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PREFACE 

 

 

The European Interuniversity Diploma of Pharmaceutical Medicine is a 

postacademic course of  2-3 years sponsored by the Socrates program of the 

European Community. The office of this interuniversity project is in Lyon and the 

lectures are given there. The European Community has provided a building and will 

remunerate lecturers. The institute which provides the teaching is called the 

European College of Pharmaceutical Medicine, and is affiliated with 15 universities 

throughout Europe, whose representatives constitute the academic committee. This 

committee  supervises educational objectives. Start lectures February 2000.  

There are about 20 modules for the first two years of training, most of which are 

concerned with typically pharmacological and clinical pharmacological matters 

including pharmacokinetics, pharmacodynamics, phase III clinical trials, reporting, 

communication, ethics and, any other aspects of drug development.  Subsequent 

training consists of practice training within clinical research organisations, 

universities, regulatory bodies etc., and finally of a dissertation. The diploma, and 

degree are delivered by the Claude Bernard University in Lyon as well as the other 

participating universities.  

The module “Statistics applied to clinical trials” wil be taught in the form of a 3 to 6 

day yearly course given in Lyon and starting February 2000. Lecturers have to 

submit a document of the course (this material will be made available to students). 

Three or 4 lecturers are requested to prepare detailed written material for students as 

well as to prepare examination of the students. The module is thus an inportant part 

of a postgraduate course for physicians and pharmacists for the purpose of 

obtaining the European diploma of pharmaceutical medicine. The diploma should 

make for leading positions in pharmaceutical industry, academic drug research, as 

well as regulatory bodies within the EC. This module is mainly involved in the 

statistics of randomized clinical trials . 

The chapters 1-9, 11, 17, 18 of this book are based on the module “Medical 

statistics applied to clinical trials” and contain material that should be mastered by 

the students before their exams. The remaining chapters are capita selecta intended 

for excellent students and are not included in the exams. 

The authors believe that this book is innovative in the statistical literature because, 

unlike most introductory books in medical statistics, it provides an explanatory 

rather than mathematical approach to statistics, and, in addition, emphasizes non-

classical but increasingly frequently used methods for the statistical analyses of 

clinical trials, e.g., equivalence testing, sequential analyses, multiple linear 

regression analyses for confounding, interaction, and synergism.The authors are not 

aware of any other work published so far that is comparable with the current work, 

and, therefore, believe that it does fill a need. 

 

August 1999  

Dordrecht, Leiden, Delft 

 



 xiv 

 

In this second edition the authors have removed textual errors from the first edition. 

Also seven new chapters (chapters 8, 10, 13, 15-18) have been added. The 

principles of regression analysis and its resemblance to analysis of variance was 

missing in the first edition, and have been described in chapter 8. Chapter 10 

assesses curvilinear regression. Chapter 13 describes the statistical analyses of 

crossover data with binary response. The latest developments including statistical 

analyses of genetic data and quality-of-life data have been described in chapters 15 

and 16. Emphasis is given in chapters 17 and 18 to the limitations of statistics to 

assess non-normal data, and to the similarities between commonly-used statistical 

tests. Finally, additional tables including the Mann-Whitney and Wilcoxon rank 

sum tables have been added in the Appendix.  

 

December 2001, Dordrecht, Amsterdam, Delft  

 

 

 

The previous two editions of this book, rather than having been comprehensive, 

concentrated on the most relevant aspects of statistical analysis. Although well-

received by students, clinicians, and researchers, these editions did not answer all of 

their questions. This called for a third, more comprehensive, rewrite. In this third 

edition the 18 chapters from the previous edition have been revised, updated, and 

provided with a conclusions section summarizing the main points. The formulas 

have been re-edited using the Formula-Editor from Windows XP 2004 for enhanced 

clarity. Thirteen new chapters (chapters 8-10, 14, 15, 17, 21, 25-29, 31) have been 

added. The chapters 8-10 give methods to assess the problems of multiple testing 

and data testing closer to expectation than compatible with random. The chapters 14 

and 15 review regression models using an exponential rather than linear relationship 

including logistic, Cox, and Markow models. Chapter 17 reviews important 

interaction effects in clinical trials and provides methods for their analysis. In 

chapter 21 study designs appropriate for medicines from one class are discussed. 

The chapters 25-29 review respectively (1) methods to evaluate the presence of 

randomness in the data, (2) methods to assess variabilities in the data, (3) methods 

to test reproducibility in the data, (4) methods to assess accuracy of diagnostic tests, 

and (5) methods to assess random rather than fixed treatment effects. Finally, 

chapter 31 reviews methods to minimize the dilemma between sponsored research 

and scientific independence. This updated and extended edition has been written to 

serve as a more complete guide and reference-text to students, physicians, and 

investigators, and, at the same time, preserves the common sense approach to 

statistical problem-solving of the previous editions.        

 

August 2005, Dordrecht, Amsterdam, Delft  

PREFACE 

PREFA CE TO SECOND EDITION  

PREFACE TO THE THIRD EDITION 



 

 

 

In clinical medicine appropriate statistics has become indispensable to evaluate 

treatment effects. Randomized controlled trials are currently the only trials that 

truly provide evidence-based medicine. Evidence based medicine has become 

crucial to optimal treatment of patients. We can define randomized controlled trials 

by using Christopher J. Bulpitt’s definition “a carefully and ethically designed 

experiment which includes the provision of adequate and appropriate controls by a 

process of randomization, so that precisely framed questions can be answered”. The 

answers given by randomized controlled trials constitute at present the way how 

patients should be clinically managed. In the setup of such randomized trial one of 

the most important issues is the statistical basis. The randomized trial will never 

work when the statistical grounds and analyses have not been clearly defined 

beforehand. All endpoints should be clearly defined in order to perform appropriate 

power calculations. Based on these power calculations the exact number of 

available patients can be calculated in order to have a sufficient quantity of 

individuals to have the predefined questions answered. Therefore, every clinical 

physician should be capable to understand the statistical basis of well performed 

clinical trials. It is therefore a great pleasure that Drs. T. J. Cleophas,  

A.H. Zwinderman, and T.F. Cleophas have published a book on statistical analysis 

of clinical trials. The book entitled “Statistics Applied to Clinical Trials” is clearly 

written and makes complex issues in statistical analysis transparant. Apart from 

providing the classical issues in statistical analysis, the authors also address novel 

issues such as interim analyses, sequential analyses, and meta-analyses. The book is 

composed of 18 chapters, which are nicely structured. The authors have deepened 

our insight in the applications of statistical analysis of clinical trials. We would like 

to congratulate the editors on this achievement and hope that many readers will 

enjoy reading this intriguing book. 

 

E.E. van der Wall, MD, PhD, Professor of Cardiology, President Netherlands 

Association of Cardiology, Leiden, Netherlands   

FOREWORD  



CHAPTER 1 

 
HYPOTHESES, DATA, STRATIFICATION 

  
1. GENERAL CONSIDERATIONS 

 

Over the past decades the randomized clinical trial has entered an era of continuous 

improvement and has gradually become accepted as the most effective way of 

determining the relative efficacy and toxicity of new drug therapies. This book is 

mainly involved in the methods of prospective randomized clinical trials of new 

drugs. Other methods for assessment including open-evaluation-studies, cohort- 

and case-control studies, although sometimes used, e.g., for pilot studies and for 

the evaluation of long term drug-effects, are excluded in this course. Traditionally, 

clinical drug trials are divided into IV phases (from phase I for initial testing to 

phase IV after release for general use), but scientific rules governing different 

phases are very much the same, and can thus be discussed simultaneously.  

A. CLEARLY DEFINED HYPOTHESES 

Hypotheses must be tested prospectively with hard data, and against placebo 

or known forms of therapies that are in place and considered to be effective. 

Uncontrolled studies won’t  succeed to give a definitive answer if they are 

ever so clever. Uncontrolled studies while of value in the absence of scientific 

controlled studies, their conclusions represent merely suggestions and 

hypotheses. The scientific method requires to look at some controls to 

characterize the defined population. 

B. VALID DESIGNS 

Any research but certainly industrially sponsored drug research where 

sponsors benefit from favorable results, benefits from valid designs. A valid 

study means a study unlikely to be biased, or unlikely to include systematic 

errors. The most dangerous error in clinical trials are systematic errors 

otherwise called biases. Validity is the most important thing for doers of 

clinical trials to check. Trials should be made independent, objective, 

balanced, blinded, controlled, with objective measurements, with adequate 

sample sizes to test the expected treatment effects, with random assignment 

of patients. 

C. EXPLICIT DESCRIPTION OF METHODS 

Explicit description of the methods should include description of the 

recruitment procedures, method of randomization of the patients, prior 

statements about the methods of assessments of generating and analysis of the 

data and the statistical methods used, accurate ethics including written 

informed consent. 

1



CHAPTER 1 2

D. UNIFORM DATA ANALYSIS 

Uniform and appropriate data analysis generally starts with plots or tables of 

actual data. Statistics then comes in to test primary hypotheses primarily. 

Data that do not answer prior hypotheses may be tested for robustness or 

sensitivity, otherwise called precision of point estimates e.g., dependent upon 

numbers of outliers. The results of studies with many outliers and thus little 

precision should be interpreted with caution. It is common practice for studies 

to test multiple measurements for the purpose of answering one single 

question. E.g., the benefit to health of a new drug may be estimated by 

mortality in addition to various morbidity variables, and there is nothing 

wrong with that practice. We should not make any formal correction for 

multiple comparisons of this kind of data. Instead, we should informally 

integrate all the data before reaching  conclusions, and look for the trends 

without judging one or two low P-values among otherwise high P-values as 

proof. 

However, subgroup analyses involving post-hoc comparisons by dividing the data 

into groups with different ages, prior conditions, gender etc can easily generate 

hundreds of P-values. If investigators test many different hypotheses, they are apt 

to find significant differences at least 5% of the time. To make sense of these kinds 

of results, we need to consider the Bonferroni inequality, which will be emphasized 

in the chapters 7 and 8, and states that if k statistical tests are performed with the 

cut-off level for a test statistic, for example t or F, at the α level, the likelihood for 

observing a value of the test statistic exceeding the cutoff level is no greater than  

keeping the probability of making a mistake less than 5%, we have to use instead 

of α  = 5%  in this case α = 5/3% = 1.6% . With many more tests, analyses soon 

lose any sensitivity and do hardly prove anything anymore. Nonetheless a limited 

number of post-hoc analyses, particularly if a plausible theory is underlying, can be 

useful in generating hypotheses for future studies. 

 
2. TWO MAIN HYPOTHESES IN DRUG TRIALS: EFFICACY AND SAFETY 

 

Drug trials are mainly for addressing the efficacy as well as the safety of the drugs 

to be tested in them. For analyzing efficacy data formal statistical techniques are 

normally used. Basically, the null hypothesis of no treatment effect is tested, and is 

rejected when difference from zero is significant. For such purpose a great variety 

of statistical significance tests has been developed, all of whom report P values, 

and compute confidence intervals to estimate the magnitude of the treatment effect. 

The appropriate test depends upon the type of data and will be discussed in the 

next chapter. Of safety data, such as adverse events, data are mostly collected with 

the hope of demonstrating that the test treatment is not different from control. This 

concept is based upon a different hypothesis from that proposed for efficacy data, 

where the very objective is generally to show that there actually is a difference 

between test and control. Because the objective of collecting safety data is thus 

k timesα .  For example, if  we wish to do three comparisons with t-tests while 



HYPOTHESES, DATA, STRATIFICATION 

different, the approach to analysis must be likewise different. In particular, it may 

be less appropriate to use statistical significance tests to analyze the latter data. A 

significance test is a tool that can help to establish whether a difference between 

treatments is likely to be real. It cannot be used to demonstrate that two treatments 

are similar in their effects. In addition, safety data, more frequently than efficacy 

data, consist of proportions and percentages rather than continuous data as will be 

discussed in the next section. Usually, the best approach to analysis of these kinds 

of data is to present suitable summary statistics, together with confidence intervals. 

In the case of adverse event data, the rate of occurrence of each distinct adverse 

event on each treatment group should be reported, together with confidence 

intervals for the difference between the rates of occurrence on the different 

treatments. An alternative would be to present risk ratios or relative risks of 

occurrence, with confidence intervals for the relative risk. Chapter 3 mainly 

addresses the analyses of these kinds of data.    

Other aspects of assessing similarity rather than difference between treatments will 

be discussed separately in chapter 6 where the theory, equations, and assessments 

are given for demonstrating statistical equivalence. 

 
3. DIFFERENT TYPES OF DATA: CONTINUOUS DATA 

 

The first step, before any analysis or plotting of data can be performed, is to decide 

what kind of data we have. Usually data are continuous, e.g., blood pressures, heart 

rates etc. But regularly proportions or percentages are used for the assessment of 

part of the data. The next few lines will address how we can summarize and 

characterize these two different approaches to the data.   

 

 

Samples of continuous data are characterized by: 

 

Mean = Σx  = x , 

    n 

 

where Σ  is the summation, x are the individual data, n is the total number of data. 

                                                                                       

Variance between the data  = 
1

)( 2

−
−

n

xx
 

 

Standard deviation (SD)  = )(Variance  
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CHAPTER 1 4
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Figure 1.  Histogram and Gaussian curve representation of data. 

 
Continuous data can be plotted in the form of a histogram (Figure 1 upper graph). 

On the x-axis, frequently called z-axis in statistics, it has individual data. On the  

y-axis it has “how often”. For example, the mean value is observed most 

frequently, while the bars on either side gradually grow shorter. This graph 

adequately represents the data. It is, however, not adequate for statistical analyses. 

Figure 1 lower graph pictures a Gaussian curve, otherwise called normal 

(distribution) curve. On the x-axis we have, again, the individual data, expressed 

either in absolute data or in SDs distant from the mean. On the y-axis the bars have 

been replaced with a continuous line. It is now impossible to determine from the 

graph how many patients had a particular outcome. Instead, important inferences 

can be made. For example, the total area under the curve (AUC) represents 100% 

of the data, AUC left from mean represents 50% of the data, left from -1 SDs it has 

15.87% of the data, left from -2SDs it has 2.5% of the data. This graph is better for 

statistical purposes but not yet good enough.  
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Figure 2 gives two Gaussian curves, a narrow and a wide one.  Both are based on 
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Figure 2. Two examples of normal distributions. 

 

the same data, but with different meaning. The wide one summarizes the data of 

our trial. The narrow one summarizes the mean of many trials similar to our trial. 

We will not try to make you understand why this is so. Still, it is easy to conceive 

that the distribution of all means of many similar trials is narrower and has fewer 

outliers than the distribution of the actual data from our trial, and that it will center 

around the mean of our trial because our trial is assumed to be representative for 

the entire population. You may find it hard to believe but the narrow curve with 

standard errors of the mean (SEMs) or simply SEs on the x-axis can be effectively 

used for testing important statistical hypotheses, like (1) no difference between 

new and standard treatment, (2) a real difference, (3) the new treatment is better 

than the standard treatment, (4) the two treatments are equivalent. Thus, mean ± 2 

SDs (or more precisely 1.96 SDs) represents the AUC of the wide distribution, 

otherwise called the 95% confidence interval of the data, which means that 95% of 

the data of the sample are within. The SEM-curve (narrow one) is narrower than 

the SD-curve (wide one) because SEM = SD/ n  with n = sample size. Mean ± 2 

SEMs (or more precisely 1.96 SEMs) represents 95% of the means of many trials 

similar to our trial.  

SEM= SD / n  

As the size of SEM in the graph is about 1/3 times SD, the size of each sample is 

here about n = 10. The area under the narrow curve represents 100% of the sample 

means we would obtain, while the area under the curve of the wide graph 

represents 100% of all of the data of the samples. 

Why is this SEM approach so important in statistics. Statistics makes use of mean 

values and their standard error to test the null hypotheses of finding no difference 

5
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from zero in your sample. When we reject a null hypothesis at P<0.05, it literally 

means that there is < 5% chance that the mean value of our sample crosses the area 

of the null hypothesis where we say there is no difference. It does not mean that 

many individual data may not go beyond that boundary. So, actually it is just a 

matter of agreement. But it works well. 

 

So remember: 

Mean ±  2 SDs covers an area under the curve including 95% of the data of 

the given sample. 

Mean ±  2 SEMs  covers an area under curve including 95% of the means of 

many samples, and is,  otherwise, called the 95% confidence interval (CI).  
 

In statistical analysis we often compare different samples by taking their sums or 

differences. Again, this text is not intended to explain the procedures entirely. One 

more thing to accept unexplainedly is the following. The distributions of the sums 

as well as those of the difference of samples are again normal distributions and can 

be characterized by: 

 

Sum: )SD  (SDmeanmean 2

2

2

 121 +±+  

Difference: )SD  (SDmeanmean 2

2

2

 121 +±−  

 

 

)/nSD  /n(SDSEM 2

2

21

2

 1sum +=  

 

          SEMdifference  =               ” 

  

 

 

Sometimes we have paired data where two experiments are performed in one 

subject or in two members of one family. The variances with paired data are 

usually smaller than with unpaired because of the positive correlation between two 

observations in one subject (those who respond well the first time are more likely 

to do so the second). This phenomenon translates in a slightly modified calculation 

of variance parameters. 

 

)SDSDr  2SD  (SDSD 21

2

2

2

 1sum paired ⋅++=  

)SDSDr  2SD  (SDSD 21

2

2

2

 1edifferrenc  paired ⋅−+=  

 

Where r = correlation coefficient, a term that will be explained soon. 

 

 

 

 
Note: If the standard deviations are very different in size, then a more ade-

quate calculation of the pooled SEM is given on page 22.
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Note that SEM does not directly quantify variability in a population. A small SEM 

can be mainly due to a large sample size rather than tight data.    

With small samples the distribution of the means does not exactly follow a 

Gaussian distribution. But rather a t-distribution, 95% confidence intervals cannot 

be characterized as the area under the curve between mean ± 2 SEMs but instead 

the area under curve is substantially wider and is characterized as mean ± t.SEMs 

where t is close to 2 with large samples but 2.5-3 with samples as small as 5-10. 

The appropriate t for any sample size is given in the t-table. 
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Figure 3.  Family of t-distributions: with n = 5 the distribution 

is wide, with n = 10 and n = 1000 this is increasingly less so. 

 

Figure 3 shows that the t-distribution is wider than the Gaussian distribution with 

small samples. Mean ± t.SEMs presents the 95% confidence intervals of the means 

that many similar samples would produce.  

Statistics is frequently used to compare more than 2 samples of data. To estimate 

whether differences between samples are true or just chance we first assess 

variances in the data between groups and within groups. 
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                              Group        sample size        mean        SD 
                             _________________________________ 

                              Group 1      n 1                     mean 1      SD1 

                              Group 2      n 2                     mean 2      SD2 

                              Group 3      n 3                     mean 3      SD3 

 

This procedure may seem somewhat awkward in the beginning but in the next two 

chapters we will observe that variances, which are no less than estimates of noise 

in the data, are effectively used to test the probabilities of true differences between, 

e.g., different pharmaceutical compounds. The above data are summarized 

underneath. 

 

Between-group variance: 

 

Sum of squaresbetween = SSbetween =  n1 (mean1 – overall mean)2 + n2(mean2 – overall 

mean)2 + n3 (mean3 – overall mean)2 

 

Within-group variance: 

 

Sum of squareswithin = SSwithin =  (n1 1) SD1
2  + (n2 1) SD2

2 + (n3 1) SD3
2 

 

The ratio of  the sum of squares between-group/sum of squares within group  

(after proper adjustment for the sample sizes or degrees of freedom, a term which 

will be explained later on) is called the big F and determines whether variances 

between the sample means is larger than expected from the variability within the 

samples. If so, we reject the null hypothesis of no difference between the samples. 

With two samples the square root of big F, which actually is the test statistic of 

analysis of variance (ANOVA), is equal to the t of the famous t-test, which will 

further be explained in chapter 2. These 10 or so lines already brought us very 

close to what is currently considered the heart of statistics, namely ANOVA 

(analysis of variance).  

 
4. DIFFERENT TYPES OF DATA: PROPORTIONS, PERCENTAGES  

AND  CONTINGENCY TABLES 
 

Instead of continuous data, data may also be of a discrete character where two or 

more alternatives are possible, and, generally, the frequencies of occurrence of 

each of these possibilities are calculated. The simplest  and commonest type of 

such data are the binary data (yes/no etc). Such data are frequently assessed as 

proportions or percentages, and follow a socalled binomial distribution. If 0.1< 

proportion (p) <0.9 the binomial distribution becomes very close to the normal 

 

– – –

distribution. If p <0.1, the data will follow a skewed distribution, otherwise  
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called Poisson distribution. Proportional data can be conveniently laid-out as 

contingency tables.  The simplest contingency table looks like this: 

 

                                               numbers of subjects    numbers of subjects 

                                               with side Effect           without side effect  

 

  Test treatment (group1 )          a                                   b   

  Control treatment (group2 )  c                                   d 

 

 

The proportion of subjects who had a side effect in group1 (or the risk (R) or 

probability of having an effect):   

 

P = a / (a+b) , in group2   p = c / (c+d), 

 

The ratios a / (a+b) and c / (c+d) are called risk ratios (RRs) 

 

Note that the terms proportion, risk and probability are frequently used in 

statistical procedures but that they basically mean the same. 
 

Another approach is the odds approach a/b and c/d are odds and their ratio is the 

odds ratio (OR).  

In clinical trials we use ORs as surrogate RRs, because here a/(a+b) is simply 

nonsense. For example: 

                        treatment-group  control-group  entire-population 

sleepiness                32    a           4   b                  4000       

no sleepiness           24    c         52   d                52000 

 

We assume that the control group is just a sample from the entire population but 

that the ratio b/d is that of the entire population. So, suppose 4 = 4000 and 52 = 

52000, then we can approximate    a/(a+b)   =  a/b  = RR of the entire population.  

                                                        c/(c+d)        c/d 

 

Proportions can also be expressed as percentages:  

 

p.100% =  a/(a+b). (100%) etc 

 

Just as with continuous data we can calculate SDs and SEMs and 95% confidence 

intervals of rates ( or numbers, or scores) and of proportions or percentages. 

 

SD of number n = n  

SD of difference between two numbers n1 and n2 = )n(n)/n-(n 2121 +  

9
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SD proportion = )pp(1 −  

SEM proportion = n/)pp(1 −  

 

 

We assume that the distribution of proportions of many samples follows a normal 

distribution (in this case called the z-distribution) with 95% confidence intervals 

between:  

 

n/)p(1 p2p −±  

 

a formula looking very similar to the 95% CI intervals formula for continuous data  

 

n/ SD2mean 2±  

 

Differences and sums of the SDs and SEMs of proportions can be calculated 

similarly to those of continuous data: 

 

2

22

1

11
sdifference of

n

)p1(p

n

)p1(p
   SEM

−+−=  

 

 

with 95% CI intervals :   p1 –p2   ± 2. SEMs 

 

More often than with continuous data, proportions of different samples are 

assessed for their ratios rather than difference or sum. Calculating the 95% CI 

intervals of it is not simple. The problem is that the ratios of many samples do not 

follow a  normal distribution, and are extremely skewed. It can never be less than 0 

but can get very high. However, the logarithm of the relative risk is approximately 

symmetrical. Katz’s method takes advantage of this symmetry: 

 

b/a d/c
95% CI of log RR   log RR  2  

a b c d
= ± +

+ +
 

 

This equation calculates the CIs of the logarithm of the RR. Take the antilogarithm 

(10x ) to determine the 95% CIs of the RR. 
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Probability distribution 

 
Figure 4.  Ratios of proportions unlike continuous data usually do not 

follow a normal but a skewed distribution ( values vary from 0 to ∞). 

Transformation into the logarithms provides approximately symmetric 

distributions (thin curve). 

 
Figure 4 shows the distribution of RRs and the distribution of the logarithms of the 

RRs, and illustrates that the transformation from skewed data into their logarithms 

is a useful method to obtain an approximately symmetrical distribution, that can be 

analyzed according to the usual approach of SDs, SEMs and CIs. 

 
5. DIFFERENT TYPES OF DATA: CORRELATION COEFFICIENT 

 

The SD and SEM of paired data includes a term called r as described above. For 

the calculation of r, otherwise called R, we have to take into account that paired 

comparisons, e.g., those of two drugs tested in one subject generally have a 

different variance from those of comparison of two drugs in two different subjects. 

This is so, because between subject variability of symptoms is eliminated and 

because the chance of a subject responding beneficially the first time is more likely 

to respond beneficially the second time as well. We say there is generally a 

positive correlation between the response of one subject to two treatments. 

11
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Figure 5. A positive correlation between the 

response of one subject to two treatments. 
 
Figure 5 gives an example of this phenomenon. X-variables, e.g., blood pressures 

after the administration of compound 1 or placebo, y-variables blood pressures 

after the administration of compound 2 or test-treatment. 

The SDs and SEMs of the paired sums or differences of the x- and y-variables are 

relevant to estimate variances in the data and are just as those of continuous data 

needed before any statistical test can be performed. They can be calculated 

according to: 

)SDSDr  2SD  (SDSD 21

2

2

2

 1sum paired ⋅++=  

)SDSDr  2SD  (SDSD 21

2

2

2

 1edifferrenc  paired ⋅−+=  

 

where r = correlation coefficient, a term that will be explained soon. 

 

Likewise:  

 /n)SDSDr  2SD  (SDSEM 21

2

2

2

 1sum paired ⋅++=  

 /n)SDSDr  2SD  (SDSEM 21

2

2

2

 1edifferrenc  paired ⋅−+=  

 

where n = n1 = n2 

 

and that:                                                           

2 2

(x - x ) (y - y )
r

(x - x ) (y - y )
=         

 

 

r is between –1 and +1, and with unpaired data r = 0 and the SD and SEM formulas 

reduce accordingly (as described above). Figure 5 also shows a line, called the 
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regression line, which presents the best-fit summary of the data, and is the 

calculated method that minimizes the squares of the distances from the line.  
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Figure 6.  Example of a linear regression line of 2 paired variables  

(x- and y-values), the regression line provides the best fit line. 

The dotted curves are 95% CIs that are curved, although we do 

not allow for a nonlinear relationship between x and y variables. 
 
The 95% CIs of a regression line can be calculated and is drawn as area between 

the dotted lines in Figure 6. It is remarkable that the borders of the straight 

regression line are curved although we do not allow for a nonlinear relationship 

between the x-axis and y-axis variables. More details  on regression analysis will 

be given in chapters 2 and 3. 

In the above few lines we described continuous normally distributed or t-dis-

tributed data, and rates and their proportions or percentages. We did not yet 

address data ordered as ranks. This is a special method to transform skewed data 

into a approximately normal distribution, and is in that sense comparable with 

logarithmic transformation of relative risks (RRs). In chapter 3 the tests involving 

this method will be explained. 

 
6. STRATIFICATION ISSUES 

 

When published, a randomized parallel-group drug trial essentially includes a table 

listing all of the factors, otherwise called baseline characteristics, known possibly 

to influence outcome. E.g., in case of heart disease these will probably include 

apart from age and gender, the prevalence in each group of diabetes, hypertension, 

cholesterol levels, smoking history. If such factors are similar in the two groups, 

then we can go on to attribute any difference in outcome to the effect of test-

treatment over reference-treatment. If not, we have a problem. Attempts are made 

to retrieve the situation by multivariate analysis allocating part of the differences in 

13
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outcome to the differences in the groups, but there is always an air of uncertainty 

about the validity of the overall conclusions in such a trial. This issue is discussed 

and methods are explained in chapter 8. Here we discuss ways to avoid this 

problem. Ways to do so, are stratification of the analysis and minimization of 

imbalance between treatment groups, which are both techniques not well-known. 

Stratification of the analysis means that relatively homogeneous subgroups are 

analyzed separately. The limitation of this approach is that it can not account for 

more than two, maybe three, variables and that thus major covariates may be 

missed. Minimization can manage more factors. The investigators first classify 

patients according to the factors they would like to see equally presented in the two 

groups, then randomly assign treatment so that predetermined approximately fixed 

proportions of patients from each stratum receive each treatment. With this method 

the group allocation does not rely solely on chance but is designed to reduce any 

difference in the distribution of unsuspected contributing determinants of outcome 

so that any treatment difference can now be attributed to the treatment comparison 

itself. A good example of this method can be found in a study by Kallis et al.1 The 

authors stratified in a study of aspirin versus placebo before coronary artery 

surgery the groups according to age, gender, left ventricular function, and number 

of coronary arteries affected. Any other prognostic factors other than treatment can 

be chosen. If the treatments are given in a double-blind fashion, minimization 

influences the composition of the two groups but does not influence the chance of 

one group entering in a particular treatment arm rather than the other.  

There is an additional argument in favor of stratification/minimization that counts 

even if the risk of significant asymmetries in the treatment groups is small. Some 

prognostic factors have a particularly large effect on the outcome of a trial. Even 

small and statistically insignificant imbalances in the treatment groups may then 

bias the results. E.g., in a study of two treatment modalities for pneumonia2 

including 54 patients, 10 patients took prior antibiotic in the treatment group and 5 

did in the control group. Even though the difference between 5/27 and 10/27 is not 

statistically significant, the validity of this trial was being challenged, and the 

results were eventually not accepted. 

 
7. RANDOMIZED VERSUS HISTORICAL CONTROLS 

 

A randomized clinical trial is frequently used in drug research. However, there is 

considerable opposition to the use of this design. One major concern is the ethical 

problem of allowing a random event to determine a patient’s treatment. Freirich3 

argued that a comparative trial which shows major differences between two 

treatments is a bad trial because half of the patients have received an inferior 

treatment. On the other hand in a prospective trial randomly assigning treatments 

avoids many potential biases. Of more concern is the trial in which a new treatment 

is compared to an old treatment when there is information about the efficacy of the 

old treatment through historical data. In this situation use of the historical data for 

comparisons with data from the new treatment will shorten the length of the study 

because all patients can be assigned to the new treatment. The current availability 
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of multivariate statistical procedures which can adjust the comparison of two 

treatments for differing presence of other prognostic factors in the two treatment 

arms, has made the use of historical controls more appealing. This has made 

randomization less necessary as a mechanism for ensuring comparability of the 

treatment arms. The weak point in this approach is the absolute faith one has to 

place in the multivariate model. Also, some confounding variables e.g., time 

effects,  simply can not be adjusted, and remain unknown. Despite the ethical 

argument in favor of historical controls we must therefore emphasize the 

potentially misleading aspects of trials using historical controls. 

 
8. FACTORIAL DESIGNS 

 

The majority of drug trials are designed to answer a single question. However, in 

practice many diseases require a combination of more than one treatment 

modalities. E.g., beta-blockers are effective for stable angina pectoris but beta-

blockers plus calcium channel blockers or beta-blockers plus calcium channel 

blockers plus nitrates are better (Table 1). Not addressing more than one treatment 

modality in a trial is an unnecessary restriction on the design of the trial because 

the assessment of two or more modalities in on a trial pose no major mathematical 

problems.  
 

Table 1. The factorial design for angina pectoris patients treated with  

             calcium channel blockers with or without beta-blockers 
                                   ________________________________________________  

                                       Calcium channel blocker     no calcium channel blocker 

                                   ________________________________________________ 

       Beta-blocker            regimen I                              regimen II 

       No beta-blocker       regimen III                           regimen I 

                                   ________________________________________________ 

   

 

We will not describe the analytical details of such a design but researchers should 

not be reluctant to consider designs of such types. This is particularly so, when the 

recruitment of large samples causes difficulties. 

 

9. CONCLUSIONS 

 

What you should know after reading this chapter: 

1. Scientific rules governing controlled clinical trials include prior hypotheses, 

valid designs, strict description of the methods, uniform data analysis. 

2. Efficacy data and safety data often involve respectively continuous and 

proportional data. 

3. How to calculate standard deviations and standard errors of the data. 

15
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4. You should have a notion of negative/positive correlation in paired 

comparisons, and of the meaning of the socalled correlation coefficient. 

5. Mean ± standard deviation summarizes the data, mean ± standard error 

summarizes the means of many trials similar to our trial. 

6. You should know the meaning of historical controls and factorial designs. 
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CHAPTER 2 

 
THE ANALYSIS OF EFFICACY DATA OF DRUG 

TRIALS 

 
1. OVERVIEW  

 

Typical efficacy endpoints have their associated statistical techniques. For 

example, values of continuous measurements (e.g., blood pressures) require the 

following statistical techniques: 

(a) if measurements are normally distributed: t-tests and associated confidence 

intervals to compare two mean values; analysis of variance (ANOVA) to 

compare three or more, 

(b) if measurements have a non-normal distribution: Wilcoxon rank tests with 

confidence intervals for medians. 
 

Comparing proportions of responders or proportions of survivors or patients with 

no events involves binomial rather than normal distributions and requires a 

completely different approach. It requires a chi-square test, or a more complex 

technique otherwise closely related to the simple chi-square test, e.g., Mantel 

Haenszl summary chi-square test, logrank test, Cox proportional hazard test etc. 

Although in clinical trials, particularly phase III-IV trials, proportions of 

responders and proportion of survivors is increasingly an efficacy endpoint, in 

many other trials proportions are used mainly for the purpose of assessing safety 

endpoints, while continuous measurements are used for assessing the main 

endpoints, mostly efficacy endpoints. We will, therefore, focus on statistically 

testing continuous measurements in this chapter and will deal with different 

aspects of statistically testing proportions in the next chapter. 

Statistical tests all have in common that they try to estimate the probability that a 

difference in the data is true rather than due to chance. Usually statistical tests 

make use of a socalled test statistic: 

 

                            Chi-square         for the chi-square test 

                            t                         for the t-test 

                            Q                       for nonparametric comparisons  

                            Q1                      for nonparametric comparisons 

                            q                        for Newman-Keuls test 

                            q1                       for Dunnett test 

                       F                        for analysis of variance 

                            Rs                      for Spearman rank correlation test. 

 17
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These test statistics can adopt different sizes. In the appendix of this book we 

present tables for t-, chi-square- and F- , Mann-Whitney-, and Wilcoxon-rank-sum-

tests, but additional tables are published in most textbooks of statistics (see 

References). Such tables show us the larger the size of the test statistic, the more 

likely it is that the null-hypothesis of no difference from zero or no difference 

between two samples is untrue, and that there is thus a true difference or true effect 

in the data. Most tests also have in common that they are better sensitive or 

powerful to demonstrate such  a true difference as the samples tested are large. So, 

the test statistic in most tables is adjusted for sample sizes. We say that the sample 

size determines the degrees of freedom, a term closely related to the sample size. 

 
2. THE PRINCIPLE OF TESTING STATISTICAL SIGNIFICANCE  

 

The human brain excels in making hypotheses but hypotheses may be untrue. 

When you were a child you thought that only girls could become a doctor because 

your family doctor was a female. Later on, this hypothesis proved to be untrue. 

Hypotheses must be assessed with hard data. Statistical analyses of hard data starts 

with assumptions: 

1. our study is representative for the entire population (if we repeat the trial, 

difference will be negligible. 

2. All similar trials will have the same standard deviation (SD) or standard 

error of the mean (SEM). 

Because biological processes are full of variations, statistics will give no certainties 

only chances. What chances? Chances that hypotheses are true/untrue. What 

hypotheses?: e.g.:  

(1) our mean effect is not different from a 0 effect, 

(2) it is really different from a 0 effect, 

(3) it is worse than a 0 effect. 

Statistics is about estimating such chances/testing such hypotheses. Please note that 

trials often calculate differences between a test treatment and a control treatment 

and, subsequently, test whether this difference is larger than 0. A simple way to 

reduce a study of two groups of data and, thus, two means to a single mean and 

single distribution of data, is to take the difference between the two and compare it 

with 0. 

In the past chapter we explained that the data of a trial can be described in the form 

of a normal distribution graph with SEMs on the x-axis, and that this method is 

adequate to test various statistical hypotheses. We will now focus on a very 

important hypothesis, the null-hypothesis. What it literally means is: no difference 

from a 0 effect: the mean value of our sample is not different from the value 0. We 

will try and make a graph of this null-hypothesis. 

What does it look like in graph? H1 in Figure 1 is a graph based on the data of our 

trial with SEMs distant from mean on the x-axis (z-axis). H0 is the same graph 

with a mean value of 0 (mean ± SEM = 0 ± 1). Now, we  will make a giant leap  
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Figure 1. Null-hypothesis (H0 ) and alternative hypothesis H1 of  an example of experimental 

data with sample size (n) = 20 and mean = 2.9 SEMs,  and a t-distributed frequency 

distribution.  
 
from our data to the entire population, and we can do so, because our data are 

representative for the entire population. H1 is also the summary of the means of 

many trials similar to ours (if we repeat, differences will be small, and summary 

will look alike). H0 is also the summary of the means of many trials similar to ours 

but with an overall effect of 0. Now our mean effect is not 0 but 2.9. Yet it could 

be an outlier of many studies with an overall effect of 0. So, we should think from 

now on of H0 as the distribution of the means of many trials with overall effect of 

0. If H0 is true, then the mean of our study is part of H0. We can not prove 

anything, but we can calculate the chance/probability of this possibility.  

A mean value of 2.9 is far distant from 0. Suppose it belongs to H0. Only 5% of 

the H0 trials have their means >2.1 SEMs distant from 0, because the area under 

the curve (AUC) >2.1 distant from 0 is only 5% of total AUC. Thus, the chance 

that our mean belongs to H0 is <5%. This is a small chance, and we reject this 

chance and conclude there is <5% chance to find this result. We, thus, reject the H0 

of no difference from 0 at P<0.05. The AUC right from 2.101 (and left from -2.101 

as will be soon explained) is called alpha = area of rejection of H0. Our result of  

2.9 is far from 2.101. The probability of finding such a result may be a lot smaller 

than 5%. Table 1 shows the t-table that can tell us exactly how small this chance 

truly is.  
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    Table 1. t-table  
             _______________________ 

                   Two-tailed  P-value  

              (df = degree of freedom) 

      __________________________ 

         

df 0.1 0.05 0.01 0.002

  

1 6.314 12.706 63.657 318.31

2 2.920 4.303 9.925 22.326

3 2.353 3.182 5.841 10.213

4 2.132 2.776 4.604 7.173

  

5 2.015 2.571 4.032 5.893

6 1.943 2.447 3.707 5.208

7 1.895 2.365 3.499 4.785

8 1.860 2.306 3.355 4.501

9 1.833 2.262 3.250 4.297

  

10 1.812 2.228 3.169 4.144

11 1.796 2.201 3.106 4.025

12 1.782 2.179 3.055 3.930

13 1.771 2.160 3.012 3.852

14 1.761 2.145 2.977 3.787

  

15 1.753 2.131 2.947 3.733

16 1.746 2.120 2.921 3.686

17 1.740 2.110 2.898 3.646

18 1.734 2.101 2.878 3.610

19 1.729 2.093 2.861 3.579

  

20 1.725 2.086 2.845 3.552

21 1.721 2.080 2.831 3.527

22 1.717 2.074 2.819 3.505

23 1.714 2.069 2.807 3.485

24 1.711 2.064 2.797 3.467

  

25 1.708 2.060 2.787 3.450

26 1.706 2.056 2.779 3.435

27 1.701 2.052 2.771 3.421

28 1.701 2.048 2.763 3.408

29 1.699 2.045 2.756 3.396

  

30 1.697 2.042 2.750 3.385

40 1.684 2.021 2.704 3.307

60 1.671 2.000 2.660 3.232

120 1.658 1.950 2.617 3.160

∞ 1.645 1.960 2.576 3.090
   __________________________ 
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The 4 right-hand columns are trial results expressed in SEM-units distant from 0  

( = also t-values). The upper row are the AUC-values right from trial results. The 

left-hand column presents adjustment for numbers of patients (degrees of freedom 

(dfs), in our example two samples of 10 gives 20-2: = 18 dfs). 

AUC right from 2.9 means  right from 2.878 means this AUC<0.01. And so we 

conclude that our probability not <0.05 but even<0.01.Note: the t-distribution is 

just an adjustment of the normal distribution, but a bit wider for small samples. 

With large samples it is identical to the normal distribution. For proportional data 

always the normal distribution is applied. 

 

Note: Unlike the t-table in the APPENDIX, the above t-table gives two-tailed = 

two-sided AUC-values. This means that the left and right end of the frequency 

distribution are tested simultaneously. A result >2.101 here means both >2.101 and 

<-2.101. If a result of + 2.101 was tested one sided, the p-value would be 0.025 

instead of 0.05 (see t-table APPENDIX).  

 
3. THE T-VALUE = STANDARDIZED MEAN RESULT OF STUDY 

 

The t-table expresses the mean result of a study in SEM-units. Why does it make 

sense to express mean results in SEM-units? Consider a cholesterol reducing 

compound which reduces plasma cholesterol by 1.7 mmol/l ± 0.4 mmol/l (mean ± 

SEM). Is this reduction statistically significant? Unfortunately, there are no 

statistical tables for plasma cholesterol values. Neither are there tables for blood 

pressures, body weights, hemoglobin levels etc. The trick is to standardize your 

result.  

1value-t
SEM

SEM
 

SEM

Mean
  SEMMean ±=±=±  

 

This gives us our test result in SEM-units with an SEM of 1. Suddenly, it becomes 

possible to analyze every study by using one and the same table, the famous  

t-table. How do we know that our data follow a normal or t frequency distribution? 

We have goodness of fit tests (chapter 24). 

How was the t-table made? It was made in an era without pocket calculators, and it 

was hard work. Try and calculate in three digits the square root of the number 5. 

The result is between 2 and 3. The final digits are found by a technique called 

“tightening the data”. The result is larger than 2.1, smaller than 2.9. Also larger 

than 2.2, smaller than 2.8,etc. It will take more than a few minutes to find out the 

closest estimate of 5  in three digits.. This example highlights the hard work done 

by the U.S. Government’s Work Project Administration by hundreds of women 

during the economic depression in the 1930s.   
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4. UNPAIRED T-TEST 
 

So far, we assessed a single mean versus 0, now we will assess two means versus 

each other. For example, a parallel-group study of two groups tests the effect of 

two beta-blockers on cardiac output. 

 

                                                     Mean ± SD                        SEM2 = SD2/n 

                                                     ________________________________ 

                  group 1 (n = 10)           5.9      ± 2.4   liter/min       5.76/10 

                  group 2 (n = 10)           4.5      ± 1.7   liter/min       2.89/10 

 

       Calculate: mean1 – mean2 = mean difference = 1.4 

       Then calculate pooled 930.0 SEM   SEMSEM
2

2

2

1 =+=  

  
Note: for SEM of difference: take the square root of the sums of squares of 

separate SEMs and so reduce analysis of two means and two SEMS to one mean 

and one SEM. The significance of difference between two unpaired samples of 

continuous data is assessed by the formula: 

 

                                              
2 2

1 2 1 2mean  mean  SEM SEM− ± + = mean difference ± pooled SEM 

 

This formula presents again a t-distribution with a new mean and a new SEM, i.e., 

the mean difference and the pooled SEM. The wider this new mean is distant from 

zero and the smaller its SEM is, the more likely we are able to demonstrate a true 

effect or true difference from no effect. The size of the test statistic is calculated as 

follows.              

 

1.505  0.930 / 1.4
SEM  pooled

 differencemean 
  t of size The ===  

                   

With n = 20, and two groups we have 20-2 = 18 degrees of freedom. The t-table 

shows that a t-value of 1.505 provides a chance of >5% that the null hypothesis of 

no effect can be rejected. The null-hypothesis cannot be rejected.   

 

Note: If the standard deviations are very different in size, e.g., if one is twice the 

other, then a more adequate calculation of the pooled standard error is as follows.  

 
2 2

1 1 2 2

1 2 1 2

(n 1)SD (n 1)SD 1 1
Pooled SEM  (   )

n n 2  n  n

− + −= × +
+ −
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2.101

-3 -2 -1 0 1 2 3 4 5

 
 

 

Figure 2. Two t-distributions with n = 20: lower curve H1 or actual SEM-

distribution of the data, upper curve H0 or null hypothesis of the study. 
 
The lower graph of Figure 2 is the probability distribution of this t-distribution.  H0 

(the upper graph) is an identical distribution with mean = 0 instead of  mean = 

mean1 – mean2 and with SEM identical to the SEM of H1, and is taken as the null- 

hypothesis in this particular approach.  With n = 20 (18 dfs)  we can accept that 

95% of all t-distributions with no significant treatment difference from zero must 

have their means between –2.101 and +2.101 SEMs distant from zero. The chance 

of finding a mean value of 2.101 SEMs or more distant from 0 is 5% or less (we 

say α = 0.05, where is  the chance of erroneously rejecting the null hypothesis of 

no effect). This means that we can reject the null-hypothesis of no difference at a 

probability (P) = 0.05. We have 5% chance of coming to this result, if there were 

no difference between the two samples. We, therefore, conclude that there is a true 

difference between the effects on cardiac output of the two compounds. 

Also the F- and chi-square test reject, similarly to the t-test, reject the null- 

hypothesis of no treatment effect if the value of the test statistic is bigger than 

would occur in 95% of the cases if the treatment had no effect. At this point we 

should emphasize that when the test statistic is not big enough to reject the null- 

hypothesis of no treatment effect, investigators often report no statistically 

significant difference and discuss their results in terms of documented proof that 

the treatment had no effect. All they really did, was, fail to demonstrate that it did 

have an effect. The distinction between positively demonstrating that a treatment 

had no effect and failing to demonstrate that it does have an effect, is subtle but 

very important, especially with respect to the small numbers of subjects usually 

enrolled in a trial. A study of treatments that involves only a few subjects and then 

fails to reject the null-hypothesis of no treatment effect, may arrive at that 

conclusion because the statistical procedure lacked power to detect the effect 

because of a too small sample size, even though the treatment did have an effect. 

We will address this problem in more detail in chapter 5. 

SEMs 
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5. NULL-HYPOTHESIS TESTING OF 3 OR MORE UNPAIRED SAMPLES 
 

If more than two samples are compared, things soon get really complicated, and 

the unpaired t-test can no longer be applied. Usually, statistical software, e.g., SAS 

or SPSS Statistical Software, will be used to produce F- or P-values, but the Table 

2 gives a brief summary of the principles of multiple groups analysis of variance 

(ANOVA) applied for this purpose. 

 
Table 2. Multiple groups ANOVA 

_________________________________________________________________ 

Unpaired ANOVA 3 groups 

                                                        Total variation  

                                                       |                      | 

                    Between group variation                  within group variation 

In ANOVA: 

Variations are expressed as sums of squares (SS) and can be added up to obtain 

total  variation. Assess whether between-group variation is large compared to 

within-group variation. 

  

Group         n patients      mean        SD          

1                  -                    -               -  

2                  -                    -               -  

3                  -                    -               -  

Grand mean = (mean 1 + 2 + 3)/3   

SSbetween groups = n1 (mean1 – grand mean)2 + n2 (mean2 – grand mean)2 +…. 

SSwithin groups   = (n1 1)(SD1
2 ) + (n2 1) SD2

2 +….. 

  
withinbetween MS / MS 

dfs / groups within SS

  /dfsgroupsbetween  SS
 F ==  

 

                                                  F-table gives P-value 

_________________________________________________________________ 

Effect of 3 compounds on Hb 

  

Group         n patients      mean        SD          

1                  16                 8.7125     0.8445  

2                  10               10.6300     1.2841  

3                  15               12.3000     0.9419     

Grand mean = (mean 1 + 2 + 3)/3 = 10.4926 

  

SSbetween groups =  16 (8.7125-10.4926) 2+ 10(10.6300 – 10.4926)2…. 

SSwithin groups   = 15 x 0.84452 + 9 x 1.28412 +…….. 

 F =  49.9 and so P <0.001  

_________________________________________________________________ 

Note: In case 2 groups: ANOVA = unpaired T-test  ( F = T2 ). Dfs means degrees of 

freedom, and equals n1 + n2 + n3  3 for SSwithin , and 3 1 = 2 for SSbetween .  

− −

− −
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6. THREE METHODS TO TEST STATISTICALLY A PAIRED SAMPLE 

 

Table 3 gives an example of a placebo-controlled clinical trial to test efficacy of a 

sleeping drug. 

 
         Table 3. Example of a placebo-controlled clinical trial to test efficacy of a 

         sleeping drug 

______________________________________________________________ 

                    hours of sleep  

______________________________________________________________ 

 

patient         drug       placebo      difference         mean                     SS 

______________________________________________________________ 

 

1           6.1   5.2      0.9             5.7                  0.53 

2              7.0      7.9          –0.9               7.5 

3               8.2      3.9           4.3  

4              7.6     4.7           2.9 

5              6.5      5.3           1.2 

6               7.8      5.4            3.0 

7               6.9      4.2            2.7 

8               6.7       6.1           0.6 

9               7.4      3.8           3.6 

10              5.8      6.3          –0.5 

Mean          7.06    5.28         1.78 

SD              0.76     1.26          1.77  

grand mean 6.17 

 ______________________________________________________________ 

 

First method 
First method is simply calculating the SD of the mean difference d by looking at 

the column of differences  (d-values) and using the standard formula for variance 

between data  

                                                                                 

79.1
1

)(
  sdifference paired SD

2

=
−
−

=
n

dd
  

 

Next we find SEM of the mean difference by taking SD/ n = 0.56 

Mean difference ± SEM = 1.78 ± 0.56 

Similarly to the above unpaired t-test we now can test the null hypothesis of no 

difference by calculating 
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1)10   freedom of (degrees 10 of sample a with 3.18  0.56 / 1.78  
SEM

differenceMean 
 t ====  

The t-table shows that P<0.02. We have <2% chance to find this result if there 

were no difference, and accept that this is sufficient to assume that there is a true 

difference. 

 

Second method 

Instead of taking the column of differences we can take the other two columns and 

use the formula as described in chapter 1 for calculating the SD of the paired 

differences =    SDpaired differrence    

                   = )SDSD2r- SD (SD  21

2

2

2

1 ⋅⋅+  

                   = )26.176.02r 26.1 (0.76  21

2

2

2

1 ⋅⋅+  

As r can be calculated to be  +0.26, we can now conclude that  

                                               

SDpaired differrence =  1.79 

 

The remainder of the calculations is as above. 

 

 

Third method 

The third method is the F test using analysis of variance (ANOVA). We have to 

calculate SS (sum of squares) e.g., for subject 1: 

SSwithin subject 1 = (6.1 5.7)2+ (5.2 5.7)2  = 0.53 (table 3) 

grand mean (7.06+5.28)/ 2 = 6.17 (table 3) 

SSwithin subject = SSwithin subject 1+ SSwithin subject 2+SSwithin subject 3+…. 

SStreatment  = (7.06 6.17)2  + (5.28 6.17)2  (table 3) 

                     
SSresidual   = SSwithin subject – SStreatment  
 

 
Table 4. ANOVA table of these data 

            _____________________________________________________________ 

                                                Sum of     degrees of     mean                 MS treatment 

                                                Squares      freedom      square        F =  ___________ 

            Source of variation           (SS)        (dfs)      MS=SS/dfs)          MS residual 

             _____________________________________________________________ 

             between subjects                             2 (m) 

             within subjects                               10 (n x (m 1)) 

             treatments                                        1  (m 1)                          F = 7.28, p<0.02  

             residual                                             9   (n 1) 

             total                                                 22 

             _____________________________________________________________ 

 

 

−

−

− −

− −

−
−
−
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The ANOVA table (Table 4) shows the procedure. Note m is number of 

treatments, n is number of patients. The ANOVA is valid not only for two repeated 

measures but also for m repeated measures. For 2 repeated measures it is actually 

equal to the paired t-test (= first method). 

Similarly, for unpaired samples, with two samples the one way ANOVA already 

briefly mentioned in chapter 1 is equal to the unpaired t-test, but one-way ANOVA 

can also be used for m unpaired samples. 

 

The above data can also be presented in the form of a linear regression graph. 

 

 
 

Figure 3. Paired data laid out in the form of linear regression. 

 
Paired data can also be laid out in the form of linear regression  

 

                        Y = a+bx        (effect drug) = a+ b (effect placebo) 

 

 

 

 

which can be assessed in the form of ANOVA: 

 
2 2

2

22

( (x x )(y y ))regression  sum of squares SP  x y  values
F  r   

total  sum of squares SS x values  SS y values(x x) (y y )

− − ⋅ −= = = =
− ⋅ −− −

                                                                                           

 

SS regression  = SP2  x . y  -values/ SS x  -values 

SS total = SS y  

SS regression/SS total = r2 

SP indicates sum of products. 
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        Table 5. ANOVA table for the linear regression between paired samples 

  _ 

                                 Sum of     degrees of     mean                MS regression 

                                              Squares    freedom         square         F =  _______ 

          Source of variation     (SS)         (dfs)            MS = SS/dfs         MS total 

       regression                        1.017         1               1.017           0.58,  P >0.05 

              between samples   

 

              residual                           14.027         8              1.753    

 

              total                                 15.044         9             

The ANOVA table (Table 5) gives an alternative interpretation of the correlation 

coefficient; the square of the correlation coefficient, r, equals the regression sum of 

squares divided by the total sum of squares (0.262 = 0.0676 = 1.017/15.044) and, 

thus, is the proportion of the total variation that has been explained by the 

regression. We can say that  the variances in the drug data are only for  6.76% 

determined by the variances in the placebo data, and that they are for 93.24% 

independent of the placebo data. With strong positive correlations, e.g., close to +1 

the formula for  SD and thus SEM reduces to a very small size (because [SD1
2  + 

SD2
2 – 2 r SD1. SD2] will be close to zero), and the paired t-test produces huge 

sizes of t and thus huge sensitivity of testing.  The above approach cannot be used 

for estimating significance of differences between two paired samples. And the 

method in the presented form is not very relevant. It starts, however, to be relevant, 

if we are interested in the dependency of a particular outcome variable upon 

several factors. E.g., the effect of a drug is better than placebo but this effect still 

gets better with increased age. This concept can be represented by a multiple 

regression equation 

                               y = a+b1x1+b2x2     

 

which in this example is 

          drug response = a + b1 . (placebo response) + b2 . (age) 

 

Although it is no longer easy to visualize the regression, the principles involved are 

the same as with linear regression. In chapter 8 this subject will be dealt with more 

explicitly.  

 
7. NULL-HYPOTHESIS TESTING OF 3 OR MORE PAIRED SAMPLES 
 

If more than two paired samples are compared, things soon get really complicated, 

and the paired t-test  can no longer be applied. Usually, statistical software (SAS, 

_

_

SPSS, available through the Internet) will be used to produce F- and P-values, but

the Table 6 gives a brief summary of the principles of ANOVA for multiple paired 

observations, used for this purpose.  
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Table 6. Repeated measurements ANOVA 

___________________________________________________________ 

Paired ANOVA 3 treatments in single group 

                                                          Total variation 

                                                          |                   | 

                           Between subject variation           Within-subject variation 

                                                                            |                                | 

                                Between treatment variation                             Residual variation 

(random)  

 Variations expressed as sums of squares (SS) and can be added up 

Assess whether between treatment variation is large compared to residual. 

  

Subject                        treatment 1 treatment 2  treatment 3         SD2 

1                                   -                    -                 -                        - 

2                                   -                    -                 -                        -  

3                                   -                    -                 -                        -         

4                                   -                    -                 -                        -                    

Treatment mean           -                    -                 - 

Grand mean = (treatment mean 1 + 2 + 3)/ 3 = …..    

  

SS within subject  = SD1
2+SD2

2+SD3
2 

SS treatment = (treatment mean 1 – grand mean)2 + (treatment mean 2  grand mean)2 +….. 

SS residual  = SS within subject   SS treatment  

dfs / SS

  /dfs SS
 F

residual 

treatment=                                                       

 

                                                    F table gives P-value. 

_________________________________________________________________ 

Effect of 3 treatments on vascular resistance (blood pressure / cardiac output). 

  

Person                 treatment 1  treatment 2 treatment 3    SD2 

          

1                                  22.2           5.4           10.6           147.95 

2                                  17.0           6.3             6.2             77.05    

3                                  14.1           8.5             9.3             18.35    

4                                  17.0         10.7           12.3              21.4     

 

Treatment mean          17.58           7.73              9.60 

Grand mean = 11.63                                                                                                                

 

 

 

SS within subj  = 147.95 + 77.05 +….                        

SS treatment    = (17.58 – 11.63)2 + (7.73 – 11.63)2 +…. 

SS residual     = SS within subject   SS treatment 
       F= 14.31  and so  P<0.01                                                                                 

________________________________________________________________ 

Note: in case of 2 treatments: repeated measurements-ANOVA produces the same result as 

the paired t-test (F = t2 ),  dfs = degrees of freedom equals 3 1= 2 for SStreatment , and 4 1 = 3  

for SSresidual .  

29
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8. PAIRED DATA WITH A NEGATIVE CORRELATION 

 

Many crossover and parallel-group studies include an element of self-controlling. 

E.g., observations before, during, and after treatment are frequently used as the 

main control on experimental variation. Such repeated measures will generally 

have a positive correlation: those who respond well during the first observation are 

drugs of completely different classes are compared, patients may fall apart into 

different populations: those who respond better to one and those who respond 

better to the other drug. For example, patients with angina pectoris, hypertension, 

arrhythmias, chronic obstructive pulmonary disease, unresponsive to one class of 

drugs, may respond very well to a different class of drugs. This situation gives rise 

to a negative correlation in a paired comparison. Other examples of negative 

correlations between paired observations include the following. A negative 

correlation between subsequent observations in one subject may occur because 

fast-responders are more likely to stop responding earlier. A negative correlation 

may exist in the patient characteristics of a trial, e.g., between age and vital lung 

capacity, and in outcome variables of a trial, e.g., between severity of heart attack 

and  ejection fraction. Negative correlations in a paired comparison reduce the 

sensitivity not only of studies testing significance but also of studies testing 

equivalence.   

 

more likely to do so during the second. This is, however, not necessarily so. When 
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I. Studies testing significance of differences 

 

Figure 4.  Hypothesized examples of three studies: left graph parallel-group study of 10 

patients, middle and right graphs self-controlled studies of 5 patients each tested twice. 

 
Figure 4 gives a hypothesized example of three studies: the left graph shows a 

parallel-group study of 10 patients, the middle and right graph show self-controlled 

studies of 5 patients each tested twice. T-statistics is employed according to the 

formula 

 

SE

d
 t =  

 

Where  is the mean difference between the two sets of data (6 − 3 = 3) and the 

standard error (SE) of this difference is calculated for the left graph data according 

to 

99.0
n

SD
 

n

SD

2

2

2

1

2

1 =+  

SD1and SD2 are standard deviations and n1 and n2 are numbers of observations in 

each of the groups. We assume that n1 = n2 = n. 

                                                     t  = 3 / 0.99 = 3.0 

With 10 observations we can reject the null-hypothesis at p = 0.04. 

 

0
n

1)-(n/ )d-d(
SE

2

==  

where d is the observed change in each individual and  is its mean. 

                                                  

                                           t = d / SE = 3/0 = ∞ 

 

with n = 5 we can reject the null-hypothesis at p<0.001. 
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With a positive-correlated paired comparison (middle graph) we have even more

sensitivity. SE is calculated slightly different 
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The right graph gives the negative correlation situation. SE calculated similarly to 

the middle graph data is 1.58, which means that  

 

                                              t = 3 / 1.58 = 1.89 

 

The null-hypothesis of no difference cannot be rejected. Differences are not 

significant (n.s.). 

When more than 2 treatments are given to one sample of patients t-statistics is not 

appropriate and should be replaced by analysis of variance.  

Figure 5.  Hypothesized example of two studies where 5 patients are tested three times. Due 

to negative correlation between treatment 2 and 3 in the right study, the statistical 
significance test is negative unlike the left graph study, despite the identical mean results. 

 
Figure 5 gives a hypothesized example of two studies where 5 patients are tested 

three times. In the left graph the correlation between treatment responses is 

positive, whereas in the right graph the correlation between treatment no.3 and 

no.2 is strong negative rather than positive. For the left graph data repeated 

measures ANOVA is performed. 

The sum of squares (SS) of the different treatments is calculated according to 

 
                    Patient      treatment 1     treatment 2    treatment 3         Mean        SD2 

                        1                   6                    5                    8                   6.3            4.67 

                        2                   5                    4                    7                   5.3            4.67 

                        3                   4                    3                    6                   4.3            4.67 

                        4                   3                    2                    5                   3.3            4.67 

                        5                   2                    1                    4                   2.3            4.67 

              Treatment mean     4                    3                    6               

________________________________________________________________________________                                                                 

Grand mean 4.3                                      

SS within subjects  = 4.67 + 4.67 + … = 23.3         

SS treatments  = 5 [(44.3)2 + (3-4.3)2 + (6-4.3)2 ] = 23.35 

SS residual  =  SS within subjects - SS treatments = 0 
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Table 7. ANOVA table of the data 

              ____________________________________________________ 

                  Source of variation            SS                      dfs                      MS 

                  Within subjects                  23.35                  10           

                  Treatments                         23.35                  2                       11.68 

                  Residual                              0                         8                         0 

 

∞==
 MS

MS
 F

residual

treatments   p<0.001 

                 _______________________________________________ 

 
This analysis permits concluding that at least one of the treatments produces a 

change. To isolate which one, we need to use a multiple-comparisons procedure, 

e.g., the modified Bonferroni t-test for ANOVA where  

                   

“SE2 = Σ (d − d )2  /(n 1)” is replaced with  “MS residual” (Table 7).  So, to compare, 

e.g., treatment no. 2 with treatment no. 3 

 

∞==
)/nMS(

3  6
t

residual

   p<0.001    

 

Of the right graph from Figure 5) a similar analysis is performed. 

 
                 Patients         treatment 1          treatment 2        treatment 3         Mean      SD2 

                        1                    6                           5                       4                  5.0           1.0 

                        2                    5                           4                       5                  4.7           0.67 

                        3                    4                           3                       6                  4.3           4.67 

                        4                    3                           2                       7                  4.0         14.0 

                        5                    2                           1                       8                  3.7         28.49 

              Treatment mean      4                           3                       6          

              _________________________________________________________________ 

 

              Grand mean 4.3                                                                   

 

SS within subjects  = 1.0 + 0.67 + 4.67 + …. =  48.83 

SS treatments  = 5 [(4 4.3)2+(3 4.3)2 + (6 4.3)2 ] = 23.35 

SS residual =  SS within subjects – SS treatments = 48.83 23.35 = 24.48  
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Table 8. ANOVA table of the data 

                      ___________________________________________________ 

                      Source of variation            SS                   DF                      MS 

                          Within subjects            48.83                10         

                          Treatments                   23.35                  2                       11.7 

                          Residual                       24.48                  8                         3.1 

 

77.3
 MS

MS
 F

residual

treatments ==   p = 0.20 

                       __________________________________________________ 

 

This analysis does not permit concluding that one of the treatments produces a 

change (Table 8). The Bonferroni adjustment of treatments no. 2 and no. 3 of 

course, does not either (p = 0.24 and p = 0.34). 

In conclusion, with negative correlations between treatment responses statistical 

methods including paired t-statistics, repeated measures ANOVA, and Bonferroni 

adjustments for ANOVA lack sensitivity to demonstrate significant treatment 

effects. The question why this is so, is not difficult to recognize. With t-statistics 

and a negative correlation between-patient-variation is almost doubled by taking 

paired differences. With ANOVA things are similar.  

SSwithin subjects are twice the size of the positive correlation situation while SStreatments 

are not different. It follows that the positive correlation situation provides a lot 

more sensitivity to test than the negative correlation situation.  

 

II. Studies testing equivalence  

 
In an equivalence trial the conventional significance test has little relevance: failure 

to detect a difference does not imply equivalence, and a difference which is 

detected may not have any clinical relevance and, thus, may not correspond to 

practical  equivalence. In such trials the range of equivalence is usually predefined  

as an interval from –D to +D distant from a difference of 0. D is often set equal to a 

difference of undisputed clinical importance, and hence may be above the 

minimum of clinical interest by a factor two or three. The bioequivalence study 

design essentially tests both equivalence and superiority/inferiority. Let us assume 

that in an equivalence trial of vasodilators for Raynaud’s phenomenon 10 patients 

are treated with vasodilator 1 for one week and for a separate period of one week 

with vasodilator 2. The data below show the numbers of Raynaud attacks per week 

(Table 9). 
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      Table 9. Correlation levels and their influence on sensitivity of statistical tests 

 

                    ρ = 1                                      ρ  = 0                                             ρ  = +1 

            vasodilator                                                 

 one  two   paired                      

    45    10      35                              45    40     5                               10    10    0 

    40    15      25                              40    35     5                               20    15    5 

    40    15      25                              40    35     5                               25    15   10 

    35    20      15                              35    30     5                               25    20    5 

    30    25      5                                30    25     5                               30    25    5 

    30    25      5                                30    10     20                             30    25    5  

    25    30     5                                25    15     10                            35   30    5  

    25    35     10                              25    15     10                            40   35    5 

    20    35     15                              20    20      0                             40   35    5    

    10    40      30                             10    25      15                            40   40    5 

__________________________________________________________________  

   means      

     30    25      5                                 30     25      5                           30    25     5       

   SEMs  

     3.16   3.16  6.46                           3.16   3.16   2.78                    3.16   3.16   0.76       

   t-values   

     0.8                                                1.8                                          6.3     

   95% CIs   

     ± 14.5                                           ± 6.3                                       ± 1.7 

______________________________________________________________ 

    SEM = standard error of the mean; 

    t means level of t according to t-test for paired differences; 

    CI means confidence interval calculated according to critical t value of  

    t-distribution for 10     

    1 pairs = 9 degrees of freedom (critical t =2.26, 95% CI= 2.26 x SEM); 

    ρ = correlation coefficient (the Greek letter is often used instead of r if we mean 

    total population instead of our sample). 

 

Although samples have identical means and SEMs  ( 25 ±  3.16 x-axis, 30 ± 3.16  

y-axis) their correlation coefficients range from –1 to +1. The null hypothesis of no 

equivalence is rejected when the 95% CIs are entirely within the prespecified  

range of equivalence, in our case defined as between –10 and +10.   

In the left trial 95% CIs  are between –9.5 and +19.5, and thus the null hypothesis 

of no equivalence cannot be rejected. In the middle trial  95% CI are between  1.3 

and 11.3, while in the right trial 95% CI are between 3.3 and 6.7 . This means that 

the last trial has a positive outcome: equivalence is demonstrated, the null 

hypothesis of no equivalence can be rejected. The negative correlation trial and the 

zero correlation trial despite a small mean difference between the two treatments, 

are not sensitive to reject the null-hypothesis, and this is obviously so because of 

the wide confidence intervals associated with negative and zero correlations.  
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9. RANK TESTING 
 

Non-parametric tests are an alternative for ANOVA or t-tests when the data do 

not have a normal distribution. In that case the former tests are more sensitive than 

the latter. They are quick and easy, and are based on ranking of data in their order 

of magnitude. With heavily skewed data this means that we make the distribution 

of the ranks look a little bit like a normal distribution. We have paired and unpaired 

non-parametric tests and with the paired test the same problem of loss of sensitivity 

with negative correlations is encountered as the one we observed with the paired 

normality tests as discussed in the preceding paragraph. Non-parametric tests are 

also used to test normal distributions, and provide hardly different results from 

their parametric counterparts when distributions are approximately normal. Most 

frequently used tests: 

 

For paired comparisons:  

 

Wilcoxon signed rank test  = paired Wilcoxon test 

 

For unpaired comparisons:  

 

Mann-Whitney test = Wilcoxon rank sum test 

 

PAIRED TEST: WILCOXON SIGNED RANK TEST 

 
          Table 10. Paired comparison using Wilcoxon signed rank test:  

                        placebo-controlled clinical trial to test efficacy  

                        of sleeping drug 

___________________________________________ 

                 Hours of sleep                       rank 

___________________________________________ 

Patient drug   placebo   difference   (ignoring sign) 

___________________________________________ 

1          6.1      5.2          0.9   3.5x 

2          7.0      7.9        0.9           3.5 

3.         8.2      3.9         4.3            10 

4.         7.6      4.7         2.9                 7 

5.         6.5      5.3         1.2                 5 

6.         8.4      5.4         3.0                 8 

7.         6.9      4.2         2.7                 6 

8.         6.7      6.1         0.6                 2 

9.         7.4      3.8         3.6                 9 

10.       5.8      6.3        0.5                1 

_____________________________________________ 
 

                       xnumber 3 and 4 in the rank are tight, so we use 3.5 for both of them.  

 

−
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The Wilcoxon signed rank test uses the signs and the relative magnitudes of the 

data instead of the actual data (Table 10). E.g., the above table shows the number 

of hours sleep in 10 patients tested twice: with sleeping pill and with placebo.We 

have 3 steps: 

1. exclude the differences that are zero, put the remaining differences in 

ascending order of magnitude and ignore their sign and give them a rank 

number 1, 2, 3 etc ( if differences are equal, average their rank numbers: 3 and 

4 become 3.5 and 3.5); 

2. add up the positive differences as well as the negative differences; 

+    ranknumbers = 3.5+10+7+5+8+6+2+9 = 50.5 

  ranknumbers = 3.5+1= 4.5 

3. The null hypothesis is that there is no difference between + = and- 

ranknumbers. We assess the smaller of the two ranknumbers. The test is 

significant if the value is smaller than could be expected by chance. We 

consult the Wilcoxon signed rank table showing us the upper values for 5%, 

and 1% significance, for the number of differences constituting our rank. In 

this example we have 10 ranks: 5% and 1% points are respectively 8 and 3. 

The result is significant at P<0.05, indicating that the sleeping drug is more 

effective than the placebo. 

        

UNPAIRED TEST: MANN-WHITNEY TEST  

 

Table 11 shows  two-samples of patients are treated with 2 different NSAID 

agents. Outcome variable is plasma globulin concentration (g/l). Sample one is 

printed in standard and sample 2 is printed in fat print.  
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Table 11.Two-samples of patients are treated  with 2 different NSAIDs. Outcome 

variable is plasma globulin concentration (g/l). 

Sample one is printed in standard and sample 2 is printed in fat print 

_______________________________________________________ 

Globulin concentration(g/l)     ranknumber 

_______________________________________________________  

 

26                                       1 

27                                             2 

28                                             3 

29                                             4 

30                                             5 

31                                             6 

32                                             7 

33                                             8 

34                                             9 

35                                           10 

36                                           11 

38                                           12.5 

38                                           12.5 

39                                           14.5 

39                                           14.5 

40                                           16 

41                                           17 

42                                           18 

45                                           19.5 

45                                          19.5 

_________________________________________________________ 

 

We have 2 steps (Table 11): 

1. The data from both samples are ranked together in ascending order of 

magnitude. Equal values are averaged. 

2. Add up the rank numbers of each of the two samples. In sample-one we have 

81.5, in sample-two we  have 128.5. We now can consult the Table for Mann-

Whitney tests and find with n = 10 and n =10 (differences in sample sizes are 

no problem) that the smaller of the two sums of ranks should be smaller than 

71 in order to conclude P<0.05. We can therefore not reject the null hypothesis 

of no difference, and have to conclude that the two samples are not 

significantly different from each other. 

 
Note: Kruskall-Wallis test and Friedman test are non parametric tests for analyzing 

more than two groups and more than two paired observations respectively. 
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10. CONCLUSIONS 

             
For the analysis of efficacy data we test null-hypotheses.  

The t-test is appropriate for two parallel-groups or two paired samples. 

Analysis of variance is appropriate for more than two groups/ treatments. 

For data that do not follow a normal frequency distribution non-parametric tests are 

available: for paired data the Wilcoxon signed rank test, for unpaired data the 

Mann-Whitney test is adequate. 

Note: in the references an overview of relevant textbooks is given. 
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CHAPTER 3 

 
THE ANALYSIS OF SAFETY DATA OF DRUG TRIALS 

 
1. INTRODUCTION, SUMMARY DISPLAY 

 

As discussed in chapter 1 the primary object of clinical trials of new drugs is 

generally to demonstrate efficacy rather than safety. However, a trial in human 

beings not at the same time adequately addressing safety is unethical, and the 

assessment of safety variables is an important element of the trial.  

An effective approach to the analysis of adverse effects is to present summaries of 

prevalences. We give an example (table 1). Calculations of the 95% confidence 

intervals (CIs) of a proportion is demonstrated in chapter 1. If 0.1<proportion (p) 

<0.9, the binomial distribution is very close to the normal distribution, but if p  

< 0.1,  the data follow a skewed, otherwise called Poisson distribution. 95 % CIs 

are, then, more adequately calculated according to  ± 1.96 np /  rather than  ± 

1.96 npp /)1( − (confer page 10). Alternatively, tables (e.g., Wissenschaftliche 

Tabelle, Documenta Geigy, Basel, 1995) and numerous statistical software 

packages can readily provide you with the CIs.  

 
Table 1. The prevalence of side-effects after 8 week   treatment 

__________________________________________________________ 

                                       Alpha blocker               Beta blocker 

                                       n =16                              n=15 

   side effect                      yes  no   95%  CIs(%)      yes  no   95% CIs (%) 

   nasal congestion        10     6 35-85   10   5  38-88 

   alcohol intolerance        2 12   2-43   2 13         4-71 

   urine incontinence        5 11 11-59   5 10     12-62 

   disturbed ejaculation    4   2 22-96   2     2         7-93 

   disturbed potence        4   2 22-96   2    2         7-93 

   dry mouth                    8   8 25-75 11    4      45-92 

   tiredness                      9   7 30-80  11     4      45-92 

   palpitations                   5 11 11-59    2  13         2-40 

   dizziness at rest           4 12   7-52   5  10     12-62 

   dizziness with exercise   8   8 25-75 12     3     52-96 

   orthostatic dizziness     8   8 25-75  10     5      38-88 

   sleepiness                     5 10 12-62   9     6     32-84 

  

Table 1 gives an example. The numbers in the table relate to the numbers of 

patients showing a particular side effect. Some questions were not answered by all 

patients. Particularly, sleepiness occurred differently in the two groups: 33% in the 
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left, 60% in the right group. This difference may be true or due to chance. In order 

to estimate the size of probability that this difference occurred merely by chance 

we can perform a statistical test which in case of proportions such as here has to be 

a chi-square or given the small data a Fisher exact test. We should add at this point 

that although mortality/morbidity may be an adverse event in many trials, there are 

also trials that use them as primary variables. This is particularly so with mortality 

trials in oncology and cardiology research. For the analysis of these kinds of trials 

the underneath methods of assessments are also adequate.  

 
2. FOUR METHODS TO ANALYZE TWO UNPAIRED PROPORTIONS 

 

Many methods exists to analyze two unpaired proportions, like odds ratios analysis 

(this chapter) and logistic regression (chapter 14), but here we will start by 

presenting the four most common methods for that purpose. Using the sleepiness 

data from above we construct a 2x2 contingency table: 
 

Sleepiness    no sleepiness 
____________________ 

Left treatment (left group)          5 (a)             10 (b) 

Right treatment (right group)      9( c)              6 (d) 

 

 

Method 1 

 

We can test significance of difference similarly to the method used for testing 

continuous data (chapter 2). In order to do so we first have to find the standard 

deviation (SD) of a proportion.  The SD of a proportion is given by the formula 

)1( pp − .   Unlike the SD for continuous data (see formula chapter 1), it is strictly 

independent of the sample size. It is not easy to prove why this formula is correct. 

However, it may be close to the truth considering an example (figure 1). Many 

samples of 15 patients are assessed for sleepiness. The proportion of sleepy people 

in the population is 10 out of every 15. Thus, in a representative sample from this 

population 10 sleepy patients will be the number most frequently encountered. It 

also is the mean proportion, and left and right from this mean proportion 

proportions grow gradually smaller, according to a binomial distribution ( which 

becomes normal distribution with large samples). Figure 1 shows that the chance 

of 8 or fewer sleepy patients is 15% (area under the curve, AUC, left from 8.3 = 

15%). The chance of 6 or less sleepy patients is 2.5 % ( AUC left from 6.6 = 

2.5%). The chance of 5 or less sleepy patients = 1%. This is a so-called binomial 

frequency distribution with mean 10 and a standard deviation of p (1 p) = 10/15  

(1 5/15) = 1.7.  1SD means AUC of approximately 15%, 2SDs means AUC  

of approximately 2.5%. And, so, according to the curve below SD= p(1 p) is close 

to the truth. 

 

−
−
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Figure 1. Frequency distribution of numbers of sleepy people observed in multiple samples 

of 15 patients from the same population.  

 

Note: for null-hypothesis-testing standard error (SE) rather than SD is required, 

and SE = SD/ √n. 

For testing we use the normal test (= z-test for binomial or binary data) which 

looks very much like the T-test for continuous data. T = d/SE ,   z = d/SE, where  

d = mean difference between two groups or difference of proportions and SE is the 

pooled SE of this difference.  What we test is, whether this ratio is larger than 

approximately 2 (1.96 for proportions, a little bit more, e.g., 2.1 or so, for 

continuous data). 

 

Example of continuous data (testing two means). 

                        

                                                     Mean ± SD                        SEM2 = SD2 /n 

                                                     ________________________________ 

                  group 1 (n =10)           5.9      ± 2.4   liter/min       5.76/10 

                  group 2  (n =10)          4.5      ± 1.7   liter/min       2.89/10 

  

Calculate: mean1  mean2 = 1.4. 

Then calculate pooled 930.0)SEM(SEM SEM 2

2

2

1 =+= . 

Note: for SEM of difference: take square root of sums of squares of separate SEMs 

and, so, reduce the analysis of two means to one of a single mean.  

       

1 2mean  mean
T 1.4 / 0.930 1.505

Pooled SEM 

−= = = , with degrees of freedom (dfs) 18*   p>0.05.                          

*We have 2 groups of n = 10 which means  2 x 10 2 = 18 dfs. 

 
Example of proportional data ( testing two proportions). 

 

       2x2 table                                  Sleepiness    No sleepiness 

     Left treatment (left group)   5                   10      
Right treatment (right group)      9                    6    
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differenceerror  standard pooled

(d) groupper  sleepers of sproportionbetween  difference
  z =  

)SE(SE

)15/5(9/15
    

SE  pooled

d
  z

2

2

2

1 +
−==  

1 1
1 1 1

1

p  (1 p )
SE  ( or SEM  )   where  p  5/15  etc........,

n
= =  

z = 1.45, not statistically significant from zero, because for a p<0.05 a 

z-value of at least 1.96 is required.  

 

Note: the z-test uses the bottomrow of the t-table (see APPENDIX), because, 

unlike continuous data that follow a t-distribution, proportional data follow a 

normal distribution. The z-test is improved by inclusion of a continuity correction. 

For that purpose the term  (1/2n1 + 1/2n2 ) is added to the denominator where n1 

and n2 are the sample sizes. The reason is that a continuous distribution is used to 

approximate a proportional distribution which is discrete, in this case binomial.  

 

 

According to some a more easy way to analyze proportional data is the socalled 

chi-square test. The chi-square test assumes that the data follow a chi-square 

frequency distribution which can be considered the square of a normal distribution 

(see also chapter 22). First some philosophical considerations. 

Repeated observations have both (1) a central tendency, and (2) a tendency to 

depart from the mean. In order to make predictions an index is needed to estimate 

the departures from the mean. Why not simply add up departures? However, this 

doesn’t work, because, with normal frequency distributions, the add-up sum  is 

equal to 0. A pragmatic solution chosen is taking the add-up sum of (departures)2  

distributions, variances follow (normal-distribution)
2
 .  The normal distribution is 

a biological rule used for making predictions from random samples. 

With a normal frequency distribution in your data (Figure 2 upper graph) you can 

test whether the mean of your study is significantly different from  0.  

If the mean result of your study > approximately 2 SEMs distant from 0, then we 

have <5% chance of no difference from 0, and we are entitled to reject the  

0-hypothesis of no difference. 

With (normal frequency distributions)2 (Figure 2 lower graph) we can test whether 

the variance of our study is significantly different from 0.  If the variance of our 

study is > 1.962  distant from 0, then we have <5% chance of no difference from 0, 

and we are entitled to reject the 0-hypothesis of no difference. 

 

−

−
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 Figure 2. Normal and chi-square frequency distributions. 

 

The chi-square test, otherwise called χ2  test can be used for the analysis of two 

unpaired proportions (2x2 table), but first we give a simpler example , a 1x2 table               

                       Sleepy         Not-sleepy       Sleepy          Not-sleepy 

                               observed (O)                expected from population (E)                                                                  

            a (n = 5)         b (n = 10)           (n = 10)       β (n = 5)          

 

We wish to assess whether the observed proportion is significantly different from 

the established population data from this population, called the expected 

proportion?  

O –E  = 

a-     = 5-10 = -5 

b-    = 10-5 =  5 + 

                         0     doesn’t work 

The above method to assess a possible difference between the observed and 

expected data does not work. Instead, we take square values. 

(a- α )2  = 25      divide by  to standardize = 2.5 

(b- β )2  = 25         ”        ”       ”       ”         = 5  + 

                                                                          7.5 

 

χ2 Value = the add-up variance in data = 7.5 
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 is the standard error (SE) of (a  α )2 and is used to standardize the data, similarly 

to the standardization of mean results using the t-statistic (replacing the mean 

results with t-values, see chapter 2).  

 

This 1x2 table has 1 degree of freedom. The chi-square table (see APPENDIX) 

shows four columns of chi-square values (standardized variances of various 

studies), an upper row of areas under the curve (AUCs), and a left end column with 

the degrees of freedom. For finding the appropriate area under the curve (= p-

value) of a 1x2 table we need the second row, because it has 1 degree of freedom. 

A chi-square value of 7.5 means an AUC = p-value of <0.01. The O-hypothesis 

can be rejected. Our observed proportion is significantly different from the 

expected proportion.   

Slightly more complex is the chi-square test for the underneath table of observed 

numbers of patients in a random sample: 

 

                                                               Sleepiness(n)    no sleepiness(n)     

                                                               __________________________  

             Left treatment (left group)       5 (a)           10 (b)           

             Right treatment (right group)   9 ( c)               6 (d)                

             n = numbers of patients in each cell. 

 

Commonly, no information is given about the numbers of patients to be expected, 

and, so, we have to use the best estimate based of the data given. The following 

procedure is applied: 

 

cell a:  (O-E)2 / E = (5  14/30 x 15)2  /  14/30 x 15 = ..     

 ”    b:  (O-E)2 / E 

 ”    c:  (O-E)2 / E 

 ”    d:  (O-E)2 / E                                                      _____________________ + 

                                                                                     chi-square =  2.106 

(O = observed number; E = expected number = (proportion sleepers /total number)  

x  numbergroup ). 

 

We can reject the 0-hypothesis if the squared distances from expectation > (1.96)2 

= 3.841 distant from 0, which is our critical chi-square value required to reject the 

0-hypothesis. A chi-square value of only 2.106 means that the 0-hypothesis can not 

be rejected.  

Note: a chi-square distribution = a squared normal distribution. When using the 

chi-square table, both the 1x2 and the 2x2 contingency tables have only 1 degree of 

freedom. 

 

−
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Method 3  

 

Instead of the above calculations to find the chi-square value for a 2x2 contingency 

table, a simpler pocket calculator method producing exactly the same results is 

described underneath 

                                                               Sleepiness    no sleepiness      total 

                                                                 

             Left treatment (left group)  5 (a)   10 (b)         a+b 

             Right treatment (right group)  9 ( c)            6 (d)               c+d 

                                                                 a+c              b+d 

Calculating the chi-square (  2 )  value is calculated according to:   

 

                                            (ad-bc)2(a+b+c+d) 
                                                                   _______________________ 

                                          (a+b)(c+d)(b+d)(a+c) 

    

In our case the size of the chi-square is again 2.106 at 1 degree of freedom which 

means that the 0-hypothesis of no difference not be rejected.  There is no 

significant difference between the two groups. 

 

 

Method 4 

 

Fisher-exact test is used as contrast test for the chi-square or normal test, and also 

for small samples, e.g., samples of n < 100. It, essentially, makes use of faculties 

expressed as the sign  “!”: e.g.,  5 ! indicates 5x4x3x2x1. 

 

                                                               Sleepiness    no sleepiness     
                                                               ____________________  

             Left treatment (left group) 5 (a)  10 (b)           

             Right treatment (right group)  9 ( c)        6 (d)            

                 

          P =     (a+b)! ((c+d)! (a+c)! (b+d)!    =  0.2   (much larger than 0.05)   

                         (a+b+c+d)! a!b!c!d! 
 

Again, we can not reject the null-hypothesis of no difference between the two 

groups. This test is laborious but a computer can calculate wide faculties in 

seconds. 
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3. CHI-SQUARE TO ANALYZE MORE THAN TWO UNPAIRED 

PROPORTIONS 
 

As will be explained in chapter 23, with chi-square statistics we enter the real 

world of statistics, because it is used for multiple tables, and it is also the basis of 

analysis of variance. Large tables of proportional data are more frequently used in 

business statistics than they are in biomedical research. After all, clinical 

investigators are, generally, more interested in the comparison between two 

treatment modalities than they are in multiple comparisons. Yet, e.g., in phase 1 

trials multiple compounds are often tested simultaneously. The analysis of large 

tables is similar to that of the above method-2. For example:  

 

                                        Sleepiness    no sleepiness     

                                     ____________________  

             Group I                5 (a)             10 (b)           

             Group II               9 (c)              6 (d)            

             Group III              .. (e)              ...(f) 

             Group IV              .. 

             Group V  

cell a:  (O E)2 / E =     

  ”     b:  (O E)2 / E 

  ”     c:  (O E)2 / E 

  ”     d:  (O E)2 / E 

  ”     e:   .. 

  ”     f :  ..  

                                                                                 _____________________ + 

                                                                                   chi-square value =  .. 

 

 

For cell a     O = 5   

                   )105(
...)69105(

...)95( +
++++

++= xE      etc 

 

Large tables have many degrees of freedom (dfs). For 2x2 cells, we have (2-1) x 

(2-1) = 1df, 5% p-value at chi-square = 3.841. For 3x2 cells, we have (3 1) x (2 1) 

= 2dfs, 5% p-value at chi-square = 5.991. For 5x2 cells, we have (5 1)(2 1) = 4 dfs, 

5% p-value at chi-square = 9.488. Each degree of freedom has its own frequency 

distribution curve (Figure 3): 

                     dfs 2=>p = 0.05 at χ2  5.99 

                     dfs 4    p = 0.05 at χ2   9.49 

                     dfs 6    p = 0.05 at χ2   12.59 

                     dfs 8    p = 0.05 at χ2   15.51 

                     dfs 10  p = 0.05 at χ2   18.31. 

 

−
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Figure 3. Each degree of freedom has its own frequency distribution curve. 

 

As an example we give a χ2 test for 3x2 table 

Hypertension            yes                      no 

Group 1  a  n =  60 d   n =   40 

Group 2 b  n =100 e   n  = 120 

Group 3  c  n =  80 f    n =  60 

 
Give the best estimate of the expected numbers in the cell according to the method 

described for the 2x2 contingency table above. Per cell: divide hypertensives in 

study by observations in study, multiply by observations in group. It gives you the 

best estimate. For cell a this is α = [(a+b+c)/(a+b+c+d+e+f )]  x   (a+d). Do the same
 for each cell and add-up    

    α = [(a+b+c)/(a+b+c+d+e+f)]  x (a+d) =  52.17 

              β  .....                                                        = 114.78 

              γ                                                              =  73.04 

              δ  = [(d+e+f))/(a+b+c+d+e+f)] x (a+d)  =  47.83 

              ε  ....                                                         =  57.39 

              ξ  ....                                                         =  66.96 

 

 

         (a-   α)2 /α  =  1.175 

         (b-  ...         =  1.903 

         (c-  ...        =  0.663 

         (d-  ...         =  1.282 

         (e-  ...         = 68.305 

         (f-   ...        =  0.723  + 

          χ2 value = 72.769 
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The p-value for (3-1)x(2-1) = 3 degrees of freedom is <0.001 according to the chi-

square table (see APPENDIX). 

  

Another example is given, a 2x3 table: 

 

Hypertension   hypertens-yes /  hypertens-no / don´t know 

Group 1         (a)  n = 60        (c)  n = 40       (e)  n = 60        

Group 2         (b)  n = 50       (d)   n = 60      (f)  n = 50 
 

Give best estimate population. Per cell: divide hypertensives in population by all 

patients, multiply by hypertensives in group.  For cell a this is: 

  

α =  [(a+b)/(a+b+c+d+e+f)]  x (a+c+e) 

 

Calculate every cell, add-up results. 

         α = [(a+b)/(a+b+c+d+e+f)]  x (a+c+e) = 55.000 

         β ....                                                         = 55.000 

         γ = [(c+d)/(a+b+c+d+e+f)] x (a+c+e)    = 51.613 

         δ  =   ...                                                    = 51.613  

         ε   ...                                                         = 55 

         ξ   ...                                                         = 55 

 

      (O E)2 / E = 

      (a α)2 /α   =   0.45 

      (b ...         =   0.45 

      (c  ..          =   0.847 

      (d  ..          =   1.363 

      (e  ..          =   0.45 

      (f  ..           =  0.45      + 

                 _______ 

                χ2    =   4.01                                                      

 

For (2 1) x (3 1) = 2 degrees of freedom our p-value is <0.001 according to the 

chi-square table (see APPENDIX). 

 

−
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4. MCNEMAR’S TEST FOR PAIRED PROPORTIONS 
 

Paired proportions have to be assessed when e.g., different diagnostic tests are 

performed in one subject. E.g., 315 subjects are tested for hypertension using both 

an automated device (test 1) and a sphygmomanometer (test 2), (Table 2). 

 
Table 2. Finding discordant pairs 

              _______________________________________ 

                                   Test 1 

                                   +            −             total 

              Test 2   +     184         54          238 

                          −        14         63            77 

                             ____________________ 

              total              198      117           315 

 

5.23
1454

14)(54
 McNemar  square-Chi

2

=
+

=  

             ________________________________________ 

 

184 subjects scored positive with both tests and 63 scored negative with both tests. 

These 247 subjects therefore give us no information about which of the tests is 

more likely to score positive. The information we require is entirely contained in 

the 68 subjects for which tests did not agree (the discordant pairs).  Table 2 shows 

how the chi-square value is calculated. Here we have again 1 degree of freedom, 

and so, a chi-square value of 23.5 indicates that the two devised produce 

significantly different results at p<0.001. 

 To analyze samples of more than 2 pairs of data, e.g., 3, 4 pairs, etc., McNemar’s 

test can not be applied. For that purpose Cochran’s test or logistic regression
 analysis is adequate (chapter 14).  
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5. SURVIVAL ANALYSIS 
 

Survival analysis 

 

 
Figure 4. Example of a survival curve plotting survival as a function of time. 

 
A survival curve plots percentage survival as a function of time. Figure 4 is an 

example. Fifteen patients are followed for 36 months. At time zero everybody is 

alive. At the end 40% (6/15) patients are still alive. Percentage decreased whenever 

a patient died. A problem with survival analysis generally is that of lost data: some 

patients may be still alive at the end of the study but were lost for follow-up for 

several reasons. We at least know that they lived at the time they were lost, and so 

they contribute useful information. The data from subjects leaving the study are 

called censored data and should be included in the analysis.  

With the Kaplan-Meier method, survival is recalculated every time a patient dies 

(approaches to survival different from the Kaplan-Meier approach are (1) the 

actuarial method, where the x-axis is divided into regular intervals and (2) life-

table analysis using tables instead of graphs). To calculate the fraction of patients 

who survive a particular day, simply divide the numbers still alive after the day by 

the number alive before the day. Also exclude those who are lost = censored on the 

very day and remove from both the numerator and denominator. To calculate  

the fraction of patients who survive from day 0 until a particular day, multiply the 

fraction who survive day-1, times the fraction of those who survive day-2, etc. This 

product of many survival fractions is called the product-limit. In order to calculate 

the 95% CIs, we can use the formula: 

95% CI of the product of survival fractions (p) at time
k

p)-(1
p2p k ⋅±=   

The interpretation: we have measured survival in one sample, and the 95% CI 

shows we can be 95% sure that the true population survival is within the 

boundaries (see figure upper and lower boundaries). Instead of days, as time 

variable, weeks, months etc may be used. 
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Testing significance of difference between two Kaplan-Meier curves 

Figure 5. Two Kaplan-Meier survival curves. 

 
Survival is essentially expressed in the form of either proportions or odds, and 

statistical testing whether one treatment modality scores better than the other in 

terms of providing better survival can be effectively done by using tests similar to 

the above chi-square tests or chi-square-like tests in order to test whether any 

proportion of responders is different from another proportion, e.g., the proportion 

of responders in a control group. RRs or ORs are calculated for that purpose 

(review chapter 1). For example, in the example in the ith 2-month period we have 

left the following numbers: ai and bi in curve 1, ci and di in curve 2,  

 

                                                              Numbers of      numbers  

       Contingency table                        deaths               alive                                                              _____________________  

                                       Curve 1           a i                      b i              

                                       curve 2            c i                      d i 
        i = 1, 2, 3,... 

 

i i i i

i i i i

a  / b a d
Odds  ratio  

c  / d b c
= =  

 

Significance of difference between the curves (Figure 5) is calculated according to 

the added products “ad” divided by “bc”. This can be readily carried out by the  

 

Mantel-Haenszl summary chi-square test: 

 

])dcba/()db)(c(a)dc)(ba[(

)])dcba/()ca)(ba[(a (
3

iiiiiiiiiiii

2

iiiiiiiii2

H-M +++++++
+++++−

=χ  
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where we thus have multiple 2x2 contingency tables e.g. one for every last day of a 

subsequent month of the study. With 18 months follow-up the procedure would 

yield 18 2x2-contingency-tables. This Mantel Haenszl summary chi square test is, 

when used for comparing survival curves, more routinely called log rank test  (this 

name is rather confusing because there is no logarithm involved) 

 

Note: An alternative more sophisticated approach to compare survival curves is the 

Cox’s proportional hazards model, a method analogous to multiple regression 

analysis for multiple means of continuous data and to logistic regression for 

proportions in a multivariate model (chapter 15).  

 
6. ODDS RATIO METHOD FOR ANALYZING TWO UNPAIRED 

PROPORTIONS 
 

Odds ratios increasingly replace chi/square tests for analyzing 2x2 contingency 

tables.  
                                     illness    no illness 

                 group 1               a                 b 

                 group 2               c                 d 

 

The odds ratio (OR) = a/b/c/d 

                                 = odds of illness group1/odds illness group 2 

                                 = chance illness......../.......... 

 

We want to test whether the OR is significantly different from an OR of 1.0. 

For that purpose we have to use the logarithmic transformation, and so we will 

start by recapitulating the principles of logarithmetic calculations. 

Log = log to the base 10; Ln = natural log = log to the base e   (e = 2.71…) 

 

log 10 = 10log 10 = 1 

log 100 = 10log 100 = 2 

log 1 = 10log 1=  10log 100 = 0 

antilog 1 = 10 

antilog 2 = 100 

antilog 0 = 1 

 

ln e =  elog e = 1             

ln e2 =  elog e2 = 2                                     

ln 1 = elog 1 = elog e0 = 0 

antiln 1 = e 

antiln 2 = e2 

antiln 0 = 1 
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The frequency distributions of samples of continuous numbers or proportions   are 

normal. Those of many odds ratios are not. The underneath example is an 

argument that odds ratios may follow an exponential pattern, while the normal 

distribution has been approximated by mathematicians by means of the underneath 

exponential formula  

           

10
100/1

1/10
  

c/d

a/b ==  1
10/1

1/10
  

c/d

a/b ==  
10

1

10/1

1/100
  

c/d

a/b ==  

 

               

2

2

1

e)

2

1
(y

x

π
=                                                                                      

 

          x individual data, y how often, e = 2.718. 

    

It was astonishing but not unexpected that mathematicians discovered that 

frequency distributions of log OR followed a normal distribution, and that results 

were even better if ln instead of log was used.      

                                                                     event         no event 

                                                    group 1          a                     b   
                                                    group 2          c                     d 

 

If OR  1
d / c

b / a ==   ,  this means that no difference exists between group 1 and 2. 

If OR = 1, then lnOR = 0. With a normal distribution if the result > 2 standard 

errors (SEs) distant from 0, then the result is significantly different from 0 at 

p<0.05. This would also mean that, if ln OR > 2 SEs distant from 0, then this result 

would be significantly different from 0 at p<0.05. There are three possible 

situations:                               

   study 1                           < --.-- >  lnOR > 2 SEs dist 0 =>  p<0.05 

   study 2                    < - -.-- >        lnOR < 2 SEs dist 0 =>  ns 

   study 3           < --.-- >                  lnOR > 2 SEs dist 0 =>  p<0.05 

                      ................. ................ 

                          lnOR = 0 (OR = 1.0)                      

Using this method we can test the OR. However, we need to know how to find the 

SE of our OR. SE of OR is given by the formula )
d

1

c

1

b

1

a

1
( +++ . 

This relatively simple formula is not a big surprise, considering that the SE of a 

number g = √g, and  the SE of 1/g = 
g

1  . We can now assess our data by the OR 

method as follows:  
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                                           Hypertension yes     hypertension no 

                        Group 1    a    n =5                b    n=10 

                        Group 2     c    n=10                    d    n=  5 

  

OR 25.0
d / c

b / a ==   

lnOR= 1.3863 

SEM lnOR =  )
d

1

c

1

b

1

a

1
( +++ = 0.7746 

ln OR ± 2 SEMs = -1.3863 ± 1.5182                                

                            = between – 2.905 and 0.132,  

Now turn the ln numbers into real numbers by the antiln button of your pocket 

calculator. 

                            = between  0.055 en 1.14.    

The result “crosses” 1.0, and, so, it is not significantly different from 1.0. 

 

 

A second example answers the question: is the difference between the underneath 

group 1 and 2 significant?             

                                                                           orthostatic hypotension 

                                                                                        yes              no 

                                                                    Group 1        77              62 

                                                                    Group 2      103              46 

OR 803.1
242.1

239.2

62 / 77

46 / 103 ===  

lnOR = 0.589 

SEM lnOR = 245.0)
62

1

77

1

46

1

103

1
( =+++  

lnOR ± 2 SEMs = 0.589 ± 2(0.245) 

                        = 0.589  ± 0.482  

                         = between 0.107 and 1.071. 

Turn the ln numbers into real numbers by use of antiln button of your pocket 

calculator. 

                         = between 1.11 and 2.92 , and, so, significantly different from 1.0. 

What p-value do we have:  t = lnOR / SEM = 0.589/0.245 = 2.4082. The 

bottomrow of the t-table is used for proportional data (z-test), and give us a p-value 

<0.02. 

 

Note: a major problem with odds ratios is the ceiling problem. If the control group 

n = 0, then it is convenient to replace 0 with 0.5 in order to prevent this problem. 

 

−
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7. ODDS RATIOS FOR 1 GROUP, TWO TREATMENTS 

 

So far we assessed 2 groups, 1 treatment. Now we will assess 1 group, 2 treatments 

and use for that purpose the McNemar’s OR. 

 

                                               normotension with drug 1    
                                                                      yes          no       

                      normotension           yes     (a) 65     (b) 28 

                      with drug 2                 no     (c) 12    (d) 34 

 

Here the  OR  = b/c, and the SE is not )
d

1

c

1

b

1

a

1
( +++ , but rather )

c

1

b

1
( + . 

OR  = 28/12 = 2.33 

lnOR = ln2.33 = 0.847 

SE = )
c

1

b

1
( +  = 0.345 

lnOR ± 2 SE  = 0.847 ± 0.690  

            = between 0.157 and 1.537, 

calculator. 

                    = between 1.16 and 4.65 

                     = sig diff from 1.0. 

                     ---------------------------------------   

Calculation p-value: t = lnOR/SEM = 0.847:0.345 = 2.455. The bottomrow of the

 t-table produces a p-value of <0.02, and the two drugs produce, thus, significantly 

different results at p<0.02.    

 
8. CONCLUSIONS 

 

1. For the analysis of efficacy data we test null-hypotheses, safety data consist of     

    proportions, and require for statistical assessment different methods.  

2. 2x2 tables are convenient to test differences between 2 proportions.  

3. Use chi-square or t-test for normal distributions (z-test) for that purpose.  

4. For paired proportions the McNemar’s test is appropriate. 

5. Kaplan Meier survival curves are also proportional data: include lost patients. 

6. Two Kaplan-Meier Curves can be compared using the Mantel-Haenszl = Log 

    rank test 

7. Odds ratios with logarithmic transformation provide an alternative method for 

    analyzing  2x2 tables. 
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In the past two chapters we discussed different statistical methods to test 

statistically experimental data from clinical trials. We did not emphasize 

correlation and regression analysis. The point is that correlation and regression 

analysis test correlations, rather than causal relationships. Two samples may be 

strongly correlated e.g., two different diagnostic tests  for assessment of the same 

phenomenon. This does, however, not mean that one diagnostic test causes the 

other. In testing the data from clinical trials we are mainly interested in causal 

relationships. When such assessments were statistically analyzed through 

correlation analyses mainly, we would probably be less convinced of a causal 

relationship than we are while using prospective hypothesis testing. So, this is the 

main reason we so far did not address correlation testing extensively. With 

epidemiological observational research things are essentially different: data are 

obtained from the observation of populations or the retrospective observation of 

patients selected because of a particular condition or illness. Conclusions are 

limited to the establishment of relationships, causal or not. We, currently, believe 

that relationships in medical research between a factor and an outcome can only be 

controlled clinical trial. A problem with multiple regression and logistic regression 

analysis as method for analyzing of multiple samples in clinical trials is closely 

related to this point. There is always an air of uncertainty about such regression 

data. Many trials use null-hypothesis testing of two variables, and use multiple 

regression data only to support and enhance the impact of the report, and to make 

readership more willing to read the report, rather than to prove the endpoints. It is 

very unsettling to realize that clinicians and clinical investigators often make bold 

statements about causalities from multivariate analyses. We believe that this point 

deserves full emphasis, and will therefore address it again in many subsequent  

chapters.   

 

proven to be causal when the factor is introduced and subsequently gives rise 

to the outcome. We are more convinced when such is tested in the form of a 
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EQUIVALENCE TESTING 

 
1. INTRODUCTION 

 

A study unable to find a difference is not the same as an equivalent study. For 

example, a study of 3 subjects does not find a significant difference simply because 

the sample size is too small. Equivalence testing is particularly important for 

studying the treatment of diseases for which a placebo control would unethical. In 

the situation a new treatment must be compared with standard treatment. The latter 

comparison is at risk of finding little differences.  

Figure 1 gives an example of a study where the mean result is little different from 

0. Is the result equivalent then. H1 represent the distribution of our data and H0 is 

the null-hypothesis (this approach is more fully explained in chapter 2). What we 

observe is that the mean of our trial is only 0.9 standard errors of the mean (SEMs) 

distant from 0. which is far too little to reject the null-hypothesis. Our result is not 

significantly different from 0. Whether our result is equivalent to 0, depends on our 

prior defined criterium of equivalence. In the figure D sets the defined interval of 

equivalence. If 95% CIs of our trial is completely within this interval, we conclude 

that equivalence is demonstrated. This mean that with D1 boundaries we have no 

equivalence, with D2 boundaries we do have equivalence. The striped area under 

curve = the socalled 95 % CIs = the interval approximately between − 2 SEMs and 

+ 2 SEMs (i.e., 1.96 SEMs with normal distributions, a little bit more than 2 SEMs 

with t-distributions. It is often hard to prior define the D boundaries, but they 

should be based not on mathematical but rather on clinical arguments, i.e., the 

boundaries where differences are undisputedly clinically irrelevant.    
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Figure 1. Null-hypothesis testing and equivalence testing of a 

sample of t-distributed data. 

 

 
 

Figure 2. Null-hypothesis testing and equivalence testing of a 

sample of t-distributed data. 
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Figure 2 gives another example. The mean result of our trial is larger now: mean 

value is 2.9 SEMs distant from 0, and, so, we conclude that the difference from 0  

is > approximately 2 SEMs and, that we can reject the null-hypothesis of no 

difference. Does this mean that our study is not equivalent? This again depends on 

our prior defined criterium of equivalence. With D1 the trial is not completely 

within the boundaries and equivalence is thus not demonstrated. With D2 the 

striped area of the trial is completely within the boundaries and we conclude that 

equivalence has been demonstrated. Note that with D1 we have both significant 

difference and equivalence. 

 
2. OVERVIEW OF POSSIBILITIES WITH EQUIVALENCE TESTING 

 

Table 1 shows that any confidence interval (95% CIs intervals between the 

brackets in each of the examples) that does not overlap zero is statistically different 

from zero. Only intervals between the prespecified range of equivalence –D to + D 

present equivalence. Thus, situations 3, 4 and 5 demonstrate equivalence, while 1 

and 2, just like 6 and 7 do not. Situations 3 and 5 present equivalence and at the 

same time significant difference. Situation 8 presents nor significant difference, nor 

equivalence.  

 
Table 1. Any confidence interval (95 % CIs intervals between the brackets in each 

of the examples) that does not overlap zero is statistically different from zero. Only 

intervals between the prespecified range of equivalence –D to + D present 

equivalence 
____________________________________________________________________ 

 

Study    Statistical                                            equivalence 

(1-8)     significance                                         demonstrated 

             demonstrated 

___________________________________________________________________________ 

 

1.    Yes--------------------------------------------------------------------------------< not equivalent  > 

2.    Yes--------------------------------------------------------------------<     uncertain     >------------- 

3.    Yes -------------------------------------------------------<     equivalent   >------------------------- 

4.    No ---------------------------------------<        equivalent          >----------------------------------- 

5.    Yes-----------------------------<    equivalent     >--------------------------------------------------- 

6.    Yes------------<      uncertain         >----------------------------------------------------------------- 

7.    Yes-< not equivalent    >------------------------------------------------------------------------------ 

8.    No--------< ____________________        uncertain           ___________________>-------- 

 

________________________!__________________________________!_______________ 

                                                -D                             O                              +D 

                                                                              true difference               

__________________________________________________________________________ 

 

Testing equivalence of two treatments is different from testing their difference. We 

will in this chapter use the term comparative studies to name the latter kind of 

studies. In a comparative study we use statistical significance tests to determine 

whether the null hypothesis of no treatment difference can be rejected, frequently 
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together with 95% CIs to better visualize the size of the difference. In an 

equivalence study this significance test has little relevance: failure to detect a 

difference does not imply equivalence; the study may have been too small with 

corresponding wide standard errors to allow for such a conclusion. Also, not only 

difference but also equivalence are terms that should be interpreted within the 

context of clinical relevance. For that purpose we have to predefine a range of 

equivalence as an interval from –D to +D.  We can then simply check whether our 

95% CIs as centered on the observed difference lies entirely between –D and +D.  

If it does equivalence is demonstrated if not, there is room for uncertainty. The 

above table shows the discrepancies between significance and equivalence testing.  

The procedure of checking whether the 95% CIs are within a range of equivalence 

does look somewhat similar to a significance testing procedure, but one in which 

the role of the usual null and alternative hypothesis are reversed. In equivalence 

testing  the relevant null hypothesis is that  a difference of at least D exists, and the 

analysis is targeted at rejecting this “null-hypothesis”. The choice of D is difficult, 

is often chosen on clinical arguments : the new agent should be sufficiently similar 

to the standard agent to be clinically indistinguishable.  

 
3. CALCULATIONS 

 

95% CIs intervals are calculated according to the standard formulas 

 

Continuous data paired or unpaired  and normal distributions (with t-distribution  

2, which is actually 1.96, should be replaced by the appropriate t-value dependent 

upon sample size). 

 

Mean1 −  mean2  ± 2 SEMs where  

 

2

2

21

2

1sdifference unpaired  /nSD /nSD   SEM +=  

 

n

)SDSD2r SD (SD
   SEM 21

2

2

2

1
sdifference paired

⋅⋅+=    if n1 = n2 = n  

 

Binary data 

 

2

22

1

11
sdifference of

n

)p1(p

n

)p1(p
   SEM

−+−=  

 

With 95% CIs :   p1  p2   ± 2. SEM 

 

More details about the calculation of SEMS of samples are given in chapter 1. 

−

−



EQUIVALENCE TESTING 

 

The calculation of required samples size of the trial based on expected treatment 

effects in order to test our hypothesis reliably, will be explained in the next chapter 

together with sample size calculations for comparative studies.  

 

(Table 1). The result may be:  

1. The confidence interval for the difference between the two treatments lies 

entirely between the equivalence range so that we conclude that equivalence is 

demonstrated.  

2. The confidence interval covers at least several points outside the equivalence 

range so that we conclude that a clinically important difference remains a 

possibility, and equivalence cannot be safely concluded. 

3. The confidence interval is entirely outside the equivalence range. 

 
4. EQUIVALENCE TESTING, A NEW GOLD STANDARD? 

 

The classic gold standard in drug research is the randomized placebo controlled 

clinical trial. This design is favored for confirmatory trials as part of the phase III 

development of new medicines. Because of the large numbers and classes of 

medicines already available, however, new medicines are increasingly being 

developed for indications for which a placebo control group would be unethical. In 

such situations an obvious solution is to use as comparator an existing drug already 

licensed and regularly used for the indications in question. When an active 

comparator is used, the expectation may sometimes be that the new treatment will 

be better than the standard, the objective of the study may be to demonstrate this. 

This situation would be similar to a placebo control and requires no special 

methodology. More probably, however, the new treatment is expected to simply 

largely match the efficacy of the standard treatment but to have some advantages in 

terms of safety, adverse effects, costs, pharmacokinetic properties. Under these 

circumstances the objective of the trial is to show equivalent efficacy. 

 
5. VALIDITY OF EQUIVALENCE TRIALS 

 

A comparative trial is valid when it is blinded, randomized, explicit, accurate 

statistically and ethically. The same is true for equivalence trial. However, a 

problem arises with the intention to treat analysis. Intention to treat patients are 

analyzed according to their randomized treatment irrespective of whether they 

actually received the treatment. The argument is that it mirrors what will happen 

when a treatment is used in practice. In a comparative parallel group study the 

inclusion of protocol violators in the analysis tend to make the results of the two 

treatments more similar. In an equivalence study this effect may bias the study 

towards a positive result, being the demonstration of equivalence. A possibility is 

to carry out both intention-to-treat-analysis and completed-protocol-analysis. If no 

difference is demonstrated, we conclude that the study’s data are robust (otherwise 
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called sensitive, otherwise called precise) , and that the protocol-analysis did  not 

introduce major sloppiness into the data. Sometimes, efficacy and safety endpoints 

are analyzed differently: the former according to the protocol analysis simply 

because important endpoint variables are missing in the population that leaves the 

study early, and intention to treat analysis for the latter, because safety variables 

frequently include items such as side effects, drop-offs, morbidity and mortality 

during trial. Either endpoint can of course be assessed in an equivalence 

assessment trial, but we must consider that an intention to treat analysis may bias 

the equivalence principle towards overestimation of the chance of equivalence.  

Note: statistical power of equivalence testing is explained in the next chapter. 

 
6. SPECIAL POINT: LEVEL OF CORRELATION IN PAIRED EQUIVALENCE 

STUDIES 

 

 

Figure 3. Example of 3 crossover studies of two treatments in patients with 

Raynaud’s phenomenon. The Pearson’s correlation coefficient  varies 

 from -1 to 1. 
 

Figure 3 shows the results of three crossover trials with two drugs in patients with 

Raynaud’s phenomenon. In the left trial a negative correlation exists between the 

treatments, in the middle trial the correlation level is zero, while in the right trial a 

strong postive correlation is observed.  It is calculated that the mean difference 

between the treatments in each trial equals 5 Raynaud attacks/week but that the 

standard errors of the differences are different, left trial 6.46, middle trial 2.78, 

right trial 0.76 Raynaud attacks / week. Figure 4 shows that with a D-boundary of 

demonstrate equivalence. Fortunately, most crossover studies have a positive 

± 10 Raynaud attacks  / week only the positive correlation study is able to 
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correlation between the treatments, and, so, the crossover design is generally quite 

sensitive to assess equivalence.  

Figure 4. The mean difference between the two treatments of each of the treatment 

comparison of Figure 3 is 5 Raynaud attacks/week. However, standard errors, 
and, thus, 95% confidence intervals are largely different. With a D-boundary of ± 

10 Raynaud attacks / week only the positive correlation study (  = +1) can 

demonstrate equivalence.  
 

7. CONCLUSIONS 

 

1. The use of placebos is unethical if an effective active comparator is 

available. 

2. With an active comparator the new treatment may simply match the 

standard treatment. 

3. Predefined areas of equivalence have to be based on clinical arguments. 

4. Equivalence testing is indispensable in drug development (for comparison 

versus an active comparator). 

5. Equivalence trials have to be larger than comparative trials. You will 

understand this after reviewing the next chapter. 
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STATISTICAL POWER AND SAMPLE SIZE 

 
1. WHAT IS STATISTICAL POWER 

 

PROBABILITY 

DISTRIBUTION 

2.101

-3 -2 -1 0 1 2 3 4 5 SEMs

H0

H1

  
Figure 1. H1 is the given distribution of our data with mean value of 2.901 (= t 

= mean/SEM). β = area under curve (AUC) of H1 left from the dotted vertical 

line = ± 0.3 (± 30% of the total AUC). 1-β = ± 0.7 = ± 70% of total AUC of H1. 

Statistical power = ±  0.7 = chance of finding a difference when there is one. 

 
Figure 1 shows 2 graphs of t-distributions. The lower graph (H1) could be a 

probability distribution of a sample of data or of a sample of paired differences 

between two observations. N = 20 and so 95% of the observations is within 2.901 

± 2.101 standard errors of the mean (SEMs) on the x-axis (usually called z-axis in 

statistics). The upper graph is identical, but centers around 0 instead of 2.901. It is 

called the null-hypothesis H0, and represents the data of our sample if the mean 

results were not different from zero. However, our mean result is 2.901 SEMs 

distant from zero. If we had many samples obtained by similar trials under the 

same null-hypothesis, the chance of finding a mean value of more than 2.101 is  

< 5%, because the area under the curve (AUC) of H0 right from 2.101 <5% of total 

AUC. We, therefore, reject the assumption that our results indicate a difference just 
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by chance and decide that we have demonstrated a true difference. What is the 

power of this test. The power has as prior assumption that there is a difference 

from zero in our data. What is the chance of demonstrating a difference if there is 

one. If our experiment would be performed many times, the distribution of 

obtained mean values of those many experiments would center around 2.901, and 

about 70% of the AUC of H1 would be larger than 2.101. When smaller than 

2.101, our statistical analysis would not be able to reject the null-hypothesis  

of no difference, when larger, it would rightly be able to reject the null-hypothesis 

of no difference. So, in fact 100-70 = 30% of the many trials would erroneously  

be unable to reject the null-hypothesis of no difference, even when a true 

difference is in the data. We say the power of this experiment = 1-0.3 = 0.7 (70%), 

otherwise called the chance of finding a difference when there is one (area under curve 

(1-β)x 100%).  β is also called the chance of making a type II error = chance of 

finding no difference when there is one. Another chance is the chance of finding a 

difference where there is none, otherwise called the type I error (area under the 

curve (2x α/2)x 100%). This type of error is usually set to be 0.05 (5%). 

 
2. EMPHASIS ON STATISTICAL POWER RATHER THAN  

NULL-HYPOTHESIS TESTING 
 

Generally, statistical tests reach their conclusions by seeing how compatible the 

observations were with the null-hypothesis of no treatment effect or treatment 

difference between test-treatment and reference-treatment. In any test we reject the 

null-hypothesis of no treatment effect if the value of the test statistic (F, t, q, or chi-

square) was bigger than 95% of the values that would occur if the treatment had no 

effect. When this is so, it is common for medical investigators to report a 

statistically significant effect at  P (probability) <0.05 which means that the chance 

of finding no difference if there is one, is less than 5%. On the other hand, when 

the test statistic is not big enough to reject this null-hypothesis of no treatment 

effect, the investigators often report no statistically significant difference and 

discuss their results in terms of documented proof that the treatment had no effect. 

All they really did, was fail to demonstrate that it did have an effect. The 

distinction between positively demonstrating that a treatment had no effect and 

failing to demonstrate that it does have an effect, is subtle but very important, 

especially with respect to the small numbers of subjects usually enrolled in a trial.  

A study of treatments that involves only a few subjects and then fails to reject the 

null hypothesis of no treatment effect, may arrive at this result because the 

statistical procedure lacked power to detect the effect because of a too small 

sample size, even though the treatment did have an effect. 
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Figure 2.  Example of t-distribution with n = 20 and its null- 

hypothesis of no effect.  Lower curve H1 or actual SEM distribution 

of the data, upper curve H0 or null-hypothesis of the study. 

 
Figure 2 gives an example of a t-distribution with n = 20 (H1) and its null- 

hypothesis of no effect (H0). 95% of all similar trials with no significant treatment 

difference from zero must have their means between –2.101 and +2.101 SEMs 

from zero. The chance of finding a mean value of 2.101 SEMs or more is 5% or 

less ( α  =  0.05 or α. 100% = 5%,  where α is the chance of finding a difference 

when there is none = erroneously rejecting the null-hypothesis of no effect, also 

called type I error ).  The figure shows that in this particular situation the chance of 

β is 0.5 or β times 100% = 50%  (β is the chance of finding no difference where 

there is one = the chance of erroneously accepting the null-hypothesis of no 

treatment difference, also called type II error).   

Statistical power, defined as 1-β, can be best described as the chance of finding a 

difference where there is one = the chance of rightly rejecting the null-hypothesis 

of no effect. The figure shows that this chance of detecting a true-positive effect, 

i.e., reporting a statistically significant difference when the treatment really 

produces an effect is only 50%, and likewise that the chance of no statistically 

significant difference is no less than 50% either (β = 0.5). It means that if we reject 

the null-hypothesis of no effect at P = 0.05, we still have a chance of 50% that a 

real effect in our data is not detected. As a real effect in the data rather than no 

effect is the main underlying hypothesis of comparative drug trials, a 50% chance 

to detect it, is hardly acceptable for reliable testing. A more adequate cut-off level 

of rejecting would be, e.g., a 90-95% power level, with corresponding  α level of 
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0.005 to 0.001. Many physicians and even some investigators never confront these 

problems because they never heard of power. An additional advantage of power 

analysis is the possibility to use power computations on hypothesized results a 

priori in order to decide in advance on sample size for a study.  

 
3. POWER COMPUTATIONS 

 

Calculating power can be best left over to a computer, because other approaches 

are rather unprecise. E.g., with normal distributions or t-distributions power =1-β 

can be readily visualized from a graph as estimated percentage of the (1-β) x 100% 

area under the curve. However, errors as large as 10-20 % are unavoidable with 

this approach. We may alternatively use tables for t- and z-distributions, but as 

tables give discrete values this procedure is rather inaccurate either.  

A computer will make use of the following equations. 

 

For t-distributions of continuous data 

 

Power = 1-β = 1- probability [zpower ≤ (t-t1)] = probability [zpower >(t -t1)] 

 

where zpower represents a position on the x-axis of the z-distribution (or in this 

particular situation more correctly t-distribution), and t1 represents the level of t 

that for the given degrees of freedom (≈ sample size) yields an α of 0.05. Finally, t 

in the equation is the actual t as calculated from the data.  

Let’s assume we have a parallel-group data comparison with test statistic of  

t = 3.99 and n =20 (P<0.001). What is the power of this test? Zpower = (t1-t) = 

3.99 − 2.101=1.89. This is so, because t1 = the t that with 18 degrees of  freedom 

(dfs) (n = 20, 20-2) yields an α of 0.05. To convert zpower  into power we look up in 

the t-table with dfs =18 the closest level of probability and find approximately 0.9 

for 1.729. The power of this test thus is approximately 90%.  

 

For proportions 

zpower = 2. (arcsine 1p - arcsine 2p ) 
2

n
  - z1 

 

where zpower is a position on the x-axis of the z-distribution and  z1 is 2 if α = 0.05 

(actually 1.96). It is surprising that arcsine (= 1/sine) expressed in radians shows up 

but it turns out that power is a function of the square roots of the proportions, 

which has a 1/sine like function. 

A computer turns zpower into power. Actually, power graphs as presented in many 

current texts on statistics can give acceptable estimates for proportions as well.    
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For equivalence testing of samples with t-distributions and continuous data 

Power = 1-β = 1- probability [z<  (D/SEM  -  z1-α)]  

where z is again a position on the x-axis of the z- or t-distribution, D is half the 

interval of equivalence ( see previous chapter) , and z1-α is 2 (actually 1.96) if  is 

set at 5%. 

 

 

4. EXAMPLE OF POWER COMPUTATION USING THE T-TABLE 
 

Although a table gives discrete values, and is somewhat inaccurate to precisely 

calculate the power size, it is useful to master the method, because it is helpful to 

understand what statistical power really is. The example of Figure 3 is given. Our 

trial mean is 2.878 SEMs distant from 0 ( = the t-value of our trial). We will try to 

find beta by subtracting T-T1 where T1 is the T that yields an area under the curve 

(AUC) of 5% = 2.101. T-T1 = 2.878-2.101 = 0.668. Now we can use the t-table to 

find 1-beta = power.    

 

 
Figure 3. Example of power computation using the t-table. 

 

Table 1 (the t-table) gives 8 columns of t-values and one column (left one) of 

degrees of freedom. The upper rows give an overview of AUCs corresponding to 

various t-values and degrees of freedom. In our case we have two groups of 10 

subjects and thus 20-2 = 18 degrees of freedom (dfs). The AUC right from 2.101 = 

0.05 (tested 2-sided = tested for both >+2.101 and <-2.101 distant from 0). Now 

for the power analysis. The t-value of our trial = 2.878.  T1 = approximately 2.101. 

PROBABILITY

DISTRIBUTION
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T-T1 = approximately 0.777. The AUC right from 0.777 is right from 0.688 

corresponding with an areaa under the curve (AUC) < 0.25 (25%). Beta, always 

tested one-sided,is, thus, <25% ; 1 - beta = power = thus > 75%.     
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5. CALCULATION OF REQUIRED SAMPLE SIZE, RATIONALE 

 

An essential part of planning a clinical trial is to decide how many people need to 

be studied in order to answer the study objectives. Just pulling the sample sizes out 

of a hat gives rise to: 

1. Ethical problems, because if too many patients are given a potentially 

inferior treatment, this is not ethical to do. 

2. Scientific problems, because negative studies require the repetition of the 

research. 

3. Financial problems, because extra costs are involved in too small and too 

large studies. 

If we have no prior arguments to predict the outcome of a trial, we at least will 

have an idea of the kind of result that would be clinically relevant. This is also a 

very good basis to place prior sample size requirement on. E.g., a smaller study, for 

example, will be needed to detect a fourfold increase than a twofold one. So the 

sample size also depends on the size of result we want to demonstrate reliably. 

 
6. CALCULATIONS OF REQUIRED SAMPLE SIZE, METHODS 

 

be studied in order to answer the study objectives. 

 

A simple method : 

statistical significance. 

Assume: mean = 2 SEM 

Then       mean/ SEM = 2 

Then       mean/ SD/ n = 2 

Then       n = 2.SD/mean 

Then       n = 4. (SD/mean)2               

n = 4 (20/10)2  =  4 x 4 = 16.  P-value is then 0.05 but power is only 50%.   

 

A more accurate method is the power index method: 

determined by 3 major variables:   

(2)     D (mean difference or mean result), 

(3)     Variance in the data estimated as SD or SEM, 

(4)     Sample size. 

It follows that we can calculate (4) if we know the other 3 variables. 

The relationship between (4) and the 3 other variables can be expressed in fancy 

formulas with (zα + zβ )
2
 = power index as an important element in all of them. 

Here is the formula for continuous variables 
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An essential part of planning a clinical trial is to decide: how many people need to 

Mean should be at least 1.96 or approximately 2 SEMs distant from 0 to obtain 

For example, with mean =10 and SD = 20 we will need a sample size of  at least  

The statistical power (1) of a trial assessing a new treatment versus control is 
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n = 2. (SD/mean)
2
 (z  + z )

2
  

 

If the power index for null-hypothesis is (z  + z )
2, what is the size of this            

(z  + z  )
2
 ?

 

 

 

 

What does for example Z(alpha) exactly mean? Z(alpha) means “a place

“

 on the Z-

line. What place? If alpha is defined 5%, or rather 2x2 1/2% , then right from this 

place on the Z-line AUC = 5%, or rather 2x2 1/2%. So this place must be 1.96 

SEMs distant from 0, or a bit more with t-distribution. So Zalpha = 1.96 = 

approximately 2.0 (Figure 4). 

 

                            

Figure 5. Calculating power indexes. 
 

What does Z(beta) exactly mean? If beta is defined 20%, what is the place on Z-line 

of Z(beta)? Right from this place the AUC = 20% of the total AUC. This means that 

this place must be approximately 0.6 SEMs distant from 0. So Z beta = 

approximately 0.8 (Figure 5).  

                             Figure 4. Calculating power indexes. 
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Now we can calculate the power index (z  + z  )2.  

  

Z (alpha) = approximately 2.0 

Z (beta)  = approximately 0.8 

power index =   (z  + z  )2 = 2.82 = 7.8 

AAss  tthhee  formula for continuous variables is n = 2. (SD/mean )2
 (z  + z )2

  ,            

we can now conclude that with  = 5% and power = 1-  = 80% the required 

sample size is n = 15.6 (SD/mean)2 . E.g., with SD = 20 and mean =10, we will 

need a sample size of n = 15.6 (20/ 10)2 = 62. 

So, accounting a power of 80% requires 62, rather than the 16 patients, 

required according to the simple method.   

  

Other formulas for sample size computations include: 

  

Required sample size formula for proportions 

2

21

22112

)p-p(

)p-(1p)p-(1p
)z(z N

+
⋅+= βα  

(where p1 and p2 are the proportions to be compared). 

 

Required sample size formula for equivalence testing 

 N = 2 (between subject variance) (z1-1/2   + z1-1/2  )
2
 / D

2
          

(where D is minimal difference we wish to detect). 

 

What size is the power index of equivalence test (z1-1/2   + z1-1/2  )
2
 ?   

If the power index of equivalence testing = (z1-1/2   + z1-1/2  )
2 

What is the size of this power index?  

 

 
Figure 6. Calculating power indexes. 

 

If alpha is defined 5%, then ½ alpha = 2 ½ %. What is the place on the Z-line of   

Z (1-1/2 )?  Left from this place the AUC = 1- ½ alpha = 100- 2 ½%  = 97 ½ % of 

total AUC. So this place is, just like Zalpha, 1.96 SEMs distant from 0, or bit more 

with  t-distribution. So, Z(1- ½ alpha) = 1.96 or approximately 2.0 (Figure 6).  
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Z(1-β/2) = 1.2

-3 -2 -1 0 1 3 4 5
SEMs

 
Figure 7. Calculating power indexes. 

 

Now, if beta is defined 20%, then ½ beta = 10% What is the place on the Z-line of  

Z (1-1/2 beta)   ? Left from the place the AUC = 100% -10% = 90% of total AUC. 

This means that this place must be approximately 1.2 SEMs distant from 0, or a bit 

more, and, thus, Z (1- ½ beta) = approximately 1.2 (Figure 7).  

Now we can calculate this power index. Z(1- ½ ) = approximately 2.0.  Z(1- ½ )  = 

app 1.2. The power index for equivalence testing = (2.0 + 1.2 )2 = approximately 

10.9. 

NOTE: power index null hypothesis testing =   7.8 

                             equivalence testing = 10.9 

 

Obviously, for equivalence testing larger sample sizes are required ! 

Equivalence trials often include too few patients. The conclusion of equivalence 

becomes meaningless if, due to this, the design lacks power. Testing equivalence 

usually requires a sample larger than that of comparative null hypothesis testing 

studies. Required numbers of patients to be included should be estimated at the 

design stage of such studies. 

 
7. TESTING NOT ONLY SUPERIORITY BUT ALSO INFERIORITY 

OF A NEW TREATMENT (THE TYPE III ERROR) 
 

An inferior treatment may sometimes mistakingly be believed to be superior. 

“Negative” studies, defined as studies that do not confirm their prior hypotheses, 

may be “negative” because an inferior treatment is mistakingly believed to be 

superior. However, from a statistical point of view this possibility is unlikely, 

because the possibility of a type III error can not be rejected. Suppose in a study 

the mean results is + 1 SEM distant from the mean of the null hypothesis of no 

treatment effect (Figure 8). 
 

””
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Figure 8.  Study with n = 20 and mean results + 1 SEM distant from the mean 

of the null-hypothesis of no treatment effect (H0 ). For testing the chance that 

our treatment is significantly inferior, a new null hypothesis at approximately 

– 2SEMs left from zero is required. 

 
This means that we are unable to reject this null hypothesis, because a null 

hypothesis is rejected when the mean result of a study is more than about 2 SEMs 

distant from zero (P<0.05), and the study is thus “negative”. For testing the chance 

that our treatment is significantly inferior, a new null-hypothesis at approximately 

– 2SEMs distant from zero is required (Figure 8). This null-hypothesis is about 3 

SEMs distant from our mean result, which means that this chance is <0.001. So, it 

seems that even statistically “negative” trials give strong evidence that the favored 

treatment is, indeed, not inferior. This issue can be illustrated by an example. The 

treatment of hypertension is believed to follow a J-shape curve, where 

overtreatment produces increased rather than reduced mortality/morbidity. A 

different theory would tell you that the more intensive the therapy the better the 

result. This latter theory was recently tested in the HOT trial1 ( HOT investigators, 

Lancet 1998; 87: 133), but could not be confirmed: high dosage antihypertensive 

therapy was not significantly better than medium-dosage therapy. Probably it was 

not worse either, however, unfortunately, this was not tested in the report. The 

study would definitely have been powerful to test this question, and, moreover, it 

would have solved a major so far unsolved discussion. 
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An additional advantage of testing type III errors is, that it helps preventing well-

designed studies from going down in history as just “negative” studies that did not 

prove anything and are more likely not to be published, leading to unnecessary and 

costly repetition of research. If such “negative” studies are capable of rejecting the 

chance of a type III error, they may be reconsidered as a study that is not 

completely negative and may be rightly given better priority for being published.     

 

 

8. CONCLUSIONS 

1. If underlying hypothesis is that one treatment is really different from control,  

power analysis is a more reliable to evaluate the data than null  hypothesis 

testing; Power level of at least 80% is recommended. Power = chance of 

finding a difference where there actually is one. 

2. Despite speculative character of prior estimates, it is inappropriate not to 

calculate required sample size based on expected results. 

3. Type III error demonstrates in negative trial whether the new treatment is 

worse than control. 

4. Important formulas:  

 

       Power = 1- prob ( z < t-t1)      where prob = probability 

  

       Power index need for calculating sample size(z  + z  )2    is generally 7.8.   

  

       Required sample size = 2. (SD/mean)2 (z  + z  )2    

 

5.  Required knowledge after studying this chapter: to calculate power from simple  

      index.  
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CHAPTER 6 

 
INTERIM ANALYSES 

 
1. INTRODUCTION 

 

Clinical trials tend to have a long duration, because mostly patients are enrolled one 

by one, and their responses to treatment are observed sequentially. For the organizers 

this part of the trial is an exciting phase because after all the hard work involved in 

planning and getting the trial started, finally concrete data will become available. 

Immediately, there is the possibility to look at the data in order to check that the trial 

protocol is pursued appropriately by the investigators and to look at any difficulties, 

e.g., those with patient and/or doctor compliance, and to see whether there is any need 

for protocol alterations1. “Looking at the data” for such purposes should, however, be 

done carefully. In this chapter we will discuss questions such as:  

 

1. why should we monitor a trial; 

2. who should monitor a trial; 

3. what should be monitored; 

4. why should we be careful.  

 
2. MONITORING 

 

Careful conduct of a clinical trial according to the protocol has a major impact on the 

credibility of the results2; to ensure patient/doctor compliance with the protocol, 

careful monitoring of the trial is a prerequisite. In large-scale pharmaceutical phase III 

trials, mainly two types of monitoring are being used: one is concerned with quality 

assessment of trial, and the other with the assumptions that were made in the protocol 

concerning treatment differences, power, and adverse effects. The quality of the trial is 

greatly enhanced when checks are performed to ensure that 

 

1. the protocol requirements are appropriately met by investigators and patients; 

2. inclusion and exclusion criteria are appropriately met; 

3. the rate of inclusion of patients in the trial is in accordance with the trial plan;  

4. the data are being accrued properly, and; 

5. design assumptions are met. 
 

This type of monitoring does not require access to the data in the trial, nor is 

unblinding necessary, and therefore has no impact on the Type I error of finding a 

difference where there is none2 (see also chapter 5.1, and 5.2 of the current book). 
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Usually, this type of monitoring is carried out by a specialized monitoring team under 

the responsibility of the steering committee of the trial. The period for this type of 

monitoring starts with the selection of the trial centers and ends with the collection and 

cleaning of the last patient’s data. 

Inclusion and exclusion criteria should be kept constant, as specified in the protocol, 

throughout the period of patient recruitment. In very long-term trials accumulating 

medical knowledge either from outside the trial, or from interim analyses, may 

warrant a change in inclusion or exclusion criteria. Also, very low recruitment rates 

due to over-restrictive criteria, may sometimes favor some change in the criteria. 

These should be made without breaking the blinding of the trial and should always be 

described in a protocol amendment to be submitted to the ethic committee for their 

approval. This amendment should also cover any statistical consequences such as 

sample size, and alterations to the planned statistical analysis. 

The rate of subject accrual should be monitored carefully, especially with long-term 

trials. If it falls below the expected level, the reasons why so should be identified, and 

action taken not to jeopardize the power of the trial. Naturally, the quality of the data 

should be assessed carefully. Attempts should be made to recover missing data and to 

check the consistency of the data. 

 
3. INTERIM ANALYSIS 

 

The other type of monitoring requires the comparison of treatment results, and it, 

therefore, generally requires at least partly unblinded access to treatment group 

assignment. This type of monitoring is actually called interim analysis. It refers to any 

analysis intended to compare treatment arms with respect to efficacy or safety at any 

time prior to formal completion of the trial.  

The primary goals for monitoring trial data through interim analysis include 

 

  1. ethical concerns to avoid any patient receiving a treatment the very moment it is 

recognized to be inferior; 

  2. (cost-)efficiency concerns of avoiding undue prolongation of a trial once the 

treatment differences are reasonably clear-cut, and; 

  3. checking whether prior assumptions concerning sample size, treatment efficacy 

and adverse effects are still valid. 

 

As the sample-size of the trial is generally based on preliminary and/or uncertain 

information, an interim check on the unblinded data may also be useful to reveal 

whether or not overall response variances, event rates or survival experience are as 

anticipated. A revised sample size may then be required using suitable modified 

assumptions. As a matter of course, such modification should be documented in a 

protocol amendment and in the clinical study report. Steps taken to preserve blindness 

during the rest of the trial and consequences for the risk of type I errors and the width 

of the confidence intervals should be accounted for. 

Particularly, severe toxic reactions, as well as other adverse effects, are important and 

need careful observation  and reporting to the steering committee, so that prompt 
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action can be taken. Investigators need to be warned to look out for such events and 

dose modifications may be necessary. 

Every process of examining and analyzing data as accumulated in a clinical trial, 

either formally or informally, can introduce bias and/or increase of type I errors. 

Therefore, all interim analyses, formal or informal, preplanned or ad hoc, by any study 

participant, steering committee member, or data monitoring group should be described 

in full in the clinical study report, even if their results were disclosed to the 

investigators while on trial 3. 

For the purpose of reducing the risk of biases there are a number of important points 

in the organisation of the analysis and the interpretation of its results to keep in mind. 

 

 I - In most trials there are many outcome variables, but in interim analyses it 

is best to limit the number to only the major variables in order to avoid the multiple 

comparison problem (referred to in chapter 1.1). Pocock1 recommends to use only one 

main treatment comparison for which a formal ‘stopping rule’ may be defined, and to 

use the other treatment comparisons only as an informal check on the consistency of 

any apparent difference in the main comparison.  

 

 II - It is important to perform the interim analysis on correct and up-to-date 

data. The data monitoring and data checks should be performed on all of the data 

generated at the time of the interim analysis in order to avoid any selection bias in the 

patients. 

 

 III - The interim analysis should be performed only when there is a sufficient 

number of patients. Any comparison is academic when the sample size is so small that 

even huge treatment differences will not be significant. 

 

 IV - The interim analysis should not be too elaborate, because there is a 

limited goal, namely to check whether differences in the main treatment comparison 

are not huge to the extent that further continuation of the trial would seem unethical. 

 

 V - The interim analysis should be planned only when a decision to stop the 

trial is a serious possibility. With very long-term treatment periods in a trial when  

the period between patient entry and observance of patient outcome is very long, the 

patient accrual may be completed before any interim analysis can be performed and 

the interim analysis results will have no impact on the trial anymore. 

 

 

 VI - The decision to stop the trial must be made according to a predefined 

stopping rule. The rule should be formulated in terms of magnitude and statistical 

significance of treatment differences and must be considered in the light of adverse 

effects, current knowledge, and practical aspects such as ease of administration, 

acceptability and cost. We must decide in advance what evidence of a treatment 

difference is sufficiently strong to merit stopping the trial. Statistical significance is a 

commonly used criterium, but the usual P-level is not appropriate. The problem with 
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statistical significance testing of interim data is that the risk of a type I error may be 

considerably increased because we perform more than one analysis. Hence, for a 

sequence of interim analyses we must set a more stringent significance level than the 

usual P<0.05. We may use a bonferroni adjustment (see also chapter 1 introduction), 

i.e., use as significance level the value 0.05 divided by the number of planned interim 

analyses, but this leads in most cases to a somewhat overconservative significance 

level. Therefore, in most trials a so-called group-sequential design is employed. This 

subject will be discussed in the next section. A practical guideline is to use Pocock’s 

criteria4: if one anticipates no more than 10 interim analyses and there is one 

main response variable, one can adopt P<0.01 as the criterion for stopping the 

trial. An example of this approach is the following: “stop the trial if the treatment 

difference is 20% or larger and this difference is statistically significant with a P-value 

less than 0.01, and the proportion patients with adverse effects is less than 10%.” The 

outcome of the interim analysis may also be such that the treatments differ far less 

than expected. In such case the trial might be stopped for lack of efficacy. Again, it is 

essential that a formal stopping rule is formulated in advance specifying the boundary 

for the treatment difference for the given CIs. In this case statistical significance is not 

helpful as an additional criterion, but it is helpful to calculate the confidence interval 

of the observed treatment difference and to see whether the expected treatment 

difference, specified in the protocol, is far outside that interval. 

 

 VII - It is necessary to keep the results of the interim analysis as confidential 

as  possible. Investigators may change their outlook and future participation to the 

trial, and might even change their attitudes towards treatment of patients in the trial if 

he/she is aware of any interim results. This may cause a serious bias to the overall trial 

results. The U.S. Food and Drug Administration (FDA) therefore recommends not 

only that the execution of the interim analysis be highly confidential2, but also that the 

investigators not be informed about its results unless a decision to stop the trial has 

been made. An external independent group of investigators should ideally perform the 

interim analysis, for the benefit of the objectivity of the research (although complete 

independence may be an illusion, it is still better to have some other persons with their 

own ethical and scientific principles look at your data than do it yourself ). The 

steering committee should be informed about the decisions to continue or discontinue 

or the implementation of protocol amendments only. 

 

 VIII - There is little advantage to be gained from carrying out a large number 

of interim analyses: the consequences of executing many interim analyses are that the 

sample sizes are small (at least in the first analyses), and that a smaller significance 

level must be used. Pocock5 recommends never to plan more than 5 interim analyses, 

but at the same time to plan at least one interim analysis, in order to warrant scientific 

and ethical validity of the trial. 
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4. GROUP-SEQUENTIAL DESIGN OF INTERIM ANALYSIS 
 

Group sequential design is the most widely used method to define the stopping rule 

precisely and it was introduced by Pocock.7 The FDA2 advocates the use of this 

design, though it is not the only acceptable type of design, and the FDA does so 

particularly for the purpose of safety assessment, one of its major concerns. 

In a group-sequential trial we need to decide about the number (N) of interim analyses 

and the number (n) of patients per treatment that should be evaluated in between 

successive analyses: i.e. if the trial consists of two treatment arms 2n patients must be 

evaluated in each interim analysis. Pocock7 (and extensively explained in Pocock3  

provides tables for the exact nominal significance levels depending on the number of 

interim analyses N and the overall significance level.  For instance if a trial is 

evaluated using a normal distributed response variable with known variance and one 

wishes the overall significance level to be,  =  0.05 and one plans N = 2 analyses, then 

the nominal significance level must be set at 0.0294. If N = 3 or 4 or 5, the nominal 

significance levels must be set at 0.0221, 0.0182, and 0.0158, respectively. For other 

types of response variables, Pocock7 provides similar tables. Pocock7 also provides 

tables of the optimal sample size numbers of patients to be included in successive 

interim analyses. 

Several extensions of the practical rules of Pocock were developed, for instance rules 

for letting the nominal significance level vary between interim analyses. In practice a 

far more stringent p-value is suggested for earlier interim analyses and  a less stringent 

one for later analyses. Pocock1 claimed that such a variation might be sensible for 

studies with a low power, but that almost no efficiency is gained in studies with 

powers of 90% or higher. Other extensions concern one-sided testing8 and skewed 

designs where a less stringent rule might be adopted for stopping if the new treatment 

is worse than the standard and a more stringent rule if the new treatment appears to be 

better than the standard. 

 

5. CONTINUOUS SEQUENTIAL STATISTICAL TECHNIQUES 

 

Historically, the statistical theory for stopping rules in clinical trials has been largely 

concerned with sequential designs for continuous monitoring of treatment differences. 

The basic principle is that after every additional patient on each treatment has been 

evaluated, some formal statistical rule is applied to the whole data so far to determine 

whether the trial should stop. The theory of sequential techniques is already quite old 

(developed in the early fourties and even earlier than that9), and many excellent 

textbooks have been published10; here we adopt the arguments of Whitehead.11 

The central idea is to calculate after each additional patient (or after I additional 

patients) (a function of ) the treatment difference, called Z, and the total amount of 

information, called V, sampled thus far. These two statistics are plotted graphically 

against each other each time a new patient is evaluated. The stopping rule of the trial 

entails evaluating whether a boundary is crossed. In Figure 1 a typical example of a 

sequential trial with a so-called triangular test is illustrated. 
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Total amount of information(v) 

 
Figure 1. Typical example of a sequential trial with a so-called triangular test. 

The undulating line illustrates a possible realisation of a clinical trial: after each 

time a new patient could be evaluated, Z and V are calculated and the line is 

extended a little further. The line-sections AC and BC are the stopping boundaries, 

and the triangular region ABC is the continuation region. If the sample path crosses 

AC, the null hypothesis is rejected at the 5% significance level, and if BC is crossed 

then H0 is accepted. When Z is replaced by t or chi-square statistic, and V by degrees 

of freedom, the graph represents very much the same as the t- or chi-square tables 

(appendix) respectively do. 

 
The undulating line illustrates a possible realisation of a clinical trial: after each time a 

new patient could be evaluated, Z and V are calculated and the line is extended a little 

further. The line-sections AC and BC are the stopping boundaries, and the triangular 

region ABC is the continuation region. If the sample path crosses AC, the null 

hypothesis is rejected at the 5% significance level, and if BC is crossed then H0 is 

accepted. The triangular test is one of many possible sequential trial designs; but the 

triangular test has some very attractive characteristics. If the treatment difference is 

large, it will lead to a steeply increasing sample path, and consequently to a small trial 

because the AC boundary is reached quickly. If there is no difference between 

treatment, the sample path will move horizontally and will cross the BC boundary 

quickly which also leads to a small trial. If the treatment difference is negative, the BC 

boundary will be crossed even quicker. 

The trick is to devise sensible boundaries. Whitehead 11 gives an elaborate discussion 

on how to do this (as well as how to calculate Z and V). Whitehead 11 also discussed 

many different sequential plans for many different types of clinical trials and data-

types. Whitehead and his associates have also developed a user-friendly computer 

program to design and analyze sequential clinical trials.12 

 



INTERIM ANALYSES 

6. CONCLUSIONS 
 

Interim analyses in clinical trials can be of great importance in maintaining quality 

standards of the entire investigation and such analyses may be of crucial importance if 

clinical trials are to be ethically acceptable. Drawbacks of interim analyses are the 

increased risk of the type I error and the potential introduction of several kinds of 

biases, such as loss of validity factors, including blinding and randomization . It is 

rarely sensible to perform more than 5 interim analyses and usual 1 interim analysis 

before the final assessment suffices. It is crucial to specify in advance in the study 

protocol, how many analyses are to be performed and on how many patients, and 

which decisions are to be made on the basis of the interim results. It is best to let an 

external independent group, often called Independent Data Monitoring Committee 

(IDMC), execute the job and to keep its results as confident as is ethically possible. To 

do so, will be difficult but rewarding, and contribute to the credibility and scientific 

value of the trial results.  
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CHAPTER 7 

 
MULTIPLE STATISTICAL INFERENCES 

 
1. INTRODUCTION 

 

Clinical trials often assess the efficacy of more than one new treatment and often use 

many efficacy variables. Also, after overall testing these efficacy variables, additional 

questions about subgroups differences or about what variables do or do not contribute 

to the efficacy results, remain. Assessment of such questions introduces the statistical 

problem of multiple comparison and multiple testing, which increases the risk of false 

positive statistical results, and thus increases the type-I error risk. In this chapter 

simple methods are discussed which can help to control this risk. 

 
2. MULTIPLE COMPARISONS 

 

When in a trial three of more treatments are compared to each other, the typical first 

statistical analysis is to test the null hypothesis (H0) of no difference between 

treatments versus the alternative hypothesis (Ha) that at least one treatment deviates 

from the others. Suppose that in the trial k different treatments are compared, then the 

null hypothesis is  formulated as 
kϑϑϑ === ... :H 210

, where 
iϑ  is the treatment-

effect of treatment i. When the efficacy variable is quantitative (and normally 

distributed), then 3 is the mean value. When the efficacy variable is binary (e.g. 

healthy or ill), then 3 is the proportion of positive (say healthy) patients. When the 

efficacy variable is of ordinal character, or is a survival time, 3 can have different 

quantifications. For the remainder of this paragraph we assume that the efficacy is 

quantitative and normally distributed, because for this situation the multiple 

comparison procedure has been studied thoroughestly. 

Consider the randomized clinical trial comparing 5 different treatments for ejaculation 

praecox1: one group of patients received a placebo treatment (group 1), and the four 

other groups received different serotonin reuptake inhibitors (SSRI). The primary 

variable for evaluating the efficacy was the logarithmically transformed intravaginal 

ejaculation latency time (IELT) measured after six weeks of treatment. The null 

hypothesis in this trial was that there was no difference between the five groups of 

patients with respect to the mean of the logarithmically transformed IELT: 

543210  :H ϑϑϑϑϑ ==== . The summarizing data of this trial are listed in Table 1. 
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Table 1. Randomized clinical trial comparing 5 different treatments for ejaculation 

praecox1: one group of patients received a placebo treatment (group 1), and the four 

other groups received different serotonin reuptake inhibitors (SSRI). The primary 

variable for evaluating the efficacy was the logarithmically transformed intravaginal 

ejaculation latency time (IELT) measured after six weeks of treatment 

 

 

Treatment 
sample size 

n 

Mean 

x 

Standard deviation 

S 

Placebo 9 3.34 1.14 

SSRI  A 6 3.96 1.09 

SSRI  B 7 4.96 1.18 

SSRI  C 12 5.30 1.51 

SSRI  D 10 4.70 0.78 

 

The first statistical analysis was done by calculating the analysis of variance 

(ANOVA) table. The F-test for the testing the null hypothesis had value 4.13 with 4 

and 39 degrees of freedom and p-value 0.0070. The within group sums of squares was 

55.16 with 39 degrees of freedom, thus the mean squared error was S =1.41. Since the 

p-value was far below the nominal level ofα = 0.05, the null hypothesis could be 

rejected. This led to the not-too-informative conclusion that not all population 

averages were equal. A question immediately encountered is which one of the 

different population did and which one did not differ from each other. This question 

concerns the problem of multiple comparisons or post-hoc comparison of treatment 

groups. 

The only way of finding out which one of the populations means differ from each 

other is to compare every treatment group with all of the other groups or with a 

specified subset receiving other treatments. When there are 5 different treatments, 

5x4/2 =10 different pairs of treatments can be compared. In general, when there are k 

treatments, k (k-1)/2 different comparisons can be made.  

The easiest approach to this question is to calculate the Student’s t-test for each 

comparison of the groups i and j. This procedure may be refined by using in the 

denominator of the t-test the pooled-within-group variance Sw
2, as already calculated 

in the above F-test according to: 

 . 

)
n

1
 + 

n

1
(S

x - x
 = t

ji

2
w

ji
ij  (1)  
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This t-statistic has n-k degrees of freedom, where n is the total number of observations 

in the entire sample and k is the number of treatment groups. This procedure is called 

the “least significant difference” procedure (LSD procedure). For the application of 

the LSD procedure, it is essential to perform it sequentially to a significant F-test of 

the ANOVA procedure. So if one chooses to perform the LSD procedure, one first 

calculates the ANOVA procedure and stops if the F-test is non-significant, and 

calculates the LSD tests only when the F-test is statistically significant. The LSD 

procedure is largely similar to the Bonferroni-t-test for paired comparisons as 

explained in Chapter 2 section 3.  

When the different treatment groups are compared without performing ANOVA first, 

or when you do so without the F-test being significant, then the problem of multiple 

comparisons is encountered. This means that when you make enough comparisons, 

the chance of finding a significant difference will be substantially larger than the 

nominal level of α = 0.05: thus the risk of a type-I error will be (far) too large. There 

may be situations where we want to further the analysis all the same.   

There are several ways, then, of dealing with the problem of an increased risk of type-

I-error. The easiest method is to use the Bonferroni-correction, sometimes known as 

the modified LSD procedure. The general principle is that the significance level for 

the experiment, Eα is less than or equal to the significance level for each comparison, 

α C , times the number of comparisons that are made (remember α is the chance of a 

type-I-error or the chance of finding a difference where there is none): 

If α E  ≤0.05, then this level of α is maintained if , α C  is taken to be , divided by the 

number of comparisons: 

When k is not too large, this method performs well. However, if k is large (k>5), then 

the Bonferroni correction is overconservative, meaning that the nominal significance 

level soon will be much lower than α = 0.05 and loss of power occurs accordingly. 

There are several alternative methods2, but here we will discuss briefly three of them: 

Tukey’s honestly significant difference (HSD) method, the Student-Newman-Keuls 

method, and the method of Dunnett. Tukey’s HSD method calculates the test-statistic 

from the above equation (1), but determines the significance level slightly differently, 

by considering the distribution of the largest standardized difference |xi-xj| / se (xi-xj). 

This distribution is somewhat more complex than that of the t-distribution or of the 

LSD procedure. A table of significance levels is available in all major statistical books 

as well as statistical software packages such as SAS and SPSS.3,4 The HSD procedure 

 αα CE  
2

1)-k(k
  ≤  (2) 

 . 
1)-k(k

2
  = C αα  (3 )  
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controls the maximum experimentwise error rate, and performs well in simulation 

studies, especially when sample sizes are unequal. 

The Student-Newman-Keuls (SNK) procedure is a so-called multiple-stage or 

multiple range test. The procedure first tests the homogeneity of all k means at the 

nominal level kα . When the homogeneity is rejected, then each subset of (k-1) means 

is tested for homogeneity at the nominal level 1−kα , and so on. It does so by 

calculating the studentized statistic in the above equation (1) for all pairs. The 

distribution of this statistic is again rather complex, and it depends on the degrees of 
freedom n-k (from ANOVA), on the number of comparisons that are made, and on 

kα . The table of significance levels is likewise available in most statistical packages. 

The conclusions of the SNK procedure critically depend on the order of the pairwise 

comparisons being made. The proper procedure is to compare first the largest mean 
with the smallest, then the largest with the second-smallest, and so on. An important 
rule is that if no significant difference exists between two means, it should be 

concluded that no difference exists between any means enclosed by the two, without 

further need of testing. 

There are many multiple range tests2, mainly differing in their use of the significance 

level α k, and α k - 1. The Student-Newman-Keuls procedure uses α k = α = 0.05, and 
therefore does not control the maximum experimentwise error rate.  

Finally, there is a special multiple comparison procedure for comparing all active 
treatments to a control or placebo group. This is the Dunnett's procedure. For all 
treatments the studentized statistic of above equation (1) compared to the placebo 

group is calculated. In case of Dunnett’s procedure, this statistic again has a complex 
distribution (many-one t-statistic) which depends on the number of active treatment 
groups, the degrees of freedom and a correlation term which depends on the sample 
sizes in each treatment group. Tables are likewise available in statistical packages. If 

sample sizes are not equal, it is important to use the harmonic mean of the sample 
sizes when calculating the significance of the Dunnett’s test. 

Most of the statistical packages compute common multiple range tests, and provide 
associated confidence intervals for the difference in means. In our trial comparing 4 
SSRIs and placebo in patients with ejaculation praecox, we were interested in all of 
the possible comparisons between the five treatment groups. Since the ANOVA F-test 

was statistically significant, we applied the LSD procedure to find out which treatment 

differed significantly from each other. We found the following results. HSD 
procedure, the Bonferroni correction, and Dunnett’s procedure of the same data were 
applied for control (Table 2). 
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Table 2. In the trial from Table 1  the investigators were interested in all of the possible 

comparisons between the five treatment groups. Since the ANOVA F-test was 

statistically significant, we applied the LSD procedure to find out which treatment 

differed significantly from each other. We found the following results. HSD procedure, 

the Bonferroni correction, and Dunnett’s procedure of the same data were applied for 

control 

 

 

 

Difference P value 

 Mean (SE) LSD HSD Bonferroni Dunnett 

Placebo vs A 

 B 

 C 

 D 

-0.62 (0.63) 

-1.62 (0.60) 

-1.96 (0.52) 

-1.36 (0.55) 

0.33 

0.01 

0.001 

0.017 

0.86 

0.07 

0.005 

0.12 

0.99 

0.10 

0.006 

0.17 

0.73 

0.035 

0.002 

0.058 

A vs B 

 C 

 D 

-1.00 (0.66) 

-1.34 (0.60) 

-0.74 (0.61) 

0.14 

0.03 

0.24 

0.56 

0.18 

0.75 

0.99 

0.30 

0.99 

 

B vs C 

 D 

-0.34 (0.57) 

 0.26 (0.59) 

0.56 

0.66 

0.98 

0.99 

0.99 

0.99 

 

C vs D  0.60 (0.51) 0.25 0.76 0.99  

 SE = standard error. 

 
The mean difference indicates the differences of the means of the groups as shown in 

Table 1. The standard error as calculated from the studentized statistic in the equation 

(1), and is required in order to construct confidence intervals. The critical values for 

the construction of such confidence intervals are supplied by appropriate tables for the 

HSD, and Dunnett’s procedure, but are also calculated by most statistical software 

programs. In our case it is obvious that the LSD procedure provides the smallest p-

values, and significant differences between SSRIs B, C and D and placebo results, as 

well as between A and C results. When using the Bonferroni test or the HSD 

procedure, only SSRI C is significantly different from placebo. Dunnett’s test agrees 

with the LSD procedure with respect to the differences of the SSRIs compared to 

placebo, but has no information on the differences between the SSRIs. 

There is no general consensus on what post-hoc test to use or when to use it; as the 

statistical community has not yet reached agreement on this issue. The US Food and 

Drug Agency suggests in its clinical trial handbook for in house usage to describe in 

the study protocol the arguments for using a specific method, but refrains from 
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making any preference. We have a light preference for calculating an overall test first 

such as is done with ANOVA, and subsequently proceed with the LSD test.  

Unfortunately, so far multiple comparisons methods have not been developed much 

for discrete, ordinal and censored data. When dealing with such data, it is best to 

perform first an overall test by chi-square, Kruskal-wallis or logrank methods, and 

afterwards perform pairwise comparisons with a Bonferroni correction.  

Whatever method for multiple comparisons, its use or the lack of its use should be 

discussed in the statistical analysis, and preferably be specified in the analysis plan of 

the study protocol. 

 
3. MULTIPLE VARIABLES 

 

Most clinical trials use several, and sometimes many, endpoints to evaluate the 

treatment efficacy. The use of significance tests separately for each endpoint 

comparison increases the risk of a type-I error of finding a difference where there is 

none. The statistical analysis should reflect awareness of this very problem, and in the 

study protocol the use or non-use of statistical adjustments or their lack must be 

explained. There are several ways of handling this problem of multiple testing.  

 

I.    The most obvious way is to simply reduce the number of endpoint 

parameters otherwise called primary outcome variable. Preferably, we should include 

one primary parameter, usually being the variable that provides the most relevant and 

convincing evidence of the primary objective of the trial. The trial success is 

formulated in terms of results demonstrated by this very variable, and prior sample 

size determination is also based on this variable. Other endpoint variables are placed 

on a lower level of importance and are defined secondary variables. The secondary 

variable results may be used to support the evidence provided by the primary variable.

  

It may sometimes be desirable to use two or more primary variables, each of which 

sufficiently important for display in the primary analysis. The statistical analysis of 

such an approach should be carefully spelled in the protocol. In particular, it should be 

stated in advance what result of any of these variables is least required for the purpose 

of meeting the trial objectives. Of course, if the purpose of the trial is to demonstrate a 

significant effect in two or more variables, then there is no need for adjustment of the 

type-I error risk, but the consequence is that the trial fails in its objectives if one of 

these variables do not produce a significant result. Obviously, such a rule enhances the 

chance of erroneously negative trials, in a way similar to the risk of negative trials due 

to small sample sizes. 

 

II      A different more philosophical approach to the problem of multiple 

outcome variables is to look for trends without judging one or two low P-values 

among otherwise high P-values as proof. This requires discipline and is particularly 

efficient when multiple measurements are performed for the purpose of answering one 

single question, e.g., the benefit to health of a new drug estimated in terms of effect on 

mortality in addition to a number of morbidity variables. There is nothing wrong with 
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this practice. We should not make any formal correction for multiple comparisons of 

this kind (see also Chapter 1, section 1). Instead, we should informally integrate all the 

data before reaching a conclusion.  

  

III             An alternative way of dealing with the multiple comparison problem when 

there are many primary variables, is to apply a Bonferroni correction. This means that 

the p-value of every variable is multiplied by the number of endpoints k. This ensures 

that if treatments were truly equivalent, the trial as a whole will have less than a 5% 

chance of getting any p-value less than 0.05; thus the overall type-I error rate will be 

less than 5%. 

 

IV     The Bonferroni correction, however, is not entirely correct when multiple 

comparisons are dependent of each other(multiple comparisons in one subject cannot 

be considered independent of each other, compare chapter 2, section 3, for additional 

discussion of this issue). Also the Bonferroni correction is an overcorrection in case of 

larger numbers of endpoints, particularly when different endpoints are (highly) 

correlated. A somewhat more adequate variation of the Bonferroni correction, was 

suggested by Hochberg.5 When there are k primary values, the idea is to multiply the 

largest p-value with 1, the second-largest p-value with 2, the third largest p-value with 

3, ..., and the smallest p-value with k. We do not attempt to explain the mathematical 

arguments of this procedure, but conclude that lowest and highest –values will be less 

different from each other. In practice, Hochberg’s procedure is frequently hardly less 

conservative than is the Bonferroni correction. 

 

V           An further alternative for analyzing two or more primary variables is to 

design a summary measure or composite variable. With such an approach endpoint 

and primary variables must, of course, be assessed in advance, and the algorithm to 

calculate the composite must also be specified a priori. Since in this case primary 

variables are reduced to one composite, there is no need to make adjustments to 

salvage the type-I error rate. For the purpose of appropriate composite variables there 

are a few sensible rules to bear in mind: 

 - Highly correlated variables, measuring more or less the same 

patient characteristic can best be replaced by their average. In this 

way the number of primary variables is reduced, and an additional 

advantage is that the mean is more reliable than both single 

measurements. 

 - When the variables have different scales (e.g. blood pressure is 

measured in mm Hg units, and cholesterol in mmol/L units), the 

composite variables are best calculated as standardized variables. 

This means that the overall mean is subtracted from each 

measurement and that the resulting difference is divided by the 

overall standard deviation. In this way all variables will have zero 

mean and unit standard deviation in the total sample.  
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Well-known examples of composite variables are rating scales routinely used for the 

assessment of health-related quality of life, as well as disease-activity-scales (e.g., the 

disease activity scale of Fuchs for patients with reumatoid arthritis, DAS6). The DAS 

is a composite based  on the Ritchie joint pain score, the number of swollen joints, 

and, in addition, the erythrocyte sedimentation rate:  

 

For the statistical analysis of a composite variable, standard methods may be used 

without adjustments. Lauter7 showed that the statistical test for the composite has 5% 

type-I error rate. He also showed that such a statistical test is especially sensitive when 

each endpoint variable has more or less the same individual p-value, but that it has 

little sensitivity when one endpoint variable is much more significant than others. 

We applied these methods to a clinical trial of patients with atherosclerosis comparing 

two-year placebo versus pravastatin medication.8 The efficacy of this medication was 

evaluated by assessing the change of total cholesterol, HDL cholesterol, LDL 

cholesterol, and triglycerides. The mean changes and standard deviations (mmol/L) 

are given in Table 3, while also the uncorrected p-values, and the corrected p-values 

according to Bonferroni and Hochberg are reported.  

 
Table 3.Clinical trial of patients with atherosclerosis comparing two-year placebo versus 

pravastatin medication.8 The efficacy of this medication was evaluated by assessing the 

change of total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides. The mean 

changes and standard deviations (mmol/L) are given, while also the uncorrected p-values, 

and the corrected p-values according to Bonferroni and Hochberg are reported 

 

Change of: Placebo 

(n = 31) 

Pravastatin 

(n = 48) 

 

P
*
 

 

P
#
 

 

P
@

 

Total cholesterol decrease -0.07 (0.72) 0.25 (0.73) 0.06 0.24 0.11 

HDL cholesterol increase -0.02 (0.18) 0.04 (0.12) 0.07 0.28 0.11 

LDL cholesterol decrease 0.34 (0.60) 0.59 (0.65) 0.09 0.36 0.11 

Triglycerides increase 0.03 (0.65) 0.28 (0.68) 0.11 0.44 0.11 

* p value of Student’s t-test; # Bonferroni corrected p-value; @ p-value corrected 

using Hochberg’s methods. 

 

+joints)  swollenofmber 0.06465(nu+index ritchie0.53938 = DAS  

 

0.224.+rate) tion sedimentae(erythocyt0.330 ln   
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points in the same direction, namely of a positive pravastatin effect. When correcting 

for multiple testing, the p-values are nowhere near statistical significance. A 

composite variable of the form z = (total cholesterol + HDL + LDL + triglycerides)/4, 

where the four lipid measurements are standardized, however, did show statistically 

significant results: the mean of Z in the placebo group was -0.23 (SD 0.59), and the 

mean of Z in the pravastatin group was 0.15 (SD 0.56), different p < 0.01, and so, it is 

appropriate to conclude that pravastatin significantly reduced the composite variable. 

 

VI    Finally, there are several multivariate methods to perform an overall statistical 

test for which the type-I error risk equals 5%. Equivalently to the situation comparing 

many different treatment groups, one might argue that the overall test controls the 

type-I error, and that subsequently to the overall test, one can perform t-tests and the 

like without adjustment to explore which variables show significant differences. For 

comparing two treatment groups on several (normally distributed) variables, one may 

use Hotelling’s T-square, which is the multivariate generalization of the Student’s 

t-test. Other methods to compare different groups of patients on several variables are 

discriminant analysis, variants of principal components analysis and multinominal 

logistic regression. The discussion of these methods falls outside the scope of this 

chapter. It suffices to remark that Hotelling’s T-square and the other multivariate 

methods are readily available  through most statistical packages. 

 
4. CONCLUSIONS 

 

Multiple group comparison and multiple variable testing is a very common 

problem when analyzing clinical trials. There is no consensus within the statistical 

community on how to cope with these problems. It is therefore essential that 

awareness of the existence of these problems is reflected in the study protocol and 

the statistical analysis.  
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It is obvious that none of the changes are statistically significant using a standard 

t-test, but it is also clear that all four efficacy variables have a treatment difference that 
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CHAPTER 8 

 
CONTROLLING THE RISK OF FALSE POSITIVE 

CLINICAL TRIALS 

 
1. INTRODUCTION 

 

Statistical hypothesis testing is much like gambling. If, with gambling once, your 

chance of a prize is 5%, then, with gambling 20 times, this chance will be close to 

40%. The same is true with statistical testing of clinical trials. If, with one statistical 

test, your chance of a significant result is 5%, then after 20 tests, it will increase to 

40%. This result is, however, not based on a true treatment effect, but, rather, on the 

play of chance. In current clinical trials, instead of a single efficacy-variable of one 

treatment, multiple efficacy-variables of more than one treatment are increasingly 

assessed. E.g., in 16 randomized controlled trials with positive results, published in the 

British Medical Journal (BMJ) in 2004 (Table 1), the numbers of primary efficacy-

variables varied from 4 to 13. This phenomenon introduces the statistical problem of 

multiple comparisons and multiple testing, which increases the risk of false positive 

results, otherwise called type I errors. There is no consensus within the statistical 

community on how to cope with this problem. Also, the issue has not been studied 

thoroughly for every type of variable. Clinical trials rarely adjust their data for 

multiple comparisons. E.g., none of the above BMJ papers did. In the previous chapter 

we already discussed tools which can help to control the risk of false positive results. 

The current chapter briefly summarizes the main methods for control in order to 

further emphasize the importance of this issue, and it gives additional examples. 
 

Table 1.  Positive randomized controlled trials published in the BMJ in 2004 

                                  Numbers of Primary     Smallest       Positive Study   

                                               Efficacy Variables       p-values       after Bonferroni 

Adjustment  

1.  Schroter et al 328: 742-3                    5                  0.001             yes 

2.  Laurant et al 328: 927-30                 12                  0.006             no 

3.  Yudkin et al 328: 989-90                 10                  0.001             yes 

4.  Craig et al 328: 1067-70                    6                  0.030             no 

5.  Kalra et al 328: 1099-101                  7                  0.001             yes 

6.  Hilten et al 328: 1281-1                     5                  0.05               no 

7.  James et al 328: 1237-9                   10                  0.003             yes 

8.  Logan et al 328: 1372-4                     6                  0.01               no 

9.  Cairns S Smith et al 328: 1459-63   13                  0.002             yes 
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10. Powell et al 329: 89-91                    10                  0.001             yes 

11. Henderson et al 329: 136-9                6                  0.03               no 

12. Collins et al 329: 193-6                      4                  0.03               no                           

13. Svendsen et al 329: 253-8                   7                  0.02               no 

14. McKendry M 329: 258-61                  9                  0.001            yes 

15. Van Staaij et al 329: 651-4                  8                  0.01              no 

16. Norman et al 329: 1259-62               10                  0.02              yes 

 

2. BONFERRONI TEST 
 

If more than two samples are compared in a clinical trial, multiple groups analysis of 

variance (ANOVA) is often applied for the analysis. E.g., three groups of patients 

were treated with different hemoglobin improving compounds with the following 

results: 

 

                                      sample size     mean hemoglobin       standard deviation 

                                                              mmol / l                       mmol / l  

                    Group1      16                    8.725                           0.8445 

                    Group 2     10                   10.6300                        1.2841 

                    Group 3     15                   12.3000                        0.9419 

 

The F test produces a p-value < 0.01, indicating that a highly significant difference is 

observed between the three groups. This leads to the not-too-informative information 

that not all group means were equal. A question encountered is, which group did and 

which one did not differ from the others. This question involves the problem of 

multiple comparisons. As there are 3 different treatments, 3 different pairs of 

treatments can be compared: groups 1 versus 2, groups 1 versus 3, and groups 2 

versus 3. The easiest approach is to calculate the Student’s t-test for each comparison. 

It produces a highly significant difference at p < 0.01 between treatment 1 versus 3 

with no significant differences between the other comparisons. This highly significant 

result is, however, unadjusted for multiple comparisons. If the chance of a falsely 

positive result is,  e.g.,  with one comparison, it should be 2  with two, and close to 

3  with three comparisons. Bonferroni recommends to reject the null - hypothesis at a 

lower level of significance according to the formula 

 

rejection p-value =  x 2 / k (k − 1) 

k = number of comparisons,  = agreed chance of falsely positive result (mostly 0.05)  

 

In case of three comparisons the rejection p-value will be 
2

0.05 x 0.0166
3(3 1)

=
−

. 

A p-value of 0.0166 is still larger than 0.01, and, so, the difference observed remains 

significant, but using a cut-off p-value of 0.0166, instead of 0.05, the difference is not 

highly significant anymore. 
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3. LEAST SIGNIFICANT DIFFERENCE TEST (LSD) TEST 

 

As an alternative to the Bonferroni test a refined t-test, the least significant difference 

(LSD) test, can be applied. This refined t-statistic has n-k degrees of freedom, where n 

is the number of observations in the entire sample and k is the number of treatment 

groups. In the denominator of this refined t-test the usual pooled standard error (SE) is 

replaced with the pooled-within-group variance from the above mentioned F-test. For 

the application of the LSD procedure, it is essential to perform it sequentially to a 

significant F-test of the ANOVA procedure. So, if one chooses to perform the LSD 

procedure, one first calculates the ANOVA procedure and stops if it is not significant, 

and calculates the LSD test only if the F-test is statistically significant. The LSD test is 

largely similar to the Bonferroni-test, and yields with the above example a p-value 

close to 0.05. Like with Bonferroni, the difference is still significant, but not highly 

significant anymore. 

 
4. OTHER TESTS FOR ADJUSTING THE P-VALUES 

 

None of the 16 BMJ trials discussed in the introduction were adjusted for multiple 

testing. When we performed a Bonferroni adjustment of them, only 8 trials 

continued to be positive, while the remainder turned into negative studies. This 

does not necessarily indicate that all of these studies were truly negative. Several of 

them had more than 5 efficacy-variables, and, in this situation, the Bonferroni test 

is somewhat conservative, meaning that  power is lost, and the risk of falsely 

negative results is raised. This is  particularly so, if variables are highly correlated. 

A somewhat less conservative variation of the Bonferroni correction was suggested 

by Hochberg: if there are k primary values multiply the highest p-value with 1, the 

second-largest p-value with 2, the third largest with 3….., and the smallest p-value 

with k.1  

                       Calculated p-values           reject null-hypothesis at 

                       (1) largest p-value               1 = 0.05 x 1 = 0.05  

                       (2) second largest p-value   2 = 0.05 x 2 = 0.10 

                       (3) third largest p-value       3 = 0.05 x 3 = 0.15 

                       (k) kth largest p-value          k = 0.05 x k = …. 

 

happens is, that the lowest and highest p-values will be less different from one 

another. There are other less conservative methods, like Tukey’s honestly 

significant difference (HSD) test, Dunnett’s test, Student-Newman-Keuls test, and 

the Hotelling Q-square test. Most of them have in common that  they produce their 

own test-statistics. Tables of significance levels are available in statistical software 
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The mathematical arguments of this procedure goes beyond this text. What 

packages including SAS and SPSS, currently also available through the Internet.   
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5. COMPOSITE ENDPOINT PROCEDURES 
 

A different solution for the multiple testing problem is to construct a composite 

endpoint of all of the efficacy-variables, and, subsequently, to perform a statistical 

analysis on the composite only. For example, it is reasonable to believe that statin 

treatment has a beneficial effect on total cholesterol (Tc), high density cholesterol 

(HDL), low density cholesterol (LDL), and triglycerides (Tg). We can perform a 

composite analysis of the four variables according to 

 

Composite variable = (Tc + HDL + LDL + Tg)/4 

c c
c

c

(T mean(T )) 
T   

SDT

−=  etc 

A simple t-test produces  

Placebo: mean result composite variable = -0.23 (SD 0.59) 

Statin:         ”       ”         ”              ”           = 0.15 (SD 0.56) 

p = 0.006 

 

This p-value is lower than that obtained by a Bonferroni or LSD procedure. This is  

probably so, because of the added power provided by the positive correlation between 

the repeated observations in one subject. If no strong correlation between the variables 

is to be expected, the composite endpoint procedure provides power similar to that of 

the Bonferroni or LSD procedure.  

 

Largely similar to the composite endpoint procedure are the index methods. If the 

efficacy-variables are highly correlated, because they more or less measure the same 

patient characteristic, then they be best replaced with their add-up sum. In this way the 

number of primary variables is reduced, and an additional advantage is that the 

standardized add-up sum of the separate variables is more reliable than the separate 

variables. E.g., the Disease Activity Score (DAS) for the assessment of patients with 

reumatoid arthritis, including the Ritchie joint pain score, the number of swollen 

joints, and the erythrocyte sedimentation rate, is an example of this approach.2 

 
                6. NO ADJUSTMENTS AT ALL, AND PRAGMATIC SOLUTIONS 
 

A more philosophical approach to the problem of multiple comparisons is to 

informally integrate the data, look for trends without judging one or two low p-values 

among otherwise high p-values as proof of a significant difference in the data. 

However, both the medical community and the investigators may be unhappy with 

this solution, because they want the hard data to provide unequivocal answers to their 

questions, rather than uncertainties. An alternative and more pragmatic solution could 

be the standard use of lower levels of significance to reject the null-hypothesis. For the 

statistical analysis of interim analyses, that suffer from the same risk of increased type 

I errors due to multiple testing, Pocock’s recommendation to routinely use p < 0.01 

instead of p < 0.05 has been widely adopted.3 A similar rule could, of course, be 
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applied to any multiple testing situation. The advantage would be that it does not 

may produce new type I errors, particularly, if they are post-hoc, and not previously 

described in the study protocol. 

 
7. CONCLUSIONS 

 

Approaches to reducing the problem of multiple testing include (1) the Bonferroni, 

test, (2) the LSD method, (3) other less conservative, more rarely used methods like 

Tukey’s honestly significant (HSD) method, Dunnett’s test, Student-Newman-Keuls 

test, Hochberg’s adjustment, and the Hotelling Q-square test. Alternative approaches 

to the problems of multiple testing include (4) the construct of composite endpoints, 

(5) no adjustment at all, but a more philosophical approach to the interpretation of the 

p-values, and (6) the replacement of the traditional 5% rejection level with a  1% 

rejection level or less.  

 

Evidence-based medicine is increasingly under pressure, because clinical trials do not 

adequately apply to their target populations.4-6 Many causes are mentioned. As long as 

the issue of multiple testing is rarely assessed in the analysis of randomized controlled 

trials, it can not be excluded as one of the mechanisms responsible. We recommend 

that the increased risk of false positive results should be taken into account in any 

future randomized clinical trial which assesses more than one efficacy-variable and / 

or treatment modality. The current paper provides 6 possible methods for assessment. 
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damage the data, because the data remain unadjusted. Moreover, any adjustments 



CHAPTER 9 

 
THE INTERPRETATION OF THE P-VALUES 

 
1. INTRODUCTION 

 

In randomized controlled trials, prior to statistical analysis, the data are checked for 

outliers and erroneous data. Data-cleaning is defined as deleting-the-errors / 

maintaining-the-outliers. Statistical tests are, traditionally, not very good at 

distinguishing between errors and outliers. However, they should be able to point out 

main endpoint results that are closer to expectation than compatible with random 

sampling. E.g., a difference from control of 0.000 is hardly compatible with random 

sampling. As it comes to well-balanced random sampling of representative 

experimental data, nature will be helpful to provide researchers with results close to 

perfection.  

However, because biological processes are full of variations, nature will never allow 

for 100 per cent perfection. Statistical distributions can account for this lack of 

perfection in experimental data sampling, and provide exact probability levels of 

finding results close to expectation. 

  

2. RENEWED ATTENTION TO THE INTERPRETATION OF THE 

PROBABILITY LEVELS, OTHERWISE CALLED THE P-VALUES 
 

The p-values tell us the chance of making a type I error of finding a difference where 

there is none. Generally, a cut-off p-value of 0.05 is used to reject the null-hypothesis 

(H0) of no difference. In the seventies exact p-values were laborious to calculate, and 

they were, generally, approximated from statistical tables, in the form of p < 0.01 or 

0.05 < p < 0.10 etc. In the past decades with the advent of computers the job became 

easy.1-4 Exact p-values such as 0.84 or 0.007 can now be calculated fast and 

accurately. This development lead to a renewed attention to the interpretation of p-

values. In business statistics5,6, the 5% cut-off p-value has been largely abandoned and 

replaced with exact p-values used for making decisions on the risk business men are 

willing to take, mostly in terms of costs involved. In medicine, the cut-off p-values 

have not been completely abandoned, but broader attention is given to the 

interpretation of the exact p-values, and rightly so, because they can tell us a number 

of relevant things in addition to the chance of making type I errors. In the current 

chapter standard and renewed interpretations of p-values are reviewed as far as 

relevant to the interpretation of clinical trials and evidence-based medicine. 
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3. STANDARD INTERPRETATION OF P-VALUES 
 

Statistics gives no certainties, only chances. What chances? Chances that hypotheses 

are true/untrue (we accept 95% truths). What hypotheses? E.g., no difference from a 0 

effect, a real difference from a 0 effect, worse than a 0 effect. Statistics is about 

estimating  such chances / testing such hypotheses. Trials often calculate differences 

between test treatment and control (for example, standard treatment, placebo, 

baseline), and, subsequently, test whether the difference-between-the-two is different 

from 0. 

 

Important hypotheses are Hypothesis 0 (H0, i.e., no difference from a 0 effect) ,  and 

Hypothesis 1 (H1, the alternative hypothesis, i.e., a real difference from a 0 effect).  

What do these two hypotheses look like in graph? Figure 1 gives an example. 

 
PROBABILITY

DISTRIBUTION

2.101

-3 -2 -1 0 1 2 3 4 5

SEMs

H0

H1

 
Figure 1. Null-hypothesis and alternative hypothesis of a parallel group study of two 

groups n=10 (18 degrees of freedom). 

 

-H1= graph based on the data of our trial ( mean ± standard error (SEM) = 2.1 ±  1). 

-H0 = same graph with mean 0 (mean ± SEM = 0 ±  1). 

-Now we make a giant leap from our data to the population from which the sample 

was taken (we can do so, because our data are supposed to be representative of the 

population).  

 

-H1 =  also summary of means of many trials similar to ours ( if we repeated trial, 

           difference would be small, and distribution of means of many such trials 

  would look like H1 

-H0 =  summary of means of many trials similar to ours, but with overall effect 0 

          (our mean not 0 but 2.1.  Still, it could be an outlier of many studies with an 

  overall effect of 0 

.

.
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-So, we should think of H0 and H1 as summaries of means of many trials.  

-If hypothesis 0 is true, then mean of our study is part of H0. 

-If hypothesis 1 is true, then mean of our study  is part of H1. 

-We can’t prove anything, but we can calculate the chance of either of these  

  possibilities.  

-A mean result of 2.1 is far distant from 0:  

  Suppose it belongs to H0. 

  Only 5% of the H0 trials > 2.1 SEM distant from 0. 

  The chance that it belongs to H0 is <  5%.    

  We reject this possibility if probability is < 5%.          

 

  Suppose it belongs to H1. 

  50% of the H1 trials  > 2.1 SEM distant from 0. These 50% 

   cannot reject null hypothesis, only the remainder, here also 

   50%, can do so. 

                                                                                                                                                            

Conclude here if H0 is true, we have < 5% chance to find it, 

if H1 is true, we have 50% chance to find it.  

 Or in statistical terms: we reject null hypothesis of    

 no effect at p < 0.05 and with a statistical power of 50%. 

 

Obviously, a p-value of < 0.05 does not indicate a true effect, and allows for very 

limited conclusions7,8:  

 

(1) < 5% chance to find this result if H0 is true ( H0 is probably untrue, and so, this 

      statement does not mean too much anyway); 

(2) only 50% chance to find this result if H1 is true. 

 

                                  The conclusions illustrate the uncertainties involved in  

                                       H0 - testing. With lower p-values, better certainty 

                                        is provided, e.g., with p < 0.01 we have around 80%  

                                      chance to find this result if H1 were true, with p < 0.001 even 

                                       90%. However, even then, the chance of a type II error of 

                                      finding no difference where there is one is still 10%. 

                                       Also, we must realize that the above conclusions are 

                                      appropriate only if  

 

(3) the data follow a normal distribution, and  

(4) they follow exactly the same distribution as that of the population from which the 

sample was taken. 
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4. COMMON MISUNDERSTANDINGS OF THE P-VALUES 
 

The most common misunderstanding while interpreting the p-values is the concept 

that the p-value is actually the chance that the H0 is true, and, consequently, that p > 

0.05 means H0 is true. Often, this result, expressed as “not significantly different from 

zero”, is then reported as documented proof that the treatment had no effect. The 

distinction between demonstrating that a treatment had no effect and failing to 

demonstrate that it did have an effect, is subtle but very important, because the latter 

may be due to inadequate study methods or lack of power rather than lack of effect. 

Moreover, in order to assess whether the H0 is true, null-hypothesis testing can never 

give the answer, because this is not the issue. The only issue here is: H0 is rejected or 

not, no matter if it is true or untrue. To answer the question whether no-difference-in-

the-data is true, we need to follow a different approach: similarity testing. With 

similarity (otherwise called equivalence)-testing the typical answer is: similarity is or 

is not demonstrated, which can be taken synonymous for no-difference-in-the-data 

being true or not (see also chapter 4). 

 
5. RENEWED INTERPRETATIONS OF P-VALUES, LITTLE DIFFERENCE 

BETWEEN P = 0.06 AND P = 0.04 
 

H0 is currently less dogmatically rejected, because we believe that such practice 

mistakingly attempts to express certainty of statistical evidence in the data. If the 

H0 is rejected, it is also no longer concluded that there is no difference in the data. 

Instead, we increasingly believe that there is actually little difference between p = 

0.06 and p = 0.04. Like with business statistics clinicians now have the option to 

use p-values for an additional purpose, i.e., for making  decisions about the risks 

they are willing to take.  

 Also an advantage of the exact p-value approach is the possibility of more refined 

conclusions from the research: instead of concluding significantly yes / no, we are 

able to consider levels of probabilities from very likely to be true, to very likely to 

be untrue.9 The p-value which ranges from 0.0 to 1.0 summarizes the evidence in 

the data about H0. A large p-value such as 0.55 or 0.78 indicates that the observed 

data would not be unusual if H0 were true. A small p-value such as 0.001 denotes 

that these data would be very doubtful if H0 were true. This provides strong 

support against H0. In such instances results are said to be significant at the 0.001 

level, indicating that getting a result of this size might occur only 1 out of 1000 

times.  

 
Exact p-values are also increasingly used for comparing different levels of 

significance. The drawback of this approach is that sampled frequency 

distributions are approximations, and that it can be mathematically shown that 

exactly calculated p-values are rather inaccurate.10 However, this drawback is 

outweighed by the advantages of knowing the p-values especially when it gets to 

extremes.11  



6. THE REAL MEANING OF VERY LARGE P-VALUES LIKE P > 0.95 
 

Let us assume that in a Mendelian experiment the expected ratio of yellow-peas / 

green-peas = 1 / 1. A highly representative random sample of n = 100 might consist of 

50 yellow and 50 green peas. However, the larger the sample the smaller the chance to 

find exactly fifty/fifty. The chance of exactly 5000 yellow / 5000 green peas or even 

the chance of a result very close to this result is, due to large variability in biological 

processes, almost certainly zero.  

 Statistical distributions like the chi-square distribution can account for this lack of 

perfection in experimental data sampling, and provide exact probability levels of 

finding results close to “expected”. Chi-squares curves are skewed curves with a 

lengthy right-end  ( Figure 2 ).  

 
Figure  2. Probability of finding 2  value >3.841 is < 0.05, so is probability 

of finding a 2  value < 0.0039. 

_________________________________________ 

AUC = area under the curve; df = degree of freedom. 

 

We reject the null-hypothesis of no difference between “expected and observed”, if 

the area under curve (AUC) on the right side of the calculated chi-square value is < 

5% of the total AUC. Chi-square curves do, however, also have a short left-end which 

ends with a chi-square value of zero. If the chi-square value calculated from our data 

is close to zero, the left AUC will get smaller and smaller, and as it becomes < 5% of 

the total AUC, we are equally justified not to accept the null hypothesis as we are with 

large chi-square values. E.g., in a sample of 10,000 peas, you might find 4997 yellow 

and 5003 green peas. Are these data representative for a population of 1/1 

yellow/green peas? In this example a chi-square value of < 3.9 10-3 indicates that the 

left AUC is < 5% and, so, we have a probability < 5% to find it ( Table 1 ).12   
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Table 1.  2  table: 7 columns of 2  values, upper two rows areas under the curve 

(AUCs) of left and right end of 2  curves, left column: adjustments for degrees of 

freedom (dfs) 

____________________________________________________________ 

AUC left end          .0005       .001          .005         .01        .025     .05      .10 

AUC right end        .9995       .999          .995         .99        .975     .95      .90 

degrees of freedom 

1                              .0000004 .0000016  .000039   .00016  .00091 .0039  .016 

2                              .00099     .0020        .010         .020     .051     .10      .21 

3                              .015         .024          .072         .12        .22       .35      .58 

4                              .065         .091          .21           .30        .48       .71      1.06 

5                              .6             .21            .41           .55        .83       1.154  1.61 

 

 

Chi-square value is calculated according to:  

(Observed yellow-Expected yellow)2 = (4997 − 5000)2 : 5000 to standardize = 1.8 10-3 

(Observed green -Expected green)2 = (5003 − 5000)2  : 5000 to standardize   = 1.8 10-3    

                                                              chi-square (1 degree of freedom)  = 3.6  10-3 

This result is smaller than 3.9  10-3 and, thus, it is so close to what was expected that 

we can only conclude that we have < 5% probability to find it. We have to scrutinize 

these results, and must consider and examine the possibility of inadequate data 

improvement. The above example is actually based on some true historic facts 

(Mendel indeed improved his data).13 

 
7. P-VALUES LARGER THAN 0.95, EXAMPLES ( TABLE 2) 

 

We searched for main endpoint p-values close to 0.95 in randomized controlled trials 

published in recent issues of the Lancet and the New England Journal of Medicine, 

and found four studies. Table 2 gives a summary. All of these studies aimed at 

demonstrating similarities rather than differences. Indeed, as can be observed, 

proportions of patients with events in the treatment and control groups were very 

similar. E.g., the percentages in treatment and control groups of patients with sepsis 

were 1.3% and 1.3% (study 1, Table 2), and of patients with cardiovascular events  

79.2% and 79.8 % (study 5, Table 2). The investigators of the studies calculated p-

values from p > 0.94 to p > 0.995, which, according to the chi-square table (Table 1), 

would provide left-end p-values between  0.06 and  0.005. This would mean, that, 

for whatever reason, these data were probably not  completely random. Unwarranted 

exclusion of, otherwise, appropriate outliers is one of the possible explanations. 
 



Table 2 Study data with p-values close to 0.95, as published in recent Lancet and N 

Engl J Med issues 
____________________________________________________________________ 

           Result(numbers)               results(%)           Sample size      alpha-level   P-values 

                                                                                 requirement   

Ref 14  107/6264 vs 107/6262         1.7  vs    1.7      yes                 0.05    > 0.995     

Ref 15  88/965 vs 84/941                  9.1  vs    8.9        yes                  0.05       > 0.95 

Ref 15  13/965 vs 12/941                  1.3  vs    1.3        yes                   0.05         > 0.95 

Ref 16  214/1338 vs 319/2319       15.9  vs  13.8        yes                   0.05      > 0.99 

Ref 17  285/360 vs 1087/1363       79.2  vs  79.8        yes                   0.05     > 0.94 

____________________________________________________________________ 
1. Proportions of patients with heart infarction in patients with diastolic blood pressure 80 < ... < 

85 vs < 80 mm Hg. 2. Proportion of patients with arrhythmias in patients with standard 

perioperative treatment vs Swann-Ganz catheter-guided perioperative treatment. 3. Proportion of 

patients with sepsis in patients with standard perioperative treatment vs Swann-Ganz catheter-

guided perioperative treatment. 4. Proportions of patients with cardiovascular events in patients 

with LDL-cholesterol, < 3.5 mmol/l vs 3.5 < ... < 4.5 mmol/l. 5. Proportions of patients with 

cardiovascular events in patients with LDL-cholesterol < 2.6 mmol/l vs > 3.4 mmol/l. Alpha = 

type I error, vs= versus. 

 
8. THE REAL MEANING OF VERY SMALL P-VALUES LIKE P < 0.0001 

 

Statistics gives no certainties, only chances. A generally accepted concept is “the 

smaller the p-value the better reliable the results”. This is not entirely true with current 

randomized controlled trials. First, randomized controlled trials are designed to test 

small differences. A randomized controlled trial with major differences between old 

and new treatment is unethical because half of the patients have been given an inferior 

treatment.  

Second, they are designed to confirm prior evidence. For that purpose, their sample 

size is carefully calculated. Not only too small but also too large a sample size is 

considered unethical and unscientific, because negative studies have to be repeated 

and a potentially inferior treatment should not be given to too many patients. Often in 

the study protocol a statistical power of 80% is agreed, corresponding with a p-value 

of approximately 0.01.  

will be rarely observed, because current clinical trials are confirmational and, 

therefore, rarely negative. Also a p-value much smaller than 0.01 will be rarely 

observed, because it would indicate that either the power assessment was inadequate 

(the study is overpowered) or the data have been artificially improved. With p = 

0.0001 we have a peculiar situation. In this situation the actual data can not only reject 

expectations and must be scrutinized for data improvement. (This issue is explained 

more in detail in the next chapter).  
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the null-hypothesis, but also the hypothesis of significantly better Thus, a p-value 
<

 

The ultimate p-value may then be a bit larger or smaller. However a p-value of > 0.05 

0.0001, if the power was set at 80%, does not completely confirm its prior 
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9. P-VALUES SMALLER THAN 0.0001, EXAMPLES (TABLE 3) 
 

Table 3 gives an overview of five published studies with main endpoint p-values < 

0.0001. All of these studies were published in the first 6 issues of the 1992 volume of 

the New England Journal of Medicine. It is remarkable that so many overpowered 

studies were published within 6 subsequent months of a single volume, while the 

same journal published not any study with p-values below 0.001 in the past 4 years’ 

full volumes. We do not know why, but this may be due to the journal’s policy not to 

accept studies with very low p-values anymore. In contrast, many other journals 

including the Lancet, Circulation, BMJ, abound with extremely low p-values. It is 

obvious that these journals still believe in the concept “the lower the p-value, the 

better reliable the research”. The concept may still be true for observational studies. 

However, in confirmational randomized controlled trials, p-values as low as 0.0001 do 

not adequately confirm prior hypotheses anymore, and have to be checked for 

adequacy of data management. 

 
Table 3  Study data with p-values as low as < 0.0001, published in the first 6 issues of the 

1992 volume of the N Engl J Med. In the past 4 years p-values smaller than p < 0.001 

were never published in this journal 

____________________________________________________________________ 

              Result                Sample size                        alpha-level       P-values 

                                        requirement 

____________________________________________________________________ 

Ref 18   +0.5 vs +2.1%    yes                                       0.05                < 0.0001 

Ref 18  –2.8 vs +1.8 %    yes                                       0.05                < 0.0001 

Ref 19   11 vs 19 %          no                                        0.05                < 0.0001 

Ref 20   r = −  0.53             no                                        0.05                < 0.0001 

Ref 21   213 vs 69            no                                        0.05                < 0.0001 

____________________________________________________________________ 
1.Duration exercise in patients after medical therapy vs percutaneous coronary angioplasty. 2. 

Maximal double product (systolic blood pressure times heart rate) during exercise in patients 

after medical treatment vs percutaneous coronary angioplasty. 3. Erythromycin resistance throat 

swabs vs pus samples. 4. Correlation between reduction of epidermal pigmentation during 

treatment and baseline amount of pigmentation. 5. Adverse reactions of high vs non-high 

osmolality agents during cardiac catheterization. Alpha = type I error, vs = versus.



 

 
10. DISCUSSION 

 

In 1948 the first randomized controlled trial was published by the BMJ.22 Until then, 

observations had been mainly uncontrolled. Initially, trials were frequently negative 

due to little sensitivity as a consequence of too small samples, and inappropriate 

hypotheses based on biased prior data. Nowadays, clinical trials are rarely negative, 

and they are mainly confirmational rather than explorative. This has consequences for 

the p-values that can be expected from such trials. Very low p-values like p < 0.0001 

will be rarely encountered in such trials, because it would mean that the study was 

overpowered and should have had a smaller sample size. Also very large p-values like 

p > 0.95 will be rare, because they would indicate similarities closer than compatible 

with a normal distribution of random data samples.  

We should emphasize that the above-mentioned interpretation of very low / high p-

values is only true within the context of randomized controlled trials. E.g., 

unrandomized observational data can easily produce very low and very high p-values, 

and there is nothing wrong with that. Also the above interpretation is untrue in clinical 

trials that test multiple endpoints rather than a single main endpoint or a single 

composite endpoint. Clinical trials testing multiple rather than single endpoints, often 

do so for the purpose of answering a single question, e.g., the benefit of health of a 

new drug may be estimated by mortality in addition to various morbidity variables. If 

investigators test many times, they are apt to find differences, e.g., 5% of the time, but 

this may not be due to significant effects but rather to chance. In this situation, one 

should informally integrate all of the data before reaching conclusions, and look for 

the trends in the data without judging one or two low p-values, among otherwise high 

p-values, as proof (see also the chapters 7 and 8).  

In the present chapter, for the assessment of high p-values, the chi-square test is used, 

while for the assessment of low p-values the t-test is used. Both tests are, however, 

closely related to one another, and like other statistical tests, including the F-test, 

regression analysis, and other tests based on normal distributions. The conclusions 

drawn from our assessments are, therefore, equally true for alternative statistical tests 

and data. 

 
11. RECOMMENDATIONS 

 

P-values < 0.0001 will be rarely encountered in randomized controlled clinical trials, 

because it would mean that the study is overpowered and should have had a smaller 

sample size. Also p-values > 0.95 will be rare,  because  they would indicate 

similarities closer than compatible with a normal distribution of random samples. It 

would seem appropriate, therefore, to require investigators to explain such results, and 

to consider rejecting the research involved. So far, in randomized controlled trials the 

null-hypothesis is generally rejected at p < 0.05. Maybe, we should consider rejecting 

the entire study if the main endpoint p-values are > 0.95 or < 0.0001. 
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The concept of the p-value is notoriously poorly understood. Some physicians even 

comfortably think  that the p-value is a measure of effect.23 When asked whether a 

drug treatment worked, their typical answer would be: “Well, p is less than 0.05, so I 

guess it did”. The more knowledgeable among us know that p stands for chance  

( probability = p), and that there must be risks of errors. The current paper reviews the 

standard as well as renewed interpretations of the p-values, and was written for 

physicians accepting statistical reasoning as a required condition for an adequate 

assessment of the benefits and limitations of evidence-based medicine. 

Additional points must be considered when interpreting the p-values. In the first place, 

the interpretation of low p-values is different in studies that test multiple endpoints 

rather than a single main endpoint or a single composite endpoint. Studies testing 

multiple rather than single endpoints, often do so for the purpose of answering a single 

question, e.g., the benefit of health of a new drug may be estimated by mortality in 

addition to various morbidity variables. If investigators test many times, they are apt 

to find differences, e.g., 5% of the time, but this may not be due to significant effects 

but rather to chance. In this situation, one should informally integrate all of the data 

before reaching conclusions, and look for the trends in the data without judging one or 

two low p-values, among otherwise high p-values, as proof.  

Special attention in this respect deserves the issue of multiple low-powered studies. 

One might consider this situation to be similar to the above one, and conclude that 

such studies be similarly integrated. Actually, this is one of the concepts of the method 

of meta-analysis.  Second, the point of one sided testing versus two-sided testing must 

be considered. Studies testing both ends of a normal frequency distribution have twice 

the chance of finding a significant difference compared to those testing only one end. 

If our research assesses whether there is any difference in the data, no matter in what 

direction, either the positive or the negative one, then we have a two-sided design and 

the p-values must doubled. It is then, consequently, harder to obtain a low p-value. 

Recommendations regarding the interpretation of main-endpoint-study p-values either 

two-sided or not, include the following. 

1. P < 0.05 gives a conditional probability: H0 can be rejected on the 

limitations/assumptions that (1) we have up to 5% chance of a type I error of 

finding a difference where there is none, (2) we have 50% chance of a type II error 

of finding no difference where there is one, (3) the data are normally distributed, 

(4) they follow exactly the same distribution as that of the population from which 

the sample was taken. 

2. A common misunderstanding is the concept that the p-value is actually the chance 

that H0 is true, and, consequently that a p > 0.05 indicates a significant similarity in 

the data. P > 0.05 may, indeed, indicate similarity. However, also a study-sample 

too small or study design inadequate to detect the difference must be considered. 

3. An advantage of the exact p-values is the possibility of more refined conclusions 

from the research: instead of concluding significantly yes/no, we are able to 

consider levels of probabilities from very likely to be true, to very likely to be 

untrue. 



4. P > 0.95 suggests that the observed data are closer to expectation than compatible 

with a Gaussian frequency distribution, and such results must, therefore, be 

scrutinized. 

5. A p < 0.0001, if power was set at 80%, does not completely confirm the prior 

expectations of the power assessment. Therefore, such results must be scrutinized. 

 

12. CONCLUSIONS 

 

The p-values tell us the chance of making a type I error of finding a difference 

where there is none. In the seventies exact p-values were laborious to calculate, 

and they were, generally, approximated from statistical tables, in the form of p < 

0.01 or 0.05 < p < 0.10 etc. In the past decades with the advent of computers it 

became easy to calculate exact p-values such as 0.84 or 0.007. The cut-off p-values 

have not been completely abandoned, but broader attention is given to the 

interpretation of the exact p-values. The objective of this chapter was to review 

standard and renewed interpretations of p-values: 

1. Standard interpretation of cut-off p-values like p < 0.05. 

The null-hypothesis of no difference can be rejected on the limitations/assumptions 

that (1) we have up to 5% chance of a type I error of finding a difference where 

there is none, (2) we have 50% chance of a type II error of finding no difference 

where there is one, (3) the data are normally distributed, (4) they follow exactly the 

same distribution as that of the population from which the sample was taken.  

2. A common misunderstanding of the p-value.  

It is actually the chance that the null-hypothesis is true, and, consequently that a p 

> 0.05 indicates a significant similarity in the data. P > 0.05 may, indeed, indicate 

similarity. However, a study-sample too small or study design inadequate to detect 

the difference must be considered. 

3. Renewed interpretations of the p-values. 

Exact p-values enable to more refined conclusions from the research than cut-off 

levels: instead of concluding significantly yes/no, we are able to consider levels of 

scrutinized ,and may have been inadequately improved.    
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CHAPTER 10 

 
RESEARCH DATA CLOSER TO EXPECTATION 

THAN COMPATIBLE WITH RANDOM SAMPLING 

 
1. INTRODUCTION 

 

Research data may be close to expectation. However, a difference from control of 

0.000 is hardly compatible with random sampling. As it comes to well-balanced 

random sampling of representative experimental data, nature will be helpful to provide 

researchers with results close to perfection. However, because biological processes are 

full of variations, nature will never allow for 100% perfection. Statistical distributions 

can account for this lack of perfection in experimental data sampling, and provide 

exact probability levels of finding results close to expectation.  

As an example, in a Mendelian experiment the expected ratio of yellow-peas / green-

peas is 1 / 1. A highly representative random sample of n = 100 might consist of 50 

yellow and 50 green peas. However, the larger the sample the smaller the chance of 

finding exactly fifty/fifty. The chance of exactly 5000 yellow / 5000 green peas or 

even the chance of a result very close to this result is, due to large variability in 

biological processes, almost certainly zero. In a sample of 10,000 peas, you might find 

4997 yellow and 5003 green peas. What is the chance of finding a result this close to 

expectation? A simple chi-square test produces here a p > 0.95 of finding a result less 

close, which means a chance of < (1 − 0.95) , i.e., < 0.05 of finding a result this close 

or closer. Using the traditional 5% decision level, this would mean, that we have a 

strong argument that these data are not completely random. The example is actually 

based on some true historic facts, Mendel improved his data.1 

Mendel’s data were unblinded and unrandomized. Currently interventional data are 

obtained through randomized controlled trials. The phenomenon of data closer to 

expectation than compatible with random sampling is not considered anymore. But it 

is unknown whether it has actually disappeared. In the previous chapter the subject of 

extreme p-values as a result of research data closer to expectation than compatible 

with random sampling has been briefly addressed. The current chapter provides 

additional methods and examples in order to further emphasize the importance of this 

issue. 
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2. METHODS AND RESULTS 
 

In order to assess this issue we defined data closer than random according to: 

 

1. An observed p-value of  > 95%.  
This literally means that we have > 95% chance of finding a result less close 

expectation, and, consequently, < 5% chance of finding a result this close or closer. 

 
2. An observed  p-value of < 0.0001.  

Often in the study protocol a statistical power of 80% is agreed, corresponding with a 

p-value of approximately 0.01. The ultimate p-value may then be a bit larger or 

smaller. However a p-value of > 0.05 will be rarely observed, because current clinical 

trials are confirmational and, therefore, rarely negative. Also a p-value much smaller 

than 0.01 will be rarely observed, because it would indicate that the study is 

overpowered. If the p-values can be assumed to follow a normal distribution around p 

= 0.01, then we will have less than 5% chance of observing a p-value of < 0.0001.  

 
3. An observed standard deviation (SD) < 50%  the SD expected from prior 

 population data.  

From population data we can be pretty sure about SDs to be expected. E.g., the SDs of 

blood pressures are close to 10% of their means, meaning that for a mean systolic 

blood pressures of 150 mm Hg the expected SD is close to 15 mm Hg, for a mean 

diastolic blood pressure of 100 mm Hg the expected SD is close to 10 mm Hg. If such 

SDs can be assumed to follow a normal distribution, we will have < 5% chance of 

finding SDs < 7.5 and < 5 mm Hg respectively. 
 

4. An observed standard deviation (SD)>150%  the SD expected from prior 

population data.  
With SDs close to 10% of their means, we, likewise, will have < 5% chance of 

finding SDs >150% the size of the SDs expected from population data. 

 

We, then, searched randomized controlled trials of the 1999-2002 volumes of four 

journals accordingly. However, we decided to early terminate our search after 

observing respectively 7, 14, 8 and 2 primary endpoint results closer than random in a 

single random issue from the journals (Table 1). We have to conclude that the 

phenomenon of research data closer to expectation than compatible with random 

sampling has not at all disappeared. We assume that, like with the above Mendelian 

example, inappropriate data cleaning is a major factor responsible. We recommend 

that the statistical community develop guidelines for assessing appropriateness of data 

cleaning, and that journal editors require submittors of research papers to explain their 

results if they provide extremely high or low p-values or unexpectedly small or large 

SDs. Maybe, they should even consider, like the New England Journal of Medicine, 

not to publish p-values smaller than 0.001 anymore.  



RESEARCH DATA CLOSER TO EXPECTATION 

Table 1.  Numbers of primary endpoint results closer to expectation than compatible with 

random sampling observed in a single issue from four journals 

____________________________________________________________________ 

                                                        p > 0.95       p<0.0001      SD<50% of       >150% of 

                                                                                              expected SD      expected SD                                                    

____________________________________________________________________ 

 

Cardiovascular Research  1 (1)* 5 (1)  3 (2) 1 (1) 

1999; 43: issue 1                                                            

Current Therapeutic Research 0 (0)  3 (1)    3 (1) 0 (0)          

2000; 61: issue 1                                                 

International Journal of            3 (2)   1 (1)   0 (0)   0 (0) 

Clinical Pharmacology and  

Therapeutics   2001; 39: issue 12 

Journal of Hypertension           3 (2)    5 (1)  2 (1) 1 (1) 

2002; 20: issue 10                                         

____________________________________________________________________

Total                                           7 (5)  14 (4)    8 (4) 2 (2) 

*Between brackets numbers of studies. 
 

Evidence-based medicine is under pressure due to the conflicting results of recent 

trials producing different answers to similar questions.2,3 Many causes are mentioned. 

As long as the possibility of inappropriate data cleaning has not been addressed, this 

very possibility cannot be excluded as potential cause of the obvious lack of 

homogeneity in current research. 

 
3. DISCUSSION 

 

In randomized controlled trials, prior to statistical analysis, the data are checked for 

outliers and erroneous data. Statistical tests are, traditionally, not very good at 

distinguishing between errors and outliers, but they should be able to point out main 

endpoint results closer to expectation than compatible with random sampling. In the 

current chapter we propose some criteria to assess main endpoint results for such 

purpose. One of the criteria proposed is a < 5% probability to observe p-values of  

< 0.0001 in studies planned at a power of 80%.4 Kieser5 takes issue with this proposed 

criterium, and states that, based on the two-sample normally distributed model of 

Hung6, this probability should be much larger than 5%.  We used a different, and, in 

our view, more adequate model for assessment, based on the t-distribution and a usual 

two-sided type I error of 5%, rather than a one-sided type I error of 1%. We here take 

the opportunity to explain our assessment a little bit further and, particularly, to 

explain the arguments underlying it.  

 

In statistics, a generally accepted concept is “the smaller the p-value, the better reliable 

the results”. This is not entirely true with current randomized controlled trials. First, 

randomized controlled trials are designed to test small differences. A randomized 
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controlled trial with major differences between old and new treatment is unethical 

because half of the patients have been given an inferior treatment. Second, they are 

designed to confirm prior evidence. For that purpose, their sample size is carefully 

calculated. Not only too small, but also too large a sample size is considered unethical 

and unscientific, because negative studies have to be repeated and a potentially 

inferior treatment should not be given to too many patients. Often in the study 

protocol a statistical power of 80% is agreed, corresponding with a p-value of 

approximately 0.01 (Figure 1). The ultimate p-value may then be a little bit larger or 

smaller. However, a p-value > 0.05 will be rarely observed, because most of the 

current clinical trials are confirmational, and, therefore, rarely negative. Also, a p-

value much smaller than 0.01 will be rarely observed, because it would indicate that 

either the power assessment was inadequate (the study is overpowered) or data 

management was not completely adequate. With p = 0.0001 we have a peculiar 

situation. In this situation the actual data can not only reject the null-hypothesis (H0, 

Figure 2) at p = 0.0001, but also the hypothesis of significantly better (H1, Figure 2) at 

p = 0.05.  This would mean that not only H0 but also H1 is untrue.  

 
Figure 1.  Null-hypothesis (H0) and alternative hypothesis (H1) of an example of 

experimental data with sample size n = 60 and mean = 2.66, and a t-distributed 

frequency distribution. The null-hypothesis is rejected with a p-value of approximately 

0.01 and a statistical power (=1 −  ) of 80%.   

____________________________________________________________________ 

 = type I error = 5%;  = type II error = 20%; app.= approximately; SEM = standard 

error of the mean. 
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Figure 2.  Null-hypothesis (H0), hypothesis of significantly better (H1), and  

actual data distribution (DATA) of an example of experimental data with n = 120 

and mean = 3.90 SEMs and a t-distributed frequency distribution. The actual 

data can not only reject H0 (t = 3.90, p = 0.0001), but also H1  (t = 1.95, p = 

0.05). This would mean that not only H0 but also H1 is untrue.  

_________________________________________________________________ 

SEM = standard error of the mean. 

 

Table 2 gives an overview of five published studies with main endpoint p-values < 

0.0001. All of these studies were published in the first 6 issues of the 1992 volume of 

the New England Journal of Medicine. It is remarkable that so many overpowered 

studies were published within 6 subsequent months of a single volume, while the 

same journal published not any study with p-values below 0.001 in the past 4 years’ 

full volumes. We do not know why, but this may be due to the journal’s policy not to 

accept studies with very low p-values anymore. In contrast, many other journals 

including the Lancet, Circulation, BMJ (British Medical Journal), abound with 

extremely low p-values. We should add that, while preparing this chapter, we noticed 

that, in the past two months, also JAMA (Journal American Medical Association) did 

not publish p-values below 0.001 anymore. It is obvious, however, that most of the 

other journals still believe in the concept “the lower the p-value, the better reliable the 

research”. The concept may still be true for observational studies. However, in 

confirmational randomized controlled trials, p-values as low as 0.0001 do not 

adequately confirm prior hypotheses anymore, and have to be checked for adequacy 

of data management. 
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Table 2.  Study data with p-values as low as < 0.0001, published in the first 6 issues of the 

1992 volume of the New England Journal Medicine. In the past 4 years p-values smaller 

than p<0.001 were never published in this journal 

____________________________________________________________________ 

       Result   Sample size alpha-level p-values 

                                               requirement 

____________________________________________________________________ 

1. Ref. 7    +0.5 vs +2.1%      yes            0.05       < 0.0001 

2. Ref. 7    –2.8 vs +1.8 %  yes                0.05       < 0.0001 

3. Ref. 8         11 vs 19 %    no                0.05      < 0.0001 

4. Ref. 9           r = −  0.53    no                   0.05 < 0.0001 

5. Ref. 10     213 vs 69            no            0.05        < 0.0001 

____________________________________________________________________ 
1.Duration exercise in patients after medical therapy vs percutaneous coronary angioplasty.  

2. Maximal double product (systolic blood pressure times heart rate) during exercise in patients 

after medical treatment vs percutaneous coronary angioplasty. 3. Erythromycin resistance throat 

swabs vs pus samples. 4. Correlation between reduction of epidermal pigmentation during 

treatment and baseline amount of pigmentation. 5. Adverse reactions of high vs non-high 

osmolality agents during cardiac catheterization. Alpha = type I error, vs = versus. 

 

4. CONCLUSIONS 

 
The following results may be closer to expectation than compatible with random. 

1. An observed p-value of > 0.95.  

2. An observed  p-value of < 0.0001.  

3. An observed standard deviation (SD) < 50%  the SD expected from prior 

 population data.  

4. An observed standard deviation (SD) > 150%  the SD expected from prior 

population data.  

Additional assessments to identify data at risk of unrandomness will be reviewed in 

chapter 24.  
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PRINCIPLES OF  LINEAR REGRESSION 

 
1. INTRODUCTION 

 

In the past chapters we discussed different statistical methods to test statistically 

experimental data from clinical trials. We did not emphasize correlation and 

regression analysis. The point is that correlation and regression analysis test 

correlations, rather than causal relationships. Two samples may be strongly 

correlated e.g., two different diagnostic tests  for assessment of the same 

phenomenon. This does ,however, not mean that one diagnostic test causes the 

other. In testing the data from clinical trials we are mainly interested in causal 

relationships. When such assessments were statistically analyzed through 

correlation analyses mainly, we would probably be less convinced of a causal 

relationship than we are while using prospective hypothesis testing. So, this is the 

main reason we so far did not address correlation testing extensively. With 

epidemiological observational research things are essentially different: data are 

obtained from the observation of populations or the retrospective observation of 

patients selected because of a particular condition or illness. Conclusions are 

limited to the establishment of relationships, causal or not. We currently believe 

that relationships in medical research between a factor and an outcome can only be 

proven to be causal when between the factor is introduced and subsequently gives 

rise to the outcome. We are more convinced when such is tested in the form of a 

controlled clinical trial. A problem with multiple regression and logistic regression 

analysis as method for analyzing multiple samples in clinical trials is closely 

related to this point. There is always an air of uncertainty about such regression 

data. Interventional trials usually use hypothesis-testing and 95% confidence 

intervals (CIs) of the data to describe and analyze data. They use multiple 

regression for secondary analyses, thus enhancing the substance of the research, 

and making the readership more willing to read the report, rather than proving the 

primary endpoints. Regression analysis may not be so important to randomized 

clinical trials, it is important to one particular study design, the crossover study, 

where every patient is given in random order test-treatment and standard treatment 

(or placebo). Figure 1 gives three hypothesized examples of crossover trials. It can 

be observed from the plots that in the left and right graph there seems to be a linear 

relationship between treatment one and two. The strength of relationship is 

expressed as r ( = correlation coefficient) which varies  between 1 and +1. The 

strongest association is given by either -1 or +1 (all data exactly on the line), the 

weakest association 0 (all data are parallel either to x-axis or to y-axis, or half one 

direction, half the other. A positive correlation in a crossover study is observed if 
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two drugs from one class are compared. The patients responding well to the first 

drug are more likely to respond well to the second. In contrast, in crossover studies 

comparing drugs from different classes a negative correlation may be observed: 

patients not responding well to one class are more likely to respond well to the 

other.  

 
                  

Figure 1. Example of 3 crossover studies of two treatments in patients with 

Raynaud’s phenomenon. the (Pearson’s) correlation coefficient ρ  varies 
between 1 and +1.  

 
2. MORE ON PAIRED OBSERVATIONS 

 

Table 1 gives the real data of a crossover study comparing a new laxative versus a 

standard laxative, bisacodyl. Days with stool are used as primary endpoint. The 

table shows that the new drug is more efficaceous than bisacodyl, but the figure 

(Figure 2) shows something else: there is a positive correlation between the two 

treatments: those responding well to bisacodyl are more likely to respond well to 

the novel laxative.    

 

-
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Table 1.  Example of a crossover trial comparing efficacy of a new 

laxative versus bisacodyl  
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Figure 2. Scatterplot of data from Table 1 with regression line. 

 
A regression line can be calculated from the data according to the equation  

 

                                                       y=a+bx  

 

The line drawn from this linear function provides the best fit for the data given, 

where y = socalled dependent, and x = independent variable, b = regression 

coefficient. 

 

                a and b from the equation y = a+bx can be calculated. 

                                                                                     

                b   =  regression coefficient   =  
2

(x x)(y y)

(x x)

− −
−

 

                                                  

                a   = intercept = y bx−  

 

 

 

r = correlation coefficient = is another important determinant and looks a lot like b. 
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r   = 
2 2

(x x)(y y)

(x x) (y y)

− −

− −
  

                                                        

r  =  measure for the strength of association between y and x-data. The stronger the 

        association, the better y predicts x.  

 
3. USING STATISTICAL SOFTWARE FOR SIMPLE LINEAR REGRESSION 

 

Regression analysis without software is laborious. We may use a computer 

program, e.g., SPSS Statistical Software, to do the job for us. We command our 

software: Statistics; Regression; Linear. 

The software calculates the values b and a and r so as to minimize the sum of the 

squared vertical distances of the points from the line (least squares fit).  SPSS 8 for 

windows 99 provides us with three tables (Table 2): (1) Model Summary, (2) 

ANOVA, (3) coefficients. 
Table 2. 
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(1) Model Summary gives information on correlation coefficient and its square 

the coefficient of determination. A coefficient of determination of 0.63 indicates 

that 63% of the variation in the y variable is explained by variation in the x 

variable. The better the effect of bisacodyl the better the novel laxative is going to 

work. Adjusted r square is important for small samples only while std error of the 

estimate tells us something about the residue (variance not explained by the 

regression)and is equal to the square root of the Residual Mean Square. 

At this point it is important to consider the following. Before doing any regression 

analysis we have to make the assumptions that our data are normally distributed 

and that variances in x and y-variable do not show a lot of difference, otherwise 

called heteroscedasticity (heteroscedasticity literally means “different standard 

deviations (SDs)”).  

 

White’s Test is a simple method to check for this. Chi-square table is used for that 

purpose.  

                  if     n r2  <  2 (n) we don’t have to worry about heteroscedasticity. 

     n = sample size 

     r = correlation coefficient 

     2 (n)  = the  value for n degrees of freedom.     

     In our example 35 (0.630) = 22.05  while 2 (35) = 16.70 (no heteroscedasticity)  

                  

(2) ANOVA (analysis of variance) shows how the paired data can be assessed in 

the form of analysis of variance. Variations are expressed as sums of squares. The 

total variation in the regression is divided into sum of squares (SS) regression, or 

variances explained by the regression, and SS residual, variances unexplained by 

the regression.  
                                                

              

2 2
2

2 2

( (x x)(y y)) SP x y
r

(x x) (y y) SSx SSy

− − ⋅= =
− − ⋅

                                                                  

 

where SP = sum of products x . y 

 

 SS regression = SP2 xy / SSx = 2128.393 

 SS total = SS y 

 SS regression/ SS total = 2128.393 / SS total = 0.63 ( = r square (Model Summary))  

The F-test is helpful to reject the null-hypothesis that r = 0. We reject this null-

hypothesis at a p<0.00. There is thus a significant correlation between the y and x 

variables. 
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SPSS uses R (upper case), other software uses r (lower case) for expressing the 

correlation coefficient. R square (R2) is, thus, interpreted as the proportion of 

variance in the data explained by the regression. If R2 = 0, then no correlation 

exists, the x-values determine the y-values no way.  If R2  = 0.5, then the level of 

correlation is 50%. If R2 = 0.63, then the x-values determine the y-values by 63%, 

and there is 37% uncertainty. 1 − R2 = 0.37 is, thus, equal to the uncertainty in the 

data, otherwise called the standard error (SE). 

     

(3) Coefficients shows the real regression equation. The intercept is named 

(constant)  and given under B = 8.647. The b-value in the linear regression 

equation is 2.065. 

               The regression equation is thus as follows. 

               Y = 8.647 + 2.065 . x 

               new laxative = 8.647 + 2.065 . bisacodyl 

In addition to unstandardized coefficients, standardized coefficients are given. For 

that purpose SSy is defined to be 1. Then, r = b. Instead of testing the null-

hypothesis that r = 0, we can now test that b = 0, and use for that purpose the t-test. 

The t-value of 7.491 =  F= 110.56    (from the ANOVA table). 

 

4.  MULTIPLE LINEAR REGRESSION 

 

          
Figure 3. Scatterplot of data from Table 1 with regression line.  

Obviously, there is a significant positive correlation between the x- and y-values

 (Figure 3). Maybe, there is also a positive correlation between the new laxative and 

patient age. If so, then the new laxative might be better, e.g.,  

                               

(1) the better the bisacodyl, 

                               

(2) the older the patient. 
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In this case we have, thus, 3 observations in 1 person 

                                  (1) efficacy datum new laxative 

                               (2) efficacy datum bisacodyl  

                                (3) age.  

 

In order to test possible correlations, we can define variables as follows      

                                  y  variable   presents new laxative data 

                                  x1 variable   bisacodyl data 

                                  x2 variable   age data. 

 
Figure 4. Linear regression model gives best predictable y-value  for the  x-value given. 

 

 

Linear regression uses formula y = a + bx, where the y-variable = new laxative 

data, the x-variable = bisacodyl data. E.g., if we fill out  

                               x-value = 0  => then formula turns into y = a 

                              x-value =1  =>  ”        ”          ”       ”     y = a + b 

                                 x-value =2  =>  ”        ”          ”       ”     y = a + 2b 

 

For each x-value the formula produces the best predictable y-value, all y-values 

constitute a line, the regression line (Figure 4) which can be interpreted as the best 
fit line for data (the line with shortest distances from the y-values).  
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Figure 5. Three axes model to illustrate multiple linear regression model with two x-

variables. 

 

For multiple regression with 3 variables the regression formula  y = a +  b1 x1 + b2 

x2 is being used. In order to visualize the model used, we can apply a 3-axes-model 

with y-axis, x1 -axis and x2 –axis (Figure 5). If we fill out  

                  x1 =0, then the formula turns into     y = a + b2 x2   

                x1 = 1,   ”   ”  ”          ”     ”         y = a + b1+ b2 x2   

               x1 = 2    ”   ”  ”          ”     ”         y = a + 2b1  +b2 x2  

              x1 = 3    ”   ”  ”          ”     ”         y = a + 3b1 +b2 x2.  

Each x1 –value has its own regression line, all of the regression-lines constitute a  

regression plane which is interpreted as the best fit plane for the data (the plane 

with the shortest distances to the y-values). 

 
5. MULTIPLE LINEAR REGRESSION, EXAMPLE 

 

We may be interested to know if age is an independent contributor to the effect of 

the new laxative.  For that purpose a simple regression equation has to be extended 

as follows 

       y = a + b1 x1  + b2 x2 

 

bi are called partial regression coefficients. Just like simple linear regression, 

multiple linear regression can give us the best fit for the data given, although it is 

hard to display the correlations in a figure. Table 3 gives the data from table 1 

extended by the variable age.  
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Table 3. Example of a crossover trial comparing efficacy of a new laxative 

versus bisacodyl  
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The Table 3 shows too many data to allow any conclusions. We use for assessment 

of these data the same SPSS program called linear regression and command again: 

Statistics; Regression; Linear. The software SPSS 8 for windows 99 provides us 

with the following three subtables: (1) Model Summary, (2) ANOVA,  

(3) coefficients (Table 4). 

 
                                                    Table 4. 

 

(1)Model Summary shows r, here called the multiple r, The corresponding 

“multiple r square”, otherwise called coefficient of determination, of 0.719 

indicates that 71.9% of the variation in the y variable is explained by variation in 

the two x variables. Interestingly, the multiple r square is a bit larger than the 

simple r square ( 0.719 and 0.618). Information is thus given about the perfection 

of the model. After the first step 61.8% of variation is explained by the regression 

model, after the second no less than 71.9% is explained by it. The addition of age 
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to the model produces 71.9 − 63 = 8.9% extra explanation of the variance in the y 

variable, the effect of the new laxative.  

 

Before going further we have to consider the hazard of collinearity, which is the 

situation where two x variables are highly correlated. One naive though common 

way in which collinearity is introduced into the data, is through inclusion of x 

variables that are actually the same measures under different names. This is, 

obviously, not so with bisacodyl effect and age. Nonetheless, we measure the 

presence of collinearity by calculating the simple correlation coefficient between 

the x variables before doing anything more. In our case r between x1 variables and 

x2 variables is 0.425, and so we don’t have to worry about (multi)collinearity  

( r > 0.90).    

 

(2)ANOVA can test the null hypothesis that r = 0. Again SS regression (by 

regression explained variance) is divided by SS residual (unexplained variance), 

the total variance being SS regression + SS residual.  The division sum 304.570/ 

SS total yields 0.719 = r square, Called R square by SPSS. If R2 is significantly 

different from the 0, then a regression plane like the one from Figure 5 is no 

accident. If R2 is significantly different from 0, then the plane is no accident. If R2 

= 0, then no correlation exists, the x-values determines the y-values no way. If R2 

=1, then the correlation is 100%, we are absolutely sure about the y-value if we 

know the x-values. If R2 = 0.5, the 50% correlation exists. In our case R2 = 0.719 = 

72%. The x-values determine the y-values by 72% certainty. We have 28% 

uncertainty  = noise = (SE of R2 = 1-R2). 

   
(3)Coefficients again shows the real regression equation. The intercept a is given 

by the (constant).  The b values are the unstandardized regression coefficients of 

the x1 and x2 variables. 

            The regression equation is thus as follows 

            y =  − 1.547 + 1.701 . x1  + 0.426 . x2 

            new laxative = − 1.547 + 1.701 . bisacodyl  + 0.426 .  age 

In addition to unstandardized coefficients, standardized coefficients are given. For 

that purpose SS y is taken to be 1. Then r = b. Instead of testing the null hypothesis 

that r= 0 we can now test that various bi = 0, and use for that purpose t-test. As 

both bisacodyl and age are significantly correlated with the y variable (the efficacy 

of the new laxative), both x variables are independent predictors of the efficacy of 

the new laxative. 
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6. PURPOSES OF LINEAR REGRESSION ANALYSIS 
 

          
Figure 6. Regression plane. 

 

In summary, multiple regression-analysis with 3 variables and the equation 

formula y = a + b1 x1 + b2 x2   , can be illustrated by a regression plane, the best fit 

plane for the scattered data (Figure 6). A p-value < 0.0001 means that the data are a 

lot closer to the regression plane than could happen by accident. If more than 3 

variables are in the model, then the model becomes multidimensional, and a graph 

is impossible, but the principle remains the same. 

Multiple linear regression analysis is used for different purposes (see also the next 

chapter).  The above example of two x-variables is an example where multiple 

linear regression is used in a controlled clinical crossover trial in order to provide 

more precision in the data. With a single x-variable the R2 -value = 63%, with two 

x-variables the R2 -value = 72%. Obviously, the level of certainty for making 

prediction about the y-variable increases by 72% −  63% = 9%, if a second x-

variable is added to the data. Another common purpose for its use is exploratory 

purposes. We search for significant predictors = independent determinants of the y-

variable, and include multiple x-variables in the model. Subsequently, we asses 

which of the x-variables included are the statistically significant predictors of the 

y-variable according to the model 

      y = a+b1 x1 + b2 x2 +……….b10 x10  

The b-values are the partial correlation coefficients, and are used to test the 

strength of the correlation. If b1  t/m  b10 are significantly < / > 0, then the 

corresponding x-variable is a significant predictor of the y-variable. The different 

x-variables can be added to the model one by one (stepwise, step-up), or all 

together. If added all together, we remove the insignificant ones starting with the 

one with the largest p-value (stepwise, step down). In practice the step-up and step-

down method will produce rather similar results. If none of the x-variables 

produces a significant b-value, but the overall R2 –value is significantly different 

from 0, we have to conclude that none of the x-variables is an independent 

determinant of the y-variable, yet the y-value is significantly dependent on all of 

the x-variables.      
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7. ANOTHER REAL DATA EXAMPLE OF MULTIPLE LINEAR 

REGRESSION (EXPLORATORY PURPOSE) 
 

We want to study “Independent determinants of quality of life of patients with 

angina pectoris”. Note this is an observational rather than interventional study. We 

give the example because these kinds of data are often obtained as secondary data 

from interventional studies.  

 

y-variable = index of quality of life of patients with stable angina pectoris  

x-variables = 1.Age                                          

                    2.Gender                                      

                    3.Rhythm disturbances             

                    4.Peripheral vascular disease     

                    5.Concomitant calcium channel blockers         

                    6.Concomitant beta blockers                          

                    7.NYHA-classification             

                    8.Smoking                                

                    9.body mass index 

                    10.hypercholesterolemia 

                    11.hypertension 

                    12.diabetes mellitus 

 

Index of quality of life = a + b1 (age) + b2 ( gender) + …… b12 ( diabetes)     

 

Correlation between independent variables may be correlated but not too closely: 

e.g. body mass index, body weight, body length should not be included all three. 

We used single linear regression for assessing this correlation, otherwise called 

multicollinearity (Table 5). 
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Table 5. correlation matrix in order to test multicollinearity in the 

regression analysis, P-values are given 
____________________________________________________________________________ 

             age  /   gender / rhythm / vasc dis /  ccb /   bb / NYHA / smoking  / bmi / chol / hypt  

____________________________________________________________________________ 

gender   0.19 

rhythm      0.12  ns 

vasc dis    0.14      ns       ns 

ccb           0.24      ns         0.07        ns 

bb             0.33      ns        ns          ns  0.07 

NYHA     0.22     ns        ns         0.07    0.07    ns 

smoking  – 0.12     ns         0.09       0.07     0.08   ns 

bmi          0.13     ns          ns         ns       ns        0.10   0.07 

chol         0.15      ns          ns         0.12     0.09     ns         0.08        0.09  

hypt         0.09      ns         0.08        ns      0.10      0.09       0.09         0.09    0.07 

diabetes   0.12      ns         0.09        0.10       ns        0.08       ns           0.11    0.12 0.10 

___________________________________________________________________________ 

vasc dis = peripheral vascular disease; ccb = calcium channel blocker therapy; bb = beta-blocker 

therapy; bmi = body mass index; hypt = hypertension; ns= not statistically significantly correlated 

(Pearson’s correlation p-value > 0.05). 

 

Table 6 shows that none of the above b-values are significantly different from 0. In 

contrast, Table 7 summarizes the significant b-values.  Conclusions: The higher the 

NYHA class the lower quality of life (Figures 7 and 8). Smokers, obese subjects, 

and patients with concomitant hypertension have lower quality of life. Patients 

with hypercholesterolemia or diabetes mellitus have better quality of life. The latter 

two categories may have early endothelial dysfunction and may have significant 

angina pectoris with fairly intact coronary arteries. An alternative interpretation is 

that they have better quality of life because they better enjoy life despite a not so 

healthy lifestyle. This uncertainty about the cause of relationship established 

illustrates uncertainties produced by regression analyses. Regression analyses often 

establish relationships that are not causal, but rather induced by some unknown 

common factor. 
 

 

 
Table 6. B-values used to test correlation, step down method 

_______________________________________________________________________ 
x-variable                         regression          standard        test     Significance level 

                                         coëfficient (B)   error              (T)                   (p-value) 

                                   

_______________________________________________________________________  

Age                                     0.03    0.04       0.8         0.39 

Gender                                   0.01        0.05  0.5           0.72 

Rhythm disturbances          0.04         0.04          1.0           0.28      

Peripheral vascular disease 0.00          0.01        0.1            0.97 

Calcium channel blockers      0.00           0.01          0.1             0.99 

beta blockers                           0.03          0.04          0.7             0.43 

________________________________________________________________________ 
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 Table 7. B-values to test correlation, step down method 

   ________________________________________________________________________ 
   x -variable                          regression              standard       test stat          Significance level 

                                         coëfficient (B)       error                (T)                    (p-value)           

NYHA-classification                -0.08                   0.03                   2.3                      0.02  

Smoking                                    -0.06                   0.04                  1.6                      0.08                         

body mass index                       -0.07                   0.03                   2.1                      0.04 

hypercholesterolemia                 0.07                   0.03                   2.2                      0.03 

hypertension                             -0.08                   0.03                   2.3                      0.02 

diabetes mellitus                        0.06                   0.03                    2.0                      0.05 

NYHA = New York Heart Association. 

 

 

Figure 7.  A negative b-value  indicates:                    Figure 8.  A positive b-value indicates:      

                 if x >,  then y <.                                                            if x > then y >. 

 

8. CONCLUSIONS 
 

If the above information is too much, don’t be disappointed: multiple linear 

regression analysis and its extensions like logistic regression and Cox’s 

proportional hazard model are not as important for clinical trials as it is for 

observational research: 

1. Regression analysis assesses associations not causalities. 

2. Clinical trials assess causal relationships. 

3. We believe in causality if factor is introduced and gives rise to a particular 

outcome. 

4. Always air of uncertainty with regression analysis 

Multiple linear regression is interesting, but, in the context of clinical trials mostly 

just exploratory.  
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SUBGROUP ANALYSIS USING MULTIPLE LINEAR 

REGRESSION: CONFOUNDING, INTERACTION, 

SYNERGISM 

 
1.  INTRODUCTION 

 

When the size of the study permits, important demographic or baseline value-defined 

subgroups of patients can be studied for unusually large or small efficacy responses; 

e.g. comparison of effects by age, sex; by severity or prognostic groups. Naturally, 

such analyses are not intended to “salvage” an otherwise negative study, but may be 

may be helpful in refining patient or dose selection for subsequent studies.1 

Most studies have insufficient size to assess efficacy meaningfully in subgroups of 

patients. Instead a regression model for the primary or secondary efficacy-variables 

can be used to evaluate whether specific variables are confounders for the treatment 

effect, and whether the treatment effect interacts with specific covariates. The 

particular (statistical) regression model chosen, depends on the nature of the efficacy 

variables, and the covariates to be considered should be meaningful according to the 

current state of knowledge. In particular, when studying interactions, the results of 

the regression analysis are more valid when complemented by additional exploratory 

analyses within relevant subgroups of patients or within strata defined by the 

covariates. 

In this chapter we will discuss the multiple linear regression model which is 

appropriate, for continuous efficacy variables, such as blood pressures or lipid levels 

(as discussed in chapter 2). Regression models for dichotomous efficacy variables  

( logistic regression2), and for survival data (Cox regression3) will not be assessed 

here. However, the principles underlying all of these models are to some extent 

equivalent.   
2.  EXAMPLE 

 

As an example of the use of a regression model we consider trials such as those 

conducted to evaluate the efficacy of statins (HMG-CoA reductase inhibitors) to 

lower lipid levels in patients with atherosclerosis.4 In unselected populations statins 

were extremely effective in lowering LDL cholesterol (LDL), but the question 

whether the efficacy depended on baseline LDL level was unanswered. Of course this 

could be answered by comparing efficacy in selected subgroups of patients with 

baseline low, intermediate, and high LDL levels, but a regression model could be 

used as well, and sometimes provides better sensitivity. 
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Consider a randomized clinical trial such as Regress.4 In this trial 884 patients with 

documented coronary atherosclerosis and total cholesterol between 4 and 8 mmol/L 

were randomized to either two-year pravastatin or placebo treatment. Efficacy of 

treatment was assessed by the fall in LDL cholesterol after two year treatment. In the 

n1=438 patients who received pravastatin mean LDL cholesterol fell by x 1 = 1.2324 

mmol/L (standard deviation, S1 = 0.68). In the n0 = 422 available patients who 

received placebo, the mean LDL cholesterol fell by x 0 =  0.0376 mmol/L (S0 = 

0.589). Consequently, the efficacy of pravastatin was 1.2324 0.0376 = 1.2700 

mmol/L LDL-decrease in two years with standard error (SE) 0.043 mmol/l, and the 

95% confidence interval (ci) of the efficacy quantification ran from 1.185 to 1.355. 

In a random patient with coronary atherosclerosis and total cholesterol in between 4 

and 8 mmol/L, pravastatin produces a better reduction in LDL cholesterol than does 

placebo by 1.27 mmol/L. However, a patient with 8 mmol/L total cholesterol level 

may better benefit than a patient with 4 mmol/L at baseline may do. Multiple linear 

regression can be applied to assess this question. 

 
3. MODEL (FIGURE 1) 

 

We first introduce some notation: the dependent variable Yi is the amount of LDL 

decrease observed in patient i (i = 1,...,884), and the independent variable or covariate 

X1i is an indicator variable, indicating whether patient i received pravastatin (X1i = 1) 

or not (X1i = 0). We define the linear regression model: 

where 0β  is the intercept, and 1β  the slope of the regression line and ei is a residual 

variation term, which is assumed to be normally distributed with variance 
2

eσ . 

When X1i is either zero or one, the usual estimates b0, b1, and S
2

e  of 0β , 1β , and = 2

e  

are: 

 

                      b0 = x 0 = − 0.0376,  b1 = x 1 − x 0 = 1.2700, and 

 
2 2

1 1 0 02
e

1 0

( 1)  + ( 1)n S n S
 =  = 0.4058 ,S

+ 2n n

− −
−

 

 
which are exactly the same statistics as used in the t-test procedure one would 

normally employ in this situation. The quantification of the efficacy is thus given by 

b1 and it has the same value and the same standard error and confidence interval as 

above. In Figure 1 the linear regression line is illustrated. 

Note: b and s are the best estimates, otherwise called best fits, of β and σ .  

 )1( ,e + X  +  = Y i1i10i ββ   

–

–
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Figure 1. The linear regression line is illustrated. 

 
By using this regression model the following assumptions are made. 

 

1. The relation between Y and X is linear. When X can attain only two values, this  

      assumption is naturally valid, but, otherwise, this is not necessarily so. 

2. The distribution of the residual term ei is normal with mean zero and 

variance e
2σ . 

3. The variance of the distribution of e,  e
2σ ,   is the same for X1 = 0 and for X1 = 1:  

      homoscedasticity. 

4. The residual term ei is independent of X1i . 

  

The object of regression modeling in clinical trials is to evaluate whether the efficacy 

quantification b1 (I.) can be made more precise by taking covariates into 

consideration, (II.) is confounded by covariates, and (III.) interacts with covariates 

(synergism). 

Increased precision (I.) is attained, and confounding (II.) can be studied by extending 

the regression model with a second independent variable X2: 

 

. e + X  + X  +  = Y i2i21i10i )2(,βββ  

 

This multiple regression model has the same underlying assumptions as the above 

linear regression model (1) except for the assumption that ei is independent not only 

of  X1 but also of X2. There is no need to assume that X1 and X2 are strictly 

independent, but the association must not be too strong (multicollinearity). 
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4. ( I.) INCREASED PRECISION OF EFFICACY(FIGURE 2) 
 

When X2 is independent of X1 and is associated with Y (thus b2 ≠ 0), the estimate b1 

of the model in equation (2) will be the same as the estimate b1 of the model in 

equation (1), but its precision will be increased, as indicated by a smaller standard 

error.  

This is a common case in randomized clinical trials. The randomization will ensure 

that no inbalances exist between the two treatment groups with respect to covariates 

such as X2, and consequently X2 will be independent of the treatment variable X1. 

There are often many candidates for inclusion as covariates in the multiple regression 

model, but the choice should be made a priori and specified in the protocol. When the 

dependent variable is a change score, as in our example, the baseline level is the first 

candidate to consider because it is almost surely associated with the change score Y. 

Figure 2 shows the relationship between result of treatment and baseline values as 

demonstrated by scatterplots and linear regression lines for each treatment separately. 

The multiple linear regression model in equation (2) is appropriate for testing the 

contribution of baseline variability to the overall variability in the data. 

Since X2 is independent of X1, inclusion of X2 in the model must lead to a decreased 

variance S
2

e : some differences between patients with  respect to the LDL decrease, 
are attributed to baseline LDL levels. Thus there will be less residual variation. Since 

the standard error of b1 is a monotonic positive function of S
2

e , a decrease of S
2

e  

leads to a smaller standard error of b1. Thus by including baseline LDL levels in the 

regression model, the efficacy of pravastatin lowering is estimated more precisely. 

This rule, however, only applies to large data-sets. With every additional covariate in 

the model an extra regression weight must be estimated, and since S
2

e  is an inverse 
function of the number of covariates in the model, too many covariates in the model 
will lead to decreased precision. 

In our example the mean baseline LDL levels (X2) were 4.32 (SD 0.78) and 4.29 (SD 

0.78) in the placebo and pravastatin treatment groups (X1) (p = 0.60); hence X1 and 

X2 were independent. The baseline LDL levels were, however, associated with the 

LDL-changes (Y): b2 = 0.41 (SE 0.024), p < 0.0001. Consequently, the estimated 

efficacy was (almost) the same as before, but it had a somewhat smaller standard 

error, and is, thus, more precise: 

 

 with baseline LDL cholesterol levels:  b1 = 1.27 (SE 0.037) 

 without baseline LDL cholesterol levels:  b1 = 1.27 (SE 0.043) 

 

Additional examples of regression modeling for improved precision are given in 

chapter 15. 



 
Figure 2. Scatterplots and linear regression lines of baseline LDL cholesterol and LDL 

cholesterol decrease after treatment, separately for placebo and for pravastatin treatments.  

 
Note: in contrast to the linear regression models the efficacy estimates of non-linear 

regression models (e.g. logistic2 and Cox regression3) do not remain the same in this 

case. When using logistic or Cox regression it is, therefore, imperative to report the 

log odds ratio or log hazard ratio of treatments compared, together with the covariates 

in the model.  

 
5.  (II.) CONFOUNDING 

 

In randomized clinical trials confounding plays a minor role in the data. The 

randomization will ensure that no covariate of the efficacy variable will also be 

associated with the randomized treatment. If, however, the randomization fails for a 

particular variable, which is already known to be an important covariate of the 

efficacy variable, such a variable is a confounder and adjustment of the efficacy 

estimate should be attempted. This is done by using the same (linear) regression 

model as given in equation (2). The adjusted efficacy estimate may become smaller 

or larger than the unadjusted estimate, depending on the direction of the associations 

of the confounder with the randomized treatment and the efficacy variable. Let b1 and 

b
*

1  denote the unadjusted and the adjusted efficacy estimate, and let rxz and ryz be the 
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correlations of the confounder (z) with the randomized treatment (x) and the efficacy 

variable (y), then the following will hold: 

 

  if rxz >0 and ryz >0 then |b
*

1 | < |b1|, 

  if rxz >0 and ryz <0 then |b
*

1 | > |b1|, 

  if rxz <0 and ryz <0 then |b
*

1 | < |b1|, 

  if rxz <0 and ryz >0 then |b
*

1 | > |b1|, 

 

Notice the possibility that the unadjusted efficacy estimate b1 is zero whereas the 

adjusted estimate b *
1  is unequal to zero: an efficacy-difference between treatments 

may be masked by confounding. 

In clinical trials it is sensible to check the balance between treatment groups of all 

known covariates of the efficacy variable. In most trials there are many more 

covariates and one should be careful to consider as a confounder a covariate which 

was not reported in the literature before. 

 
6.  (III.) INTERACTION AND SYNERGISM 

 

A special kind of covariate is the interaction of the randomized treatment with some 

other covariate. This interaction is, by definition, associated with the randomized 

treatment, and possibly with the efficacy variable if the efficacy differs between 

treatments. In contrast to the discussion above, the focus of the statistical analysis is 

not on the change of b1 by including an interaction in the model, but the regression 

weight of the interaction variable itself. When this regression weight is unequal to 

zero, this points to the existence of patient-subgroups for which the efficacy of 

treatment differs significantly. 

An example is again provided by the Regress trial.4 The primary effect variable was 

the decrease of the average diameter of the coronary arteries after two years of 

treatment. The average decrease was 0.057 mm (standard deviation (SD) 0.194) in 

the pravastatin group, and it was 0.117 mm (SD 0.212) in the placebo group (t-test: 

significance of difference at p < 0.001); thus the efficacy estimate b1 was 0.060 

(standard error SE = 0.016). Calcium channel blockers (CCB) were given to 60% of 

the placebo patients, and 59% of the pravastatin patients (chi-square: p = 0.84): thus 

CCB treatment was not a confounder variable. Also, CCB medication was not 

associated with diameter decrease (p = 0.62). In the patients who did not receive 

concomitant CCB medication, the diameter decreases were 0.097 (SD 0.20) and 

0.088 (SD 0.19) in patients receiving placebo and pravastatin, respectively  (p = 0.71). 

In patients who did receive CCB medication, the diameter decreases were 0.130 (SD  

0.22) and 0.035 (SD 0.19), respectively (p < 0.001). Thus, pravastatin-efficacy was, 

on average, 0.097 − 0.088 = 0.009 mm in patients without CCB medication, and 

0.130 − 0.035 = 0.095 in patients with CCB medication.  



This difference was statistically significant (interaction test: p = 0.011). We used the 

following linear regression model for this test. Let X1i = 1 denote that patient i 

received pravastatin (X1i = 0, if not), let X2i =1 denote that patient i received CCB 

medication (X2i  = 0, if not), and let X3i  =  X1i   x  X2i: 

 

 . e + X + X + X +  = Y i3i32i21i10i ββββ  

 

The estimates were: b3 = 0.085 (SE 0.033), b2 = − 0.033 (SE 0.023), and b1 = 0.009 

(SE 0.026). Notice that b1 changed dramatically by including the interaction term X3 

in the linear model; this is a general feature of regression models with interaction 

terms: the corresponding main-effects (b1 and b2) cannot be interpreted independently 

of the interaction term. Another consequence is that the efficacy estimate no longer 

exists, but several estimates do exist: in our case there are different efficacy-estimates 

for patients with (b1 + b3 = 0.009 + 0.085 = 0.094) and without CCB medication (b1 = 

0.009). In the practice of clinical trials interactions are usually investigated in an 

exploratory fashion. When interaction is demonstrated in this way, its existence 

should be confirmed in a novel prospective clinical trial. Additional examples of 

regression modeling for interaction effects are given in chapter 17. 

 
7.  ESTIMATION, AND HYPOTHESIS TESTING 

 

Standard statistical computer programs like SPSS and SAS (and many others) contain 

modules that perform regression analysis for linear and many non-linear models such 

as logistic and Cox regression. The standard method to estimate the linear regression 
weights (and the residual standard deviation eσ ) is to minimize the squared distances 

between the data and the estimated regression line: the least squares method. For non-

linear models, the maximum likelihood method is employed, but these are equivalent 

methods. The output of these estimation methods are the estimated regression weights 
(and the residual standard deviation eσ ) and their standard errors. It is important that 

the correlations between the covariates in the model are not too large (i.e. 
multicollinearity), but if these are too large, this will become clear by absurd 
regression weights, and very large standard errors. If this occurs, one or more 

covariates must be removed from the model. 
Under the null hypothesis that β  equals zero, the ratio of the estimated regression 
weight b and its standard error is distributed as a student’s t statistic in the linear 

model, and this can be used to derive the p-value or the 95% confidence interval in 

the usual way. For non-linear models, the squared ratio of b and its standard error is 

called the Wald statistic which is chi-squared distributed. Alternatives for the Wald 

statistic are the score and likelihood ratio statistics5, but these give the same results 

except in highly unusual circumstances; if they differ, the score and likelihood 

statistics are better than the Wald statistic. 

The power of these statistical tests is a sensitive function of the number of patients in 

the trial. Naturally, there is less opportunity for modeling in a small trial than in a 
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large trial. There is no general rule about which sample sizes are required for sensible 

regression modeling, but one rule-of-thumb is that at least ten times as many patients 

are required as the number of covariates in the model. 

 

8.  GOODNESS-OF-FIT 
 

For the linear model the central assumptions are (1.) the assumed linearity of the 

relation between Y and X, and (2.) the normal distribution of the residual term e 

independent of all covariates and with homogeneous variance. The first step in 

checking these assumptions is by looking at the data. The linearity of the relation 

between Y and X, for instance, can be inspected by looking at the scatter-plot 

between Y and X. A nonlinear relation between Y and X will show itself as 

systematic deviation from a straight line. When the relation is nonlinear, either Y or 

X or both may be transformed appropriately; most often used are the logarithmic 

transformation X * = ln (X) and the power transformation X * = Xp (e.g. the squared 

root transformation where p = 0.5). At this stage subjective judgments necessarily 

enter the statistical analysis, because the decision about the appropriate 

transformation is not well founded on statistical arguments. A few tools that may 

help, are the following. 

   1. The optimal power-transformation (Xp ) may be estimated using the 

Box-Cox algorithm.3 This may yield, however, difficult and 

unpractical power-transforms. 

   2. A better  model has higher multiple correlation. When one 

compares two different transformations, the best transformation 

leads to a smallest residual variance (S
2

e ) or highest multiple 

correlation (R): S
2

e =[(n-1) / (n-k)] (1-R2)S
2

y , and k is the number 
of covariates in the model.  

   3. Choosing an appropriate transformation may be enhanced by 

modeling the relation between Y and X as a polynomial function of 

X: Y = b0 + b1 X + b2 X
2 + b3 X

3 +.... . When the relation is strictly 

linear then b2 = b3 =...= 0, and this can be tested statistically in the 

usual way. Obviously, the order of the polynomial function is 

unknown, but one rarely needs to investigate fourth or higher 

orders. 

   4. Finally, there exists the possibility to model the association 

between Y and X nonparametrically using various modern 

smoothing techniques. 

 
The assumed normal distribution of the residual term can be checked by inspecting 

the histogram of e. The estimation method and the hypothesis testing is quite robust 

against skewed distributions of the residual term, but it is sensible to check for 

extreme skewness and the occurrence of important outlying data-points. Visual 

inspection is usually sufficient but one may check the distribution statistically with 

the Kolmogorov-Smirnov test (see also chapter 25).  

,,



More important is the assumption of homogeneity of the residual variance S2: this 

entails that the variation of e is more or less the same for all values of X. One may 

check this visually by inspecting the scatterplot of e (or Y) versus X. If heterogeneity 

is present, again an appropriate transformation of Y may help. If the ratio of S e / y is 

equal for various levels of X, the logarithmic transformation Y* = ln(Y) may help, 

and if S
2

e / y2 is equal for various levels of X, the square-root transformation is 

appropriate: Y* = (Y)0.5 . The independence of the residual term e of all covariates X 

in the model can be tested with the Durbin-Watson test. 

In the logistic regression model the most important underlying assumption is the 

assumed logistic form of the function linking the covariates to the binary efficacy 

variable. When not all relevant covariates are in the model, it can be shown that the 

link-function is not logistic. One way to test this statistically, is by using the Hosmer-

Lemeshow test2. But if the logistic regression model does not fit, this is of little 

consequence because this usually points to missing covariates, and these are often not 

available. In Cox regression, the cardinal underlying assumption is the assumed 

proportionality of the hazard rates. There are several statistical tests for this 

assumption; if proportionality does not hold, accelerated failure time models can be 

used, or the time axis may be partitioned into several periods in which proportionality 

does hold. 

 
9.  SELECTION PROCEDURES 

 

In clinical trials usually many variables are sampled, and often many of these are 

candidates for inclusion in the regression model. A major problem is the selection of 

a subset of variables to include in the regression model. By far preferable is to select 

a (small) set of candidate variables on clinical and theoretical grounds, but if that is 

not possible a few rules are helpful in the selection process. 

   1. If the number of covariates is not too large, it is best not to use any 

selection at all, but simply include all candidates in the regression 

model. Often it is necessary to shrink the regression weights, using, 

for instance, a penalty function. 

   2. If the number of covariates is very large, backward selection 

methods are preferable to forward selection models. This is usually 

done according to the p-value or the size of the test-statistic-value. 

   3. Since the overriding interest of the regression modeling is the 

estimation of the efficacy of the randomized treatments, the safest 

course is to be liberal about including covariates in the model: use a 

p-value of 0.10 or even 0.20 to include covariates in the model. 

 
10. CONCLUSION 

 

The regular statistical analysis of the data of clinical trials should be extended by 

(exploratory) analysis if the existence of subgroups of patients for which the efficacy 

estimate differs, is suspected. An efficient way of doing this is by the use of 
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regression analysis. If such subgroups are identified, the exploratory nature of the 

regression analysis should be emphasized and the subgroup issue should be further 

assessed in subsequent independent and prospective data-sets. 
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CHAPTER 13 

 
CURVILINEAR REGRESSION 

 
1. INTRODUCTION 

 

Polynomial analysis is an extension of simple linear regression, where a model is 

used to allow for the existence of a systematic dependence of the independent y 

variable (blood pressure) on the dependent x variable (time) different from a linear 

dependence. Polynomial extension from the basic model can be done as follows: 

 

y = a + bx                                                  (first order) linear relationship 

y = a + bx + cx2                                         (second order) parabolic relationship 

y = a + bx + cx2+ dx3                                (third order) hyperbolic relationship  

y = a + bx + cx2 + dx3 + ex4                     (fourth order) sinusoidal  relationship 

 

where a is the intercept and b, c, d, and e are the partial regression coefficients. 

Statistical software can be used to calculate for the data the regression line that 

provides the best fit for the data. In addition, regression lines of higher than 4 orders 

can be calculated.  Fourier analysis is a more traditional way of analyzing these type 

of data, and is given by the function 

 

f(x) = p + q1 cos (x) + ..+qn cos n (x) + r1 sin (x) +..+ rn sin n (x) 

 with p, q1...q n, and r1...rn = constants  for the best fit of the given data. 

 

As an example, ambulatory blood pressure monitoring (ABPM) using light weight 

automated portable equipment is given. ABPM has greatly contributed to our 

understanding of the circadian patterns of blood pressures in individual patients1 as 

well as to the study of effects of antihypertensive drugs in groups of patients.2 

However, a problem is that ABPM data using mean values of arbitrarily  separated 

daytime hours are poorly reproducible3,4, undermining the validity of this diagnostic 

tool. Previous studies have demonstrated that both in normo-5  and in hypertensive 

groups6 time is a more powerful source of variation in 24 hour ABPM data than 

were other sources of variation (between P < 0.01 and < 0.001 versus between not 

significant and < 0.01). This reflects the importance of the circadian rhythm in the 

interpretation of ABPM data, and the need for an assessment that accounts for this 

very rhythm more adequately than does the means of separated daytime hours. We 

also demonstrated that polynomial curves can be produced of ABPM data from 

both normo-5 and hypertensive6 groups, and that these polynomial curves are within 

the 95% confidence intervals of the sample means. However, intra-individual 

reproducibility of this approach has not been assessed, and is a prerequisite for 

further implementing this approach. 
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In this chapter we describe polynomial analysis of ABPM data, and test the 

hypothesis that it is better reproducible and that this is so, not only with means of 

populations, but also with individual data. For the estimate of reproducibility 

duplicate standard deviations as well as intra-class correlations are calculated of 

ABPM data from untreated mildly hypertensive patients who underwent ABPM for 

24 hours twice, 1 week interval.  

 
2. METHODS, STATISTICAL MODEL 

 

Ten patients, 6 females and 4 males, who had given their informed consent, 

participated in the study. Each patient had been examined at our outpatient clinic. 

Age varied from 33 to 52 years of age (mean 42 years), body mass index from 20 to 

31 kg/m (mean 29 kg/m). Patients were either housewife or actively employed 

throughout the study and had no other diseases. Previously treated patients had a 

washout period of at least 8 weeks before they were included in the study. All 

patients were included if untreated diastolic blood pressure was repeatedly between 

90 and 100 mm Hg and systolic blood pressure less than 170 mm Hg.  

In all of the patients ABPM consisted of measurements every 60 minutes for 24 

hours with a validated7 light weight automated portable equipment (Space Lab 

Medical Inc, Redmond WA, model 90207). In the meantime patients performed 

their usual daily activities.   

We define the dependent variable, the blood pressure recording at hour t, and, 

subsequently, model it as a function of hour t, hour t squared, hour t to the power 3, 

hour t to the power 4, and so on. The a- and b-values are constants for the best fit of 

the given data, and are also called the regression weights. 

 

       Blood pressure at hour t = a+ b1 (hour t) +  b2 (hour t) 2+ b 3 (hour t) 3+ b 4  (hour 

        t) 4+…. 

 

If we use Fourier analysis instead the equation is 

 

        Blood pressure at hour t =  

        p + q1 cos (hour t)+..+ qn cos n(hour t)+ r1 sin (hour t)+..+rn sin n(hour t) 

        with p, q1-n and r1-n  being constants for the best fit of the given data.  

 

Reproducibility of ABPM was studied in the ten patients by performing 24 hour 

ABPM in each of them twice, intervals at least 1 week. Reproducibility of the 

duplicate data, as obtained, were assessed both by quantifying reproducibility of 

means of the population, and of the individual data.  

 

REPRODUCIBILITY OF MEANS OF THE POPULATION 

For this purpose we used duplicate standards deviation ( Duplicate SD) and intra-

class correlation (ρI ).
8   
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2

1 2(x x )
SD

2n

−
=

1 2

duplicate observations). 

repeated measures in one subject, and is calculated according to   

 
2 2

1 2 1
1 2

1

x x /x

x

σ σρ
σ
−=  

where 1x  and 2x are the means of the 240 values during test 1 and  test  2  

respectively, and  
2σ 2x / 1x    is the variance of 2x  given 1x ,  and     

4

)x-x(
x

x

x 2

21

1

2

1

22 −= σσ . 

chapter 26.  

Note: Greek symbols like  instead of s and  instead of r are often used in 

statistics. They are used to indicate population parameters instead of sample 

parameters. 

 

REPRODUCIBILITY OF INDIVIDUAL DATA 

For this purpose we similarly used duplicate standards deviation (SD) and intra-

class correlation (ρ).                                                                                            
2

1 2(x x )
SD

2n

−
=   where x1  and x2 are 

patient).  

Intra-class correlation  (ρI)  was calculated according to   

 
2 2

1 2 1
1 2

1

x x /x

x

σ σρ
σ
−=  

where 1x and 2x  are the means of the 24 values during test 1 and  test  2  

respectively, and  σ2
  2x / 1x    is the variance of 2x  given 1x  ,  and     

2
2 22 1 2

1

1

x (x x )
x

x 4
σ σ −= −                  

Calculations were performed using SPSS statistical software,  polynomial curves 

were drawn using Harvard Graphics 3.9,10  Under the assumption of standard 

deviations of 25% and intraclass correlations of + 0.7, at least 240 duplicate 

observations had to be included to obtain a regression analysis with a statistical 

power of 80% and a 5% significance level. And so, it seemed appropriate to include 

hourly data of at least 10 patients tested twice for 24 hours. Paired means, Duplicate 

153

, where Duplicate SD was calculated according to  Duplicate 

Intra-class correlation  (ρ ) is another approach for the estimate of replicability of 

x  and x  are individual data during 1st and 2nd tests,  and n= 240  ( 10 times 24 

A slightly different method to calculate intraclass correlations is described in 

individual data during 1st and 2nd tests,  and n= 24  ( 24 duplicate observations per 

Duplicate SD was calculated according 

1
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SDs and intraclass correlations were statistically tested by  t-tests, F tests, or 

McNemar’s chi-square tests, whenever appropriate.  

 
3. RESULTS 

 

REPRODUCIBILITY OF MEANS OF POPULATION 

 

 
 

Figure 1.   Mean values of ABPM data of 10 untreated patients with mild 

hypertension ands their SDs,  recorded twice, one week in-between. 

 

 

 
 

 
Figure 2.   Polynome of corresponding ABPM recording ( first one) from Figure 1,  

reflecting a clear circadian rhythm of systolic blood  pressures. 



CURVILINEAR REGRESSION 

 

 
 
Figure 3.     Polynome of corresponding ABPM recording ( second one) from Figure 1,  

again reflecting a clear circadian  rhythm of systolic blood pressures.  

 

Figure 1 shows mean values of ABPM of 10 untreated patients and their SDs,  

recorded twice, one week in-between. Obviously, there is an enormous variance in 

the data both between-subject and within-subject as demonstrated respectively by 

the large SDs and the considerable differences between means. Figures 2 and 3 give 

polynomes of corresponding data from figure 1,  reflecting a clear circadian rhythm 

in systolic blood pressures. Figure 4 shows that the two polynomes are, obviously, 

very much similar. Within-subject tests for reproducibility are given in Table I. 

Duplicate SDs of means versus zero and versus grand mean were 15.9 and 7.2, 

while of polynomes they were only 1.86 (differences in Duplicate SDs significant at 

a P < 0.001 level). Intra-class correlations ( Is) of means versus zero and versus 

grand mean were 0.46 and 0.75, while of polynomes they were 0.986 (differences in 

levels of correlation significant at a P < 0.001). Obviously, polynomes of ABPM 

data of means of populations produce significantly better reproducibility than do the 

actual data. 
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Figure 4.    The two polynomes from Figures 2 and 3 are, obviously, very much similar. 

 
repro

grand mean were 15.9 and 7.2, while of polynomes they were only 1.86 (differences 

in Duplicate SDs significant at a P < 0.001 level). Intra-class correlations (ρs) of 

means versus zero and versus grand mean were 0.46 and 0.75, while of polynomes 

they were 0.986 (differences in levels of correlation significant at a P < 0.001). 

Obviously, polynomes of ABPM data of means of populations produce 

significantly better reproducibility, than do the actual data. 

-polynomes are, obviously, very much similar. Within-subject  tests for 

ducibility are given in Table 1. Duplicate SDs of means versus zero and versus 
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Table 1. 24 hr ambulatory blood pressure measurements in a group of 10 patients 

with untreated mild hypertension tested twice: reproducibility of means of 

population (vs = versus) 
____________________________________________________________________________________ 

                                                                            mean values                mean values                   polynomes 

                                                                        variations vs zero         variations vs grand mean          

                                                                      _________________________________________________ 

 

Means  (mm Hg)  ( test 1 / test 2)                           153.1 / 155.4                 153.1 / 155.4                          - 

 

SD (σ) ( mm Hg) ( test 1 / test 2)                             21.9 / 21.1                      15.7 / 13.8                            - 

  

95 % CIs1  ( mm Hg) ( test 1 / test 2)                139.4 166.8/142.2 168.6   143.3 163.9/146.8 164.0         -     

 

Differences between means ( SD, σ) (mm Hg)         2.4 (22.4)               2.3 (10.5)                           - 

 

P values differences between results tests 1 and 2          0.61                              0.51                            0 .44 

 

Duplicate SDs2  (mm Hg )                                               15.9                               7.2                             1.86 

 

Relative Duplicate SDs3 (%)                                             66                                 31                                 7 

 

Intra-class correlations4   (ρIs)                                        0.46                              0.75                          0.986 

 

95 % CIs                                                                0.35 0.55                 0.26 0.93           0.972 0.999 

 

Proportion total variance  

responsible for between-patient variance (%)                   46                                 75                                99 

 

95 % CIs  (%)                                                                 35 55                     26 93                  97 100 

 
1  CIs = confidence intervals.  

2  Duplicate SDs calculated according to Duplicate 
2

1 2(x x )
SD

2n

−
= ,    where x1 and x2 are individual  

    data during 1st and 2nd test,  and n=240 ( 10 times 24 duplicate observations) . 
3  Calculated as 100%x[Duplicate SD/ (overall mean – 130 mm Hg)].          

4  Intra-class correlations (ρ I s) calculated according to  

           

2 2

1 2 1
1 2

1

x x /x

x

σ σρ
σ
−=  

         where 1x  and 2x are the means of the 240 values during test 1 and  test  2  respectively, and  

         
2σ 2x / 1x  is the variance of 2x given 1x ,  and     

2
2 22 1 2

1

1

x (x x )
x

x 4
σ σ −= −  
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REPRODUCIBILITY OF INDIVIDUAL DATA 

 

 
Figure 5.     Individual data from patient 1 ( Table 2) during first ABPM ( fat line) and 

second ABPM recording (thin line). The corresponding polynomes of the two 

recordings ( continuous and dotted curves respectively) are somewhat more different 

from each other than are the differences between the group data polynomes ( Figure 

4). Yet, they offer much better similarity than do the actual data.   

 
Figure 5  gives an example of the individual data of patient no. 1 during the first 

and second test and also shows his corresponding polynomes of test 1 and test 2. 

Although, again, there is enormous variability in the data, the polynomes have 

rather similar patterns. Table 2 gives an overview of assessments of reproducibility 

for each patient separately. Duplicate SDs of raw data were generally more than 

twice the size of those of the polynomes, while intraclass correlations of the actual 
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Table 2. 24 hr ambulatory blood pressure measurements in 10 patients with untreated mild 

hypertension tested twice: reproducibility of individual data 

____________________________________________________________________________________ 

 

Patient    mean ( mm Hg)         SD ( mm Hg)          Duplicate SDs ( mm Hg) 1     Intraclass  Correlations2    

               test 1 / test 2               test 1 / test 2           raw  data        polynomes       raw data    polynomes 

____________________________________________________________________________________ 

 

1     160 / 157                 14 / 18          17.7      2.1               0.07             0.58 

2       158 / 161                 17 / 27              17.6          9.0         0.27           0.53 

3      160 / 169                 20 / 29               19.7               2.6            -0.23       0.03 

4     159 / 171                 23 / 21              19.1               7.2                   0.11          0.29 

5      163 / 163                19 / 23                 19.7            9.9          0.10          0.20 

6       161 / 156                15 / 20                21.4             6.4               0.03             0.10 

7      170 / 162                 21 / 18                 10.1          8.2          0.57           0.70 

8      156 / 154         28 / 18               6.3             6.7                  0.26            0.24 

9      161 / 161                 26 / 25                   18.2                13.5                  0.60            0.81 

10    155 / 166                 21 / 19                 11.9                6.6                   0.53              0.96 

 

pooled data 

           153.1 / 155.4  21.9 / 21.1     16.2(5.0)3    7.2(3.3)      0.26(0.26)  0.42(0.34) 

                                                                                      P < 0.001                    P = 0.009

____________________________________________________________________________________ 

                                                               

1  Duplicate SDs calculated according to 
2

1 2(x x )
SD

2n

−
= ,    

  where x1 and x2 are individual data  

   during 1st and 2nd test, and n= 24 (24 duplicate observations per patient). 
2  Intra-class correlations (ρs) calculated according to  

2 2

1 2 1
1 2

1

x x /x

x

σ σ
ρ

σ
−=           

where 1x and 2x are the means of the 24 values during test 1 and  test  2  respectively, and  

          
2σ 2x / 1x is the variance of 2x  given 1x ,  and     

2
2 22 1 2

1

1

x (x x )
x

x 4
σ σ −= −  

3  SDs between the brackets. 
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data were accordingly generally almost half the size of those of the polynomes with 

median values of 0.26 and 0.38 and ranges between – 0.23 and 0.60 and between 

0.03 and 0.96 respectively. Pooled differences were highly significant both for the 

Duplicate SDs, and for the intraclass correlations (P < 0.001 and P = 0.009 

respectively, Table 2). 

 
4. DISCUSSION 

  

In this chapter we demonstrate that ABPM systolic blood pressures in untreated 

mildly hypertensive patients can be readily assessed by polynomial analysis and 

that this approach unlike the actual data analysis is highly reproducible. Similar 

results were obtained when instead of systolic blood pressures diastolic or mean 

pressures were analyzed. It may be argued from a mathematical-statistical point of 

view that the better reproducibility is a direct consequence of the procedure where 

variability is reduced by taking means of a population rather than individual values. 

However, when we compared polynomial and actual data for each subject 

separately, although the overall level of reproducibility fell, the former approach 

still performed better than did the latter. This indicates that the better 
reproducibility may at least in part be connected with mechanisms other than the 

mathematical necessity of reducing variability by taking the polynomial modeling 

of the actual data. Particularly, polynomes may be better reproducible, because they 

are a better estimate of the circadian rhythm of blood pressure than the actual data, 

which are of course influenced by a variety of exogenous factors including daily 

activities, meals and breaks, psychological effects. A polynome would be a more 

accurate estimate of the true endogenous circadian rhythm, where the mathematical 

procedure takes care that exogenous factors are largely removed. This would 

explain the high reproducibility not only of polynomial analyses of population data 

but also of individual patient data.  

Polynomial analysis has been validated in chronobiology, as a reproducible method 

for the study of circadian rhythms in normotensive subjects, and is, actually, 

routinely used for that purpose in the Department of Chronobiology of our 

academic hospital.11,12  So far, however, it has received little attention in the clinical 

assessment of patients with hypertension. The current chapter suggests, that the 

method would be a reliable instrument for that purpose.  
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Figure 6.   Polynomial analysis can be used to identify circadian patterns of blood 

pressure in individual patients. 

 

 

 

 
Figure 7.   Polynomial analysis can be used to study the effects of antihypertensive 

drugs in groups of patients. 

 
Polynomial analysis, could, e.g., be used to identify circadian patterns of blood 

pressure in individual patients. Figure 6 gives an example of 5 such patterns readily 

demonstrable by polynomes. These polynomes were drawn from ABPM data from 

our own outpatient clinic database. Figure 7 gives another example of how 

polynomes can be helpful in clinical assessments. The polynomes present the mean 

results of a recent study by our group, comparing the short term effects of different 

blood pressure reducing agents in mildly hypertensive patients (n = 10).6 All of the 

polynomes were within 95% CIs of the mean data of our samples. Differences 

between the data in this study, as assessed by 2-way analysis of variance, 

established that on enalapril, and amlodipine, unlike beta-blockers carvedilol and 

celiprolol, time effect was a major source of variability. The polynomes visualized 

that this was so, because beta-blockers did not reduce nighttime blood pressures. 

So, polynomial analysis was helpful in interpreting the results of this study.  
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Polynomial analysis of ABPM data, unlike actual data analysis, is highly 

reproducible in patients with mild hypertension, and this is so not only with 

population means but also with individual data. It is, therefore, a valid approach for 

the clinical assessment of hypertensive patients, and may, thus, be helpful for a 

variety of purposes, e.g., for identifying circadian patterns of blood pressure in 

individual patients,  and for the study of antihypertensive drugs in groups of 

patients. The goodness of fit of polynomial models estimated by levels of 

correlation between observed and modeled data, is very good, and sometimes even 

better than the real sine-like function derived from the Fourier analysis. Particularly, 

the regression lines of the 4 and 7  order generally provide the best fit for typical 

sinusoidal patterns. In the above example the 7  order polynome provided a 

slightly better fit than did the 4  order polynome. 

 

5. CONCLUSIONS 

 

Polynomial analysis is an extension of simple linear regression, where a power 

model is used to allow for the existence of a systematic, though not linear, 

dependence of the independent y variable on the dependent x variable, often a time 

variable. Particularly, fourth and seventh order polynomes are adequate to assess 

sinusoidal relationships, like circadian rhythms of hemodynamic and hormonal 

estimators.  
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CHAPTER 14 

 
LOGISTIC AND COX REGRESSION, PROBLEMS 

WITH REGRESSION MODELING, MARKOW 

MODELS 

 
1. INTRODUCTION 

 

Data modeling can be applied for improving precision of clinical studies. Multiple 

regression modeling is often used for that purpose. Relevant papers on this topic 

have recently been published.1-7 Although multiple regression modeling, generally, 

does not influence the magnitude of the treatment effect versus control, it may 

reduce overall variances in the treatment comparison and thus increase sensitivity or 

power of statistical testing. It tries to fit experimental data in a mathematical model, 

and, subsequently, tests how far distant the data are from the model. A statistically 

significant correlation indicates that the data are closer to the model than will 

happen with random sampling. The very model-principle is at the same time its 

largest limitation: biological processes are full of variations and will not allow for a 

perfect fit. In addition, the decision about the appropriate model is not well founded 

on statistical arguments. The current study assesses uncertainties and risks of 

misinterpretations commonly encountered with regression analyses and rarely 

communicated in research papers. Simple regression models and real data examples 

are used for assessment. 

 2. LINEAR REGRESSION 
 

Multiple linear regression for increasing precision of clinical trials assumes that a 

covariate like a baseline characteristic of the patients is an independent determinant 

of the treatment efficacy, and that the  best fit for the treatment and control data is 

given by two separate regression lines with identical regression coefficients. The 

assumption may be too strong, and introduce important bias in the interpretation of 

the data, even if the variable seems to fit the model.  

As an example is again taken the Regression Growth Evaluation Statin Study 

(REGRESS)8, a randomized parallel-group trial comparing placebo and pravastatin 

treatment in 434 and 438 patients, respectively. Primary endpoint was change in 

coronary artery diameter, secondary endpoint change in  LDL (low density 

liproprotein) cholesterol,  as measured before and after two years of treatment.  The 

average decreases of LDL cholesterol are 

statin:1.23 (standard deviation (SD) 0.68) mmol/l 

 

    

           placebo: -0.04 (SD 0.59) mmol/l 
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Obviously, LDL decrease varies considerably in both treatment groups but, on 

average, treatment efficacy can be quantified as 1.23 −  ( − 0.04)  = 1.27 mmol/l. 

Since the patients in the two parallel groups are independent of each other, the 

standard error (SE) of this estimate equals  

            043.0
434

592.0

438

682.0 =+  mmol/l.   

 
The same results can be obtained by drawing the best fit for the data in the form of 

a regression line according to the equation:  

            y = a + b x,  

where   

y =   the dependent variable representing the LDL cholesterol decrease of the  

  patients, 

x =   the independent variable representing treatment modality, 1 if a patient 

  receives statin, and 0 if placebo.  

 

The term a is the intercept of the regression line with the y-axis and b is the 

regression coefficient (= direction coefficient of the regression line) which must be 

estimated.  

 

Figure 1 gives the linear regression line in graph. It yields an estimate of b of 1.27 

with SE 0.043; hence, completely equal to the above analysis.  

 

Figure 1. The linear regression line is illustrated (b = regression coefficient, 

SE = standard error). 

 

We wish to adjust these data for baseline LDL cholesterol. First, we draw a scatter 

plot of the individual baseline LDL cholesterol values and LDL cholesterol 
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decreases (Figure 2 (1)). Both on placebo and on active treatment a positive linear 

correlationship is suggested between LDL cholesterol decrease and baseline LDL 

cholesterol: the larger the baseline LDL cholesterol the better the LDL cholesterol-

decrease. Figure 2 (2) shows that the overall linear correlation between these two 

variables is, indeed, significant at p < 0.001. Baseline LDL cholesterol is thus an 

independent determinant of LDL cholesterol decrease. 

  
Figure 2.  1. Both on placebo and on active treatment there seems to be a positive 

correlation between LDL cholesterol decrease and baseline LDL cholesterol: the 

larger the baseline LDL cholesterol the better the LDL cholesterol decrease. 2. 

Overall correlation is significant at p < 0.001, baseline LDL cholesterol is thus an 

independent determinant of LDL cholesterol decrease. 3.The multiple linear 

regression model assesses whether the data are significantly closer to two 

regression lines with identical regression coefficients (= direction coefficients) than 

compatible with random sampling. 4. The separately calculated regression lines are 

not parallel (regression coefficients 0.71 (SE 0.049, p <0.0001) and 0.35 (0.036, 

p<0.0001, difference in slope 0.36 (SE 0.06, p< 0.0001));  ( b = regression 

coefficient, SE = standard error). 

 

To test whether this significant independence remains after adding the variable 

treatment modality to the regression, we use the following (multiple) linear 

regression model:    

            y = a + b
1
 x

1
  +  b

2
 x

2
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where   

y  = the dependent variable representing the LDL cholesterol decrease of the 

   patients, 

x1 = the independent variable representing treatment modality, 1 if a patient 

  receives statin, and 0 if placebo,  

x2  = a second independent variable, baseline LDL cholesterol. 

 

An Excel data file, entered into SPSS Statistical Software, produces the following 

results: 

            b2  = 0.41 (SE = 0.024, p < 0.0001), 

            b1 = 1.27 (SE = 0.037, p < 0.0001). 

 

Figure 2 (3) shows how the model works. It assesses whether the data are 

significantly closer to two regression lines with identical regression coefficients (= 

direction coefficients) than compatible with random sampling.  

With placebo (x1 = 0 ) the best fit for the data is given by the formula  

            y = a +  b2 x2,   

With pravastatin (x1 =1) the best fit for the data is given by the formula   

            y = a + b1 +  b2 x2.   

 

The estimated treatment effect, b1 , is 1.27, the same as in the simple linear 

regression from Figure 1, but its SE is lowered from 0.043 to 0.037. This means 

that, indeed, increased precision has been obtained by the multiple regression 

modeling.  The difference between the two regression lines represents the treatment 

efficacy of pravastatin versus placebo: for each point on the x-axis (baseline LDL 

cholesterol) the average LDL cholesterol decrease is 1.27 mmol/l larger in the statin 

(grey) group than in the placebo (black) group. The positive linear correlation 

between LDL cholesterol decrease and baseline LDL cholesterol (the larger the 

baseline LDL cholesterol the better the LDL cholesterol decrease) in either of the 

groups could be explained by a regression-to-the-mean-like-phenomenon: the 

patients scoring low the first time are more likely to score higher the second time 

vice versa. However, why should the best fit regression lines of the pravastatin data 

and of the placebo data produce exactly the same regression coefficients. In order to 

assess this question regression lines for either of the groups can be calculated 

separately. Figure 2 (4) shows the results. In contrast with the multiple linear 

regression lines, the separately calculated regression lines are not parallel. Their 

regression coefficients are 0.71 (SE = 0.049, p<0.0001) and 0.35 (SE = 0.036, 

p<0.0001). The difference in slope is significant with a difference in regression of 

0.36 (SE = 0.06, p<0.0001). Obviously,  there is no homogeneity of regression for 

the groups. 

If the parallel regression lines from Figure 2 (3) are interpreted as a homogeneous 

regression-to-the-mean-like-phenomenon in either of the two treatment groups, then 

the appropriate implication will be that pravastatin’s efficacy is independent of 

baseline LDL cholesterol. However, the true regression lines from Figure 2 (4) 

indicate that there is a significant difference in slope. This difference in slope can 
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only be interpreted as a dependency of pravastatin’s efficacy on baseline LDL 

cholesterol: the higher the baseline-cholesterol the better the efficacy of treatment. 

In clinical terms, based on the multiple regression analysis all patients no matter 

their baseline LDL cholesterol would qualify for pravastatin treatment equally well, 

while based on the true regression lines patients would qualify better the higher 

their baseline LDL cholesterol.  

 
3. LOGISTIC REGRESSION 

 

Logistic regression is often used for comparing proportions of responders to 

different treatments. As an example, we have two parallel groups treated with 

different treatment modalities. 

                                                         Responders     non-responders  

            New Treatment (group 1)        17 (A)     4 (B) 

            Control Treatment (group 2) 19 (C)        28 (D)  

 

The odds of responding is given by A/B and C/D, and the odds ratio by  
C/D

A/B . 

It has been well-established that no linear relationship exists between treatment 

modalities and odds of responding, but that there is a close-to-linear relationship 

between treatment modalities and the logarithm of the odds. The natural logarithm 

(ln) even better fits such assessments. And so, for the purpose of the logistic 

regression we assume that the usual linear regression formula  

            y = a + bx  

 

is transformed into   

            ln odds  = a + bx,  

 

where  ln odds =  the dependent variable,  

            x      =  the independent variable representing treatment modality, 1 if a  

                        patient receives new treatment , and 0 if control treatment. 

 

The term a is the intercept of the regression line, and b is the regression coefficient 

(direction coefficient of the regression line).  

 

Instead of   ln odds = a  + bx      

the equation can also be described as                   

             odds = e a + bx 

             oddsnew treatment    = e a + b   because x =1   

             oddscontrol treatment = ea      because x= 0   

             odds ratio = ea + b   / ea  = eb  

The new treatment is significantly different from the control treatment if the odds 

ratio of the two treatments is significantly different from 1. If b = 0, then the odds 

ratio = e0 = 1,  which means no difference between new and control treatment. If b 

169



CHAPTER 14 170

is significantly > 0, then the odds ratio is significantly > 1, which means a 

significant difference between new and control treatment.  

 

SPSS Statistical Software produces the best fit b and a for the data: 

             a = – 1.95 (SE = 0.53) 

             b =  1.83 (SE = 0.63, p = 0.004). 

The estimated b is significantly different from 0 at p = 0.004, and so we conclude 

that new and control treatment are significantly different from one another. A 

similar result could have been obtained by the usual chi-square test. However, the 

logistic model can adjust the results for relevant subgroups variables like age, 

gender, and concomitant illnesses. In our case, the data are divided into two age 

groups 

                               responders     non-responders       responders      non-responders                                     

                                              > 50 years                                       < 50 years   

  Group 1       4              2           13          2  

        Group 2        9          16                   10           12 

 

The underlying assumptions are that the chance of response may differ between the 

            a>50 years  = – 2.37 (SE = 0.65) 

            a<50 years  =  – 1.54  (SE = 0.59) 

            b =1.83 (SE = 0.67, p = 0.007)   

The estimated b is significantly different from 0 also after age-adjustment. Figure 3 

shows how the model works. Like with the linear regression model it assesses 

whether the data are closer to two regression lines with identical regression 

coefficients than compatible with random. However, why should the best fit 

regression lines of the different age groups produce exactly the same regression 

coefficients? Regression lines for either group can be calculated separately to 

answer this question. In contrast to the logistic regression lines the separately 

calculated regression lines are not parallel. Their regression coefficients are 1.27 

(SE = 0.39, p < 0.001) and 2.25 (SE = 0.48 p < 0.001). The difference in slope is 

significant, with a difference in regression of 0.98 (SE = 0.60, p < 0.05). Obviously, 

there is no parallelism between the groups. Younger patients not only respond 

better, but also benefit more from the new than from the control treatment. This 

latter mechanism of action is clinically very relevant but remains unobserved in the 

logistic regression analysis. 

through the Internet) calculates the best fit b- and a-values for data:    

subgroups, but that  the odds ratio does not. SPSS Statistical Software (available 
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Figure 3. Left graph shows a linear correlation between ln odds of responding and 

treatment modalities (b = 1.83, SE = 0.63, p = 0.004). The logistic model (middle 

graph) assesses whether the data are closer to two regression lines with identical 

direction coefficients than compatible with random sampling. The separately 

calculated regression lines (right graph) are not parallel ( regression coefficients 

2.25 (SE = 0.38, p < 0.001) and 1.27 (SE = 0.48, p < 0.001), difference in slope 0.98 

(SE = 0.60, p < 0.05); (b = regression coefficient, a = intercept, SE = standard 

error).    

 
4. COX REGRESSION 

 

Cox regression is based on the assumption that per time unit approximately the 

same percentage of subjects at risk will have an event, either deadly or not. This 

exponential model is suitable for mosquitos whose risk of death is determined by a 

single factor, i.e., the numbers of collisions, but less so for human beings whose 

deaths are, essentially, multicausal. Yet, it is widely applied for the comparison of 

two Kaplan-Meier curves in human beings. Figure 4 shows that after 1 day 50% is 

alive, while after the second day 25% is, etc.  

 

 
Figure 4. Hypothesized example of the exponential 

surviving pattern of mosquitos. 
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The formula for the proportion of survivors is given by: 

 

   proportion survivors = 1/2 t  = 2-t    

 

In true biology “e ( = 2.71828 )” instead of “2” better fits the observed data, while k 

is dependent on the species: 

 

 proportion survivors = e-kt 

 

The Cox regression formula for the comparison of exponential survival curves is 

given by: 

 

   proportion survivors  =   e kt  bx  ,   

      x = binary variable (only 0 or 1; 0 means treatment-1, and 1 means treatment-2),   

    b = regression coefficient, 

   proportion survivors treatment-1 = e kt  because x = 0,  

    proportion survivors treatment-2 = e  b  because x = 1,    

     relative risk of surviving = e-kt-b / e kt = e b  ,      

     relative risk of death = hazard ratio = eb .                                         

 

Figure 5 shows two Kaplan-Meier curves. Although an exponential pattern is hard 

to prove from the curves (or from their logarithmic transformations), the Cox model 

seems reasonable, and SPSS software is used to calculate the best b for the given 

data.  

 

 
Figure 5. Two Kaplan-Meier curves estimating effect on survival of treatment 

1 and 2 in two parallel groups of patients with malignancies (33 and 31 

- -

-

kt- -

--

patients respectively). The interrupted curves present the modeled curves 
produced by the Cox regression model. 
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If b is significantly larger than 0, the hazard ratio will be significantly larger than 1, 

and there will, thus, be a significant difference between treatment-1 and treatment-

2. The following results are obtained: 

  b = 1.1 with a standard error of 0.41 

    hazard ratio = 3.0  

     p = 0.01 (t-test) 

 

The Cox regression provides a p-value of 0.01, and, so, it is less sensitive than the 

traditional summary chi-square test (p-value of 0.002). However, the Cox model 

has the advantage that it enables to adjust the data for relevant prognostic factors 

like disease stage and  presence of b-symptoms. The model is extended accordingly: 

  hazard ratio =   332211 bbb
e

xxx ++
                                            

     x1 = 0 (treatment-1);  x1 = 1 (treatment-2)   

   x2 = 0 (disease stage I-III); x2 = 1 (disease stage IV)  

     x3 = 0 (A symptoms); x3 = 1 (B symptoms) 

 

The test for multicollinearity is negative ( Pearson correlation coefficient between 

disease stage and B symptoms < 0.85), and, so, the model is deemed appropriate. 

SPSS produces the following result:  

    b1 = 1.10 with a standard error of 0.41 

     b2 = 1.38      ”        ”              ”       0.55 

      b3 = 1.74      ”        ”              ”       0.69 

      unadjusted hazard ratio = 3.0 

      adjusted hazard ratio = 68.0 

 

Treatment-2 after adjustment for advanced disease and b-symptoms raises a 68 

higher mortality than treatment-1 without adjustments. This Cox regression 

analysis, despite prior examination of the appropriateness of the model, is hardly 

adequate for at least three reasons. First, the method is less sensitive than the usual 

chi-square summary test, probably because the regression does not fit the data well 

enough. Second, Cox regression tests the null-hypothesis that treatment-2 is not 

significantly different from the treatment-1, and it assumes for that purpose that the 

hazard ratio is constant over time. Figure 5 gives the modeled treatment-curves 

(dotted curves), in addition to the true treatment-curves. It can be observed in the 

modeled curve that few patients died in the first 8 months, while, in reality, 34% of 

the patients in group 2 died, probably, due to the toxicity of the treatment-2. Also it 

can be observed in the modeled curves that patients continued to die after 2 1/2 

years, while, in reality, they stopped dying in group 2, because they actually went 

into a complete remission. Obviously, this Cox regression analysis gives rise to 

some serious misinterpretations of the data. Third, a final problem with the above 

Cox analysis is raised by the adjustment-procedure. An adjusted hazard ratio as 

large as 68 is clinically unrealistic. Probably, the true adjusted hazard ratio is less 

than 10. From a clinical point of view, the x2 and x3 variables must be strongly 

dependent  on one another as they are actually different measures for estimating the 
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same. And so, despite the negative test for multicollinearity, they should not have 

been included in the model. 

 

Note: Cox regression can be used for other exponential time relationships like 

analyses. 

 
5. MARKOW MODELS 

  

Regression models are only valid within the range of the x-values. Markow 

modeling goes one step further, and aims at predicting outside the range  of x-

values. Like with Cox regression it assumes an exponential-pattern in the data 

which may be a strong assumption. 

 

As an example, in patients with diabetes mellitus type II, sulfonureas are highly 

efficaceous, but they will, eventually, induce beta-cell failure. Beta-cell failure is 

sometimes defined as a fasting plasma glucose > 7.0 mmol/l. The question is, does 

the severity of diabetes and / or the potency of the sulfonurea-compound influence 

the induction of beta-cell failure? 

 

This was studied in 500 patients with diabetes type II::  

 

     at time 0 year      0 / 500 patients       had beta-cell failure 

      at time 1 year    50 / 500 patients (=10% )   had beta-cell failure.           

 

As after 1 year 90% had no beta-cell failure, it is appropriate according to the 

Markow model to extrapolate: 

 

     after 2 years 90% x 90%            = 81% no beta-cell failure 

      after 3 years 90% x 90% x 90% = 73% no beta-cell failure 

        after 6.7 years                             = 50% no beta-cell failure. 

 

A second question was, does the severity of diabetes mellitus type II influence 

induction of beta-cell failure. A cut-off level for severity often applied is a fasting 

plasma glucose > 10 mmol/l. According to the Markow modeling approach the 

question can be answered as follows:  

 

       250 patients had fasting plasma glucose < 10 mmol/l at diagnosis (Group-1) 

     250 patients had fasting plasma glucose > 10 mmol/l at diagnosis (Group-2) 

 

If after 1 year sulfonureas (su) treatment  10 / 250 of the patients from Group -1 had 

b-cell failure, and 40/ 250 of the patients from Group-2, which is significantly 

different by p < 0.01, then we can again extrapolate: 

 

pharmacokinetic data. Limitations similar to the ones described above apply to such 
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      In Group-1 it takes 12 years before 50% of the patients develop beta-cell failure. 

      In Group-2 it takes   2 years before   4% of the patients develop beta-cell failure.          

 

The next question is, does potency of su-compound influence induction of b-cell 

failure? 

 

    250 patients started on amaryl (potent sulfonurea) at diagnosis (Group-A) 

    250 patients started on artosin (non-potent sulfonurea) at diagnosis (Group-B) 

 

If after 1 year  25/ 250 of Group-A had beta-cell failure, and 25 / 250 of the group-

B, it is appropriate according to the Markow model to conclude that a non-potent

 
6. DISCUSSION 

  

In randomized controlled trials regression analysis of possibly confounding 

variables is, traditionally, not emphasized, because the randomization ensures that 

such variables are equally distributed among the treatment groups. Also, regression 

analysis tests correlations rather than causal relationships. In testing the data from 

clinical trials we are mainly interested in causal relationships. When such 

assessments were statistically analyzed through correlation analyses, we would 

probably be less convinced of a causal relationship than we are while using 

prospective hypothesis testing. In the past few years, however, regression analyses 

have increasingly entered the stage of primary data analysis. E.g., of 28 randomized 

controlled trials published in the Lancet in the 2003 Volume 362, 20 (71%) used 

regression models for primary data analysis, including linear regression twice, 

logistic regression five times, and Cox regression twelve times. 

 

Obviously, regression analyses are increasingly used for the primary data analysis 

of clinical trials. The current paper assesses problems of this new development. 

More uncertainties are added to the data in the form of subjective judgments and 

uncertainty about the appropriate transformation of the data. Regression analyses 

may also give rise to serious misinterpretations of the data:  

1. The assumption that baseline characteristics are independent of treatment 

efficacies may be wrong. 

2. Sensitivity of testing is jeopardized if the models do not fit the data well enough. 

3. Relevant clinical phenomena like unexpected toxicity effects and complete 

remissions can go unobserved. 

4. The inclusion of multiple variables in regression models raises the risk of 

clinically unrealistic results.  

 

 

Markow modeling is an exponential regression model like Cox regression that aims 

at predicting outside the range of observed observations. It, is, therefore even more 
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lative, because nature does not routinely follow mathematical models. 
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at risk of unrealistic results. As an example, many suggestions from the  famous 

Framingham studies are based on Markow modeling. Current trials and 

observations confirm that some of these are true, some are not. Regression 

modeling, although a very good tool for exploratory research, is not adequately 

reliable for randomized clinical trials. This is, of course, different with exploratory 

research like observational studies. E.g., a cohort of postmenopausal women is 

assessed for exploratory purposes. The main question is: what are the determinants 

of endometrial cancer in this category op females. Logistic regression is excellent 

for the purpose of this exploratory research. The following logistic model is used: 

 

                     y-variabele = ln odds endometrial cancer 

             x1 = estrogene consumption  short term 

                         x2 = estrogene consumption  long term 

                      x3 = low fertility index 

                        x4 = obesity 

                          x5 = hypertension 

                   x6 = early menopause 

 

lnodds endometrial cancer = a +  b1 estrogene data + b2....+ b6   early menopause 

data 

The odds ratios for different x-variables are defined, e.g., for: 

              x1 = chance cancer in consumers of estrogene / non-consumers 

                x3  = chance cancer in patients with low fertility / their counterparts 

                x4  = chance cancer in obese patients / their counterparts etc. 

_________________________________________________________   

risk factors           regression          standard       p-value     odds ratio 

                            coefficient (b)      error                                   (eb )     

1.estrogenes short  1.37        0.24       < 0.0001     3.9 

2.estrogenes long    2.60         0.25         < 0.0001  13.5 
3.low fertility          0.81          0.21             0.0001      2.2 

4.obesity                  0.50           0.25             0.04           1.6 

5.hypertension         0.42        0.21               0.05          1.5 

6.early menopause   0.53            0.53                 ns              1.7 

 

The data are entered in  the software program, which provides us with the best fit 

b-values. The model not only shows a greatly increased risk of cancer in several 

categories, but also allows us to consider that the chance of cancer if patients 

b2 + b3 + b4 + b5

_________________________________________________________   

_________________________________________________________   

consume estrogene, suffer from low fertility, obesity, and hypertension might be 

as large as = e   = 75.9 = 76 fold.  This huge chance is, of course, clinically 

unrealistic! We must take into account that some of these variables must

be heavily correlated with one another, and the results are, therefore, largely

inflated. In conclusion, regression modeling is an adequate tool for explora-

tory research, the conclusions of which must be interpreted with caution, 

although they often provide scientifically interesting questions. Such questions
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 16, 17, and 29). 

7. CONCLUSIONS 

 

Data modeling can be applied for improving precision of clinical studies. Multiple 

regression modeling is increasingly used for that purpose. The objective of this 

chapter was to assess uncertainties and risks of misinterpretations commonly 

encountered with regression analyses and rarely communicated in research papers. 

Regression analyses add uncertainties to the data in the form of subjective 

judgments and uncertainty about the appropriate transformation of the data. 

Additional flaws include: (1) the assumption that baseline characteristics are 

independent of treatment efficacies; (2) the loss of sensitivity of testing if the 

models do not fit the data well enough; (3) the risk that clinical phenomena like 

toxicity effects and complete remissions go unobserved; (4) the risk of clinically 

unrealistic results if multiple variables are included. Regression analyses, although 

a very good tool for exploratory research, are not adequately reliable for 

randomized controlled trials.  
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are, then, a sound basis for confirmation by prospective randomized research. 

Regression modeling is not adequately reliable for the analysis of the primary

data of randomized controlled trials. Of course, regression analysis is also fully in

place for the exploratory post-hoc analyses of randomized controlled trials (chapters
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CHAPTER 15 

 
REGRESSION MODELING FOR IMPROVED 

PRECISION 

 
1. INTRODUCTION 

 

Small precision of clinical trials is defined as a large spread in the data. Repeated 

observations have a central tendency, but also a tendency to depart from the central 

tendency. If the latter is large compared to the former, the data are imprecise. This 

means that p-values are large, and reliable predictions cannot be made. Often a 

Gaussian pattern is in the data. The central tendency can, then, be adequately 

described using mean values as point estimates. However, if the data can be fitted to 

a different pattern like a linear or a curvilinear pattern, the central tendency can also 

be described using the best fit lines or curves of the data instead of mean values. 

This method is called data modeling, and may under the right circumstances reduce 

the spread in the data and improve the precision of the trial. Extensive research on 

the impact of data modeling on the analysis of pharmacodynamic / pharmacokinetic 

data has been presented over the past 10 years. The underlying mechanism for 

improved precision was explained by the late Lewis Sheiner: “Modeling turns noise 

into signals”.1,2 In fact, instead of treating variability as an “error noise”, modeling 

uses the variability in the data as a signal explaining outcome. If regression models 

are used for such purpose, an additional advantage is the relative ease with which 

covariates can be included in the analysis. So far, data modeling has not been 

emphasized in the analysis of prospective randomized clinical trials, and special 

statistical techniques need to be applied including the transformation of parallel-

group data into regression data. In the current chapter we demonstrate two 

regression models that can be used for such purpose. Both real and hypothesized 

examples are given.  
 

2. REGRESSION MODELING FOR IMPROVED PRECISION OF CLINICAL 

TRIALS, THE UNDERLYING MECHANISM 
 

The better the model fits the data, the better precision is obtained. Regression 

modeling is, essentially, an attempt to fit experimental data to specific patterns, and, 

subsequently, to test how far distant the data are from the best fit pattern. A 

statistically significant correlation indicates that the data are closer to the best fit 

pattern than could happen by random sampling. As an example, the simple linear 

regression analysis of a parallel-group study of the effects on LDL-cholesterol on 

pravastatin versus placebo in 884 patients, also used in the chapters 12 and 14, is 
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given.3 The overall spread in the data is estimated by a standard error of 0.11 

mmol/l around the regression line (Figure 1 upper graph). A smaller standard error 

(0.024 mmol/l), and, thus, less spread in the data is provided by a multiple 

regression model, using two regression lines instead of one (Figure 1, lower graph). 

Obviously, this multiple regression pattern provided an overall shorter distance to 

the data than did the simple linear regression pattern. Or, in other words, it better 

fitted the data than did the simple linear regression. In the next few sections we give 

additional examples. 

 

 
Figure 1. Linear regression analysis of parallel-group study of effect on 

LDL-cholesterol of pravastatin versus placebo in 872 patients. The 

overall spread in the data is estimated by a standard error of 0.11 

mmol/l around the regression line (upper graph). The multiple 

regression model using two regression lines, instead of one, leads to a 

standard error of only 0.024 mmol/l (lower graph). 
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3. REGRESSION MODEL FOR PARALLEL-GROUP TRIALS WITH 

CONTINUOUS EFFICACY DATA 
 

Table1 shows the data of a parallel-group trial comparing efficacy of a new laxative 

versus control laxative. The mean difference in response between new treatment  

 

Table 1. a parallel-group trial comparing a new laxative versus control  
_________________________________________________________________ 

patient no.   treatment                response = stool frequency         baseline stool                                      

                    modality                 after treatment                            frequency   

                    new = 0                    (4 week stools)                           (4 week stools)                                                       

                    control = 1 

_________________________________________________________________ 

1                  0                              24                                                 8                                        

2                  0                              30                                               13                                        

3                  0                              25                                               15                                        

4                  1                              35                                               10                                        

5                  1                              39                                                 9                                        

6                  0                              30                                               10                                        

7                  0                              27                                                 8                                        

8                  0                              14                                                 5                                        

9                  1                              39                                               13                                        

10                1                              42                                               15                                        

11                1                              41                                               11                                        

12                1                              38                                               11                                        

13                1                              39                                               12                                        

14                1                              37                                               10                                       

15                1                              47                                               18                                        

16                0                              30                                               13                                        

17                1                              36                                               12                                        

18                0                              12                                                 4                                        

19                0                              26                                               10                                        

20                1                              20                                                 8                                        

21                0                              43                                               16                                        

22                0                              31                                               15                                        

23                1                              40                                               14                                        

24                0                              31                                                 7                                        

25                1                              36                                               12                                        

26                0                              21                                                 6                                        

27                0                              44                                               19                                        

28                1                              11                                                 5                                        

29                0                              27                                                 8                                        

30                0                              24                                                 9                                        

31                1                              40                                               15                                        

32                1                              32                                                 7                                        

33                0                              10                                                 6                                        

34                1                              37                                               14                                        

35                0                              19                                                 7                                      

 

and control = 9.824 stools per 4 weeks (Se = 2.965). The t-test produces a t-value of 

9.824 / 2.965 = 3.313, and the t-table gives a p-value of < 0.01. 
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A linear regression according to 

   y = a + bx 

  with y = response and x = treatment modalities ( 0 = new treatment, 1 = control),                                                 

   a = intercept, and b = regression coefficient,        

 

produces a similar result 

        b = 9.824 

           seb = 2.965 

     t = 3.313 

                p-value <0.01. 

 

Improved precision of this data analysis is a possibility if we extend the regression 

model by including a second x-variable = baseline stool frequency according to 

 

   y = a + b1 x1 + b2 x2 

   with x1 = treatment modalities (0 = new treatment, 1 = control), 

   x2 = baseline stool frequencies, and b-values are partial regression coefficients. 

 

This produces the following results 

   b1 = 6.852 

           seb1 = 1.792 

            t = 3.823 

            p-value < 0.001. 

 

After adjustment for the baseline stool frequencies an improved precision to test the 

efficacy of treatment is obtained as demonstrated by a larger t-value and a smaller 

p-value. 

 
4. REGRESSION MODEL FOR PARALLEL-GROUP TRIALS WITH 

PROPORTIONS OR ODDS AS EFFICACY DATA 
 

Consider the underneath two by two contingency table. 

 

                          Numbers  numbers  

                          Responders non-responders 

Treatment 1          30 a            45 b   

Treatment 2          45 c           30 d 

 

The odds-ratio-of-responding equals 444.0
30/45

45 / 30
 

c/d

 a/b == . The natural logarithmic 

(ln) transformation of this odds ratio equal 0.8110. The standard error of this 

logarithmic transformation is given by 333.0
45

1

30

1

45

1

30

1

d

1

c

1

b

1

a

1 =+++=+++ . 

–
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A t-test of these data produces a t-value of 0.8110/0.333 = 2.435. According to the 

t- table  this odds-ratio  is significantly different from an odds ratio of 1.0 with a 
p-value of 0.015.  

 

Logistic regression according to the model 

        ln odds-of-responding = a +  bx  

          with  x = treatment modality (0 or 1),  

            a = intercept, and b = regression coefficient,  

 

produces the same result: 

         b = 0.8110           

          Se b = 0.333 

                t-value = 2.435 

             p-value = 0.015 

 

The patients can be divided into two age classes: 

 

                                    Over 50 years                                         Under 50 years  

     responders non-responders         responders non-responders 

Treatment 1     16       22                      9    28 

Treatment 2      34           4                                16    21 

 

Improved precision of the statistical analysis is a possibility if we control for age 

groups using the underneath multiple logistic regression model 

 

        ln odds-of-responding = a +  b1 x1 +  b2 x2  

           with x1 = treatment modalities ( 0= treatment 1, 1= treatment 2)  

            x2 = age classes ( 1= < 50 years, 2 = > 50 years) 

            b-values are regression coefficients. 

 

The following results are obtained: 

          b1 = 1.044                                          

               Se b1 = 0.387 

             t-value = 2.697 

               p-value = 0.007 

 

After adjustment for age class improved precision to test the efficacy of treatment is 

obtained as demonstrated by a larger t-value and smaller p-value. 

 
5. DISCUSSION 

  

Multiple regression analysis of confounding variables, although routinely used in 

retrospective observational studies, is not emphasized in prospective randomized 

clinical trials (RCTs). The randomization process ensures that such potential 

183



CHAPTER 15 184

confounders are equally distributed among the treatment groups. If not, the result of 

the study is flawed, and regression analysis is sometimes used in a post hoc attempt 

to salvage the data, but there is always an air of uncertainty about such data. 

Multiple regression can, however, be used in prospective RCTs for a different 

purpose. Certain patient characteristics in RCTs may cause substantial spread in the 

data even if they are equally distributed, and, thus, independent of the treatment 

groups. Including such data in the efficacy analysis may reduce the overall spread 

in the data, and reduce the level of uncertainty in the data analysis. Regression 

models are also adequate for such purpose, although rarely applied so far.  

Regression modeling is a very sophisticated statistical technique which needs to be 

applied carefully and under the right circumstances. Therefore, when using 

regression analysis for the purpose of improving precision of RCTs a number of 
4

 

1. The sensitivity of testing is jeopardized if the linear or exponential models do 

not fit the data well enough. This can be checked for example by scatter-plots 

and histograms.  

2. Relevant clinical phenomena like unexpected toxicity effects and complete 

remissions can go unobserved by the use of a regression model to assess the 

data. 

3. The inclusion of multiple variables in regression models raises the risk of 

clinically unrealistic results. 

 

Nonetheless, if certain patient characteristics are largely independent of the 

treatment modality, they can be included in the data analysis, in order to reduce the 

overall spread in the data. We should emphasize that it has to be decided prior to the 

trial and stated explicitly in the trial protocol whether a regression model will be 

applied, because post hoc decisions regarding regression modeling like any other 

post hoc change in the protocol raises the risk of statistical bias due to multiple 

testing. Naturally, there is less opportunity for modeling in a small trial than in a 

large trial. There is no general rule about which sample sizes are required for 

sensible regression modeling, but one rule-of-thumb is that at least ten times as 

many patients are required as the number of variables in the model. This would 

mean that a data set of at least 30 is required if we wish to include a single covariate 

in the model for the purpose of improving precision. With every additional 

adequately used for improving precision of efficacy analysis. Application of these 

models is very easy since many computer programs are available. For a successful 

application the fit of the regression models should, however, always be checked, 

and the covariate selection should be sparse. 

 

 

potential problems have to be accounted. They have been recently published by us , and 

are reviewed in the previous chapter. 

covariate in the model an extra regression weight must be estimated, which may 

lead to a decreased rather than improved precision. Regression analysis can, thus, be
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6. CONCLUSIONS 

 

Small precision of clinical trials is defined as a large spread in the data. Certain 

patient characteristics of randomized controlled trials may cause substantial spread 

in the data even if they are equally distributed among the treatment groups. The 

objective of this chapter was to assess whether improved precision of the analysis 

can be obtained by transforming the parallel-group data into regression data, and, 

subsequently, including patient characteristics in the analysis.  

In a 35 patient parallel-group trial with continuous efficacy data, after adjustment of 

the efficacy scores for baseline scores, the test-statistic rose from t = 3.313 to  t = 

3.823, while the p-value fell from < 0.01 to < 0.001. In a 150 patient parallel-group 

trial with odds as efficacy variable, after adjustment of the efficacy variable for age 

class, the test statistic rose from t = 2.435 to t = 2.697, while the p-value fell from 

0.015 to 0.007.     

We conclude that regression analysis can be adequately applied for improving 

precision of efficacy data of parallel-group trials. We caution that, although 

application of these models is very easy with computer programs widely available, 

the fit of the regression models should always be carefully checked, and the 

covariate selection should be sparse. 
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POST-HOC ANALYSES IN CLINICAL TRIALS, 

A CASE FOR LOGISTIC REGRESSION ANALYSIS 

 
1. MULTIVARIATE METHODS 

 

Multivariate methods are used to adjust asymmetries in the patient characteristics in 

a trial. It can also be used for a subsequent purpose. In many trials simple primary 

hypotheses in terms of efficacy and safety expectations, are tested through their 

respective outcome variables as described in the protocol. However, sometimes it is 

decided already at the design stage that post hoc analyses will be performed for the 

purpose of testing secondary hypotheses. E.g., suppose we first want to know 

whether a novel beta-blocker is better than a standard beta-blocker, and second, if 

so, whether this better effect is due to a vasodilatory property of the novel 

compound. The first hypothesis is assessed in the primary (univariate) analysis. For 

the second hypothesis, we can simply adjust the two treatment groups for difference 

in vasodilation by multiple regression analysis and see whether differences in 

treatment effects otherwise are affected by this procedure. However, with small data 

power is lost by such procedure. More power is provided by the following 

approach. We could assign all of the patients to two new groups: patients who 

actually have improvement in the primary outcome variable and those who have 

not,  irrespective of the type of beta-blocker. We, then, can perform a regression 

analysis of the two new groups trying to find independent determinants of this 

improvement.  If the dependent determinant is binary, which is generally so, our 

choice of test is logistic regression analysis. Testing the second hypothesis is, of 

course, of lower validity than testing the first one, because it is post-hoc and makes 

use of a regression analysis which does not differentiate between causal 

relationships and relationships due to an unknown common factor.  

 2. EXAMPLES 
 

In a double-blind randomized study of the new beta-blocker celiprolol for patients 

with angina pectoris the main outcome variable was anginal attack rate. Additional 

outcome variables  include systolic and diastolic blood pressure, heart rate, rate 

pressure product, peripheral vascular resistance. Although this study measures 

several outcomes, the various outcomes to some degree measure the same thing, 

and this may be particularly so with blood pressure, heart rate and pressure rate 

product since they are assumed to represent oxygen demand to the heart, which is 

jeopardized during anginal attacks. The new beta-blocker has been demonstrated 
 

187



CHAPTER 16 188

preclinically not only to reduce rate pressure product like any other beta-blocker but 

also to reduce peripheral vascular resistance. The novel beta-blocker indeed 

performed significantly better than the latter (persistent angina pectoris at the 

completion of the trial 17 versus 33%, P < 0.01, 1-β = ± 80%), and this was 

accompanied by a significantly better reduction of systolic blood pressure and 

reduction of peripheral resistance. A problem with multivariate analysis is its 

relatively small power with usual sample sizes. For the purpose of better power 

patients may be divided into new groups according to their main outcome. In order 

to determine the most important determinants of the better clinical benefit, the 

patients were, therefore, divided into two new groups: they were assigned to “no-

angina-pectoris” at the completion of the trial or “persistent-angina-pectoris” (table 

1). The univariate analysis of these two new groups showed that most of the  

 

Table 1. Angina pectoris and odds ratios of persistent angina pectoris in the celiprolol 

(novel compound) and propranolol (reference compound) group adjusted for independent 

±
__________________________________________________________________________ 

 

                                          No angina pectoris (n=23)      P     persistent angina pectoris (n=30) 

                                                                  mean ± SD                                 mean ± SD 

   systolic blood pressure(mm Hg)          134 ±  17        < 0.001             155 ±  19 

   diastolic blood pressure (mm Hg)           77 ± 13           < 0.02                  84 ±  9 

    heart rate (beat/min )                             65 ± 9           < 0.09                 69 ±  9 

    rate pressure product 

   (mm Hg.Beats/min.10-3)                       8.6 ± 11          < 0.001             10.7 ± 14 

   fore arm blood flow 

   (ml/100ml tissue.min)                            8.8 ± 10.8         < 0.02                 4.1 ± 2.2 

   treatment assignment  

   (celiprolol / propanolol)                            18 / 5               < 0.001               8 / 22 

                         

__________________________________________________________________________ 

  

                                    odds ratio of persistent angina           95% CIs               P-value 

  unadjusted                                                    0.38           0.25 −  0.52         < 0.002 

  adjusted for rate pressure product                    0.13            0.05 −  0.22         < 0.0005 

  adjusted for systolic pressure plus heart rate   0.12            0.04 −  0.20         < 0.0005 

__________________________________________________________________________ 

CI = confidence interval; SD = standard deviation. 

 

 

 

additional outcome variables including treatment assignment were significantly 

different between the two groups. These variables were entered in the logistic 

regression analysis: the variables double product, systolic blood pressure and heart 

__________________________________________________________________________ 

variables: Odds ratio = odds of persistent angina pectoris in the celiprolol group / odds
of persistent angina pectoris in the propranolol group. Means  SDs are given
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rate were independent of treatment assignment, while fore arm blood flow 

(=1/peripheral vascular resistance) was not. After adjustment for fore arm blood 

flow the difference in treatment assignment was lost. This suggests that celiprolol 

exerted its beneficial effect to a large extent through its peripheral vasodilatory 

property.  

 

As a second example is given a double-blind randomized parallel-group study 

comparing chronotropic (mibefradil ands diltiazem) and non-chronotropic calcium 

channel blockers (amlodipine) in patients with angina pectoris. Although all of the 

calcium channel blockers improved exercise tolerance as estimated by % increased 

time to onset ischemia during bicycle ergometry, mibefradil and diltiazem 

performed better than amlodipine (20.8 and 12.4 s  versus 9.9s, P < 0.01 and < 

0.001). In order to determine the most important determinants of this better clinical 

benefit, patients were divided into two new groups: they were assigned to non-

responders  if their change in ischemic onset time was zero or less, and to 

responders if it was larger than zero (table 2). Univariate analysis of these two 

groups showed that many variables including treatment assignment were 

significantly different between the two groups. 

 

 
Table 2. Mean data (SDs) after assignment of patients according to whether (responders) 

or not (non-responders) their ischemia-onset-time increased after treatment with calcium 

__________________________________________________________________________ 

                                               responders (n=239)        non-responders (n=61)           P-value 

                                                             mean (SD)                           mean (SD)  

__________________________________________________________________________   

at rest 

systolic blood pressure (mm Hg)       5 (19)                          1 (23)               0.27 

diastolic blood pressure (mm Hg)        5 (10)                           3 (10)               0.13 

heart rate (beats/min)                             5 (11.0)                          1.1 (9.6)            < 0.001 

rate pressure product  

( mm Hg.beats/min.10-3)                       1.0 (1.9)                          0.1 (2.1)            < 0.001 

 

at maximal workload 

systolic blood pressure (mm Hg)          1 (21)                            2 (27)               0.68 

diastolic blood pressure (mm Hg)          4 (11)                           4 (11)               0.97 

heart rate (beats/min)                            12 (17)                         6 (15)               0.010 

rate pressure product  

( mm Hg.beats/min.10-3)                       2.3 (4.5)                      1.2 (4.5)           0.090 

treatment assignment (n, %) 

amlodipine                                             76 (32%)                         27 (44%) 

diltiazem                                                75 (31%)                          26 (43%) 

mibefradil                                              88 (37%)                          8 (13%) 
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channel blockers ,  and odds ratios of mibefradil or diltiazem versus amlodipine for 

responding, unadjusted and after adjustment for difference of heart rate. Odds ratio =
odds of responding on mibefradil or diltiazem or amlodipine / odds of responding on
amlodipine 

2
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       unadjusted odds ratio (95% CIs)    odds ratio adjusted for change in heart rate (95% CIs) 

amlodipine                      1 ( )                                   1 ( ) 

diltiazem                1.02 (0.55 1.92)              0.86 (0.45 1.66) 

mibefradil              3.91 (1.68 9.11)                2.26 (0.86 5.97) 

__________________________________________________________________________ 

CI = confidence interval; SD = standard deviation. 

 

 

 

These variables were entered into the logistic regression analysis: the difference in 

treatment assignment between the two groups was lost after adjustment for heart 

rates. This suggests that the beneficial effect of calcium channel blockers in this 

category of patients is largely dependent upon their effect on heart rate. 

It is important to recognize that in the first study there is a positive correlation 

between peripheral flow and clinical benefit (when peripheral flow increases benefit 

gets better), whereas in the second study there is a negative correlation between 

heart rate and clinical benefit (when heart increases benefit gets worse). 

Multivariate analysis only measures dependencies but makes no differences 

between a positive and negative correlation. So, we must not forget to look at the 

trend in the data before interpretations can be made. 

 
3. LOGISTIC REGRESSION EQUATION 

 

Logistic regression is similar to linear regression the main equation of which is 

explained in chapter 11:  

 

y = a+b1x1+b2x2+…bnxn 

 

Linear regression software finds for you an equation that best predicts the outcome 

y  from one or more x variables. Continuous data are measured. Y is assumed to be 

the expected value of a normal distribution. With y being a binary (yes/no) variable, 

the proportion of, e.g., “yes” data (p in the underneath example) lies between 0 and 

1, and this is too small a range of values for the expression of a summary of 

multiple variables like a+b1x1+b2x2+…bnxn. The range of y-responses can be 

broadened to 0 to  if we take p/(1 p) as y-variable , and even to −  to +  if we 

take ln p / (1 p ). The simplest logistic regression  model using  only a single
 x-variable can be presented in a contingency table of proportional data:  

 

_________________________________________ 

                                        high.....  low leucocyte count  
                                      ______________________ 

Transplant rejections        p1          1 p1             

No transplant rejections    p0          1 p0 

  

–
–
–

–
–
–

–
–

–
–

_________________________________________ 
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Odds ratio = eb 

 

p/(1 − p) = the odds of finding yes-data. The regression coefficient value (b-value) 

in the logistic regression equation can be best understood as the natural logarithm of 

the odds ratio of finding p1/(1 − p1) given p0  (1 − p0). Although with multiple-

variables logistic regression becomes a formidable technique, it is straightforward 

to understand, and logistic regression increasingly finds its way into the secondary 

analysis of trial data. Additional explanation of logistic regression modeling is 

given in the chapters 14 and 15. 

 
4. CONCLUSIONS 

 

Sometimes it is decided already at the design stage of a clinical trial to perform 

post-hoc analyses in order to test secondary hypotheses. For the purpose of power 

we may make two new groups: those who have improvement and those who have 

not,  irrespective of the type of treatment. We, then, can perform a regression 

analysis of the two new groups trying to find independent determinants of 

improvement.  If one or more determinants for adjustment are binary, which is 

generally so, our choice of test is logistic regression analysis. This procedure does 

of course provide no proof. However, it may give strong support for the presence of 

particular underlying mechanisms in the data. 
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CHAPTER 17 

 
INTERACTION EFFECTS IN CLINICAL TRIALS 

 
1. INTRODUCTION 

 

In pharmaceutical research and development, multiple factors like age, gender, 

comorbidity, concomitant medication, genetic and environmental factors co-

determine the efficacy of the new treatment. In statistical terms we say they interact 

with the treatment efficacy. It is impossible to estimate all of these factors. Instead, 

randomized controlled trials are used to ensure that no major inbalances exist 

regarding these factors, and an overall assessment is made. The limitation of this 

approach becomes obvious once the new medicine is applied in practice where 

benefits of new medicines are far less consistent than they are in the trials.1  Despite 

this limitation, interaction effects, are not routinely assessed in clinical trials, 

probably because the statistical methods for identifying and integrating them into 

the data have low power. Moreover, if we introduce a large number of interaction 

terms in a regression analysis, the power to demonstrate a statistical significance for 

the primary endpoint will be reduced. Nonetheless, the assessment of a small 

number of interaction terms in clinical research can be an important part of the 

evaluation of new drugs, particularly, if it can be argued that the interaction terms 

make clinically sense. The current chapter gives some important factors that may 

interact with the treatment efficacy, and proposes some guidelines for implementing 

an interaction assessment in the analysis of clinical trials, in order to better predict 

the efficacy / safety of new medicines in future clinical treatment of individual 

patients.  

 
2. WHAT EXACTLY IS INTERACTION, A HYPOTHESIZED EXAMPLE 

 

The aim of clinical trials of new medicines is, generally, to use the estimated effects 

in forecasting the results of applying a new medicine to the general population. For 

that purpose a representative sample of subjects is treated with the new medicine or 

a control medicine. For example, in a parallel group study 400 patients are treated 

as follows: 

 

                           patients who received 

                           new medicine (n = 200)   control medicine (n = 200)     p-value 

successfully                  

treated  patients           130/200 (65%)                110/200 (55%)                < 0.01. 
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Based on this assessment the best bet about the difference between the two 

treatment modalities is given by the overall difference between the two treatment 

groups. We can expect that the new medicine performs 10% better than does the 

control medicine. If, however, we include the factor gender into our data, the results 

look slightly different: 

 

                                          patients who received        control                  accumulated 

                                          new medicine (n = 200)      medicine (n = 200)  data  

successfully treated females      55/100                       65/100                   120/200 

successfully treated males         75/100                       45/100  +               120/200 

                                                   _________________________ 

                                                   130/200                      110/200 

 

exists in the accumulated data, the new medicine performs better in the males, while 

the control medicine does so in the females. The adequate interpretation of this 

result is, if you don’t wish to account gender, then the new medicine performs 

better, while, if you include only females, the control medicine performs better. The 

treatment modalities interact with gender. Interaction effects usually involve 

situations like this. It is helpful to display interaction effects important to the 

interpretation of the data in a graph with treatment modality on the x-axis and 

subgroup results on the y-axis. If the lines drawn for each subgroup are parallel 

(Figure 1 upper graph), no interaction is in the data. A different slope, and, 

particularly, crossing lines (Figure 1, lower graph), suggest the presence of 

interaction effects between treatment efficacy and subgroups, in our example 

treatment x gender interaction. The new medicine is better in females than it is in 

males.  

 

The above result suggests, that, although no difference between females and males 
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Figure 1. The effect of gender on a treatment comparison of two parallel groups 
treated with a new and a control medicine. Upper graph: the males respond better 

is in the data. Lower graph: the data from the example given in the text: there is 
evidence for gender x treatment interaction because the males respond better to the 

new medicine, while the females respond better to the control treatment.  
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to both of the treatments than do the females, but no gender x treatment interaction 
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3. HOW TO TEST THE PRESENCE OF INTERACTION EFFECTS 

STATISTICALLY, A REAL DATA EXAMPLE 

 

How do we statistically test for the presence of interaction. Univariate analyses 

comparing subgroups can be used for that purpose. However, the linear regression 

model provides better sensitivity because it suffers less from missing data, and 

enables to analyze all of the data simultaneously. An example is provided by the 

Regress trial, a randomized parallel group trial of 884 patients treated with 

pravastatin or placebo for two years. The data of this study have already been 

briefly addressed in the chapters 12 and 14.2 One of the primary efficacy variables 

was the decrease of the diameter of the coronary arteries after two years of 

treatment. The average decrease was 0.057 mm (standard error (SE) 0.013) in the 

pravastatin group, and it was 0.117 mm (SE 0.015) in the placebo group (t-test: 

significance of difference at p < 0.001) (Figure 2, upper graph); thus the efficacy 

estimate b1 was 0.060 (standard error SE = 0.016). Calcium antagonists had been 

given to 60% of the placebo patients, and to 59% of the pravastatin patients (chi-

square: p = 0.84): thus, calcium antagonist treatment was not a confounder variable. 

Also, calcium antagonist medication was not associated with a diameter decrease (p 

= 0.62). In the patients who did not receive concomitant calcium antagonist 

medication, the diameter decreases were 0.097 (SE 0.014) and 0.088 (SE 0.014) in 

patients receiving placebo and pravastatin, respectively (p = 0.71). In patients who 

did receive calcium antagonist medication, the diameter decreases were 0.130 (SE 

0.014) and 0.035 (SE 0.014), respectively (p < 0.001). Thus, pravastatin - efficacy 

was, on average, 0.097 − 0.088 = 0.009 mm in the patients without calcium 

antagonist medication, and 0.130 − -0.035 = 0.095 in the patients with calcium 

antagonist medication ( Figure 2, lower graph). The two line cross, suggesting the 

presence of interaction between pravastatin and calcium antagonists.  
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Figure 2. The effect of concomitant calcium antagonists on treatment efficacy of 

pravastatin estimated by the decrease of coronary artery diameter (ca-diameter) 
after two years’ treatment (REGRESS data*). Upper graph: pravastatin 

significantly decreased ca-diameter compared to placebo. Lower graph: there is 

evidence for interaction between calcium antagonists and pravastatin, because in 
the patients receiving no calcium antagonist the benefit of pravastatin was 

insignificant, while it was highly significant in the patients receiving a concomitant 

calcium antagonist. 

197



CHAPTER 17 198

 

Before statistically testing this suggested interaction, we have to assess whether it 

makes clinically sense. Atherosclerosis is characterized not only by depots of 

cholesterol but also of calcium in the fatty streaks that consist of foam cells. It does 

make sense to argue that calcium antagonists, although they do not reduce plasma 

calcium, reduce calcium levels in the foam cells, and, thus, beneficially influence 

the process of atherosclerosis, and that interaction with cholesterol lowering 

treatment is a possibility.    

We used the following linear regression model for this test:  

 

                yi = a + b1 x1i + b2 x2i + b3 x3i + ei 

                where                  

                yi = dependent variable = decrease in coronary artery diameter in the ith 

                patient  

                a = intercept 

 b1, b2, and b3 = partial regression coefficients for the variables  

(1)  treatment modality, (2) calcium antagonist treatment, (3) interaction  

                between (1)  and (2). 

                ei = systematic error in the ith patient 

 

Let x1i = 1 denote that patient i received pravastatin (x1i = 0, if not), let x2i = 1 denote 

that patient i received calcium antagonist medication (x2i  = 0, if not), and let x3i  =  

x1i   times  x2i . The estimates were: b3 = 0.085 (SE 0.033), b2 = -0.033 (SE 0.023), 

and b1 = 0.009 (SE 0.026). Notice that b1 changed dramatically by including the 

interaction term x3 in the linear model; this is a general feature of regression models 

with interaction terms: the corresponding main-effects (b1 and b2) cannot be 

interpreted independently of the interaction term. Another consequence is that the 

efficacy estimate no longer exists, but several estimates do exist: in our case there 

are different efficacy-estimates for patients with (b1 + b3 = 0.009+0.085 = 0.094) 

and without calcium antagonist medication (b1 = 0.009). This difference was 

statistically significant (interaction test: p = 0.011).   

 
4. ADDITIONAL REAL DATA EXAMPLES OF INTERACTION EFFECTS 

 
 

Parallel-group study with treatment x health center interaction 

Current clinical trials of new treatments often include patients from multiple health 

centers, national and international. Differences between centers may affect results. 

We might say these data are at risk of  interaction between centers and treatment 

efficacy. Hays3 described an example: 36 patients were assessed for performance 

after treatment with either placebo, vitamin supply low dose, and high dose. 

Patients were randomly selected in 6 health centers, 6 patients per center, and every 

patients was given one treatment at random, and so in each center two patients were 

given one of the three treatments. The Table 1 gives an overview of the results. 
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Table 1. Results of three treatments for assessment of performance in 36 patients  in 

6 health centers, results are given as scores (data modified from Hays3 with 

permission from the editor) 
___________________________________________________________________ 

Treatment        placebo          vitamin supply low dose           high dose              total                

 

 Health center                 

               1            7.8                                11.7                              11.1 

                             8.7                                10.0                              12.0 

                           16.5                                21.7                              23.1               61.3 

 

               2            8.0                                9.8                               11.3 

                             9.2                                11.9                             10.6 

                           17.2                                21.7                             21.9                60.8  

 

               3            4.0                                11.7                             9.8 

                             6.9                                12.6                             10.1 

                           10.9                                24.3                             19.9                55.1 

 

               4          10.3                                7.9                               11.4 

                             9.4                                8.1                               10.5 

                           19.7                                16.0                             21.9                57.6 

 

               5            9.3                                 8.3                               13.0 

                           10.6                                 7.9                               11.7 

                           19.9                                 16.2                             24.7                60.8 

 

               6            9.5                                  8.6                               12.2 

                             9.8                                  10.5                             12.3 

                           19.3                                  19.1                             24.5                62.9 

 

total                  103.5                                119.0                           136.0              358.5 

________________________________________________________________ 

 

The model is y = µ  +  a  +  b +  ab  +  e 

           where y = dependent variable, estimate for performance of patients 

                      µ   = mean result 

                      a   = fixed effect of the three treatments 

                      b   = random variable associated with health center 

                      ab = random interaction effect between treatment and health center 

                      e   = systematic error 

 

The computations are (SS= sum of squares) 

2 2 
56.123

36

)5.385( 2

=  

199

___________________________________________________________________ 

SS total = (7.8)  +….+ (12.3)  −  
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SS ab = 03.109
36

)5.385(

2

)5.16( 222

=−   

SS error = SS total –  SS ab  

              = 123.57 – 109.03 = 14.54 

SS columns = 04.44
36

)5.358(

12

)5.103( 2222

=−  

SS rows = 80.6
36

)5.385(

6

)9.62(.....)3.61( 22

=−++
 

SS interaction = SS ab –  SS rows – SS columns 

                       = 109.03 –  6.80 –  44.04  = 58.19 

 

Table 2 gives the ANOVA (analysis of variance) table. The F test for interaction  

 
Table 2. ANOVA table of  analysis for data of Table 1 

____________________________________________ 

  
Source                                          SS         dfs                     MS              F 

Columns                                    44.04       3 1=2              22.02      22.02/5.82=3.78 

Rows (centers)                               6.80       6 1=5              1.36          1.68 

Interaction(treatment x center)     58.19            10                5.82       5.82/0.81=7.19 

Error                                             14.54        18x(2 − 1)=18    0.81                               

Total                                           123.57             35  

SS = sum of squares 

dfs = degrees of freedom 

MS = mean square 

F = test statistic for F test 

 

the hypothesis of no interaction is rejected. Although there is insufficient evidence 

to permit to conclude that there are treatment effects or health center effects, there is 

pretty strong evidence for the presence of interaction effects. There is something 

about the combination of a particular health center with a particular treatment that 

accounts for a significant part of the variability in the data. Thus, between the health 

centers, treatment differences apparently exist. Perhaps the capacity of a treatment 

to produce a certain result in a given patient depends on his/her health center 

background.  

 

  

Crossover study with treatment x subjects interaction 

In a crossover study different treatments are assessed in one and the same subject. 

Suppose, we have prior arguments to believe that subjects who better respond to 

one treatment, will also do so to another treatment. E.g., in trials involving a similar 

–
–

____________________________________________ 

____________________________________________ 

+ ..... + (24.5)

+ (119.0) + (136.0)

produces an F-value of 7.19 corresponding with a p-value < 0. 01 which means that 
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class of drugs subjects who respond better to one drug, tend to respond better to all 

of the other drugs from the same class, and those who respond less, will respond 

less to the entire class. For example, patients with angina pectoris, hypertension, 

arrhythmias, chronic obstructive pulmonary disease, responsive to one class of 

drugs may equally well respond to a different compound from the same class. In 

this situation our interest may focus on the question is there a difference in response 

between different patients, instead or  in addition to the question is there an overall 

difference between treatments. If the emphasis is on the differences between the 

subjects, the design is often called a treatments – by – subjects design. An example 

is in Table 3. 

 

Table 3. Diastolic blood pressures (mm Hg) after 4 week treatment with  four 
different treatments in a crossover study of 12 patients  
____________________________________________________ 

 

                        Treatment 1  treatment 2  treatment 3   treatment 4        sd2     

       Patient 

       1             98                  96                98                  90            …       

       2             94                  92                92                  86            … 

       3             92                  94                94                  88             

       4             94                  90                90                  90              

       5             96                  98                98                  96 

       6             94                  88                90                  92 

       7             82                  88                82                  80 

       8             92                  90                86                  90 

       9             86                  84                88                  80 

       10           94                  90                92                  90 

       11           92                  90                90                  94 

       12           90                  80                80                  80 

                  1104              1080            1080              1056    Add-up sum = 4320 
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Table 4. ANOVA table for the data of Table 3  

______________________________ 

 

Source                                  SS        dfs             MS       F                         p-value 

Subjects                           906     12 − 1=11     

Treatments                        96      4 − 1=3       < 0.05 

Subjects x treatments      230      3x11=33 

Total                             1232       47   

SS = sum of squares 

dfs = degrees of freedom 

MS = mean square 

F = test statistic for F test 

 

Twelve patients are given in random order 4 different antihypertensive drugs from 

the same class. Diastolic blood pressures were used as variable. The statistical 

model with computations are (sd = standard deviation): 

  

SS subjects = sd1
2 + sd2

2 +……sd12
2   = 906 

SS treatments = (treatment mean 1 – grand mean)2 + (treatment mean 2 – grand 

mean)2 +…= 96.0 

SS total = =
n

y
yyy

2

22
)(

)(
2 2 2

1232 

SS subjects x treatments = SS total –  SS subjects –  SS treatments = 230 

 

The layout for this repeated measures situation is given in Table 4. The MS (mean 

square) for treatments divided by the MS for subjects – by – treatments interaction 

gives an F - ratio of 4.60. If we are using an alpha level of 0.05 for this test, this 

results will be significant. The four treatments appear to be having different effects 

to different subsets in this sample. Note that an overall F test on these data requires 

the SS residual term which is equal to SS subjects −  SS treatments. The F −  ratio 

used for an overall F test equals MS treatments / MS residual, and would  produce 

an entirely different result (see also chapter 2). 

From the above analysis it can be concluded that an interaction effect exists 

between treatments and patients. Some patients, obviously, respond better or worse 

to the treatments than others. This is probably due to personal factors like genetic 

polymorphisms, societal and/or developmental factors. This repeated measures 

model is particularly convenient in drug development that has to account such 

factors when assessing the elimination rate and other pharmacokinetic properties of 

new drugs. Statistical models like these are often called mixed effects models, 

because they are considered to include a fixed effect (the treatment effect), and a 

random effect (the effect of being in a subset). Mixed effects models will be further 

discussed in chapter 29.  

______________________________ 

–––

   3 2    32/ 6.97=4.60  

    

3 2    

6.97

=   (98  + …….80  )   (432   0)  / 48    =  



INTERACTION EFFECTS IN CLINICAL TRIALS 

 

 
5. DISCUSSION 

  

Interaction effects in a clinical trial should be distinguished from confounding 

effects. In a trial with interaction effects the treatment groups are generally nicely 

symmetric. However, there are subsets in each treatment group that have an 

unusually high or low response. With confounding, things are different. For 

whatever reason the randomization failed, and the treatment groups are different for 

a clinically relevant factor. E.g., in a placebo-controlled trial the two parallel-groups 

were asymmetric for age. The control group was significantly older than the 

treatment group, and this could easily explain the treatment difference. More 

examples of confounding are given in the chapters 12 and 16.     

Also interaction effects should be distinguished from carryover effects as 

commonly observed in crossover studies, and sometimes wrongly called treatment 

by period interaction. If in a crossover study the effect of the first period of 

treatment carries on into the second period of treatment, then it may influence the 

response to the latter period. More examples of this phenomenon will be given in 

the chapters 19 and 20.      

Interaction effects are not routinely assessed in the analysis of clinical trials, but 

they are an important part of the evaluation of new medicines, particularly, if 

predictions about subsets of patients are requested. Important factors that may 

interact with the treatment efficacy are described in the present chapter:  

(a) concomitant drugs and / or comorbidities, (b) health center factors in multicenter 

trials, (c) subject factors like genetic factors relating to the speed of drug 

metabolism. Interaction terms to be assessed should make clinically sense. 

Demonstrating a statistically significant interaction between the treatment efficacy 

and the first letters the patients’ Christian names makes no sense, and pursuing such 

a finding is merely data dredging. 

Linear regression analysis provides better sensitivity to test interaction than does 

univariate subgroup analysis, because it suffers less from missing data and enables 

to analyze all of the data simultaneously. Different regression models may be more 

adequate for special types of data, e.g., exponential models are more adequate for 

risk ratios and mortality data. If a relevant interaction effect is clinically expected, 

its assessment should be properly included in the trial protocol, and, already at the 

planning stage of the trial, the recruitment requirement should be adjusted for 

sustained power. If statistically significant interaction effects are demonstrated post 

hoc, their existence must be confirmed in novel prospective clinical trials. 

 

 
6. CONCLUSIONS 

  

In pharmaceutical research and development, multiple factors co-determine the 

efficacy of the new treatment. In statistical terms we say they interact with the new 

treatment efficacy. Interaction effects, are not routinely assessed in clinical trials. 
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treatment efficacy, and comes to the following recommendations:  

1. The assessment of a small number of interaction terms is an important part of 

the evaluation of new medicines. Important factors that may interact with the 

treatment efficacy are: (a) concomitant drugs and/or comorbidities, (b) health 

center factors in multicenter trials, (c) subject factors like genetic 

polymorphisms relating to the speed of drug metabolism.  

2. Interaction terms to be assessed should make clinically sense.  

3. Linear regression analyses provide better sensitivity to test interaction than do 

subgroup analyses, because they suffer less from missing data and enable to 

analyze all of the data simultaneously. Exponential regression models are 

more adequate for risk ratios and mortality data. 

4. If a relevant interaction is clinically expected, its assessment should be 

properly included in the trial protocol at the planning stage of the trial. 

5. If a statistically significant interaction is demonstrated post hoc, its existence 

should be confirmed in a novel prospective clinical trial. 

We hope that the examples and recommendations in this chapter be guidelines for 

the analysis of interaction effects in clinical drug trials, in order to better predict the 

efficacy / safety of new medicines in future clinical treatment of individual patients.  
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META-ANALYSIS 

 
1. INTRODUCTION 

 

Problems with meta-analyses are frequent: regressions are often nonlinear; effects 

transformed into binary data for the purpose of comparability; bad studies may be 

included; coverage may be limited; data may not be homogeneous; failure to relate 

data to hypotheses may obscure discrepancies. In spite of these well-recognized 

flaws, the method of meta-analysis is an invaluable scientific activity: Meta-

analyses establish whether scientific findings are consistent and can be generalized 

across populations and treatment variations, or whether findings vary significantly 

between particular subsets. Explicit methods used limit bias and improve reliability 

and accuracy of conclusions, and increase the power and precision of estimates of 

treatment effects and risk exposures. In the past decade, despite reservations on the 

part of regulatory bodies, the method  of meta-analysis has increasingly been 

employed in drug development programs for the purpose of exploration of changes 

in treatment effect over time, integrated summaries of safety and efficacy of new 

treatments, integrating existing information, providing data for rational decision 

making, and even prospective planning in drug development.  

 

Meta-analyses are increasingly considered an integral part of phase III drug 

research programs for two reasons. First, meta-analysis of existing data instead of 

an unsystematic literature search before starting a phase III drug trial has been 

documentedly helpful in defining the hypothesis to be tested. Second, although 

meta-analyses are traditionally considered post-hoc analyses that do not test the 

primary hypotheses of the data, they do test hypotheses that are extremely close to 

the primary ones. It may be argued, therefore, that with the established uniform 

guidelines as proposed by Oxman and Guyatt and implemented by the Cochrane 

Collaborators, probability statements are almost as valid as they are in completely 

randomized controlled trials. 

 

Meta-analyses should be conducted under the collective responsibility of 

experienced clinicians and biostatisticians familiar with relevant mathematical 

approaches. They may still be improved, by a combination of experience and 

theory, to the point at which findings can be taken as sufficiently reliable where 

there is no other analysis or confirmation is available.  
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are often multifactorial rather than unifactorial; continuous data frequently have to be 
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Meta-analyses depend upon quantity and quality of original research studies as 

reported. Helpful initiatives to both ends include the Unpublished Paper Amnesty 

Movement endorsed by the editors of nearly 100 international journals in 

September 1997 which will help to reduce the quantity of unpublished papers, and 

the Consolidated Standards of  Reporting Trials (CONSORT) Statement (1997) 

developed by high impact journals which is concerned with quality and 

standardization of submitted papers. 

 

Meta-analysis can help reduce uncertainty, prevent unnecessary repetition of costly 

research, and shorten the time between research discoveries and clinical 

implementation of effective diagnostic and therapeutic treatments, but it can only 

do so when its results are made available. The continuously updated Cochrane 

Database of Systematic Reviews on the Internet is an excellent example for that 

purpose. Medical journals including specialist journals have a responsibility of their 

own. So much so that they may be able to lead the way for biased experts, who are 

so convinced of their own biased experience and so little familiar with meta-

analysis. 

 
2. EXAMPLES 

 

We have come a long way since psychologists in the early 70s drew attention to the 

systematic steps needed to minimize biases and random errors in reviews of 

research. E.g., we currently have wonderful meta-analyses of pharmacological 

treatments for cardiovascular diseases which helped us very much to make proper 

listings of effective treatments (as well as less effective ones). So, now we are able 

to answer 1st what is best for our patients, 2nd how we should distribute our 

resources. For example, for acute myocardial infarction, thrombolytic therapy as 

well as aspirin are highly effective, while lidocaine and calcium channel blockers 

are not so.  For secondary prevention myocardial infarction cholesterol-reducing 

therapy were highly effective while other therapies was less so or was even 

counterproductive, e.g., class I antiarrhythmic agents as demonstrated in Figure 1.  

On the x-axis we have odds ratios. Many physicians have difficulties to understand 

the meaning of odds ratios. Odds = likelihood = chance = probability = risk that an 

event will occur divided by the chance that it won't. It can be best explained by 

considering a four cell contingency table. 

___________________________________________________________________ 

 Contingency table                           numbers of subjects            numbers of subjects 

                                                     who died                           who did not die 

                                          _______________________________________ 

Test treatment (group1 )     a                                    b 

Control treatment (group2 )   c                                    d  

___________________________________________________________________ 
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The proportion of subjects who died in group1 (or the risk ( R ) or probability of 

having an effect) 

 

         = p = a / (a + b) ,  in group 2  p = c / (c + d),  

   the ratio of a / (a + b) and c / (c + d) is called risk ratio (RR) . 

 

Another approach is the odds approach, where a/b and c/d are odds, and their ratio 

is the odds ratio (OR). In meta-analyses of clinical trials we use ORs as surrogate 

RRs, because, here, a / (a + b ) is simply nonsense. 

 

For example: 

________________________________________________________________ 

                              treatment group(n)     control group(n)    whole population(n) 

                              _________________________________________________ 

Sleepiness(n)             32       a                 4        b                4000 

No sleepiness(n)        24        c              52       d             52000  

________________________________________________________________ 

n = numbers of patients. 

 

 

We assume that the control group is just a sample from the population, but its ratio, 

b/d, is that of the population.  So, suppose 4 = 4000, and 52 = 52000, then  the term  

d)(c / c

b)(a / a

+
+  suddenly becomes  close to the term  RR

d/ c

b / a =  of the population.      

                                                         
Sec Prev MI      n= 4,000-20,000       -1994

0,5 1,0 2,0

<0.05

<0.001

<0.0001

<0.05CI I antiarrh

Ca ch bl

Aspirin

anticoagulants

chol reduction

 
 

Figure 1. Pooled results (odds ratios = odds of infarction in treated subjects / 

odds of infarction in controls) of secondary prevention trials heart infarction. 

      

Currently, even epidemiologists are borrowing from clinical pharmacologists and 

clinical investigators, and they are quite successful in showing the likeliness of 

various epidemiological issues such as the epidemiology of various cardiovascular 
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conditions. It should be emphasized that the logic behind meta-analysis is simple 

and straightforward. All it requires, is to stick to the scientific methods, that is  (1) a 

clearly defined prior hypothesis, (2) thorough search of trials, (3) strict inclusion 

criteria for trials, and (4) uniform guidelines for data analysis.  

 

3. CLEARLY DEFINED HYPOTHESES 
 

In chapter 1 we discussed that drug trials principally address efficacy and safety of 

new drugs. It is specified in advance – in the statistical analysis plan- what are the 

main outcome variables, and how they should be tested. 

A meta-analysis is very much similar to a single trial, and similarly to a single trial 

it tests a very small number of primary hypotheses, mostly the hypotheses that the 

new compound is more efficaceous and safe than the reference compound. This 

implies that data dredging is as unacceptable for meta-analyses as it is for separate 

clinical trials.  

 
4. THOROUGH SEARCH OF TRIALS 

 

The activity of thoroughly searching-published-research requires a systematic 

procedure. E.g., searching medline requires a whole lot of tricks, and has to be 

learned. Unless you already know, you may pick up a checklist for this purpose, 

similarly to the checklist used by aircraft staff before take off, a nice simile used by 

Dr Oxman from McMasters University, one of the enlightened specialists of meta-

analyses. A faulty review of trials is as perilous as a faulty aircraft and both of them 

are equally deadly, the former particularly so if we are going to use it for making 

decisions about health care. Search terms will soon put you on the right track when 

searching Medline.  SH, e.g., means “subject-heading” which is controlled 

vocabulary; TW means “free-text-word” (searching with a lot of TWs increases 

 
5. STRICT INCLUSION CRITERIA  

 

The third scientific rule is strict inclusion criteria. Inclusion criteria are concerned 

with validity of the trials to be included, which means their likeliness of being 

unbiased. Strict inclusion criteria means that we subsequently only include the valid 

studies. A valid study is an unbiased study, a study that is unlikely to include 

systematic errors. The most dangerous error in reviews are systematic errors 

otherwise called biases. Checking validity is thus the most important thing both for 

doers and for users of systematic reviews. Some factors have empirically been 

shown to beneficially influence validity. These factors include: blinding the study; 

sensitivity but reduces specificity of the search. ADJ is another TW and is more

precise than AND. NOT means that first and third step are combined and second step 

is excluded.  Use of checklists consistent of search terms of controlled vocabulary and

frequent use of free text words makes things so much easier and overcomes the

risk of being unsuccessful. 
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random assignment of patients; explicit description of methods; accurate statistics; 

accurate ethics including written informed consent. 

 

6. UNIFORM DATA ANALYSIS 
 

Statistical analysis is a tool which, when used appropriately, can help us to derive 

meaningful conclusions from the data. And it can help us to avoid analytic errors. 

Statistics should be simple and should test primary hypotheses in the first place. 

Before any analysis or plotting of data can be performed we have to decide what 

kind of data we have.  

 

1. Individual data 

 

Primary data of previously published studies are generally not available for use. 

Usually, we have to accept the summary statistics from studies instead. This is of 

course less informative and less precise than a synthesis of primary data but can still 

provide useful information. 

 

2. Continuous data, means and standard errors of the mean (SEMs) 

 

We just take the mean result of the mean difference of the outcome variable we 

want to meta-analyze and add up. The data can be statistically tested according to 

unpaired t-test of the sum of multiple means: 

 

…+++

…++
=

2

3

2

2

2

1

321

SEMSEMSEM

..mean meanmean
t with degrees of freedom =n1 + n2 + n3 + ..nk k 

ni = sample size ith sample, k = number of samples, SEM = standard error of the 

mean 

 
If the standard deviations are very different in size, e.g., if one is twice the other, 

then a more adequate calculation of the pooled standard error is as follows. This 

formula gives greater weight to the pooled SEM the greater the samples. 
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(n 1)SD (n 1)SD ... 1 1
Pooled  SEM  (   ..)

n n ... k  n  n
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Similarly, if the samples are very different in size, then a more adequate calculation 

of the nominator of t is as follows. 

 

                   
++

++

...nn

...n meannmean
k

21
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3. Proportions: relative risks (RRs), odds ratios (ORs), Differences between relative 

risks (RDs) 
 

Probably, 99% of meta-analyses make use of proportions rather than continuous 

data, even if original studies provided predominantly the latter particularly for 

efficacy data (mean fall in blood pressure etc.). This is so both for efficacy and 

safety meta-analyses. Sometimes data have to be remodeled from quantitative into 

binary ones for that purpose. 

 

Calculation of point estimates and their variances 

 

Contingency table        numbers of patients with   numbers of patients with        total       

                                     disease improvement         no improvement 

                                     ________________________________________________ 

                        

test treatment                a                                b                                      a + b 

reference treatment       c                                  d                                      c + d  

                                     ________________________________________________ 

total                              a + c                 b + d                n 

 

 

                 Point estimators RR, OR, or RD:  

                 
d)c/(c

b)a/(a
RR

+
+=  

                 
c/d

a/b
OR =  

                 
d)(c

c

b)(a

a
RD

+
−

+
=  

 

The data can be statistically tested by use of a chi-square test of the added point 

estimators. 
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Instead of RR and OR we take lnRR and lnOR in order to approximate normality  
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s
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square-Chi
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…++
=  degrees of freedom 1 (one).  

 

        s2  = variance of point estimate : 

        slnRR 
2  =  1/a  −   1/ (a+b)  +  1/c  −   1/(c+d) 

        slnOR 
2  =  1/a + 1/b + 1/c + 1/d 

        sRV  
2  =  ab / (a + b)3  +  cd / (c + d)3 

 

 

for RV, which does not have so much skewed a distribution, ln-transformation is 

not needed. 
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As alternative approach Mantel-Haenszl-summary chi-square can be used: 

 

Mantel-Haenszl summary chi-square test: 
2

i i i i i i i i i2

M-H 3

i i i i i i i i i i i i

( a [(a b )(a c ) /(a b c d )])

[(a b )(c d )(a c )(b d ) /(a b c d ) ]
χ

− + + + + +
=

+ + + + + + +
 

ai, bi , ci, and di are the a-value, b-value, c-value, and d-value of the ith sample 

 

This approach has been explained in chapter 3. Results of the two approaches yield 

similar results. However, with Mantel-Haenszl the calculation of pooled variances 

is rather complex, and a computer program is required.  

A good starting point with any statistical analysis is plotting the data (Figure 2).  
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Figure 2. This Christmas tree otherwise called funnel plot of 100 published trials 

shows on the x-axis the mean result of each trial; on the y-axis it shows the 

Christmas-tree or upside- down-funnel-pattern of distribution of the results. The 

smaller the trial, the larger the distribution of results. Right graph gives a 

simulated pattern, suggestive for publication bias: the negative trials are not 

published and thus missing. This cut Christmas-tree can help us suspect that there 

is a considerable publication bias in the meta- analysis. 

 
This socalled funnel plot of 100 published trials shows on the x-axis the mean result 

of each trial; on the y-axis it shows the numbers of pts involved in each trial. As 

you can see on the left, there is a Christmas-tree or upside-down-funnel-pattern of 

distribution of the results. The smaller the trial, the larger the distribution of results. 

Right graph gives a simulated pattern, suggestive for publication bias: the negative 

trials are not published and thus missing. This cut Christmas-tree can help us 

suspect that there is a considerable publication bias in the meta-analysis. 

Publication bias can also be statistically tested by rank correlation between 

variances and odds ratios. If small studies with negative results are less likely to be 

published, rank correlation would be high, if not it would be low. This can be 

assessed by the  Kendall tau test: 

 

Normally, the correlation coefficient r measures actual results. The Kendall tau-test 

basically does the same, but uses ranked data instead of actual data. 

 

Trial                         A  B C D E F 

Ranknumber of size    1   2   3   4   5   6   7   8   9 10  

of trial 

Ranknumber of size   5   3   1   4   2   7   9   6  10 8 

of mean result 

Lower row add up ranknumbers higher than 5, respectively 3, respectively 1, 

respectively 4: we find 5 + 6 + 7 + 5 + 5 + 3 + 1+ 2 + 0 + 0 = 34. 

Then lower row add up ranknumbers lower than 5, 3, 1, etc: we find  

4 + 2 + 0 + 1 + 0 + 1+ 2 + 0 + 1+ 0 = 11. 

 

4. Publication bias

numbers of patients involved in each trial. As you can see on the left, there is a 

G H I     J     
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The standard error of this result is n(n 1)(2n 5)

18

− + , and we assume a normal 

distribution. We can now test this correlation and find 
 (34 11)

1.968
n(n 1)(2n 5)

18

− =
− +

  

which is approximately 1.96 = 2 =  the number of SEMs distant from which is ≤5% 

of the data. And so, the null-hypothesis of no publication bias has to be rejected.  

Publication bias can also be tested by calculating the shift of odds ratios caused by 

the addition of unpublished trials e.g. from abstract-reports or proceedings. 

 

5. Heterogeneity 

 

Figure 3 gives an example of a meta-analysis with means and 95% confidence 

intervals (CIs), telling us something about heterogeneity. 

Figure 3. Heterogeneous trials. On the x-axis is the result, on the y-axis are the trials. 

We see the results of 19 trials of endoscopic sclerotherapy for esophageal bleeding. 

 
On the x-axis is the result, on the y-axis are the trials. This example has been 

previously used by Dr Thompson from London School of Hygiene and Tropical 

Medicine. We see the results of 19 trials of endoscopic sclerotherapy for esophageal 

varices bleeding: odds ratios less than one represent a beneficial effect. These trials 

were considerably different in patient-selection, baseline-severity-of-condition, 

sclerotechniques, management-of –bleeding-otherwise, and duration-of-follow-up. 

And so, this is a meta-analysis which is clinically very heterogeneous. Is it also 
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statistically heterogeneous? For that purpose we test whether there is a greater 

variation between the results of the trials than is compatible with the play of chance, 

simply using a chi-square test. In so doing, we find χ2 = 43 for 19 − 1= 18 degrees 

of freedeom (dfs). The p value is < 001 giving substantial evidence for statistical 

heterogeneity. For the interpretation of such tests it is useful to know that a χ2 

statistic has on average  a value equal to the degrees of freedom, so a result of  χ2= 

18 with 18 dfs would give no evidence for heterogeneity, values much larger such 

as here observed do so for the opposite.  

 

With very few studies in the meta-analysis, or with  small studies, the fixed model 

approach has little power, and is susceptible to type II errors of not finding 

heterogeneity which may actually be in the data. A little bit better power is then 

provided by the random effect model of Dersimonian and Laird, which assumes an 

additional variable. The variable sbetween trials is added to the model, meaning the size 

of variance between the trials. The fixed model for testing the presence of 

heterogeneity of ordinal data is demonstrated underneath. For continuous data 

multiple group analysis of variance (ANOVA) may be used). 

 

   Fixed effect model 
   test for homogeneity (k 1 degrees of freedom)   
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   Random effect model (DerSimonian and Laird) 
   Test for heterogeneity is identical, except for variances s2 which are replaced with  

      (s2 +s between  trials
2).  

 

               Example of Random effect model analysis    . 

               trial      test treatment       reference treatment 

                           deaths  survivors   deaths survivors   . 

                 1          1          24       5        20 

                 2         5             95    15       85 

                 3      25        475    50     450    

               

 
In the above example, the test for heterogeneity fixed effect model provides χ2 = 1.15 with dfs 

3 − 1 = 2, while the test with the random effect model provides a χ2 = 1.29 with dfs equally 2, 

both lower than 2. The between-trial variance sbetween trials
2 is thus accepted to be zero and the 

weights of the two models are equal. Heterogeneity can be neglected. With the simple 

example given, the two approaches to test homogeneity raise similar results(the null 
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hypothesis is tested that studies are equal). And so, between-trial variance sbetween trials
2 is 

accepted to be zero and the results of the two models are equal. Heterogeneity can be 

neglected in this example.      
 

Heterogeneity and sub-group analysis 

When there is heterogeneity, to analists of systematic reviews, that’s when things 

first get really exciting. A careful investigation of the potential cause of 

heterogeneity has to be accomplished. The main focus then should be on trying to 

understand any sources of heterogeneity in the data. In practice, this may be less 

hard to assess since the doers have frequently noticed clinical differences already, 

and it thus becomes relatively easy to test the data accordingly. Figure 4 below 

shows how age e.g. is a determinant of illness, but in the right graph the risk 

difference is heterogeneous because it increases with age. 

Figure 4.  Age is a determinant of illness, but in the right graph the risk difference 

is heterogeneous because it increases with age. 

 

Except age, outliers may give an important clue about the cause of heterogeneity.  

 

 
Figure 5.  The relation between cholesterol and coronary heart disease. The two outliers 

on top were the main cause for heterogeneity in the data: one study was different because 

it achieved a very small reduction of cholesterol; the other was a very short- term study. 

 

Figure 5 shows the relation between cholesterol and coronary heart disease. The 

two outliers on top were the main cause for heterogeneity in the data: one study was 
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different because it achieved a very small reduction of cholesterol; the other was a 

very short-term study.  

Still other causes of heterogeneity may be involved. 33 Studies of cholesterol and 

risk of carcinomas showed that heterogeneity was huge. When the trials were 

divided according to social class, the effect in the lowest class was 4 - 5 times those 

of the middle and upper class,  explaining everything about this heterogeneous 

result. 

We should, of course, warn of the danger of overinterpretation of heterogeneity. 

Heterogeneity may occur by chance. This is particularly an important possibility to 

consider when no clinical explanation is found. Also, we should warn that a great 

deal of uniformity among the results of independently performed studies is not 

necessarily good; it can suggest consistency-in-bias rather than consistency-in-real-

effects.  

 

6. Robustness 
 

Sensitivity or robustness of a meta-analysis is one last important aspect to be 

addressed in the analysis of the data. When talking of strict inclusion criteria, we 

discussed studies with lower levels of validity, as assessed by factors such as 

blinding, random assignments, accurate and explicit description of results and 

statistics. It may be worthwhile not to completely reject the studies with lower 

methodology. They can be used for assessing another characteristic of meta-

analyses, namely its sensitivity.  

 
This left upper graph ( Figure 6) gives an example of how the pooled data of three 

high-quality-studies provide a smaller result, than do 4 studies-of-borderline-

quality. The summary result is mainly determined by the borderline-quality-studies, 

as is also shown in the cumulative-right-upper -graph. When studies are ordered 

according to their being blinded or not as shown in the lower graph, differences 

may be large or may be not so. In studies using objective variables, e.g., blood 

pressures, heart rates, blinding is not so important than in studies using subjective 

variables (pain scores etc). In this particular example differences were negligible. 

So, in conclusion, when examining the influence of various inclusion criteria on the 

overall odds ratios, we may come to conclude that the criteria themselves are an 

important factor in determining the summary result. We say in that case that the 

meta-analysis lacks robustness (otherwise called sensitivity or precision of point 

estimates). Interpretation then has to be cautious, pooling may have to be left out 

altogether. Just leaving out trials at this stage of the meta-analysis is inappropriate 

either, because it would introduce bias similar to publication-bias or bias-

introduced-by-not-complying-with-the-intention-to-treat-principle.  
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Figure 6. The left upper graph gives an example of how the pooled data of three high-

quality-studies provide a smaller result, than do 4 studies-of-borderline-quality. The 

summary result is mainly determined by the borderline-quality-studies, as is also 

shown in the cumulative-right-upper -graph. When studies are ordered according to 

their being blinded or not as  shown in the lower graph, differences may be large or 

may be not so. In studies using objective variables, e.g., blood pressures, heart rates, 

blinding is not so important than in studies using subjective variables (pain scores 

etc). In this particular example differences were negligible. 

 

 

7. DISCUSSION, WHERE ARE WE NOW? 
 

Several recent publications were critical of the method of meta-analysis: e.g., 

Chalmers and Lau in JAMA 1996 and Lelorier in NEJM 1997 concluded that meta-

analyses did not accurately predict the outcomes of subsequent large trials. Colditz 

and Berlin JAMA 1999 concluded that meta-analyses were not or at least not-yet 

good enough to identify adverse drug reactions. Why so? Probably, the answer is 

(1st) trials must get better, and ( 2nd ) publication bias must disappear altogether. 

There are several important initiatives being taken at this very moment that may be 

helpful to this aim. In May 1998 editors of 70 journals have endorsed the 

Consolidated- Standards-of-Reporting-Trials-Statement (the CONSORT-Statement) 

developed by JAMA, BMJ, Lancet, and Annals-of-Intern-Med in an effort to 

standardize the way trials are reported, with special-emphasis  on the-intention-to-

treat-principle in order to reduce treatment-related selection-bias. For investigators, 

< reporting > according to such standards will become much easier, and will even 

become a non-issue if requirements as requested by CONSORT are met. This 
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initiative may have important potential to improve the level of validity of trials and 

thus facilitate their suitability for meta-analyses. Another important milestone is the 

initiative of the Unpublished-Paper-Amnesty-Movement. In September 1997 the 

editors of nearly 100 international journals invited investigators to submit 

unpublished study data in the form of unreported-trial-registration-forms. Submitted 

materials are routinely made available to the world through listing the trial-details 

on the journals’ web sites, in addition to other ways. The International-Committee-

of-Medical-Editors and the World-Association-of-Medical-Editors are currently 

helping these initiatives by standardizing the peer review system and training 

referees.  

Where do we go? We go for the aim of meta-analyses being accepted as gold 

standard for : 

                 1. Reporting randomized experimental research. 

                 2. Setting the stage for the development of new drugs. 

                 3. Determination of individual therapies. 

                 4. Leading the way for regulatory organs. 

                 5. Maybe soon even epidemiological research. 

We will only accomplish these efforts if we stick to the scientific method, which we 

summed up for you earlier. However, today many meta-analyses are presented or 

published, that do not follow these simple scientific principles, and that just leave 

out validity assessment of trials included, or tests for heterogeneity and publication 

bias. Both journal editors and readers of meta-analyses must be critical and alert 

since a flawed meta-analysis of unreliable and biased material is deadly, not only to 

research but also to health care. The above guidelines enable not only to perform 

meta-analyses but also to identify flawed meta-analyses, and, more importantly, to 

identify and appreciate well-performed meta-analyses.  

 
8. CONCLUSIONS 

 

The scientific methods governing the practice of meta-analysis include (1) a clearly 

defined prior hypothesis, (2) a thorough search of trials, (3) strict inclusion criteria, 

and (4) a uniform data analysis. In the statistical analysis of the meta-data three 

pitfalls have to be accounted: (1) publication bias, (2) heterogeneity, (3) lack of 

robustness. 
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CHAPTER 19 

 
CROSSOVER STUDIES WITH CONTINUOUS 

VARIABLES: POWER ANALYSIS 

 
 

1. INTRODUCTION 
 

Crossover studies with continuous variables are routinely used in clinical drug re-

search: for example, no less than 22% of the double-blind placebo-controlled 

hypertension trials in 1993 were accordingly designed.1 A major advantage of the 

crossover design is that it eliminates between-subject variability of symptoms. 

However, problems include the occurrence of carryover effect, sometimes wrongly 

called treatment-by-period interaction (see also chapter 17): if the effect of the first 

period carries on into the next one, then it may influence the response to the latter 

period. Second, the possibility of time effects due to external factors such as the 

change of the seasons has to be taken into account in lengthy crossover studies. 

Third, negative correlations between drug response, although recently recognized in 

clinical pharmacology, is an important possibility not considered in the design and 

analysis of clinical trials so far. Many crossover studies may have a positive 

correlation-between-drug-response, not only because treatments in a given 

comparison are frequently from the same class of drugs, but also because one 

subject is used for comparisons of two treatments. Still, in treatment comparisons of 

completely different treatments patients may fall into different populations, those 

who respond better to the test-treatment and those who do so to the reference-

treatment. This phenomenon has already lead to treatment protocols based on 

individualized rather than stepped care.2 Power analyses for crossover studies with 

continuous variables so far only accounted for the possibility of approximately zero 

levels of correlations.3-8 While considering different levels of correlation, we 

recently demonstrated9 that the crossover design with binary variables is a powerful 

means of determining the efficacy of new drugs in spite of such factors as carryover 

effects. Crossover trials with continuous variables, however,  have not yet been 

similarly studied. 

In the current communication while taking both positive and negative correlations 

into account we drew power curves of hypothesized crossover studies with different 

amounts of treatment effect, carryover effect and time effect. 
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2. MATHEMATICAL MODEL 

 

According to Scheffé10 the notion for a simple two-period two-group crossover 

study is 

 

                                      period   1                        period 2 

  

                          treatment     mean effect      treatment  mean effect 

 

           Group 1 (n1  )  1      y1.1                            2          y1.2 

           Group 2 (n2  )  2          y2.1                   1           y2..2 

 

where yijk  = the response in the jth patient in the ith group in the kth period. We 

assume that n1 = n2 = n and that we have normal distributions or t-distributions.  

yi.k =  yijk / n. 

Treatment, carryover and time effects are assessed according to Grizzle.11 To test 

treatment effect ϕ the sum of the results of treatment 1 is compared with the 

treatment 2 results (y1.1 + y2.2 versus y1.2 + y2.1). To trace carryover effect ( ) the 

sum of the results in group 1 is compared with the group 2 results (y1.1 + y1.2 versus 

y2.1 + y2.2). To trace time effect ( ) the sum of the results in period 1 is compared 

with the period 2 results (y1.1 + y2.1 versus y1.2 + y2.2). 
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The null-hypotheses that ϕ, , and   are zero  

ϕ [ (y1.1  +  y2.2 )  (y1.2 + y2.1)] = 0 

    [ (y2.1  +  y2.2 )  (y1.1 + y1.2)] = 0 

    [ (y1.1  +  y2.1 )  (y1.2 + y2.2)] = 0 

 

should be slightly remodeled into paired comparisons, because otherwise 

calculations cannot be appropriately accomplished. 

ϕ [(y1.1 −  y1.2) −  (y2.1 −  y2.2)]  =  0 

    [(y2.1 + y2.2) −  (y1.1 + y1.2)]     =  0 

    [(y1.1  −  y1.2) + (y2.1 −  y2.2)]  =  0 

 

In this way 2 x 2 paired cells can be adequately added or  subtracted in a cell by cell 

manner. 

 
3. HYPOTHESIS TESTING 

 

These null hypotheses can be tested, for example, by paired t-statistic or repeated 

measures analysis of variance (ANOVA). The larger the extent to which the t or F 

value of our distribution differs from zero, the more sensitivity the statistical 

approach does provide.  

                                         d 
                                  t = -  (or repeated measures ANOVA,F value) 

                                        SE 

 

where d is ϕ, , or , and SE is their standard error.  

SE is calculated by use of the standard formulas for the variance ( 2/n) of paired 

and unpaired sums and differences. 

 
2  

paired sums =  1
2  +   2

2  +  2   1  2   

 2 
paired differences =  1

2  +   2
2  2   1  2  

 2 
unpaired sums =  1

2  +   2
2 

 2 
unpaired differences =  1

2  +  2
2  

 

If we assume that  =  Y1.1 =  Y1.2 =  Y2.1 =  Y2.2 = standard deviation of the 

samples in each of the cells, and that  =  Y1.1 vs Y1.2 =  Y2.1 vs Y2.2 = correlation 

coefficient between the samples of each of the two paired cells, then 

 

ϕ
2  = 2  (2  2 ) (1 ) 

 λ
2 

 = 2 (2  2 ) (1+ ) 

  
2 = 2 (2  2 ) (1 ) 

 

Because n1 = n2 = n, we now can calculate the SEs as follows: 
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n

)p1(4
)

n2

1

n2

1
)(p1(4SE

2
2 −=+−= σσϕ

  

 

and accordingly 

 

n

)p1(4
SE

2 += σ
λ

 

n

)p1(4
SE

2 −= σ
π

 

 

Suppose λ = ϕ and  ρ = 0, then  tλ  = tϕ_ . In this situation the sensitivity to test 

carryover and treatment effect are equal.  

 

If λ = ϕ and ρ > 0    then tλ  < tϕ_ 

If λ = ϕ and ρ < 0    then tλ  > tϕ 

 

So, the sensitivity of testing is largely dependent on the   correlation between 

treatment modalities ρ. Whenever ρ > 0 we soon will have a much larger t-value, 

and , thus, better sensitivity to test treatment effect than carryover effect of similar 

size. We should add that in practice σY1.2 may be somewhat larger than σY1.1, 

because the larger the data the larger the variances. If, e.g., σY1.2   is 10% larger than 

σY1.1, ρ will change from 0.00 to 0.05. So, in this situation the level of positive 

correlation required tends to rise. 

Time effect (π) is generally considered to influence one treatment similarly to the 

other, and its influence on the size of the treatment difference is, thus, negligible. 

 

                                                 Period 1               Period 2 

                       Treatment         Mean response   Treatment   Mean response   

          Group 1   1            y1.1                  2            y1.2 + ½π 

          Group 2   2             y2.1                    1         y2.2 + ½π 

 

Under the assumption ϕ = 0  we have 

ϕ = (y1.1  y1.2  ½π)  (y2.1 y2.2  ½π) 

   =  y1.1  y1.2  y2.1  + y2.2 

 

Although time or period effects may introduce extra variance in the study, the 

crossover design in a way adjusts for time effects, and some even believe that time 

effects do not have to be taken into account in the routine analysis of crossover 

studies, unless there is a clinical interest to know.7 
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4. STATISTICAL POWER OF TESTING 
 

PROBABILITY 

DISTRIBUTION 

2.101

-3 -2 -1 0 1 2 3 4 5
SEMs

H0

H1

                     
 

Figure 1. Example of a t-distribution (H1) and its null hypothesis (H0 ). 

α = % chance of erroneously rejecting this null hypothesis (usually taken as 5% ),  

β = % chance of erroneously accepting this null hypothesis. Statistical power is 

defined as (1- β ) x  100%. 

 
Figure 1 gives an example of a t-distribution (H1) and its null hypothesis of no 

effect (H0). α = % chance of erroneously rejecting this null hypothesis (usually 

taken as 5%), and β = % chance of erroneously accepting this null hypothesis. Stati-

stical power is defined as (1 β) x 100%.  Statistical power can be approximated 

from the equation (prob = probability): 

 

POWER =   1   ß = 1  prob [Z ≤ (t – t1 )] 

 

where Z represents the standardized value for the differences between mean and 

zero and t1 represents the upper critical value of t for the given degrees of freedom 

and α has been specified (α = 0.05).  

Suppose we have a crossover study with n = 10 per group, because this is a size 

frequently used in such studies, and with ϕ = σ = standard deviation of the samples 

in each cell, because this  is frequently approximately so. Then increasing amounts 

of λ are added with σλ = λ. The influence of this procedure on the statistical power 

of testing λ and ϕ are then assessed. The amounts of λ are expressed as λ/ϕ ratios. 

Power graphs are calculated for three different levels of correlation-between-drug-

response ( ρ ≅ 1 ;  ρ ≅ 0 ;  ρ ≅ +1 ).  
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Figure  2. Statistical power of testing carryover effect (slope upwards) and 

treatment effect (slope downwards); λ = carryover effect, ϕ = treatment 

effect, ρ = correlation coefficient.  

                                     ____________________    ρ ≅ − 1 

                                     __ __ __ __ __ __ __     ρ ≅  0 

                                     --------------------    ρ ≅ +1 

 
Figure 2 shows the results. First, there are three power curves of treatment effect for 

the three levels of correlation. As λ/ϕ increases, all three gradually come down. The 

negative correlation curve is the first to do so. Consequently, this situation has 

generally little power of rightly coming to the right conclusion. At  λ/ϕ = 1.0 , when 

treatment effect is equal to carryover effect, there is less than 30% power left. It 

means we have a more than 70% chance that treatment effect is erroneously 

unobserved in this study. Considering that a power of approximately 80% is 

required for reliable testing, we cannot test carryover here in a sensitive manner. 

The zero and positive correlation situations provide essentially better power. 

There are also three power curves of carryover effect for three correlation levels. 

The negative correlation curve provides essentially better power than the zero and 

positive correlation curves do. This example shows that strong positive correlations 

leave little power to test carryover effect. It also shows that strong negative 

correlations produce excessive power to test carryover effect.  

The amounts of time effect is generally assumed to influence the two treatment 

groups similarly, and it, therefore, may hardly influence the treat comparison. 

Suppose in the above example time effect (π) instead of carryover effect (λ) is 

added in increasing amounts with σπ  = π.  
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                       Figure 3. Statistical power of testing time effect (slope upwards) and treatment 

                       effect (slope downwards). π = time effect, ϕ = treatment effect, ρ = correlation 

                       coefficient. 

                                                           ____________________    ρ ≅ − 1 

                                                               __ __ __ __ __ __ __      ρ ≅  0 

                                                                       --------------------     ρ ≅ +1 

 
Figure 3 shows the influence of increasing ratios π /ϕ on the statistical power of 

testing π and ϕ. First, small time effects unlike carryover effects hardly influence 

nor the amount nor the statistical power of testing treatment effect. Also the power 

of demonstrating time effect is largely dependent on the level of correlation-

between-drug-response: with a negative correlation we have little power to 

demonstrate time-effect. In contrast, with a positive correlation we have a lot of 

power to do so.  

We conclude that the level of correlation-between-drug-response is a major 

determinant of not only the power of demonstrating treatment effect but also that of 

time effect in the current approach. 
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5. DISCUSSION 
 

The crossover design for treatment comparisons with continuous variables provides 

approximately equal statistical power to test carryover, time, and treatment effects 

when between-treatment correlation is not strong positive/negative. E.g., in the 

hypothesized crossover situation from our example the statistical power to 

demonstrate similarly-sized treatment and carryover, or treatment and time effects 

is approximately 80% ( as demonstrated in the above figures), which is generally 

considered to be an acceptable level for reliable testing. However, whenever the 

correlation coefficient is >0, we will soon have better sensitivity to test treatment 

than carryover or time effect of similar size. Inversely, whenever it is <0, we will 

soon have better sensitivity to demonstrate the latter two rather than the former. 

We should add that calculations are made under the assumption that either 

carryover or time effect are in the study. If both effects are simultaneously in the 

study, variances have to be added up and powers will be somewhat smaller. The 

assumption does not invalidate the overall conclusion of the procedure as it 

produces the largest powers for the given data. 

 

Analysis of covariance (ANCOVA) 

Analysis of covariance is used if two x-variables are dependent on one another. 

When F-tests are used instead of t-tests, the sensitivity of testing can be somewhat 

improved by analysis of covariance (ANCOVA) according to 

  

                    adjusted SStreatment  between groups =  

                    unadjusted SStreatment between groups +  

                    (SP within groups)2 / SScarryover within groups   

                    (SP total)2 / SScarryover total 
  

                    adjusted SS within groups = unadjusted SS within groups   

                    (SP within groups)2 / SScarryover within groups   
 

                     where SS = sum of squares, and SP = sum of products of  

                     treatment by carryover effects  

                     (treatment effect x carryover effect). 

 

Computation can be found, e.g., in Hays’ textbook Statistics12,and can be readily 

made by statistical packages, e.g., SPSS13 under the subprogram “ANOVA”. 

In this way, power of testing may improve by a few percentages. However, this 

method of adjustment can be used only when correlations are not strong + or  , and 

when n is at least 20 or more, which is not so in many crossover studies. Also the 

method only adjusts statistical sensitivity, but not amounts of treatment, carryover 

or time effects, and so its usefulness is limited. 

Although the analysis uses multiple comparison testing, the p-values do not have to 

be multiplied by the number of tests, because although the chance of a positive test 

increases, the chance of e.g., a positive test for carryover does not as it is only tested 

once. 

–

–

–
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The current chapter stresses the major impact of correlation level between treatment 

comparison, and particularly the phenomenon of negative correlations. This 

phenomenon is only shortly being recognized and may have flawed many trials so 

far. In a trial the test treatment is frequently a slight modification of the reference 

treatment or is equivalent to it with addition of just a new component. In this 

situation there is obviously a positive correlation between responses to test and 

reference treatments. However, completely new classes of drugs are continually 

being developed and are tested against established classes of drugs. With the 

comparison of drugs from completely different classes patients may fall into 

different populations: those who respond better to one class and those who do so to 

the other class. E.g., patients with angina pectoris unresponsive to calcium channel 

blockers or nitrates. may respond very well to beta blockers. Also hypertension, 

cardiac arrhythmias, chronic obstructive pulmonary disease are conditions where a 

non-response is frequently associated with an excellent response to a completely 

different compound. These are situations where a crosssover study may give rise to 

a strong negative correlation. It would mean that a crossover design for the 

comparisons of treatment from completely different classes of drugs is endangered 

of being flawed and that such comparisons had better be assessed in the form of a 

parallel group comparison which evens out within subject variability.    

 

    6. CONCLUSION 
 

response in the first period carries on into the second (carryover effects) or when 

time factors can not be kept constant in a lengthy crossover (time effects), the 

statistical power of testing may be jeopardized. We recently demonstrated that the 

crossover design with binary variables is a powerful method in spite of such factors 

as carryover effects. Power analysis of crossover trials with continuous variables 

have not been explicitly studied.  

>0, we soon will have better sensitivity to test treatment effect than carryover effect 

or time effect of similar size. Whenever levels of correlation are not strong positive 

or negative the statistical power to demonstrate similarly-sized treatment and 

carryover effect, or treatment and time effect is approximately 80%, which is an 

acceptable level for reliable testing. 
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drugs because it eliminates between subject-variability. However, when the 

 Using the Grizzle model for the assessment of treatment effect, carryover

effect and time effect, we drew power curves of hypothesized crossover studies

with different levels of correlation between drug response. 

 We demonstrate that the sensitivity of testing is largely dependent on the levels 

of correlation between drug response. Whenever the correlation coefficient is 

 The crossover design is a powerful method for assessing positively correlated

treatment comparisons, despite the risk of carryover and time effects. 

 The crossover design is a sensitive means of determining the efficacy of new
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CHAPTER 20 

 
CROSSOVER STUDIES WITH BINARY RESPONSES 

 
  

 
1. INTRODUCTION 

 

The crossover design is widely used in clinical research especially in the case of a 

limited number of patients. The main advantage of within-patient over between-

patient comparisons is that between-subject variability is not used in the 

comparisons. However, a prerequisite is that the order of the treatments does not 

influence the outcome of the treatment. If the effect of the treatment administered in 

the 1st period carries on into the 2nd period, then it may influence the measured 

response in the 2nd period. This essentially means that only symptomatic treatments 

qualify for crossover comparisons and curative treatments do not. However, 

symptomatic treatments frequently have small curative effects, e.g., wound healing 

by vasodilators or, more recently, cardiac remodelling by afterload reduction. The 

treatment group that is treated with the effective compound first and with the less 

effective compound or placebo second is frequently biased by carryover effect from 

the 1st period into the 2nd, whereas the alternative group that is treated in the 

reverse order is not so.1 For example, of 73 recently published crossovers only 6 

reported the data of the separate periods. In 5 of them (83%) this very type of 

carryover effect was demonstrable. Such a mechanism may cause a severe 

underestimation of the treatment results2 and this possibility should, therefore, be 

assessed in the analysis. Most of the reports on the subject of order effects so far 

have addressed crossover studies with a quantitative rather than binary response.3-10 

Although Hills & Armitage 11  in an overview of methods in crossover clinical trials 

mentioned the tests of Gart 12  and  Prescott13 for crossover trials with a binary 

response and Fidler 14  presented a model, little attention has been paid to this kind 

of trials. A binary response is different from a quantitative in that it generally does 

not answer what exactly can be expected in an individual. Rather it addresses 

whether or not a particular result has a predictive value, which one of two 

treatments is better, or whether there is a treatment effect in the data. One might 

contend, therefore, that some undervaluation of a difference in binary data is not 

that important as long as it does not cause a type II error of finding no difference 

crossover trial with a binary response a significant carryover effect does leave 

enough power in the data to demonstrate a treatment effect. 
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were there is one. The main issue of the present chapter is the question whether in a 
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2. ASSESSMENT OF CARRYOVER AND TREATMENT EFFECT 
 

In a crossover trial with two treatments and two periods the patients are randomized 

into two symmetric groups that are treated with treatments A and B in a different 

order (table 1). If groups are symmetric and the results are not influenced by the 

order of the treatments, the probabilities of treatment success in group I and II 

should be virtually the same in each period for each treatment: pA being the 

probability of treatment success from treatment A, pB from treatment B (Table 1).  
 

Table 1.  Example of a crossover design with a binary response 

______________________________________________________________________ 

 

                              Period 1                                        Period II 

                                      Probability of                                     Probability of 

                                      treatment                                            treatment  

            Treatment        success                         Treatment     success 

 

Group I    A           pA                             B       pB 

  

Group II     B           pB                               A         pA* 

 

______________________________________________________________________ 
 

* If in Group II treatment B has a carryover effect on the outcome of   treatment A, pA 

changes to pC. If PB = pC, carryover effect is maximal.  

 

The group that is treated with the less effective treatment or placebo after the more 

effective is endangered of being biased by carryover effect from the 1st period into 

the 2nd. 
Suppose treatment A is far less effective than B (table 1). Then, if in Group II 

treatment B has a carryover effect on the outcome of treatment A, the probability of 

treatment success changes from pB into pC. To detect a carryover effect we compare 

the outcomes of treatment A in Group I to those in group II: pA versus pC, an 

unpaired comparison. The amount of carryover effect in group II is considered to be 

the difference between pC and pA. Carryover effect in Group I (ineffective treatment 

period prior to effective) is assumed to be negligible. Time effect is assumed to be 

negligible as well, because we study stable disease only. It thus seems that neither a 

test for carryover effect in Group I, nor a test for time effects needs to be included 

in our assessment. Treatment effect is assessed by taking the two groups together 

after which all of the outcomes of the treatments A are compared with those of the 

treatments B in a paired comparison. The assumption that carryover effect is 

negligible implies that the test for carryover effect uses only half of the available 

data and might therefore be expected to be less sensitive. However, sensitivity not 

only depends on sample size but also on the size of differences and their variances.  

______________________________________________________________________ 

______________________________________________________________________ 
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3. STATISTICAL MODEL FOR TESTING TREATMENT AND CARRYOVER 

EFFECTS 
 

We assume an unidirectional assessment where p is between 0.0 (no symptoms 

anymore) and 1.0 (= 100% remains symptomatic in spite of treatment). When 

carryover effect is in the data, pA in Group II turns into pC (table 1). The difference 

between pC and pA is considered to be the amount of carryover effect in the data. 

Fisher exact test, as explained in chapter 3, is used for testing whether pC is 

significantly different from pA. With the program of Bavry 15 those values of pC are 

determined that should yield a significant carryover effect in 80% of the trials (i.e., 

the power equals 80%). The number of patients in both groups is chosen between 

10 and 25, because many crossover trials have 20 to 50 patients. These values of pC 

are then used for determining whether in crossover trials with significant carryover 

effect and a binary response enough power is left in the data for demonstrating a 

significant treatment effect. 

For testing the treatment effect all of the data of the treatment A are taken together 

and compared with those of the treatments B. The power of this test depends not 

only on the probabilities pA and pB, but also on the correlation between the 

treatment responses. This correlation is expressed as  = pA/B −  pA, where pA/B is 

the probability of a treatment success with A, given that treatment B was 

successful. When  = 0, treatments A and B act independently. When pB equals pC, 

this would mean that carryover effect in group II is not only significant but also 

maximal given the amount of treatment effect. Considering this situation of 

maximal carryover effect, we calculate the power of detecting treatment effects. 

The power of McNemar’s test with pB being equal to pC and with various values of 

pA was calculated according to Bavry15.  
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4. RESULTS 
 

CALCULATION OF PC VALUES JUST YIELDING A SIGNIFICANT TEST 

FOR CARRYOVER EFFECT 

For various numbers of patients and various values of pA (the probability of success 

with treatment A in period I, Table 1), the pC values (the probability of success with 

treatment A in period II) are calculated that with a power of 80% will give a 

significant test for carryover effect (pA versus pC,  = 0.05). 

Table 2 shows that carryover effects (difference between pA and pC) as large as 

0.60, 0.50, 0.40 and 0.35 are required for a significant test. For  = 0.01, these 

values are about 0.70, 0.60, 0.50 and 0.45. Using these pC values, we then 

calculated the probability of detecting a treatment effect (i.e., power of testing 

treatment effect). We report minimal values of power only, i.e., the situation where 

pB = pC. Whenever pB < pC, we would have even better power of testing treatment 

effect.  

 
Table 2. Power to demonstrate a treatment effect in spite of the presence of a significant  

carryover effect  

______________________________________________________________________                  

               Total number of patients 

pA            2 x 10         2 x 15        2 x 20          2 x 25 
______________________________________________________________________ 

0.10 

 

0.20 

 

0.30                                                            98 (0.02) 

 

0.40                       96 (0.02) 97 (0.05)   96 (0.08) 

 

0.50                      97 (0.06)  96 (0.11)   96 (0.14) 

 

0.60   97* (0.04)# 98 (0.11)  96 (0.18)   95 (0.23) 

 

0.70   96 (0.11)   97 (0.20)    97 (0.26)   94 (0.33) 

 

0.80         96 (0.20)  97 (0.30)   97 (0.37)  96 (0.43) 

 

0.90         96 (0.31)   97 (0.43)  96 (0.47) 96 (0.52) 

_____________________________________________________________________ 
* Power (%) of McNemar’s test for treatment effect (  = 0.05,    = 0). 
# pC value just yielding a significant test for carryover effect (   = 0.05, power = 80%).  

 

POWER OF PAIRED COMPARISON FOR TREATMENT EFFECT 

When the result of treatment B (pB) is taken equal to the maximal values of pC and 

treatments A and B act independently (  = 0), the probability of detecting a 

treatment effect (i.e., the power) in the crossover situation with n between 20 and 50 

is always more than 94% (Table 2). Usually, however, treatments A and B do not 
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act independently. With a negative correlation between the two treatments 

modalities power is lost, with a positive correlation it is augmented. Table 3 shows 

power values adjusted for different levels of  . With negative levels of  and 20 

patients the power for detecting a treatment difference is not less than 74% which is 

about as large as that chosen for the test on carryover effect (80%). When more 

patients are admitted to the trial this value will be about 90%.  

 
Table 3. Power (%) to demonstrate a treatment effect in spite of the presence of a significant 

carryover effect  

______________________________________________________________________ 

 

                                            Total number of patients 

                                            2 x 10   2 x 15  2 x 20  2 x 25 
______________________________________________________________________ 

                      

1
*= 0.05       0.20        89      94     96         95 

2 = 0.05       0.10            92      96         97         97 

                        0               96      96         96         94 

                       0.10         98      97         98         99 

                       0.20         98     98         99         99 

______________________________________________________________________ 

1 = 0.01        0.20         95          99        94         99 

2 = 0.01        0.10         97       100        99         99 

                     0            99         99        99         99 

                        0.10     100      100       100      100 

                       0.20       100      100       100      100 

______________________________________________________________________  

1 = 0.10       0.20      74          84       89         88 

2 = 0.05       0.10        79          91        92         90 

                      0              85         90        89         88 

                       0.10        89         95        95         94 

                       0.20         95          94        97         97 

_____________________________________________________________________ 

1 = 0.05        0.20       75         87        90        90 

2 = 0.01        0.10      81         92        92        93 

                         0           88         90        90        89 

                         0.10       92         93        95        96 

                       0.20           96         96         98        98 

_____________________________________________________________________ 
* 1  level of significance of test for carryover effect. 

  2  level of significance of test for treatment effect. 

   level of correlation between treatments A and B.  
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5. EXAMPLES 
 

Suppose we have a negative crossover where probability of treatment success group 

II pC (Table 4) may have changed from 0.8 into 0.2 due to carryover effect from the 

effective treatment B into the 2nd period. Fisher exact test for demonstrating a 

carryover effect (pA versus pC) is calculated according to  

Point probability for                   10!  10!  10!  10!   

carryover effect              
   =

      20!   2!   8!   2!  8! 
   =   0.011 

                                                                                                             

 

Cumulative tail probability = 0.011 + 0.003 + 0.007 = 0.021 and is thus significant 

at an  = 0.021 level.  

If we perform a similar unpaired analysis of the first period for demonstrating a 

treatment effect we likewise obtain a significant test at   = 0.021 level. Suppose 

carryover effect would be smaller, e.g., pA = 0.8, pB = 0.0, pC = 0.2. Then the test 

for treatment effect would yield an even better result: 
                                           

     29!  8!  10!  10! Point probability for   
  = 

   

   20!   2!  8!  10!  0! 
   =    0.004 

carryover effect                      

 

Cumulative tail probability = 0.004 + 0.001 + 0.003 = 0.008.  

 

So, in crossovers with a binary response and a negative result, it does make sense to 

test for carryover effect by comparing the two periods with the less effective 

treatment modalities. If a significant test is demonstrated, we obviously will find a 

significant difference at a similar or even lower level of significance when taking 

the 1st period for estimating the difference between treatment A and B. Thus, it 

would seem appropriate for our purpose to disregard the data of the 2nd period in 

this particular situation (although the 2nd period might still provide interesting 

information).  

 
Table 4. Example 

 

 

                                          Period I                                  Period II 

 

                                              Probability of                          Probability of 

                                              treatment                                 treatment  

                         Treatment   success                 Treatment   success 

_____________________________________________________________ 

Group I (n = 10)    A  pA = 0.8           B      pB = 0.2 

Group II (n = 10)   B   pB = 0.2              A       pC = 0.2 

_____________________________________________________________                 

_____________________________________________________________ 
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6. DISCUSSION 
 

The power of crossover studies is frequently reduced by carryover effect. This is  

particularly so when a group that is treated with an effective treatment first, is then 

treated with an ineffective treatment or placebo second. In studies with a 

quantitative response this very effect may cause severe underestimation of the 

treatment effect.1 Studies with a binary response are, however, different from 

studies with a quantitative response in that they are mostly designed to answer 

whether a treatment has any effect rather than what size such effect does have. One 

might contend, therefore, that underestimation in such studies is not that important 

as long as the null hypothesis of no treatment effect doesn’t have to be erroneously 

accepted. We demonstrate that in crossovers with a binary response and significant 

carryover effect the power of testing the treatment effect remains substantial even 

so. This would imply that routinely testing for carryover effects in such studies is 

not necessary as long as the result of the treatment comparison is positive. When a 

study is negative it does make sense, however, to test for carryover effect by 

comparing pA versus pC  (table 1).  

When pA is significantly different from pC, we assume that there is carryover effect 

in group II. In this situation a parallel-group analysis of period I (pA versus pB) can 

effectively be used for the purpose of demonstrating a treatment effect. It will 

provide a significant difference at the same or even a lower level of significance 

than the test for carryover effect. This is so, because when carryover effect is 

maximal, pB equals pC. The difference between pB and pA will, therefore, be at least 

as large as the difference between pC and pA but probably larger. Therefore, no 

further test for treatment effect seems to be required for our purpose and it seems 

appropriate that the results of the 2nd period be disregarded.  

Considering that the problem of carryover effects influence in crossover trials with 

a binary response may not be too hard to handle, we may as well shift our standard 

of choosing this particular trial design somewhat, and make use of its additional 

advantages more frequently. The design is, e.g., particularly powerful for the study 

of rapid relief of symptoms in chronic disease where the long-term condition of the 

patient remains fairly stable.16 This is so, because between-subject variability is not 

used in a within-subject comparison. Also, we can make use of positive correlations 

between the treatment modalities tested, because the statistical power of testing 

treatment comparisons with a positive correlation can be largely enhanced by 

within-subject comparisons.17 Furthermore, none of the patients in the trial has to be 

treated throughout the trial with a less adequate dose or placebo, which is why a 

crossover raises usually less ethical problems than does a parallel-group study 

where one group is treated with a placebo or less adequate dosage throughout the 

trial. Also, we have the advantage that patients can express their own opinions 

about which of the treatments they personally prefer. This is especially important 

with subjective variables, such as pain scores.  

Furthermore, not so large a group is required because of within-subject 

comparisons, which facilitates the recruitment procedure and reduces costs. Finally, 
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double-blinding cannot be effectively executed in self-controlled studies without 

some kind of crossover design. 

In summary: 

1. Crossover studies with a binary response and positive results do not have 

to be tested for carryover effects. 

2. If such studies have a negative result, testing for carryover effect does 

make sense. 

3. If a carryover effect is demonstrated, the treatment results should be 

analyzed in the form of a  parallel-group study of the 1st period. 

 

7. CONCLUSIONS 

 

The two-period crossover trial has the evident advantage that by the use of within-

patients comparisons, the usually larger between-patient variability is not used as a 

measuring stick to compare treatments. However, a prerequisite is that the order of 

the treatments does not substantially influence the outcome of the treatment. 

Crossover studies with a binary response (such as yes/no or present/absent), 

although widely used for initial screening of new compounds, have not previously 

model based on standard statistical tests to study to what extent such order effects, 

otherwise called carryover effects, may reduce the power of detecting a treatment 

effect. We come to the conclusion that in spite of large carryover effects the 

crossover study with a binary response remains a powerful method and that testing 

for carryover effects makes sense only if the null-hypothesis of no treatment effect 

cannot be rejected. 

 

8. REFERENCES 
 

interaction. Int J Clin Pharmacol Ther 1995; 32: 322-328.  

1990; 41: 855-864.  

Bias 1982; 9: 67-112.  

design in clinical research. N Engl J Med 1984; 310: 24-31. 

1986; 42: 593-599. 

pectoris. N Engl J Med 1989; 320: 709-718.  

Control Clin Trials 1989; 10: 237-243. 

two-period crossover trials. Stat Med 1989; 8: 1421-1432.  

been studied for such order effects. In the present chapter we use a mathematical 

2. Cleophas TJ. Underestimation of treatment effect in crossover trials. Angiology 

3. Brown BW. The crossover experiment for clinical trials.Biometrics 1980; 36: 69-79 

4. Barker M, Hew RJ, Huitson A, Poloniecki J. The two-period crossover trial. 

5. Louis TA, Lavori PW, Bailar JC, Polansky M. Crossover and self-controlled 

6. Willan AR, Pater JL. Carryover and the two-period clinical trial. Biometrics 

8. Fleiss JL. A critique of recent research on the two-treatment crossover design. 

7. Packer M. Combined beta-adrenergic and calcium entry blockade in angina 

9. Freeman PR. The performance of the two-stage analysis of two-treatment,  

1. Cleophas TJ. A simple analysis of carryover studies with one-group 



CROSSOVER STUDIES WITH BINARY RESPONSES 

10. Senn S. Crossover trials in clinical research. Wiley & Sons, Chicester, 1993. 

8: 7-20. 

Biometrika 1969; 56: 57-80.  

of an order effect. Appl Stat 1981; 30: 9-15. 

comparisons of tests. Biometrics 1984; 40: 1063-1079. 

Jersey. 

1995; 35: 594-598. 

trial. Am J Ther 1994; 1: 327-332.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

237

11. Hills M. Armitage P. The two-period crossover trial. Br J Clin Pharmacol 1979; 

12. Gart JJ. An exact test for comparing matched proportions in crossover designs. 

13. Prescott RJ. The comparison of success rates in crossover trials in the presence 

15. Bavry JH. Design Power (TM). Scientific software Inc., 1988, Hillsdale, New 

14.  Fidler V. Change-over clinical trials with binary data: mixed model-based 

16.  Cleophas TJM, Tavenier P. Clinical trials of chronic diseases. J Clin Pharmacol 

17.  Cleophas TJM, Tavenier P. Fundamental issues of choosing the right type of 



CHAPTER 21 

 
CROSS-OVER TRIALS SHOULD NOT BE USED TO 

TEST TREATMENTS WITH DIFFERENT CHEMICAL 

CLASS 

 
1. INTRODUCTION 

 

So many unpredictable variables often play a role in clinical trials of new medical 

treatments that a trial without controls has become almost unconceivable. Usually, a 

parallel-group design is used: with every patient given a new therapy, a control 

patient is given standard therapy or a placebo. For the study of reversible treatments 

of chronic stable conditions with responses that can be measured on relatively short 

notice a cross-over design can be chosen: a single patient receives both new therapy 

and a standard therapy or placebo. Of course, we have to be fairly sure that 

carryover effects of one treatment period carrying on into the other or time effects 

are negligible. But then the cross-over design has the advantage that it eliminates 

between-subject variability of symptoms in a treatment comparison. And this makes 

the design sensitive, particularly with conditions where between-subject variability 

is notoriously large, e.g., angina pectoris and many other pain syndromes.     

 

In 1965 the biostatistician James Grizzle1 gave uniform guidelines for the cross-

over design, and it was he who first recognized the problem of negative correlations 

between treatment responses that may endanger the validity of the cross-over 

design. In his example two completely different treatments (A = ferrous sulphate 

and B =folic acid) were tested for their abilities to increase hemoglobin (Figure 1). 

Obviously, there was an inverse correlation between the two treatments: ferrous 

sulphate was only beneficial when folic acid was not, and so was folic acid when 

ferrous sulphate was not. Although the mean result of ferrous sulphate treatment 

was 1.7 mmol different from that of folic acid which is quite a difference, it did not 

reach statistical significance (p = 0.12). This was probably due to the significant 

negative correlation in the treatment comparison. How a negative correlation 

reduces the sensitivity of a paired comparison can be explained as follows: 

 

 t = mean result / pooled SEM.  

 where pooled SEM = pooled standard error of the mean  

 

 the formula for pooled SEM is:   

 (pooled SEM)2  = SEM1
2 +  SEM2

2  2 r SEM1.SEM2 
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 where SEM1 and SEM2 are standard errors of the mean of separate treatments  

 and r = correlation coefficient.   

 

 When we assume SEM1 = SEM2 = SEM, then 

 (pooled SEM)2 = (1 r) 2 SEM2  

  

 If r would have been 0 instead of  0.49  (figure 1) the t  value of this 

      comparison would have been 225.149.1r)1( == larger than the present   

       t −  value and the treatment comparison would have reached statistical 

       significance.  

 

 
 

Figure 1. Two completely different treatments (A = ferrous sulphate and B = folic 

acid) were tested for their abilities to increase hemoglobin. There was an inverse 

correlation between the two treatments: ferrous sulphate was only beneficial when 

folic acid was not, and so was folic acid when ferrous sulphate was not. Although 

the mean result of ferrous sulphate treatment was 1.7 mmol different from that of  

folic acid, the difference did not reach statistical significance (p = 0.12). This was 

probably due to the  negative correlation in the treatment comparison (Grizzle 

1965).1 

 

We currently are aware that ferrous sulphate and folic acid are treatments with a 

totally different chemical class/ mode of action. And so, although both of the 

compounds improve hemoglobin, certainly nobody nowadays would use the 

compounds in a treatment comparison anymore. However, we continue to compare 

many other treatments from different classes of drugs all the time, even if we know 

that their mode of action is totally different, e.g., beta-blockers are compared with 

calcium channel blockers or nitrates for the treatment of angina pectoris. 

Compounds from different chemical classes are compared for the treatment of 

–

– –

–
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hypertension, Raynaud s phenomenon, cardiac arrhythmias, chronic obstructive 

pulmonary disease and many more conditions.  

 

The current chapter shows that it is not correct to use a cross-over design for testing 

such kind of treatment comparisons because of the risk of negative correlations 

between treatment responses, and thus of a flawed study. We will test this 

hypothesis in a non-mathematical way by giving examples in which a cross-over 

design should NOT have been used. Also, we will estimate the size of the problem 

by reviewing hypertension trials published for their design in relation to the type of 

treatment comparison. A more mathematical approach of the problems of negative 

correlations can be found elsewhere.2 

 
2. EXAMPLES FROM THE LITERATURE IN WHICH CROSS-OVER TRIALS 

ARE CORRECTLY USED 
 

Cross-over trials generally have a strong positive correlation between treatment 

responses for 2 reasons. First, this is so, because one subject is used to the 

comparison of two treatments. Second, in controlled clinical trials the new 

treatment may be a slight modification of the standard or be equivalent to it with the 

addition of a new component. In this situation there is a positive correlation 

between the response to the new treatment and the standard treatment: treatment 1 

performs highly when treatment 2 does so.  

 

Table 1 gives 7 examples of cross-over studies where compounds from the same 

chemical class/mode of action are compared. E.g., two beta-adrenergic agonists, 

two calcium channel blockers, two beta-blockers, two different dosages of the same 

compound are compared. Such comparisons should have a strong positive 

correlation, and the table shows that this is so. Correlation coefficients calculated 

from the data were consistently positive. These studies were appropriately 

performed in the form of a cross-over study. The cross-over design provided extra 

sensitivity by accounting for the positive correlation. A parallel-group study would 

have lacked the extra sensitivity. 
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Table 1.Examples from the literature in which cross-over trials are correctly used 
___________________________________________________________________ 

                     Treatment         Efficacy0       P-value Correlation 

                                                          (mean ± SEM)                 oefficient# 

 

1.  Angiology 1985; beta-adrenergic agonist         22.7 ±  0.5     < 0.01        r = + 0.56 

      36: 219-26        alpha-adrenergic antagonist 

      n = 12           with beta-agonistic property   27.7 ± 1.0    

 

2.   Lancet 1986;   Platelet activating                    1.5 ± 1.0    < 0.001    r = + 0.66    

     ii: 189-92         factor  

     n = 6              its precursor                              +0.2 ± 1.0 

  

3. Lancet 1986;     cholesterol lowering             42 ± 12       < 0.05   r = + 0.20  

 ii: 740-1           drug A 

    n = 7              cholesterol lowering               50 ± 12 

                           drug B 

 

4. Lancet 1987;     high alcohol intake               143 ± 5       < 0.01        r = + 0.41 

   i: 647-52               low  alcohol intake                  137 ± 5  

   n = 40 

 

5. Lancet 1987;         atenolol                       74.3 ± 4.5* < 0.01   r = + 0.39  

   ii: 650-3                 labetalol                               79.9 ± 7.2      

   n = 20 

 

6. Br Heart J     gallopamil                29.9 ± 11.0 < 0.0001 r = + 0.56  

   1993; 70:         nifedipine                           49.7 ± 26.8     

   252-8 

   n = 18 

 

7.  Int J Clin        amlodipine                   1.58 ± 0.32  <0.001  r = + 0.65 

     Pharmacol      felodipine                             4.43 ± 1.86   

     Ther 1997; 

     35: 514-8 

     n= 8 

__________________________________________________________________________ 
0 Denotes in study 1 finger temperature after finger cooling (oC), study 2 bronchial 

responsiveness to methacholine (doubling dilutions), in study 3 plasma level of HDL-

cholesterol (mg/dl), in study 4 systolic blood pressure (mm Hg), in study 5 heart rate (beats / 

min), in study 6 QRS voltage (% of standardized maximum), in study 7 peak-trough ratio.  
#  Correlation coefficient ( r ) was calculated using t - statistic: p - values were turned into 

t

  

values after adjustment  for the degrees of freedom, and r was calculated using the formula 

for the pooled standard error of the mean (SEM): (pooled SEM)2 = SEM1
2 + SEM2

2  2 r 

SEM1.SEM2 

* For the paired analysis two-sided ANOVA was used which for two groups of paired data 

yields the same results as a paired t - test, however. 

 

–

–

c

-



 

3. EXAMPLES FROM THE LITERATURE IN WHICH CROSS-OVER TRIALS 

SHOULD NOT HAVE BEEN USED 

 

In trials with completely different treatments patients tend to fall apart into different 

populations: those who respond better to treatment 1 and those who do so to 

treatment 2. For example, patients with angina pectoris irresponsive to beta-

blockers may respond either to calcium channel blockers or nitrates. Also, 

hypertension, Raynaud’s phenomenon, different types of cardiac arrhythmias and 

chronic obstructive pulmonary disease are known to be conditions where a non-

response to a particular compound is frequently associated with an excellent 

response to a completely different compound. These are examples of situations in 

which a strong negative correlation may exist. This may be even so with self-

controlled studies that otherwise are more likely to have a positive correlation 

because one subject is used to the comparison of two treatments. As demonstrated 

above the problem with negative correlations in a cross-over study is lack of 

sensitivity: the pooled SEM is approximately (1 r) −  times larger with a negative 

correlation than it would have been with a zero correlation (parallel-group study), 

and this reduces the probability level of testing, and, thus, produces erroneously 

negative studies. The examples in Table 2 show that the problem can be readily 

detected in the literature. All of these studies were negative, and this was 

presumably so because of the negative correlation coefficient  between treatment 

responses. Had they been performed in the form of a parallel-group study, most of 

them probably would have had a statistically significant effect. At least, when we 

tested the studies as though they were unpaired, in most of them p-values of 0.05 or 

less were obtained. 
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Table 2.Examples from the literature in which cross-over trials should NOT have been used  
__________________________________________________________________________ 

 

                   Treatment   Efficacy0  P-value Correlation  

                                                            (mean ± SEM)   coefficient# 

 

1. Lancet                NSAID with renal 127 ±  3        n.s.        r  =   0.29 

    1986; i: 997-1001 NSAID without     131 ± 3 

    n = 20                   renal prostaglandin  

  synthesis  

 

2. N Engl J Med    tolazolin                140 ± 34        n.s.       r  =  0.30 

   1986; 314: 1280-6  insulin                    112 ± 15    

   n = 12 

 

3. N Engl J Med    beta-adrenergic       42 ± 18       n.s.        r  =  0.30 

   1986; 315: 735-9 agonist                       

   n = 11                anticholinergic        25 ± 14  

                              agent              

 

4. Br J Clin Pharmacol  xamoterol             80.1 ± 2.6    n.s.        r =  0.25  

  1991; 31: 305-12       enalapril      75.1 ± 1.6  

  n = 38 

 

5. Br J Clin Pharmacol  nitroprusside            13 ±  5         n.s.         r =  0.42 

    1991; 32: 758-760     bradykinine              91 ±  2 

    n = 6 

 

6. Curr Ther Res           nifedipine             14.0 ± 3.6 n.s.        r =  0.46 

   1991; 49: 340-50       captopril                 6.7 ± 2.1   

   n = 42 

  

7. Eur J Gastroenterol  atenolol               3.9  ±  0.2        n.s.           r = 0.70 

    Hepat 1993; 5: 627-9 nifedipine           2.9 ± 0.3   

    n = 18 

__________________________________________________________________________ 

SEM = standard error of the mean, n.s. = not significant. 
0 Denotes in study 1 systolic blood pressure (mm Hg), in study 2 plasma glucose level 

(mg/dl), in study 3 forced expiratory volume in one second (% change from baseline), in 

study 4 diastolic blood pressure (mm Hg), in study 5 plasma ureum (mmol/l), in study 6 fall 

in mean blood pressure (mm Hg), in study 7 oesophageal sphincter pressure (mm Hg).  
# Correlation  coefficient (r) was calculated using t-statistic: p - values  were turned  into

 t- values for the degrees of freedom, and r was calculated using the formula for the pooled 

standard error of the mean (SEM): (pooled SEM)2 = SEM1
2 + SEM2

2  2 r SEM1.SEM2. 

 

–

–

–

–

–
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4. ESTIMATE OF THE SIZE OF THE PROBLEM BY REVIEW OF 

HYPERTENSION TRIALS PUBLISHED 
 

The above examples indicate the existence of a potential problem with negative 

correlations in cross-over trials. However, they do not answer how prevalent the 

problem is. In order to address this question we assessed the double blind 

randomized hypertension trials listed in Cardiology Dialogue 1994.3 Hypertension 

treatments frequently have pharmacologically completely different modes of action: 

diuretics reduce blood pressure by volume depletion, beta-blockers  and calcium 

channel blockers/angiotensin converting enzyme inhibitors do so by reducing 

cardiac output and peripheral resistance respectively. Of 73 randomized controlled 

trials (Table 3) a significantly smaller percentage of cross-over than of parallel-

group studies compared treatments with a totally different chemical class/mode of 

action (for example, diuretic versus vasodilator, or beta-blocker versus vasodilator 

etc, 27 versus 72%, P< 0.001 ). Apparently, the scientific community has some 

intuition of doing the right thing at the right time: in 73% of the cases the cross-over 

design was correctly used. Nonetheless, in 4 (27%) of the cases this was not so. 

Two of these studies were not able to reject the null - hypothesis of no effect and 

the other two would probably have been more sensitive, had they been performed in 

the form of a parallel-group study. 
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Table 3. Double blind randomized hypertension trials listed in the 1994 volume of 

Cardiology Dialogue4 

__________________________________________________________________________ 

                           parallel-group studies           cross-over studies 

                               N    different treatments (%) N  different treatments (%) 

Am J Cardiol         3  2                              2     1 

J Am Coll Cardiol       1    0   

Am J Hypertens         7    5                              1   0 

Curr Ther Res          5    2                                   1     0 

Clin Med                                                                     1       0 

NEJM                      2      0 

Clin Exp Hypertens   1       0                               2   0 

J Human Hypertens     7       6                               2    0 

Br J Clin Pharmacol    3     3                                1     1 

Cardiovasc Drug Ther                                                 1    1 

Clin Lab Invest          1     1 

Herz Kreislauf          2     1  

Zeitschr Kardiol       1     1 

J Cardiovasc Pharmacol 4      3 

J Clin Pharmacol      3    2                                1   0 

Clin Ther                                                                       1       0 

Clin Pharmacol Ther    2    2   

Cardiol                   4      3 

J Int Med                  1       1 

Eur J Clin Pharmacol  1   1 

Hypertens                  1      1 

Arch Int Med            1     1 

B J Clin Pract                                       1  1 

Clin Pharmacol Res     1      1 

JAMA                      1    1 

Postgrad Med            1     1 

Drug Invest                                                    1   0 

______________________________________________________________ 

Total numbers                53   38 (72%)                    15   4 (27%) 

 
5. DISCUSSION 

 

The current chapter shows that clinical trials comparing treatments with a totally 

different chemical class/mode of action are at risk of negative correlation between 

treatment responses. Such negative correlations have to be added to the standard 

errors in a cross-over trial, thus reducing the sensitivity of testing differences, 

making the design a flawed method for evaluating new treatments. The examples 

suggest that the phenomenon of negative correlations is not uncommon in practice, 

and that it should be taken into account when planning drug research.  

 

The mechanism of between-group disparities in drug response is currently being 

recognized in clinical pharmacology, and is, in fact, the main reason that in 

treatment protocols the principle of stepped care is being replaced by individualized 



 

care.4  However, when it comes to research, clinicians and clinical pharmacologists 

are still unfamiliar with the problems this issue raises and virtually never take 

account of it. The recognition of between-group disparities in drug response also 

implies that negative correlations in a treatment comparison are routinely tested, 

and that a cross-over design is not always appropriate. 

 

So far, statisticians have assumed that a negative correlation in cross-over studies 

was virtually non-existent,  because one subject is used for comparison of two 

treatments. For example, Grieve recently stated one should not contemplate a cross-

over design if there is any likelihood of correlation not being positive.5 The 

examples in the current paper show, however, that with completely different 

treatments, the risk of a negative correlation is a real possibility, and that it does 

give rise to erroneously negative studies. It makes sense, therefore, to restate 

Grieve's statement as follows: one should not contemplate a cross-over design if 

treatments with a totally different chemical class/mode of action are to be 

compared.  

 

At the same time, however, we should admit that the cross-over design is very 

sensitive for comparing treatments of one class and presumably one mode of action. 

The positive correlation in such treatment comparisons adds sensitivity, similarly to 

the way it reduces sensitivity with negative correlations: the pooled SEM is 

approximately (1 r) −  times smaller with positive correlation than it would have 

been with a zero correlation (parallel-group study), and this increases the 

probability level of testing accordingly. This means that the cross-over is a very 

sensitive method for evaluating studies with presumable positive correlation 

between treatment responses, and that there is, thus, room left for this study design 

in drug research.  

 
6. CONCLUSIONS 

 

Comparisons of treatments with totally different chemical class/mode of action are 

at risk of a negative correlation between treatment responses: patients tend to fall 

apart into different populations, those who respond better to treatment 1 and those 

who do so to treatment 2. The cross-over design is flawed when this phenomenon 

takes place. The objective of this chapter was to assess whether this flaw is 

prevalent in the literature. 

Fourteen  randomized controlled cross-over studies were assessed for correlation 

levels in relation to their type of treatment comparison. Correlation coefficient (r) 

was calculated using T-statistic: P-values were turned into T-values for the degrees 

of freedom, and r was calculated using the formula for the pooled standard error of 

the mean (SEM): (pooled SEM)2 =SEM1
2 + SEM2

2  2 r SEM1.SEM2 .  Randomized 

controlled hypertension trials of 1994 were listed for study design in relation to  

type of treatment comparison. 
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Cross-over studies comparing treatments with a totally different chemical class / 

mode of action were frequently negative, and this was, obviously, due to their 

negative  correlation between treatment responses. Cross-over studies comparing 

similar treatments had frequently a positive correlation, and this added extra 

sensitivity to the treatment comparison.  Twenty-seven percent of the cross-over 

hypertension studies compared completely different treatments, and these studies 

should, therefore, not have been performed in the form of a cross-over study. 

Cross-over trials lack sensitivity to test one treatment against another treatment with 

a totally different chemical class /mode of action, and should, therefore, not be used 

for that purpose. In contrast, they are, particularly, sensitive to compare treatments 

from one chemical class/with one mode of action. It is hoped that this chapter 

affects the design of future crossover trials.  
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CHAPTER 22 

 
QUALITY-OF-LIFE ASSESSMENTS IN CLINICAL 

TRIALS 

 

 

 

 
1. INTRODUCTION 

 

Less than 10 years ago the scientific community believed that quality of life (QOL) 

was part of the art of medicine rather than the science of medicine. In the past few 

years index methods have been developed and have proven to be sensitive and 

specific to assess patients’ health status not only on a physical, but also on a 

psychological and social base. We increasingly witness that QOL is implemented in 

the scientific evaluation of medicine. However, major problems with QOL 

assessments so far, include the contributing factor patients’ opinion, which is very 

subjective and, therefore, scientifically difficult to handle, and, second, the low 

sensitivity of QOL-questionnaires to reflect true changes in QOL. The Dutch 

Mononitrate Quality Of Life (DUMQOL) Study Group has recently addressed both 

problems. In their hands, the patients’ opinion was a consistent and statistically 

independent determinant of QOL in patients with angina pectoris. The problem of 

low sensitivity of QOL-assessments could be improved by replacing the absolute 

score-scales with relative ones, using for that purpose odds ratios of scores. The 

current chapter reviews the main results of this so far only partly published 

research1,2 from the Netherlands. 

 
2. SOME TERMINOLOGY 

 

QOL battery                      A questionnaire large enough to adequately address  

                                          important domains of  QOL. 

 

Domains of QOL               Physical, psychological , and social areas of health seen  

                                           as distinct and  important to a person’s perception of  

   QOL. 

 

Items                                  Items, otherwise called questions, constitute a domain,  

                                           e.g., the DUMQOL-questionnaire for angina pectoris, 

                                           consists of respectively  8, 7, and 4 questions to assess  

                                           the domains (1) mobility, (2) somatic symptoms, and (3)  

   psychological distress. 
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Absolute score scales        For every item the individual response is scored on a  

                                          (linear) scale. Mean  of scores a group of patients are  

                                          calculated. Mean domain scores are calculated as overall  

   means of the latter mean scores. 
 

Relative score scales         The same procedure. However, results are reported in the  

                                           form of odds ratios. 

 

Odds ratios                         Mean of the domain scores in patients with a particular 

                                           characteristic/mean of the domain scores in patients 

    without this particular characteristic.  

                                            

Validated QOL batteries   This is controversial. QOL batteries are diagnostic tests,  

                                           and validation of any diagnostic test is hard to  

   accomplish without a gold standard for comparison. 

                                           Surrogate validation is sometimes used: actual QOL  

                                           scores are compared with scores expected based on  

levels of morbidity. 

 

Internal consistency           There should be a strong correlation between the  

of domain items                 answers given to questions within one domain: all of  

                                           questions should approximately predict one and the same  

   thing. The level of correlation is expressed as 

                                           Cronbach’s alpha: 0 means poor, 1 perfect relationship. 

 

Cronbach’s alpha               
2

i

2

T

sk
alpha    (1 )  

(k 1) s
= ⋅ −

−
 

                                           k = number of items 

                                           s2
i = variance of ith item  

                                           s2
T  = variance of total score obtained by summing up  

                                           all of the items 

 

Multicollinearity                There should not be a too strong correlation between  

                                           different domain scores because different domains  

                                           predict different areas of QOL. A Pearson’s correlation  

                                           coefficient > 0.90 means the presence of  

    multicollinearity and, thus, of a flawed multiple  

regression analysis.  

 

Pearson s correlation                    

coefficient (r)                          
2 2

(x x)(y y)
r  

(x x) (y y)

− −
=

− −
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Sensitivity                          Sensitivity or precision means ability of the  

of QOL assessment            measurement to reflect true changes in QOL. 

 

QOL estimator                   Mean (or pooled) result of the data from a single  

domain. 

 

Index methods                   Index methods combine the results of various domains  

                                           of a QOL battery to provide an index for overall QOL.  

    
 

3. DEFINING QOL IN A SUBJECTIVE OR OBJECTIVE WAY? 
 

In 1992 Brazier et al3 validated the Short Form  (SF)-36 health survey questionnaire 

of Stewart4, a self-administered questionnaire, addressing any aspects that, 

according to the designer, might be important to the patients’ QOL. However, at 

each item in the questionnaire, the question “is it important to you?” was missing. 

In 1994 Gill and Feinstein5 in their “Critical appraisal of quality of life 

assessments” emphasized that, from their personal experience in patient care, they 

believed that QOL, rather than a description of health status, should describe the 

way patients perceive their health status. One year later Marquis et al6 designed a 

questionnaire for patients with angina pectoris based on psychological factors, in 

addition to clinical symptoms, and concluded that the former is probably a better 

predictor of QOL than the latter. In subsequent years QOL assessments increasingly 

allowed for patients giving their own opinion, in addition to patients answering 

questions about health status. However, the latter was consistently given more 

weight than the former. For example, Testa and Simonson7 allowed for one such 

question out of 6 questions in each QOL-domain giving the question just about 1/6 

of the total weight in various domains. The problem with the subjective approach to 

QOL, as recently pointed out by Thompson et al8, is that it is difficult to match with 

the accepted rule that scientific data should be objective. In addition, the patients’ 

opinion may be a variable so unpredictable, that it cannot be applied as a reliable 

measure for clinical assessment of groups of patients. So far, the concept that the 

patients’opinion is a relevant variable in the assessment of QOL has never been 

proven to be true. In order to test this issue the DUMQOL Study Group has recently 

completed some relevant research. 

 

 

 

 

 

251



CHAPTER 22 252

4. THE PATIENTS’ OPINION IS AN IMPORTANT INDEPENDENT-

CONTRIBUTOR TO QOL 
 

The DUMQOL Study Group used the validated form of Stewart’s SF-36 

Questionnaire for the purpose of scoring QOL3, and the DUMQOL-50 

questionnaire for scoring psychological distress and health status according to the 

patients´judgment.9 The patients’ opinion (patients were requested to estimate the 

overall amount of his/her QOL as compared to patients they knew with a similar 

condition) and health status according to the physicians’ judgement (the physician 

was requested to estimate the patients’ health status) were scored like the others on 

5 point-scales. Internal consistency and retreatment reliability of the test-battery  was
 adequate with Cronbach’s alpha 0.66. Table 1 shows the results from a cohort of 82 

 

 
Table 1.  Correlation matrix to assess multicollinearity 

in the data, Pearson’s correlation coefficient are given (r) 

__________________________________________________________________________ 

                            patients’ opinion   psychological    health status               health status 

                                                            distress       patients’ judgment     physicians’ judgment 

__________________________________________________________________________ 

Psychological          0.35 

distress 

 

Health status             0.36          0.30 

Patients’ judgment 

 

Health status 

Physicians’ judgment 0.42                0.41               0.48 

 

Quality of life          0.42                0.58                 0.43                   0.27  

 

R < 0.20 weak correlation; 0.20 < r < 0.40 moderate correlation; r > 0.40 strong correlation. 
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Table 2.  Stepwise multiple regression analysis of the associations of various (dependent) 

predictors on QOL in patients with angina pectoris 

__________________________________________________________________________ 

 

                                               beta          t               p -  value 

                                           
  ____

 

Psychological distress      0.43       4.22    0.000 

 

Patients’ opinion                0.22     2.19          0.032 

 

Health status                      0.19    1.88         0.071 

     (patients’ judgment) 

 

Health status                      0.11     0.16          0.872 

      (physicians’ judgment) 

 

beta= standardized partial correlation coefficient.                    
 

patients with stable angina pectoris. Obviously, QOL was strongly

 associated with the patients’ opinion. In none of the comparisons were adjustment 

for

 

multicollinearity required (Pearson’s correlation coefficient >0.9). Table 2 shows 

that psychological distress was the most important contributor to QOL. Also, the 

patients’ opinion significantly contributed to QOL. Physical health status according 

to the patients’ judgment only made a borderline contribution, while the physicians’ 

judgment was not associated with QOL at all. These data strongly support the 

relevance of the patients’ opinion as a important independent-contributor to QOL.  

 
5. LACK OF SENSITIVITY OF QOL-ASSESSMENTS 

 

Sensitivity defined as ability of the measurement to reflect true changes in QOL is 

frequently poor in QOL assessments.10  A well-established problem with QOL 

scales is their inconsistent relationship between ranges of response and true changes 

in QOL.7 A good example of this problem is the physical scale of the SF-36 

questionnaire. It ranges from 0 to 100 points. However, while healthy youngsters 

may score as high as 95 and topsporters even 100, 60 year-old subjects usually 

score no better than 20. A patients with angina pectoris may score 5 points. If he 

would score 10, instead of 5, after the allowance for sublingual nitrates ad libitum, 

this improvement would equal 5% on the absolute scale of 100 points, which does 

not seem to be very much. However, on a relative scale this score of 10 points is 

100% better than a score of 5 points, and, in terms of improvement of QOL, this 

difference on the SF-36-scale between 5 and 10 points does mean a world of 

difference. It, for example, means the difference between a largely dependent and 

independent way of life.  In this example the low score on the absolute-scale masks 

important and meaningful changes in QOL. The DUMQOL Study Group took issue 
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with this well-recognized but unsolved phenomenon and  performed an odds ratio 

analysis of patient characteristics in a cohort of 1350 patients with stable angina 

pectoris. They showed that this approach provided increased precision to estimate 

effects on QOL estimators. 

 
6. ODDS RATIO ANALYSIS OF EFFECTS OF PATIENT CHARACTERISTICS 

ON QOL DATA PROVIDES INCREASED PRECISION 
 

Table 3 gives an overview of effects of patient characteristics on QOL estimators in 

1350 patients with stable angina pectoris. Results are presented as odds ratios. The 

odds ratio presents the relative risk of QOL difficulties and is defined as the ratio 

between mean domain score of patients with a particular characteristic and that of 

patients without this particular characteristic. 
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Table 3.  Stable angina pectoris: effects of patient characteristics on quality of life 

estimators. Odds ratios and 95% confidence intervals are given 
              _____________________________________________________________________________________ 

                      Mobility          Pain                  Early morning        Psychological       Chest                Patient 

                      difficulties        in general          pain                         distress                   pa in                 satisfaction 

Gender            2.5 (1.8-3.3)c    2.0 (1.3-3.0)c      1.7 (0.6-4.7)            1.3 (0.9-2.0 )      2.1 (1.1-3.9)b         0.8 (0.3-1.9) 

     (females/males) 

 

Age                 1.4 (1.2-1.5)b    1.0(0.9-1.1)       0.9 (0.9-1.0)            1.0 (0.9-1.0)        1.0 (0.9-1.0)          1.0 (0.9-1.0) 

      (>68/<86 years) 

 

NYHA           5.6 (4.8-6.6)c     2.8 (2.1-3.5)c     46.8 (26.3-83.1)c     4.4 (3.5-5.5)c       37.2 (23.4-58.9)c     0.6 (0.4-1.1) 

       (III-and-IV / II-and-I) 

 

Smoking         0.8 (0.5-1.1)       1.3 (0.8-2.1)      12.9 (3.0-56.2)c       3.2 (2.0-5.2)a      0.5 ( 0.2-1.2)          5.8( 2.1-15.8)b 

       yes/no 

 

Cholesterol      0.9 (0.7-1.3 )     1.4 (0.3-2.0)      1.3 (0.5-3.4)             1.8 (1.2-2.8)a       1.8 (0.9-3.4)          1.1 (0.5-2.6) 

       yes/no 

 

Hypertension   0.3 (0.2-0.4)a     0.5 (0.3-0.7)a     0.7 (0.2-0.9)a           0.3 (0.2-0.4)b       0.5 (0.3-0.9)a          1.7 (0.7-4.1) 

       yes/no 
 

Diabetes          2.2 (1.5-3.1)a     1.1 (0.6-1.9)      9.1 (3.0-28.2)c          2.0 (1.1-3.7)a       1.8 (0.7-4.6)          1.1 (0.3-4.2) 

       yes/no 

 

Arrhythmias    2.9 (2.0-4.1)b    1.3 (0.7-2.1)      3.6 (1.3-10)a             3.2 (1.9-5.4)a        10.2 ( 4.5-23.4)b      1.2 (0.4-3.7) 

       yes/no  

 

PVD                 11.0 (7.9-15.1)c   2.2 (1.4-3.6)a     1.1 (0.7-1.7)            2.6 (1.5-4.5)a       1.0 (0.4-2.2)          8.3 (2.7-25.7)b 

       yes/no  

 

Beta-blockers   0.8 (0.7-0.9)a      0.8 (0.5-1.1)     1.7 (0.7-4.0)             0.9 (0.6-1.2)       1.3 (0.7-2.2)         3.2  (1.5-6.9)b 

       yes/no 

 

Calcium channel 1.5 (1.2-1.9)a  1.3 (0.9-1.8)     3.2 (1.5-6.6)a           2.0 (1.4-2.9)a       6.0 (3.4-10.7)b       6.5 (3.0-13.8)a  

 blockers yes/no 

 

Sublingual           2.6 (2.1-3.3)c   3.0 (2.2-4.2)c     1.0 (0.7-1.4)           3.1 (2.5-4.3)c       7.1 (4.2-12.0)c       3.4 (1.6-6.9)c   

nitrates yes/no 

______________________________________________________________________________________________ 

Quality of life domains were estimated using a questionnaire based on the Medical 

Outcomes Short-Form 36 Health Survey and the Angina Pectoris Quality of Life 

Questionnaire. Results are given as odds ratios = mean domain scores in patients 

with characteristic/mean domain scores in patients without characteristic. PVD = 

peripheral vascular disease; NYHA = New York Heart Association Angina Class; a 

= P < 0.05; b = P < 0.01; c = P < 0.001. 
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The procedure readily identifies categories of patients that, obviously, have poor 

QOL scores. E.g., 

1. Increased QOL-difficulties were observed in patients with advanced New York 

Heart Association (NYHA) anginal class: the  higher the anginal class the larger 

the risk of mobility difficulties, pain, chest pain, anginal pain, and distress.  

2. The risk of mobility difficulties was increased in patients with diabetes mellitus, 

arrhythmias, and peripheral vascular diseases.  

3. Patients using sublingual nitrates (and thus presumably very symptomatic) 

reported more (severe) mobility difficulties, pain, chest pain, and psychological 

distress.  

4. Female patients reported more (severe) mobility difficulties, pain, anginal pain, 

and distress than their male counterparts. 

5. The risk of mobility difficulties increased with age, but, in contrast, elderly 

patients reported less pain, anginal pain, and distress. 

 

The above categories of patients are, obviously, very symptomatic and should, 

therefore, particularly benefit from treatments. The beneficial effects of treatments 

in patients with particular characteristics can be predicted according to the 

following procedure:  

 

                 

(1) Odds Ratio active treatment / placebo =  mean domain score in patients on active 

    treatment/mean domain score in patients on 

    placebo. 

                                       

(2) Odds Ratio characteristic / no characteristic = mean domain score in patients with particular  

                                                              characteristic /mean domain score in patients 

          without this particular characteristic.  

 

The relative risk of scoring in patients with a particular characteristic if they used 

active treatment  

 

can be estimated and calculated according to: 

 

(3) Odds Ratio characteristic / no characteristic  x  Odds Ratio active treatment/ placebo .  
 

 

Along this line the odds ratio approach to QOL-assessments can be helpful to 

estimate the effects of cardiovascular drugs on quality of life in different categories 

 

of patients with increased precision. The standard error of this indirect estimate is 

somewhat more complex, and beyond this text.
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7. DISCUSSION 
 

The medical community is, obviously, attracted to the concept that QOL 

assessments should pay particular attention to the individual, but, at the same time, 

it believes in the usefulness of a scientific method to measure QOL.11 Usually, the 

objective of a study is not to find the greatest good for a single person but the 

greatest good for the entire population, moving from an individual perspective to a 

societal one. Even for quality-of-life measurements, only large clinical studies 

designed and conducted with rigorous statistical standards allow for a hypothesis to 

be tested and to offer useful results. Using the patients’ opinion as measurement-

instrument raises a major problem within this context. The general concept of 

medical measurements is that measurement-instruments remain constant 

irrespective of who is using them: a thermometer remains the same whoever’s 

mouth it is placed in. With the patients’ opinion this is not so. Rather than true 

ability, perceived functional ability and willingness to complain is assessed. An 

assessment tool to reflect the viewpoint of patients is, obviously, a major challenge. 

Although the medical community expresses sympathy with the latter concept, it 

expresses doubt about scientific value and even questions whether the patients’ 

opinion is part of medicine at all.7,8,11 The recent research from the DUMQOL 

Group shows that the patients’ opinion in a standardized way, produces data that are 

sufficiently homogeneous to enable a sensitive statistical analysis. These data 

strongly support the relevance of the patients’ opinion as a independent contributing 

factor to QOL. This variable should, therefore, be adequately implemented in future 

QOL assessments.      

A second problem with current QOL-batteries is the inconsistent relationship 

between ranges of response and true changes in QOL-assessments. This is mainly 

due to very low (and very high) scores on the absolute-scale, masking important 

and meaningful changes in QOL. The DUMQOL Study Group showed that this 

problem can be adequately met by the use of relative rather than absolute scores, 

and it used for that purpose an odds ratio-approach of QOL scores. This approach 

provided increased precision to estimate effects on QOL estimators. An additional 

advantage of the latter approach is that odds ratios are well understood and much in 

use in the medical community, and that results from QOL research can, therefore, 

be more easily communicated through odds ratios than through the comparison of 

absolute scores. For example, “the odds ratio of (severe) mobility difficulties for 

mononitrate therapy in patients with stable angina is 0.83 (p < 0.001)” is better 

understood than “the mean mobility difficulties score decreased from 1.10 to 1.06 

on a scale from 0 to 4 (p = 0.007)”. 

We conclude that recent QOL-research from the DUMQOL Study Group allows for 

some relevant conclusions, pertinent to both clinical practice and clinical research. 

QOL should be assessed in a subjective rather than objective way, because the 

patients’ opinion is an important independent contributor to QOL. The comparison 

of absolute QOL-scores lacks sensitivity to truly estimate QOL. For that purpose 

the odds ratio approach of QOL scores provides increased precision to estimate 

QOL. 
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8. CONCLUSIONS 
 

Two major issues in quality of life (QOL) research include the patients’ opinion as 

a contributing factor in QOL-assessments,  and the lack of sensitivity of QOL-

assessments. The objective of this chapter was to review results from recent 

research by the Dutch Mononitrate Quality Of Life (DUMQOL) Study Group 

relevant to these issues. 

Using a test-battery including Stewart’s Short Form (SF)-36 Questionnaire and the 

DUMQOL-50 questionnaire, the DUMQOL Study Group tested the hypothesis that 

the patients’ opinion might be an independent determinant of QOL and performed 

for that purpose a stepwise multiple regression analysis of data from 82 outpatient 

clinic patients with stable angina pectoris. Psychological distress was the most 

important contributor to QOL (beta 0.43, P<0.0001). Also, the patients’ opinion 

significantly contributed to QOL (beta 0.22, p = 0.032). Physical health status 

according to the patients’ judgment only made a borderline contribution (beta 0.19, 

P = 0.71), while the physicians’ judgment was not associated with QOL at all (beta 

0.11, P = 0.87). Using an Odds ratio approach of QOL scores in 1350 outpatient 

clinic patients with stable angina pectoris the DUMQOL Study Group assessed the 

question that relative scores might provide increased precision to estimate the 

effects of patient characteristics on QOL data. Increased QOL difficulties were 

observed in New York Heart Association Angina Class (NYHA) III-IV patients, in 

patients with comorbidity, as well as in females and elderly patients. Odds ratios 

can be used in these categories to predict the benefit from treatments. We conclude 

that recent QOL-research of the DUMQOL Study Group allows for conclusions 

relevant to clinical practice. QOL should be defined in a subjective rather than 

objective way. The patients’ opinion is an important independent contributor to 

QOL. The comparison of absolute QOL-scores lacks sensitivity to truly estimate 

QOL. The odds ratio approach of QOL scores provides increased precision to 

estimate QOL. 
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CHAPTER 23 

 
STATISTICAL ANALYSIS OF GENETIC DATA 

 
1. INTRODUCTION 

 

In 1860, the benchmark experiments of the monk Gregor Mendel led him to 

propose the existence of genes. The results of Mendel’s pea data were astoundingly 

close to those predicted by his theory. When we recently looked into Mendel’s pea 

data and performed a chi-square test, we had to conclude the the chi-square value 

was too small not to reject the null-hypothesis. this would mean that Mendel’s 

reported data were so close to what he expected that we could only conclude that he 

had somewhat fudged the data (Table 1).  

 
 Table 1. Chi-square-distribution not only has a right but also a left tail. We reject 

the null- hypothesis of no difference with 1 degree of freedom if chi-square is larger 

than 3.84 or smaller than 0.004. In Mendel’s data frequently very small chi-squares 

can be observed, as e.g., in the above example where it is as small as 0.0039. This 

means that the chi-square is too small not to reject the null-hypothesis. The results 

are closer to what can be expected than compatible with the assumption of a normal 

distribution. The obvious explanation is that Mendel somewhat mispresented his 

data 

         _________________________ 

        Phenotype       A            a 

                             _______________ 

        B                  AB 27   aB 271 

        b                 Ab   9    ab   93 

         __________________________   

 
Though Mendel may have somewhat fudged some of his data, he started a novel 

science that now 140 years later is the largest growing field in biomedicine. This 

novel science, although in its first steps, already has a major impact on the life of all 

of us. E.g., obtaining enough drugs, like insulin and many others, to treat illnesses 

worldwide was a problem that has been solved by recombinant DNA technology 

which enabled through genetic engineering of bacteria or yeasts the large scale 

production of various pharmaceutical compounds. The science of genes,  often 

called genomics, is vast, and this chapter only briefly mentions a few statistical 

techniques developed for processing data of genetic research. We will start with the 

explanation of a few terms typically used in genomics.  
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      Table 2. Bayes´ Theorem, an important approach  

      for the analysis of genetic data:example  
         _______________________________________________________ 

         Based on historical data the chance for girls in a particular family of      

         being carrier for the hemophilia A gene is 50%. Those who are carrier 

         will have a chance of ½ x ½ = ¼ = 25% that two sons are healthy. Those 

         who are no carrier will have a 100% chance of two healthy sons. This 

         would mean that a girl from this population who had two healthy sons is 

         500 / 125 = 4 times more likely to be no carrier than to be carrier. In terms  

         of Bayes’ Theorem:  

         posterior odds = prior odds x likelihood ratio.      

         prior probability of being carrier = 50% 

         prior odds = 50: 50 = 1.0 

         likelihood ratio = probability for carrier of having two healthy sons/           

         probability for non-carrier of having two healthy sons = 25% / 100% = 

         0.25 posterior odds = 1.0 times 0.25 = 25% or 1 in 4:  

         if you saw many girls from this family you would see one carrier for    

         every 4 non-carriers. 

         ____________________________________________________ 

         mothers with two sons who are:   carrier      no carrier 

                                                               n = 500    n = 500   

                                            ___________________________________ 

         two sons healthy                           n = 125    n = 500 

         two sons not healthy                     n = 375    n = 0 

         _____________________________________________________ 

 
2. SOME TERMINOLOGY 

 

Bayes’ Theorem (Table 2)  Posterior odds = likelihood ratio x prior odds 

                                     This approach is required for making predictions 

                                         from genetic data. Although the general concept of 

                                          including prior evidence in the statistical analysis of 

                                          clinical trial data is appealing, this concept should 

                                           not be applied in usual null-hypothesis testing, 

                                         because we would have to violate the main 

                                         assumption of null-hypothesis testing that H0 and 

                                         H1 have the same frequency distribution.    

Posterior odds (Table 2)    Prior odds adjusted for likelihood ratio. 

Prior odds (Table 2)         Prior probability of being a carrier/prior 

                                          probability of being no carrier.  

Likelihood ratio (Table 2) Probability for carriers of having healthy offspring/           

                                          probability for non-carrier of having healthy 

                                          offspring. 

Genetic linkage                 When 2 genes or DNA sequences are located near 

                                          each other on the same chromosome, they are  

                                         linked. When they are not close, crossing over 

                                         occurs frequently. However, when they are close 
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                                         they tend to be inherited together. Genetic linkage is 

                                         useful in genetic diagnosis and mapping because 

                                         once you know that the disease gene is linked to a 

                                         particular DNA sequence that is close, the latter can 

                                          be used as a marker to identify the disease gene 

                                          indirectly. Bayes’ Theorem can be used to combine 

                                          experimental data with prior linkage probabilities as  

                                          established.  

Autosomal                        Not x- or y-chromosome linked. 

Heterosomal                     X-or y-chromosome linked.      

Dominant gene                 Gene that is expressed in the phenotype. 

Recessive gene                 Gene that is expressed in the phenotype only if it is 

                                          present in two complementary chromosomes. 

Haplotype                         Group of genetic markers linked together on a  

                                          single chromosome, such as a group of DNA 

                                          -sequences. 

Haploid genome                Chromosomes of haploid cell (23 chromosomes,  

                                          50,000-  100,000 genes). 

Diploid cell                       Cell with 46 chromosomes. 

Chromosome                    2,000-5,000 genes. 

Chromosomal microband  50-100 genes. 

Gene                                 1,5-2000.103 base-pairs. 

Genomic medicine           Use of genotypic analysis to enhance quality of care. 

Complex disease traits      Multifactorial diseases where multiple genes and 

                                           non-genetic factors interact. 

Allele                                Gene derived from one parent. 

Homozygous                     Having identical alleles. 

Heterozygous                    Having different alleles. 

DNA-cloning                   Isolation of DNA fragments and their insertion into 

                                          the nucleic acid from another biologic vector for 

                                          manipulation. 

DNA probe                     Cloned DNA fragment used for diagnostic or 

                                         therapeutic purpose. 

Hybridization of single     Double-stranded DNA is dissociated into single 

stranded DNA                 -stranded, which can then be used to detect 

                                          complementary strands. 

Blotting procedures          Southern, Northern, Immuno-, Western blotting 

                                        are all procedures to hybridize target DNA in 

                                       solution to known DNA-sequences fixed on a 

                                        membrane support. 

Polymerase chain reaction Oligonucleotide of known nucleic acid sequence is 

                                        incubated with the target DNA and then amplified 

                                         with DNA polymerase. 

DNA chips                      Arrays of oligonucleotides on miniature supports 

                                         developed for the analysis of unknown DNA 
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                                          sequences, taking advantage of the complementary  

                                          nature of nucleic acid interaction.  

Mutations                         Changes in DNA either heritable or obtained.  

Introns                              Non-coding regions of the gene. 

Exons                               Coding regions of the gene. 

Single gene disorders       One gene plays a predominant role in determining 

                                          disease. 

Genotype                         Chemical structure of a gene. 

Phenotype                         Clinical characteristics of a gene.                         

Gene expression               Regulation of gene function is mediated at a 

                                         transcriptional level through helix-turn-helix 

                                          proteins and at a posttranscriptional level through 

                                         various hormones, autacoids and many more 

                                          factors.  

 
3. GENETICS, GENOMICS, PROTEONOMICS, DATA MINING 

 

In the past two or three decades the role of genetic determinants have increased 

enormously in biomedical research. Of several monogenetic diseases the genetic 

foundation has been clarified almost completely (e.g., Huntington’s disease), and of 

others the contribution of many genetic markers has been proved: for instance the 

brca 1 and 2 genes in breast cancer1, and the mismatch gene mutations in 

coloncarcinoma.2 Simultaneously, the human genome project has been the catalyst 

for the development of several high-throughput technologies that have made it 

possible to map and sequence complex genomes. These technologies are used, and 

will be used increasingly in clinical trials for many purposes but predominantly to 

identify genetic variants, and differentially expressed genes that are associated with 

better or worse clinical efficacy in clinical trials. In addition, the proteins associated 

with these genes are being investigated to disentangle their roles in the biochemical 

and physiological pathways of the disease and the treatment that is being studied. 

Together these technologies are called (high-throughput) genetics, genomics, and 

proteomics.  

The technological advancements have made it possible to measure thousands of 

genes/proteins of a single patient simultaneously, and the possibility to evaluate the 

role of each gene/protein in differentiating between e.g., responders and non-

responders to therapy. This has increased the statistical problem of multiple testing 

hugely, but also has stimulated research into statistical methods to deal with it. In 

addition methods have been developed to consider the role of clusters of genes. In 

this chapter we will describe a number of these new techniques for the analysis of 

high throughput genetic data, and for the analysis of gene-expression data. We 

restrict the discussion to data that are typically sampled in clinical trials including 

unrelated individuals only. Familial data are extremely important to investigate 

genetic associations: their clustered structure requires dedicated statistical 

techniques but these fall outside the scope of this chapter. 
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4. GENOMICS 

 

In the mid-1970s, molecular biologists developed molecular cloning and DNA 

sequencing. Automated DNA sequencing and the invention of the polymerase chain 

reaction (PCR) made it possible to sequence the entire human genome. This has 

lead to the development of microarrays, sometimes known as DNA-chip 

technology. Microarrays are ordered sets of DNA molecules of known sequence. 

Usually rectangular, they can consist of a few hundred to thousands of sets. Each 

individual feature goes on the array at a precisely defined location on the substrate, 

and thereafter, labeled cDNA from a test and a reference RNA sample are pooled 

and co-hybridized. Labeling can be done in several ways, but is usually done with 

different fluorescently labeled nucleotides (usually Cy5-dCTP for reference, and 

Cy3-dCTP for test RNA). After stimulation, the expression of these genes can be 

measured. This involves quantifying the test and reference signals of each 

fluorophore for each element on the array, traditionally by confocal laser scanning. 

The ratio of the test and reference signals is commonly used to indicate whether 

genes have differential expression. Many resources are available on the web 

concerning the production of microarrays, and about designing microarray 

experiments (e.g.: 123genomics.homestead.com). A useful textbook is that of 

Jordan3. 

An example of a microarray is given in Figure 1. This concerns the differential 

expression of about 500 genes in tumour tissue of a single patient with gastric 

tumour.  

 
 

Figure 1. Example of microarray of different expression  

of about 500 genes in tumour tissue of a single patient. 
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Each spot in this chip represents a different gene, and the ratio of the two 

fluorescent dyes indicates whether the genes are over-expressed (dark) or under-

expressed (pale) in the tumor tissue with respect to normal tissue. The 

transformation of the image into gene expression numbers is not trivial: the spots 

have to be identified on the chip, their boundaries defined, the fluorescence 

intensity measured, and compared to the background intensity. Usually this ‘image 

processing’ is done automatically by the image analysis software, but sometimes 

laborious manual adjustments are necessary. One of the most popular systems for 

image analysis is ScanAlyze (http://rana.stanford.edu/software). 

After the image analysis, differential expression is measured by a so-called 

normalized ratio of the two fluorescence signals, normalized to several 

experimental factors. The normalized ratios of the array in Figure 1 are given in 

Figure 2. On the x-axis are given the 500 genes, and on the y-axis is given the 

normalized ratio of each gene. 
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Figure 2. Normalized ratios of the array from Figure 1. 

 

 

It is obvious that most genes have a ratio around unity, but three or four genes are 

highly over-expressed with ratios above two. It is typically assumed that ratios  

larger than 1.5 or 2.0 are indicative of a significant change in gene expression. 

These estimates are very crude, however, because the reliability of ratios depend on 

the two absolute intensities. On statistical grounds, moreover, we would expect a 

number of genes to show differential expression purely by chance.4  

 

One way of  circumventing the multiple testing problem here, is to use a mixture 

model.5 Usually, it is assumed that the sample of ratios consists of subgroups of 

genes with normal, under-, and over-expression. In each subgroup, the ratios are 

mostly assumed to be normally distributed. When the sample is large enough, the 

percentage of normal, under-, and over-expressed genes, and associated mean ratios 

and standard deviations can be estimated from the data. This can be done with the 

logarithmically transformed ratios. The histogram of the log-transformed ratios in 
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Figure 2 is given in Figure 3, together with the three estimated normal distributions. 

In this model the probability of each gene of being over- of under-expressed can be 

calculated using Bayes’ theorem. 
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Figure 3. The histogram of the log-transformed ratios from Figure 2, calculated 

according to bayes’ Theorem. 

 
 

Although under-expressed genes could not be identified in this case, over-expressed 

genes were clearly seen, represented by the second mode to the right. Actually it 

was estimated that 14% of the genes showed over-expression, corresponding with 

ratios larger than 1.3.  

Above is illustrated how to look at the data of a single microarray. For the analysis 

of a set of microarrays several different approaches are used. Two distinctions can 

be used: supervised or unsupervised data analysis, and hypotheses-driven or data-

mining. For supervised data analysis additional data must be available to which the 

expression data can be related. In clinical trials a major question is often how 

responders and non-responders can be distinguished. Relating such response data to 

expression data can be done using well known techniques such as discriminant-

analysis, or logistic regression. Since there may be hundreds or thousands of 

expression variables, one must be careful in applying these techniques, and cross-

validation is often extremely useful.6 Unsupervised data analysis is usually done by 

cluster analysis or principal component analysis to find groups of co-regulated 

genes or related samples. These techniques are often applied without specific prior 

knowledge on which genes are involved in which case the analysis is a kind of  
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data-mining. An example of a hypothesis driven analysis is to pick a potential 

interesting gene, and then find a group of similar or anti-correlated expression 

profiles. 

Cluster-analysis is the most popular method currently used as the first step in gene 

expression analysis. Several variants have been developed: hierarchical7, and k-

means8 clustering, self-organizing maps9, and gene-shaving10, and there are many 

more. All aim at finding groups of genes with similar properties. These techniques 

can be viewed as a dimensionality reduction technique, since the many thousands  

of genes are reduced to a few groups of similarly behaving genes. Again many  

tools are available on the web, and a useful site to start searching is: 

www.microarray.org. We used Michael Eisen’s package7 to cluster the expression 

data of 18 patients with gastric cancer. The typical output of a hierarchical 

clustering analysis is given in Figure 4. This is a dendogram illustrating the 

similarities between patients, a similar graph can be obtained illustrating similarities 

between genes. In the present case one might conclude that patients 2, 6, 5, 7, 3, 13, 

9, 10, 1 and 8 form a cluster, and patients 14, 15, 4, 11, 16, 17, 12, and 18 another 

cluster. But identifying more clusters may be meaningful too. 

 

Figure 4. The typical hierarchical  clustering analysis of the expression data of 18 

patients with gastric cancer.  
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In a K-means cluster analysis the number of clusters must be specified a priori. 

When we specify two clusters, the same solution is found as above. 

The above results illustrate that many subjective decisions need to be made in a 

cluster analysis, and such analysis cannot be regarded as hypothesis-driven; the 

primary output of a cluster analysis are new hypotheses concerning differential 

expressions.  

 
5. CONCLUSIONS 

 

Although high throughput methods are still relatively expensive, and are not used 

routinely in clinical trials, these methods undoubtedly  will be used  more often in 

the future. Their promise of identifying subgroups of patients with varying drug 

response is of major importance and is a major topic of pharmaco-genomics. In 

addition, differential expression profiles, and proteomics are of major importance of 

identifying new pathways for targeting new drugs. More sophisticated statistical 

methods are required, and will be developed. 
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CHAPTER 24 

 
RELATIONSHIP AMONG STATISTICAL 

DISTRIBUTIONS 

 
 

1. INTRODUCTION 
 

Samples of clinical data are frequently assessed through 3 variables: 

                    The mean result of the data.  

                    The spread or variability of the data. 

                    The sample size. 

Generally, we are primarily interested in the first variable, but mean or proportion 

does not tell the whole story, and the spread of the data may be more relevant. For 

example, when studying how two drugs reach various organs, the mean level may 

be the same for both, but one drug may be more variable than the other. In some 

cases, too little and, in other cases, dangerously high levels get through. The Chi-

square-distribution, unlike the normal distribution, is used for the assessment of 

such variabilities. Clinical scientists although they are generally familiar with the 

concept of null-hypothesis-testing of normally distributed data, have difficulties  

to understand the null-hypothesis testing of Chi-square-distributed data, and do not 

know how closely Chi-square is related to the normal-distribution or the  

T-distribution. The Chi-square-distribution has a relatively young history. It has 

been invented by K. Pearson1 one hundred years ago,  three hundred years after the 

invention of the normal-distribution (A. de Moivre 1667-1754). The Chi-square-

distribution and its extensions have become the basis of modern statistics and have 

provided  statisticians with a relatively simple device to analyze complex data, 

including multiple groups and multivariate analyses. The present paper was written 

for clinical investigators/scientists in order to better understand the relation between 

normal and chi-square distribution, and how they are being applied for the purpose 

of null-hypothesis testing. 

  
2. VARIANCES 

 

Repeated observations exhibit a central tendency, the mean, but, in addition, exhibit 

spread or dispersion, the tendency to depart from central tendency. If measurement 

of central tendency is thought of as good bets, then measures of spread represent the 

poorness of central tendency otherwise called deviation or error. The larger such 

deviations are, the more do cases differ from each other and the more spread does 
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the distribution show. What we need is an index to reflect this spread or variability. 

First of all, why not simply take the average of the deviations (d-values) about the 

mean as measure of variability: 

                                                  (d  / n) where n = sample size. 

This, however, will not work, because when we add up negative and positive 

departures from the mean, our overall variance will equal zero. A device to get 

around this difficulty is to take the square of each deviation: 

                                 (d2 / n)   is defined the variance of n observations.  

 (d / n), although it can not be used as index to reflex variability, can be readily 

used to define the mean of a sample of repeated observations, if the size of 

observations is taken as distance from zero rather than mean. Suddenly, means and 

variances look a lot the same, and it is no surprise that statistical curves and tables 

used to assess either of them are closely related. A Chi-square-distribution is 

nothing else than the distribution of square values of a normal-distribution. Null-

hypothesis-testing-of-variances is much similar to null-hypothesis-testing-of-means. 

With the latter we reject the null-hypothesis of no effect if our mean is more than 

1.96 SEMs (standard errors of the mean) distant from zero. With the latter we reject 

the null-hypothesis of no effect if our standardized variance is more than “1.96 2  

SEMs2 ” distant from zero. Because variances are squared and, thus, non-negative 

values, the Chi-square approach can be extended to test hypotheses about many 

samples. When variances or add-up variances of many samples are larger than 

allowed for by the Chi-square-distribution-graphs, we reject the probability that our 

results are from normal distributions, and conclude that our results are significantly 

different from zero. The Chi-square test is not only adequate to test multiple 

samples simultaneously, but is also the basis of analysis of variance (ANOVA). 

 
3. THE NORMAL DISTRIBUTION 

 

The normal distribution curve can be drawn from the formula below. 

22 2/)(

22

1
)( smxe

s
xf −−=

π
 

where s =  standard deviation and m = mean value. 

Repeated observations in nature do not precisely follow this single mathematical 

formula, and may even follow largely different patterns. The formula is just an 

approximation. And so, it is remarkable that the approach works in practice, 

although the p-values obtained from it are sometimes given inappropriate emphasis. 

We should not forget that a p-value of <0.001 does not mean that we have proven 

something for the entire population, but rather that we have proven something on 

the understanding that our data follow a normal distribution and that our data are 

representative for the entire population. Frequently, the results as provided by 

clinical trials are much better than those observed in general practice, because the 

population follows a different frequency distribution or because the enrollees in a 

trial are selected groups not representative for the entire population. We wish that 

more often these possibilities would be accounted by the advocates of evidence-



RELATIONSHIP AMONG STATISTICAL DISTRIBUTIONS 

based medicine. If we are willing to accept the above limitations, the normal 

distribution can be used to try and make predictions, with the understanding that 

statistical testing cannot give certainties, only chances. How was the normal 

distribution invented? At first, investigators described their data in the form of 

histograms (figure 1 upper graph: on the x-axis the individual data and on the y-axis 

how often).  

 

 
Figure 1.   Upper graph shows histogram: on the x-axis we have the individual data 

and on the y-axis we hav “how often” (the mean value is observed most frequently, 

while the bars on both side of the mean gradually grew shorter). Lower graph 

shows normal distribution: the bars on the y-axis have been replaced with  a 

continuous line, it is now impossible to read from the graph how many patients had 

a particular outcome. Instead, we infer that the total area under the curve (AUC) 

represents 100% of our data, AUC left from the mean represents 50%, left from – 1 

SD (standard deviation) approximately 15% of the data, and left from –2 SDs 

approximately 2.5% of the data. This curve although suitable for describing a 

sample of repeated observations, is not yet adequate for testing statistical 

hypotheses. 

 
Often, the mean value is observed most frequently, while the bars on both side of 

the mean gradually grow shorter. From this histogram to a normal distribution 

curve is a short step (Figure 1 lower graph). The bars on the y-axis have been 

replaced by a continuous line. It is now impossible to read from the graph how 

many patients had a particular outcome. Instead, relevant inferences can be made: 

the total area under the curve (AUC) presents 100% of our data, AUC left from the 
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mean presents 50%, left from - 1SD (standard deviation) approximately 15% of the 

data, and left from –2 SDs approximately 2.5 % of the data. This curve although 

suitable for describing a sample of repeated observations, is not yet adequate for 

testing statistical hypotheses. For that purpose, a narrow normal curve is required 

(Figure 2). 

Figure 2. Narrow and wide normal curve: the wide one summarizes the 

data of our trial, the narrow one summarizes the means of many trials 

similar to our trial. 

 
The narrow and wide curve from Figure 2 are both based on the same data, but have 

different meaning. The wide (with SDs on the x-axis) one summarizes the data of 

our trial, the narrow one (with SEMs (standard errors of the mean) on the x-axis) 

summarizes the means of many trials similar to ours. This may be difficult to 

understand, but our sample is representative, and it is easy to conceive that the 

distributions of means of many similar samples from the same population will be 

narrower and have fewer outliers than the distribution of the actual data.  This 

concept is relevant, because we want to use it for making predictions from our data 

to the entire population.  

We should add here that there is only a small difference between the normal and the 

t-distribution. The latter is a bit wider with small numbers. The chi-square 

distribution makes no difference between normally and t-like distributed data.  

  
4. NULL-HYPOTHESIS TESTING WITH THE NORMAL  

OR T- DISTRIBUTION 
 

What does “null-hypothesis” mean: we hypothesize that if the result of our trial is 

not different from zero, we have a negative trial. What does the null-hypothesis 



RELATIONSHIP AMONG STATISTICAL DISTRIBUTIONS 

look like in graph? Figure 3 shows H1, the graph based on the data of our trial with 

SEMs on the x-axis (z-axis), and H0, the same graph with a mean of 0.  

PROBABILITY

DISTRIBUTION

2.101

-3 -2 -1 0 1 2 3 4 5

SEMs

H0

H1

 
Figure 3.   H1 is the graph based on the data of our trial with SEMs on the x-

axis (z-axis),  and H0 is the same graph with mean 0 (mean ± SEM = 0 ± 1). 

 
Now we make a giant leap from our data to the entire population, and we can do so, 

because we assume, that our data are representative for the entire population. H1  is 

also the summary of the means of many trials similar to our trial. If we repeated the 

trial, differences would be small and the summary would look alike. H0  is also the 

summary of the means of many trials similar to our trial, but with an overall effect 

of 0. Our mean is not 0, but 2.9. Still it could be an outlier of may studies with an 

overall effect of 0. So, think from now on of H0  as distribution of the means of 

many trials with overall effect 0. If hypothesis 0 is true, then the mean of our study 

is part of H0 . We can not prove this, but we can calculate the chance/probability of 

this possibility. A mean result of 2.9 is far distant from 0. Suppose it belongs to H0 . 

Only 5% of the H0 -trials are more than 2.1 SEMs distant from 0, because the AUC 

of H0  = 5%. Thus, the chance that it belongs to H0  is less than 5%. We reject the 

null-hypothesis of no effect concluding that there is less than 5% chance to find this 

result. In usual terms, we reject the null-hypothesis of no effect at p < 0.05 or < 5%. 
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5. RELATIONSHIP BETWEEN THE NORMAL-DISTRIBUTION  

AND CHI-SQUARE-DISTRIBUTION, NULL-HYPOTHESIS TESTING WITH 

CHI-SQUARE DISTRIBUTION 
 

 
Figure 4. Upper graph shows a normal distribution. Lower graph shows 

what happens if the x-values of this normal-like-curve are squared. The 

normal-curve changes into a Chi-square-curve. 

 
The upper graph of Figure 4 shows  a normal distribution, on the x-axis individual 

data expressed as distances from the mean, and on the y-axis “how often” the 

individual data are being observed. The lower graph of Figure 4 shows what 

happens of the x-values of this normal distribution are squared. We get no negative 

x-values anymore, and the x-values 0 and 1 give rise to y-values twice the size, 

while the new curve is skewed to the right: the new curve is what we call a chi-
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square curve. The upper curve is used to test the null-hypothesis that the mean 

result of our trial is significantly different from zero, the lower one to test that our 

variance is significantly different from zero. 

 
Figure 5. Upper graph gives the x-values, otherwise called z- values,  of a 

null-hypothesis of a real normal-distribution. Lower graph shows what 

happens when z-values are squared. The z-distribution turns into a non-

negative Chi-square- distribution. Upper graph: with z > 1.96 the right-end 

AUC < 5%; lower graph: with z2 > (1.96)2 the right-end AUC < 5%.   

 
Figure 5 shows how things work in practice. The upper graph gives on the x-axis 

the possible mean result or our trial expressed in units of SEMs, otherwise called  

z-value, or, with t-test, t-value. On the y-axis we “how often this result will be 

obtained”. If our mean result is more than approximately 2 SEMs (or with normal 

distribution precisely 1.96 SEMs) distant from zero, this will happen in 5% of the 
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cases, because the AUC right from 1.96 SEMs is 5%. If more than 2.58 distant from 

zero, this will happen in 1% of the cases. With a result that far from zero we reject 

the null-hypothesis that our result is not different from 0, and conclude that, 

obviously, our data are significantly different from 0, at p<5% or 1% (<0.05 or 

< 0.01).  

Figure 5 lower graph gives a draft of the possible variances of our trial. On the  

x-axis we have the variance of our trial expressed in units (SEMs)2 ,  otherwise 

called z2-values. On the y-axis we have again “how often this variance will be 

obtained”. For example, if our variance is more than 1.962 SEMs2 distant from zero, 

this will happen in less than 5% of the cases. This is so, because the AUC right 

from z2 = 1.962 is 5% of the total AUC of 100%. If our variance is more than z2 = 

2.582 distant from zero, this chance is 1%. We reject the null-hypothesis that our 

variance is not significantly different from 0 and we do so at a probability of 1% (p 

< 0.01).  

 
6. EXAMPLES OF DATA WHERE VARIANCE IS MORE IMPORTANT  

THAN MEAN  
 

The effects on circadian glucose levels of slow-release-insulin and acute-release-

insulin are different. The mean glucose-level is the same for both treatment 

formulas, but the latter formula produces more low and high glucose levels. Spread 

or variance of the data is a more important determinant of treatment effect than is 

the mean glucose value. 

A pill producing device is approved only if it will produce pills with a SD not larger 

than e.g., 6mg. Rather than mean the variance of a test-sample is required to test the 

device.  

People on selective serotonin reuptake inhibitors (SSRIs) may not only show a 

lower average of performance, but also a higher variability in performance relative 

to their counterparts. Variance, in addition to average of performance is required to 

allow for predictions on performances.  

The variability in stay-days in hospital is more relevant than the mean stay-days, 

because greater variability is accompanied with a more demanding type of care. 

Why should we statistically test such questions anyway? Or why not simply 

calculate the mean result and standard deviation of a sample of data, and, then, 

check if the SD is within a predefined area. We, subsequently, accept this as 

sufficient probability to make further predictions about future observations. 

However, by doing so we will never know the size of this probability. A statistical 

test rejects the null-hypothesis of no difference from 0 at a 5% or lower level of 

probability, and this procedure is widely valued as a powerful aid to erroneous 

conclusions. A more extensive overview of current routine methods to assess 

variability of data samples is given in chapter 26. 
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7. CHI-SQUARE CAN BE USED FOR MULTIPLE SAMPLES OF DATA 
 

Figure 6.   The general form of the Chi-square distributions for larger samples of data. 

 

 
1. Contingency tables 

 

The simplest extension of the chi-square test is the analysis of a two-by-two 

contingency table. With contingency tables we want to test whether two groups of 

binary data (yes/no data) are significantly different from one another. We have 4 

cells ((1) group-1 yes, (2) group-1 no, (3) group-2 yes, (4) group-2 no). The null-

hypothesis is tested by adding up: 

 

               chi-square =  (O-E) cell 1 
2  +  (O-E) cell 2 

2 + ( O-E) cell 3 
2  +  (O-E) cell 4  

2   

                                          Ecell 1                      Ecell 2                     Ecell 3                          Ecell 4 

 

where O means observed numbers, and E means expected numbers per cell if no 

difference between the two groups is true (the null-hypothesis). The E-value in the 

denominator standardizes the test-statistic. 
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2. Pooling relative risks or odds ratios in a meta-analysis of multiple trials 

 

In meta-analyses the results of the individual trials are pooled in order to provide a 

more powerful assessment. Chi-square-statistic is adequate for testing a pooled 

result. The natural logarithms are used to approximate normality. 
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where RR means relative risk and s means SD of this relative risk per sample. The 

1/s2 -term in the denominator again standardizes the test-statistic. 
 

3. Analysis of variance (ANOVA) 

Unlike the normal-test or the t-test, the Chi-square-test can be extended to testing 

more than one sample of data simultaneously. Variances are non-negative values, 

and they can simply be added up. This is, actually, the way variance is defined, the 

add-up sum of squared distances from the mean. Any subsequent sample of data, if 

from a normal distribution or t-distribution can be simply added up to the first 

sample and the add-up sum can be analyzed simultaneously. And, so, with little 

more effort than demonstrated for 1 sample of data, multiple samples can be added 

to the model in order to test the null-hypothesis of no difference from zero. This is 

possible both for samples of continuous data and proportional data, including 

percentages, proportions, odds ratios, risk ratios etc. The only difference is the 

breath of the chi-square curve: it gets wider and wider the more samples or the more 

proportions we add  (Figure 6). 
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A further extension of the use of the Chi-square-statistic is ANOVA. ANOVA 

makes use of the division-sum of two Chi-square-distributions. This division-sum, 

indeed, looks much like a usual Chi-square-distribution , as shown for example in 

Figure 7.  

 
Figure 7.   Example of a F-distribution making use of the division-sum of 

two Chi-square-distributions with 4 and 20 degrees of freedom (dfs). 

 

 
For example, ANOVA with k groups works as follows: 

                                                       Total variation  

                                                       |                      | 

                    Between-group-variation                  within-group-variation 

Variations are expressed as sums of squares (SS) and can be added up to obtain the 

total variation. 

We assess whether between-group-variation is large compared to within-group-

variation. 

Group         n patients      mean        sd          

1                  -                    -               -  

2                  -                    -               -  

3                  -                    -               -  

... 

k 

Grand mean = (mean 1 + 2 +3+..k ) / k  

 

SSbetween groups = n1 ( mean1 – grand mean)2 + n2 ( mean2 – grand mean)2 +…. 

SSwithin groups   = (n1–1) (sd1
2 ) + (n2–1) (sd2

2 )+….. 
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dfs/SS

dfs/SS
  statistic- testF

groupswithin 

*

groupsbetween ==  

* dfs means degrees of freedom (for SS between groups dfs = k-1, for  SS within 

groups dfs = n1 + n2 + n3 +..nk  – k). 

The F-table gives p – value. 

 
8. DISCUSSION 

 

The current chapter is not a cook-book-like instruction for the use of various 

statistical methods. It only briefly examines the connection between the Chi-square-

distribution and other important statistical distributions. They form the basis of all 

statistical inferences, which are given so much emphasis in today’s clinical 

medicine. The Chi-square-distribution is directly derived from the normal-

distribution. The F-distribution is directly derived from the Chi-square distribution. 

Over and over again, these distributions have shown their utility in the solution of 

problems in statistical inference. However, none of these distributions is empirical 

in the sense that someone has taken  a large number of samples and found that the 

sample values actually follow the same mathematical function. Of course, nature 

does not follow a single mathematical function. The function is an approximation, 

but it performs well and has proven to be helpful in making clinical predictions.  

The distribution is also based on assumptions, and, like other theory-based 

assessments, deals with “ if-then ”  statements. That is why the assumptions about 

representative samples and normal-distribution in our sample are so important. If 

we apply the theory of statistics for making inferences from samples, we cannot 

expect this theory to provide us with adequate answers unless conditions specified 

in the theory hold true.  

Apart from the general requirement of random sampling of independent 

observations, the most usual assumption  made is that  the population-distribution

 is normal. The Chi-square, the t -  ,  and the F - distributions all rest upon this 

assumption. The normal-distribution can be considered the “parent” distribution to 

the others. Similarly, there are close connections between the F-distribution and 

both the normal- and the Chi-square-distributions. Basically, the F-statistic is the 

ratio of two independent Chi-square-statistics, each of which characterized by its 

own degrees of freedom. Since a Chi-square-statistic is defined in terms of a 

normal-distribution, the F-distribution also rests upon the same assumptions, albeit 

of two (or more than two) normal-distributions. The Chi-square-distribution 

focused on in this paper is, thus, just another approach of the bell-shape-like normal 

distribution and is also the basic element of the F-distribution. Having some idea of 

the interrelations of these distributions will be of help in understanding how the 

Chi-square is used to test a hypothesis-of-variance, and how the F-distribution is 

used to test a hypothesis-about-several-variances. 

We conclude that the Chi-square-distribution and its extensions have become the 

basis of modern statistics and have provided clinical scientists with a relatively 

simple device to analyze complex data, including multiple groups/multiple 
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variances. The present chapter was written for clinical investigators / scientists in 

order to better understand benefits and limitations of Chi-square-statistic and its 

many extensions for the analysis of experimental clinical data.  

 
9. CONCLUSIONS 

 

Statistical analyses of clinical data are increasingly complex. They often involve 

multiple groups and measures. Such data can not be assessed simply by differences 

between means but rather by comparing variances. The objective of this chapter 

was to focus on the Chi-square ( 2)-test as a method to assess variances and test 

differences between variances. To give examples of clinical data where the 

emphasis is on variance. To assess interrelation between Chi-square and other 

statistical methods like normal-test (Z-test), T-test and Analysis-Of-Variance 

(ANOVA). 

A Chi-square-distribution is nothing else than the distribution of square values of a 

normal-distribution. Null-hypothesis-testing-of-variances is much similar to null-

hypothesis-testing-of-means. With the latter we reject the null-hypothesis of no 

effect if our mean is more than 1.96 SEMs (standard errors of the mean) distant 

from zero. With the latter we reject the null-hypothesis of no effect if our 

standardized variance is more than 1.962 SEMs2 distant from zero. Because 

variances are squared and, thus, non-negative values, the Chi-square approach can 

be extended to test hypotheses about many samples. When variances or add-up 

variances of many samples are larger than allowed for by the Chi-square-

distribution-graphs, we reject the probability that our results are from normal 

distributions, and conclude that our results are significantly different from zero. The 

Chi-square test is not only adequate to test multiple samples simultaneously, but is 

also the basis of ANOVA. 

We conclude that the Chi-square-distribution focused on in this paper is just another 

approach of the bell-shape-like normal-distribution and is also the basic element of 

the F-distribution as used in ANOVA. Having some idea about interrelations 

between these distributions will be of help in understanding benefits and limitations 

of Chi-square-statistic and its many extensions for the analysis of experimental 

clinical data.  
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CHAPTER 25 

 
TESTING CLINICAL TRIALS FOR RANDOMNESS 

 
1. INTRODUCTION 

 

As it comes to well-balanced random sampling of representative experimental data, 

nature will be helpful to provide researchers with results that comply with the 

random property. It means that such data closely follow statistical frequency 

distributions. We continually make use of these statistical frequency distributions 

for analyzing the data and making predictions from them. However, we, virtually, 

never assess how close to the expected frequency distributions the data actually are. 

Unrandomness of the data may be one of the reasons for the lack of homogeneity in 

current research, and may jeopardize the scientific validity of research data.1-3 

Statistical tests used for the analysis of clinical trials assume that the observations 

represent a sample drawn at random from a target population. It means that any 

member of the population is as likely to be selected for the sampled group as the 

other. An objective procedure is required to achieve randomization. When other 

criteria are used to permit investigators to influence the selection of subjects, one 

can no longer conclude that the observed effects are due to the treatment rather than 

biases introduced by the process of selection. Also, when the randomization 

assumption is not satisfied, the logic underlying the distributions of the test 

statistics used to estimate that the observed effects are due to chance rather than 

treatment effect fails, and the resulting p-values are meaningless. Important causes 

for unrandomness in clinical trials include extreme exclusion criteria4 and 

inappropriate data cleaning.1   

In the present chapter we review some methods to assess clinical data for their 

compliance with the random property.  

 
2. INDIVIDUAL DATA AVAILABLE 

 

If the individual data from a clinical trial are available, there are two methods to 

assess the data for their compliance with the random property, the chi-square 

goodness of fit and the Kolmogorov-Smirnov goodness of fit tests. Both tests are 

based on the assumption that differences between observed and expected 

experimental data follow normal distributions. The two tests raise similar results. If 

both of them are positive, the presence of unrandomness in the data can be assumed 

with confidence, and efficacy analysis of the data will be a problem. The tests can 

be used with any kind of random data like continuous data, proportions or 

frequencies. In this section two examples of continuous data will be given, in the 
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next section an example of frequencies will be given. Also, we briefly address 

randomness of survival data, which are increasingly used as primary endpoint 

variable, e.g., of the 2003 volume 362 of the Lancet in 48% of the randomized trials 

published.    

 

1. Method 1: the chi-square goodness of fit test 
 

In random populations body-weights follow a normal distribution. Is this also true 

for the body-weights of a group of patients treated with a weight reducing 

compound? The example is modified from Levin and Rubin with permission from 

the editor.5 

 

Individual weight (kgs) 

85 57 60 81 89 63 52 65 77 64 

89 86 90 60 57 61 95 78 66 92 

50 56 95 60 82 55 61 81 61 53 

63 75 50 98 63 77 50 62 79 69 

76  66 97 67 54 93 70 80  67 73 

 

The area under the curve (AUC) of a normal distribution curve is divided into 5 

equiprobable intervals of 20% each, we expect approximately 10 patients per 

interval. From the data a mean and standard deviation (sd) of 71 and 15 kg are 

calculated. Figure 1 shows that the standardized cut-off results (z-values) for the 5 

intervals are –0.84, –.025, 0.25 and 0.84. The real cut-off results are calculated 

according to 

 

           z = standardized result = unstandardized result – mean result  

                                                                              sd 

and are given below (pts = patients). 

                                           

Intervals (kgs)       –      –58.40     – 67.25     –74.25     – 83.60   –   

 

As they are equiprobable,                          

we expect per interval:   10 pts       10 pts     10 pts       10 pts    10 pts  

 

We do, however, observe 

the following numbers:    10 pts         16 pts      3 pts        10 pts   11 pts                                              

 

The chi-square value is calculated according to  

 

                               (observed number-expected number)2       =  8.6 

                                                  expected number  

 

This chi-square value means that for the given degrees of freedom of 5–1 = 4 (there 

are 5 different intervals) the null-hypothesis of no-difference-between-observed-
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and-expected can not be  rejected. However, our p-value is < 0.10, and, so, there is 

a trend of a difference. The data may not be entirely random.  

 

 

  

 Figure 1 The standardized cut-off results (z-values) for the 5 intervals with an 

AUC of 20% are –0.84, –0.25, 0.25, and 0.84 (AUC = area under the curve). 

 

 

2. Method 2: the Kolmogorov-Smirnov goodness of fit test 

 

In random populations plasma cholesterol levels follow a normal distribution. Is 

this also true for the plasma cholesterol levels of the underneath patients treated 

with a cholesterol reducing compound? This example is also modified from Levin 

and Rubin with permission from the editor.5 

 

Cholesterol (mmol/l)   <4.01   4.01–5.87  5.87–7.73  7.73–9.59  >9.59 

Numbers of pts              13       158            437            122           20 

 

The cut-off results for the 5 intervals must be standardized to find the expected 

normal distribution for these data according to  

           z = standardized cut-off result =  unstandardized result – mean result  

                                                                                           sd.  

With a calculated mean (sd) of 6.80 (1.24) we find –2.25, –0.75, 0.75 and 2.25. 

Figure 2 gives the distribution graph plus AUCs. With 750 cholesterol-values in 

total the expected frequencies of cholesterol-values in the subsequent intervals are 
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   12.2 x 750 =     9.2  

              21.4 x 750 = 160.8  

                 54.7 x 750 = 410.1 

             21.4 x 750 = 160.8 

                 12.2 x 750 =     9.2 

 

The observed and expected frequencies are, then, listed cumulatively (cumul  

= cumulative) : 

 

Frequency                                   

observed  cumul relative          expected cumul relative        cumul  

                             (cumul/750)                                     (cumul/750) observed- 

                                                                                                                    expected 

________________________________________________________________ 

13           13   0.0173         9.1           9.1  0.0122      0.0051 

158      171   0.2280        160.9    170.0     0.2266       0.0014 

437      608   0.8107         410.1       580.1     0.7734      0.0373 

122       730    0.9733        160.8       740.9     0.9878       0.0145 

20           750  1.000            9.1          750        1.000        0.0000 

 

 

 
Figure 2. The standardized cut-off results (z-values) for the 5 intervals are 

calculated to be -2.25, -0.75, 0.75, and 2.25. Corresponding AUCs are given in 

the graph (AUC = area under the curve). 

 

According to the Kolmogorov-Smirnov table (table 1) the largest cumulative 

difference between observed and expected should be smaller than 1.36 / n = 1.36 / 

750  = 0.0497, while we find 0.0373. This means that these data are well 
normally distributed. 
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Table 1. Critical values of the Kolmogorov-Smirnov goodness of fit test 

_____________________________________________________________ 

Sample     Level of statistical significance for maximum difference between  

size (n)     cumulative observed and expected frequency 

 

n      0.20        0.15        0.10        0.05      0.01 

  

1       0.900        0.925        0.950        0.975       0.995 

2        0.684        0.726        0.776        0.842       0.929 

3         0.565        0.597        0.642        0.708       0.828 

4         0.494        0.525        0.564        0.624       0.733 

5        0.446        0.474        0.510        0.565       0.669 

6        0.410        0.436        0.470        0.521       0.618 

7         0.381        0.405        0.438        0.486       0.577 

8         0.358        0.381        0.411        0.457       0.543 

9         0.339        0.360       0.388        0.432       0.514 

10       0.322        0.342        0.368        0.410       0.490 

11       0.307        0.326        0.352        0.391       0.468 

12       0.295        0.313        0.338        0.375       0.450 

13        0.284        0.302        0.325        0.361       0.463 

14       0.274        0.292        0.314        0.349       0.418 

15       0.266        0.283        0.304        0.338       0.404 

16       0.258        0.274        0.295        0.328       0.392 

17     0.250        0.266        0.286        0.318       0.381 

18       0.244        0.259        0.278        0.309       0.371 

19        0.237        0.252        0.272        0.301       0.363 

20       0.231        0.246        0.264        0.294       0.356 

     

25       0.21          0.22          0.24          0.27         0.32 

30      0.19          0.20          0.22          0.24         0.29 

35       0.18          0.19          0.21          0.23         0.27 

 

Over 35 1.07         1.14          1.22         1.36         1.63 

                 n            n            n            n             n 

 

 

3. Randomness of survival data 

 

Cox regression is routinely used for the analysis of survival data. It assumes that 

randomly sampled human beings survive according to an exponential pattern. The 

presence of an exponential pattern can be confirmed by logarithmic transformation. 

If the transformed data are significantly different from a line, the exponential 

relationship can be rejected. Figure 3 shows the survivals of 240 patients with small 
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cell carcinomas, and figure 4 shows the natural logarithms of these survivals. From 

figure 4 it can be observed that logarithmic transformation of the numbers of 

patients alive readily produces a close to linear pattern. A Pearson’s correlation 

coefficient of these data at p < 0.0001 confirms that these data are closer to a line 

than could happen by chance. We can conclude that these survival data are 

compatible with a sample drawn at random. 

 

 
 

Figure 3. Survivals of 240 random patients with small cell carcinomas. 
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Figure 4. The logarithmic transformation of the numbers of patients from figure 3 

produces a close to linear pattern. 

  
3. INDIVIDUAL DATA NOT AVAILABLE 

 

1. Studies with single endpoints 
 

If the actual data from the research are not available like in most clinical reports, it 

is harder to assess randomness of the data. However, it is not impossible to do so. 

Some criteria for assessing main endpoint results of published studies for such 

purpose have been recently proposed by us1,2, and have already been addressed in 

chapter 10.   

1. An observed  p-value of < 0.0001 in a clinical trial. 

In statistics, a generally accepted concept is “the smaller the p-value, the better 

reliable the results”. This is not entirely true with current randomized controlled 

trials. First, randomized controlled trials are designed to test small differences. 

A randomized controlled trial with major differences between old and new 

treatment is unethical because half of the patients have been given an inferior 

treatment. Second, they are designed to confirm prior evidence. For that 

purpose, their sample size is carefully calculated. Not only too small, but also 

too large a sample size is considered unethical and unscientific, because 

negative studies have to be repeated and a potentially inferior treatment should 

not be given to too many patients. Often in a study the statistical power is set at 
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80%. An expected power of 80% means a < 10 per cent chance of a p-value  

< 0.0001 with normally distributed data6 and a < 5 per cent chance of a p-value 

< 0.0001 with t-distributed data and samples sizes under 50, (as often observed 

in, e.g., oncology trials). 

2. An observed p-value of > 95 %  in a clinical trial. 

 P-values  are generally used as a cut-off levels to indicate the chance of a 

difference from H0 (the null-hypothesis-of-no-effect) in our data. The larger the 

p-value the smaller the chance of a difference from H0. A p-value of 1.00 means 

0% chance of a difference, while a p-value of 0.95 means a chance of a 

difference close to 0%. A p-value of > 0.95 literally means that we have > 95 

per cent chance of finding a result less close to H0, which means a chance of  

< (1 0.95), i.e., < 0.05 of finding a result this close or closer. Using the 

traditional 5 per cent decision level, this would mean, that we have a strong 

argument that such data are closer to H0 than compatible with random sampling.  

3. An observed standard deviation (sd) < 50% the sd expected from prior 

population data. From population data we can be pretty sure about sds to be 

expected. E.g., the sds of blood pressures are close to 10% of their means, 

meaning that for a mean systolic blood pressures of 150 mm Hg the expected sd 

is close to 15 mm Hg, for a mean diastolic blood pressure of 100 mm Hg the 

expected sd is close to 10 mm Hg. If such sds can be assumed to follow a normal 

distribution, we will have < 5% chance of finding sds < 7.5 and < 5 mm Hg 

respectively. 

4. An observed standard deviation (sd) >150% the sd expected from prior 

population data. With sds close to 10% of their means, we, likewise, will have  

< 5% chance of finding sds > 150% the size of the sds expected from population 

data. 

 

2. Studies with multiple endpoints 

 

A simple method to check the accuracy of multiple endpoints is to examine the 

distribution of the final digits of the results, using the chi-square goodness of fit 

test. In a clinical trial of cholesterol lowering treatment the results were presented 

mainly in the form of  relative risks (RR = risk of mortality during treatment/risk of 

mortality during control). In total 96 RRs were presented with many of them 

showing a 9 or 1 as final digit. E.g., RRs of  0.99, 0.89, 1.01, and 1.11 etc were 

often reported. The accuracy of the multiple endpoints is checked according to 

Table 2. 

–
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Table 2. Multiple risk ratios as reported in a “statin” paper 

___________________________________________________________ 

Final digit  observed expected              (observed-expected)2  

of RR        frequency frequency                           expected 

___________________________________________________________ 

0                     24                   9.6            21.6 

1                     39                   9.6             90.0 

2                      3                   9.6                   4.5 

3                      0                   9.6                  9.6 

4                      0                   9.6                  9.6 

5                      0                   9.6                    9.6 

6                      0                   9.6                    9.6 

7                      1                   9.6                    7.7 

8                      2                   9.6                    6.0 

9                    27                   9.6                 31.5 

Total              96                 96.0              199.7 

___________________________________________________________ 

    

If there were no tendencies to record only whole RRs, we would expect equal 

numbers of 0s, 1s, 2s,….9s for the final digit, that is 9.6 of each. The agreement 

between the observed and expected digits is, then, tested according to   

 

       Chi-square =      (observed-expected)2   = 199.7 for 10–1 degrees of freedom  

                                             expected   
 

(there are 10 different frequencies). For the given degrees of freedom a chi-square 

value > 27.88 means that the null-hypothesis of no-difference-between-observed-

and-expected can rejected at a p-value < 0.001. The distribution of the final digits of 

the RRs in this study does not follow a random pattern. The presence of 

unrandomness in these results can be assumed with confidence, and jeopardizes the 

validity of this study. 

 
4. DISCUSSION 

 

This paper gives some simple statistical methods to assess trial data for their 

compliance with the random property. We should add that distribution-free 

statistical tests that are less dependent on random distributions, are available, but, in 

practice, they are used far less frequently than normal tests. Also, with slight 

departures from the normal distribution, normal tests are used even so. The same 

applies to the analysis of unrandomized studies: for their statistical analysis the 

same statistical tests are applied as those applied for randomized studies, although 

this, at the same time, is one of the main limitations of this kind of research. The 

issue of the current paper is not the statistical analysis of unrandom data but rather 

the detection of it.  
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Regarding the studies with multiple endpoints, the problem is often a dependency 

of the endpoints in which case the presented method for the assessment of 

unrandomness is not adequate. E.g. endpoints like deaths, metastases, local 

relapses, etc in an oncology trial cannot be considered entirely independent. 

However, if the initial digits of the results are equally distributed, like, e.g., RRs 

1.1/2.1/3.1/4.1/5.1, then little dependency is to be expected, and the presented 

method can be properly performed.      

Important causes for unrandomness in clinical trials include extreme exclusion 

criteria4 and inappropriate data cleaning.1 The first cause can be illustrated by the 
7

on treatment results in 397 patients hospitalized for gastric ulcers. While under the 

loose inclusion criteria virtually none of patients had to be excluded, 71% of them 

had to be excluded under the strict inclusion criteria. Major complications of 

treatment occurred in 71 out of the 397 patients with the loose, in only two out of 

115 patients with the strict inclusion criteria. These two major complications can 

hardly be considered representative results from a sample drawn at random from the 

target population. The second cause can be illustrated by Mendel’s pea data. In 

1860 Gregor Mendel performed randomized trials “avant la lettre” by using 

aselective samples of peas with different phenotypes. When we recently looked into 

Mendel’s pea data, and performed a chi-square test, we had to conclude that the chi-

square value was too small not to reject the null hypothesis (P>0.99).3 This means 

that Mendel’s reported data were so close to what he expected that we could only 

conclude that he somewhat misrepresented the data.     

The current chapter is an effort to provide the scientific community with some 

simple methods to assess randomness of experimental data. These methods are 

routinely used in accountancy statistics for assessing the possibility of financial 

fraud, but they cannot be found in most textbooks of medical statistics.  

Evidence-based medicine is under pressure due to the conflicting results of recent 

trials producing different answers to similar questions.8,9 Many causes are 

mentioned. As long as the possibility of unrandom data has not been addressed, this 

very possibility cannot be excluded as potential cause for the obvious lack of 

homogeneity in current research.  

 

5. CONCLUSIONS 

 

Well-balanced randomly sampled representative experimental data comply with the 

random property meaning that they follow statistical frequency distributions. We 

continually make use of these frequency distributions to analyze the data, but 

virtually never assess how close to the expected frequency distributions the data 

actually are. Unrandom data may be one of the reasons for the lack of homogeneity 

in the results from current research. The objective of this chapter was to propose 

some methods for routinely assessing clinical data for their compliance with the 

random property. 

 

study of Kaaraininen et al.,  comparing the effect of strict and loose inclusion criteria  



TESTING CLINICAL TRIALS FOR RANDOMNESS 

If the individual data from the trial are available, the chi-square goodness of fit and 

the Kolmogorov-Smirnov goodness of fit tests can be applied (both tests yield 

similar results and can be applied with any kind of data including continuous data, 

proportions, or frequencies), for survival data logarithmic transformation can be 

applied. If the individual data from the trial are not available, the following criteria 

may be used:  observed p-values between 0.0001 and 0.95, observed standard 

deviations (sds) between 50% and 150% of the sd expected from population data. 

With multiple endpoints, the distribution of the final digits of the results may be 

examined using a chi-square goodness of fit test. In the current chapter some simple 

statistical tests and criteria are given to assess randomized clinical trials for their 

compliance with the random property.   
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CLINICAL DATA WHERE VARIABILITY IS MORE 

IMPORTANT THAN AVERAGES 

 
1. INTRODUCTION 

 

In clinical studies, efficacies of new treatments are usually assessed by comparing 

averages of new treatment results versus control or placebo. However, averages do 

not tell the whole story, and the spread of the data may be more relevant. E.g., when 

we assess how a drug reaches various organs, variability of drug concentrations is 

important, as in some cases too little and in other cases dangerously high levels get 

through. Also, for the assessment of the pharmacological response to a drug, 

variabilities may be important. E.g., the effects on circadian glucose levels in 

patients with diabetes mellitus of a slow-release-insulin and acute-release-insulin 

formula are different. The latter formula is likely to produce more low and high 

glucose levels than the former formula. Spread or variability of the data is a 

determinant of diabetic control, and predictor of hypoglycaemic/hyperglycemic 

events. As an example, in a parallel-group study of n = 200 the former and latter 

formulas produced mean glucoses of 7.9 and 7.1 mmol/l, while standard deviations 

were 4.2 and 8.4 mmol/l respectively. This suggests that, although the slow-release 

formula did not produce a better mean glucose level, it did produce a smaller spread 

in the data. How do we test these kinds of data. Clinical investigators, although they 

are generally familiar with testing differences between averages, have difficulties 

testing differences between variabilities. The current chapter gives examples of 

situations where variability is more relevant than averages. It also gives simple 

statistical methods for testing such data. Statistical tests comparing mean values 

instead of variabilities are relatively simple and are one method everyone seems to 

learn. It is a service to the readership of this book to put more emphasis on 

variability.  

 
2. EXAMPLES 

 

 

TESTING DRUGS WITH SMALL THERAPEUTIC INDICES 

Aminoglycosides like gentamicin and tobramicin are highly efficaceous against 

gram-negative bacilli, even pseudomonas. However, their therapeutic indices are 

small, and, particularly, irreversible nephrotoxicity requires careful monitoring of 

high plasma levels, while low levels lack therapeutic efficacy.1 For efficacy/safety 
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assessments of such compounds, in addition to monitoring too high and too low 

averages, monitoring variability of plasma levels is relevant.  

TESTING VARIABILITY IN DRUG RESPONSE 

In patients with hypertension the effects on circadian blood pressure levels of blood 

pressure lowering agents from different classes are different. For example, unlike 

beta-blockers, calcium channel blockers and angiotensin converting enzyme 

inhibitors amplified amplitudes of circadian blood pressure rhythms.2 Spread or 

variability of the data is a determinant of hypertensive control, and predictor of 

cardiovascular risks.3 Particularly, for the assessment of ambulatory blood pressure 

measurements variability in the data is important. 

ASSESSING PILL DIAMETERS OR PILL WEIGHTS 

A pill producing device is approved only if it will produce pill diameters with a 

standard deviation (SD) not larger than, e.g., 7 mm. Rather than the average 

diameter, the variability of the diameters  is required for testing the appropriateness 

of this device.  

COMPARING DIFFERENT PATIENT GROUPS FOR VARIABILITY 

INPATIENT CHARACTERISTICS 

Anxious people may not only show a lower average of performance, but also a 

higher variability in performance relative to their non-anxious counterparts. 

Variability assessment is required to allow for predictions on performances.  

ASSESSING THE VARIABILITY IN DURATION OF CLINICAL 

TREATMENTS 

For hospital managers the variability in stay-days in hospital is more relevant than 

the mean stay-days, because greater variability is accompanied with a more 

demanding type of care. 

FINDING THE BEST METHOD FOR PATIENT ASSESSMENTS 

A clinician needs to know whether variability in rectal temperature is larger than 

variability in oral temperature in order to choose the method with the smaller 

variability.  

 

Various fields of research, particularly in clinical pharmacology, make use of test 

procedures that, implicitly, address the variability in the data. For example, 

bioavailability studies consider variability through individual and population 

bioequivalence instead of just averages.4,5 For the assessment of diagnostic 

estimators, repeatability tests and receiver operating (ROC) curves are applied.6 

Mann-Whitney tests for repeated measures consider whether treatment A is better 

than B.7 However, none of such studies are especially designed to test variability. 

The current CHAPTER reviews statistical methods especially designed for such 

purpose. 

  
3. AN INDEX FOR VARIABILITY IN THE DATA 

 

Repeated observations exhibit a central tendency, the mean, but, in addition, exhibit 

spread or dispersion, the tendency to depart from the mean. If measurement of 

central tendency is thought of as good bets, then measures of spread represent the 
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poorness of central tendency, otherwise called deviation or error. The larger such 

deviations are, the more do cases differ from each other and the more spread does 

the distribution show. For the assessment of spread in the data we need an index to 

reflect variability. First of all, why not simply express variability as the departures 

of the individual data from the mean value. This, however, will not work, because 

the data will produce both negative and positive departures from the mean, and the 

overall variability will approach zero. A device to get around this difficulty is to 

take the add-up sum of the squares of deviations from the mean, and divide by n–1 

(n= sample size): 

 

                (datum 1 – mean) 2  + (datum 2 – mean) 2  + (datum 3 – mean) 2  +…. 

                                                      n –1                                    

This formula presents the variance of n observations, and is widely used for the 

assessment of variability in a sample of data. The use of “n 1” instead of “n” for 

denominator is related to the socalled degrees of freedom. Variances can be applied 

to assess data like those given in the above examples. The following tests are 

adequate for such purpose: the chi-square test for a single sample, the F-test for two 

samples, and the Bartlett’s or Levene’s tests for three or more samples. Additional 

methods for analyzing variability include (1) comparisons of confidence intervals, 

and (2) testing confidence intervals against prior defined intervals of therapeutic 

tolerance or equivalence. We should add that the variance is only one way to 

measure variability. Median absolute deviation (MAD) is another method not 

uncommonly used for pharmaceutical applications. It is found by taking the 

absolute difference of each datum from the sample median, and, then, taking the 

median of the total number of values. MADs will not be further discussed in this 

chapter. 

 
4. HOW TO ANALYZE VARIABILITY, ONE SAMPLE 

 

1. 2 test  

 

For testing whether the standard deviation (or variance) of a sample is significantly 

different from the standard deviation (or variance) to be expected the chi-square test 

is adequate. The chi-square test is closely related to the normal test or the t-test. The 

main difference is the use of squared values in the former. The underneath formula 

is used to calculate the chi-square value  

 

          1)−(   = 2
2

2sn

σ
χ  for  n–1 degrees of freedom                 

          (n = sample size, s = standard deviation, s 2 = variance sample,  

  =  expected standard deviation,  2  = expected variance). 

 

For example, in an ongoing quality control produced tablets are monitored for 

consistency in size. Samples of 50 tablets are only approved if the sample size 
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standard deviation value is less than 0.7 mm. A 50 tablet sample has a standard 

deviation of 0.9 mm.  

 

                                       2 =  (50–1)  0.9 2 / 0.7 2 =  81 

 

The chi-square table shows that, for 50 –1 = 49 degrees of freedom, we find a p-

value < 0.01 (one-sided test). This sample’s standard deviation is significantly larger 

than that required. This means that this sample cannot be approved. 

  

2. Confidence interval 

 

Instead of, or in addition to, the above chi-square test a confidence interval can be 

calculated. It can be more relevant than, simply, the above test, and it is considered 

good statistical practice to provide a confidence interval to accompany any 

estimates. The underneath formulas are used for calculation.  

 

     (n 1) (n 1)
s  and s

b a

− −  

         n = sample size, s = standard deviation    

          b = cut-off value of left tail of  2 – distribution for given  and degrees 

                   of freedom  

         a = cut-off value of right tail of  2 – distribution for given  and given 

                   degrees of freedom 

            = type I error  

 

We use the above example, with a standard deviation (s) of 7 mm and observed s of 

9 mm, to calculate 90% confidence interval (  = 10%). As the sample size = n = 50, 

the degrees of freedom is n − 1 = 49. The cut-off values, b and a, can be found in the  

left and right tail 2 tables, available in statistics textbooks, statistical software, and 

literature.8  

 

   (n 1) 49
s  9 9 0.88mm   and

b 63.17

− = × = ×    

        (n 1) 49
s  9 9 1.14mm 

b 37.69

− = × = ×  

 

The 90% confidence interval is, thus, between 8.1 and 10.1 mm, and it does not 

cross the required standard deviation of 7 mm. The device is not approved. 

 

3. Equivalence test 

 

A limitation of the above methods is that a statistical difference is demonstrated 

using standard deviations. To clinical pharmacologists a more appealing approach 

might be an equivalence test which uses prior defined boundaries of equivalence, 
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and, subsequently, tests whether the 90 or 95 %  confidence intervals of a sample are 

within these boundaries. If entirely within, we accept equivalence, if partly within 

we are unsure, if entirely without we conclude lack of equivalence. Furthermore, 

what is nice about equivalence intervals, is, that both mean and variability 

information are incorporated. Basic references are the guidelines given by 

Schuirmann and Hahn.9,10 As an example, the boundaries for demonstrating 

equivalence of the diameters of a pill could be set between 9.0 and 11.0 mm. A pill 

producing device produces a sample with a mean diameter of 9.8 mm and 90% 

confidence intervals of ± 0.7 mm. This would mean that the confidence intervals are 

between 9.1 and 10.5 mm, and that they are, thus, entirely within the set boundary 

of equivalence. We can state that we are 90% confident that at least 90% of the 

values lie between 9.1 and 10.5 mm (type I error 10%). According to this analysis, 

the pill producing device can be approved. 

 
5. HOW TO ANALYZE VARIABILITY, TWO SAMPLES 

 

1. F test 
 

F tests can be applied to test if variability of two samples is significantly different. 

The division sum of the samples’ variances ( larger variance / smaller  variance) is 

used for the analysis. For example, two formulas of gentamicin produce the 

following standard deviations of plasma concentrations: 

 

                    Patients  (n) standard deviation (s)  (µg/l) 

         formula-A  10                   3.0 

        formula-B       15                   2.0 

 

F = s Formula-A
2 / s Formula -B

2 = 3.02 / 2.0 2 = 9 / 4 = 2.25  

with degrees of freedom (dfs) for formula-A 10 − 1= 9 and for formula-B 15 − 1 = 14.  

 

The F-table shows that an F-value of at least 3.01 is required not to reject the null - 

hypothesis. Our F-value is 2.25 and, so, the p-value is > 0.05. No significant 

difference between the two formulas can be demonstrated. This F-test is available in 

Excel. 

 

2. Confidence interval 

 

Also for two samples the calculation of confidence intervals is possible. It will help 

to assess to what extent the two formulations actually have similar variances or 

whether the confidence interval is wide and, thus, the relationship of the two 

variances is really not known. The formulas for calculation are given. 

 

      (1 / cut-off F-value)  x   calculated F-value       and 

      (    cut-off F-value)  x   calculated F-value  
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      Cut-off F-value = F-value of F-table for given  and degrees of freedom  

        = type I error 

 

We calculate the 90% confidence interval from the above two sample example.  

 

     (1 / cut-off F-value)  x   calculated F-value = 1/ 3.01   x  2.25 = 0.75   and 

        (     cut-off F-value)  x   calculated F-value =      3.01  x  2.25 = 6.75 

The 90% confidence interval for this ratio of variances is between 0.75 and 6.75. 

This interval crosses the cut-off F-value of 3.01. So, the result is not significantly 

different from 3.01. We conclude that no significant difference between the two 

formulations is demonstrated.                

 

3. Equivalence test 

 

An equivalence test for two variances works largely similar to a therapeutic 

tolerance interval test for a single variance. We need to define a prior boundary of 

equivalence, and then, test whether our confidence interval is entirely within. A 

problem with ratios of variances is that they often have very large confidence 

intervals. Ratios of variances are, therefore, not very sensitive to test equivalence. 

Instead, we can define a prior overall boundary of equivalence and, then, test 

whether either of the two variances are within. E.g., in the above two variances 

example the boundary of equivalence of plasma concentration of gentamicin for  

90 % confidence intervals had been set between 3.0 and 7.0 µg/l. The mean plasma 

concentrations were 4.0 for formula-A and 4.5 µg / l for formula-B.      

 

 Patients  (n) standard (s)  (µg / l) mean(µg / l) standard 90% confidence   

                          deviation                                        error         interval  

formula-A 10     3.0                        4.0           0.9        2.5 to 5.5  

formula-B  15     2.0                        4.5            0.6          3.5 to 5.5 

 

As the 90% confidence interval for formula-A is not entirely within the set 

boundary, the criterion of equivalence is not entirely met. Based on this analysis, 

equivalence of the two formulas cannot be confirmed. 

 
6. HOW TO ANALYZE VARIABILITY, THREE OR MORE SAMPLES 

 

1. Bartlett’s test  
 

Bartlett’s test can be applied for comparing variances of three samples 

 
2 2 2 2 2

1 2 3 1 1 2 2 3 3(n n n 3)ln s [(n 1) ln s (n 1) ln s (n 1) ln s ]χ = + + − − − + − + −   

where  n1 = size sample 1 

       s1
2 = variance sample 1 
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2 2 2
2 1 1 2 2 3 3

1 2 3

(n 1)s (n 1)s (n 1)s
s   pooled variance   

n n n 3

+ += =
+ +

 =  

      ln = natural logarithm 

 

As an example, blood glucose variabilities are assessed in a parallel-group study of 

three insulin treatment regimens. For that purpose three different groups of patients 

are treated with different insulin regimens. Variabilities of blood glucose levels are 

estimated by group-variances: 

 

         group size (n) variance [(mmol/l )2 ] 

Group1       100                   8.0   

Group 2       100                 14.0 

Group 3        100           18.0 

 

Pooled variance = 99 x 8.0 + 99 x 14.0 + 99 x 18.0 = 13.333 

                                                   297 

 
2  = 297 x ln 13.333 – 99 x ln 8.0   99 x ln 14.0 – 99 x ln 18.0 =  

    297 x 2.58776 – 99 x 2.079 – 99 x 2.639 – 99 x 2.890 = 

   768.58 – 753.19 = 

 15.37 

 

We have three separate groups, and, so, 3 − 1 = 2 degrees of freedom. The chi-square 

table shows that a significant difference between the three variances is 

demonstrated at p < 0.001.  If the three groups are representative comparable 

samples, we may conclude that these three insulin regimens do not produce the 

same spread of glucose levels. In this study of parallel groups, variability in the data 

is assessed by comparison of between-subject variability. Other studies assess 

variability in the data by repeated measures within one subject.  

 

2. Levene’s test 
 

An alternative to the Bartlett’s test is the Levene’s test. The Levene’s test is less 

sensitive than the Bartlett’s test to departures from normality. If there is a strong 

evidence that the data do in fact come from a normal, or nearly normal, distribution, 

then Bartlett’s test has a better performance. Both tests can be used for comparison 

of more than two variances. However, we should add that assessing significance of 

differences between more than two variances is, generally, not so relevant in 

clinical comparisons. In practice, clinical investigators are mostly interested in 

differences between two samples/groups rather than multiple samples/groups. 
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7. DISCUSSION 

 

For all tests discussed above we need to emphasize that the data come from a 

normal distribution. The tests can be quite misleading if applied to non-normal data. 

It would be good practice to look at the distribution of the data first, for example by 

drawing histograms or box plots, and to transform if needed. Also, non-parametric 

tests are available for the analysis of variances of non-normal data, for example the 

Kendall’s test for the variance of ranks.11-13 

 

In the current paper eight statistical methods are described for comparing variances 

of studies where the emphasis is on variability in the data. Clinical examples are 

given. The assessment of variability is, particularly, important in studies of 

medicines with a small therapeutic index. Table 1 gives an overview of such 

medicines, commonly used in practice. Their therapeutic ranges have been defined, 

and it is a prerequisite of many of them that peak and trough concentrations are 

carefully monitored in order to reduce toxicities and improve therapeutic efficacies. 

The development of such therapeutic ranges can benefit from variance-testing. For 

other medicines therapeutic indices may not be small, while plasma concentrations 

are not readily available. Instead of dose-concentration relationships, dose-response 

relationships are, then, studied in order to determine the best therapeutic regimens. 

This approach uses dose-response curves, and is based on the assumption that the 

mean response of many tests can be used for making predictions for the entire 

population. However, dose-response relationships may differ between individuals, 

and may depend on determinants like body mass, kidney function, underlying 

diseases, and other factors hard to control. Moreover, for the treatment of diseases 

like diabetes mellitus, hypercholesterolemia, hypertension etc, we are often more 

interested in the range of responses than we are in the mean response. Also for the 

study of such data variance-testing would, therefore, be in place.  

 
Table 1.  Drugs with small therapeutic indices  

___________________________________________________________________ 

1. Antibacterial agents                       

       gentamicin, vancomicin, tobramicin 

2. Drugs for seizure disorders          

 carbamazepine, phenytoine, phenobarbital, valproate 

3. Cardiovascular and pulmonary drugs                   

 digoxin, theophylline, caffeine 

4. Antidepressant drugs                

 amitryptiline, nortriptyline, imipramine,clomipramine,maprotiline 

5. Neuroleptic drugs          

 clozapine 

___________________________________________________________________ 

 



VARIABILITY IS OFTEN MORE IMPORTANT THAN AVERAGES 

Samples of observations are unpaired, if every patient is tested once, or paired, if 

every patients is tested repeatedly. In the case of repeated testing special statistical 

procedures have to be performed to adjust for correlations between paired 

observations. This is, particularly, required when analyzing averages, but less so 

when analyzing variances. Correlation levels little influence the comparison of 

variances, and, so, similar tests for the comparison of variances can be adequately 

used both for paired and for unpaired variances.  

 

In conclusion, in clinical studies variability of the data may be a determinant more 

important than just averages. The current studies provides eight straightforward 

methods to assess normally distributed data for variances, that can be readily used. 

The chi-square test for one sample and the F-test for two samples are available in 

Excel. The Bartlett’s and Levene’s test can be used for multiple variances, and are 

not in Excel, but can be found in statistical software programs. For the readers’ 

convenience a reference is given.14  Also, references are given for methods to 

analyze variances from non-normal data.11-13 

 
8. CONCLUSIONS 

 

Clinical investigators, although they are generally familiar with testing differences 

between averages, have difficulty testing differences between variabilities. The 

objective of this chapter was to give examples of situations where variability is 

more relevant than averages. Also to give simple methods for testing such data. 

Examples include: (1) testing drugs with small therapeutic indices, (2) testing 

variability in drug response, (3) assessing pill diameters or pill weights, (4) 

comparing patient groups for variability in patient characteristics, (5) assessing the 

variability in duration of clinical treatments, (6) finding the best method for patient 

assessments. Various fields of research, particularly in clinical pharmacology, make 

use of test procedures that, implicitly, address the variability in the data. Tests 

especially designed for testing variabilities in the data include chi-square tests for 

one sample, F-tests for two samples, and Bartlett’s or Levene’s tests for three or 

more samples. Additional methods include (1) comparisons of confidence intervals, 

and (2) testing confidence intervals against prior defined intervals of therapeutic 

tolerance or equivalence. Many of these tests are available in Excel, and other 

statistical software programs, one of which is given.   

We conclude that for the analysis of clinical data the variability of the data is often 

more important than the averages. Eight simple methods for assessment are 

described. It is a service to the readership of this journal to put more emphasis on 

variability.  
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CHAPTER 27 

 
TESTING REPRODUCIBILITY  

 
1. INTRODUCTION 

 

Poor reproducibility of diagnostic criteria is seldom acknowledged as a cause for 

low precision in clinical research. Yet, very few clinical reports communicate the 

levels of reproducibility of the diagnostic criteria they use. For example, of 11 - 13 

original research papers published per issue in the 10 last 2004 issues of the journal 

Circulation, none did, and of 5 - 6 original research papers published per issue in 

the 10 last 2004 issues of the Journal of the American Association only one out of 

12 did. These papers involved quality of life assessments, which are, notoriously, 

poorly reproducible. Instead, many reports used the averages of multiple 

measurements in order to improve precision without further comment on 

reproducibility. For example, means of three blood pressure measurements, means 

of three cardiac cycles, average results of morphometric cell studies from two 

examiners, means of 5 random fields for cytogenetic studies were reported. Poor 

reproducibility of diagnostic criteria is, obviously, a recognized but rarely tested 

problem in clinical research. Evidence-based medicine is under pressure due to the 

poor reproducibility of clinical trials.1,2 As long as the possibility of poorly 

reproducible diagnostic criteria has not been systematically addressed, this very 

possibility cannot be excluded as a contributing cause for this. The current paper 

reviews simple methods for routine assessment of reproducibility of diagnostic 

criteria / tests. These tests can answer questions like (1) do two techniques used to 

measure a particular variable, in otherwise identical circumstances, produce the 

same results, (2) does a single observer obtain the same results when he/she takes 

repeated measurements in identical circumstances, (3) do two observers using the 

same method of measurement obtain the same result. 

 
2. TESTING REPRODUCIBILITY OF QUANTITATIVE DATA  

(CONTINUOUS DATA) 
 

Method 1, duplicate standard deviations (duplicate SDs)  
 

Reproducibility of quantitative data can be assessed by duplicate standard 

deviations. They make use of the differences between two paired observations. For 

example, 10 patients are tested twice for their cholesterol-levels (mmol/l), (Figure 1). 
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Figure 1.  Ten patients are tested twice for their plasma cholesterol levels. 

 

 

 

             test-1      test-2     difference (d) d2         

 

Patient  1 5.4      5.5            − 0.1                   0.01 

            2  5.5           5.4                0.1                   0.01 

            3 4.6           4.3               0.3                   0.09 

            4  5.3           5.3               0.0                   0.0 

            5   4.4         4.5            − 0.1                   0.01 

            6   5.5           5.4              0.1                   0.01 

            7   6.6           6.4                0.2                   0.02 

            8   5.4            5.6            − 0.2                   0.04 

            9  4.7            4.3             0.4                   0.16 

          10 7.3            5.7             1.6                   2.56 

 

    mean      5.47            5.24            0.23                   0.291 

         sd      0.892        0.677                                                      

                                                                                                              

Duplicate standard deviation = mmol/l3814.0291.0
2

1
n

d

2
1

2

=×=  

                d = differences between first and second measurements 

                        n = sample size  
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Relative duplicate standard deviation = duplicate standard deviation 

                                                                    overall mean of data  

                                                            = 0.3814  / [ (5.47+5.24) / 2 ]  

                                                              = 0.0726  = 7.3%                                    

 

Method 2, repeatability coefficients 
 

Repeatability coefficients equally makes use of the differences between two paired 

observations. 

 

The repeatability coefficient = 2 standard deviations (sds) of paired differences 

                                                                                              

                                =   
2(d d)

2 1.03
n 1

− =
−

  

 d = differences between first and second measurements                    

                           d  = mean difference between first and second measurements    

                    n = sample size 

 

The advantage of the repeatability coefficient  is that 95% limits of agreement can 

be calculated from it. These are between d  ± 2 sds = 0.23 ± 1.03 = between – 0.80 

and 1.26. Under the assumption of a normal distribution we can expect 95% of the 

data to lie between these limits ( Figure 2 ). 

 

 

 

 
Figure 2. Differences between first and second test for plasma cholesterol in the 

ten patients from Figure 1. Nine of these ten patients have their differences within 

the 95 % limits of agreement (two horizontal lines). 

Difference between plasma

cholesterol Test 1 and Test 2 (mmoI/I)
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Method 3, Intraclass correlation coefficients (ICCS)  

 

Conceptually more complex is the calculation of intraclass correlation coefficients 

(ICCs) for assessment of between-test agreement. It assesses reproducibility 

between repeated measures within one subject by comparing the variability between 

the repeated measures with the total variability in the data.3 The formula is given 

by: 

 

subjects within  sdsubjectsbetween   sd

subjectsbetween   sd
  (ICC)t coefficienn correlatio Intraclass

22

2

+
=   

                         

The ICC ranges from 0 to 1, and it reflects the strength of association between the 

first and second test. If it equals zero, no reproducibility can be expected. If 1, then 

reproducibility is 100%. The ICC  is otherwise called proportion of variance or 

correlation ratio. If you are using SPSS4 to analyze the data, there is an easy way to 

calculate the coefficient, which, additionally, provides you with a confidence 

interval and a p-value. A significant p-value is to be interpreted in terms of a 

proportion of total variance responsible for between-measurement variation 

significantly greater than 0. First command: Analyze / Scale / Reliability analysis. 

The dialog box allows you to include the two variables ( results test-1 and results 

test-2). Next click the statistics box, and select the intraclass correlation coefficient, 

Model: one-way random, continue. The results for the above example are listed 

underneath: 

 

    Intraclass correlation coefficient = 0.7687  

           95% confidence intervals  between 0.3386 and 0.9361 

                       p-value 0.002 

                   proportion of total variance responsible for between test 

                       variability = 77%.   

 

ICCs can also be used for more than two repeated measures. 

  
3. TESTING REPRODUCIBILITY OF QUALITATIVE DATA  

(PROPORTIONS AND SCORES) 
 

Cohen’s kappas 

  

We use the example used by the Colorado Education Geography Center.5 Suppose 

two observers assess the same patients for congenital heart disease, using Perloff’s 

classification A to E6 , and we wish to evaluate the extent to which they agree.  
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                          Observer 1    

                                                  A B C D E total  

               Observer 2        A   2   0   2  0 0       4                      

                                       B    0   1   0  0   0         1 

                                        C   1   0 1  0   0         2 

                                      D  0 0 0  2   1         3 

                                       E 0  0  0   0   6         6 

                                      Total 3  1  3  2   7     16 (N)     

 

We present the results in a two-way contingency table of frequencies. The 

frequencies with which the observers agree are shown along the diagonal of the 

table (fat print). Note that all observations would be in the diagonal if they were 

perfectly matched. Then calculate the q-values, where q = the number of cases 

expected in the diagonal cells by chance.  

 

                                 q = nrow  x  ncolumn  / N  

                                 A = 4 x 3 / 16 = 0.75 

                                B = 1 x 1 / 16 = 0.0625   

                                C = 2 x 3 / 16 = 0.375 

                      D = 3 x 2 / 16 = 0.375 

                                     E  = 6 x 7 / 16 = 2.625 

                          q total = 4.1875 = 4.2                  

 

Then calculate kappa:  

 

                                kappa = (d − q) / (N − q) 

                      d = 12 (the diagonal total of cells = 2+1+1+2+6 =12)         

                                     N = total of columns or rows which should be equal  

                                       kappa = (12 4.2) / (16 4.2) = 0.66. 

 

The closer the kappa is to 1.0, the better the agreement between the observers: 

 

                              Poor if                    k < 0.20 

                         Fair             0.21 < k < 0.40 

                              Moderate    0.41 < k < 0.60         

                                       Substantial  0.61 < k < 0.80 

                                        Good                      k > 0.80. 
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4. INCORRECT METHODS TO ASSESS REPRODUCIBILITY 

 

Testing the significance of difference between two or more sets of repeated 

measures 
 

Instead of the repeatability coefficients or duplicate standard deviations, sometimes 

the significance of differences between two means or two proportions are used as 

method to assess reproducibility. For that purpose paired t-tests or McNemar’s tests 

are used. For more than two sets of repeated measures tests like the repeated-

measures-analysis-of-variance or Friedman’s tests are adequate. As an example, the 

significance of difference between the above two columns of cholesterol values is 

calculated as follows (sd = standard deviation, se = standard error): 

 

                                  mean difference ± sd = 0.23 ± 0.5165 

                        mean difference ± se = 0.23 ± 0.1633  

                       t-value = 0.23 / 0.1633 = 1.41 

                        according to the t-table p > 0.05 

 

This means that no significant difference between the first and second set of 

measurements is observed. This can not be taken equal to evidence of 

reproducibility. With small samples no evidence of a significant difference does not 

necessarily imply the presence of reproducibility. Yet, a test to preclude a 

significant difference is relevant within the context of reproducibility statistics, 

because it establishes the presence of a systematic difference. We are dealing with a 

biased assessment if we want to test the null - hypothesis of reproducibility.  

 

Calculating the level of correlation between two sets of repeated measures 
 

If you plot the results from the first occasion against those from the second 

occasion, and calculate a Pearson’s regression coefficient, a high level of 

correlation does not necessarily indicate a great reproducibility. For testing 

reproducibility we are not really interested in whether the points lie on a straight 

line. Rather we want to know whether they conform to the 45º line, which is the 

line of equality. This will not be established if we test the null - hypothesis that the 

correlation is zero. 

 
5. ADDITIONAL REAL DATA EXAMPLES 

 

Reproducibility of ambulatory blood pressure measurements (ABPM) 

 

Ambulatory blood pressure measurements (ABPM) are, notoriously, poorly 

reproducible. Polynomial curves of ABPM data may be better reproducible than the 

actual data. Figure 3 gives an example of data.7 Mean systolic ABPM blood 
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pressures of 10 untreated patients with mild hypertension ands their sds were 

recorded twice one week in-between. Figures 2 and 3 give 7th order polynomes of 

these data. Table 1 shows the results of the reproducibility assessment. Both 

duplicate sds and ICCs were used. Duplicate sds of means versus zero and versus 

grand mean were 15.9 and 7.2 mm Hg, while of polynomes they were only 1.86 

mm Hg (differences in Duplicate sds significant at a P < 0.001 level). ICCs of 

means versus zero and versus grand mean were 0.46 and 0.75, while of polynomes 

they were 0.986 (differences in levels of correlation significant at a P < 0.001). 

Obviously, polynomes of ABPM data of means of populations produce 

significantly better reproducibility than do the actual data. 

 
Table 1. 24 hr ambulatory blood pressure measurements in a group of 10 patients with 

untreated mild hypertension tested twice: reproducibility of means of population 
 
                                 mean values           mean values    polynomes 

                                    variations vs zero  variations vs grand mean                                                                            

 

Means  (mm Hg)  ( test 1 / test 2)                         153.1 / 155.4                 153.1 / 155.4                          - 

 

Standard deviation (sd) ( mm Hg)  

( test 1 / test 2)  21.9 / 21.1                                15.7 / 13.8                            - 

  

95% CIs  a ( mm Hg) ( test 1 / test 2)        139.4 166.8/142.2 168.6   143.3 163.9/146.8 164.0         -     

 

Differences between means ( sd)  

(mm Hg)                  2.4 (22.4)                  2.3 (10.5)                             - 

 

P values differences between results tests 1 and 2          0.61                              0.51                            0 .44 

 

Duplicate sds  (mm Hg )                                               15.9                               7.2                             1.86 

 

Relative Duplicate sds b (%)                                             66                                 31                                 7 

 

Intra-class correlations   (ICCs)                                       0.46                              0.75                          0.986 

 

95% CIs                                                             0.35 0.55                   0.26 0.93            0.972 0.999 

 

Proportion total variance  

responsible for between-patient variance (%)                   46                                 75                                99 

 

95% CIs  (%)                                                         35 55                         26 93                      97 100 

a     CIs = confidence intervals.  

 130 mm Hg ) ].    
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Figure 3.   Mean values of ambulatory blood pressure data of 10 untreated patients 

with mild hypertension and their sds,  recorded twice, one week in-between. 

 

 

 
Figure 4.   Polynome of corresponding ambulatory blood pressure recording ( first 

one) from Figure 3,  reflecting a clear circadian rhythm of systolic blood  pressures. 
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Figure 5.  Polynome of corresponding ambulatory blood pressure recording ( second 

one) from Figure 3,  again reflecting a clear circadian  rhythm of systolic blood 

pressures. 

 

Two different techniques to measure the presence of hypertension 

 

Two different techniques are used in one group of patients to measure the presence 

of hypertension, namely (1) ambulatory blood pressure equipments and (2) self-

assessed sphygmomanometers. Circumstances are, otherwise, identical. 

 

                                           Ambulatory equipment  

                                                 yes          no 

    Sphygmomanometer  yes   184 (a)     54 (b)    218 (a+b) 

                                      No      14 (c)      63 (d)        77 (c+d) 

                                                  198 (a+c) 117 (b+d)   315 (a+b+c+d)  

 

We calculate kappa according to:  

expected value for cell (a) = 137218
315

14184 =×+    

expected value for cell (d) = 81218
315

6354 =×+   

kappa =  
795.0

315

81137
1

315

)81137(

315

)77218(

=
+−

+−+
 

 

This would mean that we have a substantial level of agreement between the two 

techniques. However, McNemar’s test shows a significant difference at p < 0.01 
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between the two techniques indicating that a systematic difference exists, and that 

the reproducibility assessment is thus biased. The circumstances are not entirely 

identical. 

 
6. DISCUSSION 

 

Any research profits from a reproducible challenge test to enhance sensitivity of the 

trial, and from a good interobserver agreement. The current paper gives some 

relatively simple methods for assessment. Reproducibility assessments are rarely 

communicated in research papers and this may contribute to the low reproducibility 

of clinical trials. We expected that reproducibility testing would, at least, be a 

standard procedure in clinical chemistry studies where a close to 100% 

reproducibility is generally required. However, even in a journal like the Journal of 

the International Federation of Clinical Chemistry and Laboratory Medicine out of 

17 original papers communicating novel chemistry methods none communicated 

reproducibility assessments except for one study.8 Ironically, this very study 

reported two incorrect methods for that purpose, namely the assessment of 

significant differences between repeated measures, and the calculation of Pearson’s 

correlation levels. 

 

A more general explanation for the underreporting of reproducibility assessments in 

research communications is that the scientific community although devoted to the 

study of disease management, is little motivated to devote its energies to assessing 

the reproducibility of the diagnostic procedures required for the very study of 

disease management. Clinical investigators favor the latter to the former. Also the 

former gives no clear-cut career path, while the latter more often does so. And there 

is the injections from the pharmaceutical industry. To counterbalance this is a 

challenge for governments and university staffs.  

 

We should add that textbooks of medical statistics rarely cover the subject of 

reproducibility testing: in only one of the 23 currently best sold textbooks for 

medical statistics the subject is briefly addressed.9  

 

We conclude that poor reproducibility of diagnostic criteria / tests is, obviously, a 

well- recognized but rarely tested problem in clinical research. The current review 

of simple tests for reproducibility may be of some help to investigators. 

 
8. CONCLUSIONS 

 

Virtually no cardiovascular papers communicate the levels of reproducibility of the 

diagnostic criteria / tests they use. Poor reproducibility cannot be excluded as a 

contributing cause for the poor reproducibility of clinical trials. The objective of 

this chapter was to review simple methods for reproducibility assessment of 

diagnostic criteria / tests. 



TESTING REPRODUCIBILITY 

Reproducibility of quantitative data can be estimated by (1) duplicate standard 

deviations, (2) repeatability coefficients, (3) intraclass correlation coefficients. For 

qualitative data Cohen’s kappas are adequate. Incorrect methods include the test for 

a significant difference between repeated measures, and the calculation of levels of 

correlation between repeated measures.  

Four adequate and two incorrect methods for reproducibility assessment of 

diagnostic criteria / tests are reviewed. These tests can also be used for more 

complex data like polynomial models of ambulatory blood pressure measurements. 

They may be of some help to investigators. 
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CHAPTER 28 

 
ACCURACY OF DIAGNOSTIC TESTS 

 
1. INTRODUCTION 

 

Clinical trials of disease management require accurate tests for making a diagnosis/ 

patient follow-up. Whatever test, screening, laboratory or physical, investigators 

involved need to know how good it is. The goodness of a diagnostic test is a 

complex question that is usually estimated according to three criteria: (1) its 

reproducibility, (2) precision, and (3) accuracy. Reproducibility is synonymous to 

reliability, and is, generally, assessed by the size of differences between duplicate 

measures. Precision of a test is synonymous to the spread in the test results, and can 

be estimated, e.g., by standard deviations/standard errors. Accuracy is synonymous 

to validity, and can be defined as a test’s ability to show which individuals have the 

disease in question and which do not. Unlike the first two criteria, the third is hard 

to quantify, first, because it is generally assessed by two estimators rather than one, 

namely sensitivity and specificity defined as the chance of a true positive and true 

negative test respectively. A second problem is, that these two estimators are 

severely dependent on one another. If one is high, the other is, as a rule, low, vice 

versa. Due to this mechanism it is difficult to find the most accurate diagnostic test 

for a given disease.  In this chapter we review the current dual approach to accuracy 

and propose that it be replaced with a new method, called the overall accuracy 

level. The main advantage of this new method is that it tells you exactly how much 

information is given by the test under assessment. It, thus, enables you to determine 

the most accurate qualitative tests for making a diagnosis, and can also be used to 

determine the most accurate threshold for positive quantitative tests.  

 
2. OVERALL ACCURACY OF A QUALITATIVE DIAGNOSTIC TEST   

 

A test that provides a definitive diagnosis, otherwise called a gold standard test, is 

100% accurate. But this test may be too expensive, impractical or simply 

impossible. Instead, inexpensive but less accurate screening tests, depending on the 

presence of a marker, are used. Prior to implementation, such tests must be assessed 

for level of accuracy against the gold standard test. Generally, such tests produce a 

yes/no result, and are, therefore, called qualitative tests, e.g., the presence of a 

positive blood culture test, a positive antinuclear antibody test, a positive leuco-

esterase urine test, and many more. In order to assess accuracy of such tests, the 

overall accuracy level can be calculated from a representative sample of patients in 

whom the gold-standard result is known (Table 1).  
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Table 1. Calculation of sensitivity, specificity, and overall accuracy level of 

qualitative test from a sample of patients 
___________________________________________________________________ 
                                                                          Disease     yes(n)        no(n) 

                            Positive test           yes(n)                       180  a         20 b  

                            

 “  

      

  “ 

                no(n)                         30  c         80 d 

                             n= number of patients                                           

                             a=number of true positive patients 

                             b=                  false positive patients 

                             c=                  false negative patient 

                             d=                  true negative patients 

                                               

                             Sensitivity of the above test = a / (a+c) = 180 / 210 = 85.7% 

                             Specificity                             = d / (b+d) = 80 / 100 = 80%. 

 

                             Overall accuracy 

                              level                             = (a+d) / (a+b+c+d)=260/310 = 83.9% 

___________________________________________________________________ 

 

The magnitude of the overall accuracy level in the example from Table 1 is 83.9%, 

which is between that of the sensitivity and specificity, 85.7 and 80%, but closer to 

the former than the latter. This is due to the larger number of patients with the 

disease than those without the disease. Obviously, the overall accuracy level, unlike 

sensitivity and specificity, adjusts for differences in numbers of patients with and 

without the disease as generally observed in a representative sample of patients. The 

overall accuracy level can be interpreted as the amount of information given by the 

test relative to the gold standard test: if the gold standard test provides 100% of 

information, the test will provide 83.9% of that information. An overall accuracy of 

50% or less indicates that the information is not different from the information 

provided by mere guessing. Flipping a coin would do the job just as well as does 

this test. An example of a new test without information is given in Table 2. This 

new test has a specificity of only 20%, but a sensitivity of 60%, and so the 

investigators may conclude that it is appropriate to approve this new test, because it 

provides a correct diagnosis in 60% of the patients who have the disease. However, 

given the overall accuracy of only 43.8% this diagnostic test does not provide more 

information than mere guessing or tossing a coin, and should not be approved.  

 

 

 

 

 

 

  

 



Table 2. Qualitative test without information 

___________________________________________________________________ 

                                                                            Disease       yes (n)         no (n) 

  

                                                   Positive test     yes                  60 a           50 b                             

                                                    Positive test     no                  40 c           10 d 

 

                                                    n = number of patients 

                                                    a = number of true positive patients 

                                                    b =                   false positive patients 

                                                    c =                   false negative patients 

                                                    d =                   true negative patients 

 

Sensitivity of the above test= a / (a+c) = 60% 

Specificity                           = d / (b+d) = 20%                                                                

Overall accuracy level        = (a+d) / (a+b+c+d) = 70/160 = 43.8%  

___________________________________________________________________ 

 

 
3. OVERALL ACCURACY LEVEL OF A QUANTITATIVE DIAGNOSTIC 

TEST 
 

Diagnostic tests that produce results on a continuous scale are called quantitative 

tests. The results of such tests cannot be displayed simply by a two by two table, but 

rather by two Gaussian curves, under the assumption that the data follow normal 

distributions. Figure 1 is an example of a perfect fit diagnostic test. The two curves 

show the frequency distribution with on the x-axis the individual patient results and 

on the y-axis “how often”. The total areas under the curve of the two curves 

represent all of the patients, left graph those without the disease, and right graph 

those with the disease. The curves do not overlap. The test seems to be a perfect 

predictor for presence or absence of disease. 

 

 
Figure 1.  Example of a perfect fit quantitative diagnostic test. The two curves show 
the frequency distributions with on the x-axis the individual patient results, and on 

the y-axis “how often”. The patients with and without the disease do not overlap.  
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Figure 2.  Example of a less than perfect fit quantitative diagnostic test. The 2 

curves show the frequency distributions with on the x-axis the individual patient 
results, and on the y-axis “how often”. The patients with and without the disease 

overlap.  

 

In Figure 2 the situation is less than perfect, the two curves overlap, and, it is not 

obvious from the graphs where to draw the line between a positive and negative 

result. The decision made is shown as the vertical line. False positives/negatives are 

shown in the shaded areas under the curves. The above two examples are 

simplified, because they assume that in a random sample the total numbers of true 

positives and true negatives are equal in size, and have the same spread. In practice 

the numbers of patients with and without disease in a random sample have different 

sizes and spread, and this should be recognized in the distribution curves, 

complicating the assessment a little bit (Figure 3). 

  

 
Figure 3. Example of frequency distributions of erythrocyte sedimentation rate 

values in 200 patients with and 300 patients without pneumonia. On the x-axis are 
the individual erythrocyte sedimentation rate values of the normals and the 

diseased patients, and the areas under the curve represent 100% of either of the 

two groups. It is not obvious from the graphs where to draw the line between a 
positive and negative test: the decision made is shown by the vertical line. 



 

The left and right graph are calculated from the mean erythrocyte sedimentation 

rate value and standard deviation of a random sample of patients with and without 

pneumonia. The areas under the curve represent 100% of either of the two groups. 

In order to assess accuracy of erythrocyte sedimentation rate as diagnostic test for 

pneumonia we must first change these quantitative data into qualitative (yes/no) 

data. A convenient way to do so is to define a test positive if less than 2.5% of the 

true negative patients are negative in the test. Using this 2.5% as a threshold, the 

results from Figure 3 can now also be displayed in the form of a two by two table 

just like the above tables of the qualitative data (Table 3).  Sensitivity ad specificity 

are calculated similarly to the procedure used for the qualitative data. Overall 

accuracy is calculated slightly differently (Table 3). 

 

Table 3. Sensitivity, specificity, and overall accuracy level of quantitative test using 

the 2.5% threshold for true negative patients (Figure 3) 

 

 
                                                                     Disease     yes(n

1 
= 300)       no(n

2 
= 200) 

                                          Positive test            yes(%)      74%    a             2.5%      b  

                                          Positive test             no(%)       26%    c          97.5%       d 

 

                                           n =  number of patients                                           

                                           a =   number of true positive patients 

                                           b =               false positive patients 

                                           c =               false negative patient 

                                           d =                     true negative patients. 

 

                                               

Sensitivity of the above test   = a / (a+c) = 74 % 

Specificity                              = d / (b+d) = 97.5 %. 

Overall accuracy  level          = 74(n1 / (n1 + n2)) + 97.5 (n2 / (n1 + n2)) = 83.4%. 

 

 
4. DETERMINING THE MOST ACCURATE THRESHOLD FOR POSITIVE 

QUANTITATIVE TESTS 
 

We would like to have a sensitivity and specificity close to 1 (100%), and thus an 

overall accuracy equally close to 1 (100%).  However, in practice most diagnostic 

tests are far from perfect, and produce false positive and false negative results. With 

qualitative tests there is little we can do. With quantitative tests we can increase 

sensitivity by moving the vertical decision line between a positive and negative test 

(Figure 3) to the left, and we can increase specificity by moving it in the opposite 

direction. Moving the above threshold further to the right would be appropriate, 
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e.g., for an incurable deadly disease. You want to avoid false positives (cell b), 

meaning telling a healthy person he/she will die soon, while false negatives (cell c) 

aren’t so bad since you can’t treat the disease anyway. If, instead the test would 

Figure 4. Example of the frequency distributions of erythrocyte sedimentation rate 

values in 200 patients with and 300 patients without pneumonia. On the x-axis are 
the individual erythrocyte sedimentation rate values of the normals and the 

diseased patients, and the areas under the curve represent 100% of either of the 

two groups. It is not obvious from the graphs where to draw the line between a 
positive and negative test: the decision made is shown as the vertical line. 

 

Sensitivity, specificity, and overall accuracy level can now be calculated similarly 

to the above procedures (Table 4).  

                                               

Sensitivity of the above test = a / (a+c) = 97.5 % 

Specificity                            = d / (b+d) = 77 % 

Overall accuracy level           = 97.5(n1 / (n1 +n2 )) + 77 (n2 / (n1 + n2 ))   = 89.3% 

 

 

 
 

 

 
 

 

 
 

 

serve as a first screening test for a disease fatal if untreated but completely treatable, 

it should provide a sensitivity better than 74%, even at the expense of a lower

specificity. False-negative would be awful, as it means missing a case of a treatable

fatal disease. For that purpose the threshold of such a test is set far more to the left
 (Figure 4).  



 

 

 
Table 4. Calculation of sensitivity, specificity, and overall accuracy level of a 

quantitative test where the threshold is set according to Figure 4 

___________________________________________________________________ 

  

                                                                 Disease     yes(n1 = 300)        no(n2 = 200) 

                                    Positive test            yes(%)       97.5%    a         23%     b  

                                        ”          ”              no(%)        2.5%      c          77%    d 

                                    nx = number of patients                                           

                                    a = % true positive patients 
                                    b = % false positive patient  
                                    c = % false negative patient 
                                    d = % true negative patients 
__________________________________________________________________ 

 

There are, of course, many diseases that do not belong to one of the two extremes 

described above. Also, there may be additional arguments for choosing a particular 

threshold. E.g., in non-mortality trials false negative tests, generally, carry the risk 

of enhanced morbidity, such as vision loss due to persistent glaucoma, hearing loss 

due to recurrent otitis etc. However, such risks may be small if repeat tests are 

performed in time. Also, false positive tests create here patient anxiety and costs. In 

situations like this, false positive tests are considered as important as false negative. 

Therefore, we might as well search for the threshold providing the best overall 

accuracy from our test. This is usually done by considering several cut-off points 

that give a unique pair of values for sensitivity and specificity, thus comparing the 

probabilities of a positive test in those with and those without the disease. A curve 

with “1-specificity” on the x-axis and sensitivity on the y-axis facilitates to choose 

cut-off levels with relatively high sensitivity/specificity. The continuous curve of 

Figure 5, otherwise called a ROC (receiver operating characteristic) curve, is an 

example. 
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Figure 5. The ROC (receiver operating characteristic) curve (continuous curve) of 
erythrocyte sedimentation rate values of patients with pneumonia plots the 

sensitivity values against the “1-specificity” values. The accuracy “ROC” curve 
(interrupted curve) plots overall the accuracy values against the “1-specificity” 

values.  

 

It shows the relationship between sensitivities and specificities of the erythrocyte 

sedimentation rate as a diagnostic test for the presence of pneumonia. The curve 

suggests that a relatively high sensitivity/specificity is obtained for the 83% 

sensitivity/ 38% “1-specificity”. However, in many ROC curves more than a single 

cut-off value with relatively high sensitivity/specificity are observed, and it may, 

therefore, be difficult to choose the most accurate cut-off level from such curves. 

Also, ROC curves use sensitivity and specificity only, which means that they do not 

account for differences between the numbers of patients with and without the 

disease. These problems can be prevented by plotting, instead of the sensitivity, the 

overall accuracy level against “1-specificity”. This is shown by the interrupted 

curve of Figure 5. This accuracy “ROC”curve will unequivocally identify the cut-

off threshold with the single best overall accuracy level.  

ROC curves are only briefly addressed in this text. Details are beyond the scope of 

this article, but some advantages of accuracy “ROC” curves compared to the classic 

ROC curves are mentioned.  



 
5. DISCUSSION 

  

Another approach to accuracy of diagnostic tests are the positive and negative 

predictive values and likelihood ratios, the calculation of which is shown in Table 

5. 

 

Table 5. The calculation of positive and negative predictive values, and of 
likelihood ratios 

___________________________________________________________________ 

                                                                            Disease     yes(n)     no(n)  

                     Positive test                                    yes            a              b 

                           ”        ”                                      no             c              d 

                     n = number of patients 

                     positive predictive value = a / (a+b)  

                     negative predictive value = d / (c+d) 

                     likelihood ratio for positive result =   a / (a+c) / d /(b+d) 

___________________________________________________________________ 

 

 Just like the overall accuracy level, these estimators adjust for numbers of 

differences in patients with and without the disease, but they do not answer what 

proportion of patients has a correct test. 

Riegelman1, recently, proposed another method for assessing accuracy of a 

diagnostic test,  which he called the discriminant ability, defined as  

 

                                               (sensitivity+specificity)/2.  

 

Although this method avoids the dual approach to accuracy, it wrongly assumes 

equal importance and equal prevalence of sensitivity and specificity, and does 

neither answer what proportion of the patients has a correct test.    

We should add that sensitivity, specificity and overall accuracy level are usually 

expressed as percentages. As with all estimates in clinical trials, we should calculate 

confidence intervals of these estimates in order to quantify the level of uncertainty 

involved in our results.   

The advantage of the overall accuracy approach described in this chapter compared 

to the dual sensitivity/specificity approach is that it enables to determine not only 

the most accurate qualitative tests for making given diagnoses, but also the most 

accurate thresholds for positive quantitative tests. The method is less adequate for 

the assessment of diagnostic tests for extreme disease like incurable deadly diseases 

and treatable but untreated deadly diseases for which diagnostic tests with either 

optimal sensitivity or optimal specificity are required. 

For determining the most accurate threshold for a quantitative test we recommend 

to replace a ROC curve with an accuracy “ROC” curve, because the latter unlike the 
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former accounts for possible differences in a random sample between the numbers 

of patients with and without the disease.     

The overall accuracy level has four advantages compared to the sensitivity / 

specificity levels. It (1) adjusts for differences between numbers of patients with 

and without the disease, (2) is able to readily identify tests that give no information 

at all, (3) provides the amount of information given by the test relative to the gold 

standard test, (4) enables to draw ROC curves adjusted for the differences between 

numbers of patients with and without the disease. 

 
6. CONCLUSIONS 

  

Clinical trials of disease management require accurate tests for making a diagnosis / 

patient follow-up. Currently, accuracy of diagnostic tests is hard to quantify, 

because it is generally assessed by two estimators, sensitivity and specificity, that 

are severely dependent on one another. If one estimator is high, the other is, as a 

rule, low.  

The objective of this chapter was to review the current dual approach to accuracy, 

and to propose that it be replaced with a new method, called the overall accuracy 

level. 

The overall accuracy level is defined as the proportion of test results that are 

correct. Usage of this level, unlike sensitivity and specificity levels, enables (1) to 

adjust for differences between numbers of patients with and without the disease,  

(2) to readily identify tests that give no information at all, (3) to provide the entire 

amount of information given by the test relative to the gold standard test, (4) to 

draw receiver operating characteristic (ROC) curves adjusted for the differences 

between numbers of patients with and without the disease. The method is less 

adequate for the assessment of diagnostic tests for extreme diseases like incurable 

deadly diseases and treatable but untreated deadly diseases for which diagnostic 

tests with either optimal sensitivity or optimal specificity are required. 

Due to the dual sensitivity/specificity approach to accuracy of diagnostic tests it is, 

currently, difficult to find the most accurate diagnostic test for a given disease. The 

overall accuracy level is more appropriate to that aim. 
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CHAPTER 29 

 
ADVANCED ANALYSIS OF VARIANCE 

 
1. INTRODUCTION 

 

This chapter uses the same abbreviations as those used in the previous chapters on 

analysis of variance (ANOVA) and regression analyses (the chapters 1,2,11-17). 

We recommend not to read this chapter prior to these preceding chapters.   

Analysis of variance can assess the influence of confounding factors on the 

outcome of experimental data. Such confounding factors can be divided into two 

categories: (1) those producing a fixed effect and (2) those producing a random 

effect. As examples of (1) we can think of factors that are constant between and 

within subjects such as a standard laboratory test, a constant time of day, a constant 

room temperature etc. As examples of (2) we can think of factors like random 

rooms for assessment, random times of day, random environmental temperatures, 

which represent hidden subgroup properties influencing the data.  

In this book we so far addressed type I ANOVA ,  which means that all covariates 

were conceived to be fixed. Note: a fixed effect factor does not necessarily indicate 

that every test-subject in a subgroup responds identically. There may be huge 

differences in the individual responses to a fixed factor. But these differences are 

caused by inherent variability in biological processes rather than some hidden 

subgroup property.  In this chapter ANOVA models are discussed that account for 

variables with random rather than fixed effects. This is a very interesting class of 

models, but even a partial understanding is fairly difficult to achieve. These models 

can be divided into: type II ANOVA, otherwise called random effect models, and 

type III ANOVA otherwise briefly called mixed models.  

The arithmetic of the advanced ANOVA models is the same as that of simple 

ANOVA. However, inferences made are quite different. All inferences made under 

simple ANOVA concern means and differences between means. In contrast, the 

inferences made using advanced ANOVA deal with variances, and involve small 

differences between subsets of patients or between individual patients. This type of 

ANOVA answers questions like: do differences between assessors, between 

classrooms, between institutions, or between subjects contribute to the overall 

variability in the data?   

If we work with data that display a non-constant variability, e.g., data that represent 

students with classrooms, or food consumers with families, such models 

demonstrate how different teaching methods or consumptions patterns affect test 

scores across classrooms and families. Also, early drug research may suffer from 

hidden interindividual and intraindividual differences in pharmacodynamic and 

pharmacokinetic properties and may, therefore, benefit from these models. We 
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should add that the models provide better power than subgroup analyses in the 

event of missing data, a pretty much common feature in current clinical trials. As an 

alternative to type II and III ANOVA, ANCOVA (analysis of covariance) is a 

possibility (chapter 19), but the latter approach is, conceptually, different in that it 

assumes fixed effects only.  The first two examples used in this chapter are 

modified from Hays with permission from the editor.1 

 
2. TYPE II ANOVA, RANDOM EFFECTS MODEL 

 

The personality of the assessor in a study may influence the results. In order to 

assess this question we draw a random sample from qualified assessors and let them 

assess 8 randomly selected patients each (Table 1). The statistical model for the 

dependent variable (y = individual result of assessment) is assumed to be linear. 

 

y = µ + a + e 

µ =  population mean 

a = effect of being assessed by a particular assessor 

e = systematic error 

 

 

 

                   Table 1 . Table of data for random effect model: 5 assessors assess  
                   8 patients each, individual result per patient is given as score 

 

                    assessor no   1          2          3         4          5 

                    patient          5.8       6.0      6.3      6.4      5.7 

                    results          5.1       6.1      5.5      6.4      5.9 

                                         5.7       6.6      5.7      6.5      6.5  

                                         5.9       6.5      6.0      6.1      6.3 

                                         5.6       5.9      6.1      6.6      6.2 

                                         5.4       5.9      6.2      5.9      6.4 

                                         5.3       6.4      5.8      6.7      6.0 

                                         5.2       6.3      5.6      6.0      6.3  + 

                                       44.0     49.7    47.2    50.6    49.3   Add-up sum = 240.8 

                     ____________________________________________________ 

 

 

The computations are (SS= sum of squares): 

SS total =  −=−
n

y
yyy

2

22
)(

)( = 1,455.94 – 
40

)8.240( 2
   = 6.32                                                                  

SS between = 
8

)3.49...()0.44( 22 +

 
−

 40

)8.240( 2

 = 3.48 

                     ____________________________________________________ 



SS within = SS total –SS between = 6.32 – 3.48 = 2.84 

 

 

 
                       Table 2. Table random effects ANOVA 

                       Source                SS       df            MS          F 

                       Between  

                       Assessors          3.48   5 − 1= 4     0.87          10.72  
                       Within   

                       Assessors         2.84    40 − 5 = 35   0.08                           

                       SS = sum of squares                        

                       df = degree of freedom 

                       MS = mean square 

                        

 

As shown in the ANOVA table (Table 2) the F-value required to reject the null-

hypothesis of no difference between the 5 assessors equals 10.72. The F-table 

(appendix) shows that the null-hypothesis of no assessor effect can be rejected at p 

< 0.01. There is, thus, evidence that an assessors’ effect contributes to the 

variability in the data.  

 

3. TYPE III ANOVA, MIXED MODELS 
 

There are experiments where one or more factors have a fixed effect and the 

remaining factors are thought of as random. This situation calls for a third model of 

data analysis, the mixed models ANOVA, otherwise called type III ANOVA. Hays1 

described an example of a study where 36 patients were assessed for performance 

after treatment with either placebo, vitamin supply low dose, and high dose.  

Patients were randomly selected in 6 institutions, 6 patients per institution, and 

every patient was given one treatment at random, and so in each institution two 

patients were given one of the three treatments. The Table 3 gives an overview of 

the results. 

The model is y = µ + a + b + ab + e 

Where y = dependent variable, estimate for performance of patients 

            µ = mean result 

            a = fixed effect of the three treatments 

            b = random variable associated with institution 

            ab = random interaction effect between treatment and institution 

            e = systematic error 
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Table 3. Results of three treatments for assessment of performance in 36 patients in 

6 institutions, results are given as scores 
___________________________________________________________________ 

Treatment               placebo          vitamin supply low dose           high dose        total                

 

Institution                 

1                                    7.8                                11.7                              11.1 

                                      8.7                                10.0                              12.0 

                                    16.5                                21.7                              23.1        61.3 

 

2                                    8.0                                  9.8                             11.3 

                                      9.2                                11.9                             10.6 

                                    17.2                                21.7                              21.9        60.8  

 

3                                    4.0                                11.7                               9.8 

                                      6.9                                12.6                             10.1 

                                    10.9                                24.3                             19.9         55.1 

 

4                                 10.3                                  7.9                               11.4 

                                    9.4                                   8.1                               10.5 

                                   19.7                                16.0                               21.9        57.6 

 

5                                   9.3                                  8.3                               13.0 

                                    10.6                                 7.9                               11.7 

                                    19.9                               16.2                               24.7        60.8 

 

6                                  9.5                                    8.6                             12.2 

                                    9.8                                   10.5                             12.3 

                                  19.3                                   19.1                             24.5        62.9 

 

total                         103.5                                 119.0                           136.0      358.5 

___________________________________________________________________                                

 

The computations are 

2 2 56.123
36

)5.385(
2

=  

SS ab = 03.109
36

)5.385(

2

)5.16(
222

=−   

SS error = SS total – SS ab  

              = 123.57 – 109.03 = 14.54 

–SS total = (7.8)  +….+ (12.3)   

+ ..... + (24.5)



SS columns = 04.44
36

)5.358(

12

)5.103(
2222

=  

SS rows = 80.6
36

)5.385(

6

)9.62(.....)3.61(
22

=−
++

 

SS interaction = SS ab – SS rows – SS columns 

                       = 109.03 – 6.80 – 44.04  = 58.19 

 

 Table 4. ANOVA table of mixed model analysis for data of Table 3 

Source                                            SS         df                     MS          F 

Columns                                       44.04       3-1 = 2             22.02     22.02/5.82=3.78 

Rows (classrooms)                         6.80       6-1 = 5               1.36                        1.68 

Interaction(treatment x classroom)58.19             10               5.82      5.82/0.81=7.19 

Error                                               14.54     18 x (2 − 1)=18   0.81                               

Total                                             123.57             35  

SS = sum of squares                        

df = degree of freedom 

MS = mean square 

 

 

Table 4 shows that the F test for interaction produces a F-value of 7.19 

corresponding with a p-value < 0.01 which means that the hypothesis of no 

interaction is rejected. Although there is insufficient evidence to permit to conclude 

that there are treatment effects or institution effect, there is pretty strong evidence 

for the presence of interaction effects. There is something about the combination of 

a particular institution with a particular treatment that accounts for variability in the 

data. Thus treatment differences apparently exist between different institutions. 

Perhaps the capacity of a treatment to produce a certain result in a given patient 

depends on his/her institution background.  

 
4. REPEATED MEASURES EXPERIMENTS 

 

In a crossover study different treatments are assessed in one and the same subject. 

Suppose, we have prior arguments to believe subjects who better respond to one 

treatment, will also respond better to another treatment. E.g., in trials involving 

different compounds from one class of drugs subjects who respond well to one drug 

tend to respond equally well to the other drug. For example, of patients with angina 

pectoris, hypertension, arrhythmias etc., some are sensitive to beta-blockers, while 

others are sensitive to calcium antagonists. In this situation our interest may focus 

on the question is there a difference in response between subsets of patients rather 

than the question is there a difference between treatments. When the emphasis is on 

difference between subsets of patients, the design is often called a treatments-by-

subjects design, and Model III ANOVA applies similarly to the mixed model 
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described in section 3. An example is in table 5: twelve patients are given in 

random order 4 different drugs from one class. 

 

 

 Table 5. Recovery time (seconds) of finger temperature after cooling  

after treatment with four vasodilators from one class  in a crossover  
study of 12 patients 
______________________________________________________________   

                       Treatment 1  treatment 2  treatment 3   treatment 4    sd2     

       Patient 

       1             49                  48                49                  45                 ..  

       2             47                  46                46                  43                 .. 

       3             46                  47                47                  44 

       4             47                  45                45                  45 

       5             48                  49                49                  48 

       6             47                  44                45                  46 

       7             41                  44                41                  40 

       8             46                  45                43                  45 

       9             43                  41                44                  40 

       10           47                  45                46                  45 

       11           46                  45                45                  42  

       12           45                  40                40                  40 

                    552                540              540                528    Add-up sum = 2160 
 

The computations are  

SS subjects = sd1
2 + sd2

2 +……sd12
2   = 226.5 

SS treatments = (treatment mean 1 – grand mean)2 + (treatment 2 – grand mean)2 

+…= 24.0 

SS total = −=−
n

y
yyy

2

22
)(

)( =   (492 + …….402 )   −   (2160)2 / 48   

 =  308.0 

SS subjects x treatments = SS total – SS subjects – SS treatments = 57.5 

 
               Table 6. ANOVA table for repeated measures 

               Source                             SS          df             MS     F                        p-value 

               Patients                          226.6      12 − 1=11    

               Treatments                       24.0      4 − 1=3        8        8/1.74=4.60      <0.05 

               Subjects x treatments       57.5      3x11=33 

               Total                               308.0      47   

               SS = sum of squares 
               df = degree of freedom 
               MS = mean square 
  

______________________________________________________________   

1.74



The layout for this repeated measures situation is given in Table 6. The MS for 

treatments divided by the MS for patients-by-treatments interaction gives an F-ratio 

of 4.60. If we are using an alpha level of 0.05 for this test, this results will be called 

significant. The four treatments appear to be having different effects to different 

subsets in this sample. Note that an overall F test on these data requires the SS 

residual term which is equal to SS subjects – SS treatments. The F-ratio used for an 

overall F test equals MS treatments / MS residual, and would  produce an entirely 

different result (see chapter 1). 

From the above analysis it can be concluded that interaction exists between 

treatments and patients. Some patients obviously respond better or worse to one 

treatment than others. This is due to personal factors like a genetic characteristic, a 

societal and/or developmental factor. This repeated measures mixed model is 

particularly convenient in early drug research that has to account such factors when 

assessing the elimination rate and other pharmacokinetic properties of new drugs.  

 
5. DISCUSSION 

  

Only the simplest examples have been given in the present chapter. The Internet 

provides an overwhelming body of information on advanced ANOVA modeling 

including the type II and III models as discussed here. E.g., Google data system 

provides 495,000 references for explanatory texts on this subject. This illustrates 

the enormous attention currently given to these upcoming techniques.  

We should note that a fixed effect factor does not necessarily indicate that every 

test-subject in a subset responds identically. There may be huge differences in the 

individual response to a fixed factor. But these differences are caused by inherent 

variability in biological processes rather than some hidden subset property. Also, 

there may be many situations where doubt exists about the appropriate decision 

about fixed or random effects being in the data. If so, it may be adequate to analyze 

the data either way. A more sensitive result is generally provided by a more 

adequate model.  

We should consider some cons of these methods. If the experimenter/statistical 

analyst chooses the wrong model, he/she may suffer from a loss of power, because 

data may not fit the models as can happen to any regression model. Also the 

standards of homogeneity / heterogeneity in the data must be taken seriously. The 

patients in the subsets should not be sort of alike, rather they should be exactly alike 

on the variable to be assessed. Often this assumption can not be adequately met, 

raising the risk of reduced sensitivity and power of testing even more. Nonetheless, 

the types II and III ANOVA enable to assess the entire sample for the presence of 

possible differences between subgroups without need to, actually, split the data into 

subgroups. This very point is a major argument in its favor.  
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6. CONCLUSIONS 

  

1. ANOVA models are discussed that assess random rather than fixed effects. 

Fixed effects are caused by constant factors, e.g., fixed drug dosages. Random 

factors can be caused, e.g., by hidden differences between subjects and 

subgroups of subjects. 

2. Type II ANOVA involves models assessing the effects of random factors due 

to such effects as differences in assessors. Proportion of variability in the data 

due to such effects can be estimated and gives some idea about the contribution 

of the random factors to the overall effects in the data (not illustrated in the 

text). 

3. Type III ANOVA involves models assessing simultaneously random and fixed 

effects. As an example the effect of being in random subgroups on treatment 

effects is given.  

4. Both types II and III ANOVA are suitable for repeated measures experiments. 

5. The advantage of the discussed methods include not only the simultaneous 

assessment of treatments and subgroup effects in the entire sample, but also the 

fact that they suffer less than alternative statistical methods from missing data, 

because the data do not have to be split into small subgroups vulnerable to 

missing data. 

6. The advanced ANOVA models are exploratory rather than confirmatory in 

nature ( see also chapters 14 and 16). 
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CHAPTER 30 

 
STATISTICS IS NO “BLOODLESS” ALGEBRA 

 
1. INTRODUCTION 

 

Because biological processes are full of variations, statistics can not give you 

certainties, but only chances. What kind of chances? Basically, the chances that 

prior hypotheses are true or untrue. The human brain excels in making hypotheses. 

We make hypotheses all the time, but they may be untrue. E.g., when you were a 

kid, you thought that only girls could become doctors, because your family doctor 

was a girl. Later on this hypothesis appeared to be untrue. In clinical medicine we 

currently emphasize that hypotheses may be equally untrue and must be assessed 

prospectively with hard data. That’s where statistics comes in, and that is where at 

the same time many a clinician starts to become nervous, loses his/her self-

confidence, and is more than willing to leave his/her data to the statistical 

consultant who subsequently runs the data through a whole series of statistical tests 

of SAS1  or SPSS2  or  comparable statistical computer software to see if there are 

any significances. The current article was written to emphasize that the above 

scenario of analyzing clinical trial data is bad practice and frequently kills the data, 

and that biostatistics can do more for you than provide you with a host of irrelevant 

p-values.  

 
2. STATISTICS IS FUN BECAUSE IT PROVES YOUR HYPOTHESIS WAS 

RIGHT 
 

Statistics is fun, particularly, for the clinical investigator. It is not mathematics, but 

a discipline at the interface of biology and mathematics. This means that maths is 

used to answer the biological questions. The scenario as described above does not 

answer reasonable biological questions. It is called data dredging and is the source 

of a lot of misinterpretations in clinical medicine. A statistical analysis should be 

confined to testing of the prior hypotheses. The problem with multiple statistical 

tests can be explained by gambling 20 times with a chance of success of 5%. You 

can be sure that after the game you will get (1 − 0.05)20 = (0.95)20 = 0.36 = 36% 

chance to win a prize. This result is, however, not based on any significant effect but 

rather on the play of chance. Now, don’t let it happen to your trial. Also, a statistical 

result that does not confirm your prior belief, don’t trust it. Make sure that the 

simplest univariate tests are used for your prospective trial data, because they are 

adequate and provide the best power. Fancy multivariate procedures are not in place 

to answer your prior hypotheses. Statistics is fun, because it generally confirms or 
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largely confirms your prior hypotheses, which is appropriate because they were 

based on sound clinical arguments. If they don’t, this is peculiar and should make 

you anxious to find out why so: imperfections within the design or execution of the 

trial?3 It is fun to prove your hypothesis was right, or to find out what you did 

overlook. Another fun thing with statistics, although completely different and by far 

not so important, is the method of secondary analyses: it does not prove anything, 

but it is kind of sports and gives you new and sound ideas for further research.      

 
3. STATISTICAL PRINCIPLES CAN HELP TO IMPROVE THE QUALITY OF 

THE TRIAL 
 

Over the past decades, the randomized controlled trial has entered an era of 

continuous improvement and has gradually become accepted as the most effective 

way of determining the relative efficacy and toxicity of a new therapy, because it 

controls for placebo and time effects. However, even sensitive and properly 

designed and executed trials do not always confirm hypotheses to be tested, and 

conclusions are not always confirmed by subsequent trials. Although the former 

may be due to wrong hypotheses, the latter is likely to be due to the presence of 

certain imperfections within the design and execution, and analysis of the trial 

itself. Such principles could include4 :  (1) giving every effort to avoid asymmetries 

in the treatment groups (chapter 1, stratification issues), (2) emphasis on statistical 

power rather than just null-hypothesis testing (chapter 5), (3) assessing asymmetries 

of outcome variables in order to determine the most important determinants of 

clinical benefit (chapter 16), (4) accounting routinely for Type III errors of 

mistakenly believing that an inferior treatment is superior (chapter 5), (5) routinely 

weighing the odds of benefits against the odds of risks of new treatments.  

 
4. STATISTICS CAN PROVIDE WORTHWHILE EXTRAS TO YOUR 

RESEARCH 
 

The classical two-parallel-groups design for clinical drug trials is a rather dull 

activity and is, essentially, unable to answer many current scientific questions. 

Also, it is laborious, and in the clinical setting sometimes ethically or financially 

impossible. Examples of what the classical clinical trial design cannot manage:  

(1) assess multimodal therapies, (2) account historical data, (3) safeguard ethics and 

efficacy during the course of long-term trials, (4) study drugs, before well-

established toxicity information is available, (5) account the possibility of 

therapeutic equivalence between test and reference treatment, (6) study multiple 

treatments in one trial, (7) adjust change scores for baseline levels. Alternative 

designs for such purposes: (1) factorial designs (chapter 1)5, (2) historical controls 

designs (chapter 1)6, (3) group-sequential interim analysis designs (chapter 6)7,  

(4) sequential designs for continuous monitoring (chapter 6)8, (5) therapeutic 

equivalence designs (chapter 4), (6) multiple crossover-periods/multiple parallel-

groups designs9, (7) increased precision designs through multivariate adjustment 
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(chapter 12). There is, of course, the increased risks of type I/II errors, and the 

possible loss of some of the validity criteria with the novel designs. However, 

provided that such possibilities are adequately accounted for in the design stage of 

the trial, the novel designs are acceptedly valid, and offer relevant scientific, ethical, 

and financial extras.  

 
5. STATISTICS IS NOT LIKE ALGEBRA BLOODLESS 

 

Statistics is not like algebra bloodless, and requires a lot of biological thinking and 

just a little bit of mathematics. For example, mathematically we need representative 

sample sizes to make meaningful inferences about the whole population. Yet, from 

a biological point of view, this is less true: the first datum encountered in a clinical 

situation of complete ignorance provides the greatest amount of information from 

any one datum an investigator will encounter. E.g., consider a new disease for 

which there is no knowledge whatsoever about the order of magnitude of time of 

exposure, time of incubation, time of appearance of subsequent symptoms. The first 

patient for whom we know such data provides a great deal of information.  

Another example of biological rather than mathematical thinking involves the issue 

of making the test parameters alpha and beta flexible. They are mostly set at 

respectively 5 and 20%. A 20% beta is, however, larger than is appropriate in many 

cases. E.g., when the false positive is worse for the patient than the false negative, 

as in case of testing a drug for non-life threatening illness  with the drug having 

severe side effects, the 5 and 20% choices for alpha and beta are reasonable. 

However, in testing treatment for cancer, the rate of false negatives is worse for the 

patient, and so, the ratio beta/alpha should be reduced. 

A third example of biological thinking is the inclusion of a “safety factor”  when 

estimating prior to a trial the sample size required. Usually the required sample size 

is calculated from a pilot study or from results quoted in the literature. However, 

these data are not the actual data from our study, and  not using the real data may 

introduce an error. Also, the data as used for sample size calculation are subject to 

randomness error. Due to such errors the alpha and beta errors upon which our 

sample size is based may be larger than we thought. Because of these possibilities 

we should add a “safety factor” to the sample size as calculated, and make our 

sample size somewhat larger than the calculated one, e.g., 10 %  larger. This is more 

important, the more uneasy we are about the ultimate result of the study being in 

agreement with the estimate used for sample size calculation. 
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6. STATISTICS CAN TURN ART INTO SCIENCE 

 
Traditionally, the science of medicine is considered to be based on experimental 

evidence, while the art of science is supposed to be based on trust, sympathy, the 

threatened patient, and other things that no one would believe that could ever be 

estimated by statistical methods. It is true that factors, of psychosocial and personal 

nature, are difficult to measure, but it is not impossible to do so. At first, quality of 

life assessments were based on the amount of primary symptoms, e.g., pain scores 

etc. Increasingly it is recognized that it should be based on factors like feeling of 

well-being, social performance. Along this line of development, the art of medicine 

is more and more turned into science, e.g., with modern quality of life assessments 

addressing general feeling of well-being, physical activity domains etc. Statistical 

analyses can be readily performed on validated quality of life indices or any other 

measurements of effectiveness as developed [chapter 15 ] . It follows that this 

development is going to accomplish something that was only shortly believed to be 

impossible: turning the art of medicine into the science of medicine.                  

 
7. STATISTICS FOR SUPPORT RATHER THAN ILLUMINATION? 

 

In 1948 the first randomized controlled trial was published.10 Until then, 

observations had been largely uncontrolled. Initially, trials frequently did not 

confirm hypotheses to be tested. This phenomenon was attributed to little sensitivity 

due to small samples, as well as inappropriate hypotheses based on biased prior 

trials. Additional flaws were being recognized and, subsequently better accounted 

for: carryover effects due to insufficient washout from previous treatments, time 

effects due to external factors and the natural history of conditions being studied, 

bias due to asymmetry between treatment groups, lack of sensitivity due to a 

negative correlation between treatment responses etc. Currently, due to the 

complexity of trials, clinicians increasingly leave the thinking to statisticians, a 

practice which is essentially wrong and produces flawed research, because bio-

research requires a lot of biological thinking and no more than a bit of statistics. 

Moreover, a statistician can do much more for you than provide you with a host of 

irrelevant p-values, but he/she can only do so, if you intuitively know what statistics 

can and what it cannot answer. Like Professor M. Hills, the famous statistician of 

London, used to say, clinicians often use statistics as a drunk uses a lantern 

standard, for support rather than illumination. Illumination can be obtained by 

exploring your clinical intuition against a mathematical background.  
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8. STATISTICS CAN HELP THE CLINICIAN TO BETTER UNDERSTAND 

LIMITATIONS AND BENEFITS OF CURRENT RESEARCH 
 

Medical literature is currently snowed under with mortality trials, showing 

invariably a highly significant 10-30 %  relative increase in survival. Mortality is 

considered an important endpoint, and this may be so. Yet, a relative increase in 

survival of 10-30 %  generally means in absolute terms an increase of no more than 

1-2 % . Mortality is an insensitive variable of the effects of preventive medicine that 

is begun when subjects are middle-aged. At such ages the background noise 

associated with senescence becomes high. The endpoints better be reduction in 

morbidity so far. In addition, many clinicians know that patients would prefer 

assessment of quality of life and reduced morbidity rather than 1-2% increased 

survival in return for long term drug treatment with considerable side effects.  

Relative risk reductions are frequently overinterpreted by clinicians in terms of 

absolute risk reductions. And so are underpowered p - values: a p - value of 0.05 

after all means the chance of a type II error of 50%.  

On the other hand, statistics can do a lot more for clinicians than calculating p - 

values and relative risk reductions. Multivariate analyses can be used not only for 

exploring new ideas, but also for increasing precision of point estimates in a trial. 

Benefit/risk analyses of trial data are helpful to provide relevant arguments for 

clinical decision making, and they are particularly so when their ratios is assessed 

quantitatively. Statistics can provide us with wonderful meta - analyses  of 

independent trials to find out whether scientific findings are consistent and can be 

generalized across populations.   

 
9. LIMITATIONS OF STATISTICS 

 

Of course, we should avoid giving a non-stop laudatio of statistics only. It is time 

that we added a few remarks on its limitations and possible disadvantages in order 

to express a more balanced opinion. Statistics is at the interface of mathematics and 

biology. Therefore, it gives no certainties, only chances. What chances? E.g., 

chances that hypotheses are true or untrue. We generally reject the null-hypothesis 

of no effect at p < 0.05. However, p = 0.05 means 5% chance of a type I error of 

finding a difference where there is none, and 50% chance of a type II error of 

finding no difference where there is one. It pictures pretty well how limited 

statistical inferences can be. In addition to the risks of type I and type II errors, 

there is the issue of little clinical relevance in spite of statistically significant 

findings. A subanalysis of the SOLVD study11 found no symptoms of angina 

pectoris in 85.3% of the patients on enalapril and in 82.5% of the patients on 

placebo (difference statistically significant at p < 0.001). In situations like this, one 

has to wonder about the clinical relevance of the small difference. This is even more 

so when one considers that an active compound generally causes more side-effects 

than does a placebo. Finally, we have to consider the point of bias. Arguments have 

been raised that controlled clinical trials although they adjust for placebo effects 

and time effects, are still quite vulnerable to other biases, e.g., psychological biases 
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and selection biases. In clinical trials, as opposed to regular patient care, patients are 

generally highly compliant; their high compliance is an important reason for 

participating in the trials in the first place. They have a positive attitude towards the 

trial and anticipate personal benefit from it, a mechanism which is known as the 

Hawthorne effect.12 Alternatively, patients selected for a trial often refuse to comply 

with randomization which may render unrepresentative samples.13 Statistics has 

great difficulty in handling such effects and is, essentially, unable to make sense of 

unrepresentative samples. Not being familiar with statistics raises a two-way risk: 

you’re not only missing the benefit of it but also fail to adequately recognize the 

limitations of it.  

 
10. CONCLUSIONS 

 
1. Statistics is fun for the clinical investigator because it generally confirms or 

largely confirms his / her prior hypotheses. 

2. Accounting some simple statistical principles can help the clinical investigator 

reduce imperfections in the design and execution of clinical trials. 

3. For the clinical investigator getting a good command of non-classical study 

designs can provide worthwhile extras to his / her research.  

4. Statistics is not like algebra, because it requires a lot of biological thinking and 

just a little bit of mathematics.  

5. Statistical analyses can be readily performed on such modern quality of life 

assessments like general feeling of well-being,  physical activity domains, 

psychosocial performance etc.  

6. Along this line the art of medicine is more and more being turned into scientific 

evidence. 

7. Statistics can do a lot for the clinical investigator if he / she  intuitively knows 

what statistics can and what it cannot answer. 

8. Statistics can help clinical investigators to interpret more adequately limitations 

as well as benefits of current clinical research.     

9. Statistics has, of course, limitations of its own. It can not give certainties, only 

chances. 

10. Statistical significance does not automatically indicate clinical relevance. 

Statistical methods can not test every possible source of bias in a trial.  

 

Not being familiar with statistics raises a two-way risk: you’re not only missing the 

benefit of it but also fail to adequately recognize its limitations. We hope that this 

book will be an incentive for readers to improve their statistical skills in order to 

better understand the statistical data as published in the literature and to be able to 

take better care of their own experimental data. 
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CHAPTER 31 

 
BIAS DUE TO CONFLICTS OF INTERESTS, SOME 

GUIDELINES 

 
1. INTRODUCTION 

 

The controlled clinical trial, the gold standard for drug development, is in jeopardy. 

The pharmaceutical industry rapidly expands its commend over clinical trials. 

Scientific rigor requires independence and objectivity. Safeguarding such criteria is 

hard with industrial sponsors, benefiting from favorable results, virtually 

completely in control. The recent Good Clinical Practice Criteria adopted by the 

European Community1 were not helpful, and even confirmed the right of the 

pharmaceutical industry to keep everything under control. Except for the 

requirement that the trial protocol should be approved by an external protocol 

review board, little further external monitoring of the trial is required in Europe 

today. The present paper was written to review flawed procedures jeopardizing the 

credibility of current clinical trials, and to look for possible solutions to the 

dilemma between sponsored industry and scientific independence.  

 
2. THE RANDOMIZED CONTROLLED CLINICAL TRIAL AS THE GOLD 

STANDARD 
 

Controlled clinical trials began in the UK with James Lind, on H.M.S. Salisbury, a 

royal Frigate, by the end of the 18th century. However, in 1948 the first randomized 

controlled trial was actually published by the English Medical Research Council in 

the British Medical Journal.2 Until then, published observations had been 

uncontrolled. Initially, trials frequently did not confirm hypotheses to be tested. 

This phenomenon was attributed to little sensitivity due to small samples, as well as 

inappropriate hypotheses based on biased prior trials. Additional flaws were being 

recognized and, subsequently were better accounted for: carryover effects due to 

insufficient washout from previous treatments, time effects due to external factors 

and the natural history of the condition under study, bias due to asymmetry between 

treatment groups, lack of sensitivity due to a negative correlation between treatment 

responses etc. Such flaws mainly of a technical nature have been largely 

implemented and lead to trials after 1970 being of significantly better quality than 

before. And so, the randomized clinical trial has gradually become accepted as the 

most effective way of determining the relative efficacy and toxicity of new drug 

therapies. High quality criteria for clinical trials include clearly defined hypotheses, 

explicit description of methods, uniform data analysis, but, most of all, a valid 
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design. A valid design means that the trial should be made independent, objective, 

balanced, blinded, controlled, with objective measurements. Any research but, 

certainly, industrially-sponsored drug research where sponsors benefit from 

favorable results, benefits from valid designs.   

 
3. NEED FOR CIRCUMSPECTION RECOGNIZED 

 

The past decade focused, in addition to technical aspects, on the need for 

circumspection in planning and conducting clinical trials.3 As a consequence, prior 

to approval, clinical trial protocols started to be routinely scrutinized by different 

circumstantial organs, including ethic committees, institutional and federal review 

boards, national and international scientific organizations, and monitoring 

committees charged with conducting interim analyses. And so things seems to be 

developing just fine until something else emerged, the rapidly expanding commend 

of the pharmaceutical industry over clinical trials.  Scientific rigor requires 

independence and objectivity of clinical research, and safeguarding such principles 

is hard with sponsors  virtually completely in control. 

 
4. THE EXPANDING COMMEND OF THE PHARMACEUTICAL INDUSTRY 

OVER CLINICAL TRIALS 
 

Today megatrials are being performed costing billions of dollars paid by the 

industry. Clinical research has become fragmented among many sites, and the 

control of clinical data often lies exclusively in the trial sponsor’s hands.4 A serious 

issue to consider here are adherence to scientific criteria like objectivity, and 

validity criteria like blindness during the analysis phase. In the USA, the FDA 

audits ongoing registered trials for scientific validity. However, even on-site-audits 

can hardly be considered capable of controlling each stage of the trial. Not any 

audits are provided by the FDA’s European counterparts. Instead, in 1991, the 

European Community endorsed the Good Clinical Practice (GCP) criteria 

developed1 as a collaborative efforts of governments, industries, and the profession. 

For each of the contributing parties benefits are different. Governments are 

interested in uniform guidelines and uniform legislation. For the profession the 

main incentives are scientific progress, and the adherence to scientific and validity 

criteria. In contrast, for the pharmaceutical industry a major incentive is its 

commercial interest. And so, the criteria are, obviously, a compromise. Scientific 

criteria like clearly defined prior hypotheses, explicit description of methods, 

uniform data analyses are broadly stated in the guidelines given.1 However, 

scientific criteria like instruments to control independence and objectivity of 

research are not included. Validity criteria like control groups and blinding are 

recognized, but requirements like specialized monitoring teams consistent of a 

group of external independent investigators guiding such criteria, and charged with 

interim analysis and stopping rules are not mentioned. And so, the implementation 

of the Good Clinical Practice Criteria are not helpful for the purpose of 
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safeguarding scientific independence. Instead, they confirmed the right of the 

pharmaceutical industry to keep everything under control. 

 
5. FLAWED PROCEDURES JEOPARDIZING CURRENT CLINICAL TRIALS 

 

Flawed procedures jeopardizing current clinical trials are listed in table 1. 

Industries, at least in Europe, are allowed to choose their own independent protocol 

review board prior to approval. Frequently, a pharmaceutical company chooses one-

and-the-same-board for all of its (multicenter) studies. The independent protocol 

review board may approve protocols, even if the research is beyond its scope of 

expertise, for example, specialized protocols like oncology-protocols without an 

oncologist among its members. Once the protocol is approved, little further external 

review is required in Europe today. Due to recent European Community 

Regulations, health facilities hosting multicenter trials are requested to refrain from 

scientific or ethic assessment. Their local committees may assess local logistic 

aspects of the trial but no more than that. And so, the once so important role of local 

committees to improve the objectivity of sponsored research is minimized. Another 

problem with the objectivity of industrially-sponsored clinical trials is the fact that 

the trial monitors are often employees of the pharmaceutical industry. Furthermore, 

data control is predominantly in the hands of the sponsor. Interim analyses are 

rarely performed by independent groups. The scientific committee of the trial 

consists largely of prominent but otherwise uninvolved physicians attached to the 

study, the socalled guests. Analysis and report of the trial is generally produced by 

clinical associates at the pharmaceutical companies, the ghosts, and, after a brief 

review, co-signed by prominent physicians attached to the study the socalled 

graphters.  

 
Table 1. Flawed procedures jeopardizing current clinical trials 

________________________________________________________________________________________________________________________________________________________________________  

1. Pharmaceutical industries, at least in Europe, are allowed to choose their 

own independent review board prior to approval. 

2. the independent protocol review board approves protocol even if the 

research is beyond the scope of its expertise. 

3. Health facilities hosting multicenter research are requested to refrain from 

ethic or scientific assessment after approval by the independent review 

board. 

4. Trial monitors are often employees of pharmaceutical industry. 

5. Data control is predominantly in the hands of the sponsor. 

6. Interim analyses are rarely performed by independent groups.  

7. The scientific committee of a trial consists largely of guests (names of 

prominent physicians attached to the study) and graphters ( for the purpose 

of giving the work more impact). 

8. The analysis and report is produced by ghosts (clinical associates at the 

pharmaceutical companies) and is after a brief review co-signed by the 

guests and graphters.    
 ________________________________________________________________________________________________________________________________________________________________________ 
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6. THE GOOD NEWS 
 

The Helsinki guidelines rewritten in the year 2000  have been criticized5 for its 

incompleteness regarding several ethical issues, e.g., those involving developing 

countries. However, these independently written guidelines also included important 

improvements.  For the first time the issue of conflict of interests has been assessed 

in at least 5 paragraphs. Good news is also the American FDA’s initiative to start 

auditing sponsored trials on site. In May 1998 editors of 70 major journals have 

endorsed the Consolidated Standards of Reporting Trials Statement (CONSORT) in 

an attempt to standardize the way trials are conducted, analyzed and reported. The 

same year, the Cochrane Collaborators together with the British journals The 

Lancet and The British Medical Journal have launched the “Unpublished Paper 

Amnesty Movement”, in an attempt to reduce publication bias. There is also good 

news from the basis. E.g., in 30 hospitals in the Netherlands local ethic committees, 

endorsed by the Netherlands Association of Hospitals, have declared that they will 

not give up scrutinizing sponsored research despite approval by the independent 

protocol review board.  

In our educational hospital house officers are particularly critical of the results of 

industrially-sponsored research even if it is in the Lancet or the New England 

Journal of Medicine, and they are more reluctant to accept results not fitting in their 

prior concept of pathophysiology, if the results are from industrially-sponsored 

research. Examples include: ACE-inhibitors for normotensive subjects at risk for 

cardiovascular disease (HOPE Study6), antihypertensive drugs for secondary 

secondary prevention of stroke in elderly subjects (PROGRESS Study7), beta-

blockers for heart failure (many sponsored studies, but none of them demonstrating 

an unequivocal improvement of cardiac performance8), cholesterol-lowering 

treatment for patients at risk of cardiovascular disease but normal LDL-cholesterol 

levels (Heart Protection Study), hypoglycemic drugs for prediabetics 

(NAVIGATOR Study). As a matter of fact, all of the above studies are based on not 

so sensitive univariate analyses. When we recently performed a multivariate 

analysis of a secondary prevention study with statins, we could demonstrate that 

patients with normal LDL-cholesterol levels did not benefit.9 

 
7. FURTHER SOLUTIONS TO THE DILEMMA BETWEEN SPONSORED 

RESEARCH AND THE INDEPENDENCE OF SCIENCE 
 

After more than 50 years of continuous improvement, the controlled clinical trial 

has become the most effective way of determining the relative efficacy and toxicity 

of new drug therapies. This gold standard is, however, in jeopardy due to the 

expanding commend of the pharmaceutical industry. Mega-trials are not only paid 

for by the industry but also designed, carried-out, and analyzed by the industry. 

Because objectivity is at stake when industrial money mixes with the profession9 it 

has been recently suggested to separate scientific research and the pharmaceutical 

industry. However, separation may not be necessary, and might be counter-

productive to the progress of medicine. After all, pharmaceutical industry  



BIAS DUE TO CONFLICTS OF INTERESTS 

has deserved substantial credits for developing important medicines, while other 

bodies including governments have not been able to develop medicines in the past 

40 years, with the exception of one or two vaccines. Also, separation would mean 

that economic incentives are lost not only on the part of the industry but also on the 

part of the profession while both are currently doing well in the progress of 

medicine. Money was and is a major motive to stimulate scientific progress. 

Without economic incentives from industry there may soon be few clinical trials. 

Circumspection from independent observers during each stage of the trial has been 

recognized as an alternative for increasing objectivity of research and preventing 

bias.3 In addition, tight control of study data, analysis, and interpretation by the 

commercial sponsor is undesirable. It not only raises the risk of biased 

interpretation, but also limits the opportunities for the scientific community to use 

the data for secondary analyses needed for future research.4 If the pharmaceutical 

industry allows the profession to more actively participate in different stages of the 

trial, scientific research will be better served,  and reasonable biological questions 

will be better answered. First on the agenda will have to be the criteria for adequate 

circumspection (table 2). Because the profession will be more convinced of its 

objective character,  this allowance will not be counterproductive to the sales. 

Scientific research will be exciting again, confirming prior hypotheses, and giving 

new and sound ideas for further research. 

 
Table 2. Criteria for adequate circumspection 

_______________________________________________________________________________________________________________________________________________________________________ 

1. Disclosure of conflict of interests and the nature of it from each party 

involved  

2. Independent ethical and scientific assessment of the protocol 

3. Independent monitoring of the conduct of the trial 

4. Independent monitoring of data management 

5. Independent monitoring of statistical analysis including the cleaning-up of 

the data 

6. The requirement to publish even if data do not fit in the commercial 

interest of the sponsor. 

7. Requirement that interim analyses be performed by an independent group. 
_______________________________________________________________________________________________________________________________________________________________________ 
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8. CONCLUSIONS 

 

The controlled clinical trial, the gold standard for clinical research, is in jeopardy. 

The pharmaceutical industry rapidly expands its commend over clinical trials. 

Scientific rigor requires independence and objectivity. Safeguarding such criteria is 

hard with industrial sponsors, benefiting from favorable results, virtually 

completely in control. The objective of this chapter was to review flawed 

procedures jeopardizing the credibility of trials, and to look for possible solutions to 

the dilemma between sponsored industry and scientific independence. 

Flawed procedures jeopardizing current clinical trials could be listed as follows. 

Industries, at least in Europe, are allowed to choose their own independent protocol 

review board prior to approval. The independent protocol review board approves 

protocols even if the research is beyond the scope of its expertise. Health facilities 

hosting multicenter trials are requested to refrain from scientific or ethic assessment 

of the trial. Trial monitors are often employees of industry. Data control is 

predominantly in the hands of the sponsor. Interim analyses are rarely performed by 

independent groups. The scientific committee of the trial consists largely of 

prominent but otherwise uninvolved physicians attached to the study. Analysis and 

report of the trial is generally provided by clinical associates at the pharmaceutical 

companies and, after a brief review, co-signed by prominent physicians attached to 

the study.  

Possible solutions to the dilemma between sponsored industry and scientific 

independence could include the following. Circumspection from independent 

observers during each stage of the trial is desirable. In contrast, tight control of 

study data, analysis, and interpretation by the commercial sponsor is  not desirable.  

If, instead, pharmaceutical industry allows the profession to more actively 

participate in different stages of  the trial, scientific research will be better served,  

reasonable biological questions will be better answered, and, because the profession 

will be more convinced of the objective character of the research, it will not be 

counterproductive to the sales. 
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Paired non-parametric test: Wilcoxon signed rank test, 

the table uses smaller of the two ranknumbers 
________________________________________ 

            N  pairs                P < 0.05              P < 0.01 

            7                         2                       0 

            8                         2                       0 

            9                         6                       2 

          10                         8                       3 

          11                       11                       5 

          12                       14                       7 

          13                       17                     10 

          14                       21                     13 

          15                       25                     16 

          16                       30                     19 

________________________________________ 

________________________________________ 
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Unpaired non-parametric test: Mann-Whitney test. Table uses 

difference of added up rank numbers between group 1 and group 2 

      P < 0.01 levels 

 
 

 
 

   _________________________________________________________  
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Unpaired non-parametric test: Mann-Whitney test. Table uses 

difference of added up rank numbers between group 1 and group 2 

   _________________________________________________________  

   P < 0.05 levels 
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