (1) is satisfied, and the important issues are these: For a given α
sufficiently near to α0, does there continue to be at least one value of x for
which (1) holds? How does this set of solutions vary with α? When can we
be sure there is a suitably “nice” function x(α) which “tracks” solutions as
α varies; i.e., such that f

(
x(α), α

)
= 0, and x(α0) = x0?

We will develop a simple and powerful way to deal with such issues via
nonsmooth analysis, and in so doing recover some classical results as well
as establish new ones. For a given nonnegative function f , we are interested,
for given α, in the points x ∈ X (a Hilbert space) for which (1) holds, and
we wish to limit attention to just those x lying in a prescribed subset Ω of
X. We define, then, the feasible set Φ(α) as follows:

Φ(α) :=
{
x ∈ Ω: f(x, α) = 0

}
. (2)

The following result is the key to our approach; in its statement, ∂P f(x, α)
refers to the proximal subdifferential of the function x �→ f(x, α).



126 3. Special Topics

3.1. Theorem (Solvability Theorem). Let A be a parameter set, and
suppose that for each α ∈ A, the function x �→ f(x, α) is nonnegative and
belongs to F(X). Suppose that for some δ > 0 and subset V of X, we have
the following nonstationarity condition:

α ∈ A, x ∈ V, f(x, α) > 0, ζ ∈ ∂P f(x, α) =⇒ ‖ζ‖ ≥ δ.

Then for all (x, α) ∈ X × A we have

min
{
d(x; comp V ), d(x; comp Ω), d

(
x; Φ(α)

)} ≤ f(x, α)
δ

. (3)

Proof. If the conclusion is false, then for some (x, α) ∈ X × A, f(x, α) is
finite, and there exists ρ > 0 such that

min
{
d(x; comp V ), d(x; comp Ω), d

(
x; Φ(α)

)}
> ρ >

f(x, α)
δ

.

It follows that

x + ρB ⊂ V, x + ρB ⊂ Ω, d
(
x; Φ(α)

)
> ρ.

Thus we have f(x′, α) > 0 for all x′ ∈ x + ρB. By hypothesis, then, the
proximal subgradients of f(·, α) on the open set x+ρB have norm bounded
below by δ. We invoke the Decrease Principle (Theorem 2.8) to conclude

0 ≤ inf
x′∈x+ρB

f(x′, α) ≤ f(x, α) − ρδ < 0.

This contradiction proves the theorem.

We remark that the context in which the theorem is most often used is that
in which a given point (x0, α0) has been identified at which f = 0, and in
which V and Ω are neighborhoods of x0. Then (3) asserts that

d
(
x; Φ(α)

) ≤ f(x, α)
δ

(4)

whenever f(x, α) is sufficiently small and x is sufficiently near x0. In cases
where f is continuous, we then derive (4) for all (x, α) sufficiently near
(x0, α0). Of course, part of the interest of (4) is that it implies the nonempti-
ness of Φ(α) (since d

(
x,Φ(α)

)
= +∞ when Φ(α) is empty).

The following application of the Solvability Theorem illustrates these re-
marks, together with the reduction of vector-valued equations to a single
scalar one. We consider the equation

F (x, α) = 0, (5)

where F is a mapping from X × M to Y , with M a metric space and Y
another Hilbert space. We assume that some open set U of X exists such
that F is continuous on U×M , and such that the partial derivative F ′

x(x, α)
exists for all (x, α) ∈ U × M , and is continuous there (jointly in (x, α)).
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3.2. Theorem (Graves–Lyusternik). Let (x0, α0) ∈ U × M be a point
satisfying F (x0, α0) = 0, and suppose that F ′

x(x0, α0) is onto:

F ′
x(x0, α0)X = Y.

Let Ω be any neighborhood of x0. Then for some δ > 0, for all (x, α)
sufficiently near (x0, α0), we have

d
(
x; Φ(α)

) ≤ ‖F (x, α)‖
δ

,

where Φ(α) :=
{
x′ ∈ Ω: F (x′, α) = 0

}
.

Proof. By the Open Mapping Theorem of Banach, there exists δ > 0 such
that F ′

x(x0, α0)BX ⊃ 2δBY . Since (x, α) �→ F ′
x(x, α) is continuous, there

exist neighborhoods V and A of x0 and α0 such that the operator norm of
F ′

x(x0, α0) − F ′
x(x, α) is no greater than δ when (x, α) ∈ V × A. For such

(x, α) we have

2δBY ⊂ F ′
x(x0, α0)BX ⊂ F ′

x(x, α)BX +
[
F ′

x(x0, α0) − F ′
x(x, α)

]
BX

⊂ F ′
x(x, α)BX + δBY .

This implies that

F ′
x(x, α)BX ⊃ δBY ∀(x, α) ∈ V × A.

It follows that for any unit vector y in Y , for any (x, α) ∈ V × A, we
have

∥∥F ′
x(x, α)∗y

∥∥ ≥ δ. Indeed, there exists a vector v ∈ BX such that
F ′

x(x, α)v = δy. Then
∥∥F ′

x(x, α)∗y
∥∥ ≥ 〈F ′

x(x, α)∗y, v
〉

=
〈
y, F ′

x(x, α)v
〉

= 〈y, δy〉 = δ,

as claimed.

We are now ready to apply the Solvability Theorem 3.1, with f(x, α) :=∥∥F (x, α)
∥∥. We need to verify the nonstationarity condition of the theorem.

If f(x, α) > 0, then the only possible proximal subgradient of f(·, α) at x
is its derivative there, namely F ′

x(x, α)∗F (x, α)
/∥∥F (x, α)

∥∥ (by the classical
Chain Rule). We have shown above that such a vector has norm at least δ,
as required.

Once the Solvability Theorem has been applied, there remains only to ob-
serve that (3) reduces to the required estimate for all (x, α) sufficiently near
(x0, α0), since then we will have

min
{
d(x; comp V ), d(x; comp Ω)

}
>

f(x, α)
δ

.
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We remark that the conclusion of the theorem subsumes as special cases
stability results with respect to either a parameter change or to a change
in the variable x. If α alone changes (somewhat), then x0 is no longer a
solution to F (x, α) = 0, but is not far from one; if only x changes, then
there is a solution for the original equation which approximates x to the
same extent to which x is infeasible (i.e., ‖F (x, α0)‖). (We had noted the
first of these two properties in a different context in Theorem 1.9.) The
term

∥∥F (x, α)
∥∥ which appears in the estimate given by Theorem 3.2 is

nondifferentiable at (x0, α0), and this is necessarily the case: No term of
the form θ

(‖F (x, α)
∥∥) with θ(0) = 0 and θ differentiable can provide the

estimate, as simple examples show.

A Mixed Equality/Constraint System

The following result will be used in the next theorem, which will illustrate
the use of extended-valued functions f in connection with solvability, as
well as the use of a constraint qualification. This refers to a nondegeneracy
hypothesis on the data incorporating the constraints of the problem, similar
to the normality hypothesis introduced in §3.1.

3.3. Lemma. Let F and (x0, α0) satisfy all the hypotheses of Theorem 3.2,
where we take X and Y finite dimensional. Let S be a closed subset of X
containing x0, and assume in addition that the following constraint quali-
fication holds:

0 ∈ F ′
x(x0, α0)∗y + NL

S (x0) =⇒ y = 0. (6)

Then there exist δ > 0 and neighborhoods V and A of x0 and α0 with the
following property : for all (x, α) ∈ V ×A, for any unit vector y, any vector
ζ belonging to

F ′
x(x, α)∗y + NL

S (x)

satisfies ‖ζ‖ ≥ δ.

Proof. If the assertion is false, then there exist sequences {xi} converging
to x0, {αi} converging to α0, {yi} unit vectors such that, for some sequence
{ζi} converging to 0, we have

ζi ∈ F ′
x(xi, αi)∗yi + NL

S (xi).

We can assume that the sequence yi converges to a limit y0, necessarily a
unit vector too. Since the multifunction x �→ NL

S (x) has closed graph (X
being finite dimensional), we obtain in the limit 0 ∈ F ′

x(x0, α0)y +NL
S (x0),

contradicting the hypothesis (6).

3.4. Theorem. Let (x0, α0) be a solution of the equality/constraint system

F (x, α) = 0, x ∈ S,
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under the hypotheses of Lemma 3.3, and in particular in the presence of the
constraint qualification (6). Then for some δ > 0, for all (x, α) sufficiently
near (x0, α0) having x ∈ S, we have

d
(
x; ΦS(α)

) ≤ ‖F (x, α)‖
δ

,

where ΦS(α) :=
{
x ∈ S : F (x, α) = 0

}
. In particular, ΦS(α) is nonempty

for α sufficiently near α0.

3.5. Exercise.

(a) Prove Theorem 3.4 with the help of Lemma 3.3, setting

f(x, α) :=
∥∥F (x, α)

∥∥+ IS(x)

in the Solvability Theorem and recalling Proposition 1.10.1.

(b) When x0 ∈ int S in the context of Lemma 3.3, show that (6)
holds iff the matrix F ′

x(x0, α0) has maximal rank.

(c) A given function F : R
3 × M → R

2 satisfies the hypotheses of
Theorem 3.2, with

F ′
x(x0, α0) =

[
1 0 0
1 1 −1

]
.

Prove that for every α sufficiently near α0 there exists x =
(x1, x2, x3) in R

3 with x2 ≥ 0, x3 ≥ 0 such that F (x, α) = 0.
In fact, show that we can also require that x2x3 = 0.

Implicit and Inverse Functions

Under additional structural assumptions, the equation F (x, α) = 0 can
be shown to uniquely define x as a function of α (locally); the implicit
function inherits regularity from F . We make the same assumptions as in
Theorem 3.2, but now with X = Y .

3.6. Theorem.

(a) Let F ′
x(x0, α0) be onto and one-to-one. Then there exist neighborhoods

Ω of x0 and W of α0 and a unique continuous function x̂(·) : W → Ω
with x̂(α0) = x0 such that F

(
x̂(α), α

)
= 0 ∀α ∈ W .

(b) If in addition F is Lipschitz in a neighborhood of (x0, α0), then x̂ is
Lipschitz.

(c) If in addition M is a Hilbert space and F (x, α) is C1 (in both vari-
ables) near (x0, α0), then x̂ is C1.
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Proof. It is a well-known consequence of the Closed Graph Theorem that
F ′

x(x0, α0)−1 is a continuous linear operator, and this can be used to show
that F ′

x(x0, α0)∗ is onto (with inverse (F ′
x(x0, α0)−1)∗). Thus for some η >

0, we have F ′
x(x0, α0)∗B ⊃ 2ηB. For some convex neighborhood Ω × N ⊂

U × M of (x0, α0), we have
∥∥F ′

x(x, α) − F ′
x(x0, α0)

∥∥ < η ∀(x, α) ∈ Ω × N.

Now let x, x′ ∈ Ω and α ∈ N , x′ �= x. Then, for any vector θ in B we have,
by the Mean Value Theorem, for some z ∈ [x, x′]:
〈
θ, F (x′, α) − F (x, α)

〉
=
〈
θ, F ′

x(z, α)(x′ − x)
〉

≥ 〈θ, F ′
x(x0, α0)(x′ − x)

〉
+
〈
θ,
(
F ′

x(z, α) − F ′
x(x0, α0)

)
(x′ − x)

〉
≥ 〈F ′

x(x0, α0)∗θ, x′ − x
〉− η‖x′ − x‖

= η‖x′ − x‖,

where θ has been chosen in B to satisfy

F ′
x(x0, α0)∗θ = 2η

(x′ − x)
‖x′ − x‖ .

It follows that
∥∥F (x′, α) − F (x, α)

∥∥ ≥ η‖x′ − x‖ ∀(x, α) ∈ Ω × N. (7)

We now invoke Theorem 3.2 to deduce the existence of a neighborhood
W ⊂ N of α0 such that

Φ(α) :=
{
x ∈ Ω: F (x, α) = 0

} �= ∅ ∀α ∈ W.

It follows from (7) that Φ(α) is a singleton
{
x̂(α)
}

for each α ∈ W , and that
x̂ is the unique function from W to Ω such that F

(
x̂(α), α

)
= 0 ∀α ∈ W .

We now show that x̂(·) is continuous. From (7) we have

η
∥∥x̂(α′) − x̂(α)

∥∥ ≤ ∥∥F (x̂(α′), α′)− F
(
x̂(α), α′)∥∥ =

∥∥F (x̂(α), α′)∥∥,
which tends to 0 as α′ tends to α. This establishes continuity. In addition,
if F is Lipschitz near (x0, α0), then for α and α′ sufficiently near α0 the
last term above satisfies

∥∥F (x̂(α), α′)∥∥ =
∥∥F (x̂(α), α′)− F

(
x̂(α), α

)∥∥ ≤ KdM (α, α′),

for some suitable Lipschitz constant K, where dM is the metric on M . We
deduce that x̂(·) is Lipschitz near α0, proving (b).
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Finally, let M be a Hilbert space and let F be C1 in (x, α). The Taylor
expansion gives

0 = F
(
x̂(α), α

)
=F (x0, α0) + F ′

x(x0, α0)
(
x̂(α) − x0

)
+ F ′

α(x0, α0)(α − α0)

+ o
(
x̂(α) − x0, α − α0

)
,

where

o(x − x0, α − α0)
/∥∥(x − x0, α − α0)

∥∥→ 0 as (x, α) → (x0, α0).

Since x̂(·) is Lipschitz near α0, o
(
x̂(α)−x0, α−α0

)
can be written o(α−α0).

Then we can solve the Taylor expansion explicitly for x̂(α) and deduce from
the resulting expression that x̂(·) is differentiable at α0, with derivative
−F ′

x(x0, α0)−1F ′
α(x0, α0). But this argument holds not just at α0 but at

any α in a neighborhood, whence x̂(·) is C1 near α0.

A special case of the theorem is that of inverse functions:

3.7. Corollary. Let F satisfy the hypotheses of the theorem and have the
form F (x, α) = G(x) − α (so that X = Y = M). Then there exist neigh-
borhoods W of α0 and Λ of x0 and a C1 function x̂ on W such that

G
(
x̂(α)
)

= α ∀α ∈ W, x̂
(
G(x)

)
= x ∀x ∈ Λ.

Proof. The function x̂(·) of the theorem is C1 and satisfies G
(
x̂(α)
)

= α
for α ∈ W , the neighborhood of α0 provided by the theorem. Now pick
Λ ⊂ Ω so that G(x) ∈ W ∀x ∈ Λ. Then, as shown in the theorem, Φ

(
G(x)

)
is a singleton when x ∈ Λ; that is, there is a unique x′ ∈ Ω such that
G(x′) = G(x). But then this x′, namely x̂

(
G(x)

)
, must equal x.

Systems of Mixed Equalities and Inequalities

We consider now the solutions of a parametrized system of the form

h(x) = α, g(x) ≤ β, (8)

where x ∈ X (a Hilbert space), and where the vector (α, β) ∈ R
m × R

p

is the parameter. Let x0 satisfy the system for (α, β) = (0, 0), and let us
suppose that the functions g : X → R

p and h : X → R
m are Lipschitz in a

neighborhood Ω of x0. We set

Φ(α, β) :=
{
x ∈ Ω: system (8) is satisfied}.

3.8. Theorem. Suppose that the following constraint qualification is sat-
isfied at x0:

γ ≥ 0,
〈
γ, g(x0)

〉
= 0, 0 ∈ ∂L

{〈
γ, g(·)〉+

〈
λ, h(·)〉}(x0)

=⇒ γ = 0 and λ = 0.
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Then for some δ > 0, for all x sufficiently near x0, and for all (α, β)
sufficiently near (0, 0), we have

d
(
x; Φ(α, β)

) ≤ 1
δ

max
i,j

{(
gi(x) − βi

)
+,
∣∣hj(x) − αj

∣∣},
where

(
gi(x) − βi

)
+ signifies max

(
gi(x) − βi, 0

)
. In particular, Φ(α, β) is

nonempty for (α, β) near (0, 0).

Proof. We set

f(x, α, β) := max
i,j

{(
gi(x) − βi

)
+,
∣∣hj(x) − αj

∣∣} ≥ 0.

Then x is a solution of (8) iff f(x, α, β) = 0. Note that f is Lipschitz in a
neighborhood of (x0, 0, 0), as observed in Problem 1.11.17.

Lemma. There exist neighborhoods V of x0 and A of (0, 0) and δ > 0 such
that

x ∈ V, (α, β) ∈ A, f(x, α, β) > 0, ζ ∈ ∂P f(x, α, β) =⇒ ‖ζ‖ ≥ δ.

Proof. If this fails to be the case, then there exist sequences {xk},
{
(αk, βk)

}
,

{ζk} such that

xk → x0, (αk, βk) → (0, 0), f(xk, αk, βk) > 0,

ζk ∈ ∂P f(xk, αk, βk), ‖ζk‖ → 0.

The proximal subgradient ζk can be characterized via Problem 1.11.17, for
k large enough so that xk enters some prescribed neighborhood on which
f is Lipschitz in x. Note that in the formula provided there, only the terms(
gi(x) − βi

)
+ and

∣∣hj(x) − αj

∣∣ which are strictly positive can contribute.
Locally, these coincide with gi(x) − βi and ±(hj(x) − αj

)
. The upshot is

that for all k large enough, ζk belongs to the set

∂L

{〈
γk, g(·)〉+

〈
λk, h(·)〉}(xk),

where

γk
i ≥ 0,

〈
γk, g(xk) − βk

〉
= 0,

∑
i

γk
i +
∑

j

|λk
j | = 1.

If we now extract subsequences as required to make each sequence {γk},
{λk} converge, passage to the limit (see Exercise 1.6) produces a nonzero
(γ, λ) with precisely the properties ruled out by the constraint qualification.
This contradiction proves the lemma.

Armed with the lemma, the application of the Solvability Theorem 3.1 is
immediate and gives the required result.
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When the inequalities are absent in (8), it is natural to seek nonsmooth
analogues of the implicit function assertions of Theorem 3.6. We will ex-
amine for illustrative purposes the issue of an inverse function induced by
an equation G(x) = α, which was treated in the case of smooth data in
Corollary 3.7. The solvability aspect is at hand, as a special case of the
preceding theorem:

3.9. Exercise. Let G : X → R
n be Lipschitz on a neighborhood of

the point x0, where G(x0) = α0. Suppose that the following con-
straint qualification holds:

0 ∈ ∂L

〈
ζ, G(·)〉(x0) =⇒ ζ = 0. (9)

Then, for any neighborhood Ω of x0, there exists δ > 0 such that for
all (x, α) sufficiently near (x0, α0) we have

d
(
x; Φ(α)

) ≤ ‖G(x) − α‖
δ

,

where Φ(α) :=
{
x ∈ Ω: G(x) = α

}
.

Show how this reduces to a special case of Theorem 3.2 when G is
C1.

Generalized Jacobians and Inverse Functions

What is required now to deduce the existence of an inverse is a condition
akin to (7) which implies that G is locally one-to-one. A convenient way to
formulate such a condition, which will also turn out to be a more readily
verifiable criterion implying the constraint qualification (9), is in terms of
the generalized Jacobian ∂G, a tool which is applicable when the underlying
space is finite dimensional.

Let X = R
m. We define ∂G(x) as follows:

∂G(x) := co
{

lim
i→∞

G′(xi) : G′(xi) exists, xi → x
}

,

a formula that brings to mind the Generalized Gradient Formula of The-
orem 2.8.1. (We remark that, in keeping with the earlier formula, an ar-
bitrary set of measure 0 can be avoided in calculating ∂G(x), without the
results below being affected.) We identify ∂G(x) with a convex set of n×m
matrices, and we say that ∂G(x) is of maximal rank provided that every
matrix in ∂G(x) is of maximal rank. When n = m, it is alternate terminol-
ogy to say that ∂G(x) is nonsingular.

3.10. Exercise.

(a) Let G : R
m → R

n be Lipschitz near x. Prove that ∂G(x) is com-
pact, convex, and nonempty, where the space of n×m matrices
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is identified with R
nm. Prove that ∂G is upper semicontinuous:

For all ε > 0 there exists r > 0 such that

x′ ∈ x + rB =⇒ ∂G(x′) ⊂ ∂G(x) + εBn×m,

where Bn×m denotes the open unit ball in the space of n × m
matrices.

(b) Show that for any ζ ∈ R
n, we have ∂

〈
ζ, G(·)〉(x) = ζ∗∂G(x).

(c) Calculate ∂G(0) where n = m = 2 and

G(x, y) =
(|x| + y, 2x + |y|),

and show that it is nonsingular.

(d) If G has component functions g1, g2, . . . , gn, show that

∂G(x) ⊂ ∂g1(x) × ∂g2(x) × · · · × ∂gn(x),

and give an example in which strict containment occurs.

3.11. Proposition. Let G : R
n → R

n be Lipschitz near x0, and suppose
that ∂G(x0) is nonsingular. Then the constraint qualification (9) holds, and
for some η > 0, for some neighborhood Ω of x0, we have

∥∥G(x) − G(y)
∥∥ ≥ η‖x − y‖ ∀x, y ∈ Ω.

Proof. Let 0 belong to ∂L

〈
ζ, G(·)〉(x0). Then

0 ∈ ∂
〈
ζ, G(·)〉(x0) = ζ∗∂G(x0)

(by Exercise 3.10). Since ∂G(x0) is nonsingular, we deduce ζ = 0, thereby
verifying the constraint qualification. The next step in the proof requires
the following:

Lemma. There are positive numbers r and η with the following property.
Given any unit vector v ∈ R

n, there is a unit vector w in R
n such that,

whenever x lies in x0 + rB and the matrix M belongs to ∂G(x), then we
have

〈w, Mv〉 ≥ η.

Proof. To see this, let S be the unit sphere in R
n and note that the subset

∂G(x0)S of R
n is compact and does not contain 0. Hence,

d
(
0; ∂G(x0)S

)/
2 =: η > 0.

For some ε > 0 small enough, we will have

d
(
0;
(
∂G(x0) + εBn×n

)
S
)

> η.

Now for some r > 0, for all x ∈ x0+rB, we have ∂G(x) ⊂ ∂G(x0)+εBn×n,
in light of Exercise 3.10, where r is small enough so that G is Lipschitz on
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x0 + rB. Now let any unit vector v be given. It follows from the above that
the convex set

(
∂G(x0) + εBn×n

)
v is distance at least η from 0. By the

Separation Theorem, there exists a unit vector w such that 〈ζ, w〉 ≥ η for
all ζ ∈ (∂G(x0) + εBn×n

)
v, and all the more for any ζ of the form Mv,

M ∈ ∂G(x), x ∈ x0 + rB. This establishes the lemma.

Now let x and y belong to Ω := x0 + rB. We will complete the proof of the
proposition by showing that

∥∥G(x) − G(y)
∥∥ ≥ η‖x − y‖. We may suppose

x �= y. Set

v =
y − x

‖y − x‖ , λ = ‖y − x‖,

so that y = x + λv.

Let π be the plane perpendicular to v and passing through x. The set P of
points x′ in x0 + rB where G′(x′) fails to exist is of measure 0, and hence
by Fubini’s Theorem, for almost every x′ in π, the ray

x′ + tv, t ≥ 0,

meets P in a set of 0 one-dimensional measure. Choose an x′ with the above
property and sufficiently close to x so that x′ + tv lies in x0 + rB for every
t in [0, λ]. Then the function

t → G(x′ + tv)

is Lipschitzian for t in [0, λ] and has almost everywhere on this interval
derivative G′(x′ + tv)v. Thus

G(x′ + λv) − G(x′) =
∫ λ

0
G′(x′ + tv)v dt.

Let w correspond to v in the lemma above. We deduce

w · [G(x′ + λv) − G(x′)
]

=
∫ λ

0
w · [G′(x′ + tv)v

]
dt ≥

∫ λ

0
η dt = λη.

Recalling the definition of λ, we arrive at:∥∥G(x′ + λv) − G(x′)
∥∥ ≥ η‖x − y‖.

This conclusion has been obtained for almost all x′ in a neighborhood of
x. Since G is continuous, the proposition is proved.

We now possess all the necessary components to prove the Lipschitz Inverse
Function Theorem.

3.12. Theorem. If G : R
n → R

n is Lipschitz near x0 and ∂G(x0) is non-
singular, then there exist neighborhoods W of G(x0) and Λ of x0 and a
Lipschitz function x̂ on W such that

G
(
x̂(α)
)

= α ∀α ∈ W, x̂
(
G(x)

)
= x ∀x ∈ Λ.
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3.13. Exercise.

(a) Prove Theorem 3.12.

(b) Show that the theorem fails (even for n = 1) if the hypothesis
that ∂G(x0) be nonsingular is replaced by the condition that
G′(x) be nonsingular whenever it exists.

(c) Confirm the conclusion of the theorem for the example of Ex-
ercise 3.10(c).

4 Derivate Calculus and Rademacher’s Theorem

The first constructs of nonsmooth analysis were put forward by Dini in
the nineteenth century. His well-known derivates were defined for a real-
valued function of a single variable, but the basic idea can be extended
beyond that setting and developed so as to include corresponding notions
of subdifferential, tangent, and normal. We will take a brief look at this
theory now, and relate it to the results of the two preceding chapters. The
setting will be that of a function f ∈ F(Rn); for x ∈ dom f , we define the
subderivate of f at x in the direction v, denoted Df(x; v), as follows:

Df(x; v) := lim inf
w→v
t↓0

f(x + tw) − f(x)
t

.

4.1. Exercise.

(a) If f is Lipschitz of rank K near x, then Df(x; v) agrees with

lim inf
t↓0

f(x + tv) − f(x)
t

,

and we have Df(x; 0) = 0. The function v �→ Df(x; v) is Lips-
chitz of rank K on R

n, and Df(x; v) ≤ f◦(x; v). Equality holds
for all v iff f is regular at x.

(b) In general, Df(x; 0) is either 0 or −∞, and we have Df(x; λv) =
λDf(x; v) for any λ > 0. Give an example of a continuous
f : R → R having Df(0; 0) = −∞.

(c) If g ∈ F(Rn) has x ∈ dom g, then

D(f + g)(x; v) ≥ Df(x; v) + Dg(x; v)

(interpreting ∞ − ∞ as −∞).

(d) If ζ ∈ ∂P f(x), then Df(x; v) ≥ 〈ζ, v〉 ∀v.

(e) The function v �→ Df(x; v) is lower semicontinuous.

The following theorem is the key to relating derivate calculus to proximal
analysis.
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4.2. Theorem (Subbotin). Let f ∈ F(Rn), x ∈ dom f , and let E be a
nonempty compact convex subset of R

n. Suppose that for some scalar ρ we
have

Df(x; e) > ρ ∀e ∈ E.

Then, for any ε > 0, there exist z ∈ x + εB and ζ ∈ ∂P f(z) such that
∣∣f(z) − f(x)

∣∣ < ε, 〈ζ, e〉 > ρ ∀e ∈ E.

Proof. We claim that for all t > 0 sufficiently small, we have

f(x + te + t2u) − f(x) > ρt + t2 ∀e ∈ E, ∀u ∈ B. (1)

Were this not so, there would be sequences ti ↓ 0, ei ∈ E, and ui ∈ B such
that

f(x + tiei + t2i ui) − f(x)
ti

≤ ρ + ti.

Invoking the compactness of E, there is a subsequence (we eschew rela-
beling) of ei converging to a point e0 ∈ E. Then ei + tiui converges to e0
as well, and we deduce Df(x; e0) ≤ ρ, contradicting the hypothesis and
establishing the claim.

Now pick t > 0 so that (1) holds, so that tE+t2B ⊂ εB, so that t < ε/(2ρ),
and finally also small enough so that f(x′) > f(x)−ε for all x′ ∈ x+tE+t2B
(this is possible because f is lower semicontinuous). We will proceed to
apply Theorem 2.6, the Mean Value Inequality, for Y := x+tE. We remark
that in light of (1), the r̂ of the theorem satisfies r̂ ≥ ρt + t2, so r̄ = ρt is a
suitable choice in applying the theorem. We pick for the ε of the theorem
any positive ε′ < min[ε/2, t2]. The point z provided by the theorem lies in
[x, Y ] + ε′B, which gives

z ∈ x + tE + t2B ⊂ x + εB,

whence f(z) > f(x) − ε by choice of t. Also, Theorem 2.6 asserts

f(z) < f(x) + r̄ + ε′ < f(x) + ρt +
ε

2
< f(x) + ε.

Thus
∣∣f(z) − f(x)

∣∣ < ε as desired. Finally we have, for the designated ζ in
∂P f(z),

〈ζ, te〉 > r̄ := ρt ∀e ∈ E,

which is the other assertion of the theorem.

4.3. Exercise. Show that the theorem is false if the convexity of E
is deleted from the hypotheses, by considering X = R

2, f(u) := ‖u‖,
x = 0, E = unit circle.
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The D-Subdifferential

The classical formula f ′(x; v) =
〈∇f(x), v

〉
encapsulates the duality be-

tween derivate (directional derivative) constructions and differential ones.
Motivated by this, as well as by the duality between f◦(x; ·) and ∂f(x) ob-
served in Chapter 2, we proceed to define a subdifferential that corresponds
to the subderivate Df(x; ·). We say that ζ is a directional subgradient or
D-subgradient of f at x provided that x ∈ dom f and

Df(x; v) ≥ 〈ζ, v〉 ∀v ∈ R
n.

We denote the set of all such ζ by ∂Df(x) and refer to it as the D-
subdifferential. It follows from Exercise 4.1(d) that ∂Df(x) contains ∂P f(x),
and so must be nonempty on a dense subset of dom f by the Proximal Den-
sity Theorem 1.3.1.

4.4. Exercise.

(a) Show that ∂Df(x) is closed and convex, and reduces to
{
f ′(x)

}
if f is (Fréchet) differentiable at x.

(b) Prove that ∂Df(x) is bounded if f is Lipschitz near x.

(c) We have

∂D(f1 + f2)(x) ⊇ ∂Df1(x) + ∂Df2(x).

Equality holds if one of the functions is differentiable at x.

(d) For f(x) = −‖x‖, show that ∂Df(0) = ∅.

(e) Recall that for f(x) = −|x|3/2 we have ∂P f(x) = ∅; show that
∂Df(0) = {0}.

(f) There is no true duality between Df(x; ·) and ∂Df(x): It is not
true in general that Df(x; v) = sup

{〈ζ, v〉 : ζ ∈ ∂Df(x)
}
.

Approximation by P -Subgradients

We now prove that although ∂Df(x) can be strictly larger than ∂P f(x),
the essential difference between the two in a local sense (as opposed to
pointwise) is slight.

4.5. Proposition. Let ζ ∈ ∂Df(x). Then for any ε > 0 there exist z ∈
x + εB and ξ ∈ ∂P f(z) such that

∣∣f(x) − f(z)
∣∣ < ε and ‖ζ − ξ‖ < ε.

Proof. It follows from the definition of ∂Df(x) that we have

Dϕ(x; v) ≥ 0 ∀v ∈ R
n,

where
ϕ(y) := f(y) − 〈ζ, y〉.
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Then for arbitrary fixed δ > 0,

Dϕ(x; v) > −δ ∀v ∈ B.

We now apply Subbotin’s Theorem 4.2 in order to obtain the existence of
z and ξ′ ∈ ∂P ϕ(z) such that

z ∈ x + δB,
∣∣ϕ(z) − ϕ(x)

∣∣ < δ,

and

〈ξ′, v〉 > −δ ∀v ∈ B. (2)

It follows that
∣∣f(z) − f(x)

∣∣ ≤ ∣∣ϕ(z) − ϕ(x)
∣∣+ ‖ζ‖ ‖x − z‖ <

(
1 + ‖ζ‖)δ, (3)

and from (2), that ‖ξ′‖ < δ. But

∂P ϕ(z) = ∂P f(z) − ζ,

which implies the existence of ξ ∈ ∂P f(z) such that ξ′ = ξ − ζ. Hence,
bearing (3) in mind, if we choose

δ <
ε

1 + ‖ζ‖ ,

then z and ξ fulfill the requirements of the proposition.

4.6. Exercise. Let f ′(x) exist. Then for any ε > 0 there exist z ∈
x+εB and ζ ∈ ∂P f(z) such that

∣∣f(x)−f(z)
∣∣ < ε and

∥∥f ′(x)−ζ
∥∥ <

ε.

Directional Calculus

We have seen in the preceding proposition that the graph of the multifunc-
tion ∂P f is dense in that of ∂Df . This fact can be used to derive rather
easily the basic calculus of ∂Df by appealing to the known results for ∂P f .
Here are a few examples, the first of which goes back to a result of Dini
that can be viewed as the first theorem of nonsmooth analysis.

4.7. Exercise.

(a) Let f ∈ F(R). Then the following are equivalent:

(i) f is decreasing;
(ii) Df(x; 1) ≤ 0 ∀x; and
(iii) ζ ≤ 0 ∀ζ ∈ ∂Df(x) ∀x.

(Compare with Theorem 0.1.1.)
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(b) Let f1, f2 ∈ F(Rn), and let ζ ∈ ∂D(f1+f2)(x). Then for any ε >
0 there exist points x1 and x2 in x+εB with

∣∣fi(x)−fi(xi)
∣∣ < ε

(i = 1, 2) such that

ζ ∈ ∂Df1(x1) + ∂Df2(x2) + εB.

(c) A function f ∈ F(Rn) is Lipschitz of rank K near x ∈ dom f
iff there is a neighborhood U of x such that

Df(x′; v) ≤ K‖v‖ ∀v ∈ R
n, ∀x′ ∈ U.

The fact that D-subgradients can be approximated by proximal ones im-
plies that D-subgradients generate the same limiting subdifferential ∂Lf(x)
as that studied in §1.10, and also has a bearing on the generalized gradient
∂f(x) and regularity (§2.4), as we now see. We remind the reader that ∂Cf
is an alternative notation for the generalized gradient (see Remark 2.6.2).

4.8. Proposition. Let f ∈ F(Rn) and x ∈ dom f .

(a) ∂Lf(x) =
{
limi→∞ ζi : ζi ∈ ∂Df(xi), xi

f→ x
}
.

(b) If f is Lipschitz near x, then

∂Df(x) ⊂ ∂Lf(x) ⊂ ∂Cf(x),

with equality throughout iff f is regular at x (in particular, when f is
convex ).

Proof. Part (a) is immediate from Proposition 4.5, and implies the first
inclusion in (b); the second has been noted earlier in connection with The-
orem 2.6.1. Suppose now that f is regular at x, and let ζ ∈ ∂Cf(x). Then,
for any v ∈ R

n,

〈ζ, v〉 ≤ f◦(x; v) (by definition of ∂Cf(x))
= f ′(x; v) (by definition of regularity)
= Df(x; v) (in light of Exercise 4.1(a)).

Thus ζ ∈ ∂Df(x), and we have ∂Df(x) = ∂Lf(x) = ∂Cf(x).

For the converse, observe that the equality of the three sets in question
implies that Df(x; v) = f◦(x; v) for all v, since then

Df(x; v) ≥ max
{〈ζ, v〉 : ζ ∈ ∂Df(x)

}
= max

{〈ζ, v〉 : ζ ∈ ∂Cf(x)
}

= f◦(x; v)

and since the opposite inequality always holds. That this implies regularity
at x was noted in Exercise 4.1.



4 Derivate Calculus and Rademacher’s Theorem 141

Tangents and Normals

A natural way to define a tangent direction v to a set S at x ∈ S is to
require DdS(x; v) = 0 (or equivalently, ≤ 0), where dS is the distance
function associated with S. The set of such v constitutes the D-tangent
cone TD

S (x). Taking a now familiar path, we define the D-normal cone by
polarity: ND

S (x) := TD
S (x)◦. The following exercise includes the geometric

counterpart of Proposition 4.8.

4.9. Exercise. Let S be a nonempty closed subset of R
n.

(a) T D
S (x) coincides with the Bouligand tangent cone T B

S (x) of
§2.7.

(b) We do not have full duality: In general, T D
S (x) is not the polar

of ND
S (x).

(c) ζ ∈ ND
S (x) iff

lim sup
x′ S→x

〈ζ, x′ − x〉
‖x′ − x‖ ≤ 0. (4)

(d) Any unit vector ζ satisfying (4) belongs to ∂DdS(x).

(e) ND
S (x) is the cone generated by ∂DdS(x) (compare with The-

orem 1.6.4, Proposition 2.5.4, and Problem 1.11.27.)

(f) ND
S (x) ⊂ NL

S (x) ⊂ NC
S (x), with equality throughout iff S is

regular at x. (Hint. To prove the first inclusion, use part (e),
approximate ∂DdS by ∂P dS , and recall Theorems 2.6.1 and
1.6.4.)

Other Characterizations of ∂Df

An alternate characterization of ∂Df that bypasses Df is provided by the
following:

4.10. Proposition. ζ ∈ ∂Df(x) iff

lim inf
u→0
u �=0

f(x + u) − f(x) − 〈ζ, u〉
‖u‖ ≥ 0. (5)

Proof. Let (5) hold, and let {vi} be a sequence converging to v and {ti} a
sequence decreasing to 0. Then (5) implies

lim inf
i→∞

f(x + tivi) − f(x)
ti

≥ 〈ζ, v〉,

whence Df(x; v) ≥ 〈ζ, v〉 ∀v. Thus ζ ∈ ∂Df(x).

For the converse, let ζ ∈ ∂Df(x) and suppose that (5) fails. Then there is
a sequence {ui} and ε > 0 such that ui → 0 and

f(x + ui) − f(x) ≤ 〈ζ, ui〉 − ε‖ui‖.



142 3. Special Topics

Note that ui �= 0. We can extract a subsequence (without relabeling) so
that the vectors vi := ui/‖ui‖ converge to a limit v. Setting ti := ‖ui‖, the
last inequality becomes

f(x + tivi) − f(x)
ti

≤ 〈ζ, vi〉 − ε,

which implies
Df(x; v) ≤ 〈ζ, v〉 − ε,

contradicting ζ ∈ ∂Df(x) and completing the proof.

We remark that the set of subgradients defined via (5) is sometimes referred
to as the Fréchet subdifferential ∂F f(x), an object which can differ from
∂Df(x) in infinite dimensions.

4.11. Exercise.

(a) Show that (5) holds iff there exists a nonnegative function o(r)
such that o(r)/r → 0 as r ↓ 0 and

f(x + u) − f(x) + o
(‖u‖) ≥ 〈ζ, u〉,

for all u near 0. Show that o(·) can always be taken to be
increasing. By considering

ō(t) := t max
{
o(r)/r : 0 < r ≤ t

}
,

show that o can also be assumed to have the property that
o(t)/t is increasing.

(b) ζ ∈ ∂Df(x) iff for every ε > 0 there exists a neighborhood Nε

of x such that x minimizes the function

gε(y) := f(y) − f(x) − 〈ζ, y − x〉 + ε‖y − x‖
over Nε.

(c) Show that the function o of part (a) can also be assumed to be
continuous. (Hint. Show that the following function has all the
required properties:

ô(t) := 2t

∫ 2t

t

o(r)
r2 dr.)

The following is another, less intrinsic but interesting characterization of
∂Df . It is the definition of subdifferential most often put forward in the
literature on viscosity solutions of differential equations, and ∂Df is some-
times referred to as the “viscosity subdifferential.”

4.12. Proposition. Let f ∈ F . Then ζ ∈ ∂Df(x) iff there exists a contin-
uous function g : R

n → R which is differentiable at x with g′(x) = ζ, and
such that f − g has a local minimum at x.
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Proof. First suppose that there exists g with the properties mentioned.
Then 0 ∈ ∂D(f − g)(x), and Exercise 4.4(c) implies g′(x) ∈ ∂Df(x).

Now suppose that ζ ∈ ∂Df(x). Consider the (ultimate) function o(·) in
Exercise 4.11(a). Since o(·) is increasing, it is continuous except at count-
ably many points. Since o(r)/r ↓ 0 as r ↓ 0, this function is integrable on
any bounded interval, and we may therefore define a function ϕ : [0,∞) →
(−∞, 0] as follows:

ϕ(r) := −
∫ 2r

r

o(s)
s

ds.

It is readily noted that −o(r) ≥ ϕ(r) ≥ −o(2r)/2 for all positive r, whence
ϕ(r) → 0 as r ↓ 0. We also have

f(y) ≥ g(y) := f(x) + 〈ζ, y − x〉 + ϕ
(‖y − x‖),

for all y near x. Since ϕ(0) = 0, it follows that f − g has a local minimum
at x. Clearly g is continuous, so it remains only to verify that g′(x) exists
and equals ζ; i.e., that the function w(y) := ϕ

(‖y − x‖) has w′(x) = 0.

For any nonzero v in R
n we have

0 ≥ w(x + tv) − w(x)
t

=
ϕ(‖tv‖)

t
= ‖v‖ϕ(‖tv‖)

‖tv‖ ≥ −o(2t‖v‖)
2t‖v‖

(‖v‖).
Upon taking the limit as t ↓ 0 we see that the convergence to 0 is uniform
on bounded sets of v, and so the Fréchet derivative of w at x exists and
satisfies w′(x) = 0. This completes the proof.

4.13. Exercise. Show that Proposition 4.12 remains true if in its
statement the word “continuous” is replaced by “Lipschitz” or by
“continuously differentiable.” What if it is replaced by “C2”?

Of course all the results of this section concerning Df and ∂Df have coun-
terparts in terms of upper derivates and supergradients of an upper semi-
continuous function f . When f is continuous, we can simply define the
D-superdifferential ∂Df(x) to be −∂D(−f)(x).

4.14. Exercise. Let f be continuous near x, and suppose that both
∂Df(x) and ∂Df(x) are nonempty. Prove that f ′(x) exists, and that

∂Df(x) = ∂Df(x) =
{
f ′(x)

}
.

Partial Subdifferentials

Let f(x, y) be a function of two real variables, and suppose that the par-
tial derivatives ∂f/∂x and ∂f/∂y both exist at (0, 0). As we know from
classical theory, it does not follow that f is differentiable at (0, 0); some
extra hypothesis is required to give this conclusion. (The classical result
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requires that one of the partials be defined and continuous in (x, y) near
(0, 0).) In other words, differentiability cannot be confirmed “one direction
at a time.”

Similar considerations hold in the nonsmooth setting: that f has a proximal
subgradient ζ relative to x and a proximal subgradient ξ relative to y does
not imply that (ζ, ξ) is a proximal subgradient of f as a function of both
variables (though the converse is true). In the setting of the D-calculus,
the following exercise illustrates the same point.

4.15. Exercise. Let f(x, y) be a Lipschitz function on R
2.

(a) If ∂f/∂x(0, 0) exists, show that

∂D

(
f(·, 0)

)
(0) =

{
∂f/∂x(0, 0)

}
,

where ∂D

(
f(·, 0)

)
(0) signifies the D-subdifferential of the func-

tion g(x) := f(x, 0) at the point x = 0. If (ζ, ξ) ∈ ∂Df(0, 0),
show that ζ belongs to ∂D

(
f(·, 0)

)
(0). Deduce that if the gradi-

ent ∇f(0, 0) exists (i.e., the vector whose components are the
two partial derivatives of f at (0, 0)), then

∂Df(0, 0) ⊆ {∇f(0, 0)
}
.

(b) By considering the case f(x, y) = −min
[|x|, |y|], show that

∂Df(0, 0) can be empty even if ∇f(0, 0) exists.

Despite the rather negative nature of this example, there does turn out to
be a relation in finite dimensions between partial and full subdifferentials
that holds “often” in the presence of Lipschitz behavior. The proof of the
following will suppose known the fact that a locally Lipschitz function of a
single variable is differentiable almost everywhere in the sense of Lebesgue
measure on the line.

4.16. Theorem. Let f : R
n ×R → R be a Lipschitz function. Then for all

x ∈ R
n, for y in R almost everywhere, the following holds:

∂Df(x, y) = ∂Df(·, y)(x) × ∂Df(x, ·)(y)

= ∂Df(·, y)(x) ×
{

∂f

∂y
(x, y)

}
. (6)

Proof. Fix any x ∈ R
n, and let us limit attention to the set Y of y for

which (∂f/∂y)(x, y) exists, a set which differs from R by a null set, and
which is therefore measurable. The left side of (6) is always contained in
the right, for any y ∈ Y , by Exercise 4.15(a), so it suffices to prove that
the opposite inclusion holds for almost all y ∈ Y . In turn, this would follow
from the fact that for almost all y ∈ Y , we have

Df(x, y; v, w) ≥ Df(x, y; v, 0) + w
∂f

∂y
(x, y) ∀v ∈ R

n, ∀w ∈ R. (7)
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This is what we will prove.

The object, then, is to prove that the following subset S of R has measure
0 (or is contained in a set of measure zero, since Lebesgue measure is
complete):

S :=
{

y ∈ Y : ∃(v, w) such that Df(x, y; v, 0)

> Df(x, y; v, w) − w
∂f

∂y
(x, y)

}
.

Note that a direction (v, w) corresponding to y as in the definition of S must
have w �= 0. If y ∈ S and (v, w) is (one of) its corresponding directions,
then there exist r ∈ R and ε > 0 such that

f(x + tv, y) − f(x, y)
t

> r > Df(x, y; v, w) − w
∂f

∂y
(x, y)

for 0 < t < ε. (8)

We label C(v, w, r, ε) the set of y ∈ Y for which (8) holds.

Now let {vi}, {wi}, {ri}, and {εi} be countable dense sets in R
n, R, R, and

(0,∞), respectively. Note that all the functions of (v, w) appearing in (8)
are continuous (see Exercise 4.1(a)), and (crucial fact!) that

∣∣∣∣f(x + tv, y)
t

− f(x + tvi, y)
t

∣∣∣∣ ≤ K‖v − vi‖,

independently of t > 0, where K is the Lipschitz constant for f . It follows
that if (8) holds for a given y, then it also holds (for the same y) with
(v, w, r, ε) replaced by suitably close (vi, wi, ri, εi) (with εi < ε). In other
words, S is contained in the countable union of the sets C(vi, wi, ri, εi), and
so it suffices to prove that each such set has measure 0. We will drop the
indices for this last part of the proof, and we suppose w �= 0 (for otherwise
C(v, w, r, ε) is empty).

We will need some measurability results.

Lemma. The function y �→ Df(x, y; v, w) is measurable.

Proof. For each positive integer j, let {tji}∞
i=1 be a countable dense set in

(0, 1/j). Then, for any α ∈ R, we have

{
y ∈ R : Df(x, y; v, w) > α

}

=
⋃
j

⋂
i

{
y ∈ R :

f(x + tjiv, y + tjiw) − f(x, y)
tji

> α +
1
j

}
.
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The right side is a countable union/intersection of measurable sets, and so
is itself measurable. The lemma follows.

We now ask the reader to contribute the following facts to the proof:

4.17. Exercise.

(a) The function y → ∂f/∂y(x, y) defined on Y is measurable.

(b) The subset C(v, w, r, ε) of Y defined by (8) is measurable.

Now let y0 belong to C(v, w, r, ε); i.e., let (8) hold. Choose δ > 0 so that
δ < 4K|w|, and small enough so that

r > Df(x, y0; v, w) − w
∂f

∂y
(x, y0) + δ, (9)

and let {ti} be a sequence “realizing” Df(x, y0; v, w); i.e., such that

lim
i→∞

f(x + tiv, y0 + tiw) − f(x, y0)
ti

= Df(x, y0; v, w).

Of course, we also have

lim
i→∞

f(x, y0 + tiw) − f(x, y0)
ti

= w
∂f

∂y
(x, y0).

It follows from (9) that for some i0, for all i ≥ i0, the following holds:

r >
f(x + tiv, y0 + tiw) − f(x, y0)

ti

− f(x, y0 + tiw) − f(x, y0)
ti

+
δ

2
,

=
f(x + tiv, y0 + tiw) − f(x, y0 + tiw)

ti
+

δ

2
. (10)

We now consider any point y ∈ C(v, w, r, ε) (i.e., satisfying (8)). Then,
putting t = ti, we have, for i sufficiently large,

f(x + tiv, y) − f(x, y)
ti

> r.

Combining this with (10) for i ≥ i0 and using the Lipschitz constant K for
f yields

2K
|y − y0 − tiw|

ti
>

δ

2
.

This says that for all i sufficiently large, we have
{

(y0 + tiw) +
δ

4K
tiB

}
∩ S = ∅.
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Thus, letting Ii be the interval whose endpoints are y0 and y0 + tiw, and
putting C := C(v, w, r, ε), we deduce (where L denotes Lebesgue measure
on R),

L{Ii ∩ C} ≤
(

1 − δ

4K|w|
)

ti|w|, i ≥ i0.

Consequently,

lim sup
i→∞

L(Ii ∩ C)
L(Ii)

≤ 1 − δ

4K|w| < 1. (11)

Let g : R → R be the function

g(t) :=
∫ t

0
χC(s) ds = L{[0, t] ∩ C

}
,

where χC is the characteristic function of C. Then we know from integration
theory on the line that for almost all t, g′(t) exists and coincides with χC(t).
But the conclusion (11), written in terms of g, says

lim sup
i→∞

g(y0 + tiw) − g(y0)
tiw

< 1.

Consequently, g′(y0) cannot exist and be equal to 1, for any y0 ∈ C. Thus
C has measure 0.

Rademacher’s Theorem

Theorem 4.16 does not affirm anything in regard to the nonemptiness of
∂Df(x, y); we address that issue now. Note to begin with that the gradient
of f , ∇f(x), exists for almost all x when f is a Lipschitz function on
R

n. This is because for each given (x1, x2, . . . , xi−1, xi, xi+1, . . . , xn), the
function

t �→ f(x1, x2, . . . , xi−1, t, xi+1, . . . , xn)

is Lipschitz on R, whence ∂f/∂xi exists for almost all values of t. Thus
the set Ωi of points x in R

n at which the partial derivative ∂f/∂xi fails
to exist has the property that the linear measure of Ωi intersected with
any line parallel to the ith coordinate axis is zero. By Fubini’s Theorem on
iterated integration, it follows that Ωi has measure 0 in R

n. Consequently
Ω =

⋃n
i=1 Ωi has measure 0, and ∇f(x) exists for all x ∈ R

n\Ω.

The mere existence of ∇f(x) does not imply that it belongs to ∂Df(x), or
even that the latter is nonempty, as seen in Exercise 4.15. But we have the
following:

4.18. Corollary. With f as in the theorem, we have ∇f(x) ∈ ∂Df(x) for
almost all x in R

n.
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Proof. The assertion is known in the case n = 1 (see Exercise 4.15). Let
us assume it for dimension n ≥ 1 and derive it for n + 1. For all x ∈ R

n,
property (7) holds almost everywhere y. It follows (from Fubini’s Theorem
again) that (7) holds for almost all (x, y) in R

n × R. Similarly, by the
induction hypothesis we have, for each y ∈ R, for almost all x,

∇xf(x, y) ∈ ∂D

(
f(·, y)

)
(x). (12)

It follows that (12) is valid for almost all (x, y) ∈ R
n × R. Let us now take

(x, y) in that set of full measure in which both (7) and (12) hold. Then, for
any (v, w) ∈ R

n × R, we have

Df(x, y; v, w) ≥ Df(x, y; v, 0) + w
∂f

∂y
(x, y) (by (7))

≥ 〈∇xf(x, y), v
〉

+ w
∂f

∂y
(x, y) (by (12))

=
〈∇f(x, y), (v, w)

〉
.

Thus ∇f(x, y) ∈ ∂Df(x, y).

The following fact is known as Rademacher’s Theorem.

4.19. Corollary. A Lipschitz function on R
n is Fréchet differentiable al-

most everywhere.

Proof. Apply Corollary 4.17 to f and −f ; we deduce that for almost all x,
both ∂Df(x) and ∂Df(x) are nonempty. But then f ′(x) exists for all such
x, as noted in Exercise 4.14.

We remark that Rademacher’s Theorem and the theorem that implied it
are essentially local: Their conclusions hold on any open set upon which
f is Lipschitz. This is clear (for example) from the fact that a Lipschitz
function on any bounded set can be extended to the whole space so as to
be globally Lipschitz (see Problem 1.11.6).

5 Sets in L2 and Integral Functionals

Many of the most important infinite-dimensional applications of nonlinear
analysis involve Lebesgue measure and integration. In this section we will
study two canonical illustrations of a set and a functional defined in such
terms, namely

S :=
{
x ∈ L2

n[a, b] : x(t) ∈ E(t) a.e.
}

(E(·) a given multifunction), (1)

f(x) :=
∫ b

a

ϕ
(
x(t)
)
dt (x(·) ∈ L2

n[a, b], ϕ a given function). (2)
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Along the way we will develop the theory of measurable selections of mul-
tifunctions, and we will conclude by deriving the nonsmooth analogue of
the Euler equation of the classical calculus of variations.

Consider first the set S defined by (1); S is called a unilateral constraint
set in L2

n[a, b] =: X, the underlying Hilbert space throughout this section.

5.1. Exercise. Let E(t) = E ∀t, where E is a given closed subset
of R

n. Prove that S is closed, and that S is convex iff E is convex.

We would like to characterize in terms of the underlying multifunction E(·)
those vectors ζ(·) ∈ L2

n[a, b] which are proximal normals to S at x ∈ S.
Accordingly, let ζ ∈ NP

S (x); then, for some σ ≥ 0 we have

〈ζ, x′ − x〉 ≤ σ‖x′ − x‖2 ∀x′ ∈ S.

When the L2 inner product and norm are expressed in integral terms, this
becomes:
∫ b

a

{〈−ζ(t), x′(t) − x(t)
〉

+ σ
∥∥x′(t) − x(t)

∥∥2} dt ≥ 0 ∀x′(·) ∈ S. (3)

This inequality holds for any measurable and square-integrable function
x′(·) taking values in E(·). It is tempting to conclude that (almost every-
where) the integrand is nonnegative on E(t):

〈−ζ(t), x′ − x(t)
〉

+ σ
∥∥x′ − x(t)

∥∥2 ≥ 0 ∀x′ ∈ E(t), a.e. (4)

As we will see, we are justified in yielding to this temptation under mild
assumptions. The passage from an integrated to a pointwise conclusion
(i.e., from (3) to (4)) can be made rigorous through the theory of mea-
surable selections, which we now pause to develop. We will return later to
characterizing ζ ∈ NP

S (x), taking up the argument at (3).

Measurable Multifunctions

A multifunction Γ mapping R
m to the subsets of R

n is called measurable
provided that the set

Γ−1(V ) :=
{
u ∈ R

m : Γ(u) ∩ V �= ∅}

is (Lebesgue) measurable for every open subset V of R
n. In order to gain

some familiarity with this useful concept, we recommend the following ex-
tended exercise.

5.2. Exercise.

(a) If Γ is measurable, then its domain dom Γ :=
{
u : Γ(u) �= ∅} is

a measurable set, and the multifunction Γ̃(u) := cl Γ(u) is also
measurable.



150 3. Special Topics

(b) Γ is measurable iff Γ−1(V ) is measurable for every closed set V
(or compact set V , or (open or closed) ball V ).

(c) Let g : R
m × R

n → R
k be such that for every u ∈ R

m, x �→
g(u, x) is continuous, and for every x ∈ R

n, u �→ g(u, x) is
measurable. Set

Γ(u) :=
{
x ∈ R

n : g(u, x) = 0
}
.

Prove that Γ is measurable. (Hint. Let V be compact, and let
{vi} be a countable dense set in V ; show that we have

Γ−1(V ) =
∞⋂

i=1

∞⋃
j=1

{
u :
∣∣g(u, vj)

∣∣ < 1
i

}
.

)

(d) Γ is called closed-valued if Γ(u) is a closed set for every u ∈ R
m.

Prove that when Γ is closed-valued, then Γ is measurable iff the
function u �→ d

(
x, Γ(u)

)
mapping R

m to [0, ∞] is measurable
for each x ∈ R

n.

(e) The graph of Γ, gr Γ, is of course the set
{
(u, x) ∈ R

m × R
n : x ∈ Γ(u)

}
.

Prove that Γ is measurable if gr Γ is closed.

(f) A function γ : R
m → R

n is measurable iff the multifunction
Γ(u) :=

{
γ(u)
}

is measurable, and when n = 1, iff Γ(u) :=
[γ(t), ∞) is measurable.

(g) Let Γ have closed graph, and let θ : R
� → R

m be measur-
able. Prove that the multifunction w �→ Γ

(
θ(w)

)
is measurable.

(Hint. {
w : Γ

(
θ(w)

) ∩ V �= ∅} = θ−1(Γ−1(V )
)
.
)

Use (f) to deduce that γ
(
θ(·)) is measurable if γ : R

m → R is
lower semicontinuous.

(h) If Γ1 and Γ2 are two closed-valued measurable multifunctions,
then Γ(u) := Γ1(u) ∩ Γ2(u) defines another closed-valued mea-
surable multifunction. (Hint. Let V , {vi} be as in (c), and ob-
serve

{
u : Γ(u) ∩ V �= ∅}

=
∞⋂

i=1

∞⋃
j=1

{
u : d
(
vj , Γ1(u)

)
+ d
(
vj , Γ2(u)

)
<

1
i

}
.

)

(i) Let g be as in (c), with k = 1. Prove that for any scalars c and
d, the following multifunction is measurable:

Γ(u) :=
{
x ∈ R

n : c ≤ g(u, x) ≤ d
}
.
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5.3. Theorem (Measurable Selection). Let Γ be closed-valued and mea-
surable. Then there exists a measurable function γ such that

γ(u) ∈ Γ(u) ∀u ∈ dom Γ.

Proof. Let ∆ := dom Γ. We begin by noting that for any ζ in R
n the

function s → dΓ(s)(ζ) is measurable on ∆ (where dΓ(s) is as usual the
Euclidean distance function), since

{
s ∈ ∆: dΓ(s)(ζ) ≤ α

}
=
{
s ∈ ∆: Γ(s) ∩ [ζ + αB] �= ∅}.

Now let {ζi} be a countable dense subset of R
n, and define a function

γ0 : ∆ → Rn as follows:

γ0(s) = the first ζi such that dΓ(s)(ζi) ≤ 1.

Lemma. The functions s → γ0(s) and s → dΓ(s)
(
γ0(s)

)
are measurable.

To see this, observe that γ0 assumes countably many values, and that, for
each i,

{
s : γ0(s) = ζi

}
=
⋂
j

{
s : dΓ(s)(ζj) > 1

} ∩ {s : dΓ(s)(ζi) ≤ 1
}
,

where the intersection is over j = 1, . . . , i − 1. This implies that γ0 is
measurable. To complete the proof of the lemma, we need only note
{
s : dΓ(s)

(
γ0(s)

)
> α
}

=
⋃
j

[{
s : γ0(s) = ζj

} ∩ {s : dΓ(s)(ζj) > α
}]

,

where the union is over the positive integers j.

We pursue the process begun above by defining for each integer i a function
γi+1 such that γi+1(s) is the first ζj for which both the following hold:

∥∥ζj − γi(s)
∥∥ ≤ 2

3dΓ(s)
(
γi(s)

)
, dΓ(s)(ζj) ≤ 2

3dΓ(s)
(
γi(s)

)
.

It follows much as above that each γi is measurable. Furthermore, we de-
duce the inequalities

dΓ(s)
(
γi+1(s)

) ≤ ( 23
)i

dΓ(s)
(
γ0(s)

) ≤ ( 23
)i

,

together with
∥∥γi+1(s)−γi(s)

∥∥ ≤ 2
3

i+1. It follows that
{
γi(s)

}
is a Cauchy

sequence converging to a value γ(s) for each s, and that γ is a measurable
selection for Γ.

5.4. Exercise.

(a) Let ϕ : R
n → R be a Lipschitz function, and let x(t) be a mea-

surable mapping from R to R
n. Prove that the multifunctions

t �→ ∂Lϕ
(
x(t)
)

and t �→ ∂Cϕ
(
x(t)
)

are measurable.
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(b) Let the multifunction Γ from R to R
n be compact-valued and

measurable, and let v : R → R
n be measurable. Prove the ex-

istence of a measurable selection γ for Γ such that, for all
t ∈ domΓ, we have

〈
γ(t), v(t)

〉
= max

{〈
γ′, v(t)

〉
: γ′ ∈ Γ(t)

}
.

In the following, the multifunction E(·) and the subset S of L2
n[a, b] are

related as in (1).

5.5. Corollary. Let g : [a, b]× R
n → R be such that t �→ g(t, x) is measur-

able for each x, and x �→ g(t, x) is continuous for t a.e. Let the multifunction
E(·) be measurable and closed-valued. Suppose that we have

∫ b

a

g
(
t, x(t)

)
dt ≥ 0

whenever x(·) belongs to S and the integral is defined, and suppose that for
a certain x0(·) ∈ S we have g

(
t, x0(t)

)
= 0 a.e. Then

g(t, x) ≥ 0 ∀x ∈ E(t), t a.e.

Proof. It suffices to prove that for any k > 0, the following set has measure
0:

{
t : for some x ∈ E(t) ∩ B(0; k) we have −k ≤ g(t, x) ≤ −1/k

}

(why?). If this is not the case, then the domain of the following multifunc-
tion Γ is of positive measure:

Γ(t) :=
{
x ∈ E(t) ∩ B(0, k) : − k ≤ g(t, x) ≤ −1/k

}
.

Further, Γ is measurable, in view of Exercise 5.2(h,i). We invoke Theo-
rem 5.3, the Measurable Selection Theorem, to deduce the existence of a
selection x(·) for Γ on domΓ. We extend x(·) to all of [a, b] by defining
x(t) = x0(t) for t ∈ [a, b]\ dom Γ. Then x(·) belongs to S, the function
x �→ g

(
t, x(t)

)
is integrable, and its integral over [a, b] is strictly negative.

This contradiction proves the corollary.

Returning now to the inequality (3), and assuming henceforth that E(·)
is measurable and closed-valued, we are ready to pursue the analysis of
NP

S (x).

5.6. Exercise. Show that if (3) holds, then (4) does, so that

ζ(t) ∈ NP
E(t)
(
x(t)
)

a.e.
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The condition (4) that we have obtained differs from the pointwise inclusion
ζ(t) ∈ NP

E(t)

(
x(t)
)

in one important respect: The latter implies that for
almost all t, there exists σ(t) ≥ 0 such that

〈−ζ(t), x′ − x(t)
〉

+ σ(t)
∥∥x′ − x(t)

∥∥2 ≥ 0 ∀x′ ∈ E(t).

But in (4) the same σ independent of t appears. To take account of this,
let us denote by NP,σ

E (x) those vectors ζ satisfying

〈ζ, x′ − x〉 ≤ σ‖x′ − x‖2 ∀x′ ∈ E.

5.7. Proposition. ζ ∈ NP
S (x) iff for some σ ≥ 0, we have

ζ(t) ∈ NP,σ
E(t)

(
x(t)
)
a.e.

5.8. Exercise. Prove Proposition 5.7.

An Integral Functional

We turn now to the integral functional f on X := L2
n[a, b] defined by

f(x) :=
∫ b

a

ϕ
(
x(t)
)
dt,

where for simplicity we will suppose that ϕ is a globally Lipschitz function
on R

n, with Lipschitz constant K.

5.9. Exercise. Prove that f is well defined and finite on X, and
globally Lipschitz with Lipschitz constant K(b − a)1/2.

Our first interest is to study ∂P f ; accordingly, let ζ ∈ ∂P f(x), and let us
write the corresponding proximal subgradient inequality: For some σ ≥ 0
and η > 0 we have
∫ b

a

{
ϕ
(
y(t)
)− ϕ

(
x(t)
)

+ σ
∥∥y(t) − x(t)

∥∥2 − 〈ζ(t), y(t) − x(t)
〉}

dt ≥ 0 (5)

whenever ‖y − x‖2 < η. What can be deduced from this?

5.10. Theorem. If ζ ∈ ∂P f(x), then ζ(t) ∈ ∂P ϕ
(
x(t)
)
a.e.

We remark that the theorem implies that for any v(·) ∈ X, we have

〈ζ, v〉 =
∫ b

a

〈
ζ(t), v(t)

〉
dt,

where ζ(t) ∈ ∂P ϕ
(
x(t)
)

a.e. In abridged notation, this might be written
∂P

∫
ϕ =
∫

∂P ϕ, which reveals the proposition as an analogue of the tech-
nique known as “differentiating under the integral.”
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Proof. Let any M > 0 be given. We will prove that for almost all t, we
have

ϕ(y) − ϕ
(
x(t)
)

+ σ
∥∥y − x(t)

∥∥2 − 〈ζ(t), y − x(t)
〉 ≥ 0 ∀y ∈ MB, (6)

which, since M is arbitrary, leads to the desired conclusion.

Pick c, d in (a, b) with c < d such that

M(d − c)1/2 +
{∫ d

c

∥∥x(t)
∥∥2 dt

}1/2

< η,

where η is defined in connection with inequality (5). We define

ϕ̂(t, y) :=

{
0 if t �∈ [c, d],
ϕ(y) − ϕ

(
x(t)
)

+ σ
∥∥y − x(t)

∥∥2 − 〈ζ(t), y − x(t)
〉

if t ∈ [c, d].

Let E := MB, and let y(·) be any element of L2
n[a, b] satisfying y(t) ∈ E a.e.

Then, if ŷ is the element of X defined by

ŷ(t) :=

{
x(t) if t �∈ [c, d],
y(t) if t ∈ [c, d],

we have

‖ŷ − x‖ =
{∫ d

c

∥∥y(t) − x(t)
∥∥2 dt

}1/2

≤
{∫ d

c

∥∥y(t)
∥∥2 dt

}1/2

+
{∫ d

c

∥∥x(t)
∥∥2 dt

}1/2

≤ M(d − c)1/2 +
{∫ d

c

∥∥x(t)
∥∥2 dt

}1/2

< η.

Thus (5) may be invoked to yield
∫ b

a

ϕ̂
(
t, y(t)

)
dt =

∫ d

c

ϕ̂
(
t, y(t)

)
dt

=
∫ d

c

{
ϕ
(
y(t)
)− ϕ

(
x(t)
)

+ σ
∥∥y(t) − x(t)

∥∥2 − 〈ζ(t), y(t) − x(t)
〉}

dt

=
∫ b

a

{
ϕ
(
ŷ(t)
)− ϕ

(
x(t)
)

+ σ
∥∥ŷ(t) − x(t)

∥∥2 − 〈ζ(t), ŷ(t) − x(t)
〉}

dt

≥ 0.

Note also that ϕ̂
(
t, x(t)

)
= 0 a.e. Since ϕ̂ is measurable in t and continuous

in y, it follows now from Corollary 5.5 that for t a.e., we have

ϕ̂(t, y) ≥ 0 ∀y ∈ E = MB.

Consequently, (6) holds for t ∈ [c, d] a.e. But since [c, d] is an arbitrary
(small) subinterval of [a, b], (6) in fact holds a.e. in [a, b], as claimed.
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5.11. Exercise.

(a) Let ∂σ
P ϕ(x) denote the “global proximal subgradients of rank

σ”; i.e., those ζ satisfying

ϕ(y) − ϕ(x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉 ∀y ∈ R
n.

Show that in Theorem 5.10, the conclusion may be strength-
ened to ζ(t) ∈ ∂σ

P ϕ
(
x(t)
)

a.e., and that conversely this last
property (for a given σ ≥ 0) implies that ζ belongs to ∂P f(x).

(b) If ζ ∈ ∂P ϕ(x), then show that for some σ > 0 we actually have
ζ ∈ ∂σ

P ϕ(x). (This uses the global Lipschitz hypothesis on ϕ.)

The exercise shows that a certain global and uniform character of the point-
wise condition ζ(t) ∈ ∂P ϕ

(
x(t)
)

is required to imply ζ ∈ ∂P f(x). Nonethe-
less, an approximate converse to Theorem 5.10 is provided by the following.

5.12. Proposition. Let ζ ∈ L2
n[0, 1] be such that ζ(t) ∈ ∂P ϕ

(
x(t)
)
a.e.

Then for any ε > 0 there exist x′ ∈ X and ζ ′ ∈ ∂P f(x′) with ‖ζ ′ − ζ‖ < ε,
‖x′ − x‖ < ε.

Proof. According to Exercise 5.11(b), there exists for almost each t a num-
ber σ(t) such that

ζ(t) ∈ ∂
σ(t)
P ϕ

(
x(t)
)

a.e.

In fact, let us take σ(t) equal to the first positive integer k such that
ζ(t) ∈ ∂k

P ϕ
(
x(t)
)
. Then, for any positive integer k, we have

{
t ∈ [a, b] : σ(t) = k

}
=
{
t : ϕ(y) − ϕ

(
x(t)
)

+ k
∥∥y − x(t)

∥∥2 ≥ 〈ζ(t), y − x(t)
〉 ∀y ∈ R

n
}

k−1⋂
j=1

{
t : ϕ(y) − ϕ

(
x(t)
)
+ j
∥∥y − x(t)

∥∥2 <
〈
ζ(t), y − x(t)

〉
for some y ∈ R

n
}
.

This implies that the function σ(·) is measurable. Now let (x̄, ζ̄, σ̄) be any
triple such that ζ̄ ∈ ∂σ̄

P ϕ(x̄) (Why is there such a triple?). For every M > σ̄,
let ΩM be the set

{
t : σ(t) < M

}
, and define

x′(t) =

{
x(t) if t ∈ ΩM ,

x̄ otherwise,
ζ ′(t) =

{
ζ(t) if t ∈ ΩM ,

ζ̄ otherwise.

Then ζ ′(t) ∈ ∂M
P ϕ
(
x′(t)
)

for t a.e., whence ζ ′ ∈ ∂P f(x′) by Exercise 5.11(a).
Since meas(ΩM ) → (b−a) as M → ∞, it follows that x′ → x and ζ ′ → ζ in
X as M → ∞, a final step in the proof that we ask the reader to verify.
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A Convexity Property

As witnessed above, the correspondence between the proximal subgradients
of the integral functional f and those of the generating integrand ϕ is quite
a close one. We turn now to consideration of the limiting subdifferential
∂Lf(x). We will discover in Theorem 5.18 below an interesting convexifica-
tion property of the weak-closure operation that generates ∂Lf from ∂P f .
To begin understanding this property, consider the natural conjecture that
if ζ ∈ ∂Lf(x), then ζ(t) ∈ ∂Lϕ

(
x(t)
)

a.e. (We call this “natural” in view
of the fact that we have established this fact when ∂L is replaced by ∂P .)
It turns out that this conjecture is wrong, and the following example will
lend insight as to why.

5.13. Exercise. We set ϕ(x) = −|x|, with n = 1. We will construct
a sequence xi in X converging to 0, with elements ζi ∈ ∂P f(xi) such
that {ζi} converges weakly to 0. It follows that 0 ∈ ∂Lf(0), yet it is
not the case that 0 belongs to ∂Lϕ(0) = {−1, 1}.

We define a function xi(t) on [0, 1] by setting xi(t) = 1/i on each
subinterval of the form (k/i, (k + 1)/i), where k is an even integer
in [0, i − 1], and xi(t) = −1/i elsewhere. Then xi → 0 in X. Let
ζi(t) = −xi(t)

/∣∣xi(t)
∣∣.

(a) Prove that ζi converges weakly to 0 in X.

(b) Prove that ζi ∈ ∂P f(xi) (use Exercise 5.11).

In the foregoing example, observe that although 0 /∈ ∂Lϕ(0) = {−1, 1}, we
do have 0 ∈ co ∂Lϕ(0) = ∂Cϕ(0). We will obtain a general conclusion along
these lines below.

The key to the analysis is a certain convexification property of integra-
tion relative to (nonatomic) measures, a phenomenon first observed by
A. M. Lyapounov but reflected especially clearly below in a more recent
theorem due to Aumann.

A multifunction F mapping [a, b] to the subsets of R
n is said to be L2-

bounded if there is a function k ∈ L2
1[a, b] such that

‖v‖ ≤ k(t) ∀v ∈ F (t), a.e.

By co F we mean the multifunction whose value at t is co F (t). Finally,∫
F signifies the set of all points of the form

∫ b

a
f(t) dt, where f(·) is an

integrable selection of F .

5.14. Exercise. Let the multifunction E(·) of (1) be L2-bounded,
and have convex closed values. Prove that the set S of its measur-
able selections is weakly compact, and that

∫
E is a compact convex

subset of R
n.
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5.15. Theorem (Aumann). Let F be a measurable, L2-bounded multi-
function from [a, b] to R

n whose values are closed and nonempty. Then
∫

F =
∫

co F.

Step 1. It suffices to show that any point ξ lying in
∫

co F also lies in
∫

F ;
we may take ξ = 0 without loss of generality. Exercise 5.14 shows that∫

co F is convex compact. Its dimension K is defined to be the dimension
of the minimal subspace L of R

n containing it. If K = 0,
∫

co F is a point
and must coincide with

∫
F , since the latter is nonempty as a consequence

of the Measurable Selection Theorem 5.3. So we may assume K ≥ 1, and
that the theorem is true for multifunctions G such that dim

∫
co G ≤ K−1.

The proof will be by induction.

Step 2. Suppose now that 0 does not lie in the relative interior of
∫

co F
(i.e., interior relative to L). Then there is a nonzero vector d in L normal
to
∫

co F at 0; that is, such that

〈d,w〉 ≤ 0 ∀w ∈
∫

co F.

Let S be the set of measurable (and necessarily, square integrable) selec-
tions of co F on [a, b], and let s0 be an element of S satisfying

∫ b

a
s0(t) dt = 0.

Then ∫ b

a

〈
d, s(t)

〉
dt ≤ 0 =

∫ b

a

〈
d, s0(t)

〉
dt ∀s ∈ S.

Let H
(·;F (t)

)
designate the upper support function of F (t), or equivalently,

of co F (t):
H
(
x;F (t)

)
:= max

{〈x, f〉 : f ∈ F (t)
}
.

It follows from Exercise 5.4(b) that we have

max
s∈S

∫ b

a

〈
d, s(t)

〉
dt =

∫ b

a

H
(
d;F (t)

)
dt.

We deduce
∫ b

a

〈
d, s0(t)

〉 ≤
∫ b

b

H
(
d;F (t)

)
dt ≤ 0 =

∫ b

a

〈
d, s0(t)

〉
dt,

whence
H
(
d;F (t)

)
=
〈
d, s0(t)

〉
a.e.

Let us define a new multifunction F̃ via

F̃ (t) :=
{
f ∈ F (t) : 〈f, d〉 = H

(
d;F (t)

)}
.
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5.16. Exercise. Show that F̃ is nonempty and closed-valued, mea-
surable on [a, b], and that s0(t) ∈ co F̃ (t) a.e.

It follows that F̃ satisfies all the hypotheses of the theorem, and that 0 ∈∫
co F̃ . Further

〈
d,
∫

co F̃ 〉 =
∫ b

a
H
(
d; F (t)

)
dt = 0, and so dim

∫
co F̃ ≤

K − 1. By the inductive hypothesis, 0 ∈ ∫ F̃ ⊂ ∫ F , which is the required
conclusion.

Step 3. We saw in Step 2 that if 0 is not in the relative interior of
∫

co F ,
then a certain construction allows us to reduce the dimension and invoke
the inductive hypothesis to conclude. The remaining case is that in which
a δ-neighborhood of 0 (in L) lies in

∫
co F , for some δ > 0.

Choose any nonzero vector d1 and define Φ1 on R
n × X as follows:

Φ1(x, s) :=
∫ b

a

〈
d1t + x, s(t)

〉
dt.

Given any x in R
n, express x as y + c, where y lies in L and c in its

orthogonal competent L⊥. Then

max
s∈S

Φ1(x, s) = max
s∈S

Φ1(y, s)
(

since
∫

co F ⊂ L and c ∈ L⊥
)

= max
s∈S

∫ b

a

〈
d1t + y, s(t)

〉
dt

≥ δ‖y‖ + k

for some k independent of x. It follows that the function

x �→ max
s∈S

Φ1(x, s)

has a minimum over R
n, say at x1.

The fact that S is weakly compact (Exercise 5.14) permits us to invoke the
Minimax Theorem (see, for instance, Aubin (1993)) to deduce the existence
of s0 ∈ S such that

min
x∈Rn

Φ1(x, s0) = max
s∈S

min
x∈Rn

Φ1(x, s) = min
x∈Rn

max
s∈S

Φ1(x, s)

= max
s∈S

Φ1(x1, s).

It follows that (x1, s0) is a saddlepoint of Φ1 relative to R
n ×S, so that the

function Φ1(·, s0) is minimized over R
n at x1. Setting the derivative equal

to zero gives
∫ b

a
s0(t) dt = 0. The other saddlepoint inequality asserts that

Φ1(x1, ·) is maximized over S at s0. But

max
s∈S

Φ1(x1, ·) =
∫ b

a

H
(
d1t + x1;F (t)

)
dt = Φ1(x1, s0)
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(by Exercise 5.4(b)), whence

H
(
d1t + x1; F (t)

)
=
〈
d1t + x1, s0(t)

〉
a.e.

Let us now define

F1(t) :=
{
f ∈ F (t) : H

(
d1t + x1; F (t)

)
= 〈d1t + x1, f〉}.

We may confirm that F1 satisfies the same hypotheses as F , and s0(t) ∈
co F1(t) a.e., whence 0 ∈ ∫ co F1.

We now recommence either Step 2 or Step 3, with F1 in place of F . If
Step 2 applies, we are finished, since

∫
F1 ⊂ ∫ F . If not, we perform Step 3

again, this time with a vector d2 linearly independent of d1. This generates
a new function Φ2 admitting a saddlepoint at (x2, s1), and a corresponding
multifunction F2 ⊂ F1 all of whose points f satisfy

〈d2t + x2, f〉 = H
(
d2t + x2;F1(t)

)
a.e.

and such that 0 ∈ ∫ co F2.

The process continues until either Step 2 has applied or else Step 3 has been
performed n times. In the latter case, we will have defined a multifunction
Fn ⊂ F such that 0 ∈ ∫ co Fn and such that for almost all t, every f in
Fn(t) satisfies (we let F0 stand for F ):

〈dit + xi, f〉 = H
(
dit + xi;Fi−1(t)

)
(i = 1, 2, . . . , n).

In matrix terms, this may be written in the form

(Dt + M)f = Σ(t),

where the n × n matrix D is invertible (since its rows di are independent).
But since Dt + M is invertible except for those (finitely many) t which
are eigenvalues of −D−1M , it follows that Fn(t) is a singleton a.e. Conse-
quently we have 0 ∈ ∫ co Fn =

∫
Fn ⊂ ∫ F .

5.17. Exercise. Under the hypotheses of the theorem, we will prove
the following corollary: Let γ(·) be a measurable selection on [a, b] of
co F . Then there exists a sequence {fi} of measurable selections of
F which converges weakly to γ.

(a) For each positive integer N , let a =: t0 < t1 < · · · < tN := b be
a uniform partition of [a, b]; invoke the theorem to deduce the
existence of a selection fN for F on [a, b] such that

∫ ti+1

ti

fN (t) dt =
∫ ti+1

ti

γ(t) dt (i = 0, 1, . . . , N − 1).
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(b) Prove that the sequence {fN} admits a subsequence {fNi} con-
verging weakly to a limit ζ (see Exercise 5.14). Then show that
ζ must be γ. (Hint. Study the convergence of 〈fNi , g〉 when g
is a smooth function, using integration by parts.)

We now return to the analysis of ∂Lf , where

f(x) =
∫ b

a

ϕ
(
x(t)
)
dt.

The hypotheses remain those of Theorem 5.10.

5.18. Theorem. The limiting subdifferential and the generalized gradient
of f coincide, and we have

∂Lf(x) = ∂Cf(x) =
{
ζ ∈ L2

n[a, b] : ζ(t) ∈ ∂Cϕ
(
x(t)
)
a.e.
}
.

Proof. We set

Λ :=
{
ζ = w-lim

i→∞
ζi : ζi(t) ∈ ∂Lϕ

(
x(t)
)

a.e.}.

The following three relations will be established in order:

∂Cf(x) ⊂ {ζ : ζ(t) ∈ ∂Cϕ
(
x(t)
)

a.e.
} ⊂ Λ ⊂ ∂Lf(x).

This evidently implies the theorem, since ∂Lf(x) ⊂ ∂Cf(x). The set
{
ζ : ζ(t) ∈ ∂Cϕ

(
x(t)
)

a.e.
}

is convex and weakly compact in X (see Exercise 5.14), as is ∂Cf(x). The
first relation can therefore be proven via support functions; it amounts to
showing that for any v ∈ X, we have

f◦(x; v) ≤ max
{〈v, ζ〉 : ζ(t) ∈ ∂Cϕ

(
x(t)
)

a.e.
}
.

Let {xi} be a sequence in X converging to x and {λi} a positive sequence
converging to 0 such that

f◦(x; v) = lim
i→∞

f(xi + λiv) − f(xi)
λi

.

The limit can be written

lim
i→∞

∫ b

a

ϕ(xi(t) + λiv(t)) − ϕ(xi(t))
λi

≤
∫ b

a

lim sup
i→∞

ϕ(xi(t) + λiv(t)) − ϕ(xi(t))
λi

dt
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(Why has Fatou’s Lemma been applicable?)

≤
∫ b

a

ϕ◦(x(t); v(t)
)
dt

(since xi(t) → x(t) a.e.). By Exercise 5.4(b) there exists a measurable
selection ζ(·) of ∂Cϕ

(
x(·)) such that

〈
ζ(t), v(t)

〉
= ϕ◦(x(t); v(t)

)
a.e. Then

∫ b

a

ϕ◦(x(t); v(t)
)
dt = 〈ζ, v〉,

and the first of the three relations follows.

The second relation follows immediately from Exercise 5.17, since

∂Cϕ
(
x(t)
)

= co ∂Lϕ
(
x(t)
)
.

There remains the third. Let ζ = w-limi→∞ ζi, where ζi(t) ∈ ∂Lϕ
(
x(t)
)

a.e.
We wish to prove that ζ ∈ ∂Lf(x). As observed in Problem 1.11.28, there
is a countable set C in R

n ×R
n (not depending on t) of points (ξ, y) having

ξ ∈ ∂P ϕ(y) such that for each t we have

∂Lϕ
(
x(t)
)

=
{

lim
k→∞

ξk : (ξk, yk) ∈ C, lim
k→∞

yk = x(t)
}

.

For a given enumeration
{
(ξj , yj)

}
of C, let ji(t) be the first j such that

∥∥ξj − ζi(t)
∥∥ < i−1 and

∥∥yj − x(t)
∥∥ < i−1.

Let us set
x̃i(t) := yji(t), ζ̃i(t) := ξji(t).

Then x̃i(·) and ζ̃i(·) are measurable, and

ζ̃i(t) ∈ ∂P ϕ
(
x̃i(t)

)
a.e.

By Proposition 5.12, there exist x′
i and ζ ′

i in X such that

‖x′
i − x̃i‖ < i−1, ‖ζ ′

i − ζ̃i‖ < i−1, ζ ′
i ∈ ∂P f(x′

i).

It follows that {ζ ′
i} converges weakly to ζ, and {x′

i} strongly to x. Of course,
f(x′

i) → f(x) since f is Lipschitz. But then ζ ∈ ∂Lf(x) by definition, as
required.

5.19. Exercise. It is not the case that ∂Lf(x) is convex for every
Lipschitz functional f on X := L2

n[a, b]. Verify this statement with
n = 1 for the functional

f(x) := −
∣∣∣∣
∫ 1

0
x(t) dt

∣∣∣∣.
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A Problem in the Calculus of Variations

Recall that a function x : [a, b] → R
n is said to be absolutely continuous if

it can be expressed in the form

x(t) = x0 +
∫ t

a

v(s) ds

for some integrable function v; we then have ẋ(t) := d/dt x(t) = v(t) a.e.

We now consider the variational problem of minimizing the functional

�
(
x(b)
)

+
∫ b

a

ϕ
(
x(t), ẋ(t)

)
dt

over those absolutely continuous functions x : [a, b] → R
n which satisfy

x(0) = x0. Here the “givens” of the problem are the point x0, the interval
[a, b], the function � : R

n → R (assumed locally Lipschitz) and the function
ϕ : R

n × R
n → R (assumed globally Lipschitz).

Our goal is to derive necessary conditions for optimality. Let us rephrase
the problem so as to make the relevance of earlier results more apparent.
We define the following subset A of L2

2n[a, b]:

A :=
{

(u, v) ∈ L2
n[a, b] × L2

n[a, b] : u(t) = x0 +
∫ t

a

v(s) ds, t ∈ [a, b]
}

.

We note that A is closed and convex. Now define f1, f2 on L2
2n[a, b] as

follows:

f1(u, v) := �

(
x0 +

∫ b

a

v(t) dt

)
, f2(u, v) :=

∫ b

a

ϕ
(
u(t), v(t)

)
dt.

In these terms, our problem becomes:

minimize
{
f1(u, v) + f2(u, v) : (u, v) ∈ A.

}

We have characterized ∂Lf2 in Theorem 5.18; as for ∂Lf1, we have:

5.20. Exercise. The functional f1 is locally Lipschitz on L2
2n[a, b]. If

(θ, ζ) ∈ ∂Lf1(u, v), then θ = 0, and for some ζ0 ∈ ∂L�
(
x0+
∫ b

a
v(t) dt

)
,

we have ζ(t) = ζ0 a.e.

The final component we will need is the following version of a celebrated
result of the nineteenth century.

5.21. Proposition (Dubois–Reymond Lemma). Let (ζ, ξ) ∈ NP
A (u, v).

Then

ξ(t) = −
∫ b

t

ζ(s) ds, a ≤ t ≤ b,

so that ξ is absolutely continuous and satisfies ξ(b) = 0.
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Proof. We remark that since A is convex, the normal cones NP
A , NL

A , and
NC

A all coincide. The normal vector (ζ, ξ) satisfies
〈
(ζ, ξ), (u′, v′)

〉 ≤ 〈(ζ, ξ), (u, v)
〉 ∀(u′, v′) ∈ A,

which translates as
∫ b

a

{
ζ(t) · (u′(t) − u(t)

)
+ ξ(t) · (v′(t) − v(t)

)}
dt ≤ 0.

Bearing in mind that u′(t) − u(t) =
∫ t

a

(
v′(s) − v(s)

)
ds, we use integration

by parts to derive from this last inequality the following one:

∫ b

a

[
ξ(t) +

∫ b

t

ζ(s) ds

]
· [v′(t) − v(t)

]
dt ≤ 0 ∀v′ ∈ L2

n[a, b].

Since v′ − v is an arbitrary integrable function, the required conclusion
follows immediately.

Combining all the ingredients, we arrive at a nonsmooth version of the
famous Euler equation in the calculus of variations:

5.22. Theorem (Euler Inclusion). If x solves the variational problem,
then there exists an absolutely continuous function p satisfying

(
ṗ(t), p(t)

) ∈ ∂Cϕ
(
x(t), ẋ(t)

)
a.e.,

−p(b) ∈ ∂L�
(
x(b)
)
.

Proof. The pair (x, ẋ) minimizes the function

f1(u, v) + f2(u, v) + IA(u, v)

over L2
n[a, b] × L2

n[a, b]. Thus

(0, 0) ∈ ∂L{f1 + f2 + IA}(x, ẋ)

⊂ ∂Lf1(x, ẋ) + ∂Lf2(x, ẋ) + NC
A (x, ẋ),

by Proposition 1.10.1. Combining Exercise 5.20, Theorem 5.18, and Propo-
sition 5.21, we deduce the existence of a point ζ0 ∈ ∂L�

(
x(b)
)

and an
element ζ of L2

n[a, b] such that

(
−ζ(t),−ζ0 +

∫ b

t

ζ(s) ds

)
∈ ∂Cϕ

(
x(t), ẋ(t)

)
a.e.

The statement of the theorem follows upon setting p(t) := −ζ0 +
∫ b

t
ζ(s) ds.
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5.23. Exercise. When ϕ is C1, a solution x to the variational prob-
lem satisfies the classical Euler equation

d

dt

{
ϕv

(
x(t), ẋ(t)

)}
= ϕu

(
x(t), ẋ(t)

)
a.e.,

and the function t �→ ϕv

(
x(t), ẋ(t)

)
is continuous.

We remark that the last conclusion of this exercise is known as the first
Erdmann condition in the classical calculus of variations. The relation
−p(b) = ∇�

(
x(b)
)

is the transversality condition.

A Weak Sequential Compactness Theorem

We conclude this section with a technical result of some importance in the
next chapter. It concerns a multifunction E mapping R × R

n to the closed
convex subsets of a given compact set E0 in R

n. We assume that E is
graph-closed.

5.24. Theorem. Let {vi} be a sequence in L2
n[a, b] such that

vi(t) ∈ E
(
τi(t), ui(t)

)
+ ri(t)B a.e., t ∈ [a, b],

where the sequence of measurable functions
{
τi(·), ui(·)

}
converges a.e. to(

t, u0(t)
)
, and where the nonnegative measurable functions {ri} converge to

0 in L2
1[a, b]. Then there exists a subsequence {vij } of {vi} which converges

weakly in L2
n[a, b] to a limit v0(·) which satisfies

v0(t) ∈ E
(
t, u0(t)

)
a.e., t ∈ [a, b].

Proof. The hypotheses evidently imply that the sequence {vi} is bounded
in L2

n[a, b]. Invoking weak compactness, we know that a subsequence {vij
}

converges weakly to some limit v0; there remains only to prove that v0(t)
belongs to E

(
t, u0(t)

)
a.e. for t ∈ [a, b].

We define h : R × R
n × R

n → (−∞,∞] as follows:

h(t, u, p) := min
{〈p, v〉 : v ∈ E(t, u)

}
.

Since E is convex-valued, a point v lies in E(t, u) iff 〈p, v〉 ≥ h(t, u, p)
∀p ∈ R

n (by the Separation Theorem). In view of the inclusion satisfied by
vi, we also have, for any fixed p ∈ R

n, the following inequality:
〈
p, vi(t)

〉
+ ri(t)‖p‖ ≥ h

(
τi(t), ui(t), p

)
a.e.

Because the multifunction E has closed graph, it follows readily that the
function (t, u) �→ h(t, u, p) is lower semicontinuous, and hence that the
function

t �→ h
(
τi(t), ui(t), p

)
is measurable (Exercise 5.2(g)).
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Now let A be any measurable subset of [a, b]. We have
∫

A

{〈
p, vij

(t)
〉

+ ‖p‖rij
(t) − h

(
τij

(t), uij
(t), p

)}
dt ≥ 0,

since the integrand is nonnegative almost everywhere. As j → ∞, we know
∫

A

〈
p, vij (t)

〉
dt →

∫
A

〈
p, v0(t)

〉
dt

by weak convergence, and of course
∫

A
rij (t) dt → 0. In light of this, and

calling upon Fatou’s Lemma (Why does it apply?), we deduce
∫

A

〈
p, v0(t)

〉
dt −

∫
A

lim inf
j→∞

h
(
τij

(t), uij
(t), p

)
dt ≥ 0.

Because h(t, u, p) is lower semicontinuous in (t, u), this implies
∫

A

{〈
p, v0(t)

〉− h
(
t, u0(t), p

)}
dt ≥ 0.

Since A is arbitrary, we must then have
〈
p, v0(t)

〉 ≥ h
(
t, u0(t), p

)
a.e., t ∈ [a, b]. (7)

Now let {pi} be a countable dense subset of R
n. Then (7) holds for each

p = pi, with the exception of t in an exceptional set Ωi of measure 0 in
[a, b]. Let Ω :=

⋃
i Ωi. Then for all t /∈ Ω, (7) holds for all p ∈ {pi}. But

both sides of (7) define continuous functions of p, for given t. (To see that
h is continuous in p, it suffices to observe that it is concave and finite as a
function of p.) Therefore for any t /∈ Ω, (7) must in fact hold for all p ∈ R

n,
which is equivalent to

v0(t) ∈ E
(
t, u0(t)

) ∀t ∈ Ω.

Since Ω has measure 0, the proof is complete.

We remark that the convexity of the values of E plays a crucial role in the
theorem; Problem 7.19 will make this clear.

6 Tangents and Interiors

In this section we study certain properties of sets related to tangency and
interiors. The discussion will be restricted to subsets of R

n, and one of the
central issues is the following: If at a point x ∈ S the set S admits a “large”
set of tangents, does it follow that S is “substantial” near x? For example,
can we assert that the interior of S is nonempty, and that x ∈ cl intS?
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In answering such questions, the tangent cone TC
S (x) turns out to be more

useful than TB
S (x). Furthermore, the property that intTC

S (x) �= ∅ will serve
to identify a class of sets having important properties which play a role, for
example, in the theory of equilibria and in constructing feedback controls.

Let S be a closed nonempty subset of R
n, and let x ∈ S. We will say that

S is wedged at x provided that intTC
S (x) �= ∅. Since TC

S (x) = R
n for any

x ∈ intS, this property is at issue only for points x lying in bdry S.

6.1. Exercise. Which of the sets described in Exercise 2.5.6 is wedged
at 0?

We have already observed in Problem 2.9.10 the following fact:

6.2. Proposition. Let S =
{
x′ : f(x′) ≤ 0

}
, where f : R

n → R is Lips-
chitz near x and 0 /∈ ∂f(x). Then S is wedged at x.

6.3. Exercise.

(a) If S is given as in Proposition 6.2, then int S �= ∅, and x ∈
cl(int S). (Hint. Consider Problem 2.9.6.)

(b) By taking n = 2 and f(x, y) = |x| − |y|, show that Proposi-
tion 6.2 fails when ∂f is replaced by ∂Lf .

6.4. Theorem. A vector v ∈ R
n belongs to intTC

S (x) iff there exists ε > 0
such that

y ∈ x + εB, w ∈ v + εB, t ∈ [0, ε) =⇒ dS(y + tw) ≤ dS(y). (1)

Proof. Let v ∈ intTC
S (x). If v = 0, then TC

S (x) = R
n, so that by polarity

(see Proposition 2.5.4) we have NC
S (x) = {0}. But NL

S (x) ⊂ NC
S (x) is

nontrivial when x ∈ bdry S (Exercise 2.8.5), so that x ∈ intS necessarily.
But in that case property (1) evidently holds for a suitably small ε > 0. So
let us suppose 0 �= v ∈ intTC

S (x). Then by polarity there exists δ > 0 such
that

〈v, ζ〉 ≤ −δ‖ζ‖ ∀ζ ∈ NC
S (x).

If (1) fails to hold for any ε > 0, then there exist sequences {yi}, {wi}
converging to x and v, respectively, and a positive sequence {ti} decreasing
to 0 such that

dS(yi + tiwi) − dS(yi) > 0.

We invoke the Proximal Mean Value Theorem to deduce the existence
of zi converging to x and ζi ∈ ∂P dS(zi) such that 〈ζi, wi〉 > 0. Take a
subsequence if necessary to have ζi/‖ζi‖ converge to a limit ζ ∈ ∂LdS(x) ⊂
NC

S (x). We have

−δ = −δ‖ζ‖ ≥ 〈v, ζ〉 = lim
i→∞

〈wi, ζi〉/‖ζi‖ ≥ 0,
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a contradiction which establishes the necessity of (1).

As for the sufficiency, it is evident that (1) implies

d◦
S(x;w) ≤ 0 ∀w ∈ v + εB,

whence B(v; ε) ⊂ TC
S (x) and v ∈ intTC

S (x).

Let us agree to call the following set W (v; ε) a wedge (of axis v and radius
ε):

W (v; ε) :=
{
tw : t ∈ [0, ε), w ∈ v + εB

}
.

The first of the several immediate consequences of the theorem given below
explains our use of the term “wedged” for the condition 0 ∈ intT C

S (x), and
reveals it to be of a local and uniform nature.

6.5. Exercise.

(a) S is wedged at x iff there exists a wedge W (v; ε) such that
y + W (v; ε) ⊂ S ∀y ∈ S ∩ B(x; ε).

(b) If S is wedged at x, then int S �= ∅ and x ∈ cl(int S). If S is
wedged at each of its points, then S = cl(int S).

(c) If v ∈ int TC
S (x), then v ∈ T C

S (x′) for all x′ near x.

(d) If T C
S (x) = R

n, then x ∈ int S.

(e) Let n = 2 and set S equal to
{
(x, y) :

∥∥(x, y)− (1, 0)
∥∥ ≤ 1

}∪{(x, y) :
∥∥(x, y)− (−1, 0)

∥∥ ≤ 1
}
.

Show that T B
S (0, 0) = R

2, yet (0, 0) /∈ int S. What is T C
S (0, 0)?

Lower Semicontinuity of TC
S (·)

A multifunction Γ: X → X is said to be lower semicontinuous at x if for
any given v ∈ Γ(x) and ε > 0, there exists δ > 0 such that

x′ ∈ dom Γ, x′ ∈ x + δB =⇒ v ∈ Γ(x′) + εB.

6.6. Exercise.

(a) Let ∆ := domΓ. Then Γ is lower semicontinuous at x ∈ ∆ iff
for every v ∈ Γ(x) we have

lim sup
x′ ∆→x

d
(
v, Γ(x′)

)
= 0.

(b) In Exercise 2.5.6, determine in which cases T C
S (·) or T B

S (·) is
lower semicontinuous at the origin.

The lower semicontinuity of the tangent cone is a very useful property in
certain contexts, and it is notable that wedged sets automatically possess
it.
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6.7. Proposition. If S is wedged at x, then TC
S (·) is lower semicontinuous

at x.

Proof. Given v ∈ TC
S (x), we must verify (see Exercise 6.6)

lim sup
x′ S→x

d
(
v, TC

S (x′)
)

= 0.

Since TC
S (x) is closed convex with nonempty interior, it is the closure of

its interior. In view of this fact, it clearly suffices to verify the preceding
condition for v ∈ intTC

S (x). But for such v, it is immediate from Exer-
cise 6.5(c).

The following reflects a general fact about closed convex cone-valued mul-
tifunctions which are in polarity.

6.8. Proposition. TC
S (·) is lower semicontinuous at x iff NC

S (·) is graph-
closed at x.

Proof. Let TC
S (·) be lower semicontinuous at x, and let ζi ∈ NC

S (xi), where
xi → x, ζi → ζ. We wish to deduce ζ ∈ NC

S (x). Without loss of general-
ity, we can suppose ‖ζ‖ = 1. If ζ /∈ NC

S (x), then there exists a vector v
separating ζ from NC

S (x): For some δ > 0 we have

〈v, ξ〉 ≤ 0 < δ = 〈v, ζ〉 ∀ξ ∈ NC
S (x).

It follows that v ∈ NC
S (x)◦ = TC

S (x), and that (by lower semicontinuity)
v ∈ TC

S (xi) + (δ/2)B for all i sufficiently large. Then, for some vector
ui ∈ B, and for all i large, v + (δ/2)ui ∈ TC

S (xi), whence
〈

ζi, v +
(

δ

2

)
ui

〉
≤ 0.

This implies 〈ζi, v〉 ≤ (δ/2)‖ζi‖, and in the limit 〈ζ, v〉 ≤ δ/2, the desired
contradiction.

The sufficiency part of the proof is no harder than the necessity; it consti-
tutes one of the end-of-chapter problems.

A cone K in R
n is called pointed if it contains no two nonzero elements

whose sum is zero.

6.9. Exercise. A convex cone K in R
n has nonempty interior iff its

polar K◦ is pointed.

We can summarize some previous results in terms of pointedness of the
normal cone, as follows:

6.10. Corollary. If NC
S (x) is pointed, then NC

S (·) is graph-closed at x,
TC

S (·) is lower semicontinuous at x, and S is wedged at x.
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6.11. Exercise.

(a) When n = 1, NC
S (·) is always graph-closed at each point of S.

(b) We construct an example in R
2 of a set S such that NC

S (·)
fails to be graph-closed at the origin; S will be the graph of
a certain continuous function f : [0, 1] → R. We set f(x) = 0
at every point x of the form 2−n for n = 0, 1, 2, . . . and we
set f(0) = 0. In between any two points of the form 2−n−1

and 2−n, the graph of f describes an isosceles triangle whose
apex is located at

(
(2−n−1+2−n)/2, 2−2n

)
. Using the Proximal

Normal Formula of Theorem 2.6.1 for NC
S , show that NC

S (0, 0)
is a half-space. Show also that NC

S = R
2 at each point of the

form (2−n, 0), n > 1. Conclude that NC
S is not graph-closed at

(0, 0).

A General Relation Between TC
S and TB

S

We now establish a result which clarifies the relationship between the two
notions of tangency. It affirms that asymptotically, a vector v which lies in
TC

S (x) is one which lies in TB
S (x′) for all x′ near x.

6.12. Theorem. v ∈ TC
S (x) iff

lim sup
x′ S→x

d
(
v, TB

S (x′)
)

= 0.

Proof. To begin with, let v satisfy the given limit condition, and let us
show that v ∈ TC

S (x). It suffices to show that 〈v, ζ〉 ≤ 0 for any element
ζ ∈ NL

S (x), since NL
S (x)◦ = NC

S (x)◦ = TC
S (x). Such a vector ζ is of the

form
lim

i→∞
ζi, ζi ∈ NP

S (xi), xi
S→ x.

By hypothesis, there exists vi ∈ TB
S (xi) such that vi → v. Recall now that

TB
S (xi) ⊂ NP

S (xi)◦ (Exercise 2.7.1); in consequence we have 〈vi, ζi〉 ≤ 0. In
the limit we get 〈ζ, v〉 ≤ 0, as required.

Suppose now that v ∈ TC
S (x), but that the limit condition of the theo-

rem fails. Then, for some ε > 0 and sequence xi → x, xi ∈ S, we have
d
(
v, TB

S (xi)
)

> ε. Since a vector u lies in TB
S (y) iff DdS(y;u) ≤ 0 (by

Exercise 2.7.1) we have DdS(xi; v + w) > 0 for all w ∈ εB. Subbotin’s
Theorem 4.2 applies to give zi ∈ xi + (1/i)B admitting ζi ∈ ∂P dS(zi) such
that

〈ζi, v + w〉 > 0 ∀w ∈ εB.

We deduce
〈
ζi/‖ζi‖, v

〉 ≥ ε. Taking a subsequence if necessary to arrange
the convergence of ζi/‖ζi‖ to a limit ζ, we have ζ ∈ NL

S (x) (since ζi ∈
∂P dS(zi) ⊂ NP

S (zi)) and 〈ζ, v〉 ≥ ε. This contradicts v ∈ NL
S (x)◦ = TC

S (x),
and completes the proof.
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Recall that S is said to be regular at x if TB
S (x) = TC

S (x).

6.13. Corollary. S is regular at x iff TB
S (·) is lower semicontinuous at x.

6.14. Exercise.

(a) Prove Corollary 6.12.

(b) Show that the set S of Exercise 6.11(b) is regular at (0, 0), but
that T C

S (·) is not lower semicontinuous there.

(c) A continuous function f is such that f(x) ∈ T B
S (x) for every x

iff it satisfies f(x) ∈ T C
S (x) for every x.

7 Problems on Chapter 3

7.1. Let f and g be locally Lipschitz functions on R
n satisfying f ≥ g.

Suppose that at a point x0 we have f(x0) = g(x0). Prove that

∂Cf(x0) ∩ ∂Cg(x0) �= ∅.

Show that the corresponding result is false if ∂C is replaced by either ∂L

or ∂D.

7.2. We adopt the notation and the hypotheses of Theorem 1.7.

(a) Obtain the following “inner estimate” for ∂CV (0): For any x ∈ Σ(0),
we have ∂CV (0) ∩ M(x) �= ∅. (Hint. Consider the device used in
Exercise 1.5, in light of the preceding problem.)

(b) We have

DV (0;u) ≥ inf
x∈Σ(0)

inf
ζ∈M(x)

〈ζ, u〉,

D(−V )(0;u) ≥ sup
x∈Σ(0)

inf
ζ∈M(x)

〈−ζ, u〉.

(c) If M(x) is a singleton
{
ζ(x)
}

for each x ∈ Σ(0), then V ′(0;u) exists
for each u and equals infx∈Σ(0)

〈
ζ(x), u

〉
.

(d) If Σ(0) is a singleton {x} and M(x) is a singleton {ζ}, then V ′(0)
exists, and we have ∇V (0) = ζ.

7.3. A function f ∈ F(Rn) is called calm at x ∈ dom f if it satisfies

lim inf
x′→x

f(x′) − f(x)
‖x′ − x‖ > −∞.

Prove that if f is calm at x, then for some K > 0 and for any ε > 0, there
exist z ∈ x + εB and ζ ∈ ∂P f(z) with

∣∣f(z) − f(x)
∣∣ < ε and ‖ζ‖ ≤ K (i.e.,

f admits a priori bounded proximal subgradients arbitrarily near x).
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7.4. Prove the following addendum to Exercise 1.8. If V (·) is calm at 0,
then we may take λ0 = 1.

7.5. We adopt the notation and hypotheses of Theorem 1.14, and we assume
in addition that the functions f , gi (i = 1, 2, . . . , p) are convex, and that
the functions hj (j = 1, 2, . . . , m) are affine.

(a) Prove that V is convex.

(b) Prove that if every x ∈ Σ(0, 0) is normal, then

∂LV (0, 0) = ∂CV (0, 0) =
⋃

x∈Σ(0,0)

M(x).

(c) Prove that any x feasible for P (0, 0) for which M(x) �= ∅ is a solution
to P (0, 0). (This is a general principle in optimization: In the con-
vex case of the problem, the (normal) necessary conditions become
sufficient as well.)

7.6. Consider the smooth, finite-dimensional case of the Mean Value In-
equality, Theorem 2.3, when n = 2, x = (0, 0),

Y =
{
(1, t) : 0 ≤ t ≤ 1

}
, f(u, v) = u + (1 − u)v2.

Find the points z satisfying the conclusion of the theorem. Observe that
none of them lie in int[0, Y ].

7.7. Consider the general case of the Mean Value Inequality, Theorem 2.6,
when X = R, x = 0, Y = {1}, and

f(u) =

{
−√|u| if u ≤ 0,

1 if u > 0.

Show that for all r̄ and ε sufficiently near r̂ and 0, respectively, the point
z whose existence is asserted by the theorem must lie outside [x, Y ].

7.8. Let S and E be two bounded, closed, nonempty subsets of the Hilbert
space X, with 0 /∈ E. Prove that for some s ∈ S and ζ ∈ NP

S (s), we have
〈ζ, e〉 > 0 for all e ∈ E.

7.9. Show that the Decrease Principle, Theorem 2.8, remains true under
the following weakened hypothesis: For some ∆ > 0, ρ > 0, and δ > 0, we
have

z ∈ x0 + ρB, ζ ∈ ∂P f(z), f(z) < f(x0) + ∆ =⇒ ‖ζ‖ ≥ δ.

7.10. Let f : R
2 → R be differentiable, with f(−1, v) < 0 and f(1, v) > 0

for all v ∈ [−1, 1]. Prove the existence of a point (x, y) satisfying

|y| ≤ |x| ≤ 1 and fx(x, y) >
∣∣fy(x, y)

∣∣.
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7.11. Show that for some δ > 0, for all (u, v) in R
2 sufficiently near (0, 0),

there exists a solution (x, y, z) in R
3 to the system

|x − y| + 2z = u, x − |z| = v,

satisfying ∥∥(x, y, z)
∥∥ ≤ 1

δ

∥∥(u, v)
∥∥.

7.12. Show that for some δ > 0, for all (x, y, z) in R
3 sufficiently near

(0, 0, 0), there exists (x′, y′, z′) satisfying

|x′ − y′| + 2z′ = 0, x′ − |z′| = 0,

such that
∥∥(x′, y′, z′) − (x, y, z)

∥∥ ≤ 1
δ

∥∥(|x − y| + 2z, x − |z|)∥∥.

7.13.

(a) Let G : R
m → R

n be Lipschitz near x, and let ∂CG(x) be of maximal
rank. Then we have

0 ∈ ∂L

〈
ζ, G(·)〉(x) =⇒ ζ = 0.

(b) Verify that ∂CG(0) is of maximal rank when m = 3, n = 2, and

G(x, y, z) :=
(|x − y| + 2z, x − |z|).

(What is the relevance of this to the two preceding problems?)

7.14. Let x0 ∈ S1 ∩ S2, where S1 and S2 are closed subsets of R
n satisfying

NL
S1

(x0) ∩ (−NL
S2

(x0)
)

= {0}.

Prove that for some δ > 0, for all x sufficiently near x0, we have

dS1∩S2(x) ≤ 1
δ

max
{
dS1(x), dS2(x)

}
.

7.15. Let the functions g, h be as in Theorem 3.8, and in particular continue
to assume the constaint qualification at x0. Let S be the set

{
x ∈ X : g(x) ≤ 0, h(x) = 0

}
.

We assume that g(x0) = 0, and that h is C1 near x0. We set

I := {1, 2, . . . , p}, J := {1, 2, . . . , m}.
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(a) TC
S (x0) contains every vector v ∈ X satisfying

g◦
i (x0; v) ≤ 0 (i ∈ I),

〈
h′

j(x0), v
〉

= 0 (j ∈ J).

(b) If each of the functions gi admits directional derivatives at x0, then
any vector v ∈ TB

S (x0) satisfies

g′
i(x0; v) ≤ 0 (i ∈ I), h′

j(x0; v) = 0 (j ∈ J).

(c) If each of the functions gi is regular at x0, then S is regular at x0,
and we have

TC
S (x0) = TB

S (x0)

= {v : g′
i(x0; v) ≤ 0 (i ∈ I),

〈
h′

j(x0), v
〉

= 0 (j ∈ J)
}
,

NC
S (x0) = cone

{
ζ ∈ ∂C

{〈
γ, g(·)〉+

〈
λ, h(·)〉}(x0)

: γ ∈ R
p, λ ∈ R

m, γ ≥ 0
}
.

(Hint. Part (a) can be proven via the characterization provided by
Proposition 2.5.2, together with an appeal to Theorem 3.8.)

7.16.

(a) Let f : R
2 → R be defined as follows:

f(x, y) =




−|x|3/2 if x ≤ 0,

0 if x ≥ 0, y ≤ 0,

min(x, y) if x ≥ 0, y ≥ 0.

Prove that f is Lipschitz near (0, 0). Calculate the sets ∂P f(0, 0),
∂Df(0, 0), ∂Lf(0, 0), and ∂Cf(0, 0), and note that they are all differ-
ent.

(b) Calculate ∂Df(0) where f is the function that appears in Prob-
lem 2.9.16.

7.17. Let x ∈ S, where S is a closed subset of R
n.

(a) Prove that ∂DdS(x) ⊂ ND
S (x) ∩ B.

(b) Prove now that equality holds. (Hint. Use Exercise 4.9(c) and Propo-
sition 4.10.)

(c) Deduce from (b) the corresponding fact for limiting constructs:

∂LdS(x) = NL
S (x) ∩ B.
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(d) Show that ∂CdS(x) and NC
S (x) ∩ B differ in general.

7.18. Let x ∈ S, where S is a closed subset of R
n. We will prove that S is

regular at x iff dS is regular at x.

(a) Let S be regular at x. Use the preceding exercise to justify the fol-
lowing steps:

d◦
S(x; v) = max

{〈ζ, v〉 : ζ ∈ ∂LdS(x)
}

= max
{〈ζ, v〉 : ζ ∈ NL

S (x) ∩ B
}

= max
{〈ζ, v〉 : ζ ∈ ND

S (x) ∩ B
}

= max
{〈ζ, v〉 : ζ ∈ ∂DdS(x)

}
≤ DdS(x; v).

Deduce that dS is regular at x.

(b) If dS(·) is regular at x, show that S is regular at x.

7.19. Let E be a compact subset of R
n, and let S consist of those functions

x(·) ∈ L2
n[a, b] such that ẋ(t) ∈ E a.e. Prove that S is weakly compact iff

E is convex. What is the weak closure of S if E is not convex?

7.20. Let ϕ : R
n × R

m → R
k be such that for every x ∈ R

n, the function
u �→ ϕ(x, u) is continuous, and for every u ∈ R

m, the function x �→ ϕ(x, u)
is measurable. Suppose that Γ is a closed-valued measurable multifunction
from R

n to R
m such that

{
u ∈ Γ(x) : ϕ(x, u) = 0

} �= ∅ ∀x ∈ R
n.

Prove the existence of a measurable selection γ for Γ such that

ϕ
(
x, γ(x)

)
= 0 ∀x ∈ R

n.

(This is known as Filippov’s Lemma.)

7.21. Let Γ be a multifunction from R
m to R

n whose images are compact
and convex. Prove that Γ is measurable iff the function H(x, p) is measur-
able in x for each p, where

H(x, p) := sup
{〈p, v〉 : v ∈ Γ(x)

}
.

7.22. Consider f : L2
1[0, 1] → R defined by

f(x) :=
∫ 1

0
ϕ
(
x(t)
)
dt, with ϕ(x) := −|x|.
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(a) Prove that ∂P f(x) �= ∅ iff there exists δ > 0 such that

meas
{
t ∈ [0, 1] : − δ ≤ x(t) ≤ δ

}
= 0.

(b) Exhibit ζ and x ∈ L2
1[0, 1] such that ζ(t) ∈ ∂P ϕ

(
x(t)
)

a.e., yet ζ /∈
∂P f(x).

7.23. Show that any absolutely continuous function x satisfying the Euler
inclusion and transversality condition of Theorem 5.22 is a solution of the
variational problem when ϕ and � are convex.

7.24. In the context of Theorem 5.22, let ϕ(u, v) have the form
(
1 +

‖v‖2
)1/2 + g(u), where g is Lipschitz. Prove that any solution x of the

variational problem is continuously differentiable.

7.25. Prove the sufficiency part of Proposition 6.8: If NC
S (·) is graph-closed

at x, then TC
S (·) is lower semicontinuous at x.

7.26. Let S be a closed convex subset of R
n, and let x ∈ S. Then S is

wedged at x iff intS �= ∅.

7.27. Let S be a closed subset of R
n which is wedged at x, where x ∈ bdry S.

Then
NC

S (x) = −NC
Ŝ

(x),

where Ŝ is the set cl(comp S). Find a counterexample to this formula when
S is not wedged at x.

7.28. Let f : R
n → R be locally Lipschitz. Prove that epi f is wedged at

each of its points. (Conversely, a set which is wedged can be viewed locally
as the epigraph of a Lipschitz function, for a suitable choice of coordinate
axes, as can be shown.)

7.29. The Hausdorff distance ρ(C, S) between two sets C and S in R
n is

defined via
ρ(C, S) = max

{
sup
c∈C

dS(c), sup
s∈S

dC(s)
}

.

A multifunction Γ from R
m to R

n is (Hausdorff) continuous at x if

ρ
(
Γ(x′),Γ(x)

)→ 0 as x′ → x.

Prove that when Γ is closed-valued, then the continuity of Γ at x implies
that Γ is both upper and lower semicontinuous at x.

7.30. It is known that there exists a subset S of R with the following
property: for every a, b ∈ R with a < b, the Lebesgue measure L of the set
S ∩ [a, b] satisfies

(b − a)
3

< L(S ∩ [a, b]
)

<
2(b − a)

3
.
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Let f : R → R be defined as follows:

f(x) =
∫ x

0
χS(t) dt,

where χS is the characteristic function of S. Prove the following facts:

(a) f is Lipschitz, and we have ∂Cf(x) = [0, 1] for all x ∈ R.

(b) The functions f(x) and g(x) := x − f(x) have the same generalized
gradient at every point, yet do not differ by a constant.

We remark that ∂P f and ∂Lf are not known, nor is it known whether the
phenomenon that occurs in (b) can take place in terms of these subdiffer-
entials.



4
A Short Course in Control Theory

We are guided by the beauty of our weapons.

—Leonard Cohen, First We Take Manhattan

Mathematics, as well as several areas of application, abounds with situa-
tions where it is desired to control the behavior of the trajectories of a given
dynamical system. The goal can be either geometric (keep the state of the
system in a given set, or bring it toward the set), or functional (find the
trajectory that is optimal relative to a given criterion). More specific issues
arise subsequently, such as the construction of feedback control mechanisms
achieving the aims we have in mind. In this chapter we will identify a com-
plex of such fundamental and related issues, as they arise in connection
with the control of ordinary differential equations in a deterministic set-
ting. The first section sets the scene and develops a technical base for the
entire chapter.

1 Trajectories of Differential Inclusions

We are given a multifunction F mapping R × R
n to the subsets of R

n, and
a time interval [a, b]. The central object of study in this chapter will be the
differential inclusion

ẋ(t) ∈ F
(
t, x(t)

)
a.e., t ∈ [a, b]. (1)

A solution x(·) of (1) is taken to mean an absolutely continuous function
x : [a, b] → R

n which, together with ẋ, its derivative with respect to t,
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satisfies (1). For brevity, we will refer to any absolutely continuous x from
[a, b] to R

n as an arc on [a, b]. We also refer to an arc x satisfying (1) as a
trajectory of F .

The concept of differential inclusion subsumes that of a standard control
system

ẋ(t) = f
(
t, x(t), u(t)

)
, (2)

where f : R×R
n ×R

m → R
n, and where the control function u takes values

in some prescribed subset U of R
m; simply consider F (t, x) := f(t, x, U).

Filippov’s Lemma (Problem 3.7.20) implies that under mild hypotheses on
f , an arc x satisfies (1) iff there is a measurable function u(·) with values
in U such that (2) holds.

A more special case of (1) is the one in which F (t, x) is a singleton for
all (t, x); i.e., F (t, x) =

{
f(t, x)

}
. In the classical study of the ordinary

differential equation

ẋ(t) = f
(
t, x(t)

)
(3)

the properties of the function f play an important role. Let us recall some
basic facts on this subject:

1.1. Theorem. Suppose that f is continuous, and let (t0, x0) ∈ R×R
n be

given. Then the following hold :

(a) There exists a solution of (3) on an open interval (t0 − δ, t0 + δ), for
some δ > 0, satisfying x(t0) = x0.

(b) If in addition we assume linear growth, that is that there exist non-
negative constants γ and c such that

∥∥f(t, x)
∥∥ ≤ γ‖x‖ + c ∀(t, x),

then there exists a solution of (3) on (−∞,∞) such that x(t0) = x0.

(c) Let us now add the hypothesis that f is locally Lipschitz. Then there
exists a unique solution of (3) on (−∞,∞) such that x(t0) = x0.

Many readers will know that the hypotheses on f in the preceding theorem
can be relaxed—for example, joint continuity of f in (t, x) can be replaced
with measurability in t and continuity in x. However, the form given above
will suffice for our purposes.

In developing the basic theory of differential inclusions, two properties of
F turn out to be particularly important: upper semicontinuity and the
Lipschitz condition. We will not see the latter intervene until the next
section, but the former property is part of the Standing Hypotheses on F
that will be in force throughout the rest of this chapter, whether explicitly
mentioned or not.
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1.2. Standing Hypotheses.

(a) For every (t, x), F (t, x) is a nonempty compact convex set.

(b) F is upper semicontinuous.

(c) For some positive constants γ and c, and for all (t, x),

v ∈ F (t, x) =⇒ ‖v‖ ≤ γ‖x‖ + c.

Parts (b) and (c) of the Standing Hypotheses are of course analogues of
the continuity and linear growth conditions, respectively, familiar in the
classical case. We recall that F is upper semicontinuous at x if, given any
ε > 0, there exists δ > 0 such that

‖x′ − x‖ < δ =⇒ F (x′) ⊂ F (x) + εB.

1.3. Exercise.

(a) When F (t, x) =
{
f(t, x)

}
, show that Standing Hypotheses 1.2

(b,c) hold iff f is continuous and satisfies
∥∥f(t, x)

∥∥ ≤ γ‖x‖+ c.

(b) In the presence of Standing Hypotheses 1.2(a,c), property (b)
is equivalent to the graph of F being closed.

(c) Let Ω be a bounded subset of R×R
n. Prove that F is uniformly

bounded on Ω: there exists M such that

(t, x) ∈ Ω, v ∈ F (t, x) =⇒ ‖v‖ ≤ M.

(d) Let Ω be a bounded subset of R × R
n, and let r > 0 satisfy∥∥(t, x)

∥∥ ≤ r ∀(t, x) ∈ Ω. Let r̃ > r, and define F̃ as follows:

F̃ (t, x) =




F (t, x) if
∥∥(t, x)

∥∥ ≤ r̃,

F

(
(t, x)

‖(t, x)‖ r̃

)
if
∥∥(t, x)

∥∥ ≥ r̃.

Prove that F̃ satisfies the Standing Hypotheses, agrees with F
on a neighborhood of Ω, and is globally bounded.

The role of the linear growth condition in the classical theory of differential
equations is predicated on the a priori bounds on solutions to which it
gives rise. We will benefit from it in precisely the same way. The following
is known as Gronwall’s Lemma.

1.4. Proposition. Let x be an arc on [a, b] which satisfies∥∥ẋ(t)
∥∥ ≤ γ

∥∥x(t)
∥∥+ c(t) a.e., t ∈ [a, b],

where γ is a nonnegative constant and where c(·) ∈ L1
1[a, b]. Then, for all

t ∈ [a, b], we have

∥∥x(t) − x(a)
∥∥ ≤ (eγ(t−a) − 1)

∥∥x(a)
∥∥+
∫ t

a

eγ(t−s)c(s) ds.
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If the function c is constant and γ > 0, this becomes
∥∥x(t) − x(a)

∥∥ ≤ (eγ(t−a) − 1)
(∥∥x(a)

∥∥+ c/γ
)
.

Proof. Let r(t) :=
∥∥x(t) − x(a)

∥∥, a function which is absolutely continu-
ous on [a, b], as the composition of a Lipschitz function and an absolutely
continuous one. Let t be in that set of full measure in which both ẋ(t) and
ṙ(t) exist. If x(t) �= x(a), we have

ṙ(t) =
〈ẋ(t), x(t) − x(a)〉

‖x(t) − x(a)‖ ,

and otherwise ṙ(t) = 0 (since r attains a minimum at t). Thus, a.e. t ∈ [a, b]
we have

ṙ(t) ≤ ∥∥ẋ(t)
∥∥ ≤ γ

∥∥x(t)
∥∥+ c(t)

≤ γ
∥∥x(t) − x(a)

∥∥+ γ
∥∥x(a)

∥∥+ c(t)

= γr(t) + γ
∥∥x(a)

∥∥+ c(t).

We rewrite this inequality in the form
(
ṙ(t) − γr(t)

)
e−γt ≤ γe−γt

∥∥x(a)
∥∥+ e−γtc(t)

and note that the left side is the derivative of the function t �→ r(t)e−γt.
Integrating both sides now gives the result.

1.5. Exercise. Let C be a bounded subset of R
n and let [a, b] be

given. Show that there exists K > 0 and M > 0 with the property
that any trajectory x of F on [a, b] having x(a) ∈ C is Lipschitz on
[a, b] of rank K, and has

∥∥x(t)
∥∥ ≤ M for every t ∈ [a, b].

Euler Solutions

Many of us will have seen methods of calculating solutions of ordinary
differential equations; how would we study in concrete terms the calculation
of trajectories of the differential inclusion (1)? The most straightforward
approach to calculating a trajectory is to first find a selection f of F ; i.e.,
a function f such that f(t, x) ∈ F (t, x) for all (t, x). Then, we consider the
differential equation ẋ = f(t, x); any solution will presumably satisfy (1).

The problem with this approach lies in finding selections f with the regular-
ity properties (e.g., continuity) required by the usual theory of differential
equations. This selection issue is an interesting and well-studied one, but
not one that we intend nor need to dwell upon. Instead, we will consider
a generalized concept of solution to ẋ = f(t, x), one which requires no
particular regularity of f .

Let us now consider the so-called Cauchy or initial-value problem

ẋ(t) = f
(
t, x(t)

)
, x(a) = x0, (4)
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where f is simply any function from [a, b] × R
n to R

n. (We will return
presently to our differential inclusion.) How would we begin to calculate
numerically a solution of (4)? Recalling the classical Euler iterative scheme
from ordinary differential equations, we suspect that a reasonable answer
is obtained by discretizing in time. So let

π = {t0, t1, . . . , tN−1, tN}

be a partition of [a, b], where t0 = a and tN = b. (We do not require uniform
partitions; thus the interval lengths ti − ti−1 may differ.)

We proceed by considering, on the interval [t0, t1], the differential equation
with constant right-hand side

ẋ(t) = f(t0, x0), x(t0) = x0.

Of course this has a unique solution x(t) on [t0, t1], since the right side is
constant; we define x1 := x(t1). Next we iterate, by considering on [t1, t2]
the initial-value problem

ẋ(t) = f(t1, x1), x(t1) = x1.

The next so-called node of the scheme is x2 := x(t2). We proceed in this
manner until an arc xπ (which is in fact piecewise affine) has been defined
on all of [a, b]. We use the notation xπ to emphasize the role played by the
particular partition π in determining xπ, which has been called in the past
(and in our present) the Euler polygonal arc corresponding to the partition
π, or similar words to that effect.

The diameter (or mesh size) µπ of the partition π is given by

µπ := max{ti − ti−1 : 1 ≤ i ≤ N}.

An Euler solution to the initial-value problem (4) means any arc x which
is the uniform limit of Euler polygonal arcs xπj , corresponding as above to
some sequence πj such that πj → 0, where this connotes convergence of the
diameters µπj

→ 0 (evidently, the corresponding number Nj of partition
points in πj must then go to infinity). We will also say that an arc x on
[a, b] is an Euler arc for f when x is an Euler solution on [a, b] as above
to the initial-value problem (4) for the “right” initial condition, namely
x0 = x(a).

There are potential pathologies associated with these Euler solutions when
f is discontinuous, one of which is that the equality ẋ(t) = f

(
t, x(t)

)
may

fail completely. The following exercise serves to illustrate this, among other
perhaps counterintuitive and unexpected features.
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1.6. Exercise.

(a) Define f : [0, 1] × R → R as follows:

f(t, x) =




et if x = et,

1 if x < et,

e if x > et.

Let x0 = 1, a = 0, and b = 1. Show that problem (4) admits
a unique Euler solution but that the arc x̂(t) = et is not an
Euler solution, even though it satisfies ẋ(t) = f

(
t, x(t)

)
at every

point.

(b) Let f be the function

f(x) =

{
1 if x ≤ 0,

−1 if x > 0.

Set x0 = 0, a = 0, and b = 1. Show that x(t) ≡ 0 is the unique
Euler solution of (4), although it fails to satisfy ẋ(t) = f

(
t, x(t)

)
at any t.

(c) Now let f be the function

f(x) =

{
1 if x = 0,

−1 otherwise,

where again x0 = 0, a = 0, and b = 1. Show that x(t) ≡ 0 and
x(t) = −t are both Euler solutions of the initial-value problem.
(Hint. The first Euler solution is arrived at by considering only
uniform partitions.)

(d) Use part (c) in order to illustrate the fact that if we are re-
stricted to exclusively uniform partitions of a compact interval
[a, b], then the set of Euler solutions obtained thereby can be a
proper subset of the general class of Euler solutions (even when
f is dependent only upon x).

(e) Provide an example of a function f : R → R such that there
exist two distinct Euler solutions of (4) on [0, 1], each corre-
sponding to a sequence of uniform partitions.

On the other hand, here are some important positive things that can be
said about Euler solutions:

1.7. Theorem. Suppose that for positive constants γ and c and for all
(t, x) ∈ [a, b] × R

n, we have the linear growth condition
∥∥f(t, x)

∥∥ ≤ γ‖x‖ + c,

where f is otherwise arbitrary. Then:
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(a) At least one Euler solution x to the initial-value problem (4) exists
on [a, b], and any Euler solution is Lipschitz.

(b) Any Euler arc x for f on [a, b] satisfies
∥∥x(t) − x(a)

∥∥ ≤ (t − a)eγ(t−a)(c + γ
∥∥x(a)

∥∥), a ≤ t ≤ b.

(c) If f is continuous, then any Euler arc x for f on [a, b] is continuously
differentiable on (a, b) and satisfies ẋ(t) = f

(
t, x(t)

) ∀t ∈ (a, b).

Proof. Let π := {t0, t1, . . . , tN} be a partition of [a, b], and let xπ be the
corresponding Euler polygonal arc, with the nodes of xπ being denoted
x0, x1, . . . , xN as usual. On the interval (ti, ti+1) we have

∥∥ẋπ(t)
∥∥ =
∥∥f(ti, xi)

∥∥ ≤ γ‖xi‖ + c,

whence

‖xi+1 − x0‖ ≤ ‖xi+1 − xi‖ + ‖xi − x0‖
≤ (ti+1 − ti)

(
γ‖xi‖ + c

)
+ ‖xi − x0‖

≤ [(ti+1 − ti)γ + 1
]‖xi − x0‖ + (ti+1 − ti)

(
γ‖x0‖ + c

)
.

We now require the following exercise in induction:

1.8. Exercise. Let r0, r1, . . . , rN be nonnegative numbers satisfying

ri+1 ≤ (1 + δi)ri + ∆i, i = 0, 1, . . . , N − 1,

where δi ≥ 0 and ∆i ≥ 0, r0 = 0. Then

rN ≤
(

exp
(N−1∑

i=0

δi

))N−1∑
i=0

∆i.

Returning now to the authors’ part of the task, we apply this result to
derive, for i = 1, 2, . . . , N ,

‖xi − x0‖ ≤ M,

where
M := (b − a)eγ(b−a)(γ‖x0‖ + c

)
.

Thus all the nodes xi lie in the ball B(x0;M); by convexity this is true of
all the values xπ(t), a ≤ t ≤ b. Since the derivative along any linear portion
of xπ is determined by the values of f at the nodes, we obtain as well the
following uniform bound on [a, b]:

‖ẋπ‖∞ ≤ k := γM + c.
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Therefore xπ is Lipschitz of rank k on [a, b].

Now let πj be a sequence of partitions such that πj → 0; i.e., such that µπj

goes to zero, and (necessarily) Nj → ∞. Then the corresponding polygonal
arcs xπj on [a, b] all satisfy

xπj
(a) = x0, ‖xπj

− x0‖∞ ≤ M, ‖ẋπj
‖∞ ≤ k.

It follows that the family {xπj } is equicontinuous and uniformly bounded;
then, by the well-known theorem of Arzela and Ascoli, some subsequence
of it converges uniformly to a continuous function x. The limiting function
inherits the Lipschitz rank k on [a, b], and in consequence is absolutely
continuous (i.e., x is an arc). Thus by definition x is an Euler solution of
the initial-value problem (4) on [a, b], and assertion (a) of the theorem is
proved.

The inequality in part (b) of the theorem is inherited by x from the sequence
of polygonal arcs generating it (we identify t with b). There remains to prove
part (c) of the theorem.

To this end, let xπj denote a sequence of polygonal arcs for problem (4)
converging uniformly to an Euler solution x. As shown above, the arcs xπi

all lie in a certain ball B(x0;M) and they all satisfy a Lipschitz condition of
the same rank k. Since a continuous function on R

n is uniformly continuous
on compact sets, for any ε > 0, we can find δ > 0 such that

t, t̃ ∈ [a, b], x, x̃ ∈ B(x0;M), |t − t̃| < δ,

‖x − x̃‖ < δ =⇒ ∥∥f(t, x) − f(t̃, x̃)
∥∥ < ε.

Now let j be large enough so that the partition diameter µπj satisfies
µπj < δ and kµπj < δ. For any point t which is not one of the finitely many
points at which xπj

(t) is a node, we have ẋπj
(t) = f

(
t̃, xπj

(t̃)
)

for some t̃
within µπj

< δ of t. Thus, since
∥∥xπj

(t) − xπj
(t̃)
∥∥ ≤ kµπj

< δ,

we deduce
∥∥ẋπj

(t) − f
(
t, xπj

(t)
)∥∥ =

∥∥f(t, xπj
(t)
)− f

(
t̃, xπj

(t̃)
)∥∥ < ε.

It follows that for any t in [a, b], we have

∥∥∥∥xπj (t) − xπj (a) −
∫ t

a

f
(
t, xπj (τ)

)
dτ

∥∥∥∥
=
∥∥∥∥
∫ t

a

{
ẋπj

(τ) − f
(
τ, xπj

(τ)
)}

dτ

∥∥∥∥ < ε(t − a) ≤ ε(b − a).



1 Trajectories of Differential Inclusions 185

Letting j → ∞, we obtain from this
∥∥∥∥x(t) − x0 −

∫ t

a

f
(
τ, x(τ)

)
dτ

∥∥∥∥ ≤ ε(b − a).

Since ε is arbitrary, it follows that

x(t) = x0 +
∫ t

a

f
(
τ, x(τ)

)
dτ,

which implies (since the integrand is continuous) that x is C1 and ẋ(t) =
f
(
t, x(t)

)
for all t ∈ (a, b).

Euler arcs possess a uniform Lipschitz property akin to the one established
in Exercise 1.5 for trajectories:

1.9. Exercise. Let C be a bounded subset of R
n and let [a, b] be

given. Assume that f is given as in Theorem 1.7. Show that there
exists K > 0 with the property that any Euler arc x for f on [a, b]
having x(a) ∈ C is Lipschitz on [a, b] of rank K.

We are reassured by part (c) of the theorem that when f is continuous
(which is the minimal assumption under which the classical study of differ-
ential equations operates), Euler arcs satisfy the usual pointwise definition
of solution. Part (a) of the following exercise will provide a converse, and
in part (b), a further counterintuitive feature is noted:

1.10. Exercise.

(a) Let f be locally Lipschitz, and let the arc x on [a, b] satisfy
ẋ(t) = f

(
t, x(t)

) ∀t ∈ (a, b). Prove that x is an Euler arc for f
on [a, b].

(b) Let f(t, x) := (3/2)x1/3 (for n = 1), x0 = 0, a = 0, b = 1. Prove
that the initial-value problem (4) has three distinct classical
solutions of the form x(t) = αtβ , but only one Euler solution.

Compactness of Approximate Trajectories

We now return to considering the trajectories of a multifunction F sat-
isfying the Standing Hypotheses, and specifically the existence issue for
differential inclusions.

Let f be any selection for F ; that is,

f(t, x) ∈ F (t, x) ∀(t, x).

Then f evidently inherits the linear growth condition from F . By Theo-
rem 1.7, an Euler solution x to the initial-value problem (4) exists. We are
tempted to conclude that ẋ(t), being equal to f

(
t, x(t)

)
a.e., must lie in
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F
(
t, x(t)

)
a.e.; i.e., that x is a trajectory for F . This reasoning is fallacious,

however, since an Euler solution to (4) may not satisfy the pointwise con-
dition ẋ = f(t, x) for any t; witness Exercise 1.6(b). The key to the correct
argument is a sequential compactness property of approximate trajectories,
one which we will have frequent occasion to invoke, and which we establish
in some generality for future purposes.

1.11. Theorem. Let {xi} be a sequence of arcs on [a, b] such that the set{
xi(a)

}
is bounded, and satisfying

ẋi(t) ∈ F
(
τi(t), xi(t) + yi(t)

)
+ ri(t)B a.e.,

where {yi}, {ri}, {τi} are sequences of measurable functions on [a, b] such
that yi converges to 0 in L2, ri ≥ 0 converges to 0 in L2, τi converges a.e.
to t. Then there is a subsequence of {xi} which converges uniformly to an
arc x which is a trajectory of F , and whose derivatives converge weakly to
ẋ.

Proof. From the differential inclusion and the linear growth condition we
have ∥∥ẋi(t)

∥∥ ≤ γ
∥∥xi(t) + yi(t)

∥∥+
∣∣ri(t)

∣∣.
Using Gronwall’s Lemma (Proposition 1.4), this implies a uniform bound on
‖xi‖∞ and hence on ‖ẋi‖2. Invoking weak compactness in L2

n[a, b] allows
the extraction of a subsequence ẋij

converging weakly to a limit v0; we
may also suppose (by Arzela and Ascoli) that xij

converges uniformly to a
continuous function x. Passing to the limit in

xij
(t) = xij

(a) +
∫ t

a

ẋij
(s) ds

shows that x(t) = x(a) +
∫ t

a
v0(s) ds, whence x is an arc and ẋ = v0

a.e. The fact that x is a trajectory for F is an immediate consequence
of Theorem 3.5.24.

The following important consequence of the theorem vindicates our at-
tempt to calculate trajectories of F by way of selections, and proves that
trajectories do exist, given any x0 and [a, b].

1.12. Corollary. Let f be any selection of F , and let x be an Euler so-
lution on [a, b] of ẋ = f(t, x), x(a) = x0. Then x is a trajectory of F on
[a, b].

Proof. Let xπj be the polygonal arcs whose uniform limit is x, as in the
proof of Theorem 1.7. Let t ∈ (a, b) be a nonpartition point, and let τj(t)
designate the partition point ti immediately before t. Then

ẋπj (t) = f(ti, xi) ∈ F (ti, xi) = F
(
τj(t), xπj (t) + yj(t)

)
,
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where yj(t) := xi − xπj
(t) = xπj

(
τj(t)
) − xπj

(t). Since the functions xπj

admit a common Lipschitz constant k, we have
∥∥yj(t)

∥∥
∞ ≤ k sup

t∈[a,b]

∣∣τj(t) − t
∣∣ ≤ kµπj

.

It follows that τj and yj are (measurable) functions converging uniformly
to t and 0, respectively. It is now a consequence of the theorem that x, the
uniform limit of xπj

, is a trajectory of F .

1.13. Exercise.

(a) Trajectory continuation. Let z be a trajectory of F on [a, b].
Prove that there exists a trajectory of F on [a, ∞) which coin-
cides with z on [a, b]. What is more, show that there exists a
trajectory of F on (−∞, ∞) which coincides with z on [a, b].

(b) Variable intervals. Let xi be a sequence of trajectories of F
on [ai, bi], where ai → a, bi → b, a < b, and where the se-
quence xi(ai) is bounded. Let the trajectories xi be continued
to (−∞, ∞) as in part (a). Prove that a subsequence {xij } of
{xi} has the property that, for some trajectory x̄ of F on [a, b],
xij converges uniformly to x̄ on [a, b].

(c) Uniform convergence on bounded intervals. Let xi be a sequence
of trajectories of F on [a, ∞) such that the sequence xi(a) is
bounded. Prove that there is a trajectory x̄ of F on [a, ∞) and
a subsequence xij having the property that for any b > a, xij

converges uniformly to x̄ on [a, b].

(d) Let f : R
k → R

� only be required to satisfy a linear growth
condition. Is there a minimal multifunction F from R

k to R
�

which satisfies the Standing Hypotheses such that f(x) ∈ F (x)
for all x?

(e) Let f : R
n × R

m → R
n and g : R

n × R
m → R

m satisfy a linear
growth condition, and let (x, y) be an Euler arc for (f, g) on
[a, b]. Suppose that f is continuous. Prove that x is C1 on (a, b)
and satisfies ẋ(t) = f

(
x(t), y(t)

)
on (a, b).

We can extend the notion of Euler arcs for f from finite intervals to semi-
infinite ones of the form [a,∞) as follows: we say that the arc x(·) defined
on [a,∞) is an Euler arc on [a,∞) provided that for any b ∈ (a,∞), the arc
x restricted to [a, b] is an Euler arc for f on [a, b] (or, equivalently, an Euler
solution on [a, b] of the initial-value problem ẏ = f(t, y), y(a) = x(a)).

In general, it is not the case that the concatenation of two Euler arcs for
f is an Euler arc. That is, if x on [a, b] and y on [b, c] are Euler arcs, the
arc consisting of x followed by y may not be one (on [a, c]). Nonetheless,
we have
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1.14. Exercise.

(a) Let f : [a, ∞) × R
n → R

n have linear growth. For any x0, show
that there is an Euler arc x for f on [a, ∞) such that x(a) =
x0. (Hint. Construct an appropriate family of polygonal arcs
defined on [a, ∞), then a subsequence converging on [a, a + 1],
a further subsequence converging on [a, a + 2], and so on.)

(b) Prove Corollary 1.12 when [a, ∞) replaces [a, b].

The lower Hamiltonian h and upper Hamiltonian H corresponding to F will
play an important role in what follows. These are functions from R×R

n×R
n

to R defined as follows:

h(t, x, p) := min
v∈F (t,x)

〈p, v〉, H(t, x, p) := max
v∈F (t,x)

〈p, v〉.

We gather some basic properties of h and H in the following, under the
Standing Hypotheses on F . (Proposition 2.1.3 on support functions is rel-
evant here.)

1.15. Exercise.

(a) h is lower semicontinuous in (x, p), and concave and continuous
in p.

(b) h is superadditive in p:

h(t, x, p + q) ≥ h(t, x, p) + h(t, x, q),

and h(t, x, 0) = 0.

(c) A given vector v belongs to F (t, x) iff

h(t, x, p) ≤ 〈p, v〉 ∀p ∈ R
n;

v belongs to F (t, x) + rB (where r ≥ 0) iff

h(t, x, p) ≤ r‖p‖ + 〈p, v〉 ∀p ∈ R
n.

(d) What are the counterparts of (a)–(c) in terms of H?

2 Weak Invariance

A venerable notion from the classical theory of dynamical systems is that
of invariance. When the basic model consists of an autonomous ordinary
differential equation ẋ(t) = f

(
x(t)
)

with locally Lipschitz right-hand side
and a set S ⊆ R

n, then flow invariance of the pair (S, f) is the property
that for every initial point x0 in S, the (unique) trajectory emanating from
x(0) = x0 is defined on [0,∞) and satisfies x(t) ∈ S for all t ≥ 0. In this
section, we will study a generalization of this concept to situations wherein
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the differential equation is replaced by a differential inclusion (possibly
nonautonomous). The largely geometric analysis undertaken here will have
important ramifications later in the chapter. Once again, we will find it
advantageous to consider first Euler arcs.

Proximal Aiming

Suppose that we are studying the flow of an ordinary differential equation

ẋ(t) = f
(
t, x(t)

)
, x(0) = x0,

with the issue being to determine whether the resulting trajectory x(t)
approaches a given closed set S in R

n. One natural way to test whether
this is the case is to pick a point s ∈ projS

(
x(t)
)

(for a given t), and check
the sign of the quantity

〈
f
(
t, x(t)

)
, x − s

〉
.

If it is negative, ẋ(t) will “point toward s,” and hence certainly toward S.
If this prevails at every point

(
t, x(t)

)
, then the state x(t) should indeed

“move toward S.” The next result, a simple and important one, confirms
this heuristic observation in the general framework of Euler arcs.

2.1. Proposition. Let f satisfy the linear growth condition∥∥f(t, x)
∥∥ ≤ γ‖x‖ + c ∀(t, x),

and let x(·) be an Euler arc for f on [a, b]. Let Ω be an open set contain-
ing x(t) ∀t ∈ [a, b], and suppose that every (t, z) ∈ [a, b] × Ω satisfies the
following “proximal aiming” condition: there exists s ∈ projS(z) such that〈
f(t, z), z − s

〉 ≤ 0. Then we have

dS

(
x(t)
) ≤ dS

(
x(a)
) ∀t ∈ [a, b].

Proof. Let xπ be one polygonal arc in the sequence converging uniformly
to x, as per the definition of the Euler solution. As usual, we denote its
node at ti by xi (i = 0, 1, . . . , N), and so x0 = x(a). We may suppose that
xπ(t) lies in Ω for all t ∈ [a, b]. Accordingly, there exists for each i a point
si ∈ projS(xi) such that

〈
f(ti, xi), xi − si

〉 ≤ 0. Letting k be the a priori
bound on ‖ẋπ‖∞ as in the proof of Theorem 1.7, we calculate

d2
S(x1) ≤ ‖x1 − s0‖2 (since s0 ∈ S)

= ‖x1 − x0‖2 + ‖x0 − s0‖2 + 2〈x1 − x0, x0 − s0〉

≤ k2(t1 − t0)2 + d2
S(x0) + 2

∫ t1

t0

〈
ẋπ(t), x0 − s0

〉
dt

= k2(t1 − t0)2 + d2
S(x0) + 2

∫ t1

t0

〈
f(t0, x0), x0 − s0

〉
dt

≤ k2(t1 − t0)2 + d2
S(x0).
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The same estimates at any node apply to give

d2
S(xi) ≤ d2

S(xi−1) + k2(ti − ti−1)2,

whence

d2
S(xi) ≤ d2

S(x0) + k2
i∑

�=1

(t� − t�−1)2

≤ d2
S(x0) + k2µπ

i∑
�=1

(t� − t�−1)

≤ d2
S(x0) + k2µπ(b − a).

Now consider the sequence xπj
of polygonal arcs converging to x. Since

the last estimate holds at every node and since µπj
→ 0 (and the same k

applies to each xπj
), we deduce in the limit dS

(
x(t)
) ≤ dS

(
x(a)
) ∀t ∈ [a, b],

as claimed.

2.2. Exercise. Suppose that in Proposition 2.1, the proximal aim-
ing condition is changed to

〈
f(t, z), z − s

〉 ≤ θ(t, z)dS(z)

for a continuous function θ, other things being equal.

(a) Show that the conclusion becomes

d2
S

(
x(t)
)− d2

S

(
x(τ)
) ≤ 2

∫ t

τ

θ
(
r, x(r)

)
dS

(
x(r)
)
dr

for any a ≤ τ < t ≤ b.

(b) Prove that this implies

d

dt
dS

(
x(t)
) ≤ θ

(
t, x(t)

)
a.e.

on any interval on which dS

(
x(t)
)

> 0, or on any interval in
which θ

(
t, x(t)

) ≥ 0.

Weak Invariance (Autonomous Case)

Our real goal is not to work with a given f(t, x), which allows no scope
for control considerations, but rather with the possible trajectories of a
differential inclusion ẋ(t) ∈ F

(
x(t)
)
. Note that we are taking F to be

independent of t (the so-called autonomous case) for the moment; we will
return to the nonautonomous case later. Our attention is still focused on
approaching a given closed set S. More precisely, if the initial state x0
actually lies in S already, is there a trajectory starting at x0 that remains
in S thereafter?

This concept is important enough to merit some terminology:
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2.3. Definition. The system (S, F ) is called weakly invariant provided
that for all x0 ∈ S, there exists a trajectory x on [0,∞) such that

x(0) = x0, x(t) ∈ S ∀t ≥ 0.

Note that we speak of this property (which is also called viability) as being
one of the pair (S, F ), and not just of S. Here is a key proximal sufficient
condition for weak invariance, in terms of the lower Hamiltonian defined
earlier (see Exercise 1.15):

2.4. Theorem. Suppose that for every x ∈ S, we have

h
(
x,NP

S (x)
) ≤ 0. (1)

Then (S, F ) is weakly invariant.

Let us dispel any doubt as to the meaning of (1): this Hamiltonian inequal-
ity says that for every ζ ∈ NP

S (x), we have h(x, ζ) ≤ 0. Observe that (1) is
automatically true if NP

S (x) reduces to {0}, since h(x, 0) = 0.

Proof. Let us define a function fP as follows: for each x in R
n, choose any

s = s(x) in projS(x), and let v in F (s) minimize over F (s) the function

v �→ 〈v, x − s〉.
We set fP (x) = v. Note that fP is autonomous; i.e., t-independent. Since
x−s ∈ NP

S (s), this minimum is nonpositive by (1); i.e.,
〈
fP (x), x−s

〉 ≤ 0,
which is the main hypothesis of Proposition 2.1. If s0 is any given point in
S, then

∥∥fP (x)
∥∥ = ‖v‖ ≤ γ‖s‖ + c (since F has linear growth)

≤ γ‖s − x‖ + γ‖x‖ + c

= γdS(x) + γ‖x‖ + c (since s ∈ projS(x))
≤ γ‖x − s0‖ + γ‖x‖ + c

≤ 2γ‖x‖ + ‖γs0‖ + c,

and so fP satisfies the linear growth condition. Now set [a, b] = [0, 1] and
apply Proposition 2.1 for any x0 ∈ S. We conclude that the resulting Euler
solutions to ẋ = fP (x), x(0) = x0 on [0, 1] necessarily lie in S. We can
extend x to [0,∞) in the evident way by considering next the interval
[1, 2], etc.

The proof will be complete if we can show that x is a trajectory for F .
(Note that f is not a selection for F , so Corollary 1.12 is not available.)
Let us define another multifunction FS as follows:

FS(x) := co
{
F (s) : s ∈ projS(x)

}
.

We ask the reader to prove some facts concerning FS .
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2.5. Exercise. FS satisfies the Standing Hypotheses, and FS(x) =
F (x) if x ∈ S.

Returning to the proof, observe that by construction, fP is a selection for
the multifunction FS . Therefore, by Corollary 1.12, the arc x defined above
is a trajectory for FS ; i.e., ẋ(t) ∈ FS

(
x(t)
)

a.e. on [0, 1]. But since x(t) ∈ S
on [0, 1], and since F = FS on S, it follows that x is a trajectory for F .

Note that the proof, a paradigm for other more complicated ones later, is
constructive in nature, and actually produces more than is asserted by the
theorem, as exemplified by the next corollary.

2.6. Corollary. There is an autonomous function fP with linear growth
such that, for any Euler arc x for fP , we have

dS

(
x(t)
) ≤ dS

(
x(a)
) ∀t ≥ a.

In particular, S is invariant under fP , in the sense that any Euler arc for
fP which begins in S must remain in S thereafter.

The term feedback is used for any function f(x) designed or constructed for
the purpose of generating Euler solutions. As attractive as the “proximal
aiming” feedback fP may be, it does have some drawbacks. It is discontin-
uous in general, of course, since the metric projection multifunction projS
does not generally admit continuous selections. In addition, observe that
fP (x) is completely arbitrary within F (x) when x ∈ S (for then s = x).
Finally, note that fP (x) ∈ F (x) for x ∈ S, but not necessarily otherwise:
fP is not a selection of F . The issue of finding feedback selections that
lead to invariance will be explored later. First we look at an example of the
construction above.

2.7. Exercise. For n = 2, let S =
{
(x, y) : max{x, y} ≥ 0

}
(the

closed complement of the third quadrant), and let

F (x, y) =
{(|y| − u − 1/2, u) : −1 ≤ u ≤ 1

}
.

(a) Show that (S, F ) is weakly invariant via Theorem 2.4.

(b) Let the function fP constructed above be expressed in the form
fP (x, y) =

(|y| − u(x, y) − 1/2, u(x, y)
)
. Show that u(x, y) = 1

for x < y < 0, −1 for y < x < 0, so that fP is discontinuous.
What are the possible values of fP when x = y < 0? When
(x, y) ∈ S?

(c) Prove that no continuous function f exists having the global
invariance property of fP cited in Corollary 2.6.

Tangential and Other Conditions for Weak Invariance

It turns out that weak invariance can be characterized in a number of dif-
ferent ways, one of which involves a multifunction that plays an important
role in control theory.
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2.8. Definition. The attainable set A(x0; t) for t ≥ 0 is the set of all points
of the form x(t), where x(·) is any trajectory on [0, t] satisfying x(0) = x0.

2.9. Exercise. Prove the following:

(a) A(x0; t) is compact and nonempty.

(b) (S, F ) is weakly invariant =⇒ ∀x0 ∈ S, ∀t > 0, A(x0; t) ∩
S �= ∅.

(c) Semigroup property. For ∆ > 0, A(x0; t+∆) = A(A(x0; t);∆
)
.

(d) For given t > 0, the multifunction x �→ A(x; t) satisfies the
Standing Hypotheses, except that A(x; t) can fail to be a convex
set.

2.10. Theorem. The following are equivalent :

(a) F (x) ∩ TB
S (x) �= ∅ ∀x ∈ S.

(b) F (x) ∩ co TB
S (x) �= ∅ ∀x ∈ S.

(c) h
(
x, NP

S (x)
) ≤ 0 ∀x ∈ S.

(d) (S, F ) is weakly invariant.

(e) ∀x0 ∈ S, ∀ε > 0, ∃δ ∈ (0, ε) such that A(x0; δ) ∩ S �= ∅.
Proof. Condition (a) evidently implies (b). Recall that (Exercise 2.7.1)

co TB
S (x) ⊆ [NP

S (x)
]◦

,

from which it follows that (b) implies (c). That (c) implies (d) is Theo-
rem 2.4, and the implication (d) =⇒ (e) was noted in Exercise 2.9. Thus
only the implication (e) =⇒ (a) remains to be proven.

When (e) holds, for a sequence δi ↓ 0, there exist trajectories xi on [0, δi]
with xi(0) = x0, xi(δi) ∈ S. Since the trajectories have a common Lipschitz
constant, there exists K > 0 such that

∣∣xi(δi) − x0
∣∣ ≤ Kδi for all large i.

Then, upon taking a subsequence (we eschew relabeling), we can assume
that

xi(δi) − x0

δi
→ v

for some v. Note that v ∈ TB
S (x) by definition of the Bouligand tangent

cone. Therefore we need only to show that v lies in F (x) in order to deduce
(a).

We have

xi(δi) − x0 =
∫ δi

0
ẋi(t) dt, (2)
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where ẋi(t) ∈ F
(
xi(t)

)
, 0 ≤ t ≤ δi. Now for any given ∆ > 0, for all i

sufficiently large, the set
{
xi(t) : 0 ≤ t ≤ δi

}
lies in x0 + ∆B. Further,

given any ε > 0, taking ∆ small enough will ensure that x ∈ x0 + ∆B
implies F (x) ⊂ F (x0) + εB. The upshot of all this, in view of (2), is that
for all i large enough we have

xi(δi) − x0

δi
∈ F (x0) + εB.

Thus v ∈ F (x0) + εB. Since ε is arbitrary, v ∈ F (x0) as required.

2.11. Exercise.

(a) (S, F ) is weakly invariant iff given any x0 ∈ S there exists
δ > 0 (depending on x0) and a trajectory x on [0, δ] such that
x(0) = x0, x(t) ∈ S (0 ≤ t ≤ δ). (Thus, weak invariance
can also be characterized in terms of the local existence of a
trajectory.)

(b) Let x be a trajectory for F defined on [a, ∞). Then the set

Sx :=
{
x(t) : t ≥ a

}

has the property that (Sx, F ) is weakly invariant. Provide an
example in R

2 where Sx is not closed.

(c) The system (S, F ) is termed weakly preinvariant if, given any
x0 ∈ S, there exists a trajectory x for F defined on (−∞, 0] such
that x(0) = x0. Show that the system (S, F ) of Exercise 2.7 is
weakly invariant but not weakly preinvariant.

(d) Prove that (S, F ) is weakly preinvariant iff (S, −F ) is weakly
invariant, and that this is in turn equivalent to

H
(
x, NP

S (x)
) ≥ 0 ∀x ∈ S.

(Hint. Reverse time.)

(e) Let x be a trajectory for F defined on [a, ∞), and let

G :=
{(

t, x(t)
)
: t ≥ a

}
.

Prove that G is closed, and that
(
G, {1} × F

)
is weakly invari-

ant, where {1} × F signifies the multifunction whose value at
(t, x) is the set {1} × F (x) in R × R

n.

(f) Show that S is weakly invariant iff it is the union of trajectories
of F on [0, ∞).

(g) Show that Theorem 2.10 holds true if the linear growth condi-
tion is deleted from the Standing Hypotheses, but S is assumed
to be compact. (Hint. Redefine F outside a neighborhood of S
so that the new multifunction has uniformly bounded images,
as was done in Exercise 1.3(d).)
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FIGURE 4.1. The set S of Exercise 2.12.

Since TB
S (x) always includes TC

S (x), the tangential or “inwardness” condi-
tion that F (x) ∩ TC

X (x) �= ∅ for all x ∈ S is certainly sufficient for weak
invariance of (S, F ). The next exercise, however, demonstrates that the
tangent cone TC

S (x) cannot replace the Bouligand cone in Theorem 2.10,
since necessity can fail (possibly only at a single point x).

2.12. Exercise. Let n = 3, and let S := cl(
√

2B\K), where K (see
Figure 4.1) is the cone{

(x1, x2, x3) ∈ R
3 :
∥∥(x1, x2)

∥∥ ≤ x3
}
.

Define F as follows: let

W :=
{
(x1, x2, 1) ∈ R

3 :
∥∥(x1, x2)

∥∥ = 1
}
,

Q :=
{
(x1, x2, 1) ∈ R

3 :
∥∥(x1, x2)

∥∥ ≤ 1
}
,

and set

F (x1, x2, x3) = F (x) =

{
Q if x ∈ S\W,

co
{
Q, (−x2, x1, 0)

}
otherwise.

Prove that F satisfies the Standing Hypotheses, that

F (x) ∩ T B
S (x) �= ∅ ∀x ∈ S.

but that
F (0) ∩ T C

S (0) = ∅.

3 Lipschitz Dependence and Strong Invariance

We now wish to focus upon designing feedbacks f that are actual selections
for F . For example, it can be useful to know whether a given trajectory
of F arises as an Euler solution corresponding to some selection. That this
is not generally the case under merely the hypotheses invoked thus far is
illustrated by the following.
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3.1. Exercise. We define F on R
2 as follows:

F (x, y) :=




{
(1, e)

}
if y > ex,{

(1, r) : 1 ≤ r ≤ e
}

if y = ex,{
(1, 1)

}
if y < ex.

(a) Confirm that F satisfies the Standing Hypotheses, and that
(x̄, ȳ)(t) = (t, et) is a trajectory on [0, 1]. Show that there is no
selection f for F (autonomous or not) admitting (x̄, ȳ) as an
Euler solution of (ẋ, ẏ) = f(t, x, y),

(
x(0), y(0)

)
= (0, 1).

(b) The set
{
(t, et) : t ≥ 0

}
is weakly invariant with respect to

F , by part (b) of Exercise 2.11. Deduce from this that there
exist weakly invariant systems which fail to admit a feedback
selection f whose Euler arcs leave S invariant.

A better behavior on the part of F that will preclude such pathology is
provided by a multivalued version of local Lipschitz behavior:

3.2. Definition. F is said to be locally Lipschitz provided that every point
x admits a neighborhood U = U(x) and a positive constant K = K(x) such
that

x1, x2 ∈ U =⇒ F (x2) ⊆ F (x1) + K‖x1 − x2‖B. (1)

We then say that F is Lipschitz of rank K on the set U .

3.3. Exercise. Let F be locally Lipschitz.

(a) Let C be any bounded subset of R
n. Show that there exists

K such that (1) holds on C; thus F is “Lipschitz on bounded
sets.”

(b) Fix v0 ∈ R
n, and let f(x) be the point v in F (x) closest to v0.

Prove that f is a continuous selection for F . (In general, f need
not be locally Lipschitz.)

(c) Prove that F is locally Lipschitz iff x �→ h(x, p) is locally Lips-
chitz for each p.

We now confirm that when F is locally Lipschitz, a weakly invariant system
(S, F ) admits a feedback selection whose Euler arcs all leave S invariant.

3.4. Theorem. Let (S, F ) be weakly invariant, where F is locally Lips-
chitz. Then there exists a feedback selection gP for F under which S is
invariant ; that is, such that for any Euler arc x for gP on [a, b] having
x(a) ∈ S, we have x(t) ∈ S ∀t ∈ [a, b].

Proof. Let fP be defined precisely as in the proof of Theorem 2.4. Then
fP (x) lies not necessarily in F (x), but in F (s), where s = s(x) ∈ projS(x).
We define gP (x) to be the point in F (x) closest to fP (x), so that gP is a
selection for F .
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Now let x0 ∈ S and b > a be given. We will complete the proof by show-
ing that any Euler solution x̄ on [a, b] from x0 generated by gP is such
that x̄(t) ∈ S ∀t ∈ [a, b]. (We already know that x̄ is a trajectory from
Corollary 1.12.)

It follows from Exercise 1.9 that there is some a priori bound for x̄(t) on
[a, b], let us say

∥∥x̄(t) − x0
∥∥ < M . Let K be a Lipschitz constant for F on

the set x0 + 2MB. Note now that if ‖x − x0‖ < M , then
∥∥s − x0

∥∥ ≤ ∥∥s − x
∥∥+ ‖x − x0‖ = dS(x) + ‖x − x0‖

≤ 2‖x − x0‖ < 2M.

This allows us to estimate as follows:
〈
gP (x), x − s

〉
=
〈
fP (x), x − s

〉
+ 〈gP (x) − fP (x), x − s

〉
≤ ∥∥gP (x) − fP (x)

∥∥ ‖x − s‖
≤ K‖x − s‖2 = Kd2

S(x).

This shows that the extension of Proposition 2.1 provided by Exercise 2.2
is applicable, with θ(t, x) := KdS(x). Letting x̄ be an Euler solution corre-
sponding to gP , we conclude that

d
dt dS

(
x̄(t)
) ≤ KdS

(
x̄(t)
)

a.e. in [a, b].

The Gronwall inequality then implies that

dS

(
x̄(t)
) ≤ dS

(
x̄(a)
)
eK(t−a) = 0,

since x̄(a) = x0 ∈ S. Thus x̄(t) ∈ S, a ≤ t ≤ b.

The proof yields the following estimate for solutions not necessarily begin-
ning in S:

3.5. Corollary. Let K be a Lipschitz constant for F on the set x0+2MB,
and let b > a satisfy

(b − a)eγ(b−a)(c + γ‖x0‖
)

< M.

Then any Euler solution on [a, b] of ẋ = gP (x), x(a) = x0 is a trajectory
satisfying

dS

(
x(t)
) ≤ dS(x0)eK(t−a), a ≤ t ≤ b.

Proof. The inequalities in the proof hold for ‖x−x0‖ < M , for the given K;
on the other hand, the solutions x(t) continue to satisfy

∥∥x(t)−x0
∥∥ < M for

t ∈ [a, b] when b− a is small enough (as stated), according to Theorem 1.7.
Thus, at least on [a, b], the upper bound on dS

(
x(t)
)

ensues.
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3.6. Exercise. Observe that the multifunction F of Exercise 2.7 is
locally Lipschitz. What is the feedback selection gP of Theorem 3.4
in this case?

The following consequence affirms that for Lipschitz F , any trajectory can
be generated by a feedback selection, which resolves an earlier question.

3.7. Corollary. When F is locally Lipschitz, a given arc x̄ on [a, b] is a
trajectory for F iff there exists a (not necessarily autonomous) feedback
selection f for F such that x̄ is an Euler solution on [a, b] for the initial-
value problem ẋ = f(t, x), x(a) = x̄(a). In fact, given a trajectory x̄, there
is a feedback selection for F for which x̄ is the unique Euler solution of the
associated initial-value problem.

Proof. That selections give rise to trajectories was noted in Corollary 1.12,
so it remains to exhibit, for a given trajectory x̄, a feedback selection gen-
erating it. The set G of Exercise 2.11(e) is weakly invariant under the
trajectories of {1} × F , allowing us to invoke Theorem 3.4. This provides
a selection for {1} × F , necessarily of the form

(
1, f(t, x)

)
, where f is a

selection for F , and having the property that any Euler solution x of the
initial-value problem ẋ = f(t, x), x(a) = x̄(a) is such that

(
t, x(t)

) ∈ G
on [a, b]. But then x(t) = x̄(t) for t ∈ [a, b], proving that x̄ is the (unique)
Euler solution.

Strong Invariance

The system (S, F ) is said to be strongly invariant if every trajectory x on
[0,∞) for which x(0) ∈ S is such that x(t) ∈ S for all t ≥ 0.

Remaining still in the case in which F is autonomous, let us characterize
strong invariance in terms resembling those of Theorem 2.10, but with a
Lipschitz hypothesis imposed upon the multifunction F . Note that now
TC

S , the tangent cone of §2.5, joins the cast by playing a role in one of
the criteria for strong invariance; in this regard recall Exercise 2.12, which
showed that TC

S could not be included in the characterizations of weak
invariance. Note that the upper Hamiltonian H figures in (d) below, so
that (d) is a strong counterpart of the weak proximal normal condition
that figured in Theorem 2.10.

3.8. Theorem. Let F be locally Lipschitz. Then the following are equiva-
lent :

(a) F (x) ⊆ TC
S (x) ∀x ∈ S.

(b) F (x) ⊆ TB
S (x) ∀x ∈ S.

(c) F (x) ⊆ co TB
S (x) ∀x ∈ S.

(d) H
(
x, NP

S (x)
) ≤ 0 ∀x ∈ S.
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(e) (S, F ) is strongly invariant.

(f) ∀x0 ∈ S, ∃ε > 0 � A(x0; t) ⊆ S ∀t ∈ [0, ε].

Proof. That (a) =⇒ (b) =⇒ (c) is a tautology, since TC
S (x) ⊆ TB

S (x). Since
every element of co TB

S (x) belongs to NP
S (x)◦, we know (c) =⇒ (d). Let us

now address the implication (d) =⇒ (e).

Let x̄ be any trajectory for F on [a, b], with x̄(a) ∈ S. According to Corol-
lary 3.7, there exists a feedback selection f such that x̄ is an Euler solution
of the initial-value problem ẋ = f(t, x), x(a) = x̄(a) =: x0.

Let M > 0 be such that all Euler solutions x of this initial-value problem
above satisfy

∥∥x(t) − x0
∥∥ < M , a ≤ t ≤ b. If x lies in x0 + MB and

s ∈ projS(x), then

‖s − x0‖ ≤ ‖s − x‖ + ‖x − x0‖ ≤ 2‖x − x0‖,

so that s ∈ x0 + 2MB.

Now let K be a Lipschitz constant for F on x0 + 2MB, and consider any
x ∈ x0 + MB and s ∈ projS(x). Then x − s ∈ NP

S (s). Since f(t, x) ∈ F (x),
there exists v ∈ F (s) such that

∥∥v − f(t, x)
∥∥ ≤ K‖s − x‖ = KdS(x).

Further, by condition (d), we have 〈v, x − s〉 ≤ 0. We deduce
〈
f(t, x), x − s

〉 ≤ KdS(x)2.

Thus a special case of Exercise 2.2 holds, for θ(t, x) := KdS(x), and we
obtain

d

dt
dS

(
x̄(t)
) ≤ KdS

(
x̄(t)
)
, a ≤ t ≤ b, dS

(
x̄(0)
)

= 0,

which implies that dS

(
x̄(t)
)

= 0 in [a, b] by the now familiar Gronwall
inequality. Thus x̄(t) ∈ S ∀t ∈ [a, b], and (e) holds.

That (e) and (f) are equivalent is easy to see; let us now show (e) =⇒ (d).
Consider any x̃ ∈ S, let any ṽ in F (x̃) be given, and set F̃ (x) =

{
f̃(x)
}
,

where f̃(x) is the closest point in F (x) to ṽ. Note that f̃(x̃) = ṽ, and
that f̃ is a continuous selection of F (Exercise 3.3(c)). Thus F̃ satisfies
the Standing Hypotheses, and clearly (S, F̃ ) is strongly, and hence weakly,
invariant. By Theorem 2.10, we must have

h̃
(
x̃, NP

S (x̃)
) ≤ 0;

here, h̃ of course denotes the lower Hamiltonian associated with F̃ . This is
the same as asserting that 〈ṽ, ζ〉 is nonpositive for any ζ ∈ NP

S (x̃). Since ṽ
is arbitrary in F (x̃), (d) follows.
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To complete the proof of the theorem, it suffices to prove that (d) =⇒ (a).
Let ṽ be any element of F (x̃); we need to show that ṽ belongs to NL

S (x̃)◦ =
TC

S (x̃). Now any element ζ of NL
S (x̃) is of the form ζ = limi ζi, where

ζi ∈ NP
S (xi) and xi → x̃. For each i, there exists vi ∈ F (xi) such that

‖vi − ṽ‖ ≤ K‖xi − x̃‖,

and (by (d)) we have 〈ζi, vi〉 ≤ 0. We derive 〈ζ, ṽ〉 ≤ 0 as required.

3.9. Exercise.

(a) Show that the local Lipschitz assumption on F cannot be dis-
pensed with in the preceding theorem, by taking F (t, x) ={
f(x)
}
, and S = {0}, where f is the function of Exercise 1.10(b).

(b) Show that the system of Exercise 2.7 is weakly but not strongly
invariant.

The Nonautonomous Case

The invariance results obtained in the preceding sections can all be ex-
tended to the case in which F depends on t as well as on x (the nonau-
tonomous case), and there is an easy route for getting the nonautonomous
results from the autonomous versions. This technique is called state aug-
mentation; here, it consists of viewing t as simply a component of the state,
one whose derivative is always 1.

To be more precise, we will think of t as being the zeroth coordinate of
x, and we implement this notationally through the convention wherein x̄
denotes a vector (x0, x) in R × R

n. We proceed to define an augmented
multifunction F which satisfies the Standing Hypotheses whenever F does:

F (x̄) = F (x0, x) = {1} × F (x0, x).

Then if x̄(·) =
(
x0(·), x(·)) is a trajectory for F , with x̄(a) = x̄0 = (x0

0, x0),
it follows that x is a trajectory for F with x(a) = x0, and that x0(t) =
x0

0+t−a. Conversely, if x is a trajectory for F , we augment it to a trajectory
x̄ for F by setting x0(t) = x0

0 + t − a (for any choice of x0
0).

As before, let S be a given closed subset of R
n, and now let F (t, x) possibly

depend on t. We extend Definition 2.3 as follows: the system (S, F ) is called
weakly invariant provided that for all (t0, x0) with x0 ∈ S, there exists a
trajectory x of F on [t0,∞) satisfying x(t0) = x0, x(t) ∈ S ∀t ≥ t0.

3.10. Exercise. For the nonautonomous case described above, show
that (S, F ) is weakly invariant iff

h
(
t, x, NP

S (x)
) ≤ 0 ∀t ∈ R, ∀x ∈ S.

When F is locally Lipschitz, show that we obtain the corresponding
characterization of strong invariance. (Hint. Augment the state, and
consider S := R × S.)
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Dependence on Initial Conditions

In the general case in which F (t, x) is nonautonomous, which remains our
interest here, the attainable set depends of course on the initial-value of t
as well. Thus, A(t0, x0;T ), for T ≥ t0, is defined as the set of all points of
the form x(T ), where x is a trajectory for F on [t0, T ] satisfying x(t0) = x0.

Classically, the theorem by which the solution of a differential equation
depends regularly on initial conditions is a well-known and useful result.
Here is its counterpart for differential inclusions:

3.11. Theorem. Let F (t, x) be locally Lipschitz in (t, x). Then for any
fixed T ∈ R, the multifunction (t0, x0) �→ A(t0, x0;T ) is locally Lipschitz
on (−∞, T ] × R

n.

Proof. Fix a < T and y ∈ R
n. We will exhibit a constant ρ with the

property that for any (t0, x0) ∈ [a, T ) × B(y; 1), for any trajectory z on
[t0, T ] having z(t0) = x0, and for any other (τ, α) ∈ [a, T ) × B(y; 1), there
exists a trajectory x on [τ, T ] with x(τ) = α such that∥∥x(T ) − z(T )

∥∥ ≤ ρ
∥∥(τ − t0, α − x0)

∥∥.
This will establish that the mapping (t, x) �→ A(t, x; T ) is locally Lipschitz
on (−∞, T ) × R

n; the extension to (−∞, T ] will be treated subsequently.

We augment the state as described above, setting

z̄(t) =
(
t, z(t)

)
, z̄0 = (t0, x0), G =

{(
t, z(t)

)
: a ≤ t < ∞},

where we have extended z to the interval [a,∞). Then z̄ is a trajectory
on [a, T ] for the multifunction F := {1} × F , so that (G, F ) is weakly
invariant. This allows us to invoke Corollary 3.5 to deduce the existence of
an arc x̄(t) =

(
t, x(t)

)
on [τ, T ] such that x(τ) = α, x is a trajectory of F ,

and
dG

(
t, x(t)

) ≤ eK(T−τ)dG(τ, α),

where K is a Lipschitz constant for F on an appropriately large ball. Then
x is a trajectory for F on [τ, T ] and we have

dG

(
T, x(T )

) ≤ eK(T−a)
∥∥(τ − t0, α − x0)

∥∥,
since (t0, x0) ∈ G. Accordingly, for some point

(
t′, z(t′)

) ∈ G we have
∥∥(T − t′, x(T ) − z(t′)

)∥∥ ≤ eK(T−a)
∥∥(τ − t0, α − x0)

∥∥.
Let k ≥ 1 be a common Lipschitz constant for all trajectories of F on [a, T ]
with initial-value in B(y; 1). Then∥∥z(T ) − x(T )

∥∥ ≤ ∥∥z(T ) − z(t′)
∥∥+
∥∥z(t′) − x(T )

∥∥
≤ k|T − t′| + k

∥∥z(t′) − x(T )
∥∥ ≤ 2k

∥∥(T − t′, x(T ) − z(t′)
)∥∥

≤ 2keK(T−a)
∥∥(τ − t0, α − x0)

∥∥.
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This reveals the required constant ρ := 2keK(T−a).

To complete the proof, observe that A(T, x0;T ) = {x0}, so it suffices to
show that

A(τ, α;T ) ⊂ {x0} + ρ
∥∥(T − τ, x0 − α)

∥∥B.

But if x is any trajectory on [τ, T ] with x(τ) = α, then
∥∥x(T ) − x0

∥∥ ≤ ∥∥x(T ) − α
∥∥+ ‖α − x0‖

=
∥∥x(T ) − x(τ)

∥∥+ ‖α − x0‖ ≤ k|T − τ | + k‖α − x0‖
≤ 2k

∥∥(T − τ, x0 − α)
∥∥ ≤ ρ

∥∥(T − τ, x0 − α)
∥∥,

which completes the proof.

The following exercise provides useful facts regarding an optimal control
problem to be studied later.

3.12. Exercise. Let � : R
n → R be continuous. For τ ≤ T and for

any α ∈ R
n, set

V (τ, α) := inf
{
�
(
x(T )

)
: x is a trajectory of F on [τ, T ] with x(τ) = α

}
.

(a) Prove that the infimum defining V (τ, α) is attained.

(b) Now let F be locally Lipschitz. Prove that V is continuous on
(−∞, T ] × R

n, and locally Lipschitz if � is locally Lipschitz.

4 Equilibria

Consider the issue of stabilizing at a given point x∗ a system described as
the trajectory x(t) of an autonomous differential inclusion ẋ ∈ F (x). If the
system is already at x∗, then it will be possible to remain there iff 0 ∈ F (x∗),
a condition which is described by saying that x∗ is a zero (or equilibrium, or
rest point) of the multifunction F . Note that this is equivalent to the weak
invariance of the system

({x∗}, F
)
, so that formally, the study of equilibria

amounts to that of invariant singleton sets, an observation that motivates
the dynamic approach to the issue that we will develop in this section.

The Classical Case and Brouwer’s Theorem

At the heart of very many theorems on the existence of equilibria is the
celebrated Brouwer Fixed Point Theorem, which can be stated as follows:
If g is a continuous function mapping B to itself, where B is the closed
unit ball in R

n, then there is a point u in B such that g(u) = u. Let us
note the bearing of this theorem upon the differential equation

ẋ(t) = f
(
x(t)
)
, (1)
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where f is a Lipschitz mapping from R
n to R

n. Suppose that the solu-
tion x(t) to (1), for any initial condition x(0) = x0 ∈ B, has the property
that x(t) ∈ B ∀t ≥ 0. That is, suppose that the system (B, f) is invari-
ant; “weakly” and “strongly” coalesce in this setting. It follows from the
Brouwer Fixed Point Theorem that f must admit a zero in B. This and
more is taken up in the following exercise:

4.1. Exercise.

(a) Prove that in the situation described above there is a point x∗

in B such that f(x∗) = 0. (Hint. For given τ > 0, consider
the map fτ (α) := x(τ ; α); that is, the value of x(τ), where x
is the (unique) solution of the initial-value problem satisfying
the initial condition x(0) = α. Invoke the Brouwer Fixed Point
Theorem to deduce that for each τ > 0 there exists xτ ∈ B
such that x(τ ; xτ ) = xτ , and then let τ ↓ 0.)

(b) Conversely, given the “zero point theorem” of part (a), deduce
from it the Brouwer Fixed Point Theorem. (Hint. Given g, con-
sider f(x) := g(x) − x.)

We would now like to consider sets S other than the ball, in fact sets that
are not even convex. It is certainly the case, however, that some topological
hypothesis will have to be made. Consider for example the annulus S in R

2

described in polar coordinates (r, θ) via S :=
{
(r, θ) : 1 ≤ r ≤ 2

}
, and let

g(r, θ) := (r, θ + θ0) for 0 < θ0 < 2π. Then g is a smooth function mapping
S to itself, yet g admits no fixed point.

One immediate extension of the Brouwer Fixed Point Theorem is obtained
by taking S to be homeomorphic to a closed unit ball. This means that
S = h(B) where B is the closed unit ball in R

k, h : B → S is continuous,
and where the inverse h−1 : S → B exists and is continuous.

4.2. Exercise.

(a) Let g : S → S be continuous, and let S be homeomorphic to a
closed unit ball. Prove that g has a fixed point in S.

(b) Show that part (a) of Exercise 4.1 holds true if the unit ball is
replaced by a set which is homeomorphic to the ball.

A Conjecture in the Multivalued Case

The next step is to replace functions by multifunctions. A natural conjec-
ture, in light of the above, is the following:

Conjecture. Let S in R
n be homeomorphic to a closed unit ball, and let

F be a locally Lipschitz multifunction from R
n to R

n such that (S, F ) is
weakly invariant. Then F has a zero in S.
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FIGURE 4.2. The set S of Exercise 4.3.

Natural, but false! Let us construct a counterexample. S is the following
subset of R

3 (a “fluted funnel”; see Figure 4.2):
{
(x, y, z) : x2 + y2 = z4, 0 ≤ z ≤ 1

}
.

We define f : R
3 → R

3 as follows:

f(x, y, z) :=
[
−yz +

2x(1 − z)
(x2 + y2)1/4 , xz +

2y(1 − z)
(x2 + y2)1/4 , 1 − z

]

for x2 + y2 �= 0, and
f(0, 0, z) := [0, 0, 1 − z].

4.3. Exercise.

(a) S is homeomorphic to the closed unit ball in R
2, and S is reg-

ular.

(b) f is continuous everywhere, not Lipschitz at the origin, and f
has no zero in S.

(c) For all (x, y, z) ∈ S, we have f(x, y, z) ∈ T B
S (x, y, z). Deduce

that the system (S, f) is weakly invariant, but show that it is
not strongly invariant. (Figure 4.2 indicates some trajectories
of f , including two that start at 0, one which remains in the
set S, while the other leaves it.)

The preceding exercise shows that our conjecture is false when the multi-
function F is a continuous (single-valued) function. However, the exercise
does not directly address the case of a Lipschitz multifunction. That gap
will be bridged by a useful result which asserts that upper semicontinuous
multifunctions can be approximated “from above” by Lipschitz ones.
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4.4. Proposition. Let F satisfy the Standing Hypotheses. Then there ex-
ists a sequence of locally Lipschitz multifunctions {Fk} also satisfying the
Standing Hypotheses such that :

(i) For each k ∈ N, for every x ∈ R
n,

F (x) ⊆ Fk+1(x) ⊆ Fk(x) ⊆ co F
(
B(x; 3−k+1)

)
.

(ii)
⋂

k≥1 Fk(x) = F (x) ∀x ∈ R
n.

Proof. Let us fix an integer k ≥ 1 and consider the set of all points (or grid)
in R

n whose coordinates are all of the form ±m/4k, m ∈ {0, 1, 2, . . . }. Let
{xi} be an enumeration of this countable set (i = 1, 2, . . . ), and observe that
the collection of open balls B(xi; 3−k) of radius 3−k around xi (i = 1, 2, . . . )
is a covering of R

n. This covering has the property that any bounded set
intersects only finitely many members of the collection. This implies the
existence of a locally Lipschitz partition of unity for the covering; that is,
a collection of functions pi(x), each locally Lipschitz and taking values in
[0, 1], with the following properties:

x �∈ B(xi; 3−k) =⇒ pi(x) = 0 ∀i,∑
i

pi(x) = 1 ∀x.

Note that only finitely many terms in the last sum are nonzero, so there is
no difficulty regarding its interpretation.

4.5. Exercise. Show that the desired Lipschitz partition of unity is
obtained by setting

pi(x) :=
d(x, comp Bk

i )∑
j d(x, comp Bk

j )
,

where Bk
i := B(xi; 3−k).

Returning to the proof, we define the compact convex set

Ck
i := co F

(
B(xi; 2 · 3−k)

)

and the multifunction Fk via

Fk(x) :=
∑

i

pk
i (x)Ck

i ,

where the dependence of pi on k has been reflected by the notation pk
i .

Then Fk is locally Lipschitz, as is easily seen. In addition, Fk(x) contains
F (x). To see this, note that for given x, those terms actually contributing in
the sum defining Fk(x) have pk

i (x) > 0, whence x ∈ Bk
i . But for such “active
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indices” i, we then have F (x) ⊂ Ck
i . Since the coefficients pk

i (x) taken over
the active indices form a convex combination, it follows that Fk(x) contains
F (x). Also, when x ∈ Bk

i we have reciprocally that xi ∈ B(x; 3−k), whence
B(xi, 2 · 3−k) ⊂ B(x, 3−k+1). Thus, for each such i, Ck

i is contained in
co F
(
B(x; 3−k+1)

)
, and so is Fk(x). This confirms the last estimate in (i),

which clearly implies (ii) in light of the upper semicontinuity of F . There
remains only the decreasing nature of the approximation to check.

Letting Fk+1(x) =
∑

i pk+1
i (x)Ck+1

i , consider any two indices i and j
which are active for Fk+1(x) and Fk(x), respectively (these are the only
ones that actually matter). Then pk+1

i (x) > 0, pk
j (x) > 0, whence x ∈

B(xi, 3−k−1) ∩ B(xj , 3−k), which implies ‖xi − xj‖ < 3−k−1 + 3−k, which
in turn implies Ck+1

i ⊂ Ck
j . This shows that each set contributing to the

sum defining Fk+1(x) is contained in every set in the sum defining Fk(x),
which completes the proof.

Now let us return to the burial of the conjecture. Applying Proposition 4.4
to the multifunction F (x) :=

{
f(x)
}
, where f is the function of Exer-

cise 4.3, gives rise to a sequence of locally Lipschitz multifunctions Fk such
that (S, Fk) is weakly invariant for each k; yet Fk cannot admit a zero in
S for k arbitrarily large, otherwise f would do so as well.

To summarize, the condition

F (x) ∩ TB
S (x) �= ∅ (x ∈ S)

although it characterizes weak invariance, is not adequate (even when F is
Lipschitz) to yield a zero of F , even when S is homeomorphic to the closed
unit ball (though it is adequate when S is a closed unit ball, as will follow
from results below).

Existence of Equilibria in the Multivalued Case

Having seen what fails to be true, let us proceed to derive a positive result;
the key is to use TC

S instead of TB
S .

4.6. Theorem. Let S be homeomorphic to a closed unit ball in R
n, and

let F satisfy the Standing Hypotheses. Suppose that :

(i) intTC
S (x) �= ∅ ∀x ∈ S (i.e., S is wedged).

(ii) F (x) ∩ TC
S (x) �= ∅ ∀x ∈ S.

Then F has a zero in S. Even if F is Lipschitz, this fails in general in the
absence of (i) (even when S is regular), or if TB

S (x) replaces TC
S (x) in (ii).

Proof. We make the temporary hypothesis that F is locally Lipschitz and
satisfies

F (x) ∩ intTC
S (x) �= ∅ ∀x ∈ S.
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Let x ∈ S, and let ε > 0 be given. Then, because F is Lipschitz near x,
and because TC

S is lower semicontinuous at x (by Proposition 3.6.7), there
exists for each y ∈ F (x) ∩ intTC

S (x) a scalar δ(x, y) > 0 such that

x′ ∈ x + δ(x, y)B =⇒ y ∈ {F (x′) + εB
} ∩ intTC

S (x′).

The family of open balls x+δ(x, y)B forms an open covering of the compact
set S; let the family of sets

{
xi + δ(xi, yi)B

}
(i = 1, 2, . . . , m) be a finite

subcover. Now associate to this subcover a Lipschitz partition of unity{
pi(x)

}
subordinate to it, and define a locally Lipschitz function fε as

follows:

fε(x) :=
m∑

i=1

pi(x)yi.

When pi(x) �= 0, we have x ∈ xi + δ(xi, yi)B, whence

yi ∈ {F (x) + εB
} ∩ intTC

S (x)

by definition of δ(xi, yi). Because F (x)+εB and intTC
S (x) are both convex

sets, we infer
fε(x) ∈ {F (x) + εB

} ∩ intTC
S (x).

Thus fε(x) ∈ TB
S (x), so that the system (S, fε) is weakly invariant by

Theorem 2.10. By Exercise 4.2, there is a point xε ∈ S such that fε(xε) = 0,
which implies

0 ∈ F (xε) + εB.

Now let ε ↓ 0. Some subsequence {xεi
} of the corresponding points con-

verges to a limit x∗ ∈ S, and the upper semicontinuity of F yields 0 ∈
F (x∗). Thus the theorem is proven, under the temporary hypothesis.

To remove the need for this hypothesis, let us observe first that it is satisfied
by each of the multifunctions

F̃k(x) := Fk(x) + γB,

together with the hypotheses of the theorem under consideration, where
Fk is the Lipschitz approximation to F provided by Proposition 4.4, and
where γ > 0 is fixed.

By the case of the theorem proved above, there exists xk ∈ S such that
0 ∈ F̃k(xk), and by passing to a subsequence (without relabeling) we may
assume xk → x∗ ∈ S. Now the monotonicity of the Fk scheme gives us:

0 ∈ Fk(xj) + γB ∀j ≥ k.

Letting j → ∞ yields 0 ∈ Fk(x∗) + γB, since Fk is Lipschitz and all the
more upper semicontinuous. We invoke (ii) of Proposition 4.4 to deduce 0 ∈
F (x∗)+ γB. Since γ is an arbitrary positive number, an evident sequential
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argument together with the upper semicontinuity of F confirms that F has
a zero in S.

There remain to prove the two negative assertions in the statement of the
theorem. The first of these is confirmed by the example above that buried
the conjecture, while the second follows from the example in Exercise 2.12
(see Exercise 4.8 below).

Under the right hypotheses, nonconvex sets which are weakly invariant
necessarily contain equilibria, which is the assertion of the next corollary.

4.7. Corollary. Let S be homeomorphic to the closed unit ball in R
n. Fur-

ther assume that S is wedged and regular, and that the system (S, F ) is
weakly invariant, where F satisfies the Standing Hypotheses. Then S con-
tains a zero of F .

4.8. Exercise.

(a) Show that for a suitable locally Lipschitz approximation Fk of
the multifunction F appearing in Exercise 2.12, Fk together
with the set S of that exercise satisfies all the hypotheses of
Theorem 4.6, but with T C

S replaced by T B
S . Yet Fk has no zero

in S. (Hint. S is star-shaped.)

(b) Prove Corollary 4.7.

5 Lyapounov Theory and Stabilization

Consider the differential equation

ẋ(t) = f
(
x(t)
)
,

where f is a smooth function from R
n to itself, and suppose that the point

x∗ is an equilibrium: f(x∗) = 0. Then of course the constant function
x(t) ≡ x∗ is a solution of the differential equation. If for any α ∈ R

n the
solution x(·) of the differential equation satisfying x(0) = α exists on [0, ∞)
and has the property that x(t) → x∗ as t → ∞, then the equilibrium is
said to be globally asymptotically stable. We recall that if α �= x∗, then x∗

cannot be reached in finite time: x(t) �= x∗ ∀t > 0.

A simple but far-reaching criterion to assure this asymptotic stability can
be given in terms of Lyapounov functions. Suppose that smooth functions
Q and W exist such that:

(i) Q(x) ≥ 0, W (x) ≥ 0 ∀x ∈ R
n, and W (x) = 0 iff x = x∗;

(ii) the sets
{
x : Q(x) ≤ q

}
are compact ∀q ∈ R; and

(iii)
〈∇Q(x), f(x)

〉 ≤ −W (x) ∀x.
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(These properties are referred to as positive definiteness, growth, and in-
finitesimal decrease, respectively.) It follows that x∗ must be globally asymp-
totically stable. For let x(·) be any local solution of the differential equation.
We have

d

dt
Q
(
x(t)
)

=
〈∇Q

(
x(t)
)
, f
(
x(t)
)〉 ≤ −W

(
x(t)
)

by condition (iii). It follows that the nonnegative function

t �→ Q
(
x(t)
)

+
∫ t

0
W
(
x(τ)
)
dτ

is decreasing and hence bounded on [0,∞). Since W ≥ 0, this implies that
the function t �→ Q

(
x(t)
)

is bounded and hence that x(t) remains bounded.
But then the solution x(t) of the differential equation exists on [0,∞), and
W
(
x(t)
)

is a globally Lipschitz function on [0, ∞). That W
(
x(t)
)

converges
to 0 now follows from:

5.1. Exercise. Let r(t) be a nonnegative, globally Lipschitz func-
tion on [0, ∞), and suppose that

∫ t

0 r(τ) dτ is bounded for t ≥ 0.
Then r(t) → 0 as t → ∞.

Knowing that W
(
x(t)
)→ 0, it follows readily that x(t) converges to x∗ =

W−1(0) as t → ∞, as claimed. Note the prominence of monotonicity in this
classical argument; it will play a central role in the results of this section
as well.

The method under discussion here was introduced by A. M. Lyapounov
in the theory of differential equations. Its extension to control systems
is conditioned by the fact that we typically consider situations in which
some but not all trajectories from a given initial condition approach the
equilibrium. That is, an element of “controllability” is involved. With this in
mind, here is a natural way to proceed in the case of a differential inclusion
ẋ ∈ F (x) admitting an equilibrium at x∗ (i.e., such that 0 ∈ F (x∗)).
We define a (smooth) Lyapounov pair (Q,W ) to be one having the same
properties (i) and (ii) as above, together with the following replacement for
(iii):

(iii)′ minv∈F (x)
〈∇Q(x), v

〉 ≤ −W (x) ∀x.

This does the trick, as we ask the reader to check.

5.2. Exercise. If Q and W are C1 and satisfy (i), (ii), and (iii)′,
then for any α ∈ R

n there is a trajectory x on [0, ∞) with x(0) = α
such that x(t) → x∗ as t → ∞. (Hint. Consider trajectories of the
multifunction

F̃ (x) := {v ∈ F (x) : 〈∇Q(x), v〉 ≤ −W (x)}.)
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We remark that the very existence of (Q,W ) implies that x∗ is an equilib-
rium, and that in contrast to the classical case of a differential equation,
x(·) may reach x∗ in finite time.

One of the interesting questions about this approach is whether it is nec-
essary as well as sufficient for asymptotic stability. In this connection, and
for other reasons as well, it turns out to be essential to develop a theory
encompassing nonsmooth Lyapounov functions. In light of the earlier chap-
ters, our proposal in this direction is the following: take Q and W in the
class F(Rn), retain properties (i) and (ii), and add to them the following:

for every x, for every ζ ∈ ∂P Q(x), ∃v ∈ F (x) such that 〈ζ, v〉 ≤ −W (x).

We summarize, and in so doing express this proximal form of the infinites-
imal decrease property in terms of the lower Hamiltonian h. Two functions
Q and W in F(Rn) are said to be a Lyapounov pair for x∗ if they satisfy
the following properties:

• Positive definiteness: Q,W ≥ 0; W (x) = 0 iff x = x∗.

• Growth: the level sets
{
x ∈ R

n : Q(x) ≤ q
}

are compact ∀q ∈ R.

• Infinitesimal decrease: h
(
x, ∂P Q(x)

) ≤ −W (x) ∀x ∈ R
n.

Note that this last property holds automatically at x = x∗ when x∗ is an
equilibrium, since then 0 ∈ F (x∗). Furthermore, infinitesimal decrease can
also be expressed in an equivalent form using the subderivates of §3.4:

5.3. Proposition. We have h
(
x, ∂P Q(x)

) ≤ −W (x) ∀x ∈ R
n iff

inf
v∈F (x)

DQ(x; v) ≤ −W (x) ∀x ∈ dom Q.

Proof. Suppose first that the derivate condition holds. Let ζ ∈ ∂P Q(x),
and pick v ∈ F (x) such that DQ(x; v) ≤ −W (x) (we know from Ex-
ercise 3.4.1 that DQ(x; ·) is lower semicontinuous, so the infimum is at-
tained). Since DQ(x; v) ≥ 〈ζ, v〉 in general, we have 〈ζ, v〉 ≤ −W (x),
whence h

(
x, ∂P Q(x)

) ≤ −W (x); i.e., the Hamiltonian inequality holds.

The necessity is a deeper result. If the derivate condition fails, then for
some δ > 0 we have

DQ(x; v) ≥ −W (x) + δ ∀v ∈ F (x).

Since DQ(x; ·) is lower semicontinuous and F (x) is compact, this implies
that for some η > 0 we have

DQ(x; v) > −W (x) + δ
2 ∀v ∈ F (x) + ηB.
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Applying Subbotin’s Theorem 3.4.2, we deduce that for some z arbitrarily
near x, for some ζ ∈ ∂P Q(z), we have

〈ζ, v〉 > −W (x) + δ
2 ∀v ∈ F (x) + ηB.

For z near enough to x, we have F (z) ⊂ F (x)+ ηB, since F is upper semi-
continuous, as well as W (z) ≥ W (x)−δ/4, since W is lower semicontinuous.
For such z we deduce

〈ζ, v〉 > −W (z) + δ
4 ∀v ∈ F (z).

This implies h(z, ζ) ≥ −W (z) + δ/4, which shows that the Hamiltonian
condition fails at z, thereby completing the proof.

It turns out that without any loss of generality, we can always assume that
W has additional properties, in particular, being finite-valued. However, the
fact that Q can be extended-valued is useful, for example, in subsuming
local stability, and is to be retained.

5.4. Exercise.

(a) If Q and W in F(Rn) form a Lyapounov pair for x∗, prove
that there is a function W̃ for which (Q, W̃ ) continues to be
a Lyapounov pair for x∗, where W̃ is locally Lipschitz and
satisfies a linear growth condition. (Hint.

W̃ (x) := min{W (y) + ‖x − y‖ : y ∈ R
n}.)

(b) Prove that Q(x) > 0 for any x �= x∗. (Hint. Otherwise, 0 ∈
∂P Q(x).)

(c) Given x �= x∗, there exist points y arbitrarily near x∗ having
Q(y) < Q(x).

(d) Q attains a global minimum at x∗ (which we can always take
to be 0 by redefining Q if necessary).

5.5. Theorem. Let 0 ∈ F (x∗), and let there exist Q and W in F(Rn) such
that (Q,W ) constitutes a Lyapounov pair for x∗. Then for any α ∈ dom Q
there is a trajectory x for F on [0,∞) having x(0) = α such that x(t) → x∗

as t → ∞.

The proof of this important result requires a proximal characterization of
a certain system monotonicity property, and is postponed until after that
acquisition.

Weakly Decreasing Systems

Let ϕ ∈ F(Rn). The system (ϕ, F ) is said to be weakly decreasing if for
any α ∈ R

n, there exists a trajectory x of F on [0,∞) with x(0) = α which
satisfies

ϕ
(
x(t)
) ≤ ϕ

(
x(0)
)

= ϕ(α) ∀t ≥ 0.
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Note that only points α ∈ dom ϕ need be tested in this condition, since it
holds automatically otherwise.

We will see that this system property is the functional counterpart of weak
invariance of sets.

5.6. Exercise.

(a) Let ϕ be the indicator of a closed set S. Show then that (ϕ, F )
is weakly decreasing iff (S, F ) is weakly invariant.

(b) Show that (ϕ, F ) is weakly decreasing iff
(
epi ϕ, F × {0}) is

weakly invariant.

5.7. Theorem. (ϕ, F ) is weakly decreasing iff

h
(
x, ∂P ϕ(x)

) ≤ 0 ∀x ∈ R
n.

Proof. Note the meaning of this Hamiltonian inequality: for any x ∈ R
n,

and ζ ∈ ∂P ϕ(x), we have h(x, ζ) ≤ 0. Suppose first that (ϕ, F ) is weakly
decreasing. Then by Exercise 5.6,

(
epiϕ, F × {0}) is weakly invariant. In

light of Theorem 2.4, this is characterized by the condition that for any
vector (ζ, λ) ∈ NP

epi ϕ(x, r), where (x, r) ∈ epiϕ, we have

min
{
(ζ, λ) · (v, 0) : v ∈ F (x)

} ≤ 0.

Now if ζ ∈ ∂P ϕ(x), then (ζ,−1) ∈ NP
epi ϕ

(
x, ϕ(x)

)
, and so we deduce

h(x, ζ) = min
{〈ζ · v〉 : v ∈ F (x)

} ≤ 0,

which confirms the Hamiltonian inequality.

For the converse, suppose that the Hamiltonian condition holds. In order to
deduce that (ϕ, F ) is weakly decreasing, or equivalently that

(
epiϕ, F×{0})

is weakly invariant, it suffices to exhibit for any (ζ, λ) ∈ NP
epi ϕ(x, r) an

element v ∈ F (x) such that 〈ζ, v) ≤ 0. We know that λ ≤ 0 and that
(ζ, λ) ∈ NP

epi ϕ

(
x, ϕ(x)

)
, by Exercise 1.2.1(d). If λ < 0, then we have
(
ζ/(−λ),−1

) ∈ NP
epi ϕ(x, r),

which implies −ζ/λ ∈ ∂P ϕ(x). Then the Hamiltonian condition applies
to imply the existence of v ∈ F (x) for which

〈
(−ζ/λ), v

〉 ≤ 0. But then
〈ζ, v〉 ≤ 0 as required.

The remaining case to consider is that in which λ = 0. Then we have

(ζ, 0) ∈ NP
epi ϕ

(
x, ϕ(x)

)
,

and we invoke Problem 1.11.23 to deduce the existence of sequences (ζi, −εi),
with εi > 0, and

(
xi, ϕ(xi)

)
such that

(ζi, −εi) → (ζ, 0), (ζi,−εi) ∈ NP
epi ϕ

(
xi, ϕ(xi)

)
,
(
xi, ϕ(xi)

)→ (x, ϕ(x)
)
.
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Then, as in the case λ < 0 above, there exists vi ∈ F (xi) for which 〈ζi, vi〉 ≤
0. Since F is locally bounded, the sequence {vi} is bounded. Passing to a
subsequence, we can suppose that vi converges to a limit v; then v ∈ F (x)
as a consequence of the upper semicontinuity of F . We deduce 〈ζ, v〉 ≤ 0,
which completes the proof.

Proof of Theorem 5.5

Let (Q,W ) be a Lyapounov pair for x∗, where W has the additional prop-
erties provided by Exercise 5.4, and let α ∈ dom Q. We will prove the
existence of the trajectory x cited in the statement of the theorem.

We define Q̃ : R
n × R → (−∞,∞] via Q̃(x, y) := Q(x) + y, and the multi-

function F̃ as follows:

F̃ (x, y) := F (x) × {W (x)
}
.

Note that F̃ satisfies the Standing Hypotheses. We claim that the system
(Q̃, F̃ ) is weakly decreasing. Indeed, with an eye to applying Theorem 5.7,
let (ζ, r) ∈ ∂P Q̃(x, y). Then ζ ∈ ∂P Q(x) and r = 1. The infinitesimal de-
crease property of (Q,W ) provides the existence of v ∈ F (x) such that〈(

v, W (x)
)
, (ζ, 1)

〉 ≤ 0, which verifies the Hamiltonian inequality of Theo-
rem 5.7.

We deduce the existence of a trajectory (x, y) of F̃ beginning at (α, 0) and
satisfying Q̃

(
x(t), y(t)

) ≤ Q̃(α, 0) = Q(α) for t ≥ 0. This translates to

Q
(
x(t)
)

+
∫ t

0
W
(
x(τ)
)
dτ ≤ Q(α),

where x is a trajectory of F . This implies that Q
(
x(t)
)

(and hence x(t)) is
bounded, as well as

∫ t

0 W
(
x(τ)
)
dτ . Since F is bounded on bounded sets,

we observe that ẋ(t) is bounded too, whence x satisfies a global Lipschitz
condition on [0,∞), let us say of rank k. We conclude by proving what
amounts to Exercise 5.1.

Suppose that x(t) fails to converge to x∗ as t → ∞. Then for some ε > 0,
there exist points ti tending to +∞ such that

∥∥x(ti)−x∗∥∥ ≥ ε (i = 1, 2, . . . ).
We can assume ti+1 − ti > ε/(2k). Let η > 0 be such that

‖x − x∗‖∞ ≥ ‖u − x∗‖ ≥ ε
2 =⇒ W (u) ≥ η

(such η exists because W is continuous and positive on the (nonempty)
annulus in question). Then

|t − ti| < ε
2k =⇒ ∥∥x(t) − x(ti)

∥∥ < ε
2 =⇒ ∥∥x(t) − x∗∥∥ ≥ ε

2 ,

so that ∫ ti+1

ti−1

W
(
x(τ)
)
dτ ≥ ηε

k .
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This would imply that
∫ t

0 W
(
x(τ)
)
dτ diverges, a contradiction that com-

pletes the proof.

Construction of a Stabilizing Feedback

The proof of Theorem 5.5 just given says nothing explicitly about how to
construct a trajectory converging to x∗, but in fact this is implicit from
the constructive nature in which we proved Theorem 2.4, which lies at the
heart of Theorem 5.7 and hence of Theorem 5.5 itself. Let us now make
explicit the proximal aiming method underlying these results.

We define a function f : R
n × R × R → R

n as follows: given (x, y, r) ∈
R

n × R × R, select any (x′, y′, r′) in projS(x, y, r), where

S :=
{
(x′, y′, r′) : Q(x′) + y′ ≤ r′}.

(This is the set used in the proof of Theorem 5.7 when ϕ = Q(x) + y, as is
the case in the proof of Theorem 5.5.)

Now select any v ∈ F (x′) which minimizes over F (x′) the function v �→
〈v, x − x′〉, and set f(x, y, r) = v. The following restates Corollary 2.6 in
the present setting, where the initial condition on (x, y, r) is taken to be(
α, 0, Q(α)

) ∈ S; see also Exercise 1.14.

5.8. Proposition. Let (Q,W ) be a Lyapounov pair for x∗, where W has
the additional properties of Exercise 5.4. Then, for any α ∈ dom Q, there
exists at least one Euler solution (x, y) on [0,∞) of the initial-value problem

ẋ(t) = f
(
x(t), y(t), Q(α)

)
, ẏ(t) = W

(
x(t)
)
, x(0) = α, y(0) = 0,

and any such solution defines a trajectory x(·) of F on [0, ∞) which con-
verges to x∗ as t → ∞.

The function f above fails to satisfy f(x, y, r) ∈ F (x) in general; it is not a
feedback selection for F . When F is locally Lipschitz however, we showed
in Theorem 3.4 how to define a selection g that can play the role of f . In our
present setting, we define g(x, y, r) as follows: given f(x, y, r) = v ∈ F (x′)
as above, let w be the point in F (x) closest to v; set g(x, y, r) = w ∈ F (x).
Then we have

5.9. Proposition. In the context of Proposition 5.8, when F is locally Lip-
schitz, there is at least one Euler solution (x, y) to the initial-value problem

ẋ(t) = g
(
x(t), y(t), Q(α)

)
, ẏ(t) = W

(
x(t)
)
, x(0) = α, y(0) = 0,

and any such solution defines a trajectory x of F on [0,∞) which converges
to x∗ as t → ∞.

The construction of the “stabilizing feedback” in Proposition 5.9 is quite
explicit. Note however that it requires the calculation of another variable
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y(t) =
∫ t

0 W
(
x(τ)
)
dτ involving the past history of x; this is an instance of

dynamic feedback. It is of considerable interest to be able to define a static
feedback selection g(x) ∈ F (x) depending only on x, and giving rise to
trajectories converging to the equilibrium, whatever the initial condition.
When a Lyapounov pair (Q,W ) exists having Q locally Lipschitz, this can
be done by proximal aiming techniques, but doing so would take us beyond
the scope of this chapter.

6 Monotonicity and Attainability

We have seen the relevance of weak decrease along trajectories in §5, in
connection with asymptotic controllability. This and other monotonicity
issues will arise again in other contexts, and we will require some corre-
sponding localized proximal characterizations. We will derive these first in
the autonomous setting.

Let Ω be an open subset of R
n, and let ϕ ∈ F(Ω). Extending our earlier

definition (which dealt with the case Ω = R
n), we say that (ϕ, F ) is weakly

decreasing on Ω if for any α ∈ dom ϕ ⊂ Ω, there exists a trajectory x of F
on [0, ∞) with x(0) = α having the property that for any interval [0, T ] for
which x

(
[0, T ]

) ⊂ Ω, we have

ϕ
(
x(t)
) ≤ ϕ(α) ∀t ∈ [0, T ].

Recall that trajectories x on [0, T ] can always be extended to [0,∞), but
above we only require ϕ

(
x(t)
) ≤ ϕ(α) to hold until the exit time

τ(x,Ω) := inf
{
t ≥ 0: x(t) ∈ comp Ω

}
.

Of course, τ can equal +∞, precisely when x(t) ∈ Ω ∀t ≥ 0.

6.1. Theorem. Let ϕ ∈ F(Ω). The system (ϕ, F ) is weakly decreasing on
Ω iff

h
(
x, ∂P ϕ(x)

) ≤ 0 ∀x ∈ Ω.

Proof. Let (ϕ, F ) be weakly decreasing on Ω, and let α ∈ Ω and ζ ∈ ∂P ϕ(α)
be given. Let δ > 0 be such that B(α; δ) ⊂ Ω, and define

S :=
{
(x, r) ∈ R

n × R : x ∈ B(α; δ), ϕ(x) ≤ r
}
.

Then
(ζ,−1) ∈ NP

S

(
α, ϕ(α)

)
.

Also define
F̃ (x, r) := F (x) × {0} if x ∈ B(α; δ),
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and otherwise set

F̃ (x, r) := co
{ ⋃

‖y−α‖=δ

F (y) ∪ {0}
}

× {0}.

Then F̃ satisfies the Standing Hypotheses and (S, F̃ ) is weakly invariant
(why?).

It follows from Theorem 2.10 that for some (v, 0) ∈ F̃
(
α, ϕ(α)

)
we have〈

(v, 0), (ζ,−1)
〉 ≤ 0. This implies h(α, ζ) ≤ 0, whence the Hamiltonian

inequality holds everywhere in Ω.

For the converse, let the Hamiltonian inequality hold, and let α ∈ dom ϕ ⊂
Ω be given. Let Ωk := Ω ∩ B(α; k), and define a closed set Sk and a
multifunction F̃k by

Sk :=
{
(x, r) ∈ R

n × R : x ∈ Ωk, ϕ(x) ≤ r
} ∪ (comp Ωk × R),

F̃k(x, r) := F (x) × {0} if x ∈ Ωk,

and otherwise

F̃k(x, r) := co
{ ⋃

y∈bdry Ωk

F (x) ∪ {0}
}

× {0}.

We claim that (Sk, F̃k) is weakly invariant. Let us verify this by the criterion
of Theorem 2.4. If x �∈ Ωk, it is evidently satisfied, since 0 ∈ F̃k(x, r). If x ∈
Ωk, then a proximal normal (ζ, λ) to Sk at (x, r) belongs to NP

epi ϕ(x, r), and
precisely the argument used to prove the “converse” part of Theorem 5.7
demonstrates that h̃(x, r, ζ, λ) ≤ 0. This establishes the claim.

Since (S1, F̃1) is weakly invariant, we deduce the existence of a trajectory
x for F on [0, T ] with x(0) = α such that ϕ

(
x(t)
) ≤ ϕ(α) for t ∈ [0, τ1),

where τ1 is the exit time of x from Ω1. If τ1 = ∞, or if x(τ1) ∈ bdry Ω, then
the trajectory x satisfies the requirement of the definition whereby (ϕ, F ) is
weakly decreasing on Ω. Otherwise, x(τ1) ∈ Ω and

∥∥x(τ1)−α
∥∥ = 1. In this

case, we invoke the weak invariance of (S2, F̃2) to construct a trajectory
that extends x, beginning at x(τ1), to the interval [0, τ1+τ2), where τ2 is the
exit time of the extension from Ω2, and where for t ∈ [τ1, τ1 + τ2) we have
ϕ
(
x(t)
) ≤ ϕ

(
x(τ1)

) ≤ ϕ(α). Again, if either τ2 = ∞ or x(τ1 +τ2) ∈ bdry Ω,
we have the required trajectory; otherwise x(τ1+τ2) ∈ Ω,

∥∥x(τ1+τ2)−α
∥∥ =

2, and we begin again. If the process fails to end after finitely many steps,
the resulting trajectory x is defined on [0,∞), since

∥∥∥∥x
( k∑

1

τi

)
− α

∥∥∥∥ = k implies that
k∑
1

τi → ∞ as k → ∞

(i.e., trajectories of F do not blow up in finite time). Then x on [0,∞) is
itself the required trajectory, and the proof is complete.
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Strongly Decreasing Systems on Ω

Let ϕ ∈ F(Ω), where Ω is an open subset of R
n. The system (ϕ, F ) is said

to be strongly decreasing on Ω if for any α ∈ dom ϕ ⊂ Ω, for any trajectory
x of F on an interval [a, b] which lies in Ω and satisfies x(a) = α, we have

ϕ
(
x(t)
) ≤ ϕ(α) ∀t ∈ [a, b].

6.2. Exercise. Show that (ϕ, F ) is strongly decreasing on Ω iff ev-
ery trajectory x of F on an interval [a, b] which lies in Ω is such that
the function t �→ ϕ

(
x(t)
)

is decreasing on [a, b].

6.3. Theorem. Let F be locally Lipschitz. Then (ϕ, F ) is strongly decreas-
ing on Ω iff

H
(
x, ∂P ϕ(x)

) ≤ 0 ∀x ∈ Ω.

Proof. Let (ϕ, F ) be strongly decreasing on Ω, and let ζ ∈ ∂P ϕ(α), where
α ∈ Ω. Fix any v0 ∈ F (α). We wish to prove that 〈v0, ζ〉 ≤ 0, to allow us
to deduce the Hamiltonian inequality of the theorem. Pick δ > 0 such that
B(α; δ) ⊂ Ω, and set

S :=
{
(x, r) ∈ R

n × R : x ∈ B(α; δ), ϕ(x) ≤ r
}
.

Let f(x) := v in F (x) closest to v0. Then f is continuous (Exercise 3.3(c))
and f(α) = v0. We define the multifunction

F̃ (x, r) :=
{(

f(x), 0
)}

if x ∈ B(α; δ),

:= co
{
0, f(y) : ‖y − α‖ = δ

}× {0} otherwise.

Then S is closed, F̃ satisfies the Standing Hypotheses, and (S, F̃ ) is weakly
invariant. Since ζ ∈ ∂P ϕ(α), we have (ζ,−1) ∈ NP

S

(
α, ϕ(α)

)
, so that by

Theorem 2.10, 〈(
f(α), 0

)
, (ζ,−1)

〉
= 〈v0, ζ〉 ≤ 0,

proving the necessity.

For the converse, let the Hamiltonian inequality hold, and let x̂ be an
Euler arc on [0, T ] lying in Ω. In order to prove that ϕ

(
x̂(t)
)

is decreasing,
it suffices to prove that for any a ∈ [0, T ), for all b ∈ (a, T ] sufficiently close
to a, we have ϕ

(
x̂(b)
) ≤ ϕ

(
x̂(a)
)

(we may assume ϕ(x̂(a)) finite). To this
end, set

S := cl
{
(x, r) : x ∈ Ω, r ≥ ϕ(x)

}
,

and pick M > 0 such that x̂(a)+4MB ⊂ Ω, and then pick b > a sufficiently
near a so that ∥∥x̂(t) − x̂(a)

∥∥ < M ∀t ∈ [a, b].

It follows that for any

(x, r) ∈ (x̂(a) + MB
)× (ϕ(x̂(a)

)
+ MB

)
,
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for any (x′, r′) ∈ projS(x, r), we have
∥∥(x′, r′) − (x̂(a), ϕ

(
x̂(a)
))∥∥ < 4M.

Now let f be a selection of F whose unique Euler arc beginning at
(
a, x̂(a)

)
is x̂ (Corollary 3.7). If

(x, r) ∈ (x̂(a) + MB
)× (ϕ(x̂(a)

)
+ MB

)
,

then
(ζ, λ) := (x − x′, r − r′) ∈ NP

S (x′, r′),

where x′ ∈ x̂(a)+4MB ⊂ Ω. It follows that (ζ, λ) ∈ NP
epi ϕ(x′, r′). If λ < 0,

then −ζ/λ ∈ ∂P ϕ(x′), so by hypothesis we have
〈
f(x′),−ζ/λ

〉 ≤ 0, whence〈
f(x′), x − x′〉 ≤ 0. If λ = 0, then

(ζ, 0) ∈ NP
epi ϕ

(
x̂(a), ϕ

(
x̂(a)
))

,

and Problem 1.11.23 implies the existence of

xi
ϕ→ x′, εi → 0 (with εi > 0), ζi → ζ,

such that (ζi,−εi) ∈ ∂P ϕ(xi). Since F is Lipschitz, there exist vi ∈ F (xi)
with

∥∥vi − f(x′)
∥∥ ≤ K‖xi − x′‖. As above, we have 〈ζi, vi〉 ≤ 0, and a

passage to the limit gives
〈
ζ, f(x′)

〉 ≤ 0 once more.

The above confirms that Proposition 2.1 applies to S together with the
map (x, r) �→ (f(x), 0

)
. Since the unique Euler arc for this map beginning

at
(
x̂(a), ϕ

(
x̂(a)
))

is
(
x̂(·), ϕ(x̂(a)

))
, we deduce

dS

(
x̂(t), ϕ

(
x̂(a)
)) ≤ dS

(
x̂(a), ϕ

(
x̂(a)
))

= 0 ∀t ∈ [a, b].

This implies ϕ
(
x̂(b)
) ≤ ϕ

(
x̂(a)
)
, as required.

A Nonautonomous Extension

Suppose now that ϕ and F depend on t as well as x. We can easily extend
the monotonicity characterizations obtained above to this nonautonomous
case, and make them relative to a given t-interval (t0, t1), where we allow
t0 = −∞ and/or t1 = ∞. We will say that (ϕ, F ) is weakly decreasing on
(t0, t1) × Ω if for any τ ∈ (t0, t1) and α ∈ Ω there exists a trajectory x on
[τ, t1) with x(τ) = α such that

ϕ
(
t, x(t)

) ≤ ϕ(τ, α) ∀t ∈ [τ, b],

where [τ, b] is any subinterval of [τ, t1) upon which x(t) remains in Ω.

If this holds for all trajectories x, then (ϕ, F ) is said to be strongly de-
creasing on (t0, t1) × Ω. The state augmentation device introduced in §3,
together with Theorems 6.1 and 6.3, leads easily to:
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6.4. Exercise. Let ϕ ∈ F((t0, t1) × Ω
)
.

(a) Then (ϕ, F ) is weakly decreasing on (t0, t1) × Ω iff

θ + h(t, x, ζ) ≤ 0 ∀(θ, ζ) ∈ ∂P ϕ(t, x), ∀(t, x) ∈ (t0, t1) × Ω.

(b) If F is locally Lipschitz, then (ϕ, F ) is strongly decreasing on
(t0, t1) × Ω iff

θ + H(t, x, ζ) ≤ 0 ∀(θ, ζ) ∈ ∂P ϕ(t, x), ∀(t, x) ∈ (t0, t1) × Ω.

A certain number of other monotonicity properties of systems have not
been discussed. We will conclude with strong increase, leaving to the end-
of-chapter problems an exhaustive study of all the variations on this theme.
In the nonautonomous case still, (ϕ, F ) is said to be strongly increasing on
(t0, t1)×Ω provided that for any interval [a, b] contained in (t0, t1), for any
trajectory x of F on [a, b] for which x(t) ∈ Ω ∀t ∈ [a, b], we have

ϕ
(
t, x(t)

) ≤ ϕ
(
b, x(b)

) ∀t ∈ [a, b].

Of course, this last inequality is automatically satisfied when
(
b, x(b)

) �∈
dom ϕ. As in the autonomous case, this strong increase property is equiv-
alent to the requirement that the function t �→ ϕ

(
t, x(t)

)
be increasing on

[a, b] whenever x is a trajectory on some interval [a, b] ⊂ (t0, t1) for which
x(t) remains in Ω.

6.5. Proposition. Let F be locally Lipschitz. Then (ϕ, F ) is strongly in-
creasing on (t0, t1) × Ω iff

θ + h(t, x, ζ) ≥ 0 ∀(θ, ζ) ∈ ∂P ϕ(t, x), ∀(t, x) ∈ (t0, t1) × Ω.

Proof. Let x be a trajectory of F on (t0, t1), and define y(t) := x(t∗ − t),
where t∗ is a point in (t0, t1). Then the function y is defined on the interval
(t∗ − t1, t

∗ − t0), and we have

ẏ(t) = −ẋ(t∗ − t) ∈ −F
(
t∗ − t, x(t∗ − t)

)
= −F

(
t∗ − t, y(t)

)
a.e.

This shows that y is a trajectory of F ∗ on (t∗−t1, t
∗−t0), where F ∗(t, y) :=

−F (t∗−t, y). Clearly this correspondence between x and y is one-to-one, so
that ϕ

(
t, x(t)

)
is increasing for all such x (while x(t) ∈ Ω) iff ϕ

(
t∗ − t, y(t)

)
is decreasing for all such y (in each case on the relevant interval). Letting
ϕ∗(t, y) := ϕ(t∗ − t, y), we have proven that strong increase on (t0, t1) × Ω
for (ϕ, F ) is the same as strong decrease on (t∗−t1, t

∗−t0)×Ω for (ϕ∗, F ∗).
Applying Exercise 6.4(b), and denoting by H∗ the upper Hamiltonian of
F ∗, the latter is equivalent to

θ + H∗(t, y, ζ) ≤ 0 ∀(θ, ζ) ∈ ∂P ϕ∗(t, y), ∀(t, y) ∈ (t∗ − t1, t
∗ − t0) × Ω.
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But it is easy to see that

H∗(t, y, ζ) = −h(t∗ − t, y, ζ),
(θ, ζ) ∈ ∂P ϕ∗(t, y) ⇐⇒ (−θ, ζ) ∈ ∂P ϕ(t∗ − t, y).

The proposition then follows immediately.

Local Attainability

We have addressed the issue of remaining in a given set, and also that of
asymptotically approaching an equilibrium. We now examine under what
conditions an initial-value outside a given set can be steered to it in finite
time.

We say that the system (S, F ) is locally attainable if there exists r > 0
and T > 0 such that the following holds: for all α having dS(α) < r, there
exists a trajectory x of F on [0,∞) such that

x(0) = α and x(t) ∈ S ∀t ≥ T.

6.6. Theorem. Let S be compact, and let F be locally Lipschitz. Suppose
that for some δ > 0 we have

h(x, ζ) ≤ −δ‖ζ‖ ∀ζ ∈ NP
S (x), ∀x ∈ S. (1)

Then (S, F ) is locally attainable.

Proof. Let F be Lipschitz of rank K on S +ηB, where η > 0, and let r > 0
satisfy r < min(δ/K, η). Set λ := δ − Kr. We claim that for y ∈ R, the
system

(
dS(x) + λy, F (x) × {1}) is weakly decreasing on

Ω :=
{
(S + rB)\S

}× R.

We will verify this by means of the criterion of Theorem 6.1.

Any proximal subgradient (ζ, θ) of dS(x)+λy in Ω is of the form (ζ, λ) where
ζ ∈ ∂P dS(x). According to Theorem 1.6.1, ‖ζ‖ = 1 and ζ ∈ NP

S (s), where
s ∈ projS(x). By hypothesis (1), we have h(s, ζ) + δ ≤ 0. The Lipschitz
condition on F gives

h(x, ζ) + λ ≤ h(s, ζ) + K‖x − s‖ + δ − Kr

≤ −δ + KdS(x) + δ − Kr < 0.

This proves the claim.

It follows that for any α ∈ (S + rB)\S, there is a trajectory x of F on
[0,∞) such that x(0) = α, and such that

dS

(
x(t)
)

+ λt ≤ dS(α)
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for all t > 0 up to the first T > 0 such that dS

(
x(T )

)
= 0; i.e., such that

x(T ) ∈ S. Note that since λ > 0, such T must exist (uniformly for α).

Once x(T ) ∈ S, then there is a trajectory beginning at x(T ) which ex-
tends x and remains in S thereafter, since (1) implies that (S, F ) is weakly
invariant.

6.7. Exercise.

(a) Prove that in Theorem 6.6, the parameter T can be taken to
be r/(δ − Kr).

(b) The time required to steer α ∈ S + r̄B to S is no greater
than dS(α)

/(
δ − KdS(α)

)
, and an approach to S at rate γ :=

δ − KdS(α) > 0 can be guaranteed, in the sense that we have

dS

(
x(t)
)− dS(α) ≤ −γt

until S is reached.

A sufficient condition for local attainability can also be given in tangen-
tial terms akin to those employed in proving the existence of equilibria in
Theorem 4.6.

6.8. Proposition. Let S be compact, and let F be locally Lipschitz. Sup-
pose that

F (x) ∩ intTC
S (x) �= ∅ ∀x ∈ S.

Then (S, F ) is locally attainable.

Proof. Let x ∈ S. Then there exists vx ∈ F (x) and δx > 0 such that
vx + δxB ⊂ TC

S (x). Given any ζ ∈ NL
S (x), since

TC
S (x) =

(
NL

S (x)
)0

,

we have
〈vx + δxu, ζ〉 ≤ 0 for any u ∈ B,

which implies 〈vx, ζ〉 ≤ −δx‖ζ‖ and consequently h(x, ζ) ≤ −δx‖ζ‖. This
shows that the system (S, F ) satisfies a pointwise version of condition (1),
and with NP

S replaced by NL
S .

If the system fails to satisfy (1) uniformly, then there exist sequences {xi},
{ζi} with xi ∈ S, ‖ζi‖ = 1, ζi ∈ NP

S (xi), and such that

h(xi, ζi) ≥ −1
i
‖ζi‖ = −1

i
.

By passing to subsequences, we can suppose xi → x ∈ S, ζi → ζ, where ζ ∈
NL

S (x) and ‖ζ‖ = 1. Since h(x, p) is locally Lipschitz in x (Exercise 3.3(d))
and continuous in p (as a concave real-valued function), we obtain h(x, ζ) ≥
0. But this contradicts what was proven above.

Thus the system (S, F ) satisfies (1) for some positive δ, and so is locally
attainable by Theorem 6.6.
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7 The Hamilton–Jacobi Equation and
Viscosity Solutions

For the first time, we now consider the issue of finding a trajectory which is
best relative to a given criterion. We consider the following optimal control
problem (P)

minimize �
(
x(T )

)
subject to ẋ(t) ∈ F

(
x(t)
)

a.e., t ∈ [0, T ], x(0) = x0.

Here T > 0, x0 ∈ R
n, and a continuous function � : R

n → R are given. We
seek therefore to minimize the endpoint cost �

(
x(T )

)
over all trajectories

x of F on [0, T ] originating at x0. It follows from the Standing Hypotheses
that problem (P) admits a solution (Exercise 3.12). We assume throughout
this section that F is locally Lipschitz and autonomous.

Verification Functions

We now describe how a venerable idea in the calculus of variations, origi-
nating with Legendre, leads to sufficient conditions for optimality in control
problems. Suppose that we have a feasible arc x̄ that we suspect of being
optimal for our problem. How can we confirm that x̄ is a solution? Here is
one way: produce a smooth (C1) function ϕ(t, x) such that

ϕt(t, x) +
〈
ϕx(t, x), v

〉 ≥ 0 ∀x, ∀t ∈ (0, T ), ∀v ∈ F (x), (1)

ϕ(T, ·) = �(·),
ϕ(0, x0) = �

(
x̄(T )

)
.

Let us see how the existence of ϕ verifies that x̄ is optimal. Let x be any
other arc feasible for (P). Then a.e. on [0, T ] we have

d

dt
ϕ
(
t, x(t)

)
= ϕt

(
t, x(t)

)
+
〈
ϕx

(
t, x(t)

)
, ẋ(t)

〉 ≥ 0 (by (1)).

Integrating this on [0, T ] yields

ϕ
(
T, x(T )

)
= �
(
x(T )

) ≥ ϕ(0, x0) = �
(
x̄(T )

)
.

So x̄ gives the least possible value of �
(
x(T )

)
, as required. It also follows

that ϕ(0, x0) is the value V of (P); i.e., the minimum cost.

In this simple argument, the Hamilton–Jacobi inequality (1) was really only
used to deduce that the map t → ϕ

(
t, x(t)

)
is increasing whenever x is a

trajectory. In the terminology of the previous section, we want (ϕ, F ) to
be strongly increasing on (0, T ) × R

n. Our previous results allow us to
characterize this system property even when ϕ is nondifferentiable. Here
is a corresponding extension of the verification argument whose proof is
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an adaptation of the classical one. In this and subsequent results, it is
notationally convenient to use the augmented Hamiltonian h̄ defined by

h̄(x, θ, ζ) := θ + h(x, ζ).

7.1. Proposition. Let x̄ be feasible for (P), and suppose that there exists
a continuous ϕ(t, x) on [0, T ] × R

n satisfying

h̄
(
x, ∂P ϕ(t, x)

) ≥ 0 ∀(t, x) ∈ (0, T ) × R
n, (2)

ϕ(T, ·) = �(·),
ϕ(0, x0) = �

(
x̄(T )

)
.

(3)

Then x̄ solves (P), and the value of (P) is ϕ(0, x0).

7.2. Exercise. Prove Proposition 7.1.

This is an extension to nonsmooth ϕ of Legendre’s approach to sufficient
conditions, which in the calculus of variations has also been called the “royal
road of Carathéodory.” A continuous function ϕ satisfying the hypotheses
(2), (3), and (4) of Proposition 7.1 is called a verification function (for x̄).

The obvious question to ask at this point is how applicable the method
turns out to be, or to rephrase this: Can we be sure that a verification
function ϕ for x̄ exists when x̄ is optimal? And how do we find one?

Considerable insight into this question arises from applying the technique
of invariant embedding. Suppose that instead of the problem (P) considered
above, we consider a family of problems P (τ, α) parametrized by the initial
data (τ, α) ∈ [0, T ] × R

n; i.e., the initial condition is

x(τ) = α

rather than x(0) = x0. Let V (τ, α) denote the value of P (τ, α); then we
observe that the classical verification argument actually gives not only
V (0, x0) = ϕ(0, x0) as noted earlier, but also

V (τ, α) ≥ ϕ(τ, α) ∀(τ, α) ∈ [0, T ) × R
n.

We are quite naturally led to consider whether we could take V itself as the
function ϕ in Proposition 7.1. We know that V is continuous on (−∞, T ]×
R

n (see Exercise 3.12).

We can easily see that V indeed satisfies (2). The reason is that V
(
t, x(t)

)
is

always increasing when x is a trajectory; the minimum of �
(
x(T )

)
can only

be greater or equal starting from an intermediate point
(
t′, x(t′)

)
than it

was from an earlier “less committed” point
(
τ, x(τ)

)
. (This is an instance

of the logic known as the principle of optimality.) This strong increase
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property of the system (V, F ), by Proposition 6.5, implies the Hamilton–
Jacobi inequality (2) on all (−∞, T ) × R

n.

Finally, it is clear that V satisfies (3), and satisfies (4) iff x̄ is optimal.
We obtain therefore the following satisfying justification of the verification
method:

7.3. Proposition. A feasible arc x̄ is optimal iff there exists a continuous
verification function for x̄; the value function V is one such verification
function for any optimal arc.

7.4. Exercise. We set n = 1, F (x) =
[−|x|, |x|], �(x) = x, T = 1.

(a) Calculate V (τ, α) for any τ ≤ 1, and verify that it satisfies the
properties of a verification function. Note that V is nondiffer-
entiable.

(b) Find a different verification function confirming the optimality
of the arc that solves P (0, 0).

There are in general many possible verification functions for a given op-
timal x̄. We have seen in this section, however, how naturally the value
function V arises in connection with the verification method, and hence
the associated Hamilton–Jacobi inequality. Might it be possible to estab-
lish an even closer relationship, perhaps even a characterization of V , in
Hamilton–Jacobi terms?

The Proximal Hamilton–Jacobi Equation

The following theorem shows that the value function is the unique contin-
uous solution of a suitable generalization of the classical Hamilton–Jacobi,
whose general form is

ϕt + H(x, ϕx) = 0,

with boundary condition. Recall that h̄(x, θ, ζ) is defined as θ + h(x, ζ).
We call a function ϕ that satisfies (5) below a proximal solution of the
Hamilton–Jacobi equation (for h).

7.5. Theorem. There is a unique continuous function ϕ : (−∞, T ]×R
n →

R satisfying

h̄
(
x, ∂P ϕ(t, x)

)
= 0 ∀(t, x) ∈ (−∞, T ) × R

n, (4)
�(x) = ϕ(T, x) ∀x ∈ R

n. (5)

That function is the value function V .

Proof. That V satisfies (6) was noted earlier, as well as “half” of (5); there
remains to show

h̄
(
x, ∂P V (t, x)

) ≤ 0 ∀(t, x) ∈ (−∞, T ) × R
n. (6)
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But whenever V (τ, α) is finite, there is an optimal arc x̄ for the problem
P (τ, α), and along x̄, V is constant (i.e., t → V (t, x̄(t)) is constant on [τ, T ]).
Thus the system (V, F ) is weakly decreasing relative to t ∈ (−∞, T ), so
that (7) holds by Exercise 6.4. We have shown that V satisfies (5) and (6).

Now let ϕ be any other function as described in the theorem. Let us show
first that V ≤ ϕ. To this end, let (τ, α) be any point with τ < T . Then
the system (ϕ, F ) is weakly decreasing relative to t < T , so that there is a
trajectory x on [τ, T ] with x(τ) = α such that

ϕ
(
t, x(t)

) ≤ ϕ(τ, α) ∀t ∈ [τ, T ).

Letting t ↑ T , we derive �
(
x(T )

)
= ϕ
(
T, x(T )

) ≤ ϕ(τ, α), which implies
V (τ, α) ≤ ϕ(τ, α).

We now proceed to show V ≥ ϕ. Let (τ, α) be any point with τ < T . Then
there exists a trajectory x̄ optimal for P (τ, α). Because (ϕ, F ) is strongly
increasing, we derive

ϕ
(
T, x̄(T )

) ≥ ϕ(τ, α).

But ϕ
(
T, x̄(T )

)
= �
(
x̄(T )

)
= V (τ, α), which completes the proof.

The proof actually establishes two comparison theorems that we proceed
to note formally:

7.6. Corollary. Let ϕ : (−∞, T ] × R
n → R be continuous and satisfy :

(a) h̄
(
x, ∂P ϕ(t, x)

) ≤ 0 ∀(t, x) ∈ (−∞, T ) × R
n; and

(b) �(x) ≤ ϕ(T, x) ∀x ∈ R
n.

Then ϕ ≥ V .

7.7. Corollary. Let ϕ : (−∞, T ] × R
n → R be continuous and satisfy :

(a) h̄
(
x, ∂P ϕ(t, x)

) ≥ 0 ∀(t, x) ∈ (−∞, T ) × R
n; and

(b) �(x) ≥ ϕ(T, x) ∀x ∈ R
n.

Then ϕ ≤ V .

We remark that Corollary 7.6 is valid without the Lipschitz hypothesis on
F , in contrast to its companion.

Minimax Solutions

It is possible to express the extended Hamilton–Jacobi equation in terms
of other constructs of nonsmooth analysis besides proximal subgradients,
for example, via subderivates. Subbotin has called the concept of solution
that appears below a minimax solution.

7.8. Proposition. V is the unique continuous function ϕ : (−∞, T ]×R
n →

R satisfying :



226 4. A Short Course in Control Theory

(a) infv∈F (x) Dϕ(t, x; 1, v) ≤ 0 ∀(t, x) ∈ (−∞, T ) × R
n;

(b) supv∈F (x) Dϕ(t, x;−1,−v) ≤ 0 ∀(t, x) ∈ (−∞, T ) × R
n; and

(c) ϕ(T, ·) = �(·).
Proof. It suffices to prove that the two conditions (a) of Corollary 7.6 and
of Proposition 7.8 are equivalent, and that conditions (a) of Corollary 7.7
and (b) of the proposition are equivalent.

First, let (a) of Proposition 7.8 hold, and let (θ, ζ) belong to ∂P ϕ(t, x). Let
ε > 0 be given, and let v in F (x) satisfy Dϕ(t, x; 1, v) < ε. Then

ε > Dϕ(t, x; 1, v) ≥ 〈(θ, ζ), (1, v)
〉 ≥ h̄(x, θ, ζ).

We deduce (a) of Corollary 7.6, since ε is arbitrary.

Now let (a) of Corollary 7.6 hold, and suppose that for some ε > 0, we had

Dϕ(t, x; 1, v) > ε ∀v ∈ F (x).

Since Dϕ is lower semicontinuous in v (Exercise 3.4.1(e)), for some δ > 0
we have

Dϕ(t, x; 1, v) >
ε

2
∀v ∈ F (x) + δB.

By Subbotin’s Theorem 3.4.2 this implies the existence, for any r > 0, of
(θ, ζ) ∈ ∂P ϕ(t′, x′), where (t′, x′) is of distance less than r from (t, x), such
that 〈

(θ, ζ), (1, v)
〉

>
ε

3
∀v ∈ F (x) + δB.

Thus, as soon as F (x′) lies within F (x) + δB we deduce

h̄(x′, θ, ζ) ≥ ε

3
for some (θ, ζ) ∈ ∂P ϕ(t′, x′),

contradicting (a) of Corollary 7.6 as required. This completes the proof that
the corresponding (a) parts are equivalent. The remainder of the proof is
similar to the above, and is left as an exercise.

7.9. Exercise. Prove that condition (b) of Proposition 7.8 and con-
dition (a) of Corollary 7.7 are equivalent.

Viscosity Solutions

We now establish that the value function is also the unique viscosity so-
lution of the Hamilton–Jacobi boundary-value problem. This celebrated
solution concept, developed by M. Crandall and P. L. Lions, is bilateral
like minimax solutions, but even more so, in that it uses both subdifferen-
tials and superdifferentials. Of course, given the uniqueness of the solution,
it is evident that the proximal, minimax, and viscosity solution concepts
all coincide in our present setting.
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Let us recall the D-subdifferential ∂Df of §3.4, and the characterization
provided by Proposition 3.4.12: ζ belongs to ∂Df(x) iff there is a function
g differentiable at x, with g′(x) = ζ, such that f − g has a local minimum
at x. The D-superdifferential ∂Df(x) is defined analogously, with f − g
having a local maximum at x.

7.10. Proposition. V is the unique continuous function ϕ : (−∞, T ] ×
R

n → R satisfying :

(a) h̄
(
x, ∂Dϕ(t, x)

) ≤ 0 ∀(t, x) ∈ (−∞, T ) × R
n;

(b) h̄
(
x, ∂Dϕ(t, x)

) ≥ 0 ∀(t, x) ∈ (−∞, T ) × R
n; and

(c) ϕ(T, ·) = �(·).
Proof. It is an immediate consequence of Proposition 3.4.5 that (a) of this
proposition and (a) of Corollary 7.6 are equivalent. It suffices then to prove
the equivalence of (b) of the proposition to (a) of Corollary 7.7. Now the
latter condition is equivalent to the strong increase of the system (ϕ, F ) on
(−∞, T ), as we know. This in turn is equivalent to the strong decrease of
the system (−ϕ, F ) on (−∞, T ), which in turn is equivalent to

θ + H(x, θ, ζ) ≤ 0 ∀(θ, ζ) ∈ ∂P (−ϕ)(t, x), ∀(t, x) ∈ (−∞, T ) × R
n,

by Exercise 6.4. Invoking Proposition 3.4.5 again, this is equivalent to

θ + H(x, θ, ζ) ≤ 0 ∀(θ, ζ) ∈ ∂D(−ϕ)(t, x), ∀(t, x) ∈ (−∞, T ) × R
n.

Since ∂Dϕ is precisely −∂D(−ϕ), this last condition coincides with (b) of
Proposition 7.10, and we are done.

We remark that in terms of the usual conventions in the literature of vis-
cosity solutions, Proposition 7.10 asserts that V is the viscosity solution of
the equation −h̄(x,∇ϕ) = 0 rather than h̄(x,∇ϕ) = 0. The minus sign here
makes a difference, as it clearly must in any bilateral mode of definition.
In the unilateral proximal setting, the difference resides in the fact that it
is ∂P ϕ figuring in (5), and not ∂P ϕ.

7.11. Exercise.

(a) Let ϕ be a continuous function satisfying (5). Prove that at any
point (t, x) at which ϕ is differentiable, we have

ϕt(t, x) + h
(
x, ϕx(t, x)

)
= 0. (7)

Deduce that if ϕ is locally Lipschitz, then this holds a.e. on
(−∞, T ) × R

n. This defines an earlier notion of generalized
solution to the Hamilton–Jacobi equation, one that could be
called an almost everywhere solution. We proceed to show that
almost everywhere solutions are not necessarily unique, and
hence differ from the proximal ones.
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(b) We set n = 1, F (x) = [−1, 1], �(x) = |x|, and T = 1. Show that
the value function V is given by

V (t, x) = max
{|x| + t − 1, 0

}
.

(c) Confirm that V is a Lipschitz almost everywhere solution of the
Hamilton–Jacobi equation with boundary condition V (1, x) =
|x|. Show that another is ϕ(t, x) := |x| + t − 1, but that ϕ fails
to satisfy (5), in contrast to V .

(d) Show that both ϕ and V satisfy (5) if ∂P is replaced by ∂P .

(e) If ϕ is differentiable at every point and satisfies (8) on (−∞, T )×
R

n without exception, together with the boundary condition,
prove that ϕ = V on (−∞, T ] × R

n.

8 Feedback Synthesis from Semisolutions

The Hamilton–Jacobi inequality

h̄
(
x, ∂P ϕ(t, x)

) ≤ 0,

together with the boundary condition

ϕ(T, ·) ≥ �(·)

defines what is called a semisolution. Such a function can be useful in
producing upper bounds for the value V of our optimal control problem;
as we saw, these conditions imply V ≤ ϕ (Corollary 7.6). Thus for each
(τ, α) ∈ (−∞, T ]×R

n there is a trajectory x̄ with x(τ) = α and �
(
x̄(T )

) ≤
ϕ(τ, α). We address now the issue of actually constructing such a trajectory.
In the special case in which ϕ = V , this becomes the problem of finding
optimal trajectories.

It is interesting to recall the classical approach to this issue. Assuming that
ϕ is smooth, this would direct us to select for each (t, x) a point v̄(t, x) in
F (x) at which the minimum defining h̄

(
x,∇ϕ(t, x)

)
is attained; i.e., such

that
ϕt(t, x) +

〈
ϕx(t, x), v̄

〉
= h̄
(
x,∇ϕ(t, x)

)
.

Then, we proceed to define a trajectory x̄ via

˙̄x(t) = v̄
(
t, x̄(t)

)
, x̄(τ) = α.

If all this is possible, we derive

�
(
x̄(T )

) ≤ ϕ(τ, α)
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as follows:

�
(
x̄(T )

)− ϕ(τ, α) ≤ ϕ
(
T, x̄(T )

)− ϕ(τ, α)

=
∫ T

0

d

dt
ϕ
(
t, x̄(t)

)
dt

=
∫ T

0

{
ϕt

(
t, x̄(t)

)
+
〈
ϕx

(
t, x̄(t)

)
, ˙̄x(t)

〉}
dt

=
∫ T

0
h̄
(
x̄(t), ∇ϕ

(
t, x̄(t)

))
dt ≤ 0.

The difficulties with this “dynamic programming” approach are intrinsic
(smoothness of ϕ, regularity of v̄, existence of x̄), but it is of note that it
attempts to construct a feedback giving rise to the required trajectory.

Proximal aiming allows us to rescue the approach in essentially these terms,
and for merely lower semicontinuous semisolutions. The integration step
above is still not possible, but proximal methods produce the required
system monotonicity. The following result is obtained. It is not just an
abstract existence theorem: we construct a feedback v̄ quite explicitly.

8.1. Theorem. Let F be locally Lipschitz, and let ϕ ∈ F((−∞, T ) × R
n
)

satisfy
h̄
(
x, ∂P ϕ(t, x)

) ≤ 0 ∀(t, x) ∈ (−∞, T ) × R
n

and
�(x) ≤ lim inf

t′↑T
x′→x

ϕ(t′, x′) ∀x ∈ R
n.

Then for given (τ, α) ∈ (−∞, T )×R
n, there exists a feedback selection v̄ of

F with the property that every Euler solution x̄ of the initial-value problem

ẋ = v̄(t, x), x(τ) = α,

satisfies �
(
x̄(T )

) ≤ ϕ(τ, α).

Proof. Let us consider the set

S :=
{
(t, x) ∈ (−∞, T ) × R

n : ϕ(t, x) ≤ ϕ(τ, α)
} ∪ {(t, x) : t ≥ T, x ∈ R

n
}
,

and note that S is closed, since ϕ is lower semicontinuous, and also that
the system (S, F ) is weakly invariant, where F (x) := {1} × F (x). This is
essentially a restatement of the fact that (ϕ, F ) is weakly decreasing on
t < T , which follows from Exercise 6.4.

We now take the feedback selection gP for F defined in Theorem 3.4; nec-
essarily, it is of the form

(
1, v̄(t, x)

)
, where v̄ is a feedback selection for

F . It follows that any Euler solution of ẋ = v̄(t, x), x(τ) = α is such that(
t, x(t)

) ∈ S ∀t ≥ τ . Thus

ϕ(τ, α) ≥ lim inf
ε↓0

ϕ
(
T − ε, x(T − ε)

) ≥ �
(
x(T )

)
.
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We recall that (as shown in the proof of Theorem 3.4), the feedback v̄(t, x)
is constructed as follows: for given (t, x), we first find any point (t′, x′) ∈
projS(t, x); next, we locate v ∈ F (x′) minimizing the function v �→ 〈v, x −
x′〉 over F (x′). Finally, we take v̄(t, x) in F (x) closest to v. This same v̄
will provide trajectories x satisfying �

(
x(T )

) ≤ ϕ(τ, α) from any initial
data (τ ′, α′) for which ϕ(τ ′, α′) ≤ ϕ(τ, α). In general v̄ is discontinuous,
and v̄(t, x) is an arbitrary element of F (t, x) when x′ = x. We remark
that a refinement of this construction can be made so as to define, for any
compact subset C and ε > 0, a feedback selection generating trajectories
x that satisfy �

(
x(T )

) ≤ ϕ(τ, α) + ε whenever (τ, α) lies in C, though we
shall omit this topic.

8.2. Exercise. For ϕ = V in Exercise 7.11(b), and for (τ, α) =
(0, 0), describe the set S and the optimal feedback v̄. Sketch typical
directions of v̄ in the (t, x) plane. Note that v̄ cannot be defined so as
to be continuous on (−∞, 1]× R. Prove that no continuous feedback
can be optimal.

8.3. Exercise. With n = 1, set h(x, p) := −|xp|, and let

ϕ(t, x) =

{
xet−1 if x ≥ 0,

xe1−t if x ≤ 0.

Prove that ϕ is the unique proximal/minimax/viscosity solution on
(−∞, 1] of the Hamilton–Jacobi boundary-value problem

ϕt + h(x, ϕx) = 0, ϕ(1, y) = y ∀y.

(Which of the three solution concepts is easiest to use in order to do
this?) Why does this immediately imply that ϕ = V , where V is the
value function of Exercise 7.4?

9 Necessary Conditions for Optimal Control

We have studied in §7 a verification method that can confirm the optimality
of a suspect, and we have shown how to calculate optimal arcs by feedback
in §8, if the value function is known (or suboptimal arcs, if a semisolution
is at hand). But we still lack the necessary conditions that can be used to
identify potential optimal solutions. That is the subject of this section, in
which is considered the following optimal control problem (P):

minimize
{
�
(
x(b)
)
: ẋ ∈ F (x) a.e., x(a) = x0

}
.

That is, we wish as before to minimize �
(
x(b)
)

over the trajectories x on
[a, b] with initial-value x0. The interval [a, b] is given, together with x0 ∈ R

n.
We assume that � is a locally Lipschitz function, and that the autonomous
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multifunction F is locally Lipschitz. We will say that x is a local solution
to (P) if, for some ε0 > 0, we have

�
(
x(b)
) ≤ �

(
y(b)
)

whenever y is a trajectory on [a, b] satisfying y(a) = x0 as well as

‖y − x‖∞ ≤ ε0.

Recall that the upper Hamiltonian H corresponding to F is the function
H given by

H(x, p) := max
{〈p, v〉 : v ∈ F (x)

}
.

In the following set of necessary conditions for a local minimum, the first
conclusion is known as the Hamiltonian inclusion; the condition at (b) is
called the transversality condition.

9.1. Theorem. Let x be a local solution to the optimal control problem
(P). Then there exists an arc p on [a, b] which, together with x, satisfies

(−ṗ(t), ẋ(t)
) ∈ ∂CH

(
x(t), p(t)

)
a.e., a ≤ t ≤ b,

−p(b) ∈ ∂L�
(
x(b)
)
.

Proof. This is a long and fairly involved proof, in which nonsmooth calculus
plays the major role. We will require the following facts regarding ∂CH;
the Generalized Gradient Formula 2.8.1 is helpful in proving them:

9.2. Exercise. H is locally Lipschitz, and if (q, v) belongs to ∂CH(x, p)
then:

(a) v ∈ F (x) and 〈p, v〉 = H(x, p).

(b) ‖q‖ ≤ K‖p‖, where K is a local Lipschitz constant for F .

(c) For any λ ≥ 0, (λq, v) ∈ ∂CH(x, λp).

(d) For any w ∈ F (x), we have (0, w) ∈ ∂CH(x, 0).

There is no loss of generality, we claim, in assuming that F is globally
Lipschitz and bounded. For there is an a priori bound M on ‖x‖∞ for any
trajectory x on [a, b] with x(a) = x0 (see Exercise 1.5); let us redefine F (x)
for ‖x‖ > 2M (only) as follows:

F̃ (x) = F

(
2Mx

‖x‖
)

.

Then F̃ satisfies the Standing Hypotheses, and can be shown to be glob-
ally Lipschitz and bounded. Furthermore, the arc that solved the initial
problem continues to solve the problem in which F̃ replaces F , since the
trajectories from x0 are the same. Finally, observe that H and H̃ coincide
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in a neighborhood of the optimal arc, and therefore so do ∂CH and ∂CH̃.
Thus the conclusion of the theorem is indifferent to whether F or F̃ is
employed. To summarize, we assume that for some K > 0, F (x) ⊂ KB for
all x, and F is globally Lipschitz of rank K.

We will simplify notation by taking [a, b] = [0, 1], and x0 = 0, and we
denote the optimal trajectory by x̄, and its derivative by v̄.

Let us now proceed to define two subsets of X := L2
n[a, b]:

S :=
{

v ∈ X : v(t) ∈ F

(∫ t

0
v(s) ds

)
a.e.
}

,

Σ :=
{

v ∈ X :
∥∥∥∥x̄ −

∫ t

0
v(s) ds

∥∥∥∥
∞

≤ ε0

}
.

We denote by �̃ the following function on X:

�̃(v) := �

(∫ 1

0
v(s) ds

)
.

We ask the reader to verify that v̄ minimizes �̃(v) over v ∈ S ∩ Σ, and to
provide the following facts:

9.3. Exercise.

(a) S is a closed subset of X.

(b) v̄ ∈ int Σ.

(c) �̃ is locally Lipschitz.

It follows from the above that we have

0 ∈ ∂P {�̃ + IS}(v̄),

and from the Proximal Sum Rule 1.8.2 that, for any ε > 0, for some v1 and
v2 within ε of v̄, we have

0 ∈ ∂P �̃(v1) + NP
S (v2) + εB. (1)

The bulk of our effort will go toward the calculation of NP
S . To that end,

it is useful to introduce the following subset C of X × X:

C :=
{
(u, v) ∈ X × X :

(
u(t), v(t)

) ∈ graph(F ) a.e.
}
.

Before going on to the study of NP
S , we will need:

9.4. Lemma. Let (ζ, ξ) ∈ NP
C (u, v). Then

(−ζ(t), v(t)
) ∈ ∂CH

(
u(t), ξ(t)

)
a.e., 0 ≤ t ≤ 1.
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Proof. To begin, observe that by Proposition 3.5.7, there exists σ > 0 such
that for almost all t ∈ [0, T ], we have
〈
ζ(t), u′ − u(t)

〉
+
〈
ξ(t), v′ − v(t)

〉
≤ σ
∥∥(u′ − u(t), v′ − v(t)

∥∥2 ∀(u′, v′) ∈ graph(F ). (2)

Let us fix a value of t for which (2) holds.

By setting u′ = u(t) in (2), we derive that for any v′ ∈ F
(
u(t)
)
,

〈
ξ(t), v′〉 ≤ 〈ξ(t), v(t)

〉
+ σ
∥∥v′ − v(t)

∥∥2.
In other terms, ξ(t) lies in NP

F (u(t))

(
v(t)
)
. Since F

(
u(t)
)

is a convex set,
this is equivalent to

〈
ξ(t), v′〉 ≤ 〈ξ(t), v(t)

〉 ∀v′ ∈ F
(
u(t)
)
.

It follows that we have

H
(
u(t), ξ(t)

)
=
〈
ξ(t), v(t)

〉
. (3)

We proceed to define a useful function g : R
n × R

n → R as follows:

g(x, p) :=
〈
ξ(t) − p, v(t)

〉
+

‖(ξ(t) − p‖2

4σ

+
〈
ζ(t), x − u(t)

〉− σ
∥∥x − u(t)

∥∥2 + H(x, p).

Note that g is strictly convex in p for each x. Since
∣∣H(x, p)

∣∣ ≤ K‖p‖,
where K is a uniform bound for F (x), it is easy to see that for all x in some
neighborhood of u(t), the function p �→ g(x, p) attains a unique minimum
at p = p(x), and that we have (for all x near u(t))

∥∥p(x)
∥∥ ≤ c for some

constant c.

We claim further that when x = u(t), the p at which said minimum occurs
is ξ(t). Since

g
(
u(t), ξ(t)

)
= H
(
u(t), ξ(t)

)
=
〈
ξ(t), v(t)

〉

by (3), this claim follows from the following calculation:

min
p

{
g
(
u(t), p

)− 〈ξ(t), v(t)
〉}

= min
p

{
H
(
u(t), p

)− 〈p, v(t)
〉

+
‖ξ(t) − p‖2

4σ

}

= min
p

max
v′∈F (u(t))

{〈
p, v′ − v(t)

〉
+

‖ξ(t) − p‖2

4σ

}

= max
v′∈F (u(t))

min
p

{〈
p, v′ − v(t)

〉
+

‖ξ(t) − p‖2

4σ

}
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(by the Minimax Theorem)

= max
v′∈F (u(t))

{〈
ξ(t), v′ − v(t)

〉− σ
∥∥v′ − v(t)

∥∥2} = 0 (by (2)).

The preceding facts concerning g will allow us to complete the proof of
Lemma 9.4; we record here in generic terms the max-min principle involved
for its independent interest.

9.5. Lemma. Let g(x, p) be a locally Lipschitz function such that for each
x in a neighborhood of x̄, the function p �→ g(x, p) has a unique minimum
at p = p(x), where for some c we have

∥∥p(x)
∥∥ ≤ c for all x near x̄.

Let p(x̄) = p̄, and suppose that the function x �→ minp g(x, p) has a local
maximum at x = x̄. Then (0, 0) ∈ ∂Cg(x̄, p̄).

Proof. Take any (y, q), together with a positive sequence λi decreasing to
0. Let pi = p(x̄ − λiy), the minimizer of g(x̄ − λiy, ·). Then ‖pi‖ ≤ c for all
i sufficiently large, and by passing to a subsequence we can suppose that
pi → p0 for some p0. We have, for any p,

g(x̄ − λiy, p) ≥ g(x̄ − λiy, pi),

whence, in the limit, g(x̄, p) ≥ g(x̄, p0). By uniqueness of the minimizer, we
deduce p0 = p(x̄) = p̄. Now consider

g(x̄ − λiy, pi) = min
p

g(x̄ − λiy, p)

≤ min
p

g(x̄, ·) (by the maximizing property of x̄)

≤ g(x̄, pi + λiq).

Hence
g(x̄, pi + λiq) − g(x̄ − λiy, pi) ≥ 0.

Dividing this by λi and taking upper limits gives:

g◦(x̄, p̄; y, q) ≥ lim sup
i→∞

g(x̄, pi + λiq) − g(x̄ − λiy, pi)
λi

≥ 0.

Since (y, q) is arbitrary, we obtain (0, 0) ∈ ∂Cg(x̄, p̄) as claimed, proving
Lemma 9.5.

We wish to apply Lemma 9.5 to our particular function g, at the point
x̄ = u(t), p̄ = ξ(t). To do so, it suffices to check that the function x �→
minp g(x, p) has a maximum at x = u(t).

We calculate

min
p

g(x, p) ≤ 〈ζ(t), x − u(t)
〉− σ

∥∥x − u(t)‖2 + H(x, ξ(t))

=
〈
ζ(t), x − u(t)

〉− σ
∥∥x − u(t)‖2 +

〈
ξ(t), v′〉
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(for some v′ ∈ F (x))

≤ 〈ξ(t), v(t)
〉

= g
(
u(t), ξ(t)

)
= min

p
g
(
u(t), p

)
,

which gives the required conclusion.

The application of Lemma 9.5 gives (0, 0) ∈ ∂Cg
(
u(t), ξ(t)

)
, which reduces

precisely to the conclusion of Lemma 9.4, which is therefore proven.

We return now to characterizing NP
S .

9.6. Lemma. Let ζ ∈ NP
S (v0). Then there is an arc q on [0, 1] with q(1) =

0 such that
(−q̇, v0) ∈ ∂CH(u0, q + ζ) a.e.,

where u0(t) :=
∫ t

0 v0(s) ds.

Proof. Observe first that for some σ0 > 0, the following function ϕ of v is
minimized over S at v = v0:

ϕ(v) := 〈−ζ, v〉 + σ0‖v − v0‖2.

We can assume (by increasing σ0 if necessary) that v0 is the unique mini-
mizer of ϕ on S. We introduce the value function V : X → (−∞,∞) of a
certain minimization problem on X × X:

V (α) := inf
{

ϕ(v) : (u, v) ∈ C, u(t) −
∫ t

0
v(s) ds = α(t) a.e.

}
.

9.7. Exercise.

(a) V (0) = ϕ(v0).

(b) The infimum defining V (α) is attained.

(c) If αi → 0 in X and V (αi) → V (0), and if (ui, vi) is a solution
of the problem defining V (αi), then there is a subsequence of{
(ui, vi)

}
converging in X × X to (u0, v0), where

u0(t) :=
∫ t

0
v0(s) ds.

We now take a subsequence αi → 0 for which (ui, vi) → (u0, v0) as in the
exercise above, and for which ∂P V (αi) contains an element ζi (we have
invoked the Proximal Density Theorem).

As in §3.1, the proximal subgradient inequality for V at αi translates imme-
diately to the following assertion: the function fi(u, v) has a local minimum
over C at (u, v) = (ui, vi), where

fi(u, v) := 〈−ζ, v〉+σ0‖v−v0‖2−
〈

ζi, u−
∫ t

0
v

〉
+σi

∥∥∥∥u−
∫ t

0
v−ui+

∫ t

0
vi

∥∥∥∥
2

.
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9.8. Exercise. fi is C2, with

f ′
i(ui, vi) =

(
−ζi, −ζ + 2σ0(vi − v0) +

∫ 1

t

ζi

)
.

In light of this exercise, the necessary condition

−f ′
i(ui, vi) ∈ NP

C (ui, vi)

becomes (
ζi, ζ − 2σ0(vi − v0) −

∫ 1

t

ζi

)
∈ NP

C (ui, vi).

Calling upon Lemma 9.4, this gives

(−ζi, vi) ∈ ∂CH

(
ui, ζ − 2σ0(vi − v0) −

∫ 1

t

ζi

)
a.e.

Let us relabel as follows:

qi(t) = −
∫ 1

t

ζi.

Then

(−q̇i, vi) ∈ ∂CH
(
ui, ζ + qi − 2σ0(vi − v0)

)
a.e. (4)

Since F is globally Lipschitz of rank K, this implies
∥∥q̇i(t)

∥∥ ≤ K
∥∥ζ + qi(t) − 2σ0

(
vi(t) − v0(t)

)∥∥ a.e.,

and Gronwall’s Lemma leads to a uniform bound on ‖qi‖∞, and so to a
uniform bound on ‖q̇i‖2. Taking a subsequence to arrange the weak con-
vergence of q̇i, we are then able to pass to the limit in (4) (with the help
of Theorem 3.5.24) to obtain the conclusion of Lemma 9.6.

We are ready now to return to the proof of Theorem 9.1, picking up the
thread of the argument at the point (1).

We recall from Exercise 3.5.20 that an element ζ of ∂P �̃(v1) is of the form

ζ(t) = ζ0 ∈ ∂L�

(∫ 1

0
v1(s) ds

)
.

Combining this with Lemma 9.6, we deduce from (1) that for some such
ζ0, for some element w of X having ‖w‖ ≤ ε, and for some arc q having
q(1) = 0, we have

(−q̇, v2) ∈ ∂CH(u2, −ζ0 + q + w) a.e.,
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where u2(t) :=
∫ t

0 v2(s) ds. Let us now observe this conclusion for a se-
quence εi ↓ 0, and label the corresponding (u2, v2, q, ζ0, w) in the form
(ui, vi, qi, ζi, wi). We have

(−q̇i, vi) ∈ ∂CH(ui,−ζi + qi + wi) a.e.,

where wi → 0, vi → v̄, ui → x̄, and where

ζi ∈ ∂L�

(∫ 1

0
vi(s) ds

)
.

Let us set pi(t) := qi(t)−ζi. Then another straightforward use of Gronwall’s
Lemma and the Sequential Compactness Theorem 3.5.24 shows that a sub-
sequence of {pi} converges uniformly to an arc p satisfying the conclusions
of Theorem 9.1, whose proof is now complete.

Remark. The Hamiltonian inclusion incorporates the equality, or maxi-
mum principle

H
(
x(t), p(t)

)
=
〈
p(t), ẋ(t)

〉
a.e., (5)

as a consequence of Exercise 9.2.

9.9. Exercise. Let F (x) = {Ax + Bu : u ∈ C}, where C is a com-
pact convex subset of R

m, and where A, B are n × n and n × m
matrices, respectively.

(a) Prove that F satisfies the Standing Hypotheses and is globally
Lipschitz.

(b) Let x̄ be a trajectory of F on [0, 1], and let ū be a control
function realizing x̄; i.e., such that ū(t) ∈ C and ˙̄x(t) = Ax̄(t)+
Bū(t) a.e. Show that the Hamiltonian inclusion of Theorem 9.1
is equivalent to

−ṗ(t) = A∗p(t), max
u∈C

〈
p(t), Bu

〉
=
〈
p(t), Bū(t)

〉
a.e.

(This is the linear case of Pontryagin’s Maximum Principle.)

(c) Observe that H is convex, and so admits one-sided directional
derivatives.

(d) Prove that any pair of arcs (x, p) satisfying the Hamiltonian
inclusion is such that t �→ H

(
x(t), p(t)

)
is constant on the un-

derlying interval.

The following technical extension of the theorem will be of use to us later.

9.10. Exercise. Consider again the context of Theorem 9.1, but
extended as follows: for some r ≥ 0, for some z(·) ∈ L2

n[a, b], the
trajectory x̄ solves locally the problem of minimizing

�
(
x(b)
)

+ r

∫ b

a

∥∥x(t) − z(t)
∥∥2 dt
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relative to the trajectories of F originating at x0. Adapt the proof
of Theorem 9.1 to deduce the same conclusions with one change: the
Hamiltonian inclusion becomes

(−ṗ(t), ˙̄x(t)
) ∈ ∂CH

(
x̄(t), p(t)

)− 2r
(
x̄(t) − z(t), 0

)
a.e.

(Hint. The derivative of the functional

x �→
∫ b

a

∥∥x(t) − z(t)
∥∥2 dt = ‖x − z‖2

2

is apparent.)

The Case of Terminal Constraints

We consider now the optimal control problem in the presence of explicit
constraints on x(b). Specifically, we examine the problem of minimizing
�
(
x(b)
)

over the trajectories x of F on [a, b] which satisfy

x(a) = x0, x(b) ∈ S.

Here, S is a given closed subset of R
n, and the hypotheses on the rest of the

data are unchanged. The proof of the following result uses value function
analysis to derive the necessary conditions for the terminally constrained
problem from those previously derived for the free endpoint case.

9.11. Theorem. Let x solve locally the optimal control problem described
above. Then there exists an arc p on [a, b] and a scalar λ0 = 0 or 1 such
that λ0 +

∥∥p(t)
∥∥ �= 0 ∀t ∈ [a, b], and such that
(−ṗ(t), ẋ(t)

) ∈ ∂CH
(
x(t), p(t)

)
a.e., a ≤ t ≤ b,

−p(b) ∈ λ0∂L�
(
x(b)
)

+ NL
S

(
x(b)
)
.

Proof. We take [a, b] = [0, 1], x0 = 0, and denote the solution by x̄. For
α ∈ R

n, consider the problem P (α) of minimizing

�
(
x(1)
)

+
∫ 1

0

∥∥x(t) − x̄(t)
∥∥2 dt

over the trajectories of F satisfying

x(0) = 0, x(1) ∈ S + α, ‖x − x̄‖∞ ≤ ε0.

Evidently, x̄ is the unique solution of P (0). We designate by V (α) ∈
(−∞, ∞] the value of the problem P (α). Sequential compactness of tra-
jectories provides a few salient properties of V :

9.12. Exercise.

(a) Whenever V (α) < ∞, the problem P (α) admits a solution.



9 Necessary Conditions for Optimal Control 239

(b) If xi solves P (αi), where αi → 0 and xi converges uniformly to
an arc x, then x = x̄.

(c) V is lower semicontinuous.

Suppose that V admits a proximal subgradient ζα at α ∈ dom V ; then, for
all α′ sufficiently near α, we have

V (α′) − V (α) + σ‖α′ − α‖2 ≥ 〈ζα, α′ − α
〉
.

Let xα solve P (α), and let cα ∈ S satisfy

xα(1) = cα + α.

In light of Exercise 9.12, we can suppose that ‖xα − x̄‖∞ < ε0 when α is
small.

For any trajectory x originating at 0 and for any c ∈ S, we have x(1) ∈
S +
(
x(1) − c

)
, whence, if ‖x − x̄‖∞ < ε0,

�
(
x(1)
)

+
∫ 1

0

∥∥x(t) − x̄(t)
∥∥2 dt ≥ V

(
x(1) − c

)
.

If ‖x−xα‖∞ and ‖c−cα‖ are small enough, this allows us to set α′ = x(1)−c
in the preceding inequality and combine it with the last one to deduce that
the functional

�
(
x(1)
)
+
∫ 1

0

∥∥x(t) − x̄(t)
∥∥2 dt − 〈ζα, x(1) − c

〉
+ σ
∥∥x(1) − xα(1) − c + cα

∥∥2

is minimized locally by x = xα, c = cα (relative to trajectories x of F
originating at 0 and points c ∈ S).

Setting c = cα, we observe that xα solves locally the problem of minimizing
over trajectories x originating at 0 the cost functional

�
(
x(1)
)− 〈ζα, x(1)

〉
+ σ
∥∥x(1) − xα(1)

∥∥2 +
∫ 1

0

∥∥x(t) − x̄(t)
∥∥2 dt

subject to no terminal constraint.

Setting x = xα leads to the conclusion that for all c ∈ S sufficiently near
cα we have

〈ζα, c〉 + σ‖c − cα‖2 ≥ 〈ζα, cα〉;
this implies −ζα ∈ NP

S (cα).

Applying Exercise 9.10 to the free endpoint problem solved by xα, we
deduce the existence of an arc pα such that

(−ṗα, ẋα) ∈ ∂CH(xα, pα) − 2
(
xα(t) − x̄(t), 0

)
a.e., (6)

−pα(1) + ζα ∈ ∂L�
(
xα(1)

)
, (7)

−ζα ∈ NP
S (cα). (8)
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We now consider a sequence αi → 0 admitting ζi ∈ ∂P V (αi); this is possible
by the Proximal Density Theorem 1.3.1. Denote the xαi

, pαi
, cαi

above by
the simpler notation xi, pi, ci. We may suppose in light of Exercise 9.12
that the corresponding solutions xi converge uniformly to x̄, by passing to
a subsequence. Note that ci = xi(1) − αi converges to x̄(1).

The end of the proof consists of passing to the limit in (6), (7), and (8),
and there are two cases depending on whether or not the sequence ζi is
bounded.

Consider first the case in which ζi is bounded. Then we may suppose that
ζi → ζ ∈ NL

S

(
x̄(1)
)
, and an application of the Sequential Compactness

Theorem 3.5.24 leads to an arc p satisfying

(−ṗ, ˙̄x) ∈ ∂CH(x̄, p), −p(1) ∈ ∂L�
(
x̄(1)
)

+ NL
S

(
x̄(1)
)
,

that is, the conclusions of the theorem with λ0 = 1.

Now suppose that ζi is unbounded, and pass to a subsequence to arrange
‖ζi‖ → ∞. Dividing by ‖ζi‖ in (6) and (7) and setting qi := pi/‖ζi‖, we
obtain (Exercise 9.2):

(−q̇i, ẋi) ∈ ∂CH(xi, qi) − 2‖ζi‖−1(xα(t) − x̄(t), 0
)
,

−qi(1) ∈ ‖ζi‖−1∂L�
(
xi(1)

)− ζi/‖ζi‖,

where −ζi/‖ζi‖ ∈ NP
S (ci). We use Gronwall’s Lemma to deduce that ‖qi‖∞

is bounded, following which Theorem 3.5.24 once more applies to give an
arc p = lim qi such that

(−ṗ, ˙̄x) ∈ ∂CH(x̄, p), 0 �= −p(1) ∈ NL
S

(
x̄(1)
)
.

These are the required conclusions with λ0 = 0, there remaining only to
check that p(t) �= 0 ∀t ∈ [0, 1]. But we have

∥∥ṗ(t)
∥∥ ≤ K

∥∥p(t)
∥∥, by Ex-

ercise 9.2, so that if p(t) = 0 for some t, then p(t) = 0 everywhere (by
Gronwall’s Lemma). Since p(1) �= 0, this does not occur.

Remark. If the solution x of Theorem 9.11 is such that x(b) ∈ intS,
then λ0 = 1 necessarily and the necessary conditions become those of
Theorem 9.1 for the free endpoint problem. The condition that λ0 +

∥∥p(t)
∥∥

be different from 0 is required in Theorem 9.11 to avoid triviality of the
necessary conditions, for they always hold with λ0 = 0, p ≡ 0, when x is a
trajectory. The case λ0 = 0 is termed abnormal, and can be shown to arise
when the constraints are so tight as to make the cost functional irrelevant.

9.13. Exercise.

(a) Show that λ0 = 1 in Theorem 9.11 if x(b) ∈ int S.

(b) Show that λ0 = 0, p ≡ 0 satisfies the Hamiltonian inclusion
when x is any trajectory.
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(c) Let n = 2, [a, b] = [0, 1], x0 = (0, 0), F (x, y) ≡ B, S = {1} × R.
Let �(x, y) = �(y) be any function such that 0 �∈ ∂L�(0). What
is the unique trajectory solving the problem of Theorem 9.11
in this case? Show that λ0 = 0 necessarily.

(d) Prove that in the context of Theorem 9.11, when λ0 = 0, then
p(t) = 0 for some t iff p is identically zero.

Constancy of the Hamiltonian

In the general context of Theorem 9.11, in contrast to the setting of Exer-
cise 9.9, it does not follow from the Hamiltonian inclusion that H

(
x(t), p(t)

)
is constant. But this condition can be obtained for at least one arc p, as
we now show.

9.14. Theorem. In Theorem 9.11, we may add to the conditions satisfied
by (x, p) the constancy of the function t �→ H

(
x(t), p(t)

)
on [a, b].

Proof. The proof will consist of “bootstrapping” from Theorem 9.11, by
means of a device known as the Erdmann transform. Let us consider (n+1)-
dimensional arcs which are trajectories of the multifunction F̃ defined by

F̃ (x0, x) :=
{
(u, v) ∈ R × R

n : |u| ≤ α, v ∈ (1 + u)F (x)
}
,

where α is a fixed parameter in (0, 1). We will take [a, b] = [0, 1], and we
consider problem (E) of minimizing �

(
x(1)
)

over the trajectories (x0, x) of
F̃ on [0, 1] satisfying

(x0, x)(0) = (1, x0), x0(1) = 1, x(1) ∈ S.

We denote by x̄ the solution of the original problem (P).

9.15. Lemma. For α sufficiently small, the arc (1, x̄) is an admissible
trajectory of F̃ which solves locally problem (E).

That (1, x̄) is an admissible trajectory for (E) is easily observed. Sup-
pose that (x0, x) is another such, and that �

(
x(1)
)

< �
(
x̄(1)
)
; we will

manufacture a contradiction by exhibiting an arc y feasible for (P) with
�
(
y(1)
)

< �
(
x̄(1)
)
.

For each t ∈ [0, 1], a unique τ(t) in [0, 1] is defined by the equation

τ + x0(τ) − 1 = t,

since the function τ �→ τ + x0(τ) − 1 is strictly monotone increasing, with
value 0 at 0 and 1 at 1. The function τ(t) is Lipschitz by the Inverse
Function Theorem 3.3.12. Thus the relation y(t) := x

(
τ(t)
)

defines y as an
arc on [0, 1] with y(0) = x0 and y(1) = x(1) ∈ S. We calculate

d

dt
y(t) =

ẋ(τ)
1 + ẋ0(τ)

,
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from which it follows that y is a trajectory of F . Thus y is feasible for (P);
yet, �

(
y(1)
)

= �
(
x(1)
)

< �
(
x̄(1)
)
. This contradiction completes the proof,

except that we have ignored the fact that x̄ may be only a local solution of
(P) relative to ‖x− x̄‖∞ ≤ ε0. To take account of this, it suffices to observe
that taking both (x0, x) uniformly close enough to (1, x̄) and α sufficiently
small guarantees that y satisfies ‖y − x̄‖∞ < ε0.

The next step in the proof is to apply the necessary conditions of Theo-
rem 9.11 to the solution (1, x̄) of problem (E). This will involve the Hamil-
tonian

H̃(x0, x, p0, p) := max
{
p0u + 〈p, v〉 : |u| ≤ α, v ∈ (1 + u)F (x)

}
= max

{
p0u + (1 + u)H(x, p) : |u| ≤ α

}
= H(x, p) + α

∣∣p0 + H(x, p)
∣∣.

Since this is independent of x0, it follows from the Hamiltonian inclusion
that p0 is constant, and that we have

(−ṗ, ˙̄x) ∈ ∂CH( ˙̄x, p) +
(
αK‖p‖B

)× (αKB), (9)

where (as in the proof of Theorem 9.1) the global bound and Lipschitz
constant K for F can be assumed to exist.

The Hamiltonian inclusion for H̃ also yields a.e. (see (5)):

H̃(1, x̄, p0, p) =
〈
(0, ˙̄x), (p0, p)

〉
= 〈 ˙̄x, p〉

≤ H(x̄, p) ≤ H(x̄, p) + α
∣∣p0 + H(x̄, p)

∣∣ = H̃(1, x̄, p0, p).

It follows from this that

H
(
x̄(t), p(t)

) ≡ −p0 ∀t ∈ [0, 1]. (10)

Note also that the transversality conditions applied to (E) are the following:

−(p0(1), p(1)
) ∈ λ0

(
0, ∂L�

(
x̄(1)
))

+ NL
{1}×S

(
1, x̄(1)

)

which implies

−p(1) ∈ λ0∂L�
(
x̄(1)
)

+ NL
S

(
x̄(1)
)
. (11)

Finally, we have the nontriviality condition λ0 +
∥∥(p0, p)

∥∥ �= 0. If it were
the case that λ0 and

∥∥p(t)
∥∥ were both 0 for some t, then p0 = 0 also (in

light of (10)), which cannot be. Thus we conclude

λ0 +
∥∥p(t)

∥∥ �= 0 ∀t ∈ [0, 1], (12)

as required.
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If we examine (9)–(12) we see exactly the set of conditions that we are at-
tempting to obtain, except for the superfluous term involving α in (9). The
next step is evident: we consider having done all the above for a sequence
αi ↓ 0, and pass to the limit. The corresponding arcs pi satisfy

‖ṗi‖ ≤ K(1 + αi) ‖pi‖

as a consequence of (9), and so ‖pi‖∞ is bounded iff pi(1) is bounded (by
Gronwall’s Lemma). In the unbounded case, we arrange

∥∥pi(1)
∥∥→ ∞, and

then normalize pi in (9)–(11) by passing to pi/‖pi(1)‖, much as in the last
step of the proof of Theorem 9.11. The required conclusions then emerge
in the limit via sequential compactness (and with λ0 = 0). The resulting
arc p has

∥∥p(1)
∥∥ = 1, so p is never zero (Exercise 9.13(d)) and we have

nontriviality.

When pi(1), and hence ‖pi‖∞ is bounded, sequential compactness can be
applied directly to (9)–(11) without renormalizing to yield the required
Hamiltonian inclusion, constancy, and transversality, but a danger lurks:
triviality; perhaps the sequences pi and λ0i

both converge to 0. We deal with
this by considering two subcases. In the first, λ0i

= 1 infinitely often; in that
event the danger does not arise. In the limit, we get λ0 = 1. In the second,
all λ0i = 0 beyond a certain point. Then we have pi(1) �= 0 necessarily, in
view of (12), and we can renormalize (9)–(11) by dividing by

∥∥pi(1)
∥∥. Then

sequential compactness applies to give the required (nontrivial) conclusions
in the limit, with λ0 = 0.

Free Time Problems

The transformation device introduced in the proof of the theorem can be
used to treat free time problems, in which the underlying interval [a, b] is
itself a variable. We illustrate this now in a simple setting.

9.16. Exercise. Let x̄ and T > 0 solve the following problem: to
minimize �

(
T, x(T )

)
over those trajectories x on [0, T ] originating at

x which satisfy
(
t, x(t)

) ∈ Ω ∀t ∈ [0, T ], where Ω is a given open set
in R × R

n. (Thus a form of merely local optimality is involved; we
stress that T is a choice variable in this problem.) The function � is
locally Lipschitz.

(a) Referring to the proof of Theorem 9.14, show that the arc (T , x̄)
minimizes locally, over trajectories (x0, x) of F̃ on [0, T ] origi-
nating at (T , x0), the function �

(
x0(T ), x(T )

)
, subject now to

no explicit constraint on the value of
(
x0(T ), x(T )

)
. Observe

that this is a situation to which Theorem 9.1 applies. Express
the resulting necessary conditions.
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(b) Show that the necessary conditions of (a) translate directly as
follows: for some arc p on [0, T ] we have

(−ṗ(t), ˙̄x(t)
) ∈ ∂CH

(
x̄(t), p(t)

)
a.e., 0 ≤ t ≤ T ,

H
(
x̄(t), p(t)

)
= h ( = constant), 0 ≤ t ≤ T ,(

h, −p(T )
) ∈ ∂L�

(
T , x̄(T )

)
.

10 Normality and Controllability

We now take up the issue of whether it is possible to reach a given equi-
librium point x∗ in finite time (from a neighborhood of the point, or glob-
ally). Without loss of generality, we take x∗ = 0, so we are dealing with
null controllability, where it is the case that 0 belongs to F (0). We assume
throughout this section that F is locally Lipschitz.

Recall that if F (x) =
{
f(x)
}
, then no point different from 0 can reach the

equilibrium 0 in finite time. The opposite extreme occurs when 0 ∈ intF (0).

10.1. Exercise. Let 0 ∈ int F (0). Prove that every x0 sufficiently
near 0 can be steered to the origin in finite time; i.e., admits a tra-
jectory x on some interval [0, T ] with x(0) = x0, x(T ) = 0.

We are interested in situations intermediate to the extremes above. It turns
out that the Hamiltonian inclusion provides a criterion for local null con-
trollability. We will say that the origin is normal provided that for some
T > 0, the only arc p on [0, T ] which satisfies the two conditions

(−ṗ(t), 0
) ∈ ∂CH

(
0, p(t)

)
a.e., 0 ≤ t ≤ T,

H
(
0, p(t)

)
= 0 ∀t ∈ [0, T ],

is p(t) ≡ 0. (That p ≡ 0 does satisfy them is apparent from Exercise 9.2.)

10.2. Exercise.

(a) If 0 ∈ int F (0), then the origin is normal.

(b) Let n = 2 and F (x, y) :=
{
(y, u) : − 1 ≤ u ≤ 1

}
. Then 0 �∈

int F (0). Show that the origin is normal.

(c) Let F (x) = Ax + BC as in Exercise 9.9, where now 0 ∈ int C.
Show that the origin is normal iff the following n × nm matrix
is of maximal rank: [B AB A2B . . . An−1B].

10.3. Theorem. If the origin is normal, then every point x0 sufficiently
near it can be steered to it in finite time.
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Proof. Let b > 0 be such that no nontrivial arc p on [0, b] satisfies (−ṗ, 0) ∈
∂CH(0, p), H

(
0, p(t)

)
= 0 on [0, b]. For α ∈ R

n, we define V (α) ∈ [0,∞] to
be the infimum of

(T − b)2 +
∫ T

0

∥∥x(t)
∥∥ dt

over all T > 0 and arcs x for −F on [0, T ] originating at 0 which satisfy
x(T ) = α. (Note that −F , not F , is used here.)

10.4. Exercise.

(a) V (0) = 0, and for α = 0 the unique solution to the problem
defining V (0) is the arc identically 0 on [0, b].

(b) If V (α) < ∞, then the infimum defining V (α) is attained.
(Note: Exercise 1.13 helps in dealing with variable intervals.)

(c) V is lower semicontinuous.

(d) If αi → 0, and if (Ti, xi) is a solution corresponding to αi, then
Ti → b and max

{∥∥xi(t)
∥∥ : 0 ≤ t ≤ Ti

}→ 0.

We will show that V is Lipschitz (and hence finite) in a neighborhood of
0. This implies that for every x0 near 0, there is a trajectory x of −F on
an interval [0, T ] satisfying x(0) = 0, x(T ) = x0. Then, reversing time, we
see that x0 can be steered to 0 in finite time.

To show that V is Lipschitz near 0, we will prove that its proximal sub-
gradients are locally bounded. We proceed by supposing the contrary: for
some sequence αi → 0, and sequence αi ∈ ∂P V (αi), we have ‖ζi‖ → ∞.
We will derive a contradiction to the normality hypothesis.

Arguing as in the proof of Theorem 9.11, we let (Ti, xi) be a solution
corresponding to αi, and from ζi ∈ ∂P V (αi) we deduce that for some
σi > 0, (Ti, xi) furnishes a minimum for the problem of minimizing

〈−ζi, x(T )
〉

+ (T − b)2 +
∫ T

0

∥∥x(t)
∥∥ dt + σi

∥∥x(T ) − xi(Ti)
∥∥2

over trajectories x of −F on [0, T ] which originate at 0. (The minimum is
local in that x(T ) must be near xi(Ti).) Because of the integral term in the
cost, this is not the type of problem to which our previous results apply.
We will fix this by redefining the dynamics so as to “absorb” the integral.

We set

F̃ (x, y) := −F (x) × {‖x‖}, yi(t) :=
∫ T

0

∥∥xi(τ)
∥∥ dt.

Then (xi, yi) on [0, Ti] locally minimizes the free-time cost functional
〈−ζi, x(T )

〉
+ (T − b)2 + y(T ) + σi

∥∥x(T ) − xi(Ti)
∥∥2
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over the trajectories for F̃ originating at (0, 0).

The necessary conditions of Exercise 9.16 are available now. After the dust
settles, here is what they give in terms of the original variables:

(−ṗi, ẋi) ∈ ∂C h̃(xi, pi) + B × {0} a.e., 0 ≤ t ≤ Ti,

h̃(xi, pi) − ∥∥xi(t)
∥∥ = 2(Ti − b) ∀t ∈ [0, Ti],

pi(Ti) = ζi,

where h̃(x, p) := H(x,−p) appears here because −F is involved rather than
F . We now replace pi by pi/‖ζi‖ in these conditions, and implement the
now-familiar passage to the limit.

We arrive at a nontrivial arc p̄ satisfying

(− ˙̄p, 0) ∈ ∂C h̃(0, p̄) a.e., 0 ≤ t ≤ b,

h̃
(
0, p̄(t)

)
= 0 ∀t ∈ [0, b].

In terms of H, p̄ satisfies

(− ˙̄p, 0) ∈ ∂CH(0,−p̄) a.e.,

H
(
0, −p̄(t)

)
= 0.

Now define p(t) := −p̄(b − t); then on [0, b] we have

(−ṗ, 0) ∈ ∂CH(0, p) a.e.,

H
(
0, p(t)

)
= 0, p �≡ 0.

This contradicts the normality of the origin.

The usual route to a conclusion of global null controllability is to combine
global asymptotic controllability with local null controllability, as in the
following result that builds upon Theorem 5.5.

10.5. Corollary. Let 0 be a normal equilibrium of F admitting a Lya-
pounov pair (Q,W ). Then any point in dom Q can be steered to 0 in finite
time. If dom Q = R

n, then all points can be steered to the origin in finite
time.

10.6. Exercise. Prove Corollary 10.5.

If a system is globally null controllable, then in fact a Lyapounov pair
(Q,W ) does exist. This provides a partial converse to Corollary 10.5:

10.7. Exercise. We define the well-known minimal time function:

Q(α) := inf
{
T ≥ 0: some trajectory x has x(0) = α, x(T ) = 0

}
.

(As usual, we set Q(α) = ∞ when no trajectory joins α to 0 in finite
time.)
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(a) Prove that the infimum is attained if Q(α) < ∞.

(b) Prove that the system
(
Q(x)+ t, {1}×F (x)

)
is weakly decreas-

ing on the set R
n\{0}. Call upon Theorem 6.1 to deduce

h
(
x, ∂P Q(x)

) ≤ −1 ∀x ∈ R
n\{0}.

Conclude that setting W (x) = 1 for x �= 0 and W (0) = 0
leads to a Lyapounov pair (Q, W ) for the origin. Observe that
dom Q = R

n iff the control system is globally null controllable.

(c) Prove that in fact Q satisfies

h
(
x, ∂P Q(x)

)
= −1 ∀x ∈ R

n\{0}.

(A uniqueness theorem for Q appears among the problems in
the next section.)

11 Problems on Chapter 4

11.1. Let v : [a, b] → R
n be a bounded measurable function such that v(t) ∈

K a.e., where K ⊆ R
n is a given closed convex set. Prove that

1
b − a

∫ b

a

v(t) dt ∈ K.

11.2. Consider the ordinary differential system

ẋ = −x + 2y3, ẏ = −x.

(a) Show that the set Er :=
{
(x, y) : x2 + y4 ≤ r2

}
is invariant under its

flow for all r ≥ 0.

(b) Show that rB is invariant iff r = 0 or 1/
√

2.

(c) Show that Sr :=
{
(x, y) : max

[|x|, |y|] ≤ r
}

is invariant only for
r = 0.

11.3. We now consider a controlled version of the preceding exercise. Specif-
ically we take

ẋ = −x + 2y3 + u, ẏ = −x + v,

where u and v are measurable control functions satisfying
∣∣u(t)

∣∣ ≤ δ and
∣∣v(t)
∣∣ ≤ ∆ a.e.

Given r ≥ 0, find values of δ and ∆ which ensure that Sr is weakly invariant
(where Sr is as defined in Problem 11.2).
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11.4. A multifunction F on R
n has lower Hamiltonian

h(x, p) =

{
−‖x‖ ‖p‖ if ‖x‖ < 1,

−2‖p‖ if ‖x‖ ≥ 1.

What is F?

11.5. Let {Sα} be a family of subsets of R
n, each weakly invariant with

respect to F . Prove that cl
⋃

α Sα is weakly invariant with respect to F .

11.6. Consider

F (x, y) =




(
1,

1√
2

)
if y >

√
1 + x2,

(1, 0) if y <
√

1 + x2,

{1} ×
[
0,

1√
2

]
if y =

√
1 + x2.

(a) Show that F satisfies the Standing Hypotheses.

(b) Show that for any selection f for F , the unique Euler solution on [0, 1]
to (ẋ, ẏ) = f(x, y) starting at (0, 1) is one of two linear functions,
depending entirely upon f(0, 1).

(c) Show that the curve (t,
√

1 + t2) does not arise as an Euler solution,
but that it is nonetheless a trajectory on [0, 1] of the differential in-
clusion (ẋ, ẏ) ∈ F (x, y).

(d) Find all trajectories of the differential inclusion on [0, 1] beginning at
(0, 1); there are infinitely many.

11.7. Consider

F (x, y) =
{
[xu, yv] : u ≥ 0, v ≥ 0, u + v = 1

}
.

Confirm that the Standing Hypotheses hold, and prove that the attainable
set A((1, 1); 1

)
is not convex. (Hint. Show that while both (e, 1) and (1, e)

are attainable from (1, 1) in time 1, their midpoint is not.)

11.8. Let F satisfy the Standing Hypotheses, and let S ⊆ R
n be a nonempty,

compact, wedged subset of R
n which is weakly avoidable with respect to

F ; that is, cl
[
comp(S)

]
is weakly invariant with respect to F . Assume also

that cl
[
comp(S)

]
is regular. Then S contains a zero of F .

11.9. Let g : R
n → R

n be a continuous function satisfying the tangency
condition

lim
x′→x
x′∈S
λ↓0

dS [λg(x′) + (1 − λ)x]
λ

= 0,

where S ⊆ R
n is a compact, wedged, and homeomorphically convex set.
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(a) Prove that g has a fixed point in S.

(b) Show that the tangency condition always holds if S is convex and g
maps S to itself (the case of Brouwer’s Theorem).

11.10. Prove the following Fixed Point Theorem of Kakutani: let C be
a compact convex subset of R

n, and let the multifunction G satisfy the
Standing Hypotheses. Suppose that

G(x) ∩ C �= ∅ ∀x ∈ S.

Then there exists x̂ ∈ C such that x̂ ∈ G(x̂).

11.11. Let F be an upper semicontinuous multifunction on R
n, with images

that are nonempty compact convex subsets of R
n. Prove that for any given

ε > 0 there exists a locally Lipschitz selection

fε(x) ∈ F (x) + εB ∀x ∈ R
n.

11.12. Consider the linear differential system

ẋ(t) = Ax(t),

where A is an n × n constant real matrix. Prove that the following are
equivalent:

(a) the nonnegative orthant R
n
+ is invariant;

(b) etA
R

n
+ ⊆ R

n
+ for all t ≥ 0; and

(c) A is a Metzler matrix ; that is, its off-diagonal entries are nonnegative.

11.13. Let S be a nonempty compact subset of R
n, and let f : R

n → R
n

be continuous. Prove that
(
S, {f}) is weakly invariant iff f(x) ∈ TC

S (x)
∀x ∈ R

n.

11.14.

(a) Suppose that S is a compact subset of R
n, and that

h(x, ζ) < 0 ∀ζ ∈ NP
S (x), ζ �= 0, ∀x ∈ S.

Show by example that S may nonetheless fail to be locally attainable.

(b) Let the compact set S in R
n be described in the form

{
x ∈ R

n : f(x) ≤ 0
}
,

where the locally Lipschitz function f : R
n → R satisfies

f(x) = 0 =⇒ 0 �∈ ∂Lf(x).
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Show that if

h(x, ζ) < 0 ∀ζ ∈ ∂Lf(x), ∀x ∈ S such that f(x) = 0,

then S is locally attainable.

11.15. Lyapounov theory can be developed for sets as well as for equilib-
rium points. Let S be a nonempty compact subset of R

n. (The case of an
equilibrium x∗ corresponds to taking S = {x∗}.) A Lyapounov pair (Q,W )
for S is defined to be a pair of strictly positive functions Q, W ∈ F(comp S)
such that the sublevel sets

{
x : Q(x) ≤ q

}
are compact and the following

condition holds:

h
(
x, ∂P Q(x)

) ≤ −W (x) ∀x ∈ comp S.

(a) Show that if such a pair (Q,W ) exists, then another pair (Q, W̃ )
exists for which W̃ is globally defined and locally Lipschitz on R

n, is
equal to zero precisely on S, and satisfies a linear growth condition.

(b) Show that if a Lyapounov pair (Q,W ) exists for S, then any α ∈
dom Q can be steered at least asymptotically to S (i.e., there is a
trajectory x(·) which begins at α and either reaches S in finite time,
or else satisfies limt→∞ dS

(
x(t)
)

= 0).

(c) A partial converse to (b) is available. Suppose that S has the property
that any α ∈ R

n can be steered at least asymptotically to S. Let
ε > 0. Then the set S + εB admits a Lyapounov pair (Q,W ) for
which Q is finite. (Hint. Let

Q(α) := min{T ≥ 0: some trajectory x has x(0) = α, x(T ) ∈ S+εB}.)

11.16. Let (ϕ, F ) be weakly decreasing, where ϕ : R
n → R is continuous.

Prove that given α ∈ R
n, there is a trajectory x of F with x(0) = α such

that the function t �→ ϕ
(
x(t)
)

is decreasing. (It is not known whether this
is true when ϕ is merely assumed to belong to F(Rn).)

11.17. For n = 1, let f(x) = 0 if x ∈ (0, 1) and x is rational, f(x) = −1
otherwise. Show that the following function x̄ is an Euler solution of the
initial-value problem ẋ = f(x), x(0) = 1:

x̄(t) =

{
1 − t if 0 ≤ t ≤ 1,

0 if t ≥ 1.

Nonetheless, x̄ restricted to [1,∞) is not an Euler solution of the initial-
value problem ẋ = f(x), x(1) = 0. (The moral is that Euler solutions
cannot be truncated to give Euler solutions.)



11 Problems on Chapter 4 251

11.18. Let ϕ be continuous and let F be locally Lipschitz. Show by exam-
ples that the following monotonicity properties of the system (ϕ, F ) are all
distinct, and then go on to prove that each is characterized by its corre-
sponding proximal Hamiltonian inequality holding for all x:

(a) weakly decreasing : h
(
x, ∂P ϕ(x)

) ≤ 0;

(b) weakly increasing : H
(
x, ∂P ϕ(x)

) ≥ 0;

(c) strongly decreasing : H
(
x, ∂P ϕ(x)

) ≤ 0 or H
(
x, ∂P ϕ(x)

) ≤ 0;

(d) strongly increasing : h
(
x, ∂P ϕ(x)

) ≥ 0 or h
(
x, ∂P ϕ(x)

) ≥ 0;

(e) weakly predecreasing (that is, given any x0, there exists a trajectory
x of F on (−∞, 0] such that x(0) = x0 and ϕ

(
x(t)
) ≥ ϕ(x0), t ≤ 0):

h
(
x, ∂P ϕ(x)

) ≤ 0; and

(f) weakly preincreasing (the definition is analogous to (e)):
H
(
x, ∂P ϕ(x)

) ≥ 0.

In which of these cases is the Lipschitz hypothesis on F actually required?
(Hint. Exercise 2.11 (c), (d) is relevant to (e) above.)

11.19. For a given initial time t0 and compact subset A of R
n, the reachable

set R from A is defined as follows:

R :=
{(

t, x(t)
)
: t ≥ t0, x is a trajectory for F on [t0, t], x(t0) ∈ A

}
.

Here we consider F depending on both t and x. We denote the “slice” at
time T of R by RT ; that is,

RT :=
{
x : (T, x) ∈ R}.

Then clearly
RT =

⋃{A(t0, x0; T ) : x0 ∈ A
}
.

We will see that the intrinsic invariance properties of R allow us to charac-
terize it via a certain Hamilton–Jacobi relationship satisfied by its proximal
normal vectors.

(a) Prove that R is closed and that each RT is compact. Show that
Rt0 = A.

(b) Prove that R is uniformly bounded near t0; i.e., there exists ε > 0
and a compact set C such that

RT ⊆ C ∀T ∈ [t0, t0 + ε].
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(c) Let S be a closed subset of [t0,∞) × R
n which is uniformly bounded

near t0, and for which St0 = A. Prove that for any ε > 0 there exists
δ > 0 such that ST ⊆ A + εB for all T ∈ [t0, t0 + δ].

(d) Prove the following:

Theorem. Let F be locally Lipschitz. Then R is the unique closed subset
S of [t0, ∞) × R

n which is uniformly bounded near t0 and satisfies:

(i) θ + H(t, x, ζ) = 0 ∀(θ, ζ) ∈ NP
S (t, x), ∀(t, x) ∈ (t0,∞) × R

n; and

(ii) St0 = A.

11.20. Let (Q1, W1) and (Q2, W2) be Lyapounov pairs for x∗. Prove that(
min{Q1, Q2},min{W1, W2}

)
is also a Lyapounov pair for x∗.

11.21. For n = 2, F induces the lower Hamiltonian

h(x, y, p, q) = −∣∣(x − y)(p − 1)
∣∣.

(a) Find F .

(b) Let

ϕ1(τ, α, β) := e2τ−2|α − β|, ϕ2(τ, α, β) := −e−2τ+2|α − β|.

Which of ϕ1, ϕ2 is the value function of a problem of the form

minimize
{
�
(
x(1)
)
: ẋ ∈ F (x), x(τ) = (α, β)

}
?

11.22. In the context of Theorem 9.1, suppose that F (x) has the form
f(x, U), where U is a compact subset of R

m and f is continuously differ-
entiable. Suppose in addition that F (x) is strictly convex for each x, in the
following sense:

v, w ∈ F (x), v �= w, λ ∈ (0, 1) =⇒ λv + (1 − λ)w ∈ intF (x).

Derive from the Hamiltonian inclusion of Theorem 9.1 the following con-
clusion: there exists a measurable function u(·) on [a, b] with values in U
such that for almost every t in [a, b] we have

ẋ(t) = f
(
x(t), u(t)

)
, −ṗ(t) = f ′

x

(
x(t), u(t)

)∗
p(t),

max
u′∈U

〈
p(t), f

(
x(t), u′)

〉
=
〈
p(t), ẋ(t)

〉
.

These conclusions (together with the transversality condition) constitute
the Pontryagin Maximum Principle; they can be obtained under weaker
assumptions than those in force here. (Hint. Problem 2.9.13.)
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11.23. Consider the problem of minimizing

�
(
x(b)
)

+
∫ b

a

ϕ
(
x(t)
)
dt

over those trajectories of F on [a, b] satisfying x(a) = x0. Here, x0 is given,
and � and ϕ are given locally Lipschitz functions. Let x(·) be a solution.
Use the device introduced in the proof of Theorem 10.3 (absorbing ϕ into
the dynamics) to prove the following necessary conditions: there exists an
arc p such that(−ṗ(t), ẋ(t)

) ∈ ∂CH
(
x(t), p(t)

)− ∂Cϕ
(
x(t)
)× {0}, t ∈ [a, b] a.e.,

H
(
x(t), p(t)

)− ϕ
(
x(t)
)

= constant, t ∈ [a, b],

−p(b) ∈ ∂L�
(
x(b)
)
.

(Hint. Without loss of generality, we can assume that ϕ satisfies a linear
growth condition.)

11.24. With n = 1, let x(·) solve the problem of minimizing

−βx(1) +
∫ 1

0

∣∣x(t)
∣∣ dt

over those arcs x on [0, 1] satisfying x(0) = α and
∣∣ẋ(t)

∣∣ ≤ 1, t ∈ [0, 1] a.e.,
where α and β are given constants.

(a) Prove that x is piecewise affine, and that only three certain values are
possible for the slopes of the affine portions. (Hint. Study the curves
H(x, p) − |x| = constant.)

(b) Find the unique solution x when α and β are positive.

11.25. Let F be locally Lipschitz, and assume that the system is globally
null controllable. Then the minimal time function Q (see Exercise 10.7) is
everywhere finite. Prove that Q is the unique function ϕ : R

n → R satisfying
the following conditions:

(i) ϕ ∈ F(Rn), ϕ(0) = 0, ϕ(x) > 0 for x �= 0;

(ii) lim inf
x′→x
x′ �=0

ϕ(x′) = 0; and

(iii) h
(
x, ∂P ϕ(x)

)
= −1 on R

n\{0}.

11.26. We will prove that when the origin is normal, the minimal-time
function is continuous at 0. The context is that of Theorem 10.3, in which
it was shown that for certain b > 0, the value function Vb used in the proof
is Lipschitz near 0: for some δb > 0, we have

0 ≤ Vb(α) ≤ Kb‖α‖ when ‖α‖ ≤ δb.
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(a) Prove that this conclusion holds for all b > 0 sufficiently small.

(b) If Q is the minimal-time function, then show that

Q(α) ≤
√

Kb‖α‖ + b when ‖α‖ < δb.

(c) Given ε > 0, pick b > 0 so that
√

b + b < ε. Then, for ‖α‖ <
min(δb, b/Kb), we have Q(α) < ε. Deduce that Q is continuous at 0.

11.27. Let R0 be the reachable set from the origin:

R0 :=
{(

t, x(t)
)
: t ≥ 0, x is a trajectory, x(0) = 0

}
.

We assume that F is locally Lipschitz and autonomous. Suppose that (T, β)
is a boundary point of R0, T > 0.

(a) Prove the existence of an arc p on [0, T ], and a trajectory x of F on
[0, T ] with x(0) = 0, x(T ) = β such that for some constant h we have
|h| + ‖p‖∞ �= 0 and

(−ṗ(t), ẋ(t)
) ∈ ∂CH

(
x(t), p(t)

)
, t ∈ [0, T ] a.e.,

H
(
x(t), p(t)

)
= h, t ∈ [0, T ],(

h, −p(T )
) ∈ NL

R0
(T, β).

(Hint. Consider first the case in which NP
R0

(T, β) is nontrivial; then
some point (τ, γ) ∈ comp R0 admits (T, β) as the closest point in R0;
apply Exercise 9.16.)

(b) Deduce that some solution x of the minimal-time problem (Exer-
cise 10.7) admits an arc p and a constant h with |h|+ ‖p‖∞ �= 0 such
that

(−ṗ(t), ẋ(t)
) ∈ ∂CH

(
x(t), p(t)

)
, t ∈ [0, T ] a.e.,

H
(
x(t), p(t)

)
= h, t ∈ [0, T ].

(c) Consider the problem of finding the function x : [0, T ] → R which
steers an initial position α = x(0) and an initial velocity v = ẋ(0)
to the origin and at rest in minimal time T under the constraint∣∣ẍ(t)

∣∣ ≤ 1. Interpret it as a special case of the minimal-time problem,
with n = 2 and F (x, y) :=

{
(y, u) : |u| ≤ 1

}
.

(d) Interpret the necessary conditions of part (b) for this case. (Hint.
Exercise 9.9.) Proceed to find the unique solution of the problem, as
a function of the initial condition (α, v).

(e) Show that the origin is normal.
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(f) By calculating the minimal-time function explicitly, verify that it is
continuous, but not Lipschitz, at zero.

11.28. Let f : R
m × R

n → R be locally Lipschitz, and suppose that f(x, y)
is concave as a function of x and convex as a function of y. Prove that

∂Cf(x, y) = ∂Cf(·, y)(x) × ∂Cf(x, ·)(y).

(Hint. See Problem 2.9.15, as well as the proof of Lemma 9.5.)

11.29. We consider the context of Theorem 9.2, under the additional as-
sumption that the set G := graphF is convex.

(a) Prove that H(x, p) is concave as a function of x.

(b) Show that the Hamiltonian inclusion is equivalent to the relations

−ṗ(t) ∈ ∂CH
(·, p(t)

)(
x(t)
)
, ẋ(t) ∈ ∂CH

(
x(t), ·)(p(t)

)
.

(c) Show that the Hamiltonian inclusion is also equivalent to
(
ṗ(t), p(t)

) ∈ NP
G

(
x(t), ẋ(t)

)
.

(d) If in addition it is assumed that �(·) is convex, then prove that any
arc x admissible for (P) which satisfies (together with some arc p) the
Hamiltonian inclusion and the transversality condition is a solution
of (P) (i.e., the necessary conditions of Theorem 9.1 are also sufficient
for optimality).

11.30. Let V be the value function of §7:

V (τ, α) := min
{
�
(
x(T )

)
: ẋ ∈ F (x), x(τ) = α

}
,

where � and F are locally Lipschitz. Let M(τ, α) denote the set of arcs x
on [τ, T ] satisfying x(τ) = α and admitting an arc p such that

(−ṗ(t), ẋ(t)
) ∈ ∂CH

(
x(t), p(t)

)
, t ∈ [τ, T ],

H
(
x(t), p(t)

)
= constant, t ∈ [τ, T ],

−p(T ) ∈ ∂L�
(
x(T )

)
.

Prove that
V (τ, α) = min

{
�
(
x(T )

)
: x ∈ M(τ, α)

}
.

(The fact that V , the solution of the Hamilton–Jacobi equation, is gener-
ated by solutions of a Hamiltonian system is known in a classical setting
as the method of characteristics.)
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11.31. In the context of Theorem 5.5, suppose that Q and W are con-
tinuously differentiable. Prove that the system (F, x∗) admits a globally
stabilizing feedback v̂(·); i.e., a selection v̂ for F all of whose Euler solutions
on [0,∞), for any initial condition, tend to x∗ as t → ∞. (Hint. Consider
the multifunction

F̂ (x) :=
{
v ∈ F (x) :

〈∇Q(x), v
〉 ≤ −W (x)

}
.)

We remark that a “nice” system which is globally asymptotically control-
lable to the origin need not admit a smooth Lyapounov pair. An example
is the non-holonomic integrator, in which n = 3 and

F (x) :=
{
(u1, u2, x1u2 − u1x2) :

∥∥(u1, u2)
∥∥ ≤ 1

}
.
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To be neglected before one’s time, must be very vexatious.

—Jane Austen, Mansfield Park

The theory of generalized gradients, proposed by Clarke in 1973, demon-
strated the possibility of developing a useful calculus in a fully nonsmooth,
nonconvex setting. This theory has served as the pattern for subsequent
ones, by indicating how and why to treat functions and sets on an equal
footing, how to pass back and forth from one to the other, and in so doing
obtain a coherent, complete calculus. Certain elements of this design were
foreshadowed by convex analysis, in the work of Moreau and Rockafellar.
But the opportunity to shed convexity hypotheses greatly expanded the
potential applications of the subject.

The basic construct of proximal analysis, the proximal normal vector, also
appears in Clarke’s early work, under the name “perpendicular.” It was
used there to generate the normal cone (and hence, via epigraphs, subgra-
dients). In that sense, proximal subgradients were implicit from the be-
ginning. However, the development of proximal calculus per se came later,
and it gradually became clear that proximal analysis should be viewed as
a distinct branch of the subject in its own right. The work of Rockafellar,
Ioffe, Mordukhovich, and Borwein is to be mentioned in this regard.

We will not attempt to list, in an introductory text, the hundreds of refer-
ences, nor the dozens of other names, that could justifiably be mentioned.
However, the Bibliography contains a selection of recent articles and books
on both theory and applications that can serve as a starting point for the
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interested reader. In the notes below, when no citation is given, the re-
sult (or a variant of it) is likely to be found in one or both of the two
basic sources for this work, [C4] and [C5], which also contain many other
references and related topics.

Other general works that we recommend to the reader include, for non-
smooth and nonlinear analysis, Aubin [A2] (which emphasizes games and
economics), Demyanov and Rubinov [DR] and Loewen [L1] (emphasis on
optimal control), and Mäkelä and Neittaanmäki [MN] (emphasizes appli-
cations). Convex analysis is treated, for example, by Hiriart-Urruty and
Lemaréchal in [HUL]. Phelps [Ph] is an excellent source for differentia-
bility. As standard references on control theory, we suggest Fleming and
Soner [FS], Roxin [Ro], Sontag [So], and Zabczyk [Z]. The books [HL],
[PBGM], and [Y] are old favorites of ours.

Chapter 0

The elementary discussion of Dini derivates in Boas [Bo] is a nice one; the
definitive references in this area remain the classic books of Saks [Sa] and
Bruckner [Bru]. The argument used to prove Theorem 1.1 is motivated by
that in [CR]. The existence theorem in the calculus of variations that is al-
luded to appears in [C6]. The tangential characterization of flow-invariance
given by Theorem 2.3 has a history of rediscovery, beginning with Nagumo
in 1942. The normality characterization of Theorem 2.4 goes back to Bony.
Optimization of eigenvalues is discussed in [BO], [HY], and [O]; see Cox
and Overton [CO] and [Cx] for the strongest column. Torricelli’s table was
inspired by an example in Lyusternik [Ly]. Tikhomirov’s book [T1] is a
charming, elementary introduction to optimization.

Chapter 1

The proof technique of Theorem 3.1 is now a standard one (see [LS]) in the
subject of minimization principles, for which a general reference is [DGZ].
The best known such principle is Ekeland’s [E]; however, it is of limited
interest in proximal analysis since it introduces a term with a “corner,” in
contrast to the “smooth variational principle” of Borwein and Preiss [BP].
We follow [CLW] in deriving this result from proximal density. This article
contains an example of a C1 function on the line whose proximal subdiffer-
ential is empty except on a set which is small, both in the sense of measure
and of category.

Theorem 7.3 has many predecessors; the approach used here appears in
[CSW], [RW], and [W]. The result also follows immediately from the Mean
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Value Inequality of §3.2. The fuzzy Sum Rule Theorem 8.3 goes back to Ioffe
in its essentials, while the limiting Sum Rule 10.1 is due to Mordukhovich.
Problem 11.23 is a result due to Rockafellar in finite dimensions.

Chapter 2

The results of this chapter follow closely those in Clarke [C4], which has
significantly more material, however. The Chain Rule 2.5 is an improvement
on the original treatment. Because the notation ∂, NS , and TS is now so
widely used, we have opted to retain it, while simultaneously introducing
the alternate notation ∂C , NC

S , and TC
S for cases in which other constructs

also intervene (as in Chapter 4).

Chapter 3

Constrained optimization is treated at greater length in Chapter 6 of [C4].
The Mean Value Inequality of Theorem 2.6 is due to Clarke and Ledyaev
[CL2]. Surprisingly perhaps, the case in which the values at two different
sets are compared appears to be quite different; it is treated in [CL1]. The
results of §3 have innumerable antecedents, though the specific approach
seems to be new. The Lipschitz Inverse Function Theorem is due to Clarke.
For Theorem 4.2, see, for example, Subbotin [Su]. Theorem 4.16, and the re-
sulting proof of Rademacher’s Theorem, are drawn from Bessis and Clarke
[BC]. Section 5 follows [C4] for the most part. We refer to [C5] for further
results in the calculus of variations. It was Rockafellar who first pointed out
the importance of the tangent cone TC

S having a nonempty interior, and the
properties that result from this. What we have called “wedged” is a new
term that we are proposing here instead of “epi-Lipschitz.” Theorem 6.12
is due to Aubin and Clarke [ACl], and the function in Problem 7.30 is due
to Rockafellar.

Chapter 4

A great deal of work on what we have called weak invariance has been done
under the label viability, see Aubin [A1] and Aubin and Cellina [AC]. The
book by Deimling [D] is another valuable reference for differential inclusions
(note: neither “invariance” nor “viability” is employed here; the author sim-
ply speaks of existence). The concept of Euler solutions is borrowed from
Krasovskii and Subbotin [KS], where it plays an important role in differ-
ential games; our proximal aiming is inspired by their “extremal aiming
method.” Theorem 2.10 is an amalgam of several results, including certain
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ones for the case of a function (see the comments for Chapter 0), as well
as theorems of Haddad and of Veliov [V] (to whom is first due the prox-
imal criterion). See [CLSW] for further comment. The Strong Invariance
Theorem 3.8 has its antecedents in [C2]. The results of §4 are taken from
[CLS1]. We remark that all the results of this chapter can be extended
to the case in which the linear growth hypothesis is dropped, by taking
account of possible finite “blow-up” times.

Several schools have participated over the past decades in developing the
nonsmooth theory of the Hamilton–Jacobi equation. The state of the art
circa 1976 is described in [B] where the “almost everywhere” type of (Lip-
schitz) solution dominates, and where Fleming’s “artificial viscosity” ap-
proximation method is outlined. To our knowledge, the first truly point-
wise (subdifferential) definition of the generalized solution (proposed by
Clarke, again for Lipschitz functions) appeared in 1977 [H] in connection
with the verification method. These turn out to be semisolutions in the
viscosity sense. The approach is synthesized by Clarke and Vinter in [CV].
In 1980 Subbotin (see [Su]) inaugurated the two-sided approach to defining
a nonsmooth (Lipschitz) solution, with Dini derivates and in the context of
differential games. Subsequently, Crandall and Lions (see [CIL]) developed
further Fleming’s approach; the (eventual) two-sided, subdifferential ap-
proach to defining viscosity solutions, carried out for continuous functions
and with the attendant uniqueness theorem, constituted a breakthrough
that vindicated the nonsmooth analysis approach to the issue. It appears
to be Barron and Jensen [BJ] who first demonstrated the (surprising) pos-
sibility of giving a single subdifferential characterization in certain cases,
and for merely lower semicontinuous solutions. The results of §7 owe an
intellectual debt to them, and also to Subbotin, who first stressed the rel-
evance of invariance. See also [AF2], [Ba], [BaS], [CaF], [CD], and [He] for
other examples of current research directions.

Theorem 9.1 is due to Clarke; Theorem 10.3 is taken from [CL]. A num-
ber of results relating the adjoint variable to the sensitivity of the problem
are due to Clarke and Vinter. We refer to [C5] for these and other refine-
ments of the necessary conditions in optimal control, and for examples of
their use, under less stringent hypotheses; in this connection, see [C3] for
the maximum principle. In particular, it is not assumed that the veloc-
ity set is convex. To put this another way, the current chapter deals with
the “relaxed problem” only. The forthcoming book of Vinter [Vi] surveys
the question of necessary conditions in optimal control, including results of
Ioffe, Loewen, Mordukhovich, and Rockafellar aimed at refining the Hamil-
tonian inclusion.

It is a celebrated theorem of Brockett that (smooth) systems which are
globally asymptotically controllable to the origin need not admit a contin-
uous feedback control which stabilizes the system. In [CLSS], it is shown
that time-independent stabilizing feedbacks do exist, if they are allowed
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to be discontinuous and if the corresponding solution concept is defined as
in Chapter 4. This is achieved essentially as follows: a result of Sontag is
invoked to deduce the existence of a continuous Lyapounov pair, and then
an analogue of Problem 11.31 is carried out. Insight on the existence or
otherwise of smooth Lyapounov pairs is provided in [CLS2]. See also [Ber],
[CPT], [Kry], [KS], and [RolV] for other approaches to feedback construc-
tion.
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List of Notation

We list here the principal constructs that appear in the book.

projS(x) projection of x onto S.
dS(x) or d(x;S) distance from x to S.

NP
S (x) or NP (x;S) proximal normal cone to S at x.

∂P f(x) proximal subdifferential of f at x.
∂P f(x) proximal superdifferential of f at x.
dom f (effective) domain of f .
gr f graph of f .
epi f epigraph of f .
F(U) all f : U → (−∞,∞] that are lower semicontinuous

and not identically +∞.
∂Lf(x) limiting subdifferential of f at x.
NL

S (x) limiting normal cone to S at x
f ′(x; v) directional derivative of f at x in direction v.
f ′

G(x) Gâteaux derivative of f at x.
f ′(x) Fréchet derivative of f at x.

IS(·) or I(·;S) indicator function of a set S.
f◦(x; v) generalized directional derivative of f at x

in direction v.
hS(·), HS(·) lower and upper support functions of a set S.

∂f(x) or ∂Cf(x) generalized gradient of f at x.
TS(x) or TC

S (x) (generalized) tangent cone to S at x.
TB

S (x) Bouligand tangent cone to S at x.
NS(x) or NC

S (x) (generalized) normal cone to S at x.
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Df(x; v) subderivate of f at x in direction v.
∂Df(x) directional subdifferential of f at x.
∇f(x) gradient vector of f at x.
h, H lower and upper Hamiltonians.

We remark that at least four people in the field agree on these notational
choices, which is certainly a record.
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