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updated for this third edition, which features important new material for both

research and application of the finite element method.

The discussion of saddle point problems is a highlight of the book and has

been elaborated to include many more nonstandard applications. The chapter

on applications in elasticity now contains a complete discussion of locking

phenomena.

The numerical solution of elliptic partial differential equations is an import-

ant application of finite elements and the author discusses this subject com-

prehensively. These equations are treated as variational problems for which

the Sobolev spaces are the right framework. Graduate students who do not

necessarily have any particular background in differential equations but

require an introduction to finite element methods will find this text invaluable.

Specifically, the chapter on finite elements in solid mechanics provides a bridge

between mathematics and engineering.
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Preface to the Third English Edition

The theory of finite elements and their applications is such a lively area that a
third edition has become necessary to cover new material that is of interest for
actual applications. At the same time we have taken the opportunity to correct
some misprints.

The greatest changes are found in Chapter III. Saddle point problems and
mixed methods are used now not only for variational problems with given con-
straints, but there is also an increasing interest in nonstandard saddle point methods.
Their flexibility enables the construction of finite elements with special properties,
e.g. they can soften specific terms of the energy functional in order to eliminate
locking phenomena. The treatment of the Poisson equation in the setting of saddle
point formulations can be regarded as a template for other examples and some of
these are covered in the present edition.

Another nonstandard application is the construction of a new type of a poste-
riori error estimate for conforming elements. This has the advantage that there is
no generic constant in the main term. Moreover, in this framework it is possible to
shed light on other relations between conforming elements and mixed methods.

In Chapter VI the treatment of locking has been reworked. Such phenomena
are well known to engineers, but the mathematical proof of locking is often more
cumbersome than the remedy. In most cases we focus therefore on the use of
appropriate finite elements and describe the negative results more briefly within
the context of the general theory of locking. In order to illustrate the full theory
and how it is implemented we also verify the locking effect for the Timoshenko
beam with all details and analyze all the standard remedies for this beam.

We have added many comments in all chapters in order to make a stronger
connection with current research. We have done this by adding new problems
whenever a comment in the text would have interrupted the thread. In addition,
we intend to put updates and additional material on our web pages
(http://homepage.rub.de/Dietrich.Braess/ftp.html) in the same way as we have
done for the previous editions.

The author again wishes to thank numerous friends who have given valu-
able hints for improvements of the text. Finally, thanks go again to Cambridge
University Press for cooperating on this Third Edition.

Autumn, 2006 Dietrich Braess



Preface to the First English Edition

This book is based on lectures regularly presented to students in the third
and fourth year at the Ruhr-University, Bochum. It was also used by the translater,
Larry Schumaker, in a graduate course at Vanderbilt University in Nashville. I
would like to thank him for agreeing to undertake the translation, and for the close
cooperation in carrying it out. My thanks are also due to Larry and his students
for raising a number of questions which led to improvements in the material itself.

Chapters I and II and selected sections of Chapters III and V provide material
for a typical course. I have especially emphasized the differences with the numer-
ical treatment of ordinary differential equations (for more details, see the preface
to the German edition).

One may ask why I was not content with presenting only simple finite ele-
ments based on complete polynomials. My motivation for doing more was provided
by problems in fluid mechanics and solid mechanics, which are treated to some
extent in Chapter III and VI. I am not aware of other textbooks for mathematicians
which give a mathematical treatment of finite elements in solid mechanics in this
generality.

The English translation contains some additions as compared to the German
edition from 1992. For example, I have added the theory for basic a posteriori
error estimates since a posteriori estimates are often used in connection with local
mesh refinements. This required a more general interpolation process which also
applies to non-uniform grids. In addition, I have also included an analysis of
locking phenomena in solid mechanics.

Finally, I would like to thank Cambridge University Press for their friendly
cooperation, and also Springer-Verlag for agreeing to the publication of this En-
glish version.

Autumn, 1996 Dietrich Braess



Preface to the German Edition

The method of finite elements is one of the main tools for the numerical treatment
of elliptic and parabolic partial differential equations. Because it is based on the
variational formulation of the differential equation, it is much more flexible than
finite difference methods and finite volume methods, and can thus be applied to
more complicated problems. For a long time, the development of finite elements
was carried out in parallel by both mathematicians and engineers, without either
group acknowledging the other. By the end of the 60’s and the beginning of the
70’s, the material became sufficiently standardized to allow its presentation to
students. This book is the result of a series of such lectures.

In contrast to the situation for ordinary differential equations, for elliptic
partial differential equations, frequently no classical solution exists, and we often
have to work with a so-called weak solution. This has consequences for both
the theory and the numerical treatment. While it is true that classical solutions do
exist under approriate regularity hypotheses, for numerical calculations we usually
cannot set up our analisis in a framework in which the existence of classical
solutions is guaranteed.

One way to get a suitable framework for solving elliptic boundary-value
problems using finite elements is to pose them as variational problems. It is our
goal in Chapter II to present the simplest possible introduction to this approach.
In Sections 1 – 3 we discuss the existence of weak solutions in Sobolev spaces,
and explain how the boundary conditions are incorporated into the variational
calculation. To give the reader a feeling for the theory, we derive a number of
properties of Sobolev spaces, or at least illustrate them. Sections 4 – 8 are devoted
to the foundations of finite elements. The most difficult part of this chapter is §6
where approximation theorems are presented. To simplify matters, we first treat
the special case of regular grids, which the reader may want to focus on in a first
reading.

In Chapter III we come to the part of the theory of finite elements which
requires deeper results from functional analysis. These are presented in §3. Among
other things, the reader will learn about the famous Ladyshenskaja–Babuška–
Brezzi condition, which is of great importance for the proper treatment of problems
in fluid mechanics and for mixed methods in structural mechanics. In fact, without
this knowledge and relying only on common sense, we would very likely find
ourselves trying to solve problems in fluid mechanics using elements with an
unstable behavior.

It was my aim to present this material with as little reliance on results from
real analysis and functional analysis as possible. On the other hand, a certain basic



Preface xiii

knowledge is extremely useful. In Chapter I we briefly discuss the difference
between the different types of partial differential equations. Students confronting
the numerical solution of elliptic differential equations for the first time often find
the finite difference method more accessible. However, the limits of the method
usually become apparent only later. For completeness we present an elementary
introduction to finite difference methods in Chapter I.

For fine discretizations, the finite element method leads to very large systems
of equations. The operation count for solving them by direct methods grows like
n2. In the last two decades, very efficient solvers have been developed based
on multigrid methods and on the method of conjugate gradients. We treat these
subjects in detail in Chapters IV and V.

Structural mechanics provides a very important application area for finite ele-
ments. Since these kinds of problems usually involve systems of partial differential
equations, often the elementary methods of Ch. II do not suffice, and we have to
use the extra flexibility which the deeper results of Ch. III allow. I found it nec-
essary to assemble a surprisingly wide set of building blocks in order to present a
mathematically rigorous theory for the numerical treatment by finite elements of
problems in linear elasticity theory.

Almost every section of the book includes a set of Problems, which are not
only excercises in the strict sense, but also serve to further develop various formu-
lae or results from a different viewpoint, or to follow a topic which would have
disturbed the flow had it been included in the text itself. It is well-known that in the
numerical treatment of partial differential equations, there are many opportunities
to go down a false path, even if unintended, particularly if one is thinking in terms
of classical solutions. Learning to avoid such pitfalls is one of the goals of this
book.

This book is based on lectures regularly presented to students in the fifth
through eighth semester at the Ruhr University, Bochum. Chapters I and II and
parts of Chapters III and V were presented in one semester, while the method
of conjugate gradients was left to another course. Chapter VI is the result of my
collaboration with both mathematicians and engineers at the Ruhr University.

A text like this can only be written with the help of many others. I would
like to thank F.-J. Barthold, C. Blömer, H. Blum, H. Cramer, W. Hackbusch, A.
Kirmse, U. Langer, P. Peisker, E. Stein, R. Verfürth, G. Wittum and B. Worat for
their corrections and suggestions for improvements. My thanks are also due to
Frau L. Mischke, who typeset the text using TEX, and to Herr Schwarz for his
help with technical problems relating to TEX. Finally, I would like to express my
appreciation to Springer-Verlag for the publication of the German edition of this
book, and for the always pleasant collaboration on its production.

Bochum, Autumn, 1991 Dietrich Braess



Notation

Notation for Differential Equations and Finite Elements

� open set in R
n

� =∂�

�D part of the boundary on which Dirichlet conditions are prescribed
�N part of the boundary on which Neumann conditions are prescribed
� Laplace operator
L differential operator

aik, a0 coefficient functions of the differential equation
[ · ]∗ difference star, stencil

L2(�) space of square-integrable functions over �

Hm(�) Sobolev space of L2 functions with square-integrable
derivatives up to order m

Hm
0 (�) subspace of Hm(�) of functions with generalized

zero bounary conditions
Ck(�) set of functions with continuous derivatives up to order k

Ck
0 (�) subspace of Ck(�) of functions with compact support

γ trace operator
‖ · ‖m Sobolev norm of order m

| · |m Sobolev semi-norm of order m

‖ · ‖∞ supremum norm
�2 space of square-summable sequences
H ′ dual space of H

〈·, ·〉 dual pairing
|α| =

∑
αi , order of multiindex α

∂i partial derivative ∂
∂xi

∂α partial derivative of order α

D (Fréchet) derivative
α ellipticity constant

ν, n exterior normal
∂ν, ∂/∂ν, ∂/∂n derivative in the direction of the exterior normal

∇f (∂f/∂x1, ∂f/∂x2, . . . , ∂f/∂xn)

div f
∑n

i=1(∂f/∂xi)

Sh finite element space
ψh basis function in Sh

Th partition of �

T (triangular or quadrilateral) element in Th

Tref reference element



Notation xv

hT , ρT radii of circumscribed circle and incircle of T , respectively
κ shape parameter of a partition

µ(T ) area (volume) of T

Pt set of polynomials of degree ≤ t

Qt polynomial set (II.5.4) w.r.t. quadrilateral elements
P3,red cubic polynomial without bubble function term
�ref set of polynomials which are formed by the restriction

of Sh to a (reference) element
s = dim �ref

 set of linear functionals in the definition of affine families
Mk, Mk

s , Mk
s,0 polynomial finite element spaces in L2, H s+1 and Hs+1

0
M1

∗,0 set of functions in M1 which are continuous at the midpoints of the
sides and which satisfy zero boundary conditions in the same sense

RTk Raviart–Thomas element of degree k

I, Ih interpolation operators on �ref and on Sh, respectively
A stiffness or system matrix
δ.. Kronecker symbol
e edge of an element

‖ · ‖m,h mesh-dependent norm
ker L kernel of the linear mapping L

V ⊥ orthogonal complement of V

V 0 polar of V

L Lagrange function
M space of restrictions (for saddle point problems)
β constant in the Brezzi condition

H(div, �) := {v ∈ L2(�)d; div v ∈ L2(�)}, � ∈ R
d

L2,0(�) set of functions in L2(�) with integral mean 0
B3 cubic bubble functions
η... error estimator

Notation for the Method of Conjugate Gradients

∇f gradient of f (column vector)
κ(A) spectral condition number of the matrix A

σ(A) spectrum of the matrix A

ρ(A) spectral radius of the matrix A

λmin(A) smallest eigenvalue of the matrix A

λmax(A) largest eigenvalue of the matrix A

At transpose of the matrix A

I unit matrix
C preconditioning matrix
gk gradient at the actual approximation xk



xvi Notation

dk direction of the correction in step k

Vk = span[g0, . . . , gk−1]
x ′y Euclidean scalar product of the vectors x and y

‖x‖A = √
x ′Ax (energy norm)

‖x‖∞ = maxi |xi | (maximum norm)
Tk k-th Chebyshev polynomial
ω relaxation parameter

Notation for the Multigrid Method

T� triangulation on the level �

S� = Sh�
finite element space on the level �

A� system matrix on the level �

N� = dim S�

S smoothing operator
r, r̃ restrictions

p prolongation
x�,k,m, u�,k,m variable on the level � in the k-th iteration step and in the m-th substep

ν1, ν2 number of presmoothings or postsmoothings, respectively
ν = ν1 + ν2

µ = 1 for V-cycle, = 2 for W-cycle
q = �max

ψ
j

� j -th basis function on the level �

ρ� convergence rate of MGM�

ρ = sup� ρ�

||| · |||s discrete norm of order s

β measure of the smoothness of a function in Sh

L nonlinear operator
L� nonlinear mapping on the level �

DL derivative of L
λ homotopy parameter for incremental methods

Notation for Solid Mechanics

u displacement
φ deformation
id identity mapping
C = ∇φT∇φ Cauchy–Green strain tensor
E strain
ε strain in a linear approximation
t Cauchy stress vector

T Cauchy stress tensor
TR first Piola–Kirchhoff stress tensor
R second Piola–Kirchhoff stress tensor



Notation xvii

T̂ = T̂ (F ) response function for the Cauchy stress tensor
̂ = ̂(F ) response function for the Piola–Kirchhoff stress tensor
̃ ̃(F T F ) = ̂(F )

T̄ T̄ (FFT ) = T̂ (F )

σ stress in linear approximation

S2 unit sphere in R
3

M
3 set of 3 × 3 matrices

M
3+ set of matrices in M

3 with positive determinants
O

3 set of orthogonal 3 × 3 matrices
O

3+ = O
3 ∩M

3+
S

3 set of symmetric 3 × 3 matrices
S

3
> set of positive definite matrices in S

3

ıA = (ı1(A), ı2(A), ı3(A)), invariants of A

∧ vector product in R
3

diag(d1, . . . , dn) diagonal matrix with elements d1, . . . , dn

λ, µ Lamé constants
E modulus of elasticity
ν Poisson ratio
n normal vector (different from Chs. II and III)
C σ = C ε

Ŵ energy functional of hyperelastic materials

W̃ W̃ (F T F ) = Ŵ (F )

ε : σ =∑
ij εij σij

�0, �1 parts of the boundary on which u andσ · n are prescribed, respectively
� energy functional in the linear theory

∇(s) symmetric gradient
as(τ ) skew-symmetric part of τ

Hs(�)d = [Hs(�)]d

H 1
�(�) := {v ∈ H 1(�)R; v(x) = 0 for x ∈ �0}

H(div, �) := {τ ∈ L2(�); div τ ∈ L2(�)}, τ is a vector or a tensor
H(rot, �) := {η ∈ L2(�)2; rot η ∈ L2(�)}, � ⊂ R

2

H−1(div, �) := {τ ∈ H−1(�)d; div τ ∈ H−1(�)}, � ⊂ R
d

θ, γ, w rotation, shear term, and transverse displacement
of beams and plates

t thickness of a beam, membrane, or plate
� length of a beam

Wh, �h, �h, Qh finite element spaces in plate theory
πh L2-projector onto �h

R restriction to �h

Ph L2-projector onto Qh





Chapter I

Introduction

In dealing with partial differential equations, it is useful to differentiate between
several types. In particular, we classify partial differential equations of second
order as elliptic, hyperbolic, and parabolic. Both the theoretical and numerical
treatment differ considerably for the three types. For example, in contrast with the
case of ordinary differential equations where either initial or boundary conditions
can be specified, here the type of equation determines whether initial, boundary,
or initial-boundary conditions should be imposed.

The most important application of the finite element method is to the numer-
ical solution of elliptic partial differential equations. Nevertheless, it is important
to understand the differences between the three types of equations. In addition, we
present some elementary properties of the various types of equations. Our discus-
sion will show that for differential equations of elliptic type, we need to specify
boundary conditions and not initial conditions.

There are two main approaches to the numerical solution of elliptic problems:
finite difference methods and variational methods. The finite element method be-
longs to the second category. Although finite element methods are particularly
effective for problems with complicated geometry, finite difference methods are
often employed for simple problems, primarily because they are simpler to use.
We include a short and elementary discussion of them in this chapter.
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§ 1. Examples and Classification of PDE’s

Examples

We first consider some examples of second order partial differential equations
which occur frequently in physics and engineering, and which provide the basic
prototypes for elliptic, hyperbolic, and parabolic equations.

1.1 Potential Equation. Let � be a domain in R
2. Find a function u on � with

uxx + uyy = 0. (1.1)

This is a differential equation of second order. To determine a unique solution, we
must also specify boundary conditions.

One way to get solutions of (1.1) is to identify R
2 with the complex plane. It is

known from function theory that if w(z) = u(z)+ iv(z) is a holomorphic function
on �, then its real part u and imaginary part v satisfy the potential equation.
Moreover, u and v are infinitely often differentiable in the interior of �, and attain
their maximum and minimum values on the boundary.

For the case where � := {(x, y) ∈ R
2; x2 + y2 < 1} is a disk, there is a

simple formula for the solution. Since zk = (reiφ)k is holomorphic, it follows that

rk cos kφ, rk sin kφ, for k = 0, 1, 2, . . . ,

satisfy the potential equation. If we expand these functions on the boundary in
Fourier series,

u(cos φ, sin φ) = a0 +
∞∑

k=1

(ak cos kφ + bk sin kφ),

we can represent the solution in the interior as

u(x, y) = a0 +
∞∑

k=1

rk(ak cos kφ + bk sin kφ). (1.2)

The differential operator in (1.1) is the two-dimensional Laplace operator.
For functions of d variables, it is

�u :=
d∑

i=1

∂2u

∂x2
i

.

The potential equation is a special case of the Poisson equation.
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1.2 Poisson Equation. Let � be a domain in R
d , d = 2 or 3. Here f : � → R

is a prescribed charge density in �, and the solution u of the Poisson equation

−�u = f in � (1.3)

describes the potential throughout �. As with the potential equation, this type of
problem should be posed with boundary conditions.

1.3 The Plateau Problem as a Prototype of a Variational Problem. Suppose
we stretch an ideal elastic membrane over a wire frame to create a drum. Suppose
the wire frame is described by a closed, rectifiable curve in R

3, and suppose that
its parallel projection onto the (x, y)-plane is a curve with no double points. Then
the position of the membrane can be described as the graph of a function u(x, y).
Because of the elasticity, it must assume a position such that its surface area∫

�

√
1 + u2

x + u2
y dxdy

is minimal.

In order to solve this nonlinear variational problem approximately, we intro-
duce a simplification. Since

√
1 + z = 1 + z

2 + O(z2), for small values of ux

and uy we can replace the integrand by a quadratic expression. This leads to the
problem

1

2

∫
�

(u2
x + u2

y) dxdy → min! (1.4)

The values of u on the boundary ∂� are prescribed by the given curve. We now
show that the minimum is characterized by the associated Euler equation

�u = 0. (1.5)

Since such variational problems will be dealt with in more detail in Chapter
II, here we establish (1.5) only on the assumption that a minimal solution u exists
in C2(�)∩C0(�̄). If a solution belongs to C2(�)∩C0(�̄), it is called a classical
solution. Let

D(u, v) :=
∫

�

(uxvx + uyvy) dxdy

and D(v) := D(v, v). The quadratic form D satisfies the binomial formula

D(u+ αv) = D(u)+ 2αD(u, v)+ α2D(v).

Let v ∈ C1(�) and v|∂� = 0. Since u + αv for α ∈ R is an admissible function
for the minimum problem (1.4), we have ∂

∂α
D(u + αv) = 0 for α = 0. Using
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the above binomial formula, we get D(u, v) = 0. Now applying Green’s integral
formula, we have

0 = D(u, v) =
∫

�

(uxvx + uyvy) dxdy

= −
∫

�

v(uxx + uyy) dxdy +
∫

∂�

v(uxdy − uy dx).

The contour integral vanishes because of the boundary condition for v. The first
integral vanishes for all v ∈ C1(�) if and only if �u = uxx + uyy = 0. This
proves that (1.5) characterizes the solution of the (linearized) Plateau problem.

1.4 The Wave Equation as a Prototype of a Hyperbolic Differential Equa-
tion. The motion of particles in an ideal gas is subject to the following three laws,
where as usual, we denote the velocity by v, the density by ρ, and the pressure by
p:

1. Continuity Equation.
∂ρ

∂t
= −ρ0 div v.

Because of conservation of mass, the change in the mass contained in a
(partial) volume V must be equal to the flow through its surface, i.e., it must
be equal to

∫
∂V

ρv ·ndO. Applying Gauss’ integral theorem, we get the above
equation. Here ρ is approximated by the fixed density ρ0.

2. Newton’s Law.

ρ0
∂v

∂t
= − grad p.

The gradient in pressure induces a force field which causes the acceleration
of the particles.

3. State Equation.
p = c2ρ.

In ideal gases, the pressure is proportional to the density for constant temper-
ature.

Using these three laws, we conclude that

∂2

∂t2
p = c2 ∂2ρ

∂t2
= −c2 ∂

∂t
ρ0 div v = −c2 div(ρ0

∂v

∂t
)

= c2 div grad p = c2�p.

Other examples of the wave equation

utt = c2�u
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arise in two space dimensions for vibrating membranes, and in the one-dimension-
al case for a vibrating string. In one space dimension, the equation simplifies when
c is normalized to 1:

utt = uxx. (1.6)

The wave equation leads to a well-posed problem (see Definition 1.8 below) when
combined with initial conditions of the form

u(x, 0) = f (x),

ut (x, 0) = g(x).
(1.7)

1.5 Solution of the One-dimensional Wave Equation. To solve the wave equa-
tion (1.6)–(1.7), we apply the transformation of variables

ξ = x + t,

η = x − t.
(1.8)

Applying the chain rule ux = uξ
∂ξ
∂x
+ uη

∂η

∂x
, etc., we easily get

ux = uξ + uη, uxx = uξξ + 2uξη + uηη,

ut = uξ − uη, utt = uξξ − 2uξη + uηη.
(1.9)

Substituting the formulas (1.9) in (1.6) gives

4uξη = 0.

The general solution is

u = φ(ξ)+ ψ(η)

= φ(x + t)+ ψ(x − t), (1.10)

where φ and ψ are functions which can be determined from the initial conditions
(1.7):

f (x) = φ(x)+ ψ(x),

g(x) = φ′(x)− ψ ′(x).

After differentiating the first equation, we have two equations for φ′ and ψ ′ which
are easily solved:

φ′ = 1

2
(f ′ + g), φ(ξ) = 1

2
f (ξ)+ 1

2

∫ ξ

x0

g(s) ds,

ψ ′ = 1

2
(f ′ − g), ψ(η) = 1

2
f (η)− 1

2

∫ η

x0

g(s) ds.
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(x, t)
•

�
�

�
�

� �
�

�
�

�• •
x − t x + t︸ ︷︷ ︸

Domain of dependence

Fig. 1. Domain of dependence for the wave equation

Finally, using (1.10) we get

u(x, t) = 1

2
[f (x + t)+ f (x − t)] + 1

2

∫ x+t

x−t

g(s) ds. (1.11)

We emphasize that the solution u(x, t) depends only on the initial values
between the points x−t and x+t (see Fig. 1). [If the constant c is not normalized to
be 1, the dependence is on all points between x− ct and x+ ct]. This corresponds
to the fact that in the underlying physical system, any change of data can only
propagate with a finite velocity.

The solution u in (1.11) was derived on the assumption that it is twice dif-
ferentiable. If the initial functions f and g are not differentiable, then neither are
φ, ψ and u. However, the formula (1.11) remains correct and makes sense even
in the nondifferentiable case.

1.6 The Heat Equation as a Prototype of a Parabolic Equation. Let T (x, t)

be the distribution of temperature in an object. Then the heat flow is given by

F = −κ grad T ,

where κ is the diffusion constant which depends on the material. Because of
conservation of energy, the change in energy in a volume element is the sum of
the heat flow through the surface and the amount of heat injection Q. Using the
same arguments as for conservation of mass in Example 1.4, we have

∂E

∂t
= − div F +Q

= div κ grad T +Q

= κ�T +Q,

where κ is assumed to be constant. Introducing the constant a = ∂E/∂T for the
specific heat (which also depends on the material), we get

∂T

∂t
= κ

a
�T + 1

a
Q.
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For a one-dimensional rod and Q = 0, with u = T this simplifies to

ut = σuxx, (1.12)

where σ = κ/a. As before, we may assume the normalization σ = 1 by an
appropriate choice of units.

Parabolic problems typically lead to initial-boundary-value problems.

We first consider the heat distribution on a rod of finite length �. Then, in
addition to the initial values, we also have to specify the temperature or the heat
fluxes on the boundaries. For simplicity, we restrict ourselves to the case where
the temperature is constant at both ends of the rod as a function of time. Then,
without loss of generality, we can assume that

σ = 1, � = π and u(0, t) = u(π, t) = 0;

cf. Problem 1.10. Suppose the initial values are given by the Fourier series expan-
sion

u(x, 0) =
∞∑

k=1

ak sin kx, 0 < x < π.

Obviously, the functions e−k2t sin kx satisfy the heat equation ut = uxx , and thus

u(x, t) =
∞∑

k=1

ake
−k2t sin kx, t ≥ 0 (1.13)

is a solution of the given initial-value problem.

For an infinitely long rod, the boundary conditions drop out. Now we need
to know something about the decay of the initial values at infinity, which we
ignore here. In this case we can write the solution using Fourier integrals instead
of Fourier series. This leads to the representation

u(x, t) = 1

2
√

πt

∫ +∞

−∞
e−ξ2/4t f (x − ξ) dξ, (1.14)

where the initial value f (x) := u(x, 0) appears explicitly. Note that the solution at
a point (x, t) depends on the initial values on the entire domain, and the propagation
of the data occurs with infinite speed.
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Classification of PDE’s

Problems involving ordinary differential equations can be posed with either initial
or boundary conditions. This is no longer the case for partial differential equations.
Here the question of whether initial or boundary conditions should be applied
depends on the type of the differential equation.

The general linear partial differential equation of second order in n variables
x = (x1, . . . , xn) has the form

−
n∑

i,k=1

aik(x)uxixk
+

n∑
i=1

bi(x)uxi
+ c(x)u = f (x). (1.15)

If the functions aik, bi and c do not depend on x, then the partial differential
equation has constant coefficients. Since uxixk

= uxkxi
for any function which is

twice continuously differentiable, without loss of generality we can assume the
symmetry aik(x) = aki(x). Then the corresponding n× n matrix

A(x) := (aik(x))

is symmetric.

1.7 Definition. (1) The equation (1.15) is called elliptic at the point x provided
A(x) is positive definite.
(2) The equation (1.15) is called hyperbolic at the point x provided A(x) has one
negative and n− 1 positive eigenvalues.
(3) The equation (1.15) is called parabolic at the point x provided A(x) is positive
semidefinite, but is not positive definite, and the rank of (A(x), b(x)) equals n.
(4) An equation is called elliptic, hyperbolic or parabolic provided it has the
corresponding property for all points of the domain.

In the elliptic case, the equation (1.15) is usually written in the compact form

L u = f, (1.16)

where L is an elliptic differential operator of order 2. The part with the derivatives
of highest order, i.e., −∑ aik(x)uxixk

, is called the principal part of L. For hy-
perbolic and parabolic problems there is a special variable which is usually time.
Thus, hyperbolic differential equations can often be written in the form

utt + Lu = f, (1.17)

while parabolic ones can often be written in the form

ut + Lu = f, (1.18)

where L is an elliptic differential operator.
If a differential equation is invariant under isometric mappings (i.e., under

translation and rotation), then the elliptic operator has the form

Lu = −a0�u+ c0u.

The above examples all display this invariance.
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Well-posed Problems

What happens if we consider a partial differential equation in a framework which
is meant for a different type?

To answer this question, we first turn to the wave equation (1.6), and attempt
to solve the boundary-value problem in the domain

� = {(x, t) ∈ R
2; a1 < x + t < a2, b1 < x − t < b2}.

Here � is a rotated rectangle, and its sides are parallel to the coordinate axes ξ, η

defined in (1.8). In view of u(ξ, η) = φ(ξ) + ψ(η), the values of u on opposite
sides of � can differ only by a constant. Thus, the boundary-value problem with
general data is not solvable. This also follows for differently shaped domains by
similar but somewhat more involved considerations.

Next we study the potential equation (1.1) in the domain {(x, y) ∈ R
2; y ≥ 0}

as an initial-value problem, where y plays the role of time. Let n > 0. Assuming

u(x, 0) = 1

n
sin nx,

uy(x, 0) = 0,

we clearly get the formal solution

u(x, y) = 1

n
cosh ny sin nx,

which grows like eny . Since n can be arbitrarily large, we draw the following
conclusion: there exist arbitrarily small initial values for which the corresponding
solution at y = 1 is arbitrarily large. This means that solutions of this problem,
when they exist, are not stable with respect to perturbations of the initial values.

Using the same arguments, it is immediately clear from (1.13) that a solution
of a parabolic equation is well-behaved for t > t0, but not for t < t0. However,
sometimes we want to solve the heat equation in the backwards direction, e.g.,
in order to find out what initial temperature distribution is needed in order to get
a prescribed distribution at a later time t1 > 0. This is a well-known improperly
posed problem. By (1.13), we can prescribe at most the low frequency terms of
the temperature at time t1, but by no means the high frequency ones.

Considerations of this type led Hadamard [1932] to consider the solvability
of differential equations (and similarly structured problems) together with the
stability of the solution.
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1.8 Definition. A problem is called well posed provided it has a unique solution
which depends continuously on the given data. Otherwise it is called improperly
posed.

In principle, the question of whether a problem is well posed can depend on
the choice of the norm used for the corresponding function spaces. For example,
from (1.11) we see that problem (1.6)–(1.7) is well posed. The mapping

C(R)× C(R) −→ C(R× R+),

f, g �−→ u

defined by (1.11) is continuous provided C(R) is endowed with the usual maximum
norm, and C(R× R+) is endowed with the weighted norm

‖u‖ := max
x,t

{ |u(x, t)|
1 + |t | }.

The maximum principle to be discussed in the next section is a useful tool for
showing that elliptic and parabolic differential equations are well posed.

Problems

1.9 Consider the potential equation in the disk � := {(x, y) ∈ R
2; x2+y2 < 1},

with the boundary condition

∂

∂r
u(x) = g(x) for x ∈ ∂�

on the derivative in the normal direction. Find the solution when g is given by the
Fourier series

g(cos φ, sin φ) =
∞∑

k=1

(ak cos kφ + bk sin kφ)

without a constant term. (The reason for the lack of a constant term will be ex-
plained in Ch. II, §3.)

1.10 Consider the heat equation (1.12) for a rod with σ �= 1, � �= π and
u(0, t) = u(�, t) = T0 �= 0. How should the scalars, i.e., the constants in the
transformations t �−→ αt, x �−→ βx, u �−→ u+γ , be chosen so that the problem
reduces to the normalized one?
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1.11 Solve the heat equation for a rod with the temperature fixed only at the left
end. Suppose that at the right end, the rod is isolated, so that the heat flow, and
thus ∂T /∂x, vanishes there.

Hint: For k odd, the functions φk(x) = sin kx satisfy the boundary conditions
φk(0) = 0, ϕ′(π

2 ) = 0.

1.12 Suppose u is a solution of the wave equation, and that at time t = 0, u is
zero outside of a bounded set. Show that the energy∫

Rd

[u2
t + c2(grad u)2] dx (1.19)

is constant.

Hint: Write the wave equation in the symmetric form

ut = c div v,

vt = c grad u,

and represent the time derivative of the integrand in (1.19) as the divergence of an
appropriate expression.
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§ 2. The Maximum Principle

An important tool for the analysis of finite difference methods is the discrete
analog of the so-called maximum principle. Before turning to the discrete case,
we examine a simple continuous version.

In the following, � denotes a bounded domain in R
d . Let

Lu := −
d∑

i,k=1

aik(x)uxixk
(2.1)

be a linear elliptic differential operator L. This means that the matrix A = (aik)

is symmetric and positive definite on �. For our purposes we need a quantitative
measure of ellipticity.

For convenience, the reader may assume that the coefficients aik are contin-
uous functions, although the results remain true under less restrictive hypotheses.

2.1 Maximum Principle. For u ∈ C2(�) ∩ C0(�̄), let

Lu = f ≤ 0 in �.

Then u attains its maximum over �̄ on the boundary of �. Moreover, if u attains a
maximum at an interior point of a connected set �, then u must be constant on �.

Here we prove the first assertion. For a proof of the second one, see Gilbarg
and Trudinger [1983].

(1) We first carry out the proof under the stronger assumption that f < 0.
Suppose that for some x0 ∈ �,

u(x0) = sup
x∈�

u(x) > sup
x∈∂�

u(x).

Applying the linear coordinate transformation x �−→ ξ = Ux, the differential
operator becomes

Lu = −
∑
i,k

(U tA(x)U)ikuξiξk

in the new coordinates. In view of the symmetry, we can find an orthogonal matrix
U so that UT A(x0)U is diagonal. By the definiteness of A(x0), we deduce that
these diagonal elements are positive. Since x0 is a maximal point,

uξi
= 0, uξiξi

≤ 0
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at x = x0. This means that

Lu(x0) = −
∑

i

(UT A(x0)U)iiuξiξi
≥ 0,

in contradiction with Lu(x0) = f (x0) < 0.

(2) Now suppose that f (x) ≤ 0 and that there exists x = x̄ ∈ � with
u(x̄) > supx∈∂� u(x). The auxiliary function h(x) := (x1 − x̄1)

2 + (x2 − x̄2)
2 +

· · · + (xd − x̄d )
2 is bounded on ∂�. Now if δ > 0 is chosen sufficiently small,

then the function
w := u+ δh

attains its maximum at a point x0 in the interior. Since hxixk
= 2δik , we have

Lw(x0) =Lu(x0)+ δLh(x0)

=f (x0)− 2δ
∑

i

aii(x0) < 0.

This leads to a contradiction just as in the first part of the proof.

Examples

The maximum principle has interesting interpretations for the equations (1.1)–
(1.3). If the charge density vanishes in a domain �, then the potential is determined
by the potential equation. Without any charge, the potential in the interior cannot
be larger than its maximum on the boundary. The same holds if there are only
negative charges.

Next we consider the variational problem 1.3. Let c := maxx∈∂� u(x). If the
solution u does not attain its maximum on the boundary, then

w(x) := min{u(x), c}

defines an admissible function which is different from u. Now the integral D(w, w)

exists in the sense of Lebesgue, and

D(w, w) =
∫

�1

(u2
x + u2

y) dxdy <

∫
�

(u2
x + u2

y) dxdy,

where �1 := {(x, y) ∈ �; u(x) < c}. Thus, w leads to a smaller (generalized)
surface than u. We can smooth w to get a differentiable function which also
provides a smaller surface. This means that the minimal solution must satisfy the
maximum principle.
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Corollaries

A number of simple consequences of the maximum principle can be easily de-
rived by elementary means, such as taking the difference of two functions, or by
replacing u by −u.

2.2 Definition. An elliptic operator of the form (2.1) is called uniformly elliptic
provided there exists a constant α > 0 such that

ξ ′A(x)ξ ≥ α‖ξ‖2 for ξ ∈ R
d , x ∈ �. (2.2)

The largest such constant α is called the constant of ellipticity.

2.3 Corollary. Suppose L is a linear elliptic differential operator.

(1) Minimum Principle. If Lu = f ≥ 0 on �, then u attains its minimum on the
boundary of �.

(2) Comparison Principle. Suppose u, v ∈ C2(�) ∩ C0(�̄) and

Lu ≤ Lv in �,

u ≤ v on ∂�.

Then u ≤ v in �.

(3) Continuous Dependence on the Boundary Data. The solution of the linear
equation Lu = f with Dirichlet boundary conditions depends continuously on the
boundary values. Suppose u1 and u2 are solutions of the linear equation Lu = f

with two different boundary values. Then

sup
x∈�

|u1(x)− u2(x)| = sup
z∈∂�

|u1(z)− u2(z)|.

(4) Continuous Dependence on the Right-Hand Side. Let L be uniformly elliptic
in �. Then there exists a constant c which depends only on � and the ellipticity
constant α such that

|u(x)| ≤ sup
z∈∂�

|u(z)| + c sup
z∈�

|Lu(z)| (2.3)

for every u ∈ C2(�) ∩ C0(�̄).

(5) Elliptic Operators with Helmholtz Terms. There is a weak form of the maximum
principle for the general differential operator

Lu := −
d∑

i,k=1

aik(x)uxixk
+ c(x)u with c(x) ≥ 0. (2.4)
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In particular, Lu ≤ 0 implies

max
x∈�

u(x) ≤ max{0, max
x∈∂�

u(x)}. (2.5)

Proof. (1) Apply the maximum principle to v := −u.

(2) By construction, Lw = Lv−Lu ≥ 0 and w ≥ 0 on ∂�, where w := v−u.
It follows from the minimum principle that inf w ≥ 0, and thus w(x) ≥ 0 in �.

(3) Lw = 0 for w := u1 − u2. It follows from the maximum principle that
w(x) ≤ supz∈∂� w(z) ≤ supz∈∂� |w(z)|. Similarly, the minimum principle implies
w(x) ≥ − supz∈∂� |w(z)|.

(4) Suppose � is contained in a circle of radius R. Since we are free to choose
the coordinate system, we may assume without loss of generality that the center
of this circle is at the origin. Let

w(x) = R2 −
∑

i

x2
i .

Since wxixk
= −2δik , clearly Lw ≥ 2nα and 0 ≤ w ≤ R2 in �, where α is the

ellipticity constant appearing in Definition 2.2. Let

v(x) := sup
z∈∂�

|u(z)| + w(x) · 1

2nα
sup
z∈∂�

|Lu(z)|.

Then by construction, Lv ≥ |Lu| in �, and v ≥ |u| on ∂�. The comparison
principle in (2) implies −v(x) ≤ u(x) ≤ +v(x) in �. Since w ≤ R2, we get (2.3)
with c = R2/2nα.

(5) It suffices to give a proof for x0 ∈ � and u(x0) = supz∈� u(z) > 0. Then
Lu(x0) − c(x0)u(x0) ≤ Lu(x0) ≤ 0, and moreover, the principal part Lu − cu

defines an elliptic operator. Now the proof proceeds as for Theorem 2.1.

Problem

2.4 For a uniformly elliptic differential operator of the form (2.4), show that the
solution depends continuously on the data.
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§ 3. Finite Difference Methods

The finite difference method for the numerical solution of an elliptic partial differ-
ential equation involves computing approximate values for the solution at points
on a rectangular grid. To compute these values, derivatives are replaced by di-
vided differences. The stability of the method follows from a discrete analog of
the maximum principle, which we will call the discrete maximum principle. For
simplicity, we assume that � is a domain in R

2.

Discretization

The first step in the discretization is to put a two-dimensional grid over the domain
�. For simplicity, we restrict ourselves to a grid with constant mesh size h in both
variables; see Fig. 2:

�h := {(x, y) ∈ �; x = kh, y = �h with k, � ∈ Z},
∂�h := {(x, y) ∈ ∂�; x = kh or y = �h with k, � ∈ Z}.

We want to compute approximations to the values of u on �h. These approximate
values define a function U on �h∪∂�h. We can think of U as a vector of dimension
equal to the number of grid points.

Fig. 2. A grid on a domain �

We get an equation at each point zi = (xi, yi) of �h by evaluating the
differential equation Lu = f , after replacing the derivatives in the representation
(2.4) by divided differences. We choose the center of the divided difference to
be the grid point of interest, and mark the neighboring points with subscripts
indicating their direction relative to the center (see Fig. 3).
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N•
(x, y + hN)

(x − hW , y) (x, y) (x + hE, y)
• • •
W C E

(x, y − hS)•
S

Fig. 3. Coordinates of the neighboring points of C for nonuniform step sizes.
The labels of the neighbors refer to the directions east, south, west, and north.

If (x, y) is a point on a square grid whose distance to the boundary is greater
than h, we can choose hN = hW = hS = hE (see Fig. 2). However, for points
in the neighborhood of the boundary, we have to choose hE �= hW or hN �= hS .
Using the Taylor formula, we see that for u ∈ C3(�),

uxx = 2

hE(hE + hW)
uE − 2

hEhW

uC + 2

hW(hE + hW)
uW +O(h), (3.1)

where h is the maximum of hE and hW . In the special case where the step sizes
are the same, i.e., hE = hW = h, we get the simpler formula

uxx = 1

h2
(uE − 2uC + uW)+O(h2) for u ∈ C4(�), (3.2)

with an error term of second order. Analogous formulas hold for approximating
uyy in terms of the values uC, uS and uN . To approximate the mixed derivative
uxy by a divided difference, we also need either the values at the NW and SE
positions, or those at the NE and SW positions.

Discretization of the Poisson equation −�u = f leads to a system of the
form

αCuC + αEuE + αSuS + αWuW + αNuN = h2f (xC) for xC ∈ �h, (3.3)

where for each zC ∈ �h, uC is the associated function value. The variables with
a subscript indicating a compass direction are values of u at points which are
neighbors of xC . If the differential equation has constant coefficients and we use
a uniform grid, then the coefficients α∗ appearing in (3.3) for a point xC not near
the boundary do not depend on C. We can write them in a matrix which we call
the difference star or stencil:[

αNW αN αNE

αW αC αE

αSW αS αSE

]
∗
. (3.4)



18 I. Introduction

For example, for the Laplace operator, (3.2) yields the standard five-point stencil

1

h2

[ −1
−1 +4 −1

−1

]
∗
.

To get a higher order discretization error we can use the nine-point stencil for
(1/12)[8�u(x, y)+�u(x+h, y)+�u(x−h, y)+�u(x, y+h)+�u(x, y−h)].

1

6h2

[−1 −4 −1
−4 20 −4
−1 −4 −1

]
∗

3.1 An Algorithm for the Discretization of the Dirichlet Problem.
1. Choose a step size h > 0, and construct �h and ∂�h.
2. Let n and m be the numbers of points in �h and ∂�h, respectively. Number

the points of �h from 1 to n. Usually this is done so that the coordinates
(xi, yi) appear in lexicographical order. Number the boundary points as n+1
to n+m.

3. Insert the given values at the boundary points:

Ui = u(zi) for i = n+ 1, . . . , n+m.

4. For every interior point zi ∈ �h, write the difference equation with zi as
center point which gives the discrete analog of Lu(zi) = f (zi):∑

�=C,E,S,W,N

α�U� = f (zi). (3.5)

If a neighboring point z� belongs to the boundary ∂�h, move the associated
term α�U� in (3.5) to the right-hand side.

5. Step 4 leads to a system
AhU = f

of n equations in n unknowns Ui . Solve this system and identify the solution
U as an approximation to u on the grid �h. (Usually U is called a numerical
solution of the PDE.)

��
�� 9

�� 8
10 3 �� 7

�� 6
11 1 2 ��

��
4 5

Fig. 4. Grid for Example 3.2
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3.2 Examples. (1) Let � be an isosceles right triangle whose nondiagonal sides
are of length 7; see Fig. 4. Suppose we want to solve the Laplace equation �u = 0
with Dirichlet boundary conditions. For h = 2, �h contains three points. We get
the following system of equations for U1, U2 and U3:

U1 − 1

4
U2 − 1

4
U3 = 1

4
U4 + 1

4
U11,

−1

6
U1 + U2 = 1

6
U5 + 1

3
U6 + 1

3
U7,

−1

6
U1 + U3 = 1

3
U8 + 1

3
U9 + 1

6
U10.

(2) Suppose we want to solve the Poisson equation in the unit square:

−�u = f in � = [0, 1]2,

u = 0 on ∂�.

Choose a grid on � with mesh size h = 1/m. For convenience, we use the double
indexing system Uij ≈ u( i

m
,

j

m
), 1 ≤ i, j ≤ m− 1. This leads to the system

4Ui,j − Ui−1,j − Ui+1,j − Ui,j−1 − Ui,j+1 = fi,j , 1 ≤ i, j ≤ m− 1, (3.6)

where fi,j = h2f ( i
m

,
j

m
). Here terms with indices 0 or m are taken to be zero.

Discrete Maximum Principle

When using the standard five-point stencil (and also in Example 3.2) every value
Ui is a weighted average of neighboring values. This clearly implies that no value
can be larger than the maximum of its neighbors, and is a special case of the
following more general result.

3.3 Star Lemma. Let k ≥ 1. Suppose αi and pi, 0 ≤ i ≤ k, are such that

αi < 0 for i = 1, 2, . . . , k,

k∑
i=0

αi ≥ 0,

k∑
i=0

αipi ≤ 0.

In addition, let p0 ≥ 0 or
∑k

i=0 αi = 0. Then p0 ≥ max1≤i≤k pi implies

p0 = p1 = · · · = pk. (3.7)

Proof. The hypotheses imply that

k∑
i=1

αi(pi − p0) =
k∑

i=0

αi(pi − p0) =
k∑

i=0

αipi − p0

k∑
i=0

αi ≤ 0.
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Since αi < 0 for i = 1, . . . , k and pi − p0 ≤ 0, all summands appearing in the
sums on the left-hand side are nonnegative. Hence, every summand equals 0. Now
αi �= 0 implies (3.7).

In the following, it is important to note that the discretization can change
the topological structure of �. If � is connected, it does not follow that �h is
connected (with an appropriate definition). The situation shown in Fig. 5 leads to
a system with a reducible matrix. To guarantee that the matrix is irreducible, we
have to use a sufficiently small mesh size.

Fig. 5. Connected domain � for which �h is not connected

3.4 Definition. �h is said to be (discretely) connected provided that between every
pair of points in �h, there exists a path of grid lines which remains inside of �.

Clearly, using a finite difference method to solve the Poisson equation, we
get a system with an irreducible matrix if and only if �h is discretely connected.

We are now in a position to formulate the discrete maximum principle. Note
that the hypotheses for the standard five-point stencil for the Laplace operator are
satisfied.

3.5 Discrete Maximum Principle. Let U be a solution of the linear system which
arises from the discretization of

Lu = f in � with f ≤ 0

using a stencil which satisfies the following three conditions at every grid point in
�h:

(i) All of the coefficients except for the one at the center are nonpositive.
(ii) The coefficient in one of the directions is negative, say αE < 0.

(iii) The sum of all of the coefficients is nonnegative.
Then

max
zi∈�h

Ui ≤ max
zj∈∂�h

Uj . (3.8)

Furthermore, suppose the maximum over all the grid points is attained in the
interior, the coefficients αE, αS, αW and αN in all four cardinal directions are
negative, and �h is discretely connected. Then U is constant.
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Proof. (1) If the maximum value over �̄h is attained at zi ∈ �h, then Ui must have
the same values at all of the neighboring points which appear in the stencil of zi .
This follows from the star lemma when UC is identified with p0 and UE, US, . . .

are identified with p1, p2, . . ..

(2) The assertion now follows using the technique of marching to the bound-
ary. Consider all points of �h and ∂�h which lie on the same horizontal grid line
as the point zi . It follows from (1) by induction that the maximum is attained at
all points on this line lying between zi and the first encountered boundary point.

(3) If �h is connected, by Definition 3.4 we can choose a polygonal path
between zi and any point zk in �h. Repeating the argument of (2), we get Ui = Uk ,
and thus U is constant.

The discrete maximum principle implies that the discrete solution U has
properties which correspond exactly to those in Corollary 2.3. In particular, we
have both the comparison principle and the continuous dependence on f and on
the boundary data. In addition, we have

3.6 Corollary. If the hypotheses of the first part of the discrete maximum principle
3.5 are satisfied, then the system AhU = f in 3.1(5) has a unique solution.

Proof. The corresponding homogeneous system AhU = 0 is associated with the
discretization of the homogeneous differential equation with zero boundary con-
dition. By 3.5, max Ui = min Ui = 0. Thus the homogeneous system has only the
trivial solution, and the matrix Ah is nonsingular.

Problem

3.7 Obviously there is always the danger of a misprint in formulas as (3.1). Verify
the formula by applying it to the functions 1, x, and x2 and the points −hW , 0,
and hE . Why is this test sufficient?
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§ 4. A Convergence Theory for Difference Methods

It is relatively easy to establish the convergence of finite difference methods, pro-
vided that the solution u of the differential equation is sufficiently smooth up to
the boundary, and its second derivatives are bounded. Although these assumptions
are quite restrictive, it is useful to carry out the analysis in this framework to
provide a first impression of the more general convergence theory. Under weaker
assumptions, the analysis is much more complicated; cf. Hackbusch [1986].

Consistency

In the following we shall write Lh for the difference operator (which also specifies
the method). Then given u ∈ C(�), Lhu is a function defined at all points in �h.
The symbol Ah will denote the resulting matrix.

4.1 Definition. A finite difference method Lh is called consistent with the elliptic
equation Lu = f provided

Lu− Lhu = o(1) on �h as h → 0,

for every function u ∈ C2(�̄). A method has consistency order m provided that
for every u ∈ Cm+2(�̄),

Lu− Lhu = O(hm) on �h as h → 0.

The five-point formula (3.1) for the Laplace operator derived by Taylor ex-
pansions has order 1 for an arbitrary grid, and order 2 when the four neighbors of
the center point are at the same distance from it.

Local and Global Error

The definition of consistency relates to the local error Lu − Lhu. However, the
convergence of a method depends on the global error

η(zi) := u(zi)− Ui

as zi runs over �h. The two errors are connected by



§4. A Convergence Theory for Difference Methods 23

4.2 A Difference Equation for the Global Error. Let

Lu = f in �,

and suppose
AhU = F

is the associated linear system over �h with Fi = f (zi). In addition, suppose that
for the points on the boundary,

U(zj ) = u(zj ) for zj ∈ ∂�h.

In view of the linearity of the difference operator, it follows that the global error
η satisfies

(Lhη)i = (Lhu)(zi)− (AhU)i

= (Lhu)(zi)− f (zi) = (Lhu)(zi)− (Lu)(zi)

= −ri,

(4.1)

where r := Lu− Lhu is the local error on �h. Thus, η can be interpreted as the
solution of the discrete boundary-value problem

Lhη = −r in �h,

η = 0 on ∂�h.
(4.2)

4.3 Remark. If we eliminate those variables in (4.2) which belong to ∂�h, we
get a system of the form

Ahη̃ = −r.

Here η̃ is the vector with components η̃i = η(zi) for zi ∈ �h. This shows that
convergence is assured provided r tends to 0 and the inverses A−1

h remain bounded
as h → 0. This last condition is called stability. Thus, consistency and stability
imply convergence.

In order to illustrate the error calculation by the perturbation method of (4.1),
we will turn our attention for a moment to a more formal argument. We investigate
the differences between the solutions of the two linear systems of equations

Ax = b,

(A+ F)y = b,

where F is regarded as a small perturbation. Obviously, (A + F)(x − y) = Fx.

Thus, the error x−y = (A+F)−1Fx is small provided F is small and (A+F)−1

is bounded. – In estimating the global error by the above perturbation calculation,
it is important to note that the given elliptic operator and the difference operator
operate on different spaces.

We will estimate the size of the solution of (4.2) by considering the difference
equation rather than via the norm of the inverse matrices ‖A−1

h ‖.
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4.4 Lemma. Suppose � is contained in the disk BR(0) := {(x, y) ∈ R
2; x2+y2 <

R2}. Let V be the solution of the equation

LhV = 1 in �h,

V = 0 on ∂�h ,
(4.3)

where Lh is the standard five-point stencil. Then

0 ≤ V (xi, yi) ≤ 1

4
(R2 − x2

i − y2
i ). (4.4)

Proof. Consider the function w(x, y) := 1
4 (R2−x2−y2), and set Wi = w(xi, yi).

Since w is a polynomial of second degree, the derivatives of higher order which
were dropped when forming the difference star vanish. Hence we have (LhW)i =
Lw(xi, yi) = 1. Moreover, W ≥ 0 on ∂�. The discrete comparison principle
implies that V ≤ W , while the minimum principle implies V ≥ 0, and (4.4) is
proved.

The essential fact about (4.4) is that it provides a bound which is independent
of h. – This lemma can be extended to any elliptic differential equation for which
the finite difference approximation is exact for polynomials of degree 2. In this
case the factor 1

4 in (4.4) is replaced by a number which depends on the constant
of ellipticity.

4.5 Convergence Theorem. Suppose the solution of the Poisson equation is a C2

function, and that the derivatives uxx and uyy are uniformly continuous in �. Then
the approximations obtained using the five-point stencil converge to the solution.
In particular

max
z∈�h

|Uh(z)− u(z)| → 0 as h → 0. (4.5)

Proof. By the Taylor expansion at the point (xi, yi),

Lhu(xi, yi) = −uxx(ξi, yi)− uyy(xi, ηi),

where ξi and ηi are certain numbers. Because of the uniform continuity, the local
discretization error maxi |ri | tends to 0. It now follows from (4.2) and Lemma 4.4
that

max |ηi | ≤ R2

4
max |ri |, (4.6)

which gives the convergence assertion.

Analogously, using (4.6), we can get O(h) or O(h2) estimates for the global
error, provided u is in C3(�̄) or in C4(�̄), respectively.

Limits of the Convergence Theory

The hypotheses on the derivatives required for the above convergence theorem are
often too restrictive.
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4.6 Example. Suppose we want to find the solution of the potential equation in
the unit disk satisfying the (Dirichlet) boundary condition

u(cos ϕ, sin ϕ) =
∞∑

k=2

1

k(k − 1)
cos kϕ.

Since it is absolutely and uniformly convergent, the series represents a continuous
function. By (1.2), the solution of the boundary-value problem in polar coordinates
is

u(x, y) =
∞∑

k=2

rk

k(k − 1)
cos kϕ. (4.7)

Now on the x-axis, the second derivative

uxx(x, 0) =
∞∑

k=2

xk−2 = 1

1 − x

is unbounded in a neighborhood of the boundary point (1, 0), and thus Theorem 4.5
is not directly applicable.

A complete convergence theory can be found, e.g., in Hackbusch [1986]. It
uses the stability of the differential operator in the sense of the L2-norm, while
here the maximum norm was used (but see Problem 4.8). Since the main topic
of this book is the finite element method, we restrict ourselves here to a simple
generalization. Using an approximation-theoretical argument, we can extend the
convergence theorem at least to a disk with arbitrary continuous boundary values.

By the Weierstrass approximation theorem, every periodic continuous func-
tion can be approximated arbitrarily well by a trigonometric polynomial. Thus, for
given ε > 0, there exists a trigonometric polynomial

v(cos ϕ, sin ϕ) = a0 +
m∑

k=1

(ak cos kϕ + bk sin kϕ)

with |v − u| < ε
4 on ∂�. Let

v(x, y) = a0 +
m∑

k=1

rk(ak cos kϕ + bk sin kϕ)

and let V be the numerical solution obtained by the finite difference method. By
the maximum principle and the discrete maximum principle, it follows that

|u− v| < ε

4
in �, |U − V | < ε

4
in �h. (4.8)
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Note that the second estimate in (4.8) is uniform for all h. Moreover, since the
derivatives of v up to order 4 are bounded in �, by the convergence theorem,
|V − v| < ε

2 in �h for sufficiently small h. Then by the triangle inequality,

|u− U | ≤ |u− v| + |v − V | + |V − U | < ε in �h.

Here we have used an explicit representation for the solution of the Poisson
equation on the disk, but we needed only the fact that the boundary values which
produce nice solutions are dense. We obtain a generalization if we put this property
into an abstract hypothesis.

4.7 Theorem. Suppose the set of solutions of the Poisson equation whose deriva-
tives uxx and uyy are uniformly continuous in � is dense in the set

{u ∈ C(�̄); Lu = f }.
Then the numerical solution obtained using the five-point stencil converges, i.e.,
(4.5) holds.

Problems

4.8 Let Lh be the difference operator obtained from the Laplace operator using
(3.1), and let �h,0 be the set of (interior) points of �h for which all four neighbors
also belong to �h. In order to take into account the fact that the consistency error
on the boundary may be larger, in analogy with (4.3) we need to find the solution
of

LhV = 1 in �h\�h,0,

LhV = 0 in �h,0,

V = 0 on ∂�h.

Show (for simplicity, on a square) that

0 ≤ V ≤ h2 in �h.

4.9 Consider the eigenvalue problem for the Laplacian on the unit square:

−�u = λu in � = (0, 1)2,

u = 0 on ∂�.

Then
uk�(x, y) = sin kπx sin �πy, k, � = 1, 2, . . . , (4.9)

are the eigenfunctions with the eigenvalues (k2 + �2)π2. Show that if h = 1/n,
the restrictions of these functions to the grid are the eigenfunctions of the differ-
ence operator corresponding to the five-point stencil. Which eigenvalues are better
approximated, the small ones or the large ones?



Chapter II

Conforming Finite Elements

The mathematical treatment of the finite element method is based on the varia-
tional formulation of elliptic differential equations. Solutions of the most important
differential equations can be characterized by minimal properties, and the corre-
sponding variational problems have solutions in certain function spaces called
Sobolev spaces. The numerical treatment involves minimization in appropriate
finite-dimensional linear subspaces. A suitable choice for these subspaces, both
from a practical and from a theoretical point of view, are the so-called finite ele-
ment spaces.

For linear differential equations, it suffices to work with Hilbert space meth-
ods. In this framework, we immediately get the existence of so-called weak solu-
tions. Regularity results, to the extent they are needed for the finite element theory,
will be presented without proof.

This chapter contains a theory of the simple methods which suffice for the
treatment of scalar elliptic differential equations of second order. The aim of this
chapter are the error estimates in §7 for the finite element solutions. They refer
to the L2-norm and to the Sobolev norm ‖ · ‖1. Some of the more general results
presented here will also be used later in our discussion in Chapter III of other
elliptic problems whose treatment requires additional techniques.

The paper of Courant [1943] is generally considered to be the first mathemat-
ical contribution to a finite element theory, although a paper of Schellbach [1851]
had appeared already a century earlier. If we don’t take too narrow a view, finite
elements also appear in some work of Euler. The method first became popular at
the end of the sixties, when engineers independently developed and named the
method. The long survey article of Babuška and Aziz [1972] laid a broad founda-
tion for many of the deeper functional analytic tools, and the first textbook on the
subject was written by Strang and Fix [1973].

Independently, the method of finite elements became an established technique
in engineering sciences for computations in structural mechanics. The develop-
ments there began around 1956, e.g., with the paper of Turner, Clough, Martin,
and Topp [1956] who also created the name finite elements and the paper by Ar-
gyris [1957]. The book by Zienkiewicz [1971] also had great impact. An interesting
review of the history was presented by Oden [1991].
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§ 1. Sobolev Spaces

In the following, let � be an open subset of R
n with piecewise smooth boundary.

The Sobolev spaces which will play an important role in this book are built
on the function space L2(�). L2(�) consists of all functions u which are square-
integrable over � in the sense of Lebesgue. We identify two functions u and v

whenever u(x) = v(x) for x ∈ �, except on a set of measure zero. L2(�) becomes
a Hilbert space with the scalar product

(u, v)0 := (u, v)L2 =
∫

�

u(x)v(x)dx (1.1)

and the corresponding norm

‖u‖0 =
√

(u, u)0. (1.2)

1.1 Definition. u ∈ L2(�) possesses the (weak) derivative v = ∂αu in L2(�)

provided that v ∈ L2(�) and

(φ, v)0 = (−1)|α|(∂αφ, u)0 for all φ ∈ C∞
0 (�). (1.3)

Here C∞(�) denotes the space of infinitely differentiable functions, and
C∞

0 (�) denotes the subspace of such functions which are nonzero only on a
compact subset of �.

If a function is differentiable in the classical sense, then its weak derivative
also exists, and the two derivatives coincide. In this case (1.3) becomes Green’s
formula for integration by parts.

The concept of the weak derivative carries over to other differential operators.
For example, let u ∈ L2(�)n be a vector field. Then v ∈ L2(�) is the divergence
of u in the weak sense, v = div u for short, provided (φ, v)0 = −(grad φ, u)0 for
all φ ∈ C∞

0 (�).
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Introduction to Sobolev Spaces

1.2 Definition. Given an integer m ≥ 0, let Hm(�) be the set of all functions u

in L2(�) which possess weak derivatives ∂αu for all |α| ≤ m. We can define a
scalar product on Hm(�) by

(u, v)m :=
∑
|α|≤m

(∂αu, ∂αv)0

with the associated norm

‖u‖m :=
√

(u, u)m =
√∑
|α|≤m

‖∂αu‖2
L2(�). (1.4)

The corresponding semi-norm

|u|m :=
√∑
|α|=m

‖∂αu‖2
L2(�) (1.5)

is also of interest.

We shall often write Hm instead of Hm(�). Conversely, we will write ‖·‖m,�

instead of ‖ · ‖m whenever it is important to distinguish the domain.

The letter H is used in honor of David Hilbert.

Hm(�) is complete with respect to the norm ‖ · ‖m, and is thus a Hilbert
space. We shall make use of the following result which is often used to introduce
the Sobolev spaces without recourse to the concept of weak derivative.

1.3 Theorem. Let � ⊂ R
n be an open set with piecewise smooth boundary, and

let m ≥ 0. Then C∞(�) ∩Hm(�) is dense in Hm(�).

By Theorem 1.3, Hm(�) is the completion of C∞(�) ∩ Hm(�), provided
that � is bounded. This suggests a corresponding generalization for functions
satisfying zero boundary conditions.

1.4 Definition. We denote the completion of C∞
0 (�) w.r.t. the Sobolev norm ‖·‖m

by Hm
0 (�).

Obviously, the Hilbert space Hm
0 (�) is a closed subspace of Hm(�). More-

over, H 0
0 (�) = L2(�), and we have the following inclusions:

L2(�) = H 0(�) ⊃ H 1(�) ⊃ H 2(�) ⊃ · · ·
∪ ∪

H 0
0 (�) ⊃ H 1

0 (�) ⊃ H 2
0 (�) ⊃ · · ·

The above Sobolev spaces are based on L2(�) and the L2-norm. Analogous
Sobolev spaces can be defined for arbitrary Lp-norms with p �= 2. They are useful
in the study of nonlinear elliptic problems. We denote the spaces analogous to Hm

and Hm
0 by Wm,p and W

m,p
0 , respectively.
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Friedrichs’ Inequality

In spaces with generalized homogeneous boundary conditions, i.e. in Hm
0 , the

semi-norm (1.5) is equivalent to the norm (1.4).

1.5 Poincaré–Friedrichs Inequality. Suppose � is contained in an n-dimensional
cube with side length s. Then

‖v‖0 ≤ s|v|1 for all v ∈ H 1
0 (�). (1.6)

Proof. Since C∞
0 (�) is dense in H 1

0 (�), it suffices to establish the inequality for
v ∈ C∞

0 (�). We may assume that � ⊂ W := {(x1, x2, . . . , xn); 0 < xi < s}, and
set v = 0 for x ∈ W\�. Then

v(x1, x2, . . . , xn) = v(0, x2, . . . , xn)+
∫ x1

0
∂1v(t, x2, . . . , xn)dt.

The boundary term vanishes, and using the Cauchy–Schwarz inequality gives

|v(x)|2 ≤
∫ x1

0
12dt

∫ x1

0
|∂1v(t, x2, . . . , xn)|2dt

≤ s

∫ s

0
|∂1v(t, x2, . . . , xn)|2dt.

Since the right-hand side is independent of x1, it follows that∫ s

0
|v(x)|2dx1 ≤ s2

∫ s

0
|∂1v(x)|2dx1.

To complete the proof, we integrate over the other coordinates to obtain∫
W

|v|2dx ≤ s2
∫

W

|∂1v|2dx ≤ s2|v|21.

The Poincaré–Friedrichs inequality is often called Friedrichs’ inequality or
the Poincaré inequality for short.

1.6 Remark. The proof of the Poincaré–Friedrichs inequality only requires zero
boundary conditions on a part of the boundary. If � = ∂� is piecewise smooth,
it suffices that the function vanishes on a part of the boundary �D , where �D is
a set with positive (n − 1)-dimensional measure. – Moreover, if zero Dirichlet
boundary conditions are prescribed on the whole boundary, then it is sufficient
that � is located between two hyperplanes whose distance apart is s.

Applying Friedrichs’ inequality to derivatives, we see that

|∂αv|0 ≤ s|∂1∂
αv|0 for |α| ≤ m− 1, v ∈ Hm

0 (�).

Now induction implies
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1.7 Theorem. If � is bounded, then | · |m is a norm on Hm
0 (�) which is equivalent

to ‖ · ‖m. If � is contained in a cube with side length s, then

|v|m ≤ ‖v‖m ≤ (1 + s)m|v|m for all v ∈ Hm
0 (�). (1.7)

Possible Singularities of H 1 functions

It is well known that L2(�) also contains unbounded functions. Whether such
functions also belong to higher order Sobolev spaces depends on the dimension
of the domain. We illustrate this with the most important space H 1(�).

1.8 Remark. If � = [a, b] is a real interval, then H 1[a, b] ⊂ C[a, b], i.e., each
element in H 1[a, b] has a representer which lies in C[a, b].

Proof. Let v ∈ C∞[a, b] or more generally in C1[a, b]. Then for |x − y| ≤ δ, the
Cauchy–Schwarz inequality gives

|v(x)− v(y)| =
∣∣∣∣
∫ y

x

Dv(t)dt

∣∣∣∣ ≤
∣∣∣∣
∫ y

x

12dt

∣∣∣∣1/2

·
∣∣∣∣
∫ y

x

[Dv(t)]2dt

∣∣∣∣1/2

≤
√

δ ‖v‖1.

Thus, every Cauchy sequence in H 1[a, b] ∩ C∞[a, b] is equicontinuous and
bounded. The theorem of Arzelà-Ascoli implies that the limiting function is con-
tinuous.

The analogous assertion already fails for a two-dimensional domain �. The
function

u(x, y) = log log
2

r
, (1.8)

where r2 = x2+y2, is an unbounded H 1 function on the unit disk D := {(x, y) ∈
R

2; x2 + y2 < 1}. The fact that u lies in H 1(D) follows from

∫ 1/2

0

dr

r log2 r
< ∞.

For an n-dimensional domain with n ≥ 3,

u(x) = r−α, α < (n− 2)/2, (1.9)

is an H 1 function with a singularity at the origin. Clearly, the singularity in (1.9)
becomes stronger with increasing n.

The fact that functions in H 2 over a domain in R
2 are continuous will be

established in §3 in connection with an imbedding and a trace theorem.
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Fig. 6. Domains which satisfy and fail to satisfy the cone condition, respectively

Compact Imbeddings

A continuous linear mapping L : U → V between normed linear spaces U and
V is called compact provided that the image of the unit ball in U is a relatively
compact set in V . In particular, if U ⊂ V and the imbedding  : U ↪→ V is
compact, we call it a compact imbedding.

By the theorem of Arzelà-Ascoli, the C1 functions v for which

sup
�

|v(x)| + sup
�

|∇v(x)| (1.10)

is bounded by a given number form a relatively compact subset of C0(�). The
quantity (1.10) is a norm on C1. In this sense, C1(�) is compactly imbedded in
C0(�). The analogous assertion also holds for Sobolev spaces, although as we
have seen, H 1 functions can exhibit singularities.

1.9 Rellich Selection Theorem. Given m ≥ 0, let � be a Lipschitz domain,1 and
suppose that it satisfies a cone condition (see Fig. 6), i.e., the interior angles at
each vertex are positive, and so a nontrivial cone can be positioned in � with its
tip at the vertex. Then the imbedding Hm+1(�) ↪→ Hm(�) is compact.

1 A function f : Rn ⊃ D → Rm is called Lipschitz continuous provided that for
some number c, ‖f (x) − f (y)‖ ≤ c‖x − y‖ for all x, y ∈ D. A hypersurface in Rn is
a graph whenever it can be represented in the form xk = f (x1, . . . , xk−1, xk+1, . . . , xn),
with 1 ≤ k ≤ n and some suitable domain in Rn−1. A domain � ⊂ Rn is called a Lipschitz
domain provided that for every x ∈ ∂�, there exists a neighborhood of ∂� which can be
represented as the graph of a Lipschitz continuous function.
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Problems

1.10 Let � be a bounded domain. With the help of Friedrichs’ inequality, show
that the constant function u = 1 is not contained in H 1

0 (�), and thus H 1
0 (�) is a

proper subspace of H 1(�).

1.11 Let � ⊂ R
n be a sphere with center at the origin. Show that u(x) = ‖x‖s

possesses a weak derivative in L2(�) if 2s > 2 − n or if s = 0 (the trivial case).

1.12 A variant of Friedrichs’ inequality. Let � be a domain which satisfies the
hypothesis of Theorem 1.9. Then there is a constant c = c(�) such that

‖v‖0 ≤ c
(|v̄| + |v|1

)
for all v ∈ H 1(�) (1.11)

with v̄ = 1

µ(�)

∫
�

v(x)dx.

Hint: This variant of Friedrichs’ inequality can be established using the technique
from the proof of the inequality 1.5 only under restrictive conditions on the domain.
Use the compactness of H 1(�) ↪→ L2(�) in the same way as in the proof of
Lemma 6.2 below.

1.13 Let �1, �2 ⊂ R
n be bounded, and suppose that for the bijective continuously

differentiable mapping F : �1 → �2, ‖DF(x)‖ and ‖(DF(x))−1‖ are bounded
for x ∈ �. Verify that v ∈ H 1(�2) implies v ◦ F ∈ H 1(�1).

1.14 Exhibit a function in C[0, 1] which is not contained in H 1[0, 1]. – To
illustrate that H 0

0 (�) = H 0(�), exhibit a sequence in C∞
0 (0, 1) which converges

to the constant function v = 1 in the L2[0, 1] sense.

1.15 Let �p denote the space of infinite sequences (x1, x2, . . .) satisfying the
condition

∑
k |xk|p < ∞. It is a Banach space with the norm

‖x‖p := ‖x‖�p
:=
(∑

k

|xk|p
)1/p

, 1 ≤ p < ∞.

Since ‖ · ‖2 ≤ ‖ · ‖1, the imbedding �1 ↪→ �2 is continuous. Is it also compact?

1.16 Consider
(a) the Fourier series

∑+∞
k=−∞ cke

ikx on [0, 2π ],
(b) the Fourier series

∑+∞
k,�=−∞ ck�e

ikx+i�y on [0, 2π]2.

Express the condition u ∈ Hm in terms of the coefficients. In particular, show the
equivalence of the assertions u ∈ L2 and c ∈ �2.

Show that in case (b), uxx + uyy ∈ L2 implies uxy ∈ L2.
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§ 2. Variational Formulation of Elliptic

Boundary-Value Problems of Second Order

A function which satisfies a given partial differential equation of second order and
assumes prescribed boundary values is called a classical solution provided it lies in
C2(�)∩C0(�̄) in the case of Dirichlet boundary conditions, and in C2(�)∩C1(�̄)

in the case of Neumann boundary conditions, respectively. Classical solutions exist
if the boundary of the underlying domain is sufficiently smooth, and if certain
additional conditions are satisfied in the case where Neumann boundary conditions
are specified on part of the boundary. In general, higher derivatives of a classical
solution need not be bounded (see Example 2.1), and thus the simple convergence
theory presented in Ch. I for the finite difference method may not be applicable.

In this section we discuss the variational formulation of boundary-value prob-
lems. It provides a natural approach to their numerical treatment using finite ele-
ments, and also furnishes a simple way to establish the existence of so-called weak
solutions.

Fig. 7. Domain with reentrant corner (cf. Example 2.1)

2.1 Example. Consider the two-dimensional domain

� = {(x, y) ∈ R
2; x2 + y2 < 1, x < 0 or y > 0} (2.1)

with reentrant corner (see Fig. 7) and identify R
2 with C. Then w(z) := z2/3 is

analytic in �, and its imaginary part u(z) := Im w(z) is a harmonic function
solving the boundary-value problem

�u = 0 in �,

u(eiϕ) = sin(
2

3
ϕ) for 0 ≤ ϕ ≤ 3π

2
,

u = 0 elsewhere on ∂�.

Since w′(z) = 2
3z−1/3, even the first derivatives of u are not bounded as z → 0.

— The singularity will be no problem when we look for a solution in the right
Sobolev space.
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Variational Formulation

Before formulating linear elliptic problems as variational problems, we first present
the following abstract result.

2.2 Characterization Theorem. Let V be a linear space, and suppose

a : V × V → R

is a symmetric positive bilinear form, i.e., a(v, v) > 0 for all v ∈ V, v �= 0. In
addition, let

� : V → R

be a linear functional. Then the quantity

J (v) := 1

2
a(v, v)− 〈�, v〉

attains its minimum over V at u if and only if

a(u, v) = 〈�, v〉 for all v ∈ V. (2.2)

Moreover, there is at most one solution of (2.2).

Remark. The set of linear functionals � is a linear space. Instead of �(v), we prefer
to write 〈�, v〉 in order to emphasize the symmetry with respect to � and v.

Proof. For u, v ∈ V and t ∈ R, we have

J (u+ tv) = 1

2
a(u+ tv, u+ tv)− 〈�, u+ tv〉

= J (u)+ t[a(u, v)− 〈�, v〉] + 1

2
t2a(v, v). (2.3)

If u ∈ V satifies (2.2), then (2.3) with t = 1 implies

J (u+ v) = J (u)+ 1

2
a(v, v) for all v ∈ V (2.4)

> J (u), if v �= 0.

Thus, u is a unique minimal point. Conversely, if J has a minimum at u, then for
every v ∈ V , the derivative of the function t �→ J (u+ tv) must vanish at t = 0.
By (2.3) the derivative is a(u, v)− 〈�, v〉, and (2.2) follows.

The relation (2.4) which describes the size of J at a distance v from a minimal
point u will be used frequently below.
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Reduction to Homogeneous Boundary Conditions

In the following, let L be a second order elliptic partial differential operator with
divergence structure

Lu := −
n∑

i,k=1

∂i(aik∂ku)+ a0u, (2.5)

where

a0(x) ≥ 0 for x ∈ �.

We begin by transforming the associated Dirichlet problem

Lu = f in �,

u = g on ∂�
(2.6)

into one with homogeneous boundary conditions. To this end, we assume that there
is a function u0 which coincides with g on the boundary and for which Lu0 exists.
Then

Lw = f1 in �,

w = 0 on ∂�,
(2.7)

where w := u − u0 and f1 := f − Lu0. For simplicity, we usually assume that
the boundary condition in (2.6) is already homogeneous.

We now show that the boundary-value problem (2.7) characterizes the solution
of the variational problem. A similar analysis was carried out already by L. Euler,
and thus the differential equation Lu = f is called the Euler equation or the
Euler–Lagrange equation for the variational problem.

2.3 Minimal Property. Every classical solution of the boundary-value problem

−
∑
i,k

∂i(aik∂ku)+ a0u = f in �,

u = 0 on ∂�

is a solution of the variational problem

J (v) :=
∫

�

[
1

2

∑
i,k

aik∂iv∂kv + 1

2
a0v

2 − f v

]
dx −→ min ! (2.8)

among all functions in C2(�) ∩ C0(�̄) with zero boundary values.
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Proof. The proof proceeds with the help of Green’s formula∫
�

v∂iw dx = −
∫

�

w∂iv dx +
∫

∂�

vw νi ds. (2.9)

Here v and w are assumed to be C1 functions, and νi is the i-th component of the
outward-pointing normal ν. Inserting w := aik∂ku in (2.9), we have∫

�

v∂i(aik∂ku) dx = −
∫

�

aik∂iv∂ku dx, (2.10)

provided v = 0 on ∂�. Let2

a(u, v) :=
∫

�

[∑
i,k

aik∂iu ∂kv + a0uv
]
dx, (2.11)

〈�, v〉 :=
∫

�

f v dx.

Summing (2.10) over i and k gives that for every v ∈ C1(�) ∩ C(�̄) with v = 0
on ∂�,

a(u, v) − 〈�, v〉 =
∫

�

v
[
−
∑
i,k

∂i(aik∂ku)+ a0u− f
]
dx

=
∫

�

v[Lu− f ] dx = 0,

provided Lu = f . This is true if u is a classical solution. Now the characterization
theorem implies the minimal property.

The same method of proof shows that every solution of the variational problem
which lies in the space C2(�)∩C0(�̄) is a classical solution of the boundary-value
problem.

The above connection was observed by Thomson in 1847, and later by Dirich-
let for the Laplace equation. Dirichlet asserted that the boundedness of J (u) from
below implies that J attains its minimum for some function u. This argument is
now called the Dirichlet principle. However, in 1870 Weierstrass showed that it
does not hold in general. In particular, the integral

J (u) =
∫ 1

0
u2(t)dt (2.12)

has infimum 0 in the set {v ∈ C0[0, 1]; v(0) = v(1) = 1}, but the value 0 is never
assumed for any function in C[0, 1] with the given boundary values.

2 The use of the letter a for the bilinear form and also in the expressions aik and a0 for
the coefficient functions should be no cause for confusion.
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Existence of Solutions

The difficulty with the nonexistence of solutions vanishes if we solve the varia-
tional problem (2.8) in a suitable Hilbert space. This is why we don’t work in the
function space C2(�), although to get classical solutions this would be desirable.
– In Theorem 2.2 only the linear structure was used for the characterization of a
solution. But, for existence, the choice of the topology is crucial.

2.4 Definition. Let H be a Hilbert space. A bilinear form a : H × H → R is
called continuous provided there exists C > 0 such that

|a(u, v)| ≤ C‖u‖ ‖v‖ for all u, v ∈ H.

A symmetric continuous bilinear form a is called H-elliptic, or for short elliptic
or coercive, provided for some α > 0,

a(v, v) ≥ α ‖v‖2 for all v ∈ H. (2.13)

Clearly, every H -elliptic bilinear form a induces a norm via

‖v‖a :=
√

a(v, v). (2.14)

This is equivalent to the norm of the Hilbert space H . The norm (2.14) is called
the energy norm.

As usual, the space of continuous linear functionals on a normed linear space
V will be denoted by V ′.

2.5 The Lax–Milgram Theorem (for Convex Sets). Let V be a closed convex set
in a Hilbert space H , and let a : H ×H → R be an elliptic bilinear form. Then,
for every � ∈ H ′, the variational problem

J (v) := 1

2
a(v, v) − 〈�, v〉 −→ min !

has a unique solution in V.

Proof. J is bounded from below since

J (v) ≥ 1

2
α‖v‖2 − ‖�‖ ‖v‖

= 1

2α
(α‖v‖ − ‖�‖)2 − ‖�‖2

2α
≥ −‖�‖

2

2α
.

Let c1 := inf{J (v); v ∈ V }, and let (vn) be a minimizing sequence. Then
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α‖vn − vm‖2 ≤ a(vn − vm, vn − vm)

= 2a(vn, vn)+ 2a(vm, vm)− a(vn + vm, vn + vm)

= 4J (vn)+ 4J (vm)− 8J (
vm + vn

2
)

≤ 4J (vn)+ 4J (vm)− 8c1,

since V is convex and thus 1
2 (vn + vm) ∈ V . Now J (vn), J (vm) → c1 implies

‖vn − vm‖ → 0 for n, m → ∞. Thus, (vn) is a Cauchy sequence in H , and
u = limn→∞ vn exists. Since V is closed, we also have u ∈ V . The continuity of
J implies J (u) = limn→∞ J (vn) = infv∈V J (v).

We now show that the solution is unique. Suppose u1 and u2 are both solutions.
Clearly, u1, u2, u1, u2, . . . is a minimizing sequence. As we saw above, every
minimizing sequence is a Cauchy sequence. This is only possible if u1 = u2.

2.6 Remarks. (1) The above proof makes use of the following parallelogram law:
the sum of the squares of the lengths of the diagonals in any parallelogram is equal
to the sum of the squares of the lengths of the sides.

(2) In the special case V = H , Theorem 2.5 implies that given � ∈ H ′, there
exists an element u ∈ H with

a(u, v) = 〈�, v〉 for all v ∈ H.

(3) If we further specialize to the case a(u, v) := (u, v), where (u, v) is the
defining scalar product on H , then we obtain the Riesz representation theorem:
given � ∈ H ′, there exists an element u ∈ H with

(u, v) = 〈�, v〉 for all v ∈ H.

This defines a mapping H ′ → H, � �→ u which is called the canonical imbedding
of H ′ in H .

(4) The Characterization Theorem 2.2 can be generalized to convex sets as
follows. The function u is the minimal solution in a convex set V if and only if
the so-called variational inequality

a(u, v − u) ≥ 〈�, v − u〉 for all v ∈ V (2.15)

holds. We leave the proof to the reader.

If the underlying space has finite dimension, i.e., is the Euclidean space R
N ,

then instead of (2.13) we only need to require that

a(v, v) > 0 for all v ∈ H, v �= 0. (2.16)

Then the compactness of the unit ball implies (2.13) for some α > 0. The fact
that (2.16) does not suffice in the infinite-dimensional case can already be seen in
the example (2.12). To make this point even clearer, we consider another simple
example.
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2.7 Example. Let H = �2 be the space of infinite sequences (x1, x2, . . .), equipped
with the norm ‖x‖2 :=∑

m x2
m. The form

a(x, y) :=
∞∑

m=1

2−mxmym

is positive and continuous but not coercive, and 〈�, x〉 :=∑∞
m=1 2−mxm defines a

continuous linear functional. However, J (x) = 1
2a(x, x) −〈�, x〉 does not attain a

minimum in �2. Indeed, a necessary condition for a minimal solution in this case
is that xm = 1 for m = 1, 2, . . ., and this contradicts

∑
m x2

m < ∞.

With the above preparations, we can now make the concept of a solution of
the boundary-value problem more precise.

2.8 Definition. A function u ∈ H 1
0 (�) is called a weak solution of the second

order elliptic boundary-value problem

Lu = f in �,

u = 0 on ∂�,
(2.17)

with homogeneous Dirichlet boundary conditions, provided that

a(u, v) = (f, v)0 for all v ∈ H 1
0 (�), (2.18)

where a is the associated bilinear form defined in (2.11).

In other cases we shall also refer to a function as a weak solution of an ellip-
tic boundary-value problem provided it is a solution of an associated variational
problem. – Throughout the above, we have implicitly assumed that the coefficient
functions are sufficiently smooth. For the following theorem, aij ∈ L∞(�) and
f ∈ L2(�) suffice.

2.9 Existence Theorem. Let L be a second order uniformly elliptic partial differ-
ential operator. Then the Dirichlet problem (2.17) always has a weak solution in
H 1

0 (�). It is a minimum of the variational problem

1

2
a(v, v)− (f, v)0 −→ min !

over H 1
0 (�).
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Proof. Let3 c := sup{|aik(x)|; x ∈ �, 1 ≤ i, k ≤ n}. Then the Cauchy–Schwarz
inequality implies∣∣∣∣∑

i,k

∫
aik∂iu∂kv dx

∣∣∣∣ ≤ c
∑
i,k

∫
|∂iu∂kv| dx

≤ c
∑
i,k

[∫
(∂iu)2dx

∫
(∂kv)2dx

]1/2

≤ C|u|1 |v|1,
where C = cn2. If we also assume that C ≥ sup{|a0(x)|; x ∈ �}, then we get∣∣∣∣

∫
a0uv dx

∣∣∣∣ ≤ C

∫
|uv| dx ≤ C · ‖u‖0 · ‖v‖0

in an analogous way. Combining these, we have

a(u, v) ≤ C‖u‖1‖v‖1.

Next, the uniform ellipticity implies the pointwise estimate∑
i,k

aik∂iv∂kv ≥ α
∑

i

(∂iv)2,

for C1 functions. Integrating both sides and using a0 ≥ 0 leads to

a(v, v) ≥ α
∑

i

∫
�

(∂iv)2dx = α|v|21 for all v ∈ H 1(�). (2.19)

By Friedrichs’ inequality, | · |1 and ‖ · ‖1 are equivalent norms on H 1
0 . Thus, a

is an H 1-elliptic bilinear form on H 1
0 (�). By the Lax–Milgram Theorem, there

exists a unique weak solution which is also a solution of the variational problem.

2.10 Example. In the model problem

−�u = f in �,

u = 0 on ∂�,

the associated bilinear form is a(u, v) = ∫ ∇u · ∇v dx. We will also write
(∇u,∇v)0 for

∫ ∇u · ∇v dx. Thus, the solution is determined by

(∇u,∇v)0 = (f, v)0 for all v ∈ H 1
0 (�). (2.20)

We see that the divergence of ∇u in the sense of Definition 1.1 exists, and −�u =
− div grad u = f .

3 c, c1, c2, . . . are generic constants, i.e. they can change from line to line. In general,
we reserve C for the value of the norm of a in the sense of Definition 2.4.
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Inhomogeneous Boundary Conditions

We now return to equation (2.6) with inhomogeneous boundary conditions. Let
u0 ∈ C2(�) ∩ C0(�̄) ∩ H 1(�) be a function which coincides with g on the
boundary of �. The weak formulation of (2.7) is now

Find w ∈ H 1
0 (�) with

a(w, v) = (f − Lu0, v)0 for all v ∈ H 1
0 (�).

Since (Lu0, v) = a(u0, v), this can now be written in the following form:

Find u ∈ H 1(�) with

a(u, v) = (f, v)0 for all v ∈ H 1
0 (�),

u− u0 ∈ H 1
0 (�).

(2.21)

The second part of (2.21) can be considered as a weak formulation of the boundary
condition.

It follows from density considerations that it suffices to assume that u0 ∈
H 1(�). On the other hand, it is not always possible to satisfy this requirement. In
fact, it is not even satisfied in some cases for which a classical solution is known.

Example (Hadamard [1932]). Let r and ϕ be the polar coordinates in the unit disk
� = B1 := {x ∈ R

2; ‖x‖ < 1}. The function u(r, ϕ) := ∑∞
k=1 k−2rk! sin(k!ϕ)

is harmonic in �. If we identify R
2 with C, then u(z) = Im

∑∞
k=1 k−2zk!. This

shows that
∫ |∇u|2dx = ∞, and thus u �∈ H 1. There does not exist any function

in H 1 with the same boundary value as u, since for a given boundary value, the
harmonic function is always the one with the smallest value of the H 1-semi-norm.

Problems

2.11 Let � be bounded with � := ∂�, and let g : � → R be a given function.
Find the function u ∈ H 1(�) with minimal H 1-norm which coincides with g on
�. Under what conditions on g can this problem be handled in the framework of
this section?

2.12 Consider the elliptic, but not uniformly elliptic, bilinear form

a(u, v) :=
∫ 1

0
x2u′v′ dx

on the interval [0, 1]. Show that the problem 1
2a(u, u) − ∫ 1

0 udx → min ! does
not have a solution in H 1

0 (0, 1). – What is the associated (ordinary) differential
equation?
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2.13 Prove that in a convex set, the solution to the variational problem is charac-
terized by (2.15).

2.14 In connection with Example 2.7, consider the continuous linear mapping

L : �2 → �2,

(Lx)k = 2−kxk.

Show that the range of L is not closed.
Hint: The closure contains the point y ∈ �2 with yk = 2−k/2, k = 1, 2, . . ..

2.15 Show that∫
�

φ div v dx = −
∫

�

grad φ · v dx +
∫

∂�

φv · ν ds (2.22)

for all sufficiently smooth functions v and φ with values in R
n and R, respectively.

Here

div v :=
n∑

i=1

∂v

∂xi

.

2.16 Which variational problem is associated to the boundary-value problem with
an ordinary differential equation

u′′(x) = ex in (0, 1),

u(0) = u(1) = 0 ?
(2.23)
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§ 3. The Neumann Boundary-Value Problem.

A Trace Theorem

In passing from a partial differential equation to an associated variational problem,
Dirichlet boundary conditions are explicitly built into the function space. This kind
of boundary condition is therefore called essential. In contrast, Neumann boundary
conditions, which are conditions on derivatives on the boundary, are implicitly
forced, and thus are called natural boundary conditions.

Ellipticity in H 1

Suppose L is the uniformly elliptic differential operator in (2.5), and that a is the
corresponding bilinear form (2.11). We now require that a0(x) be bounded from
below by a positive number. After possibly reducing the number α in (2.19), we
can assume

a0(x) ≥ α > 0 for all x ∈ �.

Now we get the bound

a(v, v) ≥ α|v|21 + α‖v‖2
0 = α‖v‖2

1 for all v ∈ H 1(�), (3.1)

which has one more term
∫

a0(x)v2dx ≥ α‖v‖2
0 than the bound in (2.19). Thus,

the quadratic form a(v, v) is elliptic on the entire space H 1(�), and not just on
the subspace H 1

0 (�). In addition, for f ∈ L2(�) and g ∈ L2(∂�) we can define
a linear functional by

〈�, v〉 :=
∫

�

f v dx +
∫

�

gv ds, (3.2)

where as usual, � := ∂�. The following theorem shows that 〈�, v〉 is well defined
for all v ∈ H 1(�), and that � is a bounded linear functional.4

3.1 Trace Theorem. Let � be bounded, and suppose � has a piecewise smooth
boundary. In addition, suppose � satisfies the cone condition. Then there exists a
bounded linear mapping

γ : H 1(�) → L2(�), ‖γ (v)‖0,� ≤ c‖v‖1,�, (3.3)

such that γ v = v|� for all v ∈ C1(�̄).

4 There are sharper results for Sobolev spaces with non-integer indices.
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Clearly, γ v is the trace of v on the boundary, i.e., the restriction of v to the
boundary. We know that the evaluation of an H 1 function at a single point does not
always make sense. Theorem 3.1 asserts that the restriction of v to the boundary
is at least an L2 function.

We delay the proof of the trace theorem until the end this section.

Boundary-Value Problems with Natural Boundary Conditions

3.2 Theorem. Suppose the domain � satisfies the hypotheses of the trace theorem.
Then the variational problem

J (v) := 1

2
a(v, v)− (f, v)0,� − (g, v)0,� −→ min !

has exactly one solution u ∈ H 1(�). The solution of the variational problem lies in
C2(�)∩C1(�̄) if and only if there exists a classical solution of the boundary-value
problem

Lu = f in �,∑
i,k

νiaik∂ku = g on �, (3.4)

in which case the two solutions are identical. Here ν := ν(x) is the outward-
pointing normal defined almost everywhere on �.

Proof. Since a is an H 1-elliptic bilinear form, the existence of a unique mini-
mum u ∈ H 1(�) follows from the Lax–Milgram Theorem. In particular, u is
characterized by

a(u, v) = (f, v)0,� + (g, v)0,� for all v ∈ H 1(�). (3.5)

Now suppose (3.5) is satisfied for u ∈ C2(�) ∩ C1(�̄). For v ∈ H 1
0 (�),

γ v = 0, and we deduce from (3.5) that

a(u, v) = (f, v)0 for all v ∈ H 1
0 (�).

By (2.21), u is also a solution of the Dirichlet problem, where we define the
boundary condition using u. Thus, in the interior we have

Lu = f in �. (3.6)

For v ∈ H 1(�), Green’s formula (2.9) yields∫
�

v∂i(aik∂ku) dx = −
∫

�

∂ivaik∂ku dx +
∫

�

vaik∂ku νi ds.
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Hence,

a(u, v)−(f, v)0−(g, v)0,� =
∫

�

v[Lu−f ] dx+
∫

�

[
∑
i,k

νiaik∂ku−g]v ds. (3.7)

Now it follows from (3.5) and (3.6) that the second integral on the right-hand
side of (3.7) vanishes. Suppose the function v0 := νiaik∂ku − g does not vanish.
Then

∫
�

v2
0ds > 0. Since C1(�̄) is dense in C0(�̄), there exists v ∈ C1(�̄) with∫

�
v0 · v ds > 0. This is a contradiction, and the boundary condition must be

satisfied.

On the other hand, from (3.7) we can immediately see that every classical
solution of (3.4) satisfies (3.5).

Neumann Boundary Conditions

For the Helmholtz equation

−�u+ a0(x) u = f in �,

the natural boundary condition is

∂u

∂ν
:= ν · ∇u = g on ∂�.

We call it the Neumann boundary condition. Here ∂u/∂ν is the normal derivative,
i.e., the direction perpendicular to the tangent plane (if the boundary is smooth). [In
the general case, the boundary condition in (3.4) also involves the normal direction
if we define orthogonality w.r.t. the metric induced by the quadratic form with the
matrix aik = aik(x).]

Clearly, the Poisson equation with Neumann boundary conditions,

−�u = f in �,

∂u

∂ν
= g on ∂�,

(3.8)

only determines a function up to an additive constant. This suggests that in formu-
lating the weak version of this problem we should restrict ourselves to the subspace
V := {v ∈ H 1(�); ∫

�
v dx = 0}. The bilinear form a(u, v) = ∫

�
∇u · ∇v dx

is not H 1-elliptic, but in view of the variant (1.11) of Friedrichs’ inequality, it is
V -elliptic.

We claim that the data of the boundary-value problem (3.8) must satisfy a
certain compatibility condition. Indeed, with w := ∇u, equation (3.8) becomes

− div w = f in �, ν ′w = g on �.
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By the Gauss Integral Theorem,
∫
�

div w dx = ∫
∂�

wνds, and thus

∫
�

f dx +
∫

�

g ds = 0. (3.9)

This condition is not only necessary, but also sufficient. By the Lax–Milgram
Theorem, we get u ∈ V with

a(u, v) = (f, v)0,� + (g, v)0,� (3.10)

for all v ∈ V . Because of the compatibility condition, (3.10) also holds for v =
const, and thus for all v ∈ H 1(�). As in Theorem 3.2, we now deduce that every
classical solution of the variational problem satisfies the equation (3.8).

Another method to deal with the pure Neumann problem (3.8) will be dis-
cussed in Problem III.4.21.

Mixed Boundary Conditions

In physical problems, we often encounter Neumann or natural boundary condi-
tions whenever the flow over the boundary is prescribed. Sometimes a Neumann
condition is prescribed on only part of the boundary.

3.3 Example. Suppose we want to determine the stationary temperature distribu-
tion in an isotropic body � ⊂ R

3. On the part of the boundary where the body is
mechanically clamped, the temperature is prescribed. We denote this part of the
boundary by �D . On the rest of the boundary �N = � \ �D , we assume that the
heat flux is so small that it can be considered to be 0. If there are no heat sources
in �, then we have to solve the elliptic boundary-value problem

�u = 0 in �,

u = g on �D,

∂u

∂ν
= 0 on �N.

This problem leads in a natural way to a Hilbert space which lies between
H 1(�) and H 1

0 (�). Consider functions of the form

u ∈ C∞(�) ∩H 1(�), u vanishes in a neighborhood of �D.

Then the closure of this set w.r.t. the H 1-norm leads to the desired space. This is
a subspace of H 1(�), and by Remark 1.6, under very general hypotheses | · |1 is
a norm which is equivalent to ‖ · ‖1.
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Proof of the Trace Theorem

We now present the proof of the trace theorem. For the sake of clarity, we restrict
ourselves to domains in R

2. The generalization to domains in R
n is straightforward,

and can be left to the reader as an exercise.

Suppose the boundary is piecewise smooth. In addition, suppose a cone condi-
tion is satisfied at the (finitely many) points where the boundary is not smooth. Then
we can divide the boundary into finitely many boundary pieces �1, �2, . . . , �m so
that for every piece �i , after a rotation of the coordinate system, we have

1. For some function φ = φi ∈ C1[y1, y2],

�i = {(x, y) ∈ R
2; x = φ(y), y1 ≤ y ≤ y2}.

2. The domain �i = {(x, y) ⊂ R
2; φ(y) < x < φ(y) + r, y1 < y < y2} is

contained in �, where r > 0.
We now apply an argument used earlier for the Poincaré–Friedrichs inequality. For
v ∈ C1(�̄) and (x, y) ∈ �,

v(φ(y), y) = v(φ(y)+ t, y)−
∫ t

0
∂1v(φ(y)+ s, y)ds,

where 0 ≤ t ≤ r . Integrating over t from 0 to r gives

rv(φ(y), y) =
∫ r

0
v(φ(y)+ t, y)dt −

∫ r

0
∂1v(φ(y)+ t, y)(r − t)dt.

We take the square of this equation, and useYoung’s inequality (a+b)2 ≤ 2a2+2b2.
Applying the Cauchy–Schwarz inequality to the squares of the integrals gives

r2v2(φ(y), y) ≤ 2
∫ r

0
1dt

∫ r

0
v2(φ(y)+ t, y)dt

+ 2
∫ r

0
t2dt

∫ r

0
|∂1v(φ(y)+ t, y)|2dt.

We now insert the values
∫

1dt = r and
∫

t2dt = r3/3. Dividing by r2 and
integrating over y, we get∫ y2

y1

v2(φ(y), y)dy ≤ 2r−1
∫

�i

v2dxdy + r

∫
�i

|∂1v|2dxdy.

The arc length differential on � is given by ds =
√

1 + φ′2dy. Thus, we have∫
�i

v2ds ≤ ci[2r−1‖v‖2
0 + r|v|21],

where ci = max{
√

1 + φ′2; y1 ≤ y ≤ y2}. Setting c = (r + 2r−1)
∑m

i=1 ci , we
finally get

‖v‖0,� ≤ c‖v‖1,�.

Thus, the restriction γ : H 1(�) ∩ C1(�̄) → L2(�) is a bounded mapping on
a dense set. Because of the completeness of L2(�), it can be extended to all of
H 1(�) without enlarging the bound.
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Note that the cone condition excludes cusps in the domain. The domain

� := {(x, y) ∈ R
2; 0 < y < x5 < 1}

has a cusp at the origin, and H 1(�) contains the function

u(x, y) = x−1,

whose trace is not square-integrable over �.

We would like to point out that Green’s formula (2.9) also holds for functions
u, w ∈ H 1(�), provided that � satisfies the hypotheses of the trace theorem.

The space H 1(�) is isomorphic to a direct sum

H 1(�) ∼ H 1
0 (�)⊕ γ (H 1(�)).

Specifically, every u ∈ H 1(�) can be decomposed as

u = v + w,

according to the following rule. Let w be the solution of the variational problem
|w|21 → min ! More exactly, suppose

(∇w,∇v)0,� = 0 for all v ∈ H 1
0 (�),

w − u ∈ H 1
0 (�).

Let v := u− w ∈ H 1
0 (�). Here γ is an injective mapping on the set of functions

w which appear in the decomposition.

We now consider the connection with continuous functions. As usual, the
norm ‖u‖∞ = ‖u‖∞,� is based on the essential supremum of |u| over �. [It is
not a Sobolev norm.]

3.4 Remarks. (1) Let � ⊂ R
2 be a convex polygonal domain, or a domain with

Lipschitz continuous boundary. Then H 2(�) is compactly imbedded in C(�̄), and

‖v‖∞ ≤ c‖v‖2 for all v ∈ H 2(�), (3.11)

for some number c = c(�).

(2) For every open connected domain � ⊂ R
2, H 2(�) is compactly imbedded

in C(�).

The above results are not the sharpest possible in this framework. Because of
their importance, and because they follow simply from the trace theorem, we now
give their proofs.
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Choose an angle ϕ and a radius r with the following property: for every two
points x, y ∈ �̄ with ‖x − y‖ < r , there exists a cone K with angle ϕ, diameter
r , and tip at x such that y ∈ ∂K . We now rotate the coordinate system so that x

and y differ in only the first coordinate. By the trace theorem, we deduce that

‖v‖0,∂K ≤ c(r, ϕ)‖v‖1,K .

Then for v ∈ H 2(�), ∂1v ∈ H 1(�), and thus ‖∂1v‖0,∂K ≤ c(r, ϕ)‖v‖2,�. By
Remark 1.8, |v(x) − v(y)| ≤ c(r, ϕ)

√‖x − y‖ · ‖v‖2,�. Thus, v is Hölder con-
tinuous with exponent 1/2. Using ‖v‖0,K ≤ ‖v‖2,�, we get a bound for |v| in K ,
and (3.11) follows. The Arzelà–Ascoli Theorem now establishes the compactness
assertion.

For every m ≥ 1, we can find a polygonal domain �m which contains all of
the points x ∈ � whose distance from 0 is at most m, and whose distance from
∂� is at least 1/m. Since � =⋃

m>0 �m, (2) follows from (1).

Practical Consequences of the Trace Theorem

For practical applications, it is tempting to believe that only classical solutions
are of importance, and that weak solutions with singularities are nothing more
than interesting mathematical objects. However, this is far from the truth, as the
following example shows.

3.5 Example. Suppose we erect a tent over a disk with radius R such that its height
at the center is 1. Find the shape of the tent which has the minimal surface area.
Suppose u(x) is the height of the tent at the point x. Then it is well known that
the surface area is given by

∫
BR

√
1 + (∇u)2 dx.

Here BR is the disk with radius R and center at 0. Now
√

1 + (∇u)2 ≤ 1+ 1
2 (∇u)2,

and for small gradients the difference between the two sides of the inequality is
small. Thus, we are led to the variational problem

1

2

∫
BR

(∇v)2dx −→ min ! (3.12)

subject to the constraints
v(0) = 1,

v = 0 on ∂BR.
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We now show that the constraint v(0) = 1 will be ignored by the solution of the
variational problem. The singular function

w0(x) = log log
eR

r
with r = r(x) = ‖x‖

has a finite Dirichlet integral (3.12). We smooth it to get

wε(x) =



w0(x) for r(x) ≥ ε,

log log
eR

ε
for 0 ≤ r(x) < ε.

Now |wε|1,BR
≤ |w0|1,BR

, and wε(0) tends to ∞ as ε → 0. Thus,

uε = wε(x)

wε(0)

for ε = 1, 1/2, 1/3, . . . provides a minimizing sequence for J (v) which converges
almost everywhere to the zero function. This means that the requirement u(0) = 1
was ignored.

The situation is different if we require that u = 1 on a curve segment. This
would be the case if the tent were attached to a ring on the tent pole or if the tent
is put over a rope so that it assumes the shape of a roof. While the evaluation of an
H 1 function at a point does not make any sense, its evaluation on a line in the L2

sense is possible. A condition on a function which is defined on a curve segment
will be respected almost everywhere.

Fig. 8. Tent attached to a loop of a rope to prevent an extreme force concentration
at the tip

For most larger tents, the boundary of the tent at the tip is a ring instead of
a single point. Or (see Fig. 8) the tent may be attached to a loop of rope. This
avoids very high forces, since the force applies to the ring or loop, rather than at
a single point. The trace theorem explains why the point is to be replaced by a
one-dimensional curve.
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Problems

3.6 Show that every classical solution of the equations and inequalities

−�u+ a0u = f in �,

u ≥ 0,
∂u

∂ν
≥ 0,

u · ∂u

∂ν
= 0


 on �,

is a solution of a variational problem in the convex set

V + := {v ∈ H 1(�); γ v ≥ 0 almost everywhere on �}.

– It is known from integration theory that the subset {φ ∈ L2(�); φ ≥ 0 almost
everywhere on �} is closed in L2(�).

3.7 Suppose the domain � has a piecewise smooth boundary, and let u ∈ H 1(�)∩
C(�̄). Show that u ∈ H 1

0 (�) is equivalent to u = 0 on ∂�.

3.8 Suppose the domain � is divided into two subdomains �1 and �2 by a
piecewise smooth curve �0. Let α1 � α2 > 0 and a(x) = αi for x ∈ �i, i = 1, 2.
Show that for every classical solution of the variational problem∫

�

[
1

2
a(x)(∇v(x))2 − f (x)v(x)]dx −→ min!

in H 1
0 (�), the quantity a(x) ∂u

∂n
is continuous on the curve �0. [The discontinuity

of a(x) now implies that ∂u
∂n

is not continuous there.]
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§ 4. The Ritz–Galerkin Method

and Some Finite Elements

There is a simple natural approach to the numerical solution of elliptic boundary-
value problems. Instead of minimizing the functional J defining the corresponding
variational problem over all of Hm(�) or Hm

0 (�), respectively, we minimize it over
some suitable finite-dimensional subspace [Ritz 1908]. The standard notation for
the subspace is Sh. Here h stands for a discretization parameter, and the notation
suggests that the approximate solution will converge to the true solution of the
given (continuous) problem as h → 0.

We first consider approximation in general subspaces, and later show how to
apply it to a model problem.

The solution of the variational problem

J (v) := 1

2
a(v, v)− 〈�, v〉 −→ min

Sh

! (4.1)

in the subspace Sh can be computed using the Characterization Theorem 2.2. In
particular, uh is a solution provided

a(uh, v) = 〈�, v〉 for all v ∈ Sh. (4.2)

Suppose {ψ1, ψ2, . . . , ψN } is a basis for Sh. Then (4.2) is equivalent to

a(uh, ψi) = 〈�, ψi〉, i = 1, 2, . . . , N.

Assuming uh has the form

uh =
N∑

k=1

zkψk, (4.3)

we are led to the system of equations

N∑
k=1

a(ψk, ψi)zk = 〈�, ψi〉, i = 1, 2, . . . , N, (4.4)

which we can write in matrix-vector form as

Az = b, (4.5)
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where Aik := a(ψk, ψi) and bi := 〈�, ψi〉. Whenever a is an Hm-elliptic bilinear
form, the matrix A is positive definite:

z′Az =
∑
i,k

ziAikzk

= a
(∑

k

zkψk,
∑

i

ziψi

) = a(uh, uh)

≥ α‖uh‖2
m,

and so z′Az > 0 for z �= 0. Here we have made use of the bijective mapping
R

N −→ Sh which is defined by (4.3). Without explicitly referring to this canonical
mapping, in the sequel we will identify the function space Sh with R

N .

In engineering sciences, and in particular if the problem comes from contin-
uum mechanics, the matrix A is called the stiffness matrix or system matrix.

Methods. There are several related methods:

Rayleigh–Ritz Method: Here the minimum of J is sought in the space Sh. Instead
of the basis-free derivation via (4.2), usually one finds uh as in (4.3) by solving
the equation (∂/∂zi)J (

∑
k zkψk) = 0.

Galerkin Method: The weak equation (4.2) is solved for problems where the bilin-
ear form is not necessarily symmetric. If the weak equations arise from a variational
problem with a positive quadratic form, then often the term Ritz–Galerkin Method
is used.

Petrov–Galerkin Method: Here we seek uh ∈ Sh with

a(uh, v) = 〈�, v〉 for all v ∈ Th,

where the two N -dimensional spaces Sh and Th need not be the same. The choice
of a space of test functions which is different from Sh is particularly useful for
problems with singularities.

As we saw in §§2 and 3, the boundary conditions determine whether a prob-
lem should be formulated in Hm(�) or in Hm

0 (�). For the purposes of a unified
notation, in the following we always suppose V ⊂ Hm(�), and that the bilinear
form a is always V -elliptic, i.e.,

a(v, v) ≥ α‖v‖2
m and |a(u, v)| ≤ C‖u‖m‖v‖m for all u, v ∈ V,

where 0 < α ≤ C. The norm ‖ · ‖m is thus equivalent to the energy norm (2.14),
which we use to get our first error bounds. – In addition, let � ∈ V ′ with |〈�, v〉| ≤
‖�‖ · ‖v‖m for v ∈ V . Here ‖�‖ is the (dual) norm of �.
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4.1 Remark. (Stability) Independent of the choice of the subspace Sh of V , the
solution of (4.2) always satisfies

‖uh‖m ≤ α−1‖�‖.

Proof. Let uh be a solution of (4.2). Substituting v = uh, we get

α‖uh‖2
m ≤ a(uh, uh) = 〈�, uh〉 ≤ ‖�‖ ‖uh‖m.

Dividing by ‖uh‖m, we get the assertion.

The following lemma is of fundamental importance in establishing error
bounds for finite element approximations. The line of proof is typical, and we
will make frequent use of variants of the technique. The relation (4.7) below is
often denoted as Galerkin orthogonality.

4.2 Céa’s Lemma. Suppose the bilinear form a is V -elliptic with Hm
0 (�) ⊂ V ⊂

Hm(�). In addition, suppose u and uh are the solutions of the variational problem
in V and Sh ⊂ V , respectively. Then

‖u− uh‖m ≤ C

α
inf

vh∈Sh

‖u− vh‖m. (4.6)

Proof. By the definition of u and uh,

a(u, v) = 〈�, v〉 for all v ∈ V,

a(uh, v) = 〈�, v〉 for all v ∈ Sh.

Since Sh ⊂ V , it follows by subtraction that

a(u− uh, v) = 0 for all v ∈ Sh. (4.7)

Let vh ∈ Sh. With v = vh − uh ∈ Sh, it now follows immediately from (4.7) that
a(u− uh, vh − uh) = 0, and

α‖u− uh‖2
m ≤ a(u− uh, u− uh)

= a(u− uh, u− vh)+ a(u− uh, vh − uh)

≤ C‖u− uh‖m‖u− vh‖m.

After dividing by ‖u−uh‖m, we get α‖u−uh‖m ≤ C‖u−vh‖m, and the assertion
is established.
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Fig. 9. A uniform triangulation of a rectangle

According to Céa’s lemma, the accuracy of a numerical solution depends
essentially on choosing function spaces which are capable of approximating the
solution u well. For polynomials, the order of approximation is determined by the
smoothness of the solution. However, for boundary-value problems, the smooth-
ness of the solution typically decreases as we approach the boundary. Thus, it
doesn’t make much sense to use polynomials that are defined on the whole do-
main and to insist on a high accuracy by forcing the degree of the polynomials
to be high. As we shall see in §§6 and 7, it makes more sense to use piecewise
polynomials, and to achieve the desired accuracy by making the associated parti-
tion of � sufficiently fine. The so-called h-p-methods combine refinements of the
partitions and an increase of the degree of the polynomials; see Schwab [1998].

Model Problem

4.3 Example (Courant [1943]). Suppose we want to solve the Poisson equation in
the unit square (or in a general domain which can be triangulated with congruent
triangles):

−�u = f in � = (0, 1)2,

u = 0 on ∂�.

Suppose we partition �̄ with a uniform triangulation of mesh size h, as shown in
Fig. 9. Choose

Sh := {v ∈ C(�̄); v is linear in every triangle and v = 0 on ∂�}. (4.8)

In every triangle, v ∈ Sh has the form v(x, y) = a + bx + cy, and is uniquely
defined by its values at the three vertices of the triangle. Thus, dim Sh = N =
number of interior mesh points. Globally, v is determined by its values at the N

grid points (xj , yj ). Now choose a basis {ψi}Ni=1 with

ψi(xj , yj ) = δij .
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NW N

� �
� IV � II

III�� I ��
W � C � E

� �
� VI � VIII

V �� VII��
� �

S SE

Fig. 10. Numbering of the elements in a neighborhood of the center C and the
neighboring points in the compass directions: E, S, W, N, NW and SE

Table 1. Derivatives of the basis functions ψC shown in Fig. 10 (ψC has the
value 1 at C and is 0 at other nodes)

I II III IV V VI VII VIII

∂1ψC −h−1 0 h−1 0 0 h−1 0 −h−1

∂2ψC −h−1 0 0 −h−1 0 h−1 h−1 0

We compute the elements of the system matrix Aij , where again we choose
local indices and exploit the symmetry, (see Fig. 11 and Table 1)

a(ψC, ψC) =
∫

I−V III

(∇ψC)2dxdy

= 2
∫

I+III+IV

[(∂1ψC)2 + (∂2ψC)2]dxdy

= 2
∫

I+III

(∂1ψC)2dxdy + 2
∫

I+IV

(∂2ψC)2dxdy

= 2h−2
∫

I+III

dxdy + 2h−2
∫

I+IV

dxdy

= 4,

a(ψC, ψN) =
∫

I+IV

∇ψC · ∇ψNdxdy

=
∫

I+IV

∂2ψC∂2ψNdxdy =
∫

I+IV

(−h−1)h−1dxdy

= −1.

Here ψN is the nodal function for the point north of C. By symmetry, a similar
computation gives

a(ψC, ψE) = a(ψC, ψS) = a(ψC, ψW) = a(ψC, ψN) = −1.
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Fig. 11. Nodal basis function

Finally, we find that

a(ψC, ψNW) =
∫

III+IV

[∂1ψC∂1ψNW + ∂2ψC∂2ψNW ]dxdy = 0.

In evaluating a(ψC, ψSE), note that all products in the integrals vanish. Thus we
get a system of linear equations with exactly the same matrix as in the finite
difference method based on the standard five-point stencil

[ −1
−1 4 −1

−1

]
∗
. (4.9)

We should emphasize that this connection with difference methods does not
hold in general. The finite element method provides the user with a great deal of
freedom, and for most other finite element approximations and other equations,
there is no equivalent finite difference star. In general, the finite element approxi-
mation does not even satisfy the discrete maximum principle. – The same holds,
by the way, for the method of finite volumes. Once again, we get the same matrix
only in the above simple case [Hackbusch 1989].

The stiffness matrix for the model problem was determined here in a node-
oriented way. We note that the matrices are assembled in a different way in real-
life computations, i.e. element-oriented. First, the contribution of each triangle
(element) to the stiffness matrix is determined by doing the computation only for
a master triangle (reference element). Finally the contributions of all triangles are
added.
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Problems

4.4 As usual, let u and uh be the functions which minimize J over V and Sh,
respectively. Show that uh is also a solution of the minimum problem

a(u− v, u− v) −→ min
v∈Sh

!

Because of this, the mapping

Rh : V −→ Sh

u �−→ uh

is called the Ritz projector.

4.5 Consider the potential equation with inhomogeneous boundary conditions

−�u = 0 in � = (0, 1)2,

u = u0 on ∂�,

and suppose we select the same regular triangulation as in Example 4.3. In addition,
let u0 be piecewise linear on the boundary. Then u0 can be extended continuously
to � so that u0 is linear in every triangle and vanishes at the interior nodes. Show
that in this situation, i.e. for inhomogeneous boundary conditions and with Sh as
in (4.8), we get the same linear system as in Chapter I.

4.6 Suppose in Example 4.3 that on the bottom side of the square we replace
the Dirichlet boundary condition by the natural boundary condition ∂u/∂ν = 0.
Verify that this leads to the stencil[ −1

−1/2 2 −1/2

]
∗

at these boundary points.

4.7 In Example 4.3, does the part −uxx of the Laplace operator −� lead to a
stencil which has only nonzero terms in one horizontal line, as is the case for the
finite difference method?

4.8 Given the variational problem∫
�

[a1(∂1v)2 + a2(∂2v)2 + a3(∂1v − ∂2v)2 − 2f v] dx −→ min!

with a1, a2, a3 > 0, find the associated Euler differential equation and the differ-
ence star, using the same form of approximating function as in Example 4.3.

4.9 Consider the boundary-value problem (2.13) and apply the Galerkin method
with polynomials of degree k on [0, 1]. Show convergence for k →∞.
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§ 5. Some Standard Finite Elements

In practice, the spaces over which we solve the variational problems associated with
boundary-value problems are called finite element spaces. We partition the given
domain � into (finitely many) subdomains, and consider functions which reduce to
a polynomial on each subdomain. The subdomains are called elements. For planar
problems, they can be triangles or quadrilaterals. For three-dimensional problems,
we can use tetrahedra, cubes, rectangular parallelepipeds, etc. For simplicity, we
restrict our discussion primarily to the two-dimensional case.

Here is a list of some of the important properties characterizing different finite
element spaces:

1. The kind of partition used on the domain: triangles or quadrilaterals. If all
elements are congruent, we say that the partition is regular.

2. In two variables, we refer to

Pt := {u(x, y) =
∑

i + k ≤ t

i, k ≥ 0

cikx
iyk} (5.1)

as the set of polynomials of degree ≤ t . If all polynomials of degree ≤ t are
used, we call them finite elements with complete polynomials.
The restrictions of the polynomials to the edges of the triangles or quadrilat-
erals are polynomials in one variable. Sometimes we will require that their
degree be smaller than t (e.g., at most t − 1). Such a condition will be part
of the specification of the elements.
The admissible polynomial degrees in the elements or on their edges are a
local property.

3. Continuity and differentiability properties: A finite element is said to be a
Ck element provided it is contained in Ck(�).5 This property is of a global
character and is often concealed in interpolation conditions.

We remark that according to this scheme, the Courant triangles in Example 4.3
would be classified as linear triangular elements in C0(�).

We use the terminology conforming finite element if the functions lie in the
Sobolev space in which the variational problem is posed. Nonconforming elements
will be studied in Chapter III.

5 The use of the terminology element may be somewhat confusing. We decompose the
domain into elements which are geometric objects, while the finite elements are actually
functions. However, we will deviate from this convention when discussing, e.g., Ck elements
or linear elements, where the meaning is clear from the context.
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The formal definition of finite elements will be given in the definitions 5.8 and
5.12. The reader will recognize the three properties above in the triple (T , �, )

after the significance of the differentiability conditions will be clear.

Requirements on the Meshes

For simplicity, in the following let � be a polygonal domain which can be parti-
tioned into triangles or quadrilaterals. The partition is by no means required to be
as regular as the one shown in the model problem in §4.

5.1 Definition. (1) A partition T = {T1, T2, . . . , TM} of � into triangular or
quadrilateral elements is called admissible provided the following properties hold
(see Fig. 12):

i. �̄ =⋃M
i=1 Ti .

ii. If Ti ∩ Tj consists of exactly one point, then it is a common vertex of Ti and
Tj .

iii. If for i �= j , Ti ∩Tj consists of more than one point, then Ti ∩Tj is a common
edge of Ti and Tj .

(2) We will write Th instead of T when every element has diameter at most
2h.

(3) A family of partitions {Th} is called shape regular provided that there
exists a number κ > 0 such that every T in Th contains a circle of radius ρT with

ρT ≥ hT /κ,

where hT is half the diameter of T .

(4) A family of partitions {Th} is called uniform provided that there exists
a number κ > 0 such that every element T in Th contains a circle with radius
ρT ≥ h/κ . We will often use the terminology κ-regular.
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Fig. 12. An admissible triangulation (left), and one which is not because of two
hanging nodes marked by ◦ (right).
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Fig. 13. A triangulation which is shape regular but not uniform

Since h = maxT ∈T hT , uniformity is a stronger requirement than shape reg-
ularity. Clearly, the triangulations shown in Figs. 13 and 14 are shape regular,
independent of how many steps of the refinement in the neighborhood of the
boundary or of a reentrant corner are carried out. However, if the number of steps
depends on h, the partitions are no longer uniform.

In practice, we almost always use shape-regular meshes, and very frequently
even uniform ones.

Significance of the Differentiability Properties

In the conforming treatment of second order elliptic problems, we choose finite
elements which lie in H 1. We shall show that it is possible to use functions which
are continuous but not necessarily continuously differentiable. Thus, the functions
are much less smooth than required for a classical solution of the boundary-value
problem.

In the following, we will always assume unless otherwise indicated that the
partitions satisfy the requirements of 5.1. We say that a function u on � satisfies
a given property piecewise provided that its restriction to every element has that
property.

5.2 Theorem. Let k ≥ 1 and suppose � is bounded. Then a piecewise infinitely
differentiable function v : �̄ → R belongs to Hk(�) if and only if v ∈ Ck−1(�̄).

Proof. It suffices to give the proof for k = 1. For k > 1 the assertion then follows
immediately from a consideration of the derivatives of order k − 1. In addition,
for simplicity we restrict ourselves to domains in R

2.

(1) Let v ∈ C(�̄), and suppose T = {Tj }Mj=1 is a partition of �. For i = 1, 2,
define wi : � → R piecewise by wi(x) := ∂iv(x) for x ∈ �, where on the edges
we can take either of the two limiting values. Let φ ∈ C∞

0 (�). Green’s formula
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Fig. 14. Nonuniform triangulations with a reentrant vertex

can be applied in every element Tj to give∫
�

φwi dxdy =
∑
j

∫
Tj

φ∂iv dxdy

=
∑
j

{
−
∫

Tj

∂iφv dxdy +
∫

∂Tj

φv νi ds

}
. (5.2)

Since v was assumed to be continuous, the integrals over the interior edges cancel.
Moreover, φ vanishes on ∂�, and we are left with the integral over the domain

−
∫

�

∂iφv dxdy.

By Definition 1.1, wi is the weak derivative of v.

(2) Let v ∈ H 1(�). We do not establish the continuity of v by working
backwards through the formulas (although this would be possible), but instead
employ an approximation-theoretical argument. Consider v in the neighborhood
of an edge, and rotate the edge so that it lies on the y-axis. Suppose the edge
becomes the interval [y1 − δ, y2 + δ] on the y-axis with y1 < y2 and δ > 0. We
now investigate the auxiliary function

ψ(x) :=
∫ y2

y1

v(x, y)dy.

First, suppose v ∈ C∞(�). It now follows from the Cauchy–Schwarz inequality
that

|ψ(x2)− ψ(x1)|2 =
∣∣∣∣
∫ x2

x1

∫ y2

y1

∂1v dxdy

∣∣∣∣2

≤
∣∣∣∣
∫ x2

x1

∫ y2

y1

1 dxdy

∣∣∣∣ · |v|21,�

≤ |x2 − x1| · |y2 − y1| · |v|21,�.
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Because of the density of C∞(�) in H 1(�), this assertion also holds for v ∈
H 1(�). Thus the function x �→ ψ(x) is continuous, and in particular at x = 0.
Since y1 and y2 are arbitrary except for y1 < y2, this can only happen if the
piecewise continuous function v is continuous on the edge.

If no other additional conditions are required, continuous finite elements are
easily constructed. In view of Theorem 5.2, this is of great advantage for the solu-
tion of second order boundary-value problems using conforming finite elements.
The construction of C1 elements, which according to Theorem 5.2 are required
for the conforming treatment of problems of fourth order, is more difficult.

Fig. 15. Piecewise quadratic polynomials that interpolate at the points (•) are
continuous at the interface

Triangular Elements with Complete Polynomials

The simplest triangular elements to construct are C0 elements made up of complete
polynomials.

5.3 Remark. Let u be a polynomial of degree t . If we apply an affine linear transfor-
mation and express u in the new coordinates, we again get a polynomial of degree
t . Thus, the set of polynomials Pt is invariant under affine linear transformations.

5.4 Remark. Let t ≥ 0. Given a triangle T , suppose z1, z2, . . . , zs are the s =
1 + 2 + · · · + (t + 1) points in T which lie on t + 1 lines, as in Fig. 16. Then
for every f ∈ C(T ), there is a unique polynomial p of degree ≤ t satisfying the
interpolation conditions

p(zi) = f (zi), i = 1, 2, . . . , s. (5.3)

Proof. The result is trivial for t = 0. We now assume it has been established for t−1,
and prove it for t . In view of the invariance under affine transformations, we can
assume that one of the edges of T lies on the x-axis. Suppose it is the one containing
the points z1, z2, . . . , zt+1. There exists a univariate polynomial p0 = p0(x) with

p0(zi) = f (zi), i = 1, 2 . . . , t + 1.
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By the induction hypothesis, there also exists a polynomial q = q(x, y) of degree
t − 1 with

q(zi) = 1

yi

[f (zi)− p0(zi)], i = t + 2, . . . , s.

Clearly, p(x, y) = p0(x)+ yq(x, y) satisfies (5.3).
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Fig. 16. Nodes of the nodal basis for linear, quadratic, and cubic triangular
elements M1

0, M2
0, and M3

0

5.5 Definition. Suppose that for a given finite element space, there is a set of points
which uniquely determines any function in the space by its values at the points.
Then the set of functions in the space which take on a nonzero value at precisely
one of the points form a basis for the space, called the nodal basis.

The following construction, which assures continuity by using sufficiently
many points on the edges of the triangle, is typical for the construction of C0

elements.

5.6 A Nodal Basis for C0 Elements. Let t ≥ 1, and suppose we are given a
triangulation of �. In each triangle, we place s := (t + 1)(t + 2)/2 points as
indicated in Fig. 16, so that there are t + 1 points on each edge. By Remark 5.4,
in each triangle a polynomial of degree ≤ t is determined by choosing values at
these points. The restriction of any such polynomial to an edge is a polynomial of
degree ≤ t in one variable. Now given an edge, the two polynomials on either side
interpolate the same values at the t +1 points on that edge, and thus must reduce to
the same one-dimensional polynomial. This ensures that our elements are globally
continuous.

In dealing with finite elements with complete polynomials, we make use of
the following notation from the literature:

Mk := Mk(T ) := {v ∈ L2(�); v|T ∈ Pk for every T ∈ T },
Mk

0 := Mk ∩ C0(�) = Mk ∩H 1(�),

Mk
0,0 := Mk ∩H 1

0 (�).

(5.4)

M1
0 is also called the conforming P1 element or Courant triangle.
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Table 2. Interpolation with some standard finite elements
• Function value prescribed
�� Function value and 1st derivative prescribed
��� Function value and 1st and 2nd derivatives prescribed

Normal derivative prescribed

Linear triangular element M1
0

u ∈ C0(�)

•
�

�
�

��• •
�ref = P1, dim �ref = 3

Quadratic triangular element M2
0

u ∈ C0(�)

•
�

��• •
�

��• • •
�ref = P2, dim �ref = 6

Cubic triangular element M3
0

u ∈ C0(�)

•
��• •

��• • •
��• • • •

�ref = P3, dim �ref = 10

Argyris triangle
u ∈ C1(�)

���

�

�
�

�
���� ���

�ref = P5, dim �ref = 21

Bell triangle
u ∈ C1(�)

���
�

�
�
���� ���

�ref ⊂ P5, ∂νu|∂Ti
∈ P3, dim �ref = 18

Hsieh–Clough–Tocher element
u ∈ C1(�)

��
�

�
�

�

�
�
�

��
������� ��

T =⋃3
i=1 Ki, u|Ki

∈ P3, dim �ref = 12

Bilinear quadrilateral element Q1

u ∈ C0(�)

• •

• •
�ref ⊂ P2, u|∂Ti

∈ P1, dim �ref = 4

Serendipity element
u ∈ C0(�)

• • •

• •

• • •
�ref ⊂ P3, u|∂Ti

∈ P2, dim �ref = 8
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Remarks on C1 Elements

The construction of C1 elements is considerably more difficult. There are two
well-known constructions of triangular elements based on polynomials of degree
5. Recall that dim P5 = 21. We now assume that we are given values for derivatives
up to order 2 at each of the vertices of the triangle. This uses 3 × 6 = 18 degrees
of freedom.

To construct the Argyris element, we use the remaining three degrees of free-
dom to specify the values of the normal derivatives at the midpoint of each side of
the triangle. The following argument shows that this leads to a global C1 function.

Consider the univariate polynomials which are the restrictions of two neigh-
boring polynomials to a common edge of the triangle. At the ends of the edge, these
two polynomials must both interpolate the values of the given derivatives up to
order 2. Since this interpolation problem has a unique solution, we get the desired
continuity of the function and its tangential derivative. The normal derivatives along
the edge are polynomials of degree 4. They both interpolate the given derivatives
up to order 1 at the ends of the edge, along with the given value at the center of the
edge. Since these five pieces of data uniquely determine a polynomial of degree 4,
we have established the continuity of the normal derivative.

To construct the triangular element of Bell, we use the same data at the vertices
as for the Argyris element. But now we restrict ourselves to the class of polynomials
of degree 5 whose normal derivatives on the sides of the triangle are polynomials
of degree 3 rather than 4. Again the normal derivative along an edge is uniquely
determined by the derivative information at the vertices, and we get a continuous
derivative. The number of degrees of freedom for this element is 3 less than for the
Argyris element (see Table 2).

The Hsieh–Clough–Tocher element is constructed by a completely different
process. First we subdivide the triangle T into three subtriangles by connecting its
vertices to its center of gravity. We now build a C1 function consisting piecewise of
cubic polynomials. At each of the vertices of the original triangle, we specify the
function value and the first derivatives. In addition, we specify the normal derivative
at the midpoint of each of the three sides of T . It can be shown that the three cubic
polynomials join together to form a C1 function on T . The fact that two adjoining
macro-elements join with C1 continuity can be established in the same way as for
the other C1 elements. This element has exactly 12 degrees of freedom.

The reduced Hsieh–Clough–Tocher element is constructed in a similar way,
except that now we insist that the normal derivatives along the edges of T be linear
rather than quadratic. The analysis now proceeds as in our construction of the Bell
element from the Argyris element (cf. Problem 6.15).

Because it involves a subpartition, the Hsieh–Clough–Tocher element is called
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a macro-element. Another macro-element is the Powell–Sabin element; see Powell
and Sabin [1977].

It should be noted that the continuity of derivatives along the element bound-
aries is easy to handle in terms of the Bernstein–Bézier representation of polyno-
mials.

Bilinear Elements

The polynomial families Pt are not used on rectangular partitions of a domain. We
can see why by looking at the simplest example, the bilinear element. Instead of
using Pt as we did for triangles, on rectangular elements we use the polynomial
family which contains tensor products:

Qt := {u(x, y) =
∑

0≤i,k≤t

cikx
iyk}. (5.5)

If more general quadrilateral elements are involved, we can use appropriately trans-
formed families.

We consider first a rectangular grid whose grid lines run parallel to the coor-
dinate axes. On each rectangle we use

u(x, y) = a + bx + cy + dxy, (5.6)

where the four parameters are uniquely determined by the values of u at the four
vertices of the rectangle. Although u is a polynomial of degree 2, its restriction
to each edge is a linear function. Because of this, we automatically get global
continuity of the elements since neighboring bilinear pieces share the same node
information.
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Fig. 17. A rectangle rotated by 45◦, and a parallelogram element

The polynomial form (5.6) is not usable on a grid which has been rotated by
45◦ as in Fig. 17. Indeed, the term dxy in (5.6) vanishes at all of the vertices of the
rotated square.

We can get the correct polynomial form for general parallelograms (and thus
for the rotated elements shown in Fig. 17) by means of a linear transformation.
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However, the treatment of general quadrilaterals requires the more general class
of so-called isoparametric mappings, which are discussed in Chapter III. – It is
possible to combine parallelograms with triangles, in order to make the partition of
� more flexible.

Suppose the edges of a parallelogram element lie on lines of the form

α1x + β1y = γ1,

α2x + β2y = γ2
(5.7)

(where the coefficients vary from element to element). Then with the transformation

ξ = α1x + β1y,

η = α2x + β2y,

we get the bilinear function

u(x, y) = a + bξ + cη + dξη (5.8)

which is linear along the edges of the parallelogram.

5.7 Remarks. (1) We can also characterize the Q1 elements obtained by the above
construction in a coordinate-free way:

S = {v ∈ C0(�̄); for every element T , v|T ∈ P2,

and the restriction to each edge belongs to P1}.

(2) If every edge of an element contains tk + 1 nodes of a nodal basis, and the
restrictions to the edges are all polynomials of degree tk at most, then we auto-
matically get globally continuous elements. – Note that the maximum degree of a
polynomial restricted to an edge does not increase under a linear transformation.

Quadratic Rectangular Elements

One of the most popular elements on rectangles (or on more general parallelograms)
consists of piecewise polynomials of degree 3 whose restrictions to the edges are
quadratic polynomials. Using the coordinates shown in Fig. 18, we can write such
a polynomial in the form

u(x, y) = a + bx + cy + dxy

+ e(x2 − 1)(y − 1)+ f (x2 − 1)(y + 1)

+ g(x − 1)(y2 − 1)+ h(x + 1)(y2 − 1)
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(cf. Problem 5.16). There are eight degrees of freedom. The first four are deter-
mined by the values at the vertices. The remaining parameters e, f, g and h can be
computed directly from the values at the midpoints of the sides. This element is
called the eight node element or the serendipity element. If we add the term

k(x2 − 1)(y2 − 1),

we get one more degree of freedom, and can then interpolate a value at the center
of the rectangle. By dropping some degrees of freedom, we can also get useful six
node elements (with e = f = 0 or g = h = 0, respectively), as shown in Fig. 18.

• • •

• • •

• •
• •
• •

• • •
• •
• • •

• • •
• • •
• • •

Fig. 18. Rectangular elements with 6, 8, or 9 nodes for a rectangle with edges
on the lines |x| = 1, |y| = 1.

Affine Families

In the above discussion of special finite element spaces, we have implicitly made
use of the following formal construction; cf. Ciarlet [1978].

5.8 Definition. A finite element is a triple (T , �, ) with the following properties:
(i) T is a polyhedron in R

d . (The parts of the surface ∂T lie on hyperplanes and
are called faces.)

(ii) � is a subspace of C(T ) with finite dimension s. (Functions in � are called
shape functions if they form a basis of �.)

(iii)  is a set of s linearly independent functionals on �. Every p ∈ � is uniquely
defined by the values of the s functionals in . – Since usually the functionals
involve point evaluation of a function or its derivatives at points in T , we call
these (generalized) interpolation conditions.

In (ii) s is the number of local degrees of freedom or local dimension.

Although generally � consists of polynomials, it is not enough to look only
at polynomial spaces, since otherwise we would exclude piecewise polynomial
elements such as the Hsieh–Clough–Tocher element. In fact, there are even finite
elements consisting of piecewise rational functions; see Wachspress [1971].

As a first example consider the finite element families Mk
0. We have

Mk
0 = (T , Pk, k),

k := {p(zi); i = 1, 2, . . . ,
(k + 1)(k + 2)

2
},



§5. Some Standard Finite Elements 71

where the points zi are defined in Remark 5.4 and depicted in Fig. 16 for k ≤ 3.

The condition for a smooth join between elements is dealt with in (iii), although
in fact, we actually need a still stronger formalization of this condition. However,
for the C1 elements presented in Table 2, the meaning is clear. Thus, e.g., for the
Argyris triangle, by Table 2 we have

� :=P5, dim � = 21,

 :={p(ai), ∂xp(ai), ∂yp(ai), ∂xxp(ai), ∂xyp(ai), ∂yyp(ai), i = 1, 2, 3,

∂np(a12), ∂np(a13), ∂np(a23)},

where a1, a2, a3 are the vertices and aij = 1
2 (ai+aj ) are the midpoints of the sides.

Another example elucidates the role of the functionals in . Fig. 19 shows
three different finite elements with � = P1. Only the first one belongs to H 1(�).
Although the local degree of freedom is 3 in each case, the dimensions of the
resulting finite element spaces are quite different; cf. Problem 5.13. Similarly, M3

0
and the cubic Hermite triangle are different elements with cubic polynomials shown
in Fig. 20.
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Fig. 19. The P1 elements M1
0, M1

∗, and M1. Here and in the other diagrams
the points marked by a • refer to point evaluations from the set of functionals
 associated to the finite element spaces in Definition 5.8(iii). The symbols for
other functionals are found in Table 2 and Fig. 21.

5.9 The Cubic Hermite Triangle. The ten degrees of freedom of cubic polyno-
mials can also be fixed in another way. In particular, we can choose the values of
the polynomial and its first derivatives at the vertices ai, i = 1, 2, 3, along with the
value at the center a123 = 1

3 (a1 + a2 + a3). The cubic Hermite triangle is the triple
(T , P3, HT ) where

HT :=
{
p(ai),

∂

∂x
p(ai),

∂

∂y
p(ai), i = 1, 2, 3, and p(a123)

}
. (5.9)

The functions in HT are linearly independent. To verify this, we consider an edge
of the triangle between the vertices ai and aj (i �= j). Let q ∈ P3 be the univariate
polynomial which is the restriction of p to the edge. The values q(ai), q(aj ) and
the derivatives at these points are given by p and the directional derivative.
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Since the one-dimensional Hermite interpolation problem for two points and
cubic polynomials has a unique solution, we can compute q. Hence, the values at the
ten nodes shown in Fig. 16 for the Lagrange interpolation are uniquely determined.
Thus we have reduced the interpolation problem for the Hermite triangle to the
usual Lagrange interpolation problem which is known to be solvable.

We emphasize that the derivatives are continuously joined only at the vertices
[but not along the edges]. The cubic Hermite triangle is not a C1 element. Never-
theless, we will see in Chapter VI that it provides appropriate nonconforming H 2

elements for the treatment of plates.
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Fig. 20. Interpolation points for two elements with � = P3, i.e. with piecewise
cubic polynomials

5.10 The Bogner–Fox–Schmit rectangle. On the other hand there is a C1-element
with bicubic functions. It is called the Bogner–Fox–Schmit element and depicted
in Fig. 21.

�ref :=Q3, dim �ref = 16,

 := {p(ai), ∂xp(ai), ∂yp(ai), ∂xyp(ai), i = 1, 2, 3, 4.
} (5.10)

Since the data in (5.10) refer to the tensor products of one-dimensional Hermite
interpolation, the 16 functionals in  are linearly independent on Q3.

To verify C1 continuity of the Bogner–Fox–Schmit element, consider the uni-
variate polynomial on a vertical edge of the rectangle. Its restriction to the edge is a
cubic polynomial in y which is determined by p and ∂yp at the two vertices. Sim-
ilarly the normal derivative ∂xp is also a cubic polynomial and determined by ∂xp

and ∂xyp at the vertices. Thus we have continuity of p and ∂xp, i.e. C1 continuity.

↗ ↗�� ��

↗ ↗�� ��

Fig. 21. C1-element of Bogner–Fox–Schmit. The symbol ↗ refers to the mixed
second derivative ∂xyp.
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5.11 Standard Elements. Strictly speaking the diagrams show the sets T and 

from the triple (T , �, ). Nevertheless, in many cases the associated family � is
considered clear and is sometimes just mentioned without a detailed specification.
For example, diagrams as in Fig. 16 refer to � = Mk

0. If a point evaluation at the
center of a triangle is added to M1

0 or M2
0, then the space is augmented by a bubble

function as for the MINI element in Ch. III, §7 or the plate elements in Ch. VI, §6.
Figures 17 and 18 show further standard elements with � = P1 and � = P3.

The functionals which are encountered with elements for scalar equations, are
found in Table 2 and Fig. 21. The specification of vector valued elements often
contains normal components or tangential components on the edges. Motivation is
given in Problem 5.13, but applications are only contained in Chapter III and VI.

Definition 5.8 refers to a single element. The analysis of the finite element
spaces can be obtained from results for a reference element, if all elements are
constructed by affine transformations.

5.12 Definition. A family of finite element spaces Sh for partitions Th of � ⊂ R
d

is called an affine family provided there exists a finite element (Tref , �ref , ) called
the reference element with the following properties:

(iv) For every Tj ∈ Th, there exists an affine mapping Fj : Tref −→ Tj such that
for every v ∈ Sh, its restriction to Tj has the form

v(x) = p(F−1
j x) with p ∈ �ref .

We have already encountered several examples of affine families. The families
Mk

0 and the rectangular elements considered so far are affine families. For example,
Mk

0 is defined by the triple (T̂ , Pk, k), where

T̂ := {(ξ, η) ∈ R
2; ξ ≥ 0, η ≥ 0, 1 − ξ − η ≥ 0} (5.11)

is the unit triangle and k := {p(zi); i = 1, 2, . . . , s := k(k + 1)/2} is the set of
nodal basis points zi in Remark 5.6.

In our above discussion of the bilinear rectangular elements and the analogous
biquadratic ones, it is clear how the transformation (iv) works (cf. (5.8)), but this is
not the case for the complete polynomials on triangles. For rectangular elements,
the unit square [−1,+1]2 is the natural reference quadrilateral.

On the other hand, whenever conditions on the normal derivatives enter into
the definition (e.g., in the definition of the Argyris triangle), then we do not have an
affine family; see Fig. 22. This can be remedied by combining the normal derivatives
with the tangential ones in the analysis. This has led to the theory of almost-affine
families; see Ciarlet [1978].
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Fig. 22. Transformation of the unit triangle and one normal direction by the
affine map x �→ x, x + y �→ y.

Choice of an Element

There are a large number of special elements which are useful for the treatment
of systems of elliptic partial differential equations, see Chs. III and VI, or Ciarlet
[1978], Bathe [1986]. It is useful to say something about how to choose an element
even in the scalar case.

The choice of whether to use a triangular or rectangular partition depends
primarily on the shape of the domain. Triangles are more flexible, but in solid
mechanics, rectangular elements are generally preferred (cf. Ch. VI, §4).

For problems with a smooth behavior, we generally get better results using
(bi-)quadratic elements than with (bi-)linear ones with the same number of free
parameters. However, they do lead to linear systems with a larger bandwidth, and
there is more work involved in setting up the stiffness matrices. This drawback is
avoided when using standard finite element packages. Nevertheless, to save pro-
gramming time and to get results as quickly as possible, linear elements are often
used.

Problems

5.13 Consider the subset of all polynomials p in Pk for which
a) the restriction of p to any edge lies in Pk−1, or
b) the restriction of the normal derivative ∂νp to any edge lies in Pk−2.

Which of the two sets generates an affine family?

5.14 The completion of the space of vector-valued functions C∞(�)n w.r.t. the
norm

‖v‖2 := ‖v‖2
0,� + ‖ div v‖2

0,�

is denoted by H(div, �). Obviously, H 1(�)n ⊂ H(div, �) ⊂ L2(�)n. Show that
a piecewise polynomial v is contained in H(div, �) if and only if the components
v ·ν in the direction of the normals are continuous on the inter-element boundaries.
Hint: Apply Theorem 5.2 and use (2.22). — Similarly piecewise polynomials in the
space H(rot, �) are characterized by the continuity of the tangential components;
see Problem VI.4.8.
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5.15 Show that for a triangulation of a simply connected domain, the number of
triangles plus the number of nodes minus the number of edges is always 1. Why
doesn’t this hold for multiply connected domains?

5.16 When considering the cubic Hermite triangle, there are three degrees of free-
dom per vertex and one per triangle. By the results of the previous problem, we know
that the dimension must be smaller than for the standard Lagrange representation.
Where are the missing degrees of freedom?

5.17 Let f ∈ L2(�), and suppose u and uh are the solutions of the Poisson equation
−�u = f in H 1

0 (�) and in a finite element space Sh ⊂ C0(�), respectively. By
construction∇u and∇uh are at least L2 functions. By the remark in Example 2.10,
we know that the divergence of∇u is an L2 function. With the help of Problem 5.14,
show that this no longer holds for the divergence of ∇uh in general.

5.18 Show that the piecewise cubic continuous quadrilateral elements whose
restrictions to the edges are quadratic polynomials, are exactly the serendipity class
of eight node elements.
Hint: First consider a rectangle with sides parallel to the axes.

5.19 To construct triangular elements based on quadratic polynomials, consider
the subspace of functions whose normal derivatives on the three edges are constant.
Find the dimension of this space, distinguishing the cases when it is a right triangle
or not.

5.20 The set of cubic polynomials whose restrictions to the edges of a triangle are
quadratic form a 7-dimensional space. Give a basis for it on the unit triangle (5.9).
— We will later encounter the cubic bubble function B3. The result of this problem
can be identified with P2 ⊕ B3.



76

§ 6. Approximation Properties

In this section we give error bounds for finite element approximations. By Céa’s
lemma, in the energy norm it suffices to know how well the solution can be ap-
proximated by elements in the corresponding finite element space Sh = Sh(Th).
For general methods, a suitable framework is provided by the theory of affine fam-
ilies. We do not derive results for every individual element, but instead examine
a reference element, and use transformation formulas to carry the results over to
shape-regular grids.

We intend to provide error bounds in other norms besides the energy norm.

We will concentrate primarily on affine families of triangular elements. Clearly,
the error for an interpolation method provides an upper bound for the error of the best
approximation. It turns out that we actually get the correct order of approximation
in this way. – We consider C0 elements, which according to Theorem 5.2, are not
contained in Hm(�) for m > 1, and so the higher Sobolev norms are not applicable.
As substitutes, we use certain mesh-dependent norms which are tailored to the
problem at hand. We do not use the symbols ‖ · ‖h and ‖ · ‖m,h for fixed norms,
but allow the norm to change from case to case. Often mesh-dependent norms are
broken norms as in (6.1) or norms with weight factors h−m as in Problem III.1.9.

6.1 Notation. Given a partition Th = {T1, T2, . . . , TM} of � and m ≥ 1, let

‖v‖m,h :=
√∑

Tj∈Th

‖v‖2
m,Tj

. (6.1)

Clearly, ‖v‖m,h = ‖v‖m,� for v ∈ Hm(�).

Let m ≥ 2. By the Sobolev imbedding theorem (see Remark 3.4) Hm(�) ⊂
C0(�), i.e. every v ∈ Hm has a continuous representer. For every v ∈ Hm, there
exists a uniquely defined interpolant in Sh = Sh(Th) associated with the points in
5.6. We denote it by Ihv. The goal of this section is to estimate

‖v − Ihv‖m,h by ‖v‖t,� for m ≤ t.
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The Bramble–Hilbert Lemma

First we obtain an error estimate for interpolation by polynomials. We begin by
establishing the result for all domains which satisfy the hypotheses of the imbedding
theorem. Later we shall apply it primarily to reference elements, i.e., on convex
triangles and quadrilaterals.

6.2 Lemma. Let � ⊂ R
2 be a domain with Lipschitz continuous boundary which

satisfies a cone condition. In addition, let t ≥ 2, and suppose z1, z2, . . . , zs are
s := t (t + 1)/2 prescribed points in �̄ such that the interpolation operator I :
Ht → Pt−1 is well defined for polynomials of degree ≤ t − 1. Then there exists a
constant c = c(�, z1, . . . , zs) such that

‖u− Iu‖t ≤ c|u|t for all u ∈ Ht(�). (6.2)

Proof. We endow Ht(�) with the norm

|||v||| := |v|t +
s∑

i=1

|v(zi)|,

and show that the norms ||| · ||| and ‖ · ‖t are equivalent. Then (6.2) will follow from

‖u− Iu‖t ≤ c|||u− Iu|||

= c
[|u− Iu|t +

s∑
i=1

|(u− Iu)(zi)|
]

= c|u− Iu|t = c|u|t .
Here we have made use of the fact that Iu coincides with u at the interpolation
points, since DαIu = 0 for all |α| = t .

One direction of the proof of equivalence of the norms is simple. By Re-
marks 3.4, the imbedding Ht ↪→ H 2 ↪→ C0 is continuous. This implies

|v(zi)| ≤ c‖v‖t for i = 1, 2, . . . , s,

and thus |||v||| ≤ (1 + cs)‖v‖t .

Suppose now that the converse

‖v‖t ≤ c|||v||| for all v ∈ Ht(�) (6.3)

fails for every positive number c. Then there exists a sequence (vk) in Ht(�) with

‖vk‖t = 1, |||vk||| ≤ 1

k
, k = 1, 2, . . . .
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By the Rellich selection theorem (Theorem 1.9), a subsequence of (vk) converges
in Ht−1(�). Without loss of generality, we can assume that the sequence itself
converges. Then (vk) is a Cauchy sequence in Ht−1(�). From |vk|t → 0 and
‖vk − v�‖2

t ≤ ‖vk − v�‖2
t−1 + (|vk|t + |v�|t )2, we conclude that (vk) is even a

Cauchy sequence in Ht(�). Because of the completeness of the space, this estab-
lishes convergence in the sense of Ht to an element v∗ ∈ Ht(�). By continuity
considerations, we have

‖v∗‖t = 1 and |||v∗||| = 0.

This is a contradiction, since |v∗|t = 0 implies v∗ is a polynomial in Pt−1, and in
view of v∗(zi) = 0 for i = 1, 2, . . . , s, v∗ can only be the null polynomial.

Using the lemma, we now immediately get the following result [Bramble and
Hilbert 1970]. As usual, the kernel of a linear mapping L is denoted by ker L, and
‖L‖ := sup{‖Lv‖; ‖v‖ = 1}.

6.3 Bramble–Hilbert Lemma. Let � ⊂ R
2 be a domain with Lipschitz continuous

boundary. Suppose t ≥ 2 and that L is a bounded linear mapping of Ht(�)

into a normed linear space Y . If Pt−1 ⊂ ker L, then there exists a constant c =
c(�)‖L‖ ≥ 0 such that

‖Lv‖ ≤ c|v|t for all v ∈ Ht(�). (6.4)

Proof. Let I : Ht(�) → Pt−1 be an interpolation operator of the type appearing
in the previous lemma. Using the lemma and the fact that Iv ∈ ker L, we get

‖Lv‖ = ‖L(v − Iv)‖ ≤ ‖L‖ · ‖v − Iv‖t ≤ c‖L‖ · |v|t ,

where c is the constant in (6.2).

For simplicity, we have restricted ourselves to bounded two-dimensional do-
mains in order to be able to use the Lagrange interpolation polynomials. This
restriction can be removed by utilizing other interpolation procedures; cf. 6.9 and
Problem 6.16.

Triangular Elements with Complete Polynomials

We turn our attention once again toC0 elements consisting of piecewise polynomials
of degree t − 1 on triangles. Assume t ≥ 2. Given a triangulation Th and an
associated family Sh = Mt−1

0 (Th), by §5 there is a well-defined interpolation
operator Ih : Ht(�) → Sh. Moreover, by Definition 5.1(3), Th is associated with
a shape parameter κ . The central result is the following approximation theorem.
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6.4 Theorem. Let t ≥ 2, and suppose Th is a shape-regular triangulation of �.
Then there exists a constant c = c(�, κ, t) such that

‖u− Ihu‖m,h ≤ c ht−m|u|t,� for u ∈ Ht(�), 0 ≤ m ≤ t, (6.5)

where Ih denotes interpolation by a piecewise polynomial of degree t − 1.

We present the proof of this approximation theorem in full generality later. For
the moment we restrict ourselves to the case of a regular grid, i.e., to the case where
all triangles are congruent as in Example 4.3. Each triangle can thus be considered
to be a scaled version of a reference triangle T1.

6.5 Remark. Let t ≥ 2, and suppose

Th := hT1 = {x = hy; y ∈ T1}
with h ≤ 1. Then

‖u− Iu‖m,Th
≤ c ht−m|u|t,Th

, (6.6)

for 0 ≤ m ≤ t , where Iu is the polynomial in Pt−1 which interpolates u (at the
transformed points). Here c is the constant in Lemma 6.2.

Proof of the remark. Given a function u ∈ Ht(Th), we define v ∈ Ht(T1) by

v(y) = u(hy).

Then ∂αv = h|α|∂αu for |α| ≤ t . Since the transformation of the area in R
2 yields

an extra factor h−2, we get

|v|2�,T1
=
∑
|α|=�

∫
T1

(∂αv)2dy =
∑
|α|=�

∫
Th

h2�(∂αu)2h−2dx = h2�−2|u|2�,Th
.

Assuming h ≤ 1, after summation the smallest power dominates:

‖u‖2
m,Th

=
∑
�≤m

|u|2�,Th
=
∑
�≤m

h−2�+2|v|2�,T1
≤ h−2m+2‖v‖2

m,T1
.

Now inserting u−Iu in place of u in this formula, we get a result for the interpolation
error. Combining the last two formulas with Lemma 6.2, we get

‖u− Iu‖m,Th
≤ h−m+1‖v − Iv‖m,T1 ≤ h−m+1‖v − Iv‖t,T1

≤ h−m+1 c|v|t,T1

≤ ht−m c|u|t,Th
,

for all m ≤ t , and (6.6) is proved.

For a regular grid, the assertion of Theorem 6.4 is a direct consequence of
Remark 6.5, since we get ‖u− Ihu‖m,� immediately by squaring the expressions
in (6.6), and summing over all triangles.

We now examine triangular elements in more detail in preparation for the proof
of the general case of Theorem 6.4, which follows the same lines as for the special
case of a regular grid, although the technical difficulties are much greater.



80 II. Conforming Finite Elements

6.6 Transformation Formula. Let � and �̂ be affine equivalent, i.e., there exists
a bijective affine mapping

F : �̂ → �,

F x̂ = x0 + Bx̂
(6.7)

with a nonsingular matrix B. If v ∈ Hm(�), then v̂ := v ◦ F ∈ Hm(�̂), and there
exists a constant c = c(�̂, m) such that

|v̂|m,�̂ ≤ c ‖B‖m | det B|−1/2|v|m,�. (6.8)

Proof. Consider the derivative of order m as a multilinear form, and write the chain
rule in the form

Dmv̂(x̂)(ŷ1, ŷ2, . . . , ŷm) = Dmv(x)(Bŷ1, Bŷ2, . . . , Bŷm).

Thus, ‖Dmv̂‖Rnm ≤ ‖B‖m‖Dmv‖Rnm . We apply this estimate to the partial deriva-
tives ∂i1∂i2 . . . ∂imv = Dmv(ei1 , ei2 , . . . , eim). Taking the sum, we get

∑
|α|=m

|∂αv̂|2 ≤ nm max
|α|=m

|∂αv̂|2 ≤ nm‖Dmv̂‖2 ≤ nm‖B‖2m‖Dmv‖2

≤ n2m‖B‖2m
∑
|α|=m

|∂αv|2.

Finally we integrate, taking account of the transformation formula for multiple
integrals: ∫

�̂

∑
|α|=m

|∂αv̂|2dx̂ ≤ n2m‖B‖2m

∫
�

∑
|α|=m

|∂αv|2 · | det B−1|dx.

Taking the square root, we get (6.8).

•

• •

•

Fig. 23. An affine map from a triangle T1 onto a triangle T2 sends a pair of points
on a circle inscribed in T1 to points in a circle which contains T2
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The fact that transformations to and from shape-regular grids do not generate
extra terms with powers of h can also be seen from simple geometric considerations.
Let F : T1 → T2 : x̂ �→ Bx̂+ x0 be a bijective affine mapping. We write ρi for the
radius of the largest circle inscribed in Ti , and ri for the radius of the smallest circle
containing Ti . Given x ∈ R

2 with ‖x‖ ≤ 2ρ1, we find two points y1, z1 ∈ T1 with
x = y1 − z1, see Fig. 23. Since F(y1), F (z1) ∈ T2, we have ‖Bx‖ ≤ 2r2. Thus,

‖B‖ ≤ r2

ρ1
. (6.9)

Now exchanging T1 and T2, we see that the inverse matrix satisfies ‖B−1‖ ≤ r1/ρ2,
and thus

‖B‖ · ‖B−1‖ ≤ r1r2

ρ1ρ2
. (6.10)

Proof of Theorem 6.4. It suffices to establish the inequality

‖u− Ihu‖m,Tj
≤ cht−m|u|t,Tj

for all u ∈ Ht(Tj )

for every triangle Tj of a shape-regular triangulation Th. To this end, choose a
reference triangle (5.11) with r̂ = 2−1/2 and ρ̂ = (2 + √

2)−1 ≥ 2/7. Now let
F : Tref → T with T = Tj ∈ Th. Applying Lemma 6.2 on the reference triangle
and using the transformation formula in both directions, we obtain

|u− Ihu|m,T ≤ c‖B‖−m| det B|1/2 |û− Ihû|m,Tref

≤ c‖B‖−m| det B|1/2 · c|û|t,Tref

≤ c‖B‖−m| det B|1/2 · c‖B‖t · | det B|−1/2 |u|t,T
≤ c (‖B‖ · ‖B−1‖)m ‖B‖t−m |u|t,T .

By the shape regularity, r/ρ ≤ κ , and ‖B‖ · ‖B−1‖ ≤ (2 + √
2)κ . Then (6.9)

implies ‖B‖ ≤ h/ρ̂ ≤ 4h. Combining these facts, we have

|u− Ihu|�,T ≤ cht−�|u|t,T .

Now squaring and summing over � from 0 to m establishes the assertion.

Bilinear Quadrilateral Elements

For quadrilateral elements, we usually use tensor products instead of complete
polynomials. Nevertheless, we can still make use of the techniques developed in
the previous section to establish results on the order of approximation. The simple
but important case of a bilinear element serves as a typical example.
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Table 3. Error estimates for some finite elements

‖u− Ihu‖m,h ≤ cht−m|u|t,� 0 ≤ m ≤ t

C0 elements
linear triangle t = 2
quadratic triangle 2 ≤ t ≤ 3
cubic triangle 2 ≤ t ≤ 4
bilinear quadrilateral t = 2
serendipity element 2 ≤ t ≤ 3
9 node quadrilateral 2 ≤ t ≤ 3

C1 elements
Argyris element 3 ≤ t ≤ 6
Bell element 3 ≤ t ≤ 5
Hsieh–Clough–Tocher element 3 ≤ t ≤ 4 (m ≤ 2)

reduc. Hsieh–Clough–Tocher element t = 3 (m ≤ 2)

6.7 Theorem. Let Th be a quasi-uniform decomposition of � into parallelograms.
Then there exists a constant c = c(�, κ) such that

‖u− Ihu‖m,� ≤ ch2−m|u|2,� for all u ∈ H 2(�),

where Ihu interpolates u using bilinear elements.
Proof. For the same reasons as in the last proof, it suffices to show that for interpo-
lation on the unit square Q := [0, 1]2,

‖u− Iu‖2,Q ≤ c|u|2,Q for all u ∈ H 2(Q). (6.11)

In view of the continuous imbedding H 2(Q) ↪→ C0(Q), the function values of u

at the 4 vertices are bounded by c‖u‖2,Q. The interpolating polynomial Iu depends
linearly on these 4 values, and thus ‖Iu‖2,Q ≤ c1 maxx∈Q |u(x)| ≤ c2‖u‖2,Q and

‖u− Iu‖2 ≤ ‖u‖2 + ‖Iu‖2 ≤ (c2 + 1)‖u‖2.

If u is a linear polynomial, then Iu = u, and u − Iu = 0. The Bramble–Hilbert
lemma now guarantees (6.11).

Analogously, for elements in the serendipity class, we have

‖u− Ihu‖m,� ≤ cht−m|u|t,� for all u ∈ Ht(�), m = 0, 1 and t = 2, 3.

The approximation properties for other triangular and quadrilateral elements are
listed in Table 3.
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Inverse Estimates

The above approximation theorems have the form

‖u− Iu‖m,h ≤ cht−m‖u‖t ,

where m is smaller than t . For the moment we ignore the fact that on the right-hand
side, the norm ‖·‖t may be replaced by the semi-norm |·|t . Thus, the approximation
error is measured in a coarser norm than the given function. In a so-called inverse
estimate, the reverse happens. The finer norm of the finite element functions will
be estimated by a coarser one (obviously, this does not work for all functions in
the Sobolev space).

6.8 Inverse Estimates. Let (Sh) be an affine family of finite elements consisting of
piecewise polynomials of degree k associated with uniform partitions. Then there
exists a constant c = c(κ, k, t) such that for all 0 ≤ m ≤ t ,

‖vh‖t,h ≤ chm−t‖vh‖m,h for all vh ∈ Sh.

Sketch of the proof. We can reduce the proof to the discussion of a reference element
by using the transformation formula 6.6. It suffices to show that

|v|t,Tref ≤ c|v|m,Tref for v ∈ �ref (6.12)

with c = c(�ref). The extension to elements of size h proceeds just as in the proof
of Theorem 6.4. This leads to the factor chm−t in the estimate. Then summing the
squares of the expressions over all triangles or quadrilaterals leads to the desired
assertion.

To establish (6.12), we make use of the fact that the norms ‖·‖t,Tref and ‖·‖m,Tref

are equivalent on the finite dimensional space �ref ⊕ Pm−1. Let Iv ∈ Pm−1 be a
polynomial that interpolates v at fixed points. Since t > mi1, we have |Iv|t = 0.
Combining these facts, we obtain from the Bramble–Hilbert lemma

|v|t = |v − Iv|t ≤ ‖v − Iv‖t

≤ c‖v − Iv‖m

= c′|v|m,

and (6.12) is proved.

In theApproximation Theorem 6.4 and the Inverse Estimate 6.8, the exponents
in the term with h correspond to the difference between the orders of the Sobolev
norms. This has been established by moving back and forth to and from the reference
triangle. This technique is called a scaling argument.
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Fig. 24. The values of the Clément interpolant in the (shaded) triangle T depend
on the values of the given function in its neighborhood ω̃T

Clément’s Interpolation

The interpolation operator Ih in (6.5) can only be applied to H 2 functions. On the
other hand, functions with less regularity can be approximated in some advanced
theories. Clément [1975] has constructed an interpolation process which applies to
H 1 functions. Typically this operator is used when features in H 1 and L2 are to
be combined. The crucial point is that the interpolation error depends only on the
local mesh size. Thus, no power of h is lost, even if inverse estimates enter into the
analysis.

The operator is defined nearly locally. Let Th be a shape-regular triangulation
of �. Given a node xj , let

ωj := ωxj
:=
⋃
{T ′ ∈ Th; xj ∈ T ′} (6.13)

be the support of the shape function vj ∈ M1
0. Here vj (xk) = δjk . Furthermore, let

ω̃T :=
⋃
{ωj ; xj ∈ T } (6.14)

be a neighborhood of T . Since Th is assumed to be shape regular, the area can be
estimated by µ(ω̃T ) ≤ c(κ) h2

T . Moreover, the number of triangles that belong to
ω̃T is bounded.

6.9 Clément’s Interpolation. Let Th be a shape-regular triangulation of �. Then
there exists a linear mapping Ih : H 1(�) → M1

0 such that

‖v − Ihv‖m,T ≤ ch1−m
T ‖v‖1,ω̃T

for v ∈ H 1(�), m = 0, 1, T ∈ Th

‖v − Ihv‖0,e ≤ ch
1/2
T ‖v‖1,ω̃T

for v ∈ H 1(�), e ∈ ∂T , T ∈ Th.

(6.15)

A simple construction is obtained by a combination of Clément’s operator and
the procedures of Scott and Zhang [1990] orYserentant [1990]. The construction is
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performed in two steps. Given a nodal point xj , let Qj : L2(ωj ) → P0 be the L2-
projection onto the constant functions. It follows from the Bramble–Hilbert lemma
that

‖v −Qjv‖0,ωj
≤ chj |v|1,ωj

, (6.16)

where hj is the diameter of ωj . In order to cope with homogeneous Dirichlet bound-
ary conditions on �D ⊂ ∂� we modify the operator and set

Q̃j v =
{

0 if xj ∈ �D ,
Qjv otherwise. (6.17)

Here we get an analogous estimate to (6.16) by adapting the technique of the proof
of Friedrich’s inequality

‖v − Q̃j v‖0,ωj
= ‖v‖0,ωj

≤ chj |v|1,ωj
if xj ∈ �D. (6.18)

Next we define
Ihv :=

∑
j

(Q̃j v)vj ∈ M1
0. (6.19)

The shape functions vj constitute a partition of unity. Specifically, for each x, Ihv

contains at most three nonzero terms. For each relevant term, v − Q̃j v can be
estimated by (6.16) or (6.18). resp.

‖v − Ihv‖0,T ≤
∑
j

‖(v − Q̃j v)vj‖0,T ≤
∑
j

‖(v − Q̃j v)‖0,ωj
≤ 3chT ‖v‖1,ω̃T

.

This proves (6.15a) for m = 0. For the H 1-stability we refer to Corollary 7.8.

The construction is easily modified to get an analogous mapping from H 1
0 (�)

to M1
0 ∩H 1

0 (�). If xj ∈ ∂�, then Pjv may be set to zero and (6.16) follows from
Friedrichs’ inequality.

Appendix: On the Optimality of the Estimates

6.10 Remark. The inverse estimates show that the above approximation theorems
are optimal (up to a constant). The assertions have the following structure:

Suppose the complete normed linear space X is compactly imbedded in Y .
Then there exists a family (Sh) of subspaces of X satisfying the approximation
property

inf
vh∈Sh

‖u− vh‖Y ≤ chα‖u‖X for all u ∈ X, (6.20)

and (with β = α) the inverse estimate

‖vh‖X ≤ ch−β‖vh‖Y for all vh ∈ Sh. (6.21)
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An example of this is provided by ‖ · ‖X = ‖ · ‖2,h, ‖ · ‖Y = ‖ · ‖1,�,
Sh = M1

0(Th), α = β = 1.

A pair of inequalities of the form (6.20) and (6.21) involving an approximation
property and an inverse estimate is called optimal provided that β = α. We claim
β < α is impossible. Indeed, otherwise there would exist a sequence of nested
spaces V0 ⊂ V1 ⊂ V2 ⊂ · · · with

min
vn∈Vn

‖u− vn‖Y ≤ 2−γ n‖u‖X for all u ∈ X (6.22)

and
‖vn‖X ≤ 2n‖vn‖Y .

Here 1 < γ < 2. Choose m ∈ N with 2−(γ+1)m < (1 − 2−γ−1)/5. In view of the
compact imbedding of X in Y , there exists an element u ∈ X with ‖u‖X = 1 and
‖u‖Y < ε := 2−γm. Suppose (6.22) holds for vn ∈ Vn. Set

wm = vm, wn = vn − vn−1 for n > m.

Then ‖wm‖Y ≤ ‖u− wm‖Y + ‖u‖Y ≤ 2 · 2−γm, and

‖wn‖Y ≤ ‖u− vn‖Y + ‖u− vn−1‖Y ≤ 2−γ n + 2−γ (n−1) ≤ 5 · 2−γ n

for n > m. In view of the inverse inequality, it follows that ‖wn‖X ≤ 5 · 2−(γ−1)n

for n ≥ m, and

‖u‖X = ‖
∞∑

n=m

wn‖X ≤ 5
∞∑

n=m

2−(γ−1)n < 1.

This is a contradiction.

6.11 Remark. The above proof also establishes that if

inf
vh∈Sh

‖u− vh‖Y ≤ const · hβ

for all u ∈ Y , and the inverse estimate (6.21) also holds, then u is contained in
the subspace X. This result has far-reaching consequences for the practical use of
finite elements. If it is known that the solution u of a boundary-value problem does
not lie in a higher-order Sobolev space, then the finite element approximation has
limited accuracy.

Here we should note that pairs of inequalities of the form (6.20) and (6.21) play
a major role in classical approximation theory. The most widely known results along
these lines deal with the approximation of 2π -periodic functions by trigonometric
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polynomials in Pn,2π . Let Ck+α denote the space of functions whose k-th derivative
is Hölder continuous with exponent α. Then by the theorems of Jackson,

inf
p∈Pn,2π

‖f − p‖C0 ≤ cn−k−α‖f ‖Ck+α ,

while the Bernstein inequality

‖p‖Ck+α ≤ cnk+α‖p‖C0 for all p ∈ Pn,2π

provides the corresponding inverse estimate.

Problems

6.12 Let Th be a family of uniform partitions of �, and suppose Sh belong to an
affine family of finite elements. Suppose the nodes of the basis are z1, z2, . . . , zN

with N = Nh = dim Sh. Verify that for some constant c independent of h, the
following inequality holds:

c−1‖v‖2
0,� ≤ h2

N∑
i=1

|v(zi)|2 ≤ c‖v‖2
0,� for all v ∈ Sh.

6.13 Under appropriate assumptions on the boundary of �, we showed that

inf
v∈Sh

‖u− vh‖1,� ≤ c h‖u‖2,� ,

where for every h > 0, Sh is a finite-dimensional finite element space. Show that this
implies the compactness of the imbedding H 2(�) ↪→ H 1(�). [Thus, the use of the
compactness in the proof of the approximation theorem was not just a coincidence.]

6.14 Let Th be a κ-regular partition of � into parallelograms, and let uh be an
associated bilinear element. Divide each parallelogram into two triangles, and let
‖ · ‖m,h be defined as in (6.1). Show that

inf ‖uh − vh‖m,� ≤ c(κ)h2−m‖uh‖2,�, m = 0, 1,

where the infimum is taken over all piecewise linear functions on the triangles in
M1.

6.15 For interpolation by piecewise linear functions, Theorem 6.4 asserts that

‖Ihv‖2,h ≤ c ‖v‖2,�.

Give a one-dimensional counterexample to show that

‖Ihv‖0,� ≤ c ‖v‖0,�

is not possible with a constant c which is independent of h.
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6.16 Prove the Bramble–Hilbert lemma for t = 1 by choosing Iv to be the constant
function

Iv :=
∫
�

v dx∫
�

dx
.

6.17 Consider the situation as in the construction of Cléments’operator. We modify
the definition of the operator Q̃j : L2(ωj ) → P0 by the rule

Q̃j v := v(xj ) if v|ωj
∈ M1

0(T�), (6.23)

i.e., if the restriction of v to ωj is a finite element function with the present grid.
Show that also in this case

‖v − Q̃j v‖0,ωj
≤ hj |v|1,ωj

with c depending only on the shape parameter of the triangulation of ωj .

Hint: The modification has an advantage. If the given function coincides with a
piecewise linear function on a subdomain �̃, then the projector reproduces v at the
nodes in the interior of �̃.
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§ 7. Error Bounds for Elliptic Problems

of Second Order

Now we are ready to establish error estimates for finite element solutions. Usually
error bounds are derived first with respect to the energy norm. The extension to
the L2-norm is performed by a duality technique that is often found in proofs of
advanced results. We are looking for bounds of the form

‖u− uh‖ ≤ c hp (7.1)

for the difference between the true solution u and the approximate solution uh in Sh.
Here p is called the order of approximation. In general, it depends on the regularity
of the solution, the degree of the polynomials in the finite elements, and the Sobolev
norm in which the error is measured.

Remarks on Regularity

7.1 Definition. Let m ≥ 1, Hm
0 (�) ⊂ V ⊂ Hm(�), and suppose a(·, ·) is a

V -elliptic bilinear form. Then the variational problem

a(u, v) = (f, v)0 for all v ∈ V

is called Hs-regular provided that there exists a constant c = c(�, a, s) such that
for every f ∈ Hs−2m(�), there is a solution u ∈ Hs(�) with

‖u‖s ≤ c ‖f ‖s−2m. (7.2)

In this section we will make use of this definition only for s ≥ 2m. We will
drop this restriction later, in Ch. III, after norms with negative index are defined.

Regularity results for the Dirichlet problem of second order with zero boundary
conditions can be found, e.g., in Gilbarg and Trudinger [1983] and Kadlec [1964].
For simplicity, we do not present the most general results; see the remarks for
Example 2.10 and Problem 7.12.

7.2 Regularity Theorem. Let a be an H 1
0 -elliptic bilinear form with sufficiently

smooth coefficient functions.
(1) If � is convex, then the Dirichlet problem is H 2-regular.
(2) If � has a Cs boundary with s ≥ 2, then the Dirichlet problem is Hs-regular.
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Fig. 25. Reflection of a convex domain � along the edge �N on which a Neumann
condition is given

We see from Example 2.1 with a domain with reentrant corner that the as-
sumptions on the boundary cannot be dropped since the solution there is not in
H 2(�).

We now give an example to show that the situation is more complicated if a
Neumann condition is prescribed on a part of the boundary. Let � be the convex
domain on the right-hand side of the y-axis shown in Fig. 25. Suppose the Neumann
condition

∂u

∂ν
= 0

is prescribed on �N := {(x, y) ∈ ∂�; x = 0}, and that a Dirichlet boundary
condition is prescribed on �D := �\�N . The union of � with its reflection in �N

defines a symmetric domain �s . Set

u(−x, y) = u(x, y) for (x, y) ∈ �s\�.

Then its continuation is also a solution of a Dirichlet problem on �s . But since
�s has a reentrant corner, the solution is not always in H 2(�s), which means that
u ∈ H 2(�) cannot hold for all problems on � with mixed boundary conditions.

Error Bounds in the Energy Norm

In the following, suppose that � is a polygonal domain. This means that it can be
partitioned into triangles or quadrilaterals. In addition, in order to use Theorem 7.2,
suppose � is convex.

7.3 Theorem. Suppose Th is a family of shape-regular triangulations of �. Then
the finite element approximation uh ∈ Sh = Mk

0 (k ≥ 1) satisfies

‖u− uh‖1 ≤ ch‖u‖2

≤ ch‖f ‖0.
(7.3)

Proof. By the convexity of �, the problem is H 2-regular, and ‖u‖2 ≤ c1‖f ‖0. By
Theorem 6.4, there exists vh ∈ Sh with ‖u− vh‖1,� = ‖u− vh‖1,h ≤ c2h‖u‖2,�.
Combining these facts with Céa’s Lemma gives (7.3) with c := (1 + c1)c2c3/α.
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7.4 Remark. According to Theorem 6.4, we should get a higher-order error bound
for quadratic triangular elements under the assumption of H 3-regularity. This ob-
servation is misleading, however, since – except in some special cases – smooth
boundaries are required for H 3-regularity. But a domain � with smooth boundary
cannot be decomposed into triangles, and the usual problems arise along the curved
boundaries (cf. Ch. III, §1).

There is more regularity in the interior of the domain, and in most cases, the
finite element approximations with quadratic or cubic triangles are so much better
than with piecewise linear ones that it is worth the extra effort to use them.

The estimate (7.3) holds for any affine family of triangular elements which
contains the P1 elements as a subset. Moreover, by Theorem 6.7 analogous results
hold if we use bilinear quadrilateral elements instead of linear triangles. Using the
same arguments as in the proof of the previous theorem, we get

7.5 Theorem. Suppose we are given a set of shape-regular partitions of � into
parallelograms. Then the finite element approximation uh by bilinear quadrilateral
elements in Sh satisfies

‖u− uh‖1 ≤ ch‖f ‖0. (7.4)

L2-Estimates

If the polynomial approximation error is measured in the L2-norm (i.e., in the H 0-
norm), then by Theorem 6.4 the order of approximation is better by one power of
h. It is not at all obvious that this property carries over to finite element solutions.
The proof uses the H 2-regularity a second time, and requires a duality argument
which has been called Nitsche’s Trick. We now present an abstract formulation of
it; cf. Aubin [1967] and Nitsche [1968].

7.6 Aubin–Nitsche Lemma. Let H be a Hilbert space with the norm | · | and
the scalar product (·, ·). Let V be a subspace which is also a Hilbert space under
another norm ‖ · ‖. In addition, let

V ↪→ H be continuous.

Then the finite element solution in Sh ⊂ V satisfies

|u− uh| ≤ C‖u− uh‖ sup
g∈H

{
1

|g| inf
v∈Sh

‖ϕg − v‖
}

(7.5)

where for every g ∈ H , ϕg ∈ V denotes the corresponding unique (weak) solution
of the equation

a(w, ϕg) = (g, w) for all w ∈ V. (7.6)
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Proof. By duality, the norm of an element in a Hilbert space can be computed by

|w| = sup
g∈H

(g, w)

|g| . (7.7)

Here and in (7.5), the supremum is taken only over those g with g �= 0. We recall
that u and uh are given by

a(u, v) = 〈f, v〉 for all v ∈ V,

a(uh, v) = 〈f, v〉 for all v ∈ Sh.

Hence, a(u − uh, v) = 0 for all v ∈ Sh. Moreover, if we insert w := u − uh in
(7.6), we get

(g, u− uh) = a(u− uh, ϕg)

= a(u− uh, ϕg − v) ≤ C‖u− uh‖ · ‖ϕg − v‖.
Here we have used the continuity of the bilinear form a, i.e., the fact that a(u, v) ≤
C‖u‖ · ‖v‖. It follows that

(g, u− uh) ≤ C‖u− uh‖ inf
v∈Sh

‖ϕg − v‖.

Now the duality argument (7.7) leads to

|u− uh| = sup
g∈H

(g, u− uh)

|g|

≤ C‖u− uh‖ sup
g∈H

{
inf
v∈Sh

‖ϕg − v‖
|g|

}
.

7.7 Corollary. Under the hypotheses of either Theorem 7.3 or Theorem 7.5, if
u ∈ H 1(�) is the solution of the associated variational problem, then

‖u− uh‖0 ≤ cCh‖u− uh‖1.

If in addition f ∈ L2(�) so that u ∈ H 2(�), then

‖u− uh‖0 ≤ cC2h2‖f ‖0.

Here c and C are the constants appearing in (7.3) and in (7.4)–(7.5), respectively.

Proof. Setting
H := H 0(�), | · | := ‖ · ‖0,

V := H 1
0 (�), ‖ · ‖ := ‖ · ‖1,

we see that V ⊂ H , and the continuity of the imbedding is clear from ‖·‖0 ≤ ‖·‖1.
The Aubin–Nitsche Lemma is now applicable. In view of Theorem 7.3 or 7.5, the
quantity in the curly brackets in (7.5) is at most ch, and the lemma immediately
implies the desired result.
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A Simple L∞-Estimate

The above estimates do not exclude the possibility that the error is large at cer-
tain points. To prevent this, we need to work with the L∞-norm ‖v‖∞,� :=
supx∈� |v(x)|. For problems in two-dimensional domains with H 2-regularity, we
have

‖u− uh‖∞ ≤ c h2| log h|3/2‖D2u‖∞.

A proof of this fact based on weighted norms can be found, e.g., in Ciarlet [1978].
Here we restrict ourselves to proving the much weaker assertion

‖u− uh‖∞ ≤ c h |u|2. (7.8)

Given a function v ∈ H 2(Tref), let Iv be its interpolant in the polynomial
space �ref . Since H 2 ⊂ C0, by the Bramble–Hilbert Lemma we have

‖v − Iv‖∞,Tref ≤ c |v|2,Tref . (7.9)

Let u be the solution of the variational problem, and let Ihu be its interpolant in Sh.
Pick an element T from the triangulation (which we assume to be uniform). Let
û be the affine transformation of u|T onto the reference triangle. By (7.9) and the
transformation formula (6.8), we get

‖u− Ihu‖∞,T = ‖û− I û‖∞,Tref ≤ c|û|2,Tref

≤ ch|u|2,T ≤ ch|u|2,� .
(7.10)

Taking the maximum over all triangles, we have

‖u− Ihu‖∞,� ≤ c h|u|2,�.

Similarly, by an affine argument, we get the inverse estimate

‖vh‖∞,� ≤ c h−1‖vh‖0,� for all vh ∈ Sh.

Now by Theorems 6.4 and 7.7, it follows that ‖uh − Ihu‖0,� ≤ c h2|u|2,� for
uh − Ihu = (u− Ihu)− (u− uh) ∈ Sh. Using the inverse estimate, we now get

‖u− uh‖∞,� ≤ ‖u− Ihu‖∞,� + ‖uh − Ihu‖∞,�

≤ ‖u− Ihu‖∞,� + c h−1‖uh − Ihu‖0,�,

and the result follows from (6.5) and (7.10).



94 II. Conforming Finite Elements

The L2-Projector

The norm of the L2-projector onto a finite element space is not always bounded by
an h-independent number when it is considered in H 1. The boundedness is easily
derived in the case in which we obtain an L2-estimate by a duality argument. We
will encounter the same technique of proof in Ch. III, §6 and Ch. VI, §6.

7.8 Corollary. Assume that the hypothesis of Theorem 7.3 (or Theorem 7.5) are
satisfied, and that {Th} is a family of uniform triangulations of �. Let Qh be the
L2-projector onto Sh ⊂ H 1(�). Then

‖Qhv‖1 ≤ c‖v‖1 for all v ∈ H 1(�) (7.11)

holds with a constant c which is independent of h.

Proof. Given v ∈ H 1(�) let vh ∈ Sh be the solution of the variational problem

(∇vh,∇w)0 + (vh, w)0 = 〈�, w〉 for all w ∈ Sh

with 〈�, w〉 := (∇v,∇w)0 + (v, w)0. Obviously, ‖vh‖1 ≤ ‖v‖1. An essential
ingredient is the L2-error estimate from Corollary 7.7

‖v − vh‖0 ≤ c1h‖v − vh‖1 ≤ 2c1h‖v‖1. (7.12)

Combining this with an inverse estimate, we get

‖Qhv‖1 ≤ ‖Qhv − vh‖1 + ‖vh‖1

≤ c2h
−1‖Qh(v − vh)‖0 + ‖vh‖1 ≤ c2h

−1‖v − vh‖0 + ‖v‖1

≤ c2h
−1 2c1h‖v‖1 + ‖v‖1.

This proves the assertion with c = 1 + 2c1c2.

The assumptions of the corollary are very restrictive and in some cases the
stability of the L2-projector is wanted in locally refined meshes; cf. Ch. V, §5 and
Yserentant [1990].

7.9 Lemma. Let Th be a shape-regular triangulation of � and Qh be the L2-
projector onto M1

0. Then

‖Qhv‖1 ≤ c‖v‖1 for all v ∈ H 1
0 (�) (7.13)

holds with a constant c which is independent of h.

Proof. We start with Clément’s interpolation operator and obtain

‖v − Ihv‖2
0 ≤ c

∑
T

h2
T ‖v‖2

1,T . (7.14)



§7. Error Bounds for Elliptic Problems of Second Order 95

Since the triangulation is assumed to be shape-regular, we could estimate the di-
ameters of all triangles in ωT by chT , i.e. the diameter of T . The estimates are still
local. The minimal property of the L2-projector Qh implies

‖v −Qhv‖2
0 ≤ c

∑
T

h2
T ‖v‖2

1,T . (7.15)

Next from the Bramble–Hilbert lemma and a standard scaling argument we know
that there is a piecewise constant function wh ∈ M0(Th) such that

‖v − wh‖0,T ≤ chT |v|1,T .

Now we apply an inverse estimate on each triangle:

|Qhv|21 =
∑
T

|Qhv|21,T =
∑
T

|Qhv − wh|21,T

≤ c
∑
T

h−2
T ‖Qhv − wh‖2

0,T

≤ c
∑
T

2h−2
T

(
‖Qhv − v‖2

0,T + ‖v − wh‖2
0,T

)
≤ c

∑
T

‖v‖2
1,T = c‖v‖2

1 .

Since ‖Qhv‖0 ≤ ‖v‖0 ≤ ‖v‖1, the proof is complete.

Note that Problem 6.15 illustrates that one has to be careful when dealing with
a projector for one norm and considering stability for another one.

Problems

7.10 Consider solving the boundary-value problem

−�u = 0 in � := (−1,+1)2 ⊂ R
2,

u(x, y) = xy on ∂�

using linear triangular elements on a regular triangular grid with 2/h ∈ N as in the
model problem 4.3. When the reduction to homogeneous boundary conditions as
in (2.21) is performed with

u0(x, y) :=
{

1 + x − y for x ≥ y,

1 + y − x for x ≤ y,

the finite element approximation at the grid points is

uh(xi, yi) = u(xi, yi) = xiyi . (7.16)

Verify that the minimal value for the variational functional on Sh is

J (uh) = 8

3
+ 4

3
h2,

and hence, J (uh) is only an approximation.
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7.11 Let � = (0, 2π)2 be a square, and suppose u ∈ H 1
0 (�) is a weak solution

of −�u = f with f ∈ L2(�). Using Problem 1.16, show that �u ∈ L2(�), and
then use the Cauchy–Schwarz inequality to show that all second derivatives lie in
L2, and thus u is an H 2 function.

7.12 (A superconvergence property) The boundary-value problem with the ordinary
differential equation

−u′′(x) = f (x), x ∈ (0, 1),

u(0) = u(1) = 0

characterizes the solution of a variational problem with the bilinear form

a(u, v) :=
∫ 1

0
u′v′dx.

Let uh be the solution in the set of piecewise linear functions on a partition of (0, 1),
and let vh be the interpolant of u in the same set. Show that uh = vh by verifying
a(uh − vh, wh) = 0 for all piecewise linear wh.
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§ 8. Computational Considerations

The computation of finite element approximations can be divided into two parts:
1. construction of a grid by partitioning �, and setting up the stiffness matrix.
2. solution of the system of equations.

The central topic of this section is the computation of the stiffness matrix. The
solution of the system of equations will be treated in Chapters IV and V.

Assembling the Stiffness Matrix

For finite elements with a nodal basis, such as the linear and quadratic triangular
elements, the stiffness matrix can be assembled elementwise. This can be seen from
the associated quadratic form. For simplicity, we consider only the principal part:

a(u, v) =
∫

�

∑
k,l

akl∂ku∂lv dx.

Then

Aij = a(ψi, ψj ) =
∫

�

∑
k,l

akl∂kψi∂lψj dx

=
∑
T ∈Th

∫
T

∑
k,l

akl∂kψi∂lψj dx. (8.1)

In forming the sum, we need only take account of those triangles which overlap the
support of both ψi and ψj .

Normally, we do not compute this matrix by locating the triangles involved
for a given set of node indices i, j . Although we used this type of node-oriented
approach for the model problem in §4, in practice it wastes too much time in repeated
calculations.

Table 4. Shape functions (nodal basis functions) for linear (left) and
quadratic (right) elements

N1=1 − ξ − η

N2=ξ

N3=η

N1=(1 − ξ − η)(1 − 2ξ − 2η)

N2=ξ(2ξ − 1)

N3=η(2η − 1)

N4=4ξ(1 − ξ − η)

N5=4ξη

N6=4η(1 − ξ − η)
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It turns out that it is much better to use an element-oriented approach. For
every element T ∈ Th, we find the additive contribution from (8.1) to the stiffness
matrix. If every element contains exactly s nodes, this requires finding an s × s

submatrix. We transform the triangle T under consideration to the reference triangle
Tref . Let F : Tref → T , ξ �→ Bξ + x0 be the corresponding linear mapping. Then
the contribution of T is given by the integral

µ(T )

µ(Tref)

∫
Tref

∑
k,l

k′,l′

akl(B
−1)k′k(B

−1)l′l ∂k′Ni ∂l′Nj dξ. (8.2)

Here µ(T ) is the area of T . After transformation, every function in the nodal basis
coincides with one of the normed shape functions N1, N2, . . . , Ns on the reference
triangle. These are listed in Table 4 for linear and quadratic elements.6 For the
model problem 4.3, using a right triangle T (with right angle at point number 1),
we get

a(u, u)|T = 1

2
(u1 − u2)

2 + 1

2
(u1 − u3)

2,

where ui is the coefficient of u in the Ni expansion. This gives

a(ψi, ψj )|T = 1

2

( 2 −1 −1
−1 1
−1 1

)

for the stiffness matrix on the element level. For linear elements, it is also easy
to find the so-called mass matrix whose elements are (ψi, ψj )0,T . For an arbitrary
triangle,

(ψi, ψj )0,T = µ(T )

12

( 2 1 1
1 2 1
1 1 2

)
. (8.3)

For differential equations with variable coefficients, the evaluation of the inte-
grals (8.2) is usually accomplished using a Gaussian quadrature formula for multiple

6 To avoid indices, in Table 4 we have written ξ and η instead of ξ1 and ξ2.

In addition, we note that for the quadratic triangular elements, the basis functions
N1, N2 andN3 can be replaced by the corresponding nodal basis functions of linear elements.
The coefficients in the expansion

∑6
i=1 ziNi then have a different meaning: z1, z2 and z3

are still the values at the vertices, but z4, z5 and z6 become the deviations at the midpoints
of the sides from the linear function which interpolates at the vertices.

This basis is not a purely nodal basis, although the correspondence is very simple.
However, it has two advantages: we get simpler integrands in (8.2), and the condition
number of the system matrix is generally lower (cf. hierarchical bases).
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integrals; cf. Table 5. For equations with constant coefficients, we are usually inte-
grating polynomials which can be computed in closed form by making use of the
following formula for the unit triangle (5.9):

Ipqr :=
∫ ∫
ξ,η≥0

1−ξ−η≥0

ξpηq(1 − ξ − η)rdξdη = p! q! r!

(p + q + r + 2)!
. (8.4)

The formula (8.4) can be applied to triangles in arbitrary position by replacing ξ ,
η, and 1 − ξ − η by the barycentric coordinates. – Note that for linear elements,
the integrands in (8.2) are actually constants.

Table 5. Sample points (ξi , ηi) and weights wi for Gaussian quadrature formulas
for polynomials up to degree 5 over the unit triangle

i ξi ηi wi

1 1/3 1/3 9/80

2 (6 +√
15)/21 (6 +√

15)/21

3 (9 − 2
√

15)/21 (6 +√
15)/21


 (155 +√

15)/2400

4 (6 +√
15)/21 (9 − 2

√
15)/21

5 (6 −√
15)/21 (6 −√

15)/21

6 (9 + 2
√

15)/21 (6 −√
15)/21


 (155 −√

15)/2400

7 (6 −√
15)/21 (9 + 2

√
15)/21

Static Condensation

Although the stiffness matrix can be assembled additively from s × s submatrices,
the bandwidth is much larger than s (cf. Example 4.3). On the other hand, the
variables corresponding to interior nodes of elements are easily treated. Both the
nine-point rectangular element and the cubic ten-point triangular element have one
interior node, for example.

The elimination of a variable corresponding to an interior node changes only
those matrix elements for the nodes of the same element. In particular, no zeros are
filled in. The work required for the elimination is equivalent to the work needed by
the Cholesky method for the elimination of variables in an s × s matrix, i.e., in a
small matrix.

The process of elimination of the variables for all these nodes is called static
condensation.
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Complexity of Setting up the Matrix

In setting up the system matrix, we need to perform Ms2 matrix element calcula-
tions, where M is the number of elements, and s is the number of local degrees of
freedom. Thus, clearly one tries to avoid calculating with finite elements that have
a large number of local degrees, if possible. Only recently computations with poly-
nomials of high degree have impact on the design of finite element programs. They
are so designed that their good approximation properties more than compensate for
the increase of the computational effort; see Schwab [1998].

It is for this reason that in practice C1 elements are not used for systems of
partial differential equations. For planar C1 elements, it is well known that we need
at least 12 degrees of freedom per function. Thus, for elliptic systems with three
variables, we would have to set up a

36 × 36 matrix
for each element.

Effect on the Choice of a Grid

Once we have selected an element type, the work required to set up the stiffness
matrix is approximately proportional to the number of unknowns. However, the
work required for the solution of the corresponding system of linear equations
using classical methods increases faster than linearly. For large systems, this can
quickly lead to memory problems.

These considerations suggest individually tailoring the grid to the problem in
order to reduce the number of variables as much as possible.

With the development of newer methods for solving systems of equations,
such as the ones in Chapters IV and V, this problem has become less critical, and
once again assembling the matrix constitutes the main part of the work. Thus, it
makes more sense to save computation time there if possible. One way to do this
is to build the grid so that the elements are all translations of a few basic ones. If
the coefficients of the differential equation are piecewise constant functions, the
computational effort can be reduced. Dividing each triangle into four congruent
parts means here that the matrix elements for the subtriangles can be obtained from
those of the original triangles with just a few calculations.

Local Mesh Refinement

A triangle can easily be decomposed into four congruent subtriangles. Thus, using
bisection we can easily perform a global grid refinement to halve the mesh size.
This process leaves the regularity parameter κ (the maximum ratio of circumcircle
radius to the radius of an inscribed circle) unchanged.
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Sometimes, as in the following situation, it may be preferable to perform a
refinement on only part of a domain �:

1. In some subdomain the derivatives (which determine the order of approxima-
tion) are much greater than in the rest of the domain. This may be clear from
the nature of the problem, or from the computation of error estimators which
will be dealt with in Ch. III, §7. In this case, refining this part of the grid can
lead to a reduction of the error in the entire domain.

2. We would like to start with a very coarse grid, and let the final grid be deter-
mined by automatic refinements. Often it is appropriate for the given problem
that the amount of refinement is different in different parts of the domain.

3. We want to compute the solution to higher accuracy in some subdomain.

The fact that in the ideal case it is even possible to carry out a refinement in
the direction of an edge or of a vertex using only similar triangles is illustrated in
Figs. 12 and 13. However, these are exceptional cases. Some care is required in
order to generate finer grids from coarser ones automatically. In particular, if more
than one level of refinement is used, we have to be careful to avoid thin triangles.

Fig. 26. Coarse grid (solid lines) and a refinement (dotted lines)

The following refinement rule, which can be found, e.g., in the multigrid algo-
rithm of Bank [1990], guarantees that each of the angles in the original triangulation
is bisected at most once. We may think of starting with a triangulation as in Fig. 26.
This triangulation contains several hanging nodes (cf. Fig. 11) which must be con-
verted to non-hanging nodes.

8.1 Refinement Rules.
(1) If an edge of a triangle T contains two or more vertices of other triangles (not

counting its own vertices), then the triangle T is divided into four congruent
subtriangles. This process is repeated until such triangles no longer exist.

(2) Every triangle which contains a vertex of another triangle at the midpoint of
one of its edges is divided into two parts. We call the new edge a green edge.
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(3) If a further refinement is desired, we first eliminate the green edges before
proceeding.

For the triangulation in Fig. 26, we first apply rule (1) to the triangles I and
VIII. This requires using the rule twice on triangle VII. Next, we construct green
edges in the triangles II, V, VI, and in three subtriangles.

Despite its recursive nature, we claim that this procedure stops after a finite
number of iterations. Let m denote the maximal number of levels in the desired
refinement, where the maximum is to be taken over all elements (in the example,
m = 2). Then every element will be divided at most m times. This gives an upper
bound on the number of steps in (1).

Refinements of Partitions of 3-Dimensional Domain

A triangle is easily divided into four congruent subtriangles, but the situation is
more involved in R

3. A tetrahedron cannot be partitioned into eight congruent
subtetrahedra; cf. Problem 8.7.

There is a partitioning that was described by Freudenthal [1942] although it is
usually called Kuhn’s triangulation. For its definition, first a cube is decomposed
into 3! = 6 tetrahedra. On the other hand the cube consists of eight subcubes which
again can be partitioned into tetrahedra. The latter ones provide a decomposition
of the original tetrahedra. This process also shows that six types of tetrahedra are
sufficient even if the refinement procedure is repeated several times; cf. Problem
8.7. More questions concerning tetrahedral meshes were discussed by Bey [1995].

There is another technique due to Rivara [1984] that is more convenient than
the implementation of Kuhn’s triangulation. In the two-dimensional case, it works
with splitting triangles by halving their longest sides.

Implementation of the Neumann Boundary-Value Problem

When the finite lement equations for the Poisson equation (3.8) with Neumann
boundary conditions are assembled for the nodal basis, the stiffness matrix has a
one-dimensional kernel. Fortunately, this is no handicap provided that the finite
element space contains the constant function.

One can fix the value at one node, e.g., by setting it to zero. The corresponding
row and column are eliminated from the matrix-vector equations. The reduced
system may be solved by the well-known Cholesky decomposition. The equation
that was dropped, holds as a consequence of the compatibility condition (3.9).

The constant function spans the kernel. Thus, finally a suitable constant can
be subtracted from all nodal values in order to obtain a solution with mean value
zero.
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Problems

8.2 Set up the system matrix AQ for solving the Poisson equation using bilinear
quadrilateral elements on the unit square. Note that with a cyclic numbering, by
invariance at the element level, we get the form


α β γ β

β α β γ

γ β α β

β γ β α




with α + 2β + γ = 0.

Clearly, the entire matrix is determined from the stiffness matrices of all ele-
ments. In particular, for a regular grid, we get the stencil

8

3

[−1 −1 −1
−1 8 −1
−1 −1 −1

]
∗

.

Conversely, can the above matrix be computed from the stencil?

Because of the cyclic structure, the vectors

(1, ik, (−1)k, (−i)k), k = 0, 1, 2, 3,

are eigenvectors. Is it possible to find a corresponding set of real eigenvectors?

• • • • • •

�
�

�
�� �

�
�

�� �� ��

�� ��

• • • • • •
Fig. 27. a) Criss, b) Cross, and c) Criss-Cross Grids

8.3 Suppose for the model problem 4.3 that we combine two triangles in a square
into a macro-element. Clearly, we get the same stiffness matrix as for the refinement
shown in Figs. 25a and 25b. Now if we symmetrize the problem and take the function
which is the average of the initial two, we get the so-called criss-cross grid; see
Fig. 27c. Find the corresponding system matrix.

8.4 Consider the model problem, and compare the stiffness matrix AQ in Prob-
lem 8.2 with those obtained for two standard triangles A2T , and for the criss-cross
grid Acc. How large are the condition numbers of the matrices A−1

Q A2T , A−1
Q Acc,

and A−1
cc A2T ? In particular, show that A2T is stiffer than AQ, i.e., A2T − AQ is

positive semidefinite.
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boundary

• • • • •
1/4 1/4 1/2 1

8.5 The above figure shows a line with a refinement, as could be found along
a vertical grid line in Fig. 12. Extend this to a triangulation consisting of right
isosceles triangles which connect to a coarse grid.

8.6 Suppose we want to solve the elliptic differential equation

div[a(x) grad u] = f in �

with suitable boundary conditions using linear triangular elements from M1
0. Show

that we get the same solution if a(x) is replaced by a function which is constant on
each triangle. How can we find the right constants?

8.7 In R
2 we can obviously decompose every triangle into four congruent subtrian-

gles. With the help of a sketch, verify that the analogous assertion for a tetrahedron
in R

3 does not hold.

8.8 Let λ1, λ2, λ3 be the barycentric coordinates of a triangle T with vertices
z1, z2, z3. Show that

p(zi) = 3

µ(T )

∫
T

(3λi − λj − λk)p dx for p ∈ P1,

if i, j, k is a permutation of 1, 2, 3.

8.9 The implementation of the Neumann boundary-value problem was elucidated
for the case that the finite element space contains the kernel of the differential
operator. What happens if that conditions is not satisfied?



Chapter III

Nonconforming and Other Methods

In the theory of conforming finite elements it is assumed that the finite element
spaces lie in the function space in which the variational problem is posed. More-
over, we also require that the given bilinear form a(·, ·) can be computed exactly
on the finite element spaces. However, these conditions are too restrictive for many
real-life problems.

1. In general, homogeneous boundary conditions cannot be satisfied exactly for
curved boundaries.

2. When we have variable coefficients or curved boundaries, we can only com-
pute approximations to the integrals needed to assemble the stiffness matrix.

3. For plate problems and in general for fourth order elliptic differential equa-
tions, conforming methods require C1 elements, and this leads to very large
systems of equations.

4. We may want to enforce constraints only in the weak sense. A typical example
is the Stokes problem, where the variational problem is posed in the space of
divergence-free flows,

{v ∈ H 1
0 (�)n; (div v, λ)0,� = 0 for all λ ∈ L2(�)}.

The constraint leads to saddle point problems, and we can only take into
account finitely many of the infinitely many constraints.

In this chapter we show that these types of deviations from the theory of
conforming elements are admissible and do not spoil convergence. In admitting
them, we are committing what are called variational crimes.

In §1 we establish generalizations of Céa’s lemma, and examine its use by
looking at two applications. Then we give a short description of isoparametric ele-
ments. §§3 and 4 contain deep functional analytic methods which are of particular
importance for the mixed methods of mechanics. We illustrate them in §§6 and
7 for the Stokes problem. §5 prepares the reader for nonstandard applications of
saddle point problems.

§§8 and 9 will be concerned with a posteriori error estimates for finite element
solutions. Here arguments from the theory of nonconforming elements and mixed
methods enter even if we deal with conforming elements.

We should mention that the theory described in §3 has also recently been used
to establish the convergence of difference methods and finite volume methods.
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§ 1. Abstract Lemmas

and a Simple Boundary Approximation

If the finite element spaces being used to solve an Hm-elliptic problem do not
lie in the Sobolev space Hm(�), we refer to them as nonconforming elements.
In this case, convergence is by no means obvious. Moreover, in addition to the
approximation error, there is now an error called the consistency error. To analyze
the situation, we need certain generalizations of Céa’s lemma. We shall apply these
to a simple nonconforming element. We also show how they can be used when
the conformity fails in a completely different way and the boundary conditions are
relaxed.

Generalizations of Céa’s Lemma

As usual, let Hm
0 (�) ⊂ V ⊂ Hm(�). We replace the given variational problem

a(u, v) = 〈�, v〉 for all v ∈ V (1.1)

by a sequence of finite-dimensional problems: Find uh ∈ Sh with

ah(uh, v) = 〈�h, v〉 for all v ∈ Sh. (1.2)

Here the bilinear forms ah are assumed to be uniformly elliptic, i.e., there exists a
constant α > 0 independent of h such that

ah(v, v) ≥ α‖v‖2
m,� for all v ∈ Sh. (1.3)

Our error estimates for nonconforming methods are based on the following gener-
alizations of Céa’s lemma. For the first generalization, we do not require that ah be
defined for all functions in V . In particular, we permit the evaluation of ah using
quadrature formulas involving point evaluation functionals which are not defined
for H 1 functions. However, we still require that Sh ⊂ V .

1.1 First Lemma of Strang. Under the above hypotheses, there exists a constant
c independent of h such that

‖u− uh‖ ≤ c
(

inf
vh∈Sh

{
‖u− vh‖ + sup

wh∈Sh

|a(vh, wh)− ah(vh, wh)|
‖wh‖

}
+ sup

wh∈Sh

{ 〈�, wh〉 − 〈�h, wh〉
‖wh‖

})
.
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Proof. Let vh ∈ Sh. For convenience, set uh − vh = wh. Then by the uniform
continuity and (1.2)–(1.3), we have

α‖uh − vh‖2 ≤ ah(uh − vh, uh − vh) = ah(uh − vh, wh)

= a(u− vh, wh)+ [a(vh, wh)− ah(vh, wh)] + [ah(uh, wh)− a(u, wh)]

= a(u− vh, wh)+ [a(vh, wh)− ah(vh, wh)]

− [〈�, wh〉 − 〈�h, wh〉].
Dividing through by ‖uh − vh‖ = ‖wh‖ and using the continuity of a, we get

‖uh − vh‖ ≤ C
(
‖u− vh‖ + |a(vh, wh)− ah(vh, wh)|

‖wh‖ + |〈�h, wh〉 − 〈�, wh〉|
‖wh‖

)
.

Since vh is an arbitrary element in Sh, the assertion follows from the triangle
inequality

‖u− uh‖ ≤ ‖u− vh‖ + ‖uh − vh‖.

Dropping the conformity condition Sh ⊂ V has several consequences. In
particular, the Hm-norm might not be defined for all elements in Sh, and we have
to use mesh-dependent norms ‖ · ‖h as discussed, e.g., in II.6.1.

We assume that the bilinear forms ah are defined for functions in V and in
Sh, and that we have ellipticity and continuity:

ah(v, v) ≥ α‖v‖2
h for all v ∈ Sh,

|ah(u, v)| ≤ C‖u‖h‖v‖h for all u ∈ V + Sh, v ∈ Sh,
(1.4)

with some positive constants α and C independent of h.

The following lemma is often denoted as the second lemma of Strang.

1.2 Lemma of Berger, Scott, and Strang. Under the above hypotheses there
exists a constant c independent of h such that

‖u− uh‖h ≤ c
(

inf
vh∈Sh

‖u− vh‖h + sup
wh∈Sh

|ah(u, wh)− 〈�h, wh〉|
‖wh‖h

)
.

Remark. The first term is called the approximation error, and the second one is
called the consistency error.

Proof. Let vh ∈ Sh. From (1.4) we see that

α‖uh − vh‖2
h ≤ ah(uh − vh, uh − vh)

= ah(u− vh, uh − vh)+ [〈�h, uh − vh〉 − ah(u, uh − vh)].

Dividing by ‖uh − vh‖h and replacing uh − vh by wh, we have

‖uh − vh‖h ≤ α−1
(
C‖u− vh‖h + |ah(u, wh)− 〈�h, wh〉|

‖wh‖h

)
.

The assertion now follows from the triangle inequality as in the proof of the first
lemma.
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1.3 Remark. Using a variant of the second lemma of Strang, we no longer need
the requirement that the bilinear form ah be defined on V . The formal extension
of Sh to Sh+V contains pitfalls, but according to the proof, it suffices to estimate
the linear form

ah(vh, wh)− 〈�h, wh〉 for all wh ∈ Sh (1.5)

for elements vh ∈ Sh whose distance from u is small. Indeed, in view of (1.2),
this form coincides with ah(vh − uh, wh). To evaluate (1.5), we can insert a term
which can be interpreted as ah(u, wh). The advantage is that this can be done with
an individually chosen function.

Duality Methods

In using duality methods in the context of nonconforming elements, we get two
additional terms as compared with the Aubin–Nitsche lemma.

1.4 Lemma. Suppose that the Hilbert spaces V and H satisfy the hypotheses of
the Aubin–Nitsche lemma. In addition, suppose Sh ⊂ H and that the bilinear form
ah is defined on V ∪ Sh so that it coincides with a on V . Then the finite element
solution uh of (1.2) satisfies

|u− uh| ≤ sup
g∈H

1

|g|
{
c‖u− uh‖h‖ϕg − ϕg,h‖h

+ |ah(u− uh, ϕg)− (u− uh, g)|
+ |ah(u, ϕg − ϕg,h)− 〈�, ϕg − ϕg,h〉|

}
.

(1.6)

Here ϕg ∈ V and ϕg,h ∈ Sh are the weak solutions of ah(w, ϕ) = (w, g) for given
g ∈ H .

Proof. By the definition of uh, ϕg and ϕg,h, for every g ∈ H we have

(u− uh, g) = ah(u, ϕg)− ah(uh, ϕg,h)

= ah(u− uh, ϕg − ϕg,h)

+ ah(uh, ϕg − ϕg,h)+ ah(u− uh, ϕg,h)

= ah(u− uh, ϕg − ϕg,h)

− [ah(u− uh, ϕg)− (u− uh, g)]

− [ah(u, ϕg − ϕg,h)− 〈�, ϕg − ϕg,h〉].
The last equality is most easily verified by replacing the linear functionals in the
square brackets by terms involving the bilinear form ah, and then comparing terms.
The assertion now follows from (II.7.7) and the continuity of ah.

The extra terms in (1.6) are basically of the same form as those in the second
lemma of Strang. We shall see that in applications, the main effort is to verify that
the hypotheses of the lemma hold.
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The Crouzeix–Raviart Element

The Crouzeix–Raviart element is the simplest nonconforming element for the
discretization of second order elliptic boundary-value problems. It is also called
the nonconforming P1 element.

�
�

�• •
�

�
�•

Fig. 28. The Crouzeix–Raviart element or nonconforming P1-element

M1
∗ := {v ∈ L2(�); v|T is linear for every T ∈ Th,

v is continuous at the midpoints of the triangle edges},
M1

∗,0 := {v ∈ M1
∗; v = 0 at the midpoints of the edges on ∂�}.

(1.7)

To solve the Poisson equation, let

ah(u, v) :=
∑
T ∈Th

∫
T

∇u · ∇v dx for all u, v ∈ H 1(�)+M1
∗,0,

‖v‖h :=
√

ah(v, v) for all v ∈ H 1(�)+M1
∗,0.

By definition ‖v‖2
h :=∑

T ∈Th
|v|21,T , and it is called a broken H 1 semi-norm.

For simplicity, suppose � is a convex polyhedron. Then the problem is H 2-
regular, and u ∈ H 2(�).

Given v ∈ H 2(�), let Iv ∈ M1
∗,0∩C0(�) be the continuous piecewise linear

function which interpolates v at the vertices of the triangles. We denote edges of
the triangles by the letter e.

To apply Lemma 1.2, we compute

Lu(wh) : = ah(u, wh)− 〈�, wh〉
=
∑
T ∈Th

∫
∇u∇wh dx −

∫
�

f wh dx

=
∑
T ∈Th

(∫
∂T

∂νu whds −
∫

T

�u whdx
)− ∫

�

f whdx

=
∑
T ∈Th

∫
∂T

∂νu whds,

for wh ∈ M1
∗,0. Here we have used the fact that −�u = f holds in the weak

sense; cf. Example II.2.10. In addition, note that each interior edge appears twice
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in the sum. Thus, the values of the integrals do not change if we subtract the
integral mean value wh(e) on each edge e:

Lu(wh) =
∑
T

∑
e⊂∂T

∫
e

∂νu(wh − wh(e))ds.

It follows from the definition of wh(e) that
∫
e
(wh −wh(e))ds = 0. The values of

the integrals also do not change if we subtract an arbitrary constant function from
∂νu on each edge e. This can be ∂νIu in particular, and we get

Lu(wh) =
∑
T

∑
e⊂∂T

∫
e

∂ν(u− Iu)(wh − wh(e))ds.

It follows from the Cauchy–Schwarz inequality that

|Lu(wh)| ≤
∑
T

∑
e⊂∂T

[∫
e

|∇(u− Iu)|2ds

∫
e

|wh − wh(e)|2ds
]1/2

. (1.8)

We now derive bounds for the integrals in (1.8). By the trace theorem and the
Bramble–Hilbert lemma,∫

∂Tref

|∇(v − Iv)|2ds ≤ c‖∇(v − Iv)‖2
1,Tref

≤ c‖v − Iv‖2
2,Tref

≤ c′|v|22,Tref
,

for v ∈ H 2(Tref). Using the transformation formulas from Ch. II, §6, we see that∫
∂T

|∇(v − Iv)|2ds ≤ ch|v|22,T (1.9)

for T ∈ Th. Similarly, for each edge e of ∂Tref ,∫
e

|wh − wh(e)|2ds ≤ c‖wh‖2
1,Tref

≤ c′|wh|21,Tref
for all wh ∈ P1.

Here the Bramble–Hilbert lemma applies because the left-hand side vanishes for
constant functions. For e ⊂ T ∈ Th, the transformation theorems yield∫

e

|wh − wh(e)|2ds ≤ c h|wh|21,T for all wh ∈ M1
∗,0. (1.10)

We now insert the estimates (1.9) and (1.10) into (1.8), and use the Cauchy–
Schwarz inequality for Euclidean scalar products:

|Lu(wh)| ≤
∑
T

3 ch|u|2,T |wh|1,T

≤ c′h
[∑

T

|u|22,T

∑
T

|wh|21,T

]1/2

= c′h|u|2,�‖wh‖h . (1.11)
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Finally, we observe that the conforming P1 elements are contained in M1
∗,0. This

means that we do not need to establish a new approximation theorem for M1
∗,0,

and it follows that

‖u− uh‖h ≤ ch|u|2,� ≤ ch‖f ‖0. (1.12)

We now apply Lemma 1.4 to the Crouzeix–Raviart element. Let V = H 1(�)

and H = L2(�). In particular, to estimate the first term, we regard ϕg−ϕg,h as the
discretization error for the problem a(w, ϕ) = (w, g)0,�. We make use of (1.12)
and the regularity of the problem:

‖ϕg − ϕg,h‖h ≤ ch|ϕg|2 ≤ c′′h‖g‖0.

An essential observation is that the formula (1.11) holds for all w ∈ M1
∗,0 +H 1

0 ,
as can be seen immediately by examining the derivation of the formula. It follows
that the extra terms in (1.6) satisfy

|ah(u− uh, ϕg)− (u− uh, g)| = |Lϕg
(u− uh)|

≤ c′h |ϕg|2 ‖u− uh‖h

≤ c′h ‖g‖0‖u− uh‖h,

|ah(u, ϕg − ϕg,h)− (f, ϕg − ϕg,h)| = |Lu(ϕg − ϕg,h)|
≤ c′h |u|2 ‖ϕg − ϕg,h‖h.

Combining the last three estimates, we have

|(u− uh, g)| ≤ c h(‖u− uh‖h + h|u|2)‖g‖0

≤ c h2|u|2 ‖g‖0.

Combining these duality calculations with (1.12), we obtain

1.5 Theorem. Suppose � is convex or that it has a smooth boundary. Then using
the Crouzeix–Raviart elements to discretize the Poisson equation, we have

‖u− uh‖0 + h‖u− uh‖h ≤ c h2|u|2.

Remark. The result closely resembles the result in Ch. II, §7, but there is a dif-
ference. While for conforming methods the H 2-regularity was used only quantita-
tively, here it also enters qualitatively in the convergence proof. This corresponds
with the practical observation that nonconforming elements are much more sensi-
tive to “near singularities“ i.e., to the appearance of large H 2 norms.
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A Simple Approximation to Curved Boundaries

We consider a second order differential equation on a domain � with smooth
boundary. This means that for every point on � = ∂�, there exist orthogonal
coordinates (ξ, η) so that in a neighborhood, the boundary can be described as the
graph of a C2 function g. Suppose the domain � is decomposed into elements so
that every element T has three vertices, at least one of which is an interior point
of �. If two vertices of T lie on �, then the boundary piece of � with endpoints at
these vertices is an edge of the element. Suppose all other edges of the elements
are straight lines. We refer to these elements as curved triangles; see Fig. 29.

Fig. 29. Part of a triangulation of a domain with curved boundary

If we replace the boundary curves between two neighboring vertices by a
line segment, we get a polygonal approximation �h of �. The partition Th of
� induces a triangulation of �h. We suppose that it is admissible. We call Th

uniform or shape regular, provided that the induced triangulation of �h possesses
the respective property.

We choose the finite elements to be the linear triangular elements, where the
zero boundary conditions are enforced only at the nodes on �:

Sh := {v ∈ C0(�); v|T is linear for every T ∈ Th,

v(z) = 0 for every node z ∈ �}.
Thus, Sh �⊂ H 1

0 (�). Nevertheless, since Sh ⊂ H 1(�), it is not necessary to work
with a new (mesh-dependent) norm, and we can set ah(u, v) = a(u, v).

1.6 Lemma. Let � be a domain with C2 boundary, and let Th be a sequence of
shape-regular triangulations. Then

‖v‖0,� ≤ c h3/2 |v|1,� for all v ∈ Sh. (1.13)

Proof. Let T be an element with a curved edge �1 := T ∩ �. We shall show that∫
�1

v2ds ≤ ch3
T

∫
T

(|∂1v|2 + |∂2v|2)dx. (1.14)
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ξ

η

Fig. 30. Local coordinates for a curved element

Then the assertion follows after summing over all triangles of Th.
Suppose we choose the coordinate system so that the ξ -axis passes through

the two vertices of T lying on �; see Fig. 30. Let (ξ1, 0), (ξ2, 0) be the coordinates
of the vertices, and suppose the boundary is given by η = g(ξ). From g(ξ1) =
g(ξ2) = 0, |ξ1 − ξ2| ≤ hT , and |g′′(ξ)| ≤ c, it follows that

|g(ξ)| ≤ ch2
T for all ξ1 ≤ ξ ≤ ξ2. (1.15)

Since v ∈ Sh is linear in T and vanishes at two points on the ξ -axis, v has the
form

v(ξ, η) = bη

on T . The gradient is constant in T , |∇u| = b, and the area of T can be bounded
from below by that of the largest inscribed circle. Its radius is at least hT /κ , and
thus ∫

T

|∇v|2dx ≥ π(hT /κ)2b2.

On the other hand, ∫
�

v2ds =
∫ ξ2

ξ1

[bg(ξ)]2
√

1 + [g′(ξ)]2 dξ

≤ [bch2
T ]2

∫ ξ2

ξ1

2 dξ

= 2c2b2h5
T .

The assertion now follows by comparing the last two estimates.

We remark that in view of (1.15), if we replace a piece of the curved boundary
by a straight line, we cut off a domain T ′′ := T ∩ (� \�h) with an area

µ(T ′′) ≤ chµ(T ). (1.16)

Now let uh be the weak solution in Sh, i.e.

a(uh, v) = (f, v)0,� for all v ∈ Sh.
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In addition, suppose u ∈ H 2(�)∩H 1
0 (�) is the solution of the Dirichlet problem

(II.2.7). Then Lu = f in the sense of L2(�), and integrating by parts, we have

(f, v)0,� = (Lu, v)0,�

= a(u, v)−
∫

�

∑
k,�

ak� ∂ku v · ν�ds

for v ∈ Sh ⊂ H 1(�). Applying the Cauchy–Schwarz inequality, the trace theorem,
and the previous lemma, we get

|a(u, v)− (f, v)0,�| ≤ c‖∇u‖0,� ‖v‖0,�

≤ c‖u‖2,�h3/2‖v‖1,�.

The second lemma of Strang gives a term of order h3/2, which is small in com-
parison with the usual term of order h.

1.7 Theorem. Let � be a domain with C2 boundary, and suppose we use lin-
ear triangular elements on shape-regular triangulations. Then the finite element
approximation satisfies

‖u− uh‖1,� ≤ c h ‖u‖2,�

≤ c h ‖f ‖0,�.
(1.17)

The estimate remains correct if we replace a by

ah(u, v) :=
∫

�h

∑
k,�

ak� ∂ku ∂�v dx.

In particular, |ah(u, v)− a(u, v)| ≤ c‖u‖1,�‖v‖1,�\�h
, and since ∇v is constant

on every element T , (1.16) implies

‖v‖1,�\�h
≤ ch‖v‖1,� for all v ∈ Sh.

Modifications of the Duality Argument

The general Lemma 1.4 is not applicable here because the estimate (1.13) does
not hold for all v ∈ Sh + H 1

0 . For simplicity, we now apply the duality method
along with the tools which we have already developed. Then even for L2 estimates,
we get an extra term of order h3/2 which is no longer small compared with the
main term. Using a more refined argument, this extra term could be avoided [Blum
1991].
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In order to avoid having to work with a double sum in the boundary integrals,
we restrict our attention to the Poisson equation, and note that the supremum in
(II.7.7) is attained for g = w.

With w := u− uh, let ϕ be the solution of equation (II.7.6); i.e., let

−�ϕ = w in �,

ϕ = 0 on �.

Since � is smooth, the problem is H 2-regular. Hence, ϕ ∈ H 2(�) ∩H 1
0 (�) and

‖ϕ‖2,� ≤ c‖w‖0,�.

Since w �∈ H 1
0 (�), in contrast to the calculations with conforming elements, we

get boundary terms when applying Green’s formula:

‖w‖2
0,� = (w,−�ϕ)0,�

= a(w, ϕ)− (w, ∂νϕ)0,� .
(1.18)

Let vh be an arbitrary element in Sh. Then a(u− uh,−vh) = (∂νu,−vh)0,� , and
since ϕ ∈ H 1

0 (�), the last term can be replaced by (∂νu, ϕ − vh)0,� . By (1.18),

‖w‖2
0,� = a(w, ϕ − vh)− (∂νu, ϕ − vh)0,� − (w, ∂νϕ)0,� . (1.19)

Now we select vh to be the interpolant of ϕ in Sh.

We estimate the first term in the same way as for conforming elements:

a(w, ϕ − vh) ≤ C‖w‖1,� ‖ϕ − vh‖1,�

≤ C‖w‖1,� ch‖ϕ‖2,�

≤ ch‖w‖1,� ‖w‖0,�.

To deal with the second term in (1.19), we need the estimate ‖ϕ − Iϕ‖0,� ≤
ch3/2‖ϕ‖2,�, whose proof (which we do not present here) is based on a scaling
argument. Now we apply the trace theorem to ∇u:

|(∂νu, ϕ − vh)0,�| ≤ ‖∇u‖0,� ‖ϕ − vh‖0,�

≤ c‖u‖2,� ch3/2‖ϕ‖2,�

≤ ch3/2‖u‖2,� ‖w‖0,�.

Next we apply Lemma 1.6 and the trace theorem to the last term to get

|(w, ∂νϕ)0,�| ≤ ‖w‖0,� ‖∇ϕ‖0,�

≤ ‖uh‖0,� ‖∇ϕ‖0,�

≤ ch3/2‖uh‖1,� ‖ϕ‖2,�

≤ ch3/2(‖u‖1,� + ‖u− uh‖1,�) ‖w‖0,�

≤ ch3/2‖u‖2,� ‖w‖0,�.

Combining the above, we have

‖w‖2
0,� ≤ c‖w‖0,�{h‖w‖1,� + h3/2‖u‖2,�}.

Recalling that w = u− uh, we have
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1.8 Theorem. Under the hypotheses of Theorem 1.7,

‖u− uh‖0,� ≤ ch3/2‖u‖2,�.

The error term O(h3/2) arises from the pointwise estimate of the finite-
element functions |uh(x)| ≤ ch2|∇uh(x)| for all x ∈ �; cf. (1.15). If we ap-
proximate the boundary with quadratic (instead of linear) functions, giving a one
higher power of h, the final result is improved by the same factor. This can be
achieved using isoparametric elements, for example.

Problems

1.9 Let Sh be an affine family of C0 elements. Show that in both the approximation
and inverse estimates, ‖ · ‖2,h can be replaced by the mesh-dependent norm

|||v|||2h :=
∑
Tj

‖v‖2
2,Tj

+ h−1
∑
{em}

∫
em

⌈∂v

∂ν

⌉2
ds.

Here {em} is the set of inter-element boundaries, and �·� denotes the jump of a
function.

Hint: In H 2(Tref), ‖v‖2,Tref and
(
‖v‖2

2,Tref
+ ∫

∂Tref
|∇v|2ds

)1/2
are equivalent

norms.

1.10 The linear functional Lu appearing in the analysis of the Crouzeix–Raviart
element vanishes on the subset H 1

0 (�) by the definition of weak solutions. What
is wrong with the claim that Lu vanishes for all w ∈ L2(�) because of the density
of H 1

0 (�) in L2(�)?

1.11 If the stiffness matrices are computed by using numerical quadrature, then
only approximations ah of the bilinear form are obtained. This holds also for
conforming elements. Estimate the influence on the error of the finite element
solution, given the estimate

|a(v, v)− ah(v, v)| ≤ ε(h) ‖v‖2
1 for all v ∈ Sh.

1.12 The Crouzeix–Raviart element has locally the same degrees of freedom as
the conforming P1 element M1

0, i.e., the Courant triangle. Show that the (global)
dimension of the finite element spaces differ by a factor that is close to 3 if a
rectangular domain as in Fig. 9 is partitioned.
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§ 2. Isoparametric Elements

For the treatment of second order elliptic problems on domains with curved bound-
aries, we need to use elements with curved sides if we want to get higher accuracy.
For many problems of fourth order, we even have to do a good job of approximat-
ing the boundary in the C1-norm just to get convergence. For this reason, certain
so-called isoparametric families of finite elements were developed. They are a
generalization of the affine families.

For triangulations, isoparametric elements actually play a role only near the
boundary. On the other hand, (simple) isoparametric quadrilaterals are often used
in the interior since this allows us to generate arbitrary quadrilaterals, rather than
just parallelograms.

We restrict our attention to planar domains, and consider families of elements
where every T ∈ Th is generated by a bijective mapping F :

Tref −→ T

(ξ, η) �−→ (x, y) = F(ξ, η) = (p(ξ, η), q(ξ, η)).
(2.1)

This framework includes the affine families when p and q are required to be
linear functions. When p and q are polynomials of higher degree, we get the more
general situation of isoparametric elements. More precisely, the polynomials in
the parametrization are chosen from the same family � as the shape functions of
the element (T , �, ).

Isoparametric Triangular Elements

The important case where p and q are quadratic polynomials is shown in Fig. 31.
By Remark II.5.4, we know that six points Pi , 1 ≤ i ≤ 6, can be prescribed. Then
p and q as polynomials of degree 2 are uniquely defined by the coordinates of the
points P1, . . . , P6. In particular, if P4, P5, and P6 are nodes at the midpoints of
the edges of the triangle whose vertices are P1, P2, and P3, then obviously we get
a linear mapping.

The introduction of isoparametric elements raises the following questions:
1. Can isoparametric elements be combined with affine ones without losing the

desired additional degrees of freedom?
2. How are the concepts “uniform“ and “shape regular“ to be understood so that

the results for affine families can be carried over to isoparametric ones?

In order to keep the computational costs down, we should use elements with
straight edges in the interior of �. This is why elements with only one curved side
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(affine case)

(isoparametric case
with one curved side)

(general
isoparametric case)

• • •

•

•

•

•

•

•

•
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•
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•

•
•

•

•

•

Fig. 31. Isoparametric elements with linear and quadratic parametrization

are of special interest. Suppose the edges of Tref with ξ = 0 and with η = 0 are
mapped to the straight edges of T . It is useful to choose the centers of these edges
as the images of the corresponding center points on the edges of the reference
triangle. Then in the quadratic case we have

p(ξ, η) = a1 + a2ξ + a3η + a4ξη,

q(ξ, η) = b1 + b2ξ + b3η + b4ξη.
(2.2)

The restrictions of p and q to the edges ξ = 0 and η = 0 are linear functions,
which results in a continuous match with neighboring affine elements without
taking any special measures.

For affine families, the condition of shape regularity can be formulated in
various ways, and a number of equivalent definitions can be found in the litera-
ture. The corresponding conditions for isoparametric elements are not completely
independent, and cannot be replaced by one simple condition.

2.1 Definition. A family of isoparametric partitions Th is called shape regular
provided there exists a constant κ such that:

(i) For every parametrization F : Tref −→ T ∈ Th,

sup{‖DF(ζ ) · z‖; ζ ∈ Tref , ‖z‖ = 1}
inf{‖DF(ζ ) · z‖; ζ ∈ Tref , ‖z‖ = 1} ≤ κ.

(ii) For every T ∈ Th, there exists an inscribed circle with radius ρT such that

diameter(T ) ≤ κρT .
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If in addition
diameter(T ) ≤ 2h and ρT ≥ h/κ,

then Th is called uniform.

Isoparametric Quadrilateral Elements

Isoparametric quadrilaterals are also of use in the interior since only parallelograms
can be obtained from a square with affine mappings (see Ch. II, §5).

(affine case)

(bilinear case)

• •

••

•

•

•
•

•
•

•
•

Fig. 32. Isoparametric quadrilaterals with bilinear parametrization

Let Tref = [0, 1]2 be the unit square. Then

F :

{
p(ξ, η) = a1 + a2ξ + a3η + a4ξη

q(ξ, η) = b1 + b2ξ + b3η + b4ξη

}
(2.3)

maps Tref to a general quadrilateral. From the theory of bilinear quadrilateral
elements, we know that the two sets of four parameters are uniquely determined
by the eight coordinates of the four corners of the image of Tref .

In addition, it is clear that when ξ and η are both constant, the parametrization
F is a linear function of the arc length. It follows that the image is a quadrilateral
with straight edges. The vertices are numbered so that the orientation is preserved.
Because of the linearity of the parametrization on the edges, connecting the element
to its neighbors is no problem.

2.2 Remark. A family of partitions Th involving general quadrilaterals with
bilinear parametrizations is shape regular provided there exists a constant κ > 1
such that the following conditions are satisfied:

(i) For every quadrilateral T , the ratio of maximal to minimal edge lengths is
bounded by κ .
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•

•

•

•

•

•

Fig. 33. General quadrilateral

(ii) Every T contains an inscribed circle with radius ρT ≥ hT /κ , where hT is the
diameter of T .

(iii) All angles are smaller than π−ϕ0 with some ϕ0 > 0. [We note that the second
condition implies that all angles are greater than ϕ0 with some ϕ0 > 0.]

Moreover, we note that DF and also det(DF) depend linearly on the param-
eters. In particular, the determinants attain their maximum and minimum values
at vertices of the quadrilateral. For the quadrilateral shown in Fig. 33, P2 and P4

are the extremal points since the intersections of the sides ly on their extension
through P4.

•
•

•
•

•

• •

••

• •

••

•

•

•

• •

•

•
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•

•

•

•

•
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Fig. 34. Isoparametric quadrilateral elements with 9 and 5 parameters

Fig. 34 shows curved quadrilaterals which arise from biquadratic parametriz-
ations. The parametrization for 9 prescribed points corresponds exactly with the 9
node element in Ch. II, §5. The 5 point case is of particular practical importance
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since it can model one curved side. Here the correct parametrization is

x = a1 + a2ξ + a3η + a4ξη + a5ξη(1 − η),

y = b1 + b2ξ + b3η + b4ξη + b5ξη(1 − η).

At first glance, we are tempted to replace the shape functions corresponding to
the coefficients a5 and b5 by the simpler (quadratic) expressions a5η(1 − η) and
b5η(1−η). This would be possible for interpolation at the 5 points, but would not
lead to a linear expression on the edge ξ = 0.

Problems

2.3 Suppose we have a program for generating quadrilateral elements, and now
want to use it to build triangular elements. We map quadrilaterals (bilinearly) to
triangles by identifying pairs of vertices in the image. What triangular elements
do we get using the bilinear, 8 point, and 9 point elements, respectively?

2.4 Suppose that in setting up the system matrix we use a quadrature formula
with positive weights. Show that in spite of the error in the numerical integration,
the matrix is at least positive semidefinite. Describe a case in which the matrix is
singular.
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§ 3. Further Tools from Functional Analysis

In Ch. II the existence of solutions to the variational problem was established using
the Lax–Milgram theorem. There the symmetry and the ellipticity of the bilinear
form a(·, ·) were essential hypotheses. In order to treat saddle point problems, we
need a more general approach which does not require that the quadratic form be
positive definite.

The relation of the functional � to the right-hand side f of the differential
equation was discussed only briefly in Remark II.4.1. A more advanced consider-
ation of linear functionals on Sobolev spaces is appropriate here. It leads us to the
so-called negative norms.

Negative Norms

Let V be a Hilbert space. By the Riesz representation theorem, every continuous
linear functional � ∈ V ′ can be identified with an element from V itself. Thus,
often it is not necessary to distinguish between V and V ′. However, in the varia-
tional calculus, this can obscure certain important aspects of the problem. Before
discussing methods of functional analysis, we first orient ourselves with a simple
example.

Consider the Helmholtz equation

−�u+ u = f in �,

u = 0 on ∂�,
(3.1)

with f ∈ L2(�). The weak solution u ∈ H 1
0 (�) is characterized by

(u, v)1 = (f, v)0 for all v ∈ H 1
0 (�), (3.2)

where (·, ·)1 is the scalar product on the Hilbert space H 1(�). The problem (3.1)
can thus be formulated as follows: Given f , find the Riesz representation for the
functional

� : H 1
0 (�) −→ R, 〈�, v〉 := (f, v)0. (3.3)

If we identify H 1
0 (�) with its dual, then there is nothing to do to solve the vari-

ational problem. (Note that the analogous representation for the space H 0(�) =
L2(�) is indeed trivial.)

There is another formulation for the dual space which fits better with the form
(3.3) of the given functional. The equation (3.1) is then defined for all functions
f in the associated completion of L2(�).
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3.1 Definition. Let m ≥ 1. Given u ∈ L2(�), define the norm

‖u‖−m,� := sup
v∈Hm

0 (�)

(u, v)0,�

‖v‖m,�

.

We define H−m(�) to be the completion of L2(�) w.r.t. ‖ · ‖−m,�.

For the Sobolev spaces built on L2(�), we identify the dual space of Hm
0 (�)

with H−m(�). Moreover, by the definition of H−m, there is a dual pairing 〈u, v〉
for all u ∈ H−m, v ∈ Hm

0 , i.e. 〈u, v〉 is a bilinear form, and

〈u, v〉 = (u, v)0,�, whenever u ∈ L2(�), v ∈ Hm
0 (�).

Clearly,

. . . ⊃ H−2(�) ⊃ H−1(�) ⊃ L2(�) ⊃ H 1
0 (�) ⊃ H 2

0 (�) ⊃ . . .

· · · ≤ ‖u‖−2,� ≤ ‖u‖−1,� ≤ ‖u‖0,� ≤ ‖u‖1,� ≤ ‖u‖2,� ≤ · · ·

H−m was defined to be the dual space of Hm
0 and not of Hm. Thus we obtain an

improvement of II.2.9 only for Dirichlet problems.

3.2 Remark. Let a be an Hm
0 -elliptic bilinear form. Then with the notation of the

proof of the Existence Theorem II.2.9, we have

‖u‖m ≤ α−1‖f ‖−m. (3.4)

Proof. By Definition 3.1, (u, v)0 ≤ ‖u‖−m‖v‖m. Substituting v = u in the weak
equation gives

α‖u‖2
m ≤ a(u, u) = (f, u)0 ≤ ‖f ‖−m‖u‖m,

and the assertion follows after dividing by ‖u‖m.

This asserts that the Dirichlet problem is Hm-regular in the sense of Defini-
tion II.7.1.

3.3 Remark. Let V ⊂ U be Hilbert spaces, and suppose the imbedding V ↪→ U

is continuous and dense. In addition, suppose we identify U ′ with U via the Riesz
representation. Then

V ⊂ U ⊂ V ′

is called a Gelfand triple. We have already encountered the following Gelfand
triples:

and
Hm(�) ⊂ L2(�) ⊂ Hm(�)′,

Hm
0 (�) ⊂ L2(�) ⊂ H−m(�).
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Adjoint Operators

Let X and Y be Banach spaces whose dual spaces are X′ and Y ′, respectively. The
dual pairings will usually be written as 〈·, ·〉 without reference to the spaces. Let
L : X −→ Y be a bounded linear operator. Given y∗ ∈ Y ′,

x �−→ �y∗(x) := 〈y∗, Lx〉
defines a continuous linear functional on X. The associated linear mapping

L′ : Y ′ −→ X′,

y∗ �−→ �y∗ , i.e. 〈L′y∗, x〉 := 〈y∗, Lx〉,
is called the adjoint of L.

Often the adjoint operator can be used to determine the image of L. More
generally, let V be a closed subspace of X. Then

V 0 := {� ∈ X′; 〈�, v〉 = 0 for all v ∈ V }
is called the polar set of V . Since in the Hilbert space case we cannot always
identify the dual space X′ with X, we must distinguish between the polar set V 0

and the orthogonal complement

V ⊥ = {x ∈ X; (x, v) = 0 for all v ∈ V }.

In the sequel we shall make multiple use of the following closed range theorem
(see, e.g., Yosida [1971]). We give a proof at the end of this section.

3.4 Theorem. Let X and Y be Banach spaces, and let L : X −→ Y be a bounded
linear mapping. Then the following assertions are equivalent:

(i) The image L(X) is closed in Y ,
(ii) L(X) = (ker L′)0.

An Abstract Existence Theorem

Let U and V be Hilbert spaces, and suppose a : U × V −→ R is a bilinear form.
We define an associated linear operator L : U −→ V ′ by

〈Lu, v〉 := a(u, v) for all v ∈ V.

The variational problems discussed above had the following structure: Given f ∈
V ′, find u ∈ U so that

a(u, v) = 〈f, v〉 for all v ∈ V. (3.5)

We can formally write u = L−1f .
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3.5 Definition. Let U and V be normed linear spaces. A linear mapping L is an
isomorphism if it is bijective and L and L−1 are continuous.

The importance of the following theorem for the finite element theory was
pointed out by Babuška [1971]; see also Babuška and Aziz [1972]. It can be traced
back to Nečas [1962] and Nirenberg; cf. Babuška [1971].

3.6 Theorem. Let U and V be Hilbert spaces. Then a linear mapping L : U −→ V ′

is an isomorphism if and only if the associated form a : U ×V −→ R satisfies the
following conditions:
(ii) (Continuity). There exists C ≥ 0 such that

|a(u, v)| ≤ C‖u‖U‖v‖V . (3.6)

(ii) (Inf-sup condition). There exists α > 0 such that

sup
v∈V

a(u, v)

‖v‖V

≥ α‖u‖U for all u ∈ U. (3.7)

(iii) For every v ∈ V , there exists u ∈ U with

a(u, v) �= 0. (3.8)

Supplement. If we assume only (i) and (ii), then

L : U −→ {v ∈ V ; a(u, v) = 0 for all u ∈ U}0 ⊂ V ′ (3.9)

is an isomorphism. Moreover, (3.7) is equivalent to

‖Lu‖V ′ ≥ α‖u‖U for all u ∈ U. (3.10)

The name for condition (3.7) comes from the equivalent formulation

inf
u∈U

sup
v∈V

a(u, v)

‖u‖U‖v‖V

≥ α > 0. (3.7′)

Proof of Theorem 3.6. The equivalence of the continuity of L : U −→ V ′ with
(3.6) follows from a simple calculation.

From (3.7) we immediately deduce that L is injective. Suppose Lu1 = Lu2.
Then by definition, a(u1, v) = a(u2, v) for all v ∈ V . Thus, supv a(u1 −u2, v) =
0, and (3.7) implies u1 − u2 = 0.

Given f ∈ L(U), by the injectivity there exists a unique inverse u = L−1f .
We now apply (3.7) a second time:

α‖u‖U ≤ sup
v∈V

a(u, v)

‖v‖V

= sup
v∈V

〈f, v〉
‖v‖V

= ‖f ‖. (3.11)
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This is (3.10), and L−1 is continuous on the image of L.

The continuity of L and L−1 implies that L(U) is closed. Now (3.9) follows
from Theorem 3.4. This establishes the supplement to Theorem 3.6.

Finally, condition (iii) ensures the surjectivity of L. Indeed, by (3.9) L(U) is
the polar set of the null element, and so coincides with V ′. Hence, the conditions
(i), (ii), and (iii) are sufficient to ensure that L : U −→ V ′ is an isomorphism.

In view of (3.11), the necessity of the conditions is immediate.

The Lax–Milgram theorem (for linear spaces) follows as a special case. In-
deed, if a is a continuous V -elliptic bilinear form, then the inf-sup condition
follows from

sup
v

a(u, v)

‖v‖ ≥ a(u, u)

‖u‖ ≥ α‖u‖.

In particular, the differential operator in (II.2.5) can be regarded as a bijective
mapping L : H 1

0 (�) −→ H−1(�). The converse follows from Problem 3.8.
[However, the assertion that for H 2-regular problems, L : H 2(�) ∩ H 1

0 (�) −→
H 0(�) is also an isomorphism cannot be obtained in this framework.]

In the proof of Theorem 3.6 we used the closedness of the image of L. At
first glance this appears to be just a technicality which allows the application of
Theorem 3.4. However, the counterexample II.2.7 and Problem II.2.14 (see also
Remark 6.5) show how important this point is.

An Abstract Convergence Theorem

To solve equation (3.5) numerically we are led naturally to a Galerkin method. Let
Uh ⊂ U and Vh ⊂ V be finite-dimensional spaces. Then given f ∈ V ′, we seek
uh ∈ Uh such that

a(uh, v) = 〈f, v〉 for all v ∈ Vh. (3.5)h

In order to carry over Céa’s lemma, we now require that the spaces Uh and Vh fit
together.

3.7 Lemma. Suppose the bilinear form a : U × V −→ R satisfies the hypotheses
of Theorem 3.6. Suppose the subspaces Uh ⊂ U and Vh ⊂ V are chosen so that
(3.7′) and (3.8) also hold when U and V are replaced by Uh and Vh, respectively.
Then

‖u− uh‖ ≤
(

1 + C

α

)
inf

wh∈Uh

‖u− wh‖.

Remark. We say that the subspaces Uh and Vh satisfy the Babuška condition or an
inf-sup condition provided (3.7′) holds for Uh and Vh as stated in Lemma 3.7.
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Proof of Lemma 3.7. By (3.5) and (3.5)h,

a(u− uh, v) = 0 for all v ∈ Vh.

Let wh be an arbitrary element in Uh. Then

a(uh − wh, v) = a(u− wh, v) for all v ∈ Vh.

For 〈�, v〉 := a(u − wh, v), we have ‖�‖ ≤ C‖u − wh‖. By assumption, the
mapping Lh : Uh −→ V ′

h generated by a(uh − wh, ·) satisfies ‖(Lh)
−1‖ ≤ 1/α.

Thus,
‖uh − wh‖ ≤ α−1‖�‖ ≤ α−1C‖u− wh‖.

The assertion follows from the triangle inequality ‖u−uh‖ ≤ ‖u−wh‖+‖uh−wh‖.

We mention that the theory described in this section has also recently been
used to establish the convergence of difference methods and finite volume methods.

Proof of Theorem 3.4

For completeness we now prove Theorem 3.4.

It suffices to establish the identity

L(X) = (ker L′)0. (3.12)

By the definition of the polar set and of the adjoint operator, we have

(ker L′)0 = {y ∈ Y ; 〈y∗, y〉 = 0 for y∗ ∈ ker L′}
= {y ∈ Y ; 〈y∗, y〉 = 0 for y∗ ∈ Y ′ with 〈L′y∗, x〉 = 0 for x ∈ X}
= {y ∈ Y ; 〈y∗, y〉 = 0 for y∗ ∈ Y ′ with 〈y∗, Lx〉 = 0 for x ∈ X}.

(3.13)

Hence, L(X) ⊂ (ker L′)0. Since the polar set is the intersection of closed sets, it
is itself closed, and consequently so is L(X) ⊂ (ker L′)0.

Suppose that there exists y0 ∈ (ker L′)0 with y0 �∈ L(X). Then the distance
of y0 from L(X) is positive, and there exist a small open sphere centered at the
point y0 which is disjoint from the convex set L(X). By the separation theorem
for convex sets, there exist a functional y∗ ∈ Y ′ and a number a with

〈y∗, y0〉 > a,

〈y∗, Lx〉 ≤ a for all x ∈ X.

Since L is linear, this is possible only if 〈y∗, Lx〉 = 0 for all x ∈ X. Thus, a > 0
and 〈y∗, y0〉 �= 0. This would contradict (3.13), and so (3.12) must hold.
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Problems

3.8 Let a : V × V → R be a positive symmetric bilinear form satisfying the
hypotheses of Theorem 3.6. Show that a is elliptic, i.e., a(v, v) ≥ α1‖v‖2

V for
some α1 > 0.

3.9 [Nitsche, private communication] Show the following converse of Lemma
3.7: Suppose that for every f ∈ V ′, the solution of (3.5) satisfies

lim
h→0

uh = u := L−1f.

Then

inf
h

inf
uh∈Uh

sup
vh∈Vh

a(uh, vh)

‖uh‖U‖vh‖V

> 0.

Hint: Use (3.10) and apply the principle of uniform boundedness.

3.10 Show that

‖v‖2
0 ≤ ‖v‖m‖v‖−m for all v ∈ Hm

0 (�),

‖v‖2
1 ≤ ‖v‖0‖v‖2 for all v ∈ H 2(�) ∩H 1

0 (�).

Hint: To prove the second relation, use the Helmholtz equation −�u+ u = f .

3.11 Let L be an H 1-elliptic differential operator. In which Sobolev spaces Hs(�)

is the set
{u ∈ H 1(�); Lu = f ∈ L2(�), ‖f ‖0 ≤ 1}

compact?

3.12 (Fredholm Alternative) Let H be a Hilbert space. Assume that the linear
mapping A : H → H ′ can be decomposed in the form A = A0 +K , where A0 is
H -elliptic, and K is compact. Show that either A satisfies the inf-sup condition,
or there exists an element x ∈ H , x �= 0, with Ax = 0.

3.13 Let � ⊂ R
d and p ∈ L2(�). Show that grad p ∈ H−1(�) and

‖ grad p‖−1,� ≤ d ‖p‖0,� . (3.14)

Hint: Start with proving (3.14) for smooth functions and use Green’s formula.
Complete the proof by a density argument.
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§ 4. Saddle Point Problems

We now turn to variational problems with constraints. Let X and M be two Hilbert
spaces, and suppose

a : X ×X −→ R, b : X ×M −→ R

are continuous bilinear forms. Let f ∈ X′ and g ∈ M ′. We denote both the dual
pairing of X with X′ and that of M with M ′ by 〈·, ·〉. We consider the following
minimum problem.

Problem (M). Find the minimum over X of

J (u) = 1

2
a(u, u)− 〈f, u〉 (4.1)

subject to the constraint

b(u, µ) = 〈g, µ〉 for all µ ∈ M. (4.2)

Saddle Points and Minima

Our starting point is the same as in the classical theory of Lagrange extremal
problems. If λ ∈ M , then J and the Lagrange function

L(u, λ) := J (u)+ [b(u, λ)− 〈g, λ〉] (4.3)

have the same values on the set of all points which satisfy the constraints. Instead
of finding the minimum of J , we can seek a minimum of L(·, λ) with fixed λ.
This raises the question of whether λ ∈ M can be selected so that the minimum
of L(·, λ) over the space X is assumed by an element which satisfies the given
constraints. Since L(u, λ) contains only bilinear and quadratric expressions in u

and λ, we are led to the following saddle point problem:

Problem (S). Find (u, λ) ∈ X ×M with

a(u, v)+ b(v, λ) = 〈f, v〉 for all v ∈ X,

b(u, µ) = 〈g, µ〉 for all µ ∈ M.
(4.4)

It is easy to see that every solution (u, λ) of Problem (S) must satisfy the
saddle point property

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) for all (v, µ) ∈ X ×M.



130 III. Nonconforming and Other Methods

Here only the nonnegativity of a(v, v) ≥ 0 is needed (cf. the Characterization
Theorem II.2.2). The first component of a saddle point (u, λ) provides a solution
of Problem (M).

The converse of this assertion is by no means obvious. Even if the mini-
mum problem has a solution, we can ensure the existence of Lagrange multipliers
only under additional hypotheses. We can see this already for a simple finite-
dimensional example.

4.1 Example. Consider the following minimum problem in R
2:

x2 + y2 −→ min!

x + y = 2.

Clearly, x = y = 1, λ = −2 provides a saddle point for the Lagrange function
L(x, y, λ) = x2 + y2 + λ(x + y − 2), and x = y = 1 is a solution of Problem
(M).

A formal doubling of the constraints clearly leads to a minimum problem
with the same minimum:

x2 + y2 −→ min!

x + y = 2,

3x + 3y = 6.

However, the Lagrange multipliers for

L(x, y, λ, µ) = x2 + y2 + λ(x + y − 2)+ µ(3x + 3y − 6)

are no longer uniquely defined. Every combination with λ+ 3µ = −2 leads to a
saddle point. Moreover, arbitrarily small perturbations of the data on the right-hand
side can lead to a problem with no solution.

The inf-sup Condition

As we saw in Ch. II, §2, in infinite-dimensional spaces we have to correctly formu-
late the definiteness condition for the form a. The same holds for the constraints; it
does not suffice to require their linear independence. An inf-sup condition provides
the correct framework, similar to its appearance in Theorem 3.6. Equation (4.4)
defines a linear mapping

L : X ×M −→ X′ ×M ′

(u, λ) �−→ (f, g).
(4.5)
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To show that L is an isomorphism we need the inf-sup condition (3.7). Brezzi
[1974] has split the condition into properties of the two forms a and b. We in-
troduce special notation for the affine space of admissible elements and for the
corresponding linear spaces:

V (g) := {v ∈ X; b(v, µ) = 〈g, µ〉 for all µ ∈ M},
V := {v ∈ X; b(v, µ) = 0 for all µ ∈ M}. (4.6)

Since b is continuous, V is a closed subspace of X.

It is often easier to handle the saddle point equation (4.4) if we reformulate
it as an operator equation. To this end, we associate the mapping

A : X −→ X′,

〈Au, v〉 = a(u, v) for all v ∈ X,

with the bilinear form a. Thus, the mapping A is defined by the action of the
functional Au ∈ X′ on each v ∈ X. Similarly, we associate a mapping B and its
adjoint mapping B ′ with the form b:

B : X −→ M ′,

〈Bu, µ〉 = b(u, µ) for all µ ∈ M,

B ′ : M −→ X′,

〈B ′λ, v〉 = b(v, λ) for all v ∈ X.

Then (4.4) is equivalent to
Au+ B ′λ = f,

Bu = g.
(4.7)

4.2 Lemma. The following assertions are equivalent:
(i) There exists a constant β > 0 with

inf
µ∈M

sup
v∈X

b(v, µ)

‖v‖‖µ‖ ≥ β. (4.8)

(ii) The operator B : V ⊥ −→ M ′ is an isomorphism, and

‖Bv‖ ≥ β‖v‖ for all v ∈ V ⊥. (4.9)

(iii) The operator B ′ : M −→ V 0 ⊂ X′ is an isomorphism, and

‖B ′µ‖ ≥ β‖µ‖ for all µ ∈ M. (4.10)

Proof. The equivalence of (i) and (iii) is just the assertion of the supplement to
Theorem 3.6.
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Suppose condition (iii) is satisfied. Then for given v ∈ V ⊥, we define a
functional g ∈ V 0 by w �−→ (v, w). Since B ′ is an isomorphism, there exists
λ ∈ M with

b(w, λ) = (v, w) for all w. (4.11)

By the definition of the functional g, we have ‖g‖ = ‖v‖, and (4.10) implies
‖v‖ = ‖g‖ = ‖B ′λ‖ ≥ β‖λ‖. Now substituting w = v in (4.11), we get

sup
µ∈M

b(v, µ)

‖µ‖ ≥ b(v, λ)

‖λ‖ = (v, v)

‖λ‖ ≥ β‖v‖.

Thus B : V ⊥ −→ M ′ satisfies the three conditions of Theorem 3.6, and the
mapping is an isomorphism.

Suppose condition (ii) is satisfied, i.e., B : V ⊥ −→ M ′ is an isomorphism.
For given µ ∈ M , we determine the norm via duality:

‖µ‖ = sup
g∈M ′

〈g, µ〉
‖g‖ = sup

v∈V⊥

〈Bv, µ〉
‖Bv‖

= sup
v∈V⊥

b(v, µ)

‖Bv‖ ≤ sup
v∈V⊥

b(v, µ)

β‖v‖ .

But then condition (i) is satisfied, and everything is proved.

Another condition which is equivalent to the inf-sup condition can be found
in Problem 4.16, where we also interpret the condition 4.2(ii) as a decomposition
property.

After these preparations, we are ready for the main theorem for saddle point
problems [Brezzi 1974]. The condition (ii) in the theorem is often referred to as the
Brezzi condition. The inf-sup condition is also called the Ladyzhenskaya–Babuška–
Brezzi condition (LBB-condition) since Ladyzhenskaya provided an inequality for
the divergence operator that is equivalent to the inf-sup condition for the Stokes
problem. Recall that as in (4.6), the kernel of B is denoted by V .

4.3 Theorem. (Brezzi’s splitting theorem) For the saddle point problem (4.4), the
mapping (4.5) defines an isomorphism L : X ×M −→ X′ ×M ′ if and only if the
following two conditions are satisfied:

(i) The bilinear form a(·, ·) is V -elliptic, i.e.,

a(v, v) ≥ α‖v‖2 for all v ∈ V,

where α > 0, and V is as in (4.6).
(ii) The bilinear form b(·, ·) satisfies the inf-sup condition (4.8).
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Proof. Suppose the conditions on a and b are satisfied. We first show that for every
pair of functionals (f, g) ∈ X′ × M ′, there is exactly one solution (u, λ) of the
saddle point problem satisfying

‖u‖ ≤ α−1‖f ‖ + β−1
(

1 + C

α

)
‖g‖,

‖λ‖ ≤ β−1
(

1 + C

α

)
‖f ‖ + β−1

(
1 + C

α

)C

β
‖g‖.

(4.12)

V (g) is not empty for g ∈ M ′. Indeed, by Lemma 4.2(ii), there exists u0 ∈ V ⊥

with
Bu0 = g.

Moreover, ‖u0‖ ≤ β−1‖g‖.

With w := u− u0, (4.4) is equivalent to

a(w, v)+ b(v, λ) = 〈f, v〉 − a(u0, v) for all v ∈ X,

b(w, µ) = 0 for all µ ∈ M.
(4.13)

By the V -ellipticity of a, the function

1

2
a(v, v)− 〈f, v〉 + a(u0, v)

attains its minimum for some w ∈ V with

‖w‖ ≤ α−1(‖f ‖ + C‖u0‖) ≤ α−1(‖f ‖ + Cβ−1‖g‖).

In particular, the Characterization Theorem II.2.2 implies

a(w, v) = 〈f, v〉 − a(u0, v) for all v ∈ V. (4.14)

The equations (4.13) will be satisfied if we can find λ ∈ M such that

b(v, λ) = 〈f, v〉 − a(u0 + w, v) for all v ∈ X.

The right-hand side defines a functional in X′, which in view of (4.14) lies in V 0.
By Lemma 4.2(iii), this functional can be represented as B ′λ with λ ∈ M , and

‖λ‖ ≤ β−1(‖f ‖ + C‖u‖).

This establishes the solvability. The inequalities (4.12) follow from the bounds on
‖u0‖, ‖w‖, and ‖λ‖ and the triangle inequality ‖u‖ ≤ ‖u0‖ + ‖w‖.
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The solution is unique, as can be seen from the homogeneous equation. If we
insert f = 0, g = 0, v = u, µ = −λ in (4.4) and add, we get a(u, u) = 0. Since
u ∈ V , the V -ellipticity implies u = 0. Moreover,

sup
v

|b(v, λ)| = 0,

and λ = 0 follows from (4.8). Thus, L is injective and surjective, and (4.12) asserts
that L−1 is continuous.

Conversely, suppose that L is an isomorphism. In particular, suppose ‖L−1‖
≤ C. By the Hahn–Banach theorem, every functional f ∈ V ′ has an extension
f̃ : X −→ R with ‖f̃ ‖ = ‖f ‖. Set (u, λ) = L−1(f̃ , 0). Then u is a minimum
of 1

2 a(v, v)− 〈f, v〉 in V . The mapping f �−→ u ∈ V is bounded, and thus a is
V -elliptic.

Finally, for every g ∈ M ′, we associate u ∈ X with ‖u‖ ≤ c‖g‖ via (u, λ) =
L−1(0, g). Given u ∈ X, let u⊥ ∈ V ⊥ be the projection. Since ‖u⊥‖ ≤ ‖u‖, the
mapping g �−→ u �−→ u⊥ is bounded, and Bu⊥ = g. Hence, B : V ⊥ −→ M ′ is
an isomorphism, and by Lemma 4.2(ii), b satisfies the inf-sup condition.

We note that coercivity of a was assumed only on the kernel of B and not
on the entire space X. We will need this weak assumption in most applications.
An exception will be the Stokes problem. Here coercivity is not restricted to the
divergence-free functions. Note that the norm of the operator B does not enter into
the a priori estimate (4.12).

If the bilinear form a(u, v) is not symmetric, the assumption (i) on the ellip-
ticity in Theorem 4.3 has to be replaced by an inf-sup condition; cf. Brezzi and
Fortin [1991], p.41.

Mixed Finite Element Methods

We now discuss a natural approach to the numerical solution of saddle point
problems: Choose finite-dimensional subspaces Xh ⊂ X and Mh ⊂ M , and solve

Problem (Sh). Find (uh, λh) ∈ Xh ×Mh such that

a(uh, v)+ b(v, λh) = 〈f, v〉 for all v ∈ Xh,

b(uh, µ) = 〈g, µ〉 for all µ ∈ Mh.
(4.15)

This approach is called a mixed method. In view of Lemma 3.7, we need
to choose finite element spaces which satisfy requirements similar to those on X

and M in Theorem 4.3, see Brezzi [1974] and Fortin [1977]. This is not always
easy to do in practice. For fluid mechanics, the coercivity is trivial, and only the
inf-sup condition is critical. For problems in elasticity theory, however, making
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finite element spaces satisfy both conditions can often be difficult, and requires
that the finite element spaces Xh and Mh fit together. Practical experience shows
that enforcing these conditions is of the utmost importance for the stability of the
finite element computation.

It is useful to introduce the following notation which is analogous to (4.6):

Vh := {v ∈ Xh; b(v, µ) = 0 for all µ ∈ Mh}.
4.4 Definition. A family of finite element spaces Xh, Mh is said to satisfy the
Babuška–Brezzi condition provided there exist constants α > 0 and β > 0 inde-
pendent of h such that

(i) The bilinear form a(·, ·) is Vh-elliptic with ellipticity constant α > 0.
(ii)

sup
v∈Xh

b(v, λh)

‖v‖ ≥ β‖λh‖ for all λh ∈ Mh. (4.16)

The terminology in the literature varies. Often the condition (ii) alone is
called the Brezzi condition, the Ladyzhenskaja–Babuška–Brezzi condition, or for
short the LBB condition. This condition is the more important of the two, and we
will usually call it the inf-sup condition.

It is clear that – possibly after a reduction in α and β – we can take the same
constants in 4.3 and 4.4.

The following result is an immediate consequence of Lemma 3.7 and Theo-
rem 4.3.

4.5 Theorem. Suppose the hypotheses of Theorem 4.3 hold, and suppose Xh, Mh

satisfy the Babuška–Brezzi conditions. Then

‖u− uh‖ + ‖λ− λh‖ ≤ c
{

inf
vh∈Xh

‖u− vh‖ + inf
µh∈Mh

‖λ− µh‖
}
. (4.17)

In general, Vh �⊂ V . We get a better result in the special case of conforming
approximation where Vh ⊂ V . We note that in this case also the finite element
approximation of V (g) may be nonconforming for g �= 0.

4.6 Definition. The spaces Xh ⊂ X and Mh ⊂ M satisfy condition (C) provided
Vh ⊂ V , i.e., if for every vh ∈ Xh, b(vh, µh) = 0 for all µh ∈ Mh implies
b(vh, µ) = 0 for all µ ∈ M .

4.7 Theorem. Suppose the hypotheses of Theorem 4.5 are satisfied along with the
condition (C). Then the solution of Problem (Sh) satisfies

‖u− uh‖ ≤ c inf
vh∈Xh

‖u− vh‖.
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Proof. Let vh ∈ Vh(g). Then in the usual way, we have

a(uh − vh, v) = a(uh, v)− a(u, v)+ a(u− vh, v)

= b(v, λ− λh)+ a(u− vh, v)

≤ C‖u− vh‖ · ‖v‖
for all v ∈ Vh, since b(v, λ − λh) vanishes because of condition (C). With v :=
uh − vh, we have ‖uh − vh‖2 ≤ α−1C‖uh − vh‖ · ‖u − vh‖, and the assertion
follows after dividing by ‖uh − vh‖.

For completeness we mention that the assumption Xh ⊂ X may be aban-
doned. Also mesh-dependent norms may be used. In these cases the theory above
has to be combined with arguments that we encountered with Strang’s lemmas as it
is done, e.g., for the analysis of mortar elements; see Braess, Dahmen, and Wieners
[2000]. The continuity of H 1 elements is replaced at some inter-element bound-
aries by explicit weak matching conditions. The constraints give rise to Lagrange
multipliers that model the normal derivative ∂u/∂n.

Fortin Interpolation

We continue with our treatment of abstract saddle point problems with a tool due
to Fortin [1977] which is useful for verifying that the inf-sup condition holds.

4.8 Fortin’s Criterion. Suppose that the bilinear form b : X×M −→ R satisfies
the inf-sup condition. In addition, suppose that for the subspaces Xh, Mh, there
exists a bounded linear projector �h : X −→ Xh such that

b(v −�hv, µh) = 0 for µh ∈ Mh. (4.18)

If ‖�h‖ ≤ c for some constant c independent of h, then the finite element spaces
Xh, Mh satisfy the inf-sup condition.

X
B−−→ M ′

�h

5 5 

Xh
B−−→ M ′

h

Commutative diagram property of (4.18). The symbol  refers to the injection.

Proof. By assumption, for µh ∈ Mh ,

β‖µh‖ ≤ sup
v∈X

b(v, µh)

‖v‖ = sup
v∈X

b(�hv, µh)

‖v‖ ≤ c sup
v∈X

b(�hv, µh)

‖�hv‖
= c sup

vh∈Xh

b(vh, µh)

‖vh‖ ,

since �hv ∈ Xh.
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Note that the condition in Fortin’s criterion can be checked without referring
explicitly to the norm of the Lagrange multipliers. This is an advantage when the
space of the Lagrange multipliers is equipped with an exotic norm, and it is thus
used for example when the Lagrange multipliers belong to trace spaces.

4.9 Remark. There is a converse statement to Fortin’s criterion. If the finite
element spaces Xh, Mh satisfy the inf-sup condition, then there exists a bounded
linear projector �h : X → Xh such that (4.18) holds.

Indeed, given v ∈ X, define uh ∈ Xh as the solution of the equations

(uh, w)+ b(w, λh) = (v, w) for all w ∈ Xh,

b(uh, µ) = b(v, µ) for all µ ∈ Mh.
(4.19)

Since the inner product in X is coercive by definition, the problem is stable, and
from Theorem 4.3 it follows that

‖uh‖ ≤ c‖v‖.

Moreover, a linear mapping is defined by v �−→ �v := uh, and the proof is
complete.

The linear process defined above is called Fortin interpolation.

As a corollary we obtain a relationship between the approximation with the
constraint induced by the bilinear form b and the approximation in the larger finite
element space Xh.

4.10 Remark. If the spaces Xh and Mh satisfy the inf-sup condition, then there
exists a constant c independent of h such that for every u ∈ V (g),

inf
vh∈Vh(g)

‖u− vh‖ ≤ c inf
wh∈Xh

‖u− wh‖.

Proof. We make use of Fortin interpolation. Obviously, �hwh = wh for each
wh ∈ Xh. Given u ∈ V (g) we have �hu ∈ Vh(g) and

‖u−�hu‖ = ‖u− wh −�h(u− wh)‖ ≤ (1 + c)‖u− wh‖.

Since this holds for all wh ∈ Xh, the proof is complete.

Sometimes error estimates are wanted for some norms for which not all
hypotheses of Theorem 4.3 hold. In this context we note that the norm of the
bilinear form b does not enter into the a priori estimate (4.12). This fact is used
for the estimate of ‖λ − λh‖ when an estimate of ‖u − uh‖ has been established
by applying other tools.
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Saddle Point Problems with Penalty Term

To conclude this section, we consider a variant of Problem (S) which plays a role
in elasticity theory. We want to treat so-called problems with a small parameter t

in such a way that we get convergence as h → 0 which is uniform in the parameter
t . This can often be achieved by formulating a saddle point problem with penalty
term. Readers who are primarily interested in the Stokes problem may want to
skip the rest of this section.

Suppose that in addition to the bilinear forms a and b,

c : Mc ×Mc −→ R, c(µ, µ) ≥ 0 for all µ ∈ Mc (4.20)

is a bilinear form on a dense set Mc ⊂ M . Moreover, let t be a small real-valued
parameter. Now we modify (4.4) by adding a penalty term:

Problem (St ). Find (u, λ) ∈ X ×Mc with

a(u, v) + b(v, λ) = 〈f, v〉 for all v ∈ X,

b(u, µ) − t2c(λ, µ) = 〈g, µ〉 for all µ ∈ Mc.
(4.21)

The associated bilinear form on the product space is

A(u, λ; v, µ) := a(u, v)+ b(v, λ)+ b(u, µ)− t2c(λ, µ).

First we consider the case where c is bounded [Braess and Blömer 1990].
Then c can be extended continuously to the entire space M × M , and we can
suppose Mc = M .

4.11 Theorem. Suppose that the hypotheses of Theorem 4.3 are satisfied and that
a(v, v) ≥ 0 for all v ∈ X. In addition, let c : M × M −→ R be a continuous
bilinear form with c(µ, µ) ≥ 0 for all µ ∈ M . Then (4.21) defines an isomorphism
L : X ×M −→ X′ ×M ′, and L−1 is uniformly bounded for 0 ≤ t ≤ 1.

In Theorem 4.11 it is essential that the solution of the saddle point problem
with penalty term is uniformly bounded in t for all 0 ≤ t ≤ 1. We can think of
the penalty term as a perturbation. It is often supposed to have a stabilizing effect.
Surprisingly, this is not always true, and the norm of the form c enters into the
constant in the inf-sup condition. The following example shows that this is not just
an artifact of the proof, which is postponed to the end of this section.
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4.12 Example. Let X = M := L2(�), a(u, v) := 0, b(v, µ) := (v, µ)0,�, and
c(λ, µ) := K · (λ, µ)0,�. Clearly, the solution of

b(v, λ) = (f, v)0,�,

b(u, µ)− t2c(λ, µ) = (g, µ)0,�

is λ = f and u = g+ t2Kf . Thus, the solution grows as K →∞ and we cannot
expect a bounded solution for an unbounded bilinear form c.

In plate theory we frequently encounter saddle point problems with penalty
terms which represent singular perturbations, i.e., which stem from a differential
operator of higher order. Then we introduce a semi-norm on Mc, and define the
corresponding norm

|µ|c :=
√

c(µ, µ),

|||(v, µ)||| := ‖v‖X + ‖µ‖M + t |µ|c,
(4.22)

on X×Mc; see Huang [1990]. On the other hand, this now requires the ellipticity
of a on the entire space X, rather than just on the kernel V as in Theorem 4.3. It is
clear from the previous example that we indeed need some additional assumption
of this kind.

4.13 Theorem. Suppose the hypotheses of Theorem 4.3 are satisfied and that a is
elliptic on X. Then the mapping L defined by the saddle point problem with penalty
term satisfies the inf-sup condition

inf
(u,λ)∈X×Mc

sup
(v,µ)∈X×Mc

A(u, λ; v, µ)

|||(u, λ)||| · |||(v, µ)||| ≥ γ > 0, (4.23)

for all 0 ≤ t ≤ 1, where γ is independent of t .

These two theorems are consequences of the following lemma [Kirmse 1990]
whose hypotheses appear to be very technical at first glance. However, by Prob-
lem 4.23, the condition (4.25) below is equivalent to the Babuška condition for
the X-components,

sup
(v,µ)

A(u, 0; v, µ)

|||(v, µ)||| ≥ α′‖u‖X, (4.24)

with suitable α′. In particular, it is therefore also necessary for stability.

4.14 Lemma. Suppose that the hypotheses of Theorem 4.3 are satisfied, and sup-
pose that

a(u, u)

‖u‖X

+ sup
µ∈Mc

b(u, µ)

‖µ‖M + t |µ|c ≥ α‖u‖X (4.25)

for all u ∈ X and some α > 0. Then the inf-sup condition (4.23) holds.
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Proof. We consider three cases.
Case 1. Let ‖u‖X + ‖λ‖M ≤ δ−1t |λ|c, where δ > 0 will be chosen later. Then

A(u, λ; u,−λ) = a(u, u)+ t2c(λ, λ)

≥ 1

2
t2|λ|2c +

1

2
t2|λ|2c

≥ 1

2
δ2{(‖u‖X + ‖λ‖M)2 + t2|λ|2c} ≥

1

4
δ2|||(u, λ)|||2.

Dividing through by |||(u, λ)|||, we have

1

4
δ2|||(u, λ)||| ≤ A(u, λ; u,−λ)

|||(u, λ)||| ≤ sup
(v,µ)

A(u, λ; v, µ)

|||(v, µ)||| .

Case 2. Let ‖u‖X + ‖λ‖M > δ−1t |λ|c and ‖u‖X ≤ β

2‖a‖‖λ‖M . By the inf-sup
condition (4.8),

β‖λ‖M ≤ sup
v

b(v, λ)

‖v‖X

= sup
v

A(u, λ; v, 0)− a(u, v)

‖v‖X

≤ sup
(v,µ)

A(u, λ; v, µ)

|||(v, µ)||| + ‖a‖ ‖u‖X

≤ sup
(v,µ)

A(u, λ; v, µ)

|||(v, µ)||| + 1

2
β‖λ‖M.

Now we can estimate ‖λ‖M , and in view of the case distinction ‖u‖X and t |λ|c as
well, by the first term on the right-hand side.

Case 3. Let ‖u‖X + ‖λ‖M > δ−1t |λ|c and ‖u‖X ≥ β

2‖a‖‖λ‖M . Then
δ|||(u, λ)||| ≤ ‖u‖X, where δ depends only on α, β and δ. By hypothesis (4.25),

αδ|||(u, λ)||| ≤ α‖u‖X

≤ a(u, u)

‖u‖X

+ sup
µ

A(u, λ; 0, µ)+ t2c(λ, µ)

‖µ‖M + t |µ|c
≤ A(u, λ; u,−λ)

‖u‖X

+ sup
µ

A(u, λ; 0, µ)

|||(0, µ)||| + t |λ|c

≤
(1

δ
+ 1

)
sup
(v,µ)

A(u, λ; v, µ)

|||(v, µ)||| + t |λ|c.

With δ ≤ αβ

4‖a‖+2β
we have t |λ|c ≤ 1

2α‖u‖X, and the second term in the sum can
be absorbed by a factor of 2.

This establishes the assertion in all cases.



§4. Saddle Point Problems 141

The previous two theorems now follow immediately. The ellipticity on the
entire space X in Theorem 4.13 implies a(u, u) ≥ α‖u‖2

X, and (4.25) is clear. On
the other hand, Theorem 4.3 ensures that the Babuška condition holds for the pair
(u, 0), and combining it with the Cauchy–Schwarz inequality gives

γ ‖u‖X ≤ sup
(v,µ)

a(u, v)+ b(u, µ)

‖v‖X + ‖µ‖M

≤ sup
v

a(u, v)

‖v‖X

+ sup
µ

b(u, µ)

‖µ‖M

≤ [‖a‖ a(u, u)]1/2 + (1 + ‖c‖) sup
µ

b(u, µ)

‖µ‖M + |µ|c
≤ ‖a‖ a(u, u)

‖u‖X

+ 2(1 + ‖c‖) sup
µ

b(u, µ)

‖µ‖M + |µ|c .

(4.26)

Here we have used the fact that the form c in Theorem 4.11 was assumed to be
bounded, and have applied the same kind of argument as used in Problem 4.22.

The uniform boundedness of the solution implies that the solution is a con-
tinuous function of the parameter.

4.15 Corollary. Let the conditions of Theorem 4.11 prevail. Then, given f ∈ X′

and g ∈ M ′, the solution (u, λ) of Problem (St ) depends continuously on t .

Proof. Let (ut , λt ) and (us, λs) be the solutions for the parameters t and s respec-
tively. Then we have

a(ut − us, v) + b(v, λt − λs) = 0 for all v ∈ X,

b(ut − us, µ) − t2c(λt − λs, µ) = −(t2 − s2)c(λs, µ) for all µ ∈ M.

The stability now implies ‖ut −us‖X+‖λt −λs‖M ≤ const |t2− s2|, and we have
continuity in the parameter.

Typical Applications

Variational problems in saddle point form and mixed methods are used for very
different purposes. We list several here.

1. Explicit constraints. When incompressible flows are investigated, there is
the explicit constraint

div u = 0.

In particular, the Stokes problem will be considered in §§6 and 7.

2. Splitting of a differential equation into a system. As an example, the Poisson
equation is written as a system

σ − grad u = 0,

div σ = −f ;
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see §5. Here the given differential equation of order 2 is split into a system of
equations of first order. The mixed method induces a softening effect that is desired
in some difficult problems of solid mechanics; cf. Ch. VI, §3. There is a different
reason for a split of equations of fourth order into two equations of second order as
in Problem 4.24 or with Kirchhoff plates in Ch. VI, §5. The mixed method admits
the use of C0 elements while conforming methods with the standard variational
formulation require C1 elements.

3. Modeling boundary conditions. In some cases it is more convenient to have
a boundary condition u|� − g = 0 as an explicit constraint than to incorporate
the boundary values into the finite element functions. Here the Lagrange multi-
plier models ∂u/∂n or, more generally, the multiple that is encountered in natural
boundary conditions. Similarly, the C0 continuity is a handicap in domain decom-
position methods and is replaced by explicit matching conditions. This holds in
particular for mortar elements; see Bernardy, Maday, and Patera [1994] or Braess,
Dahmen, and Wieners [2000].

4. Mixed elements that are equivalent to nonconforming methods. Often one
finds mixed methods that are equivalent to nonconforming elements. While the
nonconforming elements are more easily implemented, the mixed method may
admit an easier proof of convergence; see the DKT element for Kirchhoff plates
in Ch. VI, §5 and the connection between the nonconforming P1 element and the
Raviart–Thomas element described by Marini [1985].

5. Saddle point problems with penalty terms. Problems with a large parameter
are often rewritten as a saddle point problem with a small penalty term. Examples
are the flow of a nearly incompressible fluid and the Reissner–Mindlin plate; see
Problem 4.19, Ch. VI, §§3 and 6.

6. A posteriori error estimates via saddle point problems. Nearly optimal
solutions of saddle point problems provide lower estimates of the (minimal) value
of variational problems and thus also a posteriori error estimates; see §9.

Problems

4.16 Show that the inf-sup condition (4.8) is equivalent to the following decom-
position property: For every u ∈ X there exists a decomposition

u = v + w

with v ∈ V and w ∈ V ⊥ such that

‖w‖X ≤ β−1‖Bu‖M ′ ,

where β > 0 is a constant independent of u.
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4.17 Let X, M , and the maps a, b, f, g be as in the saddle point problem (S).
Given ρ ∈ M , let ρ⊥ := {µ ∈ M; (ρ, µ) = 0}. We now minimize the expression
(4.1) subject to the restricted set of constraints

b(u, µ) = 〈g, µ〉 for all µ ∈ ρ⊥.

Show that the solution is characterized by

a(u, v)+ b(v, λ) = 〈f, v〉 for all v ∈ X,

b(u, µ) + (σ, µ) = 〈g, µ〉 for all µ ∈ M,

(τ, λ) = 0 for all τ ∈ span[ρ]

(4.27)

with u ∈ X, λ ∈ M , σ ∈ span[ρ].
Rewrite (4.27) and verify that it is a standard saddle point problem with the spaces
X̃ := X × span[ρ] and M̃ := M .

4.18 Suppose that the subspaces Xh, Mh satisfy the Babuška–Brezzi condition,
and suppose we

increase or decrease Xh or Mh.

Which of the conditions in Definition 4.4 have to be rechecked?

4.19 When M = L2, we can identify M with its dual space, and simply write
b(v, µ) = (Bv, µ)0. The solution of the saddle point problem does not change if
a(u, v) is replaced by

at (u, v) := a(u, v)+ t−2(Bu, Bv)0, t > 0.

This is called the method of the augmented Lagrange function; see Fortin and
Glowinski [1983].
(a) Show that at is elliptic on the entire space X under the hypotheses of Theo-

rem 4.3.
(b) Suppose we ignore the explicit constraints, and introduce λ = t2Bu as a new

variable. Show that this leads to a saddle point problem with penalty term;
cf. (6.15).

4.20 As, e.g., in (5.2) and (5.5), a saddle point problem is often stable for two
pairings X1, M1 and X2, M2. Now suppose X1 ⊂ X2 and

‖v‖X1 ≥ ‖v‖X2 on X1.

Show that, conversely,

‖λ‖M1 ≤ c ‖λ‖M2 on M1 ∩M2,

where c ≥ 0. If M1 is also dense in M2, then M1 ⊃ M2.
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4.21 The pure Neumann Problem (II.3.8)

−�u = f in �,

∂u

∂ν
= g on ∂�

is only solvable if
∫
�

f dx + ∫
�

g ds = 0. This compatibility condition follows
by applying Gauss’ integral theorem to the vector field ∇u. Since u+ const is a
solution whenever u is, we can enforce the constraint∫

�

udx = 0.

Formulate the associated saddle point problem, and use the trace theorem and
the second Poincaré inequality to show that the hypotheses of Theorem 4.3 are
satisfied.

4.22 Let a, b, and c be positive numbers. Show that a ≤ b + c implies a ≤
b2/a + 2c.

4.23 Show the equivalence of the conditions (4.24) and (4.25). For the nontrivial
direction, use the same argument as in the derivation of (4.26); cf. Braess [1996].

4.24 Let u be a (classical) solution of the biharmonic equation

�2u = f in �,

u = ∂u

∂ν
= 0 on ∂�.

Show that u ∈ H 1
0 together with w ∈ H 1 is a solution of the saddle point problem

(w, η)0,� + (∇η,∇u)0,� = 0 for all η ∈ H 1,

(∇w,∇v)0,� = (f, v)0,� for all v ∈ H 1
0 .

Suitable elements and analytic methods can be found, e.g., in Ciarlet [1978] and
in Babuška, Osborn, and Pitkäranta [1980].

4.25 Equations of the form

a(u, v)+ b(v, λ) = 〈f, v〉 for all v ∈ X,

b(u, µ) + c(σ, µ) = 〈g, µ〉 for all µ ∈ M,

c(τ, λ)+ d(σ, τ ) = 〈h, τ 〉 for all τ ∈ Y

(4.28)

are sometimes called double saddle point problems. Rearrange (4.28) to obtain a
standard saddle point problem.
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§ 5. Mixed Methods for the Poisson Equation

The treatment of the Poisson equation by mixed methods already elucidates some
characteristic features and shows that saddle point formulations are not only useful
for minimization problems with given constraints as in (4.1), (4.2). For example,
there are two different pairs of spaces for which the saddle point problem is stable in
the sense of Babuška and Brezzi. It is interesting that different boundary conditions
turn out to be natural conditions in the two cases.

The method, often called the dual mixed method, has been well established
for a long time. On the other hand, the primal mixed method has recently attracted
a lot of interest since it shows that mixed methods are often related to a softening
of the energy functional and how elasticity problems with a small parameter can
be treated in a robust way.

Moreover there are special results if X or M coincides with an L2-space.

The Poisson Equation as a Mixed Problem

The Laplace equation or the Poisson equation �u = div grad u = −f can be
written formally as the system

grad u = σ,

div σ = −f.
(5.1)

Let � ⊂ R
d . Then (5.1) leads directly to the following saddle point problem: Find

(σ, u) ∈ L2(�)d ×H 1
0 (�) such that

(σ, τ )0,� − (τ,∇u)0,� = 0 for all τ ∈ L2(�)d,

−(σ,∇v)0,� = −(f, v)0,� for all v ∈ H 1
0 (�).

(5.2)

These equations can be treated in the general framework of saddle point problems
with

X := L2(�)d, M := H 1
0 (�),

a(σ, τ ) := (σ, τ )0,�, b(τ, v) := −(τ,∇v)0,�.
(5.3)

The linear forms are continuous, and a is obviously L2-elliptic. To check the inf-
sup condition, we use Friedrichs’ inequality in a similar way as for the original
minimum problem in Ch. II, §2. Given v ∈ H 1

0 (�), consider the quotient appearing
in the condition for τ := −∇v ∈ L2(�)d :

b(τ, v)

‖τ‖0
= −(τ,∇v)0,�

‖τ‖0
= (∇v,∇v)0,�

‖∇v‖0
= |v|1 ≥ 1

c
‖v‖1.
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Since c comes from Friedrichs’ inequality and depends only on �, the saddle point
problem (5.2) is stable.

It is easy to construct suitable finite elements for a triangulation Th. Choose
k ≥ 1, and set

Xh := (Mk−1)d = {σh ∈ L2(�)d; σh|T ∈ Pk−1 for T ∈ Th},
Mh := Mk

0,0 = {vh ∈ H 1
0 (�); vh|T ∈ Pk for T ∈ Th}.

Note that only the functions in Mh are continuous. Since ∇Mh ⊂ Xh, we can
verify the inf-sup condition in the same way as for the continuous problem.

The saddle point problem with a different pairing is more important for prac-
tical computations. It refers to the space encountered in Problem II.5.14:

H(div, �) := {τ ∈ L2(�)d; div τ ∈ L2(�)}
with the graph norm of the divergence operator,

‖τ‖H(div,�) := (‖τ‖2
0 + ‖ div τ‖2

0)
1/2. (5.4)

We seek (σ, u) ∈ H(div, �)× L2(�) such that

(σ, τ )0,� + (div τ, u)0,� = 0 for all τ ∈ H(div, �),

(div σ, v)0,� = −(f, v)0,� for all v ∈ L2(�).
(5.5)

To apply the general theory, we set

X := H(div, �), M := L2(�),

a(σ, τ ) := (σ, τ )0,�, b(τ, v) := (div τ, v)0,�.

Clearly, the linear forms are continuous. Then since div τ = 0 for τ in the kernel
V , we have

a(τ, τ ) = ‖τ‖2
0 = ‖τ‖2

0 + ‖ div τ‖2
0 = ‖τ‖2

H(div,�).

This establishes the ellipticity of a on the kernel. Moreover, for given v ∈ L2 there
exists w ∈ C∞

0 (�) with ‖v − w‖0,� ≤ 1
2‖v‖0,�. Set ξ := inf{x1; x ∈ �} and

τ1(x) =
∫ x1

ξ

w(t, x2, . . . , xn)dt,

τi(x) = 0 for i > 1.

Then obviously div τ = ∂τ1/∂x1 = w, and the same argument as in the proof of
Friedrichs’ inequality gives ‖τ‖0 ≤ c‖w‖0. Hence,

b(τ, v)

‖τ‖H(div,�)

≥ (w, v)0,�

(1 + c)‖w‖0,�

≥ 1

2(1 + c)
‖v‖,

and so the inf-sup condition is satisfied.
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By Theorem 4.3, (5.5) defines a stable saddle point problem. At first glance,
it appears that a solution exists only in u ∈ L2. However, u ∈ H 1

0 (�), and since
C∞

0 (�)d ⊂ H(div, �), the first equation of (5.5) says in particular that∫
�

u
∂τi

∂xi

dx = −
∫

�

σiτidx for τi ∈ C∞
0 (�).

Thus, in view of Definition II.1.1, u possesses a weak derivative ∂u
∂xi

= σi , and

hence u ∈ H 1(�). Now (5.5) together with Green’s formula (II.2.9) and ∇u = σ

implies ∫
∂�

u · τn ds =
∫

�

∇u · τ dx +
∫

�

div τu dx

=
∫

�

σ · τ dx +
∫

�

div τu dx = 0. (5.6)

Since this holds for all τ ∈ C∞(�)d , we have u = 0 on the boundary in the
generalized sense, i.e., in fact u ∈ H 1

0 (�).

In the standard case the natural boundary condition is ∂u
∂n

= 0, but here the
natural boundary condition is u = 0.

We note that the equations (5.2) characterize the solution of the variational
problem

1

2
(σ, σ )0 − (f, u) → min!

∇u− σ = 0.

(5.2)v

Here the Lagrange multiplier coincides with σ , and can be eliminated from the
equations. On the other hand, (5.5) arises from the variational problem

−1

2
(σ, σ )0 → max!

div σ + f = 0.

(5.5)v

Here the Lagrange multiplier coincides with u from (5.1).

Sometimes (5.2) with X := L2 and M := H 1
0 is called a primal mixed method

while (5.5) with X := H(div) and M := L2 is called a dual mixed method.

When the functionals are evaluated for the optimal solutions, the values of the
two variational problems (5.2)v and (5.5)v are equal. Therefore the common op-
timal value lies between those for arbitrary admissible functions of the variational
problems. In this way, an error estimate for suboptimal solutions is obtained. It is
the source of the a posteriori error estimate in Theorem 9.4. Here it is provided
for the Poisson equation with mixed boundary conditions,

−�u = f in �,

u = u0 on �D,

∂u

∂n
= g on �N = ∂�\�D.

(5.7)
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Fig. 35. Raviart–Thomas element for k = 0: One normal component is pre-
scribed on each edge

5.1 Theorem of Prager and Synge. Let σ ∈ H(div, �) with σ · n = g on �N

and v ∈ H 1(�) with v = u0 on �D . Assume that div σ + f = 0. Furthermore, let
u be the solution of (5.7). Then,

|u− v|21 + ‖ grad u− σ‖2
0 = ‖ grad v − σ‖2

0.

Proof. By applying Green’s formula and noting that �u = div σ = −f we obtain∫
�

grad(u− v)(grad u− σ)dx

= −
∫

�

(u− v)(�u− div σ)dx +
∫

∂�

(u− v)(
∂u

∂n
− σ · n)ds = 0.

The boundary term above vanishes since u− v = 0 on �D and ∂u
∂n
− σ · n = 0 on

�N . From this orthogonality relation we conclude that

‖ grad v − σ‖2
0 = ‖ grad(v − u)‖2

0 + ‖ grad u− σ‖2
0

which by the definition of the | · |1-semi-norm yields the desired equation.

The Raviart–Thomas Element

The elements of Raviart and Thomas [1977] are suitable for the saddle point
problem (5.5). Let k ≥ 0, � ⊂ R

2, and suppose Th is a shape-regular triangulation
and that

Xh := RTk

:= {τ ∈ L2(�)2; τ |T =
(

aT

bT

)
+ cT

(
x

y

)
, aT , bT , cT ∈ Pk for T ∈ Th,

τ · n is continuous on the inter-element boundaries},
Mh := Mk(Th) = {v ∈ L2(�); v|T ∈ Pk for T ∈ Th}.

(5.8)

The continuity of the normal components on the boundaries ensures the conformity
Xh ⊂ H(div, �); cf. Problem II.5.14.
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For convenience, we consider the Raviart–Thomas element only for k = 0.
Its construction heavily depends on the following assertion. The functions in (P1)

2

which have the form

p =
(

a

b

)
+ c

(
x

y

)

are characterized by the fact that n · p is constant on each line αx + βy = const
whenever n is orthogonal to the line. Therefore, given a triangle T , the normal
component is constant and can be prescribed on each edge of T (see Fig. 35).
Formally, the Raviart–Thomas element is the triple

(T , (P0)
2 + x · P0, nip(zi), i = 1, 2, 3 with zi being the midpoint of edge i).

The solvability of the interpolation problem is easily verified. Given a vertex
ai of T , we can find a vector ri ∈ R

2 such that its projections onto the normals
of the adjacent edges have the prescribed values. Now determine p ∈ (P1)

2 such
that

p(ai) = ri, i = 1, 2, 3.

It is immediate from p ∈ (P1)
2 that the normal components are linear on each

edge of the triangle. They are even constant, since by construction they attain
the same value at both vertices of the edge. Thus the function constructed indeed
belongs to the specified subset of (P1)

2.

A proof of the inf-sup condition will be given below.

The Raviart–Thomas element and the similar BDM elements due to Brezzi,
Douglas, and Marini [1985] are frequently used for the discretization of prob-
lems in H(div, �). Analogous elements for 3-dimensional problems have been
described by Brezzi, Douglas, Durán, and Fortin [1987].

The finite element solution of the Raviart–Thomas element is related to the
nonconforming P1 element; see Marini [1985].

Interpolation by Raviart–Thomas elements

Due to Theorem 4.5 the error of the finite element solution for the discretization
with the Raviart–Thomas element can be expressed in terms of approximation
by the finite element functions. As usual the latter is estimated via interpolation.
To this end an interpolation operator is defined which is based on the degrees of
freedom specified in the definition of the element.
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5.2 An Interpolation Operator. Let k ≥ 0 and T be a triangle. Define

ρT : H 1(T ) → RTk(T )

by ∫
e

(q − ρT q) · npk ds = 0 ∀pk ∈ Pk and each edge e ⊂ ∂T , (5.9a)

∫
T

(q − ρT q) · pk−1 dx = 0 ∀pk−1 ∈ P2
k−1 (if k ≥ 1). (5.9b)

Given a triangulation T on �, define ρ� : H 1(�) → RTk locally by

(ρ�q)|T = ρT (q|T ) ∀T ∈ T .

We restrict ourselves to the case k = 0. We recall that the normal component of
v ∈ RT0 is constant on each edge. Equation (5.9a) states that it coincides with
the mean value of the normal component of the given function. This holds for the
solution of the interpolation problem.

From Gauss’ integral theorem we conclude now that∫
T

div(q − ρT q)dx =
∑
e⊂∂T

∫
e

(q − ρT q) · nds = 0. (5.10)

On the other hand, the Raviart–Thomas element is piecewise linear and α :=
div ρT q is constant on T . By (5.10) α is the mean value of div v on T . Therefore
α is the constant with the least L2 deviation from div q. So we have established
the following property for k = 0. A proof for k > 0 can be found in Brezzi and
Fortin [1990].

5.3 Minimal Property. Given a triangulation T on �, let �k be the L2-projection
onto Mk . Then we have for all q ∈ H 1(�)

div(ρ�q) = �k div q. (5.11)

This equation is often called the commuting diagram property

H1(�)
div−−→ L2(�)

ρ�

5 5 �k

RTk
div−−→ Mk.

(5.12)

We note that the mapping ρ� is not bounded on H(div); see Brezzi and Fortin
[1991], p. 124–125. For a remedy, we refer to the discussion after Theorem 5.6
below.

The proof of the inf-sup condition is related to the following.
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5.4 Lemma. The mapping
div : RT0 → M0

is surjective.
Proof. After enlarging � by finitely many triangles if necessary, we may assume
that � is convex. Given f ∈ M0, there is a u ∈ H 2(�) ∩ H 1

0 (�) such that
�u = f . Set q := grad u. By Gauss’ integral formula we have∫

∂T

q · nds =
∫
T

div qdx =
∫
T

f dx.

From (5.9a) we conclude that
∫
T

div ρ�qdx = ∫
∂T

(ρ�q) · nds = ∫
T

f dx. Since
div ρ�q and f are constant in T , it follows that div ρ�q = f .

Finally we note that the mapping M0 → RT0 in the construction above is
bounded. Therefore, recalling Fortin’s criterion we see that the inf-sup condition
has been established simultaneously.

The error of the finite element solution will be derived from the approximation
error.

5.5 Lemma. Let Th be a shape-regular triangulation of �. Then

‖q − ρ�q‖H(div,�) ≤ ch |q|1 + inf
vh∈M0

‖ div q − vh‖0.

Proof. We first consider the interpolation on a triangle. By the trace theorem the
functional q �→ ∫

e
q · nds, e ⊂ ∂T , is continuous on H 1(T )2. Moreover, we have

ρT q = q for q ∈ P2
0 since P2

0 ⊂ RT0. Therefore, the Bramble–Hilbert lemma and
a scaling argument yield

‖q − ρ�q‖0 ≤ ch |q|1 .

The bound for div(q−ρ�q) follows from the minimal property 5.3, and the proof
is complete.

Now the error estimate of the finite element solution of (5.1)

‖σ − σh‖H(div,�) + ‖u− uh‖0

≤ c(h |σ |1 + h ‖u‖1 + inf
fh∈M0

‖f − fh‖0)
(5.13)

is a direct consequence of Theorem 4.5.

Moreover, there is a comparison with the standard finite element approxima-
tion.
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5.6 Theorem. Let uh be the finite element solution with the P1 element and σh

be the solution of the mixed method with the Raviart–Thomas element on the same
mesh. Then

‖∇u− σh‖0 ≤ c‖∇(u− uh)‖0 + ch inf
fh∈M0

‖f − fh‖0

with a constant c depending only on the shape regularity.

The proof is more involved and will be provided in §9 in connection with
a posteriori error estimates.

The error estimate for the u-component in (5.13) is weaker than that for
standard finite elements. On the other hand, the Raviart–Thomas element is more
robust than the standard method for a class of problems that we will encounter in
Ch. VI. Moreover the above disadvantage can be eliminated by a postprocessing
procedure that will be described briefly in the next subsection.

Since the mixed method with Raviart–Thomas elements is stable, we can
modify the diagram (5.12) such that the domain becomes H(div). We restrict
ourselves to k = 0 and define ρ̃� as follows: Given σ ∈ H(div), let σh = ρ̃�σ ∈
RT0 be the solution of the mixed method

(σh, τ )0,� + (div τ, wh)0,� = (σh, τ )0,� for all τ ∈ RT0,

(div σ, v)0,� = (div σ, v))0,� for all v ∈ M0.

Since the divergence operator is surjective, we have exact sequences in addition to
the commuting diagram property. Some larger diagrams play an important role in
the construction of modern finite element spaces; see Arnold, Falk, and Winther
[2006].

H(div, �)
div−−→ L2(�) −−→ 0

ρ̃�

5 5 �k

RTk
div−−→ Mk −−→ 0.

Implementation and Postprocessing

In principle, the discretization leads to an indefinite system of equations. It can be
turned into a positive definite system by a trick which was described by Arnold
and Brezzi [1985].

Instead of initially choosing the gradients to lie in a subspace of
H(div, �), we first admit gradients in L2(�)2, and later explicitly require that
div σh ∈ L2(�). Equivalently, we require that the normal components σh · n do
not have jumps on the edges. To achieve this, we enforce the continuity of σhn on
the edges as an explicit constraint. This introduces a further Lagrange multiplier.
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The approximating functions for σh no longer involve continuity conditions,
and each basis function has support on a single triangle. If we eliminate the asso-
ciated variables by static condensation, the resulting equations are just as sparse as
before the elimination process. In addition, we have avoided the costly construction
of a basis of Raviart–Thomas elements.

A further advantage is that the Lagrange multiplier can be regarded as a finite
element approximation of u on the edges. Arnold and Brezzi [1985] used them to
improve the finite element solution.

Mesh-Dependent Norms for the Raviart–Thomas Element

Finite element computations with the Raviart–Thomas elements may also be
analyzed in the framework of primal mixed methods, i.e., with the pairing
H 1(�), L2(�). Since the tangential components of the functions in (5.8) may
have jumps on inter-element boundaries, in this context the elements are non-
conforming and we need mesh-dependent norms which contain edge terms in
adddition to broken norms

‖τ‖0,h :=

‖τ‖2

0 + h
∑
e⊂�h

‖τn‖2
0,e


1/2

,

|v|1,h :=

∑

T ∈Th

|v|21,T + h−1
∑
e⊂�h

‖J (v)‖2
0,e


1/2

.

(5.14)

Here, �h := ∪T (∂T ∩�) is the set of inter-element boundaries. On the edges of
�h the jump J (v) of v and the normal component τn of τ are well defined. We
note that both τn and J (v) change sign if the orientation of an edge is reversed.
Therefore, the product is independent of the orientation.

The continuity of the bilinear form a(·, ·) is obvious. Its coercivity follows
from

‖τ‖0,h ≤ C‖τ‖0 for all τ ∈ RTk

which in turn is obtained by a standard scaling argument. The bilinear form b(·, ·)
is rewritten by the use of Green’s formula

b(τ, v) = −
∑
T ∈T〈

∫
T

τ · grad v dx +
∫
�h

J (v)τn ds. (5.15)

Now its continuity with respect to the norms (5.14) is immediate.
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5.7 Lemma. The inf-sup condition

sup
τ∈RTk

b(τ, v)

‖τ‖0,h

≥ β|v|1,h for all v ∈ Mk

holds with a constant β > 0 which depends only on k and the shape regularity of
the triangulation Th.
Proof. We restrict ourselves to the case k = 0. Given v ∈ M0, we note that the
jump J (v) is constant on each edge e ⊂ �h. Therefore, there exists τ ∈ RT0 such
that

τn = h−1J (v) on each edge e ⊂ �h.

Since the area term in (5.15) vanishes on each T , it follows that

b(τ, v) = h−1
∫
�h

|J (v)|2ds = ch−1
∑
e⊂�h

‖J (v)‖2
0,e = |v|21,h.

On the other hand we have ‖τ‖2
0,h ≤ ch

∑
e⊂�h

‖τ‖2
0,e = ch−1∑

e⊂�h
‖J (v)‖2

0,e =
c|v|21,h. Hence b(τ, v) ≥ c−1/2|v|1,h‖τ‖0,h , and the proof of the inf-sup condition
is complete.

The Softening Behavior of Mixed Methods

The (primal) mixed method (5.2) provides a softening of the quadratic form a(., .).
We will study this phenomenon since an analogous procedure has become very
popular in computational mechanics during recent years.

Let uh ∈ Mh ⊂ H 1
0 (�) and σh ∈ Xh ⊂ L2(�) be the solution of the mixed

method

(σh, τ )0,� − (τ,∇uh)0,� = 0 for all τ ∈ Xh,

− (σh,∇v)0,� = −(f, v)0,� for all v ∈ Mh.
(5.2)h

If Eh := ∇Mh ⊂ Xh, then the first equation implies σh = ∇uh, and (5.2)h

is equivalent to the classical treatment of the Poisson equation with the finite
element space Mh. This is the uninteresting case.

More interesting is the case Eh �⊂ Xh. Let Ph : L2(�) → Xh be the orthog-
onal projector onto Xh. The first equation in (5.2)h reads

σh = Ph(∇uh)

and the second one

(Ph∇uh,∇v)0,� = (f, v) for all v ∈ Mh.
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This is the weak equation for the relaxed minimum problem
1

2

∫
�

[Ph∇vh]2dx −
∫

�

f vh → min
vh∈Mh

. (5.16)

Only the part of the gradient that is projected onto Xh contributes to the energy in
the variational formulation. The amount of the softening is fixed by the choice of
the target space of the projection.

∇Mh











Ẽh

Xh

Fig. 36. Projection of the gradient onto Xh in the mixed method and the EAS
method, resp.

There is another characterization. The variational equations (5.2)h can be
rewritten in a form which leads to linear equations with a positive definite matrix.
We may choose a subspace Ẽh of the L2-orthogonal complement of Xh such that

∇Mh ⊂ Xh ⊕ Ẽh. (5.17)

5.8 Remark. The mixed method (5.2)h is equivalent to the variational formulation

(∇uh,∇v)0,� + (ε̃h,∇v)0,� = (f, v)0,� for all v ∈ Mh ,

(∇uh, η̃)0,� + (ε̃h, η)0,� = 0 for all η ∈ Ẽh ,
(5.18)

if the space Ẽh of enhanced gradients satisfies the decomposition rule (5.17). Here
the relaxation of the variational form and the projector Ph are defined by Ẽh, i.e.,
by the orthogonal complement of the target space.

The proof of the equivalence follows Yeo and Lee [1996]. Let σh, uh be a
solution of (5.2)h. From (5.17) we have a decomposition

∇uh = σ̃h − ε̃h with σ̃h ∈ Xh and ε̃h ∈ Ẽh.

From the first equation in (5.2)h we conclude that ∇uh − σh is orthogonal to
Xh, and the uniqueness of the decomposition implies σ̃h = σh. When we insert
σh = ∇uh+ ε̃h in (5.2)h, we get the first equation of the system (5.18). The second
one is a reformulation of ∇uh + ε̃h ∈ Xh and Xh⊥Ẽh.

The converse follows from the uniqueness of the solutions. The uniqueness
of the solution of (5.18) follows from ellipticity which in turn is given by Problem
5.10.

We note that in structural mechanics an equivalent concept was derived by
Simo and Rifai [1990] and called the method of enhanced assumed strains (EAS
method).

The stability of the mixed method can be stated in terms of the enhanced
elements; cf. Braess [1998]. It also shows that the stability is not independent of
the choice of the space Ẽh.



156 III. Nonconforming and Other Methods

5.9 Lemma. The spaces Xh and Mh satisfy the inf-sup condition (4.16) with a
constant β > 0 if and only if a strengthened Cauchy inequality

(∇vh, ηh)0,� ≤
√

1 − β2 ‖∇vh‖0 ‖ηh‖0 for all vh ∈ Mh, ηh ∈ Ẽh (5.19)

holds.

Proof. Given vh ∈ Mh, by the inf-sup condition there is a σh ∈ Xh such that
(∇vh, σh)0 ≥ β‖∇vh‖0 and ‖σh‖ = 1. Now for any ηh ∈ Ẽh we conclude from
the orthogonality of Xh and Ẽh that

‖∇vh − ηh‖0 ≥ (∇vh − ηh, σh)0 = (∇vh, σh)0 ≥ β‖∇vh‖0. (5.20)

Since the strengthened Cauchy inequality is homogeneous in its arguments, it is
sufficient to verify it for the case ‖ηh‖0 = (1 − β2)1/2‖∇vh‖0,

2(∇vh, ηh)0 = ‖∇vh‖2
0 + ‖ηh‖2

0 − ‖∇vh − ηh‖2
0

≤ (1 − β2)‖∇vh‖2
0 + ‖ηh‖2

0 = 2(1 − β2)1/2‖∇vh‖2
0 ‖ηh‖2

0 ,

and the proof of (5.19) is complete.

The converse is easily proved by using the decomposition of ∇vh.

Problems

5.10 Given σ ∈ H(div), find σh ∈ RT0 such that ‖σ − σh‖0 is minimal. Charac-
terize σh as the solution of a saddle point problem (mixed method).

5.11 Show that the strengthened Cauchy inequality (5.19) is equivalent to the
ellipticity property∫

�

(∇vh + ηh)
2dx ≥ (1 − β)(|vh|21 + ‖ηh‖2

0) for vh ∈ Xh, ηh ∈ Ẽh .

Further equivalent properties are presented in Problem V.5.7.

5.12 Define the vectors ai and bi in �2 by

(ai)j :=
{

1 if j = 2i,
0 otherwise,

(bi)j :=
{ 1 if j = 2i,

2−i if j = 2i + 1,
0 otherwise,

and the subspaces A := span{ai; i > 0} and B := span{bi; i > 0}. Show that A

and B are closed, but that A+B is not. Is there a nontrivial strengthened Cauchy
inequality between the spaces A and B?

See also Problem 9.16



157

§ 6. The Stokes Equation

The Stokes equation describes the motion of an incompressible viscous fluid in an
n-dimensional domain (with n = 2 or 3):

�u+ grad p = −f in �,

div u = 0 in �,

u = u0 on ∂�.

(6.1)

Here u : � −→ R
n is the velocity field and p : � −→ R is the pressure. Since

we are assuming that the fluid is incompressible, div u = 0 when no sources or
sinks are present.

In order for a divergence-free flow to exist with given boundary values u0,
by Gauss’ integral theorem we must have

∫
∂�

u0 · νds =
∫

∂�

u · νds =
∫

�

div u dx = 0. (6.2)

This compatibility condition on u0 is obviously satisfied for homogeneous bound-
ary values.

By an appropriate scaling we can assume that the viscosity is 1, which we
have already done in writing (6.1).

The given external force field f causes an acceleration of the flow. The pres-
sure gradient gives rise to an additional force which prevents a change in the
density. In particular, a large pressure builds up at points where otherwise a source
or sink would be created. From a mathematical point of view, the pressure can be
regarded as a Lagrange multiplier.

If (6.1) is satisfied for some functions u ∈ [C2(�)∩C0(�̄)]n and p ∈ C1(�),
then we call u and p a classical solution of the Stokes problem. Note that (6.1)
only determines the pressure p up to an additive constant, which is usually fixed
by enforcing the normalization

∫
�

pdx = 0. (6.3)
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Variational Formulation

In view of the restriction div u = 0, the weak formulation of the Stokes equation
(6.1) leads to a saddle point problem. In order to make use of the general framework
of §4, we set

X = H 1
0 (�)n, M = L2,0(�) := {q ∈ L2(�); ∫

�
q dx = 0},

a(u, v) =
∫

�

grad u : grad v dx,

b(v, q) =
∫

�

div v qdx.

(6.4)

Here grad u : grad v :=∑
ij

∂ui

∂xj

∂vi

∂xj
.

As usual, we restrict our attention to homogeneous boundary conditions, i.e.,
we assume u0 = 0. Then the saddle point problem becomes: Find (u, p) ∈ X×M

such that
a(u, v)+ b(v, p) = (f, v)0 for all v ∈ X,

b(u, q) = 0 for all q ∈ M.
(6.5)

A solution (u, p) of (6.5) is called a classical solution provided u ∈ [C2(�) ∩
C0(�̄)]n and p ∈ C1(�).

6.1 Remark. For v ∈ H 1
0 and q ∈ H 1, Green’s formula gives

b(v, q) =
∫

�

div v q dx = −
∫

�

v · grad q dx +
∫

�

v · q ν ds

= −
∫

�

v · grad q dx.

(6.6)

Thus, we can regard div and − grad as adjoint operators. Moreover, from (6.6) we
see that b(v, q) does not change if we add a constant function to q. Thus, we can
identify M with L2(�)/R. In this quotient space we consider functions in L2 to
be equivalent whenever they differ only by a constant.

6.2 Remark. Every classical solution of the saddle point equation (6.5) is a
solution of (6.1).

Proof. Let (u, p) be a classical solution. We split φ := div u ∈ L2 into φ =
q0 + const with q0 ∈ M . Since u ∈ H 1

0 , combining the formula (6.6) with v = u

and q = 1 implies
∫
�

div u dx = 0. Substituting q0 in (6.5), we get∫
�

(div u)2dx = b(u, q0)+ const

∫
�

div u dx = 0.

Thus, the flow is divergence-free.
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By Remark 6.1, the first equation in (6.5) can be written in the form

(grad u, grad v)0,� = (f − grad p, v)0,� for all v ∈ H 1
0 (�)n.

Since u ∈ C2(�)n, by the theory of scalar equations in Ch. II, §2, it follows that
u is a classical solution of

−�u = f − grad p in �,

u = 0 on ∂�,

and the proof is complete.

The inf-sup Condition

In order to apply the general theory described in the previous section, let

V := {v ∈ X; (div v, q)0,� = 0 for all q ∈ L2(�)}.
By Friedrichs’ inequality, |u|1,� = ‖ grad u‖0,� = a(u, u)1/2 is a norm on X.
Hence, the bilinear form a is H 1

0 -elliptic. Thus it is elliptic not only on the subspace
V , but also on the entire space X. This means that we could get by with an even
simpler theory than in §4.

In order to ensure the existence and uniqueness of a solution of the Stokes
problem, it remains to verify the Brezzi condition.

By the abstract Lemma 4.2, the inf-sup condition can be expressed in terms
of properties of the operators B and B ′. In the concrete case of the Stokes equation
with b(v, q) = (div v, q)0,� = −(v, grad q)0,�, the conditions are to be under-
stood as properties of the operators div and grad. They are presented in the next
two theorems. Their proof is beyond the scope of this book; cf. Duvaut and Lions
[1976].

The following result on the divergence is attributed to Ladyšenskaya. Recall
that

V ⊥ := {u ∈ X; (grad u, grad v)0,� = 0 for all v ∈ V } (6.7)

is the H 1-orthogonal complement of V .

6.3 Theorem. Let � ⊂ R
n be a bounded connected domain with Lipschitz contin-

uous boundary. Then the mapping

div : V ⊥ −→ L2,0(�)

v �−→ div v

is an isomorphism. Moreover, for any q ∈ L2(�) with
∫
�

q dx = 0, there exists a
function v ∈ V ⊥ ⊂ H 1

0 (�)n with

div v = q and ‖v‖1,� ≤ c‖q‖0,�, (6.8)

where c = c(�) is a constant.
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The inequality (6.10) below is sometimes called Nečas’inequality; see Nečas
[1965]. We will encounter Nečas’ inequality once more in the proof of Korn’s
inequality in Ch. VI, §3.

6.4 Theorem. Let � ⊂ R
n be a bounded connected domain with Lipschitz contin-

uous boundary.
(1) The image of the linear mapping

grad : L2(�) −→ H−1(�)n (6.9)

is closed in H−1(�)n.
(2) Let f ∈ H−1(�)n. If

〈f, v〉 = 0 for all v ∈ V, (6.10)

then there exists a unique q ∈ L2,0(�) with f = grad q.
(3) There exists a constant c = c(�) such that

‖q‖0,� ≤ c(‖ grad q‖−1,� + ‖q‖−1,�) for all q ∈ L2(�), (6.11)

‖q‖0,� ≤ c ‖ grad q‖−1,� for all q ∈ L2,0(�). (6.12)

6.5 Remark. The inf-sup condition (4.8) for the Stokes problem (6.5) follows
from Theorem 6.3 and Theorem 6.4, respectively.

Proof. (1) Given q ∈ L2,0, there exists v ∈ H 1
0 (�)n that satisfies (6.8). Hence,

(div v, q)

‖v‖1
= ‖q‖2

0

‖v‖1
≥ ‖q‖2

0

c ‖q‖0
= 1

c
‖q‖0,

which establishes the Brezzi condition.

(2) For q ∈ L2,0, it follows from (6.12) that

‖ grad q‖−1 ≥ c−1‖q‖0.

By the definition of negative norms, there exists v ∈ H 1
0 (�)n with ‖v‖1 = 1 and

(v, grad q)0,� ≥ 1

2
‖v‖1‖ grad q‖−1 ≥ 1

2c
‖q‖0.

By (6.6),
b(−v, q)

‖v‖1
= (v, grad q)0,� ≥ 1

2c
‖q‖0.

which establishes the Brezzi condition.

The properties above are also necessary for the stability of the Stokes problem;
see Problem 6.7.
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Nearly Incompressible Flows

Instead of directly enforcing that the flow be divergence-free, sometimes a penalty
term is added to the variational functional

1

2

∫
[(∇v)2 + t−2(div v)2 − 2f v] dx −→ min!

Here t is a parameter. The smaller is t , the more weight is placed on the restriction.
In this way a nearly incompressible flow is modeled.

The solution is characterized by the equation

a(u, v)+ t−2(div u, div v)0,� = (f, v)0,� for all v ∈ H 1
0 (�)n. (6.13)

In order to establish a connection with the standard formulation (6.5), we set

p = t−2 div u. (6.14)

Now (6.13) together with the weak formulation of (6.14) leads to

a(u, v)+ (div v, p)0,� = (f, v)0,� for all v ∈ H 1
0 (�)n,

(div u, q)0,� − t2(p, q)0,� = 0 for all q ∈ L2,0(�)n.
(6.15)

Clearly, in comparison with (6.5), (6.15) contains a term which can be interpreted
as a penalty term in the sense of §4. By the theory in §4, we know that the solution
converges to the solution of the Stokes problem as t → 0.

Problems

6.6 Show that among all representers of q ∈ L2(�)/R, the one with the smallest
L2-norm ‖q‖0,� = infc∈R ‖q + c‖0,� is characterized by

∫
�

q dx = 0. [Conse-
quently, L2(�)/R and L2,0(�) are isometric.]

6.7 Find a Stokes problem with a suitable right-hand side to show that for every
q ∈ L2,0(�), there exists u ∈ H 1

0 (�) with

div u = q and ‖u‖1 ≤ c‖q‖0 ,

where as usual, c is a constant independent of q.

6.8 If � is convex or sufficiently smooth, then one has for the Stokes problem
the regularity result

‖u‖2 + ‖p‖1 ≤ c‖f ‖0 ; (6.16)

see Girault and Raviart [1986]. Show by a duality argument the L2 error estimate

‖u− uh‖0 ≤ ch(‖u− uh‖1 + ‖p − ph‖0). (6.17)
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§ 7. Finite Elements for the Stokes Problem

In the study of convergence for saddle point problems we assumed that the fi-
nite element spaces for velocities and pressure satisfy the inf-sup condition. This
raises the question of whether this condition is only needed to get a complete
mathematical theory, or whether it plays an essential role in practice.

The answer to this question is given by a well-known finite element method
for which the Brezzi condition is violated. Although instabilities had been ob-
served in computations with this element in fluid mechanics, attempts to explain
its instable behavior and to overcome it in a simple way mostly proved to be unsat-
isfactory. The Brezzi condition turned out to be the appropriate mathematical tool
for understanding and removing this instability, and it also provided the essential
breakthrough in practice. There are very few areas7 where the mathematical theory
is of as great importance for the development of algorithms as in fluid mechanics.

After discussing the instable element mentioned above, we present two com-
monly used stable elements and another one which is easier to implement. There
is also a nonconforming divergence-free element which allows the elimination of
the pressure.

An Instable Element

In the Stokes equation (6.1), �u and grad p are the terms with derivatives of
highest order for the velocity and pressure, respectively. Thus, the orders of the
differential operators differ by 1. This suggests the rule of thumb: the degree of the
polynomials used to approximate the velocities should be one larger than for the
approximation of the pressure. However, this “rule” is not sufficient to guarantee
stability – as we shall see.

Because of its simplicity, the so-called Q1-P0 element has been popular for a
long time. It is a rectangular element which uses bilinear functions for the velocity
and piecewise constants for the pressure:

Xh := {v ∈ C0(�̄)2; v|T ∈ Q1 i.e., bilinear for T ∈ Th},
Mh := {q ∈ L2,0(�); q|T ∈ P0 for T ∈ Th}.

7 There are two comparable situations where purely mathematical considerations have
played a major role in the development of methods for differential equations. The approxi-
mation properties of the exponential function show that to solve stiff differential equations,
we need to use implicit methods. (In particular, parabolic differential equations lead to
stiff systems.) For hyperbolic equations, we need to enforce the Courant–Levy condition
in order to correctly model the domain of dependence in the discretization.
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(i, j + 1) (i + 1, j + 1)• •

(i + 1/2, j + 1/2)
•

• •
(i, j) (i + 1, j)

Fig. 37. Numbering of the nodes in the element Tij for the Q1-P0 element

One indicator of the instability is the fact that the kernel of B ′
h : Mh −→ X′

h

is nontrivial. In order to avoid unnecessary indices when showing this, we will
denote the vector components of v by u and w, i.e.,

v =
(

u

w

)
.

With the numbering shown in Fig. 37, the fact that q is constant and div v is linear
implies ∫

Tij

q div v dx = h2qi+1/2,j+1/2 div vi+1/2,j+1/2

= h2qi+1/2,j+1/2
1

2h
[ui+1,j+1 + ui+1,j − ui,j+1 − ui,j (7.1)

+ wi+1,j+1 + wi,j+1 − wi+1,j − wi,j ].

We now sum over the rectangles. Sorting the terms by grid points is equivalent to
partial summation, and we get∫

�

q div v dx = h2
∑
i,j

[uij (∇1q)ij + wij (∇2q)ij ], (7.2)

where

(∇1q)i,j = 1

2h
[qi+1/2,j+1/2 + qi+1/2,j−1/2 − qi−1/2,j+1/2 − qi−1/2,j−1/2 ],

(∇2q)ij = 1

2h
[qi+1/2,j+1/2 + qi−1/2,j+1/2 − qi+1/2,j−1/2 − qi−1/2,j−1/2 ]

are the difference quotients. Since v ∈ H 1
0 (�)2, the summation runs over all

interior nodes. Now q ∈ ker(B ′
h) provided∫

�

q div v dx = 0 for all v ∈ Xh,
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and thus ∇1q and ∇2q vanish at all interior nodes. This happens if

qi+1/2,j+1/2 = qi−1/2,j−1/2, qi+1/2,j−1/2 = qi−1/2,j+1/2.

These equations do not mean that q must be a constant. They only require that

qi+1/2,j+1/2 =
{

a for i + j even,
b for i + j odd.

Here the numbers a and b must be chosen so that (6.3) holds, and thus q ∈ L2,0(�).
In particular, a and b must have opposite signs, giving the checkerboard pattern
shown in Fig. 38. In the following we use ρ to denote the corresponding pressure
(up to a constant factor).

• • • • • • • • • • •
+ − + − + − + − + −

• • • • • • • • • • •
− + − + − + − + − +

• • • • • • • • • • •
+ − + − + − + − + −

• • • • • • • • • • •
− + − + − + − + − +

• • • • • • • • • • •
− + − + − + −

• • • • • • • •
+ − + − + − +

• • • • • • • •
− + − + − + −

• • • • • • • •

Fig. 38. Checkerboard instability

7.1 Remark. The inf-sup condition is an analytic property, and should not be
interpreted just as a purely algebraic one. This fact becomes clear from the mod-
ification of Q1-P0 elements needed to achieve stability. We start with a reduction
of the space Mh so that the kernel of B ′

h becomes trivial. Since � is assumed to
be connected, ker B ′

h = span[ρ] has dimension 1. The mapping B ′
h : Rh −→ X′

h

is injective on the space

Rh := ρ⊥ = {q ∈ Mh; (q, ρ)0,� = 0}.

Unfortunately this is not sufficient for full stability.

There is a constant β1 > 0 such that

sup
v∈Xh

b(v, q)

‖v‖1
≥ β1h‖q‖0 for q ∈ Rh (7.3)
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• • • • • • • •
+3 −2 +1 0 −1 +2 −3

• • • • • • • •
−3 +2 −1 0 +1 −2 +3

• • • • • • • •
+3 −2 +1 0 −1 +2 −3

• • • • • • • •
−3 +2 −1 0 +1 −2 +3

• • • • • • • •

Fig. 39. Nearly instable pressure

for the pair Xh, Rh (see, e.g., Girault and Raviart [1986]). However, the factor h in
(7.3) cannot be avoided. Indeed, suppose � is a rectangle of width B = (2n+1)h

and height 2mh with n ≥ 4. The pressure

q∗i+1/2,j+1/2 := i (−1)i+j for − n ≤ i ≤ +n, 1 ≤ j ≤ 2m (7.4)

(see Fig. 39) lies in Rh.8 Then

‖q∗‖2
0,� = h2

+n∑
i=−n

2m∑
j=1

i2 = h2 1

3
n(n+ 1)(2n+ 1)2m = 1

3
n(n+ 1)µ(�)

≥ 1

16
B2h−2µ(�). (7.5)

In addition, obviously

(∇1q
∗)ij = 0, (∇2q

∗)ij = (−1)i+j 1

h
.

We now return to the node-oriented sum (7.2). We want to reorder it to get an
element-oriented sum as in (7.1). To this end, we reassign one-quarter of each
summand associated with an interior node to each of the four neighboring squares:∫

�

q∗ div v dx = h
∑
i,j

(−1)i+jwij

= h

4

∑
i,j

(−1)i+j [wi+1,j − wi,j+1 − wi+1,j+1 + wi,j ]. (7.6)

8 Similarly, if the width is B = 2nh, we set

q∗i+1/2,j+1/2 = (−1)i+j
(
i + 1

2

)
for − n ≤ i ≤ n− 1, 1 ≤ j ≤ 2m.
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For a bilinear function ŵ on the reference square [0, 1]2, the derivative ∂2ŵ is
linear in ξ . With φ̂(ξ) = 2ξ − 1, simple integration gives

∫
[0,1]2

φ̂(ξ)∂2ŵ dξdη = 1

6
[ŵ(1, 1)− ŵ(1, 0)− ŵ(0, 1)+ ŵ(0, 0)].

For a bilinear function w, affine transformation to a square T with edges of length
h and vertices a, b, c, d (in cyclic order) gives

∫
T

φ∂2w dxdy = h

6
[w(a)− w(b)− w(c)+ w(d)].

Here φ is a function with ‖φ‖2
0,T = µ(T )/3. Repeating this computation for each

square of the partition of � and using (7.6), we get

∫
�

q∗ div v dx = 3

2

∫
�

φ∂2w dx. (7.7)

Here ‖φ‖2
0 = µ(�)/3. With the help of the Cauchy–Schwarz inequality, (7.6) and

(7.7) imply

∣∣∣∣
∫

�

q∗ div v dx

∣∣∣∣ ≤ 3

2
‖φ‖0,� ‖∂2w‖0,� ≤ µ(�)1/2‖v‖1,�

≤ 4B−1h‖q∗‖0,� ‖v‖1,� .

In fact,

sup
v∈Xh

b(v, q∗)
‖v‖1,�

≤ 4B−1h‖q∗‖0,� . (7.8)

Thus, the inf-sup condition only holds for some constant depending on h. This
clearly shows that we cannot check the inf-sup condition by merely counting degrees
of freedom and using dimensional arguments.

In order to verify the Brezzi condition with a constant independent of h,
we have to further restrict the space Rh. This can be done by combining four
neighboring squares into a macro-element. The functions sketched in Fig. 40 form
a basis on the level of the macro-elements for the functions which are constant on
every small square.

If we eliminate those functions in each macro-element which correspond to
the pattern in Fig. 40d, we get the desired stability independent of h; cf. Girault
and Raviart [1986], p. 167 or Johnson and Pitkäranta [1982]. However, in doing
so, we lose much of the simplicity of the original approximations. Therefore, the
stabilized Q1-P0 elements are not considered to be competitive.
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Specifically, the following pair of subspaces of Xh and Mh is stable:

X̃h :={v ∈ Xh; (div v, q) = 0

for all q spanned by the functions in Fig. 40d on macroelements},
M̃h :={q ∈ Mh, spanned by the functions in Fig. 40a–c on macroelements},

The pair (X̃h, M̃h) is chosen such that the kernel is the same as for the pair
(Xh, Mh). However X̃h is fixed as a subspace such that a smaller space of Lagrange
multipliers is required, and those Lagrange multipliers are eliminated that were
an obstacle for the inf-sup condition. Note that X̃h ⊂ X2h. Since the element is
stable, we can apply Fortin interpolation. If u ∈ H 1(�) and div u = 0, then

inf
vh∈Ṽh

‖u− vh‖1 ≤ c inf
v2h∈X2h

‖u− v2h‖1 ,

and the usual approximation properties can be used.

• • • • • • • • • • • •
+ + + − + + + −

• • • • • • • • • • • •
+ + + − − − − +

• • • • • • • • • • • •
(a) (b) (c) (d)

Fig. 40 a–d. Basis functions in Mh for the macro-element

The Taylor–Hood Element

The Taylor–Hood element is an often-used triangular element where the velocity
polynomial has a higher degree than the pressure polynomial. The pressure is taken
to be continuous:

Xh := (M2
0,0)

d = {vh ∈ C(�̄)d ∩H 1
0 (�)d; vh|T ∈ P2 for T ∈ Th},

Mh := M1
0 ∩ L2,0 = {qh ∈ C(�) ∩ L2,0(�); qh|T ∈ P1 for T ∈ Th}.

Here Th is a partition of � into triangles. For a proof of the inf-sup condition, see
Verfürth [1984] and the book of Girault and Raviart [1986].

Another stable element can be obtained by a simple modification. For the ve-
locities we use piecewise linear functions on the triangulation obtained by dividing
each triangle into four congruent subtriangles:

Xh := M1
0,0(Th/2)

2 = {vh ∈ C(�̄)2 ∩H 1
0 (�)2; vh|T ∈ P1 for T ∈ Th/2},

Mh := M1
0 ∩ L2,0 = {qh ∈ C(�) ∩ L2,0(�); qh|T ∈ P1 for T ∈ Th}. (7.9)
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×•
�

�
�• •

�
�

�× ×• • •

×•
�

�
�• •

�

�

�
�

�× ×• • •
Fig. 41. The Taylor–Hood element and its variant. Here u is given at
the nodes (•) and p at the nodes (×)

Thus, the number of degrees of freedom is the same as for the Taylor–Hood
element. Often this variant is also called the modified Taylor–Hood element in the
literature (see Fig. 41).

The approximation properties for the velocities can be obtained directly from
results for piecewise quadratic functions. For the approximation of the pressure,
we have to verify that the restriction (6.3) to functions with zero integral mean
does not reduce the order. Let q̃h be an interpolant to q ∈ L2,0(�). In general,∫
�

q̃hdx �= 0. By the Cauchy–Schwarz inequality,

∣∣∣∣
∫

�

q̃hdx

∣∣∣∣ =
∣∣∣∣
∫

�

(q − q̃h)dx

∣∣∣∣ ≤ µ(�)1/2‖q − q̃h‖0,�.

Thus adding a constant of order ‖q− q̃h‖0,� gives an approximation in the desired
subspace L2,0(�) with the same approximation order.

The MINI Element

One disadvantage of the Taylor–Hood element is that the nodal values of velocity
and pressure occur on different triangulations. This complication is avoided with
the so-called MINI element; see Arnold, Brezzi, and Fortin [1984].

The key idea for the MINI element is to include a bubble function in the
space Xh for the velocities. Let λ1, λ2, and λ3 be the barycentric coordinates of a
triangle (e.g., x1, x2, and (1 − x1 − x2) in the unit triangle). Then

b(x) = λ1λ2λ3 (7.10)

vanishes on the edges of the triangle. The addition of such a bubble function does
not affect the continuity of the elements:

Xh := [M1
0,0 ⊕ B3]2, Mh := M1

0 ∩ L2,0(�)

with B3 := {v ∈ C0(�̄); v|T ∈ span[λ1λ2λ3] for T ∈ Th}.
(7.11)
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×•
�

�
�

�•
�

�× ×• •
Fig. 42. MINI element. u is given at the nodes (•) and p at the nodes (×)

Since the support of a bubble is restricted to the element, we can eliminate the
associated variable from the resulting system of linear equations by static conden-
sation. The MINI element requires less computation than the Taylor–Hood element
and its variant, but according to many reports, it yields a poorer approximation of
the pressure.

7.2 Theorem. Assume that � is convex or has a smooth boundary. Then the MINI
element (7.11) satisfies the inf-sup condition.

Proof. In order to apply Fortin’s criterion, we will use arguments introduced in
II.7.8 in our treatment of the boundedness of the L2-projector. We will restrict
ourselves to uniform meshes, and note that the extension to shape-regular trian-
gulations is possible by the use of Clément’s approximation process.

Let π0
h : H 1

0 (�) → M1
0,0 be the L2-projector. From Corollary II.7.8 we

know that ‖π0
hv‖1 ≤ c1‖v‖1 and ‖v − π0

hv‖0 ≤ c2h‖v‖1. Moreover, we fix a
linear mapping π1

h : L2(�) → B3 such that∫
T

(π1
hv − v)dx = 0 for each T ∈ Th. (7.12)

We may interpret the map π1
h as a process with two steps. First, we apply the

L2-projection onto the space of piecewise constant functions. Afterwards, in each
triangle the constant is replaced by a bubble function with the same integral. In
this way we get ‖π1

hv‖0 ≤ c3‖v‖0.

Now we set
�hv := π0

hv + π1
h(v − π0

hv). (7.13)

By construction,∫
T

(�hv − v)dx =
∫

T

(π1
h − id)(v − π0

hv)dx = 0 for each T ∈ Th. (7.14)

The definition of the mapping �h is now extended to vector-valued functions.
Specifically, each component is to be treated as specified in (7.13).

Since p is continuous, we can apply Green’s formula. We recall (7.14), and
that the gradient of the pressure is piecewise constant:

b(v −�hv, qh) =
∫

�

div(v −�hv)qhdx

=
∫

∂�

(v −�hv) · nqhds −
∫

�

(v −�hv) · grad qhdx = 0.
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The boundedness of �h now follows from (7.12) and an inverse estimate for bubble
functions

‖�hv‖1 ≤ ‖π0
hv‖1 + ‖π1

h(v − π0
hv)‖1

≤ c1‖v‖1 + c4h
−1‖π1

h(v − π0
hv)‖0

≤ c1‖v‖1 + c4h
−1c3‖v − π0

hv‖0

≤ c1‖v‖1 + c4c3c2‖v‖1.

Now by Fortin’s criterion an inf-sup condition holds.

The Divergence-Free Nonconforming P1 Element

The Crouzeix–Raviart element plays a special role. We can select from the non-
conforming P1 elements those functions which are piecewise divergence-free, and
we can get by without the pressure. We choose

Xh := {v ∈ L2(�)2; v|T is linear and divergence-free for every T ∈ Th,

v is continuous at the midpoints of the triangle edges,

v = 0 at the midpoints of the triangle edges in ∂�},

i.e., Xh := {v ∈ (M1
∗,0)

2; div v = 0 on every T ∈ Th}. As in the scalar case in
§1, we set

ah(u, v) :=
∑
T ∈Th

∫
T

∇u · ∇v dx.

We seek uh ∈ Xh with

ah(uh, v) = (f, v)0 for all v ∈ Xh.

For a convergence proof, see Crouzeix and Raviart [1973].

It is easy to construct a basis for Xh by geometric means. By the Gauss
integral theorem, for v ∈ Xh

0 =
∫

T

div v dx =
∫

∂T

v · n ds =
∑
e∈∂T

v(em)n �(e), (7.15)

for every triangle T . Here em is the midpoint of the edge e, and �(e) is its length.

Since the tangential components do not enter into (7.15), we can prescribe
them at the midpoint of each edge. For every interior edge e, we get one basis
function v = ve in Xh with

v(em) · t = 1,

v(em) · n = 0,

v(e′m) = 0 for e′ �= e.

(7.16)
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Fig. 43. Basis functions of the nonconforming P1 element associated with one
node. The normal components indicated by arrows have nonzero values

Let p be an arbitrary vertex of a triangle. Suppose the edges connected to
p are oriented as follows: If we move around the point p in the mathematically
positive direction, we cross the edges in the directions of the normal vectors.
Clearly, (7.15) holds if

v(em) · n = 1

�(e)
for all edges connected to p,

v(em) · n = 0 for all other edges,

v(em) · t = 0 for all edges,

(7.17)

see Fig. 43. The functions in (7.16) and (7.17) are linearly independent, and a
dimension count shows that they form a basis if the domain is simply connected.
Otherwise an additional basis function with non-local support is required for each
hole in the domain.

An analogous quadrilateral element was developed and studied by Rannacher
and Turek [1992].

Problems

7.3 For Q1-P0 elements, the pressure is

qi+1/2,j+1/2 =
{
+(−1)i+j for i < i0,
−(−1)i+j for i ≥ i0,

using the same notation as in (7.5). Here−n < i0 < +n. This gives a checkerboard
pattern – up to a shift. Show that∣∣∣∣

∫
�

q div vdx

∣∣∣∣ ≤ c
√

h‖v‖1,�.

Note that in order to get a constant in the inf-sup condition which is independent
of h, we have to put increasingly stronger restrictions on Mh as h → 0.
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§ 8. A Posteriori Error Estimates

It frequently happens in practical problems that due to the nature of the data in
certain subdomains, a solution of a boundary-value problem is less regular. In this
case we would like to increase the accuracy of the finite element approximation
without using too many additional degrees of freedom. One way to do this is to
adaptively perform local grid refinement in those subdomains where it is needed.
We first carry out the finite element calculations on a provisional grid, and then
compute an a posteriori estimate for the error whose purpose is to indicate what
part of the grid induces large errors. Using this information, we then locally refine
the grid, and repeat the finite element computation. If necessary, the process can
be repeated several times.

To simplify our discussion, we restrict ourselves to the case of the Poisson
equation

−�u = f (8.1)

with homogeneous Dirichlet boundary conditions. Moreover, we consider only
conforming elements, although this still involves arguments which are usually
associated with the analysis of nonconforming elements. This is why we have not
presented a posteriori estimates earlier.

Let Th be a shape-regular triangulation. In addition, suppose uh is a finite
element solution lying in Sh := M2

0,0 (or in M1
0,0). Suppose �h is the set of

all inter-element boundaries, i.e., edges of the triangles T ∈ Th which lie in the
interior of �.

If we insert uh into the differential equation in its classical form, we get a
residual. Moreover, uh differs from the classical solution in that grad uh has jumps
on the edges of elements. Both the area-based residuals

RT := RT (uh) := �uh + f for T ∈ Th (8.2)

and the edge-based jumps

Re := Re(uh) := [[∂uh

∂n

]]
for e ⊂ �h (8.3)

enter either directly or indirectly into many estimators; cf. Remark 8.2. [Note that
both the jump [[∇uh]] and the normal direction change if we reverse the orientation
of the edge e, but that the product [[ ∂uh

∂n
]] = [[∇uh]] · n remains fixed.] Moreover

we need the following notation for the neighborhoods of elements and edges:

ωT :=
⋃

{T ′ ∈ Th; T and T ′ have a common edge or T ′ = T },
ωe :=

⋃
{T ′ ∈ Th; e ⊂ ∂T ′}.

(8.4)
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There are five popular approaches to building a posteriori estimators.

1. Residual estimators.

We bound the error on an element T in terms of the size of the residual RT

and the jumps Re on the edges e ⊂ ∂T . These estimators are due to Babuška and
Rheinboldt [1978a].

2. Estimators based on local Neumann problems

On every triangle T we solve a local variational problem which is a discrete
analog of

− �z = RT in T ,

∂z

∂n
= Re on e ⊂ ∂T .

(8.5)

We choose the approximating space to contain polynomials whose degrees are
higher than those in the underlying finite element space. These estimators are
obtained using the energy norm ‖z‖1,T , and are due to Bank and Weiser [1985].
See also the comment before Theorem 9.5.

3. Estimators based on a local Dirichlet problem.

For every element T , we solve a variational problem on the set ωT :

−�z = f in ωT ,

z = uh on ∂ωT .
(8.6)

Again, we expand the approximating space to include polynomials of higher degree
than in the actual finite element space. Following Babuška and Rheinboldt [1978b],
the norm of the difference ‖z− uh‖1,ωT

provides an estimator.

4. Estimators based on averaging.

We construct a continuous approximation σh of ∇uh by a two-step process.
At every node of the triangulation, let σh be a weighted average of the gradients
∇uh on the neighboring triangles, where the weight is proportional to the areas
of the triangles. We then extend σh to the whole element by linear interpolation.
Then following Zienkiewicz and Zhu [1987], we use the difference between ∇uh

and σh as an estimator. An analysis without restrictive assumptions was done by
Rodriguez [1994] and by Carstensen and Bartels [2002].

5. Hierarchical estimators.

In principle the difference from a finite element approximation on an ex-
panded space is estimated. The difference can be estimated by using a strengthened
Cauchy inequality; see Deuflhard, Leinen, and Yserentant [1989]. The procedure
fits into Carl Runge’s old and general concept (Runge’s rule). The error of a nu-
merical result is estimated by comparing it with the result of a more accurate
formula.
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An estimator based on different ideas will be presented in the next §. More-
over, goal-oriented estimators are the topic of the book by Bangerth and Rannacher
[2003]. Their aim is a small error in a given functional of the solution rather than
a small norm of the error.

To get started, following Dörfler [1996] we first show how to extract a part of
the expression (8.2) which can be determined already before computing the finite
element solution. Let

fh := Phf ∈ Sh (8.7)

be the L2-projection of f onto Sh. Since (f − fh, vh)0,� = 0 for vh ∈ Sh, the
variational problems corresponding to f and fh lead to the same finite element
approximation in Sh. Thus, the a priori computable quantity

hT ‖f − fh‖0,T (8.8)

appears in many estimates. As usual, hT denotes the diameter of T . Similarly, he

is the length of e. The term ‖f −fh‖0,T and analogous expressions are called data
oscillation. In particular, clearly

‖�uh + f ‖0,T ≤ ‖�uh + fh‖0,T + ‖f − Phf ‖0,T . (8.9)

As an alternative to (8.7), we can define and use fh as the projection onto
piecewise constant functions.

Residual Estimators

To get residual estimators, we use the functions introduced in (8.2) and (8.3) to
compute the local quantities

ηT,R :=
{
h2

T ‖RT ‖2
0,T +

1

2

∑
e⊂∂T

he‖Re‖2
0,e

}1/2
for T ∈ Th. (8.10)

Summing the squares over all triangles, we get a global quantity:

ηR :=
{∑

T ∈Th

h2
T ‖RT ‖2

0,T +
∑
e⊂�h

he‖Re‖2
0,e

}1/2
. (8.11)

8.1 Theorem. Let Th be a shape-regular triangulation with shape parameter κ .
Then there exists a constant c = c(�, κ) such that

‖u− uh‖1,� ≤ c ηR = c
{∑

T ∈Th

η2
T ,R

}1/2
(8.12)

and

ηT,R ≤ c
{
‖u− uh‖2

1,ωT
+

∑
T ′⊂ωT

h2
T ‖f − fh‖2

0,T ′
}1/2

(8.13)

for all T ∈ Th.
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The upper bound (8.12) means that the estimator ηR is reliable and the lower
bound (8.13) that it is also efficient.

Proof of the upper estimate (8.12). We start by using a duality argument to find

|u− uh|1 = sup
|w|1=1,w∈H 1

0

(∇(u− uh),∇w)0. (8.14)

We make use of the following formula which also appeared in establishing the
Céa Lemma:

(∇(u− uh),∇vh)0 = 0 for vh ∈ Sh. (8.15)

We now consider the functional � corresponding to (8.14), apply Green’s formula,
and insert the residuals (8.2) and (8.3):

〈�, w〉 := (∇(u− uh),∇w)0,�

= (f, w)0,� −
∑
T

(∇uh,∇w)0,T

= (f, w)0,� −
∑
T

{
(−�uh, w)0,T +

∑
e⊂∂T

(∇uh · n, w)0,e

}

=
∑
T

(�uh + f, w)0,T +
∑
e⊂�h

([[∂uh

∂n

]]
, w
)

0,e

=
∑
T

(RT , w)0,T +
∑
e⊂�h

(Re, w)0,e. (8.16)

By Clément’s results on approximation, cf. II.6.9, for given w ∈ H 1
0 (�) there

exists an element Ihw ∈ Sh with

‖w − Ihw‖0,T ≤ chT ‖∇w‖0,ω̃T
for all T ∈ Th, (8.17)

‖w − Ihw‖0,e ≤ ch
1/2
e ‖∇w‖0,ω̃T

for all e ⊂ �h. (8.18)

Here ω̃T is the neighborhood of T specified in (II.6.14) which is larger than ωT .
Since the triangulations are assumed to be shape regular,

⋃{ω̃T ; T ∈ Th} covers
� only a finite number of times. Hence, (8.15) implies

〈�, w〉 = 〈�, w − Ihw〉
≤
∑
T

‖RT ‖0,T ‖w − Ihw‖0,T +
∑
e⊂�h

‖Re‖0,e ‖w − Ihw‖0,e

≤ c
∑
T

hT ‖RT ‖0,T |w|1,T + c
∑
e⊂�h

h1/2
e ‖Re‖0,e |w|1,ωe

≤ c
∑
T

ηT,R|w|1,T ≤ c ηR |w|1,�.

(8.19)

The last inequality follows from the Cauchy–Schwarz inequality for finite sums.
Combining (8.18) and (8.19) with Friedrichs’ inequality and the duality argument
(8.14), we get the global upper error bound (8.12).
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8.2 Remarks. (1) The general procedure that led to Theorem 8.1 is also used
for deriving residual error estimators for other finite element discretizations. Here
an isomorphism L : H 1

0 (�) → H−1(�) was associated to the given variational
problem in §3, and we have

u− uh = L−1�

with � given by (8.16). The representation (8.16) of the H−1 function � in terms of
integrals enables us to establish computable bounds of ‖�‖−1. When a posteriori
error estimates for saddle point problems are studied, the isomorphism L in Theo-
rem 4.3 and the residues of the corresponding equations are used in an analogous
way; see Hoppe and Wohlmuth [1997].

(2) When �u = 0 is numerically solved with P1 elements, we have piecewise
�uh = 0 and the special case where the complete area-based estimator RT van-
ishes. As observed by Carstensen and Verfürth [1999], this term is dominated by the
edge term and the data oscillation also for �u �= 0 provided that the grids have a
certain regularity. Specifically, they showed H 1-stability of the L2-orthogonal pro-
jector Qh under weaker assumptions than assumed in Corollary II.7.8 and Lemma
II.7.9. Note that (RT , w−Qhw)0,� = (f, w−Qhw)0,� = (f −fh, w−Qhw)0,�

if fh ∈ M1
0,0, and this volume term is indeed bounded by the data oscillation.

(3) If |u−uh|1 is estimated in (8.12) instead of ‖u−uh‖1 , then the constant
c depends only on the shape parameter κ and not on � since the Clément inter-
polation is a local process. The dependence on � enters merely due to Friedrichs’
inequality at the end of the proof of Theorem 8.1.

Lower Estimates

The lower estimate (8.13) provides information on local properties of the dis-
cretization. It can be obtained using test functions with local support. The follow-
ing cutoff functions ψT and ψe are essential tools: ψT is the well-known bubble
function associated with the triangle T , so that

ψT ∈ B3, supp ψT = T , 0 ≤ ψT ≤ 1 = max ψT . (8.20)

ψe has support on a pair of neighboring triangles sharing the edge e, and consists
of quadratic polynomials joined together continuously so that

ψe ∈ M2
0, supp ψe = ωe; 0 ≤ ψe ≤ 1 = max ψe. (8.21)

We also need a mapping E : L2(e) → L2(ωe) which extends any function
defined on an edge e to the pair of neighboring triangles making up ωe. We take

Eσ(x) := σ(x ′) in T , if x ′ ∈ e is the point in e with λj (x
′) = λj (x).

Here λj is one of the two barycentric coordinates in T which are not constant on
the edge e; see Fig. 44.
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Fig. 44. Level curves for the extension of a function from e to ωe. The level
curves in the triangle lying below [1,2] are given by λ1 = const , where λ1 is the
barycentric coordinate w.r.t. the point 1. The level curves in the triangle lying
on the opposite side [1,2] are similarly described using λ2.

8.3 Lemma. Let Th be a shape-regular triangulation. Then there exists a constant
c which depends only on the shape parameter κ such that

‖ψT v‖0,T ≤ ‖v‖0,T for all v ∈ L2(T ), (8.22)

‖ψ1/2
T p‖0,T ≥ c‖p‖0,T for all p ∈ P2, (8.23)

‖∇(ψT p)‖0,T ≤ ch−1
T ‖ψT p‖0,T for all p ∈ P2, (8.24)

‖ψ1/2
e σ‖0,e ≥ c‖σ‖0,e for all σ ∈ P2, (8.25)

ch1/2‖σ‖0,e ≤ ‖ψeEσ‖0,T ≤ ch
1/2
e ‖σ‖0,e for all σ ∈ P2, (8.26)

‖∇(ψeEσ)‖0,T ≤ ch−1
T ‖ψeEσ‖0,T for all σ ∈ P2, (8.27)

for all T ∈ Th and all e ⊂ ∂T .

The inequality (8.22) follows directly from 0 ≤ ψT ≤ 1. For a fixed reference
triangle, the others are obvious because of the finite dimensionality of P2. The
assertions for arbitrary triangles then follow from the usual scaling argument.
Details have been elaborated by Verfürth [1994] and by Ainsworth and Oden
[2000].

Proof of (8.13). Let T ∈ Th. In view of (8.9), in analogy with (8.2) we introduce

RT,red := �uh + fh. (8.28)

By construction, RT,red ∈ P2. Let

w := wT := ψT · RT,red.

Then (8.16), (8.23), and supp w = T imply

c−1‖RT,red‖2
0,T ≤ ‖ψ1/2

T RT,red‖2
0,T

= (RT,red, w)0,T

= (RT , w)0,T + (f − fh, w)0,T

= 〈�, w〉 + (f − fh, w)0,T

≤ |u− uh|1,T · |w|1,T + ‖f − fh‖0,T ‖w‖0,T .
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Obviously (8.22) yields ‖w‖0,T ≤ ‖RT,red‖0,T . Now using Friedrichs’ inequality
and the inverse inequality (8.24), after dividing by ‖RT,red‖0,T we obtain

‖RT,red‖0,T ≤ c(h−1
T ‖u− uh‖1,T + ‖f − fh‖0,T ).

By (8.9), this gives

hT ‖RT ‖0,T ≤ c(‖u− uh‖1,T + hT ‖f − fh‖0,T ). (8.29)

We show now that the edge-based terms in the error estimator can be treated
in a similar way. Let e ⊂ �h. We consider the extension of Re and define

w := we := ψe · E(Re).

In particular, supp w = ωe, and Re ∈ P2(e). Using (8.16), (8.25), we have

c‖Re‖2
0,e ≤ ‖ψ1/2

e Re‖2
0,e

= (Re, w)0,e = 〈�, w〉 −
∑

T ′⊂ωe

(RT ′ , w)0,T ′

≤ |u− uh|1,e|w|1,ωe
+
∑

T ′⊂ωe

‖RT ′ ‖0,T ′ ‖w‖0,T ′ .

(8.30)

From (8.27) it follows that |w|1,T ′ ≤ ch−1
T ′ ‖w‖0,T ′ , while (8.26) yields the bound

‖w‖0,T ′ ≤ h
1/2
e ‖Re‖0,e. Thus (8.30) leads to

‖Re‖0,e ≤ ch−1/2
e |u− uh|1,ωe

+ ch1/2
e

∑
T ′⊂ωe

‖RT ′ ‖0,T ′ ,

which combined with (8.29) gives

h1/2
e ‖Re‖0,e ≤ c|u− uh|1,ωe

+
∑

T ′⊂ωe

hT ′ ‖f − fh‖0,T ′ . (8.31)

Combining (8.29) and (8.31) and observing that ωT = ⋃{ωe; e ⊂ ∂T }, we get
the desired assertion (8.13).

Remark on Other Estimators

As noted in Remark 8.2(1), the residual estimator gives rise to a convenient bound
of ‖L(u− uh)‖−1 = ‖�‖−1. It makes use of the fact that L : H 1(�) → H−1(�),
given by the variational problem, is an isomorphism. Therefore a large gap is
expected between the lower and upper bounds when the condition number of L is
large, i.e., when

sup{‖Lu‖−1; ‖u‖1 = 1}
inf{‖Lu‖−1; ‖u‖1 = 1} � 1.
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In this case it is assumed to be better to compute ‖L̃−1�‖1 instead of ‖�‖−1, where
L̃−1 is an approximate inverse. Such an approximate inverse is implicitly used
with hierarchical estimators. Although (8.5) and (8.6) define also approximate
inverses, these (local) approximate inverses provide estimators that are equivalent
to residual estimators; see Verfürth [1996]. Thus it is not clear whether they are
more efficient than residual estimators in the case of large condition numbers.

Babuška, Durán, and Rodrı́guez [1992] show that the efficiency of estimators
can be much worse for unstructured grids than for regular ones.

Local Mesh Refinement and Convergence

In finite element computations using local grid refinement, we generally start with a
coarse grid and continue to refine it successively until the estimator ηT,R is smaller
than a prescribed bound for all elements T . In particular, those elements where
the estimators give large values are the ones which are refined. The geometrical
aspects have already been discussed in Ch. II, §8.

This leads to a triangulation for which the estimators have approximately
equal values in all triangles. Numerical results obtained using this simple idea are
quite good.

The above approach can be justified heuristically. Suppose the domain � in
d-space is divided into m (equally large) subdomains where the derivatives of the
solution have different size. Suppose an element with mesh size hi in the i-th
subdomain contributes cih

α
i to the error, where α > d. The subdomains involve

different factors ci , but are all associated with the same exponent α. If the i-th
subdomain is divided into ni parts, then hi = n

1/d

i , and the total error is of order

∑
i

nicih
α
i =

∑
i

cih
α−d
i . (8.32)

Our aim is to minimize the expression (8.32) subject to
∑

i ni =
∑

i h−d
i = const.

The optimum is a stationary point of the Lagrange function

L(h, λ) :=
∑

i

cih
α−d
i + λ

(∑
i

h−d
i − const

)
. (8.33)

If we relax the requirement that the ni be integers, then we can find the optimum
by differentiating (8.33), which leads to cih

α
i = d λ

α−d
. This is just the condition

that the contributions of all elements be equal.

The convergence of the finite element computations with the refinement strat-
egy above is not obvious. A first proof was established by Dörfler [1996], and it
was extended later by Morin, Nochetto, and Siebert [2002]. The general scheme
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that is also encountered in the analysis of other variational problems is as follows.
Let Th be a refinement of TH which is not required to be as fine as TH/2. Let �H ,
�h denote the associated sets of interior edges and let uH , uh be the solutions with
linear finite elements on these triangulations. The dominance of the edge terms of
the residual estimator implies that

|u− uH |21 ≤ c
∑

e⊂�H

he

∥∥[[∂uh

∂n

]]∥∥2
0 + higher order terms.

The Galerkin orthogonality (II.4.7) yields

|u− uh|21 = |u− uH |21 − |uh − uH |21 .

The essential step is the discrete local efficiency,

|uh − uH |21 ≥ c−1
∑

e⊂�H→�h

he

∥∥[[∂uh

∂n

]]∥∥2
0 + higher order terms, (8.34)

where the sum runs over those edges of �H that are refined for getting �h. The
three inequalities imply that

|u− uh|1 ≤ c′|u− uH |1 + higher order terms

with c′ < 1. Thus convergence is guaranteed.

Optimal convergence rates were established in the framework of wavelets
by Binev, Dahmen, and De Vore [2004]. Their procedure contains not only refine-
ments, but also coarsenings. The latter can be dropped due to Gantumur, Harbrecht,
and Stevenson [2007].

Problems

8.4 Most of the estimates in Lemma 8.3 refer to quadratic polynomials. Consider
the generalization to polynomials of degree k. Show by a simple argument that the
constant c cannot be independent of k.
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§ 9. A Posteriori Error Estimates via the Hypercircle Method

The a posteriori error estimators in the preceding section provide a bound of the
error up to a generic constant; cf. Theorem 8.1. The theorem of Prager and Synge
(Theorem 5.1) admits the computation of an error bound without such a generic
constant. The essential idea is that a comparison of an approximate solution of the
primal variational problem with a feasible function of the dual mixed problem (cf.
(5.5)v) yields an estimate. An elaborated theory was provided by Neittaanmäki
and Repin [2004]. Since Theorem 5.1 looks like Pythagoras’ rule in an infinite
dimensional space, the term hypercircle method is frequently found.

We consider the Poisson equation (Example II.2.10) as the simplest case.
Given a finite element solution uh of the primal problem, for applying Theorem
5.1 an auxiliary function σ ∈ H(div) with

div σ = −f (9.1)

is required. Following Braess and Schöberl [2006] we demonstrate that such a
function σ can be constructed by the solution of cheap local problems based on
the knowledge of uh.

Let Th be a triangulation of a polygonal domain � ⊂ R
2. A crucial step is

the evaluation of the error with respect to the solution for the differential equation
with a right-hand side fh that is piecewise constant on the triangulation. We know
from (8.8) that there is only an extra term ch‖f − fh‖ if we approximate a given
function f ∈ L2(�) by fh ∈ M0. Obviously, the extra term is a term of higher
order. [We suggest for a first reading to assume that f is piecewise constant. In
this case the data oscillation vanishes and (9.5) below can be replaced by a simpler
expression.]

The mixed method by Raviart–Thomas yields a bound that is optimal in a
certain sense.

9.1 Lemma. Let uh ∈ M1
0(Th) and fh ∈ M0(Th). Moreover, let (σh, wh) be

a solution of the mixed variational problem with the Raviart–Thomas element of
lowest order in RT0(Th)×M0(Th). Then

‖∇uh − σh‖0 = min
{
‖∇uh − τh‖0 ; τh ∈ RT0(Th), div τh + fh = 0

}
. (9.2)

Proof. The Lagrange function for the minimization problem (9.2) is

L(τ, v) = 1

2
‖τ‖2

0 − (∇uh, τ )0 + (v, div τ + fh)0,
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with v being the Lagrange multiplier. Note that div τh+fh ∈ M0 for all τh ∈ RT0.
Thus the minimizing function σh and the Lagrange multiplier wh are characterized
by the equations

(σh, τ )0 + (div τ, wh)0 = (∇uh, τ )0 for all τ ∈ RT0,

(div σh, v)0 = −(fh, v)0 for all v ∈ M0.
(9.3)

By Green’s formula we obtain (∇uh, τ )0 = −(uh, div τ)0 since the boundary terms
vanish. Let Qh be the L2 projector onto M0. Then (uh, div τ)0 = (Qhuh, div τ)0

for all τ ∈ RT0, and (9.3) can be rewritten

(σh, τ )0 + (div τ, wh +Qhuh)0 = 0 for all τ ∈ RT0,

(div σh, v)0 = −(fh, v)0 for all v ∈ M0.

The pair (σh, wh + Qhuh) is a solution of the mixed method with the Raviart–
Thomas element.

Finally, we note that (9.3)2 implies that div σh = −fh holds in the strong
sense. Indeed, the expressions on both sides belong to M0, and the relation (9.3)2

is tested with functions in the same space.

Of course, the numerical solution of the mixed method is too expensive when
only an error estimate is desired. An approximation σ ∈ RT0 will be sufficient and
will be constructed from uh by a simple postprocess.

We consider the space of broken Raviart–Thomas functions

RT−1 :=
{
τ ∈ L2(�)2; τ |T =

(
aT

bT

)
+ cT

(
x

y

)
, aT , bT , cT ∈ R for T ∈ Th

}
.

The normal components are not required to be continuous, and RT0 = RT−1 ∩
H(div). The degrees of freedom of the finite element functions in RT−1 are the
normal components on the edges, but the values at the two sides of interior edges
may differ. Therefore, two degrees of freedom are associated to each inner edge;
see Fig. 45 below.

Note that ∇uh and σh belong to RT−1. Moreover, in each triangle div∇uh =
0. (We do not consider div∇uh as a global function on �.) We construct a suitable
σ by determining a suitable σ� := σ − ∇uh. Find σ� ∈ RT−1 such that

div σ� = −fh in each T ∈ Th,

[[σ� · n]] = −[[∇uh · n]] on each interior edge e.
(9.4)

Let z be a node of the triangulation. The construction will be performed on
patches

ωz :=
⋃

{T ; z ∈ ∂T }.
As a preparation we have
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9.2 Theorem. Let z ∈ �\∂� be a node of the triangulation, and let ψz ∈ M1
0 be

the nodal base function with ψz(z) = 1 and ψz(x) = 0 for x ∈ �\ωz. Then
1

2

∑
e⊂ωz

∫
e

[[∂uh

∂n

]]
ds =

∑
T⊂ωz

∫
T

f ψz dx. (9.5)

Proof. Since uh is the finite element solution in M1
0 , we have∫

ωz

∇uh∇ψzdx =
∫

ωz

f ψzdx. (9.6)

We apply partial integration to the left-hand side of (9.6) and note that ∂uh/∂n is
constant on the edges. Since the mean value of ψz on the edges is 1/2, we obtain∫

ωz

∇uh∇ψzdx =
∑
T⊂ωz

∫
∂T

∂uh

∂n
ψzdx

=
∑
e⊂ωz

∫
e

[[∂uh

∂n

]]
ψzds = 1

2

∑
e⊂ωz

∫
e

[[∂uh

∂n

]]
ds.

We insert the last expression in (9.6), and the proof is complete.

Note that the integrals
∫
T

f ψz dx are evaluated in the finite element com-
putations when the finite element equations are put in the matrix-vector form
(II.4.5). If f is constant on T (e.g., if f = fh), then the integral above equals
1
3f |T | = 1

3RT |T |, which makes (9.7)1 simpler.

σ
σ

σ
σ

Fig. 45. Fluxes in a patch around a vertex z. σi,r and σi,l are the normal compo-
nents of the fluxes that leave the triangle Ti on the right and left side, respectively.
The triangles are enumerated counterclockwise and ei = ∂Ti ∩ ∂Ti+1 (with in-
dices modulo the number of triangles)

Given a node z, the following algorithm yields a σωz
∈ RT−1 with support in

ωz such that

div σωz
= − 1

|T |
∫

T

f ψz dx in each T ⊂ ωz,

[[σωz
· n]] = −(1/2) [[∇uh · n]] on each edge e ⊂ ωz ,

σωz
· n = 0 on ∂ωz .

(9.7)

The notation for the algorithm is specified in Fig. 45.
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9.3 Algorithm.
set σ1,r = 0;
for i = 1, 2, . . ., until an entire circuit around z is completed

{
fix σi,l such that

∫
ei

σωz
· nds =

∫
Ti

f ψzdx −
∫

ei−1

σωz
· nds;

fix σi+1,r such that [[σωz
· n]] = − 1

2 [[∇uh · n]] on ei ;}
It follows from Lemma 9.2 that the old and the new value of the normal component
σ1,r coincide when an entire circuit around z has been completed.

If z is a node on ∂�, the construction has to be modified in an obvious way.
Here ∂ωz shares two edges with ∂�. We start at one of them and proceed as in
Algorithm 9.3 until we get to the other edge on ∂�. There is no problem since we
do not return to the edge of departure.

9.4 Theorem. Let uh be the finite element solution with P1 elements and

σ� =
∑

z

σωz

where the functions σωz
are constructed by Algorithm 9.3. Then

‖∇(u− uh)‖0 ≤ ‖σ�‖0 + ch‖f − fh‖0 . (9.8)

Proof. Each edge has two nodes, and each triangle has three nodes. Moreover, we
have

∑
z ψz(x) = 1 in each triangle T , and

∑
z

∫
T

f ψz dx =
∫

T

f 1 dx =
∫

T

fh dx.

Therefore it follows from (9.7) that the sum σ� satisfies (9.4). The influence of the
data oscillation was discussed in §8, and the theorem of Prager and Synge yields
(9.8).

The theory that led to Theorem 9.4 differs from the theory in the previous
section. The estimator with local Neumann problems is also based on saddle point
problems, but an additional discretization is required. Nevertheless, the error esti-
mator ‖σ�‖0 is comparable to the residual error estimator (8.11). Consequently,
the new estimator is also efficient.

9.5 Theorem. There is a constant c that depends only on the shape of the triangles
such that

‖σ�‖0 ≤ c ηR + ch‖f − fh‖0 (9.9)

≤ c|u− uh|1 + ch‖f − fh‖0 . (9.10)
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Proof. For convenience, we restrict ourselves to the case f = fh since the effect
of the data oscillation is absorbed by the second terms in the inequalities. Only the
residuals RT and Re defined in (8.2) and (8.3) enter into Algorithm 9.3. Therefore,
the normal components of σωz

on the edges are bounded,

|σωz
· n| ≤ c

(
h
∑
T⊂ωz

|RT | +
∑
e⊂ωz

|Re|
)
.

Since the broken Raviart–Thomas functions are piecewise polynomials with a fixed
number of degrees of freedom, we have

‖σωz
‖0,T ≤ chT

∑
e⊂ωz

|σωz
· n|

with c being a constant that depends only on the shape parameter. Hence,

‖σωz
‖2

0 ≤ c
∑
T⊂ωz

η2
T ,R

and another summation yields

‖σ�‖0 ≤ c ηR .

This proves (9.9). The efficiency of the residual estimators (8.13) implies (9.10).

As a byproduct we obtain the comparison of the performance of the P1 ele-
ment and of the mixed method with the Raviart–Thomas element that was stated
in §5.

Proof of Theorem 5.6. We conclude from the preceding discussion that

‖∇u− σh‖2
0 + ‖∇(u− uh)‖2

0 ≤ 2 ‖σ�‖2
0 + ch2‖f − fh‖2

0

≤ c‖∇(u− uh)‖2
0 + ch2‖f − fh‖2

0 ,

and the proof is complete.

Problem

9.6 Consider the Helmholtz equation

−�u+ αu = f in �,

u = 0 on ∂�

with α > 0. Let v ∈ H 1
0 (�) and σ ∈ H(div, �) satisfy div σ + f = αv.

Show the inequality of Prager–Synge type with a computable bound

|u− v|21 + α‖u− v‖2
0

+‖ grad u− σ‖2
0 + α‖u− v‖2

0 = ‖ grad v − σ‖2
0 .

(9.11)

Recall the energy norm for the Helmholtz equation in order to interpret (9.11).



Chapter IV

The Conjugate Gradient Method

The discretization of boundary-value problems leads to very large systems of equa-
tions which often involve several thousand unknowns. The systems are particularly
large for three-dimensional problems and for problems of higher order. Often the
bandwidth of the matrices is so large that the classical Gauss elimination algorithm
and its modern variants are not efficient methods. This suggests that even for linear
problems, we should use iterative methods.

Iterative methods first became popular at the end of the fifties, primarily as
a means for solving large problems using computers with a small memory. The
methods developed then are no longer competitive, but they still provide useful
ingredients for modern iterative methods, and so we review them in §1. The bulk
of this chapter is devoted to the conjugate gradient method which is particularly
useful for the solution of variational problems and saddle point problems. Since
the CG methods discussed here can be applied to a broad spectrum of problems,
they are competitive with the still faster multigrid methods to be discussed later
(whose implementation is generally more complicated and requires more individ-
ual programming).

We begin by classifying problems according to the number n of unknowns:

1. Small problems: For linear problems we can use a direct method. For nonlinear
problems (e.g., using the Newton method), all elements of the Jacobi matrices
should be computed (at least approximately).

2. Midsized problems: If the matrices are sparse, we should make use of this
fact. For nonlinear problems (e.g., for quasi-Newton methods), the Jacobi
matrices should be approximated. Iterative methods can still be used even
when the number of steps in the iteration exceeds n.

3. Very large problems: Here the only choice is to use iterative methods which
require fewer than n steps to compute a solution.

For very large problems, we have to deal with completely different aspects
of the method of conjugate gradients as compared with midsized problems. For
example, the fact that in exact arithmetic CG methods produce a solution in n

steps plays no role for very large problems. In this case it is more important that
the accuracy of the approximate solution depends on the condition number of the
matrix.
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§ 1. Classical Iterative Methods

for Solving Linear Systems

For a small step size h, the finite element method leads to very large systems of
equations. Although the associated matrices are sparse, unfortunately their struc-
ture is such that after a few (approximately

√
n) steps of Gauss elimination, the

computational effort will grow significantly because many zero elements will be
replaced by nonzero ones.

This is the reason why iterative methods were studied in the fifties. The meth-
ods introduced then, which we shall call classical iterative methods, converge very
slowly. Nowadays they are rarely used as stand-alone iterative methods. Neverthe-
less, they have not lost their importance. Indeed they are often used in conjunction
with modern iterative methods, for example in the CG method for preconditioning,
and in the multigrid method for smoothing.

We now review classical iterative methods. For more detailed treatments, see
the monographs of Varga [1962], Young [1971], and Hackbusch [1991].

Stationary Linear Processes

Many iterative methods for the solution of the system Ax = b are based on a
decomposition of the matrix

A = M −N.

Here M is assumed to be an easily invertible matrix, and the given system can be
rewritten in the form

Mx = Nx + b.

This leads to the iteration
Mxk+1 = Nxk + b,

or equivalently xk+1 = M−1(Nxk + b), or

xk+1 = xk +M−1(b − Axk), k = 0, 1, 2, . . . . (1.1)

Clearly, (1.1) is an iteration of the form

xk+1 = Gxk + d (1.2)

with G = M−1N = I −M−1A, d = M−1b.
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The solution x∗ of the equation Ax = b is a fixed point of the process (1.2),
i.e.,

x∗ = Gx∗ + d.

Subtracting the last two equations gives

xk+1 − x∗ = G(xk − x∗),

and by induction we see that

xk − x∗ = Gk(x0 − x∗). (1.3)

In view of (1.1) we may consider M−1 as an approximate inverse of A. The
associated error reduction per step is described by the matrix G = I −M−1A.

The iteration (1.2) is called convergent if for every arbitrary x0 ∈ R
n, we

have limk→∞ xk = x∗. By (1.3), this is equivalent to

lim
k→∞

Gk = 0. (1.4)

1.1 Definition. Let A be a (real or complex) n × n matrix with eigenvalues λi ,
i = 1, 2, . . . , m, m ≤ n. Then

ρ(A) = max
1≤i≤m

|λi |

is called the spectral radius of A.

The following characterization of (1.4) via the spectral radius is well known
in linear algebra (cf. Varga [1962], p. 64, or Hackbusch [1991]).

1.2 Theorem. Let G be an n× n matrix. Then the following assertions are equiv-
alent:

(i) The iteration (1.2) converges for every x0 ∈ R
n.

(ii) limk→∞ Gk = 0.

(iii) ρ(G) < 1.

The spectral radius also provides a quantitative measure of the rate of con-
vergence. Note that ‖xk − x∗‖ ≤ ‖Gk‖ ‖x0 − x∗‖, and thus

‖xk − x∗‖
‖x0 − x∗‖ ≤ ‖Gk‖. (1.5)
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1.3 Theorem. For every n× n matrix G,

lim
k→∞

‖Gk‖1/k = ρ(G). (1.6)

Proof. Let ε > 0, ρ = ρ(G), and

B = 1

ρ + ε
G.

Then ρ(B) = ρ/(ρ+ε) < 1, and limk→∞ Bk = 0. Hence, supk≥0 ‖Bk‖ ≤ a < ∞.
This implies ‖Gk‖ ≤ a(ρ+ε)k and limk→∞ ‖Gk‖1/k ≤ ρ+ε. Thus, the left-hand
side of (1.6) is at most ρ(G).

On the other hand, the left-hand side of (1.6) cannot be smaller than ρ(G)

since G has an eigenvalue of modulus ρ.

Here we have made use of the usual notation. In particular, M−1 can be
thought of as an approximate inverse of A. In the framework of the CG method,
the matrix M is called a preconditioner, and is usually denoted by the symbol C.

The Jacobi and Gauss–Seidel Methods

One way to get an iterative method is to start with the decomposition

A = D − L− U.

Here D is diagonal, L lower-triangular, and U upper-triangular:

Dik =
{

aik if i = k,
0 otherwise,

Lik =
{−aik if i > k,

0 otherwise,
Uik =

{−aik if i < k,
0 otherwise.

The Jacobi method corresponds to the iteration

Dxk+1 = (L+ U)xk + b, (1.7)

which can be written componentwise as

aiix
k+1
i = −

∑
j �=i

aij x
k
j + bi, i = 1, 2, . . . , n. (1.8)

The associated iteration matrix is G = GJ = D−1(L+ U), and thus

Gik =
{
−aik

aii

for k �= i,

0 otherwise.
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Normally we compute the components of the new vector xk+1 sequentially,
i.e., we compute xk+1

1 , xk+1
2 , . . . , xk+1

n . During the computation of xk+1
i , we al-

ready have the components of the new vector up to the index j = i − 1. If we use
this information, we are led to the method of successive relaxation, also called the
Gauss–Seidel method:

aiix
k+1
i = −

∑
j<i

aij x
k+1
j −

∑
j>i

aij x
k
j + bi. (1.9)

Here the decomposition in matrix-vector form reads

Dxk+1 = Lxk+1 + Uxk + b,

and the associated iteration matrix is G = GGS = (D − L)−1U .

1.4 Example. Consider the matrix

A =
(

1 0.1
4 1

)
.

Then the iteration matrix for the Jacobi method is

GJ =
(

0 −0.1
−4 0

)
,

and the matrix for the Gauss–Seidel method is

GGS = −
(

1 0
4 1

)−1 (
0 0.1
0 0

)
= −

(
1 0
−4 1

)(
0 0.1
0 0

)
=
(

0 −0.1
0 0.4

)
.

A simple calculation shows that ρ(GGS) = ρ2(GJ ) = 0.4, and hence both itera-
tions converge.

The convergence of the above methods can often be established with the help
of the following simple concept.

1.5 Definition. An n × n matrix A is said to be strictly diagonally dominant
provided that

|aii | >
∑
j �=i

|aij |, 1 ≤ i ≤ n.

A is said to be diagonally dominant if

|aii | ≥
∑
j �=i

|aij |, 1 ≤ i ≤ n,

and strict inequality holds for at least one i.
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1.6 Definition. An n × n matrix A is called reducible if there exists a proper
subset J ⊂ {1, 2, . . . , n} such that

aij = 0 for i ∈ J, j �∈ J.

After reordering, a reducible matrix can be written in block form as(
A11 0
A21 A22

)
.

In this case the linear system Ax = b splits into two smaller ones. Thus, there is
no loss of generality in restricting our attention to irreducible matrices.

1.7 Diagonal Dominance. Suppose the n × n matrix A is diagonally dominant
and irreducible. Then both the Jacobi and Gauss–Seidel methods converge.

Supplement: If A is strictly diagonally dominant, then the hypothesis that A be
irreducible is not needed, and the spectral radius of the iteration matrix is

ρ ≤ max
1≤i≤n

1

|aii |
∑
j �=i

|aik| < 1.

Proof. Let x �= 0. For the Jacobi method the iteration matrix is G = D−1(L+U),
and with the maximum norm we have

|(Gx)i | ≤ 1

|aii |
∑
j �=i

|aij ||xj |

≤ 1

|aii |
∑
j �=i

|aij | · ‖x‖∞ ≤ ‖x‖∞.

(1.10)

In particular, ‖Gx‖∞ ≤ β‖x‖∞ with β < 1 if the stronger condition holds. Thus,
‖Gkx‖∞ ≤ βk‖x‖∞, and we have established the convergence.

The diagonal dominance implies ‖Gx‖∞ ≤ ‖x‖∞, and so ρ(G) ≤ 1. Sup-
pose that ρ = 1. Then there exists a vector x with ‖x‖∞ = ‖Gx‖∞ = 1, and
equality holds in all components of (1.10). Set

J = {j ∈ N; 1 ≤ j ≤ n, |xj | = 1}.

In order for equality to hold in each component of (1.10), we must have

aij = 0 for i ∈ J, j �∈ J.

Moreover, by hypothesis |aii | >
∑

j �=i |aij | for some i = i0, and it follows that
|(Gx)i0 | < 1. By definition, i0 �∈ J , and J is a proper subset of {1, 2 . . . , n},
contradicting the assumption that A is irreducible.
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For the Gauss–Seidel method, the iteration matrix G is given implicitly by

Gx = D−1(LGx + Ux).

First we prove that |(Gx)i | ≤ ‖x‖∞ for i = 1, 2, . . . , n. By induction on i we can
verify that

|(Gx)i | ≤ 1

|aii | {
∑
j<i

|aij | |(Gx)j | +
∑
j>i

|aij | |xj |}

≤ 1

|aii |
∑
j �=i

|aij | ‖x‖∞ ≤ ‖x‖∞.

The rest of the proof is similar to that for the Jacobi method.

The Model Problem

The system of equations which arises in using the five-point stencil (II.4.9) to
discretize the Poisson equation on a square of lenth L has been frequently studied.
With h = L/m and (m− 1)× (m− 1) interior points, we have

4xi,j − xi+1,j − xi−1,j − xi,j+1 − xi,j−1 = bi,j , 1 ≤ i, j ≤ m− 1, (1.11)

where variables with index 0 or m are assumed to be zero. Clearly, the associated
matrix is diagonally dominant, and since the system is irreducible, this suffices for
the convergence.

Here we have the special case where the diagonal D is a multiple of the
unit matrix. Hence, the iteration matrix for the Jacobi method can be obtained
immediately from the original matrix:

G = I − 1

4
A.

In particular, A and G have the same eigenvectors zk,�, as can be seen by simple
substitution using elementary properties of trigonometric functions:

(zk,�)i,j = sin
ikπ

m
sin

j�π

m
,

Azk,� = (4 − 2 cos
kπ

m
− 2 cos

�π

m
) zk,�,

Gzk,� = (
1

2
cos

kπ

m
+ 1

2
cos

�π

m
) zk,�,




1 ≤ k, � ≤ m− 1. (1.12)

The eigenvalue of G with largest modulus corresponds to k = � = 1, and we have

ρ(G) = 1

2
(1 + cos

π

m
) = 1 − π2

4m2
+O(m−4). (1.13)

For large m, the quantity ρ(G) tends to 1, and so the rate of convergence is very
poor for grids with small mesh size h.

The situation is slightly better for the Gauss–Seidel method, but even then
we have ρ(G) = 1 −O(m−2).
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Overrelaxation

Overrelaxation was the first acceleration technique. In updating via (1.9), the
change in the value of xi is immediately multiplied by a factor ω:

aiix
k+1
i = ω[−

∑
j<i

aij x
k+1
j −

∑
j>i

aij x
k
j + bi] − (ω − 1)aiix

k
i , (1.14)

or in matrix form

Dxk+1 = ω[Lxk+1 + Uxk + b] − (ω − 1)Dxk. (1.15)

If the factor ω is larger than 1, this is called overrelaxation, otherwise it is called
underrelaxation. The process of successive overrelaxation (ω > 1) is referred to
as the SOR method.

Let A be a symmetric positive definite matrix. Then the Gauss–Seidel method
(with or without relaxation) can be viewed as the process of minimizing the ex-
pression

f (x) = 1

2
x ′Ax − b′x. (1.16)

Clearly,
∂f

∂xi

= (Ax − b)i .

If we fix x1, x2, . . . , xi−1, xi+1 . . . , xn and vary only xi , then a minimum of f (x) as
a function of xi is characterized by the equation ∂f/∂xi = 0, i.e., by (Ax−b)i = 0.
This gives the formula (1.9). In particular, the improvement in the value of f after
one step is given by 1

2aii(x
k+1
i − xk

i )2. The value of f can be reduced using
relaxation for any choice of ω ∈ (0, 2). The improvement is then 1

2ω(2 − ω)

[(xk+1
i −xk

i )/ω]2. These quantities also arise in the proof of the following theorem.

1.8 Ostrowski–Reich Theorem. Suppose A is a symmetric n × n matrix with
positive diagonal elements, and let 0 < ω < 2. Then the SOR method (1.14)
converges if and only if A is positive definite.

Proof. After an elementary manipulation, it follows from (1.15) that

(1 − ω

2
)D(xk+1 − xk) = ω[(L− 1

2
D)xk+1 + (U − 1

2
D)xk + b].

Multiplying on the left by (xk+1 − xk) and taking into account y ′Lz = z′Uy, we
have

(1 − ω

2
)(xk+1 − xk)′D(xk+1 − xk)

= ω

2
[−xk+1′Axk+1 + xk ′Axk + 2b′(xk+1 − xk)]

= ω[f (xk)− f (xk+1)].

(1.17)
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Since the convergence only depends on the spectral radius of the iteration matrix,
without loss of generality we can assume that b = 0. Moreover, observe that
xk+1 �= xk since Axk − b �= 0.

(1) Let A be positive definite. For every x0 in the unit sphere

Sn−1 := {x ∈ R
n; ‖x‖ = 1},

(1.17) implies
x1′Ax1

x0′Ax0
< 1.

In view of the continuity of the mapping x0 �→ x1 and the compactness of the
sphere Sn−1, there exists β < 1 with

x1′Ax1

x0′Ax0
≤ β < 1, (1.18)

for all x0 ∈ Sn−1. Since the quotient on the left-hand side of (1.18) does not
change if x0 is multiplied by a factor �= 0, (1.18) holds for all x0 �= 0. It follows
by induction that

xk ′Axk ≤ βkx0′Ax0,

and thus xk ′Axk → 0. By the definiteness of A, we have limk→∞ xk = 0.

(2) Let A be indefinite. Without loss of generality, consider the iteration
(1.9) for the homogeneous equation with b = 0. Then there exists x0 �= 0 with
α := f (x0) < 0. Now (1.17) implies f (xk) ≤ f (xk−1) and

f (xk) ≤ α < 0, k = 0, 1 . . . ,

and we conclude that xk �→ 0.

In carrying out the relaxation methods (1.9) and (1.14), the components of the
vectors are recomputed in the order from i = 1 to i = n. Obviously, we can also
run through the indices in the reverse order. In this case, the roles of the submatrices
L and U are reversed. In the symmetric SOR method, SSOR method for short, the
iteration is performed alternately in the forward and backward directions. Thus,
each iteration step consists of two half steps:

Dxk+1/2 = ω[Lxk+1/2 + Uxk + b] − (ω − 1)Dxk,

Dxk+1 = ω[Lxk+1/2 + Uxk+1 + b] − (ω − 1)Dxk+1/2.
(1.19)

By the remark following (1.16), we conclude that the assertion of the theorem also
holds for the symmetric iteration process.

The SSOR method has two advantages. The computational effort in perform-
ing k SSOR cycles is not the same as that for 2k cycles of the SOR method, but
only to k + 1/2 cycles. Moreover, the associated iteration matrix

M−1 = ω(2 − ω)(D − ωU)−1D(D − ωL)−1 (1.20)

in the sense of (1.1) is symmetric; cf. Problem 1.10.
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Problems

1.9 Write the SSOR method (1.19) in componentwise form similar to (1.14).

1.10 Verify (1.20). – Hint: Under iteration the matrix A corresponds to the
approximate inverse M−1. In particular, x1 = M−1b for x0 = 0.

1.11 Consider the matrices

A1 =
( 1 2 −2

1 1 1
2 2 1

)
and A2 = 1

2

( 2 −1 1
2 2 2
−1 −1 2

)
.

For which of the matrices do the Jacobi method and Gauss–Seidel methods con-
verge?

1.12 Let G be an n× n matrix with limk→∞ Gk = 0. In addition, suppose ‖ · ‖
is an arbitrary vector norm on R

n. Show that

|||x||| :=
∞∑

k=0

‖Gkx‖

defines a norm on R
n, and that |||G||| < 1 for the associated matrix norm. – Give

an example to show that ρ(G) < 1 does not imply ‖G‖ < 1 for every arbitrary
norm.

1.13 If we choose ω = 2 in the SSOR method, then xk+1 = xk . How can this be
shown without using any formulas?

1.14 Suppose the Jacobi and Gauss–Seidel methods converge for the equation
Ax = b. In addition, suppose D is a nonsingular diagonal matrix. Do we still get
convergence if AD (or DA) is substituted for A?

1.15 A matrix B is called nonnegative, written as B ≥ 0, if all matrix elements
are nonnegative. Let D, L, U ≥ 0, and suppose the Jacobi method converges for
A = D − L− U . Show that this implies A−1 ≥ 0.
What is the connection with the discrete maximum principle?

1.16 Let M−1 be an approximate inverse of A in the sense of (1.1). Determine
the approximate inverse that corresponds to k steps of the iteration.
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§ 2. Gradient Methods

In developing iterative methods for the solution of systems of equations associated
with a positive definite matrix A, it is very useful to observe that the solution of
Ax = b is also the minimum of

f (x) = 1

2
x ′Ax − b′x. (2.1)

The simplest method for finding a minimum is the gradient method. In its classical
form it is a stable method, but converges very slowly if the condition number κ(A)

is large. Unfortunately, this is usually the case for the systems which arise in the
discretization of elliptic boundary-value problems. For problems of order 2m, the
condition number typically grows like h−2m.

The so-called PCG method (see §§3 and 4) was developed from the gradient
method by making two modifications to it, and is one of the most effective system
solvers.

The General Gradient Method

For completeness, we formulate the gradient method in a more general form as a
method for the minimization of a C1 function f defined on an open set M ⊂ R

n.

2.1 Gradient Method with Complete Line Search.
Choose x0 ∈ M . For k = 0, 1, 2, . . ., perform the following calculations:
1. Determine the direction: Compute the negative gradient

dk = −∇f (xk). (2.2)

2. Line search: Find a point t = αk along the line {xk + tdk : t ≥ 0} ∩M where
f attains a (local) minimum. Set

xk+1 = xk + αkdk. (2.3)

Clearly, the method generates a sequence (xk) with

f (x0) ≥ f (x1) ≥ f (x2) ≥ · · · ,
where equality holds only at points where the gradient vanishes.

For the special case of the quadratic function (2.1), we have

dk = b − Axk, (2.4)

αk = dk
′dk

dk
′Adk

. (2.5)
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2.2 Remark. In practice the line search is done only approximately. There are two
possibilities:

(1) Find a point for which the directional derivative is small, say

|dk
′∇f (xk + tdk)| < 1

4
|dk

′∇f (xk)|.

(2) First choose a reasonable step size t , and continue halving it until the corre-
sponding improvement in the function value is at least one quarter of what we
would get by linearization, i.e., until

f (xk + tdk) ≤ f (xk)− t

4
|dk

′∇f (xk)|.

This version of the gradient method leads to global convergence: either there
is some subsequence which converges to a point x ∈ M with ∇f (x) = 0, or the
sequence tends to the boundary of M . The latter cannot happen if f is greater than
f (x0) as we approach ∂M (or as x →∞, respectively).

Gradient Methods and Quadratic Functions

Rather than presenting a general proof of convergence, we instead focus on a
more detailed examination of the case of quadratic functions. In this case the rate
of convergence is determined by the size of κ(A).

As a measure of distance, we use the energy norm

‖x‖A :=
√

x ′Ax. (2.6)

If x∗ is a solution of the equation Ax = b, then as in II.2.4

f (x) = f (x∗)+ 1

2
‖x − x∗‖2

A. (2.7)

Now (2.4) and (2.5) imply

f (xk+1) = f (xk + αkdk)

= 1

2
(xk + αkdk)

′A(xk + αkdk)− b′(xk + αkdk)

= f (xk)+ αkdk
′(Axk − b)+ 1

2
α2

k dk
′Adk

= f (xk)− 1

2

(dk
′dk)

2

dk
′Adk

.

Combining this with (2.7), we have

‖xk+1 − x∗‖2
A = ‖xk − x∗‖2

A −
(d ′kdk)

2

dk
′Adk

.
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Since dk = −A(xk − x∗), we have ‖xk − x∗‖2
A = (A−1dk)

′A(A−1dk) = dk
′A−1dk

and

‖xk+1 − x∗‖2
A = ‖xk − x∗‖2

A

[
1 − (dk

′dk)
2

dk
′Adk dk

′A−1dk

]
. (2.8)

We now estimate the quantity in the square brackets. If we compute the
condition number of a matrix with respect to the Euclidean vector norm, then for
positive definite matrices, it coincides with the spectral condition number

κ(A) = λmax(A)

λmin(A)
.

2.3 The Kantorovich Inequality. Let A be a symmetric, positive definite matrix
with spectral condition number κ . Then

(x ′Ax)(x ′A−1x)

(x ′x)2
≤ (

1

2

√
κ + 1

2

√
κ−1)2 (2.9)

for every vector x �= 0; cf. Kantorovich [1948].

Proof. Set µ := [λmax(A) λmin(A)]1/2, and let λi be an eigenvalue of A. It follows
that κ−1/2 ≤ λi/µ ≤ κ1/2. Since the function z �→ z + z−1 is monotone on the
interval (0, 1) and for z > 1, we know that

λi/µ+ µ/λi ≤ κ1/2 + κ−1/2.

The eigenvectors of A are also eigenvectors of the matrix 1
µ
A + µA−1, and the

eigenvalues of the latter are bounded by κ1/2 + κ−1/2. Hence, it follows from
Courant’s maximum principle that

1

µ
(x ′Ax)+ µ(x ′A−1x) ≤ (κ1/2 + κ−1/2) (x ′x)

holds for all x ∈ R
n. The variant of Young’s inequality ab ≤ 1

4 (|a| + |b|)2 now
yields

(x ′Ax)(x ′A−1x) ≤ 1

4

[ 1

µ
(x ′Ax)+ µ(x ′A−1x)

]2 ≤ 1

4
(κ1/2 + κ−1/2)2 (x ′x)2,

and the proof is complete.

The left-hand side of (2.9) attains its maximum when the vector x contains
only components from the eigenvectors that are associated to the largest and the
smallest eigenvalue and if the two contributions have the same size. Furthermore,
Example 2.5 below shows that the bound is sharp.

Now combining (2.8), (2.9), and the identity 1 − 4/(
√

κ +
√

κ−1)2 = (κ −
1)2/(κ + 1)2, we get
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2.4 Theorem. Suppose A is a symmetric positive definite matrix with spectral con-
dition number κ . Then applying the gradient method to the function (2.1) generates
a sequence with

‖xk − x∗‖A ≤
(κ − 1

κ + 1

)k‖x0 − x∗‖A. (2.11)

Convergence Behavior in the Case of Large Condition Numbers

If we solve a system of equations with a very large condition number κ , the
convergence rate

κ − 1

κ + 1
≈ 1 − 2

κ

is very close to 1. We can show that this unfavorable rate dominates the iteration
with a simple example involving two unknowns.

2.5 Example. Let a � 1. We seek the minimum of

f (x, y) = 1

2
(x2 + ay2), i.e., A =

(
1

a

)
. (2.12)

Here κ(A) = a. Suppose we choose

(x0, y0) = (a, 1)

as the starting vector. Then the direction of steepest descent is given by (−1,−1).
We claim that

xk+1 = ρxk, yk+1 = −ρyk, k = 0, 1, . . . , (2.13)

where ρ = (a − 1)/(a + 1). This is easily checked for k = 0, and it follows for
all k by symmetry arguments. Thus, the convergence rate is exactly as described
in Theorem 2.4.

The contour lines of the function (2.12) are strongly elongated ellipses (see
Fig. 46), and the angle between the gradient and the direction leading to a minimum
can be very large (cf. Problem 2.8).

•
•

Fig. 46. Contour lines and the gradient for Example 2.5
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For two-dimensional problems, there is one exceptional case. Since
dk
′∇f (xk+1) = 0, we have dk

′dk+1 = 0. Thus, dk and dk+2 are parallel in R
2.

This cycling does not occur in n-space for n ≥ 3. If we start with an arbitrary
vector in R

n (n ≥ 3), after a few iterations we get a vector which lies in a position
similar to that in Example 2.5. This agrees with the observation that the iteration
nearly stops after a few steps, and any further approach to the solution will be
extremely slow.

Problems

2.6 By (2.5), αk ≥ α∗ := 1/λmax(A). Show that convergence is guaranteed for
every fixed step size α with 0 < α < 2α∗.

2.7 Establish the recurrence (2.13) in Example 2.5.

2.8 (a) In Example 2.5 the directions dk and dk+1 are orthogonal w.r.t. the
Euclidean metric. Show that they are nearly parallel in the metric defined by (2.6).
Here the angle between two vectors x and y is given by

cos ϕ = x ′Ay

‖x‖A‖y‖A

. (2.14)

(b) Show that | cos ϕ| ≤ κ−1
κ+1 for the angle defined in (2.14), provided x ′y = 0.

Hint: For the unit vector,
1 − cos ϕ

1 + cos ϕ
= ‖x − y‖A

‖x + y‖A

.

2.9 Consider the unbounded quadratic form

f (x) =
∞∑

j=1

j |x(j)|2

in �2. Let x0 = (1, 1/8, 1/27, . . .), or more generally let x0 be any element with
f (x0) < ∞, ∇f (x0) ∈ �2, such that the rate of decay of the components is
polynomial. Show that the gradient method stops after finitely many steps.

2.10 Use the Kantorovitch inequality to give upper and lower bounds for the
quotients of

(x ′Ax)2 and (x ′A2x)(x ′x)

and also for those of

(x ′Ax)n and (x ′Anx)(x ′x)n−1.
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§ 3. Conjugate Gradients

and the Minimal Residual Method

The conjugate gradient method was developed in 1952 by Hestenes and Stiefel,
and first became of importance in 1971 when it was combined with a simple
method for preconditioning by Reid [1971]. The big advantage of the conjugate
gradient method became apparent when faster computers became available and
larger problems were attacked.

For the systems of equations which arise in the discretization of two-dimen-
sional second order elliptic boundary-value problems, the method is more efficient
than Gauss elimination as soon as 400 to 800 unknowns are involved, and also uses
much less memory. For three-dimensional problems, the advantages are even more
significant than for two dimensions. The advantages are less clear for problems of
fourth order.

In this section we restrict our discussion to linear problems. We discuss further
details in the next section, where we also present a generalization to nonlinear
minimization problems.

The basic idea behind the conjugate gradient method (CG method) is to make
sure that successive directions are not nearly parallel (in the sense of Problem 2.8).
The idea is to use orthogonal directions, where orthogonality is measured in a
metric more suited to problem (2.1) than the Euclidean metric.

3.1 Definition. Let A be a symmetric nonsingular matrix. Then two vectors x and
y are called conjugate or A-orthogonal provided x ′Ay = 0.

In the following we will assume that A is positive definite. In this case, any set
of k pairwise conjugate vectors x1, x2, . . . , xk are linearly independent provided
that none of them is the zero vector.

In particular, suppose d0, d1, . . . , dn−1 are conjugate directions, and that the
desired solution x∗ = A−1b has the expansion

x∗ =
n−1∑
k=0

αkdk

in terms of this basis. Then in view of the orthogonality relations, we have di
′Ax∗ =∑

k di
′Aαkdk = αidi

′Adi , and

αi = di
′Ax∗

di
′Adi

= di
′b

di
′Adi

. (3.1)
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Thus, when using conjugate vectors – in contrast to using an arbitrary basis – we
can compute the coefficients αi in the expansion of x∗ directly from the given
vector b.

Let x0 be an arbitrary vector in R
n. Then an expansion of the desired correction

vector x∗−x0 in terms of conjugate directions can be computed recursively directly
from the gradients gk := ∇f (xk).

3.2 Lemma on Conjugate Directions. Let d0, d1, . . . , dn−1 be conjugate direc-
tions, and let x0 ∈ R

n. Then the sequence generated by the recursion

with

xk+1 = xk + αkdk

αk = − dk
′gk

dk
′Adk

, gk := Axk − b,

gives a solution xn = A−1b after (at most) n steps.

Proof. Writing x∗ − x0 =
∑

i αidi , from (3.1) we immediately have

αk = dk
′A(x∗ − x0)

dk
′Adk

= −dk
′(Ax0 − b)

dk
′Adk

.

Since the vector dk is assumed to be conjugate to the other directions, we have
dk
′A(xk − x0) = dk

′A
∑k−1

i αidi = 0. Hence,

αk = −dk
′(Axk − b)

dk
′Adk

= − dk
′gk

dk
′Adk

.

3.3 Corollary. Under the hypotheses of 3.2, xk minimizes the function f not
only on the line {xk−1 + αdk−1; α ∈ R}, but also over x0 + Vk , where Vk :=
span[d0, d1, . . . , dk−1]. In particular,

di
′gk = 0 for i < k. (3.2)

Proof. It suffices to establish the relation (3.2). The choice of αi ensures that

di
′gi+1 = 0. (3.3)

Thus, (3.2) holds for k = 1. Assume that the assertion has been proved for k −
1. From xk − xk−1 = αk−1dk−1 it follows that gk − gk−1 = A(xk − xk−1) =
αk−1Adk−1. Since the directions d0, d1, . . . , dk−1 are conjugate, we have d ′i (gk −
gk−1) = 0 for i < k − 1. Combining this with the induction hypothesis, i.e. (3.2)
for k − 1, we conclude that the formula is also correct for k and i ≤ k − 2. The
remaining equation for k and i = k − 1 is a direct consequence of (3.3).
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The CG Algorithm

In the conjugate gradient method, the directions d0,d1, . . . , dn−1 are not selected
in advance, but are computed from the current gradients gk by addition of a cor-
rection factor. From an algorithmic point of view, this means that we do not need a
complicated orthogonalization process, but instead can use a simple three-term re-
currence formula.9 We show later that this approach makes sense from an analytic
point of view.

3.4 The Conjugate Gradient Method.
Let x0 ∈ R

n, and set d0 = −g0 = b − Ax0.
For k = 0, 1, 2, . . ., compute

αk = gk
′gk

dk
′Adk

,

xk+1 = xk + αkdk,

gk+1 = gk + αkAdk,

βk = gk+1
′gk+1

gk
′gk

,

dk+1 = −gk+1 + βkdk,

(3.4)

while gk �= 0.

We note that in the derivation of the above, we initially get

αk = − gk
′dk

dk
′Adk

, βk = gk+1
′Adk

dk
′Adk

. (3.5)

For quadratic problems, the expressions in (3.4) are equivalent, but are more stable
from a numerical point of view, and require less memory.

3.5 Properties of the CG Method. While gk−1 �= 0, we have the following:
(1) dk−1 �= 0.
(2)

Vk : = span[g0, Ag0, . . . , A
k−1g0]

= span[g0, g1, . . . , gk−1] = span[d0, d1, . . . , dk−1].

(3) The vectors d0, d1, . . . , dk−1 are pairwise conjugate.
(4)

f (xk) = min
z∈Vk

f (x0 + z). (3.6)

9 Three-term recurrence relations are well known for orthogonal polynomials. The con-
nection is explored in Problem 3.9.
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Proof. The assertions are obvious for k = 1. Suppose that they hold for some
k ≥ 1. Then

gk = gk−1 + A(xk − xk−1) = gk−1 + αk−1Adk−1,

and thus gk ∈ Vk+1 and span[gi]ki=0 ⊂ Vk+1. By the induction hypothesis, d0, d1,
. . ., dk−1 are conjugate, and by the optimality of xk , we have

di
′gk = 0 for i < k. (3.7)

Thus, gk is linearly dependent on d0, d1, . . . , dk−1 only if gk = 0, and so gk �= 0
implies gk �∈ Vk . It follows that span[gi]ki=0 is a (k + 1)-dimensional space, and
cannot be a proper subspace of Vk+1. This establishes the first equality in (2) for
k + 1. Moreover, Vk+1 coincides with span[di]ki=0, since in view of gk + dk ∈ Vk ,
we could just as well have included dk .

Now dk �= 0 immediately implies gk + dk ∈ Vk provided gk �= 0, and thus
(1) holds.

For the proof of (3), we compute

di
′Adk = −di

′Agk + βk−1di
′Adk−1. (3.8)

For i ≤ k−2 the first term on the right-hand side vanishes because Adi ∈ AVk−1 ⊂
Vk and (3.7) holds. Moreover, by assumption the second term is zero. Finally, with
βk as in (3.5), the right-hand side of (3.8) vanishes for i = k − 1.

The last assertion follows from Corollary 3.3, and the inductive proof is
complete.

The use of conjugate directions prevents the iteration from proceeding in
nearly parallel directions (cf. Problem 2.8). In order to get conjugate directions
from nearly parallel directions, we need to use very large factors βk . Thus in
principle, we have to keep in mind the possibility that small denominators will be
encountered due to roundoff errors, and the iteration will have to be restarted. This
doesn’t happen as often as might be expected, however, since by Problem 3.13,
the denominator can be reduced by at most a factor κ; cf. Powell [1977].

In this connection we should note that the accumulated roundoff errors do
not lead to a loss of stability. Since dk is a linear combination of gk and dk−1, xk+1

provides a minimum for f over the two-dimensional manifold

xk + span[gk, dk−1].

This problem is still well posed if the variables with roundoff errors are used in the
calculation instead of the exact vectors gk and dk−1. The choice of the coefficients
αk and βk according to (3.4) ensures that the perturbed two-dimensional minimum
problem is well posed; see 3.13 and 4.11. This is the reason for the numerical
stability of the CG method.
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Analysis of the CG method as an Optimal Method

The CG method finds a minimum of a quadratic function on R
n in (at most) n

steps. However, at the time of its discovery, the fact that this iterative method finds
a solution in n steps was overemphasized. Indeed, for problems with 1000 or more
unknowns, this property is of little significance. What is much more important is
the fact that a very good approximation can already be found with many fewer
than n steps.

First we note that for all iterative methods of the form

xk+1 = xk + αk(b − Axk), with αk ∈ R

– and thus also for the simplest gradient method – the approximation xk lies in
x0 + Vk , where Vk is defined as in 3.5(2). It follows from 3.5(2) that among all of
these methods, the CG method is the one which gives the smallest error ‖xk−x∗‖A.

As usual, the spectrum σ(A) of a matrix A is the set of its eigenvalues.

3.6 Lemma. Suppose there exists a polynomial p ∈ Pk with

p(0) = 1 and |p(z)| ≤ r for all z ∈ σ(A). (3.9)

Then for arbitrary x0 ∈ R
n, the CG method satisfies

‖xk − x∗‖A ≤ r‖x0 − x∗‖A. (3.10)

Proof. Set q(z) = (p(z) − 1)/z. Using the same notation as in 3.5, we have
y := x0 + q(A)g0 ∈ x0 + Vk , and g0 = A(x0 − x∗) implies

y − x∗ = x0 − x∗ + y − x0 = x0 − x∗ + q(A)g0

= p(A)(x0 − x∗).

Now let {zj }nj=1 be a complete system of orthonormal eigenvectors with Azj = λjzj

and x0 − x∗ =∑
j cj zj . Then

y − x∗ =
∑
j

cjp(A)zj =
∑
j

cjp(λj )zj . (3.11)

The orthogonality of the eigenvectors implies

‖x0 − x∗‖2
A =

∑
j

λj |cj |2 (3.12)

and
‖y − x∗‖2

A =
∑
j

λj |cjp(λj )|2 ≤ r2
∑
j

λj |cj |2.

Thus, ‖y−x∗‖A ≤ r‖x0−x∗‖A. Combining this with y ∈ x0+Vk and the minimal
property 3.5(4) for xk , we get (3.10).
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If we only know that the spectrum lies in the interval [a, b], where b/a = κ ,
then we get optimal estimates using the so-called Chebyshev polynomials10

Tk(x) := 1

2
[(x +

√
x2 − 1)k + (x −

√
x2 − 1)k], k = 0, 1, . . . (3.13)

The formulas (3.13) define polynomials with real coefficients since after multiply-
ing out and using the binomial formula, the terms with odd powers of the roots
cancel each other. Moreover, |x+√x2 − 1| = |x+i

√
1 − x2| = 1 for real |x| ≤ 1,

and thus
Tk(1) = 1 and |Tk(x)| ≤ 1 for − 1 ≤ x ≤ 1. (3.14)

The special polynomial p(z) := T ([b + a − 2z]/[b − a])/T ([b + a]/[b − a])
satisfies p(0) = 1, and so Lemma 3.6 implies the main result:

3.7 Theorem. For any starting vectorx0 ∈ R
n, the CG method generates a sequence

xk satisfying

‖xk − x∗‖A ≤ 1

Tk

(
κ + 1

κ − 1

)‖x0 − x∗‖A

≤ 2

(√
κ − 1√
κ + 1

)k

‖x0 − x∗‖A .

(3.15)

Proof. Since σ(A) ⊂ [λmin, λmax] and κ = λmax/λmin, the first inequality follows
with the special polynomial above. Recalling (3.13) we clearly have Tk(z) ≥
1
2 (z+√z2 − 1)k for z ∈ [1,∞). We evaluate z+√z2 − 1 for z := (κ+1)/(κ−1)

and use κ − 1 = (
√

κ + 1)(
√

κ − 1):

κ + 1

κ − 1
+
√(

κ + 1

κ − 1

)2

− 1 = κ + 1 +√
4κ

κ − 1
=
√

κ + 1√
κ − 1

.

This establishes the second assertion.

A comparison with Theorem 2.4 and Example 2.5 shows that the computation
of conjugate directions has the same positive effect as replacing the condition
number by its square root. In practice, the improvement in each iteration is usually
even better than theoretically predicted by Theorem 3.7. The inequality (3.15)
also covers the pessimistic case where the eigenvalues are uniformly distributed
between λmin and λmax. Frequently, the eigenvalues appear in groups, and because
of the gaps in the spectrum, Theorem 3.7 is too pessimistic.

Here we should point out the connection with the so-called semi-
iterative methods [Varga 1962]. They are based on modifying the relaxation method

10 The usual definition Tk(x) := cos(k arccos x) is equivalent to (3.13).
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so that using the comparison polynomial qk constructed in Theorem 3.7, we ac-
tually get xk = x0 + qk(A)(x0 − x∗) for certain k. The process is optimal if λmin

and λmax are known. – The situation is better for the conjugate gradient method
since for it, even this information is not needed, and since the gaps in the spectrum
automatically lead to an acceleration in the convergence.

In practice, the errors decrease nonuniformly in the course of the iteration.
After a clear reduction of the error in the first few steps, there is often a phase with
only small improvements. Then the convergence speeds up again. Often, in terms
of computational time, it is not important whether we choose a relative accuracy
of 10−4 or 10−5, see the numerical example in §4. – Here we note that the factors
αk and βk in (3.4) vary from step to step, and the iteration is not a stationary linear
process.

The Minimal Residual Method

There is an easy modification of Method 3.4 for which xk in the linear manifold
x0 + Vk minimizes the error in the norm

‖xk − x∗‖Aµ

for some µ ≥ 1, rather than in the energy norm. To achieve this, we replace
the scalar products u′v in the quotients in (3.4) by u′Aµ−1v. The Euclidean norm
‖xk−x∗‖ = ‖xk−x∗‖A0 can also be easily minimized by using the space x0+AVk

instead of x0 + Vk .

The case µ = 2 is of some practical importance. Since

‖x − x∗‖2
A2 = ‖Ax − b‖2 = x ′A2x − 2b′Ax + const, (3.16)

it is called the minimal residual method. The method is also applicable for indefinite
or unsymmetric matrices. We shall use this method to illustrate that the strength of
the CG method is due more to its analytic properties than to its simple algebraic
properties.

For µ > 1, Lemma 3.6 and Theorem 3.7 hold for positive definite matrices.
It follows from (3.11) that the vector y constructed in the proof of the corollary
satisfies

‖y − x∗‖Aµ ≤ r‖x0 − x∗‖Aµ. (3.17)

Although the leading term in the quadratic form (3.16) is determined by the matrix
A2, the rate of convergence depends on κ(A), rather than κ(A2).
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Indefinite and Unsymmetric Matrices

We now turn to indefinite problems. First, we recall that an indefinite system
Ax = b cannot be converted into a system A2x = Ab with positive definite matrix
simply by multiplication by A. Indeed, since κ(A2) = [κ(A)]2, the condition
number increases significantly under the transformation. This raises the question of
whether we can avoid this shortcoming by applying the minimal residual method.

This is in fact the case for problems with only a few negative eigenvalues,
and also for unsymmetric spectra. However, if the spectrum is symmetric w.r.t.
zero, then unfortunately we are faced with the same effect as squaring the matrix.

3.8 Example. Suppose we double the system Ay = b,(
A

−A

)(
y

z

)
=
(

b

−b

)
,

where A is positive definite. Let y0 = z0. Then the residual has the form (h0,−h0)
′.

Since the expression ‖A(y0 + αh0)− b‖2 + ‖ − A(z0 − αh0)+ b‖2 assumes its
minimum at α = 0, it follows that y1 = y0 = z1 = z0. This shows that in general,
we get an improvement only for an even number of steps, and the minimum
for x0 + span[Ag0, A

3g0, A
5g0, . . .] will be computed. Unfortunately, this again

corresponds to the calculation with the squared matrix.

Since in contrast to 3.5(2), here the gradients g1, g2, g3, . . . are not linearly
independent, the formal extension of the minimal residual algorithm breaks down.
More importantly, as we shall see later in Remark 4.3, for minimal residuals, the
preconditioning generally can no longer be built into a three-term recurrence.

To treat problems with indefinite or unsymmetric matrices, we need to make
modifications; cf. Paige and Saunders [1975], Stoer [1983], Golub and van Loan
[1983]. They are still relatively simple for symmetric indefinite matrices. The
Cholesky decomposition hidden in the CG method is replaced by a QR decompo-
sition; cf. Paige and Saunders [1975]. Otherwise, we have to distinguish between
an incomplete minimization and a very short recurrence with stabilization. QM-
RES and its variants belong to the first group; see Saad and Schultz [1985] and
Saad [1993]. It generates directions which are conjugate only to the last few dif-
ference vectors. The other methods use two systems of biorthogonal vectors; see
van der Vorst [1992]. In order to avoid degeneracies as in Example 3.8, several
steps are carried out together. This is called the “look ahead strategy”; cf. Fre-
und, Gutknecht, and Nachtigal [1993]. Various studies have shown that no optimal
algorithm exists for indefinite and unsymmetric problems.

Because of this phenomenon, completely different methods based on the
Uzawa algorithm have been developed for the class of indefinite problems involv-
ing saddle point problems. They are described in §5 below.
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Problems

3.9 Suppose z ∈ R
n and k ≥ 1. In addition, let A, B and C be positive

definite n×n matrices. Suppose that the matrices A and B commute. Using as few
arithmetic operations as possible, compute A-orthogonal directions d0, d1, . . . , dk ,
which span the same space as

(a) z, Az, A2z, . . . , Akz,
(b) z, CAz, (CA)2z, . . . , (CA)kz,
(c) z, Bz, B2z, . . . , Bkz.

How many matrix-vector multiplications, and how many scalar products are
needed? When can A2-orthogonal directions be computed simply?

3.10 Let S = {a0} ∪ [a, b] with 0 < a0 < a < b and κ = b/a. Show that there
exists a polynomial p of degree k such that

p(0) = 1 and |p(x)| ≤ 2b

a0

(√
κ − 1√
κ + 1

)k−1

for x ∈ S.

3.11 How does the iteration in Problem 2.9 perform using conjugate directions?
Does the difficulty discussed in Problem 2.9 disappear if we use conjugate direc-
tions?

3.12 Let κ(A) = 1000. How many iteration steps are needed in the gradient and
the conjugate gradient methods in order to reduce the error by 0.01 in the worst
case?

3.13 The choice of αk guarantees that dk
′gk+1 = 0, independent of the roundoff

errors in the previous steps. Thus, ‖dk+1‖A is just the distance of the vector gk+1

from the one-dimensional linear space span[dk]. Show that

‖dk+1‖A ≥ 1

κ(A)1/2
‖gk+1‖A .

Hint: First compare the Euclidean norm of the vectors dk+1 and gk+1.
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§ 4. Preconditioning

The conjugate gradient method becomes an especially efficient method when it is
coupled with preconditioning. The combination is called the preconditioned con-
jugate gradient method or, for short, the PCG method. We describe two standard
preconditioning methods which suffice for the solution of many systems of equa-
tions arising from second order elliptic problems. These methods do not need to
be tailored to the problem at hand, and can even be built into a black box.

Given the equation Ax = b, suppose we have an easily invertible positive
definite matrix C which approximates the matrix A. We discuss later how to
measure the quality of the approximation. Given x0 ∈ R

n, consider

x1 = x0 − αC−1g0, (4.1)

where g0 = Ax0 − b. If C = A, then we already get the solution in the first step.
Thus, it is to be expected that choosing C to be any (reasonable) approximation
to A will get us to the solution faster than the trivial choice C = I .

This idea leads to the following algorithm:

4.1 The Conjugate Gradient Method with Preconditioning.
Let x0 ∈ R

n. Set g0 = Ax0 − b, d0 = −h0 = −C−1g0, and compute

xk+1 = xk + αkdk,

αk =
g′khk

d ′kAdk

,

gk+1 = gk + αkAdk,

hk+1 = C−1gk+1,

dk+1 = −hk+1 + βkdk,

βk =
g′k+1hk+1

g′khk

,

(4.2)

for k ≥ 0.

If C is positive definite, then in analogy with 3.5 we have

4.2 Properties of the PCG Method. As long as gk−1 �= 0, we have
(1) dk−1 �= 0.
(2) Vk := span[g0, AC−1g0, . . . , (AC−1)k−1g0] = span[g0, g1, . . . , gk−1]

and span[d0, d1, . . . , dk−1] = C−1 span[g0, g1, . . . , gk−1].
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(3) The vectors d0, d1, . . . , dk−1 are pairwise conjugate.
(4)

f (xk) = min
z∈Vk

f (x0 + C−1z). (4.3)

The proof of these algebraic properties proceeds in exactly the same way as
the proof of 3.5, and can be left to the reader.

4.3 Remark. The matrices C and A do not have to commute for the method to
work, see Problem 3.9. Indeed, we only need to compute scalar products of the
form

((AC−1)ju)′A(C−1A)kv,

and the matrix ((AC−1)j )tA(C−1A)k depends only on the sum k + j . Unfortu-
nately, for ((AC−1)j )tA2(C−1A)k this holds only in exceptional cases, and com-
bining preconditioning with the minimal residual method is not so simple; see
Axelsson [1980], Young and Kang [1980], Saad and Schultz [1985]. Conjugate
directions can no longer be determined by three-term recurrence relations. There-
fore, we do not attempt to find a complete orthogonalization, and instead make
sure that the new direction is conjugate to the last five directions, say.

The convergence theory for the CG method can be generalized as follows.

4.4 Theorem. (1) Suppose there exists a polynomial p ∈ Pk with

p(0) = 1 and |p(z)| ≤ r for all z ∈ σ(C−1A).

Then for arbitrary x0 ∈ R
n, the PCG method satisfies

‖xk − x∗‖A ≤ r‖x0 − x∗‖A.

(2) With κ = κ(C−1A),

‖xk − x∗‖A ≤ 2

(√
κ − 1√
κ + 1

)k

‖x0 − x∗‖A.

Proof. Consider q(z) := (p(z) − 1)/z. Then y := x0 + q(C−1A)C−1g0 ∈ x0 +
C−1Vk , and so y−x∗ = p(C−1A)(x0−x∗). Now let {zj }nj=1 be a complete system
of eigenvectors for the problem

Azj = λjCzj , j = 1, 2, . . . , n. (4.4)

In particular, suppose the vectors are normalized so that

z′iCzj = δij for i, j = 1, 2, . . . , n.
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0 12.95 14 3.93 28 3.13−2

2 12.31 16 1.76 30 1.33−2

4 11.99 18 0.519 32 5.79−3

6 11.64 20 0.273 34 1.82−3

8 10.55 22 0.175 36 6.21−4

10 7.47 24 0.130 38 1.51−4

12 4.76 26 0.086 40 3.35−5

Table 6 and Fig. 47. Reduction in the energy norm of the error when the PCG
method is applied to a cantilever problem with 544 unknowns. The slow decrease
at the beginning and again in the middle is typical for the CG method

log ‖xk − x∗‖

→ k

Then zi
′Azj = λj δij , and (3.12) again follows. Moreover, (C−1A)�zj = λ�

j zj for
all �. The rest of the proof of (1) follows as in Lemma 3.5.

Since the numbers λj in (4.4) are actually the eigenvalues of C−1A, the
assertion (2) follows by the arguments used in Theorem 3.7.

Preconditioning also helps to reduce the effect of the following difficulty. In
principle, in using gradient methods we want to choose the direction of steepest
descent. Which direction gives the steepest descent depends on the metric of the
space. For the simple gradient method, we implicitly use the Euclidean metric.
But if ‖x‖C := √

x ′Cx is a better approximation to the metric ‖x‖A than the
Euclidean metric ‖x‖ = √

x ′x, then C is a good choice for preconditioning. By
Theorem 4.4, the oscillation of the quotient

x ′Ax

x ′Cx
(4.5)

is the main determining factor for the rate of convergence. We shall make use of
similar arguments in the following section.

Although the widely applicable methods described below can be used for the
solution of second order boundary-value problems, for large problems of fourth
order, we usually have to tailor the preconditioning to the problem. This is due
to the strong growth of order h−4 of κ . There are three common approaches to
constructing special methods:
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1. Subdivide the domain. The solution of the much smaller systems corre-
sponding to the partial domains serves as a preconditioning; cf. Widlund [1988].

2. Alter the boundary conditions to give a simpler problem. (For example, a
modification of the boundary conditions for the biharmonic equation leads to two
decoupled Laplace equations, see Braess and Peisker [1986].) The approximate
solution so obtained is then used for the preconditioning.

3. Use so-called hierarchical bases, i.e., choose basis functions consisting of
low and high frequency functions, respectively; see Yserentant [1986], Xu [1992],
or Bramble, Pasciak, and Xu [1990]. The condition number can be significantly
reduced by a suitable scaling of the different parts.

Preconditioning by SSOR

A simple but effective preconditioning can be obtained from the Gauss–Seidel
method, despite its slow convergence when it is used as stand-alone iteration. We
decompose the given symmetric matrix A as

A = D − L− Lt,

where L is a lower triangular matrix and D is a diagonal matrix. Then for 1 <

ω < 2,
x �→ (D − ωL)−1(ωb + ωLtx − (ω − 1)Dx)

defines an iteration step in the forward direction; cf. (1.19). Similarly, the relaxation
in the backwards direction is defined by

x �→ (D − ωLt)−1(ωb + ωLx − (ω − 1)Dx).

Then the first half step gives

x1/2 = ω(D − ωL)−1gk,

where x = 0 and b = gk , and the second half step gives

hk = ω(2 − ω)(D − ωLt)−1D(D − ωL)−1gk,

since ωgk + ωLx1/2 −Dx1/2 = 0. In particular, hk = C−1gk with C := [ω(2 −
ω)]−1(D − ωL)D−1(D − ωLt). Clearly, the matrix C is symmetric and positive
definite.

We point out that multiplying the preconditioning matrix C by a positive
factor has no influence on the iteration. Thus, the factor ω(2− ω) can be ignored
in the calculation.
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Experience shows that the quality of the preconditioning is not very sensitive
to the choice of the parameter ω. Calculation with the fixed value ω = 1.3 is only
slightly worse than using the corresponding optimal values, which in practice lie
between 1.2 and 1.6 [Axelsson and Barker 1984].

On the other hand, the numbering of the variables has a major influence on
the performance of the method. The differences are very evident for the equations
arising from five-point stencils on a rectangular mesh. We recommend that the
lexicographical ordering x11, x12, . . . , x1n, x21, x22, . . . , xnn be used. The checker-
board ordering, where all variables xij with i+j even appear first, followed by all
those with i + j odd (or conversely), reduces the efficiency of the SSOR precon-
ditioner dramatically. Thus it cannot be recommended. The disadvantages of this
numbering are so great that they cannot even be compensated by vectorization or
parallelization.

Preconditioning by ILU

Another preconditioning method can be developed from a variant of the Cholesky
decomposition. For symmetric matrices of the type which appear in the finite el-
ement method, the Cholesky decomposition A = LDLt or A = LLt leads to a
triangular matrix L which is significantly less sparse than A. Using an approximate
inverse leads to the so-called incomplete Cholesky decomposition (ICC) or incom-
plete LU decomposition (ILU); see Varga [1960]. In the simplest case, we simply
avoid calculation with all matrix elements which vanish in the given matrix. This
leads to a decomposition

A = LLt + R (4.6)

with an error matrix in which Rij �= 0 only appears if Aij = 0.

This preconditioning method is often faster than the one using SSOR relax-
ation. However, there does not seem to be a general rule for deciding in which
cases SSOR or ICC is more effective.

There are many variants of the method, and often filling in of elements in the
neighborhood of the diagonal is allowed. In the so-called modified incomplete de-
composition due to Meijerink and van Vorst [1977], instead of suppressing matrix
elements, they are moved onto the main diagonal.

Gustafsson [1978] developed a preconditioning method for the standard five-
point stencil for the Laplace equation. While in general there is only empirical
evidence for the improvement of the conditioning, in this case he proved that the
condition number is reduced from O(h−2) to O(h−1).

It is crucial for the proof that the diagonal elements can be increased by a small
amount. Let ζ > 0. In view of Friedrichs’ inequality, we can estimate the quadratic
forms a(u, u) = |u|21 and |u|21 + ζ‖u‖2

0 in terms of each other. The discretization
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[ 0
bi−1 ai 0

ci−m

]
∗

[
ci

0 ai bi

0

]
∗[

bi−1ci−1 aici

ai−1bi−1 a2
i + b2

i−1 + c2
i−m aibi

ci−mai−m bi−mci−m

]
∗

[ −γi

−βi−1 αi −βi

−γi−m

]
∗

[−ri

ri + ri−m+1

−ri−m+1

]
∗

Difference stencils for L, Lt (top), LLt (middle) and A, R (bottom) for the
incomplete Cholesky decomposition

of ‖u‖2
0 leads to the so-called mass matrix. Since its condition number is bounded

independent of h, ‖u‖0 and h2‖u‖�2 are equivalent norms. Thus, for the design of
a preconditioning matrix, instead of the standard five-point stencil we can consider
the following modified stencil:

[ −1
−1 4 + ζih

2 −1
−1

]
∗

(4.7)

where 0 < ζi < ζ .

For simplicity, we now assume that the same number m of nodes lie on each
horizontal grid line. Suppose that the neighbors of the node i to the South and
West have the indices i −m and i − 1, respectively.

The incomplete Cholesky decomposition leads to triangular matrices with
at most three nonzero elements in every row. The general form of the difference
stencils can be seen in the schemes above. The error matrix (4.6) can only have
nonzero elements on the diagonal and at positions to the Northwest and Southeast.
Combining this with

∑
j Rij = 0, we see that the matrix R must have the form

shown in the scheme. The coefficients ai , bi and ci can be found recursively by

a2
i = αi − b2

i−1 − c2
i−m − ri − ri−m+1,

bi = −βi/ai,

ci = −γi/ai,

ri = bi−1ci−1.

(4.8)

Recalling (4.7) we set αi := 4+ 8h2 and βi := γi := 1 with the usual convention
that βi and γi are set to 0 at points next to the boundary. It follows by induction
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that

ai ≥
√

2(1 + h), 0 < bi, ci ≤ 1/ai, ri ≤ 1

2
(1 + h)−2.

We can now estimate x ′Rx with the help of the formula (x + y)2 ≤ 2(x2 + y2):

0 ≤ x ′Rx =
∑

i

ri(xi − xi+m−1)
2

≤
∑

i

1

(1 + h)2
{(xi − xi−1)

2 + (xi−1 − xi+m−1)
2}

≤ 1

1 + h
x ′Ax.

Combining this with (4.6), we have x ′LLtx ≥ h/(1 + h)x ′Ax and

x ′LLtx ≤ x ′Ax ≤ 1 + h

h
x ′LLtx

and thus

κ([LLt ]−1A) ≤ 1 + h

h
= O(h−1). (4.9)

Since κ(A) = O(h−2), the preconditioning has the effect that the effective condi-
tion number κ is reduced by one power of h.

The equation (4.6) also clearly shows that multiplication by (LLt)−1 would be
equivalent to an SSOR step if the overrelaxation factors were point-independent
and approximately of size 2 − O(h−2). Thus, with small modifications in the
argument, it is possible to show that in applying preconditioning with the SSOR
method using a (fixed) factor ω = 2 − O(h−2), the condition number is also
reduced by one power of h, see Axelsson and Barker [1984].

Remarks on Parallelization

SSOR relaxation and multiplication by L−1 and R−1, where L and R are associ-
ated with an ILU decomposition, are recursive processes. Nevertheless, both par-
allelization and vectorization are possible. [We recall that we should not choose a
checkerboard order for simple parallelization.] The implementation depends heav-
ily on the computer architecture. There is intense activity surrounding the use of
parallel and vector machines, and so we would like to give a first impression of
how to treat the kinds of banded matrices which arise for finite element problems.

We restrict our considerations to the equations arising from the use of the
five-point stencil on a square domain with m2 unknowns. We write the unknowns
with double indices. Then in the first phase (the preconditioning), to determine the
current variable xij , we need to know the values xkj for k < i and xi� for � < j .
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In a vector machine we can collect the calculations of all xij with i +
j = const . The calculation then proceeds in 2m groups. It is well known that
we can save time in a vector machine by overlapping about eight arithmetic oper-
ations. The time saved is proportional to m2, and is worthwhile if it exceeds the
time required for the initialization of the 2m groups. Normally, this is the case
when m > approx. 40.

A different approach can be used on a parallel machine. We sketch the case
of two processors [Wittum 1989a]. First we divide the domain into two parts.
The first processor takes care of the nodes (i, j) with j ≤ n/2, and the second
one takes care of those with j > n/2. Once the first processor has dealt with
(1, 1), (1, 2), . . . , (1, n/2), the second one is signaled. While the second proces-
sor works on its assigned values in the row i = 1, the first can do row i + 1 = 2.
The two processors continue to work in parallel on succeeding rows.

We have to provide memory with access by two processors only at the bound-
aries, i.e. for j = n/2 and j = n/2 + 1. It is clear how memory can be freed for
access by the other processor.

Without considering the memory restriction, there is also another approach
which we could take. The first processor works on the entire first row. With the
delay of one node, it signals the second processor to begin work on the second
row. The remaining rows are then dealt with alternately by the two processors. In
particular, with several processors, we get a complete parallelization after a short
initialization time.

For more on parallelization, see, e.g., Hughes, Ferencz and Hallquist [1987],
Meier and Sameh [1988], Ortega and Voigt [1985] and Ortega [1988].

Nonlinear Problems

The CG method can be carried over to nonlinear problems for which the function
f to be minimized is not necessarily a quadratic function. This avoids iterating
with the Newton method, where the solution of the corresponding linear system
of equations would again require an iterative method.

As in §2, let f be a C1 function defined on an open set M ⊂ R
n. Very often

f has the form

f (x) = 1

2
x ′Ax −

n∑
i=1

diφ(xi)− b′x

with φ ∈ C1(R). The first term has a more significant effect on poor condition-
ing than the second [Glowinski 1984]. Suppose we have a matrix C which is
appropriate for preconditioning A (otherwise we choose C = I ).
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The minimization of
x ′Ax

x ′x
for the determination of the smallest eigenvalue of A also involves a non-quadratic
problem.

4.5 The Conjugate Direction Method for Nonlinear Problems following
Fletcher and Reeves.
Let x0 ∈ M . Set g0 = ∇f (x0) and d0 = −h0 = −C−1g0.
For k = 0, 1, 2, . . ., perform the following calculations:

1. Line search: Find the minimum of f on the line {xk + tdk : t ≥ 0} ∩ M .
Suppose the minimum (or a local minimum) is assumed at t = αk . Set

xk+1 = xk + αkdk.

2. Determination of the direction:

gk+1 = ∇f (xk+1),

hk+1 = C−1gk+1,

dk+1 = −hk+1 + βkdk,

βk =
g′k+1hk+1

g′khk

.

(4.10)

4.6 Remark. In the method of Polak and Ribière, which is a variant of the Fletcher
and Reeves method, βk is not chosen as in (4.10), but instead we compute

βk =
g′k+1(hk+1 − hk)

g′khk

. (4.11)

Problems

The following three exercises deal with the inversion of the so-called mass
matrix.

4.7 Let A1, A2, . . . , Ak, C1, C2, . . . , Ck be positive semidefinite matrices with

a x ′Cix ≤ x ′Aix ≤ b x ′Cix for x ∈ R
n and i = 1, 2, . . . , k.

In addition, let 0 < a ≤ b. Suppose that the matrices A =∑
i Ai and C =∑

i Ci

are positive definite. Show that κ(C−1A) ≤ b/a.
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4.8 Show that the matrix

A =
( 2 1 1

1 2 1
1 1 2

)

is positive definite, and that its condition number is 4.

Hint: The quadratic form associated with the matrix A is x2+y2+z2+(x+y+z)2.

4.9 The computation of the mass matrix
∫

ψiψjdx for linear triangular elements
on the element level leads to the matrix in Problem 4.8 (w.r.t. the nodes which
are involved). Show that we can get κ ≤ 4 using preconditioning with an easily
computable diagonal matrix. How much is the error reduced after three steps of
the PCG method?

4.10 Consider Problem 3.12. How does the answer change if we replace κ by
2
√

κ?

4.11 The equation Ax = b implies

By = c with B = C−1/2AC−1/2, c = C−1/2b, (4.12)

where y = C1/2x, since C−1/2AC−1/2C1/2x = C−1/2b. Show that applying the
PCG method 4.1 (with preconditioning by the matrix C) to the original equation
is equivalent to applying the CG method 3.4 to (4.12). Use this to derive the
properties 4.2.

4.12 For preconditioning we often use a change of basis, e.g., in the method of
hierarchical bases; see Yserentant [1986]. Let

x = Sy,

where S is a nonsingular matrix. Show that carrying out Algorithm 3.4 with the
variables y is equivalent to Algorithm 4.1 with preconditioning based on

C−1 = SSt .

4.13 For preconditioning we often use a matrix C which is not exactly symmetric.
(In particular this is the case if multiplication by C−1 is only done approximately.)
This means that we are not requiring that all of the dk be pairwise conjugate.
But we still want xk+1 to be the minimum of the function (2.1) over the two-
dimensional manifold xk + span[hk, dk−1]. Hence dk+1 and dk (and dk and dk−1,
respectively) should be conjugate. Which of the following formulas for βk can be
used for unsymmetric C?

(1) βk =
g′k+1hk+1

g′khk

, (2) βk =
(g′k+1 − gk)hk+1

g′khk

, (3) βk =
h′k+1Adk

d ′kAdk

.
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The following problems are useful not only for constructing preconditioners
but also as preparation for a multigrid theory.

4.14 Let A ≤ B denote that B − A is positive semidefinite. Show that A ≤ B

implies B−1 ≤ A−1, but it does not imply A2 ≤ B2.
To prove the first part note that (x, B−1x) = (A−1/2x, A1/2B−1x) and apply
Cauchy’s inequality. Next consider the matrices

A :=
(

1 a

a 2a2

)
and B :=

(
2 0
0 3a2

)

for establishing the negative result. From the latter it follows that we cannot derive
good preconditioners for the biharmonic equation by applying those for the Poisson
equation twice.

Note: The converse is more favorable, i.e., A2 ≤ B2 implies A ≤ B. Indeed, the
Rayleigh quotient λ = max{(x, Ax)/(x, Bx) is an eigenvalue, and the maximum
is attained at an eigenvector, i.e., Ax = λBx. On the other hand, by assumption

0 ≤ (x, B2x)− (x, A2x) = (1 − λ2) ‖Bx‖2.

Hence, λ ≤ 1 and the proof is complete.

4.15 Show that A ≤ B implies B−1AB−1 ≤ B−1.

4.16 Let A and B be symmetric positive definite matrices with A ≤ B. Show
that

(I − B−1A)mB−1

is positive definite for m = 1, 2, . . .. To this end note that

q(XY)X = Xq(YX)

holds for any matrices X and Y if q is a polynomial. Which assumption may be
relaxed if m is even?

4.17 Let B−1 be an approximate inverse of A. Moreover, assume that A and B

are symmetric positive definite matrices and that

A ≤ B.

Let B−1
m be the approximate inverse for m steps of the iteration (1.1); cf. Problem

1.16. Show that
A ≤ Bm+1 ≤ Bm ≤ B for m ≥ 1

by making use of the preceding problems.
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§ 5. Saddle Point Problems

The determination of a minimum of

J (u) = 1
2u′Au− f ′u

with the constraint
Bu = g

(5.1)

leads to an indefinite system of equations of the form

Au+ Btλ = f,

Bu = g.
(5.2)

If B is an m×n matrix, then the Lagrange multiplier λ is an m-dimensional vector.
Clearly, we can restrict our attention to the case where the restrictions are linearly
independent.

In most cases, A is invertible. After multiplying the first equation in (5.2) by
A−1, we can eliminate u from the second equation:

BA−1Btλ = BA−1f − g. (5.3)

The matrix BA−1Bt for this so-called reduced equation is positive definite, al-
though it is given only implicitly. In a paper by I. Schur [1917, p. 217] we find
those submatrices that are now termed Schur complement of A; cf. Problem 5.9.

The Uzawa Algorithm and its Variants

A widely known iterative method for saddle point problems is connected with the
name Uzawa.

5.1 The Uzawa Algorithm. Let λ0 ∈ R
m. Find uk and λk so that

Auk = f − Btλk−1,

λk = λk−1 + α(Buk − g),

}
k = 1, 2, . . . (5.4)

Here we assume that the step size parameter α is sufficiently small.

For the analysis of the Uzawa algorithm, we define the residue

qk := g − Buk. (5.5)
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In addition, suppose the solution of the saddle point problem is denoted by (u∗, λ∗).
Now substituting the iteration formula for uk into (5.5) and using (5.3), we get

qk = g − BA−1(f − Btλk−1) = BA−1Bt(λk−1 − λ∗).

This means that

λk − λk−1 = −αqk = αBA−1Bt(λ∗ − λk−1).

Thus the Uzawa algorithm is equivalent to applying the gradient method to the
reduced equation using a fixed step size (cf. Problem 2.6). In particular, the iteration
converges for

α < 2‖BA−1Bt‖−1.

The convergence results of §§2 and 3 can be carried over directly. We need
to use a little trick in order to get an efficient algorithm. The formula (2.5) gives
the step size

αk = qk
′qk

(Btqk)′A−1Btqk

.

However, if we were to use this rule formally, we would need an additional multi-
plication by A−1 in every step of the iteration. This can be avoided by storing an
auxiliary vector. – Here we have to pay attention to the differences in the sign.

5.2 Uzawa Algorithm (the variant equivalent to the gradient method).
Let λ0 ∈ R

m and Au1 = f − Btλ0.
For k = 1, 2, . . ., compute

qk = g − Buk,

pk = Btqk,

hk = A−1pk,

λk = λk−1 − αkqk, αk=
q ′kqk

p′
khk

,

uk+1 = uk + αkhk.

Because of the size of the condition number κ(BA−1Bt), it is often more
effective to use conjugate directions. Since the corresponding factor βk in (3.4)
is already independent of the matrix of the system, the extension is immediately
possible.
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5.3 Uzawa Algorithm with Conjugate Directions.
Let λ0 ∈ R

m and Au1 = f − Btλ0. Set d1 = −q1 = Bu1 − g.
For k = 1, 2, . . ., find

pk = Btdk,

hk = A−1pk,

λk = λk−1 + αkdk, αk = qk
′qk

pk
′hk

,

uk+1 = uk − αkhk,

qk+1 = g − Buk+1,

dk+1 = −qk+1 + βkdk, βk = qk+1
′qk+1

qk
′qk

.

An Alternative

In performing k steps of Algorithms 5.2 and 5.3, k+ 1 multiplications by A−1 are
required. Thus, there are k+ 1 equations to be solved. In practice, we do this only
approximately. In particular, we approximate A−1 by C−1, where C is considered
as a preconditioner for A and is again assumed to be a symmetric positive definite
matrix.

We can go one step further and replace the matrix A in the initial problem
(5.1) by a matrix C which is understood to be a preconditioner. This leads to the
modified minimum problem

1

2
u′Cu− f ′u → min!

Bu = g.

(5.6)

As can be seen by carrying over (5.2), the matrix corresponding to this problem is(
C Bt

B

)
.

Inserting this matrix in (1.1) in place of the matrix M , we get the iteration(
uk+1

λk+1

)
=
(

uk

λk

)
+
(

C Bt

B

)−1 (
f − Auk − Btλk

g − Buk

)
. (5.7)

The rate of convergence of this iteration is determined by the gap between
the upper and lower bounds on the quotients u′Au

u′Cu
, u �= 0; cf. (4.5). In fact, it

suffices to examine the bounds for the subspace V = {u ∈ R
n; Bu = 0}. (They

can of course be estimated by the coarser bounds for R
n.)

In view of the following (cf. Braess and Sarazin [1997], Zulehner [2000]), the
iteration (5.4) of Uzawa and the iteration (5.7) are extreme cases. If the iteration
(5.7) is built into a cg-iteration, then u-variables and the Lagrange multipliers have
to be treated in a different way; see Braess, Deuflhard, and Lipnikov [2002].
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5.4 Remark. In the Uzawa algorithm (5.4), uk+1 and λk+1 are independent of uk .
In the iteration (5.7), uk+1 and λk+1 are independent of λk .

The assertion about the Uzawa algorithm follows directly from the defini-
tion (5.4) of the algorithm. The other assertion is a consequence of the following
formula which is equivalent to (5.7):(

uk+1

λk+1

)
=
(

C Bt

B

)−1 (
f − (A− C)uk

g

)
. (5.8)

Bramble and Pasciak [1988] took a completely different approach. By employing a
different metric for the indefinite problem, they were able to get a preconditioning
in almost the same way as in the positive definite case.

Problems

5.5 Consider the special case A = I , and compare the condition number of
BA−1Bt with that of the squared matrix. In particular, show that the Uzawa algo-
rithm is better than the gradient method for the squared matrix.

5.6 For the case m " n, the restriction can be eliminated indirectly. Let F be an
m×m matrix with FF t = BBt , e.g., say F stems from the Cholesky decompo-
sition of BBt . In the special case A = I , we have the triangular decomposition:(

I

B F

)(
I Bt

−F t

)
=
(

I Bt

B

)
.

How can we construct a corresponding triangular decomposition for the matrix in
(5.2) if a decomposition A = LtL is known?

5.7 Show that κ(BA−1Bt) ≤ κ(A)κ(BBt).

5.8 For the saddle point problem (5.2), the norm ‖ · ‖A is obviously the natural
norm for the u components. Show that the norm ‖ · ‖BA−1Bt is then the natural one
for the λ components in the following sense: the inf-sup condition holds for the
mapping Bt : R

m �→ R
n with the constant β = 1.

5.9 Verify the block Cholesky decomposition for the matrix(
A Bt

B 0

)
=
(

A 0
B I

)(
A−1 0

0 −BA−1Bt

)(
A Bt

0 I

)
appearing in the saddle point problem. What is the connection between this fac-
torization and the computation of the reduced equation (5.3)? In addition, prove
that the inverse has the following decomposition:(

A Bt

B 0

)−1

=
(

A−1 − A−1BtS−1BA−1 A−1BtS−1

S−1BA−1 −S−1

)
,

where S = BA−1Bt is the Schur complement.
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Multigrid Methods

The multigrid method is one of the fastest methods for solving systems of equations
involving a large number of unknowns. The method is due to Fedorenko, who
formulated it first as a two-grid method [1961], and then later as a multigrid method
[1964]. He showed that the algorithm requires only O(n) operations, where n is
the number of unknowns. Bachvalov [1966] continued the study for difference
equations, and allowed nonconstant coefficients. A. Brandt was the first to discover
in the mid-seventies that the multigrid method is considerably better than other
known methods, even for values of n which occur in actual problems. Nearly at
the same time, the multigrid method was discovered independently by Hackbusch
[1976], whose approach also led to a simplification of the concepts involved.

Our starting point is the observation that in solving a system of equations, we
should use different methods for the high frequency (oscillating) and low frequency
(smooth) parts. The idea of the multigrid method is to combine two different
methods to get an algorithm which will be effective on the entire spectrum.

Classical iterative methods work essentially by smoothing, i.e. they quickly
eliminate the high-frequency parts of the error function. The low frequency parts
of the functions can then be computed relatively well on a coarser grid. Although
we cannot strictly separate the low and high frequency parts, we are able to get
iterative methods whose rate of convergence (i.e. error reduction factors) are in
the range from 1

20 to 1
4 ; see Table 7. If we use the multigrid idea in combination

with good starting values, we will get convergence in just one or two iterations,
and the iterative character of the method almost disappears.

In developing a convergence theory, we have to take account of the smooth-
ness as well as the absolute size of the error. This means that we need to work with
(at least) two norms. Natural candidates are the Sobolev norms and their discrete
analogs.

The algorithmic aspects discussed in §§1, 4 and 5 are essentially independent
of the convergence theory presented in §§2 and 3. For more on multigrid methods,
see the books of Hackbusch [1985], Hackbusch and Trottenberg [1982], Briggs
[1987], McCormick [1989], and Wesseling [1992].
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Smoothing Properties of Classical Iterative Methods

Multigrid methods are based on the observation that the classical iterative methods
result in smoothing. This is most easily seen by examining the model Example
II.4.3 involving the Poisson equation on a rectangle. This example was also dis-
cussed in connection with the Gauss–Seidel and Jacobi methods; cf. (IV.1.11).

1.1 Example. The discretization of the Poisson equation on the unit square using
the standard five-point stencil leads to the system of equations

4xi,j − xi+1,j − xi−1,j − xi,j+1 − xi,j−1 = bij for 1 ≤ i, j ≤ n− 1. (1.1)

Here xi,0 = xi,n = x0,j = xn,j = 0. We consider the iterative solution of (1.1)
using the Jacobi method with relaxation parameter ω:

xν+1
i,j = ω

4
(xν

i+1,j + xν
i−1,j + xν

i,j+1 + xν
i,j−1)+

ω

4
bij + (1 − ω)xν

i,j . (1.2)

By (IV.1.12), the eigenvectors zk,m of the iteration matrix defined implicitly in
(1.2) can be thought of as the discretizations of the eigenfunctions

(zk,m)i,j = sin
ikπ

n
sin

jmπ

n
, 1 ≤ i, j, k, m ≤ n− 1, (1.3)

of the Laplace operator, with corresponding eigenvalues

and
λkm = 1

2
cos

kπ

n
+ 1

2
cos

mπ

n
, if ω = 1,

λkm = 1

4
cos

kπ

n
+ 1

4
cos

mπ

n
+ 1

2
, if ω = 1

2
.

In each step of the iteration, the individual spectral parts of the errors are multiplied
by the corresponding factors λkm. Thus, those terms corresponding to eigenvalues
whose moduli are near 1 are damped the least.

Fig. 48. Replacing values on a one-dimensional grid by the average values of
their neighbors has only a minor effect on low frequency terms, but a substantial
effect on high frequency ones.
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1.2 Corollary. After a few iterations of the Jacobi method (with ω = 1), the error
essentially contains only terms for which

k and m are both small, or
k and m are both close to n.

Terms of the latter type are strongly reduced if we use ω = 1/2 (instead of ω = 1.)
This leaves only the low frequency terms; see Fig. 48.

Accordingly, in carrying out the iteration we will get a clear reduction in the
error as long as the error still contains highly oscillatory parts. However, as soon
as the error becomes smooth, the iteration will essentially stop, and subsequently
the error reduction per step will only be of order 1 −O(n−2).

We will show later in connection with the convergence theory that the Jacobi
method has a smoothing effect in general, and not just for the model problem, see
Lemma 2.4. The following methods are used in practice for smoothing:

the Jacobi method and the Richardson iteration,
the successive overrelaxation method (SOR),
the symmetric successive overrelaxation method (SSOR),
iteration with the incomplete Cholesky decomposition (ICC).

We now list a few suggestions for the choice of the smoother. If the entire matrix of
the system is to be stored, either the SOR or the SSOR method (with a small amount
of underrelaxation) is useful in the standard case. For parallel computations, Jacobi
relaxation is appropriate. Smoothing via ICC requires more work than the other
methods, but turns out to be more robust for anisotropic problems; see Hemker
[1980] and Wittum [1989b]. For example, we have a strongly anisotropic problem
if one direction in space is preferred, such as for the differential equation

100 uxx + uyy = f.

The Multigrid Idea

The above discussion suggests the following approach.

First we carry out several relaxation steps in order to strongly damp all os-
cillating components of the error. Then we go to a coarser grid, and approximate
the remaining smooth part. This is possible because smooth functions can be ap-
proximated well on coarse grids.

We then alternately repeat the smoothing step on the fine grid and the coarse-
grid correction. This results in an iterative method.

The system of equations corresponding to the problem on the coarse grid
is usually simpler to solve than the original problem. In particular, in the planar
case, if we go from a grid with mesh size h to one with mesh size 2h, the number
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of unknowns is reduced by a factor of about 4. Moreover, the bandwidth of the
matrix for the coarse grid is about half as large. This means that the number of
operations needed for Gauss elimination is reduced by a factor of about 16. This
leads to major savings after just two or three iterations.

In general, the number of operations needed to solve the system corresponding
to mesh size 2h will still be too large, and so we repeat the process. We continue
to double the size of the grid until we get a sufficiently small system of equations.

The Algorithm

For the sake of simplicity, we first describe the two-grid algorithm for conforming
finite elements.

To formulate multigrid algorithms, we need some notation. It is standard to
use the letter S for the smoothing operator. For example, when smoothing via
Richardson relaxation, we have

x �−→ Sx := x − ω(Ahx − bh). (1.4)

In order to avoid confusion with the finite element spaces Sh, we suppress the
subscript h in our notation for smoothing operators.

Let {ψi} be a basis for Sh. Each vector x ∈ R
N with N = Nh = dim Sh is

associated with the function u = ∑
i xiψi ∈ Sh. The indices are inherited in the

correspondence.

The iterates uk
h as well as the intermediate values u

k,1
h are associated with the

fine grid, while the quantities v2h (which actually depend on k) correspond to the
coarser grid with double mesh size.

1.3 Two-Level Iteration (k-th cycle):

Let uk
h be a given approximation in Sh.

1. Smoothing Step. Perform ν smoothing steps:

u
k,1
h = Sν uk

h.

2. Coarse-Grid Correction. Compute the solution v̂2h of the variational problem
at level 2h:

J (u
k,1
h + v) −→ min

v∈S2h

!

Set
uk+1

h = u
k,1
h + v̂2h.
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1.4 Remarks. (1) The parameter ν controls the number of smoothing steps. In
the standard case,

1 ≤ ν ≤ 3.

The results of Ries, Trottenberg, and Winter [1983] presented in Table 7 show that
for well-behaved problems such as the Poisson equation on a rectangle, it does not
pay to do more than 2 smoothing steps. For more complicated problems (such as
those involving nonconforming elements or mixed methods), it can happen that a
much larger number of smoothing steps are necessary.

(2) In principle, the question of which bases to choose for the finite ele-
ment spaces depends on the smoothing process. We can use the usual nodal basis
functions, as will become clear from the convergence theory in §2.

Table 7. Bounds for the spectral radius ρ of the iteration matrix for the two-grid
method for the Poisson equation. Here ν steps of the Gauss–Seidel method with
the checkerboard order are used for smoothing.

ν 1 2 3 4

ρ 0.25 0.074 0.053 0.041

We turn now to the complete algorithm for several levels. It is easiest to give
a precise formulation for conforming finite elements based on nested grids.

First choose a coarse triangulation Th0 . Let Th1 be the triangulation which
arises if we subdivide each triangle of Th0 into four congruent subtriangles. Further
subdivision leads to the grids11 Th2 , Th3 , . . . , Thq

(see Fig. 49). We write T� in place
of Th�

for 0 ≤ � ≤ �max =: q. Suppose the finite element spaces corresponding to
the triangulations T� are Sh�

(S� for short). Then

S0 ⊂ S1 ⊂ . . . ⊂ S�max . (1.5)

Our goal is to compute the finite element solution of the boundary-value problem
on the finest grid. The spaces S� corresponding to coarser grids arise only in the
intermediate computations.

The variables in the multigrid algorithm involve up to three indices. Here
� denotes the grid level,
k counts the iterations,
m counts the substeps inside each iteration.

We will usually write u�,k instead of u�,k,0.

11 Not all elements have to be refined as long as we take account of the rules discussed
in Ch. II, §8 and in Ch. III, §8 in connection with local mesh refinement.
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Fig. 49. A coarse triangulation for which one of the (coarse) triangles has been
decomposed into 16 subtriangles in two steps. The other triangles should be
decomposed in the analogous way.

We now define the multigrid method for conforming elements recursively.

1.5 Multigrid Iteration MGM� (k-th cycle at level � ≥ 1):

Let u�,k be a given approximation in S�.
1. Pre-Smoothing. Carry out ν1 smoothing steps:

u�,k,1 = Sν1 u�,k. (1.6)

2. Coarse-Grid Correction. Let v̂�−1 denote the solution of the variational prob-
lem at level �− 1,

J (u�,k,1 + v) −→ min
v∈S�−1

! (1.7)

If � = 1, find the solution and set v�−1 = v̂�−1.

If � > 1, compute an approximation v�−1 of v̂�−1 by carrying out µ steps of
MGM�−1 with the starting value u�−1,0 = 0.
Set

u�,k,2 = u�,k,1 + v�−1. (1.8)

3. Post-Smoothing. Carry out ν2 smoothing steps,

u�,k,3 = Sν2 u�,k,2,

and set u�,k+1 = u�,k,3.

1.6 Remarks. (1) If only two levels are being used, then we have only the case
� = 1, and the coarse-grid correction will be done exactly. For more than two
levels, we compute the solution on the coarse grid only approximately, and for
the convergence theory we treat the multigrid iteration as a perturbed two-grid
iteration.
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(2) For more than two levels, it makes a difference whether we perform the
smoothing before or after the coarse-grid correction. This is controlled by the pa-
rameters ν1 and ν2. For simplicity, frequently only the pre-smoothing is performed.
However, for the V-cycle, it is better to do an equal amount of smoothing both
before and after, i.e. to choose ν1 = ν2.

(3) Choosing µ = 1 or µ = 2 leads to either a V-cycle or a W-cycle. The
reason for this terminology is clear from the shape of the corresponding schemes
shown in Fig. 50. Obviously a W-cycle is more expensive than a V-cycle.

In order to ensure that in running through several levels the error does not
build up too much, in the early use of the multigrid method most people chose
W-cycles. However, most problems are so well-behaved that multigrid algorithms
with the V-cycle are faster. (For more than four levels, it is better to insert one
W-cycle after every three V-cycles; see Problem 3.12.)

(4) We solve the system of equations corresponding to the variational problem
on the coarsest grid using Gauss elimination or some other direct method.

(5) In practice, an auxiliary grid can be so coarse that it would never be used
as the final grid. For the Poisson equation on the unit square, it is even possible that
the grid is coarsened so much that the coarsest grid contains only one (interior)
point. This does not ruin the convergence rate of multigrid algorithms.

◦ ◦∖ /
◦ ◦∖/
•

2

1

0

◦ ◦∖ /
◦ ◦ ◦∖/∖/
• •

a)

◦ ◦∖ /
◦ ◦∖ /
◦ ◦∖/
•

3

2

1

0

◦ ◦∖ /
◦ ◦ ◦∖ /∖ /
◦ ◦ ◦ ◦ ◦ ◦∖/∖/ ∖/∖/
• • • •

b)

Fig. 50. V-cycle and W-cycle on three and four levels
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Transfer Between Grids

The formulation (1.7) of the variational problem corresponding to a coarse-grid
correction requires moving from the grid S� to S�−1. The calculation uses the
matrix-vector form

A�−1y�−1 = b�−1

of the system of equations which gives the solution of the auxiliary problem (1.7)
on the coarser grid. The matrix A�−1, which is of smaller dimension than A�, and
the current right-hand side b�−1 have to be computed.

All multigrid methods for linear systems of equations involve formulas of the
form

A�−1 := rA�p,

b�−1 := rd� with d� := b� − A�u
�,k,1.

(1.9)

The matrix r = r� is called the restriction, and the matrix p = p� is called
the prolongation. The choice of p and r has a major influence on the rate of
convergence.

There is a canonical choice for p and r when using conforming Lagrange
elements. Then the spaces are nested, i.e., S�−1 ⊂ S�. In these cases we take p to
be the matrix representation of the injection j : S�−1 ↪→ S�, and r := pt to be the
matrix of the adjoint operator j∗ : S ′� ↪→ S ′�−1.

To express the right-hand side, let {ψ�
i }N�

i=1 be a basis for S�, and let {ψ�−1
j }N�−1

j=1
be a basis for S�−1. Since S�−1 ⊂ S�, there exists an N�−1 ×N� matrix r with

ψ�−1
j =

∑
i

rj iψ
�
i , j = 1, 2, . . . , N�−1. (1.10)

Consider again the weak formulation of the variational problem (1.7):

a(u�,k,1 + v, w) = (f, w)0 for w ∈ S�−1, (1.7)′

or12

a(v, w) = (d, w)0 for w ∈ S�−1.

12 The connection with the following calculation will be somewhat clearer if we make
use of a little (unneeded) formalism. It is important for nonconforming problems because
the bilinear forms on S� and S�−1 can be different. For the iteration at level �, the bilinear
form a(·, ·) is first defined on S�, and then passing to S�−1, we can formally include the
injection

a(jv, jw) = 〈j∗d, jw〉 for w ∈ S�−1.
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Fig. 51. Decomposition of a nodal basis function on the coarse grid (top) in
terms of nodal basis functions on the fine grid (bottom)

Here d is defined by (d, w)0 := (f, w)0 − a(u�,k,1, w). In particular, d = 0 if
u�,k,1 is a solution at level �. As in the derivation of (II.4.4), we successively insert
w = ψ�−1

j for j = 1, 2, . . . , N�−1, and immediately take into account (1.10):∑
i

rj i a(u�,k,1 + v, ψ�
i ) =

∑
i

rj i (f, ψ�
i )0, j = 1, 2, . . . N�−1.

We recall that u�,k,1 =∑
t x

�,k,1
t ψ�

t . Next we set v =∑
s y�−1

s ψ�−1
s , and return to

the basis of S�:∑
t

∑
i,s

rji a(ψ�
s , ψ�

i ) rst y
�−1
t =

∑
i

rj i

[
(f, ψ�

i )0 −
∑

t

a(ψ�
t , ψ�

i )x
�,k,1
t

]
,

j = 1, 2, . . . , N�−1. (1.11)

The expression in the square brackets is just the i-th component of the residue
d� defined in (1.9). Thus, (1.11) is the componentwise version of the equation
rA�r

t y�−1 = rd�, and (1.9) follows with p = rt .

For completeness we note that the vector representation of the approximate
solution after the coarse-grid correction (1.8) is

x�,k,2 = x�,k,1 + p y�−1. (1.12)

In practice we usually compute the prolongation and restriction matrices via
interpolation. Let {ψ�

i } be a nodal basis for S�. Then we have N� points z�
t with

ψ�
i (z�

t ) = δit , i, t = 1, 2, . . . , N�.

For every v ∈ S�, v =∑
i v(z�

i ) ψ�
i , and so ψ�−1

j =∑
i ψ�−1

j (z�
i ) ψ�

i for the basis
functions of S�−1. Comparing coefficients with (1.10), we get

rji = ψ�−1
j (z�

i ). (1.13)

This is a convenient description of the restriction matrix.
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The matrix r is simplest and easiest to find for variational problems in R
1;

see Fig. 51. For piecewise linear functions,

r =




1
2 1 1

2
1
2 1 1

2
1
2 1 1

2
. . .

. . .
. . .

1
2 1 1

2


 . (1.14)

For affine families of finite elements, we only need to compute the coefficients for
one (reference) element. In particular, for piecewise linear triangular elements,

rji =




1 if z�−1
j = z�

i ,
1
2 if z�

i is not a grid point of T�−1,
but is a neighbor in T� of z�−1

j ,
0 otherwise.

If the variables are numbered as in the model Example II.4.3 on a rectangular
grid, then the operators can be expressed as stencils. For the example we have

p =




1
2

1
2

1
2 1 1

2
1
2

1
2



∗

. (1.15)

Note that r is always a sparse matrix, and thus there is never a need to store a
full matrix. Frequently, it is given only in operator form, i.e., we have a procedure
for computing the vector rx� ∈ R

N�−1 for any given x� ∈ R
N� . The way in which

the nodes of the grid T�−1 are related to those of T�, and the way they are numbered,
are critical to the efficiency of an algorithm.

For completeness, we describe the multigrid algorithm once again, paying
more attention to the computational details. This formulation can also be used for
difference methods. Suppose we are given the smoothing S = S�, the restriction
r = r�, and the prolongation p = p�.

1.7 Multigrid Iteration MGM� (k-th cycle at level � ≥ 1 in matrix-vector form):

Let x�,k be a given approximation in S�.
1. Pre-Smoothing. Carry out ν1 smoothing steps:

x�,k,1 = Sν1x�,k. (1.16)

2. Coarse-Grid Correction. Compute the residue d� = b� − A�x
�,k,1 and the

restriction b�−1 = rd�. Let

A�−1ŷ
�−1 = b�−1.
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If � = 1, find the solution, and set y�−1 = ŷ�−1.

If � > 1, compute an approximation y�−1 of ŷ�−1 by carrying out µ steps of
MGM�−1 with the starting value x�−1,0 = 0.
Set

x�,k,2 = x�,k,1 + p y�−1.

3. Post-Smoothing. Carry out ν2 smoothing steps

x�,k,3 = Sν2x�,k,2,

and set x�,k+1 = x�,k,3.

The development of the multigrid method for nonconforming elements and
for saddle point methods is more complicated. For nonconforming elements, usu-
ally S2h �⊂ Sh. Then the prolongation and restriction operators have to be specially
computed. These elements have frequently been used as a model for the noncon-
forming P1 element; see Brenner [1989] and Braess and Verfürth [1990]. On the
other hand, for mixed methods, it is not clear at the outset how to select suitable
smoothing operators. Previously, Jacobi smoothing was frequently applied to the
squared system, as, e.g., in Verfürth [1988]. More recently, so-called transforming
smoothing has provided a completely different approach, see Brandt and Dinar
[1979], Wittum [1989], Braess and Sarazin [1997]. Moreover Bank, Welfert, and
Yserentant [1990] propose a smoother which is based on the Uzawa algorithm.

Problems

1.8 Suppose we apply the Jacobi method in Example 1.1 with ω = 2
3 . With n = 32,

what frequencies are damped by less than a factor of 2 after ten iterations?

1.9 Suppose we are given a series of data points {yi}2n+1
i=1 which are the values of

a function at equally spaced grid points, but suppose we only need data on a grid
with double the mesh size. Suppose that in carrying out the elimination process we
want to eliminate as much measurement error as possible. Which of the following
three procedures does the best job of smoothing (here i = 1, 2, . . . , n):
(a) zi = y2i ,

(b) zi = 1
2 (y2i−1 + y2i+1),

(c) zi = 1
4 (y2i−1 + 2y2i + y2i+1)?

In performing the analysis, express the values cyclically, and compare the Fourier
coefficients of {zi} and {yi}.
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1.10 Write Algorithm 1.7 as a formal procedure MGM�(A�, b�, x
�,k) in PASCAL

or some other programming language.

1.11 What is the (one-dimensional) stencil of the restriction operator with the
matrix representation (1.14)?

1.12 Dividing the squares into triangles in the model Example II.4.3 results in
an unsymmetric stencil for the prolongation in (1.15). The symmetric form

p =




1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4



∗

(1.17)

appears more natural. What are the stencils for the restriction operators which arise
from (1.15) and (1.17) via the matrix equation r = pt?
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§ 2. Convergence of Multigrid Methods

A multigrid method is said to have multigrid convergence if the error is reduced
by a factor of at least ρ < 1 in each iteration cycle, where ρ is independent of h.
In this case the convergence as h → 0 cannot be arbitrarily slow, in contrast to
classical iterative methods. The factor ρ is called the convergence rate. Clearly, it
is a measure of the speed of convergence.

Independently from Fedorenko [1961], Hackbusch [1976] and Nicolaides
[1977] also presented convergence proofs. Here we make use of an idea employed
by Bank and Dupont [1981] in their proof. A general framework due to Hackbusch
[1985] admits to break convergence proofs into two separate parts. In this way they
become very transparent. A smoothing property

‖Sνvh‖X ≤ c h−β 1

νγ
‖vh‖Y (2.1)

is combined with an approximation property

‖vh − u2h‖Y ≤ c hβ‖vh‖X, (2.2)

where u2h is the coarse-grid approximation of vh. Then for large ν, the product
of the two factors is smaller than 1 and independent of h. In particular, it follows
that the convergence rate tends to zero for large numbers of smoothing steps.

The various proofs differ in the choice of the norms ‖ · ‖X and ‖ · ‖Y , where
‖ · ‖X generates a stronger topology than ‖ · ‖Y . The pair (2.1) and (2.2) have to fit
together in exactly the same way as the approximation property (II.6.20) and the
inverse estimate (II.6.21). It is clear that we need two norms, or more generally
two measures, for specifying the error. In addition to measuring the size of the
error (w.r.t. whichever norm), we also have to measure the smoothness of the error
function.

It is the goal of this section to establish convergence of the two-level iteration
under the following hypotheses:

2.1 Hypotheses.
(1) The boundary-value problem is H 1- or H 1

0 -elliptic.
(2) The boundary-value problem is H 2-regular.
(3) The spaces S� belong to a family of conforming finite elements with uniform

triangulations, and the spaces are nested, i.e., S�−1 ⊂ S�.
(4) We use nodal bases.
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For most of our discussion we can get by with weaker hypotheses, but in that
case the proofs become more technical. For example, H 1+α-regularity with α > 0
would suffice for this section; see Problem 2.12.

There is a different theory due to Bramble, Pasciak, Wang, and Xu [1991]
and Xu [1992]. Multigrid algorithms are connected with a decomposition of finite
element spaces. The space decomposition method has the advantage that it does
not require regularity assumptions. On the other hand, it does not model the fact
that the convergence rate is improved by increasing the number of smoothing steps
and it applies only to the energy norm. Since the arguments of the theory are far
away from the finite element theory in this book, we restrict ourselves in §5 to the
motivation and the proof of the central tool.

We will also not discuss quantitative results on the convergence rate obtained
by Fourier methods [Brandt 1977, Ries, Trottenberg, and Winter 1983].

Discrete Norms

So far, the quality of the approximation of a function by finite elements has been
expressed in terms of higher Sobolev norms. This no longer works in dealing with
the approximation of a function vh ∈ Sh by a function in the space S2h on the coarse
grid. In particular, if Sh consists of C0 elements, then in general Sh �⊂ H 2(�), and
we cannot employ estimates in the H 2 norm.

This leads us to assign another Hilbert scale to the Nh-dimensional space Sh.
The new scale should be connected with the scale of the Sobolev spaces as closely
as possible. – It is easiest to discuss how to do this in the following abstract form.

For a symmetric positive definite matrix A, the powers As are well defined
for all values of s, and not just for integers. Thus, we go back to the spectral
decomposition. The matrix A has a complete system of orthonormal eigenvectors
{zi}Ni=1:

Azi = λizi, i = 1, 2, . . . , N,

(zi, zj ) = δij , i, j = 1, 2, . . . , N.

Every vector x ∈ R
N can be written in the form

x =
N∑

i=1

cizi, (2.3)

and
Asx =

∑
i

ciλ
s
i zi (2.4)

is well defined.
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2.2 Definition. Let A be a symmetric positive definite N×N matrix, and suppose
s ∈ R. Then

|||x|||s := (x, Asx)1/2 (2.5)

defines a norm, where (·, ·) is the Euclidean scalar product in R
N .

Using (2.3), (2.4), and the orthogonality relation, we have

(x, Asx) = (∑
k

ckzk,
∑

i

ciλ
s
i zi

) =∑
i

λs
i c

2
i .

Thus the norm (2.5) has the following alternative representation:

|||x|||s =
( N∑

i=1

λs
i |ci |2

)1/2 = ‖As/2x‖. (2.6)

2.3 Properties of the Norm (2.5).

(1) Connection with the Euclidean norm: |||x|||0 = ‖x‖, where ‖·‖ is the Euclidean
norm.

(2) Logarithmic convexity: For r, t ∈ R and s = 1
2 (r + t),

|||x|||s ≤ |||x|||1/2
r · |||x|||1/2

t ,

|(x, Asy)| ≤ |||x|||r · |||y|||t .
Indeed, with the help of the Cauchy–Schwarz inequality, it follows that

|(x, Asy)| = |(Ar/2x, At/2y)| ≤ ‖Ar/2x‖ ‖At/2y‖ = |||x|||r |||y|||t .

This is the second inequality. The first follows if we choose x = y. Taking the
logarithm of both sides and using the continuity, we see that the function

s �−→ log |||x|||s
is convex provided that x �= 0.

(3) Monotonicity: Let α be the constant of ellipticity, i.e., (x, Ax) ≥ α(x, x). Then

α−t/2|||x|||t ≥ α−s/2|||x|||s , for t ≥ s.

For the special case α = 1, this follows immediately from (2.6) and λi ≥ α = 1.
Otherwise we have the monotonicity property for the normalized matrix α−1A

which implies the monotonicity as stated for A.

(4) Shift theorem. The solution of Ax = b satisfies

|||x|||s+2 = |||b|||s
for all s ∈ R. This follows from (x, As+2x) = (Ax, AsAx) = (b, Asb).

Using the scale defined with (2.5), we immediately get the following property
of Richardson relaxation without any additional hypotheses. It can be thought of
as a smoothing property, as we shall see later.
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2.4 Lemma. Let ω ≥ λmax(A), s ∈ R and t > 0, and consider the iteration

xν+1 = (1 − 1

ω
A)xν.

Then
|||xν |||s+t ≤ cν−t/2|||x0|||s ,

where c = (
tω
2e

)t/2
.

Proof. If x0 is expanded as in (2.3), then xν = ∑
i (1 − λi/ω)νcizi , and since

0 < λi/ω ≤ 1 we have

|||xν |||2s+t =
∑

i

λs+t
i

[
(1 − λi

ω
)ν ci

]2
= ωt

∑
i

(λi

ω

)t (
1 − λi

ω

)2ν
λs

i c
2
i

≤ ωt max
0≤ζ≤1

{ζ t (1 − ζ )2ν}
∑

i

λs
i c

2
i . (2.7)

To compute the maximum appearing in (2.7), we examine the function ζ(1− ζ )p

in the interval [0,1] for p > 0. It attains its maximum at ζ = 1/(p + 1). Thus,

ζ(1 − ζ )p ≤ 1

p + 1
(

p

p + 1
)p = 1

p

1

(1 + 1
p
)p+1

≤ 1

p

1

e

in [0,1]. With p = 2ν/t , it follows that max{ζ t (1 − t)2ν} ≤ (t/[2eν])t . Since the
sum appearing in (2.7) is exactly |||x0|||2s , the proof is complete.

The assertion of Lemma 2.4 is independent of the choice of basis. For the
following results, this happens only under some additional hypotheses.

Connection with the Sobolev Norm

In Example 1.1, smooth eigenfunctions are associated with the small eigenvalues
of A, while eigenfunctions with strongly oscillating terms are associated with the
large eigenvalues. This fact naturally depends on the choice of basis. As we will
see, this holds in general if we select the nodal basis for affine families, because
in this case, the norm ||| · |||0 is equivalent to the Sobolev norm ‖ · ‖0,�.

2.5 Lemma. Let Th be a family of uniform partitions of � ⊂ R
n, and suppose Sh

belongs to an affine family of finite elements. Suppose we normalize the functions
in the nodal basis so that

ψi(zj ) = h−n/2δij . (2.8)
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Fig. 52. Connection between the scales defined by discrete norms and Sobolev
norms

Then for vh ∈ Sh, |||vh|||0 = [hn
∑

i vh(zi)
2]1/2, which is just the Euclidean norm

of the coefficient vector relative to the basis {ψi}. Moreover, there exists a constant
c independent of h such that

c−1‖vh‖0,� ≤ |||vh|||0 ≤ c‖vh‖0,�. (2.9)

To establish (2.9), we make use of Problem II.6.12: On the reference element
Tref ⊂ R

n, ‖p‖2
0,Tref

and
∑

i p(zi)
2 are equivalent. Now from the properties of

affine transformations, we conclude that for every T ∈ Th, the quantities ‖vh‖2
0,T

and hn
∑

i vh(zi)
2 are equivalent, where the sum runs over the nodes belonging to

T . The factor hn enters through the transformation of the domain. Summing over
the elements gives (2.9).

In practice, we always normalize the basis functions so that ψi(zj ) = δij .
We can ignore the difference in normalization factors since there is no essential
change in the following results if the system matrix is multiplied by a constant
factor.

We now further restrict ourselves to second order elliptic problems. For vh ∈
Sh, we define |||vh|||s by associating with vh its coefficients relative to a nodal basis
(2.8), and define the scale according to Definition 2.2 using the stiffness matrix
Ah. Then in particular,

|||vh|||21 = (vh, Ahvh) = a(vh, vh),

and because of the ellipticity of the bilinear form a, it follows that

c−1‖vh‖1,� ≤ |||vh|||1 ≤ c‖vh‖1,�. (2.10)

More precisely, every function vh ∈ Sh is identified with its coefficient vector
relative to the nodal basis. This makes sense since ‖ ·‖s,� and ||| · |||s are equivalent
for s = 0 and s = 1 by (2.9) and (2.10), respectively. For s > 1, this is no longer
the case (see Fig. 52).

As a consequence of the equivalence, we get estimates of the largest and
smallest eigenvalues, as well as the condition number of the stiffness matrix.
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2.6 Lemma. Suppose that the hypotheses of Lemma 2.5 hold. Then there is a
constant c independent of h such that

λmin(Ah) ≥ c−1, λmax(Ah) ≤ ch−2, κ(Ah) ≤ c2h−2 (2.11)

where Ah is the system matrix corresponding to any H 1- or H 1
0 -elliptic problem.

Proof. For positive definite matrices, the eigenvalues can be estimated in terms
of the Rayleigh quotients. Using the inverse estimate II.6.8, we get ‖vh‖1,� ≤
ch−1‖vh‖0,�, and

λmax(Ah) = sup
x

(x, Ahx)

(x, x)
= sup

vh∈Sh

|||vh|||21
|||vh|||20

≤ c sup
vh∈Sh

‖vh‖2
1,�

‖vh‖2
0,�

≤ ch−2.

Similarly, using ‖vh‖1,� ≥ ‖vh‖0,�, we get

λmin(Ah) = inf
x

(x, Ahx)

(x, x)
= inf

vh∈Sh

|||vh|||21
|||vh|||20

≥ c−1 inf
vh∈Sh

‖vh‖2
1,�

‖vh‖2
0,�

≥ c−1.

Finally, the third assertion follows from κ(Ah) = λmax(Ah)/λmin(Ah).

These estimates are sharp. The exponent of h−2 in (2.11) cannot be improved,
since by Remark II.6.10, there exist functions in Sh for which ‖vh‖1 ≈ ch−1‖vh‖0.

We also note that by the proof of the lemma, for every eigenfunction φh,
the ratio ‖φh‖2

1/‖φh‖2
0 gives the corresponding eigenvalue up to a constant. This

shows that the oscillating eigenfunctions correspond to the large eigenvalues. In
this connection, the situation is exactly the same as for the model Example 1.1.

Using Lemma 2.4 for s = 0, t = 2 and substituting the estimate (2.11) for
λmax, we immediately get

2.7 Corollary. (Smoothing Property) The iteration xν+1 = (1 − 1
ω
Ah)x

ν with
ω = λmax(Ah) satisfies

|||xν |||2 ≤ c

ν
h−2‖x0‖0. (2.12)

Approximation Property

The quality of the coarse-grid correction in S2h can be expressed in terms of the
||| · |||2 norm, and the results resemble those in Ch. II, §7 if we replace the Sobolev
norm ‖ · ‖2,� by ||| · |||2. The essential tool here is the duality argument of Aubin–
Nitsche. By the approximation results of Ch. II, §6, in estimating the ‖ · ‖1 norm
of the error in terms of the ‖·‖2 norm, we gain one power of h. In Corollary II.7.7,
this gain was “propagated downwards” on the right-hand branch of the scale in
Fig. 52. Specifically, it was shown that the same improvement occurs in estimating
the ‖·‖0 norm by the ‖·‖1 norm. We now carry out the same process in the reverse
direction, moving to the scale with the discrete norm, see Braess and Hackbusch
[1983].
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2.8 Lemma. Given vh ∈ Sh, let u2h be the solution of the weak equation

a(vh − u2h, w) = 0 for all w ∈ S2h.

In addition, let � be convex or have a smooth boundary. Then

‖vh − u2h‖1,� ≤ c 2h|||vh|||2, (2.13)

‖vh − u2h‖0,� ≤ c 2h‖vh − u2h‖1,�. (2.14)

Proof. By hypothesis, the problem is H 2-regular, and by Corollary II.7.7, (2.14)
holds. In addition, recalling property 2.3(2), and a well-known argument from the
proof of Céa’s lemma, we have

α‖vh − u2h‖2
1 ≤ a(vh − u2h, vh − u2h) = a(vh − u2h, vh) = (vh − u2h, Ahvh)

≤ |||vh − u2h|||0 |||vh|||2 ≤ c1‖vh − u2h‖0 |||vh|||2
≤ c1c 2h ‖vh − u2h‖1 |||vh|||2 .

Dividing by ‖vh − u2h‖2
1 , we get (2.13).

Second proof. Let g ∈ Sh be defined by (g, w)0,� = a(vh, w) for all w ∈ Sh.

Consider the auxiliary variational problem. Find z ∈ H 1
0 such that

a(z, w) = (g, w)0,� for all w ∈ H 1
0 (�).

Obviously, vh and u2h are the finite element approximations of z in Sh an S2h,
respectively. From the H 2-regularity we conclude that

‖vh − u2h‖0,� ≤ ‖vh − z‖0,� + ‖z− u2h‖0,� ≤ ch2‖u‖2,� ≤ ch2‖g‖0,�.

On the other hand, we have (Ahvh, w) = a(vh, w) = (g, w)0,� for w ∈ Sh, and
the equivalence of the Euclidean norm and the L2-norm yields

‖g‖2
0,� = (Ahvh, g) ≤ ‖Ahvh‖ ‖g‖ ≤ |||vh|||2 c‖g‖0,�.

After dividing by ‖g‖0,� and inserting the bound of ‖g‖0,� into the preceding
estimate, we have

‖vh − u2h‖0,� ≤ ch2|||vh|||2
which is the desired estimate.

We note that the second proof can be extended more easily to the noncon-
forming case, since v and u2h are separated early in the proof by the application
of the triangle inequality; cf. Braess and Verfürth [1992], Brenner [1991], and the
axiomatic considerations by Braess, Dryja, and Hackbusch [1999].
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Convergence Proof for the Two-Grid Method

The last two lemmas show that the smoothing property and the approximation
property given in (2.1) and (2.2) in an abstract (general) form hold with the choices

‖ · ‖X = ||| · |||2 , ‖ · ‖Y = ||| · |||0 , β = 2, and γ = 1. (2.15)

The following proof makes clear the fundamental importance of the properties
(2.1) and (2.2). To keep the formalism from obscuring the key ideas, we give a
concrete proof. – Note that for the two-grid method, the finer grid corresponds to
the level � = 1, where u1 = u�1 is the desired solution.

2.9 Convergence Theorem. Under Hypotheses 2.1, the two-grid method using
Jacobi relaxation (with λmax(Ah) ≤ ω ≤ c′ λmax(Ah)) satisfies

‖u1,k+1 − u1‖0,� ≤ c

ν1
‖u1,k − u1‖0,� ,

where c is a constant independent of h, and ν1 is the number of pre-smoothings.

Proof. For smoothing with Richardson relaxation,

u1,k,1 − u1 = (1 − 1

ω
Ah)

ν1(u1,k − u1).

By Lemma 2.6,

|||u1,k,1 − u1|||2 ≤ c

ν1
h−2‖u1,k − u1‖0,�. (2.16)

By definition of the coarse-grid correction, u1,k,2 = u1,k,1 + u2h is characterized
by

a(u1,k,1 + u2h, w) = (f, w)0,� for all w ∈ S2h.

Moreover, the solution on level 1 satisfies the equation a(u1, w) = (f, w)0,� for
w ∈ Sh. Since S2h ⊂ Sh, subtracting the two equations gives

a(u1,k,1 − u1 + u2h, w) = 0 for all w ∈ S2h.

Now applying Lemma 2.8 to v := u1,k,1 − u1, we get

‖u1,k,2 − u1‖0.� ≤ c h2|||u1,k,1 − u1|||2. (2.17)

We can deal with the post-smoothing in a very rough way. Clearly, |||(1 −
1
ω
Ah)x|||s ≤ |||x|||s . This implies that |||u1,k,3 − u1|||0 ≤ |||u1,k,2 − u1|||0, and

because of the equivalence of the norms, we have

‖u1,k,3 − u1‖0,� ≤ c‖u1,k,2 − u1‖0,�. (2.18)

Now combining (2.16)–(2.18) and taking into consideration u1,k+1 = u1,k,3, we
get the assertion.
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An Alternative Short Proof

If we are content with a convergence rate which is O(ν−1/2), there is a much
shorter proof. Then we do not need to introduce the scale of discrete norms (2.3),
but the smoothing property of the matrix operations is less transparent without
this scale. We refer to that proof for completeness; we need only rearrange some
results known from the previous investigation.

The smoothing property and the approximation property also hold with

‖ · ‖X = ‖ · ‖1, ‖ · ‖Y = ‖ · ‖0, β = 1, and γ = 1

2
.

Indeed, the approximation property (2.13)

‖v − u2h‖0 ≤ ch‖v − u2h‖1 ≤ ch‖v‖1

is immediate from the Aubin–Nitsche lemma. Moreover, when we apply Lemma
2.4 to the case s = 0, s + t = 1, we may prove the smoothing property

‖xν‖1 ≤ c ν−1/2‖x0‖0

without reference to the discrete norms. The rest of proof proceeds as for Theorem
2.9.

Some Variants

It is easy to see the connection with the somewhat different terminology of Hack-
busch [1985]. The matrix representation of the two-grid iteration is

u1,k+1 − u1 = M(u1,k − u1) (2.19)

with
M = Sν2(I − pA−1

2h rAh)Sν1

= Sν2(A−1
h − pA−1

2h r)AhSν1 .
(2.20)

In particular, pA−1
2h rAh describes the coarse-grid correction for a two-grid method.

Writing the smoothness and approximation properties in the form

‖AhSν‖ ≤ c

ν
h−2, ‖(A−1

h − pA−1
2h r)‖ ≤ ch2 (2.21)

and using ‖S‖ ≤ 1, we get the contraction property ‖M‖ ≤ c/ν < 1 for suffi-
ciently large ν. Since |||Ax|||0 = |||x|||2, the smoothing and approximation proper-
ties follow from (2.21) with the same norms and parameters as in (2.15).

The smoothing property is usually established as in Lemma 2.4 whenever the
convergence of the multigrid method is carried out in Hilbert spaces. The proof of
convergence w.r.t. the maximum norm by Reusken [1992] is different.
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2.10 Reusken’s Lemma. Let ‖ · ‖ be a matrix norm which is associated with a
vector norm. Moreover, assume that B = I −G−1A satisfies

‖B‖ ≤ 1. (2.22)

Then for S = 1
2 (I + B),

‖ASν‖ ≤
√

8

πν
‖G‖.

Thus, the smoothing property is obtained if we can find a matrix G such
that (2.22) holds and ‖G‖ can be estimated by the same power of h as ‖A‖. It is
interesting to note that in view of (2.22), B almost defines a convergent iterative
process. However, for the purposes of smoothing, we take the average with the
old vector. Note that ASν = 2−νG(I − B)(I + B)ν . The proof makes use of the

formula ‖(I−B)(I+B)ν‖ ≤ 2ν+1
√

2
πν

, which in turn is verified via the Binomial

equation.

Finally, we note that Lemma 2.8 cannot be applied to nonconforming elements
or to nonnested spaces (i.e. if S2h �⊂ Sh). In order to establish the approximation
property in these cases, the duality argument has to be modified; see Brenner
[1989], Braess and Verfürth [1990]. Let rh ∈ Sh be a representation of the residual
defined by (rh, w)0 = 〈d, w〉 := (f, w)0−a(u�,k,1, w) for w ∈ Sh. Then u�−u�,k,1

and v�−1 are the finite element approximations in S� and S�−1, respectively, of

a(z, w) = (rh, w)0 for all w ∈ H 1
0 (�). (2.23)

Note that ‖u�−v�−1−u�,k,1‖ ≤ ‖u�−u�,k,1−z‖+‖v�−1−z‖, and the terms on the
right-hand side are obtained from standard error estimates. The duality technique
is needed to get sharp estimates. The representation of the residual in terms of
rh ∈ S� is chosen in order to use the discrete scale.

Problems

2.11 Show that for the scale of the Sobolev spaces, the analog

‖v‖2
s,� ≤ ‖v‖s−1,� ‖v‖s+1,�

of (2.5) holds for s = 0 and s = 1.

2.12 Hypothesis 2.1 requires H 2-regularity. For many problems with reentrant
corners, we only have H 3/2-regularity, and instead of (2.13),

‖v − u2h‖1,� ≤ c h1/2 |||v|||3/2.

Verify the smoothing and approximation properties for ‖ · ‖X = ||| · |||3/2 and
‖ · ‖Y = ||| · |||1/2.
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2.13 The iteration in the two-grid algorithm 1.3 is a linear process with the
iteration matrix M given in (2.20). Show that the spectral radius of M depends
only on the sum ν1 + ν2, and not on how many a priori or a posteriori smoothings
are carried out. – Does this also hold for several levels?

2.14 For every ω ≤ 1/λmax, the Jacobi iteration (1.4) leads to smoothing. Show
that for ω = 1.9/λmax, it may converge faster as a stand-alone iteration [if κ(A) >

20], but is less effective as a smoother.

2.15 Let A be positive definite, and suppose B = (I +A)−1A. Show that in the
scale generated by A,

|||Bx|||s ≤ |||x|||s
for all s ∈ R.

2.16 Suppose that for s = 2, two positive definite matrices A and B generate
equivalent norms, i.e. norms which differ by at most a factor c. [For s = 0 they are
trivially equivalent.] Show that the norms are equivalent for all s with 0 < s < 2.
– For s > 2 the assertion does not hold in general.

2.17 The smoothing property (2.12) for the Richardson iteration can be general-
ized to the solution of the saddle point problem(

A BT

B

)(
u

p

)
=
(

f

0

)
.

There is an iteration such that the successive approximants stay in kerB. Let
ω ≥ λmax(A) and consider the iteration

(
uν+1

pν+1

)
=
(

uν

pν

)
+
(

ωI BT

B

)−1 (
f − Auν − BT pν

−Buν

)
(2.24)

for ν = 0, 1, . . . Let Q be the projector Q := I − BT (BBT )−1B and M :=
Q(1 − 1

ω
A)Q. Show the following properties:

(1) Buν = 0 for ν > 0.
(2) uν+1 and pν+1 depend only on uν but do not depend on pν .
(3) uν+1 − u = Q(I − 1

ω
A) (uν − u).

(4) A(uν − u)+ BT (pν − u) = ω(I − 1
ω
A)M(I −M)ν−2(I − 1

ω
A) (u0 − u).

Since ‖(I − 1
ω
A)u‖ ≤ ‖u‖ and the spectrum of M is contained in [−1,+1], the

last equation provides the smoothing property for the iteration (2.24).

The application of (2.24) to a multigrid algorithm for the Stokes problem was
proposed by Braess and Sarazin [1996]; see also Zulehner [2000].
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§ 3. Convergence for Several Levels

In the convergence theorem in the previous section we assumed that the coarse-
grid correction was computed exactly. For algorithms using more than two levels,
this is no longer the case. In this case we can think of the multigrid algorithm as
a perturbed two-grid algorithm. It suffices to estimate the size of the perturbation;
we don’t need to know its details.

The goal of this section is to compute the convergence rate ρ� for the algorithm
with � changes of grid levels, i.e., with �+ 1 levels:

‖u�,k+1 − u�‖ ≤ ρ� ‖u�,k − u�‖. (3.1)

Here u� is the solution in S�. We assume that we know the convergence rate ρ1

for the two-grid method. We will find the rate ρ� from the rate ρ1 by induction.
First, we let ‖ · ‖ be an arbitrary norm.

Later, we sharpen the results by specializing to the energy norm, and in par-
ticular obtain convergence of the multigrid method already for a single smoothing
step. Thus, we can dispense with the hypothesis that sufficiently many smoothing
steps are carried out.

A Recurrence Formula for the W-Cycle

For smoothing with the Richardson method, clearly

‖u�,k,1 − u�‖ ≤ ‖u�,k − u�‖, (3.2)

assuming an underlying discrete norm ‖ · ‖ := ||| · |||s . In the following, we will al-
ways assume that (3.2) is satisfied, since this property also holds in other important
cases.

We compare the result u�,k,2 of the actual coarse-grid correction with the
exact coarse-grid correction û�,k,2. By (3.1), the two-grid rate is ρ1, i.e.,

‖û�,k,2 − u�‖ ≤ ρ1‖u�,k − u�‖. (3.3)

Together with (3.2), the triangle inequality yields

‖u�,k,1 − û�,k,2‖ ≤ (1 + ρ1) ‖u�,k − u�‖. (3.4)

The left-hand side of (3.4) gives the size of the coarse-grid correction with exact
computations. The real correction differs from the exact one by the error at level
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� − 1. Thus, by the induction hypothesis, the relative error is at most ρ
µ
�−1. Here

µ = 1 for the V-cycle, and µ = 2 for the W-cycle, as usual. Hence,

‖u�,k,2 − û�,k,2‖ ≤ ρ
µ
�−1 ‖u�,k,1 − û�,k,2‖. (3.5)

We now substitute (3.4) into (3.5). Using (3.3), we see that for the W-cycle,

‖u�,k,2 − u�‖ ≤ [ρ1 + ρ2
�−1(1 + ρ1)] ‖u�,k − u�‖.

Without post-smoothing, we have u�,k+1 = u�,k,2, and (3.1) holds with rate ρ�,
which can be estimated by (3.6).

3.1 Recurrence Formula. For the multigrid method using the W-cycle, at level
� ≥ 2 we have

ρ� ≤ ρ1 + ρ2
�−1(1 + ρ1). (3.6)

Formula (3.6) leads to an estimate of the convergence rate independent of �,
provided ρ1 is sufficiently small.

3.2 Theorem. Suppose the two-grid rate is ρ1 ≤ 1
5 . Then for the W-cycle,

ρ� ≤ 5

3
ρ1 ≤ 1

3
, for � = 2, 3, ... (3.7)

Proof. For � = 1 the assertion is clear. It follows from the assertion for �− 1 and
the recurrence formula (3.6) that

ρ� ≤ ρ1 + 1

3
(
5

3
ρ1) (1 + 1

5
) = 5

3
ρ1 ≤ 1

3
.

By Theorem 2.9, the convergence rate for the two-grid method is indeed
smaller than 1/5 for sufficiently many smoothing steps. Now Theorem 3.2 implies
the convergence of the multigrid method under the same hypothesis.

An Improvement for the Energy Norm

When referring to the energy norm, the recurrence formula (3.6) for the conver-
gence rate can be replaced by a significantly better one. With respect to this norm,
the exact coarse-grid correction yields the orthogonal projection of u�,k,1−u� onto
the subspace S�−1. The error û�,k,2 − u� after the exact coarse-grid correction is
therefore orthogonal to S�−1. In particular, it is then orthogonal to u�,k,1 − û�,k,2

and to u�,k,2 − û�,k,2 (see Fig. 53).

Thus, the estimate (3.4) can be replaced by

‖u�,k,1 − û�,k,2‖2 = ‖u�,k,1 − u�‖2 − ‖û�,k,2 − u�‖2.
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Fig. 53. The coarse-grid correction as an orthogonal projection

In addition, it follows from the orthogonality and (3.5) that

‖u�,k,2 − u�‖2 = ‖û�,k,2 − u�‖2 + ‖u�,k,2 − û�,k,2‖2

≤ ‖û�,k,2 − u�‖2 + ρ
2µ
�−1‖u�,k,1 − û�,k,2‖2

= (1 − ρ
2µ
�−1)‖û�,k,2 − u�‖2 + ρ

2µ
�−1‖u�,k,1 − u�‖2. (3.8)

Now we make use of our knowledge of the two-grid rate. By (3.2),

‖u�,k,2 − u�‖2 ≤ [(1 − ρ
2µ
�−1)ρ

2
1 + ρ

2µ
�−1]‖u�,k − u�‖2.

Thus, (3.1) holds with a rate which can be estimated by (3.9).

3.3 A Recurrence Formula. The multigrid method with µ = 1 for the V-cycle
and µ = 2 for the W-cycle satisfies

ρ2
� ≤ ρ2

1 + ρ
2µ
�−1(1 − ρ2

1 ) (3.9)

at level � ≥ 2 with respect to the energy norm.

3.4 Theorem. If the two-grid rate with respect to the energy norm satisfies ρ1 ≤ 1
2 ,

then

ρ� ≤ 6

5
ρ1 ≤ 0.6, for � = 2, 3, . . . (3.10)

for the W-cycle.
Proof. For � = 1 there is nothing to prove. By the assertion for � − 1, it follows
from the recurrence formula (3.9) that

ρ2
� ≤ ρ2

1 + (
6

5
ρ1)

4(1 − ρ2
1 ) = ρ2

1 {1 + (
6

5
)4[ρ2

1 (1 − ρ2
1 )]}

≤ ρ2
1 {1 + (

6

5
)4 1

4

3

4
} ≤ 36

25
ρ2

1 ≤ 0.36.

Taking the square root, we get the desired result.
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The recurrence formula (3.9) gives unsatisfactory results for the V-cycle, as
can be seen from the rapidly growing values of ρ� in Table 8.

Table 8. Convergence rates ρ� as in (3.9) for ρ1 = 1/5.

� = 1 2 3 4 5 sup� ρ�

W-cycle 0.2 0.2038 0.2041 0.2042 0.2042 0.2042

V-cycle 0.2 0.280 0.340 0.389 0.430 1.0

The Convergence Proof for the V-cycle

It is possible to establish a bound smaller than 1 for the convergence rate for the
V-cycle, independent of the number of levels. To this end, we need a refinement
of the method of proof which has an additional advantage: it shows that just one
smoothing step suffices. Of course, the result also applies to the W-cycle.

The analysis of the two-grid method in §2 was based in essence on the scale
of ||| · |||s norms for s in [0, 2]. Since we intend to make use of the energy norm,
in the following we have to stay between s = 1 and s = 2. This halves the span
between the maximal and minimal s. Here we present a simplified version of the
original proof of Braess and Hackbusch [1983], although we obviously get weaker
results with larger numbers of smoothing steps. (See, however, the remark at the
end of this section.)

As before, we write ‖ · ‖ instead of ||| · |||1 for the energy norm.

3.5 Convergence Theorem. Under Hypotheses 2.1, the multigrid method with
V-cycles or W-cycles satisfies

‖u�,k+1 − u�‖ ≤ ρ� ‖u�,k − u�‖,
ρ� ≤ ρ∞ := ( c

c + 2ν

)1/2
, � = 0, 1, 2, . . . , (3.11)

w.r.t. the energy norm, assuming that Jacobi relaxation with λmax(A) ≤ ω ≤
c0 λmax(A) is performed. Here c is a constant independent of � and ν.

Before presenting the proof, we establish some lemmas. For abbreviation, let

wm := u�,k,m − u�, m = 0, 1, 2, (3.12)

and define ŵ2 in a similar way.

We now introduce a measure of the smoothness of the functions in the finite
element space Sh:

β = β(vh) :=

 1 − λ−1

max(A)
|||vh|||22
|||vh|||21

, if vh �= 0,

0, if vh = 0.

(3.13)
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Clearly, 0 ≤ β < 1. Smooth functions correspond to a number β near 1, and func-
tions with a large oscillating part correspond to a small β. The factor β determines
the amount of improvement for each smoothing step. Since the improvement al-
ways becomes successively smaller during the smoothing process, the size of the
factor β after smoothing is decisive.

3.6 Lemma. Smoothing using Jacobi relaxation satisfies

‖Sνv‖ ≤ [β(Sνv)]ν ‖v‖ for all v ∈ Sh.

Proof. Let v = ∑
i ciφi , where φ1, φ2, . . . are orthonormal eigenfunctions of A.

In addition, let µi = 1 − λi/λmax. By Hölder’s inequality,∑
i

λiµ
2ν
i |ci |2 ≤ (

∑
i

λiµ
2ν+1
i |ci |2) 2ν

2ν+1 (
∑

i

λi |ci |2) 1
2ν+1 .

In view of (2.6), this inequality is equivalent to

‖Sνv‖2ν+1 ≤ ‖Sν+ 1
2 v‖2ν ‖v‖. (3.14)

We abbreviate w := Sνv, and divide (3.14) by ‖w‖2ν . This gives

‖Sνv‖ ≤
(‖S1/2w‖

‖w‖
)2ν

‖v‖. (3.15)

Since S is self-adjoint and commutes with A, we also have

‖S1/2w‖2 = (S1/2w, AS1/2w) = (w, ASw)

= (w, Aw)− 1

λmax
(w, A2w) = β(w) ‖w‖2.

The assertion follows after substitution in (3.15).

The quality of the coarse-grid correction can also be estimated in terms of
the parameter β.

3.7 Lemma. For the exact coarse-grid correction, we have

‖ŵ2‖ ≤ min{c1 λ−1/2
max |||w1|||2, ‖w1‖}

= min{c1

√
1 − β(w1), 1} ‖w1‖. (3.16)

Proof. The inequality (2.13) asserts that ‖ŵ2‖ ≤ ch |||w1|||2. Then using λmax ≤
ch−2, we can eliminate the factor h to get the bound c1λ

−1/2
max |||w1|||2. Moreover,

the energy norm of the error is not increased by the coarse-grid correction, and the
first assertion is proved. If we use (3.13) to eliminate |||w1|||2, we get the second
assertion.

The following formula is of central importance for the proof of the conver-
gence theorem:
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3.8 Recurrence Formula. Suppose the hypotheses of Theorem 3.5 are satisfied.
Then

ρ2
� ≤ max

0≤β≤1
β2ν [ρ2µ

�−1 + (1 − ρ
2µ
�−1) min{1, c2

1(1 − β)}]. (3.17)

Here µ = 1 for the V-cycle and µ = 2 for the W-cycle, respectively, and c1 is the
constant in Lemma 3.7.

Proof. By Lemma 3.6,

‖u�,k,1 − u�‖ ≤ βν‖u�,k − u�‖,

where β = β(u�,k,1 − u�). By Lemma 3.7 with the same β, we have

‖û�,k,2 − u�‖ ≤ min{c1

√
1 − β, 1} ‖u�,k,1 − u�‖

≤ βν min{c1

√
1 − β, 1} ‖u�,k − u�‖.

We now insert this estimate in (3.8) to get

‖u�,k,2 − u�‖2 ≤ β2ν[(1 − ρ
2µ
�−1) min{c2

1(1 − β), 1} + ρ
2µ
�−1] ‖u�,k − u�‖2.

Since 0 ≤ β < 1, this proves the recurrence formula.

Table 9. Convergence rate ρ� according to the recurrence formula (3.17) for ν = 2

V-cycle W-cycle

c � = 1 2 3 4 5 6 7 8 ∞
0.5 .1432 .174 .189 .199 .205 .210 .214 .217 .243 .1437

1 .2862 .340 .366 .382 .392 .400 .406 .410 .448 .2904

Proof of Theorem 3.5. We will verify (3.11) with c := c2
1 and c1 from (3.17). Since

ρ0 = 0, (3.11) holds for � = 0. To show how to get from � − 1 to �, we insert
ρ2

�−1 ≤ c/(c + 2ν) in the recurrence formula (3.17) and note that the function
ρ �→ ρ2 + a(1 − ρ2) is nondecreasing on [0, 1] whenever 0 ≤ a ≤ 1:

ρ2
� ≤ max

0≤β≤1
{β2ν [

c

c + 2ν
+ (1 − c

c + 2ν
) min{1, c2

1(1 − β)}]}

≤ max
0≤β≤1

{β2ν [
c

c + 2ν
+ (1 − c

c + 2ν
) c(1 − β)]}

= c

c + 2ν
max

0≤β≤1
{β2ν [1 + 2ν(1 − β)]}. (3.18)

Simple differentiation with respect to β shows that the maximum in (3.18) is
attained for β = 1. Setting β = 1 we see that ρ2

� ≤ c
c+2ν

.
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In the multigrid method, the low frequency parts are handled more efficiently
in the W-cycle than in the V-cycle. Hence, it is not surprising that in (3.18) the
maximum is attained for β = 1. Thus, it makes sense to insert W-cycles once in
a while if the number of levels is very large.

The proof shows that for large ν, the contraction number decreases only like

ν−1/2.

If both pre-smoothing and post-smoothing are used, the rate of decrease is ν−1,
as shown by the duality technique of Braess and Hackbusch [1983]. We remark
that later convergence proofs for the V-cycle usually make use of an algebraic hy-
pothesis instead of the H 2-regularity; cf. Bramble, Pasciak, Wang, and Xu [1991].
The question of whether appropriate algebraic hypotheses are really independent
of H 2-regularity remains open, despite the paper of Parter [1987].

If the regularity hypothesis 2.1(2) is not satisfied, we have to expect a less
favorable convergence rate. Then as suggested by Bank, Dupont, and Yserentant
[1988], it makes more sense to use the multigrid method as a preconditioner for
a CG method rather than as a stand-alone iteration. In fact these authors go one
step further, and use the multigrid idea only for the construction of a so-called
hierarchical basis. Then the convergence rate behaves like 1 − O((log 1

h
)−p),

which is still quite good for practical computations.

Problems

3.9 Show that for the W-cycle,

sup
�

ρ2
� ≤

ρ2
1

1 − ρ2
1

, provided ρ1 <

√
1

2
.

Hint: Use (3.9) to derive a recurrence formula for 1 − ρ2
� .

3.10 Show that for large c, the recurrence formula (3.17) gives the two-grid rate

ρ1 ≤ (1 − 1

c2
)ν,

and compare with (3.11).

3.11 The amount of computation required for the W-cycle is approximately 50 %
larger than for the V-cycle. Use the tables to compare the error reduction of three
V-cycles and two W-cycles.
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§ 4. Nested Iteration

So far we have treated the multigrid method as a pure iterative method. However,
it turns out that the multigrid idea can also be used to find good starting values,
so that one or two cycles of the multigrid iteration suffice. For this purpose there
are two essential ideas.

1. The solution at level �− 1 is a good starting point for the iteration at level
�. This idea can be carried still further: we do not need to compute the function
exactly since an approximation already provides a reasonable starting value.

2. The finite element approximation uh is subject to the discretization error
‖uh − u‖. Thus, it makes little sense to carry out a lot of steps of the multigrid
iteration to get an accuracy corresponding to the roundoff error. Instead, we should
stop the iteration when

‖uh,k − uh‖ ≤ 1

2
‖uh − u‖. (4.1)

We will get only a marginal improvement of the total error ‖uh,k − u‖ by going
any further.

Using the above ideas, we will create algorithms such that the amount of
computation grows only linearly with the number of unknowns.

The starting value calculation is based on certain precursors of the multigrid
method. The solution on the 2h grid was used as a starting value for classical
iterative methods. Although the corresponding starting error has relatively small
low frequency terms, classical relaxation methods still require too many steps;
cf. Problem 4.6.

Computation of Starting Values

The following method for computing a starting value based on the multilevel
concept is called nested iteration.

4.1 Algorithm NI� for computing a starting value v� at level � ≥ 0.
If � = 0, find v0 = u0 = A−1

0 b0, and exit the procedure.
Let � > 0.
Find an approximate solution v�−1 of the equation A�−1u�−1 = b�−1 by applying
NI�−1.
Compute the prolongation of v�−1, and set v�,0 = p v�−1.
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Using v�,0 as a starting value, carry out one step (in general q ≥ 1 steps) of the
multigrid iteration MGM� (see Fig. 54), and set

v� = v�,1.

3

	
	

2

	
	 MGM3MGM2 1

	
	 MGM1

• 0

Fig. 54. Nested iteration NI3

For simplicity, in the following we assume that in Algorithm 4.1 only one
cycle of the multigrid method is carried out. This is actually done for convergence
rates ρ < 1

4 . Otherwise, we formally identify q cycles with one cycle having the
convergence rate ρq , where q is such that ρq < 1

4 .

The accuracy of the resulting starting value can be computed easily. We restrict
ourselves to the common case where the discretization error is of order O(h2).

4.2 Theorem. Assume that the finite element approximation uh ∈ Sh satisfies
‖uh − u‖ ≤ c h2 for some constant c > 0. In addition, suppose the convergence
rate ρ of the multigrid method w.r.t. the norm ‖ · ‖ is smaller than 1/4. Then
Algorithm 4.1 gives

‖v� − u�‖ ≤ 5ρ

1 − 4ρ
c h2

�. (4.2)

Proof. Since v0 = u0, the formula (4.2) is immediate for � = 0.

Assuming (4.2) holds for �− 1, the fact that h�−1 = 2h� implies

‖v�−1 − u�−1‖ ≤ 5ρ

1 − 4ρ
c(2h�)

2.

Moreover, by the hypothesis on the discretization error,

‖u�−1 − u‖ ≤ c (2h�)
2, ‖u� − u‖ ≤ c h2

� .

Now the triangle inequality and v�,0 = v�−1 give

‖v�,0 − u�‖ ≤ ‖v�−1 − u�−1‖ + ‖u�−1 − u‖ + ‖u− u�‖
≤ 5ρ

1 − 4ρ
4c h2

� + 5c h2
� =

5

1 − 4ρ
c h2

�. (4.3)

The multigrid cycle reduces the error by the factor ρ, i.e., ‖v�,1 − u�‖ ≤ ρ‖v�,0 −
u�‖. Using (4.3), we get the assertion (4.2).
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4.3 Remark. In many cases a convergence rate of ρ ≤ 1/6 is realistic. Then
Algorithm 4.1 produces an approximation with error (5/2)c h2

� , and one additional
cycle suffices to reduce the error to less than 1

2c h2
� .

Complexity

To estimate the computational complexity, we can assume that the amount of
computation for

smoothing in S�,

prolongation of S�−1 to S�, and

restriction of the residue d�


 (4.4)

all involve cN� operations, where N� = dim S�. The number of arithmetic opera-
tions for one smoothing step is proportional to the number of nonzero elements in
the system matrix. For affine families of finite elements on uniform grids, this num-
ber is proportional to the number of unknowns. The prolongation and restriction
matrices are even sparser. Thus, the operation count at level � is

≤ (ν + 1) c N�, (4.5)

where ν is the number of smoothings.

For grids in R
2, we collect the operations (4.4) from all levels. Each time we

move to a coarser grid the number of unknowns decreases by approximately the
factor 4. Summing the terms (4.5) for the multigrid iteration MGM� gives

(ν + 1) c (N� +N�−1 +N�−2 + · · ·) ≤ 4

3
(ν + 1) c N� for the V-cycle,

(ν + 1) c (N� + 2N�−1 + 4N�−2 + · · ·) ≤ 2(ν + 1) c N� for the W-cycle.
(4.6)

In addition, we must include the work needed to solve the system of equations on
the coarsest grid. We ignore this additional computational effort for the moment.
This is justified if the number of levels is large. The special case of a small number
of levels will be treated separately later.

The computation of starting values can be analyzed in the same way. Because
of the increase in dimension, each cycle of Algorithm 4.1 requires four times as
much work as its predecessor. Since

∑
k 4−k = 4/3, we have that

The operation count for computing the starting value is 4
3 times

the operation count for one multigrid cycle on the finest grid.
In view of Remark 4.3, the operation count for the complete calculation is 7

3 times
the count for one multigrid cycle on the finest grid, provided the convergence rate
is 1/6 or better. Thus, in particular, the complexity increases only linearly with the
number of unknowns.
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As mentioned before, in the V-cycle we distribute the smoothing steps equally
between the phases before and after the coarse-grid correction. Thus, an analogous
symmetric variant is recommended in calculating the starting values.

4.4 Algorithm NI� to compute a starting value v� at the level � ≥ 0
(symmetric version).

If � = 0, find v0 = u0 = A−1
0 b0, and exit the procedure.

Let � > 0.
With v�,0 = 0 carry out one step of the multigrid iteration MGM�, and set v�,1 =
v�,0 + pv�−1.
Set b�−1 = p(b� − A�v

�,1).
Compute an approximate solution v�−1 of the equation A�−1u�−1 = b�−1 using
NI�−1.
Compute the prolongation of v�−1, and set v�,2 = v�,1 + p v�−1.
With v�,2 carry out one step (in general p ≥ 1 steps) of the multigrid iteration
MGM�, and set

v� = v�,3.

This variant compensates for the effect that in the V-cycle, the oscillating
parts are handled better than the smoother ones. A problem whose smooth parts
are relatively large is given to the block NI�−1, so that the efficiency is increased.

Multigrid Methods with a Small Number of Levels

For many grids it is difficult to carry out more than two levels of coarsening. As
we shall see, however, it still pays to use multigrid methods. In contrast to the
case of a large number of levels, here the solution on the coarsest grid is a major
part of the computational effort. To this effort we have to add the work required
for smoothing, restrictions, and prolongations. This is, of course, less than with a
large number of levels, and has already been estimated in (4.6) above.

For three levels, the number of unknowns on the coarsest grid is ca. 1/16
of that on the finest. In addition, the average bandwidth of the system matrix is
reduced by a factor of about 4. Thus, the amount of work required for the Cholesky
method is reduced by a factor 16 ·42 = 256. Now if we compute the starting value
with Algorithm 4.1 and add a multigrid cycle, we have to solve

4 systems of equations for the V-cycle,
6 systems of equations for the W-cycle

on the coarsest grid (all with the same matrix). Even if the LU decomposition is
recalculated each time, we still get a saving of a factor of 40 to 64, if we compare
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just the effort of the exact solver.13

Since the other transfer operations discussed earlier hardly affect the result,
we clearly see the advantages of the multigrid method, even in those cases where
at first glance it appears to be of marginal use.

The CASCADE Algorithm

We also mention the CASCADE algorithm of Bornemann and Deuflhard [1996].
It uses a different strategy. We begin with a CG method on the coarsest grid, and
proceed from there successively from level to level to the finest, without ever going
back to coarser grids. We choose a much larger number of iteration steps on the
coarser grids (with the smaller dimensions) than on the finer grids.

The justification for this approach is the following result:

4.5 Recursion Relation. Let u� denote the solution of the variational problem in
S� and v� be the result of the CASCADE algorithm. If m� steps of the cg-algorithm
are performed on the level �, then

‖v� − u�‖1 ≤ ‖v�−1 − u�−1‖1 + c
h�

m�

‖f ‖0. (4.7)

From (4.7) we conclude that the error on the finest level is of the order of
the discretization error provided that sufficiently many steps are performed on the
coarse levels, say m� = 3�max−� m�max . Nevertheless, the main part of the computing
time is consumed on the finest level, and the larger number of steps for � < �max

does not spoil the efficiency.

The recursion relation can be established via the construction of polynomials
with approximation properties that differ slightly from those in Ch. IV, §3. For
details, see Bornemann and Deuflhard [1996] or Shaidurov [1996]. The investiga-
tions have been extended to saddle point problems by Braess and Dahmen [1999]
and to nonconforming elements by Stevenson [1999].

For the computation of starting values the CASCADE algorithm is simpler
than nested iteration because grid changes occur only in one direction. The algo-
rithm can often replace even the complete multigrid procedure. A clear advantage
has the cascadic version of multigrid algoritms for treating variational inequali-
ties since the return to coarser grids is more involved there; see Blum, Braess, and
Suttmeier [2004].

13 Another advantage is that we can store the resulting small system of equations in fast
memory, while larger systems have to be stored in external memory.
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Problems

4.6 Suppose the finite element approximation uh ∈ Sh is such that ‖uh−u‖ ≤ c h2

for some constant c > 0. In addition, suppose the convergence rate for the two-grid
method with ν = ν2 post-smoothings satisfies ρ < 1/10.

Suppose a user (who perhaps is not familiar with the multigrid method) ap-
plies a classical relaxation method, starting with the solution on the 2h grid. Show
that after ν steps,

‖uh,ν − u‖ ≤ 3

2
c · h2.

Why doesn’t a corresponding assertion hold for more than two grids?

4.7 Compare the operation counts of
(a) NI� with the V-cycle,
(b) NI� with the W-cycle,
(c) the symmetric version of NI� with the V-cycle.

4.8 Suppose we want to insert a so-called F-cycle (see Fig. 55) between the
V-cycle and the W-cycle as follows:

For � = 2, the F-cycle and W-cycle coincide.

For � ≥ 3, perform both an F-cycle and a V-cycle at level �− 1.

Find the recurrence formula analogous to (3.17), and determine the rates numeri-
cally for c = 1, c = 1

2 , ν = 2, and � ≤ 8.

◦ ◦∖ /
◦ ◦ ◦∖ /∖ /
◦ ◦ ◦ ◦ ◦∖ /∖ / ∖ /
◦ ◦ ◦ ◦ ◦ ◦ ◦∖/∖/ ∖/ ∖/
• • • •

4

3

2

1

0

Fig. 55. F-cycle on five levels

4.9 Compare nested iteration NI� using inner V-cycles with the F-cycle of MGM�.
What is the difference?
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§ 5. Multigrid Analysis via Space Decomposition

The multigrid analysis in §§2 and 3 is based on a smoothing property and an
approximation property. The latter heavily depends on regularity assumptions.
There are many variants and generalizations of Lemma 2.8, but one needs H 1+α

regularity for some α > 0.

This is different in the theory of Bramble, Pasciak, Wang, and Xu [1991].
For getting a connection with the previous theory we emphasize a decomposition
property in the H 2 regular case although we did not state it explicitly. Let S�, � =
0, 1, . . . , L, be a nested sequence of finite element spaces as in (1.5). Given v ∈
S := SL, we may decompose it

v =
L∑

k=0

vk, vk ∈ Sk (5.1)

such that the partial sum
∑�

k=0 vk is the finite element solution to v in S�. It follows
from Lemma 2.8 that

‖vk‖0 ≤ chk‖vk‖1, k = 1, 2, . . . , L.

On the other hand, an inverse inequality yields

‖vk‖1 ≤ ch−1
k ‖vk‖0, k = 1, 2, . . . , L.

From these inequalities and the orthogonality of the vk
′s we obtain the equivalence

‖v‖2
1 =

L∑
k=0

‖vk‖2
1 ≈ ‖v0‖2

1 +
L∑

k=1

h−2
k ‖vk‖2

0. (5.2)

A variational problem with a quadratic form that equals the right-hand side of
(5.2) can be easily solved by successive solution in the subspaces because of the
additive structure. Moreover, the smoothing procedures are efficient approximate
solvers for the subspaces since the norms ‖ · ‖1 and h−1

k ‖ · ‖0 are equivalent there.
The multigrid method may be interpreted in this way.

Now Bramble, Pasciak, Wang, and Xu [1991] have observed that these and
other similar relations may be derived from properties of the function spaces and
that one does not need regularity of the solution of the elliptic equation. Oswald
[1994] pointed out that Besov space properties are helpful to understand multilevel
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methods in this context; see below, In contrast to §3 the multilevel iteration is not
treated as a perturbation of the 2-grid procedure.

We want to present the basic ideas of the theory of Bramble, Pasciak, Wang,
and Xu. A complete theory without regularity is beyond the scope of this book;
rather we demonstrate its advantage for another application which is not covered
by the standard theory. The extension to locally refined meshes will be illustrated.

For convenience, we restrict ourselves to symmetric smoothing operators
and to nested spaces. For more general results see Xu [1992], Wang [1994], and
Yserentant [1993]. All these theories do not reflect the improvement of the con-
vergence rate when the number of smoothing steps is increased. This was only
achieved via more involved considerations by Brenner [2000].

The norm without subscript refers to the energy norm ‖ · ‖ := (a(·, ·))1/2

since the theory applies only to this norm.

Schwarz’ Alternating Method

For a better understanding of space decomposition methods we first consider the
alternating method which goes back to H.A. Schwarz [1869]. There is a simple
geometrical interpretation, cf. Fig. 56, when the abstract formulation for the case
of two subspaces is considered.

We are interested in the variational problem

a(u, v) = 〈f, v〉 for v ∈ H.

Here a(., .) is the inner product of the Hilbert space H and ‖·‖ is the corresponding
norm. Let H be the direct sum of two subspaces

H = V ⊕W,

and the determination of a solution in the subspaces V or W is assumed to be easy.
Then an alternating iteration in the two subspaces is natural.

5.1 Schwarz Alternating Method. Let u0 ∈ H .

When u2i is already determined, find v2i ∈ V such that

a(u2i + v2i , v) = 〈f, v〉 for v ∈ V.

Set u2i+1 = u2i + v2i .

When u2i+1 is already determined, find w2i+1 ∈ W such that

a(u2i+1 + w2i+1, w) = 〈f, w〉 for w ∈ W.

Set u2i+2 = u2i+1 + w2i+1.

Obviously, projections onto the two subspaces alternate during the iteration.
The strengthened Cauchy inequality (5.3) is crucial in the analysis.



§5. Multigrid Analysis via Space Decomposition 263

Fig. 56. Schwarz alternating iteration with one-dimensional subspaces V and
W in Euclidean 2-space. The iterates u1, u3, u5, . . . lie in V ⊥ and u2, u4, . . . in
W⊥. The angle between V ⊥ and W⊥ is the same as between V and W .

5.2 Convergence Theorem. Assume that there is a constant γ < 1 such that for
the inner product in H

|a(v, w)| ≤ γ ‖v‖ ‖w‖ for v ∈ V, w ∈ W. (5.3)

Then we have for the iteration with the Schwarz alternating method the error
reduction

‖uk+1 − u‖ ≤ γ ‖uk − u‖ for k ≥ 1. (5.4)

Proof. Because of the symmetry of the problem we may confine ourselves to even
k. Since uk is constructed by a minimization in the subspace W , we have

a(uk − u, w) = 0 for w ∈ W (5.5)

We decompose uk − u = v̂ + ŵ with v̂ ∈ V, ŵ ∈ W . From (5.5) it follows with
w = ŵ that

a(v̂, ŵ) = −‖ŵ‖2. (5.6)

By the strengthened Cauchy inequality (5.3) we have a(v̂, ŵ) = −αk‖v̂‖ ‖ŵ‖
with some αk ≤ γ . Without loss of generality let αk �= 0. It follows from (5.6)
that ‖v̂‖ = α−1

k ‖ŵ‖ and ‖uk − u‖2 = ‖v̂ + ŵ‖2 = ‖v̂‖2 − 2‖ŵ‖2 + ‖ŵ‖2 =
(α−2

k − 1)‖ŵ‖2.

Since uk+1 is the result of an optimization in V , we obtain an upper estimate
from the simple test function uk + (α2

k − 1)v̂.

‖uk+1 − u‖2 ≤ ‖uk + (α2
k − 1)v̂‖2

= ‖α2
k v̂ + ŵ‖2 = (1 − α2

k )‖ŵ‖2 = α2
k‖uk − u‖2.

Noting that αk ≤ γ , the proof is complete.

The bound in (5.4) is sharp. This becomes obvious from an example with
one-dimensional spaces V and W depicted in Fig. 56 and also from Problem 5.8.
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Algebraic Description of Space Decomposition Algorithms

The finite element spaces S� may be recursively constructed

S0 = W0,

S� = S�−1 ⊕W�, � ≥ 1,

S = SL.

(5.7)

The finite element solution on the level � is related to the operator A� : S� → S�

defined by
(A�u, w) = a(u, w) for all w ∈ S�. (5.8)

Moreover A := AL. The corresponding Ritz projector P� : S → S� satisfies

a(P�u, w) = a(u, w) for all w ∈ S�. (5.9)

We note that the discussion below holds for any inner product (·, ·) in the Hilbert
space S, but we will refer to the L2 inner product or the �2 inner product when
we deal with concrete examples. We recall that the L2-norm is equivalent to the
�2-norm of the associated vector representations, and the smoothing procedures
refer to L2-like operators. Therefore, we will use also the L2-orthogonal projectors
Q� : S → S�,

(Q�u, w) = (u, w) for all w ∈ S�. (5.10)

It follows that
A�P� = Q�A. (5.11)

Indeed, for all w ∈ S� we obtain from (5.8)–(5.10) the equations (A�P�u, w) =
a(P�u, w) = a(u, w) = a(u, Q�w) = (Au, Q�w) = (Q�Au, w). Since A�P� and
Q�A are mappings into S�, this proves (5.11).

Assume that ũ is an approximate solution of the variational problem in S, and
let Aũ − f be the residue. The solution of the variational problem in the subset
ũ+ S� is ũ+A−1

� Q�(f −Aũ). Therefore, the correction by the exact solution of
the subproblem for the level � is

A−1
� Q�(f − Aũ).

Since its computation is too expensive in general, the actual correction will be
obtained from a computation with an approximate inverse B−1

� , i.e., the real cor-
rection will be

B−1
� Q�(f − Aũ). (5.12)

The correction turns ũ into ũ+B−1
� Q�(f −Aũ). For convenience, we will assume

that
A� ≤ B�, (5.13)
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i.e., B� − A� is assumed to be positive semidefinite and tacitly B� is assumed to
be symmetric. Often only the weaker condition A� ≤ ωB� with ω < 2 is required,
but we prefer to have the assumption without an extra factor in order to avoid some
inconvenient factors in the estimates. Some standard techniques for dealing with
the approximate solution above are found in Problems IV.4.14–17.

We recall (5.11) and following the standard notation, we define the linear
mapping

T� := B−1
� Q�A = B−1

� A�P�. (5.14)

From (5.12) we know that the correction of ũ in the subspace S� yields the new
iterate ũ+ T�(u− ũ), and its error is

(I − T�) (u− ũ).

We consider the multigrid V -cycle with post-smoothing only. Consequently the
error propagation operator for one complete cycle is

E := ELwhere

E� := (I − T�) (I − T�−1) . . . (I − T0), � = 0, 1, . . . , L, (5.15)

and E−1 := I . This representation elucidates that the subspace corrections are
applied in a multiplicative way.

Assumptions

The assumptions refer to the family of finite element spaces S� and the comple-
mentary spaces W� specified in (5.7).

Assumption A1. There exists a constant K1 such that for all v� ∈ W�, � =
0, 1, . . . , L,

L∑
�=0

(B�v�, v�) ≤ K1‖
L∑

�=0

v�‖2. (5.16)

Assumption A2 (Strengthened Cauchy–Schwarz Inequality). There exist constants
γk� = γ�k with

a(vk, w�) ≤ γk� (Bkvk, vk)
1/2(B�w�, w�)

1/2 for all vk ∈ Sk, w� ∈ W� (5.17)

if k ≤ �. Moreover, there is a constant K2 such that

L∑
k,l=0

γk�xky� ≤ K2

( L∑
k=0

x2
k

)1/2( L∑
�=0

y2
�

)1/2
for x, y ∈ R

L+1. (5.18)
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We postpone the verification of A1. – The verification of A2 with a constant
K2 that is independent of the number of levels is not trivial. Therefore we provide
a short proof of an estimate with a bound that increases only logarithmically. The
standard Cauchy–Schwarz inequality and A� ≤ B� imply that we have γk� ≤ 1
for all k, �. Hence,∑

k,l

γk�xky� ≤
(∑

k

|xk|
) (∑

�

|y�|
)
≤ (L+ 1)

(∑
k

x2
k

)1/2(∑
�

y2
�

)1/2
,

and (5.18) is obvious for

K2 ≤ L+ 1 ≤ c | log hL|. (5.19)

Direct Consequences

From A2 we conclude immediately that

‖
L∑

�=0

v�‖2 =
∑
k,�

a(vk, v�)

≤
∑
k,�

γk�(Bkvk, vk)
1/2 (B�v�, v�)

1/2 ≤ K2

L∑
�=0

(B�v�, v�). (5.20)

Hence, the norms encountered in (5.16) and (5.20), are equivalent provided that
A1 and A2 hold.

A direct consequence of A1 is an analogue of an inequality which we consid-
ered in §2 in connection with logarithmic convexity. Note the asymmetry in the
occurrence of the spaces in (5.21).

5.3 Lemma. Let w� ∈ W� and u� ∈ S = SL for � = 0, 1, . . . , L. Then we have

L∑
�=0

a(w�, u�) ≤
√

K1 ‖
L∑

�=0

w�‖
( L∑

�=0

a(T�u�, u�)
)1/2

. (5.21)

Proof. Since P�w� = w�, it follows from the Cauchy–Schwarz inequality in Eu-
clidean space that

L∑
�=0

a(w�, u�) =
L∑

�=0

a(w�, P�u�)

=
L∑

�=0

(B
1/2
� w�, B

−1/2
� A�P�u�)

≤
( L∑

�=0

(B�w�, w�)
)1/2 ( L∑

�=0

(A�P�u�, B
−1
� A�P�u�)

)1/2
. (5.22)
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Next we derive an equality that is useful also in other contexts

(B�T�w, T�w) = (T�w, B�B
−1
� A�P�w)

= (T�w, A�P�w) = a(T�w, P�w) = a(T�w, w).
(5.23)

The first factor on the right-hand side of (5.22) can be estimated by A1. Since
T� = B−1

� A�P�, we can insert (5.23) into the summands of the second factor, and
the proof of the lemma is complete.

It is more than a coincidence that a(T�w, w) is a multiple of the discrete
norm |||P�w|||2 that we encountered in §2 if B� is a multiple of the identity on the
subspace S�.

Convergence of Multiplicative Methods

First we estimate the reduction of the error by the multigrid algorithm on the level
� from below.

5.4 Lemma. Let � ≥ 1. Then

‖v‖2 − ‖(I − T�)v‖2 ≥ a(T�v, v). (5.24)

Proof. From the binomial formula we obtain that the left-hand side of (5.24) equals

2a(T�v, v)− a(T�v, T�v). (5.25)

Next, we consider the second term using A� ≤ B� and (5.23)

a(T�v, T�v) ≤ (B�T�v, T�v) = a(T�v, v).

Therefore the negative term in (5.25) can be absorbed by the term a(T�v, v) by
subtracting 1 from the factor 2. and the proof is complete.

Now we turn to the central result of this §. It yields the convergence rate of
the multigrid iteration in terms of the constants in the assumptions A1 and A2.

5.5 Theorem. Assume that A1 and A2 hold. Then the energy norm of the error
propagation operator E of the multigrid iteration satisfies

‖E‖2 ≤ 1 − 1

K1(1 +K2)2
.

Proof. By applying Lemma 5.4 to E�−1v and noting that E� = (I − T�)E�−1 we
obtain

‖E�−1v‖2 − ‖E�v‖2 ≥ a(T�E�−1v, E�−1v).
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A summation over all levels is performed with telescoping

‖v‖2 − ‖Ev‖2 ≥
L∑

�=0

a(T�E�−1v, E�−1v). (5.26)

Therefore the statement of the theorem will be clear if we verify

‖v‖2 ≤ K1(1 +K2)
2

L∑
�=0

a(T�E�−1v, E�−1v). (5.27)

Indeed, (5.26) and (5.27) yield ‖v‖2 ≤ K1(1+K2)
2(‖v‖2 −‖Ev‖2), and the rest

of the proof is concerned with establishing this inequality.

To this end, let

v =
L∑

�=0

v�, v� ∈ W�,

be a (stable) decomposition. Obviously,

‖v‖2 =
L∑

�=0

a(E�−1v, v�)+
L∑

�=1

a((I − E�−1)v, v�). (5.28)

Lemma 5.3 is used to deal with the first term
L∑

�=0

a(E�−1v, v�) ≤
√

K1 ‖v‖
( L∑

�=0

a(T�E�−1v, E�−1v)
)1/2

. (5.29)

Next from E� − E�−1 = −T�E�−1 it follows by induction that

I − E�−1 =
�−1∑
k=0

TkEk−1.

With the bound of the second term on the right-hand side of (5.28), we verify that
the conditions for obtaining an improvement on the level � are not affected much
by the corrections in the previous steps. Here A2 enters and

L∑
�=1

a((I − E�−1)v, v�)

=
L∑

�=1

�−1∑
k=0

a(TkEk−1v, v�)

≤
L∑

�=1

�−1∑
k=0

γk�(BkTkEk−1v, TkEk−1v)1/2 (B�v�, v�)
1/2

≤ K2

( L∑
k=0

(BkTkEk−1v, TkEk−1v)
)1/2 ( L∑

�=0

(B�v�, v�)
)1/2

.
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From (5.23) and A1 it follows that

L∑
�=1

a((I − E�−1)v, v�) ≤
√

K1 K2 ‖v‖
( L∑

k=0

ak(TkEk−1v, Ek−1v)
)1/2

. (5.30)

Adding (5.29) and (5.30) and dividing by ‖v‖ we obtain (5.27) completing the
proof.

Verification of A1

In the case of full H 2 regularity and quasi-uniform triangulations optimal estimates
are easily derived. We have an ideal case. Given v ∈ S, let u� be the finite element
solution of v in S�, i.e., u� = P�v. Set

v =
L∑

�=0

v�,

v0 = P0v, v� = P�v − P�−1v = u� − u�−1 for � = 1, 2, . . . , L.

(5.31)

From the Galerkin orthogonality of finite element solutions we conclude that

‖v‖2 =
L∑

�=0

‖v�‖2. (5.32)

Since u�−1 is also the finite element solution to u� in S�−1 and v� = u� − u�−1, it
follows from the Aubin–Nitsche lemma that

‖v�‖0 ≤ c h�−1‖v�‖ for � = 1, 2, . . . , L. (5.33)

The approximate inverses for a multigrid algorithm with Richardson iteration as a
smoother are given by

B0 := A0, B� := c λmax(A�)I, � = 1, 2, . . . , L. (5.34)

The inverse estimates yield λmax(A�) ≤ ch−2
� . Combining these facts and noting

h�−1 ≤ ch� we obtain

L∑
�=0

(B�v�, v�) ≤ (A0v0, v0)+
L∑

�=1

ch−2
� (v�, v�)

= ‖v0‖2 + c

L∑
�=1

h−2
� ‖v�‖2

0

≤ c

L∑
�=0

‖v�‖2 = c ‖v‖2.

(5.35)
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This proves A1 with a constant K1 = c that is independent of the number of levels.

In the cases with less regularity we perform the decomposition by applying
the L2-orthogonal projectors Q� instead of P�

v =
L∑

�=0

v�,

v0 = Q0v, v� = Q�v −Q�−1v for � = 1, 2, . . . , L.

(5.36)

From Lemma II.7.9 we have ‖Q0v‖ ≤ c‖v‖. Next from (II.7.15) it follows that
‖v�‖0 ≤ ‖v − Q�v‖0 + ‖v − Q�−1v‖0 ≤ ch�‖v‖. Recalling the approximate
solvers from (5.34) we proceed as in the derivation of (5.35)

L∑
�=0

(B�v�, v�) ≤ ‖v0‖2
1 + c

L∑
�=1

h−2
� ‖v�‖2

0

≤ c (L+ 1)‖v‖2.

(5.37)

This proves A1 with a constant K1 ≤ c(L + 1)1/2 ≤ c| log hL|1/2. Although this
result is only suboptimal, it has the advantage that no regularity assumptions are
required. As mentioned above, the logarithmic factor arises since we stay in the
framework of Sobolev spaces. An analysis with the theory of Besov spaces shows
that the factor can be dropped, see Oswald [1994].

Local Mesh Refinements

An inspection of the proof of Lemma II.7.9 shows that the estimate (5.37) remains
true if the orthogonal projector Q� is replaced by an operator of Clément type,
e.g., we may choose I� = Ih�

from (II.6.19). That interpolation operator is nearly
local.

This has a big advantage when we consider finite element spaces which arise
from local mesh refinements. Assume that the refinement of the triangulation on
the level � is restricted to a subdomain �� ⊂ � and that

�L ⊂ �L−1 ⊂ . . . ⊂ �0 = �. (5.38)

Given v ∈ SL, its restriction to � \ �� coincides there with some finite element
function in S�. Now we modify I�v at the nodes outside �� and set

(I�v)(xj ) := v(xj ) if xj �∈ ��.

Specifically, when defining I�, the construction of the operator Q̃j in (II.6.17) is
augmented by the rule (II.6.23). We have

(I�v)(x) = v(x) (5.39)
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for x outside a neighborhood of ��, and from problem II.6.17 we know that the
modification changes only the constants in the estimates of the L2-error. The strip
of � \ ��, in which (5.39) does not hold, is small if rule II.8.1(1) is observed
during the refinement process. Hence,

‖v − I�v‖0 ≤ ch�‖v‖1. (5.40)

We note that an estimate of this kind cannot be guaranteed for the finite element
solution in S�. So by using interpolation of Clément type we also obtain multigrid
convergence in cases with local mesh refinements.

There is also a consequence for computational aspects of the multigrid method.
Since

v�+1 = I�+1v − I�v = 0 outside a neighborhood of ��,

the smoothing procedure on the levels �+1, �+2, . . . , L may be restricted to the
nodes in a neighborhood of ��. It is not necessary to perform the smoothing iter-
ation at each level on the whole domain. For this reason the computing effort only
increases linearly with the dimension of SL. As was pointed out by Xu [1992] and
Yserentant [1993], local refinements induce a faster increase of the computational
complexity.

Problems

5.7 Let V, W be subspaces of a Hilbert space H . Denote the projectors onto V

and W by PV , PW , respectively. Show that the following properties are equivalent:
(1) A strengthened Cauchy inequality (5.3) holds with γ < 1.
(2) ‖PWv‖ ≤ γ ‖v‖ holds for all v ∈ V .
(3) ‖PV w‖ ≤ γ ‖w‖ holds for all w ∈ W .
(4) ‖v + w‖ ≥

√
1 − γ 2 ‖v‖ holds for all v ∈ V, w ∈ W .

(5) ‖v + w‖ ≥
√

1
2 (1 − γ ) (‖v‖ + ‖w‖) holds for all v ∈ V, w ∈ W .

5.8 Consider a sequence obtained by the Schwarz alternating method. Let αk

be the factor in the Cauchy inequality for the decomposition of the error in the
iteration step k as in the proof of Theorem 5.2. Show that (αk) is a nondecreasing
sequence.
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§ 6. Nonlinear Problems

Multigrid methods are also very useful for the numerical solution of nonlinear
differential equations. We need only make some changes in the multigrid method
for linear equations. These changes are typical for the efficient treatment of non-
linear problems. However, there is one essential idea involved which we might
not otherwise encounter. We have to correct the right-hand side of the nonlinear
equation on the coarse grid in order to compensate for the error which arises in
moving between grids.

As an example of an important nonlinear differential equation, consider the
Navier–Stokes equation

−�u+ Re (u∇)u− grad p = f in �,

div u = 0 in �,

u = u0 on ∂�.

(6.1)

If we drop the quadratic term in the first equation, we get the Stokes problem
(III.6.1). Another typical nonlinear differential equation is

−�u = eλu in �,

u = 0 on ∂�.
(6.2)

It arises in the analysis of explosive processes. The parameter λ specifies the
relation between the reaction heat and the diffusion constant. – Nonlinear boundary
conditions are also of interest, in particular for problems in (nonlinear) elasticity.

We write a nonlinear boundary-value problem as an equation of the form
L(u) = 0. Suppose that for each � = 0, 1, . . . , �max, the discretization at level �

leads to the nonlinear equation

L�(u�) = 0 (6.3)

with N� := dim S� unknowns. In the sequel it is often more convenient to consider
the formally more general equation

L�(u�) = f� (6.4)

with given f� ∈ R
N� .

Within the framework of multigrid methods, there are two fundamentally
different approaches:
1. The multigrid Newton method (MGNM), which solves the linearized equation

using the multigrid method.
2. The nonlinear multigrid method (NMGM), which applies the multigrid method

directly to the given nonlinear equation.
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The Multigrid Newton Method

Newton iteration requires solving a linear system of equations for every step of the
iteration. However, it suffices to compute an approximate solution in each step.

The following algorithm is a variant of the damped Newton method. We
denote the derivative of the (nonlinear) mapping L by DL.

6.1 Multigrid Newton Method.
Let u�,0 be an approximation to the solution of the equation L�(u�) = f�.
For k = 0, 1, . . ., carry out the following calculation:

1. (Determine the direction) Set dk = f� − L�(u
�,k). Perform one cycle of the

algorithm MGM� to solve

DL�(u
�,k) v = dk

with the starting value v�,0 = 0. Call the result v�,1.
2. (Line search) For λ = 1, 1

2 , 1
4 , . . . , test if

‖L�(u
�,k + λ v�,1)− f�‖ ≤ (1 − λ

2
) ‖L�(u

�,k)− f�‖. (6.5)

As soon as (6.5) is satisfied, stop testing and set

u�,k+1 = u�,k + λ v�,1.

The direction to the next approximation is determined in the first step, and the
distance to go in that direction is determined in the second step. If the approxima-
tions are sufficiently close to the solution, then we get λ = 1. In this case, step 2
can be replaced by the simpler classical method:

2′. Set u�,k+1 = u�,k + v�,1.

The introduction of the damping parameter λ and the associated test results
in a stabilization; see Hackbusch and Reusken [1989]. Thus, the method is less
sensitive to the choice of the starting value u�,0.

It is known that the classical Newton method converges quadratically for
sufficiently good starting values, provided the derivative DL� is invertible at the
solution. In Algorithm 6.1 we also have an extra linear error term, and the error
ek := u�,k − u� satisfies the following recurrence formula:

‖ek+1‖ ≤ ρ‖ek‖ + c‖ek‖2.

Here ρ is the convergence rate of the multigrid algorithm.

This implies only linear convergence. At first glance this is a disadvantage,
but quadratic convergence only happens in a neighborhood of the solution, and in
particular only when the error ‖ek‖ is smaller than the discretization error. In view
of the discussion in the previous section, this is no essential disadvantage.
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The Nonlinear Multigrid Method

Methods based on applying the multigrid method directly to the nonlinear equation
are often used instead of the multigrid Newton method. Here the calculation again
involves smoothing steps and coarse-grid corrections. However, here the latter
have a nonlinear character.

The simplest smoothing corresponds to the Jacobi method

v� �−→ S� v� := v� + ω[f� − L�(v
�)]. (6.6)

As in the linear case, the parameter ω is computed by estimating the largest eigen-
value of DL�.

The so-called nonlinear Gauss–Seidel method can be used to perform the
smoothing. In order to reduce the amount of formalism, we restrict ourselves to
an example, and consider the difference method for the equation (6.2) on a square
grid. For the interior points, we have

ui − h2eλui = Gi(u), i = 1, 2, . . . N�, (6.7)

where Gi(u) is 1
4 the sum of the values at the neighboring nodes. For each i =

1, 2, . . ., we successively compute a refined value ui by solving the i-th equation
in (6.7) for ui . This involves solving simple scalar nonlinear equations. More
generally, we have

[L�(u
k+1
1 , . . . , uk+1

i , uk
i+1, u

k
i+2, . . .)]i = fi, i = 1, 2, . . .

The Gauss–Seidel method can also be used as a smoother in the nonlinear case.

The computation of the coarse-grid correction has to be done differently than
in the linear case. We emphasize that in general, u�−1 �= ru�, where u� and u�−1

are the finite element solutions in S� and S�−1, respectively. This is why so far the
coarse-grid correction has only been applied to the defect equation. Here we do
something different. In passing between grids, we compensate for the deviation of
u�−1 from ru� by including an additive term on the right-hand side. This correction
is the reason why we replaced the original equation (6.3) by the more general
equation (6.4).

We also need the restriction of u�,k,1 at the level �−1. This could be done with
a different operator from the one used to evaluate the restriction of the residue.
Let r and r̃ be restriction operators for the residue and for the approximations,
respectively, and let p be a prolongation. The operator L�−1 corresponds to the
discretization of (6.3) at level �− 1.
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6.2 Nonlinear Multigrid Iteration NMGM� (k-th cycle at level � ≥ 1):

Let u�,k be a given approximation in S�.
1. Pre-smoothing. Perform ν1 smoothing steps:

u�,k,1 = Sν1 u�,k.

2. Coarse-grid correction. Set

d� = f� − L�(u
�,k,1),

u�−1,0 = r̃u�,k,1,

f�−1 = L�−1(u
�−1,0)+ rd�,

(6.8)

and let v̂�−1 be the solution of

L�−1(v) = f�−1. (6.9)

If � = 1, find the solution, and set v�−1 = v̂�−1.

If � > 1, determine an approximation v�−1 of v̂�−1 by carrying out µ steps
of NMGM�−1 with the starting value u�−1,0.
Set

u�,k,2 = u�,k,1 + p(v�−1 − u�−1,0). (6.10)

3. Post-smoothing. Perform ν2 smoothing steps using

u�,k,3 = Sν2 u�,k,2,

and set u�,k+1 = u�,k,3.

The reader can verify that in the linear case we get Algorithm 1.7, independent of
the choice of the restriction operator r̃ .

Note that the following diagram is not commutative:

S�
L�−−→ S�

r̃

5 5 r

S�−1
L�−1−−→ S�−1.

More specifically, f�−1 �= rf� in general. In fact,

f�−1 = rf� + [L�−1(r̃u
�,k,1)− rL�(u

�,k,1)]. (6.11)

The shift by the extra term in the square brackets ensures that the solution u� of
the equation (6.4) is a fixed point for the iteration. Assuming that u�,k,1 = u�, it
follows that d� = 0 and f�−1 = L�−1(u

�−1,0). Thus, v = u�−1,0 is a solution of
(6.9), and u�,k,2 = u�,k,1.
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Starting Values

As explained in §4, for linear problems we can start on the coarsest grid and work
toward the finest one. This is also possible for many nonlinear problems, but not
for all. In particular, it can happen that the nonlinear problem only has the right
number of solutions when the discretization is sufficiently fine.

For this reason, we now assume that we have a starting value which belongs
to the domain of attraction of the desired solution. However, the error may still be
much larger than the discretization error, and in fact by several orders of magnitude.

This is the usual case in practice, and we suggest proceeding as in Algorithm
NI�. However, we have first to compute an appropriate right-hand side for the
problems on the coarse grids.

In the following we use the notation of Algorithm 6.2.

6.3 Algorithm NLNI� (L�, f�, u
�,0) for improving a starting value u�,0 for the

equation L�(u�) = f� at level � ≥ 0, (such that the error of the result û� is of the
order of the discretization error).

If � = 0, compute the solution û� of the equation L0(v) = f 0, and exit the
procedure.
Let � > 0.
Set u�−1,0 = r̃u�,0 and

f�−1 = rf� + [L�−1(u
�−1,0)− rL�(u

�,0)]. (6.12)

Find an approximate solution û�−1 of the equation L�−1(v) = f�−1 by applying
NLNI�−1 (L�−1, f�−1, u

�−1,0).
Determine the prolongation u�,1 = pû�−1.
Using u�,1 as a starting value, carry out one step of the iteration NLMG�. Denote
the result as u�,2. Set

û� = u�,2.

Note that equation (6.12) has the same structure as (6.11).

Since we cannot proceed without reasonable starting values, for complicated
problems, nonlinear multigrid methods are usually combined with continuation
methods (also called incremental methods).
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Problems

6.4 Verify that for linear problems, Algorithm 6.2 is equivalent to Algorithm 1.7.

6.5 The nonlinear equation (6.2) characterizes a solution of the nonquadratic
variational problem ∫

�

[
1

2
(∇v)2 − F(v)]dx −→ min

v∈H 1
0

!

(assuming a solution exists). Find a suitable function F on R by formally calcu-
lating the Euler equation corresponding to the variational problem.



Chapter VI

Finite Elements in Solid Mechanics

Finite element methods are the most widely used tools for computing the defor-
mations and stresses of elastic and inelastic bodies subject to loads. These types
of problems involve systems of differential equations with the following special
feature: the equations are invariant under translations and orthogonal transforma-
tions since the elastic energy of a body does not change under so-called rigid body
motions.

Practical problems in structural mechanics often involve small parameters
which can appear in both obvious and more subtle ways. For example, for beams,
membranes, plates, and shells, the thickness is very small in comparison with the
other dimensions. On the other hand, for a cantilever beam, the part of the bound-
ary on which Dirichlet boundary conditions are prescribed is very small. Finally,
many materials allow only very small changes in density. These various cases re-
quire different variational formulations of the finite element computations. Using
an incorrect formulation leads to so-called locking. Often, mixed formulations pro-
vide a suitable framework for both the computation and a rigorous mathematical
analysis.

Most of the characteristic properties appear already in the so-called linear
theory, i.e., for small deformations where no genuine nonlinear phenomenon oc-
curs. However, strictly speaking, there is no complete linear elasticity theory, since
the above-mentioned invariance under rigid body motions cannot be completely
modeled in a linear theory. For this reason, we don’t restrict ourselves to the linear
theory until later.

§§1 and 2 contain a very compact introduction to elasticity theory. For more
details, see Ciarlet [1988], Marsden and Hughes [1983], or Truesdell [1977]. Here
we concentrate on those aspects of the theory which we need as background
knowledge. In §3 we present several variational formulations for the linear theory,
and also include an analysis of locking. Finally, we discuss membranes and plates.
In particular, we explore the connection between two widely used plate models.

We limit ourselves to those elements whose construction or analysis is based
on different approaches than the elements discussed in Chapters II and III. In
particular, we will focus on the stability of the elements.
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§ 1. Introduction to Elasticity Theory

Elasticity theory deals with the deformation of bodies under the influence of ap-
plied forces, and in particular, with the stresses and strains which result from
deformations.

The three-dimensional case provides the foundation for the theory. The es-
sential ingredients are the kinematics, the equilibrium equations, and the material
laws.

Kinematics

We assume that we know a reference configuration �̄ for the body under consid-
eration. Here �̄ is the closure of a bounded open set �. In general, �̄ is just the
subset of R

3 where the body is in an unstressed state (natural state). The current
state is given by a mapping14

φ : �̄ −→ R
3

where φ(x) represents the position of a point which was located at x in the refer-
ence configuration. We write

φ = id + u, (1.1)

and call u the displacement. Often we will assume that the displacements are small,
and will neglect terms of higher order in u.

It is obvious that rigid body motions, i.e., translations and orthogonal transfor-
mations, do not alter the stresses in a body. This causes some difficulties since this
invariance must be preserved in the finite element results – at least approximately.

In the following, we assume that the mapping φ is sufficiently smooth. φ

represents a deformation, provided

det(∇φ) > 0.

Here ∇φ is the deformation gradient, and its matrix representation is

∇φ =




∂φ1
∂x1

∂φ1
∂x2

∂φ1
∂x3

∂φ2
∂x1

∂φ2
∂x2

∂φ2
∂x3

∂φ3
∂x1

∂φ3
∂x2

∂φ3
∂x3


 . (1.2)

14 As before, we do not use any special notation to distinguish vectors, matrices, or
tensors. In general, in this section we use lower case Latin letters for vectors, and capitals
for tensors or matrices.
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The word deformation suggests that subdomains with positive volume are mapped
into subdomains with positive volume. Deformations are injective mappings lo-
cally.

The mapping φ induces

φ(x + z)− φ(x) = ∇φ(x) · z+ o(z).

In terms of the Euclidean distance,

‖φ(x + z)− φ(x)‖2 = ‖∇φ · z‖2 + o(‖z‖2)

= z′ ∇φT ∇φ z+ o(‖z‖2).
(1.3)

Thus, the matrix
C := ∇φT ∇φ (1.4)

describes the transformation of the length element. It is called the (right) Cauchy–
Green strain tensor. The deviation

E := 1

2
(C − I )

from the identity is called the strain, and is one of the most important concepts
in the theory. Frequently, we will work with matrix representations of C and E.
These matrices are obviously symmetric. Inserting (1.1) into (1.4) gives

Eij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ 1

2

∑
k

∂uk

∂xi

∂uk

∂xj

. (1.5)

In the linear theory we neglect the quadratic terms, leading to the following sym-
metric gradient as an approximation:

εij := 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
. (1.6)

1.1 Remark. Let � be connected. If the strain tensor associated with the defor-
mation φ ∈ C1(�) satisfies the relation

C(x) = I for all x ∈ �,

then φ describes a rigid body motion, i.e., φ(x) = Qx+b, where Q is an orthogonal
matrix.

Sketch of a proof. Let � be a smooth curve in �. In view of (1.3) and C(x) = I , the
rectifiable curves � and φ(�) always have the same length. This follows directly
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from the definition of the arc length via an integral. We now use it to establish the
desired result.

Since φ is locally injective, if � is open, then φ(�) is also open. For every
x0 ∈ �, there exists a convex neighborhood U in � such that the convex hull of
φ(U) is contained in φ(�). The mapping φ|U is globally distance preserving, i.e.
for all pairs x, y ∈ U ,

‖φ(x)− φ(y)‖ = ‖x − y‖. (1.7)

To see this, let � be the line connecting the points x and y. Since φ(�) has the
same length, ‖φ(x)− φ(y)‖ ≤ ‖x − y‖. The equality now follows by examining
the preimage of the line connecting φ(x) and φ(y).

Because of (1.7), the auxiliary function

G(x, y) := ‖φ(y)− φ(x)‖2 − ‖y − x‖2

vanishes on U × U . G is differentiable with respect to y, and 1
2

∂G
∂yi

satisfies

∑
k

∂φk

∂yi

(φk(y)− φk(x))− (yi − xi) = 0.

This expression is differentiable with respect to xj , and so

−
∑

k

∂φk

∂yi

∂φk

∂xj

+ δij = 0,

which is just the componentwise version of ∇φ(y)T∇φ(x) = I. Multiplying on
the left by ∇φ(y) and using C = I , we immediately get ∇φ(x) = ∇φ(y). Thus,
∇φ is constant on U , and φ is a linear transformation.

Now the result follows for the entire domain � by a covering argument.

The Equilibrium Equations

In mechanics we treat the influence of forces axiomatically. Euler and Cauchy
both made essential contributions. For details, see Ciarlet [1988].

We assume that the interaction of the body with the outside world is described
by two types of applied forces:

(a) applied surface forces (forces distributed over the surface),
(b) applied body forces (forces distributed over the volume).

A typical body force is the force of gravity, while the force caused by a load on a
bridge (e.g., a vehicle) is a surface force.
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The forces are distinguished by the work they do under deformations.

The body force f : � −→ R
3 results in a force f dV acting on a volume

element dV . Surface forces are specified by a function t : �× S2 −→ R
3 where

S2 denotes the unit sphere in R
3: Let V be an arbitrary subdomain of � (with a

sufficiently smooth boundary), and let dA be an area element on the surface with
the unit outward-pointing normal vector n. Then the area element dA contributes
t (x, n)dA to the force, which also depends on the direction of n. The vector t (x, n)

is called the Cauchy stress vector.

The main axiom of mechanics asserts that in an equilibrium state, all forces
and all moments add to zero. Here we must take into account both surface forces
and body forces.

1.2 Axiom of Static Equilibrium. (Stress principle of Euler and Cauchy)
Let B be a (deformed) body in equilibrium. Then there exists a vector field t

such that in every subdomain V of B, the (volume) forces f and the stresses t

satisfy ∫
V

f (x)dx +
∫

∂V

t (x, n)ds = 0, (1.8)∫
V

x ∧ f (x)dx +
∫

∂V

x ∧ t (x, n)ds = 0. (1.9)

Here the symbol ∧ stands for the vector product in R
3.

Once the existence of the Cauchy stress vector is given, its exact dependence
on the normal n can be determined. Here and in the sequel, we use the following
sets of matrices:

M
3 , the set of 3 × 3 matrices,

M
3+ , the set of matrices in M

3 with positive determinants,
O

3 , the set of orthogonal 3 × 3 matrices,
O

3+ := O
3 ∩M

3+,
S

3 , the set of symmetric 3 × 3 matrices,
S

3
> , the set of positive definite matrices in S

3.

1.3 Cauchy’s Theorem. Let t (·, n) ∈ C1(B, R
3), t (x, ·) ∈ C0(S2, R

3), and
f ∈ C(B, R

3) be in equilibrium according to 1.2. Then there exists a symmetric
tensor field T ∈ C1(B, S

3) with the following properties:

t (x, n)= T (x)n, x ∈ B, n ∈ S2, (1.10)

div T (x)+ f (x)= 0, x ∈ B, (1.11)

T (x)= T T (x), x ∈ B. (1.12)
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The tensor T is called the Cauchy stress tensor.

The key assertion of this famous theorem is the representability of the stress
vector t in terms of the tensor T . Using the Gauss integral theorem, it follows
from (1.8) that∫

V

f (x)dx +
∫

∂V

T (x)nds =
∫

V

[f (x)+ div T (x)]dx = 0.

This relation also implies the differential equation (1.11). The equilibrium equa-
tions (1.9) for the moments imply the symmetry (1.12).

The Piola Transform

We have formulated the equilibrium equations in terms of the coordinates of the
deformed body B (as did Euler). Since these coordinates have to be computed in the
first place, it is useful to transform the variables to the reference configuration. To
distinguish the expressions, in the following we add a subscript R when referring
to the reference configuration. In particular, x = φ(xR).

The transformation of the body forces follows directly from the well-known
transformation theorem for integrals, where the volume element is given by dx =
det(∇φ)dxR. The forces are proportional to density. Densities are transformed ac-
cording to conservation of mass: ρ(x)dx = ρR(xR)dxR which implies ρ(φ(xR)) =
det(∇φ−1)ρR(xR). Consequently,

f (x) = det(∇φ−1)fR(xR). (1.13)

The equation (1.13) makes implicit use of the assumption that under the deforma-
tion, point masses do not move to positions where we have a different force field.
In this case we speak of a dead load.

The transformation of stress tensors is more complicated, but can be computed
by elementary methods; cf. Ciarlet [1988]. In terms of the reference configuration,
we have

divR TR + fR = 0 (1.14)

with
TR := det(∇φ) T (∇φ)−T . (1.15)

Equation (1.14) is the analog of (1.11). However, in contrast to T , the so-called first
Piola–Kirchhoff stress tensor TR in (1.15) is not symmetric. To achieve symmetry,
we introduce the second Piola–Kirchhoff stress tensor

R := det(∇φ) (∇φ)−1 T (∇φ)−T . (1.16)

Clearly, R = (∇φ)−1TR.

The differences between the three stress tensors can be neglected for small
deformation gradients.
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Fig. 57. A compression of a body in one direction leads to an expansion in the
other directions. The relative size is given by the Poisson ratio ν.

Constitutive Equations

An important problem is to find the deformation of a body and the associated
stresses corresponding to given external forces. The equilibrium equation (1.11)
(respectively, (1.14)) gives only 3 equations. This does not determine the 6 compo-
nents of the symmetric stress tensor. The missing equations arise from constitutive
equations, which express how the deformations depend on properties of the ma-
terial as well as the given forces.

1.4 Definition. A material is called elastic if there exists a mapping

T̂ : M
3
+ −→ S

3
+

such that for every deformed state,

T (x) = T̂ (∇φ(xR)). (1.17)

The mapping T̂ is called the response function for the Cauchy stress, and (1.17)
is called the constitutive equation.

The constitutive equation implicitly contains the assumption that the stress
depends on the displacement in a local way. In view of (1.16), we introduce the
response function for the Piola–Kirchhoff stress,

̂(F ) := det(F ) F−1T̂ (F ) F−T . (1.18)

(Formulas with the variables F will generally be applied with F := ∇φ(x).)

For simplicity, we restrict ourselves to homogeneous materials, i.e., to mate-
rials for which T̂ does not depend explicitly on x.

Response functions can be brought into a simpler form on the basis of phys-
ical laws. First we make the simple observation that the components T̂ij do not
behave like scalar functions. Consider a rectangular parallelepiped whose faces
are perpendicular to the coordinate axes. Suppose we press on the surfaces which
are perpendicular to the x-axis as in Fig. 57. In addition to a compression in the
x-direction, in general the material will react by stretching in the perpendicular
directions in order to reduce the change in the volume or density, respectively.
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1.5 Axiom of Material Frame-Indifference. The Cauchy stress vector t (x, n) =
T (x) n is independent of the choice of coordinates, i.e., Qt(x, n) = t (Qx, Qn)

for all Q ∈ O
3+.

A frame-indifferent material is also called objective.

1.6 Theorem. Suppose the axiom of material frame-indifference holds. Then for
every orthogonal transformation Q ∈ O

3+,

T̂ (QF) = Q T̂ (F ) QT . (1.19)

Moreover, there exists a mapping ̃ : S
3
> −→ S

3 such that

̂(F ) = ̃(F T F ), (1.20)

i.e., ̂ depends only on FT F .

Proof. Instead of rotating the coordinate system, we rotate the deformed body:

x �−→ Qx,

φ �−→ Qφ,

∇φ �−→ Q∇φ,

n �−→ Q−T n = Qn,

t (x, n) �−→ Qt(x, n).

By Axiom 1.5, t (Qx, Qn) = Qt(x, n), and thus T̂ (QF)Q · n = QT̂ (F ) · n.
Replacing Qn by n and using QT Q = I , we get (1.19).

It follows from (1.18) and (1.19) after some elementary manipulations that

̂(QF) = ̂(F ) for Q ∈ O
3
+. (1.21)

To prove (1.20), we consider the two nonsingular matrices F and G in M
3+ with

FT F = GT G. Set Q := FG−1. Then QT Q = I and det(Q) > 0. Now (1.21)
implies ̂(F ) = ̂(G), and so in fact ̂ depends only on the product FT F .

The axiom of frame-indifference holds for all materials. On the other hand,
isotropy is purely a material property, which means that no direction in the material
is preferred. Layered materials such as wood or crystal are not isotropic. Isotropy
implies that the stress vectors do not change if we rotate the nondeformed body,
i.e., before the deformation takes place.
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1.7 Definition. A material is called isotropic provided

T̂ (F ) = T̂ (FQ) for all Q ∈ O
3
+. (1.22)

The different order of F and Q in (1.19) as compared to (1.22) is important.
As in the proof of Theorem 1.6, it can be shown that (1.22) is equivalent to

T̂ (F ) = T̄ (FFT ) (1.23)

with a suitable function T̄ .

In view of the transformation properties, the response function depends in
an essential way on the invariants of the matrix: every 3 × 3 matrix A = (aij )

is associated with a triple of invariants ıA = (ı1(A), ı2(A), ı3(A)) defined by the
corresponding characteristic polynomial

det(λI − A) = λ3 − ı1(A) λ2 + ı2(A) λ− ı3(A).

These principal invariants are closely related to the eigenvalues λ1, λ2, λ3 of A:

ı1(A) :=
∑

i

aii = trace(A) = λ1 + λ2 + λ3,

ı2(A) := 1

2

∑
ij

(aiiajj − a2
ij ) =

1

2
[(trace A)2 − trace(A2)]

= λ1λ2 + λ1λ3 + λ2λ3,

ı3(A) := det(A) = λ1λ2λ3.

(1.24)

We can now formulate a famous theorem of elasticity theory. We employ the
usual notation for diagonal matrices, D = diag(d11, d22, . . . , dnn).

1.8 Rivlin–Ericksen Theorem [1955]. A response function T̂ : M
3+ −→ S

3 is
objective and isotropic if and only if it has the form T̂ (F ) = T̄ (FFT ), and

T̄ : S
3
> −→ S

3

T̄ (B) = β0(ıB) I + β1(ıB) B + β2(ıB) B2.
(1.25)

Here β0, β1, and β2 are functions of the invariants of B.

Proof. By (1.23), T̂ (F ) = T̄ (FFT ) with a suitable function T̄ . It remains to give
the proof for the special form (1.25).

(1) First, let B = diag (λ1, λ2, λ3) be a diagonal matrix, and let FFT =
B, e.g., F = B1/2. In addition, let T = (Tij ) = T̂ (F ). The matrix Q :=
diag (1,−1,−1) is orthogonal, and by Theorem 1.6,

T̂ (QF) = QT QT =
(

T11 −T12 −T13

−T21 T22 T23

−T31 T32 T33

)
. (1.26)
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On the other hand, QF(QF)T = QBQT = B, and thus by hypothesis, T̂ (QF) =
T̂ (F ) = T . By (1.26), this can happen only if T12 = T13 = 0. A similar argument
with Q = diag (−1,−1,+1) shows that T23 = 0. Thus T (B) is diagonal if B is
a diagonal matrix.

(2) Suppose again that B is a diagonal matrix. If Bii = Bjj , then Tii = Tjj .
To verify this we consider the case B11 = B22, and choose

Q =
( 0 1

1 0
−1

)
.

Then QBQT = B, and analogously to part (1), we deduce that T11 = (QT QT )11

= T22.

Thus, we can represent T in the form

T = β0I + β1B + β2B
2 (1.27)

with suitable coefficients β0, β1, β2. Now if we permute the diagonal elements of
B, then as we have seen, the elements of T have to be permuted in the same way.
This gives the representation (1.27) for the new matrix with the same coefficients
β0, β1 and β2 as before. Thus, β0, β1 and β2 are symmetric functions of λi , and
the theorem is proved in the case of a diagonal matrix B.

(3) Suppose F ∈ M
3+ and B = FFT is not diagonal. There exists an or-

thogonal matrix Q such that QBQ−1 = D is a diagonal matrix. Replacing Q by
−Q if necessary, we can assume det Q > 0. Note that ıB = ıD . By the above
considerations and the material frame-indifference, we deduce that

T̂ (F ) = Q−1T̂ (QF)Q−T

= Q−1T̄ (D)Q

= Q−1[β0I + β1D + β2D
2]Q

= β0I + β1B + β2B
2,

and the proof is complete.

1.9 Remarks. In the special case where FFT is a multiple of the unit matrix,
T̂ (F ) is also a multiple of the unit matrix. Then the stress has the character of a
pure pressure.

For the transfer of the result on the Cauchy tensor to a corresponding formula
for the second Piola–Kirchhoff tensor, we make use of the formula of Cayley–
Hamilton: B3 − ı1(B)B2 + ı2(B)B − ı3(B)I = 0. Eliminating I from (1.25), we
get

T̄ (B) = β̃1B + β̃2B
2 + β̃3B

3

with different coefficients. Multiplying on the left by F−1 and on the right by
F−T , with the notation of Theorem 1.6 we get a reformulation in terms of the
Cauchy–Green stress tensor C.
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1.10 Corollary. (∇φ) = ̃(∇φT∇φ) for an isotropic and objective material,
where

̃(C) = γ0I + γ1C + γ2C
2, (1.28)

and where γ0, γ1, γ2 are functions of the invariants ıC .

Linear Material Laws

The stress–strain relationship can be described in terms of two parameters in the
neighborhood of a strain-free reference configuration. Setting C = I + 2E in
(1.28), ̃(I +2E) = γ0(E) I +γ1(E) E+γ2(E) E2, where we have not changed
the notation for the functions.

1.11 Theorem. Suppose that in addition to the hypotheses of Corollary 1.10, γ0, γ1

and γ2 are differentiable functions of ı1(E), ı2(E) and ı3(E). Then there exist
numbers π, λ, µ with

̃(I + 2E) = −πI + λ trace(E) I + 2µE + o(E) as E → 0.

Sketch of a proof. First note that ̃(1+2E) = γ0(E) I+γ1 E+o(E). In particular,
only the constant term in γ1 is used. By Remarks 1.9, we know that ̃(I ) = −πI

with a suitable π ≥ 0. By (1.24), we deduce that ı2 = O(E2) and ı3 = O(E3),
and only the constants and the trace remain in the terms of first order in γ0(E).

Normally, the situation C = I corresponds to an unstressed condition, and
π = 0. The other two constants are called Lamé constants. If we ignore the terms
of higher order, we are led to the linear material law of Hooke:

̃(I + 2E) = λ trace(E) I + 2µE. (1.29)

A material which satisfies (1.29) in general and not just for small strains is called
a St. Venant–Kirchhoff material. Note that in the approximation (1.6),

trace(ε) = div u, (1.30)

and thus the Lamé constant λ describes the stresses due to change in density. The
other Lamé constant µ is sometimes called the shear modulus of the material.

If we use a different set of frequently used parameters, namely Young’s mod-
ulus of elasticity E and the Poisson ratio ν, we have the following relationship:

ν = λ

2(λ+ µ)
, E = µ(3λ+ 2µ)

λ+ µ
,

λ = Eν

(1 + ν)(1 − 2ν)
, µ = E

2(1 + ν)
.

(1.31)
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It follows from physical considerations that λ > 0, µ > 0, and E > 0, 0 < ν < 1
2 .

The Poisson ratio ν describes the influence of stresses on displacements in
the orthogonal directions shown in Fig. 57. For many materials, ν ≈ 1/3. On the
other hand, for nearly incompressible materials, λ � µ, i.e., ν is very close to
1/2.

The deformations, stresses, and strains are defined by the kinematics, the equi-
librium equations, and the constitutive equations. In principle, only the equilibrium
equations (for the Cauchy stress tensor) are linear.

If we assume small deformations, and replace the strain E by the linearization
ε, it suffices to work with the so-called geometrically linear theory. However, for
practical everyday calculation, the complete linear theory where we also assume
that the constitutive equations are linear and work with isotropic media is of the
greatest importance.

Problem
1.12 Often a polar factorization of the deformation gradient

F = RU or F = V R

with positive definite Hermitean matrices U , V , and an orthogonal Matrix R is
considered. In this way the invariance properties are accentuated. Show that

U := (F T F )1/2, R := FU−1, and V := RURT

yield the desired factorization and that it is unique. Here F is assumed to be
nonsingular.
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§ 2. Hyperelastic Materials

By Cauchy’s theorem, the equilibrium state of an elastic body is characterized by

− div T (x) = f (x), x ∈ �, (2.1)

and the boundary conditions

φ(x) = φ0(x), x ∈ �0,

T (x) · n = g(x), x ∈ �1.
(2.2)

Here f is the applied body force and g is the surface traction on the part �1 of
the boundary. �0 denotes the part of the boundary on which the displacement is
given.

We regard these equations as a boundary-value problem for the deformation
φ, and write

− div T̂ (x,∇φ(x)) = f (x), x ∈ �,

T̂ (x,∇φ(x)) n = g(x), x ∈ �1,

φ(x) = φ(x0), x ∈ �0.

(2.3)

For simplicity, we neglect the dependence of the forces f and g on φ, i.e., we
consider them to be dead loads; cf. Ciarlet [1988, §2.7].

To be more precise, � is the domain occupied by the deformed body, and is
also unknown. For simplicity, we identify � with the reference configuration, and
restrict ourselves to an approximation which makes sense for small deformations.

2.1 Definition. An elastic material is called hyperelastic if there exists an energy
functional Ŵ : �×M

3+ −→ R such that

T̂ (x, F ) = ∂Ŵ

∂F
(x, F ) for x ∈ �, F ∈ M

3
+ .

There is a variational formulation corresponding to the boundary-value prob-
lem (2.3) for hyperelastic materials, provided that the vector fields f and g can be
written as gradient fields: f = grad F and g = grad G. In this case the solutions
of (2.3) are stationary points of the total energy

I (ψ) =
∫

�

[Ŵ (x,∇ψ(x))− F(ψ(x))]dx +
∫

�1

G(ψ(x))dx. (2.4)
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As deformations we admit functions ψ which satisfy Dirichlet boundary conditions
on �0 along with the local injectivity condition det(∇ψ(x)) > 0. – We introduce
appropriate function spaces later.

The expression (2.4) refers to the variational formulation for the displace-
ments. We note that frequently the stresses are also included as variables in the
variational problem. Because of the coupling of the kinematics with the constitu-
tive equations, we get a saddle point problem, and thus mixed methods need to be
applied.

2.2 Remark. The properties of the material laws discussed in §1 may be rediscov-
ered in analogous properties of the energy functionals. To save space, we present
them without proof.

For an objective material, Ŵ (x, ·) is a function of only C = FT F :

Ŵ (x, F ) = W̃ (x, F T F )

and

̃(x, C) = 2
∂W̃ (x, C)

∂C
for all C ∈ S

3
>.

The dependence of C can be made more precise. W̃ depends only on the principal
invariants of C, i.e., W̃ (x, C) = Ẇ (x, ıC) for C ∈ S

3
>. Analogously, for isotropic

materials, we have

Ŵ (x, F ) = Ŵ (x, FQ) for all F ∈ M
3
+, Q ∈ O

3
+.

In particular, for small deformations,

W̃ (x, C) = λ

2
(trace E)2 + µ E : E + o(E2) (2.5)

with C = I + 2E. Here, as usual,

A : B :=
∑
ij

AijBij = trace(AT B),

for any two matrices A and B.

2.3 Examples. (1) For St. Venant–Kirchhoff materials,

Ŵ (x, F ) = λ

2
(trace F − 3)2 + µ F : F

= λ

2
(trace E)2 + µ trace C.

(2.6)
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(2) For so-called neo-Hookean materials,

W̃ (x, C) = 1

2
µ[trace(C − I )+ 2

β
{(det C)−β/2 − 1}], (2.7)

where β = 2ν
1−2ν

.

We note that (2.6) is restricted to strains which are not too large. Indeed, we
expect that

Ŵ (x, F ) −→∞ as det F → 0, (2.8)

since det F → 0 means that the density of the deformed material becomes very
large. The condition (2.8) implies that Ŵ is not a convex function of F . Indeed,
the set of matrices

B = {F ∈ M
3; det F > 0} (2.9)

is not a convex set; see Problem 2.4. There are many matrices F0 with det F0 =
0 which are the convex combination of two matrices F1 and F2 with positive
determinants. By the continuity of Ŵ at F1 and F2, we would get the boundedness
in a neighborhood of F0 whenever Ŵ is assumed to be convex.

Problems

2.4 Show that (2.9) does not define a convex set by considering the convex
combinations of the matrices( 2

2
2

)
and

(−1
−4

1

)
.

2.5 Consider a St. Venant–Kirchhoff material with the energy function (2.6), and
show that there would exist negative energy states if µ < 0 were to hold.

2.6 Consider a neo-Hookean material for small strains, and establish Hooke’s
law with the same parameters µ and ν.

2.7 Often the energy functional depends on J := det F . Show that the derivate
is given by

DF J : δF = J trace(F−1δF ), DCJ : δC = 1

2
J trace(C−1δC).

Hint. For F = I we have obviously DIJ δF = trace(δF ) and det(F + δF ) =
det F det(I + F−1δF ).
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§ 3. Linear Elasticity Theory

In the linearized equations of elasticity theory we take account only of terms of
first order in the displacement u while terms of higher order are neglected. This
affects the kinematics in terms of the approximation (1.6), and the constitutive
equations in terms of (1.29) or (2.6). Here we restrict ourselves to the isotropic
case for two reasons: to keep the discussion more accessible, and because this case
is more important in practice. In this framework, we do not have to distinguish
between different stress tensors. In order to make this clear, we write

σ instead of  and ε instead of E.

We begin with a short overview, and then in the framework of three-dimensional
elasticity theory consider various formulations of the variational problems, includ-
ing mixed methods in particular.

In order to make this discussion as independent of the previous sections as
possible, we first recall the necessary equations.

The Variational Problem

In the framework of the linear theory, the variational problem is to minimize the
energy

� :=
∫

�

[1

2
ε : σ − f · u

]
dx +

∫
�1

g · u dx. (3.1)

Here ε : σ := ∑
ik εikσik . The variables σ, ε and u in (3.1) are not independent,

but instead are coupled by the kinematic equations

εij = 1

2

(∂ui

∂xj

+ ∂uj

∂xi

)
or ε = ε(u) =: ∇(s)u,

(3.2)

where ∇(s) is the symmetric gradient, and the linear constitutive equations

ε = 1 + ν

E
σ − ν

E
trace σ I. (3.3)

In order to establish the connection between (3.1) and (2.4), we first invert (3.3).
Since trace I = 3, it follows from (3.3) that trace ε = (1 − 2ν)/E trace σ , and
solving for σ gives

σ = E

1 + ν

(
ε + ν

1 − 2ν
trace ε I

)
. (3.4)
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In contrast to (1.29), the constants here are expressed in terms of the modulus of
elasticity and the Poisson ratio. Moreover, ε : I = trace ε, and hence

1

2
σ : ε = 1

2
(λ trace ε I + 2µε) : ε = λ

2
(trace ε)2 + µ ε : ε (3.5)

coincides with the energy functional in (2.6).
We note that the equation (3.4) is often written componentwise:




σ11

σ22

σ33

σ12

σ13

σ23


 = E

(1 + ν)(1 − 2ν)




1 − ν ν ν

ν 1 − ν ν 0
ν ν 1 − ν

1 − 2ν

0 1 − 2ν

1 − 2ν







ε11

ε22

ε33

ε12

ε13

ε23




or σ = Cε, (3.6)

see Problem 4.7.15 The fact that the matrix C is positive definite for 0 ≤ ν < 1
2

can be seen by applying the Gerschgorin theorem to the compliance matrix, i.e.
the inverse,

C−1 = 1

E




1 −ν −ν

−ν 1 −ν 0
−ν −ν 1

1 + ν

0 1 + ν

1 + ν


 . (3.7)

Clearly, (3.1), (3.2), and (3.3) lead to a mixed variational formulation. We can
now eliminate one or two variables. Thus, there are three distinct formulations in
the engineering literature; see Stein and Wunderlich [1973]. Before treating them
in detail, we give a short overview.

(1) The displacement formulation.
We eliminate σ with the help of (3.6), and then ε using (3.2):

�(v) =
∫

�

[1

2
∇(s)v : C ∇(s)v − f · v

]
dx +

∫
�1

g · v dx

=
∫

�

[
µ ε(v) : ε(v)+ λ

2
(div v)2 − f · v]dx +

∫
�1

g · v dx −→ min!

(3.8)

15 In engineering references the nondiagonal components of ε are usually normalized so
that they differ from (3.2) by a factor of 2. With that notation, called Voigt notation, some
of our constants will be changed by a factor 2.
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Here ∂� is divided into �0 and �1 depending on the boundary conditions as in
(2.2). Assuming for simplicity that zero boundary conditions are specified on �0,
we have to find the minimum over

H 1
� := {v ∈ H 1(�)3; v(x) = 0 for x ∈ �0}.

The associated weak formulation is the following: Find u ∈ H 1
� with

∫
�

∇(s)u : C ∇(s)v dx = (f, v)0 −
∫

�1

g · v dx for all v ∈ H 1
�.

In terms of the L2-scalar product for matrix-valued functions, we can write these
equations in the short form

(∇(s)u, C ∇(s)v)0 = (f, v)0 −
∫

�1

g · v dx for all v ∈ H 1
�(�), (3.9)

and in particular, for St. Venant–Kirchhoff materials as

2µ(∇(s)u,∇(s)v)0 + λ(div u, div v)0 = (f, v)0 −
∫

�1

g · v dx. (3.10)

The associated classical elliptic differential equation is the Lamé differential equa-
tion

−2µ div ε(u)− λ grad div u = f in �,

u = 0 on �0,

σ (u) · n = g on �1.

(3.11)

(2) The mixed method of Hellinger and Reissner
In this method, also called the Hellinger–Reissner principle, the displacement and
stresses remain as unknowns, while the strains are eliminated:

(C−1σ − ∇(s)u, τ )0 = 0 for all τ ∈ L2(�),

−(σ,∇(s)v)0 = −(f, v)0 +
∫

�1

g · v dx for all v ∈ H 1
�(�).

(3.12)

The equivalence of (3.9) and (3.12) can be seen as follows: Let u be a solution of
(3.9). Since u ∈ H 1,

σ := C ∇(s)u ∈ L2. (3.13)

Because of the symmetry of C, (3.9) implies the second equation of (3.12). The first
equation of (3.12) is just the weak formulation of (3.13). As soon as we establish
that the two variational problems are uniquely solvable, we have the equivalence.
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We can write (3.12) as a classical differential equation in the form

div σ = −f in �,

σ = C∇(s)u in �,

u = 0 on �0,

σ · n = g on �1.

In particular, in view of the second equation, σ is a symmetric tensor.16

The equations fit (at least formally) in the general framework of Ch. III in
the following canonical form:17

X = L2(�), M = H 1
�(�),

a(σ, τ ) = (C−1σ, τ)0, b(τ, v) = −(τ,∇(s)v)0.

As for the mixed formulation of the Poisson equation (see Ch. III, §5), there is an
alternative: Fix

X := H(div, �), M = L2(�),

a(σ, τ ) = (C−1σ, τ)0, b(τ, v) = (div σ, v)0,
(3.14)

where H(div, �) is once again the closure of C∞(�, S
3) w.r.t. the norm (III.5.4),

‖τ‖H(div,�) := (‖τ‖2
0 + ‖ div τ‖2

0)
1/2.

Integrating by parts, we get b(τ, v) = (div τ, v)0. Which formulation makes the
most sense depends among other things on the boundary conditions (see below).
The connection with the Cauchy equilibrium equations (1.11) is clear from the
second version.

16 If we give up the linearization in the kinematics, we get the nonlinear system

∂j (σij + σkj ∂kui) = −fi in �,

σ = CE(u) in �,

u = 0 on �0,

(σij + σkj ∂kui)nj = gi on �1.

Here the sums are to be taken over the double indices using the so-called Einstein convention.
17 For simplicity, we do not write the more precise formulation of ε, σ ∈ L2(�, S3).
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(3) The mixed method of Hu and Washizu (Hu–Washizu principle).
Here all three variables remain in the equations:

(Cε − σ, η)0 = 0 for all η ∈ L2(�),

(ε − ∇(s)u, τ )0 = 0 for all τ ∈ L2(�),

−(σ,∇(s)v)0 = −(f, v)0 +
∫

�1

g · v dx for all v ∈ H 1
�(�).

(3.15)

In comparison with (3.12), we have now added the relation ε := C−1σ ∈ L2(�),
so that (3.12) and (3.15) are equivalent. To fit this in the general framework, we
set

X := L2(�)× L2(�), M := H 1
�(�),

a(ε, σ, η, τ ) = (C ε, η)0, b(η, τ, v) = (τ,∇(s)v − ε)0.

We consider all three approaches in more detail below.

The simplest of the three is the displacement formulation. Establishing the
validity of the Babuška–Brezzi condition for the mixed methods is considerably
more difficult than for the Stokes problem; see below. On the other hand, for ap-
plications we are mostly interested in computing the stresses with more accuracy
than the displacements. Thus, we look for approaches where the stresses are com-
puted directly rather than via subsequent evaluation of derivatives. We will see
more reasons for turning to mixed methods despite their complexity. In fact, we
prefer the Hellinger–Reissner rather than the Hu–Washizu principle.

The Hellinger–Reissner principle arose from leaving all components of the
stress tensor in the equations. Versions where only some special terms with strains
and stresses remain in the equations are also important in practice. This typically
leads to mixed methods with penalty terms. As an example, we later discuss a
method for nearly incompressible material and plate bending problems.

The Displacement Formulation

It follows from (3.8) that the energy for the displacement method is H 1-elliptic,
provided that the quadratic form

∫
ε(v) : ε(v) dx has this property. This is the

content of a famous inequality. Here we do not restrict the dimension d to be 3.

3.1 Korn’s Inequality (Korn’s first inequality). Let � be an open bounded set in
R

d with piecewise smooth boundary. Then there exists a number c = c(�) > 0
such that ∫

�

ε(v) : ε(v) dx + ‖v‖2
0 ≥ c‖v‖2

1 for all v ∈ H 1(�)d .
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For a proof, see Duvaut and Lions [1976], Nitsche [1981], or the end of this §.
Its structure is similar to the proof that the divergence satisfies an inf-sup condition
as a mapping of H 1(�)d into L2(�); cf. Ch. III, §6. A special case in which the
inequality can be easily verified is dealt with in Remark 3.5 below.

3.2 Remark. If the strain tensor E of a deformation is trivial, then by Remark 1.1
the deformation is an affine distance-preserving transformation. An analogous as-
sertion holds for the linearized strain tensor ε: Let � ⊂ R

3 be open and connected.
Then for v ∈ H 1(�),

ε(v) = 0,

if and only if
v(x) = a ∧ x + b with a, b ∈ R

3. (3.16)

For the proof, we note that

∂2

∂xi∂xj

vk = ∂

∂xi

εjk + ∂

∂xj

εik − ∂

∂xk

εij = 0 (3.17)

in H−1(�) if ε(v) = 0. From this we conclude that every component vk must be
a linear function. But then a simple computation shows that a displacement of the
form v(x) = Ax+b can only be compatible with ε(v) = 0 if A is skew-symmetric.
This leads to (3.16).

On the other hand, it is easy to verify that the linear strains for the displace-
ments of the form (3.16) vanish.

Korn’s inequality is simplified for functions which satisfy a zero boundary
condition. In the sense of Remark II.1.6, it is only necessary that v vanishes on
a part �0 of the boundary, and that �0 possesses a positive (n − 1)-dimensional
measure.

3.3 Korn’s Inequality (Korn’s second inequality). Let � ⊂ R
3 be an open bounded

set with piecewise smooth boundary. In addition, suppose �0 ⊂ ∂� has positive
two-dimensional measure. Then there exists a positive number c′ = c′(�, �0) such
that ∫

�

ε(v) : ε(v)dx ≥ c′‖v‖2
1 for all v ∈ H 1

�(�). (3.18)

Here H 1
�(�) is the closure of {v ∈ C∞(�)3; v(x) = 0 for x ∈ �0} w.r.t. the

‖ · ‖1-norm.

Proof. Suppose that the inequality is false. Then there exists a sequence (vn) ∈
H 1

�(�) with

‖ε(vn)‖2
0 :=

∫
ε(vn) : ε(vn)dx ≤ 1

n
and |vn|1 = 1.
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Because of the hypothesis on �0, Friedrichs’ inequality implies ‖vn‖1 ≤ c1 for
all n and some suitable c1 > 0. Since H 1(�) is compact in H 0(�), there is a
subsequence of (vn) which converges w.r.t. the ‖ · ‖0-norm. With the constant c

from Theorem 3.1, we have c‖vn − vm‖2
1 ≤ ‖ε(vn − vm)‖2

0 + ‖vn − vm‖2
0 ≤

2‖ε(vn)‖2
0 + 2‖ε(vm)‖2 + ‖vn − vm‖2

0 ≤ 2
n
+ 2

m
+ ‖vn − vm‖2

0.

The L2-convergent subsequence is thus a Cauchy sequence in H 1(�), and so
converges in the sense of H 1 to some u0. Hence, ‖ε(u0)‖ = limn→∞ ‖ε(vn)‖ = 0,
and |u0|1 = limn→∞ |vn|1 = 1. By Remark 3.2, we deduce from ε(u0) = 0 that
u0 has the form (3.17). In view of the zero boundary condition on �0, it follows
that u0 = 0. This is a contradiction to |u0|1 = 1.

Korn’s inequality asserts that the variational problem (3.8) is elliptic. Thus,
the general theory immediately leads to

3.4 Existence Theorem. Let � ⊂ R
3 be a domain with piecewise smooth bound-

ary, and suppose �0 has positive two-dimensional measure. Then the variational
problem (3.8) of linear elasticity theory has exactly one solution.

3.5 Remark. In the special case where Dirichlet boundary conditions are pre-
scribed (i.e., �0 = � and H 1

� = H 1
0 ), the proof of Korn’s first inequality is

simpler. In this case

|v|1,� ≤
√

2 ‖ε(v)‖0,� for all v ∈ H 1
0 (�)3. (3.19)

It suffices to show the formula for smooth vector fields. In this case we have

2∇(s)v : ∇(s)v − ∇v : ∇v = div[(v∇)v − (div v)v] + (div v)2. (3.20)

Here (v∇) is to be interpreted as
∑

i vi
∂

∂xi
. The formula (3.20) can be verified,

for example, by solving for all terms in the double sum. Since v = 0 on ∂�, it
follows from the Gauss integral theorem that∫

�

div[(v∇)v − (div v)v]dx =
∫

∂�

[(v∇)v − (div v)v]nds = 0.

Integrating (3.20) over �, we have

2‖∇(s)v‖2
0 − |v|21 =

∫
�

(div v)2dx ≥ 0,

and (3.19) is proved.

Note that the constant in (3.19) is independent of the domain. If we are given
Neumann boundary conditions on a part of the boundary, the constant can easily
depend on �. We will see the consequences in connection with the locking effect
for the cantilever beam shown in Fig. 58 below. — On the other hand, for the pure
traction problem, i.e., for �0 = ∅, there is again a compatibility condition; see
Problem 3.17.
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The Mixed Method of Hellinger and Reissner

The two-field formulation with the displacements and the stresses is usually de-
noted as the Hellinger–Reissner principle, but also as the Hellinger–Prange–
Reissner principle. The basic idea is contained in Hellinger [1914]; a first proof for
the traction problem is due to Prange [1916]18 and for mixed boundary conditions
due to Reissner [1950]; see Gurtin [1972], p. 124 and Orava and McLean [1966].

The method has many similarities to the mixed formulation of the Poisson
equation in Ch. III, §5. The variational formulation according to (3.12) is

(C−1σ, τ)0 − (τ,∇(s)u)0 = 0 for all τ ∈ L2(�),

−(σ,∇(s)v)0 = −(f, v)0 +
∫

�1

g · v dx for all v ∈ H 1
�(�),

(3.21)

which corresponds to the standard displacement formulation. Since ν < 1
2 , C is

positive definite and the bilinear form (C−1σ, τ)0 is L2-elliptic. The following
lemma shows that the inf-sup condition follows from Korn’s inequality.

3.6 Lemma. Suppose the hypotheses for Korn’s second inequality are satisfied.
Then for all v ∈ H 1

�(�),

sup
τ∈L2(�,S3)

(τ,∇(s)v)0

‖τ‖0
≥ c′‖v‖1,

where c′ is the constant in (3.18).

Proof. Given v ∈ H 1
�(�), τ := ∇(s)v is a symmetric L2-tensor. Moreover, by

(3.18), ‖τ‖0 = ‖∇(s)v‖0 ≥ c′‖v‖1. It suffices to consider the case v �= 0:

(τ,∇(s)v)0

‖τ‖0
= ‖∇(s)v‖2

0

‖∇(s)v‖0
≥ c′‖v‖1,

which establishes the inf-sup condition.

The formulation with the spaces as in (3.21) is almost equivalent to the dis-
placement formulation. Specifically, it can be understood as a displacement for-
mulation combined with a softening of the energy. It is suitable for the method of
enhanced assumed strains by Simo and Rifai [1990]; see Ch. III, §5. As in the dis-
cretization of the Poisson equation using the Raviart–Thomas element, generally

18 Prange’s "Habilitationsschrift" (a thesis for an academic degree at a level above the
doctorate, which is usually a prerequisite for a professorship in Germany) was unpublished
due to the first world war. It was only edited with an introduction by K. Knothe in 1999.
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the pairing (3.14) is more appropriate. Find σ ∈ H(div, �) and u ∈ L2(�)3 with

(C−1σ, τ)0 + (div τ, u)0 = 0 for all τ ∈ H(div, �), τn = 0 on �1,

(div σ, v)0 = −(f, v)0 for all v ∈ L2(�)3,

σn = g on �1.

(3.22)

We assume that an inhomogeneous boundary condition has been reduced to a
homogeneous one in the sense of Ch. II, §2. The equations (3.22) are the Euler
equations for the saddle point problem

(C−1σ, σ )0 −→ min
σ∈H(div,�)

!

with the restriction
div σ = f

and the boundary condition σn = g on �1. This is often called the dual mixed
method.

Just as in H 1
0 (�) where boundary values for the function are prescribed, in

the (less regular) space H(div, �) we can specify the normal components on the
boundary. This becomes clear from the jump conditions in Problem II.5.14. Here
we assume that the boundary is piecewise smooth.

Although in (3.22) formally we required only that u ∈ L2(�)3, in fact the
solution satisfies u ∈ H 1

�(�). It follows from (3.22) that ε(u) = C−1σ ∈ L2(�).
Indeed, suppose i, j ∈ {1, 2, 3} and that only τij = τji are nonzero. In addition,
let τij ∈ C∞

0 (�). Then writing w instead of τij , it follows from (3.22) that

1

2

∫
�

(
ui

∂w

∂xj

+ uj

∂w

∂xi

)
dx = −

∫
�

(C−1σ)ijw dx.

Recalling Definition II.1.1, we see that the symmetric gradient (∇(s)u)ij exists in
the weak sense, and coincides with (C−1σ)ij ∈ L2(�). Now Korn’s first inequality
implies u ∈ H 1(�)3. Finally, we apply Green’s formula. Because of the symmetry,
it follows that for all test functions τ as in (3.22),∫

∂�

u · τn ds =
∫

�

∇u : τ dx +
∫

�

u · div τ dx

=
∫

�

∇(s)u : τ dx +
∫

�

u · div τ dx

=
∫

�

C−1σ : τ dx +
∫

�

u · div τ dx = 0.

Since this holds for all test functions, it follows that u = 0 on �0 = ∂�\�1.



302 VI. Finite Elements in Solid Mechanics

The inf-sup condition and the V -ellipticity follow exactly as in Ch. III, §5.
However, we emphasize that they are by no means trivial for the finite element
spaces, and it is not easy to find stable pairings of finite element spaces. We explore
the consequences for the two-dimensional case in §4.

We emphasize that we obtain different natural boundary conditions for the
two formulations: with (3.21) they are σn = g on �1, while with (3.22) we have
u = 0 on �0.

3.7 Remark. When �0 = �, �1 = ∅, i.e., for pure displacement boundary
conditions, we need an extra argument for the Hellinger–Reissner principle. In
this case the stresses lie in the subspace

Ĥ (div, �) :=
{
τ ∈ H(div, �);

∫
�

trace τ dx = 0
}
. (3.23)

Indeed, combining (1.30), (3.3), the Gauss integral theorem, and the fact that u = 0
on the boundary, we have∫

�

trace σ dx = E

1 − 2ν

∫
�

trace ε dx = E

1 − 2ν

∫
�

div u dx

= E

1 − 2ν

∫
∂�

u · n ds = 0.

The Mixed Method of Hu and Washizu

In the Hu–Washizu principle, the stresses take the role of the Lagrange multipliers;
cf. Hu [1955] and Washizu [1955]. As was pointed out by Felippa [2000], the
notation de Veubeke–Hu–Washizu principle would be more appropriate since the
three-field formulation can already be found in Fraeijs de Veubeke [1951]. Let

X := L2(�)×H 1
�(�), M := L2(�),

a(ε, u; η, v) = (ε, Cη)0, b(ε, u; τ) = −(ε, τ )0 + (∇(s)u, τ )0.
(3.24)

We seek (ε, u) ∈ X and σ ∈ M with

(ε, Cη)0 − (η, σ )0 = 0 for all η ∈ L2(�),

(∇(s)v, σ )0 = (f, v)0 −
∫

�1

g · v dx for all v ∈ H 1
�(�),

− (ε, τ )0 + (∇(s)u, τ )0 = 0 for all τ ∈ L2(�).

By the definiteness of C, there exists β > 0 such that

a(η, v; η, v) = (η, Cη)0 = 1

2
(η, Cη)0 + 1

2
(∇(s)v, C∇(s)v)0

≥ β

2
(‖η‖2

0 + ‖∇(s)v‖2
0) ≥ β(‖η‖2

0 + c′‖v‖2
1)
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holds with c′ from Korn’s inequality on the subspace

V = {(η, v) ∈ X; −(η, τ )0 + (∇(s)v, τ )0 = 0 for τ ∈ M}.
Thus the bilinear form a is V -elliptic.

The inf-sup condition is easily verified. We need only evaluate b with η = τ

and v = 0.

As a second possibility, using the same bilinear form a, we can work with
the pairing

X := L2(�)× L2(�)3, M := {τ ∈ H(div, �); τn = 0 on �1},
b(ε, u; τ) = −(ε, τ )0 − (u, div τ)0.

(3.25)

The argument is the same as in the second formulation of the Hellinger–Reissner
principle.

In regard to the finite element approximation, we should mention one differ-
ence as compared with the Stokes problem. The bilinear form a is elliptic on the
entire space X only for the first version of the Hellinger–Reissner principle, while
in the other cases it is only V -elliptic. The ellipticity on Vh can only be obtained
if the space Xh is not too large in comparison with Mh; see Problem III.4.18. On
the other hand, since the inf-sup condition requires Xh to be sufficiently large, the
finite element spaces Xh and Mh have to fit together.

There is one more reason why it is not easy to provide stable, genuine ele-
ments for the Hu–Washizu principle. Here elements are said to be genuine if they
are not equivalent to some elements for the Hellinger–Reissner theory or for the
displacement formulation.

3.8 First Limit Principle of Stolarski and Belytschko [1966]. Assume that
uh ∈ Vh, εh ∈ Eh, and σh ∈ Sh constitute the finite element solution of a problem
by the Hu–Washizu method. If the finite element spaces satisfy the relation

Sh ⊂ CEh, (3.26)

then (σh, uh) is the finite element solution of the Hellinger–Reissner formulation
with the (same) spaces Sh and Vh.
Proof. The arguments in the proof are purely algebraic and apply to the pairings
(3.24) and (3.14), or (3.25) and (3.15), respectively. In order to be specific we
restrict ourselves to the first case and assume that

(εh, Cη)0 − (η, σh)0 = 0 for all η ∈ Eh,

(∇(s)v, σh)0 = (f, v)0 −
∫

�1

g · v dx for all v ∈ Vh,

− (εh, τ )0 + (∇(s)uh, τ )0 = 0 for all τ ∈ Sh.

(3.27)
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From the first equation and the symmetry of the bilinear forms we conclude that

(εh − C−1σh, Cη)0 = 0 for all η ∈ Eh.

By the assumption (3.26), we may set η := εh − C−1σh and obtain

(εh − C−1σh, C(εh − C−1σh))0 = 0.

Since C is positive definite, it follows that εh = C−1σh. Inserting this into the other
equations of (3.27), we see that σh and uh are finite element solutions of (3.21).

Nevertheless, the three-field formulation has advantages for nonlinear prob-
lems and is often used as a point of departure; an example is the EAS method by
Simo and Rifai [1990].

Nearly Incompressible Material

The mixed methods discussed in this section thus far refer to standard saddle point
formulations. There are situations in which saddle point problems with penalty
terms are the appropriate tool. We start with a typical example that can serve as a
model problem.

Some materials such as rubber are nearly incompressible. It requires a great
deal of energy to produce a small change in density. This results in a large difference
in the magnitude of the Lamé constants:

λ � µ.

The bilinear form in the displacement formulation (3.10),

a(u, v) := λ(div u, div v)0 + 2µ(ε(u), ε(v))0,

is indeed H 1-elliptic, since in principle,

α ‖v‖2
1 ≤ a(v, v) ≤ C‖v‖2

1 for all v ∈ H 1
�(�), (3.28)

where α ≤ µ and C ≥ λ + 2µ. Therefore, C/α is very large. Since by Céa’s
lemma the ratio C/α enters in the error estimate, we can expect errors which are
significantly larger than the approximation error. This phenomenon is frequently
observed in finite element computations, and is called Poisson locking or volume
locking. This is a special case of a locking effect, and we now examine it in a
preparation for a more general discussion of the effect.

One way to overcome locking is a variational formulation involving a mixed
problem with a penalty term. We start with the displacement formulation (3.10),
and write the linear functional in more abstract form as

λ(div u, div v)0 + 2µ(ε(u), ε(v))0 = 〈�, v〉 for all v ∈ H 1
�. (3.29)



§3. Linear Elasticity Theory 305

Substituting
λ div u = p, (3.30)

and using the weak version of (3.30), we are led to the following problem: Find
(u, p) ∈ H 1

�(�)× L2(�) such that

2µ(ε(u), ε(v))0 + (div v, p)0 = 〈�, v〉 for all v ∈ H 1
�(�),

(div u, q)0 − 1

λ
(p, q)0 = 0 for all q ∈ L2(�).

(3.31)

Since the bilinear form (ε(u), ε(v))0 is elliptic on H 1
� , (3.31) is very similar to the

Stokes problem; see Ch. III, §6. As we observed there, in the case where �0 = ∂�

(more precisely if the two-dimensional measure of �1 vanishes),
∫
�

p dx = 0, and
L2(�) should be replaced by L2(�)/R.

We know from the theory of mixed problems with penalty terms that the
stability of (3.31) is the same as for the problem

2µ(ε(u), ε(v))0 + (div v, p)0 = 〈�, v〉,
(div u, q)0 = 0,

as λ →∞. The situation here is simple, since the quadratic form (ε(v), ε(v))0 is
coercive on the entire space and not just for divergence-free functions. Moreover,
the penalty term is a regular perturbation. Therefore, we can solve (3.31) using
the same elements as for the Stokes problem. Since the inverse of the associated
operator

L : H 1
� × L2 → (H 1

� × L2)
′

is bounded independently of the parameter λ, the finite element solution converges
uniformly in λ.

To be more specific, consider the discretization

2µ(ε(uh), ε(v))0 + (div v, ph)0 = 〈�, v〉 for all v ∈ Xh,

(div uh, q)0 − λ−1(p, qh)0 = 0 for all q ∈ Mh,
(3.31)h

with Xh ⊂ H 1
�(�), Mh ⊂ L2(�). The commonly used Stokes elements have the

following approximation property. Given v ∈ H 1
�(�) and q ∈ L2(�), there exist

Phv ∈ Xh and Qhq ∈ Mh such that

‖v − Phv‖1 ≤ ch‖v‖2 ,

‖q −Qhq‖0 ≤ ch‖q‖1 .
(3.32)

For convenience, we restrict ourselves to pure displacement boundary conditions.
Good approximation is guaranteed by the following regularity result. If � is a
convex polygonal domain, or if � has a smooth boundary, then

‖u‖2 + λ‖ div u‖1 ≤ c|f ‖0 ; (3.33)
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see Theorem A.1 in Vogelius [1983]. Following the usual procedure (see, e.g.,
Theorem III.4.5) we have

2µ(ε(uh − Phu), ε(v))0 + (div v, ph −Qhp)0 = 〈�u, v〉 for all v ∈ Xh ,

(div(uh − Phu), q)0 − λ−1(ph −Qhp, q)0 = 〈�p, q〉 for all q ∈ Mh .

The functionals �u and �p can be expressed in terms of u−Phu and p−Qhp. From
the estimates (3.32) and (3.33) we immediately obtain ‖�u‖−1+‖�p‖0 ≤ ch‖f ‖0.

Hence,
‖u− uh‖1 + ‖λ div u− ph‖0 ≤ ch‖f ‖0, (3.34)

where c is a constant independent of λ. The finite element method (3.31)h is robust.

Nonconforming methods are also very popular for treating nearly incom-
pressible materials. The finite element discretization (3.31)h of the saddle point
problem can also be interpreted as a nonconforming method, and this discretiza-
tion will serve as a model for analyzing nonconforming methods for the problem
with a small parameter.

3.9 Remark. Let uh ∈ Xh ⊂ H 1
�(�) and ph ∈ Mh ⊂ L2(�) be the solution of

the finite element discretization (3.31)h. Define a discrete divergence operator by

divh : H 1(�) → Mh

(divh v, q)0 = (div v, q)0 for all q ∈ Mh.
(3.35)

Then uh is also the solution of the variational problem

2µ‖ε(v)‖2
0 + λ‖ divh v‖2

0 − 〈�, v〉 −→ min
v∈Xh

! (3.36)

Indeed, the solution uh of (3.36) is characterized by

2µ(ε(uh), ε(v))0 + λ(divh uh, divh v)0 = 〈�, v〉 for all v ∈ Xh.

Setting ph := λ divh uh by analogy to (3.30), we have

2µ(ε(uh), ε(v))0 + (divh v, ph)0 = 〈�, v〉 for all v ∈ Xh,

(divh uh, q)0 − λ−1(ph, q)0 = 0 for all q ∈ Mh.

Here the operator divh is met only in inner products with the other factor in Mh.
Now, from the definition (3.35) we know that the operator divh may be replaced
here by div. Therefore, uh together with ph := λ divh uh satisfy (3.31)h.

We turn to the analysis of (3.36). The inequality (3.32)2 implies the estimate
‖ div v− divh v‖0 ≤ ch‖ div v‖1, but in most of the nonconforming methods there
is only a weaker estimate available. Moreover, the discrete divergence does not
result from an orthogonal projection in many cases. A basis for an alternative is
offered by the following regularity result in Theorem 3.1 of Arnold, Scott, and
Vogelius [1989]. Given u with div u ∈ H 1(�), there exists w ∈ H 2(�) ∩ H 1

0 (�)

such that
div w = div u and ‖w‖2 ≤ c‖ div u‖1. (3.37)
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3.10 Lemma. Assume that (3.34) and (3.35) hold. Let the mapping divh : Xh →
L2(�) satisfy

‖ div v − divh v‖0 ≤ ch‖v‖2 (3.38)

and
divh v = 0 if div v = 0. (3.39)

Then we have
λ‖ div u− divh u‖0 ≤ c′h‖f ‖0 (3.40)

where u denotes the solution of the variational problem (3.31).

Proof. By (3.34) and (3.37) there exists w ∈ H 2(�) ∩ H 1
0 (�) such that div w =

div u and
‖w‖2 ≤ c‖ div u‖1 ≤ cλ−1‖f ‖0.

From (3.38) we conclude that

‖ div w − divh w‖0 ≤ c′h‖w‖2 ≤ c′hλ−1‖f ‖0. (3.41)

Since div(w − u) = 0, it follows from (3.39) that divh(w − u) = 0 and div u −
divh u = div w − divh w. Combining this with (3.41) we obtain

‖ div u− divh u‖0 = ‖ div w − divh w‖0 ≤ c′hλ−1‖f ‖0 ,

and the proof is complete.

Now the discretization error for nearly incompressible material is estimated
by the lemma of Berger, Scott, and Strang [1972]. The term for the approximation
error is the crucial one. Let Ph : H 2(�) ∩ H 1

0 (�) → Xh be an interpolation
operator. It is sufficient to make provision for

‖v − Phv‖1 + ‖ div v − divh v‖0 ≤ ch‖v‖2,

‖ divh vh‖0 ≤ c‖vh‖1 for all vh ∈ Xh.

These inequalities are clear for the model problem in (3.35). Moreover, let the
mesh-dependent bilinear form ah be defined by polarization of the quadratic form
in (3.36). It follows from Lemma 3.10 that we have for wh ∈ Xh

ah(u− Phu, wh) = µ(ε(u− Phu), ε(wh))0 + λ(div u− divh u, divh wh)0,

≤ ch ‖u‖2‖wh‖1 + ch ‖u‖2 ‖ divh wh‖0,

≤ ch ‖u‖2‖wh‖1.

Finally, the consistency error is given by the term λ(div u− divh u, divh wh)0. An
estimate of this expression is already included in the formula above, and we have
a robust estimate with a constant c that does not depend on λ, namely

‖u− uh‖1 ≤ ch‖f ‖0.

The following theory describes why uniform convergence cannot be expected
with some discretizations. The equation (3.29) is included as a special case if we
set X := H 1

�(�), a0(u, v) := 2µ(ε(u), ε(v))0, Bv := div v, and t2 = 1/λ.
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Locking

The concept of locking effect is used frequently by engineers to describe the case
where a finite element computation produces significantly smaller displacements
than it should. In addition to volume locking, we also know shear locking, mem-
brane locking, and thickness locking as well as others with no special names. The
essential point is that because of a small parameter t , as in (3.28) the quotient C/α

grows, and the convergence of the finite element solution to the true solution is not
uniform in t as h → 0. The papers of Arnold [1981], Babuška and Suri [1992], and
Suri, Babuška, and Schwab [1995] have made fundamental contributions to the
understanding of locking effects. The following general framework covers nearly
incompressible material and applies to the treatment of the Mindlin–Reissner plate
in §6.

Let X be a Hilbert space, a0 : X×X → R a continuous, symmetric, coercive
bilinear form with a0(v, v) ≥ α0‖v‖2, and B : X → L2(�) a continuous linear
mapping. Generally, B has a nontrivial kernel and dim ker B = ∞. In addition,
let t be a parameter 0 < t ≤ 1. Given � ∈ X′, we seek a solution u := ut ∈ X of
the equation

a0(ut , v)+ 1

t2
(But , Bv)0,� = 〈�, v〉 for all v ∈ X. (3.42)

The existence and uniqueness are guaranteed by the coercivity of a(u, v) :=
a0(u, v)+ t−2(Bu, Bv)0,�.

Suppose there exists u0 ∈ X with

Bu0 = 0, d := 〈�, u0〉 > 0. (3.43)

After multiplying u0 by a suitable factor, we can assume that a0(u0, u0) ≤ 〈�, u0〉.
In particular, the energy of the minimal solution satisfies

�(ut ) ≤ �(u0) = 1

2

[
a0(u0, u0)+ 1

t2
‖Bu0‖2

0,�

]− 〈�, u0〉 ≤ −1

2
d

with a bound that is independent of t . Thus, 〈�, ut 〉 ≥ −�(ut ) ≥ 1
2d , and so

‖ut‖ ≥ ‖�‖−1 1

2
d for all t > 0 (3.44)

is bounded below, where ‖�‖ := ‖�‖X′ .

We now consider the solution of the variational problem in the finite element
space Xh ⊂ X. Looking at the results of Babuška and Suri [1992] or Braess [1998],
we recognize that the locking effect occurs when Xh ∩ ker B = {0} and19

‖Bvh‖0,� ≥ C(h)‖vh‖X for all vh ∈ Xh. (3.45)

19 To be precise, we have to exclude functions from Xh which are polynomials in �

or belong to the low-dimensional kernel. This is why on the right-hand side of (3.45) we
should replace ‖vh‖X by a norm of a quotient space as in (3.47).
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The coercivity of a on Xh follows from (3.45) with the ellipticity constant α =
α0 + t−2C(h)2. By the stability result II.4.1,

‖uh‖ ≤ α−1‖�‖ ≤ t2 C(h)−2 ‖�‖. (3.46)

For a small parameter t this gives a solution which is too small in contrast to
(3.44) – and this is what engineers recognize as locking. The convergence cannot
be uniform in t as h → 0. On the other hand, a finite element method is called
robust for a problem with a small parameter t provided that the convergence is
uniform in t .

A poor approximation of the kernel as specified by (3.45) is characteristic for
locking and will be verified for the Timoshenko beam and linear elements in (3.55)
below. Concerning volume locking, for bilinear elements on rectangular grids one
has

‖ div vh‖0 ≥ inf
zh∈(Q1)

2

div zh=0

h

12 diam(�)
|vh − zh|1,� for all vh ∈ (Q1)

2; (3.47)

cf. Braess [1996]. The discrete kernel {zh ∈ (Q1)
2; div zh = 0} contains

• rigid body motions,
• linear (global) polynomials with zero divergence,
• deformations in the x-direction which depend only on y,
• deformations in the y-direction which depend only on x.

These special functions do not approximate the functions in the kernel of the
divergence operator in the Sobolev space. Thus (3.47) shows Poisson locking of
bilinear elements and elucidates that special means as described above are indeed
required.

3.11 Remark. From a mathematical standpoint, it would be better to say we
have a poorly conditioned problem than to call it locking. The key point is the
appearance of the large ratio C/α in the constant in Céa’s lemma (for example,
as in (3.28)). In this case the condition number ‖L‖ · ‖L−1‖ of the corresponding
isomorphism L : X → X′ is large.

������������������������

5
←−

Fig. 58. The poor conditioning is clear for a cantilever beam.A vertical load leads
to a significantly larger deformation than an equally large horizontal one. The
constant in Korn’s inequality is very small since Dirichlet boundary conditions
are prescribed on only a small part of the boundary.
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There is a qualitative difference between a poor approximation due to using
too coarse a grid in the discretization and a poor approximation due to locking. It
can be understood in terms of the associated eigenvalue problem; cf. Braess [1988].
As illustrated in Problem I.4.8, the lower eigenvalues are normally approximated
well. This observation was also an important argument in the multigrid theory.
On the other hand, in the discretization even the lower eigenvalues will clearly be
shifted, once we have a tendency toward locking.

3.12 Remark. There are several approaches to reducing the effects of locking:
1. Convert the variational problem (3.42) to a saddle point problem with a

penalty term (as explained above for nearly incompressible materials). With
p = t−2Bu, we get

a0(u, v)+ (Bv, p)0,� = 〈�, v〉 for all v ∈ X,

(Bu, q)0,� − t2(p, q)0,� = 0 for all q ∈ L2(�).
(3.48)

2. Use selective reduced integration. Then in setting up the system matrix, the
term

t−2(Buh, Bvh)0,�

will be relaxed as in (3.36) so that the constant in (3.45) is also reduced. This
makes sense if the process can be understood as one where the approximating
functions vh are replaced in a neighborhood by others for which Bv is small.
Strict mathematical proofs usually involve working with equivalent mixed
formulations; see §6.

3. Simo and Rifai [1990] expand the space in the spirit of Remark III.5.7 by
including nonconforming approximating functions so that sufficiently many
functions are available in order to make ‖Bv‖0,h small (if an appropriate
discrete norm is chosen).

The first two methods listed in 3.12 are partially equivalent; cf. Remark 3.9.
The finite element approximation of (3.48),

a0(uh, v)+ (Bv, ph)0,� = 〈�, v〉 for all v ∈ Xh,

(Buh, q)0,� − t2(p, q)0,� = 0 for all q ∈ Mh,
(3.49)

is equivalent to the minimization problem

1

2
a0(uh, uh)+ 1

2
t−2‖RhBuh‖0 − 〈�, uh〉 −→ min

uh∈Xh

! (3.50)

Here Rh : L2(�) → Mh is the orthogonal L2-projector. In practice other projectors
are used along with so-called selected reduced integration.
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Locking of the Timoshenko Beam and Typical Remedies

Shear locking has been observed when computations for the Timoshenko beam are
performed with finite elements which are piecewise polynomials of low degree.
The locking of P1 elements is easily verified on the basis of (3.45), and negative
as well as positive results can be completely provided.

We will see in §5 that the stored energy of a beam is given by

�(θ, w) := 1

2

∫ b

0
(θ ′)2dx + t−2

2

∫ b

0
(w′ − θ)2dx, (3.51)

if b is the length of the beam and t is the thickness (multiplied by a correction
factor). Here, the Lamé constants are abandoned since they enter only as a multi-
plicative factor in the 1-dimensional case. The rotation θ and the deflection w are
in H 1

0 (0, b) and in the above setting,

B(θ, w) := w′ − θ. (3.52)

Given g ∈ H 1
0 (0, b), we obtain a pair of functions with B(θ, w) = 0 by defining

θ(x) := g(x)− 6

b3
x(b − x)

∫ b

0
g(ξ)dξ,

w(x) :=
∫ x

0
θ(ξ)dξ.

(3.53)

Hence, the kernel of B is infinite dimensional.
Now assume that the interval [0, b] is divided into subintervals of length h

and that θh, wh ∈ M1
0,0. Note that∫ ξ+h

ξ

(αx + β)2dx ≥ h3

6
α3 = h2

6

∫ ξ+h

ξ

α2dx,

whenever α, β ∈ R. From this inequality it follows that on each subinterval of the
partition ∫ ξ+h

ξ

(w′
h − θh)

2dx ≥ h2

6

∫ ξ+h

ξ

(θ ′h)
2dx.

After summing over all subintervals we have

‖w′
h − θh‖0 ≥ h

3
|θh|1. (3.54)

Friedrichs’ inequality and the triangle inequality yield |wh|1 ≤ ‖w′
h − θh‖0 +

‖θh‖0 ≤ ‖w′
h − θh‖0 + c|θh|1. We estimate h|θh|1 by (3.54) to obtain h|wh|1 ≤

c‖w′
h − θh‖0. Combining the last inequalities we conclude that

‖w′
h − θh‖0 ≥ ch(‖θh‖1 + ‖wh‖1). (3.55)
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This proves (3.45) with C(h) = ch, and it follows from the preceding investiga-
tions that the P1 element locks.

On the other hand, it is clear that the construction (3.53) of pairs (θ, w) with
B(θ, w) = 0 can be approximated by piecewise polynomials of degree 2, and then
the locking is avoided.

We consider now the remedies for the low degree elements discussed in
Remark 3.12 and start with a mixed method with a penalty term. The weak solution
(θ, w) of the variational problem with the internal stored energy (3.51) and a load
(f, w) := ∫ b

0 f w dx is given by

(θ ′, ψ ′)+ t−2(w′ − θ, v′ − ψ) = (f, v) for ψ, v ∈ H 1
0 . (3.56)

The introduction of the shear term γ := t−2(w′ − θ) ∈ L2 leads to the saddle
point formulation

(θ ′, ψ ′)+ (v′ − ψ, γ ) = (f, v) ψ, v ∈ H 1
0 ,

(w′ − θ, η)− t2(γ, η) = 0 η ∈ L2 .
(3.57)

The ellipticity on the kernel {(ψ, v) ∈ (H 1
0 )2; v′−ψ = 0} is obtained by applying

Friedrichs’ inequality

‖ψ ′‖2
0 =

1

2
|ψ |21 +

1

2
|ψ |21 ≥

1

2
|ψ |21 +

c

2
‖ψ‖2

0 =
1

2
|ψ |21 +

c

2
‖v′‖2

0 . (3.58)

Given η ∈ L2, we define ρ(x) := x(b − x), and an appropriate pair (ψ, v) for
verifying the inf-sup condition is given by

A :=
∫ b

0 η(ξ)dξ∫ b

0 ρ(ξ)dξ
,

v(x) :=
∫ x

0
η(ξ)dξ − A

∫ x

0
ρ(ξ)dξ , ψ(x) := −Aρ(x).

(3.59)

By Theorem III.4.11 the saddle point problem is stable.

We consider the discretization of (3.57). The finite element spaces for θ and
w are the same as above. Specifically, let θh, wh ∈ M1

0,0, i.e., they are piecewise
linear functions on a partition of the interval [0, b]. Now the shear terms are chosen
as piecewise constant functions, i.e., γh ∈ M0, and the finite element equations
are

(θ ′h, ψ
′)+ (v′ − ψ, γh) = (f, v) ψ, v ∈ M1

0,0 ,

(w′ − θh, η)− t2(γh, η) = 0 η ∈ M0 .
(3.60)

The inf-sup condition can obviously be established in the same way as for (3.57),
and the ellipticity can be verified also with minor changes since w′ is piecewise
constant. The mixed method is stable. Thus locking is now eliminated.
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In real-life computations the method of selected reduced integration is pre-
ferred for avoiding locking. Let the partition of the interval be given by [0, b] =
I1∪I2∪ . . .∪IM . The second integral of the energy (3.51) is evaluated by a 1-point
quadrature formula,

t−2

2

m∑
j=1

|Ij |(w′
h(ξj )− θh(ξj ))

2,

where ξj denotes the midpoint of the subinterval Ij . Note that this expression is
not larger than the original integral, and the 1-point quadrature formula induces a
softening. The nonconforming method looks quite different than the previous one,
but it is equivalent.

Indeed, let
Qh : L2[0, b] → M0

be the L2 projector. Then (3.60)2 yields

γh = t−2(w′
h − θh))),

and (3.60)1 may be rewritten as

(θ ′h, ψ
′)+ t−2(Qh(w

′
h − θh), v

′ − ψ) = (f, v). (3.62)

Obviously, (3.62) characterizes the minimal solution for the modified energy

1

2

∫ b

0
(θ ′h)

2dx + t−2

2

∫ b

0
[Qh(w

′ − θ)2]dx −
∫ b

0
f w dx.

The second term coincides with (3.61), since the mean value of a linear function
is attained at the midpoint of an interval.

The elimination of locking by the EAS method is also possible although the
nonconforming character is not so obvious. The finite element spaces for θ and
w (and the notation) are as above, but the derivative of wh is enhanced by extra
functions ε̂h. The result is the minimization of

1

2

∫ b

0
(θ ′h)

2dx + t−2

2

∫ b

0
(w′

h + ε̂h − θh)
2]dx −

∫ b

0
f wh dx. (3.63)

Here, ε̂h belongs to the m-dimensional space of noncontinuous functions which
are linear polynomials in each subinterval Ij and vanish at the midpoint ξj of Ij .
Given wh and θh, the total energy (3.63) is minimal for the enhanced derivative ε̂h

that makes w′
h+ ε̂h− θh constant in each Ij . Hence, w′

h− θh = Qh(w
′
h+ ε̂h− θh).

The EAS method is here equivalent to selected reduced integration.
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Proof of Korn’s first inequality. From (3.17), the triangle inequality, and Prob-
lem III.3.13 it follows that ‖ grad ∂vk

∂xi
‖−1 ≤ 3 ‖ grad ε(v)‖−1 ≤ 3 ‖ε(v)‖0. The

application of Nečas’inequality (III.6.11) to p = ∂vk

∂xi
yields

∥∥∥∂vk

∂xi

∥∥∥
0
≤ c

(∥∥∥∂vk

∂xi

∥∥∥−1
+ ‖ε(v)‖0

)
≤ c

(
‖v‖0 + ‖ε(v)‖0

)
.

The summation over all components completes the proof.

Problems

3.13 Verify that in the case of pure Dirichlet boundary conditions, i.e., H 1
�(�)

= H 1
0 (�), the classical solution of (3.10) is in fact a solution of the differential

equation (3.11).

3.14 Does div u = 0 imply the relation div σ = 0, or does the converse hold?
Hint: The connection between div u and trace ε is useful.

3.15 Verify Green’s formula∫
�

τ : ε(v) dx = −
∫

�

v · div τ dx +
∫

∂�

v · τn ds

for symmetric tensors τ ∈ H(div, �) and v ∈ H 1(�). Why don’t the boundary
terms play a role in passing from (3.21) to (3.22)?

3.16 Verify by explicit computation that the expressions (div v)2 and ε(v) : ε(v)

are invariant under orthogonal transformations.

3.17 Consider the Hellinger–Reissner principle for a nearly incompressible ma-
terial. Is the introduction of the variables p = λ div u simpler for the formulation
(3.21) or for (3.22)?

3.18 Consider the pure traction problem, i.e., the problem with pure Neumann
boundary conditions. Show that the displacement problem (3.9) has only a solution
if the compatibility condition

−
∫

�

f · v dx +
∫

∂�

g · v dx = 0 for all v ∈ RM

holds. Here RM denotes the space of rigid body motions, i.e. the set of all functions
v of the form (3.17).
How many compatibility conditions do we encounter for d = 2 and d = 3,
respectively?
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§ 4. Membranes

In solving three-dimensional problems, it is often possible to work in two (or even
one) dimensions since the length of the domain in one of more space directions
is very small. In such cases it is useful to consider the problem for the lower-
dimensional continuum, and then discretize afterwards. Some typical examples
are bars, beams, membranes, plates, and shells. The simplest two-dimensional ex-
ample is the membrane. However, this example already shows that the reduction in
dimension cannot be accomplished by simply eliminating one coordinate. More-
over, the boundary conditions have some influence on the reduction process. There
are two cases depending on the boundary condition.

Plane Stress States

Let ω ⊂ R
2 be a domain, and suppose t > 0 is a number which is significantly

smaller than the diameter of ω. We suppose that there are only external forces
operating on the body � = ω× (− t

2 ,+ t
2 ), and that their z-components vanish so

that they depend only on x and y.20 If the membrane is thin and a deformation in
the z-direction is possible, we have the so-called plane stress state, i.e.,

σij (x, y, z) = σij (x, y), i, j = 1, 2,

σi3 = σ3i = 0, i = 1, 2, 3.
(4.1)

Then in particular εi3 = ε3i = 0 for i = 1, 2. In order for σ33 = 0, by the
constitutive equations (3.6) we have

ε33 = − ν

1 − ν
(ε11 + ε22). (4.2)

If we now eliminate the strain ε33, we get the constitutive equations for the plane
stress state: [

σ11

σ22

σ12

]
= E

1 − ν2

[ 1 ν 0
ν 1 0
0 0 1 − ν

][
ε11

ε22

ε12

]

or

σ = E

1 + ν

[
ε + ν

1 − ν
(ε11 + ε22)I

]
. (4.3)

20 It is easier to visualize the situation if we exchange the y- and z-coordinates. Suppose
the middle surface of a thin wall lies in the (x, y)-plane, and that the displacement in the
y-direction is very small. Now suppose the wall is subject to a load in the vertical direction
so that the external forces operate in a direction parallel to the (middle surface of the) wall.
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Finally, the kinematics are compatible with (4.1) and (4.2) provided

ui(x, y, z) = ui(x, y), i = 1, 2,

u3(x, y, z) = z · ε33(x, y)

and terms of order O(z) are neglected in the strain term.

Plane Strain States

If boundary conditions are enforced at z = ±t/2 which ensure that the z-com-
ponent of the displacement vanishes, then we have the plane strain state:

εij (x, y, z) = εij (x, y), i, j = 1, 2,

εi3 = ε3i = 0, i = 1, 2, 3.
(4.4)

The associated displacements satisfy ui(x, y, z) = ui(x, y) for i = 1, 2, and
u3 = 0. It follows from ε33 = 0 along with (3.7) that

σ33 = ν(σ11 + σ22), (4.5)

and σ33 can be eliminated. We obtain the constitutive equations for the plane strain
state if we restrict (3.6) to the remaining components:

[
σ11

σ22

σ12

]
= E

(1 + ν)(1 − 2ν)

[ 1 − ν ν 0
ν 1 − ν 0
0 0 1 − 2ν

][
ε11

ε22

ε12

]
. (4.6)

Membrane Elements

Both plane elasticity problems lead to a two-dimensional problem with the same
structure as the full three-dimensional elasticity problem.

The displacement model thus involves the (two-dimensional and isopara-
metric versions of the) conforming elements which also play a role for scalar
elliptic problems of second order:

(a) bilinear quadrilateral elements,
(b) quadratic triangular elements,
(c) biquadratic quadrilateral elements,
(d) eight-node quadrilateral elements in the serendipity class.

On the other hand, the simplest linear triangular elements are frequently unsat-
isfactory. For practical problems, there are often preferred directions because of
certain geometric relationships. In this case, higher order elements or quadrilateral
elements prove to be more flexible.
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The PEERS Element

Mixed methods have not been heavily used for problems in plane elasticity, since
in the finite element approximation of the Hellinger–Reissner principle (3.22), two
stability problems occur simultaneously. The bilinear form a(σ, τ ) := (C−1σ, τ)0

is not elliptic on the entire space X := H(div, �), but only on the kernel V . Here
we are using the notation of the general theory in Ch. III, §4.

In order to ensure the ellipticity on Vh, for two decades the best possibility
was considered to choose Vh ⊂ V which assures that the condition in III.4.7
is satisfied. As Brezzi and Fortin [1991, p. 284] have shown via a dimensional
argument, the symmetry of the stress tensor σ is a major difficulty. For this reason,
Arnold, Brezzi, and Douglas [1984] have developed the PEERS element (p

¯
lane

e
¯
lasticity e

¯
lement with r

¯
educed s

¯
ymmetry). It has been studied further by Stenberg

[1988], among others. The so-called BDM elements of Brezzi, Douglas, and Marini
[1985] are constructed in a similar way. All of these elements are also useful for
nearly incompressible materials.

Finite element spaces for stresses with full symmetry have been established
by Arnold and Winther [2002]. They can be understood as extensions of the
Raviart–Thomas element, and the adaptation of the commuting diagram prop-
erties in Ch. III, §5 play an important role. A disadvantage is however that there
are 24 local degrees of freedom. There are no satisfactory mixed methods with
less degrees of freedom and full symmetry. Often there exist so-called zero en-
ergy modes, which must be filtered out, since otherwise we get the (hour-glass)
instabilities discussed in Ch. III, §7, due to the violation of the inf-sup condition.

In discussing the PEERS elements, for simplicity we restrict ourselves to pure
displacement boundary conditions. In this case (3.22) simplifies to

(C−1σ, τ)0 + (div τ, u)0 = 0 for all τ ∈ H(div, �),

(div σ, v)0 = −(f, v)0 for all v ∈ L2(�)2.
(4.7)

Since we allow unsymmetric tensors in the following, the antisymmetric part

as(τ ) := τ − τT ∈ L2(�)2×2,

i.e. as(τ )ij = τij − τji , plays a role. Since as(τ ) is already completely determined
by its (2,1)-component, we will refer to this component.

We consider the following saddle point problem:
Find σ ∈ X := H(div, �)2×2 and (u, γ ) ∈ M := L2(�)2 × L2(�) such that

(C−1σ, τ)0 + (div τ, u)0 + (as(τ ), γ ) = 0, τ ∈ H(div, �)2×2,

(div σ, v)0 = −(f, v)0 , v ∈ L2(�)2,

(as(σ ), η) = 0, η ∈ L2(�).

(4.8)

Here (as(τ ), η) := ∫
�
(τ12 − τ21)ηdx.
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Note that the rotations of scalar- and vector-valued functions in R
2 are defined

differently:21

curl p :=
(

∂p

∂x2

− ∂p

∂x1

)
, rot

(
u1

u2

)
:= ∂u2

∂x1
− ∂u1

∂x2
. (4.9)

4.1 Lemma. The saddle point problems (4.7) and (4.8) are equivalent. If (σ, u, γ )

is a solution of (4.8), then (σ, u) is a solution of (4.7). Conversely, if (σ, u) is a
solution of (4.7), then (σ, u, γ = 1

2 rot u) is a solution of (4.8).

Proof. (1) Let (σ, u, γ ) be a solution of (4.8). The third equation asserts that σ

is symmetric. For symmetric τ we have (as(τ ), γ ) = 0, and the first equation in
(4.8) reduces to the first one in (4.7). Since the second relation in (4.7) can be read
off directly from (4.8), we have shown that (4.7) holds.

(2) Let (σ, u) be a solution of (4.7). By the discussion following (3.21), it
follows that u ∈ H 1

0 (�)2, and in the same way as in the derivation of (3.20), we
deduce that

(C−1σ, τ)0 − (τ,∇(s)u)0 = 0 (4.10)

for all symmetric fields τ . On the other hand, the symmetry of the expressions
C−1σ and ∇(s)u implies that (4.10) also holds for all skew-symmetric fields. Now
the decomposition of ∇u gives

∇(s)u = ∇u− 1

2
as(∇u)

= ∇u− 1

2

(∂u2

∂x1
− ∂u1

∂x2

)( 0 −1
+1 0

)

= ∇u− 1

2
rot u

(
0 −1
+1 0

)
.

ε(u) is the symmetric gradient. The skew-symmetric part is coupled with the
rotation. Finally, another application of Green’s formula gives∫

�

τ : ∇(s)u dx =
∫

�

τ : ∇u dx + 1

2

∫
�

(τ21 − τ12) rot u dx

= −
∫

�

div τ u dx + 1

2

∫
�

(τ21 − τ12) rot u dx.

Combining this with (4.10) leads to the first relation in (4.8). Since the second
equation can be taken from (4.7) and the third is obvious because of the symmetry
of σ , this establishes (4.8).

21 We follow the convention of writing curl p rather than rot p if p is a scalar function.
The reader should also be aware that the operators in (4.9) sometimes appear in the literature
with different signs.
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The equivalence does not immediately imply that the saddle point problem
satisfies the hypotheses of Theorem III.4.5. Clearly, the kernel is

V = {τ ∈ H(div, �)2×2; (div τ, v)0 = 0 for v ∈ L2(�)2,

(as(τ ), η) = 0 for η ∈ L2(�)}
just as for the saddle point problem (4.7). Now the ellipticity of the quadratic form
(C−1σ, σ )0 can be carried over.

To establish the inf-sup condition, suppose we are given a pair (v, η) ∈
L2(�)2 × L2(�). Then we construct τ ∈ H(div, �)2×2 with

div τ = v,

as(τ ) = η,

‖τ‖H(div,�) ≤ c(‖v‖0 + ‖η‖0),

(4.11)

where we write as(τ ) instead of as(τ )21. In view of Remark 3.7, we want∫
�

trace τ dx = 0. (4.12)

First we determine τ0 ∈ H(div, �)2×2 which satisfies just the equation div τ0 = v.
For example, let ψ ∈ H 1

0 (�) be a solution of the Poisson equation �ψ = v and
τ0 := ∇ψ . Then ‖ψ‖1 ≤ c‖v‖0 immediately implies ‖τ0‖H(div,�) ≤ ‖τ0‖0 +
‖ div τ0‖0 = ‖∇ψ‖0 + ‖v‖0 ≤ c‖v‖0.

In order to satisfy the second equation in (4.11), we set

s :=
∫

�

[η − as(τ0)]dx /

∫
�

dx,

β := η − as(τ0)− s,

and construct q ∈ H 1(�)2 with

div q = β

via a Neumann problem in the same way as we constructed τ0. In particular,
‖q‖1 ≤ c‖β‖0 ≤ c(‖η‖0 + ‖v‖0). Finally, let

τ := τ0 +
(

curl q1

curl q2

)
+ s

2

(
0 −1
1 0

)
.

To show that τ is a solution of (4.11), we first recall that the divergence of a
rotation vanishes. Thus, div τ = div τ0 = v. Moreover, by construction of q,

as(τ ) = as(τ0)+ as

( ∂q1
∂y

− ∂q1
∂x

∂q2
∂y

− ∂q2
∂x

)
+ s

= as(τ0)+ div q + s = η.



320 VI. Finite Elements in Solid Mechanics

↖�
���

��↗

�
�� ◦ �

��
↓

�
�

�
��

•
�

�
�

��

•

•�
�

�
���

�
�

��•

Stresses Deformations Asymmetry

Fig. 59. PEERS element (◦ stands for the rotation of the bubble function)

Since q is a gradient field, ∂q1
∂y

− ∂q2
∂x

= 0, the constraint (4.12) is easy to verify.
Now (4.11) implies that

(div τ, v)0 + (as(τ ), η) = ‖v‖2
0 + ‖η‖2

0

≥ c‖τ‖H(div,�) (‖v‖0 + ‖η‖0),

and thus the inf-sup condition holds.

The variational formulation (4.8) is appropriate for nearly incompressible
material. In this context it is crucial that the ellipticity constant can be bounded
uniformly in the Lamé constant λ. This follows from

‖ trace σ‖ ≤ C(‖σdev‖ + ‖ div σ‖).
A proof of the inequality can be found in Brezzi and Fortin [1991, p. 161].

4.2 Remark. If the traction is prescribed on a part of the boundary, i.e., �1

is nonempty, then the proof of the inf-sup condition is more complicated. More
precisely, the solution of div τ0 = v and div q = β requires more care. We recall
that the Neumann boundary condition is not a natural boundary condition for the
mixed formulation (4.7) and we have

σ ∈ {τ ∈ H(div, �); τn = 0 on �1}.
We cannot proceed as we have done after (4.12). We first construct τ with τ0 ·n = 0
on �1 by prescribing a Neumann boundary condition there, i.e., ∇ψ · n = 0. Next
observe that rot q · n = 0 implies

∇q · t = 0; thus q = const on �1.

We can find q by solving the Stokes problem
∫
(∇q)2dx −→ min! under the

constraints div q = β and q = 0 on �1. The inf-sup condition for the elasticity
problem (4.8) then follows from the inf-sup condition for the Stokes problem in
view of the fact that the auxiliary problem is well defined.

The analysis of (4.8) was performed independently of Korn’s inequality. On
the other hand, the inf-sup condition for the divergence operator was used. Now
it follows from the equivalence described in Lemma 4.1 that the inf-sup condition
for the Stokes problem implies Korn’s inequality in R

2.
A different proof of this implication was presented by Falk [1991].
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To define a simple member of the family of PEERS elements, we employ the
usual notation. (See also Fig. 59.) Let T be a triangulation of �, and let

Mk := {v ∈ L2(�); v|T ∈ Pk for every T ∈ T },
Mk

0 := Mk ∩H 1(�), Mk
0,0 := Mk ∩H 1

0 (�),

RTk := {v ∈ (Mk+1)2 ∩H(div, �);
v|T =

(
p1

p2

)
+ p3

(
x

y

)
, p1, p2, p3 ∈ Pk},

B3 := {v ∈ M3
0; v(x) = 0 on every edge of the triangulation}.

(4.13)

The PEERS element is the one with the smallest number of local degrees of
freedom:

σh ∈ Xh := (RT0)
2 ⊕ curl(B3)

2,

vh ∈ Wh := (M0)2,

γh ∈ �h := M1
0.

Note that the divergence of the functions in curl(B3)
2 vanishes, and that the di-

vergence of a piecewise differentiable function is an L2 function if and only if the
normal components are continuous on the inter-element boundaries.

By construction, div τh ∈ Wh. Thus, div τh = 0 follows immediately from
(div τh, vh) = 0 for all vh ∈ Wh. Thus, the condition in III.4.7 is satisfied, and the
form (C−1σh, τh) is elliptic on the kernel. The inf-sup condition can be established
in a similar way as for the continuous problem. Since (4.11) must be replaced by
finite element approximations, however, here the details are more involved, see
Arnold, Brezzi, and Douglas [1984].

The implementation and postprocessing described by Arnold and Brezzi
[1985], see Ch. III, §5 is also advantageous for computations with the PEERS
element. The postprocessing was also used to estimate the local error by adaptive
grid refinement, see Braess, Klaas, Niekamp, Stein, and Wobschal [1995].

Problems

4.3 Show that we get the constitutive equations (4.3) for plane stress states by
restricting the relationship ε = C−1σ to the components with i = 1, 2.

What comparable assertion holds for plane strain states?

4.4 For a nearly incompressible material, ν is close to 1
2 . This causes difficulties

in the denominators (1− 2ν) of (1.31) and (3.6), respectively. On the other hand,
in view of (4.3), for the plane stress states, ν = 1

2 does not cause any problem.
Give an explanation.
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4.5 Let � be a domain in R
2 with piecewise smooth boundary, and suppose

ψ ∈ H 1(�) satisfies the Neumann boundary condition ∂ψ

∂n
= 0 on ∂�. What can

you say about rot ψ on the boundary?
Hint: First suppose ψ ∈ C1(�̄), and consider the tangential component of the
rotation on the boundary.

4.6 Does the relation

�u = − rot rot u+ grad div u

between the derivatives hold for vector fields in R
2 and R

3?

4.7 It would be mathematically cleaner if (3.6) were written in the form

σij =
∑
k�

Cijk� εk�. (4.14)

Give a formula for the elasticity tensor – or more precisely for its components
Cijk� – which involves only the Lamé constants and the Kronecker symbol so that
(4.14) describes the material law σ = 2µε+λ trace ε I for a St. Venant–Kirchhoff
material.

Do this also for the plane strain state and the plane stress state.

4.8 Let � ⊂ R
2, and let H(rot, �) be the completion of C∞(�)n w.r.t. the norm

‖v‖2
H(rot) := ‖v‖2

0,� + ‖ rot v‖2
0,�.

Show that a set Sh ⊂ L2(�)2 of piecewise polynomials lies in H(rot) if and only
if the component v · τ in the direction of the tangent is continuous on the edges
of the element.

Hint: See Problem II.5.14 for H(div, �).

4.9 Let u be a solution of the Lamé equations in 2-space, v ∈ H 1(�)2, and let τ

be a symmetrical tensor in H(div) with div τ + f = 0. Show that∫
[ε(v)− ε(u)] : [τ − Cε(u)] = 0

holds under appropriate boundary conditions. Formulate an estimate of Prager–
Synge type.
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§ 5. Beams and Plates: The Kirchhoff Plate

A plate is a thin continuum subject to applied forces which – in contrast to the
case a membrane – are orthogonal to the middle surface. We distinguish between
two cases. The Kirchhoff plate leads to a fourth order elliptic problem. Usually it
is solved using nonconforming or mixed methods.

The Mindlin–Reissner plate (that is also called Reissner–Mindlin plate or
Mindlin plate) involves somewhat weaker hypotheses. It is described by a differen-
tial equation of second order, and so at first glance its numerical treatment appears
to be simpler. However, it turns out that the calculations for the Mindlin–Reissner
plate are actually more difficult, and that the problems plaguing the Kirchhoff plate
are still present, although concealed. In particular, the Mindlin plate tends to shear
locking, and using standard elements leads to poor numerical results.

The analogous reduction of thin membranes, i.e., of membranes with one
very small dimension, leads to beams.

After introducing both plate models, we turn our attention first to a discussion
of the Kirchhoff plate, and in particular to the clamped plate.

The Hypotheses

We consider a thin plate of constant thickness t whose middle surface coincides
with the (x, y)-plane. Thus, � = ω × (− t

2 ,+ t
2 ) with ω ⊂ R

2. We suppose that
the plate is subject to external forces which are orthogonal to the middle surface.

5.1 Hypotheses of Mindlin and Reissner.
H1. Linearity hypothesis. Segments lying on normals to the middle surface are

linearly deformed and their images are segments on straight lines again.
H2. The displacement in the z-direction does not depend on the z-coordinate.
H3. The points on the middle surface are deformed only in the z-direction.
H4. The normal stress σ33 vanishes.

Under hypotheses H1–H3 the displacements have the form

ui(x, y, z) = −zθi(x, y), for i = 1, 2,

u3(x, y, z) = w(x, y).
(5.1)

We call w the transverse displacement or (normal) deflection, and θ = (θ1, θ2) the
rotation.
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dw
dx

dw
dx

θ

Fig. 60. Beam or section through a plate with and without the normal hypothesis

5.2 The Hypotheses of Kirchhoff–Love. Suppose that in addition to hypotheses
H1–H4, we have:
H5. Normal hypothesis. The deformations of normal vectors to the middle surface

are again orthogonal to the (deformed) middle surface.

This hypothesis is often found under the shorter names Love’s hypothesis or
Kirchhoff’s hypothesis.

The normal hypothesis implies that the rotations are no longer independent
of the deflections (see Fig. 60).

θi(x, y) = ∂

∂xi

w(x, y),

ui(x, y, z) = −z
∂w

∂xi

(x, y),


 i = 1, 2. (5.2)

We restrict ourselves to body forces which we assume to be independent of
z. The associated strains are then

(∇(s)u)ij = −z(∇(s)θ)ij , (∇(s)u)i3 = 1

2

( ∂

∂xi

w − θi

)
, i, j = 1, 2. (5.3)

In view of the hypothesis σ33 = 0, we can make use of the formulas (4.2) and
(4.3) for the plane stresses, when we evaluate the bilinear form from the energy
functional (3.1):

ε : σ =
2∑

i,j=1

εij σij + 2
2∑

j=1

ε3j σ3j

= E

1 + ν

[ 2∑
i,j=1

ε2
ij +

ν

1 − ν
(ε11 + ε22)

2 + 2
2∑

j=1

ε2
3j

]

= 2µ

3∑
i,j=1

(i,j) �=(3,3)

ε2
ij + λ

2µ

λ+ 2µ
(ε11 + ε22)

2.
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With the model (5.1) and the derivatives (5.3), the integration in (3.1) over the z

variable is easily evaluated:22

�(u) := �(θ, w) = t3

12
a(θ, θ)+ µt

2

∫
ω

|∇w − θ |2dx1dx2 − t

∫
ω

f w dx1dx2

(5.4)

with

a(θ, ψ) :=
∫

ω

[
2µ ε(θ) : ε(ψ)+ λ

2

2µ

λ+ 2µ
div θ div ψ

]
dx1dx2. (5.5)

The symmetric gradient

εij (θ) := 1

2

( ∂θi

∂xj

+ ∂θj

∂xi

)
, i, j = 1, 2 (5.6)

and the divergence are now based on functions of two variables. The first term in
(5.4) contains the bending part of the energy, and the second term contains the
shear term. Clearly the latter vanishes in the Kirchhoff model.

The solution of the variational problem does not change if the energy func-
tional is multiplied by a constant. Without altering the notation, we multiply by
t−3, replace t2f by f in the load, and normalize µ, leading to the (dimensionless)
expression

�(u) = 1

2
a(θ, θ)+ t−2

2

∫
�

|∇w − θ |2dx −
∫

�

f w dx. (5.7)

To stay with the usual notation, we have written � instead of ω.

Now in the framework of the Kirchhoff model, (5.2) and (5.6) imply

εij (θ) = ∂ijw,

and thus (5.5) gives the bilinear form

a(∇w,∇v) =
∫

�

[
µ
∑
i,j

∂ij w ∂ij v + λ′�w�v
]
dx, (5.8)

with a suitable constant λ′. This is a variational problem of fourth order of the
same structure as the variational formulation of the biharmonic equation.

22 Since D33u = 0, the model (5.1) is consistent with hypothesis H4 and with (4.2),
only if div θ = 0. The two hypotheses lead to slightly different factors in (5.5). Therefore
in computations of plates some so-called shear-correction factors may be found, but this
has no effect on our analysis.
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By Korn’s inequality, the bilinear form a(∇w,∇v) is H 2-elliptic on H 2
0 (�).

For a conforming treatment, the variational problem

1

2
a(∇v,∇v)− (f, v) −→ min

v∈H 2
0 (�)

! (5.9)

for the clamped Kirchhoff plate requires C1 elements, which is computationally
expensive. In this respect, the numerical treatment of the Mindlin plate appears
at first glance to be simpler since the problem (5.7) is obviously H 1-elliptic for
(w, θ) ∈ H 1

0 (�)×H 1
0 (�)2. However, as we shall see, the Mindlin plate contains

a small parameter.

Finally, we would like to mention the so-called Babuška paradox; see, e.g.,
Babuška and Pitkäranta [1990]. If we approximate a domain with a smooth bound-
ary by polygonal domains, then the solutions for Kirchhoff plates on these domains
usually do not converge to the solution for the original domain. This holds for the
clamped plates as well as for some other boundary conditions.

Note on Beam Models

While plate models refer to elliptic problems in 2-space, the beam models lead to
boundary-value problems with ordinary differential equations. The beam with the
Kirchhoff hypothesis is called the Bernoulli beam, and the beam which corresponds
to the Mindlin plate is the Timoshenko beam. If we eliminate the Lamé constants,
we obtain the energy of the Timoshenko beam by a reduction of (5.7) to the
one-dimensional case:

�(θ, w) := 1

2

∫ b

0
(θ ′)2dx + t−2

2

∫ b

0
(w′ − θ)2dx −

∫
f wdx.

Here θ, w ∈ H 1
0 (0, b) where b denotes the length of the beam.

We have already considered this model in §3 when illustrating shear locking.
It should be emphasized that the computation and the analysis of plates is much
more involved and cannot be understood as a simple generalization; cf. Problem
5.13.

Mixed Methods for the Kirchhoff Plate

Nonconforming and mixed methods play an important role in the theory of Kirch-
hoff plates. We begin with mixed methods since we will also use them for the
analysis of nonconforming elements. In the following, a(·, ·) always denotes the
H 1-elliptic bilinear form on H 1

0 (�)2 defined in (5.5).
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The minimization of
1

2
a(θ, θ)− (f, w) (5.10)

subject to the constraint
∇w = θ in �

leads to the following saddle point problem: Find (w, θ) ∈ X and γ ∈ M such
that

a(θ, ψ)+ (∇v − ψ, γ )0 = (f, v) for all (v, ψ) ∈ X,

(∇w − θ, η)0 = 0 for all η ∈ M.
(5.11)

In choosing the spaces X and M for the plate, our first choice would be

X := H 2
0 (�)×H 1

0 (�)2, M := H−1(�)2. (5.12)

Clearly, the bilinear forms in (5.11) are continuous. In view of Korn’s inequality
and the constraint ∇v = ψ , we have

a(ψ, ψ) ≥ c‖ψ‖2
1

= c

2
‖ψ‖2

1 +
c

2
‖∇v‖2

1

≥ c′(‖ψ‖2
1 + ‖v‖2

2), (5.13)

and a satisfies the ellipticity condition for a saddle point problem. Moreover,

sup
v,ψ

(∇v − ψ, η)0

‖v‖2 + ‖ψ‖1
≥ sup

ψ∈H 1
0

−(ψ, η)0

‖ψ‖1
= ‖η‖−1,

and the inf-sup condition is also satisfied. The solution of (5.11) can now be
estimated from the general theory using Theorem III.4.3:

‖w‖2 + ‖θ‖1 + ‖γ ‖−1 ≤ c‖f ‖−2. (5.14)

More importantly, the regularity theory for convex domains � yields the sharper
result

‖w‖3 + ‖θ‖2 + ‖γ ‖0 ≤ c‖f ‖−1, (5.15)

see Blum and Rannacher [1980]. Since H 2
0 (�) is dense in H 1

0 (�), (5.11) even
holds for all v ∈ H 1

0 (�) provided the domain is convex and f ∈ H−1(�).

The following alternative pairing is also important since we do not need C1

elements for a conforming treatment of the normal deflections.

X := H 1
0 (�)×H 1

0 (�)2, M := H−1(div, �). (5.16)
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Here H−1(div, �) is the completion of C∞(�)2 with respect to the norm

‖η‖H−1(div,�) := (‖η‖2
−1 + ‖ div η‖2

−1)
1
2 . (5.17)

If the domain � satisfies the hypotheses of Theorem II.1.3, then H−1(div, �) can
be viewed as the set of H−1 functions whose divergences lie in H−1(�).

If the constraint ∇v = ψ is satisfied, then by (5.13) we have a(ψ, ψ) ≥
c′(‖ψ‖2

1 + ‖v‖2
1), and the ellipticity of a is clear. Moreover,

sup
v,ψ

(∇v − ψ, η)0

‖v‖1 + ‖ψ‖1
= 1

2
sup
v,ψ

(∇v − ψ, η)0

‖v‖1 + ‖ψ‖1
+ 1

2
sup
v,ψ

(∇v − ψ, η)0

‖v‖1 + ‖ψ‖1

≥ 1

2
sup
ψ

(−ψ, η)0

‖ψ‖1
+ 1

2
sup

v

−(v, div η)0

‖v‖1

= 1

2
‖η‖−1 + 1

2
‖ div η‖−1.

(5.18)

This establishes the inf-sup condition for the pairing (5.16).

Similarly, we have |(∇v−ψ, η)| ≤ ‖v‖1‖ div η‖−1 +‖ψ‖1‖η‖−1. Once we
establish the continuity, we have all of the hypotheses of Theorem III.4.3, and the
general theory implies existence, stability, and

‖w‖1 + ‖θ‖1 + ‖γ ‖H−1(div,�) ≤ c‖f ‖−1. (5.19)

For convex domains, this estimate is obviously weaker than the regularity result
(5.15).

It is not entirely obvious that the two pairings (5.12) and (5.15) lead to the
same solution of the variational problem (5.11) for f ∈ H−1(�). For the solution
based on the spaces (5.12), the regularity assertion (5.15) guarantees the inclusion
γ ∈ L2(�) ⊂ H−1(div, �), and thus that the solution is also consistent with the
other pairing. Conversely, the second equation in (5.11) asserts that w has a weak
derivative in H 1

0 which lies in H 2
0 . However, this result requires a homogeneous

right-hand side in the second equation of (5.11).

DKT Elements

Finite element computations with C1 elements are circumvented if the normal
hypothesis (and C1 continuity) is satisfied at the nodes of a triangular partition
rather than on the entire domain. We call this a discrete Kirchhoff condition, and the
corresponding element a discrete Kirchhoff triangle or for short a DKT element.

Strictly speaking, DKT elements are nonconforming elements for the dis-
placement formulation (5.9). Nevertheless, the connection with mixed methods
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simplifies the analysis since the consistency error can be estimated in terms of the
Lagrange multiplier of the mixed formulation.

We consider two examples which require different treatments. Both involve
reduced polynomials of degree 3. Given a triangle, let a1, a2, a3 be its vertices,
and let a0 be its center of gravity:

P3,red :=
{
p ∈ P3; 6p(a0)−

3∑
i=1

[2p(ai)− ∇p(ai) · (ai − a0)] = 0
}
.

Here the constraint excludes the bubble function, which in other cases is usually
appended to polynomials of lower degree. In comparison with standard interpo-
lation using cubic polynomials, the interior point is missing, and only the nine
points on the boundary are used.

Instead of using these nine function values, we can also use the function
values and first derivatives at the three vertices; cf. Problem II.5.13.

5.3 Example. Following Batoz, Bathe, and Ho [1980], let

Wh := {w ∈ H 1
0 (�); ∇w is continuous at all nodes of Th,

w|T ∈ P3,red for T ∈ Th},
�h := {θ ∈ H 1

0 (�)2; θ |T ∈ (P2)
2 and θ · n ∈ P1(e)

for every edge e ∈ ∂T and T ∈ Th}.

(5.20)

Every deflection is associated with a rotation via a discrete Kirchhoff condition:

wh �−→ θh(wh) : θh(ai) = ∇wh(ai) for the vertices ai,

θh(aij ) · t = ∇wh(aij ) · t for the midpoint aij .
(5.21)

As usual, n denotes a unit normal vector, and t is a tangential vector (to points
on the edges). Moreover, aij := 1

2 (ai + aj ). The mapping Wh → �h in (5.21) is
well defined since by the definition of the space �h, the normal components at the
midpoints of the sides are already determined by their values at the vertices:

θh(aij ) · n = 1

2
[∇wh(ai)+ ∇wh(aj )] · n.

Thus, θh(wh) ∈ (P2)
2 is defined by the interpolation conditions at the six canonical

points.

We note that on the edges, the tangential components of ∇wh are always
quadratic polynomials, and by construction coincide with the tangential compo-
nents of θh = θh(wh). Thus, θh can only vanish in a triangle T if wh is constant
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��
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�
�

�
���� ��

Wh

•
�

�
�× ×

�
�

�• × •
�h

Fig. 61. The DKT element of Batoz, Bathe, and Ho (The tangential component
only is fixed at the nodes marked with ×.)

on ∂T . Since the restriction of Wh to a triangle has dimension 9, the restriction of
θh(Wh) has the same dimension as ∇Wh, i.e., 8.

Note that θh(Wh) is a proper subspace of �h. Since dim(P2)
2 = 12, the three

kinematic relations [2 θ(aij )−θ(ai)−θ(aj )]n = 0 in (5.20) imply that locally, �h

has dimension 12− 3 = 9. The fact that the mapping (5.21) only gives a subspace
is not a problem for either the implementation or the analysis of the elements.

The associated finite element approximation is the solution of the equation

ah(wh, vh) = (f, vh)0 for all vh ∈ Wh

with the bilinear form

ah(wh, vh) := a(θh(wh), θh(vh)). (5.22)

For the analysis, ah is defined on Wh⊕H 3(�)∩H 1
0 (�) by extending the mapping

(5.21) to this space in the canonical way. In addition, following Pitkäranta [1988],
we make use of the mesh-dependent norms

|v|s,h :=
(∑

T ∈Th

|v|2s,T
) 1

2
, ‖v‖s,h :=

(∑
T ∈Th

‖v‖2
s,T

) 1
2
. (5.23)

5.4 Remark. The semi-norms

‖∇vh‖ and ‖θh(vh)‖0,

|∇vh|1,h and |θh(vh)|1,
‖∇vh‖1,h and ‖θh(vh)‖1, respectively,

(5.24)

are equivalent on Wh, provided that the triangulations are shape-regular.

Proof. In view of the finite dimensionality and the linearity of the mapping ∇vh �→
θ(vh), on the reference triangle we have

‖θh(vh)‖0,Tref ≤ c‖∇vh‖0,Tref ,

|θh(vh)|1,Tref ≤ c‖∇vh‖1,Tref .
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Now θh −∇vh = 0 for vh ∈ P1. By the Bramble–Hilbert lemma, we can estimate
|θh−∇vh|1,Tref by c|∇vh|1,Tref , and thus insert the semi-norm in the second part of
(5.24). Since the mapping ∇vh �→ θ(vh) is injective, the converse follows in the
same way. Finally, the transformation theorems of Ch. II, §6 imply the estimate
for the triangles T of a shape-regular triangulation. The result for the domain �

follows by summation.

5.5 Corollary. The DKT element 5.3 satisfies

a(θh(vh), θh(vh)) ≥ c
∑
T ∈Th

‖vh‖2
2,T

for some constant c > 0 independent of h.
Proof. Since θh ∈ H 1

0 (�)2 and vh ∈ H 1
0 (�), it follows from Korn’s inequality,

Friedrichs’ inequality, and the previous remark that

a(θh(vh), θh(vh)) ≥ c‖θh(vh)‖2
1 = c

∑
T ∈Th

‖θh(vh)‖2
1,T

≥ c‖∇vh‖2
1,h = c(|∇vh|21,h + |vh|21,�)2

≥ c′(|∇vh|21,h + ‖vh‖2
1,�) ≥ c′‖vh‖2

2,h.

Since the gradient of linear functions is exactly interpolated, the same argu-
ment implies that

‖θh(vh)− ∇vh‖0 ≤ c h|vh|2,h for all vh ∈ Wh.

We are now in a position to estimate the consistency error via the second lemma of
Strang. Since H 3(�) ⊂ C1(�), we can directly extend the mapping θh in (5.21)
to Wh ⊕H 3(�). We also have to take into consideration the fact that, in general,
θh(w) �= ∇w for the solution w of (5.11). Equality holds if ∇w is linear. Hence,
it follows from the Bramble–Hilbert lemma that

‖θh(w)− ∇w‖0 ≤ ch2‖w‖3.

In the first equation of the mixed formulation (5.11) we now set v = vh and
ψ = θh(vh). Together with the regularity result (5.15) for the mixed method, this
implies

ah(w, vh)− (f, vh)0 = a(θh(w), θh(vh))− (f, vh)0

= [a(θ, θh(vh))− (f, vh)0] + a(θh(w)− θ, θh(vh))

= (∇vh − θh(vh), γ )0 + a(θh(w)− θ, θh(vh))

≤ ‖∇vh − θh(vh)‖0 ‖γ ‖0 + ch‖w‖3‖vh‖2,h

≤ c h‖vh‖2,h ‖f ‖−1.

Since the approximation error inf{‖w−ψh‖2,h; ψh ∈ Wh} is also of order O(h),
the second lemma of Strang implies
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5.6 Theorem. Let Th be a family of shape-regular triangulations. Then the finite
element solution using the DKT element 5.3 satisfies

‖w − wh‖2,h ≤ ch‖f ‖−1,

with a constant c independent of h.

In Example 5.3 we have used a rather large finite element space for the
rotations. The amount of computation can be reduced by using smaller spaces.

5.7 Example (Zienkiewicz triangle). Let

Wh := {w ∈ H 1
0 (�); ∇w is continuous at all nodes of Th,

w|T ∈ P3,red for T ∈ Th},
�h := {θ ∈ H 1

0 (�)2; θ |T ∈ (P1)
2 for T ∈ Th} = (M1

0,0)
2.

(5.25)

Every deflection can be associated with a rotation by means of a discrete Kirchhoff
condition:

wh �−→ θh(wh) : θh(ai) = ∇wh(ai) for the vertices ai.

It is clear from a dimensionality argument that θh = 0 can hold in a triangle, even
though ∇wh �= 0. Thus, the bilinear form ah must be defined differently than in
(5.22):

ah(wh, vh) :=
∑
T ∈Th

a(∇wh,∇vh)T .

This element is called the Zienkiewicz triangle, see Zienkiewicz [1971]. It is
interesting to note that both theoretical results and numerical experience show that
the convergence of this nonconforming method occurs only for three-direction
meshes, i.e. for meshes where the grid lines run only in three directions; see
Lascaux and Lesaint [1975].

It is possible to dispense with the restriction to three-direction meshes by
adding a penalty term, which leads to the quadratic form

ah(vh, vh) := a(θh(vh), θh(vh))+
∑
T ∈Th

1

h2
T

∫
T

|∇vh − θh(vh)|2dx. (5.26)

It is clear from (5.7) that the penalty term was selected on the basis of the theory
of the Mindlin–Reissner plate.

For simplicity, we restrict ourselves to a uniform grid. Then the various mesh
sizes hT can be replaced by a global one:

ah(vh, vh) := a(θh(vh), θh(vh))+ 1

h2
‖∇vh − θh(vh)‖2

0.

In addition to the norms (5.23), the energy norm

|||v, ψ |||2 :=
(
‖ψ‖2

1 +
1

h2
‖∇v − ψ‖2

0

) 1
2

enters into the analysis.
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5.8 Lemma. For all vh ∈ Wh, h ≤ 1,

c−1‖vh‖2,h ≤ |||vh, θh(vh)|||2 ≤ c‖vh‖2,h, (5.27)

where c is a constant independent of h.

Proof. (1) By the approximation results,

‖∇v − θh(v)‖s,T ≤ c h1−s |v|2,T for s = 0, 1.

With s = 0, we have ‖∇vh − θh(vh)‖0,� ≤ c h‖vh‖2,h. Thus, with s = 1,

‖θh(vh)‖2
1,T ≤ (‖vh‖1,T + ‖vh − θh(vh)‖1,T )2 ≤ 2‖vh‖2

1,T + 2c|vh|22,T .

Hence, ‖θh(vh)‖1,� ≤ 2(1+ c)‖vh‖2,h, and the inequality on the right in (5.27) is
proved.

(2) To prove the other inequality, we establish the stronger assertion

c−1‖vh‖2,h ≤ |||vh, ψh|||2 for all vh ∈ Wh, ψh ∈ �h. (5.28)

First we use Friedrichs’ inequality:

1

c
‖vh‖2

1 ≤ ‖∇vh‖2
0 ≤ 2‖∇vh − ψh‖2

0 + 2‖ψh‖2
0

≤ 2h−2‖∇vh − ψh‖2
0 + 2‖ψh‖2

1 ≤ 2|||vh, ψh|||22.
Similar estimates along with the usual inverse inequality lead to∑

T

|vh|22,T ≤
∑
T

(|∇vh − ψh|1,T + |ψh|1,T )2

≤ 2
∑
T

(|∇vh − ψh|21,T + |ψh|21,T )

≤ 2
∑
T

h−2|∇vh − ψh|20,T + 2‖ψh‖2
1,� = 2|||vh, ψh|||22,

and the proof is complete.

Taking account of Remark III.1.3, we can now directly carry over the method
of proof of Theorem 5.6 to establish convergence. For details, see Problem 5.11.

5.9 Theorem. Let Th be a family of shape-regular triangulations. Then the finite
element solution using the DKT element 5.7 satisfies

‖w − wh‖2,h ≤ c h‖f ‖−1,

where c is a constant independent of h.

For the treatment of DKT elements by multigrid methods, see, e.g., Peisker,
Rust, and Stein [1990].
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Problems

5.10 Generalize Theorem 5.9 to shape-regular grids, and verify (5.27) for ah with
the associated energy norm

|||v, ψ |||2 :=
(
‖ψ‖2

1 +
∑
T ∈Th

1

h2
T

∫
T

|∇v − ψ |2dx
) 1

2
.

5.11 To treat the consistency error ah(w, vh)− (f, vh)0 in Theorem 5.9, estimate
the contribution of the penalty term

1

h2

∫
�

(∇w − θh(w)) · (∇vh − θh(vh)) dx for vh ∈ Wh

in terms of |w|3,�|vh|2,h with the correct power of h.

5.12 Express the dimension of the finite element spaces with DKT elements in
terms of the number of triangles, nodes, and edges.

5.13 Show that the mixed method for the Timoshenko beam which corresponds
to (5.11) is stable for X := H 1

0 (0, b)×H 1
0 (0, b) and M := L2(0, b). With which

Standard Sobolev space does H−1(div, (0, b)) coincide? [Hence, we do not need
the space H−1(div) in contrast to the investigation of plates.]
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The Mindlin–Reissner model for a bending plate involves minimizing (5.7) over
(w, θ) ∈ X := H 1

0 (�) × H 1
0 (�)2. Here the shear term does not vanish since the

normal hypothesis is not assumed. The Mindlin plate turns out to be a singular
perturbation problem. This is consistent with the observation that the directions of
the rotations differ from the normal directions only near the boundary; see Arnold
and Falk [1989], Pitkäranta and Suri [1997].

Here t should be thought of as a small parameter. In order to avoid shear
locking, we treat the plate as a mixed problem with penalty term. Now we proceed
in exactly the same way as we did in going from (3.32) to (3.37) and from (3.42)
to (3.48). Introducing the shear term

γ := t−2(∇w − θ), (6.1)

we get the following – at first purely formal – mixed problem with penalty term:
Find (w, θ) ∈ X := H 1

0 (�)×H 1
0 (�)2 and γ ∈ M := L2(�)2 such that

a(θ, ψ) + (∇v − ψ, γ )0 = (f, v) for all (v, ψ) ∈ X,

(∇w − θ, η)0 − t2(γ, η)0 = 0 for all η ∈ M.
(6.2)

Here the bilinear form a is defined in (5.5). The equation (6.2) and the mixed for-
mulation (5.11) for the Kirchhoff plate differ only by the penalty term −t2(γ, η)0.
However, we should not overlook the fact that here the variable γ in the equation
has a different meaning. In (5.11) it serves as a Lagrange multiplier, while by
(6.1), here it is to be regarded as a normed shear term.

The variational problem cannot be dealt with directly using the general results
for the saddle point theory in Ch. III, §4. From the theory of the Kirchhoff plate, we
know that H−1(div, �) is the natural space for the Lagrange multiplier. Theorems
III.4.11 and III.4.13 are not applicable since H−1(div, �) �⊂ L2(�), and because
the bilinear form a is not elliptic on the entire space X.

Since these arguments may appear quite formal to the reader, we present
another reason: For θ ∈ H 1

0 (�)2, w ∈ H 1
0 (�), rot θ ∈ L2(�) and rot grad w =

0 ∈ L2(�), and thus
∇w − θ ∈ H0(rot, �).

The rotation is defined in (4.9). Hence, the proper space is not L2(�), but rather

H0(rot, �) := {η ∈ L2(�)2; rot η ∈ L2(�), η · τ = 0 on ∂�}. (6.3)
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Here τ = τ(x) is defined (almost everywhere) on ∂� as the direction of the tangent
in the counterclockwise direction. We endow the space (6.3) with the norm

‖η‖0,rot := (‖η‖2
0 + ‖ rot η‖2

0)
1
2 . (6.4)

In terms of the general theory in Ch. III, §4, the bilinear form b for the mixed
formulation is given by b(w, θ, η) := (∇w − θ, η)0. Now we specialize η to be
an element of L2(�)2 of the form η = curl p. Then because of the orthogonality
of the rotation and the gradient,

b(w, θ; η) = (∇w − θ, η)0 = 0 − (θ, η)0 ≤ ‖θ‖1 ‖η‖−1,

for w ∈ H 1
0 (�), θ ∈ H 1

0 (�)2, and thus

sup
w,θ

b(w, θ, η)

‖w‖1 + ‖θ‖1
≤ ‖η‖−1.

In order to ensure that the inf-sup condition holds, we have to endow M with a
norm which is weaker than the L2-norm, that is with the one which is dual to (6.4),
i.e., ‖ · ‖H−1(div,�); see below.

As shown in Brezzi and Fortin [1986], the analyis is simplified if we use the
Helmholtz decomposition of the shear term into a gradient field and a rotational
field. Using the decomposition we get expressions and estimates which involve
the usual Sobolev norms.

The Helmholtz Decomposition

In the following we shall see that the space

H−1(div, �) := {η ∈ H−1(�)2; div η ∈ H−1(�)}

with the graph norm (5.17) is the dual space of H0(rot, �). Clearly,

H0(rot, �) ⊂ L2(�)2 ⊂ H−1(div, �).

As usual, we identify functions in L2(�)/R which differ only by a constant. The
norm of an element in this space is just the L2-norm of the representer which is
normalized to have zero integral; see Problem III.6.6.
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6.1 Lemma. Assume that � ⊂ R
2 is simply connected. Then every function η ∈

H−1(div, �) is uniquely decomposable in the form

η = ∇ψ + curl p (6.5)

with ψ ∈ H 1
0 (�) and p ∈ L2(�)/R. Moreover, the norms

‖η‖H−1(div,�) and (‖ψ‖2
1,� + ‖p‖2

0)
1
2 (6.6)

are equivalent, where p is the representer satisfying
∫
�

p dx = 0.

Proof. By hypothesis, χ := div η ∈ H−1(�). Let ψ ∈ H 1
0 (�) be the solution

of the equation �ψ = χ . Then div(η − ∇ψ) = div η − �ψ = 0. By classical
estimates, every divergence-free function in � can be represented as a rotation, i.e.,
η−∇ψ = curl p with a suitable p ∈ L2(�)/R. This establishes the decomposition.

We also observe that

‖ div η‖−1 = ‖�ψ‖−1 = |ψ |1, (6.7)

and

‖η‖−1 = ‖∇ψ + curl p‖−1 ≤ ‖∇ψ‖−1 + ‖ curl p‖−1 ≤ ‖ψ‖0 + ‖p‖0.

After summation, it follows that ‖η‖2
H−1(div,�)

≤ 2‖ψ‖2
1 + 2‖p‖2

0.

In view of (6.7), to complete the proof we need only show that ‖p‖0 ≤
c‖η‖H−1(div,�). Note that

∫
�

p dx = 0. It is known from the Stokes problem (see
Problem III.6.7) that there exists a function v ∈ H 1

0 (�)2 with

div v = p and ‖v‖1 ≤ c‖p‖0. (6.8)

Then for ξ = (ξ1, ξ2) := (−v2, v1), it clearly follows that ξ ∈ H 1
0 (�)2,

rot ξ = p and ‖ξ‖1 ≤ c‖p‖0.

Moreover, taking account of (6.7), we see that the decomposition (6.5) satisfies

‖p‖2
0 = (p, rot ξ) = (curl p, ξ) = (η − ∇ψ, ξ)

≤ ‖η‖−1‖ξ‖1 + |ψ |1‖ξ‖0

≤ c(‖η‖−1 + ‖ div η‖−1)‖p‖0.

Supplement. If η lies in L2(�)2 and not just in H−1(div, �), then we even have
p ∈ H 1(�)/R for the second component of the Helmholtz decomposition (6.5),
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and L2(�) = ∇H 1
0 (�)⊕ curl(H 1(�)/R). Thus, p is a solution of the Neumann

problem (curl p, curl q)0 = (div(η − ∇ψ), curl q)0 for given q ∈ H 1(�).

We assert that
(H0(rot, �))′ = H−1(div, �) (6.9)

but we will verify only the inclusion H−1(div, �) ⊂ (H0(rot, �))′, and leave the
proof of the converse to Problem 6.11. Let γ ∈ H0(rot, �) and η = ∇ψ+curl p ∈
H−1(div, �). Using Lemma 6.1, we conclude that

(γ, η)0 = (γ,∇ψ)0 + (γ, curl p)0

= (γ,∇ψ)0 + (rot γ, p)0

≤ ‖γ ‖0‖ψ‖1 + ‖ rot γ ‖0 ‖p‖0.

Now by (6.6) and the Cauchy–Schwarz inequality for R
2, we get

(γ, η)0 ≤ c‖γ ‖H0(rot,�) · ‖η‖H−1(div,�).

This shows that the bilinear form (γ, η)0 can be extended from a dense subset to
all of H0(rot, �)×H−1(div, �), and the inclusion is established.

The Mixed Formulation with the Helmholtz Decomposition

We now return to the variational problem (6.2) for the Mindlin–Reissner plate.
Following Brezzi and Fortin [1986], we now assume that the shear term has the
form

γ = ∇r + curl p (6.10)

with r ∈ H 1
0 (�) and p ∈ H 1(�)/R. We decompose the test function η in the

same way as η = ∇z + curl q. Also note that the gradients and rotations are L2-
orthogonal; see Problem 6.10. Now we apply Green’s formula to the rotation, so
that (6.2) leads to the equivalent system

(∇r,∇v)0 = (f, v)0 for v ∈ H 1
0 (�),

a(θ, ψ)− (rot ψ, p)0 = (∇r, ψ)0 for ψ ∈ H 1
0 (�)2,

−(rot θ, q)0 − t2(curl p, curl q)0 = 0 for q ∈ H 1(�)/R,

(∇w,∇z)0 = (θ,∇z)0 + t2(f, z)0 for z ∈ H 1
0 (�).

(6.11)

The first equation is a Poisson equation which can be solved first. The second and
third equations together constitute an equation of Stokes type with penalty term.
The fourth equation is also a Poisson equation which is independent of the others,
and can be solved afterwards.
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We now show that the middle equations

a(θ, ψ)− (rot ψ, p)0 = (∇r, ψ)0,

−(rot θ, q)0 − t2(curl p, curl q)0 = 0
(6.12)

of (6.11) are indeed of Stokes type. By Korn’s inequality, the bilinear form a is
H 1-elliptic. Moreover,

rot ψ = div ψ⊥ with the convention x⊥ := (x2,−x1)

for any vector in R
2. Clearly, ‖ψ⊥‖s,� = ‖ψ‖s,� for ψ ∈ Hs(�). Thus, (6.12)

represents a (generalized) Stokes problem for θ⊥ with singular penalty term.

6.2 Theorem. Equations (6.12) and (6.2) describe stable variational problems on
H 1

0 (�)2 ×H 1(�)/R w.r.t. the norm

‖θ‖1 + ‖p‖0 + t ‖ curl p‖0,

and on H 1
0 (�)×H 1

0 (�)2 × L2(�)2 w.r.t. the norm

‖w‖1 + ‖θ‖1 + ‖γ ‖H−1(div,�) + t ‖γ ‖0.

The constants in the associated inf-sup conditions are independent of t .

Proof. The first assertion follows immediately from Theorem III.4.13 with X :=
H 1

0 (�)2, M := L2(�)/R, and Mc := H(rot, �)/R.

As mentioned above, to prove the second assertion, we cannot directly apply
Theorem III.4.13. However, once we check the inf-sup condition for every compo-
nent of (6.11), it follows for (6.2) with the help of the Helmholtz decompositions
of H−1(div, �) and L2(�)2, respectively. The argument proceeds in exactly the
same way as going from (6.2) to (6.11).

MITC Elements

The system which arises from the discretization of (6.2) can be transformed in the
sense of (3.39) into displacement form (with reduction operators):

a(θh, θh)+ t−2‖∇wh − Rhθh‖2
0 − 2(f, wh)0 −→ min

wh,θh

!, (6.13)

where the minimization is performed over the spaces Wh and �h, respectively.
Here

Rh : H 1(�)2 −→ �h (6.14)
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is a so-called reduction operator, i.e., a linear mapping defined on the finite element
space for the shear terms which does not affect the elements in �h.

If possible, the finite element calculations are performed using the displace-
ment model (6.13), since it leads to systems of equations with positive definite
matrices and with fewer unknowns. On the other hand, for the convergence anal-
ysis, it is still best to use the mixed formulations. However, there is a problem: In
general, the functions in �h cannot be represented in the form

γh = grad rh + curl ph,

where rh and ph again belong to finite element spaces. Thus, except for a special
case treated by Arnold and Falk [1989], a modification of the Helmholtz decom-
position is necessary.

The notation for the following finite element spaces is suggested by the vari-
ables in (6.11).

6.3 The Axioms of Brezzi, Bathe, and Fortin [1989]. Suppose the spaces

Wh ⊂ H 1
0 (�), �h ⊂ H 1

0 (�)2, Qh ⊂ L2(�)/R, �h ⊂ H0(rot, �)

and the mapping Rh defined in (6.14) have the following properties:

(P1) ∇Wh ⊂ �h, i.e., the discrete shear term γh := t−2(∇wh − Rhθh) lies in �h.
(P2) rot �h ⊂ Qh – this requirement is consistent with γh ∈ H(rot, �), and thus

with rot γh ∈ L2(�).
(P3) The pair (�h, Qh) satisfies the inf-sup condition

inf
qh∈Qh

sup
ψh∈�h

(rot ψh, qh)

‖ψh‖1‖qh‖0
=: β > 0,

where β is independent of h. The spaces are thus suitable for the Stokes
problem.

(P4) Let Ph be the L2-projector onto Qh. Then

rot Rhη = Ph rot η for all η ∈ H 1
0 (�)2,

i.e., the following diagram is commutative:

H 1
0 (�)2 rot−−→ L2(�)

Rh

5 5 Ph

�h
rot−−→ Qh.
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(P5) If ηh ∈ �h and rot ηh = 0, then ηh ∈ ∇Wh. This means that the sequence

Wh

grad−−→ �h
rot−−→ Qh

is exact.23 – This condition corresponds to the fact that rotation-free fields
are gradient fields.

We now observe that the rotation can be defined as a weak derivative, in
analogy with Definition II.1.1: A function u ∈ L2(�) lies in H(rot, �) and v ∈
L2(�)2 is equal to curl u in the weak sense provided that∫

�

v · ϕ dx =
∫

�

u rot ϕ dx for all ϕ ∈ C∞
0 (�)2.

Similarly, we now define the rotation on the finite element space Qh in the weak
sense; see Peisker and Braess [1992]. The discrete curl operator is used indirectly
also by Brezzi, Fortin, and Stenberg [1991].

6.4 Definition. The mapping

curlh : Qh −→ �h

called discrete curl operator is defined by

(curlh qh, η)0 = (qh, rot η)0 for η ∈ �h. (6.15)

Since �h ⊂ H0(rot, �), the functional η �−→ (qh, rot η)0 is well defined and
continuous. Thus, curlh qh is uniquely determined by (6.15).

6.5 Theorem. Suppose properties (P1), (P2) and (P5) hold. Then

�h = ∇Wh ⊕ curlh Qh

defines an L2-orthogonal decomposition (which is called a discrete Helmholtz
decomposition).

Proof. (1) It follows directly from Definition 6.1 and (P1) that ∇Wh ⊕ curlh Qh

⊂ �h.

(2) For qh ∈ Qh and wh ∈ Wh, we have (curlh qh,∇wh)0 = (qh, rot∇wh)0

= (qh, 0)0 = 0. Thus, curlh qh and ∇wh are orthogonal in L2(�).

23 A sequence of linear mappings A
f−→B

g−→C is called exact provided that the image
of f coincides with the kernel of g.
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(3) Given γh ∈ �h, let ηh be the L2-projection onto curlh Qh. Then ηh is
characterized by

(γh − ηh, curlh qh)0 = 0 for all qh ∈ Qh.

By Definition 6.4, (rot(γh − ηh), qh)0 = 0 for qh ∈ Qh. Since rot(γh − ηh) ∈ Qh,
it follows that rot(γh − ηh) = 0. By (P5) we deduce that γh − ηh ∈ ∇Wh, which
implies that γh ∈ curlh Qh ⊕∇Wh.

We can now follow the same arguments leading from the variational problem
(6.7) to the equation (6.11) in exactly the same way as for the finite element version
(6.13), see [Peisker and Braess 1992 or Brezzi and Fortin 1991]. This leads to the
following problem: Find (rh, θh, ph, wh) ∈ Wh ×�h ×Qh ×Wh such that

(∇rh,∇vh)0 = (f, vh)0 vh ∈ Wh,

a(θh, ψh)− (ph, rot ψh)0 = (∇rh, ψh)0 ψh ∈ �h,

−(rot θh, qh)0 − t2(curlh ph, curlh qh)0 = 0 qh ∈ Qh,

(∇wh,∇zh)0 = (θh,∇zh)0 + t2(f, zh)0 zh ∈ Wh.

(6.16)

Finite element spaces with properties (P1)–(P5) automatically satisfy inf-sup
conditions analogous to (6.2) with constants which are independent of t and h.

We compare this also with the discrete version of (6.2): Find (wh, θh) ∈ Xh

and γh ∈ Mh such that

a(θh, ψh)+ (∇vh − ψh, γh)0 = (f, vh) for all (ψh, vh) ∈ Xh,

(∇wh − θh, ηh)0 − t2(γh, ηh)0 = 0 for all ηh ∈ Mh .
(6.17)

6.6 Example. The so-called MITC7 element (element with mixed interpolated
tensorial components) is a triangular element involving up to seven degrees of
freedom per triangle and variable: The shear terms belong to a more complicated
space; see Fig. 62:

�h := {η ∈ H0(rot, �); η|T =
(

p1

p2

)
+ p3

(
y

−x

)
, p1, p2, p3 ∈ P1, T ∈ Th},

Wh := M2
0,0, �h := M2

0,0 ⊕ B3, Qh := M1/R.

Here we have made use of the usual notations as in (4.13). Finally, we define the
operator Rh by∫

e

(η − Rhη)τ p1ds = 0 for every edge e and every p1 ∈ P1,∫
T

(η − Rhη)dx = 0 for every T ∈ Th.

(6.18)
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Fig. 62. MITC7 Element (only tangential components are fixed at the points
marked with ×)

We recall that elements in H0(rot, �) have to have continuous tangential
components along the edges between the triangles. As with the Raviart–Thomas
element, it is easy to check that the tangential components of the vector expression

(
y

−x

)

are constant on every edge. Thus, the functions in �h are linear on the edges,
and so are determined by the values at two points. In particular, these points can
be the sample points for a Gaussian quadrature formula which exactly integrates
quadratic polynomials. Thus (in agreement with Fig. 62) the six degrees of freedom
for functions in �h are determined by the values on the sides. These six values
along with the two components at the midpoint of the triangle determine the eight
local degrees of freedom.

Therefore, the restriction operator Rh described by (6.18) can be computed
from interpolation at the above six points on the sides along with two integrals
over the triangle. Thus, the values of Rhη in a triangle depend only on the values
of η in the same triangle. This means that the system matrix can be assembled
locally, triangle by triangle. This would not have been the case if we had used the
L2-projector in place of Rh.

For numerical results using this element, see Bathe, Brezzi, and Cho [1989]
and Bathe, Bucalem, and Brezzi [1991/92].

The Model without a Helmholtz Decomposition

The formulation (6.2) for the Mindlin plate is motivated by the similarity with the
mixed formulation of the Kirchhoff plate. Arnold and Brezzi [1993] developed
a clever modification which permits a development without using the Helmholtz
decomposition. There is a simple treatment in terms of the theory of saddle point
problems with penalty term developed in Ch. III, §4; cf. also Braess [1996]. A sim-
ilar modification can also be found in the treatment of shells by Pitkäranta [1992].
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We will partly follow the modification of Chapelle and Stenberg [1998]. The ad-
vantage and the disadvantagge of the two models were elucidated by Pitkäranta
and Suri [2000].

Let t, h < 1. We again start with the minimization of the functional (6.7), but
now combine a part of the shear term with the bending part:

�(u) = 1

2
ap(w, θ;w, θ)+ t ′−2

2

∫
�

|∇w − θ |2dx −
∫

�

f wdx, (6.19)

where

ap(w, θ; v, φ) := a(θ, φ)+ 1

h2 + t2

∫
�

(∇w − θ) · (∇v − φ) dx,

1

t2
= 1

h2 + t2
+ 1

t ′2
or t ′2 = t2 h2

h2 + t2
.

(6.20)

Thus, we seek (w, θ) ∈ X = H 1
0 (�)×H 1

0 (�)2 such that

ap(w, θ; v, φ)+ 1

t ′2
(∇w − θ,∇v − φ)0 = (f, w)0 for all (v, φ) ∈ X. (6.21)

By analogy with the derivation of (6.2) from (5.7), with the introduction of (mod-
ified) shear terms γ := t ′−2(∇w − θ), we now get the following mixed problem
with penalty term. Find (w, θ) ∈ X and γ ∈ M such that

ap(w, θ; v, φ)+ (∇v − φ, γ )0 = (f, v)0 for all (v, φ) ∈ X,

(∇w − θ, η)0 − t ′2(γ, η)0 = 0 for all η ∈ M.
(6.22)

The essential difference compared to (6.2) is the coercivity of the enhanced form
ap.

6.7 Lemma. There exists a constant c := c(�) > 0 such that

ap(w, θ;w, θ) ≥ c(‖w‖2
1 + ‖θ‖2

1) for all w ∈ H 1
0 (�), θ ∈ H 1

0 (�)2. (6.23)

Proof. By Korn’s inequality, a(φ, φ) ≥ c1‖φ‖2
1. In addition,

‖∇w‖2
0 ≤ (‖∇w − θ‖0 + ‖θ‖0)

2 ≤ 2‖∇w − θ‖2
0 + 2‖θ‖2

1.

Friedrichs’ inequality now implies

‖w‖2
1 ≤ c2|w|21 ≤ 2c2(‖∇w − θ‖2

0 + ‖θ‖2
1),

and so
‖w‖2

1 + ‖θ‖2
1 ≤ (1 + 2c2)

(‖∇w − θ‖2
0 + ‖θ‖2

1

)
≤ (1 + 2c2)

(‖∇w − θ‖2
0 + c−1

1 a(θ, θ)
)

≤ (1 + 22) (1 + c−1
1 ) ap(w, θ;w, θ).

This establishes the coercivity with the constant c := (1 + 2c2)
−1(1 + c−1

1 )−1.
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Fig. 63. Plate element without the Helmholtz decomposition: Wh = M2
0,0,

�h = (M2
0,0 ⊕ B3)

2 and �h = (M0)2.

The additional term ensures that the coercivity of the quadratic form holds
on more than the kernel. This is essential not only for theoretical reasons, but
numerical computations have shown that the factor in front of the shear term in
(6.20) has to be chosen appropriately and that it should be of the order O(h−2).
Now Theorem III.4.13 is applicable since the Brezzi condition holds by (5.18).

6.8 Theorem. The variational formulation (6.21) for the Mindlin–Reissner plate
is stable w.r.t. the spaces

X = H 1
0 (�)×H 1

0 (�)2, M := H−1(div, �), Mc := L2(�)2. (6.24)

In particular, we have stability w.r.t. the norm

‖w‖1 + ‖θ‖1 + ‖γ ‖H−1(div,�) + t‖γ ‖0. (6.25)

Using Fortin’s criterion (Lemma III.4.8), it is now easy to show that

Wh := M2
0,0, �h := (M2

0,0 ⊕ B3)
2, �h = (M0)2

provides a stable combination of finite element spaces. Here we assume that the
domain � either is convex or has a smooth boundary.

Once more we make use of the operators π0
h : H 1

0 (�) → M1
0,0 as well

�1
h : H 1

0 (�)2 → (M1
0,0 ⊕ B3)

2 appearing in the proof of Theorem III.7.2. In
particular,

∫
T
(�hv− v)idx = 0 for every T ∈ Th and i = 1, 2. Since �h contains

piecewise constant fields,
∫
�
(�hθ − θ) · γh = 0 for all γh ∈ �h and θ ∈ H 1

0 (�)2.

The transverse displacement can be treated analogously. For every edge e of
the triangulation, we define a linear mapping π2

h : H 1
0 (�) → M2

0,0 with

∫
e

(π2
hv − v)ds = 0.
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This requires one degree of freedom per edge, which can be the value at the
midpoint of the edge. In analogy with �h, we set

�2
hv := π0

hv + π2
h(v − π0

hv),

so that
∫
e
(�2

hv − v)ds = 0 for every edge e of the triangulation. Using Green’s
formula, we have∫

T

grad(�2
hv − v) · γhdx =

∫
∂T

(π2
hv − v)γh · nds −

∫
T

(π2
hv − v) div γhdx = 0.

The contour integral vanishes by construction, and the second integral also vanishes
since γh is constant on T . The boundedness of �2

h follows as for π1
h , and so

the hypotheses of Fortin’s criterion are satisfied since (grad �2
hw −�hθ, γh)0 =

(grad w − θ, γh)0 for γh ∈ M0.

More recently, Chapelle and Stenberg [1998] analyzed the finite element
discretization with �h := (M1

0,0 ⊕ B3)
2 keeping Wh and �h as in Fig. 63. They

avoided the H−1(div)-norm by using mesh-dependent norms and showed stability
with respect to the norm whose square is

‖w‖2
1 + ‖θ‖2

1 +
1

h2 + t2
‖∇w − θ‖2

0 + (h2 + t2) ‖γ ‖2
0.

In particular, the duality argument of Aubin–Nitsche could be more easily per-
formed with these norms.

Another mesh-dependent norm which less conceals the connection with
H−1(div) was introduced by Carstensen and Schöberl [2000].

Problems

6.9 Let η ∈ L2(�)2. Show that the spaces for the components of the decom-
position (6.5) can be exchanged, i.e., that we can choose ψ ∈ H 1(�)/R and
p ∈ H 1

0 (�). To this end, decompose η⊥ according to (6.5), and write the result
for η⊥ as a decomposition of η.

6.10 Does ψ ∈ H 1(�), q ∈ H 1(�)/R suffice to establish the orthogonality
relation

(∇ψ, curl q)0 = 0,

or is a zero boundary condition required?
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6.11 Show that

‖ div η‖−1 ≤ const sup
γ

(γ, η)0

‖γ ‖H(rot,�)

,

and thus that div η ∈ H−1(�) for η ∈ (H0(rot, �))′. Since H0(rot, �) ⊃ H 1
0 (�)

implies (H0(rot, �))′ ⊂ H−1(�), this completes the proof of (6.9).

6.12 In what sense do the solutions of (5.9) and (6.2) satisfy

div γ = f ?

6.13 Let t > 0, and suppose H 1(�) is endowed with the norm

|||v||| := (‖v‖2
0 + t2‖v‖2

1)
1/2.

The norm of the dual space |||u|||−1 := supv
(u,v)0
|||v||| can be estimated easily from

above by

|||u|||−1 ≤ min
{
‖u‖0,

1

t
‖u‖−1

}
.

Give an example to show that there is no corresponding estimate from below with
a constant independent of t by computing the size of

u(x) := sin x + n sin n2x ∈ H 0[0, π] (1/t ≤ n ≤ 2/t)

sufficiently exactly in each of these norms.

6.14 The finite element space Wh contains H 1 conforming elements, and thus
lies in C(�). Show that ∇Wh ⊂ H0(rot, �). What property of the rotation is
responsible for this?
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Index

A2 ≤ B2 220
adjoint operator 124, 158, 232
affine family 73, 91, 117
almost-affine families 73
approximation error 79, 107
approximate inverse 188
approximation property 237, 242
a posteriori error estimates 172
Argyris triangle 66, 67
Aubin–Nitsche lemma 91, 108
augmented Lagrange function 142
axiom

of Brezzi, Bathe, and Fortin 339
of Cauchy 282
of material frame-indifference 285
of static equilibrium 282

Babuška–Brezzi condition,
cf. inf-sup condition

beams 308
Bernoulli beams 326, 334
Timoshenko beams 310, 326

biharmonic equation 143
bilinear form

coercive 38
elliptic 38

Bogner–Fox–Schmit rectangle 72
boundary condition

Dirichlet boundary condition,
cf. Dirichlet problem

essential boundary condition 44
natural boundary condition 44, 59, 147
Neumann boundary condition,

cf. Neumann problem
non-homogeneous boundary

condition 41
Bramble–Hilbert lemma 78, 87
bubble function 168, 320, 342, 345

canonical imbedding 39
cantilever beam 309
CASCADE algorithm 259
Cauchy–Green strain tensor 280

Cauchy stress tensor 283
Céa’s lemma 55, 90, 106, 126, 303
cg method 201
characterization theorem 35
checkerboard instability 164, 292
checkerboard ordering 216, 229
Clément’s interpolation 84, 169, 175
closed range theorem 124
coarse grid correction 228, 230, 275
coercivity 38, 298
commuting diagram property 150, 152, 340
cone condition 32, 44
compact imbedding 32, 50, 87, 299
compatibility condition 46, 157
complexity 257
complete polynomials 60, 64
condition number 198, 206, 216, 242

ill conditioned problems 199, 309
conditions

Babuška condition,
cf. inf-sup condition

Brezzi condition 132, 135, 142, 160,
168, 294, 301

compatibility condition 46, 157
inf-sup condition 125, 126, 132, 134,

139. 300, 301, 319, 327, 328, 345
LBB condition, cf. inf-sup condition

conjugate directions 201, 222
Uzawa algorithm with conjugate

directions 222
conjugate gradients, cf. conjugate directions
consistency error 22, 107
constitutive equations 284, 291
convergence theorem 24, 126, 188, 193, 244,

251, 263, 267
criss-cross grid 103
curved elements 112, 118

dead load 283
deflection 323
deformation 279
de Veubeke 302
diagonally dominant matrices 190
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difference star, cf. stencil
Dirichlet principle 37
Dirichlet problem 18, 34, 40, 301
discrete Helmholtz decomposition 341
discrete Kirchhoff condition 328
discretely connected 20
discrete maximum principle 20, 58
discrete norm 238
discrete curl 341
displacement 279
displacement approach 294, 297, 325, 338
divergence 28, 42, 74, 160, 161, 298

discrete divergence 306
DKT element 328
duality techniques 92, 108, 114, 171, 243,

245, 253

EAS elements 155, 300, 310
elasticity tensor 294, 322
elastic material 284, 290
elements 60

affine elements 73
almost affine elements 73
Argyris element 66, 67
Arnold–Falk element 339
Arnold–Winther element 317
BDM element 149
Bell element 66, 67
bilinear element 68, 309
Bogner–Fox–Schmit rectangle 72
Ck element 60, 62
conforming element 60
Courant triangle, cf. P1 element
Crouzeix–Raviart element 109, 116, 170
cubic Hermite triangle 71, 329
divergence-free element 170
DKT element 328
EAS elements 155, 300, 310
Hsieh–Clough–Tocher element 66, 67
instable element 162
isoparametric element 117
linear element cf. P1 element
macro-element 67, 166, 167
MINI-element 168
MITC element 339
nonconforming element 106
PEERS element 317, 321
P1 element 56, 60, 65

nonconforming P1 element,
cf. Crouzeix–Raviart element

Q1-P 0 element 163, 171
quadratic elements 66, 69
Raviart–Thomas element 148, 181,

295, 321, 327
Taylor–Hood element 167
Zienkiewicz triangle 332

elliptic 8, 38, 42, 44, 128, 132, 297
uniformly elliptic 14, 15, 40

energy norm 38, 54, 175, 248
error indicator 173
Euler equations 3, 36, 59
existence theorem 40, 45, 125, 132, 299

F-cycle 254, 260
finite differences 16, 58
finite element spaces, cf. elements
five-point formula 18, 58, 192
Fortin interpolation 137
Fortin’s criterion 136, 168, 345
Friedrichs’ inequality 30, 33, 145

cf. Poincaré–Friedrichs inequality

Galerkin method 54
Galerkin orthogonality 55
Gauss–Seidel method 189

nonlinear Gauss–Seidel method 274
Gelfand triple 123
gradient 196

conjugate gradients 201
symmetric gradient 280

Green’s formula 37, 158, 301

H−1(div, �) 327, 335
H(div, �) 74, 146, 296, 317
H(rot, �) 74, 322, 335
Hm 29, 123
Hs-regular 89, 109, 123, 237
heat equation 6, 11
Hellinger–Reissner principle 295, 300, 317
Helmholtz decomposition 336

discrete Helmholtz decomposition 341
Helmholtz equation 14, 122, 185
Hermite triangle 71, 329
hierarchical bases 213
Hooke’s law 288
hour glass mode 164, 292
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Hu–Washizu principle 297, 302
hyperbolic equations 4, 17
hypercircle method 181
hyperelastic material 290
hypotheses

of Brezzi, Bathe, and Fortin 340
of Kirchhoff–Love 324
of Mindlin and Reissner 323

ill conditioned problems 199, 309
improperly posed problems 42
imbedding theorem 32, 50
incomplete Cholesky decomposition 214,

227
inequality

Korn’s inequality 297, 298, 314
Nečas’ inequality 159
of Kantorowitsch 198
of Poincaré–Friedrichs 30, 33
strengthened Cauchy inequality 156,

263, 265
interpolation

Fortin interpolation 137
by polynomials in 2D 64
by Raviart–Thomas elements 149

inverse estimate 86, 242
isomorphism 125, 131, 132, 138
isoparametric element 117
isotropy 286, 291
jump conditions

of H 1 elements 62
in H(div) 74
in H(rot) 74, 322

kinematics 279
Kirchhoff plate 324
Korn’s inequality 297, 298, 314
Kuhn’s triangulation 102

L2-estimate 91, 111, 115, 171, 243
L2-projector 94
�2 33, 40
Lagrange function 129

augmented Lagrange function 142
Lagrange multiplier 130, 147, 221, 335
Lamé constants 288
Lamé equations 295
Laplace operator 2

lemma
Aubin–Nitsche lemma 91, 108
Bramble–Hilbert lemma 78, 87
Céa’s lemma 55, 90, 106, 126, 286
lemma on conjugate directions 202
Reusken’s lemma 246
Star lemma 19
Strang’s lemmas 106, 107

lexicographical ordering 193
linear elasticity problem 293
linearity hypothesis 323
Lipschitz boundary 32
locking effect 308, 335
logarithmic convexity 239
Love’s hypothesis,

cf. hypothesis of Kirchhoff–Love

macro element 67, 166, 167
mass matrix 98, 215, 218
material

elastic material 284
hyperelastic material 290
isotropic material 286
nearly incompressible material 161, 304
neo-Hookean material 292
objective material 285
St. Venant–Kirchhoff material 288

material law, cf. constitutive equations
maximum principle 12

discrete 20, 56
membrane 315
membrane elements 316
membrane locking 308
mesh-dependent norm 76, 107, 153, 330
mesh refinement 100, 179, 212, 270
method

cg-method 201
enhanced assumed strains method 155
finite difference method 16, 58
Galerkin method,

cf. Ritz–Galerkin method
Gauss–Seidel method 189
gradient method 196
Jacobi method 167, 201, 218
minimal residual method 207
multigrid method, cf. multigrid
of conjugate gradients,

cf. cg-methods
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of Fletcher and Reeves 218
of Polak and Ribière 218
pcg method 201
Petrov Galerkin method 54
Rayleigh–Ritz method 54
Ritz–Galerkin method 54
Schwarz’ alternating method 262
SSOR method 194, 213, 227

Mindlin–Reissner plate 323, 335
minimal property 36, 45, 129, 147, 203, 294
minimal residual algorithm 207
mixed methods 134

for the biharmonic equation 143
dual 145, 147, 301
equivalent nonconforming elements

149, 306
for the membrane 317
for the Kirchhoff plate 326
for linear elasticity problems 295, 297
for the Mindlin plate 338, 342
for nearly incompressible material 304
for nonconforming elements 243
for the Poisson equation 145
primal 145, 147
for the Stokes problem 162
of Hellinger and Reissner 295, 300, 317
of Hu and Washizu 297, 302
softening character 154, 305, 310
with penalty term 137, 305, 310, 335

mixed interpolated tensorial components 339
modus of elasticity 288
multigrid method 225

cascadic multigrid algorithm 259
convergence of multigrid methods 237
idea of multigrid method 227
multigrid Newton method 273
nonlinear multigrid method 274
for saddle point problems 247

natural state 279
nearly incompressible elasticity 289, 304
negative norms 122, 159, 178, 336
nested iteration 255

nonlinear nested iteration 267
Neumann problem 46, 49, 102, 143
Newton’s method 273

incremental methods 277
Nitsche’s trick 91

nodal basis 65
nonconforming elements 106
nonlinear nested iteration 276
norm

broken norm 76, 109
discrete norm 238
energy norm 38, 54, 175, 248
negative norms 122
Sobolev norm 29
cf. also mesh-dependent norm

normal hypothesis 324

Ostrowski–Reich Theorem 193
overrelaxation 193, 213

parabolic equations 6
parallelization 216
penalty term, cf. saddle point problem
Piola–Kirchhoff stress tensor 284
Piola’s transformation 283
plane strain state 316
plane stress state 315
plate 323

Kirchhoff plate 324
Mindlin plate, cf.
Mindlin–Reissner plate 323, 335

Poincaré–Friedrichs inequality 30, 33, 146
Poisson equation 3, 34, 41, 56, 109, 145,

174, 192, 214
Poisson locking 304, 308
Poisson ratio 285, 288
polar decomposition 289
polar set 124, 127, 131
postprocessing 152, 184
post-smoothing 230, 275
potential equation 2, 10
Prange 300
preconditioning 210, 219

of A2 220
pre-smoothing 230, 275
pressure 157
principle of Stolarski and Belytschko 303
prolongation 232, 275

red-black ordering, cf. checkerboard
ordering

reduced cubic polynomial 329
reduced equation, cf. Schur complement
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reduced integration 310, 339
reentrant corner 34
reference configuration 279
reference element 73, 76, 81, 117
refinement rules 101, 179
regularity theorem 89, 171, 305, 327
response function 284
restriction 232, 275
Reusken’s lemma 246
Riesz representation theorem 39, 122
Ritz projector 58
rotation 318, 322, 335, 338

discrete 341
Runge’s rule 173

saddle point problem 129, 221
with penalty term 137, 142, 161,

305, 310, 335
cf. mixed method

scale of Hilbert spaces 238
scaling argument 83
Schur complement 221, 223
Schwarz’ alternating method 262
semi-iterative method 207
serendipity class 66, 69, 75
shape function 97
shape regularity 61, 118
shear 323, 325, 335
shear locking 308, 310
shift theorem 239
smoothing property 226, 237, 240, 246, 251
smoothing step 228, 230, 234
Sobolev spaces 28, 122
solution

classical solution 3, 34, 36, 157, 278
weak solution 40, 158, 278

space decomposition 261
spectral condition number, cf. condition

number
spectral radius 188
SSOR method 194, 213, 227
standard five point stencil 18, 58, 192
starting value 255, 276
static condensation 99, 152, 168, 321
stencil 17, 58, 59, 123
stiffness matrix, cf. system matrix
Stokes equation 157, 304, 339
stored energy function 290, 293, 311, 325

strain 280
strengthened Cauchy inequality 156, 263,

265
stress 282, 283
stress principle of Euler and Cauchy 282
stress tensor 283, 284, 293
St.Venant–Kirchhoff material 288, 291, 294
superconvergence 96
symmetric derivative 280
system matrix 54, 97

theorem
Cauchy’s theorem 255
closed range theorem 124
imbedding theorem 32, 50
of Lax–Milgram 38, 126
of Prager and Synge 147, 184, 185, 322
Ostrowski–Reich theorem 193
regularity theorem 89, 171, 305, 327
Rellich selection theorem 32, 78
Riesz representation theorem 39, 122
Rivlin–Ericksen theorem 286
shift theorem 239
trace theorem 44, 48

three-direction mesh 332
Timoshenko beams 310, 326
transformation formula 80
transverse displacement 323
triangulation

admissible 61
shape regular 61
uniform 61

two-grid algorithm 228, 243
types of PDE’s 8

Uzawa algorithm 221
variational formulation 36, 45, 132, 147,

158, 293, 300, 310, 326
V-cycle 231, 250

wave equation 4, 11
W-cycle 231
weak derivative 28, 340
weak solution, cf. solution
well-posed problems 9

zero energy modes 317
Zienkiewicz triangle 332
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