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Unité de mathématiques pures et
appliquées (UMPA)



VIII List of Contributors
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Translated from the French by Elizabeth Strouse

Andrei Nikolaevich Kolmogorov (Tambov 1903, Moscow 1987) was one of
the most brilliant mathematicians that the world has ever known. Incredibly
deep and creative, he was able to approach each subject with a completely
new point of view: in a few magnificent pages, which are models of shrewdness
and imagination, and which astounded his contemporaries, he changed dras-
tically the landscape of the subject. Most mathematicians prove what they
can, Kolmogorov was of those who prove what they want.

In this book we have asked several world experts to present (one part of4)
the mathematical heritage left to us by Kolmogorov5. Each chapter treats
one of Kolmogorov’s research themes, or a subject that was invented as a
consequence of his discoveries. We present here his contributions, his methods,
the perspectives he opened to us, the way in which this research has evolved
up to now, along with examples of recent applications and a presentation of
the modern prospects.

We hope that this book can be read by anyone with a master’s (or even
a bachelor’s) degree in mathematics, computer science or physics, or more
4 In the book Kolmogorov in perspective (History of Mathematics, Vol. 20, Ameri-

can Mathematical Society, 2000) one can find a (more or less) complete bibliog-
raphy of Kolmogorov’s work, which consists of about 500 publications. A lot of
these are at the heart of very active research going on today

5 A book entitled The Kolmogorov Legacy in Physics has already appeared
(Springer, 2004). It contains contributions to dynamical systems, complexity, tur-
bulence and probability. We strongly recommend it to mathematicians
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generally by anyone who likes mathematical ideas. Rather than presenting
detailed proofs, we give the main ideas, and a bibliography for those who
wish to understand the technical details. One can see that sometimes very
simple reasoning (with the right interpretation and tools) can lead in a few
lines to very substantial results.
Here is a quick summary of the themes that are treated here, with, for each,
some significant examples of the “master’s touch”.

Fourier Series (Chap. 1). In 1922, at the age of 19, Kolmogorov managed
to construct a Lebesgue integrable function on [0, 2π] whose Fourier series
diverges almost everywhere, that is, except on a set of Lebesgue measure 0.
(Up to this point the Fourier series of all the functions that had been consid-
ered converged almost everywhere.) Three years later, he found an example
of a function whose Fourier series diverged everywhere! In the same time,
Kolmogorov obtained important results on lacunary Fourier series, harmonic
conjugates . . .

Logic (Chap. 2). In 1925, Kolmogorov became interested in intuitionis-
tic logic. For Brouwer (the father of Intuitionism), Intuitionism and Formal-
ism were antinomic approaches. Moreover, intuitionistic logic was generally
considered as a weakening of classical logic. But, baffling all expectations,
Kolmogorov managed to formalize intuitionistic logic and to present it as an
extension of classical logic. He then deduced that any “finitary” proposition
with a classical proof could be proved using intuitionistic logic. All this in
only two pages!

If intuitionistic logic is perceived as an extension of classical logic, ob-
tained by adding connectors with no analogues in classical logic, one needs
to find an interpretation of these connectors. This is what Kolmogorov did in
1932 when he interpreted intuitionistic logic as a “calculus of problems”. This
interpretation later turned out to be relevant to computer science.

Probabilities (Chaps. 3 and 4). It was also around 1925 that Kolmogorov
began working on probability theory. He began with a clever generalization of
the Bienaymé-Chebyshev inequality: this “Kolmogorov’s inequality” quickly
revealed its usefulness. He used it, with Khinchin, to obtain a famous conver-
gence rule for series of random variables.

In 1930 he used the inequality to deduce a version of the strong law of
large numbers (“almost sure” convergence − i.e. convergence with probability
equal to one − of the empirical mean towards the mathematical expectation)
which contained all prior versions of this law (Borel, Cantelli, Khinchin) like
a set of Russian dolls: this is the “L2 version” given in Chap. 3. A little
later he obtained the “L1 version” which is in a certain sense optimal since
it holds whenever the variables (independant and with the same law) have a
finite expectation. Kolmogorov announced this result in his book Foundations
of probability theory, in 1933, without giving a proof; he explained the proof
to Maurice Fréchet and let him have the honor of being the first to publish
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it in the first book of his Recherches théoriques modernes sur le calcul des
probabilités (Gauthier-Villars, 1937).

In 1931, Kolmogorov began thinking about continuous time Markov
processes. Instead of studying the trajectories of a process, he studied the
transition probability densities and determined the differential equations they
satisfied. These are, of course, the fundamental equations from which the mod-
ern theory of diffusion has been constructed. Because of the applications to
modern physics, they have even been generalized to Hilbert spaces of infinite
dimension: Chapter 4 describes this active area of research which has had
several recent applications.

Lomnicki, Steinhaus, Cantelli had sketched out axiomatizations of proba-
bility theory, based on Borel’s idea to formulate it in the langage of measure
theory; but it is Kolmogorov, in 1933, who solved the problem: his axiomati-
zation, both natural and powerful, is the one that is still used today.

Statistics (Chaps. 5 and 6). In 1933, Glivenko et Cantelli proved what
is sometimes called the fundamental theorem of statistics : almost surely, the
empirical distribution function of a real random variable converges uniformly
towards the true distribution function when the size of the sample tends to-
wards infinity. Soon afterwards, Kolmogorov gave the precise law for the con-
vergence, in terms of a universal function (independant of the − sought after
− law of the random variable) which leads to a very efficient goodness-of-fit
test (a test for the unknown law).

The Chap. 5 retraces this discovery of Kolmogorov and presents certain
improvements with a surprising application to number theory: it gives the
asymptotic behavior (when n tends to infinity) of the probability that an
integer chosen at random has at least one divisor between n and 2n, and of
the probability that it has exactly r such divisors.

Epsilon-entropy, a quasi-universal tool introduced by Kolmogorov in the
1950’s (see Chap. 8) has become a fundamental tool in statistics for measuring
the quality of estimators: the Chap. 6 gives a survey of the current state of
knowledge, intended for master’s degree students as well as for researchers.

Topology (Chap. 7). During the years 1934–1937, Kolmogorov was very
excited about topology. From 1934 to 1935, at the same time as Alexander,
he constructed the cohomology of topological spaces and discovered its ring
structure. In 1935, Samuel Eilenberg asked if an open mapping (one that takes
open sets to open sets) can increase the dimension of its domain; Kolmogorov
answered this question with a three page article, which appeared in 1937, in
which he gave a very clever construction of an open mapping which transforms
a topological space of dimension 1 into a topological space of dimension 2. This
result was later used to analyze groups’ actions on topological spaces.

Geometry (Chap. 8). One of Kolmogorov’s great gifts was his extraor-
dinary geometrical intuition. This played an essential role in almost all
his work, as shown in the fascinating Chap. 8. This chapter describes the
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contributions of Kolmogorov to geometry, approximation theory, the invention
of ε-entropy, etc.

Mathematical Ecology (Chap. 9). In 1936, Kolmogorov published a short
note on the predator-prey model of Lotka and Volterra: they had (indepen-
dently) expressed the rates of growth of populations by explicit functions,
depending on a small number of parameters, and they solved the equations
explicitely. Clearly such a method can only apply to highly simplified models.
Kolmogorov, on the other hand, did not choose specific functions, but instead
concentrated on monotonicity properties (which give robust conditions); then
he applied the qualitative methods of Poincaré to study the long-time behavior
of populations (equilibria, limit cycles). Of course, this qualitative approach
is the only one that can be used in realistic models.

Dynamical Systems. KAM Theorem (Chaps. 10, 11) and entropy
(Chap. 12). Around 1953, Kolmogorov became interested in dynamical sys-
tems. He proved a fundamental theorem which explains why, when a system
stays close enough to a system in which numerous laws of conservation hold,
most movements of the former remain close to the regular movements of the
latter, instead of capitalizing on the lack of laws to wander. Kolmogorov pre-
sented his proof in talks, but did not publish it. Arnold and Moser later
published the first proofs of Kolmogorov’s theorem (with different hypothe-
ses) and this is where the name of the KAM (Kolmogorov, Arnold, Moser)
theorem comes from. For more than 30 years, all known proofs of this theo-
rem were extremely complicated, but in 1984 a wonderfully simple proof was
published. This proof was improved upon in 2002. When one of the authors of
this improved proof explained it in Moscow in 2002, members of the audience
who had heard Kolmogorov in 1957 said that the new proof was actually the
same as Kolmogorov’s original one! (Chap. 11, p. 215.) Chapter 10 gives a his-
torical survey of the problem of stability of movements in Celestial mechanics,
explains the role of resonance and small divisors and presents an analogue of
KAM theorem in a toy model where mathematical difficulties are weakened.
Chapter 11 illustrates the KAM theorem in the cases of the solar system and
of the forced pendulum; then, it gives a rigorous statement of the theorem
and sketches the main ideas of the new proof.

In 1958, Kolmogorov introduced the idea of entropy of dynamical systems,
a quantity which is invariant by metric isomorphisms. This turned out to be a
very powerful tool which permits one to show that two dynamical systems are
not metrically isomorphic. At first, Kolmogorov thought that deterministic
systems determined by differential equations would necessarily have zero en-
tropy (roughly: “no disorder”) unlike probabilistic systems. But Kolmogorov
and Sinai noticed that there exist deterministic systems with nonzero entropy.
This discovery is one of the starting points of the modern theory of determin-
istic chaos.

The modern (and fundamental) notion of hyperbolicity of a dynamical
system was developed as a result of the investigation of these deterministic
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systems with nonzero entropy. Chapter 12 describes this discovery and the
latest results on the subject.

The superposition theorem (chaps. 8 and 13). The 13th Hilbert problem
(Paris, 1900) was to determine if any continuous function of three variables
could be constructed in a finite number of steps, each one an application of
a continuous function of one or two variables. (This was an idealization of a
method of graphical resolution of equations.) Hilbert expected a negative an-
swer. In 1956 Kolmogorov showed that any continuous function of n variables
on [0, 1]n is constructible if one permits the use of continuous functions of
three variables as auxiliaries, and in 1957 his student Arnold proved that any
continuous function of three variables is constructible using functions of two
variables, thus resolving Hilbert’s 13th problem (with a different result than
that expected by Hilbert). Soon after, Kolmogorov showed that any contin-
uous function of n variables on [0, 1]n is constructible using only continuous
functions of one variable and additions: this is the Kolmogorov’s Superposition
Theorem.

In 1987, Hecht-Nielsen deduced that any continuous function could be
implemented by a certain type of neural network with continuous activation
functions and real weights. Constructive versions of the superposition theo-
rem have recently made possible the transposition of this result to computable
functions, activation functions and weights, and may give a way to construct
networks corresponding to given functions. This application of the superpo-
sition theorem to neural networks would surely have pleased Kolmogorov: in
fact, according to Arnold, one of Kolmogorov’s last mathematical works was
motivated by his curiosity about the structure of the brain (cf. chapitre 9,
p. 177).

More recently other applications of the superposition theorem have ap-
peared: Kolmogorov would surely have been happy to know that it applies to
subjects such as the Radon transform and topological groups.

Complexity of description (Chaps. 14 and 15). In 1965, Kolmogorov
defined the complexity of description of an object; this is, more or less, the
length of the shortest algorithm which can describe this object (the exact
definition is given in Chap. 14). This is a wonderful tool. One of its applica-
tions was a surprisingly simple and short proof by Gregory Chaitin of Gödel’s
incompleteness theorem (Chap. 14), which can be understood by everybody!
Chaitin was very pleased to find this proof which, he explained, gives one the
impression that the incompleteness phenomenon discovered by Gödel is nat-
ural − unlike the traditional proof, based on the “liar paradox” which makes
the phenomenon seem rather pathological and uncommon.

Kolmogorov’s complexity theory also makes sense of propositions such as
“the sequence is random”: for Kolmogorov this means more or less that the
sequence has no regularity with which one can “summarize” it, it is “incom-
pressible”.
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The existence of such incompressible objects gives a simple way to prove
things in all branches of mathematics: this is the “incompressibility method”.
Two examples of this method are given in Chap. 15, one in number theory
(how to show in a few lines, and almost without calculation, that the nth
prime number has an order of magnitude less than n log2 n, for instance),
and the other in graph theory (finding the maximum size of complete graphs
contained in a random graph).

But the principal object of Chap. 15 is to propose a new approach
to deterministic chaos: instead of studying the unpredictibility in terms
of the probabilities of ensembles of trajectories, one uses the complexity
theory of Kolmogorov to express the fact that an individual trajectory is
“unpredictable”.
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The youth of Andrei Nikolaevich
and Fourier series

Jean-Pierre Kahane

Département de Mathématiques d’Orsay, University Paris-sud, Orsay, France
http://www.academie-sciences.fr/Membres/K/Kahane JP.htm

Jean-Pierre.Kahane@math.u-psud.fr

Translated from the French by Elizabeth Strouse

Andrei Nikolaevich Kolmogorov was 14 years old in October 1917. In Moscow
this was neither a time for peace nor for reflection. According to his biography
in [Kol91], it seems that he was a railroad worker during the difficult years of
1919 and 1920. In 1920–21 he began his studies at the University of Moscow
where he would become a student of N.N. Lusin. At the same time he was
conducting a study, using land registers, of the evolution of land ownership
during the 15th and 16th centuries in the region of Novgorod. During the
spring of 1922, at the age of 19, he constructed a Lebesgue integrable function
whose Fourier series diverged almost everywhere. In spite of his continuing love
for history, this Fourier series would become an irresistible force bringing him
into mathematics.

1.1 Convergence and divergence of Fourier series

In truth, the battle between convergence and divergence of Fourier series is
also a part of history. For Daniel Bernoulli, in the 18th century, it was clear
that a sound was a superposition of harmonics, and thus that a periodic
function could be represented as the sum of a trigonometric series:

f(x) =
1
2
a0 +

∞∑

n=1

(
an cos

2πnx
T

+ bn sin
2πnx
T

)
. (1.1)

Fourier at the beginning of the nineteenth century [DR98], believed that, using
his formulas

an =
2
T

∫ T

0

f(x) cos
2πnx
T

dx, bn =
2
T

∫ T

0

f(x) sin
2πnx
T

dx, (1.2)
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he had totally justified Bernoulli’s belief. He had verified the convergence of
the series in certain cases − in particular for the characteristic function of
an interval − and declared that this convergence would hold for an arbitrary
function as long as the Fourier coefficients were calculated using his formu-
las. It was Dirichlet, in 1829, who produced the first general convergence
theorem, concerning functions which were piecewise continuous and piecewise
monotone1; thinking that he could come back and eliminate the assumption of
monotonicity. It turns out that this assumption can be weakened, as was done
by Jordan ([Jor81], 1881) when he introduced functions of bounded variation,
but continuity alone does not guarantee convergence as shown by the amazing
(at the time) example furnished by Paul du Bois-Reymond of a continuous
function whose Fourier series diverges at a point ([DuB73], 1873). For the
next quarter century Fourier series had a bad reputation and were thought to
be useful only for producing monsters like the continuous functions without
derivatives which made Hermite turn away in “dread and horror”.

The scene changed in 1900 when the very young Fejér Lipót2 [Fej00]
showed that the arithmetic means of the partial sums converged to the
(bounded) function’s value at any point where the function was continuous.
The extensions and applications of this result revived interest in Fourier series.
Then Lebesgue gave a new framework with his integral. After the publication
of his Leçons sur les séries trigonométriques in 1906, when one spoke of a
“Fourier series” one meant a Fourier-Lebesgue series, that is, a Fourier series
whose coefficients are obtained using the Lebesgue integral. This framework

1 Let us mention an exception. Camille Deflers, in 1819, in a Note sur quelques
intégrales définies, et application à la transformation des fonctions en séries de
quantités périodiques (Bulletin de la Société Philomatique de Paris, november
1819, pp. 161–166), proved what we call today the “Riemann-Lebesgue Lemma”
using integration by parts (his proof works for C1 functions) and introduced the
“Dirichlet kernel” ten years before Dirichlet; then he deduced that a sufficiently
regular function was the sum of its Fourier series (his argument works in particular
for C2 functions, but Deflers was not precise about the conditions under which
his results were true). By using a version of “Riemann-Lebesgue Lemma” for
continuous functions (which follows from the C1 case by uniform approximation:
a tool which is now elementary, but was discovered after Deflers), the argument
of Deflers proves that a periodic differentiable function is the sum of its Fourier
series: it is this result which is taught today and wrongly attributed to Dirichlet.
In fact the Dirichlet theorem works for functions f which are piecewise monotone
(and continuous, if one wants the sum to be equal to the function). There is
certainly a tie between the two theorems: a periodic C1 function is continuous and
of bounded variation, and so, on any interval, it can be expressed as the difference
of two continuous increasing functions (Jordan, 1881), to which the Dirichlet
theorem can be applied: the Deflers theorem, in the case where f ′ is continuous,
can thus be deduced from that of Dirichlet; but Deflers’ proof (essentially the one
which is taught today) is much more simple. (Editor’s note.)

2 Or Léopold Fejér: it is, in fact, with this gallicized form of his name that he signed
his note in Comptes rendus. (Editor’s note.)
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would soon obtain a name, it would be the space L1. The Riesz-Fischer
theorem in 1907 established the isomorphism of the spaces L2 and l2 by using
Fourier’s formulas. Once again it seemed worthwhile to study Fourier series.

Divergence phenomena interested and inspired Fejér and Lebesgue in very
different ways. They both worked with continuous functions and with Fourier
series which diverged at a point. Kolmogoroff (as he signed his articles at the
time) published an example in 1923 which made quite a sensation. It was
complemented by a note in Comptes rendus in 1926, with an even more elab-
orate example: that of a (Lebesgue-)integrable function whose Fourier series
diverged everywhere.

The example of Kolmogorov is even more interesting today. Indeed, at
the time one could wonder if a stronger result could not be obtained, that
is, if there existed a continuous function whose Fourier series diverged ev-
erywhere. But we know since Carleson ([Car66], 1966) and Hunt ([Hun67],
1967), that this is not possible: all functions belonging to a space Lp with
p > 1 are limits almost everywhere of the partial sums of their Fourier se-
ries. The best result in this direction is that of Antonov ([Ant96], 1996): if
|f | log+ |f | log+ log+ log+ |f | is integrable on the circle (where log+ is equal
to the positive part of log: log+ x = max{log x, 0}), the Fourier series of f
converges to f almost everywhere.

If one assumes only that f is integrable on the circle the best that one
can hope to obtain for the partial sums is thus an estimation of type Sn(f) =
o(l(n)) almost everywhere. Hardy, in 1913, established such a formula with
l(n) = logn, and conjectured that it was the best possible result of this type.
His conjecture is still open.

What is left to do today is thus, either to improve Hardy’s formula (and to
contradict Hardy’s conjecture), or to improve the construction of Kolmogorov
by giving a result with Ω (the opposite of o) for the Sn almost everywhere, if
not everywhere. We have known for a long time that a result with Ω almost
everywhere holds for any sequence l(n) growing more slowly than log log n, and
the result has also been established everywhere (Chen 1962). A big step was
completed in 1999 by Konyagin when he constructed an integrable function
whose partial Fourier sums are everywhere Ω(l(n)) where the squares of the
l(n) are o(log n/ log logn). One can try to improve Konyagin’s estimation, as
did Bochkarev in the case where the circle was replaced by the Cantor group
(2003). But it would be difficult to attain l(n) = o((log n)p) with p > 1/2.

1.2 Harmonic conjugates and Fourier series

In February of 1923 (when he had not yet turned twenty), Andrei Nikolaevich
made his second major contribution to the theory of Fourier series, the paper
“Sur les fonctions harmoniques conjuguées et les séries de Fourier” published
in 1925 in the review Fundamenta Mathematica. The operation which takes a
harmonic function to its conjugate can be interpreted in many ways: changing
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the real part of an analytic function into its imaginary part, or applying the
Hilbert transform; or, in terms of Fourier series, changing the sign of the
coefficients which correspond to negative frequencies and setting the constant
term to zero. Today Kolmogorov’s theorem can be stated in the following
fashion: the operation of harmonic conjugation takes the space L1 into weak
L1. (The functions discussed here are always real-valued functions on the
circle.)

What is weak L1 ? It is the set of functions f verifying the following
condition: the inverse image of the ray ]y,+∞[ has a measure m(y) bounded
by C/y where C is a constant which depends only on the function f . In the
case of L1, m(y) is integrable, and, since it is also decreasing, it verifies the
given condition.

What was known about harmonic conjugation in 1923? First of all, by the
Riesz-Fisher theorem (1907) it was known that it maps L2 into L2. Then, as
noted in Lusin’s work3 which appeared in 1915, that it does not map L1 into
L1 (this is rather clear to us today when we think of the conjugate of the
Dirac measure). It was later, in 1927, that Marcel Riesz, the young brother
of Frederic Riesz, showed that, for all p > 1, conjugation maps Lp into Lp.

In 1925, when it was published, the theorem of Kolmogorov seemed to be
only an interesting curiosity. The weak L1 space was not yet defined (in fact,
it was first defined because of this theorem). Kolmogorov gives an application
to the partial sums of Fourier series as a consequence of his result: they con-
verge to the function in Lp for p < 1, and so they converge in measure. It was,
according to Zygmund, the first appearance of the idea that the partial sums
could be expressed in terms of harmonic conjugates ([Zyg59], Vol. 1, p. 381,
§6). This curiosity, and especially its consequences for the partial sums, imme-
diately attracted attention, as witnessed by Littlewood’s article in 1926 “On
a theorem of Kolmogoroff ” [Lit26], which brings complex variable methods
to bear on the problem.

Today this theorem is an important one because the Hilbert transform
is the prototype of a whole class of singular integrals which have the same
property. And this property of mapping L1 into weak L1 together with that
of mapping L2 into L2, leads to the proof of Marcel Riesz’s theorem by using
a powerful tool, the interpolation theorem of Marcinkiewicz ([Mar39], 1939).
In the second edition of Zygmund’s book Trigonometric series [Zyg59] (1959)
Kolmogorov’s theorem is treated as a major result and two proofs of it are
given, one using real analysis and the other using complex analytic functions.

1.3 Fourier series, integration and probability

Kolmogorov’s first publications, which I will discuss a bit later, are about
Fourier series. From 1925 on, he worked on a host of other subjects, in
particular integration and probability. These two subjects are related to
Fourier series.
3 “The integral and the trigonometric functions” (in Russian), Moscow, 1915
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1.3.1 The integral of the harmonic conjugate
of an integrable function

Historically, every definition of the integral generates a new class of Fourier
series; those whose Fourier coefficients are obtained with the Fourier formula
when the integral is evaluated using the given definition. In fact, Fourier series
have often served as a testing ground for different definitions of the integral.
We thus can define Fourier-Riemann series, Fourier-Lebesgue series, Fourier-
Stieltjes series, Fourier-Denjoy series, Fourier-Schwartz series, and on and on.
Kolmogorov himself was essentially interested in Fourier-Lebesgue series. At
the same time, he asked the question: while the harmonic conjugate of a
Lebesgue-integrable function is not necessarily Lebesgue-integrable, could it
be integrable in a more general sense? This question is answered by an article
which appeared in 1928. This article is in French and entitled “Sur un procédé
d’intégration de M. Denjoy”. This title is translated in the Selected Works by
“On the Denjoy integration process”, which is a mistake (it should be “On
a Denjoy integration process”). The English title makes one think that the
article concerns Denjoy’s totalization, either the first [Den12], which showed
how to integrate any differentiable function, or the second [Den33, Den41],
which gave a method for calculating the coefficients of an everywhere conver-
gent trigonometric series given its sum. But Kolmogorov’s article had nothing
to do with all this. In 1919, Denjoy had published in Comptes rendus a note,
“Sur l’intégration riemannienne” [Den19], in which he gave three general-
izations of the Riemann integral, all three of them containing the Lebesgue
integral (which he called in this note “besguienne”; this would not have pleased
Lebesgue, who, they say, had threated Denjoy that he would call the total-
ization “l’intégrale joyeuse”, that is “joyous integral”; in any case the name
“besguien” did not survive). These three generalization were called A), B) and
C). Kolmogorov is quite clear: he is talking about the integral B). It has no
relationship, as far as I know, with either the first or the second totalization.
As far as I know, this is the first and the only interesting usage of the integral
B). There is an explanation of all this and Kolmogorov’s result on pp. 262–263
of the first volume of [Zyg59].

1.3.2 Series of independent random variables
and lacunary Fourier series

The knowledge and the ideas of Kolmogorov concerning measure and inte-
gration were formed at this time, and later had a major impact on his inter-
pretation of probabilities. But we must say that his first work in probability
theory came essentially from Rademacher series, considered as series of inde-
pendent random variables. In 1922, Rademacher [Rad22] published his theo-
rem about the Rademacher orthogonal systems: L2 convergence implies con-
vergence almost everywhere. The article [KK25] of Khinchin (or Khintchine)
and Kolmogorov in 1925 refines and extends this result: L2 convergence and
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almost everywhere convergence are equivalent for a series of independent ran-
dom variables, as are L2 divergence and almost everywhere divergence. This
article is mentioned in the List of Works of the Selected Works where it says
that it appears in Vol. 1 along with all of the articles about integration and
orthogonal series; in fact, it appears in Vol. 2, along with the other articles
which are dedicated to probability. This article motivated many later studies
of lacunary Fourier series, while, on the other hand, the study of lacunary
Fourier series and of random Fourier series furnished new tools to be used
in probability. The classical reference for this subject, as for the others, is
Zygmund’s book.

It is wonderful that Kolmogorov himself had established the theorem about
almost everywhere convergence of lacunary Fourier series in 1922, before any
mention had been made of independent random variables and at the same
time as Rademacher’s article appeared. This work appeared in 1924, before
the article with Khinchin. He deals with more than the L2 case; he shows in
a few lines that almost everywhere convergence holds for any Fourier series
which is lacunary in the sense of Hadamard, that is, in the sense that the
ratio of a frequency to the preceding frequency is always greater than some
number q > 1.

1.4 The descendants of the articles of young Kolmogorov

In 1923 and 1924 young Andrei Nikolaevich had only published articles about
Fourier series. We have already discussed two aspects of these articles: diver-
gence and lacunary Fourier series. It seems appropriate to complete this visit
before finishing our promenade.

All of these articles are written in French and announce both the date when
they were written and the date when they were published. The first, written
on June 2nd, 1922, and published in 1923 in Fundamenta Mathematica, is the
one concerning almost everywhere divergence which I said above made a great
sensation at the time. Although the article was short, five pages, the technique
seemed so elaborate that Zygmund decided not to put it into his treatise. A
fortiori the proof of the existence of an everywhere divergent Fourier-Lebesgue
series, of which a short indication had been given in a note to Comptes rendus
in 1926, seemed to him to be unpublishable in his book. Today these proofs
have been simplified, and, in particular, the reduction of the second result
to the first has become part of a rather general framework. In Katznelson’s
book, a new edition of which has appeared recently, he gives the scope of this
result with all the details and the description of the divergence sets for other
classes of functions, such as the continuous functions, in a few pages at the
end of his chapter about the convergence of Fourier series.

The second article, in the order in which they were written, is that of
October 7, 1922, published in Fundamenta Mathematica in 1924. This is a
very short article, two pages, which contains two theorems. The second is
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the one about lacunary Fourier series which I have already discussed. It has
generated a remarkable number of articles, because the subject of lacunary
Fourier series is related to all of functional analysis and, in particular, with
the geometry of Banach spaces simultaneously with probability. One gets an
idea of the work in this area (in particular that of Banach, Sidon, Zygmund,
Kaczmarz and Steinhaus, Rudin, Marcus and Pisier, Bourgain) by looking
at the chapter “Lacunes et randon” of my book with Pierre-Gilles Lemarié-
Rieusset.

Today, that is, after the work of Carleson in 1966, the first theorem is
totally outdated. But it seems in any case worth discussing as the beginning
of a beautiful story. Kolmogorov shows that, if f is an L2 function and if m(n)
is a lacunary sequence in the Hadamard sense, then the partial sums of order
m(n) converge almost everywhere to f. This date by which this result should
be applied has passed, but we describe the simple and interesting method of
its proof anyway; first to decompose the series into blocs B(n) corresponding
to frequencies situated between m(n) and m(n+1), then to regroup the B(n)
into two series according to whether n is even or odd. For each of these series
the convergence of the Fejér sums implies the convergence of the partial sums
with large gaps at the end, thus, the convergence of either the partial sums
of order m(2n) or those of order m(2n+ 1) (depending on the series). Thus,
because of the gaps, this gives for each of the two series convergence almost
everywhere of the partial sums of order m(n). Until 1966 this was the best
known result on convergence for the L2 class, and many specialists thought
that it could not be improved (as far as I remember Zygmund was one of
them). It could then have been tempting to extend it to Lp, p > 1, by using
an analogous decomposition of the Fourier series. This was the monumental
work of Littlewood and Paley in the 1930’s; this decomposition is now called
the Littlewood-Paley decomposition, and we just saw that it is exactly that of
Kolmogorov. But it was necessary to develop an arsenal of weapons to do it,
which is justifiably called the Littlewood-Paley theory. This theory was not
yet finished when the first edition of Zygmund’s book appeared in 1935, but
there is an excellent explanation of it in the second edition which appeared in
1959.

The justification at the time was the extension to Lp of Kolmogorov’s L2

theorem. In 1966 and 1967, the theorems of Carleson and Hunt changed things
completely: a much better result was obtained without using the decompo-
sition and the theory of Littlewood-Paley. If Zygmund had wished to keep
everything up to date, he should have included these new results in a new
edition and renounced the old methods. Instead, he renounced the prepara-
tion of a 3rd edition and settled for several “reprints” of the second edition,
with only slight additions. A “third edition” was produced recently by Cam-
bridge University Press. Luckily it is nothing more than the second edition
with the addition of an introduction by Robert Fefferman. The Bulletin of
the American Mathematical Society asked me to review this book for them, a
review I was quite pleased to write, as the book is a masterpiece, and because
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the Littlewood-Paley theory, although it no longer serves its initial purpose,
has become an essential tool in other areas of analysis particularly in the
study of partial differential equations. The exposition given by Zygmund is
one of the best that exist. It is sometimes good, in mathematics, to think
twice before throwing old things away.

The third article, concerning the order of magnitude of Fourier coefficients,
was written on December 3, 1922, and published in 1923 in the Bulletin of
the Polish Academy of Sciences. It establishes that, if the coefficients of a
cosine series form a convex sequence converging to zero, then the series is a
Fourier-Lebesgue series and, therefore, there exists Lebesgue-integrable func-
tions whose Fourier coefficients converge to zero as slowly as anyone could
want them to. This fact was discovered over and over, independently, by dif-
ferent mathematicians. The priority for the discovery should surely be given
to W. H. Young, in his article “On the Fourier series of bounded functions”
from 1912. For Fourier integrals, the corresponding result, that a continuous
even function which converges to zero at infinity and is convex to the right of
zero is equal to the Fourier transform of a positive integrable function, is at-
tributed to Pólya 1949 (the functions in question are called “Pólya functions”,
and it would be easy to justify calling the corresponding sequences “Young
sequences”). But Kolmogorov adds a necessary and sufficient condition for the
cosine series that he treats to converge towards the function in the L1 metric,
that is, the condition that the coefficients be o(1/ logn): this is totally new.

The fourth article, written in common with Seliverstov (or Seliverstoff), is
a note to Comptes rendus from January 14th, 1924; it was a time when the
Comptes rendus attracted some very good works because they were published
so quickly. It concerns almost everywhere convergence and an improvement
of the conditions given by Hardy for trigonometric series and by Mensov
(or Menchoff) for orthogonal series. It is the first of a series of articles of
Kolmogorov and Seliverstov (1926), Plessner (1926), Hardy and Littlewood
(1944), whose content is found in Zygmund’s book from 1959 and which are
only interesting from a historical point of view because of Carleson’s theorem.
The methods are in any case very clever and might be useful some day for
other purposes.

I now stop the promenade in 1924, when Andrei Nikolaevich was not yet
twenty one years old. He had been a precocious genius, in tune with the latest
developments of a theory which had been copiously “plowed”, and he left a
very deep mark on it. It is true that in the beginning of the twentieth century
some very young men made huge contributions to the rise of mathematics.
The beauty of mathematics can attract young people, even in difficult and
troubled times, and it seems to me that other Kolmogorovs are in the process
of appearing, men or women, individuals or groups of individuals, on one
continent or on another. Perhaps in Europe, perhaps in France, and there is
no better way to leave Andrei Nikolaevich than to wish them welcome.
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Appendix:
Two other aspects of Kolmogorov’s results
concerning harmonic conjugates

by Nikoläı Nikolski

I The A-integral of Kolmogorov

The A-integral was introduced by Kolmogorov in his classic book [Kol33]
(p. 65 of the American edition) under the name of generalized expected
value of a random variable (the name “A-integral” was proposed later by
Kolmogorov himself). A function f is A-integrable if

1. f belongs to weak L1 (that is, if limt→∞ t|{|f | > t}| = 0), and:

2. the limit limt−→∞
∫

{|f |<t}
f(x)dx exists (we call this limit (A)

∫
fdx).

Here dx is an arbitrary finite measure. One can view this notion as a lebesguian
analogue of the “principal value” of Cauchy limt−→∞

∫ t
−t f(x)dx on the real

axis. In the case of the interval [0, 2π] the definition had been proposed before
Kolmogorov, by E. Titchmarch [Tit29], at first without the condition (1).
But, as was proved in [Tit29], in this case the “integral” is not additive. On
the other hand, the combination of conditions (1)-(2) has become useful in
probability, in harmonic analysis and in complex analysis. Dozens of articles
have been published on the subject. In particular:

1. E. Titchmarch [Tit29] showed (1929) that if f ∈ L1([0, 2π]), then its
harmonic conjugate f̃ is A-integrable and the conjugate Fourier series is
the Fourier series of f̃ in the sense of the A-integral.

2. P. Ulyanov [Uly57] showed that a Cauchy transform f(z) = 1
2πi

∫
γ
h(t)dt
t−z

of a function h ∈ L1(γ) on a smooth contour γ is a Cauchy A-integral of
its boundary values (this result is not true if, e.g. γ has angular points).

3. A. B. Aleksandrov [Ale81] showed that Ulyanov’s result extends to func-
tions f of the Smirnov class Nev+ whose boundary values satisfy condition
(1) of the definition. He also proved analogues of this result for harmonic
functions on R

n, and he used the A-integral to implement the duality
CI(D)∗ = H∞(D) between the space of Cauchy integrals CI(D) = L1/H1

−
and the algebra H∞(D).

4. Other important publications on this subject are [ABGHV95], [Luk82],
[Sal88], [Mad84]; in particular, [ABGHV95] contains an application of the
A-integral to the description of those subsets of the unit circle for which
one can arbitrarily choose the Cauchy data for the Laplace equation.
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II On the weak (1,1) type of the harmonic conjugate

S. A. Vinogradov [Vin81] strengthened Kolmogorov’s theorem in the following
way: the map μ �→ μ̃ is continuous as a map U∗ → weak L1 where U∗ is the
dual of the space of uniformly convergent Fourier series (replacing C(T)∗ →
weak L1 in Kolmogorov). This theorem has many applications, see [Kis87] for
the general panorama.
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Kolmogorov published only two papers related to mathematical logic. They
are concerned with aspects of intuitionism and contain simple and funda-
mental contributions. Although they were written at the beginning of his
mathematical career, it seems that Kolmogorov’s interest for mathematical
logic was long-lasting, as shown for instance by his work on the closely re-
lated topic of complexity1. We will start by explaining the content of these
works, presenting their historical context, and discussing their current rele-
vance. We conclude with a presentation of a recent development which involves
the results from both papers. To write this survey, I have been helped by the
references [Hei67] and [KolI], to which I direct the reader for further infor-
mation2. I wish to thank Hugo Herbelin and Per Martin-Löf for their many
comments on a preliminary version of this text.

2.1 The first paper (1925). Formalization
of intuitionistic logic

2.1.1 Historical context

In this section, we will present Kolmogorov’s first paper [Kol25] concerning
mathematical logic, which was published in Russian in 1925 and only trans-
lated in English in 1967 [Hei67]. The context in which it appears needs to
be explained in order to fully understand the subject of this paper. At that

1 See the Chaps. 14 (by B. Durand and A. Zvonkin) and 15 (by P. Vitanyi) in this
volume. (Editor’s note.)

2 The references [Hes03] and [Man98], that I discovered after writing this survey,
are also directly relevant
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time, the debate between Brouwer and Hilbert concerning the foundations of
mathematics was raging. Weyl, who was Hilbert’s most brilliant disciple, had
just written a paper [Wey21] where, in dramatic language3, he allied himself
to Brouwer’s cause, and strongly criticized Hilbert’s Axiomatic approach. The
paper of Hilbert [Hil23] quoted by Kolmogorov, although less virulent than
the previous one [Hil22], was partly an answer to this article of Weyl and
to Brouwer’s criticisms. Many eminent mathematicians, such as Borel and
Lebesgue, insisted on the doubtful status of transfinite reasonings [Bor50].
It may be guessed that such questions were subjects of animated discussions
among Lusin’s students4, among whom were Khintchine, P. S. Novikov and
Kolmogorov. Echoes of such discussions can be found in the examples quoted
by Kolmogorov at the end of his paper5.

Hilbert’s article [Hil23] raises the problem of justifying the rules of quan-
tification (both existential and universal) over an infinite domain, in particular
the following principle

(¬∀x.A) → ∃x.¬A,

which follows from the Principle of Excluded Middle, and may be used to
deduce the existence of an element ∃x.¬A from a proof of the impossibility
of its non-existence ¬∀x.A6. This is a typical instance of what Hilbert calls a
transfinite argument, a terminology which is also used in Kolmogorov’s paper
(these terms may be somewhat surprising, since the adjective “transfinite” is
associated nowadays with the use of the class of countable ordinals, or more
generally of uncountable classes). Hilbert remarks that this rule is justified
in the case of quantification applied to a finite domain. But, accepting the
critique of Brouwer and Weyl, he admits that the intuitive meaning of ∀x.A
and ∃x.A is far from clear in general. As, in analysis, it is not legitimate to
“extrapolate to infinite sums and products the theorems which are valid for
finite sums and products”, it is not possible here to treat quantifiers applied to
an infinite domain with the same semantics used in the finite case. Hence, the
general idea will be to treat formally such quantifications as ∀x.A and ∃x.A,
stating precise rules of inference that apply to them, and show that those

3 As shown by this sample quote: “In this coming dissolution of the empire of
analysis, even if few are forewarned, I was looking for a firm ground. . . Because
this state is not tenable, as I convinced myself, and Brouwer, here is the revo-
lution!”. This polemic culminated in 1928 when Hilbert fired Brouwer, and the
editors opposing this measure, from the editorial board of the prestigious journal
Mathematische Annalen [vanD90]

4 Lusin, following Borel and Lebesgue, was also rather critical of purely formal uses
of transfinite reasonings [Lus30]

5 Indeed, Khintchine [Khi26] and Kolmogorov [Kol29] both published general arti-
cles presenting the debate on intuitionism

6 In this text, we use the following notation: ¬A for the negation of A, A → B for
A implies B, and we denote A1 → (A2 → B) by A1 → A2 → B. The notation
A(x) simply means that x may be a free variable in A and we denote by A(t/x),
or simply A(t), the result of substituting t for x in A
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rules can only lead to correct results. (This is quite similar to the treatment
of possibly divergent series in analysis.) As Hilbert stated: “By staying within
finitary territory, the goal is to succeed in handling freely the transfinite and
in dominating it entirely!”. The method that Hilbert suggests is extremely
original. It consists first in defining the quantifiers from a symbol τ subject
to a unique axiom, namely

A(τxA) → A(x),

which expresses a strong form of the Axiom of Choice; then, one must show
that this symbol may be eliminated from any proof of a finitary result7.

But Hilbert’s paper is only a programme, and contains no definitive re-
sult8. In this context, the main result of Kolmogorov’s first paper is very
remarkable, since it purports to prove conclusively that transfinite methods
can only yield correct finitary results. Moreover, this proof is different from
the one suggested by Hilbert, and is very natural. It confronts directly the
problem of interpretation of quantifiers, and avoids considering the τ symbol
(in fact, we will see below that Kolmogorov’s method does not apply directly
to an interpretation of the strong form of the Axiom of Choice that is derived
from this symbol).

2.1.2 Kolmogorov’s formalization of intuitionistic logic

Kolmogorov’s first contribution in this paper is a complete formalization of
minimal propositional calculus (a strict subset of intuitionistic logic which
is usually attributed to Johansson [Joh36]) and minimal predicate calculus.
As indicated by Wang, Kolmogorov’s formalization is no less remarkable than
Heyting’s [Hey30]. The very possibility of such a formalization is already quite
surprising, if we reflect that the motivations behind intuitionism were opposed
to the process of formalization9. Kolmogorov’s work is final concerning propo-
sitional calculus, but less precise with respect to predicate calculus.

7 Using Hilbert’s example, if A is the predicate “to be corruptible”, then τxA would
be a man “of such absolute integrity that if he turned out to be corruptible, then
all men would be corruptible” [Hil23]. It is then possible to define ∀x.A as equiv-
alent to A(τxA). Afterwards, the symbol τ will be replaced by a dual symbol ε,
designating a choice function. Bourbaki uses the symbol τ in its formulation of
set theory, but with the dual meaning of the choice symbol ε. Hilbert’s method
is explained very suggestively in the reference [Wey44]

8 A general result of elimination of the symbol τ in analysis was published by
Ackermann [Ack24]; von Neumann [vonN27] found a problem in this proof and
showed that its range of applicability is much more restricted than stated, in fact
similar to Kolmogorov’s result. It seems that the problem of elimination of the τ
symbol in analysis remains open [Kre65]

9 According to Wang [Wan87], Brouwer considered this result to be more remark-
able and surprising than Gödel’s celebrated incompleteness theorem [Göd31]
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The formalization is directly inspired from Hilbert [Hil23], who had sug-
gested the following axioms for implication and negation:

1. A→ B → A
2. (A→ A→ B)→ A→ B
3. (A→ B → C)→ B → A→ C
4. (B → C) → (A→ B)→ A→ C
5. A→ ¬A→ B
6. (A→ B)→ (¬A→ B) → B

The only inference rule is the modus ponens: one may deduce B from A→ B
and A. For example, taking B = A in the first two axioms (i.e. by instantiation
of B by A), we obtain the following two special cases (two instances):

A→ A→ A

(A→ A→ A) → A→ A

and by means of modus ponens, it follows that we also have A→ A.
The notions of semantic were not yet widely developed and it is inter-

esting to notice how Kolmogorov states the property of completeness of this
axiomatic system: it is not possible to add a new axiomatic schema without
contradiction. More precisely, a new axiom, such as

(¬¬(A→ B)) → ¬¬A→ ¬¬B,

is either provable from the axioms above, or leads to a contradiction, i.e. one
may then deduce an arbitrary proposition10.

The first four axioms deal only with implication, and Kolmogorov raises
the pertinent question of their completeness for implication. As explained by
Wang (p. 416 of [Hei67]), this system is not complete, but it becomes so if
Peirce’s law

((A→ B) → A)→ A

is added to it.
The last two axioms concerning negation are both rejected by Kolmogorov,

and replaced by a unique axiom called principle of contradiction

(A→ B) → (A→ ¬B) → ¬A

The last of Hilbert’s axioms must be rejected because it may be seen as
a formulation of the principle of excluded middle A ∨ ¬A, as explained by
Kolmogorov in his Note 911. As noticed by Kolmogorov in his Note 3, the
principle

(¬∀x.A) → ∃x.¬A

10 In this example, one may deduce this new axiom from the ones given previously
11 The numbering of notes refers to that used in the English translation in [Hei67]
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would follow from this axiom, combined with others which are valid from
the intuitionistic point of view. However, this is definitely problematic when
quantification over an infinite domain is concerned, and this is acknowledged
by Hilbert himself [Hil23].

Things are not so clear concerning Hilbert’s Axiom 5. It will be considered
as admissible by Heyting in his formalization of intuitionistic logic [Hey30]
(and accepted by Kolmogorov in his paper [Kol32]). Today, it is common to
introduce a special proposition ⊥ representing an absurdity and, following
Brouwer, to define ¬A as being A →⊥. (With this definition, Kolmogorov’s
principle of contradiction becomes provable from the axioms for implication.)
An elegant formulation of Hilbert’s debatable Axiom 5 is then

⊥→ A

which expresses the principle that ex falso quodlibet. This principle has been
the subject of much discussion in intuitionistic mathematics. If it is rejected,
there is no special condition on the proposition ⊥, and it may be considered
that there are no negative propositions. Griss, among others, has argued for
the rejection of Axiom 5 [Gri55], and hence for considering only affirmative
propositions. In answer to these developments, Brouwer constructed an ex-
ample [Bro48] showing that it is necessary in intuitionistic mathematics to
consider negative propositions in an essential way, and hence that Hilbert’s
Axiom 5 must be admitted. As we will see later on, the fact that Kolmogorov
makes no use of Axiom 5 in his interpretation of classical logic, so that nega-
tion ¬A may be defined as A→ X where X is an arbitrary proposition, may
be exploited in a non-trivial way.

2.1.3 Negative interpretation

The main result is that it is not possible to prove new finitary results with
non-constructive methods. In particular, one can not introduce contradictions.

The idea is very simple and is well summarized by the following imagi-
nary dialogues (taken from E. Nelson [Nel92, Nel04]) between an intuitionist
mathematician I and a classical mathematician C, who starts the dialogue:

C: I have just proved ∃x.A.
I: Congratulations!. What is it?
C: I don’t know. I assumed ∀x.¬A and derived a contradiction.
I: Oh. You proved ¬∀x.¬A.
C: That’s what I said.

Here is a similar dialogue:

C: I have proved A ∨B.
I: Good. Which did you prove?
C: What?
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I: You said you proved A or B; which did you prove?
C: Neither; I assumed ¬A ∧ ¬B and derived a contradiction.
I: Oh; you proved ¬[¬A ∧ ¬B].
C: That’s right. It’s another way of saying the same thing.

So, the idea is that the intuitionistic mathematician may very well follow a
classical reasoning, at the price of reformulating some statements. It is the
principle which is put to work in Kolmogorov’s paper, for propositional cal-
culus based on → and ¬, and then for predicate calculus. This paper contains
another idea, which is the key to a semantic understanding of the negative
interpretation. Kolmogorov notices that in order to have a calculus which is
equivalent to Hilbert’s, it is enough to add the axiom of double negation

¬¬A→ A

To show this, he proves that Hilbert’s Axioms 5 and 6 can both be derived
from this axiom. Then Kolmogorov considers all propositions A which satisfy
the implication ¬¬A→ A. Let us call such propositions regular12. A first fun-
damental remark is that any finitary proposition is regular. Brouwer, in the
paper [Bro25] quoted by Kolmogorov, had shown that any negative proposi-
tion ¬A is regular. The second fundamental remark is that Hilbert’s axioms
are valid for regular propositions. In semantic terms, regular propositions form
a model of classical propositional calculus (a boolean algebra). Since finitary
propositions are regular, it is now clear, in a semantic way, that any finitary
proposition which is classically provable will also be intuitionistically prov-
able. Kolmogorov proves this explicitly by describing an interpretation A∗

of each proposiion A in such a way that if A is classically provable, then
A∗ is intuitionistically provable (and A∗ is equivalent with A for a finitary
proposition).

The interpretation A �−→ A∗ is defined by induction on the formula A. If A
is atomic (i.e. does not involve any logical connector), then A∗ is ¬¬A. If A is
a composite formula F (A1, . . . , An) then A∗ is ¬¬F (A∗

1 , . . . , A
∗
n). Kolmogorov

only considers the connectors → and ¬ in this paper, but his definition can
be applied directly to the connectors ∨ and ∧, and those authors which refer
to “Kolmogorov’s interpretation” (e.g. the reference [Mur90]) use freely this
extension

(A ∨B)∗ = ¬¬(A∗ ∨B∗) (A ∧B)∗ = ¬¬(A∗ ∧B∗)

It may be remarked that this interpretation is far from being “minimal”: one
might take, as Gentzen does for instance, (A ∧ B)∗ = A∗ ∧B∗, (A → B)∗ =
A∗ → B∗. Concerning negation, the definition gives (¬A)∗ = ¬¬¬A∗ whereas
(¬A)∗ = ¬A∗ is sufficient. But Kolmogorov’s interpretation is very systematic.

12 A natural interpretation of intuitionistic logic is to use the open sets of a topo-
logical space X as truth values. Regular propositions are then those which are
interpreted by regular open sets, i.e. by those equal to the interior of their closure
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2.1.4 Predicate calculus

Kolmogorov’s treatment of predicate calculus is less detailed. He never defines
explicitly the negative interpretation of the formulas ∀x.A and ∃x.A. It seems,
however, that he takes them to be special cases of his general definition, so
that the definition used is

(∀x.A)∗ = ¬¬∀x.A∗ (∃x.A)∗ = ¬¬∃x.A∗

He remarks that the translation of Aristotle’s Axiom

(∀x.A) → A(x)

is valid, using implicitly such an interpretation. Although this axiom is men-
tioned, he forgets to insert it in his list of axioms for quantification (numbered
from I to IV), as noticed by Wang [Hei67] (which is surprising because the
dual Axiom IV is present).

As we have already seen, the paper of Hilbert quoted by Kolmogorov uses
the Axiom A(τx A) → A(x) and it turns out that, for the τ symbol, adding
this Axiom to propositional calculus is sufficient, and there is no need to add
any further inference rule to the rule of modus ponens. But this is not the case
for universal quantification. Kolmogorov is aware of this point, and states that
what he calls Principle P : if A(x) is deductible, then ∀x.A(x) is also. It may
be noted that with Axiom II and modus ponens, one recovers also the rule
stating that one may infer A → ∀x.B(x) from A → B(x) if x is not a free
variable in A.

One would expect to see a justification of the problematic rule

(¬∀x.A) → ∃x.¬A

using the fact that its translation is valid from the intuitionistic point of view.
Instead, Kolmogorov shows that this rule is an intuitionistic consequence of
the rule of double negation.

All this may be compared to the treatments by Gödel [Göd33] and Gentzen
[Gen69]. As remarked by Wang [Hei67], the only element in Kolmogorov’s
paper which is missing to make it a complete system of the minimal predicate
calculus is an explicit statement of Aristotle’s Axiom.

Although Kolmogorov’s paper, published in Russian only, was unknown to
Gödel and Gentzen, one may speculate about an indirect influence [vonP94],
since Gödel refers to a paper of Glivenko [Gli29], who was certainly aware of
Kolmogorov’s results13.
13 It is probably because Kolmogorov’s paper was in Russian that Glivenko does

not refer to it in [Gli28, Gli29]. Similarly, Kolmogorov himself does not cite his
own paper in his article on the interpretation of intuitionistic logic, although
he does refer to Heyting’s paper [Hey30]. In his correspondence with Heyting
[Kol88] concerning Gödel’s paper [Göd33], Kolmogorov mentions to Heyting that
his paper [Kol25] contains similar results, and that he believes that this method
may be applied to a large part of classical mathematics
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2.1.5 References to the article of 1925

Kolmogorov never came back to the contents of his paper [Kol25], and in
particular he did not refer to it in 1932 in the paper [Kol32]. As remarked
by J. von Plato [vonP94], there are nevertheless some echoes of this paper in
Kolmogorov’s book on probability theory [Kol33]. Events which are infinite
disjunctions or conjunctions are considered as “ideal events”, which corre-
spond to no empirical event. And he notes that if the probability of an factual
event is found using ideal events, then such a computation must also be valid
empirically.

2.2 Classical and intuitionistic mathematics

2.2.1 The problem

Kolmogorov’s result had been foreseen in a large measure by Brouwer. Already
in 1908 [Bro08], he clearly notices that the use of the excluded middle can not
lead to a contradiction, essentially because we have ¬¬(A ∨ ¬A), since it is
contradictory to have both ¬A and ¬¬A: “So that for the moment we can not
trust the excluded middle principle for infinite systems. Neither will we ever
have to confront a contradiction, and discover in this manner the unfounded
nature of our arguments, by an unjustified use of this principle. Indeed for
this both the affirmation and the contradictory character of a statement would
be contradictory, and this is forbidden by the principle of contradiction.” In
1923 [Bro23], referring to this remark, he considers very plausible the proof of
intuitionistic non-contradiction of excluded middle, but he adds: “nothing of
mathematical value will thus be gained: an incorrect theory, even if it cannot be
inhibited by any contradiction that would refute it, is none the less incorrect,
just as a criminal policy is none the less criminal even if it cannot be inhibited
by any court that would curb it”!

This indicates the limitations of this type of results in the intuitionistic
framework. One may however wonder whether Kolmogorov’s goal is achieved,
independently of this particular criticism. Is it possible to prove, in an intu-
itionistic way, that classical mathematics are not contradictory? This is a very
interesting question, which is not easy to answer in a simple manner, since
it depends crucially on the range of intuitionistic mathematics. According to
Myhill [Myh68], and following Gödel, it is necessary to make a distinction
between two forms of intuitionism, whether impredicative definitions are per-
mitted or not14.

14 A definition is called impredicative if it defines an object by means of a quantifica-
tion over a class containing this object. This notion arose from a debate between
Russell and Poincaré [Hei86]. Poincaré [Poi09] pointed out the surprising aspect of
such definitions. These intuitions have been confirmed by demonstration theory,
which shows that definitions of this type have great logical force [Kre68, Gir72]. It
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2.2.2 Predicative intuitionism

Gödel’s paper [Göd33] implicitly states that intuitionistic mathematics rejects
impredicative definitions. According to Gödel, it is not possible to conclude
that, in general, intuitionistic mathematics is an extension of classical math-
ematics from the fact that the double-negation method proves that classi-
cal arithmetic can be interpreted in intuitionistic arithmetic15. This may be
shown using arguments of demonstration theory: the logical strength of an in-
tuitionistic system such as the one in the book of Kleene and Vesley [KV65],
is comparable with that of the theory ID1 of a general inductive definition,
and is therefore much weaker than classical analysis. Hence, it is absolutely
impossible to prove in this system that classical analysis is non-contradictory,
by Gödel’s Second Incompleteness Theorem [Göd31].

Current intuitionistic mathematics considers rather strong forms of the re-
flection principle (see, e.g. [Pal98]), but those theories remain logically weaker
than the comprehension principle Π1

2 and therefore cannot suffice to justify
classical analysis, exactly as predicted by Gödel [Göd33]. It remains an open
problem to give a constructively valid semantic of classical analysis.

2.2.3 Impredicative intuitionism

If the free use of impredicative definitions is allowed, purely formally, one ob-
tains what may be called “impredicative intuitionism”, which may be defined
simply by the refusal of the double negation rule. The objection concerning the
lack of logical strength does not apply anymore, and the problem of justifying
classical methods is raised anew in this setting.

Around the end of the 1960’s, this impredicative form of intuitionism
was analyzed in detail, in works culminating with the proof of normaliza-
tion by J.-Y. Girard [Gir71] (a result which is a very strong form of relative

is interesting to know that such definitions can be represented using the τ symbol
[Spe62], and one of Hilbert’s (and later Gentzen’s) goal was precisely to show that
such definitions were consistent [Hil29]. On the other hand, they are considered
as being unjustified from the constructive point of view, see e.g. Gödel [GödIV]
and P. Martin-Löf [Mar84]

15 There is also the problem of understanding how the result of Kolmogorov-Gödel
does not contradict the theorem that states that the consistency of arithmetic can
not be proved in finitary manner. Indeed, as explained very clearly in [Nel92], and
as foreseen in Kolmogorov’s paper, this interpretation is in particular an intuition-
istic proof of non-contradiction of classical arithmetic. Gödel’s paper [Göd33] is
the source of a distinction between finitary and intuitionistic. Thus Kolmogorov’s
result proves the consistency of classical methods with respect to intuitionism,
but not with respect to finitism. All this is still subject to debate, since the range
of the finitary method remains very vague [Zac98]. As indicated by Gödel himself
[Göd31], it is possible to argue that his incompleteness theorem does not in fact
contradict Hilbert’s programme
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consistency), then the discovery, also due to J.-Y. Girard, that the most
general form of impredicative intuitionism leads to a contradiction [Gir72,
Miq01]. It seems that one of the motivations for these researches was pre-
cisely the remark that the negative interpretation of Kolmogorov-Gödel may
be extended, almost trivially, to second-order arithmetic16 [Kre68]. Indeed,
the comprehension principle for analysis

∃X∀y. (y ∈ X ↔ A(y))

is an example of a mathematical axiom which implies its own negative inter-
pretation. So it is a paradigmatic example of Note 15 of Kolmogorov’s paper,
according to which the axioms of mathematics satisfy the implicationA→ A∗,
although there may be problems in their intuitionistic justification17.

This interpretation was then extended to the theory of types [Myh71] and
to set theory [Pow75]. The idea behind those extensions is easily understood
in semantic terms [Law71]: one may see the set of intuitionistic truth values
as a complete Heyting algebra. The sub-algebra of regular truth values is a
complete boolean algebra, and it is then possible to follow the general method
of construction of boolean models of type or set theory (see, e.g. [Bel85]).

2.2.4 The problem of the Axiom of choice

In Note 15 to his paper, Kolmogorov remarks that the axioms of mathematics,
including the axiom of choice, have the property that they imply their neg-
ative interpretation. This assertion depends on the formulation of Zermelo’s
Axiom of Choice which is used (note that a precise formulation in the pred-
icate calculus of set theory had only recently been given by Skolem [Sko22]).
It seems that taking a formulation close to Zermelo’s original one, according
to which one may always find a a set of representatives for an arbitrary equiv-
alence relation on a given set, yields indeed a proposition which implies its
own negative interpretation18. On the other hand, if the functional form of
the Axiom of Choice is considered, namely

(∀x∃y.A) → ∃f∀x.A(x, f(x))

16 Recall that first order arithmetic allows only quantifications over integers (∀n,
∃m), and that second order arithmetic allows also quantifiers over properties, or
what amounts to the same thing, over subsets of N (∀A, ∃B)

17 In the reference [GödIV], it appears in the course of the correspondence between
Bernays and Gödel that Gentzen, and Gödel, had realized by 1939 that it was
possible to extend the negative interpretation to the theory of types. However,
Gödel and Bernays both considered that such a reduction is not constructively
satisfactory

18 I owe this remark to P. Martin-Löf. As noticed by Kolmogorov, this axiom in
not intuitionistically justified, and in fact one can even show that it implies the
principle of excluded middle [Dia75]
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which requires quantification over function symbols, then this form does not
imply its negative interpretation. What would be required is the implication

(∀x.¬¬A(x)) → ¬¬∀x.A(x)

which is not justified intuitionistically. This problem is the origin of works
such as [Spe62, BBC98, BO05, Kri03, Miq03]. It is in fact while studying this
question that it was realized, in the 1960’s, that intuitionistic logical systems
such as the one described in [KV65] are much weaker logically than classical
analysis [Kre68].

2.3 Refinements of Kolmogorov’s result

As we have seen, Kolmogorov like Weyl [Wey21] and Hilbert [Hil23], does
not consider existential propositions as finitary. As stated by Weyl [Wey21]
an existential proposition is not a “genuine judgement that affirms a state
of things”, but only a “judgement abstract”. This is formally analogous to
the fact that an existential proposition E = ∃x.A(x) is not usually a regular
proposition, even if A(x) is one, because the implication E∗ → E requires the
use of the principle

¬(∀x.¬A(x)) → ∃x.¬¬A(x).

Kolmogorov’s result does not extend to non-finitary propositions in general19.
It is therefore rather surprising that it does extend to purely existential propo-
sitions, i.e. those of the formA = ∃x.B(x) where B(x) is a finitary proposition:
if such a proposition A can be proved by classical means, then A may also be
proved intuitionistically.

This result, in a weaker form, follows from the finitary interpretation of
classical proofs (due to Gentzen [Gen35]). The general case may be proved
using the Dialectica interpretation of Gödel [Göd58]. H. Friedman [Fri78] has
given a particularly simple proof, which uses the negative interpretation. It
can profitably be presented using the fact that Kolmogorov’s interpretation
is an interpretation of classical logic in minimal logic.

Indeed, let us replace the proposition ⊥ indicating absurdity by an arbi-
trary proposition X , and let us write denote by ¬XC the implication C → X .
It follows from Kolmogorov’s paper that is A = ∃x.B(x) is classically prov-
able, then A∗ is intuitionistically provable. If B(x) is a finitary proposition,
we have B(x)∗ ≡ (B(x) → X)→ X and therefore

A∗ ≡ (∀x.B(x)∗ → X)→ X ≡ (∀x.B(x) → X)→ X ≡ ¬X¬XA

19 The proposition ∃n.∀m.f(n) ≤ f(m) concerning the non-negative integers, for
instance, has a direct classical proof, but is not intuitionistically valid
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Hence ¬X¬XA is intuitionistically provable. Since, in this argument, the
proposition X is arbitrary, it can be replaced by the proposition A itself,
and we obtain

(A→ A) → A

and hence A is intuitionistically provable.
In algebraic terms, this result appears as Funayama’s Theorem [Fun59],

which states that an arbitrary complete Heyting algebra may be embedded
in a boolean algebra, the embedding preserving upper bounds. This result
has since been refined in the form of Barr’s Theorem [Joh77] which affirms
that there exists a surjective morphism from a boolean topos to an arbitrary
elementary topos (the proof of which, in [Joh77], is indeed reminiscent of the
argument just described).

Excepting the formulation of the axiom of choice previously mentioned,
one can give natural examples of axioms A which do not satisfy the principle
of Note 15 of Kolmogorov, according to which A implies its own negative
interpretation A∗. If the general induction axiom does satisfy this principle,
it is clear for instance that the Σ0

1 axiom of induction does not, where the
induction

B(0)→ (∀x.B → B(x+ 1))→ ∀x.B
is restricted to purely existential propositions B. Indeed, the negative inter-
pretation becomes

B∗(0)→ (∀x.B∗ → B∗(x+ 1))→ ∀x.B∗

andB∗ is not purely existential. An analogue problem appears in the induction
principle of the system ID1. There exists a variant of the negative interpre-
tation avoiding this problem, which is presented in the references [Avi00] and
[CH99].

2.4 A calculus of problems

As indicated by E. Nelson [Nel92], Kolmogorov’s result [Kol25] may be in-
terpreted as showing that intuitionistic mathematics is not a restriction of
classical mathemaics, by rather an extension (at least in the propositional
case and for arithmetic). Moreover the operations of classical mathematics
can be interpreted in the fragment of intuitionistic logic that uses only the
connectors ∧, → and ¬, and universal quantification, for instance by defining

(∃x.A)∗ = ¬(∀x.¬A∗) (A ∨B)∗ = ¬(¬A∗ ∧ ¬B∗)

It is therefore appropriate to say that intuitionistic mathematics introduces
a new connector ∨, with a constructive interpretation, and a new existen-
tial quantifier (also constructive), both of which have no classical counter-
part. A natural question is then to describe clearly the semantics of those
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new operations. This is the objective of Kolmogorov’s second article on
intuitionistic logic, which presents a general calculus of problems, and shows
that this calculus provides the desired semantics. This paper [Kol32] is short
and informal. Kolmogorov doesn’t define the notion of problems precisely, but
contents himself with some examples. A problem can thus be

Find four positive integers x, y, z, n such that xn + yn = zn and n > 2

but one may also have “conditional” problems such as

If a solution of ax2 + bx+ c = 0 is given, find the other root

or

Assuming that π is rational, π = m/n,
find a similar expression for e.

The last example is one of a conditional problem with a false premise. In
this case, Kolmogorov considers that a proof that the premise is false is a
solution of the problem.

Assuming at least an informal understanding of the notion of problem,
Kolmogorov introduces the following notation, where A,B denote arbitrary
problems

A ∧B is the problem of solving problem A and problem B.
A ∨B is the problem of solving at least one of problems A or B
A → B is the problem of reducing a solution of problem B to a solution of

problem A (conditional problem)
¬A is the problem: assuming a solution of problem A exists, deduce a con-

tradiction.

In his Note 4, Kolmogorov gives an example to clarify the last case: it
should not be mistaken with the task of proving that A can not be solved.
For instance, let A be the problem of the Continuum Hypothesis: it is not a
solution of problem ¬A to show that it can not be solved (as will indeed be
shown in the 1960’s).

It is very remarkable that the calculus of problems thus defined coincides
with intuitionistic logic as formalized by Heyting [Hey30].

Consider for example the Axiom

(A ∧ (A→ B)) → B

Its justification in the calculus of problems is as follows. The solution of prob-
lem B must be reduced to the solution of the problem A ∧ (A → B). So,
suppose a solution of this problem is given. This means that one has both a
solution of problem A, and a solution of problem A→ B, i.e. one may reduce
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the solution of problem B to that of problem A. Hence, as desired, we can
solve problem B.

On the other hand, the principle of excluded middle in the form

A ∨ ¬A

can not be justified. Indeed, a solution would be a general method which, given
a problem A, would either give a solution or show that a contradiction follows
from the assumption that problem A is solvable. As Kolmogorov states, unless
one is bold enough to consider oneself omniscient, it must be recognized that
there is no solution to this problem.

It is now also very clear why the problem

¬¬(A ∨ ¬A),

is solvable. Indeed, a solution of ¬(A∨B) is a solution of problem ¬A, and a
solution of problem ¬B. If B = ¬A, a contradiction is reached. This is exactly
Brouwer’s reasoning [Bro08] recalled above, but formulated in the calculus of
problems.

So we can not hope to solve the problem ¬¬B → B, since by instantiation
of B by A ∨ ¬A, we would obtain a solution of

¬¬(A ∨ ¬A) → A ∨ ¬A

and, since a solution of the premise is available, this would give a solution of
the problem corresponding to the principle of excluded middle.

Thus, this paper proposes a very suggestive informal interpretation of intu-
itionistic calculus, which is clearer than the one developed by Heyting [Hey31].

2.5 Some recent developments

The calculus of problems has been refined in type theory [Mar82, Mar84,
NPS90], which essentially adds to Kolmogorov’s calculus an explicit notation
for the solutions of problems. One introduces the notation a ∈ A which may
be read in one of the following manners:

a is a solution of problem A
a is a proof of proposition A
a is a program which is correct with respect to specification A
a is an element of the set A

Thus f ∈ A → B may be interpreted as the statement that f is a func-
tion of the set A to the set B, or as the statement that f is a method that
reduces the solution of problem B to that of problem A, or as the state-
ment that f is a proof of the implication A → B. In this form, the inter-
pretation obtained is known as the Brouwer-Heyting-Kolmogorov semantics
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of intuitionistic logic. This interpretation is closely related to the notion of
realizability in proof theory [Nel92, Tro73], and to the Curry-Howard corre-
spondence [How80, Mar82, Kri98]. It extends naturally to predicate calculus,
to arithmetic, and even to set theory [Fri73]. It would be impossible to sum-
marize even partially the researches related to this topic, and we will content
ourselves with a few general remarks.

First of all, why is this interpretation relevant to computer science? As
clearly expressed by Dijkstra [Dij76], an efficient programming methodology is
to develop a computer program in parallel with the proof of its correctness, the
correctness proof leading the development. This methodology can be expressed
elegantly in Kolmogorov’s calculus of problems: thus, a solution to a problem
of the type

∀x.P (x) → ∃y.R(x, y)

may be seen as a computer program which, when executed with an input
a satisfying the precondition P (a), outputs a result b satisfing R(a, b). An
intuitionistic proof of a proposition A may therefore be seen as a program
which is correct with respect to the specification A by construction. This is
explained in references [Mar82, NPS90, Nel92].

Next, there is a very useful notation for solutions of problems, namely λ-
calculus [Bar97], which provides a convenient formalism for the representation
of programs [Bar97, Lan65]. It may be described by the following grammar20:

t ::= x | t t | λx.t

If t is the solution of a problem B constructed from a hypothetical solution x
of problem A, we can represent by an abstraction λx.t the solution of problem
A → B. Finally, if f is a solution of the problem A → B and a is a solution
of problem A, then the application f a represents the solution of problem B.
The λ-calculus is a very practical notation to express functions. For instance,
the identity function x �−→ x is represented by the term λx.x, whereas the
function

A→ (A→ X)→ X

x �−→ (f �−→ f(x))

which takes x as argument and outputs the functional which evaluations an
input function f with the argument x is represented by the term λxλf.f x.

A very simple model of functional programming is obtained using the λ-
calculus with the single reduction rule

(λx.u) t = u(t/x)

20 Which means that terms are formed using the following rules: a term is either
a variable x, or what is obtained by substitution of a term in another (t t, for
t1(t2)), or the function which maps x to t (denoted λx.t), where x is a free variable
in the term t



34 Thierry Coquand

which expresses precisely that the result of applying (λx.u) t is obtained by
replacing x by t in u. For instance, if we apply the function λxλf.f x to the
arguments z and the identity function λy.y, we get

((λxλf.f x) z) (λy.y) = (λf.f z) (λy.y) = (λy.y) z = z

as expected.
This notation is extremely suggestive when it comes to representing solu-

tions in Kolmogorov’s calculus of problems. For instance, Hilbert’s four axioms
for implication admit the following solutions:

1. λxλy.y ∈ A→ B → A
2. λfλx.f x x ∈ (A→ A→ B)→ A→ B
3. λfλyλx.f y x ∈ (A→ B → C)→ B → A→ C
4. λgλfλx.g (f x) ∈ (B → C)→ (A→ B) → A→ C

Notice that the solution for Axiom 2 is the diagonalization operator, and that
the solution for Axiom 4 is the composition operator.

It may also be noted that the term λxλf.f x described a solution of the
problem

A→ (A→⊥)→⊥
whereas it is not possible to construct a solution for the problem

((A→⊥)→⊥)→ A

Impredicative intuitionism also takes a very simple form in this framework
[Gir72]. As remarked by J.-L. Krivine [Kri03], the comprehension scheme is
essentially interpreted by the identity λx.x! It is also possible to extend such
an interpretation to an intuitionistic theory with the same logical strength as
the Zermelo-Fraenkel system [Kri01, Miq03] (and one can even analyze some
inconsistent systems [CH94]).

2.6 A calculus of problems for classical logic?

We have seen that one can not hope to solve the problem corresponding to
the double-negation principle

¬¬A→ A

A relatively recent discovery (1990) [Gri90, Kri96] tempers this remark, giv-
ing hope for what can be described as a calculus of problems for classical
logic. Moreover, this discovery has a direct link with Kolmogorov’s negative
interpretation [Mur90].

In what follows, we consider a special problem denoted ⊥ and we define
¬A as being the problem A→⊥. A suggestive interpretation is to think of ⊥
as the type of executable programs [Kri96]: typically, the type of the program
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print which prints an integer, of type N , will be ¬N = N →⊥, since this
program takes an integer as input, and produces no output but a side-effect
(printing the integer). The idea will be to extend the λ-calculus with a new
unary operation C(t) such that C(t) is a solution of problem A if t is a solution
of problem ¬¬A. The term λx.C(x) solves ¬¬A→ A and is therefore a formal
solution to the problem corresponding to the principle of double negation. This
new constant is defined by a unique rewriting rule

E[C(t)] = t (λx.E[x]) (1)

which is not “local” anymore, since it may only be applied to a term of type
⊥. For instance, if t is of type ¬¬(N → N) and u of type N , we will get

print (C(t) u) = t (λx.print (x u))

This reduction preserves types: λx.print (x u) is of type ¬(N → N) and
hence t (λx.print (x u)) is indeed of type ⊥. But to ensure this preservation
of types, it is essential that the context of evaluation E[x] be of type ⊥.

It may then be held that the addition of C(t) with this reduction rule
provides a solution to the problem of the exluded middle. What is most im-
portant, however, is that such mechanisms occur naturally in computer science
[SW74, Gri90, FF86, Kri96], for instance in the implementation of schedulers
for operating systems. The effect of those instructions is to keep in memory a
reference state of a program being executed, in order to be able to come back
to it, in case of problem for example. This is well represented by the rule (1)
where the term λx.E[x] corresponds to the reference state which is remem-
bered. It is truly surprising that such a rule appears completely independently
of the problem of the semantics of the principle of excluded middle.

Following the fundamental works of Strachey and Wadsworth [SW74,
Fis72, Plo75], one may also explain such operations by a translation into
pure λ-calculus. Such a translation is [Gri90]

(t u)∗ = λk.t∗ (λm.m u∗ k) (λx.t)∗ = λk.k (λx.t∗)

x∗ = x (C(t))∗ = λk.t∗ (λm.m (λz.z (λfλd.f k)) (λx.x))

One may then show that if t is a solution of problem A, which may involve
the classical operation C, then t∗ is an intuitionistic solution of problem A∗,
where A∗ is precisely Kolmogorov’s negative interpretation [Kol25]21. What
is used here is the fact that Kolmogorov’s translation is very systematic, since
this allows a simple translation of terms. (If a negative interpretation like
21 The proof uses the fact that one may write A∗ = ¬¬A+ where A+ is defined

inductively using the clauses X+ = X and (A → B)+ = ¬¬A+ → ¬¬B+.
This is a substitutive transformation, i.e. it satisfies (A(B/X))+ = A+(B+/X)
and is used for the definition of the negative interpretation in higher-order logics
[Gir72, CH94]. It it then straightforward to show by induction on t that if t is of
type A, then t∗ if of type ¬¬A+
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Gödel’s or Gentzen’s were used, the translation of terms would have to take
their types into account22.) It is also possible [Mur90] in this framework to
give a computer science meaning of Friedman’s refinement [Fri78] as described
above. The negative interpretation described in Kolmogorov’s paper [Kol25]
is therefore formally identical to the interpretation used in computer science
to derive the semantics of escape operations [SW74].

However, it is not clear how one could think of such terms involving the
constant C as solutions of problems, as is the case in the intuitionist situation,
and more generally, whether this interpretation of classical logic is fundamen-
tally different from the negative interpretation. Such a link, reinforcing the
the correspondence described above between proofs, programs and solutions
of problems, seems to be fundamental nevertheless, and it is remarkable that
it be so closely related to the pionnering works of Kolmogorov.
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punktes. Dialectica, 12, 280–287 (1958). English translation in [GödII].
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a note by W. Sierpiński, and a preface by Henri Lebesgue. Gauthier-
Villars, Paris (1930)

[Man98] Mancosu, P.: From Brouwer to Hilbert. The debate on the foundations
of mathematics in the 1920s. With the collaboration of Walter P. van
Stigt. Reproduced historical papers translated from the Dutch, French
and German. Oxford University Press, New York (1998)
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3.1 Introduction

Anyone reading about the mathematical works of Kolmogorov must naturally
expect to find broad considerations about the axiomatization of probability
which Kolmogorov developed at the beginning of the nineteen thirties and
which forms the contents of his famous publication Grundbegriffe der Wahr-
scheinlichkeitsrechnung (Foundations of the theory of probabilities) [Kol33],
published by Springer in 1933. It is certain that among all the works of the
Soviet mathematician, this small opuscule of about sixty pages is the most
famous part, and is often the only one to which his name is attached for a
quite large public but also for some mathematicians. Without wanting in any
way to diminish the importance of this work, it is nevertheless quite aston-
ishing that the attention was thus focused on what does not constitute the
most original creation of Kolmogorov in the field of probability. The aim of
this part, devoted to certain aspects of the probabilistic works of the scientist,
is precisely to highlight some of his most remarkable works in that domain.
In this imposing monument, a drastic choice was necessary and we chose to
focus on the two purely probabilistic directions that Kolmogorov worked on,
namely on the one hand the study of the various types of convergence for sums
of independent random variables, which enabled him to continue the studies
of his Russian predecessors Markov and Lyapounov, and on the other hand lit-
erally revolutionary considerations about processes in continuous time, whose
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branches extend ahead in time until some discoveries which go back to hardly
thirty years. Nevertheless, as we found it difficult, and almost impossible, that
a chapter devoted to the probabilistic works of the Soviet mathematician does
not refer to the axiomatization of probability, we will begin with a short glance
of his main contributions to this topic, inviting the reader to refer to the nu-
merous articles dealing with the question in a more detailed way (see e.g.
[vonP94], [SV06]). We will also refer to the essential text of Shiryaev [Shi89]
for a more complete chart of Kolmogorov’s works. One will find in the article
[Maz03] some indications on the life of the mathematician and the status of
the discipline in the stalinist USSR.

3.2 The axiomatization of probability calculus

3.2.1 An abstract framework

As mentioned above, Kolmogorov’s publication Grundbegriffe der Wahr-
scheinlichkeitsrechnung [Kol33] is a modest monograph of 60 pages published
in 1933 along with several articles devoted to the modern probability theory.
The Russian translation of the text is dated 1936, and it was mostly achieved
due to some political reasons at the time when an important pressure was
put on Soviet scientists so that they publish their works in Russian and in
USSR rather than abroad. As for the first English translation, it is dated 1950.
This relatively important delay shows that the axiomatization suggested by
the Russian scientist wasn’t as generally accepted as we usually think it was.
Several probabilists, and among the most eminent ones, such as Paul Lévy,
will never use the axiomatization of Kolmogorov, which will not prevent them
in any way having extraordinary ideas. In fact, outside the USSR, before the
50’s, more or less only Cramér’s treatise [Cra37] refers to this field. Besides,
this author doesn’t give any detailed explanation; he only uses Kolmogorov’s
axiomatization because it is the most practical one among those available at
that time (in particular the theory of collectives suggested by von Mises). How-
ever, from the 50’s, it will definitely be adopted by the younger generation.
What is attractive in the formal framework proposed by this axiomatization,
is the fact that it provides e.g. a global explanation of the multiple paradoxes
which had in the past plagued this discipline (like those of Joseph Bertrand,
Emile Borel etc.) : each time, the precise definition of the probability space
as a description of the considered random experiment allows to suppress the
ambiguity. (On this subject, see infra, as well as [SV06] and [Szé86]. One can
also refer to Itô’s comments in the foreword of [Itô86].)

The great force of Kolmogorov’s treatise is to voluntarily consider a com-
pletely abstract framework, without seeking to establish bridges with the ap-
plied aspects of the theory of probability, beyond the case of finite probabil-
ities. In general, the search for such bonds inevitably brings to face delicate
philosophical questions and is thus likely to darken mathematical modelling.
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While speaking about the questions of application only in the part devoted to
the finite probabilities4, Kolmogorov is released from this constraint and can
avoid the pitfalls that von Mises had not always circumvented. Indeed, the
theory of the collectives also claimed to establish a discrimination between the
experiments for which the application of the probabilities was legitimate, and
others. But Kolmogorov, who presents a purely mathematical theory, does not
have such an ambition, and thus not such a limitation. Within the abstract
framework which he defines, any mathematical work is legitimate, and its
validation for applications is a matter for other fields of knowledge. In partic-
ular, he allows himself to consider sets not having any topological structure,
whereas for finer studies (like the phenomena of convergence), he will be free
to work on better spaces through the use of images of probability laws. Be-
sides this fact will place the axiomatization of Kolmogorov in opposition with
the Bourbaki topological set-up concerning measure theory. The very general
character of his theory will make it possible to the Russian mathematician to
use in all its force the measure theory of Borel and Lebesgue, which is still
relatively new at that time since its abstract version was mainly developed by
Fréchet (quoted in the Grundbegriffe as the one who liberated measure theory
from geometry) then by the Polish school (Banach, Sierpiński, Kuratowski. . . )
in the 20’s.

From the beginning of the twentieth century, Borel had been a promoter
of the use of the measure theory and integral of Lebesgue for the treatment
of questions of probability. In 1909, he publishes a revolutionary paper where
such a method enables him to obtain a first strong version of the law of large
numbers and interpretations on the distribution of real numbers. Undoubtedly
his moderate consideration for probabilistic mathematics and serious doubts
as for the legitimacy of their applications prevented him from fully reaping
the crops from the seeds which he had sown.

Kolmogorov introduces the by now classical concept of a probabilisty space
in the form of a triplet (Ω,F , P ) composed of a set Ω provided with σ-
algebra (which he calls a set field) F and a normalized measure (probability)
P . The random variables are simply functions X with real values defined on
Ω such that for all a ∈ R, {ω ∈ Ω,X(ω) < a} ∈ F and their laws are the
image measures of the probability P defined by P (X)(A) = P (X−1(A)), for
all A ∈ B(R), the Borelian σ-algebra of R.

The major contributions of Kolmogorov’s work in the clarification of prob-
abilistic concepts are incontestably the construction of a probability measure
on an infinite product of spaces, which plays an important part in the theory
of stochastic processes, and the formalization of the conditional law via the
use of the Lebesgue-Radon-Nikodym theorem (the abstract version of this
theorem had been published by Nikodym in 1930). Let us note incidentally

4 Which is not without reminding one about the way in which, in his article of 1931
on Markov processes, he had proposed in a long introduction to defer to other
works some reflections about the applicability of his theories
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that it wasn’t the first time that a probability on a product space was built: the
most famous example is given by Wiener [Wie23] who since 1923, by applying
techniques that Daniell had developed a few years before to extend Lebesgue’s
integral to spaces of infinite dimensions, built the probability measure − now
called Wiener’s measure − associated with Brownian motion (see [RY91]).

3.2.2 Construction of the conditional law

Let us present in a few words the construction of the conditional law, while
following the text of Kolmogorov but with modernized notations for the sake
of clarity of our exposition.

First of all let us recall the definition of the elementary conditional prob-
ability of an event C (i.e. of an element of the σ-algebra F) by an event D
such as P (D) > 0, by P (C | D) = P (C ∩D)/P (D). Now, let U denote a real-
valued random variable and B an event. We try to build a random variable
ω �→ π(U(ω);B), a Borelian function of U , so called conditional probability of
B knowing U , and such that, for all A ∈ B(R) with P (U ∈ A) > 0, we have:

P (B | U ∈ A) =
∫

Ω

π(U ;B)dP (. | U ∈ A).

For any A ∈ B(R), we write QB(A) = P (B ∩ U−1(A)). Let us note
that if P (U) is the law of U defined by P (U)(A) = P (U−1(A)), then
P (U)(A) = 0 implies QB(A) = 0 and thus, according to the Lebesgue-Radon-
Nikodym theorem, we can find a Borelian function fB such that ∀A ∈ B(R),

QB(A) =
∫

R

1IAfBdP (U), i.e.

P (B ∩ U−1(A)) =
∫

R

1IAfBdP (U) =
∫

Ω

1IU∈AfB ◦ UdP

and thus
P (B | U ∈ A) =

∫

Ω

fB ◦ UdP (. | U ∈ A)

and we set π(U ;B) = fB ◦ U . From this point, Kolmogorov will recover
all classical properties of conditional probabilities. He nicely illustrates the
strength of his formalism by explaining the paradox of Borel related to the
random drawing of a point on a sphere: the interested reader can refer to e.g.
[Bil95], p. 462 and [SV06].

3.2.3 The 0-1 law (or the all or nothing law)

As mentioned previously, in 1933, measure theory isn’t yet very commonly
accepted, in any case not in its abstract form, and when Fréchet will discover
the monograph of the Russian mathematician, he will be disconcerted by the
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very abstract form taken by certain arguments, like that of the law known as
the 0-1 law which Kolmogorov placed in the appendix of his work. This law
was stated independently, in particular by Lévy in 1934 (when he didn’t yet
know the Grundbegriffe), and it is interesting to compare the two approaches of
this result, which we will do by way of illustration of the strongly synthesizing
character of the axiomatic proposed by Kolmogorov. For an easy reading, we
will use today’s vocabulary and notations, keeping only the spirit of the two
proofs.

Theorem 1. Let (Xn)n≥1 denote a sequence of independent real-valued ran-
dom variables.

We introduce Gn = σ(Xn, Xn+1, . . . ) (the σ-algebra generated 5 by Xn,

Xn+1, . . . ), and G =
⋂

n≥1

Gn (the “tail σ-algebra”).

Then, any element of G is of probability 0 or 1.

Kolmogorov’s proof: It is the most common proof taught today. Let A an
element of G. Let us suppose that P (A) > 0 and note PA the conditional
probability knowing A. According to the independence hypothesis made on
the Xk’s, for all B ∈ Fn = σ(X1, X2, . . . , Xn), B is independent from the
elements of Gn+1 and thus from A, and we have:

PA(B) =
P (A ∩B)
P (A)

= P (B).

Therefore, the probabilities PA and P coincide on all Fn’s, and hence on
Boole’s algebra

⋃

n≥1

Fn and thus, according to the monotone class theorem,

on the σ-algebra thus generated, i.e. F = σ(X1, X2, . . . , Xn, . . . ). Since in
particular A ∈ F , we have PA(A) = P (A), i.e. P (A) = 1. �
Lévy’s proof: In fact, Lévy contents himself to prove the result when variables
Xn follow a uniform law on [0,1]. In this case, the obtention of a realization
of the sequence (Xn)n≥1 can be conceived as the one of a point in a cube of
size 1 with an infinity of dimensions, the law of probability being given by
Lebesgue’s measure. Lévy’s argument is then based on an observation which
he affirms being obvious and which is equivalent in fact to a monotone class
result: he points out (we employ the modern formalism) that for any event A
of the σ-algebra F = σ(X1, X2, . . . , Xn, . . . ) (which may therefore be written
as follows [(X1, X2, . . . , Xn, . . . ) ∈ B], where B is a measurable set of R

N),
and for all ε > 0, we can find n > 0 and Dn ∈ Fn = σ(X1, X2, . . . , Xn)
such that6 P (DnΔA) < ε. In fact, his explanation is to say that measurable
sets inside the infinitely dimensional cube are obtained by “M. Lebesgue’s
constructions” from the “intervals” of the cube, which are the sets of the

5 i.e. the smallest σ-algebra which allows all of them to be measurable
6 Δ indicates the symmetric difference: DnΔA = (Dn ∪ A) \ (Dn ∩ A)
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type ]a0, b0[×]a1, b1[× · · ·×]an, bn[×[0, 1] × [0, 1] . . . , in the same way as the
Borel sets of R are built from the real-valued open intervals; and we know
that for any element A ∈ B([0, 1]), there exists a finite collection of intervals
]α0, β0[, . . . , ]αm, βm[ such that λ(AΔ∪mk=0]αk, βk[) < ε (where λ is Lebesgue’s
measure on R).

Let now E an element of G. Let us note that the independence of the
(Xn)n≥1’s allows us to write that ∀n, P (E | Fn) = P (E). LetN andDN ∈ FN
such that P (EΔDN ) < ε (and so, in particular, P (DN ) > P (E) − ε). Then,
we have:

ε > P (DN ∩ Ec) = P (DN )P (Ec | DN ).

However, P (Ec | FN ) = 1 − P (E | FN ) = 1 − P (E) = P (Ec), thus P (Ec |
DN) = P (Ec), hence

ε > P (DN )P (Ec) > (P (E) − ε)(1− P (E)) > P (E)(1 − P (E))− ε

and so P (E)(1 − P (E)) < 2ε. This is true for all ε > 0, thus P (E)(1 −
P (E)) = 0. �

3.3 Limit theorems and series
of independent random variables

The direction in which Kolmogorov will develop his first works in Probability,
undoubtedly guided by his elder Khinchin7, may be found to be in continuity
with the former studies which had specified the conditions of validity of the
limit theorems (in particular the law of large numbers) for sums of random
variables throughout the nineteenth century. The first paper, which goes back
to 1925 [KK25] and which is the only article jointly written by Kolmogorov
and Khinchin, is remarkable in the way that it introduces a number of tech-
niques which will be at the base of some later developments of the theory of
probability, in particular in the study of the results of convergence for mar-
tingales. This first work relates to the convergence of series of independent
random variables. The main result is stated as follows (in modern terms):

Theorem 2. Let (Xn)n≥1 a sequence of centered (i.e. of 0 expectation) inde-
pendent real-valued random variables. Let us suppose that

∑

n≥1

E(X2
n) < +∞.

Then
∑

n

Xn converges almost surely (a.s.), i.e. with probability 1.

The proof suggested by Kolmogorov is based on a famous inequality which is
named after him today:

7 One also spells: Khintchine
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Lemma 1 (Kolmogorov’s inequality). Let Sn = X1 + · · ·+Xn. Then

P ( max
1≤k≤n

| Sk |≥ ε) ≤
E(S2

n)
ε2

· (3.1)

Proof. We write

{ max
1≤k≤n

| Sk |≥ ε} =
n⋃

p=1

Ap

where
Ap = {| S1 |< ε, | S2 |< ε, . . . , | Sp−1 |< ε, | Sp |≥ ε}.

Note that the Ap’s form a partition of the entire probability space and that
for all 1 ≤ p ≤ n, Sn − Sp is independent from Sp1IAp and has 0 expectation.
Therefore, for 1 ≤ p ≤ n,

E(S2
n1IAp) = E((Sn − Sp)21IAp) + E(S2

p1IAp) ≥ ε2P (Ap)

and summing with respect to p, E(S2
n) ≥ ε2P ( max

1≤k≤n
| Sk |≥ ε). �

It is only a few years later, in a note for the Comptes Rendus de l’Académie
des Sciences (CRAS) of Paris in 1930 [Kol30], that Kolmogorov will obtain
from the previous result his most famous consequence, that is to say this
nowadays classical version of the strong law of large numbers:

Corollary 1. Let us suppose that the variables Xn are independent and cen-

tered. We write E(X2
n) = bn and we suppose that

∞∑

n=1

bn
n2

< +∞. Then

σn =
Sn
n
→ 0, a.s.

Proof. First of all, let us note that for all fixed N > 0,

lim n | σn |= lim n
| Sn − S2N |

n
,

where lim n indicates the superior limit for n→ +∞. Moreover, it is obvious
that:

{lim n |
Sn − S2N

n
|> ε} ⊂ ∪n≥2N {| Sn − S2N

n
|> ε}

⊂ ∪m≥N{ max
2m≤k≤2m+1

| Sk − S2N

k
|> ε}

⊂ ∪m≥N{ max
2m≤k≤2m+1

| Sk − S2N

2m
|> ε}.
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Therefore, for all ε > 0 and all N > 0:

P
(
lim n | σn |> ε

)
= P

(
lim n

| Sn − S2N |
n

> ε

)

≤
∞∑

m=N

P

(
max

2m≤k≤2m+1
| Sk − S2N |> ε2m

)
≤ 1
ε2

∞∑

m=N

1
22m

2m+1∑

k=2N +1

bk

=
1
ε2

∞∑

i=N

⎛

⎝
∑

m≥i

1
22m

⎞

⎠
2i+1∑

k=2i+1

bk ≤
16
3

1
ε2

∑

n≥2N

bn
n2
·

By hypothesis, the last term can be made as small as we like, and so
lim nσn = 0 a.s. �

Remark 1. The independence of the Xn variables occurs twice in this proof:
first when we apply Kolmogorov’s inequality, and secondly when we write

E
(
(S2m+1 − S2N )2

)
=

2m+1∑

k=2N +1

bk

(using the additivity of the variance for non-correlated variables).

As mentioned above, the result of Lemma 1 and its proof can directly be
applied to the case of discrete martingales8:

Corollary 2. Let (Mn)n≥1 denote a square integrable martingale such that
E(Mn) = 0. Then

P ( max
1≤k≤n

|Mk |≥ ε) ≤
E(M2

n)
ε2

· (3.2)

It is easily proven that (3.2) may be strengthened a little, in the form of the
important Doob inequality: if (Mn)n≥1 is a square integrable martingale such
that E(Mn) = 0, we have

E[ max
1≤k≤n

(Mk)2] ≤ 4E[M2
n].

As we know, the theory of martingales has, after Doob’s works, invaded the
scene of contemporary probability theory. In order to illustrate the strength
of the inequality (3.2) and the notion of martingale, let us prove the following
result and its corollary.
8 Let us recall that a discrete martingale is a sequence (Mn)n≥1 of integrable ran-

dom variables such as, for all n, the expectation of Mn+1, knowing all the previous

values, is equal to the last one: E

(
Mn+1

∣∣∣M1, . . . , Mn

)
= Mn. (The martingale

is called square integrable, or etc. if each Mn satisfies this property.)
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Proposition 1. Let (Mn) be a L2 martingale (i.e. a square integrable mar-
tingale) such that supnE(M2

n) < +∞. Then Mn converges, at the same time
in L2 and a.s., towards a random variable M.

Proof. It is easy to show the convergence in L2 by proving that (Mn)n≥1 is
a Cauchy sequence in L2. The interested reader can refer to any elementary
course on martingales. Let us now deduce the a.s. convergence.

Let ε > 0. For each p > 0, let us write Vp = supn≥p | Mn −Mp |. As
(Mn −Mp)n≥p is a square integrable martingale, we have according to (3.2)
for all N

P ( max
p≤k≤N

|Mk −Mp |≥ ε) ≤
E((MN −Mp)2)

ε2
· (3.3)

As mentioned above, (Mk)k≥0 is a Cauchy sequence in L2 and so, for each
given m > 0, we can choose pm such that ∀N ≥ pm, E((MN −Mpm)2) ≤
ε2/2m. Therefore, passing to the limit in (3.3) when N → +∞: P (Vpm ≥ ε) ≤
1/2m. According to the Borel-Cantelli Lemma, a.s. there exists m > 0 such
that Vpm < ε i.e. ∀n ≥ pm, | Mn −Mpm |< ε, which is equivalent to saying
that a.s. (Mn) is a Cauchy sequence in R. �

Corollary 3. Let (Zn)n≥1 a sequence of independent random variables with
the same Bernoulli law P (Z = 1) = P (Z = −1) = 1

2 . We consider the
random walk on Z: S0 = 0, Sn = Z1 + · · · + Zn. Let a > 0 an integer and
τ = inf{n ≥ 0, Sn = a} the first passage time of a. Then the Laplace transform
of the law of τ is given for all θ ≥ 0 by

E[(cosh θ)−τ ] = e−θa.

Proof. We only indicate the broad outline of the proof, leaving the details to

the interested reader (see e.g. [BMP01]). Let Xθ
n =

eθSn

(cosh θ)n
. We verify that

it is a martingale and that9 (Xθ
n∧τ )n≥1 is a L2 martingale, which converges

a.s. and in L2 towards the variable W θ = eθa

(cosh θ)τ 1Iτ<+∞. Passing to the limit
as θ → 0, which is made possible by dominated convergence, we obtain that
P (τ < +∞) = 1, and thus the desired result. �

In 1924, Khinchin [Khi24] had proven a result which brought a radical
precision to the law of large numbers, the law of the iterated logarithm. The
generalization of Khinchin’s result by Kolmogorov in 1929 ([Kol29]) was one
of his greatest achievements.

Theorem 3. Let (Xn)n≥1 a sequence of independent real-valued random vari-
ables. Let us suppose that for all n, E(Xn) = 0 and bn = E(X2

n) < +∞. We

9 n ∧ τ means min{n, τ}, the smallest number of n and τ
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let Bn =
n∑

k=1

bk (that is Bn = E(S2
n)). If Bn → +∞ and | Xn |≤ Mn =

o(
√

Bn
ln lnBn

), we have a.s.

lim
Sn√

2Bn ln lnBn
= 1.

Today, Kolmogorov’s proof still remains very much up to date, as it introduces
techniques, in particular of large deviations, which became fundamental in the
study of many limiting phenomena in probability theory. We will only show
the less technical part of the result, leaving the reader consult one of the
innumerable texts which present the complete proof (e.g.[Bil95]).

Let us note, for ε > 0, φε(n) = (1 + ε)
√

2Bn ln lnBn; we shall prove that
P (Sn ≥ φε(n), infinitely often) = 0. According to Borel-Cantelli’s Lemma, it
suffices to prove that for a well-chosen subsequence nk ↑ +∞, we have

∞∑

k=1

P (max
n≤nk

Sn ≥ φε(nk−1)) <∞. (3.4)

As mentioned above, we will obtain the result thanks to the following lemma
which gives some large deviations estimates for the sequence (Sn).

Lemma 2. Let x ≥ 0.

(i) If x ≤ Bn/Mn then P (Sn > x) < e−( x2
2Bn

)(1− xMn
2Bn

)

(ii) If x ≥ Bn/Mn, then P (Sn > x) < e−
x

4Mn

(iii) P ( max
1≤k≤n

Sk ≥ x) ≤ 2P (Sn > x−
√

2Bn).

Proof.
Let us fix n and in order to simplify the writing, this index n will be

omitted in the next lines.
Let a > 0 such that aM ≤ 1. Then,

E
(
eaXk

)
= 1 +

∑

r≥2

E

(
arXr

k

r!

)
≤ 1 +

a2bk
2

∑

r≥2

2
ar−2M r−2

r!

≤ 1 +
a2bk

2

(
1 +

aM

2

)
< exp

[
a2bk

2

(
1 +

aM

2

)]
,

and thus: E(eaS) =
n∏

k=1

E(eaXk) < exp
[
a2B

2

(
1 +

aM

2

)]
.

As P (S > x) < E(
eaS

eax
) (for all a > 0), we obtain the inequality P (S > x) <

exp[−ax+ a2B
2 (1 + aM

2 )] from which we easily deduce the points (i) and (ii)
by taking successively a = x/B and a = 1/M .
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As for the point (iii), let us note U = max1≤k≤n Sk, and that (U ≥ x)
is the union of the events Ek = (S1 < U, . . . , Sk−1 < U, Sk = U ≥ x) for
1 ≤ k ≤ n.

Thus, we have

P (S > x −
√

2B) ≥
n∑

k=1

P (Ek ∩ (S > x −
√

2B)) ≥
n∑

k=1

P (Ek ∩ (S > U −
√

2B))

=

n∑

k=1

P (Ek)P (S > U −
√

2B | Ek) =

n∑

k=1

P (Ek)P (S − Sk > −
√

2B | Ek).

But S − Sk is independent of Ek, and therefore this last expression is also

=
n∑

k=1

P (Ek)P

(
n∑

i=k+1

Xi > −
√

2B

)
≥

n∑

k=1

P (Ek)P

⎛

⎝
(

n∑

i=k+1

Xi

)2

< 2B

⎞

⎠ .

Now,

1− P
(

(
n∑

i=k+1

Xi)2 < 2B

)
= P

(
(

n∑

i=k+1

Xi)2 ≥ 2B

)
≤ 1

2B

n∑

i=k+1

bi ≤
1
2
,

and hence

P (S > x−
√

2B) ≥ 1
2

n∑

k=1

P (Ek) =
1
2
P (U ≥ x). �

From Lemma 2, we deduce (3.4) for some well-chosen subsequence (nk).
Indeed, let us choose these integers such as for all k, Bnk−1 ≤ (1+ τ)k ≤ Bnk

.
From Lemma 2 (i)-(ii), we obtain, by using the hypotheses, for all μ > 0, and
k large enough (such that Mnk

< μ
1+ε

√
2Bnk

/ ln lnBnk
):

P (Snk
> φε(nk)) < [k ln(1 + τ)]−(1+ε)2(1−μ).

Then, choosing μ such that (1 + ε)2(1 − μ) > 1, we have
∑∞

k=1 P (Snk
>

φε(nk)) <∞. Thus, we conclude by applying Lemma 2 (iii) and the fact that√
2Bnk

φε(nk) → 0. �

3.4 Processes in continuous time

In the beginning of the years 1930, a great number of probabilistic works of the
Soviet school are related to the study of the stochastic processes in continuous
time, meeting thus in particular the needs in physics or aiming at describing
some “social phenomenons”. The axiomatization due to Kolmogorov, which
we commented on above, brought an essential element to the establishment of
this theory. The theorem of construction of probability measures on a space
of infinite dimension shows that the law of a stochastic process in continuous
time is given in a unique way starting from the family of the finite-dimensional
marginal laws of the process in question.
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3.4.1 Chapman-Kolmogorov’s equation

The first family of processes to which Kolmogorov, as a good heir to the
Russian school of probability, turns naturally to, is that of the Markov pro-
cesses, i.e. those which satisfy the property (known as the Markov property)
of independence of the future with respect to the past conditionally to the
knowledge of the present. The article Über die analytischen Methoden in der
Wahrscheinlichkeitsrechnung [Kol31] sets definitely the analytical bases of the
theory of Markov processes.

In this fundamental article published in 1931, the entire study of the pro-
cess is focused around the function:

P (s, x, t, A)

which represents the probability such that at time t the random phenomenon
is in one of the states of the set A, if it is in the state x at time s, prior to t
(0 ≤ s < t). As the necessary measurability assumptions are supposed to be
satisfied, this function must verify the integral equation

P (s, x, t, A) =
∫

E

P (s, x, u, dy)P (u, y, t, A) , for all u ∈]s, t[ , (3.5)

where E stands for the set of all the possible states of the process. Equation
(3.5), commonly called today Chapman-Kolmogorov’s equation (Chapman
had indeed noted it in a report [Cha28] on Brownian Motion in 1928), is
the analytic translation of Markov’s property and the measures P (s, x, t, dy)
represent the transition probabilities of the process: if we denote by (Xt)t≥0

this process, then, for all measurable A (for the measure dy):

P (s, x, t, A) = P (Xt ∈ A |Xs = x) .

However, as Kolmogorov’s article is purely analytical, as we can easily see from
its title, it doesn’t mention any pathwise realizations of the random process.

Equation (3.5) can’t be entirely solved in an explicit way in the too global
framework in which it is posed. Thus, Kolmogorov seeks conditions of regular-
ity on the probabilities P (s, x, t, dy) which would make it possible to obtain
a more accessible form. Eager to use the new techniques of analysis related
to Lebesgue’s integral, he naturally focuses on the case where P (s, x, t, dy) is
absolutely continuous, with density f(s, x, t, y) ≥ 0, according to Lebesgue’s
measure.

Equation (3.5), which is satisfied by the transition probabilities
P (s, x, t, dy), translates for their densities as:

∫ ∞

−∞
f(s, x, t, z) dz = 1

∫ ∞

−∞
f(s, x, u, z)f(u, z, t, y) dz = f(s, x, t, y) ,
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for all u ∈]s, t[ and all y ∈ R. Therefore, to obtain local conditions starting
from (3.5), the natural idea is to realize a Taylor development of f , which
needs regularity conditions on f and assumptions on the moments.

Kolmogorov asks that for all s, t, y, f(s, x, t, y) admits third order deriva-
tives on x and on y which are uniformly bounded on s and t, on any set of
the type {s, t : s − t > k}, k > 0. Besides, under the following assumptions
for the moments:

for all t ≥ 0, lim
Δ→0

∫ ∞

−∞
|y − x|i f(t, x, t+Δ, y) dy = 0 , i = 1, 2, 3, (3.6)

lim
Δ→0

∫∞
−∞ |y − x|3 f(t, x, t+Δ, y) dy

∫∞
−∞ |y − x|2 f(t, x, t+Δ, y) dy

= 0 , (3.7)

he shows the existence of the limits

A(s, x) = lim
Δ↓0

1
Δ

∫ ∞

−∞
(y − x)f(s, x, s+Δ, y) dy , (3.8)

B2(s, x) = lim
Δ↓0

1
Δ

∫ ∞

−∞
(y − x)2f(s, x, s+Δ, y) dy , (3.9)

which he calls respectively the infinitesimal mean and the infinitesimal vari-
ance of the process and which will be known in the future, in the diffusions
case, as the drift coefficient and diffusion coefficient. Thus, from the (3.5), the
existence of the limits (3.8) and (3.9) and under the differentiability assump-
tion of f mentioned previously, Kolmogorov obtains the two following partial
differential equations:

∂

∂s
f(s, x, t, y) = −A(s, x)

∂

∂x
f(s, x, t, y)−B2(s, x)

∂2

∂x2
f(s, x, t, y) , (3.10)

∂

∂t
f(s, x, t, y) = − ∂

∂y
[A(t, y)f(s, x, t, y)] +

∂2

∂y2
[B2(t, y)f(s, x, t, y)] . (3.11)

The importance of these equations is such that one can consider them as being
at the origin of the modern theory of stochastic processes. Let us give e.g. the
main arguments of the proof of the first equation, which the author calls first
fundamental differential equation and which is now known as the backward
equation (the second being the forward equation).

Proof of equation (3.10). If we apply Taylor-Lagrange’s formula to the 3rd

order in the variable z on the function f(s + Δ, z, t, y) and at the points x
and z, we obtain for s < s+Δ < t,

f(s, x, t, y) =
∫ ∞

−∞
f(s, x, s+Δ, z)f(s+Δ, z, t, y) dz

=
∫ ∞

−∞
f(s, x, s+Δ, z)[f(s+Δ,x, t, y)
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+
∂

∂x
f(s+Δ,x, t, y)(z − x) +

∂2

∂x2
f(s+Δ,x, t, y)

(z − x)2
2

+
∂3

∂x3
f(s+Δ,α, t, y)

(z − x)3
6

] dz ,

with α = x+ c(z − x), in the case where c is such that 0 < c < 1. Thus, if we
apply the notations

a(s, x,Δ) =
∫ ∞

−∞
(y − x)f(s, x, s+Δ, y) dy ,

b2(s, x,Δ) =
∫ ∞

−∞
(y − x)2f(s, x, s+Δ, y) dy ,

c(s, x,Δ) =
∫ ∞

−∞
|y − x|3f(s, x, s+Δ, y) dy ,

we can write, under the boundedness assumption on the third order derivative,
that for a value C independent from Δ and for θ such that |θ| < C,

f(s, x, t, y) = f(s+Δ,x, t, y) +
∂

∂x
f(s+Δ,x, t, y)a(s, x,Δ)

+
∂2

∂x2
f(s+Δ,x, t, y)

b2(s, x,Δ)
2

+ θ
c(s, x,Δ)

6
,

which brings us immediately to the finite difference formula

f(s + Δ, x, t, y) − f(s, x, t, y)

Δ
= − ∂

∂x
f(s + Δ, x, t, y)

a(s,x, Δ)

Δ

− ∂2

∂x2
f(s + Δ, x, t, y)

b2(s, x, Δ)

2Δ
− θ

c(s, x,Δ)

6Δ
.

To conclude, let us note that under the above assumptions, the ratio
c(s, x,Δ)/Δ tends towards 0 when Δ tends towards 0. �

As we already pointed out, the study of “ random movements” whose
law is governed by the (3.5) had already been outlined by Chapman in
1928 ([Cha28]) in a context of theoretical physics. The name of “Chapman-
Kolmogorov” equation should not let one believe however that it was the only
occasion, before the article of 1931, when this equation appeared. Kolmogorov
himself, in this article, mentions a particular case studied by Louis Bachelier
in 1900 ([Bac00]). He underlines, in a section that he devotes to the work
of Bachelier, that the equation (3.11) had been written in his work of 1900
without however having been proven, in the case where the process is homo-
geneous in space, i.e. when the densities f(s, x, t, y) only depend on s, t and
on the difference y − x. The equation appears also in the works of Marian
Smoluchovski about the Brownian motion during the years 1910.

Some continuations of the article Über die analytischen Methoden in der
Wahrscheinlichkeitsrechnung [Kol31] appeared shortly after its publication on
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behalf of other probabilists like Bernstein, to whom Kolmogorov’s equations
inspired his theory of the stochastic differential equations in 1932. However,
this theory is based on the discrete model and only allows to obtain weak so-
lutions in the continuous case. Another important work was that of Wolfgang
Doeblin, carried out in 1940. Doeblin sent it whilst at war (where he died) to
the Académie des Sciences de Paris, in a sealed envelope which wasn’t opened
until 2000 ([Doe40])10. In this manuscript, Doeblin, very much ahead of his
time, considers the pathwise aspects of the stochastic processes. More exactly,
he establishes links between the strictly analytical point of view of Kolmogorov
and that of Lévy who concentrates primarily on the paths construction and
the fine properties of the processes, and especially of the Brownian motion, by
purely probabilistic methods which often left his contemporaries perplexed.
Doeblin builds equations very close to Itô’s stochastic differential equations
established some ten or fifteen years later and whose solutions are Brownian
motions with a modified temporal variable: if the law of (Xt) satisfies the
(3.5), then

Xt = x+ βH(t) +
∫ t

0

A(s,Xs) ds ,

where β is a real-valued Brownian motion and H the time change

H(t) =
∫ t

0

B2(s,Xs) ds.

This pathwise vision of processes offers then quite more than the analytical
forward and backward (3.10) and (3.11). It allows Doeblin to establish results
on the regularity of trajectories, the comparison of solutions, the properties
of iterated logarithm, the functional central limit theorems and especially a
preliminary version of the formula of change of variable that Itô will obtain
a few years later ([Itô44]) and which will inaugurate the era of stochastic
calculus itself.

To establish his formula, Doeblin considers a function ϕ(t, x) of class C1,2

(i.e. of class C1 with respect to t and C2 with respect to x) and increasing
with respect to x, which ensures quite easily that the law of the process
Yt = ϕ(t,Xt) is a solution of Kolmogorov’s equation as soon as the law of
(Xt) is also a solution. Thus, he proves that (Yt) satisfies

Yt = ϕ(0, x) + γH(t) +
∫ t

0

A(s,Xs) ds ,

where γ is a real-valued Brownian motion and

Ht =
∫ t

0

B
2
(s,Xs) ds , B(s, x) =

(
∂

∂x
ϕ(s, x)

)
B(s, x)

A(s, x) =
∂ϕ(s, x)
∂x

A(s, x) +
∂

∂s
ϕ(s, x) +

1
2

(
∂2

∂x2
ϕ(s, x)

)
B2(s, x) .

10 The readers who may be less interested in the technical aspects can content
themselves by reading the article [BY03]
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It was necessary to await the construction of Itô’s stochastic integral dur-
ing and after the second world war to see the solutions of the (3.10) and (3.11)
under a new aspect. These new equations are satisfied11 by the process itself
and no longer only by its transition probabilities. If β stands for a real-valued
Brownian motion and if A(t, x) and B(t, x) are the functions defined as pre-
sented at the beginning of this section, then the transition probabilities of the
process X solution of the stochastic differential equation

dXt = A(t,Xt) dt+B(t,Xt) dβt , (3.12)

satisfy the (3.5), (3.10) and (3.11). An essential tool for the obtention of this
result was Itô’s formula mentioned above. In its most common current form,
this fundamental formula is stated as follows: if ϕ(t, x) is a function of class
C1,2 then

dϕ(t, Xt) =B(t,Xt)
∂

∂x
ϕ(t, Xt) dβt

+

(
∂

∂t
ϕ(t,Xt) + A(t,Xt)

∂

∂x
ϕ(t, Xt) +

1

2
B2(t,Xt)

∂2

∂x2
ϕ(t, Xt)

)
dt ,

(3.13)

where X solves the stochastic differential equation (3.12). These are the bases
of the stochastic calculus which was going to encounter several developments
during all the second half of the twentieth century.

From the years 1950 onwards, Doob’s martingale theory [Doo90], devel-
oped afterwards by P.A. Meyer and his school in Strasbourg, was going to
make it possible to weaken the conditions imposed until then on the func-
tions A(t, x) and B(t, x) to ensure the construction of stochastic processes.
An essential remark in this direction was the observation that under natu-
ral assumptions of local boundedness and lipschitzianity, the (3.12) admits
a single solution in law, in the sense that if β′ is another Brownian motion
(eventually defined on another probability space), a solution X ′ of:

dX ′
t = A(t,X ′

t) dt+B(t,X ′
t) dβ

′
t

follows the same law as X . This made it possible in the years 1970 to define
the concept of weak solution for the (3.12) which isn’t related to the specific
choice of a particular Brownian motion any longer. A famous theorem of Ya-
mada and Watanabe [YW71] asserts that pathwise uniqueness (the one which
corresponds to an equation directed by a fixed Brownian motion) implies the
unicity in law of the weak solutions. A powerful formulation was proposed by
Stroock and Varadhan [SV79] in terms of martingale problems. The associated

11 In the very particular way of stochastic differential equations which necessitate
the concept of Itô’s stochastic integral
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generator to the Markovian process (Xt) solution of (3.12) is the operator L
on C1,2 defined by:

Lf(t, x) =
1
2
B2(t, x)

∂2

∂x2
f(t, x) +A(t, x)

∂

∂x
f(t, x) +

∂

∂t
f(t, x).

Itô’s formula allows to express this definition by saying that for all f ∈ C1,2,

(Mt) =
(
f(t,Xt)−

∫ t

0

Lf(s,Xs)ds
)

t≥0

(3.14)

is a local martingale12.
Then, it becomes natural to define a solution for (3.12) as follows. Let

C = C(R+,R) the set of continuous functions from R
+ to R. We define the

canonical projections on C by Xt(ω) = ω(t) for ω ∈ C and the canonical
filtration by Ct = σ(Xs, s ≤ t), t ≥ 0. Thus, a solution of (3.12) is a probability
P on (C, (Ct)) such that under P the processes defined by (3.14) are local
martingales.

The most interesting aspect of the work of Stroock and Varadhan is that
under very weak conditions (approximately, the continuity of the functions A
and B), they showed that the preceding martingales problem admits a solu-
tion P . Under this probability, the canonical process satisfies the Markovian
properties which were at the origin of Kolmogorov’s studies. The reader in-
terested by these subjects can consult with interest the important treatise of
Jacod [Jac79].

3.4.2 Processes with independent and stationary increments

Among the processes whose laws verify Chapman-Kolmogorov’s equation
(3.5), there is a very important family that Lévy started to study at the be-
ginning of the years 1930: those where functions f(s, x, t, y) are homogeneous
in time and space, i.e. depend only on the differences t− s and y−x. In other
terms, we are talking about the processes with independent and stationary in-
crements for which Kolmogorov attempts to characterize the law in an article
edited in two parts in 1932: Sulla forma generale di un processo stocastico
omogeneo [Kol32a] and Ancora sulla forma generale di un processo omogeneo
[Kol32b]. He simply considers a “random time function” X(λ), where λ ≥ 0
represents the time variable, such that for all λ1 and λ2, (λ2 ≥ λ1) the dif-
ference X(λ2) − X(λ1) is independent from (X(λ), λ ≤ λ1) and the law of
which only depends on λ2 − λ1, i.e. if we note Δ = λ2 − λ1,

ΦΔ(x) = P (X(λ2)−X(λ1) < x) = P (X(λ2 − λ1) < x) , for all x ∈ R.

12 I.e. there exists a sequence of a.s. finite stopping times (Tn), increasing towards
+∞, such that for all n, the process (Mt∧Tn) is a martingale
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Then, he discovers that the relation

ΦΔ1+Δ2(x) =
∫ ∞

−∞
ΦΔ1(x − y) dΦΔ2(y) ,

is a particular case of the (3.5). Nevertheless, we can notice that at that time,
these processes aren’t related to Markov processes, which are the subject of
the study mentioned above. In fact, this formalization will only appear in the
years 1950.

The aim of the article of 1932 is, according to Kolmogorov himself, to
generalize some results given by Bruno de Finetti [Fin30] in the case where
the laws given by the repartition functions ΦΔ admit second order moments,∫
x2 dΦΔ(x) <∞. We will use the following notations:

mΔ =
∫
xdΦΔ(x) , and σ2

Δ =
∫

(x−mΔ)2 dΦΔ(x) .

Thus Kolmogorov obtains a particular case of the famous Lévy-Khinchin’s
formula: if ψΔ(t) =

∫
eitx dΦΔ(x) then ψΔ(t) = [ψ1(t)]Δ and

logψ1(t) = itm1 −
σ2

0

2
t2 +

∫ ∞

−∞

(
eitx − 1− itx

1 + x2

)
1 + x2

x2
G(dx) , (3.15)

where G is a finite measure such that G({0}) = 0 and where m1 ∈ R, σ2
0 ≥ 0.

This formula is commonly attributed to Lévy and Khinchin who obtained its
final version in 1934 ([Lév34]) and 1937 ([Khi37]), although, as we have seen,
de Finetti and Kolmogorov had already established it in particular cases. More
precisely, the result given by Kolmogorov is the following.

Theorem 4. When the law given by the repartition function ΦΔ has a second
order moment, we have

logψ1(t) = itm1 −
σ2

0

2
t2 +

∫ ∞

−∞
π(x, t) dF (x) , (3.16)

where m1 ∈ R, σ2
0 ≥ 0, π(x, t) = (eitx − 1 − itx)/x2 and where the measure

dF (x) is defined by an increasing and bounded function F .

The previous formulae only concern unidimensional laws of the random func-
tion (X(λ)); consequently, it would be better to talk about the characteriza-
tion of indefinitely divisible laws13 rather than of a result on processes with
independent and stationary increments. Nevertheless, let us note that at that
time, this terminology didn’t exist.

13 A law of probability P is said to be indefinitely divisible if, for all n, it is the n-th
convolution power of a law μn. That amounts to saying that P is the law of the
sum of n real-valued independent random variables with the same law μn
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Kolmogorov’s proof: First of all, we verify that ψΔ is continuous with respect
to Δ. Indeed, for Δ ≤ 1/n, we have σ2

Δ = σ2
1/n − σ2

1/n−Δ ≤ σ2
1/n = (1/n)σ2

1 ,
and so σ2

Δ → 0 when Δ → 0. Consequently, ψΔ(t) → 1 when Δ → 0. We
conclude thanks to the equality ψΔ1+Δ2(t) = ψΔ1(t)ψΔ2(t). The continuity
of ψΔ in Δ allows to show that the equality

ψΔ(t) = [ψ1(t)]Δ ,

which is true for all rationals Δ, is also verified for all reals Δ. The author
deduces then (using de Finetti’s proof) that

logψ1(t) = lim
Δ↓0

1
Δ

[ψΔ(t)− 1] .

Moreover, we have

1
Δ

[ψΔ(t)− 1] = itm1 +
1
Δ

∫ ∞

−∞
(eitx − 1− itx) dΦΔ(x) .

Let us note FΔ(x) = 1
Δ

∫ x
−∞ y2 dΦΔ(y), so that

1
Δ

∫ ∞

−∞
(eitx − 1− itx) dΦΔ(x) =

∫ ∞

−∞
π(x, t) dFΔ(x) .

A classical argument allows to justify that for any sequence Δn decreasing
towards 0, there exists a subsequence Δnk

such that the sequence FΔnk
(x)

converges when k tends towards +∞, towards the function F (x) in all points x
where the latter is continuous. Let us remark that F is an increasing function
such that:

0 = lim
Δ↓0

FΔ(−∞) ≤ F (−∞) ≤ F (∞) ≤ lim
Δ↓0

FΔ(∞) = σ2
1

and taking into account that at fixed t, π(x, t) → 0 when x→ ±∞, we obtain

lim
k→∞

∫ ∞

−∞
π(x, t) dFΔnk

(x) =
∫ ∞

−∞
π(x, t) dF (x) ,

which implies that

logψ1(t) = itm1 +
∫ ∞

−∞
π(x, t) dF (x) .

But as σ2
1 is finite, we have logψ1(t) = itm1 − σ2

1
2 t

2 + o(t2) (t → 0), and
according to the previous computation

logψ1(t) = itm1 −
t2

2
(F (∞)− F (−∞)) + o(t2) (t→ 0).



60 Löıc Chaumont et al.

This implies in particular that F (∞)−F (−∞) = σ2
1 . Finally we deduce from

the above that F (−∞) = 0 and F (∞) = σ2
1 ; thus F is entirely determined.

Now, let us prove that for all increasing (and left continuous) functions F ,
with values between F (−∞) = 0 and F (+∞) = σ2

1 < +∞, the function ψ1

given by logψ1(t) = itm1 +
∫∞
−∞ π(x, t) dF (x) is the characteristic function of

an indefinitely divisible law. For this purpose, let us consider a step function
T with steps:

ωk = T (xk+)− T (xk) ,

for a finite number of reals x1, x2, . . . , xn. We also suppose that T doesn’t
jump at point 0. We note σ2

1 = ω1 +ω2 + · · ·+ωn the sum of these jumps. Let
us also note logψ1(t) = itm1+

∫∞
−∞ π(x, t) dT (x), η = m1−

∑
k pk, pk = ωk/x

2
k

and χk(t) = exp(itxk). Then we can easily verify the identities
∫ ∞

−∞
π(x, t) dT (x) =

∑

k

pk(eitxk − 1− itxk) ,

logψ1(t) = itη +
∑

k

pk(χk(t)− 1) .

Thus, we deduce that

ψΔ(t) = (ψ1(t))
Δ = exp(itηΔ) +

∑
Δpk(χk(t)− 1)) .

Let us note that χk(t) and exp(itηΔ) are characteristic functions and conse-
quently ψΔ(t), as a product of characteristic functions, is a characteristic func-
tion itself. To conclude, let us note that we can find a sequence of step func-
tions Tn such that

∫∞
−∞ π(x, t) dTn(x) converges towards

∫∞
−∞ π(x, t) dF (x)

uniformly on any bounded interval. Thus, the corresponding characteristic
functions ψ

(n)

Δ (t) converge towards ψΔ(t). This implies that ψΔ is a character-
istic function, on one hand, and that this function verifies ψΔ(t) = (ψ1(t))Δ,
on the other hand. �

Kolmogorov completes this description of the law of processes with inde-
pendent increments by observing that if P1(x) =

∫∞
x
y−2 dF (y) et P2(x) =∫ x

−∞ y−2 dF (y) then P1(x) dλ (respectively P2(x) dλ) is the probability such
that the process X(λ) has a positive jump (respectively negative), of height
bigger than (respectively smaller than) or equal to x, during the time incre-
ment dλ. The measures P1 and P2 are respectively the restrictions to R+ and
R− of what will be called afterwards the Lévy measure of the process X(λ).

Following the works of Lévy, a number of authors during the years 1960 to
1980 such as Skorokhod, Zolotarev, Blumenthal, Getoor, Ray, Taylor, Fristedt,
Bingham, Pitman, Jacod,. . . studied the fine properties of the trajectories of
the processes with independent and stationary increments (now called Lévy
processes). Then at the beginning of the years 1990, the synthesis works of
Bertoin [Ber96] and Sato [Sat99] caused, among the probabilistic community,
a renewed interest for the study of Lévy processes. This was again reinforced
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with the discovery of new grounds of applications, like financial mathematics,
where the models using Lévy processes allow to compensate for the defects
of the model known as the Black-Scholes model involving the geometrical
Brownian motion.

3.4.3 Continuity and relative compactness criteria

It is remarkable that Kolmogorov also developed a certain number of tools for
the study of the pathwise properties of random processes. Among those, a very
effective criterion guaranteeing the pathwise continuity of the processes bears
his name. It was found by the Soviet mathematician in 1934 and presented
the same year during the Seminar at the University of Moscow. It was not
the subject however of any of his publications and it was Slutsky who stated
it and provided the first proof published in the Giornale dell’Istituto Italiano
dei Attuari in 1937 [Slu37], allotting its paternity to Kolmogorov. Twenty
years after this, Kolmogorov pointed out again to Chentsov an extension of
this criterion for discontinuous processes which he published in 1956 [Che56]
and which allows to conclude that the process in question does not have these
discontinuities of the second order14.

Theorem 5. If for a family of real-valued random variables (Xt, 0 ≤ t ≤ 1)
there exist three strictly positive constants γ, c and ε such that:

E(|Xt −Xs|γ) ≤ c|t− s|1+ε , (3.4.3.1)

then there exists a modification of X which is a.s. continuous.

Let us recall that a modification of a process X is a process X̃ such that for
all fixed t, X̃t = Xt, a.s. The following proof takes as a starting point the
proof of [RY91], p. 26; see also [DM75], Vol. V, Chap. XXIII, p. 332.

Proof: Let Dm the set of reals on [0,1] of the form 2−mi, where i = 0, 1, . . . , 2m

and D = ∪mDm the set of diadic numbers on [0,1]. Let Δm the set of pairs
(s, t) of D2

m such that |t− s| = 2−m. We note

Yi = sup
(s,t)∈Δi

|Xs −Xt| .

Since for all s, t ∈ Δi, E(|Xs −Xt|γ) ≤ c (2−i)1+ε and #Δi = 2i, we have for
all i,

E(Y γi ) ≤
∑

(s,t)∈Δi

E(|Xs −Xt|γ) ≤ c 2i(2−i)1+ε ≤ c 2−iε .

14 In a nearby order of ideas, let us also underline the contribution of Kolmogorov to
Skorokhod’s topology for the space of right continuous and left limited trajectories
[Kol56]
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Now, let s, t ∈ D, s �= t and m the integer such that 2−m−1 < |t− s| ≤ 2−m;
thus there exist finite sequences sm, sm+1, . . . , sp = s and tm, tm+1, . . . , tk =
t such that for all i = m,m + 1, . . . , p and j = m,m + 1, . . . , k, we have
(si, si+1) ∈ Δi+1, (tj , tj+1) ∈ Δj+1, (sm, tm) ∈ Δm and

Xs −Xt =
p−1∑

i=m

Xsi+1 −Xsi +Xsm −Xtm +
k−1∑

j=m

Xtj+1 −Xtj .

Thus, we deduce the inequalities

|Xs −Xt| ≤ Ym + 2
∞∑

i=m+1

Yi ≤ 2
∞∑

i=m

Yi .

Let α ∈ [0, ε/γ[. Let us define the random variable

Mα = sup{|Xt −Xs|/|t− s|α : s, t ∈ D, s �= t}.

Then, we deduce from the above that:

Mα ≤ sup
m∈N

{2(m+1)α sup
2−m−1<|t−s|≤2m

|Xt −Xs| : s, t ∈ D, s �= t}

≤ sup
m∈N

{2 · 2(m+1)α(
∞∑

i=m

Yi)} ≤ 2α+1
∞∑

i=0

2iαYi .

In the case where γ ≥ 1, this inequality implies that

E(Mγ
α)1/γ ≤ 2α+1

∞∑

i=0

2iαE(Y γi )1/γ ≤ 2α+1
∞∑

i=0

2iα2−iε/γ <∞

and when γ < 1, the same inequality applies to E(Mγ
α). In particular, the

variable Mα is finite and we have, for all s, t ∈ D, |Xt(ω)−Xs(ω)| < K(ω)|t−
s|α, where K(ω) is a constant which does not depend on s and t. Then, we
deduce that X is uniformly continuous on D (and even hölderian of order α).
The process X|D (i.e. X restricted to D) extends then in a unique manner to
a continuous process on [0, 1]:

X̃t(ω) = lim
s→t, s∈D

Xs(ω) , t ∈ [0, 1]

which is naturally also hölderian of order α. Finally, according to the as-
sumption, for all t ∈ [0, 1], lims→tXs = Xt in L1, thus X̃t = Xt, a.s. for all
t ∈ [0, 1]. �

As we can see, we have in fact proven a stronger result: under the previous
assumptions, there exists a modification of X with a.s. hölderian trajectories
of order α for all α ∈ [0, ε/γ[. In particular, the Brownian motion is (a.s.)
locally hölderian of order α for all α < 1/2.
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Theorem 5 admits some extensions such as the one of Chentsov mentioned
previously. There also exists a criterion of the same type for processes with
several indexes (Xt, t ∈ [0, 1]d); then, in this case, we write the assumption
(3.4.3.1) as follows:

E(|Xt −Xs|γ) ≤ c|t− s|d+ε.
The proof of this result is very close to the one we just gave and also applies
to processes with values in general Banach spaces.

In 1970, Garsia, Rodemich and Rumsey suggested another generalization
of this continuity criterion which is based on an entirely deterministic argu-
ment (see [SV79], p. 47 or [DM75], Vol. V, Chap. XXIII, p. 336). Let us briefly
expose their result:

Let f denote a Borelian function defined on a ball B of R
d, satisfying the

integral condition:
∫

B×B
Ψ

(
|f(v)− f(u)|
ϕ(|v − u|)

)
dudv

(def)= A <∞ ,

where Ψ and ϕ are two continuous functions on R+, null in 0, strictly increas-
ing and unbounded, such that the integrals

h(x, t) =
∫ t

0

Ψ−1(x/s2d) dϕ(s)

converge for all x > 0. Then the function f admits a continuous version f̃
(i.e. f(u) = f̃(u), a.e. in the sense of Lebesgue’s measure) which possesses on
the same ball B the modulus of continuity:

|f̃(v)− f̃(u)| ≤ 8h(kdA, 2|v − u|),

where the constant kd only depends on the dimension d.
It was then proven that this result is in fact a particular case of Sobolev’s

embedding theorems. The reader who may be interested in this topic can
refer to [DM75], Vol. V, Chap. XXIII, p. 334. It was possible to apply the
explicit form of this elaborated version of Kolmogorov’s criterion to obtain
fine continuity results for the local times of Lévy processes, and more generally
of semi-martingales, see [Bar85] and [BY81]. One can compare this form of
Kolmogorov’s criterion with the majorizing measures technique of Fernique,
Marcus, Talagrand,. . .

As one can easily imagine, the applications of Theorem 5 are numerous
and diverse. One of the most important is doubtlessly the relative compactness
criterion. Let us recall that a sequence of probability measures is said to be
(weakly) relatively compact if one can extract from any subsequence, a new
subsequence which converges weakly.

According to Prohorov’s theorem, a sequence of probability measures (Pn)
on a separable and complete space is relatively compact if and only if it is tight,
i.e. if for any ε > 0, there exists a compact K such that Pn(K) ≥ 1 − ε, for
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all n. This theorem presents a great interest, in particular when the relevant
probability space is the set of continuous paths on the positive half-line. Then,
let us denote by C the space of continuous functions on the positive half-line
and with values in R

d, which is fitted with the uniform convergence topology
and the Borelian σ-algebra. In order to prove that a sequence of measures (Pn)
on C converges weakly towards a measure P , we know that it suffices to verify
that it is relatively compact and that its finite dimensional marginals converge
towards the corresponding marginals of P . As C is separable and complete,
relative compactness is equivalent to the tension property. In general, the
convergence of the finite dimensional marginals can easily be stated. Relative
compactness is often a problem. A very useful criterion is obtained as a direct
consequence of Kolmogorov’s theorem exposed in Theorem 5. One can refer
to [Bil95] for a proof.

Corollary 4. If a sequence of continuous processes (Xn(t), t ≥ 0)15 satisfies

(i) The sequence of r.v.’s (Xn(0)) is tight,
(ii) There exist three strictly positive constants γ, c and ε such that for any n:

E(|Xn(t)−Xn(s)|γ) ≤ c|t− s|d+ε , (3.4.3.2)

then, the sequence of laws of the processes (Xn) is relatively compact.
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[Khi24] Khinchin, A.Y.: Über einen Satz der Wahrscheinlichkeitrechnung. Fund.

Mat., 6, 9–20 (1924)
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In [Kol31] (1931), Kolmogorov introduced very important partial differential
equations. In the recent past years there was an increasing interest, due to
applications in physics and in particular in statistical mechanics, to consider
Kolmogorov equations in the extended context of infinite-dimensional Hilbert
spaces. The aim of this chapter is to describe the “status of art” in this domain.
We present different methods which have been used to solve these equations, as
well as applications to some relevant stochastic partial differential equations.

4.1 Introduction and setting of the problem

4.1.1 The Kolmogorov setting

In his basic paper “Analytic methods in probability theory” see [Kol31], A. N.
Kolmogorov studied the transition probability P (s, x; t, I) that an event I (a
Borel subset of R) is realized at a time t > s when the state at time s is x,
under the basic assumption that P (s, x; t, I) satisfies the following Chapman-
Kolmogorov equation,

P (s, x; t, I) =
∫

R

P (s, x;u, dy)P (u, y; t, I), 0 ≤ s < u < t. (4.1)

It is known that this identity allows to construct a Markov process (Xt), t ≥ 0
such that

P(Xt ∈ I|Xs = x) = P (s, x; t, I).

In his paper [Kol31] Kolmogorov did not try to construct the process (Xt)
but he derived from (4.1) some important partial differential equations for the
transition probability. Let us briefly recall his argument.
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Assume that the probability P (s, x; t, dy) has a density f(s, x; t, y). Then
assume that the limits

A(s, x) := lim
δ↓0

1
δ

∫ +∞

−∞
(y − x)f(s, x; s+ δ, y)dy,

and

B2(s, x) := lim
δ↓0

1
δ

∫ +∞

−∞
(y − x)2f(s, x; s+ δ, y)dy,

exist. Then, for t > s, and under some regularity conditions, f fulfills the
backward equation,

− ∂

∂s
f(s, x; t, y) = A(s, x)

∂

∂x
f(s, x; t, y) +

1
2
B2(s, x)

∂2

∂x2
f(s, x; t, y), (4.2)

and the forward or Fokker-Planck equation

∂

∂t
f(s, x; t, y) = − ∂

∂y
[A(t, y) f(s, x; t, y)]+

1
2
∂2

∂y2
[B2(t, y)f(s, x; t, y)]. (4.3)

These equations can be easily generalized to a finite dimensional space R
n.

In this way Kolmogorov created a powerful analytic method for studying
probabilistic properties of Markov diffusion processes in R

n.

4.1.2 Infinite-dimensional Kolmogorov equations

We shall concentrate on the infinite-dimensional generalization of the back-
ward Kolmogorov equation (4.2), where however we change the sign of the
time to obtain a more familiar initial value problem. So, we shall be con-
cerned with the following equation,

⎧
⎨

⎩

Dtu(t, x) = K0u(t, x), t > 0, x ∈ H,

u(0, x) = ϕ(x), x ∈ H,
(4.4)

on a separable real Hilbert space H , where K0 is the differential operator

K0ϕ(x) =
1
2

Tr [CD2ϕ(x)]+ 〈Ax+F (x), Dϕ(x)〉, x ∈ D(A)∩D(F ). (4.5)

Here A : D(A) ⊂ H → H is the infinitesimal generator of a strongly continu-
ous semigroup etA in H , C : H → H is a symmetric nonnegative bounded lin-
ear operator in H (possibly the identity operator I), and F : D(F ) ⊂ H → H
is nonlinear. Moreover, ϕ belongs to a suitable functional space, Dt represents
the derivative with respect to t, D the derivative with respect to x and Tr the
trace. The operator K0 is said to be strictly elliptic when C is continuously
invertible, elliptic (degenerate) otherwise.
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Obviously K0 is not the more general second order operator (one could
take A and C dependent on x and t or add a potential term as V (x)u(t, x)).
However, we shall confine to this situation both for the sake of simplicity and
also because the most part of available results concerns this case. If the space
H is finite dimensional, K0 is a usual elliptic operator (possibly degenerate).

Besides the parabolic (4.4) we shall also consider the elliptic equation

λψ −K0ψ = f, (4.6)

where λ > 0 and f are given.
There is a huge literature on Kolmogorov equations in finite dimensional

spaces, which we shall not treat in this paper. Several results are classical
(essentially when A = 0 and F is bounded), but the research is still very
active in this field, see e.g. [BR95], [BKR01], [DL95], [DL04], [Ebe99], [Sta99].

First attempts to build a theory of partial differential equations on Hilbert
spaces were made by P. Lévy, see [Lév51]. A different approach was initiated
by L. Gross [Gro67] and Yu. Daleckij [Dal96] and [DF91], using functional
analysis, Gaussian measures and stochastic differential equations, in the sev-
enties. This approach was extensively developed recently, see the monograph
[DZ02] and references therein.

One of the main motivations for studying (4.4) and (4.6), is that they are
closely related to the following differential stochastic equation (in Xt(x) =
X(t, x)):
⎧
⎨

⎩

dX(t, x) = (AX(t, x) + F (X(t, x))) dt+ C1/2dW (t), t > 0, x ∈ H,

X(0, x) = x, x ∈ H,
(4.7)

where W (t) is a cylindrical Wiener process in H (see (4.12) below). The link
is by the formal identities

u(t, x) = E[ϕ(X(t, x))], t ≥ 0, x ∈ H, (4.8)

and

ψ(x) =
∫ +∞

0

e−λtE[f(X(t, x))]dt, x ∈ H, (4.9)

respectively, where E denotes expectation.
In the applications (4.7) describes the evolution of an infinite-dimensional

dynamical system perturbed by noise (the system being “isolated” when
F = 0). Typical examples are reaction-diffusion, Burgers and Navier-Stokes
equations. A represents often the Laplacian and the nonlinear mapping F
describes the interaction.

4.1.3 Mild solutions

To take advantage of formulas (4.8) and (4.9), we should assume that (4.7) has
a unique solution in some sense, strong, mild or in the sense of the martingales.
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This is the situation taken into account in the first part of this introduction,
where we shall deal with mild solutions. In the second part we shall consider
a method for solving the Kolmogorov equation without using existence and
uniqueness of problem (4.7).

Let us recall that, given x ∈ H , a mild solution of (4.7) is a mean square
continuous stochastic process X(·, x) which is adapted to W (t), such that
X(t, x) ∈ D(F ) for any t ≥ 0, and

X(t, x) = etAx+
∫ t

0

e(t−s)AF (X(s, x))ds+WA(t), t ≥ 0, (4.10)

where WA(t) is the stochastic convolution defined by

WA(t) =
∫ t

0

e(t−s)AC1/2dW (s). (4.11)

Let us precise the definition ofWA(t). First we recall that a cylindrical process
W (t) can be written formally as

W (t) =
∞∑

k=1

βk(t)ek, t ≥ 0, (4.12)

where {ek} is a complete orthonormal basis in H and {βk} is a sequence
of mutually independent standard Brownian motions in a probability space
(Ω,F ,P). We notice that the series in (4.12) is a.s. divergent since E|W (t)|2 =∑∞
k=1 t = +∞ (one can show that it is convergent in a space larger than H ,

see e.g. [DZ92]), however one can show that, under Hypothesis 4.1.1 below,
WA(t) is meaningful. Then, expanding W (t) in terms of the basis {ek} and
using standard properties of the stochastic integral, we obtain the following
identity

E(|WA(t)|2) =
∫ t

0

Tr [esACesA
∗
]ds, t ≥ 0.

So the following assumption is natural (one can show that it is necessary):

Hypothesis 4.1.1
(i) A is the infinitesimal generator of a strongly continuous semigroup etA in

H. There exists M > 0 and ω ∈ R such that ‖etA‖ ≤Meωt, t ≥ 0.
(ii) C : H → H is a symmetric nonnegative bounded linear operator in H, and

the operator Qt defined by

Qtx =
∫ t

0

esACesA
∗
xds, x ∈ H, (4.13)

is of trace class for any t > 0.
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From now on we shall assume that Hypothesis 4.1.1 holds. It is easy to see that

E (〈WA(t), x〉〈WA(t), y〉) = 〈Qtx, y〉, x, y ∈ H, t ≥ 0,

so that WA(t) is a Gaussian random variable with mean 0 and covariance Qt,
and then X(x, t) is a Gaussian random variable with law NetAx,Qt

, that is
with mean etAx and covariance Qt1.

4.1.4 Transition semigroup and strong Feller property

Let us assume now that (4.7) has a unique mild solution X(·, x). Then we
define the transition semigroup (Pt) setting

Ptϕ(x) = E[ϕ(X(t, x))], ϕ ∈ Bb(H), (4.14)

where Bb(H) is the Banach space of all Borel and bounded mappings ϕ : H →
R, endowed with the norm

‖ϕ‖0 = sup
x∈H

|ϕ(x)|, ϕ ∈ Bb(H), t ≥ 0.

The semigroup property

Pt+s = PtPs, t, s ≥ 0,

holds in view of the Markov property of the process X(t, x).
(Pt) is a Markov semigroup, that is a one-parameter semigroup of linear op-

erators on Bb(H) such that Ptϕ ≥ 0 for all ϕ ≥ 0 and Pt1 = 1. Consequently,
(Pt) is a contraction semigroup, that is ‖Ptϕ‖0 ≤ ‖ϕ‖0 for all ϕ ∈ Bb(H).

Assume that the process X(t, x) is mean square continuous in x and that
ϕ ∈ Cb(H), where Cb(H) is the closed subspace of Bb(H) of all uniformly
continuous and bounded functions. It is easy to see that the function u(t, x) =
Ptϕ(x) is continuous in (t, x). In particular, (Pt) is a Feller semigroup, that
is Ptϕ ∈ Cb(H) for all ϕ ∈ Cb(H). A stronger condition on (Pt) is that
Ptϕ ∈ Cb(H) for all t > 0 and all ϕ ∈ Bb(H). In this case (Pt) is called a
strong Feller semigroup. This important property will be discussed later.

Notice that the restriction of (Pt) to Cb(H) is not a strongly continuous
semigroup in general. However, we shall define the infinitesimal generator K
of (Pt) in Cb(H) as follows, see [Cer94]. Consider the Laplace transform of Pt,

G(λ)f(x) :=
∫ +∞

0

e−λtPtf(x)dt, f ∈ Cb(H), λ > 0, x ∈ H.

This definition is meaningful since Ptf(x) is continuous in (t, x) and |Ptf(x)| ≤
‖f‖0. One can check easily that G(λ)f ∈ Cb(H) and the resolvent identity
holds

G(λ)−G(μ) = (μ− λ)G(λ)G(μ), λ, μ > 0.
1 If a ∈ H and C ∈ L(H) is symmetric, nonnegative and of trace class, we shall

denote by Na,C the Gaussian measure in H of mean a and covariance operator
C. We shall set N0,C = NC
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Since

lim
λ→∞

λG(λ)f(x) = lim
λ→∞

∫ +∞

0

e−τP τ
λ
f(x)dτ = f(x), x ∈ H,

G is one-to-one so that it is a resolvent. Consequently, there exists a unique
closed operator K in Cb(H) such that G(λ) = (λ−K)−1 for any λ > 0. K is
called the infinitesimal generator of (Pt). It is clearly m-dissipative2 in Cb(H)
since,

‖(λ−K)−1f‖0 ≤
1
λ
‖f‖0, λ > 0, f ∈ Cb(H)3.

It is an interesting problem (not easy) to understand the relationship
between the abstract operator K and the differential operator K0 defined
by (4.5).

4.1.5 Invariant measures and irreducible semigroups

Let us come back to the Kolmogorov equation (4.4). Clearly, u(t, x) = Ptϕ(x)
is the natural candidate to be a “solution” (in a sense to be made precise) of
the Kolmogorov equation (4.4). In particular, it is natural to try to show, by
a direct computation, that u(t, x) = E[ϕ(X(t, x))] is a strict solution to (4.4),
at least for a regular ϕ. For this we have to justify the following formulas for
any h ∈ H :

〈Du(t, x), h〉 = E[〈Dϕ(X(t, x)), DX(t, x)h〉], t ≥ 0, x, h ∈ H,
D2u(t, x)(h, h) = E[D2ϕ(X(t, x))(DX(t, x)h,DX(t, x)h)]

+ E[〈Dϕ(X(t, x)), D2X(t, x)(h, h)〉]
(4.15)

and then to use the Itô formula. However, this procedure requires to know at
least that DX(t, x) and D2X(t, x) do exist and are integrable (this is true for

2 An operator A in a Banach space B is called dissipative if exists a function J from
B to its dual such that ∀x ∈ B, 〈J(x), x〉 = |x|2 = |J(x)|2 and that ∀x ∈ D(A),
Re〈J(x), Ax〉 ≤ 0. A is said m-dissipative if, moreover, there exists λ > 0 such that
λ−A : D(A) → B is one-to-one with a bounded inverse. An m-dissipative operator
is always maximal dissipative (that is, it cannot be extended to a dissipative
operator on a larger domain), hence the m in m-dissipative. (In Hilbert spaces, the
converse is true: all maximal dissipative operators are m-dissipative.) The raison
d’être of these notions, introduced in [LP61] (and somewhat before, by Phillips,
in Hilbert spaces), is that a bounded operator A is the generator of a strongly
continuous contraction semigroup iff it is dissipative and, more generally, that
an (unbounded) operator A is the generator of a strongly continuous contraction
semigroup iff it is m-dissipative with a dense domain (Lumer-Phillips theorem)

3 In general the domain of K is not dense in Cb(H) so that (Pt) is not strongly
continuous in Cb(H)
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instance when F is regular and C is of trace class, see [DZ02, Theorem 7.5.1]).
For general stochastic partial differential equations this method can be very
difficult to handle.

Another possibility, which has been extensively exploited recently, is to
study Kolmogorov equations in the spaces Lp(H, ν), p ≥ 1 (we shall choose
p = 2 for simplicity) where ν is an invariant measure for (Pt), that is ν is a
Borel probability measure in H such that

∫

H

Ptϕdν =
∫

H

ϕdν for all ϕ ∈ Cb(H). (4.16)

Concerning existence and uniqueness of invariant measures, several results are
available in the literature. An important case is when the operator A is self-
adjoint negative with A−1 of trace class and F = −DU where U is a suitable
function (potential). In this case we say that (4.7) is a gradient system and,
generalizing an idea of Kolmogorov [Kol31], one can show that the measure

ν(dx) =
e−2U(x)μ(dx)∫
H
e−2U(y)μ(dy)

, (4.17)

where μ is the Gaussian measure μ = N− 1
2 A

−1 , is invariant. This situation is
important in the applications since in this case Pt is symmetric in L2(H, ν)
and the Markov process X(t, x) is reversible. However, there are situations, as
for Burgers and Navier-Stokes equations, where the formula above does not
hold and an explicit expression of the invariant measure for (Pt) is not known.

IfH is finite dimensional, then classical results about existence and unique-
ness of invariant measures are due to R. Z. Khas’minskii [Kha80]. These results
have been considerably generalized requiring minimal regularity assumptions
for the coefficients of K0 in [BKR01], where some situation in infinite dimen-
sion have been studied.

Several papers have also been devoted to proving existence and unique-
ness of invariant measures and their properties as ergodicity, mixing etc, for
specific differential stocastic equations. We mention here: reaction-diffusion
equations (see [DZ96], [Hai02]), Burgers equations (see [DDT94], [WKMS00]),
wave equations [CDF97], [BD02a], Stefan problem [BD02b], porous media
equations [DR02].

Moreover, much attention has been payed to Navier-Stokes equation. Here
we mention [FM95], where existence and uniqueness of an invariant measure
were established using irreducibility and strong Feller property of (Pt) when
C is not “too degenerate”. Later, in [Mat99], [Mat02], [KS01], [HM], the case
of a degenerate C could be handled using a coupling argument.

A typical tool for the existence of an invariant measure is a bound (in-
dependent of t) for E(|X(t, x)|2Y ) (or some other positive increasing function
of X(t, x)) where Y is a Banach space compactly embedded4 in X . Then the
4 That is, the identity Y ↪→ X is a compact operator. Recall that an operator is

compact if it maps the unit ball into a compact set
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Krylov-Bogoliubov theorem will imply the existence. Concerning uniqueness
the more used approaches are either to show that (Pt) is irreducible and strong
Feller or to use a coupling argument.

We recall that (Pt) is irreducible if PtχI(x) > 0 for all x ∈ H and all open
set I where χI is the characteristic function of I. It is important to notice
that when (Pt) is irreducible, any invariant measure ν is full, that is ν(I) > 0
for any open set I ⊂ H . The following result, due to Doob and Khas’minskii,
is important, see e.g. [DZ96, Theorem 4.2.1, Proposition 4.1.1].

Theorem 4.1.2 Assume that (Pt) is irreducible, strong Feller and that it
possesses an invariant measure ν. Then ν is unique, ergodic and strongly
mixing, that is for all x ∈ X and ϕ ∈ Cb(H) we have

lim
t→+∞Ptϕ(x) =

∫

H

ϕ(y)ν(dy). (4.18)

In several situations, irreducibility holds when the deterministic controlled
system

y′(t) = Ay(t) + F (y(t)) + C1/2 u(t), x ∈ H,

is approximatively controllable in any time T > 0. This means that for any
x, z ∈ H , T > 0 and ε > 0 there exists a control u ∈ L2(0, T ;H) such that
|y(T, x)− z| < ε, see e.g. [DZ96, §7.2, §7.3]

To study the strong Feller property, a formula due to J. M. Bismut [Bis84]
and D. Elworthy [Elw92] is a very useful tool, see [PZ95] for an infinite-
dimensional generalization. This formula reads (formally) as follows (see e.g.
[DZ96, §7.1]):

〈DPtϕ(x), h〉 =
1
t

E

[
ϕ(X(t, x))

∫ t

0

〈C−1/2DX(s, x) · h, dW (s)〉
]

(4.19)

Assume now that there exists an invariant measure ν for (Pt), that is that
(4.16) holds. Since, by the Hölder inequality, we have that

(Ptϕ(x))2 ≤ Pt(ϕ2(x)), ϕ ∈ Cb(H), x ∈ H,

we deduce that
∫

H

(Ptϕ)2dν ≤
∫

H

Pt(ϕ2)dν =
∫

H

ϕ2dν, ϕ ∈ Cb(H),

thanks to the invariance of ν. Therefore, one can extend uniquely (Pt) to a
strongly continuous semigroup of contractions in L2(H, ν) (still denoted by
(Pt)). We shall denote by K2 its infinitesimal generator. Then we have to face
the problem to see the relationship between the abstract operator K2 and the
differential operator K0 defined by (4.5). For this, it is convenient to define
arealization of K0 in a space of functions depending only on a finite number
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of variables. We shall choose an algebra of exponential functions:

EA(H) = Span{ϕh, h ∈ D(A∗)}, (4.20)

where
ϕh : H � x �→ ϕh(x) = ei〈h,x〉 (4.21)

and A∗ is the adjoint of A. This space is dense in L2(H, ν). If ϕh(x) = ei〈h,x〉

we have

K0ϕh(x) = −
(

1
2
|C1/2h|2 + i〈x,A∗h〉+ i〈F (x), h〉

)
ϕh(x), x ∈ H.

So, K0ϕh belongs to L2(H, ν) provided

x �→ 〈x,A∗h〉 ∈ L2(H, ν), and x �→ 〈F (x), h〉 ∈ L2(H, ν). (4.22)

From now on we shall assume that (4.22) holds; we shall see in §4 below that
it is fulfilled in several applications.

It is not difficult, using the Itô formula, to show that K2 is an extension
of K0. More difficult (in some case, an open problem) is to show that K2

is the closure of K0 or, equivalently, that EA(H) is a core5 for K2. Assume
that this is the case. Then we can prove existence and uniqueness of a strong
solution (in the sense of Friedrichs) to (4.6). That is, for any λ > 0 and any
f ∈ L2(H, ν) there exists a sequence {ϕn} ⊂ EA(H) such that

ϕn → ϕ, λϕn −K0ϕn → f in L2(H, ν).

Moreover, we can extend to K2 several properties of K0. Perhaps the most
important is the following integration by parts formula (in French the “égalité
du carré du champ”).

∫

H

K2ϕ ϕ dν = −1
2

∫

H

|C1/2 Dϕ|2dν, ϕ ∈ D(K2). (4.23)

We notice that identity (4.23) holds, by a straightforward proof, when ϕ ∈
EA(H). In fact in this case one can check, by a direct computation, that the
following identity holds

K0(ϕ2) = 2K0ϕ ϕ+ |C1/2Dϕ|2.

Now, since ν is invariant, we have that
∫
H K0(ϕ2)dν = 0, and so (4.23) follows.

Since EA(H) is a core, then it holds for any ϕ ∈ D(K2) .
Identity (4.23) has several interesting consequences as we shall show in §4

below devoted to applications.

5 A core of a closed operator A is a subspace D of D(A) such that ∀x ∈ D(A)
there exists a sequence (xn) in D such that xn → x and Axn → Ax (strongly).
Equivalently, it is a dense subspace of the Banach space D(A). If T denotes a
closable operator, and T its closed extension, D(T ) is a core for T
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4.1.6 When the problem is not necessarily well-posed

We finally consider the situation when problem (4.7) is not necessarily well-
posed, as for instance for the Navier-Stokes equation in 3 dimensions, where
the existence of a martingale solution is known but the uniqueness is not
known. However, even if several solutions exist it could happen that their law
be the same. If one were able to prove existence and uniqueness of a regular
solution of the Kolmogorov equation (4.4) then, following the ideas in [SV79],
one could prove the uniqueness in law.

This program has been performed for some Kolmogorov equations with
regular (continuous or Hölder) coefficients, see [GG94], [Zam00].

For the 3D Navier-Stokes equation existence of a regular solution was
proved in [DD03]. If the Maximum Principle were applicable, this would imply
uniqueness of the solution and therefore uniqueness in law of 3D Navier-Stokes
equation. Unfortunately, the Maximum Principle for Kolmogorov equation
(4.4) is known (when H is infinite-dimensional) only for regular functions F ,
see [DZ02, Proposition 5.2.2] and so the problem remains open.

Coming back to the situation when problem (4.7) is not well posed, another
possibility is to solve directly (4.6) on a space L2(H, ν) where ν is a probability
measure, infinitesimally invariant for K0, that is is such that

∫

H

K0ϕ(x)ν(dx) = 0 for all ϕ ∈ EA(H).

In the case of gradient systems this measure is given by (4.17). Otherwise, it
is useful to consider a sequence of approximating operators

Knϕ(x) =
1
2

Tr [CD2ϕ(x)] + 〈Ax + Fn(x), Dϕ(x)〉, ϕ ∈ EA(H),

where Fn are regular approximations of F such that Kn has an invariant
measure νn. Then one can try to show that the sequence {νn} is tight6 and
that a cluster point ν is an (infinitesimally) invariant measure for K0.

Assume now that an infinitesimally invariant measure ν for K0 is given.
Then K0 is dissipative7 in L2(H, ν) and the goal is to show that its clo-
sure K2 is m-dissipative. This method has been used in several situations:
the stochastic quantization equation in [LR98] and [DT00], reaction-diffusion
equations in [DR02], porous media equations in [DR04], Cahn-Hilliard equa-
tions in [DDT94].

Assume that we know that K2 is m-dissipative and let etK2 be the semi-
group generated by K2, in L2(H, ν). Now, an interesting problem is to solve
(in a suitable sense) the stochastic differential equation (4.7). The idea is to

6 That means that for all ε > 0, there exists a compact subset Kε in H s.t. ∀n,
νn(Kε) ≥ 1− ε. The interest of this notion rests on the Prohorov’s theorem: from
any tight sequence one can extract a weakly convergent subsequence

7 See the definition in footnote 2, p. 72
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construct a Markov process (Xt) such that for its transition semigroup pt
defined by

ptϕ(x) := E (ϕ (X(t, x))) , t ≥ 0, x ∈ H, ϕ ∈ Bb(H),

we have that ptϕ = etK2ϕ, ν-a.e.
To solve this problem one can use the theory of Dirichlet forms developped

in [FOT94], [MR92] and generalized in [Sta99] (here no symmetry or sectori-
ality of the underlying operators is required). In this theory the following two
main ingredients are needed:

(a) K2 has a core which is an algebra.
(b) The capacity8 determined by K2 is tight.

If (a) and (b) are fulfilled, there exists a Borel subset H of H such that
ν(H) = 1, and for all x ∈ H

P[X(t, x) ∈ H ∀ t ≥ 0] = 1,

and for all probability measures ν on (H,B(H)) with ν(H) = 1

ϕ(Xt)−
∫ t

0

K0ϕ(Xs)ds, t ≥ 0,

is an (Ft)-martingale, where Ft is the completion of the σ-algebra generated
by the Xs, s ≤ t.

4.1.7 Outline of contents

Let us outline the contents of the chapter. In §2 we shall consider the im-
portant special case when F = 0 which corresponds to a linear deterministic
system perturbed by noise. In this case the transition semigroup is called
the Ornstein-Uhlenbeck semigroup. It plays an important role in describing
systems in absence of interaction, the free fields.
§3 is devoted to the case when the nonlinear operator F is regular. Though

this case is not very interesting for applications, however it is important, as
a first step, to study approximating versions of more complicated problems.
Finally, in §4 we shall discuss some recent results on Kolmogorov equations
arising in the applications; we shall restrict for brevity to reaction-diffusion,
Burgers and 2D Navier-Stokes equations.
8 Roughly speaking: K2 allows to define an energy (of the type of Dirichlet’s) for L2

functions whose gradient (in the sense of distributions) is also in L2; by minimizing
energy of the functions whose absolute value is ≥ 1 on an open set, one obtains
the so-called capacity (in Choquet’s sense) of this open set; the capacity of an
arbitrary set is the infimum of capacities for all open supsets. A capacity is not
a measure (it is only subadditive), but it has a lot of properties in common with
measures
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4.2 The Ornstein-Uhlenbeck semigroup

4.2.1 Definition and assumptions

Here we assume, besides Hypothesis 4.1.1, that F = 0. The Kolmogorov
equation (4.4) reduces in this case to
⎧
⎪⎨

⎪⎩

Dtu(t, x) =
1
2

Tr [CD2u(t, x)] + 〈Ax,Du(t, x)〉, t > 0, x ∈ D(A),

u(0, x) = ϕ(x), x ∈ H.
(4.24)

We shall set

L0ϕ(x) =
1
2

Tr [CD2ϕ(x)] + 〈x,A∗Dϕ(x)〉, x ∈ H, ϕ ∈ EA(H). (4.25)

Equation (4.7) reads in this case as follows,
⎧
⎨

⎩

dX(t, x) = AX(t, x)dt+ C1/2dW (t), t > 0, x ∈ H,

X(0, x) = x, x ∈ H,
(4.26)

whose mild solution is given by

X(t, x) = etAx+WA(t),

where WA(t) is defined by (4.11). Therefore, a candidate for the solution of
(4.24) is given by (4.8). Since X(t, x) is a Gaussian random variable of mean
etAx and covariance Qt9, we have

u(t, x) =
∫

H

ϕ(etAx+ y)NQt(dy), t ≥ 0, x ∈ H. (4.27)

Let us set

Rtϕ(x) =
∫

H

ϕ(etAx+ y)NQt(dy), t ≥ 0, x ∈ H,ϕ ∈ Bb(H). (4.28)

Now, we can check that u(t, x) := Rtϕ is a strict solution of (4.24) for all
ϕ ∈ EA(H). Notice that, though EA(H) is not dense in Cb(H), for any ϕ ∈
Cb(H) one can find a three index sequence ϕn1,n2,n3

10 such that (see [DT01b,
Lemma 2,4])

(i) lim
n1→∞ lim

n2→∞ lim
n3→∞ϕn1,n2,n3(x) = ϕ(x), x ∈ H ,

(ii) ‖ϕn1,n2,n3‖0 ≤ ‖ϕ‖0.
So, it is enough to prove several properties of Rtϕ for ϕ ∈ EA(H) only.
9 Recall the discussion after (4.11), p. 70

10 Since convergences in (i) and (ii) below are only pointwise, we cannot substi-
tute ϕn1,n2,n3 with a sequence depending on one index by a diagonal extraction
procedure
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Notice that EA(H) is stable for Rt. Indeed, let ϕh(x) = ei〈x,h〉, with h ∈
D(A∗). Then

Rtϕh(x) = ei〈e
tA∗

h,x〉
∫

H

ei〈y,h〉NQt(dy), x ∈ H, t > 0.

Recalling that the Fourier transform of NQt is given by e−
1
2 〈Qth,h〉, we find

that
Rtϕh = ϕetA∗h, h ∈ H. (4.29)

By simple computations we see that u(t, x) = Rtϕ(x) is a strict solution of
(4.24) and that the semigroup law

Rt+sϕ = RtRsϕ, ϕ ∈ EA(H),

holds. Consequently it holds for any ϕ ∈ Cb(H). Rt is called the Ornstein-
Uhlenbeck semigroup. It is clear that Rtϕ is defined, through formula (4.28),
for any Borel function ϕ such that

|ϕ(x)| ≤ aeκ|x|, x ∈ H.

By (4.29) we see that the semigroup Rt is not strongly continuous in
Cb(H), unless A = 0. We can define its infinitesimal generator L, proceeding
as in §1, through its resolvent

(λ− L)−1f(x) =
∫ +∞

0

e−λtRtf(x)dt, f ∈ Cb(H), t ≥ 0, x ∈ H.

We denote the domain of L by D(L) or D(L,Cb(H)). Notice that EA(H) is
not included in D(L,Cb(H)). We have in fact

lim
h→0

1
h

(Rtϕh(x) − ϕh(x)) = −1
2
|C1/2h|2 − i〈x,A∗h〉

and the function in the right hand side is not bounded but has linear growth.
For this reason it is useful to consider Rt acting in the space Cb,n(H), the Ba-
nach space of all continuous functions in H uniformly continuous on bounded
subsets of H and such that

‖ϕ‖b,n := sup
x∈H

|ϕ(x)|
1 + |x|2n < +∞, n ∈ N. (4.30)

One can define, as before, the infinitesimal generator L of Rt in Cb,n(H) whose
domain we shall denote by D(L,Cb,n(H)) see [Cer95]. One check easily that
if n ≥ 1 one has EA(H) ⊂ D(L,Cb,n(H)) and that if ϕ ∈ D(L,Cb,n(H)) we
have Lϕ = L0ϕ, where L0 is given by (4.25).

Remark 4.2.1 (The Gross Laplacian) When A = 0 the semigroup Rt is
called the heat semigroup. In this case Rt is strongly continuous in Cb(H) and
its infinitesimal generator is called the Gross Laplacian. Notice that in this
case we have Qt = tC, t > 0. Therefore C must be of trace class and so the
Gross Laplacian is always degenerate in infinite dimension.
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4.2.2 Ellipticity, hypoellipticity, smoothing

Let us assume that the operator L0 is strictly elliptic, that is C−1 ∈ L(H).
Then, for Hypothesis 4.1.1 to be verified, A−1 must be a Hilbert-Schmidt
operator. When L0 is strictly elliptic it inherits some typical properties of
elliptic operators in finite dimension. In particular Rt maps Borel bounded
functions into C∞ functions, that is11

ϕ ∈ Bb(H), t > 0 =⇒ Ptϕ ∈ C∞
b (H).

Let us give an idea of this fact.

Proposition 4.2.2 Assume, besides Hypotheses 4.1.1, that C is invertible
and C−1 ∈ L(H). Then for all ϕ ∈ Bb(H) and t > 0 we have Rtϕ ∈ C∞

b (H)
and

〈DRtϕ, h〉 =
∫

H

〈Γ (t)h,Q−1/2
t y〉ϕ(etAx+ y)NQt(dy) (4.31)

for all h ∈ H, where
Γ (t) := Q

−1/2
t etA, t > 0, (4.32)

Moreover,
‖DRtϕ‖0 ≤ Ct−1/2eωt ‖ϕ‖0. (4.33)

Before giving a sketch of the proof let us stress the fact that (4.32) means
that

etA(H) ⊂ Q1/2
t (H), t ≥ 0, (4.34)

and so, the operator Γ (t) is a bounded operator in H by the closed graph
theorem. Condition (4.32) will be discussed in Lemma 4.2.3 below.

Sketch of the proof. By a change of variables we have

Rtϕ(x) =
∫

H

ϕ(y)NetAx,Qt
(dy), t ≥ 0, x ∈ H,ϕ ∈ Bb(H).

In order to differentiate with respect to x we use the fact that NetAx,Qt
�

NQt .12 In fact, by (4.34) it follows that we can apply the Cameron-Martin
formula13 and conclude that

dNetAx,Qt

dNQt

(y) = e−
1
2 |Γ (t)x|2+〈Γ (t)x,Q

−1/2
t y〉, y ∈ H.

11 This is not true for the heat semigroup introduced in Remark 4.2.1. As shown in
[Gro67] here the smoothing property only holds in the directions of the Cameron-
Martin space

12 Recall that this notation means that NetAx,Qt
is absolutely continuous with re-

spect to NQt , i.e. that for all E ⊂ H s.t. NQt (E) = 0, one has NetAx,Qt
(E) = 0

13 Let Q ∈ L+(H) and a ∈ Q1/2(H). Then Na,Q and NQ are equivalent measures
(that is, each one is absolutely continuous with respect to the other one) and
dNa,Q

dNQ
(y) = exp{− 1

2
|Q−1/2a|2 + 〈Q−1/2a, Q−1/2y〉}, y ∈ H
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Now, we can write

Rtϕ(x) =
∫

H

ϕ(y)NetAx,Qt
(dy) =

∫

H

e−
1
2 |Γ (t)x|2+〈Γ (t)x,Q

−1/2
t y〉ϕ(y)NQt(dy)

and differentiating with respect to x the conclusion follows. �

Let us explain the meaning of the operator Γ (t). For this it is convenient
to consider the following linear system

y′(t) = Ay(t) + C1/2 u(t), y(0) = x, (4.35)

where y is the state and u is the control. Moreover the quantity

E(u) :=
∫ T

0

|u(s)|2ds

is called the energy of u. System (4.35) is said to be null controllable if for any
T > 0 there exists u ∈ L2(0, T ;H) such that y(T ) = 0.

Lemma 4.2.3 Assume that C = I. Then we have

etA(H) ⊂ Q1/2
t (H), t ≥ 0. (4.36)

Moreover, there exists c > 0 such that14

‖Γ (t)‖ ≤ ct−1/2eωt, t > 0. (4.37)

Sketch of the proof. It is well known, see [Zab81], that condition (4.36) is
equivalent to the null controllability of system (4.35). Moreover we have

|Γ (t)x|2 = min

{∫ T

0

|u(s)|2ds : u ∈ L2(0, T ;H), y(T ) = 0

}
. (4.38)

Now, taking u(t) = − 1
T etAx, we find y(T ) = 0 so that system (4.35) is null

controllable and so (4.36) holds. Finally (4.37) follows from (4.38). �
Remark 4.2.4 Condition (4.36) may be fulfilled even if L is not strictly el-
liptic. In this case we say that L is hypoelliptic because when H is finite
dimensional, condition (4.36) reduces precisely to the Hörmander’s hypoellip-
ticity condition for the operator L. In this case if ϕ ∈ Cb(H) and t > 0 we
still have that Ptϕ ∈ C∞

b (H). Condition (4.36) is necessary and sufficient in
order that Rt be strong Feller. In the following we shall confine to the elliptic
case for brevity.

We notice also that the semigroupRt is irreducible, provided Ker C = {0}.

14 Recall Hypothesis 4.1.1-(i), p. 70
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4.2.3 Invariant measure, ergodicity, mixing

We assume here that the semigroup etA is of negative type, that is the constant
ω in Hypothesis 4.1.1-(i) is negative. In this case, it is easy to see that the
linear operator

Q∞x :=
∫ +∞

0

etACetA∗x, x ∈ H, (4.39)

is well defined and of trace class. Moreover, one can easily check that

lim
t→+∞Rtϕ(x) =

∫

H

ϕdμ := ϕ, ϕ ∈ Cb(H). (4.40)

Consequently, the measure μ := NQ∞ is the unique invariant measure for Rt
and it is ergodic and strongly mixing.

Let now consider the unique extension of Rt to L2(H,μ), still denoted by
Rt, and let L2 be its infinitesimal generator. The expression of L2 on EA(H)
can be easily computed by the very definition of the infinitesimal generator.
We find

L2ϕ = L0ϕ =
1
2

Tr[CD2ϕ(x)] + 〈x,A∗Dϕ(x)〉, ϕ ∈ EA(H). (4.41)

In this case EA(H) is a core for Rt since EA(H) is invariant for Rt and it is
dense in L2(H,μ), see e.g. [Dav80]. Moreover, the integration by parts formula
(4.23) becomes ∫

H

L2ϕ ϕ dμ = −1
2

∫

H

|C1/2Dϕ|2dμ. (4.42)

Remark 4.2.5 It is important to know when Rt is symmetric. The necessary
and sufficient condition is given by, see [CG96],

〈Cx,A∗y〉 = 〈A∗x,Cy〉, x, y ∈ D(A∗). (4.43)

In particular, this condition is fulfilled when A is self-adjoint and commutes
with C.

4.2.4 Smoothing in L2(H, μ)

Let us recall the definition of the Sobolev space W 1,2(H,μ), where μ = NQ∞
is as before. Let D be the linear operator

D : EA(H) ⊂ L2(H,μ)→ L2(H,μ;H), ϕ→ Dϕ.

One can show thatD is closable, see e.g [DZ02, Proposition 9.2.4]. If ϕ belongs
to the domain of the closure of D, which we shall still denote by D, we shall
say that Dϕ belongs to L2(H,μ;H). Now W 1,2(H,μ) is the linear space of
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all functions ϕ ∈ L2(H,μ) such that Dϕ ∈ L2(H,μ;H). W 1,2(H,μ), endowed
with the inner product

〈ϕ, ψ〉W 1,2(H,μ) = 〈ϕ, ψ〉L2(H,μ) +
∫

H

〈Dϕ(x), Dψ(x)〉μ(dx),

is a Hilbert space.

Proposition 4.2.6 Let ϕ ∈ L2(H,μ). Then for all t > 0 we have Rtϕ ∈
W 1,2(H,μ) and

‖DRtϕ‖L2(H,μ) ≤ Ct−1/2 ‖ϕ‖L2(H,μ). (4.44)

Proof. Let h ∈ H . From (4.31) we find, thanks to the Hölder inequality,

|〈DRtϕ, h〉|2 ≤
∫

H

|〈Γ (t)h,Q−1/2
t y〉|2NQt(dy)

∫

H

ϕ2(etAx+ y)NQt(dy).

The first integral in the right hand side is equal to |Γ (t)h|2, whereas the second
one is equal to Rt(ϕ2)(x). So, we have

|〈DRtϕ, h〉|2 ≤ |Γ (t)h|2Rt(ϕ2)(x).

Taking the supremum on h, integrating with respect to μ over H and taking
into account the invariance of μ, yields the conclusion. �
Remark 4.2.7 Taking the Laplace transform of (4.44) with respect to t, we
find

‖D(λ− L)−1f‖L2(H,μ) ≤ C
√
π

λ
‖f‖L2(H,μ), f ∈ L2(H,μ). (4.45)

This implies
D(L2) ⊂W 1,2(H,μ), (4.46)

with continuous embedding.

4.2.5 Perturbations of the Ornstein Uhlenbeck operator

We shall only consider regular perturbations of strictly elliptic Ornstein Uh-
lenbeck operators. We shall assume that Hypothesis 4.1.1 holds with ω < 0
and that C−1 ∈ L(H). We are given a nonlinear operator F ∈ Cb(H ;H). We
denote by μ = NQ∞ the unique invariant measure for the semigroup Rt.

Let us define a Kolmogorov operator K2 in L2(H,μ) with domain D(L2),
setting

K2ϕ = L2ϕ+ 〈F (x), Dϕ〉, ϕ ∈ D(L2). (4.47)

This definition is meaningful thanks to (4.45). Obviously μ is not an invariant
measure for K2 in general, but we are going to show, following [DZ96], that
there exists an invariant measure ν for K2 which is absolutely continuous with
respect to μ.
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Proposition 4.2.8 K2 is the infinitesimal generator of a strongly continuous
semigroup etK2 on L2(H,μ). Moreover, for any λ > π‖F‖20 15 we have

(λ−K2)−1 = (λ− L2)−1(1 − Tλ)−1, (4.48)

where
Tλϕ = 〈F,D(λ − L2)−1ϕ〉, ϕ ∈ L2(H,μ).

Sketch of the proof. Given f ∈ L2(H,μ) and λ > 0, consider the equation

λϕ− Lϕ− 〈F (x), Dϕ〉 = f.

Setting λϕ − Lϕ = ψ, we obtain ψ − Tλψ = f. But by (4.45) we have that
‖Tλψ‖0 ≤

√
π
λ ‖F‖0. Thus, the conclusion follows from the contraction prin-

ciple. �

We now consider the adjoint semigroup etK
∗
2 of etK2 . We denote by Σ∗

the set of all its stationary points:

Σ∗ =
{
ϕ ∈ L2(H,μ) : etK

∗
2ϕ = ϕ, t ≥ 0

}
.

It is easy to see that Σ∗ is a lattice. Now we can prove (see [DZ02]):

Proposition 4.2.9 There exists an invariant measure ν for etK2 absolutely
continuous with respect to μ.

Sketch of the proof. Let λ > 0 be fixed and let ϕ0 be the function identically
equal to 1. Clearly ϕ0 ∈ D(K2) and we have K2ϕ0 = 0. Consequently 1/λ
is an eigenvalue of (λ −K2)−1 since (λ −K2)−1ϕ0 = 1

λ ϕ0. Moreover 1/λ is
a simple eigenvalue because μ is ergodic (recall (4.40)). Since the embedding
W 1,2(H,μ) ⊂ L2(H,μ) is compact, see [DMN92] and [Pes93], and D(L2) ⊂
W 1,2(H,μ) by (4.46), it follows that (λ − K2)−1 is compact as well for any
λ > 0. Therefore (λ − K∗

2 )−1 is compact and 1/λ is a simple eigenvalue for
(λ−K∗

2 )−1. Consequently there exists ρ ∈ L2(H,μ) such that

(λ−K∗
2 )−1ρ =

1
λ
ρ.

It follows that ρ ∈ D(K∗
2 ) and K∗

2ρ = 0, then ρ ∈ Σ∗. Since Σ∗ is a lattice,
ρ can be chosen to be nonnegative and such that

∫
H ρdμ = 1. Now ν(dx) =

ρ(x)μ(dx) is an invariant measure for etK2 . �

15 We set ‖F‖0 = supx∈H |F (x)|
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4.3 Regular nonlinearities

4.3.1 Introduction

We are here concerned with the Kolmogorov equation (4.4) under Hypoth-
esis 4.1.1 where we take M = 1 so that ‖etA‖ ≤ etω, t ≥ 0. We suppose
moreover that

Hypothesis 4.3.1 F is Lipschitz continuous and of class C1.

Let us denote by κ the minimal number such that

〈F (x)− F (y), x− y〉 ≤ κ|x− y|2, x, y ∈ H.

Clearly |κ| ≤ K where K is the Lipschitz constant of F .

Proposition 4.3.2 Assume that Hypotheses 4.1.1 and 4.3.1 hold. Then for
any x ∈ H there exists a unique mild solution X(·, x) of (4.7) (that is a
solution of the integral equation (4.10)). Moreover, X(t, x) is differentiable
with respect to x and for any h ∈ H we have DX(t, x) · h = ηh(t, x), where
ηh(t, x) is the mild solution of the equation

⎧
⎪⎨

⎪⎩

d

dt
ηh(t, x) = Aηh(t, x) +DF (X(t, x)) · ηh(t, x),

ηh(0, x) = h.

(4.49)

Finally,
|ηh(t, x)| ≤ e(ω+κ)t|h|, t ≥ 0. (4.50)

Sketch of the proof. The mild (4.10) can be considered as a family of deter-
ministic integral equations with Lipschitz nonlinearities, indexed by the points
of the probability space Ω. Thus, by standard fixed point arguments, one can
show that it has a unique solution X(t, x) and that X(t, x) is differentiable
with respect to x. Let us show (4.50). Recalling that 〈Ax, x〉 ≤ ω|x|2, x ∈
D(A), by assumption and using Hypothesis 4.3.1, it follows that

〈DF (y) · x, x〉 ≤ (ω + κ)|x|2, x ∈ D(A), y ∈ H.

Consequently, multiplying both sides of the first equation in (4.49) by ηh(t, x)
we find

1
2
d

dt
|ηh(t, x)|2 ≤ (ω + κ)|ηh(t, x)|2,

which, by a standard comparison result, yields inequality (4.50). �

Now, we can define the transition semigroup (Pt) by (4.14); it is easy to
see that (Pt) is Feller. Moreover if C = I, in view of the Bismut-Elworthy
formula (4.19), it follows that (Pt) is strong Feller.
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4.3.2 Invariant measures

Let us assume that the system is dissipative, that is ω + κ < 0 and set ω1 =
−κ− ω. Then the following result holds, see [DZ96, Theorem 6.3.3].

Theorem 4.3.3 The law L(X(t, x)) of X(t, x) is convergent as t → +∞ to
the unique invariant measure ν of (Pt). Moreover ν is ergodic, and

lim
t→+∞Ptϕ(x) =

∫

H

ϕ(y)ν(dy), x ∈ H, ϕ ∈ Cb(H). (4.51)

Sketch of the proof. It is convenient to consider the solution X(t, s, x) of
(4.7) with initial time s ∈ R,
⎧
⎨

⎩

dX(t, x, s) = (AX(t, s, x) + F (X(t, s, x))) dt+ C1/2dW (t), t > s, x ∈ H,

X(s, s, x) = x, x ∈ H,
(4.52)

Then, taking advantage of the dissipativity it is possible to show that there
exists the limit (independent of t)

lim
s→−∞X(t, s, x) := η in L2(Ω,F ,P).

Consequently, the law ν of η is the invariant measure and fulfills the required
conditions. �

4.4 Some Kolmogorov equations arising
in the applications

In this section we shall consider some realizations of (4.4) for which there
exists a unique mild solution X(t, x) and an invariant measure ν. Then we
shall consider the unique extension in L2(H, ν) of the transition semigroup
(Pt) defined by (4.14), whose infinitesimal generator we shall denote by K2.
Our goal is to show that the algebra of all exponential functions EA(H) is a
core for K2 and then to deduce some qualitative properties of (Pt).

Let us explain the general idea of the proof. We consider an approximating
equation

λϕn(x)− Lϕn(x) − 〈Fn(x), Dϕn(x)〉 = f(x), (4.53)

where λ > 0 and f ∈ EA(H) are given. Here Fn are regular approximations of
F , for instance the finite dimensional Galerkin approximations or the Yosida
approximations (when F is dissipative)16.

16 The Yosida approximation of F is defined by Fn = n(Jn − 1) where
Jn = (1 − 1

n
F )−1 see e.g. [Bré73]
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Since Fn is regular, we can use the results proved in §3 and show that (4.53)
has a unique solution ϕn. If Fn is bounded we have that Lϕn is bounded as
well and so ϕn ∈ D(L,Cb(H)) ∩ C1

b (H), whereas if Fn is Lipschitz then Lϕn
belongs to Cb,1(H) so that ϕn ∈ D(L,Cb,1(H)) ∩ C1

b (H)17.
Then we proceed in the following steps:

(i) We prove, using the Itô formula, that K2 is an extension of K0. This
implies that K0 is dissipative in L2(H, ν) and consequently it is closable;
we call K0 its closure.

(ii) We prove that ϕn belongs to the domain of K0. This requires a suitable
approximation of ϕn by functions ϕn,k in EA(H) such that ϕn,k belongs
to D(L,Cb(H)) ∩ C1

b (H) (when Fn is bounded) or to D(L,Cb,1(H)) ∩
C1
b (H) (when Fn is Lipschitz). This approximation is provided by [DT01b,

Proposition 2.7].
As a consequence, we can write (4.53) in the form

λϕn −K0ϕn = f + 〈Fn(x) − F (x), Dϕn〉. (4.54)

(iii) We show that

lim
λ→0

〈Fn(x) − F (x), Dϕn(x)〉 = 0 in L2(H, ν). (4.55)

This requires an estimate, uniform in n,

|〈Fn(x), Dϕn〉|2 ≤ |G(x)|, (4.56)

where G is integrable with respect to ν. Then (4.56) yields (4.55) by the
dominated convergence theorem.

Finally, by (4.55) it follows that the closure of the range of λ −K0 includes
EA(H) and so it is dense in L2(H, ν). Now, the Lumer-Phillips theorem (see
[LP61] and footnote 2 above, p. 72), implies that K0 = K2.

To prove (4.56) we notice that the solution ϕn of (4.53) is given by

ϕn(x) =
∫ +∞

0

e−λtE [f (Xn(t, x))] dt, x ∈ H,

where Xn(t, x) is the solution of (4.4) with Fn replacing F . Moreover, for any
h ∈ H , we have

〈Dϕn(x), h〉 =
∫ +∞

0

e−λtE
[
〈Df(Xn(t, x)), ηhn(t, x)〉

]
dt, x ∈ H,

where ηhn(t, x) = DXn(t, x) · h, so that

|〈Dϕn(x), h〉| ≤ ‖Df‖0
∫ +∞

0

e−λtE
[
|ηhn(t, x)|

]
dt, x ∈ H.

So, the key point is to find an estimate for E
[
|ηhn(t, x)|

]
.

In §4.1 we apply this procedure to reaction-diffusion equations, in §4.2 to
the Burgers equation and in §4.3 to the Navier-Stokes equation in dimension 2.
17 For the definition of Cb,1(H) see the end of §2.1 and (4.30)
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4.4.1 Reaction-diffusion equations

We are here concerned with the following stochastic reaction-diffusion equa-
tion in the domain D = [0, 1]n,

⎧
⎨

⎩

dX(t) = (AX(t) + p (X(t))) dt+ C1/2 dW (t),

X(0) = x.
(4.57)

HereA denotes the realization of the Laplace operatorΔ with Dirichlet bound-
ary conditions, in the Hilbert space H = L2(D), that is

Ax = Δξx, D(A) = H2(D) ∩H1
0 (D).

As well known, A is self-adjoint in L2(D), it possesses a complete set of
eigenfunctions {ek} where

ek(ξ) = (2/π)n/2 sin(πk1ξ1) · · · (sinπknξn), ξ ∈ D

and
Aek = −π2|k|2 ek, k = (k1, . . . , kn) ∈ N

n.

Moreover, p is a polynomial of odd degree and with negative leading coeffi-
cient; we notice that there exists λ ∈ R such that p′(ξ) ≥ −λ. Finally, we
choose C = (−A)−γ/2 where γ is such that γ > n

2 − 1. Thus, we can take
γ = 0 and C = I only for n = 1.

Notice that
‖etA‖ ≤ e−π

2t, t ≥ 0.

so that Hypothesis 4.1.1-(i) is fulfilled with M = 1 and ω = −π2. Moreover,
since

Tr [(−A)−(1+γ)] = |π|−2(1+γ)
∑

k∈Nn

|k|−2(1+γ) < +∞,

Hypothesis 4.1.1-(ii) is fulfilled as well.
We are going to solve (4.57) following [DZ96]. For more general reaction-

diffusion equations (including systems), see the monograph [Cer01].
To solve (4.7) we introduce an approximating problem,

⎧
⎨

⎩

dXα(t) = (AXα(t) + Fα (Xα(t))) dt+ (−A)−γ/2dW (t),

Xα(0) = x ∈ H,
(4.58)

where for any α > 0, Fα is defined by Fα(x)(ξ) = pα(x(ξ)) and pα are the
Yosida approximations of p (see footnote(9) with α replacing 1/n).

Fα is Lipschitz continuous, with Lipschitz constant 2
α . Thus, in view of

Proposition 4.3.2, for any α > 0, and any x ∈ H , problem (4.58) has a unique
solution Xα(·, x). From which we deduce:
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Proposition 4.4.1 If x ∈ L2d(D), problem (4.57) has a unique mild solution
X(·, x). Moreover for any m ∈ N, there is cm,p,T > 0 such that

E

(
|X(t, x)|2mL2d(D)

)
≤ cm,p,T

(
1 + |x|2mL2d(D)

)
.

If x ∈ L2(D) there exists a sequence {xn} ⊂ L2d(D) convergent to x in L2(D)
and such that {X(·, xn)} converges to X(·, x) in quadratic mean. In this case
we call X a generalized solution.

Sketch of the proof. We reduce (4.58) to a family of deterministic integral
equations. That is, setting Yα(t) = Xα(t)−WA(t), we obtain

⎧
⎨

⎩

Y ′
α(t) = AYα(t) + Fα (Yα(t) +WA(t)) , t ∈ [0, T ],

Yα(0) = x.
(4.59)

Using the monotonicity of p we find the estimate

|Yα(t)|L2d(D) ≤ e(λ−π
2)t|x|L2d(D) +

∫ t

0

e(λ−π
2)(t−s)|F (WA(s)|L2d(D)ds

and, using some properties of the stochastic convolution, see [DZ96], we find
that

E

(
|Xα(t, x)|2dL2d(D)

)
≤ c

(
|x|2dL2d(D) + 1

)
, t ∈ [0, T ]. (4.60)

Now we can prove that the sequence {Xα} is convergent. In fact, using again
monotonicity, we find that for α > β > 0,

1
2
d

dt
E
(
|Xα(t, x) −Xβ(t, x)|2

)
≤ C1 α

(
|x|2dL2d(D) + 1

)
.

Then there exists the limit in L2(Ω,F ,P;H)

X(t) = lim
α→0

Xα(t), uniformly in t ∈ [0, T ].

Using (4.60), we can take limits of both sides of the equation

Xα(t) = etAx+
∫ t

0

e(t−s)AFα(Xα(s))ds+WA(t), t ≥ 0,

and we find that X fulfills (4.8). �

Let now λ ≤ 0. Since

〈A(x− y) + p(x)− p(y), x− y〉 ≤ (−π2 + λ)|x− y|2, x, y ∈ D(A) ∩ L2d(D),
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system (4.57) is dissipative and, proceeding as in §3.2, we find that there is
a unique invariant measure ν. If λ > 0, one can show again the existence
of an invariant measure, see [DZ96]. Moreover, if C = I one can prove that
(Pt) is irreducible and strong Feller so that there is a unique ergodic invariant
measure and (4.18) holds.

We now show (see [DZ02] and [DDG02]), that EA(H) is a core of K2.
Following the program outlined at the beginning of this section, we need to
prove estimate (4.56). This is not difficult in this case. Let us consider in fact
ηhn(t, x) = DXn(t, x) ·h which is the solution of (4.49) (with ηhn replacing ηh).
Moreover, arguing as in the proof of Proposition 4.3.2, we find that

|ηhn(t, x)| ≤ e(λ−π2)t|h|, h, x ∈ H, t ≥ 0, (4.61)

and so (4.56) follows. Now we can prove the following result. In its formulation
we assume for simplicity that C = I and λ−π2 < 0 but the result holds when
C−1 ∈ L(H) and λ ∈ R if the degree of the polynomial is greater than 1, see
[DDG02]. We set ω1 = π2 − λ.

Theorem 4.4.2 Assume that C = I and ω1 > 0. Then K2 is the closure of
K0. Moreover the following statements hold.

(i) The operator D : EA(H) ⊂ L2(H, ν) → L2(H, ν;H) is closable. We shall
still denote by D its closure and by W 1,2(H,μ) its domain.

(ii) D(K2) ⊂W 1,2(H, ν); moreover for all ϕ ∈ D(K2) we have
∫

H

K2ϕ ϕ dν = −1
2

∫

H

|Dϕ|2dν. (4.62)

(iii) (Poincaré’s inequality) For any ϕ ∈ W 1,2(H, ν) we have

∫

H

|ϕ− ϕ|2dν ≤ 1
2ω1

∫

H

|Dϕ|2dν, (4.63)

where
ϕ =

∫

H

ϕdν.

(iv) (Exponential convergence to equilibrium) For all ϕ ∈ L2(H, ν) we have
∫

H

|Ptϕ− ϕ|2dν ≤ e−2ω1t

∫

H

|ϕ|2dν, t ≥ 0. (4.64)

(iv) (Log-Sobolev inequality) For all ϕ ∈ L2(H, ν) we have

∫

H

ϕ2 log(ϕ2)dμ ≤ 1
ω1

∫

H

|Dϕ|2dμ+ ‖ϕ‖22 log(‖ϕ‖22). (4.65)
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Sketch of the proof. The starting point is the identity (4.23) (which implies
(4.62)) from which it follows that the operator D is closable, see [DDG02,
Proposition 3.5]. Also, (4.62)) easily implies that

∫

H

|Ptϕ|2 dν +
∫ t

0

ds

∫

H

|DPsϕ|2 dν =
∫

H

|ϕ|2 dν, (4.66)

for all ϕ ∈ L2(H, ν). Letting t→∞ and recalling (4.18), we find that

(ϕ)2 +
∫ +∞

0

ds

∫

H

|DPsϕ|2 dν =
∫

H

|ϕ|2 dν,

which is equivalent to
∫

H

|ϕ− ϕ|2dν =
∫ +∞

0

ds

∫

H

|DPsϕ|2 dν. (4.67)

Now, by the identity

DPtϕ(x) · h = E[〈Dϕ(X(t, x)), ηh(t, x)〉

and (4.61), we see that

|DPtϕ(x)|2 ≤ e−2ω1tPt(|Dϕ|2)(x), x ∈ H, t ≥ 0.

Finally, by (4.67) and the invariance of the measure ν, it follows that

∫

H

|ϕ− ϕ|2dν ≤
∫ +∞

0

dse−ω1s

∫

H

|Dϕ|2 dν,

which yields (4.64). The proof of (4.65) is similar. �

4.4.2 Burgers equation

We are here concerned with the stochastic Burgers equation in the interval
[0, 1] with Dirichlet boundary conditions,

⎧
⎨

⎩

dX(t) = (AX(t) + b (X(t))) dt+ dW (t),

X(0) = x,
(4.68)

where

• A = D2
ξ , D(A) = H2(0, 1) ∩H1(0, 1),

• b(x) = Dξ(x2), D(b) = H1
0 (0, 1),

• W is a cylindrical process on H = L2(0, 1).
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Problem (4.68) has a unique solution which we denote byX(t, x), see [DDT94].
Moreover there exists a unique invariant measure, see [DDT94] and [DG].

To prove that EA(H) is a core for K2 we need again to find an estimate
for E(|ηhn(t, x)|)]. In this case the estimate is tricky, see [DD06],

E(|ηhn(t, x)|H1(D)) ≤ c(|x|L4(D) + 1)7ect(t−7/8 + 1).

Proceeding as before, we can conclude that EA(H) is a core for K2, we can
define the Sobolev space W 1,2(H, ν) and prove identities (4.62), (4.66) and
(4.67). It follows that Ptϕ ∈ W 1,2(H, ν) for almost all t but we do not know
if the Poincaré inequality holds and if there is a gap in the spectrum of K2.

4.4.3 2D-Navier-Stokes equation

We are concerned with the problem
⎧
⎨

⎩

dX(t) = (AX(t) + b(X(t))dt+ C1/2dW (t), t > 0

X(0) = x,
(4.69)

where D = [0, 2π]2,

H = {x ∈ (L2(D))2 : div x = 0 in D}, V = (H1
#(D))2 ∩H,

and the subscript # means periodicity.
The operator C ∈ L(H) is nonnegative, symmetric and of trace class and

W is an H-valued Wiener process.
Moreover, A is the Stokes operator

A = ν0PΔ, D(A) = V ∩ (H2
#(D))2, V = {y ∈ (H1

#(D))2 : div y = 0},

where P is the projector on the divergence free vectors, and b is defined by

〈b(x), y〉 =
2∑

i,j=1

∫

D

xiDixjyjdξ, x ∈ H1
#(D), y ∈ L2(D).

Also in this case the estimate of |ηhn(t, x)| is tricky. One can show, see
[BDD04a], that there exists κ > 0, δ ∈ (0, 2) such that

|ηhn(t, x)|2 ≤ eκ
∫

t
0 |AX(s,x)|δds |h|2, x, h ∈ H (4.70)

and moreover that if α ≤ 1
‖C‖ there exists ωα > 0 such that

E
(
|ηh(t, x)|2

)
≤ e2ωαt eα‖x‖

2
|h|2, t ≥ 0 x, h ∈ H. (4.71)

Then, we can proceed as before and prove identity (4.23).

Remark 4.4.3 Spectral gap, and exponential convergence to equilibrium has
been proved in [WMS01], [HM].
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We describe some new estimates for the probability that an empirical distribution

function of uniform-[0,1] random variables stays on one side of a given line, and give

applications to number theory.

5.1 Introduction

Let X1, . . . , Xn be real-valued independent random variables, each with dis-
tribution function F (t). Let

Fn(t) =
1
n

#{i : Xi ≤ t}

be the corresponding empirical distribution function. For n, t fixed, Fn(t) is
a random variable. Applying the strong law of large numbers to the Bernoulli
variables

1{Xn≤t} (= 1 if Xn ≤ t, 0 otherwise),

we see that Fn(t) −→
n→∞ F (t) almost surely. In 1933, Glivenko [Gli33] and

(slightly later) Cantelli [Can33] proved that the convergence is uniform on
the real line : sup | Fn(t) − F (t) | −→

n→∞ 0 almost surely. Immediately, in his

seminal paper [Kol33], Kolmogorov made a careful study of the convergence
of Fn(t) to F (t) as n→∞ : he showed that if F is continuous, then for each
λ > 0, the probability P(sup |Fn(t) − F (t)| < λ/

√
n) is independent of F ,

and that

P(sup |Fn(t)− F (t)| < λ/
√
n)→

∞∑

k=−∞
(−1)ke−2k2λ2

(n→∞) (5.1)

uniformly in λ.1

1 Notice that applying the Central Limit Theorem to the Bernoulli variables
1{Xn≤t}, we have only
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The three papers of Glivenko, Kolmogorov and Cantelli appeared (in this
order) in the same issue of the Giornale dell Istituto Italiano degli Attuari,
all in Italian, and with almost the same title. The paper [Kol33] of Kol-
mogorov also appears in his Selected Works ([KolII], pp. 139–146; comments
pp. 574–583).

Six years later, Smirnov [Smi39] studied the corresponding one-sided
bounds, showing for λ ≥ 0 that

P(sup(Fn(t)− F (t)) < λ/
√
n)→ 1− e−2λ2

(n→∞). (5.2)

Together, (5.1) and (5.2) form the basis for the well-known Kolmogorov-
Smirnov goodness-of-fit tests.

It is sometimes convenient to express probabilities of the above type in
terms of the “order statistics” of X1, . . . , Xn, which is the increasing sequence
ξ1 ≤ · · · ≤ ξn obtained by ordering (each realization of) X1, . . . , Xn.

From now on, we will consider uniform distribution on [0, 1], that is

F (t) =

⎧
⎪⎨

⎪⎩

0 t ≤ 0
t 0 < t < 1
1 t ≥ 1.

(5.3)

In this case, the numbers ξ1, . . . , ξn are called uniform order statistics. In this
note, we are interested in the behavior of

Qn(u, v) = P
(
∀ i ∈ {1, . . . , n} : ξi ≥

i− u
v

)
.

In this notation, Smirnov’s theorem reads2 Qn(λ
√
n, n) → 1− e−2λ2

.

P(|Fn(t) − F (t)| < λ/
√

n) → 1

2π

∫ λ/σ(t)

−λ/σ(t)

e−s2/2ds,

with σ(t) =
√

F (t)(1 − F (t)). In Kolmogorov’s theorem, |Fn(t) − F (t)| is re-
placed by its supremum over t, and the limit in the right-hand side is a universal
(independent of F ) function, of which Kolmogorov gave the first table of values

2 Notice that

Fn(t) =

⎧
⎪⎨

⎪⎩

0 t ∈ (−∞, ξ1)

i/n t ∈ [ξi, ξi+1) (1 ≤ i ≤ n − 1)

1 t ∈ [ξn, +∞)

thus we see (with (5.3)) that

P(sup(Fn(t) − F (t)) < λ/
√

n) = P

(
max

i
(

i

n
− ξi) < λ/

√
n

)
= Qn(λ

√
n, n)
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Refinements to (5.2) were given later in the range λ0 ≤ λ = O(n1/6) for
a fixed positive λ0 (e.g. Smirnov [Smi44], Lauwerier [Lau63]; see also Chap. 9
of [SW86]), in particular

Qn(λ
√
n) = 1− e−2λ2

(
1− 2λ

3n1/2
+O

(
λ4 + 1
n

))
. (5.4)

Let w = u+ v−n. Trivially Qn(u, v) = 0 when w ≤ 0 and Qn(u, v) = 1 when
u ≥ n (recall that 0 ≤ Xi ≤ 1 from the choice of F ). If u ≤ 1 and w > 0,
the exact formula Qn(u, v) =

w

v
(1 + u/v)n−1 was found by Daniels [Dan45].

Estimating Qn(u, v) when u > 1 is much more difficult, however there is an
exact formula

Qn(u, v) =
w

vn

∑

0≤j<u

(
n

j

)
(w + n− j)n−j−1(j − u)j

= 1− w

vn

∑

u<j≤n

(
n

j

)
(w + n− j)n−j−1(j − u)j .

(5.5)

The special case v = n of (5.5) is due to Smirnov [Smi44], and the general case
is due to Pyke [Pyk59]. The equivalence of the two expressions for Qn(u, v)
follows from one of Abel’s identities ([Rio68], p. 18, (13a)). The first is more
convenient when u is very small and fixed, while the second is more convenient
for larger u because all summands are positive.

Smirnov [Smi44] estimated Qn(λ
√
n, n) using (5.5) and Stirling’s formula

for k!, and Csáki [Csá74] used similar methods to show

Qn(α
√
n, n+ (β − α)

√
n) → 1− e−2αβ (n→∞).

for fixed α ≥ 0, β ≥ 0. Lauwerier [Lau63] and Penkov [Pen76], by con-
trast, started with (5.5) and used complex analytic methods to approximate
Qn(λ

√
n). Yet another approach is based on what are called “almost sure

invariance principles” or “strong approximation theorems” ([CR81], [Phi86]).
The strong Komlós-Major-Tusnády theorem [KMT75] implies

|Fn(t)− t− n−1/2Bn(t)| �
logn
n

(0 ≤ t ≤ 1)

with probability ≥ 1−O(1/n), where Bn(t) is a Brownian bridge process. The
order logn

n on the right side is also best possible [KMT75] (see also Chap. 4
of [CR81]). Since

P
(

sup
0≤t≤1

(Bn(t)− (at+ b)) ≤ 0
)

= 1− e−2b(a+b),
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the KMT theorem implies the uniform estimate

Qn(u, v) = O

(
1
n

)
+ 1− e−

2(u+O(log n))(w+O(log n))
n

= 1− e−2uw/n +O

(
(u+ w + logn) logn

n

)
.

(5.6)

This gives an asymptotic for Qn(u, v) in a wide range of u and w, but requiring
u

logn →∞ and w
logn →∞.

For the application to number theory in [For04a], we need sharper uni-
form bounds than (5.6). In particular, we need the bound Qn(u, v) = O(u/n)
uniformly for n ≥ 1, w = O(1) and 1 ≤ u ≤ n.

5.2 New estimates for uniform order statistics

Theorem 1. Uniformly in u > 0, w > 0 and n ≥ 1, we have

Qn(u, v) = 1− e−2uw/n +O

(
u+ w

n

)
,

i.e. |O
(
u+w
n

)
| ≤ const

(
u+w
n

)
where the constant is independent of u, v, n.

In addition we have the following useful approximation.

Corollary 1. Uniformly in u > 0, w > 0 and n ≥ 1, we have

Qn(u, v) =
2uw
n

(
1 +O

(
1
u

+
1
w

+
uw

n

))
.

In particular, when uw/n → 0, u → ∞ and w → ∞ as n → ∞, we see
that Qn(u, v) is asymptotic to 2uw/n. Starting with (5.5), a complicated
modification of the complex analytic method of Lauwerier [Lau63] can be used
to prove Theorem 1. This was carried out in the original version of [For04a],
and a sketch of the argument appears in [For04b].

Here we outline a new method based on the theory of random walks, full
details of which appear in [For06a]. Rather than work with (5.5), we reinter-
pret Qn(u, v) in terms of a random walk. Let Y1, · · · , Yn+1 be independent
random variables with exponential distribution, and let Wk = Y1 + · · · + Yk
for 1 ≤ k ≤ n + 1. By a well-known theorem of Rényi [Rén53], the vectors
(ξ1, . . . , ξn) and (W1/Wn+1, . . . ,Wn/Wn+1) have identical distributions. Sim-
ilarly, given that Wn+1 = v, the probability density function of the vector
(W1/v, . . . ,Wn/v) is identically n! on the set {(x1, . . . , xn) : 0 ≤ x1 ≤ · · · ≤
xn ≤ 1}. Therefore,

Qn(u, v) = P[ min
1≤i≤n

(Wi − i) ≥ −u |Wn+1 = v].
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Put Xi = 1 − Yi, so that the Xi have mean 0, variance 1 and Xi < 1 for
all i. Let

Si = X1 + · · ·+Xi, Ti = max(0, S1, . . . , Si) (i ≥ 0).

The sequence 0, S1, S2, . . . can be thought of as a recurrent random walk on
the real line, with Ti measuring the farthest extent to the right that the walk
has achieved during the first i steps. Setting

Rm(x, y) = P[Tm−1 < y | Sm = x],

we have
Qn(u, v) = Rn+1(n+ 1− v, u). (5.7)

If we label the point y as a barrier, then Rm(x, y) is the probability of stopping
after m steps at x without crossing the barrier.

In proving (5.1) in [Kol33], Kolmogorov used a relation similar to (5.7).
Specifically, let Y1, Y2, . . . , Yn be independent random variables with discrete
distribution

P[Yj = r − 1] =
e−1

r!
(r = 0, 1, . . .)

and let Zj = Y1+ · · ·+Yj for j ≥ 1. The variables Yi have mean 0 and variance
1. Kolmogorov proved that for integers u ≥ 1,

P(sup |Fn(t)− F (t)| ≤ u/n) =
n!en

nn
P

(
max

0≤j≤n−1
|Zj | < u,Zn = 0

)

= P
(

max
0≤j≤n−1

|Zj| < u |Zn = 0
)
.

Small modifications to the proof yield, for integers u ≥ 1 and for n ≥ 2, that

Qn(u, n) = P
(

max
0≤j≤n−1

Zj < u |Zn = 0
)
.

Let fm be the pdf (probability density function) for Sm (m = 1, 2, . . .). The
Central Limit Theorem for densities (e.g. Theorem 1 in §46 of [GK68]) implies
that for large m and |x| �

√
m, fm(x) ≈ (2πm)−1/2e−x

2/2m. However, there
are asymmetries in the distribution for |x| >

√
m, which can be seen using

the exact formula

fm(x) =

{
(m−x)m−1

em−x(m−1)! x ≤ m
0 x > m,

(5.8)

easily proved by induction on m.
Our principal tool for estimating Rn(x, y) is a reccurrence formula based

on the reflection principle for random walks. Suppose y ≥ 0 and y ≥ x. By
reflecting about the point y that part of the walk beyond the first crossing of
y, a recurrent random walk of n steps that crosses the point y and ends at
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the point x is about as likely as a random walk which ends at 2y − x after
n steps. This of course is inexact, since the steps of a random walk may not
be symmetric and the walk may not hit y exactly. The next Lemma 2 gives
a precise measure of the accuracy of the reflection principle for our specific
walk. For convenience, define

R̃n(x, y) = fn(x)Rn(x, y) = D[Tn−1 < y, Sn = x],

where the last expression stands for d
dxP[Tn−1 < y, Sn < x]. From the reflec-

tion principle we expect that R̃n(x, y) ≈ fn(x) − fn(2y − x).

Lemma 1. For a positive integer n ≥ 2, real y > 0, real x, and real a ≥ 1,

R̃n(x, y) =fn(x) − fn(y + a) +
∫ 1

0

n−1∑

k=1

R̃k(y + ξ, y)

(fn−k(a− ξ)− fn−k(x− y − ξ)) dξ.
(5.9)

Proof. Start with

R̃n(x, y) = fn(x) − fn(y + a) + fn(y + a)−D[Tn−1 ≥ y, Sn = x].

If Sn = y + a, then there is a unique k, 1 ≤ k ≤ n− 1, so that Tk−1 < y and
Sk ≥ y. Thus,

fn(y + a) =
n−1∑

k=1

D[Tk−1 < y, Sk ≥ y, Sn = y + a]

=
n−1∑

k=1

∫ 1

0

D[Tk−1 < y, Sk = y + ξ, Sn = y + a] dξ

=
n−1∑

k=1

∫ 1

0

R̃k(y + ξ, y)fn−k(a− ξ) dξ.

Similarly,

D[Tn−1 ≥ y, Sn = x] =
n−1∑

k=1

D[Tk−1 < y, Sk ≥ y, Sn = x]

=
n−1∑

k=1

∫ 1

0

R̃k(y + ξ, y)fn−k(x − y − ξ) dξ.

In Lemma 1, we choose a = y − x − b(n, y − x), where b = b(n, z) is the
unique solution of fn(−z) = fn(z − b) ith −2 ≤ b ≤ z − 1 (b(n, z) exists
and is unique since fn(x) is unimodular with maximum at x = 1). This makes
|fn−k(a−ξ)−fn−k(x−y−ξ)| small, at least when k is small. Also, R̃k(y+ξ, y)
should be small, since it measures the likelihood of a walk staying to the left
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of y for n − 1 steps and jumping over y on the n-th step. Suppose n ≥ 10,
0 ≤ y ≤ n

10 , and y ≤ x ≤ y+1. We have fn(1+x) ≤ fn(1−x) for x ≥ 0, thus
when 0 ≤ ξ ≤ 1 and 1 ≤ j ≤ n − 1, fj(5 − ξ) ≤ fj(x − y − ξ). By Lemma 1
with a = 5,

R̃n(x, y) ≤ fn(x) − fn(y + 5) =
∫ y+5

x

t− 1
n− tfn(t) dt�

(y + 1)fn(y)
n

·

Together with estimates for |fn−k(a − ξ) − fn−k(x − y − ξ)| obtained from
(5.8), the integral-sum on the right of (5.9) can be shown to be small. We
conclude that, with small error,

Rn(x, y) ≈ 1− fn(2y − x− b)
fn(x)

.

The desired asymptotic forQn(u, v) now follows from (5.8) and the asymptotic
b = b(n, z) = −2 +O( (z+1)2

n−1 ).
We note that when the steps in a recurrent random walk have an arbi-

trary continuous or lattice distribution, one can define a quantity analogous
to Rn(x, y). The same argument provides an analogous formula to (5.9) and
an analog of Theorem 1, namely

Rm(y − z, y) = 1− e−2yz/n +O

(
y + z + 1

n

)
(0 ≤ y �

√
n, 0 ≤ z �

√
n),

can be shown to hold for a very general class of distributions (see [For06b]).

5.3 Number theory applications

Hardy and Ramanujan initiated the study of the statistical distribution of
the prime factors of integers in their ground-breaking 1917 paper [HR17], and
much work has been done on this topic since then. Write an arbitrary in-
teger n = p1p2 · · · pk, where the pi are primes and p1 ≤ · · · ≤ pk. Roughly
speaking, the quantities gj = log log pj+1− log log pj behave like independent
exponentially distributed random variables. Of course the gj have discrete
distributions, but the distributions approach the exponential distribution as
j →∞. It is well-known that a typical integer n has about log log b− log log a
prime factors in an interval (a, b] (see e.g. Chap. 1 of [HT88]), and the prob-
ability that n has at least one prime factor in (a, b] is approximately3

1−
∏

a<p≤b
(1− 1/p) = 1− log a+O(1)

log b
.

3 p will always denote a prime number;
∏

a<p≤b will be a product on primes,∑
a<p≤b a sum on primes
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One can also consider integers with a fixed number of prime factors and
examine the statistics

(ξ1, · · · , ξm), ξi =
log log pj+i − log log pj
log log pk − log log pj

, m = k − 1− j.

With k and j fixed, the numbers ξ1, . . . , ξm behave much like uniform order
statistics. This means that for “nice” functions f : [0, 1]m → R, the average
of f(ξ1, . . . , ξm) over n which are the product of k primes is about

m!
∫

0≤x1≤···≤xm≤1

f(x1, . . . , xm) dx1 · · · dxm.

The approximation gets better as j →∞.
These phenomena can be explained by considering the following “model”

of the integers (known as the Kubilius model). Let {Xp : p prime} be in-
dependent Bernoulli random variables so that P(Xp = 0) = 1 − 1

p and
P(Xp = 1) = 1

p . Thus Xp models the event that a random integer is divisible
by p. By an elementary estimate,

∑

a<p≤b
E(Xp) =

∑

a<p≤b

1
p

= log log b− log log a+O(1/ log a).

(The log log, rather than log, are due to the fact that we sum only on primes.)
For more about probabilistic number theory, the reader may consult the ex-
cellent monographs of Elliott [Ell79].

Questions about the distribution of all divisors of integers are much more
difficult, since the corresponding random variables {Xd : d ≥ 1} are not at all
independent (e.g. X6 = 1 =⇒ X3 = 1). Consider the problem of estimating
ε(y, z), the probability that a random integer has a divisor d satisfying y <
d ≤ z. More precisely,

ε(y, z) = lim
x→∞

#{n ≤ x : ∃ d|n, y < d ≤ z}
x

·

Similarly, let εr(y, z) be the probability that a random integer has exactly r
divisors in the interval (y, z]. Interest in bounding ε(y, z) began in the 1930s
with a paper by Besicovitch [Bes34], who proved that lim infy→∞ ε(y, 2y) = 0.
A year later, Erdős [Erd35] improved this to limy→∞ ε(y, 2y) = 0. Later work,
especially by Erdős [Erd36], [Erd60] and Tenenbaum [Ten84], focused on de-
termining the rate at which ε(y, 2y) → 0 and on bounding ε(y, z) for more
general y, z. Chapter 2 of the book [HT88] contains a thorough exposition on
such bounds and their applications. The main theorem of [For04a] is a determi-
nation of the order of magnitude of ε(y, z) for all y, z; that is, bounding ε(y, z)
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between two constant multiples of a smooth function of y, z. In particular, we
show that for some positive constants c1 and c2,

c1
(log y)δ(log log y)3/2

≤ ε(y, 2y) ≤ c2
(log y)δ(log log y)3/2

(5.10)

where δ = 1 − 1 + log log 2
log 2

= 0.08607 . . .. A relatively short, complete proof

of this special case is given in [For06c].
Concerning the behavior of εr(y, z), Erdős conjectured in [Erd60] that

lim
y→∞

ε1(y, 2y)
ε(y, 2y)

= 0.

The ratio
εr(y, z)
ε(y, z)

can be considered as the conditional probability that a

random integer contains exactly r divisors in (y, z] given that it has at least

one such divisor. In [Ten87] a lower bound
εr(y, 2y)
ε(y, 2y)

≥ c3f(y) was given, where

f(y) → 0 very slowly as y → ∞. Erdős conjecture is disproved in [For04a],
where the order of εr(y, z) is determined for a wide range of y, z. In particular,
for any r ≥ 1 and any constant c > 1,

lim inf
y→∞

εr(y, cy)
ε(y, cy)

> 0.

Also,
εr(y, z)
ε(y, z)

→ 0 (z/y→∞),

confirming a conjecture of Tenenbaum [Ten87].
We now say a few words about the proofs. Let m be the product of the

distinct prime factors of n which are ≤ y. First, ε(y, 2y) can be estimated in
terms of ∑

m

L(m)
m

, L(m) = μ{u : ∃ d|m, eu < d ≤ 2eu},

where μ denotes Lebesgue measure. The quantity L(m) is a kind of measure
of the global distribution of the divisors of m. If m = p1 · · · pk, then

L(m) ≤ min
0≤h≤k

2k−h log(2p1 · · · ph).

Most of the time, we expect log(2p1 · · · ph) = O(log ph), so

L(m) ≈ O
(

2k exp{ min
1≤h≤k

(−h log 2 + log log ph)}
)
.

Putting ξi =
log log pi
log log y

, then ξ1, . . . , ξk behave much like uniform order statis-

tics. Thus, upper bounds for averages of L(m) depend on the size of Qk(u, v)
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with v =
log log y

log 2
. Utilizing Theorem 1 (actually, the weaker bound Qn(u, v)

= O( (u+1)(w+1)2

n ) proved in [For04a] suffices) leads to the upper bound in
(5.10). Furthermore, the bulk of the contribution comes from numbers n with

k =
log log y

log 2
+O(1). This implies that most integers which have a divisor in

(y, 2y] have about
log log y

log 2
prime factors ≤ y. By contrast, most integers n

have about log log y prime factors ≤ y.
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[Erd36] Erdős, P.: A generalization of a theorem of Besicovitch. J. London Math.
Soc., 11, 92–98 (1936)
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[KMT75] Komlós, J., Major, P., Tusnády, G.: An approximation of partial sums
of independent RV’s and the sample DF. I. Z. Wahrscheinlichkeitstheorie
und Verw. Gebiete, 32, 111–131 (1975)

[Kol33] Kolmogorov, A.N.: Sulla determinazione empirica di una legge di dis-
tribuzione (On the empirical determination of a distribution law). Giorn.
Ist. Ital. Attuar., 4, 83–91 (1933)

[KolII] Kolmogorov, A.N.: Selected works, vol. II: Probability theory and math-
ematical statistics (with a preface by Aleksandrov, P.S.; translated from
the Russian by Lindquist, G.; translation edited by Shiryayev, A.N.).
Kluwer Academic Publishers Group, Dordrecht (1992)

[Lau63] Lauwerier, H.A.: The asymptotic expansion of the statistical distribution
of N. V. Smirnov (German). Z. Wahrscheinlichkeitstheorie und Verw.
Gebiete, 2, 61–68 (1963)

[Pen76] Penkov, B.I.: Asymptotic distribution of Pyke’s statistics (Russian). Teor.
Verojatnost. i Primenen., 21, 378–383 (1976). English translation in: The-
ory of probability and its applications, 21, 370–374 (1976)
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In 1933, Andrëı Kolmogorov published the fundamental result of non-
parametric statistics, which is a theorem on the convergence of empirical mea-
sure towards theoretical measure, upon which depends the famous Kolmogorov
test. Since then, research on this topic has expanded considerably — see, for
example, Dudley (1976, 1997), Van der Vaart (1989, 2000), Deheuvels and
Mason (1992), Van der Vaart and Wellner (1996).

At the beginning of the 1950’s, Kolmogorov turned his attention to infor-
mation theory and its relation with complexity theory, the theory of functions,
and statistical estimation. It was at this time that he introduced the very
deep notion of ε-entropy, which has since played a fundamental rôle in non-
parametric and semi-parametric statistics. We will present all these concepts,
and give a survey of the current state of knowledge.

In this article, we will only assume a basic knowledge of the theory of func-
tions and functional analysis, probability theory and mathematical statistics.
It is intended for researchers and master’s degree students who wish to gain
familiarity with the general problems of the theory of non-parametric estima-
tion, and to get an idea of the influence of A. N. Kolmogorov’s ideas on the
development of statistical estimation.

6.1 Overview of the problem: parametric
and non-parametric statistics

Every statistician comes across the following general situation: one observes
a certain random variable X , which takes random values in a known set X
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following a certain distribution (or probability law) P ∈ P . The distribution
P is unknown and the problem is to estimate it; all information available to
the statistician lies in the observed value of X and in the set of all a priori
possible laws P .

Let us consider the situation where a statistician observes the indepen-
dent random variables X1, . . . , Xn which obey the same law P ∈ P . One can
often assume that the set P is embedded in a certain metric space. The case
which is the most well-understood is when P is a “smooth” set in a Euclidean
space R

s of dimension s: this case is referred to as the parametric problem —
see, for example, Halmos (1950), Kolmogorov (1950, 1951), Lehmann (1983),
Voinov and Nikulin (1993, 1996), Le Cam and Yang (1999), Bosq and Lecoutre
(1987), etc.

Unfortunately, in practice, one rarely meets statistical problems in which
the a priori knowledge about the unknown law can be interpreted in this
manner, and in fact, the most interesting case occurs when the set P is infinite.
This is known as the non-parametric problem.

In order to obtain a reasonable method of statistical estimation in this case,
it is necessary to approximate the given problem with a different problem in
which the set P is finite. The accuracy of this approximation is expressed in
terms of Kolmogorov’s ε-entropy and the ε-capacity of the parametric set P .
Here, we will focus on the influence of Kolmogorov’s concept of ε-entropy on
the development of functional estimation theory.

Roughly speaking (details will be given presently), in order to define the
Kolmogorov ε-entropy of the parametric set P , which we denote H(ε,P), we
assume that P is equipped with a metric (a distance), which is suited to the
problem under consideration: H(ε,P) is by definition the logarithm of the
minimal number of balls of radius ε needed to cover P . If one takes successive
values ε = εn in such a way that3

εn �
√
H(εn,P)

n
, (6.1)

then the rate at which εn tends to 0 in (6.1) will determine, in a certain sense,
the accuracy of the statistical estimation. (This is a delicate problem.)

There has been much research on this subject. Functional estimation is
now a well-developed theory and has its origins in the work of Le Cam (1973,
1986), Khas’minskii (1978), Ibragimov and Khas’minskii (1981), Birgé (1983),
which gave rise to several important results. For general results on this ques-
tion, we refer the reader to Assouad (1983), Birgé and Massart (1998), Bre-
tagnolle and Huber (1979), Ceci and Mazliak (2004), Dudley (1976, 1997),
Hall, Huber, Owen and Coventry (1994), Huber (1997), Le Cam and Yang
(1999), Nikulin and Solev (2002), Van der Geer (1993, 1995), Van der Vaart

3 un � vn means that un/vn and vn/un are bounded for all n greater than a certain
n0
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(2000), Wong and Shen (1995), Shen (1997), Yatrakos (1985), Yu (1997), etc.
(See the bibliography at the end of this chapter.)

6.2 Notations and definitions

6.2.1 Hidden laws and estimators

Let P = {Pθ : θ ∈ Θ} denote a family of probability measures Pθ on a
measurable space {X ,B}, which are dominated by a σ-finite measure μ.4 We
denote by

fθ =
dPθ
dμ

the density of Pθ with respect to μ,

and

F =
{
f : f =

dP

dμ
, P ∈ P

}
(6.2)

the set of densities fθ. Suppose that the map θ : θ(Pθ) = θ is a bijection from
P to Θ. We thus have

Θ = {θ : θ = θ(P ), P ∈ P} .

We shall use the same notation for the function θ : θ(fθ) = θ, defined on F .
(Any ambiguity should be clear from the context.)

On the probability space {X ,B,P}, we consider a sequence of independent
random variables X1, . . . , Xn, . . . which obey the same probability law P ∈ P ,
with density f ∈ F . Let f̂n = f̂n(X1, . . . , Xn) be an estimator of the unknown
density f ∈ F , which is constructed by means of the observations X1, . . . , Xn.
We denote by l(f̂n, f) the loss function5 of the estimator f̂n, and we define
the risk function:

R(f̂n) = sup
f∈F

Ef l(f̂n, f)

4 Let us recall some definitions. A measure μ on {X ,B} is said to be σ-finite if
X is a countable union X = ∪nAn where, for all n, An ∈ B and μ(An) < +∞.
The family {Pθ : θ ∈ Θ} is said to be dominated by μ if, for all θ ∈ Θ, Pθ is
absolutely continuous with respect to μ (in other words, if for all A ∈ B such
that μ(A) = 0, we have Pθ(A) = 0): which is denoted Pθ � μ. The theorem
of Lebesgue-Radon-Nikodym guarantees the existence of a function fθ , which is
integrable with respect to the mesure μ, such that dPθ = fθdμ. This function is
denoted by fθ = d Pθ

d μ
, and is called the Lebesgue-Radon-Nikodym derivative −

or density − of Pθ with respect to μ
5 Let f̂n = f̂n(X1, . . . , Xn) : R

n → F denote a point-wise estimator of the pa-
rameter f (f ∈ F). Every positive function l(·, ·) : F × F → R

1
+ is called a loss

function of the estimator f̂n. Loss functions enable us to measure the quality of
estimators. This assumes that the observed value l(f̂n, f) of l(·, ·) represents for
every f the loss which results from using f̂n instead of f . It is natural to assume
that l(f, f) = 0
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of the estimator f̂n with respect to the loss function l(·, ·). Here, Ef denotes
the expectation which is calculated when the Xi obey the density law f . The
problem is to construct optimal (minimax) operators which minimize the risk
R(f̂n):

Rn(F) = inf
f̂n

R(f̂n),

or asymptotically optimal (asymptotically minimax) estimators, which satisfy
the following relation:

lim n→∞
R(f̂n)
Rn(F)

= 1.

In practice it is perfectly good enough to have estimators which are asymp-
totically minimax, or even estimators which satisfy the following condition:

lim n→∞
R(f̂n)
Rn(F)

<∞.

For more detailed background on statistical concepts, we refer the reader to
Lehmann (1983), Voinov and Nikulin (1993), or Van der Vaart (2000), for
example.

Let Pn denote the empirical measure, based on the samples X1, . . . , Xn:

Pn(A) =
1
n

n∑

j=1

δXj (A), A ∈ B,

where

δX(A) =
{

1 if X ∈ A,
0 if X /∈ A, (6.3)

from which it follows that for all ϕ:
∫
ϕdPn =

1
n

n∑

j=1

ϕ(Xj).

In the following, we shall use the notations:

Pnϕ =
∫
ϕdPn, Pϕ =

∫
ϕdP, νn(ϕ) = Pnϕ− Pϕ

for all ϕ ∈ L1(dP ). If the function ϕ is bounded: a ≤ ϕ ≤ b, then the accuracy
of the approximation of Pϕ by the estimator Pnϕ is given by Hoeffding’s
inequality:

P {νn(ϕ) > y} ≤ exp
{
− 2ny2

(b − a)2

}
,

whose bilateral version has the following form:

P {|νn(ϕ)| > y} ≤ 2 exp
{
− 2ny2

(b− a)2

}
. (6.4)
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In particular, if we take ϕ(x) = δx(A), where A is fixed, and a = 0, b = 1,
we have:

P {|Pn(A)− P (A)| > y} ≤ 2 exp{−2ny2}. (6.5)

We now state the problem, which is to construct the estimator P̂n ∈ P of
the unknown law P , and hence of the estimator θ̂n = θ(P̂n) of the unknown
parameter θ, using the fact that we know a priori that P ∈ P . One should
expect that:

1. the method of constructing of a reasonable estimator depends on the
parametrising set P and the way that the quality of the estimator is
measured;

2. in certain cases, the estimator P̂n may be better than the empirical esti-
mator Pn;

3. the quality of the best estimator of this kind depends on the “richness”
of the family P .

One can measure the “richness” of the family P using Kolmogorov’s ε-entropy,
which we define presently.

6.2.2 ε-entropy, and ε-capacity

Let (Y, ρ) denote a metric space, equipped with a distance function ρ. A subset
B ⊂ Y is said to be totally bounded, if for all ε > 0 there exists a finite set
Tε ⊂ Y, which is called an ε-covering of B, such that for all y ∈ B,

min
x∈Tε

ρ(y, x) ≤ ε.

(In other words, B is covered by the closed balls of radius ε whose centers are
points of Tε, which are finite in number.)

Definition 1. Let B denote a totally bounded subset of the metric space (Y, ρ)
and let N(ε,B) = N(ε, ρ,B) denote the smallest number of closed balls of
radius ε which cover B. The quantity

H(ε,B) = H(ε, ρ,B) = ln N(ε, ρ,B)

is called the Kolmogorov ε-entropy of the set B.

Definition 2. A set of points x1, . . . , xm of Y is called ε-distinguishable if for
all i, j such that i �= j, ρ(xi, xj) > ε. For B ⊂ Y, let N (ε,B) = N (ε, ρ,B)
denote the largest number m for which there exists a set of ε-distinguishable
points x1, . . . , xm in B. The quantity

C(ε,B) = C(ε, ρ,B) = lnN (ε,B)

is called the ε-capacity of the set B.
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It is obvious that

N (2ε,B) ≤ N(ε,B) ≤ N (ε,B), which gives C(2ε,B) ≤ H(ε,B) ≤ C(ε,B).
(6.6)

The properties of ε-entropy and ε-capacity are well presented in the book by
Kolmogorov and Tikhomirov (1959).

The function H(ε, ρ,P) describes in an adequate fashion (for statistical
applications) the “richness” of the parametrising set P (on condition that
there is a good choice of distance function ρ).

6.3 The Kullback-Leibler distance
and the maximum likelihood estimator

Let P and G be two probability measures, whose densities are respectively f
and g with respect to the measure μ. We consider the Kullback-Leibler distance
between P and G (or between f and g):

K(P,G) = K(f, g) =
∫

f>0

ln
(
f

g

)
f dμ =

∫

f>0

ln (f/g) dP. (6.7)

(One can verify that K(P,G) ∈ [0,+∞]. One does not have K(P,G) =
K(G,P ), but the tradition is to call it a distance nonetheless.) We wish to
estimate the unknown density f of the probability law P ∈ P , using the inde-
pendent observations X1, . . . , Xn, . . . which obey this law P ∈ P , and using
the fact that we already know that f ∈ F , where F is a class of densities:

F =
{
f : f =

dP

dμ
, P ∈ P

}
. (6.8)

We denote
Kn(g, f) =

∫

f>0

ln (f/g) dPn. (6.9)

The approach suggested by R. Fisher for finding the estimator f̂n, is to mini-
mize the functional K(f, ·) given the empirical data. More precisely, the esti-
mator f̂n is the point in F where the functional Kn(f, ·) reaches its minimum:

∫

f>0

ln
(
f/f̂n

)
dPn ≤

∫

f>0

ln (f/g) dPn for all g ∈ F . (6.10)

In this way, we have chosen a method for measuring the average risk of using
the density g when the real density is equal to f (in the present case the
average risk is given by K(f, g)), and then we have taken the density f̂n ∈ F
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which minimizes the average risk given the empirical data, i.e. the quantity
Kn(f, f̂n).

The estimator f̂n, given by (6.10), is called the maximum likelihood es-
timator of f because it maximizes, over F , the likelihood function L (as a
function of g):

L(g;X1, . . . , Xn) =
n∏

j=1

g(Xj), max
g∈F

L(g;X1, . . . , Xn) = L(f̂n;X1, . . . , Xn).

(6.11)
The Hellinger distance H(P, P∗) between two probability measures P and P∗
is defined by the formula

H2(P, P∗) =
1
2

∫ (√
dP

dμ
−

√
dP∗
dμ

)2

dμ, (6.12)

where μ is a measure dominating the measures P and P∗. The quantity
H(P, P∗) does not depend on the choice of the measure μ. If the measure μ is
fixed, we will write (whenever it is convenient) h2(f, f∗) instead of H2(P, P∗),
where f, f∗ denote the densities of the measures P, P∗. We observe that

h2(f, f∗) = h2
μ(f, f∗) = 1−

∫ √
f∗(x)/f(x)f(x) dμ. (6.13)

6.4 The entropy of a partition and Fano’s inequality

6.4.1 The entropy of a partition

Let τ = {A1, . . . , AN} be a measurable partition of the probability space
{Ω,B, P}:

N
∪
j=1

Aj = Ω, Ai ∩Aj = ∅ (i �= j), Aj ∈ B.

The quantity

H(τ) = −
N∑

j=1

P (Aj) lnP (Aj)

is called the entropy of the partition τ , the convention being that the terms
in the sum for which P (Aj) = 0 are zero. It is clear6 that

0 < −
N∑

j=1

P (Aj) lnP (Aj) ≤ lnN. (6.14)

6 Maximize −
N∑

j=1

xj ln xj subject to the constraint
N∑

j=1

xj = 1
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Suppose that τ∗ = {A∗
1, . . . , A

∗
N∗} is a finer partition than the partition τ :

in other words, each A∗
i is included in an Aj . We will denote this relation:

τ∗ � τ . Let, for example, Ak = ∪
j∈Jk

A∗
j .

Let us recall that if we are given a convex function ϕ, a probability law
P on a measurable space {X ,B}, and a measurable function ξ, then Jensen’s
inequality holds: ∫

X
(ϕ ◦ ξ) dP ≥ ϕ

(∫

X
ξ dP

)
.

One deduces, in particular, that

P (Ak) lnP (Ak) ≥
∑

j∈Jk

P (A∗
j ) lnP (A∗

j ),

which shows that the entropy of a partition finer than τ is greater than the
entropy of τ :

H(τ) ≤ H(τ∗) if τ∗  τ. (6.15)

6.4.2 Conditional entropy

If P (B) > 0, the quantity

HB(τ) = −
N∑

j=1

P (Aj |B) lnP (Aj |B)

is called the conditional entropy (on observing B).
If τ = {A1, . . . , AN}, let σ(τ) denote the system of subsets:

B = ∪
j∈J

Aj , J ⊂ {1, . . . , N}. (6.16)

6.4.3 The entropy of a random variable

It is easiest to imagine the case when τ is defined by a random element Y and
by a partition τ∗ = {A∗

1, . . . , A
∗
N} of the space of possible values of Y , i.e.

Ai = {Y ∈ A∗
i }.

In this case σ(τ) ⊂ σ(Y ), where σ(Y ) is the smallest σ-algebra with respect to
which the function Y is measurable. If Y takes values in a finite or countable
set, and if τ is the finer of the above partitions, then by definition

H(Y ) = H(τ).
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6.4.4 The quantity of information

Suppose that we have two partitions:

τ1 = {B1, . . . , BN} and τ2 = {D1, . . . , Dr},

and let

τ = τ1 ∨ τ2 =
{
Ai,j = Bi ∩Dj s .t. P (Ai,j) > 0 (1 ≤ i ≤ N, 1 ≤ j ≤ r)

}
.

We shall write H(τ1, τ2) instead of H(τ1 ∨ τ2). The quantity of information of
the partition τ1 with respect to τ2 is denoted by

I(τ1, τ2) =
∑

i,j

P (Aij) ln
P (Aij)

P (Bi)P (Dj)
· (6.17)

Observe that

I(τ1, τ2) = H(τ1) +H(τ2)−H(τ1, τ2) = I(τ2, τ1). (6.18)

By Jensen’s inequality

I(τ1, τ2) ≤ I(τ∗1 , τ∗2 ), if τ∗1  τ1 and τ∗2  τ2.

Let X,Y denote two random elements defined on a probability space. Let

I(X,Y ) = sup
τ1,τ2

I(τ1, τ2) (6.19)

denote the quantity of information contained in X with respect to Y , where
the supremum is calculated over the set of all partitions τ1, τ2 satisfying the
conditions: σ(τ1) ⊂ σ(X), σ(τ2) ⊂ σ(Y ). The supremum I(X,Y ) is equal to

I(X,Y ) =
{
K (PX,Y , PX × PY ) if PX,Y � PX × PY
∞ otherwise (6.20)

where PX,Y is the probability law of the vector (X,Y ), PX , PY the probability
laws of the random elements X,Y (where we recall that the relation μ � ν
means that the measure μ is absolutely continuous with respect to the mea-
sure ν). We observe that (6.20), unlike (6.18), correctly defines the quantity
I(X,Y ) even in the case where the quantities H(X), H(Y ) are infinite.

6.4.5 Connection between the quantity of information
and the Kullback-Leibler distance

We will need to know certain properties of the quantity I(X,Y ) in the par-
ticular case when the probability law PY of the random variable Y is uniform
over the finite set Y = {1, ..., N}. Let us denote this law by ν.
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Let {fy, y ∈ Y} be the family of densities (with respect to a measure μ
on X ) of probability laws Pfy on a measurable space {X ,B}. Suppose that
(Y,X) is a random element chosen in ΓN = Y × X according to the law:

PY,X{J ×A} = P {Y ∈ J,X ∈ A} =
1
N

∑

y∈J
Pfy{X ∈ A}.

Let us calculate the density of the probability law PY,X with respect to the
measure ν × μ on ΓN :

dPY,X
d (ν × μ)

(y, x) =
1
N
fy(x).

Therefore

I(Y,X) =
1
N

N∑

j=1

∫
fj(x) ln

⎛

⎜⎜⎝
fj(x)

1
N

N∑
i=1

fi(x)

⎞

⎟⎟⎠ dμ(x) =
1
N

N∑

j=1

K
(
fj , f

)
,

(6.21)
where

f =
1
N

N∑

i=1

fi(x).

If g is the density (with respect to the measure μ) of a probability law, we
thus have

1
N

N∑

j=1

∫
fj(x) ln

⎛

⎜⎜⎝
g(x)

1
N

N∑
i=1

fi(x)

⎞

⎟⎟⎠ dμ(x) =
∫
f(x) ln

(
g(x)
f(x)

)
dμ(x)

= −K
(
f, g

)
≤ 0,

(6.22)

and we therefore obtain

I(Y,X) ≤ I(Y,X) +K
(
f, g

)
=

1
N

N∑

j=1

∫
fj(x) ln

(
fj(x)
g(x)

)
dμ(x)

=
1
N

N∑

j=1

K (fj , g) .

(6.23)

It follows from (6.21) and (6.23) that

I(Y,X) = inf
g

1
N

N∑

j=1

K (fj , g) . (6.24)
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Let us now consider the case where X = (X1, . . . , Xn) is a vector whose coor-
dinates Xi take values in a measurable space {X∗,B∗}, and are conditionally
independent given Y = y:

fy(x) =
n∏

j=1

gy(xj) = g(n)
y (x), x = (x1, . . . , xn), xj ∈ X∗,

x ∈ X = Xn
∗ , dμ(x) = dμ∗(x1)× . . .× dμ∗(xn).

(6.25)

Here, μ∗ is a measure on {X∗,B∗}, and {gy, y ∈ Y} is the family of probability
densities (with respect to the measure μ∗) on the measurable space {X∗,B∗}.

By (6.24), for each probability law Q with density q with respect to μ∗ we
have:

I(Y,X) ≤ 1
N

N∑

j=1

K
(
g
(n)
j , q(n)

)
=
n

N

N∑

j=1

K (gj , q) .

By choosing

q(x) = g(x) =
1
N

N∑

i=1

gi(x),

we obtain

I (Y, (X1, . . . , Xn)) ≤ nI(Y,X1) = n inf
q

1
N

N∑

j=1

K (gj, q) . (6.26)

Let q be the density of a probability law. We will call a K-ball with center q
and radius r the set of densities (with respect to the measure μ):

U(q, r) = {f : K(f, q) ≤ r} . (6.27)

Let U(q, r) be a K-ball of minimal radius which contains F . We denote by
τ(F) its radius. Relation (6.26) gives the following estimate:

I(Y,X) ≤ nτ(F). (6.28)

If X,Y are random elements with discrete probability laws we will use the
following notation:

H(Y |X) =
∑

x

HX=x(Y )P{X = x}. (6.29)

It is clear that
I(X,Y ) = H(Y )−H(Y |X). (6.30)

6.4.6 Fano’s inequality

Let θ be a random element, which takes its values in a finite set Θ =
{θ1, . . . , θN}, and let θ̂ = ψ(X) ∈ Θ be the estimator of θ given the ob-
servation X .
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Lemma 1 (Fano’s inequality). The following inequality holds:

P{θ �= θ̂} ≥ H(θ)
ln(N − 1)

− I(θ,X) + ln 2
ln(N − 1)

· (6.31)

Proof. Let
B = {θ �= ψ}, ψ = ψ(X).

Then

Hψ=θk
(θ) = −

∑

j �=k
P{θ = θj |ψ = θk} lnP{θ = θj |ψ = θk}−

−P{θ = θk|ψ = θk} lnP{θ = θk|ψ = θk} =

= −P{B|ψ = θk}
∑

j �=k

P{θ = θj |ψ = θk}
P{B|ψ = θk}

ln
P{θ = θj |ψ = θk}
P{B|ψ = θk}

−

−P{B|ψ = θk} lnP{B|ψ = θk} − P{B|ψ = θk} lnP{B|ψ = θk}.

Since (see (6.14))

−P{B|ψ = θk} lnP{B|ψ = θk} − P{B|ψ = θk} lnP{B|ψ = θk} ≤ ln 2

and

−
∑

j �=k

P{θ = θj |ψ = θk}
P{B|ψ = θk}

ln
P{θ = θj |ψ = θk}
P{B|ψ = θk}

≤ ln(N − 1),

then

P (B|ψ = θj) ≥
Hψ(X)=θj

(θ)− ln 2
ln(N − 1)

,

which implies that

P (B) =
N∑

j=1

P (B|ψ = θj)P{ψ = θj} ≥
H(θ|ψ)− ln 2

ln(N − 1)
·

If we replace H(θ|ψ(X)) by H(θ)− I(θ, ψ(X)) (see (6.30)), we get

P (B) ≥ H(θ)
ln(N − 1)

− I(θ, ψ(X)) + ln 2
ln(N − 1)

,

from which we obtain (6.31), after applying the inequality

I(θ, ψ(X)) ≤ I(θ,X).

�
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6.5 The lower bound for the minimax risk

Consider independent random variablesX1, . . . , Xn taking values in a measur-
able space {X ,B}, with the same probability law P ∈ P with density f with
respect to the measure μ. Let X denote the random vector X = (X1, . . . , Xn).
Suppose that we have chosen a metric d(P,Q) to measure the proximity of
the laws P and Q. If f and q denote the densities of P and Q with respect to
the fixed measure μ, we will also write d(f, q) = d(P,Q).

6.5.1 The case where the set of densities is finite

First of all let us suppose that f ∈ F where F is finite: F = {f1, ..., fN },
where the points fi are ε-distinguishable: d(fi, fj) > ε (i �= j).

The problem is to construct an estimator f̂n for the unknown density f . For
θ ∈ {1, . . . ,N}, let θ(f) denote the index of the unknown density f : f = fθ.
Let f̂n = f̂n(X1, . . . , Xn) be an estimator of the unknown density f , taking
values in F , and let θ̂n = θ(f̂n) be its index. Suppose that θ̂n = ψ(X) is an
estimator for θ = θ(f).

We define the following loss function:

l∗(f̂n, f) =
{

0 if f̂n = f,

1 if f̂n �= f.

The accuracy of the estimate is therefore measured by the risk function

R∗(f̂n) = R∗(θ̂n) = max
f∈F

Pf{θ(f) �= θ̂n}.

Suppose that (θ,X) is an element in Γn = {1, ...,N} × X chosen randomly
according to the probability law Pθ,X :

Pθ,X{J ×A} = P {θ ∈ J,X ∈ A} =
1
N

∑

θ∈J
Pfθ
{X ∈ A}.

It is clear that

R∗(f̂n) =R∗(θ̂n) = max
f∈F

Pf{θ(f) �= θ̂n} ≥
1
N

∑

θ

Pfθ
{θ �= θ̂n}

=Pθ,X{θ �= θ̂n},

which, by Fano’s inequality, gives:

R∗(θ̂n) ≥ H(θ)
ln(N − 1)

− I(θ,X) + ln 2
ln(N − 1)

=
lnN

ln(N − 1)
− I(θ,X) + ln 2

ln(N − 1)

≥ 1− I(θ,X) + ln 2
ln(N − 1)

·
(6.32)
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It therefore follows from (6.28) that

R∗(f̂n) = R∗(θ̂n) ≥ 1− nτ(F) + ln 2
ln(N − 1)

· (6.33)

Now let us consider another loss function generated by a function l which
is a positive increasing function on [0,∞[. The losses caused by using the
estimator f̂n, when f is the true density, will be measured by l

(
d(f̂n, f)

)
.

Therefore, since

R(f̂n) = sup
f∈F

Ef l
(
d(f̂n, f)

)
≥ l(ε/2) sup

f∈F
Pf{f̂n �= f} = l(ε/2)R∗(f̂n),

we obtain the following lower bound for the minimax risk R(f̂n):

R(f̂n) ≥ l(ε/2)
(

1− nτ(F)
ln(N − 1)

− ln 2
ln(N − 1)

)
. (6.34)

6.5.2 The general case

Now let us consider the general case: we no longer assume that the set F is
finite but totally bounded with respect to the metric d. Recall that this means
that for every ε > 0, there exists a finite set of densities, Tε, such that

F ⊂
⋃

g∈Tε

V (g, ε)

where V (g, ε) is the ball with center g and radius ε for the metric d.
We consider a finite subset F∗ = {f1, . . . , fN } ⊂ F , which only contains

points which are ε-distinguishable (i.e. d(fi, fj) > ε when i �= j), and chosen
in such a way that for every point q ∈ F \ F∗, we have:

min
f∈F∗

d(f, q) ≤ ε. (6.35)

We consider an estimator f̂n = f̂n(X1, . . . , Xn) ∈ F with unknown density f .
Using f̂n, we will construct a new estimator f̂∗n ∈ F∗ such that

d(f̂∗n , f̂n) ≤ d(f, f̂n), f ∈ F∗. (6.36)

So,
if f ∈ F∗ and d(f, f̂n) ≥ ε/2, then f �= f̂∗n.

It is clear that

R(f̂n) = R(f̂n,F) = sup
f∈F

Ef l
(
d(f̂n, f)

)
≥ sup

f∈F∗
Ef l

(
d(f̂n, f)

)

≥ l(ε/2) sup
f∈F∗

Pf

(
d(f̂n, f) ≥ ε/2

)
.

(6.37)
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For every f ∈ F∗, the event {d(f̂n, f) ≥ ε/2} coincides with the event {f̂∗n �=
f}. Therefore, by applying (6.37) and (6.34) (to the finite set F∗) it follows
that

R(f̂n) ≥ l(ε/2)
(

1− nτ(F∗)
ln(N − 1)

− ln 2
ln(N − 1)

)
, (6.38)

and since τ(F∗) ≤ τ(F), we conclude that relation (6.34) is also valid in the
general case (without necessarily assuming that the set F is finite).

6.5.3 A lower bound for the risk

In order to use inequality (6.38), a finite set F∗ = {f1, . . . , fN} ⊂ F , ε and
n must be chosen suitably. More precisely, one must choose ε in such a way
that

nτ(F∗)
ln(N (ε)− 1)

< C < 1.

In this case, (6.38) implies that

R(f̂n) ≥ C∗ l(ε/2), for N = N (ε) sufficiently large and C∗ < 1− C.

So, let FN ⊂ F denote a finite set, consisting of N ε-distinguishable points.
It is clear that R(f̂n,F) ≥ R(f̂n,FN ). One can make the following

Remark 6.5.1 If
nτ(FN )

ln(N − 1)
< C < 1, (6.39)

then for n sufficiently large and 0 < C∗ < 1− C:

R(f̂n,F) ≥ C∗ l(ε/2). (6.40)

6.5.4 The quantity of ε-distinguishable points in a discrete set

We will show, on an example, how to deduce a lower bound on the risk R(f̂n)
from the inequality (6.40). In order to do this, we will need an upper bound
for the number of ε-distinguishable points in a discrete set. Let A be the set
of vectors a = (a1, . . . , aN ) with coordinates aj ∈ {−1, 1}. We therefore have
cardA = 2N . Consider the Hamming distance

υ(a,b) = card {j : aj �= bj} ≥ r.

Given an integer r > 1, we will say that a subset B(r) ⊂ A consists of r-
distinguishable points if for every pair (a,b) of points on B(r), with a =
(a1, . . . , aN), b = (b1, . . . , bN ), we have

υ(a,b) ≥ r.
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Then, we shall assume that the set B(r) ⊂ A is maximal, in the following
sense:

υ(a, B(r)) = min
b∈B(r)

υ(a,b) ≤ r, si a ∈ A \B(r).

Our aim is to estimate the quantity M(N, r) = card B(r).
To each point a ∈ B there corresponds a ball V (a) (for the “metric” υ) of

radius (r − 1) centered at a:

V (a) = {b : b ∈ A, υ(a,b) ≤ r − 1} .

The number of elements cardV (a) of this ball is easy to calculate:

card V (a) =
r−1∑

j=0

CjN = 2NP {ξ > N − r} ,

where ξ is a random variable with binomial distribution B(N, 1/2). Therefore,
using Hoeffding’s inequality for r = N/4 we deduce that

P {ξ > N − r} ≤ exp {−N/8} ,

and since
⋃

a∈B(r)

V (a) = A and card B(r) × card V (a) ≥ cardA, we obtain

the following lemma:

Lemma 2. We have the inequality

M(N,N/4) ≥ exp {N/8}

(where M(N, r) = card B(r)).

6.5.5 Example: An estimating problem for smooth density

Let F be the set of densities f which are defined on R, which are r-
differentiable, and whose rth derivative f (r) satisfies the following condition
(for fixed α ∈]0, 1[):

‖f (r)(·+ h)− f (r)(·)‖p ≤ C|h|α, where ‖g(·)‖p =
(∫ ∞

−∞
|g(x)|p dx

)1/p

.

(6.41)
We write β = r+α. Corresponding to the estimator f̂n, which was constructed
using the observations X1, . . . , Xn, we write

R(f̂n) = sup
f∈F

‖f̂n − f‖p.

Suppose that ϕ ∈ C∞ with suppϕ ⊂ [1/4, 3/4] and
∫
ϕ(x) dx = 0.
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Let N > 1. We set

ψj(x) = ϕ (N(x− j/N)) , j = 0, 1, . . . , N − 1.

Let f∗ ∈ F be a density satisfying (6.41) with the constant C/2 such that
f∗(x) ≥ 1/2 if x ∈ [0, 1]. We set

f(x) = fa(x) = f∗(x) + ψ(x), ψ(x) = ψa(x) = C(N)
N−1∑

j=0

ajψj(x). (6.42)

Here a = (a1, . . . , aN ) ∈ B(N/4), and the normalization constant C(N) will
be chosen later in such a way that C(N) → 0 when N → ∞. Therefore the
function f is positive when N is sufficiently large, and is indeed a probability
density: ∫

f(x) dx = 1.

Let FN denote the set of all the densities f which can be written in the form
(6.42). In this case, by Lemma 2, we have

card FN ≥ C∗ exp {N/8} . (6.43)

We observe that

‖ψ(k)
j ‖pp = Nkp−1‖ϕ(k)‖pp (k = 0, 1, ...)

and thus (the functions ψ(k)
j are supported on disjoint intervals):

‖ψ(k)‖pp = Cp(N)
N−1∑

j=0

‖ψ(k)
j ‖pp = Cp(N)Nkp‖ϕ(k)‖pp (6.44)

and

‖ψ(r)
j (·+ h)− ψ(r)

j (·)‖pp = N rp−1‖ϕ(r)(·+ h)− ϕ(r)(·)‖pp . (6.45)

Let a and b be two distinguishable points in B(N/4). It follows from (6.44)
that

‖fa − fb‖p = C(N) ‖
N−1∑

j=0

(aj − bj)ψj‖p

= 21/pC(N)N−1/p {card{j : aj �= bj}}1/p‖ϕ‖p

≥
(

1
2

)1/p

C(N)‖ϕ‖p.

(6.46)
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Let us consider the case where |h| ≤ 1
4N . Then, by (6.44), and since the

functions ψ(r)
j (·+ h)− ψ(r)

j (·) are supported on disjoint intervals, we have

‖ψ(r)‖p = C(N)N r ‖ϕ(r)(·+ h)− ϕ(r)(·)‖p ≤ {C(N)N r}C|h|α. (6.47)

Now , if |h| ≥ 1
4N , we have

‖ψ(r)(·+ h)− ψ(r)(·)‖p ≤ 2‖ψ(r)‖p = 2C(N)N r‖ϕ(r)‖p
≤ 2

{
C(N)N r+α

}
‖ϕ(r)‖p|h|α.

(6.48)

Let us suppose, for simplicity, that the function ϕ has been chosen in such a
way that ‖ϕ(r)‖p ≤ 1/2. Then from (6.47) and (6.48), it follows that

‖ψ(r)(·+ h)− ψ(r)(·)‖p ≤
1
2
C|h|α, if C(N) ≤ N−β

2
· (6.49)

These results are summarized in the following

Lemma 3. Let C(N) = LN−β. If L ≤ 1/2 and if N is sufficiently large, then

1. the functions f = fa defined by (6.42) are densities;
2. N = cardFN = {f : f = fa, a ∈ B(N/4)} ≥ C∗ exp{N/8};
3. elements of the set FN are ε-distinguishable when

ε = L∗N−β, L∗ =
(

1
2

)1/p

L‖ϕ‖p;

4. ‖fa − f∗‖p = C(N)‖ψ‖p = LN−β‖ϕ‖p;
5. the functions f in FN belong to F .

The last statement requires some explanation. One must show that the func-
tions f in FN satisfy condition (6.41). Indeed,

‖f (r)(·+ h)− f (r)(·)‖p ≤ ‖f (r)
∗ (·+ h)− f (r)

∗ (·)‖p + ‖ψ(r)(·+ h)− ψ(r)(·)‖p.

Since the functions f∗ satisfy (6.41) with constant C/2, then by using (6.49)
we obtain (6.41) for the function f .

6.5.6 The lower bound for the risk in the estimating problem
for smooth density

We will now apply remark 6.5.1. In order to do this, we must bound τ(FN )
above. We have

τ(FN ) ≤ sup
a∈B(N/4)

K(fa, f∗).
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Then,

K(fa, f∗) ≤ K(fa, f∗) +K(f∗, fa) =

1∫

0

ln
(

1 +
Δ(x)
f∗

)
Δ(x) dx,

where Δ(x) = fa(x)− f∗(x).
Using the inequality ln(1 + x) ≤ x and the condition f∗(x) ≥ 1/2 (for x ∈
[0, 1]), we deduce that if p ≥ 2,

K(fa, f∗) ≤ 2

1∫

0

Δ2(x) dx ≤ 2‖Δ(x)‖2p = 2L2N−2β‖ϕ‖2p.

Thus, our aim (see remark 6.5.1) is to modify n and N in such a way that

nτ(FN )
ln(N − 1)

≤ C < 1.

For N sufficiently large, ln(N − 1) > N/16, and therefore we have

nτ(FN )
ln(N − 1)

≤ k(L, ‖ϕ‖p)nN−(2β+1).

The obvious solution N = Nn = C1n
1

2β+1 , with a suitable constant C1, gives
the following asymptotic expression for ε = εn:

εn � C2n
− β

2β+1 .

From this expression and using remark 6.5.1, we obtain a lower bound for the
risk:

R(f̂n) ≥ C3n
− β

2β+1 (6.50)

where C3 > 0 is a suitable constant, and for n sufficiently large.
For s ∈ N, a function K : R → R is said to be a kernel of order s if it satisfies
the following properties:

1.
∫
|x|s+1 |K(x)| dx <∞;

2.
∫
xj K(x) dx = 0 for 1 ≤ j ≤ s;

3.
∫
K(x) dx = 1.

The estimator of the density associated to the kernel K is defined by

f̂n(x) =
1
hn

∫
K

(
x− t
hn

)
dPn(t), (6.51)

where the hn > 0 are chosen in such a way that hn → 0 and nhn →∞ when
n→ ∞. For suitable choices of s, the kernel K of order s and the (“window-
width”) hn, the risk R(f̂n) of the estimator (6.51), under the conditions of
our example, tends to zero at the same rate as the lower bound in (6.50). This
lower bound is in fact the desired lower bound. More details can be found in
the article by J. Bretagnolle and C. Huber (1979).
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6.6 Consistency of the estimation

6.6.1 Consistency with a certain rate of convergence

One must choose a suitable approach for measuring the accuracy of the esti-
mate of the unknown law P ∈ P by the estimator P̂n. Let (Y, d) be a metric
space and let θ be a function from P to Y. Suppose that we have to esti-
mate the value θ(P ) at a point P ∈ P . We shall first measure the rate of
convergence, in some sense, of the estimator towards the true probability law.

Let X1, . . . , Xn, . . . be independent random variables with the same proba-
bility law P ∈ P . Let rn = rn(X1, . . . , Xn) be a observable sequence of strictly
positive variables such that

rn → 0 when n→∞ (in probability),

d is the chosen metric for measuring the accuracy of the estimate. We say
that the estimator θ̂n of the value θ(P ) is consistent with rate rn (one should
rather say: with rate at least rn) if

sup
P∈P

P

{
d(θ̂n, θ(P ))

rn
> t

}
→ 0, uniformly on n, when t→ +∞ . (6.52)

Under this condition it is possible to localized the value of unknown parameter
θ on observations since for the observable ball

V = V (X1, . . . , Xn) =
{
θ : d(θ̂n, θ) ≤ trn(X1, . . . , Xn)

}

we have
P {V � θ(P )} → 1, as t→∞.

We illustrate this on a simple example. Let X1, X2, . . . , Xn be a sample of
random variables from (the same) normal distribution: Xj ∼ N(θ, σ2), θ ∈ R,

σ > 0. Then X = 1
n

n∑
j=1

Xj is an estimator of the parameter θ which is

consistent with rate rn defined by:

rn =
Sn√
n
, where S2

n =
1
n

n∑

j=1

(
Xj −X

)2
.

6.6.2 Consistency and empirical process

The following lemma, which belongs to Sara van de Geer (1993), shows us, as
the accuracy of estimating can be connected with the rate of convergence of the
empirical process. Let f̂n be the maximum likelihood estimator of unknown
density f constructed on observationsX1, . . . , Xn with common density f ∈ F



6 Kolmogorov’s ε-entropy and statistical estimation 129

and distribution P . We assume that all functions f ∈ F are supported on the
same set Λ and positive on Λ. We set

Φ =
{
ϕ : ϕ =

√
g/f for some g, f ∈ F

}

Lemma 4.

h2(f̂n, f) ≤
∫

Λ

⎛

⎝
√
f̂n
f
− 1

⎞

⎠ d(Pn − P ) ≤ sup
ϕ∈Φ

|
∫

Λ

ϕd(Pn − P )|. (6.53)

Proof.

0 ≤ 1
2

∫

f>0

ln

(
f̂n
f

)
dPn ≤

∫

f>0

⎛

⎝
√
f̂n
f
− 1

⎞

⎠ dPn

=
∫

f>0

⎛

⎝
√
f̂n
f
− 1

⎞

⎠ d(Pn − P )− h2(f̂n, f).

(6.54)

�

6.7 The estimator of the minimal distance

6.7.1 Construction of the metric

Let X1, ..., Xn, · · · denote independent random elements of measurable space
{X ,B}, with the same probability law P ∈ P with density f ∈ F to the
measure μ. We wish to construct a reasonable estimator P̂n for the unknown
law P ∈ P . The method of estimation of course depends on the information
which is known a priori about the unknown law (in other words the set P)
and the way in which the accuracy of the estimation is measured (in other
words, the choice of the metric d). The quality of the estimation will therefore
be given by the rate of convergence (rn) of the estimator P̂n towards P , as
defined by (6.52).

We will take as our estimator of the unknown law P ∈ P (after a suitable
choice of metric d∗: see below) the estimator of minimal distance P̂n, in other
words an element P̂n ∈ P such that

d∗(P̂n, Pn) ≤ d∗(Q,Pn) for all Q ∈ P, (6.55)

without dealing, for the time being, with the question of whether it exists.
First, we must choose a metric d∗ which will measure the proximity of the

two probability laws P̂n and Pn. For a subset A ⊂ B of our σ-algebra, we set

dA(P,Q) = ‖P −Q‖A = 2 sup
A∈A

|P (A)−Q(A)|. (6.56)
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In the case where A = B, we will simply write d instead of dB. Observe that
if P and Q have densities f and q with respect to the measure μ, we have

d(P,Q) =
∫
|f − q| dμ =

∫

f>q

(f − q) dμ−
∫

f<q

(f − q) dμ

= 2
∫

f>q

(f − q) dμ = 2(P (A)−Q(A)),
(6.57)

where A = {f > q}. In other words, d(P,Q) = d(f, q) is the total variation
of f − q. Since the measures Pn and Q ( Q ∈ P) can be orthogonal (this is
typically the case), we obtain d

(
P̂n, Q

)
= 2, and therefore this metric (which

corresponds to the case A = B) cannot be used to estimate the proximity of
the empirical law to the laws Q in P . Thus, in order to construct a metric d∗
which is suitable for our purposes, we should not take a set A which is too
large inside B. Let us see how to choose A.

Let P1, P2, . . . , PN (N = N(ε)) be the centers of N balls S1, S2, . . . , SN of
radius ε, with respect to the metric d, which cover P . We set

Pε = {P1, P2, . . . , PN} .

Let
fj =

dPj
dμ

, Aij = {fi > fj} (i, j = 1, 2, . . . , N).

We shall take A = Aε = {Aij , 0 < i < j ≤ N}. It is clear that

card(Aε) =
N(N − 1)

2
≤ N2. (6.58)

We set

d∗(P,Q) = dε∗(P,Q) = dAε(P,Q) = 2 sup
A∈Aε

|P (A)−Q(A)|. (6.59)

Suppose that the measures P,Q ∈ P and the centers Pi, Pj ∈ Pε of the balls
Si, Sj of radius ε are chosen in such a way that P ∈ Si, Q ∈ Sj . Then

d(P,Q) ≤ d(P, Pi) + d(Pi, Pj) + d(Pj , Q).

Since (see (6.57))

d(Pi, Pj) = 2(Pi(A)− Pj(A)) with A = {fi > fj} = Aij ,

we therefore have
d(P,Q) ≤ 2ε+ dA(Pi, Pj). (6.60)

Then,
dA(Pi, Pj) ≤ dA(Pi, P ) + dA(P,Q) + dA(Q,Pj).

Finally, we have

d(P,Q) ≤ 4ε+ dA(P,Q) = 4ε+ d∗(P,Q), for all P,Q ∈ P. (6.61)
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6.7.2 Choice of the estimator and rate of convergence

Let P̂n be the estimator of minimal distance for P , in the following sense : it
is an element P̂n ∈ P such that

d∗(P̂n, Pn) ≤ d∗(Q,Pn) for all Q ∈ P . (6.62)

Since
d∗(P̂n, Pn) ≤ d∗(P, Pn)

where P is a true law, then, by (6.61), we have

d(P̂n, P ) ≤ 4ε+ d∗(P̂n, P )

≤ 4ε+ d∗(P̂n, Pn) + d∗(P, Pn) ≤ 4ε+ 2d∗(P, Pn).
(6.63)

Thus,
d(P̂n, P ) ≤ 4ε+ 2d∗(P, Pn). (6.64)

Hoeffding’s inequality enables us to estimate the probabilities

P{d∗(P, Pn) > y}.

In fact, since the number of subsets A ∈ Aε is no greater than N2, it follows
from (6.4) that

P{d∗(Pn, P ) > y} = P{ sup
A∈Aε

|Pn(A)− P (A)| > y/2}

≤
∑

A∈Aε

P{|Pn(A)− P (A)| > y/2} ≤ 2N2 exp{−ny2/2}.

(6.65)

In order to find the optimal rate of convergence rn for the estimator P̂n, the
value of the radius ε should be adapted to the number of observations n. Let
us choose a value ε = εn such that

εn �
√

lnN(εn)
n

when n→∞. (6.66)

We will show in this case that the estimator P̂n is consistent with the rate rn
given by

rn =

√
lnN(εn)

n
· (6.67)

By (6.64) and (6.65), with

yn =
rnt− 4εn

2
, N = N(εn),
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we deduce that

P

⎧
⎨

⎩
d
(
P̂n, P

)

rn
> t

⎫
⎬

⎭ ≤ P {d∗(P, Pn) > yn} ≤ 2N2 exp{−ny2
n/2}

= 2 exp
{
−n

2

(
y2
n − 4

lnN
n

)}
.

(6.68)

Therefore, in a case, as for some positive C1, C2

εn ≤ C1

√
lnN(εn)

n
, rn ≥ C2

√
lnN(εn)

n
,

we obtain by (6.68) that for true distribution P

P

⎛

⎝
d
(
P̂n, P

)

rn
> t

⎞

⎠ ≤ 2 exp
{
−Ct2 lnN

}

for sufficiently large t and some C > 0. Hence

sup
P∈P

P

(
d(P̂n, P )
rn

> t

)
→ 0 when t→∞,

uniformly on n, which completes the proof.

6.8 Using entropy to estimate a density

Let X1, . . . , Xn, . . . be a sequence of independent identically distributed ran-
dom variables, with probability law P ∈ P and density f ∈ F with respect to
the measure μ.7 In order to specify the density of a probability law, we will
write, for example, P = Pf . The set P is thus parametrised by the elements
of F .

Let us consider the problem of estimating the density f ∈ F . The losses
incurred in estimating f by f̂n will be measured by the quantity ‖f̂n − f‖1.
Here, ‖ · ‖1 is the L1 norm:

‖f‖1 =
∫
|f(x)| dx.

We write R(f̂n) = sup
f∈F

Ef ‖f̂n − f‖1. We will use the same method for con-

structing an estimator as in the previous section, with a few obvious changes in
7 Recall that

F =

{
f : ∃P ∈ P s.t. f =

dP

dμ

}
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notation, because we are now interested in estimating functions in F , whereas
previously we were concerned with estimating functions in P . In this way, we
choose an economic ε-covering Fε = {f1, . . . , fN} (N = N(ε)) in F , i.e.
satisfying

N(ε) � N(ε,F , ‖ · ‖1) when ε→ 0.

We take A = Aε = {Aij , 0 < i < j ≤ N}, where, as above,

Aij = {fi > fj} (i, j = 1, 2, . . . , N).

Instead of the L1 metric, F is equipped with the metric introduced in the
previous section:

d∗(f, g) = d∗(Pf , Pg) = 2 sup
A∈A

|Pf {A} − Pg {A} |.

Let f̂n denote the point of Fε which minimizes the quantity d∗(Pf , Pn) over
Fε:

∀f ∈ Fε, d∗(Pf̂n
, Pn) ≤ d∗(Pf , Pn).

Relation (6.64) can be rewritten (with P = Pf ):

‖f̂n − f‖1 ≤ 4ε+ 2d∗(Pf , Pn).

Here (as above) Pn is an empirical distribution. Hence

R(f̂n) ≤ 4ε+ 2E d∗(Pf , Pn). (6.69)

Let us now estimate Ef d∗(Pf , Pn). We need the following lemma:

Lemma 5. Let ξ be a random variable which is non-negative, and

P {ξ > y} ≤ Cx2 exp
{
−ny

2

2

}
, y > 0. (6.70)

Then there exists a constant C1 = C1(C, x0), which only depends on C and
x0, such that for x ≥ x0 > 1,

E ξ ≤ C1

√
lnx
n
· (6.71)

Proof. If ξ is a non-negative random variable, then it is well known that

E ξ =

∞∫

0

P{ξ > t} dt.
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For this reason,

E ξ =

√
lnx
n

∞∫

0

P

{
ξ > t

√
lnx
n

}
dt

≤
√

lnx
n

⎛

⎝y +

∞∫

y

P

{
ξ > t

√
lnx
n

}
dt

⎞

⎠ , y > 0.

(6.72)

It follows from this inequality and from (6.70) that

E ξ ≤
√

lnx
n

⎛

⎝y + C

∞∫

y

exp
{
−v

(
t2

2
− 2

)}
dt

⎞

⎠ , v = lnx ≥ lnx0 = v0 > 0.

Since v ≥ v0, on setting y = 2 we obtain (6.71) with the constant

C1 = C1(C, x0) =

⎛

⎝2 + Cx2
0

∞∫

2

exp
{
−v0t

2

2

}
dt

⎞

⎠

≥

⎛

⎝2 + C

∞∫

2

exp
{
−v

(
t2

2
− 2

)}
dt

⎞

⎠ .

(6.73)

�

Theorem 1. Consider the estimator f̂n defined by the relation

d∗(Pf̂n
, Pn) ≤ d∗(Pf , Pn), f ∈ Fε.

Then, for all N ≥ 2,

R(f̂n) ≤ 4ε+ 2C1

√
lnN
n
· (6.74)

Proof. By inequality (6.65),

P {d∗(Pf − Pn) > y} ≤ CN2 exp
{
−ny

2

2

}
·

Hence, using Lemma 5, we have for N ≥ 2:

Ef d∗(Pf − Pn) ≤ C1

√
lnN
n

(here C1 = C1(C, 2)),

and so inequality (6.74) follows from (6.69). �
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Conclusion

In summary, the development of mathematical statistics over the last fifty
years has stimulated very deep research in the area of non-parametric statis-
tics, and in particular on the problem of the estimation of densities. Very many
publications have been devoted to this fascinating subject, and we have tried
to present the results of several statisticians in a single, unified, consistent
article.

We would like to thank our colleagues for their remarks, suggestions, advice
and friendly encouragement, and especially Catherine Huber, Ildar Ibragimov,
Valentina Nikouline, Jérome Poix, and Vincent Couallier.
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At the beginning of the nineteen thirties, Andrëı Nikolaevich Kolmogorov
published a few papers on topology, totaling roughly thirty pages. These works
immediately made him one of the main creators of modern algebraic topol-
ogy. In this short survey, I have tried to present Kolmogorov’s remarkable
results (not only for a public of topologists), and to explain the source of
some of the ideas leading to those results. This survey is based on a lecture by
the author, entitled Kolmogorov, cohomology and cobordisms, which was pre-
sented during the conference Kolmogorov and contemporary mathematics in
commemoration of the centennial of Kolmogorov, held in Moscow from June
16 to June 21, 2003.

7.1 Prelude

Pavel Samuilovich Urysohn (1898–1924) and Pavel Sergeevich Aleksandrov
(1896–1982) are recognized as the founders of the Soviet school of topology.
In the years 1920–1924, Urysohn’s enthusiasm and the remarkable results
he had obtained played a great role in bringing talented young researchers
to this area of mathematical research. In [AK53], Aleksandrov remembers
that Kolmogorov, still a student, first attracted Urysohn’s attention when,
during a lecture, he pointed out a mistake in the complicated constructions
Urysohn was using to prove his theorem concerning the topological dimension
of Euclidean space of dimension three1:

1 Urysohn is the creator of a famous theory of topological dimension, and it was
natural to check that this notion was consistent with the usual dimension in the
case of the Euclidean spaces R

n. (Editor’s note.)
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“P. S. Urysohn corrected this mistake a few days later, but the mathe-
matical acuity of the eighteen year old student Kolmogorov had made
a great impression on him.”

(Something similar happened during N. N. Lusin’s special course. Kolmogorov
himself described it in this manner: “Although my contribution was rather
childish, it helped me to become known in the lusitanian2 circle” [Kol72].)

Fifty years later, in his article “A scientific teacher” [Kol72] devoted to
Urysohn, Kolmogorov describes his first scientific steps and his conversations
with Urysohn. He describes his hesitations concerning the choice of a research
subject, due among other things

“to a vague desire to do mathematics, but with strong applications to
physics and natural sciences . . . As far as possible, Pavel Samuilovich
tried to enlist me in his researches concerning Poincaré’s problem
about closed geodesics on surfaces . . . All these questions appealed
to me in themselves, they corresponded to the idea I had of what
a mathematician should most occupy himself with . . . The internal
logic of my personal investigations brought me to topology only much
later, after mathematical passions for logic and probability theory.”

In November 1925, at Moscow University, the famous Moscow topological circle
was created, Aleksandrov being its permanent leader. Until the beginning of
the nineteen-sixties, this was the center of the Moscow school of topology.

The programme of the first ten years of the circle is described in the paper
[Nem36], in which one finds in particular a very impressive list of lectures
given at the topological circle between 1925 and 1935, in which Kolmogorov’s
lectures appear:

No 52. The group of homeomorphisms in metric spaces, April 1929.
No 53. The group of homeomorphisms in metric spaces, May 1929.
No 55. The group of homeomorphisms in a topological space, February 1930.
No 69. The topological axiomatics of projective space, June 1931.
No 83. On the theory of continuous repartitions, May 1933.

This list indicates that Kolmogorov, who already enjoyed a world-wide reputa-
tion, was participating actively in the topology seminar, but had not yet found
his own topological subject. The ensuing events are all the more surprising.
2 At the end of the 1910s, Lusin, with Egorov, had created a brilliant research

group at Moscow University, which was called “Lusitania” by its members, as a
pun on Lusin’s name. Lusitania is the name of an antique Roman province which
corresponds roughly to present-day Portugal; it is also the name of a British ocean
liner which had been much in the news in 1915 and the following years: after it
was sunk by a German submarine, with the loss of more than a thousand civilian
lives, international public opinion was scandalized, so that when American troops
landed in Europe two years later, a cartoon showed a picture of Kaiser Wilhelm
II asking one of his officers: “How many ships did it take to bring them here?”,
and the officer answering: “Only one, the Lusitania”! (Editor’s note.)
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From September 4 to September 10, 1935, at the Institute of Mathematics
of Moscow University, the first international topology conference was held. It
was an extraordinary moment in the history of topology. The results which
were presented at this conference delineated the main directions of research
for many years.

Here is a selection of the lectures:

• J. W. Alexander (Princeton), On the rings of complexes and the combina-
torial theory of integration;

• A. N. Kolmogorov (Moscow), On the homology rings of closed sets ;
• E. Čech (Brno), On the Betti groups with coefficients in an arbitrary field ;
• H. Freudenthal (Amsterdam), On topological approximations of spaces;
• A. W. Tucker (Princeton), On discrete spaces;
• M. H. Stone (Cambridge, Mass.), The theory of maps in general topology;
• P. S. Aleksandrov (Moscow), Some solved and unsolved problems in general

topology;
• W. Hurewicz (Amsterdam), Homology and homotopy;
• K. Borsuk (Warsaw), On spherical spaces ;
• S. Lefschetz (Princeton), On locally-connected manifolds;
• H. Hopf (Zurich), New investigations on n-dimensional manifolds;
• G. Nöbeling (Erlangen), On triangulation of manifolds and the Main Hy-

pothesis of combinatorial topology;
• H. Whitney (Cambridge, Mass.), Topological properties of differentiable

manifolds;
• P. Smith (New York), On 2-periodic maps;
• P. Heegaard (Oslo), On the four-color problem;
• G. de Rham (Lausanne), (1) On Reidemeister’s new topological invariants ;

(2) Topological aspects of the theory of multiple integrals;
• A. A. Markov (Leningrad), On equivalence of closed braids;
• L. S. Pontriaguin (Moscow), Topological properties of compact Lie groups;
• E. R. van Kampen (New Heaven), The structure of compact groups ;
• J. von Neumann (Princeton), The theory of integration in continuous

groups ;
• A. Weil (Paris), (1) A topological proof of a theorem of Cartan; (2) The

systems of curves on a torus.

A complete list of lectures is found in [Ale36a], and the programme of the
conference is in [Shi03, no 2, pp. 590–593].

Among all those wonderful subjects and all those mathematicians − all
internationally-renowned leaders of topology − the lectures of Kolmogorov
and Alexander on the construction of dual complexes for quite general spaces,
the homology of which has a natural structure of ring, attracted widespread
attention. In modern terminology, this was the construction of the cohomology
ring of topological spaces.

All ulterior developments of algebraic topology have confirmed the ex-
traordinary importance of the results of those two authors.
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7.2 The main topological results of A. N. Kolmogorov

7.2.1 Algebraic topology

During the nineteen-thirties, a branch of topology, called algebraic topology by
Solomon Lefschetz (1884–1972), emerged. Lefschetz himself created the deep
theory of homology of projective complex algebraic varieties, including the
fundamental intersection theory of algebraic cycles; he then carried his ideas
over to topology. Another approach to homology theory was developed by Élie
Cartan (1869–1951), based on Poincaré’s ideas and on Riemannian geometry.
Cartan constructed the “tensor theory of homology”, and conjectured that it
leads to ordinary homology theory. Cartan’s programme was implemented by
de Rham (see, e.g. [Nov04], [Die89], about the history and the development
of the main ideas of algebraic topology).

The results obtained both by Kolmogorov and Alexander are considered
as a complete solution of this fundamental problem, with a global mathemat-
ical reach. In the monography [Lef42] which introduced the name “algebraic
topology”, the theory of Kolmogorov and Alexander plays a prominent role.
Concerning the origins of the ideas of this theory, Lefschetz wrote:

“Chiefly for purposes of extending the concepts of differential and
integral to general topological spaces Alexander [Ale36b, Ale38], and
later Kolmogorov [K4, K5, K6, K7], have developed a type of theory
based directly upon chains and cochains.”

Kolmogorov himself explained the main idea in [K9]

“The author’s goal is to construct a particular difference calculus
which, on the one hand, leads to differential operators acting on anti-
symmetric tensors (multivectors) by a limit process, and on the other
hand is closely related to the concepts of combinatorial topology.
In particular, it is possible to define new invariants of complexes and
closed sets using this difference calculus, and to prove some general-
izations of the known duality theorems.”

Kolmogorov wrote the following comments concerning his work of 1936–37 on
homology theory in the edition of his selected works published in honor of his
eightieth birthday [Kol85]:

“The initial impulse for these works was reading the thesis of Georges
de Rham [DeR31] (1931), in which the duality of Betti groups of
differentiable manifolds and Betti groups generated by currents was
established. After the 1930’s, I did not work on those subjects any-
more; yet, the idea presented in the four notes in Comptes Rendus
de l’Académie des Sciences de Paris, which is to exploit the duality
between the groups of antisymmetric functions of n points and of ad-
ditive antisymmetric functions of n sets, still seems to me to have
some pedagogical interest.”



7 Kolmogorov and topology 143

Except for those notes and the articles [K2, K3, K9], Kolmogorov produced
other works of algebraic topology which he did not publish, despite having a
great opinion of this subject:

“. . . Homologic topology interested me a lot, and during the years
1934–36, I should have worked on more on this . . . ”

writes Kolmorogov in a letter to N. N. Lusin about his research plans, dated
October 7, 1945 [Shi03, 1, p. 227].

The theory of Kolmogorov and Alexander on a space X relates the set
of chains with the boundary operator Δ (which is called the chain complex)
and its dual, the set of cochains with the coboundary operator ∇ (called the
cochain complex).

Fix an abelian group G. Let {A} be the family of closed sets of the space
X . A p-chain (or chain of dimension p) on G is an antisymmetric function
ϕp with values in G, depending on p+ 1 sets (A0, . . . , Ap), with the following
properties:

(1) it is equal to zero whenever
⋂
Ai = ∅ or Ai = Aj for some i �= j;

(2) it is multilinear, in the sense that if the interiors of Ai and A′
i are disjoint,

we have

ϕp(. . . , Ai ∪A′
i, . . . ) = ϕp(. . . , Ai, . . . ) + ϕp(. . . , A′

i, . . . ).

The boundary of the chain ϕp is the (p− 1)-chain

(Δϕp)(A0, . . . , Ap−1) = ϕp(X,A0, . . . , Ap−1).

Obviously, we have ΔΔϕp = 0. A p-chain ϕp is called a p-boundary if it is
of the form Δϕp+1, where ϕp+1 is a (p + 1)-chain. And a p-chain ϕp is a p-
cycle if Δϕp = 0. The relation ΔΔϕp+1 = 0 guarantees that p-boundaries are
p-cycles. The p-dimensional homology (in degree p) of X with values in G is
then the set of p-cycles modulo p-boundaries.

The dual complex, formed with cochains, is described in detail in [Lef42],
for instance. Here, we only need to know that p-cochains are constructed from
antisymmetric functions ψp with values in the Pontryagin dual H of G (i.e.
the character group of G), depending on p + 1 points (x0, . . . , xp), xi ∈ X ,
and that the coboundary operator3 is given by the formula

(∇ψp)(x0, . . . , xp+1) =
∑

q

(−1)qψp(. . . , xq−1, xq+1, . . . ),

and obviously ∇∇ψp = 0. In the dual complex formed with cochains, a p-
cochain ψp is called a p-coboundary if it is of the form ∇ψp−1, where ψp−1

is a (p − 1)-cochain. A p-cochain ψp is called a p-cocycle if ∇ϕp = 0. The
3 In [K9], Kolmogorov, who was writing for the public of the Seminar on vector and

tensor analysis and its applications to mechanics and physics, used the notation
rot for this operator
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relation ∇∇ψp−1 = 0 guarantees that p-coboundaries are p-cocycles. The
p-dimensional cohomology (in degree p) of X with values in H is the set of
p-cocycles modulo p-coboundaries.

The applications of Kolmogorov’s approach to the construction of homol-
ogy and cohomology theory with duality theorem for homology and cohomol-
ogy are discussed in the comments of G.S. Chogoshvili “Homology Theory”
in [Kol85].

In their lectures at the first international topology conference in 1935,
Kolmogorov and Alexander gave an explicit multiplication formula, which
associates a (p + q)-cochain to a p-cochain and a q-cochain. This operator,
like Cartan’s exterior product of differential forms, is anticommutative: Kol-
mogorov uses the notation [ · , · ] for this operation, and we have then

[ψp, ψq] = (−1)pq[ψq, ψp].

Kolmogorov and Alexander proved that this operation induces an associative
and anticommutative product on cocyles, and in this manner, they introduced
a ring structure on the cohomology.

Shortly after the conference, Čech [Čec36], Whitney [Whi37] and Alexan-
der [Ale36b] showed the existence of another operation on cochains, denoted
�, given by a formula which is close to the original formula of Kolmogorov and
Alexander. This operation induces also an associative and anticommutative
product on cocyles. In cohomology, there is a relation

[ψp, ψq] =
(p+ q)!
p!q!

ψp � ψq. (∗)

Hence, in cohomology with coefficients in Q, both products are equivalent,
but already in integral cohomology, if there are cocycles of finite order, one
may have cocycles, say a and b, such that (cohomologically) we have [a, b] = 0
and at the same time a � b �= 0. In textbooks of algebraic topology, when the
Kolmogorov-Alexander product for cohomology is mentioned, what is meant is
the operation �. In what follows, we will say that � is the standard operation.

The operation � in combinatorial topology leads to a combinatorial ana-
logue of Lefschetz’s intersection theory, whereas Cartan’s theory of products
of differential forms corresponds to Kolmogorov’s [ · , · ] operation.

At the level of cochains, in contrast with the cocycles, the formula for the
standard operation � depends of the choice of an ordering of the vertices in a
simplicial complex. The operation [ · , · ] is deduced from the operation � by
averaging

[ψp, ψq](x0, . . . , xp+q) =
∑

σ

ψp � ψq (xσ(0), . . . , xσ(p+q)) (∗∗)

where the sum is over all permutations σ of (0, . . . , p + q). Thus, the for-
mula (∗∗) expresses the relation between the two products of combinatorial
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topology, which are philosophically related with the theories of Cartan and
Lefschetz.

The important distinction between integral cohomology (with coefficients
in Z) and rational cohomology (with coefficients in Q) is expressed in the
fundamental rule of combinatorial topology:

It is impossible to obtain the standard multiplication using anticom-
mutative operations on cochains with integral coefficients.

We must emphasize that at the level of cochains the operation [ · , · ] is
anticommutative, but not associative, whereas the operation � is not anti-
commutative, but is associative.

The defect of anticommutativity of the standard operation at the level of
cochains was used by Steenrod [Ste62] to construct “cohomological operations”,
and also to define structures of modules over the algebra of cohomological
operations on the cohomology ring.

A question is raised: what additional structure may be introduced in
cohomology, using the fact that Kolmogorov’s operation is not associative
at the level of cochains?

The ulterior progress of algebraic topology has led to extraordinary
cohomology theories, the best known of which (in terms of their numerous
applications) are K-theory and cobordism theory. Almost all those applica-
tions use in an essential way the product structure on the cohomology ring
and the powerful algebras of cohomological operations (see [Nov04]).

The transformation of the standard product to the Kolmogorov product by
means of the formula (∗) is the unique non-trival (non-invertible4) transforma-
tion of the product in the case of classical cohomology. As shown in [BBNY00],
there is a great variety of transformations of products in the case of complex
cobordism theory. Those transformations are related to important structures
in analysis, representation theory, and commutative and non-commutative
algebra.

7.2.2 General topology

A number of fundamental notions are also due to Kolmogorov, who introduced
them in order to solve some important problems of general topology. These
notions are commonly used today, appearing constantly in new applications.

• Kolmogorov’s name is attached to the separation Axiom T0 − the weakest
separation axiom in use. A topological space X is called a T0-space, or
a Kolmogorov space if, for any pair of distinct points x, y ∈ X , x �= y,
there exists an open set of X containing one of the points but not the

4 The formula (∗) is not invertible in cohomology with integral coefficients because
p!q!

(p+q)!
is not an integer (except when it is equal to 1)
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other5. An important non-trivial example of Kolmogorov space is the set of
simplexes of a simplicial complex, with the topology in which the closure of
a point (i.e. of a simplex) is the set of all its “faces” of arbitrary dimension
(including itself, of course): see [AH35] (for instance, p. 132 of the 1974
edition) or [Kur66] (Chap. 1, Sect. 5, IX: T0-spaces).

• Kolmogorov found a necessary and sufficient condition for a general topo-
logical vector space to be normable [K1]6. In the course of solving this
problem, he introduced the notion of bounded subset in topological vec-
tor spaces. This concept turned out to be of fundamental importance in
their duality theory, and in the applications of topological vector spaces
to analysis.

• Recall that a map from a topological space X to a topological space Y
is open if the image of any open set in X is open in Y . Kolmogorov
constructed a surprising example of an open map from a topological space
of dimension 1 onto a space of dimension 2. This had a great importance
in general topology. It shows, in particular, that the notion of “dimension
of a topological space” is not trivial. At the root of the construction of this
map is an explicit open map from the 2-dimensional torus onto the Möbius
strip, such that the equator of the torus is mapped to the boundary of the
strip. Later on, Kolmogorov’s example found an application in the theory
of group actions on topological spaces: it was remarked that it describes
an effective action of a 0-dimensional abelian group (namely, the compact
group of 2-adic integers) on a 1-dimensional compact space (the Menger’s
curve), such that the space of orbits is of dimension 2 (the Pontryagin
2-dimensional surface) (see [Wil63]: Kolmogorov’s example is one of the
“three famous examples in topology” mentioned in the title).
Kolmogorov wrote the following comments concerning the origins of this
result in [Kol85] (see p. 476):

“The possibility of an increase in dimension under open mappings
([K8]) interested P. S. Aleksandrov very much. For some time we
together tried to prove that increase in dimension is impossible. In
these attempts we gradually understood why we failed. An analysis
of the failure led us to a counterexample.”

Further investigations in this direction are described in the recently survey
“Problems of dimension raising” (see [Che05], §2).

• A. N. Kolmogorov in collaboration with I. M. Gel’fand published the paper
[K10]. In introduction to this paper we read:

5 Recall that a topological space is separated, or Hausdorff, if it satisfies the
(stronger) Axiom T2: any two distinct points x, y ∈ X have disjoint neighbor-
hoods. There is also an Axiom T1: any singleton is a closed set. These axioms
express properties of separation of varying strength: it is obvious that T2 implies
T1, and that T1 implies T0. (Editor’s note.)

6 See Theorem 4 of Chap. 8 (by Vladimir Tikhomirov) in this volume. (Editor’s
note.)
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“... we consider the ring of continuous functions on a topological
space as a purely algebraic object without defining any topological
relations in it. It turns out that in the case of bicompact spaces,
considered by M. H. Stone, and also in some much more general
cases, even the purely algebraic structure of the ring of continuous
functions determines the topological space to within a homeomor-
phism.”

Many monographs and textbooks containing basic general topology and
functional analysis include this result. Further investigations in this direc-
tion are described in the recently survey [BR04].

7.3 A topological idea of Kolmogorov

In May 1929, having defended his thesis four years before, Kolmogorov had
already published 18 works, which brought him worldwide renown. In the
paragraph concerning this period in his remembrances of P. S. Aleksandrov,
we read [Kol86]:

“Our personal contacts with Pavel Sergeevich were very limited at
that time, although we often met at the concerts in the Small Room
of the conservatory . . . In 1929, we met again during a trip on the
Volga. I do not remember very well how I had decided to suggest
to Pavel Sergeevich that he be the third companion7. However, he
immediately accepted . . . One may consider the day of departure −
June 16 − as the starting point of our friendship.”

To this friendship, mathematics owes the correspondence between Kolmogorov
and Aleksandrov. A selection of this correspondence is now accessible in the
commemorative edition of Kolmogorov’s works [Shi03]. In Kolmogorov’s let-
ters, one finds many remarks on mathematical results, which give insights into
his ideas and scientific projects. Some of these ideas and projects were much
in advance on their time.

In the letter to Aleksandrov dated September 22, 1932, “from Dne-
propetrovsk to Zurich, Switzerland” (see [Shi03], Vol. 2, p. 439), Kolmogorov
wrote:

“Questions of topology. It seems to me that it is not difficult to prove
that an n-dimensional closed set may be embdedded in a space of
sufficiently large dimension, and in only one way. I know how to prove
this for polyhedra, which embed in (Euclidean) space of dimension
4n+ 2. It seems that the properties that can be expressed in terms of
the complement of the set in this space should be called homologic?

7 It is a rowing-boat trip, which Kolmogorov and his gymnasium friend Nikoläı
Njuberg had first thought of doing together only
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In other words, F and F1 are homologically equivalent if, being
embedded in a space of sufficiently large dimension, their comple-
ments are homeomorphic. Then, the question of determining whether
homologic invariants are complete will have a well-defined meaning −
namely, to characterize completely, or not, the complement in a space
of sufficiently large dimension.”

Almost fourty years later, Borsuk developed a new direction in homotopic
topology − shape theory [Bor71]. Using the results of this theory [Cha72,
GS73], one can find the answers to the questions raised in Kolmogorov’s letter.

For instance, let F and F1 be compact polyhedra (or even compact abso-
lute neighborhood retracts8) of dimension n. Then, under some restrictions
on their position in Euclidean space R

N with sufficiently large dimension N ,
they are homotopy-equivalent if and only if their complements R

N \ F and
R
N \ F1 are homeomorphic.
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8.1 Geometric motives in Kolmogorov’s works

8.1.1 Introduction

One day I happened to organize a discussion on the topic: “Development of
geometry in the 20th century”. Naturally, the following question was raised:
What is the geometry in general and what is it nowadays?

The 19th century was the age of geometry. What names! Carl Friedrich
Gauss, Nikolay Lobachevsky, János Bolyai, Bernhard Riemann, the discover-
ers of new geometries; Eugenio Beltrami and Arthur Cayley, their successors;
Felix Klein who put together different geometries on the basis of a unified
conception; Sophus Lie and Elie Cartan, the creators of geometry of homoge-
neous manifolds; Henri Poincaré, a universal genius comprising the ideas of
all the famous geometers mentioned above; and moreover: Augustin Cauchy
and Hermann Minkowski, the founders of convex geometry; Karl Jacobi and
Hermann Grassmann, the creators of multidimensional geometry; Ferdinand
Minding and Karl Peterson who continued Gauss’ works in differential ge-
ometry; Julius Plücker and August Möbius who developed analytic-algebraic
approaches to geometry; the outstanding synthetic geometer Jacob Steiner,
and, finally, David Hilbert with his “Foundations of Geometry” (which ap-
peared in 1899) — all this is an incomplete list of great geometers of the 19th
century.

And, among mathematicians of the 20th century, who can continue such
a list? Who of our contemporaries may be called a great geometer? What
happened to geometry? Is there a single geometry nowadays or are there many
of them? All these questions became the subject of a spirited discussion.

There were different opinions regarding what geometry is. Of course, the
discipline originating from antiquity whose subject matter is the mathematical
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description of figures, which we see by our own eyes (and which may be
subject to all conceivable transformations, say, affine, projective, conformal,
isometric, continuous, etc.), this discipline continues to exist. But we don’t
have the gift of seeing the multidimensional world, which is explored by the
methods of algebra, calculus, combinatorics, — is it geometry as well? On the
other hand, does the study of two- or three-dimensional geometric figures lie
within the scope of the modern fundamental research?

There was also an opinion that geometry is a way of thinking. This opinion
was supported by recent research in physiology, which distinguished two com-
ponents in the structure of our brain. It is regarded now as a well established
fact that a half of our brain is responsible, so to speak, for “harmony”, i.e.
it handles intuition, imagination, perception of shape and color, whereas the
other one is responsible for “algebra”. This “algebraic” part of the brain is in
charge of logic and formal analysis, it governs all the algorithmic components
of our behavior and thought. So, a widely spread opinion is that geometry is
the part of mathematics where the “imaginative” part of our brain plays the
most important role.

Here we stop this discussion and proceed to our first subject: Kolmogorov
as a geometer. As we will see, it is closely related to the second subject, which
is Kolmogorov and approximation theory.

During all his life, Andrey Nikolaevich continued to ponder over the prob-
lems of talent. He distinguished three (rather than two) components of math-
ematical talent: algorithmic (“in the sense of skilful transformation of com-
plicated expressions, finding successful ways of solving equations which did
not fit to usual rules, etc.”), logical (meaning the art of consistent, correctly
structured logical reasoning), and, finally, geometric. He wrote that “geomet-
ric imagination, or, as they say, ’geometric intuition’ plays a great role when
working in almost all areas of mathematics, even the most abstract ones”.
Thinking of himself, speaking of his abilities, Kolmogorov always emphasized
that he had this “geometric intuition”. In one of his draft notebooks Andrey
Nikolaevich assessed his algebraic-analytic abilities as “very moderate”, logic
and intuition were marked by a simple plus sign, whereas “geometric construc-
tions” were assessed by a plus with an exclamation sign. It should be added
that Andrey Nikolaevich liked to draw pictures. In his letters and diaries there
are a lot of pen and ink drawings. P. S. Aleksandrov entrusted drawing figures
for his books to Andrey Nikolaevich. So, there were essential prerequisites for
application of geometric ideas and constructions in Kolmogorov’s work. How-
ever we will also encounter Kolmogorov’s works where the logical or analytical
components prevail.

8.1.2 Two geometric papers by Kolmogorov

We begin with discussion of Kolmogorov’s geometric papers. It is generally
agreed that there are only two of them: Zur topologish-gruppenteoretischen
Begründung der Geometrie (On the topological group-theoretic foundation of
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geometry) [Kol30] (1930), and Zur Begründung der projektiven Geometrie (On
the foundation of projective geometry) [Kol32] (1932).

These are indeed geometric papers in the spirit of the 19th century, since
they treat the two most important geometric objects studied at that time,
namely, the spaces of constant curvature (which appeared in conjunction of
works by Gauss, Lobachevsky, Bolyai, Riemann, Beltrami, Minding, and oth-
ers) and the projective spaces, which played an extremely important role in
geometry, so that Cayley wrote: “Projective geometry is all of geometry”.

But both these Kolmogorov’s papers in their ideas and methodology be-
long to the first half of the 20th century, namely, they relate to axiomatic
theories. In each of them a system of axioms is introduced, which describes
the objects mentioned above from some standpoint novel for that time. These
papers required logical constructions rather than geometric ones, i.e. they are
closer related to logic rather than to geometry1.

In the first of the papers mentioned above, Kolmogorov characterizes
“spaces of constant curvature are the only type of topological spaces with
a sufficient amount of freedom of motion”. Kolmogorov provides an elegant
and very economical axiomatics of such spaces. It is as follows.

Let X be a metrizable, locally compact and connected topological space
on which a group Γ is given of single-valued continuous mappings of X on
itself, possessing the property of uniform continuity. The first interesting Kol-
mogorov’s observation is that whenever X has the above properties, one can
introduce a metric on X such that all the mappings in Γ become isometric.
This enables one to define spheres S(x) centered at x, and then Kolmogorov
introduces one more axiom: for any two different spheres with common center,
one of them always separates the other one from the center. Using this axiom,

1 In what follows we will repeatedly use the terms involving the words “topology”,
“topological”, “compact”, “continuous”, and so on. Let us recall what they mean.

Topological spaces are characterized by the property that in these spaces the
notions of continuity and open and closed sets are defined. Nowadays topological
spaces are defined usually in terms of open sets. A set X is called a topological
space is there is a class τ of its subsets with the following properties: (a) the
empty set and the set X itself belong to τ , and (b) the union of any family of
sets in τ and the intersection of finitely many sets in τ belong to τ . The elements
of τ are called open sets, their complements are closed sets, and for a given set,
the least closed set containing it is called its closure. A subset of X is compact if
any its open covering contains a finite subcovering. A space is said to be locally
compact if every its point has a neighborhood such that its closure is compact.
A mapping of a topological space to another one is said to be continuous if the
inverse image of any open set is open.

A special case of topological spaces are metric spaces in which a distance
d(x1, x2) between any two points is defined with the properties: (a) d(x1, x2) ≥ 0
and d(x1, x2) = 0 if and only if x1 = x2; (b) d(x1, x2) = d(x2, x1), and (c)
d(x1, x3) ≤ d(x1, x2) + d(x2, x3). A set A in a metric space (X, d) is said to
be open if for any point a ∈ A there is a number ε > 0 such that the ball
U(a, ε) = {x ∈ X | d(x, a) < ε} belongs to A.
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it is proved that the invariant distance has the following property: for any two
points x and y of X there is a point z whose distances from x and y are equal
to one half of the distance between x and y. Then, if X is one-dimensional,
this implies that this space is homeomorphic either to a straight line or to a
circle, and in the general case X can be mapped on a line or a sphere so that
Γ becomes the isometry group of a line or a circle respectively. Kolmogorov
conjectures that these algebraic-topological axioms combined with the sep-
arability axiom already provide the spaces of constant curvature. But then
the group of isometries may be thinner than for classical constant curvature
manifolds (hyperbolic, Euclidean, elliptic, or spherical). He points out that
the permutation group of quaternions x′ = ax+ b, |a| = 1, depending only on
seven (rather then ten) parameters, satisfies all the axioms. Then, in order to
ensure completeness of the group of motions, the separability axiom is mod-
ified. Kolmogorov defines spheres of different ranks. A sphere S(x) is called
a sphere of the first rank. For a point belonging to S(x1) a sphere S(x1, x2)
of the second rank is defined in a similar way, and so on up to rank n, and
it is required that out of two spheres of the same rank n with parameters
(x1, x2, . . . , xk) one of them separates the other one from the center xk. Then
the following theorem is formulated.

Theorem 1. If the axioms listed above hold, then X is homeomorphic to a
finite-dimensional space of constant curvature, and it can be mapped on this
space in such a way that Γ will go into the complete group of motions and
reflections.

All this looked so transparent that no proof followed: the author apparently
believed that the interested reader would be able to reconstruct all the de-
tails himself. The famous German mathematician Heinz Hopf asked Heinrich
Titz to restore Kolmogorov’s arguments. The latter fulfilled the task, though,
having somewhat extended Kolmogorov’s axiomatics.

That was the first Kolmogorov’s geometric paper.
Whereas in this paper Kolmogorov originated the use of the methods re-

lated to topological groups in geometry, his second paper initiated the devel-
opment in our country of both topological algebra and topological geometry
(because a projective space is simultaneously a geometric and algebraic object;
this concerns any classical geometry, but “especially” projective).

In the second paper Kolmogorov introduces three groups of axioms, which
describe properties of three systems of elements, viz., points, lines, and planes.
The first is the compactness axiom saying that each of these systems of el-
ements is a connected compact topological space. Next goes the group of in-
cidence axioms, where points, lines, and planes satisfy the usual incidence
axioms of projective geometry. (Namely: for any two different points there is
a unique line passing through them and each line contains at least three points;
for any three non-collinear points there is a unique plane passing through them;
any line and plane have at least one common point; any two planes have at
least one common line, and there exist four non-coplanar points such that
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any three of them are not collinear.) The third group are continuity axioms
saying that the relations described by the incidence axioms are continuous
(for instance, a line is a continuous function of two different points, etc.)

Now, if we select three points on one of the lines to take them for zero,
unity, and infinity, then we can uniquely define (based on incidence axioms,
as is usually done in projective geometry) the addition and multiplication
operations on the set of points of the line so that this set becomes a skew-field
with the geometry of the plane over this skew-field being isomorphic to the
initial one.

But when the compactness and continuity axioms hold, the skew-field so
constructed is connected and locally compact. Having realized this, Andrey
Nikolaevich posed to L. S. Pontryagin the problem to describe all connected
locally compact skew-fields. And Pontryagin proved that there are only three of
them: the fields of real and complex numbers and the skew-field of quaternions.
This was one of the first results of topological algebra. As a consequence of
Kolmogorov’s and Pontryagin’s theorems the following theorem obtains:

Theorem 2. There exist only three different types of projective spaces which
possess the connectedness, compactness, and continuity properties, namely,
the real, complex, and quaternion projective (three-dimensional) spaces.

That was the initial result of topological geometry.
Let us briefly comment on these two papers. Among his teachers, Kol-

mogorov always reckoned A. K. Vlasov who gave lectures on projective ge-
ometry which Kolmogorov attended when being a second course student. The
paper on manifolds of constant curvature is dated June 18, 1930. This was
the time of Kolmogorov’s first visit to Germany. Possibly he produced this
paper in anticipation of meeting Hilbert, who exerted a profound influence on
all the initial period of Kolmogorov’s work. The second paper is dated May
26, 1931, so that it was completed right after his return from this trip, which
might have influenced writing it. In both these papers Kolmogorov combines
geometric and algebraic ideas with topological concepts. This will happen re-
peatedly during 30-s. The reason for that was, most likely, the influence of his
friend Pavel Sergeevich Aleksandrov. Thus in these two papers Kolmogorov’s
interests in axiomatic methods, projective geometry, and topology were put
together.

Both papers were met with approval and continued. The reader can find
an account of the subsequent developments related to the axiomatics of the
projective space in the comment by A. V. Mikhalev in Kolmogorov’s Selected
Works [Kol], Vol. 1, pp. 479–481.

8.1.3 Definition of measure of a set and normability
of a topological vector space

Now we will speak of geometric motives in non-geometric papers by
A. N. Kolmogorov.
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In his old age, Andrey Nikolaevich remembered about his first outstanding
result, viz., construction of an example of an integrable function with almost
everywhere divergent Fourier series2, as follows: “For a rather long time I
worked in both ways, trying by turns to construct an example or to prove its
nonexistence. The last stage was a week of persistent thinking, which resulted
in a suddenly appeared construction. Somewhat later, without much effort
there appeared an analytic version of the idea, which was initially purely
geometric.”

The paper presenting the construction of the example contains only the
analytic proof, and it is hard to understand now what Andrey Nikolaevich
meant when speaking of the “purely geometric idea”. But he told me more
than once that the cornerstone of his solution was the intuitive geometric
image that suddenly appeared to him.

The next two papers we will speak of are devoted to comprehension of the
notion of measure (in particular, the area of a surface) and topological vector
space.

The first of this papers is largely related to geometry. This is: Beiträge
zur Masstheorie (On measure theory) [Kol33] (1933). This paper deals with
the logical structure of the notion of the surface area, more precisely, of the
measure of a k-dimensional set lying in an n-dimensional space.

Let us discuss Kolmogorov’s approach in the intuitively clearer case when
k = 2 and n = 3, in other words, let us try to see how he treats the area of a
fairly arbitrary two-dimensional set in the three-dimensional space.

Kolmogorov defines two measures, the upper and lower ones. Their con-
struction is of geometric nature and very clear intuitively. Suppose you have a
surface (the boundary of a three-dimensional body) and you want to measure
its area. Take a piece of cloth which can crease, but cannot stretch, and apply
it to the surface, possibly with wrinkles, but without breaks. The least area
of a piece of cloth sufficient to cover the entire surface (more precisely, the
infimum of the areas of such pieces) is referred to as the upper area of this
surface.

And the lower area is defined as follows. Suppose we are allowed to cut
the cloth into pieces and apply these pieces to the surface so that they are
disjoint. Kolmogorov calls the supremum of the sums of the areas of such
pieces, which cover the entire surface, the lower area.

The paper contains the proof of the following main result.

Theorem 3. Any measure, which possesses the most natural properties for
this notion, lies between the upper and lower measures so constructed.

Of course, in the general setup the piece of cloth applied to the surface is
replaced by something very abstract (the infimum of the Lebesgue measure of
the inverse image of the surface under a nonexpanding mapping defined on the
widest and favorite at that time class of Suslin’s sets), but the essential part

2 See Chap. 1 (by J.-P. Kahane) in this book. (Editor’s note.)
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of the matter was explained above. It has a transparent and purely geometric
meaning, and the paper on the measure theory may be regarded as geometrical
in its “way of thought”.

Kolmogorov was preparing the paper on measure theory for discussion with
Carathéodory who was the first to consider the very problem of defining the
measure of a k-dimensional set in an n-dimensional space, which led, according
to Kolmogorov, “to a number of definitions of measure”. As Kolmogorov wrote
afterwards, Carathéodory “liked my paper on measure theory and insisted on
its fastest publication”.

For the subsequent developments of this paper see the comment by
V. A. Skvortsov in Kolmogorov’s Selected Works [Kol], Vol. 1, pp. 428–435.

The next paper has played a considerable role in building of functional
analysis. It is mentioned, in particular, in N. Bourbaki’s survey of the history
of mathematics. We mean the paper: Zur Normierbarkeit eines allgemeinen
topologishen linearen Raumes (On normability of a general topological linear
space) [Kol34] (1934). In this paper an algebraic (namely, vector) structure
was again combined with topology and for the first time the definition of
bounded sets in linear topological spaces (or “topological vector spaces” as
they are termed nowadays) was given3.

In Bourbaki’s treatise quoted above one of the two mentions of Kol-
mogorov’s name is in the section dealing with topological vector spaces. Bour-
baki points out therein the importance of “the notion of a bounded set intro-
duced by Kolmogorov and von Neumann in 1935” (as is seen from the year
of publication, Kolmogorov introduced this notion in 1934).

Functional analysis had arisen shortly before Kolmogorov’s paper: the fa-
mous book by S. Banach “Theory of Linear Operators”, which in fact gave
birth to the new direction in mathematics, appeared in 1931 (French transla-
tion was published in 1932). One copy of Banach’s book in French was sent
to Kolmogorov and it gave an impact to development of functional analysis
in our country. Kolmogorov’s paper was one of the first responses to Banach’s
book4.

Kolmogorov writes that “it seems quite natural to develop the general
theory of linear functionals and operators in linear topological spaces. However
the considerable part of this theory has been developed by now for normed

3 A vector space is called a topological vector space if it is a topological space and
the basic operations, viz., addition of vectors and multiplication of a vector by a
number, are continuous

4 The basic notion in Banach’s book is that of a normed space. Recall that a vector
space X is said to be normed if on X a function ‖ · ‖ : X → R is defined with the
following properties:

(a) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;
(b) ‖αx‖ = |α| ‖x‖ ∀x ∈ X, α ∈ R;
(c) ‖x + ξ‖ ≤ ‖x‖ + ‖ξ‖ ∀x, ξ ∈ X.
A normed space becomes a metric space if we set d(x1, x2) = ‖x1 − x2‖
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spaces [. . .] Hence the question arises: which linear topological spaces can be
normed?” The paper answers this question by the following theorem.

Theorem 4. A linear topological space can be normed if and only if there
exists at least one convex bounded neighborhood of zero.

The necessity part is clear: the open unit ball in a normed space is a convex
bounded neighborhood of zero. On the other hand, the Minkowski function5

of the intersection of a bounded convex set with a symmetric set is a norm,
which, as can be easily shown, specifies the same topology as the one given
initially in the linear topological space.

The Minkowski function is one of the basic functions of convex geometry,
and the proof that the Minkowski function of a convex set containing zero is
a convex function homogeneous of first order (which is the key point of the
normability theorem) is a fundamental fact of convex geometry.

8.1.4 Widths of ellipsoids and octahedrons

The next Kolmogorov’s paper with geometric content has initiated a new
direction in the approximation theory. This is the paper: Über die beste
Annäherung von Funktionen einer gegebenen Funktionenklasse (On the best
approximation of functions of a given functional class) [Kol36] (1936). We will
comment here on the geometric aspect of this paper and then discuss its role
in the approximation theory.

In this paper the notion was introduced, which was subsequently called
the Kolmogorov n-width (of a centrally-symmetric set C in a normed space
X). It is defined as follows:

dn(C,X) = inf
Ln

sup
x∈C

inf
ξ∈Ln

‖x− ξ‖,

where the leftmost infimum is taken over all subspaces Ln of dimension n.
The Kolmogorov n-width characterizes the accuracy of approximation of a
set by n-dimensional subspaces.

In the paper at hand the following geometric problem was solved: to de-
scribe the n-dimensional subspace approximating with the best possible accu-
racy a compact ellipsoid C lying in a Hilbert space.

An ellipsoid in the Hilbert space is the image of a ball under a linear
mapping. Hilbert’s theorem on reduction to principal axes of a quadratic form
generated by a completely continuous operator in a Hilbert space implies that
a compact ellipsoid is isometric to the following ellipsoid Ea in the space l2:

Ea =
{
x
∣∣ ∑

i∈N

x2
i

a2
i

≤ 1
}

(a = (a1, a2, . . .), ai ↓ 0)

(where N = {1, 2, ...}).
5 The Minkowski function of a convex neighborhood V of 0 in a topological vector

space E is the function ρV : E → [0, +∞[ defined by ρV (x) = inf{λ > 0, x ∈ λV }.
If E is a normed space, it is easily seen that the norm is the Minkowski function
of the unit ball. (Editor’s note.)
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Theorem 5. The following equalities hold:

dn(Ea, l2) = an+1, n = 0, 1, . . .

A geometric proof of this theorem in the three-dimensional case can be easily
illustrated by a picture. Now we will give an analytic proof.

Upper bound. Let us approximate a vector x ∈ Ea, x = (x1, x2, . . .), by the
vector Snx = (x1, . . . , xn, 0, . . .). We obtain:

d2
n = |x− Snx|2 def=

∑

i≥n+1

x2
i

Id=
∑

i≥n+1

x2
i

a2
i

a2
i

ai↓
≤ a2

n+1

∑

i∈N

x2
i

a2
i

x∈Ea

≤ a2
n+1.

This gives an upper bound for the approximation accuracy.
Lower bound. The lower bound is obtained by the method of “imbedded

ball”. Consider the set of vectors

Bn+1(0, an+1) =
{
x = (x1, . . . , xn+1, 0 . . .)

∣∣
n+1∑

i=1

x2
i ≤ a2

n+1

}
. (i)

We see that
n+1∑

i=1

x2
i

a2
i

a−1
i ↑
≤ a−1

n+1

n+1∑

i=1

x2
i

(i)

≤ 1.

Hence the n + 1-dimensional ball Bn+1(0, an+1) lies in the ellipsoid Ea. But
for any n-dimensional subspace Ln there is a vector of length an+1 which lies
in the orthogonal complement to Ln and belongs to Bn+1(0, an+1), i.e. the
deviation of our ellipsoid from Ln is no less than an+1, hence dn ≥ an+1. Thus
the upper and lower bounds coincide. Hence the theorem.

Eleven years after his 1936 paper Andrey Nikolaevich became interested in
Gauss’ paper on the method of least squares, which led him to some problems
of finite-dimensional Euclidean geometry. Kolmogorov engaged in his studies
young mathematicians A. A. Petrov and Yu. M. Smirnov. Their cooperation
resulted in the joint paper “A Gauss’ formula in the theory of least squares
method ” [KPS47] (1947). The authors obtained an upper bound for some
geometric quantity, but did not succeed in getting a lower bound. Then Kol-
mogorov proposed this problem to his pupil A. I. Mal’tsev (one of the leading
algebraists of the last century) who proved the required bound by an elegant
algebraic construction. Mal’tsev’s proof took 2 pages and was published as a
short note right after the paper by Kolmogorov–Petrov–Smirnov. Kolmogorov
did not focus attention on the fact that the resulting quantity was a certain
width. After another seven years S. B. Stechkin, who worked in the approxi-
mation theory, restated the result by Kolmogorov–Petrov–Smirnov–Mal’tsev
in terms of widths to obtain the following theorem:

Theorem 6. Let On be a regular octahedron (the convex hull of a system of
n pairwise orthogonal unit vectors in R

n along with those opposite to them).
Then

dk(On) =

√
n− k
n

·
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In the three-dimensional case this is a beautiful stereometric problem. It is
natural to conjecture that a line and a plane providing the best approximation
to the octahedron (or, equivalently, to its vertices) must be equidistant from
all the vertices. It is not hard to prove this in the three-dimensional case. But
this fact holds in the general setting as well. We will give its analytic proof in
the n-dimensional case.

The lower bound is obtained by the averaging method, which was re-
peatedly used by Kolmogorov and was actually applied by the three au-
thors mentioned above. Let {ek}nk=1 be the standard basis in R

n (e1 =
(1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)), let Lk be some k-dimensional subspace
of R

n, and let {fj}kj=1 be an orthonormal basis in Lk. Then the squared
distance from some point x ∈ R

n to Lk is given by the formula:

d2(x, Ln) = ‖x‖2 −
n∑

j=1

(x, fj)2

where (x, y) is the scalar product of vectors x and y, i.e.
∑n

i=1 xiyi. Denote
(fi, ej) by fij , then we obtain

k∑

j=1

d2(ei, Lk) = n−
k∑

j=1

n∑

i=1

f2
ij = n− k

(since
∑n
i=1 f

2
ij = ‖fj‖2 = 1). But since the largest distance between a point

of the octahedron and a subspace is attained at one of its vertices, this formula
implies

max
1≤j≤n

d2(ej , Lk) ≥ n−1
k∑

j=1

d2(ej , Lk) =
n− k
n

·

Since Lk is an arbitrary k-dimensional subspace, we obtain the lower bound:

dk(On) ≥
√

n−k
n .

It is seen from the above derivation that if L̂k is equidistant from all the

vertices, then the deviation of the octahedron from L̂k is equal to
√

n−k
n .

Upper bound. Denote by T the transformation acting by the following rule:
Tei = ei+1, i = 1, . . . , n − 1, Ten = e1. It is clear that the one-dimensional
subspace L1 = span{e1 + · · ·+en} is invariant relative to T (TL1 = L1). Con-
sider now all the two-dimensional invariant subspaces into which the transfor-
mation T decomposes. It is easily seen that one can compose a k-dimensional
subspace L̄k out of them, which, like L1, will be invariant relative to T . Hence
we obtain (denoting by Px the orthogonal projection of x on L̄k, Pei = ξi,
and T−1ξi = ξ′i):

d(ei, L̄k) = ‖ei − Pei‖ = ‖Tei−1 − T (T−1ξi)‖
= ‖ei−1 − ξ′i‖ ≥ inf

ξ∈L̄k

‖ei − ξ‖ = d(ei−1, L̄k).
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The reverse inequality is obtained in a similar way, hence the required upper
bound holds. The proof is completed.

8.1.5 More about geometric and visual motives
in Kolmogorov works

Topological results. Topology can naturally be regarded as a chapter of geom-
etry, but it has been developed and extended to such an extent that now it
overshadows its ancestor. In this book there is a separate chapter devoted to
topology, so I will only briefly comment on Kolmogorov’s works.

1. Can an open mapping increase topological dimension? In thirties this ques-
tion interested many topologists. Kolmogorov constructed an example of
such a mapping in his paper: Über offene Abbildungen (On open mappings)
[Kol37] (1937). Kolmogorov’s construction is based on the following geo-
metric fact: there exists an open mapping of a torus on the Möbius strip
which carries the equator of the torus into the edge of the strip. Iterating
such mappings and taking the projective limit, Kolmogorov constructs an
open mapping of the one-dimensional continuum on the so-called “Pon-
tryagin’s surface”, which is the compact set constructed shortly before
that by Pontryagin and giving the negative answer to the question whether
the formula dim(X×Y ) = dimX+dimY always holds true. Pontryagin’s
surface is a two-dimensional continuum, whose square is of dimension 3.

2. Kolmogorov introduced one of the most important topological notions,
namely, that of cohomology. This is discussed in detail in the chapter on
topology6, and I will not tackle this matter.

I will only mention the “visual” images, which helped this discovery. Andrey
Nikolaevich told V. I. Arnol’d that he “invented his topological homology
theory having in mind fluid flows in hydrodynamics or magnetic fields rather
than combinatorial or algebraic objects”. He wanted to model these physical
phenomena in the combinatorial setup of an abstract complex and succeeded
in it.

Spirals. Working on the theory of stochastic processes in 30-s, Kolmogorov
came to necessity of describing the curves in the Hilbert space invariant relative
to a one-parameter group of motions.

Not doubt he imagined initially a spiral sliding along itself. But the proof
does not show any geometric ideas: the description of such spirals reduced to
an elegant analytic problem, which was solved by Kolmogorov.

As one of essential components of his creative endowments, Kolmogorov
regarded also the “processes intuition”, which undoubtedly has very much in
common with geometric imagination.

I will quote Kolmogorov’s comment about one of his most remarkable
papers related to an applied problem as a manifestation of such “processes
intuition”.
6 See Chap. 7 (by V. M. Buchstaber). (Editor’s note.)
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In his paper “A study of the diffusion equation combined with increase in
the amount of substance and its application to a biological problem” (jointly
with I. G. Petrovsky and N. C. Piskunov) [KPP37] (1937), the problem setting
was due to Kolmogorov. As he wrote, “this problem appeared owing to my
long-time contacts with A. S. Serebrovsky and a group of his collaborators
N. P. Dubinin, A. A. Malinovsky, and D. D. Romashov”. A characteristic
feature of this paper is that it contains an invariant solution of traveling wave
type. It was striking for me to hear from him how he guessed the solution. He
said: “you know, I had seen a Bickford’s fuse burning”. Is not it wonderful that
Kolmogorov perceived the nature of evolution of a biological system having
seen a burning Bickford’s fuse!

8.1.6 The 13th Hilbert problem

The 13th Hilbert problem7 is devoted to one of the central questions of
analysis: are there functions of many variables? Functions studied in high
school are mostly functions of a single variable: quadratic trinomial and other
polynomials, trigonometric functions, exponential and logarithmic functions,
etc. But, of course, we often encounter functions of two and many variables.
For example, the distance from a point to the origin on a plane and in the
space is given by the functions

√
x2 + y2 and

√
x2 + y2 + z2 of two and three

variables. The simplest function of two variables is the sum, which associates
with a pair of numbers (x, y) the number x+ y.

The experience of classical analysis shows that functions of two variables
have much more complicated structure than those of a single variable, func-
tions of three variables are much more complex than those of two variables,
and so on. How can it be expressed? One possible way is as follows. Some
functions of three variables can be specified as a superposition of functions of
two variables, as, say, f(x, y, z) = ϕ(x, ψ(y, z)). (For example, the function√
x2 + y2 + z2 is the superposition of the functions u → u2 and v → √

v of
a single variable and the addition function of two variables.) Hilbert was sure
that functions of three variables cannot be reduced to functions of two vari-
ables, so in the 13th problem he put the question in the most radical form. He
has chosen a specific algebraic function of three variables (namely, the solution
to the polynomial equation (x, y, z) �→ w5 + xw2 + yw + z = 0) and asked
whether it can be expressed as a superposition of continuous functions of two
variables. (Supposedly, he expected a negative answer and assumed that the
proof of this fact would rely on the methods of algebraic geometry.) But the
answer turned out be positive and the solution based on geometry.

The story of how Hilbert’s 13th problem was solved is very amusing. In the
spring of 1956 A. N. Kolmogorov arranged a seminar for students of the second
course of the Faculty of Mechanics and Mathematics of the Moscow State
University, where he discussed some problems bearing in mind to come in the

7 See Chap. 13 (by V. Brattka) in this book. (Editor’s note.)
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long run to the solution of Hilbert’s 13th problem. This seminar was attended
by the second course student Dima Arnol’d (as Dmitry Igorevich was called
by fellow students). Arnol’d’s participation in this seminar resulted in his first
scientific paper. The seminar lasted only for one semester, during this time
some interesting results were obtained, but Hilbert’s problem looked still a
far away matter. However, when the seminar was over, Kolmogorov somewhat
unexpectedly even for himself managed to concentrate an immense impulse
of energy on solution of this very problem. As a result of about two weeks
of intensive thought he proved that any continuous function of four variables
is a superposition of functions of three variables. Kolmogorov presented this
result at the 3rd All-Union Mathematical Congress in the summer of 1956.
Then he gave up these studies letting his disciples to continue and complete
them.

After about half a year, once in spring of 1957, I visited Andrey Nikolaevich
in his dacha. Andrey Nikolaevich showed me a copy-book with inscription on
the cover: “Term paper by the 3rd course student Arnol’d”. Kolmogorov said:
“I am checking this paper now, but it is not improbable that it contains the
solution of Hilbert’s 13th problem”. And this was the case indeed.

But this was not the end of the story. In summer of 1957 Kolmogorov
succeeded in strengthening Arnol’d’s result to prove the following theorem.

Theorem 7. Any continuous function of n variables (defined on the n-
dimensional unit cube) is representable as a superposition of functions of one
variable and the only function — addition — of two variables.

Let us state a result by Kolmogorov, which implies Theorem 7 in the
two-dimensional case:

Let f be a continuous function defined on the unit square Q = {(x, y) | 0
≤ x, y ≤ 1}. Then it is representable in the form

f(x, y) =
5∑

i=1

χi(ϕi(x) + ψi(y)),

where the ϕi, ψi, and χi are continuous functions of one variable.
The proof of the general theorem dealing with functions of n variables is

illustrated by this two-dimensional case quite well.
Here we will outline the proof of the theorem stated above. It consists of

three stages, the first two of which are purely geometric.

1. Construction of systems of squares. Consider the system S1 of
intervals on the real line {Δi}i∈Z = [i, i + 4

5 ] separated from each other
by intervals of length 1/5. Next, consider on the plane the direct product
of S1 by itself (i.e. the set of pairs (x, y), where x ∈ Δi, y ∈ Δj , i, j ∈ Z).
Thus we obtain something like a map of a city with avenues and streets
of equal width. Denote the coordinate origin by O0 and consider also
the points Ok, 1 ≤ k ≤ 4, with coordinates (k/4, k/4). Now we make
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four translations of the initial “map” which shift O0 to the points Ok,
1 ≤ k ≤ 4. And, finally, we make l homothetic transformations of the
whole picture with homothety coefficient γ. As a result, we obtain the
system of squares Qk,lij , i, j ∈ Z, 0 ≤ k ≤ 4, l ∈ Z+. The construction of
the systems of squares is completed.

2. Construction of functions ϕk and ψk. These functions do not de-
pend on the function f . The main requirement on these functions is that
the functions Φk(x, y) = ϕk(x) + ψk(y) separate any two squares of the
l-th system of squares, i.e. that the segments Φ(Qk,lij ) and Φ(Qk,li′j′) for
(i, j) �= (i′, j′) are disjoint.
We will demonstrate only the first step in construction of these functions
to be defined on the entire plane. We have the zero-system of squares Q00

ij

consisting of the squares with side 4/5 and containing the “initial” square
with a vertex at the origin. Construct a continuous function Φ0

i (x, y) rep-
resentable as a sum of two functions of one variable ϕ0(x) and ψ0(y),
which separates the squares Q00

ij . The square ϕ0(x) is the product of two
intervals, Δi on the Ox-axis and Δj on the Oy-axis. Define the functions
ϕ0(x) and ψ0(y) so that the values of ϕ0(x) on the square Q00

ij be close to
the integer i and the values of ψ0(x) on the same square be close to

√
2j.

In other words, we enclose the points i into segments [i− εi, i+ εi] and
the points j into segments [

√
2j − ηj ,

√
2j + ηj ] so that the intervals δ00ij

= [i− εi +
√

2j − ηj , i+ εi +
√

2j + ηj ] are disjoint. Then the functions
ϕ0(x) and ψ0(x) are completed by linearity. This is the first step, after
which the construction of our functions continues in a similar manner
successively, by induction.

3. End of the proof (construction of functions χi). We will again
demonstrate only one step of the inductive construction. Suppose we are
given a function f(x, y) on the unit square Q and let M = max(x,y)∈Q
|f(x, y)|. Construct the functions χ1

i of one variable so that the function
f1(x, y) = f(x, y) −

∑5
k=1 χ

1
k(Φk(x, y)) (where the Φk(x, y) are the func-

tions constructed at step 2) fulfills the relation

max
(x,y)∈Q

|f1(x, y)| ≤
5
6
M

and, moreover,

max
(x,y)∈Q

|χ1
k(Φk(x, y)| ≤

1
3
M.

To this end, we choose the rank l so that the difference between the largest
and smallest values of f on any square Qklij would be no greater than M

6 . Now
we set the function χ1

k on the interval δklij equal to 1/3 of the value of f at
some (arbitrary) point of the square Qklij . Then we continue the function χ1

k

by linearity. It is not hard to show that the function f1 satisfies the required
condition. Then we have to iterate our constructions and pass to the limit.
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In this way the proof of Kolmogorov’s theorem on superpositions in the
two-dimensional case is completed.

It is natural to stop here the description of geometric ideas and construc-
tions in the non-geometric works of Andrey Nikolaevich Kolmogorov. But we
have to tackle one more subject.

8.1.7 Kolmogorov’s geometry course for high school

Andrey Nikolaevich Kolmogorov devoted the last years of his life to high school
mathematical education (see Fig. 8.1). In particular, he intended to reorganize
the school course in geometry. Andrey Nikolaevich wanted to describe the
Euclidean plane for schoolchildren in precise and intuitively clear manner.
Kolmogorov’s visual description involved the ancient conception of the plane
originating from Euclid (when the plane is modeled by the blackboard on
which one can make ruler and compass constructions, i.e. to draw straight lines
through two points or circles of given radius, in other words, to do everything
what is usually done in school) combined with modern views related to Felix
Klein’s Erlangen program. According to the Erlangen program the Euclidean
plane is characterized by the group of motions (i.e. isometric transformations).
Isometry allows for measuring distances, which is a very common notion: the
distances between points are measured with a scale.

And the motion can be easily conceived with the aid of a sheet of glass,
which is commonly used to cover a desk. It may play the role of a tangent plane,
which may be moved along the surface of the blackboard. If there is a figure
drawn on the blackboard (say, a triangle), then applying the sheet of glass
to it, one can copy the figure to the glass, then to move the glass to another
place and copy the figure again to the blackboard. Thus we obtain an isometric

Fig. 8.1. Kolmogorov in 1963 at the high school founded by him (Moscow). Photo
Alexander Zvonkin
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(preserving distances) transformation of the figure. We can “turn over” the
glass, then the transformed fugure will be symmetric to the initial one.

A motion of the plane is an abstraction, since it is a transformation which
moves the entire plane rather than a part of it. In the mathematical language
it is an isometry transformation of the plane (in the first paper discussed
above Kolmogorov also considered the group of isometry transformations).

Motions of the plane include, as particular cases, parallel translations,
rotations about some point of the plane, symmetries about some straight line.

The notions of distance and motion enable us to provide new proofs to
many theorems and to obtain intuitively and visually clear solutions of various
geometric problems.

For example, one of the first theorems of geometry saying that the angles at
the base of an isosceles triangle are equal (attributed to Thales who according
to a legend was the first to realize what a proof was) can be proved using the
idea of motion (“with the aid of a glass”) as follows. Let us copy the triangle
to the glass, then turn it over and apply it to our triangle on the blackboard
“with the opposite side”. Now we copy the triangle from the glass again to the
blackboard. The two triangles (initial and copied from the glass) will coincide
with each other, hence the angles at the base are equal (since they have just
traded places). This proof can be found in writings of Lewis Carrol, who was
perplexed: is it a proof? Certainly it is a proof if we can use the concept of
motion. But for this purpose a special axiomatics is needed. Such axiomatics
was devised by A. N. Kolmogorov. It is designed to give an exact description
of the Euclidean plane.

Such a description can be achieved by introducing coordinates with sub-
sequent use of algebraic methods (this way was outlined by Hermann Weyl,
Issai Schur and others; Dieudonné, remembering Euclid’s words which he said
to Ptolemy, called this treatment of planar geometry “Royal”).

But this is not the only way. It is possible to give a precise axiomatic de-
scription of the plane without recourse to the vector model. Such an axiomatic
description of the plane goes back to Euclid, and it was completed by David
Hilbert in his “Foundations of Geometry”.

The axiomatics of the plane devised by Kolmogorov has much in common
with the Euclid–Hilbert axiomatics, but it contains also a “Klein’s compo-
nent”. This axiomatics is rather simple, natural, and “geometric”. It involves
four undefined notions: a point, a line, a set, and an element of a set. The
axioms are divided into five groups: incidence, distance, order, mobility, and
parallelizm.

. . . According to some words in Kolmogorov’s publications he envisioned
that the teachers who love mathematics would be able starting from his course
to extend for interested schoolchildren the limits of Euclidean geometry and
to open for them the worlds of other geometries: the Euclidean world of finite
and infinite dimensions, the world of Lobachevsky’s geometry, the convex
Minkowski’s world, affine world, and Andrey Nikolaevich’s favorite projective
world.
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8.2 Kolmogorov’s works on the approximation theory

8.2.1 Introduction

A. N. Kolmogorov published in the first volume of his Selected Works (Math-
ematics and Mechanics) only six papers which may be regarded as dealing
with approximation theory. (Sometimes his paper on superpositions is also
viewed as related to this field.) Indeed, approximation theory did not belong
to directions of his primary interest. However he exerted a profound influence
on formation and development of this field. This influence gave rise to sev-
eral directions, which formed new stages in the development of approximation
theory, and to several scientific schools. The topics originated by Kolmogorov
were further elaborated by hundreds of researchers, there were certainly more
than a thousand papers dealing with this subject, and dozens of Doctor of
Science theses were defended.

Our aim here is to review these six Kolmogorov’s papers and to give a brief
survey of subsequent research. For a more detailed exposition of this matter
the reader is referred to my paper “Kolmogorov and the approximation theory”
[Tik89].

8.2.2 Widths of functional classes
and sets in finite-dimensional spaces

Kolmogorov’s 1936 paper on widths discussed above begins as follows: “We
assume that for the functions under consideration a distance is introduced.
If we consider the problem of approximating f by linear forms φ = c1φ1 +
· · ·+ cnφn with fixed φ1, . . . , φn, then we obtain the (Chebyshev’s) problem:
minimize the distance ρ(f, φ) by a suitable choice of the coefficients c1, . . . , cn.
Denote by En(f) the infimum of these distances ρ(f, φ). Further, for a class F
of functions f , denote by En(F ) the supremum of En(f) over all f in F . The
quantity En(F ) is determined by the class F and the functions φ1, . . . , φn.
Now we set another problem: for given F and n minimize En(F ) over the
choice of the functions φ1, . . . , φn . . . The infimum Dn(F ) of En(F ) may be
referred to as the n-width”.

This passage outlines briefly the main stages of the approximation theory.
At the first stage approximation of an individual element by a fixed approxi-
mation tool was studied (such problems were dealt with within Chebyshev’s
school). The next stage was to study the relationships between smoothness
and the rate of approximation, where approximations of classes of elements by
a fixed approximation tool became of importance (this problem for many years
was discussed by the schools of S. N. Bernstein, S. N. Nikol’skii, S. B. Stechkin,
B. K. Dzyadyk, N. P. Korneichuk and others, and this direction was influ-
enced, in particular, by Kolmogorov’s 1935 paper). And finally, the problem
of optimal choice of the approximation tool was posed. This new direction



168 Vladimir M. Tikhomirov

was stimulated by Kolmogorov’s 1936 paper. In this paper the optimal n-
dimensional subspace was sought for. The deviation of this optimal subspace
from the approximated class became known as the Kolmogorov n-width, for
which the notation dn was adopted.

Let us repeat the definition of the n-width of a set C in a normed space
X , which is denoted by dn(C,X). According to the above, the Kolmogorov
n-width is defined as

dn(C,X) = inf
Ln

sup
x∈C

inf
ξ∈Ln

‖x− ξ‖X

(where the Ln are all possible n-dimensional subspaces; the quantity

sup
x∈C

inf
ξ∈Ln

‖x− ξ‖X

is called the deviation of C from Ln). It is seen that this is the same definition
as was given in Part I.

The studies on estimation and evaluation of n-widths formed a fruitful
field of research in the approximation theory, which attracted activity of many
mathematicians.

It began with Kolmogorov’s results obtained in his 1936 paper which we
discuss. In that paper Kolmogorov considered the classes of functions, which
were subsequently denoted by W r

2 (T) and W r
2 ([0, 1]) and were called Sobolev’s

classes. The class W r
2 (T) (W r

2 ([0, 1])) consists of the functions on the circle T

(on the interval [0, 1]) which have r − 1 continuous derivatives such that the
(r − 1)th derivative is absolutely continuous and the rth derivative satisfies
the inequality ‖x(r)(·)‖L2(T) ≤ 1 (‖x(r)(·)‖L2([0,1]) ≤ 1). Kolmogorov obtained
the following result.

Theorem 8. The following formulas hold:

a) d2n−1(W r
2 (T), L2(T)) = d2n(W r

2 (T), L2(T)) = 1/nr, d0 = ∞,
b) dn(W r

2 ([0, 1]), L2([0, 1])) = λ−1
n−r, n ≥ r, dn = ∞, 0 ≤ n ≤ r − 1,

where λ0 < λ1 < . . . < λk . . . are the eigenvalues of the Sturm–Liouville
problem (−1)rx(2r) − λx = 0, x(k)(0) = x(k)(1) = 0, 0 ≤ k ≤ r − 1.

This result was actually proved in Theorem 5. Namely, on taking the Fourier
expansions of the functions contained in the classes under consideration in
some orthonormal systems, these classes become ellipsoids.

Indeed, if we decompose a function x(·) ∈W r
2 (T) in the Fourier series

x(t) =
a0

2
+

∑

k∈N

(ak cos kt+ bk sin kt),

then

‖x(·)‖2L2(T) =
a2
0

4
+

1
2

∑

k∈N

(a2
k + b2k), ‖x(r)(·)‖L2(T) =

1
2

∑

k∈N

k2r(a2
k + b2k).
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Hence the class W r
2 (T) is isometrically imbedded into l2 as the product of the

space of constants by the ellipsoid with axes 1, 1, 2−r, 2−r, . . . , n−r, n−r, . . .
orthogonal to this space. Applying Theorem 5 we arrive at the statement a)
of Theorem 8.

For the proof of part b) of the theorem A. N. Kolmogorov employed the
results by M. G. Krein who at that time studied a class of equations of Sturm–
Liouville type containing the equations of the form x(2r) + (−1)rx = 0 with
boundary conditions x(k)(0) = x(k)(1) = 0, r ≤ k ≤ 2r − 1. Their eigenvalues
{xk(·)}k∈N completed by orthogonal polynomials of degrees 0, . . . , r − 1 form
a complete orthogonal system in L2([0, 1]), whereas the functions {x(r)(·)}k≥r
form an orthogonal basis in L2([0, 1]). The eigenvalues are positive and of
multiplicity 1, i.e. 0 < λr < λr+1 < . . . This implies that W r

2 ([0, 1]) can be
isometrically imbedded in l2 as the product of the space of polynomials of
degree = r− 1 by an ellipsoid with axes λr, λr+1, . . . orthogonal to this space.
Applying again Theorem 5 we obtain Theorem 8.

The papers by Kolmogorov, Petrov, Smirnov, and Mal’tsev of 1947, where
the n-widths of octahedrons were evaluated, were reviewed in Part I.

8.2.3 Estimation of the accuracy of the Fourier method
on a class of functions

The first Kolmogorov’s paper on the approximation theory was the one written
a year before the paper on n-widths. This was the paper: Zur Grössenordnung
des restgliedes Fourierschen Reihen differenzierbarer Funktionen (On the or-
der of the remainder terms in the Fourier series of differentiable functions)
[Kol35] (1935). In this paper Kolmogorov considers the class W r

∞(T) of func-
tions on the circle T which are continuous along with their derivatives up
to order r − 1 and such that x(r−1)(·) satisfies the Lipschitz condition with
constant 1 (i.e. ‖x(r)‖L∞(T) ≤ 1).

Kolmogorov seeks to evaluate the quantity

Cnr = sup{‖x(·)− Snx(·)‖C(T)} | x(·) ∈W r
∞(T)},

where Snx(·) is the nth Fourier sum of the function x(·).
The main Kolmogorov’s result is as follows:

Theorem 9. The following exact asymptotics holds:

Cnr =
4
π2

logn
nr

+O
( 1
nr

)
.

We will give the proof for an even r = 2m, in which case it is simpler. We
employ the well-known integral representation for the difference between a
function and its Fourier sum:

x(t)− Snx(t) = π−1

∫

T

Dn,2m(t− τ)x(r)(τ)dτ,
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where
Dn,2m(t) = (−1)m

∑

k≥n
k−2m cos kt.

Then Cnr = π−1
∫

T
|Dn,2m(t)|dt. To evaluate this integral Kolmogorov ap-

plies twice the Abel transform to obtain Dn,2m(t) = (−1)m+1n−2mDn(t) +
R(t), where Dn(t) = 1

2 +
∑n
k=1 cos kt is the Dirichlet kernel and |R(t)| =∣∣nΔ(n)Fn(t) +

∑
k≥n(k +1)Δ2(k)Fk(t)

∣∣. Here

Δ(k) =
1
km

− 1
km+1

, Δ2(k) =
1
km

− 2
1

km+1
+

1
km+2

and Fn(t) = n−1
∑n−1
k=0 Dk(t) is the Fejér kernel.

Now we use the well-known asymptotics of the L1-norm of the Dirichlet
kernel

1
π

∫

T

|Dn(t)|dt =
4
π2

logn+O(1),

the asymptotic relations8 Δ(k) � k−(2m+1), Δ2(k) � k−(2m+2), and the
properties of the Fejér kernel, namely, its nonnegativity and the equality
1
π

∫
T
Fn(t)dt = 1, to obtain

Cn,2m =
1
n2m

∫

T

|Dn(t)|dt +
∫
|R(t)|dt =

4
π2

logn
n2m

+O
( 1
n2m

)
.

8.2.4 Kolmogorov’s inequality for an intermediate derivative

In 1939 Kolmogorov publishes his famous paper “On inequalities between
suprema of successive derivatives of an arbitrary function on an infinite in-
terval” [Kol39].

In 1914 Hadamard proved that a function x(·) with derivative satisfying
the Lipschitz condition on the real line R (thus ẍ exists almost everywhere
and belongs to L∞(R)) fulfilles the inequality

‖ẋ(·)‖Cb(R) ≤
√

2‖x(·)‖1/2
Cb(R)

‖ẍ(·)‖1/2L∞(R)

(where Cb(R) is the space of continuous bounded functions on R with sup-
norm). Kolmogorov regarded this Hadamard’s result as the one of fundamental
importance for the subject9.

In late thirties Kolmogorov posed to his student G. Shilov10 the prob-
lem to extend Hadamard’s inequality to the case of n times differentiable

8 The notation un � vn means that there exists constants c > 0, c′ > 0 and an
integer n0 such that 0 < cvn ≤ un ≤ c′vn when n ≥ n0. (Editor’s note.)

9 In fact, the inequality above is due to Edmund Landau (Proc. London Math. Soc.
ser. 2, Vol. 13, 1914: p. 44), as noticed by Hadamard himself. (Editor’s note.)

10 Whose name at that time was Yuri Bosse after the name of his stepfather
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functions. Shilov, having proved a number of partial results, formulated a
general conjecture that the extremal functions in this problem should be the
ones that appeared shortly before in papers by G. Favard and a subsequent
paper by N. I. Akhiezer and M. G. Krein on approximation of functional
classes by trigonometric polynomials. Now these functions are known as
Euler’s splines11. But Shilov did not succeed in fully justifying his conjecture.
Then Kolmogorov became interested in this problem himself and solved it by
proving the following result.

Theorem 10. If a function x(·) is n− 1 times continuously differentiable on
the real line and the (n−1)th derivative satisfies the Lipschitz condition, then
for 0 < k < n the following inequality holds:

‖x(k)(·)‖Cb(R) ≤ Ckn‖x(·)‖
n−k

n

Cb(R)
‖x(n)(·)‖

k
n

L∞(R), (8.1)

where Ckn are some definite constants.

This theorem does not look as a result of the approximation theory. It became
regarded as part of this theory after S. B. Stechkin used the whole series of
results on inequalities for derivatives on the real line and half-line to solve
problems on approximation of unbounded operators by bounded ones.

Kolmogorov’s proof is very complicated. It contains an important frag-
ment which is referred to as the “comparison theorem”. This result is a re-
mote predecessor of the reasoning which became common after formulation of
Pontryagin’s maximum principle. Kolmogorov’s proof could not be simplified
for a long time. Only in 70-s the American mathematician Cavaretta provided
a simplified proof based on reduction to the periodic case (for details, see my
1989 paper mentioned above).

8.2.5 Criterion and uniqueness
of the elements of the best approximation

In 1948 A. N. Kolmogorov published a short note “Remark on Chebyshev’s
polynomials of least deviation from a given function” [Kol48]. This paper is
related to the first, Chebyshev’s, stage of the approximation theory, which
deals with approximation of individual functions by a fixed approximation
tool. In this note Kolmogorov establishes a “complex analog of the charac-
teristic property due to Chebyshev of the best approximation polynomials”
11 They are the functions φn(t) = afn(bt + c), with a > 0, b > 0, c arbitrary, and

fn(t) =
4

π

∑

m≥0

sin
(

(2m + 1)t − π

2
n
)

(2m + 1)n+1
·

Shilov conjectured (and Kolmogorov proved) that they are exactly the functions
such that equality holds in (8.1) of theorem 10. (Editor’s note.)
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and shows that “Haar’s theorem [on uniqueness of the best approximation
element] can be easily extended to complex functions”.

In this note the following theorem was proved.

Theorem 11. Let Ln ∈ C(T,C) (i.e. Ln is an n-dimensional subspace of the
space of continuous functions on a compact set T with sup-norm) and let x(·) ∈
C(T,C) \ Ln. Then an element ŷ(·) ∈ Ln is least deviating from x(·) if and
only if for any y(·) ∈ Ln the following inequality holds: mint∈T0 Re (ȳ(t)(ŷ(t)−
x(t))) ≤ 0, where T0 = {t ∈ T | |x(t) − ŷ(t) = ‖x(·) − ŷ(·)‖C(T,C). Moreover,
if any non-zero polynomial in Ln vanishes on T at most at n+ 1 points, then
the best approximation element is unique.

In 1947 the remarkable monograph “Lectures on the approximation theory”
[Akh56] by N. I. Akhiezer appeared. The author presented to Kolmogorov a
copy with dedicatory inscription. Andrey Nikolaevich expressed a very posi-
tive opinion about this book, time and again he invoked it in his research and
repeatedly quoted it. In the paper we discuss now he wrote: “I present com-
plete proofs of all results, though some of them are only minor modifications
of Sects. 44–45 of Akhiezer’s book. My interest to this field of research was
caused by the appearance of this book”.

Unfortunately both N. I. Akhiezer and A. N. Kolmogorov did not pay
attention to a paper by L. G. Shnirel’man in which the approximation problem
of a continuous function on a compact set was automatically reduced to the
finite-dimensional case, where everything becomes obvious (for more details,
see my paper of 1989).

Finally, we will review Kolmogorov’s papers on ε-entropy of functional
classes12. After the short note “On some asymptotic characteristics of com-
pletely bounded metric spaces” [Kol56] (1956) there appeared a survey paper
“ε-entropy and ε-capacity of sets in functional spaces” (jointly with the au-
thor of the present review) [KT59] (1959). Let us set out the origins and
development of this field.

8.2.6 ε-Entropy

During 50-s there appeared new reasons for Kolmogorov to turn once more to
the approximation theory. One of the incentives was his interest to problems of
the information theory. This interest arose apparently in 1953 or 1954. At the
same time Andrey Nikolaevich started to think over the paper by Vitushkin
[Vit54] (published in Doklady Akad. Nauk SSSR, 1954, by Kolmogorov’s pre-
sentation), which dealt with the problems of superposition of functions. Kol-
mogorov found another way to prove the main Vitushkin’s theorem based on
bounds for ε-nets in classes of smooth functions of many variables. In this
connection, he remembered that the very “idea of possibility to describe the
12 The Chap. 6 (by M. Nikouline and V. Solev) in this book explains the use of

ε-entropy in statistics. (Editor’s note.)
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“massiveness” of sets in metric spaces by means of the rate of growth of the
cardinality of their most economical ε-coverings as ε→ 0 was elaborated in a
paper by Pontryagin and Shnirel’man” in 30-s (where this method was used
to define the very dimension of compact sets in metric spaces). Combining
these conceptions with Shennon’s ideas, Kolmogorov formulated an extensive
programme of investigating the ε-entropy and ε-capacity of stochastic pro-
cesses as well as of “compact sets in functional spaces which are of interest
for the theory of functions”.

A. N. Kolmogorov immediately appreciated the significance of Shannon’s
ideas. He also highly appreciated Shannon himself as a creative personality
(he wrote that “his [Shannon’s] mathematical intuition is amazingly precise”).
Kolmogorov continued and elaborated Shannon’s conceptions.

An element of a finite set C of cardinality N(C) may be specified by
[log2N(C)] + 1 binary digits. “Therefore, Kolmogorov says, the quantity
H(C) = log2N(C) may be viewed as a measure of “amount of information”
needed to single out a given element of C. In case of infinite sets it is natural
to consider some ways of approximate specification of these elements”.

This idea gave rise to the concept of ε-entropy, which is the logarithm
of the least number of points in an ε-net of a compact set C in a metric
space X which approximate the elements of C within ε. This quantity is now
commonly denoted by Hε(C,X).

Vitushkin’s results implied a lower bound for the ε-entropy of the class
W r

∞(In) of functions of n variables defined on the unit cube In in R
n and

having uniformly bounded partial derivatives up to order r. Studying Vi-
tushkin’s paper Kolmogorov realized that its main result (obtained with the
aid of the brilliant but rather complicated theory of multivariate variations
constructed by Vitushkin) can be much simpler derived from the upper bound
for the ε-entropy of this class.

In his paper [Kol56] in Doklady Akad. Nauk of 1956 Kolmogorov an-
nounced the following result.

Theorem 12. There exist constants c and C such that

c
(1
ε

)n/r
≤ Hε(W r

∞(Id), C(Id)) ≤ C
(1
ε

)n/r
.

A slightly worse upper bound can be obtained very simply. Let us show this for
r-smooth functions (i.e. functions having bounded derivatives up to rth order)
of a single variable (defined on the interval I = [0, 1]). How many elements do
we need in order to construct a table which would enable us to recover any
function of this class with accuracy ε? (The logarithm of this number will be
an upper bound for the ε-entropy of this class.) It can roughly be counted as
follows. Divide the interval into subintervals of equal length ε1/r and calcu-
late at their end-points the values of the function and its derivatives up to
rth order within accuracy ε. Then, if you want to calculate the value of some
function of this class at some point with accuracy ε times a readily obtainable
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constant, you can find the subinterval containing the given point and apply the
Taylor expansion about its left end-point using the approximate values of the
derivatives. The remainder in the Taylor formula will be of order ε, hence the
total accuracy will also be of order ε. To specify a derivative at a given point
we need in our table of order 1/ε numbers and of order (1/ε)r+1 numbers for
all derivatives, then totally we need of order (1/ε)(r+1)ε−1/r

numbers. Taking
logarithm yields the upper bound C(1/ε)1/r log 1

ε for the ε-entropy, where C is
some constant. The correct upper bound obtains by a more accurate calcula-
tion (one has to proceed as above only at the initial point, then the number of
elements sufficient to recover the function on the next interval does not depend
on ε since the derivatives at the end-point of the second interval are already ap-
proximately known, and the same is repeated all over the entire interval). The
upper bound thus obtained together with Vitushkin’s lower bound yield the
quantity of order (1/ε)1/r (and of order (1/ε)n/r for r-smooth functions of n
variables).

Thus the “massiveness” of r-smooth functions of n variables is determined
by the exponent q = n/r. And it is not hard to derive from Baire’s theorem
that among the functions of n variables with exponent q there is a function
which cannot be represented by superpositions of functions of smaller number
of variables with smaller exponent than q. Now this is exactly Vitushkin’s
theorem.

At the same time Kolmogorov estimated the rate of approximation accu-
racy for analytic functions of n variables. The order of magnitude of ε-entropy
for analytic functions turned out to be essentially different, namely, it was(
log 1

ε

)n+1. The information capacity of analytic functions is much less than
that of functions of finite smoothness.

Kolmogorov presented the results about the bounds for the ε-entropy of
smooth and analytic functions and their proofs in a special course of lectures
in fall of 1956. The “extensive programm of investigation of the ε-entropy and
ε-capacity [. . . ] of compact sets in functional spaces which are of interest for
the theory of functions” began to be accomplished by Babenko, Vitushkin,
Erokhin, the present author, and others. Andrey Nikolaevich discussed their
results with interest, but did not work in this direction himself any more.

Kolmogorov developed his result on the entropy of analytic functions in
the same direction as for smooth functions when proving Vitushkin’s theorem.
He proved that in some respect analytic functions are the more “massive” the
larger is their domain of definition. Namely, he introduced the concept of linear
dimension, somewhat specializing Banach’s definition (which shows once more
that Kolmogorov had studied very deeply Banach’s treatise sent to him in 30-s
just as the book had appeared). Kolmogorov conceived the idea of entropy
invariant for the linear dimension when traveling by train to Leningrad; it was
published with supplements in 1958. Somewhat earlier similar ideas occurred
to the young (world-renowned nowadays) Polish mathematician A. Pelczinski.
At that time they were actively discussed in Warsaw. In 1958 Kolmogorov
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makes one more striking discovery: he constructs the entropy invariant in the
theory of dynamical systems. This is discussed in Chap. 12.

8.2.7 Concluding remarks

Here we list some names of mathematicians whose research was strongly in-
fluenced and motivated by Kolmogorov’s works on the approximation theory.

The studies on estimation of the remainder of the Fourier series on a class
of functions were continued primarily by S. M. Nikol’ski and S. B. Stechkin.
Their progeny formed several scientific schools in Ukraine and Sverdlovsk
(nowadays Ekaterinburg).

The subject “bounds for accuracy of a fixed approximation tool on a class
of functions” was continued by S. P. Baiborodov, V. A. Baskakov, and others.

The reader can learn of the developments in this field from the monographs
by Dzyadyk, Korneychuk, Stepanec.

The research on n-widths was continued by many dozens of mathemati-
cians. Among them: Rudin, Stechkin, Tikhomirov, Babenko.

See also monographs by Tikhomirov and Pinkus.
The work on inequalities for derivatives on the real line and half-line, where

Kolmogorov’s result remains the most brilliant, were continued by Arestov,
Berdyshev, and others.

See reviews by Arestov, Magaril-Ilyaev & Tikhomirov.
Nagy, Stein, Arestov.
The subject of Kolmogorov’s paper on approximation of individual func-

tions by subspaces was explored further by Zukhovitski, Krein, Stechkin, and
others.

Kolmogorov’s progeny in the theory of entropy is now countless.
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9.1 Introduction

During his childhood, Andrëı Nikolaievitch Kolmogorov found biology very
interesting. In fact, in the book Kolmogorov in Perspective, one can read that
he made the following comment about himself as a schoolboy:

“I was one of the best in my class in mathematics, but my real scientific
passions were, first of all biology, and then russian history” ([Kol00], p. 5)

He kept these centers of interest for the rest of his life. Thus, in 1940,
Kolmogorov dared to confront the feared Lysenko by defending Mendel’s laws
− a very dangerous move to make in the middle of Stalin’s regime. And,
according to V. I. Arnold, the last research done by Kolmogorov [KB67],
published in 1967, was motivated by biological ideas about the structure of
the brain ([Kol00], p. 94).

In fact, Kolmogorov made only a few isolated contributions to biomath-
ematics; but they all demonstrate, as one would expect, a remarkable origi-
nality. In particular, the short note [Kol36] about the predator-prey equation
is a model of perspicacity and has had great influence on the deterministic
theory of population dynamics. It is one of the rare articles that Kolmogorov
published in Italian, doubtlessly in honor of the mathematician Vito Volterra
who inaugurated what would later be called The Golden Age of biomathemat-
ics [SZ78]. Kolmogorov’s note represents a qualitative jump in the theory of
predator-prey systems.
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9.2 From Volterra equations to Gause equations

The beginning point of the study of Kolmogorov discussed here is the famous
model that Volterra1 used, as early as 1925, to explain a surprising discovery
of his son in law, the ecologist Umberto D’Ancona [Kin85]. Because of his
research in marine biology, based on statistics from fish markets, D’Ancona
noticed that during World War 1, the number of predators among Adriatic
fauna had increased while the number of prey had diminished. This seemed
to be an effect of the reduction of fishing due to the Austro-Italian hostilities:
but why did it work in this manner and not in another?

Volterra based his argument on an ordinary differential equation: if x(t)
and y(t) are the densities of prey and of predators, respectively, then the rate
of increase ẋ/x of the prey should be a decreasing function of y, positive for
y = 0, and the rate of increase ẏ/y an increasing function of x, negative for
x = 0. If we suppose that these functions are linear, we see that

ẋ = x(a− by) (9.1)
ẏ = y(−c+ dx) (9.2)

where the constants a, b, c, d are positive. In the positive quadrant, the
phase portrait consists of periodic orbits around the equilibrium position
(x̄, ȳ) = (c/d, a/b). Volterra showed that the temporal averages of x(t) and
y(t) along periodic orbits coincide with the values x̄ and ȳ, which gave him
a way to explain D’Ancona’s observation: in fact, the supplementary contri-
bution due to the fishermen’s work diminishes the quantity a (the rate of
increase of the prey in the absence of predators) and increases c (the rate of
decrease of predators in the absence of prey), without affecting the values of
the coefficients b and d, which measure the effects of the interaction between
the predators and their prey. The corresponding effect on the temporal av-
erages of the densities of the two populations is just that which D’Ancona
observed.

The elegance of Volterra’s reasoning stands in clear contrast with the plau-
sibility of his equation. In fact, (9.1)–(9.2) is unstable from many points of
view. In particular, the model implies that a prey population, in the absence
of predators, would grow exponentially towards infinity. This evident flaw in
the (9.1) can be easily corrected, one way is to introduce a self-limiting term
for the growth of the prey, reducing the equation, for y = 0, to a logistic
model ẋ = ax(1 − x/K). Georgii Frantsevitch Gause proposed another sys-
tem of much more general equations ([Gau34], [GSW36]), which, using modern
notation, take the following form:

ẋ = xg(x) − yp(x) (9.3)
ẏ = yq(x) (9.4)

1 We note that Alfred Lotka introduced the same model, at approximately the same
time, independently of Volterra, and in a different context. (Editor’s note.)
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Here, g describes the rate of increase of prey when the predators are absent:
it is a function which is positive on an interval [0,K] and negative for x >
K (because, for example, the food resources being limited, the prey are in
competition with each other when there are too many of them), and the
density of prey thus converges, in the absence of predators, towards the limit
K. The functions p and q, which are called the response functions, describe
the predator-prey interaction: we suppose that p is a positive function with
p(0) = 0, while q is strictly increasing for x > 0, has a negative limit when x
decreases to 0, and a positive limit when x increases to +∞ (an abundance
of prey). These equations are much more reasonable and more flexible than
(9.1)–(9.2).

9.3 The Kolmogorov equations

Kolmogorov did not mention these equations in his note [Kol36], even though
he must have known about the work of Gause − who also lived in Moscow
in the thirties and, at the age of twenty-two, revolutionized mathematical
biology with his book The Struggle for Existence [Gau34]. After noticing that,
in Volterra’s work, there was an arbitrary postulate of linear rates of increase
that could not be justified as anything but a first approximation of real rates
of increase, Kolmogorov considered the most general case possible

ẋ = xS(x, y) (9.5)
ẏ = yW (x, y) (9.6)

and was led to postulate (assuming that the rates of increase S and W were
continuously differentiable) some minimal conditions which are satisfied in
any realistic predator-prey interaction.

The first group of conditions requires that, if the number of predators
increases, then the rates of increase of the two populations decrease:

∂S

∂y
< 0,

∂W

∂y
< 0. (9.7)

These conditions (the second of which was not satisfied in Volterra’s and
Gause’s models) are, in general, accepted without objection by ecologists (even
though, for example, one can imagine predators who only manage to attack
their prey when there are enough of them to surround it, which would imply
that the second condition is not valid for small values of y). The immediate
consequence of the postulate (9.7) is that the two isoclines in the interior of
the positive quadrant, {(x, y) : ẋ = 0} and {(x, y) : ẏ = 0}, can be viewed
as the graphs of two functions of x. Their intersections are, evidently, the
fixed points of (9.5)–(9.6), which correspond to equilibria of the system with
coexistence of the two populations.
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The other conditions of [Kol36] describe the behavior of (9.5)–(9.6) on the
boundary of the positive quadrant, that is, in the absence of one population
or of the other. They imply, more precisely, that the unique equilibrium (K, 0)
which is composed of prey but not of predators, can be invaded by predators,
so that

W (K, 0) > 0. (9.8)

This implies that there is at least one equilibrium with coexistence of the two
species.

What is still missing is a condition to guarantee that there is only one such
equilibrium, that is, a unique point in the intersection of the two isoclines in
the interior of the first quadrant. This would be a simple consequence of a
condition analogous to (9.7):

∂S

∂x
< 0,

∂W

∂x
> 0. (9.9)

Kolmogorov noticed that the validity of this condition is not clear if x, the
number of prey, is small. Today, all ecologists are familiar with the Allee effect,
which is the fact that the rate of increase (of a prey population for example)
can decrease and even become negative if the density of the population is
sufficiently small. Kolmogorov, who could not yet know of this effect, seems
to have suspected that there was such a mechanism, even though the argument
he gave, invoking the presence of a large number of predators, does not seem
very clear. According to a note on the bottom of a page, as long as the
density x of the prey is small, the probability of survival of the prey would
be an increasing function of x (maybe because the predators have eaten their
fill, while the competition effect within the prey species can not yet be felt).
Having understood that (9.9) is not necessarily valid, Kolmogorov introduced
another condition, that S decrease and W increase along rays starting at the
origin. This is therefore a condition concerning directional derivatives. Today
this condition is often written in the form

x
∂S

∂x
+ y

∂S

∂y
< 0, x

∂W

∂x
+ y

∂W

∂y
> 0. (9.10)

Imagine, indeed, that a large habitat become smaller because of some external
force. In this case the densities x and y increase while the ratio between them
stays constant. The individuals would be obliged to get closer to each other,
the predators would have less distance to travel to find their meal, and each
prey would be tracked by more predators. Thus, the predators would have the
benefit of the new circumstances, while the prey would suffer from them.

The condition (9.10) implies that there is only one equilibrium Z in the
interior of the positive quadrant, and that it is divided by the isoclines (which
intersect in Z) into four regions depending on the signs of ẋ and of ẏ.

The rest of the reasoning is surprisingly simple. The equilibrium with only
the prey population present, which is given by B = (K, 0), is necessarily made
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up of a saddle point, and the two orbits which converge there are situated on
the x-axis. Thus the positive quadrant contains a unique orbit having B as
α-limit, that is, such that limx(t) = K and lim y(t) = 0 for t → −∞. This
orbit stays in a compact domain, and thus must have a non-empty ω-limit2.
If this ω-limit contains a fixed point, it must be Z. In this case, it is easy to
see that all the orbits, in the interior of the positive quadrant, converge to
Z. If this is not the case, the theorem of Poincaré-Bendixson implies that the
ω-limit is a limit cycle around Z. In this case, all the orbits in the positive
quadrant which are in the exterior of this cycle converge to it.

9.4 Technical aspects

Kolmogorov, who didn’t like to dwell upon technical details, gave only a rough
sketch of his idea. Actually, what he wrote was not totally correct. In fact,
there is an obvious contradiction between the two parts of conditions (9.7)
and (9.10), as can be easily seen by setting x = 0 and considering y > 0.
This error is not, however, very serious and is easy to correct. For example,
in [AGW73] and [AGHW74], it is shown that it suffices to assume that (9.7)
and (9.10) are valid in the interior of the positive quadrant and to specify the
behavior of S and W along the axes. The same type of proof, with all possible
details, can be found in [Fre75] and [Fre80]. Kolmogorov didn’t feel the need
to give the details of his argument as his milieu was extremely well informed
about the methods for studying ordinary non-linear differential equations in
two dimensions, and in particular conversant with results that had just been
obtained by mathematicians and engineers in the Soviet Union such as Pon-
tryagin, Andronov, Krylov, Bogoliubov, Moiseev and Bautin (see for example
[ALGM73]). We remark that in 1939 Moiseev showed that, if the functions
S and W are affine then an equation of type (9.5)–(9.6) never admits a limit
cycle.

The equations of Volterra (9.1)–(9.2) and of Gause (9.3)–(9.4) are not par-
ticular cases of Kolmogorov’s equation because neither (9.2) nor (9.4) satisfy
the second condition of (9.7): the isocline in both cases is vertical. But the
conclusion stays the same. This is also the case for the so-called equation of
Holling-Tanner

ẋ = xr(1 − x

K
)− yp(x) (9.11)

ẏ = ys(1− hy

x
) (9.12)

(with the constants r, s, h and K positive and the response function p as in
(9.3)). Here the growth of prey (without predators) is logistic with a constant

2 The ω-limit of the orbit (x(t), y(t)) is the set of all points (x̂, ŷ) such that x̂ =
lim x(tk) and ŷ = lim y(tk) for a subsequence tk → +∞
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capacity, and the growth of predators is logistic with a capacity proportional
with x. This model seems to be designed to describe real cases of the predator-
prey systems, when one has made a suitable choice of the response function p.

Kolmogorov makes clear that his reasoning implies nothing about what
happens in the interior of the cycle, but notes that, in the simplest cases,
the limit cycle is unique and attracts all the orbits coming from the interior
(excepting, of course, equilibrium). Afterwards, a great deal of research was
done to find conditions for the global stability of Z, and for the unicity of the
limit cycle [Che81], [KF88], [Kua90], [HH95], [GKT97], [Has00]. One often
hears the assertion that asymptotic stability of Z implies its global stability:
but this is false, in general (see e.g. [Bul76]).

9.5 The impact

At first the reaction to Kolmogorov’s note was rather lukewarm. It was only
during the sixties that these results began to be appreciated, mostly because
of the appearance at this time of the articles of Rosenzweig and MacArthur
[RM63], and of Rescigno and Richardson [RR67]. The detailed study of the
explicit form of the response function, in particular that done by Holling
[Hol65], also played an important role. It was no longer necessary to convince
the ecologists of the reality of non-transitory oscillations in certain systems
of predator-prey, or of the robustness of their period and their amplitude. It
became evident that models with limit cycles were necessary. Furthermore, by
using an elegant criterion proposed by Rosenzweig and MacArthur, one could
determine whether the equilibrium Z of the system (9.3)–(9.4) was locally
stable or not. Thus, the emergence of Hopf bifurcation became easy to verify.
Sometime around 1972 there was a real stampede toward limit cycles due to
three articles in Science written by Rosenzweig, Gilpin and May, respectively
([May72], [Gil72], [Ros72]). In particular, the book of May [May73] spread
Kolmogorov’s message among ecologists, and showed that the linear analysis
of an equilibrium does not always allow one to make conclusions about the
global behavior of the system.

For his own reasons, Kolmogorov himself came back to his model in a
short note written in 1972 ([Kol72]). In particular, he applied his method to
the Gause equations (again without citing Gause) and gave a classification
of possible phase portraits. These arguments were extended in [Baz74] and
[SL78].

We conclude this section with several remarks. From an ecologist’s perspec-
tive it is less important to know whether a certain equilibrium is stable than
to know if the system is permanent, that is, if the species under consideration
can survive indefinitely; it is of secondary interest to know if their densities
converge or oscillate. The role of this notion of permanence in theoretical
analyses of the ecology of populations is increasing [HS98]. The associated
notion of stability is more like that of Lagrange than that of Lyapunov: it is
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formulated as a condition that the border of the phase space (including points
at infinity) be repulsive.

It is interesting to notice, in this context, that Kolmogorov explains in his
note [Kol36] that the modelization of the ecological system by a deterministic
model is not valid if the populations are very small (that is, if one is close
to the border of the phase space). No one was better than Kolmogorov at
deducing a differential equation from a stochastic model. The fact that he
did not try to do this in the case of a predator-prey interaction suggests that
he was conscious of the difficulty of doing so: and it is perhaps because he
considered it too difficult to deduce the analytic expression corresponding to
the vector field given by (9.5)–(9.6) from a stochastic process modelling the
encounters between predators and prey, that he decided to do without, and
to instead use the general properties (9.7),(9.8),(9.9) and (9.10).

But, what is of primary importance is the general approach used by Kol-
mogorov: in particular, today, to give a model of biological communities made
up of three or more species one frequently uses equations of the type

ẋi = xiFi(x1, ..., xn) (9.13)

(which are called ecological equations, or, more and more often, Kolmogorov
equations) and to specify the system, not by giving precise analytic expressions
for the rates of growth Fi, but by setting conditions for the signs of their
partial derivatives: for example, competitive communities are described by
conditions like

∂Fi
∂xj

≤ 0 (9.14)

for i �= j, etc. Thanks to work by Morris Hirsch, Hal Smith and their col-
laborators (see [Hir88], [Smi95]), this approach now gives some of the results
which are most useful for ecological applications and most interesting from a
mathematical point of view. More generally, an ordinary differential equation
ẋi = fi(x1, ..., xn) defines a cooperative system if

∂fi
∂xj

≥ 0 (9.15)

for i �= j, and a competitive system if the inequalities are reversed. One of
the principal results concerning such systems is that the flow, restricted to a
compact limit set, is topologically equivalent to a flow defined by a system
of lipschitzian differential equations on an invariant compact set of (n − 1)-
dimensional space. In particular, we can use this result to obtain a theorem
of Poincaré-Bendixson in three dimensions: a compact limit set for a cooper-
ative or competitive system in R

3 which contains no fixed point is actually a
periodic orbit. Zeeman [Zee93] used these results in his attack on the problem
of classifying the competitive systems of Lotka-Volterra in three dimensions,
thus identifying 33 stable equivalence classes, and Hofbauer, Mallet-Paret and
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Smith [HMS91] established the existence of stable periodic orbits for “hyper-
cyclic” systems.

A particular case of Kolmogorov equations is the set of ecological equations
describing the three-species food chains. Hastings and Powell [HP91] showed
that these equations often present a chaotic behavior (see also [KH94] and
[MY94]). Muratori and Rinaldi [MR89] as well as Kuznetsov and Rinaldi
[KR96] studied Hopf bifurcations in the prey-predator-superpredator systems.

Our last remark is that recent work by Hofbauer and Schreiber [HS04]
(see also Schreiber and Mielcynski [MS02]) show that there are open sets of
Kolmogorov equations containing a dense subset of permanent equations and
a dense subset of equations having an attractor on the boundary of R

n
+. For

these equations, it is impossible to predict whether or not all species will
survive.

Such results are well within the tradition inaugurated by Kolmogorov: in
general the study of ecological systems cannot be reduced to a local study of
stable equilibria. Only a dynamic global study can account for the complexity
of ecological feedback.
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Translated from the French by Kathleen Qechar

During the International Congress of Mathematicians held in Amsterdam in
1954, A.N. Kolmogorov announced an important theorem which was made
precise (and proven!) a few years later by V.I. Arnold and J. Moser [Kol54,
Arn63a, Mos62]. I would like to present a very elementary introduction to
this Kolmogorov-Arnold-Moser (KAM) theorem according to which “the solar
system is probably almost periodic”. My (modest) aim is to show the role of
resonances and small divisors in celestial mechanics by focusing on a very
simplified example, inspired by the real KAM problem: it is in some sense
a “toy model” of the solar system, much easier to understand. Facing a too
difficult question, the mathematician has the right to simplify the statement
to its maximum, in order to locate the difficulties. I will try to treat this
example in detail with the help of Fourier series. The “real” KAM theory
is much more difficult: the reader may find more information, along with
indications about the proof of the theorem, in J. H. Hubbard’s chapter in this
volume (Chap. 11).

10.1 A periodic world

We live in a world full of a great number of periodic phenomena. The Sun
rises about every 24 hours, the new moon comes back every 29.5 days, the
summer about every year... Of course, such examples could be multiplied ad
infinitum. This observation is old and the first scientists tried very early to
measure these cycles. Sometimes the period is not easy to determine and it
is very often only an approximation. Let us think e.g. about the cycle called
saros : every 6 585 days and 8 hours, the Moon, the Sun and the Earth find
themselves in about identical relative positions and there is such a periodicity
in the appearance of eclipses. As a matter of fact, due to the 8 hours, the
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periodicity of eclipses in a given place of the Earth is in fact triple (one day =
3 times 8 hours) so that the period is of 19 756 days (54 years and 32 or 33
days depending on leap years). We can only be fascinated by the precision
of the astronomers’ observations made during Ancient times which led to the
exact determination of this astronomical cycle. Maybe the existence of these
cycles in our universe is a preliminary condition for the appearance of life and
civilization? Can we imagine the difficulties of living on a planet which would
be the satellite of a double star: the rising and setting of the two suns would
become entangled in a more or less random way.

Mathematicians have always been fascinated by cycles and one did not
have to wait for Fourier to decompose a cyclic phenomenon into a sum of
elementary cyclic phenomena. What is more elementary than a point which
rotates on a circle with a constant angular velocity? It is of course the model
the first observers of the Sun (which rotates “evidently” around the Earth)
were thinking about. The situation is a little more complicated in the case
of planets, as the paths they follow in the sky seem sometimes complex (see
Fig. 10.1).

Fig. 10.1. Mercury’s orbit seen from the Earth (“Terre”). (From Flammarion’s
Astronomie Populaire.)
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In Ancient times, astronomers progressively elaborated a remarkably effi-
cient model giving a precise description, extremely close to the measurements
they could perform with their basic instruments. This is the theory of epicycles
(see Fig. 10.2) and equants, dating back at least to the time of Hipparchus,
which I will not describe in detail and which culminates with the marvelous
system of Ptolemy (the Almageste, II-nd century). The Earth is in the cen-
ter and the Sun and the planets turn around the Earth while following finite
combinations of uniform circular motions. The reader interested in detailed
information concerning Hipparchus and Ptolemy’s theories could refer to the
article [Gal01].

Ptolemy, one of the greatest geniuses of his time, is only known by con-
temporary students for his “false” geocentric system theory. And yet! What
is a “correct” theory in the fields of physics or astronomy? Isn’t the main aim
to develop a model which explains experiments of a given era? Isn’t any ques-
tion relative to the “correct” nature of space and time only a metaphysical
question which the physicist can ignore?

Copernicus’ heliocentric theory superseded Hipparchus/Ptolemy’s geocen-
tric theory. Is this new theory more correct than the previous one? One point
is clear: Copernicus’ theory is nicer and everything seems to fit in a quite
harmonious and simple way. This suffices to prefer heliocentrism. But if we
take a closer look, Copernicus’ theory is not as elementary as it seems. It also
uses cycles and epicycles. Ptolemy used 40 cycles and Copernicus still uses
34 of them... The tables established by Copernicus are not more precise than
those of Ptolemy. Besides, Copernicus does not present his theory as being
“true”: he puts at the beginning of his De Revolutionibus Orbium Coelestium
(1543) a preface, written by Osiander, about which a lot has been written. Did

Fig. 10.2. A (simplified) epicycle model. Mercury moves along a small circle (“epicy-
cle”) of radius 0.38 (Mercury-Sun distance in Astronomical Units), with period 88
days (Mercurian year), while this epicycle moves along a larger circle (“deferent”)
of radius 1 AU, with period 1 Earth’s year. Left hand side: after one (Earth’s) year;
right hand side: after seven years
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Osiander want to protect Copernicus from the pope’s ire? Or on the contrary
does this preface reflect Copernicus’ opinion? Here is an extract from this
preface (see [Cop92]):

... it is the duty of an astronomer to compose the history of the celestial

motions through careful and expert study. Then he must conceive and devise

the causes of these motions or hypotheses about them. Since he cannot in

any way attain to the true causes, he will adopt whatever suppositions

enable the motions to be computed correctly [...] these hypotheses need

not be true nor even probable. On the contrary, if they provide a calculus

consistent with the observations, that alone is enough.

Let us return to our cycles. If a phenomenon is periodic with period T , all mul-
tiples of T can also be considered as a period. Consequently, if two phenomena
have respectively a period T1 and T2, the combination of these phenomena
will be periodic as soon as a multiple of T1 coincides with a multiple of T2,
in other words as soon as the ratio T1/T2 is a rational number. Since we are
talking about astronomy and these periods can only be known approximately,
we can consider that these ratios are always (almost) rational. The combina-
tions of the cycles that we observe in our universe define therefore a globally
periodic phenomenon. A reader could quite rightly notice that this type of ar-
gument may easily lead to gigantic periods and that the physical meaning of
a period of e.g. one hundred billion years would be questionable. This reader
may be reassured: this question is somehow at the heart of this article and
our (pre-pythagorician) “physical hypothesis” that all numbers are rational
will be discussed and modified all along this article. Let us therefore start by
imagining that all physical functions are periodic...

The idea of combining circles to approach a periodic function may not be
due to Hipparchus and Ptolemy but in respect for these geniuses, I would like
to attribute them the joint property of the following theorem:

Theorem. [Hipparchus-Ptolemy-Fourier] Let f : R → C denote a contin-
uous periodic curve of period T with values in the complex plane. Then
f may be arbitrarily closely approximated by a finite combination of uni-
form circular motions. In other words, for any ε > 0, there exists a func-
tion of the form fε(t) =

∑N
n=−N an exp(2iπnt/T ) (with an ∈ C) such that

|f(t)− fε(t)| < ε for all t.

Clearly, Hipparchus and Ptolemy did not prove this theorem in the modern
sense of the term but neither did Fourier1. For a “modern proof”, the reader
can refer to e.g. [Kör89].

1 A “theorem” attributed to V.I. Arnold asserts that on one hand no theorem is
due to the mathematician which it is named after and on the other hand that
this theorem applies to itself.
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1. An adelic fantasy.

I would like to allow myself a mathematician’s fantasy which is totally useless for
the rest of this article and which the reader may skip. The time of contemporary
science is modeled by the set R of real numbers (even if it has been subject to
several avatars with the relativity theories). This set does not suggest the idea
of successive cycles which we have just mentioned: it flows inexorably from the
past to the future. Let us try to formalize time the same way astronomers such
as Ptolemy used to think about it, formed by cycles “piled up one on top of the
other”, in which recurrences are omnipresent.

For any integer n > 0, the quotient R/nZ formed by real numbers modulo

n represents the “cyclic time of period n”. If m and n are two integers such

that m divides n, there is an obvious projection πm,n from the cycle R/nZ to

the cycle R/mZ: if we know a real number modulo n, we know it in particular

modulo m. Let us define the cyclic time T as follows: an element t in T is a

map which associates to any integer n an element tn of R/nZ in a way which is

compatible with these natural projections, i.e. in such a way that if m divides n,

then we have πn,m(tn) = tm. In other words, an element of T is a way to place

oneself in all cycles while respecting the evident compatibilities. Obviously, the

“cyclic time” T contains the “ordinary time” R: to a given real number t, we can

associate for every n the point t modulo n in R/nZ and these various points are

compatible with each other. But T is much bigger than R (exercise). We can equip

T with a topological structure which turns it into a compact topological group

(exercise). Time as a compact set... a mathematician’s (or oriental philosopher’s?)

dream which illustrates the idea of recurrence. The usual group of real numbers

R is contained as a dense subgroup of T (exercise). Can one consider T as a

reasonable psychological model for the time we are actually living in? Is this a

futile mathematician’s exercise? Maybe not. The group T we have just introduced

is the “adelic torus”, the study of which is essential in contemporary number

theory.

10.2 Kepler, Newton. . .

I will not describe in detail the marvelous astronomical works of Kepler which
are often summarized as Kepler’s three laws. The first one states that a planet
orbits as a conic with the Sun at one focus. The second (law of areas) describes
the speed at which this conic is traversed. The third law expresses the period
(in the case of an elliptic motion) in terms of the major axis of the ellipse. All
of this is far too well-known and can easily be found in many books dealing
with rational mechanics. At this point, I would like to insist on two less well-
known aspects of Kepler’s work.
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Kepler is often “blamed” to have only offered a descriptive and nonex-
planatory model: what causes the motion of the planets? Newton’s law f = mγ
and the gravitational attraction in 1/r2 are wonders but do they explain more
than Kepler why objects attract each other? This is similar to the compari-
son Ptolemy/Copernicus: Newton’s laws prevail over those of Kepler by their
aesthetic aspect and because they allowed a revolution in physics (and in
mathematics). However, they do not explain the cause of the phenomenon
(and of course, I could make the same kind of comments on the explanatory
character of general relativity).
Kepler’s zeroth law : if the orbit of a planet is bounded, it is periodic, i.e. it
is a closed curve.

If one thinks about this, it is incredible.
Nowadays, one can show the following result (Bertrand’s theorem, al-

ready known to Newton?). Let us suppose that a material point moves
in the plane while being attracted towards the origin of the plane (the
Sun) by a force whose modulus F (r) only depends on the distance r to
the origin. Let us suppose that all the orbits which are bounded are in
fact closed curves. Then, the force F (r) can only be the Newtonian attrac-
tion F (r) = k/r2 or the elastic attraction F (r) = Kr (not very reason-
able in astronomy!). Why did “mother Nature” “choose” THE law that en-
sures the periodicity of motion? This is a mystery physics will not explain
soon!

How is the motion of a planet if the force of attraction towards the central
point is another function F (r)? This is a classical question of mechanics and
Newton himself studied a great number of cases in his Principia (1687). A
bounded orbit consists of arcs which join the successive apogees and perigees
(see Fig. 10.3). These arcs are obtained from one of them using a symmetry
and rotations, the angle of which depends on the considered orbit. Somehow,
we can consider that the motion is the result of two periodic phenomena:
one relates to the periodic variation of the distance to the Sun and the other

Fig. 10.3. An almost periodic orbit (between the apoapsis and periapsis circles).
LHS: an apoapsis and the subsequent periapsis; RHS: after several turns
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relates to the periodic variation of the direction of the straight line joining
the Sun to the planet. The orbit is periodic if the two periods have a rational
ratio and it is almost periodic otherwise. Only the forces in r and 1/r2 are
such that this ratio is always rational and it happens that it is then equal
to 1, so that in these two cases the orbits close themselves in fact after one
complete turn. The law 1/r2 is a resonance of nature since it corresponds to
the equality of the radial and angular frequencies.

Kepler must have been filled with wonder when he realized that the orbit
of Mars is periodic. This statement is not very obvious when we observe it
from the Earth and that does not follow in any way from the epicycle models
of Hipparchus-Ptolemy-Copernicus.

I should also mention Kepler’s “fourth” law which is rarely cited because
it is false, but which Kepler considered as his main discovery. This law was
meant to explain the numerical values of the major axes of the orbits of the
six planets (which were known at that time). The construction is marvellous,
almost philosophical: it is a question of successively encasing the five regular
(Platonic) polyhedrons in inscribed and circumscribed spheres (see the beau-
tiful Fig. 10.4 extracted from Harmonices Mundi (1619)): the radiuses of the
spheres give the radiuses of the orbits (up to similarity of course). Should we
make fun of this? Of course not, because it seems that the obtained result is
very close to reality and especially because it is an attempt of geometrization
of space and motion. Other attempts were very successful later in history.
In [Ste69], Sternberg encourages those who make fun of Kepler to also make
fun of contemporary theoretical physicists who relate the elementary parti-
cles to linear representations of simple Lie groups. The search for groups of
symmetries is at the heart of science no matter what the subject is: the icosa-
hedron group, gauge groups, or approximate symmetries in an almost periodic
motion, or in a quasicrystal.

Fig. 10.4. Harmonices Mundi
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10.3 An almost periodic world

Thus, the world we inherited from Hipparchus, Ptolemy, Kepler and Newton
is a periodic world. More precisely, each planet is periodic but the solar system
is “almost periodic” in its totality since there is of course no reason that the
ratios of the periods of the different planets are rational numbers.

Irrational numbers do exist. The sum of two periodic functions whose
periods have an irrational ratio is not periodic. But it almost is... The formal-
ization of this idea is recent. Let us begin with two “reasonable” definitions:

Definition. Let f denote a continuous function from R to C and ε > 0 a
(small) positive real number. A real number T is an ε-period if for every t in
R, one has : |f(t+ T )− f(t)| < ε.

Definition. Let f denote a continuous function from R to C. We say that f
is almost periodic if for every ε > 0, there exists a number M > 0 such that
every interval in R with length greater than M contains at least one ε-period.

The theory of almost periodic functions is rich. The interested reader may read
the book [Ste69], in particular for its link with the history of the celestial
mechanics. Here are two theorems. The first one is rather an exercise which
is left to the reader:

Theorem. Let a1, . . . , ak be complex numbers and ω1, . . . , ωk real numbers.
The function f from R to C defined by f(t) =

∑k
n=1 an exp(iωnt) is almost

periodic.

The second theorem is much more complicated. Formally, it is due to Bohr
but for the same subjective reasons as those exposed earlier, I also attribute
it to Hipparchus and Ptolemy.

Theorem. [Hipparchus-Ptolemy-Bohr] Every almost periodic function may
be arbitrarily closely approximated by functions of the preceding type.

Now that these definitions and theorems are presented, I can start to make
the content of this article more precise. Is the universe in which we live almost
periodic?

10.4 Lagrange and Laplace: the almost periodic world

The proof of Kepler’s laws using from those of Newton supposes a “simplified”
solar system in which a single planet is attracted by a fixed center. One learns
in elementary courses of mechanics that the problem is not much more diffi-
cult in the case of two masses which attract each other mutually: each one of
them describes a conic. But of course, there is not only one planet in the solar
system. Even disregarding many “small” objects, we can consider that nine2

2 This paper was written before Pluto was “expelled” from the official list of planets!
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2. A remark about the recent history of Physics.

The turbulence of fluids is a quite complex phenomenon which has been puz-

zling physicists for a long time, at least starting from Leonardo da Vinci, and

whose practical applications are more than obvious in aeronautics. How can we

understand these eddies of all sizes in turbulent fluids, and the flow of energy from

larger eddies towards smaller ones, up to the dissipative scales (Kolmogorov’s the-

ory [Kol41])? It is astonishing to note that physicists as eminent and imaginative

as Landau and Lifschitz presented for a long time turbulence as an almost periodic

phenomenon, of which the number of frequencies depends on the Reynolds num-

ber (related in particular to the viscosity of the fluid). It is only with the second

edition (1971) of their famous treatise on fluid mechanics that they became aware

that the almost periodic functions are too “well behaved” to represent this phe-

nomenon and that it is necessary to call upon much more “chaotic” functions: it

is the beginning of the theory of strange attractors, a beautiful example of collab-

oration between mathematicians and physicists. Old habits are difficult to loose:

the epicycles are still present in our scientific subconscious and it is difficult to get

rid of them. Should we forget the epicycles and almost periodic functions in the

description of our solar system? Are the conservative systems, such as the solar sys-

tem, also subject to some kind of chaos (and in which sense?), as in the case of the

dissipative systems (turbulence)? Somehow, the theorem of Kolmogorov-Arnold-

Moser is reassuring: it asserts that under good conditions (explained further on),

the almost periodic functions are sufficient to describe the motion of planets.

planets orbit the Sun and attract each other mutually. This N -body problem
is mathematically far more complicated and in a sense which I cannot describe
precisely here, it has been known since the beginning of the twentieth century
that it is impossible to “integrate” it.

For lack of finding “workable” exact solutions for the motion, we are re-
duced to finding approximate solutions. Lagrange and Laplace are prominent
among those who developed best the theory of perturbations. Of course, as
a first approximation, the dominant forces in the solar system are the forces
of attraction towards the Sun because the mass of the Sun is much bigger
than those of the other planets (in a ratio of approximately 103). We can thus
think that the planets will more or less follow the (periodic) elliptical Keple-
rian orbits and that those ellipses will change slowly because of the perturbing
influence of other planets. How important are these small perturbations? Are
they likely to significantly modify the harmony of the Keplerian system? These
are difficult questions. We could fear the worst: perhaps a perturbing force of
the order of 1/1000 times the principal force could significantly modify the
radius of an orbit after a time of about a thousand times the characteristic
time of the problem (the year). In other words, we could fear that within a
thousand years, the radius of the terrestrial orbit may be divided (or mul-
tiplied) by two. This would have important consequences on the history of
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our civilization! Since we did not notice any catastrophe of this kind in our
past, what is the phenomenon that explains why the perturbations perturb
less than what we could fear?

The theory of perturbations is complicated and requires many calculations
but the basic geometrical idea, such as Gauss explained it, is very simple (like
many great ideas). Let us consider a particularly simple case: the Sun, of very
large mass, is (almost) fixed; a planet P1 revolves uniformly on a circular orbit,
and another planet P2 of very small mass compared to P1 is launched on an
orbit around the Sun which is more or less circular and external in comparison
to the one of P1, in the same plane (see Fig. 10.5). Let us imagine that the
radius of the orbit of P2 is really bigger than the one of P1 so that the angular
velocity of P1 is really bigger than the one of P2 (according to Kepler’s third
law). Since the mass of P2 is very small, one can think that it does not perturb
very much P1 which will therefore stick very closely to its circular trajectory.
As for the planet P2, it is subject to two forces: the main one towards the
Sun and a perturbing one towards the planet P1. The perturbing force is weak
but not negligible; its direction oscillates unceasingly because P1 revolves very
quickly. The idea consists of supposing that these oscillations of the direction
of the perturbing force can be averaged: in practice, this means that one
replaces the revolving planet P1, by its orbit where one uniformly distributes
the mass of P1. In other words, the planet P2 is not attracted by a moving
planet P1 but by a circular ring at rest. Is this approximation valid? This is
what we will be discussing hereafter. The end of the argument is easy. One
knows since Newton that outside the orbit of P1, the forces of attraction of the
Sun and the fixed circular object can be reduced to the force of attraction of
a single punctual mass placed in the center. To summarize, everything occurs
as if the planet P2 was subject to the Newtonian force produced by a point
whose mass is that of the total mass of the Sun and P1. Thus, the planet
P2 will almost follow a periodic orbit. In other words, the perturbing forces
did not perturb the periodic character of the planet P2 and this fits with our
historical observation: during a few thousand years, the radiuses and the main
characteristics of planets did not evolve much.

Many questions are raised by this idea. Is it legitimate to replace a force,
whose size and direction vary, by a constant force which is the average of the

Fig. 10.5. Perturbation of the motion of a small planet P2 by a planet P1



10 Resonances and small divisors 197

varying force? Clearly, there is a situation where this idea cannot work. Let
us suppose that the circular orbits which the planets P1 and P2 would follow
if their masses were infinitely small (and thus unperturbed) are such that the
ratio of their periods is rational, 10 for example. This would mean that if the
initial positions of P1 and P2 are in conjunction e.g. every 10 revolutions of
P1, the two planets are again in exact conjunction. Obviously, to take the av-
erage of the perturbation along the orbit of P1 would not mean much since the
angular coordinates of P1 and P2 are strongly correlated and the conjunctions
are much too regular. On the other hand, if the ratio between the periods is
irrational, it seems reasonable to replace the perturbation by its average (see
Fig. 10.6). Here is a statement which goes in this direction: it is a particularly
simple ergodic theorem (which Lagrange and Laplace did not know, at least
explicitly).

Theorem. Let F (x, y) denote a continuous function with real or complex
values which depends on two angles x, y considered as elements of R/Z (the
angle unit is a full turn). Let α and β denote two frequencies whose ratio is
irrational. Then, when the time T tends to infinity, the integral 1

T

∫ T
0 F (x0 +

αt, y0 + βt) dt converges uniformly to the mean value of F , i.e. to the double
integral

∫∫
F (x, y) dxdy.

Proof. The set of functions F for which the theorem is true is obviously a
vector subspace of the space C0(R/Z× R/Z,C) of complex continuous func-
tions on R/Z× R/Z. This subspace is closed in the uniform topology: a uni-
form limit of functions which verify the theorem also verifies it. According to
Fourier (with two variables), the subspace generated by the functions of the
type exp(2iπ(nx+my)) is dense in C0(R/Z×R/Z,C). It suffices then to verify
that each one of these functions exp(2iπ(nx+my)) satisfies the theorem but
this is an explicit and simple calculation which I leave to the reader. QED

Let us come back to Lagrange and Laplace. Given a real number, it is prob-
ably irrational and we may think that the method of Lagrange and Laplace is
justified. Still, we should be aware that we took a particularly simple case of
only one perturbing planet orbiting on an almost circular path. In its principle,
the method applies to the other situations. Let us consider an almost Keplerian
solar system, with small perturbations and let us average the perturbations

Fig. 10.6. An almost periodic motion
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on their configuration spaces. We hope that there are no resonances, i.e. no
rational linear relations between the periods which appear. This leads to the
stability theorem of Laplace which asserts that in the averaged system, the
major axes of the orbits remain constant in time, ensuring a certain stability
to the system. Finally, this “justifies” the fact that the effects of perturbations
are smaller than the ones we could fear a priori.

What kind of mathematical credit can we give to this type of “proof”? If we
seek “true stability theorems” which are valid for infinitely long times, we will
find nothing in Laplace’s works which resembles a proof, and the assertions
which we sometimes meet according to which “Laplace showed the stability
of the solar system” are largely exaggerated. On the other hand, if we seek
mathematical statements which are valid for long but finite times, we can hope
to transform these methods into theorems, at least in certain particular cases.
No matter what, this kind of method lets us think that if the perturbations
are of the order of ε (10−3 in our system), these perturbations have no global
effect at a time 1/ε as we might expect a priori but rather after a time 1/ε2

(“the next term in an asymptotic expansion”). We should have a quiet life for
about 106 years, which is more reasonable than 103. The reader who would like
to know more about these perturbation methods may consult some treatises
on celestial mechanics if he is brave enough or [Arn89, Arn83, AA68] for a
conceptual presentation.

Thus, we inherit from Lagrange and Laplace an almost periodic world,
at least for a million years! But they also leave us many questions: what is
the role of these resonances between the periods of the planets which put
in danger the averaging arguments? Is the stability of the motion perpet-
ual or does it get destroyed after a million years? How can we make this
“stability theorem of Laplace” rigorous? It took almost two centuries and
the works of mathematicians as powerful as Poincaré, Siegel, Kolmogorov,
Arnold and Moser to get to partial answers which themselves raised other
questions.

10.5 Poincaré and chaos

At the end of the nineteenth century, Poincaré invented rigorous geometric
methods in order to approach a global understanding of the N -body prob-
lem. As a matter of fact, he focused on the restricted three-body problem: two
punctual bodies orbit in a Keplerian way in a plane, around their center of
mass, and a third punctual body, with infinitely small mass, is subject to
the attraction of the two other masses. Here are some questions studied by
Poincaré in his famous article Sur le problème des trois corps et les équations
de la dynamique (1890) [On the three-body problem and the equations of dy-
namics]. Is the trajectory of the small mass confined in a bounded domain
of the plane if its total energy is sufficiently small? For an initial “generic”
condition, is there a risk of collision between the bodies? Is the dynamical
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behavior of the small body almost periodic? Unfortunately I will not de-
scribe this historical article of Poincaré. I will only point out that Poincaré
proves the existence of a great number of periodic orbits and that he at-
tempts to understand the dynamics in the vicinity of these periodic orbits.
At that point, he makes an error and sins by optimism in a proof (he is used
to doing so): his great memoir awarded by king Oscar of Sweden is false. In
haste, he has to correct it and this correction will prove to be of consider-
able scientific richness: Poincaré creates on this occasion the theory of chaos.
He highlights trajectories whose behaviors are very far from being almost
periodic:

“Let us try to represent the figure formed by these two curves and
their infinite number of intersections each one of which corresponds
to a doubly asymptotic solution, these intersections form a kind of
web, of fabric, of network with infinitely tight meshes; each one of
these curves should never intersect itself, but it must fold up it-
self in a very complex way to come to cut infinitely often all the
meshes of the network. One will be struck by the complexity of this
figure, which I do not even attempt to draw. There isn’t anything
more proper to give us an idea of the complication of the three-body
problem and, in general, of all the problems of dynamics where there
is no uniform integral and where the Bohlin series are divergent.”
(Poincaré [Poi90])

The history of this error and the way in which Poincaré transforms it into
success is fascinating. I recommend the book [Bar97] which is entirely devoted
to this question, and the article [Yoc06].

Thus, even if the initial conditions which lead to these examples of chaotic
trajectories are not very close to the physical conditions of our solar system,
we know thanks to Poincaré that the orbits of the celestial bodies are not
necessarily almost periodic. Will we find such orbits in our solar system? In
any case, it is necessary for us to be more modest in our search of stability.
Previously, we sought to know whether the orbits of planets are almost pe-
riodic and we are now much less ambitious since the question becomes the
following one. If we launch the planets of a solar system on almost circular
orbits around a Sun with very great mass, will the planets remain forever
confined in a bounded domain of space? Might it be possible that a planet be
ejected from the system for example?

10.6 A “toy model” of the theory of perturbations

We are going to build up a very simple (and even naive) model. On the
cylinder R/Z × R, let us consider the transformation f which associates to
the point (x, y) the point (x + α, y) where α is an irrational angle. We are
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going to iterate this transformation and study its dynamics. This is a first
simplification: instead of studying dynamics in continuous time (in R), we are
going to use a discrete time (in Z). After n iterations, the point (x, y) is sent to
the point (x+nα, y) so that the orbits of f spread on the circles y = const. We
can thus think about f as the dynamics of an almost periodic system. Now,
let us try to perturb the motion by imposing to our point of R/Z×R a “push”
towards the top or the bottom which only depends on the first coordinate.
In other words, we are now studying a transformation g which associates to
the point (x, y) the point (x + α, y + u(x)) where u is a certain very regular
function defined on R/Z (i.e. a periodic function of period 1) which we can
think of as being a small perturbation. What is the new dynamics? The n-th
iteration of g maps the point (x, y) to the point (x+ nα, y + u(x) + u(x+ α)
+ · · ·+ u(x+ nα)).

Lagrange’s averaging principle suggests to replace the impulse u by its
average on the circle. Of course, if this average is different from 0, we can
easily understand that the successive iterations of g will have a tendency to
make the second coordinate tend to infinity so that the perturbed system is
not stable. Thus, let us study the situation when the average of u on the
circle is equal to 0: on average the second coordinate is not modified. Can
we deduce that g is stable, in the sense that its orbits stay bounded? This is
the simplified problem we are going to study. In symbols, the question is the
following:

Let u denote a periodic function of period 1, which is infinitely differen-
tiable, and whose integral on a period is equal to 0. Let α denote an irra-
tional number and x a real number. Are the (absolute values of the) sums
u(x) + u(x + α) + · · · + u(x + nα) bounded when the “time” n tends to
infinity?

Let us begin with a lemma which is a special case of a lemma of Gottschalk
and Hedlund:

Lemma. Let us fix x0 in R/Z. The absolute values of the sums u(x0)+u(x0 +
α) + · · · + u(x0 + nα) are bounded if and only if there exists a continuous
function v on R/Z such that for all x one has u(x) = v(x+ α)− v(x).

Proof. If u(x) is of the form v(x+ α)− v(x), the above sum “telescopes” to:
u(x0) + u(x0 + α) + · · · + u(x0 + nα) = v(x0 + (n + 1)α) − v(x0). Thus its
modulus is bounded by twice the maximum of |v| (which is finite because v
is periodic and continuous).

Conversely, let us assume that |u(x0) + u(x0 + α) + · · · + u(x0 + nα)| is
bounded by M > 0. This means that the orbit of the point (x0, 0) in the
cylinder R/Z×R stays confined in the compact cylinder R/Z× [−M,M ]. Let
K denote the closure of this orbit. This is a compact set which is invariant
under the transformation g. Among all the non-empty compact sets contained
in K and invariant under g, let us choose one which is minimal for inclusion
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(use the property that the intersection of a family of non-empty compact sets,
which is totally ordered for inclusion, is not empty) and let us denote it by
M. I claim that M is the graph of a continuous function v from R/Z to R.

To justify this assertion, I first observe that the projection of M on the
first coordinate is a non-empty compact set in the circle, which is invariant
under the rotation with irrational angle α. All the orbits of such a rotation are
dense in the circle. Consequently, the projection of M on the first coordinate
is necessarily the full circle R/Z.

Now, let me prove that for each x in R/Z, the “vertical” line {x} × R

only meets the minimal set M in one point. In order to prove this state-
ment, I consider the vertical translations τt(x, y) = (x, y + t). Obviously,
these translations commute with g so that the image by τt of an invariant
set under g is also an invariant set under g. Consequently, τt(M) is in-
variant under g and so are the intersections τt(M) ∩ M. We have chosen
M as a minimal non-empty compact invariant set. It follows that for all t,
the intersection τt(M)

⋂
M is either empty or equal to M. But if τt(M)

would coincide with M for a t different from 0, then M would be equal
to τkt(M) for every integer k and would not be bounded (let k tend to in-
finity). Therefore τt(M) and M are disjoint when t is different from 0 and
this means that M meets each vertical {x} × R at a unique point (x, v(x)).
Thus, M is the graph of a function v of R/Z to R. As this graph is com-
pact, the function v is continuous (a traditional exercise). The assertion is
proven.

We still have to express analytically that the graph of the function v is
invariant under the transformation g. The image of (x, v(x)) is (x+α, v(x) +
u(x)) and has to be equal to (x+α, v(x+α)). We obtain as expected u(x) =
v(x+ α)− v(x) and the lemma is proven. QED

Before continuing, let me restate the lemma in a geometric way. As soon as
an orbit of the transformation g is bounded, it remains confined in an invariant
circle which is the graph of a continuous function. All the other orbits are then
bounded. In other words, in this case, the family of circles y = const which is
invariant under the non-perturbed transformation f is replaced by the family
of perturbed circles y − v(x) = const which is invariant under the perturbed
transformation g.

This leads to a question of harmonic analysis. Given an infinitely differ-
entiable function u whose integral on the circle is equal to 0, and given also
an irrational number α, does there exist a continuous function v on the circle
such that u(x) = v(x+ α)− v(x) identically?

The Fourier series are particularly well adapted to study this problem.
As the function u is infinitely differentiable, it can be expanded as a Fourier
series:

u(x) =
+∞∑

−∞
un exp(2iπnx).
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Let us also seek the function v through its Fourier series expansion (we will
discuss the convergence of this series afterwards):

v(x) =
+∞∑

−∞
vn exp(2iπnx).

(I use the complex notation for convenience: as the function v is real, the
complex numbers vn and v−n are conjugate). Then we have:

v(x+ α)− v(x) =
+∞∑

−∞
(exp(2iπnα)− 1)vn exp(2iπnx).

Identifying the Fourier coefficients of u(x) and of v(x + α) − v(x), we thus
obtain:

vn =
un

(exp(2iπnα)− 1)
·

The assumption according to which α is irrational means that (exp(2iπnα)−
1) is different from 0 for n different from 0. Therefore the vn’s are well defined
for n different from 0. For n = 0, our hypothesis on the average of u means
precisely that u0 = 0 so that we can choose any value for v0 (which of course
corresponds to the fact that if v is a solution to our problem, v+ const is also
a solution).

To summarize, Lagrange’s principle seems to work. We have certainly
found a function v which is a solution to our functional equation, or at least
its Fourier series expansion. But does this series converge and does it define
a continuous function as we expect? This is our new problem.

3. How can we “see” on a Fourier series that it defines
a regular function?

Let us consider a periodic function h of period 1 and let us expand it as a Fourier
series:

h(x) =

+∞∑

−∞
hn exp(2iπnx).

How can we “see” on the sequence of coefficients hn that the function h is infinitely
differentiable for example? If the function h is supposed to be continuous and not
more, is the sequence hn subject to some constraints? These are delicate questions
(which Fourier did not seem to have considered) about which we nowadays know
a lot. In this interlude, I will simply give some very elementary observations which
will suffice for my discussion. The n-th coefficient hn is given by Fourier’s formula:

hn =

∫

R/Z

h(x) exp(−2iπnx) dx.

If h is continuous, then the sequence hn must be bounded. Caution: the converse

is very far from being valid and my bound is rather crude. One can prove e.g. that

the sequence hn tends in fact to 0 and that the series (nh1 +(n−1)h2 +· · ·+hn)/n

is convergent.
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If h is continuously differentiable, we can calculate the Fourier coefficients h′
n

of its derivative by the well-known formula h′
n = 2iπnhn. The continuity of the

derivative and the previous observation show that there is an estimate for the
decay at infinity of hn of the form |hn| < Cst/|n|. If h is infinitely differentiable,
we can repeat this argument for all derivatives. Thus, the Fourier coefficients of
an infinitely differentiable function have a rapid decay. This means that for every
integer k, there exists a constant Ck > 0 such that |hn| < Ck |n|−k.
Conversely, let us consider a rapidly decreasing sequence hn and let us form its
associated Fourier series. It is easy to prove that this series is indeed convergent
and defines an infinitely differentiable function.

These simple remarks will suffice but it is a pity to have to leave such a topic

without having really gotten into it. The book [Kör89] is magnificent (but requires

more mathematical technique).

4. Numbers which are more or less irrationals?

Every irrational number may be arbitrarily approximated by rational numbers.
Let us try to make this assertion quantitative. Let α denote an irrational real
number. Let us fix a (small) real number ε > 0 and let us seek a rational number
p/q (where q > 0) such that |α − p/q| < ε. Such a p/q always exists but if ε is
very small, a rational p/q which verifies this inequality has necessarily a very large
numerator and denominator. What is the minimal value of q as a function of ε?
At what speed does this function tend to infinity when ε tends to 0? All depends
on the irrational number being considered. In this interlude, we present the basics
of the theory of diophantine approximation, which is important in our problem.
Some numbers are exceptionally well approximated by rational numbers. The most
famous example is the number defined by Liouville:

λ =

+∞∑

n=1

10−n! = 0.1100010000000000000000010000000000000000000000000 . . .

If we truncate the series at order n, we find a rational number whose denomina-

tor is 10n! and which approximates λ with a difference smaller than 2.10−(n+1)!,

which is extraordinarily small in comparison to the inverse of the denomina-

tor 10n!. For any physicist, this number is rational since it is different from

0.110001000000000000000001 by less than 10−120 which is a lot smaller than

any physically observable number. Nevertheless, not only does the mathemati-

cian know that λ is irrational (its decimal expansion is not periodic) but also that

Liouville has proven that λ is in fact a transcendental number. If the reader is

not impressed by the approximation speed of λ, he may replace the factorials n!

by double factorials n!! or even by any increasing function from N to N, which

may even be non-recursive. Thus, given any function ε(q) from positive integers

to positive numbers, tending to zero when q tends to infinity, we can always find

irrational numbers α which are approximated by rationals “better than ε(q)”, i.e.

for which there exists infinitely many rationals p/q such that |α − p/q| < ε(q).

Some irrational numbers resist to the approximation as much as they possibly
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can. A lemma of Dirichlet shows that every irrational number may be approxi-
mated by rationals “up to 1/q2”:

Lemma. For any irrational number α, there exists infinitely many rationals p/q
(q > 0) such that |α − p/q| < 1/q2.
Proof. Let us project the first N + 1 multiples 0, α, . . . , Nα in the circle R/Z.
At least two of these projections are at a distance smaller than 1/(N + 1) in the
circle. This means that we can find 0 ≤ k1 < k2 ≤ N such that (k2 − k1)α is at a
distance less than 1/(N + 1) of an integer p. Writing q = k2 − k1 ≤ N , we obtain
|qα − p| < 1/(N + 1) < 1/q. We observe that |qα − p| < 1/(N + 1) implies that q
tends to infinity when N tends to infinity. QED

Definition. An irrational number α is diophantine if there exists a constant

C > 0 and an exponent r ≥ 2 such that for any rational p/q (q > 0) one has

|α − p/q| > C/qr.

5. A diophantine number: the golden mean

The most famous example of a number which is badly approximated by the ra-
tionals is the golden mean φ = (1 +

√
5)/2.

Theorem. There exists a constant C > 0 such that for every rational p/q, we
have |φ − p/q| > C/q2.

In fact, we could even prove that we may take C = 1/
√

5 and that φ is the
irrational number which has the worst approximation by rationals (see [Niv56] for
a precise statement and for further details on these questions of approximation
by rationals).

Fig. 10.7. Lattice and eigendirections

Proof. (Outline) Let us consider the matrix Φ =

(
0 1
1 1

)
. It has two eigenvalues:

φ and −φ−1. The slopes of the eigen-directions are also φ and −φ−1(see Fig.

10.7). The linear forms π1(x, y) = y−φx and π2(x, y) = y +φ−1x are eigenvectors

of the transposed linear map, with eigenvalues −φ−1 and φ respectively. The
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matrix Φ acts linearly in the plane R
2 and preserves the two eigen-lines as well

as the lattice of integral points since its coefficients and those of its inverse are
integers. Note that Φ dilates the first eigen-line (φ > 1) and contracts the other
one. We are seeking to measure the degree of approximation of φ by rationals. In
other words, we are looking for points on the line of slope φ whose coordinates
are “as integral as possible”. Let us consider a disk D big enough in the plane
whose center is the origin. In this disk, there is only a finite number of points
with integral coordinates, so that there exists a constant C1 > 0 such that for all
integral points in D different from (0, 0), we have: |π1(q, p)π2(q, p)| > C1. Let us
study the effect of the action of the matrix Φn. The disk D is transformed in the
interior Dn of an ellipse, laid down along the line of slope φ, and the estimate
|π1(q, p)π2(q, p)| > C1 for the integral points (q, p) different from 0 and located in
D implies the same inequality for all
integral points of Dn different from 0. This is clear because the product |π1π2| is
invariant under the action of Φ. Thus the inequality |π1(q, p)π2(q, p)| > C1 is valid
for all integral points in all the Dn’s. When n varies in Z, these Dn’s cover a whole
“hyperbolic” neighborhood of the eigen-lines, of the form |π1(x, y)π2(x, y)| < C2.

To summarize, we have proven that there exists a constant C3 = min(C1, C2)

such that for any integral point (q, p) of the plane (different from (0, 0)), we have

|π1(q, p)π2(q, p)| > C3. Now, let us distinguish two sets of rationals p/q according

to whether |φ − p/q| is greater than or less than a fixed small enough quantity

C4 > 0. On the first set, the inequality |φ − p/q| ≥ C4 implies in particular that

|φ − p/q| ≥ C4/q2. On the second set, the inequality |φ − p/q| < C4 implies an

inequality of the form |π2(q, p)| > C5|q| (in fact C5 = φ + φ−1 − C4 =
√

5 − C4 is

appropriate) so that we have |π1(q, p)| > C3C
−1
5 /|q| and so |φ−p/q| > C3C

−1
5 /q2.

Thus indeed we have |φ−p/q| > C6/q2 for all integral points different from 0 with

C6 = min(C4, C3C
−1
5 ). QED

10.7 Solution to the stability problem “in the toy model”

Let us take up the problem again. Starting from a function u on the circle,
whose integral is 0, and which is infinitely differentiable, we seek to know
whether there exists a continuous function v whose Fourier coefficients are
given for n different from 0 by

vn =
un

(exp(2iπnα)− 1)
·

Since u is infinitely differentiable, the sequence of Fourier coefficients un is
rapidly decreasing (see Box 3). The terms (exp(2iπnα)− 1) which appear in
the denominator are different from 0 but they may be arbitrarily small because
α is irrational. This is the small divisors phenomenon. These denominators
could be so small that the Fourier coefficients vn may become very big and
the Fourier series of v may diverge. Therefore, the difficulty is to know who is
winning: is it the numerator which rapidly tends to zero or the denominator
which may be very small? The answer, which the reader has already guessed,
depends on the quality of the approximation of α by the rationals.
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First of all let us assume that α satisfies a diophantine condition |α−p/q| >
C/qr (see Box 4). Let us note that |(exp(2iπnα)− 1)| is nothing else than the
euclidian distance between the points 1 and exp(2iπnα) on the unit circle in
the complex plane. Since the length of a chord is bigger than 2/π times the
length of the arc which subtends it, we may write that | exp(2iπnα) − 1| is
2/π times bigger than the length of the circular arc joining 1 to exp(2iπnα),
i.e 2/π × 2π× the distance between nα and the closest integer p. Thus, we
obtain an estimate of the small divisor of the form:

| exp(2iπnα)− 1| > 4C/|n|r−1.

Since un is rapidly decreasing, there exists for every k a constant Ck such that
|un| < Ckn

−k. Thus, we obtain an estimate for the Fourier coefficients:

|vn| < (Ck/4C)/|n|(k−r+1).

Since this is valid for every k, the sequence vn is rapidly decreasing and hence
the Fourier series converges to an infinitely differentiable function v. In other
words, the continuous function v exists and the perturbed motion g is sta-
ble. In this case, we have obtained our justification of the Lagrange-Laplace
method, at least under the diophantine condition and in the (naive) framework
of our “toy model”.

If the rotation angle of the non-perturbed motion is diophantine, the per-
turbed motion is always stable, whatever the perturbation u (assumed to have
0 integral and to be infinitely differentiable).

What happens if α is not diophantine, e.g. if it is the Liouville num-
ber we previously defined? We may then construct unstable examples i.e.
for which the averaging method does not work. Let α = λ denote the Li-
ouville number. We know that there exists a sequence of integers pk such that
|α− pk/10k!| < 2.10−(k+1)!. Thus, for every k, we have | exp(2iπ10k!α)− 1| <
2π.2.10k!−(k+1)! = 4π.10−k.k! (this time, note that a chord is smaller than
the arc which subtends it). Let us construct a sequence un as follows. Let
u0 = 0 and un = 0 if n > 0 is not an integer of the form 10k! and
let u10k! = k.(exp(2iπ10k!α) − 1). Finally, let us define un for n < 0 by
un = u−n for n < 0. This sequence is evidently rapidly decreasing because
k.10−k.k! = k.(10k!)−k. This defines the periodic function u (with real values)
infinitely differentiable and with 0 integral. When we compute the correspond-
ing coefficients vn, we find, by their very construction, that vn = 0 if n is not
of the form 10k! and v10k! = k so that the vn’s are not bounded. Thus, there
does not exist any continuous function v whose Fourier coefficients are the
vn’s and our problem has no solution: there is no continuous function v such
that u(x) = v(x + α) − v(x). We know that this means that the perturbed
motion is not stable and that the averaging method does not apply.

The theorem of Kolmogorov-Arnold-Moser is analogous: it asserts that
the averaging principle works if the frequencies which come into play are dio-
phantine and if the perturbations are weak enough. A (slightly more) precise
statement will be given in the following lines.



10 Resonances and small divisors 207

10.8 Are the irrational diophantine numbers rare
or abundant?

We are all convinced that rational numbers are rare among real numbers,
even if it took a lot of work from the mathematicians of the past to be clearly
conscious of this fact. For a contemporary mathematician, who is used to
the infinite sets à la Cantor, the explanation is easy: the rational numbers
are countable whereas the real numbers are uncountable. For this reason,
to assume that the ratio of the periods of two planets is irrational seems
reasonable and the converse has very little chance of happening.

We saw in the previous paragraph that the “rational/irrational” distinction
in celestial mechanics should better be replaced by a “non-diophantine/ dio-
phantine” one. I have already explained that the Liouville number, although
being mathematically irrational, is “physically rational” and we have just
noted that if a frequency is equal to this Liouville number, the averaging
method may fail.

Are the diophantine numbers abundant? There are essentially two possi-
ble mathematical definitions for abundance and it happens that the answer
depends on the choice of the definition:

The first possible approach is that of Lebesgue’s measure. Let us say that
a subset X of R is negligible in the sense of Lebesgue or that it has 0 Lebesgue
measure if for every ε > 0, we may find a countable collection of intervals
In ⊂ R whose sum of lengths is smaller than ε and whose union covers X . Let
us say that X ⊂ R is of full Lebesgue measure if its complement is negligible
in the sense of Lebesgue. One of the most interesting aspects of this concept
is that the union of a countable collection of negligible sets is negligible. Of
course, what is important for this theory to work is that a set cannot be both
negligible and of full measure. This is an exercise left to the reader.

The second approach is due to Baire. Let us say that a subset X of R is
meager in the sense of Baire if it is contained in a countable union of closed
sets of empty interiors. Let us say that X is residual in the sense of Baire
if its complement is meager. As with the previous definition, the countable
union of meager sets is meager (easy) and a set cannot be both meager and
residual (this is Baire’s theorem).

Which notion of abundance is best adapted to our intuition? The question
is delicate and sometimes generates violent polemics among mathematicians.
For the case we are interested in, i.e. the abundance of diophantine numbers,
the situation is caricatural.

Theorem. The set of irrational diophantine numbers is both meager in the
sense of Baire and of full Lebesgue measure.

The proofs are not difficult but they are instructive. Let us write the definition
of the set Dioph ⊂ R of diophantine numbers by using quantifiers:

Dioph = {α ∈ R | ∃r ∈ N ∃n ∈ N ∀(p, q) ∈ Z× N
� : |α− p/q| ≥ 1

nqr
}.
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Thus Dioph is a countable union indexed by r and n of closed sets which are
clearly of empty interiors: Dioph is meager in the sense of Baire.

In order to prove that Dioph is of full Lebesgue measure, let us fix a real
r > 2 and let us consider the set

Diophr = {α ∈ R | ∃C ∈ R
�
+ ∀(p, q) ∈ Z× N

� : |α− p/q| ≥ C/qr}.
It suffices to prove that Diophr is of full Lebesgue measure because Diophr ⊂
Dioph. In order to prove this, we show that its complement meets the interval
[0, 1] on a negligible set in the sense of Lebesgue (note that Dioph is invariant
under integral translations). Indeed [0, 1]\Diophr is the intersection with [0, 1]
of the following sets defined for C > 0:

NonDiophr,C =
+∞⋃

q=1

q⋃

p=0

]
p

q
− C

qr
,
p

q
− C

qr

[
.

This is a countable union of intervals whose sum of lengths is smaller than
2C

∑
q
q+1
qr . This sum converges because r > 2 and the sum is arbitrarily small

if C is small enough. Thus, by definition, NonDiophr,C is negligible and this
proves that Dioph is of full Lebesgue measure. QED

Of course, the previous statement is not mathematically contradictory but
it leaves us in an awkward situation. Which meaning will the physicist rather
give to the concept of abundance? My personal experience seems to show that
physicists do not either have any miraculous solution to suggest. I will come
back to this question in the last section but for now let us do “as if” the good
concept was that of Lebesgue.

We can therefore conclude that the set of rotation angles for which the
perturbed motion is stable is of full Lebesgue measure and we should therefore
be satisfied with this result since it covers most of the cases (but we should
not forget that if we had preferred Baire to Lebesgue, we should have had the
opposite conclusion).

10.9 A statement of the theorem
of Kolmogorov-Arnold-Moser

It is difficult to give a clear-cut statement of the KAM theorem. I will first
start by stating a precise theorem which is a special case and I will then try
to describe the general theorem, but I will need to be much fuzzier then.

Let us consider a transformation f of the cylinder R/Z × [−1, 1] defined
this time by f(x, y) = (x + y, y). Again in this case, the circles y = const
are invariant and f induces a rotation on each one of them but contrarily to
the “toy model”, the angle of this rotation depends on the circle since it is
equal to y. This map is often called a “twist” for obvious reasons. Now, let us
perturb f , i.e. we consider a map g of the form

g(x, y) = (x+ y + ε1(x, y), y + ε2(x, y)).
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As a matter of fact, we ask that g maps the cylinder to itself, i.e. that
ε2(x,±1) = 0 identically. We also assume that g preserves the area, i.e. that
its jacobian is identically equal to 1. Let us fix an irrational number α in the
interval [−1,+1] and let us suppose that it is diophantine. The KAM theo-
rem asserts that if ε1, ε2 are small enough, then there exists a curve which is
invariant by g, close to the curve y = α, and on which the dynamics of g is
conjugate to a rotation of angle α.

We must first give a meaning to “ε1, ε2 small enough”. The initial theorem
was formulated in 1954 by Kolmogorov in the space of real analytic functions
and it is with respect to this (exotic) topology that we may understand the
smallness [Kol54]. Kolmogorov only gave global indications on the proof and
it is Arnold who gave the rigorous proof of this theorem in 1961, still in the an-
alytical case [Arn63a]. In 1962, Moser succeeded in accomplishing the feat of
proving the theorem in the space of infinitely differentiable functions [Mos62].
In fact, Moser used functions which are 333 times differentiable and the topol-
ogy of uniform convergence on these 333 derivatives... The mere fact that it is
necessary to use as many derivatives shows the difficulty of the proof. Nowa-
days, it is known that the theorem is true with 4 derivatives and false with
3 [Her86].

I have to give up the idea of giving even a sketch of a proof of the the-
orem. I would simply like to explain that, contrarily to the toy model case,
this is a nonlinear problem in the (infinite dimensional) space of curves. The
linearization of this problem essentially leads to the problem we have already
discussed. To switch from a nonlinear problem to a linear problem, the math-
ematician uses the implicit function theorem, which is correct in a Banach
space but false in the Fréchet spaces which occur here. This is why this the-
orem requires quite formidable techniques of functional analysis (see about
this point in the second part of [Her86]).

Each diophantine number α has a corresponding neighborhood in which
the theorem applies. The more diophantine α is, i.e. the more difficulties
it encounters to be approximated by rationals and the more the invariant
circle of angle α is robust under the effect of the perturbation. Thus, given
a perturbation (ε1, ε2), we cannot apply the theorem to every diophantine
number. Typically, given the perturbation, some invariant circles remain and
the others “break down”. Furthermore, the theorem warrants that for a small
enough perturbation, the Lebesgue measure of the set of circles which remain
is arbitrarily close to the full measure. Thus, we may say that if we perturb
f a little, there is every chance that an orbit remains located on a circle and
be almost periodic. The situation in the so-called instability zone, outside
these invariant circles, is very complicated: a lot of problems remain open and
research keeps being very active.

What is the link between this theorem and celestial mechanics? Let us
consider the restricted three-body problem: two masses revolve one around the
other in a Keplerian way and a third infinitely small mass orbits in the same
plane. This third mass is attracted by the two others but does not perturb
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them. In order to describe the dynamics of the third mass, we introduce the
phase space: two position coordinates and two velocity coordinates are needed,
which gives a space of dimension 4. The conservation of total energy forces the
third object to stay in a 3-dimensional submanifold. So, we have to study the
dynamics of a vector field in a certain 3-dimensional manifold. For this purpose
one can use the method of Poincaré’s sections which consists in studying the
successive returns of the orbit on a surface transverse to the vector field. This
leads to iterate a transformation in dimension 2 of the type we previously
considered. Without any detail, the KAM theorem we have cited allows to
prove the stability of the system formed by these three bodies. Many more
pages, formulae and pictures would be needed to justify this point.

When we consider a “real” solar system, with many planets, the phase
space and Poincaré’s sections are of higher dimension, and the invariant circles
need to be replaced by invariant tori of higher dimensions. This complicates
the statement of the theorem but the spirit remains the same: these invariant
tori resist the perturbations if the frequency ratios in the initial system are
diophantine enough. The general KAM theorem deals with this case.

Thus, the “physical” consequence of KAM is the following. If we launch
a system of planets of small enough masses around a Sun of big mass in
initial conditions which are close to that of a Keplerian system, the dynamics
which will result from this will be almost periodic, at least for a set of initial
conditions whose Lebesgue measure becomes fuller and fuller as the masses
of the planets tend to 0. Outside this set of initial conditions, the theorem
does not say anything, apart from the fact that they are rare (in the sense of
Lebesgue measure).

This is the reason why our solar system “stands a good chance of being
almost periodic”...

10.10 Is the KAM theorem useful in our solar system?

The KAM theorem and its proof are magnificent. From a certain view point,
this may suffice to the mathematician. I have no intention of debating here in
a few lines of the complex relationship between mathematics and physics but
the KAM example could undoubtedly be used as a starting point.

Originating from Physics, the problem has generated a whole branch of
mathematics which perfectly suffices to itself and which also generates some
other problems which are often totally without any physical content. But it
seems to me that even the “purest” mathematician has the duty to go back
to the initial problem: has it been solved? Here are some elements of answer:

The KAM theorem applies in the case of “small enough” masses. If we
closely study the proof we realize that it applies to very small masses, smaller
by several orders of magnitude than what is observed in our solar system. It
would clearly be useful to obtain efficient and effective versions of KAM, let
us say for masses 1/1000 times the mass of the Sun. We are still very far away
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from this and, unfortunately, few colleagues find this mathematical issue to
be fascinating.

The forces which act in the solar system are mostly gravitational but other
forces are non-hamiltonian (e.g. the solar wind can “slow down” the planets).
After several hundred thousands years, the effects are perhaps not negligible
and the KAM theorem cannot help us to understand the situation. Indeed, is
there an interest other than philosophical or mathematical to prove that the
“theoretical” (= hamiltonian) solar system is stable or instable? The physicist
wants to understand the situation for the near future (let us say that a few
billion years would suffice him).

The union of the invariant tori given by the theorem has a large Lebesgue
measure but it has an empty interior. Which is the good abundance concept in
physics? As I have already explained earlier, mathematicians cannot answer
this question and physicists have to show them the way.

Experience shows that many frequencies encountered in the solar system
seem to be very rational. The following example, taken from [Bel86], is really
impressive. Let us consider the angular frequencies ωobsi (i = 1, ..., 9) of the 9
planets (measured in such a unit that the frequency of Jupiter equals 1). It
turns out that when we modify very slightly these values, we can find “theoret-
ical” frequencies ωti which are exactly linked together with integral linear rela-
tions: the following table exhibits a 9×9 matrix with small integer entries, with
a lot of zeros, which exactly anihilates the vector of theoretical frequencies.
Note that the discrepancies Δω/ω = (ωobs − ωt)/ω are extremely small.

Planet ωobsi ωti Δω/ω n1 n2 n3 n4 n5 n6 n7 n8 n9

1 Mercury 49.22 49.20 0.0004 1 –1 –2 –1 0 0 0 0 0
2 Venus 19.29 19.26 0.0015 0 1 0 –3 0 –1 0 0 0
3 Earth 11.862 11.828 0.0031 0 0 1 –2 1 –1 1 0 0
4 Mars 6.306 6.287 0.0031 0 0 0 1 –6 0 –2 0 0
5 Jupiter 1.000 1.000 0.0000 0 0 0 0 2 –5 0 0 0
6 Saturn 0.4027 0.4000 0.0068 0 0 0 0 1 0 –7 0 0
7 Uranus 0.14119 0.14286 –0.0118 0 0 0 0 0 0 1 –2 0
8 Neptune 0.07197 0.07143 0.0075 0 0 0 0 0 0 1 0 –3
9 Pluto 0.04750 0.04762 –0.0025 0 0 0 0 0 1 0 –5 1

The book [Bel86] contains a very interesting paragraph on these resonances
which are observed in our solar system. It contains in particular a discussion on
the “hypothesis of Moltchanov” according to which “every oscillatory system
having been subject to an extended evolution is necessarily in resonance and
is governed by a family of integers”. Thus, for Moltchanov, the small non-
hamiltonian forces keep the systems away from the diophantine frequencies
and push them in the zone where the KAM theorem does not apply... It seems
to me that justifying or invalidating this hypothesis remains a magnificent
challenge for today’s mathematicians.
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Translated from the French by Thomas Ransford

I first heard about the KAM theorem when I was an undergraduate, around
1966. It seemed to me the most beautiful result in the world, but for many
years my interests were engaged elsewhere. Around 1980, I came back to
dynamical systems, and I quickly realized that the KAM theorem is indis-
pensable.

Each year, for about fifteen years, I said to myself in September: this is
the year that I am going to understand the proof. Each year, as March came
around, I had to admit failure once again: I no longer knew the order of the
quantifiers in the technical lemmas, and so was unable to apply them.

During these years, I tackled all the proofs that I knew: Arnold’s [Arn63,
AA68], Moser’s [Mos62, Mos73], Sternberg’s [Ste71], those based on the Nash–
Hamilton implicit function theorem, those of Herman [FH83, Her86],. . . I did
not succeed in mastering a single one. And I am far from being alone: I
know numerous dynamicists who realize that they ought be able to prove the
theorem, who even teach it sometimes, but who have never mastered the proof
either.

After being pointed in the right direction by Pierre Lochak, I finally dis-
covered the article of Bennettin, Galgani, Giorgilli and Strelcyn [BGGS84],
which I found luminous. With the help of Yulij Ilyashenko, I discovered sev-
eral improvements: this is the proof published in [HI02]. Ilyashenko gave an
exposition of it at the Moscow mathematics seminar in 2002; in the audience
were some participants from Kolmogorov’s seminar in 1957; they told him
that this proof was in fact the original proof.

One might wonder whether this is really true. At any rate, it is very hard
to understand why Kolmogorov never published a proof of his most beautiful
result.
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The KAM theorem is so called in honour of Andrëı Kolmogorov, Vladimir
Arnold and Jürgen Moser. The theorem was announced in the Proceedings
of the International Congress in Amsterdam [Kol57], but no detailed proof
was published until that of Arnold [Arn63] in 1963. In the meantime, in 1962,
Moser had published the article [Mos62], which establishes a different but
related result, bringing to bear similar techniques.

These publications have generated countless other works, both in physics
and in mathematics. In physics, the KAM theorem is a basic tool in the design
of particle accelerators: indeed, accelerated particles fly round an accelerator
billions of times, and the techniques guaranteeing the stability of the parti-
cle beam are the same as those which permit us to study the stability over
billions of years of the solar system. In mathematics, the KAM theorem is
at the origin of the small-divisor problem; it is the research area of scores of
mathematicians.

I am not going to attempt to sketch the development of the subject over
the last forty years; I lack the expertise and time for such a project. This
article consists of two parts. The first part illustrates the KAM theorem in
the context of two examples: the solar system and the forced pendulum. It
requires only a moderate mathematical background.

In the second part, I give a rigorous statement of the theorem, and sketch
the main ideas of the proof, the one written out in detail in [HI02]. The
background required is more substantial: differentiable manifolds, symplectic
forms, flows of vector fields, etc.

Part I. Two examples

11.1 The solar system

The KAM theorem yields a troubling answer to one of the oldest questions
in celestial mechanics: is the solar system stable? Will it continue eternally
more or less as we see it today? Or could it be that planetary interac-
tions, between Jupiter and Saturn e.g. will eventually lead to catastrophes,
where certain planets escape from the Sun, and others collide or fall into
the Sun?

Kolmogorov’s answer is that, in a system like the solar system, regular
motion and chaotic motion are inextricably entwined, zones of chaos within
zones of order and zones of order within zones of chaos, and all of this on
every scale. Regular motion resembling Keplerian motion and motion which
does not resemble it at all both appear with strictly positive probability. There
is thus no reasonable answer to the question.
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1. Newton’s equations.

A system of n masses m1, . . . , mn with positions x1, . . . ,xn satisfies Newton’s law

mixi
′′ =

∑

j 	=i

Gmimj
xj − xi

|xj − xi|3
, (11.1)

where G ≈ 6.662 · 10−11 m3/(kg s2) is the universal gravitational constant. This

equation follows the famous general law F = ma: force equals mass times acceler-

ation. Indeed, on the left-hand side, we see mixi
′′, namely the i-th mass times its

acceleration, and on the right-hand side we see the force acting on this mass: each

mass mj attracts mi with a force proportional to the product of the masses and

inversely proportional to the square of the distance between them. The numerator

is the vector joining xi to xj ; it gives the direction of the force, but it already

has length |xj − xi|, so we must divide by |xj − xi|3 in order to obtain a force

inversely proportional to the square of the distance.

A word of caution: we are speaking here of classical mechanics, namely the
behaviour of the very good mathematical model of celestial mechanics given in
Box 1. We are neglecting all physical phenomena other than gravitation: tides,
the pressure of solar wind, not to mention the fact that the Sun is destined
one day to become a red giant and swallow up several planets (including
the Earth); we are also neglecting the relativistic corrections to Newton’s
equations. In the very long term (millions, even billions of years hence), these
effects are certainly significant. Thus the word “eternally” used above does
not apply to the real solar system; but we can still ask if the trajectories of
the mathematical model are stable for ever.

Besides, the effects of attraction between planets, though small compared
with the gravitational attraction of the Sun, are considerably greater than
those of the other phenomena above, and produce measurable effects over
much shorter periods (centuries, or merely years). It is of these that we
shall speak.

11.1.1 The case of zero planetary masses

To understand how the KAM theorem applies to the solar system, it is es-
sential to see that the equations governing planetary motion have a limit as
the masses of the planets tend to zero, and that, moreover, the behaviour in
this limit is not very different from the motion that we actually observe. If
we were to replace all the planets by grains of sand, then these grains would
follow very much the same trajectories as do the planets.

This phenomenon is nothing other than Galileo’s experiment. He observed
that a marble and a cannonball, released from the top of the Leaning Tower
of Pisa, fall at the same speed; for cannonball and marble, read Jupiter and
grain of sand.
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2. The solar system with zero planetary masses.

The fundamental observation is that in the (11.1) one can simplify mi. For n + 1
masses m0 (the Sun), m1, . . . , mn (the planets) in positions x0,x1, . . . ,xn, New-
ton’s equations can be written

x0
′′ = G

n∑

j=1

mj
xj − x0

|xj − x0|3

xi
′′ = Gm0

x0 − xi

|x0 − xi|3
+

∑

j=1,...,n, j 	=i

Gmj
xj − xi

|xj − xi|3
·

As all the planetary masses mj , j = 1, . . . , n tend to 0, but not m0 (the Sun),
these equations become

x0
′′ = 0

xi
′′ = Gm0

x0 − xi

|x0 − xi|3
·

Since x0
′′ = 0, the mass m0 travels in a straight line at constant speed; without

changing the other equations, we can work in a system of coordinates where x0 = 0
(heliocentric). The other masses then satisfy the decoupled equations

xi
′′ = −Gm0

xi

|xi|3
·

The difference between zero masses and small masses can be observed in the
oscillation of the Sun. The centre of gravity of the Sun-Jupiter system is about
one solar diameter from the centre, and as Jupiter rotates “around the Sun”,
the Sun itself orbits the centre of gravity. This is how we detect the existence
of planets around other stars: except in a few recent cases, even the best
telescopes do not see the planets; but they do see the oscillations that a big
planet induces in its star.

Look at Box 2: the argument often heard that “if planets had no mass,
then they would not experience the Sun’s attraction” obviously does not apply
to these equations.

The solar system with planets of zero mass is easy to understand: it is
exactly what we all learned at school. Each planet obeys Kepler’s laws.

1. The orbit of each planet is an ellipse with the Sun at one of the foci.
2. The radius vector from the Sun to each planet sweeps out equal areas in

equal times.
3. The period of each planet is proportional to the length of its major axis

raised to the power 3/2.

In particular, the system is stable: its evolution over time will never lead it to
diverge very far from its present state.



11 The KAM Theorem 219

11.1.2 Irrational numbers and vectors

The KAM theorem states that if a “totally integrable” mechanical system ad-
mits a “sufficiently irrational” trajectory, then each “sufficiently small” per-
turbation of the system also admits “the same motion”. (We shall see a more
precise statement later.)

This notion of “sufficiently irrational” is the central concept of the KAM
theorem, and, more generally, of all problems concerning “small divisors”.
It is a problem with a long history: Archimedes sought rational approxima-
tions of π, and the essence of his work consisted in finding good rational
approximations of square roots. In the 19th century, Liouville used rational
approximations of algebraic numbers to find the first transcendental numbers
(see Box 4).

To say that a number θ is irrational is to say that |θ − p/q| �= 0, for every
pair of integers p, q. In order to quantify this statement, we need not only that
|θ − p/q| �= 0, but that |θ − p/q| is “big”. An objection to this is that it is
manifestly impossible: one can always approximate an irrational number by
rational numbers. For example, the numbers

a0 = 3, a1 = 3.1 =
31
10
, a2 = 3.14 =

314
100

, . . .

(which have been chosen suitably) approximate π more and more closely, and
|π − ak| tends to 0 with k. So we cannot simply ask that |θ − p/q| be big;
what we can ask, however, is that it can only be small if the denominator is
big. (Certain irrational numbers are less easily approximated by rationals, in
other words, the denominators in their rational approximations are forced to
grow more rapidly—see Box 3.)

3. Some good approximations to π.

The decimal approximation
∣∣∣∣π − 314159

100000

∣∣∣∣ <
3

1000000

is not very good; we can do better with a much smaller denominator. Some good
approximations are

∣∣∣∣π − 22

7

∣∣∣∣ <
2

100
,

∣∣∣∣π − 355

113

∣∣∣∣ <
3

10 000 000
·

It is the rate of growth of the minimal denominators for finer and finer approxi-

mations which will measure good or bad “approximability” by rationals.

There are numerous ways of making this precise; the one we shall adopt will
be to demand that, in order to find integers p, q such that

∣∣∣∣θ −
p

q

∣∣∣∣ < ε
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it is necessary to take q at least of order ε−1/3; this can be reformulated as
saying that there exists a constant γ > 0 such that, for every pair of integers
p, q, we have

|qθ − p| ≥ γ/q2. (11.2)

Consider π for example: to this day, the best we know is that |qπ − p| ≥
γ/q7.0161, which is much less restrictive than (11.2). (It is nevertheless believed
that in fact a lower bound of the form |qπ − p| ≥ γr/q

r holds for each r > 1,
which would be much stronger than (11.2)1.)

4. Liouville and transcendental numbers.

The first quantitative statement stipulating that certain irrational numbers can
only be approximated by rationals with “big” denominators was the (celebrated
and elementary) result of Liouville (1844): if θ is an algebraic number of degree
d, namely, if it satisfies an equation

adθd + ad−1θ
d−1 + · · · + a0 = 0

with integer coefficients (and with ad �= 0), then there exists a constant C > 0
such that, for every pair of coprime integers p, q (with q �= 0), we have

∣∣∣∣θ − p

q

∣∣∣∣ >
C

qd
·

From this, one easily deduces that the number
∑∞

n=0 10−n! is transcendental, the

first transcendental number to be discovered. The theory inspired by Liouville’s

result is now an important part of number theory.

The condition (11.2) is not unreasonably restrictive: it holds for almost all
real numbers (in the mathematical sense of the term, namely, the exceptions
form a set of Lebesgue measure zero), and this is true even for the condition
that there exists a γr such that |qa− p| > γr/q

r for an arbitrary r > 1 (and
every pair of coprime integers p, q). On the other hand, it can be shown that
the set of real numbers a satisfying |qa − p| > γ/q (for every pair of integers
p, q) is of measure zero2.

The irrationality of numbers is not sufficient for stating KAM; we need
a notion of irrationality of vectors. In the case of the solar system with zero

1 Liouville proved that if an irrational number is “too well” approximable by ra-
tionals thus it is transcendental (see Box 4), but there also exist transcendental
numbers which are “very badly” approximable by rationals: for example, for the
number e we have a lower bound |qe−p| ≥ γr/qr for every power r > 1. (Editor’s
note.)

2 This last condition is satisfied, notably, by algebraic numbers of degree 2, but
remarkably, to this day we do not know a single algebraic number of degree > 2
which is known to satisfy or not to satisfy the condition
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planetary masses, the vector in question is (P1, . . . , Pn), the vector of the
planets’ periods, or rather the vector of frequencies (ω1, . . . , ωn), where ωi =
1/Pi. Notice that an individual Pi means nothing: it depends on the choice of
units of time. But the ratios of the Pi have a meaning: to say that Jupiter’s
year is 11.86 times as long as that of Earth obviously has a sense independent
of time units. In this language, the irrationality of the number θ becomes the
irrationality of the vector (θ, 1).

The analogue of the (11.2) for a vector of length n, is to demand that there
exist γ > 0 such that for every vector with integer coefficients (k1, . . . , kn)
we have

|k1ω1 + · · ·+ knωn| ≥
γ

(k2
1 + · · ·+ k2

n)n/2
· (11.3)

This condition is indeed “sufficiently irrational”. It is not the weakest condi-
tion under which KAM can be proved, but it is the easiest to use.

An important question is to know to what extent the vectors (ω1, . . . , ωn) ∈
R
n satisfying the condition (11.3) are not too exceptional: we should like

ordinary motions to be preserved—not merely certain exceptional motions.
And this is indeed the case: the vectors (ω1, . . . , ωn) ∈ R

n satisfying condition
(11.3) are of full measure, in other words their complement is of measure
zero. If we select a vector at random, for example by throwing a ten-sided
die to choose successive digits of the coordinates, we will obtain a vector
satisfying condition (11.3) with probability 1, that is to say “almost surely”
in the mathematical sense of the term (and thus “with certainty” in practice).

For the sake of clarity, let us make a precise statement.

Definition 1. Denote by Ωnγ the subset of R
n formed by vectors (ω1, . . . , ωn) ∈

R
n such that, for every vector with integer coefficients (k1, . . . , kn), we have

|k1ω1 + · · ·+ knωn| ≥
γ

(k2
1 + · · ·+ k2

n)n/2
·

Theorem 1. The subset of R
n

R
n −

⋃

γ>0

Ωnγ

is of (Lebesgue) measure zero.

11.1.3 Linear windings on a torus

There is a more geometric way of describing the motion of the solar system
under the hypothesis of zero planetary masses: as a trajectory winding around
an n-dimensional torus, where n is the number of the planets. Each planet
travels along an ellipse, which is topologically a circle, and metrically a circle
on which the planet orbits at constant speed if we use time as parameter,
starting e.g. from the apogee of each ellipse.
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We shall think of the circle as the quotient space R/Z, where we iden-
tify numbers which differ by an integer, and of the n-dimensional torus as
(R/Z)n. Still parametrised by time, the trajectory whose frequencies are
ω = (ω1, . . . , ωn) is at time t at the point

(a1 + tω1, . . . , an + tωn)

if at time 0 the system is at (a1, . . . , an), in other words, if a time ak/ωk has
elapsed since the k-th planet’s last visit to its apogee.

In order to extract from this parametrisation the real positions of the
planets in space, we have to calculate the parametrisation of the ellipses as a
function of time; this is quite feasible, thanks to Kepler’s second law, but it
requires the use of elliptic functions, and will be of no use to us.

It is very instructive to consider the motions

t �→ a + tω

on the torus (R/Z)n; we shall call these motions the linear flow on (R/Z)n in
the direction ω. These motions have an interesting geometry, which depends
in detail on the vector ω. For example, the trajectory is dense on the torus if
and only if ω is irrational, namely the relation k1ω1 + · · ·+ knωn = 0 with all
the ki integers implies k1 = · · · = kn = 0. If, on the contrary, all the frequences
are multiples of a common frequency, the winding is around a circle embedded
in the torus.

Figure 11.1 shows a dense winding on the torus, and another corresponding
to ω = (5, 2).

One can visualize things as in Fig. 11.1 above; it is easier (but less pretty)
to imagine the torus as a cube (a square when n = 2) with opposite sides
stuck together, as in Fig. 11.2.

An irrational winding has lots of combinatorics, depending in a delicate
way on the direction vector ω; e.g. on the right of Fig. 11.2, the first seven
intersections si of the trajectory with the circle on the torus corresponding to
the vertical side of the square occur in circular order s1, s7, s2, s6, s3, s4, s5.

Fig. 11.1. Two windings on a torus: on the right, the direction is (2, 5) and the
trajectory is a circle embedded in the torus, which makes two turns in one sense
while making five in the other; for the left-hand figure, the direction is (1,

√
2) and

the winding is dense, but we have only drawn the segment 0 ≤ t ≤ 10
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Fig. 11.2. It is much simpler to draw a winding in a square in the plane, where
opposite sides are identified

To say that a motion x(t) of the perturbed system is “the same” as a
motion of the unperturbed system x1(t) dense on a torus T1, means that
the orbit x(t) is dense on a torus T , and that x(t) fills T in the same way
combinatorially; more precisely, there exists a homeomorphism Φ : T → T1

such that Φ(x(t)) = x1(t).
We finally arrive at a rigorous statement in the particular case of the solar

system.

Theorem 2 (KAM for the solar system). Let x1(t) be a motion of the
zero-masses system, for which the frequency vector satisfies (11.3) (and thus
x1(t) is dense on a torus T1). Then there exists ε > 0 such that, if the planets
are given masses mi < ε, there exists a trajectory x(t) of the system thus
perturbed, dense on a torus T , and a homeomorphism Φ : T → T1, such that
Φ(x(t)) = x1(t).
Moreover, the set of trajectories of this kind is a set of positive measure in the
set of all trajectories, and the probability of being on such a trajectory tends
to 1 as ε tends to zero.

Should we believe that the solar system is on one of these nice stable tra-
jectories described by the KAM theorem? Surely not, for the periods of
the orbits of Jupiter and Saturn are in a ratio 5 : 2, thus rational, and
the hypotheses are not satisfied. This is not (either figuratively or liter-
ally) the end of the world. A refinement of the KAM theorem guarantees
that there also exist stable motions where such ratios may be rational:
second-order zones of order. According to Jacques Laskar (Paris Observa-
tory), the motions of the solar system are not compatible with this second
order, and we need to seek zones of even higher order to describe the solar
system.
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11.2 The forced pendulum

The solar system is of course of vital importance, as much in physics as in
history, astronomy and philosophy. But it is difficult to illustrate with pictures
showing zones of order and chaos; it can be managed for the “restricted three-
body problem”3 but this requires some good will. The mathematical and
graphical study of the forced pendulum is much simpler.

We shall consider the forced pendulum governed by the differential
equation

x′′ + sinx = ε cos 2πt;

the case ε = 0 is the unperturbed case. Following standard procedure in the
study of differential equations, we introduce a speed variable y and write our
equation as a system

x′ = y y′ = − sinx+ ε cos 2πt. (11.4)

When ε = 0 we can draw the phase plane, namely the (x, y)-plane with certain
trajectories drawn in; this is illustrated in Fig. 11.3.

The picture corresponding to ε > 0 is much more complicated, since
the trajectories cross each other all over the place. But there does exist a
picture which really gives us information: it is the one where we do not draw
an entire trajectory but only the points

SaddleSaddle
-6

-3

6

3

x

y

A -6

-3

6

3

x

y

Fig. 11.3. On the left, the more-or-less circular trajectories are the pendulum’s oscil-
lations about its equilibrium position (0, 0). They fill a certain region A in the plane,
shaded light grey in the figure, which is of area exactly 2

√
2
∫ π

−π

√
1 + cos x dx = 16.

The trajectories above and below the figure (outside A) represent the motions where
the pendulum makes complete turns, in one direction (above the figure) or the other
(below). These two types of motion are separated by trajectories which take an in-
finite time to fall from the position of unstable equilibrium, and an infinite time to
return there; in the picture, these bound A. On the right, we see the same picture
under a stroboscope, flashing with period 2π

3 Namely, the three-body problem with one body of zero mass: it is the trajectory
of the latter which is then interesting (and complicated): the two massive bodies
follow the (Keplerian) trajectories of the standard two-body problem
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Fig. 11.4. On the left, two trajectories of the forced pendulum for ε = .2. One can
convince oneself that one of them is the projection of a curve that winds around a
torus. On the right, similar orbits seen under a stroboscope

(
x(0)
y(0)

)
,

(
x(1)
y(1)

)
,

(
x(2)
y(2)

)
, . . . ;

you might say that we illuminate the pendulum with a stroboscope, adjusted
to be in phase with the force cos 2πt driving the pendulum, which has period 1.

This programme, applied to the unforced pendulum, gives the picture on
the right of Fig. 11.3, and applied to the forced pendulum (with ε = 0.2)
yields the image on the right of Fig. 11.4, much more comprehensible than
that on the left.

On the right of Fig. 11.3, we see some points which “fill in” the trajec-
tories in the picture on the left, but the “fillings-in” are different from one
trajectory to the next because each has its own period, which may be rational
or irrational. If ever we were to hit a trajectory with a rational period, we
would see there only a finite number of points, but as this only occurs with
probability zero it essentially never happens.

In Fig. 11.4, certain trajectories seem to want to be closed curves. Notice
that if we work in R/Z×R

2, with the first coordinate corresponding to time
(viewed with period 1), then the discrete trajectories filling in the simple
curves in Fig. 11.4 (right) correspond to continuous trajectories filling in tori.

In the context of the forced pendulum, the KAM theorem gives the fol-
lowing result.

Theorem 3. For every period α > 2π, there exists C such that if |ε| < C,
then the differential equation 11.4 has a periodic solution of period α. The set
of these solutions is of positive measure, and the ratio of their measure to the
area of the region A occupied by the periodic motions of unforced motion tends
to 1 as ε→ 0.

But there are trajectories other than those described by Theorem 3, which
we can already glimpse on the right in Fig. 11.4, and which become predom-

-6

-3

6

3

x

y

-6

-3

6

3

x

y
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Fig. 11.5. This figure shows three successive blow-ups of the phase plane for the
forced pendulum with ε = .3. We see regions of order, then regions of chaos, which,
magnified, reveal regions of order and regions of chaos, and a second enlargement
reveals the same structure repeated

inant as ε grows (see Fig. 11.5). There are good reasons for calling some of
these trajectories “chaotic”, but in the middle of these chaotic regions we ob-
serve zones of order, then in the zones of order further zones of chaos, which
themselves contain zones of order, etc.

Figure 11.5 gives three successive blow-ups when ε = 0.3.

Part II. Precise statement and sketch of the proof

What distinguishes integrable systems from those obtained by perturbing
them slightly, is that the former have a multitude of conservation laws, which
disappear following the perturbation. For example, in the solar system, the
energy and angular momentum of each planet are conserved: as soon as the
planets are given non-zero mass, they can exchange energy and angular mo-
mentum, and all that remains is global conservation of energy and angular
momentum. In the case of the unforced pendulum, the energy y2/2− cosx is
conserved, but this is no longer true once ε �= 0.
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According to a “sociological” view of mathematics, a system, in gen-
eral, should be able to do whatever is permitted by the laws governing it:
the normal state of anarchy is chaos! From this point of view, we should
expect that, in the absence of conservation laws, typical motions should
be dense in the space available to them; Kolomogorov’s theorem denies
this, saying that when the laws are relaxed a bit, the majority of motions
stay “pretty much” where they were, as if in fear of a non-existent police
force.

Why did Kolmogorov think that his statement was true? Before him, I
imagine that everyone believed the contrary: that as soon as conservation
laws were lost, trajectories would go anywhere.

The only motivation I can see is that the solar system is indeed there, and
that it would take almost a divine miracle for this to be true if chaos were
really the generic state of mechanical systems. Moreover, Kolmogorov was not
the first to ponder this: it appears explicitly in the work of Weierstrass, and
implicitly in what I have read of Lagrange.

I have never seen any intuitive argument, however fuzzy, which makes
plausible the statement of KAM. However, if one believes in it, then one can
see that to say KAM is true is to say that a certain equation has a solution.
One can then try to tackle this equation; this is what Kolmogorov and his
successors did.

We shall see how to write the statement in the form of an equation, and
describe what Kolmogorov did to solve it. For this project, we need to use
a much more sophisticated vocabulary: we shall take for granted the notions
of differentiable manifold, differential form, symplectic form, flow of a vector
field, and Lie bracket.

11.3 Summary of Hamiltonian mechanics

Everything appearing in this section is treated, in much greater detail, in
[Arn85].

Let (X,σ) be a symplectic manifold, in other words, X is a differentiable
manifold and σ is a nowhere-vanishing 2-form on X such that dσ = 0. Then
every function H on X has a symplectic gradient ∇σH , which is the unique
vector field such that

σ(ξ,∇σH) = dH(ξ) (11.5)

for every vector field ξ. We can then consider the Hamiltonian differential
equation

ẋ = (∇σH)(x). (11.6)
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5. The gradient and the symplectic gradient.

Very early on in courses on differential and integral calculus, one meets the gra-
dient of a function f : R

n → R: it is the vector field

∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

The gradient is often thought of as being the derivative Df of f , which measures
to first order the change in f at a point x in the direction ξ:

f(x + tξ) = f(x) + tDf(x)(ξ) + terms smaller than t.

But this is wrong. The derivative is a map from R
n into R, the gradient is an

element of R
n, and like the symplectic gradient it is only defined with the help of

a geometric structure on the ambient space, in this case, the scalar product 〈·, ·〉:
∇f is the unique vector field such that

df(ξ) = 〈ξ,∇f〉

in close analogy with the formula (11.5). One can perfectly well consider the

differential equation (“gradient equation”)

ẋ = ∇f(x), (11.7)

which is indeed much used in optimization, since the solutions have a tendency

to converge towards local maxima of f . The gradient formalism and that of the

Hamiltonian gradient are thus almost indentical. But the gradient equation is in-

finitely less interesting than the Hamiltonian equation (11.6), because its solutions

are non-recurrent. Indeed, because f increases along the solutions, they can never,

as they evolve, return to their starting point. All the interest in dynamical sys-

tems lies in recurrence, which is prohibited by the differential equation (11.7), but

which is allowed by, and, according to the Poincaré recurrence theorem, almost

imposed by, Hamilton’s equation.

If X = R
2n, with coordinates q = (q1. . . . , qn),p = (p1, . . . , pn) and 2-form

σ =
∑

i dpi ∧ dqi, then the (11.6) can be re-written in form of the celebrated
equations of Hamiltonian mechanics

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

(11.8)

Example 1. Let us see how the solar system fits into this picture. We have
met, in the case of a single body of zero mass, the equation x′′ = −x/|x|3. We
shall see (in the planar case, where x =

(
q1
q2

)
∈ R

2) that this is just Hamilton’s
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equation for the manifold X = R
2 × R

2 whose points we denote by
((

q1
q2

)
,

(
p1
p2

))

with the standard symplectic form σ = dp1∧dq1 +dp2 ∧dq2 and Hamiltonian

H

((
q1
q2

)
,

(
p1
p2

))
=

1
2
(p21 + p22)−

1
(q21 + q22)1/2

·

Indeed, in this case we have

∇σH =
((

p1
p2

)
,− 1

(q21 + q22)3/2

(
q1
q2

))
,

because

(dp1 ∧ dq1 + dp2 ∧ dq2)
(((

ξ1
ξ2

)
,

(
η1
η2

))
,

((
p1
p2

)
,− 1

(q21 + q22)3/2

(
q1
q2

)))

= η1p1 +
ξ1q1

(q21 + q22)3/2
+ η2p2 +

ξ2q2
(q21 + q22)3/2

=
[
DH

((
q1
q2

)
,

(
p1
p2

))]((
ξ1
ξ2

)
,

(
η1
η2

))
.

The differential equation x′ = ∇σH(x) is thus

q′1 = p1 p′1 = − q1
(q21 + q22)3/2

(11.9)

q′2 = p2 p′2 = − q2
(q21 + q22)3/2

(11.10)

If we differentiate the equations from the first group and substitute the ex-
pressions from the second group, we recover the equation x′′ = −x/|x|3 from
which we started.

Example 2. Is the forced pendulum Hamiltonian? One might think not, first
of all because energy is not conserved and the system is thus not “conserva-
tive” in the naive sense of the term, and secondly because there are 3 variables
x, y, t, and a symplectic manifold is always of even dimension. But there is a
trick which allows us to put this equation (and moreover any forced Hamilto-
nian system) into Hamiltonian form. Let us invent a new variable s (the dual
variable of t), and consider R

4 with coordinates t, s, x, y and symplectic form
ds ∧ dt+ dy ∧ dx. Let us take the Hamiltonian function

H

((
t

s

)
,

(
x

y

))
= s+

1
2
y2 − cosx+ εx cos t.
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The Hamiltonian equations then become

t′ =
∂H

∂s
= 1 s′ = −∂H

∂t
= εx sin t (11.11)

x′ =
∂H

∂y
= y y′ = −∂H

∂x
= − sinx+ ε cos t (11.12)

As s does not appear on the right-hand side, the equations are just those of
the forced pendulum.

Let us return to (11.6): ẋ = (∇σH)(x). We shall denote by φtf the flow of
the vector field ∇σf . It has two essential properties

• φtf preserves f , in other words f ◦ φtf = f ;
• φtf preserves σ, in other words (φtf )

∗σ = σ.

The central construction in Kolmogorov’s theorem is that of a certain sym-
plectic diffeomorphism, which we shall construct as the flow of a Hamiltonian
function.

We shall need the Poisson bracket in order to state the theorem and to
understand the method of proof. The Lie bracket [∇σf,∇σg] of the vector
fields is well-defined, as for any vector fields, and symplectic because φf , φg
are. One might wonder whether it is the symplectic gradient of a function:
this turns out indeed to be the case.

We define the Poisson bracket {f, g} of two functions on X by the equiv-
alent formulas

{f, g} = σ(∇σg,∇σf) = df(∇σg) = −dg(∇σf). (11.13)

This corresponds to the the Lie bracket:

∇σ{f, g} = [∇σf,∇σg].

We shall say that the functions f, g commute if {f, g} = 0. This certainly
implies that the flows φf , φg commute:

φf (s) ◦ φg(t) = φg(t) ◦ φf (s).

In the standard case of (11.8), the Poisson bracket is calculated via the formula

{f, g} =
n∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (11.14)

Let T = R/Z. A totally integrable system will be the symplectic manifold
X = T

n × R
n, with variables (q ∈ T

n,p ∈ R
n), symplectic form

∑
i dpi ∧ dqi

as above, and with Hamiltonian function H(p) depending only on p.
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In this case, it is very easy to integrate the (11.8): the solution with initial
value (q0,p0) is simply

q(t) = q0 + t
∂H

∂p
(p0) = q0 + t ω(p0),

p(t) = p0

In particular, each coordinate p1, . . . , pn is conserved, and the trajectory is a
linear motion on the torus T

n × {p0}.
A celebrated theorem of Liouville (the same Liouville as the one of tran-

scendental numbers, see Box 4) states that this situation occurs whenever one
has any mechanical system with n degrees of freedom4 and n commuting con-
servation laws. More precisely, let us suppose that X is a symplectic manifold
of dimension 2n, and that f1, . . . , fn are n functions on X . Then, if

1. the functions f1, . . . , fn commute; set F = (f1, . . . , fn);
2. F−1(0) has a compact component Y , and
3. the function F = (f1, . . . , fn) : X → R

n is a submersion on Y , in other
words DF (y) is surjective for all y ∈ Y ,

then F−1(0) is a torus, and there exists a neighbourhood U of Y in X and
coordinate functions

q : U → T
n p : U → R

n

with respect to which σ can be written as
∑
dpi ∧ dqi, and fi as pi.

6. Liouville and the solar system.

In Example 1, we saw that the planar solar system fits into the framework of
Hamiltonian mechanics; we now want to show that Liouville’s theorem applies in
the case of zero masses. Once again, it suffices to consider the case of one planet,
because the planets clearly behave independently of one another. It is a system
with two degrees of freedom, so we need two conservation laws. We already have
one: the function

H

((
q1

q2

)
,

(
p1

p2

))
=

1

2
(p2

1 + p2
2) − 1

(q2
1 + q2

2)1/2
·

For the second, we shall take the function

M = q1p2 − q1p2.

4 We are talking here about n mechanical degrees of freedom, in other words the
dimension of the set of positions of the system: for example the degree of freedom
corresponding to one coordinate of position corresponds to the two dimensions
position and speed in phase space, and n degrees of freedom correspond to a phase
space of dimension 2n
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One easily checks that

M ′ = q′1p2+q1p
′
2−q′2p1−q2p

′
1 = p1p2+q1

q2

(q2
1 + q2

2)3/2
−p2p1−q2

q1

(q2
1 + q2

2)3/2
= 0;

so it is indeed a conserved quantity. It remains to see that {H,M} = 0. The
Poisson bracket is given by the formula (11.14):

{H, M} =
∂H

∂q1

∂M

∂p1
− ∂H

∂p1

∂M

∂q1
+

∂H

∂q2

∂M

∂p2
− ∂H

∂p2

∂M

∂q2

=
q2

(q2
1 + q2

2)3/2
(−q1) − (p1)(p2) +

q1

(q2
1 + q2

2)3/2
(q2) − (p2)(−p1) = 0.

Liouville’s theorem thus applies to the solar system with planets of zero mass.

11.4 A precise statement of Kolmogorov’s theorem

As the KAM theorem mentions a “sufficiently small perturbation”, we need a
means of measuring the size of perturbations; in practice, this means choosing
a function space, or rather, choosing a norm ‖f‖ for our functions.

Kolmogorov saw that the proof of KAM is much simpler if one works
with real-analytic functions, and if one uses as norm their upper bound on
compact neighbourhoods of the origin in C

n and of R/Z in (C/Z)n. For one
thing, this yields a multitude of different norms, corresponding to different
neighborhoods, and when one solves a problem with data bounded on a certain
compact set, even if one is unable to bound the solutions on that set, one can
sometimes bound them on smaller compact sets.

There is another reason: looking at Box 7 on Newton’s method, one sees a
constant M which essentially measures a least upper bound (a sup) of second
derivatives. The evaluation of M is often difficult, and it is almost always the
main obstacle to applications of the theorem 5. But for analytic functions,
things are simpler: if an analytic function f is bounded on an open set U and
if V is relatively compact in U , then one can bound the second derivatives of
f on V in terms of supU |f |, thanks to Cauchy’s inequalities.

The important domains are

Bρ = {p ∈ C
n | |p| ≤ ρ}

Cρ = {q ∈ C
n/Zn | | Im(q)| ≤ ρ}

Aρ = Cρ ×Bρ = {(q,p) ∈ C
n/Zn × C

n | |p| ≤ ρ, | Im(q)| ≤ ρ}.

We shall denote by Bρ, Cρ,Aρ the Banach algebras of functions continuous
on these compact sets and analytic on the interiors, with sup-norm ‖f‖ρ.
The elements of Bρ can be expanded as power series, and those of Cρ can be
expanded as Fourier series

f(z) =
∑

k∈Zn

fke
2πik·z.
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We are finally in a position to give a rigorous statement of Kolmogorov’s
theorem.

Theorem 4. Let ρ, γ > 0 be two numbers, and let h(q,p) = h0(p) + h1(q,p)
be a Hamiltonian with h0 ∈ Bρ, h1 ∈ Aρ and ‖h0‖ρ ≤ 1. Let us write

h0(p) = a+ ω · p +
1
2
p · Cp + o(|p|2),

the expansion of order 2 of h0, with ω ∈ Ωγ and C symmetric and invertible.
Then for every ρ∗ < ρ, there exists ε > 0, depending on C and γ but not on the

remainder term o(|p|2), such that when ‖h1‖ρ < ε, there exists a symplectic
map Φ : Aρ∗ → Aρ such that, setting (q,p) = Φ(Q,P) and H = h ◦ Φ, we
have

H(Q,P) = A+ ω ·P +R(Q,P) (11.15)

with R(Q,P) ∈ O(|P|2).5

In particular, the torus P = 0 is invariant under the flow ∇σH , and on
this torus the flow φH is linear with direction ω.

11.5 Strategy of the proof

Equation (11.15) is an equation for a diffeomorphism Φ, which we have to
solve. Moreover, the solution should be symplectic, which adds the equation
Φ∗σ = σ. As is so often the case when solving a non-linear equation, this is
done using Newton’s method: we obtain Φ as a limit of symplectic diffeomor-
phisms Φi, each one calculated from the preceding one as the solution of a
linearized equation.

7. Newton’s method and Kantorovitch’s theorem.

Solving systems of non-linear equations is nearly always a difficult problem, espe-

cially when the number of unknowns becomes large, or even infinite as in Theorem

5 below. There are not many theoretical tools available, and even fewer practical

tools. In certain problems there are particular approaches that arise naturally,

but in general the first idea that comes to mind is to apply Newton’s method, or

one of its numerous variants; Kantorovitch’s theorem is just about the only result

5 O(|P|2) denotes the class of functions of the form |P|2O(1) where O(1) is a
function bounded in a neighbourhood of P = 0. (Likewise, in what follows o(|p|)
will denote the class of functions of the form |p|o(1) where o(1) will be a function
tending to 0 as p → 0.) As far as possible, we prefer to write R(Q,P) ∈ O(|P|2)
rather than R(Q,P) = O(|P|2) (except perhaps in some finite-order expansions)
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which guarantees us convergence. Newton’s algorithm for solving an equation
f(x) = 0 consists of choosing a point x0, and then defining

xi+1 = xi − [Df(xi)]
−1f(xi).

Of course, this makes sense only if [Df(xi)] is invertible; in finite dimensions, this
requires that the number of unknowns be the same as the number of equations.
Notice that the calculation of xi+1 starting from xi is the solution of a linear
equation; from the practical point of view, a computer trying to solve an equation
by Newton’s method spends most of its time solving linear equations.

Theorem 5 (Kantorovitch). Let E and F be Banach spaces, U ⊂ E be an
open set and f : U → F a map of class C1. Suppose that x0 ∈ U is a point
where [Df(x0)] : E → F is an isomorphism. Put h0 = −[Df(x0)]−1(f(x0)),
x1 = x0 + h0, and define the ball U0 = B‖h0‖(x1). Then if

1. U0 ⊂ U
2. ‖[Df(y1)] − [Df(y2)]‖ ≤ M for all y1, y2 ∈ U0, and
3. ‖f(x)‖ ‖[Df(x0)]−1‖2M ≤ 1

2
,

then the equation f(x) = 0 has a unique solution in U0, and Newton’s method
starting from x0 is defined for all i and converges to this solution. If moreover we
have ‖f(x)‖ ‖[Df(x0)]−1‖2M = k < 1

2
, then the method is “superconvergent”: if

we put

C =
1 − k

2(1 − 2k)
|[Df(x0)]−1‖M, xi+1 = xi+hi and hi+1 = −[Df(xi)]

−1f(xi),

then ‖hi+1‖ ≤ C‖hi‖2. “Superconvergence” corresponds to doubling the number
of correct digits at each iteration, which is quite different from geometric conver-
gence, which, though rapid, only adds a fixed number of significant figures at each
iteration.

For a proof, see [HH02].

A diffeomorphism is a complicated object and difficult to control. In practice,
we shall write

Φi = φi ◦ φi−1 ◦ · · · ◦ φ1, (11.16)

where each φi is the Hamiltonian flow φgi at time 1 for a certain “Hamiltonian”
function gi, which will be the unknown in our linearized problem. This has
two important advantages:

• the unknown gi is a (numerical) function, and functions are much easier
to handle than diffeomorphisms;

• the map φgi is automatically a diffeomorphism, and it is automatically
symplectic.

As in any construction based on successive approximations, the proof is by
recurrence: at the i-th step we have constructed a Hamiltonian h̃ = Φ∗

i h,
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which we expand up to order 2 in p, whose coefficients will be Fourier series
in q. More precisely, we shall write h̃ = h̃0 + h̃1, where

• h̃1 contains the terms that are constant or linear in p, except for the term
constant in q, and

• h̃0 is all the rest.

We would like to eliminate the term h̃1, but we shall not succeed in doing so in
one go, at least not by solving a linear equation. Instead, we shall suppose that
h̃1 is “of order εi”, a notion which needs to be defined. We shall solve a linear
equation for a function g such that φ∗g h̃ is “better” than h̃. We would like the
problem term (φ∗g h̃)1 to be of order εi+1 ∼ ε2i ; this would be the quadratic
convergence of Newton’s method. We shall not succeed: the “Newton method”
used is not quite the standard one, but we can still manage to make εi+1 small
enough to guarantee convergence.

We expand φ∗gh̃ to first order in g:

φ∗gh̃ = h̃+ {g, h̃}+ o(|g|) = h̃0 + h̃1 + {g, h̃0}+ {g, h̃1}+ o(|g|).

Our hope is to eliminate the terms which are not O(|p|)2, except the term
constant in q. In order to apply the standard Newton method, we would need
to solve the equation

h̃1 + {g, h̃0}+ {g, h̃1} ∈ o(|p|).

We shall attack this in a slightly different way: let us suppose that {g, h̃1} is
of order 2, since g and h̃1 are both small. We can declare anything we like to
be “small”; the problem is to know whether the inequalities obtained at the
end justify our choice. Thus the linear equation to be solved is

h̃1 + {g, h̃0} ∈ o(|p|). (11.17)

Equation (11.17) is a system of “Diophantine partial differential equations”.

11.5.1 Diophantine partial differential equations

Let g ∈ Cρ, namely a function of q ∈ C
n/Zn. The linear equation to be solved

for our “Newton method” is the equation

Df(ω) =
n∑

i=1

ωi
∂f

∂qi
= g, (11.18)

where the unknown f is an element of Cρ′ for a certain ρ′ < ρ.
This equation can be solved with the help of Fourier series if we set

f(q) =
∑

k∈Zn

fke
2πi k·q, g(q) =

∑

k∈Zn

gke
2πi k·q,
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then the solution of the problem is

fk =
1

2πi (k · ω)
gk· (11.19)

One sees immediately that for the problem to have a solution, it is necessary
that g0 = 0, and then f0 is arbitrary; except for this choice, the series giving
f is unique. The two properties are essential.

The formula (11.19) shows that the convergence properties of f depend on
the Diophantine properties of ω. If there exists an integer vector k �= 0 such
that k · ω = 0, then the Fourier series for f simply does not exist, because
we have divided by zero to find the coefficients. The k · ω are the fearsome
small divisors, and when they are too small, they prevent the series for f
from converging. Our Diophantine condition is sufficient to guarantee that
such horrors do not occur, and even that the series for f also converges in the
interior of the same domain Cρ on which g is defined. But this does not give
that f is bounded on Cρ, so f does not belong to Cρ. We shall have to be
satisfied with ‖f‖ρ′ for ρ′ < ρ.

We have to solve an equation of this type at each step of Newton’s method,
and must therefore take an infinite number of radii ρ = ρ0 > ρ1 > ρ2 . . . . The
ρi need to be chosen with care, large enough that the domain of definition of
the limit is non-empty, but small enough to guarantee convergence. The tool
we use for this is the following statement.

Proposition 1. If g ∈ Cρ and ω ∈ Ωγ , then for δ satisfying 0 < δ < ρ we
have

‖f‖ρ−δ ≤
κn
γδ2n

‖g‖ρ and ‖Df‖ρ−δ ≤
κn

γδ2n+1
‖g‖ρ,

where κn is a constant depending only on n.

11.5.2 The essential construction of the proof

Let us return to the (11.17):

h1 + {g, h0} ∈ O(|p|2),

where we have eliminated the tildes and replaced o(|p|) by O(|p|2), which is
apparently stronger, but is in fact equivalent because we are working with
analytic functions. The unknown in this equation is g, which we may take to
be of degree 1 in p:

g = λ q +X(q) +
n∑

i=1

Yi(q)pi; (11.20)

indeed, only the linear terms of g can contribute to the linear terms of {g, h0}.
The new unknowns are thus λ,X and Yi; let us note that X and Yi are
functions of q only, and can therefore be expanded as Fourier series.
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We write

h0(q,p) = a+ ω p +
1
2
p · C(q)p +R(q,p)

with a ∈ R, ω ∈ Ωγ , and R(q,p) ∈ O(|p|3)
h1(q,p) = A(q) +B(q) p with A = 0,

(11.21)

where A is the average of A on the torus p = 0, which is already written in a.
If we substitute the expression (11.20) for g into h1 + {g, h0}, we find

(h1 + {g, h0})(q,p) = ω · λ+A(q) +DX(q)(ω)

+
(
B(q) +

(
λ+DX(q)

)
C(q) + ωDY (q)

)
· p + O(|p|2).

It therefore comes down to solving the equations

DX(q)(ω) = −A(q) (11.22)

DY (q)(ω) = −B(q)−
(
λ+DX(q)

)
C(q). (11.23)

(11.24)

for X and Yi, i = 1, . . . n.
These are equations of the form (11.18), which we know how to solve. The

hypothesis A = 0 ensures that we can solve (11.22) and find X ∈ Cρ′ for all
ρ′ < ρ. Once this has been found, we substitute it into the (11.23). The vector
λ is then determined by the condition that the averages of the right-hand
sides in the n (11.23) are all zero. With this λ, we can solve the (11.23) and
find Yi ∈ Cρ′′ for all ρ′′ < ρ′.

For us to be able to repeat the operation, ρ′ and ρ′′ need to be chosen with
care. We refer to [HI02] for the details.
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12.1 General dynamical systems

Assume that (X, T , μ) is a probability space. By a dynamical system we
understand in this paper a group or a semi-group of measure-preserving trans-
formations T t : X → X with the invariant measure μ, such that the map
(x, t) → T tx is measurable. If t ∈ N or Z, one deals with a discrete time
dynamical system. The generator corresponding to t = 1 is called an auto-
morphism if T is invertible and an endomorphism if it is not. If t ∈ R or R

+,
then {T t} is a continuous time dynamical system which is called a flow or a
semi-flow, respectively.

One of the most popular examples of a dynamical system is a Hamiltonian
flow when X is a symplectic manifold and μ is the Liouville measure.

Two dynamical systems (X, T , μ, (T t)) and (Y,S, ν, (St)) are (metrically)
isomorphic if there exist zero measure subsets N1 ⊂ X , N2 ⊂ Y and an
isomorphism φ of measure spaces φ : X \N1 → Y \N2 such that ∀t, φ ◦ T t ◦
φ−1 = St.

12.1.1 Bernoulli shifts

An important example of a discrete time dynamical system is provided by a
Bernoulli shift. Consider an infinite sequence of independent Bernoulli trials
with outcomes 0 and 1, and with probabilities of outcomes P (0) = 1 − p
and P (1) = p. The probability space X is the space of binary sequences
{0, 1}Z with the product measure μ = P⊗Z. The transformation S : X → X
which translates a sequence (en) ∈ X by one unit to the left S(en) = (e′n),
where e′n = en+1, is called the left shift, or simply the shift in X . The triplet
(X,μ, {Sn}n∈Z) is called the Bernoulli shift. More general Bernoulli shifts are
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obtained when one considers Bernoulli trials with outcomes in an arbitrary
probability space.

Two Bernoulli shifts with spaces of outcomes of different cardinalities
may nevertheless be isomorphic. (See a famous example due to Meshalkin
in [CFS82], Chap. 8, no 1, p. 181.)

12.1.2 Spectral properties of dynamical systems

With every dynamical system {T t} one can relate the adjoint group or semi-
group {U t} which acts on the space of measurable functions: U tf(x) = f(T tx).
Elements of the semigroup {U t} are unitary operators of the space L2(X,μ).
Adjoint semigroups of isomorphic dynamical systems are conjugate and there-
fore have the same spectral properties. Until 1958, basic invariants of dynam-
ical systems came from the spectral theory.

12.2 Kolmogorov’s paper on entropy

Kolmogorov’s paper [Kol58] which introduced the notion of entropy of a
dynamical system appeared in 1958. There are all reasons to believe that
it can be considered as a starting point of the important theory which is
now called deterministic chaos. Before [Kol58] the main method of study
of dynamical systems was the spectral one. This was the influence of the
paper by von Neumann [vonN32] where he gave a complete metrical clas-
sification of dynamical systems with pure point spectrum3. Quite soon after
[vonN32] the problem of isomorphism of two different Bernoulli shifts emerged
and became very popular. Several leading Soviet mathematicians including
Pontryagin tried without any success to attack it. On the other hand the
spectral theory of dynamical systems had some success. Kolmogorov himself
understood quite well spectral properties of dynamical systems generated by
Gaussian stationary processes. This case provides many examples of systems
with singular spectra. The complete theory was developed in the works of
Fomin [Fom50], Girsanov [Gir58], and Maruyama [Mar49]. At the same time
new examples of systems with countable (multiplicity) Lebesgue spectrum4

started to appear. It was a sensational discovery by Gelfand and Fomin that
3 A dynamical system is said to have a pure point spectrum if the eigenvectors of

operators U t (adjoint group) span a dense linear subspace of L2(X, T , μ). Recall,
more generally, that the spectrum of an operator A is the set of values λ such that
A − λId is not invertible, and that its point spectrum (the set of its eigenvalues)
is the set of values λ such that A−λId is not injective. The part of the spectrum,
which is not pure point is said continuous spectrum, and it is decomposed (via
the Lebesgue decomposition theorem) into absolutely continuous spectrum and
singular spectrum

4 That means essentially that the associated unitary operator U t is a shift of count-
able multiplicity. See the precise definition in Appendix 2 of [CFS82]
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the geodesic flows on compact manifolds of constant negative curvature have
countable Lebesgue spectrum. Their proof [GF52] used methods from the
representation theory. However there was no understanding why this type of
spectrum was so abundant.

In spite of being a probabilist Kolmogorov always stressed the importance
of study of mixing5 in classical dynamical systems, i.e. systems generated by
ODEs and PDEs (as opposed to probabilistic systems, generated by stochastic
processes). This can be already seen in his famous talk at the Amsterdam
Mathematical Congress [Kol54a]. Probably the main motivation came from
the turbulence theory where Kolmogorov already had classical results (see
[Kol41a], [Kol41b], [Kol42]). But at that time it was not clear at all what are
the mechanisms of mixing in classical dynamical systems and whether they are
the same as in the probability theory. In [Kol58] Kolmogorov was motivated
by his intention to provide a general metrical invariant of dynamical system
which would allow to distinguish these two types of systems. For this purpose
he proposed the concept of entropy of a dynamical system.

Today the common definition of the entropy of a dynamical system
(X, T , μ, (T n)) is done in three steps. If τ = {A1, . . . , An} is a finite measur-
able partition of X , its entropy is H(τ) = −

∑n
j=1 μ(Aj) lnμ(Aj) (of course

x lnx = 0 if x = 0). If τ ′ = {A′
1, . . . , A

′
m} is another finite measurable par-

tition of X , let us denote by τ ∨ τ ′ the partition generated by τ and τ ′ (i.e.
the partition defined by the intersections Ai ∩A′

j). The entropy of the couple
(T, τ) is the limit

h(T, τ) = lim
N→∞

1
N
H(τ ∨ Tτ ∨ · · · ∨ TN−1τ).

Finally, the entropy of the transformation T is h(T ) = supτ h(T, τ), with the
supremum taken over the set of finite measurable partitions of X . It is obvious
that the entropy is a metric invariant of dynamical systems.

Initially it was believed that for probabilistic dynamical systems the en-
tropy can be positive while for classical dynamical systems it should be
zero. It is not hard to see that the entropy of the Bernoulli shift with the
outcomes in E = {a1, . . . , an} and with the probability law P (ai) = pi is
h = −

∑n
i=1 pi ln pi. The invariant proposed by Kolmogorov showed that two

Bernoulli shifts with different values of entropy are non-isomorphic which was
a great success in the theory of isomorphism of dynamical systems. The com-
plete solution of the isomorphism problem of Bernoulli shifts was given by
Ornstein in [Orn70] (see also [Orn74]): two Bernoulli shifts are isomorphic if
and only if they have the same entropy.

After the paper [Kol58] appeared Rokhlin proposed to compute the en-
tropy of a linear automorphism of the torus. According to the explained above
point of view one of us (Ya. G. S.) tried to prove that it is zero. When the

5 A dynamical system is mixing if for each pair of measurable subsets A, B,
μ(T−tA ∩ B) → μ(A)μ(B) as t → ∞
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corresponding drawings were shown to Kolmogorov he immediately realized
that the entropy should be positive. After that it was not so difficult to get the
final result (see [Sin59]). Now the expression for entropy follows from a much
more general statement (see [Sin66]), but at that time any new example of a
classical dynamical system with positive entropy appeared as a big surprise.

12.3 The notion of hyperbolicity

All the examples suggested that the positivity of entropy of a classical dy-
namical system was connected with the existence of invariant foliations which
initially were called expanding and contracting (see [Sin66]). Later, following
Smale, people started to call them unstable and stable foliations. Anosov in
[Ano67] introduced a class of dynamical systems which now bear his name.
He proved that Anosov systems are topologically stable and are ergodic6 if
they have an absolutely continuous invariant measure. The geodesic flows on
compact manifolds of negative curvature are the main examples of Anosov
flows. Anosov’s results provided a far going generalization of Hopf’s results:
indeed, in [Hop39], [Hop40] Hopf had proved the ergodicity of the geodesic
flows on n-dimensional manifolds of constant negative curvature with n > 2.
For n = 2 Hopf proved ergodicity for the case of variable negative curvature.

During the same years Smale worked on various problems in the topological
theory of dynamical systems (see [Sma67]). In particular, he considered prob-
lems of structural stability and topological classification of multi-dimensional
dynamical systems.

One of the outcomes of Anosov’s and Smale’s works was the notion of
hyperbolicity of a dynamical system and a general statement that hyperbolic
dynamical systems have stable and unstable foliations. If they preserve an ab-
solutely continuous invariant measure then they are ergodic, have positive en-
tropy and, under some additional assumptions, countable Lebesgue spectrum.
The corresponding theory covered the majority of examples of smooth (i.e.
sufficiently regular) dynamical systems with positive entropy and explained
the appearance of this type of spectrum.

We shall give the definition of what is called now a uniformly hyperbolic
(or Anosov) diffeomorphism.

Let M be a compact smooth manifold. The class of smoothness plays
no role. By this reason we assume that M is C∞ and consider a C∞-
diffeomorphism T of M .

Definition 1. T is called a uniformly hyperbolic (or Anosov) map if the
tangent bundle T (M) can be decomposed onto two sub-bundles T (s)(M),
T (u)(M), i.e. T (M) = T (s)(M) ⊕ T (u)(M) so that both T (s)(M), T (u)(M)

6 A dynamical system is ergodic if each of its measurable invariant subsets differs
from the empty set or the entire space X by a set of zero measure
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are invariant under the tangent map dT and for some constants C < ∞,
λ < 1 and all n > 0

‖dT ne‖ ≤ Cλn‖e‖, e ∈ T (s)(M), (12.1)

‖dT−ne‖ ≤ Cλn‖e‖, e ∈ T (u)(M). (12.2)

It follows from the invariance of T (s)(M), T (u)(M) that dT ne ∈ T (s)
Tnx(M) if

e ∈ T (s)
x (M), and dT−n ∈ T (u)

T−nx(M) if e ∈ T (u)
x (M). It is also important

that at each point x ∈ M the subspaces T (s)
x (M), T (u)

x (M) are transversal
to each other. Conditions (12.1) and (12.2) are called conditions of uniform
hyperbolicity. The term uniform reflects the fact that the numbers C and
λ, as well as the estimate from below of the distance between T (s)

x (M) and
T (u)
x (M), do not depend on x. Similar conditions can hold along individual

trajectories which in this case are called hyperbolic (see [Pes77]). Analogous
definitions can be given for continuous time.

The number of examples of uniformly hyperbolic or Anosov systems is not
so big. According to hypothesis by Smale each uniformly hyperbolic map is
topologically isomorphic to an automorphism of a nil-manifold7 or its finite
covering. In the case of continuous time the main examples of Anosov systems
are the geodesic flows on manifolds of negative curvature.

12.4 Lorenz system

Frequently, in applications, some of the conditions of hyperbolicity are vio-
lated. If we take billiard systems inside domains with strictly concave bound-
aries then these dynamical systems are discontinuous but almost every tra-
jectory is uniformly hyperbolic. Discontinuity makes the whole theory much
more complicated (see [Szá00]).

An interesting theory is connected with the so-called Lorenz system

dx

dt
= −σ(x − y),

dy

dt
= −xz + rx − y, (12.3)

dz

dt
= xy − bz,

which was proposed by Lorenz in 1962 (see [Lor63]). In (12.3) σ, r, b are
numerical coefficients. Paper [Lor63] became popular only in the middle of
seventies and is considered as another corner-stone of chaos theory. It gave
a remarkable example of a strange attractor. The concept of such attractors
was proposed by Ruelle and Takens in [RT71] and has spread also among
physicists.
7 Compact quotient space of a simply connected nilpotent Lie group by a discrete

subgroup
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The theories explaining the behavior of trajectories in (12.3) were proposed
by Guckenheimer and Williams (see [GW79]) and by Afraimovich, Bykov,
Shilnikov (see [ABS77]). Only recently Tucker [Tuc99] gave a computer-
assisted proof of the fact that for some domain of parameters σ, r, b Lorenz
system yields a hyperbolic discontinuous map.

12.5 Hyperbolicity in one-dimensional systems

We shall discuss below another way of weakening the condition of uniform hy-
perbolicity. Let us start from the one-dimensional dynamics. The analogue of
the uniform hyperbolicity is the condition of uniform expansion. It is realized
for maps Tx = {f(x)} with |f ′(x)| ≥ Λ > 1 for 0 ≤ x ≤ 1. Here {y} denotes
the fractional part of y. Under a simplifying assumption {f(0)} = {f(1)} = 0
and f ∈ C2([0, 1]) Rényi proved in [Rén57] that such maps have an absolutely
continuous invariant measure which is a manifestation of strong statistical
properties.

Expandings are always discontinuous (in a compact space). Soon after
[Rén57] several attempts were made to prove the existence of an absolutely
continuous invariant measure for smooth maps Tx = {f(x)}. The most pop-
ular example is the family of parabolic maps Tα where fα(x) = αx(1 − x),
0 ≤ α ≤ 4: in this case {fα(x)} = fα(x) thus Tα = fα is smooth. The value
α = 4 was considered by von Neumann and Ulam. They proved in [UV47]
that an absolutely continuous invariant measure for f4 exists and its density
has the form 1/(π

√
x(1 − x)). The next step was done by Ruelle in [Rue77]

where he found the value α ∈ [0, 4] satisfying (α− 2)2(α+ 2) = 16, for which
the trajectory of the critical point x = 1/2 is eventually periodic and proved
that in this case the map also has an absolutely continuous invariant measure.
Similar result for the family gα(x) = α sin 2πx was proven by Bunimovich in
[Bun70]. Later these results were generalized by Misiurewicz (see [Mis81]) and
Ognev (see [Ogn81]). A great breakthrough was made by Jakobson in [Jak81].
He proved that the set of values of α for which Tα possesses an absolutely
continuous invariant measure has positive Lebesgue measure. Later studies
showed that each value of α considered earlier by Ruelle, Misiurewicz and
Ognev is a density point of this set8. Recent progress in works by Graczyk,
Lyubich, Świa̧tek and many others provides practically complete understand-
ing of the dynamics of the quadratic family fα. In particular, for almost every
α in the interval [0, 4] fα has an invariant measure which is either absolutely
continuous, or is concentrated on an orbit of an attractive periodic point.
Survey [GS99] contains extensive references and we refer the reader to it.

In the one-dimensional case the hyperbolicity of an individual trajectory
means that the product of derivatives along this trajectory grows exponen-
tially. Collet and Eckmann in [CE83] gave a formal definition of this property.
8 That is a point at which the density (in the sense of Lebesgue measure) of this

set is 1
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Definition 2. Let f be a C1-transformation of the unit interval [0, 1]. The
forward trajectory of a point x ∈ [0, 1] is hyperbolic if for some C > 0, Λ > 1

∣∣∣∣

(
d

dx
fn

)
(x)

∣∣∣∣ ≥ CΛ
n, n = 1, 2, . . . . (12.4)

The map f is called unimodal, if it has exactly one point c ∈ (0, 1) such that
f ′(c) = 0 and f is strictly increasing on one of the sub-intervals [0, c), (c, 1]
and is strictly decreasing on the other. Collet and Eckmann proved that a
unimodal map f whose critical point c satisfies the condition

∣∣∣∣

(
d

dx
fn

)
(f(c))

∣∣∣∣ ≥ CΛ
n, n = 1, 2, . . . , (12.5)

possesses an absolutely invariant continuous measure. Condition (12.5) is
called the Collet-Eckmann condition. It means that the trajectory of the crit-
ical value f(c) is forward hyperbolic.9

It is possible to show that if the critical point satisfies Collet-Eckmann
condition, then the forward trajectory of almost every point is hyperbolic.
However, the constant C in (12.4) may depend on the initial point and the
hyperbolicity is not uniform.

Clearly, exponential growth in (12.5) is impossible if a trajectory goes
through a critical point c where the derivative is zero. Jakobson in [Jak81]
proved that if the trajectory of the critical point during the dynamics does not
come too close to itself then an absolutely continuous invariant measure exists.
In another statement he showed that the set of α for which this condition holds
for quadratic family fα introduced above has positive Lebesgue measure.

In [Jak81] Jakobson proved the non-uniform hyperbolicity of maps fα for
some parameters α using the method of parameter exclusion. In this method
one begins by verifying that the trajectory of the critical value fα(c) is hy-
perbolic for finite number of iterates n = 1, 2, . . . , N = N0 and initial interval
Δ0 of parameters. Then N is increased to N1 > N0 and those parameters
from Δ0 for which the hyperbolicity conditions are violated for any n ≤ N1

are excluded from consideration and thus new set Δ1 ⊂ Δ0 is constructed.
The same procedure is applied to N1, Δ1 and we obtain a new pair N2 > N1,
Δ2 ⊂ Δ1, and so on. Parameters in the set Δ = ∩Δk specify non-uniformly
hyperbolic maps for which Collet-Eckmann condition is fulfilled. Jakobson has
shown that Δ has positive Lebesgue measure.

There were several proofs of Jakobson’s theorem. Especially we would like
to mention the proof by Benedicks and Carleson [BC85], because the authors
used later the main ideas of their proof for the two-dimensional case. The
proof in [BC85], as in [Jak81], also uses the method of parameter exclusion.
9 In addition to unimodality Collet and Eckmann in [CE83] used some technical

assumptions about f . Later it was shown by Nowicki and van Strien in [NV88] and
by Kozlovski in [Koz00] how these additional assumptions can be removed and
the existence proof of absolutely continuous invariant measure can be extended
to maps with finitely many non-flat critical points
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12.6 Two-dimensional systems

In [BC91] Benedicks and Carleson considered Hénon map of the two-dimensional
plane

T (x, y) = (1− ax2 − y, bx)

which depends on two real parameters a and b. This map was introduced by
Hénon in 1976 (see [Hén76]). Computer simulations indicated T may possess
a strange attractor similar to Lorenz attractor mentioned above, that for
a ≈ 1.4, b ≈ 0.3. Benedicks and Carleson proved that for a set of parameters a,
b of positive Lebesgue measure T possesses a strange attractor which contains
a dense hyperbolic trajectory. Later several authors (Mora and Viana [MV93],
Wang and Young [WY01]) proved that for the same set of parameters the
restriction of T to this attractor is a non-uniform hyperbolic system with
strong statistical properties. They also showed the existence of such attractors
in more general families of maps, which include Hénon map as a particular
case.

In non-uniformly hyperbolic cases stable and unstable tangent sub-spaces
T (s)
x (M), T (u)

x (M) can exist only for some points x ∈ M and the constants
C, λ in (12.1), (12.2) may depend on x. The distance between T (s)

x (M) and
T (u)
x (M) may be also arbitrarily small. Furthermore, for some points T (s)

x (M)
and T (u)

x (M) have common directions, along which there is no expansion
under both forward and backwards iterates of T . For two-dimensional systems,
such as Hénon map, stable and unstable directions at such points coincide and
leaves of stable and unstable foliations are tangent to each other. We shall call
these tangency points as critical points of Hénon map, because they play a role
similar to the role of critical points of one-dimensional maps. Benedicks and
Carleson related the existence of the attractor to the hyperbolic behaviour of
this set of critical points which must satisfy conditions similar to the Collet-
Eckmann conditions (12.5).

Existence proofs for attractors of Hénon type are intrinsically difficult due
to the fact that exact locations of critical points are unknown until the attrac-
tor, whose entire existence depends on the hyperbolic behaviour of trajectories
of critical points, is constructed. The proof is also complicated because after
the construction of the attractor is finished the set of critical points turns out
to be uncountable.

Benedicks and Carleson overcame the difficulties mentioned above with
the help of the method of parameter exclusion which in some sense is close to
the method used by Jakobson for one-dimensional maps.

When b = 0 the transformation T maps the entire plane to the x-axis and
its restriction to the x-axis after suitable change of coordinates is given by the
quadratic map fα. In particular, (a, b) = (2, 0) corresponds to fα with α = 4
which is a hyperbolic map. Benedicks and Carleson consider maps with small
b, a ≤ 2 and close to 2. The smallness of b implies the strong contraction
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by T in the y-direction. Thus for small values of parameter b trajectories of
T have the same hyperbolic properties as the corresponding trajectories of
fα for long intervals of time. Even though actual positions of critical points
of Hénon map are not known they can be approximated by the orbit of the
critical point c of the corresponding one-dimensional map.

Let Ω0 be an invariant domain of T , containing point (c, 0). Such a domain
always exists for small values of b. For n ≥ 1 put Ωn = T nΩ0. Denote by
C0 a small neighborhood in Ω0 of (c, 0). For small values of b the set C0
serves as the initial approximation to the set C of genuine critical point, which
is yet unknown. If fα satisfies the Collet-Eckmann condition one can use
(12.5) to establish the hyperbolicity of an initial segment of the trajectory of
C0 for an open set Δ0 of parameters a, b. This in turn allows to refine the
approximation to C and to construct a smaller set C1 ⊂ C0 ∩ Ω1; by further
exclusion of parameters from the set Δ0 it is possible to extend the initial
segment of the trajectory of C1 with the hyperbolic behaviour. The remaining
set of parameters is denoted Δ1 and the entire process is repeated for the
pair C1, Δ1. And so on. We obtain decreasing sequences of sets Ωn, Cn and
Δn, n = 1, 2, . . . . Sets Ωn converge to Hénon attractor Ω = ∩Ωn. The set
Δ = ∩Δn has positive Lebesgue measure and for (a, b) ∈ Δ the critical set
C = ∩Cn is well defined. The set C is a zero-measure set containing points of
the attractor Ω whose trajectories are forward hyperbolic and where stable
and unstable directions coincide.

Note that all known proofs by the method of the parameter exclusion
require b to be very small and the existence of Hénon attractor for parame-
ters a ≈ 1.4, b ≈ 0.3, considered by Hénon, is not proven. The existence of
the Hénon attractor for the conservative Hénon maps (i.e.10 b = 1) is also
unknown.

12.7 Conservative systems

The problem of establishing non-uniform hyperbolicity for conservative dy-
namical systems presents additional difficulties. As an example consider a
transformation of the two-dimensional torus

T (φ, z) = (φ′, z′), z′ = z + kV (φ), φ′ = φ+ z′ (mod 1),

where V (φ) is a smooth function on the unit circle. T is the standard map
with parameter k. Case V (φ) = 1/(2π) sin 2πφ was considered by Chirikov
in [Chi79]. It preserves the Lebesgue measure. We shall assume that V has
finitely many critical points on the unit circle, and all these points are non-
degenerate.

When k = 0 the two-dimensional torus is partitioned onto invariant in-
variant circles z = const, and the restriction of T to each circle acts as a
rotation by z. According to the Kolmogorov-Arnold-Moser theory most of the
invariant circles persist for small values of k and the restriction of T to each
10 The Jacobian of T is b
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circle is conjugated to a rotation by an irrational angle (see [Kol54b], [Mos62],
[Arn63]). As k increases, the area filled by invariant circles decreases. When
k exceeds a critical value kc there are no invariant curves whose projection
onto the z-axis is the whole interval [0, 1). The remains of the invariant circles
for k > kc are described by the Aubry-Mather theory (see [Per79], [AL83],
[Mat84]). They form invariant Cantor sets - cantori, on which the action of T
is still conjugate to a rotation.

When k is large the domain of T may be partitioned in two regions. One
region, whose area is close to 1, is the hyperbolic region H. The restriction
of T to H has strong hyperbolic properties. In order to describe them it is
convenient to make a linear change of coordinates (φ, z) = (x, x−y) (mod 1).
Then T takes the form

T (x, y) = (2x+ kV (x) − y, x) (mod 1).

For large values of k the transformation T expands in x-direction and its
inverse expands in y-direction. The remaining part S consists of several strips.
Each strip in S corresponds to a critical point of function V and the restriction
of T to it resembles Hénon map. The set S is in some sense an a priori
approximation to the set of critical points C of T . It is expected that just
as for the one-dimensional quadratic family, and for Hénon map, T is non-
uniformly hyperbolic for a set of parameters of positive measure.

The preservation of the area brings additional features in the description of
the critical set. It also presents new technical difficulties in the proof of non-
uniform hyperbolicity by parameter elimination. On the other hand it also
allows to conjecture the existence of leaves of invariant stable and unstable
foliations for T for almost every point of the torus. Tangency points of these
foliations are the critical points of T . As in case for Hénon map they are not
known in advance and have to be constructed together with the invariant
foliations by successive approximations. Consider the partition ξ0 of the torus
onto the circles y = const and put ξn = T nξ0 for n = 1, 2 . . . . For the partition
η0 onto the circles x = const put ηn = T−nη0, n = 1, 2 . . . . If k is such that
T is non-uniformly hyperbolic it is natural to expect that the partitions ηn,
ξn converge as n → ∞ to invariant stable and unstable foliations ξ(s), ξ(u),
respectively. Tangency points of ηn and ξn converge to tangency points of ξ(s)

and ξ(u).
Similar to the set C0 for Hénon maps, the critical region S produces tan-

gency points of stable and unstable foliations. In fact, tangency points of the
first order form continuous curves. When images of these curves visit S again
there appear points of second order of tangency of elements of approximating
partitions ηn and ξn. Points of second order of tangency persist under small
parameter perturbations. Points of higher order of tangency are non-generic,
after a small perturbation of parameter they split into finitely many tangency
points of the second order. Thus in the measure-preserving case the role of
critical points is played by the points of the second order of tangency.
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The trajectory of each point can be decomposed into “hyperbolic seg-
ments” between two consecutive visits to S. On any such segment the images
of the point remain inH where T has strong hyperbolic properties. After a visit
to S the expanding direction may turn and become a contracting direction,
which results in some loss of the hyperbolicity along the trajectory of a point
of tangency. Furthermore, each visit to S of a tangency point of the second
order to creates additional tangency points of the second order surrounding
the original tangency point. The frequency of returns to S must be controlled
in order to control the structure of the foliations ξn and ηn in the vicinity
of tangency points. For Hénon map the rate of return of approximations to
critical points to the critical region was controlled by making parameter b
small. For standard maps the entire hierarchical structure of foliations after
multiple visits to S has to be described.

An additional difficulty in the process of parameter elimination is presented
by the rapid growth of the number of tangency points of the second order in
approximations Cn. In both cases of Hénon map and the standard map the
number of tangency points in Cn grows exponentially in n. For the standard
map the base of the exponent is proportional to k whereas for Hénon map it
can be made as close to 1 as necessary by choosing b sufficiently small.

12.8 Conclusion

Kolmogorov believed and stressed it several times that general measure-
preserving dynamical systems are mixtures of quasi-periodic motions and mo-
tions with positive entropy. We are still very far from elucidating the situation.
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[Hop40] Hopf, E.: Statistik der Lösungen geodätischer Probleme vom unstabilen
Typus. II. Math. Ann., 117, 590–608 (1940)

[Jak81] Jakobson, M.V.: Absolutely continuous invariant measures for one-
parameter families of one-dimensional maps. Comm. Math. Phys., 81,
39–88 (1981)

[Kol41a] Kolmogorov, A.N.: The local structure of turbulence in incompressible
viscous fluid for very large Reynold’s numbers. C. R. (Doklady) Acad.
Sci. URSS (N.S.), 30, 301–305 (1941)

[Kol41b] Kolmogorov, A.N.: Dissipation of energy in the locally isotropic turbu-
lence. C. R. (Doklady) Acad. Sci. URSS (N.S.), 32, 16–18 (1941)

[Kol42] Kolmogorov, A.N.: Equations of turbulent motion of an incompressible
fluid. Bull. Acad. Sci. URSS. Ser. Phys. [Izvestia Akad. Nauk SSSR], 6,
56–58 (1942)
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13.1 Hilbert’s 13th problem

In the year 1900, in his famous lecture in Paris, Hilbert presented twenty-
three problems which he considered as a challenge for future generations of
mathematicians [Hil00]. As we know today, many of these problems actually
attracted considerable attention and some of them even led to important
developments in mathematics (see [Gra00] for a recent discussion). The 13th

problem is concerned with algebraic equations

anx
n + an−1x

n−1 + ...+ a1x+ a0 = 0

and it is entitled “Impossibility of the solution of the general equation of the
7-th degree by means of functions of only two arguments”. Hilbert presented
his question in terms of nomography (the theory of nomograms, which are
graphical presentations of continuous functions depending on several argu-
ments for computational purposes), a field which is almost forgotten as a
mathematical discipline today but which was popular at the time of Hilbert’s
talk (the success of this discipline was very much due to Maurice d’Ocagne
[d’Oc99]). It is easy to see that nomograms can be employed in order to com-
pute values of functions which depend only on two variables. By iterating such
calculations one can obviously evaluate functions which can be represented as
superpositions of functions of at most two variables. Given nomograms for
the corresponding solution functions the described method allows to compute
the solutions of algebraic equations up to degree six. This is because Tschirn-
hausen Transformations allow to bring the general equations of degree five to
seven into the following normal forms [Hil27]:

x5 + ax+ 1 = 0,
x6 + ax2 + bx+ 1 = 0,
x7 + ax3 + bx2 + cx+ 1 = 0.
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The Tschirnhausen Transformations themselves can be represented by su-
perpositions of addition and functions which depend only on one variable.
Moreover, it is known that the solutions of algebraic equations are given, at
least locally, by continuous functions of their coefficients (although they are
not given by globally defined continuous functions). Hence, locally the solu-
tions of the equations of degree five, six and seven above can be considered
as continuous functions depending on a, (a, b) and (a, b, c), respectively, and
the equation of degree seven is the one of lowest degree for which it is not
obvious whether its solutions can be obtained by superpositions of continuous
functions of only two variables and it was Hilbert’s conjecture that this is not
possible in general.1

Behind this specific problem of solving the general septic equation, there
is the more general question whether addition is the only function which
inherently depends on two variables. It is a basic observation that at least
any arithmetic operation can be represented by superpositions of functions of
only one variable and addition:

a− b = a+ (−b),

a · b =
1
4
(
(a+ b)2 − (a− b)2

)
,

a

b
= a · 1

b
.

For short, let us say in the following that addition is universal for a class F of
real-valued functions, if any function f ∈ F in this class can be represented
by a finite number of superpositions of addition and functions in F which
do only depend on one variable. In general, by a superposition of functions
we mean a substitution of these functions and projections. For instance, the
function h : R

3 → R, defined by

h(x, y, z) := g(x, f(z, y))

is defined as a superposition of g : R
2 → R and f : R

2 → R. Especially,
our consideration above shows that addition is universal for the class F of
arithmetic operations (depending on one or more variables). In contrast to
this, addition is not universal for the class of analytic functions as Hilbert
already pointed out in his description of his 13th problem [Hil00] (see also the
example of Ostrowski’s function mentioned in [Hil27].) In particular a positive
solution of Hilbert’s conjecture about the impossibility of the solution of the
general septic equation would imply that addition is not universal for the class
of continuous functions (say, on the unit interval [0, 1]). It were Arnol’d and
Kolmogorov who disproved this conjecture in 1957 by showing that addition
1 It is worth noticing that Maurice d’Ocagne showed in [d’Oc00] that the septic

equation can be solved with the help of nomograms. This does not solve the
conjecture but it relativizes its original motivation. Hilbert added a remark men-
tioning this result in a later publication of his talk [Hil01]
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is universal for the class of continuous functions and finally Kolmogorov even
provided a strong normal form for the corresponding superpositions. General
presentations of Hilbert’s 13th problem and Kolmogorov’s Superposition The-
orem can be found in [Vit69, Lor76, Kah82], algebraic aspects of Hilbert’s
13th problem are discussed in [Dix93].

13.2 Kolmogorov’s Superposition Theorem

In a series of papers Kolmogorov and his student Arnol’d studied representa-
tions of continuous functions by superpositions of continuous functions with
a smaller number of variables. While Kolmogorov’s results in [Kol56] already
imply that any continuous function depending on several variables can be ob-
tained as a superposition of continuous functions of only three variables, it was
Arnol’d’s result [Arn57] which finally refuted Hilbert’s conjecture and showed
that addition is universal for continuous functions (on the unit interval). In
the same issue of the same journal Kolmogorov presented the following nor-
mal form for such a superposition [Kol57]: for every integer n ≥ 2 there exist
continuous functions ϕpq : [0, 1] → R such that every continuous function
f : [0, 1]n → R is representable in the form

f(x1, ..., xn) =
2n+1∑

q=1

gq

(
n∑

p=1

ϕpq(xp)

)
,

where the functions gq : R → R are continuous. Instead of a detailed proof
Kolmogorov presented a brief sketch of a direct construction which is elemen-
tary in the sense that it does not employ any advanced tools.

By refining this construction Sprecher proved in 1963 that the functions
ϕpq can be represented as ϕpq(x) = λpϕq(x) with certain constants 0 < λp ≤ 1
and continuous functions ϕq : [0, 1] → R (see [Spr65]). Additionally, Lorentz
proved that the functions gq can be chosen all the same [Lor66]. Combin-
ing all these normal forms we arrive at our final version of the Kolmogorov
Superposition Theorem (which, more appropriately, might also be called the
Kolmogorov-Lorentz-Sprecher Theorem):

Theorem 1 (Kolmogorov’s Superposition Theorem). For each n ≥ 2
there exist continuous functions ϕq : [0, 1] → R, q = 0, ..., 2n and positive
constants λp ∈ R, p = 1, ..., n such that the following holds true: for each
continuous function f : [0, 1]n → R there exists a continuous function g :
[0, 1]→ R such that

f(x1, ..., xn) =
2n∑

q=0

g

(
n∑

p=1

λpϕq(xp)

)
.
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It is worth noticing that the functions ϕq and the constants λp are independent
from the represented function f and do only depend on the dimension n. More
than stated, one can choose λp > 0 such that

∑n
p=1 λp ≤ 1. Typically, the

construction is done by choosing some rationally independent constants λp
(which are constants such that

∑n
p=1 rpλp = 0 with rational rp implies rp = 0

for all p = 1, ..., n). Moreover, the functions ϕq can be chosen to be Lipschitz
continuous of a certain order but they cannot be continuously differentiable
in general (see [LGM96]).

Much of the work following Kolmogorov’s original construction was de-
voted to the question what kind of smoothness conditions could be imposed
on the functions ϕq and g. Already in 1954 Vitushkin had proved that addition
is not universal for the class of r-times continuously differentiable functions
for any r ≥ 1 [Vit54]. A very readable presentation of Kolmogorov’s Su-
perposition Theorem, its proof and a discussion of further results along the
forementioned line can be found in [LGM96, Vit77]. Instead of discussing any
smoothness conditions, we will focus on computability conditions.

Kolmogorov’s original proof sketch of his theorem was rather constructive.
However, he has not defined the functions ϕq and g explicitly but he only
showed that such functions exist (without considering the technical details
of the concrete construction). Meanwhile, some possible alternatives to turn
Kolmogorov’s considerations into a more detailed proof have been studied
from different perspectives. On the one hand, a very explicit definition of the
functions ϕq and g has recently been presented by Sprecher [Spr96, Spr97].
In particular, Sprecher defined a specific continuous function ϕ : [0, 1] →
R, which we will call Sprecher’s function in the following. One can use this
function in order to define

ϕq(x) := cϕ(x + aq) + bq

with certain constants a, b, c. On the other hand, rather abstract but very
brief and elegant proofs of Kolmogorov’s Superposition Theorem have been
presented by Hedberg [Hed71] and Kahane [Kah75]. These proofs are based
on the Baire Category Theorem and we will discuss the computational impli-
cations of such proofs in a later section.

For a long time the Kolmogorov Superposition Theorem was considered
as a side result in Approximation Theory without any applications. In 1976
Lorentz mentioned the deduction of the multi-variable case of the Weierstraß
Approximation Theorem from the single variable case as the only applica-
tion of the Kolmogorov Superposition Theorem known to him [Lor76] and
he writes: “Perhaps Kolmogorov’s theorem is of the nature of a pathological
example whose main purpose is to disprove hopes that are too optimistic.”
It was only 11 years later when Hecht-Nielsen realized that Kolmogorov’s
Superposition Theorem allows to characterize the power of feedforward neu-
ral networks2 [Hec87] and since then the theorem has established itself as
2 See the definition p. 273
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applicable. In recent years other applications of Kolmogorov’s Theorem to
topics such as Radon transform and topological groups have been considered
[Fri95, LMP97]. We will briefly discuss the applications to neural networks
in a later section. Last but not least, these applications to computer science
related topics increase the desire to understand the computational nature of
Kolmogorov’s Superposition Theorem.

In the following sections we will start to employ Sprecher’s recent ideas
in order to show that a computational version of Kolmogorov’s Superposition
Theorem can be proved. It is very natural to ask whether addition is uni-
versal for the class of computable functions (these are those functions which
admit an algorithm that in principle allows a Turing machine to evaluate
the function up to any prescribed precision). Such functions are studied in
a field called computable analysis (which is the theory of computability on
real numbers and functions) and it is known that they have to be contin-
uous [Wei00, Ko91, PR89]. Hence, computability is another strengthening
of the notion of continuity, logically independent of the smoothness condi-
tions which have been mentioned above. Probably the first computational
version of the Kolmogorov Superposition Theorem has been presented by
Nakamura, Mines and Kreinovich [NMK93]. We will revisit this topic in the
sound and rigorous framework offered by the representation based approach
to computable analysis.

13.3 Computability of Sprecher’s function

In this section we will briefly recall the notion of a computable real-valued
function as it is used in computable analysis and we will show that Sprecher’s
function ϕ is computable in this sense. Roughly speaking, a partial real-valued
function3 f :⊆ R

n → R is computable, if there exists a Turing machine M
which in the long run transforms each infinite sequence p ∈ Σω representing
some input x ∈ R

n into an infinite sequence r ∈ Σω representing the corre-
sponding output f(x). Precise definitions can be found in Weihrauch [Wei00];
other equivalent approaches have been presented by Pour-El and Richards
[PR89] and Ko [Ko91].

It is easy to see that the given definition sensitively relies on an appropriate
choice of the representation. Here, we will use the so-called Cauchy represen-
tation ρ :⊆ Σω → R of the real numbers, where roughly speaking, ρ(p) = x
if p is a sequence of rational numbers (qi)i∈N (encoded over the alphabet Σ)
which rapidly converges to x, i.e. |qk−qi| ≤ 2−k for all i ≥ k. A corresponding
representation ρn for the n-dimensional Euclidean space R

n can be derived
easily. More generally, a representation of a set X is a surjective mapping

3 The notation f :⊆ E → F recalls that f needs only to be defined on a subset of
E (partial function). When we write f : E → F , that means that f is defined at
every point of E (total function)
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δ :⊆ Σω → X . Using this notion we can define the computability concept of
computable analysis precisely.

Definition 1 (Computable functions). Let δ and δ′ be representations
of X and Y , respectively. A partial function f :⊆ X → Y is called (δ, δ′)-
computable, if there exists a Turing machine M with one-way output tape
which computes a function FM :⊆ Σω → Σω such that δ′FM (p) = fδ(p) for
all p ∈ dom(fδ).

The definition can be generalized to functions of higher arity4 straightfor-
wardly. The situation of the previous definition can be visualized by the com-
mutative diagram of Fig. 13.1.

We can generalize this computability concept even to (partial) multi-
valued operations f :⊆ X ⇒ Y , which are operations where the image
f(x) is a (not necessarily single-valued) subset of Y . In this case we write
δ′FM (p) ∈ fδ(p), i.e. “∈” instead of “=” in the definition above, in order to
define computability.

We will call the (ρn, ρ)-computable functions f :⊆ R
n → R computable

for short. Computability can analogously be defined for other types of func-
tions, as total functions f : [a, b] → R and sequences f : N → R, using
representations ρ|[a,b] of [a, b] and δN of N. There exists a well-known char-
acterization of computable functions f : [0, 1] → R which we will use in
order to prove the computability of Sprecher’s function ϕ. Roughly speak-
ing, a function f : [0, 1] → R is computable, if and only if f |D restricted to
some “effectively dense” subset D ⊆ [0, 1] is computable and f admits some
computable modulus of continuitym, which is a function m : N → N such that

|x− y| < 2−m(n) =⇒ |f(x)− f(y)| < 2−n

Σω

X

FM

f

δδ

Σω

Y

Fig. 13.1. Computable functions

4 Arity is the number of variables on which the function depends : f(x) is unary
(arity 1), f(x, y) is binary (arity 2),. . . , f(x1, ..., xk) is k-ary (arity k)
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holds for all x, y ∈ [0, 1] and n ∈ N. As a dense subset we will use in the
following the set Qγ of rational numbers between 0 and 1 in expansion with
respect to base γ. This set can be defined by Qγ :=

⋃∞
k=1 Qγk and

Qγk :=

{
k∑

r=1

irγ
−r : i1, ..., ik ∈ {0, 1, ..., γ − 1}

}

for all integers k ≥ 1 and γ ≥ 2. To make the characterization of computable
functions f : [0, 1]→ R more precise we assume that ν : N → Qγ is some effec-
tive standard numbering of the rational numbers in γ-expansion (cf. [Wei00]
for the discussion of numberings).

Proposition 1 (Characterization of computable functions). Let γ ≥ 2.
A function f : [0, 1]→ R is computable, if and only if the following holds:

1. f ◦ ν : N → R is a computable sequence of real numbers,
2. f admits a computable modulus of continuity m : N → N.

For a proof cf. [Wei00, Bra03a, Ko91, PR89]. The main purpose of the re-
maining part of this section is to prove that there exist computable functions
ϕq : [0, 1]→ R which can be employed for a proof of the computable version of
Kolmogorov’s Superposition Theorem. In Kolmogorov’s original proof the ex-
istence of such functions ϕq has been proved without any explicit construction.
Recently, Sprecher defined a concrete function ϕ : [0, 1] → R [Spr96, Spr97]
which can be used to construct the functions ϕq. We will prove that ϕ is a
computable function. More precisely, for each dimension n ≥ 2 and each base
γ ≥ 2n+ 2 Sprecher has defined a separate function ϕ : [0, 1]→ R as follows.

Definition 2 (Sprecher’s function). Let n ≥ 2 and γ ≥ 2n + 2. Let
ϕ : [0, 1]→ R be the unique continuous function which fulfills the equation

ϕ

(
k∑

r=1

irγ
−r

)
=

k∑

r=1

ĩr2−mrγ−
nr−mr −1

n−1 (13.1)

where
ĩr := ir − (γ − 2)〈ir〉,

mr := 〈ir〉
(

1 +
r−1∑

s=1

r−1∏

t=s

[it]

)

for all r ≥ 1, 〈i1〉 := 0, [i1] := 0 and

〈ir〉 :=
{

0 if ir = 0, 1, ..., γ − 2
1 if ir = γ − 1

[ir] :=
{

0 if ir = 0, 1, ..., γ − 3
1 if ir = γ − 2, γ − 1

for r ≥ 2.
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Sprecher has proved that there exists such a unique continuous function ϕ
on [0, 1], mainly because ϕ (as defined on Qγ by (13.1)) is strictly increasing
on Qγ and

|ϕ(d) − ϕ(d′)| ≤ 1
γ · 2k−1

(13.2)

holds for all consecutive numbers d, d′ ∈ Qγk and all k ≥ 1. Especially, ϕ
is strictly increasing and ϕ[0, 1] = [0, 1]. We will use the same idea and the
previous proposition in order to prove:

Proposition 2 (Computability of Sprecher’s function). For each n ≥ 2
and γ ≥ 2n+ 2 Sprecher’s function ϕ : [0, 1]→ R is computable.

Proof. Let n ≥ 2 and γ ≥ 2n + 2. Since a standard numbering ν allows to
extract the digits i1, ..., ik of the γ-expansion of each number ν(l) ∈ Qγk from
l, we can directly deduce from the definition of ϕ that ϕ ◦ ν is a computable
sequence of real numbers.

Now, let c ∈ N be a number such that c ≥ log2 γ. Then m : N → N

with m(k) = c · k is a computable function. Let x, y ∈ [0, 1] and k ∈ N with
|x−y| < 2−m(k) where without loss of generality x ≤ y. Then |x−y| < γ−k and
there exist consecutive numbers d < d′ in Qγk such that d ≤ x ≤ y ≤ d′, where
at least the first or the last inequality is strict. Since ϕ is strictly increasing
by definition, we obtain by (13.2)

|ϕ(x)− ϕ(y)| < |ϕ(d)− ϕ(d′)| ≤ 1
γ · 2k−1

≤ 1
2k
·

Thus, the function m is a computable modulus of continuity of ϕ and by
Proposition 1 ϕ is a computable function.

The proof especially shows that Sprecher’s function ϕ is Lipschitz contin-
uous of order 1/ log2 γ, i.e.

|ϕ(x) − ϕ(y)| ≤ 2 · |x− y|1/ log2 γ .

But on the other hand, it is easy to see that ϕ is not differentiable. Figure 13.2
shows the graph of Sprecher’s function for dimension n = 2 and base γ = 10
together with a part of the graph magnified by factor 10.

The important property of Sprecher’s function is that certain intervals I
which correspond to the “plateaux” in the graph of ϕ are mapped to very
small intervals ϕ(I). To be more precise, define for each fixed n ≥ 2 and
γ ≥ 2n+ 1

Iki :=
[
i · γ−k, i · γ−k + δk

]

for all k ≥ 1, and i = 1, ..., γk − 1, where

δk :=
γ − 2

(γ − 1)γk
·
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Fig. 13.2. The graph of Sprecher’s function ϕ for n = 2 and γ = 10

Sprecher has proved [Spr96] that disjoint intervals Iki of each fixed precision k
are mapped to small disjoint intervals ϕ(Iki ). This “separation property” will
implicitly be used to prove the Fundamental Lemma 1 below.

It is well-known that one can define computable functions by case distinc-
tion, provided that both functions coincide at the border. More precisely, if
f : [0, 1] → R and g : [1, 2] → R are computable functions with f(1) = g(1),
then h : [0, 2]→ R defined by

h(x) :=
{
f(x) if 0 ≤ x ≤ 1
g(x) if 1 < x ≤ 2

is a computable function too (see [Wei00]). Since ϕ(1) = 1 we can extend
Sprecher’s function to the interval [0, 2] by ϕ(x+1) := ϕ(x)+1 for all x ∈ (0, 1].
Thus, from now on we can assume without loss of generality that Sprecher’s
function is a computable function ϕ : [0, 2] → R, if necessary. Especially,
we will use this fact in the following definition where we define functions
ξq : [0, 1]n → R with the help of Sprecher’s function ϕ. We will call ξq the
Kolmogorov maps.

Definition 3 (Kolmogorov maps). Let n ≥ 2 and γ ≥ 2n+ 2. Define

1. λp ∈ R for p = 1, 2, ..., n and λ ∈ R by

λ1 :=
1
2
, λp+1 :=

1
2

∞∑

r=1

γ−p
nr−1
n−1 , λ :=

n∑

p=1

λp,

2. ϕq : [0, 1]→ R for q = 0, 1, ..., 2n by

ϕq(x) :=
1

2n+ 1

(
1
2
ϕ

(
x+

q

γ(γ − 1)

)
+

1
λ
q

)
,
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3. ξq : [0, 1]n → R for q = 0, 1, ..., 2n by

ξq(x1, ..., xn) :=
n∑

p=1

λpϕq(xp).

It should be noticed that it is the definition of ξq which includes the re-
duction of the number of variables. Let us consider an example: for instance
for n = 2, γ = 10 and q = 0 we obtain

ξ0(x, y) =
1
20
ϕ(x) +

λ2

10
ϕ(y)

with constant

λ2 =
1
2

∞∑

r=1

10−(2r−1) = 0.05050005000000050000000000000005...

Figure 13.3 displays the graph of the function ξ0 together with the squares
S1

0ij defined below.
Since we will employ the functions ϕq and λ in order to prove a computable

version of Kolmogorov’s Superposition Theorem, we have to prove that these
functions and constants are computable.

Fig. 13.3. The function ξ0 together with the squares S1
0ij for n = 2 and γ = 10



13 Kolmogorov’s Superposition Theorem 263

Proposition 3. Let n ≥ 2 and γ ≥ 2n+ 2. Then:

1. λp ∈ R is computable for all p = 1, 2, ..., n and λ ∈ R is computable,
2. ϕq : [0, 1]→ R is computable for all q = 0, 1, ..., 2n,
3. ξq : [0, 1]n → R is computable for all q = 0, 1, ..., 2n.

Proof. Let n ≥ 2 and γ ≥ 2n+ 2.

1. Obviously, λ1 is computable. We note that for p ≥ 1 and γ > 2 we obtain
∣∣∣∣∣

k∑

r=1

γ−p
nr−1
n−1 −

i∑

r=1

γ−p
nr−1
n−1

∣∣∣∣∣ <
i∑

r=k+1

2−
nr−1
n−1 ≤

i∑

r=k+1

2−r < 2−k

for all i > k. Thus, (
∑k
r=1 γ

−pnr−1
n−1 )k∈N is a rapidly converging and com-

putable sequence of real numbers and the limit 2λp+1 is a computable real
number. Hence, λ is computable too.

2. Since q
γ(γ−1) < 1 for q = 0, 1, ..., 2n+ 1 the functions ϕq are well-defined,

if we assume that Sprecher’s function ϕ is defined on [0, 2]. Moreover, it
is straightforward to prove that ϕq is computable for q = 0, 1, ..., 2n+ 1
using some standard closure properties of computable functions [Wei00]
and the fact that λ is computable.

3. Follows directly from (1) and (2).

The next step is to transfer the nice separation property of Sprecher’s func-
tion to the Kolmogorov maps ξq. Essentially, this transfer has already been
performed by Sprecher [Spr96]. We use his results to prove the Fundamental
Lemma 1 below. Roughly speaking, the idea is that ξq maps certain cubes Sqi
to very small and disjoint intervals ξq(Sqi). We will define these cubes with the
help of the intervals Iki defined above. Since later on we will need coverings of
[0, 1]n, it is not sufficient to consider purely the intervals Iki , but we will need
2n+ 1 families Ikqi with q = 0, ..., 2n of such intervals where Ikqi := Iki − aq is
a slight translation of Iki defined precisely as follows: for each fixed n ≥ 2 and
γ ≥ 2n+ 1 let

Ikqi :=
[
i · γ−k − aq, i · γ−k + δk − aq

]
∩ [0, 1]

for all k ≥ 1, q = 0, 1, ..., 2n and i = 1, ..., γk, where δk is defined as above and

a :=
1

γ(γ − 1)
·

Figure 13.4 visualizes the translated intervals I1
qi in case of dimension n = 2

and base γ = 10 (row q displays the intervals I1
q1, ..., I

1
q10).

Now the following lemma states the separation property of the Kolmogorov
maps ξq which can be deduced from the separation properties of Sprecher’s
function ϕ on corresponding intervals.
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Fig. 13.4. The intervals I1
qi for n = 2 and γ = 10

Lemma 1 (Fundamental Lemma). For each fixed n ≥ 2, γ ≥ 2n+ 2 and
k ≥ 1, the intervals ξq(Skqi1...in) with

Skqi1...in := Ikqi1 × I
k
qi2 × ...× I

k
qin , i1, ..., in ∈ {1, ..., γ

k}, q = 0, ..., 2n

are pairwise disjoint. Moreover, for each k ≥ 1 each point x ∈ [0, 1]n is covered
for at least n + 1 values of q = 0, ..., 2n by some cube Skqi1...in , i1, ..., in ∈
{1, ..., γk}.

Proof. Let q ∈ {0, ..., 2n}. Sprecher has proved that the intervals Ξ(Skqi1...in)
with i1, ..., in ∈ {1, ..., γk} are pairwise disjoint (see Lemma 4 and the following
in [Spr96]), where Ξ : [0, 1]n → R is the function defined by

Ξ(x1, ..., xn) :=
n∑

p=1

2λpϕ(xp + aq).

Since 2λ =
∑n

p=1 2λp < 2 and ϕ[0, 2] = [0, 2], we obtain range(Ξ) ⊆ [0, 4) and

ξq(x1, ..., xn) =
n∑

p=1

λp
1

2n+ 1

(
1
2
ϕ (xp + aq) +

1
λ
q

)

=
1

2n+ 1

(
1
4

n∑

p=1

2λpϕ(xp + aq) + q
1
λ

n∑

p=1

λp

)

=
1

2n+ 1

(
1
4
Ξ(x1, ..., xn) + q

)
.

Thus range(ξq) ⊆
[

q
2n+1 ,

q+1
2n+1

)
and ξq(Skqi1...in) is just an affine trans-

formation of range(Ξ). Hence the intervals ξq(Skqi1...in) with i1, ..., in ∈
{1, ..., γk}, q = 0, ..., 2n are disjoint.

Since the length of the “gaps”, i.e. the distance of any two consecutive
intervals Ikqi and Ikqi+1 is δ := 1/((γ − 1)γk) we can conclude that the length
δk = (γ − 2)δ of Ikqi as well as the “shift length” a = γk−1δ are integral
multiples of δ. Thus, either two shifted gaps overlap or they are disjoint. In
order to overlap, the shift aq = q/(γ(γ − 1)) has to be an integral multiple of
1/γk but this implies q ≥ γ − 1 ≥ 2n+ 1 which is impossible. It follows that
each point x ∈ [0, 1] is covered for at least 2n of the 2n+1 values q = 0, ..., 2n
by some interval Ikqi, i = 1, ..., γk. This implies that each point x ∈ [0, 1]n
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is covered for at least n + 1 of the 2n + 1 values q = 0, ..., 2n by some cube
Skqi1...in with i1, ..., in ∈ {1, ..., γk}.

Figure 13.3 shows the squares Skqij with delay q = 0, precision k = 1, dimen-
sion n = 2 and base γ = 10.

In the next section we will use the Fundamental Lemma to prove the
computational version of Kolmogorov’s Superposition Theorem.

13.4 A computable Kolmogorov Superposition Theorem

In this section we will use the functions defined in the previous section in order
to prove a computable version of Kolmogorov’s Superposition Theorem. For
each n ≥ 2, γ ≥ 2n+ 2 and each function g : [0, 1] → R we define a function
hg : [0, 1]n → R by hg :=

∑2n
q=0 g ◦ ξq, i.e.

hg(x1, ..., xn) :=
2n∑

q=0

g ◦ ξq(x1, ..., xn) =
2n∑

q=0

g

(
n∑

p=1

λpϕq(xp)

)
,

where ξq, ϕq, λp are the functions and constants, respectively, as defined in the
previous section. Then the statement of Kolmogorov’s Superposition Theorem
could be reformulated as follows: for each continuous f there exists some
continuous g such that f = hg. As a preparation of the proof of this Theorem
(and of a computable version of it) we start with an approximation Lemma,
which has been originally proved by Lorentz [Lor66]. For completeness, we
adapt the proof to our setting. If X is a topological space then we denote by
C(X) the set of continuous functions f : X → R and by

||f || := sup
x∈[0,1]n

|f(x)|

we denote the supremum norm for functions f ∈ C([0, 1]n).

Lemma 2 (Lorentz’ Lemma). Let n ≥ 2, γ ≥ 2n + 2 and consider θ :=
(2n + 1)/(2n+ 2). For each continuous function f : [0, 1]n → R there exists
some continuous function g : [0, 1]→ R such that

||f − hg|| < θ||f || and ||g|| < 1
n
||f ||.

Proof. Let ε > 0 be such that n
n+1 + ε < θ. Since f is uniformly continuous

on [0, 1]n, we can choose some k ≥ 1 such that the oscillation of f on each
cube Skqi1...in is less than ε||f ||, i.e.

max
i1,...,in∈{1,...,γk}

q∈{0,...,2n}

diam f(Skqi1...in) < ε||f || .



266 Vasco Brattka

Let ckqi1...in be the center of the cube Skqi1...in . Now we can define g : [0, 1]→ R

by
g(y) := 1

n+1f(ckqi1...in) for all y ∈ ξq(Skqi1...in)

and q = 0, ..., 2n and i1, ..., in ∈ {1, ..., γk} and by linearization for all other
y ∈ [0, 1]. By the Fundamental Lemma 1 g is well-defined and ||g|| < 1

n ||f ||.
Moreover, for each x ∈ [0, 1]n there are at least n + 1 values of q = 0, ..., 2n
such that x ∈ Skqi1...in for some i1, ..., in ∈ {1, ..., γk}. For these n + 1 values
of q we obtain g ◦ ξq(x) = 1

n+1f(ckqi1...in) and |f(ckqi1...in)− f(x)| < ε||f ||. For
the remaining n values of q we obtain |g ◦ ξq(x)| ≤ 1

n+1 ||f ||. Altogether,

||f − hg|| =
∣∣∣∣∣

∣∣∣∣∣f −
2n∑

q=0

g ◦ ξq

∣∣∣∣∣

∣∣∣∣∣ <
n+ 1
n+ 1

ε||f ||+ n

n+ 1
||f || < θ||f ||.

In the following we will conclude the effective version of Kolmogorov’s Super-
position Theorem from Lorentz’ Lemma. To this end, we have to use some
further notions from computable analysis. We want to show that the operator,
which maps f to a corresponding function g such that f = hg, is computable.
To express computability of such operators C[0, 1]n → C[0, 1] we need a rep-
resentation of Cn := C([0, 1]n) (for short we write C := C1). We will use the
so-called Cauchy representation δn :⊆ ΣN → Cn (cf. [Wei00]). Roughly speak-
ing, δn(p) = f , if and only if p is an (appropriately encoded) sequence of
rational polynomials (pi)i∈N, pi ∈ Q[x1, ..., xn] which converges rapidly to f ,
i.e. ||pi − pk|| ≤ 2−k for all i > k. Computability on the space Cn will from
now on be understood with respect to the representation δn. An important
property of this representation is that it allows evaluation and type conver-
sion: the function Cn × [0, 1]n → R, (f, x) �→ f(x) (evaluation of f at x) is
computable (i.e. (δn, ρn, ρ)-computable) and for any representation δ of X a
function F : X × [0, 1]n → R is (δ, ρn, ρ)-computable, if and only if the func-
tion G : X → Cn with G(x)(y) := F (x, y) is (δ, δn)-computable (cf. [Wei00]).
For the proof of the computable Kolmogorov Superposition Theorem we will
additionally use a notion of effectivity for subsets.

Definition 4 (Recursively enumerable open subsets). Let δ, δ′ be rep-
resentations of X,Y , respectively. An open subset U ⊆ X×Y is called (δ, δ′)-
r.e., if there is a (δ, δ′, ρ)-computable function F : X × Y → R such that
(X × Y ) \ U = F−1({0}).

For instance the set {(x, y) ∈ R
2 : x < y} is an r.e. open subset (usually

we will not mention the representations if they are clear from the context).
It is straightforward to generalize this definition to subsets of higher arity.
For spaces Y like N,R, Cn we have the following uniformization property: if
U ⊆ X × Y is an r.e. open subset such that for any x ∈ X there exists some
y ∈ Y such that (x, y) ∈ U , then there is a computable multi-valued operation
S : X ⇒ Y such that graph(S) ⊆ U , i.e. (x, y) ∈ U for any x ∈ X and
y ∈ S(x) (cf. Theorem 12.4 in [Bra03a]).
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Theorem 2 (Computable Kolmogorov Superposition Theorem). Let
n ≥ 2 and γ ≥ 2n + 2. There exists a computable multi-valued operation
K : Cn ⇒ C such that f =

∑2n
q=0 g ◦ ξq, i.e.

f(x1, ..., xn) =
2n∑

q=0

g

(
n∑

p=1

λpϕq(xp)

)

for all f ∈ Cn and g ∈ K(f).

Proof. Using the concepts of evaluation and type conversion and Propo-
sition 3 we can conclude that the function H : C → Cn, g �→ hg is com-
putable. Thus, Lorentz’ Lemma 2 and the fact that the supremum norm
Cn → R, f �→ ||f || is computable, do directly imply that the set

M :=
{

(f, g) ∈ Cn × C : ||f − hg|| < θ||f || and ||g|| < 1
n
||f ||

}

with θ := (2n+ 1)/(2n+ 2) is an r.e. open set, i.e. there exists a computable
function F : Cn×C → R, such that F−1{0} = (Cn×C)\M . This again implies
by uniformization and Lorentz’ Lemma 2 that there exists a computable multi-
valued operation L : Cn ⇒ C such that (f, g) ∈M for all f ∈ Cn and g ∈ L(f).

Now let f ∈ Cn. We define a sequence (gi)i∈N of functions in C inductively
as follows: we choose some g0 ∈ L(f) and if gi is already defined, we choose
some

gi+1 ∈ L(f − hg0 − hg1 − ...− hgi).

By Lorentz’ Lemma 2 and induction we obtain
∣∣∣∣∣

∣∣∣∣∣f −
r∑

i=0

hgi

∣∣∣∣∣

∣∣∣∣∣ < θr+1||f || and ||gr|| <
1
n
θr||f ||.

These inequalities imply that the series g :=
∑∞

i=0 gi and
∑∞

i=0 hgi converge
uniformly and effectively. By continuity and linearity of H we obtain

f =
∞∑

i=0

hgi = h∑∞
i=0 gi

= hg =
2n∑

q=0

g ◦ ξq .

We still have to show that the procedure which maps f to g defines a com-
putable operation K : Cn ⇒ C. This can be deduced from the previous con-
siderations using some recursive closure schemes for multi-valued operations
as presented in [Bra03a].
The proof presented here shows that the mapH : C → Cn, g �→ hg is surjective,
which is a reformulation of the statement of the classical Kolmogorov Super-
position Theorem 1, and it shows that H admits a computable multi-valued
right inverse K : Cn ⇒ C. In particular, we obtain the following corollary.
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Corollary 1. For each n ≥ 2 there exist some computable functions
ϕq : [0, 1] → R, q = 0, ..., 2n and computable constants λp ∈ R, p = 1, ..., n
such that the following holds true: for each computable function f : [0, 1]n → R

there exists a computable function g : [0, 1]→ R such that

f(x1, ..., xn) =
2n∑

q=0

g

(
n∑

p=1

λpϕq(xp)

)
.

Especially, this shows that addition is universal for the class of computable
functions f : [0, 1]n → R. However, Theorem 2 above states much more than
the previous corollary: given an algorithm for f , we can effectively find an
algorithm for some g such that hg = f . Thus, there exists an algorithm (a
program for K) which transfers a description of f into a description of a
suitable g. And this algorithm does not only work for computable f , but even
for continuous f .

13.5 Aspects of dimension

There is a straightforward interpretation of the Kolmogorov Superposition
Theorem in terms of embeddings. The proof of Theorem 2 shows that

ξ = (ξ0, ..., ξ2n) : [0, 1]n → R
2n+1

is a computable embedding of [0, 1]n into R
2n+1. Here, ξ has to be injective,

since the Kolmogorov Superposition Theorem especially holds for all non-
injective functions f : [0, 1]n → R. Moreover, range(ξ) ⊆ [0, 1]2n+1. Thus, we
are in the situation of the commutative diagram of Fig. 13.5.

Here ×2n
i=0g : [0, 1]2n+1 → R

2n+1, (x0, ..., x2n) �→ (g(x0), ..., g(x2n)) denotes
the function g, applied to 2n + 1 variables in parallel and Σ : R

2n+1 → R

[0, 1]n

2n+1

f

×2n
i=0g

Σξ

R

R 2n+1[0, 1]

Fig. 13.5. Kolmogorov’s Superposition Theorem
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denotes the ordinary addition (with 2n+ 1 input variables). We formulate a
corollary of our Theorem 2 in terms of this diagram.

Corollary 2. There exists a computable embedding ξ : [0, 1]n → R
2n+1 such

that for any continuous function f : [0, 1]n → R there is a continuous function
g : [0, 1]→ R such that f = Σ ◦ ×2n

i=0g ◦ ξ.

Here “continuous” might be simultaneously replaced by “computable” in both
occurrences. Kolmogorov’s Superposition Theorem, reformulated in this way,
has a striking similarity to well-known embedding theorems in dimension the-
ory (see [Eng78]). For instance, by a result of Nöbeling, any n-dimensional
topological space can be embedded into a (very special) subspace of the
2n+ 1-dimensional Euclidean space R

2n+1. Now the question arises whether
the number 2n+1 of functions ϕq in the Kolmogorov Superposition Theorem
is optimal. By results of Doss [Dos63] it was known that this is true in case of
n = 2 if the functions ϕq are assumed to be increasing. For the general case
it has been proved by Sternfeld [Ste85] that the number of functions cannot
be reduced and his result even holds for much more general forms of super-
position. Let X be a compact metric space and let us call a tuple (ϕ0, ..., ϕk)
of functions ϕq ∈ C(X) a basic family for X , if every f ∈ C(X) admits a
representation

f(x) =
k∑

q=0

gq(ϕq(x))

for all x ∈ X with some gq ∈ C(R). In this terminology, Kolmogorov proved
that X = [0, 1]n admits a basic family (ϕ0, ..., ϕ2n) of a very special form. Os-
trand generalized this result to arbitrary compact metric spaces [Ost65, Ste79].
Sternfeld proved the following theorem which characterizes the (topological)
dimension of a compact metric space in terms of the size of basic families
[Ste85, Ste89, Lev90].

Theorem 3 (Sternfeld). Let X be a compact metric space. Then X has
dimension dim(X) ≤ n if and only if it admits a basic family with at most
2n + 1 functions. In case of dim(X) = n each such basic family has at least
2n+ 1 functions.

As for non-compact spaces, Doss [Dos77] proved that the original Kolmogorov
Superposition Theorem can be extended to the case of unbounded continuous
functions f : R

n → R, if one allows 4n functions ϕi (while 2n + 1 functions
are enough in case of compact spaces). Doss has also studied other variants of
the Kolmogorov Superposition Theorem where addition is replaced by multi-
plication [Dos76].
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13.6 Aspects of constructivity

As mentioned in the beginning, our focus here is on aspects of construc-
tivity of the Kolmogorov Superposition Theorem. However, the notion of
“constructivity” is not mathematically defined and comes associated with
a whole variety of meanings. One possible interpretation is to specify that
constructive mathematics (including analysis) means mathematics with intu-
itionistic logic [BB85] (see [Kus84] for Markov’s school of constructive anal-
ysis). An alternative is to consider computability just as another classical
property of classical objects as we did in the previous sections. Computable
analysis, understood in this sense [Wei00], is a model of constructive analysis
in the forementioned sense (but implicitly employs certain principles, such
as Markov’s principle5, which are not admissible in the pure intuitionistic
philosophy).

With respect to the Kolmogorov Superposition Theorem constructivity
has been interpreted in different rather informal ways [Nee94, NMK93]. The
proof of the computable version of the Kolmogorov Superposition Theorem
which we have presented follows closely the ideas of Sprecher and his very ex-
plicit construction [Spr96]. Now one might think that much less explicit proofs
of the Theorem do not allow for such a constructivization. Very elegant and
brief proofs of the Kolmogorov Superposition Theorem typically employ the
Baire Category Theorem [Hed71, Kah75]. Often, this principle is counted as
“non-constructive” since the existence of certain objects is guaranteed without
presenting a specific representative. In many cases of applications of the Baire
Category Theorem [Jon97] this is actually true (for instance this is the case
for the Open Mapping Theorem, the Closed Graph Theorem and Banach’s
Inverse Mapping Theorem [Bra03b]). However, in general one has to ana-
lyze carefully in which sense the Baire Category Theorem is applied [Bra01].
Baire’s Category Theorem states that a complete metric space X cannot be
decomposed into a countable union of closed subsets An with empty interior6

(cf. [GP65]). Classically, we can bring this statement into the following two
equivalent logical forms:

1. For all sequences (An)n∈N of closed subsets An ⊆ X with empty interior,
there exists some point x ∈ X \

⋃∞
n=0An,

2. for all sequences (An)n∈N of closed subsets An ⊆ X with X =
⋃∞
n=0An,

there exists some k ∈ N such that Ak has a non-empty interior.

From the computational point of view the content of both logical forms of the
theorem is different. While the first statement can be proved constructively
5 By Markov’s principle we can perform an unbounded search: whenever a recur-

sively enumerable set A in N
2 contains the graph of a total function f : N → N,

then it contains even the graph of a total computable function f . This has been
implicitly used for the uniformization property mentioned before Theorem 2

6 Recall that a subset is said to have empty interior if it does not contain a whole
non-empty open ball
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and computationally (i.e. there exists an algorithm which, given the sequence
of subsets, determines a corresponding point x), the second statement does
not allow for such an algorithmic version (actually, one can employ so-called
simple sets in order to prove that there is no algorithm which can determine
a corresponding index k in a reasonable sense [Bra01]).

Now, let us take a look at Kahane’s version of the proof of the Kol-
mogorov Superposition Theorem [Kah75] (we will closely follow the expo-
sition in [LMP97]). Let Φ ⊆ C denote the metric subspace of C (endowed
with the ordinary maximum metric) of all increasing functions ϕ : [0, 1]→ R

with ϕ[0, 1] ⊆ [0, 1]. Let Φn denote the corresponding metric product space
(n ∈ N).

Theorem 4 (Kahane). Let λp > 0 with
∑n

p=1 λp ≤ 1 be rationally indepen-
dent numbers. The set K ⊆ Φ2n+1 of all such tuples (ϕ0, ..., ϕ2n) ∈ Φ2n+1

which have the property that for any f ∈ Cn there is some g ∈ C satisfying

f(x1, ..., xn) =
2n∑

q=0

g

(
n∑

p=1

λpϕq(xp)

)

is fat (i.e. a set of second Baire category)7.

Altogether, Kahane’s Theorem even states more than the Kolmogorov
Superposition Theorem 1. Not only the specific functions ϕ0, ..., ϕn (defined
with the help of Sprecher’s function ϕ) are suitable for the proof of the Kol-
mogorov Superposition Theorem, but quasi all (increasing continuous func-
tions) ϕ0, ..., ϕn could be employed for this purpose. However, one has to recall
that “quasi all” is to be understood in a topological sense (as a synonym of
“for a fat8 set of points”). Now, the question arises whether this automati-
cally guarantees that there are computable functions among these “quasi all”
functions ϕ0, ..., ϕn. Actually, this is the case since Kahane’s proof uses the
constructive version (1) of the Baire Category Theorem above and can be
turned into a computable version. To this end, we define for the moment
hg,ϕ : [0, 1]n → R by

hg,ϕ(x1, ..., xn) :=
2n∑

q=0

g

(
n∑

p=1

λpϕq(xp)

)
,

for each given ϕ = (ϕ0, ..., ϕ2n) ∈ Φ2n+1. We assume that n ≥ 2, λp > 0 with∑n
p=1 λp ≤ 1 are some fixed rationally independent computable numbers and

ε := 1/(4n+ 3).

7 We recall that a set K ⊆ Φ2n+1 is said meager (or of first Baire category) if it
can be included in a countable union K =

⋃∞
i=0 Ai of closed subsets Ai ⊆ Φ2n+1

with empty interior, and said fat (or of second Baire category) otherwise
8 In the sense of the footnote above, i.e. of second Baire category
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Lemma 3. For any f ∈ Cn with f �= 0 the set

Ω(f) =
{
ϕ ∈ Φ2n+1 : (∃g ∈ C)

(
||g|| < ||f || and

∣∣∣∣∣

∣∣∣∣∣f −
2n∑

q=0

hg,ϕ

∣∣∣∣∣

∣∣∣∣∣ < (1− ε)||f ||
)}

is an r.e. open subset of Φ2n+1 and
⋂
f∈Q[x1,...,xn]\{0}Ω(f) is a computable

and countable intersection of such subsets (i.e. a computable Gδ-set).

From a proof which is similar to the proof of Lorentz’ Lemma 2 (see
Lemma 2.2 in [LMP97]) it follows that Ω(f) is also dense in Φ2n+1. Since
Φ2n+1 is a complete computable metric space, we can deduce by the com-
putable version of the Baire Category Theorem [Bra01] that the countable
intersection ⋂

f∈Q[x1,...,xn]\{0}
Ω(f)

contains a computable point ϕ. On the other hand, the points ϕ = (ϕ0, ..., ϕ2n)
in this intersection still satisfy the equation in Kahane’s Theorem 4 (see the
proof of Theorem 1.2 in [LMP97]) and thus this directly implies Corollary 1.
Following the same line we could even deduce the fully uniform computable
version of the Kolmogorov Superposition Theorem 2.

The proof sketched in this section is based on classical proofs of the Kol-
mogorov Superposition Theorem and just adds the considerations which are
required in order to obtain the computable version. Other such proofs are
possible as well. In contrast to this, the proof presented in Sect. 13.4 proves
both: the classical and the computational version. Another shortcut for a com-
putational version of the theorem which takes the classical version and the
existence of a computable ϕ for granted can be based on the fact that the map
H : C → Cn : g �→ hg,ϕ is a computable linear operator on Banach spaces. The
classical Kolmogorov Superposition Theorem implies that the operator is sur-
jective and the computable version of the Open Mapping Theorem [Bra03b]
states that this operator is effectively open (there is an algorithm, which given
a description of an open set U ⊆ C provides a description of H(U)). This di-
rectly implies that H has a computable multi-valued right inverseK : C ⇒ Cn
(and thus we obtain the statement of Theorem 2). However, this alternative
proof of Theorem 2 is much less informative: it does not come with any de-
scription of an algorithm for K. The existence of the algorithm is guaranteed
by a non-constructive proof (since the computable Open Mapping Theorem
is only effective in the open subset but not in the operator).

13.7 Applications to feedforward neural networks

In 1987, about 30 years after Kolmogorov’s Superposition Theorem has been
published, Hecht-Nielsen noticed an interesting application of this theorem
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to the theory of neural networks [Hec87, Hec90]: each continuous function
f : [0, 1]n → R can be implemented by a feedforward neural network with
continuous activation functions t : [0, 1]→ R.

Theorem 5 (Hecht-Nielsen). The class of functions f : [0, 1]n → R, im-
plementable by three-layer feedforward neural networks with continuous ac-
tivation functions t : [0, 1] → R and weights λ ∈ R, is exactly the class of
continuous functions f : [0, 1]n → R.

Formally, a neural network can be defined as a directed graph where the
nodes come associated with some activation function t : R → R and to the
edges there are assigned some weights w ∈ R. Certain nodes are considered
as input and output nodes. Such a network is called a feedforward network,
if its graph is cycle free (otherwise it is called a feedback network). Typically,
these networks are divided into distinguished layers depending on the distance
to the input nodes. Such a network implements a real number function f :
[0, 1]n → R (if there are n input nodes and one unique output node) which is
determined as follows. By each input node one number xi ∈ [0, 1] is introduced
(1 ≤ i ≤ n). These numbers are propagated in the network in the following
way. Any node takes the sum of all its inputs multiplied by the weights of
the corresponding incoming edges. Then the activation function of the node
is applied to the sum and the result is propagated on the outgoing edges.
Finally, f(x1, ..., xn) is the number arriving at the output node.

A priori it is not clear at all which functions can be implemented by such
networks. It is due to the pioneering work of Hecht-Nielsen that the power
of such networks has been identified. By Definition 3 we obtain ϕq(x) :=
cϕ(x+aq)+ bq with c := 1/(4n+2), a := 1/(γ(γ−1)) and b := 1/((2n+1)λ).
Hence, by the Kolmogorov Superposition Theorem 1 we can write f in the
normal form

f(x1, ..., xn) =
2n∑

q=0

g

(
dq +

n∑

p=1

λpcϕ(xp + aq)

)

with dq := λbq = q
2n+1 = dq, where d := 1

2n+1 . A similar normal form has
first been derived by Sprecher [Spr65] and has been used by Hecht-Nielsen for
the proof of his theorem. In case of n = 2 we obtain a feedforward network as
shown in Fig. 13.6 (the idea of the graphical presentation is essentially taken
from [SD02]).

Although by the Theorem of Hecht-Nielsen 5 the power of feedforward
neural networks has been characterized in a very useful way, it seems that
this observation has not have much impacts on practice in neural computing.
Maybe this is at least partially due to the fact that Hecht-Nielsen’s Theorem
has been considered as non-constructive. In [Hec90] Hecht-Nielsen describes
his theorem as follows: “The proof of the theorem is not constructive, so it
does not tell us how to determine these quantities. It is strictly an existence
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Fig. 13.6. Kolmogorov neural network for n = 2

theorem. It tells us that such a three-layer mapping network must exist, but it
doesn’t tell us how to find it. Unfortunately, there does not appear too much
hope that a method for finding the Kolmogorov network will be developed soon.”
This is one of the reasons why much of the following research has been con-
centrated on approximative versions of Kolmogorov type results on neural
networks (see e.g. [HSW89, LLPS93, Kur91, Kur92]). However, due to the
recent work of Sprecher [Spr93, KS94, Spr96, Spr97] we are much closer to
a practical usage of the exact representation of continuous functions by Kol-
mogorov type neural networks today. The network presented in Fig. 13.6 has
a fixed hidden layer which only depends on the dimension n but not on the
represented function f . Essentially, the processing units of the hidden layer
are determined by Sprecher’s function ϕ and they could be encoded in hard-
ware. Only the function g in the output layer depends on f and has to be
determined by a learning mechanism. Recently, efficient learning algorithms
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for such networks have been discussed [NŠD01] and higher degrees of freedom
for activation functions which are motivated by Kolmogorov type networks
have successfully been implemented in practice [IP03].

While the classical Hecht-Nielsen Theorem characterizes those functions
which are implementable by neural networks with arbitrary real weights and
continuous activation functions, it is interesting to know what happens if
we restrict these components to computable ones. It turns out that we can
derive the following computable version of Hecht-Nielsen’s Theorem from our
computable version of the Kolmogorov Superposition Theorem 2.

Theorem 6 (Computable Hecht-Nielsen Theorem). The class of func-
tions f : [0, 1]n → R, implementable by three-layer feedforward neural net-
works with computable activation functions t : [0, 1] → R and computable
weights λ ∈ R, is exactly the class of computable functions f : [0, 1]n → R.

This underlines the practical importance of the Hecht-Nielsen Theorem:
even if we restrict our neural networks to such networks with components
which can be determined by algorithms, we do not loose the full power of
Turing machines.

13.8 Conclusion

We have seen that Hilbert’s 13th problem has inspired an impressing line of
research which covers interesting areas of mathematics as well as applications.
It turned out that behind the problem there are somewhat unexpected but im-
portant algorithmic questions (this is similar with some of the other problems
in Hilbert’s list, see [Kos98]).

Kolmogorov’s Superposition Theorem provides a very powerful refutation
of Hilbert’s conjecture and still deserves a wider popularization. Even among
mathematicians it is not widely known and its statement can still evoke sur-
prise. This is within striking contrast to its general intellectual implications.
Besides the discussed applications to pure mathematics and neural networks
its impact on fuzzy logic, soft computing and even physics has been the subject
of mathematical results and speculation [KNS96, NK97, YK99].

While the early research following Kolmogorov’s result was mainly de-
voted to questions of smoothness, we hope that the algorithmic aspects of the
result will be much more precisely analyzed. In view of the importance of Kol-
mogorov’s Superposition Theorem with respect to its applications to neural
networks, such a better understanding could even have practical implications.

We would like to close our discussion by coming back to the question
of universality of addition. While it is known so far that addition is uni-
versal for the classes of continuous and computable functions (and not for
the classes of continuously differentiable and analytic functions), no one has
studied this question with respect to computational complexity (to the best



276 Vasco Brattka

analytic r-times continuously
differentiable

continuous
polynomial time

computable computable

+

+?

Fig. 13.7. Universality of addition for classes of functions f : [0, 1]n → R

of our knowledge). We have seen that computability can be considered as a
strengthening of continuity which is logically independent to the smoothness
conditions mentioned above. A further strengthening such as “polynomial
time computability” (see [Ko91, Wei00] for definitions) could be considered
and it seems to be an open question whether addition is universal for the
class of polynomial time computable functions. Figure 13.7 illustrates the sit-
uation (any “+” indicates universality of addition for the corresponding class
of functions, any “−” indicates the contrary; the question marks stands for the
unknown case).

More generally, one could study the same question for any other com-
plexity class and it is still a challenging open problem for mathematician and
computer scientist of our century to identify and characterize those complexity
classes for which addition is universal!
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Séminaire d’Histoire des Mathématiques de l’Institut Henri Poincaré.
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The term “complexity” has different meanings in different contexts.
Computational complexity measures how much time or space is needed to
perform some computational task. On the other hand, the complexity of de-
scription (called also Kolmogorov complexity) is the minimal number of infor-
mation bits needed to define (describe) a given object. It may well happen that
a short description requires a lot of time and space to follow it and actually
construct the described object. However, when speaking about Kolmogorov
complexity, we usually ignore this problem and count only the description bits.

As it was common to him, Kolmogorov published, in 1965, a short
note [Kol65] that started a new line of research. Aside from the formal
definition of complexity, he has also suggested to use this notion in the foun-
dations of probability theory. His idea was quite simple:

An object is random if it has maximal possible complexity.

The definition of complexity uses the notion of an algorithm; this unexpected
marriage of two a priori distant domains −in our case, probability theory and
theory of algorithms− is also a typical trait of Kolmogorov’s work.

14.1 Algorithms

The notion of an algorithm in quite recent. In 1912 (when neither comput-
ers nor programming languages existed) Émile Borel (see [US93]) used the
phrase “a formal and precise automatic rule” describing an object which we
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would now call an algorithm3. However, a mathematical theory of algorithms
was developed only in the 1930s (by Turing, Gödel, Post, Church, Kleene
and others). The key observation was the existence of a universal algorithm
(see below); it allows to prove easily that some problems (e.g. the so-called
“halting problem” that asks whether a given algorithm terminates on a given
input) are undecidable (cannot be solved by algorithms). Note that to prove
the non-existence of an algorithm that solves a certain problem we need a
mathematically precise definition of this notion. When appeared, this notion
became a subject of the theory of algorithms, also called theory of recursive
functions or theory of computability.

The remaining part of this section discusses some aspects of the notion of
algorithm; the reader not interested in these details may skip it and proceed
directly to Sect. 14.2.

It is rather difficult to give a mathematical definition that captures the
intuitive idea of an algorithm in its full generality; instead, we may define a
specific class of algorithms and claim that this class is representative, i.e. that
any algorithm is equivalent to a certain algorithm in this class. (By the way,
one of these classes was suggested by Kolmogorov.)

14.1.1 Models of computation

A model of computation formally describes some specific class of algorithms
(the class of objects used as input/output data, how they are processed,
etc.) Some computational models resemble programming languages while
others look more as a hardware description. In any case, we assume that
computational resources are unlimited (and forget that in real programming
languages integers are usually bounded, processor architecture has a fixed
word length, etc.).

(The study of resources −time and space− needed to solve a given
problem is a different field called computational complexity. Let us note that
an important notion in this field, NP-completeness, was introduced at the
beginning of the 1970s independently by three researchers, one of whom,
Leonid Levin, is Kolmogorov’s student. The first publications by Levin were
about Kolmogorov complexity [ZL70]. His short biography and a brief story
how Kolmogorov influenced him may be found in the book [SL95].)
3 The history of the term “algorithm” is interesting in itself. This word is a deriva-

tive of the name of a medieval Persian savant Al-Khwārizmı̄ (787 – c. 850) who
was the author of a book through which the Europeans learned the positional
number system and the rules of arithmetic operations (addition, multiplication,
etc.). The name of Al-Khwārizmı̄ (which means “of Khorezm”, a town in Uzbek-
istan today called Khiva) was transliterated in Latin as Algorithmus. The term
“algorithms” meant at the beginning “the rules of four arithmetic operations”.
Then by extension it has got the meaning of any systematic method of computa-
tion. Leibnitz called “algorithms” the set of rules of computing differentials and
integrals. It is only gradually that the word acquired its modern meaning; one
hundred years ago this process was not yet finished
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Which computational model is “the best one”? This depends on our
purposes. If we want to write real programs, it is natural to use a real com-
puter and an appropriate programming language. On the other hand, if we
want to prove theorems it would be more convenient to work with an abstract
model of computation; a very simple model, with a small number of primi-
tives, would then be better. However, there is no canonical model adapted for
proofs since different models are more suitable for different results.

The most popular model is Turing machine. It is rather easy to prove
the universality of this model; however, we have to deal with many details
concerning tapes, symbols, representation of the transition table, etc. There
are many versions of Turing machines; the most common one was, by the way,
presented by Post and not by Turing.

Recursive functions “à la Church” give a more mathematical and attrac-
tive model though the proofs of certain basic theorems become somewhat
discouraging if not frightening.

Markov algorithms are similar to rewriting systems for strings with termi-
nation conditions; this is a model difficult to manipulate (but well suited for
the proof of the undecidability of word problems).

The RAM (random access machines) model resembles von Neumann-style
computers. . .

Teaching the algorithms theory, one may choose a different approach and
not fix any specific model but rely directly on the intuition of algorithms.
More formally, it means that we have to accept some properties of algorithms
used in the proofs as axioms. Then we do not need to go into cumbersome
details of a specific computational model; the price is, however, that the list of
axioms is open (e.g. if during the proof we need to establish the computability
of some function, we just describe informally its computation and then add a
new axiom saying that this function is computable).

14.1.2 All models of computation are equivalent

Why do we believe that this or that computational model correctly reflects
the intuitive notion of an algorithm? This statement is usually called “the
Church thesis” (for a given computation model): it claims that any computable
function (computed by an algorithm in the informal sense) is computable in
this model. This assertion is not a mathematical one; it is a belief concerning
the notion of intuitive computability. On the other hand, we can prove that
these assertions for different computation models are equivalent, since it turns
out that the class of computable functions is the same for different existing
models (Turing machines, recursive functions, etc.).

The name given to the thesis is rather inappropriate. Church claimed that
all intuitively computable total functions are computable in his model. A
long controversy followed, in which Gödel took sometimes surprising posi-
tions [BG03]. The first equivalence theorem for two different models (recursive
functions “à la Church” and Turing machines) was established by Turing in
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his seminal article, and the thesis in its most general form was formulated
by Post. Therefore, a more appropriate name would be “Church–Turing–Post
thesis”.

All this was done in the 1930s, so why Kolmogorov might want to sug-
gest a different computation model in the 1950s? His motivation could be
reconstructed as follows. Though all computation models mentioned above
are equivalent, the translation between them sometimes replaces one step in
one model by a long sequence of steps in another one. For example, an ad-
dition may be an elementary operation in some programming language while
its implementation by Turing machine requires many steps.

Kolmogorov wanted to find a model whose steps are “elementary” in the
sense that they do not allow natural decomposition into a sequence of simpler
steps. On the other hand, he tried to find a most general (and natural) model
among these models. This means that elementary steps of any other model
(if they are indeed elementary according to our intuition) should not require
further decomposition when translated into Kolmogorov’s model.

14.1.3 Kolmogorov–Uspensky machines

The model suggested by Kolmogorov was later called Kolmogorov–Uspensky
machines. These machines are not related to Kolmogorov complexity, but
they are related to Kolmogorov himself; hence we say a couple of words about
them.

The configuration (state of the computation) of a Kolmogorov–Uspensky
machine is a graph; some node of this graph is declared to be active. The pro-
gram for the machine is a list of rules that say how this active part should be
transformed and when the processing halts. So the computation step is indeed
“local”; it deals with a finite size neighborhood of the active node. On the other
hand, the “topological structure” of the computation can become rather com-
plicated. This may be considered as a disadvantage of the model since it allows
some actions that are hard to perform in a physical space. (For example, a
Kolmogorov–Uspensky machine can create a labeled tree that provides an un-
reasonably fast access to an exponential amount of information.) So one may
want to restrict somehow the class of allowed graphs [US93, Gur88, BG03].
Later a version of this model was considered by Schönhage (who used di-
rected graphs with unlimited in-degrees). It seems pertinent to mention here
the development of the GASM (Gurevich Abstract State Machines) which
were inspired by Kolmogorov–Uspensky machines but have other goals and
do not play a specific role in the classical computability theory. The first com-
plete description of Kolmogorov–Uspensky machines may be found in [KU58];
a more modern presentation is given in [US93].

14.1.4 Universality

Now we are accustomed to the idea that the same processor can be used to
perform different tasks if provided with a suitable program. However, this idea
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of “universal computation” was a nontrivial and very important step in the
development of the first real computers.

The same idea can be formally expressed as follows: there exists a universal
computable function U of two arguments p and x. The universality means
that we can obtain any computable function of x by fixing an appropriate
first argument p (a program for this function).

Why does a universal function exist? Imagine an interpreter of an arbitrary
programming language that considers its first argument p as a program and
executes this program using x as its input.

14.1.5 Non-computable functions

The existence of a universal computable function immediately brings us to a
paradox. Consider the function F (p) = U(p, p) + 1. This (unary) function is
computable since U is. It should then have a program associated to it (since
U is universal); let us denote this program by q. What happens if we apply
program q to itself? By definition of U this gives U(q, q). On the other hand,
since q is a program for F , the same result must be equal to F (q) = U(q, q)+1.
So we get U(q, q) = F (q) = U(q, q) + 1, and this seems impossible.

The only way to explain this paradox is to recall that certain computations
may never terminate, so a program may compute a non-total function. And
the contradiction disappears if U(q, q) is not defined.

A similar argument shows that the halting problem is undecidable: there
is no algorithm that gets a program p and input x and tells whether U(p, x)
is defined (= whether the program p terminates on input x).

14.1.6 Back to algorithms

Returning to practice, let us note that the notion of a computable function
captures only one aspect of algorithmic practice. For example, the behavior
of a real-time algorithm (such as an operating system) is a more complicated
thing than a mere function. The choice of a correct mathematical model for
this class of algorithms (very important for practice) is a well studied but not
fully solved problem of theoretical computer science.

14.2 Descriptions and sizes

Any information may be encoded as a bit string (a finite sequence of bits).
For this reason, in what follows we assume that our algorithms deal with bit
strings. Binary strings are also called words in the alphabet B = {0, 1}, and
the set of all binary strings is denoted as B

∗. We identify B
∗ with the set

Z
+ \ {0} = {1, 2, 3, . . .} using the lexicographic order. (The empty word is

associated with 1, then 0 �→ 2, 1 �→ 3, 00 �→ 4, 01 �→ 5, etc.: a string u
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is associated with a natural number that has binary representation 1u. For
example, the word 00 corresponds to the number 1002, i.e. 4.)

The length |u| of a binary word u, i. e., the number of letters in it, is
then equal to the integral part 'log u( of the binary logarithm of the number
associated with u. (Note that |u| stands for the length of the word u and not
for the absolute value of the corresponding integer.)

Definition 1. Let f : B
∗ → B

∗ be a computable function. We define the
complexity of x ∈ B

∗ with respect to f as

Kf(x) =
{

min |t| such that f(t) = x,
∞ if such t does not exist.

In other terms, we call descriptions of x (with respect to f) all strings t
such that f(t) = x; then the complexity Kf(x) is defined as the length of the
shortest description.

The main problem with this definition is that the complexity depends
on the choice of f . It is unavoidable, but the theorem stated below (due
to Kolmogorov but already present, in an informal way, in the paper of
Solomonoff [Sol64]) explains in which way this dependence can be limited.
This theorem was later independently proved by Chaitin but does not appear
in his first papers on the subject [Cha66a, Cha66b] − the priority claims have
provoked a long and futile controversy explained in [LV97].

Theorem 1 (Existence of an optimal function). There exists a com-
putable function f0 (called optimal function) such that for any other com-
putable function f there exists a constant C such that

∀x Kf0(x) ≤ Kf (x) + C . (14.1)

(Note that the constant C may depend on f but not on x.)

Proof. Let t be a shortest description of x with respect to f , i. e. f(t) = x.
Then f0 uses as a description of x the pair (p, t) where p is a program that
computes the function f . In this pair p has |p| bits and t has |t| bits, so the
total number of bits is |p|+ |t|, i.e. |p|+Kf(x). So we let C = |p|. �

Remark 1. This argument needs some refinement. We cannot use the pair
(p, t) directly; we need to encode it by a single string. Not any encoding will
work. An appropriate encoding may encode p in a very inefficient way − this
only increases the constant C. On the other hand, it is essential to be able to
encode t without any loss of space since an encoding of t which demands, say,
α|t| bits with α > 1 leads to the complexity αKf (x)+C instead of Kf (x)+C.

Corollary 1. If f1 and f2 are two optimal functions then there exists a con-
stant C such that

∀x |Kf1(x)−Kf2(x)| ≤ C . (14.2)
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Proceeding from this corollary, we choose some optimal function f0 and fix it.
The subscript f0 in Kf0 is then suppressed. However, after doing this we still
have in mind that in fact the Kolmogorov complexity is defined only up to a
bounded additive term.

Definition 2. The Kolmogorov complexity K(x) is the complexity Kf0(x)
with respect to some optimal function f0. The complexity K(x) is defined up
to a bounded additive term.

Proposition 1.

K(x) ≤ |x|+ C, or, equivalently, K(x) ≤ log x+ C . (14.3)

Proof. It suffices to let f(x) = x in (14.1), i. e. to use x itself as a description
of x. �

Proposition 2 (Distribution of complexities). Consider all binary strings
of length n. The fraction of strings x of length n such that K(x) < n− k does
not exceed 2−k.

Proof. The number of strings of length n is 2n while the number of (potential)
descriptions of length less than n− k is

1 + 2 + . . .+ 2n−k−1 < 2n−k .

�

There exist strings of length n whose complexity is at least n (they are often
called incompressible strings). Indeed, there are 2n strings of length n and at
most 1 + 2 + . . .+ 2n−1 = 2n − 1 potential descriptions of length less than n.

One may ask for an example of an incompressible string. However, it is
not possible to find an incompressible string of length n effectively (having
n as input). Indeed, if it were possible, a string generated by this algorithm
would have complexity logn+ c since we need to specify n (about logn bits)
and the algorithm itself (constant number of bits), and logn+ c is less than n
for all sufficiently large n.

Incompressible strings are a useful tool in theoretical computer science
(automata theory, formal languages, etc.).

Today everybody uses software for data compression and decompression;
this was not the case in the 1960s when Kolmogorov complexity was intro-
duced. However, the Kolmogorov complexity theory may still provide useful
hints: for example, if a software advertisement claims that a latest version
of the super-compressor compresses every file by a certain factor, you better
avoid this product.

Finally, to prepare for the next section (on Gödel’s incompleteness theo-
rem), we present a variation on a well known theme of busy beavers. Initially
the busy beaver numbers were defined as follows. Consider Turing machines
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that have at most n states and whose tape alphabet consists of two symbols
(say, “blank” and “stroke”). We start such a machine on the blank tape. Some
machines do not terminate at all. For the machines that terminate we count
the number of steps; let T (n) be the maximal number of steps among the
terminating machines with at most n states.

Evidently, T (n) is an increasing function of n since we consider all machines
that have at most n states. It grows very fast; in fact, it grows faster that any
computable function (does not have a computable upper bound). Indeed, if
a computable upper bound f(n) exists, it may be used to solve the halting
problem, since we know that if a machine with n states does not terminate
after f(n) steps, it will never terminate. So no computable function, even a

fast growing one, like n!n!·
··n!

(n! levels), is an upper bound for T (n).
But here we consider a different (but related) fast-growing function. Let

us define δ(n) as the biggest integer that has complexity less than n. It exists
since the number of descriptions of size less than n is finite. By definition
we have n ≤ K(x) for any x > δ(n), e.g. for x = δ(n) + 1. If the function
δ were computable we would have K(δ(n) + 1) ≤ logn + C since n might
serve as a description of δ(n) + 1. The contradiction is evident. Hence, δ is
not computable. In a similar way we can prove that δ grows faster than any
computable function. (It suffices to replace δ(n) in the preceding inequalities
by any computable upper bound for δ.)

14.3 Gödel’s theorem

14.3.1 It is proved that one cannot prove everything

The function K(x) is not computable. How can we use it? For example, to
prove theorems. Maybe the most remarkable example is the proof of Gödel’s
incompleteness theorem. Roughly speaking, this theorem claims that not all
the truths are provable. Mathematics has its intrinsic limits: there exist propo-
sitions that are true but impossible to prove.

We propose to you a more “concrete” form of a proposition that is true
but unprovable; it was suggested by Gregory Chaitin [Cha70].

Theorem 2 (Gödel’s incompleteness theorem). There exists a num-
ber m such that for every x the proposition

K(x) ≥ m

is unprovable.

Note that the set of all x such that K(x) < m is finite. So the proposition
K(x) ≥ m is true for infinitely many values of x. And all these truths have
no proof.



14 Kolmogorov complexity 289

Proof of Gödel’s theorem.

We use the same argument as in the previous section (when we proved that
the busy beaver function δ(n) is non-computable) with some modifications.

Suppose that the statement is false, i.e. that for any integerm there exists x
such that the proposition “K(x) ≥ m” is provable. Then consider an algorithm
that finds this x given m:

• input: an integer m;
• enumerate all the theorems (a theorem is a proposition which has a proof);
• as soon as a theorem “K(x) ≥ m” is found, return x.

Using this algorithm, we may consider its input m as a description of its
output x. Therefore, according to (14.3), K(x) ≤ logm + C. But, on the
other hand, K(x) ≥ m is a theorem (and therefore is true; we assume that all
theorems are true, otherwise our notion of proof would be bad). So

m ≤ logm+ C .

The constant C is “absolute”: it depends neither on m nor on x. So we get a
contradiction, since this inequality is false for sufficiently large m. �
For a neophyte it is difficult to appreciate fully this simple argument. One
should know, however, that Gödel’s theorem had literally shattered the math-
ematical community at the beginning of the 1930s. The projects and hopes of
great mathematicians, such as David Hilbert, to get a complete formal theory
as a framework for mathematics were reduced to nothing. Gödel’s theorem
became (and remains) one of the basic results and one of the gems of math-
ematical logic. (Numerous volumes are devoted to this theorem, including
philosophical essays and popular expositions; the bestseller by Douglas Hof-
stadter [Hof79] has 800 pages.) Generations of logicians tried to understand
fully why and how mathematics is incomplete. Due to all their work, we are
now able to explain the proof of this theorem in a single paragraph.

A philosopher once remarked that “every profound idea passes through
three stages during its development: (1) it is impossible; (2) it is maybe pos-
sible but incomprehensible; (3) it is trivial”. It seems that Gödel’s theorem
has already arrived to the third stage.

14.3.2 Formal systems

Of course, our account of the complexity proof of Gödel theorem is quite
informal. An informed reader may be worried about this. He had probably
heard the words formal systems. Indeed, we speak about proofs and theorems
but do not say what the axioms or inference rules are (or any other proof
machinery). It turns out, however, that in fact we do not need to go into
these details. There is only one property of the proof system that is necessary.
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Definition 3 (Formal system). A proof system is an algorithm that gener-
ates statements, and all these statements are true.

All usual proof systems (based on axioms and inference rules) are formal
systems according to the above definition. Indeed, theorems can be enumer-
ated in the following way: write all the strings of characters in a certain order;
for each of them check whether it is a derivation (starts with axioms, follows
inference rules, etc.); if yes, find the statement that has been derived (usually
the last statement of the derivation) and output this statement.

This assumes that there is an algorithm that can distinguish derivations
from other character strings, but this is true for all reasonable formal systems.
Otherwise, how could we check that a proof is correct? (By a vote of members
of a jury? By asking an oracle, a prophet or another sort of authority? By a
tournament of knights like in Middle Ages? By drawing lots?) This is indeed
the basic underlying idea of a formal system; the correctness of proofs should
be verified “mechanically”, that is, by an algorithm.

14.3.3 Berry paradox

Gregory Chaitin, who suggested this remarkable proof, mentioned that this
proof is a formalization of the “Berry paradox” published by Bertrand Russell
in 1908. It considers

the smallest integer N whose description
needs more than thousand words.

First of all, the integers that need more than one thousand words in order
to be described, do exist − just because the number of shorter descriptions
is finite. Therefore, the boxed sentence characterizes the integer N without
ambiguity; in other words, it is a description of N . But it contains less than
thousand words!

Quite often a paradox appears since we refer to a notion not well defined.
What is this notion here? The notion of the smallest element (in a set of posi-
tive integers) used in the phrase is well defined: the axiom of induction implies
that every non-empty subset of N has the smallest element. On the other hand,
the notion of “description” is indeed not well formalized. Kolmogorov com-
plexity provides a formal framework for this notion. Then, replacing words by
bits, consider (for every m)

the smallest integer N such that K(N) > m.

Such an integer exists for every m; however, this expression (for a given m)
is not a description of N in Kolmogorov’s sense, since there is no algorithm
that finds this N . But if we change the sentence and say

the first integer N such that K(N) > m is provable
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(where “first” means “first in the sequence of generated proofs”), then it is
indeed a description of complexity logm + c, and the only way to avoid the
contradiction is to conclude that for some m there are no proofs of statements
of the form K(N) > m. As you see, we come to the proof of Gödel’s theorem
explained above.

14.3.4 Gödelian propositions: “concrete” examples

Good students often ask: is it possible to give a concrete example of an un-
provable proposition?

This question sets a trap for us. Without doubt, we mean a true but
unprovable proposition. But how, then, could we know that some proposition
is true if it has no proof? Apparently, we should have other reasons, and very
strong reasons, by the way, in order to believe that it is true.

Logicians know different ways to address this problem. For example, we
can provide two statement “A” and “not A” that are unprovable. Then we
know that at least one of them is true but unprovable. (But this probably
cannot be considered as a “concrete” example.)

The other possibility is to consider different theories: a weak one (e.g.
first-order arithmetic) and a stronger one (second-order arithmetic or set
theory). Then we show a statement that is not provable in the weak the-
ory, and this fact as well as the statement itself can be proved in the strong
theory.

This is the approach found by Gödel himself. He proved that by using
only (first-order) arithmetic it is impossible to prove that this theory (first-
order arithmetic) is consistent, i. e. that it does not contain a contradiction.
But the consistency of the (first-order) arithmetic can be proved in the set
theory or second-order arithmetic (and, last but not least, it is confirmed by
mathematical practice).

Kolmogorov complexity provides us with another procedure of producing
Gödelian (that is, true but unprovable) propositions. Let us suppose that
the number m in the Gödel theorem is, say, 100. (A careful reasoning can
indeed provide some specific value for m. It depends on the formal system
we use and the optimal function we choose in the definition of Kolmogorov
complexity.)

Then we may toss up a coin, say, 500 times, and then claim that the
complexity of the sequence of bits obtained is greater than 100. This statement
will be impossible to prove, but we may be practically sure that it is true: the
probability of getting a false statement in this way is less than 2−400 (see
the proposition about the distribution of complexities on p. 287). We thus
obtain an arithmetic statement which we believe to be true for probabilistic
reasons.
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14.4 Definition of randomness

14.4.1 Questions, questions, questions...

The more we think about the notions of probability and randomness, the more
difficult is to explain even the most “basic” things. Let us start by an example
borrowed from the everyday life. Suppose that you see a car whose number
on the licence plate is 7777 ZZ 77. This number seems rather extraordinary,
doesn’t it? As to the number 7353 NY 42, it seems perfectly “normal”. Why?

We would like to say: because the first number has very small probability.
Yet, this answer is not valid: the probability of the first number is exactly the
same as that of the second. If we suppose that all digits and all letters are
equiprobable and independent, then this probability is equal to 1/(106×262).
When we toss up a coin 1000 times, the probability to get 1000 heads is 2−1000,
but the probability of every other sequence of heads and tails is exactly the
same! Why then does the sequence of 1000 identical tosses arouse a suspicion
as to its random character?

If we think more about this phenomenon, we finally understand that, in
fact, while speaking about car “numbers”, we do not mean individual numbers
but sets of “similar” numbers. The first number is a representative of the set
of numbers where “the digits are repeated, and also the letters”. This set
is simple to describe, and its probability is small. As to the second number,
it is “just a number”. We are unable to outline its specific simple property
which would describe a set of small probability. (And, if you are, this was
not intended by the authors.) This is related to complexity: a simple property
that is true only for few objects makes these objects simple.

Now, let us go further: what is probability?
Despite what one might believe, probability theory (whose rigorous mathe-

matical foundation was provided by Kolmogorov himself in 1933) does not an-
swer this question. This theory formulates, in a form of axioms, the properties
of probabilities. It also permits to calculate probabilities of certain events when
probabilities of other events are known. Thus, it treats probability theory just
as any other branch of mathematics, without bothering much about “useless”
philosophical questions. People were quite satisfied by this situation − except
for Kolmogorov.

How would you explain to an intelligent person with no mathematical
background what probability is? You claim that when one tosses a coin, the
probability to get a head is 1/2. Then he starts to question you:

− I don’t understand the word “probability” in your sentence.
− I mean that the chances to get a head or a tail are equal.
− Hm. . . you’ve replaced the word “probability” by “chance”, but what does

it mean?
− OK, OK. I would only like to say that in, say, a thousand of coin tosses

you get approximately half of heads and half of tails.
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− Ah. . . It seems that I begin to understand something. For the moment,
I won’t ask you how precise this approximation is. But please tell me: do
you really guarantee that the fraction of heads is always close to one half?

− Alas, no. It is not always the case, but it is true with a very high probability.
However, there remain extremely small chances to get (for example) only
the heads.

− “With a very high probability”! Again this word! You started to explain
what probability is, but now you use the same notion in a much more
complicated context, that of 1000 tosses instead of one. Frankly, all that
is not very serious.

− But wait, wait! I can give you axioms which describe the properties of
probabilities. . .

− To know the properties of something is certainly very important. But it
would also be good, before speaking about properties, to understand what
is the object whose properties we want to study. The sepulkas are used for
sepulation, one puts them in a sepulkary, they can be assembled in beads,
and they are able to wistle4: do you understand anything here?

− We’ve been talking for a long time already, but there still remains an
approach by which I could try to convince you. You see, the property of
having the proportion of 0’s and of 1’s close to 1/2 is true not only with a
large probability; it is also true for all random sequences. The sequences
which do not satisfy this property are just not random.

− Is the sequence of alternating zeros and ones random according to you?
− No, it is not. It is obviously too regular to be random.
− Then I don’t understand at all what you are speaking about. What does

the word random mean?
− Mmm. . .
− Are there at least any axioms which would describe the properties of the

objects you call random?
− Mmm. . .

14.4.2 Random sequences

The approach based on Kolmogorov complexity permits to define the notion
of an individual random sequence formally without any references to proba-
bilities. For infinite sequences of bits it provides a sharp boundary between
random and non-random sequences. For finite sequences (binary strings) we
have no hope to achieve this sharp division. (Indeed, changing one bit cannot
make a random sequence non-random, but a sequence of changes can.)

For a finite sequence, to be random is a synonym of having a complexity
close to the length. In other words, the best (or close to the best) way to
describe such a sequence is to present it literally. Then we can prove that
in a random sequence the frequency of zeros (and ones) is close to 1/2. For

4 See Stanis�law Lem, Memoirs of a space traveller, London, 1982
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example, consider a sequence of 1000 bits that contains, say, 300 ones and
700 zeros. This fact significantly reduces its complexity, and therefore the se-
quence is not random. (Indeed, we can say that this is a sequence that has
number N in the list of all sequences that have 300 ones and 700 zeros, and

one can see that the bit length of N is much smaller than 1000: N ≤
(

1000
300

)

hence logN ≤ log
(

1000
300

)
< 877.) So the random sequence should contain

approximately equal number of zeros and ones. However, if we push the same
reasoning a little further, we see that if a sequence had exactly the same num-
ber of zeros and ones, we would also have some nontrivial information about
it, so it could not be perfectly random. For a truly random sequence, zeros
and ones must be slightly unbalanced (the difference should be proportional
to the square root of the length).

As we have said, according to Kolmogorov’s idea a sequence is random
if it is “almost” incompressible. However, complexity is defined for finite se-
quences. Therefore to define randomness for an infinite sequence we need to
consider some finite strings related to it. The most natural choice is prefixes.

If an infinite sequence is denoted by x, let x1:n denote a finite string con-
sisting of the first n bits of x. We could try the following definition: x is
random if and only if

∃C ∀n K(x1:n) > n− C .

The constant term C is natural since the complexity K is defined up to an
additive constant. Unfortunately, this definition does not work: there is no
sequence x that satisfies this requirement. Ten years passed before this dif-
ficulty was resolved. The solution is sometimes considered as a “technical
trick”. However, what is considered as a technical trick by mathematicians
corresponds to a reality well known to computer scientists: we should distin-
guish between a program that reads/writes a bit string (of a specified length)
and a program that reads from the (potentially infinite) input stream or writes
into the output stream. Storing a file or a string, we should reserve additional
place to store its length or reserve some symbol as a terminator. Both solu-
tions require additional space, at least logn bits for keeping the length of an
n-bit string.

There are different technical solutions; one of them is that we require our
descriptions to have the prefix property: if a string t is a description of some x,
then any continuation of t (i. e. any string that extends t) is also a description
of x. So we do not need to say when the description stops, since the trailing
bits do not change anything. If we modify the definition of the Kolmogorov
complexity in this direction (which requires some precautions but is feasible),
the formula suggested in the previous paragraph becomes a reasonable defini-
tion of randomness for infinite sequences. Technically speaking, we may switch
from the “plain” complexity to “prefix” complexity. This gives some other ad-
vantages; for example, for this version of complexity the complexity of a pair
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of binary strings (under any computable encoding) does not exceed the sum
of their complexities. (This is not true for the original “plain” Kolmogorov
complexity where an additive logarithmic term is needed.)

Another Kolmogorov’s idea was to define a random sequence as a sequence
which escapes from every effectively null set. In order to define the notion of an
“effectively null set” we take a usual definition of a null set (a set of measure
zero) and interpret the existential quantifier in an effective way (instead of
mere existence we demand that the required object be provided by some
algorithm). This gives us the following definition:

A set A is an effectively null set if there exists a program p which, for any
integer n given as input, produces an infinite series of strings

x
(n)
0 , x

(n)
1 , . . .

such that for all n ∑

i

2−|x(n)
i | < 1/n

and for every w ∈ A and for every n the sequence w has one of the strings
x

(n)
i as a prefix.

This idea was developed by Martin-Löf [Mar66], a student of Kolmogorov.
The effectively null sets correspond to “non-randomness” tests, and a sequence
is random if it resists to all these tests. The existence of a universal algorithm
allows us to construct one universal test: every sequence which resists to this
test resists as well to all other tests and is therefore random.

One of the principal results of the algorithmic information theory is the
connection between the incompressibility of prefixes of infinite sequence and
its randomness seen as resistance to every algorithmic test. This equivalence is
a theorem proved in the 1970s by Levin and Schnorr [Lev73, Sch73] in the con-
texts of slightly different definitions (they used some version of the so called
“monotone” complexity; see [USS90] for the details). Thus a good definition of
randomness (for an infinite sequence) was obtained; “good” means here that
two different reasonable definitions turn out to be equivalent. Moreover, all
basic theorems of probability theory that have the form “for almost all x the
property P is true” can be now reformulated as follows: “for every random (in
the sense described above) sequence the property P is true”. The latter result
is not a formal statement; we mean that different authors studied different
theorems of this form (e.g. the ergodic theorem) and proved that these the-
orems remain true for every algo-random sequence. In certain cases (e.g. for
ergodic theorem), this is a rather delicate work and about ten years were
required to complete it.

The relation between complexity and measure can be used also for finite
sequences. For example, we may prove that any incompressible sequence has
some property (by showing that sequences which do not have this property
can be compressed). Then we conclude that almost all sequences have this
property (being incompressible).
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14.4.3 Sequences of low complexity

We have seen that the sequences that have prefixes of high complexity are
random. It is natural to ask which sequences have prefixes of small complexity.
There exists a nice theorem, proved independently by several authors long ago
when the theory of Kolmogorov complexity appeared. According to the date
of the first publication, this theorem must be attributed to Albert Meyer and
it was published in a paper by Loveland [Lov69]. Its proof may be found
in [ZL70]. Let us state this result using the notation of the previous section.

Theorem 3. A sequence x is recursive (i. e. computable by an algorithm) if
and only if ∃C ∀n K(x1:n | n) < C.

We use here a slightly more general −namely, conditional− form of Kol-
mogorov complexity. In order to simplify our presentation we did not mention
it until now, but it is a useful and natural notion. We define K(x | y) (com-
plexity of x while knowing y) as the length of the shortest description of x, if
descriptions have access to y as input. Formally,

Kf(x | y) =
{

min |t| such that f(t, y) = x,
∞ if such t does not exist.

The existence of optimal functions is proved in the same way as before. If y
is fixed, the complexity K(x | y) as a function of x coincides with K(x) up to
a constant so we get nothing really new (recall that the complexity is defined
up to an additive constant anyway). But this new notion makes sense, e.g. if
we let y be the length of x (or the number of zeros in x, the substring formed
by bits with even indices, etc.)

The theorem says that the “simplest” infinite sequences are exactly the
computable ones. It is important to use K(x1:n|n) and not K(x1:n) since even
for a computable x the prefix x1:n contains a small amount of information,
i.e. the length n. (Why didn’t we add a similar term in the characterization
of random sequences? In fact this is also possible but not necessary.)

In one direction this theorem is trivial: if a sequence is recursive then
complexity is bounded (in fact, bounded by the complexity of a program that
produces x1:n given n).

The converse implication is more subtle. It is one of the examples that
appear from time to time in theoretical computer science, when it is possible
to prove that an algorithm exists but it is impossible to construct it. In this
specific case we can prove that the sequence is recursive but there is no com-
putable bound on the size of the program generating x that depends only on C.

We can explain informally why this happens (see [DP02, DSV02] for de-
tails) in the following way. Consider a sequence x that starts with a large
number N of zeros that are followed by 1, then some string z and then zeros
again. Any program that generates x gives us complete information about z
(we have only to delete the leading zeros), and its complexity is high if z has
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high complexity. On the other hand the complexity K(x1:n|n) is low if n ≤ N
(since only zeros appear in x1:n and can be low for n > N since in this case
we know some number n greater than N and this information may be useful
for finding z.

14.4.4 Back to the definition of randomness

Our definition of “random sequence” (in this section we say “algo-random”)
can be criticized from many different viewpoints. First, this definition uses
the notion of an algorithm that was never used in probability theory. It leads
to a natural question: is the notion of algorithm really necessary to give a
reasonable definition of a random sequence?

Second, one could note that some easily definable sequences are algo-
random. For example, there exists a sequence defined by G. Chaitin (called ω)
that is algo-random. It is defined as follows. Consider an optimal algorithm in
the sense described in Sect. 14.2, but in the self-delimiting version, and apply
it to random bits obtained by coin tossing. (This algorithm will actually use
only finitely many of these bits to produce the output.) The computation may
terminate or not, depending on the choice of random bits. Then ω is defined
as the probability of termination5.

This sequence is (as Chaitin noted) an algo-random one, and this raises a
question. The proposition “x �= ω for almost all x” is true (almost all sequences
differ from ω). However, we cannot claim that “x �= ω for all algo-random x”,
since ω is one of them. Even if this example seems to be a little artificial, a
true problem is raised.

The first possibility is to change the notion of algo-randomness, allow-
ing a broader class of randomness tests. In this way we obtain a notion of
“arithmo-random” sequences. Two formal definitions are possible: one con-
siders the classical theory based on algorithms and then relativizes these al-
gorithms using arithmetical oracles; the other one defines everything directly
using arithmetic formulas. These two approaches lead to the same notion,
which corresponds to a smaller class of random sequences. The problem is
that this definition is not closed: there is no universal test in the class consid-
ered. This is due to an important structural difference between the enumerable
sets and the arithmetic sets: universal set exists for enumerable sets but not
for the arithmetic ones.

Then we may make another, more radical, suggestion [DKUV03]: let us
consider all the theorems of the form “for almost all x, P (x)”, where P is a for-
mula in some language. There are countably many theorems of this form, and
their set is recursively enumerable. Each of these theorems corresponds to a set
of measure 1 (sequences for which P is true). Consider the intersection of all

5 Similar experiment was performed at the early stages of Unix development. Some
standard utilities were taken and sequences of random bits were fed into them.
The probability of crash turned out to be embarrassingly large
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these sets. The σ-additivity (countable additivity) of the measure guarantees
that this intersection also has measure 1. Let us take this intersection as the
set of random sequences. Then by definition all the theorems of probability
theory (provably true for almost all sequences) are true for the sequences
from this set; however, we encounter then other difficulties (related to the
basic problems in the foundations of set theory, like the absence of the set of
all sets, etc.)

More subtle versions of this approach can be considered, but they are
based on rather delicate techniques of the set theory. For example, instead
a provably minimal set we may consider a set which would be minimal in a
consistent way: this means that it is impossible to prove that it is not minimal.
The existence of such a set is not at all evident; the proof makes use of fine
techniques of the set theory. To give an informal image of this approach we
may compare it with the presumption of innocence. A sequence must always
be presumed random; if it is suspected not to be such, it must be taken to
court; but in the absence of any proofs whatsoever of its “guilt” the sequence
must be exonerated (that is, considered as random) for the benefit of the
doubt.
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Many physical theories like chaos theory are fundamentally concerned with
the conceptual tension between determinism and randomness. Kolmogorov
complexity can express randomness in determinism and gives an approach to
formulate chaotic behavior. As a technical tool to quantify the unpredictability
of chaotic systems we use the Incompressibility Method. We introduce the
method by examples: the distribution of prime numbers and largest clique
size in random graphs.

15.1 Introduction

Ideally, physical theories are abstract representations – mathematical ax-
iomatic theories for the underlying physical reality. This reality cannot be
directly experienced, and is therefore unknown and even in principle unknow-
able. Instead, scientists postulate an informal description which is intuitively
acceptable, and subsequently formulate one or more mathematical theories to
describe the phenomena.

Deterministic Chaos: Many phenomena in physics (like the weather) satisfy
well accepted deterministic equations. From initial data we can extrapolate
and compute the next states of the system. Traditionally it was thought that
increased precision of the initial data (measurement) and increased comput-
ing power would result in increasingly accurate extrapolation (prediction) for
futures of lengths that linearly scaled inversely with the precision. But it has
turned out that for many (i.e. the chaotic) systems it scales not better than
logarithmic inversely with the accuracy. In fact, it turns out that any long
range prediction with any confidence better than what we would get by flip-
ping a fair coin is practically impossible: this phenomenon is known as chaos
(see [Dev89] for an introduction). There are two, more or less related, causes
for this:
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− Instability: In certain deterministic systems, an arbitrary small error in
initial conditions can exponentially increase during the subsequent evolution
of the system, until it encompasses the full range of values achievable by the
system. This phenomenon of instability of a computation is in fact well known
in numerical analysis: computational procedures inverting ill-conditioned ma-
trices (with determinant about zero) will introduce exponentially increasing
errors.
− Unpredictability: Assume we deal with a system described by determinis-
tic equations which can be finitely represented (see below). Even if fixed-length
initial segments of the infinite binary representation of the real parameters de-
scribing past states of the system are perfectly known, and the computational
procedure used is perfectly error free, for many such systems it will still be
impossible to effectively predict (compute) any significantly long extrapola-
tion of system states with any confidence higher than using a random coin
flip. This is the core of chaotic phenomena: randomness in determinism.

Remark 1. In the following we use the notion of “effective computation” in
the well-known mathematical sense of “computability by Turing machine.”
Similarly, we use the notion of “(partial) recursive function” and “(partial)
computable function” interchangeably. In recursion theory such functions are
mappings from a subset of N into N (or into Q, after composition by an explicit
numbering of rationals). In the current context we may want to consider the
extension to real numbers. A function f : N → R is upper semi-computable if
there is a Turing machine T computing a total function φ : N× N → Q such
that φ(x, t+1) ≤ φ(x, t) and limt→∞ φ(x, t) = f(x). This means that f can be
computably approximated from above. If −f is upper semi-computable, then
f is called lower semi-computable. If f is both upper semi-computable and
lower semi-computable, then we call f computable (or recursive, if the range is
integer or rational). (We can similarly consider computable functions with a
real domain: f : R → R. This requires careful definitions and it turns out that
computability implies continuity. But this sophistication is not needed in the
current treatment.) The extension of the notion of computable functions to
domain and range to vectors is straightforward. For details see any textbook
on computability or [LV97].

Remark 2. It is perhaps useful to stress that instability and unpredictability,
although close companions, are not always the same. A trivial example of
instability without unpredictability is a system that makes a first choice in
an instable manner but afterwards sticks to that choice. (Such a system is
equivalent, for instance, to a “dictatorial coin” that gives outcome 0 or 1
with equal probability when flipped the first time, but at every next flip will
give the same outcome it gave the first time.) An example of unpredictability
without instability is a function fr : N → {0, 1} defined by fr(n) = rn, with
r = r1r2 . . . an infinite binary sequence that is random in Martin-Löf’s sense
(see below) and hence unpredictable. (Here n ∈ N plays the rôle of time.)
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Probability: Classical probability theory deals with randomness in the sense
of random variables. The concept of random individual data cannot be ex-
pressed. Yet our intuition about the latter is very strong: an adversary claims
to have a true random coin and invites us to bet on the outcome. The coin
produces a hundred heads in a row. We say that the coin cannot have been
fair. The adversary, however, appeals to probability theory which says that
each sequence of outcomes of a hundred coin flips is equally likely, 1/2100,
and one sequence had to come up. Probability theory gives us no basis to
challenge an outcome after it has happened. We could only exclude unfairness
in advance by putting a penalty side-bet on an outcome of 100 heads. But
what about 1010 . . .? What about an initial segment of the binary expansion
of π?

Regular sequence:

Pr(00000000000000000000000000) =
1

226

Regular sequence:

Pr(01000110110000010100111001) =
1

226

Random sequence:

Pr(10010011011000111011010000) =
1

226

The first sequence is regular, but what is the distinction of the second se-
quence and the third? The third sequence was generated by flipping a quarter.
The second sequence is very regular: 0, 1, 00, 01, . . . The third sequence will
pass (pseudo) randomness tests.

In fact, classical probability theory cannot express the notion of random-
ness of an individual sequence. It can only express expectation of properties
of the total set of sequences under some distribution.

This is analogous to the situation in physics above: “how can an individual
object be random?” is as much a probability theory paradox as “how can
an individual sequence of states of a deterministic system be random?” is a
paradox of deterministic physical systems.

In probability theory the paradox has found a satisfactory resolution by
combining notions of computability and information theory to express the
complexity of a finite object. This complexity is the length of the shortest
binary program from which the object can be effectively reconstructed. It
may be called the algorithmic information content of the object. This quantity
turns out to be an attribute of the object alone, and recursively invariant. It
is the Kolmogorov complexity of the object. It turns out that this notion can
be brought to bear on the physical riddle too, as we shall see below.
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15.2 Kolmogorov complexity

To make this paper self-contained we briefly review notions and properties re-
quired. For details and further properties see the textbook [LV97]. We identify
the natural numbers N with the finite binary sequences as

(0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . . ,

where ε is the empty sequence. The length l(x) is the number of bits in the
binary sequence x (for instance, l(ε) = 0). That defines also the “length” of the
corresponding natural integer. If A is a set, then |A| denotes the cardinality
of A. Let 〈·, ·〉 : N×N → N denote a standard computable bijective “pairing”
function. Throughout this paper, we will assume that 〈x, y〉 = 1l(x)0xy.

Define 〈x, y, z〉 by 〈x, 〈y, z〉〉.
We need some notions from the theory of algorithms, see [Rog67]. Let

φ1, φ2, . . . be a standard enumeration of the partial recursive functions. The
(Kolmogorov) complexity of x ∈ N, given y, is defined as

C(x|y) = min{l(〈n, z〉) : φn(〈y, z〉) = x}.

This means that C(x|y) is the minimal number of bits in a description from
which x can be effectively reconstructed, given y. The unconditional complex-
ity is defined as C(x) = C(x|ε). These notions were originally introduced in
[Kol65].

An alternative definition is as follows. Let

Cψ(x|y) = min{l(z) : ψ(〈y, z〉) = x} (15.1)

be the conditional complexity of x given y with reference to a decoding func-
tion ψ. Then C(x|y) = Cψ(x|y) for a universal partial recursive function ψ
that satisfies ψ(〈y, n, z〉) = φn(〈y, z〉).

We need the following properties. For each x, y ∈ N we have1

C(x|y) ≤ l(x) +O(1). (15.2)

For each y ∈ N there is an x ∈ N of length n such that C(x|y) ≥ n. In
particular, we can set y = ε. Such x’s may be called random, since they are
without regularities that can be used to compress the description: intuitively,
the shortest effective description of such an integer x is x itself. In general,
for each n and y, there are at least 2n− 2n−c+ 1 distinct x’s of length n with

C(x|y) ≥ n− c. (15.3)

In some cases we want to encode x in self-delimiting (s.d.) form x′, in order
to be able to decompose x′y into x and y. Then we will make use of the
1 Throughout O(1) (resp. o(1)) will denote a bounded quantity (resp. a quantity

that converges to 0), whatever its sign, and O(f(n)) will mean f(n)×O(1) (resp.
o(f(n)) will mean f(n) × o(1))
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prefix complexity K(x), introduced in [Lev74], which denotes the length of
the shortest self-delimiting description. To this end, we consider so called
prefix Turing machines, which have only 0’s and 1’s on their input tape, and
thus cannot detect the end of the input. Instead we define an input as that
part of the input tape which the machine has read when it halts. When x �= y
are two such input, we clearly have that x cannot be a prefix of y (that
is, y cannot have the form xz), and hence the set of inputs forms what is
called a prefix code or prefix-free code. We define K(x|y),K(x) similarly to
C(x|y), C(x) above, but with reference to a universal prefix machine that first
reads 1n0 from the input tape and then simulates prefix machine n on the
rest of the input.

Good upper bounds on the prefix complexity of x are obtained by iterating
the simple rule that a self-delimiting description of the length of x followed
by x itself is a s.d. description of x. For example, x′ = 1l(x)0x and x′′ =
1l(l(x))0l(x)x are both s.d. descriptions for x, and this shows that K(x) ≤
2l(x) +O(1) and K(x) ≤ l(x) + 2l(l(x)) +O(1).

Similarly, we can encode x in a self-delimiting form of its shortest program
p(x) (of length l(p(x)) = C(x)) in 2C(x) + 1 bits. Iterating this scheme, we
can encode x as a self-delimiting program of C(x)+2 logC(x)+1 bits2, which
shows that K(x) ≤ C(x) + 2 logC(x) + 1, and so on.

15.2.1 The incompressibility method

The secret of the successful use of Kolmogorov complexity arguments as a
proof technique lies in a simple fact: the overwhelming majority of strings have
almost no computable regularities. We have called such a string “random.”
There is no shorter description of such a string than the literal description: it
is incompressible.

Traditional proofs often involve all instances of a problem in order to con-
clude that some property holds for at least one instance. The proof would be
more simple, if only that one instance could have been used in the first place.
Unfortunately, that instance is hard or impossible to find, and the proof has
to involve all the instances. In contrast, in a proof by the incompressibility
method, we first choose a random (that is, incompressible) individual ob-
ject that is known to exist (even though we cannot construct it). Then we
show that if the assumed property did not hold, then this object could be
compressed, and hence it would not be random. Let us give some simple ex-
amples.

Distribution of prime numbers. A prime number is a natural number that
is not divisible by natural numbers other than itself and 1. In the nineteenth
century, Chebychev showed that the number of primes less than n grows

2 Throughout log denotes the binary logarithm
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asymptotically like n/ logn.3 Using the incompressibility method we cannot
(yet) prove this statement precisely, but we can come remarkably close with
a minimal amount of effort. We first prove that for infinitely many n, the
number of primes less than or equal to n is at least logn/ log logn. The proof
method is as follows. For each n, we construct a description from which n can
be effectively retrieved. This description will involve the primes less than n.
For some n this description must be long, which will give the desired result.

Assume that p1, p2, . . . , pm is the list of all the primes less than n. Then,

n = pe11 p
e2
2 · · · pem

m

can be reconstructed from the vector of the exponents. Each exponent is at
most log n and can be represented by log logn bits. The description of n
(given the maximal order of magnitude logn of the exponents) can be given
in (approximately) m log logn bits. But it can be shown that each n that is
random (given logn) cannot be described in fewer than logn bits, whence the
result follows. Can we do better? This is slightly more complicated. Let l(x)
denote the length of the binary representation of x. We shall show that pm
(the m-th prime number) is ≤ m log2m. (One can show that this is equivalent
to state that the number of primes less or equal to n is greater than n/ log2 n.)

Firstly, any given integer n is completely determined by giving the index
m of its greatest prime factor pm, together with the (integral) quotient n/pm.
Thus we can describe n by E(m)n/pm, where E(m) is a prefix-free encoding of
m. (The description of m needs to be self-delimiting or else we wouldn’t know
where the description of m ends, and where the description of n/pm starts.)
For random n, the length of this description, l(E(m)) + logn− log pm, must
exceed logn. Therefore, log pm < l(E(m)). It is known (and straightforward
from the earlier discussion) that we can set l(E(m)) ≤ logm + 2 log logm.
Hence, pm < m log2m: we have proven our claim.

Random graphs. The interpretation of strings as more complex combinato-
rial objects leads to a new set of properties and problems that have no direct
counterpart in the “flatter” string world. Here we derive topological, combi-
natorial, and statistical properties of graphs with high Kolmogorov complex-
ity. Every such graph possesses simultaneously all properties that hold with
high probability for randomly generated graphs. They constitute “almost all
graphs” and the derived properties a fortiori hold with probability that goes
to 1 as the number of nodes grows unboundedly.

3 More precisely, Chebychev showed (in 1850) that the quotient of π(n) (the number
of primes ≤ n) by n/ log n is bounded by explicit positive constants. In fact, this
ratio tends to log e when n tends to ∞: this is the “prime number theorem”
proved (in 1896) by Hadamard and La Vallée Poussin. One can show that this
theorem is equivalent to this statement: if pn denotes the n-th prime number, then
pn log e
n log n

→ 1 when n → ∞. [Note added by the translator in the French edition
(Michel Balazard).]
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Each labeled graph G = (V,E) on n nodes V = {1, 2, . . . , n} (at most
one non-oriented edge for each pair of different nodes) can be represented
(up to an automorphism) by a binary string E(G) of length

(
n
2

)
: we simply

assume a fixed ordering of the
(
n
2

)
possible edges in an n-node graph, e.g.

lexicographically, and let the ith bit in the string indicate presence (1) or
absence (0) of the i’th edge. Conversely, each binary string of length

(
n
2

)

encodes an n-node graph. Hence we can identify each such graph with its
binary string representation.

We are going to prove that G does not contain a clique (complete graph)
on more than 2 logn+ 1 + o(1) nodes.

Let m be the number of nodes of the largest clique K in G. We try to
compress E(G), to an encoding E′(G), as follows:

1. Prefix the list of nodes in K to E(G), each node using )logn* bits4, adding
m)logn* bits.

2. Delete all redundant bits from the E(G) part, representing the edges be-
tween nodes in K, saving m(m− 1)/2 bits.

Then

l(E′(G)) = l(E(G)) +m)logn* −
(
m

2

)
. (15.4)

Let p be a program which, from n and E′(G), reconstructs E(G). Then,

C(E(G)|n, p) ≤ l(E′(G)). (15.5)

Since there are 2(n
2) labeled graphs on n nodes and at most 2(n

2)−1 binary
descriptions of length less than

(
n
2

)
, we can choose a labeled graph G on n

nodes that satisfies

C(E(G)|n, p) ≥
(
n

2

)
+ o(logn). (15.6)

Equations (15.6), (15.4), and (15.5) are true only when m ≤ 2 logn+1+o(1).
In fact, the discerning reader will by now understand that while the infor-

mation in the new prefix of E′(G) is used by the program p to insert “1”s in
the appropriate slots in the old suffix of E′(G) to reconstruct the edges of the
clique, using another program p′ we show that the largest set of nodes with
no pairwise edges is bounded by the same upper bound. Indeed, every easily
(in O(log n) bits, given the labeled nodes) describable subgraph of G cannot
have more than 2 logn+1 nodes. This includes virtually all properties we can
conceivably be interested in. Moreover, the set of graphs G that satisfy (15.6)
is very large: an easy counting argument shows that of the 2(n

2) labeled graphs
on n nodes, at least (1−1/n)2(n

2) graphs do so. That is, flipping a fair coin to
determine presence or absence of the

(
n
2

)
edges of a labeled graph on n nodes,

4 �x� denotes the smallest integer that is greater than x
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with an overwhelming probability of 1 − 1/n we will flip a graph satisfying
(15.6). Hence our conclusion about the maximal size of easily describable sub-
graphs holds with probability almost 1 (that is, probability ≥ 1 − 1/n) for
randomly generated graphs.

15.2.2 Random sequences

We would like to call an infinite sequence ω ∈ {0, 1}∞ random if C(ω1:n) ≥
n+ O(1) for all n (where ω1:n denotes the sequence composed by the n first
bits of ω). It turns out that such sequences do not exist. This remark led
P. Martin-Löf [Mar66] to create its celebrated theory of randomness. That ω
is random in Martin-Löf’s sense means, roughly, that it will pass all effective
tests for randomness: both the tests which are known now and the ones which
are as yet unknown [Mar66].

Later it turned out, [Cha75], that we can yet precisely define the Martin-
Löf random sequences, but using prefix Kolmogorov complexity:

Theorem 1. An infinite binary sequence ω is random in the sense of Martin-
Löf iff there is an n0 such that K(ω1:n) ≥ n for all n > n0,

Similar properties hold for high-complexity finite strings, although in a less
absolute sense. For every finite set S ⊆ {0, 1}∗ containing x we haveK(x|S) ≤
log |S|+ O(1). Indeed, consider the self-delimiting code of x consisting of its
)log |S|* bit long index of x in the lexicographical ordering of S. This code is
called data-to-model code. The lack of typicality of x with respect to S is the
amount by which K(x|S) falls short of the length of the data-to-model code.
The randomness deficiency of x in S is defined by

δ(x|S) = log |S| −K(x|S), (15.7)

for x ∈ S, and ∞ otherwise. If δ(x|S) is small, then x may be considered
as a typical member of S. There are no simple special properties that single
it out from the majority of elements in S. This is not just terminology: if
δ(x|S) is small, then x satisfies all properties of low Kolmogorov complexity
that hold with high probability for the elements of S. For example: Consider
strings x of length n and let S = {0, 1}n be the set of such strings. Then
δ(x|S) = n −K(x|n) + O(1). Let δ(n) be an appropriate function like logn
or
√
n. Then, the following properties are a finitary analog of Martin-Löf

randomness of infinite sequences, [LV97]:

(i) If P is a property satisfied by all x with δ(x|S) ≤ δ(n), then P holds with
probability at least 1− 1/2δ(n) for the elements of S.

(ii) Let P be any property that holds with probability at least 1 − 1/2δ(n)

for the elements of S. Then, every such P holds simultaneously for every
x ∈ S with δ(x|S) ≤ δ(n)−K(P |n) +O(1).
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Let us go one step further. The notion of randomness of infinite sequences
and finite strings can only exist in the context of a probabilistic ensemble
with respect to which they are a random element. In the above case, for the
infinite sequences this ensemble is the set {0, 1}∞ supplied with the uniform
measure λ, also called the “coin-flip” measure, since λ(ω1 . . . ωn) = 1/2n is
the probability of producing the n-bit string ω1 . . . ωn with n flips of a fair
coin. One can generalize the randomness approach to an arbitrary computable
measure μ. This is a measure such that there is a Turing machine T such that
for every n and ε > 0, on every input ω1 . . . ωn, ε, the machine T halts with
output r such that |μ(ω1 . . . ωn)− r| ≤ ε. (For “Turing machine” we can also
read “computer program” in a universal computer language like LISP or Java.)
We can now talk about μ-random sequences, that is, sequences that satisfy
every property (in the appropriate effective Martin-Löf sense) that holds with
μ-probability 1 for the sequences in {0, 1}∞. The following theorem is taken
from [LV97]:

Theorem 2. Let μ be a computable measure. An infinite binary sequence ω
is μ-random in the sense of Martin-Löf iff there is an n0 such that K(ω1:n) ≥
− logμ(ω1:n) for all n > n0.

Note that for μ = λ, the uniform distribution, we have − logλ(ω1:n) = n,
retrieving Theorem 1 again. We can extend the notion of μ-randomness to
finite strings in the appropriate manner.

15.3 Algorithmic chaos theory

When physicists deal with a chaotic system, they believe that the whole thing
is based on an underlying deterministic system but that the fixed trajectory
is unpredictable on the basis of the observable states. Unfortunately, in the
classical framework this cannot be expressed and therefore one has to use
the kludge of an ensemble of states and trajectories, and to go through the
rigmarole of probabilistic reasoning which is essentially besides the point. But
using Kolmogorov complexity we can express directly the chaoticity of the
system and the unpredictability properties of single trajectories, which is the
intuition one wants to express. This is this idea that we shall advocate now.

For convenience assume that time is discrete: N. In a deterministic system
X the state of the system at time t is Xt. The orbit of the system is the
sequence of subsequent states X0, X1, X2, . . .. For convenience we assume the
states are elements of {0, 1}. The definitions below are easily generalized. For
each system, be it deterministic or random, we associate a measure μ with the
space {0, 1}∞ of orbits. That is, μ(x) is the probability that an orbit starts
with x ∈ {0, 1}∗.

Given an initial segment X0:t of the orbit we want to compute Xt+1. Even
if it would not be possible to compute Xt+1, we would like to compute a
prediction of it which does better than a random coin flip.
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Definition 1. Let the set of orbits of a system X be S = {0, 1}∞ with mea-
sure μ. Let φ be a partial recursive function and let ω ∈ S. Define

ζi =
{

1 if φ(ω1:i−1) = ωi
0 otherwise

A system is chaotic if, for every computable function φ, we have

lim
t→∞

1
t

t−1∑

i=0

ζi =
1
2
,

with μ-probability 1.

Remark 3. For a chaotic system, no computable function φ predicts the
outcomes of the system better than a fair coin flip. In this definition of
chaoticity the essential requirement has been formulated as algorithmic un-
predictability of the orbits. The instability properties of the system are ex-
pressed by the measure μ (as in Definition 1) the system induces. For ex-
ample, let μ be the uniform measure (usually denoted as λ). An orbit like
ω = ω1 . . . ωn11 . . . is perfectly predictable after the first n bits. In fact,
predictability by an appropriate computable function holds for all ω that
are computable sequences, such as the binary expansions of the rationals
but also transcendental numbers such as π = 3.14 . . .. However, for every
ω ∈ S, and every ε > 0, the ω′ such that |ω − ω′| ≤ ε, that is, the ω′ in
the ε-ball around ω, are unpredictable with uniform probability 1. This is
because the set of Martin-Löf random sequences in the ε-ball has the same
uniform measure as the set of all sequences in the ε-ball. So the slightest
random perturbation of an orbit will result in an unpredictable orbit, with
probability 1.

It is not the case, however, that unpredictability implies instability. For
example, if μ concentrates all its probability like μ(ω) = 1 for an ω = ω1ω2 . . .
such that K(ω1:n) ≥ n for all n, that is, ω is Martin-Löf random, then the
subsequent elements of ω are completely unpredictable given the preceding
elements. Yet the orbit is completely stable, in fact, it is deterministic. The
crux is of course that the orbit is a fixed sequence albeit a quite noncomputable
one. We leave it to the reader to construct similar examples where the orbit
is not completely fixed, not instable, but yet completely unpredictable.

Remark 4. In chaos theory one typically considers deterministic systems X
with states x from some domain R evolving in discrete steps according to
xn+1 = f(xn), where the xn’s are real numbers, or vectors of real numbers,
x0 is given as initial value and f is a function mapping the current system
state to the next system state. Physically it makes no sense to consider ar-
bitrary real numbers since they require infinite precision – and that is not
accessible to physical measurement. Moreover, no physical law or constant is
known to hold with a precision of more than, say ten, decimals, and there-
fore the same will hold for the precision of the system evolution operator f .
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Hence, in analysis of the system behavior one replaces the actual values xn
by a finitary approximation represented by an equivalence class containing
xn. These equivalence classes represent the different states we can actually
“distinguish”, “observe” or “measure.” For example, if the xn are taken from
the domain [0, 1] then we can choose to divide the domain [0, 1] into two equal
parts, R0 = [0, 1

2 ) and R1 = [12 , 1]. Subsequently, we consider a system (Xn)
defined by Xn = i if xn ∈ Ri (n = 0, 1, . . . and i ∈ {0, 1}). Note that this
defines both the initial value X0 and the subsequent system states X1, X2, . . .,
from the original system X with initial value x0. “Chaos” is defined for the
derived system (Xn) that represents the evolution of “distinguishable” states.
Now it becomes clear that for different initial states x0 and x′0, even if they
are taken from the same equivalence class, say R0, so X0 = 0, the orbits
X0 = 0, X1, . . . may be quite different from X1 onwards. If this happens so
that the orbit X0 = 0, X1, . . . is in the appropriate sense unpredictable, even
though x0 and the evolution operator f are known, then we call the system
“chaotic.”

Our Definition 1 is based on the following: Let X be a system defined
by xn+1 = f(xn) Suppose we randomly select the initial state x0 from its
domain R according to a measure ρ. That is, if x0 = x0,1x0,2, . . . then the
probability of selecting x0,1 . . . x0,r is ρ(x0,1 . . . x0,r). (This still allows us to
select a particular x0 with probability 1 by concentrating all probability of
ρ on x0.) Considering the derived system of distinguishable states, the prob-
ability of the initial state X0 = i is ρ(Ri) (i ∈ {0, 1}), but although the
probability of the next state X1 is determined completely by ρ and f , it
is sensitive to change of either, and similarly for the states X2, X3, . . . after
that. Nonetheless, f, ρ completely determine the probability of every initial
segment of every orbit of distinguishable states. That is, for an initial seg-
ment ω0 . . . ωn we denote this probability as μ(ω0 . . . ωn), and this defines
the measure μ in Definition 1. Note that if f, ρ are computable in an appro-
priate manner, then so is μ. For example, if f(ω0ω1 . . .) = ω′

0ω
′
1 . . . is such

that there exists a computable monotonic increasing function g and a com-
putable function h such that h(ω0 . . . ωn) = ω′

0 . . . ω
′
g(n), and moreover ρ is

computable, then

μ(X0 . . . Xm) = ρ{ω0 . . . ωn : g(n) = m and h(ω0 . . . ωn) = ω′
0 . . . ω

′
m

and ω′
j ∈ Ri if and only if Xj = i (j = 0, . . . ,m, i ∈ {0, 1})}.

The system is uniformly instable if for every ω and every ε > 0, the ε-ball
{ω′ : |ω − ω′| ≤ ε} has a corresponding set of orbits {X ′

0X
′
1 . . .} that is

in an appropriate sense “dense” in the set of all possible orbits of the sys-
tem. For example, by that set being equal to the set of possible orbits of the
system.

The system is uniformly unpredictable if for every ω and every ε > 0, the
ε-ball {ω′ : |ω − ω′| ≤ ε} produces a set of orbits in which the subset of
Martin-Löf random sequences has full measure. (Here we mean Martin-Löf
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randomness with respect to the uniform distribution, and the “full measure”
with respect to the induced measure μ on the set of orbits X0, X1, . . . of dis-
tinguishable states of the system.)

Clearly, systems can be both uniformly unpredictable and uniformly in-
stable, but they can also be either one without being the other. Chaotic-
ity as in Definition 1 can be the result of any of these three possibili-
ties.

15.3.1 Doubling map

A well-known example of such a chaotic system is the doubling map, see
[For83]. Consider the deterministic system D with initial state x0 = 0.ω a
real number in the interval [0, 1] where ω ∈ S is the binary representation.

xn+1 = 2xn (mod 1) (15.8)

where (mod 1) means droping the integer part. Thus, all iterates of x0 under
the transformation 15.8 lie in the unit interval [0, 1]. This interval corresponds
to what is called the “phase space” in physics. We can partition this phase
space into two cells, a left cell R0 = [0, 1

2 ) and a right cell R1 = [12 , 1]. Thus
xn lies in the left cell R0 if and only if the nth digit of ω is 0.

One way to derive the doubling map is as follows: In chaos theory, [Dev89],
people have for years being studying the discrete-time logistic system Lα

yn+1 = αyn(1− yn)

which maps the unit interval upon itself when 0 ≤ α ≤ 4. When α = 4, setting
yn = sin2 πxn, we obtain:

xn+1 = 2xn (mod 1).

Theorem 3. There are chaotic systems (like the doubling map D and the
logistic map Lα for certain values of α, like alpha = 4), with μ in Definition 1
being the uniform distribution (the coin-flip measure λ, with λ(x) = 2−l(x):
the probability of flipping the finite binary string x with a fair coin).

Proof. We prove that D is a chaotic system. Since L4 reduces to D by spe-
cialization, this shows that L4 is chaotic as well. Assume ω is random. Then
by Theorem 1,

C(ω1:n) > n− 2 logn+O(1). (15.9)

Let φ be any partial recursive function. Construct ζ from φ and ω as in
Definition 1.

Assume by way of contradiction that there is an ε > 0 such that
∣∣∣∣∣ lim
n→∞

1
n

n∑

i=1

ζi −
1
2

∣∣∣∣∣ ≥ ε.
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Then, there is a δ > 0 such that

lim
n→∞

C(ζ1:n)
n

≤ 1− δ. (15.10)

We prove this as follows. The number of binary sequences of length n where
the numbers of 0’s and 1’s differ by at least an εn is

N = 2 · 2n
n∑

m=( 1
2+ε)n

b(n,m,
1
2
) (15.11)

where b(n,m, p) is the probability of m successes out of n trials in a (p, 1− p)
Bernoulli process: the binomial distribution. A general estimate of the tail
probability of the binomial distribution, with m the number of successful
outcomes in n experiments with probability of success 0 < p < 1 and q = 1−p,
is given by Chernoff’s bounds, [ES74, CLR90],

Pr(|m− np| ≥ εn) ≤ 2e−(εn)2/3n. (15.12)

Therefore, we can describe any element ζ1:n concerned by giving n and εn
in 2 logn + 4 log logn bits self-delimiting descriptions, and pointing out the
string concerned in a constrained ensemble of at most N elements in logN
bits, where

N = 2n Pr(|m− np| ≥ εn) ≤ 2n+1e−(εn)2/3n.

Therefore,

C(ζ1:n) ≤ n− ε2n log e+ 2 logn+ 4 log logn+O(1).

That is, we can choose

δ = ε2 log e− 2 logn+ 4 log logn+O(1)
n

·

Next, given ζ and φ we can reconstruct ω as follows:

for i := 1, 2, . . . do:
if φ(ω1:i−1) = a and ζi = 0 then ωi := ¬a
else ωi := a.

Therefore,
C(ω1:n) ≤ C(ζ1:n) +K(φ) +O(1). (15.13)

Now (15.9), (15.10), (15.13) give the desired contradiction. By Theorem 1,
one has

Claim. The set of ω’s satisfying (15.9) has uniform measure one.
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In the definition of the doubling map we have already noted that: Starting
from an initial state x0 = 0.ω1ω2 . . . the doubling map yields the trajectory
X0, X1, . . . with X0 = i iff x0 ∈ Ri and Xj = ωj for j = 1, 2, . . . and i ∈ {0, 1}.
Therefore,

Claim. If we select the initial state x0 with uniform probability from [0, 1],
then the induced measure on the resulting set of trajectories of distinguishable
states X0, X1, . . . of the doubling map is the uniform measure.

Together, Claims 15.3.1, 15.3.1, prove the theorem.

In [For83] the argument is as follows. Assuming that the initial state is
randomly drawn from [0, 1) according to the uniform measure λ, we can use
complexity arguments to show that the doubling map’s observable orbit can-
not be predicted better than a coin toss. Namely, with λ-probability 1 the
drawn initial state will be a Martin-Löf random infinite sequence. Such se-
quences by definition cannot be effectively predicted better than a random
coin toss, see [Mar66].

But in this case we do not need to go to such trouble. The observed orbit
essentially consists of the consecutive bits of the initial state. Selecting the ini-
tial state randomly from the uniform measure is isomorphic to flipping a fair
coin to generate it. The approach we have taken above, however, allows us to
treat chaoticity under nonuniform measures of selecting the initial condition.
Moreover, we can think of initial states that are computable but pseudoran-
dom versus prediction algorithms that are polynomially time bounded. Such
extensions will be part of a future work.

From a practical viewpoint it may be argued that we really are not inter-
ested in infinite sequences: in practice the input will always be finite precision.
Now an infinite sequence which is random may still have an arbitrary long
finite initial segment which is completely regular. Therefore, we analyse the
theory for finite precision inputs in the following section.

15.3.2 Chaos with finite precision input

In the case of finite precision real inputs, the distinction between chaotic and
non-chaotic systems can be precisely drawn, but it is necessarily a matter of
degree. This occasions the following definition.

Definition 2. Let S, μ, φ, ω and ζ be as in Definition 1. A deterministic sys-
tem with input precision n is (ε, δ)-chaotic if, for every computable function
φ, we have ∣∣∣∣∣

1
n

n∑

i=1

ζi −
1
2

∣∣∣∣∣ ≤ ε,

with μ-probability at least 1− δ.
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So systems are chaotic in the sense of Definition 1, like the doubling map
above, iff they are (0, 0)-chaotic with precision ∞. The system is probably
approximately unpredictable: a pai-chaotic system.

Theorem 4. Systems D and Lα (for certain values of α, like α = 4) above
are (

√
(δ(n) +O(1)) ln 2/n, 1/2δ(n))-chaotic for every function δ such that 0 <

δ(n) < n, with μ in Definition 2 being the uniform measure λ.

Proof. We prove that D is (ε, δ)-chaotic. Since L4 reduces to D, this implies
that L4 is (ε, δ)-chaotic as well. Assume that x is a binary string of length n
with

C(x) ≥ n− δ(n). (15.14)

Let φ be a polynomial time computable function, and define z by:

zi =
{

1 if φ(x1:i−1) = xi
0 otherwise

Then, x can be reconstructed from z and φ as before, and therefore:

C(x) ≤ C(z) +K(φ) +O(1).

By (15.14) this means

C(z) ≥ n− δ(n)−K(φ) +O(1). (15.15)

We analyse the number of zeros and ones in z (we shall denote by # ones(z)
the number of ones in z). Using Chernoff’s bounds, Equation 15.12, with
p = q = 1

2 , the number N of z’s which have an excess of ones over zeros such
that

|# ones(z)− n

2
| ≥ εn,

is such that:
N ≤ 2n+1e−(εn)2/n.

Then, we can give an effective description of z by giving a description of φ, δ
and z’s index in the set of size N in this many bits

n− ε2n log e+K(φ) +K(δ) +O(1). (15.16)

From (15.15), (15.16) we find

ε ≤

√
δ(n) + 2K(φ) +K(δ) +O(1)

n log e
· (15.17)

Making the simplifying assumption that K(φ),K(δ) = O(1) this yields

|# ones(z)− n

2
| ≤

√
(δ(n) +O(1))n ln 2 . (15.18)
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The number of binary strings x of length n with C(x) < n − δ(n) is at
most 2n−δ(n) − 1 (there are not more programs of length less than n− δ(n)).
Therefore, the uniform probability of a real number starting with an n-length
initial segment x such that C(x) ≥ n− δ(n) is given by:

λ{ω : C(ω1:n) ≥ n− δ(n)} > 1− 1
2δ(n)

· (15.19)

Therefore, since we use the same doubling map D as in Theorem 3, the
initial uniform distribution on the inputs induces a uniform distribution μ = λ
on the corresponding set of trajectories of distinguishable states. Moreover,
each such trajectory is the same bit sequence as the decimal expansion of
the initial state. Then, by the almost equivalent two claims as in the proof
of Theorem 3, the system D is (ε, δ) chaotic with ε =

√
(δ(n) +O(1)) ln 2/n

and δ = 1/2δ(n).
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