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Preface

Prevention and assessment of fracture and damage processes play an essential role
in the development and dimensioning of engineering constructions, components,
and facilities in order to ensure their technical safety, durability, and reliability. In
the case of failure, mistakes made by engineers in this respect can have cata-
strophic consequences for the lives of people, the environment, and even for the
economy. In many engineering components and materials, defects may exist
resulting from manufacturing or operation, which cannot always be avoided.
Therefore, the fracture mechanical assessment of crack-like defects is of great
importance. In the context of technical surveillance and studies of causes of failure
cases, besides materials characterization the analysis of the mechanical loading
situation at cracks, notches, and similar defects under in-service conditions is of
particular interest.

In the past 50 years, fracture mechanics has been developed into an indepen-
dent interdisciplinary scientific field, which resides between engineering
mechanics, materials science, and solid-state physics. Fracture mechanics defines
load parameters and criteria in order to quantitatively assess crack behavior in
materials and components under static, dynamic, or cyclic loading.

Additionally, numerical methods of applied mechanics are used nowadays for
fracture-mechanical stress analysis. The finite element method (FEM) has been
established in many areas of engineering as a universal and efficient tool of modern
engineering design and stress analysis. Numerous software packages are available,
which offer not only standard methods of structural mechanics but also fracture-
mechanical options of more recent invention. However, the treatment of crack
issues requires particular theoretical precognition and numerical algorithms, much
of which has not yet been integrated into the engineer’s education and practice to
the necessary extent, but has been available mostly to »fracture-mechanical
experts« only.

The intention of the present monograph consists in closing this gap. In the
introduction, we present the essential theoretical basics of fracture mechanics,
whose parameters are to be determined using the FEM. The main part of the book
is focused on specific numerical techniques to analyze plane and spatial crack
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problems in elastic and plastic materials under all technically relevant loads.
Finally, worked samples for the solutions of practical problems will be provided
for each area.

This textbook is addressed to graduate students of engineering study courses,
especially those in mechanical engineering, civil engineering, vehicle design,
materials science, aerospace industry, or computational engineering. It shall pro-
vide an introduction into this area of expertise to graduates and postgraduates of
these fields and support in their own research activities. Moreover, I consider as a
target audience engineers in design and computation departments of many
industrial branches and officials in technical controlling institutions, who are
confronted with issues of dimensioning, assessment, and supervision of strength
and durability of engineering constructions. Furthermore, this textbook should
build a bridge for materials scientists and materials engineers to theoretical frac-
ture mechanics in order to use numerical techniques for materials modeling or to
analyze materials and components tests using computations. This textbook
requires a basic knowledge of continuum mechanics, strength of materials,
material theory, and the finite-element method. The essential basics of mechanics
of materials are reviewed for convenience in the Appendix.

I was gratified at the positive response by which the scientific community in
Germany has appreciated the first edition of this book entitled ‘‘Numerische
Beanspruchungsanalyse von Rissen—Finite-Elemente in der Bruchmechanik’’,
edited by Vieweg-Teubner publisher in 2008. Many readers confirmed to me
personally that the book was a useful help to understand fracture mechanics
concepts and a real assistance in performing their own numerical computations.
Meanwhile, the second improved edition appeared in 2010. Therefore, I feel
encouraged to offer this book to a wider audience in the English language.

Many persons contributed to the preparation of the book. First of all, my very
sincere thanks go to Ms. M. Beer for making all the excellent drawings. Numerous
numerical examples were elaborated during the pleasant joint work with my for-
mer and current Ph.D.-students or co-workers at the institute. In particular, I would
like to express my thanks to Dr. M. Abendroth, Dr. M. Enderlein, Dr. E. Kullig,
Th. Leibelt, C. Ludwig, Dr. U. Mühlich, Dr. F. Rabold, Dr. B. N. Rao, Prof. Dr.
A. Ricoeur, Dr. A. Rusakov, L. Sommer, and L. Zybell.

I appreciate the fruitful cooperation lasting for many years with my colleagues
Prof. Dr. G. Pusch (TU Freiberg) and Prof. Dr. P. Hübner (University Mittweida),
from where the reported engineering applications of fracture assessment have
emerged. Also, I am indebted to Prof. Dr. M. Fulland (University Zittau) and Dr.
I. Scheider (GKSS Geesthacht), who provided me kindly graphical material for
additional examples. My thanks go to Prof. Dr. W. Brock for reviewing the
German manuscript and giving constructive comments on the scientific presen-
tation of the subject.

In the course of translating and revising the English manuscript, I appreciate the
great assistance by A. Kuchle (Chaps. 4–7) E. Beschler, and J. Bergemann.
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Finally, special thanks should be expressed to Springer Science Media for the
favor to publish this book. Sincere gratitude is due to Ms. N. Jacobs, Publishing
editor, and Ms. C. Feenstra for their cooperation and assistance in printing the
book in an excellent form.

Last but not least, I cordially want to thank my wife, Christine Kuna, for her
great understanding and infinite patience.

Freiberg, December 2012 Meinhard Kuna
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Chapter 1
Introduction

1.1 Fracture Phenomena in Nature and Engineering

The term »fracture« describes the local detachment of material cohesion in a solid
body. It concerns a process that either partially disrupts the body which leads to the
development of incipient cracks or entirely destroys it. The actual fracture process
occurs locally by means of elementary failure mechanisms on a microscopic level
of the materials and is determined by its physical and micro-structural properties as
the example on Fig. 1.1 shows. The global form of appearance of the fracture on a
macroscopic level consists in the formation and propagation of one or multiple cracks
in the body, whereby complete mechanical failure is finally induced. On this level,
fracture processes can be effectively described using methods of solid mechanics and
mechanics of materials. Fracture processes in nature and engineering are sufficiently
known to everyone. Very impressive are cracks and fractures of natural materials
such as stone and ice, especially if they appear in great geological formations as rock
failures, crevasses and earthquakes, see Fig. 1.2.

Engineering products and developments of mankind were and still are especially
confronted with issues of safety and durability and have always posed a challenge to
engineering. Spontaneous fracture is the most dangerous type of failure of a mechan-
ically stressed construction! Nowadays boldly conceived buildings made of concrete
and steel, reliable airplanes and high speed trains, crash-tested cars and strength-
optimized high-tech materials document the technical progress in those areas. On
the contrary, a considerable number of engineering failure cases testifies to the painful
experiences on the way there. Examples are cracking in buildings and engine parts,
the entire collapse of bridges, the burst of vessels and the breakup of vehicle com-
ponents (see Figs. 1.3 and 1.4).

In most cases the reasons are undetected defects in material or components, insuffi-
cient dimensioning of the construction compared to the actual load, or the application
of materials with deficient strength. In the modern Industrial Age the guarantee of
safety, durability and reliability of technical constructions, components and facili-
ties holds great importance. Engineering mistakes in this area can have catastrophic

M. Kuna, Finite Elements in Fracture Mechanics, Solid Mechanics and Its 1
Applications 201, DOI: 10.1007/978-94-007-6680-8_1,
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Fig. 1.1 Micro-crack in the structure of
ductile cast iron

Fig. 1.2 Macro-crack (crevasse) in the
Fründel glacier, Switzerland

Fig. 1.3 ICE railway accident near Eschede in 1998 as a result of a broken wheel rim

consequences for the life of people and the environment as well as for the economy
and availability of certain products in case of failure. Therefore, scientific concepts
for the assessment and prevention of fracture and damage processes play a decisive
role.
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Fig. 1.4 Bridge collapse during an earthquake at Northridge in 1994, USA

Fig. 1.5 Fracture processes at different scales and levels

Fracture and failure processes appear on all length scales. While the engineer
mainly prefers the mentioned macroscopic scale, the materials scientist is inter-
ested in mesoscopic processes that take place in the material or the underlying
microscopic phenomena. Solid-state physicists are preferentially interested in the
nanoscopic structures of atomic bonds. All drafted scopes in Fig. 1.5 contribute to
understanding of the strength properties of materials and their fracture behavior. They
can be easily classified by the ratio of the defects size to the structures dimension.
Nowadays models are developed on each scale using methods such as molecular
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dynamics, micromechanics, damage mechanics and fracture mechanics. Moreover
they are linked by means of scale-bridging techniques. The numerical simulation of
cracks and defects is an essential tool on all levels of modeling.

Many different areas in engineering are concerned with evaluating the fracture
strength and durability of constructions. In order to contribute to a better understand-
ing and a clarification of the terms, an introductory classification will be given in the
following:

The classical theory of strength acts on the assumption of deformable bodies of
given geometry (G), which are free of any defects and pose an ideal continuum.
Using the computational methods of applied mechanics, the strains and stresses
inside the component are determined as a result of the external load (L) by assuming
a specific deformation law (elasticity, plasticity, etc.) of the material (M). Based on
these results, failure hypotheses are formulated and strength parameters are calcu-
lated mostly in terms of effective stress σv, which characterizes the stress state in
each material point. Using tests on simple samples with elementary loading condi-
tions (e. g. tension test), critical values σc of the material’s strength are determined
measuring the onset of failure (e. g. fracture). In order to guarantee the safety of
components, the maximum occurring loads need to stay below the critical strength
parameters, which is commonly expressed as strength criterion:

σv(G, L , M) ≤ σtol(M) = σc

S
.

The admissible load σtol is defined by the material parameter σc divided by a safety
factor S > 1. It is assumed that the parameters determined by laboratory samples
actually represent true (geometry independent) material properties and can therefore
be transferred to the components’ geometry (transfer principle).

The mentioned relation describes a local strength hypothesis applied to each
material point. In contrast to this, also global failure criteria are known, such as
e. g. the plastic limit load FL , which quantifies the loss of loading capacity of the
entire component. A local loss does not immediately have to lead to global failure.
Depending on loading and geometry, the construction can withstand the propagation
of damage. This behavior is described with the terms safety reserve and damage
tolerance.

Depending on the temporal process, one can distinguish between static, dynamic
and cyclic loading. The service strength theory has been established as a sub-category
in the case of regular cyclic or stochastic random loading occurring frequently in
practice.

However, the traditional strength theories and the therein used material parameters
(yield strength, tensile strength, endurance limit, ultimate strain, impact energy) often
fail in predicting and avoiding fracture processes, as the reoccurring failure cases
in practice show. The reason for this is that fracture processes primarily originate
from points of concentrated stresses on crack-like defects. In such cases, the classical
strength criteria provide no usable quantitative correlation between loading situation,
geometry and material property.
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A rather modern discipline is continuum damage mechanics — CDM. At this
point the same methods as in classical strength theory are used with the difference
that when expressing the law of materials, it is assumed that the material possesses
small continuously distributed defects, e. g. microcracks or micropores. But these
defects are not discretely and individually treated but enter only implicitly as averaged
defect density per volume in homogenized form into the material law. The defect
density expresses a measure for the damage D of the component and is used as an
internal variable in the material law. It may change in the course of stress until a
critical threshold Dc of the damage is reached, which correlates to the creation of
an incipient crack. According to that, a damage-mechanical material law describes
both the deformation and the failure properties of the material in local form on every
point inside the material of the structure and hence implicitly contains a local failure
criterion in the form of:

D(G, L , M) ≤ Dc(M).

Damage mechanics is therefore suitable for the modeling of micro-mechanical failure
processes in a component, before a macrocrack is formed or for the modeling of the
fracture process zone at the tip of a macrocrack.

1.2 Fracture Mechanics

The specific field which deals with fracture and failure processes in engineering
materials and constructions is called fracture mechanics. In contrast to the two above-
mentioned theories, in fracture mechanics it is assumed that every component and
every real material inevitably possesses flaws or other defects. The reason for this is
that due to manufacturing (initial cracks, pores, inhomogeneity in materials, delami-
nation, flaws or similar) defects are present in many technical materials or that flaws
can form in the course of mechanical, thermal or corrosive service loading. It is well
known, that the real strength of a material is orders of magnitudes lower than the
theoretically possible strength of defect-free, ideal atomic bonds. Moreover, defects
(casting defects, quenching cracks, incomplete fusions in welded joints and others)
can originate during the manufacturing by means of technological processes lead-
ing to cracking. Often geometric notches or abrupt material discontinuities cannot be
avoided due to the constructive requirements of a component, which cause high local-
ized stresses. Additionally, it is important to note that the methods of non-destructive
testing have physical resolution limits, so that defects due to manufacturing or oper-
ating cannot always be excluded without doubt. That means, the at least hypothetical
existence of flaws of this size has to be expected! Unavoidable defects of this kind
can escalate to macroscopic cracks and generate the decisive cause for the initiation
of fracture.

For this reason, the existence of such defects is explicitly assumed in fracture
mechanics and modeled as cracks of the size a. Such a discrete crack is surrounded by
defect-free material which is described by the established material laws of continuum



6 1 Introduction

mechanics. Using the computational methods of applied mechanics, the stress and
deformation states at the crack are determined. It is clear that very high inhomo-
geneous states of stress and deformation develop at the tip of the crack. Such con-
centrations of stress however, cannot be treated by the classical strength concepts
of mechanics. Therefore, appropriate fracture-mechanical parameters B need to be
found, which identify the loading condition at the crack. These will then be compared
to fracture-mechanical material parameters Bc, characterizing the specific material’s
resistance against crack propagation. For this purpose, specific fracture-mechanical
material test methods have been developed, whereby simple specimens with a crack
are loaded until failure. Based on this, quantitative statements can be gained about
the crack behavior, e. g. under which conditions the crack propagates further or what
needs to be done to avoid it. Analogously to the above-mentioned theories, a fracture-
mechanical strength criterion has the form:

B(G, L , M, a) ≤ Bc(M).

This conceptual approach of fracture mechanics is presented in Fig. 1.6. Compared
to established strength hypotheses, the essential generalization is the introduction of
an additional geometric variable, the crack length a. From this fact one can suppose
that size effects will play an important role. Therefore, fracture mechanics provides
a relation between the component’s geometry (G), the position and size (a) of the
crack-like defect, the external loading (L), the local crack load (B) and the material
resistance against crack propagation Bc. Depending on which of these parameters
are known and which are sought, fracture mechanics offers correlations to assess the
strength, durability and reliability of components. Therewith the following questions
can be answered in the subsequently mentioned phases of a technical construction
or structural component.

Fracture
criterion
B = Bc

Component (G) + Defect (a)
Construction/ Design

Position and size of defect

Loading (L)
Engineering mechanics
Fracture parameter B

Material (M)
Materials testing

critical
Fracture parameter Bc

cr
ac

k
m

od
el

test specim
en

Test

method

Fig. 1.6 Schematic sketch of the fracture-mechanical assessment concept
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(a) During the design phase:

• How is the construction to be dimensioned and the maximal load to be speci-
fied in order to prevent inevitable defects in the material or component from
growing and eventually causing a fracture ?

• Which material (fracture toughness Bc) needs to be chosen so that cracks of
given size do not become critical under service loading ?

• How high, according to statistics, is the remaining risk of a total failure ?

(b) Throughout the production process:

• How can cracks and material damages be technologically avoided ?
• How can defects of unacceptable size be discovered by methods of non-

destructive testing during quality control ?

(c) During the operational phase:

• By how much does the loading capacity of a component decrease, if a crack
of length a is discovered ?

• What is the critical size of a crack ac, which causes fracture under the given
circumstances ?

• How long does it take for a crack to grow from its initial size a0 to the critical
length ac ?

• How are the inspection intervals to be chosen, during which a verification of
cracking and crack propagation is necessary ?

(d) After a technical case of failure:

• What were the reasons of failure ? Cracks overlooked during the inspection ?
A missing fracture-mechanical safety analysis ? Non admissibly high opera-
tional loads ? Wrong use of materials or negative material changes ?

• Which remedial actions are necessary and possible in the future ?
• How great is the percentage of loss in the product line due to fracture

reliability?

In many fields of industry and technology the established classical criteria of
strength suffice. In certain areas of application however, fracture-mechanical safety
assessments are a necessary addition and legally required:

• Constructions and facilities with extremely high safety-related requirements for
the protection of people and environment such as power plants, buildings and
bridges as well as components in nuclear engineering and aerospace.

• Structural components that require great reliability and durability such as rail
wheels, machine parts, automobiles, turbine blades, glow filaments or microelec-
tronic systems.

But the scientific comprehension and mastery of fracture processes can also be
beneficial as in the following fields:
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• At processes and technologies in which the fracture process is volitional and per-
formed on purpose as in mining and geotechnical engineering (blasting, tunnel
construction, mining for raw materials) or in materials preparation and crushing
technology (crushers, mills, recycling) in order to optimize the machines, tools
and processes as well as minimize the energy consumption.

• During the development of new materials with outstanding strength and fracture
toughness properties, fracture-mechanical simulations can contribute to optimiza-
tion of the microstructural design. On the contrary, new materials require the devel-
opment of specific fracture-mechanical strength hypotheses for the dimensioning
of the construction according to the materials. Examples are high-performance
ceramics (improvement of toughness), fiber-reinforced materials (delamination
cracks, anisotropy), turbine blades made of monocrystalline superalloys and
others.

Fracture mechanics has been established in the last 50 years as an independent
scientific discipline. According to the nature of fracture processes, fracture mechan-
ics combines the knowledge and model approaches of engineering mechanics,
materials research and solid-state physics. Hence it comprises an interdisciplinary
field in whose further development mechanical engineers, continuum mechanics
researchers, materials scientists and physicists are involved. Excellent fracture-
mechanical knowledge is part of the state of the art in many fields of industry by
now. Numerous technical design rules, test specifications and national controlling
authorities ensure that this professional knowledge is implemented into practice on
behalf of engineering safety.

Fracture mechanics is divided into the following subtasks:

• Analysis of the mechanical loading condition at cracks on the basis of continuum-
mechanical models using analytical or numerical methods of structural mechanics.

• Derivation of material specific fracture parameters and fracture-mechanical failure
criteria for the initiation and progress of crack propagation.

• Development of test methods for the experimental determination of suitable mate-
rial parameters, which characterize the resistance of a material against crack
propagation.

• Application of the fracture-mechanical failure criteria and concepts to construc-
tions with cracks in order to gain quantitative statements about their fracture
resistance and remaining service life.

1.3 Computational Methods for Cracks

For all above-mentioned subtasks of fracture mechanics, computational methods
to analyze crack models are of vital importance. From the historical perspective,
developments and applications in fracture mechanics have always been closely linked
to progress in the analytical and numerical techniques of engineering mechanics and
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continuum mechanics. The wish of this textbook is to make the reader acquainted with
the modern numerical methods of computation currently used in fracture mechanics
to analyze components with cracks. But first, a historical review will be given.

Near the turn of the 20th century, the methods of elasticity theory had mathe-
matically matured enough so that for the first time plane problems in homogeneous,
linear-elastic plates with holes or notches could be solved (Kirsch, Inglis). Ground-
breaking was the development of complex stress functions by Kolosov in 1909 which
were extended in the thirties by Muskhelishvili, Savin, Westergaard, Föppl and others
to a powerful tool for plate analyses. The first solution of a crack in a plane origi-
nates from Inglis, 1913. It presented the foundation for the first fracture-mechanical
concept of energy release rate by Griffith in the year 1921. Westergaard inserted his
method of complex stress functions for crack-related problems into plates. In 1946
Sneddon managed to find the solution for circular and elliptic cracks in space with
the method of integral transformation. In 1957 Williams calculated the proper series
of eigenfunctions for the stress distribution around crack tips on a plane. Irwin recog-
nized in 1957 that stress fields at all sharp crack tips feature a singularity of the same
type. Hereupon he established the concept of stress intensity factors, which is being
used very successfully in fracture mechanics to this day. Other semi-analytic solution
techniques for plane crack problems are singular integral equations (Muskhelishvili,
Erdogan and others). The methods of calculation available until that point were
limited to two and three-dimensional isotropic-elastic boundary value problems for
simple crack configurations, mostly in infinite domains.

Numerical solution methods of engineering mechanics (such as the finite differ-
ence method, collocation methods, Fourier-transformations) could not be effectively
realized until the rapid development of electronic computer science in the 1960s.
All these methods were initially used for crack problems but soon replaced by the
essentially more universal and efficient finite elements method (FEM) . Pioneers in
the field of FEM development for structural analyses were Zienkiewicz, Argyris,
Wilson, Bathe and others. Soon after, the boundary element method (BEM) appeared
which was especially well elaborated for crack problems by Cruse and Brebbia.
The first international conference on the application of numerical methods in frac-
ture mechanics took place in Swansea/GB in 1978. Thanks to these methods, great
progress was made in fracture mechanics of ductile materials. Today mainly the FEM
and the BEM (for special tasks) are used for continuum-mechanical stress analyses,
materials-mechanical models and numerical simulations as indispensable tools for
computation in fracture research. With these methods it is by now possible to analyze
complicated crack configurations in real technical structures under complex loads
with non-linear material behavior. The amount of publications dealing with the fur-
ther development and application of these numerical methods in fracture research
that was released in the past decades is almost unmanageable. Since that time, new
numerical methods are already developing such as the »mesh-free« FEM/BEM, the
discrete element method, particle methods and the extended X-FEM, conquering the
application field of fracture mechanics.
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1.4 Basic Literature on Fracture Mechanics

In the following, some important classical books are listed that contain fundamen-
tal representations of theoretical, experimental and engineering aspects of fracture
mechanics. These literature is recommended for those readers, who want to get a
broader survey about this field or who wish to learn more about a specific topic.
Please note that this selection does not claim to be exhaustive.

Theoretical fundamentals

• Sih, G.: Mechanics of Fracture, Noordhoff, Leyden, Netherlands, 1975
• Broberg, K.: Cracks and Fracture. Academic Press, London, 1999
• Karihaloo, B., Knauss, in: Comprehensive Structural Integrity, W. G. Milne,

I., Ritchie, R. O. and Karihaloo, B. (Eds.), Vol. 2: Fundamental theories and mech-
anisms of failure. Elsevier Pergamon, Amsterdam, 2003

• Gross, D. and Seelig, T.: Fracture mechanics with an introduction to microme-
chanics. Springer Berlin, 2011

Dynamic fracture

• Freund, L.: Dynamic fracture mechanics, Cambridge University Press, 1993
• Ravi-Chandar, K.: Dynamic fracture, Elsevier Science, Amsterdam, 2004

Nonlinear fracture mechanics

• Hutchinson, J.: Nonlinear Fracture Mechanics. Technical university of Denmark.
Department of solid mechanics and DTH., 1979

• Kanninen, M. F. and Popelar, C. H.: Advanced Fracture Mechanics. Clarendon
Press Oxford, 1985

Fracture of brittle materials

• Bazant, Z., Planas, J.: Fracture and Size Effects in Concrete and other Quasibrittle
Materials. CRC Press, Boca Raton, 1997

• Cotterell, B., Mai, Y.: Fracture Mechanics of Cementitious Materials. Blackie
Academic and Professional, 1996

• Lawn, B.: Fracture of Brittle Solids. Cambridge University Press, Cambridge,
1993

Creep fracture

• Riedel, H.: Fracture at High Temperature. Springer Berlin, 1987
• Miannay, D.: Fracture Mechanics. Springer New York, 1998

Fatigue fracture

• Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge, 1998
• Ravichandran, K. S., Ritchie, R. O. and Murakami, Y.: Small fatigue cracks.

mechanics, mechanisms and applications. Elsevier Amsterdam, 1999
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• Schijve, J.: Fatigue of Structures and Materials. Kluwer Academic Publishers,
Dordrecht, 2001

Engineering applications

• Atluri, S. N.: Structural integrity and durability. Tech Science Press, 1997
• Saxena, A.: Nonlinear fracture mechanics for engineers. CRC Press Boca Raton,

1998
• Anderson, T.: Fracture Mechanics: Fundamentals and Application. CRC Press,

Boca Raton, 2005
• R6-Revision 4: Assessments of the integrity of structures containing defects,

British Energy Generation Ltd, Barnwood, Gloucester, 2009
• Forschungskuratorium Maschinenbau: FKM Richtlinie: Bruchmechanischer Fes-

tigkeitsnachweis für Maschinenbauteile (3. Auflage) VDMA Verlag Frankfurt,
2009

• Zerbst, U., Schödel, M., Webster, S., Ainsworth, R.: Fitness for Service—Fracture
Assessment of Structures Containing Cracks. A workbook based on the European
SINTAP/FITNET procedure, Elsevier, 2007

Computational methods and solutions

• Atluri, S. N.: Computational methods in the mechanics of fracture. Elsevier
Science Publ., 1986

• Aliabadi, M. H., Rooke D. P.: Numerical fracture mechanics. Kluwer Academic
Publishers, Dordrecht, 1991

• Munz, D. and Fett, T.: Stress intensity factors and weight functions. Computational
Mechanics Publications, Southampton, 1997

• Murakami, Y.: Stress Intensity Factors Handbook. Pergamon Press, Vol.: 1–5, New
York, 1987

• de Borst, R. and Mang, H. A.: in: Comprehensive Structural Integrity, Milne, I.,
Ritchie, R. O. and Karihaloo, B. (Eds.), Vol. 3: Numerical and computational
methods, Elsevier Pergamon, Amsterdam, 2003

• Ingraffea, A R.: Computational Fracture Mechanics. in: Encyclopedia of Compu-
tational Mechanics, E. Stein, R. de Borst, T. Hughes (eds.) Volume 2, Chapter 11,
John Wiley and Sons, 2004

Fracture of piezoelectric materials

• Qin, Q.: Fracture Mechanics of Piezoelectric Materials. WIT Press Southampton,
2001



Chapter 2
Classification of Fracture Processes

Fracture processes are classified based on quite different individual aspects. The
reason for that is the tremendous variety in which fracture processes appear and
the diverse reasons leading to failure. First and foremost, a fracture depends on the
properties of the considered material because the damage processes happening on
a micro-structural level in the material determine its characteristic behavior. These
microscopic structures and failure mechanisms vary diversely in the lineup of engi-
neering materials. Just as important for fracture behavior is the type of external load-
ing of the component. In this category one can differentiate between e.g. fractures
due to static, dynamic or cyclic loading. Further important factors are the temper-
ature, the multiaxiality of the loading, the rate of deformation and the chemical or
environmental conditions.

2.1 Macroscopic Manifestations of Fracture

The macroscopic classification of fracture processes corresponds to the view of the
designer and computation engineer. Fracture of a structure is inevitably connected
to the propagation of one or more cracks which can eventually lead to entire rupture
and loss of its load carrying capacity.

That is why particular emphasis is placed on the temporal and spatial progress
of crack propagation. In fracture mechanics it is assumed that a macroscopic crack
exists. This crack may be present from the very beginning due to a material defect
or due to the component manufacturing. Often cracks originate in consequence of
operational loading and material fatigue, which is the subject matter of the field of
service strength of materials. After all, hypothetical cracks, which have to be assumed
for purpose of safety assessment, are part of it as well. The macroscopic mechanical
aspects of fracture can be categorized with respect to the load and fracture progression
as follows:

M. Kuna, Finite Elements in Fracture Mechanics, Solid Mechanics and Its 13
Applications 201, DOI: 10.1007/978-94-007-6680-8_2,
© Springer Science+Business Media Dordrecht 2013
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(a) Type of loading

According to their temporal progress, mechanical loads are divided into static,
dynamic and (periodically-cyclic or random) variable loads, the respective types
of fracture to which they can be assigned. Fracture processes under static load are
typical for load-bearing constructions e.g. in civil engineering. Impact, drop or crash
processes are associated with highly dynamically accelerated deformations and iner-
tia forces. In mechanical engineering and vehicle construction, much attention needs
to be paid to variable loads which can, in contrast to static loading, lead to cracks
and crack propagation at considerably lower amplitudes. About 60 % of all technical
failures happen because of material fatigue or propagation of fatigue cracks.

(b) Orientation of a crack in relation to its principal stresses

As it is known from the classical theory of strength of materials, failure is in most
cases controlled by the local stress which is clearly determined by the principal
stresses σI,σII and σIII and their axes. Depending on the material, either hypotheses
of the maximum principal stress (Rankine),the maximum shear stress (Coulomb)
or extended mixed criteria (Mohr) are used. The macroscopic image of fracture is
therefore often affected by the principle stress trajectories. A distinction is being
made between:

• The normal-planar crack or cleavage fracture exists, when the fracture faces are
located perpendicularly to the direction of the highest principal stress σmax = σI.

• The shear-planar crack or shear fracture exists, when the fracture faces coincide
with the intersection planes of the maximum shear stress τmax = (σI − σIII)/2.

The situation is outlined for a simple tension rod in Fig. 2.1. However, it can be
assigned to the local stress state at any point of the body. On a torsion rod (shaft) the
fracture faces would run either vertically or inclined by 45◦ to the axis, depending
on whether a shear or a cleavage fracture is assumed.

σ σ

σ σ

Iσ

Iσ

maxτ

°

maxτ

maxτ

Iσ

Iσ

tM
tM

45

Fig. 2.1 Orientation of crack surfaces with respect to principal stress directions
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(c) Stability of crack propagation

In the initial situation, a crack has a specific size and shape. As long as it does not
change, the crack is regarded as a static or stationary crack. The moment in which
the crack propagation starts due to critical loading, is called crack initiation. The
crack size now increases and the crack is called unsteady.

An important feature of fracture is the stability of the crack propagation. The
fracture process is then marked as unstable if the crack grows abruptly without the
need to increase external loading. The critical condition is exceeded for the first time
and persists without any additional energy supply. A typical example is the crack in
the American Liberty Bell (Fig. 2.2), which developed spontaneously (allegedly on
G. Washington’s birthday), supposedly due to a casting defect. In contrast to this, if
an additional increase of the external load is necessary in order to let the crack grow
further, it is called stable crack growth. This means the critical condition needs to be
induced by supplying additional energy again and again. Decisive for the stability of
crack growth is the issue of how the stress situation changes in the body and at the
crack itself due to the growth of the crack. Stable crack growth is often connected
with plastic, energy consuming deformations in the component, which the failure
case of a tube (Fig. 2.5) shows. Yet, this connection is by no means sufficient, which
the example of a slowly growing crack in a car’s windshield made of brittle glass
teaches us.

If the crack propagation in the body comes to a standstill, it is called crack arrest.

(d) Magnitude of inelastic deformations

Depending on the amount of inelastic deformations or accumulated plastic work in
the body that precede or accompany crack growth, distinctions are made between:

• deformation-poor, or macroscopically brittle fracture The nominal stresses are
far below the plastic yield limit, the plastic or viscoplastic zones are very small
and the load-deformation diagram runs linearly until crack initiation.

• deformation-rich, or macroscopically ductile fracture appears when the frac-
ture process is connected with large inelastic deformations. The load-deformation
diagram displays a distinctive non-linearity and the inelastic domains spread out
over the entire cross-section (plastic limit load exceeded).

(e) Subcritical crack growth

In contrast to the above-mentioned types of crack propagation, there are fracture
processes that happen far below the critical load and develop in a stable manner with
a very low rate of growth . To describe them, the term subcritical crack growth was
introduced. The most important form of appearance is fatigue crack growth, whereby
the crack gradually grows under alternating loads. A characteristic failure case on a
shaft loaded cyclically by rotation-bending is shown in Fig. 2.4. Subcritical constant
loading in connection with viscoplastic deformations can lead to the so-called creep
fracture. If a corrosive medium acts on the crack slit, a crack growth due to stress
corrosion cracking is observed in spite of subcritical loading.
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Fig. 2.2 Macroscopic brittle fracture of the
Liberty Bell, Philadelphia 1752

Fig. 2.3 Failure case of a gas pipeline with
dynamic crack growth

Fig. 2.4 Failure case due to fatigue crack
growth on a shaft

Fig. 2.5 Macroscopic ductile fracture of a
tube made of steel

(f) Crack growth rate

In contrast to the dynamic, impulsive load of a stationary crack, the dynamics of
the fracture process itself will be considered. In most cases the crack propagation
happens so slowly, that all dynamic effects in the structure may be neglected. In that
case a quasi-static analysis is sufficient. If the crack growth rate reaches the level of
acoustic wave speeds in the solid, velocity terms, inertia forces as well as interactions
between the crack and the sound waves need to be taken into account. Additionally
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to that, failure mechanisms in the material depend on the deformation rate, which
mostly leads to an embrittlement on fast running cracks. In this way, dynamic crack
growth processes have already caused catastrophic failures, as the example of a gas
pipeline in Fig. 2.3 shows.

Fig. 2.6 Transcrystalline brittle fracture of
steel at room temperature

Fig. 2.7 Intercrystalline cleavage fracture of
steel St52 at −196 ◦C

2.2 Microscopic Appearances of Fracture

For a better understanding of the material-specific failure mechanisms during frac-
ture, it is necessary and especially useful to visit the »scene of the crime«—the
fracture surface. To do that, the best choice is to use a scanning electron microscope,
because of its depth of sharpness, chemical element analysis and material contrast.
It is also possible to infer the reasons of damage from the characteristic patterns of
the fracture surface (fractography). The different failure mechanisms lead to charac-
teristic patterns of the fracture faces. These typical »faces« of all the various fracture
types are catalogued in fractographic atlases, see e.g. [1]. Hereby, the view point
of material scientists and failure case studies is put into focus. The most important
microscopic appearances of a crack are:

• The cleavage fracture is characterized by plane fracture faces and minor defor-
mations. The reason for this is brittle cracking along preferred crystallographic
orientations due to high normal stresses. Body-centered cubic metals at low tem-
peratures (Fig. 2.7) and ceramic materials (Fig. 2.8) tend towards cleavage fracture.

• In polycrystalline ceramic and metallic materials, characteristic differences of the
fracture surfaces can be observed. Depending on whether cracking occurs along
the boundaries between the individual grains or separates the grains by cleavage,
it is called intercrystalline or transcrystalline, respectively. The difference can be
seen very clearly by comparing Figs. 2.6 and 2.7.

• During a dimple fracture, the failure mechanism is associated with large plastic
deformations in the process zone. Due to this, microscopic voids form, grow and
eventually coalesce, which leads to a distinctive dimple structure of the fracture
surface. Figure 2.9 shows the typical fracture pattern of high-alloyed steel.
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• The fatigue fracture is quite smooth and mixed with fatigue striations due to
very minor plastic deformations as the overall picture in Fig. 2.4 shows. It usually
proceeds in a transcrystalline manner. Distinctive traces of cyclic plastic straining
can be identified in the detailed microscopic view of Fig. 2.10.

• Creep fracture occurs often in metals due to damage of the grain boundaries,
where creep pores are forming due to diffusion processes. This eventually leads
to intercrystalline failure. Figure 2.11 shows a fracture surface of an aluminium
alloy at high temperatures.

The diversity of failure mechanisms is further illustrated by the fractographic views
of a crack resulting from stress corrosion cracking (Fig. 2.12) and a modern fiber-
reinforced glass composite (Fig. 2.13).

Understanding of micro-structural failure mechanisms during fracture is not only
important for material scientists and failure analysts. It also provides continuum
mechanics engineers with useful information about which stress or deformation
states control these mechanisms in order to describe them properly by means of
macroscopic parameters and criteria.

2.3 Classification of Fracture Processes

In summary a classification of the fracture processes shall be given in the way it is
used today. The overview in Fig. 2.14 is geared to the deformation properties of the
materials, which are explained in detail in Appendix A. The following chapters on
fracture mechanics are structured according to this classification.

Fig. 2.8 Fracture surface of a brittle sinter
ceramic (transcrystalline)

Fig. 2.9 Ductile dimple fracture of the high-
alloyed steel 27MnSiVS6
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Fig. 2.10 Fractographic view of a fatigue
fracture of steel C15

Fig. 2.11 Fracture surface of a creep frac-
ture in aluminum AlSi10Mg at 300 ◦C

Fig. 2.12 Fracture surface of a stress corro-
sion crack in a CuZn37 alloy

Fig. 2.13 Fracture surface of the fiber com-
posite Fortadur (SiC fibers in Duran glass)
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Deformation behavior of material

Failure behavior of material

Type of loading

Crack behavior

elastic
Linear-elastic

fracture mechanics

brittle
cleavage fracture

rupture

stable
subcritical crack growth

local failure

unstable
critical crack growth

global failure

cyclic
fatigue fracture

chemical
stress corrosion cracking

fatigue corrosion cracking

static
forced rupture

dynamic
fast fracture

ductile
dimple fracture
shear fracture

creep
creep-fracture

normal/shear fracture

plastic
Elastic-plastic

fracture mechanics

Viscoelastic/
viscoplastic

creep fracture mechanics

Fig. 2.14 Classification of fracture processes
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1. Engel L, Klingele H (1982) Rasterelektronenmikroskopische Untersuchungen von Metallschä-
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Chapter 3
Basics of Fracture Mechanics

The theoretical foundations of fracture mechanics will be presented in this chapter.
The main focus lies on the description of the available continuum-mechanical solu-
tions for cracks. On the basis of stress and deformation situations determined this
way, suitable parameters, which clearly describe the loading states during fractures,
are then selected. These loading and fracture parameters shape the foundation for
the formulation of fracture criteria. With their help, the behavior of cracks can be
quantitatively evaluated. These usually closed mathematical solutions are the pre-
conditions to being able to calculate the sizes of cracks with numerical methods later
on. Naturally, the experimental test methods of fracture mechanics used to evaluate
the material parameters are based on the understanding of the loading situation as
well.

3.1 Model Assumptions

In fracture mechanics the behavior of cracks in bodies is described from a macro-
scopic point of view in the context of continuum mechanics. The term »body« is
supposed to include technical constructions, components and facilities as well as
material structures on all scales. In the following, the crack is considered in a geo-
metrically idealized form as a mathematical cut or slit in the body. First of all, this
means that a purely plane separation of the body is assumed, which leads to either
two crack faces (2D) or to two crack surfaces (3D). At the crack tip (2D) or the
crack front (3D) the crack faces or crack surfaces converge respectively. Secondly,
an ideal sharp crack tip with a notch radius ρ = 0 is assumed. Actually, the tips of
physical cracks always have of course a finite radius of curvature. However, in com-
parison to the crack length and the body dimensions, it can be regarded as infinitely
small. Therefore, the shape of the crack tip is clearly defined. In this point fracture
mechanics differs from the theory of notch stresses. Regarding the deformation of a
crack, a distinction is drawn between three independent movements of the two crack

M. Kuna, Finite Elements in Fracture Mechanics, Solid Mechanics and Its 21
Applications 201, DOI: 10.1007/978-94-007-6680-8_3,
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Mode I Mode II Mode III

Fig. 3.1 Definition of the three crack opening modes

,ij ijσ   ε

Fig. 3.2 Zone of micromechanical fracture processes at the crack tip

faces relative to each other. The so-called crack opening modes are schematically
described in Fig. 3.1 and are defined as follows:

Mode I: Opening Mode: The crack opens perpendicular to the crack plane. This
can be caused by tensile loading.

Mode II: In-plane sliding mode: The crack faces are displaced on their plane, normal
to the crack front, which correlates to a transversal shearing load.

Mode III: Out-of-plane tearing mode: The crack faces are displaced on their plane,
parallel to the crack front, which is related to anti-plane longitudinal shear-
ing load.

Every type of crack deformation can be regarded as a superposition of these three
basic kinematic modes. In the three-dimensional case, Fig. 3.1 is to be understood as
a local section around a segment of the crack front, whereas the size of the modes
will change along the crack front.

In general, the continuum-mechanical modeling of cracks cannot describe the
physical fracture process of the material separation. Rather, the stresses and deforma-
tions in the body are—just like in the classical theory of strength—calculated using
material laws of deformation (see Sect. A. 4). Based on these results the strength
hypotheses are finally formulated. The stress and strain state practically describes
the » boundary conditions « under which the micromechanical processes in the frac-
ture process zone proceed at the crack tip (Fig. 3.2). If the failure phenomena were to
be included in the continuum-mechanical simulation, the material law would have to
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be expanded by models of material failure. This approach is taken in the context of
continuum damage mechanics and cohesive zone models. But for now we will not
pursue this way further. Of course it is possible to switch to the meso or micro scale
in order to simulate discrete cracks, their nucleation and interaction in a fracture
process zone, using continuum mechanics or fracture mechanics as well.

3.2 Linear-Elastic Fracture Mechanics

In linear-elastic fracture mechanics, crack problems are analyzed in bodies whose
deformation behavior can be assumed to be linear-elastic according to the generalized
Hooke’s law (Sect. A.4.1). Apart from very brittle materials, in truth there are physical
or geometrical non-linearities in almost all structures, particularly at notches and
crack tips. In many cases, the non-linear effects are limited to small areas which
may be neglected in comparison to crack size or the component dimensions. The
elastic material can basically be anisotropic. For now we will restrict ourselves to
the simpler case of isotropy. The term of linearity implies small displacements and
infinitesimal deformations (A.30).

3.2.1 Two-Dimensional Crack Problems

Crack Under Mode I Loading

We investigate a slit-like straight crack of the length 2a in an infinitely large sheet
of isotropic linear-elastic material. The load is assumed to act vertically to the crack
with constant tension σ, see Fig. 3.3. A Cartesian coordinate system is positioned
with its origin at the middle of the crack so that the positions of the crack faces Γ +
and Γ − are determined by:

− a ≤ x1 ≤ +a, x2 = ±0 . (3.1)

In order to find a solution to this boundary value problem of elasticity theory, we use
the method of complex functions explained in the Appendix A.5.2 with the complex
variables z = x1 + ix2. The boundary conditions of this problem are given by zero
tractions t̄i = 0 at the crack faces Γ + and Γ −, whose normal vectors nj only point
in direction ∓x2 (n1 = 0, n2 = ∓1). According to the Cauchy formula,

ti = σijnj = ∓σi2 = t̄i = 0 ⇒ τ12 = 0,σ22 = 0 on Γ + and Γ − (3.2)

As an additional boundary condition, the undisturbed uniaxial homogeneous tension
state needs to be reached in infinite distance from the crack:
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σ22 = σ, σ11 = τ12 = 0 for |z| =
√

x2
1 + x2

2 → ∞ . (3.3)

Due to lack of space it is not possible to specify the approach here (see [1]), but only
the result is given in the form of complex stress functions φ(z) and χ(z):

φ(z) = σ

4
z + σ

2

[√
z2 − a2 − z

]
, χ′(z) = σ

2
z − σ

2

a2

√
z2 − a2

. (3.4)

With the help of Kolosov’s formulas (A.158), the stress and deformation fields
in the entire plate can be derived. The first two terms in (3.4) represent correctly
the decay behavior according to (3.3), which can be easily shown by inserting in
(A.158). The second terms in (3.4) vanish for |z| → ∞ and hence describe the actual
effect of the crack on the stress distribution in the sheet (	( ) =̂ real part, 
( ) =̂
imaginary part).

S1 := σ11 + σ22 = 4	φ′ = σ	
[

2z√
z2 − a2

− 1

]

S2 := σ22 − σ11 + 2iτ12 = 2
[
zφ′′ + χ′′] = σ

[
1 + a2 z − z

(z2 − a2)3/2

]
(3.5)

σ11 = 1

2
	(S1 − S2), σ22 = 1

2
	(S1 + S2), τ12 = 1

2

(S2)

Firstly, the stress distribution on the ligament (|x1| ≥ a, x2 = 0) is to be analyzed.
Because of symmetry regarding x2, here the shear stress is τ12 ≡ 0. The normal
stresses are obtained from (3.5):

σ11 = σ

⎡
⎣ x1√

x2
1 − a2

− 1

⎤
⎦ , σ22 = σ

x1√
x2

1 − a2
. (3.6)

The result indicates that the normal stresses at the crack tips (x1 → ±a) grow to
infinity (Fig. 3.3). The evaluation of (3.5) at the crack faces |x1| < a confirms that
the boundary conditions (3.2) are fulfilled.

The deformation state is determined by using the 3rd Kolosov’s formula(A.158):

2μ(u1 + iu2) = σ

2

[
κ
√

z2 − a2 + a2 − zz√
z2 − a2

− 1

2
(κ− 1)z − z

]
. (3.7)

The calculation of the displacements of the upper and lower crack face (|x1|<a,

x2 = ±0) show that the opened crack has the shape of an ellipse (Fig. 3.3).

u1 = ∓1 + κ

8μ
σx1, u2 = ±1 + κ

4μ
σ
√

a2 − x2
1 . (3.8)
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Fig. 3.3 Crack in infinite sheet under tension top) coordinate system, bottom) crack opening and
distribution of stress

Here μ denotes the shear modulus. The elastic constant κ amounts to κ = 3 − 4ν in
the state of plane strain and to κ = (3 − ν)/(1 + ν) in the state of plane stress, see
Appendix A.5.2.

Of particular interest is the local stress distribution in the immediate proximity of
the crack tips. Therefore, the coordinate system (r, θ) drafted in Fig. 3.3 is introduced
directly at the crack tip (in this example at z = z0 = +a):

z = a + reiθ, z − z0 = reiθ = aζeiθ with ζ = r

a
. (3.9)

By inserting z and z into the Eq. (3.5), the following terms can be obtained:

S1 = σ	
[

2
(
1 + ζeiθ

)
√

2ζeiθ + ζ2e2iθ
− 1

]
and S2 = σ

[
1 + ζ

(
eiθ − e−iθ

)
(
2ζeiθ + ζ2e2iθ

)3/2

]
.

(3.10)
They can be approximated for ζ = r

a  1 as follows:

S1 = σ11 + σ22 ≈ σ	
[

2√
2ζeiθ

]
= σ

√
a

2r
2 cos

θ

2

S2 = σ22 − σ11 + 2iτ12 ≈ σ
ζ2i sin θ(
2ζeiθ

)3/2 = σ

√
a

2r
i sin θ e−i3θ/2 . (3.11)
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The result is the stress state at the crack tip in polar coordinates (r, θ). The factor
σ
√
πa = KI can be split off.

⎧
⎨
⎩
σ11
σ22
τ12

⎫
⎬
⎭ = KI√

2πr

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

cos θ
2

[
1 − sin θ

2 sin 3θ
2

]

cos θ
2

[
1 + sin θ

2 sin 3θ
2

]

sin θ
2 cos θ2 cos 3θ

2

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

= KI√
2πr

⎧
⎪⎨
⎪⎩

f I
11 (θ)

f I
22 (θ)

f I
12 (θ)

⎫
⎪⎬
⎪⎭

(3.12)

The stresses σ33 in thickness direction are, assuming a state of plane stress, zero
and assuming a state of plane strain:

σ33 = ν(σ11 + σ22) = KI√
2πr

2ν cos
θ

2
. (3.13)

Using the two-dimensional Hooke’s law (A.145) or (A.150), the resultant strain
components are calculated to:

⎧
⎨
⎩
ε11
ε22
γ12

⎫
⎬
⎭ = KI

2μ
√

2πr

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

cos θ2

[
κ−1

2 − sin θ
2 sin 3θ

2

]

cos θ2

[
κ−1

2 + sin θ
2 sin 3θ

2

]

2 sin θ
2 cos θ2 cos 3θ

2

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

. (3.14)

The strains in thickness direction ε33 are zero for the plane strain state according to
definition and for the plane stress state:

ε33 = − KI

μ
√

2πr

ν

1 + ν
cos

θ

2
. (3.15)

In a similar way, it is possible to expand the displacement field (3.7) using the
approach (3.9) near the crack tip for ζ = r

a  1 which yields:

{
u1
u2

}
= KI

2μ

√
r

2π

{
cos θ2 [κ− cos θ]

sin θ
2 [κ− cos θ]

}
= KI

2μ

√
r

2π

{
gI

1 (θ)

gI
2 (θ)

}
. (3.16)

With the help of the performed asymptotic analysis, the displacement, strain and
stress fields at the crack tip have been successfully calculated. This solution is called
a crack tip field or an asymptotic near field. Studying the results of (3.12), (3.14) and
(3.16), the following characteristics can be identified:

• The stresses and deformations behave singularly with 1/
√

r if the crack tip r → 0
is approached.
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Fig. 3.4 Stresses at the crack tip in Cartesian and cylindrical coordinates

Fig. 3.5 Angular distribution of stresses around the crack tip (Mode I)

• The displacement fields are proportional to the square root of the distance to the
crack tip

√
r. The crack opens parabolically.

• All field variables at the crack tip are proportional to KI = σ
√
πa. This factor KI

is called stress intensity factor. The Index I represents the crack opening mode I.
• The intensity of the near field solution does not only rise linearly (as expected)

with the tensile load σ but it also depends on the length a of the crack!

Occasionally, the description of the near field solution is advantageous in cylindri-
cal coordinates, see Fig. 3.4. Applying the common transformation rules (see (A.54))
to expressions (3.12), (3.14) and (3.16), the displacement, deformation and stress
components are gained in the (r, θ, x3)–system:
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(a) (b)

Fig. 3.6 Crack in infinite sheet under a in-plane and b anti-plane shear loading

⎧
⎨
⎩
σrr

σθθ
τrθ

⎫
⎬
⎭ = KI

4
√

2πr

⎧
⎪⎪⎨
⎪⎪⎩

5 cos θ
2 − cos 3θ

2

3 cos θ
2 + cos 3θ

2

sin θ
2 + sin 3θ

2

⎫
⎪⎪⎬
⎪⎪⎭

= KI√
2πr

⎧
⎨
⎩

frr(θ)
fθθ(θ)
frθ(θ)

⎫
⎬
⎭ (3.17)

⎧
⎨
⎩
εrr

εθθ
γrθ

⎫
⎬
⎭ = KI

8μ
√

2πr

⎧
⎪⎪⎨
⎪⎪⎩

[2κ− 1] cos θ
2 − cos 3θ

2

[2κ− 3] cos θ
2 + cos 3θ

2

2 sin θ
2 + 2 sin 3θ

2

⎫
⎪⎪⎬
⎪⎪⎭

(3.18)

{
ur

uθ

}
= KI

4μ

√
r

2π

{ [2κ− 1] cos θ
2 − cos 3θ

2

−[2κ+ 1] sin θ
2 + sin 3θ

2

}
(3.19)

The strains ε33 and stresses σ33 in the thickness direction stay unchanged during this
transformation. The angular dependence fij(θ) of the stresses (3.17) as well as the
v. Mises–effective stress fv(θ) are described in Fig. 3.5.

Crack Under Mode II Loading

In a similar way as in the previous section, it is possible to analyze the crack in an
infinite sheet under in-plane shear loading τ =̂ τ21. Only the boundary conditions
(3.3) have a different form compared to the tension problem

σ11 = σ22 = 0, τ12 = τ for |z| =
√

x2
1 + x2

2 → ∞ . (3.20)

With the help of Fig. 3.6 (left), it is immediately clear that the solution has to be
antisymmetric with respect to the x2–coordinate. The complex stress functions for
this case read
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φ(z) = −i
τ

4
z − i

τ

2

(√
z2 − a2 − z

)
, χ′(z) = iτz + i

τ

2

(
2z2 − a2

√
z2 − a2

− 2z

)
.

(3.21)
The first terms in both stress functions respectively represent the pure, undisturbed
shear stress situation in a plane free of crack. The second terms describe the part
of the solution due to the crack. It is left as an exercise for the reader to calculate
the corresponding solutions for the field variable σij(x1, x2), ui(x1, x2), as well as to
carry out the asymptotic expansion for r → ±a . Only the result for the crack tip near
field will be given here. In addition it is necessary to introduce the stress intensity
factor KII for mode II loading, which takes the following value for this boundary
value problem:

KII = τ
√
πa , (3.22)

⎧
⎪⎨
⎪⎩

σ11

σ22

τ12

⎫
⎪⎬
⎪⎭

= KII√
2πr

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− sin
θ

2

[
2 + cos

θ

2
cos

3θ

2

]

sin
θ

2
cos

θ

2
cos

3θ

2

cos
θ

2

[
1 − sin

θ

2
sin

3θ

2

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= KII√
2πr

⎧
⎪⎨
⎪⎩

f II
11 (θ)

f II
22 (θ)

f II
12 (θ)

⎫
⎪⎬
⎪⎭

.

(3.23)

and in cylindrical coordinates

⎧
⎨
⎩
σrr

σθθ
τrθ

⎫
⎬
⎭ = KII

4
√

2πr

⎧
⎪⎪⎨
⎪⎪⎩

−5 sin θ
2 + 3 sin 3θ

2

−3 sin θ
2 − 3 sin 3θ

2

cos θ2 + 3 cos 3θ
2

⎫
⎪⎪⎬
⎪⎪⎭

. (3.24)

The displacements near the crack tips are

{
u1
u2

}
= KII

2μ

√
r

2π

{
sin θ

2 [κ+ 2 + cos θ]
− cos θ

2 [κ− 2 + cos θ]

}
= KII

2μ

√
r

2π

{
gII

1 (θ)

gII
2 (θ)

}

(3.25)

{
ur

uθ

}
= KII

4μ

√
r

2π

{ −[2κ− 1] sin θ
2 + 3 sin 3θ

2

−[2κ+ 1] cos θ2 + 3 cos 3θ
2

}
. (3.26)
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Crack Under Mode III Loading

At last, the plane crack under anti-plane shear loading τ =̂ τ23 is to be considered,
see Fig. 3.6 (right). This time, the boundary conditions for the stress state on the
crack and at infinity are

τ23 = 0 for |x1| ≤ a and τ13 = 0, τ23 = τ for |z| → ∞ . (3.27)

In order to solve this type of boundary value problems, a complex stress function
Ω(z) has been introduced in Appendix A.5.4. For the mode III crack problem the
solution is found by the setting

Ω(z) = −iτ
√

z2 − a2 . (3.28)

The antisymmetric displacement u3 of the crack faces against each other has an
elliptic form once again

μu3 = 	Ω(z) = ±τ
√

a2 − x2
1 for x2 = ±0 . (3.29)

The calculation of the shear stresses according to (A.165) on the ligament in front
of the crack tips reveals a singularity here as well:

τ23 = −
Ω ′(z) = τx1√
x2

1 − a2
, τ13 = 	Ω ′(z) = 0 for |x1| > 0, x2 = 0 . (3.30)

If the solution is expanded in the same way as in mode I around the crack tip
z = a + reiθ, the result reads

u3 = τ
√
πa

2

μ

√
r

2π
sin

θ

2
= 2KIII

μ

√
r

2π
sin

θ

2
= KIII

2μ

√
r

2π
gIII

3 (θ) (3.31)

{
τ13
τ23

}
= KIII√

2πr

{ − sin θ
2

+ cos θ
2

}
= KIII√

2πr

{
f III
13 (θ)

f III
23 (θ)

}
. (3.32)

Here KIII = τ
√
πa denotes the stress intensity factor for mode III. Qualitatively,

the same 1/
√

r–singularity of the stresses and the same
√

r–behavior of the displace-
ments occur at the crack tip just as in mode I and mode II loading.



3.2 Linear-Elastic Fracture Mechanics 31

3.2.2 Eigenfunctions of the Crack Problem

In the previous section we have the stress singularity at the crack tip extracted from
the complete solution of the boundary value problem for cracks in two-dimensional
domains. Obviously, the singular behavior is causally associated with an »infinitely
sharp« crack tip. For that reason, the elastic solution at an isolated crack tip will be
further investigated in an infinite plane, see Fig. 3.7. Expediently, we place a polar
coordinate system (r, θ) in the crack tip. For the solution of this particular boundary
value problem, the two complex potentials are set as simple power series

φ(z) = Azλ, χ(z) = Bzλ+1, z = reiθ, (3.33)

whereas the coefficients A and B are complex numbers. The exponent λ needs to
be a positive real number in order to prevent infinite displacements at the crack tip.
Therefor, the stresses in polar coordinates are calculated according to (A.161), with
particular interest in the circumferential stress σθθ and the shear stress τrθ. They are
obtained by adding the two first Kolosov equations (A.158).

σθθ + iτrθ = φ′(z) + φ′(z) + (
zφ′′(z) + χ′′(z)

)
e2iθ

= λAzλ−1 + λAzλ−1 +
[
λ(λ− 1)Azzλ−2 + λ(λ+ 1)Bzλ−1

]
e2iθ

= λrλ−1
[

Aei(λ−1)θ + Ae−i(λ−1)θ

+A(λ− 1)ei(λ−1)θ + (λ+ 1)Bei(λ+1)θ
]

(3.34)

As boundary conditions the normal and shear stresses must be zero for all r on
the traction-free crack faces θ = ±π. This means σθθ + iτrθ = 0. Because of that,
the term in [ ]–brackets (with e±iπ = 1) has to vanish:

θ = +π : Aλeiλπ + Ae−iλπ + (λ+ 1)Beiλπ = 0 (3.35)

θ = −π : Aλe−iλπ + Aeiλπ + (λ+ 1)Be−iλπ = 0 . (3.36)

These relations form a homogeneous system of 2 complex (4 real) equations for the
2 complex (4 real) coefficients A and B, which need to be determined. As necessary
condition for the solution, the coefficient determinant has to be set to zero, which
results in a transcendent equation for the exponent (eigenvalue)λ. An easier approach
would be to multiply Eqs. (3.35) and (3.36) by e−iλπ or by e+iλπ respectively, and
subtract them from each other, getting

A
(
e2iλπ − e−2iλπ) = 0 . (3.37)

Setting the term in parentheses to zero results in sin(2λπ) = 0, which leads to the
real value λ:
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Fig. 3.7 Analysis of the near field at the crack tip

λ = n

2
mit n = 1, 2, 3 . . . (3.38)

Thus it was shown that an infinite number of eigenvalues λ = n
2 exists. The

corresponding eigenfunctions can be obtained by using the Ansatz (3.33). The entire
solution of the boundary value problem consists of the superposition of these eigen-
functions with undetermined coefficients An and Bn.

φ =
∞∑

n=1

Anz
n
2 , χ =

∞∑

n=1

Bnz
n
2 +1 (3.39)

The expressions (3.35) or (3.36) now provide the correlation

n

2
An + (−1)n An +

(n

2
+ 1

)
Bn = 0, (3.40)

so that Bn can be replaced by the coefficient An = an + ibn .
By inserting (3.39) and (3.40) into Kolosov’s Eq. (A.158), the radial and angu-

lar functions are determined for the nth eigenfunction in real notation, which was
discovered for the first time by Williams [2] in 1957:

σ
(n)
11 (r, θ) = r

n
2 −1{an M̃ (n)

11 (θ) + bn Ñ (n)
11 (θ)}

σ
(n)
22 (r, θ) = r

n
2 −1{an M̃ (n)

22 (θ) + bn Ñ (n)
22 (θ)} (3.41)

τ
(n)
12 (r, θ) = r

n
2 −1{an M̃ (n)

12 (θ) + bn Ñ (n)
12 (θ)}
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with

M̃ (n)
11 = n

2

{[
2 + (−1)n + n

2

]
cos

(n

2
− 1

)
θ −

(n

2
− 1

)
cos

(n

2
− 3

)
θ
}

Ñ (n)
11 = n

2

{[
−2 + (−1)n − n

2

]
sin

(n

2
− 1

)
θ +

(n

2
− 1

)
sin

(n

2
− 3

)
θ
}

M̃ (n)
22 = n

2

{[
2 − (−1)n − n

2

]
cos

(n

2
− 1

)
θ +

(n

2
− 1

)
cos

(n

2
− 3

)
θ
}

Ñ (n)
22 = n

2

{[
−2 − (−1)n + n

2

]
sin

(n

2
− 1

)
θ −

(n

2
− 1

)
sin

(n

2
− 3

)
θ
}

M̃ (n)
12 = n

2

{(n

2
− 1

)
sin

(n

2
− 3

)
θ −

[n

2
+ (−1)n

]
sin

(n

2
− 1

)
θ
}

Ñ (n)
12 = n

2

{(n

2
− 1

)
cos

(n

2
− 3

)
θ −

[n

2
− (−1)n

]
cos

(n

2
− 1

)
θ
}

(3.42)

and

u(n)
1 (r, θ) = 1

2μ
r

n
2

{
an F̃ (n)

1 (θ) + bnG̃(n)
1 (θ)

}

u(n)
2 (r, θ) = 1

2μ
r

n
2

{
an F̃ (n)

2 (θ) + bnG̃(n)
2 (θ)

}
(3.43)

with

F̃ (n)
1 =

[
κ+ (−1)n + n

2

]
cos

n

2
θ − n

2
cos

(n

2
− 2

)
θ

G̃(n)
1 =

[
−κ+ (−1)n − n

2

]
sin

n

2
θ + n

2
sin

(n

2
− 2

)
θ

F̃ (n)
2 =

[
κ− (−1)n − n

2

]
sin

n

2
θ + n

2
sin

(n

2
− 2

)
θ (3.44)

G̃(n)
2 =

[
κ+ (−1)n − n

2

]
cos

n

2
θ + n

2
cos

(n

2
− 2

)
θ .

The terms with an correspond to the crack opening mode I, while mode II is associated
with the coefficient bn. For n = 1, the well- known singular solutions (3.12) and (3.23)
are obtained showing r−1/2(use addition theorems !). The stress intensity factors KI
and KII are related to the coefficients a1, b1 of the first eigenfunction in the following
way

KI − iKII = √
2π(a1 + ib1). (3.45)

Of particular importance is the 2nd eigenfunction n = 2, which describes only a
constant stress state parallel to the crack faces, the so-called T -stress. (The functions
belonging to b2 only accomplish a stress-free rigid body rotation.)

σ
(2)
11 = r0 4a2 = T11 = const., σ

(2)
22 ≡ τ

(2)
12 ≡ 0

2μu(2)
1 = a2(κ+ 1)x1, 2μu(2)

2 = a2(κ− 3)x2
(3.46)
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It is possible to develop eigenfunctions at the crack tip for mode III as well, by
using again a power series with the exponent λ > 0 and a complex coefficient C for
the stress function Ω .

Ω(z) = Czλ = Crλeiλθ . (3.47)

Concerning the boundary conditions, the shear stress τ23 at the crack faces θ = ±π
has to be zero:

τ23 = −
Ω ′(z) = (
Ω ′(z) − Ω ′(z)

)
(3.48)

θ = +π : λrλ−1
[
Ce−i(λ−1)π − Cei(λ−1)π

] = 0
θ = −π : λrλ−1

[
Cei(λ−1)π − Ce−i(λ−1)π

] = 0.
(3.49)

In order to find the solution of this homogeneous system of equations for C and C , it
is necessary to set the coefficient determinant to zero, which leads to the eigenvalue
equation λ:

sin(2λπ) = 0 ⇒ λ = n

2
n = 1, 2, 3, . . . (3.50)

This reveals the same eigenvalues as in mode I and mode II. The entire solution
can now be composed by combining all eigenfunctions with the coefficient Cn.
The relation Cn = (−1)nCn follows from (3.49), which means the coefficients are
alternating either purely real or imaginary:

Ω(z) =
∞∑

n=1

Cnz
n
2 , Cn = −incn . (3.51)

Finally, the corresponding eigenfunctions can be calculated from (3.47) using the
relations (A.165):

u(n)
3 (r, θ) = cn

2μ
r

n
2 H̃ (n)

3 (θ), H̃ (n)
3 =

{
2 sin n

2θ for n = 1, 3, · · ·
2 cos n

2θ for n = 2, 4, · · · (3.52)

τ (n)
13 (r, θ) = cnr

n
2 −1 L̃(n)

13 (θ), L̃(n)
13 =

{
n
2 sin( n

2 − 1)θ for n = 1, 3, · · ·
n
2 cos( n

2 − 1)θ for n = 2, 4, · · ·

τ
(n)
23 (r, θ) = cnr

n
2 −1 L̃(n)

23 (θ), L̃(n)
23 =

{
n
2 cos( n

2 − 1)θ for n = 1, 3, · · ·
− n

2 sin( n
2 − 1)θ for n = 2, 4, · · ·

(3.53)

Considering n = 1, the asymptotic singularity according to (3.31) and (3.32) is
exactly reproduced, whereby the relation KIII = c1

√
π/2 applies. The eigenfunction

for n = 2 corresponds to a constant shear stress τ13 = T13 = c2 .
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The derived eigenfunctions apply to all plane elastic crack problems. There-
fore, the solution of the boundary value problem can be formulated as complete
series expansion of the terms (3.41), (3.43), (3.52) and (3.53):

σij(r, θ) =
∞∑

n=1

r
n
2 −1

[
an M̃ (n)

ij (θ) + bn Ñ (n)
ij (θ) + cn L̃(n)

ij (θ)
]

(3.54)

ui(r, θ) = 1

2μ

∞∑

n=1

[
an F̃ (n)

i (θ) + bnG̃(n)
i (θ) + cn H̃ (n)

i (θ)
]
. (3.55)

The unknown coefficients an, bn and cn have to be determined from the bound-
ary conditions of the actual crack problem and represent the modes I, II and
III respectively.

These eigenfunctions form an indispensable basis for many numerical methods
used to treat crack problems in finite bodies. Their usage started at the first calcula-
tions by means of a boundary collocation method in the 1960s [3] and lasts until the
recent development of special elements for crack tips [4].

3.2.3 Three-Dimensional Crack Problems

In many cases in practice, the crack configuration is of three-dimensional character. If
e.g. a planar flaw is embedded in a spatial structure, usually curvilinear crack faces and
fronts occur, see Fig. 3.8a. Even for a plane crack geometry, a three-dimensional crack
problem is present when the stress state changes along the crack. This often appears at
through cracks in specimens of finite thickness, see Fig. 3.8b. Of practical importance
are surface cracks where the crack front intersects the body’s external surface as
Fig. 3.8c shows. Closed-form analytical solutions for spatial crack configurations
only exist for a limited number of simple cases, mostly in infinite domains.

(a) (b) (c)

Fig. 3.8 Spatial crack configurations
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Fig. 3.9 Elliptic internal crack in infinite domain with coordinate system

Internal Elliptical Crack Under Tension

An important example is the elliptic planar internal crack in an infinite domain, see
Fig. 3.9. For this type of crack configuration, many solutions under different types
of loading have been found by Sneddon [5] using integral transformations and by
Fabrikant [6] using spatial stress potential functions. As an example, the result for
tensile loading σ perpendicular to the crack plane is given here. The elliptic crack
has two semi-axes a and c. A point P of the crack front is defined by the angle ϕ
over x1 = c cosϕ and x2 = a sinϕ. This is a pure mode I loading with a variable
KI–factor along the crack front.

KI = σ
√
πa

E(k)

(
sin2 ϕ+ a2

c2 cos2 ϕ

) 1
4

(3.56)

E(k) is the complete elliptic integral of second kind k = √
1 − a2/c2

E(k) =
∫ π

2

0

√
1 − k2 sin2 α dα ≈

√
1 + 1.464

(a

c

)1.65
for (a ≤ c) . (3.57)

The maximum value of KI is reached at the apex A of the minor semi-axis (a < c)
and the minimum value at C .

KImax = KIA = σ
√
πa

E(k)
, KImin = KIC = KIA

√
a

c
(3.58)

In the special case of a circular crack, the KI–factor has everywhere the same value
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KI = 2

π
σ
√
πa for c = a . (3.59)

Spatial Crack Tip Field

By means of studies on elliptic internal cracks [5] and through cracks in plates with
straight and curved crack fronts [7, 8], it has been shown that, in principle, the
same near fields exist at three-dimensional crack tips, as we discovered in the two-
dimensional case. However, the asymptotic solutions now only apply locally with
respect to a point on the crack front. That is why according to Fig. 3.10, an associated
Cartesian coordinate system (n, v, t) is introduced along the crack front (coordinate
s), where n =̂ x1 lies normally toward the crack front. t =̂ x3 runs tangentially along
it and v =̂ x2 lies vertically upon the crack plane. Performing a limit process r → 0
within the normal plane (n, v) toward the crack front, the near tip solutions of the
two-dimensional crack problem under the plane strain state can be found: In the
general case, these are composed of the mode I, II and III components.

Therefore, the following applies to the crack tip field:

σij(r, θ, s) = 1√
2πr

[
KI(s)f

I
ij(θ) + KII(s)f

II
ij (θ) + KIII(s)f

III
ij (θ)

]
+ Tij(s),

(3.60)
whereby the angular functions f I,II,III

ij describe the terms (3.12), (3.23) and
(3.32). The term Tij includes all stress components of the n = 2nd order,
representing constant finite values in the (x1, x3)–crack plane.

[
Tij
] =

⎡
⎣

T11 0 T13
0 0 0
T31 0 T33

⎤
⎦ (3.61)

Fig. 3.10 Coordinate system
along a crack front in space
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In the same way it is possible to summarize the asymptotic displacement fields
of the three modes (3.16), (3.25) and (3.31) using the angular functions gI,II,III

i
for the plane strain:

ui(r, θ, s) = 1

2μ

√
r

2π

[
KI(s)g

I
i (θ) + KII(s)g

II
i (θ) + KIII(s)g

III
i (θ)

]
. (3.62)

By means of local superposition of the three modes with the respective
stress intensity factors as coefficients, the near field in the vicinity of the crack
front is uniquely defined by these relations. Here, the three K –factors and the
Tij–stresses are functions of the crack front position s.

It is possible to show that a state of plane strain asymptotically prevails at any
point of the crack front in the body. Special considerations are necessary for such
points at the crack front, which cross the surface, since here a situation similar to the
plane stress state exists, where in most cases a different type of singularity occurs.

3.2.4 Stress Intensity Factors: K-Concept

For isotropic linear-elastic material behavior the asymptotic near field solutions are
always of the same mathematical form (3.60) and (3.62). The strength of this crack tip
field is entirely determined by the stress intensity factors KI, KII and KIII, which quasi
represent » still free « coefficients. The magnitudes of the three stress intensity factors
have to be determined by the solution of the specific boundary value problem defined
by a body with crack. Thus, the K –factors depend on the geometry of the body, the
size and position of the crack as well as on the load and the bearing conditions. To
determine them, it is generally necessary to find first the complete solution of the
boundary value problem using analytical or numerical calculation methods and then
to analyze the crack tip field. A closer look at the stress fields on the ligament in
front of the crack (θ = 0) of the three crack opening modes I (3.12), II (3.23) and
III (3.32) shows that only those stress components are different from zero, which
corresponds to the respective crack opening mode or the far field loading, i. e., σ22 in
mode I, τ21 in mode II and τ23 in mode III. The related angular function approaches
just the value one. By solving the relations for the stress intensity factors and taking
the limit towards the crack tip, the conditional equations are obtained:

⎧
⎨
⎩

KI
KII
KIII

⎫
⎬
⎭ = lim

r→0

√
2πr

⎧
⎨
⎩
σ22(r, θ = 0)

τ21(r, θ = 0)

τ23(r, θ = 0)

⎫
⎬
⎭ . (3.63)
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In the following chapters of this book we will elaborate in detail on applications
of the finite element method for determining stress intensity factors. It is beyond our
scope to thoroughly address analytic calculation methods for elastic crack problems.
Only the most important methods are mentioned below, as well as the respective
literature ([9] that provides an overview):

• Complex function theory (complex analyses, conform mappings, series expan-
sion): Muskhelishvili [1], Tamusz [10]

• Integral transforms (Laplace, Hankel): Sneddon and Lowengrub [5]
• Singular integral equations: Erdogan [11], Muskhelishvili [1]
• Three-dimensional potential approaches: Kassir and Sih [12], Fabrikant [6].

Generally, the stress intensity factors for all crack problems can be written in
the following form (example only for KI):

KI = KI (geometry, fracture, load, material)
= σn

√
πa g (geometry, material) ,

(3.64)

whereby a represents the crack length, σn denotes a representative nominal
stress and the function g describes the influence of the body and crack geometry
as well as, in certain circumstances, the elastic material properties.

Inspecting this formula makes clear that in fracture mechanics the common simi-
larity relations do not apply anymore. That is, if a body with a crack is geometrically
enlarged by the factor β, while the nominal load σn stays unchanged, the KI–value is
increased by the factor

√
β because of the extended crack length! The stress intensity

factors have the quite peculiar dimension [stress]× [length]1/2 and are given in the
units Nmm−3/2 or MPa

√
m.

In previous decades, numerous K –factor solutions for various crack configura-
tions and types of loading have been calculated in many different ways. They are
compiled in hand books, see Murakami [13], Rooke and Cartwright [14], Tada, Paris
and Irwin [15] and Theilig and Nickel [16].

The stress intensity factors form an excellent basis for formulating fracture criteria.
The idea arose from Irwin [17], who suggested the concept of stress intensity factors
in 1957. It is based on the following ideas, which will at first be described for the
case of mode I:

• The singular crack tip solution with coefficient KI describes the loading state in
a finite region around the crack tip with radius rK . At a greater distance r > rK ,
its dominance fades because other terms of the series (3.39) gain influence, see
Fig. 3.11.

• In reality (even in brittle materials), the KI–singularity does of course not reach
up to the very crack tip r → 0, because here a fracture process zone develops,
inside of which the limits of elasticity theory are exceeded, compare Fig. 3.2. If,
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Fig. 3.11 Dominance of the near field solution at the crack tip in all test specimen and components

however, it is assumed that the size rB of the process zone is much smaller than
the domain rK of validity of KI–solution, all fracture processes are controlled
by the near field solution, acting as »boundary condition« . Given the same KI,
the same process happens, independently of which type of crack configuration is
present, see Fig. 3.11. Conversely, this assumption confirms that the process zone
has negligible reactions on the near field solution.

• By means of this »autonomy principle of crack tip singularity« we have reduced
the entire body geometry and loading via (3.64) to the KI–factor.

• The crack propagation will initiate just when a critical material state in the process
zone is reached. This material-specific limit value of load carrying capacity is
called fracture toughness.

Thus, the stress intensity concept provides the fracture criterion

KI = KIc . (3.65)

The fracture-mechanical loading quantity KI stands on the left side of the
equation. On the right-hand side, the fracture toughness KIc represents the
material resistance against crack initiation.

Introduction of the stress intensity concept marks a milestone in the development
of fracture mechanics. To this day the concept has proven itself many times.
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The same considerations can be transferred to other types of crack opening if they
solely occur as pure mode II or pure mode III loading, respectively

KII = KIIc and KIII = KIIIc. (3.66)

KIIc and KIIIc represent the corresponding fracture toughness values. Unfortunately,
these modes rarely appear isolated. In the general case, a combined loading of the
crack consists of all three modes so that the fracture process is controlled by KI, KII
and KIII. Then, the fracture criterion has to be formulated using a generalized stress
parameter B and an assigned material parameter Bc.

B(KI, KII, KIII) = Bc (3.67)

The respective criteria are introduced in Sect. 3.4.4

Fig. 3.12 Common forms of specimen used to determine fracture-mechanical parameters compact
tension (CT) test, Singe-edged notched bending (SENB) test, Central-crack tension (CCT) test and
tensile test with semi-elliptical surface crack M(T)
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The fracture toughness KIc of a material has to be experimentally determined on a
specimen having an initial crack by means of a standardized fracture experiment. For
this, suitable specimen geometries are developed. The well-known ones are displayed
in Fig. 3.12. A fatigue crack is created at the notch tip in order to gain reproducible
starting conditions. Afterwards, the specimen is stressed in a testing machine with a
force F and the deformation path q is recorded. During elastic material behavior the
force-deformation diagram takes a linear course until the initiation of brittle fracture
at the force Fc. Taking this force and the crack length a, the K -factor at fracture is
calculated with the help of the known geometry functions g(a, w) of the specimen.
Subject to certain validity criteria, this value represents the fracture toughness KIc .

KIc = Fc g(a, w)
√
πa (3.68)

The specimen preparation, test procedure and evaluation of test results to determine
the material parameters of linear-elastic fracture mechanics have all been standard-
ized. Mandatory documents are the international norm ISO 12135 [18], the ESIS-P2
regulations [19] in Europe and the ASTM 1820 standard [20] in the USA. Detailed
information on fracture-mechanical material testing can be found e.g. in Blumenauer
& Pusch[21].

3.2.5 Energy Balance During Crack Propagation

Global Energy Release Rate

The energy balance during crack propagation is investigated in a body with a crack.
For this purpose we consider the boundary value problem shown in Fig. 3.13. Surface
tractions t̄ are imposed on the part St of the external boundary, Eventually body forces
b̄ act in the volume V , and displacements ū are prescribed on the boundary part Su.
Applying the 1st law of thermodynamics to a deformable body provides the change
in energy per time:

Ẇext + Q̇ = Ẇint + K̇ + Ḋ . (3.69)

On the left-hand side of the equation stands the energy input into the body per time
as a result of the power of the external mechanical loading

Ẇext =
∫

St

t̄iu̇i dS +
∫

V
b̄iu̇i dV (3.70)

and the exchange of thermal energy Q̇ by way of thermal flux or internal heat sources.
On the right-hand side of the balance equation stand those types of energy absorbed
by the body per time, i. e. the internal energy, which for the purely mechanical case
correlates to
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Fig. 3.13 Energy balance during crack propagation by �A

Wint =
∫

V
U dV , U (εkl) =

εkl∫

0

σij(εmn) dεij , (3.71)

and the kinetic energy K (with density ρ)

K = 1

2

∫

V
ρ u̇iu̇i dV . (3.72)

In addition, there is the mainly dissipative energy D, consumed during the crack
propagation in the process zone. Since it is directly related to the creation of new
surfaces, this term is set proportionally to the crack area A with the material constant
γ. The factor 2 accounts for the fact that a fracture leads to two new surfaces.

D = 2γA (3.73)

In this section we will concentrate on static problems, so that K = 0. For purely
elastic deformations U = U e, the internal energy possesses the character of an inter-
nal potential Πint = Wint. Furthermore, we consider the body to be an adiabatically
closed system without any internal heat sources, so that Q̇ = 0 as well. Finally, it is
assumed that external loads are conservative forces (gravity, springs), resulting from
a potential Πext, which decreases with the performed external work Π̇ext = −Ẇext.
Thereby, the energy balance (3.69) simplifies to

Ẇext = Ẇint + Ḋ , − Π̇ext = Π̇int + Ḋ . (3.74)
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With these assumptions we will now analyze the propagation of a crack, having
the initial size A(1) = A at the time t(1) and enlarging in a quasi-static process to
the area A(2) = A + �A at the time t(2) = t(1) + �t, see Fig. 3.13. Therefore, the
following energy difference related to the time increment �t or equally to the change
of the crack area �A, exists between the final and starting state:

W(2)
ext − W(1)

ext = W(2)
int − W(1)

int + 2γ�A
�Wext = �Wint + �D =⇒ �Wext

�A = �Wint
�A + �D

�A .
(3.75)

Introducing the internal and external potentials, which can be combined to the total
potential Π = Πint + Πext, we obtain

�(Wext − Wint)

�A
= −�Π

�A
!= �D

�A
= 2γ . (3.76)

Physically, this result can be interpreted as follows: the left-hand side describes the
available amount of potential energy −�Π , which is supplied by the external load
and the elastically stored internal energy during crack propagation by �A (the minus
sign indicates the decrease of the potential energy). This quantity is therefore called
energy release rate and is defined for finite or infinitesimal crack propagation as
follows

G = −�Π

�A
, G = − lim

�A→0

�Π

�A
= −dΠ

dA
. (3.77)

The right-hand side of (3.76) displays the fracture energy 2�A required for mate-
rial separation and formation of new surfaces. Its quantity depends on the mater-
ial behavior and represents the critical material parameter Gc = 2γ. This energy
balance during crack propagation has been compiled by A. A. Griffith [22] and
named after him.

Energetic fracture criterion by Griffith:

− dΠ

dA
= G = Gc = 2γ , (3.78)

It states the following: In order to initiate and maintain quasi-static crack
propagation in a conservative system, the provided energy release rate has
to be equal to the dissipative energy needed for fracture per crack area. The
Dimension of G is [force × length/length2] and is mostly specified in J/m2 or
N/m.

Griffith determined the energy release rate G = 2πσ2a/E ′ = 4γ for a crack of
length 2a in a sheet under tension (Fig. 3.3). For a given crack length, the critical
fracture stress can be found as
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Fig. 3.14 Correlation between force–deformation–curve and energy release rate

σc =
√

2E ′γ
πa

= KIc√
πa

. (3.79)

Solved for a, the criterion provides the critical crack length ac that is necessary for
fracture under the given load

ac = 2E ′γ
πσ2 with E ′ = E (plane stress) and E ′ = E/(1 − ν2) (plane strain) .

(3.80)
The Griffith–criterion also applies to any finite crack propagation �A and in an
extreme case even to the complete generation of a crack from zero state A(1) = 0 to
its final state A(2) = A.

Finally, the relation between the energy release rate and the force-deformation
diagram of a specimen with crack will be established, see Fig. 3.14. In this case,
the imposed external loads consist only of the concentrated force F , which causes a
displacement q = F/k(a) of the load point. Hereby, k(a) represents the stiffness of
the specimen depending on the crack length. The strain energy in this elastic body
equals the area below the linear force–deformation–curve

Wint = 1

2
Fq = 1

2
kq2 = 1

2

F2

k
. (3.81)

If the crack length is increased by �a, then the stiffness of the specimen will decrease
as shown in Fig. 3.14. Depending on how the external load behaves during crack
propagation, two extreme cases can be distinguished:

(a) Fixed grips (q = const)
This corresponds to a very stiff loading device. The external work is zero dWext = F
dq = 0, and the potential energy for crack propagation arises only from the stored
strain energy so that (3.76) gives
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G = −dΠ

dA
= −dWint

dA
= − d

Bda

[
1

2
k(a)q2

]
= − q2

2B
dk(a)

da

= − 1

2B
F2

k2

dk(a)

da
= − 1

2Bda
q dF

(3.82)

(b) Dead load (F = const)
This case is realized by a weight or a very soft loading device that performs the
external work dWext = F dq(a) > 0 during crack propagation. If the last term of
(3.81) is used for Wint, the energy release rate reads

G = −dΠ

dA
= d

Bda
[Wext − Wint] = 1

B

[
F

dq

da
− 1

2
F2 d

da

(
1

k(a)

)]

= − 1

2B

F2

k2

dk(a)

da
= − 1

2Bda
Fdq. (3.83)

Comparing the results (3.82) and (3.83) leads to the surprising conclusion that in both
cases the energy release rate G is identical and naturally positive (since dk/da < 0).
While in case (a) the crack-driving energy is due to the decrease of Wint, it is supplied
in case (b) by the external work, which in addition increases the strain energy Wint by
the same value, compare [ ]–brackets in (3.83). This statement is generally true for
elastic systems with cracks, since according to the law of Clapeyron Wext = 2Wint
holds. From Fig. 3.14 it is apparent that the released energy −dΠ = G Bda matches
the triangular area between the two force–deformation–curves of a and a +�a. The
area O AD is to be assigned to case (a) and the area O AC to case (b), respectively.
Both areas only differ in the triangle AC D ≡ 1

2�F�q, which vanishes for �a → 0
of higher order.

Local Energy Release Rate

Continuing our considerations with the help of Fig. 3.13, all mechanical field vari-
ables experience a change from the initial state (1) to the final state (2) during crack
propagation. That transition is carried out theoretically in the following way: In (1),
sectional tractions tc = tc(1) apply to the ligament �A in front of the crack, which
are by definition equal and opposite on both faces tc

i =̂ tc+
i = −tc−

i . We open the
crack by cutting along �A and replace the tractions by external boundary tractions of
equal value, so that the crack stays closed as in (1). Subsequently, all these boundary
tractions are being quasi-statically reduced to zero, wherewith the crack expands to
the final state (2) and attains a stress-free surface �A. The relative displacements
�ui = u+

i − u−
i of the crack faces change from the closed state (�u(1)

i = 0) to the

opened state �u(2)
i . During this process the tractions perform work at the crack face

displacements tc+
i du+

i + tc−
i du−

i = tc
i (du+

i − du−
i ) = tc

i d�ui, so that the total work
to extend the crack by �A can be expressed by the following integral
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Fig. 3.15 Load releasing work during crack propagation

�Wc =
∫

�A

∫ (2)

(1)

tc
i d�uidA =⇒

∫

�A

1

2
tc
i �u(2)

i dA < 0 . (3.84)

Since hereby the system gives off energy, it has to be negative. For linear–elastic
material behavior the inner integral can be evaluated to tc

i �u(2)
i /2 and we get the

formula on the right.
This work term �Wc must be added to the total balance of energy per crack

propagation.
�Wext

�A
− �Wint

�A
+ �Wc

�A
= 0 (3.85)

Using the definition (3.76) of the potential energy Π = Πext+Πint = −Wext+Wint,
the energy release rate finally follows.

G = −�Π

�A
= �Wext

�A
− �Wint

�A
= −�Wc

�A
. (3.86)

Hereby it has been shown that the change of potential energy of the system (body
plus load) equals the work that is needed locally to »set free« the new crack surfaces
�A. Note that this is a virtual elastic unloading process, which is not concerned with
the energy dissipation D during a real fracture process! The result (3.86) therefore
represents an alternative calculation method for the energy release rate—the crack
driving force. In principle, this method is also applicable to finite crack extension
�A.
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The Crack Closure Integral

In the following section this calculation method will be applied to the asymp-
totic crack tip solution for isotropic–elastic material (Sect. 3.2.2). This will first be
explained using crack opening type I. The tip of a crack of initial length a, as shown in
Fig. 3.15, is displaced by �a during crack propagation. We assume that this process
takes place in the domain of validity of the KI–dominated crack tip solution (3.12),
(3.16). This can always be achieved if the crack tip is approached closely enough
taking the limits r → 0 and �a → 0. In mode I, a symmetric stress and deformation
state exists with respect to the crack plane. The tractions on the ligament �a corre-
spond to the σ22–stresses of the near field solution (3.12) for the initial crack length
a

− tc
2(s) = σ22(r = s, θ = 0, a) = KI(a)√

2πs
, tc

1 = tc
3 = 0. (3.87)

After crack propagation by �a, the crack opening displacements result from (3.16)
for the final crack length a + �a to

u±
2 (r = �a − s, θ = ±π, a + �a) = ±κ+ 1

2μ
KI(a + �a)

√
�a − s

2π
. (3.88)

During a virtual load releasing process, the work of the stresses tc
2(s) performed with

the displacements u2(s) of the crack faces, results according to (3.84) for linear–
elastic behavior in

�Wc = −
∫ �a

0

1

2
σ22(u

+
2 − u−

2 )ds = −
∫ �a

0

KI(a)√
2πs

κ+ 1

2μ
KI(a + �a)

√
�a − s

2π
ds

= −κ+ 1

4πμ
KI(a)KI(a + �a)

∫ �a

0

√
�a − s

s
ds . (3.89)

Hence the energy release rate G (which we now regard per uniform thickness
B = 1 m in the plane problem ) can be calculated by means of (3.86). Additionally,
we carry out the limiting process to a differential crack propagation �a → 0.

G = lim
�a→0

(
−�Wc

B�a

)
= κ+ 1

4πμ
K 2

I (a) lim
�a→0

1

�a

∫ �a

0

√
�a − s

s
ds

︸ ︷︷ ︸
π/2

(3.90)
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Thus the following correlation exists between the infinitesimal energy release
rate G and the stress intensity factor KI

G =̂ GI = κ+ 1

8μ
K 2

I = K 2
I /E ′ . (3.91)

Physically, this means that within linear–elastic fracture mechanics the stress
intensity concept by Irwin and the energy criterion by Griffith are equal and
can be converted into each other.

The correlation derived here goes back to Irwin [23], who calculated the work
at a virtual crack closure of a + �a to a and named it crack closure integral. But
within the theory of elasticity, crack closure and crack expansion are equivalent and
reversible processes, which lead to the same result. For non-linear material behavior
however, this is not valid anymore so that, in general, one should denote it as a crack
opening integral.

Finally, the generalization for mode II and mode III will be elaborated. During
mode II, the tractions tc

1 =̂ τ12 and crack face displacements u±
1 �= 0 have compo-

nents solely in the direction of x1 (note (3.23) and (3.25)), which are proportional to
KII. Similarly, in mode III only components in direction of x3 appear according to
(3.31) and (3.32) with the factor KIII, so that the result for the energy release rate is

Modus II: GII = K 2
II/E ′ , Modus III: GIII = K 2

III/2μ = K 2
III(1 + ν)/E . (3.92)

If mode I, II and III loading are combined, the energy release rate during
infinitesimal crack propagation In the direction of x1 is calculated using the
sum

G = GI + GII + GIII = 1

E ′
(

K 2
I + K 2

II

)
+ 1 + ν

E
K 2

III . (3.93)

Stability of Crack Propagation

The fracture criterion by Griffith (3.78) sets the necessary energetic conditions for
a crack to be able to propagate at all. In order to assess the further course of crack
propagation–especially the issue of stability–it is crucial to see how the fracture
condition itself changes. The energy release rate G is both a function of crack length
a and of loading, which, depending on the types of boundary conditions, can be
controlled either by forces (F) or displacements (q). On the other hand, in many
brittle materials such as ceramic or concrete, one can observe that the crack growth



50 3 Basics of Fracture Mechanics

Fig. 3.16 Regarding stability of crack propagation

resistance Gc increases during crack propagation �a from an initial value Gc0 to a
saturation value. The reason for this is the formation of the process zone until its final
shape. This material-specific behavior is described by the crack growth resistance
curve R(�a) (see Fig. 3.16)

Gc = R(�a) (R − curve) , (3.94)

which is measured during fracture experiments with a steadily expanding crack.
During crack propagation, the thus modified fracture criterion must be fulfilled

G(F, q, a) = R(�a) , (3.95)

which represents in a way the state of balance between the crack driving force and
the crack resistance. In order to assess the stability of the fracture process, we need
to compare the changes of both values during crack propagation as functions of the
crack length, i.e.

∂G

∂a

∣∣∣∣
F,q

� ∂R

∂a

⎧
⎪⎨
⎪⎩

stable

indifferent

unstable

(3.96)

whereby the load (F or q) is fixed. The crack behavior is called stable, when the
crack resistance R increases faster than the driving energy release rate G. In this
case, it is necessary to enhance the load to let the crack expand further. In Fig. 3.16
the crack resistance curve as well as the energy supply for crack propagation G are
displayed as functions of the crack length for a set of external loads (dashed lines).
At given force F , these curves show a monotonic increasing course with a. On the
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contrary, at fixed displacements q, the G(a)–curves have a falling tendency, because
the crack relaxes itself by its growth. The crack behavior is regarded as unstable
as soon as the energy supply increases faster than the crack resistance does. Then,
the slope of the G–curve in Fig. 3.16 is equal to or greater than the one of the
R–curve (values marked with *). The excessive energy causes an accelerated,
dynamic crack propagation. Considering however the G–curves for fixed displace-
ments in Fig. 3.16, it becomes apparent that after crack initiation at q2 the crack
can never become unstable despite an increasing load. Everybody knows this kind of
behavior from splitting wood with a wedge. It can also happen under strain-controlled
thermal stresses in a cracked component.

Finally, it is worth noting that all considerations presented with the help of G
and R can similarly be assigned to the stress intensity factor KI and to a crack
length-dependent fracture toughness Kc(�a), since both criteria are equivalent in
linear-elastic fracture mechanics.

3.2.6 The J-Integral

Independently, Cherepanov [24] (1967) and Rice [25] (1968) introduced another
fracture-mechanical load parameter – the J -integral. This parameter has proven
extremely valuable not only in linear-elastic fracture mechanics, but it could also
be applied very successfully in fracture mechanics at inelastic material behavior.
Subsequently, diverse extensions of the classic J integral have been made with
regard to types of loading, material laws and field problems, which will be elab-

Fig. 3.17 Definition of J as line integral around the crack tip
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orated in Sect. 6. Particularly in connection with numerical stress analysis of cracks
the J -integral holds special meaning.

In this section we will concentrate on application of the J -integral to elastic
materials, which may also be non-linear. For an easier understanding the following
elaborations are limited to infinitesimal deformations.

Derivation of the J-Integral

In the following section it will be proven that the change of potential energy dur-
ing infinitesimal crack propagation–the energy release rate G = −dΠ/dA–can be
expressed with the help of a path-independent line integral. Figure 3.17 shows a linear
crack problem (uniform thickness B). We choose an arbitrary domain A around the
crack tip surrounded by the curve Γ , which runs from the lower to the upper crack
face in a mathematically positive sense. The normal unit vector nj points toward the
outside. In order to calculate the potential energy of the system, we would have to
consider the entire body. But we will find out that the result does not depend on
the chosen domain. From outside the sectional stresses ti = σijnj act on Γ . They
are supposed to keep constant during crack growth da. The body forces are zero.
The crack expands along its initial direction by da and the domain A is displaced
along with it. During this, all field variables change directly and implicitly with the
crack length. Therefore, besides the fixed coordinates (X1, X2), a moving system
(x1 = X1 − a, x2 = X2) at the crack tip is introduced (see Fig. 3.17), so that the total
derivative is read

d(·)
da

= ∂(·)
∂a

+ ∂x1

∂a

∂(·)
∂x1

= ∂(·)
∂a

− ∂(·)
∂x1

. (3.97)

Thereby, we differentiate the potential energy, which is a function of the displacement
field ui, with respect to the crack length

−dΠ(ui)

da
= d

da
{Wext(ui) − Wint(ui)} = d

da

{∫

Γ

tiui ds −
∫

A
U dA

}

=
∫

A

∂U (ui)

∂x1
dA −

∫

Γ

ti
∂ui

∂x1
ds +

[
−
∫

A

∂U

∂a
dA +

∫

Γ

ti
∂ui

∂a
ds

]
.

(3.98)

Using ∂U
∂a = ∂U

∂εij

∂εij
∂a = σij

∂ui,j
∂a , converting the line integral into an area integral

by means of Gauss’s divergence theorem and applying the equilibrium equations
σij,j = 0, respectively, the term in [ ]–brackets of (3.98) disappears. The 1st integral
of (3.98) can also be converted by Gauss’s theorem, and transformed using the arc
length ds along Γ .

∫

A
U,j δ1j dA =

∫

Γ

Un1 ds =
∫

Γ

U dx2 (3.99)
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Thereby the energy release rate G can be calculated along the curve Γ using
a line integral, which is denoted as J integral:

G = −dΠ

da
= J ≡

∫

Γ

[
U dx2 − ti

∂ui

∂x1
ds

]
. (3.100)

Path Independence of the J-Integral

In order to prove that J is independent of the choice of area A and integration path
Γ , we compare two paths Γ1 and Γ2 around the crack tip (Fig. 3.18). The paths
are completed by the segments Γ + and Γ − along the upper and lower crack faces
respectively, which results in a closed curve C = Γ2 + Γ + − Γ1 + Γ −. C entirely
encloses the differential area Ā = A2 − A1. The crack tip was circumvented here!
The integrals over Γ + and Γ − are zero, because on the crack faces ti = 0 is valid
and dx2 = 0. Evaluating J along C , the line integral is now converted back into an
area integral over Ā and the Cauchy theorem ti = σijnj is applied

∫

C

[
Un1 − σijnj

∂ui

∂x1

]
ds =

∫

C

[
Uδ1j − σij

∂ui

∂x1

]
nj ds

=
∫

Ā

∂

∂xj

[
Uδ1j − σij

∂ui

∂x1

]
d Ā.

(3.101)

The strain energy U is a function of the strains εij = (
ui,j + uj,i

)
/2. According

to (A.74), its differentiation gives the stresses σij in case of a (non-)linear–elastic
material. Hence, differentiating the integrand (3.101) by the chain rule we obtain

∂U

∂εij

∂εij

∂x1
− ∂σij

∂xj

∂ui

∂x1
− σij

∂

∂x1

(
∂ui

∂xj

)

= σij
∂εij

∂x1
− 0 − σij

∂

∂x1

1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
= 0

(3.102)

Because of the equilibrium conditions, (A.71) the 2nd term disappears, since the
inertia and volume forces are not considered. Moreover, in the 3rd term the symmetry
σji = σij was used, whereby it directly compensates the 1st term. The result is the
following:

∫

C
(·) ds =

∫

Γ1

(·) ds −
∫

Γ2

(·) ds +
∫

Γ ++Γ −
(·) ds = 0 . (3.103)

Since the crack face integrals over Γ + + Γ − are zero, the path independency has
been proven
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Fig. 3.18 Towards path inde-
pendence of the J -integral

JΓ1 =
∫

Γ1

(·) ds = JΓ2 =
∫

Γ2

(·) ds . (3.104)

Looking back, we summarize the preconditions that were necessary

• There are no volume loads b̄i = 0 and no inertia forces ρüi = 0.
• The crack faces Γ + and Γ − are stress-free t̄i = 0.
• The elastic strain energy density U is a potential function: ∂U/∂εij = σij.
• U does not explicitly depend on x1, only implicitly via εij(x1) (homogeneous

material).

3.2.7 Cracks in Anisotropic Elastic Bodies

Many modern materials in light weight constructions have anisotropic elastic prop-
erties. These include the big group of fiber-reinforced plastics and metals, in which
high-strength fibers (glass, carbon, whisker) are embedded in a matrix material in
order to increase the strength and stiffness. The reinforcement can either be in uni-
directional orientation or as fiber mats in various layers of different orientation.
Besides these composites and laminates, especially metallic and ceramic materials
with anisotropic crystalline structure are of interest. Examples are nickel-base mono-
crystals for turbine blades or silicon components in micro-system-technology. After
all, reinforced concrete in civil engineering, finned steel constructions, stringers in
airplanes and others belong to the category of anisotropic structures, too. Therefore,
anisotropy has to be considered when dealing with fracture–mechanical problems.

We analyze a crack in the infinite plane under mode I, II and III loading, see
Fig. 3.19. The principal axes of anisotropy are fixed by the material coordinate system
(x̄1, x̄2, x̄3), whereby we restrict the considerations to orthogonality and the x̄3 axis
running parallel to the x3 coordinate. In the case of plane stress, (A.82) results in the
anisotropic compliance matrix formulated in engineering constants in the material
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Fig. 3.19 Crack in a sheet of anisotropic elastic material

coordinate system

⎡
⎢⎢⎢⎢⎢⎣

ε̄11

ε̄22

γ̄12

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1

E1
−ν21

E2
0

−ν12

E1

1

E2
0

0 0
1

G12

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

σ̄11

σ̄22

τ̄12

⎤
⎥⎥⎥⎥⎥⎦

. (3.105)

Using the rules of tensor algebra, this relation is transformed into the global coor-
dinate system by means of the rotation matrix r depending on the angle α, which
provides a full compliance matrix [aαβ] =̂ [Sαβ] with α,β = {1, 2, 6}

⎡
⎣
ε11
ε22
γ12

⎤
⎦ =

⎡
⎣

a11 a12 a16
a12 a22 a26
a16 a26 a66

⎤
⎦
⎡
⎣
σ11
σ22
τ12

⎤
⎦ . (3.106)
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For plane strain the stress–strain–relation reads with modified constants bαβ as

⎡
⎣
ε11
ε22
γ12

⎤
⎦ =

⎡
⎣

b11 b12 b16
b12 b22 b26
b16 b26 b66

⎤
⎦
⎡
⎣
σ11
σ22
τ12

⎤
⎦ , bαβ = aαβ − aα3aβ3

a33
. (3.107)

The stress in thickness direction is then σ33 = −(a13σ11 + a23σ22 + a26τ12)/a33 .
Detailed instructions to material modeling of laminates can be found in [26].

For the solution of boundary value problems in plane anisotropic elasticity, gen-
eralized complex stress functions have been developed by Lekhnitskii [27] and Stroh
[28]. On this basis, Sih, Paris and Irwin [29] have found such a crack solution for the
first time, which will be presented here. The stresses and displacements are derived
from two complex holomorphic functions φk(zk) (k = {1, 2}) of the complex vari-
ables zk = x1 + skx2. The complex constants sk can be found from the roots of the
characteristic equation subject to the elastic constants aαβ

a11s4 − 2a16s3 + (2a12 + a66)s
2 − 2a26s + a22 = 0, (3.108)

which provides two conjugated complex solutions

s1 = γ1 + iδ1, s2 = γ2 + iδ2, s3 = s1, s4 = s2 . (3.109)

Applying the same approach as used for isotropic material behavior in Sect. 3.2.7, it
is now possible to calculate the crack tip fields [29]. In polar coordinates (r, θ) the
result around the crack tip is

Mode I

σ11 = KI√
2πr

	
[

s1s2

s1 − s2

(
s2√

cos θ + s2 sin θ
− s1√

cos θ + s1 sin θ

)]

σ22 = KI√
2πr

	
[

1

s1 − s2

(
s1√

cos θ + s2 sin θ
− s2√

cos θ + s1 sin θ

)]
(3.110)

τ12 = KI√
2πr

	
[

s1s2

s1 − s2

(
1√

cos θ + s1 sin θ
− 1√

cos θ + s2 sin θ

)]

u1 = KI

√
2r

π
	
[

1

s1 − s2

(
s1p2

√
cos θ + s2 sin θ − s2p1

√
cos θ + s1 sin θ

)]

u2 = KI

√
2r

π
	
[

1

s1 − s2

(
s1q2

√
cos θ + s2 sin θ − s2q1

√
cos θ + s1 sin θ

)]

(3.111)
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Mode II

σ11 = KII√
2πr

	
[

1

s1 − s2

(
s2

2√
cos θ + s2 sin θ

− s2
1√

cos θ + s1 sin θ

)]

σ22 = KII√
2πr

	
[

1

s1 − s2

(
1√

cos θ + s2 sin θ
− 1√

cos θ + s1 sin θ

)]
(3.112)

τ12 = KII√
2πr

	
[

1

s1 − s2

(
s1√

cos θ + s1 sin θ
− s2√

cos θ + s2 sin θ

)]

u1 = KII

√
2r

π
	
[

1

s1 − s2

(
p2

√
cos θ + s2 sin θ − p1

√
cos θ + s1 sin θ

)]

u2 = KII

√
2r

π
	
[

1

s1 − s2

(
q2

√
cos θ + s2 sin θ − q1

√
cos θ + s1 sin θ

)]
(3.113)

with the material-dependent constants (k = {1, 2}):

pk = a11s2
k + a12 − a16sk and qk = a12sk + a22

sk
− a26 (3.114)

The mode III problem during anti-planar shear stress τ∞
23 remains decoupled from

the in-plane problem in case of orthotropy, i. e. Hooke’s law has the form

[
γ23
γ13

]
=
[

a44 a45
a45 a55

] [
τ23
τ13

]
. (3.115)

The near fields at the crack consist merely of the shear stresses τ13 and τ23 as well
as of the u3–displacement, each as a function of (x1, x2), respectively

τ13 = − KIII√
2πr

	
[

s3√
cos θ + s3 sin θ

]
, τ23 = KIII√

2πr
	
[

1√
cos θ + s3 sin θ

]

(3.116)

u3 = KIII

√
2r

π
	
[√

cos θ + s3 sin θ/(c45 + s3c44)
]

. (3.117)

Thereby, s3, s3 are the complex roots of the equation c44s2 +2c45s + c55 = 0, which
depend on the elastic stiffness constants cαβ, (α,β = {4, 5}) of the material

c44 = a55

c
, c55 = a44

c
, c45 = −a45

c
, c = a44a55 − a2

45 . (3.118)

The definition of the stress intensity factors KI, KII and KIII doesn’t change compared
to the isotropic case. They are determined by extrapolation of the singular stress
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behavior on the ligament in front of the crack using (3.63). For the infinite sheet with
given far field loads, the same relationship exists as in the isotropic cases

KI = σ∞
22

√
πa, KII = τ∞

21
√
πa, KIII = τ∞

23
√
πa. (3.119)

Thus, the radial behavior of the anisotropic crack tip field is characterized by the same
1/

√
r–singularity of stresses and strains as well as by the

√
r–dependency of the

displacements as in the isotropic–elastic case. The only differences are the angular
functions of (3.110)–(3.117). Evaluating the real parts leads to fairly complicated
mathematical expressions, but in principle it is possible.

Finally, the relation between the energy release rate (during self-similar crack
expansion) and the stress intensity factors will be stated. It can be gained with the
help of Irwin’s crack closure integral from the asymptotic solution.

GI = −a22

2
KI


[
KI(s1 + s2) + KII

s1s2

]
, GIII = K 2

III

[

c45 + s3c44

2c44c55

]

GII = a11

2
KII
 [KII(s1 + s2) + KIs1s2] . (3.120)

In the special case if the crack coincides with a symmetry plane of the orthotropy
(α = 0 in Fig. 3.19), the following real expressions are obtained

G = GI + GII + GIII , GI = K 2
I

√
a11a22

2

[√
a22

a11
+ 2a12 + a66

2a11

]1/2

GII = K 2
II

a11√
2

[√
a22

a11
+ 2a12 + a66

2a11

]1/2

, GIII = K 2
III

1

2
√

c44c55
. (3.121)

3.2.8 Interface Cracks

Often cracks appear in the interface between two materials with different mechanical
properties. Such cracks are referred to as interface cracks, see [30]. Interface cracks
can be found especially in joint connections (gluing, bonding, welding, soldering),
because the strength of the bonding materials is often less than the strength of both
join partners. Interface cracks are also very important for sandwich materials (e. g.
fiber–reinforced laminate materials, coating systems and coatings of all kinds where
crack propagation leads to delamination of layers. After all, even the strength of
many construction materials is essentially influenced by failure mechanisms at inner
interfaces (boundaries between grains, phases and the like).

Furthermore, we will focus on the stress situation at an interface crack between
two isotropic–elastic materials and the relevant fracture–mechanical parameters. The
near tip field solution is studied for a crack in an infinite sheet located in an interface
between materials (1) and (2) with the elastic constants E1, ν1 and E2, ν2, see
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Fig. 3.20 Crack in the inter-
face between two dissimilar
materials

Fig. 3.20. The difference between the elastic properties of both materials is specified
by the parameter ε (Bi–material–constant), calculated from the individual constants
μm = Em/2(1 + νm) and κm = 3 − 4νm for m = 1, 2.

ε = 1

2π
ln
μ2κ1 + μ1

μ1κ2 + μ2
, 0 ≤ |ε| ≤ 0, 175 , (3.122)

In the limit case of identical materials (1)=(2), ε becomes zero. Similarly to a crack
in homogeneous material (Sect. 3.3.2), we use the method of complex functions. To
evaluate the eigenfunctions for this crack, we use a series expansion for φ(m)(z) and
χ(m)(z), just as in (3.33), which has to differ for both materials m = 1, 2 in the upper
and lower half–plane, however.

φ(m)(z) = A(m)zλ , χ(m)(z) = B(m)zλ+1 , z = reiθ (3.123)

At the crack faces the tractions are zero

θ = π : σ
(1)
θθ + iτ (1)

rθ = 0 , θ = −π : σ
(2)
θθ + iτ (2)

rθ = 0 (3.124)

and at the interface ahead of the crack the displacements and stresses of both regions
need to be continuous

θ = 0 : u(1)
1 + iu(1)

2 = u(2)
1 + iu(2)

2 , σ
(1)
θθ + iτ (1)

rθ = σ
(2)
θθ + iτ (2)

rθ . (3.125)

If these four boundary and transition conditions are expressed by the complex func-
tions of (3.34) and (A.161), we obtain a homogeneous system of equations for the 4
complex (8 real) coefficients A(m), B(m). The characteristic polynomial of this eigen-
value system provides a conditional equation for the exponent λ that can assume the
following eigenvalues
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λ = −1

2
+ n + iε mit n = 1, 2, 3, . . . (3.126)

In contrast to the homogeneous case, the eigenvalues λ(n) are complex numbers with
positive real part. To describe the near field r → 0, only the dominating term of the
solution is of interest associated with the smallest eigenvalue

λ(n = 1) = 1

2
+ iε . (3.127)

Inserting (3.123) with (3.127) into Kolosov’s formulas (A.161), we gain the complete
displacement and stress fields in polar coordinates at the crack tip (see [31]). The
intensity of these fields is calculated by the coefficient of the n = 1th eigenfunction
that has been introduced by Rice [32] as complex stress intensity factor

K̃ = K1+iK2 = |K̃ |eiψ/liε , |K̃ | =
√

K 2
1 + K 2

2 , ψ = arctan(K2/K1) . (3.128)

Here, l denotes a reference length (e. g. crack length a) and the phase angleψ describes
the ratio of the crack opening modes. This makes it possible to calculate the stresses
ahead of the crack and the displacement jumps �ui = u(1)

i (r, π) − u(2)
i (r, −π)

across the crack faces in the following way (angular functions are normalized to 1 at
θ = 0)

σ22(r, 0) + iτ12(r, 0) = K̃√
2πr

riε

�u2(r) + i�u1(r) = 8

1 + 2iε

K̃

E∗ cosh(πε)

√
r

2π
riε .

(3.129)

E∗ is the averaged elastic modulus 1/E∗ = (1/E ′
1 + 1/E ′

2)/2 in plane strain.
As in homogeneous materials we get radial functions of the type 1/

√
r or

√
r

respectively. However, due to the imaginary part of (3.127), they are extended by

riε = eiε ln r = cos(ε ln r) + i sin(ε ln r) (3.130)

which leads to two consequences:
Firstly, the crack opening modes I and II always occur coupled. Because of the

complex product K̃ riε, the crack tip fields cannot be split into separate functions
with their own coefficients KI and KII as in the homogeneous case of (3.45). That
is why the new terms K1 and K2 are used here. Therefore, it is not possible to e. g.
relate the crack face displacements u2 and u1 or the stresses σ22 and τ12 ahead of the
crack in a unique way to the modes I or II anymore. Their ratio even changes with
the distance r! That is easily recognized if the crack face displacements of (3.129)
are written in real representation
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{
�u1(r)
�u2(r)

}
=
√

r

2π

8

(1 + 2iε)E∗ cosh(πε)

{
K1 sin(ε ln r) + K2 cos(ε ln r)
K1 cos(ε ln r) + K2 sin(ε ln r)

}
.

(3.131)
In the homogeneous case of (ε = 0) these terms merge into their corresponding
Eqs. (3.16) and (3.25) using the identity K1 = KI and K2 = KII.

Secondly, Eqs. (3.129) and (3.130) reveal that the stresses and displacements oscil-
late due to the interval [−1, +1] of angular functions. The oscillations become faster
the closer we come to the crack tip, since ln r → −∞. This leads to the physically
absurd result that the crack faces interpenetrate each other. In order to avoid this oscil-
lating singularity, contact zone models have been proposed in [30]. In engineering
practice however, the approach of Rice has prevailed and been proved. The reason for
this is that for practically relevant material combinations, the bi–material constants
(ε < 0, 05) are rather small. The largest radius rc, where crack face contact occurs
for the first time, can be estimated to rc/l = exp(−(ψ+ π/2)/ε) [32]. For a mixed–
mode–ratio of K2/K1 = 1 (ψ = −π/4) and ε = 0, 05 one finds rc ≈ 2 · 10−9l. If
the crack length is chosen as the reference length l = 2a, the oscillation region is
therefore negligibly small and is quantified by K̃ dominating outside of the contact
zone.

The complex stress intensity factor K̃ has to be determined as a function of
geometry, crack length and load. The solution for the interface crack of the length
l = 2a in an infinite plane under combined tensile and shear load by the normal
stress σ and shear stress τ is known

K̃ = K1 + iK2 = (σ + iτ )
√
πa(2a)−iε(1 + 2iε) . (3.132)

Generally for interface cracks, K̃ has the generic form

K̃ = (σn + iτn)
√
πa(2a)−iεg(a, w, ε) , (3.133)

wherebyσn and τn are nominal stresses and the function g exemplifies the dependency
on geometry and material combination. From relation (3.132) it is obvious that a
global tensile stress σ also causes a local shear load K2 ≈ 2εK1 and vice versa!
Furthermore, the mixed–mode–ratio K2/K1 = tanψ changes along with the crack
length because of the complex term (2a)−iε.

The formulation of a fracture criterion for interface cracks based on K̃ —similar
to the KI concept for homogeneous crack configurations—encounters several funda-
mental difficulties, however. First of all, the definition (3.128) of K̃ gives a complex
dimension MPa · m−iε, which is difficult to understand. Secondly, the critical size
of K̃ does not only depend on the absolute value |K̃ | but also on the phase angle
ψ occurring in the specimen. This means a two-parameter criterion K̃c = Kceiψc

or KIc(ψ) is required. Thirdly, during the transfer from the specimen (case 1) to a
component (case 2) not only the absolute values of the intensity factors should agree,
but also their phase angles have to match the relation
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K̃1 = |K̃1|eiψ1(2a1)
−iε = |K̃2|eiψ2(2a2)

−iε = K̃2

|K̃1| = |K̃2| and ψ2 = ψ1 − ε ln(a1/a2) ,
(3.134)

to ensure the same crack tip loading.
Rice suggested a pragmatic way out of this complication: the relations (3.129)

can be converted into the classical (homogeneous form) if the stress is coupled to a
certain distance r̂

KI + iKII = K̃ r̂iε = (K1 + iK2)r̂
iε , (3.135)

This means, exactly that mode ratio is taken over which exists in the interface solution
at r̂ with the phase angle ψ̂ = ψ+ ε ln(r̂/a). Due to physical reasons it is rational to
choose for r̂ just the material–specific size of the crack process zone which should be
smaller than the crack length a and bigger than the oscillation region rc: rc < r̂  a.

Alternatively, it is possible to use the energy release rate G for the interface crack
as fracture–mechanical parameter. With the help of the near field solution (3.129), it
is possible to compute the crack closure integral (3.89), which leads to the relation

G = − lim
�a→0

�Π

�a
= K 2

1 + K 2
2

E∗ cosh2(πε)
. (3.136)

Fortunately, the oscillations and the dependency on the reference length l disappear
in the energetic view. What is left are the influence of the bi–material constants
ε and the mode ratio K2/K1. Without knowing the phase angle ψ it is impossible
to deduce both intensity factors from (3.136). Further information about energetic
fracture criteria for interfaces and their experimental confirmations can be found
in [33].

Theoretical investigations for interface cracks between anisotropic elastic mate-
rials were done by Qu and Bassani [34], Suo [35] and Beom and Atluri [36] on the
basis of Stroh–Lekhnitski–formalism. The mathematical structure of the solutions
is naturally more complicated as in the isotropic case and features mostly oscillating
singularities. Nevertheless, anisotropy plays an important role for numerous applica-
tions on crystallographic interfaces, fiber–reinforced laminates and microelectronic
coating systems.

3.2.9 Cracks in Plates and Shells

Thin-walled plate and shell structures occur particularly in light-weight and aerospace
constructions where, due to the service load, fatigue cracks play a particular role.
Besides the membrane stresses that generate a stress state at the crack tip such as in
sheets, the bending and torsional moments cause an additional different near field at
the crack tip.

Based on Kirchhoff’s theory of thin shear–rigid plates (see explanation in the
Appendix A.5.5), Williams [37] was able to calculate the eigenfunctions for a crack
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Fig. 3.21 Crack opening types in plane sheets, plates and shells due to membrane stresses, bending
and torsional moments

in the infinite plate by using a series expansion for the deflection function w(x1, x2).
Later, Sih et al. [38] introduced the stress intensity factors k1 and k2 for plate bend-
ing/plate torsion. The form of representation is consistent with the crack loading by
KI and KII in sheet problems in the way that it can be related to the normal and
shear stresses σ22 or τ12, respectively on the ligament ahead of the crack. Figure 3.21
illustrates all four crack opening types, which can occur in shells at the same time.
If the coordinate in the direction of the plate thickness h is denoted by z =̂ x3, see
Fig. 3.22, the asymptotic solution at the crack has the following form in cylindrical
coordinates (r, θ, z)

⎧
⎨
⎩
σb

rr
σb
θθ
τb

rθ

⎫
⎬
⎭ = k1

(3 + ν)
√

2r

z

2h

⎧
⎪⎪⎨
⎪⎪⎩

(3 + 5ν) cos θ
2 − (7 + ν) cos 3θ

2

(5 + 3ν) cos θ
2 − (7 + ν) cos 3θ

2

−(1 − ν) sin θ
2 + (7 + ν) sin 3θ

2

⎫
⎪⎪⎬
⎪⎪⎭

+ k2

(3 + ν)
√

2r

z

2h

⎧
⎪⎪⎨
⎪⎪⎩

−(3 + 5ν) sin θ
2 + (5 + 3ν) sin 3θ

2

−2(5 + 3ν) cos θ
2 sin θ

−(1 − ν) cos θ
2 + (5 + 3ν) cos 3θ

2

⎫
⎪⎪⎬
⎪⎪⎭

(3.137)

{
τb

rz
τb
θz

}
=

[
1 − (2z/h)2]

(3 + ν)(2r)
3
2

h

2

{−k1 cos θ2 + k2 sin θ
2

−k1 sin θ
2 − k2 cos θ2

}
. (3.138)

The bending and shear stresses in the plane of the plate (x1, x2) or (r, θ) behave
again singularly with 1/

√
r. The r−3/2-singularity of the shear stresses acting verti-

cally to the plate plane is a consequence of the shear-rigid plate model, which fulfills
the stress-free conditions at the crack faces only approximately by introducing a
substitute shear-force. According to the plate theory, the bending stresses run across
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Fig. 3.22 Cylindrical coordinate system at the crack front in plates and shells

the thickness h linearly with z. Thus, the stresses vary from tension to compression
along the crack front and assume (z = ±h/2) maxima with opposite signs at the
upper and lower surfaces. In the neutral plane (z = 0) the crack is not stressed at all.
A possible contact of the crack faces however cannot be considered within the plate
theory. The region, where the k-controlled near field dominates, is about a/10.

The deflection function w(r, θ) of the plate’s mid-plane has the following asymp-
totics at the crack tip (Fig. 3.22):

w = (2r)
3
2 (1 − ν2)

2Eh(3 + ν)

(
k1

[
1

3

7 + ν

1 − ν
cos

3θ

2
− cos

θ

2

]
+ k2

[
1

3

5 + 3ν

1 − ν
sin

3θ

2
− sin

θ

2

])
.

(3.139)
Since the stresses and sectional variables mij, qi are calculated from w by twofold

derivation (see A.167), r needs to stand in the power of 3/2. The differential equation
of Kirchhoff’s plate theory is very similar to the bi-potential equation of the sheet
problem. For this reason the complex analysis methods from Sect. 3.2.2 can often
be adopted to find solutions, see [38]. Thus, the stress intensity factors are obtained
from the complex stress function φ of Eq. (A.171) by a limiting process for z → z0
towards the crack tip

k1 − ik2 = −
√

2Eh(3 + ν)

1 − ν2 lim
z→z0

√
z − z0 φ

′(z). (3.140)

As an example, for the infinite plate under a constant bending moment m0 on all
sides, the solution is

k1 = 6m0

h2

√
a, k2 = 0 . (3.141)

Using the Reissner–theory for thick plates allowing for shear deformations [39],
one gets, as expected, the same asymptotics as in a plane strain state, whereby the
KI-, KII-factors run along the crack front linearly with z. Since this crack tip field is
only valid in a region r < h/10, it lies embedded within the Kirchhoff–asymptotics
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and is uniquely defined by it [40]. That is why the Kirchhoff–theory is mostly suf-
ficient for fracture–mechanical calculations of plates and shells. The theory is also
preferred because of its lower effort necessary for discretization.

Hui and Zehnder [40] established the connection between the energy release rates
and Kirchhoff’s stress intensity factors

G1 = k2
1π(1 + ν)

3E(3 + ν)
, G2 = k2

2π(1 + ν)

3E(3 + ν)
. (3.142)

3.2.10 Fracture Mechanical Weight Functions

In this section a very useful, semi-analytical method to calculate stress intensity
factors for linear–elastic, static crack problems will be introduced. Based on certain
basic solutions for the relevant geometrical crack configuration, it is possible to find
the K factors for further arbitrary load situations of the same crack configuration.

Behind this the fascinating fact is concealed that inside the solution of one special
boundary value problem rests the variety of all kinds of possible solutions of the
same crack configuration. The key for this approach lies in crack weight functions.

The Principle of Superposition

As for all boundary value problems of linear partial differential equation, the princi-
ple of superposition is valid in elastostatics, too. It implies that solutions for different
boundary values can be combined additively to the total solution, which then repre-

Fig. 3.23 Example to apply the principle of superposition
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(a) (b) (c)

Fig. 3.24 Conversion of external stresses into equivalent crack face tractions

sents the exact solution of the boundary value problem for the sum of all boundary
values. The prerequisite for doing so is that the geometry of the body as well as
the subdivision of the boundary into parts, owing to Dirichlet Su and Neumann St

conditions, are always the same, see Fig. A.16. Thereby it is possible to reduce com-
plicated loading states of a crack configuration to the combination of a set of known
solutions with simpler loads. For example, let’s consider the sheet containing a pre-
crack starting from a hole, as drafted in Fig. 3.23, which is loaded by tension σ at the
lower face and by a pressure p inside the hole. The resulting stress intensity factor
is obtained by superimposing both sub-problems K (a)

I = K (b)
I + K (c)

I . The principle
of superposition is also valid for thermal stresses and body forces.

The following technique is also very advantageous, combining the method of sec-
tions with the principle of superposition. Given a crack configuration under external
load, such as the edge-cracked sheet under tension shown in Fig. 3.24. The boundary
value problem can be split into a subproblem (b) without crack and a subproblem (c)
with pure crack face load. To do this, we calculate the sectional stresses at the posi-
tion of the crack Sc in the uncracked configuration (b) from the stresses tc

i = ±σijnj.
Next we make notionally a body cut along the crack, but let the sectional stress act on
its faces so that the crack stays closed as before. Now in load case (c), the sectional
stresses tc

i are applied exactly with the opposite signs. As it becomes evident from
Fig. 3.24, adding the boundary conditions (b) and (c) gives the original problem (a).
Since the subproblem (b) contains in fact no crack (K (b) = 0), the stress intensity
factor of the considered problem (a) is identical to the one of the boundary value
problem (c)

K (a)
I = K (c)

I . (3.143)

Using this method, any kind of loading (surface tractions, body forces, tem-
perature fields) imposed onto a crack can be converted into equivalent crack
face tractions. This allows for systematic and unified calculations of the stress
intensity factors.
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Fig. 3.25 Example of using superposition of crack face stresses

Weight Function for Crack Face Loads

The use of the superposition principle will be exemplified by means of the simple
Griffith crack of length 2c, see Fig. 3.25. Our starting point is the known solution
(e.g. reference book [15]) for the K –factors due to a force couple P and Q (per
thickness), imposed on the upper and lower crack face

{
K ±

I
K ±

II

}
= 1√

πc

√
c ± x1

c ∓ x1

{
P
Q

}
(3.144)

From Fig. 3.25 it is evident that because of symmetry P creates a mode–I–loading
and the antisymmetry of Q leads to mode II. The K factors and signs refer to the
positive (x1 = +c) and to the negative (x1 = −c) crack tip.

This solution is also known as Green’s function for crack faces, since it enables
us to calculate the stress intensity factors for arbitrarily distributed line loads p(x1)

or q(x1) respectively along the crack faces. To do this, the line loads are interpreted
as continuous infinitesimal concentrated forces dP = p(x1) dx1 or dQ = q(x1) dx1
respectively, whose superposition leads to the following integral for the K –factors

{
K ±

I
K ±

II

}
= 1√

πc

+c∫

−c

√
c ± x1

c ∓ x1

{
p(x1)

q(x1)

}
dx1 . (3.145)

If for instance the KI–factor for a constant compressive stress p(x1) = −σF in the
region of the crack tips a ≤ |x1| ≤ a + d = c is supposed to be determined (the
result is needed in Sect. 3.3.3, see Fig. 3.34), the use of (3.145) results in
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K +
I = K −

I = −σF√
πc

[−a∫
−c

√
c + x1

c − x1
dx1 +

c∫
a

√
c + x1

c − x1
dx1

]

= −σF√
πc

c∫
a

2c√
c2 − x2

1

dx1 = −2σF

√
c

π
arccos

(a

c

)
.

(3.146)

General Weight Functions

The generalization of the explained calculation method to any kind of loading of a
crack configuration comprising surface tractions t̄ at the boundary St and volume
loads b̄ in the body V leads to the actual fracture–mechanical weight functions.

The fracture–mechanical weight function H I
i (x, a) describes the effect of a

concentrated force F = Fiei of the value |F| = 1 at position x on the stress
intensity factor KI(a) for a crack of length a in the considered body. Thus, the
stress intensity factor can be determined for this crack configuration under an
arbitrary load t̄ and b̄ using a simple integration

KI(a) =
∫

St

t̄i(x)H I
i (x, a) dS +

∫

V

b̄i(x)H I
i (x, a) dV . (3.147)

H I
i (x, a) depends on the body and crack geometry, on the assignment of the

boundary into St and Su aa well as on the elastic material properties.

In the following, one method for calculating fracture–mechanical weight functions
will be explained that traces back to Rice [41]. For that purpose, we consider a crack
configuration under two different loading conditions (1) and (2), which is shown in
Fig. 3.26 for an edge crack of size a. The load case (1) indicates that crack loading,
for which we seek the K factors, while load case (2) represents an already known
solution. The associated displacement fields u(m)

i , boundary tractions t(m)
i (overbar

is omitted from here on) and K factors K (m)
I , K (m)

II of both load cases m = 1, 2 are
marked by superscripted indexes. We now perform a virtual crack extension by the
length �a, where the boundary loads t(m)

i are kept constant. The displacement state
in the body however changes as follows:

u(m)
i (x, a + �a) = u(m)

i (x, a) + �u(m)
i , �u(m)

i = ∂u(m)
i

∂a
�a . (3.148)

According to Sect. 3.2.5 the potential energy released during this process matches
half the work of the external loads t(m)

i to the displacement changes �u(m)
i and is
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Fig. 3.26 Derivation of generalized fracture–mechanical weight functions

therefore equal to the energy release rate G = �Wext/�a. On the other hand, the
energy release rate G is linked with the intensity factors KI and KII by the relation
(3.93). Thereby the result for both load cases is

�W(1)
ext = 1

2

∫

St

t(1)
i �u(1)

i dS = G(1)�a = 1

E ′

[(
K (1)

I

)2 +
(

K (1)
II

)2
]

�a

�W(2)
ext = 1

2

∫

St

t(2)
i �u(2)

i dS = G(2)�a = 1

E ′

[(
K (2)

I

)2 +
(

K (2)
II

)2
]

�a . (3.149)

When superimposing both load cases (1) and (2), the K factors KL = K (1)
L + K (2)

L
(L = I, II) are added. In the boundary integrals, the work of every other load case
has to be considered, respectively. Therefore the energy release for the combined
total state is

G(1+2)�a = 1

E ′

[(
K (1)

I + K (2)
I

)2 +
(

K (1)
II + K (2)

II

)2
]

�a

= 1

2

∫

St

t(1)
i

(
�u(1)

i + �u(2)
i

)
dS + 1

2

∫

St

t(2)
i

(
�u(2)

i + �u(1)
i

)
dS .

(3.150)

The difference of Eqs. (3.150) and (3.149) identifies the interaction energy between
both load cases
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2

E ′
[

K (1)
I K (2)

I + K (1)
II K (2)

II

]
�a = 1

2

∫

St

t(1)
i �u(2)

i dS + 1

2

∫

St

t(2)
i �u(1)

i dS . (3.151)

According to the theorem of Betti (see for instance [42]) the work done by the
boundary tractions of one load case to the displacements of the other load case are
reciprocally identical

∫

St

t(1)
i u(2)

i dS =
∫

St

t(2)
i u(1)

i dS , (reciprocity theorem) (3.152)

which can also be applied this way to the situation after crack expansion a +�a, too

∫

St

t(1)
i

(
u(2)

i + �u(2)
i

)
dS =

∫

St

t(2)
i

(
u(1)

i + �u(1)
i

)
dS . (3.153)

The subtraction of (3.152) and (3.153) results in

∫

St

t(1)
i �u(2)

i dS =
∫

St

t(2)
i �u(1)

i dS . (3.154)

Thereby, the 2nd integral can be replaced by the 1st integral in (3.151). Finally we
put the differential quotient �u(2)

i /�a below the integral (t(1)
i does not depend on

�a) and form the limiting process �a → 0 using (3.148)

K (1)
I K (2)

I + K (1)
II K (2)

II = E ′

2

∫

St

t(1)
i

∂u(2)
i

∂a
dS . (3.155)

This relation of general validly can be specialized in different aspects.

(a) Pure Mode I loading
In this special case of symmetrical geometry and load, K (1)

II = K (2)
II = 0 vanish. It

is easy to solve (3.155) for the sought stress intensity factor of load case (1)

K (1)
I (a) = E ′

2K (2)
I (a)

∫

St

t(1)
i (x)

∂u(2)
i (x, a)

∂a
dS . (3.156)
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A comparison with (3.147) shows that the weight function H I
i is exactly pro-

portional to the change of the displacement field at position x on the boundary
St during crack expansion

H I
i (x, a) = E ′

2K (2)
I (a)

∂u(2)
i (x, a)

∂a
. (3.157)

Thus, the (same !) weight function can be calculated for this crack configuration
from every known reference solution u(2)

i and K (2)
I .

(b) Pure crack face loading
Every external load t̄i can be transformed into an equivalent crack face load tc

i .
Therefore it is allowed to put into Eq. (3.156) instead of St the entire crack surface
Sc, using exactly the sectional stresses tc

i acting there. This way the location x ∈ Sc,
where the weight functions are to be determined and applied, are restricted to the
crack itself → crack face weight functions.

(c) Mixed–mode loading
In this case two reference solutions (2) are necessary, which will be labeled (2a) and
(2b). Applying (3.155) then provides a linear system of equations

K (1)
I K (2a)

I + K (1)
II K (2a)

II = E ′
2

∫
St

t(1)
i

∂u(2a)
i
∂a dS

K (1)
I K (2b)

I + K (1)
II K (2b)

II = E ′
2

∫
St

t(1)
i

∂u(2b)
i
∂a dS,

(3.158)

whose solution gives the sought K –factors of the considered load case (1)

K (1)
I = E ′

2K 2

⎡
⎢⎣K (2a)

II

∫

St

t(1)
i

∂u(2b)
i

∂a
dS − K (2b)

II

∫

St

t(1)
i

∂u(2a)
i

∂a
dS

⎤
⎥⎦

K (1)
II = E ′

2K 2

⎡
⎢⎣K (2b)

I

∫

St

t(1)
i

∂u(2a)
i

∂a
dS − K (2a)

I

∫

St

t(1)
i

∂u(2b)
i

∂a
dS

⎤
⎥⎦ (3.159)

with K 2 = K (2b)
I K (2a)

II − K (2a)
I K (2b)

II .

Both reference solutions must not be solely mode I or mode II, since the system of
equations would then become indefinite. (K = 0!). Ideally, a pure mode I solution
(K (2a)

II = 0) is used for (2a), and for (2b) a mode II case is chosen (K (2b)
I = 0), by

which Eq. (3.158) is decoupling.
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For mixed–mode loading of plane crack problems, the weight functions are
gained from (3.159)

H I
i (x, a) = E ′

2K 2(a)

[
K (2a)

II (a)
∂u(2b)

i (x, a)

∂a
− K (2b)

II (a)
∂u(2a)

i (x, a)

∂a

]

H II
i (x, a) = E ′

2K 2(a)

[
K (2b)

I (a)
∂u(2a)

i (x, a)

∂a
− K (2a)

I (a)
∂u(2b)

i (x, a)

∂a

]
.

(3.160)

The application of these four functions H L
i (i = 1, 2; L = I, II) has the following

form

K (1)
I (a) =

∫

St

t(1)
i (x) H I

i (x, a) dS , K (1)
II (a) =

∫

St

t(1)
i (x) H II

i (x, a) dS . (3.161)

Naturally, these weight functions can be restricted to the crack location x ∈ Sc.
Instead of (or in addition to) the boundary loads t(m), the above derivation could have
been performed for arbitrarily distributed volume loads b(m), whereof the weight
functions H I,II

i (x, a) for inner points x ∈ V result, see Eq. (3.147).
Until now, identical displacement boundary conditions ū in both load cases (1)

and (2) have been implied at the surface part Su. However, there are situations when
the body is only stressed by boundary displacements ū(m) imposed on Su, whose
effect on K factors is of interest. For this situation, fracture mechanical weight
functions can be derived in a complementary way, too [43]. Instead of (3.148), now
the changes of reaction stresses �t(m)

i occurring on the displacement boundary Su

have to be considered during a virtual crack expansion. Their work performed to
the imposed displacements u(m)

i yields the energy release rate G = −�Wint/�a,
which corresponds to the loss of inner energy at fixed displacements. Therefore, the
equivalent expression to (3.149) for m = 1, 2 is

− �W(m)
int = −1

2

∫

Su

u(m)
i �t(m)

i dS = G(m)�a . (3.162)

Analogous considerations as mentioned above lead to weight functions GL
i

(L = I, II) for displacement boundary conditions, whereof the sought stress intensity
factors of the load case (1) can be calculated using a simple integration of the dis-
placements ū(1)

i =̂ ūi. Here, only the expressions equivalent to (3.147) and (3.157)
are given for mode I
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KI(a) =
∫

Su

ūi(x) GI
i(x, a) dS , GI

i(x, a) = E ′

2K (2)
I (a)

∂t(2)
i (x, a)

∂a
. (3.163)

The generalization to mixed–mode loading similar to (3.160) and (3.161) is left to
the reader as an exercise.

In the most general case, mixed boundary conditions t(m) and u(m) exist on the
boundary parts St and Su already indicated in Fig. 3.26. For this, only the result will
be provided, which represents an extension of the relationship (3.155):

K (1)
I K (2)

I + K (1)
II K (2)

II = E ′

2

⎡
⎢⎣
∫

St

t(1)
i

∂u(2)
i

∂a
dS −

∫

Su

u(1)
i

∂t(2)
i

∂a
dS

⎤
⎥⎦ . (3.164)

Bueckner Singularity

A completely different approach to weight functions originates from Bueckner [44].
It makes use of »fundamental solution fields« of a crack problem, associated with a
special load at the crack tip by a pair of forces. Starting points are again two load
cases of exact the same (two-dimensional) crack configuration: load case (1) is again
an arbitrary surface load t(1)

i , for which the K factors are searched, see Fig. 3.27a.

The corresponding displacement field u(1)
i (x) in the body is unknown. However it is

known that the near field at the crack tip must exist and is defined by the yet unknown
stress intensity factors K (1)

I and K (1)
II . Using the Eqs. (3.16) for mode I and (3.25)

for mode II, respectively, the crack face displacements can be found (θ = ±π)

u(1)
1 (r) = ±κ+ 1

2μ

√
r

2π
K (1)

II , u(1)
2 (r) = ±κ+ 1

2μ

√
r

2π
K (1)

I . (3.165)

Load case (2) represents the solution for a force pair ±F = ±Qe1 ± Pe2 that acts
on the crack faces. Contrary to Fig. 3.25, here a crack in the finite body is examined
according to Fig. 3.27b. With the help of Dirac’s delta function, these point forces
(per thickness) at distance r = d to the crack tip, can be rewritten as traction vector
of the load case (2) by t(2) = t(2)

i ei

t(2)(x) = δ(r − d)F , t(2)
1 = δ(r − d)Q , t(2)

2 = δ(r − d)P . (3.166)

The corresponding displacement field is u(2)
i (x).

We will now again make use of Betti’s theorem for these two load cases, i. e. the
reciprocal interaction energies are equated
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(a) (b)

Fig. 3.27 Derivation of the weight functions according to Bueckner

∫

S

t(2)
i u(1)

i dS =
∫

S

t(1)
i u(2)

i dS . (3.167)

The integral on the left-hand side consists of known functions (3.165) and (3.166)
that can be calculated along the boundary S including the two crack faces

∫

S

δ(r − d)Fiu
(1)
i dS = 2Fiu

(1)
i (d) = 2

κ+ 1

2μ

√
d

2π

[
P K (1)

I + QK (1)
II

]
. (3.168)

Equalizing it with the right-hand side of (3.167) gives

√
d

π

[
P K (1)

I + QK (1)
II

]
= 2μ

κ+ 1

1√
2π

∫

S

t(1)
i u(2)

i dS . (3.169)

For an easier understanding, we will confine ourselves furthermore to mode I, which
means Q = 0 and K (1)

II = 0 disappears. Next, the force pair ±P is displaced directly
into the crack tip by the limiting process d → 0 that creates a special singularity. Its
intensity should remain unchanged, which is why the quantity

BI = lim
d→0

(
P

√
d

π

)
= const (3.170)

is introduced. Thereby, (3.169) can be rearranged for the sought stress intensity factor
K (1)

I
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K (1)
I = 2μ

κ+ 1

1√
2π

1

BI

∫

S

t(1)
i u(2)

i dS . (3.171)

A comparison with (3.147) reveals the structure of the weight function

H I
i (x, a) = 2μ

κ+ 1

1√
2π

u(2)
i (x)

BI
, (3.172)

which is calculated from the displacement field u(2)
i (x). It is generated by the force

pair at the crack tip. Displacement fields like this were denoted as fundamental fields
by Bueckner (Not to be confused with the fundamental solution of a differential
equation!).

What is the structure of this fundamental displacement field? From Eq. (3.144)
and Fig. 3.25 it is obvious that the stress intensity factors become infinitely large,
when the force pair P or Q is located directly at the crack tip so that d = c − x1 →
0. Therefore, an even stronger stress singularity develops as 1/

√
r ! Fundamental

fields have been analytically calculated for simple two-dimensional [44, 45] and
three-dimensional [46, 47] crack configurations. For the semi-infinite crack in the
infinite sheet (see Fig. 3.7, right-hand side), eigenfunctions (3.38)–(3.41) have been
derived in Sect. 3.2.2. The Bueckner singularity complies just with that eigenfunction
belonging to the eigenvalue λ = −1/2 or n = −1. The displacements at the crack
tip thereby become singular with r−1/2 and the stresses with r−3/2. The strain energy
as well becomes singular in a finite area because of u = 1

2σijεij ∼ r−3 (compare
with Sect. 3.3.6). For these reasons Bueckner’s singularity must not be understood
and approved as a real physical solution. But it constitutes a mathematically correct
solution of the boundary value problem and is fully legitimated as a weight function.
The coefficient of the (-1)st eigenfunction is directly correlated to the intensity of the
Bueckner singularity 	A(−1) = −BI. Thus, the appropriate displacement and stress
fields for mode I in a plane strain state are obtained from (3.41) with n = −1

{
u1
u2

}
= BI

μ
√

r

⎧
⎪⎨
⎪⎩

cos θ2

[
(2ν − 1) + sin θ

2 sin 3θ
2

]

sin θ
2

[
(2 − 2ν) − cos θ2 cos 3θ

2

]

⎫
⎪⎬
⎪⎭

(3.173)

⎧
⎨
⎩
σ11
σ22
τ12

⎫
⎬
⎭ = BIr

− 3
2

⎧
⎪⎪⎨
⎪⎪⎩

cos 3θ
2 − 3

2 sin θ sin 5θ
2

cos 3θ
2 + 3

2 sin θ sin 5θ
2

3
2 sin θ cos 5θ

2

⎫
⎪⎪⎬
⎪⎪⎭

. (3.174)

By inserting (3.173) as u(2)
i into (3.172), the weight functions at the crack faces

(θ = ±π) are directly identified

H I
1(r,±π) = 0 s, H I

2(r,±π) = ±1√
2πr

. (3.175)
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Since the tangential force Q creates no intensity factor KI, function H I
1 has to be

zero. H I
2 embodies exactly the effect on KI by a vertical concentrated load P in the

distance of r. Weight functions of the Bueckner type can be extended to mixed–mode
problems and mixed boundary value problems as well.

Comparing the terms for the weight functions according to Bueckner (3.172)
with the ones developed by Rice (3.157), the difference becomes clear: In the former
we use a fundamental singular displacement field, whereas a regular displacement
solution is differentiated in the latter. For the above-mentioned semi-infinite crack,
the near field (3.16) for Rice’s method could be used. In fact, the differentiation of
(3.16) with ∂

∂a = − ∂
∂x = − cos θ ∂

∂r + sin θ
r

∂
∂ϕ provides just that fundamental field

(3.173).

In conclusion, it has to be highlighted that especially the weight functions for
crack faces offer a very efficient calculation method for K factors, since the
sectional stresses at the crack location can be obtained from any conventional
stress analysis of the considered component. Therefore, an analysis with an
explicit crack is not necessary. For this reason, the numerical computation of
weight functions by means of FEM is dealt with in detail in Sect. 5.6.

The book by Fett and Munz [48] and the articles regarding mixed–mode loading
[43, 45, 49] and three-dimensional crack configurations [46, 47, 50, 51] are recom-
mended as additional literature.

3.2.11 Thermal and Electric Fields

Today, there is increasing interest in technical problems where cracks are not exclu-
sively a mechanical phenomenon but where they are exposed to important impacts
from other physical fields. The problem of thermally induced stresses in components
with cracks, which develop due to inhomogeneous temperature fields, is well known.
They play an important role especially in facilities and components of power plants
as well as in cast parts. Recently, questions have arisen as to how a crack influences
an electric field (for instance in capacitors, electric conductors or microelectronic
components), or which magnetic field concentrations (in motors, transformers) are
caused by material defects. Especially the usage of new multifunctional materials
with piezoelectric, magnetostrictive (and other) properties in mechatronics, adap-
tronics and microsystem technology raises new questions of strength and reliability.
Their solution requires assessment of cracks under coupled thermal, electric, mag-
netic and mechanic fields. In the spirit of this book, two simple field problems with
cracks will be covered for a first understanding.

http://dx.doi.org/10.1007/978-94-007-6680-8_5
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Crack in a Stationary Temperature Field

The temperature field T (x1, x2) in a plane isotropic body with crack is obtained from
the solution of a stationary thermal conduction problem. The heat flux h in the body
is proportional to the negative temperature gradient (from hot to cold) g = −∇T .
This is described by Fourier’s law employing the thermal conduction coefficient k

h = −k∇T or hi = −k
∂T

∂xi
. (3.176)

According to the 1st law of thermodynamics, the divergence of the heat flux vector
h needs to be zero if no internal heat sources are present

∇ · h = −k �T (x1, x2) = 0 or − k

(
∂2T

∂x2
1

+ ∂2T

∂x2
2

)
= 0 . (3.177)

Therefore, the sought temperature field T (x1, x2) in the crack plane has to obey the
Laplace equation (potential function). If a certain heat flux h̄ is prescribed on the
boundary (normal vector ni), the thermal balance postulates

hini = −h̄ . (3.178)

In our specific case we assume that the body is exposed to a constant thermal flux in
the direction of the x2 axis due to a temperature gradient, which means

h2 = h̄2 = h , h1 = 0 bei |z| → ∞ . (3.179)

The surface of the crack is thermally isolated so that the flux lines have to
circumvent the crack, as shown in Fig. 3.28. This leads to a concentration of field
lines at the crack tip. The thermal boundary condition with ni = ∓e2 at the crack
faces is

hini = ∓h2 = 0 . (3.180)

This boundary value problem, defined for the temperature field T , is mathematically
absolutely identical with the one for the displacement field u3 in anti-plane shear
stress (compare Appendix A.5.4 and Sect. 3.2.1). In both cases the Laplace equation
has to be fulfilled. The heat flux here corresponds to the shear stress component
hi =̂ τi3. The boundary conditions (3.27) are analogous as well. Therefore, the
solution can be expressed by the same complex functions as in (A.165):

T (x1, x2) = −	Ω(z)/k , h1 − ih2 = Ω ′(z). (3.181)

In analogy to (3.28)–(3.32) we obtain the following thermal solution at the crack tip:
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Fig. 3.28 Concentration of
thermal and electric fields at a
crack

T (r, θ) = h
√
πa

(− 2
k

)√ r
2π sin θ

2
{

h1
h2

}
= h

√
πa (−1)√

2πr

{ − sin θ
2

+ cos θ
2

}
.

(3.182)

One can see that at the crack tip the temperature field (like the displacements in
mechanics) complies with

√
r, and the heat flux (analog to the stresses) becomes

singular with 1/
√

r! The coefficient depends on thermal load and crack length. It
plays the same role as KIII and should be denoted as »heat flux intensity factor«
Kh .

h
√
πa = Kh [W m-3/2] (3.183)

Crack in an Electrostatic Field

The electric field E(x1, x2) in a body with cracks made of dielectric isotropic material
is studied. The approach is basically identical with the previously used thermal
example. The primary field quantity in electrostatics is the electric potentialϕ(x1, x2),
wherefrom the vector of the electric field strength is calculated as a negative gradient
E = −∇ϕ. The dielectric material law correlates E to the dielectric displacement
vector D

D = εE bzw. Di = ε Ei (ε dielectricity constant). (3.184)

Gauss’s law requires the balance of the electric charge density in the volume
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∇ · D = −ε�ϕ = 0 bzw. − ε

(
∂2ϕ

∂x2
1

+ ∂2ϕ

∂x2
2

)
= 0 (3.185)

and at the surface, if a surface charge density ω̄ is specified

Dini = −ω̄ . (3.186)

It is evident that we can use the same approach for the electrostatic boundary value
problem

ϕ(x1, x2) = −	Ω(z)/ε , D1 − iD2 = Ω ′(z) . (3.187)

We now consider a crack in the infinite plane (Fig. 3.28), exposed to an external
vertical electric field given by the appropriate charge density

D2 = ω . (3.188)

The crack is assumed to be impermeable for the electric field, which is expressed by
a vanishing electric charge Dini = ∓ω = 0 at the crack faces. The mathematical
solution occurs entirely analogous to the previous thermal example and we obtain
the electric crack tip field

ϕ(r, θ) = KD

(
−2

ε

)√
r

2π
sin

θ

2

{
D1
D2

}
= ε

{
E1
E2

}
= KD

(−1)√
2πr

⎧
⎪⎨
⎪⎩

− sin
θ

2

+ cos
θ

2

⎫
⎪⎬
⎪⎭

.

(3.189)

Obviously, a singularity of the electric fields D and E originates at the crack tip,
which is quantified by an »intensity factor of dielectric displacement« KD.

KD = ω
√
πa [C m−3/2] (3.190)

The parallels between the mechanical (anti-plane shear), thermal and electric field
problem is summarized once again in Table 3.1. This leads to the conclusion that all
available mechanical solutions for cracks under mode III loading may be converted
with the indicated correlations to boundary value problems of stationary thermal
conduction or electrostatics.

In the mentioned examples the corresponding field problems themselves were
isolated. The problem becomes more interesting when a direct coupling between
different physical fields comes into existence due to the material laws. For instance,
mechanical loading in piezoelectric material causes electric field singularities at the
crack tip and vice versa. A treatise on fracture mechanics for piezoelectrics and their
numerical analysis can be found for instance in Qin [52] and Kuna [53].
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Table 3.1 Analogy of mechanical, thermal and electric field variable for fracture mechanical prob-
lems

Mechanics Thermal conduction Electrostatics

Primary field variable Displacement u3 Temperature T el. potential ϕ
Derived field variable Strains Temperature gradient el. field strength

γi3 = u3,i gi = T,i Ei = −ϕ,i

Dual field variable Stresses Heat flux el. displacement
Material law τi3 = μγi3 hi = −kgi Di = εEi

Balance solution in V Equilibrium Thermal energy Charge density
τi3,i = 0 hi,i = 0 Di,i = 0

Balance equation on S τi3ni = t̄3 hini = −h̄ Dini = −ω̄

3.3 Elastic-Plastic Fracture Mechanics

3.3.1 Introduction

Many construction materials (metals, plastics, and others) show elastic-plastic defor-
mation behavior. Therefore the application of linear-elastic fracture mechanics has
its limitations. Due to the stress concentration at the crack tip, here the yield stress
of the material is already exceeded at low external loads and actually a small plastic
zone is formed. When the load increases, the plastic zone in the body expands further.
It causes a redistribution of the stress and strain fields which leads to a blunting of the
crack tip. In the beginning, the plastified zone is surrounded by an elastic region. In
the theory of plasticity, this state is called »constrained plastic flow«. In the further
course, the plastic regions can reach the boundaries of the body and the result is
the »fully plastic state«. In an ideally plastic material, the plastic limit load FL of
the structure would be reached, which means unlimited plastic deformations would
happen at this load level. Real materials possess further strength reserves due to their
hardening behavior.

These stages of plastification of a body with crack are schematically pictured
in Fig. 3.29. With increasing plastification, the non-linearity of the global force–
displacement–curve is enhanced. How big a plastic zone can grow before the crack
is initiated and the fracture process begins, depends on the material properties and
the load situation. The higher the ratio of fracture toughness and yield stress of the
material, the higher is the extent of plastification before fracture. Besides that, it is
important to note that the plastic deformation is associated with a significant amount
of energy dissipation in the body, which can get rather large compared to the energy
consumption during crack propagation, and is to be distinguished clearly from it.

It is obvious that the plastic deformations influence the situation at the crack and
in the body considerably. Thus, special failure criteria need to be established for frac-
ture phenomena that are preceded or accompanied by elastic-plastic deformations.
This task is pursued in Elastic-plastic fracture mechanics(EPFM) also designated
as ductile fracture mechanics.
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Fig. 3.29 Stages of plastic deformation in a body with crack

Because of the non-linear, load path-dependent material behavior, the solution
of boundary value problems of the theory of plasticity proves rather difficult for
cracked bodies. Therefore, the analytical solution methods of elastic-plastic fracture
mechanics are very limited and restricted to simple material models, plane crack
configurations and mostly monotonic loads. Only since powerful numerical solu-
tion methods have became available new possibilities for analyzing elastic-plastic
fracture problems opened up. The most important fracture-mechanical parameters
and concepts of ductile fracture mechanics, which have proven effective until now,
will be presented in the following sections. However, their application to real crack
configurations in structural components requires in most cases appropriate numerical
calculations of the parameters..

3.3.2 Small Plastic Zones at the Crack

Estimating Size and Form of Plastic Zones

If the size of the plastic zone is small compared to the length of the crack and all
other dimensions of the structure, it is considered as small scale yielding, commonly
abbreviated as SSY. This model is based on the idea that the plastic zone is situated
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inside the elastic crack tip solution known from Sect. 3.2.2. That means the plastifi-
cation at the crack tip is controlled by stresses and deformations of the surrounding
elastic fields, which again are defined by the stress intensity factors. The essential
condition for this is that the radius of the plastic zone rp stays considerably smaller
than the radius rK of validity of the near field solution, pictured in Fig. 3.30. Since
the range of validity rK ≈ 0, 02 − 0, 10 a itself is only a fraction of the crack length,
the SSY assumption thus requires very small plastic zones. Still, the model of small
scale yielding leads to the first interesting findings. The explanations in this section
will focus on the mode I load but could logically be transferred to the other two crack
opening types (see Sähn & Göldner [54]) as well.

Fig. 3.30 Model of small scale yielding
SSY

Fig. 3.31 Shape of the plastic zone in small
scale yielding

As the simplest case, ideal-plastic material behavior with an initial yield stress of
σF is assumed. In order to calculate the plastic zones to a first approximation, the
stresses of the elastic crack tip solution (3.12) are inserted into the yield criterion
according to v. Mises (A.102). For this purpose, we determine the maximum prin-
cipal normal stresses in the (x1, x2) plane and the corresponding principal direction
angle θ0 from (3.12) according to Appendix A.3.3:

{
σI
σII

}
= KI√

2πr
cos

θ

2

{
1 + sin θ

2

1 − sin θ
2

}
, θ0 = ±π

4
+ 3

4
θ . (3.191)

The third principal stress is σ33, see Sect. A.5.2:
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σIII = 0 (plane stress), σIII = ν(σI + σII) = 2ν
KI√
2πr

cos
θ

2
(plane strain).

(3.192)
Inserting into the yield criterion (A.102) provides the radius rp(θ) of the plastic zone
as a function of the polar angle θ. It is distinguished between the models of plane
strain and plane stress.

rp(θ) = 1

2π

(
KI

σF

)2

cos2 θ

2

{
3 sin2 θ

2 + 1 plane stress

3 sin2 θ
2 + (1 − 2ν)2 plane strain.

(3.193)

Figure 3.31 illustrates the resulting shapes of the plastic zones for ν = 1/3. The
plastic zone for plane strain state is considerably smaller than those for plane stress.
Its form stretches laterally in the crack direction, whereas it is oriented more straight
ahead in plane stress.

(a) (b)

Fig. 3.32 Glide planes of maximum shear stress a plane stress b plane strain

Plastic deformations in metals take place in slip bands, which are formed on planes
of maximum shear stress. In order to determine the orientation of the glide processes
at the crack tip, we calculate the principal shear stresses τmax = (σmax − σmin)/2
using relation (A.64) for the angular range θ ≈ ±45◦ in front of the crack tip with
the help of the near field solution (3.191), (3.192). There are significant differences
between the models of plane stress and plane strain

plane stress: τmax = σI − σIII

2
= σI

2

plane strain: τmax = σI − σII

2
= KI√

2πr
cos

θ

2
sin

θ

2
. (3.194)

In plane stress, τmax occurs in section planes, which are inclined by 45◦ with regard
to the (x1, x2) plane. The assumption of plane stress is valid for thin-walled structures
so that the slip bands run slanted across the thickness direction, see Fig. 3.32a. This
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causes a necking of the cross section along a small strip in front of the crack tip. Under
plane strain conditions, the greatest shear stresses are caused by the principal stresses
in the (x1, x2) plane. Therefore, the plastic slip takes place in planes that lie parallel
to the x3 axis, just as pictured by Fig. 3.32b. This hinge-like plastic deformation
leads to a blunting of the originally sharp crack tip. These essential differences in the
plastic deformation kinematics are confirmed by experimental findings in thin (plane
stress) and thick (plane strain) structures, whereby the amount of constraint strain in
x3–direction does substantially depend on the size of the plastic zone rp relative to
thickness B:

plane stress: rp � B plane strain: rp  B. (3.195)

Irwin’s crack length correction for small plastic zones
These considerations are based on stresses at the crack ligament (r, θ = 0), whose

values can be determined from the crack tip solution (3.12) as follows

σ11 = σ22 = KI√
2πr

, τ12 = 0, σ33 =
{

0 plane stress

2νσ22 plane strain.
(3.196)

The function of the crack-opening stress σ22(r) is depicted in Fig. 3.33. The shape
of the plastic zone in an ideally-plastic material has been calculated in (3.193) by
means of the v. Mises’s yield criterion. Its extension rF along the x1 axis is

rF = rp(θ = 0) = 1

2π

(
KI

σF

)2
{

1 plane stress

(1 − 2ν)2 plane strain.
(3.197)

In plane stress, rF is determined just through the intersection of the σ22 curve and
the yield stress σF since σv = σ22(rF, 0) = σF is valid. For plane strain conditions,
the yield criterion decreases to σv = (1 − 2 ν)σ22(rF, 0) = σF because of the
stress component σ33, i. e. the acting normal stress σ22 must be greater by the factor
1/(1 − 2 ν) (about 3 times for ν = 1/3). This increase of stress in consequence
of the constraint deformation (in multiaxial stress state) is quantified by the plastic
constraint factor

αcf = σ22

σF
=
{

1 plane stress
1/(1 − 2ν) ≈ 3 during ν = 1/3 plane strain.

(3.198)

By cutting off the stress level at σ = σF (hatched area in Fig. 3.33) however, the
resulting force in the x2–direction is being falsified. In order to restore the balance of
forces, these stresses have to be reallocated to the ligament, leading to a greater size
dp of the plastic zone. From the condition that the area underneath the elastic curve
(dashed line) is equivalent to the area under the elastic-plastic curve (full line), the
length dp = 2rF can be calculated. Using (3.197), the size of the hatched surface is
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Fig. 3.33 Correction of the plastic zone at a crack tip by Irwin

∫ rF

0

KI√
2πr

dr − σF rF = σFrF
!= σF (dp − rF). (3.199)

According to Irwin [55], this area is exactly compensated if the crack is effectively
increasing by rF (dashed crack shape), which unloads half of the area σF dp. This
gives the correction of the plastic zone size to the doubled value (large circle in
Fig. 3.33)

dp =̂ 2rp = 2rF, dp = 1

π

(
KI

σF

)2
{

1 plane stress

(1 − 2ν)2 plane strain.
(3.200)

The effective crack length and the corresponding stress intensity factor (3.64) are

aeff = a + rp , KIeff = σ
√
πaeff g

(aeff

w

)
. (3.201)

By means of the plastic zone size, the range of validity for a linear-elastic assess-
ment of cracks can be defined. In fracture-mechanical test procedures [20, 56] it
is demanded that dp must be considerably smaller than all relevant dimensions of
specimens and components. According to that, specimen thickness B, crack length
a and ligament size (w − a) must fulfill the following requirements:

B, a, (w − a) ≥ 2, 5

(
KIc

σF

)2

. (3.202)

The expression on the right is proportional to the plastic zone size at fracture. If one
of these criteria is violated, the application of LEFM becomes questionable. That
means, fracture toughness KIc values, measured by tests outside this validity range,
do not correspond to the lower conservative bound value KIc defined for plane strain.
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Fig. 3.34 Dugdale’s model for strip yield zone

3.3.3 The Dugdale Model

Observing strip-like plastic zones in front of the crack tip in thin metal sheets during
tensile tests, Dugdale [57] was inspired to create this model. As explained above,
under plane stress conditions, necking occurs by plastic flow on 45◦ planes that
restricts the height of the plastic zone to about the thickness B. The following assump-
tions underlie this model:

• The entire plastic deformation is concentrated on one strip (mathematical line) of
the length d.

• The material inside the yield strip behaves ideal-plastically. Plane stress is valid so
that yielding begins at σ22 = σF. Applying the model to plane strain, the effective
yield stress to initiate plastic flow has to be modified by the constraint factor (3.198)
to σ22 = αcf σF.

• The problem is simplified to a boundary value problem of a hypothetical crack of
length of 2(a + d) = 2c in an elastic body. The crack model can then be imagined
as superposition of the following two loading conditions (see Fig. 3.34):

(1) Crack in an infinite plane under constant tension σ.
(2) The supporting effect of the plastified material inside the yield zone a ≤ |x1| ≤

a + d is accounted for by tractions tc
2 = σF, which compress the crack.

For problem (1), the stress intensity factor is known from Sect. 3.2.2:

K (1)
I = σ

√
π(a + d). (3.203)

For load case (2), the K –factor has been calculated in Sect. (3.2.10):
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K (2)
I = −2σF

√
a + d

π
arccos

(
a

a + d

)
. (3.204)

It is demanded that no stress singularities appear at the ends of the hypothetical crack
|x1| = ±c. Therefore, the stress intensity factors of both subproblems (1) and (2)
have to cancel each other out:

KI = K (1)
I + K (2)

I = 0. (3.205)

From this relation we can deduce the length d of the plastic zone

a

a + d
= cos

(
πσ

2σF

)
, d = a

[(
cos

πσ

2σF

)−1

− 1

]
. (3.206)

As expected, according to this relation no plastic zone appears without load (σ = 0),
d = 0. However, it is interesting that d can grow to infinity if the stress approaches
the yield level σ → σF. In this case, the plastic limit load of the sheet is attained and
the entire net cross-section flows plastically.

For small-scale yielding σ  σF, the cosine function can be approximated by

(
cos

πσ

2σF

)−1

≈ 1 + 1

2

(
πσ

2σF

)2

(3.207)

and using the relation σ
√
πa = KI, one can write

d ≈ aπ2σ2

8σ2
F

= π

8

(
KI

σF

)2

. (3.208)

Comparing the result of the Dugdale model (3.208) with the plastic zone correction
by Irwin (3.200), it becomes obvious that both models provide similar relations,
differing only in the prefactors 1/π = 0, 318 and π/8 = 0, 392 respectively.

3.3.4 Crack Tip Opening Displacement (CTOD)

If fracture mechanics specimens made of ductile materials are loaded, it can be
observed that the tip of the originally sharp crack undergoes wide stretching and
blunting due to plastic deformation, even before the crack initiates, Fig. 3.35. This
irreversible opening displacement of crack faces exceeds by far that crack opening
due to purely elastic deformation. Therefore, it can be considered as a local mea-
sure of the plastic strains around the crack tip. This parameter δt is called crack tip
opening displacement CTOD. Wells [58] and Burdekin & Stone [59] suggested a
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fracture concept that employs the crack tip opening displacement δt as characteristic
parameter.

The CTOD-criterion states that in ductile materials crack initiation starts, if
the crack tip opening displacement δt exceeds a critical, material specific limit
value δtc.

δt = δtc (3.209)

(a) (b)

Fig. 3.35 Definition of the crack tip opening displacement δt (CTOD) at stationary cracks and the
crack tip opening angle γt (CTOA) at moving cracks

In order to realize this concept, a quantitative relationship between δt and the
external loads is required. The Dugdale-model offers one opportunity for computing
this. Here, the crack opening displacement is identified at the tip of the physical crack
at |x1| = a, see Fig. 3.34, and is at this point

δt = (u+
2 − u−

2 ) = 2u2(a) = 8σF a

πE
ln

(
cos

πσ

2σF

)−1

. (3.210)

For very small loads we use again the series expansion (3.207), establishing this way
a correlation to KI under SSY-conditions.

δt = KI
2

σF E
. (3.211)

Also the plastic zone correction by Irwin yields a value for the crack tip opening
displacement. To do this, δt is calculated at that position, where the plastic zone
touches the faces of the effective crack, i.e. at x1 = −rp in Fig. 3.33. Inserting the
displacement field (3.16) of linear-elastic solution at (θ = π) we obtain

u2(rp) = 4

E
KI

√
rp

2π
(plane stress), (3.212)

and using the known value at rp from (3.200) results in
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δt = 2u2 = 2
4

E
KI

√
K 2

I

(2π)2σ2
F

= 4

π

K 2
I

E σF
= 4

π

G

σF
. (3.213)

At small plastic zones (SSY) we also find the correlation between the crack tip
opening displacement δt and the energy release rate G. Depending on the amount of
constraint in the real component and the material’s hardening, an empirical approach
can be made:

δt = K 2
I

m σF E
for plane stress and δt = K 2

I (1 − ν2)

m σF E
for plane strain, (3.214)

at which the factor m ≈ 1 is valid for plane stress state, and amounts to m ≈ 2 for
plane strain.

A generally accepted definition of the crack tip opening displacement δt that does
not depend on a special model, is shown in Fig. 3.35. Hereby, two secants are placed
in an angle of ±45◦ at the blunted crack tip, and δt is identified from the intersection
points with both crack faces. This definition is well suited for interpreting numerical
analyses. The experimental determination of the crack tip opening displacement δt
at a specimen or at a component turns out more complicated, since measurements
directly in the crack tip region are difficult to handle. Because of this, usually the
crack opening displacement COD =̂ V is measured at the specimen’s surface and
extrapolated to the crack tip by means of geometrical assumptions (e.g. intercept
theorem for rotation around a plastic hinge). A physically substantiated determination
of δt is possible with the help of stereoscopic measurements of the »stretched zone
height« SZH, although only after fracture. The interested reader is referred to the
literature [21, 60] and official testing standards [61, 62].

3.3.5 Failure Assessment Diagram (FAD)

On the basis of the Dugdale crack model, a method for engineering-based evaluation
of component safety was developed by Harrison [63] in 1976. Therefore, the English
term Failure Assessment Diagram—or »Two–Criteria–Method« was coined. This
concept combines both limiting cases of failure by brittle fracture on one hand and
plastic collapse if the plastic limit load is attained on the other hand. For the transi-
tion region comprising elastic-plastic failure of cracked components in between, a
geometry independent failure limit curve is formulated from both concepts. In the
following, the basic idea shall be explained.

For large amounts of plastification up to the plastic limit load, the Dugdale-model
(3.210) yields a suitable basis in combination with the CTOD-criterion (3.209)

a
8σF

πE
ln

(
cos

πσ

2σF

)−1

= δt
!= δtc. (3.215)
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If this equation is converted for σ, the critical stress for a given crack length a results
in

σc = 2

π
σF arccos

[
exp

(
−πEδtc

8σFa

)]
. (3.216)

For vanishingly small cracks a → 0 this gives σc = σF, i.e. the strength is controlled
by the plastic collapse—which is the case of very large plastic zones, denoted by
large scale yielding (LSY).

In the opposite extreme of LEFM or SSY, the Dugdale-model (3.211) provides a
relation to KI

K 2
I

EσF
= a

π
(
σLEFM

c

)2

EσF
= δt

!= δtc , (3.217)

from which the critical stress σLEFM
c is obtained using KI = σ

√
πa

σLEFM
c =

√
EσFδtc

πa
. (3.218)

This equation predicts an infinitely high strength σLEFM
c → ∞ for small cracks

a → 0 . By equating (3.217) and (3.215) the crack length is eliminated:

(
σLEFM

c

σF

)2

= 8

π2 ln

[
cos

πσ

2σF

]−1

. (3.219)

Finally we introduce load parameters Kr and Sr normalized to the interval [0,1]:

σ

σLEFM
c

=̂ KI

KIc
= Kr for brittle fracture LEFM

σ

σF
=̂ F

FL
= Sr for plastic failure (3.220)

Kr = Sr

[
8

π2 ln
(

cos
π

2
Sr

)−1
]−1/2

. (3.221)

In the FAD-diagram the Kr value is plotted on the ordinate and Sr in the abscissa,
see Fig. 3.36. This way, Eq. (3.221) represents a failure limit curve that interpolates
between brittle and ductile failure. For a given structural component with crack a
under the load σ, the point P(Kr, Sr) can be assigned in the FAD. If this point lies
within the limit curve, safety is ensured. An increasing loading σ effects a propor-
tional rise of Kr and Sr, so that the point is shifted along a radial line outward.
Failure occurs if the limit curve is attained. In order to apply the FAD, besides
the material parameters KIc and σF analytical or numerical solutions are required
for the stress intensity factor KI and the plastic limit load FL of the component with
crack. Although the FAD-concept has been derived by the Dugdale-model for a crack
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Fig. 3.36 Failure limit curve of the Failure Assessment Diagram FAD

in a sheet, the generalization of this concept to arbitrary crack configurations was
proven. However, this limit curve is specific for a material ! Meanwhile, the concept is
extended in revised versions [64] to materials with hardening, for secondary stresses,
crack growth a. o. A contemporary overview of fracture mechanics assessment rules
can be found in the European guidelines SINTAP [65] and FITNET [66].

3.3.6 Crack Tip Fields

In the framework of plastic flow theory no analytical solutions could be found for
crack problems, not even for the simple case of a crack in the infinite plane. Closed-
form solutions are only known for the asymptotic limit r → 0 at the crack tip
under simplified assumptions regarding the plastic material behavior. This means,
we investigate the stress state in the interior of the plastic zone at a crack tip in an
infinite domain. Information about the size and shape of the plastic zone is thus not
possible. In the following, the most importation plastic crack tip fields for the crack
opening mode I shall be described.

Ideal-Plastic Material

Under the assumption of a rigid-perfectly-plastic material the crack-tip field can
be found using the so-called slip line theory. Thereby, a hyperbolic-ODE-system is
set-up using the two-dimensional equilibrium conditions and the yield condition,
whose characteristics are the slip lines. The orthogonal grid of slip lines in each
point represents the directions of principal shear stresses and plastic shear strains.
The plastic material is assumed as incompressible, i.e. Poisson’s ratio ν = 1/2 and
σ33 = (σ11 + σ22)/2 for plane strain. For the plane strain state the slip line solution
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around the crack tip consists of three regions A, B and C shown in Fig. 3.37, where
the following stress state exists (see e.g. [54, 67]):

A : σ11 = τF π, σ22 = τF(2 + π), τ12 = 0

B : σrr = σθθ = τF

(
1 + 3

2
π − 2θ

)
, τrθ = τF

C : σ11 = 2τF, σ22 = τ12 = 0 (crack-face boundary consitions). (3.222)

Figure 3.38 depicts this stress distribution graphically. All stresses are proportional to
the shear flow stress τF = σF/

√
3. In regions A and C constant stress states prevail.

In front of the crack (A), the normal stress amounts to σ22 ≈ 3σF and the triaxiality
is � = σH/σv = (1 +π)/

√
3 ≈ 2, 4! In the region B the slip lines run into the crack

tip in a fan-shaped manner, inducing a singular behavior of the plastic shear strains
εrθ

εrθ ∼ 1

r
f (θ). (3.223)

Further slip line solutions for plane stress and mode II can be found in [68].

Fig. 3.37 Slip line field at the crack tip for a rigid-ideal-plastic material (plane strain)

Power Law Hardening

Often, the stress-strain curve of elastic-plastic materials can be represented in good
approximation by the Ramberg-Osgood (A.118) law

ε

ε0
= εe

ε0
+ εp

ε0
= σ

σ0
+ α

(
σ

σ0

)n

, (3.224)

using the material parameter α, the hardening exponent n, the reference stress σ0
(≈ initial yield stress σF0) and the reference strain ε0 = σ0/E . By choosing n, the
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Fig. 3.38 Stress distribution at the crack
tip for a rigid-ideal-plastic material (plane
strain)

Fig. 3.39 Ramberg-Osgood Power-law
hardening

material behavior can be varied in the whole range from linear-elastic (n = 1) to
ideal-plastic (n → ∞), see Fig. 3.39.

Assuming the plastic deformation theory and this power law, Hutchinson [69, 70]
and Rice & Rosengreen [71] derived the relevant crack tip fields . This solution is
named in fracture mechanics after the authors as an HRR-field, see [54, 67]. The
plastic deformation theory (also referred to as total strain theory) and its limitations
are discussed in detail in Appendix A.4.2.

The way to achieve this solution will only be outlined in the following. However,
it reveals important relationships and insight. As usual in near tip field analyses, a
polar coordinate system (r, θ) is placed at the tip of a crack in the infinite plane,
see Fig. 3.7. According to (A.135), the plastic part of the constitutive law has the
form

ε
p
ij

ε0
= 3

2
α

(
σv

σ0

)n−1 σD
ij

σ0
≈ εij

ε0
. (3.225)

With respect to the asymptotic behavior of the solution against the crack tip r → 0,
it is well justified to assume the non-linear plastic strains εp

ij much larger than the
elastic parts εe

ij, i.e. the latter can be neglected. The v. Mises equivalent stress is
computed by the stress components in polar coordinates in plane strain state (σ33 =
(σrr + σθθ)/2) as

σv =
√

3

4
(σrr − σθθ)2 + 3τ2

rθ . (3.226)



94 3 Basics of Fracture Mechanics

Moreover, the stress state has to fulfill the equilibrium conditions, which is easiest
realized by introducing the Airy’s stress function (A.153) F(r, θ), from where the
stress components in polar coordinates can be derived as follows:

σrr = 1

r
F,r + 1

r2 F,θθ, σθθ = F,rr, τrθ = −
(

1

r
F,θ

)

,r
. (3.227)

(it holds that(·),r = ∂(·)
∂r , (·),θ = ∂(·)

∂θ .) Furthermore, the pure plastic incompressible
strain state at the crack tip has to obey the compatibility conditions (A.140), expressed
in polar coordinates for plane strain

1

r
(rεθθ),rr + 1

r2 εrr,θθ − 1

r
εr,r − 2

r2 (rεrθ,θ),r = 0. (3.228)

Because of the asymptotic approach the near field can be separated multiplicatively
into radial and angular functions to ensure the self-similarity for r → 0 this way.
Hence we make the separation ansatz for the Airy stress function

F(r, θ) = Ars F̃(θ) (3.229)

with unknown factor A, exponent s and angular function F̃(θ). By using (3.227), we
get expressions for stresses of the form

σij(r, θ) = Aσrs−2σ̃ij(θ) , (3.230)

with the stress coefficient Aσ and similar terms for the deviators σD
ij as well as the

equivalent stress σv (3.226). By means of the material law (3.225) one finds the
structure of the strain field including its angular distributions ε̃ij(θ) and pre-factors

εij(r, θ) = αε0

(
Aσ
σ0

)n

r(s−2)nε̃ij(θ) . (3.231)

The relationship between the exponent s in (3.229) and the hardening exponent n can
be established by the following considerations. The J -integral (3.100) is computed
on a circular integration path with radius r = const, arc length ds = r dθ and
dx2 = cos θ ds

J =
∫ +π

−π
[U cos θ − σijui,1]rdθ =

∫ +π

−π
I (r, θ)rdθ . (3.232)

The strain energy density U (A.136) and the term σijui,1 have the dimension of σijεij,
i.e. the kernel I (r, θ) of the integral has the radial dependency

I (r, θ) ∼ σijεij ∼ αε0
An+1
σ

σn
0

r(s−2)(n+1) Ĩ (θ, n) . (3.233)



3.3 Elastic-Plastic Fracture Mechanics 95

Fig. 3.40 Stress distribution at the crack tip according to HRR-solution for the hardening exponents
n = 3 (left) and n = 10 (right) under plane strain (EVZ)

In the frame of plastic deformation theory, which is in essence equivalent to non-
linear elasticity, the J -integral has to be independent of the integration path Γ . Its
value must not depend on the chosen radius r! To ensure this property, the term
I (r, θ) has to behave exactly as r−1, from which follows (s − 2)(n + 1) = −1 and

s = 2n + 1

n + 1
. (3.234)

From this result we can deduce the radial behavior of the respective field variables

σij ∼ r− 1
n+1 , εij ∼ r− n

n+1 , U ∼ r−1. (3.235)

To identify the unknown angular functions F̃(θ), σ̃ij(θ) and ε̃ij(θ) of the expres-
sions (3.229), (3.230) and (3.231), we first plug the stress terms (3.227) into the
material law (3.225) and then apply to it the compatibility conditions (3.228). This
yields a non-linear ordinary differential equation for F̃(θ) (see [69, 71]) that has to
be solved numerically. Thereby, the tractions-free boundary conditions on the crack
faces σ̃θθ(±π) = τ̃rθ(±π) = 0 and the symmetry of σ̃θθ, σ̃rr and the antimetry
of τ̃rθ with respect to θ are taken into account. By inserting of F̃(θ) into (3.227)
and (3.225) we finally gain the angular functions σ̃ij(θ) and ε̃ij(θ), respectively. The
resulting stresses are illustrated in polar coordinates in Fig. 3.40. As an example the
hardening exponents n = 3 and n = 10 are selected. By comparing with Figs. 3.5
and 3.38, one can quite clearly see the transition from linear-elastic to ideal-plastic
near fields in the shape of angular functions.

In the end the question for the unknown coefficients A and Aσ remains. For this,
we take advantage of the path-independence of the J -integral. To compute J , we
choose at first an integration path Γ far remote from the crack tip and outside the
plastic zone. A second circular-shaped path Γε is placed into the validity region of
the HRR-near field at r  rp, see Fig. 3.18. Taking into account (3.232), (3.233) and
(3.234) yields
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J (Γ ) = J (Γε) = αε0σ0

(
Aσ
σ0

)n+1 ∫ +π

−π
Ĩ (θ, n)dθ.

︸ ︷︷ ︸
In

(3.236)

The integral is only composed from the angular functions σ̃ij, ε̃ij and the exponent
n, delivering a constant In(n)

In(n) = 5.188 + 0.611n − 0.240n2 + 0.027n3 (plane strain). (3.237)

The conversion of (3.236) yields the sought stress coefficient Aσ , so that by means
of the J -value the stresses (3.230) and strains (3.231) can be written as follows:

σij = σ0

[
J

αε0σ0 In

1

r

] 1
n+1

σ̃ij(θ, n) (3.238a)

εij = αε0

[
J

αε0σ0 In

1

r

] n
n+1

ε̃ij(θ, n) (3.238b)

and after integration of εij the displacements

ui = αε0

[
J

αε0σ0 In

] n
n+1

r
1

n+1 ũi(θ, n) (3.238c)

These expressions describe the HRR-near field for an elastic-plastic material
with the hardening exponent 1 ≤ n ≤ ∞. The radial behavior of stresses and
strains is singular at r → 0. The »intensity« of the crack tip fields is quantified
by the value of the J -integral.

The shape of the opened crack u2(r) equals a root-function of (n + 1) th degree
and gets more blunted with increasing n. An examination of the crack opening dis-
placement δt from the HRR-field (3.238c) using the definition of Fig. 3.35 provides
a linear relationship to the J -integral.

δt = (αε0)
1/n Dn

σ0
J. (3.239)

The known constant Dn(n) has values between 1.72 and 0.79 for plane strain. The
angular functions σ̃ij, ε̃ij and ũi in (3.238) were approximated by [72] as Fourier-
series and are thereby available in a simple manageable form.
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Extension by Higher Order Terms

The HRR-solution represents the strongest singularity of the elastic-plastic near
field and embodies thus a theory of 1st order. Due to the non-linearity it is much
more complicated than in LEFM to find the next terms of a series expansion (see
Sect. 3.3.2). On the other hand it became evident that particularly in EPFM the
fracture behavior of unlike crack configurations may differ substantially, although
in all cases the same intensity of the HRR-field exists. The reason for that lies in
different plastic zones, the size and form of which is rather sensitive to triaxiality of
the stress state, see Fig. 3.41.

Fig. 3.41 Influence of triaxiality on the shape of plastic zones at the crack tip in various specimens
[73]. Biaxial parameter βT = T11

√
πa/KI

The triaxiality parameter � is commonly defined as the ratio of hydrostatic
stress σH (A.66) and v. Mises equivalent stress σv (A.101):

� = σH

σv
triaxiality parameter (3.240)

From classical theory of strength it is already well known that with increasing
triaxiality the tendency of a material for brittle fracture is enhanced (Hencky’s dia-
gram) [74]. Whereas in brittle materials the maximum of crack opening stress σ22
is deciding, the failure behavior of ductile materials is considerably effected by the
hydrostatic stress. Therefore it is necessary to quantify the stress triaxiality at the
crack by additional terms compared to the HRR-solution.
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Fig. 3.42 Comparison of
numerical crack tip-solutions
for small and large defor-
mations with the HRR-field,
plane strain, n = 10 [76]

Furthermore it is important to note that the HRR-field was derived under the
assumption of infinitesimal strains. FEM-calculations by McMeeking & Parks [75]
assuming finite deformations have shown for the first time that the stresses at the
crack tip stay bounded, since the singularity is relieved due to the more realistically
modeled crack blunting, whereas the strains remain infinitely large. This effect has
been confirmed by numerous FEM-analyses of other authors who investigated the
near field further. Figure 3.42 presents the stresses σrr and σθθ on the x1-axis ahead
of the crack as function of the dimensionless distance r/(J/σ0) by Yuan [76]. The
FEM-solution for small deformations agrees well with the HRR-field (symbols) at
r → 0. For large deformations the stresses fall off sharply below r < 2J/σ0, σrr

has even to go to zero at the notch surface. The size of this region, where large
deformations have essential influence, is understandably correlated with the CTOD-
value δt ≈ 0, 5J/σ0 of (3.239). Above r > 4δt ≈ 2J/σ0 the results for large and
small deformations hardly differ anymore.

Various approaches were pursued in order to extent the HRR-solution and to
account for the triaxiality. In case of small scale yielding SSY the plastic zone
is controlled by the K -factors and the T -stresses according to (3.60) and (3.61).
For plane crack problems only the T11-component parallel to the crack exists. Its
magnitude depends on the crack configuration and the loading type. Meanwhile
T -data are documented in handbooks [77, 78]. For the Griffith’s crack under tension
σ∞

22 , the lateral T11 ≡ σ11 = −σ∞
22 < 0 corresponds to an equal-sized compression

(see (3.6)). On the contrary, tensile stresses T11 > 0 occur parallel to the crack in
bending-dominated specimens. The influence of the T11-stress on the plastic zones in
different specimens was detected by FEM-computations of [73, 79]. Despite identical
KI-values the shapes vary as shown in Fig. 3.41.

Compared with the singular KI-field (3.12) (3.60), the hydrostatic stress at the
crack is changed by T11 as follows:
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σH = 1

3
σkk = KI√

2πr

1

3
f I
kk(θ) + 1

3
T11. (3.241)

Considering the stress state (3.12) in front of the crack (θ = 0), we have

1

3
f I
kk(0) =

{
2
3 plane stress
2
3 (1 + ν) plane strain

(3.242)

and at the border rp of the plastic zone (3.200) (with σF =̂ σ0) the triaxiality attains
the following values:

�(rp, 0) = σH

σ0
= 1

3

T11

σ0
+ 2

3

{
1 plane stress
(1 + ν)/(1 − 2ν) plane strain

(3.243)

Due to the deformation constraint under plane strain (ε33 = 0,σ33 > 0) the tri-
axiality increases substantially, which is also called out-of-plane constraint-effect,
whereas the in-plane constraint is characterized by T11. The extended fracture-
mechanical concept suggested by Betegon & Hancock [80] relies on the T11-stresses.

In case of large plastic zones (LSY) the T11-stresses lose their validity, which
is why extensions compared with the HRR-solution were sought on the basis of
deformation plasticity and power-law hardening. Sharma and Aravas [81] found a
2nd term of the near-field in the form

σij(r, θ)

σ0
=
(

J

αε0σ0 Inr

) 1
n+1

σ̃ij(θ) + Q
( rσ0

J

)q
σ̂ij(θ) , (3.244)

whereby the exponent q (> 0) and the angular functions σ̂ij(θ) depend on the harden-
ing exponent n. The factor Q is now a second geometry dependent loading parameter
apart from J ! A series expansion up to the 3rd term [82, 83] provided no remarkable
improvement and could be reduced to one additional parameter A2 similar to Q. In
Fig. 3.43 the angular stress distributions σij(θ) are drawn for the various approaches
and compared with FEM-computations [83]. In the angular range |θ| < π/2 all solu-
tions agree quite well, whereas the HRR-field deviates by a nearly constant value.
These findings proven by detailed FEM-analyses, brought O’Dowd & Shih [84, 85]
to suggest a simplification of the 2nd term. Thereby the weak r-dependency in (3.244)
was set to a constant value q ≈ 0 and the angular functions σ̂ij(θ) were approximated
by the unity tensor δij

σij(r, θ) = [
σij(r, θ)

]HRR + Qσ0δij at |θ| < π/2. (3.245)
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Fig. 3.43 Comparison of the higher order completion terms with the HRR-field, plane strain,
n = 10, � = −0.5 [83]

In order to determine the Q- parameter it was specified to calculate the dif-
ference between true (FEM)-stresses and HRR-solution ahead of the crack in
a distance r0

Q = σFEM
θθ − σHRR

θθ

σ0
at θ = 0, r0 = 2J

σ0
≈ 4δt. (3.246)

This fixed distance r0 = 2J/σ0 was chosen purposely to circumvent the influence
of the crack blunting. Thus also FEM-computations using infinitesimal deformations
would be sufficient to determine Q, compare Fig. 3.42. According to this simplified
definition the Q-parameter represents an averaged hydrostatic stress (related to the
yield stress σ0) in front of the crack, which quantifies the deviation of the stress
state in a real crack configuration to those of the HRR-field in 1st approximation.
Therefore, Q characterizes the geometry- and load-depending stress triaxiality in
fracture test specimens or structural components under large plastic zones. Inserting
of r0 = 2J/σ0 into the HRR-solution makes clear again that the dimensionless
parameter Q directly indicates the change of � through (3.240)

�(r0, 0) = σH

σ0
= 1

3

(
1

2αε0 In

) 1
n+1

σ̃kk(0) + Q. (3.247)

Based on these investigations an assessment concept of ductile fracture was devel-
oped in the USA by Shih, O’Dowd, Dodds and Anderson [85–88] that relies on the
two loading parameters J and Q. Forthcoming references on this topic can be found
in [76, 89].
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3.3.7 The J-Integral Concept

J as Fracture Parameter

The J -integral provides suitable prerequisites to formulate a fracture criterion in the
framework of elastic-plastic fracture mechanics (EPFM). According to Sect. 3.3.6
the magnitude of J identifies the intensity of the crack tip fields in a harden-
ing elastic-plastic material (with variable exponent) in the interior of the plastic
zone. All stresses, strains and displacements are specified through (3.238) by the
HRR-solution and are proportional to the J -value. Therefore, the parameter J con-
trols the mechanical loading situation at the crack tip, where the micromechanical
failure mechanisms proceed in the fracture process zone. In this sense, the quantity
J plays a comparable role in EPFM as the stress intensity factor KI does in LEFM.
A necessary condition for this is again that the HRR-field dominates in a sufficiently
large region around the crack tip with a radius rJ . Thereby all phenomena not captured
by the plastic deformation theory as large strains, local unloading or physical crack-
ing mechanisms, can be assigned to a small »process zone« of size rB  rJ . Beyond
the radius rJ higher order terms of plastic crack-fields gain in importance and at even
greater distance the influence of geometric borders and boundary conditions effects
the plastic solution. From this reason an upper bound is set rJ  a, B, (w − a).

By far more serious restrictions on using J as a fracture criterion result from
its theoretical fundamentals–the plastic deformation theory. The limitations of the
deformation theory to capture real plastic flow processes are pointed out in the Appen-
dix A.4.2. Hence the J -integral loses its validity in the strong sense, if the loading
rises not monotonously on a proportional path. Any redistribution of the stress state
or even more an unloading lead to a loss of path independence and uniqueness of J .
At least local unloading processes occur at the crack tip during crack propagation
or alternating loads, however. Therefore, the application of the J -concept has to be
restricted to stationary cracks under monotonous loading. Under these conditions a
deviation from the strong proportionality has a minor effect on the path independence
of J , which has been verified by numerous FEM-analyses of crack configurations
using plastic flow theory.

The J -integral-concept as fracture criterion in EPFM:
• For stationary cracks under monotonous loading the J is an established frac-

ture mechanical parameter that describes quantitatively the loading situation
at the crack tip in elastic-plastic materials.

• If the loading in the crack tip region attains a critical, material specific value
JIc, then crack initiation occurs. The fracture criterion reads

J = JIc . (3.248)
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(a) (b) (c)

Fig. 3.44 Experimental determination of JIc by means of single and multiple specimen method

For (non-linear) elastic material behavior the J -integral is identical with the poten-
tial energy release rate, see Sect. 3.2.6. Theoretically, this holds as well for the plastic
deformation theory but practically the part of plastic strain energy is dissipated and
hence no longer available as a crack driving force. Therefore, this energetic interpre-
tation and meaning of J are lost in EPFM.

How does one get the value of the loading parameter J for a given crack con-
figuration during the course of loading for a specific elastic-plastic material law?
Despite very simple geometries and estimations on the basis of ideal-plastic limit-
load solutions, for this purpose the application of numerical methods, first of all FEM,
is indispensable. This issue will be addressed in detail in Chap. 7. Partly, tabulated
solutions are available in handbooks [90]. The essential advantage of computational
methods is that the real definition of J as contour integral (3.100) can be employed,
see Chap. 6.

Experimental Determination of Fracture Toughness JIc

In order to determine the critical material parameter JIc at ductile fracture, the same
test specimens are used as for the measurement of KIc in LEFM, see Fig. 3.12.
The testing procedure and result interpretation are subjects of standardized regula-
tions [18–20]. The load-displacement curve F-q of the load point is recorded during
monotonic loading of the specimen. Due to large plastification this curve is extremely
non-linear, which is exemplified in Fig. 3.44 for a CT-specimen. At the point (Fc, qc)
of crack initiation, at the crack tip J = JIc is reached. Since this point is not so easy
to identify from the measurements, a certain amount of stable ductile crack growth
is allowed for and recorded as crack growth resistance curve JR(�a).

For interpretation of the experiment one needs a correlation between the load-
displacement curve and the value of J . Therefore, we make use of the energetic
meaning of J -integrals in the framework of plastic deformation theory. The area
under the F-q-curve corresponds to the external work Wext done on the specimen
that is transformed into internal strain energy Wint, which means potential energy
Πint in this model

http://dx.doi.org/10.1007/978-94-007-6680-8_7
http://dx.doi.org/10.1007/978-94-007-6680-8_6
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Πint(q, a) = Wint(q, a) =
∫ q

0
F(q̄, a)dq̄. (3.249)

This energy is a function of crack length a. Under the assumption of fixed displace-
ments (grips) (q = const.) the imposed force F performs no work during a change
of crack length by da (dΠext = 0). Thus the energy release rate is written as

J = −dΠ

da
= − ∂Πint

∂a

∣∣∣∣
q

= −
∫ q

0

∂F(q̄, a)

∂a

∣∣∣∣
q̄

dq̄ . (3.250)

This integral describes the released internal energy for a crack extension and corre-
sponds to the area between two load-displacement curves for the crack lengths a and
a + �a as shown in Fig. 3.44c. It presents the non-linear pendant to the triangular
areas depicted in Fig. 3.14. In a real elastic-plastic material however, at first unload-
ing occurs during crack extension and second the work of deformation contains
dissipative terms—which hence are not available as »potential crack driving energy
« (Wint �= Πint). Thus the relation (3.249) may only be interpreted as difference
of work of deformation �Wint between two identical specimens that have different
initial crack lengths a and a + �a and are loaded monotonically.

This idea formed the basis of the original method suggested by [91] for deter-
mining JIc. Evaluating a test series of specimens with different crack lengths aj, the
differential areas of the load-displacement curves F(q, aj) are determined as func-
tions of deflections q. From the function J (q, aj) one obtains the fracture toughness
JIc by inserting the critical values at crack initiation. This so-called » multi-specimen
method« did not gain acceptance because of its high experimental effort.

Instead of it, alternative methods have been elaborated [92], where the results
measured at only one single specimen are sufficient to determine JIc. The underlying
idea is to create a correlation between J and the work of deformation Wint itself
(area under the F-q-curve in Fig. 3.44b).

With the help of numerous analytical and numerical calculations, formulas have
been delivered to evaluate the elastic Je and plastic Jp part of J -integral

J = Je + Jp = K 2
I (F, a)

E ′ + η

B(w − a)

qp∫

0

F(q̄p, a) dq̄p . (3.251)

The two terms represent the elastic and plastic work of deformation We
int and

Wp
int, respectively, related to the cross sectional area B(w − a) of the ligament, see

Fig. 3.44b. They are determined from the reversible qe and irreversible qp displace-
ments of the load application point. This way JIc can be gained in a simple manner
from one single experiment by taking (3.251) at the initiation point (Fc, a). Correla-
tions of the form (3.251) can be found for most types of specimens and components.
Apart from the K -factor solution the correction functions η(a/w, n) are needed which
depend on geometry and hardening. Meanwhile, such functions η have been com-
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puted by extensive elastic-plastic FEM-calculations for the most important specimen
types, supplying the basis for standardized JIc-procedures [18–20].

Similar to LEFM the JIc-determination requires compliance with certain size
relations, to ensure that the J -controlled near-field (expressed in δtc ∼ JIc/σF)
is small compared to all dimensions of the specimen so that the tests yield real,
geometry-independent material parameters

B, (w − a) ≥ 25JIc/σF. (3.252)

This means in practice a reduction of specimen size of 1–2 orders of magnitude
compared to the conditions (3.202) at a KIc-test. Finally it has to be emphasized
again that the justification to use J in EPFM is solely based on its relevance as
an intensity parameter but not on its energetic meaning, although the experimental
methods give such an impression!

Engineering Approach by EPRI

The engineering approach is a practice-orientated concept for the application of
EPFM to structural components with cracks, which was developed at Electric Power
Research Institute in the USA by [90]. This concept is based on the J -integral as
fracture parameter. The critical material parameters are accepted from the JIc-test
guidelines explained in the previous section. A substantial advantage consists in
delivery of the loading parameter J in an easy form provided to all users together with
an integrated assessment concept. The motivation was that numerical FEM-analyses
at first can not be carried out by everybody and second require a considerable effort
of manpower and costs.

Therefore, a catalog of solutions was compiled for a number of important crack
configurations under fully-plastic conditions. These handbook-solutions were cre-
ated by systematic FEM-calculations assuming for simplicity the deformation theory
of plasticity and a power-law hardening according to (3.224). This has the advantage
of parameterizing the (non-linear-elastic) solution with respect to the loading, i. e.
only one fully-plastic solution is necessary instead of the whole load history. If P
denotes a global load parameter (force, moment, surface loads, . . .) at monotonic
loading, so the respective stress and strain fields are given by the following scaling:

σij(P) = P

PL
σ∗

ij(PL) , εij(P) =
(

P

PL

)n

ε∗ij(PL). (3.253)

Here, σ∗
ij and ε∗ij are the reference solutions if the plastic limit load PL is attained.

Having in mind (3.238a) the J -integral is scaled as

J (P) = αε0σ0 Inr

(
σij

σ0

)n+1

σ̃n+1
ij (θ; n) =

(
P

PL

)n+1

J ∗(PL). (3.254)
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In this way for most common crack configurations the plastic term of J -integral Jp
and the global deformation variable qp were calculated and cataloged [90], whereby
the functions hi comprise the results depending on geometry and hardening expo-
nent n

Jp = αε0b h1

( a

w
, n
)( P

PL

)n+1

, qp = αε0a h2

( a

w
, n
)( P

PL

)n

. (3.255)

The elastic part Je is calculated as in (3.251) via the KI-factor of the considered crack
configuration KI(P, a) ∼ √

a P g(a/w) using the tabulated geometry function g

Je = ε0σ0a

(
P

PL

)2

g2
( a

w

)
. (3.256)

Using Irwin’s plastic crack length correction aeff (3.200) the J -integral value is
obtained by adding the elastic and plastic parts

J

(
P

PL
,

a

w
, n

)
= Je(aeff) + Jp

( a

w
, n
)

. (3.257)

Figure 3.45 demonstrated once again graphically that the superposition of elastic
and fully-plastic solutions according to the Engineering Approach yields J -values,
which agree very well with sophisticated elastic-plastic FEM-calculations.

Fig. 3.45 J -estimation by the engineering approach
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3.3.8 Ductile Crack Growth

Crack Growth Resistance Curves

Due to their high toughness, most ductile materials don’t fail spontaneously at the
critical JIc-value, but after crack initiation they build up a considerable resistance
against further crack propagation. This means, a subsequent stable ductile crack
growth can only be achieved by an enhancement of the loading. In an experiment
typically a ductile crack growth resistance curve can be observed, see Fig. 3.46.

J = JR(�a) , (3.258)

In its initial phase the JR-curve runs very steep and almost linear. Crack tip
blunting induces a slight crack growth characterized by the so-called » blunting
line« . If one supposes a circular-shaped rounding by plastic deformation (Fig. 3.35),
the crack growth amounts to �a ∼ δt/2 and from (3.239) a linear relation follows
to the J -integral

J (�a) ≈ 2σF�a blunting line. (3.259)

With rising load the real physical crack initiation happens at Ji by fracturing in
front of the blunted crack. This point is difficult to record during the measurements.
Therefore, a minimum amount of crack propagation is needed to identify crack
initiation (e.g. �a = 0.2mm). Then, an engineering value of JIc is defined by the
intersection point of the JR(�a)-curve with the parallel shifted blunting line, see
Fig. 3.46. This pragmatic specification has a similarity with the Rp02-definition of
the yield strength. Above J > JIc a distinct crack growth resistance curve arises.
According to the ASTM-standard [20] this curve will be simply fitted by a power
law J = C1(�a)C2 and brought to intersection with the shifted blunting line. In
order to determine the current crack length a = a0 + �a in the specimen during
the experiment, several measurement methods (partial unloading technique, electric
potential-drop method) have been developed. Finally, J is evaluated using (3.251)
from the work of deformation attained up to the current load level divided by the
ligament area.

Since the fracture criterion J = JR(�a) should be always fulfilled during stable
crack propagation, the resistance curve is actually supposed to be a characteristic of
the specific material. Unfortunately, this statement is only valid with restrictions:

Firstly we know that during crack growth parts of the plastic zone behind the
crack tip are unloaded and that the region in front of the crack tip undergoes a
non-proportional loading, which invalidates the meaning of J -integral as fracture
parameter. To warrant nevertheless a crack growth controlled by J , the regions
of elastic unloading and non-proportional plastic loading—that is the crack incre-
ment �a—must be embedded in the zone of J -Dominanz �a < r < rJ. Under
SSY-conditions the plastic Zone is controlled by KI and equivalently also by J ,
hence in this case the JR(�a)-curve represents a geometry independent materials
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Fig. 3.46 Sketch of the ductile crack growth resistance curve

characteristic. Unfortunately, the SSY-assumption only seldom applies to ductile
materials in common specimen sizes. In the case of LSY it was tried by [93] to esti-
mate the conditions for J -controlled crack growth from the HRR-solution. To expose
a point in the vicinity of the crack tip to a proportional stress increase, the increment
dJ must have dominant effect over the unloading term due to crack extension da.
This leads to the condition dJ/J � da/r, whereof a limiting relation is derived for
fully plastified specimens with r ≈ w − a

w − a

J

dJ

da
= � � 1 . (3.260)

FEM-analyses by [94] have revealed that in specimens with dominating bending
stresses a J -controlled crack growth �a up to 6 % of ligament size (w − a) is admis-
sible (� = 10). For this reason, the valid data-range for evaluating JR-curves is
narrowed down to a maximum crack growth of �amax ≤ 0.10(w − a) in the guide-
lines, as indicated in Fig. 3.46.

Secondly, it has been found that crack resistance curves are strongly influenced by
the geometry (shape, thickness, crack size) of the specimens whereby they lose their
meaning as materials characteristics. In the same way, this queries the transferability
to cracks in components, too. Figure 3.47 represents JR(�a)-curves of the same
material. The crack initiation values Ji are in all specimens equal, but afterwords the
slopes of the curves dJ/da differ considerably. Therefore it has been suggested to
take the physical initiation value Ji as obligatory material parameter. This would lead
to a rather conservative safety assessment neglecting the reserves contained in the
rising crack resistance. The reasons for the geometry dependence of crack resistance
curves lie in the influence of triaxiality � of the stress state. The higher the triaxiality
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Fig. 3.47 Crack resistance curves and initiation values obtained by various specimen geometries
for steel 22NiMoCr37 [95]

the flatter are the JR-curves, i.e. ductile fracture is facilitated. At high triaxiality more
potential elastic Energy We

int is available from the incoming external work into the
structure (J -value), whereas at low triaxiality a substantial part is consumed by plastic
work of deformation Wp

int. This effect is enhanced by materials behavior since the
mechanism of ductile dimple fracture is favored by high triaxiality, which reduces
the fracture resistance. Indeed for every material a whole set of resistance curves
JR(�a, �) would be needed as functions of �. Therewith the ductile crack growth in
another structure could be predicted if besides the loading J the existing value � of
triaxiality would be known and the corresponding JR-curve would be chosen. Owing
to different strain constraints, the triaxiality varies along a crack front. Because of
that this method of adjusted resistance curves has to be applied locally. In this way,
very good predictions could be achieved in [96] by FEM-calculations simulating the
propagation of a semi-elliptical surface crack in a tensile specimen of ductile steel.

In Sect. 3.3.6 the T - and Q-stresses have been introduced as additional terms
to complete the elastic-plastic crack tip fields. They essentially influence the local
stress triaxiality via (3.243) and (3.247). Hence they have similar consequences for
the resistance curves as � has. Therefore, it is an urgent goal of numerical analyses
to determine both parameters in an efficient way for a given crack configuration.

Crack Tip Fields for Stationary Crack Propagation

For a crack that propagates quasi-statically with a constant velocity ȧ in an ideal-
plastic material, the asymptotic stress and strain fields were found by Slepyan [97]
(Tresca’s yield condition, plane strain), Drugan, Rice and Sham [98] and Castaneda
[99] (v.- Mises yield condition, plane stress). The solutions for mode I and II are
obtained by means of the slip line theory and are subdivided into various sectors,
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similar to the stationary crack (see Figs. 3.37 and 3.38). The stresses are everywhere
bounded, whereas the strains show a logarithmic singularity for r → 0 in the central
sector B (reference length R ≈ plastic zone size)

εrθ(r, θ) = 2(1 − ν2)σF√
3E

ln
R

r
ε̃rθ(θ). (3.261)

Under SSY-conditions the solution gives a relation between the rates of the crack
opening displacement δ̇t, the far field loading J̇ and the crack velocity ȧ with some
constants c1 and c2

δ̇t = c1
J̇

σF
+ c2

σF

E
ȧ ln(

R

r
) . (3.262)

For steady-state conditions at the moving crack the integration provides a crack
opening displacement that is proportional to the distance r from the crack tip. Thus
the crack faces run as straight lines with a crack tip opening angle γt = CTOA as
depicted in Fig. 3.35

δt

r
= c1

σF

dJ

da
+ c2σF

E
ln(e

R

r
) = tan γt. (3.263)

Also in experiments with large amounts of ductile crack growth the formation of a
constant angle CTOAc is observed, which is why the following crack propagation
criterion has been suggested:

arctan
δtc

rt
= CTOAc = const . (3.264)

Energy Considerations

The energy balance during ductile crack propagation a(t) will be studied for a two-
dimensional crack problem. We assume that at the crack tip a fracture process zone
AB is formed which moves with the crack. The process zone may have a shape and
structure typical for the material. Ẇext denotes the mechanical power of the external
loads t̄i acting on the boundary St of the body (for simplicity let b̄i = 0). This power
is transformed into internal energy Wint and supplies the energy D consumed in the
process zone, see Fig. 3.48 left.

Ẇext =
∫

St

t̄iu̇i ds (3.265)

Contrary to LEFM (Sect. 3.2.5) the internal energy (3.71) is now composed from
elastic and plastic work of deformation We

int and Wp
int
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Fig. 3.48 Energy balance during ductile crack propagation

Wint = We
int + Wp

int =
∫

V

(U e + U p) dV , U e + U p =
εe

kl∫

0

σij dεe
ij +

ε
p
kl∫

0

σij dεp
ij.

(3.266)
Since the plastic work Wp

int is mainly dissipated as heat or microstructural defects,
only the potential energy of the elastic part We

int is available for crack driving. There-
fore, the global energy balance during crack propagation per time t or crack increment
da = ȧ dt is written as

Ẇext = Ẇe
int + Ẇp

int + Ḋ. (3.267)

If all potential energy terms Π̇ext = −Ẇext and Π̇int = Ẇe
int are brought on the left

side, the extension of the Griffith’s energy release rate (3.76) to ductile fracture is
obtained

G = −dΠ

da
= dWext

da
− dWe

int

da
= dWp

int

da
+ dD

da
. (3.268)

The released potential energy G is therefore not only spent for separation of
material as a specific fracture energy dD/da = 2γ or crack resistance curve
dD/da = JR(�a), but is predominantly consumed as plastic deformation. The
greatest problem in EPFM is precisely that both contributions are difficult to distin-
guish in experiments. As a consequence the complete right-hand side of (3.268), the
dissipation rate during crack propagation, is interpreted as fracture toughness. For
the same reason, the crack resistance curves contain the geometry dependent plastic
work in the specimen

J = −dΠ

da
= dWp

int

da
+ dD

da
= JR(�a) . (3.269)
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In particular, Turner [100], Brocks [101] and Cotterell and Atkins [102] have pointed
out this conflict.

For a better theoretical understanding it is useful to split the energetic considera-
tions into a »continuum mechanical« part for the body A and a »material specific«
part for the process zone AB. Thereby the energy balance reads

body A : Ẇext + ẆB = Ẇe
int + Ẇp

int (3.270)

process zone AB : ẆB = −ẆB = Ḋ. (3.271)

ẆB describes the energy flux from the body across the boundary ΓB into the process
zone, which corresponds to the power performed by the tractions tB

i = σijnj with
the displacement velocities

ẆB =
∫

ΓB

tB
i u̇ids. (3.272)

How this energy is converted for materials separation inside of AB, remains a »black
box«. The process zone extracts from the body the same amount of energy that can
vice versa be considered as additional external work

W B along the boundary ΓB with opposite sign. Of course, the sum of both balances
(3.270) and (3.271) results again in (3.267). The energy flux dWB per crack increment
da into the process zone will further on be denoted by F . Using (3.270) gives

F = dWB

da
= 1

ȧ
ẆB = 1

ȧ

[ ∫

St

t̄iu̇ds − d

dt

∫

A
UdA

]
. (3.273)

Now we introduce a coordinate system (x1, x2) that is moving together with the crack
tip in the sense of an Eulerian description. On the other hand we denote by (X1, X2)
a Lagrangeian coordinate system fixed with the material body, see Fig. 3.48.

x1 = X1 − a(t), x2 = X2 (3.274)

The material time derivative of an arbitrary field variable f [x(X, t), t] associated with
the particle X is calculated by the well–known rule

ḟ = df

dt

∣∣∣∣
X

= ∂f

∂t

∣∣∣∣
x
+ ∂x
∂t

∂f

∂x
mit

∂x
∂t

= v = −ȧe1. (3.275)

In the special case of a steady state in the moving coordinate system the partial time
derivative is zero, i.e. any temporal change is proportional to the gradient

ḟ = −ȧ
∂f

∂x1
. (3.276)
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The velocity u̇i on ΓB is to be transformed by (3.276) into the moving coordinate
system x. If, as we may assume, the displacement field ui(x, t) is smooth and bounded
at the crack tip and only its gradients (strains) become singular, so in (3.275) the
convective 2. term dominates, which is called »local stationarity«.

dui(x, t)

dt
= ∂ui

∂t
− ȧ

∂ui

∂x1
≈ −ȧ ui,1. (3.277)

When performing the material time differentiation of the 2. integral of (3.273), one
must account for the temporal change of the domain A(t) between the external
boundary S and the moving process zone ΓB. In an Eulerian coordinate system x this
requires the use of Reynold’s transport theorem (see [103, 104]) with v = −ȧe1

d

dt

∫

A

UdA =
∫

A

∂

∂t
UdA − ȧ

∫

ΓB

Un1ds. (3.278)

In analogy to Sect. 3.2.6 the area integral on the right-hand side can be converted
into a line integral along the closed contour C = S + Γ + + Γ − − ΓB. To do this,
we rearrange ∂U/∂t = σij ε̇ij = σij u̇i,j into ∂U/∂t = (σij u̇i),j − σij,j u̇i, whereby the
2. term vanishes due to the equilibrium equations σij,j = 0. The 1st term is modified
by the Gaussian integral theorem

d
dt

∫
A

U dA = ∫
A
(σij u̇i),j dA − ȧ

∫
ΓB

Uδ1jnj ds

= ∫
S
σij u̇inj ds − ∫

ΓB

σij u̇inj ds − ȧ
∫
ΓB

Uδ1jnj ds.
(3.279)

The stress-free crack faces Γ + and Γ − do not contribute because of σijnj = ti = 0.
Equation (3.277) is used for the velocity on ΓB. After inserting these into relation
(3.273) the integral over S cancels out, so that we get the final expression for the
energy flux into the process zone

F =
∫

ΓB

[Uδ1j − σijui,1]nj ds =
∫

ΓB

[Un1 − tiui,1] ds. (3.280)

This energy flux integral has a conspicuous similarity with the J -integral (3.100)
but there are two essential differences: Firstly, now U includes the work of deforma-
tion for any elastic-plastic material law. Secondly, this integral is tied to the boundary
of the process zone, upon which yet no specific assumptions were made.

In order to achieve (at least formally) the path-independency of the integral, an
arbitrary closed contour Γ is introduced around the crack tip outside of the process
zone AB, see Fig. 3.48 right. The regular domain Ā between Γ and ΓB is enclosed
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by a continuous line C̄ = Γ + Γ + + Γ − − ΓB. Applying the Gauss theorem in
the opposite direction, whereby [ ] denotes the integrand of (3.280), we obtain, for
vanishing crack face terms Γ +, Γ −,

F =
∫

ΓB

[ ]nj ds =
∫

Γ

[ ]nj ds −
∫

Γ −ΓB

[ ]nj ds =
∫

Γ

[ ]nj ds −
∫

Ā

∂

∂xj
[ ] dA , (3.281)

F =
∫

Γ

[Uδ1j − σijui,1]nj ds −
∫

Ā

[U,1 − σijui,j1] dA. (3.282)

This result means: For an elastic-plastic material behavior the energy flux into
the process zone can not be expressed by a path-independent contour integral alone
(1. term), moreover an additional domain integral is required. Relationship (3.282)
provides thus a modified opportunity to calculate the original energy flux integral
along ΓB, which now does not depend on the choice of the contour Γ and the enclosed
domain Ā. At least for the numerical computation this offers an advantage. Of course
the expression merges for Γ → ΓB into (3.280) since the domain integral disappears.
By using (3.275) it is easy to show that for steady state conditions at the propagating
crack tip the domain integral becomes zero.

In the end we focus on the modeling of the process zone itself:
As most simple variant the region AB can be imagined as a point shrunk onto the
crack tip and embedded by a continuum solution, which corresponds to the near field
(3.261) treated in the previous section. Hereby the weaker logarithmic singularity of
strains (εij ∼ 1/ ln r) prevails compared to those for a stationary crack (εij ∼ 1/r),
which yields at bounded stresses σij ∼ σF to a vanishing energy flux integral (3.280)!
This leads to the contradictory result that in an ideal-plastic material no energy is
transported into the crack tip [105]. However, the real reason is to be found in a too
much simplified process zone. The correct conclusion is: Without a better and more
realistic modeling of the fracture process zone it is impossible to gain knowledge
about ductile crack propagation in EPFM. This experience was the starting point to
develop cohesive zone models and damage mechanics approaches for the process
zone. Further information can be found in [67, 102, 104, 106].

3.4 Fatigue Crack Propagation

Under alternating loads cracks may propagate stably although the stress intensity
factor is far below the static fracture toughness. This phenomenon of subcritical
crack propagation is called fatigue crack growth. Fatigue crack growth is the most
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common cause of failure in machines, vehicles, aircraft and other constructions that
are exposed to time-varying operating loads. Depending on their temporal course
one can distinguish between periodic (cyclic) or stochastic loads with constant or
variable amplitudes.

Fig. 3.49 Relation between alternating load and stress intensity factor

During fatigue of materials the following damage mechanism is observed. As
a result of alternating micro-plastic deformations (dislocations, slip bands) first
microcracks are formed on the surface or on microstructural inhomogeneities
(inclusions, grain boundaries) in the interior. The propagation behavior of the result-
ing microstructurally short cracks is very strongly influenced by the surrounding
microstructure and is subject to special rules. Only above a crack length of about 10
grain diameters do we call it a macroscopic initial crack. Its behavior can now be
described with methods of classical fracture mechanics. From a macroscopic view
very small negligible plastic deformations occur and fatigue crack growth takes place
in the K -controlled near-field, so that the LEFM is applicable.

3.4.1 Constant Amplitude Loading

At cyclic loading both the external loads, the stress distribution at the crack and the
stress intensity factor are time-dependent. Because of their linear relationship they
all run synchronously with the same time function

KI(t) = σ(t)
√
πa g(a, w), σij(t) = KI(t)√

2πr
f I
ij (θ). (3.283)
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Cyclic loading σ(t) of a structural component with constant frequency is charac-
terized by its range of stresses �σ (double amplitude), the mean stress σm and the
stress ratio R:

�σ = σmax − σmin, σm = (σmax + σmin)/2, R = σmin/σmax. (3.284)

Hence the range �KI follows, also known as cyclic stress intensity factor (to
remain in general, the index for the crack opening mode is omitted)

�K = Kmax − Kmin = �σ
√
πa g (a, w). (3.285)

This relationship is depicted in Fig. 3.49. �K is written with the help of stress
ration R as

�K = (1 − R)Kmax, R = Kmin/Kmax. (3.286)

Fig. 3.50 Course of stress intensity factor
with increasing crack length a as function of
time t or load cycles N

Fig. 3.51 Crack growth velocity as function
of cyclic stress intensity factor

Even if the stress range �σ and the mean stress σm of external loading do not
change, nevertheless the stress intensity factor will commonly rise because of the
growing crack length

√
πa g(a, w) in (3.285), which results in the course shown in

Fig. 3.50. If Kmax reaches the critical value Kc, unstable forced fracture happens.
Fatigue crack growth is quantified by the crack extension da per load cycle. The

crack growth velocity or crack growth rate is defined as the ratio da/dN , where N is
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the number of cycles. Plotting the experimentally determined crack velocity da/dN
on a double logarithmic scale as a function of cyclic stress intensity factor �K , we
obtain the crack growth curve. Its typical behavior is shown in Fig. 3.51. The lower
limit of the curve is identified by the threshold value of the stress intensity factor
�Kth. If the cyclic stress intensity factor �K is below this threshold value then the
fatigue crack can not propagate. Kth quantifies so to say a » fracture mechanical
endurance limit « and is about Kc/10 for metals. Whereas the initial stage SI is sen-
sitive to microstructural effects, in the subsequent range SII the influence of loading
dominates. In this range a linear relationship of the crack growth curve is observed
that can be approximated by the law of Paris-Erdogan [107],

da

dN
= C(�K )m Paris-law (3.287)

The exponent m and the coefficient C are characteristics of the material. C has
a relatively strange dimension depending on the exponent m of the crack growth
law. For metals the exponent is about m ≈ 2 − 7, while for ceramic materials it
attains much higher values (m ≈ 20 − 100). The range SIII marks the transition
to brittle forced fracture. The upper limit �Kc indicates that loading from here on,
the crack propagation becomes unstable. The criterion Kmax = Kc and Kmax =
�Kc/(1 − R) respectively is valid. The behavior of the crack growth curve depends
on the specific material and is influenced by manifold factors as microstructure,
temperature, environmental medium or R-ratio. With increasing R-ratio, the crack
growth velocity da/dN and the threshold value Kth commonly diminish.

Erdogan and Ratwani [108] have first proposed a formula for describing all three
ranges of the curve

da

dN
= C(�K − �Kth)

m

(1 − R)K − �K
. (3.288)

Meanwhile, there are many variants of crack growth laws. As an example, the very
sophisticated version of the code ESACRACK [109] is given here that is based on
an extended Paris equation. It covers the entire crack growth curve as function of
stress ratio R at a constant load amplitude:

da

dN
= C∗

[(
1 − χ

1 − R

)
�K

]m∗
(1 − �Kth/�K )p

(1 − Kmax/Kc)
q

χ = Kop

Kmax
=
{

max(R, A0 + A1 R + A2 R2 + A3 R3) for 0 ≤ R

A0 + A1 R for − 1 ≤ R < 0

A0 = (0.825 − 0.34αcf + 0.05α2
cf)

[
cos

(
πσmax

2σF

)]1/αcf

A1 = (0.415 − 0.071αcf)σmax/σF
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A2 = 1 − A0 − A1 − A3, A3 = 2A0 + A1 − 1. (3.289)

Here, p and q are parameters to fit the transition from range II into ranges I and III,
respectively. C∗ and m∗ are modified constants of the Paris Eq. (3.287) which follows
from (3.289) by reducing p = 0 and q = 0 as well as χ = R. χ means the R-
dependent crack opening function according to Newman [110] that indicates the
fraction between stress opening intensity Kop and the maximum stress intensity Kmax
during one cycle, see (3.294). The crack opening function χ accounts additionally
for a dependence of the crack growth curve on the stress ratio R. The constants A0
to A3 are at first functions of the plastic zone size that is estimated by the Dugdale-
model using the ratio of maximum nominal tensile stress σmax and yield stress σF.
Secondly, they are influenced by the strain constraint which is taken into account
by the constraint factor αcf. According to (3.198) the value of αcf varies between
1 (plane stress) and 3 (plane strain) and is a function of the component’s thickness.
For steel the best agreement with experimental data is achieved using the values
αcf = 2.5 and σmax/σF = 0.3.

With the help of such crack growth laws it is possible to determine by integration
how much a crack extends from its initial length a0 at a given number of load cycles
N . Applying to the simple Paris-Erdogan-law, one gets at constant amplitude

�a = a(N ) − a0 = C

N∫

0

[�K (a)]m dN = C �σm

N∫

0

[√
πa g(a, w)

]m
dN .

(3.290)
By inverting the crack growth law to dN and integrating with respect to da, we can
calculate vice versa the number of load cylces N required to attain the crack length a,

N (a) = 1

C�σm

a∫

a0

dā[√
πā g(ā, w)

]m

≈ 2a0

C(m − 2)
[√
πa0 g(a0)�σ

]m

[
1 −

(a0

a

)m
2 −1

]
for m �= 2 . (3.291)

If we neglect for simplicity that the geometry function depends on the crack length,
the indicated approximative (non-conservative!) formula is received. Inserting for a
the critical crack length ac resulting from a fracture criterion, we obtain from (3.291)
the number of load cycles NB until fracture. In this way for a structural component
with crack under in-service loading, the residual life time or the usable number of load
cycles can be predicted until the crack is grown to its critical size ac. Such considera-
tions are essential ingredients of a damage tolerant dimensioning, where unavoidable
crack-like defects in a component are admitted but are detected and monitored by
means of non-destructive inspection methods in sufficient time periods. With the help
of corresponding fracture mechanical assessments it is thus guaranteed that these
cracks never become critical or indicated above which size they must be removed.
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3.4.2 Stress State at the Crack Tip

In the following the characteristics of the stress situation at fatigue cracks will be
discussed, which are basically different from the case of monotonic loading and are
the reason for sequence effects if the amplitude of loading is changed.

Alternating Plastification

At cyclic loading, alternating plastic deformations occur in the small plastic zone
at the tip of a fatigue crack. Each material point is undergoing a σ-ε-hysteresis as
depicted schematically in Fig. A.10. The range of strain �ε corresponding to a given
range of stress �σ depends essentially on the hardening behavior and the loading
history. In fatigue crack growth a primary, secondary and cyclic plastic zone can be
distinguished. The primary plastic zone is formed if the maximum load is attained
the first time. The secondary or »reversed zone« is generated at the minimum load
and the cyclic plastic zone is reached after a number of load cycles. Estimates of the
plastic zone sizes have been presented in Sect. 3.3 for SSY.

Based on the Dugdale-model, Rice [111] developed an estimate of plastic zones
under fatigue loading. Hereby, an elastic-ideal plastic material behavior is assumed,
i. e. the yield stress has the same absolute magnitude of ±σF in the tensile and
compression range. During the first time loading up to Kmax the primary plastic
zone is generated of size rp max according to formula (3.193) or (3.197) as shown in
Fig. 3.52 (curve 1). The subsequent unloading by �K to Kmin (Fig. 3.52 curve 2) is
regarded as loading into reverse direction. Because of load reversal we have to take
the doubled yield limit to attain compressive yielding (from +σF to −σF) determining
this way by (3.193) the size rp min of the secondary plastic zone.

rp max = π

8

(
Kmax

σF

)2

, rp min = π

8

(−�K

2σF

)2

=⇒ rp min

rp max
= 1

4
(1 − R)2.

(3.292)
By superimposing the static solutions for Kmax and −�K the stress distribution at
Kmin is obtained as presented in Fig. 3.52 (curve 1+2). As can be seen, the secondary
plastic zone is created by negative stresses resulting from the reverse deformation
(compression) of the positive plastic elongations arisen during first tensile loading
Kmax. This does not necessarily require Kmin to be in the negative compressive
region ! By means of (3.292) we get the size relation of plastic zones at Kmin and
Kmax taking into account the R-ratio. In this simple ideal-plastic model the stress
state will not change at further load cycles so that the result of Fig. 3.52 corresponds
to the cyclic plastic zone as well.

If isotropic hardening were assumed the elastic region would increase during the
first load cycles until no further plastic alternating deformations appear (elastic shake
down). According to the kinematic hardening model, a stabilized hysteresis will soon
be adjusted, which is passed through in each cycle and leads to periodic plastic strains
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Fig. 3.52 Formation of plastic zones at the tip of a fatigue crack

±�ε
p
ij accumulating in the equivalent plastic strain εp

v. The true situation is by far
more complex, since a multiaxial stress state and a combined hardening rule prevail in
the plastic zone. Moreover, the plastic zone is permanently moving into new material
regions.

Residual Stresses

The considerations of the previous section have shown that compressive stresses
appear as a consequence of alternating plastic deformations directly ahead of the
crack tip in fatigue cracking (Fig. 3.52). At a certain distance to the crack tip on the
ligament the residual stresses alter from compression to tension.

Fig. 3.53 Crack closure effect (left) caused by plastic deformations of crack faces (right)
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By means of (3.292) it is obvious that rp max increases quadratically with the
maximum Kmax-factor. If for instance one single overload of size Kol = βKmax
happens, then a plastic zone is formed with a β2 times larger size rp ol and a corre-
sponding region of compressive residual stresses. During the subsequent regular load
amplitudes, this causes a retardation of fatigue crack growth until this compressive
region has been crossed [112].

Compressive residual stresses are not only observed ahead of the crack tip, but
as well as along the crack faces close to the tip, which was verified by experimental
and numerical investigations.

Crack Closure Effect

The crack closure effect was discovered first by Elber [113]. Investigating fatigue
cracks at cyclic tensile loading (R = 0) with constant amplitude, he observed that
during unloading the crack was already closed before the minimum load was attained
or that the crack keeps closed during re-loading up to a distinct level-the crack opening
intensity Kop, see Fig. 3.53 (left).

The mechanism of crack closure has the consequence that not the entire loading
�K contributes to crack propagation, but only an effective cyclic stress intensity
�Keff operating during the actual opening phase of the crack

�Keff = Kmax − Kop ≤ �K (3.293)

The quotient between effective and apparent range of external K -factor is
described by the empirical crack opening function U or the ratio χ,

U = �Keff

�K
, χ = Kop

Kmax
= 1 − (1 − R) U. (3.294)

The sources of crack closure may be quite different [114]. Plasticity-induced
crack closure is regarded as the most important mechanism, which takes place in
stage SII of crack growth curve. The premature crack closure is caused by plastically
elongated material along the crack faces, which is originated inside the plastic zones
emerging permanently at the fatigue crack. This material is cut through during crack
propagation, see Fig. 3.53 (right). The plastically stretched regions avoid both crack
faces being closed in a compatible manner to each other so that a complete reverse
displacement is impeded by mismatch at unloading.

Plasticity-induced crack closure is even intensified at variable-amplitude loading,
leading to larger plastic zones and to a higher level of plastification, which affect
once more crack closure and hence �Keff.
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Premature crack closure is also induced by small particles or fluids in the crack gap,
by the roughness of the fracture surfaces or by phase transformations, respectively.

3.4.3 Variable-Amplitude Loading

The case of fatigue crack growth at constant load amplitude is only rarely found in
real engineering practice. Machinery, components and vehicles in operational use are
frequently exposed to time-varying loads. The load regimes with variable amplitude
can be divided into three categories:

• single over- or under-loads
• stepwise change of amplitudes: block loads (e.g. engines, turbines)
• stochastic loads: load spectra of (e.g. vehicles, airplanes).

In addition to time-varying load histories the type of loading on a structure (tension,
shear, bending, torsion) can also change during service. For a crack this results in
an alteration of opening modes I, II and III, which is why the study of mixed-mode
loads is of particular importance.

Contrary to the fatigue crack growth at constant amplitude, the crack propagation
at variable amplitude does not only depend on the current load �K and R, but is
determined by the temporal course of loading. This phenomenon is called sequence
effect. Due to this fact variable-amplitude loads can lead both to accelerated and
delayed crack growth (Fig. 3.54), i. e. they affect the lifetime either by reducing or

σ σσ

t t t

a aa

da
dN

da
dN

da
dN

(a) (b) (c)

Fig. 3.54 Sequence effect after a a single overload, b a low-high block sequence and c a high-low
block sequence
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prolonging it. Whereas at constant loading parameters the lifetime can be obtained
simply by integrating the crack growth curve, sequence effects have absolutely to
be taken into account in case of variable loads, which comes along with severe
difficulties.

One important prerequisite is a complete knowledge of the service loads at all.
For its quantitative analysis, so-called in service load spectra are measured, whereby
the load-time history of a component is recorded under real operating conditions in
dependence on its profile of usage. Meanwhile, there exist approved standardized
load spectra for many components (especially in automotive and aerospace industry).
Instead of the field experiments, these data bases allow one to examine constructions
or components either on test benches in the laboratory or by numerical stress analyses.

Such measurements of load spectra provide a necessary input-information for the
fracture mechanical assessment of the crack behavior, too. In order to reduce the
enormous amount of data, they are classified by common counting methods (e.g.
rainflow-method) as used in service strength theory [115].

The simplest method to evaluate fatigue fracture under variable amplitudes con-
sists in reducing all statistical data of a load spectrum to a single averaged value of
the cyclic stress intensity factor. Barsom (see [116]) made the proposal to create an
effective integral value �Krms calculated as root mean square of the ranges �Kn of
all N recorded load cycles

�Krms =
√√√√ 1

N

N∑

n=1

(�Kn)
2 . (3.295)

The effective rms-value is put in a crack growth law for constant amplitudes, which
results in an estimated averaged crack growth rate for this load spectrum. This so-
called global analysis hence provides only integral values without temporal resolu-
tion and neglects any sequence effects on crack propagation.

An improved approach takes into account the load-time history of cycles. Provided
the crack growth curves of a material are available for all amplitudes �K and stress
ratios R, then the fatigue crack growth can be calculated and summed up cycle by
cycle:

da

dN
= f (�K , R) =⇒ a = a0 +

N∑

n=1

�an, �an = f (�Kn, Rn) · 1. (3.296)

For a block program, which consists of a sequence of load intervals i = 1, 2, . . . , I
of �Ni cycles at the load levels �Ki and Ri, the crack growth can be accumulated
from the contributions �ai of each interval as follows:

a = a0 +
I∑

i=1

�ai, �ai ≈ f (�Ki āi, Ri)�Ni . (3.297)



3.4 Fatigue Crack Propagation 123

The approximation is that in each interval a mean constant crack length āi is estimated.
This approach is similar to the damage accumulation hypotheses used in service
strength rules. After all it accounts for the temporal sequence of loads, however not
for their influence among each other, which is insofar a simplification.

Different models have been proposed to capture more precisely the sequence effect
during fatigue crack growth at variable amplitudes. Hereby, mainly the delaying effect
of an overload or a step-load sequence is simulated, which are attributed either to
residual stresses in the plastic zone (Wheeler [112], Willenborg, Gallagher [117]),
plasticity induced crack closure (Onera [118], Corpus [119]), crack blunting or sev-
eral factors.

The most advanced concept seems to be the strip yield model by Führing and
Seeger [120], deKoning [109] and Newman [110, 117]. It is an extension of the
Dugdale model (Sect. 3.3.3). Assuming a set of bar elements bridging the crack
faces, on the one hand the plastic deformations of the opened crack are taken into
account and on the other hand the contact stresses during crack closure. This model
allows us to calculate the crack opening stresses σop, at which the crack face contact
just disappears and the crack is entirely opening. By means of (3.293) an effective
stress intensity factor is obtained,

�Keff = (σmax − σop)
√
πa g(a, w), (3.298)

that enters the crack growth relation proposed by Newman [110] as follows:

da

dN
= C1(�Keff)

C2

[
1 −

(
�K0

�Keff

)2
]/[

1 −
(

Kmax

C5

)2
]

, (3.299)

whereby �K0 = �Kth

(
1 − σop

σmax

)
/(1 − R) is set and the coefficients C1, C2, C5

have to be fitted from experimental data. The crack opening stress σop is simulated
by the strip yield model throughout the entire load history, in this way taking into
account all sequence effects.

The above described models for predicting fatigue crack growth at constant
and variable amplitudes have been implemented in various simulation tools as e.g.
NASGRO [117] and ESACRACK [109] that enable assessment of the life time of
components (especially in aerospace and astronautics).

Further literature on fatigue crack growth can be found in Schijve [121, 122] and
the conference proceedings [123, 124].
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3.4.4 Fracture Criteria at Mixed-Mode Loading

So far mainly crack problems for the opening mode I at symmetrical loading have
been treated. The corresponding fracture criteria have been derived on the assumption
that the crack continues to extend along its original line (2D) or plane (3D) in a
straightforward manner on the ligament. If mode I is superimposed by mode II
and/or III, the symmetry is violated and the situation is called mixed-mode loading.
Mixed-mode loading occurs always when the sectional stresses tc

i in the cutting plane
of the body where the crack is located exhibit both normal and shear components as
shown in Fig. 3.55 (left). In engineering practice, there are plenty of examples and
reasons leading to mixed-mode loading of cracks:

• structural loads consisting of tension, shear, torsion or complex load cases
• oblique, curved, branched or kinked cracks
• time-varying, dynamic or thermal in service loads
• enforced crack propagation in a direction oblique to the principal stress because

of preferred geometrical, material or technological orientations (interfaces, joints,
anisotropy).

Furthermore, we will restrict ourselves to linear-elastic fracture mechanics at static
and cyclic loading. In this case the stress state at the crack tip is clearly determined
by the three intensity factors so that a generalized fracture criterion for mixed-mode
loading would be set up in the form

B(KI, KII, KIII) = Bc. (3.300)

Loading of the crack is defined by the parameter B on the left side, while on the right
the critical material parameter Bc characterizes crack initiation. In addition, now a
decision has to be made about the direction of crack propagation which deviates from
the original direction by an angle θc as shown in Fig. 3.55 (left). The propagation
usually runs in that direction, where the parameter B reaches an extreme value

max{B(θ)} = B(θc) or min{B(θ)} = B(θc). (3.301)

In the case of brittle instantaneous fracture it is sufficient for a strength evaluation
to know the critical size and direction of crack loading. For subcritical and stable
crack growth moreover a kinematic law is needed that quantifies the length of crack
propagation under this stress situation

da

dt
= f1(B) or

da

dN
= f2(�B). (3.302)

Especially in fatigue fracture, the crack is very sensitive to any variation in mixed-
mode stress state and changes its direction accordingly, leading often to fancy curved
crack paths and subtle fracture surfaces. To assess the residual life time it is especially
important in this context that the geometric path of the crack can be predicted.
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Fig. 3.55 Mixed-mode loading of a crack by mode I and II for plane problems

In the following the most approved and established fracture criteria for mixed-
mode crack problems will be introduced from a variety of proposals (see e.g. [125]).

Criterion of Maximum Circumferential Stress

The criterion of maximum circumferential stress was suggested by Erdogan and
Sih [126] and is based on the following assumptions:

• The crack extends radially from its tip with an angle θc in that direction, which is
perpendicular to the maximum circumferential stress σθθmax.

• Crack propagation initiates, if σθθmax (in a certain distance rc) reaches a critical
material constant σc that corresponds exactly to those under mode I at the ligament
if KI = KIc is fulfilled.

From the near-tip solutions (3.17) and (3.24) we find

σθθ = 1

4
√

2πrc

[
KI

(
3 cos

θ

2
+ cos

3θ

2

)
− KII

(
3 sin

θ

2
+ 3 sin

3θ

2

)]
(3.303)

and by applying the extremal condition

∂ σθθ

∂ θ

∣∣∣∣
θc

= 0,
∂2 σθθ

∂ θ2 < 0 ⇒ KI sin θc + KII(3 cos θc − 1) = 0 (3.304)

the crack deflection angle θc is found to be

θc = 2 arctan

⎡
⎣1

4

KI

KII
− 1

4

√(
KI

KII

)2

+ 8

⎤
⎦ . (3.305)

σθθ is a principal normal stress at θ = θc and consequently the shear stress τrθ
vanishes. The second condition requires
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σθθ(θc) = σc = KIc√
2πrc

, (3.306)

whereof by (3.303) the failure criterion is obtained. It can also be expressed by means
of an equivalent stress intensity factor Kv on the radial ray θc,

Kv = lim
r→0

[
σθθ(θc)

√
2πr

]
= cos2 θc

2

(
KI cos

θc

2
− 3KII sin

θc

2

)
= KIc . (3.307)

Of course, for opening mode-I collinear crack extension θc = 0◦ is recovered. For
pure mode-II loading the deflection angle is θc = −70.5◦ and the critical loading
amounts to KII = √

3/2KIc.

Criterion of Maximum Energy Release Rate

For physical reasons, energetic considerations are favored to derive a suitable crite-
rion for mixed-mode fracture. The Eq. (3.93) given in Sect. 3.2.5 holds however only
for self-similar crack propagation along its original direction and is thus not applica-
ble. Therefore, models and solutions have been developed by [127–130] whereby
at the origin of the main crack a small kink crack of length a∗  a and direction
θ is assumed as illustrated in Fig. 3.55 (right). Hussain, Pu and Underwood [127]
formulated the criterion of maximum energy release rate as follows:

Fig. 3.56 Failure limit curves for mixed-mode loading by modes I and II

• The kink crack is formed under that angle θc, where the energy release rate
G∗ = (K ∗ 2

I + K ∗ 2
II )/E ′ attains a maximum.
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Fig. 3.57 Crack deflection angle for mixed-mode loading by modes I and II

∂ G∗(θ)
∂ θ

∣∣∣∣
θc

= 0,
∂2 G∗

∂ θ2

∣∣∣∣
θc

< 0 (3.308)

• Crack propagation initiates, if G∗ reaches the critical material value Gc.

The loading situation at the small auxiliary crack a∗ is controlled by the near-field
of the main crack with its intensity factors KI and KII. Thereby the factors K ∗

I and
K ∗

II can be calculated and the energy release rate is obtained in the limit a∗ → 0,

G∗(θ) = 4

E ′

(
π − θ

π + θ

)θ/π 1

(3 + cos2 θ)2

[
(1 + 3 cos2 θ)K 2

I

+ (4 sin 2θ)KI KII + (9 − 5 cos2 θ)K 2
II

]
= Gc = K 2

Ic/E ′. (3.309)

Here, we omit the derivation of ∂G∗/∂θ. Instead of it, the results for this failure limit
curve and the corresponding deflection angle θc are presented in Figs. 3.56 and 3.57.

Criterion of Strain Energy Density

Sih [131] proposed the criterion of strain energy density, which is based on the
angular dependence of the singular energy density U given by the two-dimensional
near-tip field

U = 1

2
σijεij = S(θ)

r
= 1

r

(
a11 K 2

I + 2a12 KI KII + a22 K 2
II

)
. (3.310)
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The strain energy density function S(θ) is expressed by the K -factors

a11 = [(1 + cos θ)(κ− cos θ)]/16πμ

a12 = sin θ[2 cos θ − κ+ 1]/16πμ (3.311)

a22 = [(κ+ 1)(1 − cos θ) + (1 + cos θ)(3 cos θ − 1)]/16πμ.

The following assumptions underlie the criterion:

• The crack extends radially in that direction θc, where the function S(θ) exhibits a
minimum

dS(θ)

dθ

∣∣∣∣
θc

= 0,
d2S(θ)

dθ2

∣∣∣∣
θc

> 0. (3.312)

• Crack propagation initiates, if S(θc) reaches a critical material value Sc calibrated
at the mode-I case in plane strain

S(θc) = Sc =̂ a11(θc = 0)K 2
Ic = 1 − 2ν

4πμ
K 2

Ic. (3.313)

The deflection angle θc derived by (3.312) and the corresponding failure limit curve
are included in Figs. 3.56 and 3.57 for plane strain with ν = 0.3.

The S-criterion is physically motivated by the argument that in the direction of
θc the part of volume-changing (dilatational) energy UV predominates the shape-
changing (deviatoric) part UG = U − UV, whereby brittle failure is favored. This
idea is elaborated further in the criterion of Radaj and Heib [132] postulating a
maximum of the function S∗(θ) = UV(θ)/UG(θ).

Criterion of J-Integral Vector

Another hypothesis can be formulated by means of the J -integral vector J that
was explained in Sect. 6.1. Both planar components of J are shown in Fig. 3.58.
Their values represent the energy release rate if the crack tip region enclosed by the
integration path is virtually displaced by δl1 or δl2 in the corresponding coordinate
direction. The computation is done as a path-independent integral according to the
expressions (6.11) or (6.16). The x1-component J1 coincides geometrically with the
crack extension in its original direction and is therefore equivalent to the energy
release rate of (3.78), cf. Sect. 3.2.6. The situation is unlike with the J2-component
that corresponds geometrically with the shift of the entire considered crack tip region
perpendicular to its original position. However, this kind of displacement δl2 does
not reflect the real physical crack propagation, where kinking of the crack takes place
as shown in Fig. 3.55. In the frame of LEBM there exists, according to (6.12), the
following relationship between both components of the Jk-integral vector (6.11) and
the stress intensity factors

http://dx.doi.org/10.1007/978-94-007-6680-8_6
http://dx.doi.org/10.1007/978-94-007-6680-8_6
http://dx.doi.org/10.1007/978-94-007-6680-8_6
http://dx.doi.org/10.1007/978-94-007-6680-8_6
http://dx.doi.org/10.1007/978-94-007-6680-8_5
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J1 = G = 1

E ′
(

K 2
I + K 2

II

)
, J2 = −2KI KII/E ′ . (3.314)

Based on the J -integral the criterion is now postulated:

• The crack extends radially in the direction of the vector J, because here the con-
figurational force is maximal (Fig. 3.58). The crack deflection angle is thus

θc = arctan (J2/J1) . (3.315)

• Crack initiation occurs if the absolute magnitude of J reaches a critical material
value JIc that can be converted from the fracture toughness KIc.

|J| =
√

J 2
1 + J 2

2 = JIc =̂ K 2
Ic

1 − ν2

E
(3.316)

With the help of (3.314) the fracture criterion and the crack deflection angle can be
likewise expressed by the stress intensity factors or their ratio � = KII/KI:

KI
4
√(

1 + �2
)2 + 4�2 − KIc = 0, θc = arctan

( −2�

1 + �2

)
. (3.317)

The crack deflection angles deduced from the J -integral criterion are depicted in
Fig. 3.59 as a function of mixed-mode loading ratio. For larger shear stresses
� = KII/KI > 1 the deflection angle decreases again and tends to θc = 0. Due
to (3.317), also the critical value at failure in pure shear loading is predicted to
KII = KIc and not to KII < KIc. Both statements are in contradiction to experimen-
tal observations and all other criteria (cf. Fig. 3.56). Therefore, a practical application
of the J -integral vector seems to be useful only for KII ≤ KI.

x2

x1

θc

J1�e1

J

J2�e2

Fig. 3.58 J-integral vector at the crack tip Fig. 3.59 Crack deflection angle for the J-
integral

A comprehensive overview about other mixed-mode fracture criteria is given by
Richard [125, 133] and Pook [134]. The investigation of three-dimensional crack
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configurations at superposition of all three crack opening modes I, II and III is still
a subject of current research, see e.g. [135, 136].

3.4.5 Fatigue Crack Growth at Mixed-Mode Loading

As can be seen from Fig. 3.56, the various mixed-mode fracture criteria differ
considerably in their conclusions, especially if a high shear component KII exists.
Experimental verifications require expensive and complicated tests. Due to manifold
influences of materials, side effects and scatterings, a universal criterion could not yet
be confirmed. Particularly difficult are measurements of the fracture toughness KIIc
under pure shear loading. Note also that all of the above criteria are only applicable
if a minimum crack opening (KI > 0) is present. Otherwise, both crack faces would
come into contact, which has to be taken into account by the analysis. A KI < 0 is
practically impossible! A relative tangential movement of the crack faces at mode II
is impaired by friction.

Fortunately, for a low mode II component (KII  KI) all hypotheses provide in
a first approximation the same result for the crack deflection angle (cf. Fig. 3.57)

θc ≈ −2KII/KI. (3.318)

A pragmatic approach was proposed amongst others by Richard [133] who intro-
duced an equivalent stress intensity factor Kv in analogy to superimposed stress
states in classical theory of strength. It is calculated from KI and KII (and possi-
bly KIII) and represents a measure of crack loading that corresponds to an equal
mode I case

Kv(KI, KII) = KI

2
+ 1

2

√
K 2

I + 4(α1 KII)2 = KIc, α1 = 1, 155 (3.319)

θc = ∓
[

155, 5◦ |KII|
|KI| + |KII| − 83, 4◦

( |KII|
|KI| + |KII|

)2
]

, (3.320)

whereby the signs hold for KII ≷ 0. These formulas are included in Figs. 3.56 and
3.57. The predictions are quite close to those of the maximum circumferential stress
criterion and were substantiated by experiments. Other empirical approaches describe
the failure limit curve by means of a generalized elliptic shape, the parameters of
which KIc, KIIc, α and β, respectively have to be fitted for every material by mixed-
mode tests. (

KI

KIc

)α
+
(

KII

KIIc

)β
= 1 (3.321)

Although these fracture criteria were derived for monotonic static loads until
catastrophic failure, they may with sufficient justification as well be applied to cyclic
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loads within the scope of LEBM. In order to transfer this concept to fatigue cracks,
instead of absolute values now the ranges �KI and �KII of the stress intensity
factors are employed. Then the mixed-mode hypotheses are interpreted in the sense
that the growth rate of subcritical crack propagation is quantified in dependence on
the mode-ratio KI over KII. The best suited quantity for this purpose is the range of
the equivalent stress intensity factor �Kv given e.g. in (3.307) or (3.319)

�Kv(�KI,�KII) = �KI

2
+ 1

2

√
�K 2

I + 4(α1�K 2
II ). (3.322)

Hence, �Kv can be used in all crack growth laws, established in Sects. 3.4.1 and
3.4.3 for constant and variable amplitudes, instead of �K

da

dN
= f (�Kv, R) in the area �Kth ≤ �Kv ≤ (1 − R)Kc. (3.323)

However, it must be provided that KI(t) and KII(t) oscillate synchronously and their
ratio does not change.

3.4.6 Prediction of Crack Path and its Stability

To make a life time assessment for fatigue fracture in practice the essential question
arises: Which geometrical path will the crack run under the given complex loading
of the component? Let’s assume the stress intensity factors KI and KII would be
known for the current position of a fatigue crack in its local crack-tip coordinate
system. Then, all mixed-mode criteria predict approximately the same alteration
�θ = −2KII/KI of the crack propagation direction. In addition two cases have to
be distinguished:

• Alignment on KI and KII = 0
Fatigue cracks grow in an inhomogeneous stress field always in such a manner
that they align themselves perpendicular to the local maximum principal stress,
i.e. to get KI dominant and let KII → 0 fall to zero. As a result at the current
crack tip a symmetric (mode I) stress state is adjusted. The direction of the crack
is continuously turned and all criteria imply that KII = 0 must thereby vanish.
Otherwise the change of direction �θ would have been calculated falsely! This
means in the frame of a 1st-order theory (only singular terms of the near field), the
directional change is governed by the condition KII = 0. Prerequisite is however
that the crack propagation is only controlled by the stress field and that the material
is isotropic. This theory is confirmed by practical experience and countless failure
cases.

• Real mixed-mode situation KII �= 0
Under those conditions mentioned in the introduction of Sect. 3.4.4 it happens that
at the beginning of crack growth indeed real mode-II components exist or that they
reappear spontaneously later again. Then in fact an abrupt kinking of the crack is
observed according to (3.318).
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In the numerical simulation of crack propagation by FEM one is forced to make
finite crack increments so that a polygonal path with discontinuous changes in direc-
tion is obtained. Hereby, usually an explicit algorithm is applied for integrating the
crack propagating path: The change of direction �θ is derived from the K -factors
at a0 and not from the condition KII(a0 + �a) = 0 at the end of the interval. This
would require an implicit scheme. Thus a value KII(a0 +�a) �= 0 arises that is basi-
cally an approximation error which is believed to be corrected in the next increment.
This presupposes a sufficiently fine increment �a of a crack propagation. Extended
criteria for the direction of curved crack propagation are worth being mentioned
(see [137, 138]), whereby the T11-stresses of 2nd order are accounted for in the
near-field solution and the criterion of maximum circumferential stress is used.

Finally, the question of directional stability during crack propagation is to be
discussed. This concerns the issue of how a crack reacts to small perturbations of
its path due to material inhomogeneities, load fluctuation and more. Based on the
solution for a kinked crack (Fig. 3.55) located inside the K -field of the main crack,
Cotterell and Rice [139] have derived the following theory. The starting situation
is a mixed-mode loading KI(a), KII(a) as depicted in Fig. 3.60, which causes a
deflection angle θ0 according to (3.318). The further propagation of the main crack
y(x) could approximately be calculated under the assumption that K ∗

II(a
∗) = 0 is

kept, which corresponds to the maximum of G∗(a∗). The T11-stress at the main crack
has significant influence on the course of the crack path. Hence, two branches of the
solution were recognized, see Fig. 3.60:

y(x) → θ0 K 2
I

4T 2
11

exp

(
8T 2

11

K 2
I

x

)
for T11 > 0 (3.324)

y(x) → θ0 KI

|T11|
√

x

2π
for T11 < 0 . (3.325)

11 0T >

11 0T <

0θ ( )y x

x

Fig. 3.60 Directional stability during crack propagation

The result implies: In case of positive stresses T11 parallel to the main crack the
kink crack turns off upwards of the initial orientation θ0, i. e. y′ → ∞–the direction
becomes unstable. In case of compressive stresses T11 < 0 however, the crack is
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forced to stay on its initial direction θ = 0 because of y′ → 0—stable behavior.
(This can also be made clear by means of the principle stresses.) The predictions of
this model have been proved by experiments.

These investigations emphasize the importance of the T11-stress or its dimension-
less form, the biaxial parameter, in fracture mechanics

βT = T11
√
πa

KI
. (3.326)

3.5 Dynamic Fracture Processes

3.5.1 Introduction

In fracture mechanics we speak about dynamic phenomena whenever the deforma-
tions in the pre-cracked body run with high velocity and if large inertial forces occur
as a result of accelerated mass particles. Both effects determine the stress situation
and the strength behavior significantly. High, undesirable dynamic loading of com-
ponents with cracks are encountered in engineering practice at impact and shock
processes, crash events and explosions. Even earthquakes are wave propagations
caused by dynamic fracture processes in the earth crust. On the contrary, dynamic
fracture processes are consciously employed in mining (blasting), in geotechnical
engineering (hydrocracking) and in comminution technology. In principle, two ques-
tions have to be distinguished in dynamic fracture mechanics:

• The stationary crack under dynamic loading. The action of external loads is trans-
ferred by stress waves through the material to the crack.

• The fast running crack. Hereby elastodynamic waves are emitted by highly
dynamic rupture processes from the crack itself.

Dynamic fracture processes are often more dangerous than stationary cracks for the
following reasons: Firstly, after crack initiation they almost always proceed in an
unstable manner, which may lead particularly in brittle materials to uncontrolled
failure of the whole component. After a short phase of acceleration, dynamic cracks
attain high speeds of propagation ranging in the order of sound wave speeds. Sec-
ondly, the high strain rates at the crack tip induce in many materials an embrittlement,
since viscoplastic effects reduce the energy absorption capacity of the fracture process
zone and the fracture toughness decreases.

Due to complicated elastodynamic wave phenomena such as reflection, super-
position, dispersion and attenuation, in dynamic fracture processes no longer does
a proportional relationship exist between the temporal course of applied load σ(t)
and the stress state at the crack KI(t). Principally, the following tendencies can be
identified at impact loading: In the beginning the wave phenomena dominate in a
short time range, as long as high kinetic energy is in the system. With increasing
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time this energy is dissipated, and the waves are attenuated, scattered, and finally
fade out.

The larger the crack is in proportion to the body, the more pronounced is the
short-term effect, i. e. intense oscillations of KI(t) appear such as e. g. in the notch
impact test. On the other hand a small crack in a huge component is hit only once by
an incoming wave front that will subsequently be dispersed.

In the following some theoretical foundations of dynamic fracture mechanics are
explained, restricted to brittle materials and two-dimensional problems. The time-
dependent stress and deformation fields in the cracked body are thus calculated as
solution of the related initial boundary value problems (IBVP) of the linear elasto-
dynamic theory (Appendix A.5).

3.5.2 Fundamentals of Elastodynamics

The starting point is the PDE-system of Navier-Lamé, which expresses the linear
elastodynamic problem in the form of displacement fields and has to be completed
by corresponding initial and boundary conditions.

(λ+ μ)uj,ji + μui,jj = ρüi (3.327)

This relation is gained by inserting Hooke’s law (A.88) into the equations of
motion (A.70) (without body forces b̄i = 0) and subsequent substitution of strains
by the kinematic relations (A.29). In order to solve the PDE (3.327) the displacement
field is represented by a scalar potential ϕ(x, t) and a vector potential ψ(x, t)

u(x, t) = ∇ϕ+ ∇ ×ψ or ui = ϕ,i + εijkψj,k , (3.328)

which results in Helmholtz wave equations for both potentials.

c2
d�ϕ = ϕ̈ , c2

s �ψ = ψ̈ (3.329)

The scalar potentialϕ characterizes a volume change, whereas the vector potentialψ
is associated with a pure shape change. Therefore, the constants cd and cs correspond
to the speeds of dilatational (longitudinal) waves and shear (transversal) waves,
respectively.

cd =
√
λ+ 2μ

ρ
, cs =

√
μ

ρ
(3.330)

Plane elastic waves that propagate in the direction of the normal vector n through an
infinite 3D body can be represented as

ϕ = ϕ(x · n − cdt) ψ = ψ(x · n − cst) . (3.331)
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The dilatational wave excites the particles in direction of the wave propagation,
whereas the shear wave produces displacements along both transversal directions
in the wave plane. In addition, surface waves (so–called Rayleigh waves) become
important for dynamic crack problems, since they mainly propagate along free crack
surfaces but fade rapidly away towards the interior. Their speed of propagation cR is
obtained from the root of the so-called Rayleigh’s function D(c).

D(c) = 4αdαs − (1 + α2
s )

2 → D(cR) = 0 (3.332)

αd(c) =
√

1 − c2

c2
d

, αs(c) =
√

1 − c2

c2
s

(3.333)

Wave velocities in engineering materials vary from minimum 900 m/s (plastics) up
to maximum 11,000 m/s (ceramics). For steel and aluminum alloys they amount
to about: cd ≈ 5,900 m/s, cs ≈ 3,100 m/s and cR ≈ 2,900 m/s. The relation
cR < cs < cd is valid.

3.5.3 Dynamic Loading of Stationary Cracks

At the tip of a dynamically loaded, stationary crack exactly the same near-tip fields
arise as in the static case. There exist identical singularities and the same separation
applies to the three opening modes I, II and III with the stress intensity factors as
loading parameters. This way all asymptotic relations derived in Sect. 3.2 can be
adopted for the stresses, strains and displacements at mode I ((3.12)–(3.16)), mode
II ((3.23)–(3.26)) and mode III ((3.31)–(3.32)). The only but essential difference to
the static case consists in that the K -factors in dynamics depend on time t.

Dynamic crack-tip field at a stationary crack:

σij(r, θ, t) = 1√
2πr

[
KI(t)f

I
ij(θ) + KII(t)f

II
ij (θ) + KIII(t)f

III
ij (θ)

]
(3.334)

ui(r, θ, t) = 1

2μ

√
r

2π

[
KI(t)g

I
i (θ) + KII(t)g

II
i (θ) + KIII(t)g

III
i (θ)

]
(3.335)

This agreement can mathematically be explained by means of the PDE (3.327). If
for the displacement field at the crack tip a non-singular ansatz is made ui = rλ g̃(θ, t)
(0 < λ < 1), then the stresses will behave like rλ−1 and the second spatial derivative
on the left-hand side of (3.327) like rλ−2. Hence in the asymptotic limit r → 0 the
inertial forces ρüi ∼ rλ vanish as terms of higher order and may be neglected.
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Fig. 3.61 Stress intensity factor as function of time if a crack is loaded by a rectangular impulse

The calculation of the K -factors as a function of transient load, component geom-
etry, crack length and time requires solution of the elastodynamic IBVP. The few
available analytical solutions for unbounded domains are mostly based on the Laplace
integral transform, see Freund [140]. Some fundamental phenomena of dynamic
crack analyses are exemplified and discussed in the 2D problem shown in Fig. 3.61.
We consider a crack of length l = 2a in the plane (plane strain state). Its faces are
subjected to a sudden stress jump p(t) = σ∗ at t = 0 and are completely unloaded
again after the time t∗. According to the principle of Huygen’s, the impact loading
generates elementary waves in every point of the crack faces and their envelope
forms the current wave front. Far away from the crack tips, plane waves are emitted
parallel to the crack faces. Around each crack tip however, two concentric circular
wave fronts arise, associated with a dilatational and a shear wave, respectively, the
radii of which increase with time cd t and cs t. As long as these wave fronts have
not reached the respective other crack tip, i.e. if the run time is t < 2a/cd, each
crack tip behaves autonomously like in the case of a semi-infinite crack. Because
of self-similarity of the stress field σij(r, t)

√
r ∼ σ∗√cdt, the stress intensity factor

increases with time (Fig. 3.61, top right)

KI(t) = 2σ∗
√

1 − 2ν

1 − ν

√
cdt

π
foür 0 < t < 2a/cd. (3.336)

If the dilatational waves have attained the other crack tip, they generate there an
additional tensile loading that fades away only when the Rayleigh wave impinges
later at τ = 2a/cR. The occurring maximum of the dynamic stress intensity factor
KI max exceeds the static solution K sta

I = σ∗√πa for this crack by about 30 % (for
ν = 0.3)! This effect is called dynamic overshoot. The enhancement factor κ > 1
with respect to the static solution depends on the crack configuration and the edge
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steepness of the impulse p(t).

max
t

KI(t) ≈ KI(tmax = 2a/cR) = κK sta
I (3.337)

After the maximum, the course of KI(t) is leveled off in several oscillations to its
static value as depicted in Fig. 3.61 (right bottom). The amplitudes decay since the
crack radiates permanently waves into the infinite domain. The behavior of KI(t)
after unloading at t∗ is illustrated for both cases in Fig. 3.61.

It is apparent that the characteristic of the solution substantially depends on the
ratio between pulse duration t∗ and run time of a Rayleigh wave τ = 2a/cR along
the crack length. By applying the K -concept KI(t) = KId, the critical value σ∗

c of
the rectangular impulse can be calculated for both cases from (3.336) and (3.337)
(plane strain, ν = 0.3)

σ∗
c = 0.87

KId√
πa

/√
t∗cR

2a
for t∗  2a/cR

σ∗
c = 1

1.3

KId√
πa

= const. for t∗ � 2a/cR (3.338)

For long pulses the critical loading behaves qualitatively similar as in the static
case (3.79). However, at very short load impacts the tolerable stress (for constant
crack length) is enhanced with 1/

√
t∗, since the K -factor has to be built-up first. In

fact these durations are extremely short. For a crack of size 10 mm in aluminum it is
τ ≈ 3.4μs.

3.5.4 Dynamic Crack Propagation

What is the structure of the near-field at the tip of a crack that is propagating with a
velocity ȧ ? To find the solution, a coordinate system is attached at the moving crack
tip (x1 = X1 − ȧt, x2 = X2), see Fig. 3.62. At first the mode III case is considered,
followed by the opening modes I and II in the crack plane.

Antiplane Shear Mode III

In this case the Navier-Lamé equation (3.327) simplify to a wave equation for the
longitudinal displacement field u3 since u1 ≡ u2 ≡ 0, ∂(·)

∂x3
≡ 0,

c2
s u3,jj(x1, x2) = ü3(x1, x2) , (3.339)

and due to ∂(·)
∂t = −ȧ ∂(·)

∂x1
the following form is yielded



138 3 Basics of Fracture Mechanics

Fig. 3.62 Moving coordinate system with a fast running crack and integration paths

∂2u3

∂x2
1

+ 1

α2
s

∂2u3

∂x2
2

= 0 with αs =
√

1 − ȧ2

c2
s

. (3.340)

In order to transform this PDE into a potential equation, a modified (compressed)
x2-coordinate x̄2 := αsx2 is introduced, which reads in complex notation

zs = x1 + iαs x2 = rse
iθs with rs =

√
x2

1 + α2
s x2

2 , θs = arctan

(
αs x2

x1

)
.

(3.341)
Thus we get the equation

�u3(rs, θs) = 0 , (3.342)

which can be solved by using the complex functions method as in the static case
(cf. Sect. 3.2.2)

μu3 = 	Ω(zs) , τ13 − i
τ23

αs
= Ω ′(zs) . (3.343)

The same series approach (3.51) for the stress function Ω satisfies the crack-face
boundary conditions. Only the singular term n = 1 is evaluated Ω(zs) = c1z1/2

s ,
whereby c1 = −KIII

√
2/π holds. Using (3.343) the stresses and displacements of

the near-field are finally found

{
τ13
τ23

}
= KIII(t)√

2πrs

⎧
⎪⎪⎨
⎪⎪⎩

− sin(θs/2)

αs
√
γs

cos(θs/2)√
γs

⎫
⎪⎪⎬
⎪⎪⎭

, u3 = KIII(t)
√

r√
2π

√
γs

αs
sin

θs

2
.

(3.344)

As in the static case, this solution is composed as the product of radial and angu-
lar functions. The stresses become singular as r−1/2 and the displacement field is
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proportional to r1/2. Of course now the angular functions of the fields depend via
αs and rs on the crack velocity ȧ. This difference to the static problem is vanishing
for ȧ = 0 (αs = 1, rs = r, θs = θ), cf. (3.31) and (3.32). As abbreviation the ratio
between the scaled and true radii is introduced

γs(θ) = rs

r
=
√

1 −
(

ȧ sin θ

cs

)2

, γd(θ) = rd

r
=
√

1 −
(

ȧ sin θ

cd

)2

(3.345)

In-Plane Tension (Mode I) and Shear (Mode II)

For plane problems (plane strain: u3 ≡ 0, : ∂(·)
∂x3

≡ 0) the representation of the
solution (3.328) is reduced to two wave equations that identify the scalar potential
and the ψ = ψ3-component of the vector potential (ψ1 ≡ ψ2 ≡ 0)

cd ϕ,jj = ϕ̈ , cs ψ,jj = ψ̈ . (3.346)

Similar to the mode III problem, a transformation into a moving coordinate system
(x1, x2) as depicted in Fig. 3.62 gives two time-independent PDE with the parameters

∂2ϕ

∂x2
1

+ 1

αd

∂2ϕ

∂x2
2

= 0 , αd =
√

1 − ȧ2

c2
d

∂2ψ

∂x2
1

+ 1

αs

∂2ψ

∂x2
2

= 0 , αs =
√

1 − ȧ2

c2
s
. (3.347)

Inserting of the scaled coordinates (3.341) into the 2nd equation and declaring cor-
responding expressions

zd = x1 + iαd x2 = rdeiθd with rd =
√

x2
1 + α2

d x2
2 , θd = arctan

(
αd x2

x1

)

(3.348)
for the 1st equation results in the potential equations

�ϕ(rd, θd) = 0 , �ψ(rs, θs) = 0 . (3.349)

To get the solution, both functions are represented either as real or imaginary part
of a complex analytical function, whereby again only the dominant terms of a series
expansion will be used

ϕ = A 	z3/2
d , ψ = B 
z3/2

s for symmetry (mode I)

ϕ = A 
z3/2
d , ψ = B 	z3/2

s for antimetry (mode II) . (3.350)
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The real constants A and B = A 2αd/(1 + α2
s ) are determined by employing the

boundary conditions of stress-free crack faces (τ21 = σ22 = 0 at θ = ±π). After
extensive calculations, see [141], the stress and displacement fields are gained at the
crack tip via the relationships

u1 = ∂ϕ

∂x1
+ ∂ψ

∂x2
, u2 = ∂ϕ

∂x2
− ∂ψ

∂x1
(3.351)

σ11 = λ�ϕ+ 2μ

[
∂2ϕ

∂x2
1

+ ∂2ψ

∂x1∂x2

]
, σ22 = λ�ϕ+ 2μ

[
∂2ϕ

∂x2
2

− ∂2ψ

∂x1∂x2

]

σ12 = μ

[
2
∂2ϕ

∂x1∂x2
+ ∂2ψ

∂x2
2

− ∂2ψ

∂x2
1

]
. (3.352)

The stress intensity factors are defined as for static cracks

KI(t) = lim
r→0

√
2πr σ22(r, θ = 0, t)

KII(t) = lim
r→0

√
2πr τ21(r, θ = 0, t) (3.353)

KIII(t) = lim
r→0

√
2πr τ23(r, θ = 0, t).

Dynamic crack tip field for mode I
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(3.354)
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Dynamic crack tip field for mode II
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⎨
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(3.355)

The dynamic crack tip fields have basically the same structure as in statics,
cf. (3.12), (3.16) and (3.23), (3.25). But their magnitude and their angular distri-
bution depend on the crack velocity ȧ, which affects the Rayleigh function (3.332)
as well as the constants αd, αs (3.347) and γd, γs (3.345). For ȧ → 0 the formulas
(3.354) and (3.355) migrate into the well-known relations of statics. It can be shown
that the acceleration ä of the crack doesn’t influence the singular near-field solution
but has an impact on higher order terms of the series expansion [141]. This means,
the yet deduced relationships (3.344), (3.354) and (3.355) are valid for (arbitrarily)
accelerated crack propagation, too. Thus, the K -factors and the velocity ȧ control
definitely the loading situation at a moving crack in an isotropic elastic material. The
2nd term of the series expansion describes the dynamic T -stresses:

T dyn
11 = T sta

11 (α2
d − α2

s ) , T dyn
22 = T dyn

12 = 0 . (3.356)

Finally the stress field (3.354) at a fast running crack under mode I should be
discussed. From the fracture mechanics point of view the maximum circumferential
stressesσθθ(r, θ) are of most interest. Their angular distribution is plotted in Fig. 3.63
for different crack velocities. Up to a velocity of ȧ < 0.6 cs of the shear wave speed
the maximum σθθ is located at θ = 0, i.e. in the direction of crack extension. At
higher crack velocities the position of the maximum is shifted towards an angle of
θ = 60◦. Supposing the validity of the criterion of maximum circumferential stress
(Sect. 3.4.4), the crack should deflect in this orientation or branch symmetrically at
higher velocities ȧ > 0, 6cs. Even though crack branching is a frequently observed
phenomenon at such velocities, no sufficient explanation is delivered from the stress
state alone. Another important reason for the loss of directional stability at fast crack
propagation lies in the excessive supply of kinetic energy that the crack can only
relieve by branching.

If the ratio of stresses σ22/σ11 is investigated at the ligament θ = 0 as a function
of crack velocity ȧ (γd = γs = 1)
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Fig. 3.63 Angular distribution of dimensionless circumferential stress as a function of relative
crack velocity ȧ/cs for steel

σ22

σ11
= −(1 + α2

s )
2 + 4αd αs

(1 + α2
s )(1 + 2α2

d − α2
s ) − 4αd αs

, (3.357)

a falling trend is obtained from the value 1 (ȧ = 0) down to zero (ȧ = cR), since in
the denominator stands the Rayleigh function D(ȧ = cR) = 0. Therefore, at high
crack velocities σ11 > σ22, favoring a material rupture perpendicular to the crack
direction. Moreover, the triaxiality � is considerably decreased, which explains the
larger plastic deformation and enhancement of the fracture resistance with ȧ.

3.5.5 Energy Balance and J-Integrals

In the case of dynamic fracture processes the kinetic energy K (3.72) has to be
included into the energy balance. We consider an elastic, thermally isolated body
(Q̇ = 0) and employ the results from Sect. 3.2.5, Eq. (3.69). The external work Wext
(3.70) is converted into strain energy Wint (3.71) and kinetic energy K (3.72), the
remaining amount of energy is available for crack propagation, i.e.

dWext − d(Wint + K)

dA
= −d(Π + K)

dA
= G = dD

dA
= 2γ . (3.358)

The global energy release rate G quantifies the total mechanical energy provided
by the system during an infinitesimal crack increment. For a stationary, dynami-
cally loaded crack the same correlation exists to the stress intensity factors as in
statics (3.93), since identical crack tip fields are present, however now time-dependent

G(t) = 1

E ′

(
K 2

I (t) + K 2
II(t)

)
+ 1 + ν

E
K 2

III(t). (3.359)
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To analyze the energy balance for a fast moving crack, we refer to the consid-
erations made in Sect. 3.3.8 for ductile crack growth, see Fig. 3.48. We restrict the
derivation to elastodynamic material behavior and concentrate the process zone AB

to a point at the crack tip enclosing the dominant singularity, i. e. ΓB = Γε → 0.
The energy flux (3.273) is now extended by the kinetic energy of the body,
ẆB = Ẇext − Ẇint − K̇, and has the meaning of a real energy release rate since
Wint does not contain dissipative plastic terms.

F = Gdyn = dWB

da
= ẆB

ȧ
= 1

ȧ

⎡
⎢⎣
∫

St

t̄iu̇i ds − d

dt

∫

A

(
U + ρ

2
u̇iu̇i

)
dA

⎤
⎥⎦ (3.360)

Again, we switch over to the spatial coordinates (x1, x2) moving with the crack
(Figs. 3.62 and 3.48), which requires us to treat the material time derivative in (3.360)
with the help of the Reynold’s transport theorem

d

dt

∫

A

[
U + ρ

2
u̇iu̇i

]
dA =

∫

A

[
∂U

∂t
+ ρu̇iüi

]
dA − ȧ

∫

Γε

[
U + ρ

2
u̇iu̇i

]
n1 ds (3.361)

Taking into account the equations of motion σij,j = ρüi and the relation
∂U/∂t = σij u̇i,j, the kernel of the 1st integral can be converted into (σij u̇i),j. Apply-
ing Gauss’s theorem delivers a contour integral over C = S + Γ + + Γ − − Γε as
visible in Fig. 3.48, which simplifies for load-free crack faces and with u̇i = 0 on
Su to the contributions along St and Γε only. Inserting these expressions in (3.360)
yields in the end

F = 1

ȧ

⎡
⎢⎣
∫

Γε

tiu̇i ds + ȧ
∫

Γε

(
U + ρ

2
u̇iu̇i

)
n1 ds

⎤
⎥⎦ . (3.362)

The displacement velocity on Γε → 0 is obtained by the local stationarity condition
(3.277) u̇i = −ȧui,1.

Thus the energy flux into the crack tip or the energy release rate of the system
at elastodynamic self-similar crack propagation amounts to

F = Gdyn = lim
Γε→0

∫

Γε

[(
U + ȧ2 ρ

2
ui,1ui,1

)
n1 − σijnjui,1

]
ds (3.363)

Gdyn = lim
Γε→0

∫

Γε

[(
U + ρ

2
u̇iu̇i

)
δ1j − σijui,1

]
nj ds. (3.364)
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For the numerical computation of Gdyn it is more comfortable to replace the near-
tip integral (3.364) along Γε → 0 by a line integral along an arbitrary remote path
Γ , which requires an additional integral over the enclosed area Ā, see Fig. 3.62.
By analogy to (3.279), this conversion of (3.364) results in the path-independent
contour-area integral

F = Gdyn =
∫

Γ

[(
U + ρ

2
u̇iu̇i

)
δ1j − σijui,1

]
nj ds +

∫

Ā

(
ρüiui,1 − ρu̇iu̇i,1

)
dA .

(3.365)
In the special case of a constant crack propagation speed ȧ and stationary conditions
in Ā, the relations u̇i = −ȧui,1, u̇i,1 = −ȧui,11 and üi = −ȧ2ui,1 apply making the
area integral to zero. Under such conditions the energy release rate is exclusively
represented by the path-independent contour integral along Γ . However, at crack
propagations in finite structures these circumstances are rarely met.

For stationary cracks (ȧ = 0) the above expression of energy release rate simplifies
to:

Gdyn =
∫

Γ

[
Uδ1j − σijui,1

]
nj ds +

∫

Ā

ρüiui,1 dA (3.366)

In the pure static case even the inertia forces ρüi in Ā are omitted, which is conse-
quently leading back to the classical J -integral (3.100).

The relationship between energy release rate Gdyn and stress intensity factors can
be realized as in statics either by the energy flux integral (3.363) or by the dynamic
analogue of the crack closure integral (3.89), inserting there the dynamic crack tip
fields of Sect. 3.5.4 [140].

Elastodynamic energy release rate as a function of stress intensity factors and
crack velocity under mixed-mode loading (plane strain):

Gdyn(t) = GI(t) + GII(t) + GIII(t)

= 1

2μ

[
AI(ȧ)K 2

I (t) + AII(ȧ)K 2
II(t) + AIII(ȧ)K 2

III(t)
]

(3.367)

AI(ȧ) = ȧ2αd

c2
s D(ȧ)

, AII(ȧ) = ȧ2αs

c2
s D(ȧ)

, AIII(ȧ) = 1

αs

This relation is only valid for straight crack propagation in its original direction
(along the x1-axis), but holds for any transient course ȧ(t). For ȧ = 0 Eq. (3.367)
merges into the static relation (3.93). The functions AI and AII become singular
at ȧ → cR (D(cR) = 0) and the function AIII at ȧ → cs. To keep Gdyn(= 2γD)

bounded, the K -factors must tend to zero. This means, the Rayleigh speed is the upper
limit of propagation velocity ȧmax = cR ≈ 0.57

√
E/ρ for cracks under mode I or II,
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Fig. 3.64 Initiation, acceleration and arrest at dynamic crack propagation

which has been evidenced by experimental observations [141, 142]. For mode III
the shear wave speed is the upper limit.

3.5.6 Fracture Criteria

The loading situation at the crack tip is controlled by the elastodynamic stress inten-
sity factors. Therefore, the K -concept applies with the same arguments as in the static
case. We restrict ourselves to the most important opening mode I. For the phase of
crack initiation the following criterion can be postulated:

KI(t) = KId(K̇I, t∗) (3.368)

The right–hand side KId represents the dynamic initiation toughness that depends
on the velocity of crack tip loading K̇I. For metallic materials it lies below the static
fracture toughness KId < KIc. In practice, typical impact loads occur with values
of about K̇I ≈ 103–107 MPa

√
m/s. According to Sect. 3.5.2, at short-time load

impulses the interval length t∗ during which the crack tip field is built-up plays an
important role.

After a dynamic fracture process is started, the further course of crack propagation
depends on the supply and consumption of energy. The stress field at a moving crack
and the energy release rate are determined by the dynamic stress intensity factor KI
and the crack velocity ȧ. One the other hand the fracture energy 2γ dissipated by
the material is influenced by the velocity, too. Therefore, the fracture criterion for a
moving crack is formulated as:

KI(t, ȧ) = KID(ȧ, K̇I, T ) or Gdyn
I (t, ȧ) = 2γD(ȧ, K̇I, T ) . (3.369)

The index D denotes the dynamic crack growth toughness that is principally different
from the initiation quantity KId. Expensive experiments are necessary to determine
KID as a function of crack velocity ȧ. Nearly all materials show an enormous increase
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of fracture toughness KID with ȧ due to various mechanisms (crack branching, strain
rate dependency, adiabatic heating, et al).

If the energy supply falls off, the crack velocity is slowed down and the crack
finally stops, which is called crack arrest. Then the condition applies:

KI(t, ȧ) ≤ KIa . (3.370)

The crack arrest toughness KIa characterizes the ability of a material to absorb a
running crack. Because of inertial effects, the crack arrest is not yet simply the
reverse of crack initiation! Therefore the relation holds KIa < KID(ȧ → 0) < KId.
In this context the crack arrest concept should be mentioned. This concept is applied
in fracture mechanical safety design (e.g. of reactor pressure vessels) to ensure that
a crack will come to a standstill if it runs in a region of the component with tougher
material KIa > KI.

In the end, the typical scenario of a dynamic fracture process should be outlined.
Figure 3.64 depicts the temporal course of the stress intensity KI for a crack in a
structural component as a function of crack length a. Under static loading the crack
length a0s would be necessary to initiate fracture at KI = KIc. If the same KI-factor
is now imposed by dynamic loading, then already a crack size a0d < a0s becomes
critical. After the crack is started it gains more energy (dashed area), since KI(a) is
further increasing and its velocity speeds up. Let’s assume for simplicity a constant
dynamic fracture toughness KID. If the driving load KI(t) falls below the KID value,
the remaining available energy causes the fracture process to continue, leading to a
much later crack arrest at KI(aa) ≤ KIa.
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Chapter 4
Finite Element Method

The finite element method (FEM) is currently one of the most efficient and universal
methods of numerical calculation for solving partial differential equations from engi-
neering and scientific fields. The basic mathematical concepts are based on the work
of Ritz, Galerkin, Trefftz and others at the beginning of the twentieth century. With
the advance of modern computer science in the 1960s, these approaches of numerical
solution could be successfully implemented with FEM. This development was moti-
vated to an enormous extent by tasks of structural analyses in aviation, construction
and mechanical engineering. The formulation of the finite element method in its cur-
rent standard was developed thanks to the pioneer work of (among others) Argyris,
Zienkiewicz, Turner, and Wilson. Therein, the system of differential equations is
converted into an equivalent variational problem (weak formulation), mostly utiliz-
ing mechanical principles or weighted residual methods. To solve a boundary value
problem (BVP), trial functions are created for limited subdomains—the so-called
» finite elements « –, the free variables of which are finally determined numerically
by solving an algebraic system of equations.

In this chapter at first a few principles of continuum mechanics will be introduced
in order to clarify the basic theoretical foundations of FEM. This will be followed
by a concise presentation of discretization techniques and the numerical realization
of FEM. These explanations are required to understand the following chapters, in
which the application of FEM in fracture mechanics will then be treated in detail.
There is also a large selection of related textbooks on FEM, which are recommended
to supplement the reader’s knowledge of the subject.

4.1 Spatial and Temporal Discretization
of Boundary Value Problems

Section A.5 provides a compilation of the basic relations of solid mechanics neces-
sary for formulating an (initial) boundary value problem (IBVP) (cf. Fig. A.16 and
equation set (A.139)). The finite element method is a technique used to approximate

M. Kuna, Finite Elements in Fracture Mechanics, Solid Mechanics and Its 153
Applications 201, DOI: 10.1007/978-94-007-6680-8_4,
© Springer Science+Business Media Dordrecht 2013
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Fig. 4.1 Finite element discretization: a tension strap

the solution of an IBVP. It is based on the numerical implementation of energy
principles from mechanics, which are for this purpose discretized in space and time.

To this end, the domain V of the body under consideration is divided into a num-
ber nE of finite subdomains Ve, finite elements, and simplified formulations are made
for these. The finite elements are numbered with the running index e = 1, . . . , nE.
Figure 4.1 shows the example of a spatial discretization of the boundary value

eS

it
−

iu+

iu−

it
+

teS

ueS

eVeS

eS

˜

˜ ˜

(a) (b)

Fig. 4.2 a Detailed view of a finite element, b transition conditions to the neighboring element



4.1 Spatial and Temporal Discretization of Boundary Value Problems 155

problem of a tension strap. In the case of initial boundary value problems or
non-linear problems, the transient temporal progression [t0 ≤ t ≤ tend] is gener-
ally discretized with a sequence of time steps or load increments �ti .

Figure 4.2 a shows a detail of Fig. 4.1, in which the element e has been highlighted.
Belonging to element e are its volume Ve and its boundary Se = Sue ∪ Ste ∪ S̃e. Sue

and Ste represent the intersections of Se with the displacement or traction boundaries
Su or St of the IBVP. Moreover, every element adjoins to neighboring elements on
the part S̃e of its boundary. The sum of these interelement boundaries is designated as
S̃. All external, given field quantities are represented by an overbar. A tilde indicates
quantities that are only defined on the boundary.

To solve a BVP, the field quantities in the finite elements have to fulfill the fol-
lowing basic relations:

1. The displacement field ui is a continuous function of location. By gradient for-
mation, the strains εi j inside each element are derived by:

εi j = 1

2
(ui, j + u j, i ) in Ve (compatibility conditions). (4.1)

2. The displacement field ūi must take on prescribed values ūi on section Sue of the
boundary:

ui = ūi on Sue (essential boundary conditions). (4.2)

3. Balance of the stress state with the body forces b̄i inside the element:

σi j, j + b̄i = 0 in Ve (equilibrium conditions). (4.3)

4. Tractions on boundary section Ste correspond to the external given values t̄i :

σi j n j = ti = t̄i on Ste (natural boundary conditions). (4.4)

5. Continuity of displacements at the interelement boundaries S̃e, i. e. the value must
be the same if approached from both elements (symbolized by + and −) :

u+
i = u−

i on S̃e . (4.5)

6. Reciprocity of the traction vectors (actio = reactio) on the interelement boundaries:

t+i = −t−i on S̃e . (4.6)

7. The stress-strain law. In the following we will first assume linear-elastic material
properties:

σi j = Ci jklεkl , εi j = Si jklσkl , U = Û = 1

2
σi jεi j . (4.7)
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Every displacement field that fulfills Eqs. (4.1) and (4.2) is called a kinematically
admissible displacement field ukin

i . Every stress field that obeys (4.3) and (4.4) is
designated as a statically admissible stress field σsta

i j . The last two conditions for
interelement boundaries are clarified in Fig. 4.2 b.

The true solution of the BVP must satisfy all static and kinematic conditions
(4.1)–(4.6) and the material law (4.7) in the entire domain V exactly (see Sect. A.5.2).
With FEM however, an approximation is made for the primary field quantities. This
approximation needs to fulfill a priori only a part of the above listed basic equations
for the element interior and continuity requirements on the boundary. The remaining,
basic equations that are not satisfied from the outset, usually for the derived dual
field quantities, will be obtained as Euler equations of a variational principle and are
realized only approximately in terms of weighted residuals.

4.2 Energy Principles of Continuum Mechanics

The starting point of our examination will be the generalized principle of work. It
states that the internal work Wint of a statically admissible stress field σsta

i j performed

with a kinematically admissible displacement field εkin
i j is equal to the work Wext

done by external stresses t̄ sta
i and b̄sta

i with associated displacement field ukin
i :

Wint =̂
∫

V
σsta

i j ε
kin
i j dV =

∫

St

t̄ sta
i ukin

i dS +
∫

V
b̄sta

i ukin
i dV +

∫

Su

t sta
i ūkin

i dS =̂ Wext .

(4.8)
We can also apply (4.8) to the true stresses σsta

i j := σi j of the BVP and the true

increments of the kinematic quantities ukin
i := dui and εkin

i j := dεi j of a non-linear
analysis. Integration over all load steps from the undeformed initial state to the final
state then results–for any material law–in the identity of internal work (work of
deformation) and the work of external forces:

Wint =̂
∫

V

∫ εi j

0
σi j dεi j dV =

∫

S

∫ ui

0
t̄i dui dS +

∫

V

∫ ui

0
b̄i dui dV =̂ Wext . (4.9)

4.2.1 Variation of Displacement Field

We assume a state of stress in the body that is in equilibrium with the external system
of forces, i. e. (4.3) and (4.4) are satisfied. In addition to the actual displacements ui

now a virtual displacement δui is carried out. This is defined as a continuous function
of x that has the following properties:

(a) infinitesimal (compared to ui ),
(b) imagined, i. e. not really existing,
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(c) kinematically admissible, i. e. δui = 0 on Su , so that the boundary condition
ui = ūi is not violated.

These virtual displacements lead to virtual deformations:

δεi j = 1

2
δ(u j,i ) = 1

2

[
(δui ), j +(δu j ),i

]
. (4.10)

Now the principle of work (4.8) is applied, whereby σsta
i j := σi j corresponds to

the state of equilibrium and the virtual displacements are used for ukin
1 := δui (the

integral over Su must disappear according to presumption (c)):

∫

V
σi jδεi j dV =

∫

St

t̄iδui dS +
∫

V
b̄iδui dV +

∫

Su

ti��δui dS

δWint = δWext . (4.11)

Principle of virtual displacements:
A deformable body is exactly in the state of equilibrium if the work of

applied external forces is equal to the deformation work of the internal forces
with an arbitrary kinematically admissible virtual displacement field δui , or
the total virtual work is equal to zero. This is true for every material law.

δW = δWint − δWext = 0 (4.12)

Equation (4.11) represents the integral form of equilibrium conditions (4.3) and
(4.4). It is also called the weak formulation because the order of the differentiation
of σi j is one less than in the differential Eq. (4.3). The function δui in (4.11) can be
mathematically regarded as a test function or weighting function, which corresponds
to the method of weighted residuals (Galerkin).

For the principle of virtual displacements, only the current state of stress is impor-
tant, even if it is a functional of the entire deformation history as with non-linear
material behavior. For this reason, the principle can also be applied to every load
step �t of a non-linear analysis in order to fulfill equilibrium conditions. For this
purpose, we insert in (4.11) instead of the total kinematic quantities their increments
�ui = u̇i�t or �εi j = ε̇i j�t :

∫

V
σi jδ�εi j dV =

∫

St

t̄iδ�ui dS +
∫

V
b̄iδ�ui dV . (4.13)

Dividing by �t , we thus obtain the relation in rate form, which is also called the
principle of virtual velocities:
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∫

V
σi jδε̇i j dV =

∫

St

t̄iδu̇i dS +
∫

V
b̄iδu̇i dV . (4.14)

This principle can also be applied to large deformations (see Sect. A.2). In the current
configuration, the internal work is calculated with the Cauchy stress tensorσi j accord-
ing to (A.42) and the Euler-Almansi strain tensor ηi j (A.18), which has a non-linear
relation with the displacements (A.20). The integration extends over the current
volume v and the surface a

δWint =̂
∫

v

σi jδηi j dv =
∫

v

ρ f̄iδui dv +
∫

a
t̄iδui da =̂ δWext . (4.15)

The representation in the reference configuration utilizes the 2nd Piola-Kirchhoff
stress tensor TI J (A.51) and the Green-Lagrange strain tensor EI J (A.19) with the

kinematic relation (A.20). Correspondingly, the boundary traction vector ˆ̄T accord-
ing to (A.50) and the volumes V and areas A of integration must be related to the
reference state

δWint =̂
∫

V
TI J δEI J dV =

∫

V
ρ0 f̄iδui dV +

∫

A

ˆ̄Tiδui dA =̂ δWext . (4.16)

The volume forces b̄i are obtained from the force vector per mass f̄i such that
ρ0 f̄i dV = ρ f̄i dv, i. e. by accounting for the different densities ρ0 and ρ in both
configurations.

The principle of virtual displacements can be converted into a variational for-
mulation under two conditions. Firstly, hyperelastic material behavior is required
so that the work of deformation constitutes an internal potential strain energy (see
Sect. A.4.1).

Πint =
∫

V
UdV = Wint σi j = ∂U

∂εi j

(
U (εi j ) = 1

2
σi jεi j linear-elastic

)

(4.17)
Secondly, the external forces must be conservative (independent of path), i. e. be
derivable from a potential Πext (gravity, elastic spring force, …).

Πext = −Wext = −
∫

V
b̄i ui dV −

∫

St

t̄i ui dS (4.18)

From (4.12) thus follows δWint−δWext = δΠint+δΠext = δΠP = 0 the stationarity
of the total potential

ΠP(ui ) = Πint + Πext =
∫

V
U (εi j )dV −

∫

St

t̄i ui dS −
∫

V
b̄i ui dV . (4.19)
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The variation of δΠP with respect to δui that must be kinematically admissible,
results in:

δΠP =
∫

V

∂U

∂εi j
δεi j dV −

∫

St

t̄iδui dS −
∫

V
b̄iδui dV = 0 . (4.20)

With (4.17) and σi jδεi j = σi jδui, j = (σi jδui ), j −σi j, jδui we obtain

δΠP =
∫

V
(σi jδui ), j dV −

∫

V

[
σi j, j + b̄i

]
δui dV −

∫

St

t̄iδui dS , (4.21)

and the application of Gauss’s theorem and the Cauchy’s formula lead to

δΠP =
∫

St

[
σi j n j − t̄i

]
δui dS −

∫

V

[
σi j, j + b̄i

]
δui dV = 0 . (4.22)

Due to the fundamental law of variational calculus (δui is an arbitrary test function)
the expressions in brackets must disappear. We obtain exactly (4.3) and (4.4) as Euler
equations, i. e. the differential equation and the boundary conditions for the stress
tensor σi j .

Principle of minimum potential energy:
Of all kinematically admissible displacement fields, the true displacements,

which also correspond to the state of equilibrium, render the potential energy
a minimum value. Therefore, the true solution of the BVP can be found by
choosing an admissible displacement approach with free parameters using the
variational principle of minimum potential energy (Ritz method, Galerkin’s
method of weighted residuals → FEM)

4.2.2 Variation of Forces

The principle of virtual forces can also be derived from the general principle of work
(4.8). However, we now assume a kinematically admissible state of displacement
ui (x) and strain εi j (x) in the body, which satisfies (4.1) and (4.2) and should corre-
spond to the quantities ukin

i and εkin
i j in (4.8). In addition to the actual stresses, now a

virtual change of internal and external forces is applied, which are identified with the
stresses σsta

i j := δσi j (x), boundary stresses t̄ sta
i := δti and body forces b̄sta

i := δbi

of the principle of work. These virtual forces form a system of equilibrium with the
properties:

(a) infinitely small,
(b) imagined, i.e. not really existing,
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(c) statically admissible, i.e. δσi j, j + δb̄i = 0 and δt̄i = 0 on St .

Inserting these field quantities into the principle of work (4.8) results in

∫

V
δσi jεi j dV =

∫

St
��δti ui dS +

∫

Su

δti ui dS +
∫

V
δbi ui dV

δŴint = δŴext . (4.23)

The left side is called complementary internal work Ŵint and Ŵext designates com-
plementary external work. Expressed verbally, the principle of virtual forces means:

The displacements and strains of a deformable body are kinematically compati-
ble with each other and with the boundary conditions only if, for every arbitrary
statically admissible system of virtual forces and stresses, the virtual comple-
mentary internal work and external work are equal, or the total virtual com-
plementary work is equal to zero. This principle is valid for all material laws.

δŴ = δŴint − δŴext = 0 . (4.24)

The principle of minimum complementary energy can analogously be derived from
the principle of virtual forces like the derivation of the minimum potential energy in
Sect. 4.2.1. Here too, hyperelastic material behavior and a conservative external load
system have to be presupposed. Then the complementary work of deformation

Ŵint =
∫

V
Û (σi j ) dV , Û (σi j ) =

∫ σi j

0
εkl dσkl (4.25)

represents an internal complementary potential Π̂int and the external complementary
work Ŵext is performed by a corresponding potential-Π̂ext. Both quantities together
make up the total complementary potential

ΠC(σi j ) = Π̂int + Π̂ext =
∫

V
Û (σi j ) dV −

∫

Su

ui ti dS −
∫

V
ui bi dV , (4.26)

which should be conceived as a function of the statically admissible stress field
σi j (x). The variational principle δΠC = δΠ̂int + δΠ̂ext = 0 then leads precisely to
the relation (4.23) and the kinematic relations (4.1) are thus obtained as the Euler
equations.

Of all forces and stresses that satisfy equilibrium conditions, those that also
correspond to the true kinematically admissible deformation state reduce the
complementary potential energy to a minimum.
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4.2.3 Mixed and Hybrid Variational Principles

Fundamentals

The principle of minimum potential energy, in which we assume kinematically
admissible displacement functions, is the foundation of the most prevalent FEM
variant – the displacement method. If the principle of complementary energy is used
on the other hand, one works with the variation of equilibrated stress functions,
which leads to the force method of FEM. If we try to satisfy all basic equations
inside the body (compatibility conditions, stress equilibrium) and all boundary con-
ditions exclusively via the variational principle, we then obtain generalized energy
principles. The additional requirements are then introduced into the functional as
auxiliary conditions with the help of Lagrange multipliers. If for example, in the
case of the variational principle of complementary energy (4.26), we would like to
allow for an arbitrary function for the stress state, the equilibrium conditions (4.3)
in V and (4.4) on St must be satisfied by the requirements

∫

V
(σi j, j − b̄i )λi dV = 0

∫

St

(σi j n j − t̄i )λi dS = 0 . (4.27)

The Lagrange multiplier thus turns out to be a variation of the displacement field
ui (x), which should be regarded as independent. We arrive in this way at the
Hellinger-Reissner principle ΠR(ui ,σi j )–a two-field functional which is the foun-
dation of the mixed finite element formulations .

Hybrid element formulations differ from ordinary displacement, stress or mixed
element functions in that we dispense a priori with satisfying the continuity require-
ment at the element boundaries for the displacements (4.5) or tractions (4.6), i. e. a
reduced compatibility of elements is permitted. This has the advantage of higher flex-
ibility in element formation, since we can now select different displacement and stress
functions that do not conform with the neighboring element. In the hybrid model,
conditions of interelement continuity are enforced by introducing separate displace-
ments ũi and tractions t̃i on the interelement boundaries S̃e, the selection of which
is independent of the internal shape functions. The boundary displacements ũi are
equally valid for two adjacent elements and are most advantageously defined by nodal
variables. In contrast, the boundary stresses t̃i are applied separately in each element.
The continuity requirement in the transition from one element to the other is incor-
porated into the variational principle as an additional auxilary condition, whereby
the dual field quantity on the boundary usually serves as the Lagrange parameter.
Only through extending the variational principle in this way to a hybrid functional,
the continuity of the field quantities can be achieved approximately in integral form.

The book by Washizu [1] provides a comprehensive view of all conventional vari-
ational principles of solid mechanics and their hybrid modifications, also referring to
the various finite element formulations. The most essential principles and their corre-
lations are compiled in a schematic overview in Fig. 4.3. The two classical minimum
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Fig. 4.3 Diagram of conventional and hybrid variational principles of elasticity theory

principles of potential and complementary energy can be seen as counterpoles. Since
hybrid element formulations are particularly effective in the development of special
crack tip elements, the three most important hybrid variational principles will be
described in detail below.

The Hybrid Stress Model

The hybrid stress model is based on the principle of minimum complementary energy
ΠC (4.26), which has been modified by an additional displacement function ũi on
the entire element boundary Se (Pian and Tong [2]):

ΠCH(σi j , ũi ) =
nE∑

e=1

⎧
⎪⎨
⎪⎩

∫

Ve

[
1

2
σi j Si jklσkl

]
dV −

∫

Se

ti ũi dS +
∫

Ste

t̄i ũi dS

⎫
⎪⎬
⎪⎭

.

(4.28)
The only a priori prerequisite for the stress ansatz is to

• satisfy the equilibrium conditions (4.3) in Ve.

But, as opposed to conventional stress elements, no stress equilibrium (4.4), neither
on the traction boundary Ste nor on the interelement boundaries S̃e (4.6) is needed.
The boundary displacements are required (4.2) to
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• assume given boundary values ũi = ūi on Sue.

The functional ΠCH is varied with respect to both field quantities δσi j (and associated
δti = δσi j n j ) and δũi . It has to take on a stationary value δΠCH = 0.

δΠCH =
nE∑

e=1

{∫

Ve

δσi j Si jklσkl dV −
∫

Se

δti ũi dS

−
∫

Se

tiδũi dS +
∫

Ste

t̄iδũi dS ±
∫

Se

δti ui dS

}
= 0 . (4.29)

The zero complement in the final term is on the one hand subtracted from the first
term and converted by the divergence theorem into an integral over Ve, and on the
other hand it is added to the second term:

δΠCH =
nE∑

e=1

{∫

Ve

δσi j
[
Si jklσkl − ui, j

]
dV

−
∫

Se

δti
[
ũi − ui

]
dS −

∫

S̃e

tiδũi dS +
∫

Ste

[
t̄i − ti

]
δũi dS

}
= 0 .

(4.30)

Setting the expressions in square brackets equal to zero provides the missing basic
relations:

• compatibility (4.1) of the strains in Ve resulting from σi j :
Si jkl σkl = εi j = 1

2 (ui, j + u j,i )

• satisfaction of the stress boundary conditions (4.4) on Ste

• continuity of displacements u+
i = ũi = u−

i on the interelement boundaries (4.5)
• stress reciprocity (4.6) on the interelement boundaries S̃e. When summing the third

term, every interelement boundary appears twice (from both adjacent elements),
which ensures the condition t+i = −t−i

The Hybrid Displacement Model

In contrast to conventional displacement elements, the hybrid displacement model is
based on displacement functions that only need to be continuous in the element, but
not on the intersection to neighboring elements. The hybrid variational principle for
displacement elements is created by extending the principle of minimum potential
energy ΠP(ui ) with independent functions for the displacements ũi and tractions t̃i
on the boundary:
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ΠPH(ui , ũi , t̃i ) =
nE∑

e=1

⎧
⎪⎨
⎪⎩

∫

Ve

[
1

2
εi j Ci jkl εkl − b̄i ui

]
dV −

∫

Ste

t̄i ui dS

−
∫

Sue

ti (ui − ūi ) dS −
∫

S̃e

t̃i (ui − ũi ) dS

⎫
⎪⎬
⎪⎭

. (4.31)

We need only to assume a priori the

• compatibility conditions (4.1) in Ve.

When the functional is varied with respect to three variables δui , δũi and δt̃i , the
condition of stationarity δΠPH = 0 yields the following Euler equations:

• equilibrium conditions (4.3) in Ve

• satisfaction of displacement boundary conditions (4.2) on Sue

• satisfaction of traction boundary conditions (4.4) on Ste

• displacement compatibility (4.5) between the elements on S̃e

• stress reciprocity (4.6) on the interelement boundaries S̃e

Different variants of hybrid displacement models can be found in the literature, often
without separate boundary displacements ũi . Their explicit inclusion has the essential
advantage that, by a suitable choice of ũi , special elements can be designed whose
boundary displacements are fully compatible with those of conventional isoparamet-
ric element types (see [3, 4]).

The Simplified Mixed Hybrid Model

In the development of hybrid special elements in fracture mechanics, we can often
utilize closed-form solutions existing from elasticity theory for the crack or crack
tip near field, which are then set up inside the element. Such functions fulfill a priori
both basic Eqs. (4.1) and (4.3) in the domain. With the help of Hooke’s law, the
compatibility conditions (4.1) and the Gauss theorem, the volume integral in the
hybrid stress model (4.28) can be transformed into a boundary integral over Se:

∫

Ve

1

2
σi j Si jklσkl dV =

∫

Ve

1

2
σi jεi j dV =

∫

Ve

1

2
σi j ui, j dV =

∫

Se

1

2
ti ui dS .

(4.32)
We thereby obtain the functional ΠMH∗ for the simplified mixed hybrid model first
introduced by Tong et al. [5]:
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ΠMH∗(ui , ũi ) =
nE∑

e=1

⎧
⎪⎨
⎪⎩

∫

Se

ti ũi dS − 1

2

∫

Se

ti ui dS −
∫

Ste

t̄i ũi dS

⎫
⎪⎬
⎪⎭

. (4.33)

We must now merely presuppose the:

• displacement boundary conditions by selecting ũi = ūi (4.2) on Sue

The following relations are satisfied by the variational principle:

• compatibility of internal displacements ui with the boundary functions ũi , i. e.
(4.5) on Se

• traction boundary conditions (4.4) on Ste

• reciprocity of tractions (4.6) on S̃e.

Thus, this simplified variant also ensures the compatibility of complete analytical
solutions with boundary displacements ũi typical of FEM, i. e. it is ideally suited
for embedding known solutions into special finite elements. It must be stressed here
that, (4.33) only contains boundary integrals, which is in contrast to all previously
introduced variational principles.

4.2.4 Hamilton’s Principle

When dealing with dynamic problems, we typically utilize Hamilton’s variational
principle to derive the weak formulation of the field problem. The starting point is
the Lagrange function L, which depends on the displacement field ui , the velocities
u̇i and time t . It is defined by means of kinetic energy K and total potential ΠP:

L (ui , u̇i , t) = K (u̇i ) − ΠP (ui , t) . (4.34)

We consider the so-called principle function of L over a time span of t0 to t . According
to Hamilton’s principle it takes on an extreme value, which is why the first variation
δ () of the integral has to disappear:

δ

t∫

t0

L (ui , u̇i , t) dt =
t∫

t0

(δK − δΠP) dt = 0 . (4.35)

According to the product rule, the variation of kinetic energy with respect to δu̇i

yields:
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δK = δ

⎛
⎝1

2

∫

V

ρu̇i u̇i dV

⎞
⎠ =

∫

V

ρu̇iδu̇i dV . (4.36)

If we calculate the time integral and invert the sequence of spatial and temporal
integration, the following conversion can be made by partial integration:

∫

V

t∫

t0

ρu̇i δu̇i dt dV =
∫

V

⎡
⎢⎣(���ρu̇i δui )

∣∣t
t0

−
t∫

t0

ρüi δui dt

⎤
⎥⎦ dV = −

t∫

t0

∫

V

ρüi δui dV dt .

(4.37)
The first integrand becomes zero since, according to the assumptions, the variations
δui = 0 must disappear at the bounds t0 and t . The variation of the total potential
δΠP was already examined in (4.20). In sum, Hamilton’s principle then reads:

t∫

t0

∫

V

[−ρüiδui − σi jδεi j
]

dV dt +
t∫

t0

∫

V

b̄iδui dV dt +
t∫

t0

∫

St

t̄iδui dS dt = 0. (4.38)

Conversion of (4.38) analogous to that made in Sect. 4.2.1 leads to

t∫

t0

∫

V

[−ρüi + σi j, j + b̄i
]
δui dV dt +

t∫

t0

∫

St

[
t̄i − σi j n j

]
δui dS dt = 0. (4.39)

In order to satisfy this relation for all times and all δui , the bracketed expressions must
be equal to zero, i. e. we obtain as Euler equations the equations of motion (A.70) and
the natural boundary conditions (4.4) on St . In this way, this variational formulation
describes completely the initial boundary value problem of elastodynamics for a
conservative system of forces.

4.3 Basic Equations of FEM

In the following, the basic equations of FEM will be briefly presented for the dis-
placement method, which is considered to be the most successful and most common
FEM variant. In general, it is based on the principle of virtual work or, in the particular
case of hyperelastic conservative systems on the principle of minimum total potential
energy. As an example, the relations will first be derived for the two-dimensional BVP
of elastostatics (A.5) in order to move onto the non-linear and time-dependent BVP
later. In the following, matrices will be written as bold, upright letters to differentiate
them from vectors and tensors.
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4.3.1 Constructing Stiffness Matrix for One Element

In FEM, the body is first subdivided into a number of simple geometrical subdomains,
which is shown in Figs. 4.1 and 4.2 with quadrilateral elements. In each of these finite
elements a separate mathematical function is chosen for the displacement field which
must be continuous inside the element and on its boundary to neighboring elements.
This is best realized by introducing suitable grid points – the nK nodes – which
usually lie on the element boundary.

The displacements u(x) in the element are expressed by interpolation functions
Na with the help of associated values u(a) at the nodes a = 1, 2, . . . , nK. Na(ξ) are
the so-called ansatz functions or shape functions. The variables ξ form the natural
coordinates of the element in a uniform parameter space, which will be treated in
detail in Sect. 4.4. This is illustrated for a quadrilateral element in Fig. 4.5. Accord-
ingly, we obtain for the element-related displacement values the approximation:

[
u1(x)

u2(x)

]
= u(x) =

nK∑

a=1

Na(ξ)u(a) = Nv . (4.40)

In the column vector v, the components of the displacement vectors u(a) of all nodes
of the element are summarized:

v = [u(1) . . . u(a) . . . u(nK)]T, u(a) = [u(a)
1 u(a)

2 ]T (4.41)

The matrix N thus has the structure:

N =
[

N1 0 Na 0 . . . NnK 0
0 N1 0 Na . . . 0 NnK

]
. (4.42)

According to (4.1) we obtain the strains from the spatial derivative of the displacement
function (4.40), for which the differentiation matrix D is used:

⎡
⎣
ε11
ε22
γ12

⎤
⎦ = ε = Du(x) with D =

⎡
⎢⎢⎢⎢⎢⎣

∂

∂x1
0

0
∂

∂x2
∂

∂x2

∂

∂x1

⎤
⎥⎥⎥⎥⎥⎦

. (4.43)

The strain-displacement matrix B finally relates displacements at the nodes with
deformations in the element:
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ε = DNv = Bv with B = DN ,

B = [B1 . . . Ba . . . BnK], Ba =
⎡
⎣

Na,1 0
0 Na,2
Na,2 Na,1

⎤
⎦ . (4.44)

The stress distribution in the element is obtained with the material law, which here
for clarity’s sake is set as isotropically elastic (plane stress) with thermal or other
initial strains ε∗:

⎡
⎣
σ11
σ22
τ12

⎤
⎦ = σ(x) = C

(
ε(x) − ε∗(x)

) = C
(
Bv − ε∗) (4.45)

C = E

1 − ν2

⎡
⎣

1 ν 0
ν 1 0
0 0 1−ν

2

⎤
⎦ . (4.46)

Now the same function according to (4.40) is used for the virtual displacements and
associated strains as for the displacement fields themselves (Galerkin’s method of
weighted residuals):

δu = Nδv , δε = Bδv . (4.47)

The relations (4.43)–(4.47) are inserted into the principle of virtual work (4.11).
Together with boundary conditions t̄ = [

t̄1 t̄2
]

T and volume loads b̄ = [
b̄1 b̄2

]
T it

reads in matrix form:

δWint − δWext =
∫

V
δεTσ dV −

∫

St

δuT t̄ dS −
∫

V
δuTb̄ dV

= δvT
{∫

V
BTC(Bv − ε∗) dV −

∫

St

NT t̄ dS −
∫

V
NTb̄ dV

}
= 0

(4.48)

The expression in curly brackets must disappear for every variation δvT, from which
we obtain the FEM system of equations on the element level:

kv = f , f = ft + fb + fε . (4.49)

All node-related quantities v can be pulled in front of the integrals so that the
following matrices and vectors can be set up:
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stiffness matrix: k =
∫

Ve

BTC B dV (4.50)

Force vectors due to volume loads, surface loads and initial strains:

fb =
∫

Ve

NT b̄ dV , ft =
∫

Ste

NT t̄ dS , fε =
∫

Ve

BTC ε∗ dV . (4.51)

4.3.2 Assembly and Solution of the Total System

So far only a single finite element (index e) was considered in the derivation of the
stiffness relations. Application of the principle of virtual work requires the summation
of the contributions of all finite elements e = 1, 2, . . . , nE of the total structure.

δWext − δWint =
nE∑

e=1

(
δW(e)

ext − δW(e)
int

)
(4.52)

The system matrices are assembled by addition of the single element matrices into the
corresponding positions of the system matrices, whereby the assignment takes place
by means of the respective node variables. The topological correlation of the finite
elements in the total structure is described with the help of a so-called assignment
or incidence matrix Ae. This Boolean matrix (only elements {0,1}) determines at
which location the nodal variables of element e are assigned in the vector V of all
nodal degrees of freedom of the system.

ve = AeV (4.53)

Ae has the dimension [nK · nD, NK · nD], if NK is the number of all nodes in the
system and nD denotes the degree of freedom per node (in case of displacement
functions the geometric dimension nD = 1, 2, 3). In practice, this is often managed
by means of a global numbering of all NK nodes and a pointer vector on the local
element nodes.
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We thereby obtain the stiffness relation of the total system from those of all
elements (

nE∑

e=1

AT
e keAe

)
V =

nE∑

e=1

AT
e fe ⇒ KV = F . (4.54)

This is a system of [NK·nD] equations for determining the vector V, which contains
the displacement degrees of freedom of all nodes of the structure. On the right hand
side the contributions of all elements (4.51) are compiled to the corresponding nodal
forces of the total structure in the external load vector F. The stiffness matrix K of
the total system is put together in the same way. This process is called the assembly
of the total system and will be abbreviated in the following with the set symbol:

K =
nE⋃

e=1

ke , V =
nE⋃

e=1

ve , F =
nE⋃

e=1

fe etc. (4.55)

Assembly is obviously only allowed if all local and global nodal degrees of free-
dom are defined in the same (global) coordinate system. Otherwise a prior transfor-
mation of ke, ve and fe is required. As we can see in (4.50), the stiffness matrices of
finite elements are symmetrical in the displacement formulation. Due to their ener-
getic meaning, they are also positively definite, i. e. multiplication with an arbitrary
state of motions ve results in a positive deformation energy Wint = 1

2 ve
Tkeve > 0.

Naturally, it is presumed that possible rigid body motions are prevented by a statically
determined support.

The same properties apply to the system stiffness matrix K. It has only a small
amount of elements and has a band structure at optimal nodal numbering. With linear
material behavior, the FEM system therefore represents a linear algebraic equation
system for the nodal variables having a unique solution. The system stiffness matrix
thus embodies all the mechanical properties of a structure, which incorporate the
selected structural model (e. g. a plate), the geometry and the material properties.

A huge number of mathematical methods exists with indirect or iterative methods
for the numerical solution of the FEM system of equations. Due to the symmetry of the
stiffness matrix, Cholesky’s method is suitable in addition to the classical Gaussian
elimination technique. However, iterative conjugated gradient methods with precon-
ditioning are also very effective. Because of the very large systems of equations
involved, fast computational algorithms for storage, processing and structuring of
matrices are of considerable importance for improving efficiency. Techniques such
as bandwidth minimization, frontal solution method and parallel processing on sev-
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eral processors, all fall into this category. For details, the reader should refer to the
copious technical literature [6].

4.4 Numerical Realization of FEM

4.4.1 Selection of Displacement Functions

For the shape functions Na (4.40), simple mathematical functions are chosen as a rule.
These must however obey certain requirements so that the approximate numerical
solution converges towards the exact solution with increasing mesh refinement:

1. Firstly, the displacement functions may not lead to deformations ε �= 0 in the
case of rigid body motion.

2. Secondly, they must be capable of realizing a constant state of deformation
ε = const in the entire element.

3. Thirdly, the shape functions should in general continuously proceed across the
element boundaries so that under loading no discontinuities (gaps, overlap-
ping) occur (C0-continuity of displacement functions in case of the continuum
elements considered here).

4. Moreover, the shape functions should correctly reproduce a constant function
value (e. g. the element area)

nK∑

a=1

Na(ξ) = 1 (4.56)

and map the function value at the respective node ξa exactly and solely

Na(ξb) = δab =
{

1 a = b

0 a �= b
. (4.57)

4.4.2 Isoparametric Element Family

Depending on the element geometry, the structural model and the accuracy require-
ments, there are a number of possible ways to formulate the shape functions. For a
detailed presentation of finite element types, see the relevant FEM literature (e. g.
[7–9]). For most problems, the use of isoparametric elements has proved advanta-
geous. This concept involves the interpolation of both the geometry and all primary
field quantities in the element by the same functions Na(ξ).

The relationship between natural and local coordinate system is made by the
shape functions. In this way, for each element a transformation is created, which
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maps the local geometrical coordinates x = [x1 x2 x3] T onto the natural parametric
coordinates ξ = [ξ1 ξ2 ξ3] T:

xi =
nK∑

a=1

Na(ξ)x (a)
i or x(ξ) = N(ξ)x̂ , x̂ =

[
x (1)

1 x (1)
2 . . . x (nK)

1 x (nK)
2

]
T.

(4.58)
By means of this universal mapping, it is possible to convert the arbitrarily shaped,
different geometries of all elements into a consistent system of coordinates ξi .
Figs. 4.4–4.6 illustrate this for various element types. A further advantage of this
representation method is that we can always use the same algorithms for all mathe-
matical operations on the element level.

To assemble the B matrices from (4.43) and (4.44), we need the partial derivatives
of the functions Na with respect to the coordinates x j , which are formed by the chain
rule

∂Na

∂x j
(ξ) = ∂Na

∂ξ1

∂ξ1

∂x j
+ ∂Na

∂ξ2

∂ξ2

∂x j
+ ∂Na

∂ξ3

∂ξ3

∂x j
⇒ ∂Na

∂x
= J−1 ∂Na

∂ξ
. (4.59)

J represents the Jacobian functional matrix, which associates the line elements of
the natural coordinates dξi with those of the local coordinates dx j :

J =

⎡
⎢⎢⎢⎢⎢⎣

∂x1

∂ξ1

∂x2

∂ξ1

∂x3

∂ξ1
∂x1

∂ξ2

∂x2

∂ξ2

∂x3

∂ξ2
∂x1

∂ξ3

∂x2

∂ξ3

∂x3

∂ξ3

⎤
⎥⎥⎥⎥⎥⎦

. (4.60)

To ensure that the inverse of the Jacobian matrix J−1 exists, the transformation of ξ
to x must be uniquely invertible. The elements of the Jacobian matrix are calculated
from the local coordinates x (a)

j of the particular element nodes by differentiating the
shape functions

Ji j = ∂x j

∂ξi
=

nK∑

a=1

∂Na

∂ξi
x (a)

j . (4.61)

Isoparametric Triangular Elements

The geometrical description of a triangle is done best by its area coordinates
ξ =̂ (L1, L2, L3). The cartesian coordinates x of a point P in the triangle are obtained
from Li via linear interpolation with the corner points x (a)

i (a = 1, 2, 3)
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Fig. 4.4 Isoparametric triangular element mit with quadratic shape functions, nK = 6 nodes

x1 = L1x (1)
1 + L2x (2)

1 + L3x (3)
1

x2 = L1x (1)
2 + L2x (2)

2 + L3x (3)
2 (4.62)

1 = L1 + L2 + L3.

At a corner point a exactly holds La = 1 and Lb = 0 (b �= a). A point in the
middle of a side (e. g. node 4) has the coordinates ( 1

2 , 1
2 , 0) etc. Lines Li = const.

run parallel to the opposite side of the corner i , whereby the values decline linearly
from Li = 1 (corner) to Li = 0 (opposite side) see Fig. 4.4. The sum of the triangle’s
coordinates corresponds exactly to the normalized surface area (last Eq. (4.62)).

(a) linear function for nK = 3 corner nodes:

N1 = L1, N2 = L2, N3 = L3 (4.63)

(b) quadratic function for 3 corner and 3 mid-side nodes (nK = 6, see Fig. 4.4):

N1 = L1(2L1 − 1), N2 = L2(2L2 − 1), N3 = L3(2L3 − 1)

N4 = 4L1L2, N5 = 4L2 L3, N6 = 4L3L1 (4.64)

Isoparametric Quadrilateral Elements

In the natural coordinate system ξi , these finite elements form a square in the interval
[−1,+1].
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Fig. 4.5 Isoparametric quadrilateral element with quadratic shape functions, nK = 8 nodes

(a) linear function for nK = 4 corner nodes:

Na(ξ1, ξ2) = 1

4
(1 + ξ1ξ

a
1 )(1 + ξ2ξ

a
2 ) (4.65)

(b) quadratic function for 4 corner nodes and 4 mid-side nodes (nK = 8, Fig. 4.5):

• corner nodes: Na(ξ1, ξ2) = 1

4
(1 + ξ1ξ

a
1 )(1 + ξ2ξ

a
2 )(ξ1ξ

a
1 + ξ2ξ

a
2 − 1)

• mid-side nodes: ξa
1 = 0 : Na(ξ1, ξ2) = 1

2
(1 − ξ2

1)(1 + ξ2ξ
a
2 )

ξa
2 = 0 : Na(ξ1, ξ2) = 1

2
(1 + ξ1ξ

a
1 )(1 − ξ2

2) .

(4.66)

Isoparametric Hexahedron Elements

Every 3D element is mapped onto a regular unit cube [−1 ≤ ξi ≤ +1]. Again, linear
or quadratic shape functions are customary.

(a) linear function for nK = 8 corner nodes:
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Na(ξ1, ξ2, ξ3) = 1

8
(1 + ξ1ξ

a
1 )(1 + ξ2ξ

a
2 )(1 + ξ3ξ

a
3 ) (4.67)

(b) quadratic function for 8 corner nodes and 12 mid-side nodes: (nK = 20, Fig. 4.6):

• corner nodes:
Na(ξ1, ξ2, ξ3) = 1

8 (1 + ξ1ξ
a
1 )(1 + ξ2ξ

a
2 )(1 + ξ3ξ

a
3 )(ξ1ξ

a
1 + ξ2ξ

a
2 + ξ3ξ

a
3 − 2)

• mid-side nodes:
ξa

1 = 0 , ξa
2 = ±1 , ξa

3 = ±1
Na(ξ1, ξ2, ξ3) = 1

4 (1 − ξ2
1)(1 + ξ2ξ

a
2 )(1 + ξ3ξ

a
3 )

and analogously by permuting ξ1, ξ2 and ξ3 for nodes on the
surfaces ξa

2 = 0 and ξa
3 = 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.68)

4.4.3 Numerical Integration of Element Matrices

To assemble element matrices and load vectors, the volume or surface integrals
in Eqs. (4.50) and (4.51) have to be evaluated. Since in most cases an analytical
integration is not feasible, numerical integration techniques are employed that are
based on special quadrature formulae for different element shapes and functions.
In this way, the definite integral of an arbitrary function f (ξ) can be calculated
approximately by the quadrature formula Q( f )

+1∫

−1

f (ξ) dξ ≈ Q( f ) =
nG∑

g=1

wg f (ξg) , (4.69)
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Table 4.1 Grid points and
weights of Gaussian
integration (g = 1, . . . , nG)
in a one-dimensional element
[−1,+1]

nG ξg wg

1 0 2

2 − 1√
3

+ 1√
3

1 1

3 −
√

3

5
0 +

√
3

5

5

9

8

9

5

9

whereby the natural coordinate ξ ∈ [−1,+1] serves as an independent variable.
ξg denotes the grid points in the interval [−1,+1] and the coefficients wg are the
associated weights of the quadrature formula. For the Gaussian quadrature, that is
most often used in FEM, the grid points and weights are available for any number
of integration points nG in tabular form [10]. Table 4.1 contains the data of the most
important integration orders nG = 1, 2, 3. It can be shown that the summation (4.69)
is exact for polynomials up to the (2nG − 1)th degree.

When calculating a domain integral over a finite element, a multiple integral has
to be evaluated in accordance with the dimension nD of the element type. For this,
the quadrature formula (4.69) is applied to all nD spatial directions in the natural
coordinate system. In the function to be integrated F(x), we can first substitute the
independent variable x via the shape function (4.59) with the natural coordinates:

F[x(ξ)] = F[x1(ξ1, ξ2, ξ3), x2(ξ1, ξ2, ξ3), x3(ξ1, ξ2, ξ3)] = f (ξ1, ξ2, ξ3) . (4.70)

Secondly, the volume element dV must be expressed in natural coordinates, which
is achieved with the help of the determinant JV = |J| of the Jacobian matrix:

I =
∫

Ve

F(x)d V =
∫

Ve

f (ξi ) dV =
+1∫

−1

+1∫

−1

+1∫

−1

f (ξi ) |J(ξi )| dξ1dξ2dξ3. (4.71)

By applying the integration formula (4.69) to each of the integrals of (4.71), we obtain
a (nD = 3)-fold summation, in which the natural coordinates in every dimension
i = 1, 2, 3 run through all grid points ξl

i (l = 1, 2, . . . , nG) and the weights are
multiplied.

I =
nG∑

k=1

nG∑

n=1

nG∑

m=1

f (ξm
1 , ξn

2 , ξk
3)wmwnwk

∣∣∣J(ξm
1 , ξn

2 , ξk
3)

∣∣∣ =
mG∑

g=1

f (ξ
g
1 , ξ

g
2 , ξ

g
3 )w̄g

∣∣J(ξg)
∣∣

(4.72)
In practical terms, this is realized as a sum over all mG = nG

nD grid points
ξg = [

ξ
g
1 ξ

g
2 ξ

g
3

]
with the weights w̄g = wmwnwk . Figure 4.7 illustrates the inte-

gration orders nG = 2 and nG = 3 for a nD = 2-dimensional element.
Furthermore, surface integrals must be evaluated over a partial area S of 3D

elements in order for example to take surface loads according to (4.51) into account.
An element surface (e. g. ξ1 = 1 in Fig. 4.6) is represented by the natural coordinates
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(ξ2, ξ3). Applying the rules for parameter integrals, we obtain the surface normal
vector n from the directional derivative with respect to ξ2 and ξ3, and the surface
area dS is to be transformed with the Jacobian determinant JS .

n =
(
∂x
∂ξ2

× ∂x
∂ξ3

)
/JS

dS =
∣∣∣∣
∂x
∂ξ2

× ∂x
∂ξ3

∣∣∣∣ dξ2dξ3 = JS(ξ2, ξ3) dξ2dξ3 (4.73)

The surface integral is then written as follows and can be calculated by the 2D
Gaussian integration rule.

I =
∫

S

f (x)dS =
+1∫

−1

+1∫

−1

f [x(ξ2, ξ3)]JSdξ2dξ3 (4.74)

Analogously, for the line integral along an element edge L (e. g. ξ1 = 1 in Fig. 4.5)
we get the calculation rules using the parameter ξ2:

n =
(
∂x2

∂ξ2
e1 − ∂x1

∂ξ2
e2

)
/JL

ds = JL(ξ2)dξ2 =
√(

∂x1

∂ξ2

)2

+
(
∂x2

∂ξ2

)2

dξ2 (4.75)

I =
∫

L

f (x)ds =
+1∫

−1

f [x(ξ2)]JLdξ2 . (4.76)

4.4.4 Numerical Interpolation of Results

The primary result of a FEM calculation is the solution vector V (4.54), which
contains the displacement vectors u(a) of all nodes x(a) of the mesh. From the nodal
displacements v of each element, we can calculate the total strain ε by differentiating
via the kinematic relation (4.44). For linear material laws, the stresses at each point
ξ of the element are easily obtained from (4.45). This becomes more difficult in the
case of inelastic material laws, where the stressesσ, plastic strains εp, and hardening
variables h can only be obtained as independent outcome variables via the complex
solution of the entire IBVP. Usually, these secondary field quantities are merely
calculated, stored and output at the integration points (IP). Solely the displacement
solution is continuous across the element boundaries, whereas all other »derived«
field quantities are discontinuous there (jump). For a fracture-mechanical evaluation,
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we need these field quantities and their spatial derivatives at an arbitrary point x of
the component. Some useful techniques for this will be outlined using the example
of quadrilateral elements.
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Fig. 4.7 Interpolation and extrapolation of FEM-results in an element

For the sake of simplicity, this procedure is exemplified with a scalar field quan-
tity z(x), which may represents any component of u, σ, ε et al. For the considered
point, at first we must find the associated finite element and then its natural coor-
dinates ξ = [ξ1 ξ2] T inside this element. Since the isoparametric representation
x = ∑

Na(ξ) x̂(a) cannot be inverted analytically for ξ, a suitable search algorithm
(interval nesting or the Newtonian method) is required. If we have found the natural
coordinates ξ and know the function values z(a) at the nodes a = 1, 2, . . . , nK of the
element, we easily obtain z(x(ξ)) from the isoparametric shape functions:

z =
nK∑

a=1

Na(ξ)z(a) Interpolation rule. (4.77)

In order to determine the gradients with respect to global coordinates (x1, x2), the
inverse J−1(ξ) of the transformation matrix (4.60)–(4.61) is needed as correlation to
the natural coordinates (ξ1, ξ2):

⎡
⎢⎣
∂z

∂x1
∂z

∂x2

⎤
⎥⎦ =

⎡
⎢⎣
∂ξ1

∂x1

∂ξ2

∂x1
∂ξ1

∂x2

∂ξ2

∂x2

⎤
⎥⎦

⎡
⎢⎣
∂z

∂ξ1
∂z

∂ξ2

⎤
⎥⎦ = [J−1]

⎡
⎢⎣
∂z

∂ξ1
∂z

∂ξ2

⎤
⎥⎦ . (4.78)
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The natural derivatives are obtained directly with (4.77):

∂z

∂ξi
=

nK∑

a=1

∂Na

∂ξi
z(a) . (4.79)

If the nodal values are not available, like for the secondary field quantities, we must
interpolate or extrapolate the IP values in a suitable way. In case of the isoparametric
quadrilateral elements shown in Fig. 4.7, either the complete (3 × 3 IP) or reduced
(2 × 2 IP) integration rule is used. The function z(ξ1, ξ2) can be approximated very
well by a product of two polynomials of first (2 × 2 IP) or second degree (3 × 3 IP)
with respect to ξ1 and ξ2.

z(ξ1, ξ2) = c1 + c2ξ1 + c3ξ2 + c4ξ1ξ2 (2 × 2)

z(ξ1, ξ2) = c1 + c2ξ1 + c3ξ2 + c4ξ1ξ2 + c5ξ
2
1 (4.80)

+ c6ξ
2
2 + c7ξ

2
1ξ2 + c8ξ1ξ

2
2 + c9ξ

2
1ξ

2
2 (3 × 3)

To determine the unknown coefficients ci , exactly 4 (2 × 2) or 9 (3 × 3) function
values z(ξg

1 , ξ
g
2 ) = z(g) are available at the IP. By inserting the grid points (ξg

1 , ξg
2 )

(see Table 4.1) and values z(g) into (4.80), we can build a linear system of equations,
the solution of which gives the sought ci . In this way, the function z(ξ1, ξ2) can
be interpolated (4.80) and, by inserting the respective isoparametric coordinates ξa

i
with (4.66), extrapolated to the nodes of the element. Since extrapolation towards
a shared boundary node leads to different results in each element (Fig. 4.7, bottom
left), usually a (weighted) averaging of different element values is carried out, which
yields the value z̄(a) at node a. For interpolation and differentiation, we can now also
proceed in accordance with (4.77) and (4.79) for these variables.

Often, also the derivatives of the secondary variables are required at the IPs. For
this purpose, the method shown in Fig. 4.7 (right) is recommended. The 2 or 3
function values at the IPs along one coordinate ξ ∈ {ξ1, ξ2} are approximated as a
straight line or a parabola:

z(ξ) = z2 − z1

2d
ξ + 1

2
(z1 + z2) (2 IP)

z(ξ) = z1 − 2z3 + z2

2d2 ξ2 + z2 − z1

2d
ξ + z3 (3 IP), (4.81)

whose derivatives are

∂z

∂ξ
= (z2 − z1)/(2d) (2 IP)

∂z

∂ξ
= z1 − 2z3 + z2

d2 ξ + z2 − z1

2d
(3 IP). (4.82)
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With the help of these derivatives w.r.t. ξ1 and ξ2 at the grid point (ξ1, ξ2), we go
directly into (4.78) in order to obtain the global derivatives. This method is especially
suitable for the differentiation of σ, εp or U p at the IPs if the results must later be
integrated over the element.

4.5 FEM for Non-Linear Boundary Value Problems

4.5.1 Basic Equations

There are essentially two factors leading to non-linear behaviour of BVP in solid
mechanics:

(a) Material non-linearity
In the case of hyper-elastic, elastic-plastic or other non-linear materials, the state of
stress occurring in an element depends on the strains and thus on displacements in a
non-linear fashion:σ(v) = f

(
ε(v), h(v)

)
. If the deformation process is irreversible,

then σ is a function of the load history, which was explained in Sect. A.4.2 using the
example of hardening history. Thus the current state of the material is described by
several internal variables that are compiled in the matrix h.
(b) Geometrical non-linearity
In the case of large, finite deformations, two non-linear phenomena occur. If there are
large displacements with respect to the initial geometry, first the redistribution of the
equilibrium of forces and the load boundary conditions upon the deformed structure
must be taken into consideration. Secondly, in the case of large strain, there is a
non-linear relation (A.20) between the strain tensors and the displacement gradients.

If we apply the principle of virtual displacements (4.12)–(4.13) to a non-linear
BVP, then we obtain the following extensions in the FEM formulation compared to
the linear relations from Sect. 4.3:

δWext − δWint =
[
Fext(t) − Fint(V(t)

)]
δV = 0 (4.83)

Fext =
nE⋃

e=1

⎡
⎢⎣

∫

Ste

NT t̄dSe +
∫

Ve

NT f̄dVe

⎤
⎥⎦ (4.84)

Fint(V(t)
) =

nE⋃

e=1

∫

Ve

BT(v)σ(v)dVe . (4.85)

The external load vector Fext(t) describes the system load vector F according to
(4.55) as a result of temporally imposed surface and volume loads. The corresponding
nodal force vector Fint of the internal forces is determined by the non-linear behavior
of the material σ(v) and the kinematics B(v).
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In the case of non-linear problems, it is necessary to subdivide the load history
into a number nt of finite time steps �tn . (For scleronomous material behavior, we
may also use a monotonously increasing load parameter instead of time → load
steps.)

tn+1 = tn + �tn+1, n = 0, 1, 2, . . . , nt − 1 (4.86)

The external load is thus applied as a temporal sequence of load steps. For each
point in time we must find via iteration the state of equilibrium (4.83) with the
internal forces at the end of the increment. This is also called an incremental-iterative
algorithm.

Fext(tnt) =
nt∑

n=1

�Fext
n , �Fext

n+1 = Fext(tn+1) − Fext(tn) (4.87)

The increments of all other quantities arise in a corresponding manner, such as nodal
displacements

V(tnt) =
nt∑

n=1

�Vn, �Vn+1 = V(tn+1) − V(tn) , (4.88)

stresses �σn , strain �εn , etc., whereby the subscript index n always marks the time
step.

The incremental procedure is absolutely necessary in order to integrate the plastic
material laws given in rate form over the load path. The incremental algorithm is also
extremely useful for the numerical solution of a non-linear problem. Figure 4.8 shows
this solution strategy (1 degree of freedom) in a simplified form. The true solution of
the non-linear problem Fext(V) is drawn as a continuous line. On the ordinate, a load
increment �Fext

n+1 is plotted as an example for which the associated displacement
increment �Vn+1 is sought. To this end, the non-linear system of Eq. (4.83) must be
solved in the (n + 1)-th load step.

Fext
n+1 − Fint

n+1 = R(V) → 0 (4.89)

The vector R(V) comprises the non-balanced »residual« nodal forces and must be
reduced to zero to attain the true state of equilibrium. To calculate these zeros, often
the Newton-Raphson method is used. In order to be able to use this iterative method,
we first linearize the non-linear functions Fint with respect to the nodal displacements
V (as a multi-dimensional Taylor expansion) at point Vn :
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Fig. 4.8 Solution of the non-linear FEM system with the Newton-Raphson iteration method

Fint
(

Vn + �Vn+1

)
= Fint(Vn

) + ∂Fint

∂V

∣∣∣∣
Vn

�V + . . .

∂Fint

∂V

∣∣∣∣
Vn

= K(Vn) . (4.90)

The derivative in the last equation corresponds to the tangent Kn in Fig. 4.8, which
is why this expression is also called a tangential stiffness matrix.

In the following, the Newton-Raphson method is explained for the (n +1)-th load
step. The superscript index i denotes the current number of iteration.

(1) load step n + 1:
Fext

n+1 = Fext
n + �Fext

n+1

initial values (i = 0):

V(0)
n+1 = Vn, �V(0)

n+1 = 0, K(0)
n+1 = Kn, R(0)

n+1 = �Fext
n+1

(2) iteration loop (i):

• calculation of tangential stiffness: K(i−1)
n+1

(
V(i−1)

n+1

)

• solution of (4.89): d�V(i)
n+1 =

[
Ki−1

n+1

]−1
R(i−1)

n+1

• displacement increment: �V(i)
n+1 = �V(i−1)

n+1 + d�V(i)
n+1

• total displacement: V(i)
n+1 = Vn + �V(i)

n+1

• internal forces: Fint = Fint
(

V(i)
n+1

)
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• calculation of residual vector: R(i)
n+1 = Fext

n+1 − Fint
(

V(i)
n+1

)

• convergence test: If ‖R(i)
n+1‖ > tolerance, then i := i + 1 and further with (2).

Otherwise displacement solution Vn+1 := V(i)
n+1, next load step n := n + 1

and further with (1).

This algorithm is illustrated in Fig. 4.8 for i = 3 iterations. Because the numerical
complexity for calculating and inverting the tangential stiffness matrix K(i)

n+1 in each
iteration loop is very high, often the Newton-Raphson method is modified such
that Kn+1 is only updated after a certain number of iterations, or we use the first
approximation K(1)

n+1 without any changes. This only slows convergence speed down,
but not the accuracy of the solution.

4.5.2 Material Non-linearity

The explanations are limited to non-linear elastic-plastic material behavior with small
strains as explained in Sect. A.4.2. The essential relations will be summarized again
in matrix form. The stress-strain relation with the elasticity matrix C reads:

σ = C
(
ε− εp) . (4.91)

The yield criterion is defined with the help of the current state of stress σ and
the hardening variables h = [h1h2 . . . hnH]T, the number nH and type of which is
determined by the chosen hardening model. The following is valid for isotropic and
kinematic hardening:

�(σ, h)

{
< 0 elastic

= 0 plastic
(4.92)

The plastic strain velocities are calculated from the direction normal to the yield
surface, whereby Λ̇ signifies the plastic multiplier.

ε̇p = Λ̇
∂�

∂σ
= Λ̇ N̂(σ, h) (4.93)

As a rule, the evolution equations for the hardening variables are given in the fol-
lowing form:

ḣ = Λ̇ H(σ, h) . (4.94)

The Eqs. (4.93) and (4.94) describe the development of plastic strains and harden-
ing variables as a function of the current state. They are ordinary differential equations
that are to be integrated over the load history. Both depend on the plastic multiplier
�, the value of which is determined from the requirement that the yield criterion
Φ(σ, h) = 0 must be held with further hardening.
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For non-linear FEM analysis, this means that at each integration point IP not
only the stresses σ and total strains ε but also the plastic strains εp and hardening
parameters h must be calculated, stored and updated. Since the load steps represent
finite increments, suitable integration algorithms are required to satisfy the material
equations. In principle, all explicit and implicit solution methods for ordinary dif-
ferential equations can be utilized for this. In the following, the most important and
most established method will be explained, which is called radial return.

Let’s consider the (n+1)-th load step in an IP. At the starting point (n) the material
equations are all satisfied and all quantities σn , εn , εp

n and hn are known. As a result
of global FEM analysis we now obtain the total strain εn+1 = εn + �εn+1 at the IP.
Its increment consists of the elastic and plastic part �εn+1 = �εe

n+1 + �ε
p
n+1.

The state of stress at the end of the increment is calculated from (4.91):

σn+1 = C(εn+1 − εp
n+1) = σn + C(�εn+1 − �ε

p
n+1) = σtr

n+1 − C�ε
p
n+1 (4.95)

whereby so far neither �ε
p
n+1 nor �hn+1 are known. For this reason, the method is

split into an elastic predictor step (a) and a plastic corrector step (b) (operator split).

(a) predictor step
The plastic variables are first frozen to state (n) and the strain increment is understood
purely elastically:

�ε
p
n+1 = �hn+1 = 0, htr

n+1 = hn . (4.96)

Equation (4.95) thus supplies an »elastic trial value« for the state of stress (superscript
index tr):

σn+1 = σtr
n+1 mit σtr

n+1 = σn + C�εn+1 . (4.97)

Inserting into the yield criterion, we find out whether the load step is plastic or elastic:

Φ
(
σtr

n+1, htr
n+1

)
{

< 0 elastic

≥ 0 plastic .
(4.98)

If the state of stress remains within the previous yield surface Φn (marked gray),
shown in Fig. 4.9 as a dashed line, we have a purely elastic change in stress. The trial
value σtr

n+1 is already the correct solution, i. e. the algorithm is ended for this load
step.
(b) corrector step
In the case of a plastic change of state (solid line in Fig. 4.9), the state of stress σtr

n+1
according to (4.97) is located outside the yield surface and must be corrected to this.
As a result of hardening �hn+1 �= 0, the yield surface changes to Φn+1 at the same
time. In addition, now the evolution laws of the plastic variables must be integrated
over the load step. With (4.93) we obtain for the plastic strain increment:
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1

1

1

1
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0

0

Fig. 4.9 Integration of elastic-plastic material laws with radial return

�ε
p
n+1 =

n+1∫

n

N̂(σ, h) dΛ ≈ �Λn+1N̂(σn+1, hn+1) , (4.99)

whereby the variables at the grid point (n + 1) at the end of the interval are used
as an approximation. Since their values are still unknown, we are concerned with
an implicit (backward Euler) method, which is very exact and absolutely stable. We
proceed in the same manner with the evolution law (4.94) for the hardening variables:

�hn+1 = hn+1 − hn =
n+1∫

n

H(σ, h) dΛ ≈ �Λn+1H(σn+1, hn+1) . (4.100)

Finally there is still the requirement that the true state of stress must lie on the yield
surface, i. e.

Φn+1(σn+1, hn+1) = 0 . (4.101)

Therefore, according to (4.95) the »trial stress« σtr
n+1 must be reduced by the term

σcorr
n+1 = C �ε

p
n+1, i. e. with (4.99) holds

σn+1 = σtr
n+1 − �Λn+1CN̂(σn+1, hn+1) , (4.102)

which is illustrated by the arrow σcorr
n+1 in Fig. 4.9. Since this correction stress has

the direction of the normal N̂ on the yield surface, we speak of »radial return«.
The relations (4.100), (4.101) and (4.102) form a non-linear system of (6 + nH + 1)

equations for the determination of the unknown quantitiesσn+1, �hn+1 and ��n+1.
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This can again be solved iteratively with the Newton method by formulating the
equations as residuals, the zeros of which must be found:

rσ = σn+1 + �Λn+1CN̂(σn+1, hn+1) − σtr
n+1 → 0

rh = �hn+1 − �Λn+1H(σn+1, hn+1) → 0

rΦ = Φ(σn+1, hn+1) → 0 . (4.103)

For the treatment of large deformations and other non-linear material laws, the
reader is referred to the relevant literature [11, 12].

4.5.3 Geometrical Non-linearity

In order to clarify the effects of large displacements and large strains on non-linear
FEM relations, we will return to the basic equations of continuum-mechanics in
the initial configuration, see Sects. A.2 and A.3. The starting point is the principle
of virtual displacements in the Lagrangian form (4.16), which reads in symbolic
notation (: =̂ doubled scalar product):

δWint =̂
∫

V

T : δEdV =
∫

V

0 f̄ · δu dV +
∫

A

ˆ̄T · δu dA =̂ δWext . (4.104)

The variation δE of the Green-Lagrange strain tensor can be expressed according
to (A.20) and (A.17) by the variations of the displacement vectors and deformation
gradients:

δE = 1

2

{
∇δu + (∇δu)T + (∇δu) · (∇u) + (∇u) · (∇δu)

}

�E = 1

2

{
∇�u + (∇�u)T + (∇�u) · (∇u) + (∇u) · (∇�u)

}
(4.105)

δE = δ

{
1

2

(
FT · F + I

)}
= 1

2

{
FT · δF + δFT · F

}
(4.106)

δF = δ (∇u + I) = ∇ (δu) or δFi N = ∂δui

∂X N
(4.107)

Since the internal Wint(u) and external work Wext(u) are now non-linear functions
of the displacements u in a finite element, we carry out a linearization of the system
at the previously reached already equilibrated state (index 0), i. e. we investigate
the changes of all quantities in the functional (4.104) in the case of a displacement
increment �u. For this, we use the linearization of a tensor-valued function A(a) at
location a0 with respect to the vectorial variables �a (directional derivation).
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A(a0 + �a) = A(a0) + �A mit �A = d A
da

∣∣∣∣
a0

· �a (4.108)

For simplicity’s sake, it is assumed that the external forces do not depend on the
deformation (conservative, no contact, friction or co-moving forces), i. e. the external
work δWext remains linear in (4.104) with respect to δu.

�(δWint) =
∫

V

(�T : δE + T : �δE) dV . (4.109)

In the 1st integral term, the 2nd Piola-Kirchhoff stress tensor (A.51) should be lin-
earized with respect to �u, which is done using the chain rule via the strain tensor
�E and (4.105). The fourth-order tensor Cep denotes the material tangent at this
point.

�T = ∂T
∂E

: �E = Cep : �E, Cep = ∂T
∂E

∣∣∣∣
T 0

(4.110)

Linearization of (4.106) yields

�δE = 1

2

{
�FT · δF + δFT · �F

}
or �δEM N = 1

2

{
�Fi MδFi N +δFi M�Fi N

}
.

(4.111)
Due to the symmetry of the stress tensor T , the 2nd term of the integrand in (4.109)
becomes

TM N �δEM N = δFi M TM N �Fi N , (4.112)

whereby we obtain the linearization of internal virtual work:

�(δWint) =
∫

V

(
δE : Cep : �E + δFT · T · �F

)
dV . (4.113)

The FEM realization of this algorithm is briefly outlined using again the example
of a two-dimensional element under plane stress assumption. To this end, we will
switch to matrix notation. In contrast to Sect. 4.3.1, now the location vectors will be
interpolated in spatial x and material X representation with the help of isoparametric
variables ξ in the element, whereby x̂, X̂ and û ≡ v designate the respective nodal
values:

x(ξ) = N(ξ) x̂, X(ξ) = N(ξ) X̂ . (4.114)

From the kinematic relationships, we obtain the functions for the displacements u in
the element as well as their variation δu and increment �u:
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x̂ = X̂ + û = X̂ + v (4.115)

u(ξ) = N(ξ) v, δu(ξ) = N(ξ) δv, �u(ξ) = N(ξ)�v (4.116)

The three components of the strain tensor are varied in accordance with (4.105),
whereby the linear term represents the known B matrix (4.44) and the quadratic
terms lead to a non-linear relation Bnlin(v):

δE =
⎡
⎣
δE11
δE22
δE12

⎤
⎦ = D̄(u)δu = B̄(v)δv and �E = B̄(v)�v , (4.117)

B̄ = B + Bnlin(v) , (4.118)

Bnlin = [B1 . . . Ba . . . BnK]

Ba =
⎡
⎣

u1,1 Na,1 u2,1 Na,1
u1,2 Na,2 u2,2 Na,2
u1,1 Na,2 + u1,2 Na,1 u2,1 Na,2 + u2,2 Na,1

⎤
⎦ . (4.119)

In a similar way as shown in (4.59), we find the derivation of the isoparametric
displacement functions with respect to the material coordinates in order to determine
the variation δF and linearization �F of the deformation gradient from (4.107) :

δF =
nK∑

a=1

∂Na(ξ)

∂X
δu(a) = H̄δv and �F = H̄�v . (4.120)

Inserting the relations (4.116)–(4.120) into (4.113) results in the virtual internal work
for one increment �v of the nodal displacements of an element Ve:

�(δWint(v, δv)) = δvT
{∫

Ve

B̄TCepB̄ dVe

︸ ︷︷ ︸
knlin

+
∫

Ve

H̄TTH̄ dVe

︸ ︷︷ ︸
ksp

}
�v. (4.121)

The expression in curly brackets represents the tangential stiffness matrix k(v) at
point 0, which consists of two components. The first term knlin is due to the non-
linear displacement-strain relation B̄ and the material tensor Cep, which in the case
of non-linear material laws also depends on v (see previous Sect. 4.5.2). In addition,
we get the so-called geometric stiffness matrix or initial stress matrix ksp, which
reflects the effect of the current state of stress T on the altered geometry H̄.

k(v) = knlin(v) + ksp(T) (4.122)

Upon assembling all element components (4.122) we obtain the tangential system
stiffness matrix K for the linearized equation system of FEM.
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K(V0)�V = −R := Fext − Fint (4.123)

Its iterative solution is best carried out with the Newton- Raphson method (see
Sect. 4.5.1).

The algorithm described here is referred to as the total Lagrangian method in FEM
literature. Further explanations of FEM with physical and geometrical non-linearities
can be found in [11–13].

4.6 Explicit FEA for Dynamic Problems

In order to analyse impact loading of cracks and highly dynamic crack propaga-
tion processes, which are mostly associated with contact problems, the technique of
explicit time integration has become the most established one in FEM. As opposed to
implicit time integration schemes (e. g. Newmark), the explicit method is numerically
highly effective and robust. A disadvantage is its limited stability, which necessitates
keeping to very small time steps �tn ≤ �tc.

With the first and second time derivation of the displacement functions (4.40), we
obtain the velocities and accelerations from the nodal values v:

u̇ = Nv̇, ü = Nv̈. (4.124)

For damping-free systems, the equations of motion follow from the Hamiltonian
principle. After FEM-discretization according to Sect. 4.3, the stiffness relation (4.49)
can be extended by the inertial term mv̈:

mv̈(t) + kv(t) = fb + ft + fε = f(t)

MV̈(t) + KV(t) = Fb + Ft + Fε = F(t) (4.125)

mass matrix: m =
∫

Ve

NTρN dV , M =
nE⋃

e=1

me . (4.126)

In principle, we can also integrate the element mass matrix (4.126) and assemble
the system mass matrix M applying the algorithms shown in Sect. 4.3. Using the
shape functions, we then obtain the so-called consistent mass matrix, which has
symmetry and a band structure. This results in a relatively high computational effort
in solving (4.125), since M must be inverted. This can be reduced considerably if
we use a lumped mass matrix in diagonal form. In this case, inversion of M is trivial
so that (4.125) can be solved directly for the sought nodal accelerations v̈. Various
interpolation and integration techniques exist for determining the diagonalized mass
matrix [14, 15].
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As a rule, the explicit central difference scheme is used to solve the 2nd order
differential Eq. (4.125) with respect to time. Thereby, the dynamic quantities at the
end of the (n + 1)th time step tn+1 = tn + �tn+1 are calculated from the principle
of linear momentum (4.125) at the beginning of the interval tn . The velocities in the
middle of the interval tn+ 1

2
= tn + 1

2�tn+1 are obtained from the differential quotient

v̇n+ 1
2

= (vn+1 − vn)/�tn+1, v̇n− 1
2

= (vn − vn−1)/�tn, (4.127)

from which the acceleration at tn follows:

an = v̈n = (v̇n+ 1
2

− v̇n− 1
2
)/

[
1

2
(�tn+1 + �tn)

]
. (4.128)

Hence, the following algorithm is derived:

(0) determination of initial conditions v0 and v̇0
(1) incrementing of time and external load f(t)
(2) calculation of acceleration in time step �tn+1 from (4.125):

an = m−1(f − k vn)

(3) determination of velocity with (4.128):

v̇n+ 1
2

= v̇n− 1
2

+ �tn+1 + �tn
2

an

(4) updating the displacements with (4.127):

vn+1 = vn + �tn+1v̇n+ 1
2

(5) next time step n := n + 1, go to (4.6)

The explicit algorithm requires neither iterations nor inversion of the stiffness matrix,
even the assemblage of element matrices is superfluous. Material and geometrical
non-linearities are taken into consideration simply with k(vn).

The maximum admissible time step length �tc is inversely proportional to the
highest angular eigenfrequency ωmax of the system. In practice, �tc is estimated
by that time, which requires a dilation wave with a material-dependent propagation
velocity cd to pass through the smallest finite element of length Lmin, whereby b is
still an empirical factor:

�t ≤ �tc = b
Lmin

cd
. (4.129)
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4.7 Procedure of a Finite Element Analysis

In the following, the essential procedural steps are compiled necessary for the FEM
calculation of a component. The special tasks needed for dealing with cracks are
emphasized in italic.

4.7.1 PRE-processing

(a) generation of the FEM mesh (node coordinates, elements, topology)
(b) special mesh generators for cracks (special elements, geometrical particulari-

ties)
(c) specification of loading and bearing conditions
(d) input of material properties
(e) specification of the temporal load program
(f) supervision and visualization of the input model

4.7.2 FEM-processing

(a) assemblage and storage of the stiffness K(t) and mass matrix M
(b) calculation of the right hand side F(t) from all loads
(c) crack tip elements and special algorithms for cracks
(d) incorporation of kinematic boundary conditions
(e) solution of the (non-)linear FEM system of equations
(f) storage of results (solution vector V(t) et al.)
(g) incremental increase of loads for the next time step for non-linear or dynamic

analyses; if required, repetition of this loop

4.7.3 POST-processing

(a) calculation of pertinent field quantities (ui , εi j , σi j , T ) for desired locations and
moments from the solution vector V(t)

(b) nodal data: v(a), v̇(a), v̈(a), f , T , h R

(c) element data (integration points): εi j , σi j , εmax, σmax, εv, σv, U
(d) graphical representation: isoline images, temporal course, deformed structure,

animation of motions etc.
(e) specific analyses (EDI-integral, MCCI-closure integral, DIM etc.) to determine

fracture mechanical loading parameters (K -factors, G, J )
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Chapter 5
FE-Techniques for Crack Analysis
in Linear-Elastic Structures

The goal of a FEM analysis is the calculation of fracture-mechanical loading
parameters for a crack in a structure (test piece, component, material’s microstruc-
ture) in the case of linear-elastic (isotropic or anisotropic) material behavior. In
Sect. 3.2 the relevant loading parameters of LEFM were introduced: the stress inten-
sity factors KI, KII, KIII and the energy release rate G ≡ J . Their values depend on
the geometry of the structure, its load, the length and shape of the crack and on the
material’s elastic properties.

Although FEM can be directly applied to solve a BVP, its use in crack problems
involves a fundamental difficulty. This difficulty lies in the exact determination of the
singularity at the crack tip with the help of a numerical approximation method such as
FEM. Conventional finite element types only have regular polynomial functions for
ui , εi j andσi j . Therefore, they reproduce the crack singularity poorly. For this reason,
special element functions, numerical algorithms or evaluation techniques are needed
to obtain loading parameters from a FEM solution efficiently and accurately. In the
following chapter, we will introduce the methods that have been developed for this,
concentrating mainly on stationary cracks. The particularities of FEM techniques
and meshes in analyzing unsteady cracks will be dealt with in Chap. 8.

5.1 Interpreting the Numerical Solution at the Crack Tip

If only regular standard elements (RSE) are available to us, a very fine mesh is
required at the crack tip. One should again bear in mind that, with the stress intensity
factor KI, we are looking for the coefficient of a singularity! This means firstly that
the finer we make the mesh, the greater (→ ∞) the stresses become. Secondly, the
discretization has to be so fine that the field quantities within the near field solution
are resolved with sufficient accuracy.

Figure 5.1 demonstrates a typical mesh for crack problems using the example of
a Griffith crack in a finite plate under tensile load. Because of the symmetry of the

M. Kuna, Finite Elements in Fracture Mechanics, Solid Mechanics and Its 193
Applications 201, DOI: 10.1007/978-94-007-6680-8_5,
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x1

x2

a2
d2

d2

σ

σ

Fig. 5.1 Griffith crack in a finite plate under tensile load

problem with respect to the x1 and x2 axes, it suffices to model only one quadrant
(shaded in gray). The normal displacements (u2 = 0 and u1 = 0) must be prevented
on the axes of symmetry (x1 = 0 and x2 = 0). On the upper edge, the tensile
stresses are applied with equivalent nodal forces, and the crack faces remain free of
load. Figure 5.2 shows the FEM model using quadrilateral elements. For stationary
cracks, a polar FEM mesh with a strong concentric refinement around the crack tip
is effective (see detail right). The smallest elements at the crack tip must have a
size L that is still considerably below the validity range rK of the KI-dominated near
field. In order to reproduce properly the angular distribution, a sufficient number
of elements must also be distributed over the circumference. With the estimation
rK ≈ a/50 . . . a/10, the following relation should thus be observed:

• element size at the crack tip: L < a/100 . . . a/20
• number of elements/semicircle: n > 6 or �θ < 30◦

The simplest method to determine the stress intensity factor KI is directly to
compare the FEM solution (3.12) and (3.16) with the near field solution for mode I:

ui (r, θ) = 1

2μ

√
r

2π
KI g

I
i (θ), σi j (r, θ) = KI√

2πr
f I
i j (θ) . (5.1)

For a selected point (r∗, θ∗), we can thus calculate a value K ∗
I either from the

displacements uFEM
i or the stresses σFEM

i j by converting (5.1):

K ∗
I (r∗, θ∗) = 2μ

√
2π

r∗
uFEM

i (r∗, θ∗)
gI

i (θ
∗)

, K ∗
I (r∗, θ∗) =

√
2πr∗σFEM

i j (r∗, θ∗)
f I
i j (θ

∗)
.

(5.2)
The displacements are best taken from values at the nodes, while the stresses are gen-
erally given at the integration points, having there the highest accuracy (see Fig. 5.3).

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 5.2 FEM mesh with enlarged detail
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Fig. 5.3 Evaluation of the FEM solution at
a node (r∗, θ∗)
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Fig. 5.4 Validity range of the FEM interpre-
tation

Figure 5.4 shows a typical result for K ∗
I (r∗) along a radial ray θ∗ = const. We can

distinguish three domains here: The elements very close to the crack tip can only rep-
resent the singularity inaccurately, which is why K ∗

I falls too short in comparison to
the exact value of KI. At the mid-range, the quality of the FEM solution is sufficient.
Outside the dominance region r∗ > rK , Eq. (5.2) loses its justification, since further
solution terms arise in addition to the singularity. Therefore, a linear extrapolation of
the function K ∗

I (r∗) from the mid-range towards the crack tip r∗ → 0 is suggested
as a pragmatic technique. This interpretation yields the best results at the following
positions:

(a) values of crack-opening displacements at the crack face (relative to a possible
displacement uFEM

2 (0) of the crack tip node)



196 5 FE-Techniques for Crack Analysis in Linear-Elastic Structures

KI = lim
r∗→0

uFEM
2 (r∗, θ = π)

E ′

4

√
2π

r∗ . (5.3)

E ′ = E (plane stress) and E ′ = E/(1 − ν2) (plane strain)

(b) values of normal stresses on the ligament in front of the crack

KI = lim
r∗→0

σFEM
22 (r∗, θ = 0)

√
2πr∗ . (5.4)

Occasionally, a doubled logarithmic plot of (5.4) is recommended

ln[2πσ22(r
∗)] − ln KI = −1

2
ln r∗, (5.5)

whereby the reproduction quality of the crack singularity can be controlled by observ-
ing the slope (factor −1/2), and KI results from the intersection with the ordinate.

The interpretation till now was focused on pure mode I loading. It can be applied
analogously to two-dimensional crack geometries loaded exclusively in mode II or
mode III (see Sect. 3.2.1 and Fig. 3.6). In these cases, the crack lies on a symmetry
plane of the body (x1-axis), so a half model is sufficient for the FEM. Due to its
symmetry and anti-symmetry properties, the following boundary conditions are to
be observed on the ligament (|x1| > 0, x2 = 0): mode II: u1 = σ22 = 0, mode III:
u3 = 0. Using the asymptotic solutions (3.25) and (3.23) for mode II or (3.31) and
(3.32) for mode III, we obtain formulae for the determination of the K -factors from
the crack face displacements or ligament stresses:

KII = lim
r∗→0

uFEM
1 (r∗,π)

E ′

4

√
2π

r∗ , KII = lim
r∗→0

τFEM
21 (r∗, 0)

√
2πr∗ (5.6)

KIII = lim
r∗→0

uFEM
3 (r∗,π)

E

4(1 + ν)

√
2π

r∗ , KIII = lim
r∗→0

τFEM
23 (r∗, 0)

√
2πr∗

(5.7)
In the general loading case of a crack, all three modes I, II, and III superimpose,

and all symmetry properties are lost. However, the modes of crack opening separate
on the crack faces, so the K -factors can be determined from the relative displacements
�ui (r∗) = ui (r∗, θ = +π) − ui (r∗, θ = −π) of two opposing nodes on the crack
faces ⎧

⎨
⎩

KI
KII
KIII

⎫
⎬
⎭ = lim

r∗→0

√
2π

r∗

⎧
⎪⎨
⎪⎩

E ′
8 �u2(r∗)
E ′
8 �u1(r∗)

E
8(1+ν) �u3(r∗)

⎫
⎪⎬
⎪⎭

. (5.8)

This evaluation formula is also valid for three-dimensional crack configurations,
whereby ui (r∗, θ∗) then refers to a local coordinate system perpendicular to the

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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considered point on the crack front (see Fig. 3.10), which requires a corresponding
transformation from the global system.

All previously given relations are valid for an isotropic material, for which each
stress intensity factor is associated exactly with the displacement component of the
respective crack opening mode. In the case of anisotropic material however, the
displacement components on the crack faces are linked with all K -factors, resulting
in a linear system of equations. For the special case of orthotropy from Sect. 3.2.7,
we find

⎧
⎨
⎩

KI
KII
KIII

⎫
⎬
⎭ = 1

4

⎧
⎨
⎩

H11 H12 0
H21 H22 0
0 0 H33

⎫
⎬
⎭ lim

r∗→0

√
2π

r∗

⎧
⎨
⎩

�u1(r∗)
�u2(r∗)
�u3(r∗)

⎫
⎬
⎭ , (5.9)

where the components of the matrix Hi j depend on the elastic constants:

[
H11 H12
H21 H22

]
= 1

H11 H22 − H12 H21

⎡
⎢⎢⎣



(

q1 − q2

s1 − s2

)


(

p2 − p1

s1 − s2

)



(

s1q2 − s2q1

s1 − s2

)


(

s2 p1 − s1 p2

s1 − s2

)

⎤
⎥⎥⎦

H33 = 
(c45 + s3c44) (5.10)

This direct displacement interpretation method (DIM) and stress interpreta-
tion method (SIM) are the simplest techniques to determine the K -factors.
Because of the relatively arbitrary extrapolation (see Fig. 5.4), they also have
the lowest level of accuracy. Nonetheless, they are suited for a rough interpre-
tation of directly available FEM results by simple manual calculation.

5.2 Special Finite Elements at the Crack Tip

5.2.1 Development of Crack Tip Elements

The unsatisfactory solution quality of regular elements was recognized already in
the 1970s. This led to the development of special element formulations, in which
the shape functions contain singular crack-specific functions the free parameters of
which are related to the K factors. Special elements of this type are called crack tip
elements (CTE). They are utilized to discretize the direct surroundings of the crack
tip, while regular elements are then used to model the rest of the structure. These
CTEs can embed a crack tip entirely if their shape functions describe complete crack

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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tip fields in (r, θ) coordinates (see [1, 2].) However, we usually restrict ourselves to
the reproduction of the radial r−1/2 singularity, which is why the angular dependence
θ must be modeled with fan-shaped element arrangements around the crack tip. The
most important developments of two-dimensional [3–6] and three-dimensional crack
tip elements [7, 8] should be cited.

The biggest problem with such element formulations is that the singular crack
functions are not compatible with the regular shape functions on the boundaries to
neighboring elements. Also, their shape functions often do not permit rigid body
motions or constant states of strain, which is the prerequisite for the convergence of
the solution. A further disadvantage of many crack tip elements is that they have not
been incorporated into commercial FEM programs due to their algorithmic peculiar-
ities and thus are only usable by a few specialists.

5.2.2 Modified Isoparametric Displacement Elements

Decisive progress was made in this respect by the discovery of so-called quarter-point
elements (QPE) made independently by Henshell and Shaw [9] and Barsoum [10].
The basic idea consists in modifying isoparametric elements with a quadratic shape
function such that the position of the mid-side nodes is altered. That is, we shift
the coordinates of these nodes from the middle to the quarter-point position in the
direction of the crack tip for all element edges that point to the crack tip. This effects a
change of the displacement, strain and stress fields in the element into a form, which
corresponds exactly to the radial function of the crack tip field. The emergence of
a singular 1/

√
r behavior is caused by the non-linear mapping between the natural

(isoparametric) and local (geometrical) coordinates ξ → x. Therefore, we refer to
them as »nodal-distorted« shape functions.

Before we look more closely at different types of quarter-point elements, the
principle should be illustrated using a one-dimensional element 1D or one element
edge.

L

1

1−

3

1+0

1ξ 2

r

L(a) (b)

Fig. 5.5 One-dimensional quarter-point element: a natural coordinates, b local Cartesian
coordinates



5.2 Special Finite Elements at the Crack Tip 199

(a) One-Dimensional Quarter-Point Element

Figure 5.5b shows a 1D quarter-point element at the crack tip in geometrical space,
the distance of the three nodes 1, 3 and 2 is given by the coordinate r . The position of
the middle node 3 is controlled by the parameter κ. Figure 5.5a refers to the parameter
space ξ (=̂ ξ1). The quadratic 1D displacement function of this element is:

u(ξ) =
3∑

a=1

Na(ξ) u(a) = 1

2
ξ(ξ − 1)u(1) + (1 − ξ2)u(3) + 1

2
ξ(ξ + 1)u(2)

= u(3) + 1

2

(
u(2) − u(1)

)
ξ +

[
1

2

(
u(1) + u(2)

)
− u(3)

]
ξ2 (5.11)

The last equation was ordered by powers of ξ. Due to the isoparametric element
formulation, the same interpolation function also holds for the coordinates, i.e. as
well for the radius r with the nodal values r (1) = 0, r (3) = κL , r (2) = L:

r(ξ) =
3∑

a=1

Na(ξ) r (a) = κL + 1

2
Lξ +

(
1

2
− κ

)
Lξ2 (5.12)

In the case of a regular 1D element, κ = 1/2 would be valid, and from (5.12) would
then follow ξ = 2r/L − 1. Insertion of this linear relation into (5.11) results as well
in a polynomial of the 2nd degree for the displacement u(r). But if we shift node (3)
to the quarter-point position κ = 1/4, then (5.12) provides instead the relation

r = L

4
(1 + ξ)2 ⇒ ξ = 2

√
r

L
− 1, (5.13)

which yields with (5.11) the following radial dependence of the displacement and
strain

u(r) = u(1) +
(
−3u(1) − u(2) + 4u(3)

)√ r

L
+ 2

(
u(1) + u(2) − 2u(3)

) r

L
(5.14)

ε(r) = ∂u

∂r
=
(

−3

2
u(1) − 1

2
u(2) + 2u(3)

)
1√
Lr

+ 2
(

u(1) + u(2) − 2u(3)
) 1

L
.

(5.15)
As we can see, the displacement function now contains besides a constant (rigid
body displacement) and linear function also a

√
r term, which reproduces exactly

the displacement field at the crack tip. The strain in the quarter-point element exhibits
the desired 1/

√
r singularity and also possesses the necessary constant term (patch

test).
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(b) Quadrilateral and Triangular Quarter-Point Elements 2D

To calculate two-dimensional crack problems, quarter-point elements are generated
from isoparametric rectangular [9] or quadrilateral elements [10] by shifting the
mid-side node along two edges as shown in Fig. 5.6a, b. The 1D consideration of the
previous section can be applied directly to the edges 1–5–2 and 1–8–4 so that we
obtain the desired crack-specific functions (5.14) and (5.15). These characteristics
only exist in a narrow (gray) area on radial axes [11]. Moreover, it must be provided
that all element edges are straight lines. Since the angular dependence of the near
field solution can only be reproduced poorly with these crack elements (90◦ angle),
they are used rather rarely.

In this respect, quarter-point elements that are created from natural 6-noded
triangular elements with quadratic shape functions have improved properties (see
Fig. 5.6b). In the first place, we can lay many such elements sector-wise around the
crack tip. Secondly, it has been shown [12] that the r−1/2 singularity is reproduced in
all directions within this element. Thus the nodal-distorted triangular elements can
resolve the angular distribution around the crack tip much better, for which reason
they are generally preferred. The edge 2–5–3 lying opposite to the crack tip may also
be curved.

1
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2 2

3 34

4

5

56
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8

(a) (b)
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H
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4

L
4
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H
2

H
2

H
2

H
2

L
2

L
2

Fig. 5.6 Nodal-distorted isoparametric 8-noded quadrilateral element (a) and 6-noded triangular
element (b)

(c) Collapsed Quadrilateral Elements

The probably most often used crack tip element is the isoparametric 8-noded element
in which one side (e.g. ξ1 = −1) is collapsed to a point so that the nodes have iden-
tical coordinates as shown in Fig. 5.7. According to Barsoum [13], this quadrilateral
element, degenerated into a triangle, possesses several special properties that can be
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Fig. 5.7 Collapsed and distorted isoparametric 8-noded quadrilateral element

used advantageously in LEFM and EPFM. A group of these elements is arranged in
a fan-shape around the crack tip, whereby the collapsed nodes all lie on the crack tip
(x1 = 0, x2 = 0). In addition, we allow for variable positioning of the middle nodes
5 and 7 with the parameter κ. In accordance with Fig. 5.7, the nodal coordinates then
read:

x(1)
1 = x(4)

1 = x(8)
1 = 0, x(2)

1 = x(6)
1 = x(3)

1 = L , x(5)
1 = x(7)

1 = κL

x(1)
2 = x(4)

2 = x(8)
2 = 0, x(2)

2 = −H, x(6)
2 = 0, x(3)

2 = H, x(5)
2 = −κH, x(7)

2 = κH.

(5.16)

With the help of the shape functions (4.66) of this quadrilateral element we obtain
the coordinates

x1 = L

2

[
(1 + ξ1)

2(1 − 2κ) − (1 + ξ1)(1 − 4κ)
]

x2 = H

2
ξ2

[
(1 + ξ1)

2(1 − 2κ) − (1 + ξ1)(1 − 4κ)
]

(5.17)

and hence the distance r to the crack tip

r =
√

x2
1 + x2

2 = 1

2

√
L2 + H2ξ2

2

[
(1 + ξ1)

2(1 − 2κ) − (1 + ξ1)(1 − 4κ)
]

.

(5.18)
The special case of the quarter-point position κ = 1/4 yields

x1 = L

4
(1 + ξ1)

2 , x2 = H

4
ξ2(1 + ξ1)

2

r = 1

4
(1 + ξ1)

2
√

L2 + H2ξ2
2 ⇒ (1 + ξ1) =

√
r

1
2

4
√

L2 + H2ξ2
2

. (5.19)

http://dx.doi.org/10.1007/978-94-007-6680-8_4
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The elements of the Jacobian matrix are calculated from (5.17):

J11 = ∂x1

∂ξ1
= L

[
(1 + ξ1)(1 − 2κ) − 1

2
(1 − 4κ)

]

J21 = ∂x1

∂ξ2
= 0

J12 = ∂x2

∂ξ1
= Hξ2

[
(1 + ξ1)(1 − 2κ) − 1

2
(1 − 4κ)

]
= H

L
ξ2 J11

J22 = ∂x2

∂ξ2
= H

2
(1 + ξ1) [(1 + ξ1)(1 − 2κ) − (1 − 4κ)] = r H√

L2 + H2ξ2
2

.

(5.20)

From (5.20) we obtain with κ = 1/4 the following dependence on the radius:

J11 = L

2
(1 + ξ1) ∼ √

r , J21 = 0

J12 = H

2
ξ2(1 + ξ1) ∼ √

r , J22 = H

4
(1 + ξ1)

2 ∼ r (5.21)

J = det |J| = J11 J22 = L H

8
(1 + ξ1)

3 ∼ r3/2 .

The inverse of the Jacobian matrix is calculated via

J−1 = 1

J

[
J22 −J12
0 J11

]
∼
[

1√
r

1
r

0 1
r

]
. (5.22)

From here it becomes evident that singularities of type r−1/2 and r−1 with respect to
the radius to the crack tip arise, only by assigning node positions in the transformation
(ξ ↔ x). The displacement function of the element obeys the isoparametric shape
functions (4.66) independently of the nodal distortion. To calculate the strains, we
have to form the displacement gradients:

[
∂u
∂x1
∂u
∂x2

]
= J−1

[
∂u
∂ξ1
∂u
∂ξ2

]
with J−1

i j = ∂ξ j

∂xi
. (5.23)

Here, u stands for every component of the displacement vector ui , e.g. u1. With some
computational effort, we find the derivatives with respect to the natural coordinates
ξ j sorted by powers of ξ j :

∂u

∂ξ1
=

8∑

a=1

∂Na(ξ1, ξ2)

∂ξ1
u(a)

http://dx.doi.org/10.1007/978-94-007-6680-8_4
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= 1

2
(1 + ξ1)

[(
u(3) + u(4) − 2u(7) + u(1) + u(2) − 2u(5)

)

+ ξ2

(
u(3) + u(4) − 2u(7) − u(1) − u(2) + 2u(5)

)]

+ 1

4
(1 + ξ2)

[
(ξ2 − 2)u(3) − (ξ2 + 2)u(4) + 4u(7)

]
(5.24)

+ 1

4
(1 − ξ2)

[
(ξ2 − 2)u(1) − (ξ2 + 2)u(2) + 4u(5)

]

+ 1

2
(1 − ξ2

2)
[
u(6) − u(8)

]

= a0 + a1(1 + ξ1) for ξ2 = const.

∂u

∂ξ2
= 1

4
(1 + ξ1)

2
[
u(3) + u(4) − 2u(7) − u(1) − u(2) + 2u(5)

]

+ 1

4
(1 + ξ1)

[
(2ξ2 − 1)u(3) − (3 + 2ξ2)u

(4) + (3 − 2ξ2)u
(1) (5.25)

+ (2ξ2 + 1)u(2) + 4u(7) + 4ξ2u(8) − 4u(5) − 4ξ2u(6)
]

+ 1

2

[
(2ξ2 + 1)u(4) + (2ξ2 − 1)u(1) − 4ξ2u(8)

]∗

= b0 + b1(1 + ξ1) + b2(1 + ξ1)
2 for ξ2 = const.

For a clearer view, the constants ai and bi were introduced in order to recognize the
function of (1 + ξ1) ∼ √

r . Analogously, we obtain the derivatives of u2 =̂ u from
(5.24) and (5.25) with other constants:

∂u2

∂ξ1
= c0 + c1(1 + ξ1) (5.26)

∂u2

∂ξ2
= d0 + d1(1 + ξ1) + d2(1 + ξ1)

2 (5.27)

Via relation (5.23) we find with (5.22):

ε11 = ∂u1

∂x1
= J−1

11
∂u1

∂ξ1
+ J−1

12
∂u1

∂ξ2

= a0 + a1(1 + ξ1)√
r

+ b0 + b1(1 + ξ1) + b2(1 + ξ1)
2

r
= b0

r
+ e1√

r
+ e2

(5.28)

ε22 = ∂u2

∂x2
= �

�J−1
21

∂u2

∂ξ1
+ J−1

22
∂u2

∂ξ2
= d0

r
+ d1√

r
+ d2 (5.29)
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ε12 = 1

2

(
∂u1

∂x2
+ ∂u2

∂x1

)
= b0 + d0

r
+ f1√

r
+ f2 (5.30)

Using Eqs. (5.28)–(5.30) we determine the radial dependence of the strains in the
element. The constants ai − fi (i = {0, 1, 2}) depend on the actual nodal displace-
ments and the second parameter ξ2, which is constant on a radial ray. With the help
of (5.25), we recognize that the expression in the marked brackets [ ]∗ =̂ b0 = 0
vanishes if nodes 1, 4 and 8 possess identical displacements and are thus kinemati-
cally coupled. From this follows:

b0 = d0 = 0 for u(1)
i = u(4)

i = u(8)
i . (5.31)

Thus, in (5.28)–(5.30), the strong singular terms with 1/r are dropped, and the
crack tip element possesses the desired 1/

√
r -singularity of the elastic near field

solution plus a constant strain term, which is essential for convergence behavior
and the consideration of thermal expansions. Furthermore, the required continuity is
satisfied with the neighboring quarter-point elements along edges 1–5–2 and 4–7–3
as well as with the regular elements of the next ring along 2–6–3. Also, the three
degrees of freedom of rigid body motions are not restrained by this modification of
the element. The edge 2–6–3 has to be straight.

By collapsing one element edge to a node with common coupled displacements
and by an additional quarter-point displacement, we obtain from an isopara-
metric 8-noded element a 2D crack tip element that possesses the required
1/

√
r -singularity in εi j and σi j on all radial rays in the element.

(d) Three-Dimensional Quarter-Point Elements

The concept of quarter-point elements can be extended smoothly to three-dimensional
crack problems by prismatically expanding the 2D elements introduced above along
the crack front into the third dimension. In this way, nodal-distorted hexahedral
elements and pentahedral elements arise that are grouped around every segment of
the crack front as shown in Fig. 5.8. The singularity properties are then applicable
to every element plane perpendicular to the crack front (ξ3 = const.). Figure 5.9a
shows a pentahedral element with 15 nodes which lies with its edge 1–13–4 on the
crack front. Nodes 7, 9, 10, and 12 are shifted into the quarter position, i.e. their
coordinates x(i) = [x (i)

1 , x (i)
2 , x (i)

3 ] are calculated as:

x(7) = (3x(1) + x(2))/4, x(9) = (3x(1) + x(3))/4

x(10) = (3x(4) + x(5))/4, x(12) = (3x(4) + x(6))/4 . (5.32)
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Fig. 5.8 Arrangement of different 2D and 3D quarter-point elements at the crack
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Fig. 5.9 3D-Quarter-point elements at the crack front: a pentahedral element, b collapsed hexahe-
dral element

In order that the desired singular properties are satisfied along every element edge
perpendicular to the crack front (ξ3 = const.), the following geometrical conditions
must be fulfilled: The edges opposite to the crack must be straight lines:

x(8) = (x(2) + x(3))/2, x(11) = (x(5) + x(6))/2 . (5.33)
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The mid-side nodes on the outer surface must be placed exactly such that their
distance to the crack front corresponds to the arithmetic average of the distances on
both front faces, i.e. with a given position of node 13 follows:

x(14) =
[
(x(2) − x(1)) + (x(5) − x(4)) + 2x(13)

]
/2

x(15) =
[
(x(3) − x(1)) + (x(6) − x(4)) + 2x(13)

]
/2 . (5.34)

In the special case of a straight crack front x(13) = (x(1) + x(4))/2, we obtain the
prismatic pentahedron with planar faces of Fig. 5.8.

In analogy to the collapsed quadrilateral elements, isoparametric hexahedral ele-
ments can be degenerated to pentahedral elements, whereby the collapsed surface
coincides with the crack front (see Fig. 5.9b):

x(1) = x(4) = x(12), x(17) = x(20), x(5) = x(8) = x(16) . (5.35)

The quarter-point nodes are located at

x(9) = (3x(1) + x(2))/4, x(11) = (3x(1) + x(3))/4

x(13) = (3x(5) + x(6))/4, x(15) = (3x(5) + x(7))/4 (5.36)

and the nodes on the surface far from the crack have the positions

x(10) = (x(2) + x(3))/2, x(14) = (x(6) + x(7))/2

x(18) =
[
(x(2) − x(1)) + (x(6) − x(5)) + 2x(17)

]
/2

x(19) =
[
(x(3) − x(1)) + (x(7) − x(5)) + 2x(17)

]
/2 (5.37)

In addition, all nodes on the same location of this element surface must be kinemat-
ically coupled with each other.

u(1) = u(4) = u(12), u(17) = u(20), u(5) = u(8) = u(16) (5.38)

Detailed explanations of three-dimensional quarter-point elements can be found in
Hussain et al. [14], Manu [15] and Banks-Sills and Sherman [16, 17].

The modeling of curved crack fronts deserves special attention. As long as they
are approximated piecewise as polygonal lines and the crack tip elements retain
two-dimensional surfaces, the properties discussed above are applicable without
exception. If however we wish to take advantage of quadratic shape functions in
order to reproduce curvilinear crack fronts with geometrically adjusted bent 3D
elements, the above-mentioned geometrical restrictions should be observed in order
to give the elements the best possible level of quality.
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(e) Quarter-Point Elements for Plates and Shells

The quarter-point method unfortunately cannot be applied to finite element models
for thin-walled Kirchhoff plates, as then a r1/2-dependence would arise in accor-
dance with (5.30) for the deflection function w(r, θ), but from (3.139) an asymptotic
behavior of r3/2 is required, see Sect. 3.2.9. Therefore, we must work with standard
plate elements and use the displacements (DIM) or the crack closure integral (MCCI)
for subsequent evaluation.

Alternatively, we can make use of the superior but more complex sixth order
Reissner [18] theory for shear-deformable thick plates and shells. There are standard
thick-walled, curved shell elements (see e.g. [19]) available that can be derived as
a special case of three-dimensional 20-noded elements by degenerating them on
the shell’s mid-surface, setting a linear displacement function over thickness and
neglecting all strain components perpendicular to the surface. The 8-noded shell
element formed in this way has three displacement and two rotational degrees of
freedom per node. On the other hand, Barsoum [20, 21] was able to prove that a
quarter-point modification of these elements provides the required asymptotic crack
behavior in the context of the Reissner theory, making it possible to achieve high
levels of accuracy in the analysis of cracks in thick-walled plates and shells.

We should finally point out the possibility of meshing the crack tip region in
plates and shells completely with 3D quarter-point elements in several layers across
the thickness along the crack front. This mesh can be linked to the surrounding
shell elements either with the substructure technique or as a submodel [22, 23]. This
method is however the most costly in terms of discretization and computation time.

5.2.3 Computing Intensity Factors from Quarter-Point Elements

(a) Formulae for Plane Quarter-Point Elements

For two-dimensional crack problems, there is a simple formula for calculating the
stress intensity factor from the results of the quarter-point elements. For this purpose,
we interpret the displacements on the crack faces (see Fig. 5.10). No matter what
type of quarter-point elements was used, on these edges the displacement course
from (5.14) is valid. We introduce the general notations for the nodes at the crack tip
A(r = 0), quarter-point nodes B(r = L/4, θ = π) and B ′(r = L/4, θ = −π) as
well as the corner nodes C(r = L , θ = π) and C ′(r = L/4, θ = −π). Comparing
the

√
r term from (5.14) and the near field solution for mode I (5.3) on the upper

crack face C–B–A yields:

u2(r) = 4

E ′ KI

√
r

2π
!=
[

− 3u2(r = 0) − u2(r = L) + 4u2(r = L/4)
]√ r

L

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 5.11 Displacement interpretation for
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⇒ KI = E ′

4

√
2π

L

[
4u2(r = L/4) − u2(r = L) − 3u2(r = 0)

]

= E ′

4

√
2π

L

[
4u B

2 − uC
2 − 3u A

2

]
. (5.39)

For pure mode II or III loading, the displacements on the crack face also behave
antisymmetrically, and we obtain the corresponding K -factors with similar consid-
erations:

KII = E ′

4

√
2π

L

[
4u B

1 − uC
1 − 3u A

1

]
(5.40)

KIII = E

4(1 + ν)

√
2π

L

[
4u B

3 − uC
3 − 3u A

3

]
. (5.41)

In the general mixed-mode loading case of a crack, the relative displacements
of the crack faces have to be evaluated in relation to each other with (5.8). The
intensity factors KI, KII and KIII are only associated with the respective displacement
directions u2, u1 and u3 so that the following decoupled equations are obtained:

KI = E ′

8

√
2π

L

{[
4u2(L/4,π) − u2(L ,π)

] − [
4u2(L/4,−π) − u2(L ,−π)

]}

= E ′

8

√
2π

L

{(
4u B

2 − 4u B′
2

) − (
uC

2 − uC ′
2

)} = E ′

8

√
2π

L

{
4�u B

2 − �uC
2

}

(5.42)
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KII = E ′

8

√
2π

L

{
4�u B

1 − �uC
1

}

KIII = E ′

8(1 + ν)

√
2π

L

{
4�u B

3 − �uC
3

}
. (5.43)

For the sake of brevity, the displacement jump over the crack face at the location of
the node pair (e.g. BB′) was denoted as follows:

�u B
i = u B

i − u B′
i . (5.44)

Accordingly, we obtain the equation for determining the stress intensity factors
for orthotropic material from (5.9)

⎧
⎨
⎩

KI
KII
KIII

⎫
⎬
⎭ =

√
π

8L

⎡
⎣

H11 H12 0
H21 H22 0
0 0 H33

⎤
⎦
⎧
⎨
⎩

4�u B
1 − �uC

1
4�u B

2 − �uC
2

4�u B
3 − �uC

3

⎫
⎬
⎭ . (5.45)

(b) Formulae for Three-Dimensional Quarter-Point Elements

Also in the case of three-dimensional quarter-point elements nodal displacements
are preferably interpreted on the crack surfaces because here (for isotropy) the crack
modes are uncoupled. Regardless whether one uses hexahedral or pentahedral ele-
ments, always nodal-distorted 8-noded element faces lie on the crack (Fig. 5.11).
If we again denote these nodes with letters A–H and their partners on the opposite
crack faces with A′–H′, then the following interpretation formulae [15, 24] for the
K -factors are obtained.

Symmetry/Antisymmetry

If the crack lies on a symmetry plane of the structure under consideration, the FEM
model can be reduced by half. Under symmetrical loading, only mode I occurs on
the crack, and the normal displacements u2 ≡ 0 disappear on the ligament, also at
the crack front nodes A, H, G.

KI(ξ3) = E ′
4

√
2π

L ′
{

2u B
2 − uC

2 + 2uE
2 − uF

2 + u D
2 + 1

2
ξ3
( − 4u B

2 + uC
2 + 4uE

2 − uF
2
)

+ 1

2
ξ2

3
(
uF

2 + uC
2 − 2u D

2
)}

(5.46)

Antisymmetrical loading leads to crack opening of mode II and/or III, which are
generally coupled. Then the tangential displacements u1 ≡ u3 ≡ 0 must be prevented
on the ligament, and the corresponding displacement components of the crack front
nodes A, H, G are zero. From (5.46) we derive corresponding equations to determine
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KII(ξ3) and KIII(ξ3) if the respective displacement components u1 or u3 are evaluated
instead of u2. The stress intensity factors exhibit, like the displacement functions,
a quadratic course along the crack front (ξ3-coordinate) and are continuous at the
transition from one crack element to the next.

General Case

With an arbitrary geometry and loading of the 3D-crack, we obtain all three intensity
factors from the displacement differences of opposing nodes on the crack faces in
accordance with (5.44), whereby the crack elements of course must be arranged
mirror-symmetrically (see Fig. 5.11).

KI(ξ3) = E ′

8

√
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{
2�u B
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2
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2 − �uF
2

)
(5.47)
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KII(ξ3) = E ′
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+ 1

2
ξ2

3

(
�uF

1 + �uC
1 − 2�u D

1

)}

KIII(ξ3) = E
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(5.49)

The element quantity L ′ to be inserted into the above equations must be explained
more precisely (see Fig. 5.12). For rectangular element surfaces ACFG, L ′ corre-
sponds exactly to the edge lengths L = AC = GF. In the case of curved quarter-point
elements with different edges L1 = AC �= L2 = GF which also form oblique angles
to the crack front that deviate from the normal by γ1 and γ2, one must apply the
interpolated perpendicular length [15]
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Fig. 5.12 Determination of the local element width L ′ in the case of curvilinear crack elements

L ′(ξ3) = −ξ3 − 1

2
L1 cos γ1 + ξ3 + 1

2
L2 cos γ2. (5.50)

In conclusion, the properties of quarter-point elements can be evaluated as
follows. The important advantage of these crack tip elements is that they
are easy to use and directly available. Almost all commercial finite element
codes have isoparametric displacement elements with quadratic shape func-
tions that can be converted to quite serviceable singular special elements for
crack analysis simply by modifying the input values for the nodal coordinates
and node numbers. Thus the user needs neither special fracture-mechanical
expertise nor alteration of the FEM code. It only requires to comply with the
above-mentioned conditions when setting up a mesh of the crack tip in the pre-
processor as well as an uncomplicated interpretation of the result with clear
formulae for the determination of stress intensity factors in the post-processor.
There are quarter-point elements for two-dimensional, axially symmetric and
three-dimensional crack problems as well as for thick-walled plates and shells.

Together with displacement interpretation DIM and virtual crack extension,
quarter-point elements provide much more accurate results compared with
standard elements and thus should generally be favored. One disadvantage is
that only the singular solution of the crack tip fields is modeled, and of this
only the radial function r−1/2. In order to resolve the angular dependence with
sufficient accuracy, an adequate number of quarter-point elements (at least 6
elements, preferably 12–16) must be arranged fan-wise over the semi-circle.
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Since the validity range rK of the crack singularity is narrowly limited, the
radius of the quarter-point element must also be kept relatively small compared
to the crack length. The guideline is: element size L ≈ a/20 . . . a/10.

5.3 Hybrid Crack Tip Elements

5.3.1 Development of Hybrid Crack Tip Elements

One particularly useful application area of the hybrid element formulations intro-
duced in Sect. 4.2.3 is in the design of special crack tip elements. This procedure
is illustrated schematically in Fig. 5.13. The hybrid technique enables us to apply
known analytical crack solutions inside the element with free parameters and simul-
taneously to choose such boundary displacement functions that are compatible with
those of the regular (e.g. isoparametric) neighboring elements. In this way, we can
completely »embed« the singular asymptotic near field solutions for the crack tip
region into a special element which is displacement-compatible with standard ele-
ments. As with ordinary displacement elements, the stiffness matrix is expressed
by nodal variables at the boundary of the element. Thus, its assembly into the total
FEM system can be carried out in the normal way. That is, its incorporation into a
FEM program system requires only the particular integration routine for the stiff-
ness matrix. Since the fracture parameters such as stress intensity factors are used as
internal variables, they are obtained directly by the solution of the FEM system so
that no interpretation or extrapolation techniques are needed for their determination.
These advantages are characteristic of all hybrid crack tip elements, which is why
they are much more effective compared to other crack tip elements. The price for
this is a highly sophisticated theory as well as an increased implementation effort.

Fig. 5.13 Formulating hybrid
finite elements

t̄i

S̃e

S̃e

S̃eS̃e

S̃ue

S̃te Ve

ūi

http://dx.doi.org/10.1007/978-94-007-6680-8_4
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The first hybrid crack tip elements were developed for two-dimensional elastic
crack problems on the basis of hybrid stress models ΠCH by Pian [25] and Schnack
and Wolf [26]. Atluri et al. [27] were the first to apply the hybrid displacement model
ΠPH with the three-variable function described in Sect. 4.2.3 to 2D crack problems.
In these elements, the singular elastic crack tip solution of type r−1/2 is included into
the shape functions for the interior and partially for the boundary using the stress
intensity factors KI and KII as free parameters. One group of hybrid elements encloses
the crack tip. A significant step forward was the »superelement« devised by Tong
et al. [28] which is based on the simplified mixed hybrid model ΠMH∗ (Sect. 4.2.3).
This element surrounds the crack tip completely (as in Fig. 5.13) and makes use
of the eigenfunctions for the crack in the plane. Thus it contains besides the r−1/2-
singularity still higher order terms of the series expansion. This design principle is
especially advantageous in combination with quadratic isoparametric elements [29]
and will be described in detail in the next chapter. The simplified mixed hybrid
model has in the meantime been applied to crack calculation in two-dimensional
anisotropic materials [30], to 2D interface cracks [31] and to two-dimensional notch
problems [32].

The development of three-dimensional (3D) hybrid crack tip elements mainly pro-
ceeded from pure hybrid displacement or stress models, since the lack of eigenfunc-
tions for three-dimensional crack problems precludes the application of the simplified
mixed principle, see the papers of Moriya and Pian [33], Kuna [34] (Sect. 5.3.3) and
Atluri and Kartiresan [35]. In all elements mentioned the known asymptotic near field
solution for a point on the 3D crack front was used either in the stress or displace-
ment function for the element volume. The hybrid stress model has the advantage
that we can do with two field quantities (σi j , ũi ) instead of three variables (ui , ũi , T̃i )
as in the hybrid displacement model. In exchange, the displacement model permits
variability of the stress intensity factors along the crack front within the element,
whereas the stress model only allows for a constant function. Since the approxi-
mations are only valid for subdomains around the crack tip, the crack front must
again be surrounded by a group of hybrid crack tip elements, which necessitates
volume integrals with removable singularities. In order to utilize the advantages of
the simplified mixed method ΠMH∗ for tackling three-dimensional crack problems
as well, Kuna and Zwicke [36] have derived eigenfunctions for the special case of
the straight 3D-crack and thus designed a hybrid 3D crack tip element that embeds
the crack front segmentally.

Hybrid element formulations have also been used successfully for dealing with
part-through cracks in plates, as can be seen in the papers of Rhee and Atluri [37]
(hybrid stress model ΠCH) and Moriya [38] (simplified mixed model ΠMH*). The
application of hybrid element concepts to elastic-plastic crack problems has been
hindered especially by the lack of knowledge of corresponding analytical crack
solutions. To date, no hybrid crack tip elements are known for the problem areas
»dynamics of moving crack« or »dynamically loaded crack«. Overviews of the theory
and application of hybrid crack tip elements are provided in [39–41].

http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_4
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5.3.2 2D Crack Tip Elements Based on Mixed Hybrid Model

Geometry and Concept of Crack Tip Elements

In principle, the crack tip element could be of any polygonal shape which surrounds
the crack tip as shown in Fig. 5.13. For the sake of simplicity however, a quadratic
or semi-quadratic shape was chosen as illustrated in Fig. 5.14. Variants (b) and (c)
are valid for the special case of purely symmetrical mode I crack loading with a left-
or right-hand crack. Along the boundary segments S̃e, the crack tip elements adjoin
to the neighboring standard elements, where they are coupled via nK = 17 (variant
(a)) or nK = 9 (variants (b) and (c)) nodes. On the crack itself there are no nodes.
The position of the crack tip in the element can be varied by setting the parameter
κ(−1 < κ < +1). In Sect. 3.2.2, the eigenfunctions for a semi-infinite crack in
the infinite plane were derived for linear-elastic material behavior. They fulfill the
compatibility and equilibrium conditions in the domain as well as the traction-free
conditions on both crack faces. Thus they satisfy the prerequisites for the design of
a simplified mixed hybrid model (Sect. 4.2.3). The eigenfunctions form an infinite
series n ∈ [1,∞] with the complex coefficients An = an + ibn in the form r

n
2 −1. The

associated angular functions of the stresses M̃ (n)
i j , Ñ (n)

i j (3.41) and displacements F̃ (n)
i ,

G̃(n)
i (3.43) were already indicated there. The first component n = 1 corresponds to

the known singular crack tip solution of type r−1/2 (see (3.45)).

KI − iKII = √
2 π (a1 + ib1) (5.51)

The real terms an should be assigned to the symmetrical solution component mode I,
while the imaginary parts bn represent the crack opening mode II. The second eigen-
function merely represents a constant σ11-stress:

(a) (b)

(c)

κ

θ

0

−1

+1

κ > 0

κ < 0

r

Fig. 5.14 Hybrid crack tip elements for two-dimensional tasks

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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T11 = σ11 = 4 a2, βT = T11
√
πa

KI
(5.52)

For the stresses and displacements in the hybrid element, N terms of the above-
mentioned eigenfunctions are applied with the associated 2N free coefficients, which
are compiled in the column vector

β = [a1 a2 . . . aN b1 b2 . . . bN ] T. (5.53)

Written as a matrix, the displacements (3.43) then read

[u1 u2] T = u(r, θ) = U(r, θ, n)β. (5.54)

The tractions ti = σi j n j on Se are obtained from (3.41) and the normal vector n j

on the boundary
[t1 t2] T = t(r, θ) = R(r, θ, n)β. (5.55)

The displacements ũi on the element boundary are expressed by the values v of the
boundary nodes nK:

[
ũ1 ũ2

] T = ũ = Lv, v =
[
u(1)

1 u(2)
2 . . . u(nK)

1 u(nK)
2

]
T, (5.56)

where L represents the matrix of the interpolation functions. L is now chosen such
that the boundary displacements on every boundary segment are identical with those
of the adjacent isoparametric elements. The combination of the crack element with
quadratic isoparametric elements has led to convincing advantages compared with
linear approaches. According to it, every boundary segment possesses three nodes
(Fig. 5.14). By inserting the chosen displacement and stress functions (5.54)–(5.56)
into the simplified mixed hybrid variational principle (4.33), we obtain for the crack
tip element:

ΠMH∗(β, v) = βTGv − 1

2
βTHβ − vTf

H = 1

2

∫

Se

(RT U + UTR)ds, G =
∫

Se

RT L ds, f =
∫

Ste

LT t̄ ds.

(5.57)

The second term of (5.57) is the strain energy of the element. The first term represents
the interaction of the internal stress function with the independent boundary displace-
ments. Variation of δβ provides a relation between the internal coefficients β and the
boundary displacements v:

β = H−1 Gv = B̃v. (5.58)

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_4
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In this way, β can be eliminated from (5.57). The variation δΠMH∗ = 0 with respect
to δv provides the stiffness relation

kv = f, (5.59)

where k is the sought stiffness matrix of the hybrid element and f denotes the load
vector due to the boundary loads t̄i .

k = GTH−1G (5.60)

Numerical Implementation

The great advantage of the simplified mixed hybrid model is that we need only to inte-
grate over the element boundary Se to calculate the element matrices (5.57)–(5.59).
Moreover, interpretation of singular integral terms typical of cracks is avoided. Thus,
we can work with common 6th order Gaussian integration formulae and a subinterval
technique in order to integrate exactly the more strongly oscillating higher eigen-
functions. The symmetrical, positive definite matrix H can be inverted easily. The
likewise symmetrical stiffness matrix k is only positive semi-definite for hybrid ele-
ments, which is a result of the weakened continuity requirements of hybrid variational
principles. The matrix k is incorporated in the same way as the stiffness matrices
of the surrounding displacement elements into the total FEM system. After solving
the FEM system of equations, we obtain from the nodal displacements of the crack
element the values of the internal coefficients β (5.53) via (5.58). With (5.51) and
(5.52) we thus directly obtain the sought stress intensity factors KI and KII as well
as the T11-stress.

The number 2N of coefficients to be used should correspond approximately to
the number of nodal degrees of freedom 2nK minus rigid body motions of the crack
element. For the hybrid elements of Fig. 5.14, this means eigenfunctions up to an
order of N = 9 (elements (b) and (c)) or N = 17 in the full element (a).

Examples

Let’s take the CT-specimen (Fig. 3.12) as an example. Figure 5.15 shows the coarsely
meshed discretization of the upper half (sufficient due to symmetry). Hybrid element
type (b) was set on the crack tip, and the rest of the geometry was filled out with six
isoparametric standard elements. Within the very large crack tip element (40 % of
the crack length), the crack length was varied from a = 0.35 w to a = 0.65 w by
changing the κ-parameter. Instead of elaborate mesh alterations, here we need only
to modify one input value! With these hybrid crack tip elements, the otherwise usual
high mesh refinement at the crack tip becomes superfluous because, by using numer-
ous higher eigenfunctions, the solution can be correctly represented even at a greater
distance to the singularity. The accuracy of the calculated KI-factors is also good.

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Figure 5.16 shows the geometry function g(a/w) = KI(a)Bw/
(
F

√
πa

)
in com-

parison to the reference solution [42]. In the crack length range 0.35 < a/w < 0.55,
the agreement is better than 0.5 %. Only for very deep cracks do the deviations go up
to 3 %. We obtain just as easily with (5.52) the normalized T11-stress βT = 0.564,
which agrees to 3.5 % with the reference solution [43].
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Fig. 5.15 FEM mesh of the CT-specimen
using hybrid crack tip element type b
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Fig. 5.16 Geometry function g(a/w) for the
CT-specimen as a function of the crack length

One way to investigate crack behavior under mixed mode loading experimentally
is to use a disc-shaped tensile specimen. Hereby, the tensile force can be applied at
an angle α inclined to the crack, which can be adjusted by the choice of bore holes.
The test geometry and FEM modeling are shown in Fig. 5.17. To discretize the crack,
the complete hybrid crack element type (a) was employed. By varying the direction
of the applied pair of forces, crack loading can be set from pure mode I (α = 90◦) via
various KI/KII-combinations up to the case of mode II (α = 0◦). This was reproduced
in the FEM analysis. Evaluation of the hybrid element with (5.51) immediately
supplied both K -factors, which are compiled in normalized form in Table 5.1.

Table 5.1 Dimensionless stress intensity factors gI and gII for the disc-shaped mixed mode speci-
men with a = R/2 and R = 8 cm
Angle α 90◦ 67.5◦ 45◦ 22.5◦ 0◦

gI 1.403 1.322 1.063 0.714 0.041
gII 0.006 0.321 0.552 0.632 1.152

KL = F
B R

√
πa gL (a/R), L = I, II
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Fig. 5.17 Disc-shaped fracture test for mixed crack loading (left) and FEM discretization (right)
with 32 quadrilateral elements, 1 hybrid element and 121 nodes

5.3.3 3D Crack Tip Elements Based on Hybrid Stress Model

Geometry and Concept

The three-dimensional crack tip elements have the shape of a hexahedron with pla-
nar element surfaces and nK = 20 nodes. The path of the crack front through the
body is approximated by a polygon, whereby a group of four crack tip elements is
arranged around every straight line in accordance with Fig. 5.18. The rest of the
body is meshed with isoparametric standard elements. Each of the qualitatively dif-
ferent hybrid elements (type A, A′, B, B′) has one edge in common with the crack
front. To formulate the shape functions and for the sake of numerical integration,
the element is transformed into the unit cube (−1 < ξ1, ξ2, ξ3 < 1) with the help
of the quadratic isoparametric shape functions (4.68) (see Fig. 5.19). At the crack
front, we again introduce a local system of cylindrical coordinates (r , θ, z = x3) and
Cartesian coordinates (x1, x2, x3). The asymptotic solutions for the stresses (3.60)
and displacements (3.62) are known from analytical investigations (see Sect. 3.2.3).

B

B′

A

A′ crackfront

Fig. 5.18 Arrangement of hybrid crack tip elements around the crack front

http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 5.19 Systems of coordi-
nates for the crack tip elements
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To design the crack elements, the hybrid stress model (4.28) from Sect. 4.2.3
was used. Application of this principle ΠCH requires a stress function in the ele-
ment volume that satisfies a priori the equilibrium conditions and traction boundary
conditions:

σ = [
σ11 σ22 σ33 τ12 τ23 τ31

] T = Pβ + PBβB, (5.61)

whereby we can calculate the tractions with the normal vector

t = [
t1 t2 t3

] T = Rβ + RBβB. (5.62)

The stress functions contain the nA unknown coefficients β. The second term PBβB
takes into consideration particular solutions due to volume forces or boundary trac-
tions. At present, the terms PB are omitted in the crack tip elements. The chosen
stress function P consist of nR standard polynomial terms PR(x1, x2, x3) with the
unknown coefficients bn and the crack-specific part PS, which contains the crack tip
solution (3.60) with the stress intensity factors as coefficients:

Pβ = [
PR PS

] [
b1 b2 . . . bnR KI KII KIII

] T. (5.63)

To constitute PR, for each stress component an incomplete 3rd order polynomial in
(x1, x2, x3) was employed, which is reduced to nR = 54 (for element types A and
A′) coefficients by the equilibrium condition [34]. For element types B and B ′ only
those states of stress were chosen that do not cause crack face tractions (nR = 60).
In this context, we must skip the extensive description of matrix PR. The stress
ansatz (5.63) satisfies not only the equilibrium but also the stress-free conditions on
the crack surfaces. It also satisfies the requirement that the number of coefficients
nA = nR +3 is larger than the number of nodal degrees of freedom 3nK = 60 minus
the rigid body degrees of freedom nF = 6.

Displacements ũ on the element surface are expressed by means of the interpola-
tion function L by the nodal displacements v.

ũ = [̃
u1 ũ2 ũ3

] T = Lv on Se (5.64)

http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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When specifying the shape functions, we distinguish between three surface types,
which will be denoted in the following by the direction of their surface normals in
Fig. 5.19:

(a) surfaces ξ1 = 1 and ξ3 = 1:
On these surfaces, the crack tip elements are adjacent to standard elements, so
the usual quadratic isoparametric shape functions in (ξ1, ξ2, ξ3) for an 8-noded
surface are used for L. Only the crack tip elements themselves are connected
via the other four surfaces. Their interpolation functions are adjusted to the
displacement field (3.62) of the crack tip solution.

(b) surfaces ξ2 = 1 and ξ2 = −1:
These surfaces intersect the crack front at one point so that here the complete
(r, θ)-dependence from (3.62) is used in addition to six polynomial terms

ũ1 = a1 + a2ξ1 + a3ξ3 + a4ξ1ξ3 + a5ξ
2
1 + a6ξ

2
3

+ a7
√

r gI
1(θ) + a8

√
r gII

1 (θ) (5.65)

ũ2 = a9 + a10ξ1 + a11ξ3 + a12ξ1ξ3 + a13ξ
2
1 + a14ξ

2
3

+ a15
√

r gI
2(θ) + a16

√
r gII

2 (θ) (5.66)

ũ3 = a17 + a18ξ1 + a19ξ3 + a20ξ1ξ3 + a21ξ
2
1 + a22ξ

2
3

+ a23
√

r sin
θ

2
+ a24

√
r sin

3

2
θ (5.67)

(c) surfaces ξ1 = −1 and ξ3 = −1:
These surfaces have one edge with the crack front in common, which is why
here only the

√
r -dependence of (3.62) is involved:

ũ1 = a1 + a2
√

r + a3ξ2 + a4
√

r ξ2 + a5r + a6ξ
2
2 + a7rξ2 + a8

√
rξ2

2 (5.68)

and analogously ũ2 and ũ3.

In cases (b) and (c), the 24 coefficients ai must be substituted by the 24 nodal
variables v of the surface. For this purpose, we calculate from the shape function
ũ = Aa the displacements on the node coordinates v = Ma and invert this linear
system of equations, from which the interpolation formula for the surface is obtained:

ũ = AM−1v. (5.69)

Equation (5.64) is thus composed of such contributions of the six surfaces.
The functions for the stresses σ, tractions t, and boundary displacements ũ are

inserted into the variational principle ΠCH (4.28):

ΠCH =
nE∑

e=1

⎡
⎢⎣1

2
βTHβ + βTHBβB − βTGv − βB

TGBv + vT
∫

Ste

LT t̄ dS

⎤
⎥⎦ , (5.70)

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_4
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where integration over the element results in the following matrices (S—elastic
compliance tensor):

H =
∫

Ve

PTSP dV = HT, HB =
∫

Ve

PTSPB dV

G =
∫

Se

RTL dS, GB =
∫

Se

RB
TL dS. (5.71)

Variation of ΠCH with respect to β provides for each element a relation between
the coefficients β of the stress function and the nodal displacements v

β = H−1 (Gv − HBβB
) = B̃v. (5.72)

With this, β can be eliminated from (5.70) and subsequent variation with respect to
δv yields the sought stiffness relation for a hybrid element:

kv = f (5.73)

with the stiffness matrix k and the load vector f

k = GTH−1G , f = GTH−1HBβB − GT
BβB +

∫

Ste

LTt dS. (5.74)

Since (5.73) contains only nodal variables, incorporation of the hybrid elements into
the total system is simple. Any combination of displacement and hybrid elements is
permitted, provided the displacement functions on the interfaces are identical.

From the nodal displacements of the solution, we obtain via (5.72) the stress
intensity factors KI, KII and KIII contained in β for every crack tip element directly
and separately from each other. Since the crack solution in each element was set as
constant, we obtain averaged K -factors for the segment of the crack front comprised
by the element. Averaging and comparison of the K -factors of all four hybrid ele-
ments belonging to a crack front segment provides more exact values and a measure
of accuracy.

Numerical Implementation

The essential difficulty in setting up matrices H and G according to (5.71) consists
in the numerical integration of the singular terms derived from the crack solution
PS, i.e. singularities of type r−1 in the volume integral (via strain energy density
σi j Si jklσkl ) and of type r−1/2 (tractions ti ) in all surface integrals that touch the
crack front (surface types (b) and (c)). These singularities are removable by switching
over to polar coordinates

∫
dx1dx2dx3 = ∫

rdrdθdz. In the case of complicated
integration domains for arbitrarily shaped elements and due to a multitude of different
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integrands (about 400 for H), an analytical treatment is futile, so normal Gaussian
product formulae are used in conjunction with nested subelements in the direction
of the crack front. Inversion of the symmetric positive definite matrix H is not a
problem as long as all zero energy terms have been carefully eliminated in the stress
function PR. Matrices k and B̃ of the hybrid elements were first calculated in the
local coordinates of Fig. 5.19 and then transformed into the global Cartesian system
according to their real position in space.

Examples

H
   

   
   

 w
=

 1
,2

F

a

w
B

Fig. 5.20 CT-specimen: width w, crack
length a, thickness B, height H , force F

F

Fig. 5.21 FEM model for a quarter of
the CT-specimen CT645 (120 elements,
733 nodes)

The 3D hybrid crack tip elements introduced above have been incorporated into a
universal FEM program system called FRACTURE [44] and combined with isopara-
metric hexahedral and pentahedral elements (20 or 15 nodes) of compatible shape
functions. As an example, the CT-specimen will be analyzed in three dimensions
(see Fig. 5.20). Due to the doubled symmetry, a FEM discretization of the gray-
colored quarter is sufficient. Figure 5.21 shows the mesh used (6 × 4 × 5 elements)
for a crack depth of a = w/2. In the marked region along the crack front, ten
hybrid elements were arranged or, alternately, quarter-point hexahedral elements.
The calculated distributions of the stress intensity factor KI along the crack front are
compiled in Fig. 5.22. For comparison, the 2D solution [42] and the 3D numerical
solution of Yamamoto and Sumi [45], which is considered to be the most precise,
are also shown. The KI-solutions obtained with the hybrid elements agree well with
the 3D reference solution. Use of quarter-point elements and KI evaluation via dis-
placement extrapolation resulted qualitatively in the same curve, but with a loss of
accuracy of about 20 %. If we determine KI with the method of the equivalent domain
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Fig. 5.22 Normalized stress intensity factor KI versus half the thickness of the CT-specimen using
different FEM variants (a = w/2, ν = 0.3) mesh CT645

integral using quarter-point elements (see Sect. 6.4) on the other hand, much more
exact values are obtainable. It should be noted that the 3D solution in the center of
the specimen is about 9 % higher than the 2D-approximation. Strictly speaking, the
KI-value should fall to zero on the specimen’s surface, but it is exactly here that
the numerical solutions differ the most. Further application examples are published
in [34] and [46].

In summary, the hybrid crack tip elements can be appraised as follows: As
the examples prove, compared to all other crack elements of comparable mesh
quality, they are characterized by a high level of accuracy and optimal user com-
fort. With hybrid elements, crack configurations can be very coarsely meshed
(and partially enclosed). The K -factors are calculated directly without a sep-
arate post-process. Nevertheless, hybrid crack tip elements have not become
established in commercial FEM codes. This is due to the high level of imple-
mentation effort needed and their lack of compatibility with FEM standard
algorithms.

5.4 Method of Global Energy Release Rate

5.4.1 Realization Within FEA

In Sect. 3.2.4, G was derived as the released potential energy −dΠ of a loaded body
during an infinitesimal crack extension da. In the context of FEM, the potential

http://dx.doi.org/10.1007/978-94-007-6680-8_6
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 5.23 FEM model for a finite crack propagation in the initial and final states

energy Π = Wint − Wext can be expressed according to Eq. (4.54) with the help
of the nodal variables V, the system stiffness matrix K, and the system load vector
F, which are obtained by assembly of the corresponding element components v, k
and f :

Π(v) =
nE∑

e=1

(
1

2
vT

e keve − vT
e fe

)
= 1

2
VTKV − VTF. (5.75)

Thus ist is obvious to calculate the energy release rate for a given crack propagation
�a directly with FEM as the difference quotient of two models with crack lengths
a and a + �a

Ḡ = −�Π

�a
= −Π(a + �a) − Π(a)

�a
, (5.76)

which requires setting up, solving and interpreting two complete FEM models. This
process is suitable for any finite crack propagation on a straight, kinked or curved
path C (see Fig. 5.23). It provides the total energy difference Ḡ between the final
and initial states per crack extension �a. The relation with the energy release rate
G = −dΠ/da of infinitesimal crack propagation da is given by the integral along
the crack path C

Ḡ =
∫

C
G(a) da. (5.77)

If we wish to determine the infinitesimal energy release rate with Eq. (3.78), a very
small crack increment �a ≈ 0.001 � a must be realized numerically, which how-
ever may not be too small to avoid accumulation of numerical (rounding) errors.

5.4.2 Method of Virtual Crack Extension

More elegant however is the method of virtual crack extension (VCE) as suggested by
Parks [47], Hellen [48] and deLorenzi [49]. For this purpose, (5.75) is differentiated
with respect to the crack length:

http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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(a) (b) (c)

Fig. 5.24 Virtual crack extension with the global energy method

G = −dΠ

da
= −∂VT

∂a
( KV − F︸ ︷︷ ︸

=0

) − 1

2
VT ∂K

∂a
V + VT ∂F

∂a
(5.78)

The expression in parentheses represents the FEM system of equations and must
therefore disappear. If we assume that the external loads F do not change with the
crack length, it follows

G = −1

2
VT ∂K

∂a
V ≈ −1

2
VT(a)

K(a + �a) − K(a)

�a
V(a) = −1

2
VT �K

�a
V.

(5.79)
Thus the energy release rate G is calculated from the derivative of the stiffness
matrix with respect to the crack length and multiplication from both sides with the
displacement solution V(a), which must only be known for the initial crack length
a. This technique is also called the stiffness derivative method.

How do we now determine virtual crack extension �a in the context of FEM?
In the original papers [47, 48], the crack tip nodes or a limited domain of elements
around the crack tip were shifted by �a as shown in Fig. 5.24 so that the stiffness
matrix is changed de facto only slightly in the crack region V0 (relevant elements
are highlighted in gray). The difference �K can thus be calculated easily from the
few element components, which is simply done in programming if we have direct
access the FEM routines to set up the stiffness matrices. This is hardly possible in
the case of commercial FEM programs, and the calculation of �K/�a requires a
special post-processor. Nonetheless, computational effort is essentially reduced to a
FEM analysis for one crack length.

Instead of the difference quotient �K/�a, Lin and Abel [50] have differentiated
the stiffness matrix in an analytically exact way in terms of a perturbation analysis
∂K/∂a (5.79). For this purpose, the derivative was applied to all terms under the
integral for determining K (4.50). This avoids numerical inaccuracies as a result
of rounding errors and the change of FEM discretization for virtual crack exten-
sion. However, this method requires additional effort for determining the stiffness
derivative, for which we also must have access to the FEM code [51].

While the previously introduced techniques of VCE primarily emanate from the
FEM algorithm, a more general continuum-mechanical approach has been pursued by

http://dx.doi.org/10.1007/978-94-007-6680-8_4
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deLorenzi [49, 52]. Thereby, virtual crack extension is considered as a transformation
of the initial configuration xk(a) into the displaced configuration x̄k(a+�a), whereby
the function �lk(x) describes the virtual displacement of the crack tip and a limited
domain V0 around it (see Fig. 5.24):

x̄k = xk + �lk(x) in V0 (5.80)

In this way, we investigate the change of potential energy during virtual crack exten-
sion (see Sect. 3.2.4), from which the following equation for the global energy release
rate G∗ is found:

G∗ =̂ G = −
∫

V0

[
Uδk j − σi j

∂ui

∂xk

]
∂�lk
∂x j

dV +
∫

V0

[
σi j

∂εt
i j

∂xk
�lk − b̄i

∂ui

∂xk
�lk

]
dV

(5.81)
This volume integral only extends over that domain altered by the VCE V0, since
outside �lk ≡ 0 holds. It takes volume forces b̄i and thermal expansions εt

i j into
consideration [53]. The relation (5.81) represents an evaluation formula for the FEM
analysis in the initial configuration a, i.e. it can be calculated in the post-processor
for the crack extension under consideration �lk (as well as any other desired variant).
This VCE method is in principle identical to the formulation of the J -integral as an
equivalent domain integral, which will be explored in more detail in Sect. 6.4.

The global energy release method has a number of advantages: Firstly, the
FEM as a variational method approximates the most accurately the energy
of the structure that is being evaluated. Secondly, for this reason we need
not necessarily to furnish the crack region with crack tip elements (which is
nonetheless advantageous), since a good level of accuracy can also be achieved
with standard elements. In general, we obtain with equal mesh refinement a
more exact result for the K -factors with the virtual crack extension method
than with displacement interpretation DIM.

The essential disadvantages of VCE are the required implementation effort
in case the stiffness matrix is directly differentiated and a certain numerical
sensitivity with respect to the choice of �a. To convert the determined energy
release rate G into the stress intensity factors, there is only the relation

G = GI + GII + GIII = 1 − ν2

E
(K 2

I + K 2
II) + 1 + ν

E
K 2

III. (5.82)

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_6
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But in the case of superimposed crack opening modes I, II, and II, no separation
into the single intensity factors KI, KII and KIII is possible with this equation
alone. This restricts the application area of this method considerably.

5.5 Method of Crack Closure Integral

5.5.1 Basic Equations of Local Energy Method

The local energy method was introduced in Sect. 3.2.5 as a comparable approach
to calculating the energy release rate G. It is based on the work �Wc that must
be done by the crack face tractions tc

i on the crack face displacements �ui for the
local opening or closing of the crack by �a (see (3.90)). The basic equations will
be explained with the help of Fig. 5.25 for mode I loading. The top figure shows the
situation for the initial crack length a with the stress curve tc

i =̂σ22(r, θ = 0; a) in
front of the crack. The bottom figure describes the situation after a crack extension
by �a, leading to an opening displacement of the crack faces to �u2 = u+

2 (�a −
s, +π; a + �a) − u−

2 (�a − s, −π; a + �a), which is counted from the crack tip
at a distance of r̄ = �a − s. The work done by the stresses σ22 on the displacements
�u2 is integrated along �a:

Fig. 5.25 Local energy
method in the form of the
crack closure integral

j − 2 j −1 j +1 j + 2

j − 2 j −1

x2

Ct

r r

x1

t∗

j
r

uΔ

aΔa

j
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GI(a) = lim
�a→0

1

2�a

�a∫

0

σ22(r = s, θ = 0; a)

× �u2(r̄ = �a − s, θ = ±π; a + �a) ds . (5.83)

Corresponding relations are obtained for pure mode II with tc
1 =̂ τ21 and �u1 as

well as tc
3 =̂ τ23 and �u3 for mode III:

GII(a) = lim
�a→0

1

2�a

�a∫

0

τ21(s, 0; a)�u1(�a − s, ±π; a + �a) ds

GIII(a) = lim
�a→0

1

2�a

�a∫

0

τ23(s, 0; a)�u3(�a − s, ±π; a + �a) ds (5.84)

For the general case of mixed crack loading by all modes, these three equations
can be summarized:

G(a) = GI(a) + GII(a) + GIII(a)

= lim
�a→0

1

2�a

�a∫

0

3∑

i=1

[
tc
i (s, 0; a) − t∗i (s, 0; a + �a)

]

× �ui (�a − s, ±π; a + �a) ds (5.85)

In addition, residual stresses t∗i were introduced that act on the crack faces even after
crack extension, such as internal pressure in the crack or cohesive forces between
the crack faces. The sign of t∗i should be set positive if the stresses pull the crack
faces together, i.e. in the −xi -direction.

F j
1

F j
2

j jj + 1 j + 1

x2 x2

x1 x1

a aΔ aΔ a Δ aΔ a

Δ uj
1

Δ uj
2

Fig. 5.26 Simple crack closure integral in the FEM-context: a forces before and b displacements
after crack extension
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5.5.2 Numerical Implementation in FEA 2D

(a) Simple Crack Closure Integral

The simplest numerical implementation of the local energy method consists in exe-
cuting two FEM calculations, in which the crack is extended on a given path by
the increment �a by separating the mesh along an element edge L . This is illus-
trated in Fig. 5.26 for two-dimensional 4-noded elements. In the context of FEM,
the crack closure work equivalent to (5.83) and (5.84) is calculated directly from the
nodal force F j

i (a) of the crack tip node j in the initial model (Fig. 5.26a) and the

displacement of the opening �u j
i (a + �a) after crack extension (Fig. 5.26b):

GI

(
a + �a

2

)
= 1

2�a

[
F j

2 (a)�u j
2(a + �a)

]

GII

(
a + �a

2

)
= 1

2�a

[
F j

1 (a)�u j
1(a + �a)

]

⎫
⎪⎪⎬
⎪⎪⎭

plane stress, plane strain

GIII

(
a + �a

2

)
= 1

2�a

[
F j

3 (a)�u j
3(a + �a)

]}
anti-plane shear (5.86)

As for 2D-structures, mode III only occurs in the case of anti-plane shear loading.
The result of this difference quotient is to be assigned to the average crack length

Fig. 5.27 Modified crack
closure integral for (a) linear
(top) and (b) quadratic dis-
placement functions (bottom)
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a + �a
2 . We can immediately see that this method is highly suitable for determining

G N (a) or the K -factors KN (a) (N = I, II, III) step-by-step for a whole series
of crack extensions by one respective element length L = �a. With the help of
a single FEM mesh, with which the crack path has been discretized by equally
large elements, we can thus calculate the fracture parameters in the relevant crack
length range via successive node separation, which requires n + 1 calculations for n
difference quotients (5.86).

(b) Modified Crack Closure Integral MCCI

If we would like to determine the energy release rate, or from it the K -factors only for
one crack length, it is possible to reduce the cost to one FEM calculation according to
a suggestion made by Rybicki and Kanninen [54] and Buchholz [55]. It is assumed
that the crack extension �a does not essentially change the loading state at the crack
tip. Thus, we can make a good approximation of the crack opening displacement
�u j

i (a + �a) by its value �u j−1
i (a) at node ( j − 1) on the crack face of the initial

crack length a. This technique is called the modified crack closure integral (MCCI) or
the virtual crack closure method and has become generally established. The process
is outlined in Fig. 5.27 for elements with linear (a) or quadratic (b) displacement
functions. The index j denotes the crack tip node, so that nodes j , j + 1, j + 2 lie
on the ligament and nodes j − 2, j − 1, j correspond to the crack faces. For linear
elements, the modified crack closure integral results from the work of forces at the
crack tip node j with opening displacement at node j − 1:

GI(a) ≈ 1

2�a

[
F j

2 (a)�u j−1
2 (a)

]

GII(a) ≈ 1

2�a

[
F j

1 (a)�u j−1
1 (a)

]

⎫
⎪⎬
⎪⎭

plane stress, plane strain

GIII(a) ≈ 1

2�a

[
F j

3 (a)�u j−1
3 (a)

]}
anti-plane shear (5.87)

In the case of mixed-mode loading and possible residual forces F∗
i on the

crack faces (=̂ t∗i ), the modified crack closure integral for elements with linear
shape functions (�a =̂ element edge length L) is calculated as:

G(a) = GI(a)+GII(a)+GIII(a) = 1

2�a

3∑

i=1

[(
F j

i (a) − F∗ j
i (a)

)
�u j−1

i (a)
]

.

(5.88)

For elements with quadratic shape functions, which are usually preferred, two
nodes must always be separated during crack extension (see Fig. 5.27b, Fig. 5.25).
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The crack closure integral is composed of the work terms of the nodal forces j
with the displacements at the crack faces nodes j − 2 (after virtual crack extension
�a = L) and the forces at the mid-side node j + 1 with the displacements at j − 1:

GI(a) ≈ 1

2�a

[
F j

2 (a)�u j−2
2 (a) + F j+1

2 (a)�u j−1
2 (a)

]

GII(a) ≈ 1

2�a

[
F j

1 (a)�u j−2
1 (a) + F j+1

1 (a)�u j−1
1 (a)

]

⎫
⎪⎪⎬
⎪⎪⎭

plane stress, plane strain

GIII(a) ≈ 1

2�a

[
F j

3 (a)�u j−2
3 (a) + F j+1

3 (a)�u j−1
3 (a)

] }
anti-plane shear

(5.89)

Summarized for all crack opening types and residual crack face loads, the
modified crack closure integral employed with quadratic element functions
thus reads

G(a) = GI(a) + GII(a) + GIII(a)

= 1

2�a

3∑

i=1

[ (
F j

i − F∗ j
i

)
�u j−2

i +
(

F j+1
i − F∗ j+1

i

)
�u j−1

i

]
.

(5.90)

The formulae (5.88) and (5.90) are generally valid for two-dimensional crack
problems (thickness B = 1, �A = �aB) for any anisotropic elastic material behav-
ior. Beyond orthotropy and higher classes of symmetry, the solutions in the plane
and longitudinally to it do uncouple. Under these conditions, mode III will not arise
in case of loads in the plane (plane stress, plane strain), i.e. GIII ≡ 0, and the case of
anti-plane shear loading is treated separately, i.e. GIII �= 0, GI = GII = 0.

(c) Combination of MCCI and Quarter-Point Elements

Using the modified crack closure integral in combination with regular elements at
the crack already provides a satisfactory level of accuracy in the calculated fracture
parameters G N and KN (N = I, II, III). The method is thus used mostly in such
cases where no crack tip elements are available or applicable. Nevertheless, this
technique can also be applied to the quarter-point elements introduced in Sect. 5.2.2.
Proceeding from the basic equations (5.83) to (5.85) of the local energy method,
the work of crack closure was integrated with the functions of the 2D quarter-point
elements [56–58]. This resulted in corresponding work terms for the nodal forces
Fn

i (n = j, j + 1, j + 2) with crack opening displacements �un
i (n = j − 2, j − 1)

and weighting factors cl (l = 1, 2, . . . , 6) (see Fig. 5.28).
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Fig. 5.28 Modified crack closure integral for 2D quarter-point elements

Variant (1)

(The crack face loads F∗n
i were omitted for clarity’s sake.)

G = 1

2�a

3∑

i=1

[ (
c1 F j

i + c2 F j+1
i + c3 F j+2

i

)
�u j−2

i

+
(

c4 F j
i + c5 F j+1

i + c6 F j+2
i

)
�u j−1

i

]

c1 = 14 − 33π

8
, c2 = 21π

16
− 7

2
, c3 = 8 − 21π

8

c4 = 33π

2
− 52, c5 = 17 − 21π

4
, c6 = 21π

2
− 32 (5.91)

Variant (2)

The nodal force F j+2
i can be eliminated by means of a reduced stress function on

the ligament, which leads to a simpler formula [56].

G = 1

2�a

3∑

i=1

[
F j

i

(
c1�u j−2

i + c2�u j−1
i

)
+ F j+1

i

(
c3�u j−2

i + c4�u j−1
i

) ]

c1 = 6 − 3

2
π, c2 = 6π − 20, c3 = 1

2
, c4 = 1 (5.92)
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(d) Computation of Nodal Forces

The computation of nodal forces Fn
i (n = j, j + 1, j + 2) should be explained in

more detail: We are dealing here with sectional forces, since in the context of the
FEM model there is equilibrium at every node (resultant force = zero). If we inves-
tigate crack problems of the purely symmetrical (mode I) or purely antisymmetrical
(modes II and III) type, then corresponding kinematic boundary conditions are pre-
scribed on the ligament. Hence, the forces Fn

i are exactly the associated reaction
forces that are available in most FEM codes. In the case of the general mixed mode,
the ligament consists of internal nodes whose balanced forces are unavailable. In
order to acquire these, the FEM model has to be split into two parts above and below
the ligament, and the stiffness matrices K+ or K− of the latter must be determined
in a suitable way. From these, with the known displacement solution V, the sought
nodal forces F+ or F− of both parts are calculated on the ligament:

F+ = K+V = −F− = −K−V, since KV = F = 0 (5.93)

In some commercial FEM codes, the nodal forces of every element can optionally be
provided. Subsequently, the respective forces for the ligament nodes in the upper or
lower part are summarized from the components of the associated elements, which
corresponds de facto to (5.93).

The following trick is simpler and more elegant: The ligament nodes j , j +1, j +2
are treated formally as doubled nodes (same coordinates), but their displacements
are tied to each other (»multi-point constraint«). Most FEM codes will then provide
us with the forces on constraint corresponding exactly to the Fn

i we are looking for.
Alternatively, small, very stiff bar elements between the double nodes in all three
directions lead to the same result.

5.5.3 Numerical Implementation in FEA 3D

The technique of the crack closure integral can be generalized relatively easily to
three-dimensional crack configurations as long as the crack front is a straight line.
Essentially, the crack closure integral is carried out locally along one segment �s
of the crack front, whereby one sub-area of the crack �A is closed or extended. In
the following, only the modified crack closure integral MCCI is treated due to its
greater importance. The coordinate s again denotes the arc length along the crack
front. F j

i are the nodal forces on the ligament in front of the crack. The subscript
index i indicates the coordinate direction in the local accompanying system, which
corresponds to the crack opening types I, II, and III =̂ i = 2, 1, 3. The superscript
index j numbers the node pairs used for the work integral, so every force F j

i is

multiplied by the crack opening displacement �u j
i at the corresponding assigned

crack surface node.
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Fig. 5.29 3D crack closure integral for 8-noded hexahedra with a straight crack front

(a) 8-Noded Hexahedron with Straight Crack Front

The geometric relations are sketched out in Fig. 5.29. The elements in front of and
behind the crack front must always have the same length L = �a and width b so
that the surface areas �A are congruent for the virtual crack closure. The position of
the nodes along the crack front is numbered consecutively with sk . The width of the
elements is bk = sk+1 − sk etc . With these elements, the crack closure integral can
only be carried out along the element edge between the crack front node F1

i and the
first crack surface node with the relative displacements �u1

i . We must observe the
fact that the associated area �A of this crack closure consists respectively of half of
the contributions of the elements involved (see Fig. 5.29).

�A = 1

2
(bk−1 + bk)�a

G(sk) = GI + GII + GIII

= 1

2�A

(
F1

2 �u1
2 + F1

1 �u1
1 + F1

3 �u1
3

)
= 1

2�A

3∑

i=1

F1
i �u1

i (5.94)
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The result is assigned to the position sk of the corner node. We proceed analo-
gously for all nodes along the crack front and thus obtain the curve G N (s) or KN (s)
(N = I, II, III).

(b) 20-Noded Hexahedron with Straight Crack Front

In the case of three-dimensional elements with quadratic shape functions (20-noded
hexahedra or 15-noded pentahedra), eight nodes lie on the element face. The crack
closure integral can be interpreted both for a corner node and for a mid-side node,
as illustrated in Fig. 5.30.

The same geometric restrictions and denotations apply as in the previous section.
Now the relevant node pairs and representative area �A must be determined for
the respective MCCI. For a corner node (Fig. 5.30a), half the area of the adjacent

Fig. 5.30 3D crack closure
integral for quadratic element
functions at (a) corner nodes
and (b) mid-side nodes

(a)

(b)



236 5 FE-Techniques for Crack Analysis in Linear-Elastic Structures

elements is regarded again. As opposed to the 2D case, the work terms of the mid-
side nodes j = 3 and j = 4 must also be taken into consideration, whereby only
half of the nodal forces may be taken into account.

�A = 1

2
(bk−1 + bk)�a

GI(sk) = 1

2�A

[
F1

2 �u1
2 + F2

2 �u2
2 + 1

2
F3

2 �u3
2 + 1

2
F4

2 �u4
2

]

G(sk) = 1

2�A

3∑

i=1

[
F1

i �u1
i + F2

i �u2
i + 1

2
F3

i �u3
i + 1

2
F4

i �u4
i

]
(5.95)

To calculate the MCCI for mid-side nodes, the five nodal forces on the ligament must
be correlated to the assigned nodal displacements on the crack surface as shown in
Fig. 5.30b. As for the forces F j

i , only the components of this element may be inserted.
Since usually only the total sectional forces are available, a simple weighting B j was
introduced [59] partitioning the forces according to the areas (widths) of the elements
involved.

�A = bk�a , s̄ = sk + 1

2
bk

B1 = B2 = bk/(bk−1 + bk), B3 = 1 , B4 = B5 = bk/(bk + bk+1)

GI(s̄) = 1

2�A

5∑

j=1

B j F j
2 �u j

2

G(s̄) = GI + GII + GIII = 1

2�A

5∑

j=1

3∑

i=1

B j F j
i �u j

i (5.96)

(c) 20-Noded Hexahedron with Curved Crack Front

In the case of a curved crack front, the crack closure integral can only be approximated
since the area � Ā in front of the crack front, from which the nodal forces are taken,
is not exactly congruent with the crack face element �A as illustrated in Fig. 5.31. In
order to minimize this misfit, the following geometric conditions should be observed:

• The edges of the element are always perpendicular to the current crack front.
• Both elements in front of and behind the crack front have the same depth L , which

corresponds to the crack extension �a.
• L should be small in comparison to the crack length or the curvature radius of the

crack front.
• Then the crack extension area on the crack front segment bk is calculated �A ≈

� Ā = bk�a (see Fig. 5.31).
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Fig. 5.31 3D crack closure integral for 20-noded hexahedra with a curved crack front

Under these conditions, the formulae (5.95) and (5.96) for corner or mid-side
nodes can also be applied to curved crack fronts and provide us with usable levels
of accuracy [59, 60].

(d) MCCI for 3D Quarter-Point Elements

To use three dimensional quarter-point elements (see Sect. 5.2.3) with MCCI,
adjusted interpretation formulae were developed [61, 62] taking into account the
specific displacement functions and the singular stress behavior. Two variants will be
described that have proved themselves useful for both straight and curved crack fronts
and are equally applicable for distorted 20-noded hexahedral elements, 15-noded
pentahedral elements or collapsed distorted hexahedral elements. The geometric
assignment of the force and displacement pairs is given in Fig. 5.32.

Variant (1) [62]
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Fig. 5.32 MCCI for 3D quarter-point elements

c1 = (80 − 25π)/24, c2 = (544 − 173π)/48, c3 = (304 − 101π)/48,

c4 = (104 − 31π)/6, c5 = (11π − 31)/6, c6 = (34 − 11π)/3,

c7 = (33π − 104)/4, c8 = (21π − 64)/4, c9 = (68 − 21π)/4,

c10 = (37π − 104)/12, c11 = (19π − 56)/12 (5.97)

Variant (2) [63]
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]

c1 = 6π − 20, c2 = π − 4, c3 = π − 2, c4 = (16 − 5π)/4 (5.98)
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5.5.4 Consideration of Crack Face, Volume and Thermal Loading

If tractions t∗i still affect the crack faces after crack extension, they must be converted

into equivalent nodal forces F∗ j
i with the shape functions (4.51) as is usual in FEM.

A symmetric load of both crack faces is assumed, i.e. t∗+
i = −t∗−

i . In case of constant
pressure p and rectangular element areas �A, the resultant force F∗ = p�A is
distributed as follows to the nK nodes:

• 2D and 3D elements with linear shape functions: F∗ j = F∗/nK
• 2D quadratic shape functions: 2 corner nodes F∗ j = 1

6 F∗, 1 mid-node F∗ j = 2
3 F∗

• 3D quadratic shape functions: 4 corner nodes F∗ j = − 1
12 F∗, 4 mid-nodes

F∗ j = 1
3 F∗

• 2D quarter-point-elements: crack nodes F∗1 = 0, quarter-point F∗3 = 2
3 F∗,

corner point F∗2 = 1
3 F∗

• 3D quarter-point elements: (see Fig. 5.32)

F∗ j =
{

1

3
,−1

9
,

2

9
,−1

9
,

1

3
,− 1

18
,

4

9
,− 1

18

}
F∗, j = 1, 2, . . . , 8

With cohesive zone models (Sect. 8.5) the crack face loads t∗i are dependent on the
current crack face displacements �ui (r, θ = ±π), i.e. the consistent nodal forces
have to be integrated anew with (4.51) after every load step.

If there are volume loads (e.g. weight) or forces of inertia in dynamic problems,
the modified crack closure integral can be applied unchanged because these loads are
contained indirectly in the sectional forces of the ligament nodes (see Sect. 5.5.2).
The same is true for thermal loads resulting from inhomogeneous temperature fields.

In conclusion, the modified crack closure integral technique (MCCI) can be
appraised in the following way: It is a simple robust and very powerful method
to compute energy release rates. We need only the nodal displacements of the
crack faces and the sectional forces at the nodes on the ligament in front of
the crack, so a simple evaluation in the post-processor of the FEM computa-
tion is possible. The interpretation formulae only depend on the type of shape
functions along the element edge, i.e. they are independent of whether the
crack region was meshed with triangular, quadrilateral or degenerated quadri-
lateral elements. There are MCCI interpretation formulae for elements with
linear, quadratic, or nodal-distorted displacement functions. For dynamic crack
analyses, usually linear elements are favored. For static loads, the quadratic
shape functions are preferable due to their higher accuracy. The modified crack
closure integral generally provides improved accuracy in the stress intensity
factors than the displacement interpretation method DIM, since it is based on
an energy approach.

http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_8
http://dx.doi.org/10.1007/978-94-007-6680-8_4
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Moreover, the method is easily applicable to crack face, volume and thermal
loads. One important advantage is that the components GI, GII and GIII of the
three crack opening modes can be determined separately in the case of mixed-
mode loading and thus the stress intensity factors KI, KII and KIII with (3.93)
as well. Of course, MCCI also requires a sufficiently fine discretization at the
crack, which can capture the near field solution. However, this method is not as
sensitive as DIM with respect to element size. The following is recommended:

element edge length L = crack increment �a < crack length a/10.

The modified crack closure integral technique suffers from two disadvan-
tages: Firstly, it is limited to linear-elastic material behavior, since the path-
independence and reversibility of the crack closure or crack extension process
is always assumed. Secondly, some problems arise in the case of three-
dimensional crack configurations with curvilinear crack fronts with respect
to the geometric compatibility of the crack areas to be closed, which leads to
loss of accuracy. Moreover the finite element meshes of the crack region must
fulfill specific geometric requirements in MCCI such as equal element sizes
in front of and behind the crack and congruent meshing on both crack edges.

5.6 FE-Computation of J-Contour Integrals

At this point, the numerical calculation of the classic J -integral from Sect. 3.2.6
will be explained in the context of FEM for 2D problems. In LEFM, J (3.100) is
identical to the elastic energy release rate G, which provides the relation to KI and
KII according to (3.93).

J =
∫

Γ

(
Un1 − σi j

∂ui

∂x1
n j

)
ds (5.99)

The integration path is subdivided into parts Γe per element, i.e. Γ = ∑nE
e=1 Γe (see

Fig. 5.33). The most common method is to place the integration path through the
integration points (IP) of the element. This has the advantage that the stresses there
are usually known from the FEM analysis and have the highest level of accuracy.
Integration over Γe should, as in Fig. 5.33, proceed along the natural coordinate
ξ1 = const. with ξ2 ∈ [−1,+1] as curve parameter.

The algorithm for parameterized line integrals (4.76) provides the normal unit
vector n on Γe (see Fig. 5.33)

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_4
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Fig. 5.33 Integration path for the J -integral calculation in the finite element mesh

[
n1
n2

]
ds =

[
cosα
sinα

]
ds =

[
dx2

−dx1

]
=

⎡
⎢⎢⎣

∂x2

∂ξ2

−∂x1

∂ξ2

⎤
⎥⎥⎦ dξ2 (5.100)

and the transformation (4.76) of the line element ds = JLdξ2. The 1st term of
the integrand (5.99) is the strain energy density U according to (3.71). For two-
dimensional elastic problems it reads

U = 1

2
(σ11ε11 + 2τ12ε12 + σ22ε22) . (5.101)

In the 2nd term there are the tractions

ti = σi j n j ,

[
t1
t2

]
=
[
σ11n1 + τ12n2
τ12n1 + σ22n2

]
(5.102)

and the derivatives of the displacement vector ui with respect to x1:

∂ui

∂x1
=

nK∑

a=1

∂Na(ξ1, ξ2)

∂x1
u(a)

i . (5.103)

These are expressed by differentiating the shape functions Na(ξ1, ξ2) and displace-
ments u(a)

i of the element nodes a. For the derivation, the inverse Jacobian matrix
has to be used (see Sect. 4.4.2):

http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_4
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⎡
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∂ξ1
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∂ξ2
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∂ξ1
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∂ξ2
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⎤
⎥⎥⎦
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⎢⎢⎣

∂Na
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⎥⎥⎦ = [

J−1
]
⎡
⎢⎢⎣
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⎤
⎥⎥⎦ . (5.104)

Thus the J -integral over one element Γe reads:

J (e) =
+1∫

−1

{
1

2
(σ11ε11 + 2τ12ε12 + σ22ε22) n1

− (σ11n1 + τ12n2)
∂u1

∂x1
− (τ12n1 + σ22n2)

∂u2

∂x1

}
JLdξ2 (5.105)

=
+1∫

−1

F(ξ1, ξ2)dξ2 ≈
nG∑

g=1

F(ξ1 = const., ξg2)wg ,

which is calculated with the last relation by a 1D Gaussian quadrature. For this, it
is best to select exactly the integration order nG (= 3 in Fig. 5.33) that was already
used in the finite element so that we can immediately carry over the σi j , εi j and the
energy density U (available in many codes) from the FEM result file at the IP.

Finally, we obtain the total value of J by summation of the contributions of all
elements in the integration path Γ

J =
nE∑

e=1

J (e) . (5.106)

Since the contourΓ consists of paths ξ1 = const. through neighboring elements, there
are restrictions with respect to the design of the FEM mesh to frame a continuous,
closed integration path. Node numbering in the element must be adjusted such that
Γe always lies on ξ1 = const.

An alternative calculation variant is possible if the results of the FEM computation
are available at every location x = [x1 x2] T independently of the mesh. Some FEM
codes offer interpolated and smoothed field quantities in the post-processor. Then we
can choose a geometrically simple contour for the J integral such as the semi-circle
Γ ′ drawn dashed in Fig. 5.33. This comfort comes however at the cost of numerical
inaccuracies and increased effort, which becomes clear if we imagine preparing all
necessary field quantities for (5.105) at a point x (see Sect. 4.4.4)). This variant of
J -calculation can only be recommended if all aforementioned approximation steps
are known.

In the meantime there are many extensions and generalizations of the classical
J -integral, which is why this topic has been given a separate Chap. 6.

http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_6
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Fig. 5.34 Cylinder with internal crack of length a (half model)

5.7 FE-Calculation of Fracture Mechanics Weight Functions

5.7.1 Determination by Point Forces

In Sect. 3.2.10 we discussed the advantage of fracture-mechanical weight functions,
which enable us to determine easily the stress intensity factors for a crack configura-
tion at every desired load. In the following, a few FEM techniques will be introduced
to calculate numerically weight functions for 2D crack problems. The cylinder (pipe)
with an internal crack shown in Fig. 5.34 will serve as a demonstration example.

One simple but quite practical variant is to determine directly the effect of a single
force F(x) = F1e1 + F2e2 acting at location x on the K -factors KI(a) and KII(a)

at the tip of a crack of length a. For this purpose, we apply concentrated forces F(l)

in sequence upon all nodes x(l) of the crack configuration (surface St , volume V or
crack face Sc), where later real loads can arise, and calculate the associated K -factors
K (l)

L with one of the FEM techniques introduced above. Figure 5.35 illustrates this
using the mesh of the cylinder with an internal crack. The direction of each force
F(l) corresponds to a coordinate e1 or e2. It can also refer to the expected loads (e.g.
normal to the surface under pressure). It is practical to set its magnitude to unity,
F (l) = |F(l)| = 1. The FEM analysis with these 2 nL »unit loads« F(l) over all l =
1, 2, . . . , nL nodes with i = 1, 2 components is best carried out simultaneously with
2 nL right hand sides. The resultant K (l)

L -factors (L = I, II) already correspond to
the fracture-mechanical weight functions (3.147) for node l with force component i :

K (l)
L (a) = H L

i

(
x(l), a

)
F (l)

i

(
x(l)

)
= H L

il

(
x(l), a

)
. (5.107)

In order to apply the calculated and stored weight functions for a specific load
case of this crack configuration, we have to convert the given boundary loads t̄ , crack
face loads t̄c, or volume loads b̄ into equivalent nodal forces. To do this, the FEM
relations (4.51) and (4.76) are used, which yields, for example, for an element edge

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_4
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Fig. 5.35 Calculation of weight functions with the help of unit loads. FEM mesh for a cylinder
with an internal crack

s on the traction boundary Ste:

fe =̂ ft =
+1∫

−1

NT(ξ) t̄(ξ) JL dξ (5.108)

These nodal forces are integrated and assembled for all loaded element boundaries,
from which the equivalent global nodal forces F̂(l) = ⋃nE

e=1 fe result. If we insert
their values into (5.107), we obtain both stress intensity factors KI and KII from the
weighted sum

KL(a) =
nL∑

l=1

2∑

i=1

H L
il F̂ (l)

i . (5.109)

The application of weight functions only requires the evaluation of the simple rela-
tions (5.108) and (5.109); no further FEM calculation is needed. With a very fine
FEM mesh, t̄ ≈ const. may be assumed along the element edge L so that (5.108)
leads to the simplified formula according to which the resulting force FR = L t̄ is
subdivided on the edge nodes such as

[ 1
2

1
2

]
with linear and

[ 1
6

2
3

1
6

]
with quadratic

shape functions. However, these weight functions are always bound to the geometry
of the FEM mesh in use!

For a cylinder with an internal radius ri = 40 mm, wall thickness w = 30 mm,
crack length a = 20 mm under internal pressure p = 100 MPa, the stress inten-
sity factor amounts to K ref

I = 67.27 MPa
√

m according to the handbook [64, 65].
Application of the unit load method with the FEM mesh in Fig. 5.35 and subsequent
summing up of the weight functions for the pressure load at ri resulted in the value
KI = 67.01 MPa

√
m.
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Fig. 5.36 Approximation
of crack loads with power
functions
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5.7.2 Determination of Parametric Influence Functions

One very practical and well-established method is known under the name of influ-
ence functions. As opposed to the weight functions for unit loads, these quantify the
effect of a parameterized distribution of the traction load on the K I -factor. Since we
can convert every load of the crack configuration with the principle of superposition
(Sect. 3.2.10) into an equivalent crack face load tc(x), these influence functions are
developed especially for the crack faces. Often, power functions of order m are used
as idealized loads:

σm(x1/w) = σm(x̄) = x̄m (m = 0, 1, 2, . . . , nm) (5.110)

Figure 5.36 shows the conditions for the wall cross-section of the example »cylinder
with internal crack«. Now, for every loading function σm(x̄), the stress intensity
factors are calculated for a given crack length a with FEM and written in standardized
form:

K (m)
I (a) = φm(a)

√
πa (5.111)

The functions φm(a) are called influence functions.
The stress intensity factor for an actual loading on a structure with a crack is

obtained from this as follows: We calculate with FEM or analytically the sectional
stresses on the crack line in the crack-free structure, which corresponds to the crack
face tractions tc(x1). Using a regression analysis, this stress distribution is developed
into polynomials such as (5.110), resulting in the coefficients Dm :

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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(a) (b)

Fig. 5.37 Mesh of the crack tip region of Fig. 5.35 (a) with quarter-point triangular elements (b)

tc(x1) =
nm∑

m=0

Dmσm(x̄) =
nm∑

m=0

Dm x̄m (5.112)

The K I -factor is obtained from the weighted summation of all influence functions:

KI(a) =
nm∑

m=0

Dmφm(a)
√
πa. (5.113)

This method is especially effective if we have to analyze the same component with
the same crack under varying load cases many times (e.g. thermal shock transients).

For the example under consideration (Fig. 5.34), the influence coefficients were
calculated very exactly by Andrasic and Parker [65] with the help of Green’s functions
and serve as the reference solution φref

m . Their values for powers m = 0, 1, . . . , 4 are
compiled in Table 5.2 (a = 20 mm). The influence functions determined with FEM
are in the 2nd column. To this end, the corresponding stress distributions σm(x̄) were
imposed on the crack faces of the mesh (Fig. 5.35). The crack tip was meshed with
quarter-point elements CTE (see detail in Fig. 5.37). To calculate the K I -factors,
the displacement interpretation method (DIM) was used. The relative errors of φCTE

m
compared to the reference solution are small, but they grow larger with the power m.
In order to apply these influence function to the load case »cylinder under internal
pressure«, we emanate from the known solution for the circumferential stresses (ra-
outside radius):

σθθ(r) = pr2
i

r2
a − r2

i

(
1 + r2

a

r2

)
(5.114)

The stress distribution in the wall 0 ≤ ri + x1 ≤ ra can be approximated quite accu-
rately as a 4th degree polynomial, from which we determine the concrete coefficients
Dm of (5.112) (with p = 100 MPa):

tc =̂ σθθ(x̄) = 196.88 − 218.92x̄ + 218.07x̄2 − 140.40x̄3 + 40.50x̄4 (5.115)
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Table 5.2 Comparison of the influence coefficients for a cylinder with internal crack according to
various calculation methods

Order m φref
m φCTE

m �φCTE
m (%) φH

m �φH
m (%)

0 1.8400 1.8321 −0.4270 1.8341 −0.3186
1 0.6477 0.6452 −0.3774 0.6399 −1.1986
2 0.3090 0.3069 −0.6733 0.3023 −2.1652
3 0.1663 0.1640 −1.3930 0.1599 −3.8102
4 0.0953 0.0930 −2.4465 0.0883 −7.3241

Insertion into (5.110) provides the stress intensity factor KI = 66.96 MPa with an
error of −0.46 %!

5.7.3 Derivation from Displacement Fields

The actual fracture-mechanical weight functions can be obtained from the derivative
of the displacement field u(2)

i (x, a) with respect to the crack length a. According
to Sect. 3.2.10, this requires any known solution (in the case of mixed modes, two),
index (2), of the crack configuration under consideration. The relationship is given
by Eq. (3.157) for mode I and Eq. (3.160) for mixed mode loading. It is obvious
how to implement this computational method numerically. For this we determine
the required reference solutions (2) with the help of FEM calculations for the crack
length of interest a and find out the stress intensity factors K (2)

I (a) and K (2)
II (a)

with one of the above-described FEM techniques. Derivative of the displacement
fields with respect to the crack length must be carried out as a difference quotient
�u(2)

i /�a. Therefore, the central difference scheme is well suited because of its great
precision of O(�a)2. But this means that the displacement fields must be calculated
for two neighboring crack lengths a − �a and a + �a. The formula (3.157) thus is
written at crack length a for mode I:

H I
i (x, a) = E ′

2KI(a)

(
ui (a + �a) − ui (a − �a)

2�a

)
(5.116)

and (3.160) for mixed loading I and II with K 2 = K (2b)
I K (2a)

II − K (2a)
I K (2b)

II reads:

H I
i (x, a) = E ′

2K 2

[
K (2a)

II

u(2b)
i (a + �a) − u(2b)

i (a − �a)

2�a

−K (2b)
II

u(2a)
i (a + �a) − u(2a)

i (a − �a)

2�a

]

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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crack shortening initial state crack extension

Fig. 5.38 Required crack lengths for the central difference scheme

normal Configuration  (a)

Fig. 5.39 Variation of the crack length by displacement of the crack tip node

Table 5.3 Comparison of the KI-factors calculated from the weight functions with other calculation
methods (σ = 40 MPa) in MPa

√
m

a (mm) K ref
I (MPa

√
m) K CTE

I K H
I �K H

I (%)

6 6.59 6.60 6.50 −1.43
10 9.52 9.52 9.44 −0.83
14 12.73 12.72 12.66 −0.56
18 16.34 16.34 16.30 −0.25
20 18.45 18.37 18.35 −0.54

H II
i (x, a) = E ′

2K 2

[
K (2b)

I

u(2a)
i (a + �a) − u(2a)

i (a − �a)

2�a

−K (2a)
I

u(2b)
i (a + �a) − u(2b)

i (a − �a)

2�a

]
(5.117)

The procedure requires FEM analyses with three different crack lengths as clari-
fied in Fig. 5.38. In the numerical implementation, these three variants can be realized
simply and effectively as follows. Since in most cases we set a fan of quarter-point
elements around the crack tip anyway (for exact K -calculation) as in Fig. 5.37, we
vary the crack length by slight displacement of the crack tip node by ±�a < L .
Only the coordinates of the quarter-points are changed slightly in the process–all
other nodes of the mesh remain unchanged–so we can evaluate the displacement
difference. Figure 5.39 illustrates this technique.
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This method was again tested using the mode I example »cylinder with internal
crack« for various crack lengths a. A constant crack face load tc(x1) = 40 MPa
on (0 ≤ x1 ≤ a) was assumed as a reference solution (2) to calculate the weight
functions. This first resulted in the K (2)

I (a)-value with the help of DIM. The results
are denoted with K CTE

I in Table 5.3 and agree well with the comparison solution
K ref

I [65]. Via crack length variation the displacement derivative on the crack faces,
and with (5.116) the weight function H I

2(x, a) were calculated. Finally, this weight
function was used to obtain the KI-factor of the reference load case by numerical
integration of (3.147). These K H

I -values must of course reproduce the K CTE
I -values

of the direct FEM-computation and deviate only slightly from the K ref
I -solution (see

Table 5.3).
Furthermore, the weight functions of a = 20 mm were used to calculate the

influence functions of the previous section, i.e. integration of the power functions
σm(x̄) with (3.147). The thereby obtained influence coefficients φH

m are listed in
Table 5.2, whereby their error levels increase with higher powers m.

Finally, the load case of »cylinder with internal pressure« was considered. Integra-
tion of the sectional stresses (5.114) with these weight functions yielded an intensity
factor KI = 67.19 MPa

√
m with −0.1 % error.

5.7.4 Application of the J-VCE-Technique

The idea behind this method is to use the VCE technique in order to determine the
required derivative of the displacement field with respect to crack length. Differen-
tiation of the stiffness relation KV = F with respect to da at F = const. gives

dK
da

V + K
dV
da

= dF
da

= 0 → dV
da

= −K−1 dK
da

V . (5.118)

While Parks and Kamenetzky [66] originally formed the difference quotient �K/�a
using FEM, the more elegant and exact VCE method of deLorenzi [52] should be
used. We start from (5.81) for the calculation of the energy release rate in the 2D
case (V0 → A0), where �lk(x) = �l1 =̂ �l is true:

G = −
∫

A0

[
U
∂�l

∂x1
− σi j

∂ui

∂x1

∂�l

∂x j

]
dA (5.119)

The VCE �l(x) is interpolated with the FEM shape functions in the domain A0

�l(x) =
nK∑

a=1

Na(ξ)�l(a). (5.120)

Applying the shape functions to the integral terms per element

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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U = 1

2
σi j ui, j = 1

2
σi j

nK∑

a=1

∂Na

∂x j
u(a)

i

σi j
∂ui

∂x1
= σi j

nK∑

a=1

∂Na

∂x1
u(a)

i ,
∂�l

∂x j
=

nK∑

b=1

∂Nb

∂x j
�l(b) , (5.121)

we obtain

G = −
∫

A0

[
1

2

∑
a

∂Na

∂x j

∑

b

∂Nb

∂x1
−
∑

a

∂Na

∂x1

∑

b

∂Nb

∂x j

]
σi j u

(a)
i �l(b) dA .

(5.122)
The nodal variables u(a)

i ∈ V can be pulled behind the integral. Its evaluation for all

elements in A0 yields a force vector Q(a)
i

G = −1

2
Q(a)

i u(a)
i = −1

2
QTV = −1

2
QT

0 V0 for i = 1, 2 and a = 1, 2, . . . , NK .

(5.123)
If we equate (5.123) with (5.79), then follows

G = −1

2
QT

0 V0 = −1

2
VT

0
dK
da

V0 ⇒ dV
da

= K−1Q0 . (5.124)

5.7.5 Calculation by Means of the Bueckner Singularity

In Sect. 3.2.10 it was shown that the weight functions (3.172) are proportional to a
fundamental displacement field, the Bueckner singularity, that appears in the entire
crack configuration due to the effect of a force pair BI acting at the crack tip. The direct
numerical realization of this approach fails, because the hyper-singular solution of
the concentrated forces directly at the crack tip is difficult to model with sufficient
accuracy in FEM. In order to get rid of this problem, Paris et al. [67] left open a small
hole around the crack tip and applied the fundamental field (3.173) on its boundary.
Sham [68, 69] defined a sufficiently small mesh region around the crack tip inside
which the hyper-singular field was treated separately.

In an alternative solution approach Busch et al. [70, 71] utilize the superposi-
tion principle in order to determine the fundamental displacement field for a finite
crack configuration. To this end, the Bueckner singularity known for the infinite
domain (3.173), (3.174) is subtracted from the boundary value problem so that only
a regular crack problem with stress singularity 1/

√
r remains to be solved via FEM,

for which approved solution techniques have already been explained. As we can see
in Fig. 5.40, for this purpose the tractions

t̄∞i (x) = σ∞
i j (x)n j (x) (5.125)

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 5.40 The superposition principle for determining the Bueckner fundamental solution for a
finite domain

on the boundary S of the finite crack configuration must be calculated from the
hyper-singular Bueckner stress field (3.174) and then applied with reversed sign.
The FEM solution thus provides a displacement field u(2) f

i (x) which represents
the correction of the fundamental solution for the finite domain. The sum with the
Bueckner solution (3.173) thus yields the sought fundamental solution for the finite
crack configuration under consideration

u(2)
i (x) = u(2)∞

i (x) + u(2) f
i (x), (5.126)

from which the weight functions for mode I with (3.172) follow:

H I
i (x, a) = 2μ

κ+ 1

1√
2πBI

u(2)
i (x) . (5.127)

5.8 Examples

5.8.1 Tension Sheet with Internal Crack

Figure 5.1 shows the crack of length 2a (a = 10 mm) to be analyzed in a quadratic
plate (thickness B = 1 mm, width d = 100 mm) subjected to a tensile load of
σ = 100 MPa. The material is isotropic elastic with E = 210,000 MPa and ν = 0.3.
A state of plane strain is assumed. For this simple two-dimensional mode I crack
problem, the stress intensity factor is known [64, p. 68]:

KI(a) = σ
√
πa g

(a

d

)

g = 1.0 infinite plate d → ∞ Griffith-crack

g

(
a

d
= 1

10

)
= 1.014 ⇒ KI = 568.35 MPa

√
mm

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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x2

x1

crack tip

d

d

d

a

Fig. 5.41 Modeled upper quarter of the plate
with internal crack

Fig. 5.42 FEM-discretization with 8-node
quadrilateral elements

As explained already in Sect. 5.1, due to symmetry it is sufficient to model one
quarter of the plate with corresponding displacement boundary conditions, which
are depicted in Fig. 5.41. The finite element mesh used consists of 8-noded quadri-
lateral elements with quadratic shape functions (see Fig. 5.42). These elements are
collapsed to 6-noded triangles at the crack tip and optionally either left in this form or
further collapsed to quarter-point elements in accordance with Fig. 5.7. Figure 5.43
shows the details of the mesh at the crack tip. The size of the crack tip elements is
L = a/40 = 0.25 mm. Alternatively, the crack tip was surrounded by a fan of 14
(left) or 7 (right) elements.

Figure 5.44 gives an impression of the stress concentration at the crack tip and
the deformation (shown exaggerated) of the crack faces.

Figures 5.45 and 5.46 show a comparison of crack-opening displacements
u2(r, θ = π) and normal stresses σ22(r, θ = 0) from the FEM solution with the
analytical near field solution (see Sect. 3.2.1). In the case of this fine mesh, there is
a very high level of agreement.

Calculation of the stress intensity factor KI(r∗) with the displacement interpreta-
tion method according to (5.3) provides the curve illustrated in Fig. 5.47. One can see
very clearly that the locally computed KI-factor declines sharply towards the crack
tip in the case of regular elements, whereas quarter-point crack tip elements exhibit
no deficits at all. The intensity factor extrapolated to the crack tip has an error margin
of +0.08 %.

With quarter-point elements, KI can also be determined directly with DIM
via (5.39). The following parameter study on mesh refinement at the crack is informa-
tive. The result is shown in Fig. 5.48. It shows the KI-factors extrapolated with DIM
for various meshes, whereby the size L of the crack tip elements is varied from a/3.3

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 5.43 Details of FEM discretization at the crack tip

Fig. 5.44 Isoline representation of the v. Mises equivalent stress around the crack

to a/40. Only with L = a/20 do we reach an accuracy of less than 1 %. Doubling
the elements in the circumferential direction does not lead to an improvement.

Finally, KI or G can also be determined using the modified crack closure integral
MCCI. For regular elements, Eq. (5.90) should be used and for quarter-point elements
the variants (5.91) or (5.92). With the exception of variant (2), accuracies better than
0.1 % can be realized in KI.

The computed results for the J -integral are shown in Fig. 5.49. Here, the equiva-
lent domain integral EDI (see Sect. 6.4) was used with various integration domains,
i.e. from the first to the sixth element ring around the crack tip with radii r . The
J -values are nearly independent of the choice of the integration domain as the the-
ory demands. Only if regular elements are used at the crack, then the evaluation of
the first element ring (i.e. only displacement of the crack tip node) is insufficiently
accurate. This phenomenon is generally observed, which is why the innermost ring
should not be used. Basically, several paths (or element rings in the case of EDI)

http://dx.doi.org/10.1007/978-94-007-6680-8_6
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Fig. 5.45 Opening displacement u2 of the
crack face

Fig. 5.46 Normal stresses σ22 on the liga-
ment in front of the crack

Fig. 5.47 Stress intensity
factors calculated with DIM

should be evaluated for the J -integral, and it should be tested whether the values are
path-independent and converge towards remote rings.

In the case of LEFM holds J = G, so we can calculate the respective K -factor
from the value of the J -integral with the relation (3.93) if there is pure mode I, II, or
III loading. In the above example, we obtain KI = √

J E/(1 − ν2). From the third
integration path on, accuracy amounts to ∼0.05 % for quarter-point elements CTE
and ∼0.1 % if regular standard elements are used at the crack tip.

The results of all methods and their relative errors compared to the reference
solution are again compiled for an overview in Table 5.4.

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 5.48 Influence of crack element size L
on the KI-factor

Fig. 5.49 J -integral values for various inte-
gration paths

5.8.2 Semi-Elliptical Surface Crack Under Tension

The case being examined is the block-shaped structure with a semi-elliptical surface
crack shown in Fig. 5.50. Its dimensions are: h = 20 mm, d = 20 mm, b = 30 mm,
c = 15 mm and a = 5 mm. The axial ratio of the crack a:c = 1:3 corresponds to
typical measures of surface errors. The tensile load σ = 30 MPa is perpendicular to
the crack plane, so there is only mode I loading with a varying KI-factor along the
crack front. We again assume isotropic-elastic material with E = 210,000 MPa and
ν = 0.3.

Due to the double symmetry of the problem, only a quarter with corresponding
displacement boundary conditions needs to be modeled (see Fig. 5.50). Figure 5.51
shows the chosen FEM meshing of this quarter. When generating meshes around 3D
cracks, it is advantageous to start at the crack front and surround it with a »tube« of

Table 5.4 Comparison of the accuracy of various methods for determining KI and GI for the
tension plate with internal crack (Fig. 5.41)

Method Crack elements KI
(
MPa

√
mm

)
Error % GI (N/mm) Error %

Reference solution [64] 568.35 1.3997
K ∗

I -extrapolation RSE ∼555.0 −2.4
CTE 567.9 +0.08

KI-DIM CTE 572.5 +0.7
MCCI RSE 567.8 −0.1 1.3970 −0.2

CTE (var. 1) 568.7 +0.07 1.4016 +0.14
CTE (var. 2) 560.4 −1.4 1.3611 −2.7

J -integral EDI RSE 567.9 −0.06 1.3979 −0.13
CTE 568.1 −0.04 1.3985 −0.09
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Fig. 5.50 Block-shaped structure with a semi-elliptical surface crack (a:c = 1:3) under tension

Fig. 5.51 FEM mesh for a semi-elliptical
surface crack (1/4-model) with 26,672
nodes and 5,620 hexahedral elements

X

Y

Z

Fig. 5.52 Tubular meshing of the crack front

concentric element rings. In this way, we have all the crack tip elements collected in
one group and can arrange them optimally by size and shape along the curved crack
front so that the face surfaces are as perpendicular as possible to it (see Fig. 5.52).The
3D quarter-point hexahedral elements CTE introduced in Sect. 5.2.2 were used
at the crack front. The edge length of the crack elements were uniformly set at
L = 0.08 mm. Proceeding from this tube, we complete and coarsen the FEM mesh
up to the outer boundaries of the structure.

Figure 5.53 shows the opened deformed crack profile. To compute the stress
intensity factor KI, all techniques explained above were used. The simplest is the
interpretation of the crack face displacements using relation (5.46) (see Fig. 5.11).
The result is plotted for all crack front nodes in Fig. 5.53 as a function of the ellipse
angle ϕ = arcsin(x2/a) (DIM-CTE). For comparison, the reference solution of Raju
and Newman [64] is shown in the diagram. Calculation of the 3D J -integral (see



5.8 Examples 257

Fig. 5.53 Deformed FEM model with semi-elliptical surface crack
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Fig. 5.54 Course of the KI-factor along the crack front. Comparison of various FEM interpretation
methods for quarter-point elements CTE

Sect. 6.3.2) yields results of similar accuracy for KI(ϕ). Finally, both formulae for
calculating the crack closure integral MCCI were tested for the 3D quarter-point
elements. The results of the more complex variant 1 of Eq. (5.97) and of the simpler
formula (5.98) of variant 2 agree very well with all other FEM results. For simplicity
the latter should be favored.

For the sake of comparison, the same problem was calculated with regular stan-
dard elements RSE, i.e. the 3D quarter-point elements in the »tube« were replaced
by collapsed hexahedral elements with mid-side nodes. The results are compiled
in Fig. 5.55 for various interpretation variants. The most precise results for the
course of KI(ϕ) along the crack front is determined with the help of the 3D
J -integral, which hardly differs from the result provided by crack tip elements with
this high level of mesh refinement at the crack (see Fig. 5.54). On the other hand, the

http://dx.doi.org/10.1007/978-94-007-6680-8_6


258 5 FE-Techniques for Crack Analysis in Linear-Elastic Structures

0 15 30 45 60 75 90

Angle ϕ in degrees

70

80

90

100

110

120

130

140

K
I-
Fa

ct
or

in
M

P
a√ m

m

J-RSE
MCCI-RSE
Raju & Newman

Fig. 5.55 Course of the KI-factor along the crack front. Comparison of various FEM interpretation
methods for regular standard elements RSE

KI-factors determined by the crack closure integral MCCI-RSE using the interpre-
tation formulae (5.95) and (5.96) are sufficiently accurate as well.
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Chapter 6
Numerical Calculation of Generalized Energy
Balance Integrals

6.1 Generalized Energy Balance Integrals

Based on Eshelby’s pioneer work [1, 2], who investigated thermodynamic forces
acting on defects in solids by introducing the energy-momentum tensor, a new the-
ory of generalized »material« or »configurational« forces has been developed in the
past 15 years (see Maugin [3], Kienzler, Herrmann [4, 5], and Gurtin [6]). In the
context of this theory, the invariance properties of mechanical or thermodynamic
laws of conservation are investigated with respect to a transformation of the material
domain in order to calculate generalized force actions of fields on disturbances in the
homogeneous material, i. e. on defects of various forms (such as cracks). These inves-
tigations lead far beyond the classic J -integral and permit physical understanding of
this integral from a superior point of view.

These ideas will be introduced using the example of a volume defect (an inho-
mogeneous inclusion, pore or the like) in an isotropic elastic body, which otherwise
consists of homogeneous, defect-free material. The body is subject to a certain load,
and the solution of the BVP is known. We will consider an arbitrary part V of the
body that completely includes the defect (Fig. 6.1).

Let us now consider the change of total potential energy of the system if the defect
is shifted into an infinitesimally neighboring position. This virtual displacement
of the material defect and its surroundings V relative to the physical space of the
field solution is described by varying the coordinates δXk = δlk of the material
reference system. (This process must not be confused with the principle of virtual
displacements, with which we vary the solution function δui !) The energy difference
that is removed from the external system and added to the volume V as a result of
displacement of the defect can be imagined as the work of a generalized force Pk

with δlk :
δ� = �(Xk + δlk) − �(Xk) = −Pk δlk . (6.1)

To calculate this force, we carry out the following thought experiment: First we cut
out the domain V and allow the tractions ti = σi j n j to act upon its boundary S, so that

M. Kuna, Finite Elements in Fracture Mechanics, Solid Mechanics and Its 263
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klδ
klδV V ′

S
S ′

defect
kn

Fig. 6.1 Material force on a defect

there is no deformation due to load removal. Secondly, we define the domain V ′ that
emerges from V in the undeformed state by a rigid body displacement δXk = −δlk
(dashed line in Fig. 6.1) but contains the defect in unchanged position. V ′ too is cut out
and locked into place at boundary S′ via corresponding tractions. The strain energy
of V ′ differs from that of the original domain V by the addition or subtraction of the
energy contributions of the gray-colored areas (1) and (2). During a displacement of
−δlk this corresponds exactly to the boundary integral of U (x) over S, whereby the
area is measured via projection with the normal vector nk .

δWint = WV ′
int − WV

int = −δlk
∫

S
U (x)nk dS (6.2)

In the third step, we attempt to fit the displaced domain V ′ into section S, whose
deformation ui (Xi + δXi ) on S′ differs however from the original section by the
amount

δui = ∂ui

∂Xk
δXk = ui,k(−δlk). (6.3)

This displacement difference is now deformed back, whereby the existing tractions
ti perform the external work (their change δti as a result of δXk may be neglected as
a higher order term.):

δWext = −
∫

S
δui ti dS = δlk

∫

S
ui,kσi j n j dS . (6.4)

Finally, we can virtually join the displaced domain V ′ along the boundary S to
the total body so that the defect is shifted with respect to the homogeneous material
or the elastostatic field solution by δlk . The difference of total potential energy in the
process is calculated with (6.2) and (6.4) as follows:

δ� = δWint − δWext =
{∫

S
Unk dS −

∫

S
σi j ui,kn j dS

}
δlk

= −
∫

S

[
Uδ jk − σi j ui,k

]
n j dS δlk = −

∫

S
Qkj n j dS δlk = −Pk δlk (6.5)
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The quantity Qkj denotes the energy–momentum tensor of elastostatics [1]

Qkj = Uδ jk − σi j ui,k (6.6)

and the generalized force vector is written

Pk =
∫

S
Qkj n j dS . (6.7)

The Pk-integral thus quantifies the »driving energy« δ� = −Pkδlk , which is
provided by the system in the case of a virtual infinitesimal translation δlk of
the defect.

If we assume hyperelastic material behavior, ∂U/∂εmn = σmn is valid, and the
tensor Qkj is a unique function of the strains εi j (or ui, j ). If the material is inhomo-
geneous, U also depends explicitly on the spatial coordinates x. Next, we investigate
the divergence Qkj, j of the energy–momentum tensor (6.6), whereby the conditions
of equilibrium σi j, j = −b̄i are presupposed, and the chain rule yields:

∂Qkj (εmn, xl)

∂x j
= ∂U

∂εmn

∂εmn

∂x j
δ jk − ∂σi j

∂x j
ui,k − σi j

∂ui,k

∂x j
+ δ jk

∂U

∂x j

∣∣∣∣
exp

= σmnεmn, jδ jk + b̄i ui,k − σi j ui,k j + U,k |exp (6.8)

Since the 1st and 3rd terms cancel each other, the vector pk remains, which represents
the »material force sources« in the volume:

Qkj, j = pk = b̄i ui,k + U,k |exp . (6.9)

The divergence Qkj, j of the energy–momentum tensor thus disappears under
the following conditions:
• The material is homogeneous, i. e. no explicit local dependence of Qkj (x).
• The material is hyperelastic.
• There are no volume forces b̄ j = 0.
• The field solution does not contain a singularity in V .
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As a consequence, the integral must also become zero over an arbitrary domain
V without defects and force sources pk ∼ b̄ j = 0

∫

V
Qkj, j dV =

∫

S
Qkj n j dS = Pk = 0 . (6.10)

A virtual displacement is then not associated with a generalized force. If we
interpret (6.10) as a balance equation, it then represents a law of conservation
for the energy–momentum tensor.

The energy balance integral introduced above is now applied directly to the defect
»crack tip« in the plane, which here is virtually displaced by δlk . We shrink the
considered domain V to the crack tip r → 0, whereby we obtain from S the circular
contour Γε shown in Fig. 6.2. Application of (6.7) yields:

Pk = Jk = lim
r→0

∫

Γε

Qkj n j ds , P1 = J = G. (6.11)

By comparing the Pk-integral (6.11) with the J -integral, we can recognize that the
x1-component of Pk is exactly identical to J . This is not surprising since δl1 = da
denotes exactly the self-similar crack propagation and yields the energy release rate
G. Analogously, the J2-component describes a parallel displacement of the crack in
the x2-direction and J3 a translation in the x3-direction (which of course changes
nothing and vanishes in a 2D problem). We have thus found a generalized vectorial
form Jk of the J -integral.

x1

x2

εΓ

in
in−Γ +

Γ −

inA

Γ

r

q = 1

q = 0

Fig. 6.2 Integration paths around the crack
tip and weighting function

Γ +t
( )T x

Γ −

x2

x1

b

n

ΓA

Fig. 6.3 The line-area integral for general
loading cases
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In the context of LEFM (Chap. 3.2), the K -factor-controlled near field is dominant
at the crack tip. The integrals (6.11) can be evaluated along infinitesimal circular
contours r = const with the near field solutions (Fig. 6.2).

From this results the relationship between the Jk-integral vector and the stress
intensity factors for two-dimensional crack problems of LEFM:

J1 = J = G = 1

E ′
(

K 2
I + K 2

II

)
+ 1 + ν

E
K 2

III

J2 = −2KI KII/E ′ , J3 = 0 . (6.12)

6.2 Extension to General Loading Cases

6.2.1 Preconditions for Path-Independence

In order to discuss the path-independence of Jk for two-dimensional crack problems,
let us construct a closed integration path C = Γ −Γε+Γ ++Γ − that avoids the crack
tip and solely includes the homogeneous, defect-free material region A (Fig. 6.2).
Since in domain A no material force sources (6.9) are active, according to (6.10)
the domain integral over A and the contour integral over C must be zero. From this
identity, we bring the term along Γε to the left hand side:

Jk = lim
r→0

∫

Γε

Qkj n j ds =
∫

Γ

Qkj n j ds + lim
r→0

∫

Γ ++Γ −
Qkj n j ds −

���������0

lim
r→0

∫

A

Qkj, j dA .

(6.13)
We thus see that calculating the Jk-integral on any contour Γ yields exactly the same
values if the 2nd term over the crack faces would be zero:

lim
r→0

∫

Γ ++Γ −
(Unk − σi j n j︸ ︷︷ ︸

ti

ui,k) ds
!= 0 . (6.14)

This requires firstly that no tractions ti = t̄i act on the crack faces Γ + and Γ −:

ti = 0 . (6.15)

If we assume straight crack faces perpendicular to the x2-axis, then nk = ∓δ2k

applies to Γ + and Γ −, whereby the first term of (6.14) is reduced to (U− −U+) δ2k .
From (6.13) follows:

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Jk =
∫

Γ

(
Uδk j − σi j ui,k

)
n j ds + lim

r→0

∫

Γ +

(
U− − U+) δ2k ds. (6.16)

As a result, only the component k = 1 of the Jk-integral vector is independent
of the integration contour Γ ! With regard to component k = 2, the difference of
strain energy densities on the crack faces must be taken into consideration, which
disappears only in the case of pure symmetry or antisymmetric (mode I or II). Another
complicating factor is that the energy density U is usually singular in the limiting
process r → 0. With curved crack faces, the term Unk ds in (6.14) always exists and
creates a path-dependence.

6.2.2 Crack Face, Volume and Thermal Loading

In many practical calculation tasks, loadings on the crack faces (e.g. internal pressure)
or inside the volume (e.g. gravity) play a substantial role (Fig. 6.3). Furthermore, it
would be worthwhile to apply the efficiency of the Jk-integral also to the analysis
of cracks that are loaded by inhomogeneous temperature fields (e.g. thermal shock).
It would also be helpful for calculating the Jk-integral using FE-solutions if the
integration along an arbitrary path Γ could be carried out at a greater distance from
the crack tip, since errors in the numerical solution are reduced there. For these
reasons, it is necessary to look for extensions of the Jk- integral.

For this purpose, we will repeat the divergence analysis of Qkj from the previous
section according to (6.13), but now abandoning all restrictions. For an elastic mater-
ial at a given temperature field T (x) the thermal expansions εt

i j (see appendix A.4.1),
are calculated according to (A.85):

εt
i j (T (x)) = αt

i j (T (x) − T0) = αt
i j�T (x) . (6.17)

Expressed with the thermal stress coefficients βi j = Ci jklα
t
kl , Hooke’s law is written

as:
σi j = Ci jkl

(
εkl − εt

kl

) = Ci jklεkl − βi j�T (x) . (6.18)

In the isotropic case, (A.91) holds true with βi j = (3λ+ 2μ)αtδi j . The elastic strain
energy is generated solely by the elastic strains

U e(εe) = 1

2
εe

i j Ci jklε
e
kl , U e(εe) = μεe

i jε
e
i j + λ

2

(
εe

kk

)2 (isotropic) , (6.19)

resulting in ∂U e/∂εe
mn = σmn . The divergence of the energy–momentum tensor is

calculated with the chain rule
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∂Qkj

∂x j
= ∂U e

∂εe
mn

∂εe
mn

∂x j
δ jk − σi j, j ui,k − σi j ui,k j

= σmnε
e
mn,k

(±σmnε
t
mn,k

)+ b̄i ui,k − σi j (ui, j ),k . (6.20)

The volume forces come into play via the equilibrium conditions σi j, j + b̄i = 0. In
order to compensate the 4th term =̂ σi jεi j,k with the 1st term, a zero completion is
introduced with the thermal strains (εe

mn +εt
mn = εmn) so that with (6.17) we obtain:

Qkj, j = −σmnε
t
mn,k + b̄i ui,k = −σmnα

t
mnT,k + b̄i ui,k = pk . (6.21)

This »source term« should be plugged into the area integral over A of (6.13). In
addition, the given loads t̄i on the crack faces must be taken into consideration via
the integral (6.14) over Γ + + Γ −.

The extended J -integral for thermal, volume and crack face loads now has the
form of a path-independent line-area integral, which in combination with the
strain energy U e (6.19) is written as:

J te
k =

∫

Γ

[
U eδk j − σi j ui,k

]
n j ds +

∫

Γ ++Γ −

[
U enk − t̄i ui,k

]
ds

+
∫

A

[
σmnα

t
mnT,k − b̄i ui,k

]
dA . (6.22)

In addition to this approach made by Nakamura [7] and Aoki [8] ( Ĵ -Integral),
another version of the extended J -integral was derived for thermal stresses by Wilson
& Yu [9] (J ∗) and Atluri [10] (G∗), which emanates from a different thermodynamic
definition Ǔ te of internal energy density in the thermoelastic case.

Ǔ te(ε, T ) =
εkl∫

0

σi j (ε, T ) dεi j = 1

2
εi j Ci jklεkl − βi j�T εi j

Ǔ te(ε, T ) = μεi jεi j + λ

2
ε2

kk − (3λ+ 2μ)αt�T εkk (isotropic) . (6.23)

Ǔ te corresponds to a stress work density that no longer has the character of a potential,
which in the following will always be symbolized by a check. Nonetheless, the
derivative of (6.23) yields the stresses. Considering both variables εi j and T , the
divergence Qkj, j now results in:
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Qkj, j =
[
∂Ǔ te

∂εmn

∂εmn

∂x j
+ ∂Ǔ te

∂T

∂T

∂x j

]
δ jk − σi j, j ui,k − σi j ui,k j

= −βi jεi j T,k + b̄i ui,k (6.24)

The result thus differs from (6.21) in the first term, so J te
k in conjunction with Ǔ te

assumes the form:

J te
k =

∫

Γ

[
Ǔ teδk j − σi j ui,k

]
n j ds +

∫

Γ ++Γ −

[
Ǔ tenk − t̄i ui,k

]
ds

+
∫

A

[
βi jεi j T,k − b̄i ui,k

]
dA . (6.25)

Physically, the expressions (6.22) and (6.25) have the same meaning and can of
course be computationally converted into each other.

Atluri [10] has provided further variants for the case of graded materials, where
the thermoelastic constants depend on position. For stationary temperature fields
T,kk = 0, Gurtin [11] was able to convert the area integral back into a line integral
with additional terms.

The relations (6.22) and (6.25) derived here are valid as well for temperature fields
of a transient heat conduction analysis. They are highly suitable for the numerical
calculation because the temperature fields T (x) are obtained in the nodes. Therefore,
their gradients T,k can be determined in the integration points with the same quality
as the required strains εmn .

6.3 Three-Dimensional Variants

According to Sect. 6.1, the energy–momentum tensor Qkj and thermodynamic force
Pk are unconditionally true for virtual displacements of a three-dimensional defect
in space. Around the defect we now lay an arbitrarily shaped, closed surface S that
surrounds the volume V . This can be applied directly to crack problems if the entire
crack or the entire crack front is seen as a defect and is displaced as a whole. Normally
we are interested however in the local energy release rate G or the K -factors at each
point of the crack front. Then, we must carry out a virtual displacement of a single
point or segment of the crack front.

We introduce a local system of coordinates x(s) that is carried along an arbitrarily
shaped crack front Lc in space, where s denotes the arc length (see Fig. 6.4). The
crack surface should be planar and lie in the (x1, x3)-plane so that x2 is always
perpendicular to the crack surface.
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Fig. 6.4 3D-disk integral with a closed surface S, b area A and integration contour Γ , c numerical
integration

6.3.1 The 3D-Disk Integral

Aoki et al. [8] defined the volume V around a point on the crack front as a disc of
infinitesimal thickness b = �x3 that may have any shape in the (x1, x2)-plane. The
associated surface S = A+ + A− + bΓ is composed of the front and rear faces
A+, A− and the outer edge bΓ (see Fig. 6.4). We now analyze the x1-component
of Jk . Inelastic strains ε∗i j of any origin (thermal or plastic) are allowed, but crack
face loads are omitted for the sake of clarity. The 3D extension of (6.13) for J1 is
therefore:

Ĵ (s) = − lim
b→0

lim
�a→0

��

b�a
= lim

b→0

1

b
J1 = lim

b→0

1

b

⎧
⎨
⎩
∫

S

Q1 j n j dS −
∫

V

Q1 j, j dV

⎫
⎬
⎭

(6.26)
The tensor Qkj is formed from the pure elastic strain energy density U e(εe) with
εe = ε − ε∗ according to (6.19). The divergence term in the volume integral is
handled exactly as in (6.20), and analogously to (6.21), we find

Q1 j, j = −σmnε
∗
mn,1 + b̄i ui,1 = p1. (6.27)

If b → 0, the volume integral degenerates into
∫

V (·)dV → b
∫

A(·)dA. In the case of
the surface integral over A+ and A−, the normal vectors n j point in the ±x3-direction

∫

A++A−

[
U eδ1 j − σi j ui,1

]
n j dA = −

∫

A++A−
σi3ui,1 dA , (6.28)

so the term U eδ13 = 0 is cancelled, and the difference between A+ and A− arises
in the second term. This difference can be converted into b (σi3ui,1),3 by means of
a Taylor expansion with respect to x3.
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On the whole, (6.26) thus provides us with the 3D-disk integral Ĵ :

Ĵ (s) = lim
b→0

1

b

⎧
⎪⎨
⎪⎩

b
∫

Γ

Q1 j n j ds − b
∫

A+

(
σi3ui,1

)
,3 dA − b

∫

A

Q1 j, j dA

⎫
⎪⎬
⎪⎭

=
∫

Γ

[
U eδ1 j − σi j ui,1

]
n j ds +

∫

A

[
σmnε

∗
mn,1 − b̄i ui,1 − (σi3ui,1

)
,3

]
dA .

(6.29)

Therefore, the energy rate Ĵ can be calculated for a virtual displacement of the
crack front at point s by a path-independent line-surface integral in the plane
perpendicular to the crack front. For two-dimensional problems (plane stress
or plane strain state), the last term in the surface integral disappears since there
is no dependence on x3, ∂(·)/∂x3 ≡ 0.

The numerical calculation for 20-noded hexahedral elements is outlined in
Fig. 6.4 c. It is advantageous to arrange the elements along the crack front so that the
disk integral coincides exactly with a plane of integration points. For the line integral
over Γ , the values of U e, ui,1 and σi j have to be interpolated between neighboring
integration points (• points). For the surface integral over A, we need the derivatives
ε∗mn,1, σi3,3 and ui,13 at the integration points. In FEM, these second order deriva-
tives are already very imprecise and are normally not available as results. Suitable
calculation methods for this are provided in Sect. 4.4.4.

x2

x1

x3

s

aΔ

sΔ
( )l s

kν

εΓ

crack plane
crack front

Fig. 6.5 Arbitrary three-dimensional crack configuration with virtual crack front extension

http://dx.doi.org/10.1007/978-94-007-6680-8_4
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Due to its considerable lack of precision, the geometric requirements on the
FE-mesh, and the necessity of laying line and surface integrals through the FE-
discretization, the Ĵ -integral has not become established, although it is theoretically
very plausible and seems simple.

6.3.2 Virtual Crack Propagation in 3D

The normal unit vector perpendicular to the crack front at position s is denoted νk ,
which lies in the crack plane as shown in Fig. 6.5. Now let us assume, in a limited
segment �s of the crack front, a virtual displacement �lk(s) in the crack plane,
which should have exactly the normal direction νk

�lk(s) = l(s)�a νk , �l(s) = |�lk(s)| = l(s)�a . (6.30)

In view of the numerical realization, from now on we will use the denotation �lk
instead of δlk . In the sectional plane (x1, x2) ⊥ x3, we can evaluate the two-
dimensional Jk-integral as a line or a line-surface integral in accordance with Fig. 6.2
or Fig. 6.3. In the system of coordinates selected here, only the J1- component is rel-
evant to the energy balance during crack extension.

J (s) = J1(s) = Jk(s)νk(s)

=
⎛
⎜⎝ lim

r→0

∫

Γε(s)

[
Uδk j − σi j ui,k

]
n j dΓ

⎞
⎟⎠ νk(s) =

⎛
⎜⎝ lim

r→0

∫

Γε(s)

Qkj n j dΓ

⎞
⎟⎠ νk(s) .

(6.31)

The energy release per sectional plane amounts to J (s)�l(s). So for the total balance
−�� we have to add up over the crack front segment �s

− �� =
∫

�s

J (s)�l(s) ds =
∫

�s

Jk(s)�lk(s) ds = J̄�A . (6.32)

Here, J̄ means an average value for the total virtual displacement of the segment
referred to the area

�A =
∫

�s

�l(s) ds = �a
∫

�s

l(s) ds (6.33)
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of crack extension. Inserting (6.31) into (6.32) leads to:

−��

�A
= J̄ = 1

�A

∫

�s

⎛
⎜⎝ lim

r→0

∫

Γε(s)

Qkj n j dΓ

⎞
⎟⎠�lk(s) ds

= 1

�A
lim
r→0

∫

Sε

Qkj n j�lk dS = lim
r→0

∫

Sε

Qkj n j lk dS

/∫

�s

l(s) ds .

(6.34)

The line integrals Γε along �s can be combined to make a cylindrical »tube
surface« Sε with the outer normal n j , which in the limiting case r → 0 is
shrunken to the crack front. In this way we have obtained a clear and compact
expression for the thermodynamic force (in LEFM, the energy release rate G)
associated with the virtual displacement of a crack front segment in space. The
result J̄ should be assigned to a representative point s̄ of the segment �s.

From the last equation of (6.34), we see that the absolute size �a of the crack
extension is canceled out! It should be stressed that the relations (6.32) and (6.34)
are valid for every type of energy-momentum tensor, whereby the meaning of J̄ is
replaced by the relevant quantity

P̄ = 1

�A

∫

�s

Pk(s)�lk(s) ds. (6.35)

J̄ was defined for the limiting process Sε → 0, because many energy balance inte-
grals have a physical meaning only in this way.

The question of path-independence is posed in space as the independence of an
arbitrarily chosen surface S, which is to be placed around the same segment of
the crack front. Here we can completely adopt the considerations and divergence
investigations made in the two-dimensional case. As Fig. 6.6 shows a closed surface
S̄ = S + S+ + S− + Send − Sε can be formed, from the crack tube Sε, the arbitrary
outer surface S, the crack surfaces S+, S−, and the end faces Send.

Inside of S̄ there is no defect. In analogy to (6.13), we can now carry out the
following adjustment of the integrals using Gauss’s theorem:

J̄�A = lim
r→0

∫

Sε

Qkj n j�lk dS =
∫

S

Qkj n j�lk dS

+ lim
r→0

∫

S++S−+Send

Qkj n j�lk dS − lim
r→0

∫

V̄

∂

∂x j
[Qkj�lk] dV . (6.36)
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Fig. 6.6 J -Integral Integration domain for the three-dimensional J - integral

6.4 Numerical Calculation as Equivalent Domain Integral

In order to numerically calculate the various energy balance integrals, a line integral
or even a combined line-area integral must be calculated in the plane and line, surface
and possibly volume integrals in space. In the context of FEM, the geometric and
topological determination of integrals in lower order than the dimension of the BVP
is quite intricate and their calculation laborious. On the other hand, pure domain
integrals (2D or 3D) over a group of elements are among the standard procedures in
FEM, for which simple algorithms exist (Sect. 4.4.3). For these reasons, a method will
now be introduced which enables to transform any kind of energy balance integral
into an equivalent domain integral.

6.4.1 Transformation into an Equivalent Domain Integral 2D

In order to make a transformation into an equivalent domain integral (EDI), let us
again set up a closed integration path C = Γ +Γ + +Γ − −Γε with the outer normal
n j (see Fig. 6.2). According to the definition (6.13) of Jk , we can write:

Jk = −
∫

C

Qkj n j ds + lim
r→0

∫

Γ +Γ ++Γ −
Qkj n j ds. (6.37)

Now a weighting function q(x) is introduced, which must be continuous and differ-
entiable and fulfills the requirements

q =
{

0 on Γ

1 on Γε
, (6.38)

http://dx.doi.org/10.1007/978-94-007-6680-8_4
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as illustrated in Fig. 6.2. Upon insertion into (6.37), the integral over Γ is dropped

Jk = −
∫

C

Qkj n j q ds + lim
r→0

∫

Γ ++Γ −
Qkj n j q ds. (6.39)

By applying the Gaussian divergence theorem, we thus obtain the 2D Jk-integral as
a weighted, pure domain integral over the area A enclosed by Γ plus unavoidable
crack face integrals (For the sake of simplicity, in the following the limiting process
lim r → 0 will no longer be included.):

Jk = −
∫

A

(
Qkj q

)
, j dA = −

∫

A

(
Qkj, j q + Qkj q, j

)
dA +

∫

Γ ++Γ −
Qkj n j q ds .

(6.40)
By means of the divergence Qkj, j , all previously discussed additional terms such as
volume forces b̄i , thermal and inelastic strains αmn�T and ε∗mn or explicit spatial
dependence of U (x) is taken into consideration:

Qkj, j = pk = b̄i ui,k − σmnαmnT,k − σmnε
∗
mn,k + U,k

∣∣
exp . (6.41)

Thus, the generalized Jk-integral for two-dimensional problems can be expressed
by the following equivalent domain integral over the area A:

Jk = −
∫

A

(
Uδk j − σi j ui,k

)
q, j dA

−
∫

A

(
U,k
∣∣
exp + b̄i ui,k − σmnαmnT,k − σmnε

∗
mn,k

)
q dA (6.42)

+
∫

Γ ++Γ −

(
Unk − t̄i ui,k

)
q ds.

If Qkj, j = 0 disappears, we actually have a path-independent line integral, and the
second integrand in (6.42) is dropped. If the crack face loadings are also neglected,
we arrive at the simple Jk-integral according to (6.16), and (6.42) is reduced to:

Jk = −
∫

A

(
Uδk j − σi j ui,k

)
q, j dA +

∫

Γ ++Γ −
(Unk) q ds. (6.43)
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Fig. 6.7 Equivalent domain integral and weighting function q for plane crack problems

How should the weighting function q(x1, x2) be chosen in the numerical real-
ization? Mathematically, it has to satisfy the conditions (6.38), but otherwise it is
arbitrary. A diverse range of variants were tested for q(x1, x2), among which the
following approach has proven best: The function q(x1, x2) is subdivided into three
domains using the FE-mesh as seen in Fig. 6.7:

domain I: q(x1, x2) ≡ 0
domain II: linear transition from q = 1 to q = 0
domain III: q(x1, x2) ≡ 1 = const.

The function q(x1, x2) is represented in the FE-model by nodal point variables q(a)

and interpolated with the shape functions of the elements used

q(x1, x2) =
nK∑

a=1

Na(ξ1, ξ2) q(a) . (6.44)

Domain II usually consists of only one element ring, for which different rings are cho-
sen around the crack tip one after the other. Because in domains I and III∂q/∂x j = 0,
only domain II provides with ∂q/∂x j = const a contribution to the 1st domain inte-
gral of (6.42). On the other hand, only domains II and III, with q 	= 0, contribute
to the 2nd domain integral, which only arises in the case of certain generalizations.
The crack face integral also extends only over II and III.

Yet the weighting function q(x1, x2) also has a geometric interpretation as a virtual
displacement �l = �lk ek of the crack tip region A. Directly at the crack tip on Γε,
q = 1 describes the displacement by q�lk , which falls off to zero towards the contour
Γ with q → 0. Normally, the displacement takes place in the direction of the crack
(k = 1), since J1 describes the energy balance for crack propagation �l1 = �a.
However, to determine J2, a parallel displacement �l = �le2 of domain III must
be assumed.
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6.4.2 Transformation into an Equivalent Domain Integral 3D

We can carry out the transformation of the J -integral (6.34) for three-dimensional
crack configurations into an equivalent domain integral in a completely analogous
manner. Instead of C , we now consider the closed enveloping surface S̄ = S +
S+ + S− − Sε + Send around segment �s of the crack front (see Fig. 6.6) that
surrounds the volume V . Now a continuous differentiable weighting function qk(x)

is introduced again, which becomes zero on the outer surface S and the end faces
Send but corresponds to the virtual crack propagation �lk(s) on the »tube surface«
Sε:

qk =
{

0 on S, Send
�lk on Sε, Sεend .

(6.45)

In contrast to the 2D case, qk is now a vector function. The 3D J -integral represents
only a scalar quantity, the energy rate during crack propagation. Using the same
considerations as were made in the 2D case, the actual definition (6.34) of J̄ = J (s̄)
can now be transformed (lim r → 0 is again omitted):

J (s̄) = 1

�A

∫

Sε

Qkj n j�lk dS = 1

�A

⎡
⎢⎣−

∫

S̄

Qk j n j qk dS +
∫

S+S++S−
Qkj n j qk dS

⎤
⎥⎦

= 1

�A

⎡
⎢⎣−

∫

V

(
Qkj, j qk + Qkj qk, j

)
dV +

∫

S++S−
Qkj n j qk dS

⎤
⎥⎦ (6.46)

In the general loading case, the 3D equivalent domain integral is calculated
from:

J (s̄) = 1

�A

[
−
∫

V

(
Uδk j − σi j ui,k

)
qk, j dV

−
∫

V

(
U,k
∣∣
exp + b̄i ui,k − σmnαmnT,k − σmnε

∗
mn,k

)
qk dV

+
∫

S++S−

(
Unk − t̄i ui,k

)
qk dS

]
. (6.47)

For the classic J -integral (Qkj, j = 0, t̄i = 0), the relation is simplified to:
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Fig. 6.8 Defining the weighting function qk along the crack front elements

J (s̄) = − 1

�A

∫

V

(
Uδk j − σi j ui,k

)
qk, j dV . (6.48)

Figure 6.8 displays possible variants of virtual crack extension (VCE) of a nodal
point on the crack front. With 8-noded hexahedral elements, only the corner node is
shifted by �a and q(s) is linearly interpolated (Fig. 6.8 d). In the case of 20-noded
hexahedral elements, either a mid-side node (Fig. 6.8 a) or a corner node (Fig. 6.8 b)
can be displaced by �a, in each case with quadratic interpolation q(s) of the crack
front. Variant b) should not be used because of its known low accuracy. Instead of
that, variant c) should be favored, whereby the mid-side nodes are shifted along up to
50 %. The VCE applies always to two neighboring element layers in variants (b), (c),
and (d). Figure 6.9 illustrates for variant (d) how the planes of the mid-side nodes and
corner nodes are displaced. The rings denote precisely the domain V between Sε and
S from Fig. 6.6, in which qk is reduced from �lk to zero in accordance with (6.45).
These three-dimensional element rings correspond to domain II of the VCE in the
plane (see Fig. 6.7). In practice, one successively displaces rings 1, 2, 3 etc. from
elements around the crack front nodes (see Fig. 6.9) so that several equivalent domain
integrals can be calculated for one position s̄ on the crack front.

6.4.3 Numerical Implementation

J is calculated numerically with the EDI as a post-processor of the FE-analysis.
Numerical integration of an arbitrary physical field f (x) over a domain V takes place
by means of summation of all finite elements Ve belonging to V . This integration
is achieved element by element with the help of the Gaussian integration formulae
from Sect. 4.4.3, i.e. the outputs f (g)(ξ(g)) at selected integration points IP =̂ g are
multiplied by the weights w̄(g) and added.

J̄num =
∑

e

mG∑

g=1

f (g)w̄g

∣∣∣J(g)
∣∣∣ (6.49)

http://dx.doi.org/10.1007/978-94-007-6680-8_4
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Fig. 6.9 Definition of q at various positions along the crack front

In the case of an EDI, the function to be integrated according to (6.42) or (6.47)
consists of basic values of type:

f (g) = Q(g)
k j, j q

(g)
k + Q(g)

k j q(g)
k, j . (6.50)

The tensor Q(g)
k j = U (g)δk j − σ

(g)
i j u(g)

i,k is relatively simple to calculate since the

stresses are given at the integration points. The stress work density U (g) is usually
also available in FE-programs, but in the elastic case it can be calculated from σ

(g)
i j

and/or ε(g)
i j . If the material laws are non-linear, the integral U (g) = ∫ σ(g)

i j dε(g)
i j must

be evaluated via the loading history, i. e. added incrementally. The derivative of the
displacements at the IP u(g)

i,k should be carried out in accordance with the method
shown in Sect. 4.4.4. The same technique (4.78) is applied for the derivative of the
weighting function q(g)

k, j :

http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_4
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∂qk

∂x j
= ∂ξl

∂x j

∂qk

∂ξl
= J−1

l j
∂qk

∂ξl
= J−1

l j

nK∑

a=1

∂Na(ξ)

∂ξl
q(a)

k . (6.51)

Finally, for (6.50) we still need the divergence Q(g)
k j, j with the terms shown in (6.41).

The gradients of the temperature field (known at the nodes) are determined with the
aforementioned technique. The derivative of inelastic strains ε∗(g)

mn,k is more difficult
as these are only available within a sufficient range of accuracy at the IP. In this case,
the interpolation-differentiation method introduced in Sect. 4.4.4 must be employed.

6.5 Consideration of Dynamic Processes

Energy balance integrals for stationary and moving cracks under dynamic loading
were already introduced in Sect. 3.5.5. For stationary cracks, (3.366) describes the
x1-component G(t) = J1 of a dynamic J -integral vector J ∗

k , which corresponds to
the virtual displacements �lk in all three directions.

Dynamic J -integral 2D with inertia forces:

J ∗
k =

∫

Γ

[
Uδk j − σi j ui,k

]
n j ds +

∫

A

ρ üi ui,k dA (6.52)

To improve the numerical calculation, it is more advantageous to convert J ∗
k again

into an equivalent domain integral over the area A as in Sect. 6.4, which yields with
the weighting function q(x) (6.37):

J ∗
k =

∫

A

[ (
σi j ui,k − Uδk j

)
q, j + ρ üi ui,k q

]
dA . (6.53)

In the 3D case, we obtain in exactly the same way the local J (s̄)-value at position
s̄ of the crack front using the virtual displacement �lk =̂ qk . Instead of (6.43), we
have to evaluate a volume integral over the tube-shaped domain V (Figs 6.6, 6.9):

J ∗(s̄) = 1

�A

∫

V

[ (
σi j ui,k − Uδk j

)
qk, j + ρ üi ui,k qk

]
dV . (6.54)

The dynamic J -integrals J ∗
1 (6.53) and (6.54) correspond to the dynamic energy

release rate G(t) for stationary cracks Their connection with the stress intensity
factors is given by (3.359).

http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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We would have arrived at the same result if the complete divergence of the stress
tensor from the equations of motion σi j, j = −b̄i + ρüi had been inserted in the
J te

k -integral from Sect. 6.2.2 instead of the volume forces −b̄i . The source terms
pk = Qkj, j of the Eshelby-tensor in (6.21) would thus only have to be extended
by the term of inertia −ρ üi ui,k . The expressions (6.22) and (6.34) would then
encompass the 2D or 3D J -integral for all conceivable thermal, crack face, volume
and inertial loadings of a stationary crack in a thermoelastic material. Analogously,
the equivalent domain integrals, 2D (6.42) and 3D (6.47), can be generalized to the
combination of all loading types.

The dynamic J dyn
k -integral according to (3.365) for the fast-moving dynamic crack

(index »dyn«) has a much more complex structure.

J dyn
k =

∫

Γ

[(
U + ρ

2
u̇i u̇i

)
δk j − σi j ui,k

]
n j ds +

∫

A

(
ρ üi ui,k − ρu̇i u̇i,k

)
dA .

(6.55)
The relation between the J dyn

k -components and the K -factors was developed in the

dynamic, unsteady case by Nishioka & Atluri [12] for their J ′
k-integral (≡ J dyn

k ):

J dyn
1 = Gdyn = 1

2μ

[
AI(ȧ)K 2

I + AII(ȧ)K 2
II + AIII(ȧ)K 2

III

]

J dyn
2 = − AIV(ȧ)

μ
KI KII . (6.56)

The functions AM (M = I, II, III) were already given in (3.367), in addition:

AIV(ȧ) = (αd − αs)(1 − α2
s )D̄(ȧ)

2[D(ȧ)]2

[
2 + αs + αd√

(1 + αs)(1 + αd)
− 4(1 + α2

s )

D̄(ȧ)

]

with D̄(ȧ) = 4αdαs + (1 + α2
s )

2 and D(ȧ) from (3.332) .

(6.57)

With (6.56), two equations are available for determining KI and KII in the plane
mixed-mode case. They are the counterpart to the static relationship (6.12).

Extension of the dynamic J dyn
k -integral to the third dimension and its transforma-

tion into equivalent domain integrals is possible in the known manner and yields:

2D: J dyn
k =

∫

A

{ [
σi j ui,k −

(
U + ρ

2
u̇i u̇i

)
δk j

]
q, j

+
(
ρ üi ui,k − ρ u̇i u̇i,k

)
q
}

dA (6.58)

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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3D: J dyn(s̄) = 1

�A

∫

V

{ [
σi j ui,k −

(
U + ρ

2
u̇i u̇i

)
δk j

]
qk, j

+
(
ρ üi ui,k − ρ u̇i u̇i,k

)
qk

}
dV (6.59)

Numerical implementation of these domain-independent integrals is done by a
FEM post-processor as described in Sect. 4.5.3, whereby the techniques must be
extended accordingly to velocities u̇i and accelerations üi . However, simulation
of the crack propagation in the FEM mesh is a completely new aspect. Different
techniques for this are introduced in Chap. 8. We can either choose an integration
domain for J dyn

k that is sufficiently large to include the crack tips in all phases of the
crack propagation, or it can be moved along with the moving crack tip. Due to the
path /domain-independence, both possibilities lead to the same result.

6.6 Extension to Inhomogeneous Structures

Frequently, cracks are found in bodies composed of various materials (composites,
joints, etc.). First we shall consider the case that each material region has different,
but constant mechanical properties, and the crack tip ends in one of these material
areas. Fig. 6.10 exemplifies this situation for two material region (α) and (β), which
are connected along an interface Iαβ . As long as the integration contour Γ for a J -
integral remains in the homogeneous area of the material (α), the previous equations
can be applied. But as soon as Γ or the equivalent domain V include parts of the
interface Iαβ , we must have recourse to additional terms in order to ensure the path-
independence of J .

Fig. 6.10 Integration area for
a crack in a heterogeneous
structure

Material α Material β

Γ

Γα

ΓβIαβ

Vβ

Vα

Γ−

Γ +

Γε

http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_8
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If we approach the interface from both sides, the displacements are continuous,
and the tractions must be opposite and equal

u(α)
i = u(β)

i , t (α)
i + t (β)

i =
(
σ

(α)
i j − σ

(β)
i j

)
n(α)

j = 0 on Iαβ . (6.60)

If we now split the integration contour as in Fig. 6.10 into two sub-paths Γ = Γα+Γβ ,
which are each restricted to their material region, the interface will be passed through
in the opposite direction n(β) = −n(α). From this we obtain

Pk =
∫

Iαβ

[
Q(β)

k j − Q(α)
k j

]
n(α)

j ds =
∫

Iαβ

{
[[ui,k]]βασ(α)

i j n(α)
j − [[U ]]βαn(α)

k

}
ds, (6.61)

where the double brackets [[ f ]]βα = f (β) − f (α) denote the jump of a variable f on
the interface Iαβ . This expression can also be interpreted as thermodynamic force
associated with the virtual displacement δXk of the interface. Its amount must be
subtracted from the total value of the Jk-integral over Γ in order to obtain exclusively
the action of force on the crack tip:

Jk =
∫

Γ

(
Uδk j − σi j ui,k

)
n j ds −

∫

Γ ++Γ −

(
t̄i ui,k − Un2δ2k

)
ds

−
∫

Iαβ

{
[[ui,k]]βα σ(α)

i j n(α)
j − [[U ]]βα n(α)

k

}
ds −

∫

Vα+Vβ

(
b̄i ui,k + U,k

∣∣
exp

)
dV .

(6.62)

As a second example, we will look at a crack in one material region, the properties
of which however should be a continuous function of the (material) coordinates. Such
changes are typical of so-called functionally graded materials. Yet these changes also
come about if the mechanical material parameters (elastic modulus, yield stress σF,
thermal expansion coefficient αt) are functions of the location indirectly, e.g. via an
inhomogeneous temperature field T (x). In these cases, the tensor Qkj also depends
explicitly on the coordinate x. This is particularly true for the stress work density Ǔ ,
whose thermoelastic variants (6.23) should be considered in more detail:

Ǔ te(ε, T, x) = 1

2
εi j Ci jmn(x)εmn − βi j (x)�T εi j

pk = ∂Ǔ te

∂xk

∣∣∣∣∣
exp

= 1

2
εi j
∂Ci jmn

∂xk
εmn − ∂βi j

∂xk
�T εi j . (6.63)
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Physically speaking, this means that a »configurational force« is required for the
virtual displacement of a graded material. These relations for the explicit spatial
derivative must be inserted in the last term of (6.62).

Thus, Eq. (6.62) is an extension of the 2D J -integral to cracks in heterogeneous
bodies, whose material properties either change abruptly or vary continuously
with location. This can be straight forward generalized for 3D-crack problems.

It is worth mentioning the special geometric case in which the material properties
do not change with respect to the crack direction x1. Then there is no configurational
force for the k = 1-component of Jk , p1 ≡ 0. This means that material gradients
perpendicular to the crack and interfaces parallel to the crack (then Iαβ = 0) have
no effect on the energy balance (J1 = G (LEFM) or J1 = J (EPFM))!

6.7 Treatment of Mixed-Mode-Crack Problems

6.7.1 Separation into Crack Opening Modes I and II

Let’s assume a pure J line integral for hyperelastic material according to (6.16).
As explained already in Chap. 5, the integration path Γ is separated into N single
segments for the sake of numerical integration:

Γ =
N∑

i=1

Γi . (6.64)

For a better overview, we will limit ourselves to the plane stress state. The x1-
component of the J -integral can then be written in Cartesian coordinates as follows:

J1 =̂ J =
N∑

i=1

∫

Γi

{
Un1 − σi j n j

∂ui

∂x1

}
ds

=
N∑

i=1

∫

Γi

⎧
⎨
⎩

1

2
[σ11 σ22 σ12]

⎡
⎣
ε11
ε22
2ε12

⎤
⎦ n1

− [σ11 σ22 σ12]

⎡
⎣

n1 0
0 n2
n2 n1

⎤
⎦
[
∂u1/∂x1
∂u2/∂x1

]⎫⎬
⎭ ds , (6.65)

http://dx.doi.org/10.1007/978-94-007-6680-8_5
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x 1

x 2

n

P (x 1 , x 2)

P ′(x 1 , − x 2)ds

n′

Fig. 6.11 Separation of the J -integral at mixed-mode loading on a symmetrical integration course

where the stresses σi j and strains εi j are arranged in column matrices. In order to deal
with mixed-mode problems, Ishikawa, Kitagawa & Okamura [13] have proposed
to split the J -integral into a mode I and a mode II component. For an arbitrary
mixed loading, it is possible to separate the stress, strain, displacement, and traction
fields into pure mode I and mode II components provided there is a symmetrical
FE-meshing in the crack tip region. Then we consider two points P(x1, x2) and
P ′(x1,−x2) arranged mirror-symmetrically to the crack line (see Fig. 6.11). If point
P(x1, x2) has the field quantities σi j , t j , εi j and u j and point P ′(x1,−x2) the field
quantities σ′

i j , t ′j , ε′i j and u′
j , we can separate into symmetrical and antisymmetric

components, whereby the characteristic symmetries and antimetries of the individual
quantities are taken into consideration in both modes:

σi j = σI
i j + σII

i j⇒
⎡
⎢⎣
σI

11

σI
22

σI
12

⎤
⎥⎦=1

2

⎡
⎢⎣
σ11 + σ′

11

σ22 + σ′
22

σ12 − σ′
12

⎤
⎥⎦ ,

⎡
⎢⎣
σII

11

σII
22

σII
12

⎤
⎥⎦ =1

2

⎡
⎢⎣
σ11 − σ′

11

σ22 − σ′
22

σ12 + σ′
12

⎤
⎥⎦ (6.66)

t j = t I
j + t II

j ⇒
[

t I
1

t I
2

]
=1

2

[
t1 + t ′1
t2 − t ′2

]
,

[
t II
1

t II
2

]
=1

2

[
t1 − t ′1
t2 + t ′2

]
(6.67)

εi j = εI
i j + εII

i j ⇒
⎡
⎢⎣
εI

11

εI
22

εI
12

⎤
⎥⎦=1

2

⎡
⎢⎣
ε11 + ε′11

ε22 + ε′22

ε12 − ε′12

⎤
⎥⎦ ,

⎡
⎢⎣
εII

11

εII
22

εII
12

⎤
⎥⎦ =1

2

⎡
⎢⎣
ε11 − ε′11

ε22 − ε′22

ε12 + ε′12

⎤
⎥⎦ (6.68)

ui = uI
i + uII

i ⇒
[

uI
1

uI
2

]
=1

2

[
u1 + u′

1

u2 − u′
2

]
,

[
uII

1

uII
2

]
=1

2

[
u1 − u′

1

u2 + u′
2

]
(6.69)

Inserting the relations above into (6.65) yields:
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J =
N∑

i=1

∫

Γi

{
1

2
[σI

11σ
I
22σ

I
12]

⎡
⎢⎢⎣
εI

11

εI
22

2εI
12

⎤
⎥⎥⎦ n1 − [σI

11σ
I
22σ

I
12]
⎡
⎣

n1 0
0 n2
n2 n1

⎤
⎦
[
∂uI

1/∂x1

∂uI
2/∂x1

]

+ 1

2
[σI

11σ
I
22σ

I
12]

⎡
⎢⎢⎣
εII

11

εII
22

2εII
12

⎤
⎥⎥⎦ n1 − [σI

11σ
I
22σ

I
12]
⎡
⎣

n1 0
0 n2
n2 n1

⎤
⎦
[
∂uII

1 /∂x1

∂uII
2 /∂x1

]

+ 1

2
[σII

11σ
II
22σ

II
12]

⎡
⎢⎢⎣
εI

11

εI
22

2εI
12

⎤
⎥⎥⎦ n1 − [σII

11σ
II
22σ

II
12]
⎡
⎣

n1 0
0 n2
n2 n1

⎤
⎦
[
∂uI

1/∂x1

∂uI
2/∂x1

]

+ 1

2
[σII

11σ
II
22σ

II
12]

⎡
⎢⎢⎣
εII

11

εII
22

2εII
12

⎤
⎥⎥⎦ n1 − [σII

11σ
II
22σ

II
12]
⎡
⎣

n1 0
0 n2
n2 n1

⎤
⎦
[
∂uII

1 /∂x1

∂uII
2 /∂x1

]}
ds .

J = JI + JI,II + JII,I + JII (6.70)

Because we chose an integration path that is symmetrical with respect to the crack
(x1-axis), the components of the normal unit vector (n1, n2) at points P(x1, x2) and
P ′(x1,−x2) have the following relation to each other (see Fig. 6.11):

(n′
1, n′

2) = (n1,−n2) . (6.71)

With the help of this relation and the Cauchy formula, the tractions of (6.67) at point
P ′(x1,−x2) can be calculated from those from point P(x1, x2):

[
t ′I1

t ′I2

]
=
[

t I
1

−t I
2

]
and

[
t ′II1

t ′II2

]
=
[−t II

1

t II
2

]
. (6.72)

The other field quantities at P and P ′ are similarly associated:

⎡
⎢⎣
σ′I

11

σ′I
22

σ′I
12

⎤
⎥⎦ =

⎡
⎢⎣
σI

11

σI
22

−σI
12

⎤
⎥⎦ ,

⎡
⎢⎣
σ′II

11

σ′II
22

σ′II
12

⎤
⎥⎦ =

⎡
⎢⎣

−σII
11

−σII
22

σII
12

⎤
⎥⎦ ,

⎡
⎢⎣
ε′I11

ε′I22

ε′I12

⎤
⎥⎦ =

⎡
⎢⎣
εI

11

εI
22

−εI
12

⎤
⎥⎦ ,

⎡
⎢⎣
ε′II11

ε′II22

ε′II12

⎤
⎥⎦ =

⎡
⎢⎣

−εII
11

−εII
22

εII
12

⎤
⎥⎦ , (6.73)

[
u′I

1

u′I
2

]
=
[

uI
1

−uI
2

]
,

[
u′II

1

u′II
2

]
=
[−uII

1

uII
2

]
.



288 6 Numerical Calculation of Generalized Energy Balance Integrals

Using Eqs. (6.71), (6.72), (6.73) and (6.70), we obtain for the individual four terms
of the J -integral:

J ′
I = JI, J ′

II,I = −JII,I, J ′
I,II = −JI,II und J ′

II = JII . (6.74)

Thus the 2nd and 3rd terms cancel out over the entire integration course and (6.70)
can be simplified to :

J = JI + JII . (6.75)

With the help of the derived relations, the integral can therefore be decoupled into
two separate energy components of a pure mode I and a pure mode II. From these
energy release rates GI = JI und GII = JII, we can then separately calculate both
stress intensity factors KI and KII with (3.93).

KI =
√

E ′ JI , KII =
√

E ′ JII . (6.76)

This separation into symmetrical and antimetrical components can be achieved fairly
easily in the FEM post-process. But it requires that a symmetrical mesh is generated
around the crack tip from the start, which is often impossible in general mixed-mode
situations.

6.7.2 Interaction Integral Technique

One disadvantage of energy balance integrals of the J -type is that stress intensity
factors cannot be calculated separately in the case of mixed crack loading. Rather,
they are contained in a combined form in the calculated energy release rate J1 = G.
We could also calculate the x2-component of Jk with (6.16) for elastic problems, and
Eq. (6.12) would provide two equations for determining KI and KII (J3 = KIII = 0).
But practically this approach leads to serious inaccuracies in the crack face integrals
due to the r−1 -singularity of U and the jump-term (U+ − U−) and is therefore not
useful.

In order to overcome these limitations, the so-called interaction integral was
developed by Stern et al. [14] and Yau et al. [15] for two-dimensional static elastic
problems. The interaction integral technique is based on the superposition of two
load cases, whereby the reciprocity of the interaction energy of both states is utilized
with the help of the Betti theorem. Load case (1) represents the actual loading of
the crack configuration, whereas an arbitrary solution with known stress intensity
factors is assumed as load case (2). To explain this method, let’s first consider a
two-dimensional crack problem. Superimposing both load cases, all field quantities
add up to:

ui = u(1)
i + u(2)

i ,σi j = σ(1)
i j + σ(2)

i j , εi j = ε(1)
i j + ε(2)

i j etc. (6.77)

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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This results in the following energy–momentum tensor:

Qkj = U (ε(1)
pq + ε(2)

pq )δk j −
(
σ(1)

i j + σ(2)
i j

) (
u(1)

i + u(2)
i

)
,k

= 1

2
ε(1)

pq C pqmnε
(1)
mn + 1

2
ε(2)

pq C pqmnε
(2)
mn + 1

2
ε(1)

pq C pqmnε
(2)
mn + 1

2
ε(2)

pq C pqmnε
(1)
mn

− σ(1)
i j u(1)

i,k − σ(2)
i j u(2)

i,k − σ(1)
i j u(2)

i,k − σ(2)
i j u(1)

i,k

= Q(1)
k j + Q(2)

k j + Q(1,2)
k j , (6.78)

where Q(l)
k j combines the components of the respective load case l = {1, 2}, Q(1,2)

k j
contains the remaining interaction terms. The 3rd and 4th terms of the second line
are identical according to the Betti theorem and result in ε(2)

pq C pqmnε
(1)
mn = σ

(2)
mnε

(1)
mn .

Q(1,2)
k j = σ(2)

mnε
(1)
mn − σ(1)

i j u(2)
i,k − σ(2)

i j u(1)
i,k (6.79)

Thus, the J -integral (6.11) is split into three parts:

Jk = lim
r→0

∫

Γε

Q(1)
k j n j ds

︸ ︷︷ ︸
J (1)

k

+ lim
r→0

∫

Γε

Q(2)
k j n j ds

︸ ︷︷ ︸
J (2)

k

+ lim
r→0

∫

Γε

Q(1,2)
k j n j ds

︸ ︷︷ ︸
J (1,2)

k

. (6.80)

The last term is called an interaction integral:

J (1,2)
k = lim

r→0

∫

Γε

Q(1,2)
k j n j ds = lim

r→0

∫

Γε

[
σ(2)

mnε
(1)
mnδk j − σ

(1)
i j u(2)

i,k − σ
(2)
i j u(1)

i,k

]
n j ds .

(6.81)

If crack face loads, body forces and inertia forces exist, the integral is converted
in analogy to (6.22) into a path-independent integral over an arbitrary contour Γ and
the included area A, whereby only J (1,2)

1 is of interest:

J (1,2)
1 =

∫

Γ

[
σ(2)

mnε
(1)
mnδ1 j − σ

(1)
i j u(2)

i,1 + σ
(2)
i j u(1)

i,1

]
n j ds

−
∫

Γ ++Γ −
t (1)
i u(2)

i,1 ds +
∫

A

(
ρü(1)

i − b̄(1)
i

)
u(2)

i,1 dA . (6.82)
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For the numerical evaluation, it is advantageous to transform this integral again into
an EDI as in Sect. 6.4.1:

J (1,2)
1 =

∫

A

{[(
−σ(2)

mnε
(1)
mn

)
δ1 j + σ

(1)
i j u(2)

i,1 + σ
(2)
i j u(1)

i,1

]
q, j dA

+
∫

A

[(
ρü(1)

i − b̄(1)
i

)
u(2)

i,1

]
q dA +

∫

Γ ++Γ −

(
−t (1)

i u(2)
i,1

)
q ds . (6.83)

The energy release rate G is equal to the J1-integral (6.80). According to (3.92),
it has the following relation with the stress intensity factors for the combined load
case KN = K (1)

N + K (2)
N (N = {I, II}):

G = J1 = J (1)
1 + J (2)

1 + J (1,2)
1 ,

G = 1

2E ′

[(
K (1)

I

)2 +
(

K (1)
II

)2
]

︸ ︷︷ ︸
G(1)

+ 1

2E ′

[(
K (2)

I

)2 +
(

K (2)
II

)2
]

︸ ︷︷ ︸
G(2)

+ 1

E ′
[

K (1)
I K (2)

I + K (1)
II K (2)

II

]

︸ ︷︷ ︸
G(1,2)

=⇒ J (1,2)
1 = G(1,2)

1 = 1

E ′
[

K (1)
I K (2)

I + K (1)
II K (2)

II

]
(6.84)

In order to calculate the two sought quantities K (1)
I and K (1)

II from this relation, we
need two known auxiliary load cases, which should be denoted with (2a) and (2b).
The two interaction integrals J (1,2a)

1 and J (1,2b)
1 provide a linear system of equations

with the solution:

K (1)
I = E ′

K 2

[
K (2a)

II J (1,2b) − K (2b)
II J (1,2a)

]

K (1)
II = E ′

K 2

[
K (2b)

I J (1,2a) − K (2a)
I J (1,2b)

]
, K 2 = K (2b)

I K (2a)
II − K (2a)

I K (2b)
II

(6.85)

Similar to the weight functions (Sect. 3.2.10), it is best to choose a pure mode I
(K (2a)

II = 0) for load case (2a) and only mode II (K (2b)
I = 0) for case (2b), whereby

(6.85) is simplified with:

K (1)
I = E ′

K (2a)
I

J (1,2a) , K (1)
II = E ′

K (2b)
II

J (1,2b) . (6.86)

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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The auxiliary load cases (2a) and (2b) are arbitrarily selectable as long as they
represent adequate solutions of a BVP of this crack configuration (equilibrium, com-
patibility, identical material law). Thus, simple static solutions may be used without
crack face loads even for general loading cases (1). For straight cracks, it is even pos-
sible to apply the elastic crack tip fields embodied by (3.12) and (3.23) with given
KI- and KII-factors to the entire body. Since they are in closed form, calculation of
the interaction integrals thus becomes especially simple and efficient, which is why
we should favor this approach. Be careful with anisotropic materials! The crack’s
orientation to the material axes in case (2) must be equal to those of the load case (1)
being investigated.

In the numerical implementation of the interaction integral as an equivalent
domain integral according to (6.83), the following approach should be taken: If
an EDI post-processor like (6.42) is available for the ordinary 2D J -integral of the
problem class in question (which is presupposed), then the integration algorithm
remains unchanged. Only in the integrands of (6.42) the intrinsic energy terms are
to be replaced by the interaction energy (6.83) between the numerical solution of
load case (1) and the analytic solution of auxiliary load cases (2a, 2b). The required
stresses σ(2)

mn and displacement derivatives u(2)
i,1 are easily calculated at the IP of the

FEM mesh, where the numerical results (1) are given too, thus embedding them
into an existing numerical integration routine. Skilled programmers analyze J (1,2)

1
simultaneously for both auxiliary load cases (2a) and (2b) in one calculation run.

Compared to the separation technique from Sect. 6.7.1, the interaction inte-
gral has several advantages: Firstly, it can be applied to more general loading
types, in which case both line and surface integrals arise. Secondly, it also holds
true for any crack orientation towards the material axis in anisotropic cases.
Thirdly, all numerical advantages of the EDI are exploited. One disadvantage
is the necessity of finding solutions for the auxiliary load cases.

6.8 Calculation of T -Stresses

The series expansion of the 2D linear-elastic crack tip solution contains, after the first
singular term of the K -factors, a second term which represents a constant normal
stress σ11 = T11 acting upon the crack’s longitudinal axis (see Sect. 3.2.2). The T11-
stresses affect the multi-axiality of the stress state at the crack, which has significant
effects on the critical crack initiation value and the slope of the crack resistance
curve in EPFM (see Sect. 3.3.6). On the other hand, the T11-stress is responsible for
directional stability in the case of fatigue crack propagation (Sect. 3.4.5). Therefore,
we should find efficient methods for calculating T11 for arbitrary two-dimensional
crack configurations as a function of geometry, crack length, and loading. The T11-
stress increases proportionally with the load level of a nominal stress σn just like the
stress intensity factor KI = σn

√
πa g(a, w). Since T11 represents a pure geometrical

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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parameter, a standardized, dimensionless stress biaxiality ratio β was introduced:

βT = T11
√
πa

KI
∼ T11

σn
(6.87)

From the solution of the linear-elastic BVP, we obtain the T11-stress either by
interpreting the stress distribution in the ligament (θ = 0) in front of the crack tip

T11 = lim
r→0

(σ11 − σ22)

∣∣∣∣
θ=0

, (6.88)

or via the coefficients a2 of the second series term according to (3.46)

T11 = 4a2 . (6.89)

Application of these relations requires a fine FE-discretization at the crack tip,
approximately comparable to the mesh quality needed for determining the K -factor.
It lacks a certain amount of precision because of the extrapolation or averaging [16].
If in the numerical method the higher eigenfunctions are taken into consideration in
the shape function as done in [17], with the boundary collocation method [18] or
hybrid crack tip elements (Sect. 5.3), we then obtain T11 directly from the coefficient
a2 of the solution. Another possibility is superposition with a single horizontal force
at the crack tip, whose energetic interaction with T11 according to Eshelby is utilized
[19, 20].

One particularly elegant and effective calculation method is based on a path inde-
pendent integral IΓ developed by Chen [21] that is related to the J -integral. This
integral is based on the Betti reciprocity theorem and links together the stresses σ(1)

i j ,

σ
(2)
i j and displacement fields u(1)

i , u(2)
i of two load cases (1) and (2) for the same

linear-elastic crack configuration.

IΓ =
∫

Γ

(
σ

(1)
i j u(2)

i − σ
(2)
i j u(1)

i

)
n j ds . (6.90)

Both load cases must satisfy the equilibrium conditions. As load case (1), let’s again
take the actual crack problem under consideration. Load case (2) is an auxiliary state
that is specifically chosen for the determination of T11. Assuming unloaded crack
faces, the path-independence of IΓ can be shown such as in the case of the J -integral.
This makes it possible to interpret the FEM results on integration paths chosen
outside the numerically less accurate crack tip region. As opposed to the extrapolation
method, the total stress and displacement field is included in the calculation of T11.
Chen [21] has proved that all unknown coefficients An of the Williams eigenfunctions
can be determined with the help of IΓ . For this purpose, we arrange the solutions of
both load cases as a series expansion in accordance with (3.41) and (3.43) with the
complex coefficients An and Cm :

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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load case (1): σ
(1)
i j =

∞∑

n=1

Anrn/2−1σ̃
(n)
i j (θ) , u(1)

i =
∞∑

n=1

Anrn/2ũ(n)
i (θ) (6.91)

load case (2): σ
(2)
i j =

∞∑

m=1

Cmrm/2−1σ̃
(m)
i j (θ) , u(2)

i =
∞∑

m=1

Cmrm/2ũ(m)
i (θ) .

(6.92)

The eigenfunctions possess the property of orthogonality with regard to the IΓ -
integral, i. e. the following is valid:

IΓ (n) =
⎧
⎨
⎩

−π(κ+ 1)

μ
(−1)n+1n (AnC̄m) for n + m = 0

0 for n + m 	= 0
(6.93)

Thereby, it is possible to filter out the sought components of the nth eigenfunction
from the numerical solution of load case (1) by choosing exactly the (m = −n)th
eigenfunction as auxiliary state (2). If we restrict ourselves to mode I loadings, then
both coefficients An = an and Cm = am are real (see (3.41)). If we set Cm = 1, so
(6.93) yields the sought coefficient

An = − μ

κ+ 1

1

πn(−1)n+1 IΓ (n) . (6.94)

To determine the T11-stress, the coefficient of the (n = 2)th term A2 = a2 is sought,
which is why the (m = −2)th eigenfunction should be set as auxiliary state (2). The
associated field quantities are calculated from (3.41) and (3.43)

σ∗
11 ≡ σ(m=−2)

11 = − 2

r2 (cos 2θ + cos 4θ)

σ∗
22 ≡ σ

(m=−2)
22 = − 2

r2 (cos 2θ − cos 4θ) (6.95)

σ∗
12 ≡ σ(m=−2)

12 = − 2

r2 sin 4θ

u∗
1 ≡ u(m=−2)

1 = 1

2μr
(κ cos θ + cos 3θ)

u∗
2 ≡ u(m=−2)

2 = 1

2μr
(−κ sin θ + sin 3θ)

From (6.94) then the relation between T11 and the IΓ -integral follows:

T11 = 4A2 = 2μ

π(κ+ 1)
IΓ (n = 2) = E ′

4π
IΓ (n = 2) . (6.96)

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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We thus arrive at the following procedure: We calculate the crack problem of interest
with FEM for load case (1) and obtain the solutions σFEM

i j , uFEM
i . In the post-process,

one or several integration paths Γ are defined. With (6.95), the auxiliary state (2) is
calculated onΓ and then the paths-independent IΓ -integral is numerically calculated:

IΓ (n = 2) =
∫

Γ

(
σFEM

i j u∗
i − σ∗

i j u
FEM
i

)
n j ds . (6.97)

Finally, (6.96) yields the sought T11-stress or, if the KI- factor is known, the biaxiality
parameter β via (6.87).

In case the user has already implemented the more favorable EDI-technique to
calculate the J -integral, the line integral (6.97) for IΓ can be transformed into an
equivalent domain integral in the same manner as in Sect. 6.4.1 (σFEM

i j, j = σ∗
i j, j = 0)

[22].

IΓ (n = 2) =
∫

A

(
σFEM

i j u∗
i − σ∗

i j u
FEM
i

)
q, j dA . (6.98)

It should be noted that the intensity factor KI = √
2πA1 of the (n = 1)th eigen-

function can also be determined with the IΓ -integral if the corresponding orthogonal
eigenfunction m = −n = −1 is used as an auxiliary state (2) [23].

6.9 Examples

6.9.1 Internal Crack Under Crack Face Loading

As an example of the J -integral in the case of crack face loading, the central crack in
a sheet b = 0.1 m under constant internal pressure σ0 = 100 MPa will be analyzed
(Fig. 6.12). For the marked quarter of the geometry, the quite coarse FE-mesh of
Fig. 6.13 was used while considering the symmetries. It consists of 8-noded quadri-
lateral elements that have been collapsed around the crack tip into triangular quarter-
point elements. The hatched element rings around the crack tip are used to calculate
the equivalent domain integral (6.42). To determine J1 =̂ G, besides the area integral
over the element rings A (1st line of (6.42)) the crack face integral with the tractions
t̄2 = −σ0 must also be evaluated (3rd line of (6.42)).

Fig. 6.14 shows both portions denoted as »J -contour« and »J -crack face« as well
as their sum »J -total« for all four rings of integration. Although both portions change
considerably if the included crack faces become larger, their sum remains constant.
Among the rings of integration, deviations from the average value J̄ = 15.279 MN/m
amount to less than 0.8 %. Converting into the stress intensity factor via KI =

√
J̄ E

(plane stress) yields

K FEM
I = 39.088 MPa

√
m ↔ K ref

I = 39.327 = 1.109σ0
√
πa ,
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Fig. 6.12 Crack with stress σ0 on the faces
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Fig. 6.14 Portions of the J -integral for crack face loading

which deviates from the reference solution [24] by −0.6 %. According to the super-
position principle of Fig. 3.24, this result is completely identical with the case of
load-free crack faces but applied external tension σ0.

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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6.9.2 Edge Crack Under Thermal Shock

For a component with a crack, thermal shock represents an extreme loading case
because the temperature gradients lead usually to high local stresses. In order to
calculate fracture-mechanical parameters, first the transient heat conduction prob-
lem must be solved, which provides as a result the temperature distribution in the
component for every instant of time. This is followed by the thermomechanical BVP
for determining the transient course of the fracture parameters.

In the concrete example, a sheet with an external crack (Fig. 6.15) of length a/b
is loaded by an abrupt cooling �T (thermal shock) of the medium on the crack side.
The thermally induced, time-varying stresses cause an opening of the crack under
mode I. Assuming linear-elastic material behavior, the function KI(t) is sought. A
state of plane strain is chosen, i. e. E ′ = E/(1 − ν2) and the thermal expansion
coefficient α′ = α(1+ν). For transient heat conduction, a heat transition coefficient
ϑ is set on the edge and a heat conduction coefficient k in the volume. Provided that
there is no heat flow on all other edges and the crack faces (isolation), we arrive at
a one-dimensional heat conduction with respect to x1. To better present the results,
dimensionless quantities will be introduced (cv – specific heat capacity):

coordinate x̂ = x/b , temperature �T̂ = T (x̂, t̂)/�T

heat transition coefficient ϑ̂ = ϑb/k , time t̂ =
√

k

ρ cv
t

/
b

(6.99)

The intensity of the thermal shock is characterized by the ratio between heat transition
and heat conduction, i. e. by the size of ϑ̂, for which a quite severe value of 10 was
defined.

Figure 6.16 shows the utilized FE-discretization of the upper half with 8-noded
quadrilateral elements and 12 quarter-point elements CTE at the crack. This very
fine mesh is necessary in order to determine accurately the steep temperature
gradients. The results of the heat conduction analysis are exhibited in Fig. 6.17 as a
dimensionless temperature profile over specimen width as a function of time t̂ . Start-
ing with a uniform initial temperature, the specimen is cooled down by the temper-
ature jump with increasing time.

Subsequent to the heat conduction analyzes, the same mesh was used to solve
the crack problem for selected times. To determine the KI(t)-factors, the extended
J -integral in the EDI-form according to (6.42) was used and for comparison the
displacements were interpreted (DIM) with (5.39). For the x1-component J1 = G,
the thermal part in the 2nd integral of (6.42) with σmnαmnT,1 = σmmα

′T,1 becomes
important. From the results obtained (see [25]), the stress intensity factor KI is
shown as an example in Fig. 6.18 normalized with the »thermal stress« E ′α′|�T |
as a function of time t̂ during the cooling process. The KI-factor increases rapidly
as a result of thermally induced stresses, reaches a maximum at t̂ = 0.26, and then

http://dx.doi.org/10.1007/978-94-007-6680-8_5
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Fig. 6.18 Temporal course of the KI-factor during thermal shock for crack depth a/b = 0.4

declines to zero for t̂ → ∞ with increasing cooling of the sheet. The results from the
J -integral agree very well with the solution gained via weight functions [25]. As the
example shows, DIM realizes usable KI-values also in the case of thermal loadings.

6.9.3 Dynamically Loaded Internal Crack

This example deals with the two-dimensional dynamic problem (plane strain) of
a central internal crack in a sheet (Fig. 6.19). A sudden tension of magnitude σ0
is imposed on the upper and lower edge at time t = 0, which is expressed by
the Heaviside jump function H(t). The material constants amount to: ν = 0.3,
E = 200 GPa, density ρ = 5.000 kg/m3, from which a dilatational wave velocity of
cd = 7.338 m/s is calculated. Exploiting the symmetries, one quarter of the crack
configuration was discretized with isoparametric 4-noded elements (see Fig. 6.20).
The use of these linear elements is preferred in the case of transient dynamic FE-
analyses with explicit time integration [26] (Sect. 4.6). However, this precludes the
possibility of using special quarter-point elements at the crack tip, so the dynamic
J ∗-integral is particularly advantageous in this situation. Figure 6.20 shows coarse
and fine mesh variants of the crack region, whereby the smallest elements L at the
crack tip are about 1/12 or 1/60 of the crack length a.

For this mode I problem, J ∗
1 (t) = G(t) was computed as an EDI according to

Eq. (6.53) in the post-processor for every time t . With (3.359), this results in the
stress intensity factor KI(t) = √

E ′ J ∗
1 . Its temporal course is shown in Fig. 6.21

normalized to the static value K0 = σ0
√
πa for the infinite sheet. The plane wave

http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 6.19 Sheet with internal crack a =
0.24b under a jump loading

X

Y

Z

mesh (a): L:a=1:12
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Fig. 6.20 FE-mesh of the lower right quar-
ter of the sheet with an internal crack

triggered at the edges requires the time τ = h/cd = 2.73 µs until it reaches the
crack faces, whereupon the KI-factor increases steeply and attains almost three times
the reference value at the maximum. After this, the stress waves are reflected and
scattered in the body without energy absorption so that further crack loading proceeds
in an oscillating manner. To check the results, KI(t) was determined additionally
with two alternative calculation methods from the FE-solution. On the one hand,
the displacement interpretation method (Sect. 5.1) according to formula (5.3) was
employed. Interpretation of the crack opening displacement uFEM

2 directly at the
crack tip element as well as the extrapolation of several nodal values on the crack
face as in Fig. 5.3 yielded consistent KI-factors. On the other hand, the technique of
the modified crack closure integral (MCCI) (Sect. 5.5 Fig. 5.27) was used with the
formula (5.87) for linear elements. All the MCCI interpretation formulae given in
Sect. 5.5 for the static case are also valid for stationary cracks under transient loading,
since the relation (3.359) between the energy release rate G(t) and the K (t)-factors
remains unchanged! G(t) is calculated at every time using the dynamic field solutions
via virtual crack closure. The results of both alternative methods DIM and MCCI
are plotted as well in Fig. 6.21 and show an agreement of ±5 % with the J ∗-results.
The coarse mesh deviates the most in the peak area for obvious reasons. It has been
numerically confirmed that the EDI-form (6.58) of the 2D dynamic J -integral is
actually independent of the choice of the integration area A. The values converge

http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 6.21 Transient course of the stress intensity factor. Comparison of various methods and meshes
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Fig. 6.22 Location-dependence of the elastic modulus in the functionally graded material

with an accuracy of <1 % already from the 3rd element ring around the crack tip
(Fig. 6.20).

Reference [27] contains further information and 3D dynamic benchmark
problems.

6.9.4 Crack in a Functionally Graded Material

Functionally graded materials (FGM) are materials with specially adjusted location-
dependent mechanical properties. By means of smooth transitions of the elastic
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Fig. 6.23 FE-mesh with
736 elements (8-node quadri-
lateral) and 64 quarter-point
elements at the crack tips

modulus or the thermal expansion coefficient, for example jumps in stiffness or
stresses between different material regions can be avoided. Let’s consider the simple
example of a Griffith crack of length 2a in a sheet of width 2b under tension σ∞,
whereby the elastic modulus should be varied exponentially with the coordinate x1:

E(x1) = E0 exp
(
η

x1

a

)
. (6.100)

The parameter η defines the »strength« of the material gradient which is illustrated in
Fig. 6.22 for the values η = 0 (homogeneous), 0.125 and 0.5. It could be proven [28,
29], that for cracks in elastic, continuously changing functionally graded materials,
the same near field solution exists as those in homogeneous materials (Sect. 3.2.1).
The crack loading is thus characterized by the stress intensity factors KI and KII,
yet the strain and displacement fields are calculated from the local elastic constants
at the location of the crack tip, e.g. E(x1 = a). The values of the K -factors depend
however on the global material gradient and differ from those of the homogeneous
case for the same BVP!

The FE-analysis was carried out in the standard way with the mesh shown in
Fig. 6.23. The stress intensity factor KI was calculated with the 2D J -integral
in accordance with Eq. (6.42). The graded property must be taken into considera-
tion in the 2nd integral via the explicit spatial derivative of the strain energy density,
which means in the present isotropic case with (A.76) and (A.91)

∂U

∂x1

∣∣∣
exp

= 1

2
εi j
∂Ci jkl

∂x1
εkl = 1

2

(
εi jεi j + ν

1 − 2ν
ε2

kk

)
∂E(x1)

∂x1
, (6.101)

whereby we still have to insert the concrete derivative of (6.100). The J -integral
was implemented as an EDI over various integration domains with radii {0.4 0.8 1.2
1.6 2.0}a. From here, the stress intensity factor is obtained by means of
KI = √

E(a)J/(1 − ν2) with ν = 0.3 = const in the state of plane strain. The

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 6.24 Dependence of the J -integral on the domain and the correction terms

results at the right crack tip are shown in Fig. 6.24 for three different gradients η
and normalized to the classical Griffith crack KI0 = σ∞√

πa. Firstly, we see that
the simple J -integral would be path-dependent (open symbols) and the necessary
correction was only made by the 2nd integral of (6.42) with (6.101) (full symbols).
Secondly, the material gradient η causes a considerable increase of KI at the same
loading σ∞ (and a reduction at the left crack tip).

6.10 Concluding Assessment of Methods

This chapter has shown that energy balance integrals of the J -integral type can
be developed and applied to almost all problems in fracture mechanics. This was
shown in detail for cracks in heterogeneous, functionally graded, and anisotropic
elastic structures under thermal, crack face, weight and inertia loadings. In addition,
the verification examples in Sect. 5.8 demonstrate the efficiency of J -integrals in
comparison to other FE-techniques. Moreover, it has been proven and recognized
that the generalizations of the J -integral represent highly universal and meaningful
loading parameters for cracks, for which still further applications will follow in
Chaps. 7 and 8. The essential reason for this is to be found in its consistent physical
interpretation as the energy release rate in elastic conservative systems or as energy
flux into the process zone in dissipative non-conservative systems.

Especially with respect to numerical calculation, energy balance integrals have
considerable advantages compared to other methods for determining fracture para-
meters. Since they can always be formulated as path-independent or at least domain-
independent integrals, we can avoid in the interpretation the direct near field of the

http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_7
http://dx.doi.org/10.1007/978-94-007-6680-8_8
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crack, where the numerical solution is the least accurate. In addition, the accuracy
of the numerical solution can be evaluated exactly using different integration paths,
since theoretically the determined J -values should all be equal. A deviation thus
results either from the inaccuracy of the underlying FE-solution or from an impre-
cise integration method for J .

Another advantage of J -integrals is that their calculation can be carried out down-
stream the FE-analysis as a post-processor. They thus do not require changing the
FE-program like other techniques. The advantages of the energy balance integrals
have been confirmed by numerous verifications and comparative calculations. As a
result, J -integrals of various specifications have been offered in some commercial
FE-codes (ABAQUS, ANSYS, among others).
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Chapter 7
FE-Techniques for Crack Analysis
in Elastic-Plastic Structures

FEM has become an indispensable tool for the stress analysis of crack configurations
in elastic-plastic materials, as the physically and sometimes geometrically non-linear
IBVPs in finite structures are not solvable with analytical methods. To model the
material behavior, predominantly the incremental laws of plasticity with various
hardening types introduced in Sect. A.4.2 come in to question. Here too, the goal
of the computations is to determine the fracture-mechanical loading parameters for
ductile crack initiation and crack propagation. For this purpose, we got acquainted
with the crack opening displacement δt, the crack opening angle γt, the J -integral
and the multi-axiality parameters T and Q in Sect. 3.3. In the EPFM, a variety of
model parameters (geometry, loading level, material behavior) influence the result
in different, complex ways, so we must proceed carefully. In particular the fracture-
mechanical interpretation must also be considered with caution.

Despite enormous advances in computer technology, non-linear FE-analyses for
cracks need an intense amount of numerical operations and storage due to the great
effort of mesh discretization and the incremental solution algorithm. Thus, the basic
principle, »As simple as possible, as complicated as necessary !« is true in this context
as well, i. e. we should start with 2D-models, geometrically linear and with simple
hardening laws, in order to understand the important effects before carrying out the
necessary model extensions.

7.1 Elastic-Plastic Crack Tip Elements

At stationary crack tips (at rest) in elastic-plastic materials under monotonic loading,
the asymptotic near field is known (see Sect. 3.3.6):

• ideal plastic (3.223): εi j ∼ 1/r , σi j ∼ const., (7.1)

• power-law hardening (3.238): εi j ∼ r− n
n+1 , σi j ∼ r− 1

n+1 (7.2)
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It has been attempted to develop elastic-plastic crack tip elements for these
asymptotics as well. Again, a modification of the isoparametric elements has proved
successful. In Sect. 5.2.2, the collapsed isoparametric quadrilateral element with
quadratic shape functions was already introduced (see Fig. 5.7a). By combining the
coordinates of nodes 1, 4 and 8 as well as the quarter-point shift of nodes 5 and 7,
we obtain the strain singularities (5.28)–(5.30) with respect to the distance r to the
crack tip:

εi j (r, θ) = A0i j (θ)

r
+ A1i j (θ)√

r
+ A2i j (θ). (7.3)

For application in LEFM, the 1/r -behavior is undesirable and was eliminated by
binding the displacements of these three nodes together with (5.31). For EPFM,
we make use of this property, i. e. the three nodes may now move independently of
each other, whereby in addition the ideal-plastic 1/r -singularity (7.1) is activated.
Figure 7.1 shows this procedure. By combining quarter-point shift and free crack tip
nodes, initially elastic and subsequently ideal-plastic behavior can be simulated this
way.

In order to analyze the properties of the collapsed elements with unchanged mid-
side nodes, let’s return to Sect. 5.2.2. If we evaluate the Eqs. (5.17)–(5.18) for the
value κ = 1/2 we obtain in the place of (5.19):

x1 = L

2
(1 + ξ1), x2 = H

2
ξ2 (1 + ξ1)

r = 1

2

√
L2 + H2ξ2

2 (1 + ξ1) ⇒ (1 + ξ1) = r

1
2

√
L2 + H2ξ2

2

(7.4)

The mapping of (1+ ξ1) on r is now linear. For the Jacobian matrix (5.20, 5.21) and
its inverse (5.22) now follows:

45°2tδ

Fig. 7.1 Collapsed 8-noded quarter-point elements at the crack tip with elastic-plastic material
behavior
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J11 = L , J21 = 0, J12 = Hξ2, J22 = H

2
(1 + ξ1) ∼ r,

J−1 = 1

J

[
J22 −J12
0 J11

]
∼

[
1 ξ2

r

0 1
r

]
with J = J11 J22 = 1

2
H Lr. (7.5)

In contrast to κ = 1/4, the
√

r -terms have disappeared in (7.4) and (7.5). The
derivatives of the shape functions (5.24)–(5.27) remain unchanged, so we get for the
strains according to (5.28)–(5.30) now the functions

ε11 = a0 + a1(1 + ξ1) + b0 + b1(1 + ξ1) + b2(1 + ξ1)
2

r

= b0

r
+ e′

1 + e′
2r and also (7.6)

ε22 = d0

r
+ d1 + d2r

ε12 = b0 + d0

r
+ f ′

1 + f ′
2r

with modified constants e′
i and f ′

i . Thus, the collapsed quadrilateral elements with
mid-side nodes have no 1/

√
r - singularity, but rather a linear term ∼r . They are gen-

erally recommended for elastic-plastic crack problems and preferred to the quarter-
point variant (7.3).

If we collapse one element edge of the isoparametric 8-noded quadrilateral
element to one point but allow free nodal displacements, a 2D crack tip element
is generated, which possesses a 1/r -singularity in the strains on all radial rays.

With these elements, a fan is placed around the crack tip. Under loading, all crack
tip nodes can move individually so the blunting is simulated by a »pearl necklace«
(see Fig. 7.1). The ideal-plastic crack tip elements are compatible with each other and
with the standard elements at the outer edges. To generalize this idea to the 3D-case,
we adapt this technique to collapsed 20-noded hexahedral elements arranged in a
»tube« around the crack front.

Special crack tip elements for modeling the HRR-singularity (7.2) have not
become established. For hardening exponents n > 10, the asymptotic behavior
approaches anyway Eq. (7.1). Moreover, real yield curves usually reach a satura-
tion σF → const. For this reason, these collapsed elements are used with success in
most elastic-plastic crack analyses.

For elastic-plastic crack problems it is more difficult to capture the near field
solution than in LEFM since it (1) occurs deep inside the plastic zone, (2) its area
of existence enlarges with growing plastification and (3) its character can change
with the loading history under certain circumstances. On the other hand, the correct

http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_5
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modeling of the asymptotic near field plays a minor role for the global behavior of
structures with cracks in EPFM. Fracture parameters such as the J -integral can be
calculated accurately enough even at greater distances from the crack tip. Yet crack
tip elements are indispensable if we want to investigate the details of plastic strain
and the state of stress at the very crack tip.

7.2 Determination of Crack Tip Opening Displacements

Permanent plastic deformations of the crack faces are utilized as relevant parame-
ters for different concepts of EPFM. According to the CTOD concept, the opening
displacement of the blunted crack tip δt represents a parameter for stationary cracks
(see Sect. 3.3.4). In order to calculate the crack opening displacement δt accurately
with FEM, a concentric fan-shaped mesh around the crack tip is needed, whereby
the innermost ring should consist of the aforementioned collapsed elements (see
Fig. 7.1). The simulation must be carried out as geometrically non-linear so that the
large deformations at the crack tip are reproduced correctly. We then obtain a nicely
stretched node chain at the blunted crack as exemplified in Fig. 7.2. To determine δt it
is best to use the ± 45◦ secant method shown in Fig. 3.35a. To this end, the intersec-
tion with the element edges on the crack faces must be found. An easier possibility
is to choose the u2-displacement of an FE-node on the crack face close behind the
blunting, e. g. the nodes of the last crack tip element (θ = 180◦) in Fig. 7.1. How-
ever, this variant depends considerably on the used FE-discretization at the crack
tip. Following the experimental methods for determining the CTOD, occasionally a
linear extrapolation is carried out of the opening displacements u2(x1) from areas
further away from the crack tip where the crack faces are almost linear. According
to this definition, a relatively coarse mesh with a geometrically linear option may be
used, since the far field displacements to be interpreted are largely independent of
it. Frequently, the opening displacement of the crack notch at the specimen’s front
edge—the crack opening displacement V (COD) is also sought for comparison with
test results.

In the case of growing cracks, a linear opening profile is formed at the crack
tip as discussed in Sect. 3.3.8, which is characterized quite well by a crack opening
angle γt =̂ CTOA (see Fig. 3.35). The CTOA is utilized successfully as a criterion
for ductile crack growth in thin-walled structures under plane stress (metal sheets,
aircraft skin) [2].

In order to simulate crack propagation, a regular FE-mesh made of equally large
elements along the crack path is necessary. Figure 7.3 provides an example. Suitable
FE-techniques for simulating crack propagation are addressed in Chap. 8. From the
numerical results of the deformed crack faces, a crack tip opening angle can be
determined, for example, in the manner shown in Fig. 7.3 [3]. Unfortunately, there
is no agreed definition for CTOA. Its assessment depends in a sensitive manner on
the chosen mesh and interpolation technique.

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 7.2 Determining the crack tip opening
displacement CTOD from the FE- analysis
of the crack at rest [1]

Fig. 7.3 Determining the crack tip open-
ing angle CTOA from the FE-analysis of the
crack in motion [1]

For three-dimensional crack configurations, the above-introduced techniques can
be applied analogously to every position of the crack front and the plane perpendicular
to it. Schwalbe [4] proposed another pragmatic technical measure of deformation near
the crack tip, the δ5-concept, which has become established.

7.3 Calculation of the J-Integral and its Meaning

7.3.1 Elastic-Plastic Extensions of J

Since the validity of the classic J -integral is restricted to (non-) linear elasticity theory
or plastic deformation theory (see Sect. 3.3.6), various extensions to incremental
plasticity theory and large deformations have been suggested. For further explanation
we resort directly to Chap. 6.

(a) Elastic-plastic contour integral

For two-dimensional crack problems, one obvious method is simply to evaluate
the Rice line integral (3.100) with the results of the elastic-plastic FE-analysis.

J (Γ ) =
∫

Γ

[
Ǔ epδ1 j − σi j ui,1

]
n j ds =

∫

Γ

Q̌1 j n j ds (7.7)

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_6
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Fig. 7.4 Difference between the total a and incremental b plasticity theories in loading and load
removal c

Unlike elasticity theory, now the total elastic-plastic stress work density Ǔ ep per
volume should be used instead of the elastic specific strain energy U (εi j ):

Ǔ ep(εi j , xk) =
εi j∫

0

σkl(ε̄mn) dε̄kl = U e(εe
i j ) + Ǔ p(xk) (7.8)

It is formed with the elastic and irreversible plastic strains dεkl = dεe
kl +dεp

kl , i. e. the
potential character is lost, which is why the quantity is marked with a check .̌ This
becomes understandable if we consider a loading and unloading process of ±�ε at
the material point as shown in Fig. 7.4a, b. Neither the stresses nor the stress work
density Ǔ ep are a unique function of the strains! In particular, the plastic component
Ǔ p(xk) is a function of the total loading history in the material point and must
therefore be conceived as an explicit function of the coordinate xk .

Many numerical results have shown that in the case of monotonously increasing
loading for stationary cracks and infinitesimal deformations J according to (7.7)
is independent of the integration path in very good approximation (The strict proof
only holds true in the case of proportional stresses). Thus, we can also shrink the
path Γ around the crack tip Γε → 0, where (with sufficient mesh refinement) the
HRR-solution is prevalent. The relevance of J as a characteristic parameter of the
HRR-field is thus retained. In the case of load removal or crack growth, J loses these
properties and is worthless.

(b) Path-independent formulation ˜J

Generally, in order to eliminate path-dependence, a domain integral over the
enclosed area A must be added to the line integral along Γ . We shall apply the same
formalism as in Sect. 6.2 to the integrands of (7.7) (see Fig. 6.2):

J (Γε) =̂
∫

Γε

Q̌1 j n j ds =
∫

Γ

Q̌1 j n j ds −
∫

A

Q̌1 j, j dA =̂ J̃ (7.9)

http://dx.doi.org/10.1007/978-94-007-6680-8_6
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If we subdivide the strains and stress work density into their elastic and plastic
components, the divergence leads to:

Q̌1 j, j = ∂Ǔ ep

∂x1
−���σi j, j ui,1 − σi j ui, j1 = ∂U e

∂x1
+ ∂Ǔ p

∂x1
− σi jεi j,1

= ∂U e

∂εe
i j
εe

i j,1 + Ǔ p
,1 − σi j (ε

e
i j,1 + ε

p
i j,1) = Ǔ p

,1 − σi jε
p
i j,1 (7.10)

Here, the relation ∂U e/∂εe
i j = σi j was used and homogeneous equilibrium condi-

tions σi j, j = 0 were assumed. Insertion into (7.9) yields the equivalent algorithm
for the sought near field value J (Γε):

J̃ := J (Γε) =
∫

Γ

[
Ǔ epδ1 j − σi j ui,1

]
n j ds −

∫

A

[
Ǔ p

,1 − σi jε
p
i j,1

]
dA (7.11)

The area integral thus quantifies exactly the difference between the two line integrals,
which are calculated around the crack tip Γε in the near field and along an arbitrary
outer path Γ through the far field. This correction term effects the path-independence
of the extended J̃ -integral for any load path in the context of the plastic flow theory.

The formal mathematical transformation of J (Γε) into a line-area integral J̃
changes nothing in its physical property! But what is the fracture-mechanical mean-
ing of J̃ ? The interpretation as a potential energy release rate must be abandoned
due to the dissipation component in Ǔ ep. However, we can conceive J̃ as an elastic-
plastic work rate during virtual crack propagation or as an energy flux that is supplied
across the contour Γε from outside to the crack tip. According to Eshelby, J (Γε)

is the configurational force associated with a virtual displacement of the crack tip,
while in the line integral over Γ also the displacement of the included plastic zone
(=̂ defects) is contained. Whether the integral J̃ for Γε → 0 converges towards a
finite value depends on the asymptotics of the crack tip solution. As proved already
in Sect. 3.3.6, this necessitates a 1/r -singularity in the stress work density Ǔ ep. This
condition is pretty satisfied in the context of the incremental plasticity theory for
stationary cracks assuming infinitesimal deformations. Considering finite deforma-
tions, the stress fields at the blunted crack tip-that now acts de facto like a notch-take
on finite values. Therefore, J̃ drops to zero in the near field of about r < 4 δt, and
becomes path-dependent (see example in Sect. 7.4.1).

The elastic-plastic formulation (7.11) can be readily generalized to the J -integral
vector Jk , if we replace x1 by xk :

J̃k =
∫

Γε

[
Ǔ epδk j − σi j ui,k

]
n j ds

=
∫

Γ

[
Ǔ epδk j − σi j ui,k

]
n j ds −

∫

A

[
Ǔ p

,k − σi jε
p
i j,k

]
dA (7.12)

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Likewise, the transformation into an equivalent domain integral (6.42) is possible as
shown in Sect. 6.4.1. In the 2D case, this leads with the weighting function q(x) to:

J̃k = −
∫

A

[
Ǔ epδk j − σi j ui,k

]
q, j dA −

∫

A

[
Ǔ p

,k − σi jε
p
i j,k

]
q dA. (7.13)

For three-dimensional crack configurations, we obtain in analogy to (6.47) for a
virtual crack propagation qk =̂ �lk the expression:

J̃ (s̄) = − 1

�A

⎧
⎨
⎩

∫

V

[
Ǔ epδk j − σi j ui,k

]
qk, j dV +

∫

V

[
Ǔ p

,k − σi jε
p
i j,k

]
qk dV

⎫
⎬
⎭

(7.14)

If there are volume, crack face or thermal loadings, the relations (7.13) and (7.14)
must be extended by the corresponding additional terms from (6.42) or (6.47). These
extensions of J were introduced by Moran and Shih [5] as well as Carpenter et al.
[6]. In the numerical realization, Eqs. (7.13) and (7.14) are favored (see Sect. 6.4).

(c) The incremental �T*-Integral

Atluri, Nishioka et al. [7, 8] have developed a path-independent integral T ∗, which
should be valid for static and dynamic crack problems with any inelastic material
law. The vectorial integral represents the sum of the increments�T ∗

k over the loading
history:

T ∗
k =

∑
�T ∗

k , �T ∗
k =

∫

Γε

�Q̌k j n j ds (7.15)

The increment of the energy–momentum tensor �Q̌k j = Q̌k j (t + �t) − Q̌k j (t)
takes on the concrete form:

�Q̌k j n j =
[
�Ǔ epδ jk − (σi j + �σi j )�ui,k − �σi j ui,k

]
n j

= �Ǔ epnk − (ti + �ti )�ui,k − �ti ui,k (7.16)

�Ǔ ep = (σi j + 1

2
σi j )�εi j

We pursue the same idea as in Eq. (7.9) for the correction of path-dependence with
the domain integral A, but this time applied to the increment �Q̌k j (7.16):

http://dx.doi.org/10.1007/978-94-007-6680-8_6
http://dx.doi.org/10.1007/978-94-007-6680-8_6
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∮

Γ −Γε

�Q̌k j n j ds =
∫

A

�Q̌k j, j dA

=
∫

A

{
�Ǔ ep

,k − [
(σi j + �σi j )�ui,k

]
, j − [

�σi j ui,k
]
, j

}
dA

=
∫

A

[
(σi j,k + 1

2
�σi j,k)�εi j − (εi j,k + 1

2
�εi j,k)�σi j

]
dA ,

(7.17)

whereby in the last step �Ǔ ep from (7.16) and (σi j + �σi j ), j = 0 were used. After
inserting Hooke’s law σi j = Ci jklε

e
kl only the plastic strains εp

i j = εi j − εe
i j remain.

We thus obtain a path-independent incremental line-area integral:

�T ∗
k =

∫

Γ

�Q̌k j n j ds−
∫

A

[
(σi j,k + 1

2
�σi j,k)�ε

p
i j − (ε

p
i j,k + 1

2
�ε

p
i j,k)�σi j

]
dA

(7.18)

The �T ∗
k -integral is de facto nothing else than the incremental form of the

J̃ -integral from (7.11), which is easily proved by integration over the loading history.
Conversely, in the numerical realization (7.12) of J̃ per load step, it is precisely the
operations (7.18) that are to be carried out and added. Thus, �T ∗

k does not differ
from J̃ with reference to the energetic interpretation as well. Corresponding three-
dimensional generalizations with volume and inertia forces are found in [7].

(d) Energy flux integral ̂J by Kishimoto

Kishimoto, Aoki and Sakata [9, 10] have put forwards so-called Ĵ -integrals,
which are based on the model of a fictitious fracture process zone AB as discussed
already in Sect. 3.3.8 (Fig. 3.48). Energy input into the process zone AB is calculated
by means of the flux integral F according to (3.280) over the boundary ΓB =̂ Γε
of the process zone or by means of the equivalent line-area integral (3.282) on an
external contour Γ . The authors [9] purposely employed only the elastic part U e for
the strain energy density in order to quantify the potentially available energy release
rate. The F- integral (3.282) leads, with U e

,1 = σi jε
e
i j,1 and the separation of the

plastic strain εp
i j , directly to the elastic-plastic Ĵ -integral

Ĵ =
∫

Γ

[
U en1 − σi j ui,1n j

]
ds +

∫

A

σi jε
p
i j,1 dA. (7.19)
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In contrast to J̃ (7.11), the plastic work Ǔ p is lacking in both the line and area integral.
The 3D extension is the disk integral indicated in Sect. 6.3.1 (Fig. 6.4), whereby now
instead of the thermal strains ε∗mn the plastic strains εp

mn would have to be inserted or
additionally included. With the volume forces b̄i , we obtain from (6.29) at position
s of the crack front:

Ĵ (s) =
∫

Γ

[
U eδ1 j − σi j ui,1

]
n j ds +

∫

A

[
σmnε

p
mn,1 − b̄i ui,1 − (σi3ui,1),3

]
dA

(7.20)
For numerical implementation, the term (σi3ui,1),3 is for reasons already mentioned
complex and disadvantageous compared to J̃ and T ∗.

In all elastic-plastic generalizations J̃ , �T ∗ and Ĵ terms appear in the surface
or volume integrals, where the stress work densities Ǔ ep, Ǔ p, plastic strains εp

i j ,
or stresses σi j must be differentiated with respect to the coordinate xk . In FEM
these quantities themselves result from the derivatives of the primary displacement
variables and are generally only available at the integration points. Therefore, their
derivatives are flawed with a high level of inaccuracy. Suitable interpolation and
differentiation techniques were described in Sect. 4.4.4. Another difficulty comes
from the fact that the mentioned fields exhibit in the plastic zone at the crack high
gradients, which must be differentiated again! Therefore, we need to take the utmost
care in the numerical calculation of these integral terms. Positioning the integration
paths Γ far from the crack does not help because the domain integrals nonetheless
comprise the entire included area-i. e. the inaccurate crack region as well.

It should also be mentioned that the above-introduced extensions of J have so far
not been implemented in any commercial FEM programs.

7.3.2 Application to Stationary Cracks

The elastic-plastic variants of J will now be investigated using the simple 2D example
of a tension sheet with an internal crack, paying special attention to the fracture-
mechanical interpretation. Figure 7.5 shows the FE-mesh and boundary conditions
for a quarter of the specimen from Fig. 5.1 with crack length a = 0.4 d. For the
material behavior, incremental plasticity with isotropic hardening was assumed. The
FE-mesh consists of 8-noded quadrilateral elements each with 3 × 3 integration
points. The crack tip is surrounded by the collapsed special elements with the 1/r -
singularity described in Sect. 7.1. The external tension σ is applied as a sequence
of four load and load removal steps as shown in Fig. 7.5. The figure also shows the
plastic zones in the crack region at load levels 1–4. We can clearly see that the crack
blunting CTOD is based on plastic deformations, since it hardly changes during the
load removal steps 1 → 2 and 3 → 4.

With the help of the FEM results, the Rice line integral J (7.7) and its path-
independent extension J̃ or T ∗ were calculated with (7.11), whereby for both

http://dx.doi.org/10.1007/978-94-007-6680-8_6
http://dx.doi.org/10.1007/978-94-007-6680-8_6
http://dx.doi.org/10.1007/978-94-007-6680-8_6
http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_5
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Fig. 7.5 a FE-model of a sheet with internal crack and b sequence of tensile loading
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Fig. 7.6 a J -integral and b J̃ -integral versus loading for the integration paths C2-C15

integrals the equivalent domain version was used in the form (7.13). As integra-
tion domains A, 15 semicircles around the crack tip were chosen, whose outer radii
correspond to the integration paths Γ . Figure 7.6 a proves quite clearly that J is nearly
path-independent in the 1st load step, which rises monotonously. In the further course,
especially during load removal, drastic differences arise between the J -values of the
various paths. In contrast to this, the J̃ -integral yields identical values on all paths,
even during unloading (see Fig. 7.6b). The difference between J and J̃ consists pre-
cisely in the second integral of (7.13), with which the path-independence of J̃ or T ∗
was achieved . This means, deviations between the paths are of basic nature for J ,
whereas for J̃ they must be ascribed to numerical inaccuracy!
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7.3.3 Application to Moving Cracks

Formally, all previously introduced elastic-plastic integrals J , J̃ , T ∗ and Ĵ can also be
applied to cracks that propagate quasi-statically in ductile materials. However, their
physical meaning must be scrutinized carefully. To elucidate this further, let’s return
to the model of a fracture process zone AB discussed in Sect. 3.3.8, which moves with
the crack tip (Fig. 3.48). A fixed material point, over which the crack moves away
with the process zone, necessarily experiences a non-proportional plastic loading
and subsequent elastic unloading phase. For this reason, the classical J -integral is
unusable. The extended line-area integrals J̃ , T ∗ and Ĵ are indeed path-independent,
but their actual value must become zero in the context of continuum-mechanical
modeling, since with an asymptotic approach Γε → 0 towards the crack tip, we
encounter the weak logarithmic singularity (3.261) at the moving crack. Thus, these
integrals are worthless as fracture-mechanical intensity parameters in the case of
crack propagation.

We will therefore investigate the energetic interpretation. Energy is supplied to
the process zone AB from the surrounding continuum across its boundary ΓB . This
prevailing irreversible energy flow is characterized by the flow integral F (3.280)
across ΓB , which can be converted into a path-independent integral (3.282) over an
external contour Γ and the enclosed area A. Moran and Shih [5] have shown that J̃ ,
T ∗ and Ĵ are more or less special cases of the flow integralF derived by them for crack
propagation. Now, the choice of model for the process zone is decisive. If we stay with
the continuum-mechanical / plasticity theory, the energy flux F ≡ J̃ ≡ T ∗ ≡ Ĵ will
inevitably become zero because the process zone ΓB = Γε → 0 is only a singular
point-the crack tip. Various authors [11, 12] have tried to introduce a process zone AB

of finite size, which either moves with the crack tip unchanged as a whole or elongates
with the crack as a strip (see Fig. 7.7). Then the T ∗- or Ĵ -integral is calculated along
its fixed boundary ΓB =̂ Γε 
= 0, which actually provides a finite, path-independent
J -integral value during ductile crack propagation. Yet this value is a function of
the arbitrarily set contour size ΓB and thus is not a true fracture parameter but
rather only an artifact of the model. Consequently, it was shown in [13] that with a
shrinking process zone size ΓB → 0, the T ∗-integral (as well as J , J̃ and Ĵ ) vanishes

BΓ
BΓ

BA

BΓ

(a) (b) (c)

Fig. 7.7 Fictitious process zones as a co-moving or b strip-shaped contour ΓB , c true physical
model of a process zone

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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towards zero. The true cause of this calamity is again the continuum model itself,
i. e. the process zone AB may not be defined merely fictitiously as an integration
contour, but must be discretely represented with other material-mechanical models!
For example, a simple linear form of the process zone is the cohesive zone model,
which is addressed more closely in Chap. 8. Modern damage-mechanical models
are well-founded on material’s microstructure and physics. They allow to describe
failure mechanisms in a realistic process zone AB of finite extension. Then, a genuine
physical meaning is attributed to ΓB , and the flux integrals F or J̃ , T ∗ and Ĵ become
meaningful.

Note: In case the classical J -integral (7.7) is still used for ductile crack
growth, because the FE-code has no other options for example, the following
must be taken into consideration: As soon as the crack has left the restricted
J -controlled initial phase, J becomes extremely path-dependent and does
not arrive at a finite saturation value with paths placed more tightly around
the crack tip Γ → 0. Instead, this »crack tip value« Jtip = J (Γ → 0)

becomes zero! If we wish to establish a relationship with testing standards for
J -�a-curves as presented in Sect. 3.3.8, then the outermost converging inte-
gration paths Γ must be used [13, 14].

7.4 Examples

7.4.1 Compact-Tension Specimen

The FE-techniques introduced above will be first clarified using the 2D example
of the compact tension specimen (see Fig. 3.12). The test body investigated has the
following dimensions: width w = 50, height h = 60, thickness B = 25, crack length
a = 30 (everything in mm). A state of plane strain is assumed. Due to symmetry, only
the upper half is meshed, and on the ligament in front of the crack the displacement
u2 = 0 is set. Figure 7.8 shows the utilized FE-mesh, which was designed according
to the recommended rules for elastic-plastic analyses of cracks at rest. Thus, 16
collapsed quadrilateral elements were placed around the crack tip (see Fig. 7.9). The
size of the elements was L = 0.05 mm = 0.00167 a. This was followed by a very
fine discretization of the entire specimen.

http://dx.doi.org/10.1007/978-94-007-6680-8_8
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 7.8 FE-mesh of the CT-specimen (561 quadrilateral 8-noded elements, 1821)nodes

Fig. 7.9 Mesh at crack tip with 16 collapsed
crack tip elements
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Fig. 7.10 Yield curves for the CT-specimen
and the plate tension test

Note: In elastic-plastic analyses, we have to mesh with sufficient fineness not
only the crack area but also all those areas in which the plastic zone is formed.
Otherwise the global plastic deformations and fracture parameters such as the
J -integral will be underestimated.

The CT-specimen is loaded through bolts in pin holes by the force F , which
actually represents a contact problem. For the sake of simplicity, the bolt is modeled
as a firmly fixed quadrant at whose tip the loading is imposed. In order to avoid
unrealistic, exaggerated plastic strain at the force application point, purely elastic
material properties with a high elastic modulus are assigned to the quadrant.
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Note: In elastic-plastic problems, individual forces or bearings should never be
set at only one node but should rather be applied by means of contact models
or elastically stiffened sub-domains. Also, it is more advantageous to impose a
monotonously increasing displacement instead of the force because in this way
the convergence of the solution algorithm above the limit load is simplified.
The magnitude of force is obtained from the bearing reaction at the point of
action.

In the example of the CT-specimen, a x2-displacement q is prescribed from 0 to
1 mm. The material is a ductile steel with the yield curve shown in Fig. 7.10 (yield
stress−plastic strain) as well as E = 210000 MPa and ν = 0.3. Figure 7.11 a shows
the formation of the plastic zones with increasing loading drawn on the deformed
model. First, a limited plastic zone is formed at the crack tip, which then propagates
completely across the ligament to a plastic hinge. The plastic limit load FL is hereby
reached, which leads to a flattening of the force-displacement curve (Fig. 7.13). The
sequence of Fig. 7.11b illustrates the shape of the plastic core zone (εp

v > 0.5 % =̂
grey) directly at the crack.

Deformations at the crack tip are depicted in Fig. 7.12a, b, where we distinguish
between a geometrically linear and a non-linear analysis. Considering large deforma-
tions, the blunting of the crack tip as a result of plastically highly strained elements is
modeled much better than with infinitesimal strains. For this reason, a geometrically
non-linear analysis is absolutely necessary to determine the crack tip opening pre-
cisely, whereas the global deformation behavior is hardly affected, as Fig. 7.13 proves.
Numerical effort increases considerably (in this example, by a factor of four) in the
case of large deformations due to the finer load-step incrementation required.

The J -integral is calculated according to Eq. (7.13) (without correction terms) on
15 element rings around the crack tip having a distance of R = 0.0016 − 0.2 a.
The results are again shown for a geometrically linear and non-linear analysis in
Figs. 7.15a, b. In the SSY range, J grows quadratically with loading q, but for LSY
a linear relation is observed. Assuming small deformations, J is independent of
the integration path. If large deformations are being considered on the other hand,
we observe a strong path-dependence. In particular, the values of the paths lying
very close to the crack tip clearly decline because the 1/r -singularity in the specific
stress work density Ǔ is lost due to crack blunting. As we found in Sect. 7.3, under
these conditions only the Jff calculated from the far field provides a meaningful
fracture-mechanical parameter in the context of EPFM. It is thus necessary to deter-
mine the J -values from contours as far as possible from the crack tip or from the
associated domain integrals. There the integrals also converge towards a common
value (Fig. 7.15b) Jff, which agrees with J from the geometrically linear analysis
(Fig. 7.15a).
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(a) (b)

Fig. 7.11 Shape of the plastic zones in the CT-specimen at loading stages q = 0.1, 0.22 and 1.0 mm.
a general view (left), b crack region (right)

(a) (b)

Fig. 7.12 Blunting of the crack tip in the FE-model assuming a small and b large strains
(scale 1 : 1)
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Fig. 7.15 The J -integral as a function of loading with a small and b large deformations

7.4.2 Tensile Plate with Surface Crack

In the context of a testing program [15], strip-shaped segments were separated from
a pipe DN800 and tested with the tensile test (see Fig. 7.16). Semi-elliptical surface
cracks with the axial ratio a : c = 1 : 3 were placed in the center of the inner surface
of these plate tension specimens. Three different crack sizes a : c = 3 : 9, 6 : 18 and
9 : 27 mm were prepared, which amount to 0.25, 0.5 and 0.75 of wall thickness h.

Since the tension specimen, its loading and bearing conditions have two planes
of symmetry, the center plane and the longitudinal plane, only the quarter hatched
in Fig. 7.16 needs to be modeled. This area was meshed with 20-node hexahedral
elements, whereby an extreme refinement in the crack region was carried out in
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Fig. 7.16 Tension plate specimen with semi-elliptical surface crack (in mm)

order to calculate the inhomogeneous stress and deformation state arising there with
sufficient precision. In total, the FE-model consisted of 6585 hexahedral elements
and 31954 nodal points. Figure 7.17b provides a general view of the FE-model. The
boundary conditions of the tension specimen correspond to the standard bearing and
symmetry conditions.

The curved pipe segments were clamped with clamping jaws and stretched. We
therefore assume in the FE-model that the contact areas between the specimen and
the clamping jaws (gray fields in Fig. 7.16) move rigidly in the longitudinal direction,
i. e. monotonously growing, identical node displacements U3 are applied here. In the
FE-calculation, the tensions for all load increments result from the reaction forces at
the clamping jaws. The isotropic elastic-plastic material behavior of the steel S355
was determined with the help of standard tension specimens taken from this pipe
section. The obtained yield curves (yield stress−plastic strain) are shown in Fig. 7.10.
Further material parameters included: Rp0,2 = 472 MPa, Rm = 610 MPa, E =
210000 MPa and ν = 0.3. In the FE-calculation, the influence of large deformations
on the geometry and loading was taken into consideration.

Figure 7.17a shows a detailed view of the mesh of the half crack configuration
for crack depth a:c = 6:18. Similar discretizations were generated for the two other
crack depths a:c = 3:9 and a:c = 9:27. Along the crack front, the elements were
concentrated in a fan-shape in a tube of 20 segments. The smallest elements directly

(a) (b)

Fig. 7.17 a FE-mesh at the crack tip 6:18, b general view of the meshed model
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(b)(a)

Fig. 7.18 Elastic-plastic deformation and v. Mises-stress of the tension specimen with crack 6:18.
a Detailed view of the crack b general view

at the crack tip have a length of L = a/50. Along the entire crack front, special crack
tip elements with a 1/r -strain singularity are arranged, for which 20-node hexahedral
elements collapsed to pentahedral elements are used. To calculate the J -integral, four
integration paths were defined around each segment of the crack front. In this way,
J (s) can be determined along the crack front s for the entire loading course. The
calculation results show that the J -vales are nearly independent of the integration
path. Only the narrowest path declines somewhat for known numerical reasons, which
is why the average value of the three outer paths was taken as the result for J .

Figure 7.18b represents a general view of the deformed tension specimen with
crack a:c = 6:18 and Fig. 7.18 a a detail near the crack front. The colors correspond
to isoareas of the Mises equivalent stress. All stresses above the yield strength Rp0,2
indicate plastified domains. As a whole, the calculation results lead to the following
conclusions:

• All specimens reach the fully plastic state. Proceeding from the cracks, pronounced
plastic zones arise that extend diagonally over the entire cross-section, as is visible
in Fig. 7.18b.

• Excess of the plastic limit load FL is characterized by a distinctive kinking of
all force-elongation curves of the tension specimens. As long as plastification is
restricted by the surrounding elastic domain, the curves progress almost linearly.
This is especially noticeable in the case of the calculated crack opening displace-
ments (COD) of the cracks on the specimen surface (see Fig. 7.19). Notch opening
(compliance) understandably increases with crack size. At the same time, the tran-
sition from elastic to fully plastic state becomes softer. The crack opening (COD)
is an important measured variable, from which often the crack tip opening (CTOD)
is extrapolated.

• The cracks are heavily blunted via plastic deformations, as we can see in Fig. 7.18a.
The crack tip opening δt was evaluated using the secant method (±45◦) at all
positions s of the crack front on perpendicular sectional planes of the FE-mesh.
The maxima occur on the apex of the semi-elliptical cracks and are plotted in
Fig. 7.20 versus tensile force. Also included is the fracture toughness CTODi =
δSZH

i = 142μm. At this value ductile crack growth should initiate according to
the CTOD-criterion.
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According to the J -integral concept of ductile fracture mechanics, stable ductile
crack growth starts, when the value of J exceeds the physical initiation parameter
Ji (J > Ji ). Figure 7.21 shows the calculated J -integral values along the crack
front as a function of load (steps). The maximum J -values arise in each case at the
apex of the semi-elliptical crack front. Figure 7.22 summarizes the maximum values
Jmax for all three crack configurations. A moderate increase of J can be observed in
the range of limited plastic deformation (SSY). As soon as the tension exceeds the
corresponding plastic limit load, the values of J increase sharply in all three analyzed
cases. For comparison, the fracture toughness parameter Ji = 143 kJ/m2 is plotted in
Fig. 7.22. Thus, the fracture criterion provides the critical forces Fi or elongation U3
of the specimens for a crack initiation: crack 3:9: Fi = 814 kN, U3 = 6.8 mm, crack
6:18: Fi = 779 kN, U3 = 1.53 mm, crack 9:27: Fi = 686 kN, U3 = 1.31 mm. With
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increasing crack length, a smaller force Fi or a larger elongation U3 is necessary to
initiate crack growth.

The predictions of elastic-plastic FE-analyses regarding crack initiation were
confirmed by the experimental results of the plate tension tests [15].
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Chapter 8
Numerical Simulation of Crack
Propagation

Prediction of the crack propagation process is of great importance for many fracture
mechanical issues. Numerical simulation offers outstanding possibilities and has
become an indispensable tool in performing this task. In particular, there is high tech-
nical interest in modeling subcritical growth of fatigue cracks, stable crack growth in
ductile materials and unstable dynamic fracture processes. As explained in Sects. 3.2–
3.5, fracture mechanics provides criteria and principles for these cases that specify:

• at what load level crack propagation starts,
• in what direction θc crack propagation occurs,
• how large the amount �a of crack propagation is.

Thus the object of numerical simulation is to implement these laws in the con-
text of the finite element method by appropriate solution algorithms. Within the
framework of continuum mechanics, crack propagation means a change of the BVP,
because thereby new boundaries (crack faces) are generated with altered conditions.
Consequently, in the FEM analysis we are faced with the problem that the spatial
discretization has to be cut and adapted consecutively for the propagating crack. For
this purpose various techniques have been developed, some of which are presented
and discussed below.

In this procedure, crack propagation is usually modeled as a temporal sequence
of BVP with discrete, growing crack lengths ai , and a material separation along the
crack increment �ai is assumed as discontinuous (sharp discontinuity). Of course,
in reality the crack propagation occurs continuously, and the failure of the material
in the process zone is a continuous process, too. Some numerical approaches try
to simulate these phenomena as well. To avoid any misinterpretation, one has to
distinguish clearly between the material model and the numerical technique, although
both are closely intertwined in the simulation.
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Fig. 8.1 Schematic representation of node separation for a symmetric and b general loading

8.1 Nodal Release Technique

The simplest method to simulate crack propagation in a FEM-mesh consists in a
disconnection of a node, so that the crack is enlarged by an increment �a along the
element edge up to the next node. This is shown in Fig. 8.1 both for the symmetrical
mode I case and the general mixed-mode loading case. Under mode I (Fig. 8.1a)
crack propagation proceeds always along a symmetry line, so that only the bond
of the normal displacement has to be released at the crack tip node. In the general
case (Fig. 8.1b) the crack tip node and the element edge must at first be doubled on
�a and afterwards separated, i. e. an additional node appears in the FEM-model and
the nodal correlation of crack elements A and A′ has to be modified. At the highly
loaded crack tip node there exists in terms of FEM an equilibrium of forces, which
after separation has to be split into a couple of equal and opposite directed forces F
(case b) or one reaction force (case a). An abrupt canceling of these binding forces
would lead to a spontaneous unloading in the crack tip region, which is physically
not correct and might cause numerical problems. Therefore it is advisable to run the
unloading process gradually. In Fig. 8.2 well-tried functions are depicted that lower
the force F from its maximum initial value F0 down to zero, which implies a shifting
of the true crack tip position x/d.

Let us assume that in the course of a FEM analysis the fracture criterion is reached
at the current crack tip. For the required direction θc the best possible orientation
is selected in the FEM mesh. The amount of crack propagation �a is linked to the
element size L . Then the algorithm of nodal release technique follows:

(a) Freeze (keep constant) the external loads
(b) Determine the sectional force F0 from the bearing reaction (case a) or with the

methods described in Sect. 5.5.2 d) (case b)
(c) Release the nodal bonding (mode I case a) or introduce a double node (mixed-

mode case b) at the crack tip

http://dx.doi.org/10.1007/978-94-007-6680-8_5
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Fig. 8.2 Continuous unloading of the reaction force at the crack tip node

(d) Replace the kinematic bonds at the crack tip node by an equivalent sectional
force F0

(e) Release stepwise the force from F0 to zero, in this way making the crack faces
stress-free

(f) Check, whether the fracture criterion is fulfilled at the new crack length:

yes → unstable crack propagation, goto point2

no → continue the FEM-analysis with next load step

Actually, the technique of nodal release can then be applied only if the path of
crack propagation is known in the structure. In this case the elements of the mesh
can be arranged in an appropriate manner with respect to the required size and
orientation. Otherwise the solution becomes strongly mesh-dependent. The tech-
nique is particularly suitable in combination with standard finite elements, which is
why the fracture parameters need to be determined with robust methods such as the
J -integrals. Nevertheless, the technique is useful for a known fracture path, whereby
the kinematics of crack propagation is retraced in the simulation to calculate the
stress state at the crack. This approach is often applied to analyze fracture mechanics
specimens in order to determine the corresponding fracture mechanics parameters
(J -integral, K -factors, CTOD et al.) from the measured relationship between crack
length (usually mode I case) and load (force or displacement) by means of simula-
tion. It is important to note that the energy dissipation by the fracture process itself
is not taken into account by the nodal release technique introduced here !

8.2 Techniques of Element Modification

8.2.1 Element Splitting

A more powerful but elaborate technique for the FEM simulation of crack propa-
gation is the splitting of finite elements. Depending on element type and problem
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statement there exist many variations. The methodology will be exemplified at a
two-dimensional discretization with six-node triangular elements. The starting point
is again a critical crack of length a at the position P in the current FEM mesh. The
direction θc and amount �a of crack propagation are given by fracture mechanics.
Therefore, the new position Pnew of the crack tip in the FEM mesh is known and
has to be realized precisely by element divisions. This goal can be achieved by var-
ious subdivision algorithms that are illustrated in Fig. 8.3. Hereby, from a »father
element« two or four »child elements« are created of the same type, whereas the sur-
rounding elements are kept unchanged. The combination of algorithms is illustrated
in Fig. 8.4 as an example with a typical mesh. The newly added elements are drawn
as dashed lines.

The element splitting technique allows the exact numerical simulation of crack
paths to be well-founded by fracture mechanics, which is a great advantage. As
a disadvantage the inevitable interference in the data structure of the FEM model
has to be mentioned, which is relatively complicated and requires availability of the
source code. Moreover, for inelastic material behavior the stresses and state variables
must be transferred from the solution of the »father elements« to the newly generated
»child elements«. For 3D crack configurations this technique turns out to be quite
difficult due to the spatial geometry and topology [1].

newP
newP newP

Fig. 8.3 Various algorithms to subdivide triangular elements
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Fig. 8.4 Sample application for the technique of element splitting
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8.2.2 Element Elimination Technique

In this technique, the propagation of a crack is simply realized in such a way that
the most highly stressed finite element at the crack tip is removed from the FEM
model. Many commercial FEM-programs offer a so-called element elimination tech-
nique or element death option. As failure criterion any strength hypothesis can be
selected out of classical engineering mechanics (v. Mises, maximum principal stress,
…), fracture mechanics (K , J , δ, …) or damage mechanics (microcrack density,
porosity, …). The impressive simplicity of this technique is opposed to various dis-
advantages. Obviously the result of simulation depends on the size of the finite
elements and on the shape of the FEM-mesh. The smaller the elements at the tip of
the main crack, the higher is their stress and the sooner their failure. What is more cru-
cial, both the balance equation of energy (no dissipation) and the mass conservation
are violated.

The method is therefore less suited for simulating the propagation of macro-
cracks, where dominant singularities prevail, but is better used for modeling of
various damage mechanisms in the microstructure of a materials such as e. g. the
formation of microcracks or the growth of micropores. Figure 8.5 shows a typical
application of the element elimination technique to a tool steel with brittle carbide
particles [2]. The considered cut-out of the microstructure 100×100 µm was repro-
duced in fine detail with finite elements. With increasing load, microcracks appear
at the carbides and coalesce later to form a macrocrack.

Fig. 8.5 Simulation of crack propagation in
a tool steel using the element elimination
technique [2]

n t

nnσ
ntτ ttσ

d

L

∼

Fig. 8.6 Simulation of facture by means of
adjusted orthotropic material stiffness
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8.2.3 Adapting Element Stiffness

This technique has been developed to model fracture processes in brittle materials
such as concrete, stone or ceramic. For it the name smeared crack model was coined,
which is best interpreted as a homogenized microcrack model. If in those materials
the maximum principal stress exceeds a critical tensile strength then a narrow band
of microcracks is formed perpendicular to the principal stress direction as outlined in
Fig. 8.6. Since the material can carry only low tensions σnn in the normal direction,
an orthotropic anisotropy of the elastic properties appears, characterized by the basis
vectors (n, t) in the normal and tangential directions with respect to the microcrack
band. The reduced material stiffness values are described in this coordinate system
using a modified elasticity matrix (see (4.46)), which has the following form for a
plane stress state:

σ = C̃ε,

⎡
⎣
σnn

σt t

τnt

⎤
⎦ = 1

1 − ν2

⎡
⎣

(1 − ω)E 0 0
0 E 0
0 0 μ (1−ν)

2 E

⎤
⎦
⎡
⎣
εnn

εt t

γnt

⎤
⎦ (8.1)

E and ν denote the elastic constants of the intact material. The density of the
microcracks is specified by a damage variable ω(ε) that evolves with deforma-
tion ε from the value ω = 0 (undamaged initial state) up to the final value ω = 1
(total failure). Thus the modulus of elasticity in the normal direction diminishes with
growing damage from the initial value E down to zero, whereas in the direction
tangentially to the microcrack band the stiffness sustains unaltered, see (8.1). Due to
surface roughness and material bridges between the crack faces, the shear stiffness
of the microcrack band does not disappear completely under mode-II loading, but is
reduced in (8.1) by a shear correction factor μ ≈ 0.2. Further details can be found
in [3, 4].

In order to implement this technique in the FEM-algorithm, only the elasticity
matrix C in the integration points of the involved elements must be exchanged by the
modified matrix C̃(σ, ω) and be transformed into the global x coordinate system.
The FEM mesh does not need to be changed, which is the great advantage of this
approach. On the other hand, a disadvantage consists in a certain mesh dependency, in
particular the width d of the microcrack band is determined arbitrarily by the choice
of element size L . In contrast to the technique of element splitting, where the crack is
represented by a sharp geometric discontinuity, material separation is modeled in this
method as a geometrically continuous transition inside the microcrack band, which
corresponds to an extreme localization of strain εnn on the macroscopic level. The
technique of adjusted element stiffness was successfully applied mainly in fracture
mechanics of concrete [5].

http://dx.doi.org/10.1007/978-94-007-6680-8_4
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8.3 Moving Crack Tip Elements

A disadvantage of the previously described techniques is that only regular finite
elements are employed. Of course, the use of special crack tip elements (see Chap. 5)
would be far more advantageous and precise. This requires however a different tech-
nique, because these special elements always surround the crack tip and thus must be
moved with it. Various variants of local entrainment of crack tip elements in a FEM-
mesh are known that have been developed by Nishioka [6] in particular for dynamic
crack problems. Figure 8.7 illustrates the procedure in the example of a mode-I crack
propagation along a line of symmetry. The region moving with the crack tip elements
is denoted by A, region B comprises the adjacent regular elements to be modified and
C describes the remote unchanged mesh. As the sequence of images shows, the local
adaptation of the mesh is exclusively made in region B, which then jumps forward
by an »element grid«. As a crack tip element, either a hybrid element (Sect. 5.3) or a
quarter-point element (Sect. 5.2.2) can be used, which enables an exact calculation
of the stress intensity factors despite very coarse meshes, because of their built-in
crack singularities.

Besides this essential advantage, the technique of moving crack tip elements dis-
tinguishes itself from other methods by the fact that the length of the crack increments
�a is not linked with the FEM discretization but can be adjusted continuously on
the desired size. With some hybrid elements, the increment �a can even be varied
in the element itself, see Fig. 5.15. These benefits are paid for by a higher effort of
continuous remeshing, i. e. at least in region B the new element stiffnesses have to be
built and assembled. Certain limitations result from the fact that powerful crack tip
elements are only available for static and dynamic crack problems in LEFM. In other
cases (e. g. EPFM) the region A also has to be discretized with standard elements.

With negligible additional effort this technique can also be extended to curvilinear
crack propagation under mixed-mode loading. Figure 8.8 shows an example of a
circular core region A enclosing the moving crack tip by quarter-point elements,
which is connected to the outer network by a transition region (B) of concentric ring

BB B B

B B

B B B B

B B

B B B B

B B

B B B B

B BA A A A

C

C

C

C

C

C

C

C

hybrid element quarter - point elements regular elements

Fig. 8.7 Simulation of crack propagation under mode-I by shifting special elements with the crack
tip

http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_5
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Fig. 8.8 Simulation of crack propagation under mixed-mode loading using moving quarter-point
elements in a circular region [7, 8]

global adapted
FEM - mesh

FEM - mesh
local submodel

Fig. 8.9 Combined technique of global crack discretization and local submodel with a special
element arrangement for crack analysis [10]

elements [7, 8]. For the mesh adaptation one can take advantage of automatic mesh
generators such as DeLaunay-algorithm [9] for triangles.

An interesting technique for mixing of standard and crack tip elements was pro-
posed in [10] for plane and spatial crack propagation. A simple remeshing strategy
for regular elements is combined with the better accuracy of crack tip elements. The
algorithm is explained in the following with reference to Fig. 8.9:

(a) Remeshing of the crack region with standard elements (2D triangles or 3D tetra-
hedrons) for the current crack increment

(b) Perform a FEM-analysis with this global mesh
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(c) Define a submodel around the crack tip that consists of optimal arranged elements
(regular 2D quadrilaterals or 3D hexahedrons or corresponding quarter-point
elements, respectively)

(d) Transfer the displacement field from the global analysis to the boundary nodes
of the submodel

(e) Perform a FEM-analysis with the local submodel and determine the fracture
parameters either by applying the crack closure integral (Sect. 5.5) or the quarter-
point rule (Sect. 5.2.3).

8.4 Adaptive Remeshing Strategies

8.4.1 Error-Controlled Adaptive Meshing

In the previous Sect. 8.3, we used an automatic meshing of the whole crack config-
uration or selected regions performed by means of conventional mesh generators.
In contrast to that we call it an adaptive meshing, when the algorithm performs an
adaptation of the discretization on the basis of the FEM-solution itself. This requires
a criterion to decide on a local refinement or coarsening of the mesh based on a mea-
sure of the numerical quality at every location. For this purpose, there exist various
a posteriori error estimators, see e. g. [9, 11], which either use an energy error norm
between the local FEM-result and a global improved FEM-based approximation or
which evaluate the residuals of field quantities on the element boundaries S̃e. Since
in the displacement-based FEM the tractions on the edges between neighboring ele-
ments are not exactly reciprocal (4.6) but show a discontinuity (see Fig. 4.2), the
quadratic norm of the traction jump �ti = t+i + t−i = (σ+

i j − σ−
i j ) n j is employed as

error indicator for each element e:

η2
e =

NK∑

k=1

lk‖�ti‖2. (8.2)

Hereby, the sum is taken over all NK edges S̃e of an element weighted by their length
lk . The total error of the numerical solution obtained with the given discretization is
estimated by the mean value of all elements

η =
√√√√

ne∑

e=1

η2
e . (8.3)

Now, the adaptive modification of the mesh is controlled by comparing the local
element error with the mean value. Elements with errors above average η2

e > αfeinη
2

will be refined (αfein ≈ 0.8), while elements with low error η2
e < αgrobη

2 will be

http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_4
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coarsened again (αgrob ≈ 0.001). This way, an error-controlled gradual improvement
of the discretization is achieved in a series of FEM analyzes, until the total error
indicator η is below a tolerance limit.

The adaptive meshing algorithm can be realized very effectively in combination
with an iterative FEM-solver (e. g. conjugate gradient method), if the data structures
and results of the previous refinement step are used for preconditioning [12].

8.4.2 Simulation of Crack Propagation

If the adaptive meshing algorithm is applied to crack problems, then the FEM-mesh in
the crack tip region will be automatically refined in a very comfortable manner, since
here the local error of the numerical solution is highest due to the stress singularity.
To calculate the stress intensity factors, in principle all FEM-techniques explained
in Chap. 5 can be used. Since the automatically generated mesh mostly consists of
triangular elements with a rather irregular arrangement around the crack tip, the
calculation of J as an equivalent domain integral is best suited. In the case of mixed-
mode loading it is recommended to employ the interaction integral presented in
Sect. 6.7.2 in order to separate KI and KII. When should the successive adaptive
refinement at the crack be terminated? Experience has shown, that monitoring of
the convergence behavior of the J -integral or K -factors is advisable to control the
quality of the mesh in terms of fracture parameters. If the relative improvement of
the results is below a prescribed empirical limit, the solution is accurate enough.

The thus obtained FEM-solution forms the basis to go forward to simulate crack
propagation, i.e. to decide on the size and the direction of the crack increment.
Thereupon, a mesh modification follows, which is best done by element division
according to Sect. 8.2.1. Starting with the modified mesh of the extended crack,
thereafter a new FEM-solution is calculated using the adaptive remeshing technique.
The complete algorithm for the crack propagation analysis in combination with the
adaptive refinement technique is listed in Fig. 8.10.

As an example the crack propagation in a symmetric tensile specimen is examined,
which is loaded in mode I by a prescribed opening displacement on its left side, see
Fig. 8.11. The computation starts with a very coarse mesh, cf. Fig. 8.11a. The error-
controlled algorithm generates an extremely refined mesh at the crack, so that a
sufficiently accurate calculation of the KI-factor is ensured. Please note that the
discretization is also improved at the highly stressed left corners on top and bottom,
cf. Fig. 8.11b. The Figure 8.11c and d represent the mesh in various stages of crack
propagation. The mesh refinement during the crack propagation can be seen very
clearly. After the crack has left its earlier position behind, the discretization at the
old crack tip is even coarsened again.

http://dx.doi.org/10.1007/978-94-007-6680-8_5
http://dx.doi.org/10.1007/978-94-007-6680-8_6
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Fig. 8.10 Schematic of crack propagation simulation in combination with an adaptive, error-
controlled remeshing strategy

(a) (b)

(d)(c)

Fig. 8.11 Example of an adaptive FEM-simulation of crack propagation in a tensile specimen: a
Initial mesh, b refinement at initial crack length, c–d propagation
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8.5 Cohesive Zone Models

8.5.1 Physical Background

The idea of a cohesive zone model is based on the assumption that the material’s
failure process during fracture occurs only in a narrow strip-shaped zone in front of
the main crack. According to this approach the damage of the material until its final
separation takes place primarily in this limited region, while the rest of the body
obeys the common laws of deformation and remains free of damage.

The first model of this kind came from Barenblatt [13], who considered the atomic
interaction forces across the faces of an opening crack and referred to this region as
cohesive zone. In this physically motivated approach the failure is modeled continu-
ously. As a consequence the unrealistic stress singularities at the crack tip disappear,
which is an essential property of all cohesive zone models. A similar model was
developed by Dugdale [14] to simulate a strip-shaped plastic zone ahead of the crack
in ductile metal sheets, see Sect. 3.3.3.

Meanwhile, the cohesive zone model has gained widespread applications, which
are mainly motivated by typical phenomena of material failure in a narrow band. Thus,
in ceramic materials or concrete [5] material bridges can be observed
transmitting some forces across the crack faces (Fig. 8.12). Characteristic phenomena
of this kind are also present in fiber-reinforced materials or polymers, where interac-
tion forces are formed by fiber pullout or by stretched molecular chains (crazes). Also
the process zone in ductile fracture can approximately be reduced to a narrow band,
where as the result of formation, growth and coalescence of microvoids, a geometric

cσ
cδ

stress - free crack bridges

a czl
czΓ

a czl

Fig. 8.12 Examples of using cohesive zone models: Brittle heterogeneous materials, ductile dimple
fracture, fiber reinforced composites (lcz—length of the cohesive zone)

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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softening of the remaining ligaments occurs, see Fig. 8.12. Further applications of
cohesive zone models are found in adhesive compounds or welded joints. Espe-
cially in conjunction with numerical FEM-calculations, cohesive zone models have
achieved great importance, since they allow us to easily simulate crack propaga-
tion processes. For the first time Needleman [15] has in this way modeled crack
propagation in ductile materials by FEM.

The central point of all cohesive zone models is the function that describes the
interaction force between the two interfaces (crack faces). This law represents a
real local material property that is independent of the external load. The so-called
cohesive law or separation law is usually a relation between the boundary tractions σ
and the separation δn = u+

n −u−
n of the interfaces, i. e. the distance between the crack

faces. Meanwhile, many proposals for cohesive laws exist in the literature, which
differ according to various materials and failure mechanism, see e. g. the overviews
of Brocks and Cornec [16, 17]. Some typical shapes are shown in Fig. 8.13. Initially,
the stress increases with growing distance up to a maximum that is called the cohesive
strength σc of the material. If the separation has reached a critical decohesion length
δc, then the material is completely separated and no stress can be transmitted.

Integrating the separation law up to failure δc yields the area under the curve
that corresponds to the dissipated work during a material’s separation—the specific
fracture energy per surface area Gc = 2γ as introduced by Griffith.

Gc =
δc∫

0

σ(δn)dδn energy of separation (8.4)

According to Sect. 3.2.5 the separation energy has to be supplied by the local energy
release rate �Wc of the system as expressed by the relationship (3.84). On the other
hand, one can evaluate the J -integral =̂ Jtip via (3.100) directly at the crack tip, for
which the integration path is placed along the boundary Γcz of the cohesive zone, see
Fig. 8.12. Thus, the first term in (3.100) with U vanishes. For pure mode-I loading
the second term contains only the product of normal stresses −σ22 = σ(δn) and
opening displacements u+

2 of the upper crack face, which is repeated with opposite
sign (u−

2 = −u+
2 , +σ22) at the lower crack face. With δn = u+

2 − u−
2 we get:

σσ σ

cσ
cσ cσ

0δ cδ nδ
1δ 2δ cδ nδ

1δ cδ nδ

cG cG
cG

(a) (b) (c)

Fig. 8.13 Typical forms of separation laws

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Jtip =
∮

Γcz

(
−σi j

∂ui

∂x1

)
n j ds =

∮

Γcz

(
−σ22

∂u2

∂x1

)
ds

=
lcz∫

0

σ(δn)
∂δn

∂x1
dx1 =

δc∫

0

σ(δn) dδn = Gc . (8.5)

The crack initiates when δ = δc is attained at the actual crack tip (x1 = 0), which is
equivalent to the CTOD value (Fig. 8.12). Within the frame of LEFM, the correlation
with the fracture toughness characteristics Gc =̂ GIc = K 2

Ic/E ′ is immediately given.
In EPFM, the separation energy correlates with the physical initiation value Gc ≈ Ji ,
provided that the J -integral is sufficiently path independent. Thus, the relationship
between cohesive zone model and classical fracture mechanics is established.

For brittle metals the exponential law (8.6) depicted in Fig. 8.13a is suited, which
is based on an energy potential of atomic bonds by Rose et al. [18] and has been
introduced by Needleman [19] in modified form for cohesive zone models.

σ(δn) = Gc

δ0

δn

δ0
exp

(
−δn

δ0

)
, Gc = e σc δ0, (e ≈ 2.718) (8.6)

In the beginning the linear part dominates until the maximum σc = Gc/(eδ0) of the
function is reached at δ0, after which the curve decays exponentially.

A trapezoidal shape of the separation law (cf. Fig. 8.13b) was proposed by
Tvergaard and Hutchinson [20] and Scheider [21] for ductile crack propagation.
The parameters for initial stiffness, the region of constant maximum tension and the
softening curve, respectively, can be freely chosen. The smooth, differentiable curve
shape facilitates the numerical realization.

σ(δn) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σc

[
2

(
δn

δ1

)
−

(
δn

δ1

)2
]

for δn < δ1

σc for δ1 ≤ δn ≤ δ2

σc

[
2

(
δn − δ2

δc − δ2

)3

− 3

(
δn − δ2

δc − δ2

)2

+ 1

]
for δ2 < δn < δc

(8.7)

Gc = σc

(
1

2
δc − 1

3
δ1 + 1

2
δ2

)
(8.8)

For brittle materials such as concrete, functions with infinite initial stiffness are
preferred, because otherwise an artificial numerical softening of the structure would
be induced. The decreasing slope is assumed linearly Hillerborg [22] or bi-linearly
Bazant [23], see Fig. 8.13c.

σ(δn) = σc

(
1 − δn

δc

)
(8.9)
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Fig. 8.14 Finite element realization of cohesive zone models

The essential three parametersσc, Gc and δc of every cohesive law can be relatively
well obtained from experiments:

• σc from the ultimate strength of smooth or notched tensile specimens,
• Gc from fracture mechanics experiments via KIc or Ji and
• δc from measurements of the fracture process zone.

In the general case, the interfaces do not only move in the perpendicular direction
δn (mode I), but also shift to each other in the tangential δt (mode II) and transversal
δs (mode III) directions. Then, a vector of separation δ = [

δn δt δs
]T is defined in

the local coordinate system (en, et, es), see Fig. 8.14. In the two-dimensional case
two cohesive laws are required for the normal and shear separations, which may be
coupled to each other [21, 24, 25]. They link the separation vector δ with the vector
of cohesive stresses t:

t = σen + τ et, δ = δnen + δtet (8.10)

t = f (δ) or σ = fn(δn, δt) and τ = ft(δn, δt) (8.11)

Figure 8.15 shows typical cohesive laws for both modes of separation. The shear
stresses at sliding change their sign, if the direction of separation δt changes. The law
for the normal stresses σ is confined to δn ≥ 0, since otherwise a contact of crack
faces occurs that generates reaction forces. In case of compressive loads assumptions
have to be made for the friction between both interfaces.

In addition, a method for extending the cohesive laws to local mixed-mode con-
ditions is presented, which traces back to Ortiz and Pandolfi [25]. An effective sep-
aration δ is introduced, whereby the factor 0 ≤ η ≤ 1 determines the ratio between
shear and tensile stiffness in the cohesive law.

δ =
√
δ2

n + η2δ2
t (8.12)

Every cohesive law can be derived from an associated potential of internal energy
ψe. For the exponential law in (8.6) the function
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Fig. 8.15 Cohesive laws for separation in the a normal and b tangential direction

ψe(δ) =
δ∫

0

σ(δ̄) dδ̄ = Gc

[
1 −

(
1 + δ

δ0

)
exp

(
− δ

δ0

)]
(8.13)

exists, from where σ = ∂ψe/∂δ is obtained. Using (8.12) and the chain rule, the two
cohesive laws are found as

σ = ∂ψe

∂δn
= ∂ψe

∂δ

∂δ

∂δn
= t

δ
δn and τ = ∂ψe

∂δt
= ∂ψe

∂δ

∂δ

∂δt
= t

δ
η2δt , (8.14)

whereby from (8.12) and (8.14) follows:

t =
√
σ2 + 1

η2 τ
2 . (8.15)

The model can be generalized also to the 3-D case, if the two equitable (at isotropy)
shear separations in the interface are added vectorially and if the relationship (8.14)
is understood as cohesive law in this effective T -direction:

δT = δtet + δses, δT =
√
δ2

t + δ2
s

τT = τtet + τses, τT =
√
τ2

t + τ2
s

⎫
⎬
⎭ ⇒ τT = t

δ
η2δT . (8.16)

Finally, we want to note the differences between the loading and unloading regimes
of cohesive laws, compare Fig. 8.15. Up to stress values of the cohesive strength σc, it
is generally assumed that unloading runs backward on the same curve to the origin.
After exceeding the maximum this is not correct anymore. From the curve point
A(σmax, δmax) attained until now, the unloading and eventual re-loading occur along
a different path, from which the cohesive law is continued. Thus, δmax has the meaning
of an internal variable. The unloading runs either parallel to the slope in the origin
C0, if the cohesive law describes plastic deformation, or it goes straight back to the
origin, if the failure is elastic in nature and merely decreases the stiffness.
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Loading: δ = δmax and δ̇ ≥ 0
Unloading: δ < δmax or δ̇ < 0

−elastic: t = C0 δ , C0 = ∂t (0)

∂δ
= ∂2ψe(0)

∂δ2

−plastic: t = tmax

δmax
δ

(8.17)

Detailed information on cohesive laws can be found in [16, 17].

8.5.2 Numerical Realization

The FEM model consists of damage-free continuum elements obeying an arbitrary
material law, and interface elements that capture the material separation by means of
a cohesive zone model, see Fig. 8.14. These interface elements or cohesive elements
are opening in accordance with the separation law and lose their stiffness, when
the normal or tangential separation reach their critical values δnc and δtc, respec-
tively. Thereafter, the formerly joined continuum elements will be separated, i. e.
the material has failed at this point. The crack is only allowed to propagate along
the cohesive elements. If the crack path is not known a priori, then different paths
must be provided in the FEM-mesh and in the extreme case, cohesive elements need
to be prepared between all continuum elements. Cohesive elements constitute the
mechanical interaction between two interfaces. For this, they don’t need to have an
extension in vertical direction (en-coordinate). The elements connect pairs of nodes
on opposite surfaces of the adjacent continuum elements. Figure 8.16 shows typical
linear and planar cohesive elements as they are used for two- and three-dimensional
crack problems. In the undeformed state the pairs of nodes lie on top of each other.

The separation of the cohesive interfaces is calculated from the jump of the dis-
placement vector δ = [[u]] = u+ − u− = [

δn δt δs
]T. The displacements on the

faces of the cohesive elements and thus their difference [[u]] are set using the same
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Fig. 8.16 Cohesive elements for interfaces in planar and spatial structural models
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shape functions as in the adjacent continuum elements, see Sect. 4.3.1. The cohesive
elements in Fig. 8.16 have e. g. linear functions, only corner nodes and two inte-
gration points per coordinate. The separations [[u]] are interpolated analogously to
Eq. (4.40) by means of the nodal variables [[v]]:

[[u(x)]] =
nK∑

a=1

Na(ξ)[[u(a)]] = N[[v]]. (8.18)

In all integration points, the material behavior of the cohesive elements is calculated at
each load step, i. e. the cohesive stresses t([[u]]) = [

σn τt τs
]T between the interfaces

are determined from the separations [[u]] via the cohesive law. In order to derive the
stiffness relationship for these elements, the principle of virtual work is used. The
inner work of a cohesive element reads:

δW(e)
int =

∫

Se

δ[[u]] · t dS. (8.19)

Because we are dealing with a non-linear analysis, a linearization of the increment
is required at the current load level:

δ�W(e)
int =

∫

Se

δ[[u]] · ∂ t
∂[[u]] · �[[u]] dS. (8.20)

With (8.18) the separation and its variation δ[[u]] are replaced by the nodal variables
[[v]], providing the matrix equation:

δ�W(e)
int = δ[[v]]T

∫

Se

NT ∂ t
∂[[u]] N dS

︸ ︷︷ ︸

�[[v]]

= δ[[v]]T K([[u]]) �[[v]].
(8.21)

K is the sought stiffness matrix of the cohesive element, which depends on the current
material tangent ∂ t/∂[[u]] of the separation law. The numerical integration over the
interface Se is carried out by means of FEM-standard procedure (Sect. 4.4.3).

In case of large deformations and rigid body rotations of the cohesive elements, it is
necessary to determine the separation in a co-rotating Lagrangian coordinate system
(en, et), see Fig. 8.16. If the coordinates of a nodal pair a are denoted by x(a) in the
initial state, then the deformed positions are calculate from the displacements of the
upper u+(x(a)) and lower u−(x(a)) faces of the cohesive element. The coordinates
of an average reference point x̄(a) are therefore obtained as

x̄(a) = x(a) + 1

2

(
u+(

x(a)
) + u−(

x(a)
))

, (8.22)

http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_4
http://dx.doi.org/10.1007/978-94-007-6680-8_4
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from which the reference system of the element is determined (dashed line in
Fig. 8.16). The separations δn and δt in the normal and tangential directions en and
et are calculated as depicted.

Because of their versatile feasibility, cohesive zone models are also applied for
the simulation of crack propagation in fatigue, in dynamic fracture processes or at
viscoplastic material behavior. They are best suited to treat interfacial cracks and
delaminations in composites or welds. More examples, numerical guidelines and
further reading are given in the review articles [16, 17, 26].

8.6 Damage Mechanical Models

At this point damage mechanics models have to be mentioned, since they were devel-
oped very intensively and successfully for the simulation of ductile crack propagation
in metallic materials in the last two decades. As has been already explained in Chap. 2,
the ductile failure originates from micromechanical damage processes in the material.
At the beginning of loading, micropores arise that enlarge and grow together during
subsequent plastic deformation, which finally leads to the local failure of material at
the micro level. In order to describe these processes by continuum mechanics meth-
ods, so-called damage mechanics models have been created. The formulation of the
material laws is done similarly as in the theory of plasticity using phenomenological
approaches and thermodynamic principles. Some models are inspired by specific
micro-mechanical processes and try to capture them in homogenized form. To quan-
tify the material damage, internal state variables-damage variables- are introduced
into the constitutive material laws.

As a result of local stresses and plastic deformation, the state of damage in the
material increases. This is expressed by an evolution law that quantifies the devel-
opment of the damage variables. In this way, ductile damage models allow us to
simulate, in addition to plastic deformation and hardening, also deterioration and
softening in constitutive laws. The main advantage of damage mechanics compared
to traditional or fracture mechanical strength hypotheses is that the deformation and
failure behavior are now coupled at a local level, i. e. a criterion is provided capturing
the current stress state as well as the history of loading and deformation. Local failure
is postulated to occur, if the damage variable has attained a critical value.

Therefore, damage mechanical models are qualified exceptionally to simulate
the ductile failure in the process zone at the tip of a macrocrack, because the local
stress and strain state (e. g. multi-axiality �) can be taken into account. The price for
it is a complex structure of the material laws, an increased number of parameters,
and a sensitivity to numerical instabilities. The best known ductile damage models
stem from Rousselier [27] and Gurson [28]. As an example, we will introduce and
apply the GTN-model, which represents a generalization of the work of Gurson by
Tvergaard and Needleman [29].

An elastic-plastic continuum is modeled in which spherical cavities (microp-
ores, voids) can develop and grow. The volume fraction of voids f is considered

http://dx.doi.org/10.1007/978-94-007-6680-8_2
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as a measure of material damage and used as damage variable (or the modified
quantity f ∗). Figure 8.17 shows the underlying conceptual model of a representative
volume element, the mechanical response of which has to be formulated at any given
macroscopic stress state σi j . The ductile matrix material deforms according to the
laws of v. Mises plasticity. For isotropic hardening, the yield stress of the matrix
material is given by σM = R(ε

p
M) as a function of equivalent plastic strain εp

M. The
main item of this model is the extended yield condition

Φ =
[
σv

σM

]2

+ 2q1 f ∗ cosh

[
3

2
q2
σH

σM

]
− (1 + q3 f ∗2) = 0 (8.23)

with v. Mises equivalent stress σv =
√

3
2σ

D
i jσ

D
i j and hydrostatic stress σH = σkk/3,

expressed by the macroscopic stress tensor σi j . The yield surface has the shape of
an ellipsoid in the principal stress space, see Fig. 8.17. Without damage ( f ∗ = 0)
Eq. (8.23) corresponds to the v. Mises cylinder. With increasing damage this limit
surface shrinks, so that the load-carrying capacity of the material diminishes. The
individual terms in the yield condition (8.23) can be weighted by means of the
empirical parameters q1, q2 and q3, resp.

The modified damage variable f ∗ in Eq. (8.23) is a function of the void volume
fraction f :

f ∗ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f for f ≤ fc

fc + f ∗
f − fc

f f − fc
( f − fc) for fc < f < f f

f ∗
f for f ≥ f f

(8.24)

The quantity fc in (8.24) denotes that specific void volume fraction, at which due to
the coalescence of voids an accelerated damage evolution begins, which is modeled
as a bi-linear curve. Complete local failure of the material will occur, if the critical
void volume fractions f f resp. f ∗

f = 1/q1 are reached.

ijεijσ

P
M Mσ ε

IIσ

Iσ

IIIσ
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0f =
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Fig. 8.17 Representative Volume Element RVE and yield surface of the Gurson-Model
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The macroscopic plastic strain rate ε̇p
i j is directed normally to the yield surface,

whereby Λ̇ denotes the plastic multiplier

ε̇
p
i j = Λ̇

∂Φ

∂σi j
. (8.25)

The evolution equation for the equivalent plastic strain rate of the matrix material
ε

p
M is deduced by the equivalence of the macroscopic and microscopic plastic work

rates in the damaged volume element:

(1 − f )σM ε̇
p
M = σi j ε̇

p
i j , ε

p
M = ε

p
M

∣∣∣
0
+

∫ σi j ε
p
i j

(1 − f )σM
. (8.26)

The change of void volume fraction consists of two additive terms

ḟ = ḟgrow + ḟnucl , (8.27)

whereby ḟgrow describes the increase by growth of voids, and ḟnucl accounts for the
nucleation of new voids. The growth term is based on the conservation law of mass
in the representative volume element

ḟgrow = (1 − f ) ε̇
p
kk . (8.28)

For the formation of new voids a statistical, strain-controlled process is assumed,
which obeys a Gaussian normal distribution function with the mean value εN and
the standard deviation sN:

ḟnucl = A ε̇p
M, A = fN

sN
√

2π
exp

⎡
⎣−1

2

(
ε

p
M − εN

sN

)2
⎤
⎦ . (8.29)

The nucleation of new voids is proportional to the equivalent plastic strain εp
M in the

matrix and to the density of overall available nuclei fN.

8.7 Examples of Fatigue Crack Propagation

8.7.1 Shear Force Bending Specimen

As an example of fatigue crack propagation under mixed-mode loading, the shear
force bending test of Fig. 8.18 is chosen, because corresponding experimental results
are available. A starting crack of length 6 mm is located on the top edge of the
specimen at a distance of b = 30 mm to the drill-hole. The specimen was clamped



348 8 Numerical Simulation of Crack Propagation

Fig. 8.18 Shear force bending specimen with starting crack under cyclic loading

Fig. 8.19 Adaptive simulation of crack propagation in the shear force bending specimen

on the left side and subjected to a cyclic (zero-tension) force at the hole with a
magnitude, lying above the fatigue threshold value �Kth, so that the crack will
propagate. The simulation was performed using the adaptive technique of Sect. 8.4.
Figure 8.19 represents the coarse initial mesh for the FEM-simulation and three stages
of crack propagation including automatic adaptive mesh refinement. In this example,
the crack extension was prescribed to go in constant increments of size �a = 3 mm.
The result of the FEM-simulation shows good agreement with the experimentally
observed path of the fatigue crack (cf. Fig. 8.20). The small deviations are due to the
fact that the crack propagation is done piecewise linear in the numerical simulation.
Thus, the real curved crack path can only be followed approximately, but this could
be improved by using smaller increments �a.
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Fig. 8.20 Comparison of FEM-simulation with the experimental path of cracking

8.7.2 ICE-Wheel Failure

In 1998, an accident happened with the ICE high-speed train W.-C. Roentgen at
Eschede. This fatal disaster claimed 101 human lives and catastrophic property dam-
age, see Fig. 1.3. The derailment was caused by the breakage of a rim of the rubber
damped wheels of the ICE. In this design of railway wheels, an annular rubber body
is clamped between the rim and the wheel disk to reduce noise, see Fig. 8.21. During
a straight ahead drive, the wheel is substantially exposed to a vertical wheel force of
Q = 98 kN, that acts on the contact area between wheel and rail. It causes pressure
and bending loads of the wheel rim, which are repeated during every wheel revolution
and may push a fatigue crack. The failure analysis of the broken wheel rim revealed
that fracture originated from a metallurgical defect on the inner side of the rim in the
vicinity of the »roof ridge«. Under in-service loads the fatigue crack spread into the
cross-section and finally lead to the complete fracture of the remaining ligament, see
the Figs. 8.21 and 8.24.

In the context of evaluating this failure case, Richard et al. [30] performed fracture
mechanical analyses of the loading situation and the crack propagations by means
of the automatic remeshing technique reported in Sect. 8.3, Fig. 8.9.

In the first step, the state of stress in the uncracked wheel was calculated which
results from mounting pre-loads and the load at straight-ahead driving. Figure 8.23
represents the elaborate 3D FEM-discretization of the half wheel. The situation in
the contact region wheel–rail is shown in the used FEM-submodel of the rim, see
Fig. 8.22. As a result, it turned out, that the highest hoop stresses occur in the wheel
rim on the inner side at the »roof ridge«. In the course of one revolution of the
wheel, they change between σmax = 220MPa and σmin = 6MPa. Thus, the largest
alternating load range exists in the vicinity of the origin of the observed crack.

http://dx.doi.org/10.1007/978-94-007-6680-8_1
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wheel rim
crack

rubber

retainer ring

wheel disc

Fig. 8.21 Design of the rubber-damped ICE
railway wheel

Fig. 8.22 Distribution of maximum princi-
pal stresses in the wheel rim [30]

Fig. 8.23 FEM-discretization of the rubber-damped railway wheel (diameter 862 mm) with
about 130000 hexahedral elements [30]

Therefore, in the second step, a submodel with 52000 finite elements was gen-
erated to simulate the crack propagation in this cut-out of the wheel. Since the
fatigue crack propagation in the real rim didn’t start directly at the »roof ridge« but
13 mm aside, a semi-circular crack of 1.5 mm depth was placed at this position in
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Fig. 8.24 Fracture surface of the ICE railway wheel with results of FEM-simulations of crack
propagation [30]

the simulation model. The stress intensities along the entire crack front exceeded the
threshold value �Kth = 8.2 MPa m1/2 of the wheel steel. From the FEM-analysis
the range of the K -factor �K along the current crack front is obtained for each
revolution of the wheel, whereof the local crack growth increment was calculated
via the Paris-relationship (3.287). Figure 8.24 illustrates the crack fronts obtained
this way at each simulation step. Initially, the crack grows roughly semicircular,
whereas later it spreads much faster in the width. The complete crack growth analy-
sis included 26 simulation steps and ended only when the fracture toughness of
KIc = 86.8 MPa m1/2 was achieved. The critical crack at onset of catastrophic
breakage had a depth of 31.7 mm and a maximum length of 71.1 mm on the inner
side of the rim. Figure 8.24 shows for comparison the simulated crack front positions
together with the actual crack propagation on the fracture surface of the wheel rim.

Supposing a constant cyclic loading of the wheel, one can calculate on the basis
of the crack growth curve da/dN of the wheel steel the critical number of load cycles
NB ≈ 1.4 million that correspond to about 3791 km driven distance. This estimate is
based on a linear damage accumulation hypothesis, which does not account for any
other load cases or sequence effects. In fact, the fracture pattern exhibits lines of rest
due to overloads and others. Further details can be found in [30].

8.8 Examples of Ductile Crack Propagation

8.8.1 Cohesive Zone Model for CT-Specimen

Scheider et al. [17, 21] applied the cohesive zone model to simulate the ductile crack
propagation in fracture mechanics specimens. One example is the 3D analysis of

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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fatigue crack front

Fig. 8.25 Three-dimensional FEM-model of the CT-specimen with 6732 hexahedral elements
(8-nodes) and 910 cohesive-elements [21]

a CT-specimen shown in Fig. 3.12 (width w = 100 mm, thickness B = 10 mm
with 20 % side-grooves, initial crack length a0 = 60 mm). The investigations were
performed on the ferritic reactor pressure vessel steel 20MnMoNi55 that is distin-
guished by high ductility and large fracture toughness. At first all the necessary
input-parameter for the model had to be determined. The true stress-strain-curve of
the steel was measured by experiments on round tensile specimens and approximated
by a power-law σ = 925 ε0.14. The trapezoidal function (8.7) was chosen as cohesive
law with δ1 = 0.01 δc and δ2 = 0.75 δc, so that still the three parameters Gc, σc
and δc had to be determined. The energy of separation Gc was identified with the
physical initiation value of the fracture toughness Ji = 120 N/mm and not with
the engineering value J0.2, since therein already energy terms of plastic deformation
are included. In order to determine the maximum cohesive stress σc, notched tensile
specimens have proved to be best suited. To this end notched tensile specimens with
various notch radii were tested and subsequently simulated with axial-symmetrical
FEM-models using the known yield curve. The value of σc is obtained from the
maximum normal stress in the narrowest cross section of the specimen at that force,
where the specimen fails in the experiment (usually unstable fracture). In the present
case, for all notch radii approximately the same value σc = 1460 MPa of the cohe-
sive stress was obtained. The last missing parameter δc was calculated from Gc and
σc using the relationship (8.8).

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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ical simulation

After these preliminary studies, the CT-specimen was simulated using the cohesive
zone model and the identified material parameters. Fig. 8.25 shows the generated
FEM-model of one quarter (due to double symmetry) of the three-dimensional spec-
imen. The side grooves are inserted in order to increase the stress triaxiality in the
crack region. As can be seen in the detail screen of Fig. 8.25, the region of the ligament
ahead of the fatigue crack is meshed very fine (element edge length L = 0.075mm)
to resolve the crack propagation in the calculation sufficiently. This high-resolution
area along the symmetry plane is uniformly discretized by 8-node cohesive elements
(cf. Fig. 8.16) to enable the simulation of crack extension.

The results of several fracture mechanics tests with CT-specimens were avail-
able: The force-displacement curves of the load application point F-vL L , the crack
length measured with the potential method, and the corresponding J -integral values
determined according to the ESIS standard [31], resp. In Fig. 8.26 the experimen-
tal force-displacement curves of two specimens are contrasted with the results of
the numerical simulations. A FEM-computation carried out without crack propaga-
tion results in a too stiff behavior, whereas the simulation with the cohesive zone
model shows a very good agreement. Likewise, the point of crack initiation, which
occurs well before the maximum load, is correctly reproduced by the simulation. The
comparison of experimental and numerical J -�a crack resistance curves (Fig. 8.27)
verifies the accuracy of the cohesive zone model and demonstrates its ability for pre-
dicting fracture mechanical material properties. Furthermore, the numerical crack
propagation simulation is validated by comparing the crack front reached in the CT-
specimen at a deformation of vL L = 5.35 mm. Figure 8.28 displays a SEM-image
of the fracture surface. The area of ductile dimples distinguishes significantly from
the preceding and subsequent fine pattern of fatigue cracking. Also, the shape of the
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Fig. 8.28 Electron microscopic picture of the fracture surface of the CT-specimen. Comparison of
crack front with FEM-simulation [21]

crack front is well reproduced by the simulation. It decreases a little bit from the
middle, but hastens ahead towards the edges due to the side grooves.

8.8.2 Damage Mechanics for SENB-Specimen

As an example of the applicability of damage mechanical models to simulate duc-
tile crack propagation, the investigations of Abendroth and Kuna [32, 33] will be
presented. The tested material is steel S690 Q, for which the yield curve and all
parameters of the GTN-damage model had been determined by means of a minia-
turized deep drawing test (small punch test) [32]. Here, only the results are reported.
The hardening of the matrix material was best fitted by the power law

σM(ε
p
M) = σF0

(
ε

p
M − ε

p
L

ε∗
+ 1

)1/n

, (8.30)

which contains as parameters the initial yield strengthσF0 = 690 MPa, the hardening
exponents n = 11, a reference strain ε∗ = 0.589 % and the Lüders-strain εp

L = 1%,
resp. The exact determination of all nine parameters of the GTN-damage model
(Sect. 8.7) is generally quite complex. Usually, the most important parameters are
identified from notched tensile specimens and fracture mechanics tests. For all other
parameters plausible values are taken from the literature. In the present case the set of
parameters listed in Table 8.1 was determined from small punch tests and validated
at tensile specimens. In order to characterize the fracture properties of the steel
S690 Q, crack resistance curves J -�a were measured by means of three-point-bend
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Table 8.1 GTN-damage parameters for steel S690 Q at room temperature
f0 fc f f q1 q2 q3 fN εN sN

0.002 0.1357 0.2 1.419 1.213 q2
1 0.0273 0.5352 0.1

specimens (SENB-specimens, Fig. 3.12) at BAM Berlin [34]. The specimens had
the dimensions: Width w = 26 mm, thickness B = 13 mm with 20 % side grooves,
initial crack length a0 = 0.51w, resp.

These fracture experiments were numerically recomputed using the GTN-damage
model. Figure 8.29 depicts the FEM-discretization of one half of the specimen as a
two-dimensional model assuming a plane strain state. To simulate the ductile crack
propagation with the help of damage mechanics, a rather fine, uniform mesh of
elements (here 0.10 × 0.10 mm2) is required in the whole region, into which the
crack is expected to move. In the simulation, the crack propagation takes place in
the following way: In the extremely stressed elements in front of the crack tip,
damage reaches its critical value f f , whereby the load carrying capacity of the
material (stress response and yield condition (8.23)) is reduced to zero. Thus crack
propagation proceeds as a successive sequence of material failure in the integration
points of elements along the ligament. Formally, these elements are still involved
in the FEM-system, but their stiffness got lost. The extreme deformations of these
elements represent the crack opening. The detail in Fig. 8.30 (left) shows the values
of the damage variables f ∗ and those elements which have already failed.

The measured force-deflection curves F(u) of the SENB-specimen are com-
pared in Fig. 8.31 with different versions of the FEM-analysis. In the elastic range,
the results of all 2D (plane strain) and 3D FEM-calculations are in good agree-
ment with experiment. After complete plastification of the specimen’s cross section
(cf. Fig. 8.30), the FEM-results without damage mechanics lie considerably above
the experimental curves. However, by using the GTN-damage model, a large reduc-
tion of the F-u-curves is effected, because here the crack propagation is considered.
The 2D (plane strain) analysis exhibits a too stiff specimen behavior, since with
increasing plastification the side grooves lose their global impact and the stresses in

Fig. 8.29 FEM-mesh of the SENB-specimen: Detail of the crack tip region (left), whole specimen
with boundary conditions (right)

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 8.30 Damage (crack propagation) and v. Mises equivalent stress in the SENB-specimen

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1 1.2

Fo
rc

e 
F 

[k
N

]

Deflection u [mm]

FEM 2D (EVZ) plasticity
FEM 3D plasticity

FEM 2D (EVZ) Damage
FEM 2D (EVZ) Damage corrected

Experiments [BAM]

Fig. 8.31 Force-deflection-curve of a SENB-specimen of steel S690 Q. Comparison of FEM and
experiment

thickness direction are reduced. This effect can be taken into account by introducing
an effective specimen thickness Beff, which decreases from B to the value 0.8B in
the course of deformation u. This correction function was calibrated from the ratio
of 2D to 3D-curves without damage, and the modified 2D F-u-curve was derived
out of it, which agrees very well with the experiment (Fig. 8.31).

From the FEM-results, the elastic-plastic J -integral (see Sect. 7.3) was evaluated
as a function of the force F . Since in case of crack propagation, J is path-dependent in
regions of local stress relief, only paths far-away from the crack tip can be used, where
J reaches a stabilized value. This value is equivalent to the evaluation formula used
in the test standard [35]. In addition, the amount of crack extension �a is determined
on the basis of failed finite elements, from which the numerically simulated crack
growth resistance curve in Fig. 8.32 is derived.

http://dx.doi.org/10.1007/978-94-007-6680-8_7
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Its stepwise course results from the successive failure in the integration points of
elements. The outcome of simulation shows a good agreement with the experiment.
If the engineering initiation values JIc are investigated at an offset of �a = 0.2 mm
according to the ASTM-standard [34], then simulation J FEM

Ic = 145.5 N/mm and

experiment J Exp
Ic = 140.3 N/mm yield nearly identical results.

This example and similar experience from the literature show that with the help of
damage mechanics a fairly good prediction of ductile crack propagation is possible
in specimens and components. In contrast to the criteria of EPBM, in this connec-
tion the influence of the local stress state (triaxiality �) and its changes (loading and
unloading) is taken into account at any point of the crack front. An essential advan-
tage follows from the fact that now real material parameters are concerned, so that
the transferability between different specimen geometries (even without crack) as
well as from small samples to large components is ensured. A prerequisite, however,
is knowledge of the damage mechanics parameters of the material, the determina-
tion of which is complex and not always clear. This makes the application of dam-
age mechanics difficult in practice. Another disadvantage is the dependency of the
numerical solution on the size (especially the height) of the finite elements in the crack
tip region, because damage and failure (at equal external load) occur the sooner the
smaller the distance to the crack tip is made. The reason for that is the conjunction of a
softening material model and an inappropriate numerical solution algorithm. As long
as the damage mechanical law does not include an inherent material-specific length
parameter, the size of the FEM-discretization causes quasi a »numerical homoge-
nization«. At present, several methods such as non-local integral and differential
approaches are investigated for regularizing these numerical difficulties. Very often
as a pragmatic way out, the size of the elements at the crack is empirically adjusted
and then interpreted as a characteristic length (e. g. void distance) of the material,
which of course must be set constant in all simulations.
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Chapter 9
Practical Applications

9.1 Fatigue Crack Growth in a Railway Wheel

Bainitic cast iron with nodular graphite (Austempered Ductile Iron ADI) shows a
good ductility, a superior wear resistance and a high fatigue strength, which makes
it an interesting alternative to steel for producing railway wheels. However, ADI
possesses a lower fracture toughness and is, due to the casting process, more prone
to defects. A railway wheel is exposed to high static and cyclic loading. Therefore,
besides the classical service strength analysis also fracture mechanics concepts have
to be applied to ensure sufficient safety against fatigue crack growth and brittle
fracture. In order to assess fracture safety and lifetime, it is necessary to calculate
numerically the stress state in an ADI-wheel under static and cyclic loads presuming
hypothetical cracks [1, 2]. The aim of the investigation is to derive critical crack
sizes or admissible limit values of loading as early as during the design stage of the
wheel, and to specify suitable inspection strategies.

9.1.1 Material Data of Austempered Ductile Iron ADI

The conventional mechanical properties and the fracture mechanics data of the ADI
material are compiled in Table 9.1. In laboratory test specimens ADI material fails in a
ductile manner. The fracture toughness J BL

i is determined from the crack resistance
curve (see Fig. 3.46) at the moment of physical crack initiation. For the fracture
mechanical stress analysis of the wheel, linear-elastic material behavior is assumed
(SSY at the crack), and the failure is supposed to be macroscopically brittle. One
can expect that the transferability between specimen and component is given. The
transformation of the fracture toughness J BL

i into the corresponding critical K -value
is carried out by

KJi =
√

E J BL
i

1 − ν2 . (9.1)
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Table 9.1 Conventional and fracture mechanical material parameters of ADI

Parameter Value

Elasticity modulus E 170 GPa
Poisson’s ratio ν 0.3
0.2 %-yield strain Rp0.2 637 MPa
Ultimate strength Rm 893 MPa
Fracture toughness J BL

i or KJi 11.0 kJ/m2 or 45.3 MPa
√

m
Fatigue crack growth at R = 0.1:
Threshold value �Kth 5.4 MPa

√
m

C 0.94 · 10−08

m 2.9
Fatigue crack growth at R = 0.5:
Threshold value �Kth 4.3 MPa

√
m

C 1.0 · 10−08

m 3.2

Fig. 9.1 Cyclic crack growth
curve of ADI at R = 0.1 and
0.5
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This way, the fracture mechanical assessment using KJi lies on the conservative
side and the ductility of the ADI implies an additional safety reserve. The calculation
of the fatigue strength and the residual life time at cyclic loads is carried out via the
threshold value �Kth and the parameters C and m of the Paris-Erdogan equation
(3.287) of Sect. 3.4.1. The parameters are determined with the help of the cyclic crack
growth curve depicted in Fig. 9.1 for the stress ratios R = 0.1 and 0.5, see Table 9.1.

9.1.2 Finite Element Calculation of the Wheel

Geometry

The investigated railway solid wheel with a bent disk has a diameter of � = 920 mm
and a standardized profile of the wheel rim as shown in Fig. 9.2.

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Y > 0

Y < 0

T

Q

Fig. 9.2 Geometry, loading and FEM-discretization of the railway wheel (the forces Y > 0 and T
are plotted for clarity above.)

Load Cases

For the whole wheel set, an axle load of 180 kN is assumed, which forms the basic
value for all other load cases. In accordance with regulatory rules for experimental
service strength proof of railway solid wheels, the loads of the wheel are specified as
follows: In the radial direction the vertical wheel force Q acts, whereas perpendicular
to the wheel, lateral forces apply due to cornering (wheel flange position +Y ) or
switch course (guide rail position −Y ). These forces are illustrated in Fig. 9.2. In
the following particular example, two extreme load cases are considered, which are
enhanced by a safety factor of f = 1.8 to take higher dynamic wheel loads (impact,
oscillations) into account, see Table 9.2. At braking events, an additional friction force
T occurs between wheel and rail, acting in the tangential direction at the running
tread. The magnitude of the braking force was given by T = 0.2 Q. It is modeled as
a uniformly distributed load on the contact area.

Table 9.2 Forces for specific load cases

Load case Vertical wheel force Q in kN Lateral wheel force Y in kN Braking force T in kN

1 Extreme load −159 Wheel flange position +62 Tangential force 31.8
2 Extreme load −159 Guide rail position −62 Tangential force 31.8

Modeling

Due to the symmetry properties of geometry and loading conditions, only one half
of the wheel needs to be modeled, cf. Fig. 9.2. It can be assumed that the wheel hub
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is rigidly fixed on the axle. Therefore in the FEM-model, the inner surface of the
hub is treated as clamped support. The vertical wheel force is applied by a pressure
load on an area of total 1.58 cm2 on the tread. The positive lateral force +Y is placed
horizontally on the inner side of the wheel flange. The negative lateral force −Y
operates on the wheel flange at the height of the tread. These assumptions agree with
the application points of forces in experimental strength tests. Linear-elastic isotropic
material behavior is assumed in the FEM-calculations. The material parameters are
given in Table 9.1.

Stresses

During one revolution of the wheel, the load application point moves by 360◦ on
a circular orbit. Since the geometry of the wheel is rotationally symmetric, it is
sufficient to perform the calculation only for one force application point. Each body-
fixed point at a distance r from the axis then passes, during one revolution, all stress
states that are on the same circumference of the wheel. Hereby, the principal stress
directions change at a specific point of the wheel. Crack propagation is aligned
perpendicular to the maximum principal stress direction. Subcritical crack growth is
controlled by the range of alternating stresses during one revolution of the wheel. In
order to find the largest stress range, the maximum principal stress is determined on a
circumferential line and compared with all other stresses that lie on the same line but
have been transformed before into that direction of the maximum principal stress.

Extreme Stresses in the Wheel Disk

According to common experience the highest stresses in railway wheels appear in
the transition zone from hub to disk. The FEM-computations done for the considered
ADI-wheel show as well very high stresses in the radial direction in this zone (distance
r of about 162 mm from the wheel center), compare Fig. 9.3. For the considered case,
extreme tensile and compressive stresses in the wheel disk are not confined to this
position alone but were also observed at larger radii r , which are listed in Table 9.3
together with the respective stresses. They are mainly caused by bending of the wheel
disk due to lateral forces.

Table 9.3 Maximum and minimum principal stresses

Load case Inner wheel side Outer wheel side

1 −241 MPa, r = 160 mm 198 MPa, r = 264 mm
2 196 MPa, r = 157 mm −189 MPa, r = 355 mm
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Fig. 9.3 Max. principal stress at load case 1

(a) semi-elliptical 
surface crack 
at the tread

(d) surface crack in the 
wheel disk 

(b) casting flaw 
in the rim 

(c) surface crack in 
the wheel disk 
near the hub 
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Fig. 9.4 Postulated crack configurations

9.1.3 Specification of Crack Postulates

Next the crack configurations are specified that need to be considered in the ADI-
wheel. Hereby, both the results of the strength analysis with respect to the maximum
appearing stresses are taken into account as well as possible defect positions resulting
from the casting process of the wheel. The positions of the selected cracks are drawn
in Fig. 9.4.

Crack Configuration (a): Semi-Elliptical Surface Crack on the Tread

Because of the rolling contact between wheel and rail, initial cracks may be formed
by friction and slipping effects on the surface of the wheel tread lying transversely to
the circumferential direction. These cracks experience at every rolling-over process
a tension-pressure-tension load cycle. Therefore it has to be clarified above what
size ath those cracks are able to propagate by fatigue and after how many cycles they
reach their critical crack length ac to initiate brittle fracture. As an intensifying load
assumption, also braking loads T were taken into account leading to tangential crack
opening stresses.
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Crack Configuration (b): Casting Defect in the Wheel Rim

Due to the manufacturing of the wheels by casting, the occurrence of casting defects
like voids or pores is possible particularly in the region from wheel–rim to wheel–disk
where the cross-section changes. These casting defects are modeled conservatively as
circular cracks, orientated perpendicular to the maximum normal stress. The critical
crack size is sought as a margin for the resolution sensitivity of non-destructive
testing methods.

Crack Configuration (c): Surface Crack at the Transition Disk—Hub

Since the transition region disk—hub is exposed to the highest stresses, it has to be
verified experimentally by means of cyclic service-strength testing that no fatigue
pre-crack is formed at this place. This implicates the fracture mechanical safety proof
as well. Hence, no further considerations are needed for this region.

Crack Configuration (d): Surface Crack at the Disk’s Bend

In the area of the wheel disk’s bend, the FEM-computations yield bending stresses
of almost comparable magnitude like those at the transition between hub and wheel
disk. Since this area is not covered by the cyclic service-strength testing, a surface
crack is postulated and assessed at this position in the circumferential direction.

9.1.4 Fracture Mechanical Analysis

To determine the stress intensity factors, usually the so-called decoupling method is
tried as first approach in fracture mechanical stress analysis. To do this, at first a sim-
plified substitute model is selected as a cutout of that region of the component where
the postulated crack is located. Second, we look for K -factor solutions and geometry
functions g(a), which are available for this crack configuration from handbooks such
as e. g. Murakami [3].

KI(a) = g(a)σ(x)
√
πa (9.2)

Thereby, the stress intensity factors are simply calculated by inserting the stress
distribution σ(x), which results from the FEM computation at the crack position. In
this way, the fracture mechanics evaluation can be appended downstream to a normal
strength calculation without modeling the crack. This decoupling method represents
a good approximation as long as the assumed cracks are sufficiently small compared
to the load-bearing cross section, making any feedback on the global stress state in
the component negligible. This prerequisite is fulfilled for the crack configurations
(a) and (b) of the wheel. At large crack depth, it no longer applies to the crack
configuration (d), which is why for this case the K -factors must be calculated by an
explicit FEM-modeling of the crack.
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Fig. 9.5 Prismatic substitute model with semi-elliptical surface crack under given stress distribution
σ(x)
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Fig. 9.6 FEM-result of crack-opening stresses for crack configuration (a)

Crack Configuration (a)

This semi-elliptical surface crack is assumed at the middle of the tread crossways to
the rolling direction. The ratio of crack depth a to half crack length c is chosen as
a : c = 1 : 3, which is typical for surface cracks. As a suitable substitute model for
this crack configuration an accordant surface crack in a rectangular plate is selected,
the dimensions of which correspond to the width 2W = 135 mm and height t=17 mm
of the wheel rim, cf. Fig. 9.5. To control the influence of the crack shape, an edge
crack of the same depth a across the complete width of the wheel rim (c = ∞) is
examined as an extreme case.

Position and orientation of the crack correspond to the location and direction
of the maximum normal stresses σzz in circumferential direction on the wheel-rim.
Here the stresses reach their peak values at the very surface shortly before and
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Fig. 9.7 Stress intensity faktors as function of crack depth (3D surface crack)

behind the contact point due to the contact pressure wheel-rail. As can be seen from
Fig. 9.6, the high tensile stresses at the surface fade away with increasing depth,
where compressive stresses occur due to the pressing contact. The circumferential
stresses at the surface will increase approximately to a threefold value, if the braking
load T is taken into account. These maximum loads have to be supposed for the
assessment of both brittle fracture and fatigue crack growth.

Based on this stress distribution σzz(x) and by means of the substitute model, the
stress intensity factors are calculated. Hereby, K A refers to the deepest point A (apex)
of the crack front and KC to the two surface points C , where the crack front intersects
the tread, respectively. Figure 9.7 shows K A and KC as a function of the crack depth
at a constant aspect ratio a : c. It can be recognized that, with growing crack depth,
both K -factors attain at first a maximum, then drop almost down to zero, if the crack
reaches the compressive region. By virtue of the high stress gradient the KC -factor
at the surface is greater than the apex value K A. This means the crack would grow
first into its lateral direction and later into the depth. The substitute model of a 2D
edge crack yielded a somewhat higher K A-factor.

K Amax = 8.53 MPa
√

m at amax = 0.5 mm, ath = 0.05 mm

KCmax = 12.49 MPa
√

m at amax = 3.0 mm, cth = 0.38 mm (9.3)

All maximum stress intensity factors lie far below the fracture toughness of KJi =
45.3MPa

√
m, so that brittle fracture can be excluded for a surface crack in the tread

under service loads.
In the next step the question of a possible crack propagation by fatigue has to

be answered. For this purpose it is assumed that at every wheel revolution (load
cycle) the stress distribution at the surface crack �σ(s) oscillates from zero up to the
maximum state, which resulted from the above cyclic stress analysis. To determine
above what size ath a crack would be able to grow even under this stress range, the
threshold value �Kth = 4.3 MPa

√
m is inserted into (9.2) and rearranging gives
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Fig. 9.8 Crack growth due to cyclic loading

ath = 1

π

(
�Kth

�σg(ath)

)2

. (9.4)

By using the geometry functions of these crack configurations the threshold values
of crack sizes ath and cth are calculated and given in (9.3).

According to these preliminary studies, rather small cracks are able to grow under
alternating loads. By integrating the Paris-Erdogan equation (3.291) (Sect. 3.4.1) we
obtain the number of load cycles N required to propagate a crack from its initial
length a0 up to the size a. An initial crack length of a0 = 0.1 mm is chosen that
corresponds approximately to the depth of surface flaws, which are formed by rolling
friction fatigue with the rail. With the parameters C and m listed in Table 9.1, the
crack growth was calculated for R = 0.5 and depicted in Fig. 9.8. The results show
that the crack grows faster in a lateral direction (points C , length c) than into the
depth (point A, crack depth a) because of the higher �K -value, which is however no
critical issue. After about 500,000 cycles the crack growth stagnates at the depth of
a = 1.5mm, since the crack comes into the compression region. Thus it is guaranteed
that, in the case of a fatigue crack growth, the crack will come to rest.

Crack Configuration (b)

The FEM computations for the most severe load case give maximum principal
normal stresses of 60 MPa inside the wheel rim. This crack configuration can be
approximately treated by a substitute model of a circular crack in an infinite domain,
according to(3.59). If in addition to the primary loading positive residual stresses of
Rp 0.2/2 are presumed, K -factors will be obtained, all of which lie below KJi, so that
even for such extreme load assumptions a brittle fracture can be excluded. According
to (9.4) the crack would need to have a size of ath = 4 mm, if it were even able to
overcome the threshold load necessary for fatigue crack growth.

http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Crack Configuration (d)

In the bend region of the wheel disk a semi-elliptical surface crack is presumed.
In accordance with experimental results and the extent of the stress maximum in a
circumferential direction, an aspect ratio of a : c = 1 : 5 is chosen. The substitute
model shown in Fig. 9.5 corresponds to a plate with this crack under combined
bending and tensile stress distribution.

To check the applicability and accuracy of the substitute model used for this
crack configuration, a detailed three-dimensional FEM-analysis is carried out for
the wheel cutout depicted in Fig. 9.9 (left) including a surface crack of a = 12 mm.
Because of symmetry in a circumferential direction the model is reduced to one half.
Figure 9.9 (right) represents the employed FEM-mesh for this submodel with crack,
on the surface of which the displacement fields of the preceding global analysis are
imposed. The calculated stress distribution is illustrated by Fig. 9.10. By means of
the J -integral technique the distribution of the K -factor is determined for the 3D
elasticity problem, see Fig. 9.11.

The FEM-results reveal that the substitute model overestimates the true stress
intensity factors by a factor of about 5! The main reasons for this are seen in the
rotational symmetry and the higher bending stiffness of the ADI wheel. Further
FEM-calculations with varying crack lengths would be necessary to determine these
geometry functions completely. To gain anyhow an improved geometry function for
K A, the function K A(a) received by the substitute model »semi-elliptical surface
crack«, is first fitted by a power law function and then scaled down over the whole
range of 0 ≤ a ≤ 15 mm so that it agrees at a = 12 mm with the FEM solution, see

12a =60c =

25t =

x

y

z

Fig. 9.9 Detail of the wheel disk with surface crack and FEM submodel
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Fig. 9.11 Course of stress intensity factor along the semi-elliptical crack front (d)

Fig. 9.12. The corrected K -factor function K Anew(a) = 2.079 · a0.478 is represented
in Fig. 9.12 as well.

On the basis of the very conservative substitute model the fracture toughness
would be attained at a critical crack depth of ac = 15 mm. The more precise FEM-
computation leads to the result that brittle fracture will not occur for cracks up to
this size.

Also with respect to the crack depth ath, at which fatigue crack growth starts,
the corrected K -solution K Anew gives a much more favorable value 4.6 mm than
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Fig. 9.13 Simulation of fatigue crack growth for crack (d)

the substitute model K Asubst with 0.14 mm. Figure 9.13 represents the crack depth
as a function of load cycles, starting at the according threshold values ath. In the
very conservative substitute model, about 5.3 · 105 cycles lead to the crack depth
ac = 15 mm, this means to brittle fracture, while with the corrected solution this
value will be reached after 3.7 · 106 cycles, without leading to brittle fracture. The
great difference between both models effects substantially the prediction of lifetime.

This practical example proves consequently the benefit that a more precise
FEM stress analysis of cracks may have to quantify the safety margins.



9.2 Brittle Fracture Assessment of a Container Under Impact Loading 373

9.2 Brittle Fracture Assessment of a Container
Under Impact Loading

In the development of transport and storage casks for nuclear fuel elements the
integer confinement of the inventory has to be ensured even in the case of extreme
accidents. Since the failure of the structure must absolutely be prevented, safety
precautions against fracture and inadmissible plastic deformation have to be verified
under various loading conditions. According to guidelines of the International Atomic
Energy Agency IAEA [4], especially impulsive, dynamic load cases, such as the
drop of a container from a 9 m level onto a rigid foundation, is an example of such
a severe loading situation requiring verification. In fact, one has to presume the
lower limits of the material properties (fracture toughness), low temperatures and
unfavorable combinations of all emergency scenarios. The determination of safety
reserves against brittle fracture demands the application of computational methods in
fracture mechanics. Under dynamic loading of a stationary crack the stress situation
is characterized by means of the dynamic stress intensity factors K d

I , K d
II, K d

III, which
comprise a function of time t . In order to solve such complicated three-dimensional
initial boundary value problems with crack, the use of FEM is inevitable. In the
following example a practical application of the dynamic J ∗-integral (Sect. 6.5) is
demonstrated for the computation of K -factors by simulating the drop test of a
transportation cask.

9.2.1 FE-Model of the Drop Test

The numerical analyses concern a real 9 m free drop test of a transportation cask
performed in the CRIEPI study [5], which was especially addressed to fracture
mechanical investigations. The test container was made from ductile cast iron. It
was equipped with shock absorbers at both front walls and had been cooled down to
−40◦C before the experiment. Moreover, an artificial semi-elliptical surface crack
was prepared at the bottom side of the container, where due to deflection the highest
tensile stresses are expected. The most important geometrical dimensions of con-
tainer and crack are drawn in Fig. 9.14. The simulations of the drop test were carried
out by means of the FEM-program Abaqus/Explicit [6] that works with an explicit
time integration algorithm. For the fracture mechanical evaluation a post-processor
was developed in [7] to compute numerically the dynamic J ∗-integral by means of
an equivalent domain integral EDI as derived in (6.54). Using relation (3.359), the
J ∗ = G value is converted into the dynamic stress intensity factor K d

I .
Figure 9.15 shows the FEM-model used for the container drop test [7]. It mainly

consists of the following components: the cask body, the secondary lit, the fuel
rod carrier and the two shock absorbers. Due to symmetry of the container one half-
model is sufficient for the analysis, discretized by first-order hexahedral elements. All
geometric data and material properties are taken from the CRIEPI report [5]. Instead

http://dx.doi.org/10.1007/978-94-007-6680-8_6
http://dx.doi.org/10.1007/978-94-007-6680-8_6
http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 9.14 Geometrical dimensions of a container with shock absorber and crack
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Fig. 9.15 Finite-Element-Model of the container

of using the real load of the fuel rods and their carrier, the interior of the container
was replaced in the experiment by a substitute construction. This dummy is realized
by one additional layer of elements with equivalent mass but without stiffness. On
both ends of the container, shock absorbers were mounted made of plywood with
a steel liner. The difficult material behavior of such absorbers was simulated in a
homogenized manner by an elastic-plastic material model, the parameters of which
were given in [5]. In order to prevent mutual penetration of the different parts of the
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Fig. 9.17 Dynamic stress intensity factor along the crack front

model, the concerned surfaces of the cask, the shock absorbers and the ground were
treated as contact pairs.
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9.2.2 Fracture Mechanical Results of the Simulation

For the considered semi-elliptical crack (a : c ≈ 1 : 3) the FEM-calculations yield
the dynamic stress intensity factor K d

I as a function of time t and position along the
crack front, which is indicated by the angle ϕ as shown in Fig. 9.17. At ϕ = 84◦ the
crack front intersects the outer surface of the cask. In Fig. 9.16, K-factors K d

I (t) are
plotted in dependence on time for three selected angles ϕ. All three curves have an
absolute maximum at t∗= 16 ms. The highest values of K d

I are reached at the apex
point A of the semi-elliptical crack at ϕ = 0◦. This becomes clear again in Fig. 9.17
that shows the K d

I (ϕ) distribution along the crack front for t∗. As can be seen, K d
I

has a maximum of 53 MPa m1/2 at the apex point and decreases in the direction of
the container’s surface to a minimum of 33 MPa m1/2 (the slight increase at the edge
is a numerical artifact). The calculated maximum value of K d

I is compared with the
dynamic fracture toughness given in the CRIEPI-report as KId = 69 MPa m1/2 for
T = −40◦C. Thus the loading of the crack lies about 30 % lower and the fracture
safety of the container against this impact load is proved. This result agrees with the
experimental observations, where no crack initiation was found after the drop test.

9.2.3 Application of Submodel Technique

In order to reduce the effort for discretizing and computing, the applicability of the
submodel technique to dynamic load cases was investigated. Using this method, the
displacement-time-courses obtained in the global analysis without crack are imposed
onto the boundary nodes of the submodel, which now includes the crack. Figure 9.18

Submodel 1

Submodel 3

Submodel 2

Fig. 9.18 Size of three investigated submodels
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Fig. 9.19 Influence of submodel size on K d
I —courses

shows a detail of the FEM-model with three crack-submodels, which differ in their
radial extension. The results computed this way are depicted in Fig. 9.19. With
increasing size of the submodel the results converge to the reference solution given
in Fig. 9.16 of the previous section, which was based on a FEM-model of the com-
plete cask with crack. A further enlargement of the submodel in the circumferential
direction leads to a nearly perfect agreement with the reference solution. These find-
ings prove on the one hand that the J -integral method is a very expedient technique
to determine stress intensity factors under dynamic loading as well. On the other
hand, they point out that always non-conservative (too low) K d

I -values are computed
if the submodel technique is used, which requires certain attention in practice.

9.3 Ductile Fracture of a Weldment in a Gas Pipeline

9.3.1 Introduction

Gas pipelines are subject to regular monitoring and maintenance procedures. The
piping is tested by modern pig systems using non-destructive inspection methods
(magnetic flux measurements, ultrasound, X-ray examination et al.). Thus mounting
seams (girth welds) are especially in our focus, since they are the most likely to
exhibit weld defects due to their manufacturing conditions on construction sites.

At TU Bergakademie Freiberg [8], a fracture mechanics approach to safety analy-
sis of welds was developed and implemented as a computer-based assessment code.
This code is intended to assist the test engineer during operational non-destructive
inspections of gas pipelines. In particular, if weld defects have been detected, they
must be assessed by fracture mechanics under the given operating pressure and
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Fig. 9.20 Considered defect and weld seam geometries in piping

possible additional loads (laying, earth movement, subsidence phenomena, residual
stresses etc.). From this, conclusions can be drawn regarding technical safety and
the need for further inspection or maintenance activities. To verify the assessment
concept it was necessary to check its transferability to real conditions by means of a
component test. Likewise, the validity of the simplifying assumptions contained in
the concept had to be proven. In any case it must be ensured that the assessment sys-
tem yields conservative, i. e. safe, statements. For these reasons, the component test
was analyzed by finite element calculations considering in detail the specific defect
geometry, the elastic-plastic material behavior and the actual course of loading [8, 9].

9.3.2 Fracture Mechanics Assessment Concept FAD

Defect Postulates

The defects in the seam of the girth welds are safety-related, assumed conservatively
as cracks, and classified into interior and surface defects as illustrated in Fig. 9.20. The
assessment of the cracks is carried out by applying the fracture mechanics concept
of FAD (Failure Assessment Diagram) already introduced in Sect.3.3.5. Typical
geometries and load cases relevant for weld joints were taken into consideration
in accordance with the ÖSTV-directive [10], the CEGB-R6-Routine [11] and the
SINTAP procedure [12]. The FAD method evaluates the stress situation at the crack
according to two criteria:

(a) The parameter Kr = KI/KIc relates the crack tip loading to a critical material
value (fracture toughness) and is a measure of the threat by brittle fracture.

(b) The parameter Lr = σn Rohr/σF relates a representative stress in the net-section
to the yield strength of the material. It characterizes the amount of plastification
and is a measure for the threat of plastic collapse.

In the Failure Assessment Diagram, structural failure is described by a limit curve,
which interpolates between the two extreme states of brittle fracture and plastic
collapse. The area within the limit curve indicates the safe region. For a specific
component with crack an associated point P(Kr , Lr ) is plotted in the diagram. Its
relative distance S = 0F/0P to the limit curve is a measure of safety. The limit

http://dx.doi.org/10.1007/978-94-007-6680-8_3
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Fig. 9.21 Failure Assessment Diagram (FAD) with failure limit curve

curve employed in the assessment code of [8] is rather closely oriented towards the
actual material behavior. It is drawn in Fig. 9.21 and has the form:

Kr = f (Lr ) = (1 − 0.14 L2
r )[0.3 + 0.7 exp(−0.65 L6

r )]. (9.5)

The stress state P(Kr , Lr ) of a component with defect has to be calculated for
the specific crack configuration and material from primary and secondary loads. The
approach will be exemplified at a part-through surface crack in the weld seam, see
Fig. 9.20.

Calculation of Kr = KI/KIc

The value Kr is calculated from the stress intensity factor KI of the crack and the
fracture toughness KIc. For the assessment always the lowest material parameter
KIc of base metal, heat affected zone and weld metal should be chosen, because the
crack could run into any of these material areas. The loading parameter KI for a
semi-elliptical surface crack is obtained from [3] as

KI = 1

Φ

√
πa (σm Mm MK m + σE Mm + σb Mb MK b) gK , (9.6)

with Φ =
√

1.464
( 2a

c

)1.65 + 1 and a factor gK = 1.2 accounting for the curvature
effect. In this equation, σm means the membrane stress acting in the defect-free
component, σE is the residual stress, σb is the pure bending stress across the wall
thickness h and a is the depth of the surface crack.

The factors Mm and Mb describe the influence of geometrical parameters of the
crack configuration on the stress intensity factor resulting from the acting stress
portions. The stress concentration at weld notches is accounted for by the factors
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MK m and MK b (> 1) [9]. They depend on the ratio of weld width L to weld
thickness h and on the relative depth coordinate s/h, see Fig. 9.20. In case of a
surface crack, either the deepest point A or the near-surface points C can become
critical. Therefore, the assessment has to be carried out for both types of points.
Corresponding calculation formulas and geometry factors are used for other crack
and weld geometries as well [8].

Calculation of Lr = σn pipe/σF

The value Lr denotes the stress state in the relevant crack configuration with respect to
the plastic limit load. Here, we have to distinguish between a global plastic collapse
and a local plastic failure. For the evaluation of gas piping having comparatively
small defects (relative to the total cross section) and deep cracks, one must always
assume a local plastic failure. The employed limit load solution [10] was specifically
designed for surface flaws in pressurized components with curved walls. Thereby,
σnpipe represents the effective net-section stress, at which local plastic failure is
reached in the remaining cross-section around the crack. This stress value can be
calculated from the membrane and bending stresses as well as the internal pressure
p as follows:

σn pipe = gs σ̄ + p , σ̄ = σb +
√
σ2

b + 9σ2
m

(
1 − a

h

)2

3
(
1 − 2 a

h

)2

gs = 1

1 −
[
β(1 − ϑ) + 2 arcsin

(
(1 − ϑ) sin β

2

)]
/π

, ϑ = h − a

h
(9.7)

Depending on the assessment mode, for σF either the yield strength Rp0.2 is applied
or hardening is partially taken into account byσF = 1

2 (Rp0.2+Rm). To get exact eval-
uations of the various crack configurations, the relations (9.7) were complemented
by corresponding local limit load solutions [8].

Computer-Based Assessment Code

Based on the above-described FAD-concept, a PC program was developed for the
fracture mechanical assessment of weld defects. An interactive dialog box allows us
to input all geometric parameters of the crack configuration, to provide the neces-
sary material parameters and to specify the stress state (pressure, bending, residual
stresses). Next, in an evaluation module the parameters (Kr , Lr ) are calculated by
the relations (9.6)–(9.7) and finally displayed graphically together with the failure
limit curve (9.5) in the assessment diagram, see Fig. 9.21. If the point P lies inside
the limit curve, then the stress state is rated as admissible and the relative distance
S to the limit curve is displayed as »safety against failure«. Moreover, by means of
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variant calculations, the user can estimate the effects of various input data and their
range of tolerance (due to lack of knowledge or measurement uncertainty) on the
safety. This option allows the safety-related assessment of a piping depending on the
concrete situation and obeys the requirement for strict conservatism.

Material Data of Piping and Weldment

To determine the conventional and fracture mechanics material properties of the pipe
material, samples were removed from the base material (BM) S355 J2, the weld metal
(WM) and the heat affected zone (HAZ) and tested. The stress-strain curves of the
tensile test were described by the Ramberg-Osgood power law.

ε = εe + εp = σ

E
+

( σ
D

)1/N
. (9.8)

The yield strength Rp0.2, the tensile strength Rm, the hardening exponent N =̂ 1/n
and the coefficient D are listed in Table 9.4 for all three materials.

The fracture-mechanical parameters were determined for all three material regions
BM, WM and HAZ with the help of three-point bending (SENB) specimens (10 × 20
× 100 mm) having 20 % side grooves. All material regions show at room temperature
a ductile, stable crack growth. The fracture toughness at the onset of crack growth
(initiation) can be characterized by the J -integral and the crack opening displacement
δ= CTOD.

Ji = 2δiσF , σF = 0.5(Rp0.2 + Rm) , KJi =
√

E Ji

1 − ν2 (9.9)

The characteristic values for all three material regions are summarized in Table 9.4.
The weld metal exhibits a much higher initiation fracture toughness than the base
material and the heat affected zone.

Table 9.4 Data of tensile test and crack initiation values for J -integral and CTOD-concept

Rp0.2 Rm N D J BL
i δSZW

i K Ji

(MPa) (MPa) (kJ/m2) (μm) (MPa m
1
2 )

Base material 403 575 0.15 801 63 69 119.4
Weld metal 432 583 0.13 773 143 142 179.9
Heat affected zone 477 620 0.12 779 56 58 112.6
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9.3.3 Large Scale Test of a Piping with Pre-cracked Weldments

Experimental Procedure

In collaboration with the Welding Institute in Halle, a component test of a gas piping
DN 920 was carried out, see [8]. The test specimen and the experimental setup are
shown schematically in Fig. 9.22. The specimen has been made of two existing pipes
in such a way that, in the central region of highest stresses, two original girth weld
seams (1 and 2) are installed at a distance of 2 m. The aim of this large-scale experi-
ment was to test the strength of the welds with artificially induced crack-like defects.
Manufacturing defects in welds are typically aligned in the circumferential direction.
Therefore, in both welds a roughly semi-elliptical surface notch was machined from
outside at the 6-o’clock position by means of a special sawing fixture. Afterwards a
fatigue crack was created from the notch by cyclic internal pressure load.

Dimensions of test specimen and cracks:

External radius ra = 460 mm

Internal radius ri = 447 mm

Wall thickness h = 13 mm

Distance between force application points 2l1 = 4000 mm

Distance between bearings 2l2 = 8800 mm

----------  assembling weld   ________ original weld  

-.-.-.-.-.-.  force application                      A – support 

girth weld 1 girth weld 2

part 1 part 2

assembling weld   

1000 10001000 1000

8800

9000

A A

Fig. 9.22 Component test piping with two weld seams under internal pressure and four-point-
bending
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Fig. 9.23 Experimental setup for pressure and bending loading of the test piping

Long surface crack 1 in girth weld 1: Depth a = 8.5 mm, Length c = 160 mm
Short surface crack 2 in girth weld 2: Depth a = 8.5 mm, Length c = 16 mm

The experimental setup is illustrated in Fig. 9.23. It was so designed that the
test piping could be loaded both by internal pressure p (water) and in four-point
bending by two hydraulic actuators, each having a maximum force of F = 1000 kN.
The purpose of the bending load, which causes the highest stresses at the place of the
cracks, was to simulate additional stresses in the longitudinal direction of the piping
that occur in practice. For weld cracks in the circumferential direction, these axial
tensile stresses have far more impact on the fracture behavior and the plastification
of the remaining wall thickness than the hoop stresses generated by pressure. The
aim was to stress the test piping until failure or rupture (leakage) happens.

The loading program consisted of five levels:

(1) no bending load, applying the pressure up to p = 5.5 MPa (operating pressure)
(2) applying bending load up to a actuator forces of F = 600 kN, hold pressure at

p = 5.5 MPa = constant
(3) hold the bending load at F = 600 kN, increasing the pressure to p = 7.0 MPa
(4) increasing the bending load to maximum F = 1000 kN, hold pressure p =

7.0 MPa = constant. Since up to this load level no failure of the specimen
occurred, a last step followed:

(5) bending load F = 1000 kN = constant, increasing the pressure to bursting
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Fig. 9.24 Loading program of the test piping

The temporal course of internal pressure p and actuator forces F is shown in
Fig.9.24.

Experimental Results

The test piping failed by stable growth of the artificially induced long surface crack
1 in the girth weld 1, resulting in an about 50 mm large leakage and a total pressure
drop. In terms of safety, this situation »leak before break« is more favorable than the
reverse case »unstable break before leak«.

The load values at failure amounted to:

• Pressure pc = 11 MPa (burst pressure)
• Bending load Fc = 1,000 kN (i. e. bending stresses of σb = 289 MPa)

The failure occurred well before reaching the theoretical burst pressure of pth =
16.7 MPa calculated for a defect-free pipe. The perforated pipe wall shows a clear
division into notch area, fatigue crack and leak area, see Fig. 9.25. Fractographic
investigations in the SEM clearly reveal the transition region from fatigue cracking
to ductile fracture. Thus, the fatigue pre-crack in the weld metal served as a starter
crack and the leak was caused by ductile crack growth in the burst test. This means,
an assessment by ductile fracture mechanics is appropriate.
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Fig. 9.25 Overall view of the fracture surface of crack 1

Application of Assessment Code

A major goal of the component test was to verify the developed assessment code
for applications to defective real welds in piping. For this purpose the assessment
code was applied to those parameters of the component test, which existed at actual
failure, i. e. burst pressure p = 11 MPa, additional bending stress of 289 MPa and
geometry of the critical crack 1. In terms of material behavior, the evaluation was
not only done using the properties of the weld metal WM, where the crack initiated,
but also with the much less favorable characteristics of the heat-affected zone HAZ,
because in engineering practice a defect in the HAZ can not be completely excluded.
Furthermore, variants were calculated by the program system supposing more severe,
fracture favoring conditions. In all cases the »safety against failure« calculated by
the assessment code was S < 1, i. e. failure had to occur and the evaluation point
P lay beyond the failure limit curve in the diagram 9.21. It was also investigated, at
which crack depth a the assessment code would have predicted initiation. Depending
on the material, values of a = 4 mm (HAZ) and a = 5 mm (WM) were obtained. In
conclusion, the component test has shown that with the help of the computer-aided
assessment code in all cases a conservative safety-related proof of the integrity of
gas pipelines with defective girth welds can be made. The assessment system eval-
uates only crack initiation, i. e. crack growth and strain hardening are considered as
additional safety reserves.
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Fig. 9.26 Finite-element-mesh of one quarter of the test piping

Fig. 9.27 Mesh detail in the crack region

9.3.4 FE-Analysis of Large Scale Piping Test

FE-Model of the Component

Figure 9.26 displays the FEM-discretization of one quarter of the test piping, whereby
advantage was taken of twofold symmetry (about 14, 000 hexahedron elements and
70, 000 nodes). The pressure punches and bearing shells were modeled by vol-
ume elements of appropriate stiffness. The initial shape of crack 1 after fatigue
pre-cracking was measured at the fracture surface (depth a = 8.5 mm and length
2c = 160 mm) and approximated in the FEM-model as an elongated semi-ellipse.
A very fine FEM mesh is required to discretize the crack region in order to capture the
deformation and stress concentration correctly, see Fig. 9.27. Along the crack front
the elements were concentrated fan-shaped in a tube of 20 segments. The smallest
elements directly at the crack tip have a size of about a/50. Just around the crack tip,
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Fig. 9.28 Deformations and equivalent stress in the test piping at load level 5

special elastic-plastic crack tip elements were arranged along the entire crack front.
These are collapsed 20-node hexahedral elements explained in Chap. 7. In order to
calculate the J -integral, four integration paths were defined around each segment of
the crack front. The calculated results show that the J values are almost indepen-
dent of the integration path. Only the narrowest path yields a drop-off from known
numerical reasons and was therefore not used.

In the FEM analysis, the entire course of loading in the component test was
simulated comprising the described five levels. The actuator force F was applied as
corresponding surface load on the top of the punch. The internal water pressure p
was imposed on the entire inner wall. The material behavior was modeled as elastic-
plastic with the yield curve of (9.8). The influence of large deformations was taken
into account.

The calculated results show good agreement with strain gauge measurements on
the test piping. The stress and deformation state is characterized as follows:

• From load level 4 on, the entire ligament of the pipe wall ahead of the crack is
plastified, i. e. the plastic limit load is exceeded here locally.

• At load level 5, the test pipe is plastified completely in the cross section (tensile
side), see Fig. 9.28.

• A pronounced plastic zone develops at the crack. The crack tip is blunting due to
intense plastic deformations (CTOD), see Fig. 9.29.

http://dx.doi.org/10.1007/978-94-007-6680-8_7
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Fig. 9.29 Detail of the FEM-solution at crack 1 of the test piping at load level 5

Fracture Mechanical Evaluation

From the FEM analysis of the test piping both fracture mechanical parameters
J -integral and crack opening displacement CTOD were calculated along the crack
front. Figure 9.30 illustrates the behavior of J at the end of each load level. The cal-
culations show that the J -values at apex A are always much larger than at the surface
points C . This behavior explains why the crack growth has started in the apex region
and led to a wall-penetrating fracture. Also on the fracture surface no crack growth
could be observed in a lateral direction (in C).
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The temporal course of the calculated J -values at both vertex points A and C
during the experiment is reported in Fig. 9.31. A monotonic increase of J -values can
be observed during the test until failure. According to the J -integral concept a ductile
stable crack growth is initiated, when J exceeds the physical initiation parameter
Ji . Since the crack started in the weld metal (WM), its critical material parameter
(Ji = 143 kJ/m2) is taken from Table 9.4 for evaluation. This value is also drawn in
Fig. 9.31 as a horizontal line. The fracture criterion thus provides the statement that
at the end of load level 4 (p = 7 MPa, F = 1,000 kN) crack initiation would have
occurred in the piping. Obviously during load level 5 the ductile crack has spread
through the wall until leakage, which was not yet modeled in the FEM-simulation.
An evaluation based on the CTOD-concept led to comparable results.

Hence it was shown that the ductile fracture behavior in gas pipelines can
be predicted quite accurately according to the J -integral concept by means of
numerical FEM stress analysis, if detailed information about material parameters,
defect geometry and loading are provided. Such elastic-plastic fracture mechanical
analyses are much more expensive, but confirm on the other hand the results of the
assessment code.
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Appendix
Fundamentals of Strength of Materials

In this chapter some basics of higher Theory of Strength of Materials are presented.
It is a compressed compilation of the essential concepts and relationships that are
necessary for understanding the book without giving derivations. For the reader
interested in detailed studies, advanced textbooks on strength of materials, continuum
mechanics and material modeling are recommended.

A.1 Mathematical Representation and Notation

The mathematical representation of vectors and tensors as well as algebraic and
analytic calculation rules are given both in symbolic form (bold italics) and in index
notation. We follow the generally accepted rules and notation such as Einstein’s sum-
mation convention and comma form of differentiation. The index notation is basically
restricted to a Cartesian, space-fixed coordinate system. Upper-case letters for vari-
ables and indices generally refer to the reference configuration, whereas lower-case
letters mark the current configuration. Matrices are written bold but upright.

Vector:
→
a =̂a = a1e1 + a2e2 + a3e3 =

3∑
i=1

ai ei = ai ei

Tensor second order:
⇒
A =̂A =

3∑
i=1

3∑
j=1

Ai j ei e j = Ai j ei e j

Tensor 4th order: C=̂Ci jkl ei e j ek el

Invariants of a tensor A: I A
1 , I A

2 , I A
3

Unit tensor second order: I = δi j ei e j with Kronecker-symbol: δi j

Scalar product: a · b = ai bi

Double scalar product: A : B = Ai j Bi j

Column matrix (m × 1): a = [a1a2 · · · am] T

M. Kuna, Finite Elements in Fracture Mechanics, Solid Mechanics and Its 391
Applications 201, DOI: 10.1007/978-94-007-6680-8,
© Springer Science+Business Media Dordrecht 2013
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Matrix (m × n): A =

⎡
⎢⎢⎢⎣

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...

Am1 Am2 · · · Amn

⎤
⎥⎥⎥⎦

Transpose/inverse matrix: AT , A−1 ,
(
A−1

)
T = A−T

Variational symbol: δ
Partial derivative: ∂(·)/∂xi = (·),i

Nabla-operator: ∇(·) = ∂(·)
∂x1

e1 + ∂(·)
∂x2

e2 + ∂(·)
∂x3

e3 = (·),i ei

Laplace-operator: �(·) = ∂2(·)
∂x2

1

+ ∂2(·)
∂x2

2

+ ∂2(·)
∂x2

3

= (·),i i

A.2 State of Deformation

A.2.1 Kinematics of Deformation

As a result of loading, every deformable body experiences a motion in space and
time as illustrated in Fig. A.1. The kinematics of continua deals with the geometrical
aspects of the motion. The entire motion is composed of translation and rotation of
the body as a whole (rigid body motions) as well as the relative displacement of
its particles (deformation). For this purpose it is necessary to assign at any time to
each particle (material point) of the body a corresponding location in physical space
(spatial point). Such a one-to-one mapping defines a configuration of the body. The
undeformed state of the body at time t = 0 is denoted as reference configuration
comprising the volume V and the surface A. The location of each particle P is

1e 2e

3e

( ), tx X

X

P

P’

Q’ 

Q d+u u

u dx

d X

Reference configuration t = 0 Current configuration    t > 0 

V

A

v

a

Fig. A.1 Kinematics of deformable body
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identified by its position vector X = X M eM in a Cartesian coordinate system with
basis vectors eM . These material coordinates do not change during the motion, but
mark uniquely each particle and are also called Lagrangian coordinates. At a later
time t > 0 of motion, the deformed body occupies the current configuration with
the changed volume v and surface a. The particle P runs along the trajectory to P ′,
its current position vector x = xm em is described by the spatial coordinates xm

(Eulerian coordinates). The motion of a body is thus the temporal sequence of such
configurations. The function

x = x(X, t) (A.1)

describes the position of the particles P ′ in space, whereby the time t is the curve
parameter and the initial position X is the group parameter.

During the motion each material point P is shifted by the vector u to the position
P ′. This displacement vector marks the difference between the current position x of
a particle and its initial one X .

u(X, t) = x − X or um(X, t) = xm − Xm

x(X, t) = X + u or xm(X, t) = Xm + um (A.2)

Hence, the deformation state of a body is uniquely characterized in space and
time by the displacement field u(X, t).

The physical properties of the particles (density, temperature, material state, etc.)
and the field quantities yet to be determined by the initial boundary value problem
(displacements, strains, stresses, etc.) change during the motion. To describe the
temporal changes of these field quantities χ, there are two fundamentally different
approaches. In the Lagrangian (material) description the changes of χ are traced
for each particle and are characterized by the functional dependence on the material
coordinates X .

χ = χ(X, t) (A.3)

The observer is quasi attached to the moving particle and measures the changes of the
field variables. In the Eulerian (spatial) description the changes of a field quantity χ
are observed at a fixed spatial point and are therefore expressed as a function Ξ of
the spatial coordinates x.

χ = Ξ(x, t) (A.4)

An observer fixed at the position x measures the changes resulting from the fact that
unlike particles with different properties are passing by. In principle both formula-
tions are equivalent and can be converted into each other, if the motion is known.
The Eulerian description is preferred in fluid mechanics, because there changes of
field quantities (pressure, velocity) at fixed positions are commonly of interest. The
Lagrangian description has advantages in solid mechanics, because here the initial
state is usually known and the individual properties of the particles (deformation,
stress or state variables) need to be traced during the loading history.
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A.2.2 Deformation Gradient and Strain Tensors

To characterize the stress in the interior of a solid body, the relative displacements
between two infinitesimally neighboring particles P and Q are of primary impor-
tance. In Fig. A.1 a material line element P Q = dX = dX M eM is considered in
the initial configuration, which is deformed into P ′Q′ = dx = dxm em during its
motion in the current configuration.

dxm = ∂xm(X, t)

∂X M
dX M = Fm M dX M or dx = F · dX (A.5)

The partial derivatives of xm with respect to X M form a tensor of second order that is
called a deformation gradient F. It can be expressed by the displacement field and
the unit tensor of second order I using (A.2).

Fm M = ∂xm

∂X M
= δm M + ∂um

∂X M
, I = δm M em eM (A.6)

The mathematical inversion of (A.5) represents the deformation of the reference
configuration as viewed from the current configuration.

dX M = ∂X M (x, t)

∂xm
dxm = F−1

Mm dxm or dX = F−1 · dx (A.7)

F−1
Mm = ∂X M

∂xm
= δMm − ∂uM

∂xm
(A.8)

The deformation gradient provides the relationship between the material line ele-
ments in the initial and the current configuration. It is defined on the basis vectors
of both configurations (two-point tensor) and in general not symmetric. To make the
affine mapping X ↔ x unique and reversible, the Jacobian functional determinant
J must be definite.

J = det

[
∂xm

∂X M

]
= det[Fm M ] �= 0 (A.9)

The deformation gradient involves both the elongation and the local rigid body rota-
tion in the vicinity of a material point X . By P Q = dX an arbitrary direction in
the neighborhood of P is defined. The elongation and the local rotation of the line
element can be separated from each other by means of the polar decomposition:

F = R · U = V · R or Fk N = Rk M UM N = Vkm Rm N . (A.10)

The rotation is described by the orthogonal tensor R,

RT = R−1 or RLk = R−1
kL and det [RkL ] = 1, (A.11)
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whereas both stretch tensors U and V quantify solely the stretch (final length / initial
length) of the line elements. The mapping F can be imagined as a sequence of a
rotation R and an elongation V or as an elongation U followed by a rotation R. The
tensors U and V are symmetric and positive definite.

U = UM N eM eN right stretch tensor (reference configuration)

V = Vmn em en left stretch tensor (current configuration)

V = R · U · RT and U = RT · V · R (A.12)

To split off the less interesting rotation term, the so-called right and left Cauchy-
Green deformation tensors are introduced, which are obtained from the stretch tensors
or straight from the deformation gradient F as follows:

C = FT · F = UT · U or CM N = Fk M Fk N = UL M UL N (right)

b = F · FT = V · V T or bmn = FmL FnL = Vml Vnl (left) (A.13)

All measures of deformation U , V , b and C migrate into the unit tensor I if no
stretching occurs.

The squares of the arc lengths of material line elements are calculated in the
reference configuration as

(dL)2 = dX · dX = (F−1 · dx) · (F−1 · dx)

= dx · (F−T · F−1) · dx = dx · b−1 · dx = dxk b−1
kl dxl (A.14)

and in the current configuration as

(dl)2 = dx · dx = (F · dX) · (F · dX)

= dX · (FT · F) · dX = dX · C · dX = dX K CK L dX L . (A.15)

The elongation of the line element amounts to

(dl)2 − (dL)2 = 2 dX · E · dX = 2 dx · η · dx . (A.16)

This way the following strain measures are defined:
Green-Lagrangian strain tensor (related to the reference configuration):

E = 1

2
(C − I) or EK L = 1

2
(CK L − δK L) (A.17)
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Euler-Almansi strain tensor (related to the current configuration):

η = 1

2
(I − b−1) or ηkl = 1

2
(δkl − b−1

kl ) (A.18)

Both strain tensors yield the information about the relative changes of lengths
and angles of material line elements in the vicinity of a point P due to deformation.
They are symmetric and reduce in the undeformed state to zero. By means of the
deformation gradient the strain tensors of both configurations can be converted into
each other.

E = FT · η · F and η = F−T · E · F−1 (A.19)

By applying relation (A.6) we get the non-linear relationship between displacements
and strains in the form:

EK L = 1

2

(
∂uK

∂X L
+ ∂uL

∂X K
+ ∂uM

∂X K

∂uM

∂X L

)
and

ηkl = 1

2

(
∂uk

∂xl
+ ∂ul

∂xk
− ∂um

∂xk

∂um

∂xl

)
. (A.20)

A.2.3 Rate of Deformation

In the following the temporal changes of motion and deformation of a material
particle and its vicinity will be examined in more detail. Velocity v and acceleration
a of a particle are obtained from (A.2) by the first and second material time derivative
of the displacement vector u.

v = u̇ or vi (X, t) = ∂ui (X, t)

∂t
= u̇i

a = v̇ = ü or ai (X, t) = ∂vi (X, t)

∂t
= v̇ = üi (A.21)

The velocity (time-rate) of the deformation process is important for the treatment
of inelastic material laws, which are formulated as constitutive relationship between
stress-rates and strain-rates. To this end we examine the relative velocity dv of two
neighboring particles of a line element dx = P ′Q′ in the current configuration at
time t > 0, see Fig. A.2. A Taylor-expansion of the velocity at point P(x) gives dv,
whereby l denotes the spatial velocity gradient.
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Fig. A.2 Velocity field of
neighboring particles
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dv = dẋ = l · dx or dvi = li j dx j (A.22)

l = ∂v

∂x
= ∇ · v = li j ei e j with li j = ∂vi

∂x j
= vi, j (A.23)

l = Ḟ · F−1 or li j = Ḟi M F−1
M j (A.24)

The velocity gradient can be decomposed into a symmetric and skew-symmetric
part:

l = d + w

d = 1

2
(l + lT) or di j = 1

2
(vi, j + v j,i ) (A.25)

w = 1

2
(l − lT) or wi j = 1

2
(vi, j − v j,i )

The tensor d denotes the rate at which lengths and angles of a material line element
change in time and is called rate of deformation tensor. The spin tensor w indicates the
angular velocity by which a line element rotates. There are the following relationships
with the time derivatives of the strain tensors:
In the current configuration:

d = η̇ + lT · η + η · l or di j = η̇i j + vk,i ηk j + ηik vk, j (A.26)

and in the reference configuration:

D = FT · d · F = Ė with Ė = 1

2
(v + vT + vT · u+ uT · v)

DM N = xm,M dmn xn,N = ĖM N with (A.27)

ĖM N = 1

2
(vM,N + vN ,M + vK ,M uK ,N + uK ,M vK ,N ) .
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A.2.4 Linearization for Small Deformations

For many tasks in strength of materials the strains can be considered as infinitesimally
small. In this case, the above presented theory of large finite deformations simplifies
significantly, because the non-linear quadratic terms of the displacement gradient
in the Green-Lagrange (A.17) and Euler-Almansi strain tensors (A.18) may then be
neglected in (A.20). Likewise, it can be shown that the derivatives of the displacement
vector with respect to material and spatial coordinates coincide

∂uM

∂X N
≈ ∂um

∂xn
. (A.28)

Hence we obtain the well-known infinitesimal strain tensor ε

ε ≈ η ≈ E = 1

2
(∇u+ (∇u)T) or εi j ≈ ηi j ≈ Ei j = 1

2
(ui, j + u j,i ) .

(A.29)

ε = εi j ei e j = εT or [εi j ] =
⎡
⎣
ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⎤
⎦ = [εi j ]T (A.30)

In the same way the rate of deformation is reduced to

ε̇ ≈ η̇ ≈ Ė = 1

2
(∇v + (∇v)T) or ε̇i j ≈ η̇i j ≈ Ėi j = 1

2
(vi, j + v j,i ) . (A.31)

The geometrical meaning of the individual components of the strain tensor is
illustrated in Fig. A.3 for the (x1, x2)-plane. We consider three points P (x1, x2),
Q (x1 + dx1, x2) and R (x1, x2 + dx2), the positions of which are marked on the
undeformed body. As a result of deformation, they move into the positions P ′, Q′
and R′. The strain tensor (A.29) contains derivatives of the displacements that cor-
respond to the Taylor-expansion of u(x) at point P as displayed in Fig. A.3. The
relative elongations of the line elements P Q and P R in their axial direction x1 and
x2 are called normal strains (analogously for the x3-coordinate):

ε11 = P ′Q′ − P Q

P Q
= ∂u1

∂x1
, ε22 = ∂u2

∂x2
, ε33 = ∂u3

∂x3
. (A.32)

Shear strains are a measure for the change of angles at a deformed volume element
with respect to the rectangular initial state, see Fig. A.3:
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Fig. A.3 Displacements and strains in the (x1, x2)-plane

γ12 = α+ β ≈ tanα+ tan β = ∂u2

∂x1
+ ∂u1

∂x2
. (A.33)

The associated component ε12 of the strain tensor has half the value of the engineering
glide angle γ12. Transferring these considerations to the other two coordinate planes,
we can express all shear strains as follows:

ε12 = 1

2

(
∂u2

∂x1
+ ∂u1

∂x2

)
= ε21 = 1

2
γ12

ε23 = 1

2

(
∂u3

∂x2
+ ∂u2

∂x3

)
= ε32 = 1

2
γ23 (A.34)

ε31 = 1

2

(
∂u1

∂x3
+ ∂u3

∂x1

)
= ε13 = 1

2
γ31 .

The normal and shear strains summarized in the strain tensor ε of (A.30)
characterize the state of deformation at a point P of the body. The terms on
the main diagonal (index i = j) correspond to the normal strains, whereas the
shear strains form the off-diagonal terms (index i �= j).

For the strain tensor one can find so-called principal axes, i.e. such a coordinate
system, where all shear strains vanish and the normal strains assume extreme values
(principal strains). The associated coordinate transform into the principal axes sys-
tem will be explained in detail for the stress tensor in Sect. A.3.3. The three principal



400 Appendix: Fundamentals of Strength of Materials

strains εα (with α = {I, II, III}) belong to spatial directions orientated orthonormal
to each other. They are sorted by magnitude.

Convention: εI ≥ εII ≥ εIII (A.35)

The shear strains attain extreme values in those coordinate systems rotated each by
45 degrees with respect to the principal axes. These three extreme values are called
principal shear strains and are calculated as follows:

γI = (εII − εIII) , γII = (εI − εIII) , γIII = (εI − εII) (A.36)

The following decomposition of the strain tensor is important in material theory: εi j

can be split into a portion εD
i j describing a pure shape change of the volume element

(distortion), and a portion εH representing only the change in volume (dilatation).

εi j = εD
i j + εH δi j (A.37)

The relative volume change is the sum of all normal strains. It is expressed as an
average volumetric strain on all sides by the so-called spherical tensor. The remaining
shape changing portion is called a deviator.

Volume change:
�V

V0
= ε11 + ε22 + ε33 = εkk = 3 εH

Spherical tensor: εH δi j , εH = εkk

3
, Deviator: εD

i j = εi j − εH δi j

(A.38)

A.3 State of Stress

A.3.1 Stress Vector and Stress Tensor

A deformable body is exposed to external forces that may, depending on their physical
origin, either act on the surface a or in the volume v. This will be discussed first in
the current configuration shown in Fig. A.4. Surface loads t̄ are forces ds per unit
area, imposed on specific areas on the surface of the body, such as e.g. an external
pressure. Under body forces b̄ we mean external forces per unit volume acting at
particles in the interior of the body, such as e.g. gravity or electromagnetic fields.
Distributed line loads and concentrated forces known from engineering mechanics
are special degenerated cases of these surface and volume forces.

Surface loads: t̄ = ds
da

, Volume forces: b̄ = ds
dv

(A.39)
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Fig. A.4 Body with surface
tractions and volume forces d ,s t

d ,s b

dv

da

Due to external loading internal forces arise in the body, which can be made visible
by the method of sections on imaginary cutting planes. They have the character of
surface loads and are denoted by the terms traction vector and stress tensor. At any
point P , we define a differentially small section da with an arbitrary orientation,
fixed by its unit normal vector n as depicted in Fig. A.5. From the acting differential
section force ds per area da we obtain in the limit process the traction vector t

t(x, n, t) = ds
da

= current section force

current sectional area
. (A.40)

Since we are dealing with the actual section force on the deformed surface element in
the current configuration, this is called the true or Cauchy stress vector. The Cauchy
stress vector can be decomposed into a component perpendicular to the surface, the
normal stress σ, and a shear stress τ acting tangentially to the surface.

The stress or traction vector t depends on the location P(x), the orientation n
of the sectional area and possibly on time t . This means one sectional orientation n
alone is not sufficient to describe the stress state at P uniquely with respect to any
other sectional areas. Therefore, we investigate the stress state at P with respect to
three cutting planes aligned perpendicular to the coordinate axes n1 = e1, n2 = e2
and n3 = e3, which delivers in each case a traction vector t1(n1), t2(n2) and t3(n3),
respectively. Now, the traction vectors t i on each section are split into their three
Cartesian components σi j as illustrated in Fig. A.6.

ds

da

da

P
n

n

t

3e

1e
2e

x

τ

σ
-ds

Fig. A.5 Traction vector t on a cutting plane da with orientation n
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Fig. A.6 On the definition of the stress tensor

t i = σi1e1 + σi2e2 + σi3e3 = σi j e j (A.41)

Hereby, the 1st index i denotes the orientation of the section, whereas the 2nd index
j indicates the direction of the stress component σi j . Logically, components owing
the same indices i = j are normal stresses σ11, σ22, σ33, which act perpendicular on
the respective cutting plane. If the stress components have different indices i �= j ,
it concerns the six shear stresses σ12, σ21, σ23, σ32, σ31, σ13, which we denote also
by τi j . With regard to the sign of the stresses the same rules hold as common for
all sectional variables, i.e. stress components are defined as positive, if they point
on the right-hand (resp. left-hand) section in the positive (resp. negative) coordinate
direction.

If the components of the three tractions t i are arranged as rows in a 3 × 3 matrix,
they form the nine elements of a second-order tensor.

This tensor σ is called the Cauchy stress tensor.

[
t1 t2 t3

] T =
⎡
⎣
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦ = [σi j ] , σ = σi j ei e j (A.42)

By applying the equilibrium of torque to the volume element it can be proved
that shear stresses, assigned to each other on orthonormal sections, are equal, i.e.
τ21 = τ12, τ32 = τ23 and τ13 = τ31. This makes the stress tensor symmetric

σ = σT or σi j = σ j i (A.43)
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Fig. A.7 Stress state at a tetrahedral element

and simplifies it to six independent scalar elements σ11, σ22, σ33, τ12, τ23, τ31.

The Cauchy stress tensorσ characterizes completely the stress state in an infin-
itesimal volume element at point P(x). This means, the entity of all traction
vectors t at P for all possible cut-orientations n is uniquely determined by σ.

In order to prove this, we need to find a relationship between σ and t . To this end,
we investigate at P in the current configuration a differentially small tetrahedron,
delimited by the already declared sectional area da with its normal vector n and
another three triangular faces dai , aligned perpendicular to the coordinate axes ei ,
see Fig. A.7. The areas of these triangles are calculated by projecting the sectional
area da onto the respective coordinate axes using the cosines of the included angles:

dai = n · ei da = cos(n, ei ) da = ni da .

If the equilibrium of forces is analyzed now for the tetrahedral element together with
(A.41), we obtain

t da − t i dai = 0

t j e j da − σi j ni e j da = (t j − σi j ni ) e j da = 0 .

Because the expression in parenthesis must vanish, the sought relationship between
traction vector and stress tensor (employing its symmetry) is found:

t j = σi j ni = σ j i ni or t(x, n, t) = σT(x, t) · n = σ · n . (A.44)
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or in matrix notation:

⎡
⎣

t1
t2
t3

⎤
⎦ =

⎡
⎣
σ11 τ12 τ13
τ21 σ22 τ23
τ31 τ32 σ33

⎤
⎦
⎡
⎣

n1
n2
n3

⎤
⎦ , [ti ] = [σi j ] [n j ] . (A.45)

Thus, the traction vector t can be calculated for an arbitrarily oriented cutting
plane by a scalar product between stress tensor σ and the normal unit vector
n. This relation is called Cauchy’s stress formula.

This holds also for the limiting case if the point P lies on the surface of the body
and the area element da becomes a part of the surface with outward directed normal
vector n. Then the local stress state (tensor) has to be in accordance with the resulting
traction vector t = σ · n to equal the external surface load t̄ .

A.3.2 Stresses in the Reference Configuration

The Cauchy stress tensor describes the true stresses in the Eulerian description in the
current configuration. If stress quantities are needed in the Lagrangian description,
then the force and area variables at location x have to be converted into the reference
configuration as sketched in Fig. A.8. By relating the surface load ds̄ or the section
force ds to the initial surface dA, the vector of nominal stresses is obtained:

p = ds
dA

= current section force

initial sectional area
(A.46)
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Fig. A.8 On the definition of stress tensors in the reference configuration
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The associated stress tensor P is called 1.Piola-Kirchhoff stress tensor. The Cauchy
formula (A.44) applies to it in analogous form, whereby now the normal vector N
is used on dA in the reference configuration.

p(X, N, t) = N · P or pl = NM PMl (A.47)

The conversion into the Cauchy stress tensor is read as follows:

P = det(F)F−1 · σ or PMl = J F−1
Mk σkl . (A.48)

The 1. Piola-Kirchhoff stress tensor is not symmetric, which is very inappropriate
for the formulation of constitutive equations. Therefore, the 2. Piola-Kirchhoff stress
tensor was introduced as a pseudo-stress tensor to achieve symmetry. To this end
an »fictitious« section force vector dS is defined, which is calculated formally by a
pull-back transformation of ds into the reference configuration.

dS = F−1 · ds analogous to dX = F−1 · dx (A.49)

This yields the stress vector T̂ ,

T̂ = dS
dA

= »initial« section force

initial sectional area
= F−1 · p (A.50)

and the associated 2. Piola-Kirchhoff stress tensor T ,

T̂ = N · T (X, t) or T̂L = NM TM L . (A.51)

By means of the deformation gradient F the following relationships can be estab-
lished to the two other stress definitions:

T = P · F−T or TM L = PMl F−1
Ll

T = det(F)F−1 · σ · F−T or TM L = J F−1
Mm σml F−1

Ll . (A.52)

The symmetry of σml implies the symmetry of TM L = TL M .

A.3.3 Transformation into Principal Axes

In all previous definitions and considerations of mechanical field quantities, a consis-
tent global Cartesian coordinate system (x1, x2, x3) with basis vectors ei was used.
Frequently, it turns out to be necessary or reasonable to change the reference coordi-
nate system. During a parallel shift of the coordinate system the strain and stress mea-
sures do not change, since they represent already differentiated quantities. Therefore,
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we focus on the investigation of a reference coordinate system (x ′
1, x ′

2, x ′
2), whose

basis e′
i is rotated with respect to the original e j system. This rotation is described

by an orthogonal transformation matrix r = [ri j ], relating the basis vectors of both
reference systems to each other,

e′
i = ri j e j . (A.53)

The elements of the transformation matrix are simply obtained as the components of
the new basis vectors expressed by those of the old one, ri j = e′

i · e j = cos(e′
i , e j ).

According to the laws of tensor algebra any vector a or any second order tensor A
of the old coordinate system e j can be converted into the rotated coordinate system
e′

i by applying the following transformation rules to their components:

a′
i = ri j a j , a′ = a′

i e′
i

!= a = ai ei

A′
i j = rik Akl r jl , A′ = A′

i j e′
i e′

j
!= A = Ai j ei e j . (A.54)

By using this »conversion rule« all previously introduced quantities as displacement
vector, force vectors, stretch, strain and stress tensors can be transferred into a rotated
coordinate system, of course without altering their physical meaning. Symmetric
tensors of second order have special properties that will be exemplified though the
Cauchy stress tensor in more detail.

Of all possible rotated reference systems, the so-called principal axes system is
distinguished by a transformed tensor that assumes the form of a diagonal matrix. In
case of the stress tensor σ′ this means that in the new coordinate directions there are
only three normal stresses and all shear stresses disappear.

[
σ′

i j

]
=
⎡
⎣
σ′

11 0 0
0 σ′

22 0
0 0 σ′

33

⎤
⎦ (A.55)

This special reference system e′
i is called a principal axes system and the correspond-

ing directions are denoted as principal axes. The three normal stresses associated
with the principal axes system represent extreme values irrespective of the former
reference systems and are named principal normal stresses.

A principal axis has a descriptive picture: The traction vector t is colinear with
the direction of the surface normal vector n = e′

i , whereby the normal stress has a
yet unknown magnitude σ. By using the Cauchy formula (A.45) and the unit tensor
δi j , we find

ti = σi j n j
!= σ ni

σi j n j − σ δi j n j = (σi j − σ δi j ) n j = 0 (A.56)

or in matrix notation
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⎡
⎣
σ11 − σ τ12 τ13
τ21 σ22 − σ τ23
τ31 τ32 σ33 − σ

⎤
⎦
⎡
⎣

n1
n2
n3

⎤
⎦ =

⎡
⎣

0
0
0

⎤
⎦ . (A.57)

From the mathematical point of view the determination of principal axes represents
an eigenvalue problem. Hereby, σ means the sought eigenvalue, and the correspond-
ing eigenvector n gives the principal direction. The homogeneous linear system of
equations for the sought principal directions has non-trivial solutions, if and only if
the determinant of coefficient matrix is zero.

det(σi j − σ δi j ) =
∣∣∣∣∣∣
σ11 − σ τ12 τ13
τ21 σ22 − σ τ23
τ31 τ32 σ33 − σ

∣∣∣∣∣∣
= 0 (A.58)

The resolution of the determinant leads to an equation of 3rd degree

σ3 − I σ1 σ
2 + I σ2 σ − I σ3 = 0 . (A.59)

The three real roots give the principal stresses σα (with α = {I, II, III}). They are
sorted by magnitude.

Convention: σI ≥ σII ≥ σIII (A.60)

Solving the homogeneous system of equations for each principal stress σα provides
the three orthonormal principal axes, which have yet to be normalized to unit length.

nα = nα1 e1 + nα2 e2 + nα3 e3 = nαi ei , α = {I, II, III} (A.61)

The quantities I σk (σi j ) (with k = {1, 2, 3}) in (A.59) denote the three invariants of the
stress tensor. As the name implies, these are characteristic figures of a second-order
tensor that do not depend on the coordinate system.

I σ1 (σi j ) = σ11 + σ22 + σ33 = σkk

I σ2 (σi j ) =
∣∣∣∣
σ11 τ12
τ12 σ22

∣∣∣∣+
∣∣∣∣
σ11 τ13
τ13 σ33

∣∣∣∣+
∣∣∣∣
σ22 τ23
τ23 σ33

∣∣∣∣
= σ11 σ22 + σ11 σ33 + σ22 σ33 − τ2

12 − τ2
23 − τ2

13 (A.62)

= 1

2
(σkk σll − σkl σlk)

I σ3 (σi j ) = det[σkl ]
= σ11 σ22 σ33 + 2 τ12 τ23 τ13 − σ11 τ

2
23 − σ22 τ

2
13 − σ33 τ

2
12

The invariants are particularly easily written in the principal axes system:
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I σ1 = σI + σII + σIII

I σ2 = σI σII + σII σIII + σIII σI (A.63)

I σ3 = σI σII σIII

The shear stresses attain extreme values on such planes rotated by 45◦ to the principal
axes and are called principal shear stresses.

τI = 1

2
(σII − σIII) , τII = 1

2
(σI − σIII) , τIII = 1

2
(σI − σII) (A.64)

Similar to the strain tensor, also the stress tensor can be decomposed into a deviator
and a spherical tensor (hydrostatic stress):

σi j = σD
i j + σH δi j (A.65)

Hydrostatic stress: σH δi j , σH = 1

3
σkk , Deviator: σD

i j = σi j − σH δi j

(A.66)

A.3.4 Equilibrium Conditions

The basic laws of mechanics are valid for a deformable body, too. This requires
in statics that the resultant force and resultant torque of all occurring forces must
be zero. For dynamic processes, the inertia forces of the accelerated particles have
additionally to be involved in the equilibrium considerations. Based on the principles
of linear momentum by Newton and angular momentum by Euler, the corresponding
equations of motion are derived for the deformable body. These considerations are
explained in the following using the current configuration as an example, whereby
we refer to Fig. A.4. In an analogous way the derivation can be done for the initial
configuration as well.

The resultant force FR of the applied external loads on the body is calculated
by the integral over all body forces b̄ in the volume v and all surface loads t̄ act-
ing on its boundary a. The total linear momentum IP of the body is composed
of the masses of all moving particles dm = ρ dv multiplied by their velocities
v(x, t) = ẋ(x, t) = u̇(x, t), whereby ρ denotes the mass density in the current
configuration.

FR =
∫

v

b̄ dv +
∫

a
t̄ da , IP =

∫

v

ρ v(x, t)dv =
∫

v

ρ u̇(x, t)dv (A.67)

According to Newton’s law of motion, the time derivative of the momentum equals
the resultant force. Taking the consistency of mass �m = const. of each particle into
account, the time derivative of Ip affects only v̇ = a = ü. Employing Eq. (A.67),
we find the global principle of momentum for the whole body,
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FR = İP ⇒
∫

v

b̄ dv +
∫

a

t̄ da =
∫

v

ρ ü(x, t) dv . (A.68)

The local form of the principle of momentum for a material volume element �v is
obtained from (A.68) by using the Cauchy formula (A.44) t = σ ·n and the Gaussian
integral theorem to convert the surface integral (A.68) into a volume integral. Finally,
this yields the following relationship:

∫

�v

[∇ · σ + b̄ − ρ ü
]
dv = 0 , (A.69)

which must be valid for an arbitrary subregion �v → 0. This demands the expression
in brackets to vanish:

∇ · σ + b̄ = ρü or σi j, j + b̄i = ρ üi , (A.70)

or in elaborate notation:

∂ σ11

∂x1
+ ∂ τ12

∂x2
+ ∂ τ13

∂x3
+ b̄1 = ρ ü1

∂ τ21

∂x1
+ ∂ σ22

∂x2
+ ∂ τ23

∂x3
+ b̄2 = ρ ü2 (A.71)

∂ τ31

∂x1
+ ∂ τ32

∂x2
+ ∂ σ33

∂x3
+ b̄3 = ρ ü3

In the case of statics (ü = 0), these equations represent the local equilibrium
conditions of Cauchy. They form a system of three partial differential equations
PDE, which the stress tensorσ has to comply with at each position. In kinetics
these expressions are known as equations of motion. Their twofold integration
with respect to time provides the deformations u(x, t) of the body.

A.4 Material Laws

The relationship between the stress state and the appearing strains depends on the
mechanical properties of the materials—specifically on their deformation behavior.
In continuum mechanics this correlation is commonly modeled phenomenologically
and mathematically formulated by so-called material laws. The deformation and
failure behavior of materials can be quite clearly classified according to the influence
of location, direction and time:
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(a) Spatial dependency
If the material behavior depends on the location (coordinates x) of testing, this
will be called inhomogeneous (e.g. forging, weldments). On the contrary, »homo-
geneous« means the same properties exist everywhere.

(b) Direction dependency
If the material behavior distinguishes itself at the same location in different direc-
tions of loading, we will call this property anisotropy (e.g. elasticity modulus of
composites). Otherwise (no directional dependency) isotropy is present.

(c) Time dependency
If the temporal course of loading does not matter to the material behavior, this
will be called a skleronom deformation behavior. The constitutive laws are then
independent of time t and rate of deformation. In many engineering materials,
the response to loading depends essentially on the velocity of the process, so that
the time enters as a variable in the constitutive law. This kind of deformation
behavior is called rheonom. The time dependence is observed in viscoelastic or
viscoplastic properties.

If the material properties change exclusively in time without loading, this will be
called aging. In addition to the above mentioned quantities, material laws and para-
meters may depend indirectly on other physical factors such as e.g. temperature,
moisture content, chemical reactions or radioactive radiation.

A.4.1 Elastic Material Laws

Elastic material behavior is characterized by two features:

• The deformations are reversible, i.e. during unloading the body deforms back into
its original shape. This is illustrated in Fig. A.9 by means of the uniaxial stress-
strain curve σ − ε. There is a one-to-one correlation between the current stress σ
and the instantaneous elastic strain ε. The ultimate stress state is independent of
the deformation history.

• The deformations depend neither on time nor loading rate (skleronom).

The elastic deformation behavior of almost all materials is linear for small strains,
which is known as Hooke’s law σ = Eε. The modulus of elasticity (Young’s modulus)
E is given by the slope of the stress-strain curve E(ε) = dσ/dε. There are however
also materials that can accommodate large, purely elastic deformations, which show
considerable nonlinearities, such as e.g. rubber or plastics.

Hyperelastic Material Laws

In the general case of multiaxial loading and large deformations, the elastic consti-
tutive law must be formulated as a function expressing the stress tensor by the strain
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Fig. A.9 Linear and nonlinear elastic material behavior at uniaxial loading

tensor. Hereby, the associated stress and strain measures of the current configuration
or the initial configuration have to be employed, see Sects. A.2 and A.3.

σ = σ(η) or T = T (E) (A.72)

To this end we consider in Eulerian description the work in a volume element, which
is performed by the true stresses σkl on the strains ηkl during a deformation process
from the undeformed initial state up to the final state ηi j :

dU = σkl dηkl ⇒ U (ηi j ) =
ηi j∫

0

σkl dηkl . (A.73)

Hereby, U denotes the strain energy density per volume for the general multiaxial
case. Because for elastic material behavior a unique relationship exists between
current stresses σi j and elastic strains ηi j , the integral U must be independent of the
deformation path. This means physically that the strain energy density is stored as a
specific potential energy in the volume, which can be converted with the density ρ
into a free energy per unit mass ψe = U/ρ. In mathematical terms, U or ψe represent
a path-independent integral of the state variables ηi j . Vice versa we get:

σi j = ∂U (ηi j )

∂ηi j
= ρ

∂ψe(ηi j )

∂ηi j
or σ = ∂U (η)

∂η
. (A.74)

This general form of the elasticity law is named hyperelasticity and is valid
for large deformations, anisotropy and arbitrary nonlinearities.

The specific formulation depends on the choice of the elastic potential U (η). A
more detailed description of hyperelastic material models for large deformations can
be found in Ogden [1] and Haupt [2].
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Generalized Hooke’s Law

In most engineering applications we can restrict ourselves to small deformations.
This fact allows us to formulate the elasticity law by the true stress tensor σi j and
infinitesimal strain tensor εi j :

σ = σ(ε) or σi j = σi j (εi j ) . (A.75)

For isothermal states the function U (εi j ) ≥ 0 has a quadratic form in εi j ,

U (εi j ) = 1

2
εi j Ci jklεkl , (A.76)

yielding the linear relationship

σi j = ∂U

∂εi j
= Ci jkl εkl and

∂2U

∂εi j∂εkl
= Ci jkl . (A.77)

This is Hooke’s law in its most general form including the elasticity tensor Ci jkl

of 4th order. Because σi j and εkl are symmetric and the partial differentiations are
permutable, it possesses the symmetry properties Ci jkl = Ckli j = C jikl = Ci jlk =
C jilk , which reduces the number of essential elastic constants to 21.

For a better illustration Hooke’s law is transferred from tensor calculus into matrix
notation. In accordance with the Voigt rule each index pair (i j) ≡ ( j i) → (α) is
mapped to one single Greek index (α):

(11) → (1) , (22) → (2) , (33) → (3) , (23) → (4) , (31) → (5) and (12) → (6) .

The summation of Greek indices covers α,β, . . . = {1, 2, . . . , 6} . (A.78)

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎦

=̂

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33
τ23
τ31
τ12

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16
C22 C23 C24 C25 C26

C33 C34 C35 C36
C44 C45 C46

sym C55 C56
C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
γ23
γ31
γ12

⎤
⎥⎥⎥⎥⎥⎥⎦

=̂ [Cαβ]

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎦

[
σα
] = [

Cαβ

] [
εβ
]

, symmetry:
[
Cβ α

] = [
Cαβ

]
(A.79)

Thus, in the general anisotropic case every given strain component induces a complete
multiaxial stress state!

The inversion of Hooke’s law for the strains is done by inverting the elasticity
matrix [Cαβ], which yields the compliance matrix [Sαβ].
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[
εα
] =

[
C−1
αβ

] [
σβ
] = [

Sαβ
] [
σβ
]

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
γ23
γ31
γ12

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 S14 S15 S16
S22 S23 S24 S25 S26

S33 S34 S35 S36
S44 S45 S46

sym S55 S56
S66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33
τ23
τ31
τ12

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.80)

Many materials and crystal structures have symmetry properties by which the number
of elastic constants is reduced. The most important classes are mentioned in the
following.

(a) Orthotropic material behavior

If the material has three preferred directions perpendicular to each other x1, x2
and x3 with different elastic properties, we will call it orthotropy. Examples for this
are orthorhombic crystals or fiber reinforced composites. The shear and elongation
strains become decoupled. In total nine independent elastic constants remain.

[Cαβ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0

0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.81)

More descriptive is the representation of the anisotropic Hooke’s law in engineering
constants Ei (elasticity modulus in xi -direction), μi j (shear modulus in the (xi , x j )-
plane) and the Poisson’s ratios νi j (necking in xi -direction at tension in x j ). The
application to orthotropic materials (A.81) reads:

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
γ23
γ31
γ12

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1/E1 −ν21/E2 −ν31/E3 0 0 0
−ν12/E1 1/E2 −ν32/E3 0 0 0
−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/μ23 0 0
0 0 0 0 1/μ31 0
0 0 0 0 0 1/μ12

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33
τ23
τ31
τ12

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.82)

Because of symmetry properties there are additional interdependencies:

ν21 E1 = ν12 E2, ν23 E3 = ν32 E2 and ν31 E1 = ν13 E3 .

(b) Transversal isotropic material behavior

Hereby it is assumed that the material behaves equally (isotropic) in all directions
within one plane (x1, x2), but with respect to the third coordinate (x3)other properties
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hold. This leads to five independent elastic constants. Examples are unidirectional
fiber-reinforced composite materials, wood or hexagonal crystals.

[Cαβ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0

0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2 (C11 − C12)

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.83)

(c) Isotropic material behavior

Isotropy is the highest class of symmetry, wherein the elastic behavior is identical
in all spatial directions .

[Cαβ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0

0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎤
⎥⎥⎥⎥⎥⎥⎦

with C44 = 1

2
(C11 − C12) (A.84)

Thus, the elasticity matrix simplifies to two independent elastic constants. Amor-
phous materials (glass, polymers, et al.) and polycrystalline metallic or ceramic
materials behave macroscopically isotropic elastic.

Thermal Strains

It is well known that in many materials a deformation occurs as the result of a
temperature change from the initial T0 to the current temperature T . The shape of
these deformations is specified by the thermal strain tensor εt

i j . These strains are in
first approximation proportional to the temperature difference �T (x) = T (x)− T0,
and have anisotropic character that is quantified by the symmetric second-order tensor
of thermal expansion coefficient αt

i j . In the special case of isotropy, only thermal

strains occur that are equal in all directions. Then the material tensor αt
i j is reduced

to a diagonal tensor αt δi j and the linear thermal expansion coefficient αt is left as
the only material parameter.

anisotropic: εt
i j (x) = αt

i j �T (x) , isotropic: εt
i j = αt δi j �T (A.85)

Thermally induced strains appear independent of the stress state and in addition to
the elastic strains εe

i j . Therefore, they have to be subtracted from the total strains in
Hooke’s law.

εi j = εe
i j + εt

i j ⇒ σi j = Ci jkl (εkl − εt
kl) (A.86)
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The unhindered free heating of a body to a constant temperature does not lead to
stresses, whereas a kinematic constraint or inhomogeneous temperature fields may
cause large thermal stress or residual stress.

Isotropic Thermoelastic Law

In view of its widespread applications we consider the isotropic elastic material
with thermal strains in detail. Since the modulus of elasticity E , Poisson’s ratio
0 ≤ ν ≤ 1/2 and shear modulus μ are identical in all directions, the relations (A.82)
and (A.85) are written as:

ε11 = 1

E
[σ11 − ν (σ22 + σ33) ] + αt �T

ε22 = 1

E
[σ22 − ν (σ33 + σ11) ] + αt �T

ε33 = 1

E
[σ33 − ν (σ11 + σ22) ] + αt �T

γ12 = τ12

μ
, γ23 = τ23

μ
, γ31 = τ31

μ
with μ = E

2(1 + ν)
. (A.87)

This reads in more general notation

εi j = 1 + ν

E
σi j − ν

E
σkk δi j + αt �T δi j . (A.88)

Rearranging of (A.87) with respect to the stresses yields:

σ11 = E

1 + ν

[
ε11 + ν

1 − 2 ν
(ε11 + ε22 + ε33)

]
− E

1 − 2 ν
αt �T

σ22 = E

1 + ν

[
ε22 + ν

1 − 2 ν
(ε11 + ε22 + ε33)

]
− E

1 − 2 ν
αt �T (A.89)

σ33 = E

1 + ν

[
ε33 + ν

1 − 2 ν
(ε11 + ε22 + ε33)

]
− E

1 − 2 ν
αt �T

τ12 = μγ12 , τ23 = μγ23 , τ31 = μγ31 .

By introducing the isotropic Hooke’s tensor

Ci jkl = 2μ δik δ jl + λ δi j δkl , (A.90)

relationship (A.89) is written in a compact form:
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σi j = Ci jkl
(
εkl − εt

kl

) = 2μ εi j + λ δi j εkk − (3λ+ 2μ)αt �T δi j (A.91)

Hereby, the Lamé constants μ and λ are introduced, which are related to the other
elastic constants E , ν and μ or C11, C22 and C44 in the following way:

μ = E

2 (1 + ν)
= C44 , λ = E ν

(1 + ν) (1 − 2 ν)
= C12 , 2μ+ λ = C11 . (A.92)

For later constitutive modeling it is appropriate to split Hooke’s law into a dilatational
part of pure volume change and a deviatoric part of shape change. Employing the
definitions of the spherical tensors σH and εH as well as the deviators σD

i j and εD
i j , we

can separate (A.91) into the terms:

σD
i j = 2μ εD

i j , σH = (3λ+ 2μ)(εH − αt�T ) = 3 K (εH − αt�T ) (A.93)

K = E

3 (1 − 2 ν)
= 1

3
(2μ+ 3λ) = 1

3
(C11 + 2C12) – modulus of compression.

(A.94)

A.4.2 Elastic-Plastic Material Laws

Features of Plastic Deformation

Plastic material behavior is characterized in that the material begins to »flow« after a
certain level of stress—the elastic limit—is attained, i.e. inelastic, permanent defor-
mations occur. These plastic strains are a typical feature of most metals and exceed
by far the magnitude of elastic deformations. Plastic deformations are irreversible
dissipative processes that occur in a (quasi-static) balance between external loading
and deformation resistance of the material. Therefore they are not dependent on time
or rate of deformation (skleronom). After unloading, the plastic deformations remain
existent. The plastic work of deformation is predominantly converted into heat.

In Fig. A.10 the characteristic features of elastic-plastic deformation behavior are
exemplified by the uniaxial stress-strain curve. The material behaves elastically until
a certain stress value is reached in point (F)-the yield strength σF0. If the stress
exceeds (F), then plastic strains εp > 0 are formed. In the model of an ideal-plastic
material (dotted line in Fig. A.10), unlimited plastic deformation εp → ∞ happens
now and the load-carrying capacity of the material is exhausted. In real materials
the current yield strength σF increases as a result of plastic deformation, which is
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Fig. A.10 Elastic-plastic
material behavior
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denoted as hardening of the material. The course (F)–(A) is called a monotonic yield
curve. If the applied stress is reduced to zero (E), the material is relieved by a pure
elastic deformation εe and only εp remains.

A re-loading to the previous value (A) happens again elastically, and only beyond
this value does further plastification and hardening resume in the material. If a stress
is applied in the opposite direction (tension → compression), then the plastic yielding
will usually begin earlier at point (B). This shift of the yield limit at load reversal
is known as the Bauschinger effect. If the material is exposed to periodic loading
and unloading processes, then alternating plastic deformations ±εp develop and the
stress-strain curve takes the form of a hysteresis loop whose shape may yet change
with the cycles.

Basics of Plastic Flow Theory

The theory of plasticity describes the elastic-plastic deformation behavior in the
multiaxial stress situation, whereby a number of assumptions are made that will be
explained in the following under the restriction of small strains:

• The strains εi j and their time-rates di j ≈ ε̇i j (A.31) are composed from an elastic
ε̇e

i j and a plastic part ε̇p
i j .

εi j = εe
i j + ε

p
i j , ε̇i j = ε̇e

i j + ε̇
p
i j or dεi j = dεe

i j + dεp
i j (A.95)

Instead of the above formulation in velocities (»rate form« ), Eq. (A.95) is often
written in »incremental« form by the change of strain dεi j = ε̇i j dt per time
increment. This is allowed since in plasticity, the time has merely the meaning of
a loading parameter. Strictly speaking, the additive decomposition is only exact
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within the frame of infinitesimal strains. But it can be used as a good approximation
for large finite strains as well, provided the elastic strain part is small, ε̇e

i j � ε̇
p
i j .

• Plastic flow only begins when the stress state σkl exceeds a certain limit that is
defined by the yield criterion:

Φ(σkl , hα)

{
< 0 elastic region

= 0 plastic region and hardening
(A.96)

hα (α = 1, 2, . . . , nH) — hardening variables

This yield condition represents a convex limit surface in stress space (six com-
ponents of σi j , or three principal stresses σα), which separates the elastic region
from the plastified states. It depends on a number nH of stress-like variables hα
that describe the current state of hardening. As the hardening increases the limit
surface Φ(σkl , hα) changes and is further-on called a yield surface.

• Plastic strains depend on the loading history (loading path in stress space). The
current change (increment) of plastic strain dεp

i j is a direct reaction to the change
dσi j in the stress state, but it depends also on the absolute stress state σi j and
the achieved level of hardening hα. For these reasons, the material law has to be
formulated in »incremental form« or »rate form«. From this the name incremental
theory of plasticity or flow theory has arisen.

ε̇
p
i j = fi jkl(σkl , hα) σ̇kl or dεp

i j = fi jkl(σkl , hα) dσkl (A.97)

• For metallic materials it has been proven experimentally that plastic deformations
produce no change in volume and that plastic yielding is not affected by the hydro-
static stress part σH (plastic incompressibility). Thus, plastic deformation has a
totally shape changing character and can only be described by the deviator

ε̇
p
kk = 0 , ε̇

p
i j ≡ ε̇

pD
i j (A.98)

• Irreversible changes of material conditions during plastic yielding are quantified
by so-called state variables or internal variables zα (α = 1, 2, · · · , nH). For
this purpose, commonly strain-like quantities are chosen, which are in terms of
thermodynamics work-conjugate with respect to the hardening variables hα. The
quantities zα specify the hardening state and its changes.

hα = hα (zβ) (A.99)

Yield Condition

To formulate the yield condition Φ(σkl , hα) for isotropic material behavior it is
advantageous to choose the three invariants of the stress tensor. Even better are the
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invariants of the stress deviator, because due to incompressibility the first invariant
I σD
1 = σD

kk = 0 drops out. Among the variety of existing approaches, we detail the
two most common yield conditions.

(a) Yield condition of v. Mises
This yield condition traces back to v. Mises, Huber and Hencky and relies on the
shape change hypothesis. It is formulated only by means of the 2nd invariant of the
stress deviator I σD

2 .

ΦMises(I σD
2 ) = −I σD

2 − 1

3
σ2

F0 = 1

2
σD

klσ
D
kl − 1

3
σ2

F0 = 0 (A.100)

After introducing the v. Mises equivalent stress σv,

σv =
√

3

2
σD

kl σ
D
kl =

√
−3 IσD

2

=
√

1

2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2

]+ 3(τ2
12 + τ2

23 + τ2
31)

=
√

1

2

[
(σI − σII)

2 + (σII − σIII)
2 + (σIII − σI)

2
]

in principal stresses,

(A.101)

we obtain

ΦMises(σv) = σ2
v − σ2

F0 = 0 or ΦMises = σv − σF0 = 0. (A.102)

σv is chosen such that in the uniaxial case (σI = σ, σII = σIII = 0) the condition
σv = σ = σF0 is satisfied. This way the v. Mises equivalent stress compares a
multiaxial stress state with an equivalent uniaxial value of the tensile test.

In the special case of plane stress state (σIII = 0) Eq. (A.101) simplifies to

σv =
√
σ2

11 + σ2
22 − σ11 σ22 + 3 τ2

12 =
√
σ2

I + σ2
II − σI σII (A.103)

and ΦMises = σ2
v − σ2

F0 = 0 represents the equation of an ellipse in the coordinate
system of the principal stresses (σI, σII) as illustrated in Fig. A.11.

In the general triaxial stress state, the yield criterion is represented in the coordinate
system of all three principal stresses as shown in Fig. A.12. The hydrostatic part σH

of an arbitrary stress state P =̂ σ = σI eI + σII eII + σIII eIII is obtained as the
projection on the space diagonal eH (hydrostatic axis). Because the yield criterion is
independent of σH, it must form a prismatic surface parallel to eH. In these so-called
deviatoric π-planes lying perpendicular to eH, the condition ΦMises = 0 describes
the locus of a circle of radius RF = √

2/3σF0.
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Fig. A.11 Yield conditions of v. Mises and Tresca for plane stress state

b) Yield condition of Tresca
According to this hypothesis, plastic flow occurs if the maximum shear stress (A.64)
reaches a limit τF0.

ΦTresca(σkl) = τmax − τF0 = 0

= max{1

2
|σI − σII|, 1

2
|σII − σIII|, 1

2
|σIII − σI|} − τF0 = 0 (A.104)

For the uniaxial stress state (σI = σ, σII = σIII = 0) we get τmax = |σ|/2, providing
thus a relation between the yield stresses in shear and tension τF0 = σF0/2. For the
plane stress state, Tresca’s yield condition is displayed as a hexagon in the (σI, σII)-
plane, see Fig. A.11. In the triaxial stress state ΦTresca = 0 corresponds to a cylinder
with uniform hexagonal shape in the deviatoric plane as sketched in Fig. A.12.
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Fig. A.12 Yield conditions of v. Mises and Tresca in 3D space of principal stresses
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Flow rule and normality rule

Next we need to know the components of the plastic strain increments dεp
i j , i.e.

the directions and size of plastic flow. They can be determined by the principle of
maximum plastic dissipation that has been established by Hill and Drucker 1950,
see Lubliner [3]. We consider a stress state σ0

i j on or inside the yield surface and

prescribe a plastic strain increment dεp
i j , cf. Fig. A.13 for this. According to the

principle of maximum plastic dissipation, among all possible stress states σ̃i j the
true stress state σi j will be realized such that the dissipated energy density (per time

dt) Dp =
(
σ̃i j dε

p
i j − hαdzα

)
attains a maximum. Because this stress state σ̃i j must

lie on the yield surface, it requires us to solve an extreme value problem with the
yield condition as a constraint. Applying the method of Lagrangian multiplicator dΛ

we can write

Dp (σ̃i j , hα, dΛ
) = [

σ̃kl dεp
kl − hαdzα − Φ(σ̃kl , hα) dΛ

] → max. (A.105)

Differentiation with respect to σ̃i j gives the associated yield rule:

dεp
i j = dΛ

∂Φ

∂σ̃i j
= dΛN̂i j at σ̃i j = σi j or ε̇p

i j = Λ̇
∂Φ

∂σi j
= Λ̇N̂i j . (A.106)

This calculation formula is called the normality rule, because the direction N̂i j is
oriented exactly perpendicular to the yield surface in stress space. For these reasons
the function Φ is denoted also as a plastic dissipation potential.

The differentiation of (A.105) with respect to the hardening variables hα yields
the law for the temporal evolution of the inner variables zα:

dzα = −dΛ
∂Φ

∂hα
or żα = −Λ̇

∂Φ

∂hα
. (A.107)
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Fig. A.13 Yield condition and normality rule, postulate of Drucker
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The non-negative parameter Λ̇ = dΛ/dt , which is also called a plastic multiplicator,
assumes the following values:

Λ̇

{
> 0 at Φ = 0 and Φ̇ = 0 plastic yielding

= 0 at Φ ≤ 0 and Φ̇ < 0 elastic region or unloading
(A.108)

These relations are frequently combined in the Kuhn-Tucker condition Λ̇ Φ̇ = 0.
In a context with the normality rule and the requirement for convexity, the postulate

of Drucker (1950) has to be mentioned that gives an energetic condition for the sta-
bility of plastic material behavior. We consider a virtual loading cycle from the initial
stateσ0

i j to any final stateσi j and back. Thereby, a strain increment dεi j = dεe
i j + dεp

i j
occurs. During this closed loading cycle the stress increment performs an additional
plastic work dU p = dσi j dεp

i j on the plastic strain increments dεp
i j (the elastic part

dεe
i j is recovered). This is shown in Fig. A.13 for the uniaxial (a) and a multiaxial (b)

stress state.

1D : (σ − σ0) dε = dσ dεp

3D : (σi j − σ0
i j ) dεi j = dσi j dεp

i j

⎧
⎪⎨
⎪⎩

≥ 0 hardening ⇒ stable

= 0 ideally plastic

≤ 0 softening ⇒ unstable

(A.109)

In order for the material to remain stable, the scalar product dU p must not be
negative, so dεp

i j has to take the normal direction on the yield surface Φ = 0, since
dσi j can have any outward direction. For this reason the yield surface must be convex
! This situation can be seen directly from the graph in Fig. A.13 b.

Application of the normality rule (A.106) to the v. Mises yield condition yields:

ΦMises =
√

3

2
σD

i j σ
D
i j − σF0 = 0

∂ΦMises

∂σi j
= ∂ΦMises

∂σD
kl

∂σD
kl

∂σi j
=
(

3σD
kl

2 σv

) (
δki δl j − 1

3
δkl δi j

)
= 3

2

σD
i j

σv
(A.110)

⇒ ε̇
p
i j = 3

2

σD
i j

σv
Λ̇ (A.111)

This is the isotropic flow law of Prandl-Reuss. The plastic strain rate is pro-
portional to the stress deviator and thus causes a pure distortion (incompress-
ibility).
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Types of Hardening

Hardening is specified using the hardening variables hα that may be scalar or tensor
quantities. For their development in the course of loading, evolution laws are set that
are proportional to the plastic multiplier. The functions Hα are either assumed empir-
ically or are gained directly via (A.99) and (A.107) from the dissipation potential
Φ:

ḣα = Hα(σi j , hβ) Λ̇ for example Hα = −
nH∑

β=1

∂hα
∂zβ

∂Φ

∂hβ
. (A.112)

We explain the two most important types of hardening, which differ especially at
load reversal.
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Fig. A.14 a Isotropic and b kinematic hardening for uniaxial loading

a) Isotropic hardening
After a load reversal, plastic flow will begin again only if the previously attained
yield stress |σF| is exceeded in magnitude anew, i.e. the hardened (elastic) region
increases as shown in Fig. A.14a. The stress-strain curve is mirrored with respect to
the point O of zero crossing. The isotropic hardening variable R = R(εp) measures
how much the yield strength has increased compared to its initial value:

σF(εp) = σF0 + R(εp) . (A.113)

This is a scalar hardening variable h1 = R, expressed as a function of plastic strain.
To generalize it to the three-dimensional stress state, the accumulated equivalent
plastic strain εp

v =̂ z1 is introduced, which represents the associated internal variable:
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ε
p
v =

t∫

0

ε̇
p
v dt , ε̇

p
v =

√
2

3
ε̇

p
i j ε̇

p
i j = Λ̇. (A.114)

In the special case of uniaxial tension (σ11 = σ) it holds that ε̇p
11 = ε̇p, ε̇p

22 =
ε̇

p
33 = − ε̇p/2, and we obtain just ε̇p

v =̂ ε̇p. This agreement arises from the shape
change hypothesis, according to which any multiaxial stress state can be referred to
a uniaxial one having an equal dissipation power σi j ε̇

p
i j = σvε̇

p
v, which is done by

means of the v. Mises equivalent stress σv and equivalent plastic strain. In this way,
each hardening curve σF = f (εp) measured in a tensile test can be transferred to the
three-dimensional case as σv = f (ε

p
v).

It can be shown that the equivalent plastic strain rate is identical with the plastic
multiplier (A.114) and that the evolution law H1 associated to R corresponds to the
plastic tangent modulus Ep of (A.116).

The relationships for isotropic hardening are summarized as:

Yield condition(v.Mises) : Φ(σi j , R) = σv − σF0 − R(ε
p
v) = 0

Hardening law: σF(ε
p
v) = σF0 + R(ε

p
v) (A.115)

Evolution law: Ṙ = H1 Λ̇ = dR

dεp
v
ε̇

p
v = Epε̇

p
v (A.116)

The geometrical representation is the surface of a cylinder with radius σF
√

2/3,
which is enlarging by εp

v in all directions (isotropic), see Fig. A.15a. There exist many
empirical formulations for the uniaxial isotropic hardening law R(εp), for example:

• linear hardening with a constant plastic tangent modulus Ep = dR
dεp :

R = Epε
p, εp = 1

Ep
(σF − σF0) (A.117)

• power-law hardening of Ramberg-Osgood (exponent n ≥ 1, parameter α,
reference stress σ0 and reference strain ε0 = σ0/E):

R = σ0

(
εp

αε0

)1/n

− σF0 , εp = α ε0

(
σF

σ0

)n

(A.118)

• exponential function with saturation R∞ and slope b:

R = R∞
[
1 − exp (−b εp)

]
(A.119)

However, the isotropic hardening type does not explain the Bauschinger effect !
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b) Kinematic hardening
Kinematic hardening means a shift of the yield condition in the direction of the current
loading whereas the size of the elastic regions (AA′ = 2σF0) remains unchanged.
As can be seen from Fig. A.14b, this way the Bauschinger effect is captured. The
displacement of the reference point of the yield condition is expressed in the 1D case
by the kinematic hardening variable X that has the dimension of a stress. Various
approaches exist for the changing of X as a consequence of plastic deformation.

The simplest evolution equation by (Prager 1959) [3] is a linear shift proportional
to the multiplicator Λ = εp with the material constant c. Thus the yield condition
and the evolution equation read in the 1D case:

Φ(σ, X) = |σ − X (εp)| − σF0 = 0

X = X (εp) = c εp . (A.120)

In the 3D case X represents a tensor of second order that is called a back stress ten-
sor. It is a symmetric deviator, whose components Xi j define another six hardening
variables, which are work-conjugate with the plastic strain components.

Xi j =̂ hα, ε
p
i j =̂ zα (α = 2, 3, . . . , 7) (A.121)

As Fig. A.15b shows, the back stresses describe a shift of the yield surface in the
stress space towards the direction of current plastic strains (3D-Bauschinger effect).
The yield condition is formulated by the 2nd invariant of (σD

i j − Xi j ), so that the

equivalent stress σ̄v = −3I2(σ
D
i j − Xi j ) is calculated relatively to the center of the

yield surface.

Φ(σi j , Xi j ) =
√

3

2
(σD

i j − Xi j ) (σD
i j − Xi j )

︸ ︷︷ ︸
σ̄v

−σF0 = 0

Evolution law: Ẋi j = c ε̇p
i j = c

∂Φ

∂σi j
Λ̇ =̂ Hα Λ̇ (A.122)

Moreover, nonlinear kinematic hardening rules (see e. g. Chaboche [4]) are to be
mentioned, which are important to model certain cyclic plastic phenomena (ratch-
eting, mean stress relaxation). Therefore, the evolution Eq. (A.122) is extended by a
second »recall« term −γXi j ε̇

p
v that causes a saturation of the kinematic hardening

(dynamic recovery).



426 Appendix: Fundamentals of Strength of Materials

c) Combined hardening
In reality, metallic materials often exhibit a superposition of kinematic and isotropic
hardening. This affects both an enlargement and a shift of the yield surface, which
is illustrated in Fig. A.15c for the multiaxial case. The equations for a combined
isotropic and nonlinear kinematic hardening then have the following form:

yield condition: Φ(σi j , Xi j , R) = σ̄v − σF0 − R(ε
p
v) = 0

evolution equations: Ṙ = EpΛ̇, Ẋi j = c
∂Φ

∂σi j
Λ̇, ε̇

p
v = Λ̇. (A.123)
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Fig. A.15 Representation of various hardening types in the deviatoric plane

Constitutive equations

In the previous section the flow law has already been derived, which provides the
plastic strain increments as function of the current stress and hardening state. It is
valid in the plastic region, i.e. if the yield condition is fulfilled and plastification
proceeds (Φ = 0, Λ̇ > 0). During unloading from the plastic region, (Φ = 0,
Φ̇ < 0, Λ̇ = 0), as well as in the elastic region (Φ < 0, Λ̇ = 0) Hooke’s law applies.
However, an equation is still missing to determine the plastic multiplier Λ̇. This is
accomplished by means of the so-called consistency condition, which says that the
yield surface must always maintain a zero value Φ = 0 for further hardening, i.e. its
total differential vanishes:

Φ̇ = ∂Φ

∂σi j
σ̇i j + ∂Φ

∂R
Ṙ + ∂Φ

∂Xi j
Ẋi j = 0 . (A.124)
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In case of combined isotropic-kinematic hardening the individual terms read:

∂Φ

∂σi j
= N̂i j ,

∂Φ

∂Xi j
= −N̂i j , N̂i j = 3

2

σD
i j − Xi j

σ̄v
,

∂Φ

∂R
= −1 (A.125)

Together with the evolution laws (A.123) follows:

N̂i j σ̇i j − [Ep + c N̂i j N̂i j︸ ︷︷ ︸
3/2

] Λ̇ = 0 ⇒ Λ̇ = N̂i j σ̇i j

Ep + 3
2 c

. (A.126)

The elastic strain rates are obtained from (A.95) by subtracting the plastic part from
the total rates, whence the stress rates can be calculated using Hooke’s law (A.77):

σ̇i j = Ci jkl ε̇
e
kl = Ci jkl(ε̇kl − ε̇

p
kl) = Ci jkl(ε̇kl − Λ̇N̂kl). (A.127)

Inserting of Λ̇ from (A.126) yields the relationship to the total strain rate ε̇kl

Λ̇ = N̂i j Ci jkl

N̂mnCmnpq N̂pq + Ep + 3
2 c
ε̇kl , (A.128)

from where the sought relation is finally found.

σ̇i j =
[

Ci jkl − Ci jmn N̂mn N̂pq C pqkl

N̂mn Cmnpq N̂pq + Ep + 3
2 c

]
ε̇kl = Cep

i jkl ε̇kl (A.129)

Thereby the hypoelastic-plastic material law has been gained for an anisotropic-
elastic and combined hardening plastic material as a relation between stress
rate and total strain rate.

The tensor Cep
i jkl(σi j , Xi j , R) is denoted as elastic-plastic continuum tangent.

It depends both on the current stress state and via the hardening variables on the
deformation history.

At the end of this section, we write down the important special case, where
the elastic material behavior is isotropic, see Sect. A.4.1.

Ci jkl = 2μ

[
δik δ jl + ν

1 − 2 ν
δi j δkl

]
see (A.90)

Ci jkl N̂kl = 2μ N̂i j since N̂kk = 0 , N̂mn Cmnpq N̂pq = 3μ
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Cep
i jkl = 2μ

⎧
⎨
⎩
[
δik δ jl + ν

1 − 2 ν
δi j δkl

]
− β

3

2

(σD
i j − Xi j ) (σD

kl − Xkl)

σ̄2
v

[
1 + Ep

3μ + c
2μ

]
⎫
⎬
⎭

(A.130)

β =
{

1 plastic yielding

0 elastic unloading

σ̇i j = 2μ ε̇i j + λ δi j ε̇kk − β 3μ
(σD

i j − Xi j ) (σD
kl − Xkl)

σ̄2
v

[
1 + Ep

3μ + c
2μ

] ε̇kl (A.131)

Deformation Theory of Plasticity

In contrast to the incremental deformation laws of plastic flow theory presented in the
previous section, Hencky (1924) [3] suggested a finite deformation law for non-linear
material behavior, which is known as the so-called deformation theory of plasticity
(the name is somewhat misleading). This material model still has importance for
fracture mechanics, so we will discuss it in detail. The deformation theory adopts the
basic assumptions of isotropic plasticity, inasmuch as the plastic strains are propor-
tional to the stress deviator and thus incompressibility is maintained. Likewise, the
shape change hypothesis and v. Mises yield function are used. However, different
from the plastic flow theory, instead of the flow rule a proportional relationship is
assumed between the total plastic strains and the current stresses.

ε
p
i j = ΛσD

i j (A.132)

The proportionality factor Λ results from transferring the uniaxial hardening curve

to the multiaxial case by using v. Mises equivalent stress σv =
√

3
2 σ

D
i j σ

D
i j and plastic

equivalent strain εp
v =

√
2
3 ε

p
i j ε

p
i j , which gives:

σF = f (εp) ⇒ σv = f (ε
p
v) . (A.133)

By complementing the elastic strain parts we obtain the finite Hencky material law,
decomposed into hydrostatic and deviatoric portions

εi j = εe
i j + ε

p
i j = σkk

3K
δi j + 1

2μ
σD

i j + 3

2

ε
p
v

σv
σD

i j . (A.134)
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This relation is often used in combination with the Ramberg-Osgood power-law
hardening (A.118). The generalization to the multiaxial case is achieved by means
of the equivalent quantities σv and εp

v, so that the following relationship between
plastic strains and stresses is obtained:

ε
p
v

ε0
= α

(
σv

σ0

)n

⇒
(
ε

p
v

σv

)
= α ε0

σ0

(
σv

σ0

)n−1

⇒ ε
p
i j

ε0
= 3

2
α

(
σv

σ0

)n−1 σD
i j

σ0
(A.135)

In deformation theory, this constitutive relation is also denoted as a three-
dimensional form of the Ramberg-Osgood law.

As can easily be seen by comparison with the Prandtl-Reuss law (A.111) of
incremental plasticity, the deformation theory represents in fact merely a non-linear-
elastic (hyperelastic) material law, whose elastic potential is simply calculated by
integrating the deformation energy.

U (εi j ) = U e + U p = 1

2

[
K (εe

kk)
2 + 2μ εe

i j ε
e
i j

]
+ n

n + 1

σ0

(α ε0)
1/n

(
ε

p
v
) n+1

n

(A.136)
On the other hand, deformation theory has the advantage of being mathematically
easier to handle, thereby enabling in some cases even closed solutions of boundary
value problems.

Due to the »finite« formulation any influence of loading history is lost. Therefore,
the deformation theory is only correct under very restrictive conditions, which one
should be aware of:

• The stresses must rise monotonically at each point of the body. A relief would not
go on the Hookeian straight line as shown in Fig. A.10, but run along the nonlinear
hardening curve in Fig. A.9, which contradicts the true elastic-plastic behavior.

• The stress state must not change qualitatively during the loading process, i.e.
the ratios of stress components to each other (principal stress directions) have to
remain constant. Such a load path in stress space, running proportionally from
zero to a fixed end value σE

i j , is called »radial«. In this case, all stresses, strains
and displacements would increase with the loading parameter 0 ≤ t ≤ T .

σi j (x, t) = t σE
i j (x, T ) , ε

p
i j (x, t) = tn ε

pE
i j (x, t) , ui (x, t) = tn uE

i (x, t)
(A.137)

At radial loading the finite Hencky law can be derived from the incremental Prandtl-
Reuss law directly by integration.

If these conditions are fulfilled in the application, then the deformation theory will
provide correct solutions that are identical with those of incremental theory. Other-
wise, any stress redistributions or partial reliefs at any point in the structure lead to
different results.
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A.5 Treatment of Boundary Value Problems

A.5.1 Definition of a Boundary Value Problem

For clarity, the complete set of partial differential equations and relations of the
strength of materials is re-compiled (for infinitesimal distortion). In this context,
all features of a boundary value problem (BVP) or, if time-varying problems are
concerned, an initial boundary value problem (IBVP) are explained. For this we
consider the body represented in Fig. A.16, which extends over the domain V and has
the surface A. It contains already a crack whose surface Sc is a part of A. The external
loading of the body is divided into body forces b̄ and surface loads t̄ , cf. Sect. A.3.
The latter act on the specific part St of the surface. On the complementary part of the
surface Su = A − St , bearing conditions are prescribed in the form of suppressed or
imposed displacements that are denoted by ū.

The uniqueness of the solution of a boundary value problem requires that at each
part of the surface in each coordinate direction either a displacement or a traction
is specified. At time-dependent processes the boundary conditions ū(t) and t̄(t) as
well as the related surface parts Su(t) and St (t) are even themselves functions of
time t .

Also, on the crack surface we need to define boundary conditions. These are
usually taken as load-free, i.e. on Sc is t̄c = 0. But, for example, stresses could occur
due to internal pressure or the contact of crack faces could prevent certain boundary
displacements.

According to Sect. A.2, the deformation is represented by a continuous displace-
ment field u(x), from which the strain tensor ε is derived as a symmetric vector gra-
dient by (A.29). In this kinematic relationship ε is a dependent field quantity. If one

cS
u

t

n

b

uS

V tS

ct

Fig. A.16 Formulation of boundary value problem
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wants, however, to formulate the basic equations only with the strains, and to gain the
resulting displacement fields by integrating, then this calculation does not lead readily
to continuous and unambiguous results. Therefore, some additional conditions have
to be imposed on the components of ε, which mathematically ensure the integrabil-
ity and physically mean that the obtained displacement fields are continuous, i.e. the
deformed body is a connected continuum without gaps or overlaps. These necessary
relationships are called compatibility conditions. In the general three-dimensional
case they are expressed by the following six differential equations:

εi j,kl + εkl,i j − εik, jl − ε jl,ik = 0 with i, j, k, l = 1, 2, 3 . (A.138)

Furthermore, there are the static or dynamic equilibrium conditions for the stress
tensor σ, see Sect. A.3, which belong to the set of governing equations in the entire
domain V as well. Also on the boundary of the domain the equilibrium between the
internal stress state and the outer surface loads must be fulfilled according to the
Cauchy formula (A.44).

The governing equations are finally completed by the material laws, which estab-
lish the connection between stresses and strain or their rates. This is written symbol-
ically with the 4th order material tensor Mi jkl(ε, ε̇, h) that is representative for all
deformation laws described in Sect. A.4.

Overall, the (initial) boundary value problem of strength of materials is defined
by the following system of partial differential equations with the appropriate
boundary and initial conditions:

Kinematics: εi j = 1

2
(ui, j + u j,i ) in V

ui = ui on Su

Equilibrium: σi j, j + bi = ρüi in V

ti = σi j n j = t i on St

Material law: σ̇i j = Mi jkl (σkl , εkl , hα)ε̇kl in V

ḣα = Hα(σi j , εi j , hα)

Initial conditions: ui (x, t = 0) = ui0 , u̇i (x, t = 0) = u̇i0

hα(t = 0) = hα0 (A.139)

The mathematical solution of these IBVP is often quite complicated, especially
for finite domains V , three-dimensional structures and non-linear material behavior,
so they cannot be solved with analytical calculation methods. In these important
practical cases it is therefore essential to rely on numerical calculation methods.
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A.5.2 Plane Problems

A general aim in strength of materials and fracture mechanics is to facilitate the
computational effort by creating easily manageable models. Thus, in a number of
engineering applications, the geometry of the structure, its bearing conditions and
loading situation can be simplified in good approximation to two dimensions, so that
they can be treated as plane boundary value problems. Typical examples are thin-
walled structures such as sheets and plates or prismatic components such as shafts,
pipes etc.

In this way one can considerably reduce the system of the underlying partial dif-
ferential equations (PDE) and the number of unknown field variables. Consequently,
the mathematical and computational effort for the solution is substantially lower.
Often there are also suitable mathematical methods available, which allow an ana-
lytical solution of the BVP. For this reason we will, in the following section, consider
in detail plane boundary value problems (mainly elasticity theory) and their solution
techniques.

In case of two-dimensional problems all field variables σi j , εi j and ui are only
functions of (x1, x2), and every derivative with respect to ∂(·)/∂x3 = 0 vanishes.
The relation between strains and displacements in the plane reads then:

ε11 = ∂u1

∂x1
, ε22 = ∂u2

∂x2
, γ12 = ∂u1

∂x2
+ ∂u2

∂x1
. (A.140)

The compatibility conditions (A.138) simplify to a single equation between these
strain components:

∂2ε11

∂x2
2

+ ∂2ε22

∂x2
1

− ∂2γ12

∂x1∂x2
= 0 . (A.141)

The external loads act in the same way on all planes x3 = const. of the component,
and cause only stresses in the (x1, x2)-plane.

t

2t
1t

ds

h

3x

2x
1x

h

Fig. A.17 Plane stress state in thin sheets (left) or shells (right)
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σ11(x1, x2) , σ22(x1, x2) , τ12(x1, x2) (A.142)

The equations of motion (A.70) are reduced in this case to:

∂σ11

∂x1
+ ∂τ12

∂x2
+ b1 = ρü1 ,

∂τ12

∂x1
+ ∂σ22

∂x2
+ b2 = ρü2 . (A.143)

Regarding the behavior of the field quantities in the thickness direction x3, two
approximations can be distinguished.

a) Plane stress state
A flat plane surface structure that is only loaded by forces within its plane (x1, x2),
is called a sheet, see Fig. A.17 (left). Likewise in thin-walled containers as shown
in Fig. A.17 (right), only stresses σ11,σ22 in the membrane plane occur. For such
structures with thin walls (thickness h � other dimensions) the concept of a plane
stress state was coined. Since at the top and bottom surface x3 = ±h/2 no tractions
apply, all stresses with a x3-component have to be zero here. Also inside the sheet
it holds with good approximation, that these stress components are negligibly small
compared to those in the plane.

σ33(x1, x2) = τ13(x1, x2) = τ23(x1, x2) ≡ 0 (A.144)

Thereby Hooke’s law (A.87) and (A.89) simplifies to:

ε11 = 1

E
[σ11 − ν σ22 ] + αt �T

ε22 = 1

E
[σ22 − ν σ11 ] + αt �T (A.145)

γ12 = τ12

μ
= 2 (1 + ν)

E
τ12 , γ23 = γ31 = 0

or resolved for the stresses:

σ11 = E

1 − ν2 [ ε11 + ν ε22 − (1 + ν)αt �T ]

σ22 = E

1 − ν2 [ ε22 + ν ε11 − (1 + ν)αt �T ] (A.146)

τ12 = E

2 (1 + ν)
γ12 = μγ12 .

The strains ε33 are allowed to expand freely in the thickness direction.

ε33 = − 1

1 − ν
[ ν (ε11 + ε22) − (1 + ν)αt �T ] (A.147)
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b) Plane strain state
The conditions of a plane strain state apply, if the displacement component u3 is
everywhere zero (or constant). Then all strain components with respect to the x3-
direction vanish.

ε33(x1, x2) = γ13(x1, x2) = γ23(x1, x2) ≡ 0 (A.148)

The plane strain state applies to prismatic components, if their geometry and loading
do not change with the x3-coordinate and if the u3-displacement is inhibited by
constraints, which is sketched in Fig. A.18.

The stresses are obtained by insertion of (A.148) in the general elasticity law
(A.89):

σ11 = E

(1 + ν) (1 − 2 ν)
[ ε11 (1 − ν) + ν ε22 − αt �T ]

σ22 = E

(1 + ν) (1 − 2 ν)
[ ε22 (1 − ν) + ν ε11 − αt �T ] (A.149)

τ12 = μγ12 = E

2(1 + ν)
γ12 , τ23 = τ31 = 0 .

The conversion for the strains yields:

ε11 = 1 − ν2

E

[
σ11 − ν

1 − ν
σ22

]
+ (1 + ν)αt �T

ε22 = 1 − ν2

E

[
σ22 − ν

1 − ν
σ11

]
+ (1 + ν)αt �T

γ12 = τ12

μ
= 2(1 + ν)

E
τ12 . (A.150)

Due to the strain constraint ε33 = 0, the axial stress σ33 is different from zero, but
can be expressed by the stresses σ11, σ22 in the plane.

x
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x
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Fig. A.18 Example for a plane strain state in the cross-section of a pipe
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σ33 = ν (σ11 + σ22) − E αt �T (A.151)

Substituting the elastic constants

E → E ′ = E

1 − ν2 , ν → ν ′ = ν

1 − ν
, αt → α′

t = (1 + ν)αt , (A.152)

we can write the Eqs. (A.149) and (A.150) for a plane strain state exactly in the same
form as it was done for a plane stress state with the relations (A.145) and (A.146).
This means, the two approaches differ only in their elastic constants but have an
identical mathematical structure.

A.5.3 Method of Complex Stress Functions

For the solution of plane boundary value problems of elasticity, various mathematical
methods have been developed. The use of real or complex stress functions belongs
to the most important methods that are described in detail in standard textbooks of
elasticity theory. In the following these approaches are discussed only in brief form
to understand their application in fracture mechanics.

The differential equations of plane elasticity theory can be led back to the deter-
mination of a single scalar function. To this end, a stress function F(x1, x2) was
introduced by Airy which delivers the stresses in such a way that the equilibrium
equation (A.143) are satisfied automatically in the static case ü ≡ b ≡ 0:

σ11 = ∂2 F

∂x2
2

, σ22 = ∂2 F

∂x2
1

, τ12 = − ∂2 F

∂x1∂x2
. (A.153)

After substituting the stresses by the strains using the elasticity law, and inserting
them into the compatibility condition (A.138), we get a differential equation of 4th
order for the stress function F , which is also known as bipotential equation:

∂4 F

∂x4
1

+ 2
∂2 F

∂x2
1

∂2 F

∂x2
2

+ ∂4 F

∂x4
2

= ��F(x1, x2) = −Eαt�T (x1, x2) . (A.154)

Thereby �(·) = ∂2(·)
∂x2

1
+ ∂2(·)

∂x2
2

denotes the two-dimensional Laplace-operator in

Cartesian coordinates. On the right-hand side of this PDE stands the thermal loading
that requires us to find a particular solution. The homogeneous PDE ��F = 0
can be satisfied by appropriate Ansatz functions. Their free parameters need to be
determined by means of the boundary conditions. Much more elegant and powerful
is the usage of the theory of complex functions. Here the spatial coordinates (x1, x2)
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are replaced by the complex variable z = x1+ix2 and its conjugate complex quantity
z = x1 − ix2. i = √−1 denotes the imaginary unit.

z = x1 + ix2 , z = x1 − ix2 ⇒ x1 = 1

2
(z + z) , x2 = 1

2i
(z − z) (A.155)

In complex variables, the homogeneous version of the bipotential equation (A.154)
assumes the simple form (A.156). It can be shown (see e.g. Muskhelishvili [5]),
that this equation is automatically fulfilled by choosing an ansatz (A.157) with two
complex holomorphic functions φ(z) and χ(z). (Holomorphic or analytic functions
are continuous complex differentiable and obey the Cauchy-Riemann relations.) �(·)
and �(·) mean the real and imaginary part of an expression (·), respectively.

4
∂4 F(z, z)

∂z2 ∂z2 = 0 (A.156)

F(z, z) = � [zφ(z) + χ(z)] (A.157)

The relationship to the stress components and displacements in the plane is
given by Kolosov’s formulas

σ11 + σ22 = 2
[
φ′(z) + φ′(z)

]
= 4� [

φ′(z)
]

σ22 − σ11 + 2iτ12 = 2
[
zφ′′(z) + χ′′(z)

]
(A.158)

2μ(u1 + iu2) = κφ(z) − zφ′(z) − χ′(z)

with the elastic constants

κ = 3 − 4ν (plane strain state) or κ = 3 − ν

1 + ν
(plane stress state). (A.159)

By any choice of complex functions φ and χ, all governing equations of a plane
elastic BVP are fulfilled in the domain V , i.e. equilibrium conditions, kinematics
and Hooke’s law. In order to satisfy the prescribed boundary conditions, we need the
correlation of φ and χ with the required boundary quantities u = u = u1 + iu2 on
Su and t = t = t1 + it2 on St . The relationship with u is given by the 3rd equation of
(A.158). The traction vector at a boundary segment of length ds and normal vector
n j is obtained as ti = σi j n j according to the Cauchy formula (A.44), which can be
transformed by the complex functions into the expression:

t = t1 + it2 = −i
d

ds

[
φ(z) + zφ′(z) + χ′(z)

]
. (A.160)
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The complex method has the great advantage that proven techniques of complex
function theory can be used to solve BVP for two-dimensional structures of finite
dimensions. Those techniques are conformal mappings, Cauchy integrals and Lau-
rent series. For example, at this point the conversion of Kolosov’s formulas into polar
coordinates (r, θ) is to be mentioned. Taking advantage of the Eulerian representation
of complex numbers z = reiθ and z = re−iθ, we get the result:

σrr + σθθ = 2
[
φ′(z) + φ′(z)

]

σθθ − σrr + 2iτrθ = 2
[
zφ′′(z) + χ′′(z)

]
e2iθ (A.161)

2μ(ur + iuθ) =
[
κφ(z) − zφ′(z) − χ′(z)

]
e−iθ .

Westergaard [6] introduced another complex stress function Z(z) in fracture mechan-
ics, which is a special case of the above functions of Muskhelishvili [5]. Therefore,
the application of Z(z) is confined to certain symmetry properties of the BVP. For
symmetry (mode I) there exists the relationship: φ′ = 1

2 Z and χ′ = φ− zφ′, whereas
for screw-symmetry (mode II) it holds that: φ′ = 1

2 Z and χ′ = −φ− zφ′.

A.5.4 Anti-Plane Stress State

The state of anti-plane or longitudinal shear stresses refers to a pure shear load-
ing that acts perpendicular to the (x1, x2)-plane in a prismatic structure, which lies
parallel to the x3-axis, see Fig. A.19. Under the assumption of orthotropy or higher
material symmetry regarding the coordinate axes, the deformation states in the plane
and perpendicular to it decouple from each other. Therefore, only displacements
u3(x1, x2) appear in the x3-direction. They cause the shear strains γ13 and γ23 as
well as the associated shear stresses τ13 and τ23, which all are functions of (x1, x2).
The loading can be imposed by shear forces or boundary displacements ū3 as shown
in Fig.A.19.

In this very trivial case there remain only the kinematic relations

γ13 = ∂u3

∂x1
, γ23 = ∂u3

∂x2
,

∂γ13

∂x2
= ∂γ23

∂x1
, (A.162)

Hooke’s law for shear and the equilibrium equations (without body forces)

γ13 = τ13/μ , γ23 = τ23/μ ,
∂τ13

∂x1
+ ∂τ23

∂x2
= 0 . (A.163)

Inserting (A.162) in (A.163) yields a Laplace-equation for the displacement
function u3
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Fig. A.19 Anti-plane shear
loading
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It is well known that both the real and the imaginary part of a holomorphic function
satisfy the Laplace-equation a priori [5, 7].

Therefore, an anti-plane shear problem can easily be solved by assuming the
displacement field to be the real part of a holomorphic function Ω(z), whose
exact form has to be determined by the boundary conditions. Thereafter, the
shear stresses are calculated from this function by complex differentiation.

u3(x1, x2) = �Ω(z)/μ , τ13 − iτ23 = Ω ′(z) (A.165)

A.5.5 Plates

In order to study cracks in plates later, we recall here briefly Kirchhoff’s theory
of thin plates. The reader can find detailed descriptions in any textbook on higher
strength of materials. A plate is a planar surface structure (thickness h � dimensions
in the plane), whose geometry is defined through the center plane x3 = 0 and the
(x1, x2)-coordinates, see Fig. A.20. A plate is loaded perpendicular to its surface by
distributed pressure loads p(x1, x2), or by moments imposed on the edges. Again,
the plane stress state exists. The deformation of a plate is primarily described by
the displacement of the center plane in the x3-direction, which is called deflection
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Fig. A.20 Kirchhoff’s theory of plates

u3 = w(x1, x2). The first derivatives of w imply the local rotations of the cross
sections, and the second derivatives correspond to the curvatures. All field variables
of this two-dimensional BVP are just functions of (x1, x2).

As it is common in engineering mechanics, the action of stresses in a sectional
area is quantified by statically equivalent sectional forces and moments. They are
defined along every edge x1 = const. and x2 = const. and calculated per arc length,
see Fig. A.20.

Shear forces: q1 =
∫ +h/2

−h/2
τ13 dx3 , q2 =

∫ +h/2

−h/2
τ23 dx3

Bending moments: m1 =
∫ +h/2

−h/2
σ11 x3 dx3 , m2 =

∫ +h/2

−h/2
σ22 x3 dx3

Torsional moments: m12 = m21 =
∫ +h/2

−h/2
τ12 x3 dx3 (A.166)

Taking into account the kinematics of deformation and Hooke’s law, we get the
relationship with the deflection function w:

m1 = −D

(
∂2w

∂x2
1

+ ν
∂2w

∂x2
2

)
, m2 = −D

(
∂2w

∂x2
2

+ ν
∂2w

∂x2
1

)
(A.167)

m12 = m21 = −D(1 − ν)
∂2w

∂x1∂x2
.

The quantity D is called plate stiffness.
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D = Eh3

12(1 − ν2)
(A.168)

After the equilibrium conditions are deduced between these sectional quantities, we
get in the end the well–known equation for the Kirchhoff plate:

∂4w

∂x4
1

+ 2
∂4w

∂x2
1∂x2

2

+ ∂4w

∂x4
2

= ��w = p(x1, x2)

D
. (A.169)

This partial differential equation is a Bipotential equation in terms of the deflection
function w(x1, x2) of the plate, which is to be completed by corresponding boundary
conditions either for w, w′ or the sectional forces and moments. Thus the entire
mathematical algorithm of complex function theory can be used here as well to solve
this strength problem. For this purpose, the deflection w(x1, x2) is represented by
complex variables z, z using two complex functions φ and χ.

w(x1, x2) = � [zφ(z) + χ(z)] (A.170)

Finally, we obtain the sectional quantities by the following complex expres-
sions:

m1 + m2 = −4D (1 + ν)� [φ′(z)
]

m2 − m1 + 2i m12 = 2D (1 − ν)
[
zφ′′(z) + χ′′(z)

]

∂w

∂x1
+ i

∂w

∂x2
= φ(z) + zφ′(z) + χ′(z) (A.171)

q1 − iq2 = −4D φ′′(z)

The similarity with the complex method, employed in Sect. A.5.2 for plane prob-
lems in sheets, can clearly be recognized. A corresponding analogy is found in the
solution methods.
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mixed-Mode, 49
mixed-mode, 58
plates, 65
potential, 47
virtual crack expansion, 249

energy–momentum tensor, 265
Engineering approach, 104
EPFM, 80
Equivalent domain integral, 275, 278, 281,

282, 291, 294
equivalent stress intensity factor, 126, 130
external load vector, 170

F
Failure Assessment Diagram, 89, 378
Fatigue crack growth, 15, 113
fatigue fracture, 18
fatigue strength, 362
FEM system of equations, 170
Finite deformations, 180
finite element method, 153
Finite elemente methode, 9
Finite elements, 154

hexahedron elements, 174
hybrid, 161
isoparametric, 171
mixed, 161
quadrilateral elements, 173
triangular elements, 172

force method, 161
Fracture criterion

maximum circumferential stress, 141
crack arrest, 146
cyclic loading, 131
dynamic, 145
energetical, 44
maximum circumferential stress, 125
maximum energy release rate, 126
mixed-mode loading, 130
moving crack, 145
strain energy density, 127

Fracture mechanical weight functions, 65
Bueckner, 76
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crack face, 71
general, 68
mixed-mode, 72

fracture mechanics, 5
Fracture process zone, 111
Fracture toughness, 40, 42, 103
Fracture-mechanical weight function, 243

Bueckner-singularity, 250
FEM, 243, 249

Functionally graded materials, 299
fundamental fields, 75

G
Generalized energy principles, 161
Generalized principle of work, 156
Geometrical non-linearity, 180
global analysis, 122, 370, 376
global energy release method, 226
Growing cracks, 308

H
Hamilton’s variational principle, 165
HRR-crack tip field, 96
Hybrid stress model, 162

I
incidence matrix, 169
Incremental- iterative algorithm, 181
infinitesimal deformations, 310
influence functions, 245
interaction integral, 288, 289
interface, 283

J
J -Integral

dynamic, 373
elastic-plastic, 388
Vektor, 128

J -Integral concept, 324, 389
J -integral, 51, 54, 266, 302, 319

cohesive model, 339
contour integration, 240
damage mechanics, 356
determination, 106
dynamically stationary, 281
elastic- plastic, 309
elastic-plastic, 101, 325
estimation formula, 103, 105
experimental determination, 102
extended, 269

functionally graded materials, 302
inhomogeneous, 283
linear-elastic, 52
mixed-mode, 285, 288
path independence, 53
path- independence, 310
path-independence, 267
thermal, 269
three-dimensional, 271
EPFM, 101

J -integral vector, 128, 267
Ĵ -integral, 313
J-integral vector, 311

K
kinematically admissible displacement field,

156
Kolosov’s formulas, 24

L
Lagrange multiplier, 161
Large strain, 180
Lekhnitskii–formalism, 56
local energy method, 227
lumped mass matrix, 190

M
Macroscopic initial crack, 114
Material non-linearity, 180
mean stress, 115
Meshing

adaptive, 335
automatic, 335

method of virtual crack extension, 224
Mixed-mode loading, 37, 71, 124, 126, 127,

130, 208, 217, 230, 247, 282, 285,
328, 333

modified crack closure integral, 230
Moving crack, 133
moving crack tip elements, 333

N
nodal degrees of freedom, 169
nodal release technique, 328
node variables, 169
Numerical integration, 175
Numerical interpolation, 177



446 Index

P
Plane strain state, 25, 83
Plane stress state, 25, 83
Plastic constraint factor, 84
plastic limit load, 80, 380
plastic zone, 80
principle of minimum complementary energy,

160
Principle of minimum potential energy, 159
principle of superposition, 65
Principle of virtual displacements, 157
principle of virtual forces, 159
principle of virtual velocities, 157

Q
Q-parameter, 99
Quarter-point elements, 204, 211, 257

2D interpretation, 207
3D interpretation, 209
hexahedral, 204
pentahedral, 204
quadrilateral, 200
triangular, 200

quasi-static analysis, 17

R
R–curve, 50
radial return, 184
range of stresses, 115
residual life time, 362

S
separation law, 339
sequence effect, 121
service strength theory, 4
shape functions, 167, 171
shear fracture, 14
Simplified mixed hybrid model, 164
small scale yielding, 81
smeared crack model, 332
Stable crack behavior, 15, 50
Static loads, 14
statically admissible stress field, 156
Stationary crack, 15, 133, 281, 308
Stiffness matrix, 170

derivative, 225
geometrical, 188
hybrid, 216, 221
isoparametric, 168
tangential, 188

Stiffness relation, 170

stiffness derivative method, 225
strain energy density function, 128
strain-displacement matrix, 167
stress biaxiality ratio, 292
stress corrosion cracking, 15
Stress intensity concept, 40
Stress intensity factor, 27, 38, 39, 216

anisotropic, 57
complex, 60
cyclic, 115, 116
dynamic, 376
dynamic loading, 135, 140
effective cyclic, 123
interface crack, 61
plates, 62
range, 131
superposition, 66
threshold, 116
weight function, 66
weight functions, 65
elastodynamic, 145

Stress intensity, effective cyclic, 120
stress ratio, 115
stress interpretation method, 197

analytical calculations, 39
eigenfunction, 33

strip yield model, 123
Stroh–formalism, 56
Subcritical crack growth, 15
subdivision algorithms, 330
submodel, 335, 370
submodel technique, 376
substitute model, 366
system stiffness matrix, 170

T
T -stress, 33, 98, 133, 141, 216, 291
tangential stiffness matrix, 182
temperature field, 77
test function, 157
theory of strength, 4
threshold value, 116
transfer principle, 4
triaxiality, 97, 107

U
unit loads, 243
Unstable crack behavior, 51
Unstable crack growth, 15
Unsteady crack, 15, 133
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V
Variable loads, 14
Virtual forces, 159
virtual crack closure method, 230

W
weak formulation, 157
weighting function, 157
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