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Preface

 

Thousands of engineers use finite-element codes, such as ANSYS, for thermome-
chanical and nonlinear applications. Most academic departments offering advanced
degrees in mechanical engineering, civil engineering, and aerospace engineering offer
a 

 

first-level course

 

 in the finite-element method, and by now, almost all undergraduates
of such programs have some exposure to the finite-element method. A number of
departments offer a second-level course. It is hoped that this text will appeal to
instructors of such courses. Of course, it hopefully will also be helpful to engineers
engaged in self-study on nonlinear and thermomechanical finite-element analysis.

The principles of the finite-element method are presented for application to the
mechanical, thermal, and thermomechanical response, both static and dynamic, of
linear and nonlinear solids. It provides an integrated treatment of:

• Basic principles, material models, and contact models (for example, linear
elasticity, hyperelasticity, and thermohyperelasticity).

• Computational, numerical, and software-design aspects (such as finite-
element data structures).

• Modeling principles and strategies (including mesh design).

The text is designed 

 

for a second-level course, as a reference work, or for self
study

 

. Familiarity is assumed with the finite-element method at the level of a first-
level graduate or advanced undergraduate course.

A first-level course in the finite-element method, for which many excellent books
are available, barely succeeds in covering static linear elasticity and linear heat transfer.
There is virtually no exposure to nonlinear methods, which are topics for a second-
level course. Nor is there much emphasis on 

 

coupled

 

 thermomechanical problems.
However, many engineers could benefit from a text covering nonlinear problems
and the associated continuum thermomechanics. Such a text could be used in a
formal class or for self-study. Many important applications have significant nonlin-
earity, making nonlinear finite-element modeling necessary. As a few examples, we
mention polymer processing; metal forming; rubber components, such as tires and
seals; biomechanics; and crashworthiness. Many applications combine thermal and
mechanical response, such as rubber seals in hot engines. Engineers coping with
such applications have access to powerful finite-element codes and computers.
However, they often lack and urgently need an in-depth but compact exposition of
the finite-element method, which provides a foundation for addressing future prob-
lems. It is hoped this text also fills this need.

Of necessity, a selection of topics has been made, and topics are given coverage
proportional to the author’s sense of their importance to the reader’s understanding.
Topics have been selected with the intent of giving a unified and complete, but still
compact and tractable, presentation. Several other excellent texts and monographs
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have appeared over the years, from which the author has benefited. Four texts to
which the author is indebted are:

1. Zienkiewicz, O.C. and Taylor R.L., 

 

The Finite Element Method

 

, Vols. 1
and 2, McGraw Hill, London, 1989.

2. Kleiber, M., 

 

Incremental Finite Element Modeling in Nonlinear Solid
Mechanics

 

, Chichester, Ellis Horwood, Ltd., 1989.
3. Bonet, J. and Wood, R.D., 

 

Nonlinear Continuum Mechanics for Finite
Element Analysis

 

, Cambridge, Cambridge University Press, 1997.
4. Belytschko, T., Lui, W.K, and Moran, B., 

 

Nonlinear Finite Elements for
Continua and Structures

 

, New York, John Wiley and Sons, 2000.

This text has the following characteristics:

1. Emphasis on the use of Kronecker Product notation instead of tensor,
tensor-indicial, Voigt, or traditional finite-element, matrix-vector notation.

2. Emphasis on integrated and coupled thermal and mechanical effects.
3. Inclusion of elasticity, hyperelasticity, plasticity, and viscoelasticity

 

 with
thermal effects.

 

4. Inclusion of nonlinear boundary conditions, including contact, in an inte-
grated 

 

incremental variational 

 

formulation.

Kronecker Product algebra (KPA) has been widely used in control theory for many
years (Graham, 1982). It is highly compact and satisfies simple rules: for example,
the inverse of a Kronecker Product of two nonsingular matrices is the Kronecker
Product of the inverses. Recently, a number of extensions of KPA have been intro-
duced and shown to permit compact expressions for otherwise elaborate quantities
in continuum and computational mechanics. Examples include:

1. Compact expressions for the tangent-modulus tensors in hyperelasticity
(invariant-based and stretch-based; compressible, incompressible, and near-
incompressible), thermohyperelasticity, and finite-strain plasticity.

2. A general, compact expression for the tangent stiffness matrix in nonlinear
FEA, including nonlinear boundary conditions, such as contact.

KPA with recent extensions can completely replace other notations in most cases
of interest here. In the author’s experience, students experience little difficulty in
gaining a command of it.

The first three chapters concern mathematical foundations, and Kronecker Product
notation for tensors is introduced. The next four chapters cover relevant linear and
nonlinear continuum thermomechanics to enable a unified account of the finite-element
method. Chapters 8 through 15 represent a compact presentation of the finite-element
method in linear elastic, thermal, and thermomechanical media, including solution
methods. The final five chapters address nonlinear problems based on a unified set of
incremental variational principles. Material nonlinearity is treated also, as is geometric
nonlinearity and nonlinearity due to boundary conditions. Several numerical issues in
nonlinear analysis are discussed, such as iterative triangularization of stiffness matrices.
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1

 

Mathematical 
Foundations: Vectors
and Matrices

 

1.1 INTRODUCTION

 

This chapter provides an overview of mathematical relations, which will prove useful
in the subsequent chapters. Chandrashekharaiah and Debnath (1994) provide a more
complete discussion of the concepts introduced here.

 

1.1.1 R

 

ANGE

 

 

 

AND

 

 S

 

UMMATION

 

 C

 

ONVENTION

 

Unless otherwise noted, repeated Latin indices imply summation over the range
1 to 3. For example:

(1.1)

(1.2)

The repeated index is “summed out” and, therefore, dummy. The quantity 

 

a

 

ij

 

b

 

jk

 

 in
Equation (1.2) has two free indices, 

 

i 

 

and 

 

k 

 

(and later will be shown to be the 

 

ik

 

th

 

entry of a second-order tensor). Note that Greek indices do not imply summation.
Thus, 

 

a

 

α

 

b

 

α

 

 

 

=

 

 

 

a

 

1

 

b

 

1

 

 if 

 

α

 

 

 

=

 

 1.

 

1.1.2 S

 

UBSTITUTION

 

 O

 

PERATOR

 

The quantity, 

 

δ

 

ij

 

, later to be called the Kronecker tensor, has the property that

(1.3)

For example, 

 

δ

 

ij

 

v

 

j

 

 

 

=

 

 1 

 

×

 

 

 

v

 

i

 

, thus illustrating the substitution property.

1

a b a b a b a b a bi i i i

i

= = + +
=

∑
1

3

1 1 2 2 3 3

a b a b a b a bij jk i k i k i k= + +1 1 2 2 3 3

δ ij

i j

i j
=

=
≠





1

0
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2

 

Finite Element Analysis: Thermomechanics of Solids

 

1.2 VECTORS

1.2.1 N

 

OTATION

 

Throughout this and the following chapters, orthogonal coordinate systems will be
used. Figure 1.1 shows such a system, with base vectors 

 

e

 

1

 

, 

 

e

 

2

 

, and 

 

e

 

3

 

. The scalar
product of vector analysis satisfies

(1.4)

The vector product satisfies

(1.5)

It is an obvious step to introduce the alternating operator, 

 

ε

 

ijk

 

, also known as the

 

ijk

 

th

 

 entry of the permutation tensor:

(1.6)

 

FIGURE 1.1

 

Rectilinear coordinate system.

3

2

1
v1

v2

v

e1

e2

e3

v3

e ei j ij⋅ = δ

e e

e

e

0

i j

k

k

i j ijk

i j ijk

i j

× =

≠

− ≠

=










    and  in right-handed order

    and  not in right-handed order

    

ε ijk i j k

ijk

ijk

ijk

= × ⋅

= −










[ ]e e e

1

1

0

       distinct and in right-handed order

     distinct but not in right-handed order

       not distinct
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Mathematical Foundations: Vectors and Matrices

 

3

 

Consider two vectors, 

 

v

 

 and 

 

w

 

. It is convenient to use two different types of
notation. In 

 

tensor indicial notation

 

, denoted by (*T), 

 

v 

 

and 

 

w

 

 are represented as

*T) (1.7)

Occasionally, base vectors are not displayed, so that 

 

v

 

 is denoted by 

 

v

 

i

 

. By
displaying base vectors, tensor indicial notation is explicit and minimizes confusion
and ambiguity. However, it is also cumbersome.

In this text, the “default” is 

 

matrix-vector

 

 (*M) notation, illustrated by

*M) (1.8)

It is compact, but also risks confusion by not displaying the underlying base
vectors. In *M notation, the transposes 

 

v

 

T

 

 and

 

 

 

w

 

T

 

 

 

are also introduced; they are
displayed as “row vectors”:

*M) (1.9)

The scalar product of 

 

v

 

 and 

 

w

 

 is written as

*T)

(1.10)

The magnitude of 

 

v

 

 is defined by

*T) (1.11)

The scalar product of 

 

v

 

 and 

 

w

 

 satisfies

*T) (1.12)

in which 

 

θ

 

vw

 

 is the angle between the vectors 

 

v

 

 and 

 

w

 

. The scalar, or dot, product is

*M) (1.13)

v e w e= =v wi i i i

v w=

















=

















v

v

v

w

w

w

1

2

3

1

2

3

  

v wT T= ={ } { }v v v w w w1 2 3 1 2 3    

v w e e

e e

⋅ = ⋅

= ⋅

=

=

( ) ( )v w

v w

v w

v w

i i j j

i j i j

i j ij

i i

δ

            

v v v= ⋅

v w v w⋅ =  cosθvw

v w v wT⋅ →
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4

 

Finite Element Analysis: Thermomechanics of Solids

 

The vector, or cross, product is written as

*T)
(1.14)

Additional results on vector notation are presented in the next section, which
introduces matrix notation. Finally, the vector product satisfies

*T) (1.15)

and 

 

vxw 

 

is colinear with 

 

n

 

 the unit normal vector perpendicular to the plane containing

 

v 

 

and 

 

w

 

. The area of the triangle defined by the vectors 

 

v

 

 and 

 

w 

 

is given by 

 

1.2.2 G

 

RADIENT

 

, D

 

IVERGENCE

 

, 

 

AND

 

 C

 

URL

 

The derivative, 

 

d

 

φ

 

/

 

dx

 

, of a scalar 

 

φ

 

 

 

with respect to a vector

 

 

 

x

 

 is defined implicitly by

*M) (1.16)

and it is a row vector whose 

 

i

 

th

 

 entry is 

 

d

 

φ

 

/

 

dx

 

i

 

. In three-dimensional rectangular
coordinates, the gradient and divergence operators are defined by

*M) (1.17)

and clearly,

*M) (1.18)

The gradient of a scalar function 

 

φ 

 

satisfies the following integral relation:

(1.19)

The expression  will be seen to be a tensor (see Chapter 2). Clearly,

(1.20)

v w e e

e

× = ×

=

v w

v w

i j i j

ijk i j kε

v w v w× =  sinθvw

1
2 v w× .

d
dφ φ=
d

d
x

x

∇ =





















∂
∂
∂
∂
∂

∂

( )

( )

( )

( )

x

y

z

d

dx

T




 = ∇( ) ( )

∇ = ∫∫ φ φdV dSn

∇vT

∇ = ∇ ∇ ∇vT [ ]v v v1 2 3
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Mathematical Foundations: Vectors and Matrices

 

5

 

from which we obtain the integral relation

(1.21)

Another important relation is the divergence theorem. Let 

 

V 

 

denote the volume
of a closed domain, with surface 

 

S

 

. Let 

 

n 

 

denote the exterior surface normal to 

 

S

 

,
and let 

 

v

 

 denote a vector-valued function of 

 

x

 

, the position of a given point within
the body. The divergence of 

 

v

 

 satisfies

*M) (1.22)

The curl of vector 

 

v

 

, 

 

∇

 

 

 

×

 

 

 

v

 

, is expressed by

(1.23)

which is the conventional cross-product, except that the divergence operator replaces
the first vector. The curl satisfies the curl theorem, analogous to the divergence
theorem (Schey, 1973):

(1.24)

Finally, the reader may verify, with some effort that, for a vector 

 

v

 

(

 

X

 

) and a
path 

 

X

 

(

 

S

 

) in which 

 

S

 

 is the length along the path,

. (1.25)

The integral between fixed endpoints is single-valued if it is path-independent,
in which case 

 

n

 

 

 

⋅

 

 

 

∇

 

 

 

×

 

 

 

v

 

 must vanish. However, 

 

n

 

 is arbitrary since the path is
arbitrary, thus giving the condition for 

 

v

 

 to have a path-independent integral as

. (1.26)

 

1.3 MATRICES

 

An 

 

n

 

 

 

×

 

 

 

n

 

 matrix is simply an array of numbers arranged in rows and columns, also
known as a second-order array. For the matrix 

 

A

 

, the entry 

 

a

 

ij

 

 

 

occupies the intersection
of the 

 

i

 

th

 

 row and the 

 

j

 

th

 

 column. We may also introduce the 

 

n

 

 

 

×

 

 1 first-order array a,
in which ai denotes the ith entry. We likewise refer to the 1 × n array, aT, as first-order.

∇ = ∫∫ v nvT TdV dS

d

d
dV dS

v
x

n vT= ∫∫

( )∇ × = ∂
∂

v i ijk
j

kx
vε

∇ × = ×∫ ∫v n vdV dS

v X n v⋅ = ⋅ ∇ ×∫ ∫d S dS( )

∇ × =v 0
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6 Finite Element Analysis: Thermomechanics of Solids

In the current context, a first-order array is not a vector unless it is associated with
a coordinate system and certain transformation properties, to be introduced shortly.
In the following, all matrices are real unless otherwise noted. Several properties of
first- and second-order arrays are as follows:

The sum of two n × n matrices, A and B, is a matrix, C, in which cij = aij + bij.
The product of a matrix, A, and a scalar, q, is a matrix, C, in which cij = qaij.
The transpose of a matrix, A, denoted AT, is a matrix in which  A is

called symmetric if A = AT, and it is called antisymmetric if A = −AT.
The product of two matrices, A and B, is the matrix, C, for which

*T) (1.27)

Consider the following to visualize matrix multiplication. Let the first-order
array  denote the ith row of A, while the first-order array bj denotes the jth column
of B. Then cij can be written as

*T) (1.28)

The product of a matrix A and a first-order array c is the first-order array d
in which the ith entry is di = aijcj.

The ijth entry of the identity matrix I is δij. Thus, it exhibits ones on the diagonal
positions (i = j) and zeroes off-diagonal (i ≠ j). Thus, I is the matrix
counterpart of the substitution operator.

The determinant of A is given by

*T) (1.29)

Suppose a and b are two non-zero, first-order n × 1 arrays. If det(A) = 0, the
matrix A is singular, in which case there is no solution to equations of the form
Aa = b. However, if b = 0, there may be multiple solutions. If det(A) ≠ 0, then there
is a unique, nontrivial solution a.

Let A and B be n × n nonsingular matrices. The determinant has the following
useful properties:

*M) (1.30)

a aij ji
T =

c a bij ik kj=

a i
T

cij i j= a bT

det( )A = 1
6

ε εijk pqr ip jq kra a a

det( ) det( )det( )

det( ) det( )

det( )

AB A B

A AT

=

=

=I 1
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Mathematical Foundations: Vectors and Matrices 7

If det(A) ≠ 0, then A is nonsingular and there exists an inverse matrix, A−1,
for which

*M) (1.31)

The transpose of a matrix product satisfies

*M) (1.32)

The inverse of a matrix product satisfies

*M) (1.33)

If c and d are two 3 × 1 vectors, the vector product c × d generates the vector
c × d = Cd, in which C is an antisymmetric matrix given by

*M) (1.34)

Recalling that c × d = εikjckdj, and noting that εikjck denotes the (ij)th component
of an antisymmetric tensor, it is immediate that [C]ij = εikjck.

If c and d are two vectors, the outer product cdT generates the matrix C given by

*M) (1.35)

We will see later that C is a second-order tensor if c and d have the transformation
properties of vectors.

An n × n matrix A can be decomposed into symmetric and antisymmetric
matrices using

(1.36)

AA A A I− −= =1 1

( )AB B AT T T=

( )AB B A− − −=1 1 1

C =

−

−

−



















0

0

0

3 2

3 1

2 1

c c

c c

c c

C =



















c d c d c d

c d c d c d

c d c d c d

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

A A A A A A A A AT T= + = + = −s a s a,     [ ],     [ ]
1
2

1
2
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8 Finite Element Analysis: Thermomechanics of Solids

1.3.1 EIGENVALUES AND EIGENVECTORS

In this case, A is again an n × n tensor. The eigenvalue equation is

(1.37)

The solution for xj is trivial unless A − λjI is singular, in which event det(A − λjI) =
0. There are n possible complex roots. If the magnitude of the eigenvectors is set to unity,
they may likewise be determined. As an example, consider

(1.38)

The equation det(A − λjI) = 0 is expanded as (2 − λj)
2 − 1, with roots λ1,2 = 1, 3, and

(1.39)

Note that in each case, the rows are multiples of each other, so that only one row
is independent. We next determine the eigenvectors. It is easily seen that magnitudes
of the eigenvectors are arbitrary. For example, if x1 is an eigenvector, so is 10x1.
Accordingly, the magnitudes are arbitrarily set to unity. For x1 = {x11 x12}

T,

(1.40)

from which we conclude that  A parallel argument furnishes

If A is symmetric, the eigenvalues and eigenvectors are real and the eigenvectors
are orthogonal to each other:  The eigenvalue equations can be “stacked
up,” as follows.

(1.41)

With obvious identifications,

(1.42)

( )A I x 0− =λ j j

A =












2 1

1 2

A I A I− =












− =
−

−













λ λ1 2

1 1

1 1

1 1

1 1
    

  

  

x x x x11 12 11
2

12
20 1+ = + =    

x T
1 1 1 2= −{ } / .

x T
2 1 1 2= { } / .

x xT
i j ij= δ .

  

A x x x ] x x x[ : : [ : : ]

. . .

. . .

. . . . .

. . .

. . .

1 2 1 2

1

2

1

0

0

0

0

K Kn n

n

n

=



























−

λ

λ

λ

λ

AX X= ΛΛ
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Mathematical Foundations: Vectors and Matrices 9

and X is the modal matrix. Let yij represent the ijth entry of Y = XTX

(1.43)

so that Y = I. We  can conclude that X is an orthogonal tensor: XT = X−1. Further,

(1.44)

and X can be interpreted as representing a rotation from the reference axes to the
principal axes.

1.3.2 COORDINATE TRANSFORMATIONS

Suppose that the vectors v and w are depicted in a second-coordinate system whose
base vectors are denoted by  Now,  can be represented as a linear sum of the
base vectors ei:

*T) (1.45)

But then  It follows that δij =  = (qikek) ⋅ (qjlel) =
qikqjlδkl, so that

*T)

In *M) notation, this is written as

*M) (1.46)

in which case the matrix Q is called orthogonal. An analogous argument proves that
QTQ = I. From Equation (1.30), 1 = det(QQT) = det(Q)det(QT) = det2(Q). Right-
handed rotations satisfy det(Q) = 1, in which case Q is called proper orthogonal.

1.3.3 TRANSFORMATIONS OF VECTORS

The vector v′ is the same as the vector v, except that v′ is referred to  while v is
referred to ei. Now

*T)

(1.47)

yij i j ij= =x xT δ

X AX A X XT T= =ΛΛ ΛΛ          

′e j . ′e j

′ =e ej ji iq

e ei j ij ijq⋅ ′ = = ′cos( ).θ ′ ⋅ ′e ei j

q q q qik jk ik kj

ij

=

=

T

δ          

QQ IT =

′e j ,

′ = ′ ′

= ′

=

v e

e

e

v

v q

v

j j

j ji i

i i
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10 Finite Element Analysis: Thermomechanics of Solids

It follows that  and hence

*M) (1.48)

in which qij is the jith entry of QT.
We can also state an alternate definition of a vector as a first-order tensor. Let

v be an n × 1 array of numbers referring to a coordinate system with base vectors
ei. It is a vector if and only if, upon a rotation of the coordinate system to base
vectors  v′ transforms according to Equation (1.48).

Since  is likewise equal to dφ,

*M) (1.49)

for which reason dφ/dx is called a contravariant vector, while v is properly called a
covariant vector.

Finally, to display the base vectors to which the tensor A is referred (i.e., in
tensor-indicial notation), we introduce the outer product

(1.50)

with the matrix-vector counterpart  Now

(1.51)

Note the useful result that

In this notation, given a vector b = bkek,

(1.52)

as expected.

v v qi j ji= ′ ,

v Q v v QvT= ′ ′ = ( )      ( )a b

′e j ,
( )d

d dφ
x x′ ′

d

d

d

d

φ φ
x x

QT





′
= 





e ei j∧

e eT
i j .

A e e= ∧aij i j

e e e ei j k i jk∧ ⋅ = δ

Ab e e e

e e e

e

e

= ∧ ⋅

= ∧ ⋅

=

=

a b

a b

a b

a b

ij i j k k

ij k i j k

ij k i jk

ij j i

δ
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Mathematical Foundations: Vectors and Matrices 11

1.3.4 ORTHOGONAL CURVILINEAR COORDINATES

The position vector of a point, P, referring to a three-dimensional, rectilinear, coor-
dinate system is expressed in tensor-indicial notation as RP = xiei. The position vector
connecting two “sufficiently close” points P and Q is given by

(1.53)

where

(1.54)

with arc length

(1.55)

Suppose now that the coordinates are transformed to yj coordinates: xi = xi(yj).
The same position vector, now referred to the transformed system, is

(1.56)

in which hα is called the scale factor. Recall that the use of Greek letters for indices
implies no summation. Clearly, γγγγα is a unit vector. Conversely, if the transformation
is reversed,

(1.57)

∆∆R R R dR= − ≈P Q x

dR ex i idx=

dS dx dxx i i=

dR g

g

y

j j

dy

h

h
dx

dy

dx

dy

=

=

=

∑ α α

α α α

α
α α

1

3

γγ

γγα

α α

α

α α

=

=

dx
dy

dx
dy

dx
dy

i

i
i

i

j j

h

dx

dy

e

e
1

dR g

g

y i i

i

j
i j

dy

dy

dx
dx

=

=
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12 Finite Element Analysis: Thermomechanics of Solids

then the consequence is that

(1.58)

We restrict attention to orthogonal coordinate systems yj, with the property that

(1.59)

The length of the vector dRy is now

(1.60)

Under restriction to orthogonal coordinate systems, the initial base vectors ei can be
expressed in terms of γγγγα using

(1.61)

and furnishing

(1.62)

Also of interest is the volume element; the volume determined by the vector
dRy is given by the vector triple product

(1.63)

and h1h2h3 is known as the Jacobian of the transformation. For cylindrical coordinates
using r, θ, and z, as shown in Figure 1.2, x1 = rcosθ, x2 = rsinθ, and x3 = z. Simple
manipulation furnishes that hr = 1, hθ = r, hz = 1, and

(1.64)

which, of course, are orthonormal vectors. Also of interest are the relations der =
eθ dθ and deθ = −er dθ.

e gj
i

j
i

j

dy

dx

dy

dx
h= = ∑ α

α α
α

γγ

γγ γγα β αβδT =

dS h dy dyy i i= α

e e

e

T
i j i j

i

i

j
j

i j

i

j

k

j
k

h

x

y

h h

x

y

x

y

= ( )
=

∂
∂

=
∂
∂

∂
∂

γγ γγ

γγ1

1

1
h h

x

y

x

yi j

i

j

k

j
ik

∂
∂

∂
∂

= δ

dV h dy h dy h dy

h h h dy dy dy

y = ⋅ ×

=

( ) [ ]1 1 1 2 2 2 3 3 3

1 2 3 1 2 3

γγ γγ γγ

e e e e e e e er z= + = − + =cos sin sin cosθ θ θ θθ1 2 1 2           3
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Mathematical Foundations: Vectors and Matrices 13

Transformation of the coordinate system from rectilinear to cylindrical coordi-
nates can be viewed as a rotation of the coordinate system through θ. Thus, if the
vector v is referred to the reference rectilinear system and v′ is the same vector
referred to a cylindrical coordinate system, then in two dimensions,

(1.65)

If v′ is differentiated, for example, with respect to time t, there is a contribution
from the rotation of the coordinate system: for example, if v and θ are functions of
time t,

(1.66)

where the partial derivative implies differentiation with θ instantaneously held fixed
and

(1.67)

FIGURE 1.2 Cylindrical coordinate system.

x1

x3

x2

er

ez

eθ

r

θ

′ = = −



















v Q v Q( ) ( )

cos sin

sin cosθ θ

θ θ

θ θ

0

0

0 0 1

d

dt

d

dt

d

dt

t

d

dt

′ = +

= ∂
∂

′ + ′

v Q v
Q

v

v
Q

Q vT

( )
( )

( )
( )

θ θ

θ θ

d

dt

d

dt

Q( )
sin cos

cos sin
θ

θ θ

θ θ θ=

−

− −



















0

0

0 0 1
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14 Finite Element Analysis: Thermomechanics of Solids

Now  is an antisymmetric matrix ΩΩΩΩ (to be identified later as a tensor)
since

(1.68)

In fact,

(1.69)

It follows that

(1.70)

in which ωωωω is the axial vector of ΩΩΩΩ.
Referring to Figure 1.3, spherical coordinates r, θ, and φ are introduced by the

transformation

(1.71)

FIGURE 1.3 Spherical coordinate system.

x3
eφ

eθ

x2

x1

er

π φ
φ

φ

θ

θ

d
dt

Q TQ( ) ( )θ θ

0 Q Q
Q

Q
Q

QT T T
T

= = + 





d

dt

d

dt

d

dt
( ( ) ( ))

( )
( )

( )
( )θ θ θ θ θ θ

d

dt

d

dt

Q
QT( )

( )
θ θ θ= −

















0 1 0

1 0 0

0 0 0

d

dt t
′ = ∂

∂
′ + × ′v v vωω

x r x r x r1 2 3= = =cos cos sin cos sinθ φ θ φ φ        

0749_Frame_C01  Page 14  Wednesday, February 19, 2003  4:55 PM

© 2003 by CRC CRC Press LLC 



Mathematical Foundations: Vectors and Matrices 15

The position vector is given by

(1.72)

Now er has the same direction as the position vector: r = rer. Thus, it follows that

(1.73)

Following the general procedure in the preceding paragraphs,

(1.74)

The differential of the position vector furnishes

(1.75)

The scale factors are hr = 1, hθ = rcos φ, hφ = r.
Consider a vector v in the rectilinear system, denoted as v′ when referred to a

spherical coordinate system:

(1.76)

Eliminating e1, e2, e3 in favor of er, eθ, eφ and using *M notation permits writing

(1.77)

r e e e

e e e

= + +

= + +

x x x

r r r

1 1 2 2 3 3

1 2 3cos cos sin cos sinθ φ θ φ φ

e e e er = + +cos cos sin cos sinθ φ θ φ φ1 2 3

∂
∂

=
∂
∂

= −
∂
∂

= −

∂
∂

=
∂
∂

=
∂
∂

= −

∂
∂

=
∂
∂

=
∂
∂

=

x

r

x
r

x
r

x

r

x
r

x
r

x

r

x x
r

1 1 1

2 2 2

3 3 30

cos cos sin cos cos sin

sin cos cos cos sin sin

sin cos

θ φ
θ

θ φ
φ

θ φ

θ φ
θ

θ φ
φ

θ φ

φ
θ φ

φ

d dr r d rdrr e e e= + +cosφ θ φθ φ

e e e e

e e e

e e e e

e e e e

e e e e

e e e

r r

r

r

= + +

= − +

= − + +

= − −

= + −

= +

cos cos sin cos sin

sin cos

sin [cos sin ] cos

cos cos sin sin cos

sin cos cos sin sin

sin cos

θ φ θ φ φ

θ θ

φ θ θ φ

θ φ θ φ θ

θ φ θ φ θ

φ φ

θ

φ

θ φ

θ φ

φ

1 2 3

1 2

1 2 3

1

2

3 .

v e e e v e e e= + + ′ = + +v v v v v vr r1 1 2 2 3 3     .θ θ φ φ

′ = = −

− −



















v Q v Q( , ) , ( , )

cos cos sin cos sin

sin cos

sin cos sin sin cos

.θ φ θ φ

θ φ θ φ φ

θ θ

φ θ φ θ φ

0
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16 Finite Element Analysis: Thermomechanics of Solids

Suppose now that v(t), θ, and φ are functions of time. As in cylindrical coordinates,

(1.78)

where ωωωω is the axial vector of  After some manipulation,

(1.79)

1.3.5 GRADIENT OPERATOR

In rectilinear coordinates, let ψ be a scalar-valued function of x: ψ(x), starting with
the chain rule

*T)

(1.80)

Clearly, dψ is a scalar and is unaffected by a coordinate transformation. Suppose
that x = x(y): dr′ = gidyi. Observe that

(1.81)

d

dt t
′ = ∂

∂
′ + × ′v v vωω

d
dt

Q TQ( ) ( ).θ θ

d
dt

d
dt

d
dt

d
dt

Q( )
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( )
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θ θ
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θ θ

φ
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=

−
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
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



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


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
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

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






0

0

0

0 0 0

0 0

0

 

Q QT sinsin
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1 0 0−

+

−


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


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



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



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

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d
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i
i

i i i
i

ψ ψ

ψ ψ ψ

= ∂
∂

= ∇ ⋅ = ∇ = ∂
∂

[ ] ,r r e e                   

d
x

dx

h y
h dy

h y
h dy

i
iψ ψ

ψ

ψ

α α
α α

α

α

α αα
β β β

β

= ∂
∂

= ∂
∂

= ∂
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
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Mathematical Foundations: Vectors and Matrices 17

implying the identification

(1.82)

For cylindrical coordinates in tensor-indicial notation with er = γγγγr, eθ = γγγγθ, ez = γγγγz,

(1.83)

and in spherical coordinates

(1.84)

1.3.6 DIVERGENCE AND CURL OF VECTORS

Under orthogonal transformations, the divergence and curl operators are invariant
and satisfy the divergence and curl theorems, respectively. Unfortunately, the trans-
formation properties of the divergence and curl operators are elaborate. The reader
is referred to texts in continuum mechanics, such as Chung (1988). The development
is given in Appendix I at the end of the chapter. Here, we simply list the results.
Let v be a vector referred to rectilinear coordinates, and let v′ denote the same vector
referred to orthogonal coordinates. The divergence and curl satisfy

(1.85)

and

(1.86)

and in cylindrical coordinates:

(1.87)

( )∇ ′ = ∂
∂∑ψ ψα

α αα
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h y
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∂
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∂
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+ ∂
∂
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∂
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e e
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∂
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
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h
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18 Finite Element Analysis: Thermomechanics of Solids

and

(1.88)

APPENDIX I: DIVERGENCE AND CURL OF VECTORS
IN ORTHOGONAL CURVILINEAR COORDINATES

DERIVATIVES OF BASE VECTORS

In tensor-indicial notation, a vector v can be represented in rectilinear coordinates
as v = vkek. In orthogonal curvilinear coordinates, it is written as 

A line segment dr = dxiei transforms to dr′ = dykgk. Recall that

(a.1)

From Equation (a.1),

(a.2)

The bracketed quantities are known as Cristoffel symbols. From Equations (a.1 and a.2),

(a.3)

Continuing,

(a.4)
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∂
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∂
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∂
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Mathematical Foundations: Vectors and Matrices 19

DIVERGENCE

The development that follows is based on the fact that

(a.5)

The differential of v′ is readily seen to be

(a.6)

First, note that

(a.7)

Similarly,

(a.8)
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d dv v dj j j j′ = +v γγ γγ

dv
v

y
dy

h

v

y
h dy

h

v

y
h dy

h

v

y
d

j j
j

k
j k

j
j

j
j

j
j

γγ γγ

γγ

γγ γγ γγ

γγ γγ

=
∂
∂

=
∂
∂







=
∂
∂

∧






⋅

=
∂
∂

∧






⋅ ′

∑

∑ ∑

∑

1

1

1

α α
α α

α

α α
α

α
β β β

β

α α
α

α

( )

( )

r

v d v
y

dy

v

h y
h dy
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20 Finite Element Analysis: Thermomechanics of Solids

Consequently,

(a.9)

CURL

In rectilinear coordinates, the individual entries of the curl can be expressed as a
divergence, as follows. For the ith entry,

(a.10)

Consequently, the curl of v can be written as

(a.11)

The transformation properties of the curl can be readily induced from Equation (a.9).

1.4 EXERCISES

1. In the tetrahedron shown in Figure 1.4, A1, A2, and A3 denote the areas
of the faces whose normal vectors point in the −e1, −e2, and −e3 directions.
Let A and n denote the area and normal vector of the inclined face,
respectively. Prove that

2. Prove that if σσσσ is a symmetric tensor with entries σij, that

3. If v and w are n × 1 vectors, prove that v × w can be written as

dv
dr h

v

y
v c

h

v

y
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j j j j j
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∂
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∂
∂
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
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δ1 1
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i ijk
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j
j
i

j
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jki k

i
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x
w w v

ε

ε             

     

∇ × =

∇ ⋅

∇ ⋅

∇ ⋅
















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w

w

( )

( )

( )

1
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3

n e e e= + +
A

A

A

A

A

A
1

1
2

2
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3

ε σijk jk i= =0 1 2 3, , , .      

v w Vw× =

0749_Frame_C01  Page 20  Wednesday, February 19, 2003  4:55 PM

© 2003 by CRC CRC Press LLC 



Mathematical Foundations: Vectors and Matrices 21

in which V is an antisymmetric tensor and v is the axial vector of V.
Derive the expression for V.

4. Find the transposes of the matrices

(a) Verify that AB ≠ BA.
(b) Verify that (AB)T = BTAT.

5. Consider a matrix C given by

Verify that its inverse is given by

6. For the matrices in Exercise 4, find the inverses and verify that

7. Consider the matrix

FIGURE 1.4 Geometry of a tetrahedron.
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







1 1
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
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

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sin cos
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22 Finite Element Analysis: Thermomechanics of Solids

Verify that
(a) QQT = QTQ
(b) QT = Q−1

(c) For any 2 × 1 vector a

[The relation in (c) is general, and Qa represents a rotation of a.]
8. Using the matrix C from Exercise 5, and introducing the vectors (one-

dimensional arrays)

verify that

9.  Verify the divergence theorem using the following block, where

10. For the vector and geometry of Exercise 9, verify that

FIGURE 1.5 Test figure for the divergence theorem.

Qa a=

a b=








 =











q

r

s

t
       

a Cb b C aT T T=

v =
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+













x y

x y

Y

X
1

1

n v v× = ∇ ×∫ ∫dS dV
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Mathematical Foundations: Vectors and Matrices 23

11. Using the geometry of Exercise 9, verify that

using

12. Obtain the expressions for the gradient, divergence, and curl in spherical
coordinates.

n A AT× = ∇ ×∫ ∫dS dV

a x y x y

a x y x y

a x y x y

a x y x y

11
2 2

12
2 2

21
2 2

22
2 2

= + + +

= + + −

= + − −

= − − −
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Mathematical 
Foundations: Tensors

 

2.1 TENSORS

 

We now consider two 

 

n

 

 

 

×

 

 1 vectors, 

 

v

 

 and 

 

w

 

, and an 

 

n

 

 

 

×

 

 

 

n

 

 matrix, 

 

A

 

, such that 

 

v 

 

=

 

Aw

 

. We now make the important assumption that the underlying information in this
relation is preserved under rotation. In particular, simple manipulation furnishes that

 

∗

 

�

 

)

(2.1)

The square matrix 

 

A

 

 is now called a second-order tensor if and only if 

 

A

 

′

 

 

 

=

 

 

 

QAQ

 

T

 

.
Let 

 

A

 

 and 

 

B

 

 be second-order 

 

n

 

 

 

×

 

 

 

n

 

 tensors. The manipulations that follow
demonstrate that 

 

A

 

T

 

, (

 

A

 

 

 

+

 

 

 

B

 

), 

 

AB

 

, and 

 

A

  

−−−−

 

1

 

 are also tensors.

(2.2)

(2.3)

(2.4)

(2.5)

2
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=

=
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Finite Element Analysis: Thermomechanics of Solids

 

Let 

 

x

 

 denote an 

 

n

 

 

 

×

 

 1 vector. The outer product, 

 

xx

 

T

 

, is a second-order tensor since

(2.6)

Next,

(2.7)

However,

(2.8)

from which we conclude that the Hessian 

 

H

 

 is a second-order tensor.
Finally, let 

 

u

 

 be a vector-valued function of

 

 x

 

. Then,  from which

(2.9)

and also

(2.10)

We conclude that

(2.11)

Furthermore, if 

 

d

 

u

 

′

 

 is a vector generated from 

 

d

 

u

 

 by rotation in the opposite
sense from the coordinate axes, then 

 

d

 

u

 

′ =

 

 

 

Q

 

d

 

u

 

 and 

 

d

 

x

 

 

 

=

 

 

 

Q

 

d

 

x

 

′

 

. Hence, 

 

Q

 

 is a tensor.
Also, since , it is apparent that

(2.12)

from which we conclude that  is a tensor. We can similarly show that 

 

I

 

 and 

 

0

 

are tensors.
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27

 

2.2 DIVERGENCE, CURL, AND LAPLACIAN 
OF A TENSOR

 

Suppose 

 

A

 

 is a tensor and 

 

b

 

 is an arbitrary, spatially constant vector of compatible
dimension. The divergence and curl of a vector

 

 

 

have already been defined. For later
purposes, we need to extend the definition of the divergence and the curl to 

 

A

 

.

 

2.2.1 D

 

IVERGENCE

 

Recall the divergence theorem  Let , in which 

 

b

 

 is an
arbitrary constant vector. Now

(2.13)

Consequently, we must define the divergence of 

 

A

 

 such that

 

*

 

�

 

) (2.14)

In tensor-indicial notation,

(2.15)

Application of the divergence theorem to the vector 

 

c

 

j

 

 

 

=

 

 

 

b

 

i

 

a

 

ij

 

 furnishes

(2.16)

Since 

 

b

 

 is arbitrary, we conclude that

(2.17)

Thus, if we are to write  as a (column) vector, mixing tensor- and matrix-
vector notation,

(2.18)
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T T T

T T
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= ∇

= ∇

= ∇
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∂
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It should be evident that ( ) has different meanings when applied to a tensor
as opposed to a vector.

Suppose 

 

A

 

 is written in the form

(2.19)

in which  corresponds to the 

 

i

 

th

 

 row of  It is easily seen that

(2.20)

 

2.2.2 C

 

URL

 

 

 

AND

 

 L

 

APLACIAN

 

The curl of vector 

 

c

 

 satisfies the curl theorem  Using tensor-
indicial notation,

(2.21)

From the divergence theorem applied to the tensor 

 

c

 

ij
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ε

 

ijk
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kl 

 

b

 

l

 

,

(2.22)

Let  denote the row vector (array) corresponding to the 

 

l

 

th

 

 row of 

 

A

 

:  
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a

 

lk

 

. It follows that

(2.23)
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2
T

3
T
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

αα
αα
αα
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1
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c n dSb c a b

ijk j kl l
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=
∂
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If ββββ

 

I

 

 is the array for the 

 

I

 

th

 

 column of 

 

A

 

, then

(2.24)

The Laplacian applied to 

 

A

 

 is defined by

(2.25)

It follows, therefore, that

(2.26)

The vectors ββββ

 

i

 

 satisfy the Helmholtz decomposition

(2.27)

Observe from the following results that

(2.28)

An integral theorem for the Laplacian of a tensor is now found as

(2.29)

 

2.3 INVARIANTS

 

Letting 

 

A

 

 denote a nonsingular, symmetric, 3 

 

×

 

 3 tensor, the equation det(

 

A

 

 

 

−

 

 

 

λ

 

l

 

) 

 

=

 

0 can be expanded as

(2.30

 

)

 

in which

(2.31)

Here, 

 

tr

 

(

 

A

 

) 

 

=

 

 

 

δ

 

ij

 

a

 

ij

 

 denotes the 

 

trace

 

 of 

 

A

 

. Equation 2.30 also implies the Cayley-
Hamilton theorem:

(2.32)

∇ × = ∇ × ∇ × ∇ ×[ ]AT
1 2 3ββ ββ ββ .

[ ] .∇ = ∇2 2A ij ija

∇ = ∇ ∇ ∇2 2
1

2
2

2
3A [ ].ββ ββ ββ

∇ = ∇ ∇ ⋅ − ∇ × ∇ ×2ββ ββ ββi i i( ) .

∇ = ∇ ∇ ⋅ − ∇ × ∇ ×2 T T TA A A( ) [ ] .

∇ = ∇ − × ∇ ×∫ ∫ ∫2 T T TA n A n AdV ) dS dS( [ ] .

λ λ λ3
1

2
2 3 0− + − =I I I ,

I tr I tr tr I1 2
2 2

3

1
2

= = − =( ) [ ( ) ( ) det( ).A A A A        ]        

A A A I3
1

2
2 3− + − =I I I 0,
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from which

(2.33)

The trace of any 

 

n

 

 

 

×

 

 

 

n

 

 symmetric tensor 

 

B

 

 is invariant under orthogonal trans-
formations (rotations), such as 

 

tr

 

(B′) = tr(B), since

(2.34)

Likewise, tr(A2) and tr(A3) are invariant since A, A2, and A3 are tensors, thus I1,
I2, and I3 are invariants. Derivatives of invariants are presented in a subsequent section.

2.4 POSITIVE DEFINITENESS

In the finite-element method, an attractive property of some symmetric tensors is
positive definiteness, defined as follows. The symmetric n × n tensor A is positive-
definite, written A > 0, if, for all nonvanishing n × 1 vectors x, the quadratic product
q(A, x) = xTAx > 0. The importance of this property is shown in the following
example. Let Π = xTAx − xTf, in which f is known and A > 0. After some simple
manipulation,

(2.35)

It follows that Π is a globally convex function that attains a minimum when Ax = f
(dΠ = 0).

The following definition is equivalent to the statement that the symmetric n ×
n tensor A is positive-definite if and only if its eigenvalues are positive. For the sake
of demonstration,

(2.36)

I tr I tr I tr

I I I

3
3

1
2

2

3
1 2

1 2

1
3

= − +

= − +− −

[ ( ) ( ) ( )]

[ ]

A A A

A A A1 I

′ =

=

=

a q q a

a q q

a

pq pq pr qs rs pq

rs pr qs

rs rs

δ δ

δ .

1
2

d d
d

d

d

d
d

d d

2Π Π= 















=

x
x x

x

x A x

T
T

T .

x Ax x X x

y y      y X x

T T T

T T

=

= =

= ∑

ΛΛΛΛ

ΛΛ , ( )

.λi i

i

y2
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Mathematical Foundations: Tensors 31

The last expression can be positive for arbitrary y (arbitrary x) only if λi > 0, i =
1, 2,…, n. The matrix A is semidefinite if xTAx ≥ 0, and negative-definite (written
A < 0), if xTAx < 0. If B is a nonsingular tensor, then BTB > 0, since q(BTB, x) =
xTBTBx = yT y > 0 (in which y = Bx and Ω denotes the quadratic product). If B is
singular, for example if B = yyΤΤΤΤ where y is an n × 1 vector, BΤΤΤΤB is positive-semidefinite
since a nonzero eigenvector x of B can be found for which the quadratic product
q(BTB, x) vanishes.

Now suppose that B is a nonsingular, antisymmetric tensor. Multiplying through
Bxj = λ j xj with BT

 furnishes

(2.37)

Since BΤΤΤΤB is positive-definite, it follows that  Thus, λ j is imaginary:
 using . Consequently, , demonstrating that B2

is negative-definite.

2.5 POLAR DECOMPOSITION THEOREM

For an n × n matrix B, BTB > 0. If the modal matrix of B is denoted by Xb, we can
write

(2.38a)

in which Y is an (unknown) orthogonal tensor. In general, we can write

. (2.38b)

To “justify” Equation 2.38b, we introduce the square root using

(2.38c)

B Bx B x

Bx

x

T T
j j j

j j

j j

=

= −

= −
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λ2 .

− >λ j
2 0.
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
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

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32 Finite Element Analysis: Thermomechanics of Solids

in which the positive square roots are used. It is easy to verify that  and
that . Note that

 

(2.38d)

Thus,  is an orthogonal tensor, called, for example, Z, and hence we
can write

(2.38e)

Finally, noting that , we make the iden-
tification  in Equation 2.38b. Equation 2.38 plays a major role in the
interpretation of strain tensors, a concept that is introduced in subsequent chapters.

2.6 KRONECKER PRODUCTS ON TENSORS

2.6.1 VEC OPERATOR AND THE KRONECKER PRODUCT

Let A be an n × n (second-order) tensor. Kronecker product notation (Graham, 1981)
reduces A to a first-order n × 1 tensor (vector), as follows.

(2.39)

The inverse VEC operator, IVEC, is introduced by the obvious relation
IVEC(VEC(A)) = A. The Kronecker product of an n × m matrix A and an r × s
matrix B generates an nr × ms matrix, as follows.

(2.40)

If m, n, r, and s are equal to n, and if A and B are tensors, then A ⊗ B
transforms as a second-order n2 × n2 tensor in a sense that is explained subsequently.

( )B B BT 2 =
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
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
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
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
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
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
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
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

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Mathematical Foundations: Tensors 33

Equation 2.40 implies that the n2 × 1 Kronecker product of two n × 1 vectors a
and b is written as 

(2.41)

2.6.2 FUNDAMENTAL RELATIONS FOR KRONECKER PRODUCTS

Six basic relations are introduced, followed by a number of subsidiary relations.
The proofs of the first five relations are based on Graham (1981).

Relation 1: Let A denote an n × m real matrix, with entry aij in the i th row and
j th column. Let I = (j − 1)n + i and J = (i − 1)m + j. Let Unm denote the nm × nm
matrix, independent of A, satisfying

. (2.42)

Then,

(2.43)

Note that uJK = uJI = 1 and uIK = uIJ = 1, with all other entries vanishing. Hence
if m = n, then uJI = uIJ, so that Unm is symmetric if m = n.

Relation 2: If A and B are second-order n × n tensors, then

(2.44)

Relation 3: If In denotes the n × n identity matrix, and if B denotes an n × n
tensor, then

(2.45)

Relation 4: Let A, B, C, and D, respectively, denote m × n, r × s, n × p, and s ×
q matrices. Then,

(2.46)

a b

b

b

b

⊗ =
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
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





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

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2

.

.

.

u
K I

K I
u

K J

K J
JK IK=

=

≠



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
=

=

≠







1

0

1

0

,

,

,

,

     

     
               

     

     

VEC VECnm( ) ( ).A U AT =

tr VEC VEC( ) ( ) ( ).AB A BT T=

I B I BT T
n n⊗ = ⊗( ) .

( ) ( ) .A B C D AC BD⊗ ⊗ = ⊗
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34 Finite Element Analysis: Thermomechanics of Solids

Relation 5: If A, B, and C are n × m, m × r, and r × s matrices, then

(2.47)

Relation 6: If a and b are n × 1 vectors, then

. (2.48)

As proof of Relation 6, if I = ( j − 1)n + i, then the I th entry of VEC(baT) is
biaj. It is also the I th entry of a ⊗ b. Hence, a ⊗ b = VEC(baT) = VEC([abT]T).

Symmetry of Unn was established in Relation 1. Note that VEC(A) = Unn VEC(AT) =
U2

nnVEC(A) if A is n × n, and hence the matrix Unn satisfies

. (2.49)

Unn is hereafter called the permutation tensor for n × n matrices. If A is symmetric, then
VEC(A) = 0. If A is antisymmetric, then (Unn + Inn)VEC(A) = 0.

If A and B are second-order n × n tensors, then

(2.50)

thereby recovering a well-known relation.
If In is the n × n identity tensor and in = VEC(In), VEC(A) = In ⊗ Ain since

VEC(A) = VEC(AIn). If Inn is the identity tensor in n2-dimensional space, then In ⊗ In =
Inn since  = In ⊗ InVEC(In). Now, in = Ini, thus In ⊗ In = .

If A, B, and C denote n × n tensors, then

(2.51)

However, by a parallel argument,

(2.52)

VEC VEC( ) ( ).ACB B A CT= ⊗

a b abT T⊗ = VEC([ ] )

U U U UT 1
nn n nn nn nn
2
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( )U Inn n
− 2

tr VEC VEC

VEC VEC

VEC VEC
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T T

T
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T T

( ) ( ) ( )

( ) ( )

[ ( )] ( )

( ) ( )
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AB B A

B U A

U B A

B A

BA

=

=

=

=

=

VEC VECn n n( ) ( )I I I= I
n2

VEC VEC

VEC

VEC

n

n n

( ) ( )

( )( ) ( )

( ).

ACB I A CB

I A B I C

B A C

T T= ⊗

= ⊗ ⊗

= ⊗

VEC VEC
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T T T T

T

n

[( ) ] ( )

( )

( ).

ACB BC A

A B C
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=

= ⊗

= ⊗ 2
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Mathematical Foundations: Tensors 35

The permutation tensor arises in the relation

(2.53)

Consequently, if C is arbitrary,

(2.54)

and, upon using the relation , we obtain an important result:

(2.55)

If A and B are nonsingular n × n tensors, then

(2.56)

The Kronecker sum and difference appear frequently (for example, in control
theory) and are defined as follows:

(2.57)

The Kronecker sum and difference of two n × n tensors are n2 × n2 tensors, as
explained in the following section.

2.6.3 EIGENSTRUCTURES OF KRONECKER PRODUCTS

Let αj and βk denote the eigenvalues of A and B, and let yj and zk denote the
corresponding eigenvectors. The Kronecker product, sum, and difference have the
following eigenstructures:

(2.58)

A � B α j − βk yj ⊗ zk

VEC VECT T

n

T[( ) ] ( ).ACB U ACB= 2

U B A C A BU C
n n

VEC VEC2 2⊗ = ⊗( ) ( ),

U U 1

n n2 2= −

B A U A BU⊗ = ⊗
n n2 2 .

( )( )

.

A B A B AA BB

I I

I

1 1 1 1⊗ ⊗ = ⊗

= ⊗

=

− − − −

n n

n2

  
A B A I I B A B A I I B⊕ = ⊗ + ⊗ = ⊗ − ⊗n n n n          .�

expression  eigenvalue  eigenvectorjk jkth th

j k j k

j k j k

A B y z

A B y z

⊗ ⊗

⊕ + ⊗

α β

α β
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36 Finite Element Analysis: Thermomechanics of Solids

As proof,

(2.59)

Now, the eigenvalues of A ⊗ In are 1 × α j, while the eigenvectors are yj ⊗ wk,
in which wk is an arbitrary unit vector (eigenvector of In). The corresponding
quantities for In ⊗ B are βk × 1 and vj × zk , in which vj is an arbitrary eigenvector
of In. Upon selecting wk = zk and vj = yj, the Kronecker sum has eigenvalues αj +
βk and eigenvectors yj ⊗ zk.

2.6.4 KRONECKER FORM OF QUADRATIC PRODUCTS

Let R be a second-order n × n tensor. The quadratic product aTRb is easily derived:
if r = VEC(R), then

(2.60)

2.6.5 KRONECKER PRODUCT OPERATORS 
FOR FOURTH-ORDER TENSORS

Let A and B be second-order n × n tensors, and let C be a fourth-order n × n × n × n
tensor. Suppose that A = CB, which is equivalent to aij = cijklbkl in which the range
of i, j, k, and l is (1, n). The TEN22 operator is introduced implicitly using

(2.61)

Note that

(2.62)

α β α βj j k k j k j k

j k

j k
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T T

T T T

T T
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= ⊗
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n n

22

22

22

( ) ( ) ( )
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I A CBD

I A C BD
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= ⊗

= ⊗ ⊗
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Mathematical Foundations: Tensors 37

hence, TEN22(ACB) = In ⊗ ATEN22(C)In ⊗ B. Upon writing B = C−1A, it is obvious
that VEC(B) = TEN22(C−1)VEC(A). However, TEN22(C)VEC(B) = VEC(A), thus
VEC(B) = [TEN22(C)]−1VEC(A). We conclude that TEN22(C−1) = TEN22−1(C).
Furthermore, by writing AT = BT, it is also obvious that Un a = TEN22(C)Unb,
thus TEN22( ) = TEN22(C) . The inverse of the TEN22 operator is introduced
using the relation ITEN22(TEN22(C)) = C.

2.6.6 TRANSFORMATION PROPERTIES OF VEC AND TEN22

Suppose that A and B are true second-order n × n tensors and C is a fourth-order
n × n × n × n tensor such that A = CB. All are referred to a coordinate system
denoted as Y. Let the unitary matrix (tensor) Qn represent a rotation that gives rise
to a coordinate system Y′. Let A′, B′, and C′ denote the counterparts of A, B, and C.
Now, since A′ = Qn AQT

n,

(2.63)

However, note that (Q ⊗ Q)T = QT ⊗ QT = Q−−−−1 ⊗ Q−−−−1 = (Q ⊗ Q)−−−−1. Hence,
Q ⊗ Q is a unitary matrix (tensor) in an n2 vector space. However, not all rotations
in n2–dimensional space can be expressed in the form Q ⊗ Q. It follows that VEC(A)
transforms as an n2 × 1 vector under rotations of the form Q ⊗ Q.

Now write A′ = C′ B′, from which

(2.64a)

It follows that

, (2.64b)

thus TEN22(C) transforms a second-order n2 × n2 tensor under rotations of the form
Q ⊗ Q.

Finally, letting Ca and Cb denote third-order n × n × n tensors, respectively,
thereby satisfying relations of the form A = Cab and b = CbA, it is readily shown
that TEN21(Ca) and TEN12(Cb) satisfy

(2.65)

which we call tensors of order (2,1) and (1,2), respectively.

Ĉ
Ĉ U

n2 U
n2

VEC VEC( ) ( ).′ = ⊗A Q Q A

Q Q A C Q Q B⊗ = ′ ⊗VEC TEN VEC( ) ( ) ( ).22

TEN TEN22 22( ) ( )( )′ = ⊗ ⊗C Q Q C Q Q T

TEN TEN n n

TEN TEN n n

a a

b b

21 21

12 12

2

2

( ) ( )

( ) ( ) ,

′ = ⊗ ×

′ = ⊗ ×

C Q Q C Q

C Q C Q Q

T

T T
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38 Finite Element Analysis: Thermomechanics of Solids

2.6.7 KRONECKER PRODUCT FUNCTIONS 
FOR TENSOR OUTER PRODUCTS

Tensor outer products are commonly used in continuum mechanics. For example,
Hooke’s Law in isotropic linear elasticity with coefficients  can be written as

(2.66)

in which Tij and Eij are entries of the (small-deformation) stress and strain tensors
denoted by T and E. Here, δij denotes the substitution (Kronecker) tensor. Equation 2.66
exhibits three tensor outer products of the identity (Kronecker) tensor I: δikδjl, δilδjk,
and δijδkl. In general, let A and B be two nonsingular n × n second-order tensors
with entries aij and bij; let a = VEC(A) and b = VEC(B). There are 24 permutations
of the indices ijkl corresponding to outer products of tensors A and B. Recalling the
definitions of the Kronecker product, we introduce three basic Kronecker-product
functions:

(2.67)

Twenty-four outer product-Kronecker product pairs are obtained as follows:

(2.68)
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Mathematical Foundations: Tensors 39

With t = VEC(T) and e = VEC(E), and noting that U9e = e (since E is symmetric),
we now restate Equation 2.66 as

(2.69)

The proof is presented for several of the relations in Equation 2.68. We introduce
tensors R and S with entries rij and sij. Also, let s = VEC(S) and r = VEC(R).

a.) Suppose that sij = aijbklrkl. However, aijbklrkl = aijb
T
lkrkl, in which case bT

kl

is the kl th entry of BT. It follows that S = tr(BTR)A. Hence,

(2.70)

Since s = TEN22(aij bkl)r, it follows that , as
shown in Equation 2.68.

b.) Suppose that sij = aikbjlrkl. However, aikbjlrkl = aikrklb
T
lj, thus S = ARBT. Now

(2.71)

as shown in Equation 2.68.
c.) Suppose sij = ailbjkrkl. However, ailbjkrkl = ailr

T
lkbkj, thus S = ARTBT. Now

(2.72)

as shown in Equation 2.68.

t e= + +[ ˆ[ ( , ) ( , )] ˆ ( , )]µ λC I I C I I C I I2 3 1
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=

=

=

=
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40 Finite Element Analysis: Thermomechanics of Solids

2.6.8 KRONECKER EXPRESSIONS FOR SYMMETRY CLASSES 
IN FOURTH-ORDER TENSORS

Let C denote a fourth-order tensor with entries cijkl. If the entries observe

, (2.73)

then C is said to be totally symmetric. A fourth-order tensor C satisfying Equation
2.73a but not 2.73b or c is called symmetric.

Kronecker-product conditions for symmetry are now stated. The fourth-order
tensor C is totally symmetric if and only if

. (2.74)

Equation 2.74a is equivalent to symmetry with respect to exchange of ij and kl
in C. Total symmetry also implies that, for any second-order n × n tensor B, the
corresponding tensor A = CB is symmetric. Thus, if a = VEC(A) and b = VEC(B),
then a = TEN22(C)b. However, . Multiplying through the later
expression with  implies Equation 2.74b. For any n × n tensor A, the tensor B =
C−1A is symmetric. It follows that b = TEN22(C−1)a = TEN22−1(C)a, and b =
TEN22−1Ca. Thus, TEN22(C−1) =  TEN22−1(C). Also, TEN22(C) = [ TEN22−1

(C)]−1 = TEN22(C) . We now draw the immediate conclusion that  TEN22(C)
 = TEN22(C) if C is totally symmetric.
We next prove the following: 

C−1 is totally symmetric if C is totally symmetric.  (2.75)

Note that TEN22(C)  = TEN22(C) implies that TEN22(C−1) = TEN22(C−1),
while TEN22(C) = TEN22(C) implies that TEN22(C−1)  = TEN22(C−1).

Finally, we prove the following: for a nonsingular n × n tensor G,

GCGT is totally symmetric if C is totally symmetric. (2.76)

Equation 2.76 implies that TEN22(GCG−T) = I ⊗ G TEN22(C)I ⊗ GT, so that
TEN22(GCGT) is certainly symmetric. Next, consider whether A′ given by

(2.77)

c c a

c c b

c c c

ijkl jikl

ijkl ijlk

ijkl klij

=

=

=

                       )

                        )

                        )

(

(

(

TEN22 ) TEN22
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T( ( ) (

( ) (

( ( ) (

C C

U C C
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=

=
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n
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0749_Frame_C02  Page 40  Wednesday, February 19, 2003  5:00 PM

© 2003 by CRC CRC Press LLC 
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is symmetric, in which case B′ is a second-order, nonsingular n × n tensor. However,
we can write

(2.78)

Now G−−−−1A′G−T is symmetric since C is totally symmetric, and therefore A′ is
symmetric. Next, consider whether B′ given by the following is symmetric:

(2.79)

However, we can write

(2.80)

Since C−−−−1 is totally symmetric, it follows that GTB′G is symmetric, and hence
B′ is symmetric. We conclude that GCGT is totally symmetric.

2.6.9 DIFFERENTIALS OF TENSOR INVARIANTS

Let A be a symmetric 3 × 3 tensor, with invariants I1(A), I2(A), and I3(A). For a
scalar-valued function f(A),

(2.81)

However, with a = VEC(A), we can also write

(2.82)

Taking this further,

(2.83)

G A G G G1 T 1 T− − − −′ = ′C B .

′ = ′− − −B G G AT 1 1C

G B G G GT 1 1′ = ′− −C A .
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42 Finite Element Analysis: Thermomechanics of Solids

and

(2.84)

so that

(2.85)

2.7 EXERCISES

1. Given a symmetric n × n tensor σσσσ, prove that

.

2. Prove that if σσσσ is a symmetric tensor with entries σij,

3. Verify using 2 × 2 tensors that

.

4. Express I3 as a function of I1 and I2.
5. Using 2 × 2 tensors and 2 × 1 vectors, verify the six relations given for

Kronecker products.
6. Write out the 9 × 9 quantity TEN22(C) in Equation 2.66.
7. Using a 2 × 2 tensor A, write out the differential of ln(A).

dI tr d I tr d I d

tr d I

3
2

1 2

1
3

= − +

= −

( ) ( )

( / )

A A A A A

A A

∂
∂

= −I
VEC I3 1

3a
A( ) /

tr tr I nn( ( ) / )σσ σσ− = 0

ε σijk jk i= =0 1 2 3, , , .      

tr tr( ) ( )AB BA=
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Introduction to 
Variational and 
Numerical Methods

 

3.1 INTRODUCTION TO VARIATIONAL METHODS

 

Let 

 

u

 

(

 

x

 

)

 

 be a vector-valued function of position vector 

 

x

 

, and consider a vector-
valued function 

 

F

 

(

 

u

 

(

 

x

 

)

 

, 

 

u

 

′(

 

x

 

)

 

,

 

x

 

)

 

, in which 

 

u

 

′(

 

x

 

)

 

 

 

=

 

 

 

∂

 

u

 

/∂

 

x

 

. Furthermore, let 

 

v

 

(

 

x

 

)

 

 be a
function such that 

 

v

 

(

 

x

 

)

 

 

 

=

 

 

 

0

 

 when 

 

u

 

(

 

x

 

)

 

 

 

=

 

 

 

0

 

 and 

 

v

 

′(

 

x

 

)

 

 

 

=

 

 

 

0

 

 when 

 

u

 

′(

 

x

 

)

 

 

 

=

 

 

 

0

 

, but which
is otherwise arbitrary. The differential 

 

d

 

F

 

 measures how much 

 

F

 

 changes if 

 

x

 

changes. The variation 

 

δ

 

F

 

 measures how much 

 

F

 

 changes if 

 

u

 

 and 

 

u

 

′

 

 change at
fixed 

 

x

 

. Following Ewing, we introduce the vector-valued function φφφφ

 

(

 

e

 

:

 

F

 

)

 

 as follows
(Ewing, 1985):

(3.1)    

The variation 

 

δ

 

F

 

 is defined by 

(3.2)    

with 

 

x

 

 fixed. Elementary manipulation demonstrates that

(3.3)      

in which

 

 

 

.

 

 

 

If

 

 

 

 If

 

 

 

 then 

 

δ

 

F 

 

=

 

 

 

δ 

 

u

 

′

 

 

 

=

 

e

 

v

 

′

 

.

 

 This suggests the form

(3.4)

The variational operator exhibits five important properties:

1.

 

δ

 

(

 

.

 

)

 

 commutes with linear differential operators and integrals. For exam-
ple, if 

 

S

 

 denotes a prescribed contour of integration:

(3.5)

3

Φ ( : ) ( ( ) ( ), ( ) ( ), ) ( ( ), ( ), )e e eF F u x v x u x v x x F u x u x x= + ′ + ′ − ′    

δ F = 



 =

e
e

,
e

d

d

ΦΦ
0

δ F
F
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v
F
u

v= ∂
∂

+ ∂
∂ ′

′



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e e ,tr

∂
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∂
∂ ′′ = ′F

u
Fv ve e

ij
iju

F u F u v= = =, .then δ δ e F u= ′,

δ δ δF
F
u

u
F
u

u= ∂
∂

+ ∂
∂ ′

′



tr .

δ δ( ( .) )dS dS∫ ∫= 



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2.

 

δ

 

(

 

f

 

)

 

 vanishes when its argument 

 

f

 

 is prescribed. 
3.

 

δ

 

(

 

.

 

)

 

 satisfies the same operational rules as 

 

d

 

(

 

.

 

)

 

. For example, if the scalars

 

q

 

 and 

 

r

 

 are both subject to variation, then

(3.6)

4. If 

 

f

 

 is a prescribed function of (scalar) 

 

x

 

, and if

 

 u

 

(

 

x

 

)

 

 is subject to variation,
then

(3.7)

5. Other than for number 2, the variation is arbitrary. For example, for two
vectors 

 

v

 

 and 

 

w

 

, 

 

v

 

T

 

d

 

w

 

 

 

=

 

 0 implies that 

 

v

 

 and 

 

w

 

 are orthogonal to each
other. However, 

 

v

 

T

 

δ

 

w

 

 implies that 

 

v

 

 

 

=

 

 

 

0

 

, since only the zero vector can
be orthogonal to an arbitrary vector. 

As a simple example, Figure 3.1 depicts a rod of length L, cross-sectional area
A, and elastic modulus E. At 

 

x

 

 

 

=

 

 0, the rod is built in, while at 

 

x

 

 

 

=

 

 

 

L

 

, the tensile
force P is applied. Inertia is neglected. The governing equations are in terms of
displacement 

 

u, stress S, and (linear) strain E:

strain-displacement

stress-strain

equilibrium    (3.8)

Combining the equations furnishes

   (3.9)

The following steps serve to derive a variational equation that is equivalent to the
differential equation and endpoint conditions (boundary conditions and constraints).

FIGURE 3.1 Rod under uniaxial tension.

δ δ δ( ) ( ) ( )qr q r q r= + .

δ δ( )fu f u= .

E
du
dx

=

S E= E

d
dx
σ = 0

EA
d u

dx

2

2 0= .

E,A

L

P
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Introduction to Variational and Numerical Methods 45

Step 1: Multiply by the variation of the variable to be determined (u) and
integrate over the domain.

(3.10)

Differential equations to be satisfied at every point in the domain are replaced
with an integral equation whose integrand includes an arbitrary function.

Step 2: Integrate by parts, as needed, to render the argument in the domain
integral positive definite.

(3.11)

However, the first term is the integral of a derivative, so that

. (3.12)

Step 3: Identify the primary and secondary variables. The primary variable is
present in the endpoint terms (rhs) under the variational symbol, l, and is
u. The conjugate secondary variable is 

Step 4: Satisfy the constraints and boundary conditions. At x = 0, u is pre-
scribed, thus δu = 0. At x = L, the load  is prescribed. Also, note
that .

Step 5: Form the variational equation; the equations and boundary conditions
are consolidated into one integral equation, δF = 0, where˙

(3.13)

The jth variation of a vector-valued quantity F is defined by

 (3.14)

It follows that δ 2u = 0 and δ2u′ = 0. By restricting F to a scalar-valued function
F and x to reduce to x, we obtain

(3.15)

and H is known as the Hessian matrix.
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46 Finite Element Analysis: Thermomechanics of Solids

Now consider G given by

(3.16)

in which V again denotes the volume of a domain and S denotes its surface area. In
addition, h is a prescribed (known) function on S. G is called a functional since it
generates a number for every function u(x). We first concentrate on a three-dimensional,
rectangular coordinate system and suppose that δG = 0, as in the Principle of
Stationary Potential Energy in elasticity. Note that

(3.17)

The first and last terms in Equation 3.17 can be recognized as divergences of
vectors. We now invoke the divergence theorem to obtain

(3.18) 

For suitable continuity properties of u, arbitrariness of δu implies that δG = 0
is equivalent to the following Euler equation, boundary conditions, and constraints
(the latter two are not uniquely determined by the variational principle):

(3.19)

Let D > 0 denote a second-order tensor, and let ππππ denote a vector that is a
nonlinear function of a second vector u, which is subject to variation. The function

 satisfies

(3.20)

Despite the fact that D > 0, in the current nonlinear example, the specific vector
u∗ satisfying δF = 0 may correspond to a stationary point rather than a minimum. 
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3.2 NEWTON ITERATION AND ARC-LENGTH METHODS

3.2.1 NEWTON ITERATION

Letting f and x denote scalars, consider the nonlinear algebraic equation f(x; λ) = 0,
in which λ is a parameter we will call the load intensity. Such equations are often
solved numerically by a two-track process: the load intensity λ is increased progres-
sively using small increments. At each increment, the unknown x is computed using
an iteration procedure. Suppose that at the nth increment of λ, an accurate solution
is achieved as xn. Further suppose for simplicity’s sake that xn is “close” to the actual
solution xn+1 for the (n + 1)st increment of λ. Using x(0) = xn as the starting value,
Newton iteration provides iterates according to the scheme

(3.21)

Let ∆n+1,j denote the increment  Then, to first-order in the Taylor series

(3.22)                                                                      

in which 02 refers to second-order terms in increments. It follows that ∆n+1,j ≈ 02. For
this reason, Newton iteration is said to converge quadratically (presumably to the
correct solution if the initial iterate is “sufficiently close”). When the iteration scheme
converges to the solution, the load intensity is incremented again. Consider f (x) =
(x − 1)2. If x(0) = 1/2, the  iterates are 1/2, 3/4, 7/8, and 15/16. If x(0) = 2, the  iterates
are 3/2, 5/4, 9/8, and 17/16. In both cases, the error is halved in each iteration.

The nonlinear, finite element poses nonlinear, algebraic equations of the form

(3.23)  

in which u and ϕϕϕϕ are n × 1 vectors, v is a constant n × 1 unit vector, and λ represents
“load intensity.” The Newton iteration scheme provides the ( j + 1)st iterate for un+1 as

(3.24) 
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48 Finite Element Analysis: Thermomechanics of Solids

in which, for example, the initial iterate is un. One can avoid the use of an explicit
matrix inverse by solving the linear system

(3.25) 

3.2.2 CRITICAL POINTS AND THE ARC-LENGTH METHOD

A point λ∗ at which the Jacobian matrix  is singular is called a critical point,
and corresponds to important phenomena such as buckling. There often is good
reason to attempt to continue calculations through critical points, such as to compute
a postbuckled configuration. Arc-length methods are suitable for doing so. Here, we
present a version with a simple eigenstructure.

Suppose that the change in load intensity is regarded as a variable. Introduce
the “constraint” on the size of the increment for the nth load step:

(3.26)

in which Σ2 is interpreted as the arc length in n + 1 dimensional space of u and λ.
Also, β > 0. Now,

(3.27)                                         

Newton iteration now is expressed as

(3.28)

An advantage is gained if J′ can be made nonsingular even though J is singular.
Suppose that J is symmetric and we can choose β such that J + v vΤΤΤΤ/ββββ2 > 0. Then
J′ admits the “triangularization”

(3.29)

The determinant of J′ is now ββββ2det(J + v vΤΤΤΤ/ββββ2). Ideally, β is chosen to maximize
det (J′). 
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3.3 EXERCISES

1. Directly apply variational calculus to F, given by

to verify that δF = 0 gives rise to the Euler equation

What endpoint conditions (not unique) are compatible with δF = 0?
2. The governing equation for an Euler-Bernoulli beam in Figure 3.2 is

in which w is the vertical displacement of the neutral (centroidal) axis.
The shear force V and the bending moment M satisfy

Using integration by parts twice, obtain the function F such that δF = 0
is equivalent to the foregoing differential equation together with the
boundary conditions for a cantilevered beam of length L:

FIGURE 3.2 Cantilevered beam.
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Kinematics
of Deformation

 

The current chapter provides a review of the mathematics for describing deformation
of continua. A more complete account is given, for example, in Chandrasekharaiah
and Debnath (1994).

 

4.1 KINEMATICS

4.1.1 D

 

ISPLACEMENT

 

In finite-element analysis for finite deformation, it is necessary to carefully distin-
guish between the current (or “deformed”) configuration (i.e., at the current time or
load step) and a reference configuration, which is usually considered strain-free.
Here, both configurations are referred to the same orthogonal coordinate system
characterized by the base vectors 

 

e

 

1

 

,

 

e

 

2

 

,

 

e

 

3

 

 (see Figure 1.1 in Chapter 1). Consider a
body with volume 

 

V

 

 and surface 

 

S

 

 in the current configuration. The particle P
occupies a position represented by the position vector 

 

x

 

, and experiences (empirical)
temperature 

 

T

 

. In the corresponding undeformed configuration, the position of P is
described by 

 

X

 

, and the temperature has the value 

 

T

 

0

 

 independent of 

 

X

 

. It is now
assumed that 

 

x

 

 is a function of 

 

X

 

 and 

 

t

 

 and that 

 

T

 

 is also a function of 

 

X

 

 and 

 

t

 

. The
relations are written as 

 

x

 

(

 

X

 

,

 

 t

 

) and 

 

T

 

(

 

X

 

,

 

 t

 

), and it is assumed that 

 

x

 

 and 

 

T

 

 are
continuously differentiable in 

 

X

 

 and 

 

t

 

 through whatever order needed in the subse-
quent development.

 

FIGURE 4.1

 

Position vectors in deformed and undeformed configurations.

4

e2

e1

X

x

undeformed

deformed
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Finite Element Analysis: Thermomechanics of Solids

 

4.1.2 D

 

ISPLACEMENT

 

 V

 

ECTOR

 

The vector 

 

u

 

(

 

X

 

) represents the displacement from position 

 

X

 

 to 

 

x

 

:

(4.1)

Now consider two close points, P and Q, in the undeformed configuration. The
vector difference 

 

X

 

P

 

 

 

−

 

 

 

X

 

Q

 

 is represented as a differential 

 

d

 

X

 

 with squared length

 

dS

 

2

 

 

 

=

 

 

 

d

 

X

 

T

 

d

 

X

 

. The corresponding quantity in the deformed configuration is 

 

d

 

x

 

, with

 

dS

 

2

 

 

 

=

 

 

 

d

 

x

 

T

 

d

 

x

 

.

 

4.1.3 D

 

EFORMATION

 

 G

 

RADIENT

 

 T

 

ENSOR

 

The deformation gradient tensor 

 

F

 

 is introduced as

(4.2)

 

F

 

 satisfies the polar-decomposition theorem:

(4.3)

in which 

 

U

 

 and 

 

V

 

 are orthogonal and ΣΣΣΣ

 

 is a positive definite diagonal tensor whose

 

FIGURE 4.2

 

Deformed and undeformed distances between adjacent points.

ds

Q'

P'

Q   *

P  *
dS

u( ) .X x X, t = −

d dx F X F
x
X

= = ∂
∂

        

F U V= Σ T ,
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entries 

 

λ

 

j

 

, the singular values of 

 

F

 

, are called the principal stretches.

(4.4)

Based on Equation 4.3, 

 

F

 

 can be visualized as representing a rotation, followed
by a stretch, followed by a second rotation.

 

4.2 STRAIN

 

The deformation-induced change in squared length is given by

(4.5)

in which 

 

E

 

 denotes the 

 

Lagrangian strain tensor

 

. Also of interest is the 

 

Right Cauchy-
Green strain

 

 

 

C

 

 

 

=

 

 

 

F

 

T

 

F

 

 

 

=

 

 2

 

E

 

 

 

+

 

 

 

I

 

. Note that 

 

F

 

 

 

=

 

 

 

I

 

 

 

+

 

 

 

∂

 

u

 

/

 

∂

 

X

 

. If quadratic terms in

 

∂

 

u

 

/

 

∂

 

X

 

 are neglected, the linear-strain tensor 

 

E

 

L

 

 is recovered as

(4.6)

Upon application of Equation 4.3, 

 

E

 

 is rewritten as

(4.7) 

Under pure rotation 

 

x

 

 

 

=

 

 

 

QX

 

, 

 

F

 

 

 

=

 

 

 

Q

 

 and 

 

E

 

 

 

=

 

 [

 

Q

 

T

 

Q

 

 

 

−

 

 

 

I

 

] 

 

=

 

 

 

0

 

. The case of pure
rotation in small strain is considered in a subsequent section.

 

4.2.1 F

 

, 

 

E

 

, EL AND u IN ORTHOGONAL COORDINATES

Let Y1, Y2, and Y3 be orthogonal coordinates of a point in an undeformed configura-
tion, with y1, y2, y3 orthogonal coordinates in the deformed configuration. The
corresponding orthonormal base vectors are ΓΓΓΓ1,ΓΓΓΓ2,ΓΓΓΓ3 and γγγγ1,γγγγ2,γγγγ3.

4.2.1.1 Deformation Gradient and Lagrangian Strain Tensors

Recalling relations introduced in Chapter 1 for orthogonal coordinates, the differential
position vectors are expressed as

(4.8)

Σ =



















λ

λ

λ

1

2

3

0 0

0 0

0 0

ds dS d d                 2 2 2
1
2

− = = −X F F ITT XE E [ ],

EL = ∂
∂

+ ∂
∂





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











1
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u
X

u
X

T

.

E = −
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
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V I VT1
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2( )ΣΣ

1
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d dY H d dy hR r= =∑ ∑α α α
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(4.9)

in which ΓΓΓΓβ denotes the base vector in the curvilinear system used for the undeformed
configuration.

This can be written as

(4.10)

in which Q is the orthogonal tensor representing transformation from the undeformed
to the deformed coordinate system. It follows that

from which

(4.11)

Displacement Vector

The position vectors can be written in the form R = ZiΓΓΓΓi, r = z jγγγγj. The displacement
vector referred to the undeformed base vectors is

(4.12)

Cylindrical Coordinates

In cylindrical coordinates,

(4.13)
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We now apply the chain rule to ds2 in cylindrical coordinates:

(4.14)

in which

(4.15) 

4.2.1.2 Linear-Strain Tensor in Cylindrical Coordinates

If quadratic terms in the displacements and their derivatives are neglected, then

(4.16) 
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56 Finite Element Analysis: Thermomechanics of Solids

giving rise to the linear-strain tensor

(4.17)

The divergence of u in cylindrical coordinates is given by ∇ ⋅ u = trace  =
trace(EL), from which

(4.18)

which agrees with the expression given in Schey (1973).

4.2.2 VELOCITY-GRADIENT TENSOR, DEFORMATION-RATE TENSOR, 
AND SPIN TENSOR

We now introduce the particle velocity v = ∂x /∂ t and assume that it is an explicit
function of x(t) and t. The velocity-gradient tensor L is introduced using dv = Ldx,
from which

(4.19)

Its symmetric part, called the deformation-rate tensor,

(4.20)

can be regarded as a strain rate referred to the current configuration. The correspond-
ing strain rate referred to the undeformed configuration is the Lagrangian strain rate:

(4.21)
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The antisymmetric portion of L is called the spin tensor W:

(4.22)

Suppose the deformation consists only of a time-dependent, rigid-body motion:

(4.23)

Clearly, F = Q and E = 0. Furthermore,

(4.24)

which is antisymmetric since .
Hence, D = 0 and , thus explaining the name of W.

4.2.2.1 v, L, D, and W in Orthogonal Coordinates

The velocity v(y, t) in orthogonal coordinates is given by

(4.25)

Based on what we learned in Chapter 1, with v denoting the velocity vector in
orthogonal coordinates,

(4.26)

Of course, 

4.2.2.2 Cylindrical Coordinates

The velocity vector in cylindrical coordinates is

(4.27)

W L LT= −1
2

[ ].

x Q X b Q Q IT( ) ( ) ( ),    ( ) ( ) .t t t t t= + = 

L QQT= ˙ ,

0 I QQ QQ QQ QQ QQT T T T T T= = = + = +˙ [ ] ˙ ˙ ˙ ( ˙ )•

W QQT= ˙

v y
r

( , ) ,    .t
d

dt
v v h

dy

dt
= = =∑ α α

α
α α

αγγ  

[ ] .L βα
βα α α

β βαδ= 





=
∂
∂

+










d

d h

v

y
vj

j j j

v
r

1
c

cα β
α

αβ β

β
α β

δ
α β

α β

j

k j k

h
h

h
x

y y

y

x

j

j

= −
























=
∂

∂ ∂
∂
∂

1
1

2

( )

[ ] [[ ] [ ] ] [ ] [[ ] [ ] ].,D L L W L Lβα βα αβ βα βα αβ= + = −1

2

1

2

v e e e

e e e

= + +

= + +

dr

dt
r

d

dt

dz

dt

v v v

r z

r r z z

θ
θ

θ θ .

0749_Frame_C04  Page 57  Wednesday, February 19, 2003  5:33 PM

© 2003 by CRC CRC Press LLC 



58 Finite Element Analysis: Thermomechanics of Solids

Observe that

(4.28) 

Converting to matrix-vector notation, we get

(4.29)

4.2.2.3 Spherical Coordinates

Now

(4.30)
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Kinematics of Deformation 59

(4.32)

Recall that

(4.33)

Thus, it follows that

(4.34)
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(4.35)
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(4.36)
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60 Finite Element Analysis: Thermomechanics of Solids

and

(4.37)

The divergence of v is given by trace(L), thus,

(4.38)

which is again in agreement with Schey (1973).

4.3 DIFFERENTIAL VOLUME ELEMENT

The volume spanned by the differential-position vector dR is given by the vector
triple-product

(4.39)

The vectors dXi deform into dxj = ejdXi. The deformed volume is now readily
verified to be

(4.40)

and J is called the Jacobian. To obtain J for small strain, we invoke invariance and
 to find

(4.41)
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Kinematics of Deformation 61

in which EI, EII, EIII are the eigenvalues of EL, assumed to be much less that unity.
The linear-volume strain follows as

(4.42)

using the approximation 1 + x/2 if x << 1.
The time derivative of J is prominent in incremental formulations in continuum

mechanics. Recalling that ,

(4.43)

4.4 DIFFERENTIAL SURFACE ELEMENT

Let dS denote a surface element in the deformed configuration, with exterior unit
normal n, as illustrated in Figure 4.3. The corresponding quantities from the refer-
ence configuration are dS0 and n0. A surface element dS obeys the transformation
(Chandrashekharaiah and Debnath, 1994):
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from which we conclude that
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62 Finite Element Analysis: Thermomechanics of Solids

During deformation, the surface normal changes direction, a fact which is impor-
tant, for example, in contact problems. In incremental variational methods, we
consider the differential  and d(ndS):

(4.46)

However, recalling Equation 4.43,

(4.47)

Also, since d(FTF−T) = 0, then

(4.48)

Finally, we have

(4.49)

Next, we find with some effort that

(4.50)

FIGURE 4.3 Surface patches in undeformed and deformed configurations.
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Kinematics of Deformation 63

4.5 ROTATION TENSOR

Elementary manipulation furnishes

(4.51)

in which the antisymmetric rotation tensor ωωωω appears:

. (4.52)

Consider pure rotation with small angle θ :

(4.53)

thus,

(4.54)

(4.55)

Evidently, the normal strains do not vanish, but are second-order in θ, while ωωωω
is first-order in θ. Under the assumption of small deformation, nonlinear terms are
neglected so that EL is regarded as vanishing. 
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64 Finite Element Analysis: Thermomechanics of Solids

Consider as a second example the following derivation in which the sides of the
unit square rotate toward each other by 2θ.

The deformation can be described by the relations

(4.56)

from which we conclude that

(4.57)

Upon neglecting quadratic terms, we conclude that linear-shear strain is a mea-
sure of how much the axes rotate toward each other, while the rotation tensor is a
measure of how much the axes rotate in the same sense.

4.6 COMPATIBILITY CONDITIONS FOR EL AND D

The following paragraphs present the compatibility equations for the linear-strain
tensor, allowing EL to be integrated to produce a displacement field u(X), which is
unique to within a rigid-body motion. It should be evident that a parallel argument
produces exactly the same result for the velocity vector v(x) starting from a given
deformation-rate tensor D(x).

FIGURE 4.4 Element in undeformed and deformed configurations.
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Kinematics of Deformation 65

There are two major “paths” to solutions of problems in continuum mechanics.
For example,

Assume/approximate u. Apply the strain-displacement relations to estimate E,
apply the stress-strain relations to estimate S, and then apply equilibrium
relations to obtain the field equation. Solve the field equation applying
boundary conditions and constraints.

Assume/approximate S, and then estimate E using the strain-displacement
relations. Apply compatibility relations to obtain the field equation, and
then solve the field equation and boundary conditions and constraints. 

To understand the second solution path, we focus on the following compatibility
relation. Suppose the linear strains are known as functions of the position X. Under
what circumstances can the strain-displacement relations be integrated to produce
a displacement field that is unique to within a rigid-body displacement? Recall that

(4.58)

Evidently, EL is only part of the derivative of u. In 2-D rectilinear coordinates,
we will see that the compatibility equation, guaranteeing unique u to within a rigid-
body motion, is given by:

(4.59)

The proof of the compatibility equation is as follows. We consider a path in the
physical (X1,  X2,  X3) space, along which the arc length is denoted by λ. Accordingly,
the position vector X is a function of λ. The integral of du, taken from λ = 0 to λ* is

(4.60)

The term u(0) can be interpreted as the rigid-body translation. The first integral
can be evaluated since E(X) and X(λ) are given functions. The second integral can
be rewritten using an elementary transformation as

(4.61)
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66 Finite Element Analysis: Thermomechanics of Solids

Note the following:

(4.62)

Consequently, integration by parts furnishes

(4.63)

The term ωωωω(X(0))(X(λ*) − X(0)) can be identified as a rigid-body rotation since
the rotation tensor ωωωω(X(0)) is independent of position. We now focus on the second
term. Now that rigid-body translation and rotation have been accommodated, the
integral should give a unique value regardless of the path. Consider two paths, path
1 and path 2, from λ = 0 to λ*. The integral over these paths should produce the same
unique values. Therefore, the closed path 0 to λ* along path 1 followed by λ* to 0 in
a negative sense along path 2 should vanish. Furthermore, path 1 and path 2 are
arbitrary, except for terminating at the same points. It follows that along any closed path

(4.64)

Let us now write ωωωω(X) as ωωωω(X) = {ωωωω1(X) ωωωω2(X) ωωωω3(X)}, in which ωωωω i denotes
the vector corresponding to the i th column of ωωωω. The compatibility condition can
now be written as
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This can be expanded at considerable effort to derive 81 compatibility equations,
including Equation 4.59.

4.7 SAMPLE PROBLEMS

1. Referring to Figure 4.5, determine u, F, J, and E as functions of X and Y.
Use H = 1.0, W = 1.0, a = 0.1, b = 0.1, c = 0.3, d = 0.2, e = 0.2, f = 0.1.
Assume a unit thickness in the Z-direction in both the deformed and
undeformed configurations.

Solution: Since straight sides are deformed into straight sides, the deformation
pattern can be assumed in the form

and it is necessary to determine α, β, γ, δ, ε, and ζ from the coordinates
of the vertices in the deformed configuration.

After elementary manipulation,

FIGURE 4.5 Plate elements in undeformed and deformed states.
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68 Finite Element Analysis: Thermomechanics of Solids

The 2 × 2 deformation gradient tensor F and its determinant are now:

.

The displacement vector is

The Lagrangian strain E = [FTF − I] is

2. Figure 4.6 shows a square element at time t and at t + dt. Estimate L, D,
and W at time t. Use a = 0.1dt, b = 1 + 0.2dt, c = 0.2dt, d = 1 + 0.4dt,
e = 0.05dt, f = 0.1dt, g = 1 − 0.1dt, h = 1 + 0.5dt. Assume a unit thickness
in the Z-direction in both the deformed and undeformed configurations.

FIGURE 4.6 Element experiencing rigid body motion and deformation.
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Kinematics of Deformation 69

Solution: First, represent the deformed position vectors in terms of the unde-
formed position vectors using eight coefficients determined using the given
geometry. In particular,

Following procedures analogous to Problem 1, we find:

The velocities can be estimated using vx ≈  and vy ≈ , from which

The tensors L, D, and W are now readily found as:

4.8 EXERCISES

1. Consider a one-dimensional deformation in which x = (1 + λ)X. What
value of λ is the linear-strain εL error by 5% relative to the Lagrangian
strain E? Use the error measure

2. A 1 × 1 square plate has a constant (2 × 2) Lagrangian-strain tensor E.
What is the deformed length of the diagonal? What is the volume change?

x X Y XY y X Y XY= + + + = + + +α β γ δ ε ζ η θ     .
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−
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70 Finite Element Analysis: Thermomechanics of Solids

If the linear strain EL is now approximated as E, what is the diagonal and
what is the volume change? Take

3. Verify that the expressions in the text for F and E in cylindrical coordinates
are consistent with the equation

in which Q is the orthogonal tensor representing transformation from the
undeformed to the deformed coordinate system, and also with

4. Obtain expressions for u, F, E, and EL in spherical coordinates.
5. For cylindrical coordinates, determine the Lagrangian strain in the fol-

lowing two cases:

6. In spherical coordinates, determine the Lagrangian strain for pure radial
expansion.

7. Obtain v, L, D, and W in spherical coordinates.
8. For cylindrical coordinates, find L, D, and W for the following flows:

9. In spherical coordinates, find L, D, and W for pure radial expansion:
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( )  Torsion:                                

a r R z Z

b r R Z z Z

= = =

= = + =

λ θ

θ λ

, ,

, ,

Θ

Θ

r R= = =λ θ φ, ,    Θ Φ
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Kinematics of Deformation 71

10. For linear strain in rectilinear coordinates and 2-D, the compatibility
relation is

Find the implications of this relation for a linear-strain field assumed to
be given by

11. Consider a square L × L plate (undeformed configuration) with linear
strains

Assuming that the origin does not move, find the deformed position of
(X,Y) = (L,L).

∂
∂ ∂

= ∂
∂

+ ∂
∂


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




2
12

1 2

2
11

2
2

2
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1
2
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x
.

E a X a XY a Y
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= + + .

0749_Frame_C04  Page 71  Wednesday, February 19, 2003  5:33 PM

© 2003 by CRC CRC Press LLC 



 

73

 

Mechanical Equilibrium 
and the Principle
of Virtual Work

 

5.1 TRACTION AND STRESS

5.1.1 C

 

AUCHY

 

 S

 

TRESS

 

Consider a differential tetrahedron enclosing the point 

 

x

 

 in the deformed configura-
tion. The area of the inclined face is 

 

dS

 

, and 

 

dS

 

i

 

 is the area of the face whose exterior
normal vector is 

 

−

 

e

 

i

 

. Simple vector analysis serves to derive that 

 

n

 

i

 

 

 

=

 

 

 

dS

 

i

 

/

 

dS

 

 (see
Exercise 1 in Chapter 1). Next, let 

 

d

 

P

 

 denote the force on a surface element 

 

dS

 

, and
let 

 

d

 

P

 

(

 

i

 

)

 

 denote the force on area 

 

dS

 

i

 

. The traction vector is introduced by ττττ

 

 

 

=

 

 

 

d

 

P

 

/

 

dS

 

.
As the tetrahedron shrinks to a point, the contribution of volume forces, such as
inertia, decays faster than surface forces. Balance of forces on the tetrahedron now
requires that

. (5.1)

The traction vector acting on the inclined face is defined by

, (5.2)

from which

(5.3)  

5

dP dPj j
i

i

= ∑

ττ = d
dS
P

τ j
j

i

i

j
i

i

i

i

ij i

dP

dS

dP

dS

dS

dS

T n

=

=

=

∑

∑

( )

( )

.
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Finite Element Analysis: Thermomechanics of Solids

 

with

. (5.4)

It is readily seen that 

 

T

 

ij

 

 can be interpreted as the intensity of the force acting
in the 

 

j

 

 direction on the facet pointing in the 

 

−

 

i

 

 direction, and is recognized as the

 

ij

 

th

 

 entry of the Cauchy stress

 

 

 

T

 

. In matrix-vector notation, the stress-traction relation
is written as

.  (5.5)

The next section will show that 

 

T

 

 is symmetric by virtue of the balance of angular
momentum. Equation 5.5 implies that 

 

T

 

T

 

 is a tensor, thus, it follows that 

 

T

 

 is a
tensor. To visualize 

 

T

 

, consider a differential cube. Positive stresses are shown on
faces pointing in positive directions, as shown in Figure 5.2. 

In traditional depictions, the stresses on the back faces are represented by arrows
pointing in negative directions. However, this depiction can be confusing—the
arrows actually represent the directions of the traction components. Consider the
one-dimensional bar in Figure 5.3. The traction vector 

 

t

 

e

 

1

 

 acts at 

 

x

 

 

 

=

 

 

 

L

 

, while the
traction vector 

 

−

 

t

 

e

 

1

 

 acts at 

 

x

 

 

 

=

 

 0. At 

 

x

 

 

 

=

 

 

 

L

 

, the corresponding stress is 

 

t

 

11

 

 

 

=

 

 

 

t

 

e

 

1

 

⋅

 

e

 

1

 

 

 

=

 

 

 

t

 

.
At 

 

x

 

 

 

=

 

 0, the stress is given by (

 

−

 

t

 

e

 

1

 

) 

 

⋅

 

 (

 

e

 

1

 

) = 

 

t

 

. Clearly, the stress at both ends, and
in fact throughout the bar, is positive (tensile).

We will see later that the stress tensor is symmetric by virtue of the balance of
angular momentum.

 

FIGURE 5.1

 

Equilibrium of a tetrahedron.
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75

 

5.1.2 1

 

ST

 

 P

 

IOLA

 

-K

 

IRCHHOFF

 

 S

 

TRESS

 

The transformation to undeformed coordinates is now considered. In Chapter 3, we
saw that

(5.6) 

 is known as the 1st Piola-Kirchhoff stress tensor, and it is not symmetric.

 

FIGURE 5.2

 

Illustration of the stress tensor.

 

FIGURE 5.3

 

Tractions on a bar experiencing uniaxial tension.
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5.1.3 2

 

ND

 

 P

 

IOLA

 

-K

 

IRCHHOFF

 

 S

 

TRESS

 

We next derive the stress tensor that is conjugate to the Lagrangian-strain rate, i.e.,
corresponds to the correct amount of work per unit undeformed volume. At a segment

 

dS

 

 at 

 

x

 

 on the deformed boundary, assuming static conditions, the rate of work 
of the tractions is 

(5.7)

Over the surface 

 

S

 

, shifting to tensor-indicial notation and invoking the divergence
theorem, we find

(5.8)

We will shortly see that static equilibrium implies that  = 0, which enables
us to conclude that

.  (5.9)

Returning to matrix-vector notation, since  

 

=

 

 [

 

L

 

]

 

ji

 

, then

, 

(5.10)    

since the trace vanishes for the product of a symmetric and antisymmetric tensor.
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To convert to undeformed coordinates,

(5.11)

The tensor 

 

S

 

 is called the 2nd Piola-Kirchhoff stress tensor. It is symmetric if

 

T

 

 is symmetric. 
Note that  so that the 1st Piola-

Kirchhoff stress is said to be conjugate to the deformation-gradient tensor 

 

F

 

.

 

5.2 STRESS FLUX 

 

Consider two deformations, 

 

x

 

1

 

 and 

 

x

 

2

 

, differing only by a rigid body motion:

, (5.12)

in which 

 

V

 

(

 

t

 

) is orthogonal. A tensor 

 

A

 

(

 

x

 

) is objective (see Eringen) if 

. (5.13)

It turns out that the matrix of time derivatives of the Cauchy stress, , is not
objective, while the deformation rate tensor, 

 

D

 

, is. Thus, if ξξξξ

 

 is a fourth-order tensor,
a constitutive equation of the form  

 

=

 

 ξξξξ

 

D

 

 would be senseless. Instead, the time
derivative is replaced with an objective stress flux, as explained in the following.
First, note that

 (5.14)
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We seek a stress flux affording the simplest conversion from deformed to unde-
formed coordinates. Note that 

(5.15)

However, . Now, 

,         (5.16a)

in which 

 (5.16b)

is known as the 

 

Truesdell stress flux

 

. Under pure rotation, .
To prove the objectivity of , note that

(5.16c)

The choice of stress flux is not unique. For example, the stress flux given by

(5.17)

is also objective, as is the widely used Jaumann stress flux: 

(5.18)
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5.3 BALANCE OF MASS, LINEAR MOMENTUM, 
AND ANGULAR MOMENTUM

5.3.1 B

 

ALANCE

 

 

 

OF

 

 MASS

Balance of mass requires that the total mass of an isolated body not change. For
example,

(5.19)

in which is the mass density. Since , it follows that . In
addition, 

(5.20)

5.3.2 RAYLEIGH TRANSPORT THEOREM

Let  denote a vector-valued function. Conversion of the volume integral from
deformed to undeformed coordinates is achieved as

. (5.21)

The Rayleigh Transport Theorem is 

. (5.22) 

5.3.3 BALANCE OF LINEAR MOMENTUM

In a fixed-coordinate system, balance of linear momentum requires that the total
force on a body with volume V and surface S be equal to the rate of change of linear
momentum:

. (5.23)

Invoking Equation 5.22 yields

. (5.24)
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u
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In current coordinates, application of the divergence theorem furnishes the equi-
librium equation

(5.25)

Equation 5.24 now becomes

. (5.26)

Since this equation applies not only to the whole body, but also to arbitrary
subdomains of the body, the argument of the integral in Equation 5.26 must vanish
pointwise:

 (5.27)

To convert to undeformed coordinates, the 1st Piola-Kirchhoff stress is invoked
to furnish

(5.28)                      

and the divergence theorem furnishes

(5.29)

in which ∇ο denotes the divergence operator referred to undeformed coordinates.
This equation will later be the starting point in the formulation of incremental
variational principles. 

5.3.4 BALANCE OF ANGULAR MOMENTUM

Assuming that only surface forces are present, relative to the origin, the total moment
of the traction is equal to the rate of change of angular momentum:

(5.30)
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0749_Frame_C05  Page 80  Wednesday, February 19, 2003  5:03 PM

© 2003 by CRC CRC Press LLC 
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To examine this principle further, it is convenient to use tensor-indicial notation.
First, note using the divergence theorem that

(5.31)

Continuing,

(5.32)       

Balance of angular momentum can thus be restated as

. (5.33)    

The second term vanishes by virtue of balance of linear momentum (see Equation
5.27), leaving

,  (5.34)

which implies that T is symmetric: T = TT (see exercises in Chapter 1). It follows
from Equation 5.6 and Equation 5.11 that S is also symmetric, but that  is not
symmetric.
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82 Finite Element Analysis: Thermomechanics of Solids

5.4 PRINCIPLE OF VIRTUAL WORK

The balance of linear and angular momentum leads to auxiliary variational principles
that are fundamental to the finite-element method. Variational methods were intro-
duced in Chapter 3. We recall the balance of linear momentum in rectilinear coor-
dinates as

, (5.35)

and  by virtue of the balance of angular momentum. We have tacitly assumed
that , which is to say that deformed positions are referred to a coordinate
system that does not translate or rotate. A variational principle is sought from

,                                      (5.36)

in which  is an admissible variation of . Consider the spatial dependence of
 to be subject to variation, but not the temporal dependence. For example, if 

can be represented, at least locally, as 

, (5.37a)

then

(5.37b)              

The second term in the variational equation remains as . The first
term is integrated by parts only once for reasons that will be identified shortly: it
becomes . From the divergence theorem, 

 (5.38)

which can be interpreted as the virtual work of the tractions on the exterior boundary.
Next, since T is symmetric, 

(5.39) 
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Mechanical Equilibrium and the Principle of Virtual Work 83

and we call 3kl the Eulerian strain. The term ∫δ 3klTlkdV can be called the virtual
work of the stresses. Next, to evaluate , we suppose that the exterior
boundary consists of three zones: . On S1, the displacement uk is
prescribed, causing the integral over S1 to vanish. On S2, suppose that the traction is
prescribed as . The contribution is . Finally, on S3, suppose that tk =

, thus furnishing The var-
ious contributions are consolidated into the Principle of Virtual Work (Zienkiewicz
and Taylor, 1989) as 

(5.40) 

Now consider the case in which, as in classical elasticity, 

(5.41)

in which dlkmn are the entries of a fourth-order, constant, positive-definite tensor D.
The first term in Equation 5.40 now becomes , with a positive-
definite integrand. Achieving this outcome is the motivation behind integrating by
parts just once. In the language of Chapter 3, uk is the primary variable and τk is
the secondary variable: on any boundary point, either uk or τk should be specified,
or, more generally, τk should be specified as a function of uk. Finally, application of
the interpolation model (see Equation 5.37) and cancellation of δ γγγγT furnishes the
ordinary differential equation 

,                                                  (5.42) 

in which 

(5.43)

and in which , χ = TEN22(D). In addition, .
B is derived from the strain-displacement relations, and M is the positive-definite
mass matrix. K is the positive-definite matrix representing the domain contribution
to the stiffness matrix. H is the boundary contribution to the stiffness matrix, and f
is a consistent force vector. These notions will be addressed in greater detail in
subsequent chapters.
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84 Finite Element Analysis: Thermomechanics of Solids

To convert the Principle of Virtual Work to undeformed coordinates,  

(5.44)

using, from Chapter 3,

. (5.45)

Next,

(5.46)

Some manipulation is required to convert the virtual work of the stresses.
Observe that 

(5.47)
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(5.48)
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Mechanical Equilibrium and the Principle of Virtual Work 85

Consolidating the terms, the Principle of Virtual Work in undeformed coordinates
is

(5.49)

5.5 SAMPLE PROBLEMS

1. The following plate is subject to the tractions shown. At B, there is a
frictionless roller support. Find the reactions at A and B. Assume that the
plate has thickness W. 

Solution: The reactions are denoted as  and are all
assumed to be positive. Clearly, RBx = 0. Force equilibrium requires that 

Balance of moments about A requires that

.                           

Accordingly, RAy = .

FIGURE 5.4 Plate under traction.
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86 Finite Element Analysis: Thermomechanics of Solids

2. The figure shows a square plate of uniform thickness W. It experiences
Cauchy stresses given by

.

On diagonal AB, find the total transverse force and moment about A. 

Solution: The axes are rotated through 45 degrees so that the x-axis coincides
with the diagonal (x′-axis). Now,

 

The transverse force is

 

The moment about A is

. 

FIGURE 5.5 Plate element under stress.
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Mechanical Equilibrium and the Principle of Virtual Work 87

3. The plate illustrated has thickness W, width dx, and height dy. The stresses
Txz, Tyz, and Tzz vanish. Find the equations resulting from balancing forces
and moments. In particular, prove that

. 

Solution: For the x-direction forces,

.

For y-direction forces,

.

For moments about A, 

FIGURE 5.6 Moment balance on a plate element under nonuniform stress.
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88 Finite Element Analysis: Thermomechanics of Solids

Consequently, neglecting terms of third order in differentials,

.

4. At point (0,0,0), the tractions ττττ1, ττττ 2, ττττ 3 act on planes with normal vectors
n1, n2, and n3. Find the Cauchy stress tensor T given

Solution: This problem requires application of the stress-traction relation.
Now

.

Similarly, 
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Mechanical Equilibrium and the Principle of Virtual Work 89

The solution is straightforward. For example, adding (1) and (7) furnishes T11 =
1, from which (4) implies T12 = 2.

Solving the equations furnishes us with

.

5. Given the Cauchy stress T, find  and S if x(t) = Q(t)X, Q(t)Q(t)T = I. 

Solution: Clearly F = Q, thus J = 1. Also, F−T = Q. It is immediate that =
Q(t)T and S = Q(t)TQ(t)T. 

5.6 EXERCISES

1. In classical linear elasticity, introduce the isotropic stress and isotropic
linear strain as

and introduce the deviatoric stress and strain using

Verify that, if 

.

2. Find the reaction forces in the following problem. There is a frictionless
roller support at B. 
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90 Finite Element Analysis: Thermomechanics of Solids

3. Find the net force and moment about A (thickness = W) on the diagonal
in the following plate, given the Cauchy stresses

.

4. At point (0,0,0), the tractions ττττ1, ττττ 2, ττττ 3 act on planes with normal vectors
n1, n2, and n3. Find the Cauchy stress tensor T, given,

FIGURE 5.7 Plate element under traction.

FIGURE 5.8 Plate element experiencing stress.
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Mechanical Equilibrium and the Principle of Virtual Work 91

5. Given the Cauchy stress tensor T, find the 1st and 2nd Piola-Kirchhoff stress
tensors if x(t) = Q(t)∆∆∆∆(t)X, in which

. 

6. The Cauchy stress tensor is given by

. 

Now suppose the 1-2 axes are rotated through +θ degrees around the
z-axis, to furnish 1′ − 2′ axes. 
Prove that

7. Verify that 

 

is the inverse of .
8. In undeformed coordinates and Kronecker Product (VEC) notation, the

2nd Piola-Kirchhoff stress for incompressible hyperelastic materials can
be written as

.  

Find the corresponding expression in deformed coordinates. Derive
, in which direct transformation furnishes

.
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92 Finite Element Analysis: Thermomechanics of Solids

9. Prove that, under uniaxial tension in an isotropic, linearly elastic material,
E22 = E33.

10. Obtain λ in terms of E and ν. (See Problem 7.)
11. The bulk modulus κ is defined by . Obtain κ as a function of

E and ν. (See Problem 7.)
12. The 2" × 2" × 2" cube shown in Figure 5.9 is confined on its sides facing

the ± x faces by rigid, frictionless walls. The sides facing the ±z faces are
free. The top and bottom faces are subjected to a compressive force of
100 lbf. Take E = 107 psi and ν = 1/3. Find all nonzero stresses and strains.
What is the volume change? What are the principal stresses and strains?
What is the maximum shear stress?

13. Write out the proof of the Principle of Virtual Work in deformed coordi-
nates.

14. Write out the conversion of the Principle of Virtual Work to undeformed
coordinates.

15. Write out the steps whereby the Principle of Virtual Work leads to

.

16. Suppose that u = NT(x)γγγγ(t) and assume two dimensions. In 2-D, find BT

in terms of the derivatives of NT(x), in which

FIGURE 5.9 Strain in a constrained cube.
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Mechanical Equilibrium and the Principle of Virtual Work 93

ΦΦΦΦ is a 1 × n constant matrix (row vector); γγγγ is n × 1.
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95

 

Stress-Strain Relation and 
the Tangent-Modulus 
Tensor

 

6.1 STRESS-STRAIN BEHAVIOR: CLASSICAL 
LINEAR ELASTICITY

 

Under the assumption of linear strain, the distinction between the Cauchy and Piola-
Kirchhoff stresses vanishes. The stress is assumed to be given as a linear function
of linear strain by the relation

(6.1)

in which 

 

c

 

ijkl

 

 are constants and are the entries of a 3 

 

×

 

 3 

 

×

 

 3 

 

×

 

 3 fourth-order tensor,

 

C

 

. If 

 

T

 

 and 

 

E

 

L

 

 were not symmetrical, 

 

C

 

 

 

might have as many as 81 distinct entries.
However, due to the symmetry of 

 

T

 

 and 

 

E

 

L

 

 

 

there are no more than 36 distinct entries.
Thermodynamic arguments in subsequent sections will provide a rationale for the

 

Maxwell

 

 relations:

(6.2)          

It follows that 

 

c

 

ijkl

 

 

 

=

 

 

 

c

 

klij

 

, which implies that there are, at most, 21 distinct coeffi-
cients. There are no further arguments from general principles for fewer coefficients.
Instead, the number of distinct coefficients is specific to a material, and reflects the
degree of symmetry in the material. The smallest number of distinct coefficients is
achieved in the case of isotropy, which can be explained physically as follows.
Suppose a thin plate of elastic material is tested such that thin strips are removed
at several angles and then subjected to uniaxial tension. If the measured stress-strain
curves are the same and independent of the orientation at which they are cut, the
material is isotropic. Otherwise, it exhibits anisotropy, but may still exhibit limited
types of symmetry, such as transverse isotropy or orthotropy. The notion of isotropy
is illustrated in Figure 6.1.

In isotropic, linear-elastic materials (which implies linear strain), the number of
distinct coefficients can be reduced to two, 

 

m

 

 and 

 

l

 

, as illustrated by Lame’s equation,

(6.3)

6

T c Eij ijkl kl
L= ( ),

∂
∂

=
∂
∂

T

E

T

E
ij

kl

kl

ij

.

T E Eij ij
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kk
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ij= +2µ λ δ( ) ( ) .

 

0749_Frame_C06  Page 95  Wednesday, February 19, 2003  5:06 PM

© 2003 by CRC CRC Press LLC 



 

96

 

Finite Element Analysis: Thermomechanics of Solids

 

This can be inverted to furnish

(6.4)

The classical elastic modulus E

 

0

 

 and Poisson’s ratio 

 

n

 

 represent response

 

 under
uniaxial tension only

 

, provided that 

 

T

 

11

 

 = 

 

T

 

, 

 

T

 

ij

 

 = 0. Otherwise,

(6.5) 

It is readily verified that

(6.6)     

from which it is immediate that

(6.7)

Leaving the case of uniaxial tension for the normal (diagonal) stresses and
strains, we can write

(6.8)             

(6.9)

 

FIGURE 6.1

 

Illustration of isotropy.
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and

(6.10) 

and the off-diagonal terms satisfy

(6.11)         

 

6.2 ISOTHERMAL TANGENT-MODULUS TENSOR

6.2.1 C

 

LASSICAL

 

 E

 

LASTICITY

 

Under small deformation, the fourth-order tangent-modulus tensor 

 

D

 

 in linear elas-
ticity is defined by

(6.12)

In linear isotropic elasticity, the stress-strain relations are written in the Lame’s
form as

(6.13)              

Using Kronecker Product notation from Chapter 2, this can be rewritten as

(6.14)

from which we conclude that

(6.15)

 

6.2.2 C

 

OMPRESSIBLE

 

 H

 

YPERELASTIC

 

 M

 

ATERIALS

 

In isotropic hyperelasticity, which is descriptive of compressible rubber elasticity,
the 2

 

nd

 

 Piola-Kirchhoff stress is taken to be derivable from a strain-energy function
that depends on the principal invariants 

 

I

 

1

 

, 

 

I

 

2

 

, 

 

I

 

3

 

 of the Right Cauchy-Green strain
tensor:

(6.16)
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Now,

(6.17)

From Chapter 2,

(6.18)

The tangent-modulus tensor 

 

D

 

o

 

, referred to the undeformed configuration, is
given by

(6.19)          

and now

(6.20)

Finally,

(6.21)

In deriving 

 

A

 

3

 

 we have taken advantage of the Cayley-Hamilton theorem (see
Chapter 2).
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6.3 INCOMPRESSIBLE AND NEAR-INCOMPRESSIBLE 
HYPERELASTIC MATERIALS

 

Polymeric materials, such as natural rubber, are often nearly incompressible. For
some applications, they can be idealized as incompressible. However, for applica-
tions involving confinement, such as in the corners of seal wells, it may be necessary
to accommodate the small degree of incompressibility to achieve high accuracy.
Incompressibility and near-incompressibility represent 

 

internal constraints

 

. The
principal (e.g., Lagrangian) strains are not independent, and the stresses are not
determined completely by the strains. Instead, differences in the principal stresses
are determined by differences in principal strains (Oden, 1972). An additional field
must be introduced to enforce the internal constraint, and we will see that this internal
field can be taken as the hydrostatic pressure (referred to the current configuration).

 

6.3.1 I

 

NCOMPRESSIBILITY

 

The constraint of incompressibility is expressed by the relation 

 

J

 

 

 

=

 

 1. Now,

(6.22)

and consequently,

(6.23)

The constraint of incompressibility can be enforced using a Lagrange multiplier
(see Oden, 1972), denoted here as 

 

p

 

. The multiplier depends on 

 

X

 

 and is, in fact,
the additional field just mentioned. Oden (1972) proposed introducing an augmented
strain-energy function, 

 

w

 

′

 

, similar to

(6.24)

in which 

 

w

 

 is interpreted as the conventional strain-energy function, but with depen-
dence on 

 

I

 

3

 

 (

 

=

 

1) removed.  are called the deviatoric invariants. For reasons
to be explained in a later chapter presenting variational principles, this form serves

J
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=

=
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to enforce incompressibility, with 

 

S

 

 now given by

 (6.25)

To convert to deformed coordinates, recall that 

 

S

 

 = J

 

F

 

−

 

1

 

T

 

F

 

−

 

T

 

. It is left to the
reader in an exercise to derive  in which

(6.26)

in which  It follows that 

 

p

 

 

 

=

 

 

 

−

 

tr

 

(

 

T

 

)

 

/

 

3 since

(6.27)

Evidently, the Lagrange multiplier enforcing incompressibility is the “true”
hydrostatic pressure.

Finally, the tangent-modulus tensor is somewhat more complicated because d

 

S

 

depends on d

 

E

 

 and d

 

p

 

. We will see in subsequent chapters that it should be defined
as 

 

D

 

∗ 

 

using

(6.28)

 

Example: Uniaxial Tension

 

Consider the Neo-Hookean elastomer satisfying

(6.29)
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We seek the relation between 

 

s

 

1

 

 and 

 

e

 

1

 

, which will be obtained twice: once by
enforcing the incompressibility constraint 

 

a priori

 

, and the second by enforcing the
constraint 

 

a posteriori

 

.

 

a priori

 

: Assume for the sake of brevity that 

 

e

 

2

 

 

 

=

 

 

 

e

 

3

 

. 

 

I

 

3

 

 

 

=

 

 1 implies that
. The strain-energy function now is  The stress, 

 

s

 

1

 

, is
now found as

(6.30) 

 

a posteriori

 

:  Use the augmented function

(6.31)

Now

(6.32)

Thus, it follows that  We conclude that

(6.33)
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a posteriori with deviatoric invariants

 

:  Consider the augmented function with
deviatoric invariants:

(6.34)

Hence, 

 

c

 

2

 

 

 

=

 

 

 

c

 

3

 

. Furthermore, 

(6.34e)

Equation 6.34 now implies that

(6.35)

and substitution into Equation 6.34b furnishes

(6.36)

as in the 

 

a priori

 

 case and in the first 

 

a posteriori

 

 case. Now, the Lagrange multiplier

 

p

 

 can be interpreted as the pressure referred to current coordinates.

 

6.3.2 N

 

EAR

 

-I

 

NCOMPRESSIBILITY

 

As will be seen in Chapter 18, the augmented strain-energy function
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serves to enforce the constraint
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Here, 

 

k

 

 is the bulk modulus, and it is assumed to be quite large compared to,
for example, the small strain-shear modulus. The tangent-modulus tensor is now

(6.39)

 

6.4 NONLINEAR MATERIALS AT LARGE 
DEFORMATION

 

Suppose that the constitutive relations are measured at a constant temperature in the
current configuration as

(6.40)

in which the fourth-order tangent-modulus tensor 

 

D

 

 can, in general, be a function
of stress, strain, temperature, and internal-state variables (discussed in subsequent
chapters). This form is attractive since  and 

 

D

 

 are both objective. Conversion to
undeformed coordinates is realized by

(6.41)
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Recalling Chapter 2, it follows that
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Suppose instead that the Jaumann stress flux is used and that

(6.45)

Now

(6.46)

For this flux, there does not appear to be any way that  can be written in the
form of Equation 6.42, i.e., is determined by . To see this, consider

(6.47)

In the second term in Equation 6.47a, VEC(L + W) cannot be eliminated in favor
of VEC(D), and hence in favor of . Note that

(6.48)

I + U9 is singular, as seen in the following argument. Recall that U9 is symmetric
and thus has real eigenvalues. However,  and thus the eigenvalues of U9 are
either 1 or −1. Some of the eigenvalues must be −1. Otherwise, U9 would be the
identity matrix, in which case it would not, in general, have the permutation property
identified in Chapter 2. Thus, some of the eigenvalues of I + U9 vanish. Instead, we
write

(6.49)

and we see that if the Jaumann stress flux is used,  is determined by  and the
spin W. Recall that the spin does not vanish under rigid-body rotation.

6.5 EXERCISES

1. In classical linear elasticity, introduce the isotropic stress and isotropic
linear strain as

T D
∆

= D.

˙ ( ) ( )

˙ ( ˙ ) ( ) ( ) .

S T D T T

D E T E T T

= + − + − −





= + − + − −[ ]

− −

− − − − − −

J ( )

J

F L W L W F

F F F F F L W L W F

T T

T T T T

T
∆

tr

tr

1

1 1 1

Ṡ
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and introduce the deviatoric stress and strain using

Verify that

2. Verify that Equation 6.3 can be inverted to furnish

3. In classical linear elasticity, under uniaxial stress, the elastic modulus E
and Poisson’s ratio ν are defined by

Prove that

4. Obtain v, L, D, and W in spherical coordinates.
5. For cylindrical coordinates, find L, D, and W for the following flows:

6. In undeformed coordinates, the 2nd Piola-Kirchhoff stress for an incom-
pressible, hyperelastic material is given by
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106 Finite Element Analysis: Thermomechanics of Solids

Find the corresponding expression in deformed coordinates: derive
 in which direct transformation furnishes

7. Prove that under uniaxial tension in an isotropic linearly elastic material
e22 = e33. (Problem 9, Chapter 5.)

8. Obtain λ in terms of E and ν. (Problem 10, Chapter 5.)
9. The bulk modulus K is defined by  Obtain K as a function

of E and ν. (Problem 11, Chapter 5.)
10. The 2" × 2" × 2" shown in Figure 6.2 is confined on its sides facing the

± x faces by rigid, frictionless walls. The sides facing the ± z faces are
free. The top and bottom faces are subjected to a compressive force of
100 lbf. Take E = 10  ̂7 psi and ν = 1/3. Find all nonzero stresses and
strains. What is the volume change? What are the principal stresses and
strains? What is the maximum shear stress? (Problem 12, Chapter 5.)

FIGURE 6.2 Strain in a constrained plate.

′ ′ψ ψ1 2 and ,

t m m i= ′ ′ + ′ ′ −2 21 1 2 2ψ ψ p .

t ekk kk
L= 3Κ ( ).

z

v

x

E
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Thermal and 
Thermomechanical 
Response

 

7.1 BALANCE OF ENERGY AND PRODUCTION
OF ENTROPY

7.1.1 B

 

ALANCE

 

 

 

OF

 

 E

 

NERGY

 

The total energy increase in a body, including internal energy and kinetic energy, is
equal to the corresponding work done on the body and the heat added to the body.
In rate form,

(7.1) 

in which:

 

Ξ

 

 is the internal energy with density 

 

ξ

 

(7.2a) 

 is the rate of mechanical work, satisfying

(7.2b)

 is the rate of heat input, with heat production 

 

h

 

 and heat flux 

 

q

 

, satisfying

(7.2c)

 is the rate of increase in the kinetic energy,

(7.2d)

It has been tacitly assumed that all work is done on 

 

S

 

, and that body forces do
no work.

7

˙ ˙ ˙ ˙,K + = +Ξ W Q

˙ ˙ ;Ξ = ∫ ρξdV

Ẇ

˙ ˙ ,W dS= ∫ uTττ

Q̇

˙ ,Q hdV dS= −∫ ∫ρ n qT  and

K̇

˙ ˙
˙

.K = ∫ ρu
uT d

dt
dV

 

0749_Frame_C07  Page 107  Wednesday, February 19, 2003  5:07 PM

© 2003 by CRC CRC Press LLC 



 

108

 

Finite Element Analysis: Thermomechanics of Solids

 

Invoking the divergence theorem and balance of linear momentum furnishes

(7.3)

The inner bracketed term inside the integrand vanishes by virtue of the balance
of linear momentum. The relation holds for arbitrary volumes, from

 

 

 

which the local
form of balance of energy, referred to undeformed coordinates, is obtained as

(7.4)

To convert to undeformed coordinates, note that

(7.5)

In undeformed coordinates, Equation 7.3 is rewritten as

(7.6a)

furnishing the 

 

local form

 

(7.6b)

 

7.1.2 E

 

NTROPY

 

 P

 

RODUCTION

 

 I

 

NEQUALITY

 

Following the thermodynamics of ideal and non-ideal gases, the entropy production
inequality is introduced as follows (see Callen, 1985):

(7.7a)

in which 

 

H

 

 is the total entropy, 

 

η

 

 is the specific entropy per unit mass, and T is the
absolute temperature. This relation provides a “framework” for describing the irre-
versible nature of dissipative processes, such as heat flow and plastic deformation.
We apply the divergence theorem to the surface integral and obtain the local form
of the entropy production inequality:

(7.7b)

ρξ ρ ρ˙ ˙
˙

( ) .+ − ∇





− − + ∇





=∫ u
u

D qT T Td

dt
tr h dVT T 0

ρξ ρ˙ ( ) .= − ∇ +tr TD qT h

n q q F n

q n q F q

T T T

T

dS J dS

dS J

∫ ∫
∫

=

= =

−

−

0 0

0 0 0 0
1          .

ρ ξ ρ0 0 0 0 0 0˙ ( ˙ ,− − + ∇[ ] =∫ tr dVSE) h Tq

ρ ξ ρ0 0 0 0 0˙ ( ˙ ) .− − + ∇ =tr SE h Tq

˙ ˙ ,H = ≥ −∫ ∫ ∫ρηdV
h
T

dV
T

dS
n qT

ρ ηT h T/T˙ .≥ − ∇ + ∇T Tq q
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The corresponding relation in undeformed coordinates is

(7.7c)

 

7.1.3 T

 

HERMODYNAMIC

 

 P

 

OTENTIALS

 

The Balance of Energy introduces the internal energy 

 

Ξ

 

, which is an extensive
variable—its value accumulates over the domain. The mass and volume averages
of extensive variables are also referred to as extensive variables. This contrasts with
intensive, or pointwise, variables, such as the stresses and the temperature. Another
extensive variable is the entropy 

 

H

 

. In reversible elastic systems, the heat flux is
completely converted into entropy according to 

(7.8) 

(We shall consider several irreversible effects, such as plasticity, viscosity, and heat
conduction.) In undeformed coordinates, the balance of energy for reversible pro-
cesses can be written as

(7.9) 

We call this equation the thermal equilibrium equation. It is assumed to be
integrable, so that the internal energy is dependent on the current state represented
by the current values of the state variables 

 

E

 

 and 

 

η

 

. For the sake of understanding,
we can think of 

 

T

 

 as a thermal stress and 

 

η

 

 as a thermal strain. Clearly,  if
there is no heat input across the surface or generated in the volume. Consequently,
the entropy is a convenient state variable for representing adiabatic processes. 

In Callen (1985), a development is given for the stability of thermodynamic
equilibrium, according to which, under suitable conditions, the strain and the entropy
density assume values that maximize the internal energy. Other thermodynamic
potentials, depending on alternate state variables, can be introduced by a Lorentz
transformation, as illustrated in the following equation. Doing so is attractive if the
new state variables are accessible to measurement. For example, the Gibbs Free
Energy (density) is a function of the intensive variables 

 

S

 

 and T:

(7.10a) 

from which

(7.10b)

Stability of thermodynamic equilibrium requires that 

 

S

 

 and T assume values that
minimize 

 

g

 

 under suitable conditions. This potential is of interest in fluids experi-
encing adiabatic conditions since the pressure (stress) is accessible to measurement
using, for example, pitot tubes.

ρ η0 0 0 0 0T h T T˙ / .≥ − ∇ + ∇T Tq q

˙ ˙ .Q H= T

ρ ξ ρ η0 0
˙ ( ˙ ˙.= +tr SE) T

η̇ = 0

ρ ρ ξ ρ η0 0g tr= − −( ) ,SE 0T

ρ ρ η0 0 T˙ ( ˙) ˙ .g tr= − −ES
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Finite Element Analysis: Thermomechanics of Solids

 

In solid continua, the stress is often more difficult to measure than the strain.
Accordingly, for solids, the Helmholtz Free Energy (density) 

 

f

 

 is introduced using

(7.11a)

furnishing

(7.11b)

It is evident that 

 

f

 

 is a function of both an intensive and an extensive variable.
At thermodynamic equilibrium, it exhibits a (stationary) saddle point rather than a
maximum or a minimum. Finally, for the sake of completeness, we mention a fourth
potential, known as the enthalpy 

 

ρ

 

0

 

h

 

 

 

=

 

 

 

ρ

 

0

 

x

 

 

 

−

 

 

 

tr

 

(

 

SE

 

), and

(7.12)

The enthalpy also is a function of an extensive variable and an intensive variable
and exhibits a saddle point at equilibrium. It is attractive in fluids under adiabatic
conditions.

 

7.2 CLASSICAL COUPLED LINEAR THERMOELASTICITY

 

The classical theory of coupled thermoelasticity in isotropic media corresponds to
the restriction to the linear-strain tensor,  and to the stress-strain temperature
relation

(7.13) 

Here, 

 

α

 

 is the volumetric coefficient of thermal expansion, typically a small
number in metals. If the temperature increases without stress being applied, the
strain increases according to 

 

e

 

vol

 

 

 

=

 

 

 

tr

 

(

 

E

 

) 

 

=

 

 

 

α

 

(

 

T

 

 

 

−

 

 

 

T

 

0

 

). Thermoelastic processes are
assumed to be reversible, in which case,  It is also assumed that
the specific heat at constant strain, 

 

c

 

e

 

, given by

(7.14)

is constant. The balance of energy is restated as 

(7.15)

Recalling that 

 

ξ

 

 is a function of the extensive variables 

 

E

 

 and 

 

η

 

, to convert to

 

E

 

 and T as state variables, which are accessible to measurement, we recall the

ρ ρ ξ ρ η0 0 0f = − T ,

ρ ρ η0 0
˙ ( ˙ ) ˙ .f tr= −SE T

ρ ρ η0 0
˙ ( ˙ ˙.h ) T= − +tr ES

E E≈ ˙
L

T E E= + − −2 0µ αλ[ ( ) ( )] .tr T T I

−∇ ⋅ + =q h Tρ η̇.

c T
Te = ∂

∂
η

,

ρ ξ ρ η0
˙ ( ˙ ) ˙= −tr TE T
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Helmholtz Free Energy 

 

f

 

 

 

=

 

 

 

e

 

 

 

+

 

 

 

T

 

η

 

. Since  is an exact differential, to ensure path
independence, we infer the Maxwell relation:

(7.16)

Returning to the energy-balance equation,

(7.17)

Also, note that

(7.18a)

thus

(7.18b)

We previously identified the coefficient of specific heat, assumed constant, as 

 

c

 

e

 

 

 

=

 

 so that

(7.19)

From Equation 7.13, upon approximating T as T

 

0

 

,  From Fou-
rier’s Law, 

 

q

 

 

 

=

 

 

 

−

 

k

 

∇

 

T

 

. Thus, the thermal-field equation now can be written as

(7.20)

ḟ

− ∂
∂

= ∂
∂

ρ η
E

T

T ET ˙
.

ρξ ρ ξ ρ ξ
η

η

ρ ξ ρ ξ
η

η ρ ξ
η

η

η

η

˙ ˙ ˙

˙ ˙

= ∂
∂







+ ∂

∂

= ∂
∂

+ ∂
∂

∂
∂





















 + ∂

∂
∂
∂













tr

tr

E
E

E E
E

E

E T E ET
T.

T = ∂
∂

= ∂
∂

ξ ξ
ηηE

     T
E

,

ρξ ρ ξ ρ ξ
η

η ρ ξ
η

η

ρ η

η

˙ ˙ ˙

˙ ˙ .

= ∂
∂

+ ∂
∂

∂
∂





















 + ∂

∂
∂
∂













= − ∂
∂

















+ ∂

∂

tr

tr
E

E E

T
T

E

E T E E

E

E
T

T

T
TT

T
T

T ∂
∂

η
T E

,

ρξ ρ˙ ˙ ˙= − ∂
∂













+tr ceT
T

T
T

T.E

T .T0 0
∂
∂ = −T αλT I

k tr∇ = +2
0T T c Teαλ ρ( ˙ ) ˙E .
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The balance of linear momentum, together with the stress-strain and strain-
displacement relations of linear isotropic thermoelasticity, imply that

(7.21)

from which we obtain the mechanical-field equation (Navier’s Equation for
Thermoelasticity):

 (7.22)

The thermal-field equation depends on the mechanical field through the term
 Consequently, if 

 

E

 

 is static, there is no coupling. Similarly, the mechan-
ical field depends on the thermal field through 

 

αλ

 

∇

 

T

 

, which often is quite small in,
for example, metals, if the assumption of reversibility is a reasonable approximation. 

We next derive the entropy. Since  is constant, we conclude that it
has the form

(7.23)

where 

 

η

 

*(

 

E

 

) remains to be determined. We take 

 

η

 

0

 

 to vanish. However, 
 implying that 

(7.24)

Now consider 

 

f

 

, for which the fundamental relation in Equation 7.11b implies

(7.25)

Integrating the entropy,

(7.26)

in which 

 

f

 

*

 

(

 

E

 

), remains to be determined. Integrating the stress,

(7.27)

∂
∂

∂
∂

+
∂
∂























+
∂
∂

− −






















=
∂
∂x

u

x

u

x

u

x

u

tj

i

j

j

i

k

k
ij

i2
1
2 0 2µ λ α δ ρ( ) ,T T

µ λ µ αλ ρ∇ + + ∇ − ∇ = ∂
∂

2
2u
u

( ) ( ) .tr E T
t

αλT0tr( ˙ ).E

ce = ∂
∂T η
Τ E

ρη ρη ρ ρη= + +0 0c T Te ln( / ) ( ),* E

ρ ρη η∂
∂

∂
∂= =E ET

*

− =∂
∂
T

ET αλI,

ρη ρη ρ αλ= + +0 0c T Te ln( / ) ( ).tr E

∂
∂

= − ∂
∂

=f f

ET
        η ρ

E
T

T

.

ρ ρ ρ αλ ρf f tr fe= − − − +0 0 1c T T T T[ ln( / ) ] ( ) ( ),*E E

ρ µ λ αλ ρf tr tr tr f= + − − +( ) ( ) ( )( ) ( ),**E E2 2
02

E T T T
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in which 

 

f

 

**

 

(T) also remains to be determined. However, reconciling the two forms
furnishes (taking 

 

f

 

0

 

 

 

=

 

 0)

(7.28)

 

7.3 THERMAL AND THERMOMECHANICAL ANALOGS 
OF THE PRINCIPLE OF VIRTUAL WORK

7.3.1 C

 

ONDUCTIVE

 

 H

 

EAT

 

 T

 

RANSFER

 

For a linear, isotropic, thermoelastic medium, the Fourier Heat Conduction Law
becomes 

 

q

 

 

 

=

 

 

 

−

 

k

 

T

 

∇

 

T, in which 

 

k

 

T

 

 is the thermal conductance, assumed positive.
Neglecting coupling to the mechanical field, the thermal-field equation in an isotropic
medium experiencing small deformation can be written as

(7.29)

We now construct a thermal counterpart of the principle of virtual work. Mul-
tiplying by 

 

δ

 

T and using integration by parts, we obtain

(7.30)

Clearly, T is regarded as the primary variable, and the associated secondary
variable is 

 

q

 

. Suppose that the boundary is decomposed into three segments: 

 

S

 

 

 

=

 

 

 

S

 

I

 

 

 

+

 

S

 

II

 

 

 

+

 

 

 

S

 

III

 

. On 

 

S

 

I

 

, the temperature T is prescribed as, for example, T

 

0

 

. It follows that

 

δ

 

T 

 

=

 

 0 on 

 

S

 

I

 

. On 

 

S

 

II

 

, the heat flux 

 

q

 

 is prescribed as 

 

q

 

0. Consequently, δ TnTq →
δ TnTq0. On SIII, the heat flux is dependent on the surface temperature through a
heat-transfer vector: h: q = q0 − h(T − T0). The right side of Equation 7.30 now becomes

(7.31)

We now suppose that T is approximated using an interpolation function of the
form

(7.32)

from which we obtain

(7.33)

ρ µ λ αλ ρf tr tr tr= + − − −( ) ) ) [ ln( / ) ].E (E (E2 2
02

1T c T T Te

−∇ ∇ + =Tk cT eT Tρ ˙ .0

δ δ ρ δ∇ ∇ + =∫ ∫ ∫T Tn qT T T T Tk dV c dV dST e
˙

δ δ δ δT T T T T Tn q n q n q nT T T TdS dS dS dS
S S S SII III III
∫ ∫ ∫ ∫= + − −0 0 0h( .)

T T     T− 0 ~ ( ) ( ) ~ ( ) ( ),N x N xT
T

T
Tθθ θθt tδ δ

∇ ∇T      T~ ( ) ( ) ~ ( ) ( ),B x B xT
T

T
Tt tθθ θθδ δ
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in which BT is the thermal analog of the strain-displacement matrix. Upon substitution
of the interpolation models, the thermal-field equation now reduces to the system
of ordinary differential equations:

(7.34)

in which

7.3.2 COUPLED LINEAR ISOTROPIC THERMOELASTICITY

The thermal-field equation is repeated as

(7.35)

Following the same steps used for conductive heat transfer furnishes the varia-
tional principle

(7.36)

The principle of virtual work for the mechanical field is recalled as

(7.37)

Also, recall that T = 2µE + λ[tr(E) − α(T − T0)]I. Consequently,

(7.38)

Thermal Stiffness Matrix

Conductance Matrix

Surface Conductance Matrix

Thermal Mass Matrix; Capacitance 
Matrix

Consistent Thermal Force;
Consistent Heat Flux

K M fT T Tθθ )) θθ ))( ˙ ( ,t t+ =

K K KT T T= +1 2

K B x B xT T T
T

1 = ∫ ( ) ( )k dVT

K N x n N xT T
T

T
T

2 = ∫ ( ) ( )h dS
SIII

M N x N xT T T
T= ∫ ( ) ( )ρce dV

f N x n q N x n qT T
T

T
T= +∫ ∫( ) ( )0 0dS dS

S SII III

− ∇ = +k trT
2

0T T c Teαλ ρ( ˙ ) ˙ .E

δ δ ρ δ αλ δ∇ ∇ + + =∫ ∫ ∫ ∫T Tn qT T T c T T T TT ek dV dV tr dV dS˙ ( ˙ ) .0 E

tr dV dV dS
S

( ) ˙̇ ( ) .δ δ ρ δET∫ ∫ ∫+ =u u u sT Tττ

tr tr dV tr dV dV dST T

S
( [ ( ) ]) ( ( ) ) ˙̇ ( ) .δ µ λ δ λα δ ρ δE E E I E I u u u s2 0+ − − + =∫ ∫ ∫ ∫T T ττ
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Then introduce the interpolation models,

(7.39)

from which we can derive B(x) and b(x), thus satisfying

(7.40)

It follows that

(7.41)

We assume that the traction ττττ(S) is specified everywhere as ττττ0(S) on S. Here,

(7.42)

For the thermal field, assuming that the heat flux q is specified as q0 on the
surface, variational methods, together with the interpolation models, furnish the
equation

(7.43)

The combined equations for a thermoelastic medium are now written in state
(first-order) form as

(7.44)

u x N xT( ) ( ) ( ),= γγ t

VEC t tr t( ) ( ) ( ) ( ) ( ) ( ).E E= =B x b xT Tγγ γγ    
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∫
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Note that W1 is positive-definite and symmetric, while  is positive-
semidefinite, implying that coupled linear thermoelasticity is at least marginally
stable, whereas a strictly elastic system is strictly marginally stable. Thus, thermal
conduction has a stabilizing effect, which can be shown to be analogous to viscous
dissipation.

7.4 EXERCISES

1. Express the thermal equilibrium equation in:
(a) cylindrical coordinates
(b) spherical coordinates

2. Derive the specific heat at constant stress, rather than at constant strain.
3. Write down the coupled thermal and elastic equations for a one-dimensional

member.

1
2 ( )W WT

2 2+
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Introduction to the Finite-
Element Method

 

8.1 INTRODUCTION

 

In thermomechanical members and structures, finite-element analysis (FEA) is typi-
cally invoked to compute displacement and temperature fields from known applied
loads and heat fluxes. FEA has emerged in recent years as an essential resource for
mechanical and structural designers. Its use is often mandated by standards such as
the ASME Pressure Vessel Code, by insurance requirements, and even by law. Its
acceptance has benefited from rapid progress in related computer hardware and soft-
ware, especially computer-aided design (CAD) systems. Today, a number of highly
developed, user-friendly finite-element codes are available commercially. The purpose
of this chapter is to introduce finite-element theory and practice. The next three chapters
focus on linear elasticity and thermal response, both static and dynamic, of basic
structural members. After that, nonlinear thermomechanical response is considered.

In FEA practice, a design file developed using CAD is often “imported” into finite-
element codes, from which point little or no additional effort is required to develop
the finite-element model and perform sophisticated thermomechanical analysis and
simulation. CAD integrated with an analysis tool, such as FEA, is an example of
computer-aided engineering (CAE). CAE is a powerful resource with the potential of
identifying design problems much more efficiently and rapidly than by “trial and error.”

A major FEM application is the determination of stresses and temperatures in
a component or member in locations where failure is thought most likely. If the
stresses or temperatures exceed allowable or safe values, the product can be rede-
signed and then reanalyzed. Analysis can be diagnostic, supporting interpretation of
product-failure data. Analysis also can be used to assess performance, for example,
by determining whether the design-stiffness coefficient for a rubber spring is attained.

 

8.2 OVERVIEW OF THE FINITE-ELEMENT METHOD

 

Consider a thermoelastic body with force and heat applied to its exterior boundary.
The finite-element method serves to determine the displacement vector 

 

u

 

(

 

X

 

, 

 

t

 

) and
the temperature T(

 

X

 

, 

 

t

 

) as functions of the undeformed position 

 

X

 

 

 

and time 

 

t

 

. The
process of creating a finite-element model to support the design of a mechanical
system can be viewed as having (at least) eight steps:

1.

 

 

 

The body is first discretized, i.e., it is modeled as a mesh of finite elements
connected at nodes.

2. Within each element, interpolation models are introduced to provide
approximate expressions for the unknowns, typically 

 

u

 

(

 

X

 

, 

 

t

 

) and T(

 

X

 

, 

 

t

 

),

8
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in terms of their nodal values, which now become the unknowns in the
finite-element model.

3. The strain-displacement relation and its thermal analog are applied to the
approximations for 

 

u

 

 and T to furnish approximations for the (Lagrangian)
strain and the thermal gradient.

4. The stress-strain relation and its thermal analog (Fourier’s Law) are
applied to obtain approximations to stress 

 

S

 

 and heat flux 

 

q

 

 in terms of
the nodal values of 

 

u

 

 and T.
5. Equilibrium principles in variational form are applied using the various approx-

imations within each element, leading to 

 

element equilibrium equations

 

.
6.

 

 

 

The element equilibrium equations are assembled to provide a 

 

global
equilibrium equation

 

.
7. Prescribed kinematic and temperature conditions on the boundaries (

 

con-
straints

 

) are applied to the global equilibrium equations, thereby reducing
the number of degrees of freedom and eliminating “rigid-body” modes.

8. The resulting global equilibrium equations are then solved using computer
algorithms.

The output is postprocessed. Initially, the output should be compared to data
or benchmarks, or otherwise validated, to establish that the model correctly repre-
sents the underlying mechanical system. If not satisfied, the analyst can revise the
finite-element model and repeat the computations. When the model is validated,
postprocessing, with heavy reliance on graphics, then serves to interpret the results,
for example, determining whether the underlying design is satisfactory. If problems
with the design are identified, the analyst can then choose to revise the design. The
revised design is modeled, and the process of validation and interpretation is repeated.

 

8.3 MESH DEVELOPMENT

 

Finite-element simulation has classically been viewed as having three stages: 

 

pre-
processing, analysis

 

, and

 

 postprocessing

 

. The input file developed at the preprocess-
ing stage consists of several elements:

1. control information (type of analysis, etc.)
2. material properties (e.g., elastic modulus)
3. mesh (element types, nodal coordinates, connectivities)
4. applied force and heat flux data
5. supports and constraints (e.g., prescribed displacements)
6. initial conditions (dynamic problems)

In problems without severe stress concentrations, much of the mesh data can be
developed conveniently using automatic-mesh generation. With the input file devel-
oped, the analysis processor is activated and “raw” output files are generated. The
postprocessor module typically contains (interfaces to) graphical utilities, thus facil-
itating display of output in the form chosen by the analyst, for example, contours of
the Von Mises stress. Two problems arise at this stage: 

 

validation 

 

and

 

 interpretation

 

.
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The analyst can use benchmark solutions, special cases, or experimental data to
validate the analysis. With validation, the analyst gains confidence in, for example,
the mesh. He or she still may face problems of interpretation, particularly if the
output is voluminous. Fortunately, current graphical-display systems make interpre-
tation easier and more reliable, such as by displaying high stress regions in vivid
colors. Postprocessors often allow the analyst to “zoom in” on regions of high
interest, for example, where rubber is highly confined. More recent methods based
on virtual-reality technology enable the analyst to fly through and otherwise become
immersed in the model.

The goal of mesh design is to select the number and location of finite-element
nodes and element types so that the associated analyses are sufficiently accurate.
Several methods include automatic-mesh generation with adaptive capabilities,
which serve to produce and iteratively refine the mesh based on a user-selected error
tolerance. Even so, satisfactory meshes are not necessarily obtained, so that model
editing by the analyst may be necessary. Several practical rules are as follows:

1. Nodes should be located where concentrated loads and heat fluxes are
applied.

2. Nodes should be located where displacements and temperatures are con-
strained or prescribed in a concentrated manner, for example, where “pins”
prevent movement.

3. Nodes should be located where concentrated springs and masses and their
thermal analogs are present.

4. Nodes should be located along lines and surface patches, over which
pressures, shear stresses, compliant foundations, distributed heat fluxes,
and surface convection are applied.

5. Nodes should be located at boundary points where the applied tractions
and heat fluxes experience discontinuities.

6. Nodes should be located along lines of symmetry.
7. Nodes should be located along interfaces between different materials or

components.
8. Element-aspect ratios (ratio of largest to smallest element dimensions)

should be no greater than, for example, five.
9. Symmetric configurations should have symmetric meshes.

10. The density of elements should be greater in domains with higher gradi-
ents.

11. Interior angles in elements should not be excessively acute or obtuse, for
example, less than 45

 

°

 

 or greater than 135

 

°

 

.
12. Element-density variations should be gradual rather than abrupt.
13. Meshes should be uniform in subdomains with low gradients.
14. Element orientations should be staggered to prevent “bias.”

In modeling a configuration, a good practice is initially to develop the mesh locally
in domains expected to have high gradients, and thereafter to develop the mesh
in the intervening low-gradient domains, thereby “reconciling” the high-gradient
domains.
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There are two classes of errors in finite-element analysis:

 

Modeling error

 

 ensues from inaccuracies in such input data as the material
properties, boundary conditions, and initial values. In addition, there often are
compromises in the mesh, for example, modeling sharp corners as rounded.

 

Numerical error

 

 is primarily due to truncation and round-off. As a practical
matter, error in a finite-element simulation is often assessed by comparing
solutions from two meshes, the second of which is a refinement of the first.

The sensitivity of finite-element computations to error is to some extent con-
trollable. If the condition number of the stiffness matrix (the ratio of the maximum
to the minimum eigenvalue) is modest, sensitivity is reduced. Typically, the condition
number increases rapidly as the number of nodes in a system grows. In addition,
highly irregular meshes tend to produce high-condition numbers. Models mixing
soft components, for example, rubber, with stiff components, such as steel plates,
are also likely to have high-condition numbers. Where possible, the model should
be designed to reduce the condition number.
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Problems

 

This chapter presents interpolation models in physical coordinates for the most part,
for the sake of simplicity and brevity. However, in finite-element codes, the physical
coordinates are replaced by natural coordinates using relations similar to interpola-
tion models. Natural coordinates allow use of Gaussian quadrature for integration
and, to some extent, reduce the sensitivity of the elements to geometric details in
the physical mesh. Several examples of the use of natural coordinates are given.

 

9.1 INTERPOLATION MODELS

9.1.1 O

 

NE

 

-D

 

IMENSIONAL

 

 M

 

EMBERS

 

9.1.1.1 Rods 

 

The governing equation for the displacements in rods (also bars, tendons, and
shafts) is

(9.1)

in which 

 

u

 

(

 

x

 

, 

 

t

 

) denotes the radial displacement, E, 

 

Α

 

 and 

 

ρ

 

 are constants, 

 

x

 

 is the
spatial coordinate, and 

 

t

 

 denotes time. Since the displacement is governed by a
second-order differential equation, in the spatial domain, it requires two (time-
dependent) constants of integration. Applied to an element, the two constants can
be supplied implicitly using two nodal displacements as functions of time. We now
approximate 

 

u

 

(

 

x

 

, 

 

t

 

) using its values at 

 

x

 

e 

 

and 

 

x

 

e

 

+

 

1

 

, as shown in Figure 9.1.
The lowest-order interpolation model consistent with two integration constants

is linear, in the form

(9.2) 

We seek to identify ΦΦΦΦ

 

m1

 

 in terms of the nodal values of 

 

u

 

. Letting 

 

u

 

e

 

 

 

=

 

 

 

u

 

(

 

x

 

e

 

) and

 

u

 

e

 

+

 

1

 

 

 

=

 

 

 

u

 

(

 

x

 

e

 

+

 

1

 

), furnishes

(9.3)
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However, from the meaning of γγγγ

 

m

 

1

 

(

 

t

 

), we conclude that

(9.4)

 

9.1.1.2 Beams

 

The equation for a beam, following Euler-Bernoulli theory, is:

(9.5)

in which 

 

w

 

(

 

x

 

, 

 

t

 

) denotes the transverse displacement of the beam’s neutral axis, and

 

I

 

 is a constant. In the spatial domain, there are four constants of integration. In an
element, they can be supplied implicitly by the values of 

 

w

 

 and 

 

w

 

′

 

 

 

=

 

 

 

∂

 

w

 

/∂

 

x

 

 at each
of the two element nodes. Referring to Figure 9.2, we introduce the interpolation
model for 

 

w

 

(

 

x

 

, 

 

t

 

):

(9.6)

 

FIGURE 9.1

 

Rod element.

 

FIGURE 9.2

 

Beam element.
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Enforcing this model at 

 

x

 

e

 

 and at 

 

x

 

e

 

+

 

1

 

 furnishes

(9.7)

 

9.1.1.3 Beam Columns

 

Beam columns are of interest, among other reasons, in predicting buckling according
to the Euler criterion. The 

 

z

 

–displacement 

 

w

 

 of the neutral axis is assumed to depend
only on 

 

x

 

 and the 

 

x

 

–displacement. Also, 

 

u

 

 is modeled as

(9.8)

in which 

 

u

 

0

 

(

 

x

 

) represents the stretching of the neutral axis. It is necessary to know

 

u

 

0

 

(

 

x

 

), 

 

w

 

(

 

x

 

) and  at 

 

x

 

e

 

 and 

 

x

 

e

 

+

 

1

 

. The interpolation model is now

(9.9)

and

 

9.1.1.4 Temperature Model: One Dimension

 

The temperature variable to be determined is T 

 

−

 

 T

 

0

 

, in which T

 

0

 

 is a reference
temperature assumed to be independent of 

 

x

 

. The governing equation for a one-
dimensional conductor is

(9.10)
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This equation is formally the same as for a rod equation (see Equation 9.1),
furnishing the interpolation model for the element as

(9.11)

 

9.1.2 I

 

NTERPOLATION

 

 M

 

ODELS

 

: T

 

WO

 

 D

 

IMENSIONS

 

9.1.2.1 Membrane Plate

 

Now suppose that the displacements 

 

u

 

(

 

x

 

, 

 

y

 

, 

 

t

 

) and 

 

v

 

(

 

x

 

, 

 

y

 

, 

 

t

 

) are modeled on the
triangular plate element in Figure 9.3, using the values 

 

u

 

e

 

(

 

t

 

), 

 

v

 

e

 

(

 

t

 

), 

 

u

 

e

 

+

 

1

 

(t), ve+1(t), ue+2(t),
and ve+2(t). This element arises in plane stress and plane strain, and is called a
membrane plate element. A linear model suffices for each quantity because it provides
three coefficients to match three nodal values. The interpolation model now is

(9.12)

.

9.1.2.2 Plate with Bending Stresses

In a plate element experiencing bending only, the in-plane displacements, u and v,
are expressed by

(9.13)

FIGURE 9.3 Triangular plate element.
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in which z = 0 at the middle plane. The out-of-plane displacement, w, is assumed
to be a function of x and y only.

An example of an interpolation model is introduced as follows to express w(x, y)
throughout the element in terms of the nodal values of :

(9.14) 

.

It follows that

(9.15)

9.1.2.3 Plate with Stretching and Bending

Finally, for a plate experiencing both stretching and bending, the displacements are
assumed to satisfy

(9.16)
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and w is a function only of x, y, and t(not z). Here, z = 0 at the middle surface, while
u0 and v0 represent the in-plane displacements. Using the nodal values of u0, v0, and
w0, a combined interpolation model is obtained as

(9.17) 

9.1.2.4 Temperature Field in Two Dimensions

In the two-dimensional, triangular element illustrated in Figure 9.3, the linear inter-
polation model for the temperature is

(9.18)

9.1.2.5 Axisymmetric Elements

An axisymmetric element is displayed in Figure 9.4. It is applicable to bodies that
are axisymmetric and are submitted to axisymmetric loads, such as all-around
pressure. The radial displacement is denoted by u, and the axial displacement is
denoted by w. The tangential displacement v vanishes, while radial and axial dis-
placements are independent of θ. Now u and w depend on r, z, and t.

There are two distinct situations that require distinct interpolation models. In
the first case, none of the nodes are on the axis of revolution (r = 0), while in the
second case, one or two nodes are, in fact, on the axis. In the first case, the linear

FIGURE 9.4 Axisymmetric element.
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Element Fields in Linear Problems 127

interpolation model is given by

(9.19)

Now suppose that there are nodes on the axis, and note that the radial displace-
ments are constrained to vanish on the axis. For reasons shown later, it is necessary
to enforce the symmetry constraints a priori in the formulation of the displacement
model. In particular, suppose that node e is on the axis, with nodes e + 1 and e + 2
defined counterclockwise at the other vertices. The linear interpolation model is now

(9.20)

A similar formulation can be used if two nodes are on the axis of symmetry so
that the u displacement in the element is modeled using only one nodal displacement,
with a coefficient vanishing at each of the nodes on the axis of revolution.

9.1.3 INTERPOLATION MODELS: THREE DIMENSIONS

We next consider the tetrahedron illustrated in Figure 9.5.
A linear interpolation model for the temperature can be expressed as

(9.21)
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128 Finite Element Analysis: Thermomechanics of Solids

For elasticity with displacements u, v, and w, the corresponding interpolation
model is

(9.22)

9.2 STRAIN-DISPLACEMENT RELATIONS 
AND THERMAL ANALOGS

9.2.1 STRAIN-DISPLACEMENT RELATIONS: ONE DIMENSION

For the rod, the strain is given by . An estimate for ε implied by the
interpolation model in Equation 9.3 has the form

(9.23)
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Element Fields in Linear Problems 129

For the beam, the corresponding relation is

(9.24)

from which the consistent approximation is obtained:

(9.25)

For the beam column, the strain is given by

(9.26)

9.2.2 STRAIN-DISPLACEMENT RELATIONS: TWO DIMENSIONS

In two dimensions, the (linear) strain tensor is given by

(9.27)

We will see later the two important cases of plane stress and plane strain. In the
latter case, Ezz vanishes and szz is not needed to achieve a solution. In the former
case, szz vanishes and Ezz is not needed for solution.

In traditional finite-element notation, we obtain [cf. (Zienkiewicz and Taylor, 1989)] 

(9.28)
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130 Finite Element Analysis: Thermomechanics of Solids

The prime in e′ is introduced temporarily to call attention to the fact that it does
not equal VEC(EL). Hereafter, the prime will not be displayed. 

For a plate with bending stresses only,

(9.29)

from which

. (9.30)

For a plate experiencing both membrane and bending stresses, the relations can
be combined to furnish

(9.31)

9.2.3 AXISYMMETRIC ELEMENT ON AXIS OF REVOLUTION

For the toroidal element with a triangular cross section, it is necessary to consider
two cases. If there are no nodes on the axis of revolution, then

(9.32)
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Element Fields in Linear Problems 131

in which the prime is no longer displayed. If element e is now located on the axis
of revolution, we obtain

(9.33)

9.2.4 THERMAL ANALOG IN TWO DIMENSIONS

The thermal analog of the strain is the temperature gradient satisfying

(9.34)

9.2.5 THREE-DIMENSIONAL ELEMENTS

Recalling the tetrahedral element in the previous section, the strain relation can be
written as

(9.35)
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132 Finite Element Analysis: Thermomechanics of Solids

9.2.6 THERMAL ANALOG IN THREE DIMENSIONS

Again referring to the tetrahedral element, the relation for the temperature gradient is

(9.36)

9.3 STRESS-STRAIN-TEMPERATURE RELATIONS
IN LINEAR THERMOELASTICITY

9.3.1 OVERVIEW

If S is the stress tensor under small deformation, the stress-strain relation for a
linearly elastic, isotropic solid under small strain is given in Lame’s form by

(9.37)

in which I is the identity tensor. The Lame’s coefficients are denoted by λ and µ,
and are given in terms of the familiar elastic modulus E and Poisson ratio ν as

(9.38)

Letting s = VEC(S) and e = VEC(EL), the stress-strain relations are written using
Kronecker product operators as

(9.39)

and D is the tangent-modulus tensor introduced in the previous chapters.

9.3.2 ONE-DIMENSIONAL MEMBERS

For a beam column, recalling the strain-displacement model,

(9.40)

The cases of a rod and a beam are recovered by setting γγγγm1 or γγγγb1 equal to zero
vectors, respectively.
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9.3.3 TWO-DIMENSIONAL ELEMENTS

9.3.3.1 Membrane Response 

In two-dimensional elements, several cases can be distinguished. We first consider
elements in plane stress. It is convenient to use Hooke’s Law in the form

(9.41)

Under plane stress, Sxz = Syz = Szz = 0. Now, Ezz ≠ 0, but we will see that it is
not of present interest since it does not influence the solution process. Later on, for
reasons such as tolerances, we may wish to calculate it, but this is a postprocessing
issue. Consequently, in plane stress, the stress-strain relations reduce to

(9.42)

In traditional finite-element notation, this can be written as
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134 Finite Element Analysis: Thermomechanics of Solids

can be called the tangent-modulus matrix under plane stress (note that, unlike the
previous definition, it  is not based on the VEC operator and is not a tensor).

Under plane strain, Exz = Eyz = Ezz = 0. Now, Szz ≠ 0. However, this stress is not
of great interest since its value is not needed for attaining a solution. The quantity
may be of interest later, e.g., to check whether yield conditions in plasticity are met,
but it can be obtained at that point by a postprocessing procedure. The equations of
plane strain are

(9.45)

and Dm22 is the tangent-modulus tensor in plane strain.
However, in the finite-element method, we will see that we are interested in a

slightly different quantity from Dm21 or Dm22, as follows. The Principle of Virtual
Work uses the strain-energy density given by . However, elementary manip-
ulation serves to prove that

(9.46)

In the Principle of Virtual Work, the tangent-modulus tensor in plane stress is
replaced by

(9.47)

and similarly for plane strain. (This peculiarity is an artifact of traditional finite-
element notation and does not appear if VEC notation is used.) The stresses are now
given in terms of nodal displacements by

(9.48)
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Element Fields in Linear Problems 135

9.3.3.2 Two-Dimensional Members: Bending Response

Thin plates experiencing bending only are assumed to be in a state of plane stress.
The tangent-modulus matrix is given in Equation 9.47, and an approximation for
the strain is obtained as

(9.49)

9.3.4 ELEMENT FOR PLATE WITH MEMBRANE 
AND BENDING RESPONSE

Plane stress is also applicable, consequently:

(9.50)

9.3.5 AXISYMMETRIC ELEMENT 

It is sufficient to consider the case in which none of the nodes of the element are
located on the axis of revolution.

(9.51)
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136 Finite Element Analysis: Thermomechanics of Solids

For use in the Principle of Virtual Work, Da is modified to furnish , given by

(9.52)

9.3.6 THREE-DIMENSIONAL ELEMENT

All six stresses and strains are now present. Using traditional notation, we write

(9.53)

and for the Principle of Virtual Work,

(9.54)
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Element Fields in Linear Problems 137

9.3.7 ELEMENTS FOR CONDUCTIVE HEAT TRANSFER

Assuming the isotropic version of Fourier’s Law, the heat-flux vector, which can be
considered the thermal analog of the stress, satisfies

(9.55)

9.4 EXERCISES

1. Modify the rod element to replace the physical coordinate x with the
“natural coordinate” ξ in which

Rewrite the interpolation model using natural coordinates, and perform
the inverse to obtain ΦΦΦΦm1.

2. Rewrite the Euler-Bernoulli equation for the beam using the previous
transformation. Rewrite the interpolation model using natural coordinates,
and perform the inverse to obtain ΦΦΦΦb1.

3. Verify that the inverse given in Equation 9.44 is correct.
4. Invert Equation 9.39 to express E as a function of s. Find the correct

expression for D−1.
5. Write out the 9 × 9 tensors D and D−1 that correspond to Lame’s equation.
6. For the axisymmetric triangular element, find the strain-displacement

matrix ββββT in the cases in which two of the nodes are located on the axis
of revolution. Note that for axisymmetric problems, ur = 0 at r = 0. 
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138 Finite Element Analysis: Thermomechanics of Solids

7. The stress-strain relations in two-dimensional plane stress can be written
as

Prove that in plane strain

,

where

.

8. If

,

find the matrix  such that

.

What happens if ν → 1/2?
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Element and Global 
Stiffness and Mass 
Matrices

 

10.1 APPLICATION OF THE PRINCIPLE
OF VIRTUAL WORK

 

Elements of variational calculus were discussed in Chapter 3, and the Principle of
Virtual Work was introduced in Chapter 5. Under static conditions, the principle is
repeated here as

 (10.1)

As before, 

 

δ

 

 represents the variational operator. We assume for our purposes
that the displacement, the strain, and the stress satisfy representations of the form

(10.2)

in which 
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 and 
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 are written as one-dimensional arrays in accordance with traditional
finite-element notation. For use in the Principle of Virtual Work, we need 
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, which
introduces the factor 2 into the entries corresponding to shear. We suppose that the
boundary is decomposed into four segments: S 
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, there are inertial boundary conditions, by
virtue of which ττττ

 

 

 

=

 

 ττττ

 

0

 

 

 

−

 

 

 

Bü

 

. The term on the right now becomes

(10.3)
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The term on the left in Equation 10.1 becomes

(10.4)

in which 

 

K

 

 is called the stiffness matrix and 

 

M

 

 is called the mass matrix. Canceling
the arbitrary variation and bringing terms with unknowns to the left side furnishes
the equation as follows:

(10.5)

Clearly, elastic supports on S
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 furnish a boundary contribution to the stiffness
matrix, while mass on the boundary segment S
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 furnishes a contribution to the mass
matrix.

 

Sample Problem 1: One element rod

 

Consider a rod with modulus E, mass density 
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 to which is attached a spring of
stiffness 
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The governing equation is .

 

Sample Problem 2: Beam element

 

Consider a one-element model of a cantilevered beam to which a solid disk is welded
at 

 

x

 

 

 

=

 

 

 

L

 

. Attached at 

 

L

 

 is a linear spring and a torsional spring, the latter having
the property that the moment developed is proportional to the slope of the beam.

 

FIGURE 10.1

 

Rod with inertial and compliant boundary conditions.
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The shear force 
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0

 

 and the moment 

 

M

 

0

 

 act at 
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. The interpolation model, incorpo-
rating the constraints 
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, is

(10.6)

The stiffness and mass matrices, due to the domain, are readily shown to be

(10.7) 

The stiffness and mass contributions from the boundary conditions are

(10.8)

The governing equation is now

(10.9)

 

10.2 THERMAL COUNTERPART OF THE PRINCIPLE
OF VIRTUAL WORK

 

For our purposes, we focus on the equation of conductive heat transfer as

. (10.10)

 

FIGURE 10.2

 

Beam with translational and rotational inertial and compliant boundary conditions.
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Multiplying by the variation of 

 

T

 

 

 

−

 

 

 

T

 

0

 

, integrating by parts, and applying the
divergence theorem furnishes

(10.11)

Now suppose that the interpolation models for temperature in the current element
furnish a relation of the form

. (10.12)

The terms on the left in Equation 10.11 can now be written as

(10.13) 
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 can be called the thermal stiffness (or conductance) matrix and thermal
mass (or capacitance) matrix, respectively. 
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 h1 (T −
T0), while on SIV, nTq = nTq1 − h2 d T/dt. The governing finite-element equation is
now

(10.14)

10.3 ASSEMBLAGE AND IMPOSITION 
OF CONSTRAINTS

10.3.1 RODS

Consider the assemblage consisting of two rod elements, denoted as e and e + 1
[see Figure 10.3(a)]. There are three nodes, numbered n, n + 1, and n + 2. We first
consider assemblage of the stiffness matrices, based on two principles: (a) the forces
at the nodes are in equilibrium, and (b) the displacements at the nodes are continuous.
Principle (a) implies that, in the absence of forces applied externally to the node, at
node n + 1, the force of element e + 1 on element e is equal to and opposite the force
of element e on element e + 1. It is helpful to carefully define global (assemblage
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Element and Global Stiffness and Mass Matrices 143

level) and local (element level) systems of notation. The global system of forces is
shown in (a), while the local system is shown in (b). At the center node,

(10.15)

since no external load is applied. Clearly, .
The elements satisfy

(10.16)

and in this case, k(e) = k(e+1) = EA/L. These relations can be written as four separate
equations:

(10.17)

FIGURE 10.3 Assembly of rod elements.
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144 Finite Element Analysis: Thermomechanics of Solids

Add (ii) and (iii) and apply Equation 10.15 to obtain

(10.18)

and in matrix form

(10.19)

The assembled stiffness matrix shown in Equation 10.19 can be visualized as
an overlay of two element stiffness matrices, referred to global indices, in which
there is an intersection of the overlay. The intersection contains the sum of the lowest
entry on the right side of the upper matrix and the highest entry on the left side of
the lowest matrix. The overlay structure is depicted in Figure 10.4.

FIGURE 10.4 Assembled beam stiffness matrix.
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Element and Global Stiffness and Mass Matrices 145

Now, the equations of the individual elements are written in the global system as

(10.20)

The global stiffness matrix (the assembled stiffness matrix K(g) of the two-element
member) is the direct sum of the element stiffness matrices: .

Generally, K(g) = ∑e . In this notation, the strain energy in the two elements
can be written in the form

(10.21)

The total strain energy of the two elements is 
Finally, notice that K(g) is singular: the sum of the rows is the zero vector, as is

the sum of the columns. In this form, an attempt to solve the system will give rise
to “rigid-body motion.” To illustrate this reasoning, suppose, for simplicity’s sake,
that k(e) = k(e+1), in which case equilibrium requires that Pn = Pn+2. If computations
were performed with perfect accuracy, the equation would pose no difficulty. How-
ever, in performing computations, errors arise. For example, Pn is computed as

 and . Computationally, there is now an
unbalanced force, . In the absence of mass, this, in principle, implies infinite
accelerations. In the finite-element method, the problem of rigid-body motion can
be detected if the output exhibits large deformation.

The problem is easily suppressed using constraints. In particular, symmetry
implies that un+1 = 0. Recalling Equation 10.19, we now have

, (10.22)

in which R is a reaction force that arises to enforce physical symmetry in the presence
of numerically generated asymmetry. The equation corresponding to the second
equation is useless in predicting the unknowns un and un+2 since it introduces the
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146 Finite Element Analysis: Thermomechanics of Solids

new unknown R. The first and third equations are now rewritten as

, (10.23)

with the solution

.  (10.24)

To preserve symmetry, it is necessary for un + un+1 = 0. However, the sum is
computed as

(10.25)

The reaction force is given by R = −[εn + εn+1], and, in this case, it can be considered
as a measure of computational error.

Note that Equation 10.23 can be obtained from Equation 10.22 by simply “striking
out” the second row of the matrices and vectors and the second column of the matrix.

The same assembly arguments apply to the inertial forces as to the elastic forces.
Omitting the details, the kinetic energies T of the two elements are

(10.26)

10.3.2 BEAMS

A similar argument applies for beams. The potential energy and stiffness matrix of
the eth element can be written as

(10.27)
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Element and Global Stiffness and Mass Matrices 147

In a two-element beam model analogous to the previous rod model, V (g) = V (e) +
V (e+1), implying that

. (10.28)

Generally, in a global coordinate system, K(g) = ∑∑∑∑e K
(e).

10.3.3 TWO-DIMENSIONAL ELEMENTS

We next consider assembly in 2-D. Consider the model depicted in Figure 10.5
consisting of four rectangular elements, denoted as element e, e + 1, e + 2, and e + 3.
The nodes are also numbered in the global system. Locally, the nodes in an element
are numbered in a counterclockwise fashion. Suppose there is one degree of freedom
per node (e.g., x-displacement) and one corresponding force.

FIGURE 10.5 2-D assembly process.
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148 Finite Element Analysis: Thermomechanics of Solids

In the local systems, the force on the center node induces displacements according to

(10.29)

Globally,

(10.30)

Adding the forces of the elements on the center node gives

(10.31)

Taking advantage of the symmetry of the stiffness matrix, this implies that the
fifth row of the stiffness matrix is

(10.32)

Finally, for later use, we consider damping, which generates a stress proportional
to the strain rate. In linear problems, it leads to a vector-matrix equation of the form

. (10.33)

At the element level, the counterpart of the kinetic energy and the strain energy
is the Rayleigh Damping Function, D(e), given by , and the con-
sistent damping force on the eth element is

(10.34)
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Element and Global Stiffness and Mass Matrices 149

The Rayleigh Damping Function is additive over the elements. Accordingly, if
 is the damping matrix of the eth element referred to the global system, the

assembled damping matrix is given by

(10.35)

It should be evident that the global stiffness, mass, and damping matrices have
the same bandwidth; the force on one given node depends on the displacements
(velocities and accelerations) of the nodes of the elements connected at the given
node, thus determining the bandwidth.

10.3 EXERCISES

1. The equation of static equilibrium in the presence of body forces, such
as gravity, is expressed by

Without the body forces, the dynamic Principle of Virtual Work is derived as

How should the second equation be modified to include body forces?
2. Consider a one-dimensional system described by a sixth-order differential

equation:

Consider an element from xe to xe+1. Using the natural coordinate ξ = −1
when x = xe′ = +1 when x = xe+1, for an interpolation model with the
minimum order that is meaningful, obtain expressions for ϕϕϕϕ(ξ), ΦΦΦΦ, and γγγγ,
serving to express q as

.

3. Write down the assembled mass and stiffness matrices of the following
three-element configuration (using rod elements). The elastic modulus is
E, the mass density is ρ, and the cross-sectional area is A. 
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150 Finite Element Analysis: Thermomechanics of Solids

4. Assemble the stiffness coefficients associated with node n, shown in the
following figure, assuming plane-stress elements. The modulus is E, and
the Poisson’s ratio is . K(1), K(2), and K(3) denote the stiffness matrices
of the elements.

5. Suppose that a rod satisfies δΨ = 0, in which Ψ is given by

Use the interpolation model

For an element xe < x < xe+1, find the matrix Ke such that

6. Redo this derivation for Ke in the previous exercise, using the natural
coordinate ξ, whereby ξ = ax + b, in which a and b are such that −1 =
axe + b, +1 = axe+1 + b.

7. Next, regard the nodal-displacement vector as a function of t. Find the
matrix Me such that
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Element and Global Stiffness and Mass Matrices 151

in which ρ is the mass density. Derive Me using both physical and natural
coordinates.

8. Show that, for the rod under gravity, a two-element model gives the exact
answer at x = 1, as well as a much better approximation to the exact dis-
placement distribution.

9. Apply the method of the previous exercise to consider a stepped rod, as
shown in the figure, with each segment modeled as one element. Is the
displacement at x = 2L still exact?

E
A
ρ

L
g

g

E1

A1 L1

L2

ρ1

E2

A2

ρ2
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Solution Methods
for Linear Problems

 

11.1 NUMERICAL METHODS IN FEA

11.1.1 S
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ROBLEMS

 

Consider the numerical solution of the linear system 

 

Kγγγγ

 

 

 

=

 

 

 

f

 

, in which 

 

K

 

 is the
positive-definite and symmetric stiffness matrix. In many problems, it has a large
dimension, but is also banded. The matrix can be “triangularized”: 

 

K

 

 

 

=

 

 

 

LL

 

T

 

, in
which 

 

L

 

 is a lower triangular, nonsingular matrix (zeroes in all entries above the
diagonal). We can introduce 

 

z
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Tγγγγ

 

 and obtain 

 

z

 

 by solving 

 

Lz
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f

 

. Next, γγγγ

 

 can be
computed by solving 

 

L
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z

 

. Now 

 

Lz
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f

 

 can be conveniently solved by forward
substitution. In particular, 

 

Lz
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f

 

 can be expanded as

(11.1)

Assuming that the diagonal entries are not too small, this equation can be solved,
starting from the upper-left entry, using simple arithmetic: 
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 .
Next, the equation 

 

L

 

Tγγγγ

 

 

 

=

 

 

 

z

 

 can be solved using backward substitution. The
equation is expanded as

(11.2)
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Starting from the lower-right entry, solution can be achieved using simple arith-
metic as 

 

γ

 

n

 

 

 

=

 

 

 

f

 

n

 

/

 

l

 

nn

 

,

In both procedures, only one unknown is encountered in each step (row).

 

11.1.2 M
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We next consider how to triangularize 
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 block 
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 can be triangularized, we consider

(11.3)
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 column of 
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.
Simple manipulation suffices to furnish 
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 and 
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(11.4)

Note that λλλλ

 

j

 

 can be conveniently computed using forward substitution. Also,
note that 

 

l

 

jj

 

 

 

=

 

 The fact that 
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>

 

 0 implies that 
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 is real. Obviously,
the triangularization process proceeds to the (

 

j
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 1)

 

st

 

 block and on to the complete
stiffness matrix.

As an example, consider

(11.5)
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from which 
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2

 

 

 

=

 

 1/2 and  Now

(11.7)

We now proceed to the full matrix:

(11.8)
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 1/3, l32 =   = 1/5 − 1/9 − 1/12 = 

11.1.3 TRIANGULARIZATION OF ASYMMETRIC MATRICES

Asymmetric stiffness matrices arise in a number of finite-element problems, includ-
ing problems with unsteady rotation and thermomechanical coupling. If the matrix
is still nonsingular, it can be decomposed into the product of a lower-triangular and
an upper-triangular matrix:

(11.9)

Now, the jth block of the stiffness matrix admits the decomposition

(11.10)

in which it is assumed that the ( j − 1)th block has been decomposed in the previous
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which purpose ujj can be arbitrarily set to unity. An equation of the form Kx = f can
now be solved by forward substitution applied to Lz = f, followed by backward
substitution applied to Ux = z.

11.2 TIME INTEGRATION: STABILITY AND ACCURACY

Much insight can be gained from considering the model equation:

(11.11)

in which λ is complex. If Re(λ) > 0, for the initial value y(0) = y0, y(t) = y0 exp(−λt),
then clearly y(t) → 0. The system is called asymptotically stable in this case. 

We now consider whether numerical-integration schemes to integrate Equation
11.11 have stability properties corresponding to asymptotic stability. For this pur-
pose, we apply the trapezoidal rule, the properties of which will be discussed in a
subsequent section. Consider time steps of duration h, and suppose that the solution
has been calculated through the nth time step, and we seek to compute the solution at
the (n + 1)st time step. The trapezoidal rule is given by

(11.12)

Consequently,

(11.13)

Clearly, yn+1 → 0 if  < 1, and yn+1 → ∞ if  > 1, in which | · | implies
the magnitude. If the first inequality is satisfied, the numerical method is called A-stable
(see Dahlquist and Bjork, 1974). We next write λ = λr + iλi, and now A-stability
requires that

(11.14)

A-stability implies that λr > 0, which is precisely the condition for asymptotic
stability.

Consider the matrix-vector system arising in the finite-element method:
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in which M, D, and K are positive-definite. Elementary manipulation serves to derive
that

(11.16)

It follows that  and γγγγ → 0. We conclude that the system is asymptotically
stable.

Introducing the vector  the n-dimensional, second-order system is written
in state form as the (2n)-dimensional, first-order system of ordinary differential
equations:

(11.17)

We next apply the trapezoidal rule to the system:

(11.18)

From the equation in the lower row, pn+1 = [γγγγn+1 − γγγγn] − pn. Eliminating pn+1

in the upper row furnishes a formula underlying the classical Newmark method:

(11.19)

and KD can be called the dynamic stiffness matrix. Equation 11.19 can be solved
by triangularization of KD, followed by forward and backward substitution.

11.3 NEWMARK’S METHOD

To fix the important notions, consider the model equation
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We now use the Taylor series to express yn+1 and fn+1 in terms of yn and fn. Noting
that  and  we obtain

(11.22)

For exact agreement through h2, the coefficients must satisfy

(11.23)

We also introduce the convenient normalization γ + δ = 1. Simple manipulation
serves to derive that α = −1, β = 1, γ = 1/2, δ = 1/2, thus furnishing

(11.24)

which can be recognized as the trapezoidal rule. 
The trapezoidal rule is unique and optimal in having the following three char-

acteristics:

It is a “one-step method” using only the values at the beginning of the current
time step.

It is second-order-accurate; it agrees exactly with the Taylor series through h2.
Applied to dy/dt + λy = 0, with initial condition y(0) = y0, it is A-stable

whenever a system described by the equation is asymptotically stable.

11.4 INTEGRAL EVALUATION BY 
GAUSSIAN QUADRATURE

There are many integrations in the finite-element method, the accuracy and efficiency
of which is critical. Fortunately, a method that is optimal in an important sense,
called Gaussian quadrature, has long been known. It is based on converting physical
coordinates to natural coordinates. Consider  Let ξ = [2x − (a + b)].
Clearly, ξ maps the interval [a, b] into the interval [−1,1]. The integral now becomes

 Now consider the power series

(11.25)

from which

(11.26)

The advantages illustrated for integration on a symmetric interval demonstrate that,
with n function evaluations, an integral can be evaluated exactly through (2n − 1)st order.
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Consider the first 2n − 1 terms in a power-series representation for a function:

(11.27)

Assume that n integration (Gauss) points ξi and n weights are used as follows:

(11.28)

Comparison with Equation 11.26 implies that

(11.29)

It is necessary to solve for n integration points, ξi, and n weights, wi. These are
universal quantities. To integrate a given function, g(ξ), exactly through ξ2n−i, it is
necessary to perform n function evaluations, namely to compute g(ξi).

As an example, we seek two Gauss points and two weights. For n = 2,

(11.30)

From (ii) and (iv),  leading to ξ2 = −ξ1. From (i) and (iii), it
follows that −ξ2 = ξ1 =  The normalization w1 = 1 implies that w2 = 1.

11.5 MODAL ANALYSIS BY FEA

11.5.1 MODAL DECOMPOSITION

In the absence of damping, the finite-element equation for a linear mechanical
system, which is unforced but has nonzero initial values, is described by

. (11.31)

Assume a solution of the form  which furnishes upon substitution

(11.32)

The jth eigenvalue, λj, is obtained by solving  and a corre-
sponding eigenvector vector, γγγγj, can also be computed (see Sample Problem 2).
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For the sake of generality, suppose that λj and γγγγj are complex. Let  denote the
complex conjugate (Hermitian) transpose of γγγγj. Now,  satisfies

.

Since M and K are real and positive-definite, it follows that λj is pure imaginary:
λj = iωj. Without loss of generality, we can take γγγγj to be real and orthonormal. 

Sample Problem 1

As an example, consider

(11.33)

Now det[K + λ2I] = 0 reduces to

(11.34)

with the roots

(11.35)

so that both  are negative (since k11 and k22 are positive).
We now consider eigenvectors. The eigenvalue equations for the ith and jth

eigenvectors are written as

(11.36)

It is easily seen that the eigenvectors have arbitrary magnitudes, and for conve-
nience, we assume that they have unit magnitude  Simple manipulation
furnishes that

(11.37)
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Symmetry of K and M implies that

(11.38)              

Assuming for convenience that the eigenvalues are all distinct, it follows that

(11.39)

The eigenvectors are thus said to be orthogonal with respect to M and K. The
quantities  and  are called the ( jth) modal mass and ( jth)
modal stiffness.

Sample Problem 2

Consider

(11.40)

Let  For the determinant to vanish, 
Using  the first eigenvector satisfies

(11.41)

implying that  The corresponding procedures for the sec-
ond eigenvalue furnish that  It is readily verified that

(11.42)

The modal matrix X is now defined as

(11.43)
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162 Finite Element Analysis: Thermomechanics of Solids

Since the jkth entries of XTMX and XTKX are  and  respectively,
it follows that

(11.44)

The modal matrix is said to be orthogonal with respect to M and K, but it is
not purely orthogonal since X−1 ≠ XT.

The governing equation is now rewritten as

(11.45)

implying the uncoupled modes

(11.46)

Suppose that gj(t) = gj0 sin (ω t). Neglecting transients, the steady-state solution
for the jth mode is

(11.47)

It is evident that if  (resonance), the response amplitude for the
jth mode is much greater than for the other modes, so that the structural motion under
this excitation frequency illustrates the mode. For this reason, the modes can easily
be animated.

11.5.2 COMPUTATION OF EIGENVECTORS AND EIGENVALUES

Consider  with  Many methods have been proposed to
compute the eigenvalues and eigenvectors of a large system. Here, we describe a
method that is easy to visualize, which we call the hypercircle method. The vectors
Kγγγγj and Mγγγγj must be parallel to each other. Furthermore, the vectors 
and must terminate at the same point in a hypersphere in n-
dimensional space. Suppose that  is the ν th iterate and that the two vectors
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do not coincide in direction. Another iterate can be attained by an interval-halving
method:

(11.48)

Alternatively, note that

(11.49)

is the cosine of the angle between two unit vectors, and as such it assumes the
maximum value of unity when the vectors coincide. A search can be executed on
the hypersphere in the vicinity of the current point, seeking the path along which C(γγγγj)
increases until the maximum is attained.

Once the eigenvector γγγγj is found, the corresponding eigenvalue is found from
 Now, an efficient scheme is needed to “deflate” the system

so that and γγγγ1 no longer are part of the eigenstructure in order to ensure that the
solution scheme does not converge to values that have already been calculated. 

Given γγγγ1 and  we can construct a vector p2 that is M-orthogonal to γγγγ1 by
using an intermediate vector  Clearly, 

 However, p2 is also clearly orthogonal to Kγγγγ1

since it is collinear with Mγγγγ1. A similar procedure leads to vectors pj, which are orthog-
onal to each other and to Mγγγγ1 and Kγγγγ1. For example, with p2 set to unit magnitude,

  Now, 
Introduce the matrix X1 as follows: X1 = [γγγγ1 p2 p3

… pn]. For the kth eigen-
value, we can write

(11.50)

which decomposes to

(11.51)

This implies the “deflated” eigenvalue problem

(11.52)

The eigenvalues of the deflated system are also eigenvalues of the original system.
The eigenvector ηηηηn−1 can be used to compute the eigenvectors of the original system
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164 Finite Element Analysis: Thermomechanics of Solids

using transformations involving the matrix X1. The eigenvalues and eigenvectors of
the deflated system can be computed by, for example, the hypercircle method
described previously.

11.6 EXERCISES

1. Verify that the triangular factors L3 and  for A3 in Equation 11.5 are correct.
2. Using A3 in Equation 11.5, use forward substitution followed by backward

substitution to solve

3. Triangularize the matrix

4. For the model equation dy/dx = f(y), develop a two-step numerical-integration
model:

What is the order of the integration method (highest power in h with exact
agreement with the Taylor series)?

5. Find the integration (Gauss) points and weights for n = 3.
6. In the damped linear-mechanical system

suppose that γγγγ(t) = γγγγn at the nth time step. Derive KD and rn+1 such that γγγγ
at the (n + 1)st time step satisfies

7. For the linear system

triangularize the matrix and solve for γ1, γ2, γ3.
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8. (a) Find the modal masses µ1, µ2 and the modal stiffnesses κ1 and κ2 of
the system

(b) Determine the steady-state response of the system (i.e., particular
solution to the equation).

9. Triangularize

10. Put the following equations in state form, apply the trapezoidal rule, and
triangularize the ensuing dynamic stiffness matrix:

3
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Rotating and Unrestrained 
Elastic Bodies

 

12.1 FINITE ELEMENTS IN ROTATION

 

We first consider rotation about a fixed axis. The coordinate system is embedded in
the fixed point and rotates. The undeformed position vector, 

 

X

 

′

 

 in the rotated system
is related to its counterpart, 

 

X

 

, in the unrotated system by  The counterpart
for the deformed position is  The displacement also satisfies 
The rotation is represented by the “axial” vector, ωωωω

 

, satisfying 
(Recall that  is antisymmetric). The time derivatives in rotating coordinates
satisfy

(12.1)

where  imply differentiation with the coordinate system instanta-
neously fixed. The rightmost four terms in (12.1) are called the translational, Coriolis,
centrifugal, and angular accelerations, respectively. 

Applied to the Principle of Virtual Work, the inertial term becomes 
 Assuming that 

(12.2)

The matrix 

 

M

 

 is the conventional positive-definite and symmetric mass matrix; the
Coriolis matrix 

 

G

 

1

 

 is antisymmetric; the centrifugal matrix 

 

G

 

2

 

 is negative-definite; and
the angular acceleration matrix 

 

A

 

 is antisymmetric. Also, 

12
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Finite Element of Analysis: Thermomechanics of Solids

 

There is also a rigid-body force term:

(12.3)

The governing equation is now

(12.4)

Consider a rod attached to a thin shaft rotating steadily at angular velocity 

 

ω

 

(see Figure 12.1), with 

 

f

 

0

 

 

 

=

 

 0. 
If 

 

r

 

 is the undeformed position along the shaft, the governing equation is

(12.5)

Assuming a one-element model with  we obtain

(12.6)

Clearly, 

 

u

 

(

 

L

 

, 

 

t

 

) becomes unbounded if  

 

ω

 

 becomes equal to the natural frequency
 in which case, 

 

ω

 

 is called a critical speed.

 

FIGURE 12.1

 

Elastic rod on rotating rigid shaft.
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169

 

12.2 FINITE-ELEMENT ANALYSIS FOR 
UNCONSTRAINED ELASTIC BODIES

 

Consider the response of an elastic body that has no fixed points, as in spacecraft.
It is assumed that the tractions are prescribed on the undeformed surface. The
response is referred to the “body axes” corresponding to axes embedded in the
corresponding rigid body, for example, the principal axes of the moment of inertia
tensor. The position vector 

 

r

 

 of a point in the body can be decomposed as follows:

, (12.7) 

in which 

 

r

 

c

 

 is the position vector to the center of mass;  is the relative position-
vector from the center of the mass to the undeformed position of the current point,
referred to rotating axes; and 

 

u

 

 is the displacement from the undeformed to the
deformed position in the rotating system (see Figure 12.2). 

The balance of linear momentum becomes

(12.8)

Recall that  and the corresponding variational relation is 
 It follows that  in which 

 

δ

 

u

 

′

 

 is the variation of

 

u

 

 with the axes instantaneously held fixed. The quantities 

 

r

 

c

 

, θθθθ

 

, and 

 

u

 

′

 

 can be varied
independently since there is no constraint relating them. For 

 

δ

 

r

 

c

 

, we have

(12.9)

 

FIGURE 12.2

 

3-D unconstrained 3-D element.
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Now  by virtue of the definition of the center of mass.
Next  on the assumption, for which a strong argument can be made,
that deformation does not affect the position of the center of mass. Then,

 Finally,

(12.10)

Consequently 
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··
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, as expected.
Consider the variation with respect to ξξξξ
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(12.11)

First,

(12.12)

and  Recall that  and the corresponding variational relation
is   Now,

(12.13)

It is common to assume that  which also implies that 
This assumption implies that the body axes in the deformed configuration are not
affected by deformation and are obtained by rotating the undeformed axes according
to rigid-body relations.

Next, consider 
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in which  Clearly, as the matrix corresponding to a
vector product, « is antisymmetric. We determined in an earlier discussion that «2 is
negative-definite, thus, the moment-of-inertia tensor J is positive-definite. Finally,

(12.15)

The vector-valued quantity m is recognized as the moment of the tractions
referred to the center of mass. We thus obtain the Euler equation of a rigid body as

. (12.16)

Equations 12.10 and 12.16 can be solved separately from the finite-element
equation for the displacements, to be presented next, to determine the origin and
orientation of the “body axes.”

Now consider the variation δu′:

(12.17)

First, note that  since  The remaining terms are exactly
the same as for a body with a fixed point, and consequently it reduces to

(12.18)

12.3 EXERCISES

1. Consider a one-element model for a steadily rotating rod (see Figure 12.1)
to which is applied an oscillatory force, as shown. Find the steady-state
solution.

2. Find the exact solution for u(r) in Exercise 1. Does it agree with the one-
element solution? Try two elements. Is the solution better? By how much?
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172 Finite Element of Analysis: Thermomechanics of Solids

3. Prove that the inertia tensor J is positive-definite.
Find J for the brick “element” with density ρ.

4. Write down the proof that for an unrestrained elastic body, 

if 

then

5. Consider a thin beam column that is rotating unsteadily around a shaft.
Its thin (local z) direction points in the direction of the motion, giving
rise to Coriolis effects in bending. Derive the ensuing one-element model.
Note that this situation couples extension and bending.

a
b

c

ρ ρu u∫ ∫= × =dV dV0 0 and ξξ ,

F r M= = + ×m˙̇
0            .J Jαα ωω ωω
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Thermal, Thermoelastic,
and Incompressible Media

 

13.1 TRANSIENT CONDUCTIVE-HEAT TRANSFER

13.1.1 F

 

INITE

 

-E

 

LEMENT

 

 E

 

QUATION

 

The governing equation for conductive-heat transfer without heat sources, assuming
an isotropic medium, is

(13.1)

With the interpolation model  and  the
finite-element equation assumes the form

(13.2)

This equation is parabolic (first-order in the time rates), and implies that the
temperature changes occur immediately at all points in the domain, but at smaller
initial rates away from where the heat is added. This contrasts with the hyperbolic
(second-order time rates) solid-mechanics equations, in which information propa-
gates into the medium as finite velocity waves, and in which oscillatory response
occurs in response to a perturbation.

 

13.1.2 D

 

IRECT

 

 I

 

NTEGRATION

 

 

 

BY

 

 

 

THE

 

 T

 

RAPEZOIDAL

 

 R

 

ULE

 

Equation 13.1 is already in state form since it is first-order, and the trapezoidal rule
can be applied directly:

(13.3)

from which

(13.4) 

13

k ce∇ =2T Tρ ˙ .

T(t) T x t0 T
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Finite Element Analysis: Thermomechanics of Solids

 

For the assumed conditions, the dynamic thermal stiffness matrix is positive-
definite, and for the current time step, the equation can be solved in the same manner
as in the static counterpart, namely forward substitution followed by backward
substitution.

 

13.1.3 M

 

ODAL

 

 A

 

NALYSIS

 

Modes are not of much interest in thermal problems since the modes are not
oscillatory or useful to visualize. However, the equation can still be decomposed
into independent single degree of freedom systems. First, we note that the thermal
system is asymptotically stable. In particular, suppose the inhomogeneous term
vanishes and that θθθθ

 

 at 

 

t

 

 

 

=

 

 0 does not vanish. Multiplying the equation by θθθθ

 

T

 

 and
elementary manipulation furnishes that

(13.5)

Clearly, the product θθθθ

 

T

 

M

 

Tθθθθ

 

 decreases continuously. However, it only vanishes if θθθθ

 

vanishes.
To examine the modes, assume a solution of the form θθθθ

 

(

 

t

 

) 

 

=

 

 θθθθ

 

0

 

j

 

 exp(

 

λ

 

j

 

t

 

). The
eigenvectors θθθθ

 

0

 

j

 

 satisfy

(13.6)

and we call 

 

µ

 

Tj

 

 and 

 

κ

 

Tj

 

 the 

 

j

 

th

 

 modal thermal mass and 

 

j

 

th

 

 modal thermal stiffness,
respectively. We can also form the modal matrix ΘΘΘΘ

 

 = [θθθθ

 

01

 

 

 

…

 

 θθθθ

 

0

 

n

 

], and again

(13.7)

Let ξξξξ

 

 

 

=

 

 ΘΘΘΘ

 

−

 

1θθθθ

 

 and g(

 

t

 

) 

 

=

 

 ΘΘΘΘ

 

T

 

q

 

(

 

t

 

). Pre- and postmultiplying Equation 13.2 with ΘΘΘΘ

 

T

 

and ΘΘΘΘ

 

, respectively, furnishes the decoupled equation

(13.8)
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Suppose, for convenience, that 

 

g

 

j

 

 is a constant. Then, the general solution is of
the form

(13.9)

illustrating the monotonically decreasing nature of the response. Now there are 

 

n

 

uncoupled single degrees of freedom.

 

13.2 COUPLED LINEAR THERMOELASTICITY

13.2.1 F

 

INITE

 

-E

 

LEMENT

 

 E

 

QUATION

 

The classical theory of coupled thermoelasticity accommodates the fact that the
thermal and mechanical fields interact. For isotropic materials, assuming that tem-
perature only affects the volume of an element, the stress-strain relation is

(13.10)

in which 

 

α

 

 denotes the volumetric thermal-expansion coefficient. The equilibrium
equation is repeated as . The Principle of Virtual Work implies that

(13.11) 

Now consider the interpolation models

(13.12)

in which 

 

E

 

 is the strain written as a column vector in conventional finite-element
notation. The usual procedures furnish the finite-element equation

(13.13)

The quantity ΣΣΣΣ

 

 is the 

 

thermomechanical stiffness

 

 

 

matrix

 

. If there are 

 

n

 

m

 

 displace-
ment degrees of freedom and 

 

n

 

t

 

 thermal degrees of freedom, the quantities appearing
in the equation are
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We next address the thermal field. The energy-balance equation (from Equation
7.35), including mechanical effects, is given by

(13.14)

Application of the usual variational methods imply that

(13.15)

 

Case 1:

 

Suppose that T is constant. At the global level,  Thus,
the thermal field is eliminated at the global level, giving the new governing equation
as

(13.16)

Conductive-heat transfer is analogous to damping. The mechanical system is
now asymptotically stable rather than asymptotically marginally stable.

We next put the global equations in 

 

state form

 

:

(13.17)

Clearly, Equation 13.17 can be integrated numerically using the trapezoidal rule:

(13.18)
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Thermal, Thermoelastic, and Incompressible Media 177

Now, consider asymptotic stability, for which purpose it is sufficient to take f = 0,
z(0) = z0. Upon premultiplying Equation 13.17 by zT, we obtain

(13.19)

and z must be real. Assuming that θθθθ ≠ 0, it follows that z ↓ 0, and hence the system
is asymptotically stable. 

13.2.2 THERMOELASTICITY IN A ROD

Consider a rod that is built into a large, rigid, nonconducting temperature reservoir
at x = 0. The force, f0, and heat flux, −q0, are prescribed at x = L. A single element
models the rod. Now,

(13.20)

The thermoelastic stiffness matrix becomes ΣΣΣΣ = αλ∫BνTdV → Σ = αλA/2. The
governing equations are now

(13.21)

13.3 COMPRESSIBLE ELASTIC MEDIA

For a compressible elastic material, the isotropic stress Skk and the dilatational strain
Ekk are related by Skk = 3κEkk, in which the bulk modulus κ satisfies κ = E/[3(1 − 2ν)].
Clearly, as ν → 1/2, the pressure, p = −Skk /3, needed to attain a finite compressive
volume strain (Ekk < 0) becomes infinite. At the limit ν = 1/2, the material is said
to satisfy the internal constraint of incompressibility. 

Consider the case of plane strain, in which Ezz = 0. The tangent modulus matrix
D is readily found from

(13.22)
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Clearly, D becomes unbounded as ν → 1/2. Furthermore, suppose that for a
material to be nearly incompressible, ν is estimated as .495, while the correct value
is .49. It might be supposed that the estimated value is a good approximation for
the correct value. However, for the correct value, (1 − 2ν)−1 = 50. For the estimated
value, (1 − 2ν)−1 = 100, implying 100 percent error! 

13.4 INCOMPRESSIBLE ELASTIC MEDIA

In an incompressible material, a pressure field arises that serves to enforce the
constraint. Since the trace of the strains vanishes everywhere, the strains are not
sufficient to determine the stresses. However, the strains together with the pressure
are sufficient. In FEA, a general interpolation model is used at the outset for the
displacement field. The Principle of Virtual Work is now expressed in terms of
the displacements and pressure, and an adjoining equation is introduced to enforce
the constraint a posteriori. The pressure can be shown to serve as a Lagrange
multiplier, and the displacement vector and the pressure are varied independently.

In incompressible materials, to preserve finite stresses, we suppose that the
second Lame coefficient satisfies λ → ∞ as tr(E) → 0 in such a way that the product
is an indeterminate quantity denoted by p:

(13.23)

The Lame form of the constitutive relations becomes

(13.24)

together with the incompressibility constraint Eijδi j = 0. There now are two inde-
pendent principal strains and the pressure with which to determine the three principal
stresses. 

In a compressible elastic material, the strain-energy function w satisfies Sij = ,
and the domain term in the Principle of Virtual Work can be rewritten as ∫δEijSijdV =
∫δwdV. The elastic-strain energy is given by w = µEijEij + . For reasons
explained shortly, we introduce the augmented strain-energy function

(13.25)

and assume the variational principle

(13.26)
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Now, considering u and p to vary independently, the integrand of the first term
becomes δw′ = δEij[2µEij − pδij] − δpEkk , furnishing two variational relations:

(13.27)

The first relation is recognized as the Principle of Virtual Work, and the second
equation serves to enforce the internal constraint of incompressibility.

We now introduce the interpolation models:

 (13.28)

Substitution serves to derive that

(13.29)

Assuming that these equations apply at the global level, use of state form
furnishes

(13.30)

The second matrix is antisymmetric. Furthermore, the system exhibits marginal
asymptotic stability; namely, if f(t) = 0 while (0), γγγγ (0), and ππππ (0) do not all vanish,
then

(13.31)
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180 Finite Element Analysis: Thermomechanics of Solids

13.5 EXERCISES

1. Find the exact solution for a circular rod of length L, radius r, mass density
ρ, specific heat ce , conductivity k, and cross-sectional area A = πr2. The
initial temperature is T0, and the rod is built into a large wall at fixed
temperature T0 (see figure below). However, at time t = 0, the temperature
T1 is imposed at x = L. Compare the exact solution to the one- and two-
element solutions. Note that for a one-element model,

2. State the equations of a thermoelastic rod, and put the equations for the
thermoelastic behavior of a rod in state form.

3. Put the following equations in state form, apply the trapezoidal rule, and
triangularize the ensuing dynamic stiffness matrix, assuming that the tri-
angular factors of M and K are known.

4. In an element of an incompressible square rod of cross-sectional area A,
it is necessary to consider the displacements v and w. Suppose the length
is L, the lateral dimension is Y, and the interpolation models are linear for
the displacements (u linear in x, with v,w linear in y) and constant for the
pressure. Show that the finite-element equation assumes the form

and that this implies that 3µ  = f (which can also be shown by an a
priori argument).
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14.1 TORSION OF PRISMATIC BARS

 

Figure 14.1 illustrates a member experiencing torsion. The member in this case is
cylindrical with length 

 

L

 

 and radius 

 

r

 

0

 

. The base is fixed, and a torque is applied at
the top surface, which causes the member to twist. The twist at height 

 

z

 

 is 

 

θ

 

(z), and
at height 

 

L

 

, it is 

 

θ

 

0

 

.
Ordinarily, in the finite-element problems so far considered, the displacement is

the basic unknown. It is approximated by an interpolation model, from which an
approximation for the strain tensor is obtained. Then, an approximation for the stress
tensor is obtained using the stress-strain relations. The nodal displacements are
solved by an equilibrium principle, in the form of the Principle of Virtual Work. In
the current problem, an alternative path is followed in which stresses or, more
precisely, a stress potential, is the unknown. The strains are determined from the
stresses. However, for arbitrary stresses satisfying equilibrium, the strain field may
not be compatible. The compatibility condition (see Chapter 4) is enforced, furnishing

 

FIGURE 14.1

 

Twist of a prismatic rod.
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a partial differential equation known as the Poisson Equation. A variational argument
is applied to furnish a finite-element expression for the torsional constant of the
section. 

For the member before twist, consider points 

 

X

 

 and 

 

Y

 

 at angle 

 

φ

 

 and at radial
position 

 

r

 

. Clearly, 

 

X

 

 

 

=

 

 

 

r

 

 cos

 

φ

 

 and 

 

Y

 

 

 

=

 

 

 

r

 

 sin

 

φ

 

. Twist induces a rotation through angle

 

θ

 

(

 

z

 

), but it does not affect the radial position. Now, 

 

x

 

 

 

=

 

 

 

r

 

 cos(

 

φ

 

 

 

+

 

 

 

θ

 

), 

 

y

 

 

 

=

 

 

 

r

 

 sin(

 

φ

 

 

 

+

 

 

 

θ

 

).
Use of double-angle formulae furnishes the displacements, and restriction to small
angles 

 

θ

 

  furnishes, to first order,

(14.1)

It is also assumed that torsion does not increase the length of the member, which
is attained by requiring that axial displacement 

 

w

 

 only depends on 

 

X

 

 and 

 

Y

 

. The
quantity 

 

w

 

(

 

X

 

, 

 

Y

 

) is called the 

 

warping function

 

. 
It is readily verified that all strains vanish except 

 

E

 

xz

 

 and 

 

E

 

yz

 

, for which

(14.2)

Equilibrium requires that

(14.3)

The equilibrium relation can be identically satisfied by a potential function 

 

y

 

for which

(14.4)

We must satisfy the compatibility condition to ensure that the strain field arises
from a displacement field that is unique to within a rigid-body translation and
rotation. (Compatibility is automatically satisfied if the displacements are considered
the unknowns and are approximated by a continuous interpolation model. Here, the
stresses are the unknowns.) From the stress-strain relation,

(14.5)

Compatibility (integrability) now requires that , furnishing

(14.6)
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which in turn furnishes Poisson’s Equation for the potential function 

 

y

 

:

(14.7)

For boundary conditions, assume that the lateral boundaries of the member are
unloaded. The stress-traction relation already implies that 

 

τ

 

x

 

 

 

=

 

 0 and 

 

τ

 

y

 

 

 

=

 

 0 on the
lateral boundary 

 

S

 

. For traction 

 

τ

 

z

 

 to vanish, we require that

(14.8)

Upon examining Figure 14.2, it can be seen that 

 

n

 

x

 

 

 

=

 

 

 

dy

 

/

 

ds

 

 and 

 

n

 

y

 

 

 

=

 

 

 

−

 

dx

 

/

 

ds

 

, in
which 

 

s

 

 is the arc length along the boundary at 

 

z

 

. Consequently,

(14.9)

Now, on  and therefore 

 

ψ

 

 is a constant, which can, in general, be taken
as zero.

We next consider the total torque on the member. Figure 14.3 depicts the cross
section at 

 

z

 

. The torque on the element at 

 

x

 

 and 

 

y

 

 is given by

(14.10)

 

FIGURE 14.2

 

Illustration of geometric relation.
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Integration furnishes

(14.11)

Application of the divergence theorem to the first term leads to 

 

∫

 

ψ

 

[

 

xn

 

x

 

 

 

+

 

 

 

yn

 

y

 

]

 

ds

 

,
which vanishes since 

 

y

 

 vanishes on 

 

S

 

. Finally,

(14.12)

We apply variational methods to the Poisson Equation, considering the stress-
potential function 

 

y

 

 to be the unknown. Now,

(14.13)

 

FIGURE 14.3

 

Evaluation of twisting moment.
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Integration by parts, use of the divergence theorem, and imposition of the
“constraint” 

 

y

 

 

 

=

 

 0 on 

 

S 

 

furnishes

(14.14)

The integrals are evaluated over a set of small elements. In the 

 

e

 

th

 

 element,
approximate 

 

ψ

 

 as  in which 

 

ν

 

T

 

 is a vector with dimension (number of
rows) equal to the number of nodal values of 

 

ψ

 

. The gradient 

 

∇

 

ψ

 

 has a corresponding
interpolation model  in which ββββ

 

T

 

 is a matrix. The finite-element
counterpart of the Poisson Equation at the element level is written as

(14.15)

and the stiffness matrix should be nonsingular, since the constraint 

 

y

 

 

 

=

 

 0 on 

 

S 

 

has
already been used. It follows that, globally,  The torque satisfies

(14.16)

In the theory of torsion, it is common to introduce the torsional constant 

 

J, 

 

for
which 

 

T

 

 

 

=

 

 2

 

µ

 

J

 

θ

 

′

 

. It follows that 

 

14.2 BUCKLING OF BEAMS AND PLATES

14.2.1 E

 

ULER

 

 B

 

UCKLING

 

 

 

OF

 

 B

 

EAM

 

 C

 

OLUMNS

 

14.2.1.1 Static Buckling

 

Under in-plane compressive loads, the resistance of a thin member (beam or plate)
can be reduced progressively, culminating in 

 

buckling

 

. There are two equilibrium
states that the member potentially can sustain: compression only, or compression
with bending. The member will “snap” to the second state if it involves less “potential
energy” than the first state. The notions explaining buckling are addressed in detail in
subsequent chapters. For now, we will focus on beams and plates, using classical
equations in which, by retaining lowest-order corrections for geometric nonlinearity,
in-plane compressive forces appear.
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For the beam shown in Figure 14.4, the classical Euler buckling equation is

(14.17)

and 

 

P

 

 is the axial compressive force. The interpolation model for 

 

w(x) is recalled
as w(x) = ϕϕϕϕT(x)ΦΦΦΦγγγγ. Following the usual variational procedures (integration by parts)
furnishes

(14.18)

At x = 0, both δ w and −δw′ vanish, while the shear force V and the bending
moment M are identified as V = −EIw′′′ and M = −EIw′′. The “effective shear force”
Q is defined as Q = −Pw′ − EIw′′′.

For the specific case illustrated in Figure 14.3, for a one-element model, we can
use the interpolation formula

(14.19)

The mass matrix is shown, after some algebra, to be

(14.20)

FIGURE 14.4 Euler buckling of a beam column.
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Similarly,

(14.21) 

The governing equation is written in finite-element form as

(14.22)

In a static problem,  the solution has the form

(14.23)

in which cof denotes the cofactor, and γγγγ → ∞ for values of  which render
det(K2 

14.2.1.2 Dynamic Buckling

In a dynamic problem, it may be of interest to determine the effect of P on the
resonance frequency. Suppose that f(t) = f0 exp(iωt), in which f0 is a known vector.
The displacement function satisfies γγγγ(t) = γγγγ0 exp(iωt), in which the amplitude vector
γγγγ0 satisfies

(14.24)

Resonance occurs at a frequency ω0, for which

(14.25)

Clearly,  is an eigenvalue of the matrix  The
resonance frequency  is reduced by the presence of P and vanishes precisely at
the critical value of P.
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14.2.1.3 Sample Problem: Interpretation of Buckling Modes

Consider static buckling of a clamped-clamped beam, as shown in Figure 14.5.
This configuration can be replaced with two beams of length L, for which the

right beam experiences shear force V1 and bending moment M1, while the left beam
experiences shear force V0 − V1 and bending moment M0 − M1. The beam on the
right is governed by

(14.26)

The governing equation is written in finite-element form as

(14.27)

Consider the symmetric case in which M0 = 0, with the implication that w′(L) = 0.
The equation reduces to

(14.28)

from which we obtain the critical buckling load given by P1 = 10EI/L2. 

FIGURE 14.5 Buckling of a clamped-clamped beam.
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Next, consider the antisymmetric case in which V0 = 0 and w(L) = 0. The coun-
terpart of Equation 14.28 is now

(14.29)

and P2 = 30EI/L2.
If neither the constraint of symmetry nor axisymmetry is applicable, there are two

critical buckling loads, to be obtained in Exercise 2 as  and  These values
are close enough to the symmetric and antisymmetric cases to suggest an interpretation
of the two buckling loads as corresponding to the two “pure” buckling modes.

Compare the obtained values with the exact solution, assuming static condi-
tions. Consider the symmetric case. Let w(x) = wc(x) + wp(x), in which wc(x) is
the characteristic solution and wp(x) is the particular solution reflecting the per-
turbation. From the Euler buckling equation demonstrated in Equation 14.17, wc(x)
has a general solution of the form wc(x) = α + βx + γ cosκx + δ sinκx, in which
κ =  Now, w = −w′ = 0 at x = 0, −w′(L) = 0, and EIw′′′(L) = V1, expressed
as the conditions

(14.30)

or otherwise stated

(14.31)

For the solution to “blow up,” it is necessary for the matrix B to be singular,
which it is if the corresponding homogeneous problem has a solution. Accordingly,
we seek conditions under which there exists a nonvanishing vector z, for which Bz = 0.
Direct elimination of α and β furnishes α = −γ and β = −κδ. The remaining
coefficients must satisfy

(14.32)
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A nonvanishing solution is possible only if the determinant vanishes, which
reduces to sinκL = 0. This equation has many solutions for kL, including kL = 0.
The lowest nontrivial solution is kL = p, from which Pcrit = π2EI/L2 = 9.87 EI/L2.
Clearly, the symmetric solution in the previous two-element model (Pcrit = 10 EI/L2)
gives an accurate result.

For the antisymmetric case, the corresponding result is that tan κL = κL. The
lowest meaningful root of this equation is kL = 4.49 (see Brush and Almroth, 1975),
giving Pcrit = 20.19 EI/L2. Clearly, the axisymmetric part of the two-element model is
not as accurate, unlike the symmetric part. This issue is addressed further in the
subsequent exercises.

Up to this point, it has been implicitly assumed that the beam column is initially
perfectly straight. This assumption can lead to overestimates of the critical buckling
load. Consider a known initial distribution w0(x). The governing equation is

(14.33)

or equivalently,

(14.34)

The crookedness is modeled as a perturbation. Similarly, if the cross-sectional
properties of the beam column exhibit a small amount of variation, for example,
EI(x) = EI0[1 + ϑ sin(πx/L)], the imperfection can also be modeled as a perturbation.

14.2.2 EULER BUCKLING OF PLATES

The governing equation for a plate element subject to in-plane loads is

(14.35)

(see Wang 1953), in which the loads are illustrated as shown in Figure 14.6. The usual

FIGURE 14.6 Plate element with in-plane compressive loads.

d

dx
I

d

dx
w w P

d

dx
w w

2

2

2

2 0

2

2 0 0E ( ) ( ) ,− + − =

d

dx
I

d

dx
w P

d

dx
w

d

dx
I

d

dx
w P

d

dx
w

2

2

2

2

2

2

2

2

2

2 0

2

2 0E E+ = + .

Eh
w P

w

x
P

w

y
P

w

x yx y xy

2

2
4

2

2

2

2

2

12 1
0

( )−
∇ + ∂

∂
+ ∂

∂
+ ∂

∂ ∂
=

ν

z

x
Px

Pyx

PyPxy

h

y

0749_Frame_C14  Page 190  Wednesday, February 19, 2003  5:41 PM

© 2003 by CRC CRC Press LLC 



Torsion and Buckling 191

variational methods furnish, with some effort,

(14.36)

in which W = ∇∇Tw (a matrix!). In addition,

(14.37)

 

For simplicity’s sake, assume that  from which we can obtain
the form

(14.38)

We also assume that the secondary variables (n ⋅ ∇)∇2w, (n ⋅ ∇)∇w, and also

 are prescribed on S.

These conditions serve to obtain

(14.39)

and f reflects the quantities prescribed on S.
As illustrated in Figure 14.7, we now consider a three-dimensional loading space

in which Px, Py, and Pxy correspond to the axes, and seek to determine a surface in
the space of critical values at which buckling occurs. In this space, a straight line
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emanating from the origin represents a proportional loading path. Let the load
intensity, λ, denote the distance to a given point on this line. By analogy with
spherical coordinates, there exist two angles, θ and φ, such that

(14.40)

Now,

(14.41)

For each pair (q, f), buckling occurs at a critical load intensity, λcrit(θ, φ),
satisfying

(14.42)

A surface of critical load intensities, λcrit(θ, φ), can be drawn in the loading space
shown in Figure 14.7 by evaluating λcrit(θ, φ) over all values of (q, f) and discarding
values that are negative.

FIGURE 14.7 Loading space for plate buckling.
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14.3 EXERCISES

1. Consider the triangular member shown to be modeled as one finite ele-
ment. Assume that

Find KT , fT , and the torsional constant T.

2. Find the torsional constant for a unit square cross section using two
triangular elements.

3. Derive the matrices K0, K1, and K2 in Equations 14.20 and 14.21.
4. Compute the two critical values in Equation 14.23.
5. Use the four-element model shown in Figure 14.5, and determine how much

improvement, if any, occurs in the symmetric and antisymmetric cases.
6. Consider a two-element model and a four-element model of the simple-

simple case shown in the following figure. Compare Pcrit in the symmetric
and antisymmetric cases with exact values.

Triangular shaft cross section.
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7. Consider a cantilevered beam with a compressive load P, as shown in the
following figure. The equation is

The primary variables at x = L are w(L) and −w′(L), and

Find the critical buckling load(s).
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Introduction to Contact 
Problems

 

15.1 INTRODUCTION: THE GAP

 

In many practical problems, the information required to develop a finite-element
model, for example, the geometry of a member and the properties of its constituent
materials, can be determined with little uncertainty or ambiguity. However, often
the loads experienced by the member are not so clear. This is especially true if loads
are transmitted to the member along an interface with a second member. This class
of problems is called contact problems, and they are arguably the most common
boundary conditions encountered in practical problems. The finite-element commu-
nity has devoted, and continues to devote, a great deal of effort to this complex
problem, leading to gap and interface elements for contact. Here, we introduce gap
elements.

First, consider the three-spring configuration in Figure 15.1. All springs are of
stiffness 

 

k

 

. Springs 

 

A

 

 and 

 

C

 

 extend from the top plate, called the 

 

contactor

 

, to the
bottom plate, called the 

 

target

 

. The bottom of spring 

 

B

 

 is initially remote from the
target by a gap 

 

g

 

. The exact stiffness of this configuration is

(15.1)

From the viewpoint of the finite-element method, Figure 15.1 poses the following
difficulty. If a node is set at the lowest point on spring 

 

B

 

 and at the point directly

 

FIGURE 15.1

 

Simple contact problem.
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below it on the target, these nodes are not initially connected, but are later connected
in the physical problem. Furthermore, it is necessary to satisfy the 

 

nonpenetration
constraint

 

 whereby the middle spring does not move through the target. If the nodes
are considered unconnected in the finite-element model, there is nothing to enforce
the nonpenetration constraint. If, however, the nodes are considered connected, the
stiffness is artificially high. 

This difficulty is overcome in an approximate sense by a bilinear contact element.
In particular, we introduce a new spring, 

 

k

 

g

 

, as shown in Figure 15.2.
The stiffness of the middle spring (

 

B

 

 in series with the contact spring) is now
denoted as 

 

k

 

m

 

, and

(15.2)

It is desirable for the middle spring to be soft when the gap is open (

 

g

 

 > 

 

δ 

 

) and
to be stiff when the gap is closed (

 

g

 

 

 

≤

 

 

 

δ 

 

):

(15.3)

Elementary algebra serves to demonstrate that

(15.4)

Consequently, the model with the contact is too stiff by 0.5% when the gap
is open, and too soft by 0.33% when the gap is closed (contact). One conclusion
that can be drawn from this example is that the stiffness of the gap element should
be related to the stiffnesses of the contactor and target in the vicinity of the contact
point.

 

FIGURE 15.2

 

Spring representing contact element.
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15.2 POINT-TO-POINT CONTACT

 

Generally, it is not known what points will come into contact, and there is no
guarantee that target nodes will come into contact with foundation nodes. The gap
elements can be used to account for the unknown contact area, as follows. Figure 15.3
shows a contactor and a target, on which are indicated candidate contact areas, d

 

S

 

c

 

and d

 

S

 

t

 

, containing nodes c1, c2,…..,cn, t1, t2,…..,tn. The candidate contact areas
must contain all points for which there is a possibility of establishing contact. 

The gap (i.e., the distance in the undeformed configuration) from the 

 

i

 

th

 

 node of
the contactor to the 

 

j

 

th

 

 

 

node of the target is denoted by 

 

g

 

ij

 

. (For the purpose of this
discussion, the gap is constant, i.e., not updated.) In point-to-point contact, the 

 

i

 

th

 

node on the contactor is connected to each node of the target by a spring with a
bilinear stiffness. (Clearly, this element may miss the edge of the contact zone when
it does not occur at a node.) It follows that each node of the target is connected by
a spring to each of the nodes on the contactor. The angle between the spring and
the normal at the contactor node is 

 

α

 

ij

 

, while the angle between the spring and the
normal to the target is 

 

α

 

ji

 

. Under load, the 

 

i

 

th

 

 

 

contactor node experiences displacement

 

u

 

ij

 

 in the direction of the 

 

j

 

th

 

 target node, and the 

 

j

 

th

 

 target node experiences displace-
ment 

 

u

 

ji

 

. For example, the spring connecting the 

 

i

 

th

 

 

 

contactor node with the 

 

j

 

th

 

 target
node has stiffness 

 

k

 

ij

 

, given by

(15.5)

in which 

 

δ

 

ij

 

 

 

=

 

 

 

u

 

ij

 

 

 

+

 

 

 

u

 

ji

 

 is the relative displacement. The force in the spring connecting
the 

 

i

 

th

 

 contactor node and 

 

j

 

th

 

 target node is 

 

f

 

ij

 

 

 

=

 

 

 

k

 

ij

 

(

 

g

 

ij

 

)

 

δ

 

ij

 

. The total normal force
experienced by the 

 

i

 

th

 

 contactor node is 

 

f

 

i

 

 

 

=

 

 

 

∑

 

j

 

 

 

f

 

ij

 

 cos(

 

α

 

ij

 

).

 

FIGURE 15.3

 

Point-to-point contact.
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As an example of how the spring stiffness might depend upon the gap, consider
the function

(15.6)

where 

 

γ

 

, 

 

α

 

, and 

 

ε

 

 are positive parameters selected as follows. When 

 

g

 

ij

 

 

 

−

 

 

 

δ

 

ij 

 

−

 

 

 

γ

 

 

 

>

 

 0,

 

k

 

ij 

 

attains the lower-shelf value, 

 

k

 

0

 

ε

 

,

 

 

 

and we assume that 

 

ε

 

 

 

<<

 

 1. If 

 

g

 

ij

 

 

 

−

 

 

 

δ

 

ij 

 

−

 

 

 

γ

 

 

 

<

 

 0, 

 

k

 

ij

 

approaches the upper-shelf value, 

 

k

 

0

 

 (1 

 

−

 

 

 

ε

 

). We choose 

 

γ

 

 to be a small value to
attain a narrow transition range from the lower- to the upper-shelf values. In the
range 0 

 

<

 

 

 

g

 

ij

 

 

 

−

 

 

 

δ

 

ij

 

 

 

<

 

 

 

γ

 

, there is a rapid but continuous transition from the lower-shelf
(soft) value to the upper-shelf (stiff) value. If we now choose 

 

α

 

 such that 

 

αγ

 

 

 

=

 

 1,

 

k

 

ij

 

 becomes 

 

k

 

0

 

/2,

 

 

 

when the gap closes (

 

g

 

ij

 

 

 

=

 

 

 

δ

 

ij

 

). The spring characteristic is illustrated
in Figure 15.4.

The total normal force on a contactor node is the sum of the individual contact-
element forces, namely

(15.7)

Clearly, significant forces are exerted only by the contact elements that are
“closed.”

 

FIGURE 15.4

 

Illustration of a gap-stiffness function.
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Introduction to Contact Problems 199

15.3 POINT-TO-SURFACE CONTACT

We now briefly consider point-to-surface contact, illustrated in Figure 15.5 using a
triangular element. Here, target node t3 is connected via a triangular element to
contactor nodes c1 and c2. The stiffness matrix of the element is written as k([g1 − δ1],
[g2 − δ2]) , in which g1 − δ1 is the gap between nodes t1 and c1, and is the
geometric part of the stiffness matrix of a triangular elastic element. The stiffness
matrix of the element can be made a function of both gaps. Total force normal to
the target node is the sum of the forces exerted by the contact elements on the
candidate contactor nodes.

In some finite-element codes, the foregoing scheme is used to approximate the
tangential force in the case of friction. Namely, an “elastic-friction” force is assumed
in which the tangential tractions are assumed proportional to the normal traction
through a friction coefficient. This model does not appear to consider sliding and
can be considered a bonded contact. Advanced models address sliding contact and
incorporate friction laws not based on the Coulomb model.

15.4 EXERCISES

1. Consider a finite-element model for a set of springs, illustrated in the
following figure. A load moves the plate on the left toward the fixed plate
on the right.
What is the load-deflection curve of the configuration?  
For a finite-element model, an additional bilinear spring is supplied, as
shown. What is the load-deflection curve of the finite-element model? 
Identify a kg value for which the load-deflection behavior of the finite-
element model is close to the actual configuration.
Why is the new spring needed in the finite-element model?

FIGURE 15.5 Element for point-to-surface contact.
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2. Suppose a contact element is added in the previous problem, in which the
stiffness (spring rate) satisfies

Suppose αγ = 1, kL = k/100, and ku = 100k. Compute the stiffness k for
the configuration as a function of the deflection δ.

F
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Introduction to 
Nonlinear FEA

 

16.1 OVERVIEW

 

The previous section addressed finite-element methods for linear problems. Appli-
cations that linear methods serve to analyze include structures under mild loads,
disks and rotors spinning at modest angular velocities, and heated plates. However,
a large number of problems are nonlinear. Plasticity is a nonlinear materials theory
suited for metals in metal forming, vehicle crash, and ballistics applications. In
problems with high levels of heat input, mechanical properties, such as the elastic
modulus, and thermal properties, such as the coefficient of specific heat, can be
strongly temperature-dependent. Rubber seals and gaskets commonly experience
strains exceeding 50%. Soft biological tissues typically are modeled as rubberlike.
Many problems involve variable contact, for example, meshing gear teeth. Heat
conducted across electrical contacts can be strongly dependent on normal pressures.
Fortunately, much of the linear finite-element method can be adapted to nonlinear
problems, as explained in this chapter. The next chapter focuses on isothermal
problems. The extension to thermomechanical problems will be presented in a
subsequent chapter.

 

16.2 TYPES OF NONLINEARITY

 

There are three major types of nonlinearity in thermomechanical boundary-value
problems: 

 

material nonlinearity,

 

 

 

geometric nonlinearity

 

, and 

 

boundary-condition
nonlinearity

 

. Nonlinearities can also be present if the formulation is referred to
deformed coordinates, possibly introducing stress fluxes and converted coordinates. 

Material nonlinearity can occur through nonlinear dependence of the stress on
the strain or temperature, including temperature dependence of the tangent modulus
tensor. Metals undergoing plastic flow exhibit nonlinear material behavior.

Geometric nonlinearity occurs because of large deformation, especially in prob-
lems referred to undeformed coordinates. Rubber components typically exhibit large
deformation and require nonlinear kinematic descriptions. In this situation, a strain
measure needs to be chosen, as does the stress conjugate to it. Boundary-condition
nonlinearity occurs because of nonlinear supports on the boundary and contact. An
example of a nonlinear support is a rubber pad placed under a machine to absorb
vibrations.

For finite-element methods for nonlinear problems, the loads or time steps are
applied in increments. Then, incremental variational principles, together with inter-
polation models, furnish algebraic (static) or ordinary differential equations (dynamic)

16
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in terms of vector-valued incremental displacements or incremental temperatures.
For mechanical systems, a typical equation is

(16.1)

in which 

 

∆γγγγ

 

 is the 

 

incremental displacement vector

 

, 

 

∆

 

f

 

 is the 

 

incremental force
vector

 

, 

 

K

 

(γγγγ

 

) is the 

 

tangent stiffness matrix

 

, and 

 

M

 

(γγγγ

 

) is the 

 

tangent mass matrix

 

. It
will be seen that this type of equation is a realization of the optimal Newton iteration
method for nonlinear equations.

 

16.3 COMBINED INCREMENTAL AND ITERATIVE 
METHODS: A SIMPLE EXAMPLE

 

Consider a one-dimensional rod of nonlinear material under small deformation in which
the elastic modulus is a function of strain: E 

 

=

 

 E

 

0

 

(1 

 

+

 

 

 

αε

 

), 

 

ε

 

 

 

=

 

 

 

E

 

11

 

. Under static loading,
the equilibrium equation is

. (16.2)

Suppose the load is applied in increments, 

 

∆

 

j

 

P

 

, and that the load at the 

 

n

 

th

 

 load
step is 

 

P

 

n

 

. Suppose further that the solution 

 

γ

 

n

 

 is known at the 

 

n

 

th

 

 load. We now
consider the steps necessary to determine the solution 

 

γ

 

n

 

+

 

1

 

 for 

 

P

 

n

 

+

 

1

 

. We introduce the
increment 

 

∆

 

n

 

γ

 

 

 

=

 

 

 

g

 

n

 

+

 

1

 

 

 

−

 

 

 

γ

 

n

 

. Subtracting Equation 16.2 at the 

 

n

 

th

 

 step from the equation
at the (

 

n

 

 + 

 

1

 

)

 

 st

 

  step, the incremental equilibrium equation for the 

 

n

 

th

 

 increment is now

. (16.3)

This equation is quadratic in the increments. In fact, geometric nonlinearity
generally leads to a quadratic function of increments. The error of neglecting the
nonlinearity may be small if the load increment is sufficiently small. However, we
will retain the nonlinear term for the sake of illustrating the use of iterative procedures.
In particular, the previous equation can be written with obvious identifications in
the form

. (16.4)

Newton iteration (discussed in Chapter 3) furnishes the optimal iteration scheme
for the 

 

ν

 

th

 

 iterate:

(16.5)
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S

 

AMPLE

 

 P

 

ROBLEM

 

 1

 

The efficiency of this scheme is addressed as follows. Consider 

 

ζ

 

 

 

=

 

 1, 

 

β

 

 

 

=

 

 12, and

 

η

 

 

 

=

 

 1. The correct solution is 

 

x

 

 

 

=

 

 0.0828. Starting with the initial value 

 

x

 

 

 

=

 

 0, the
first two iterates are, approximately, . This illus-
trates the rapid 

 

quadratic 

 

convergence of Newton iteration.

 

16.4 FINITE STRETCHING OF A RUBBER ROD UNDER 
GRAVITY: A SIMPLE EXAMPLE

 

Figure 16.1 shows a rubber rod under gravity. It is assumed to attain finite strain.
The rod is also assumed to experience uniaxial tension. The figure refers to the
undeformed configuration, with the element occupying the interval (

 

X

 

e

 

, 

 

X

 

e

 

+

 

1

 

). Its
length is 

 

l

 

e

 

, its cross-sectional area is 

 

A

 

e

 

, and its mass density is 

 

ρ

 

. It is composed
of rubber and is stretched axially by the loads 

 

P

 

e

 

 and 

 

P

 

e

 

+

 

1

 

. Prior to stretching, a given
material particle is located at 

 

X

 

. After deformation, it is located at 

 

x

 

(

 

X

 

), and the
displacement 

 

u

 

(

 

X

 

) is given by 

 

u

 

(

 

X

 

) 

 

=

 

 

 

x

 

(

 

X

 

) 

 

−

 

 

 

X

 

.

 

16.4.1 N

 

ONLINEAR

 

 S

 

TRAIN

 

-D

 

ISPLACEMENT

 

 R

 

ELATIONS

 

The element is assumed short enough that a satisfactory approximation for the
displacement 

 

u

 

(

 

X

 

) is  provided by the linear interpolation model
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unknowns to be determined using the finite-element method. The Lagrangian strain

 

FIGURE 16.1

 

Rubber rod under load.
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204 Finite Element Analysis: Thermomechanics of Solids

E = Exx is given by

(16.7)

Note that

(16.8)

The vector BL and the matrix BNL are the strain-displacement matrices. 
The following sections illustrate two different approaches to formulating a finite-

element model for the rubber rod. One is based on satisfying the incompressibility
constraint a priori. The second is based on satisfying the constraint a posteriori,
which is typical of finite-element code practice. In addition, we also include a slight
variant involving a near-incompressibility constraint in an a posteriori manner.

16.4.2 STRESS AND TANGENT MODULUS RELATIONS

The Neohookean strain-energy density function, w, accommodating incompressibil-
ity, is expressed in terms of  the eigenvalues c1, c2, and c3 of C = 2E + I, as follows:

, (16.9)

in which D is the (small-strain) elastic modulus. We can show, with some effort,
that under uniaxial tension, c2 = c3. 

We first enforce the incompressibility constraint a priori by using the substitution

. (16.10)

After elementary manipulations,

. (16.11)
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Introduction to Nonlinear FEA 205

The (2nd Piola-Kirchhoff) stress, S, defined in Chapter 5, is now obtained as

(16.12)

The tangent modulus, D, is also required:

(16.13)

If the strain E is small compared to unity, DT reduces to D. 
We next satisfy the incompressibility constraint a posteriori. An augmented

strain-energy function w* is introduced by

, (16.14)

in which the Lagrange multiplier, p, is the (true) hydrostatic pressure. The augmented
energy is stationary with respect to p as well as c1, c2, and c3, from which it follows
that c1c2c3 − 1 = 0 (incompressibility).

The stresses satisfy

(16.15)

It is readily shown that c2 = c3. Enforcement of the stationary condition for
p (c1c2c3 − 1 = 0), with S2 = 0, now furnishes that . It follows that

, in agreement with Equation 16.12.

16.4.3 INCREMENTAL EQUILIBRIUM RELATION

The Principle of Virtual Work states the condition for static equilibrium as

(16.16)
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206 Finite Element Analysis: Thermomechanics of Solids

in which the third term represents the weight of the element, while Pe represents the
forces from the adjacent elements. In an incremental formulation, we can replace
the loads and displacements by their differential forms. In particular,

(16.17)

in which
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Combining Equations 16.18 and 16.19 produces the simple relation

. (16.20)

Suppose (ue+1 − ue)/le is small compared to unity, with the consequence that E
is also small compared to unity. It follows in this case that . As a
result, Ke reduces to the stiffness matrix for a rod element of linearly elastic material
experiencing small strain:

. (16.21)

Several special cases illuminate additional aspects of finite-element modeling.

Sample Problem 1: Single Element Built in at One End

Figure 16.2 depicts a single-element model of a rod that is built in at X = 0: Xe =
X0 = 0. At the opposite end, Xe+1 = X1 = 1. The rod is submitted to the load P. The
displacement at X = 0 is subject to the constraint u(0) = u0 = 0, so that Equation
16.20 becomes

, (16.22)

in which dPr is an incremental reaction force that is not known a priori (of course,
from equilibrium, dPr = dP). For the only unknown reaction, this last equation
“condenses” to

. (16.23)

FIGURE 16.2 Rubber rod element under load: built in at top.
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208 Finite Element Analysis: Thermomechanics of Solids

For later use, the current shape function degenerates to the expression N → N =
X/X1.

The (Lagrangian) strain is given by

, (16.24)

and the strain-displacement matrices reduce to

. (16.25)

The (2nd Piola-Kirchhoff) stress S is now a function of u1:

. (16.26)

16.4.4 NUMERICAL SOLUTION BY NEWTON ITERATION

Equation 16.22 can be solved by Newton iteration, sometimes called “load balanc-
ing,” the reason for which is explained shortly. We introduce the “residual” function
φ(u1) = 0 as follows. The Principle of Virtual Work implies that if gravity is con-
sidered in Figure 16.2,

(16.27)

when u1 is the solution. Consider an iteration process in which the jth iterate  has
been determined. Newton iteration determines the next iterate, , using

(16.28)

Convergence of this scheme to the correct value u1 is usually rapid, provided
that the initial iterate  is sufficiently close to u1. A satisfactory initial iterate is
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Introduction to Nonlinear FEA 209

often obtained using an incremental procedure. Suppose that the solution has been
obtained at previous load steps. A starting iterate for the current load step is obtained
by extrapolating from the previous solutions.  As an example, suppose the solution
is known at the load P = k∆P, in which ∆P is a load increment. The load is now
incremented to produce P = (k + 1)∆P, and the solution u1,k+1 at this load is determined
using Newton iteration. It is frequently satisfactory to start the iteration using

. This numerical procedure is illustrated more extensively at  the end of
this chapter.

Sample Problem 2:  Assembled Stiffness Matrix 
for a Two-Element Model

Assemblage procedures are used to combine the element-equilibrium relations to
obtain the global equilibrium relation for an assemblage of elements. For elements
‘e’ and ‘e + 1’, the element-equilibrium relations are expanded as

(16.29)

The superscript indicates the element index, and the subscript indicates the node
index. If no external force is applied at xe+1, the interelement force balance is
expressed as

. (16.30)

Adding Equation 16.29(ii) and Equation 16.29(iii) furnishes

. (16.31)

Equations 16.29, 16.30, and 16.31 are expressed in matrix form as

. (16.32)

Equation 16.32 illustrates that the (incremental) global stiffness matrix is formed
by  “overlaying” Ke and Ke+1, with the entries added in the intersection. 
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210 Finite Element Analysis: Thermomechanics of Solids

Sample Problem 3: Two Identical Elements under Gravity under 
Equal End-Loads

If Ke = Ke+1 and , overlaying the element matrices leads to the
global (two-element) relation

. (16.33)

Note that Equation 16.33 has no solution since the global stiffness matrix has
no inverse: the second row is the negative of the sum of the first and last rows. This
suggests that, due to numerical errors in the load increments, the condition for static
equilibrium is not satisfied numerically, and therefore that the body is predicted to
accelerate indefinitely (undergo rigid-body motion). However, we also know that the
configuration under incremental loads is symmetric, implying a constraint du2 = 0.
This constraint permits “condensation,” that is, reducing Equation 16.33 to a system
with two unknowns by eliminating rows and columns associated with the middle
incremental displacement:

. (16.34)

The condensed matrix is now proportional to the identity matrix, and the system
has a solution. In general, stiffness matrices can easily be singular or nearly singular

FIGURE 16.3 Two rubber rods under load.
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Introduction to Nonlinear FEA 211

(with a large condition number) unless constraints are used to suppress “rigid-body
modes.”

16.5 ILLUSTRATION OF NEWTON ITERATION

Unfortunately, since elastomers or metals experiencing plasticity are typically quite
compliant, it is common to encounter convergence  problems, for which there are
four major approaches: 

1. Increasing stiffness, such as by introducing additional constraints if available 
2. Reducing load-step sizes and reforming the stiffness matrix after each iteration
3. Switching to displacement control rather than load control
4. Using an arc-length method (described in Chapter 3)

For an equation of the form

, (16.35)

Newton iteration seeks a solution through an iterative process given by

. (16.36)

Clearly, using two sequential iterates,

(16.37)
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212 Finite Element Analysis: Thermomechanics of Solids

16.5.1 EXAMPLE

The performance of Newton iteration procedure is illustrated using a simple example
showing convergence problems. Consider

. (16.38)

The goal is to find the solution of x as y is incremented in the range (0,1). Clearly,
x approaches infinity as y approaches unity, so that the goal is to generate the x(y)
relationship accurately as close as possible to y = 1. The curve appears as shown in
Figure 16.4. As y is incremented by small amounts just below unity, the differences
in x due to the increment are large, so that the solution value is far from the initial
iterate.

Suppose that y is incremented such that the nth value of y is

. (16.39)

To obtain the solution of the (n + 1)st step, the Newton iteration procedure
generates the (ν + 1)st iterate from the νth iterate, as follows:

, (16.40)

in which  is the ν th iterate for the solution xn+1. 
Of course, a starting iterate, , is needed. An attractive candidate is xn+1.

However, this may not be good enough when convergence difficulties appear.
Newton iteration was implemented for this example in a simple problem using

increments of 0.001. A stopping criterion of 10 iterations was used. Convergence
was found to fail near y = 0.999.

FIGURE 16.4 Illustration of the inverse tangent function.
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16.6 EXERCISES

1. Doing the algebra, make judicious choices of starting iterates,  and develop
the first few iterates for the roots of the equations

2. Write a simple program implementing Newton iteration, and apply it to
the examples in Exercise 1.

3. Using Example 5.1, write a simple program using Newton iteration to
compute X(Y ) using increments ∆y = 0.001. Set the stopping criterion as
the first of: (a) 10 iterates or (b) an absolute difference of less than 0.001
in the successive values of x. Note the value of x at which convergence
fails, and compare the values of x with accurate values available from the
formulae and tables in Abramawitz and Stegun (1997).

x x

x

x

2

2

2

3 2 0

1 0

1 0

+ + =

− =

− =

         

      ( )

0749_Frame_C16  Page 213  Wednesday, February 19, 2003  5:23 PM

© 2003 by CRC CRC Press LLC 



 

215

 

Incremental Principle
of Virtual Work

 

17.1 INCREMENTAL KINEMATICS

 

Recall that the displacement vector 

 

u

 

(

 

X

 

) is assumed to admit a satisfactory approx-
imation at the element level in the form 

 

u

 

(

 

X

 

) 

 

=

 

 ϕϕϕϕ

 

T

 

(

 

X

 

)ΦΦΦΦ γγγγ

 

(

 

t

 

). Also recall that the
deformation-gradient tensor is given by 

 

F

 

 

 

=

 

  Suppose that the body under study
is subjected to a load vector, 

 

P

 

, which is applied incrementally via load increments,

 

∆

 

j

 

P

 

. The load at the 

 

n

 

th

 

 load step is denoted as 

 

P

 

n

 

. The solution, 

 

P

 

n

 

, is known, and
the solution of the increments of the displacements is sought. Let 

 

∆

 

n

 

u

 

 

 

=

 

 

 

u

 

n

 

+

 

1

 

 

 

−

 

 

 

u

 

n

 

,
so that 

 

∆

 

n

 

u

 

 

 

=

 

 ϕϕϕϕ

 

T

 

(

 

X

 

)ΦΦΦΦ

 

∆

 

nγγγγ

 

. By suitably arranging the derivatives of 

 

∆

 

n

 

u

 

 with respect
to 

 

X

 

, a matrix, 

 

M

 

(

 

X

 

), can easily be determined for which 

 

VEC

 

(

 

∆

 

n

 

F

 

) 

 

=

 

 

 

M

 

(

 

X

 

)

 

∆

 

nγγγγ

 

.
We next consider the Lagrangian strain, 

 

E

 

(

 

X

 

) 

 

=

 

 (

 

F

 

T

 

F

 

 

 

−

 

 

 

I

 

). Using Kronecker
Product algebra from Chapter 2, we readily find that, to first order in increments,

(17.1)

This form shows the advantages of Kronecker Product notation. Namely, it
enables moving the incremental displacement vector to the end of the expression
outside of domain integrals, which we will encounter subsequently.

Alternatively, for the current configuration, a suitable strain measure is the
Eulerian strain, 

 

«

 

 

 

=

 

 (

 

I

 

 

 

−

 

 

 

F

 

−

 

T

 

F

  

−−−−

 

1

 

), which refers to deformed coordinates. Note that
since 

 

∆

 

n

 

(

 

FF

  

−−−−

 

1

 

) 

 

=

 

 

 

0

 

, 

 

∆

 

n

 

F

  

−−−−

 

1

 

 

 

=

 

 

 

−

 

F

  

−−−−

 

1

 

∆

 

n

 

FF

  

−−−−

 

1

 

. Similarly, 

 

∆

 

n

 

F

  

−−−−

 

T

 

 

 

=

 

 

 

−

 

F

 

−

 

T

 

∆

 

n

 

F

 

T

 

F

 

−

 

T

 

. Simple
manipulation furnishes that

(17.2)

There also are geometric changes for which an incremental representation is
useful. For example, since the Jacobian 

 

J

 

 

 

=

 

 det(

 

F

 

) satisfies 

 

dJ

 

 

 

=

 

 

 

Jtr

 

(

 

F

 

−

 

1

 

d

 

F

 

), we obtain

17
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∂
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the approximate formula

(17.3)

Also of interest are

(17.4)

Using Equation 17.4, we obtain the incremental forms

(17.5)

 

17.2 INCREMENTAL STRESSES

 

For the purposes of deriving an incremental variational principle, we shall see that
the incremental 1

 

st 

 

Piola-Kirchhoff stress, , is the starting point. However, to
formulate mechanical properties, the objective increment of the Cauchy stress, 
is the starting point. Furthermore, in the resulting variational statement, which we
called the 

 

Incremental Principle of Virtual Work

 

, we find that the quantity that
appears is the increment of the 2

 

nd

 

 Piola-Kirchhoff stress, 

 

∆

 

n

 

S

 

.
From Chapter 5, we learned that

 

 

 

, from which, to first order,

(17.6)

For the Cauchy stress, the increment must take into account the rotation of the
underlying coordinate system and thereby be objective. We recall the objective
Truesdell stress flux, , introduced in Chapter 5:

(17.7)
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∆

∆
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=

=
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Among the possible stress fluxes, it is unique in that it is proportional to the
rate of the 2

 

nd

 

 Piola-Kirchhoff stress, namely

(17.8)

An objective Truesdell stress increment is readily obtained as

(17.9)

Furthermore, once  has been determined, the (nonobjective) incre-
ment of the Cauchy stress can be computed using

(17.10)

from which

(17.11)

 

17.3 INCREMENTAL EQUILIBRIUM EQUATION

 

We now express the incremental equation of nonlinear solid mechanics (assuming
that there is no net rigid-body motion). In the deformed (Eulerian) configuration,
equilibrium at 

 

t

 

n

 

 requires

(17.12)

Referred to the undeformed (Lagrangian) configuration, this equation becomes

(17.13)

in which, as indicated before,  is the 1

 

st

 

 Piola-Kirchhoff stress, 

 

S

 

 denotes the surface
(boundary) in the deformed configuration, and 

 

n

 

0

 

 is the surface normal vector in the
undeformed configuration. Suppose the solution for  is known as  at time 

 

t

 

n

 

 and
is sought at 

 

t

 

n

 

+

 

1

 

. We introduce the increment  to denote  A similar
definition is introduced for the increment of the displacements. Now, equilibrium
applied to  and  implies

(17.14)

  ∂ ∂ ∂ ∂S T/ / .t J t T= − −F F1
o
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T
nJ( ) ( ).∆ ∆
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T S= ⊗1 F F

VEC( )∆
o

n T

∆ ∆ ∆ ∆ ∆
o

n n n n
T

n
TtrT T T T T= + − −− − −( ) ,FF FF F F1 1

  VEC VEC VECn n
T T T T

n( ) ( ) [ ( ) ( ) ( )] .∆ ∆ ∆T T T T T M= + − ⊗ − ⊗− − −o
F F I I F γγ

TT dS dVn u∫ ∫= ρ˙̇ .

S T dS dVn u0 0 0 0∫ ∫= ρ ˙̇ ,

S

S Sn

∆nS S Sn n+ −1 .

Sn+1 Sn

∆ ∆n
T

ndS dVS n u0 0 0 0∫ ∫= ρ ˙̇ .
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Application of the divergence theorem furnishes the differential equation

(17.15)

 

17.4 INCREMENTAL PRINCIPLE OF VIRTUAL WORK

 

To derive a variational principle for the current formulation, the quantity to be varied is
the incremental displacement vector since it is now the unknown. Following Chapter 5,

Equation 17.15 is multiplied by (

 

δ

 

∆

 

n

 

u

 

)

 

T

 

.
Integration is performed over the domain.
The Gauss divergence theorem is invoked once.
Terms appearing on the boundary are identified as primary and secondary

variables.
Boundary conditions and constraints are applied.

The reasoning process is similar to that in the derivation of the Principle of
Virtual Work in finite deformation in which 

 

u

 

 is the unknown, and furnishes

(17.16)

in which ττττ

 

0

 

 is the traction experienced by 

 

dS

 

0

 

. The fourth term describes the virtual
external work of the incremental tractions. The first term describes the virtual internal
work of the incremental stresses. The third term describes the virtual internal work
of the incremental inertial forces. The second term has no counterpart in the previ-
ously formulated Principle of Virtual Work in Chapter 5, and arises because of
geometric nonlinearity. We simply call it the geometric stiffness integral. Due to the
importance of this relation, Equation 17.16 is derived in detail in the equations that
follow. It is convenient to perform the derivation using tensor-indicial notation:

(17.17)

The first term on the right is converted using the divergence theorem to

(17.18)

which is recognized as the fourth term in Equation 17.16.
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To first-order in increments, the second term on the right is written, using tensor
notation, as

(17.19)

The second term is recognized as the second term in Equation 17.16.
The first term now becomes

(17.20)

which is recognized as the first term in Equation 17.16.

17.5 INCREMENTAL FINITE-ELEMENT EQUATION

For present purposes, let us suppose constitutive relations in the form

(17.21)

in which D(X, γ) is the fourth-order tangent modulus tensor. It is rewritten as

(17.22)

Also for present purposes, we assume that ∆ττττ0 is prescribed on the boundary S0, a
common but frequently unrealistic assumption that is addressed in a subsequent section.

In VEC notation, and using the interpolation models, Equation 17.16 becomes

(17.23)

∂
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KT is now called the tangent modulus matrix, KG is the geometric stiffness matrix,
M is the (incremental) mass matrix, and ∆nf is the incremental force vector.

17.6 INCREMENTAL CONTRIBUTIONS 
FROM NONLINEAR BOUNDARY CONDITIONS

Again, let Ii denote the principal invariants of C, and let i = VEC(I), c2 = VEC(C2),
, and Ai = ∂ni /∂c. Recall from Chapter 2 that

(17.24)

Equation 17.23 is complete if increments of tractions are prescribed on the
undeformed surface S0. We now consider the more complex situation in which ττττ is
referred to the deformed surface S, on which they are prescribed functions of u.
From Chandrasekharaiah and Debnath (1994), conversion is obtained using

(17.25)

and from Nicholson and Lin (1997b)

(17.26)

Suppose that ∆ττττ is expressed on S as follows:

(17.27)

Here,  is prescribed, while AM is a known function of u. Also, S0 is the
undeformed counterpart of S. These relations are capable of modeling boundary
conditions, such as support by a nonlinear elastic foundation. 

From the fact that ττττ    dS = ττττ0 dS0 = µττττ0 dS, we conclude that ττττ = µττττ0. It follows that

(17.28)
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From the Incremental Principle of Virtual Work, the rhs term is written as

(17.29)

Recalling the interpolation models for the increments, we obtain an incremental
force vector plus two boundary contribution to the stiffness terms. In particular,

(17.30) 

The first boundary contribution is from the nonlinear elastic foundation coupling
the traction and displacement increments on the boundary. The second arises from
geometric nonlinearity when the traction increment is prescribed on the current
configuration.

17.7 EFFECT OF VARIABLE CONTACT

In many, if not most, “real-world” problems, loads are transmitted to the member of
interest via contact with other members, for example, gear teeth. The extent of the
contact zone is an unknown to be determined as part of the solution process. Solution
of contact problems, introduced in Chapter 15, is a difficult problem that has absorbed
the attention of many investigators. Some algorithms are suited primarily for linear
kinematics. Here, a development is given for one particular formulation, which is
mostly of interest for explicitly addressing the effect of large deformation.

Figure 17.1 shows a contactor moving into contact with a foundation that is
assumed to be rigid. We seek to follow the development of the contact area and the
tractions arising throughout it. From Chapter 15, we recall that corresponding to a
point x on the contactor surface there is a target point y(x) on the foundation to
which the normal n(x) at x points. As the contactor starts to deform, n(x) rotates
and points toward a new value, y(x). As the point x approaches contact, the point
y(x) approaches the foundation point, which comes into contact with the contactor
point at x.

We define a gap function, g, using y(x) = x + gn. Let m be the surface normal-
vector to the target at y(x). Let Sc be the candidate contact surface on the contactor,
whose undeformed counterpart is S0c. There also is a candidate contact surface Sf

on the foundation. 
We limit our attention to bonded contact, in which particles coming into contact

with each other remain in contact. Algorithms for sliding contact with and without
friction are available. For simplicity’s sake, we also assume that shear tractions, in

δ δ
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222 Finite Element Analysis: Thermomechanics of Solids

the osculating plane of point of interest, are negligible. Suppose that the interface
can be represented by an elastic foundation satisfying the incremental relation

(17.31)

Here, τn = nTτ and un = nT u are the normal components of the traction and
displacement vectors. Since the only traction to consider is the normal traction (to
the contactor surface), the transverse components of ∆u are not needed (do not result
from work). Also, k(g) is a nonlinear stiffness function given in terms of the gap by,
for example,

(17.32)

As in Chapter 15, when g is positive, the gap is open and k approaches kL, which
should be chosen as a small number, theoretically zero. When g becomes negative,
the gap is closed and k approaches kH, which should be chosen as a large number,
theoretically infinity to prevent penetration of the rigid body).

Under the assumption that only the normal traction on the contactor surface is
important, it follows that ττττ = tnn, from which

(17.33)    

FIGURE 17.1 Contact.
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Incremental Principle of Virtual Work 223

The contact model contributes the matrix Kc to the stiffness matrix as follows
(see Nicholson  and Lin, 1997b):

(17.34)

To update the gap, use the following relations proved in Nicholson and Lin (1997-b).
The differential vector, dy, is tangent to the foundation surface, hence, mTdy = 0. It
follows that

(17.35)

Using Equation 17.5, we may derive, with some effort, that

(17.36)                        

17.8 INTERPRETATION AS NEWTON ITERATION

The (nonincremental) Principle of Virtual Work can be restated in the undeformed
configuration as

(17.37)

We assume for convenience that ττττ is prescribed on So. The interpolation model
satisfies the form

(17.38)
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224 Finite Element Analysis: Thermomechanics of Solids

Clearly,  Fu and BNL are linear in γγγγ.
Upon cancellation of the variation d γγγγ Τ, an algebraic equation is obtained as

(17.39)

At the load step, Newton iteration is expressed as

(17.40)

or as a linear system

(17.41)

If the load increments are small enough, the starting iterate can be estimated as the
solution from the nth load step. Also, a stopping (convergence) criterion is needed
to determine when the effort to generate additional iterates is not rewarded by
increased accuracy.

Careful examination of the relations from this and the incremental formulations
uncovers that

(17.42)

so that the incremental stiffness matrix is the same as the Jacobian matrix in Newton
iteration. This, of course, is a satisfying result. The Jacobian matrix can be calculated
by conventional finite-element procedures at the element level followed by conven-
tional assembly procedures. If the incremental equation is only solved once at each
load increment, the solution can be viewed as the first iterate in a Newton iteration
scheme. The one-time incremental solution can potentially be improved by additional
iterations, as shown in  Equation 17.41, but at the cost of computing the “residual”
Φ at each load step.

17.9 BUCKLING

Finite-element equations based on classical buckling equations for beams and plates
were addressed in Chapter 14. In the classical equations, geometrically nonlinear
terms appear through a linear correction term, thereby furnishing linear equations.
Here, in the absence of inertia and nonlinearity in the boundary conditions, we briefly
present a general viewpoint based on the incremental equilibrium equation
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Incremental Principle of Virtual Work 225

This solution predicts a large incremental displacement if the stiffness matrix
KT + KG is ill-conditioned or outright singular. Of course, in elastic media, KT is
positive-definite. However, in the presence of in-plane compression, KG may have
a negative eigenvalue whose magnitude is comparable to the smallest positive eigen-
value of KT . To see this recall that

(17.44)

We suppose that the element in question is thin in a local z (out-of-plane
direction). This suggests the assumption of plane stress. Now, in plate-and-shell
theory, it is necessary to add a transverse shear stress on the element boundaries to
allow the element to support transverse loads. We assume that the transverse shear
stresses only appear in the incremental force term and the tangent stiffness term,
and that the geometric stiffness term strictly satisfies the plane-stress assumption. It
follows that if the z-direction is out of the plane, in the geometric stiffness term,

(17.45)

In classical buckling, it is assumed that loads applied proportionately induce
proportionate in-plane stresses. Thus, for a given load path, only one parameter,
the length of the straight line the stress point traverses in the space of in-plane
stresses, arises in the eigenvalue problem for the critical buckling load. In nonlinear
problems, there is no assurance that the stress point follows a straight line. Instead,
if l denotes the distance along the line followed by the load point in proportional
loading, the stresses become numerical functions of l.

As a simple alternative to the general case, we consider buckling of a single
element and suppose that the stresses appearing in Equation 17.46 are applied in a
compressive sense along the faces of the element in a proportional manner whereby

(17.46)

in which the circumflex implies a reference value along the stress path at which l = 1,
and the negative signs on the stresses are present since buckling is associated with
compressive stresses. At the element level, the equation now becomes

(17.47)
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226 Finite Element Analysis: Thermomechanics of Solids

At a given load increment, the critical buckling load for the current path, as a
function of  two angles determining the path in the stress space illustrated in
Chapter 14, is obtained by computing the l value rendering singular.

17.10 EXERCISES

1. Assuming linear interpolation models for u,v in a plane triangular
membrane element with vertices (0,0),(1,0),(0,1), obtain the matrix M,
G, BL, and BNL.

2. Repeat Exercise 1 with linear interpolation models for u, v, and w in a
tetrahedral element with vertices (0,0,0),(1,0,0),(0,1,0),(0,0,1).

( ˆ )K KT G− λ

0749_Frame_C17  Page 226  Wednesday, February 19, 2003  5:24 PM

© 2003 by CRC CRC Press LLC 



 

227

 

Tangent-Modulus Tensors 
for Thermomechanical 
Response of Elastomers

 

18.1 INTRODUCTION

 

Within an element, the finite-element method makes use of interpolation models for
the displacement vector 

 

u

 

(

 

X

 

, 

 

t

 

) and temperature T(

 

X

 

, 

 

t

 

) (and pressure 

 

p

 

 

 

=

 

 

 

−

 

 

 

trace

 

(ττττ

 

)/3
in incompressible or near-incompressible  materials):

(18.1)

in which T

 

0

 

 is the temperature in the reference configuration, assumed constant.
Here, 

 

N

 

, 

 

ν

 

, and ξξξξ

 

 are shape functions and γγγγ

 

, θθθθ

 

, and ψψψψ

 

 are vectors of nodal values.
Application of the strain-displacement relations and their thermal analogs furnishes

(18.2)

in which 

 

U

 

 is a 9 

 

×

 

 9 universal permutation tensor such that 

 

VEC

 

(

 

A

 

T

 

) 

 

=

 

 

 

U

 

VEC

 

(

 

A

 

),
and 

 

e

 

 

 

=

 

 

 

VEC

 

(

 

E

 

) is the Lagrangian strain vector. Also, 

 

∇

 

 is the gradient operator
referred to the deformed configuration. The matrix ββββ

 

 and the vector ββββ

 

T

 

 are typically
expressed in terms of isoparametric coordinates.

 

18.2 COMPRESSIBLE ELASTOMERS

 

The Helmholtz potential was introduced in Chapter 7 and shown to underlie the
relations of classical coupled thermoelasticity. The thermohyperelastic properties of
compressible elastomers are also derived from the Helmholtz free-energy density 

 

φ

 

(per unit mass), which is a function of T and 

 

E

 

. Under isothermal conditions it is
conventional to introduce the strain energy density 

 

w

 

(

 

E

 

) 

 

=

 

 

 

ρ

 

0

 

φ

 

(T, 

 

E

 

) (T constant),
in which 

 

ρ

 

0

 

 is the density in the undeformed configuration. Typically, the elastomer
is assumed to be isotropic, in which case 

 

φ

 

 can be expressed as a function of 

 

T

 

, 

 

I

 

1

 

,

 

I

 

2

 

, and 

 

I

 

3

 

. Alternatively, it may be expressed as a function of T and the stretch ratios

 

λ

 

1

 

, 

 

λ

 

2

 

, and 

 

λ

 

3

 

.

18
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With 

 

φ

 

 known as a function of T, 

 

I

 

1

 

, 

 

I

 

2

 

, and 

 

I

 

3

 

, the entropy density 

 

η

 

 per unit
mass and the specific heat 

 

c

 

e

 

 at constant strain are obtained as

(18.3)

The 2

 

nd

 

 Piola-Kirchhoff stress, 

 

s

 

 

 

=

 

 

 

VEC

 

(

 

S

 

), is obtained from

(18.4)

Also of importance is the (isothermal) tangent-modulus matrix

(18.5)

An expression for 

 

D

 

T

 

 has been derived by Nicholson and Lin (1997c) for
compressible, incompressible, and near-incompressible elastomers described by
strain-energy functions (Helmholtz free-energy functions) and based on the use of
stretch ratios (singular values of 

 

F

 

) rather than invariants.

 

18.3 INCOMPRESSIBLE AND NEAR-INCOMPRESSIBLE 
ELASTOMERS

 

When the temperature T is held constant, elastomers often satisfy the constraint of
incompressibility or near-incompressibility. The constraint is accommodated by
augmenting 

 

φ

 

 with terms involving a new parameter similar to a Lagrange multiplier.
Typically, this new parameter is related to the pressure 

 

p

 

. The thermohyperelastic
properties of incompressible and near-incompressible elastomers can be derived
from the augmented Helmholtz free energy, which is a function of 

 

E

 

, 

 

T

 

, and 

 

p

 

. The
constraint introduces additional terms into the governing finite-element equations
and requires an interpolation model for 

 

p

 

.
If the elastomer is incompressible at a constant temperature, the augmented

Helmholtz function, 

 

φ

 

, can be written as

(18.6)

where 

 

ξ

 

 is a material function satisfying the constraint 

 

ξ

 

(

 

J

 

, 

 

T

 

) 

 

=

 

 0 and 
It is easily shown that 

 

φ

 

d

 

 depends on the deviatoric Lagrangian strain 

 

E

 

d

 

, due to the
introduction of the deviatoric invariants 

 

J

 

2

 

 and 

 

J

 

3

 

. The Lagrange multiplier 

 

λ

 

 is, in
fact, the (true) pressure 

 

p

 

:

(18.7)
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For an elastomer that is near-incompressible at a constant temperature, 

 

φ

 

 can be
written as

(18.8)

in which 

 

κ

 

0

 

 is a constant. The near-incompressibility constraint is expressed by

 

∂φ

 

/

 

∂

 

p

 

 =

 

 0, which implies

(18.9)

The bulk modulus

 

 

 

κ

 

 is given by

(18.10)

Chen et al. (1997) presented sufficient conditions under which near-incompress-
ible models reduce to the incompressible case as 

 

κ

 

 

 

→

 

 

 

∞

 

. Nicholson and Lin (1996)
formulated the relations

 (18.11)

with the consequence that

(18.12)

Equation 18.12 provides a linear pressure-volume relation in which thermome-
chanical effects are confined to thermal expansion expressed using a constant-volume
coefficient 

 

α

 

. If the constraint is assumed to be satisfied 

 

a priori

 

, the Helmholtz free
energy is recovered as

(18.13)

Alternatively, the latter term results from retaining the lowest nonvanishing term
in a Taylor-series representation of 

 

φ

 

 about 

 

f

 

 3

 

(T)

 

J

 

 

 

−

 

 1. 
Given Equation 18.13, the entropy now includes a term involving 

 

p

 

:

(18.14)

The stress and the tangent-modulus matrices are correspondingly modified:

(18.15)
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18.3.1 S

 

PECIFIC

 

 E

 

XPRESSIONS

 

 

 

FOR

 

 

 

THE

 

 H

 

ELMHOLTZ

 

 P

 

OTENTIAL

 

There are two broad approaches to the formulation of Helmholtz potential:

To express 

 

φ

 

  as a function of 

 

I

 

1

 

, I2, and I3, and T (and p)
To express φ as a function of the principal stretches λ1, λ2, and λ3, and T (and p).

The latter approach is thought to possess the convenient feature of allowing direct
use of test data, for example, from uniaxial tension. We will now examine several
cases.

18.3.1.1 Invariant-Based Incompressible Models: 
Isothermal Problems

The strain-energy function depends only on I1, I2, and incompressibility is expressed
by the constraint I3 = 1, assumed to be satisfied a priori. In this category, the most
widely used models include the Neo-Hookean material:

(18.16)

and the (two-term) Mooney-Rivlin material:

(18.17)

in which C1 and C2 are material constants. Most finite-element codes with hyper-
elastic elements support the Mooney-Rivlin model. In principle, Mooney-Rivlin
coefficients C1 and C2 can be determined independently by “fitting” suitable load-
deflection curves, for example, uniaxial tension. Values for several different rubber
compounds are listed in Nicholson and Nelson (1990).

18.3.1.2 Invariant-Based Models for Compressible Elastomers 
under Isothermal Conditions

Two widely studied strain-energy functions are due to Blatz and Ko (1962). Let G0

be the shear modulus and v0 the Poisson’s ratio, referred to the undeformed config-
uration. The two models are:

(18.18)

Let w denote the Helmholtz free energy evaluated at a constant temperature, in which
case it is the strain energy. We note a general expression for w which is implemented
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in several commercial finite-element codes (e.g., ANSYS, 2000):

(18.19)

in which Eth is called the thermal expansion strain, while Cij and Dk are material
constants. Several codes also provide software for estimating the model coefficients
from user-supplied data.  

Several authors have attempted to uncouple the response into isochoric (incom-
pressible) and volumetric parts even in the compressible range, giving rise to func-
tions of the form φ = φ1(J1, J2) + φ2(J). A number of proposed forms for φ2 are
discussed in Holzappel (1996). 

18.3.1.3 Thermomechanical Behavior under Nonisothermal 
Conditions

Now we come to the accommodation of coupled thermomechanical effects. Simple
extensions of, for example, the Mooney-Rivlin material have been proposed by
Dillon (1962), Nicholson and Nelson (1990), and Nicholson (1995) for compressible
elastomers, and in Nicholson and Lin (1996) for incompressible and near-incom-
pressible elastomers. From the latter,

(18.20)

in which π = p/f 3(T ). As previously mentioned, a model similar to Nicholson and
Lin (1996) has been proposed by Holzappel and Simo (1996) for compressible
elastomers described using stretch ratios.

18.4 STRETCH RATIO-BASED MODELS: 
ISOTHERMAL CONDITIONS

For compressible elastomers, Valanis and Landel (1967) proposed a strain-energy
function based on the decomposition

(18.21)

Ogden (1986) has proposed the form

(18.22)
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In principle, in incompressible isotropic elastomers, stretch ratio-based models
have the advantage of permitting direct use of “archival” data  from single-stress tests,
for example, uniaxial tension.

We now illustrate the application of Kronecker Product algebra to thermohyper-
elastic materials under isothermal conditions and accommodate thermal effects.
From Nicholson and Lin (1997c), we invoke the expression for the differential of a
tensor-valued isotropic function of a tensor. Namely, let A denote a nonsingular
n × n tensor with distinct eigenvalues, and let F(A) be a tensor-valued isotropic
function of A, admitting representation as a convergent polynomial:

(18.23)

Here, φj are constants. A compact expression for the differential dF(A) is pre-
sented using Kronecker Product notation. 

The reader is referred to Nicholson and Lin (1997c) for the derivation of the
following expression. With f = VEC(F) and a = VEC(A),

(18.24)

Also, dωωωω = VEC(dΩΩΩΩ), in which dΩΩΩΩ is an antisymmetric tensor representing the
rate of rotation of the principal directions. The critical step is to determine a matrix J
such that Wdωωωω = −Jda. It is shown in Dahlquist and Bjork that J = −[AT  A]−1W, in
which [AT  A]I is the Morse-Penrose inverse [(Dahlquist and Bjork(1974)]. Thus,

(18.25)

We now apply the tensor derivative to elastomers modeled using stretch ratios,
especially in the model presented by Ogden (1986). In particular, a strain-energy
function, w, was proposed, which, for compressible elastomers and isothermal
response, is equivalent to the form

(18.26)

in which ci are the eigenvalues of C, and ξi, ζi are material properties. The tangent-
modulus tensor χχχχ appearing in Chapter 17 for the incremental form of the Principle
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of Virtual Work is obtained as

(18.27)

(18.28)

18.5 EXTENSION TO THERMOHYPERELASTIC 
MATERIALS

Equations 18.27 and 18.28 can be extended to thermohyperelastic behavior as follows,
based on Nicholson and Lin (1996). The body initially experiences temperature T0

uniformly. It is assumed that temperature effects occur primarily as thermal expan-
sion, that volume changes are small, and that volume changes depend linearly on
temperature. Thus, materials of present interest can be described as mechanically
nonlinear but thermally linear. 

Due to the role of thermal expansion, it is desirable to uncouple dilatational and
deviatoric effects as much as possible. To this end, we introduce the deviatoric Cauchy-
Green strain  in which I3 is the third principal invariant of C. Now, mod-
ifying w and expanding it in J − 1,  and retaining lowest-order terms gives

(18.29)

in which κ is the bulk modulus. The expression for χχχχ in Equation 18.27 is affected
by these modifications.

To accommodate thermal effects, it is necessary to recognize that w is simply
the Helmholtz free-energy density ρoφ under isothermal conditions, in which ρo is
the mass density in the undeformed configuration. It is assumed that φ = 0 in the
undeformed configuration. As for invariant-based models,  we can obtain a function
φ with three terms: a purely mechanical term φM, a purely thermal term φT , and a
mixed term φTM. Now, with entropy, η, φ  satisfies the relations

(18.30)

Following conventional practice, the specific heat at constant strain, ce = T∂η/∂Te,
is assumed to be constant, from which we obtain

(18.31)

On the assumption that thermal effects in shear (i.e., deviatoric effects) can be
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neglected relative to thermal effects in dilatation, the purely mechanical effect is
equated with the deviatoric term in Equation 18.29:

(18.32)

Of greatest interest is φTM. The development of Nicholson and Lin (1996) furnishes

(18.33)

The tangent-modulus tensor χχχχ′ = ∂s/∂e now has two parts: XM + XTM, in which
XM is recognized as χχχχ, derived in Equation 18.29. Without providing the details,
Kronecker Product algebra furnishes the following:

(18.34)

The foregoing discussion of stretch-based thermohyperelastic models has been
limited to compressible elastomers. However, many elastomers used in applications,
such as seals, are incompressible or near-incompressible. For such applications, as
we have seen, an additional field variable is introduced, namely, the hydrostatic
pressure (referred to deformed coordinates). It serves as a Lagrange multiplier
enforcing the incompressibility and near-incompressibility constraints. Following
the approach for invariant-based models, Equations 18.33 and 18.34 can be extended
to incorporate the constraints of incompressibility and near-incompressibility.

The tangent-modulus tensor presented here only addresses the differential of
stress with respect to strain. However, if coupled heat transfer (conduction and
radiation) is considered, a general expression for the tangent-modulus tensor is
required, expressing increments of stress and entropy in terms of increments of strain
and temperature. A development accommodating heat transfer for invariant-based
elastomers is given in Nicholson and Lin (1997a).

18.6 THERMOMECHANICS OF DAMPED ELASTOMERS

Thermoviscohyperelasticity is a topic central to important applications, such as
rubber mounts in hot engines. The current section introduces a thermoviscohy-
perelastic constitutive model thought to be suitable for near-incompressible elas-
tomers exhibiting modest levels of viscous damping following a Voigt model. Two
potential functions are used to provide a systematic treatment of reversible and
irreversible effects. One is the familiar Helmholtz free energy in terms of the strain
and the temperature; it describes reversible, thermohyperelastic effects. The second
potential function, based on the model of Ziegler and Wehrli (1987), models viscous
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dissipation and arises directly from the entropy-production inequality. It provides a
consistent thermodynamic framework for describing damping in terms of a viscosity
tensor that depends on strain and temperature.

The formulation leads to a simple energy-balance equation, which is used to
derive a rate-variational principle. Together with the Principle of Virtual Work,
variational equations governing coupled thermal and mechanical effects are pre-
sented.  Finite-element equations are derived from the thermal-equilibrium equation
and from the Principle of Virtual Work. Several quantities, such as internal energy
density, χ, have reversible and irreversible portions, indicated by the subscripts r
and i: χ = χr + χi. The thermodynamic formulation in the succeeding paragraphs is
referred to undeformed coordinates.

There are several types of viscoelastic behaviors in elastomers, especially if they
contain fillers such as carbon black. For example, under load, elastomers experience
stress softening and compression set, which are long-term viscoelastic phenomena.
Of interest here is the type of damping that is usually assumed in vibration isolation
in which the stresses have an elastic and a viscous portion reminiscent of the classical
Voigt model, and the viscous portion is proportional to strain rates. The time con-
stants are small. This type of damping is viewed as arising in small motions super-
imposed on the large strains, which already reflect long-term viscoelastic effects. 

18.6.1 BALANCE OF ENERGY

The conventional equation for the balance of energy is expressed as

(18.35)

where s = VEC(S) and e = VEC(E). Here, χ is the internal energy per unit mass, q0

is the heat-flux vector, ∇0 is the divergence operator referred to undeformed coor-
dinates, and h is the heat input per unit mass, for simplicity’s sake, assumed inde-
pendent of temperature. The state variables are thus e and T. The Helmholtz free
energy, φr per unit mass, and the entropy, η per unit mass, are introduced using

(18.36)

Now,

(18.37)

18.6.2 ENTROPY PRODUCTION INEQUALITY

The entropy-production inequality is stated as

(18.38)
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r i T T˙ ˙ ˙ ˙ ˙ .φφ

ρ η ρ

ρ ρ η ρ η

0 0 0 0 0

0 0 0 0

T   T/T

   T T T/T

˙

˙ ˙ ˙ ˙ ˙

≥ −∇ + + ∇

≥ − − + + + ∇

T T

r r
T

i
T T

hq

s e s e q

q

φ

0749_Frame_C18  Page 235  Wednesday, February 19, 2003  5:25 PM

© 2003 by CRC CRC Press LLC 



236 Finite Element Analysis: Thermomechanics of Solids

The Helmholtz potential is assumed to represent reversible thermohyperelastic
effects. We decompose η into reversible and irreversible portions: η = ηr + ηi. Now,
φr, ηr , and ηi are assumed to be differentiable functions of E and T. Furthermore,
we suppose that ηi = ηi1 + ηi2 and

(18.39)

This allows us to say that the viscous dissipation is “absorbed” as heat. We also
suppose that reversible effects are “absorbed” as a portion of the heat input as follows:

(18.40)

In addition, from conventional arguments,

(18.41)

it follows that

(18.42)

Inequality as shown in Equation 18.42 can be satisfied if  and

(18.43)

Inequality as shown in Equation 18.43b is conventionally assumed to express
the fact that heat flows irreversibly from cold to hot zones. Inequality as shown in
Equation 18.43a requires that viscous effects be dissipative.

18.6.3 DISSIPATION POTENTIAL

Following Ziegler and Wehrli (1987), the specific dissipation potential 
= − ρ0ηi  is introduced, for which

(18.44)

The function Ψ is selected such that Λi and Λt are positive scalars, in which case
the inequalities in Equations 18.44a and 18.44b require that

(18.45)

This can be interpreted as indicating the convexity of a dissipation surface in 
space. Clearly, to state the constitutive relations, it is sufficient to specify φr and Ψ.

ρ η ρ0 2 0 0 0T ˙ .i i
h= −∇ +[ ]Tq

ρ η ρ0 0 0 0T ˙ .r r
h= −∇ +[ ]Tq

ρ η∂ ∂ = ∂ ∂ = −φ φr r
T

r r/ / ,e s T

s eT T
i
˙ ˙.− ∇ ≥ −q0 0 0 1T/T ρ ηi T

ρ η0 0iṪ ≥

s eT
i (a) T/T (b).˙ ≥ − ∇ ≥0 00qT

Ψ( , ˙, ,q0 e e T)
Ṫ

s ei i
T

t
T = ∂ ∂ − ∇ = ∂ ∂ρ ρ0 0 0 0Λ Ψ Λ Ψ/ ˙ / .(a). T/T (b).q

( / ˙ ˙ ( / .∂ ∂ ≥ ∂ ∂ ≥Ψ Ψe e) )0 00 0q q
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A simple illustration is now provided showing how the dissipation potential in
Equation 18.45 provides a “framework” for describing dissipative effects. On the
expectation that properties governing heat transfer are not affected by strain, we
introduce the decomposition

(18.46)

Now, Ψt represents thermal effects, and we assume for simplicity’s sake that Λt is
a material constant. Inequality in Equation 18.46 implies that

(18.47)

This is essentially the conventional Fourier law of heat conduction, with Λt

recognized as the thermal conductivity. As an elementary example of viscous dissi-
pation, suppose that

(18.48)

in which µ(T, J1, J2) is the viscosity. Hence,

(18.49)

and Equation 18.44a requires that µ be positive. 

18.6.4 THERMAL-FIELD EQUATION FOR DAMPED ELASTOMERS

The energy-balance equations of thermohyperelasticity (i.e., the reversible response)
are now reappearing in terms of a balance law among reversible portions of the
stress, entropy, and internal energy. Equation 18.40 is repeated as

(18.50)

The ensuing Maxwell relation is

(18.51)

Conventional operations furnish the reversible part of the equation of thermal
equilibrium (balance of energy):

(18.52)            

For the irreversible part, we recall the relations

(18.53)
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s ei J J= µ( , , )˙,T 1 2

ρ φ ρ η0 0
˙ ˙ ˙

r r= −s eT
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and

(18.54)

and

(18.55)

Upon adding the relations, we obtain the thermal-field equation

(18.56)

It is easily seen that Equation 18.55 directly reduces to a well-known expression
in classical linear thermoelasticity. In addition, under adiabatic conditions in which

 most of the “viscous” work, , is “absorbed” as a temperature
increase controlled by ρ0(ce + ci), while a smaller portion is “absorbed” into the
elastic strain-energy field.

18.7 CONSTITUTIVE MODEL: POTENTIAL 
FUNCTIONS

18.7.1 HELMHOLTZ FREE-ENERGY DENSITY

In the moderately damped, thermohyperelastic material, the elastic (reversible) stress
is assumed to satisfy a thermohyperelastic constitutive relation suitable for near-
incompressible elastomers. In particular,

(18.57)

Here, φrm represents the purely mechanical response and can be identified as the
conventional, isothermal, strain-energy density function associated, for example,
with the Mooney-Rivlin model. Again, I1, I2, I3 are the principal invariants of the
(right) Cauchy-Green strain tensor. The formulation can easily be adapted to stretch
ratio-based models, such as the Ogden (1986) model. The function φrt(T) represents
the purely thermal portion of the Helmholtz free-energy density. Finally, φrtm(T, I3)
represents thermomechanical effects, again based on the assumption that the primary
coupling is through volumetric expansion. The quantity φro represents the Helmholtz
free energy in the reference state, and, for simplicity’s sake, is assumed to vanish.
The forms of φrt and φrtm are introduced in the current presentation:

(18.58)

(18.59)
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and α is the volumetric coefficient of thermal expansion. For the sake of illustration,
for Φrm(I1, I2, I3), we display the classical two-term Mooney-Rivlin model:

(18.60)

in which  are the “deviatoric invariants” of C. The revers-
ible stress is obtained as

(18.61)

18.7.2 SPECIFIC DISSIPATION POTENTIAL

Fourier’s law of conduction is obtained from:

(18.62)

The viscous stress si depends on the shear part of the strain rate as well as the
temperature. However, since the elastomers of interest are nearly incompressible, to
good approximation si can be taken as a function of the (total) Lagrangian strain rate. 

The current framework admits several possible expressions for Ψi, of which an
example was already given in  Section 6.3. Here, taking a more general viewpoint,
we seek expressions of the form , in which Dv is called the
viscosity tensor; it is symmetric and positive-definite. (Of course, the correct expres-
sion is determined by experiments.) The simplest example was furnished in Section
18.6.3. As a second example, to ensure isotropy, suppose that Ψi is a function of 
and  and note that

(18.63)

For an expression reminiscent of the two-term Mooney-Rivlin strain-energy func-
tion, let us consider the specific form

(18.64)

in which C1v and C2v are positive material coefficients. We obtain the viscosity tensor,

(18.65)

Unfortunately, this tensor is only positive-semidefinite. As a second example,
suppose that the dissipation potential is expressed in terms of the deformation rate
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tensor D, in particular, Ψi = µ(T)tr(D2)/2, which has the advantage in that the
deformation rate tensor D is in the observed (current) configuration. With d =
VEC(D),

(18.66)

which is positive-definite.

18.8 VARIATIONAL PRINCIPLES

18.8.1 MECHANICAL EQUILIBRIUM

In this section, we present one of several possible formulations for the finite-element
equations of interest,  neglecting inertia. Application of variational methods to the
mechanical field furnishes the Principle of Virtual Work in the form

(18.67)

in which ττττ0 denotes the traction vector on the undeformed surface S0. As illustrated
in the examples in the previous section, we expect that the dissipation potential has
the form Ψi = Dv(e, T)  from which

(18.68)

in which Dv is again the viscosity tensor, and it will be taken as symmetric and
positive-definite. (It is positive-definite since ) Equation 18.67 is
thus rewritten as

(18.69)

18.8.2 THERMAL EQUILIBRIUM

The equation for thermal equilibrium is rewritten as

(18.70)

and note that it is in rate form, in contrast to the equation of mechanical equilibrium
(see Equation 18.69). For the sake of a unified rate formulation, we first introduce
the integrated form of this relation. The current value of ηr + ηi2, assuming that the
initial values of the entropies vanish, is now given by

(18.71)
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The corresponding variational principle is stated as

(18.72)

With some effort, a rate (incremental) variational principle can be obtained in
the form

(18.73)

(The motivation behind writing Equations 18.71 and 18.72 is simply to establish
how a rate principle is obtained in the thermal field as the counterpart of the rate
(incremental) principle for the mechanical field.) Upon approximating T in the
denominator by T0 and letting k denote the thermal conductivity, we can obtain the
thermal-equilibrium equation in the form

(18.74)

Using interpolation models for displacement and temperature, Equations 18.69
and 18.74 reduce directly into finite-element equations for the mechanical and
thermal fields.

18.9 EXERCISES

1. Derive explicit forms of the stress and tangent-modulus tensors using the
Helmoltz potential in Equation 18.20.

2. Derive the quantities m1 and m2 in Equation 18.63.
3. Verify Equation 18.58 by recovering ce upon differentiating twice with

respect to T.
4. Substitute the required interpolation models in Equations 18.69 and 18.74

to obtain an element-level finite-element equation for the mechanical and
thermal fields.
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Inelastic and 
Thermoinelastic Materials

 

19.1 PLASTICITY

 

Plasticity and thermoplasticity are topics central to the analysis of important appli-
cations, such as metal forming, ballistics, and welding. The main goal of this section
is to present a model of plasticity and thermoplasticity, along with variational and
finite-element statements, accommodating the challenging problems of finite strain
and kinematic hardening.

 

19.1.1 K

 

INEMATICS

 

Elastic and plastic deformation satisfies the additive decomposition

(19.1)

from which we can formally introduce strains:

(19.2)

The Lagrangian strain 

 

E

 

 satisfies the decomposition

(19.3)

Typically, plastic strain is viewed as permanent strain. As illustrated in Figure 19.1,
in a uniaxial tensile specimen, the stress, 

 

S

 

11

 

, can be increased to the point A, and
then unloaded along the path AB. The slope of the unloading portion is E, the same
as that of the initial elastic portion. When the stress becomes equal to zero, there
still is a residual strain, 

 

E

 

i

 

, which is identified as the inelastic strain. However, if
instead the stress was increased to point C, it would encounter reversed loading at
point D, which reflects the fact that the elastic region need not include the zero-
stress value.

 

19.1.2 P

 

LASTICITY

 

We will present a constitutive equation for plasticity to illustrate how the tangent
modulus is stated. The ideas leading to the equation will be presented subsequently
in the section on thermoplasticity. With χχχχ

 

e

 

 

 

=

 

 

 

ITEN

 

22(

 

D

 

e

 

) and 

 

D

 

e

 

 denoting the

19

D D D= +r i ,

∃ = ∃ = ∃ =∫ ∫ ∫D D Ddt dt dtr r i i          .

˙ .E E E= = =∫ ∫F DF F D F   F D FT T
r

T
i                      r idt dt
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tangent-modulus tensor relating the elastic-strain rate to the stress rate (assuming
a linear relation), the constitutive equation of interest is

(19.4)

In Equation 19.4, ΨΨΨΨ

 

i

 

 is the yield function. ΨΨΨΨ

 

i

 

 

 

=

 

 0 determines a closed convex
surface in stress space called the yield surface. (We will see later that ΨΨΨΨ

 

i

 

 also serves
as a [complementary] dissipation potential.) The stress point remains on the yield
surface during plastic flow, and is moving toward its exterior. The plastic strain rate,
expressed as a vector, is typically assumed to be normal to the yield surface at the
stress point. If the stress point is interior to, or moving tangentially on, the yield
surface, only elastic deformation occurs. On all interior paths, for example, due to
unloading, the response is only elastic. Plastic deformation induces “hardening,”
corresponding to a nonvanishing value of 

 

C

 

i

 

.

 

 

 

Finally, 

 

k

 

 is a history-parameter vector,
introduced to represent dependence on the history of plastic strain, for example,
through the amount of plastic work.

The yield surface is distorted and moved by plastic strain. In Figure 19.2(a), the
conventional model of isotropic hardening is illustrated in which the yield surface
expands as a result of plastic deformation. This model is unrealistic in predicting a
growing elastic region. Reversed plastic loading is encountered at much higher
stresses than isotropic hardening predicts. An alternative is kinematic hardening (see
Figure 19.2[b]), in which the yield surface moves with the stress point. Within a few
percentage points of plastic strain, the yield surface may cease to encircle the origin.

 

FIGURE 19.1

 

Illustration of inelastic strain.
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A reference point interior to the yield surface, sometimes called the back stress,
must be identified to serve as the point at which the elastic strain vanishes. Com-
bined isotropic and kinematic hardening are shown in Figure 19.2(c). However, the
yield surface contracts, which is closer to actual observations (e.g., Ellyin [1997]).

 

FIGURE 19.2(a)

 

Illustration of yield-surface expansion under isotropic hardening.

 

FIGURE 19.2(b)

 

Illustration of yield-surface motion under kinematic hardening.
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The rate of movement must exceed the rate of contraction for the material to remain
stable with a positive tangent modulus.

Combining the elastic and inelastic portions furnishes the tangent-modulus tensor: 

(19.5)

Suppose that in uniaxial tension, the elastic modulus is E

 

e

 

 and the inelastic
modulus-relating stress and inelastic strain increments are E

 

i

 

,

 

 

 

and E

 

i

 

 << E

 

e

 

. The total
uniaxial modulus is then 

 

19.2 THERMOPLASTICITY

 

As in Chapter 18, two potential functions are introduced to provide a systematic
way to describe irreversible and dissipative effects. The first is interpreted as the
Helmholtz free-energy density, and the second is for dissipative effects. To accom-
modate kinematic hardening, we also assume an extension of the Green and Naghdi
(G-N) (1965) formulation, in which the Helmholtz free energy decomposes into
reversible and irreversible parts, with the irreversible part depending on the “plastic
strain.” Here, it also depends on the temperature and a workless 

 

internal state variable

 

.

 

19.2.1 B

 

ALANCE

 

 

 

OF

 

 E

 

NERGY

 

The conventional equation for energy balance is augmented using a vector-valued, work-
less internal variable, αααα

 

0

 

, regarded as representing “microstructural rearrangements”:

(19.6)

 

FIGURE 19.2(c)

 

Illustration of combined kinematic and isotropic hardening.
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where 

 

χ

 

o

 

 is the internal energy per unit mass in the undeformed configuration and

 

s

 

 

 

=

 

 

 

VEC

 

(

 

S

 

), 

 

e

 

 

 

=

 

 

 

VEC

 

(

 

E

 

), and ββββ

 

0

 

 is the flux per unit mass associated with αααα

 

0

 

. However,
note that ββββ

 

 

 

=

 

 

 

0

 

, thus ββββ

 

i

 

 

 

=

 

 

 

−ββββ

 

r

 

. Also, 

 

c

 

 is the internal energy per unit mass, 

 

q

 

0

 

 is the
heat-flux vector referred to undeformed coordinates, and 

 

h

 

 is the heat input per unit
mass, for simplicity’s sake, assumed independent of temperature. The state variables
are 

 

E

 

r

 

, 

 

E

 

i

 

, T, and αααα

 

0

 

.
The next few paragraphs will go over some of the same ground as for damped

elastomers in Chapter 18, except for two major points. In that chapter, the stress
was assumed to decompose into reversible and irreversible portions in the spirit of
elementary Voigt models. In the current context, the strain shows the decomposition
in the spirit of the classical Maxwell model. In addition, as seen in the following,
it proves beneficial to introduce a workless internal variable to give the model the
flexibility to accommodate phenomena such as kinematic hardening.

The Helmholtz free energy, 

 

φ

 

, per unit mass and the entropy, 

 

η

 

, per unit mass
are introduced using

(19.7)

Now,

(19.8) 
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The entropy now satisfies

(19.9)

Viewing 
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 as a differentiable function of 
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, T, and αααα
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, we conclude that
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Extending the G-N formulation, let 
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 . Now,

(19.11)

The entropy-production inequality (see Equation 19.9) is now restated as

(19.12)
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The inequality shown in Equation 19.12 can be satisfied if

(19.13)

The first inequality involves a quantity, s* = VEC(S*), with dimensions of stress.
In the subsequent sections, s* will be viewed as a reference stress, often called the
back stress, which is interior to a yield surface and can be used to characterize the
motion of the yield surface in stress space. In classical kinematic hardening in which
the hyperspherical yield surface does not change size or shape but just moves, the
reference stress is simply the geometric center. If kinematic hardening occurs, as
stated before, the yield surface need not include the origin even with small amounts
of plastic deformation. Thus, there is no reason to regard  as vanishing at the
origin. Instead,  = 0 is now associated with a moving-reference stress interior to
the yield surface, identified here as the back stress s*. 

19.2.3 DISSIPATION POTENTIAL

As in Chapter 18, we introduce a specific dissipation potential, Ψi, for which

(19.14a)

from which, with Λi > 0 and Λt > 0,

(19.14b)

On the expectation that properties governing heat transfer are not affected by
strain, we introduce the decomposition into inelastic and thermal portions:

(19.15a)

where Ψi represents mechanical effects and is identified in the subsequent sections.
The thermal constitutive relation derived from the dissipation potential implies
Fourier’s law:

(19.15b)

The inelastic portion is discussed in the following section.
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19.3 THERMOINELASTIC TANGENT-MODULUS 
TENSOR

The elastic strain rate satisfies a thermohypoelastic constitutive relation: 

(19.16)

Cr is a 9 × 9 second-order, elastic compliance tensor, and ar is the 9 × 1
thermoelastic expansion vector, with both presumed to be known from measure-
ments. Analogously, for rate-independent thermoplasticity, we seek tensors Ci and
ai , depending on , ei, and T such that

(19.17a)

(19.17b)

During thermoplastic deformation, the stress and temperature satisfy a thermo-
plastic yield condition of the form

(19.18)

and Πi is called the yield function. Here, the vector k is introduced to represent the
effect of the history of inelastic strain, , such as work hardening. It is assumed to
be given by a relation of the form

(19.19)

The “consistency condition” requires that  = 0 during thermoplastic flow, from
which

(19.20)

We introduce a thermoplastic extension of the conventional associated flow rule,
whereby the inelastic strain-rate vector is normal to the yield surface at the current
stress point,

(19.21)
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250 Finite Element Analysis: Thermomechanics of Solids

Equation 19.14a suggests that the yield function may be identified as the dissi-
pation potential: Πi = ρ0Ψi. Standard manipulation furnishes

(19.22)

and H must be positive for Λi to be positive. Note that, in the current formulation,
the dependence of the yield function on temperature accounts for ci. The thermody-
namic inequality shown in Equation 19.13a is now satisfied if H > 0. 

Next, note that s* depends on ei , T, and αααα 0 since s*T = ρ0∂φi /∂ei. For simplicity’s
sake, we neglect dependence on αααα 0 and assume that a relation of the following form
can be measured for s*:

(19.23)

From Equations 19.16 and 19.17, the thermoinelastic tangent-modulus tensor
and thermal thermomechanical vector are obtained as

(19.24a)

(19.24b)

If appropriate, the foregoing formulation can be augmented to accommodate
plastic incompressibility.

19.3.1 EXAMPLE

We now provide a simple example using the Helmholtz free-energy density function
and the dissipation-potential function to derive constitutive relations. The following
expression involves a Von Mises yield function, linear kinematic hardening, linear
work hardening, and linear thermal softening.
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i. Helmholtz free-energy density: 

(19.25) 

in which  is a known constant. From Equation 19.28, 

(19.26)

Finally,

(19.27)

ii. Dissipation potential: 

(19.28)

(19.29)

Straightforward manipulations serve to derive

(19.30)

(19.31)

Consider a two-stage thermomechanical loading, as illustrated schematically in
Figure 19.3. Let SI, SII, SIII denote the principal values of the 2nd Piola-Kirchhoff
stress, and suppose that SIII = 0. In the first stage, with the temperature held fixed
at T0, the stresses are applied proportionally well into the plastic range. The center
of the yield surface moves along a line in the (S1, S2) plane, and the yield surface
expands as it moves. In the second stage, suppose that the stresses S1 and S2 are
fixed, but that the temperature increases to T1 and then to T2 and T3. The plastic
strain must increase, thus, the center of the yield surface moves. In addition, strain
hardening tends to cause the yield surface to expand, while the increased temperature
tends to make it contract. However, in this case, thermal softening must dominate
strain hardening, and contraction must occur since the center of the yield surface
must move further along the path shown even as the yield surface continues to “kiss”
the fixed stresses SI and SII.
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Unfortunately, accurate finite-element computations in plasticity and thermo-
plasticity often require close attention to the location of the front of the yielded
zone. This front will occur within elements, essentially reducing the continuity order
of the fields (discontinuity in strain gradients). Special procedures have been devel-
oped in some codes to address this difficulty. 

The shrinkage of the yield surface with temperature provides an element of
the explanation of the phenomenon of adiabatic shear banding, which is commonly
encountered in some materials during impact or metal forming. In rapid processes,
plastic work is mostly converted into heat and on into high temperatures. There
is not enough time for the heat to flow away from the spot experiencing high
deformation. However, the process is unstable while the stress level is maintained.
Namely, as the material gets hotter, the rate of plastic work accelerates, thanks to
the softening evident in Figure 19.3. The instability is manifested in small, peri-
odically spaced bands, in the center of which the material is melted and resolidified,
usually in a much more brittle form than before. These bands can nucleate brittle
failure. 

19.4 TANGENT-MODULUS TENSOR
IN VISCOPLASTICITY

The thermodynamic discussion in the previous section applies to thermoinelastic
deformation, for which the first example given concerned quasi-static plasticity and
thermoplasticity. However, it is equally applicable when rate sensitivity is present, in
which case viscoplasticity and thermoviscoplasticity are attractive models. An example

FIGURE 19.3 Effect of load and temperature on yield surface.
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of a constitutive model, for example, following Perzyna (1971), is given in undeformed
coordinates as

(19.32)

and Ψi(∋, ei,  k,  T, ηi) is a loading surface function. The elastic response is still
considered linear in the form

(19.33)

Recall from thermoplasticity that

(19.34)

Corresponding to , there is a reference stress s′ and a corresponding vector ′ =
s′ − s* such that Ψi( ′, ei, k, T, ηi) = k(ei, k, T, ηi) determines a quasi-static, reference-
yield surface. The vectors  and ′ have the same origin and direction, but the latter
terminates at the reference surface, while the latter terminates outside the reference
surface if inelastic flow is occurring. Interior to the surface, no inelastic flow occurs.
If exterior to the surface, inelastic flow occurs at a rate dependent on the distance to
the exterior of the reference surface. This situation is illustrated in Figure 19.4.

FIGURE 19.4 Illustration of reference surface in viscoplasticity.
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254 Finite Element Analysis: Thermomechanics of Solids

It should be evident that viscoplasticity and thermoviscoplasticity can be for-
mulated to accommodate phenomena such as kinematic hardening and thermal
shrinkage of the reference-yield surface. 

The tangent-modulus matrix now reduces to elastic relations, and viscoplastic
effects can be treated as an initial force (after canceling the variation) since

(19.35)

In particular, the Incremental Principle of Virtual Work is now stated, to first order, as

(19.36)

19.5 CONTINUUM DAMAGE MECHANICS

Ductile fracture occurs by processes associated with the notion of damage. An
internal-damage variable is introduced that accumulates with plastic deformation.
It also manifests itself in reductions in properties, such as the experimental values
of the elastic modulus and yield stress. When the damage level in a given element
reaches a known or assumed critical value, the element is considered to have failed.
It is then removed from the mesh (considered to be no longer supporting the load).
The displacement and temperature fields are recalculated to reflect the element
deletion.

There are two different schools of thought on the suitable notion of a damage
parameter. One, associated with Gurson (1977), Tvergaard (1981), and Thomasson
(1990), considers damage to occur by a specific mechanism occurring in a three-
stage process: nucleation of voids, their subsequent growth, and their coalescence
to form a macroscopic defect. The coalescence event is used as a criterion for element
failure. The parameter used to measure damage is the void-volume fraction f. Models
and criteria for the three processes have been formulated. For both nucleation and
growth, evolution of f is governed by a constitutive equation of the form

(19.37)

⋅ = + − −






< − >













∂

∂∋

∂

∂∋

∂

∂∋

˙ ˙ ˙ .s eχχ χχ αα ΓΓ χχ
ΨΨr r r

r

v

T

T

k
T

i

i

i i

µ
1

Ψ

Ψ Ψ

δ δ δ ρ

δ δ
µ

∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆

e e e u u

u e

T
r o

T
r r o

T
o o

T
o

T r

v

T

T o

dV dV dV

dS
k

dV

i

∫ ∫ ∫

∫ ∫

+ +

+ −






< − >













∂

∂∋

∂

∂∋

∂

∂∋

χχ χχ αα

ττ ΓΓ χχ

T

          =  
i

i i

˙̇

1
Ψ

Ψ

Ψ Ψ

˙ ( , , ),f f Ti= ΞΞ e

0749_Frame_C19  Page 254  Wednesday, February 19, 2003  5:34 PM



Inelastic and Thermoinelastic Materials 255

for which several specific forms have been proposed. To this point, a nominal stress
is used in the sense that the reduced ability of material to support stress is not
accommodated. 

The second school of thought is more empirical in nature and is not dependent
on a specific mechanism. It uses the parameter D, which is interpreted as the fraction
of damaged area Ad to total area Ao that the stress (traction) acts on. Consider a uniaxial
tensile specimen with damage, but experiencing elastic behavior. Suppose that dam-
aged area Ad can no longer support a load (is damaged). For a given load P, the true
stress at a point in the undamaged zone is  Here, S′
is a nominal stress, but is also the measured stress. If E is the elastic modulus
measured in an undamaged specimen, the modulus measured in the current specimen
will be E′ = E(1 − D), demonstrating that damage is manifest in small changes in
properties. 

As an illustration of damage, suppose specimens are loaded into the plastic
range, unloaded, and then loaded again. Without damage, the stress-strain curve
should return to its original path. However, due to the damage, there are slight
changes in the elastic slope, in the yield stress, and in the slope after yield (exag-
gerated in Figure 19.5).

From the standpoint of thermodynamics, damage is a dissipative internal variable.
In reality, the amount of mechanical or thermal energy absorbed by damage is probably
small, so that its role in the energy-balance equation can be neglected. At the risk of
being slightly conservative, in dynamic (adiabatic) problems, the plastic work can be
assumed to be completely converted into heat. Even so, for the sake of a consistent
framework for treating dissipation, a dissipation potential, ΨΨΨΨd, can be introduced for
damage, as has been done, for example, by Bonora (1997). The contribution to the
irreversible entropy production can be introduced in the form  ≥ 0, in which 
is the “force” associated with flux . Positive dissipation is assured if we assume

(19.38)

FIGURE 19.5 Illustration of effect of damage on elastic-plastic properties. 
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An example of a satisfactory function is Λd(ei, T, k) = Λdo ∫(s − s*) dt, Λdo a
positive constant, showing damage to depend on plastic work.

Specific examples of constitutive relations for damage are given, for example,
in Bonora (1997).

At the current values of the damage parameter, the finite-element equations are
solved for the nodal displacements, from which the inelastic strains can be computed.
This information can then be used to update the damage-parameter values. Upon
doing so, the damage-parameter values are compared to critical values. As stated
previously, if the critical value is obtained, the element is deleted. The path of deleted
elements can be viewed as a crack. 

The code LS-DYNA Ver. 9.5, (2000) incorporates a material model that includes
viscoplasticity and damage mechanics. It can easily be upgraded to include thermal
effects, assuming that all viscoplastic work is turned into heat. Such a model has
been shown to reproduce the location and path of a crack in a dynamically loaded
welded structure (see Moraes [2002]).

19.6 EXERCISES

1. In isothermal plasticity, assuming the following yield function, find the
uniaxial stress-strain curve:

Assume small strain and that the plastic strain is incompressible: tr(Ei) = 0.
2. Regard the expression in Exercise 1 as defining the reference-yield surface

in viscoplasticity, with viscosity hv. Find the stress-strain curve under
uniaxial tension if a constant strain rate is imposed.
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Advanced Numerical 
Methods

 

In nonlinear finite-element analysis, solutions are typically sought using Newton
iteration, either in classical form or augmented as an arc-length method to bypass
critical points in the load-deflection behavior. Here, two additional topics of interest
are briefly presented.

 

20.1 ITERATIVE TRIANGULARIZATION
OF PERTURBED MATRICES

20.1.1 I

 

NTRODUCTION

 

In solving large linear systems, it is often attractive to use Cholesky triangularization
followed by forward and backward substitutions. In computational problems, such as
in the nonlinear finite-element method, solutions are attained incrementally, with the
stiffness matrix slightly modified whenever it is updated. The goal here is to introduce
and demonstrate an iterative method of determining the changes in the triangular
factors ensuing from modifying the stiffness matrix. A heuristic convergence argu-
ment is given, as well as a simple example indicating rapid convergence. Apparently, no
efficient iterative method for matrix triangularization has previously been established.

The finite-element method often is applied to problems requiring solution of
large linear systems of the form 

 

K

 

0γγγγ

 

0

 

 

 

=

 

 

 

f

 

0

 

, in which the stiffness matrix 

 

K

 

0

 

 is positive-
definite, symmetric, and may be banded. As discussed in a previous chapter, an
attractive method of solution is based on Cholesky decomposition (triangularization),
in which 

 

K

 

0 

 

=

 

 

 

L

 

0

 

 

 

L

 

T

 

0

 

 and 

 

L

 

0

 

 is lower-triangular, and it is also banded if 

 

K

 

0

 

 is banded.
The decomposition enables an efficient solution process consisting of forward sub-
stitution followed by backward substitution. Often, however, the stiffness matrix is
updated during the solution process, leading to a slightly different (perturbed) matrix,

 

K

 

 

 

=

 

 

 

K

 

0

 

 

 

+

 

 

 

∆

 

K

 

, in which 

 

∆

 

K

 

 is small when compared to 

 

K

 

0

 

. For example, this situation
may occur in modeling nonlinear problems using an updated Lagrangian scheme
and load incrementation. Given the fact that triangular factors are available for 

 

K

 

0

 

,
it would appear to be attractive to use an iteration scheme for the perturbed matrix

 

K

 

, in which the initial iterate is 

 

L

 

0

 

. The iteration scheme should not involve solving
intermediate linear systems except by using current triangular factors. A scheme is
introduced in the following section and produces, in a simple example, good estimates
within a few iterations.

The solution of perturbed linear systems has been the subject of many investiga-
tions. Schemes based on explicit matrix inversion include the Sherman-Morrison-
Woodbury formulae (see Golub and Van Loan [1996]). An alternate method is to
carry bothersome terms to the right side and iterate. For example, the perturbed linear

20
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system can be written as

(20.1)

and an iterative-solution procedure, assuming convergence, can be employed as

(20.2)

Unfortunately, in a typical nonlinear problem involving incremental loading, espe-
cially in systems with decreasing stiffness, it will eventually be necessary to update
the triangular factors frequently. 

 

20.1.2 N
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ACKGROUND

 

A square matrix is said to be 

 

lower-triangular

 

 if all super-diagonal entries vanish.
Similarly, a square matrix is said to be 

 

upper-triangular

 

 if all subdiagonal entries
vanish. Consider a nonsingular real matrix 

 

A

 

. It can be decomposed as

, (20.3)

in which 
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) consists of the diagonal entries of 
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, with zeroes elsewhere; 
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coincides with 
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 below the diagonal with all other entries set to zero; and 
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u

 

 coincides
with 

 

A

 

 above the diagonal, with all other entries set to zero. For later use, we
introduce the matrix functions:

(20.4)

Note that: (a) the product of two lower-triangular matrices is also lower-triangular,
and (b) the inverse of a nonsingular, lower-triangular matrix is also lower-triangular.
Likewise, the product of two upper-triangular matrices is upper-triangular, and the
inverse of a nonsingular, upper-triangular matrix is upper-triangular. In proof of (a),
let 
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In proof of (b), let 

 

A

 

 denote the inverse of a lower-triangular matrix 

 

L

 

. We multiply
the 

 

j

 

th

 

 column of 

 

A

 

 by 

 

L

 

 and set it equal to the vector 

 

e

 

j

 

 (

 

e

 

j

 

T

 

 

 

=

 

 {0

 

….. 

 

1

 

…..

 

0} with
unity in the 

 

j

 

th

 

 position): now,

(20.5) 

K f K K0 0∆ ∆ ∆ ∆ ∆γγ γγ γγ= − − ,

K f K K0
1

0∆ ∆ ∆ ∆ ∆γγ γγ γγ( ) ( ).j j+ = − −

A A A A= + +l udiag( )

lower diag upper diagl u( ) ( ),     ( ) ( ).A A A A A A= + = +1
2

1
2

∑ =k n ik kjl l1
1 2

,
( ) ( ) . lik

( )1

lkj
( )2 ∑ =k n ik kjl l1

1 2
,

( ) ( )

 

l a

l a l a

l a l a l a

l a l a l a l a

j

j j

j j j

j j j j j j jj jj

11 1

21 1 22 2

31 1 32 2 33 3

1 1 2 2 3 3

0

0

0

1

                                        

                            

                

                    

=

+ =

+ + =

+ + + + =

M

L

 

0749_Frame_C20  Page 258  Wednesday, February 19, 2003  5:35 PM

© 2003 by CRC CRC Press LLC 



 

Advanced Numerical Methods

 

259

 

Forward substitution establishes that 

 

a

 

kj

 

 

 

=

 

 0, if 

 

k

 

 

 

<

 

 

 

j

 

, and 

 

a

 

jj

 

 

 

=

 

 

 

l

 

−

 

1

 

jj

 

 , thus, 

 

A

 

 

 

=

 

 

 

L

 

−

 

1

 

 is
lower-triangular.

 

20.1.3 I

 

TERATION

 

 S

 

CHEME

 

Let 

 

K

 

0

 

 denote a symmetric, positive-definite matrix, for which the unique triangular
factors are 

 

L

 

0

 

 and 

 

L

 

T

 

0

 

. If 

 

K

 

0

 

 is banded, the maximum width of its rows (the bandwidth)
equals 2

 

b

 

 

 

−

 

 1, in which 

 

b

 

 is the bandwidth of 

 

L

 

0

 

. The factors of the perturbed matrix

 

K

 

 can be written as

(20.6)

We can rewrite Equation 20.6 as

(20.7)

from which

(20.8) 

Note that 

 

L

 

0

  

−−−−

 

1

 

∆

 

L

 

 is lower-triangular. It follows that

(20.9)

The factor of 1/2 in the definition of the 

 

lower

 

 and 

 

upper

 

 matrix functions is
motivated by the fact that the diagonal entries of  and  are the same.

Furthermore, for banded matrices, if 

 

∆

 

L

 

 and 

 

L

 

0

 

 have the same semibandwidth,

 

b

 

, it follows that, for the correct value of  is also
banded, with a bandwidth no greater than 

 

b

 

. Unfortunately, it is not yet clear how
to take advantage of this behavior.

An iteration scheme based on Equation 20.9 is introduced as

(20.10)

Explicit formation of the fully populated inverses  can be avoided
by using forward and backward substitution. In particular, 

, where 

 

∆

 

k

 

1

 

 is the first column of 

 

∆

 

K

 

. We can now solve for
 by solving the system 

 

L

 

0 

 

b

 

j

 

 = ∆kj.

20.1.4 HEURISTIC CONVERGENCE ARGUMENT

For an approximate convergence argument, we use the similar relation

(20.11)

[ ] [ ][ ].K K L L L LT T
0 0 0+ = + +∆ ∆ ∆

[ ][ ] [ ] ,I L L I L L L K K L1 T T 1 T+ + = +− − − −
0 0 0 0 0∆ ∆ ∆

L L L L L KL L L L L1 T T 1 T 1 T T
0 0 0 0 0 0
− − − − − −+ = −∆ ∆ ∆ ∆ ∆ .

∆ ∆ ∆ ∆L L L KL L L L L1 T 1 T T= −( )− − − −
0 0 0 0 0lower .

L L1
0
− ∆ ∆L LT T

0
−

∆ ∆ ∆ ∆L L KL L L L L1 T 1 T T,   0 0 0 0
− − − −−

∆ ∆ ∆ ∆

∆ ∆

L L L KL L L L L

L L L KL

1 T 1 T T

1 T

j j jlower

lower

+( ) − − − −

( ) − −

= −( )
= ( )

1
0 0 0 0 0

1
0 0 0

( ) ( )

L L1 T
0 0
− −  and  

 L K L k0
1

0
1

1
− −=∆ ∆[

  L k L k0
1

2 0
1− −∆ ∆K n ]

b L kj j= −
0
1∆

∆ ∆ ∆ ∆A K A A A= − −
∞2 1( ) ( ),
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in which (∆A)∞ is the solution (converged iterate) for ∆A. Consider the iteration
scheme

 (20.12)

Subtraction of two successive iterates and application of matrix-norm inequali-
ties furnish

(20.13)

Convergence is assured in this example if , in which s denotes the
spectral radius (see Dahlquist and Bjork [1974]). An approximate convergence
criterion is obtained as

(20.14)

in which λj(∆A) denotes the jth eigenvalue of the n × n matrix ∆A. Clearly, convergence
is expected if the perturbation matrix has a sufficiently small norm. Applied to the current
problem, we also expect convergence will occur if . 

20.1.5 SAMPLE PROBLEM

Let L0 and K0 be given by

(20.15)

Now suppose that the matrices are perturbed according to

(20.16)

so that

(20.17)
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+− = −2 1 1 12
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2
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We are interested in the case in which d/c << 1, for example, d/c = 0.1, ensuring
that the perturbation is small. We also use the fact that

(20.18)

The correct answer, which should emerge from the iteration scheme, is

(20.19) 

The initial iterate is found from straightforward manipulation as

(20.20)

The ratio of the norms of the error is

(20.21)

Letting , the second iterate is found, after straightforward manip-
ulation, as

(20.22)

The relative error is now

(20.23)

Clearly, this is a significant improvement over the initial iterate. 
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20.2 OZAWA’S METHOD FOR INCOMPRESSIBLE 
MATERIALS

In this section, thermal and inertial effects are neglected and the traction is assumed
to be prescribed on the undeformed exterior boundary. Using a two-field formulation
for an incompressible elastomer leads to an incremental relation, in global form, as
follows (see Nicholson, 1995):

. (20.24) 

If KMM is singular, it can be replaced with K′MM = KMM + χKMP K
T
MP, and χ can be

chosen to render K′MM positive-definite (see Zienkiewicz, 1989).
The presence of zeroes on the diagonal poses computational difficulties, which

have received considerable attention. Here, we discuss a modification of the Ozawa
method discussed by Zienkiewicz and Taylor (1989). In particular, Equation 20.24
is replaced with the iteration scheme

(20.25)

in which the superscript j denotes the jth iterate and ra is an acceleration parameter.
This scheme converges rapidly for suitable choices of ra. 

If the assumed pressure fields are discontinuous at the element boundaries, this
method can be used at the element level to eliminate pressure variables (see Hughes,
1987). In this event, the global equilibrium equation only involves displacement
degrees-of-freedom. 

For each iteration, it is necessary to solve a linear system. Computation can be
expedited using a convenient version of the LU decomposition. Let L1 and L2 denote
lower-triangular matrices arising in the following Cholesky decompositions:

K′MM = L1L1
T        I/ra + KT

MPL1L1
TKMP = L2L2

T. (20.26) 

Then, a triangularization is attained as 

. (20.27)

Forward and backward substitution can now be exploited to solve the linear
system arising in the incremental finite-element method.
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20.3 EXERCISES

1. Examine the first two iterates for the matrices

2. Verify that the product and inverse of lower-triangular matrices are lower-
triangular using

3. Verify the triangularization scheme in the matrix

Use the triangular factors to solve the equation
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
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